MULTIFRACTAL CHARACTERIZATION
FOR CLASSIFICATION OF
NETWORK TRAFFIC

by
ROBERT L. BARRY

An M.Sc. Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

Thesis Advisor: Prof. W. Kinsner, Ph.D., P.Eng.

© Robert L. Barry II ; August 2003

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

KRRk

COPYRIGHT PERMISSION PAGE

MULTIFRACTAL CHARACTERIZATION FOR CLASSIFICATION OF NETWORK TRAFFIC

BY

Robert L. Barry

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

ROBERT L. BARRY © 2003

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

To my parents.

Tor their belief in me when mine was failing.

© Robert Barry Abstract

ABSTRACT

This thesis investigates the use of multifractal analysis to characterize network
traffic and to facilitate reliable real-time traffic classification. In 1993, a seminal study by
Leland ef al. revealed the existence a self-affine structure within network traffic.
However, despite this discovery, many researchers continued to use traditional techniques
of traffic analysis and modelling that did not exploit this knowledge of self-affinity.
To demonstrate the general versatility of multifractal techniques to characterize self-affine
traffic, this thesis investigates the characterization and classification of a traffic recording
from Pear’s self-affine data sets which contains an unknown number of classes.
To characterize the traffic, the variance fractal dimension trajectory (VFDT) is calculated
using a carefully selected window size and window offset. The statistical mean, variance,
skewness, and kurtosis are calculated for the VFDT, forming four new statistical
trajectories. The histograms of these statistical trajectories are calculated for another
appropriate window size, and their stationarity is modelled using the gamma distribution.
The resulting eight parameters (two for each of the four gamma distributions) are further
reduced to only four parameters using principal component analysis, and the K-means
clustering algorithm and Kohonen’s self-organizing feature map are used to cluster the
data. A locally optimal spread parameter ¢ is determined for each probabilistic neural
network (PNN) configuration, and a plot of PNN percentage classification accuracy as the
number of classes increases reveals that there are most likely three classes in the traffic
recording. Finally, an optimized PNN is trained with 50% of the multifractal signatures
sampled at regular intervals from the trajectory, and achieves a representative correct

classification accuracy of 95% when classifying previously unobserved self-affine traffic.

Siv-

© Robert Barry Acknowledgements

ACKNOWLEDGEMENTS

I would like to acknowledge and thank the support of my advisor, Dr. Witold
Kinsner, for his guidance for the past three years, and for suggesting the topic of this thesis.
I would also like to thank the Director of TR Labs, Dr. Jose A. Rueda, for welcoming me
into the TRLabs family. A special thanks also goes out to Dr. Joseph Pear and Mr. Toby
Martin in the Department of Psychology for sharing with our Delta research group their

unique data sets of behavioural modification in Siamese Fighting Fish (Betta splendens).

I gratefully acknowledge the support of everybody in the Delta Research Group,
past and present, including Kalen Brunham, Kevin Cannons, Jin Chen, Vincent Cheung,
Dr. Richard Dansereau, Stephen Dueck, Hakim El Boustani, Dr. Ken Ferens,
Neil Gadhok, Aram Faghfouri, Dr. Bin Huang, Jay Kraut, Michael Potter, Leila Safavian,
Sharjeel Siddiqui, and Hong Zhang. This research would not have been possible without
the support of TRLabs — a quiet haven where I could study and write this thesis. I would
like to thank my colleagues there, including Dr. Attahiru Alfa, Dr. Jeff Diamond,
Dr. Robert McLeod, Dr. James Schellenberg, Mr. George Ortega, Douglas Cornelsen,
Blake Podaima, Paul Ratti, Alice Rueda, Glenda Stark, Julie Stewart, Clint Stuart,
T. (Vasee) Vaseeharan, and Adam Zilkie. I also gratefully acknowledge the financial

support of TRLabs.

This thesis is dedicated to my family. Their unwavering support over the years has

helped me transform many of my dreams into realities.

© Robert Barry Table of Contents

TABLE OF CONTENTS

ABSTRACT ...eeenrectrtincistsaisisassssssssasssssssssssssssnssssssssssssssesssssssssssessssssesssssessssessass iv
ACKNOWLEDGEMENTS ..uuiiinisiiinncnnnnessnsnsssssnsssssssesssssssssssessssssssssssssssessrssessases \4
TABLE OF CONTENTS ...uooiiiiiicnicineisnssesssssessssssesseseessessssessssesssssesssssssessssessssses vi
LIST OF FIGURES ...uiiiiricnisieisisnssissssisssssensssensssssssesssnssserssssssessssssssasessossonsassses b ¢
LIST OF TABLESuouiiiiirininienissssssssssssesasssssssssssssssssssensasssesssssssssssssasesssssses xviii
LIST OF ABBREVIATIONS AND ACRONYMS ...coiverieeenrrnrnereenessessessessoscsnns xxii
L. INTRODUCTION .uuoieuivininnsnnsscsnssisssssensesessessessssessssssnssssssssessessssassossssesssssssses 1
1.1 Problem DefInitioncccccoveievirieeieieeeieceereereeeee e 1

1.2 Thesis Statement and ObJECHVESecvevevveririeriererieeeeieeeee et eaeeneeens 2

1.3 Organization 0f the ThEeSiS ...ccceevieiiierieieeerceceeeeee ettt 3

IL BACKGROUND ON NETWORK TRAFFICcucreerererrneeneerssressersesessesanns 5
2.1 What 1S TTaffIC? oot 5

2.2 Previous Research in Traffic Classificationccccoceeveeriveisviceecereen. 6

2.3 Self-Affinity in Traffic ...oocoveieieiececeeee e 7

2.3.1 Generation Through ON/OFF Processesccoevvevvivirverueeeenenn. 8

2.4 Impact on Network Performancecccocoouvvieieeieievceeiceeccceeseerenn, 11

2.5 Self-Affine Data Setscccoevevvreireeieee e 13

2.5.1 LAN TIaffiC ooioiiieiieieeseerceeeee e 14

252 WWW TIAIC ..ooiiiiiiiereieeeceeeee e 17

2.53 VOIP Traffic .coviveieiieiceeceeeeeee et 19

2.6 Sarda’s Data StSccccceverieiieieiiieieeeee et 24

277 Pear’s Data SetScccoecivriinviiieiereeetectsee ettt 25

2.7.1 Siamese Fighting Fish (Betta splendens)cocouveveereernnnnn.. 25

- Vi -

© Robert Barry Table of Contents

2.7.2 Video Recording SyStemcccceevmvieieciereeieneeereiereseeeeeeseeesenns 27
2.7.3 Pre-ProCessingccccecevemeirinienienisiereeeesteesseseesesesesses e ens 29
2.7.4 Dishabituation EXperimentsccccouvveeereveeeieieeceereeieceeeeveeninn 30
2.7.5 Experiment 11020219 ...ccoeciiririinininieeeeeeeieteeeee e 32
2.7.6 Self-Affinity in Record 11020219ccovivreiiviiceiceceeeeeere, 35
2.8 SUIMIMATY eeviverierieierieerereeseessrereeessesseesessessessessessesseesessessesssoseessesensenseses 37

III. BACKGROUND ON FRACTALS, MULTIFRACTALS, AND

FRACTAL DIMENSIONS ..uviineirinnnnsensnesisssosessissnessssassassassassasssssassasssssssssoss 38
3.1 What are Fractals?ccccoevvininnireneneseieeeee e 38
3.2 Generation Of Fractalsccccceevirvieienieneneniniiieeeee et 42
3.2.1 Mathematical FractalScccecceevmnieciicieiiieccerccrecrere e 42
3.2.2 Natural Fractalscccecererireeininiiiieieseceeeeeeee e ena 46
3.3 Fractal DIMEenSIONSccceceeverinireeienienientisresesestesreeseete e ereereenseseesesnens 48
3.3.1 Hausdorff-Besicovitch Dimensionccccceveeceevevreeieeeenvinneenne. 49
3.3.2 Variance Fractal DImensionccccccceceevevesiesiesineeiecereereeeenns 51
3.4 Multifractals and Multifractal Dimensionsccceeeeeevrveverevveeeernnene. 54
3.4.1 Variance Fractal Dimension Trajectoryccoceevereereevesreereenne. 55
3.4.2 Rényi Dimension SPECITUMc.ceeververieserienrinrenienieireceeereereeeneens 57
3.5 SUMIMATIY oottt sttt ettt sb et ss v esesese e sannes 60

IV. BACKGROUND ON FEATURE EXTRACTION AND

NEURAL NETWORK CLASSIFICATION ...ccocvninisencesnsaesassncsessaesnssssaesaens 61
4.1 Basic Statistical ANAlYSIS ...c.eccvevveriieiieieeeeneesie e s n e e 61
4.2 Higher-Order StatiStiCscoceverurirerienenercrreeieeesere e 62
4.2.1 SKEWNESS .cverviruiiierreniinieritetteiertestestesiesaesaesse e sessessesseenseseseeseenee 62
422 KUITOSIS evevterieriieririenieierieeieseteeertesteisaeas s essessesessesteesensereeneesens 62

- vii -

© Robert Barry Table of Contents
4.3 Histogram Modellingc.oceveeveieicreeriieeeieeceeeeee e 63
4.3.1 Gamma DiStributionccccecevvvrireeivirsesieeseeeeeeeeeeere e 67

4.4 Principal Component ANalySiSccccoceeveeevieiiniecriiiere e 70
4.5 K-Means CIUSIEIINGccceceeriereririeinienierieieeireeietesessressessessessessenseressennes 73
4.6 Self-Organizing Feature Mapcccocvveeveeiiceiiiceeieeeeereveeee e 77
4.7 Probabilistic Neural NetWorkccccooeivieiiiieiiiieeeeeeeereesce e 80
4.7.1 Bayes Decision RUlecccooeeeieieieieieecceceeeveeeeeeee e 80

4.7.2 Parzen PDF EStimationccoceverieinieieneeieiiniecrireeeveee e 81

4.7.3 PNN ArchiteCtureccccccoevvemieninrerieieeeeiesiereeiesteesteseeee e 83

4.8 SUMIMATY cevtiiierieeiieieeseeiese et ee et ese s erteereeereeseesesenseessesanesanennesnns 85
V. SYSTEM DESIGN AND VERIFICATIONcccoeeerenenecrersessessecsesssensessoresase 86
5.1 Verification of Sampling Frequencycccoeveeevevceiieeceireereecveeeereen, 86
5.2 Verification of Self-Affinitycccooeevemviiieieececeeeeeeee e, 88
53 Verification of Spatial Multifractalityccccoveveviiieieieeieceeieee, 94
54 Selection of Window Size and Offset to Calculate VFDT 98
5.5 Construction of Statistical Trajectories and Histogramsc............ 104
5.6 Dimensionality Reduction using PCAc.cccovevevviveeecriseeeeeeeereane 116
5.7 Construction of 4D Traffic Signature Trajectorycccocevvevvevveneenenne. 124
5.8 Neural Network Processingcccoeeveeveeieieeeeeereeeeeeere e 126
5.8.1 Verification of CIUSIETINGcccceeevrevvecriviiieiesiecieceeeereeeeeeeene 127

5.8.2 Class ASSIZNMENE ..ccccevveeeeiirierierietieeeereereereere e ere oot e enesnens 129

5.8.3 ClassifICAtION .c.cocecieeveciriiieriesriitcteeett ettt 130

5.9 SUMMATY ..ottt ettt ens e rs vt aenas 132

- viii -

© Robert Barry Table of Contents
VI. EXPERIMENTAL RESULTS AND DISCUSSION 133
6.1 Multifractal CharacCteriZatiOnueeeeee e eeeeerereeeeeeereeeeeeeeesssseressersrersrsnsesees 133
6.2 Optimal Class Assignment and Verificationc..ccceevvvceeverncriinrennens 138
6.3 PNN ClasSifICatION ...oeeeuviiieieeiiiieeesieieeecceeeeeseeeesesaetesssseeseneaesseneeeeennee 180
0.4 SUIMIMATY ceieeiriiriieiirieieet sttt ettt ss et e sesaaesesransanaenes 186
VII. CONCLUSIONS AND RECOMMENDATIONS ...cccceeennee 187
7.1 CONCIUSIONS ettt ettt e et e e e et eeee e e eneeeeesaeeraeserasaseaaaanaanan 187
7.2 CONIIDULIONS e ettt e e e et e e e e s e e e mereeasereees 190
7.3 Recommendations fOr FULUIE WOTK ..oeeeeeeeeeeeeeeveeeveeeeeeseeeseseeeesessesennns 191
REFERENCES .oootteeeetesesessssssssssssssssssorssssssssssssssssssssssssssssssessssssassassonses 194
APPENDIX A - PEAR’S DISHABITUATION DATA SETS auuueevrerenereenserenees A.1-26
APPENDIX B —MATLAB CODEcviiiiririreiesereresessceseresecessesesssssssssssnssssssssesssses B.1-66

© Robert Barry List of Figures

Fig. 2.1.

Fig. 2.2.

Fig. 2.3.
Fig. 2.4.
Fig. 2.5.
Fig. 2.6.
Fig. 2.7.

Fig. 2.8.

Fig. 2.9.

Fig. 2.10.
Fig. 2.11.
Fig. 2.12.
Fig. 2.13.
Fig. 2.14.
Fig. 2.15.
Fig. 2.16.

Fig. 2.17.

LisT oF FIGURES

Sampled LAN traffic (for approx. 3143 S€C) c..cvveeuevuieeiceeeriervcreceececereean, 14
LAN traffic averaged over (a) 10 msec, (b) 100 msec, and

(€) 1 SECINLEIVALS ceivieiieiieircceee ettt 16
Sampled WWW traffic (for approx. 28 days)ccoeveereeereenereereiereierenenen. 17

WWW traffic averaged over (a) 1 sec, (b) 10 sec, and (c) 100 sec intervals 18

Captured VoIP traffic using Etherealcccooooeievieiieiecciee e, 20
Sampled VoIP traffic (for 24 hours)cccveevveevesieeieieneeeeeeeee e 21
Sampled VoIP traffic (first 2 hours only)ccccceeevevievecieeveerieeeeeeeeeene 22
VolIP traffic averaged over (a) 0.1 sec, (b) 1 sec, (¢) 10 sec, and

(d) 100 SEC INTEIVALS «.ceeiieeeiieieeirireee ettt r e rene 23
Spot — a typical Betta SPIeNACNScoeeueeeceereeieeeeeereeeeee e 26
Stereoscopic video camera SYSEIMcceevuevereierererierreisreeseesessenenerensennens 28
STETEOSCOPIC VISION .evrurerreiirieereenierieressessesseeeseessessessassesssessessesseesesessssessesseesees 29
A better coordinate SYSLEIMcccecivverrerereesrerieieeestesreeeeeeeeste e eree e ereseesaeane 30
Experiment #1 to attempt to produce dishabituationc.cecocecevvevveruienennen. 31
Experiment #2 to attempt to produce dishabituationccccoecvvvevevennnne. 32
X-coordinates of Experiment 11020219cccoovvieinenecinerenieieensieieeeevean 33
Y-coordinates of Experiment 11020219c.ccocoevviivievineeieieeeeeeeieeeereen 33
Z-coordinates of Experiment 11020219coooveivevereeniieieeceeeeereeenenee 34

© Robert Barry List of Figures

Fig. 2.18.

Fig.3.1.
Fig.3.2.
Fig. 3.3.
Fig.3.4.
Fig. 3.5.
Fig. 3.6.
Fig. 3.7.
Fig. 3.8.
Fig. 4.1.
Fig. 4.2.
Fig. 4.3.
Fig. 4.4.
Fig. 4.5.
Fig. 4.6.
Fig. 4.7.
Fig. 4.8.
Fig. 4.9.
Fig. 4.10.

Fig. 4.11.

Betta splendens traffic averaged over (a) 0.1 sec, (b) 1 sec, and

(€) 10 SEC INLEIVALS .eeuteeeeiieeieiisiete ettt re st ea st esesnens 36
Mandelbrot set in 2-diMENSIONSccveeveererierierieririeiereee e ee s ereeseerens 39
Mandelbrot set in 3-diMENSIONS ...cccveererririeriieieeeiriirte e eeeeere e ereresseanes 39
Generation of the Koch curve fractalccccoceeveeeniececiceciciceceeereen, 43
Generation of the Sierpinski carpet fractalcccocveivieiiceneciireicieeine, 45
The MEeNger SPONZEccceceruerieririrreieieietereee et ere et rsssevs st e s e reseenas 46
Coastline of Great Britainlcccceeieieeneneieieieieieeereee e enans 47
Variance fractal dimension calculated through timeccccoceevveveeverennenenn. 56
A Rényi dimension spectrum for a single fractal and a multifractal 59
1000 data points selected from a Gaussian distributionc.cceceeevvreenenens 63
Too few bins used to construct a histogramccoceeeveereereerieeceeceeerreenen, 64
Too many bins used to construct a hiStogramc.cccceevveereevereeeerieeneenenne. 65
A good number of bins used to construct a histogramc.ccceevveeveevennne. 65
Histogram modelling using the Gaussian distributionc.cccceveveeerennnens 66
Gamma distribution with o0 = 1 and varying B ...cccooeveevievieicieeeeeeee. 68
Gamma distribution with B = 1 and varying occcoeevveveveveeivisieirieeenne 68
Gamma distribution with varying o and Bcccceeevveiviiceireceiceeeeeeere, 69
Traffic characteristics plotted in 2-dimensionsc.ceceeveveeeereesnnerennnn. 74
A poor choice of two clusters (or classes) in Fig. 4.9cooevvievecreccee, 74
A good choice of four clusters (or classes) in Fig. 4.9cccoovvviervevvecreenneee. 75

- Xi-

© Robert Barry List of Figures

Fig. 4.12.
Fig. 4.13.
Fig. 4.14.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

5.1.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

SOFM aIChITECTUIEc.coveieiiriciiirieieinieeiete ettt e ettt 78
Varying the spread parameterccoooveeeeeieieeeeeeeeeeeceeeeeereere e 83
PNN AIChILECTUIEocvvviiieeiirieeeiinieteert ettt ettt 84
Record 11020219 from 7 = 50.1 t0 152.4 SEC .cvvvrverrivrerieirirereerereeeeeserenen, 89
Calculation of variance fractal dimension of Fig. 5.1ccocoveevveivviviiiriiien, 89
Record 11020219 from 7 = 1050.1 to 1152.4 S€C ..eevvvvrerreerreriennnee. S 90
Calculation of variance fractal dimension of Fig. 5.3 ...ccccoeeiiiieiiciieen, 90
Record 11020219 from £ = 15000.1 t0 15102.4 SEC ..covevevvvrrveeererieririrerennen 91
Calculation of variance fractal dimension of Fig. 5.5 ...ccccocovieviiieivciireine, 91
Record 11020219 from ¢ = 27000.1 t0 27102.4 SEC .ccvvvvvvrrrerenrerieienerenen 92
Calculation of variance fractal dimension of Fig. 5.7 ..cccceoveevivieicviririe, 92
Histogram of the MSE of the VFDT in Record 11020219cccoeevvrenneee. 94
Rényi dimension spectrum of Fig. 5.1 oo, 95
Rényi dimension spectrum of Fig. 5.3 ..ooeovivioeieeeeeeeeseeeeee e 95
Rényi dimension spectrum of Fig. 5.5 ..coooviiiieieeeeeeeeeeeeeeereeee e 96
Rényi dimension spectrum of Fig. 5.7 ...coivioeeiiieieeieeececeeeeee e, 96
VFDT calculated using a non-overlapping window size of 8192 99
VFDT calculated using a non-overlapping window size of 4096 99
VFDT calculated using a non-overlapping window size of 2048 100
VEDT calculated using a non-overlapping window size of 1024 100
VFDT calculated using a non-overlapping window size of 512 101

- Xii -

© Robert Barry List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

VFDT calculated using a window size of 512 and window offset of 256 ... 102

VEFDT calculated using a window size of 512 and window offset of 128 ... 102

VEFDT calculated using a window size of 512 and window offset of § 103
Mean trajectory of the VEDTccocooivieiieieiiieeeeeceteeereee s 104
Variance trajectory of the VEDT ..ot 105
Skewness trajectory of the VEDTccooiviiiiviniieiseeeceeceeeeeeieae 105
Kurtosis trajectory of the VEDT ..o 106
Global histogram of the mean trajectory of the VFDTccccevieverenrnnee. 107

Gamma distribution model of Fig. 5.26 with oo = 1.6816 and
B = 14804 oottt 107

Global histogram of the variance trajectory of the VFDTccccooevvenvenee. 108

Gamma distribution model of Fig. 5.28 with o = 0.48026 and
B = 14885 ettt ettt 108

Global histogram of the skewness trajectory of the VFDTc..cccveueeeen. 109

Gamma distribution model of Fig. 5.30 with oo = 11.575 and
B = 23385 ettt 109

Global histogram of the kurtosis trajectory of the VEDTccoevvvvvvennnen. 110

Gamma distribution model of Fig. 5.32 with o = 1.2060 and
B = 32648 oot 110

Local mean trajectory histogram between time
1= 20,000 and 29,000 SECcceevverierreririeresieieieieieie et 112

Gamma distribution model of Fig. 5.34 with oo = 2.1853 and
B = 17113 ettt 112

- xiii -

© Robert Barry List of Figures

Fig. 5.36.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

5.37.

5.38.

5.39.

5.40.

5.41.

5.42.

5.43.

5.44.

5.45.

5.46.

5.47.

5.48.

5.49.

5.50.

5.51.

5.52.

Local variance trajectory histogram between time
£=20,000 and 29,000 SEC ...covevrrerrririerieteeteeeeee ettt 113

Gamma distribution model of Fig. 5.36 with o = 1.0744 and
B = 24249 oot 113

Local skewness trajectory histogram between time
1= 20,000 and 29,000 SECeeverurerieriiieiesiriece ettt e 114

Gamma distribution model of Fig. 5.38 with o = 3.3753 and
B = 81635 ettt b et ns et ena 114

Local kurtosis trajectory histogram between time
£ =20,000 and 29,000 SECcouvveeeiiieeeeeeeeeeee ettt e e aa s 115

Gamma distribution model of Fig. 5.40 with o = 0.81900 and

B = 9.8329 et a e nens 115
Relationship between mean and variance trajectoriesccccooeevevvevrerennnne. 116
Relationship between mean and skewness trajectoriesccoeevveveeeenennns 117
Relationship between mean and kurtosis trajectoriesc.ccccevververvecvennene. 117
Relationship between variance and skewness trajectoriesc.coeueveennenenn. 118
Relationship between variance and kurtosis trajectoriescccoeeeevenrnne.e. 118
Relationship between skewness and kurtosis trajectoriesccoevverevenenn.. 119
Values of all 8D signatures which characterize Record 11020219 121
Cumulative variance for the principal componentsccccecvevvevveevevennene. 122
Values of all 8D signatures in Fig. 5.48 after PCAccccoeeviriieeciene, 123
Values of all compressed 4D SIgnaturesccecevvveererinienrernsreseernnnereerennen. 123
Construction of the 4D signature T of a window of trafficccc.......... 125

- Xiv -

© Robert Barry List of Figures
Fig. 5.53. Relationship between first two principal components from

Record 11020219 ..ottt 128
Fig. 5.54. K-means clustering boundaries of Fig. 5.53 with 6 clustersc..cccene..... 128
Fig. 5.55. SOFM identification of 6 clusters in Fig. 5.53 ...ccocovvieieieicceeeceeeee 129
Fig. 5.56. PNN training and teSt SEtScccrveeeruireriererierenieiereeesresseeesessessesssssseseeseas 131
Fig. 6.1. Record 11020219 ..ottt eve et ve e eae e eaeoas 133
Fig. 6.2. VFDT of Fig. 6.1 using a window size of 512 and window offset of 8 134
Fig. 6.3. Mean trajectory of the VEDT ...ccccooviviioieieeiieee et 135
Fig. 6.4. Variance trajectory of the VEDTccociiiiiiieeceeeeetecee e 135
Fig. 6.5. Skewness trajectory of the VFDTcccocveiiviieieeieeeeceeeeecreeeee e 136
Fig. 6.6. Kurtosis trajectory of the VEDTccccoiiviiimiieeieceeeeeeeee e 136
Fig. 6.7. Final 1844 compressed 4D Signaturesccecveveevrevieeeeeeeeeenreeeeeereeneas 137
Fig. 6.8. Percentage correct classification with an optimized PNN trained with

50% of the vectors sampled at regular intervalscccceecerveeieeeeerieceenennn. 172
Fig. 6.9. Percentage correct classification with an optimized PNN trained with

30% and 40% of the vectors sampled at regular intervalsccoeeveeveennne 173
Fig. 6.10. Three classes in 4-dimensions projected onto PC(1) and PC(2) 176
Fig. 6.11. Three classes in 4-dimensions projected onto PC(1) and PC(3) 177
Fig. 6.12. Three classes in 4-dimensions projected onto PC(2) and PC(3) 177
Fig. 6.13. Three classes in 4-dimensions projected onto PC(1) and PC(4) 178
Fig. 6.14. Three classes in 4-dimensions projected onto PC(2) and PC(4) 178
Fig. 6.15. Three classes in 4-dimensions projected onto PC(3) and PC(4) 179

- XV -

© Robert Barry List of Figures

Fig. 6.16.
Fig. A.1.
Fig. A.2
Fig. A3
Fig. A.4
Fig. A.5
Fig. A.6
Fig. A.7
Fig. A.8
Fig. A9
Fig. A.10
Fig. A.11
Fig. A.12
Fig. A.13
Fig. A.14
Fig. A.15
Fig. A.16
Fig. A.17
Fig. A.18
Fig. A.19

Fig. A.20

Behavioural classification trajectory for Record 11020219cocueueeee. 180
X-coordinates of Experiment 11020218 (MO)ccoeoveevveeeriereeeeeene e, 1
Y-coordinates of Experiment 11020218 (MO)c.ooveieveveecieieeeveeveee 2
Z-coordinates of Experiment 11020218 (MO)cceovvevveieeeeeceeee e 2
X-coordinates of Experiment 11020219 (MO)ccovvveeeieeeiieeceeeeeeeeeenia, 3
Y-coordinates of Experiment 11020219 (MO)c.oovevevecvicriceceeeceeveeeee 3
Z-coordinates of Experiment 11020219 (MO)coovirieverieeeeeeeeeeeeeeens 4
X-coordinates of Experiment 11020220 (MO)ccoevveeeieieiieieeieeiee e 5
Y-coordinates of Experiment 11020220 (MO)cccoeereecrreeieeeeeeeereeeene 5
Z-coordinates of Experiment 11020220 (MO)ccoovveeeieieieieiereeeecve,)
X-coordinates of Experiment 11020221 (MC) ..ccooveieeieieieecececeeeeeereeeee, 7
Y-coordinates of Experiment 11020221 (MC) ..oovevienienicieieeeeeeeeeees 7
Z-coordinates of Experiment 11020221 (MC) ..c.oovevvevveeieieeeeceeeveeeeeeeveve 8
X-coordinates of Experiment 11020222 (MC) ..cocoevieeeieieeeeeeeecee v, 9
Y-coordinates of Experiment 11020222 (MC) ..c.ocooevevvevireeeeereeereeeeeeeeeene, 9
Z-coordinates of Experiment 11020222 (MC)cceovevevieeereceeriereieeceeenn, 10
X-coordinates of Experiment 11020223 (MC) ..ccocovevveeieieieereeeeecveeeeeeee, 11
Y-coordinates of Experiment 11020223 (MC) ...ccooveeiereiereieeeieecveeee 11
Z-coordinates of Experiment 11020223 (MC) ...cccovevveeecerceereeeeeeerereeeee 12
X-coordinates of Experiment 11020224 (MC) ..coovevveevenveeeeeeeeeeee e, 13
Y-coordinates of Experiment 11020224 (MC)coovevvvrreeeceereeeereeeeecinene 13

- XVi -

© Robert Barry List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

A2]

A.22

A23

A24

A.25

A26

A27

A28

A29

A30

A3l

A32

A.33

A34

A35

A.36

A37

A.38

A39

Z-coordinates of Experiment 11020224 (MC) ...ocoevvevievereereeinriecieeesreeeenen, 14
X-coordinates of Experiment 14020309 (MO) ..ccccoovevevvenrenerienieieeesreerenens 15
Y-coordinates of Experiment 14020309 (MO) ..cc.ovevevieieniecienieieereeeeveenenn 15
Z-coordinates of Experiment 14020309 (MO)coccveeveveevieveeeeeeeeiesieeienn, 16
X-coordinates of Experiment 14020310 (MO) ..cccoevvrevvecreerieereecreeeeerreeveenns 17
Y-coordinates of Experiment 14020310 (MO) i 17
Z-coordinates of Experiment 14020310 (MO) ..ccevvvvrevenincieniesieereeeereennn, 18
X-coordinates of Experiment 14020311 (MO) ..ooveevevveeiereneeeeeceeie e, 19
Y-coordinates of Experiment 14020311 (MO)coovveevieeeeecreeeieecveeeeeeeeveene, 19
Z-coordinates of Experiment 14020311 (MO) ..occvecvevveveiieieeeeieeecieeveeveni, 20
X-coordinates of Experiment 14020312 (MC) ..ccecvvvvvveeviieienecie e 21
Y-coordinates of Experiment 14020312 (MC) .cccocvvverieiinceerienienieneeeseenenns 21
Z-coordinates of Experiment 14020312 (MC) .cocveveiecievieeececeeeereeieeenns 22
X-coordinates of Experiment 14020313 (MC) ..ooovvvviveneniierienienesenieeieieeeens 23
Y-coordinates of Experiment 14020313 (MC) ..ccvovvevreviveireeeereeeieereeie e 23
Z-coordinates of Experiment 14020313 (MC) ..oocvviveeirceeieeceieieeeeeeereee, 24
X-coordinates of Experiment 14020314 (MC) ..oceovveirievieeneniecnecierenienns 25
Y-coordinates of Experiment 14020314 (MC) ..ccvevevvieereeeeeeeceeeeeiene 25
Z-coordinates of Experiment 14020314 (MC) ...cccovivinivinreniecieriene e 26

- Xvii -

© Robert Barry List of Tables
LisT OF TABLES

Table 3.1 Length of Great Britain’s coastlineccccceevveevecreeceieeeeceeeererevenes 48
Table 3.2 Fractal dimensions for various figuresccoceveeveeicice e 50
Table 6.1 Percentage correct classification using 30% of the vectors for

training with varying & When ¢ =2ccocveeveeeieeieeceeeeeeeeeeee e 140
Table 6.2 Percentage correct classification using 30% of the vectors for

training with varying 6 wWhen ¢ =3ccccovvieieveieeicceeeeeeereeeeevenas 141
Table 6.3 Percentage correct classification using 30% of the vectors for

training with varying ¢ when ¢ =4ccoceiveiieiiciececceceeeeeeeee 142
Table 6.4 Percentage correct classification using 30% of the vectors for

training with varying G When ¢ =25ccccoovvveirinieeeeceeeeen 143
Table 6.5 Percentage correct classification using 30% of the vectors for

training with varying & When ¢ =6cccecevevieicieeeieieeeeece e 144
Table 6.6 Percentage correct classification using 30% of the vectors for

training with varying 6 When ¢ =7 ...cccccevvvvieirreieeeieeieeereeesee s 145
Table 6.7 Percentage correct classification using 30% of the vectors for

training with varying ¢ when ¢ =8cccocoeveieiiieveieeeieeceeeeeeen 146
Table 6.8 Percentage correct classification using 30% of the vectors for

training with varying ¢ when ¢ =9cccocveveiiiceciceeeceee e 147
Table 6.9 Percentage correct classification using 30% of the vectors for

training with varying ¢ when ¢ = 10cccccovieeeineciiieeceeeeeeieeneen 148
Table 6.10 Percentage correct classification using 40% of the vectors for

training with varying ¢ when ¢ =2cccccevveeinieciceceeceeeee e 149

- XViii -

© Robert Barry

List of Tables

Table 6.11

Table 6.12

Table 6.13

Table 6.14

Table 6.15

Table 6.16

Table 6.17

Table 6.18

Table 6.19

Table 6.20

Table 6.21

Table 6.22

Table 6.23

Percentage correct classification using 40% of the vectors for
training with varying ¢ when ¢ =3ccccoociiniiiieeeeee e 150

Percentage correct classification using 40% of the vectors for
training with varying 6 When ¢ =4cccccvveveevenecieneeee e 151

Percentage correct classification using 40% of the vectors for
training with varying 6 When ¢ =5cccevevivvieniciesieeee e 152

Percentage correct classification using 40% of the vectors for
training with varying 6 when ¢ =6cccocceevvvivrveeinceeeseecee e 153

Percentage correct classification using 40% of the vectors for
training with varying 6 When ¢ =7cccceevvvieeeieeicceeeeeeeeeeve e 154

Percentage correct classification using 40% of the vectors for
training with varying ¢ when ¢ =8ccccooeeveiiiivinciicieece e 155

Percentage correct classification using 40% of the vectors for
training with varying 6 when ¢ =9 ...cccocvvvvieirniieeecee e 156

Percentage correct classification using 40% of the vectors for
training with varying ¢ when ¢ = 10cccccceviieiieiieiececeececeeee e 157

Percentage correct classification using 50% of the vectors for
training with varying ¢ when ¢ =2ccocvvvvevivineee e 158

Percentage correct classification using 50% of the vectors for
training with varying 6 when ¢ =3ccccooeveiiereeeeneseeeeeeeee e 159

Percentage correct classification using 50% of the vectors for
training with varying 6 when ¢ =4ccovevieiinneeeee e 160

Percentage correct classification using 50% of the vectors for
training with varying 6 when ¢ =5 ...ccccovriiniiieniecieeee e 161

Percentage correct classification using 50% of the vectors for
training with varying 6 when ¢ = 6ccccecevveeieveecieniecrece e 162

- XiX -

© Robert Barry List of Tables
Table 6.24 Percentage correct classification using 50% of the vectors for

training with varying 6 When ¢ =7ccccvevereveeveevreeeeeeeeeeee e 163
Table 6.25 Percentage correct classification using 50% of the vectors for

training with varying ¢ when ¢ =8ccccccevevevieenreienceeecee e 164
Table 6.26 ~ Percentage correct classification using 50% of the vectors for

training with varying & When ¢ =9ccccoveveeicineireiceeieeeee e 165
Table 6.27 Percentage correct classification using 50% of the vectors for

training with varying ¢ when ¢ =10ccocevvevevriveeineiciseeeeerene 166
Table 6.28 Average values of which achieves the highest percentage correct

classification using 40% of the vectors for trainingccceeveeeveneene. 168
Table 6.29 Average values of which achieves the highest percentage correct

classification using 30% of the vectors for trainingccceeveevenee. 168
Table 6.30 Average values of which achieves the highest percentage correct

classification using 50% of the vectors for trainingccceevevevverennnne. 169
Table 6.31 PNN percentage correct classification using the average values of

¢ for each value of ¢ when 30% of the vectors sampled at regular

intervals are used for trainingcceceeveereriereeseeeeeeere e 170
Table 6.32 PNN percentage correct classification using the average values of

¢ for each value of ¢ when 40% of the vectors sampled at regular

intervals are used for trainingccocvvevevriveeeieresieeceeeee e 170
Table 6.33 ~ PNN percentage correct classification using the average values of

¢ for each value of ¢ when 50% of the vectors sampled at regular

intervals are used for trainingc.cceeeeerrevireereeereeeeeeeeee e 171
Table 6.34 PNN percentage correct classification with three classes when

¢ = 0.067 and 50% of the vectors are used for training 181
Table 6.35 PNN confusion matrix for simulation “Regular” in Table 6.34 182
Table 6.36 PNN confusion matrix for simulation “Random #1” in Table 6.34 182

- XX -

© Robert Barry List of Tables
Table 6.37 PNN confusion matrix for simulation “Random #3” in Table 6.34 183
Table 6.38 ~ PNN confusion matrix for simulation “Random #4” in Table 6.34 183
Table 6.39 PNN confusion matrix for simulation “Random #5” in Table 6.34 183
Table 6.40 PNN confusion matrix for simulation “Random #2” in Table 6.34 183
Table 6.41 Summation of PNN confusion matrices for all five “Random”

SIMUIATIONS ...viiiiveiiieierit ettt ettt ettt re st aeba s assebennenan 184
Table 6.42 PNN percentage confusion matrix for the “Regular” simulation 184
Table 6.43 PNN percentage confusion matrix for all five “Random” simulations . 184

- XXI -

© Robert Barry List of Abbreviations, Acronyms, and Translations
LIST OF ABBREVIATIONS, ACRONYMS,
AND TRANSLATIONS
2D 2-dimensional
4D 4-dimensional
8D 8-dimensional
Apr. April
a priori (Latin) ; previously observed
ACM The Association for Computing Machinery
ad infinitum (Latin) ; to infinity
AIEE American Institute of Electrical Engineers
ANN Artificial Neural Network
approx. approximately
ATM Asynchronous Transfer Mode
B.Sc. Bachelor of Science
bps bits per second
CCECE Canadian Conference on Electrical and Computer Engineering

- xxii -

© Robert Barry List of Abbreviations, Acronyms, and Translations

CCS Common Channel Signaling
CCSN Common Channel Signaling Network
cm centimetre(s)

Conf. Conference

Dec. December

DNA Deoxyribonucleic Acid
DTMF Dual Tone Multi-Frequency
ed. edition

Ed. Editors

Eq(s). Equation(s)

EMG Electromyogram

etal et alia (Latin) ; and others
Feb. February

Fig(s). Figure(s)

FSK Frequency Shift Keying

FTP File Transfer Protocol

- XXiii -

© Robert Barry List of Abbreviations, Acronyms, and Translations

hr(s) hour(s)

Hz Hertz

ie. id est (Latin) ; that is

IEEE The Institute of Electrical and Electronics Engineers
1i.d. independent and identically distributed

Inc. Incorporated

INFOCOM The Conference on Computer Communications

Intern. International

IP Internet Protocol

ISDN Integrated Services Digital Network
J. Journal

Jan. January

KB kilobyte (or 1,024 bytes)

km kilometre(s) (or 1,000 metres)

LAN Local Area Network

LPF Low-Pass Filter

- XX1V -

© Robert Barry List of Abbreviations, Acronyms, and Translations
LRD Long-Range Dependence
Mar. March
MATLAB Matrix Laboratory
MB megabyte (or 1,024 kilobytes)
min minute(s)
mm millimetre(s)
msec millisecond(s)
M.Sc. Master of Science
MSE Mean Square Error
no. number
Oct. October
PCA Principal Component Analysis
PCM Pulse Code Modulation
PDF Probability Density Function
P.Eng. Professional Engineer
Ph.D. Philosophiae Doctor (Latin) ; Doctor of Philosophy

- XXV -

© Robert Barry List of Abbreviations, Acronyms, and Translations

PNN Probabilistic Neural Network
p. page

pp- pages

Proc. Proceedings

QoS Quality of Service

Rep. Report

Rev. Review

sec second(s)

Sep. September

SIGCOMM Special Interest Group on Data Communications

SOFM Self-Organizing Feature Map

SPIE The International Society for Optical Engineering
SRD Short-Range Dependence

SS7 Signaling System Number 7

Tech. Technical

TELNET Teletype Network

- XXVi -

© Robert Barry List of Abbreviations, Acronyms, and Translations

Trans. Transactions

TRLabs Telecommunications Research Laboratories
UDP User Datagram Protocol

VBR Variable Bit Rate

vel volume element

VolP Voice over IP

vol. volume

VFDT Variance Fractal Dimension Trajectory
WAN Wide Area Network

WWW World Wide Web

- Xxvii -

© Robert Barry Ch. 1: Introduction

CHAPTER I

INTRODUCTION

1.1 Problem Definition

In 1993, a seminal study at Bell-Core by Leland, Taqqu, Willinger, and Wilson
revealed an inherent self-similar (or more accurately, self-affine) nature in Ethernet traffic
[LTWWO94]. This discovery sparked a new wave of research around the world, and it soon
became clear to researchers that self-affinity in network traffic was not merely a

computer-induced artifact, but rather a fundamental property of the traffic itself.

Self-affine traffic possesses bursty structural similarities over a wide range of time
scales. The importance of recognizing self-affinity in network traffic is realized in the
problem of optimal resource allocation in dynamic operating conditions. A network
engineer must satisfy as many network users as possible, given certain budgetary and
practical constraints. A trade-off between network capacity and Quality of Service (QoS)
requirements must be resolved by optimizing resource allocation algorithms to guarantee
that the service provided to the end user meets the QoS constraints while maintaining

maximum capacity [SaTe99].

Network control through optimal usage of resources is only possible through
characterization and classification of the network traffic, and then by determining optimal
buffer sizes, assignment of bandwidth and channels, and other resources for each class of
traffic in order to achieve the desired QoS in terms of queuing delay, retransmission time,

packet loss probability, and bit error rate [SaTe99]. Therefore, the three stages in this area

© Robert Barry Ch. 1: Introduction

of study are (1) characterization, (2) classification, and (3) control. The first two stages,

characterization and classification, will be the focus of this thesis.

