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This thesis investigates the use of multifractal analysis to characterize network

traffic and to facilitate reliable real-time traffic classification. In 1993, a seminal study by

Leland et al. revealed the existence a self-affine structure within network traffic.

However, despite this discovery, many researchers continued to use traditional techniques

of traffic analysis and modelling that did not exploit this knowledge of self-affinity.

To demonstrate the general versatility of multifractal techniques to characferize self-affine

traffic, this thesis investigates the characterization and classification of a traffic recording

from Pear's self-affine data sets which contains an unknown number of classes.

To characterize the traff,rc, the variance fractal dimension trajectory ryFDT) is calculated

using a carefully selected window size and window offset. The statistical mean, variance,

skewness, and kurtosis are calculated for the VFDT, forming four new statistical

trajectories. The histograms of these statistical trajectories are calculated for another

appropriate window size, and their stationarity is modelled using the gamma distribution.

The resulting eight parameters (two for each of the four gamma distributions) are further

reduced to only four parameters using principal component analysis, and the K-means

clustering algorithm and Kohonen's self-organizing feature map are used to cluster the

data. A locally optimal spread parameter o is determined for each probabilistic neural

network (PI.IN) configuration, and a plot of PNN percentage classification accuracy as the

number of classes increases reveals that there are most likely three classes in the traffic

recording. Finally, an optimized PNN is trained with 50%o of the multifractal signatures

sampled at regular intervals from the trajectory, and achieves a representative correct

classification accuracy of 95o/o when classifying previously unobserved self-affine traffic.
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1.1

In 1993, a seminal study at Bell-Core by Leland, Taqqu, Willinger, and Wilson

revealed an inherent self-similar (or more accurately, self-affrne) nature in Ethemet traffic

[LTWW94]. This discovery sparked a new wave of research around the world, and it soon

became clear to researchers that self-affinity in network traffic was not merely a

computer-induced artifact, but rather a fundamental property of the traffic itself.

Self-affine traffic possesses bursty structural similarities over a wide range of time

scales. The importance of recognizing self-affinity in network traffic is realized in the

problem of optimal resource allocation in dynamic operating conditions. A network

engineer must satisfy as many network users as possible, given certain budgetary and

practical constraints. A trade-off between network capacity and Quality of Service (QoS)

requirements must be resolved by optimizing resource allocation algorithms to guarantee

that the service provided to the end user meets the QoS constraints while maintaining

maximum capacity [SaTe99].

Network control through optimal usage of resources is only possible through

characterization and classification of the network traffìc, and then by determining optimal

buffer sizes, assignment of bandwidth and channels, and other resources for each class of

traffic in order to achieve the desired QoS in terms of queuing delay, retransmission time,

packet loss probability, and bit error rate [SaTe99]. Therefore, the three stages in this area

Problem Definition

CnaprER I

InrnonucrroN

Ch. 1: Introduction
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of study are (1) characterization, (2) classification, and (3) control. The first two stages,

characterization and classification, will be the focus of this thesis.

To characterize and classifu the network traffic, a real-time classifier must be

developed to monitor the traffic. Traffic classification is not a new problem, and several

classifiers have already been developed for this purpose. However, most products range

greatly in sophistication and usefulness. Some classifiers can only distinguish between

speech and non-speech [Benv93], whereas others can classi$' traffic into general

categories of voice, data, and facsimile [Sard99]. The reliability of these classifiers is also

of paramount importance, as some can correctly classiff traffic over 90-95olo of the time,

and others have classification accuracies of only approximately 72Yo [Sewa96]. More

general and highly reliable classifiers do exist that are able to recognize twelve signal

classes with an accuracy of approximately 99%o [Sard99].

However, none of the aforementioned classifiers utilize the knowledge that

network traffic is self-aff,rne in order to facilitate the implementation, or to improve the

performance, of the classifier. Understanding the self-affine nature of network traffic is an

important piece of knowledge that is used in this thesis to design and implement a new

multifractal-based traffìc classifier.

L.2 Thesis Statement and Objectives

Ch. 1: Introduction

The objectives of this thesis are: (1) to demonstrate the self-affine nature of Pear's

data sets, (2) to characterize this traffic using multifractal analysis, (3) to cluster these

characteristic features into natural classes, and (4) to train a neural network classifier with

these features to classi$ previously unobserved traffic.

a
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The variance fractal dimension [MaVa68], [Kins94a] is used to demonstrate the

selÊaffine nature of the traffic, and the variance fractal dimension trajectory ryFDT)

[Kins94a] of the traffic is calculated using a carefully selected window size and offset.

The mean, variance, skewness, and kurtosis are calculated for each window of the VFDT,

forming four new statistical trajectories. The histograms of these statistical trajectories are

calculated for another appropriate window size, and their stationarity is modelled using

the gamma distribution [V/eis99a]. The resulting eight parameters (two for each of the

four gamma distributions) are further reduced to only four parameters with principal

component analysis IHyKOO1, Ch. 6], and the K-means clustering algorithm [MacQ67],

lHart75, Ch. 4l is then used to determine the classes in the multifractal signatures.

A self-organizing feature map [Koho88, Ch. 5], [Koho90] is also used to independently

veri$ the results of the K-means clustering algorithm. A probabilistic neural network is

trained with these signatures [Spec88], [Spec90a] and its performance on classifying

unknown traffic is used to indicate the most likely number of classes in the data.

The primary data set used in this research is Record 11020219 from Pear's data

sets, although other data sets are also discussed.

1.3 Organization of the Thesis

Ch. 1: Introduction

This thesis is organized into seven chapters. Chapter 1 presents the motivation

behind this thesis and the formal definition of the thesis statement. Chapter 2 provides the

necessary background on traffic, self-affine traffic, and the data sets studied in this thesis.

Chapter 3 introduces fractals, fractal dimensions, multifractals, the calculation of the

variance fractal dimension trajectory, and the relationship between multifractals and

self-affine trafftc. Chapter 4 highlights important issues in feature extraction and neural

-3 -
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network classification, including the use of higher-order statistics, histogram modelling,

principal component analysis, K-means clustering, self-organizing feature maps, and

probabilistic neural networks. Chapter 5 describes the design of the system and its

verification, including the selection of the proper window sizes to be used for the

calculation of the variance fractal dimension trajectory and the modelling of its statistical

histograms. Chapter 6 discusses the characterization, verification, and classification

experiments performed on Record 11020219, and the results of these experiments.

Finally, Chapter 7 reflects upon the thesis statement by presenting the conclusions and

contributions of this thesis, as well as recommendations for future work.

Ch. 1: Introduction

-4-



@ Robert Barry

2.1 What is TraffÏc?

BacrcRouND oNI NnrwoRK Tnnnnrc

If you ask the question "What is traffic?" to ten people, you will most likely get ten

different answers. A bus driver may say that traffic is the motion of automobiles on roads,

and a network administrator may say that traffic is the number of "hits" on a web site. The

first definition describes objects composed of metal and plastics burning hydrocarbons as

they drive along roads of gravel, asphalt, or concrete. The second definition describes

packets of binary information travelling across networks of copper or fiber optics cables.

At first glance, these two definitions of traffic may seem totally dissimilar, but perhaps a

more general definition of traffic exists that encompasses both of these def,rnitions.

Traffic may be defined as the movement of objects through a network. In our

example of the motion of automobiles on roads, the objects are automobiles and the

network would be roads. Similarly, in our example of the number of "hits" on a web site,

the objects are packets of binary information and the network is composed of

interconnected computers.

If we take this analogy one step further, we may also say that both of these

networks also have a measurable Quality of Service (QoS) associated with it. Drivers are

happy when they are able to get from where they are to where they are going in a timely

fashion, and with a minimal number of detours or inconveniences along the way.

Similarly, web surfers are happy when they are able to access any web site and not have to

CnaprER II
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wait too long for its contents to load. Degradation in the QoS of road traffic occurs when

drivers experience traffic jams during "rush hour", or when trains block the normal

rhythm of traffic flow. Degradation in the QoS of network traffic happens when web sites

take a long time to view, or files take a long time to download. QoS issues in road traffic

are suited to the experience of city planners and politicians. Thankfully, QoS issues in

network traffic are suited to network engineers. For this reason, this thesis will focus on

traffic related to computer networks.

2.2 Previous Research in Traffic Classification

Characlerization and classification of network traffic is an area of research that has

progressed for several years under the supervision of Dr. Bruce Cockburn at the

University of Alberta. Dr. Cockburn was the advisor for Deepak Sarda, a former TRLabs

graduate student, who developed a real-time voiceband signal classifier for his M.Sc.

thesis in 1999 that can classifr 24 charnels on a T1 line in a telephone network with about

99%o accwacy [Sard99]. These twelve signal classes consist of four data modem classes,

four facsimile classes, random binary, Frequency Shift Keying (FSK) signaling, ringback,

and a class containing the twelve Dual Tone Multi-Frequency (DTMF) tones [Sard99].

Sarda's classifier is based on the algorithms developed by Jeremy Sewall, another

former TRLabs graduate student, for his M.Sc. thesis in 1996. Sewall's algorithms

involve the use of the first ten normalized autocorrelation sequence lags and the

normalized second order-central moment with discriminant analysis to make a decision as

to which of the twelve signal classes a segment of observed data most likely belongs

[Sewa96]. Linear, quadratic, and hybrid discriminant functions were used to discriminate

between the signal classes. The development of these algorithms by Sewall was made

Ch. 2: Background on Network Traffic
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possible by the prior reseffch of Nevio Benvenuto, who was able to correctly classifu

between speech and non-speech with an accuracy of about 99% lBenv93l.

Although Sarda's voiceband signal classif,rer does an excellent job of classifying

traffic on a T1 line, its design imposes a severe limitation on how effectively it can be used

for future applications. One of the most desirable features of any product is the ease with

which it can be expanded or upgraded. An expansion of Sarda's classifier to include new

signal classes would not be trivial, and may even require a new design. The proposed

multifractal-based traffic classif,rer would resolve this design issue through a modular

design where each class of traffrc would possess a unique compressed multifractal

signature. Removing outdated traffic classes or adding new traffic classes would simply

involve the deletion or addition of the new traffic signatures and a re-training of the neural

network.

2.3 Self-Affinity in Traffic

Ch. 2: Background on Network Traffic

Self-affine traffic possesses bursty structural similarities over a wide range of time

scales, such as milliseconds, seconds, minutes, hours, and even days or weeks [SaTe99].

A new wave of research was sparked that showed the existence of self-affinity in Local

Area Network (LAN) traffic [LTWW94], V/ide Area Network (WAN) traffic [PaFl95],

World Wide Web (WWW) traffic lCrBe97l, Teletype Network (TELNET) traffic

[PaFl95], Integrated Services Digital Network QSDN) traffic [LLTW94], File Transfer

Protocol (FTP) traffic [PaF195], Frame Relay traffic lFoWi98l, Signaling System 7 (SS7)

traffic [DuWi94], and Variable Bit Rate (VBR) video traffic [GaWi94], over

Asynchronous Transfer Mode (ATM) networks [BSTW95]. These studies clearly showed

that self-affinity is not a computer-induced artifact, but a fundamental property of network

-7 -
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traffic. In 1995, Willinger et al. showed that self-affine traffic may be generated through

ON/OFF processes [WTSW95]. Earlier work in 1990 by Mcleod, Schellenberg, and

Hortensius at the University of Manitoba demonstrated the generation of self-affine traffic

through various configurations of the network topology [McSH9O].

2.3.1 Generation Through ON/OFF Processes

In 1995, a theory for the generation of self-affine traffic was proposed by Willinger

et al. lWTSWgsl. This theory extended an approach originally suggested by Mandelbrot

1n 1969 that the superposition of many ON/OFF processes with high variability produces

self-affine traffic [Mand69]. This theory was later proved by Taqqu et al. in 7997 using a

different mathematical approach that does not follow from the work by Mandelbrot

[TaWS97]. A summary of this theory that follows Mandelbrot's work will now be

presented [V/TSW95].

An idealized ON/OFF source model, also called a packet train model, is

characterized by a reward sequence {W(l),I:0,1, ... } : a discrete time stochastic

process with { W(l)} : 0 or i, depending on whether or not there was a packet attime l.

The reward sequence {W(l) } consists of a sequence of 1 's if packets are transmitted (an

"ON- period") and 0's if no packets are being transmitted (an "OFF-period"). Let p: P

(a given period is an ON-period) : Y, , and assume that the lengths of the ON-periods and

OFF-periods are governed by independent and identically distributed (i.i.d.) random

variables denoted by Ut, k:0,1, ... . Udenotes an arbitrary U¡with finite expectation

e(U). LetS¿: S0* Ut+ U2 +...+ Ut, k>0 bethecorrespondingrenewaltimes.

{S t,k > 0 } is made stationary by choosing the distribution of 
^S¿ 

in the following way:

Ch. 2: Background on Network Traffic
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To ensure the stationarity of the sequence {W(l) ,l > 0} ,let I : 0 be an ON-period with

probability of % .

Suppose that there are M i.i.d. sources where the mth source @ : 7, ..., M ) has its

own reward sequence {WØ')(D,/> 0}. Then the cumulative reward (also called the

packet load) at time / is

M

2 w"'(t)
m:1

Aggregating this load through non-overlapping time blocks of size b, where j denotes the

block number, we get

(P(So : tt): (e(U))-lp (U>u + 1)), u : 0,1,2,...

Ch. 2: Background on Network Traffic

b(j +t) M

W,r,u, t(j) :
t=bj+1m:l

The statistical behaviour of the sequence Ul* u,¿ ] is interesting for large M and ó. This

behaviour can only depend on the distribution of U, which still needs to be specified.

Motivated by the empirically derived fractional Gaussian noise model for

aggregate packet traffic [LTWW94], the distribution of U should be chosen in a way such

that as M --> * and b -r - , {W* u,¿ } adequately normalized is fractional Gaussian

noise {G H, oQ), / > 0 } : the only Gaussian sequence which is self-affine at all scales with

Hurst exponent 11 in the range \ = 
n . t . This means that the finite-dimensional

z

(2.r)

(2.2)
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" b(i +l)
b-"

l:bj+1

are the same for any block aggregation size b.

To obtain fractional Gaussian noise, suppose that U has a hyperbolic tail

distribution that satisfies

P(U > u) - cu-o as u -+ -, 1 ( a< 2 (2.3)

where c is a positive finite constant that is independent of u.

Mandelbrot refers to Eq. 2.3 as fhe infinite variance syndrome or the Noah Effect

[MaWa68], [Mand75, p. 105], [Mand83, p. 2aS]. A value of cx, < 2 implies e(Uz ): -,
while the choice cx> 1 ensures that e(U)<* and S¿ is not infinite. Under these

conditions, Theorem 2.1 is true.

Ch. 2: Background on Network Traffic

Theorem 2.1: For large enough source number M and block aggregation size b, the

cumulative load { W* u, o(j), j > 0} behaves statistically as

bul^+ bHMt'2Gn,oU)
2

where

3-crn:-
2

and

- t0 -

(2.4)
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aeQ)2(a- 1)(2 - cx)(3 - u)

More precisely,

2o:

t ]y_ t ]ry* u-n *rn(w* v,o(i) -'+ ): cr,"(i)

where "L lim" means convergence in the sense of the finite-dimensional distributions.

Theorem 2.1 states that the mean 1"r"7 Þ4 nrovides the main contribution for2',

large M and b, and fluctuations from that level are given by the fractional Gaussian noise

Gn,o(j) scaled by a lower order facto, b'Mt'z. Finally, it is importantto note that a

valueof 1 < cr< 2 imoli., 1 . H <1.,2

Ch. 2: Background on Network Traffic

Consider a discrete time stochastic process X(t), t e Z, where X(t) is the traffic

volume in bytes at time instance /. The definition of strict stationarity will be used in this

research where (X(t),X(t), ...,X(t)) and (X(tr+ k),X(t2+ k),...,X(tn+ fr)) possess

the same joint distribution for all n e Z* , t1, ..., tr, and k e Z [PaWiO0, p.I1l.

2.4 Impact on Network Performance

The importance of recognizing self-affinity in traffic is realized in the problem of

optimal resource allocation in dynamic operating conditions. One of the jobs of network

engineers is to provide consistent and reliable network service to as many users as

possible, given certain budgetary and practical constraints. This means that the trade-off

between network capacity and Quality of Service (QoS) requirements must be resolved by

(2.s)

(2.6)
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optimizing resource allocation algorithms to guarantee that the service provided to the end

user meets the QoS constraints while maintaining maximum capacity [SaTe99]. The

optimal usage of resources is only possible by first characterizing and classifying the

network traffic, and then determining optimal buffer sizes, assignment of bandwidth and

channels, and other resources for each class of traffic in order to achieve the desired QoS

in terms of queuing delay, retransmission time, packet loss probability, and bit error rate

ISaTe99].

Network traffic has often been described by Markovian models which have limited

memory of the past and reflect the short-range dependence (SRD) of the network traffic.

The existence of scale-invariant "burstiness" (or self-affinity) introduces new

complexities by directly implying long-range dependence (LRD) which is not accounted

for in the Markovian and other traditional models [PaWi0O,p.2l]. A process that exhibits

SRD has an autocorrelation function that decays exponentially, whereas a process that

exhibit LRD has an autocorrelation function that decays hyperbolically [KaWo99].

Neglecting the existence of selÊaffine traffic and LRD can result in overly optimistic

predictions of network performance [ChBa97]. Self-affine network traffic can have a

detrimental impact on network performance, including increased queuing delay and

packet loss rate, because the buffers needed at switches and multiplexers must be much

larger than those predicted by traditional queuing analyses and simulations [SaTe99]. In

fact, an exponential trade-off is observed between queuing delay and packet loss rate

[PaKC97]. However, these buffers cannot be made arbitrarily large because large buffer

sizes create long queuing delays, and queues that are too long can deteriorate the QoS for

real-time network applications such as video conferencing and multimedia traffic.

Ch. 2: Background on Network Traffic
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In response to the daunting task of maintaining QoS under severe self-affine

traffic, research has pointed at ways of reducing the degree of self-aff,rnity by shaping, or

"smoothing", the traffic to make it less-bursty [ChBa97]. This is a difficult process

because self-affine traffic is robust with respect to changes in network topology,

interference from cross-traffrc with dissimilar traffic characteristics, and changes in the

distribution of file request interarrival times [PaKC96]. Self-aff,rnity will also not be

removed by any server with finite second-order moment of queue length [SoNT99].

Another important complexity in the problem of optimal resource allocation with

self-affine network traff,rc is that the nature of the traffic changes constantly. Different

types of traffic will flow across the network æ different times during the day, and even

different days during the week or month. Each type of traffic will have unique self-affine

characteristics and will possess varying degrees of LRD. This continual change in traffic

self-affinity means that the optimal buffer sizes and assignment of bandwidth and

channels must be dynamic, and continually change to meet the network capacity and QoS

requirements.

2.5 Self-Affine Data Sets

Ch. 2: Background on Network Traffic

As stated in section 2.3, self-affinity exists in many types of network traffic, and

possesses structural similarities at different time scales. This section presents and visually

demonstrates the similarity between three classes of self-affine network traffic, and the

same class of self-affine traffic at different time scales.
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2.5.1 LAN Traffic

Leland et al. demonstrated the self-affine nature of Ethernet traffic through

seminar publications in 1993 and 1994. The data used in this research is publicly

available on the Internet [DMPS03a], and is presented in this section.

A recording of 1,000,000 packets of LAN traffic on an Ethemet was done by

Leland and V/ilson at Bellcore between I125.00 hrs and 1217.23 hrs on 29 August 1989.

The measurement techniques used in these recordings is found in [LeWi91], and a detailed

discussion of the recordings are presented in [FoLe91] and [LTV/W94]. Figure 2.1 shows

the LAN traffic transmitted at 100 millisecond (msec) intervals for the entire 3142.82

seconds duration.

Ch. 2: Background on Network Traffic
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Fig.2.l. Sampled LAN traffic (for approx. 3143 sec).
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To visually demonstrate the self-affine nature of LAN traffic, Fig.2.2 shows the

same recording at l0 msec, 100 msec, and 1 sec time scales. Even though the traffic is

averaged through time over three orders of magnitude, its bursty appearance does not

vanish, but only varies, across different time scales.

Ch. 2: Background on Network Traffic
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2.5.2 \ry\ryW Traffic

In 1997, Crovella et al. demonstrated the self-affrne nature of world wide web

traffic [CrBe97]. The data used in this research is publicly available on the Internet

IDMPS03b], and is presented in this section.

Between 01 February 1995 and 28 February 1995, a total of 100,669 unique

Mosaic web requests were recorded on a network of 37 SparcStation 2 workstations by

Cunha, Bestavros, and Crovella at Boston University [CuBC95]. Figure 2.3 shows the

WWW traffic transmitted at I sec intervals for the entire 28 days, and Fig. 2.4 shows the

same recording at 1 sec, 10 sec, and 100 sec time scales.

Ch. 2: Background on Network Traffic
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2.5.3 VoIP Traffic

The previous examples of LAN and V/WW traffic were captured by other

researchers and acquired through publicly available archives. However, the importance of

capturing one's own network traffic cannot be understated in the overall pedagogical

process of studying network traffic. For this reason, Voice over IP (VoIP) traffic was

captured atTRLabs (100-135 Innovation Drive, Winnipeg, MB, R3T 648, Canada) for

86400 seconds between 0800.00 hrs on 09 July 2003 and 0759.59 hrs on 10 July 2003.

The software used to capture the traffrc was Ethereal v.0.9.13 þublicly available at

www.ethereal.com); a screen shot of this program is shown in Fig. 2.5. My sincere thanks

goes out to Mr. Vasee Vaseeharan for his invaluable assistance in setting up the TRLabs

network and a workstation to capture the VoIP traffic.

The resulting recording, or trace, consisted of 4,587,494 packets: 2,304,756

packets were User Datagram Protocol (UDP) packets used to transmit VoIP data, and were

transmitted only when the phones were in use. The remaining packets were RX protocol

packets used as network control signals, and were transmitted continuously regardless of

whether or not the phones were in use. Therefore, to better understand the nature of voice

data transmitted over a computer network, the study of VoIP traffic in this thesis will only

consider the UDP packets.