To characterize and classify the network traffic, a real-time classifier must be
developed to monitor the traffic. Traffic classification is not a new problem, and several
classifiers have already been developed for this purpose. However, most products range
greatly in sophistication and usefulness. Some classifiers can only distinguish between
speech and non-speech [Benv93], whereas others can classify traffic into general
categories of voice, data, and facsimile [Sard99]. The reliability of these classifiers is also
of paramount importance, as some can correctly classify traffic over 90-95% of the time,
and others have classification accuracies of only approximately 72% [Sewa96]. More
general and highly reliable classifiers do exist that are able to recognize twelve signal

classes with an accuracy of approximately 99% [Sard99].

However, none of the aforementioned classifiers utilize the knowledge that
network traffic is self-affine in order to facilitate the implementation, or to improve the
performance, of the classifier. Understanding the self-affine nature of network traffic is an
important piece of knowledge that is used in this thesis to design and implement a new

multifractal-based traffic classifier.

1.2 Thesis Statement and Objectives

The objectives of this thesis are: (1) to demonstrate the self-affine nature of Pear’s
data sets, (2) to characterize this traffic using multifractal analysis, (3) to cluster these
characteristic features into natural classes, and (4) to train a neural network classifier with

these features to classify previously unobserved traffic.

© Robert Barry Ch. 1: Introduction

The variance fractal dimension [MaVa68], [Kins94a] is used to demonstrate the
self-affine nature of the traffic, and the variance fractal dimension trajectory (VFDT)
[Kins94a] of the traffic is calculated using a carefully selected window size and offset.
The mean, variance, skewness, and kurtosis are calculated for each window of the VFDT,
forming four new statistical trajectories. The histograms of these statistical trajectories are
calculated for another appropriate window size, and their stationarity is modelled using
the gamma distribution [Weis99a]. The resulting eight parameters (two for each of the
four gamma distributions) are further reduced to only four parameters with principal
component analysis [HyKOO01, Ch. 6], and the K-means clustering algorithm [MacQ67],
[Hart75, Ch. 4] is then used to determine the classes in the multifractal signatures.
A self-organizing feature map [Koho88, Ch. 5], [Koho90] is also used to independently
verify the results of the K-means clustering algorithm. A probabilistic neural network is
trained with. these signatures [Spec88], [Spec90a] and its performance on classifying

unknown traffic is used to indicate the most likely number of classes in the data.

The primary data set used in this research is Record 11020219 from Pear’s data

sets, although other data sets are also discussed.

1.3 Organization of the Thesis

This thesis is organized into seven chapters. Chapter 1 presents the motivation
behind this thesis and the formal definition of the thesis statement. Chapter 2 provides the
necessary background on traffic, self-affine traffic, and the data sets studied in this thesis.
Chapter 3 introduces fractals, fractal dimensions, multifractals, the calculation of the
variance fractal dimension trajectory, and the relationship between multifractals and

self-affine traffic. Chapter 4 highlights important issues in feature extraction and neural

© Robert Barry Ch. 1: Introduction

network classification, including the use of higher-order statistics, histogram modelling,
principal component analysis, K-means clustering, self-organizing feature maps, and
probabilistic neural networks. Chapter 5 describes the design of the system and its
verification, including the selection of the proper window sizes to be used for the
calculation of the variance fractal dimension trajectory and the modelling of its statistical
histograms. Chapter 6 discusses the characterization, verification, and classification
experiments performed on Record 11020219, and the results of these experiments.
Finally, Chapter 7 reflects upon the thesis statement by presenting the conclusions and

contributions of this thesis, as well as recommendations for future work.

© Robert Barry Ch. 2: Background on Network Traffic

CuAPTERII

BACKGROUND ON NETWORK TRAFFIC

2.1 Whatis Traffic?

If you ask the question “What is traffic?” to ten people, you will most likely get ten
different answers. A bus driver may say that traffic is the motion of automobiles on roads,
and a network administrator may say that traffic is the number of “hits” on a web site. The
first definition describes objects composed of metal and plastics burning hydrocarbons as
they drive along roads of gravel, asphalt, or concrete. The second definition describes
packets of binary information travelling across networks of copper or fiber optics cables.
At first glance, these two definitions of traffic may seem totally dissimilar, but perhaps a

more general definition of traffic exists that encompasses both of these definitions.

Traffic may be defined as the movement of objects through a network. In our
example of the motion of automobiles on roads, the objects are automobiles and the
network would be roads. Similarly, in our example of the number of “hits” on a web site,
the objects are packets of binary information and the network is composed of

interconnected computers.

If we take this analogy one step further, we may also say that both of these
networks also have a measurable Quality of Service (QoS) associated with it. Drivers are
happy when they are able to get from where they are to where they are going in a timely
fashion, and with a minimal number of detours or inconveniences along the way.

Similarly, web surfers are happy when they are able to access any web site and not have to

© Robert Barry Ch. 2: Background on Network Traffic

wait too long for its contents to load. Degradation in the QoS of road traffic occurs when
drivers experience traffic jams during “rush hour”, or when trains block the normal
rhythm of traffic flow. Degradation in the QoS of network traffic happens when web sites
take a long time to view, or files take a long time to download. QoS issues in road traffic
are suited to the experience of city planners and politicians. Thankfully, QoS issues in
network traffic are suited to network engineers. For this reason, this thesis will focus on

traffic related to computer networks.

2.2 Previous Research in Traffic Classification

Characterization and classification of network traffic is an area of research that has
progressed for several years under the supervision of Dr. Bruce Cockburn at the
University of Alberta. Dr. Cockburn was the advisor for Deepak Sarda, a former TR Labs
graduate student, who developed a real-time voiceband signal classifier for his M.Sc.
thesis in 1999 that can classify 24 channels on a T1 line in a telephone network with about
99% accuracy [Sard99]. These twelve signal classes consist of four data modem classes,
four facsimile classes, random binary, Frequency Shift Keying (FSK) signaling, ringback,

and a class containing the twelve Dual Tone Multi-Frequency (DTMF) tones [Sard99].

Sarda’s classifier is based on the algorithms developed by Jeremy Sewall, another
former TRLabs graduate student, for his M.Sc. thesis in 1996. Sewall’s algorithms
involve the use of the first ten normalized autocorrelation sequence lags and the
normalized second order-central moment with discriminant analysis to make a decision as
to which of the twelve signal classes a segment of observed data most likely belongs
[Sewa96]. Linear, quadratic, and hybrid discriminant functions were used to discriminate

between the signal classes. The development of these algorithms by Sewall was made

© Robert Barry Ch. 2: Background on Network Traffic

possible by the prior research of Nevio Benvenuto, who was able to correctly classify

between speech and non-speech with an accuracy of about 99% [Benv93].

Although Sarda’s voiceband signal classifier does an excellent job of classifying
traffic on a T1 line, its design imposes a severe limitation on how effectively it can be used
for future applications. One of the most desirable features of any product is the ease with
which it can be expanded or upgraded. An expansion of Sarda’s classifier to include new
signal classes would not be trivial, and may even require a new design. The proposed
multifractal-based traffic classifier would resolve this design issue through a modular
design where each class of traffic would possess a unique compressed multifractal
signature. Removing outdated traffic classes or adding new traffic classes would simply
involve the deletion or addition of the new traffic signatures and a re-training of the neural

network.

2.3 Self-Affinity in Traffic

Self-affine traffic possesses bursty structural similarities over a wide range of time
scales, such as milliseconds, seconds, minutes, hours, and even days or weeks [SaTe99].
A new wave of research was sparked that showed the existence of self-affinity in Local
Area Network (LAN) traffic [LTWW94], Wide Area Network (WAN) traffic [PaF195],
World Wide Web (WWW) traffic [CrBe97], Teletype Network (TELNET) traffic
[PaF195], Integrated Services Digital Network (ISDN) traffic [LLTW94], File Transfer
Protocol (FTP) traffic [PaF195], Frame Relay traffic [FoWi98], Signaling System 7 (S57)
traffic [DuWi94], and Variable Bit Rate (VBR) video traffic [GaWi%4], over
Asynchronous Transfer Mode (ATM) networks [BSTW95]. These studies clearly showed

that self-affinity is not a computer-induced artifact, but a fundamental property of network

© Robert Barry Ch. 2: Background on Network Traffic

traffic. In 1995, Willinger et al. showed that self-affine traffic may be generated through
ON/OFF processes [WTSW95]. Earlier work in 1990 by McLeod, Schellenberg, and
Hortensius at the University of Manitoba demonstrated the generation of self-affine traffic

through various configurations of the network topology [McSH90].

2.3.1 Generation Through ON/OFF Processes

In 1995, a theory for the generation of self-affine traffic was proposed by Willinger
et al. [WTSW95]. This theory extended an approach originally suggested by Mandelbrot
in 1969 that the superposition of many ON/OFF processes with high variability produces
self-affine traffic [Mand69]. This theory was later proved by Taqqu et al. in 1997 using a
different mathematical approach that does not follow from the work by Mandelbrot
[TaWS97]. A summary of this theory that follows Mandelbrot’s work will now be
presented [WTSW95].

An idealized ON/OFF source model, also called a packet train model, is
characterized by a reward sequence {W([),/=0,1,...} : a discrete time stochastic
process with { W(/)} =0 or 1, depending on whether or not there was a packet at time 1.
The reward sequence {W#(/)} consists of a sequence of 1’s if packets are transmitted (an
“ON- period”) and 0’s if no packets are being transmitted (an “OFF-period”). Let p=P
(a given period is an ON-period) = 2, and assume that the lengths of the ON-periods and

OFF-periods are governed by independent and identically distributed (i.i.d.) random

variables denoted by U, , k=0, 1, Udenotes an arbitrary U, with finite expectation
e(U). Let S, =Sy + U;+ U, + ...+ U, , k=0 be the corresponding renewal times.

{Sk,k=0} is made stationary by choosing the distribution of S, in the following way:

© Robert Barry Ch. 2: Background on Network Traffic

(P(Syg=u)= (S(U))"lP(UZu +1),u=0,1,2,... (2.1)

To ensure the stationarity of the sequence { W(/),/ =20}, let /= 0 be an ON-period with

probability of 2 .

Suppose that there are M i.i.d. sources where the m'™ source m=1, .., M) has its

own reward sequence {W(m)(l), [=20}. Then the cumulative reward (also called the
packet load) at time [is
M
m=1
Aggregating this load through non-overlapping time blocks of size b, where j denotes the

block number, we get
b+1) M o
WD) = Y Y WD, =0,1,2,... 2.2)
I=bj+1 m=1

The statistical behaviour of the sequence { W*,, ,} is interesting for large M and b. This

behaviour can only depend on the distribution of U, which still needs to be specified.

Motivated by the empirically derived fractional Gaussian noise model for

aggregate packet traffic [LTWW94], the distribution of U should be chosen in a way such

that as M — e and b — oo, {W*, 1} adequately normalized is fractional Gaussian

noise {Gp (1), 120} : the only Gaussian sequence which is self-affine at all scales with

Hurst exponent H in the range %SH < 1. This means that the finite-dimensional

© Robert Barry Ch. 2: Background on Network Traffic

distributions of
g PUED
b z Gy o)) =012, ..
I=bj+1
are the same for any block aggregation size b.
To obtain fractional Gaussian noise, suppose that U has a hyperbolic tail
distribution that satisfies
PU>u)~cu * asu—> o0, 1 <0< 2 (2.3)
where c is a positive finite constant that is independent of u.

Mandelbrot refers to Eq. 2.3 as the infinite variance syndrome or the Noah Effect

[MaWa68], [Mand75, p. 105], [Mand83, p. 248]. A value of ot <2 implies 8(U2) = oo,
while the choice o> 1 ensures that e(U)<e and S, is not infinite. Under these

conditions, Theorem 2.1 is true.

Theorem 2.1: For large enough source number M and block aggregation size b, the

cumulative load {#W*,, (), =0} behaves statistically as
by + "M 26 ()
where
H =3¢ 2.4)

and

-10 -

© Robert Barry Ch. 2: Background on Network Traffic

o’ = ¢ (2.5)
4e(U)2(a- D2 —)(3— o)

More precisely,

L lim L lim b7 m'?

b— o M— o

(750222) = Gy o) 2.6)

where “L lim” means convergence in the sense of the finite-dimensional distributions.

Theorem 2.1 states that the mean level %4 provides the main contribution for

large M and b, and fluctuations from that level are given by the fractional Gaussian noise

Gy 5(J) scaled by a lower order factor b2 Finally, it is important to note that a

valueof l << 2 implies%<H<l.

Consider a discrete time stochastic process X(t), t€ Z, where X(¢) is the traffic

volume in bytes at time instance ¢. The definition of strict stationarity will be used in this

research where (X(¢,), X(¢,), ..., X(¢,)) and (X(¢; + k), X(t, + k), ..., X(¢,+ k)) possess

the same joint distribution forall ne Z, , ¢, ...,¢,,and ke Z [PaWi00, p. 17].

2.4 Impact on Network Performance

The importance of recognizing self-affinity in traffic is realized in the problem of
optimal resource allocation in dynamic operating conditions. One of the jobs of network
engineers is to provide consistent and reliable network service to as many users as
possible, given certain budgetary and practical constraints. This means that the trade-off

between network capacity and Quality of Service (QoS) requirements must be resolved by

- 11 -

© Robert Barry Ch. 2: Background on Network Traffic

optimizing resource allocation algorithms to guarantee that the service provided to the end
user meets the QoS constraints while maintaining maximum capacity [SaTe99]. The
optimal usage of resources is only possible by first characterizing and classifying the
network traffic, and then determining optimal buffer sizes, assignment of bandwidth and
channels, and other resources for each class of traffic in order to achieve the desired QoS
in terms of queuing delay, retransmission time, packet loss probability, and bit error rate

[SaTe99].

Network traffic has often been described by Markovian models which have limited
memory of the past and reflect the short-range dependence (SRD) of the network traffic.
The existence of scale-invariant “burstiness” (or self-affinity) introduces new
complexities by directly implying long-range dependence (LRD) which is not accounted
for in the Markovian and other traditional models [PaWi00, p. 21]. A process that exhibits
SRD has an autocorrelation function that decays exponentially, whereas a process that
exhibit LRD has an autocorrelation function that decays hyperbolically [KaWo099].
Neglecting the existence of self-affine traffic and LRD can result in overly optimistic
predictions of network performance [ChBa97]. Self-affine network traffic can have a
detrimental impact on network performance, including increased queuing delay and
packet loss rate, because the buffers needed at switches and multiplexers must be much
larger than those predicted by traditional queuing analyses and simulations [SaTe99]. In
fact, an exponential trade-off is observed between queuing delay and packet loss rate
[PaKC97]. However, these buffers cannot be made arbitrarily large because large buffer
sizes create long queuing delays, and queues that are too long can deteriorate the QoS for

real-time network applications such as video conferencing and multimedia traffic.

-12-

© Robert Barry Ch. 2: Background on Network Traffic

In response to the daunting task of maintaining QoS under severe self-affine
traffic, research has pointed at ways of reducing the degree of self-affinity by shaping, or
“smoothing”, the traffic to make it less-bursty [ChBa97]. This is a difficult process
because self-affine traffic is robust with respect to changes in network topology,
interference from cross-traffic with dissimilar traffic characteristics, and changes in the
distribution of file request interarrival times [PaKC96]. Self-affinity will also not be

removed by any server with finite second-order moment of queue length [SONT99].

Another important complexity in the problem of optimal resource allocation with
self-affine network traffic is that the nature of the traffic changes constantly. Different
types of traffic will flow across the network at different times during the day, and even
different days during the week or month. Each type of traffic will have unique self-affine
characteristics and will possess varying degrees of LRD. This continual change in traffic
self-affinity means that the optimal buffer sizes and assignment of bandwidth and
channels must be dynamic, and continually change to meet the network capacity and QoS

requirements.

2.5 Self-Affine Data Sets

As stated in section 2.3, self-affinity exists in many types of network traffic, and
possesses structural similarities at different time scales. This section presents and visually
demonstrates the similarity between three classes of self-affine network traffic, and the

same class of self-affine traffic at different time scales.

-13 -

© Robert Barry Ch. 2: Background on Network Traffic

2.5.1 LAN Traffic

Leland er al. demonstrated the self-affine nature of Ethernet traffic through
seminar publications in 1993 and 1994. The data used in this research is publicly

available on the Internet [DMPS03a], and is presented in this section.

A recording of 1,000,000 packets of LAN traffic on an Ethernet was done by
Leland and Wilson at Bellcore between 1125.00 hrs and 1217.23 hrs on 29 August 1989.
The measurement techniques used in these recordings is found in [LeWi91], and a detailed
discussion of the recordings are presented in [FoLe91] and [LTWW94]. Figure 2.1 shows
the LAN traffic transmitted at 100 millisecond (msec) intervals for the entire 3142.82

seconds duration.

100

S0 E

80 -

70

60

50

40

KB requested £ 100 ms

30
20

10

ge ‘lll il RO, .-I.I.’ O ‘ :‘hu.‘..;;.a..
0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Fig. 2.1. Sampled LAN traffic (for approx. 3143 sec).

- 14 -

© Robert Barry Ch. 2: Background on Network Traffic

To visually demonstrate the self-affine nature of LAN traffic, Fig. 2.2 shows the
same recording at 10 msec, 100 msec, and 1 sec time scales. Even though the traffic is
averaged through time over three orders of magnitude, its bursty appearance does not

vanish, but only varies, across different time scales.

- 15 -

© Robert Barry Ch. 2: Background on Network Traffic

Averaged over 10 msec intervals

15 I T 1 I]]
&) i
o 10 .
E
=
" : l
~
500 1000 1500 2000 2500 3000 3500
Averaged over 100 msec intervals
100
80 .
)
[43]
£ B0j i
= v
S !
: 4[[; o
o
= Z20f .
0 . : R T f .
0 500 1000 2000 2500 3000 3500
Averaged over 1 sec intervals
BDD T j I) 1 i
., 400 .
n
oy
W
= 200 .
D ! 1 ! 1 L I .
0 500 1000 1500 2000 2500 3000 3500
Time (sec)

Fig. 2.2. LAN traffic averaged over (a) 10 msec, (b) 100 msec, and (c) 1 sec intervals.

- 16 -

© Robert Barry Ch. 2: Background on Network Traffic

2.5.2 WWW Traffic

In 1997, Crovella et al. demonstrated the self-affine nature of world wide web
traffic [CrBe97]. The data used in this research is publicly available on the Internet

[DMPS03b], and is presented in this section.

Between 01 February 1995 and 28 February 1995, a total of 100,669 unique
Mosaic web requests were recorded on a network of 37 SparcStation 2 workstations by
Cunha, Bestavros, and Crovella at Boston University [CuBC95]. Figure 2.3 shows the
WWW traffic transmitted at 1 sec intervals for the entire 28 days, and Fig. 2.4 shows the

same recording at 1 sec, 10 sec, and 100 sec time scales.

1.5

MB requested / sec

0
0 5 10 15 20 25 30

Time (days)
Fig. 2.3. Sampled WWW traffic (for approx. 28 days).

17 -

© Robert Barry Ch. 2: Background on Network Traffic

Averaged over 1 sec intervals

T T I T

—
(W)]

—
J
1

MB f sec

o
1
T
1

0 il

10 15 20 25 30

Averaged over 10 sec intervals
3 T j I T T

(]
m

]
T
1

MEB £ 10 sec

—
T
i

. b

0 5 10 15 20 25 30

Averaged over 100 sec intervals
15 3 T 1] 1

—
O
T

1

[y}
]

MBE /100 sec

D L I3
1] 5 10 15 20 25 30
Time (days)
Fig. 2.4. WWW traffic averaged over (a) 1 sec, (b) 10 sec, and (¢) 100 sec intervals.

- 18 -

© Robert Barry Ch. 2: Background on Network Traffic

2.5.3 VoIP Traffic

The previous examples of LAN and WWW traffic were captured by other
researchers and acquired through publicly available archives. However, the importance of
capturing one’s own network traffic cannot be understated in the overall pedagogical
process of studying network traffic. For this reason, Voice over IP (VoIP) traffic was
captured at TR Labs (100-135 Innovation Drive, Winnipeg, MB, R3T 6AS8, Canada) for
86400 seconds between 0800.00 hrs on 09 July 2003 and 0759.59 hrs on 10 July 2003.
The software used to capture the traffic was Ethereal v.0.9.13 (publicly available at
www.ethereal.com); a screen shot of this program is shown in Fig. 2.5. My sincere thanks
goes out to Mr. Vasee Vaseeharan for his invaluable assistance in setting up the TRLabs

network and a workstation to capture the VoIP traffic.

The resulting recording, or trace, consisted of 4,581,494 packets: 2,304,156
packets were User Datagram Protocol (UDP) packets used to transmit VoIP data, and were
transmitted only when the phones were in use. The remaining packets were RX protocol
packets used as network control signals, and were transmitted continuously regardless of
whether or not the phones were in use. Therefore, to better understand the nature of voice
data transmitted over a computer network, the study of VoIP traffic in this thesis will only

consider the UDP packets.

- 19 -

© Robert Barry Ch. 2: Background on Network Traffic

& voip1d - Ethereal

3122886 31877.186538 UDP 214
3122887 31877.206948 UOP 214
3122888 31877.226770 UDP 214
3122889 31877.246781 UDP 214
3122850 31877.266801 UDP 214
3122881 31877.286718 UDP 214
3122892 31877.3066595 UDP 214
3122893 31877.326931 uDP 214

3122894 31877.346883: UDP 214 . » : . ‘

3122885 31877.366938 UDP 214

3122896 31877.386997 UDP 214
3122897 31877.407034 UDP 214
3122898 31877.427154 UDP 214
3122899 31877.447338 UDP 214
3122900 31877.467308 UDP 214

3122901 31877.487355 UDP 214 N

(@ FErame 3122804 (214 0yLes-0n wire; 68 bytas capturad) @i i imm it i i s e
Arrival Time: Jul 9, 2003 16:52:22.184093000
Time delta from previous packet: 0.019952000 seconds
Time relative to Tirst packet: 31877.346883000 seconds
Frame Number: 3122894
Packet Length: 214 bytes
Capture Length: 68 hytes
B ethernet 1I, src: 00:d0:b7:b6:3a:ce, Dst: 00:00:50:06:fe:29
pestination: 00:00:50:06:Te:29 (00:00:50:06:Te:29)
source: 00:d0:b7:h6:3a:cc (00:d0:b7:b6:3a:cc)
Type: IP (0x0800)
B Internet Protocol, src Addr: 192.168.3.161 (192.168.3.161), Dst Addr: 10.163.152.254 (10.163.152.254)
version: 4
Header Tength: 20 bytes
g pifferentiated services Field: 0x00 (DSCP 0x00: pefault; ECN: 0x00)
0000 00.. pifferentiated services codepoint: pefault (Ox00)
.... ..0. = ECN-Capable Transport (ECT): 0
veee ...0 = ECN-CE: ©
Total tength: 200
Identification: 0x5905 (22789)
Bl Flags: 0x00
.0.. = bon't fragment: Not set
..0. = More fragments: Not set
Fragment offset: 0
Time to live: 127
protocol: UDP (Ox11)
Header checksum: 0x7a35 (correct)
source: 192.168.3.161 (192.168.3.161)
pestination: 10.163.152.254 (10.163.152.254)
B User Datagram Protocol, Src Port: 51036 (51036), Dst Port: 28110 (28110)
Source port: 51036 (51036)
Destination port: 28110 (28110)
Length: 180
Checksum: Oxbcdf
Data (26 bytas)

mow o

e 29 0 7 b6 3a cc 08 00 45 00
00 €8 59705 00 00 7f 11 '7a 35 ¢0 a8 03 al 0a a3
98 fe ¢7 5¢ 6d ce-00 b4 bcdf 80 00 43 fd 00 08
ed 00 Of cc 9d 01 fc fa fa fc fc fb b fd 7e 7e

Fig. 2.5. Captured VoIP traffic using Ethereal.

-20-

© Robert Barry Ch. 2: Background on Network Traffic

Figure 2.6 shows the VoIP traffic for the entire 24 hours, expressed as kilobytes

(KB) requested per 100 msec.

12

KB ¢ 100 msec
[n3]

=
T
—
!

| \ I
10 15

Time ¢hrs)
Fig. 2.6. Sampled VoIP traffic (for 24 hours).

0 5 20 25

At first glance, Fig. 2.6 was surprising because it looks quite different from Figs.
2.1 and 2.3, although some bursty similarities to WWW traffic do exist. However, when
the nature of generation of VoIP traffic is considered, the graph makes sense. Firstly, there
are long periods of no activity in the evening and early morning when the phones are
generally not in use (although the traffic between 15 and 16 hours after the start of the
trace, or around midnight, reflects the fact that some graduate students prefer quiet
solitude in which to do their research). Secondly, the “step case” appearance of VolP
traffic reflects the fact that when a phone is in use, it transmits UDP packets of a fixed size

at a fixed rate. Upon inspection of Fig. 2.7, which represents only the first two hours of

-21-

© Robert Barry ' Ch. 2: Background on Network Traffic

the traffic shown in Fig. 2.6, it seems that the transmitted data plateaus at intervals which
are multiples of 1070 bytes / 100 msec. With UDP packets of size 214 bytes (as shown in
Fig. 2.5), this rate corresponds to 5 UDP packets / 100 msec, or 50 UDP packets / sec.

w =
o (8] E=N ()]
T T T T
) 1 1

KB /100 msec
N
[a5]

[}

T
—-
-

1

15F H

0.5 L

D L 1 'l 1 1 1 1 i3
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time thrs)
Fig. 2.7. Sampled VoIP traffic (first 2 hours only).

Finally, as in the examples of LAN and WWW traffic, VoIP traffic exhibits a very
similar structure over many time scales. Fig. 2.8 shows the same VoIP trace averaged over
four orders of magnitude of time, ranging from milliseconds to minutes. This self-affinity

is fractal in nature, and will be discussed in detail in chapter 3.

-2

© Robert Barry Ch. 2: Background on Network Traffic

Averaged over 0.1 sec intervals

15 I 1 i ¥
(]
w 10} .
=
o °r 4
~
D l 1 l I II I 1
a 5 10 15 20 25
Averaged over 1 sec intervals
150 1 J i 1
@ 100 -
g 0t]
D I 1 l | ll | 1
a 10 15 20 25
Averaged over 10 sec intervals
1500 . ; . 1
[
o 1000 ¢ -
=
o 500F 1
X Ml ‘
a L .
0 5 10 15 20 25
Averaged over 100 sec intervals
10000
[
Q
o3
8 soonf .
>
D H ‘ L [k al |] !
0 5 10 18 20 25

Time thrs)
Fig. 2.8. VolIP traffic averaged over (a) 0.1 sec, (b) 1 sec, (c) 10 sec, and
(d) 100 sec intervals.

-23-

© Robert Barry Ch. 2: Background on Network Traffic

2.6 Sarda’s Data Sets

Deepak Sarda captured an extensive database of telecommunications traffic which
he used in the design and refinement of his real-time voiceband signal classifier. The final
voiceband signal classifier was able to accurately classify the following twelve signal

classes [Sard99], [CoSa938]:

» V.22 and V.22bis forward channels

e V.22 and V.22bis reverse channels

* V.34 and V.90 uplink

* V.29 at all speeds

* V.32, V.32bis, and V.17 at speeds greater than 2400 bps
+ V.27ter at 4800 bps

« V.27ter at 2400 bps

» Speech

» Random PCM samples and V.90 downlink
¢ FSK signalling

* Ringback

« DTMF tones for0,1,2,...,9, *, and #

The original inspiration behind this thesis was to continue the work that had been
done by Sarda, and to improve upon his research through the design of a third generation
traffic classifier. After this new classifier was designed and built, it would have been
tested using the same data sets as Sarda used, yielding an exact comparison between
Sarda’s classifier and the new classifier. It was anticipated that the classification accuracy

of the new classifier would have been comparable to that of Sarda’s classifier.

The primary advantage of the new classifier is that it would have implemented a
modular design for each class of traffic. A modular design such as this would allow for

each of these twelve classes of traffic to be represented by a unique multifractal signature

- 24 -

© Robert Barry Ch. 2: Background on Network Traffic

or “fingerprint”. Future updates to the classifier’s repertoire would have been relatively
automated and efficient because the inclusion or removal of traffic classes would have
been performed by adding or deleting the corresponding signatures of the traffic class of

interest, and then re-training the traffic classifier (which will be discussed in chapter 4).

Unfortunately, while this research was already underway for more than a year, it
was discovered that Sarda’s data sets used were no longer available through Dr. Cockburn.
Since this thesis had to be completed in a timely fashion, it was decided that another
self-affine data set had to be acquired and used for the design and implementation of the

new traffic classifier.

2.7 Pear’s Data Sets

To expedite the completion of the thesis, Dr. Kinsner approached Dr. Joseph Pear
in the Department of Psychology at the University of Manitoba. Dr. Pear and his
colleagues have performed extensive research in the area of behaviour modification
[MaPe02], and have collected a wide variety of data on the biological processes of
habituation and dishabituation. Dr. Pear and Mr. Toby Martin, a Ph.D. student in Pear’s
research group, graciously provided our research group with these recordings of the

habituation and dishabituation processes in Siamese Fighting Fish.

2.7.1 Siamese Fighting Fish (Betta splendens)

Siamese Fighting Fish, or Betta splendens, are colourful fish that originated from
the warm, shallow waters of Cambodia and Thailand (formerly known as Siam, which
gave the fish its name) [Abou03]. The behaviour of Betta splendens has been observed

and studied by psychologists for decades. Domesticated male Betta splendens exhibit

- 25 .

© Robert Barry Ch. 2: Background on Network Traffic

agonistic (aggressive and territorial) behaviour that is easily elicited and very similar from
one fish to another [Simp68]. Betta splendens must be kept isolated from its own kind
because of this behaviour, as a male will attack and most likely kill another male in
defence of its territory. Some of the treat displays exhibited by Betta splendens include
pectoral fin beating, pelvic fin flickering, tail beating, tail flashing, bites, and nips
[Simp68]. Psychologists can observe and record the frequency and duration of these
threat displays as a method of characterizing and classifying the behaviour of Betta

splendens. A picture of Spot, the author’s Betta splendens, is shown in Fig. 2.9.

Fig. 2.9. Spot — a typical Betta splendens.

The agonistic behaviour of male Betta splendens may be elicited by the presence
of another male (also called a conspecific), an artificial model of a conspecific, or its own

reflection using a mirror [ShSh71]. This agonistic behaviour has been shown to habituate,

- 26 -

© Robert Barry Ch. 2: Background on Network Traffic

or decrease, over time as the stimulus is continuously presented [Bron94],
[Pear01, pp. 15-17]. It has also been shown that the presence of a new eliciting stimulus
may produce a response recovery [ThSp66] called dishabituation [Pear0O1, p. 17],
[Mart02].

2.7.2 Video Recording System

Pear’s research group recorded the activity of male Betta splendens in an aquarium
using a stereoscopic video camera system [Mart02]. A photo of the camera system used is
shown in Fig. 2.10. The complete system consists of three cameras: two cameras provide
a stereoscopic view of the fish tank, and one camera is a regular video camera which video

tapes the motion of the fish for later viewing and study by psychologists.

Figure 2.11 shows a diagram of the stereoscopic camera system which, not unlike
the human visual system, is capable of perceiving, or extrapolating, the depth of an object
based upon its position as seen by each camera. This camera system records the X-, Y-,

and Z-coordinates of the Betta splendens ten times per second (a frequency of 10 Hz),

with a maximum positional error of =5 mm [PeMa02].

-27-

Background on Network Traffic

Ch.2

© Robert Barry

.
.

. v

.
.

.

deo camera system.

i

1CV

Steeoscop

ig. 2.10.

F

-28-

© Robert Barry Ch. 2: Background on Network Traffic

Fish Tank

Field of View

Field of View

Blind Spot

Fig. 2.11. Stereoscopic vision.

2.7.3 Pre-Processing

The raw recorded data of the motion of the Betta splendens need to be
pre-processed in two ways. Firstly, due to the set-up of the stereoscopic cameras, the
origin (0,0,0) is located somewhere in space between the two cameras. In this coordinate
system, the centre of the fish tank is approximately at the coordinates (40,2000,45)
[PeMa02], which can be confusing to interpret when discussing the position of the Betta
splendens in the tank. Therefore, the coordinate system needs to be changed so that the
origin (0,0,0) is in the left, front, bottom corner of the tank, as shown in Fig. 2.12. In this
intuitive and equivalent coordinate system, the X-coordinate represents the distance from
the fish to the mirror, the Y-coordinate represents the position of the fish along the mirror,

and the Z-coordinate represents the height of the fish from the bottom of the aquarium.

-29 .

© Robert Barry Ch. 2: Background on Network Traffic

Y

(0,0,0)
Fig. 2.12. A better coordinate system.

Secondly, there are occasional tracking errors when the stereoscopic cameras are
unable to locate the position of the Betta splendens, which often happens when the fish is
close to the mirror [PeMa02]. These tracking errors last for at most a few seconds, so
consecutive tracking errors are replaced by data points calculated by linear interpolation

between adjacent existing data points.

2.7.4 Dishabituation Experiments

The mature male Betta splendens used in these experiments had been used for
previous experiments, but had not been subjected to experimental conditions for several
months [Mart02]. The researchers attempted to demonstrate dishabituation by introducing
two different stimuli in controlled experiments. All experiments lasted for 7 hours and 56
minutes, and started with the Betta splendens being placed in the aquarium. The one-way
mirror at the one end had a incandescent light bulb placed behind it. When the light was

off, the mirror was reflective; when the light was on, the mirror was non-reflective.

-30-

© Robert Barry Ch. 2: Background on Network Traffic

In dishabituation experiment #1, the light was turned off so the Betta splendens
could see and habituate to its reflection. Seven hours into the experiment, the light was
turned on for 60 seconds, making the mirror non-reflective. The light was then turned on
again for the remaining 55 minutes of the experiment [Mart02]. This experimental set-up

is shown in Fig. 2.13.

one-way
irror

g .

main tank
Fig. 2.13. Experiment #1 to attempt to produce dishabituation (after [Mart02]).

In dishabituation experiment #2, the light was once again turned off so the Betta
splendens could see and habituate to its reflection. Seven hours into the experiment, the
mirror was made non-reflective by turning on the light, while simultaneously removing a
white plastic barrier on the opposite end of the aquarium to reveal the presence of a live
conspecific. After 60 seconds, the plastic barrier was replaced and the light turned off,
and it remained this way for the remaining 55 minutes of the experiment [Mart02]. This

experimental set-up is shown in Fig. 2.14.

-31-

© Robert Barry Ch. 2: Background on Network Traffic

one-wa white plastic
Y barriers

Frirrar

l |

main tank live conspecific
tank

Fig. 2.14. Experiment #2 to attempt to produce dishabituation (after [Mart02]).

These experiments were repeated several times with two different Betta splendens.
In general, the Betta splendens habituated to their reflection within the first couple hours
of the experiment. The introduction of new stimuli 7 hours into each experiment were
attempts to disrupt this habituation and produce dishabituation. Although several trails
were performed for each experiment, one of the most interesting recordings was of
experiment #1 for fish #11 that was performed on 19 February 2002. This session is

referred to as Experiment 11020219.

2.7.5 Experiment 11020219

Figures 2.15, 2.16, and 2.17 show the X-, Y-, and Z-coordinates of Experiment
11020219 for Pear’s data sets.

-32-

© Robert Barry Ch. 2: Background on Network Traffic

BDD T T T T T T T

500 .

400

100

D Eah it T i i 1 3 x LLns s e o wba L s

O 1 2 3 4 5 B i 3
Time (hrs)

Fig. 2.15. X-coordinates of Experiment 11020219.

D I]] 1 L Il
0 1 2 3 4 5 5 z 8

Time (hrs)
Fig. 2.16. Y-coordinates of Experiment 11020219.

-33-

© Robert Barry Ch. 2: Background on Network Traffic

250 ¥ T T T ¥ T T

200

150

Z (mm)

100

50

D 1 1 1]] 1 1
u} 1 2 3 4 5 5] 7 8

Time (hrs)
Fig. 2.17. Z-coordinates of Experiment 11020219.

These recordings are particularly interesting because the Betta splendens quickly
habituates to the mirror after 15 minutes, but then exhibits behaviour that is characteristic
of dishabituation when the new stimulus is introduced into the system after 7 hours. The
dishabituation is most clearly seen by the X-coordinates in Fig. 2.15 when the Beffa
splendens spends the final 56 minutes much closer to the mirror than the previous 6 hours

and 25 minutes of the experiment.

Therefore, since the X-coordinates of Experiment 11020219 seemed a good choice
for an interesting and reliable data recording with which to substitute for Sarda’s data sets,
they henceforth became the primary data set used in this thesis, and will be referred to as

Record 11020219.

-34 -

© Robert Barry Ch. 2: Background on Network Traffic

2.7.6 Self-Affinity in Record 11020219

Previous examples of LAN, WWW, and VoIP traffic showed similar structures
across multiple time scales. However, since this discussion has now shifted from network
traffic to biological behavioural modification traffic, we need to re-address the notion of

self-affinity in Pear’s data sets and Record 11020219.

Self-affinity is a necessary requirement for the correct application of fractal
analysis: only if the traffic is self-affine may fractal and multifractal techniques be applied
to the traffic. To begin the analysis of the self-affine nature of Record 11020219, Fig. 2.18
displays this record at three different time scales. As anticipated, this figure reveals the
structural similarities of Record 11020219 across multiple time scales. This analysis will
continue in section 5.2 where the self-affine nature of Record 11020219 will be rigorously

proven.

(While discussing the fractality of the motion of Betta splendens, it is both
interesting and motivating to note that in 2001, Tikhonov ef al. from Russia published a

study on chaos and fractals in fish school motion [TEMMO1].)

-35 -

© Robert Barry Ch. 2: Background on Network Traffic

Averaged over 0.1 sec intervals
I I I 1 T I i

o
[

Ju
O
T

.
o]
I

X (em /0.1 sec)

0 50 100 150 000 280 300 30 400 450 500

Ayeraged over 1 sec intervals
BDD T i] i] 1 | T 1

X (cm f sec)

Aol Lalalias

U aa L P s e e, ’..'x. Sy s e e e e
0 50 100 150 - 20 250 300 350 400 450 0 500

Averaged over 10 sec intervals
EDUU] T 1 ! i I [] I

Jo

[w-]

[

[
|

cm /10 sec)

£ 2000 -

X

L I.L.lx. Lnru.-..:‘.tli FIRT PR S N P o.-;l-_u.;.u

0 50 100 150 200 250 300 350 400 450 500
Time {min)

Fig. 2.18. Betta splendens traffic averaged over (a) 0.1 sec, (b) 1 sec, and
(c) 10 sec intervals.

-36-

© Robert Barry Ch. 2: Background on Network Traffic

2.8 Summary

This chapter explores the nature of traffic, computer network traffic, and the
significance of the existence and recognition of self-affine network traffic for its control in
order to maintain acceptable QoS levels for the end-user. Examples of LAN, WWW, and
VolIP traffic are presented as a demonstration of the visual characteristics of self-affine
traffic. Some of the previous work that has been done by TRZLabs in the area of
telecommunications traffic characterization and classification has also been presented, and

an improvement upon this work is the motivation behind this thesis.

The methodology used in this thesis is for the characterization and classification of
self-affine traffic with applications specifically towards self-affine network traffic. Since
Sarda’s data sets became unavailable while the thesis was already well underway, Pear’s
data sets were acquired and studied so that this thesis might be completed in a timely
manner. Although the primary data set studied, Record 11020219, is a recording of a
different type of self-affine traffic, all of the analyses presented in the characterization and
classification of Record 11020219 may be directly applied to other classes of self-affine

traffic that are of interest to TR Labs and its sponsors.

-37-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

CuaPTER 111

BACKGROUND ON FRACTALS, MULTIFRACTALS,
AND FRACTAL DIMENSIONS

Clouds are not spheres,
mountains are not cones,
coastlines are noft circles,

and bark is not smooth,

nor does lightning travel in a straight line.
- B. B. Mandelbrot [MandS§3, p.1]

3.1 What are Fractals?

The word “fractal” was coined by Benoit B. Mandelbrot from the Latin adjective
fractus. The corresponding Latin verb is frangere, meaning “to break” [Mand83, p.4].
From this definition alone, one may intuitively feel that the study of fractals involves the
study of objects which are broken or fragmented in some way. The word “fractal” is also
commonly associated with images of intricate coloured patterns with infinite complexity
and beauty. The beauty of fractals has been made popular in recent years through the
printing of posters and calendars that vividly show the infinite range of patterns and
colours that fractals can possess. A widely recognizable example of a fractal is the
Mandelbrot set. Figures 3.1 and 3.2 show grayscale examples of the Mandelbrot set
rendered in 2-dimensions and 3-dimensions (where the darkness of the fractal in 2D is
mapped into the height of the object in 3D) using one of many readily available software
packages for the generation of fractals — Fractal Explorer 2.00 with Fractal Landscape
Library 1.05 [SiFe03]. These fractals possess both visual and mathematical beauty, and

have infinite detail at any level of resolution.

-38-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Fig. 3.1. Mandelbrot set in 2-dimensions.

2 o ‘ . "
Fig. 3.2. Mandelbrot set in 3-dimensions.

There is no single, absolute definition for a fractal. In fact, Mandelbrot feels that
“one would do better without a definition” [Mand83, p. 361]. In 1982, Mandelbrot
proposed the definition that “a fractal is a set for which the Hausdorff-Besicovitch (fractal)

dimension strictly exceeds the topological dimension” [Mand83, p. 15]. However, it was

-39-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

later discovered that some fractals (ironically, including the Mandelbrot set) were

excluded by the use of the word “strictly” in this definition. A revised definition proposed

by Robert L. Devaney in 1992 defines a fractal as “a subset of R which is self-similar

and whose fractal dimension exceeds its topological dimension” [Deva92, p. 178].

In more simpler terms, fractals (and multifractals) are real constructs which have
the following properties:
 they are self-affine, meaning that part of their structure is related to the whole
structure through the property of scaling;
+ their structure cannot be described using Euclidean geometry, and is often

described as being “rough”; and
» their fractal dimensions can (and usually do) exist between integer dimensions.

The study of fractals involves the study of fractal geometry. Mandelbrot argues that the
best possible definition of fractal geometry may be that it is the study of scale-invariant

roughness [Mand02, p. 9].

The relationship between fractals and self-affinity is deep and profound, and in its
most detailed form, the exploration of this relationship may require hundreds of pages.
(Mandelbrot provides a 600-page discussion of the relationships between fractals and
self-affinity in [Mand02].) For the sake of simplicity, an object that possesses
scale-invariant roughness is said to be self-affine, and is also fractal or multifractal in
nature. In other words, self-affinity implies fractality (and vice versa). Therefore, to study

fractal geometry, one must also study affine geometry.

An affine plane is parameterized by two coordinates x and y [Mand02, p. 86]. An

affine transformation is a one-to-one linear map of the form

- 40 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

XrpXtr,ytx, 3.1

yorg,x+r,yty, (3.2)
The matrix of the transformation is
r

xx rxy

Fyx Fyy

For a linear map to be one-to-one, the necessary and sufficient condition is that the

matrix is invertible. In other words,

r #0 3.3)

sx Uy ™ FapFyx

An interesting quote provided by Snapper and Troyer provides an insight into the
study of affine-geometry: “Roughly speaking, affine geometry is what remains after
practically all ability to measure length, area, angles, etc., has been removed from
Euclidean geometry. One might think that affine geometry is a poverty-stricken subject.
On the contrary, affine geometry is quite rich. Even after almost all ability to measure has
been removed from Euclidean geometry, there still remains the concept of parallelism.
Consequently, the whole theory of homothetic figures lies within affine geometry. The
notions of translation and magnification (these are the dilations) are in the domain of
affine geometry and, more generally, as the name suggests, affine transformations can be
characterized as one-to-one, onto functions which preserve parallelism; therefore, they

constitute an affine notion” [SnTr71, p. 1].

Self-similarity is a very special case of self-affinity where the matrix is of the form

-41 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

o = r||I|| where r is complex and ||/|| is the unit matrix: the diagonal elements are one

(1) and all other elements are zero (0) [Mand02, p. 87]. Therefore, although much of the
published literature in the area of fractals and network traffic popularly discuss the issue of
“self-similarity”, it is more accurate to use the term “self-affinity” [Mand85]. For this

reason, this thesis will use the terms “self-affine” and “self-affinity” in this context.

3.2 Generation of Fractals

There are two general classes of fractals: mathematical fractals and fractals that are
found in nature (which will be described as “natural” fractals) [Vics92, pp. 11-13].
Mathematical fractals can be easily described, generated, and measured. Fractals in nature
describe the world in which we live. Not surprisingly, the “real world” is more complex
than a simple mathematical expression, so the fractals found in nature are usually more

difficult to describe and measure.

3.2.1 Mathematical Fractals

“A picture is worth a thousand words” is a good phrase to keep in mind when
exploring the world of fractals. The generation of mathematical fractals involves an
iterative process that begins with an initiator and a generator [PeJS92, p. 15]. The creation
of two commonly discussed fractals, the Koch curve [Koch04] and the Sierpinski carpet
[Sier16], will serve as examples of the generation of mathematical fractals. (From an
historical viewpoint, it is interesting to note that the Sierpinski gasket [Sierl5], another
fractal that is similar to the Sierpinski carpet, was created by Waclaw Sierpinski in 1915;
however, the Sierpinski carpet was actually created by Sierpinski’s former Ph.D. student

Stefan Mazurkiewicz, also in 1915 [CiP096].)

-47 .

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Initiator

Step 1

Step 2

Step 3

Step o

Fig. 3.3. Generation of the Koch curve fractal.

Figure 3.3 illustrates the iterative generation of the Koch curve fractal. The

initiator is a single straight line segment. In step 1, the straight line is divided into three

- 43 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

equal line segments, and the middle third is removed and replaced by two line segments of
the same length so they meet at a 60 degree angle. In step 2, each line segment is divided
into three more equal line segments, with the middle segment removed and replaced by
two more line segments in the same fashion as step 1. This process continues over and

over again, and is repeated an infinite number of times.
There are several important things to note about the Koch curve:

» Since the iterative process continues ad infinitum, any segment of the curve
looks like a smaller version of the entire Koch curve. This accounts for the
self-similar nature of the fractal.

» The curve is non-intersection, meaning that as the generation process
continues, two line segments will never occupy the same region of space.

» The length of the curve is infinite.

» The area of the curve is zero.

Figure 3.4 demonstrates the generation of the Sierpinski carpet fractal. The
initiator is a solid square (instead of a straight line segment). In step 1, the square is
divided into a 3-by-3 grid of nine equal sized squares, and the middle square is removed.
In step 2, each of the remaining eight squares is once again divided into a 3-by-3 grid of
nine equal sized squares, and the middle square is removed. As in the Koch curve, this
process is repeated an infinite number of times, and any segment of the carpet looks like a

smaller version of the whole carpet. The Sierpinski carpet also has an area of zero.

- 44 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Initiator Step 1

Step 2 Step 3

Fig. 3.4. Generation of the Sierpinski carpet fractal.

Figure 3.5 shows an image of the Menger sponge [Meng26] — the 3-dimensional
version of the Sierpinski carpet. This fractal is especially interesting because it is an

infinitely complex structure that has infinite surface area but zero volume [Glei87, p. 101].

- 45 -

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

© Robert Barry

BTEDEN 0L Wy

Se Wy =\
‘ AL B BRI RALE S
.../1.5’ o"’
& RN N N A
c...ﬂi! B e e
t 00‘.Fﬂ.‘dﬂﬂ‘."
0-.. ‘w.d)/v A A 2
- B ,ur,.waisoldvud/
HOY W ME LB R BES MG T TN RCENE W

We 2 Wir sLv s oWe o Foe W 2P ;ﬂ.-/

AELEDLERNEECLLAEERELRETLRY RN

..............

Fig. 3.5. The Menger sponge (after [BIMe70, p. 502]).

3.2.2 Natural Fractals

Mathematical fractals contain an infinite number of points, but can be described by
a simple initiator and an iterative process. Fractals exist naturally in nature, but are much

more complicated in their design and description. Fig. 3.6 show a picture of the coastline

s fractals.

b

of Great Britain, and is an example of Mother Nature

- 46 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Fig. 3.6. Coastline of Great Britain.

In 1967, Mandelbrot posed the seemingly simple question: “How long is the coast
of Britain?” [Mand67]. At first glance, many people may think that a coastline has a fixed
length, and could only be changed through natural disasters such as earthquakes, or after
countless centuries of erosion and tectonic movement. Table 3.1 shows the measured

length of Great Britain’s coastline using smaller and smaller divisions of measurement.

-47 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Table 3.1: Length of Great Britain’s coastline (after [PeJS92, p. 192]).

Compass Length | Length of Coastline
500 km 2600 km
100 km 3800 km
54 km 5770 km
17 km 8640 km

This table clearly shows the discovery that the length of Great Britain’s coastline is
not fixed, but is very much dependent on the compass length that is used for the
measurements. As the compass length decreased from 500 km to 17 km, the length of
Great Britain’s coastline increased over three times from 2600 km to 8640 km! Therefore,
there is no exact length for this coastline of Great Britain, except that its length approaches

infinity as the compass length approaches zero.

3.3 Fractal Dimensions

How can one measure a fractal that has infinite length, infinite surface area, or zero
volume? These constructs exist, but cannot be described using Euclidean geometry. For
this reason, fractal dimensions are used to describe and measure a fractal, and compare

one fractal with another.

The measurement of a fractal dimension D begins with the assumption that
similarities in the fractal exist at different scales. In other words, whereas some processes
in engineering are time-invariant, fractal processes are scale-invariant and have a power

law relationship. There are an infinite number of fractal dimensions that may be used to

- 48 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

describe a fractal [HePr83]. If a fractal is very simple (such as the Koch curve or
Sierpinski carpet), then one dimension is often enough to adequately describe the fractal.
When the nature of the fractal begins to change with space or time (and becomes
multifractal), then more than one fractal dimension is usually required to adequately

represent and characterize the fractal.
Fractal dimensions may be classified into the following four categories [Kins94a]:

* morphological-based dimensions
* entropy-based dimensions

* spectrum-based dimensions

» variance-based dimensions

Morphological-based dimensions consider the physical structure of a fractal, and may be
used to determine the dimension of a fractal where the nature of the distribution is

unknown [Mand83, p. 364]. An example of a morphological-based dimension is the

Hausdorff-Besicovitch dimension, D, [Mand83, p. 364], [Mand85], [Kins94b].

3.3.1 Hausdorff-Besicovitch Dimension
A hypersphere, or volume element (vel) [Kins94a], is defined as an arbitrary region
of N-dimensional space that covers part of a fractal. As the number of vels N, covering

the fractal [Edga90, Ch. 3] approaches infinity and the size of each vel, r, approaches zero,
then the Hausdorff-Besicovitch dimension is defined as
log(N,)

D, = lim —2-2r) 3.4
#E = M Tog(1/7) 34

- 49 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Table 3.2 shows a list of the fractals that have been discussed so far in this chapter,

and their approximate fractal dimensions.

Table 3.2: Fractal dimensions for various figures.

Fractal Dimension Reference

Koch curve 1.2618 [Mand83, p. 44]
Sierpinski carpet 1.8928 [Mand83, p. 144]
Menger sponge 2.7268 [Mand83, p. 144]

Great Britain’s approx. 1.3 | [PeJS92, p. 215]
coastline

Fractional dimensions such as 1.2618, 1.8928, or 2.7268 need some explanation to

find meaning in a world that is typically described through Euclidean geometry. In

Euclidean geometry, dimensions have integer values: D, = 0 is a point, Dy = 1 is a

line, D, = 2 isaplane,and D, = 3 is aspace. A fractal dimension between D = 0 and

D =1 means that the fractal has characteristics that lie between those of a point and a line,
a dimension between D = 1 and D = 2 means that the fractal has characteristics that lie
between those of a line and a plane, and a dimension between D= 2 and D = 3 means that
the fractal has characteristics that lie between those of a plane and a space. With its
dimension of D = 1.2618, the Koch curve is a construct that is more complicated than a
line, but not nearly as complicated as a plane. Similarly, the Menger sponge is a construct
that is much more complicated than a plane, but not quite as complicated as a space, as is

shown by its dimension of D =2.7268.

-50 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

3.3.2 Variance Fractal Dimension

The idea of a power-law relationship between the variance of the amplitude of a
signal and its time increments dates back to the work done by Mandelbrot and Van Ness in
1968, and the introduction of fractional Brownian motion [MaVa68], [Mand71] as a
generalization of Brownian motion [Brow28]. These ideas were further refined, and the
first plots of this power-law relationship where shown by Mandelbrot and Wallis in 1969
[MaWa69a], [MaWa69b], [MaWa69c], [Mand83, p. 250]. However, the work presented
in these papers is very mathematical, and recent work by Kinsner [Kins94a] and Grieder
[Grie96] provide this thesis with a more palatable approach to the development of the

variance dimension for the modelling of natural phenomena [MaSu93].

Given a discrete time signal B(z), the variance o> of its amplitude over a time

increment is related to the time increment according to the power law [Kins94a]
2H
where H is the Hurst exponent [Mand83, p. 396], [ZhBM90], [PeJS92, p. 493].

If we define

At = |ty 1] (3.6)

and

(AB),, = B(t,)) - B(1)) (3.7)

then H can be calculated by

-51-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

llog[Var(AB)At]

H = Im
At—02 log(A1)

(3.8)

which is 72 times the slope of the line on the log-log plot, for decreasing values of A¢. For

an embedding Euclidean dimension E [Vics92, p. 10], the variance dimension D of a

signal can be computed by

Dy = E+1-H (3.9)

The real-time coding procedure to calculate D will now be shown. Given a

window of a b-adic sequence (b = 2 is a dyadic sequence) containing N, points,

Ky =2 (3.10)
log N
Kopax = [longJ (3.11)
Kpur = Hoog%] (3.12)
and
Khi = Kmax_Kbuf (3.13)

For X,,,, <k <K, the variance is calculated from

N, N, 2
Var(AB); = Fv"l'__l[¥ (AB)J?,(—]TII(D (AB)ij] (3.14)
k k

Jj=1 Jj=1

-52-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

where
k

n,=b (3.15)

and
NT
N, = — (3.16)
Ry

The X and Y values for the log-log plot are then calculated by

X, = log[n,] (3.17)
and

Y, = log[Var(AB),] (3.18)

The slope s for the log-log plot is

K/,,' Khi Khi
KXY Xh- 2% 27
s = i= K[mr i= K,,m, j= K,nw (319)
Khi 2 Khi 2
K z Xi - (2 Xz]
i= Klow I= Klow

where

K =K,-K;,,*t1 (3.20)

Finally, as in the previous derivation,

-53-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

1
H=- 3.21
3 (321)

and with a 1-dimensional signal (EF= 1),
D =2_H (3.22)

Another feature of the variance fractal dimension is that the values are normalized

to lie between 1 and 2. Dy = 1 would be the dimension of a straight line and Dy = 2

would be the dimension of totally random and uncorrelated white noise.

3.4 Multifractals and Multifractal Dimensions

When fractals are combined either spatially or temporally, it is appropriate that the
word “multifractal” be used to describe the new construct. The prefix “multi” means
“more than one”, so the term multifractal means that there is more than one fractal in time
or space, or both [Vics92, p. 49]. Multifractal dimensions are an extension of regular
fractal dimensions, and are better suited to the characterization of complex multifractal

behaviour.

The trajectory of the variance fractal dimension will be discussed as a means of
temporal multifractal characterization, and the Rényi dimension spectrum will be
introduced as a test for multifractality and as a means of spatial multifractal
characterization. The reliability and accuracy of these multifractal descriptions must also

be considered, and is investigated by Chen [Chen97].

-54 .

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

3.4.1 Variance Fractal Dimension Trajectory

As described in section 3.3.2, the variance fractal dimension is calculated from a
portion, or window, of a 1-dimensional signal. Therefore, the numerical value of the
variance fractal dimension is dependent on the size of the window. The selection of this
window size is very important, and is discussed in detail in section 5.4. Furthermore, if
the nature of the signal is expected to change over time, then the calculation of the
variance fractal dimension is also dependent on the location of the window. When the
window is shifted in time, it must also be decided if the window will either overlap, or not
overlap, part of the previous window. If the window is non-overlapping, then any portion
of the signal is only used once in the calculation of the variance fractal dimension; if the
window is overlapping, then portions of the signal (excluding a few points at the
beginning and end of a sequence equal to the offset of the window) are used more than
once. Calculations of the variance fractal dimension for a sliding window in time results
in a sequence, or trajectory, of values. This trajectory of dimensions may be called the
variance fractal dimension trajectory (VFDT), and demonstrates a fractal dimension that
changes with time. The calculation of the VFDT using an overlapping window is
illustrated in Fig. 3.7, with the original signal shown on top and its VFDT shown on the
bottom. Since a temporal window size of approximately 50 seconds was used to calculate
the variance fractal dimensions, its VFDT is shifted backwards in time by the length of the
window. Therefore, the spike located at 26.7 sec on the original plot is easily detected at

about 27.6 sec on the VFDT.

- 55-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Original Signal
300 T T T T T T T T T
260+ —
o 200+ ~
=
=
= 150 .
£
< 100k .
2 Jtal L ww& J
U fk-.f‘\w[ml—k‘ .-.wl I}U | o L‘ﬂtuf W\,j .,J Al»-/“k.q \MJb
25 255 26 26.5 275 285 295
VFDT
18 [I [| T [T [T

Iy | gy

1.4
g
\

o W, -

1

Pid 2545 2 2.5 27 275 28 285 29 29.5 30
Time {min)

Fig. 3.7. Variance fractal dimension calculated through time.

'L Jﬁl’”ﬂ#ﬁa

Yariance Fractal Dimension

Previous research has shown that the VFDT is useful in characterizing temporal
signals such as speech [Grie96], radio transmitter transients [Toon97], [Shaw97], [Sun99],

power systems transients [Chen02], and self-affine traffic [BaKi02], [BKPMO03].

- 56 -

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

3.4.2 Rényi Dimension Spectrum

The Rényi (multifractal) dimension spectrum was introduced in 1983 by Hentschel
and Procaccia [HePr83], and is an extension of the generalized entropy that was
formalized by Alfréd Rényi in 1960 [Rény55], [Rény359], [Rény61]. A comprehensive
discussion of the Rényi generalized entropy, the Rényi dimension spectrum, the
generalized relative entropy, and the relative Rényi dimension spectrum is given by

Dansereau [Dans01], and is summarized below.

Let X be a discrete random variable with finite alphabet i and probability mass

function p(x) = Pr{X=x},Vxe y.

Claude E. Shannon defined the Shannon entropy [Shan48a], [Shan48b] H(X) of a

discrete random variable X as

H(X) = =Y p(x)logp(x) (3.23)

xey

The generalized form of Shannon entropy [Rény61] is

= px)logp(x)
HX) = X=X (3.24)

Y p(x)

xey

Eq. 3.23 implies that p(x) be a normal probability distribution with the restriction

that

-57-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Y p(x) =1 (3.25)

xey

This restriction is relaxed in Eq. 3.24, and p(x) can be an incomplete probability

distribution [Dans01] where

0< Zp(x) <1 (3.26)

xex

The Rényi generalized entropy H q(X) of order g of a discrete random variable X

is defined as

1 >)
H(X) = logZEX ,—00 < g <oo 3.27
(X)) T4 %8 S 7o) q (3.27)

xey

Wheng=1, H q(X) becomes H(X) and is the Shannon entropy [PeJS92, p. 737].

The Rényi dimension spectrum Dq(X) (or simply Dq) of order ¢ of a discrete

random variable X with a probability distribution p,(x) at scale r is defined as

S plx)

logZs%
> pAx) o0
D,(X) = lim <X = lim — (3.28)

ld 1— r
-0 q log(l) -0 log(l)
r ¥

-58-

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

The Rényi dimension spectrum is a monotonically non-increasing function of ¢

[Dans01] for —eo < g <eo. If the object is a single fractal, then Dq is a constant for all

values of g. If the object is multifractal, then the value of D q varies with ¢g. Fig. 3.7 gives

an example of a Rényi dimension spectrum for a single fractal and a multifractal. The plot
of the fractal object is a straight horizontal line whereas a plot of the multifractal object

resembles a backwards-S curve.

12 i
—

1.18 +——— multifractal |

116} 1
\

11T single fractal]

1.12+¢ i

200 15 -0 5 0 5 10 15 20

Fig. 3.8. A Rényi dimension spectrum for a single fractal and a multifractal.

A test to determine if an object is multifractal or not is to calculate the Rényi
dimension spectrum for the object in question; if the spectrum is constant for all values of
g (or, in practice, for a sufficiently large range of ¢), then the object is a single fractal. It
should also be mentioned that in practice, care must be taken when calculating a small

probability raised to a power g, as the precision needed to accurately represent extremely

-59.

© Robert Barry Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

small numbers may exceed the maximum precision of a computer. Previous research has
also shown that the Rényi dimension spectrum is useful in characterizing more

complicated signals such as EMG recordings [Ehti99] and DNA [Rifa98], [Zhan02].

If an object is a single fractal in space but varies through time, then it possesses
temporal multifractality and may be described using the variance fractal dimension
trajectory; if the object is multifractal in space and constant through time, then it possesses
spatial multifractality and may be described using the Rényi dimension spectrum. More
complicated phenomena do exist that exhibit multifractality in both space and time.
These objects may be described through the changes in the Rényi dimension spectrum
through the formation of the Rényi dimension spectrum trajectory, as demonstrated by

Rifaat [Rifa98] and Sun [Sun99].

3.5 Summary

This chapter provides an introduction to fractals and multifractals in both space
and time, and shows examples of the generation of mathematical fractals through a simple
initiator and iterative process. An infinite number of fractal dimensions exist to
characterize and describe fractals, but the Rényi dimension spectrum and the variance
fractal dimension trajectory will be used in this thesis to demonstrate the multifractal

nature of self-affine traffic, and to provide a multifractal signature for the traffic.

- 60 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

CHAPTER IV

BACKGROUND ON FEATURE EXTRACTION
AND NEURAL NETWORK CLASSIFICATION

4.1 Basic Statistical Analysis

A sequence of numbers may be analyzed in many ways. In statistics, a starting
point for analyzing a sequence of numbers is through the calculation of its mean and
variance. (For the sake of clarity, it should be stated that the variance calculated in this

chapter is the statistical variance of a sequence, and is not the same as the calculation of

the variance fractal dimension.) The mean (or expected value) | of a random variable X

with probability distribution f{x) [WaMMB98, p. 85] is calculated by

w=elX) = Yxfx) (4.1)

Similarly, the variance o> of a random variable X with probability distribution f{(x)

[WaMMB98, pp. 93-94] is calculated by

o’ = e[(X-w’l = Y E-w¥ = e(x) -u’ (4.2)

X
The statistical mean and variance of a sequence may be sufficient in its
description, but if it is not, then the higher-order statistics of a sequence may also be

calculated.

- 61 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

4.2 Higher-Order Statistics

The higher-order statistics used in addition to the mean and variance are called the

skewness and kurtosis, and are described in sections 4.2.1 and 4.2.2, respectively.

4.2.1 Skewness

Skewness is the normalized third central moment of a distribution, and is a
measure of the asymmetry of sampled data around the mean . If the data are perfectly
symmetrical, then the skewness is zero. If the data are spread more to the left of u, then

the skewness is negative; if the data are spread more to the right of W, then the skewness is

positive.

The skewness s of a random variable X with probability distribution f{x), mean p,

and variance 6° [Math03a] is calculated as

s = L= (4.3)

3
o

4.2.2 Kurtosis
Kurtosis is the normalized fourth central moment of a distribution, and is a

measure of the “peakedness” of a distribution. The kurtosis & a random variable X with

probability distribution f(x), mean W, and variance o [Math03b] is calculated as

4
I = 8[(X‘“4H)] (4.4)
(0

62 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

The kurtosis of a Gaussian (or normal) distribution using Eq. 4.4 is 3. To make the

kurtosis of a Gaussian distribution equal to zero, the following equation may also be used.

4
= SX-W] 4 (4.5)

4
(9

4.3 Histogram Modelling

A histogram is a grouping of data into a finite number of intervals, or bins, based
upon the frequency of occurrence of the individual data points within each bin. Figure 4.1

shows 1000 data points that have been selected from a Gaussian distribution.

—_

o

1
—_

3 1 1 1 L 1 t 1 t 1
0 100 200 300 400 500 600 700 8OO 800 1000
N

Fig. 4.1. 1000 data points selected from a Gaussian distribution.

If we did not know that the data were generated using a Gaussian distribution, we

could figure this out by dividing the range of data into equal sized bins and counting the

- 63 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

number of data points in each bin [Meis72, pp. 41-42]. The number of bins used is also
important: if too few (5) or too many (99) bins are used (as shown in Figs. 4.2 and 4.3,
respectively), then the underlying distribution may not be so easily identified. Figure 4.4

shows a good histogram formed by choosing 19 bins.

450 T T T T T

400

€3]
fom]
o

N
4]
o«

200

150

Frequency of Occurrence

100

50

1 2 N 4 5
Bins
Fig. 4.2. Too few bins used to construct a histogram.

- 64 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

30 T T T T T T T T T

25

20

15

10

Frequency of Occurrence

0 e S NS PRI LRI H
0 10 20 30 40 50 60 70 80 S0 100

Bins
Fig. 4.3. Too many bins used to construct a histogram.

140 T T T T T T L T T

120

100 +

60

Fregquency of Occurrence

40 -

§] 2 4 b 8 10 12 14 16 18 20
Bins

Fig. 4.4. A good number of bins used to construct a histogram.

- 65 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

The Gaussian distribution M) is characterized by two parameters: the mean QU

and variance 6° (or standard deviation ¢) [WaMMO98, p.145], and is expressed as

2 2
Necu,6) = ——e © (4.6)

With these two parameters, a bar graph of a particular Gaussian distribution can be

constructed which closely resembles, or models, Fig. 4.4. Using Egs. 4.1 and 4.2, the data

used to generated Fig. 4.1 has g = 0.514 and 6> = 0.9717. A bar graph of a Gaussian

distribution with these two parameters is shown in Fig. 4.5.

01-‘1 T T T T T T T T T

0.12

0.08

Probability

0.06

0.04

0.02F

8 w0 12 14 15 18 20
Bins
Fig. 4.5. Histogram modelling using the Gaussian distribution.

- 66 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

A visual comparison between the histogram in Fig. 4.4 with the Gaussian
distribution in Fig. 4.5 shows us that our model fits the original histogram quite well. The
vertical axes on these graphs are different, but equivalent. In Fig. 4.4, the vertical axis is
the frequency of occurrence with a maximum of approximately 120; since there are 1000
data points used to construct the histogram, this number represents 12% (or 0.12) of the

data. This normalized representation is the probability, and is the vertical axis on Fig. 4.5.

4.3.1 Gamma Distribution
The gamma distribution G(x) is a generalized statistical distribution represented by

the two parameters alpha o and beta B [Weis99a], and is expressed as

X

B
G(x;o B) = F——— @.7)
B T(o)

where I'(o) is the gamma function [Weis99b]
(o) = [ey (4.8)
0

Unlike the Gaussian distribution which always maintains its symmetric bell-shape
form when the parameters |\ and ¢ are varied, the gamma distribution is very flexible and
can take on a wide range of shapes as the parameters o and 3 are varied. This flexibility
makes the gamma distribution an ideal choice for modelling rapidly changing probability
distributions. Figure 4.6 shows the gamma distribution with o = 1 and varying B and

Fig. 4.7 shows the gamma distribution with § = 1 and varying o.

-67 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

02 T T T T T T T T T

0.18

T

0.14

0.1+

Gamma(x)

0.08

0.06 |

0.04 -

0.02

___\%1-—_'_1_—%—
a 5 10 15 20 25 30 35 40 45 50
X

Fig. 4.6. Gamma distribution with oo = 1 and varying 3.

02 T T T T T T T T T

0.18+ \a:S |

0.16

T

0.14

012+

0.1

Gamma(x)

0.08 +

006} \

1}
0.04 + \ 4
25 3

0.02

\\“‘k 1 1

0 35 40 45 50

15 20
X

Fig. 4.7. Gamma distribution with B = 1 and varying o.

- 68 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

Figure 4.6 reveals that when o = 1, the gamma distribution becomes the
exponential distribution

Gx;a=1,B) = ze B 4.9)

el

Figure 4.7 shows that the gamma distribution can also take on a form that is similar

to a log-normal or Gaussian distribution. When both parameters o and B are varied
simultaneously, the resulting distribution can even look like a “squished” Gaussian

distribution or reversed exponential distribution, as shown in Fig. 4.8.

035 T T T T T T T T T

0.3+ : .

025}

Gamma(x)

®=10, =10

o

o

@
T

0 10 20 30 40 50 60 70 80 90 100

Fig. 4.8. Gamma distribution with varying o and 3.

- 69 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

4.4 Principal Component Analysis

Principal component analysis (PCA) is a linear transformation used to isolate and
extract the most important features from a signal through the removal of redundant
information. In a system represented by several variables, it is most likely that some
degree of correlation exists between variables; for example, if variable 4 always increases
when variable B decreases, then there is correlation between variables 4 and B. If these
variables can be transformed into new variables 4 * and B*, where 4 * contains most of the
information between 4 and B, and B* contains the remaining information, then it may be
possible to retain 4* and discard B* and still preserve enough of the information to

properly describe the relationship between the original variables 4 and B.

The following derivation of PCA is provided by Bishop [Bish00, p. 310-313].
PCA maps vectors x" in d-dimensional space (x;, .., X;) onto vectors z in
M-dimensional space (z;, ..., z;,) where M < d. The vector x can be represented as a

linear combination of orthonormal vectors u;, as shown by

d
x= Yz, (4.10)

i=1

The vectors u; satisfy the orthonormality relation

u.u. =90, 4.11)

where &;; is the Kronecker delta symbol where 6,; = 1 if /= and 9;; = 0 otherwise.

-70 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

Using Eq. 4.11, an expression for the coefficients z; is given by

z, = ux (4.12)

If a subset M < d of the basis vectors u; are retained so that only M coefficients z,

are used, then the remaining coefficients can be replaced by constants b, and each vector x

approximated by
M d
X = Yzu+ Y b (4.13)
i=1 i=M+1

Suppose we have a data set of N vectors x" where n=1, ..., N. We wish to choose

the basis vectors u; and coefficients b, such that the approximation in Eq. 4.13 gives the
best approximation to the original vector x on average for the entire data set. The error in

the vector x" introduced by the dimensionality reduction is given by

x-x"= 3 (z-b)u (4.14)

The best approximation is defined as the one that minimizes the sum of the squares

of the error over the data set. This is accomplished by minimizing

_lAH I = I 5 " b, (4.15)
Eu 22« ZZAZ(Z’) '

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

The derivative of £, in Eq. 4.15 with respect to b, set to zero shows us that

N
b= =¥ 2 = ux (4.16)
n=1
where

N
x" (4.17)
=1

2=

x:

n

Combining Eqs. 4.12 and 4.16, Eq. 4.15 can be written as

d N d
1 T a2 1 T
EMzi oY {u(x"-%)} =3 Y, u;Zu (4.18)
i=M+1 n=1 i=M+1

where X is the covariance matrix of the set of vectors {x"} given by

T =Y -x)E -5 (4.19)

It has been shown [Bish00, App. E] that minimizing E,, with respect to the basis

vectors u; occurs when the basis vectors satisfy
Zu; = Mu, (4.20)
and are the eigenvectors of the covariance matrix. Substituting Eq. 4.20 into Eq. 4.18 and

using Eq. 4.11, the error criterion at the minimum is

72 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

d
D @.21)

i=M+1

EM:

BN 1 —

Therefore, the minimum error is achieved by retaining the M largest eigenvalues

and their corresponding eigenvectors, and discarding the d — M smallest eigenvalues.

4.5 K-Means Clustering

If we had access to Sarda’s data sets (as explained in section 2.6), then we would
have a database of known signal classes that we could characterize. Signal 4 would have
one set of characteristics, signal B would have another set of characteristics, and so on. If
the signal classes are known, then sections 4.5 and 4.6 would not be necessary. However,
what if the signal classes are not known? How could extracted characteristics be grouped,

or clustered, and classes assigned to these clusters?

Figure 4.9 shows a simple problem where unknown hypothetical traffic is
characterized and plotted in 2-dimensions. Poor clustering of these data points can lead to
an incorrect number of identified classes, as shown by Fig. 4.10. Similarly, good
clustering can lead to a more accurate (and possibly correct) number of identified classes,
as shown by Fig. 4.11. The human visual system is very good at identifying clusters of
data, and can immediately confirm that there are most likely four distinct classes within
Fig. 4.10. Further imagination would find it difficult, if not impossible, to properly and
intuitively find five or more classes in Fig. 4.9! The important topics of correct clustering

and classification will be discussed further in sections 5.8.2 and 6.2.

© Robert Barry

Ch. 4: Background on Feature Extraction and Neural Network Classification

%2

%2

08r

08fF

07F

06

05}

0.4F

0.3

0.2+

01+F

Il ! 1 I]

0 07 08

a 1 1 L !

0 01 02 03 04 05
x1
Fig. 4.9. Traffic characteristics plotted in 2-dimensions.

0.9
08F

0.7

06F

05¢F

0.4F

03F

0.2+

0.1+

06 07 08

D 1 L L)
0 0.1 02 03 0.4

05
%1

Fig. 4.10. A poor choice of two clusters (or classes) in Fig. 4.9.

-74 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

08

07¢f

06}

%2

05k

0.4

03F

0.2

0.1F

D i 1 1 I3 1 1 L (1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

Fig. 4.11. A good choice of four clusters (or classes) in Fig. 4.9.

The K-means clustering algorithm [MacQ67] is used to cluster data points in
N-dimensional space so that classes may be assigned to each cluster. The K-means
algorithm was chosen because it is simple, intuitive, and preliminary experimentation
showed that it gave good results. Hartigan provides the following description of the

K-means clustering algorithm [Hart75, pp. 84-86].

Preliminaries:

* The [th case of the J th variable has value A(Z J) where 1<I< M and
1<J<N.
* The partition P(M, K) is composed of the clusters 1, 2, 3, ..., K. Each of the M

cases lies in just one of the X clusters.
* The mean of the J th variable over the cases in the L th cluster is denoted by

B(L,J).
* The number of cases in L is N(L).

=75 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

The distance D(/, L) between the I th case and L th cluster is

N
D(,L) = JZ [A(L, J) - B(L,)] (4.22)

J=1
The error e[P(M, K)] of the partition is
M)
e[P(M,K)] = Y {D[LL(D]} (4.23)
I=1

where L(/) is the cluster containing the 7 th case.

Step 1:

Assume initial clusters 1, 2, ..., K and compute the cluster means B(L,J)
where 1 <L <K and 1 <J <N, and the initial error as shown in Eq. 4.23

Step 2:

For the first case, compute

N(L>[D(1,L)]2_N[L(l)I{DL1, LY
N(L) +1 N[L(D]-1

for every cluster L, which is the increase in the error by transferring the first
case from cluster L(1) to cluster L. If the minimum of this quantity over all

L#L(1) is negative, then transfer the first case from cluster L(1) to this
minimal L, update the cluster means of L(1) and the minimal L, and then add
the increase in error (which is negative) to e[P(M, K)].

- 76 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

Step 3:

* Repeat Step 2 for the /th case, where 2 < I< M.

Step 4:

 Stop if no movement of a case from one cluster to another occurs for any case.
Otherwise, return to Step 2.

4.6 Self-Organizing Feature Map

Kohonen’s self-organizing feature map (SOFM) [Koho88, Ch. 5], [Koho90] is a
neural network that groups data based upon their topological similarity. Data points that
are clustered in the same region, or neighbourhood, are assigned the same class. As its
name suggests, the important features of the data organize themselves without the
supervised control of a user. In this thesis, the SOFM could be used to cluster features;
however, the task of clustering and dimensionality reduction is adequately performed by
the K-means clustering algorithm and PCA. Therefore, the SOFM is used only for visual
verification of the correctness of the K-means clustering. The clustering from the
K-means algorithm and the SOFM are expected to be visually similar; if they are similar,

then this is verification that the K-means algorithm is working as expected.

Kohonen provides the following discussion of the SOFM [Koho88, pp. 131-134].
The SOFM is a two-layered neural network with #-dimensional input nodes (denoted by
x) and p-dimensional output nodes (denoted by y) with weights w connecting every input

neuron to every output neuron, as shown in Fig. 4.12.

-77 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

Nc

Input Layer Output Layer

Fig. 4.12. SOFM architecture (after [Dans95]).

The SOFM trains itself through a winner-takes-all competitive learning scheme.
In this scheme, only the winning output neuron y(c) is activated for any given input vector

x according to the condition

e —w(oll = min{lx-w()|} (4.24)
I

-78 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

This evaluation is performed at discrete intervals of time, so Eq. 4.24 may be

expressed as a function of time ¢
@) -w. ()] = min{ |x(#) = w, (D]} (4.25)
i

The weights w are updated by

wi(t+1) = w(0) +h(@t)[x(t)-w(D)], ie N (4.26)

[«

where N, is the topological neighbourhood and contains all nodes within a certain radius

from the winning node y(c), and A(¢) is the neighbourhood function. A common

definition for the neighbourhood function is the bubble function, defined as

h, () = o(t) (4.27)
where 0.(7) is the learning rate (which usually decreases towards zero over time) which

satisfies the restriction that 0 <o(f)<1 [Zura92, p. 425]. Another commonly used

neighbourhood function is

lre=rlf

hy (1) = aqrye °OF (4.28)
where 7, and r, are positional vectors for the winning neuron and neighbouring neuron,

and 6 (¢) is the decreasing radius function [Zura92, p. 425].

=79 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

4.7 Probabilistic Neural Network

The probabilistic neural network (PNN) was introduced by Specht in 1988
[Spec88], although the necessary mathematical foundations were outlined 16 years earlier
by Meisel in 1972 [Meis72, Ch. 2]. The PNN is a type of neural network that is
specialized for classification problems, and works well when the training data are
relatively sparse [Spec90b]. Its performance is generally very good, and asymptotically
approaches Bayes optimality [Spec88]. Specht [Spec88], [Spec90a] provides the
following discussion of the mathematical foundation for the PNN. Other detailed and
comprehensive discussions are also provided by Wasserman [Wass93, Ch. 3] and Shaw

[Shaw97].

4.7.1 Bayes Decision Rule

The Bayes decision rule for classification is constructed in a way that minimizes

the “expected risk” of a decision [DuHa73, Ch. 2]. Consider the two-category situation in

which the state of 9 is either 6 4 Oor o g~ The decision of whether 6 = 6 4010 =0gis

based on the set of measurements represented by the p-dimensional vector

X = [X] ...Xp] . Given that /; is the loss associated with the decision d(X) = 0 p When
6 = 6, and/; is the loss associated with the decision d(X) = 6, when 8 = 05, &, is
the a priori probability of occurrence of patterns from category 4 and /4 p = 1—h, isthe

corresponding a priori probability of occurrence of patterns from category B, the Bayes

decision rule is

d(X) =6, if hyl,f(X)>hglgfp(X) (4.29)

- 80 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

dX) =05 if hl,f,(X)<hglgfp(X) (4.30)
where f,(X) and f(X) are the probability density functions (PDFs) for categories A

and B, respectively.

The boundary decision between categories 4 and B is therefore

F4(X) = K fp(X) (4.31)
where
_ hBZB
K Al (4.32)

The problem with implementing the Bayes decision rule is that the PDFs f,(X)

and fz(X) are generally unknown and may be too complicated to approximate with a

simple distribution. However, these underlying probability densities may be estimated,
and the estimates will converge asymptotically towards the true PDFs as the number of

samples increases.

4.7.2 Parzen PDF Estimation
Parzen showed that if there are », training cases for a given class ¢, a PDF may be

estimated [Parz62] by

g,(X)=-Ly W(X_X”) (4.33)

where W(X) is the weighting function and G is the spread parameter for the width of this

-81 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

weighting function that surrounds each data point. The weighting function W(X) is

usually chosen to be the Gaussian function

W(X) = —¢ 2° (4.34)

JL2no

By inserting Eq. 4.34 into Eq. 4.33, the PDF estimation becomes

2
_x-xi

2

ne
- 1 20
g.(X) oy /Zc”nc,-;e (4.35)

where X = [X;...X, 1. The spread parameter ¢ can take on a wide range of values. If ¢

is too small, then the PNN performs as a nearest neighbour classifier [Spec88], [CoHa67];
if ¢ is too large, then the PNN acts as a matched filter [Spec88]. As shown by Fig. 4.13,
there exists a range of ¢ for most classification problems that provides good results

[Spec88], [Wass93, p. 44].

-82-

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

Optimum

Matched Filter

Correct Classifications

Nearest Neighbour

' Sigma
Fig. 4.13. Varying the spread parameter ¢ (after [Spec88], [CaCh03]).

For the sake of completeness, it should also be mentioned that in 1966, Cacoullos

[Caco66] extended Eq. 4.35 to allow for the multivariate case where ¢ = (o, ...cp].

This generalized expression is

n,.
1 (2602
e

S S (4.36)
@ny" %6 /n, /<)

gAX) =
4.7.3 PNN Architecture

The PNN is designed to implement Bayes decision rule using Parzen’s method of

PDF estimation. Figure 4.14 shows the four layer architecture of the PNN.

-83-

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

LT T

Input Pattern Summation Output
Layer Layer Layer Layer

Fig. 4.14. PNN architecture (after [Spec88]).

The number of neurons in the input layer is equal to the dimensionality of the input
data, and each neuron in the pattern layer corresponds to a training sample. The
summation layer consists of neurons for each possible output class and performs the PDF
estimation. The output layer usually consists of only one neuron which selects the largest

value in the summation layer as the class output for the PNN.

In addition to providing very good results, a PNN is also very fast to train.
Training typically takes seconds where similar training of a back-propagation neural

network may take hours or days [Spec90a]. The main disadvantages of a PNN is that it

-84 -

© Robert Barry Ch. 4: Background on Feature Extraction and Neural Network Classification

requires a substantial amount of memory to store every training sample; however, in
today’s computerized world, memory is generally abundant and inexpensive, so this

“disadvantage” does not hinder the use of the PNN for classification problems.

4.8 Summary

This chapter provides an overview of the techniques used in feature extraction and
classification. Firstly, a study of the higher-order statistics and the modelling of the
histograms are used to extract the important characteristic features of the data. Secondly,
PCA is performed to further compress this representation, and the K-means algorithm is
used to cluster these features with verification from a SOFM. Finally, a PNN is trained to

reliably classify newly observed traffic patterns.