Ch. 2: Background on Network Traffic
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File :r: Edi!.: Cãptq¡e 1-Dispf qy ;1: ;fgolg,:

3122886 31877.186538 UDP

3L228A7 31877, 206948 UDP

3122888 3L877. 226770 UDP

3122889 3rA77 . 24 678r uùP
3l-22890 3L877. 266801 UDP

31"22891 31877. 2867L8 UOP

3122892 11877. 306695 UDP

3L22893 31877. 326931- UDP

3122895 31877. 366938 UDP

3122896 31877. 386997 UDP

31_22897 31877.407034 UDP

3L22898 31877.427L54 UOP

3122899 3!877. 447334 ûDP
3L22900 3l-877.467308 UDP

3122901 3!877.447355 UDP

2L4

2L4

2L4
2r4

2L4

¡rrival tin¡e: Jul 9, 2003 1-6:52:22.1-84093000
rime de.lta from previous packet: 0.01-9952000 seconds
Tine relerive to first packet: 3L877.346883000 seconds
Frame Number i 3t22a94
eacket Length: 2l-4 bytes
cepturP Length: 68 bytes

E Etherner rr, 5rc: 00:d0:b7:b6:3å:cc, Dst: 00:00:50:06:fe:29
Destinati on: 00 : 00 : 50 :06 :fe : 29 (00 : 00: 50 :06 :fe : 29)
source : 00 :d0 : b7 : b6 :3a : cc (00 :d0 : b7 : b6 : 3a : cc)
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244
2L4
2L4
2]-4
2L4
2L4
2\4

rype: IP (0x0800)
Elrnternet Protocol, 5rc

versi on: 4
teader length: 20 bytes

EDìfferentiared services rield: 0x00 (Dscp 0x00: oefault; EcN: 0x00)
0000 00.. = Differentiated services codepoìnt: Default (0x00)
.... ..0. = ECN-Capable Transporr (ÊCT): 0

0 = ECN-CE: 0
Totai Length: 2oo
rdentificàtion: 0x5905 (22789)

E Fl egs : 0x00
.0.. = Don't fragment: Not set
..0. = l4ore fragments: Not set

Fragment offset: 0
Time to livë: 127
Protocol : UDP (0x11)
neader checksum: 0x7a35 (correct)
sour ce : 1-92 . 1-68. 3 . l-61- (l-92 . l-68. 3 . L61)
Destination: 10,L63.152. 254 (10.163.152.254)

Euser Datagram Prorocol, 5rc Porr: 51036 (51036), Dst
source porr: 5l-036 (51-036)
Desrination port: 281-l-0 (28110)
L-engt h : L80
checksum:0xbcdf

Dåtâ (26 by'tes)

1-92.168. 3.161 (r-92.168. 3. 161), 10. 163. 1s2. 254 (70.L63.L52.254)

28r-Lo (28Lr-0)
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Figure 2.6 shows the VoIP traffic for the entire 24 hours, expressed as kilobytes

(KB) requested per 100 msec.

Ch. 2: Background on Network Traffic

At first glance, Fig.2.6 was surprising because it looks quite different from Figs.

2.I and 2.3, although some bursty similarities to WV/W traffic do exist. However, when

the nature of generation of VoIP traffic is considered, the graph makes sense. Firstly, there

are long periods of no activity in the evening and early morning when the phones are

generally not in use (although the traffic between 15 and 16 hours after the start of the

trace, or around midnight, reflects the fact that some graduate students prefer quiet

solitude in which to do their research). Secondly, the "step case" appearance of VoIP

traffic reflects the fact that when a phone is in use, it transmits UDP packets of a fixed size

at a fixed rate. Upon inspection of Fig. 2.7,which represents only the first two hours of

0 5101528
Time (hrs)

Fiç.2.6. Sampled VoIP traffrc (for 24 hours).
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the traffic shown in Fig. 2.6, it seems that the transmitted data plateaus at intervals which

are multiples of 1070 bytes / 100 msec. With UDP packets of size 274 bytes (as shown in

Fig.2.5), this rate comesponds to 5 UDP packets / 100 msec, or 50 UDP packets / sec.

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
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Finally, as in the examples of LAN and WV/W traffic, VoIP traffic exhibits a very

similar structure over many time scales. Fig. 2.8 shows the same VoIP trace averaged over

four orders of magnitude of time, ranging from milliseconds to minutes. This self-affinity

is fractal in nature, and will be discussed in detail in chapter 3.

û 0.2

ßig.2.7.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (hrsJ

Sampled VoIP traffic (first 2 hours only).
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Averaged over 1 sec intervals

Averaged over 1t sec intewals

t 5 10 15 2Ü

Tirne (hrs)

Fig.2.8. VoIP traffic averaged over (a) 0.i sec, (b) 1 sec, (c) i0 sec, and

(d) 100 sec intervals.

Averaged over 1ü0 sec interuals
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2.6 Sarda's Data Sets

Deepak Sarda captured an extensive database of telecommunications traffic which

he used in the design and refinement of his real-time voiceband signal classifier. The final

voiceband signal classifier was able to accurately classify the following twelve signal

classes [Sard99], lCoSa9Sl :

. V.22 andY.22bis forward channels

. V.22 andY.22bis reverse channels

. V.34 and V.90 uplink

. V.29 at all speeds

. V.32,Y.32bis, and V.17 at speeds greater than 2400 bps

. Y.2J ter at 4800 bps

. Y.27 ter at 2400 bps

' Speech
. Random PCM samples and V.90 downlink
. FSK signalling
. Ringback
. DTMF tones for 0, I,2, ...,9, *, and #

Ch. 2: Background on Network Traffic

The original inspiration behind this thesis was to continue the work that had been

done by Sarda, and to improve upon his research through the design of a third generation

traffic classifier. After this new classifier was designed and built, it would have been

tested using the same data sets as Sarda used, yielding an exact comparison between

Sarda's classifier and the new classifier. It was anticipated that the classification accuracy

of the new classifier would have been comparable to that of Sarda's classifier.

The primary advantage of the new classifier is that it would have implemented a

modular design for each class of traffic. A modular design such as this would allow for

each of these twelve classes of traffic to be represented by a unique multifractal signature
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or "frngerprint". Future updates to the classifier's repertoire would have been relatively

automated and efficient because the inclusion or removal of traffic classes would have

been performed by adding or deleting the corresponding signatures of the traffic class of

interest, and then re-training the traffic classifier (which will be discussed in chapter 4).

Unfortunately, while this research was already underway for more than a year, it

was discovered that Sarda's data sets used were no longer available through Dr. Cockburn.

Since this thesis had to be completed in a timely fashion, it was decided that another

self-affine data set had to be acquired and used for the design and implementation of the

new traffic classifier.

2.7 Pear's Data Sets

Ch. 2: Background on Network Traffic

To expedite the completion of the thesis, Dr. Kinsner approached Dr. Joseph Pear

in the Department of Psychology at the University of Manitoba. Dr. Pear and his

colleagues have performed extensive research in the area of behaviour modification

lMaPe02], and have collected a wide variety of data on the biological processes of

habituation and dishabituation. Dr. Pear and Mr. Toby Martin, a Ph.D. student in Pear's

research group, graciously provided our research group with these recordings of the

habituation and dishabituation processes in Siamese Fighting Fish.

2.7.1 Siamese Fighting Fish (Betta splendens)

Siamese Fighting Fish, or Betta splendens, are colourful fish that originated from

the warm, shallow waters of Cambodia and Thailand (formerly known as Siam, which

gave the fish its name) [AbouO3]. The behaviour of Betta splendens has been observed

and studied by psychologists for decades. Domesticated male Betta splendens exhibil
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agonistic (aggressive and teffitorial) behaviour that is easily elicited and very similar from

one fish to another [Simp68]. Betta splendens must be kept isolated from its own kind

because of this behaviour, as a male will attack and most likely kill another male in

defence of its territory. Some of the treat displays exhibitedby Betta splendens include

pectoral fin beating, pelvic fin flickering, tail beating, tail flashing, bites, and nips

[Simp68]. Psychologists can observe and record the frequency and duration of these

threat displays as a method of characterizing and classifying the behaviour of Betta

splendens. A picture of Spot, the author's Betta splendens, is shown in Fig. 2.9.

Ch. 2: Background on Network Traffic

The agonistic behaviour of male Betta splendens may be elicited by the presence

of another male (also called a conspecific), an artificial model of a conspecific, or its own

reflection using a mirror [ShSh71]. This agonistic behaviour has been shown to habituate,

Fig.2.9. Spot - a typical Betta splendens.
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or decrease, over time as the stimulus is continuously presented [Bron94],

[PearOl, pp. 15-17]. It has also been shown that the presence of a new eliciting stimulus

may produce a response recovery [ThSp66] called dishabituation [Pear0l, p. l7],

[Mart02].

2.7.2 Video Recording System

Pear's research group recorded the activity of male Betta splendens inan aquarium

using a stereoscopic video camera system [Mart02]. A photo of the camera system used is

shown in Fig. 2.10. The complete system consists of three cameras: two cameras provide

a stereoscopic view of the fish tank, and one camera is a regular video camera which video

tapes the motion of the fish for later viewing and study by psychologists.

Figure 2.1 I shows a diagram of the stereoscopic camera system which, not unlike

the human visual system, is capable of perceiving, or extrapolating,lhe depth of an object

based upon its position as seen by each camera. This camera system records the X-, Y-,

andZ-coordinates of the Betta splendens ten times per second (a frequency of 10 Hz),

with a maximum positional error of *5 mm [PeMaO2].

Ch. 2: Background on Network Traffic
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Fig. 2.10. Stereoscopic video camera system.
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Fish Tank

I

Ch. 2: Background on Network Traffìc

2.7.3 Pre-Processing

The raw recorded data of the motion of the Betta splendens need to be

pre-processed in two ways. Firstly, due to the set-up of the stereoscopic cameras, the

origin (0,0,0) is located somewhere in space between the two cameras. In this coordinate

system, the centre of the fish tank is approximately at the coordinates (40,2000,45)

[PeMa02], which can be confusing to interpret when discussing the position of the Betta

splendens in the tank. Therefore, the coordinate system needs to be changed so that the

origin (0,0,0) is in the left, front, bottom corner of the tank, as shoum in Fig. 2.I2. InIhis

intuitive and equivalent coordinate system, the X-coordinate represents the distance from

the fish to the mirror, the Y-coordinate represents the position of the fish along the mirror,

and the Z-coordinate represents the height of the fish from the bottom of the aquarium.

Field of View
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Secondly, there are occasional tracking errors when the stereoscopic cameras are

unable to locate the position of the Betta splendens, which often happens when the fish is

close to the mirror [PeMaO2]. These tracking errors last for at most a few seconds, so

consecutive tracking errors are replaced by data points calculated by linear interpolation

between adjacent existing data points.

2.7.4 Dishabituation Experiments

Ch. 2: Background on Network Traffic

lnû0ì

Fig.2.l2. A better coordinate system.

The mature male Betta splendens used in these experiments had been used for

previous experiments, but had not been subjected to experimental conditions for several

months [Mart02]. The researchers attempted to demonstrate dishabituation by introducing

two different stimuli in controlled experiments. All experiments lasted for 7 hours and 56

minutes, and started with the Betta splendens being placed in the aquarium. The one-way

mirror at the one end had a incandescent light bulb placed behind it. When the light was

off, the mirror was reflective; when the light was on, the mirror was non-reflective.
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In dishabituation experiment #1, the light was turned off so the Betta splendens

could see and habituate to its reflection. Seven hours into the experiment, the light was

tumed on for 60 seconds, making the mirror non-reflective. The light was then turned on

again for the remaining 55 minutes of the experiment [Mart02]. This experimental set-up

is shown in Fig. 2.i3.

Ch. 2: Background on Network Traffic

0ne-waï
mirrnr

J

main tank
Fig. 2.13. Experiment #1 to attempt to produce dishabituation (after [Mart02]).

(fi
u

In dishabituation experiment #2, the light was once again tumed off so the Betta

splendens could see and habituate to its reflection. Seven hours into the experiment, the

mirror was made non-reflective by turning on the light, while simultaneously removing a

white plastic barrier on the opposite end of the aquarium to reveal the presence of a live

conspecific. After 60 seconds, the plastic barrier was replaced and the light turned off,

and it remained this way for the remaining 55 minutes of the experiment [Mart02]. This

experimental set-up is shown inFig.2.I4.
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0ne-wäy
trirrrr

I

ßi9.2.14. Experiment #2 to atlempt to produce dishabituation (after [Mat02]).

These experiments were repeated several times with two different Betta splendens.

In general, the Betta splendens habituated to their reflection within the first couple hours

of the experiment. The introduction of new stimuli 7 hours into each experiment were

attempts to disrupt this habituation and produce dishabituation. Although several trails

were performed for each experiment, one of the most interesting recordings was of

experiment #1 for fish #11 that was performed on 19 February 2002. This session is

referred to as Experiment 11020219.

Ch. 2: Background on Network Traffìc

\'Vh ite plastic
barriers

main tank

J

2.7.5 Experiment 11020219

Figures 2.15,2.16, and 2.77 show the X-, Y-, and Z-coordinates of Experiment

11020219 for Pear's data sets.

live cnnspeciflc
tank
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Fig. 2.15.

3456
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X-coordinates of Experiment | 1020219.

E

-

123456
Time (hrs)

Fig. 2.16. Y-coordinates of Experiment 11020219.
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These recordings are particularly interesting because the Betta splendens quickly

habituates to the mirror after 15 minutes, but then exhibits behaviour that is characteristic

of dishabituation when the new stimulus is introduced into the system after 7 hours. The

dishabituation is most clearly seen by the X-coordinates in Fig. 2.15 when the Betta

splendens spends the final 56 minutes much closer to the mirror than the previous 6 hours

and25 minutes of the experiment.

Therefore, since the X-coordinates of Experiment 11020219 seemed a good choice

for an interesting and reliable data recording with which to substitute for Sarda's data sets,

they henceforth became the primary data set used in this thesis, and will be referred to as

Record 11020219.

23456
Time (hrs)

Fig. 2.17 . Z-coordinates of Experiment I 1020219.
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2.7.6 Self-AffÏnity in Record 11020219

Previous examples of LAN, W'WW, and VoIP traff,rc showed similar structures

across multiple time scales. However, since this discussion has now shifted from network

traffic to biological behavioural modification trafftc, we need to re-address the notion of

self-affinity in Pear's data sets and Record 11020219.

Self-affinity is a necessary requirement for the correct application of fractal

analysis: only if the traffic is self-affine may fractal and multifractal techniques be applied

to the traffic. To begin the analysis of the self-affine nature of Record 11020219, Fig. 2.18

displays this record at three different time scales. As anticipated, this figure reveals the

structural similarities of Record 11020219 across multiple time scales. This analysis will

continue in section 5.2 where the self-affine nature of Record II0202I9 will be rigorously

proven.

Ch. 2: Background on Network Traffic

(While discussing the fractality of the motion of Betta splendens, it is both

interesting and motivating to note that in2007, Tikhonov et al. from Russia published a

study on chaos and fractals in fish school motion ITEMMO1].)
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Fig.2.18. Betta splendens traffic averaged over (a) 0.1 sec, (b) 1 sec, and
(c) 10 sec intervals.
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2.8 Summary

This chapter explores the nature of traffic, computer network traffrc, and the

significance of the existence and recognition of selÊaffine network traffic for its control in

order to maintain acceptable QoS levels for the end-user. Examples of LAN, WWW, and

VoIP traffic are presented as a demonstration of the visual characteristics of self-affine

traffic. Some of the previous work that has been done by TRLabs in the area of

telecommunications traffic characterization and classification has also been presented, and

an improvement upon this work is the motivation behind this thesis.

The methodology used in this thesis is for the characterization and classification of

self-ffine traffrc with applications specifically towards self-affine network traffic. Since

Sarda's data sets became unavailable while the thesis was already well underway, Pear's

data sets were acquired and studied so that this thesis might be completed in a timely

manner. Although the primary data set studied, Record 11020219, is a recording of a

different type of self-affine traffic, all of the analyses presented in the characterization and

classification of Record 11020219 may be directly applied to other classes of self-afhne

traffic that are of interest to TRIaás and its sponsors.

Ch. 2: Background on Network Traffic
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BacxcRouND ox FmcrALS, MUIUFRACTALS,

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Clouds are not spheres,

mountains are not cones,

coastlines are not circles,
and bark is not smooth,

nor does lightning travel in a straight line.
- B. B. Mandelbrot [Mand83, p.1]

What are Fractals?

CHaprER III

AND Fnacrar, f) rivlnN sIoNS

3.1

The word "fÍactal" was coined by Benoit B. Mandelbrot from the Latin adjective

fractus. The corresponding Latin verb is frangere, meaning "to break" [Mand83, p.4].

From this definition alone, one may intuitively feel that the study of fractals involves the

study of objects which are broken or fragmented in some way. The word "fractal" is also

commonly associated with images of intricate coloured patterns with infinite complexity

and beauty. The beauty of fractals has been made popular in recent years through the

printing of posters and calendars that vividly show the infinite range of patterns and

colours that fractals can possess. A widely recognizable example of a fractal is the

Mandelbrot set. Figures 3.1 and 3.2 show grayscale examples of the Mandelbrot set

rendered in 2-dimensions and 3-dimensions (where the darkness of the fractal in 2D is

mapped into the height of the object in 3D) using one of many readily available software

packages for the generation of fractals - Fractal Explorer 2.00 with Fractal Landscape

Library 1.05 [SiFeO3]. These fractals possess both visual and mathematical beauty, and

have infinite detail at any level of resolution.
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Fig.3.1. Mandelbrot set in 2-dimensions.

There is no single, absolute definition for a fractal. In fact, Mandelbrot feels that

"one would do better without a def,rnition" [Mand83, p. 361]. In 1982, Mandelbrot

proposed the definition that "a fractal is a set for which the Hausdorff-Besicovitch (fractal)

dimension strictly exceeds the topological dimension" [Mand83, p. i5]. However, it was

Fig.3.2. Mandelbrot set in 3-dimensions.
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later discovered that some fractals (ironically, including the Mandelbrot set) were

excluded by the use of the word "strictly" in this definition. A revised definition proposed

by Robert L. Devaney in 1992 defines a fuactal as "a subset of 91' which is self-similar

and whose fractal dimension exceeds its topological dimension" [Deva92,p.178].

In more simpler terms, fractals (and multifractals) are real constructs which have

the following properties:

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

they are self-affine, meaning that part of their structure is related to the whole
structure through the property of scaling;
their structure cannot be described using Euclidean geometry, and is often
described as being "rough"; and
their fractal dimensions can (and usually do) exist between integer dimensions.

The study of fractals involves the study of fractal geometry. Mandelbrot argues that the

best possible definition of fractal geometry may be that it is the study of scale-invariant

roughness [Mand02, p. 9].

The relationship between fractals and self-affinity is deep and profound, and in its

most detailed form, the exploration of this relationship may require hundreds of pages.

(Mandelbrot provides a 600-page discussion of the relationships between fractals and

self-affinity in [Mand02].) For the sake of simplicity, an object that possesses

scale-invariant roughness is said to be self-affine, and is also fractal or multifractal in

nature. In other words, self-affinity implies fractality (and vice versa). Therefore, to study

fractal geometry, one must also study affine geometry.

An affine plane is parameterizedby two coordinates x and y [Mand02, p. 86]. An

affine transformation is a one-to-one linear map of the form
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x -+ rxxx i rrry -l xg

y)rxyx+rrr!+lo

The matrix of the transformation is

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

V;,4

For a linear map to be one-to-one, the necessary and sufficient condition is that the

matrix is invertible. In other words,

rtrrry-rrrrnr*0

An interesting quote provided by Snapper and Troyer provides an insight into the

study of affine-geometry: "Roughly speaking, affine geometry is what remains after

practically all ability to measure length, area, angles, etc., has been removed from

Euclidean geometry. One might think that affine geometry is a poverty-stricken subject.

On the contrary, affine geometry is quite rich. Even after almost all ability to measure has

been removed from Euclidean geometry, there still remains the concept of parallelism.

Consequently, the whole theory of homothetic figures lies within affine geometry. The

notions of translation and magnification (these are the dilations) are in the domain of

affine geometry and, more generally, as the name suggests, affine transformations can be

characferized as one-to-one, onto functions which preserve parallelism; therefore, they

constitute an affine notion" [SnTr71, p. 1].

Self-similarity is a very special case of selÊaffinity where the matrix is of the form

(3.1)

(3.2)

(3.3)
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o¿ : rlllll where r is complex and lllll is the unit matrix: the diagonal elements are one

(1) and all other elements are zero (0) [MandO2, p. 871. Therefore, although much of the

published literature in the area of fractals and network traffic popularly discuss the issue of

"self-similarity", it is more accurate to use the term "self-affinity" [Mand85]. For this

reason, this thesis will use the terms "self-afflrne" and "self-affrnity" in this context.

3.2 Generation of Fractals

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

There are two general classes of fractals: mathematical fractals and fractals that are

found in nature (which will be described as "natural" fractals) [Vics92, pp. 11-i3].

Mathematical fractals can be easily described, generated, and measured. Fractals in nature

describe the world in which we live. Not surprisingly, the "real world" is more complex

than a simple mathematical expression, so the fractals found in nature are usually more

difficult to describe and measure.

3.2.1 Mathematical Fractals

"A picture is worth a thousand words" is a good phrase to keep in mind when

exploring the world of fractals. The generation of mathematical fractals involves an

iterative process that begins with an initiator and a generator IPeJS92,p. 15]. The creation

of two commonly discussed fractals, the Koch curve [Koch04] and the Sierpinski carpet

fSierl6], will serve as examples of the generation of mathematical fractals. (From an

historical viewpoint, it is interesting to note that the Sierpinski gasket fSierl5], another

fractal that is similar to the Sierpinski carpet, was created by Waclaw Sie¡pinski in 1915;

howevet, the Sierpinski carpet was actually created by Sierpinski's former Ph.D. student

Stefan Mazurkiewicz, also in 1 91 5 [CiPo96].)
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lnitiator

Ch.3: Background on Fractals, Multifractals, and Fractal Dimensions

Step 1

Step 2

Step 3

Step co

Figure 3.3 illustrates the iterative

initiator is a single straight line segment.

t
I
t

Fig.3.3. Generation of the Koch curve fractal.

generation of the Koch

In step 1, the straight line

-43
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equal line segments, and the middle third is removed and replaced by two line segments of

the same length so they meet at a 60 degree angle. In step 2, each line segment is divided

into three more equal line segments, with the middle segment removed and replaced by

two more line segments in the same fashion as step 1. This process continues over and

over again, and is repeated an infinite number of times.

There are several important things to note about the Koch curve:

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Since tlre iterative process continues ad infinitur4 any segment of the curve
looks like a smaller version of the entire Koch curve. This accounts for the
self-similar nature of the fractal.
The curve is non-intersection, meaning that as the generation process
continues, two line segments will never occupy the same region of space.
The length of the curve is infinite.
The area ofthe curve is zero.

a

Figure 3.4 demonstrates the generation of the Sierpinski carpet fractal. The

initiator is a solid square (instead of a straight line segment). In step 1, the square is

divided into a 3-by-3 grid of nine equal sized squares, and the middle square is removed.

In step 2, each of the remaining eight squares is once again divided into a 3-by-3 grid of

nine equal sized squares, and the middle square is removed. As in the Koch curve, this

process is repeated an infinite number of times, and any segment of the carpet looks like a

smaller version of the whole carpet. The Sierpinski carpet also has an area of zero.
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lnitiator

Figure 3.5 shows an image of the Menger sponge [Meng26] -the 3-dimensional

version of the Sierpinski carpet. This fractal is especially interesting because it is an

infinitely complex structure that has infinite surface area but zero volume [Glei87, p. 101].

Step Z

Fig.3.4. Generation of the Sierpinski carpet fractal.

Step 1

Step 3
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Fig.3.5. The Menger sponge (after [BlMe7O, p. 502]).

3.2.2 Natural Fractals

Mathematical fractals contain an inf,rnite number of points, but can be described by

a simple initiator and an iterative process. Fractals exist naturally in nature, but are much

more complicated in their design and description. Fig. 3.6 show a picture of the coastline

of Great Britain, and is an example of Mother Nature's fractals.
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In 1967, Mandelbrot posed the seemingly simple question: "How long is the coast

of Britain?" lMand6T]. At first glance, many people may think that a coastline has a fixed

length, and could only be changed through natural disasters such as earthquakes, or after

countless centuries of erosion and tectonic movement. Table 3.1 shows the measured

length of Great Britain's coastline using smaller and smaller divisions of measurement.

Fig. 3.6. Coastline of Great Britain.
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Table 3.1: Length of Great Britain's coastline (after [PeJS92, p.I92]).

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Compass Length

This table clearly shows the discovery that the length of Great Britain's coastline is

not fixed, but is very much dependent on the compass length that is used for the

measurements. As the compass length decreased from 500 km to 17 krn, the length of

Great Britain's coastline increased over three times from 2600 km to 8640 km! Therefore,

there is no exact length for this coastline of Great Britain, except that its length approaches

infinity as the compass length approaches zero.

3.3 Fractal Dimensions

500 km

100 km

Length of Coastline

54 km

17 km

2600 km

3800 km

5770 krn

How can one measure afractal that has infinite length, infinite surface area, or zero

volume? These constructs exist, but cannot be described using Euclidean geometry. For

this reason, fractal dimensions are used to describe and measure a fractal, and compare

one fractal with another.

The measurement of a fractal dimension D begins with the assumption that

similarities in the fractal exist at different scales. In other words, whereas some processes

in engineering are time-invariant, fractal processes are scale-invariant and have a power

law relationship. There are an infinite number of fractal dimensions that may be used to

8640 km
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describe a fractal [HePr83]. If a fractal is very simple (such as the Koch curve or

Sierpinski carpet), then one dimension is often enough to adequately describe the fractal.

When the nature of the fractal begins to change with space or time (and becomes

multifractal), then more than one fractal dimension is usually required to adequately

represent and characteúze the fractal.

Fractal dimensions may be classified into the following four categories [Kins94a]:

. morphological-baseddimensions

. entropy-baseddimensions

. spectrum-baseddimensions

. variance-baseddimensions

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Morphological-based dimensions consider the physical structure of a fractal, and may be

used to determine the dimension of a fracfal where the nature of the distribution is

unknown [Mand83, p. 36fl. An example of a morphological-based dimension is the

Hausdorff-Besicovitch dimension, D¡1p lMand83, p. 3641, [Mand85], [Kins94b].

3.3.1 Hausdorff-BesicovitchDimension

A hypersphere, or volume element (vel) fKins94a],is def,rned as an arbitrary region

of N-dimensional space that covers part of a fractal. As the number of vels N," covering

the fractal [Edga9O, Ch. 3] approaches infinity and the size of each ve\,r, approaches zero,

then the Hausdorff-Besicovitch dimension is defined as

. loe(N,)D,.^: lim "'IrD r-+olog(l/r)
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Table 3.2 shows a list of the fractals that have been discussed so far in this chapter,

and their approximate fractal dimensions.

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

Table 3.2: Fracfal dimensions for various figures.

Fractal

Koch curve

Sierpinski carpet

Fractional dimensions such as I.2618, 1.8928, or 2.1268 need some explanation to

find meaning in a world that is typically described through Euclidean geometry. In

Euclidean geometry, dimensions have integer values: DE: 0 is a point, DE: i is a

Iine, D u : 2 isaplane, and Du : 3 is a space. A fractal dimension betweenD : 0 and

D : 1 means that the fractal has characteristics that lie between those of a point and a line,

a dimension between D : I and D: 2 means that the fractal has characteristics that lie

between those of a line and aplane, and a dimension between D:2 andD:3 means that

the fractal has characteristics that lie between those of a plane and a space. With its

dimension of D: 1.2678, the Koch curve is a construct that is more complicated than a

line, but not nearly as complicated as a plane. Similarly, the Menger sponge is a construct

that is much more complicated than a plane, but not quite as complicated as a space, as is

shown by its dimension of D:2.7268.

Menger sponge

Great Britain's
coastline

Dimension

1.2618

1.8928

2.7268

Reference

approx. 1.3

[Mand83, p.44]

[Mand83, p. ßa]

[Mand83, p.Iaa]

[PeJS92, p.215]
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3.3.2 Variance Fractal Dimension

The idea of a power-law relationship between the variance of the amplitude of a

signal and its time increments dates back to the work done by Mandelbrot and Van Ness in

1968, and the introduction of fractional Brownian motion [MaVa68], [Mand7l] as a

generalization of Brownian motion [Brow28]. These ideas were fuither refined, and the

first plots of this power-law relationship where shown by Mandelbrot and Wallis in 1969

[MaWa69a], [MaV/a69b], [MaWa69c], [Mand83, p. 250]. However, the work presented

in these papers is very mathematical, and recent work by Kinsner [Kins94a] and Grieder

[Grie96] provide this thesis with a more palatable approach to the development of the

variance dimension for the modelling of natural phenomena [MaSu93].

Given a discrete time signal B(t), the variance 02 of its amplitude over a time

increment is related to the time increment according to the power law [Kins94a]

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

where ll is the Hurst exponent [Mand83, p.396], [ZhBM90], [PeJS92, p. a%1.

If we define

Lr : ltr-trl

Var[B(tù - B(t )l * ltz-,rl'n

(aB)¡,: B(t)-B(t)

then llcan be calculated by

(3.s)

- 5l

(3.6)
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H : tim lloglvar(LB)o,l
Â¡ -+ o 2 log(A t)

which is % times the slope of the line on the log-log plot, for decreasing values of Ar. For

an embedding Euclidean dimension Ã [Vics92, p. 10], the variance dimension Do of a

signal can be computed by
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Do: E+ I-H

The real-time coding procedure to calculate Do will now be shown. Given a

window of a b-adic sequence (b : 2 is a dyadic sequence) containing N. points,

Kto,: 2 (3.10)

K*o': ttrl
Køur: tffi]

and

(3.8)

Klri : K,ror- Kbu¡

For K,orrSk lKr,, the variance is calculated from

(3.e)

(3.1 1)

¿[,t(^B)il ]

(3.r2)

(3.13)
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where

and

.kfrk: b
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N-
Jt[,.: J

" ,k

The X and Y values for the log-1og plot are then calculated by

Xk: logln¡)

and

Y o 
: loglVar(A B) ol

The slope s for the log-log plot is

.ç:

(3. 1 5)

i: K,^... i= K,..,,. i= K'^.,.

where

K¡, ( K¡,

K
i: Ktu,. \i =Kr,,u

(3. r 6)

K : Kt,- KIow+ |

K¡¡

IYí

Finally, as in the previous derivation,

4',

(3.17)

(3.1 8)

(3.1e)

53

(3.20)



O Robert Barry

H : !,
2

and with a 1-dimensional signal (E: 1),

Do:2-H
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Another feature of the variance fractal dimension is that the values are normalized

to lie between 1 and 2. Do : 1 would be the dimension of a straight line and Do: 2

would be the dimension of totally random and uncorrelated white noise.

3.4 Multifractals and Multifractal Dimensions

When fractals are combined either spatially or temporally, it is appropriate that the

word "multifractal" be used to describe the new construct. The prefix "multi" means

"more than one", so the term multifractal means that there is more than one fractal in time

or space, or both lYics92, p. 491. Multifractal dimensions are an extension of regular

fractal dimensions, and are better suited to the characteization of complex multifractal

behaviour.

The trajectory of the variance fractal dimension will be discussed as a means of

temporal multifractal characterization, and the Rényi dimension spectrum will be

introduced as a test for multifractality and as a means of spatial multifractal

characlerization. The reliability and accuracy of these multifractal descriptions must also

be considered, and is investigated by Chen [Chen97].

(3.21)

(3.22)
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3.4.1 Variance Fractal Dimension Trajectory

As described in section3.3.2, the variance fractal dimension is calculated from a

portion, or window, of a l-dimensional signal. Therefore, the numerical value of the

variance fractal dimension is dependent on the size of the window. The selection of this

window size is very important, and is discussed in detail in section 5.4. Furthermore, if
the nature of the signal is expected to change over time, then the calculation of the

variance fractal dimension is also dependent on the location of the window. When the

window is shifted in time, it must also be decided if the window will either overlap, or not

overlap, part of the previous window. If the window is non-overlapping, then any portion

of the signal is only used once in the calculation of the variance fractal dimension; if the

window is overlapping, then portions of the signal (excluding a few points at the

beginning and end of a sequence equal to the offset of the window) are used more than

once. Calculations of the variance fractal dimension for a sliding window in time results

in a sequence, or trajectory, of values. This trajectory of dimensions may be called the

variance fractal dimension trajectory ryFDT), and demonstrates a fractal dimension that

changes with time. The calculation of the VFDT using an overlapping window is

illustrated in Fig. 3.7, with the original signal shown on top and its VFDT shown on the

bottom. Since a temporal window size of approximately 50 seconds was used to calculate

the variance fractal dimensions, its VFDT is shifted backwards in time by the length of the

window. Therefore, the spike located at26.7 sec on the original plot is easily detected at

about 27.6 sec on the VFDT.

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions
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Fig. 3.7. Variance fractal dimension calculated through time.

Previous research has shown that the VFDT is useful in characterizing temporal

signals such as speech lGrie96], radio transmitter transients [Toon97], [Shaw97], ISun99],

power systems transients [Chen02], and self-affine traffic [BaKi02], [BKPM03].
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3.4.2 Rényi Dimension Spectrum

The Rényi (multifractal) dimension spectrum was introduced in 1983 by Hentschel

and Procaccia [HePr83], and is an extension of the generalized entropy that was

formalized by Alftéd Rényi in 1960 [Rény55], [Rény59], [Rény61]. A comprehensive

discussion of the Rényi generalized entropy, the Rényi dimension spectrum, the

generalized relative entropy, and the relative Rényi dimension spectrum is given by

Dansereau [DansOl], and is summarized below.

Let Xbe a discrete random variable with finite alphabet y and probability mass

function p(x): Pr{X: x} ,Yx e y.

Claude E. Shannon defined the Shannon entropy [Shan48a], [Shan48b] H(þ of a

discrete random variable X as
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H(X)
xex

The generalized form of Shannon entropy [Rény61] is

-Z p@)tosp(x)

!r/y\ - x€x

L p@)
xex

that

F,q. 3.23 implies that p(x) be a normal probability distribution with the restriction

(3.23)
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IP(x): I
xex

This restriction is relaxed in Eq. 3.24, and p(x)

distribution [DansO 1 ] where

o. I p@)<1
xex
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The Rényi generalized entropy H q(X) of order q of a discrete random variable X

is defined as

(3.2s)

can be an incomplete probability

Z p'@)
,l

H"(X):;' log$- ,--Sq3*" t-q LpG)i. x

When Q: I, Hq(X) becomes H(X) and is the Shannon entropy [PeJS92, p.7371.

The Rényi dimension spectrum Dq(X) (or simply Dn) of order q of a discrete

random variable Xwith a probability distribution p r(x) at scale r is defined as

(3.26)

Dq(X) : 
,,tT,

2 P7<'>
a xe"flos ^" \ n,.Q)

xe x1

| _ q ,"r(i)

(3.27)

H (X\
lim 'r' '
,, o 

,"r (l)
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The Rényi dimension spectrum is a monotonically non-increasing function of q

[DansOl] for -oo1q1æ. If the object is a single fractal, then Dn is a constant for all

values of q. If the object is multifractal, then the value of Dn varies with q. Fig. 3.7 gives

an example of a Rényi dimension spectrum for a single fractal and a multifractal. The plot

of the fractal object is a straight horizontal line whereas a plot of the multifractal object

resembles a backwards-S curve.
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-2t -15 -10 -5

Fig.3.8. A Rényi dimension spectrum

1.12

A test to determine if an object is multifractal or not is to calculate the Rényi

dimension spectrum for the object in question; if the spectrum is constant for all values of

q (or, in practice, for a sufficiently large range of q), then the object is a single fractal. It

should also be mentioned that in practice, care must be taken when calculating a small

probability raised to a power q, as the precision needed to accurately represent extremely

0 5 10

q

for a single fractal

15 20

and a multifractal.
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small numbers may exceed the maximum precision of a computer. Previous research has

also shown that the Rényi dimension spectrum is useful in characterizing more

complicated signals such as EMG recordings [Ehti99] and DNA [Rifa98], lZhan}2l.

If an object is a single fractal in space but varies through time, then it possesses

temporal multifractality and may be described using the variance fractal dimension

trajectory; if the object is multifractal in space and constant through time, then it possesses

spatial multifractality and may be described using the Rényi dimension spectrum. More

complicated phenomena do exist that exhibit multifractality in both space and time.

These objects may be described through the changes in the Rényi dimension spectrum

through the formation of the Rényi dimension spectrum h'ajectory, as demonstrated by

Rifaat [Rifa98] and Sun [Sun99].

3.5 Summary

Ch. 3: Background on Fractals, Multifractals, and Fractal Dimensions

This chapter provides an introduction to fractals and multifractals in both space

and time, and shows examples of the generation of mathematical fractals through a simple

initiator and iterative process. An infinite number of fractal dimensions exist to

characterize and describe fractals, but the Rényi dimension spectrum and the variance

fractal dimension trajectory will be used in this thesis to demonstrate the multifractal

nature of self-affine traffic, and to provide a multifractal signature for the traffic.
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BacrcRouND ox FnaruRE Exrnecrrol,{

4.I Basic Statistical Analysis

AND Nnunnr, NnrwoRK Cr,assrFICATIoN

A sequence of numbers may be analyzed in many ways. In statistics, a starting

point for analyzing a sequence of numbers is through the calculation of its mean and

variance. (For the sake of clarity, it should be stated that the variance calculated in this

chapter is the statistical variance of a sequence, and is not the same as the calculation of

the variance fractal dimension.) The mean (or expected value) p of a random variable X

with probability distribution /(x) [WaMM98, p. 85] is calculated by

CHaprER IV

Fr:e(,Y):2*f@)

Similarly, the variance o2 of a random variable X with probability distribution l(x)

[WaMM98 , pp.93-94] is calculated by

o2 : el(x-p)21 : I(r -pt)2-f(r) : e(x\ -lt2

The

description,

calculated.

statistical mean and variance of a

but if it is not, then the higher-order

(4.1)

sequence may be sufficient in its

statistics of a sequence may also be
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4.2 Higher-Order Statistics

The higher-order statistics used in addition to the mean and variance are called the

skewness and kurtosis, and are described in sections 4.2.1 and 4.2.2, respectively.

4.2.1 Skewness

Skewness is the normalized third central moment of a distribution, and is a

measure of the asymmetry of sampled data around the mean p . If the data are perfectly

symmetrical, then the skewness is zero. If the data are spread more to the left of p , then

the skewness is negative; if the data are spread more to the right of p , then the skewness is

positive.

The skewness s of a random variableXwith probability distribution f(x), mean p,

and variance o'2 [MathO3a] is calculated as
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?

^ - et(x- p)-l
Jo

4.2.2 Kurtosis

Kurtosis is the normalized fourth central moment of a distribution, and is a

measure of the "peakedness" of a distribution. The kurtosis fr a random variable Xwith

probability distribution f(x), mean p, and variance o2 ¡Math03b] is calculated as

i
,- _ e[(X-tr)']

4o

(4.3)

-62-

(4.4)



@ Robert Barry

The kurtosis of a Gaussian (or norma[) distribution using F,q.4.4 is 3. To make the

kurtosis of a Gaussian distribution equal to zero, the following equation may also be used.

,- - e[(x-p)4] .
4o

4.3 HistogramModelling

Ch. 4: Background on Feature Extraction and Neural Network Classification

A histogram is a grouping of data into a finite number of intervals , or bins, based

upon the frequency of occurrence of the individual data points within each bin. Figure 4.1

shows 1000 data points that have been selected from a Gaussian distribution.

(4.s)

0 10t 200 300 4û0 50r 600 700 Bot 90ü 1ûûû
hl

Fig. 4.1. 1000 data points selected from a Gaussian distribution.

If we did not know that the data were generated using a Gaussian distribution, we

could figure this out by dividing the range of data into equal sized bins and counting the
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number of data points in each bin [Meis72, pp. 4l-42]. The number of bins used is also

important: if too few (5) or too many (99) bins are used (as shown in Figs. 4.2 and 4.3,

respectively), then the underlying distribution may not be so easily identified. Figure 4.4

shows a good histogram formed by choosing 19 bins.
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Fig.4.2. Too few bins used to construct a histogram.
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Fig. 4.3. Too many bins used to construct a histogram.
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Fig.4.4. A good number of bins used to construct a histogram.
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The Gaussian distribution N(x) is characterized by two parameters: the mean p

and variance o2 (or standard deviation o) [WaMM98, p.145], and is expressed as
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N(x:u.o) : 1 
e

Jzno

With these two parameters, a bar graph of a particular Gaussian distribution can be

constructed which closely resembles, or models,Fig. 4.4. Using Eqs. 4.1 and 4.2, the data

usedto generatedFig.4.l has p : 0.514 and o2 : 0.9777. Abargraphof aGaussian

distribution with these two parameters is shown in Fig. 4.5.

-2
_1(x-p)

12

0.14

o.12

0.1

Þ t.08
ã
G2o
õ 0.06

0.04

D.t2

0

(4.6)

o2468101214161828
Bins

Fig. 4.5. Histogram modelling using the Gaussian distribution.
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A visual comparison between the histogram in Fig. 4.4 with the Gaussian

distribution in Fig. 4.5 shows us that our model fits the original histogram quite well. The

vertical axes onthese graphs are different, but equivalent. InFig. 4.4,the vertical axis is

the frequency of occurrence with a maximum of approximately 120; since there are 1000

data points used to construct the histogram, this number represents l2%o (or 0.12) of the

data. This normalized representation is the probability, and is the vertical axis on Fig. 4.5.

4.3.1 Gamma Distribution

The gamma distribution G(x) is a generalized statistical distribution represented by

the two parameters alpha cr and beta B [Weis99a], and is expressed as
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G(x;ø, B) :

where f (a) is the gamma function [Weis99b]

-t-l-t.f (cr) : I ¡* 'e 'dt
I

0

x
c-l -ß

x e'
Þ" r(o)

Unlike the Gaussian distribution which always maintains its symmetric bell-shape

form when the parameters p and o' are varied, the gamma distribution is very flexible and

can take on a wide range of shapes as the parameters cr and B are varied. This flexibility

makes the gamma distribution an ideal choice for modelling rapidly changing probability

distributions. Figure 4.6 shows the gamma distribution with cr : 1 and varying B and

Fig.4.7 shows the gamma distribution with B : 1 and varying a.

(4.1)

(4.8)
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Fig. 4.6. Gamma distribution with
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Fig. 4.7. Gamma distribution with
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p : 1 and varying u.
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Figure 4.6 reveals that when o : 1, the gamma distribution becomes the

exponential distribution
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G(x;a: 1,p)

Figure 4.7 shows that the garnma distribution can also take on a form that is similar

to a log-normal or Gaussian distribution. When both parameters cx, and B are varied

simultaneously, the resulting distribution can even look like a "squished" Gaussian

distribution or reversed exponential distribution, as shown in Fig. 4.8.

x
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Fig. 4.8. Gamma distribution with varying cx and B .

a=l 0, l=1fl
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4.4 Principal Component Analysis

Principal component analysis (PCA) is a linear transformation used to isolate and

extract the most important features from a signal through the removal of redundant

information. In a system represented by several variables, it is most likely that some

degree of conelation exists between variables; for example, if variable I always increases

when variable B decreases, then there is correlation between variables A and B. If these

variables can be transformed into new variables I * and B*, where A* contains most of the

information between A and B, and B* contains the remaining information, then it may be

possible to retain A* and discard ,B* and still preserve enough of the information to

properly describe the relationship between the original variables A and B.

The following derivation of PCA is provided by Bishop [BishO0, p.310-313].