-85-

© Robert Barry Ch. 5: System Design and Verification

CHAPTER V

SYSTEM DESIGN AND VERIFICATION

5.1 Verification of Sampling Frequency

In Pear’s experiments, the position of the Betta splendens is recorded ten times per

second [PeMa02]. Therefore, the sampling frequency is f, = 10Hz. Intuitively, this

sampling frequency seems adequate to accurately observe and record the motion of the
Betta splendens; however, one’s intuition must be confirmed with a proof before these

data may be used in this thesis.

In 1928, Harry Nyquist introduced the fundamental idea that for an analog signal
to be properly represented by samples at discrete intervals of time, the sampling frequency
must be at least twice the maximum frequency in the signal [Nyqu24], [Nyqu28],
[Beau02]. If sampling was performed at less than twice the maximum frequency, then
aliasing — a process whereby higher frequencies are incorrectly perceived to be lower
frequencies — would occur, and the signal would be irrecoverably distorted. This idea was
rigorously proven by Shannon in 1949 [Shan49] and is widely known as the Nyquist

sampling theorem.

The sampling frequency used in Pear’s experiments will be shown to be adequate

using two different proofs.

Proof #1: The Befta splendens used in the experiments are approximately 2.5 cm in

length, and their position is recorded with a maximum error of about 0.5 cm [PeMa02]. If

- 86 -

© Robert Barry Ch. 5: System Design and Verification

the sampling frequency of 10 Hz is inadequate, then the Betta splendens would have to
evade the camera system at some time ¢ by swimming 3.0 cm (2.5 cm for its length + 0.5
cm for the maximum error in its position) away, turning around, and swimming back to
the same position before time (¢ + 0.1) sec. If this scenario did take place, then this high
frequency movement would be incorrectly perceived as low frequency movement (i.e., the
fish did not move); once again, this phenomenon is known as aliasing. For the Betta
splendens to move as described above, it would have to swim 6.0 ¢cm in 0.1 sec, or
60 cm / sec. However, Pear and Martin have observed that the Betfa splendens swims at a

maximum speed of approximately 10 cm / sec [PeMa02]. Therefore, the sampling

frequency f, = 10Hzis clearly acceptable.

Proof #2: Assume that the Betta splendens moves along a sinusoidal trajectory

[CaCh03]

x(f) = Asin(2mfy t) 5.1

where £ is the Nyquist frequency given by

Iy = %fs (5.2)

and 4 is the amplitude, or length of the Betta splendens.

The velocity of the Betta splendens may be calculated as follows by taking the first

derivative of Eq. 5.1 with respect to time

w(f) = %x(r) = Amf,cos(nf,1) (5.3)

-87-

© Robert Barry Ch. 5: System Design and Verification

The velocity is at a maximum when

cos(mf.t) = 1 (5.4)

and therefore
Viax = ATS, (5.5)

If we set 4 =2.0 cm (2.5 cm for its length - 0.5 cm for the maximum error in its

position) and f; = 10Hz, then v, = 62.8cm / sec, or approximately 60.0 cm / sec.

Therefore, the sampling frequency f, = 10Hz is once again shown to be acceptable.

5.2 Verification of Self-Affinity

As discussed in section 3.1, self-affinity implies fractality (and vice versa).
Therefore, to show that Pear’s data sets are self-affine, it must be shown that they are
fractal. As explained in section 3.3.2, to show that a signal is fractal, a power-law
relationship must exist between the variance of the amplitude of a signal and its time
increments. In other words, if a log-log plot of the above relationship yields a straight

line, then the signal is fractal and therefore self-affine.

Figures 5.1 to 5.8 show four segments of Record 11020219, each with a length of

1024 data points, and the corresponding log-log plots for these segments. In these plots,

X = At = |, 1] (5.6)

and

Y = (AB)y, = B(t,) - B(1) 5.7)

- 88 -

Ch. 5: System Design and Verification

140

© Robert Barry

ol
. . . ' . . 3 & T T T T T T T v
= T S A A A !
: ' ' . ' I 1) ' [¥--] (Vo
. R S S ST A S S S A .
% ' ' ' 3 ' ') | p— - an
72} H “ H “ H H ' n "__ H .P.u“
le = RS 0. N O OUS SRR SR AU N S/ =1 < S 00
T o AN < 0
g N N A S -
v 1 ' ' 1 ' ' ' ' . @)
o ' 1 ' ' ' ' 1 ' ' wn
< e N R R £
g LN e Q
s 5 Fe SRR P s VS SOOI SO S AU S . ~ £
Y S N T T S R 5
1 N S T R R —_
— ' ' ! ' ' ' 1 ' 1 m
— ' ' ' h ' ' ' ' s |5
Q v] 1] [])] @
- m T A T e 0 &
ige o L. O S SIS S WSS SNPR SSO. SO B S) & .
SeH N e "gy o
1 1 1 3 t 5 1] -
E N R S A < g
I~ S PN 8
< e N =
Ll 4 1 1 1 1 4] Ll
lo © L. S S N S S IR S o &
rkU.n el —) | \ ' h ' h i Gy
5 — . oo o
i) s oo -
5 N Lo 2
o A S NGO =
o T N o =
489 [F el mc e mwdanSoa (AP S
N T e e s P
q]ll'tllllll.‘[llll 1] '] t [] 1 1 —
- T : S
T— s ‘ : : _ _ | ; . : ©
b A AN .
.o e A N 3
. L L L L . 2 & ! ; ! | i | " ! logda W
8 = ® B 2 & “ oM ®own o~ W vy
— = w M~ [1a} 93 =T ©
(W) oy wiol) aauelsiq {\)B9| =

© Robert Barry Ch. 5: System Design and Verification

5y
6y]

N
o
T
1

Son
(8]
T
!

o
c
T
1

)
83}
T
1

N
m
T
-
1

Distance frorn Mirror (mm)
[£}
[
T
1

- [xe]
(8] o
T T
-
1 1

10

A,

5 1 1 I 1 Il
1040 1060 1080 1100 1120 1140 1160
Time {sec)

Fig. 5.3. Record 11020219 from 7= 1050.1 to 1152.4 sec.

log(Y)

2 25 3 3.5 s 4,
lag(%)
Fig. 5.4. Calculation of variance fractal dimension of Fig. 5.3.

-90 -

© Robert Barry Ch. 5: System Design and Verification

250 ; T r T ¥

200 + .

150

100 - .

Distance from Mirror {rnm)

50

g L L
1.5 1.502 1.504 1.506 1.508 1.51 1.612
Time (sec) %10t

Fig. 5.5. Record 11020219 from = 15000.1 to 15102.4 sec.

log(Y)

[P A
B~
(8]
431

2 25 3 3.5
log(X)
Fig. 5.6. Calculation of variance fractal dimension of Fig. 5.5.

-91-

© Robert Barry Ch. 5: System Design and Verification

140 T T T T T

-
]
o
T
I

—
o
Lo}
T
L

us)
o
T
1

[833
[e}
T
L

Distance from Mirror (mm)

=9
o
T

N
o
T

T INAVAIE

D t 1 It 1)
27 2,702 2.704 2.706 2.708 271 2712
Time (sec) « 10%

Fig. 5.7. Record 11020219 from #=27000.1 to 27102.4 sec.

: - D = 1.4060,
25 3 35 4 45 5
log(x)
Fig. 5.8. Calculation of variance fractal dimension of Fig. 5.7.

- 92.

© Robert Barry Ch. 5: System Design and Verification

Figures 5.1, 5.3, 5.5, and 5.7 represent the X-coordinates of the Betta splendens in
Record 11020219 for 102.4 seconds starting at approximately 1, 18, 250, and 450 minutes,
respectively. Visually speaking, these plots look very different. However, although these
time segments were selected arbitrarily without a priori knowledge of what the log-log
plots would look like, the plots shown in Figs. 5.2, 5.4, 5.6, and 5.8 reveal an exciting and

consistent underlying self-affine structure.

However, a proof that Record 11020219 is self-affine cannot be constructed from
four encouraging examples alone. To demonstrate the self-affinity of Record 11020219,
we must consider similar log-log plots for the entire time series, and the accuracy of the
line of best fit for each plot. The mean square error (MSE) is calculated for each log-log

plot as follows

N
MSE =]-1\-/2 [Y(i) - V()T (5.8)

i=1
where N is the number of points in the log-log plot, Y(i) are the actual data points, and

Y (7) are the corresponding points on the line of best fit. Asin Figs. 5.2, 5.4, 5.6, and 5.8,
a window size of 1024 points is used to calculate the VFDT (which means that N = 4) with
no overlapping between successive windows. The resulting histogram of the MSEs is

shown in Fig. 5.9.

-93.

© Robert Barry Ch. 5: System Design and Verification

200

180

160 0

140

120

1 !

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Mean Square Error

Fig. 5.9. Histogram of the MSE of the VFDT in Record 11020219.

Figure 5.9, consisting of 278 points, shows that the vast majority of the VFDT has
a very low MSE; this means that the line of best fit is very close to the actual data points.
In fact, the average MSE is 0.0147, and only 10 points have a MSE greater than 0.1.
Therefore, since 96.4% of Record 11020219 has a MSE less than 0.1, we may conclude
that Record 11202019 is self-affine.

5.3 Verification of Spatial Multifractality

As explained in section 3.4.2, the test to determine if an object is multifractal in
space is to calculate its Rényi multifractal dimension spectrum. Figures 5.10 to 5.13 show
the Rényi dimension spectra for Figs. 5.1, 5.3, 5.5, and 5.7, which represent four selected

segments of 1024 points in Record 11020219.

-94 -

© Robert Barry

Ch. 5: System Design and Verification

1.25

1.1

1 1 L 1 1 1

-20

1.26

-15

Fig. 5.10.

-10 -5 0 5 10 15

1.26}

124 F

1.22F

1.18F

L Il 1 I !

Il

Il

I

-15

Fig. 5.11.

-10 -5 0 5 10 15
q

Rényi dimension spectrum of Fig. 5.3.

-95.

© Robert Barry Ch. 5: System Design and Verification

125 T T T T T T T

1.2

1.15

11 1 1 3 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20

q

1.28 T T T 1 T T T

1.26 4

1.24

1.22

as 12

] 1 Il 1 Il

1.12 L .
-20 -15 -10 -5 0 5 10 15 20

q
Fig. 5.13. Rényi dimension spectrum of Fig. 5.7.

-96 -

© Robert Barry Ch. 5: System Design and Verification

To calculate the Rényi dimension spectrum of a temporal signal, it has to be
embedded into a 2D plane as an image. A mesh is then constructed over the image and the
frequency of points is calculated for every bin. If the points are evenly spaced throughout
the image, then the probability distribution is uniform, the Rényi dimension spectrum is a
horizontal line, and the object is a single fractal. However, if the image has a varying

probability distribution, then the spectrum will be curved, and the object is multifractal.

These Rényi dimension spectra all indicate degrees of spatial multifractality in the

four segments of Record 11020219, with 1.1 < Dq < 1.25. Figures 5.10 and 5.12 have

similar endpoints when ¢ = 20 and ¢ = -20, but the curves are different in the middle

around g = 0. This statement is also true for Figs. 5.11 and 5.13.

The construction of the Rényi dimension spectrum is another method of
multifractal characterization for complex temporal signals. In these examples, 1024
points are considered in each successive window of the original signal, and the spectrum
constructed for each window contains 41 points between ¢ =20 and ¢ = —20. However,
the majority of these 41 points may not change very much from one spectrum to another,
so a study of the spectra may reveal the fewest number of values for carefully selected g

which adequately characterizes the original signal.

The calculation of the Rényi dimension spectrum for 278 sequential windows
(which is, in fact, the Rényi dimension spectrum frajectory) reveal that the four Rényi
dimension spectra displayed in this section are characteristic of the spatial multifractality

found throughout Record 11020219.

-97.

© Robert Barry Ch. 5: System Design and Verification

5.4 Selection of Window Size and Offset to Calculate VFDT

The variance fractal dimension may be calculated as discussed in section 3.3.2.

However, careful consideration must be taken when selecting the window size (Ny) and
window offset (w off) for the calculation of the variance fractal dimension. The window

size determines the number of data points considered in the calculation of the variance
fractal dimension. A larger window size results in a greater compression of the data. In
an analogous way, this window acts as a low-pass filter (LPF): the larger the window, the
more the data is “smoothed” and compressed. However, if the window size is too large,
then important high-frequency data may be lost. The window offset may be seen as
controlling the resolution of the window, or LPF, through time. A window offset equal to
the length of the window means that there is no overlapping between successive windows,
and each data point is considered in the calculation of the VFDT only once. As the
window offset decreases, data points are considered in the calculation of more than one

variance fractal dimension along the trajectory; this process may be referred to as fractal

amplification [Kins94a]. When w off = 1, successive windows overlap as much as

possible and maximum resolution of the VFDT occurs through time.

To demonstrate the effect of decreasing the size of non-overlapping windows,
Figs. 5.14 to 5.18 show the calculation of the VFDT with window sizes of 8192, 4096,
2048, 1024, and 512, respectively. In our previous log-log plots, a window size of 1024
was used and resulted in N = 4 points for the calcuiation of the slope. 512 points would
result in N = 3, which is a fundamental lower limit for the number of points needed to

reliably calculate the slope of this line, and therefore the variance fractal dimension.

-98 -

© Robert Barry Ch. 5: System Design and Verification

-
0

Variance Fractal Dimension
tw - n o ~ s}
T T T T T T
1 1

s
o
T

Wi

1.1 . L
0 5 10 15 20 25 30 35

Window Paosition

Fig. 5.14. VFDT calculated using a non-overlapping window size of 8192.

— —_ Y
o ~ w
T T T
) t 1

—
=N
T

Variance Fractal Dimension
(@)]
1
1

1.3F E
1.2 H | /\ /\/\j\ f |
11 1 1 1 1 | 1

0 10 20 30 40 50 60 70

YWindow Paosition

Fig. 5.15. VFDT calculated using a non-overlapping window size of 4096.

-99 -

© Robert Barry Ch. 5: System Design and Verification

Y
[{e]

-
o]
T
e
3

-
~
T
1

-
o
|
1

-
oyl
1

Variance Fractal Dimension
W =
-qz-____
1

o
e
—_
=
| ~———

-
-
T
1

-

20 40 60 80 100 120 140
Window Position

Fig. 5.16. VFDT calculated using a non-overlapping window size of 2048.

]

1.8 T T

—
ws]
T
1

i
~
]

-
7]
3

-
85
1

-
b

oy
W

Yariance Fractal Dimension

-
[S]

-
—_
T

T
—
.—i__
_—
e

W\ ’W \ ’M M W&%

0 50 100 150 200 250 300
Window Position

Fig. 5.17. VFDT calculated using a non-overlapping window size of 1024.

—

- 100 -

© Robert Barry Ch. 5: System Design and Verification

N

—_
w0
T
1

—
wa]
T
i

-
~l
T
1

-
o
T
1

Y
=
]

Yariance Fractal Dimension
m
i

-
w
1

—
e e —
T——
1 1

A

0 100 200 300 400 500 600
Window Position

Fig. 5.18. VFDT calculated using a non-overlapping window size of 512.

-
- N)
—
——
-
e —amil
—
-
P -
—————

-

As the window size decreases from 8192 to 512, the VFDT becomes less smooth
and contains more of the subtle variations of the variance fractal dimension. In this way, a

larger window size may be seen as acting like a LPF.

Keeping a window size of 512 (as shown in Fig. 5.18), the effects of an
overlapping window on the construction of the VFDT will now be illustrated. Figs. 5.19,
5.20, and 5.21 show the VFDT calculated with a window size of 512 and window offset of
256, 128, and 8, respectively. The plots using a window offset of 64, 32, and 16 are not

shown here because they look quite similar given the finite resolution on a printed page.

- 101 -

© Robert Barry Ch. 5: System Design and Verification

BT M’ L

0 200 400 600 800 1000 1200
Window Paosition

Fig. 5.19. VFDT calculated using a window size of 512 and window offset of 256.

N

-
(u}
T
1

-
o

—_
~J

-
a2}

—
£

Yariance Fractal Dimension
[83]

—_
w

1.6

—
b

Variance Fractal Dimension
[y}

-
w

-
N

—
-

VA

1] 500 1000 1500 2000 2500
Window Position

Fig. 5.20. VFDT calculated using a window size of 512 and window offset of 128.

1

-102 -

© Robert Barry Ch. 5: System Design and Verification

-
-~

-
o7

pony
p-N

_\
w

Variance Fractal Dimension
[y]

ey
NI

1.1F

0 0.5 1 15 2 25 3 3.8 4
Window Positioh ¥ 104

Fig. 5.21. VFDT calculated using a window size of 512 and window offset of 8.

As the window offset decreases, more of each successive window overlaps the

previous, and the resolution of the VFDT in time increases.

For this analysis of Pear’s data sets and Record 11020219, it was decided that a

VEFDT with a window length of 512 and window offset of 8 will be used. With a sampling

frequency f, = 10Hz, this corresponds to a window size of 51.2 sec and a window offset

of 0.8 sec. Roughly speaking, the behaviour of the Betta splendens is studied for 1 minute

intervals every second.

© Robert Barry Ch. 5: System Design and Verification

3.5 Construction of Statistical Trajectories and Histograms

To further study the statistics of the VFDT shown in Fig. 5.21, the statistical
trajectories — namely the mean, variance, skewness, and kurtosis trajectories — of the
VFDT are calculated using Eqgs. 4.1 to 4.4, respectively. These four new trajectories are
calculated using a window size of 512 with a window offset of 1. The smallest possible
window offset was chosen so the resulting trajectories would have the same number of
points as the original VFDT. Figs. 5.22 to 5.25 show the mean, variance, skewness, and

kurtosis trajectories of the VFDT.

1.8 T T T

171 -
16 &
1.5¢ N
1.4 N

1.3 -

| k |

05 1 1.5 2 25 3
Window Position X 105

Fig. 5.22. Mean trajectory of the VFDT.

Mean

121

] | \M

0.8
0

——

- 104 -

© Robert Barry Ch. 5: System Design and Verification

0.14 T T T T T

T
1

0.12

o
-
T
1

Variance
=
o
a0}
T
I

«
o
o
T
1

o

(o=}

=
1

oy

o

NI
3

jh L..i Ll.ld h.. M .hl. llu.‘l“J.l.J...’L‘LJ L] .l.”. ‘
0.5 1 15 2 25 3
Window Position % 105

Fig. 5.23. Variance trajectory of the VFDT.

0
0

Skewness

-2 1 1

g 0.5 1 1.5 2 25 3
Window Pasition % 105

Fig. 5.24. Skewness trajectory of the VFDT.

- 105 -

© Robert Barry Ch. 5: System Design and Verification

D IM »] Jd 1 A 1 f 1
0 05 1 1.5 2 25 3
Window Position % 10°

Fig. 5.25. Kurtosis trajectory of the VFDT.

The global histograms of Figs. 5.22 to 5.25 are shown in Figs. 5.26, 5.28, 5.30, and
5.32, respectively. These histograms represent the distribution of the mean, variance,

skewness, and kurtosis for the entire corresponding trajectory.

Visually speaking, the structure of the global histogram in Fig. 5.26 resembles a
log-normal distribution, Fig. 5.30 resembles a skewed Gaussian distribution, and Figs.
5.28 and 5.32 resemble exponential distributions. These histograms strongly reinforce the
existence of an underlying behaviour in the generation of the data. The log-normal,
Gaussian, and exponential distributions may be used to accurately model the four
histograms, but none of these distributions would succeed in modelling all four
histograms. For this reason, the gamma distribution was chosen to model the histograms,

as shown in Figs. 5.27, 5.29, 5.31 and 5.33, respectively.

- 106 -

© Robert Barry Ch. 5: System Design and Verification

12000 T T T T T T T T T

10000

8000 +

6000

T

Count

4000

T

2000 +

1.3
Mean

Fig. 5.26. Global histogram of the mean trajectory of the VFDT.

1.1

0.8

1 1.2 14 15 16 1.7 .18

0.03 T T T T T

0.025

0.02

0.015

Probability

0.01

0.005

0 20 40 B0 80 100 120
Bins

Fig. 5.27. Gamma distribution model of Fig. 5.26 with o,

1.6816 and B = 14.804.

- 107 -

© Robert Barry Ch. 5: System Design and Verification

Count

‘0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Variance

Fig. 5.28. Global histogram of the variance trajectory of the VFDT.

018 T T T T T

0.16 N

0.14 N

0.12 .

Probability

40 60 80 100 120
Bins

Fig. 5.29. Gamma distribution model of Fig. 5.28 with o0 = 0.48026 and B = 14.885.

0 20

- 108 -

© Robert Barry Ch. 5: System Design and Verification

25 T T T T T T T T T

Count

Skewness

Fig. 5.30. Global histogram of the skewness trajectory of the VFDT.

0.06 T T T T T

0.05

0.04

0.03

Probability

0.02

0.01

0 : : : :
0 20 40 60 80 100 120

Bins

Fig. 5.31. Gamma distribution model of Fig. 5.30 with o« = 11.575 and B = 2.3385.

- 109 -

© Robert Barry Ch. 5: System Design and Verification

Count

20 30 40 50 B0 70
Kurtosis

Fig. 5.32. Global histogram of the kurtosis trajectory of the VEDT.

0.25 T T T T T

0.2]

0.156 .

Probability

o
-
1

0.05 4

D 1 1 1 i
0 20 40 60 g0 100 120

Bins

Fig. 5.33. Gamma distribution model of Fig. 5.32 with o

1.2060 and B = 3.2648.

- 110 -

© Robert Barry Ch. 5: System Design and Verification

Given the gamma distribution in Eq. 4.7, the mean and variance are [Weis99a]

no=op (.9)

and

o’ = af’ (5.10)

Since | and o are calculated from the data, we can re-arrange Eqgs. 5.9 and 5.10 to
determine the appropriate o and B to model the histogram with the gamma distribution.

These expressions are

2
B = % (5.11)
and
2
o = E‘—z = E (5.12)
O

To study the changes in the behaviour of the Betta splendens, we must consider the
stationarity of the local histograms formed from the statistical trajectories within certain
ranges of time. Clearly, there is some lower bound for the number of points needed to
construct a histogram so that it may be accurately modelled. After visually inspecting the
local statistical histograms for many different regions of time, it was decided that 9000
points, or 15 minutes, of data were sufficient for constructing a reasonable histogram.
Figs. 5.34, 5.36, 5.38, and 5.40 show the local statistical histograms for a period of 15
minutes starting at time ¢ = 20,000 sec (or 5.56 hrs). Figs. 5.35, 5.37, 5.39, and 5.41,

respectively, show the gamma distribution models for these local statistical histograms.

-111-

© Robert Barry Ch. 5: System Design and Verification

1.2
Mean

Fig. 5.34. Local mean trajectory histogram between time 7 = 20,000 and 29,000 sec.

0.8 1 1.1 1.3 1.4 1.5

0.025 T T T T T

0.02

0.015

Probability

0.01

0.005

- 20 40 60 80 100 120

Bin
Fig. 5.35. Gamma distribution model of Fig. 5.34 with o« = 2.1853 and B =17.113.

-112-

© Robert Barry Ch. 5: System Design and Verification

0015 0.02 0025 003 0035 004 0045 0.05
Variance

Fig. 5.36. Local variance trajectory histogram between time ¢ = 20,000 and 29,000 sec.

005 001

0.035

o
fom]
@

o
o
[N
th

> 0.02 ;
..E
©
)
a 0.015
0.01
0.005
o 20 40 60 80 100 120
Bin

Fig. 5.37. Gamma distribution model of Fig. 5.36 with o = 1.0744 and B = 24.249.

- 113 -

© Robert Barry Ch. 5: System Design and Verification

Skewness

Fig. 5.38. Local skewness trajectory histogram between time ¢ = 20,000 and 29,000 sec.

0.035 T T T T T

0.03

0.025

0.02

Probability

0.015

0.01

0.005

0 20 40 80 80 100 120
Bin
Fig. 5.39. Gamma distribution model of Fig. 5.38 with o0 = 3.3753 and B = 8.1635.

- 114 -

© Robert Barry Ch. 5: System Design and Verification

1400 T T T T T T T

1200

1000

800

Count

600

400

200

ik . -l L .

10 15 20 25 30 35 40
Kurtosis

Fig. 5.40. Local kurtosis trajectory histogram between time ¢ = 20,000 and 29,000 sec.

0 5

0.14 T T T T T

0.12 4

0.1 N

0.08 A

Prabability

0.06

0.04

0.02

0 20 40 &0 80 100 120
Bin
Fig. 5.41. Gamma distribution model of Fig. 5.40 with ¢ = 0.81900 and B = 9.8329.

a

-115-

© Robert Barry Ch. 5: System Design and Verification

5.6 Dimensionality Reduction using PCA

A sudden change in the behaviour of the VFDT would be reflected in its statistical
trajectories, so a significant degree of correlation should be expected between the mean,
variance, skewness, and kurtosis trajectories of the VFDT. Figures 5.42 to 5.47 show the
relationships between the mean, variance, skewness, and kurtosis trajectories. Indeed, this

correlation does exist between all four trajectories to varying degrees.

0.14

0.12

=
=

o
o
@

Variance

o
fom}
&

08 0.9 1 1.1 1.2 1.3 1.4 15 186 1.7 1.8
Mean

Fig. 5.42. Relationship between mean and variance trajectories.

- 116 -

© Robert Barry Ch. 5: System Design and Verification

Skewness
w
T

2 L - 1
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Mean

?U L4 T T 7 T T T T T

60 -]

N
O
T

-
fam]
T

0.8 0.9 1 1177712 1.3 1.4 1.5 1.6 1.7 1.8
Mean

Fig. 5.44. Relationship between mean and kurtosis trajectories.

- 117 -

© Robert Barry Ch. 5: System Design and Verification

Skewness

0.0 D.08 0.1 012 0.14
Variance

Fig. 5.45. Relationship between variance and skewness trajectories.

0 0.02 0.04

707 T T T T T T

0 0.02 0.04 0.06 0.08 01 0.12 0.14
Variance

Fig. 5.46. Relationship between variance and kurtosis trajectories.

- 118 -

© Robert Barry Ch. 5: System Design and Verification

?D T T T T T T H T i v
- +*
BOF g
*
- +
" “
»
50} e -
0"‘.’
wt,

1 |

g .
-2 -1 0 1 2 3 4) b 7 8
Skewness

Fig. 5.47. Relationship between skewness and kurtosis trajectories.

Some general statements may be made about the relationships between the four

statistical trajectories shown in these six figures:

* Figures 5.42 and 5.45 show the plots between the mean and variance, and the
variance and skewness, to be the least correlated. Firstly, the variance can take
on a wide range of values when the mean is between 1.1 and 1.5, the variance
is below about 0.08 when the mean is less than 1.1 or greater than 1.5.
Secondly, the skewness is greater than 3 when the variance is greater than 0.04.

* Figures 5.43 and 5.44 show that as the mean increases, the skewness and
kurtosis both tend to decrease. When the mean is greater than 1.3, the
skewness is less than 2 and the kurtosis is less than 10.

* Figure 5.46 shows a steep decrease in the kurtosis as the variance increases.
When the variance is greater than 0.06, the kurtosis is less than 10.

-119-

© Robert Barry Ch. 5: System Design and Verification

* Figure 5.47 reveals a highly correlated and almost linear relationship between
the skewness and kurtosis. The kurtosis is less than 10 when the skewness is
between -2 and 1, and increases approximately linearly from 10 to 70 as the
skewness increases from 1 to 7.

Once the histograms of these four statistical trajectories are constructed and
modelled, there are eight parameters (an o and a B for each of the four histograms) which
characterize the 9000 consecutive points in the VFDT. These eight parameters may be
concatenated into a vector format to form an 8-dimensional (8D) signature. Since the four
statistical trajectories have been shown to be correlated, it intuitively follows that the os
and s should also be correlated because they model the histograms of these correlated

statistical trajectories.

Figure 5.48 shows an interesting plot of the values for all of the 8D signatures

which characterize Record 11020219. T g (1) is the concatenated vector where:

¢ Tg(1,2) = (04, B,) models the histogram of the mean trajectory,

« Tg(3,4) = (04, B,) models the histogram of the variance trajectory,

* Tg(5,6) = (03, B3) models the histogram of the skewness trajectory, and
o Tg(7,8) = (0, B,) models the histogram of the kurtosis trajectory.

-120 -

© Robert Barry Ch. 5: System Design and Verification

25 T T T T T T

Value

Tg(i)
Fig. 5.48. Values of all 8D signatures which characterize Record 11020219.

Viewing all of the signatures simultaneously highlights the global behaviour of the

8D signatures. It is interesting to notice that the variability between parameters is not the

same. For example, T4(3) = o, and T4(7) = o, have lowest variability across all

signatures with values ranging between 0.21 and 3.1, and T 3(4) = B, has the highest

variability with values ranging between 3.3 and 22.

As discussed in section 4.4, PCA may be used to remove the correlation between
the parameters in the 8D signature. Once PCA has been performed, the M largest
eigenvalues, and their corresponding eigenvectors, contain the majority of the variance
between the parameters, and may be kept to form a further compressed M-dimensional
signature of the traffic. A plot of the cumulative variance for an increasing number of

principal components for the 8D signatures is shown in Fig. 5.49.

- 121 -

© Robert Barry Ch. 5: System Design and Verification

o
s3]
T

Fraction of Variance

o
[04]
T

o
-
T

1 1 1

4 5 G 7 8
Principal Components

Fig. 5.49. Cumulative variance for the principal components.

UV

0.3 !
1 2

The increase of the cumulative variance gets progressively smaller with the
addition of each successive principal component. Approximately 76% and 87% of the
variance is contained within the first three and four principal components, respectively. If
at least 80% of the variance must be preserved after the dimensionality reduction, then the
first four principal components must be kept to form a compressed 4-dimensional (4D)
signature of the traffic. A comprehensive overview of the construction of this 4D

signature is shown in the section 5.7.

Figure 5.50 illustrate the removal of the correlation after PCA is performed on the
8D signatures shown in Fig. 5.48. As expected, the majority of the variability is in the
first few principal components. Figure 5.51 shows the first four principal components

which will be used as the final compressed 4D signature for the traffic.

-122-

© Robert Barry Ch. 5: System Design and Verification

Value

_1D L 1 1 1
1 2 3 4 5 B 7 B
Principal Components

Fig. 5.50. Values of all 8D signatures in Fig. 5.48 after PCA.

Value

2 3 4
Principal Components

Fig. 5.51. Values of all compressed 4D signatures.

-123 -

© Robert Barry Ch. 5: System Design and Verification

5.7 Construction of 4D Traffic Signature Trajectory

The 4D traffic signature, or “fingerprint,” of a window of traffic is constructed

through five steps, as illustrated by Fig. 5.52.

Step 1:

* Calculate the VFDT of the self-affine traffic using a window size of 512 and a
window offset of 8.

Step 2:

¢ Calculate the mean, variance, skewness, and kurtosis trajectories of the VFDT
using a window size of 512 and a window offset of 1.

Step 3:

 Construct histograms of the mean, variance, skewness, and kurtosis trajectories
using a window size of 9000 (and a window offset of 150 when iterating Step 3
to Step 5 to create a 4D signature trajectory).

Step 4:

¢ Model each histogram using the gamma distribution and construct an 8D
signature by concatenating the o and parameters for each model.

Step 5:

* Perform PCA on the 8D signature and compress it into a 4D signature.

- 124 -

© Robert Barry

Ch. 5: System Design and Verification

Self-affine
Traffic
VEDT
¥ Y k k3
Mean Variance Skewness Kurtosis
of VFDT of VFDT of VFDT of VFDT
r L 4 k J ¥
Construct Construct Construct Construct
Histogram Histogram Histogram Histogram
k 4 k 4 L 2 k4
Model with Model with Model with Model with
o, and g, a,and g, o, and g, a,and g,
k 2
&y '81 182 o 183 034 IB4
Y
PCA,
Y
TG T,

Fig. 5.52. Construction of the 4D signature T of a window of traffic.

- 125 -

© Robert Barry Ch. 5: System Design and Verification

Steps 1 and 2 create the VFDT and its statistical trajectories for the entire
self-affine traffic recording. Step 3 uses a window size of 9000 to select an appropriate
number of points in the statistical trajectories to construct their histograms, Step 4 models
these histograms and forms an 8D signature, and Step 5 compresses this 8D signature into

a 4D signature.

A trajectory of these compressed 4D signatures may be formed by iterating the last

three steps for successive windows through time. For each successive iteration, a window

offset of 150 is used. With the sampling frequency f, = 10Hz, the construction of the

final 4D signature trajectory uses a window size of 15 min and a window offset of 15 sec
(since a minimum number of 9000 points are needed to construct a reasonable histogram).
Therefore, the behaviour of the Betta splendens is studied for 15 minute intervals every

15 seconds.

5.8 Neural Network Processing

The final topic to discuss in the system design is the use of neural networks for
(1) verification of the K-means clustering, (2) selection of the most likely number of

classes, and (3) classification.

As described in section 4.5, the K-means algorithm is used to cluster the data into
groups based on their topographical similarity. However, two concerns must be addressed
while using the K-means algorithm. Firstly, are the results produced by the K-means
algorithm reliable? Secondly, are the results produced by the K-means algorithm correct?
This second question is directly related to the selection of the most likely number of

classes in the data because of one important weakness in the K-means algorithm (and

- 126 -

© Robert Barry Ch. 5: System Design and Verification

many other clustering algorithms): the number of classes to find must be specified prior to
the execution of the algorithm. Therefore, if there are actually six classes in a data set
(although this knowledge may not be available to the researcher), and the K-means
algorithm is set to find ten classes, it will “create” four new classes that do not actually
exist. Similarly, if the algorithm is set to find two classes, it will merge four existing

classes and the uniqueness of those existing classes will be lost.

5.8.1 Verification of Clustering

To show that the clusters generated by the K-means algorithm are reliable, these
results must be somehow verified by an independent method. As discussed in section 4.6,
a SOFM may be used to independently demonstrate the reliable clustering of the K-means
algorithm. However, a SOFM is usually 2-dimensional [Bish00, p. 188], so for the
purposes of visualization and verification, the first two principal components from the 4D
signature are used with the assumption that a successful verification in two dimensions
would not simply be coincidence, and that these conclusions could be extended without
further proof to higher dimensions. Figure 5.53 shows the relationship between the first
two principal components, 7(1) and 7(2), of the 4D signature from Record 11020219.
Figure 5.54 shows the decision boundaries between six clusters using the K-means
algorithm, and the nodes of a two-by-three SOFM in Fig. 5.55 show the clusters with the

highest densities.

-127 -

© Robert Barry

Ch. 5: System Design and Verification

2t

-6
-10

-8

-6

QU

o+

2 4

Fig. 5.53. Relationship between first two principal components from Record 11020219.

40

Fig. 5.54.

-8

-6

()

0 2 4

K-means clustering boundaries of Fig. 5.53 with 6 clusters.

- 128 -

© Robert Barry Ch. 5: System Design and Verification

%

Wi, 1)
Fig. 5.55. SOFM identification of 6 clusters in Fig. 5.53.

A visual inspection of Figs. 5.54 and 5.55 show a distinct similarity between the
results of the two clustering algorithms: the nodes in Fig. 5.55 lie within the boundaries of
Fig. 5.54. If these figures were very different, then there would be cause for concern
regarding the validity of the K-means algorithm, but since they are very similar, we may

conclude with confidence that the K-means clustering algorithm produces reliable results.

5.8.2 Class Assignment

If the classes in the data are not known a priori, then the K-means algorithm alone
cannot correctly assign classes to the clusters. As explained in section 5.8, the K-means
algorithm will generate the number of clusters specified, regardless of whether or not the
classes within the data are accurately represented by these clusters. Therefore, a method

of measuring the correctness of choosing C clusters to model the actual classes within the

- 129 -

© Robert Barry Ch. 5: System Design and Verification

data must be developed with the intent of determining the most likely number of classes.
The following intuitive argument is made to assess the correctness of the clustering

algorithm in determining the most likely number of classes in the data.

* Assume that a choice C is made for the number of clusters in a sample of data,
and that classes are assigned to each cluster.

* Agood choice C = C,),

* C =1 isthe trivial case and will not be considered.

* A PNN could be trained with a sufficient percentage of the data (i.e., the
training set) and used to classify the remaining data (i.e., the test set).

* Choices of C where C<C opr AY result in a clustering model that is too

for the number of classes exists.

simplistic in its representation of the classes within the data.
* Choices of C where C>C opt MAY result in a clustering model that is too

complex in its representation of the classes within the data.

* PNN misclassifications may occur less frequently when C < Copt because the

model used is too simplistic to accurately reflect the classes within the data.

* PNN misclassifications may occur more frequently when C> C,,, because the

model used is too complex to accurately reflect the classes within the data.
* As Cincreases, the percentage correct classification on the test set will tend to

decrease. Therefore, C opt MAY be revealed by a dramatic change (such as a

significant increase or decrease) in the rate of misclassifications.

Section 6.2 will investigate the performance of the PNN when the number of

classes C increases and identify the most likely number of classes in the data.

5.8.3 Classification

Once the self-affine traffic has been characterized by a 4D signature trajectory and

the most likely number of classes C opt is known, classes may be assigned to the C opt

clusters and a PNN trained to classify previously unobserved 4D signatures.

- 130 -

© Robert Barry Ch. 5: System Design and Verification

The PNN, as explained in section 4.7, is a supervised neural network that requires
a training set to train the neural network and a test set to test its performance. To obtain
meaningful results from the PNN, the training and test sets must be mutually exclusive.
Furthermore, to properly demonstrate the ability of the PNN to learn and generalize its
knowledge on previously unobserved data, the training set should only be as large as it
needs to be to be statistically representative of the data [Wass93, p. 224]. Overtraining the
PNN would require more resources and, more importantly, would leave fewer data with
which to construct the test set, and a test set that is too small may not be able to accurately
measure the overall performance of the PNN. These requirements for the PNN are

illustrated in Fig. 5.56.

All Possible Signatures

Test Set

Fig. 5.56. PNN training and test sets.

- 131 -

© Robert Barry Ch. 5: System Design and Verification

The 4D signatures for the training set may be selected at regular intervals
throughout Record 11020219, or randomly. Since these signatures change with time,
construction of the training set by sampling the signatures at regular intervals would
ensure that the fraffic is equally represented throughout time. However, ignoring any
a priori knowledge of the self-affine traffic and sampling the signatures at random would
ensure that the classification accuracies of the PNNs would be as unbiased as possible.
Both sampling methods for the construction of the training sets will be investigated in

sections 6.2 and 6.3.

5.9 Summary

This chapter provides a comprehensive overview of the design of the system for
the characterization and classification of self-affine traffic. In particular, this design
includes verification of the sampling frequency used to record the data in Record
11020219, verification of the self-affinity and spatial multifractality of Record 11020219,
selection of the window size and offset for the calculation of the variance fractal
dimension, selection of the window size and offset for the construction of the statistical
histograms of the VFDT, and modelling these statistical histograms using the gamma
distribution. The verification of the K-means algorithm is also presented, as well as a
discussion of the role of the PNN in determining the most likely number of classes in the

data and classifying previously unobserved traffic.

-132-

© Robert Barry Ch. 6: Experimental Results and Discussion

CHAaPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Multifractal Characterization

Record 11020219, as introduced in section 2.7.5, is the self-affine data set selected
for the final experiments to demonstrate the abilities of new multifractal classifier to
characterize and classify previously unobserved traffic. Figure 6.1 once again displays

Record 11020219 from Pear’s data sets.

BO0

500 | N

200+

100+

0 ¥ -‘l.-"L.LlJ.-I.L ;..;L;_.iﬁ..;.;.' TR PR T W
0 1 2 3 4 5 B 7
Time (hrs)

Fig. 6.1. Record 11020219.

jux]

As discussed in section 5.4, the variance fractal dimension trajectory of Fig. 6.1 is

calculated using a window size of 512 and window offset of 8. The resulting VFDT is

-133 -

© Robert Barry Ch. 6: Experimental Results and Discussion

shown again in Fig. 6.2, and is the first stage of the characterization.

__,A
NOmoowwoN
1 1

e
oy

—
=

Variance Fractal Dimension
(83

-y
w

-
NI

t1t

0 0.5 1 1.5 2 2.5 3 35 4
Window Position «10°

Fig. 6.2. VFDT of Fig. 6.1 using a window size of 512 and window offset of 8.

The second stage of characterization is the construction of the mean, variance,
skewness, and kurtosis trajectories of the VFDT using a window size of 512 and window

offset of 1. The plots of these statistical trajectories are re-displayed in Figs. 6.3 to 6.6.

-134 -

© Robert Barry Ch. 6: Experimental Results and Discussion

1.8

1.7F i

16F i

15F o

1.4 i

1.3 -

Mean

1.2 .

Wi -

0.8

0 05 1 1.4 2 25 3
Window Paosition % 105

Fig. 6.3. Mean trajectory of the VFDT.

0.14 T T T T T

0.12F 4

01t

0.88 -

Variance

006+ b

0.04 -

0.02 | ' .

lh .1 L(.lll h. A .hl. 11...‘-4. J.l.]...."ll.llu. 3 .M.LJ'- W R]“ IhLJI
8] 0.5 1 15 2 2.5 3
Window Position «10°

Fig. 6.4. Variance trajectory of the VFDT.