PCA maps vectors x' in d-dimensional space (xt, xù onto vectors t in

M-dimensional space (2y,..., z¡4)where M< d. The vector x can be represented as a

linear combination of orthonormal vectors u i ) as shown by
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dx: s¿-/
i = I

ziui

The vectors ø, satisfu the orthonormality relation

ulu, : õ,,

where ô¡ istheKroneckerdeltasymbolwhere ðr: 1 if i:j and ôU : 0 otherwise.

(4.10)
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Using F,q.4.11, an expression for the coefficients z, is given by

Tzi : uix

If a subset M < d of the basis vectors ui are retained so that only M coefficients z,

are used, then the remaining coefficients can be replaced by constants å, and each vectorx

approximated by

Md
x : \,,u,+

í=l i:M+l

Suppose we have a data set of ly'vectors xn where ft: 1,..., N. We wish to choose

the basis vectors u, and coefhcients å, such that the approximation in Eq.4.13 gives the

best approximation to the original vector x on average for the entire data set. The error in

the vector xn introduced by the dimensionality reduction is given by

d

i-i" :
i: M+1

(4.r2)

The best approximation is defined as the one that minimizes the sum of the squares

of the enor over the data set. This is accomplished by minimizing

EM: )îtt., -;;ll' : ],i, i 1,i -b¡)2 (4 1s)
n=l n=ti:M+\

(4.13)

(4.14)
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The derivative of E, inBq. 4.15 with respect to ó, set to zero shows us that

Ch. 4: Background on Feature Extraction and Neural Network Classification

b¡:

where

1$,:
NL-,n:1

T-: üìx

r- 1i*,
N '¿-¿n=1

Combining Eqs. 4.72 and 4.I6,8q. 4.15 can be written as

dN
EM:) t lto|@''-x)j2:

i:M+1 n=1

where I is the covariance matrix of the set of vectors {xn} given by

r : > (x" -x)(xn -x)'

It has been shown [BishO0, App. E] that minimizing E¡a with

vectors tti occurs when the basis vectors satisfy

2u,: ),",u,

(4.t6)

-d

;
ì= M+1

and are the eigenvectors of the covariance matrix. SubstitutingBq. 4.20 into Eq. 4.18 and

using Eq. 4.11, the error criterion at the minimum is

(4.17)

(4.18)

respect to the basis

(4.1e)

1a

(4.20)
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DLM

Therefore, the minimum error is achieved by retainingthe M largest eigenvalues

and their corresponding eigenvectors, and discarding the d - M smallest eigenvalues.

4.5 K-Means Clustering

Ch. 4: Background on Feature Extraction and Neural Network Classification

-d

;>
i:M+l

?," i

If we had access to Sarda's data sets (as explained in section2.6), then we would

have a database of known signal classes that we could characfeúze. Signal I would have

one set of characteristics, signal B would have another set of characteristics, and so on. If
the signal classes ate known, then sections 4.5 and 4.6 would not be necessary. However,

what if the signal classes are not known? How could extracted characteristics be grouped,

or clustered, and classes assigned to these clusters?

Figure 4.9 shows a simple problem where unknown hypothetical traffic is

characterized and plotted in 2-dimensions. Poor clustering of these data points can lead to

an incor¡ect number of identifìed classes, as shown by Fig. 4.10. Similarly, good

clustering can lead to a more accurate (and possibly correct) number of identified classes,

as shown by Fig. 4.1 1. The human visual system is very good at identifuing clusters of

data, and can immediately confirm that there are most likely four distinct classes within

Fig.4.10. Further imagination would find it difficult, if not impossible, to properly and

intuitively find five or more classes in Fig. 4.9! The important topics of correct clustering

and classification will be discussed further in sections 5.8.2 and 6.2.

(4.21)
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0 0.1

Fig.4.9.
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Traffi c characteristics plotted in 2-dimensions.
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Fig. 4.10. A poor choice of two clusters (or classes) in Fig. 4.9.
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0 0.1 0.2 û.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

Fig. 4.11. A good choice of four clusters (or classes) in Fig. 4.9.

The K-means clustering algorithm [MacQ67) is used to cluster data points in

N-dimensional space so that classes may be assigned to each cluster. The K-means

algorithm was chosen because it is simple, intuitive, and preliminary experimentation

showed that it gave good results. Hartigan provides the following description of the

K-means clustering algorithm lHart75, pp. 8a-861.

Preliminaries:

0.1 0.2 û.3 0.4 0.5 0.6 0.7 0.8 0.9 1

. Thelthcaseof the Jthvariablehasvalue A(I,J) where I<I<M and

1 <.1< N.

Thepartition P(M, K) is composed of the clusters 7,2,3,..., K. Each of theM
cases lies in just one of the K clusters.
The mean of the J lh variable over the cases in the Z th cluster is denoted by
B(L, J) .

. The number of cases in Z is N(L) .

-75-



@ Robert Barry

. The distance D(1, L) between the 1th case and Z th cluster is

,i_
D(I,L) : ll, r¿Q, J) - B(L,J)12

tJÃr

The error elP(M,K)l of the partition is

lul

elP(M,K)l : \ {nlt,L(Ðl}2
I:I

Ch. 4: Background on Feature Extraction and Neural Network Classification

where Z(1) is the cluster containing the 1th case.

Step 1:

. Assume initial clusters I,2,..., K and compute the cluster means B(L,J)
where 7 < L < K and I <J </y', and the initial error as shown inBq.4.23

Step 2:

. For the first case, compute

(4.22)

N(L)lp(|, Lj2 NV( )l{Dt 1, L(1)l}2
¡(¿) + 1

for every cluster Z, which is the increase in the error by transferring the first
case from cluster Z ( 1 ) to cluster Z. If the minimum of this quantity over all
L*L(l) is negative, then transfer the first case from cluster Z(1) to this
minimal Z, update the cluster means of Z( 1) and the minimalL, and then add

the increase in error (which is negative) to elP(M, K)1.

(4.23)

Nt¿( 1)l - 1
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Step 3:

. Repeat Step 2 for the /th case, where 2 < I < M.

Ch. 4: Background on Feature Extraction and Neural Network Classification

Step 4:

' Stop if no movement of a case from one cluster to another occurs for any case.

Otherwise, retum to Step 2.

4.6 Self-Organizing Feature Map

Kohonen's self-organizing feature map (SOFM) [Koho88, Ch. 5], [Koho90] is a

neural network that groups data based upon their topological similarity. Data points that

are clustered in the same region, or neighbourhood, are assigned the same class. As its

name suggests, the important features of the data organize themselves without the

supervised control of a user. In this thesis, the SOFM could be used to cluster features;

howevet, the task of clustering and dimensionality reduction is adequately performed by

the K-means clustering algorithm and PCA. Therefore, the SOFM is used only for visual

verification of the correctness of the K-means clustering. The clustering from the

K-means algorithm and the SOFM are expected to be visually similar; if they are similar,

then this is verification that the K-means algorithm is working as expected.

Kohonen provides the following discussion of the SOFM [Koho88, pp. 131-134].

The SOFM is a two-layered neural network with n-dimensional input nodes (denoted by

x) andp-dimensional output nodes (denoted byy) with weights p cormecting every input

neuron to every output neuron, as shown inFig.4.I2.
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xrrl-..-.-*o

*r¡1-,"o

( )-vtrl

x[nJ--------*

*sffffi-Ytc-¿J
1ütâv

/;âfs-

,cl ffil-ylc-l]- r4*{$#r

ï
lnput Layer

f --*t'o

The SOFM trains itself through a winner-takes-all competitive learning scheme.

In this scheme, only the winning output neurony(c) is activated for any given input vector

x according to the condition

-ÆH

ffiffi --------* y[c+2f

Fig.4.l2. SOFM architecture (after [Dans95]).

llx- lr,(c)ll : min{llx- w(i)ll}
i

O-t'o'
ï

Output Layer
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This evaluation is performed at discrete intervals of time, so Eq. 4.24 may be

expressed as a function of time r

Ch. 4: Background on Feature Extraction and Neural Network Classification

llrtrl- *"(r)ll = *ir{ ll'(rl - w,(t)ll}
I

The weights ll, are updated by

where N" it the topological neighbourhood and contains all nodes within a certain radius

from the winning node y(c), and h(t) is the neighbourhood function. A common

definition for the neighbourhood function is the bubble function, defined as

wî(t + l) : w,(t) + h(t)lx(t)-w¡(t)), i e N,

where a(r) is the learning rate (which usually decreases towards zero over time) which

satisfies the restriction that 0 < cx(r) < 1 lZura9L, p. a251. Another commonly used

neighbourhood function is

h".í(t) : ü(/)

where r, and r c are positional vectors for the winning neuron and neighbouring neuron,

and o(f) is the decreasing radius function lZura92,p.425l.

h",ie) = o((r) u lo(t))2

(4.2s)

(4.26)

(4.27)

(4.28)
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4.7 Probabilistic Neural Network

The probabilistic neural network (PI.IN) was introduced by Specht in 1988

[Spec88], although the necessary mathematical foundations were outlined 16 years earlier

by Meisel in I9l2 lMeis72, Ch. 21. The PNN is a type of neural network that is

specialized for classification problems, and works well when the training data are

relatively sparse [Spec90b]. Its performance is generally very good, and asymptotically

approaches Bayes optimality [Spec88]. Specht [Spec88], [Spec90a] provides the

following discussion of the mathematical foundation for the PNN. Other detailed and

comprehensive discussions are also provided by Wasserman [Wass93, Ch. 3] and Shaw

IShaw97].

4.7.1 Bayes Decision Rule

Ch. 4: Background on Feature Extraction and Neural Network Classification

The Bayes decision rule for classification is constructed in a way that minimizes

the "expected risk" of a decision [DuHa73 , Ch.2]. Consider the two-category situation in

whichthestateof 0 iseither 0n or 0r. Thedecisionof whether 0 :0o or 0 :0, is

based on the set of measurements represented by the p-dimensional vector

X : [Xt. .Xo]. Given that lo is the loss associated with the decision d(X) : 0u when

0 : 0,q andlB isthelossassociatedwiththedecision d(X) :07 when 0 : 0¡,h¿ is

the a priori probability of occurrence of patterns from category A and ha : 1 - ho is the

corresponding a priori probability of occurrence of patterns from category B, the Bayes

decision rule is

d(x) : eA if hatf¿(x) > hBIBf B(x)

80-
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d(x) : 0B if hAtAfA(x) < hBtBfB(x) (4.30)

where f¿(X) and ft(X) are the probability density functions (PDFs) for categories A

and B, respectively.

Ch. 4: Background on Feature Extraction and Neural Network Classification

The boundary decision between categories A and B is therefore

fÁx) : K fn(X)

where

,. - hul,
^-- hulo

The problem with implementing the Bayes decision rule is that the PDFs fA6)

and ft(X) are generally unknown and may be too complicated to approximate with a

simple distribution. However, these underlying probability densities may be estimated,

and the estimates will converge asymptotically towards the true PDFs as the number of

samples increases.

4.7.2 Parzen PDF Estimation

Parzen showed that if there are nc training cases for a given class c, a PDF may be

estimated lParz62lby

(4.31)

s,(x): *"ir(+)t ¡= I

where W(X) is the weighting function and o is the spread parameter for the width of this

(4.32)
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weighting function that surrounds each data point. The weighting function lír(X) is

usually chosen to be the Gaussian function

Ch. 4: Background on Feature Extraction and Neural Network Classification

W(X) :
X2| -;?

-e
J-zno

By insertingBq.4.34 into Eq. 4.33,the PDF estimation becomes

1 3\ys,(X): _h Le
\¿'rT)' 6' fiç ¡ = 1

where X : lXt...Xo]. The spread parameter o can take on a wide range of values. If o

is too small, then the PNN performs as a nearest neighbour classifier [Spec88], lCoHaîTl;

if o is too large, then the PNN acts as a matched filter [Spec88]. As shown by Fig. 4.i3,

there exists a range of o for most classification problems that provides good results

[Spec88], [Wass93, p. 441.

(4.34)

(4.3s)
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tnE
..H

ñ
Ea
an(û

lì

c)

tt

Sigma

Fig. 4.13. Varying the spread parameter o (after [Spec88], [CaChO3]).

For the sake of completeness, it should

[Caco66] extended Eq. 4.35 to allow for the

This generalized expression is

Matched Filter

g,(x) :

4.7.3 PNN Architecture

The PNN is designed to implement Bayes decision rule using Parzen's method of

PDF estimation. Figure 4.14 shows the four layer architecture of the PNN.

n..1-

-\

(2n¡ntzo!n"¡?1

also be mentioned that in 1966, Cacoullos

multivariate case where 6 : lor ...o0].

-lx-x,ll'
^- 2zgc

e (4.36)
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*rll_--*o r./

/ìt/
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\
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/

The number of neurons in the input layer is equal to the dimensionality of the input

data, and each neuron in the pattern layer corresponds to a training sample. The

summation layer consists of neurons for each possible output class and performs the PDF

estimation. The output layer usually consists of only one neuron which selects the largest

value in the summation layer as the class output for the PNN.

In addition to providing very good results, a PNN is also very fast to train.

Training typically takes seconds where similar training of a back-propagation neural

network may take hours or days [Spec90a]. The main disadvantages of a PNN is that it

ï
Input
Layer

Q --*t

Fig.4.l4. PNN architecture (after [Spec88]).

rT
Pattern Summation
Layer Layer

ï
0utput
Layer
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requites a substantial amount of memory to store every training sample; however, in

today's computerized world, memory is generally abundant and inexpensive, so this

"disadvantage" does not hinder the use of the PNN for classification problems.

4.8 Summary

Ch. 4: Background on Feature Extraction and Neural Network Classification

This chapter provides an overview of the techniques used in feature extraction and

classification. Firstly, a study of the higher-order statistics and the modelling of the

histograms are used to extract the important characteristic features of the data. Secondly,

PCA is performed to further compress this representation, and the K-means algorithm is

used to cluster these features with verification from a SOFM. Finally, a PNN is trained to

reliably classiS' newly observed traffic patterns.
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5.1 Verification of Sampling Frequency

In Pear's experiments, the position of the Betta splendens is recorded ten times per

second [PeMaO2]. Therefore, the sampling frequency is l, : 70H2. Intuitively, this

sampling frequency seems adequate to accurately observe and record the motion of the

Betta splendens; however, one's intuition must be conhrmed with a proof before these

data may be used in this thesis.

In 7928, Harry Nyquist introduced the fundamental idea that for an analog signal

to be properly represented by samples at discrete intervals of time, the sampling frequency

must be at least twice the maximum frequency in the signal [Nyqu24], [Nyqu28],

[Beau02]. If sampling was performed at less than twice the maximum frequency, then

aliasing - a process whereby higher frequencies are incorrectly perceived to be lower

frequencies - would occur, and the signal would be irrecoverably distorted. This idea was

rigorously proven by Shannon in 1949 [Shan49] and is widely known as the Nyquist

sampling theorem.

Sysrnnn f)nsrcx AND VnnrnrcATroN

CneprER V

Ch. 5: System Design and Verification

The sampling frequency used in Pear's experiments will be shown to be adequate

using two different proofs.

Proof #1: The Befia splendensused in the experiments are approximately 2.5 cm in

length, and their position is recorded with a maximum error of about 0.5 cm [PeMa02]. lf
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the sampling frequency of 10 Hz is inadequate, then the Betta splendens would have to

evade the camera system at some time f by swimming 3.0 cm (2.5 cm for its length + 0.5

cm for the maximum effor in its position) away, turning around, and swimming back to

the same position before time (l + 0.1) sec. If this scenario did take place, then this high

frequency movement would be incorrectly perceived as low frequency movement (i.e., the

fish did not move); once again, this phenomenon is known as aliasing. For the Betta

splendens to move as described above, it would have to swim 6.0 cm in 0.1 sec, or

60 cm / sec. However, Pear and Martin have observed that the Betta splendens swims at a

maximum speed of approximately 10 cm / sec [PeMaO2]. Therefore, the sampling

frequency f , : 70 Hz is clearly acceptable.

Proof #2: Assume that the Bertu splendens moves along a sinusoidal trajectory

[CaChO3]

Ch. 5: System Design and Verification

where /¡¿ is the Nyquist frequency given by

, _7.JN-iJ'

x(t) : Asin(2xf* t)

andA is the amplitude, or length of the Betta splendens.

The velocity of the Betta splendens may be calculated as follows by taking the first

derivative of Eq. 5.1 with respect to time

v(f) : *-U, 
: Anf,cos(n-f,t)

(5. 1)

(s.2)
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The velocity is at a maximum when

cos(nd t) : I

and therefore

v *o, : ATEf,

If we set A : 2.0 cm (2.5 cm

position) and f , : 10H2, fhen v.o,

Therefore, the sampling frequency f,

Ch. 5: System Design and Verifìcation

5.2 VerifÏcation of Self-Affinity

As discussed in section 3.1, self-affinity implies fractality (and vice versa).

Therefore, to show that Pear's data sets are self-affine, it must be shown that they are

fractal. As explained in section 3.3.2, to show that a signal is fractal, a power-law

relationship must exist between the variance of the amplitude of a signal and its time

increments. In other words, if a log-log plot of the above relationship yields a straight

line, then the signal is fractal and therefore self-affine.

Figures 5.1 to 5.8 show four segments of Record 11020219, each with a length of

7024 data points, and the corresponding log-log plots for these segments. In these plots,

(s.s)

for its length - 0.5 cm for the maximum error in its

: 62.8cm / sec, or approximately 60.0 cm / sec.

: 10Hz is once again shown to be acceptable.

(s.4)

and

X:Lt:ltr-trl

Y : (LB)u: B(tz)-B(r)
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Fig.5.3.

1û60 1080 1 1ûû 1120
Time (sec)

Record 11020219 from r:1050.1

7

6.5

6

5.5

5

4.5

4

3.5

oo

----------!-----------!-----------!

1140 1 160

to 7152.4 sec.

22.533.544.55
tos00

Fig. 5.4. Calculation of variance fractal dimension of Fig. 5.3.

i"--'7

is ='1 .1 67
=l

-90-



@ Robert Bary

E
c

ã 150
.=

Eo

3 looe
G

i-

Ch. 5: System Design and Verification

0r-
I-5

Fig.5.5.

1.502 1.504 1.505 1.508
Time (sec)

Record 11020219 from /:15000.1

11

10

----------L

õ;o
o

1.51 1.512

x 1oa

to 15102.4 sec.

i,,

2 2.5 3 3.5
losC4

Fig. 5.6. Calculation of variance fractal

7- --¡

4 4.5

dimension of Fig. 5.5.

-91 -



@ Robert Barry

140

120

100

BO

60

40

2t

E
E

o
.=

Eo

@o
Êt

.aÊ

Ch. 5: System Design and Verification

0L

Fig.5.7.

2-7tr2 2.704 2.706 2.708
Time (sec)

Record 11020219 from / :27000.1

I

8.5

o

Ì.J

7

6.5

6

55

oo

2 71 2.712
4

x 10'

to 21102.4 sec.

________za_i

22.533.544.55
los0q

Fig. 5.8. Calculation of variance fractal dimension of Fig. 5.7.

92-



O Robert Barry

Figures 5.1, 5.3, 5.5, and 5.7 represent the X-coordinates of the Betta splendens in

Record 11020219 for I02.4 seconds starting at approximately 1, 78,250, and 450 minutes,

respectively. Visually speaking, these plots look very different. However, although these

time segments were selected arbitrarily without a priori knowledge of what the log-log

plots would look like, the plots shown in Figs. 5.2,5.4,5.6, and 5.8 reveal an exciting and

consistent underlying self-affine structure.

However, a proof that Record 11020219 is self-affine cannot be constructed from

four encouraging examples alone. To demonstrate the self-affinity of Record 11020219,

we must consider similar log-log plots for the entire time series, and the accuracy of the

line of best fit for each plot. The mean square error (MSE) is calculated for each log-log

plot as follows

Ch. 5: System Design and Verification

MSE :

where l/ is the number of points in the log-log plot, )'( i) are the actual data points, and

?ç¡ ut"the corresponding points on the line of best fit. As in Figs. 5.2,5.4,5.6, and 5.8,

a window size of 1024 points is used to calculate the VFDT (which means thatN:4) with

no overlapping between successive windows. The resulting histogram of the MSEs is

shown in Fig. 5.9.

i,Ë
i = I

tY(i) - ?Øl' (s.8)
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0

Fig.5.9.

Figure 5.9, consisting of 278 points, shows that the vast majority of the VFDT has

a very low MSE; this means that the line of best fit is very close to the actual data points.

In fact, the average MSE is 0.0147, and only 10 points have a MSE greater than 0.1.

Therefore, since 96.4%o of Record 11020219 has a MSE less than 0.1, we may conclude

that Record 11202019 is self-affine.

0.05 0.1 t.15 0.2 a.25 0.3 11.35 0.4
Mean Square Error

Histogram of the MSE of the VFDT in Record 11020219.

5.3 Verification of Spatial Multifractality

As explained in section3.4.2, the test to determine if an object is multifractal in

space is to calculate its Rényi multifractal dimension spectrum. Figures 5. i 0 to 5. 13 show

the Rényi dimension spectra for Figs. 5.I,5.3,5.5, and 5.7, which represent four selected

segments of 1024 points in Record 11020219.
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Fig.5.11. Rényi dimension spectrum of Fig. 5.3.
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Fig. 5.13. Rényi dimension spectrum of Fig. 5.7.
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To calculate the Rényi dimension spectrum of a temporal signal, it has to be

embedded into a 2D plane as an image. A mesh is then constructed over the image and the

frequency of points is calculated for every bin. If the points are evenly spaced throughout

the image, then the probability distribution is uniform, the Rényi dimension spectrum is a

horizontal line, and the object is a single fractal. However, if the image has a varying

probability distribution, then the spectrum will be curved, and the object is multifractal.

These Rényi dimension spectra all indicate degrees of spatial multifractality in the

four segments of Record 11020219, with 1.I .Dn<1.25. Figures 5.10 and 5.72have

similar endpoints when q :20 and q : -20, but the curves are different in the middle

around q:0. This statement is also true for Figs. 5.11 and 5.13.

The construction of the Rényi dimension spectrum is another method of

multifractal characterization for complex temporal signals. In these examples, 1024

points are considered in each successive window of the original signal, and the spectrum

constructed for each window contains 41 points between q :20 and q : -20. However,

the majority of these 41 points may not change very much from one spectrum to another,

so a study of the spectra may reveal the fewest number of values for carefully selected q

which adequately charucterizes the original signal.

The calculation of the Rényi dimension spectrum for 278 sequential windows

(which is, in fact, the Rényi dimension spectrum trajecrory) reveal that the four Rényi

dimension spectra displayed in this section are characteristic of the spatial multifractality

found throughout Record 11020219.
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5.4 selection of window size and offset to calculate vFDT

The variance fractal dimension may be calculated as discussed in section 3.3.2.

However, careful consideration must be taken when selecting the window size (/fu) and

window offset (, 
"Ð 

for the calculation of the variance fractal dimension. The window

size determines the number of data points consideled in the calculation of the variance

fractal dimension. A larger window size results in a greater compression of the data. In

an analogous way, this window acts as a low-pass filter (LPF): the larger the window, the

more the data is "smoothed" and compressed. However, if the window size is too large,

then important high-frequency data may be lost. The window offset may be seen as

controlling the resolution of the window, or LPF, through time. A window offset equal to

the length of the window means that there is no overlapping between successive windows,

and each data point is considered in the calculation of the VFDT only once. As the

window offset decreases, data points are considered in the calculation of more than one

variance fractal dimension along the trajectory; this process may be referred fo as fractal

amplification lKins94al. When , oï 1 , successive windows overlap as much as

possible and maximum resolution of the VFDT occurs through time.

To demonstrate the effect of decreasing the size of non-overlapping windows,

Figs. 5.14 to 5.18 show the calculation of the VFDT with window sizes of 8792,4096,

2048,1024, and 512, respectively. In our previous log-log plots, a window size of 1024

was used and resulted in .À/ : 4 points for the calcuiation of the slope. 512 points would

result in N : 3, which is a fundamental lower limit for the number of points needed to

reliably calculate the slope of this line, and therefore the variance fractal dimension.
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Fig. 5.14. VFDT calculated using a non-overlapping window size of 8192.
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Fig. 5.18. VFDT calculated 
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window size of 5r2.

As the window size decreases fi'om 8192 to 512, the VFDT becomes less smooth

and contains more of the subtle variations of the variance fractal dimension. In this way, a

larger window size may be seen as acting like a LPF.

Keeping a window size of 512 (as shown in Fig. 5.18), the effects of an

overlapping window on the construction of the VFDT will now be illustrated. Figs. 5.19,

5 .20, and 5.2 1 show the VFDT calculated with a window size of 5 12 andwindow offset of

256, I28, and 8, respectively. The plots using a window offset of 64, 32, and l6 are not

shown here because they look quite similar given the finite resolution on a printed page.
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Fig. 5.19. VFDT calculated using a window size of 512 andwindow ofßet of 256.
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Fig. 5.20. VFDT calculated using a window size of 512 andwindow offset of 128.
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Fig. 5.21. VFDT calculated using a window size of 512 andwindow offset of 8.

As the window offset decreases, more of each successive window overlaps the

previous, and the resolution of the VFDT in time increases.

For this analysis of Pear's data sets and Record 11020219, it was decided that a

VFDT with a window length of 512 and window offset of 8 will be used. 'With a sampling

frequency f , : 10 Hz, this corresponds to a window size of 5I.2 sec and a window offset

of 0.8 sec. Roughly speaking, the behaviour of the Betta splendens is studied for I minute

intervals every second.

c
.o
Eo
.=Ê
õ
oõ

LL
ooc
G

- r03 -



O Robert Barry Ch. 5: System Design and Verification

5.5 construction of Statisticat rrajectories and Histograms

To further study the statistics of the VFDT shown in Fig. 5.21, the statistical

trajectories - namely the mean, variance, skewness, and kurtosis trajectories - of the

VFDT are calculated using Eqs. 4.1 to 4.4, respectively. These four new trajectories are

calculated using a window size of 512 with a window offset of 1 . The smallest possible

window offset was chosen so the resulting trajectories would have the same number of

points as the original VFDT. Figs. 5.22 to 5.25 show the mean, variance, skewness, and

kurtosis trajectories of the VFDT.
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Fig. 5.22. Mean trajectory of the VFDT.
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Fig. 5.23. Variance trajectory of the VFDT.
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Fig. 5.24. Skewness trajectory of the VFDT.
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Window Position x 105

Fig. 5.25. Kurtosis trajectory of the VFDT.

The global histograms of Figs. 5.22to 5.25 are shown in Figs. 5.26,5.28,5.30, and

5.32, respectively. These histograms represent the distribution of the mean, variance,

skewness, and kurtosis for the entire corresponding trajectory.

Visually speaking, the structure of the global histogram in Fig. 5.26 resembles a

log-normal distribution, Fig. 5.30 resembles a skewed Gaussian distribution, and Figs.

5.28 and 5.32 resemble exponential distributions. These histograms strongly reinforce the

existence of an underlying behaviour in the generation of the data. The log-normal,

Gaussian, and exponential distributions may be used to accurately model the four

histograms, but none of these distributions would succeed in modelling all four

histograms. For this reason, the gamma distribution was chosen to model the histograms,

as shown in Figs. 5.27, 5.29,5.31 and 5.33, respectively.
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Fig. 5.26. Global histogram of the mean trajectory of the VFDT.
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Given the gamma distribution in Eq. 4.J,the mean and variance are [weis99a]

p:o(p

and

,, ,,

O:O¿Þ

a
Since ¡r and o' are calculated

determine the appropriate cx and

These expressions are

(s.e)

(5. I 0)

from the data, we can re-arrange Eqs.5.9 and 5.10 to

B to model the histogram with the gamma distribution.

(s.1 1)

(s.r2)

and

2

Þ:9
l.r

2

cr:L:p
628

To study the changes in the behaviour of the Betta splendens , we must consider the

stationarity of the local histograms formed from the statistical trajectories within certain

ranges of time. Clearly, there is some lower bound for the number of points needed to

construct a histograrn so that it may be accurately modelled. After visually inspecting the

local statistical histograms for many different regions of time, it was decided that 9000

points, or 15 minutes, of data were sufficient for constructing a reasonable histogram.

Figs. 5.34, 5.36, 5.38, and 5.40 show the local statistical histograms for a period of 15

minutes starting at time /:20,000 sec (or 5.56 hrs). Figs. 5.35, 5.37,5.39, and 5.41,

respectively, show the gamma distribution models for these local statistical histograrns.
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Fig. 5.34. Local mean trajectory histogram between time r: 20,000 and 29,000 sec.
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Fig. 5.36. Local variance trajectory histogram between time /:20,000 and 29,000 sec.
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Fig. 5.38. Local skewness trajectory histogram between time r: 20,000 and 29,000 sec.
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5.6 Dimensionality Reduction using PCA

A sudden change in the behaviour of the VFDT would be reflected in its statistical

trajectories, so a significant degree of correlation should be expected between the mean,

variance, skewness, and kurtosis trajectories of the VFDT. Figures 5.42 to 5.47 show the

relationships between the mean, vatiance, skewness, and kurtosis trajectories. Indeed, this

correlation does exist between all four trajectories to varying degrees.
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Fig. 5.44. Relationship between mean and kurtosis trajectories.
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Fig. 5.47. Relationship between skewness and kuftosis trajectories.

Some general statements may be made about the relationships between the four

statistical trajectories shown in these six figures:

' Figures 5.42 and 5.45 show the plots between the mean and variance, and the
variance and skewness, to be the least correlated. Firstly, the variance can take
on a wide range of values when the mean is between 1.1 and 1.5, the variance
is below about 0.08 when the mean is less than 1.1 or greater than 1.5.
Secondly, the skewness is greater than 3 when the variance is greater than 0.04.

' Figures 5.43 and 5.44 show that as the mean increases, the skewness and
kurtosis both tend to decrease. when the mean is greater than 1.3, the
skewness is less than2 and the kurtosis is less than i0.

' Figure 5.46 shows a steep decrease in the kurtosis as the variance increases.
when the variance is greater than 0.06, the kurtosis is less than i 0.
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' Figure 5.47 reveals a highly correlated and almost linear relationship between
the skewness and kurtosis. The kurtosis is less than 10 when the skewness is
between -2 and l, and increases approximately linearly from 10 to 70 as the
skewness increases from 1 to 7.

Once the histograms of these four statistical trajectories are constructed and

modelled, there are eight parameters (an cx and a B for each of the four histograms) which

characterize the 9000 consecutive points in the VFDT. These eight parameters may be

concatenated into a vector format to form an 8-dimensional (8D) signature. Since the four

statistical trajectories have been shown to be correlated, it intuitively follows that the cr s

and B s should also be correlated because they model the histograms of these correlated

statistical traj ectories.

Figure 5.48 shows an interesting plot of the values for all of the 8D signatures

which characterize Record 11020219. Zs(i) is the concatenated vector where:

. Ta(l,2) : (crr, Ê¡) models the histogram of the mean trajectory,

' ZB(3 ,4) : (az,þ) models the histogram of the variance trajectory,

' TB(5,6) : (cr3, Þ3) models the histogram of the skewness trajectory, and

. TB(7,8) : (cr+, Þ+) models the histogram of the kurtosis trajectory.
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Fig. 5.48. Values of all 8D signatures which characterize Record 11020219.

Viewing all of the signatures simultaneously highlights the global behaviour of the

8D signatures. It is interesting to notice that the variability between parameters is not the

same. For example, Zs(3) : o, and TsQ) : cx,4 have lowest variability across all

signatures with values ranging between 0.21 and 3.1, and TsG): Þ2 has the highest

variability with values ranging between 3.3 and22.

As discussed in section 4.4, PCA may be used to remove the correlation between

the parameters in the 8D signature. Once PCA has been performed, the M largest

eigenvalues, and their corresponding eigenvectors, contain the majority of the variance

between the parameters, and may be kept to form a further compressed M-dimensional

signature of the traffic. A plot of the cumulative variance for an increasing number of

principal components for the 8D signatures is shown in Fig. 5.49.
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Fig. 5.49. Cumulative variance for the principal components.

The increase of the cumulative variance gets progressively smaller with the

addition of each successive principal component. Approximately 760/o and, B7o/o of rhe

variance is contained within the first three and four principal components, respectively. If
at least 80% of the variance must be preserved after the dimensionality reduction, then the

first four principal components must be kept to form a compressed 4-dimensional (4D)

signature of the traffic. A comprehensive overview of the construction of this 4D

signature is shown in the section 5.7.

Figure 5.50 illustrate the removal of the correlation after PCA is performed on the

8D signatures shown in Fig. 5.48. As expected, the majority of the variability is in the

first few principal components. Figure 5.51 shows the first four principal components

which will be used as the f,rnal compressed 4D signature for the traffic.
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5,7 Construction of 4D Traffic Signature Trajectory

The 4D traffic signature, or "fingerprint," of a window of traffic is constructed

through five steps, as illustrated by Fig. 5.52.

Step 1:

' Calculate the VFDT of the self-affine traffic using a window size of 512 and, a
window offset of 8.

Step 2:

' Calculate the mean, variance, skewness, and kurtosis trajectories of the VFDT
using a window size of 512 and a window offset of 1.

Step 3:

' Construct histograms of the mean, variance, skewness, and kurtosis trajectories
using a window size of 9000 (and a window offset of 150 when iterating Step 3
to Step 5 to create a 4D signature trajectory).

Step 4:

' Model each histogram using the gamma distribution and construct an 8D
signature by concatenating the o and p parameters for each model.

Step 5:

' Perform PCA on the 8D signature and compress it into a 4D signature.
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Fig. 5.52. Construction of the 4D signature Zof a window of traffic.
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Steps 1 and 2 create the VFDT and its statistical trajectories for the entire

self-affine traffic recording. Step 3 uses a window size of 9000 to select an appropriate

number of points in the statistical trajectories to construct their histograms, Step 4 models

these histograms and forms an 8D signature, and Step 5 compresses this 8D signature into

a 4D signature.

A trajectory of these compressed 4D signatures may be formed by iterating the last

three steps for successive windows through time. For each successive iteration, a window

offset of 150 is used. With the sampling frequency f, : l}Hz. the construction of the

final 4D signature trajectory uses a window size of 15 min and a window offset of 15 sec

(since a minimum number of 9000 points are needed to construct a reasonable histogram).

Therefore, the behaviour of the Betta splendens is studied for i5 minute intervals every

15 seconds.

5.8 Neural Network Processing

The final topic to discuss in the system design is the use of neural networks for

(1) verification of the K-means clustering, (2) selection of the most likely number of

classes, and (3) classification.

As described in section 4.5, the K-means algorithm is used to cluster the data into

groups based on their topographical similarity. However, two concerns must be addressed

while using the K-means algorithm. Firstly, are the results produced by the K-means

algorithm reliable? Secondly, are the results produced by the K-means algorithmcorrect?

This second question is directly related to the selection of the most likely number of

classes in the data because of one important weakness in the K-means algorithm (and

126 -



@ Robert Barry Ch. 5: System Design and Verification

many other clustering algorithms): the number of classes to find must be specifled prior to

the execution of the algorithm. Therefore, if there are actually six classes in a data set

(although this knowledge may not be available to the researcher), and the K-means

algorithm is set to find ten classes, it will "cteate" four new classes that do not actually

exist. Similarly, if the algorithm is set to find two classes, it will merge four existing

classes and the uniqueness of those existing classes will be lost.

5.8.1 Verification of Clustering

To show that the clusters generated by the K-means algorithm are reliable, these

results must be somehow verified by an independent method. As discussed in sectio n 4.6,

a SOFM may be used to independently demonstrate the reliable clustering of the K-means

algorithm. However, a SoFM is usually 2-dimensional [BishO0, p. 188], so for the

pulposes of visualization and verification, the first two principal components from the 4D

signature are used with the assumption that a successful verifìcation in two dimensions

would not simply be coincidence, and that these conclusions could be extended without

further proof to higher dimensions. Figure 5.53 shows the relationship between the first

two principal components, Z(1) and T(2), of the 4D signature from Record ll0202lg.

Figure 5.54 shows the decision boundaries between six clusters using the K-means

algorithm, and the nodes of a two-by-three SOFM in Fig. 5.55 show the clusters with the

highest densities.
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Fig. 5.53. Relationship between first two principal components from Record 11020219.
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Fig. 5.54. K-means clustering boundaries of Fig. 5.53 with 6 clusters.
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A visual inspection of Figs. 5.54 and 5.55 show a distinct similarity between the

results of the two clustering algorithms: the nodes in Fig. 5.55 lie within the boundaries of

Fig. 5.54. If these figures were very different, then there would be cause for concern

regarding the validity of the K-means algorithm, but since they are very similar, we may

conclude with confidence that the K-means clustering algorithm produces reliable results.

5.8.2 Class Assignment

If tlie classes in the data are not known a priori, then the K-means algorithm alone

carìnot corectly assign classes to the clusters. As explained in section 5.8, the K-means

algorithm will generate the number of clusters specified, regardless of whether or not the

classes within the data are accurately represented by these clusters. Therefore, a method

of measuring the correctness of choosing C clusters to model the actual classes within the
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data must be developed with the intent of determining the most likely number of classes.

The following intuitive argument is made to assess the correctness of the clustering

algorithm in determining the most likely number of classes in the data.

' Assume that a choice C is made for the number of clusters in a sample of data,
and that classes are assigned to each cluster.

o { good choice C : Cor, for the number of classes exists.

c Ç : 1 is the trivial case and will not be considered.
. A PNN could be trained with a sufficient percentage of the data (i.e., the

training set) and used to classifu the remaining data (i.e., the test set).

' choices of c where c . coo, may result in a clustering model that is too

simplistic in its representation of the classes within the data.

' Choices of C where C > C opt may result in a clustering model that is too

complex in its representation of the classes within the data.

' PNN misclassifications may occur less frequently when c. cor, because the

model used is too simplistic to accurately reflect the classes within the data.

' PNN misclassifications may occurmore frequently when C) Cop, because the

model used is too complex to accurately reflect the classes within the data.

' As C increases, the percentage correct classification on the test set will tend to
decrease. Therefore, C oo, may be revealed by a dramatic change (such as a

significant increase or decrease) in the rate of misclassifications.

Section 6.2 will investigate the performance of the PNN when the number of

classes C increases and identiff the most likely number of classes in the data.

5.8.3 Classification

Once the self-affine traffic has been characferized by a 4D signature trajectory and

the most likely number of classes C oo, is known, classes may be assigned to the C or,

clusters and a PNN trained to classifu previously unobserved 4D signatures.
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The PNN, as explained in section 4.7, is a supervised neural network that requires

a training set to train the neural network and a test set to test its performance. To obtain

meaningful results from the PNN, the training and test sets must be mutually exclusive.

Furthermore, to properly demonstrate the ability of the PNN to learn and generalize its

knowledge on previously unobserved data, the training set should only be as large as it

needs to be to be statistically representative of the data [Wass93,p.224]. Overtraining the

PNN would require more resources and, more importantly, would leave fewer data with

which to construct the test set, and a test set that is too small may not be able to accurately

measure the overall performance of the PNN. These requirements for the PNN are

illustrated in Fig. 5.56.

Fig. 5.56. PNN training and test sets.

All Possible Signatures

Training Set
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The 4D signatures for the training set may be selected at regular intervals

throughout Record 11020219, or randomly. Since these signatures change with time,

construction of the training set by sampling the signatures at regular intervals would

ensure that the traffic is equally represented throughout time. However, ignoring any

a priori knowledge of the self-affine traffic and sampling the signatures at random would

ensure that the classification accuracies of the PNNs would be as unbiased as possible.

Both sampling methods for the construction of the training sets will be investigated in

sections 6.2 and 6.3.

5.9 Summary

This chapter provides a comprehensive overview of the design of the system for

the characterization and classification of self-affrne traff,rc. In particular, this design

includes verification of the sampling frequency used to record the data in Record

11020219, verification of the self-affinity and spatial multifractality of Record 11020219,

selection of the window size and offset for the calculation of the variance fractal

dimension, selection of the window size and offset for the construction of the statistical

histograms of the VFDT, and modelling these statistical histograms using the gamma

distribution. The verification of the K-means algorithm is also presented, as well as a

discussion of the role of the PNN in determining the most likely number of classes in the

data and classifying previously unobserved traffic.
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CruprER VI

ExprnIMENTAr, RnsuLTS AND DrscussroN

6.1 Multifractal Characterization

Record 11020219, as introduced in section2.7.5, is the selÊaffine data set selected

for the final experiments to demonstrate the abilities of new multifractal classifier to

characrerize and classify previously unobserved traffic. Figure 6.1 once again displays

Record 11020219 from Pear's data sets.

Time (hrs)

Fig. 6.1. Record 11020219.

As discussed in section 5.4, the variance fractal dimension trajectory of Fig. 6.1 is

calculated using a window size of 512 and window offset of 8. The resulting VFDT is

cL
E 3nn

0
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shown again in Fig. 6.2, and is the first stage of the characterization.
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Fig. 6.2. VFDT of Fig. 6.1 using a window size of 572 and window offset of 8.

The second stage of characterization is the construction of the mean, variance,

skewness, and kurtosis trajectories of the VFDT using a window size of 512 and window

offset of 1. The plots of these statistical trajectories are re-displayed in Figs. 6.3 to 6.6.
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Fig. 6.3. Mean trajectory of the VFDT.
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Fig. 6.5. Skewness trajectory of the VFDT.
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The third stage of characferization is the representation and compression of the

underlying non-stationary processes which generate these trajectories by modelling these

four histograms using gamma distributions. A window of length 9000 and window offset

of 150 is found to be sufficient in the construction of the histograms. The resulting 8D

trajectory consists of eight parameters: two parameters for each of the four histograms.

This 8D trajectory is then fuither compressed to a 4D trajectory using PCA while still

preserving more than 80Yo of the variance in the original trajectory. The final 1844

compressed 4D signatures are shown in Fig. 6.7, and will be used as the input vectors for

the training and testing of the PNN in sections 6.2 and 6.3.

Principal Components

Fig. 6.7. Final 1844 compressed 4D signatures.
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6.2 Optimal Class Assignment and Verifïcation

As introduced in section 5.8.2, a weakness of the K-means clustering algorithm (as

well as other algorithms) is that the user must specify the number of clusters, and therefore

classes, for the algorithm to find. Therefore, making the statement that the most likely

number of classes may be revealed by a high percentage classification accuracy of an

optimized PNN leads us to the following simulations to determine the optimal class

assignment within Record 11020219.

Firstly, there are nine possible class configurations (c :2,3,..., l0) generated by

the K-means algorithm, so the performance of the PNN will be investigated for each

configuration. Secondly, a good value (which will be a locally optimal value) of the

spread parameter o will need to be determined for each configuration to ensure a fair

comparison is maintained as c increases, since a good value of o for one value of c may

not be the best for another value. To determine a good value of o for each class

configuration, three training sets and three test sets are generated for the PNN for a given

value p, which is the percentage of the 1844 vectors which compose the training set. One

training and test set pair are generated by sampling signatures from regular intervals

(denoted on the table as "Regular"), and the remaining two training and test set pairs are

generated by randomly sampling the signatures (denoted as "Random #1" and "Random

#2"). The generation of the training and test set pairs were chosen in this way so the value

of o chosen was not dependent on how the vectors were acquired. Thirdly, these

simulations are repeated for p : 30o/o, p: 40%o, and p : 50%o to see if the most likely

number of classes changes based upon the percentage of vectors used to train the PNN.
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Preliminary experiments showed thar a small value of o sometimes provided good

results, and other times a larger value of o provided better results. A nearly exhaustive

search through all values of o between 0.001 and 10.0 at small intervals would have been

extremely time-consuming, and the percentage correct classif,ication may not change by

much as o is slowly varied [Wass93, p. 43]. Therefore, the practical decision was made

to try values of at least o :0.001,0.005,0.01,0.05,0.1,0.5, 1.0, 1.5, 2.0,2.5,3.0,3.5,

4.0,4.5, and 5.0. In a few instances, larger values of o were also used to determine the

location of a local maximum or plateau in the percentage correct classification.