0

-135-

© Robert Barry Ch. 6: Experimental Results and Discussion

Skewness

_2 1 1 1
0 0.5 1 1.5 2 25 3

YWindow Position y 105

Fig. 6.5. Skewness trajectory of the VFDT.

70 T T T T T

60 N

40 X

Kurtosis

20 4

0 0.5 1 1.5 2 25 3
Window Position X 105

Fig. 6.6. Kurtosis trajectory of the VFDT.

-136 -

© Robert Barry Ch. 6: Experimental Results and Discussion

The third stage of characterization is the representation and compression of the
underlying non-stationary processes which generate these trajectories by modelling these
four histograms using gamma distributions. A window of length 9000 and window offset
of 150 is found to be sufficient in the construction of the histograms. The resulting 8D
trajectory consists of eight parameters: two parameters for each of the four histograms.
This 8D trajectory is then further compressed to a 4D trajectory using PCA while still
preserving more than 80% of the variance in the original trajectory. The final 1844
compressed 4D signatures are shown in Fig. 6.7, and will be used as the input vectors for

the training and testing of the PNN in sections 6.2 and 6.3.

Yalue

_10] 1 1 1 1
1 2 3 4

Principal Components

Fig. 6.7. Final 1844 compressed 4D signatures.

- 137 -

© Robert Barry Ch. 6: Experimental Results and Discussion

6.2 Optimal Class Assignment and Verification

As introduced in section 5.8.2, a weakness of the K-means clustering algorithm (as
well as other algorithms) is that the user must specify the number of clusters, and therefore
classes, for the algorithm to find. Therefore, making the statement that the most likely
number of classes may be revealed by a high percentage classification accuracy of an
optimized PNN leads us to the following simulations to determine the optimal class

assignment within Record 11020219.

Firstly, there are nine possible class configurations (¢ = 2, 3, ..., 10) generated by
the K-means algorithm, so the performance of the PNN will be investigated for each
configuration. Secondly, a good value (which will be a locally optimal value) of the
spread parameter ¢ will need to be determined for each configuration to ensure a fair

comparison is maintained as ¢ increases, since a good value of ¢ for one value of ¢ may

not be the best for another value. To determine a good value of ¢ for each class
configuration, three training sets and three test sets are generated for the PNN for a given
value p, which is the percentage of the 1844 vectors which compose the training set. One
training and test set pair are generated by sampling signatures from regular intervals
(denoted on the table as “Regular”), and the remaining two training and test set pairs are
generated by randomly sampling the signatures (denoted as “Random #1” and “Random

#27). The generation of the training and test set pairs were chosen in this way so the value
of 6 chosen was not dependent on how the vectors were acquired. Thirdly, these
simulations are repeated for p = 30%, p = 40%, and p = 50% to see if the most likely

number of classes changes based upon the percentage of vectors used to train the PNN.

- 138 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Preliminary experiments showed that a small value of ¢ sometimes provided good
results, and other times a larger value of G provided better results. A nearly exhaustive
search through all values of ¢ between 0.001 and 10.0 at small intervals would have been
extremely time-consuming, and the percentage correct classification may not change by
much as ¢ is slowly varied [Wass93, p. 43]. Therefore, the practical decision was made
to try values of at least ¢ = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0, 4.5, and 5.0. In a few instances, larger values of ¢ were also used to determine the

location of a local maximum or plateau in the percentage correct classification.

Tables 6.1 to 6.9 display the percentage correct classification using 30% of the
vectors for training the PNN with varying ¢ and ¢. Tables 6.10 to 6.18 display the
percentage correct classification using 40% of the vectors for training the PNN with

varying ¢ and c. Finally, tables 6.19 to 6.27 display the percentage correct classification

using 50% of the vectors for training the PNN with varying ¢ and c.

The highest percentage classification accuracy is made bold in each column of
every table. A detailed discussion of the results will follow the presentation of these

simulation results.

-139-

© Robert Barry

Ch. 6: Experimental Results and Discussion

Table 6.1: Percentage correct classification using 30% of the vectors for training with

varying ¢ when ¢ =2,

c=2 Regular Random #1 | Random #2
= 0.001 54.38 54.53 54.14
= 0.005 54.84 55.38 51.51
= 0.01 55.54 53.76 50.27
= 0.05 55.62 55.31 47.56
— o1 55.77 55.54 47.87
= 0.5 51.90 53.45 48.18
= 1.0 49.65 51.43 45.39
=15 50.12 49.73 47.25
=20 46.63 46.63 45.93
— 95 45.93 45.86 45.78
=30 45.86 45.86 45.86
=35 45.86 « 45.86
= 4.0 “))
=45 * -)
= 5.0 “ N “

- 140 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.2: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 3.

c=3 Regular Random #1 | Random #2

6 = 0.001 48.64 49.11 48.88
6 = 0.005 41.60 45.24 43.14
c = 0.01 34.70 38.26 38.50
6 = 0.05 32.07 35.79 31.91
c = 0.1 32.15 35.94 31.99
c =05 31.76 34.62 35.01
G =10 33.46 36.56 34.86
=15 35.63 36.56 32.92
c =20 35.32 36.25 33.46
G =25 35.24 34.86 34.00
G = 3.0 34.16 33.93 34.39
c =35 33.93 33.85 33.85
o = 4.0 33.93 33.93 33.93
6 =45 « 33.93 33.93
G =50 * “ ’

- 141 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.3: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 4.

c=4 Regular Random #1 | Random #2
c = 0.001 16.73 16.81 16.89
6 = 0.005 2091 19.44 20.45
c = 0.01 23.47 22.77 21.84
c = 0.05 23.08 24.17 23.70
c = 0.1 23.01 24.01 23.70
c =05 22.77 23.16 23.70
c =10 26.65 27.34 24.40
=15 29.12 28.43 22.39
c =20 28.74 29.05 25.17
G =25 29.98 31.14 26.49
c =30 29.90 30.21 26.34
c =35 28.66 27.50 25.64
G = 4.0 26.26 24.71 24.63
G =45 23.78 23.01 24.24
¢ =50 22.39 21.53 23.16

-142 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.4: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 5.

c=5 Regular Random #1 | Random #2
o = 0.001 12.39 12.55 12.39
6 = 0.005 9.60 9.60 13.01
c = 0.01 7.44 7.90 11.23
c = 0.05 8.06 7.90 14.25
G = 0.1 8.13 8.06 14.41
o =205 7.13 8.13 14.87
c =10 9.45 9.99 13.63
=15 11.46 11.46 11.70
o =20 15.49 13.56 14.10
G =25 15.80 14.72 16.50
c = 3.0 15.80 14.87 16.03
c =35 15.57 14.56 16.34
c =40 16.42 16.03 16.89
c =45 16.81 16.65 16.73
G =150 16.58 16.50 17.04
c =255 16.96

- 143 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.5: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 6.

c=6 Regular Random #1 | Random #2
G = 0.001 6.43 6.58 6.51
G = 0.005 7.20 6.43 7.51
c = 0.01 6.58 6.27 8.06
c = 0.05 7.05 6.97 11.77
c = 0.1 7.13 7.05 11.70
c =05 5.96 6.51 11.70
c=1.0 8.29 7.82 11.93
=15 10.15 10.84 11.39
c =20 11.93 11.39 11.54
G =25 13.40 12.24 12.55
c = 3.0 14.48 13.01 14.25
c =35 15.57 13.25 14.95
c = 4.0 16.27 14.79 15.65
G =45 16.89 15.65 15.96
c =350 16.96 15.88 16.27
G =55 16.34 15.34 16.11

- 144 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.6: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ =7.

c=17 Regular Random #1 | Random #2
G = 0.001 16.50 16.50 16.58
6 = 0.005 10.69 12.24 14.02
c = 0.01 8.68 9.76 10.77
G = 0.05 8.13 8.83 13.09
G = 0.1 8.06 8.99 13.48
c =05 6.82 8.37 13.94
G =1.0 8.83 9.91 12.24
=15 11.39 11.00 11.46
c =20 15.34 13.56 15.41
G =25 15.41 14.64 15.72
G = 3.0 15.88 15.26 16.19
o =35 15.96 15.57 16.34
G = 4.0 15.80 15.80 16.42
G =45 16.81 16.58 15.72
G =50 17.43 16.89 15.57
G = 6.0 18.75 18.51 17.66
G =70 19.75 20.53 18.20
o = 8.0 20.53 20.53 19.60
G =90 20.53 « 20.53

- 145 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.7: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 8.

c=8 Regular Random #1 | Random #2

c = 0.001 16.11 16.19 16.42
c = 0.005 14.33 14.95 15.41
c = 0.01 11.77 13.63 12.39
c = 0.05 9.60 10.38 12.47
c = 0.1 9.53 10.30 12.47
c =05 9.22 11.00 12.32
c=1.0 8.44 9.76 12.94
c=15 11.23 12.08 11.62
c =20 14.25 14.79 14.56
c =25 15.03 16.58 16.42
c = 3.0 17.89 18.44 17.74
c =35 17.97 18.20 18.20
G = 4.0 18.13 18.13 17.97
c =45 17.97 17.97 17.97
c =150 17.97 17.97 “

- 146 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.8: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 9.

c=9 Regular Random #1 | Random #2

c = 0.001 7.05 7.05 7.13
o = 0.005 8.83 7.82 7.98
c = 0.01 8.91 9.22 9.30
6 = 0.05 9.06 9.76 11.62
c = 0.1 8.99 9.91 11.70
c =05 8.75 10.30 12.70
c =10 8.21 9.60 12.63
G =15 11.31 12.32 12.24
c =20 14.48 15.26 15.41
G =25 16.42 17.20 16.73
G = 3.0 17.74 18.44 17.82
c =35 17.89 18.13 18.05
G = 4.0 17.89 17.89 17.89
G =45 « 17.89 17.89
c =50 « “ “

-147 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.9: Percentage correct classification using 30% of the vectors for training with
varying ¢ when ¢ = 10.

c=10 Regular Random #1 | Random #2
c = 0.001 7.05 7.05 7.05
6 = 0.005 8.06 7.05 7.20
c = 0.01 7.59 7.13 7.75
c = 0.05 7.67 6.74 8.68
c = 0.1 7.59 6.97 8.83
¢ =05 6.43 6.74 9.30
c =10 5.81 6.89 8.21
c=15 7.51 7.82 8.68
c =20 7.98 8.68 9.53
G =25 10.53 9.45 10.92
G = 3.0 10.22 9.84 11.31
6 =35 10.92 10.38 11.77
c =40 11.77 9.99 11.70
G =45 12.01 10.46 11.70
c =150 11.85 10.61 11.15
G = 6.0 11.77 10.69 11.00
=175 12.47 12.78 15.49
c = 85 14.79 12.39 16.34
G =90 14.56 12.24 16.50

-148 -

© Robert Barry

Ch. 6: Experimental Results and Discussion

Table 6.10: Percentage correct classification using 40% of the vectors for training with

varying ¢ when ¢ = 2.

c=2 Regular Random #1 | Random #2
= 0.001 49.46 49.91 49.82
= 0.005 42.22 45.48 45.12
= 0.01 37.61 45.12 39.87
= 0.05 37.25 43.49 39.51
c = 0.1 37.43 43.67 39.78
o =05 40.42 47.02 4231
G =1.0 41.14 46.29 43.67
=15 45.57 47.83 46.93
c =20 49.46 49.37 47.65
=25 50.45 50.63 50.54
G = 3.0 49.73 49.73 50.27
c =35 49.73 49.73 49.73
G = 4.0 «“ “« 49.73
G =45)))
c =350 * “ “

- 149 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.11: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ = 3.

c=3 Regular Random #1 | Random #2

o = 0.001 43.58 44.03 43.94
6 = 0.005 35.26 36.08 36.44
c = 0.01 30.38 31.19 29.66
G = 0.05 29.29 27.49 27.94
6 = 0.1 29.57 27.76 28.12
c =05 30.38 30.11 27.49
G =10 30.02 31.10 27.22
=15 30.56 32.73 33.00
c =20 32.91 35.35 33.63
G =25 32.73 33.63 32.73
G =30 35.90 34.45 32.55
c =35 36.89 34.27 34.90
c = 4.0 35.44 34.99 35.44
c =45 35.44 35.35 35.44
c =50 « 35.44 «“

- 150 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.12: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ =4.

c=4 Regular Random #1 | Random #2
G = 0.001 19.89 19.53 19.53
c = 0.005 19.53 20.52 20.61
c = 0.01 19.53 19.62 20.07
6 = 0.05 20.16 18.08 18.81
6 = 0.1 20.34 18.35 18.81
c =05 19.26 20.98 18.08
G =10 17.45 19.17 20.52
=15 21.34 25.68 24.14
o =20 20.16 27.12 24.05
G =25 20.61 28.66 24.77
G = 3.0 20.98 28.39 24.86
G =235 20.61 28.39 24.32
G = 4.0 20.16 28.21 23.78
c =45 20.25 28.12 23.78
G =50 20.07 27.67 23.51

- 151 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.13: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ = 5.

c=5 Regular Random #1 | Random #2
c = 0.001 13.20 13.29 13.38
c = 0.005 13.02 13.38 12.30
¢ = 0.01 15.55 14.47 12.93
c = 0.05 16.64 14.29 14.56
c = 0.1 16.91 14.29 14.74
c = 0.5 16.27 15.82 13.56
c =10 15.10 14.65 15.64
c =15 19.71 17.63 19.44
c =20 17.90 18.63 22.06
G =25 18.72 22.78 23.60
G = 3.0 21.07 25.05 22.88
6 =35 21.88 22.24 22.78
6 = 4.0 20.25 21.34 22.69
c =45 19.26 20.43 20.61
c =350 19.53 20.07 20.34

-152-

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.14: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ = 6.

c=6 Regular Random #1 | Random #2
G = 0.001 7.05 7.59 7.59
6 = 0.005 9.13 8.50 8.68
c = 0.01 12.12 10.76 10.31
G = 0.05 13.92 11.57 12.30
c = 0.1 14.20 11.84 12.48
c =05 14.74 13.11 13.29
c=1.0 13.47 12.66 15.10
c=1.5 16.00 14.38 17.18
c =20 17.72 16.18 18.08
G =25 16.91 16.91 16.82
G = 3.0 16.27 19.44 16.27
c =35 16.00 18.81 15.46
G = 4.0 16.09 17.00 16.37
c =45 15.46 16.73 15.82
c =50 15.37 16.46 16.09

-153 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.15: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ =7.

c=17 Regular Random #1 | Random #2
c = 0.001 15.28 15.46 15.28
o = 0.005 13.56 12.03 14.20
c = 0.01 11.39 11.30 12.66
G = 0.05 11.75 9.86 12.48
c = 0.1 11.93 10.04 12.66
c =05 12.48 11.39 12.12
c=1.0 11.93 10.67 11.12
c=15 14.29 14.01 13.38
c = 2.0 16.00 14.74 17.90
G =25 14.20 18.35 21.07
G =30 14.74 19.26 20.89
¢ =35 15.37 19.71 20.07
G = 4.0 16.27 20.89 19.80
G =45 16.73 22.69 18.63
6 =50 16.37 20.34 17.99

-154 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.16: Percentage correct classification using 40% of the vectors for training with

varying ¢ when ¢ = 8.

c=8 Regular Random #1 | Random #2 | Random #3
G = 0.001 18.81 18.90 18.90 18.81
6 = 0.005 15.28 15.91 17.09 19.26
c = 0.01 12.66 12.21 15.10 17.99
6 = 0.05 12.21 10.22 12.57 13.47
c = 0.1 12.30 10.22 12.57 13.47
c =05 12.30 12.48 12.66 14.01
G =1.0 12.57 13.83 15.73 16.27
=15 18.35* 19.53 18.72% 23.15
o =20 17.81 23.60 18.54 21.25
G =25 17.09 18.44 17.45 17.99
c = 3.0 17.09 18.08 17.45 17.63
c =35 17.09 17.99 17.45 17.81
G =40 17.45 18.08 18.08 18.26
c =45 17.36 18.08 17.90 18.17
c =50 17.72 17.90 17.72 17.72

The two bold numbers with a * beside them are the second highest percentage

classification accuracy. Their use in the calculation of the average value of ¢ for this

table will be explained in the following discussion.

- 155 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.17: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ =9.

c=9 Regular Random #1 | Random #2
c = 0.001 5.70 5.70 5.70
c = 0.005 8.05 6.69 7.41
c = 0.01 10.58 8.41 10.40
G = 0.05 11.57 9.95 12.12
c = 0.1 11.75 10.13 12.30
c =05 12.03 11.66 11.75
G =10 12.84 13.02 14.47
=15 17.72 17.63 15.46
c =20 17.54 21.16 16.37
G =25 17.09 18.08 17.27
c =30 16.73 17.81 17.09
c =35 16.64 17.45 17.00
G =40 17.09 17.63 17.72
G =45 17.18 17.63 17.63
c =350 17.63 “ 17.63

- 156 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.18: Percentage correct classification using 40% of the vectors for training with
varying ¢ when ¢ = 10.

c=10 Regular Random #1 | Random #2
c = 0.001 5.70 5.70 5.70
c = 0.005 6.69 6.15 6.51
c = 0.01 8.59 7.05 8.32
c = 0.05 10.04 8.50 9.58
c = 0.1 10.22 8.68 9.76
c =05 10.58 9.95 9.95
G =1.0 11.12 10.31 12.03
6 =15 15.01 13.65 13.20
c =20 15.46 14.47 13.47
G =25 15.19 16.00 14.20
G = 3.0 14.38 15.64 15.10
c =35 14.65 15.46 15.10
G = 4.0 14.83 15.55 15.01
c =45 15.01 15.64 15.64
c =150 15.01 15.64 ~ 15.64

- 157 -

© Robert Barry

Ch. 6: Experimental Results and Discussion

Table 6.19: Percentage correct classification using 50% of the vectors for training with

varying ¢ when ¢ = 2.
c=2 Regular Random #1 | Random #2
= 0.001 41.14 43.38 44.36
= 0.005 79.61 62.69 61.93
= 0.01 91.32 76.25 73.54
= 0.05 95.99 83.95 80.15
= (.1 95.34 83.95 80.26
o =205 89.15 80.80 76.57
= 1.0 76.57 71.91 67.79
c =15 67.14 67.90 63.56
= 2.0 61.39 60.74 61.06
=25 58.89 57.70 59.11
= 3.0 57.59 56.72 57.38
=35 56.72 “ 56.72
c =40 “ “ “
= 4.5 “ « «
= 5.0 « « «

- 158 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.20: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ = 3.

c=3 Regular Random #1 | Random #2
s = 0.001 41.00 40.24 41.00
G = 0.005 77.77 58.89 58.46
¢ = 0.01 90.24 71.26 68.55
G = 0.05 94.79 77.77 73.43
6 = 0.1 94.58 77.55 73.64
c =05 88.39 72.56 70.50
6 =1.0 69.63 61.93 59.65
=15 59.11 53.36 51.84
c =20 55.31 51.08 49.67
G =25 53.47 52.28 48.05
G = 3.0 51.52 51.95 45.34
c =35 48.26 50.98 44.03
G = 4.0 41.65 45.55 41.87
G =45 43.17 43.17 40.67
c =50 41.11 42.08 41.87

- 159 -

© Robert Barry

Ch. 6: Experimental Results and Discussion

Table 6.21: Percentage correct classification using 50% of the vectors for training with

varying ¢ when ¢ = 4.
c=4 Regular Random #1 | Random #2
= 0.001 25.05 24.40 24.84
= 0.005 70.07 50.65 47.07
= 0.01 88.83 67.25 61.82
= 0.05 93.82 73.32 66.27
= 0.1 93.60 73.10 66.16
= 0.5 85.79 68.66 63.99
c=1.0 68.33 59.11 58.24
=15 54.56 46.96 48.81
=20 40.89 41.32 40.67
G =25 38.39 38.39 38.39
G =30 37.85 37.96 37.74
= 3.5 37.74 37.85 37.74
G = 4.0 37.64 37.74 37.64
G =45 “ 37.64 «
= 5.0 “ - -

- 160 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.22: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ =5.

c=5 Regular Random #1 | Random #2
G = 0.001 14.43 13.99 13.77
6 = 0.005 67.90 42.52 41.97
c = 0.01 88.50 65.18 61.06
G = 0.05 94.14 73.21 68.55
G = 0.1 94.14 72.89 68.98
c =05 85.57 68.98 66.59
G =1.0 66.59 59.33 55.86
=15 49.89 46.10 43.38
c =20 42.19 41.43 37.31
G =25 39.37 34.49 35.36
G = 3.0 36.12 3243 31.34
o =35 34.49 30.26 29.28
G = 4.0 31.89 28.74 27.98
c =45 30.37 27.77 27.44
c =150 30.04 27.33 27.22

- 161 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.23: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ = 6.

c=6 Regular Random #1 | Random #2
c = 0.001 5.64 4.99 5.31
c = 0.005 64.43 38.72 37.09
c = 0.01 87.53 61.50 56.29
6 = 0.05 94.03 70.61 64.21
G = 0.1 94.03 70.61 64.43
c =05 85.68 67.68 62.15
c =10 67.14 60.20 55.97
=15 48.16 48.59 41.43
c =20 40.35 45.34 36.12
G =25 39.37 39.59 34.71
o = 3.0 37.64 36.55 34.27
c =35 3243 34.38 33.30
G = 4.0 32.86 31.45 31.67
G =45 30.59 31.24 31.67
c =350 30.15 31.13 30.04

-162 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.24: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ =7.

c=17 Regular Random #1 | Random #2
G = 0.001 9.22 8.57 8.68
c = 0.005 63.99 38.39 35.25
c = 0.01 85.36 57.38 53.69
6 = 0.05 92.62 64.97 61.28
c = 0.1 92.52 64.97 61.71
c =205 85.14 61.93 59.22
G = 1.0 63.34 51.30 49.13
=15 46.53 40.78 39.26
c =20 39.48 35.25 33.19
G =25 36.01 32.00 30.69
G = 3.0 33.30 30.26 27.01
c =35 33.30 28.52 27.33
G = 4.0 32.32 28.74 28.31
G =45 29.18 25.81 27.87
c =50 28.52 27.22 29.18

- 163 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.25: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ = 8.

c=8 Regular Random #1 | Random #2
c = 0.001 24.30 23.64 23.97
c = 0.005 69.52 46.20 43.17
c = 0.01 88.29 61.61 54.66
c = 0.05 92.95 66.70 57.59
6 = 0.1 92.95 66.92 57.48
c =05 84.71 63.34 54.23
c =10 62.15 52.17 46.75
c=15 44.47 44.58 37.85
c =20 38.72 36.66 35.90
c =25 33.73 31.89 32.00
G = 3.0 28.74 28.63 27.22
c =35 28.74 25.92 26.90
G =40 28.74 25.81 25.92
c =45 28.20 26.25 25.60
c = 5.0 27.11 27.55 25.70

-164 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.26: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢=9.

c=9 Regular Random #1 | Random #2

6 = 0.001 5.86 5.21 5.53
o = 0.005 63.45 35.57 32.65
c = 0.01 85.47 55.53 48.81
G = 0.05 92.52 63.34 55.10
c = 0.1 92.41 63.67 55.31
c =05 83.73 59.87 51.84
=10 62.04 48.59 43.82
=15 45.12 38.61 33.62
o =20 33.41 30.69 31.34
G =25 28.52 27.98 27.33
6 =30 23.97 24.08 23.21
c =35 22.13 22.45 22.13
G =40 21.37 21.58 21.58
c =45 21.37 21.48 21.26
c =50 21.15 21.37 «

- 165 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.27: Percentage correct classification using 50% of the vectors for training with
varying ¢ when ¢ = 10.

c=10 Regular Random #1 | Random #2
c = 0.001 5.86 5.21 5.53
c = 0.005 63.56 36.55 34.06
c = 0.01 85.68 56.51 51.08
6 = 0.05 92.84 64.75 57.81
c = 0.1 92.84 65.08 58.13
c =05 84.38 60.41 54.66
=10 64.53 50.65 47.07
=15 47.94 41.32 35.14
c =20 35.36 32.10 31.02
G =25 29.07 27.33 26.90
G =30 25.05 26.03 24.40
c =35 23.32 22.78 23.32
G = 4.0 20.93 20.82 21.04
G =45 19.63 19.74 19.52
c =350 18.87 19.09 18.87

In general, the values of ¢ that corresponded to a high percentage classification

accuracy were close to each other, which means that the selection of ¢ is not very

dependent on the method of generation of the training and test set pairs. However, the

- 166 -

© Robert Barry Ch. 6: Experimental Results and Discussion

percentage classification accuracies were more sensitive to changes in ¢ than originally

anticipated. To determine a good value of ¢ for each simulation, the average value of ¢

for each table was calculated. The only exception to this was in Table 6.16 where the first

three simulations gave maximum classification values of 18.81%, 23.60%, and 18.90%
when ¢ =0.001, 2.0, and 0.001, respectively. These values of ¢ were very different, and
the classification accuracy at their average value of ¢ = 0.67 resulted in a relatively poor

rate of about 12%. More results were needed to obtain a better result, so a fourth

simulation (denoted by the added column titled “Random #3”) was performed which
resulted in a maximum classification of 23.15% when ¢ = 1.5. Closer inspection of
these data revealed that although ¢ = 0.001 resulted in the highest classification
accuracy for Regular and Random #2 data sets, the second highest classification accuracy
was when ¢ = 1.5 for both sets, which is much closer to the other values of ©.
Therefore, the values of ¢ = 0.001 in this table alone are labelled as outliers, and the

values of 6 = 1.5 will be used in their place for the calculation of a good value of ©.

Tables 6.28, 6.29, and 6.30 show the average value of ¢ which results in the

highest percentage classification accuracy for each value of ¢ when 30%, 40%, and 50%

of the vectors, respectively, are used for training the PNN.

- 167 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.28: Average values of ¢ which achieves the highest percentage correct
classification using 30% of the vectors for training.

30% Average ©
c=2 0.067
c=3 0.001
c=4 2.5
c=5 4.7
c=6 5.0
c=17 8.0
c=8 3.5
c=9 3.5
c=10 8.3

Table 6.29: Average values of ¢ which achieves the highest percentage correct
classification using 40% of the vectors for training.

40% Average ©
c=2 2.5
c=3 0.001
c=4 2.3
c=5 3.0
c=6 23
c=17 3.8
c=38 1.6
c=9 2.8
c=10 3.5

- 168 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.30: Average values of ¢ which achieves the highest percentage correct
classification using 50% of the vectors for training.

50% Average ©
c=2 0.075
c=3 0.067
c=4 0.050
c=5 0.075
c=6 0.080
c=17 0.075
c=8 0.075
c=9 0.083
c=10 0.088

Tables 6.31, 6.32, and 6.33 show the PNN percentage correct classification using

the average values of ¢ for each value of ¢ when 30%, 40%, and 50% of the vectors

sampled at regular intervals, respectively, are used for training the PNN.

- 169 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.31: PNN percentage correct classification using the average values of ¢ for each
value of ¢ when 30% of the vectors sampled at regular intervals are used for training,.

0
0% | Cpsitenton
c=2 55.54
c=3 48.64
c=4 29.98
c=5 16.73
c=6 16.96
c=17 20.53
c=8 17.97
c=9 17.89
c=10 14.49

Table 6.32: PNN percentage correct classification using the average values of ¢ for each
value of ¢ when 40% of the vectors sampled at regular intervals are used for training.

0
0% Clﬁsg?ifztcit)n
c=2 50.45
c=3 43.58
c=4 20.89

=5 21.07
c=6 17.27
c=7 15.73

=8 17.81

=9 16.55
c=10 14.65

-170 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.33: PNN percentage correct classification using the average values of ¢ for each
value of ¢ when 50% of the vectors sampled at regular intervals are used for training.

0
0% | Chsisenion
c=2 95.55
c=3 94.79
c=4 93.82
c=5 94.14
c=6 94.14
c=17 92.41
c=38 92.84
c=9 92.41
c=10 92.84

Figure 6.8 shows the percentage correct classification results listed in Table 6.33
with an optimized PNN trained with 50% of the vectors sampled at regular intervals.
Upon first glance, there seems to be an interesting plateau in the classification rate when
¢ =5 and ¢ = 6 followed by a steep drop in correct classification. However, a brief glance
at the y-axis reveals that all of the classification rates are between 92.5% and 95.5%, and
therefore within only 3% of each other! Therefore, this network seems to be well trained
since all of the classification accuracies are above 90%, so no conclusive statements may

be made regarding the most likely number of classes by studying this graph.

-171 -

© Robert Barry Ch. 6: Experimental Results and Discussion

96 T T T T T T T

955

©
i

94.5

935

Percentage Correct Classification
O
P

[tu
w

92,5

92 L 1 1 1 1 1 1
2 3 4 5 B 7 8 9 10

Number of Classes
Fig. 6.8. Percentage correct classification with an optimized PNN trained with
50% of the vectors sampled at regular intervals.

Since Fig. 6.8 does not offer any insights regarding the most likely number of
classes, perhaps plots of the percentage correct classification listed in Tables 6.31 and 6.32
with optimized PNNs trained with only 30% and 40% of the vectors sampled at regular
intervals, respectively, will illuminate the most likely number of classes. These plots are

shown together in Fig. 6.9.

-172 -

© Robert Barry Ch. 6: Experimental Results and Discussion

[n2]
Q

1 &)]
[[y}
1 1

o
(0]
T
!

N
o
¥
I
@
X
—
1

] 1Y)
(93] Q
T T
1 1

Percentage Correct Classification
(3]
5}

N
faa §
T
1

[
T

10 1 1 1 i 1 1 1
2 3 4 5 B 7 8 9 10

Number of Classes
Fig. 6.9. Percentage correct classification with an optimized PNN trained with
30% and 40% of the vectors sampled at regular intervals.

Figure 6.9 is a very interesting graph, and several statements may be made about it.
Firstly, both of the PNNs are undertrained with only 30% and 40% of the vectors,
respectively, because the maximum percentage correct classification is only around 50%.
Secondly, both of the curves look very similar. Thirdly, the PNN trained with 30% of the
vectors has a higher classification rate than the PNN trained with 40% of the vectors with
smaller values of ¢ = 2, 3, and 4. This value seems to contradict the previous statement
made that a PNN trained with more vectors performs well; however, as previously stated,
the PNN is undertrained, and the small 5% difference between the curves is most likely
inherent to the data used to test the PNNs. Fourthly, the percentage correct classification
only declines slightly by about 5% for both curves when the number of classes increases

from ¢ =2 to ¢ = 3. Fifthly, a steep decrease of about 25% to 30% is observed on both

-173 -

© Robert Barry Ch. 6: Experimental Results and Discussion

plots as the number of classes increases further from ¢ =3 to ¢ = 5. Sixthly, the percentage
correct classification maintains a low value between 15% and 20% for the remaining
values of ¢ = 6 to ¢ = 10. Finally, this low percentage correct classification would most
likely persist as the number of classes increased past ¢ = 10, so we need not consider

values higher than ¢ = 10.

The discussion from section 5.8.2 stated that the most likely number of classes
may be indicated by a marked change in the rate of misclassifications. Keeping this point
in mind, our attention is drawn to the significant decrease in the percentage correct
classification as the number of classes ¢ increases beyond ¢ = 3. Since this classification
rate does not recover, it seems reasonable that our attention should be focused on ¢ =2 and

¢ =3 as possible candidates for the most likely number of classes.

If we recall the motivation discussion of clustering in section 4.5, Fig. 4.9 displays
a hypothetical plot of traffic characterized in 2-dimensions. Figures 4.10 and 4.11 show
these data with the assignment of two and four classes, respectively. If two classes are
assigned to the data and a PNN trained with a sufficient percentage of the characteristic
vectors, then it seems reasonable to expect that the PNN would perform quite well when
tested with previously unobserved data. Similarly, if four classes are assigned to the data,
the PNN would also perform well when trained in the same fashion. However, the
misclassification rate would most likely increase when the number of assigned classes is
three and five or more because models with numbers of assigned classes other than two
and four would not accurately reflect the true number of classes in the data. Although a
model with two classes would perform well in classifying previously unobserved data, and

probably slightly better than a model with four classes, the model with four classes should

-174 -

© Robert Barry Ch. 6: Experimental Results and Discussion

be selected as the most likely number of classes in this hypothetical example: a model

with two classes is too simplistic and a model with five or more classes is too complex.

Relating this discussion of a hypothetical example back to the real characteristic
signatures from Record 11020219, we should select ¢ = 3 as the most likely number of
classes over ¢ = 2, as it is the largest number of classes with a relatively high percentage
classification accuracy. Therefore, the most likely number of classes in Record 11020219

1s three.

The previous statement is very important, and must be further verified through
visualization of the clustering. Unfortunately, visualization of three classes in 4D data on
2D black and white paper is difficult task to accomplish! Therefore, the classes will be
projected from 4-dimensions onto 2-dimensions in three different ways, keeping in mind
that two dimensions are omitted for the sake of clarity. Figure 6.10 shows the projection
of the three classes onto the two main principal components, namely PC(1) and PC(2). As
before, the solid lines represent the decision boundaries between classes. If these were the
only two dimensions, then it appears to the human visual classification system that there
are only two classes in the data. However, these are only two out of four dimensions
which, as shown in Fig. 5.49, only account for roughly 60% of the variance in the data.
The remaining 40% of the variance is contained in PC(3) and PC(4), so we must also

consider those dimensions.

-175 -

© Robert Barry Ch. 6: Experimental Results and Discussion

%%

-b 1 I
-10 -8 -B -4 -2 0 2 4

PC(1)
Fig. 6.10. Three classes in 4-dimensions projected onto PC(1) and PC(2).

Figures 6.11 and 6.12 show the classes projected onto PC(1) and PC(3), and PC(2)
and PC(3), respectively, and complete the display of the relationships between the first
three principal components. Figures 6.13, 6.14, and 6.15 show the information contained
within the fourth dimension, as the classes are projected onto PC(1) and PC(4), PC(2) and
PC(4), and PC(3) and PC(4). The decision boundaries overlap on all of these figures, so
their inclusion would not add any more clarity to the figure. Therefore, the shaded

symbols “.”, “+”, and “*” are used to indicate the clustering of the three classes.

-176 -

© Robert Barry Ch. 6: Experimental Results and Discussion

PCE)

_6 1] 1 | 1
-10 -8 -6 -4 -2 0 2 4
PC(1)

Fig. 6.11. Three classes in 4-dimensions projected onto PC(1) and PC(3).

PCE)

’_6 L 1 i 1] J
5 I 0 2 4 5

PCE)
Fig. 6.12. Three classes in 4-dimensions projected onto PC(2) and PC(3).

-177 -

© Robert Barry Ch. 6: Experimental Results and Discussion

PC(1)
Fig. 6.13. Three classes in 4-dimensions projected onto PC(1) and PC(4).

-3t +

-4 L I 1
6 -4 -2 0 2 4 6

PCR)
Fig. 6.14. Three classes in 4-dimensions projected onto PC(2) and PC(4).

- 178 -

© Robert Barry Ch. 6: Experimental Results and Discussion

___4 1 1 1 1 1 ! 1
-B -5 -4 -3 -2 -1 0 1 2 3 4

PC()
Fig. 6.15. Three classes in 4-dimensions projected onto PC(3) and PC(4).

Figure 6.11 shows a clear separation between the “+” class and the «” and “*”
classes; this is the same separation that was observed in Fig. 6.10. Furthermore, Fig. 6.12

(1%

shows a good separation between the < and “*” classes in front of the ‘¢ class.
Therefore, the first three principal components seem to suggest that there are three classes
in the data. Figure 6.13 introduces the data contained in PC(4) and reaffirms the distinct
separation between the “+” class and the “.” and “*” classes. In the same fashion, Fig.
6.14 also reaffirms the separation between the “*” class and the “.” and “+” classes. All
three classes seem to overlap completely in Fig. 6.15 and no new class information is

revealed. This is, however, expected because the relationship between PC(3) and PC(4)

contains the least amount of information.

It has been shown, both mathematically and visually, that there are at least two and

-179 -

© Robert Barry Ch. 6: Experimental Results and Discussion

most likely three classes in Record 11020219. These three classes unevenly account for
44%, 38%, and 18% of the data, respectively. Furthermore, there appears to be no viable
evidence to entertain the possibility of a hidden fourth class within the first four principal
components. For the sake of completeness and motivation for future research (which will
be discussed in section 7.3), Fig. 6.16 shows the 1844-element behavioural classification

trajectory for Record 11020219.

Class
N
|
]
|
[
|
[
1

1

0 200 400 800 800 1000 1200 1400 1600 1800 2000
YWindow Position

Fig. 6.16. Behavioural classification trajectory for Record 11020219.

Therefore, Record 11020219 contains three distinct classes.

6.3 PNN Classification

Since it has been determined that there are three classes in Record 11020219, the

final task is to demonstrate the performance of the PNN in classifying previously

- 180 -

© Robert Barry Ch. 6: Experimental Results and Discussion

unobserved traffic. Section 6.2 showed that a PNN was sufficiently trained using 50% of
the vectors for training, so the criterion will be set that 50% of the vectors are used to train

the PNN.

An optimized PNN is created with ¢ = 0.067 and trained with 50% of the vectors

sampled at regular intervals and random intervals. The performance of this PNN is shown

in Table 6.34.

Table 6.34: PNN percentage correct classification with three classes when ¢ = 0.067
and 50% of the vectors are used for training.

0

0% | Cpsiteaton
Regular 94.79
Random #1 77.77
Random #2 73.64
Random #3 65.73
Random #4 68.00
Random #5 73.43

As expected, the PNN achieves nearly 95% correct classification when the training
and test sets are sampled at regular intervals, but the same PNN achieves an average of
only 72% correct classification when the sets are sampled at random intervals. To
investigate this 23% difference, Table 6.35 shows the confusion matrix for
misclassifications when regularly sampled data is used to train the PNN. In a confusion

matrix, the rows represent the actual classes and the columns represent the predicted

- 181 -

© Robert Barry Ch. 6: Experimental Results and Discussion

classes. Therefore, the diagonal of the matrix represents the correct classifications. In
Table 6.35, for example, 350 vectors in Class 1 were correctly classified as Class 1,
5 vectors were incorrectly classified as Class 2, and 13 vectors were incorrectly classified

as Class 3. Table 6.42 shows these numbers expressed as percentages.

Tables 6.36 to 6.40 show the confusion matrices for misclassifications when
randomly sampled data are used to train the PNN. Table 6.41 shows the summation of

these five tables, and Table 6.43 shows these summations expressed as percentages.

Table 6.35: PNN confusion matrix for simulation “Regular” in Table 6.34.

Regular Class 1 Class 2 Class 3
Class 1 350 5 13
Class 2 6 209 7
Class 3 9 8 315

Table 6.36: PNN confusion matrix for simulation “Random #1> in Table 6.34.

Random #1 Class 1 Class 2 Class 3
Class 1 313 23 32
Class 2 30 151 41
Class 3 37 42 253

-182-

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.37: PNN confusion matrix for simulation “Random #2” in Table 6.34.

Random #2 Class 1 Class 2 Class 3
Class 1 281 8 79
Class 2 55 151 16
Class 3 45 40 247

Table 6.38: PNN confusion matrix for simulation “Random #3” in Table 6.34.

Random #3 Class 1 Class 2 Class 3
Class 1 263 6 99
Class 2 42 135 45
Class 3 66 58 208

Table 6.39: PNN confusion matrix for simulation “Random #4” in Table 6.34.

Random #4 Class 1 Class 2 Class 3
Class 1 248 33 87
Class 2 32 160 30
Class 3 66 47 219

Table 6.40: PNN confusion matrix for simulation “Random #5” in Table 6.34.

Random #5 Class 1 Class 2 Class 3
Class 1 290 36 42
Class 2 22 161 39
Class 3 72 34 226

- 183 -

© Robert Barry

Ch. 6: Experimental Results and Discussion

Table 6.41: Summation of PNN confusion matrices for all five “Random” simulations.
Random Class 1 Class 2 Class 3
Class 1 1395 106 339
Class 2 181 758 171
Class 3 286 221 1153

Table 6.42: PNN percentage confusion matrix for the “Regular” simulation.

Regular Class 1 Class 2 Class 3
Class 1 95.11 1.36 3.53
Class 2 2.70 94.15 3.15
Class 3 2.71 2.41 94.88

Table 6.43: PNN percentage confusion matrix for all five “Random” simulations.

Random Class 1 Class 2 Class 3
Class 1 75.82 5.76 18.42
Class 2 16.31 68.29 15.40
Class 3 17.23 13.31 69.46

As expected, Table 6.42 shows us that very few misclassifications occurred when
the training vectors are sampled at regular intervals: Classes 1, 2, and 3 were correctly

classified 95.11%, 94.15%, and 94.88% of the time, respectively.

-184 -

© Robert Barry Ch. 6: Experimental Results and Discussion

Table 6.43 is interesting because it reveals how the misclassifications occurred
when the training vectors were sampled at random intervals. Class 1 was incorrectly
classified as Class 3 about three times as often as Class 2. Class 2 was incorrectly
classified equally between Classes 1 and 3, and Class 3 was incorrectly classified as

Class 1 30% more often than as Class 2.