Tables 6.1 to 6.9 display the percentage correct classification using 30% of the

vectors fol training the PNN with varying o and c. Tables 6.10 to 6.18 display the

percentage correct classification using 40% of the vectors for training the PNN with

varying o and c. Finally, tables 6.19 to 6.27 display the percentage correct classification

using 50% of the vectors for training the PNN with varying o' and c.

The highest percentage classification accuracy is made bold in each column of

every table. A detailed discussion of the results will follow the presentation of these

simulation results.
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Table 6.1: Percentage correct classification using 30%o of rhe vectors for training with
varying o when c:2.

c=2 Regular Random #1 Random #2

o' : 0.001 54.38 54.53 54.14

o : 0.005 54.84 ss.3 8 51.51

o : 0.01 55.54 53.76 50.27

o' : 0.05 55.62 55.31 47.56

o' : 0.1 55.77 55.54 47.87

o:0.5 51.90 53.45 48.1 8

o : 1.0 49.65 51.43 45.39

o:1.5 50.12 49.73 47.2s

o:2.0 46.63 46.63 4s.93

o:2.5 45.93 45.86 45.78

o:3.0 45.86 45.86 4s.86

o:3.5 45.86 aa 45.86

o' : 4.0
ac (( a(

o' : 4.5
aa (c

o:5.0 a( aa
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Table 6.2: Percentage conect classification using 30Yo of the vectors for training with
varying o when c:3.

c:3 Regular Random #1 Random #2

o : 0.001 48.64 49.11 48.88

o : 0.005 41.60 45.24 43.14

o : 0.01 34.70 38.26 38.s0

o : 0.05 32.07 35.79 3t.91

o:0.1 32.r5 35.94 31.99

o:0.5 31.76 34.62 35.01

o : 1.0 33.46 36.s6 34.86

o : 1.5 35.63 36.s6 32.92

6:2.0 35.32 36.25 33.46

o:2.5 35.24 34.86 34.00

o:3.0 34.16 33.93 34.39

o' : 3.5 33.93 33.85 33.8s

o:4.0 33.93 33.93 33.93

o:4.5 33.93 33.93

o:5.0 a( aa
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Table 6.3: Percentage correct classification using 30%o of the vectors for training with
varying o when c=4.

c:4 Regular Random #1 Random #2

o : 0.001 t6.73 16.81 16.89

o' : 0.005 20.91 t9.44 20.4s

o : 0.01 23.47 22.77 21.84

o : 0.05 23.08 24.r7 23.70

o:0.1 23.01 24.01 23.70

o:0.5 22.77 23.16 23.70

o:1.0 26.6s 27.34 24.40

o:1.5 29.12 28.43 22.39

o:2.0 28.74 29.05 25.17

o:2.5 29.98 31.14 26.49

o:3.0 29.90 30.21 26.34

o:3.5 28.66 27.50 2s.64

o:4.0 26.26 24.71 24.63

o:4.5 23.78 23.01 24.24

o:5.0 22.39 21.53 23.16
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Table 6.4: Percentage correct classification using 30% of the vectors for training with
varying o when c: 5.

c:5 Regular Random #1 Random #2

o : 0.001 12.39 12.55 t2.39

o : 0.005 9.60 9.60 13.01

o' : 0.01 7.44 7.90 tl.23

o : 0.05 8.06 1.90 t4.25

o:0.1 8.13 8.06 t4.41

o:0.5 7.13 8.13 14.81

o : 1.0 9.45 9.99 13.63

o:1.5 11.46 11.46 11.70

o:2.0 15.49 13.56 14.10

o:2.5 15.80 14.72 16.50

o:3.0 15.80 t4.87 16.03

o:3.5 15.57 t4.56 t6.34

o:4.0 t6.42 r 6.03 16.89

o:4.5 16.81 16.65 r6.73

o:5.0 16.58 16.s0 17.04

o:5.5 16.96
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Table 6.5: Percentage correct classification using 30o/o of the vectors for training with
varying o when c:6.

c:6 Regular Random #1 Random #2

o : 0.001 6.43 6.s8 6.51

o : 0.005 7.20 6.43 7.51

o : 0.01 6.58 6.27 8.06

o : 0.05 7.05 6.97 11.71

o:0.i 7.t3 7.05 11.70

o:0.5 5.96 6.51 tr.70

o : 1.0 8.29 7.82 11.93

o:1.5 10.15 10.84 1 1.39

o:2.0 11.93 i 1.39 11.54

o:2.5 13.40 12.24 t2.55

o:3.0 14.48 13.01 14.25

o:3.5 t5.57 13.25 14.95

o:4.0 16.27 14.79 i 5.65

o:4.5 16.89 15.65 15.96

o:5.0 t6.96 15.88 16.27

o:5.5 t6.34 15.34 16.11
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Table 6.6: Percentage correct classification using 30%o of the vectors for training with
varying o when c:7.

c:7 Regular Random #1 Random #2

o : 0.001 16.s0 16.50 16.s8

o : 0.005 10.69 t2.24 14.02

o : 0.01 8.68 9.76 10.t7

o : 0.05 8.13 8.83 13.09

o:0.1 8.06 8.99 13.48

o:0.5 6.82 8.37 13.94

o:1.0 8.83 9.91 12.24

o' : 1.5 1 1.39 1 1.00 n.46

o:2.0 15.34 13.56 t5.41

o:2.5 15.41 t4.64 r5.72

o:3.0 15.88 15.26 16.19

o:3.5 15.96 t5.57 t6.34

o:4.0 15.80 15.80 16.42

o:4.5 16.81 16.58 15.72

o:5.0 17.43 16.89 15.57

o:6.0 18.75 18.51 17.66

o :7.0 t9.75 20.53 18.20

o:8.0 20.53 20.53 19.60

o:9.0 20.53 (a 20.53
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Table 6.7: Percentage correct classification using 30%o of the vectors for training with
varying o when c:8.

c:8 Regular Random #1 Random #2

o : 0.001 16.11 r6.19 t6.42

o : 0.005 t4.33 t4.95 15.41

o' : 0.01 11.77 13.63 t2.39

o : 0.05 9.60 10.3 8 12.47

o:0.1 9.s3 10.30 12.47

o:0.5 9.22 I 1.00 t2.32

o : 1.0 8.44 9.76 t2.94

o:1.5 r1.23 t2.08 tI.62

o:2.0 14.25 14.79 14.56

o:2.5 1 5.03 16.58 t6.42

CI' : 3.0 17.89 18.44 17.74

o' : 3.5 17.97 18.20 18.20

o:4.0 18.r3 18.13 n.97

o:4.5 17.97 17.97 17.91

o:5.0 17.97 17.97 ac
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Table 6.8: Percentage correct classification using 30o/o of the vectors for training with
varying o when c:9.

c=9 Regular Random #1 Random #2

o : 0.001 7.05 7.05 7.t3

o : 0.005 8.83 7.82 7.98

o : 0.01 8.91 9.22 9.30

o : 0.05 9.06 9.76 tl.62

o:0.1 8.99 9.9t tl.70

o:0.5 8.75 10.30 12.70

o:1.0 8.21 9.60 t2.63

o:1.5 I 1.31 12.32 12.24

o:2.0 14.48 15.26 t5.41

o:2.5 16.42 17.20 16.73

o' : 3.0 t7.74 18.44 17.82

o:3.5 17.89 18.13 18.05

o:4.0 t7.89 17.89 t7.89

c:4.5 17.89 t7.89

o:5.0 aa a( aa
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Table 6.9: Percentage correct classification using 30Yo of the vectors for training with
varying o when c:70.

c: l0 Regular Random #l Random #2

o : 0.001 7.0s 7.05 7.05

o : 0.005 8.06 7.05 7.20

o : 0.01 7.59 7.r3 7.75

o : 0.05 7.67 6.74 8.68

o:0.1 7.59 6.97 8.83

o' : 0.5 6.43 6.74 9.30

o:1.0 5.81 6.89 8.21

o:1.5 7.5r 7.82 8.68

o:2.0 7.98 8.68 9.53

o:2.5 10.53 9.4s r0.92

o:3.0 r0.22 9.84 I 1.31

o:3.5 10.92 10.3 8 11.77

o' : 4.0 11.77 9.99 II,7O

o:4.5 12.01 10.46 tt.70

o:5.0 1 1.85 10.61 I 1.15

o:6.0 11.77 10.69 I i.00

o : 7.5 12.47 12.78 15.49

o:8.5 L4.79 t2.39 16.34

o:9.0 14.56 12.24 16.50
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Table 6.10: Percentage coTrect classification using 40%o of the vectors for training with
varying o when c:2.

c:2 Regular Random #i Random #2

o : 0.001 49.46 49.91 49.82

o : 0.005 42.22 45.48 45.r2

o : 0.01 37.61 45.12 39.87

o : 0.05 37.25 43.49 39.51

o:0.1 37.43 43.67 39.78

o:0.5 40.42 41.02 42.31

o' : 1.0 41.14 46.29 43.67

o' : 1.5 45.57 47.83 46.93

o:2.0 49.46 49.37 47.65

o:2.5 50.45 50.63 50.54

o:3.0 49.73 49.73 50.27

o:3.5 49.73 49.73 49.73

o:4.0 (( aa 49.73

o:4.5 aa aa

o:5.0 (a ca aa
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Table 6.11: Percentage coffect classification using 40%o of the vectors for training with
varying o when c:3.

c:3 Regular Random #1 Random #2

o : 0.001 43.s8 44.03 43.94

o : 0.005 35.26 36.08 36.44

o : 0.01 30.38 31.19 29.66

o : 0.05 29.29 27.49 27.94

o:0.1 29.57 27.76 28.12

o:0.5 30.38 30.11 27.49

o:1.0 30.02 31.10 27.22

o:1.5 30.56 32.73 33.00

o:2.0 32.9r 35.35 J-).O-t

o:2.5 32.73 33.63 32.73

o:3.0 35.90 34.4s 32.55

o:3.5 36.89 34.27 34.90

o:4.0 35.44 34.99 35.44

o:4.5 35.44 35.35 35.44

o:5.0 (a
35.44
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Table 6.122 Percentage correct classification using 40o/o of the vectors for training with
varying o when c:4.

c:4 Regular Random #1 Random #2

o : 0.001 19.89 19.53 19.53

o' : 0.005 t9.s3 20.52 20.61

o : 0.01 19.53 19.62 20.07

o : 0.05 20.16 18.08 r 8.81

o:0.1 20.34 18.35 l 8.81

o:0.5 19.26 20.98 18.08

o:1.0 t7.4s t9.17 20.52

o:1.5 21.34 2s.68 24.14

o:2.0 20.16 27.12 24.0s

o:2.5 20.61 28.66 24.71

o:3.0 20.98 28.39 24.86

o:3.5 20.61 28.39 24.32

o:4.0 20.16 28.21 23.78

o:4.5 20.25 28.t2 23.78

o:5.0 20.07 27.67 23.51
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Table 6.13: Percentage coffect classification using 40%o of the vectors for training with
varying o when c: 5.

c=5 Regular Random #i Random #2

o : 0.001 t3.20 13.29 13.38

o : 0.005 13.02 13.3 8 t2.30

o : 0.0i 15.55 14.47 12.93

o : 0.05 16.64 T4.29 r4.56

o:0.1 16.91 t4.29 14.74

o:0.5 t6.27 t5.82 13.56

o:1.0 15.10 14.65 t5.64

o:1.5 19.71 17.63 19.44

o:2.0 17.90 18.63 22.06

o:2.5 18.72 22.78 23.60

o:3.0 21.07 25.05 22.88

o:3.5 21.88 22.24 22.78

o:4.0 20.25 2r.34 22.69

6:4.5 19.26 20.43 20.61

o:5.0 19.53 20.07 20.34
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Table 6.14: Percentage correct classification using 40o/o of the vectors for training with
varying o when c:6.

c:6 Regular Random #1 Random #2

o : 0.001 7.05 7.59 7.59

o : 0.005 9.13 8.50 8.68

o : 0.01 12.12 10.16 10.31

o' : 0.05 t3.92 11.57 t2.30

o:0.1 14.20 I 1.84 12.48

o:0.5 14.74 13.11 13.29

o : 1.0 13.47 t2.66 I 5.10

o:1.5 16.00 14.38 17.18

o:2.0 17.72 16.18 18.08

o:2.5 t6.9r 16.9r t6.82

o:3.0 16.27 19.44 t6.27

o:3.5 16.00 18.81 |s.46

o:4.0 16.09 17.00 16.37

o' : 4.5 r5.46 t6.73 15.82

o:5.0 t5.37 t6.46 16.09
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Table 6.15: Percentage correct classification using 40Yo of the vectors for training with
varying o' when c:7.

c=7 Regular Random #l Random #2

o : 0.001 15.28 t5.46 15.28

o : 0.005 13.56 12.03 14.20

o : 0.01 tL.39 I 1.30 t2.66

o : 0.05 11.75 9.86 t2.48

o:0.1 11.93 10.04 12.66

o' : 0.5 12.48 I 1.39 12.12

o:1.0 I r.93 10.67 tt.12

o:1.5 14.29 14.01 13.38

o -- 2.0 16.00 14.74 17.90

6:2.5 14.20 18.35 21.07

o:3.0 14.74 19.26 20.89

o:3.5 15.37 19.7 t 20.07

o:4.0 16.27 20.89 19.80

6:4.5 16.73 22.69 18.63

o:5.0 16.37 20.34 17.99
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Table 6.16: Percentage correct classification using 40Yo of the vectors for training with
varying o when c:8.

c:8 Regular Random #1 Random #2 Random #3

o' : 0.001 18.81 18.90 18.90 18.81

o' : 0.005 15.28 15.91 17.09 19.26

o : 0.01 12.66 12.2t i 5.10 11.99

o : 0.05 12.21 10.22 12.57 13.47

o:0.1 t2.30 r0.22 t2.51 t3.47

o:0.5 12.30 T2.48 t2.66 I4.OI

o:i.0 12.57 13.83 t5.73 16.27

o:1.5 18.35* r 9.53 18.72* 23.15

o:2.0 t7.81 23.60 18.54 21.25

o:2.5 17.09 t8.44 17.45 17.99

o:3.0 17.09 18.08 17.45 t7.63

o:3.5 t7.09 17.99 t7.45 t7.8r

o:4.0 17.45 18.08 18.08 r8.26

o:4.5 t7.36 18.08 t7.90 18.17

o:5.0 17.72 t7.90 t7J2 17.72

The two bold numbers with a * beside them are the second

classification accuracy. Their use in the calculation of the average

table will be explained in the following discussion.

highest percentage

value of o for this
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Table 6.17 z Percentage coffect classification using 40o/o of the vectors for training with
varying o when c:9.

c=9 Regular Random #1 Random #2

o : 0.001 s.70 5.70 5.70

o' : 0.005 8.05 6.69 7.41

o' : 0.01 10.s8 8.41 10.40

o : 0.05 tl.57 9.9s 12.t2

o:0.1 tt.7 5 10. 13 12.30

o:0.5 12.03 tt.66 lt.7 5

o' : 1.0 12.84 t3.02 14.47

o:1.5 17.72 17.63 15.46

o:2.0 17.54 21.16 t6.37

o:2.5 17.09 18.08 17.27

o:3.0 16.73 17.81 17.09

o:3.5 16.64 17.45 17.00

o:4.0 17.09 t7.63 17.72

o:4.5 17.18 17.63 17.63

o:5.0 t7.63 ((
17.63
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Table 6.18: Percentage correct classification using 40o/o of Lhe vectors for training with
varying o when c: 10.

c: 10 Regular Random #1 Random #2

o : 0.001 5.70 5.70 5.70

o : 0.005 6.69 6.rs 6.s 1

o : 0.01 8.59 7.05 8.32

o : 0.05 10.04 8.s0 9.58

o:0.1 t0.22 8.68 9.76

o:0.5 10.58 9.9s 9.95

o:1.0 11.12 10.3 1 12.03

o : 1.5 1s.01 t3.65 t3.20

o:2.0 t5.46 14.47 13.47

o:2.5 15.19 16.00 t4.20

o:3.0 14.38 rs.64 15.10

o:3.5 14.65 t5.46 15.10

o:4.0 14.83 15.55 15.01

o:4.5 1s.01 Is.64 15.64

o:5.0 15.01 15.64 t5.64
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Table 6.19: Percentage correct classification using 50% of the vectors for training with
varying o when c:2.

c=2 Regular Random #1 Random #2

o : 0.001 41.14 43.38 44.36

o : 0.005 79.6r 62.69 6r.93

o' : 0.0i 91.32 76.25 73.54

o : 0.05 9s.99 83.95 80.1 5

o:0.1 95.34 83.9s 80.26

o:0.5 89.1 5 80.80 7 6.s7

o:1.0 76.57 7r.91 67.79

o : 1.5 67.14 67.90 63.s6

o:2.0 6r.39 60.74 6r.06

o:2.5 58.89 57.70 59.1 1

o:3.0 57.59 56.72 57.38

o:3.5 56.72 a( 56.72

o:4.0 aa

o:4.5 (a a( ac

o:5.0 aa aa
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Table 6.20: Percentage correct classification using 50% of the vectors for training with
varying o when c:3.

c:3 Regular Random #i Random #2

o : 0.001 41.00 40.24 41.00

o : 0.005 77.77 58.89 58.46

o : 0.01 90.24 71.26 68.55

o : 0.05 94.79 77.77 73.43

o:0.1 94.58 77.55 73.64

o' : 0.5 88.39 72.56 70.50

o : 1.0 69.63 61.93 59.65

o : 1.5 59.1 1 53.36 51.84

o:2.0 55.31 5 i.08 49.67

o:2.5 53.47 52.28 48.05

o' : 3.0 5t.52 51.9s 45.34

o:3.5 48.26 s0.98 44.03

o:4.0 41.65 45.55 41.87

o:4.5 43.17 43.17 40.67

o:5.0 41.tI 42.08 41.87
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Table 6.21:Percentage coffect classification using 50% of the vectors for training with
varying o when c:4.

c:4 Regular Random #1 Random #2

o : 0.001 25.05 24.40 24.84

o : 0.005 10.07 50.65 47.07

o : 0.01 88.83 67.2s 6r.82

o : 0.05 93.82 73.32 66.27

o' : 0.1 93.60 73.10 66.16

o' : 0.5 8s.79 68.66 63.99

o:1.0 68.33 59.11 58.24

o' : 1.5 54.56 46.96 48.81

o:2.0 40.89 4r.32 40.67

o:2.5 38.39 38.39 38.39

o:3.0 37.85 37.96 37.74

o:3.5 37.74 37.85 37.74

o:4.0 37.64 37.74 37.64

o:4.5 aa 37.64 (a

o:5.0 aa cc
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Table 6.22zPercentage coffect classification using 50% of the vectors for training with
varying o when c: 5.

c:5 Regular Random #l Random #2

o : 0.001 14.43 t3.99 13.77

o : 0.005 67.90 42.52 4t.97

o : 0.01 88.50 6s.1 8 61.06

o : 0.05 94.14 73.21 68.55

o:0.1 94.14 72.89 68.98

o:0.5 85.57 68.98 66.59

o:1.0 66.59 59.33 55.86

o:1.5 49.89 46.10 43.38

o:2.0 42.r9 4t.43 37.31

o:2.5 39.37 34.49 35.36

o:3.0 36.12 32.43 3t.34

o:3.5 34.49 30.26 29.28

o:4.0 31.89 28.74 27.98

o:4.5 30.37 27.77 27.44

o:5.0 30.04 z I --).1 27.22
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Table 6.232 Percentage correct classification using 50o/o of the vectors for training with
varying o when c:6.

c:6 Regular Random #1 Random #2

o : 0.001 5.64 4.99 5.31

o : 0.005 64.43 38.72 37.09

o : 0.01 87.53 61.50 56.29

o : 0.05 94.03 70.61 64.2t

o:0.1 94.03 70.61 64.43

o:0.5 85.68 67.68 62.r5

o:1.0 61.r4 60.20 55.97

o:1.5 48.16 48.s9 41.43

o:2.0 40.35 45.34 36.t2

o:2.5 39.31 39.59 34.71

o:3.0 37.64 36.5s 34.27

o:3.5 32.43 34.38 33.30

o:4.0 32.86 3t.4s 31.67

o:4.5 30.59 31.24 31.67

o:5.0 30.1 5 31.13 30.04
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Table 6.24: Percentage correct classification using 50% of the vectors for training with
varying o when c:J.

c: I Regular Random #1 Random #2

o' : 0.001 9.22 8.57 8.68

o : 0.005 63.99 38.39 35.25

o : 0.01 85.36 51.38 s3.69

o' : 0.05 92.62 64.97 61.28

o:0.1 92.52 64.97 61.71

o:0.5 85.14 6t.93 59.22

o:1.0 63.34 51 .30 49.13

o' : 1.5 46.53 40.78 39.26

o:2.0 39.48 35.25 33.1 9

o:2.5 36.01 32.00 30.69

o:3.0 33.30 30.26 27.01

o:3.5 33.30 28.52 27.33

o:4.0 32.32 28.74 28.3r

o:4.5 29.t8 25.81 27.87

o:5.0 28.52 27.22 29.18
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Table 6.25zPercentage correct classification using 50% of the vectors for training with
varying o when c: 8.

c=8 Regular Random #i Random #2

o : 0.001 24.30 23.64 23.97

o : 0.005 69.52 46.20 43.17

o : 0.01 88.29 6r.61 54.66

o : 0.05 92.95 66.70 57.59

o:0.1 92.95 66.92 57.48

o:0.5 84.71 63.34 54.23

o:1.0 62.15 52.r7 46.75

o:1.5 44.47 44.58 37.85

o:2.0 38.72 36.66 35.90

o:2.5 -t-t. t -1 31.89 32.00

o:3.0 28.74 28.63 27.22

o:3.5 28.74 25.92 26.90

o:4.0 28.74 25.81 2s.92

o:4.5 28.20 26.25 2s.60

o:5.0 27.t\ 27.55 25.70
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Table 6.262 Percentage corect classification using 50% of the vectors for training with
varying o when c:9.

c=9 Regular Random #1 Random #2

o : 0.001 5.86 5.21 5.s3

o : 0.005 63.45 35.57 32.6s

o : 0.01 85.47 55.53 48.81

o : 0.05 92.52 63.34 55.1 0

o:0.1 92.41 63.67 55.31

o:0.5 83.73 59.87 51.84

o:1.0 62.04 48.s9 43.82

o:1.5 45.12 3 8.61 33.62

o:2.0 33.41 30.69 31.34

o:2.5 28.s2 27.98 27.33

o:3.0 23.97 24.08 23.21

o:3.5 22.13 22.45 22.13

o:4.0 21.37 21.s8 21.58

o:4.5 2t.37 21.48 21.26

o:5.0 21.t5 21.37
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Table 6.27:Percentage correct class.ification using 50% of the vectors for training with
varying o when c: 10.

c=10 Regular Random #1 Random #2

o : 0.001 5.86 5.21 5.53

o : 0.005 63.56 36.55 34.06

o : 0.01 8s.68 56.51 51.08

o : 0.05 92.84 64.75 57.81

o:0.1 92.84 6s.08 58.13

o:0.5 84.38 60.41 54.66

o:1.0 64.53 50.65 47.07

o:1.5 47.94 4t.32 35.t4

o:2.0 35.36 32.10 3r.02

o:2.5 29.07 zt.)) 26.90

o:3.0 25.05 26.03 24.40

o:3.5 23.32 22.78 23.32

o:4.0 20.93 20.82 21.04

o:4.5 19.63 19.74 t9.52

o' : 5.0 18.87 19.09 18.87

In general, the values of o that corresponded to a high percentage classification

accuracy were close to each other, which means that the selection of o is not very

dependent on the method of generation of the training and test set pairs. However, the
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percentage classification accuracies were more sensitive to changes in o' than originally

anticipated. To determine a good value of o for each simulation, the average value of o

for each table was calculated. The only exception to this was in Table 6.16 where the first

three simulations gave maximum classification values of 18.81%, 23.60yo, and 18.90%

when o : 0.001 ,2.0, and 0.001, respectively. These values of o were very different, and

the classification accuracy at their average value of o : 0.67 resulted in a relatively poor

rate of abouÍ. l2%o. More results were needed to obtain a better result, so a fourth

simulation (denoted by the added column titled "Random #3") was performed which

resulted in a maximum classification of 23.I5o/o when o: 1.5. Closer inspection of

these data revealed that although o : 0.001 resulted in the highest classification

accuracy for Regular and Random#2 data sets, the secondhighest classification accuracy

was when o : 1.5 for both sets, which is much closer to the other values of o.

Therefore, the values of o : 0.001 in this table alone are labelled as outliers, and the

values of o : 1.5 will be used in their place for the calculation of a good value of o .

Tables 6.28, 6.29, and 6.30 show the average value of o which results in the

highest percentage classification accuracy for each value of c when 30o/o,40o/o, and 50%

of the vectors, respectively, are used for training the PNN.
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Table 6.28: Average values of o which achieves the highest percentage correct
classification using 30% of the vectors for training.

30'/o Average o

^-aL-Z- 0.067

c:3 0.001

c:4 2.5

c:5 4.1

c:6 5.0

c:7 8.0

c:8 3.5

c:9 3.5

c: l0 8.3

Table 6.292 Average values of o which achieves the highest percentage conect
classification using 40Yo of the vectors for training.

40o/" Average o'

c:2 2.5

c:3 0.001

c:4 z.-)

c:5 3.0

c:6 2.3

c:7 3.8

c:8 t.6

c:9 2.8

c: 10 3.5
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Table 6.30: Average values of o' which achieves the highest percentage correct
classification using 50Yo of the vectors for training.

50o/" Average o

c:2 0.075

c:3 0.067

c:4 0.050

c:5 0.075

c:6 0.080

c :'7 0.075

c:8 0.075

C:9 0.083

c: 10 0.088

Tables 6.37, 6.32, and 6.33 show the PNN percentage corect classification using

the average values of o for each value of c when 30yo, 40yo, and 50o/o of the vectors

sampled at regular intervals, respectively, are used for training the PNN.
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Table 6.31: PNN percentage colrect classification using the average values of o' for each
value of c when 30o/o of the vectors sampled at regular intervals are used for training.

30o/o
%o Conect

Classification

^-aL-¿- 55.s4

c:3 48.64

c:4 29.98

c:5 t6.73

c:6 r6.96

c:7 20.53

c:8 r7.97

c:9 t7.89

c: l0 14.49

Table 6.32: PNN percentage correct classification using
value of c when 40%o of the vectors sampled at regular

the average values of o for each

intervals are used for training.

40' Yo Conect
Classification

c:2 50.4s

c:3 43.58

c:4 20.89

c:5 2t.07

c:6 t7.27

L- I |s.73

c:8 17.81

c:9 16.55

L- 10 14.6s
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Table 6.33: PNN percentage coruect classification using the average values of o for each
value of c when 50%o of the vectors sampled at regular intervals are used for training.

50"/o
%o Corcect

Classification

c:2 95.55

c:3 94.79

c:4 93.82

c:5 94.14

c:6 94.r4

c:7 92.41

c:8 92.84

c:9 92.41

C: 10 92.84

Figure 6.8 shows the percentage correct classification results listed in Table 6.33

with an optimized PNN trained with 50Yo of the vectors sampled at regular intervals.

Upon first glance, there seems to be an interesting plateau in the classif,rcation rate when

c: 5 and c: 6 followed by a steep drop in correct classification. However, a brief glance

at the y-axis reveals that all of the classification rates are between 92.5%o and 95.5o/o, and

tlrerefore within only 3o/o of each other! Therefore, this network seems to be well trained

since all of the classification accuracies are above 90%o,so no conclusive statements may

be made regarding the most likely number of classes by studying this graph.
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Fig. 6.8. Percentage correct classification with an optimized PNN trained with
50% of the vectors sampled at regular intervals.

Since Fig. 6.8 does not offer any insights regarding the most likely number of

classes, perhaps plots of the percentage correct classification listed in Tables 6.31 and 6.32

with optimized PNNs trained with only 30o/o and 40%o of the vectors sampled at regular

intervals, respectively, will illuminate the most likely number of classes. These plots are

shown together in Fig. 6.9.
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Fig. 6.9. Percentage correct classification with an opfimized PNN trained with
30%o and 40o/o of the vectors sampled at regular inten¿als.

Figure 6.9 is a very interesting graph, and several statements may be made about it.

Firstly, both of the PNNs are undertrained with only 30o/o and 40o/o of the vectors,

respectively, because the maximum percentage correct classification is only around 50ol0.

Secondly, both of the curves look very similar. Thirdly, the PNN trained with 30% of the

vectors has a higher classification rate than the PNN trained with 40%o of the vectors with

smaller values of c : 2, 3, and 4. This value seems to contradict the previous statement

made that a PNN trained with more vectors performs well; howeveï, as previously stated,

the PNN is undertrained, and the small 5% difference between the curves is most likely

inherent to the data used to test the PNNs. Fourthly, the percentage conect classification

only declines slightly by about 5%o for both curves when the number of classes increases

from c:2to c:3. Fifthly, a steep decrease of about 25%oto 30% is observed on both
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plots as the number of classes increases fuither from c : 3 to c: 5. Sixthly, the percentage

correct classification maintains a low value between 75o/o and 20o/o for the remaining

values of c:6 to c: 10. Finally, this low percentage correct classification would most

likely persist as the number of classes increased past c: 10, so we need not consider

values higher than c: 10.

The discussion from section 5.8.2 stated that the most likely number of classes

may be indicated by a marked change in the rate of misclassifications. Keeping this point

in mind, our attention is drawn to the significant decrease in the percentage correct

classif,rcation as the number of classes c increases beyond c : 3. Since this classification

rate does not recover, it seems reasonable that our attention should be focused on c :2 and

c : 3 as possible candidates for the most likely number of classes.

If we recall the motivation discussion of clustering in section 4.5, Fig. 4.9 displays

ahypothetical plot of traffic characteÅzed in 2-dimensions. Figures 4.10 and 4.11 show

these data with the assignment of two and four classes, respectively. If two classes are

assigned to the data and a PNN trained with a sufficient percentage of the characteristic

vectors, then it seems reasonable to expect that the PNN would perform quite well when

tested with previously unobserved data. Similarly, if four classes are assigned to the data,

the PNN would also perform well when trained in the same fashion. However, the

rzisclassification rate would most likely increase when the number of assigned classes is

three and five or more because models with numbers of assigned classes other than two

and four would not accurately reflect the true number of classes in the data. Although a

model with two classes would perform well in classiSring previously unobserved data, and

probably slightly better than a model with four classes, the model with four classes should
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be selected as the most likely number of classes in this hypothetical example: a model

with two classes is too simplistic and a model with f,rve or more classes is too complex.

Relating this discussion of a hypothetical example back to the real characteristic

signatures from Record 11020219, we should select c : 3 as the most likely number of

classes over c : 2, as it is the largest number of classes with a relatively high percentage

classification accuracy. Therefore, the most likely number of classes in Record 11020219

is three.

The previous statement is very impofiant, and must be further verified through

visualization of the clustering. Unfortunately, visualization of three classes in 4D data on

2D black and white paper is difficult task to accomplish! Therefore, the classes will be

projected from 4-dimensions onto 2-dimensions in three different ways, keeping in mind

that two dimensions are omitted for the sake of clarity. Figure 6.10 shows the projection

of the three classes onto the two main principal components, namely PC(1) and PC(2). As

before, the solid lines represent the decision boundaries between classes. If these were the

only two dimensions, then it appears to the human visual classification system that there

are only two classes in the data. However, these are only two out of four dimensions

which, as shown in Fig. 5.49, only account for roughly 60Yo of the variance in the data.

The remaining 40%o of the variance is contained in PC(3) and PC(4), so we must also

consider those dimensions.
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Three classes in 4-dimensions projected

024

onto PC(l) and PC(2).

Figures 6. 1 I and 6. 1 2 show the classes proj ected onto PC( 1 ) and PC(3 ), and PC(2)

and PC(3), respectively, and complete the display of the relationships between the first

three principal components. Figures 6.13,6.74, and 6.15 show the information contained

within the fourth dimension, as the classes are projected onto PC(1) and PC(4), PC(2) and

PC(4), and PC(3) and PC(4). The decision boundaries overlap on all of these figures, so

their inclusion would not add any more clarity to the figure. Therefore, the shaded

symbols ".","1", and "*" are used to indicate the clustering of the three classes.
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Fig. 6.11. Three classes in 4-dimensions projected onto PC(1) and PC(3).
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Fig.6.12. Three classes in 4-dimensions projected onto PC(2) and PC(3).
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Fig. 6.13. Three classes in 4-dimensions projected onto PC(1) and PC(4).
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Fig. 6.15. Three classes in 4-dimensions projected onto PC(3) and PC(4).

Figure 6.11 shows a clear separation between the "f" class and the'1" and'q¡"'

classes; this is the same separation that was observed in Fig. 6.10. Furthermore, Fig.6.12

shows a good separation between the '1" and 'qÈ" classes in front of the '1" class.

Therefore, the first three principal components seem to suggest that there are three classes

in the data. Figure 6.13 introduces the data contained in PC(a) and reaffirms the distinct

separation between the "*" class and the "." and "*" classes. In the same fashion, Fig.

6.14 also reaffirms the separation between the "*" class and the "." and "+" classes. All

three classes seem to overlap completely in Fig.6.15 and no new class information is

revealed. This is, however, expected because the relationship between PC(3) and PC(a)

contains the least amount of information.

It has been shown, both mathematically and visually,thafthere are at least two and

+
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most likely three classes in Record 11020219. These three classes unevenly account for

44yo,38Yo, and 18% of the data, respectively. Furthermore, there appears to be no viable

evidence to entertain the possibility of a hidden fourth class within the first four principal

components. For the sake of completeness and motivation for future research (which will

be discussed in section 7.3),Fig.6.16 shows the 1844-element behavioural classification

trajectory for Record 11020219.

0 200 400

Fig.6.16. Behavioural

60û 800 1000 1200 1400 1600 1800 200t
Window Position

classification trajectory for Record 11020219.

6.3

Therefore, Record 11020219 contains three distinct classes.

PNN Classification

Since it has been determined that there are three classes in Record 11020219, the

final task is to demonstrate the performance of the PNN in classif,iing previously
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unobserved traff,rc. Section 6.2 showed that a PNN was sufficiently trained using 50% of

the vectors for training, so the criterion will be set that 50% of the vectors are used to train

the PNN.

An optimized PNN is created with o : 0.061 and trained with 50% of the vectors

sampled at regular intervals and random intervals. The performance of this PNN is shown

in Table 6.34.

Table 6.34: PNN percentage correct classification with three classes when o : 0.067

and 50Yo of the vectors are used for training.

50o/r
o/o Conect

Classification

Regular 94.79

Random #i 77.77

Random #2 73.64

Random #3 65.73

Random #4 68.00

Random #5 73.43

As expected, the PNN achieves nearly 95o/o corect classification when the training

and test sets are sampled at regular intervals, but the same PNN achieves an average of

only 72o/o correct classification when the sets are sampled at random intervals. To

investigate this 23% difference, Table 6.35 shows the confusion matrix for

misclassifications when regularly sampled data is used to train the PNN. In a confusion

matrix, the rows represent the actual classes and the columns represent the predicted
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classes. Therefore, the diagonal of the matrix represents the correct classifications. In

Table 6.35, for example, 350 vectors in Class 1 were coruectly classified as Class 1,

5 vectors were inconectly classified as Class 2, and 13 vectors wereinconectly classified

as Class 3. Table 6.42 shows these numbers expressed as percentages.

Tables 6.36 to 6.40 show the confusion matrices for misclassifications when

randomly sampled data are used to train the PNN. Table 6.41 shows the summation of

these five tables, and Table 6.43 shows these summations expressed as percentages.

Table 6.35: PNN confusion matrix for simulation "Regular" in Table 6.34.

Regular Class I Class 2 Class 3

Class I 350 5 13

Class 2 6 209 7

Class 3 9 8 31s

Table 6.36: PNN confusion matrix for simulation "Random#I" in Table 6.34.

Random #1 Class 1 Class 2 Class 3

Class 1 313 ¿3 32

Class 2 30 151 41

Class 3 37 42 253
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Table 6.37: PNN confusion matrix for simulation "Random#2" in Table 6.34.

Random #2 Class 1 Class 2 Class 3

Class 1 28r 8 79

Class 2 55 151 t6

Class 3 45 40 247

Table 6.38: PNN confusion matrix for simulation "Random#3" in Table 6.34.

Random #3 Class 1 Class 2 Class 3

Class 1 263 6 99

Class 2 42 135 45

Class 3 66 58 208

Table 6.39: PNN confusion matrix for simulation "Random#4" in Table 6.34.

Random #4 Class I Class 2 Class 3

Class I 248 aa
JJ 87

Class 2 32 160 30

Class 3 66 47 219

Table 6.40: PNN confusion matrix for simulation "Random #5" in Table 6.34.

Random #5 Class I Class 2 Class 3

Class 1 290 36 42

Class 2 22 l6l 39

Class 3 72 34 226
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Table 6.41: Summation of PNN confusion matrices for all five "Random" simulations.

Random Class 1 Class 2 Class 3

Class 1 I 395 106 339

Class 2 181 758 111

Class 3 286 22r I 153

Table 6.42: PNN percentage confusion matrix for the "Regular" simulation.

Regular Class 1 Class 2 Class 3

Class 1 95.11 r.36 3.53

Class 2 2.70 94.r5 3.15

Class 3 2.71 2.4r 94.88

Table 6.43: PNN percentage confusion matrix for all five "Random" simulations.

Random Class I Class 2 Class 3

Class 1 75.82 5.76 18.42

Class 2 16.31 68.29 15.40

Class 3 t7.23 13.3 1 69.46

As expected, Table 6.42 shows us that very few misclassifications occurred when

the training vectors are sampled at regular intervals: Classes 1,2, and 3 were correctly

classifi ed 9 5 .1 7o/o, 9 4.I 5o/o, and 9 4.88o/o of the time, respectively.
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Table 6.43 is interesting because it reveals how the misclassifications occurred

when the training vectors were sampled at random intervals. Class 1 was incorrectly

classified as Class 3 about three times as often as Class 2. Class 2 was incorrectly

classified equally between Classes 1 and 3, and Class 3 was incorrectly classified as

Class 1 30Yo more often than as Class 2.

The performance of the PNN is very sensitive to the sampling methods used in

constructing the training set. This difference is most likely due to the fact that the three

classes are unequally represented in the data and unevenly distributed in its sequence. If a

random sampling does not select enough vectors in Class 1, for example, then it will be

undertrained in representing Class 1. Furthermore, the test set will be composed of those

vectors that were not used to train that class. The resulting scenario is a PNN that is both

undertrained and overtested in Class 1, resulting in more frequent misclassifications for

that Class i. As discussed in section 7 .3, a better method of representing the classes when

randomly sampling training vectors would be to randomly sample them within their

respective classes, rather than randomly sampling them from the original classification

trajectory. It is anticipated that a representative random sampling for each class would

result in a percentage correct classification comparable to that achieved when sampling

training vectors at regular intervals.

Therefore, when the three classes are properly represented in the training set

through sampling at regular intervals, the optimized PNN achieves a representative

p ercentage cor¡e ct c I as sifi cati on o f approx imately 9 5 
o/o.
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6.4 Summary

This chapter summarizes the multifractal characterizafion of Record 11020219,

and explores the optimal class assignment by selecting a good value of o using training

and test set pairs of different sizes formed by selected vectors at both regular and random

intervals. The optimal class assignment is then verified through the 2D visualization of

the first four principal components. Finally, an optimized PNN is trained with 50%o of the

vectors, and its performance in classifying previously unobserved traffic is evaluated.
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CnaprER VII

C oncr,usloNs AND RTcovTMENDATIoNS

7.1 Conclusions

This thesis sets out to improve upon existing traffic classifiers through the

development of a new multifractal traffic classifîer. Unfortunately, the data sets that were

to have been used in this thesis became unavailable while the research was well underway,

and therefore other self-affine data sets had to be acquired so that this thesis could be

completed in a timely manner. Record 11020219 from Pear's data sets was chosen as the

primary self-affine traffic recording with which to demonstrate the use of multifractal

analysis and neural networks to reliably and accurately characterize and classifr network

traffic.

This thesis demonstrates the presence of both spatial and temporal multifractality

in Record 11020219. The Rényi dimension spectrum was constructed using sequential

non-overlapping windows of 1024 points, and the resulting monotonically decreasing

curve for each window revealed consistent spatial multifractality in the traffic sequence.

The variance fractal dimension was also constructed using a non-overlapping window size

of 1024 points that resulted in a trajectory of dimensions of which 96.4% had a mean

square error of less than 0.1, thereby proving that the traffic sequence is temporally

multifractal and self-affine.

To characterize the self-aff,rne traffic, the variance fractal dimension trajectory was

once again calculated using a window size of 512 points and window offset of 8 points.
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A sampling frequency of 10 Hz was used to record the trafÍic, which resulted in a temporal

window size of 51.2 seconds and a window offset of 0.8 seconds. A minimum of 512

points are required for the calculation of the variance fractal dimension, which means that

with a sampling frequency of 10 Hz, the temporal window size of 51.2 seconds was the

highest level of temporal resolution possible. A higher sampling frequency would be

required to study the behaviour of the self-affine traffic on a shorter time scale. For

example, a sampling frequency of 256 Hz would enable a maximum temporal resolution

of 2.0 seconds.

The mean, variance, skewness, and kurtosis trajectories of the variance fractal

dimension trajectory were constructed using a window size of 512 points and window

offset of 1 point. Histograms of each statistical trajectory were calculated using a window

size of 9000 points and a window offset of 150 points. A sampling frequency of l0 Hz

resulted in a temporal window size of 15 minutes and a window offset of 15 seconds. The

gamma distribution was selected to model the strict stationarity of the histograms of these

four statistical trajectories. Eight parameters (two for each of the four gamma

distributions) were used to represent each set of four histograms, which resulted in the

construction of a trajectory of 8-dimensional signatures.

A significant degree of correlation existed between these eight dimensions, so

principal component analysis was used to decorrelate the dimensions. A plot of the

cumulative variance for the principal components revealed thatSTYo of the variance was

contained within the first four principal components, so the first four principal

components were kept to form a compressed 4-dimensional multifractal signature for each

window of traffic.
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A trajectory of these 4-dimensional signatures is now the new compressed

representation of Record 11020219. The K-means algorithm was used to cluster these

signatures, with adequate verification from a self-organizing feature map. The

performance of probabilistic neural networks trained with 30%;o, 40o/o, and 50% of the

signatures, respectively, sampled at regular and random intervals were examined to reveal

locally optimal value of o for each network configuration for the selected number of

classes. Probabilistic neural networks conf,rgured with these locally optimal o parameters

were tlren undertrained with 30o/o and 40o/o of the signatures, respectively, sampled at

regular intervals to indicate the most likely number of classes. A plot of the percentage

classification accuracy as a function of the increasing number of classes c revealed a slight

decrease in classification accuracy of approximately 5Yo as the number of classes

increased from c : 2 to c : 3, followed by a signifrcant decrease of approximately 25o/o as

the number of classes increased from c : 3 to c : 4 that did not recover as the number of

classes increased to c :10. Therefore, this significant decline in percentage classification

accuracy indicated that there arc at least two and most likely three distinct classes in

Record 11020219.

A probabilistic neural network configured with the locally optimal o' is then

sufficiently trained with 50% of the 4-dimensional signatures sampled at regular intervals

from the trajectory, and achieved a representative correct classification accuracy of

approximately 95o/o when classifying previously unobserved traffic signatures.

The methodologies that are presented for characterizing and classiffing traffic may

be directly applied to other classes of self-affine traffic that are of interest to TRZaås and

its sponsors, thereby satisfying the mandate of TRLabs and the objectives of this thesis.
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7.2 Contributions

This thesis and the research done towards its completion has provided the

following contributions.