The performance of the PNN is very sensitive to the sampling methods used in
constructing the training set. This difference is most likely due to the fact that the three
classes are unequally represented in the data and unevenly distributed in its sequence. Ifa
random sampling does not select enough vectors in Class 1, for example, then it will be
undertrained in representing Class 1. Furthermore, the test set will be composed of those
vectors that were not used to train that class. The resulting scenario is a PNN that is both
undertrained and overtested in Class 1, resulting in more frequent misclassifications for
that Class 1. As discussed in section 7.3, a better method of representing the classes when
randomly sampling training vectors would be to randomly sample them within their
respective classes, rather than randomly sampling them from the original classification
trajectory. It is anticipated that a representative random sampling for each class would
result in a percentage correct classification comparable to that achieved when sampling

training vectors at regular intervals.

Therefore, when the three classes are properly represented in the training set
through sampling at regular intervals, the optimized PNN achieves a representative

percentage correct classification of approximately 95%.

-185-

© Robert Barry Ch. 6: Experimental Results and Discussion

6.4 Summary

This chapter summarizes the multifractal characterization of Record 11020219,

and explores the optimal class assignment by selecting a good value of ¢ using training
and test set pairs of different sizes formed by selected vectors at both regular and random
intervals. The optimal class assignment is then verified through the 2D visualization of
the first four principal components. Finally, an optimized PNN is trained with 50% of the

vectors, and its performance in classifying previously unobserved traffic is evaluated.

- 186 -

© Robert Barry Ch. 7: Conclusions and Recommendations

CuarteRr VII

CoNCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This thesis sets out to improve upon existing traffic classifiers through the
development of a new multifractal traffic classifier. Unfortunately, the data sets that were
to have been used in this thesis became unavailable while the research was well underway,
and therefore other self-affine data sets had to be acquired so that this thesis could be
completed in a timely manner. Record 11020219 from Pear’s data sets was chosen as the
primary self-affine traffic recording with which to demonstrate the use of multifractal
analysis and neural networks to reliably and accurately characterize and classify network

traffic.

This thesis demonstrates the presence of both spatial and temporal multifractality
in Record 11020219. The Rényi dimension spectrum was constructed using sequential
non-overlapping windows of 1024 points, and the resulting monotonically decreasing
curve for each window revealed consistent spatial multifractality in the traffic sequence.
The variance fractal dimension was also constructed using a non-overlapping window size
of 1024 points that resulted in a trajectory of dimensions of which 96.4% had a mean
square error of less than 0.1, thereby proving that the traffic sequence is temporally

multifractal and self-affine.

To characterize the self-affine traffic, the variance fractal dimension trajectory was

once again calculated using a window size of 512 points and window offset of 8 points.

- 187 -

© Robert Barry Ch. 7: Conclusions and Recommendations

A sampling frequency of 10 Hz was used to record the traffic, which resulted in a temporal
window size of 51.2 seconds and a window offset of 0.8 seconds. A minimum of 512
points are required for the calculation of the variance fractal dimension, which means that
with a sampling frequency of 10 Hz, the temporal window size of 51.2 seconds was the
highest level of temporal resolution possible. A higher sampling frequency would be
required to study the behaviour of the self-affine traffic on a shorter time scale. For
example, a sampling frequency of 256 Hz would enable a maximum temporal resolution

of 2.0 seconds.

The mean, variance, skewness, and kurtosis trajectories of the variance fractal
dimension trajectory were constructed using a window size of 512 points and window
offset of 1 point. Histograms of each statistical trajectory were calculated using a window
size of 9000 points and a window offset of 150 points. A sampling frequency of 10 Hz
resulted in a temporal window size of 15 minutes and a window offset of 15 seconds. The
gamma distribution was selected to model the strict stationarity of the histograms of these
four statistical trajectories. Fight parameters (two for each of the four gamma
distributions) were used to represent each set of four histograms, which resulted in the

construction of a trajectory of 8-dimensional signatures.

A significant degree of correlation existed between these eight dimensions, so
principal component analysis was used to decorrelate the dimensions. A plot of the
cumulative variance for the principal components revealed that 87% of the variance was
contained within the first four principal components, so the first four principal
components were kept to form a compressed 4-dimensional multifractal signature for each

window of traffic.

- 188 -

© Robert Barry Ch. 7: Conclusions and Recommendations

A ftrajectory of these 4-dimensional signatures is now the new compressed
representation of Record 11020219. The K-means algorithm was used to cluster these
signatures, with adequate verification from a self-organizing feature map. The
performance of probabilistic neural networks trained with 30%, 40%, and 50% of the

signatures, respectively, sampled at regular and random intervals were examined to reveal
locally optimal value of ¢ for each network configuration for the selected number of
classes. Probabilistic neural networks configured with these locally optimal ¢ parameters
were then undertrained with 30% and 40% of the signatures, respectively, sampled at
regular intervals to indicate the most likely number of classes. A plot of the percentage
classification accuracy as a function of the increasing number of classes ¢ revealed a slight
decrease in classification accuracy of approximately 5% as the number of classes
increased from ¢ = 2 to ¢ = 3, followed by a significant decrease of approximately 25% as
the number of classes increased from ¢ = 3 to ¢ = 4 that did not recover as the number of
classes increased to ¢ = 10. Therefore, this significant decline in percentage classification
accuracy indicated that there are at least two and most likely three distinct classes in

Record 11020219.

A probabilistic neural network configured with the locally optimal ¢ is then
sufficiently trained with 50% of the 4-dimensional signatures sampled at regular intervals
from the trajectory, and achieved a representative correct classification accuracy of

approximately 95% when classifying previously unobserved traffic signatures.

The methodologies that are presented for characterizing and classifying traffic may
be directly applied to other classes of self-affine traffic that are of interest to TR Labs and

its sponsors, thereby satisfying the mandate of TRLabs and the objectives of this thesis.

- 189 -

© Robert Barry Ch. 7: Conclusions and Recommendations

7.2 Contributions

This thesis and the research done towards its completion has provided the

following contributions.

1. The capture of 24 hours of VoIP data at TRLabs (2,304,156 UDP packets),

and the visualized demonstration of the self-affine nature of VolIP traffic.

2. The demonstration of the self-affine, or fractal, nature of the agonistic
behaviour of the Siamese Fighting Fish (Berta splendens) through a

comprehensive study of Record 11020219 from Pear’s data sets.

3. The demonstration of the temporal multifractal nature of the Betta splendens

through the calculation of the variance fractal dimension trajectory.

4. The demonstration of the spatial multifractal nature of the Betta splendens

through the calculation of the Rényi multifractal dimension spectrum.

5. The selection of an appropriate window size and window offset for the

calculation of the variance fractal dimension.

6. The selection of an appropriate window size and window offset for the
construction of the statistical histograms of the variance fractal dimension

trajectory.

7. The modelling of the statistical histograms of the variance fractal dimension

trajectory using the gamma distribution.

- 190 -

© Robert Barry Ch. 7: Conclusions and Recommendations

The determination of the most likely number of classes in Record 11020219

by studying the performance of the probabilistic neural network.

The training and testing of a probabilistic neural network to accurately

classify previously unobserved self-affine traffic.

7.3 Recommendations for Future Work

Based on the work done in this thesis, several recommendations are presented for

future work in this area.

1.

A study of the sections of Record 11020219 where the mean square error
(MSE) is greater than 0.1. Of the 278 windows where the MSE error was
calculated (to generate Fig. 5.9), only 10 had a MSE greater than 0.1, located
at window positions 2, 3, 4, 5, 7, 8, 35, 55, 80, and 95. Since 6 of these 10
windows are located at the very beginning of Record 11020219, further study
of these sections would contribute to a better understanding of the self-affine

nature of the motion of Betta splendens.

A study of the Kullback-Leibler distance [KuLe51] to measure the accuracy
of the gamma distribution in modelling the statistical histograms of the
variance fractal dimension trajectory. Relationships may exist between the
sections of Record 11020219 where the Kullback-Leibler distance is
significantly high, the MSE is greater than 0.1, and the variance fractal
dimension is close to 2. Furthermore, a better measurement of the number of
points needed to construct the statistical histograms may be uncovered

through the calculation of the Kullback-Leibler distance trajectory.

- 191 -

© Robert Barry Ch. 7: Conclusions and Recommendations

3. Arefinement in the usage of the probabilistic neural network by construction

of the training and test set pairs through representative random sampling.

4. An extension of the probabilistic neural network by incorporating a spread
parameter G for each class (as shown in Eq. 4.36), and selecting optimal

values for each parameter.

5. A comparison between these results (achieved when the first four principal
components are used), and the results obtained when the first three or five

principal components are used, respectively.

6. A study of the Rényi multifractal dimension spectrum trajectory and how it

could be used to improve the multifractal characterization.

7. The characterization of the Z-coordinates of Experiment 11020219 and the
construction of a 4D signature trajectory for the Z-coordinates in the same
way as presented for the X-coordinates. The study of the correlation between
the 4D-X and 4D-Z trajectories may lead to better characterization and

classification of the traffic [CaChO03].

-192-

© Robert Barry Ch. 7: Conclusions and Recommendations

10.

An independent study by Dr. Pear’s research group of the behaviour of the
Betta splendens as recorded by the regular video camera for Experiment
11020219 could possibly result in a temporal behavioural classification
trajectory based solely upon the characteristic features visually extracted from
this video. A direct comparison between this behavioural classification
trajectory and the statistical classification trajectory constructed in this thesis
would be an excellent method of independent verification of the development
of the statistical classification trajectory. This comparison might also suggest
possible refinements of the techniques and methodologies presented by this

thesis.

The application of these techniques and methodologies in characterizing and

classifying other experiments from Pear’s data sets.

The application of these techniques and methodologies in characterizing and

classifying Sarda’s data sets.

-193 -

© Robert Barry

References

[Abou03]

[BaKi02]

[Beau02]

[Benv93]

[BKPMO3]

[Bish00]

[BIMe70]

[Bron94]

[Brow?28]

REFERENCES

About, Inc., “aquarium fish profile photo of the Siamese Fighting Fish
(Betta Splendens),” 2003.
http://freshaquarium.about.com/library/profiles/blfw4071.htm

R. L. Barry and W. Kinsner, “Multifractal characterization for
classification of telecommunications traffic,” Proc. IEEE CCECE 02, pp.
1538-1544, May 2002.

N. C. Beaulieu, “Introduction to ‘Certain topics in telegraph transmission
theory’,” Proc. IEEE, vol. 90, no. 2, pp. 276-279, Feb. 2002.

N. Benvenuto, “A speech / voiceband data discriminator,” IEEE Trans.
Communications, vol. 31, no. 4, pp. 539-543, Apr. 1993.

R. L. Barry, W. Kinsner, J. Pear, and T. Martin, “Multifractal
characterization for classification of self-affine signals,” Proc. IEEE
CCECE °03, May 2003.

C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY:
Oxford University Press, 482 pp., 2000.

L. M. Blumenthal and K. Menger, Studies in Geometry. San Francisco,
CA: W. H. Freeman, 512 pp., 1970.

P. M. Bronstein, “On the predictability, sensitization, and habituation of
aggression in male Bettas (Betta splendens),” J. Comparative Psychology,
vol. 108, no. 1, pp. 45-57, 1994,

R. Brown, “A brief account of microscopical observations made in the
months of June, July, and August 1827, on the particles contained in the
pollen of plants; and on the general existence of active molecules in
organic and inorganic bodies,” The London and Edinburgh Philosophical
Magazine and Annals of Philosophy, vol. 4, no. 21, pp. 161-173, 1828.

194 -

© Robert Barry

References

[BSTW95]

[CaCh03]

[Caco66]

[ChBa97]

[Chen97]

[Chen02]

[CiP096]

[CoHat67]

[CoSa98]

J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range
dependence in Variable-Bit-Rate video traffic,” IEEE/ACM Trans.
Communications, vol. 43, no. 2, pp. 1566-1579, 1995.

K. Cannons and V. Cheung, “Signal classification through multifractal
analysis and neural networks,” B.Sc. thesis, Department of Electrical and
Computer Engineering, University of Manitoba, Winnipeg, MB, Canada,
2003.

T. Cacoullos, “Estimation of a multivariate density,” Annals of the Institute
of Statistical Mathematics, vol. 18, no. 2, pp. 179-189, 1966.

K. Christensen and V. Ballingam, “Reduction of self-similarity by
application-level traffic shaping,” Proc. IEEE Conf. Local Computer
Networks, pp. 511-518, 1997.

H. Chen, “Accuracy of fractal and multifractal measures for signal
analysis,” M.Sc thesis, Department of Electrical and Computer
Engineering, University of Manitoba, Winnipeg, MB, Canada, 1997.

J. Chen, “Classification of transients in power systems,” M.Sc. thesis,
Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, MB, Canada, 2002.

K. Ciesielski and Z. Pogoda, “The beginning of Polish topology,” The
Mathematical Intelligencer, vol. 18, no. 3, pp. 32-39, 1996.

T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Information Theory, vol. 13, no. 1, pp. 21-27, Jan. 1967.

B. F. Cockburn and D. P. Sarda, “Implementation and evaluation of an
accurate real-time voiceband signal classifier,” Proc. IEEE CCECE 98,
pp. 133-136, May 1998.

-195-

© Robert Barry

References

[CtBe97]

[CuBC95]

[Dans95]

[Dans01]

[Deva92]

[DMPS03a]

[DMPS03b]

[DuHa73]

[DuWio4]

M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Trans. Networking, vol.
5, no. 6, pp. 835-846, Dec. 1997.

C. A. Cunha, A. Bestavros, and M. E. Crovella, Boston University
Department of Computer Science, Boston, MA, Tech. Rep. TR-95-010,
Apr. 1995,

R. M. Dansereau, “Codebook image compression with neural networks,”
B.Sc. thesis, Department of Electrical and Computer Engineering,
University of Manitoba, Winnipeg, MB, Canada, 1995.

R. M. Dansereau, “Progressive image transmission using fractal and
wavelet techniques with image complexity measures,” Ph.D. thesis,
Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, MB, Canada, 2001.

R. L. Devaney, 4 First Course in Chaotical Dynamical Systems: Theory
and Experiments. Reading, MA: Addison-Wesley, 302 pp., 1992.

P. Danzig, J. Mogul, V. Paxson, and M. Schwartz, The Internet Traffic
Archive, “BC - Ethernet Traces of LAN and WAN Traffic,” 2003.
http://ita.ee.lbl.gov/html/contrib/BC.html

P. Danzig, J. Mogul, V. Paxson, and M. Schwartz, The Internet Traffic
Archive, “BU-Web-Client - Six Months of Web Client,” 2003.
http://ita.ee.Ibl.gov/html/contrib/BU-Web-Client.html

R. O. Duda and P. E. Hart, Pattern classification and scene analysis. New
York, NY: John Wiley & Sons, 482 pp., 1973.

D. E. Duffy and W. Willinger, “Statistical analysis of CCSN / SS7 traffic
data from working CCS subnetworks,” IEEE J. Selected Areas in

Communications, 1994.

- 196 -

© Robert Barry

References

[Edga90]

[Ehti99]

[FoLe91]

[FoWi98]

[GaWi94]

[Glei87]

[Grie96]

[Hart75]

[HePr83]

G. A. Edgar, Measure, Topology, and Fractal Geometry. New York, NY:
Springer-Verlag, 230 pp., 1990.

T. Ehtiati, “Multifractal characterization of electromyogram signals,”
M.Sc. thesis, Department of Electrical and Computer Engineering,
University of Manitoba, Winnipeg, MB, Canada, 1999.

H. J. Fowler and W. E. Leland, “Local area network traffic characteristics,
with implications for broadband network congestion management,” JEEE
J. Selected Areas in Communications, vol. 9, no. 7, pp. 1139-1149, Sep.
1991.

F. M. Foo and C. L. Williamson, “Network traffic measurements of IP /
Frame Relay / ATM,” Proc. Workshop on Workload Characterization in
High Performance Computing Environments, pp. 1-14, July 1998.

M. W. Garrett and W. Willinger, “Analysis, modeling and generation of
self-similar VBR video traffic,” Proc. ACM SIGCOMM *94, pp. 269-280,
Sep. 1994.

J. Gleick, Chaos: Making a New Science. New York, NY: Viking Penguin,
352 pp., 1987.

W. S. Grieder, “Variance fractal dimension for signal feature enhancement
and segmentation from noise,” M.Sc. thesis, Department of Electrical and
Computer Engineering, University of Manitoba, Winnipeg, MB, Canada,
1996.

J. A. Hartigan, Clustering Algorithms. New York, NY: John Wiley & Sons,
351 pp., 1975.

H. G. E. Hentschel and I. Procaccia, “The infinite number of generalized
dimensions of fractals and strange attractors,” Physica D: Nonlinear

Phenomena, vol. 8D, no. 1 & 2, pp. 435-444, July 1983.

-197 -

© Robert Barry

References

[HyKOO01]

[KaWo099]

[Kins%4a]

[Kins94b]

[Koch04]

[Koho88]

[Koho90]

[KuLe51]

[LeWiol]

[LLTW94]

A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis.
New York, NY: John Wiley & Sons, 481 pp., 2001.

K. Kant and Y. Won, “Server capacity planning for web traffic workload,”
IEEE Trans. Knowledge and Data Engineering, vol. 11, no. 5, pp. 731-747,
Sep. 1999.

W. Kinsner, “Fractal dimensions: Morphological, entropy, spectrum, and
variance classes,” University of Manitoba and TRZabs, Winnipeg, MB,
Canada, Tech. Rep. DEL94-4, 1994.

W. Kinsner, “The Hausdorff-Besicovitch dimension formulation for
fractals and multifractals,” University of Manitoba and TR Labs, Winnipeg,
MB, Canada, Tech. Rep. DEL94-7, 1994,

H. von Koch, “Sur une courbe continue sans tangente obtenue par une
construction géometrique €lémentaire,” Arkiv Br Matematik, Astronomi
och Fysik, vol. 1, pp. 681-702, 1904.

T. Kohonen, Self-organization and associative memory. Berlin, Germany:
Springer-Verlag, 2nd ed., 312 pp., 1988.

T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, no. 9, pp.
1464-1480, Sep. 1990.

S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79-86, Mar. 1951.

W. E. Leland and D. V. Wilson, “High time-resolution measurements and
analysis of LAN traffic: Implications for LAN interconnection,” Proc.
IEEE INFOCOM 91, pp. 1360-1366, Apr. 1991.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of Ethernet traffic,” JEEE/ACM Trans. Networking, vol.
2,no. 1, pp. 1-15, Feb. 1994.

- 198 -

© Robert Barry

References

[MacQ67]

[Mand67]

[Mand69]

[Mand71]

[Mand75]

[Mands83]

[Mand85]

[Mand02]

[MaPe02]

[Mart02]

J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proc. Fourth Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press,
Berkeley, vol. 1, pp. 281-297, 1967.

B. B. Mandelbrot, “How long is the coast of Britain? Statistical
self-similarity and fractal dimension,” Science, vol. 156, pp. 636-638, May
1967.

B. B. Mandelbrot, “Long-run linearity, locally Gaussian processes,
H-spectra and infinite variances,” Intern. Economic Rev., vol. 10, Pp-
82-113, 1969.

B. B. Mandelbrot, “A fast fractional Gaussian noise generator,” Water
Resources Research, vol. 7, no. 3, pp. 543-553, 1971.

B. B. Mandelbrot, Les Objects Fractals: Forme, hasard et dimension.
Paris, France: Flammarion, 192 pp., 1975.

B. B. Mandelbrot, The Fractal Geometry of Nature. New York, NY: W. H.
Freeman, 468 pp., 1983.

B. B. Mandelbrot, “Self-affine fractals and fractal dimensions,” Physica
Scripta, vol. 32, pp. 257-260, 1985.

B. B. Mandelbrot, Gaussian Self-Affinity and Fractals. New York, NY:
Springer-Verlag, 654 pp., 2002.

G. Martin and J. Pear, Behavior Modification: What it is and How to do it.
Upper Saddle River, NJ: Prentice Hall, 7th ed., 470 pp., 2002.

T. Martin, “Attempts to produce dishabituation of agonistic behavior in
Betta splendens,” Internal Rep., University of Manitoba, Winnipeg,
Manitoba, Canada, June 2002. '

- 199 -

© Robert Barry

References

[MaSu93]

[Math03a]

[MathO3b]

[MaVa68]

[MaWa68]

[MaWa69a]

[MaWa69b]

[MaWa69c¢]

[McSH90]

[Meis72]

P. Maragos and F.-K. Sun, “Measuring the fractal dimension of signals:
morphological covers and iterative optimization,” IEEE Trans. Signal
Processing, vol. 41, no. 1, pp. 108-121, Jan. 1993.

The Mathworks, Inc., “skewness (Statistics Toolbox),” 2003.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml

The Mathworks, Inc., “kurtosis (Statistics Toolbox),” 2003.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml

B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions,
fractional noises and applications,” SIAM Rev., vol. 10, no. 4, pp. 422-437,
1968.

B. B. Mandelbrot and J. R. Wallis, “Noah, Joseph, and Operational
Hydrology,” Water Resources Research, vol. 4, no. 5, pp. 909-918, 1968.
B. B. Mandelbrot and J. R. Wallis, “Computer experiments with fractional
Gaussian noises. Part 1, Averages and variances,” Water Resources
Research, vol. 5, no. 1, pp. 228-241, Feb. 1969.

B. B. Mandelbrot and J. R. Wallis, “Computer experiments with fractional
Gaussian noises. Part 2, Rescaled ranges and spectra,” Water Resources
Research, vol. 5, no. 1, pp. 242-259, Feb. 1969.

B. B. Mandelbrot and J. R. Wallis, “Computer experiments with fractional
Gaussian noises. Part 3, Mathematical appendix,” Water Resources
Research, vol. 5, no. 1, pp. 260-267, Feb. 1969.

R. D. McLeod, J. J. Schellenberg, and P. D. Hortensius, “Percolation and
anomalous transport as tools in analyzing parallel processing
interconnection networks,” J. Parallel and Distributed Computing, vol. 8,
pp. 376-387, 1990.

W. S. Meisel, Computer-oriented approaches to pattern recognition. New

York, NY: Academic Press, 250 pp., 1972.

- 200 -

© Robert Barry

References

[Meng26]

[Nyqu24]

[Nyqu28]

[PaF195]

[PaKC96]

[PaKC97]

[Parz62]

[PaWi00]

[Pear01]

[PeJS92]

[PeMa02]

K. Menger, “Allgemeine Rdume und charakteristische Riume, Zweite
Mitteilung: Uber umfassenste n-dimensionale Mengen,” Proc. Royal
Academy of Science (Amsterdam), vol. 29, pp. 1125-1128, 1926.

H. Nyquist, “Certain factors affecting telegraph speed,” Bell System Tech.
J., vol. 3, pp. 324-346, Apr. 1924.

H. Nyquist, “Certain topics in telegraph transmission theory,” Trans. AIEE,
vol. 47, pp. 617-644, Apr. 1928.

V. Paxson and S. Floyd, “Wide-area traffic: the failure of the Poisson
modeling,” IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226-244, June
1995.

K. Park, G. T. Kim, and M. E. Crovella, “On the relationship between file
sizes, transport protocols, and self-similar network traffic,” Proc. IEEE
Intern. Conf. Network Protocols, pp. 171-180, 1996.

K. Park, G. T. Kim, and M. E. Crovella, “On the effect of traffic
self-similarity on network performance,” Proc. SPIE Intern. Conf
Performance and Control of Network Systems, pp. 296-310, 1997.

E. Parzen, “On estimation of a probability density function and mode,”
Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, Sep.
1962. |

K. Park and W. Willinger, Ed., Self-Similar Nerwork Traffic and
Performance Evaluation. New York, NY: John Wiley & Sons, 558 pp.,
2000.

J. J. Pear, The Science of Learning. Philadelphia, PA: Psychology Press,
524 pp., 2001.

H.-O. Peitgen, H. Jurgens, and D. Saupe, Chaos and Fractals: New
Frontiers of Science. New York, NY: Springer-Verlag, 984 pp., 1992.

J. J. Pear and T. Martin (private communication), 07 June 2002.

-201 -

© Robert Barry

References

[Rény55]

[Rény59]

[Rény61]

[Rifa98]

[Sard99]

[SaTe99]

[Sewa96]

[Shan48a]

[Shan48b]

[Shan49]

A. Rényi, “On a new axiomatic theory of probability,” Acta Mathematica
Academiae Scientiarum Hungaricae, vol. 6, pp. 285-335, 1955.

A. Rényi, “On the dimension and entropy of probability distributions,”
Acta Mathematica Academiae Scientiarum Hungaricae, vol. 10, pp.
193-226, 1959.

A. Rényi, “On measures of entropy and information,” Proc. Fourth
Berkeley Symposium on Mathematical Statistics and Probability,
University of California Press, Berkeley, vol. 1, pp. 547-561, 1961.

R. Rifaat, “Multifractal analysis of DNA,” M.Sc. thesis, Department of
Electrical and Computer Engineering, University of Manitoba, Winnipeg,
MB, Canada, 1998.

D. P. Sarda, “Implementation and evaluation of an accurate real-time
voiceband signal classifier,” M.Sc. thesis, Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, AB, Canada,
1999.

Z. Sahinoglu and S. Tekinay, “On multimedia networks: self-similar traffic
and network performance,” JEEE Communications, pp. 48-52, Jan. 1999.
J. S. Sewall, “Signal classification in digital telephone networks,” M.Sc.
thesis, Department of Electrical Engineering, University of Alberta,
Edmonton, AB, Canada, 1996.

C. E. Shannon, “A mathematical theory of communications,” Bell System
Tech. J., vol. 27, pp. 379-423, July 1948.

C. E. Shannon, “A mathematical theory of communications,” (continued)
Bell System Tech. J., vol. 27, pp. 623-656, Oct. 1948.

C. E. Shannon, “Communication in the presence of noise,” Proc. Institute

of Radio Engineers, vol. 37, no. 1, pp. 10-21, Jan. 1949.

- 202 -

© Robert Barry

References

[Shaw97]

[ShSh71]

[Sier15]

[Sierl6]

[SiFe03]

[Simp68]

[SnTr71]

[SONT99]

[Spec88]

D. B. Shaw, “Classification of transmitter transients using fractal measures
and probabilistic neural networks,” M.Sc. thesis, Department of Electrical
and Computer Engineering, University of Manitoba, Winnipeg, MB,
Canada, 1997.

S. Shapiro and H. Shuckman, “Habituation and covariation of the
components of the threat display in Betta splendens,” Psychology Reports,
vol. 28, pp. 827-837, 1971.

W. Sierpinski, “Sur une courbe dont tout point est un point de
ramification,” Comptes Rendus Académie des Sciences (Paris), vol. 160,
pp. 302-305, 1915.

W. Sierpinski, “Sur une courbe cantorienne qui contient une image
biunivoque et continue de toute courbe donnée,” Comptes Rendus
Académie des Sciences (Paris), vol. 162, pp. 629-632, 1916.

A. A. Sirotinsky and O. V. Fedorenko, “Fractal Explorer,” 2003.
http://www.eclectasy.com/Fractal-Explorer/index.htm]

M. J. A. Simpson, “The display of the Siamese Fighting Fish, Berta
splendens,” Animal Behaviour Monographs, vol. 1, pp. 1-73, 1968.

E. Snapper and R. J. Troyer, Metric Affine Geometry. New York, NY:
Academic Press, 435 pp., 1971.

S. Song, J. K.-Y. Ng, and B. Tang, “On the self-similarity property of the
output process from a network server with self-similar input traffic,” Proc.
IEEE Intern. Conf. Real-Time Computing Systems and Applications, pp.
128-132, 1999.

D. F. Specht, “Probabilistic neural networks for classification, mapping, or
associative memory,” Proc. IEEE Intern. Conf Neural Networks, vol. 1,
pp. 525-532, July 1988.

-203 -

© Robert Barry

References

[Spec90a]

[Spec90b]

[Sun99]

[TaWS97]

[TEMMO1]

[ThSp66]

[[Toon97]

[Vics92]

[WaMMO98]

[Wass93]

D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, pp.
109-118, Jan. 1990.

D. F. Specht, “Probabilistic neural networks and the polynomial Adaline as
complementary techniques for classification,” IEEE Trans. Neural
Networks, vol. 1, no. 1, pp. 111-121, Mar. 1990.

L. Sun, “A fast radio transmitter identification system,” M.Sc. thesis,
Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, MB, Canada, 1999.

M. S. Tagqu, W. Willinger, and R. Sherman, “Proof of a fundamental result
in self-similar traffic modeling,” ACM SIGCOMM Computer
Communication Rev., pp. 5-23, 1997.

D. A. Tikhonov, J. Enderlein, H. Malchow, and A. B. Medvinsky, “Chaos
and fractals in fish school motion,” Chaos, Solitons and Fractals, vol. 12,
no. 2, pp. 277-288, 2001.

R. F. Thompson and W. A. Spencer, “Habituation: A model phenomenon
for the study of neuronal substrates of behavior,” Psychology Rev., vol. 73,
no. 1, pp. 16-43, 1966.

J. P. Toonstra, “A radio transmitter fingerprinting system,” M.Sc. thesis,
Department of Electrical and Computer Engineering, University of
Manitoba, Winnipeg, MB, Canada, 1997.

T. Vicsek, Fractal Growth Phenomena. Singapore: World Scientific
Publishing, 2nd ed., 488 pp., 1992.

R.E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics for
Engineers and Scientists. Upper Saddle River, NJ: Prentice Hall, 739 pp.,
1998.

P. D. Wasserman, Advanced Methods in Neural Computing. New York,
NY: Van Nostrand Reinhold, 255 pp., 1993.

- 204 -

© Robert Barry

References

[Weis99a]

[Weis99b]

[WTSWO95]

[Zhan02]

[ZhBM90]

[Zura92]

E. W. Weisstein, Eric Weisstein’s World of Mathematics, Wolfram
Research, Inc., “Gamma Distribution -- from MathWorld,” 2003.
http://mathworld.wolfram.com/GammaDistribution.html

E. W. Weisstein, Eric Weisstein’s World of Mathematics, Wolfram
Research, Inc., “Gamma Function -- from MathWorld,” 2003.
http://mathworld.wolfram.com/GammaFunction.html

W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity
through high-variability: statistical analysis of Ethernet LAN traffic at the
source level,” Proc. ACM SIGCOMM 95, pp. 100-113, 1995.

H. Zhang, “Compositional complexity measures of DNA sequence using
multifractal techniques,” M.Sc. thesis, Department of Electrical and
Computer Engineering, University of Manitoba, Winnipeg, MB, Canada,
2002.

P. Zhang, H. Barad, and A. Martinez, “Fractal dimension estimation of
fractional Brownian motion,” Proc. IEEE Southeastcon 90, vol. 3, Pp.
934-939, 1990.

J. M. Zurada, Introduction to Artificial Neural Systems. St. Paul, MN:
West Publishing, 683 pp., 1992.

- 205 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

APPENDIX A

PEAR’S DISHABITUATION DATA SETS

This appendix presents the plots for all 13 dishabituation experiments performed

by Dr. Pear and his research group at the University of Manitoba.
Dishabituation stimulus : MO = mirror off

MC = mirror off and live conspecific shown

B00O T T T T T T T

500 - .

400

100

Time (hrs)
Fig. A.1. X-coordinates of Experiment 11020218 (MO).

-A-1-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

o 1 > 3 4 5 5 7 B
Time (hrs)
Fig. A.2. Y-coordinates of Experiment 11020218 (MO).
250

200

D 1 I3 i 1
o 1 2 3 4 5 B 7 - B
Time (hrs)

Fig. A.3. Z-coordinates of Experiment 11020218 (MO).

~A2-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

SDD T T T T ¥ T T

500 |]

400

200

100

Time (hrs)
Fig. A.4. X-coordinates of Experiment 11020219 (MO).

D 1 1 1
u] 1 2 3 4 5 B 7 B8

Time (hrs)
Fig. A.5. Y-coordinates of Experiment 11020219 (MO).

© Robert Barry

Appendix A: Pear’s Dishabituation Data Sets

250

200

50

Time thrs)
Fig. A.6. Z-coordinates of Experiment 11020219 (MO).

-A-4-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T T

500 -

400

100

Time (hrs)
Fig. A.7. X-coordinates of Experiment 11020220 (MO).

D i 1 1 1 1 1 1
G 1 2 3 4 5 5 7. B8

Time (hrs)
Fig. A.8. Y-coordinates of Experiment 11020220 (MO).

-A-5-

© Robert Barry

Appendix A: Pear’s Dishabituation Data Sets

250

200

150

Z (mm)

100

Time (hrs)
Fig. A.9. Z-coordinates of Experiment 11020220 (MO).

- A-6-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

500 T T T T T T T

500 -

400 | .

300

X (mm)

200

100

Time (hrs)
Fig. A.10. X-coordinates of Experiment 11020221 (MC).

1 1 1 1 1

O 1 2 3 4 5 B 7 8
Time (hrs)

Fig. A.11. Y-coordinates of Experiment 11020221 (MC).

- A-7 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

200

150

Z (mm)

100

D i 1 1 1 1]]
0 1 2 3 4 5 B 7 8

Time (hrs)
Fig. A.12. Z-coordinates of Experiment 11020221 (MC).

-A-8-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

600 T T T T T T T

500 | H

400

X (mm)
W
B

200

100

0 hlm.un.u e i i at l;-. L_L R ; w e .&.J... _JA-LI IJ. ke
a 1 2 3 5 =] 7 8
Time (hrs)

Fig. A.13. X-coordinates of Experiment 11020222 (MC).

Time (hrs)
Fig. A.14. Y-coordinates of Experiment 11020222 (MC).

-~A-9-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 T T T T T T T

200

150

Z (mm)

100

50

D 1 1
0 1 2 3 4 5 5] 7 B8
Time (hrs)

Fig. A.15. Z-coordinates of Experiment 11020222 (MC).

- A-10 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T

500 |- H

400

200
100

[EOrERl ; 40 Lt e e Lt : ; 1 Ly 5 -I. Ja.l.;.lk;.l
7

O 1 2 3 4 5 6
Time (hrs)

Fig. A.16. X-coordinates of Experiment 11020223 (MC).

8

D H [1 1]

D 1 2 3 4 5 5 7 (]
Time (hrs)

Fig. A.17. Y-coordinates of Experiment 11020223 (MC).

- A-11 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 T T T {] T T T

200

D 1 1 1 i 1
8] 1 2 3 4 5 B 7 8

Time (hrs)
Fig. A.18. Z-coordinates of Experiment 11020223 (MC).

- A-12 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T L)

500

400

100

) [T SPPTR A R R . s B L;.-j;u. .I;n]_'t. woi ; :-L.u; |..I..Jn il [N
o 1 2 3 4 5 b 7
Time (hrs)

Fig. A.19. X-coordinates of Experiment 11020224 (MC).

5

D 1 1 I} 1 1 1 1
.0 1 2 3 4 5 5 7 B

Time (hrs)

Fig. A.20. Y-coordinates of Experiment 11020224 (MC).

-A-13 -

© Robert Barry

Appendix A: Pear’s Dishabituation Data Sets

250

200

150

Z (mm)

100

Time (hrs)
Fig. A.21. Z-coordinates of Experiment 11020224 (MC).

-A-14 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T L T ¥

500 F .

400

100

N PR v . .l_u_ua;ll; .-;_..-l..; Lg o,
0O 1 2 3 4 5] 7
) Time (hrs)

Fig. A.22. X-coordinates of Experiment 14020309 (MO).

D L 1 1 1 1}

~} b
]

0 : 1 2 3 4 5 6
Time (hrs)

Fig. A.23. Y-coordinates of Experiment 14020309 (MO).

-A-15-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 T ¥ T T T T T

200

D 1 1 1
o 1 2 3 4 5 6 7 8
Time (hrs)

Fig. A.24. Z-coordinates of Experiment 14020309 (MO).

- A-16-

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T T

500]

100

0 L] ads e R AT e
u] 1 2 3 4 5 B i 8
Time (hrs)

Fig. A.25. X-coordinates of Experiment 14020310 (MO).

0 1 2 3 4 5 =
Time (hrs)
Fig. A.26. Y-coordinates of Experiment 14020310 (MO).

D A]

-~k
(a1}

- A-17 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 T T L T T T T

200 |

150

Z (mm)

100

D L 1 1 L 1 L 1
] 1 2 3 4 5 B i 8

Time (hrs)
Fig. A.27. Z-coordinates of Experiment 14020310 (MO).

- A-18 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

600 T T T T T T T

500 H

400

100

O Wi . dl e L AR R P KNG ST N

0 1 2 5 T 8

w
I
M

Time (hrs)
Fig. A.28. X-coordinates of Experiment 14020311 (MO).

D 1 1 3 H 1

Time (hrs)
Fig. A.29. Y-coordinates of Experiment 14020311 (MO).

-A-19 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

ooo |

50

D 1 1] 1]
0 1 2 3 4 5] 7 8

Time (hrs)
Fig. A.30. Z-coordinates of Experiment 14020311 (MO).

- A-20 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T T

500 - -]

400 - H

200

100
0 l;.:hu.-......_-..-‘;-;.._.. H sl SULR YL A _:L .-ui::'.i.._.JJA.-.L 1. -"-;,-“_n.'h;h‘-}ll‘”' .IL. i
o 1 2 3 4 5 6 7 8
Time (hrs)
Fig. A.31. X-coordinates of Experiment 14020312 (MC).
ADD T T T T T T T

D] 1 1 1 1 1

0 1 2 3 4 5 6 I 8
Time (hrs)

Fig. A.32. Y-coordinates of Experiment 14020312 (MC).

- A-21 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 f T T T T T T L]

200

150

Z {mm)

100

D 1 1 1
8] 1 2 3 4 5 B 7 8

Time (hrs)
Fig. A.33. Z-coordinates of Experiment 14020312 (MC).

-A-22 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

600 T T T T T T v

500

100

O [T e s | R R i e, - 2. he Y S P S T T TN

O 1 2 3 4 5 5 7 8
Time (hrs)

Fig. A.34. X-coordinates of Experiment 14020313 (MC).

D]) 1]

Time (hrs)
Fig. A.35. Y-coordinates of Experiment 14020313 (MC).

-A-23 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

250 f T L] T T T T T

200

150

Z (mm)

100

50

D 1] 1 13 1
0 1 2 3 4 5 6 7z 8

Time (hrs)
Fig. A.36. Z-coordinates of Experiment 14020313 (MC).

-A-24 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

BDD T T T T T T T

500 - .

400 - =

mm)

300 .

—

200

100

O -l-u.-.a.u_u. + P g i ‘ .-..-LJ"_I_.;JL.IIL:J. N
a 1 2 3 4 5 5] 7 B
Time (hrs)

Fig. A.37. X-coordinates of Experiment 14020314 (MC).

D (] 1. 1 1 1 1 1

0 1 2 3 4 5 15} 7 3
Time (hrs)

Fig. A.38. Y-coordinates of Experiment 14020314 (MC).

- A-25 -

© Robert Barry Appendix A: Pear’s Dishabituation Data Sets

25D T T T T T T T

200 §

150

Z {mm)

100

50

D 1 1 1
0O 1 2 3 4 5 B 7 8
Time (hrs)

Fig. A.39. Z-coordinates of Experiment 14020314 (MC).

- A-26 -

© Robert Barry Appendix B: MATLAB Code

APPENDIX B

MATLAB CODE

This appendix provides the MATLAB code used in this thesis.

B.1 Best Classes
(bestclass.m)

function bc = bestclass(c, k, reps);

de

bestclass selects the best K-means clustering classes

% ¢ — K-means clustering results
% k - number of classes to find (2, 3, 4, ..., 10)
% reps - number of repetitions (1, 2, ..., N)

o

[=

BC = BESTCLASS{(C,K,REPS) returns the best clusters
C with K classes using REPS repetitions.

do oo

oo

Required functions: none

oo

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.01 on July 28, 2003 at 7:20 am (Central)

de

il = zeros(2,reps);
for i = l:reps 11(2,i) = i; end
i2 = 4i1;
if (k> 2) i3 = 1i1;
if (k > 3) i4 = i1;
if (k > 4) i5 = i1;
if (k > 5) i6 = i1;
if (k > 6) i7 = il;
if (k > 7) i8 = il:
if (k > 8) i9 = i1;
if (k > 9) il10 = i1;
end
end
end
end
end
end

-B-1-

© Robert Barry

Appendix B: MATLAB Code

end
end % 1if
for h = l:reps % for each repetition...
for i = l:length(c) % for each vector...
if (c(i,h) == 1) i1(1,h) = i1l(1l,h) + 1; end
if (c(i,h) == 2) 12(1,h) = i2(1,h) + 1; end
if (k > 2)
if (c(i,h) == 3) i3(1,h) = i3(1,h) + 1; end
if (k > 3)
if (c(i,h) == 4) 1i4(1,h) = i4(1l,h) + 1; end
if (k > 4)
if (c(i,h) == 5) i5(1,h) = i5(1,h) + 1; end
if (k > 5)
if (c(i,h) == 6) i6(1,h) = i6(1,h) + 1; end
if (k > 6)
if (c(i,h) == 7) 17(1,h) = i7(1,h) + 1; end
if (k > 7)
if (c(i,h) == 8) i8(1,h) = i8(1,h) + 1:; end
if (k > 8)
if (¢(i,h) == 9) i9(1,h) = 1i9(1,h) + 1; end
if (k > 9)
if (c(i,h) == 10) 110(1,h) = 110(1,h) + 1;
end
end
end
end
end
end
end
end
end % if
end % for i
end % for h
cc = zeros(k,reps);
for i = 1l:reps
cc(l,i) = i1(1,1);
cc(2,1) = i2(1,1i);
if (k > 2)
cc(3,1i) = 13(1,4i);
if (k > 3)
cc(d,i) = 14(1,1);
if (k > 4)
cc(5,1) = i5(1,1);
if (k > 5)
cc(6,1) = i6(1,1):
if (k > 6)

-B-2-

© Robert Barry

Appendix B: MATLAB Code

cc(7,iy = i7(1,1);
if (k > 7)
cc(8,1) = 1i8(1,1);
if (k > 8)
cc(9,i) = 1i9(1,1i);
if (k > 9)
cc(10,1) = i10(1,1);
end
end
end
end
end
end
end
end % if
end % for
ccs = sort(cc): % sorted classes
ccm = zeros (k+2, reps); % matched classes
m=1; % number of individual classes
cem(l:k,m) = ccs(:,1); % insert first class
cem(k+l,m) = 1; % one instance so far
cem(k+2,m) = 1; % location of instance
for i = 2:reps % for each simulation
cct = cecs(:,1i); % temporary class to compare
j 1; % match index
while ((j <= m) & not(sum(ccm(l:k,j) == cct) == k))
Jo=3 + 1;
end % while
if (3 > m) % 1f no match is found
m=m + 1; % one more class
cem(l:k,m) = cct; % new class
ccm(k+1l,m) = 1; % one instance
cem(k+2,m) = 1i;
elseif (j <= m) % a match is found
cem(k+1l,3) = cem(k+1,j) + 1; % increment instance
end & if
end % for
cem = cem(:,1l:m);
ccm = sortrows(cem',k+1l); % sort based on most likely clustering
bc = ccm(m, k+2) ; % most likely (best) class

-B-3-

© Robert Barry Appendix B: MATLAB Code

B.2 Characteristic Trajectory
(chartraj.m)

[

chartraj creates an 8D trajectory

[

o\

This program models the four statistical histograms
and creates an 8D characteristic trajectory.

90 o

oe

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.01 on July 28, 2003 at 9:55 am (Central)

oe

clear all variables;

load ../mat/VFDTstats.mat;

fs = 10;

wn = 15 * 60 * fs;

woff = 0.25 * 60 * fs;

len = length(Tm);

maxloops = floor((len-wn)/woff);

de

sampling frequency of 10 Hz
histogram for 15 minutes
window offset of 15 seconds
length of original vectors
number of windows that can be
sampled from original vectors
create empty char traj vec

g go oo oo

de

traj8D = zeros(8,maxloops);

rl = 1;
r2 = wWn;
for m = 1 : maxloops
Tl = Tm(rl:xr2);
T2 Tv(rl:x2);
T3 Ts(rl:x2);
T4 Tk(rl:x2);
charvec = gammamodel (T1,T2,T3,T4);
traj8D(:,m) = charvec;
rl = rl + woff;
r2 = r2 + woff;
end % for
save ../mat/traj8D.mat traj8D:

-B-4-

© Robert Barry Appendix B: MATLAB Code

B.3 Create Neural Network Sets
(createNNsets.m)

function [settrain, settest] = createNNsets(T,NV, P)

createNNsets stands for "create neural network sets"
T - type of set (0 = random, 1 = regular intervals)
NV - total number of vectors

P - percentage of data for training set (0 < P < 1)

A0 dC O d® o oe

[SETTRAIN, SETTEST] = CREATENNSETS(T,NV,P) returns the
index pointers for the training set SETTRAIN and test
set SETTEST method T with P% used for SETTRAIN.

oe

de

e e

Reguired functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.1 on July 18, 2003 at 1:25 am (Central)

o o

NTrain = round(NV*P);

NTest = NV - NTrain;
settrain = zeros(l,NTrain);
settest = zeros(1l,NTest);

of training vectors
of test vectors

% o

’_I
th
3
I
Il
(]
oo

RANDOM SELECTION

i = 0;
while (i < NTrain)
temp = round(rand(l,1)*NV);
while (not(isempty(find(settrain == temp))) | (temp == 0))
temp = round(rand(1l,1)*NV);
end % while
i =1+ 1;

[

select random numbers

settrain(l,i) = temp; % put into training set
end % while
settrain = sort(settrain);
=0

for i =1 : NV select the rest

~ o0

if isempty(find(settrain == i)
=3+ 1
settest (j) = i; % put into test set
end % 1f
end % for
elseif (T == 1) % REGULAR INTERVALS

-B-5-

© Robert Barry

Appendix B: MATLAB Code

inc = NV / NTrain;

settrain(l,1) = 1;

il = 1; i2 = 0;

test = 0;

for i =2 : NV
test = test + 1;
if (test >= inc)

test = mod(test,inc);

il =11 + 1;

settrain(1,il)
elseif (test < inc)

iz = 1i2 + 1;
settest(1,1i2)
end % if
end % for

end % 1if (T)

o0

training vector offset

e

data set counters

put into training set

oe

e

put into test set

-B-6-

© Robert Barry Appendix B: MATLAB Code

B.4 Do K-Means Clustering
(doCluster.m)

function ¢ = doCluster (PCn, k, reps,doplot, dim)

doCluster performs K-means clustering on a data set
PCn - number of principal components (from PC.mat)
k - number of classes to find (2, 3, 4, ..., 10)
reps - number of repetitions (1, 2, ..., N)

doplot - do a plot? (boolean)

dim - plot in 2D or 3D? (2 or 3, if k <= 6)

d° @ I e

C = DOCLUSTER (PCN, K,REPS, DOPLOT, DIM) returns the clusters

of the first PCN principal components for K classes using REPS
repetitions for the K-means algorithm, and plots the clusters
in DIM dimensions if DIM < 7 and DOPLOT = 1.

o 0 o0 o0 oo

de

Required functions: - bestclass.m
- doclustering.m
- plotclasses.m

o° d® J° o° o°

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.1 on July 8, 2003 at 9:20 pm (Central)

o0 e

load ../mat/PC.mat;

data = PC(:,1:PCn); % isolate principal components
% do K-means clustering

[rit, ris, c¢] = doclustering('kmeans', data, k, [], reps);

corig = c¢';

bc = bestclass(corig, k, reps); % find the best clusters

c = corig(:,bc);

if (dim) & (k < 7)
plotclasses(data,c,dim);

end % if

plot cluster?
up to 6 clusters in 2D or 3D

ae oo

-B-7-

© Robert Barry Appendix B: MATLAB Code

B.5 Do Self-Organizing Feature Map Verification
(doSOFM.m)

oe

doSOFM models data with a self-organizing feature map

o0

oo

This program displays the first two principal components
of the data, and the trained N by M SOFM which indicates
the classes within the 2D data.

C o® o

oo

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.1 on July 8, 2003 at 6:25 pm (Central)

o\°

clear all variables;
locad ../mat/PC.mat;
X = PC; x = x';
clear PC;

P = x(1l:2,:);
net = newsom ([0 2; 0 11,[2 3]1):
net.trainParam.epochs = 100000;

e

first two PCs
new SOFM
how many iterations

[

o

net = train(net,P); % train the SOFM

plot (P(1,:),P(2,:),'.g", 'markersize’, 20) % plot data
hold on

plotsom(net.iw{l,1},net.layers{1l}.distances) % plot SOFM
hold off

-B-8-

© Robert Barry Appendix B: MATLAB Code

B.6 Gamma Distribution Model
(gammamodel.m)

function charvec = gammamodel (Tm, Tv,Ts, Tk) ;

Tm,Tv,Ts, Tk - vectors for the mean, variance, skewness, and
kurtosis trajectories of the VFDT

CHARVEC = GAMMAMODEL (TM, TV, TS, TK) returns an eight-dimensional
vector represeting the alpha and beta parameters of the Gamma
distribution modeling the mean, variance, skewness, and kurtosis
trajectory histograms.

O° A% o® A° I° d° ¢ o o°

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on Octocber 21, 2002 at 5:30 pm (Central)

[

charvec = zeros(1,8):

numbins = 50;

TmH = hist (Tm, numbins) ; % create histograms
TvH = hist ;

I

’

)
(Tv, numbins) ;

TsH = hist (Ts,numbins)

TkH = hist (Tk,numbins)

Hm = TmH ./ sum(TmH); % create PDFs
Hv = TvH ./ sum(TvH):;

Hs = TsH ./ sum(TsH);

Hk = TkH ./ sum(TkH);

f = Hm; % Mean PDF

x = l:length(f);

exp x = 0; % mean (mu)

for 1 = 1 : length(f)
exp_x = exp x + x(i) * f(i);
end & for
exp_x2 = 0; % variance (sigma squared)
for i = 1 : length(f)
exp_x2 = exp_x2 + (x(i)-exp x)"2 * £(i);
end % for

b = exp_x2 / exp x; % model parameters
a = exp x / b;
charvec(l,1:2) = [a bi;

-B-9 -

© Robert Barry

Appendix B: MATLAB Code

f = Hv; % Variance PDF
exp_x = 0; % mean (mu)
for 1 =1 length(£f)
exp x = exp x + x{i1) * f£(i);
end % for
exp_x2 = 0; % variance (sigma squared)
for i =1 length(f)
exXp_x2 = exp_x2 + (x(i)-exp x)"2 * f£(i);
end % for
b = exp %2 / exp x; % model parameters
a = exp x / b;
charvec(1,3:4) = [a b];
f = Hs; % Skewness PDF
exp x = 0; % mean (mu)
for i =1 length(f)
eXp_X = exp x + x(i) * f£(i);
end % for
exp_x2 = 0; % variance (sigma squared)
for i = 1 length(f)
eXp_X2 = exp_x2 + (x(i)-exp x)"2 * f(i);
end % for
b = exp_x2 / exp x: % model parameters
a =exp x / b;
charvec(l,5:6) = [a b];
f = Hk; % Kurtosis PDF
exp X = 0; % mean (mu)
for i =1 length(f)
eXp_x = exp X + x(i) * f£(i);
end % for
exp_x2 = 0; % variance (sigma squared)
for i =1 length (f)
eXp_X2 = exp x2 + (x(i)-exp x)"2 * f(i);
end % for
b = exp x2 / exp x; % model parameters
a = exp x / b;
charvec(1,7:8) = [a b];
charvec = charvec';

-B-10-

© Robert Barry Appendix B: MATLAB Code

B.7 Get LAN Graph Info
(getfilegraphLLAN.m)

de

getfilegraphlAN creates the file trafficLAN.mat

oe oo

This program extracts the LAN traffic info from the file
trafficLANraw.mat and saves the compressed time and data
to the file trafficLAN.mat. The data are also plotted.

o0 o0 o

o

Required functions: none

o

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.11 on July 12, 2003 at 7:00 pm (Central)

de

clear all variables;

load ../mat/trafficLANraw.mat;

Tl = trafLAN;

clear traflAN; % save memory

L = cell(Tl(length(T1))*10);
T2 = zeros(L,2);

de

new length

T2(:,1) = ((1 + 1 : L)"')y ./ 10; % 0.1 sec time scale
it = 1; i2 = 1;

T2(i2,2) = T1(i1,2);

rinc = 0.1; % compression rate

r = rinc;

e

for i1 = 2 : length(T1)
if (T1(i1,1) > r)
i2 =12 + 1;

compressed time

r = r + rinc;
end % if
T2(i2,2) = T2(i2,2) + T1(i1,2);
end % for

T = T2;
clear T2;
save ../mat/trafficlLAN.mat T;

o

save memory

Ll = 1;

L2 length(T);

plot(T(L1:L2,1), (T(L1:L2,2)/1024));

xlabel ('Time (sec)'):;

ylabel ('KB requested / 100 ms');

title('Sampled LAN traffic on 29 August 1989');
sorient landscape;

gprint;

-B-11-

© Robert Barry Appendix B: MATLAB Code

B.8 Get VoIP Graph Info
(getfilegraphVoIP.m)

o0

getfilegraphVoIP creates the file trafficVoIP.mat

oe

oe

This program extracts the VoIP traffic info from the
file trafficVoIPraw.mat, converts it intoc a more useful
rate format, and saves the compressed time and data to
the file trafficVoIP.mat. The data are also plotted.

e o0 d¢ o©

oo

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.02 on July 14, 2003 at 9:45 pm (Central)

oe

clear all variables;

load ../mat/trafficVoIPraw.mat;
Tl = trafVoIP;

clear trafVoIP;

o°

save memory

Tx = zeros(size(T1l));
i2 = 0;
for i1 = 1 : length(T1) % isolate UDP packets

if (strcmp(VoIPprot(il,1:3),'UDP'))
i2 = 12 + 1;
Tx(1i2,1:2) = T1(i1,1:2);
end % if
end % for
Tl = Tx(1:12, :);
clear Tx VolIPprot; % save memory

L = ceil(Tl(length(T1))*10);
T2 = zeros(L,2);

o\

new length

sts = 10;
T2(:,1) = ({1 : 1 : L)"') ./ sts; % 0.1 sec time scale
for i1 =1 : length(T1) % compressed time
lc = ceil(T1(il,1)*sts);
T2(1c,2) = T2(1lc,2) + T1(il,2);
end % for
T = T2;

clear T1 T2;
save ../mat/trafficVoIP.mat T;

o

save memory

Ll = 1;
L2 length (T) ;

-B-12-

© Robert Barry Appendix B: MATLAB Code

T(:,2) = T(:,2) ./ 1024; % KB scale

plot ((T(L1:L2,1)./(60*60)),T(L1:12,2));

xlabel ('Time (hrs)');

ylabel ('KB transmitted / 100 ms');

title('Sampled VoIP traffic at TRLabs on 09 July 2003")
%orient landscape;

$print;

7

-B-13 -

© Robert Barry Appendix B: MATLAB Code

B.9 Get WWW Graph Info
(getfilegraphWWW.m)

getfilegraphWWW creates the file trafficWWW.mat

o0 oo

This program extracts the WWW traffic info from the
file trafficLANraw.mat, converts it into a more useful
rate format, and saves the compressed time and data to
the file trafficlLAN.mat. The data are also plotted.

o0 o® o0 o0 o oo

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarryf€pobox.com)
Revision 2.01 on July 13, 2003 at 7:45 pm (Central)

N o

clear all variables;

load ../mat/trafficWWWraw.mat;
time = trafWWw(:,1):;

bytes = trafWWw(:,2);

extime = trafWWWw(:,3);

clear trafWWwW; % save memory

Lold = length(time);

Lnew = sum(ceil (extime)); % new length (uncomp'd)

Ntime = zeros(Lnew,1l); % rate format

Nrate = zeros(Lnew,1);

i2 = 0;

for i1 = 1 : Lold % convert all data to
intervals = ceil(extime(il)); % bytes / sec format

rate = bytes(il) / intervals;
ttime time (il);
for j = 1 : intervals
i2 = i2 + 1;
Nrate(i2) = rate;
Ntime (i2) = ttime;
ttime = ttime + 1;
end % for
end % for

TO = zeros(Lnew,2);

TO(:,1) = Ntime;

TO(:,2) = Nrate;

Tl = sortrows(TO);

clear Ntime Nrate TO; % save memory

T = zeros{max(T1(:,1)),1);

© Robert Barry Appendix B: MATLAB Code

(1)) = T(T1(il,1)) + T1(il,2);

save ../mat/trafficWWW.mat T;

Ll = 1;

L2 = length(T);

sect = linspace(1,L2,L2); % time scale
plot((sect(Ll:L2)./(60*60*24)),(T(Ll:L2)./(1024*1024)));
xlabel ('Time (days)');

ylabel {'MB requested / sec');

title('Sampled WWW traffic in February 1995");

sorient landscape;

sprint;

-B-15-

© Robert Barry Appendix B: MATLAB Code

B.10 Get LAN File Info
(getfileinfoLAN.m)

oe

getfileinfolAN creates the file trafficLANraw.mat

e

=

This program extracts the LAN traffic info from the file
BC-pAug89.TL and saves the times and data to the file
trafficLANraw.mat for further processing.

o0 o0 e

o

Required functions: none

e

Copyright (¢} 2003 by Robert Barry (rbarry@pobox.com)
Revision 2.01 on July 12, 2003 at 2:45 am (Central)

S

clear all variables;

ddir = '../../Traffic Recordings/LAN - Bellcore';
cd(ddir);

count = 0; % initial variables
len = 1000001; % number of packets
time = zeros(1l,len);

bytes = zeros(1l,len);

fid = fopen('BC-pAug89.TL','r');
L = num2str(fgets(fid)):
i=0;
while not(strcmp(L,'-1"))
i=1+1;
while (L(1,1) == ' 1) % remove leading spaces
L = L(1,2:1ength(L));
end % while
spaces = findstr(L, ' ');
j = spaces(l);
while (L{(1,j:§+1) == * ') % remove middle spaces
L = strcat(L(1,1:3),L(1,j+1:1length(L)));
end % while

o

for each packet...

o

find spaces

spaces = findstr (L, ' '); % find spaces

J = spaces(2);

L =5L(1,1:35-1); % remove trailing spaces
j = spaces(1l); % find marker

time(1,1i) = strZ2num(L{(1,1:5-1));

bytes(1,1i) = str2num(L(1,j+1l:length(L)));

L = num2str(fgets(fid));
end % while
fclose (fid);

-B-16 -

© Robert Barry Appendix B: MATLAB Code

if (i < len) % crop final variables
time = time(1,1:1i);
bytes = bytes(1l,1:1);

end % if

trafLAN = zeros(length(time),2); % save final variables
trafLAN(:,1) = time';

trafLAN(:,2) = bytes’;

save ../../matlab/mat/trafficLANraw.mat trafLAN;

-B-17-

© Robert Barry Appendix B: MATLAB Code

B.11 Get VoIP File Info
(getfileinfoVoIP.m)

oe

getfileinfoVoIP creates the file trafficVoIPraw.mat

o0

oe

This program extracts the VoIP traffic info from the file
voipld.txt and saves the times, data, and protocol info
to the file trafficVoIPraw.mat for further processing.

o° a® o

o

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on July 12, 2003 at 7:15 pm (Central)

oo

clear all variables;

ddir = '../../Traffic Recordings/VoIP -~ TRLabs';
cd(ddir);

maxlen = 5000000;

time = zeros(l,maxlen);

bytes = zeros{(l,maxlen);

prot = char{zeros(maxlen,3)); % protocol (UDP, etc.)

fid = fopen('voipld.txt','r');
L = num2str(fgets(fid)); % ignore column headers

L = num2str(fgets(fid)):;

i=20;

while not (strcmp (L, '=1")) % for each packet...
i=14+ 1;
while (L(1,1) == ' ") % remove leading spaces

L = L(1,2:1ength(L));

end % while

spaces = findstr(L, ' '); % find spaces

J = spaces(1l);

while (L{(1l,j:j+1) == "') % remove middle spaces
L = strcat(L(1,1:3),L(1,j+1l:1length(L)));

end % while

spaces = findstr(L, ' '); % find spaces

J = spaces(2);

while (L(1,j:j+1) == "7 ") % remove middle spaces
L = strcat(L(1,1:]),L(1,j+1l:1length(L)));

end % while

spaces = findstr(L, ' ');: % find spaces

j spaces (3);

while (L(1,3:3+1) == "' ") % remove middle spaces

L = strcat(L(1,1:3),L(1,3+1:1length(L)));

-B-18 -

© Robert Barry

Appendix B: MATLAB Code

end % while
L = deblank(L);

spaces = findstr(L, ' ');

% remove trailing spaces

% find spaces

time(1,1) = str2num(L((spaces{(l)+1): (spaces(2)~1)));
bytes(l,i) = str2num(L((spaces(3)+1):length(L)));

z = L{(spaces(2)+1): (spaces(3)-1));
prot(i,l:length(z)) = z;

L = num2str(fgets(fid)):
end % while
fclose (fid);

if (i < maxlen)
time = time(1l,1:1);
bytes = bytes(1l,1:1);
VoIPprot = prot(l:i,:):
end % if

trafVoIP = zeros(length(time),2);

trafVoIP(:,1) = time';
trafVoIP(:,2) = bytes';

% crop final variables

% save final variables

save ../../matlab/mat/trafficVoIPraw.mat trafVoIP VoIPprot;

-B-19 -

© Robert Barry Appendix B: MATLAB Code

B.12 Get WWW File Info
(getfileinfoWWW.m)

oe

getfileinfoWWW creates the file trafficWWWraw.mat

oo

o

This program extracts the WWW traffic info from the files
listed in WWWnames.mat and saves the times and data to the
file trafficWWWraw.mat for further processing.

oC o® o

oe

Required functions: none

o

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 2.02 on July 12, 2003 at 1:10 am (Central)

[

clear all variables;

load ../mat/WWWnames.mat;
ddir = '../../Traffic Recordings/WWW - Boston University';
cd(ddir) ;

numfiles = length(WWWnames) ;

[

get WWW files names

initial variables

o0

count = 0;
startlen = 110000;

time = zeros(l,startlen);

bytes = zeros(l,startlen);

extime = zeros(l,startlen);

for i = 1 : numfiles % for each file.
i

fid = fopen(deblank (WWWnames (i, :)),'r"');
L = fgets(fid);
while (L ~= -1)

wadd = findstr(L, '"');
L = strcat(L(1l:(wadd(1)-1)),L((wadd(2)+1):1length(L)));
dspaces = findstr (L, ' 'Y; % find double spaces
while (not(lsempty(dspaces)))
strrep(L, ' U Yy, % replace double spaces
dspaces = findstr(L, ' ')Y; % find double spaces
end % while
spaces = findstr(L, ' '); % find markers
tmptime = str2num(L paces(1)+1): (spaces(2)-1 ;

((s 2)-1))
tmpbytes = str2num(L((spaces(3)+1): (spaces(4)~- l))),
(L{(LY)Y);
&

S
tmpextime = str2num (spaces(4)+1):length(L))}));
if ((tmpbytes ~= 0) (tmpextime ~= 0.0))
count = count + 1; % save new data
time(1l,count) = str2num(L({spaces(l)+1): (spaces(2)-1)));
bytes(l,count) = str2num(L((spaces(3)+1): (spaces(4)-1)));

-B-20 -

© Robert Barry

Appendix B: MATLAB Code

extime(1l,count) =
end % if
L = fgets(fid);
end % while
“fclose(fid):;
end % for

if (count < startlen)

time = time(l,1l:count);

bytes = bytes(1l, l:count);

extime = extime(l,1l:count);
end % if
time = time - min(time) + 1;
trafWWW = zeros(length(time),3);
trafWWW(:,1) = time';
trafWWW(:,2) = bytes';
trafWWW(:,3) = extime';
save ../.

str2num(L((spaces(4)+1):length(L)));

=1

crop final variables

e

change time offset

oe

save final variables

./matlab/mat/trafficWWiWraw.mat trafWWw;

-B-21-

© Robert Barry Appendix B: MATLAB Code

B.13 Graph Siamese Fighting Fish Traffic
(graphFish.m)

oe

graphFish graphs the Siamese Fighting Fish traffic at
different time scales

e de

[

To visuvally demonstrate the self-affine nature of the
Siamese Fighting Fish traffic, this program graphs the
fish traffic at three different time scales.

A0 o0 oo

[

Required functions: none

o

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.11 on July 17, 2003 at 2:05 am (Central)

[

clear all variables;

load ../mat/11020219%.mat;
x1l = x;

x1 x1 ./ 10;

clear x y z t;

load traffic

[

e

length in cm

k = 10; % scaling rate
tl = zeros(l,length(x1l)); % time (100 ms)
for i = l:length(tl)

tl(i) = 1 / (60 * 10); % time (min)

°

end % for

x2 = zeros(l,floor(length(x1)/k)); % second scale
for i = 1:(length(xl)/k)

x2 (1) = sum(x1((i*k)-(k-1):(i*k)));
end % for
t2 = tl(l:length(x2)); t2 = t2 .* k;
x3 = zeros(l,floor(length(x2)/k)); % third scale
for i = 1:(length(x2)/k)
xX3(1) = sum(x2((i*k)—-(k-1):(i*k))):

end % for
3 = t2(l:length(x3)); t3 = t3 .* k;

figure;

subplot(3,1,1); plot(tl,xl):
title('Averaged over 0.1 sec intervals'):
ylabel ('X (cm / 0.1 sec)');
subplot(3,1,2); plot(t2,x2);
title('Averaged over 1 sec intervals');

-B-22-

© Robert Barry Appendix B: MATLAB Code

ylabel ('X (cm / sec)');

subplot(3,1,3); plot(t3,x3);
title('Averaged over 10 sec intervals'):;
ylabel ('X {(cm / 10 sec)'):

xlabel ('Time (min)');

sorient landscape

$print

-B-23-

© Robert Barry

Appendix B: MATLAB Code

B.14 Graph LAN Traffic
(graphLLAN.m)

® o0 o

[

traffic,
different time scales.

e oP

[

Required functions: none

oe

Copyright (c)
Revision 1.1 on July 14,

[

clear all variables;

load ../mat/trafficLANraw.mat;
Tl = traflAN;

clear traflAN;

2003 by Robert Barry
2003 at 4:30 pm

graphLAN graphs LAN traffic at different time scales

To visually demonstrate the self-affine nature of LAN
this program graphs the LAN traffic at three

(rbarry@pobox.com)
(Central)

% save memory

[

new length

% 10 ms time scale

% compression rate

% compressed time

o0

KB scale

L = ceil(T1l{length(T1))*100);
T2 = zeros(L,2);
T2(:,1) = ((1 : 1 Ly'y ./ 100;
i1 = 1; i2 = 1;
T2(1i2,2) = T1(il1,2);
rinc = 0.01;
r = rinc;
for il = 2 length(T1)
if (T1(i1,1) > r)
i2 = 12 + 1;
r = r + rinc;
end % if
T2(1i2,2) = T2(i2,2) + T1(ii,2);
end % for
T = T2;
x1l = T(:,2);
x1l = x1 ./ 1024;
tl = T(:,1);

clear T T2:

k = 10;
x2 = zeros(l,floor(length(xl)/k)); %
for i = 1:(length(x1l)/k)

x2 (1) = sum(xl((i*k)-(k-1):(i*

o

save memory

o0

scaling rate
second scale

kK)))»

-B-24 -

© Robert Barry

Appendix B: MATLAB Code

end % for

t2 = tl(l:length(x2)); t2 = t2 .* k;
%3 = zeros(l,floor(length(x2)/k)); % third scale
for i = 1:(length(x2)/k)

x3 (1) = sum(x2 ((i*k)—-(k-1):(i*k))):

end % for
t3 = t2(l:length(x3)); t3 = t3 .* k;

figure;

subplot(3,1,1); plot(tl,xl):
title('Averaged over 10 msec intervals');
ylabel ('KB / 10 msec');

subplot(3,1,2); plot(t2,x2):
title('Averaged over 100 msec intervals');
ylabel (KB / 100 msec');

subplot(3,1,3); plot(t3,x3):;
title('Averaged over 1 sec intervals');
ylabel ('KB / sec');

xlabel ('Time (sec)');

%orient landscape

$print

-B-25-

© Robert Barry Appendix B: MATLAB Code

B.15 Graph VoIP Traffic
(graphVoIP.m)

oo

graphVoIP graphs VoIP traffic at different time scales

oe

oe

To visually demonstrate the self-affine nature of VoIP
traffic, this program graphs the VoIP traffic at three
different time scales.

dC 0@ o

o

Required functions: none

o

Copyright (c) 2003 by Robert Barry {(rbarry@pobox.com)
Revision 1.2 on July 16, 2003 at 11:55 pm (Central)

oo

clear all variables;

load ../mat/trafficVolIP.mat;
x1 = T(:,2);

x1 = x1 ./ 1024;

tl = T(:,1):

tl = tl ./ (60*60);

clear T;

load traffic

oe

(e

KB scale

oe

time (hours)
save memory

oe

k = 10;

[=8

scaling rate

X2 = zeros(l,floor(length(xl)/k)); % second scale
for i = 1:(length(xl)/k)
x2 (1) = sum(x1((i*k)-(k-1):(i*k))):

end % for
t2 = ti(l:length(x2)); t2 = t2 .* k;

x3 = zeros(l,floor(length(x2)/k)); % third scale
for i = 1:(length(x2)/k)
x3(1) = sum(x2((i*k)~(k-1):(i*k)));

[}

end % for
t3 = t2(l:1length(x3)); t3 = t3 .* k;

x4 = zeros(l,floor(length(x3)/k)); % fourth scale
for i = 1:(length(x3)/k)
x4 (1) = sum(x3((i*k)-(k-1):(i%*k)));
end % for
td = t3(l:length(xd)); t4 = t4 .* k;
figure;

subplot(4,1,1); plot(tl,xl);
title('Averaged over 0.1 sec intervals');
ylabel ('KB / 0.1 sec');

-B-26 -

© Robert Barry Appendix B: MATLAB Code

subplot(4,1,2); plot(t2,x2);
title('Averaged over 1 sec intervals');
ylabel ('KB / 1 sec');

subplot(4,1,3); plot(t3,x3);
title('Averaged over 10 sec intervals');
ylabel ('"KB / 10 sec'):;

subplot(4,1,4); plot(td,x4);
title('Averaged over 100 sec intervals');
ylabel ('KB / 100 sec'):

xlabel ("Time (hrs)');

%orient landscape

$print

-B-27-

© Robert Barry Appendix B: MATLAB Code

B.16 Graph WWW Traffic
(graphWWW.m)

oe

graphWWW graphs WWW traffic at different time scales

oe

[}

To visually demonstrate the self-affine nature of WWW
traffic, this program graphs the WWW traffic at three
different time scales.

o° o0 oo

oo

Required functions: none

oe

2003 by Robert Barry (rbarry@pobox.com)
2003 at 4:30 pm (Central)

Copyright (c)
Revision 1.1 on July 14,

oe

clear all variables;

load ../mat/trafficWWW.mat; % load traffic
xl = T;
x1 = x1 ./ (1024*1024); % MB scale
clear T; % save memory
tl = linspace(l,length(x1),length(x1))'; % time (sec)
tl = t1 ./ (60%60%*24); % time (days)
k = 10; % scaling rate
%2 = zeros{l,floor(length(x1l)/k)); % second scale
for i = 1:(length(x1l)/k)

X2(1) = sum(x1 {((i*k)~-(k-1):(i*k)));
end % for
t2 = tl(l:length(x2)); t2 = t2 .* k;
%3 = zeros(l,floor(length(x2)/k)); % third scale
for i = 1:(length(x2)/k)

x3(1) = sum(x2((i*k)-(k-1):(i*k)));
end % for
t3 = t2(l:length(x3)); t3 = t3 .* k;
figure;

subplot (3,1,1); plot(tl,xl1l);
title('Averaged over 1 sec intervals');
ylabel ('MB / sec');

subplot(3,1,2);
title('Averaged
ylabel ('MB / 10
subplot(3,1,3);
title('Averaged

plot (t2,x2);

over 10 sec intervals');
sec');

plot (t3,x3);

over 100 sec intervals'):;

-B-28 -

© Robert Barry Appendix B: MATLAB Code

ylabel ('MB / 100 sec');
xlabel ("Time (days)');
sorient landscape
$print

-B-29-

© Robert Barry Appendix B: MATLAB Code

B.17 Histogram Modelling
(HistModel.m)

oe

HistModel models the statistical histograms

oo

oe

This program uses gamma distributions to model the
statistical histograms of the 8D trajectory.

o° o©

o°

Required functions: none

o0

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.12 on July 28, 2003 at 10:15 am (Central)

e

clear all variables;

load ../mat/TXHist.mat; % load histograms
TmXHistN = TmXHist ./ sum(TmXHist);

TvXHistN = TvXHist ./ sum(TvXHist):;

TsXHistN = TsXHist ./ sum(TsXHist);

TkXHistN = TkXHist ./ sum(TkXHist):;

$ MEAN

figure(l);

f = TmXHistN;

x = l:length(f);

bar(f); title('Histogram of the MEAN');
$orient landscape; print;

exp x = 0; % mean (mu)
for i = 1 : length(f)
eXp_x = exp_x + x(i) * £(i);

end % for

exp x2 = 0; % variance (sigma squared)
for i = 1 : length(f)
exp_x2 = exp_x2 + (x(i)-exp x)"2 * f£(i);

end % for

b = exp x2 / exp x; $ Gamma distribution
a = exp x / b;
f_gammaK = ((x .” (a-1)) .* exp((-x) ./ b)) / ((b~a) * gammal(a));

f_gammaK = f gammaK ./ sum(f gammak);

figure(2);

bar (f gammakK) ;

title(['MEAN - Gamma Distribution Model, a = ',num2str(a), ', b =
',num2str(b)]);

-B-30-

© Robert Barry Appendix B: MATLAB Code

$orient landscape; print;
% VARIANCE

figure (3);

f = TvXHistN;

x = l:length(f);

bar(f); title('Histogram of the VARIANCE');
$orient landscape; print;

exp x = 0; % mean (mu)
for i = 1 : length(f)

exXp _x = exp x + x(i) * £(i);
end % for

exp x2 = 0; % variance (sigma squared)
for i = 1 : length(f)
eXp_X2 = exp x2 + (x(i)-exp x)"2 * f(i);

end % for

b = exp x2 / exp x; % Gamma distribution

a = exp x / b;

f_gammakK = ((x .” (a-1)) .* exp((~x) ./ b)) / ((b*a) * gamma(a));:
f_gammaK = f_gammaK ./ sum(f gammakK) ;

figure (4);

bar (f gammakK) ;

title(['VARIANCE - Gamma Distribution Model, a = ',num2str{(a), ', b =

'ynum2str(b)]);
%orient landscape; print;

% SKEWNESS

figure(5);

f = TsXHistN;

x = l:length(f):;

bar(f}; title('Histogram of the SKEWNESS'):
$orient landscape; print;

exp x = 0; % mean (mu)
for i = 1 : length(f)

exXp X = exXp X + x(i) * £(i);
end % for

exp x2 = 0; % variance (sigma squared)
for i = 1 : length(f)

EXP_XZ = exp_x2 + (x(i)-exp x)"2 * f(i);
end % for

-B-31-

© Robert Barry Appendix B: MATLAB Code

b = exp x2 / exp x; % Gamma distribution
a =exp x / b;
f_gammaK = ((x .”~ (a-1)) .* exp((-x) ./ b)) / ((b*a) * gamma{a));

f_gammaK = f gammaK ./ sum(f_ gammak) ;

figure (6);

bar(f gammakK) ;

title(['SKEWNESS -~ Gamma Distribution Model, a = ',num2str{a), ', b =
'ynum2str (b)) ;

%orient landscape; print;

% KURTOSIS

fiqure(7);
f = TkXHistN;
x = l:length(f);

bar(f); title('Histogram of the KURTOSIS');
sorient landscape; print;

o

exp x = 0; % mean (mu)
for i = 1 : length(f)

eXp X = exp_x + x(i) * £(i);
end % for

exp_x2 = 0; % variance (sigma squared)
for i = 1 : length(f)
exp_x2 = exp x2 + (x(i)-exp x)"2 * f£(i);

end % for

b = exp x2 / exp x: % Gamma distribution
a = exp x / b;
f_gammakK = ((x .” (a-1)) .* exp((-x) ./ b)) / ((b*a) * gamma(a));

f _gammaK = f_ gammakK ./ sum(f gammakK) ;

figure(8);

bar (f gammakK) ;

title(['KURTOSIS - Gamma Distribution Model, a = ',num2str(a), ', b=
',num2str(b)]);

sorient landscape; print;

-B-32-

© Robert Barry Appendix B: MATLAB Code

B.18 Local Histogram Modelling
(LHistModel.m)

oo

LHistModel models local statistical histograms

oo oo

This program uses gamma distributions to model the
local statistical histograms of the 8D trajectory.

oo oe

&

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.01 on July 28, 2003 at 10:25 am (Central)

oe

clear all variables;
load ../mat/TmX.mat; % load trajectories
load ../mat/TmX.mat;
load ../mat/TvX.mat;
load ../mat/TsX.mat;
load ../mat/TkX.mat;

TmXs = hist (TmX (200000:209000),100); % local histograms
TmXs = TmXs ./ sum(TmXs);

TvXs = hist (TvX(200000:209000),100);

TvXs = TvXs ./ sum(TvXs):;

TsXs = hist(TsX(200000:209000),100);

TsXs = TsXs ./ sum(TsXs):

TkXs = hist (TkX(200000:209000),100);

TkXs = TkXs ./ sum(TkXs);

f = TmXs;
x = l:length(f);
figure; bar(f);

exp x = 0; % mean (mu)
for i = 1 : length(f)
exXp_X = exp x + x(i) * f£(i);
end % for
exp x2 = 0; % variance (sigma squared)
for 1 =1 : length(f)
exp_x2 = exp_x2 + (x(i)-exp x)"2 * f(i);
end % for

b = exp x2 / exp_ x; % Gamma distribution
a = exp x / b;
f_gammakK = ((x .~ (a-1)) .* exp((-x) ./ b)) / ((b~a) * gamma(a));

-B-33 -

© Robert Barry Appendix B: MATLAB Code

f_gammaK = f_gammaK ./ sum(f gammakK);
figure; bar(f gammak);

title(['Gamma Distribution Model, a = ', num2str(a), ', b =
',num2str{b)]);

xlabel ('Bin'); ylabel ('Probability');

f = TvXs;

X = l:length(f):

figure; bar(f);

exp x = 0; % mean (mu)
for i = 1 : length(f)

exXp x = exXp x + x(i) * £(i);
end % for

exp x2 = 0; % variance (sigma squared)
for i = 1 : length(f)
exp_xX2Z = exp_ X2 + (x(i)-exp x)"2 * f(i);

end % for

b = exp x2 / exp x; % Gamma distribution
a =exp x / b;
f_gammaK = ((x .~ (a-1)) .* exp((-x) ./ b)) / ((b*a) * gamma(a));

f_gammaK = f_gammaK ./ sum(f gammakK) ;
figure; bar(f gammakK);

title(['Gamma Distribution Model, a = ',num2str(a), ', b =
',num2str(b) 1) ;

xlabel('Bin'); ylabel ('Probability');

f = TsXs;

x = l:length(f);
figure; bar(f);

exp x = 0; % mean (mu)
for i = 1 : length(f)
€Xp X = exXp X + x(i) * £(i);

end % for

exp x2 = 0; % variance (sigma squared)
for i = 1 : length(f)

exp_X2Z = exp_x2 + (x(i)-exp x)"2 * f£(i);
end % for

b = exp x2 / exp x; % Gamma distribution
a =exp x / b;
f_gammaK = ({x .” (a-1)) .* exp((-x) ./ b)) / ((b”a) * gamma{a));

{
f_gammaK = f_gammaK ./ sum(f gammakK) ;
figure; bar(f gammak);

-B-34 -

© Robert Barry Appendix B: MATLAB Code

title(['Gamma Distribution Model, a = ',num2str(a), ', b=
', num2str(b)]);
xlabel ('Bin'); ylabel ('Probability'):

f = TkXs;
X l:length(f);
figure; bar(f);

i

exp x = 0; % mean (mu)
for 1 = 1 : length(f)
€xXp x = exp x + x(i) * f£(i);

end % for

exp x2z2 = 0; % variance (sigma squared)
for i = 1 : length(f)
exXp X2 = exp x2 + (x(i)-exp x)"2 * £(i);

end % for

b = exp x2 / exp x; % Gamma distribution
a = exp x / b;
f_gammaK = ((x .~ (a-1)) .* exp((-x) ./ b)) / ((b~a) * gamma(a));

f_gammaK = f gammaK ./ sum(f gammakK) ;

figure; bar(f gammak);

title(['Gamma Distribution Model, a = ',num2str(a), ', b =
',num2str(b)]);

xlabel ('Bin'); ylabel ('Probability'):

-B-35-

© Robert Barry

Appendix B: MATLAB Code

B.19 Plot Classes
(plotclasses.m)

function plotclasses(data,c,d);

oe

data - data points
¢ - classes (2, 3, ..., 10)
d - dimensions to plot (2 or 3)

A% JC dO oo

oo

classes C in DATA.

oe

o

Required functions: none

oe

oe

cl = zeros(size(data)); il = 0;
C2 = zeros(size(data)); 12 = 0;
c3 = zeros(size(data)); i3 = 0;
cd4 = zeros(size(data)); i4 = 0;
c5 = zeros(size(data)); i5 = 0Q;
c6 = zeros(size(data)); i6 = 0;
for i = l:length(data)
if (c(i) == 1)
i1 = 11 + 1;
cl(il,:) = data(i,:);

i2 = 12 + 1;
c2(i2,:) = data(i,:);
elseif (c(i) == 3)
i3 = 13 + 1;
c3(i3,:) = data(i,:);
elseif (c(i) == 4)
i4 = 14 + 1;
c4(id4,:) = data(i,:);
elseif (c(i) == 5)
i5 = 15 + 1;
c5(15,:) = data(i, :);
elseif (c(i) == 6)
i6 = 16 + 1;
c6(i6,:) = data(i,:);
end % if
end % for
cl = cl(1:11,:);

o,

[}

% classes to plot

PLOTCLASSES (DATA,C,D) returns a 2D or 3D plot of the

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 2.02 on July 28, 2003 at 7:30 am (Central)

% assign data to classes

-B-36 -

© Robert Barry Appendix B: MATLAB Code

c2 = ¢c2(1:12,:
c3 = ¢3(1:13,:
cd = c4(1:14,:
(1
(1

~e

PN

cS5 = ¢5(1:1i5,
c6 = c6(1:16,:

~.

~

~e

if

—
Il
Il

~—

e

plot in 2D

for 1 = 1l:length(data)
if (c(i) == 1)
da (1),data(i,2),'.x");
elseif c() == 2)
data(i,1l),data(i,2),"'.g");
C() == 3)
data(i,1l),data(i,2),".b");
c() == 4)
data(i,1),data(i,2),"'.c'};
C() == 5)
plot (da (1 1),data(i,2),'.y"):
elseif (c(== 6)
plot data(l,l),data(i,Z),'.m');
end % if
end % for
hold off;
elseif (d == 3) % or plot in 3D
figure;
plot3(cl(:,1),cl(:,2),cl(:,3),".r");
hold on;
plot3(c2(:,1
plot3(c3(:,1
plot3(cd(:,1
(:,1
(:,1

)

(

(

(

(

(
elseif (
(
elseif (
(

(

(

.

~

~
0
~

~

~
Q
.

plot3(cS

plot3(c6

hold off;
end % if

.

~

~
0

~ ~

0 Q

o U W N
~

wwwww
<

3 0 0Q

~
~

~
DN DN DN

-B-37-

© Robert Barry Appendix B: MATLAB Code

B.20 Plot Fish Record
(plot_fish.m)

function plot_fish(x,t,traj,tmin,tmax,Nt,woff,bound,frec,fnum)

plot fish plots the fish trajectory and its VFDT.

®x — location of the fish (1D vector)

t - time at each position (1D vector)

traj - VFDT of x (they must be the same length) (1D vector)
tmin - first point to plot (tmin >= 1)

tmax - last point to plot (tmax <= length(t)) (tmin < tmax)
Nt - size of window (256, 512, 1024, 2048, 4096, or 8192)
woff - window offset (0 <= wn <= Nt)

bound - ensure that traj <= 2 ? (boolean)

frec - fish record identification

fnum - figure number

00 d° O O O° O° A0 o0 o° oo

PLOT_FISH(X,T,TRAJ,TMIN,TMAX,NT,WOFF,BOUND,FREC,FNUM) plots the
position X of a fish and the variance fractal dimension trajectory
TRAJ at all points in time T (TMIN <= T <= TMAX) . If BOUND == 1,
then the amplitude of TRAJ is ensured to be between 1 and 2 (incl).
FREC, NT, and WOFF are the fish record identification, window size,
and window offset, which are used in the title of figure FNUM.

O 0 O o0 oe

oo

o0 o do o

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.16 on July 5, 2003 at 6:00 pm (Central)

[SISl

if (bound == 1) % ensure that traj <= 2 ?
tb = traj;
for k = 1 : length(tb)
if (tb(k) > 2)
tb (k) 2;
elseif (tb(k) < 1)
tb (k) 1;
end & 1if
end % for
traj = tb; % save truncated trajectory
end % if

—

If

£ 10;
t =t / (60%60*f);

sampling frequency
time in hours

oe oo

figure (fnum);
subplot(2,1,1);

-B-38 -

© Robert Barry Appendix B: MATLAB Code

plot(t(tmin:tmax),x(tmin:tmax))

;7 % plot fish traffic
title(['Fish Traffic - ', frecl);

xlabel ('Time (hrs)');

ylabel ('Distance from Mirror (mm)');

subplot(2,1,2);

plot(t(tmin:tmax),traj(tmin:tmax)); % plot VFDT

title ({'VFDT - Window Size = !, int2str(Nt), ' , Window Displacement = ',

int2str(woff)]);
xlabel ('Time (hrs)');
ylabel ('Variance Fractal Dimension');

-B-39 -

© Robert Barry Appendix B: MATLAB Code

B.21 PNN Classification
(PNNclassification.m)

PNNclassification classifies previously unobserved
traffic

This program trains an optimal PNN with to classify
previously unobserved traffic. The percent correct
classification and confusion matrix are displayed.

A0 o0 0 0 G0 o o° o°

Required functions: none

Copyright {(c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on July 25, 2003 at 11:15 pm (Central)

P oe

clear all variables;

nPC = 4; % principal components
load ../mat/PC.mat; PC = PC';
PC = PC(1l:nPC,:); % first 4 PCs

oo

load ../mat/c3.mat; ¢ = ¢c3'; c =3

optimized sigma
when 50% and ¢ = 3

sigma = 0.067;

oo oo

o

load ../mat/PNNsetsSig.mat; training & test sets
SetTrain = SetTrainRegb0; SetTest = SetTestReg50;
$SetTrain = SetTrainRan50_1; SetTest = SetTestRanb0_1;
$SetTrain = SetTrainRand0 2; SetTest SetTestRand0_2;
$SetTrain = SetTrainRan50_3; SetTest = SetTestRan50_3;
$SetTrain = SetTrainRan50 4; SetTest SetTestRanb0_4;
$SetTrain = SetTrainRan50 5; SetTest SetTestRanb0_5;

I

ctrain = zeros(nPC,length(SetTrain)):
ctest = zeros(nPC,length(SetTest)):
cltrain = zeros(l,length(SetTrain)}):
cltest = zeros(l,length(SetTest)):

for 3 = 1 : length(SetTrain) % create training vectors
ctrain(:,3J) = PC(:,8etTrain(j));
cltrain(j) = c(3j):

end % for

for 3 = 1 : length(SetTest) % create test vectors
ctest(:,J) = PC(:,SetTest(j)):
cltest(j) = c(3);

end % for

-B-40 -

© Robert Barry

Appendix B: MATLAB Code

T = ind2vec(cltrain);
net = newpnn(ctrain, T, sigma);
Y = sim{(net,ctest);

Yc = vec2ind(Y);

targets
train PNN
test PNN

o® o0 oe

confusion matrix

% misclassification

conmatrix = zeros(3):; %
results = cltest - Yc¢;
numwrong = 0;
for j = 1l:length(results)
if (results(j) ~= 0)
results(j) = -1;
numwrong = numwrong + 1;
end % if
conmatrix(cltest (j),Yc(3))
end % for
percor = (l-(numwrong/length(results)))*100

conmatrix

conmatrix(cltest(j),Yc(j)) + 1;

-B-41 -

© Robert Barry Appendix B: MATLAB Code

B.22 Read Fish Record
(read_fish.m)

function [x,y,z,t] = read fish(frec);

read_fish reads a data record received from Dr. Pear (U of M).
frec - fish record identification

[X,Y,2,T] = READ FISH(FREC) reads the fish record FREC and returns
X, Y, and Z at all times T. Tracking errors are removed using
linear interpolation.

o0 dO 0 o dO o0 © oo

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.13 on July 8, 2003 at 6:05 pm (Central)

o0 o0

T = dlmread(frec):

t = T(:,1);

X =T(:,2);

y = T(:,3);

z = T(:,4):

e = T(:,5);

clear T; % save memory!

k= 1;
while (e(k) == 0) % initial tracking errors?
k =k + 1; % find the first instance of no errors
end % while
xt = x(k); % temporary value
for kt =1 : k-1 % remove initial tracking errors
x(kt) = xt;
end & for
kl = k+1;
k = length(e);
while (e(k) == 0) % final tracking errors?
k=%k~-1; % find the last instance of no errors
end % while
xt = x(k); % temporary value
for kt = k+1 : length(e) % remove final tracking errors
x(kt) = xt:;
end & for
k2 = k;

-B-42 -

© Robert Barry

Appendix B: MATLAB Code

while (k1 < k2) % remove all tracking errors by
if (e (kl) == () % linear interpolation
2t x(kl-1); % store previous known point
d = 1; % distance between known points
while (e(kl) == 0) % how many tracking errors?
kl = k1 + 1;
d=d+ 1;
end % while
inc = (x(kl) - x(kl-d)) / d; % increment
for kt = (kl-d+1) (k1-1)
xt = xt + inc; % interpolate
x(kt) = xt;
end & for
end % if
k1l = k1 + 1;
end % while
if (min(x) < 0)
X = X + abs(min(x)); % make distances non-negative
end % if
1if (min(x) > 0)
X = x - min(x); % or make smallest distance = 0
end % if

o° oe

o0 oe

k-1
vt»

k = length(
while (e(k)
k = -

= 0)

o0 0P

) :
k 1;
while
yt = y(k}:
for kt = k+1
y(kt) =
end % for
k2 = k;

o0 ge

length (e)
vt

while

(kl < k2)
if (e =

(k1)

oC o°

=O)

initial tracking errors?
find the first instance of no errors

temporary value
remove initial tracking errors

final tracking errors?
find the last instance of no errors

temporary value
remove final tracking errors

remove all tracking errors by
linear interpolation

-B-43 -

© Robert Barry

Appendix B: MATLAB Code

d=d+ 1;

end % while

inc = (y(kl) - y{(kl-d))

for kt = (kl-d+1)
vyt = yt + inc:
y(kt) = yt;

end % for

end % if

k1l = k1 + 1;
end % while

if (min(y) < 0)
y =y + abs{min(y)):;
end § if
if (min(y) > 0)
=y - min(y);
if

o0

k =1;

while (e(k) == 0)
k =%k + 1;

end % while

zt = z(k);

for kt =1 k-1
z(kt) = zt;

end % for

kl = k+1;

k = length(e);

while (e(k) == 0)
k =%k -1;

end % while

zt = z(k);

for kt = k+1 length(e)
z(kt) = zt;

end % for

k2 = k;

while (k1 < k2)
if (e(kl) == 0)

zt = z(kl-1);
d = 1;

store previous known point
distance between known points
how many tracking errors?

o° oo

oe

/ d; % increment
(kl1-1)

% interpolate

©

% make distances non-negative

% or make smallest distance = 0

o

initial tracking errors?
find the first instance of no errors

(&

oo

temporary value
remove initial tracking errors

oe

oo

final tracking errors?
find the last instance of no errors

o

&

temporary value
remove final tracking errors

[

oe

remove all tracking errors by
linear interpolation

store previous known point
distance between known points

0 oo

oe

-B-44 -

© Robert Barry

Appendix B: MATLAB Code

while (e{kl) == 0) % how many tracking errors?
k1l = k1 + 1;
d=d+ 1;
end % while
inc = (z(kl) - z(ki-d)) / d; % increment
for kt = (kl-d+1) (k1-1)
zt = zt + inc; % interpolate
z(kt) = zt;
end % for
end % 1if
kl = k1 + 1;
end % while
if (min(z) < 0)
z = z + abs(min(z)); % make distances non-negative
end % if
if (min{(z) > 0)
z = z - min(z); % or make smallest distance =
end % 1f
%save ../mat/1102021%.mat x y z t; % save record

0

-B-45 -

© Robert Barry Appendix B: MATLAB Code

B.23 Rényi Multifractal Dimension Spectrum
(Renyi.m)

function Dg = Renvi (traf, gr)

o°

Dg - Renyi dimension spectrum
traf - traffic sequence
gr - range of g

o° o e

o0

DO RENYI (TRAF,QR) returns the Renyi dimension spectrum
of a sequence of self-affine traffic TRAF with spectrum
range QR.

oP d° o
1

oe

Required functions: none

e

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 2.01 on July 26, 2003 at 7:30 pm (Central)

oe

traf = traf ./ max(traf); % traf amplitude is now [-1,1]
traf = traf / 1.001; % traf amplitude is now (-1,1)
Mx = 1; Mn = -1; % max and min mesh ranges

LTr = length(traf);

for w =1 : LTr
a=w- LTr/2;
a = (a/(LTr/2)) / 1.001;
traf(w) = a + traf(w)*i;

[

end % for

oe

convert traffic sequence into a
complex number representation
traf range is now (-1,1)

e

s

bin = LTxr / 2;

r = real(traf(2)-traf(l)) * 2;
mx = linspace(Mn,Mx,bin+1):
my = mx;

p = zeros(bin,bin);

maximum reliable resolution
create a mesh where

mx - rows; my - columns

of corners in vel

o0 e

a0 Qe

for b = 1 : LTr

c = 1;

target = imag(traf(b));

while not((target >= mx(c)) &
c =c¢ + 1; end % while

X =c¢c; c=1;

target = real(traf(b)); % column

while not((target >= my(c)) & (target < my(c+1)))
c =c + 1; end % while

y = c;

p(x,y) = p(x,y) + 1; % update bin

[

calculate the location of a vel
for a given point in the sequence
row
target < mx(c+l)))

(&8

— o

-B-46 -

© Robert Barry Appendix B: MATLAB Code

end % for b

[m,n] = find(p > 0);
p = p / length(traf); % create probabilities
for g = -qr : qr

H = 0;

for pos = 1l:length(m)
b = m(pos); ¢ = n(pos);
H==H + ((p(b,c))"a);
end % for
if (g ~= 1)
H = (log2(H))/(1-q);
end % if
D{(g+gr+l) = H / log2(1l/r);
Dg(g+qr+l) = g;
end % for g
D(gr+2) = (D(gr+l)+D(qr+3)) / 2; % when q = 1
plot (Dg, D)
xlabel('qg');
ylabel ('D q'

oe

Renyi entropy

oe

avoid division by 0

):

-B-47 -

© Robert Barry Appendix B: MATLAB Code

B.24 Select Number of Classes
(selectnumclasses.m)

[

selectnumclasses indicates the most likely number of
classes in the data

o o°

oe

This program helps the user detect the most likely
number of classes in the data by calculating the
classification accuracy with good values of sigma
(as determined by the program 'selectsigmas') for
an increasing number of classes from ¢ = 2 to 10.

o d® o o° oe

oe

Required functions: none

a0

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.02 on July 24, 2003 at 2:10 pm (Central)

o

clear all variables;

nPC = 4; % principal components

load ../mat/PC.mat; PC = PC';

PC = PC(1:nPC, :):; % first 4 PCs

load ../mat/sigmas.mat; % good sigmas for each
% number of classes

sigma = sigma30;

$sigma = sigma40;

$sigma = sigmab0;

load ../mat/PNNsetsReg.mat; % training & test sets

SetTrain = SetTrainReg30; SetTest = SetTestReg30;
$SetTrain = SetTrainReg4(; SetTest = SetTestRegd0;
%$SetTrain = SetTrainReg50; SetTest = SetTestReg50;

c = zeros (10, length(PC)); % all classes
load ../mat/c2.mat; c(2,:) = c2';

load ../mat/c3.mat; c(3,:) = c3';

load ../mat/c4.mat; c(4,:) = c4d';

load ../mat/c5.mat; c(5,:) = c5';

load ../mat/c6.mat; c(6,:) = c6';

load ../mat/c7.mat; c(7,:) = c7';

load ../mat/c8.mat; c(8,:) = c8';

load ../mat/c9.mat; c(9,:) = c9';

load ../mat/clO.mat; c(10,:) = cl0';

percor = zeros(l,length(sigma)); % percent correct

e

percor(l,1) = 100; always 100% @ ¢ = 1

-B-48 -

© Robert Barry Appendix B: MATLAB Code

for 1 =1 : (length(sigma)-1) % 9 simulations
i+1
clear ctrain ctest cltrain cltest sig T; % clear
clear net Y Yc results numwrong;

ctrain = zeros(nPC,length(SetTrain));

ctest = zeros(nPC, length(SetTest))

cltrain = zeros(l,length(SetTrain));

cltest = zeros(l,length(SetTest));

for j = 1 : length(SetTrain) % create training vectors
ctrain(:,j) = PC(:,SetTrain(j)):
cltrain(j) = c((i+1),3):

end % for

for j = 1 : length(SetTest) % create test vectors
ctest(:,]) = PC(:,SetTest(j));
cltest(j) = c((i+1),3);

end % for

sig = sigma(i+1);

T = ind2vec(cltrain);

net = newpnn{ctrain,T,sig);
Y = sim(net,ctest);

Yc = vec2ind(Y);

targets
train PNN
test PNN

e o° oe

results = cltest - Yc:
numwrong = 0;
for 3 = l:length(results)
if (results(j) ~= 0)
results(j) = -1; $ misclassification
numwrong = numwrong + 1;
end % if
end % for
percor(l, (i+l)) = (l1-(numwrong/length(results)))=*100;
end % for (sigma)
percor
gpercor30 = percor;
$load ../mat/percor.mat;
¥save ../mat/percor.mat percor*;

i = linspace(2,length(sigma), (length(sigma)-1)):
plot(i,percor(2:length(sigma)));

Xlabel ('Number of Classes');

ylabel ('Percentage Correct Classification');

-B-49 -

© Robert Barry Appendix B: MATLAB Code

B.25 Select Sigmas
(selectsigmas.m)

selectsigmas indicates a good value of sigma for a
given number of classes

This program finds a value of sigma which gives the
highest correct classification for a given number of
classes and a P%/(P-1)% training/test set ratio
constructed by selecting data from regular or random
intervals.

A JO P GC IC O o OO P oo

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.12 on July 23, 2003 at 11:50 pm (Central)

o0 o°

clear all variables;

nPC = 4; % principal components
load ../mat/PC.mat; PC = PC';
PC = PC(1l:nPC,:); % first 4 PCs

3load ../mat/c2.mat; c = ¢c2°';
load ../mat/c3.mat; ¢c = c3';

$load ../mat/cd4d.mat; c = c4d';
$load ../mat/c5.mat; ¢ = c5';
$load ../mat/c6.mat; c = c6';
%3load ../mat/c7.mat; c = c7';
%load ../mat/c8.mat; c = c8';
%3load ../mat/cY9.mat; c = c9';

3load ../mat/clO0.mat; ¢ = cl10°';
load ../mat/PNNsetsSig.mat; % training & test sets

$SetTrain = SetTrainReg30; SetTest = SetTestReg30;

$SetTrain = SetTrainRan30_1; SetTest = SetTestRan30 1;
%SetTrain = SetTrainRan30 2; SetTest = SetTestRan30 2;
%$SetTrain = SetTrainReqg40; SetTest = SetTestReg4d0;

$SetTrain = SetTrainRan40_1; SetTest = SetTestRan40 1;
$SetTrain = SetTrainRand0_2; SetTest = SetTestRan40 2;
%SetTrain = SetTrainRand0_3; SetTest = SetTestRan40 3;

SetTrain = SetTrainReg50; SetTest = SetTestReg50;
%SetTrain = SetTrainRan50_1; SetTest = SetTestRan50 1;
$SetTrain = SetTrainRan50 2; SetTest = SetTestRan50_ 2;

- B-50 -

© Robert Barry Appendix B: MATLAB Code

ctrain = zeros(nPC, length(SetTrain));
ctest = zeros(nPC,length(SetTest)):
cltrain = zeros{(l,length(SetTrain));

cltest = zeros(l,length(SetTest));

for i = 1 : length(SetTrain) % create training vectors
ctrain(:,1i) = PC(:,SetTrain(i));
cltrain(i) = c(i);

end % for

for i = 1 : length(SetTest) % create test vectors
ctest(:,1) = PC(:,SetTest (i));
cltest(i) = c(i);

end % for

%sigma = zeros(1l,25); % try sigmas between
$sigma(7:25) = linspace(1,10,19); % 0.001 and 10.0
sigma = zeros(1l,15); % try sigmas between
sigma(7:15) = linspace(1,5,9); % 0.001 and 5.0
sigma(l) = 0.001; % constant sigmas
sigma(2) = 0.005;

sigma(3) = 0.01;

sigma(4) = 0.05;

sigma(5) = 0.1;

sigma(6) = 0.5;

percor = zeros(l,length(sigma));

slen = length(sigma);

for 1 = 1 : slen
sig = sigma(i):
T = ind2vec{(cltrain); % targets
net = newpnn(ctrain,T,siqg); % train PNN
Y = sim(net,ctest); % test PNN

Yc = vec2ind(Y):;

results = cltest - Yc;

nunwrong = 0;
for j = l:length(results)
if (results(j) ~= 0)
results(j) = -1; % misclassification
numwrong = numwrong + 1;
end % if
end % for
percor(i) = 1 - (numwrong/length(results));
end % for (sigma)
percor

-B-51 -

© Robert Barry Appendix B: MATLAB Code

plot(sigma{l:slen),percor{l:slen));

xlabel ('Sigma');

ylabel ('Percentage Correct Classification');
sigma (find (percor == max(percor)))

-B-52-

© Robert Barry Appendix B: MATLAB Code

B.26 Verify Rényi Dimension Spectrum
(VerifyRD.m)

function [RYES,RNO,RNUM] = VerifyRD(xt,Nt)

VerifyRD stands for "verify Rényi Dimension"
xt - 1D vector (xt >= Nt)
Nt - size of window (256, 512, 1024, 2048, 40896, or 8192)

[RYES, RNO,RNUM] = VERIFYRD(XT,NT) returns the number of
Rényi dimensions RYES that demonstrate multifractality,
the number RNO that do not, and the number of non-zero

cells RNUM of XT using windows of size NT.

0 O 0 G O° A O O d© e

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on June 30, 2003 at 9:30 pm (Central)

e oo

RYES = 0; RNO = 0;

r min = 1;

r max = Nt;

tj = zeros(l,length(xt));

min window value
max window value
enpty array (to speed up program)

o go oo

J o= 0;
while (r max <= length (xt))
=3 +1 counter

o oo

traf = xt(r_min : r max); isolate a window of traffic

traf = traf ./ max(traf); % traf amplitude is now [-1,1]
traf = traf / 1.001; % traf amplitude is now (-1,1)
Mx = 1; Mn = -1; % max and min mesh ranges

LTr = length(traf);

for w=1 : LTr
a =w - LTr/2;
a = (a/(LTr/2)) / 1.001;
traf(w) = a + traf(w)*i;

convert traffic sequence into a
complex number representation
traf range is now (-1,1)

o° o0 oo

bin = LTr / 2;

r = real (traf(2)-traf(l)) * 2; maximum reliable resolution

3

K
mx = linspace (Mn,Mx,bin+l); % create a mesh where
my = mx; % mX - rows; my - columns
p = zeros(bin,bin); % # of corners in vel

for b =1 : LTr calculate the location of a vel

oe

-B-53 -

© Robert Barry

Appendix B: MATLAB Code

c = 1;

target = imag(traf(b));

while not((target >= mx{c))

c =c + 1; end
Xx =c; c=1;

o

% while

target = real(traf(b)):

while not((target >= my(c))

c =c¢c + 1; end
PxX,y) = p(x%,y) +
[m,n] = find(p > 0):

if (length(m) < Nt)
RYES = RYES + 1;

else % (length(m) >=
RNO = RNO + 1:

end % if

t3(j) = length(m);

r_max/length(xt)*100
r min = r min + Nt;
r max = r_max + Nt;
end % while

RNUM = tj(1:3);

Q

% while

1;

Nt)

&

&

% for a given point in the sequence
% row
(target < mx(c+1)))

% column
(target < my(c+1l)))

[

% update bin

% store vector

oe

display percentage completion
update window position

o

-B-54 -

© Robert Barry Appendix B: MATLAB Code

B.27 Verify Self-Affinity

fu

o0 C o® O° OO A® A° IO o°

o

oe

[

(VerifySA.m)

nction ([X,Y,s,D] = VerifySA(traf,t,Nt)

VerifySA verifies the self-affinity of a window of data
traf - 1D vector (traf >= Nt)

t - corresponding time segment

Nt - size of window (256, 512, 1024, 2048, 4096, or 8192)

[X,Y,S,D] = VERIFYSA(TRAF,T,NT) returns the X and Y
coordinates of a log-log plot, slope S, and dimension
D of TRAF during time T using windows of size NT.

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on June 23, 2003 at 6:30 pm (Central)

min = 1; % min window value
_max = Nt; % max window value
= 2; % dyadic sequence
_low = 2; % minimum separation
max = fix(log(Nt)/log(b)); % maximum separation
buf = ceil(log(30)/log(b));
_hi = K max - K buf;
= traf(r_min : r max); % isolate a window of traffic
1) = 1; % avoid division by zero (with N)
2) = 272; n(3) = 2"3;
(Nt > 256) n(4) = 2"4; end % points in interval
(Nt > 512) n(5) = 275; end
(Nt > 1024) n(6) = 276; end
(Nt > 2048) n(7) = 2"7; end
(Nt > 4096) n(8) = 278; end
= Nt ./ n; % number of such intervals
1) = 0; N(1) = 0; % mark invalid cells with zeros
= x{1)*ones(1l,length(n)); % assign first values (fv)
= zeros(1,K hi): % terms a and b in the variance
= ta; % equation that is used below
r k =2 : Nt % look at each point in the window
if (mod(k,b"2) == 0) $n =4
ta(2) = ta(2) + (fv(2)-x(k))"2;

-B-55-

© Robert Barry Appendix B: MATLAB Code
tb(2) = th(2) + (fv(2)-x(k));
fv(2) = x(k); end % if
if (mod{k,b"3) == 0) $ n =8
ta(3) = ta(3) + (fv(3)-x(k))"2;
tb(3) = th(3) + (fv(3)-x(k));
fv(3) = x(k); end % if
if (Nt > 256)
if (mod(k,b"4) == 0) ¢ n=16
ta(d) = ta(d) + (fv(4)-x(k))"2;
thb(4) = tbh(4) + (fv(4)-x(k));:
fv(4) = x(k); end; end % if / if
if (Nt > 512)
if (mod(k,b"5) == 0) % n = 32
ta(d) = ta(5) + (fv(5)-x(k))"2;
th(5) = tb(5) + (£fv(5)-x(k)):
fv(5) = x(k); end; end % if / if
if (Nt > 1024)
if (mod(k,b”6) == 0) % n = 64
ta(6) = ta(6) + (fv(6)-x(k))"2;
thb(6) = th(6) + (fv(6)-x(k));
fv(6) = x(k); end; end % if / if
if (Nt > 2048)
if (mod(k,b"7) == 0) $ n = 128
ta(7) = ta(7) + (£v(7)-x(k))"2;
th(7) = tb(7) + (fv(7)-x(k)):
fv(7) = x(k); end; end % if / if
if (Nt > 4096)
if (mod{k,b"8) == 0) % n = 256
ta(8) = ta(8) + (fv(8)-x(k))"2;
tb(8) = tb(8) + (fv(8)-x(k));
fv(8) = x(k); end; end % if / if
end % for
K= 0;
for k = K low : K hi % calculate the wvariance
K=K+ 1;
Vr(K) = (ta(k)-({(tb(k))"2)/N(k)))/(N(k)-1);
vVn(K) = n(k);
end % for
X = log2(Vn); % compute X and Y
Y = log2(Vr);
K=K hi - K low + 1;
sl = (K*sum(X.*Y)) - (sum(X)*sum(Y));
82 = (K*sum(X.”2)) - ((sum(X))"2);
s = sl / s2; % calculate the slope s
H=s/2; % calculate the Hurst exponent
E = 1; % Euclidean embedding dimension

-B-56 -

© Robert Barry

Appendix B: MATLAB Code

D=E+ 1 - H;

figure(l):;

plot ((t./10),traf);

xlabel ('Time (sec)'):

ylabel ('Distance from Mirror

figure(2);
plot(X,Y,'o"):
grid on;
Xlabel('log(X)")
vlabel ('log(Y)');
[P,S] = polyfit (X
Yl = P(1) .* X +
hold on;

plot (X,Y1):;

hold off;

’

Y,1);
(2):

7 Ly
P(2);

)

% calculate variance dimension

[}

% plot original data

(mm) ") ;

% plot X and Y

% plot line of best fit

-B-57 -

© Robert Ba Appendix B: MATLAB Code
Ty p

B.28 Verify Self-Affinity Histogram
(VerifySAHist.m)

function VFDTMSEHist = VerifySAHist (traf,Nt,wn)

e

VerifySAHist displays a histogram of the self-affinity MSE
traf - 1D vector (traf >= Nt)
Nt - size of window (256, 512, 1024, 2048, 4096, or 8192)

o0

a0

% wn - size of window overlap (0 <= wn <= Nt)

% - 1f wn = 0 -> no overlap

% - if wn =p (0 < p < 1) -> p percent overlap

% - if wn = 1 -> maximum fractal amplification

% - if wn=mn (1 < n < Nt) -> n point offset

% [VFDTMSEHist] = VERIFYSAHIST(TRAF,NT,WN) returns the

oo

histogram of the mean square error between the points
on the log-log plot and the line of best fit of TRAF
using windows of size NT and offset WN.

adC a0 oo

oe

Required functions: none

oe

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on June 24, 2003 at 5:30 pm (Central)

oe

if (wn == 0) $ calculate window offset
woff = Nt; % no overlap

elseif (wn == 1)
woff = 1; % maximum overlap

elseif ((wn > 0) & (wn < 1))
woff = round(wn * Nt):
woff = Nt - woff; % percentage overlap

else % (wn > 1)
woff = wn;

o

fixed offset value

end % 1if

if (woff > Nt) % check for rounding errors
woff = Nt;

elseif (woff < 1)
woff = 1;

end % if

r min = 1; % min window value

max window value
empty array (to speed up program)

oo

r_max = Nt;

tj = zeros(l,length(traf));
3 = 0;

while

i =3

oo

(r_max <= length(traf))
+ 1; % counter

-B-58-

© Robert Barry

Appendix B: MATLAB Code

b = 2; %
K low = 2; %
K max = fix(log(Nt)/log(b)); %
K buf = ceil(log(30)/log(b));
K hi = K max - K buf;
x = traf(r_min r_max); %
n(l) = 1; %
n(2y = 272; n(3)y = 273;
if (Nt > 256) n(4) = 274; end %
if (Nt > 512) n(5) = 2"5; end
if (Nt > 1024) n(6) = 2"6; end
if (Nt > 2048) n(7) = 2"7; end
if (Nt > 4096) n(8) = 2"8; end
N = Nt ./ n; %
n(l) = 0; N(1) = 0; %
fv = x(1l)*ones(1l,length(n)): %
ta zeros(1l,K hi); %
tb = ta; %
for k = 2 : Nt %
if (mod(k,b"2) == 0) %
ta(2) = ta(2) + (fv(2)-x(k))
tb(2) = th(2) + (fv(2)-x(k))
fv(2) = x(k); end % if
if (mod(k,b"3) == 0) %
ta(3) = ta(3) + (fv(3)-x(k))
th(3) th(3) + (fv(3)-x(k))
fv(3) = x(k); end % if
if (Nt > 256)
if (mod(k,b"4) == 0) %
ta(4) = ta(d) + (fv{4)-x(k))
tb(4) = tbh(4) + (fv(4)-x(k))
fv(4) = x(k); end; end % if
if (Nt > 512)
if (mod(k,b"3) == 0) %
ta(b) ta(b5) + (fv(5)-x(k))
tb(5) = tb(5) + (fv(5)-x(k))
fv(5) = x(k); end; end % if
if (Nt > 1024)
if (mod(k,b”6) == 0)
ta(6) = ta(6) + (fv(6)-x(k)
tb(6) = tb{(6) + (fv(6)-x(k)
fv(6) = x(k); end; end % if
if (Nt > 2048)
if (mod(k,b”7) == 0) 3

dyadic sequence

minimum separation

maximum separation

isolate a window of traffic
(with N)

avoid division by zero

points in interval

number of such intervals
mark invalid cells with zeros
assign first values (fv)

terms a and b in the variance
equation that is used below

look at each point in the window

n =4
/\2’.

n = 8
/\2;

n =16
/ if

n = 32
/\2;

/ if

n = 64
/\2;

/ if

n = 128

B-59 -

© Robert Barry Appendix B: MATLAB Code
a(7) = ta(7) + (fv(7)-x(k))"2;
b(7) th(7) + (fv(7)-x(k)):
v(7) = x(k); end; end % if / if
if (Nt > 4096)
if (mod(,b"8) == 0) % n = 256
() = ta(8) + (fv(8)-x(k))"2;
8) = tb(8) + (fv(8)-x(k));
8) = x(k); end; end % if / if
end $% for
K = 0;
for k = K low : K hi % calculate the variance
K=K+ 1;
Vr(K) = (ta(k)-(((tb(k))"2)/N(k)))/(N(k)=-1);
Vn(K) = n(k);
end % for
X = log2(Vn); % compute X and Y
Y = log2(Vr);
[P,S] = polyflt(X Y,1); % line of best fit
Y1l = P(1 KX 4+ P(2);
MSE = sum((Y—Yl).AZ) / length(Y); % mean square error
tj(3j) = MSE; % store vector
r min = r min + woff; % update window position
r max = r max + woff;
(r_max-woff)/length(traf)*100 % display percentage completion
end % while
VEDTMSEHist = tj(1:3); % final trajectory

-B-60 -

© Robert Barry Appendix B: MATLAB Code

B.29 Variance Fractal Dimension Trajectory
(VFDT.m)

function [traj,woff] = vidt(traf,Nt,wn)

vidt stands for "variance fractal dimension trajectory”
traf - 1D vector (traf >= Nt)
Nt - size of window (256, 512, 1024, 2048, 4096, or 8192)
wn - size of window overlap (0 <= wn <= Nt)

- if wn = 0 -> no overlap

- if wn = p (0 < p < 1) -> p percent overlap

- 1f wn = 1 -> maximum fractal amplification

- if wn =n (1 < n < Nt) -> n point offset

A0 oC 0O e

P o® o0 oe

[TRAJ,WOFF] = VFDT(TRAF,NT,WN) returns the variance fractal
dimension trajectory TRAJ and the window displacement WOFF of
a 1D sequence TRAF using windows of size NT, and an overlap
parameter WN.

oC Ao o

o0 o© oP oo

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.47 on July 14, 2002 at 4:00 pm (Central)

o0 o0

if (wn == 0) % calculate window offset
woff = Nt; % no overlap

elseif (wn == 1)
woff = 1; % maximum overlap

elseif ((wn > 0) & (wn < 1))

woff = round(wn * Nt);
woff = Nt - woff; % percentage overlap
else % (wn > 1)
woff = wnj; $ fixed offset value
end % if
if (woff > Nt) % check for rounding errors
woff = Nt;
elseif (woff < 1)
woff = 1;
end % 1if
r min = 1; min window value

max window value
empty array (to speed up program)

r max = Nt;
tj = zeros(1l,length{(traf));

e g e

j = 0;
while (r max <= length(traf))
3 =3 4+ 1; % counter

-B-61 -

© R

obert Barry

b = 2; %
K low = 2; %
K max = fix(log(Nt)/log(b)): %
K buf = ceil(log(30)/log(b));
K_hi = K max - K buf;
% = traf(r_min r_max); %
n(ly = 1; %
n(z) = 2°2; n{3) = 2°3;
if (Nt > 256) n(4) = 274; end %
if (Nt > 512) n(5) = 275; end
if (Nt > 1024) n(6) = 276; end
if (Nt > 2048) n(7) = 2~7; end
if (Nt > 4096) n(8) = 278; end
N = Nt ./ n; %
n(l) = 0; N(1) = 0; %
fv = x(1)*ones(1,length(n)); %
ta = zeros(l,K hi); %
tb = ta; %
for k = 2 : Nt %
if (mod(k,b"2) == 0) %2 n =
ta(2) = ta(2) + (fv(2)-x(k))"2;
th(2) = th(2) + (fv(2)-x(k));
fv(2) = x(k); end % if
if (mod(k,b"3) == 0) $ n=
ta(3) = ta(3) + (fv(3)-x(k))"2;
tb(3) = tb(3) + (fv(3)-x(k));
fv(3) = x(k); end % if
if (Nt > 256)
if (mod(k,b"4) == 0) g n =
ta(4) = ta(d) + (fv(4)-x(k))"2;
th(4) = tb(4) + (fv(4)-x(k));
fv(4) = x(k); end; end % if / if
if (Nt > 512)
if (mod(k,b"5) == 0) & n =
ta(5) = ta(5) + (fv{(5)-x(k))"2;
th(5) = th(5) + (£fv(5)-x(k));
fv(5) = =x(k); end; end % if / if
if (Nt > 1024)
if (mod(k,b"6) == 0) & n =
ta(6) = ta(6) + (fv(6)-x(k))"2;
tb(6) = th(6) + (fv(6)-x(k)):
fv(6) = x(k); end; end % if / if
if (Nt > 2048)
if (mod(k,b"7) == 0) $ n =

dyadic sequence

minimum separation

maximum separation

isclate a window of traffic

avoid division by zero

points in interval

number of such intervals
mark invalid cells with zeros
assign first wvalues

terms a and b in the wvariance
equation that is used below

look at each point in the window

4

16

32

64

-B-62 -

Appendix B: MATLAB Code

© Robert Barry Appendix B: MATLAB Code
a(7) ta(7) + (fv{(7)-x(k))"2:
b(7) = th(7) + (fv(7)-x(k)):
v(7) = x(k); end; end % if / if
if (Nt > 4096)
if (mod(,b"8) == 0) 2 n = 256
() = ta(8) + (fv(8)-x(k))"2;
8) = tb(8) + (fv(8)-x(k));
() = x(k); end; end & if / if
end % for
K= 0;
for k = K low K hi % calculate the variance
K=K+ 1;
Vr(K) = (ta(k)-((({tb(k)/N(k)))/ (N(k)-1);
Vn(K) = n(k);

X = log2(Vn);

Y = log2(Vr);

K=K hi - K low + 1;

sl = (K*sum(X.*Y)) — (sum(X)*sum(
s2 = (K*sum(X.”"2)) - ((sum(X))"2);
s = sl / s2;

H=s/2;

E = 1;

D=E+ 1 - H;

tj(j) = D

r min = r min + woff;

r max = r _max + woff;

(r max-woff)/length(traf)*100
end % while

traj = ti(l:3);

% compute X and Y

Y)):

G0 ~a

calculate the slope s
calculate the Hurst exponent
Euclidean embedding dimension
calculate variance dimension
create fractal trajectory

e A o0

oe

o

update window position

oe

display percentage completion

% final trajectory

-B-63 -

© Robert Barry Appendix B: MATLAB Code

B.30 Variance Fractal Dimension Trajectory Interpolation

(VFDTinter.m)

function traj = VFDTinter(tj,Nt,woff,newlen)

de OC dC dC dC OC o° I° d° e

oe

oe

o0

VFDTinter interpolates the VFDT

tj - 1D vector (tj >= Nt)

Nt - size of window

woff - window displacement (woff <= Nt)

newlen - new trajectory length (newlen > length(tj))

TRAJ = VEDTINTER(TJ,NT,WN,NEWLEN) returns the interpclated variance
fractal dimension trajectory TRAJ with length NEWLEN of a sequence
TJ, calculated using windows of size NT and displacement WOFF.

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.0 on July 14, 2002 at 6:30 pm (Central)

traj = zeros(l,newlen); % create empty trajectory
traj(l: (Nt-1)) = 1;

traj (Nt) = tj(1):

k = floor((newlen-Nt)/woff); % remainder

r max = Nt + woff*k;

o

position of point in last window

traj ((r_max-woff) :newlen) = tj(length(tj)); % hold last point

trajgap = r max - woff - 1 - Nt;

m

newpt = Nt + floor(m/2);:
for k = 2 : (length(tj)-1)

[

of trajectory points to fill
average separation distance
next point to fill

evenly spread out trajectory

&

= trajgap / {(length(tj)-2):

oe

do

traj (floor(newpt)) = tj(k);
newpt = newpt + m;

end % for

k1l
k2

while (k1 < k2)

= Nt + 1;
= r max -~ woff;

oe

use linear interpolation to
calculate intermediate dimensions
store previous known point

oe

if (traj(kl) == 0)
trajt = traj(kl-1);

e e

d = 1; distance between known points
while (traj(kl) == 0) % how long is the gap-?
k1l = k1 + 1;
d=d+ 1;
end % while
inc = (traj(kl) = traj(kl-d)) / d; % increment
for kt = (kl-d+1) : (k1-1)

-B-64 -

© Robert Barry

Appendix B: MATLAB Code

trajt = trajt + inc;
traj(kt) = trajt:;
end % for
end % if
kl = k1 + 1;
end % while

interpolate

© Robert Barry Appendix B: MATLAB Code

B.31 Variance Fractal Dimension Trajectory Statistics
(VFDTstats.m)

function [Tm,Tv,Ts,Tk] = VFDTstats(traj,Nt)

oe

VFDTstats computes the statistics of the VFDT
traj - 1D vector (traj >= Nt)
Nt - size of window

o0 o oe

e

[TM,TV,TS,TK] = VEDTSTATS(TRAJ,NT) returns the mean, variance,
skewness, and kurtosis trajectories of the variance fractal
dimension trajectory TRAJ calculated using windows of size NT.

o0 o° o©

oe

Required functions: none

o

Copyright (c) 2003 by Robert Barry (rbarry@pobox.com)
Revision 1.01 on July 5, 2003 at 8:25 pm (Central)

[

ltraj = length(traj):
Tm = zeros(l,ltraj):
Tv = Tm; Ts = Tm; Tk = Tm;
for k = 2*Nt : ltraj
temp = traj ((k-Nt+l):k);

oe

create empty trajectories

Tm(k) = mean (temp); % mean

Tv (k) = var(temp); % variance (unbiased)

Ts (k) = skewness(temp,1l); % skewness (unbiased)

Tk (k) = kurtosis(temp,1); % kurtosis (unbiased)
% k

Tm(l: (2*Nt-1)) Tm(2*Nt) ; % set undefined values
Tv(1l: (2*Nt-1)) = Tv(2*Nt):
Ts(l:(2*Nt-1)) = Ts(2*Nt);
Tk(l:(2*Nt-1)) = Tk(2*Nt);

- B-66 -