1. The capture of 24 hours of voIP data at TRLabs (2,304,156 uDp packets),

and the visualized demonstration of the self-affine nature of VoIP traffîc.

2. The demonstration of the selÊaffine, or fractal, nature of the agonistic

behaviour of the Siamese Fighting Fish (Betta splendens) through a

comprehensive study of Record 11020219 from Pear's data sets.

3. The demonstration of the temporal multifractal nature of the Betta splendens

through the calculation of the variance fractal dimension trajectory.

4. The demonstration of the spatial multifractal nature of the Betta splendens

through the calculation of the Rényi multifractal dimension spectrum.

5. The selection of an appropriate window size and window offset for the

calculation of the variance fractal dimension.

6. The selection of an appropriate window size and window offset for the

construction of the statistical histograms of the variance fractal dimension

trajectory.

7. The modelling of the statistical histograms of the variance fractal dimension

trajectory using the gamma distribution.
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8. The determination of the most likely number of classes in Record 11020219

by studying the performance of the probabilistic neural network.

9. The training and testing of a probabilistic neural network to accurately

clas sif' previou s ly unobserved sel f-affine traffic.

7.3 Recommendations for Future Work

Based on the work done in this thesis, several recommendations are presented for

future work in this area.

1. A study of the sections of Record 11020219 where the mean square error

(MSE) is greater than 0.1. Of the 278 windows where the MSE error was

calculated (to generate Fig. 5.9), only l0 had a MSE greater than 0.1, located

at window positions 2, 3, 4, 5, 7, 8,35, 55, 80, and 95. Since 6 of these l0

windows are located at the very beginning of Record 11020219, further study

of these sections would contribute to a better understanding of the self-affine

nature of the motion of BetÍa splendens.

2. A study of the Kullback-Leibler distance [KuLe51] to measure the accuracy

of the gamma distribution in modelling the statistical histograms of the

variance fractal dimension trajectory. Relationships may exist between the

sections of Record 11020219 where the Kullback-Leibler distance is

significantly high, the MSE is greater than 0.1, and the variance fractal

dimension is close to 2. Furthermore, a better measurement of the number of

points needed to construct the statistical histograms may be uncovered

thlough the calculation of the Kullback-Leibler distance trajectory.
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3. A refinement in the usage of the probabilistic neural network by construction

of the training and test set pairs through representative random sampling.

4. An extension of the probabilistic neural network by incorporating a spread

parameter o for each class (as shown in Eq. 4.36), and selecting optimal

values for each parameter.

A comparison between these results (achieved when the first four principal

components are used), and the results obtained when the first three or five

principal components are used, respectively.

A study of the Rényi multifractal dimension spectrum trajectory and how it

could be used to improve the multifractal characterization.

The characterization of the Z-coordinates of Experiment 11020219 and the

construction of a 4D signature trajectory for the Z-coordinates in the same

way as presented for the X-coordinates. The study of the correlation between

the 4D-X and 4D-Z trajectories may lead to better characterization and

classification of the traffic [CaCh03].

5.

6.

7.
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8. An independent study by Dr. Pear's research group of the behaviour of the

Betta splendens as recorded by the regular video camera for Experiment

11020219 could possibly result in a temporal behavioural classification

trajectory based solely upon the characteristic features visually extracted from

this video. A direct comparison between this behavioural classification

trajectory and the statistical classification trajectory constructed in this thesis

would be an excellent method of independent verification of the development

of the statistical classification trajectory. This comparison might also suggest

possible refinements of the techniques and methodologies presented by this

thesis.

9. Tlre application of these techniques and methodologies in characterizing and

classifying other experiments fi'om Pear's data sets.

10. The application of these techniques and methodologies in characterizing and

classi$ring Sarda's data sets.
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ApppxDrx A

PaeR's DrsnauruATrox Dara Snrs

This appendix presents the plots for all I3 dishabituation experiments perþrnted

by Dr. Pear and his research group at the (Jniversity of Manitobø.

Dishabituation stimulus; MO : mirror off

MC : mitor off and live conspecific shown
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Fig. A.l. X-coordinates of Experiment 11020218 (MO).
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AppnNux B

Marr,an Cous

This appendix provides the MATLAB code used in this thesis.

8.1 Best Classes
(bestclass.m)

f unction bc : bestclass (c, k, reps ) ,.

å bestcfass sefects the best K-means cfustering classes
% c - K-means cl-ustering results
% k - number of classes to find (2,3, 4, 10)
% reps - number of repetitions (1, 2, N)
z

U BC : BESTCLASS(C,K,REPS) returns the best cl_usters
% C with K cl-asses using REPS repetitions.
ó

% Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.01 on July 28, 2003 at j:20 am (Central)

i 1 : zeros (2, reps ) ,.

for i : 1:reps i7(2,i) : í; end
í2 : í1;
if (k>2) i3:i1;

if (k > 3) i4 = i1;
if (k > 4) i5 : i1;

if (k > s) i6 : i1;
if(k>6)i7:i1;

1f (k>7) i8:i1;
1f(k>B)i9:i1;

if (k > 9) i10 : i1;
end

end
end

end
end

end
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end
end ? if

for h : l:reps 3 for each repetition...
for i : 1:length(c) % fox each vector...

if (c(i,h) ::1) i1(1,h) : i1(1,h) + 1; end
if (c(i,h) ::2) i2(1,h) : i2(1,h) + 1; end
if (k > 2)

if (c(1,h) ::3) i3(1,h): i3(1,h) + 1; end
if (k > 3)

if (c(i,h) :: 4) i4 (1,h) : i4 (1,h) + 1; end
if (k > 4)

if (c(i,h) =:5) i5(1,h) :15(1,h) + 1; end
if (k > 5)

if (c(i,h) := 6) i6(1,h) : i6(1,h) + 1; end
if (k > 6)

if (c(i,h) := 1 ) i7(1,h) : i7(1,h) + I; end
r_r (K 2 t )

if (c(i,h) ::8) i8(1,h) : i8(1,h) + I; end
if (k > 8)

if (c(i,h) ::9) i9(1,h) : i9(1,h) + 1; end
if (k > 9)

if (c(i,h) := 10) i10(1,h) : i10(1,h) + 1,.
end

end
end

end
end

end
end

end
end % if

end % for i
end % for h

cc = zeros (k, reps) ,.

for i : 1:reps
cc(1,i) : i1(1,i);
cc (2, í) : i2 (I, í) ;
if (k > 2)

cc(3,i) = i3(1,i);
if (k > 3)

cc(4,i) : i4(1,i);
if (k > 4)

cc(5,i) : i5(1,i);
if (k > s)

cc(6,i) : i6(1,i);
if (k > 6)
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cc('7,i) = i7(1,i);
if (k > 7)

cc(B,i) = i8(1,i);
if (k > B)

cc(9,i) = i9(I,i);
if (k > 9)

cc(10,j-) : i10(1,i);
end

end
end

end
end

end
end

end % if
end % for

ccs = sort (cc) ; ? sorted cl_asses
ccm = zeros (k+2f reps); % matched cl-asses
m : 1; Z number of individual- classes
ccm (1 : k, m) : ccs (: ,I) ; ? insert f irst cl_ass
ccm(k+1,m) : 1; % one lnstance so far
ccm(k+2,m) : 1; % tocation of instance
for i : 2: reps Z for each simufation

cct = ccs (:, i),. ? temporary class to compare
j : 1; Z match index
while ((j <: m) & not(sum(ccm(1:k, j) =: cct) == k) )j = j + r;
end % while
if (j > m) % if no match is found

m:m+1,' åonemorecl-ass
ccm(l:k,m) : cct; Z new cl-ass
ccm (k+1, m) -- 7; å one instance
ccm(k+2,m) : i;

e-Lseif (j .= m) å a match is found
ccm(k+1,j) : ccm(k+1,j) + 1; ? increment instance

end % if
end ? for
ccm = ccm( :,1:m) ;
ccm = sortrows(ccm',k+1); % sort based on most likely cj-ustering
bc = ccm(m,k+2) ì % most likeì-y (best) class
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8.2 Characteristic Trajectory
(chartraj.m)

% chartraj creates an 8D trajectory
6

% This program models the four statistlcal histograms
% and creates an 8D characterj_stlc trajectory.
z

% Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revision 1.01 on July 28, 2OO3 at 9:55 am (Centra])

clear al-l variables,.
load . . /maL/VEDTstats.mat;
€- - 1n.ru : ru; Z sampling frequency of IO Hz
wn : 15 * 60 * fs; % histogram for 15 minutes
woff = 0.25 * 60 * fs; z window offset of 15 seconds
len : J-ength(Tm) ; % length of original_ vectors
maxloops : floor((len-wn) /woff); % number of windows that can be

å sampled from originaf vectors
traj8D = zeros(8,maxloops); ? create empty char traj vec

-1 - 
1 .

12 = wn;
form:1:maxloops

T1 : Tm(rl:.r2);
T2 : Tv(r7:r2\;
T3 : Ts (rl:r2);
T4 : Tk (rl:r2) ;
charvec = gammamodel_ (T1,T2 tT3,T4) ;
trajBD(:,m) : charvec;
r1 = 11 + woff ,.

12:12+woff;
end % for
save .. /mat/LrajBD.mat trajBD;
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8.3 Create Neural Network Sets
(createNNsets.m)

function Isettrain, settest] : createNNsets (T, NV, p)

% createNNsets stands for "create neural network sets"
? T - type of set (0: random, 1: regul_ar intervals)
? NV - total number of vectors
Z P - percentage of data for training set (O < p < 1)
z

?' ISETTRAIN,SETTEST] : CREATENNSETS(T/NV,p) returns the
? index pointers for the training set SETTRAIN and test
% set SETTEST method T with på used for SETTRAIN.
z

å Requlred functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.1 on JuIy 18, 2OO3 at 1:25 am (Central)

NTrain : round(NV*p),.
NTest:NV-NTrain,.
settrain : zeros ( 1, NTrain ) ,.

settest : zeros ( 1, NTest ) ;

ì € tmr! l\f -- u, Z RANDOM SELECT]ON

i = 0;
while (i < NTrain) ? se_Lect random numbers

temp : round(rand(1, 1) *NV) ;
while (not(lsempty(find(settrain :: temp) ) ) | (temp :: O) )

temp : round(rand(1,1) *NV);
end ?; while
i : i f, 1.

settrain(1,i) = temp; % put into trainì-ng set
end % while
settrain : sort (settrain) ,.

j = o;
Ior r_: -L : NV ? sel-ect the rest

if lsempty ( find ( settrain =: i ) )

j : j + 1;
settest(j) : i,. % put into test set

end % if
end ? for

å REGULAR TNTERVALS

? # of training vectors
? # of test vectors

elseif (T :: 1)
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inc : NV / NTrain; ? training vector offset
settrain(1,1-) : I;
i1 : 1; i2 : 0; % data set counters
lacn : ñ.

fori--2:NV
test : test + 1,.
if (test >= inc) ? put into training set

test : mod (test, inc ) ,.

11 : i-1 + 1;
settrain(1,i1) : i;

elseif (test < inc) % put into test set
i2:i2+I;
settest (7,i2) : i;

end % if
end ? for

end ? j-f (T)
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8.4 Do K-Means Clustering
(doCluster.m)

function c : doCl_uster (pCn, k, reps/ doplot, dim)

? doCluster performs K-means clustering on a data set
? PCn - number of principal components (from pC.mat)
U k - number of cfasses to find (2,3, 4, ...,10)
% reps - number of repetitions (I, 2, N)
? doplot - do a plot? (boolean)
% dim - plot in 2D or 3D? (2 or 3, if k <= 6)
z

% C : DOCLUSTER(PCN,K,REPS,DOPLOT,DIM) returns the cl_usters
% of the flrst PCN principal components for K cfasses using REps
% repetitions for the K-means algorithm, and prots the crusters
?; in DIM dimensi-ons if DIM < 7 and DOPLOT:1.
z

% Required functions: - bestclass.m
Z - docl-ustering. m
Z - plotclasses.m

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revision 1.1 on July 8, 2OO3 at 9:20 pm (Central)

l-oad . . /maL/pC.mat;
data = PC ( : ,1: pCn) ; % lsolate principal components

3 do K-means clusterì_ng
Irit, ris, c] : doclustering(tkmeans', data, k, [], reps);
corig : ct ;
bc = bestclass (corig, k, reps),. % find the best cl_usters
c = corig(:,bc);
if (dim) & (k < 7) % pJ-ot cl-uster?

plotcJ-asses (data, c, dlm) ; Z up to 6 c]usters in 2D or 3D
end ? if
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8.5 Do Self-Organizing Feature Map Verification
(doSOFM.m)

% doSOFM model-s data with a sel_f-organizinq feature map
9o

% This program displays the first two principal- components
% of the data, and the trained N by M SOFM which indicates
% the cfasses within the 2D data.
Á

? Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.1 on JuIy B, 2003 at 6:25 pm (Central_)

cl-ear all variabl-es;
l-oad .. /mal/PC.mat;
v : Dô. v - vl '

¡l a¡r Dñ.

P: x(I:2,:); % first two pCs
net: newsom(1O 2; 0 11,12 3l); % new SOFM
net.trainParam.epochs : 100000; % how many iterations
net: train(net,P); % train the SOFM
pJ-ot(P(1, : ),P(2, i),' .g',,markersize,,20) Z plot data
hol-d on
pfotsom(net.iw{7,I},net.layers{1} .distances) å plot SOFM
hol-d off
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8.6 Gamma Distribution Model
(gammamodel.m)

function charvec = ganmamodel (Tm, Tv, Ts, Tk) ;

% Tm, Tv, Ts, Tk - vectors for the mean, variance, skewness, and
? kurtosis trajectories of the VFDT
z

? CHARVEC = GAMMAMODEL(TM,TV/TS,TK) returns an eight-dimensional-
% vector represetlng the a]pha and beta parameters of t.he Garnma
? distrlbution modeting the mean, variance, skewness, and kurtosis
% trajectory histograms.

% Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.0 on October 2I, 2OO2 aL 5:30 pm (Central)

charvec = zeros(1,8);

numbins : 50;
TmH : hist (Tm, numbins )

TvH: hist(Tv,numbins)
TsH : hist (Ts,numbins)
TkH : hist(Tk,numbins)

Hm : TmH ./ sum(TmH);
Hv : TvH ./ sum(TvH);
Hs = TsH ./ sum(TsH);
Hk : TkH ./ sum(TkH);

f:Hm;
x : 1:length(f);
exp_x : 0; % mean (mu)
fori:1: length(f)

U create histograms

exp_x: exp x + x(i) * f (i);
end å for
exp_x2 : 0; % variance (sigma squared)
for i : 1 : J-ength(f)

exp_x2 = exp x2 + (x(i)-exp x)^2 * f(i);
end % for

b : exp_x2 / exp_x; Z model parameters
a : exp_x ,/ b;
charvec (I ,I:2) : Ia b];

é create PD¡ s

% Mean PDF
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f : Hv; % Variance pDF
exp_x : 0; ? mean (mu)
fori:1: length(f)

exp_x : exp_x + x(i) * f(i);
end å for
exp_x2 = 0,' ? variance (sigma squared)
fori:1: length(f)

exp_x2: exp_x2 + (x(i)-exp x)^2 * f(i);
end å for

b : exp_x2 / exp_x; Z model- parameters
a : exp_x ,/ b;
charvec (7,3:4) : Ia b];

f : Hs; z skewness pDF
exp_x : 0; % mean (mu)
fori:1:length(f)

exp_x: exp_x + x(i) * f(i);
end ? for
exp_x2 : 0,' % variance (sigma squared)
fori:1: length(f)

exp_x2 : exp_x2 + (x(i)-exp x)^2 * f(i);
end å for

b : exp_x2 / exp x; % model_ parameters
a : exp_x / b,'
charvec (1,5:6) : Ia b] ;

f : Hk; % Kurtosis pDF
exp_x : 0,' % mean (mu)
forl:1: length(f)

exp_x: exp_x + x(i) * f(i);
end % for
exp_x2 : 0 ,. ? variance (sigma squared )

fori:1: Iength(f)
exp_x2 : exp_x2 + (x(i)-exp x)^2 * f(i);

end % for

b : exp_x2 / exp x; % model paramelers
a : exp_x ,/ b;
charvec(1,7:8) : Ia b];
charvec : charvec' ,.
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8.7 Get LAN Graph Info
(getfTIegraphLAN.m)

å getflJ-egraphlAN creates the flfe trafficLAN.mat
Á

å This program extracts the LAN traffic info from the fire
% trafficlANraw.mat and saves the compressed time and data
% to the file trafficlAN.mat. The data are al-so plotted.

% Required functions: none

I Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revislon 1.11 on JuIy \2,2003 al 7:00 pm (Central)

c]ear af_I variabl-es;
load . . /mat-/ LrafficLANraw.mat;
T1 : trafLAN,.
cfear trafLAN; Z save memory

L : ceil- (T1(length (T1) )*10) ; % new J-ength
T2 : zeros(L,2);
T2(:,L) : ((1 : 1 : L) ') ./ rc; % 0.1 sec time sca_Le

L' _ L,

T2 (i2,2) : T1 ( íI,2) ;
rlnc : 0.1; å compression rate
r : rinc;
foril=2:l-ength(T1) ?compressedtime

if (T1(i1,1) > r)
t2=i2+1;
r:r+rinc,.

end % if
T2 (í2 ,2) : T2 (i2,2) + T1 ( i7, 2) ;

end % for
n - ñ4.r - !¿,

clear T2; % save memory
save . . /mat/LrafficLAN.mat T,.

T1 - 1.

L2 = length(T);
plot (T (L1: L2 | 7), (T (L1 :L2,2) /1024\ ) ;
xfabel ('Time (sec) ') ;
y-Label ('KB requested / I00 ms') ;
title('Sampled LAN traffic on 29 August 1989');
%orient landscape;
%print,'
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8.8 Get VoIP Graph Info
(getfilegraphVoIP.m)

å getfilegraphVolp creates the file trafficVofp.mat
z

? This program extracts the VoIp traffic info from the
? file trafficvofPraw.mat, converts it into a more useful_
å rate format, and saves the compressed time and data to
% the fife trafficVolp.mat. The data are al_so plotted.
z

? Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryßpobox.com)
? Revision I.02 on July 14, 2OO3 at 9:45 pm (Centrat)

clear al-1 varlables;
load . . /maL/trafficVolpraw.mat,.
T1 : trafVo]P;
cfear trafVoÏP; Z save memory

Tx : zeros (size (T1) );
i2 : 0;
for i1 : 1 : length(Tl) ? isol_ate UDp packets

if (strcmp (VoIpprot (i1, 1 :3),'UDp' ) )

t2:i2+I;
Tx(i2,I:2) : T1 (iI ,I:2) ;

end ? if
end ? for
T1 : Tx (7:,i2, :) ;
cfear Tx VoIPprot,. % save memory

L : ceil (T1 (length (T1 ) ) *10 ) ; Z new length
12 : zexos(L,2);
efc : 111.

T2(:,,I) : ((1 : 1 : L) ') ./ sts; Z 0.1 sec time scal-e

foril:1:Iength(T1) %compressedtlme
lc : ceil (T1(i1,1)*sts),.
T2 (Ic, 2) = T2 (Ic, 2) + T1 ( ij- , 2) ;

end ? for
T:T2;
clear T7 T2; Z save memory
save . . /maL/trafficVoTp.mat T;

L1:1;
L2 : length(T);
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T (: ,2) = T (: ,2) . / 7024; Z KB scafe
plot ( (T (L1:L2,I) . / (60* 60) ), T (L1: L2,2) ) ;
xlabel- ('Time (hrs)' ) ;
ylabel ( 'KB transmitted / IOO ms' ) ;
titfe ('Sampled VoIp traffic at TRLabs on 09 July 2OO3' ) ,.

%orient landscape;
%print;
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8.9 Get WWW Graph Info
(getfilegraphWWW.m)

? get.filegraphVr7lVtrll creates the file trafficWWW.mat
6

% This program extracts the WWW traffic lnfo from the
% file trafficlANraw.mat, converts it into a more useful
% rate format, and saves the compressed time and data to
? the flle trafficlAN.mat. The data are al-so plotted.
z

? Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revislon 2.07 on July 13, 2003 at 7:45 pm (Central)

clear all- variables,.
load . . /ma:u / t-rafficWWtr{raw.mat,-
time : trafWWVrl (; ,I) ;
bytes : trafWWVú (;,2) ;
extime : trafWVüW( :,3) ;
cl-ear trafWVùW; å save memory

Lold : length (time) ,.

Lnew : sum(ceil (extime) );
Ntime : zeros (Lnew,1);
Nrate : zeros (Lnew, 1) ,.

% new length (uncomp'd)
? rate format

í2 : 0;
for i1 : 1 : Lofd ? convert all data to

intervals: ceil(extime(i1)); % bytes / sec format
rate : bytes (i1) ,/ intervaÌs,.
ttime : time (i1);
for j:1: j-nterval_s

i2:í2+I;
Nrate(i2) : rate;
Ntime(i2) : ttime;
ttime:ttime+1;

end % for
end % for
T0: zeros(Lnew,2),.
T0 (:,1) : Ntime,.
T0 (: ,2) : Nrate;
T1 = sortrows (T0 ) ,.

clear Ntime Nrate T0,. % save memory

T : zeros (max(T1 (:,1)),1);
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I(JI J.-L = 1 : LNEW

T(T1(i1,1)) : r(T1(i1,1)) + T1(íI,2);
end ? for

save . . /maL/t-rafficWWW.mat T;

L2 : length(T);
sect : linspace (I,L2,L2); % time scafe
plot((sect (LI:L2) ./ (60*60*24) ), (T (LI L2) ./ (t024*L024)));
xlabel-('Time (days)' ) ;
ylabel ('MB requested / sec, ) ;
tltl-e('Sampled WWW traffic in February 1995'),.
%orient landscape;
åprint,.
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8.10 Get LAN File Info
(getfileinfoLAN.m)

å getfilelnfoLAN creates the flre trafficLANravr.mat
6

% This program extracts the LAN traffic info from the file
å BC-pAug89.TL and saves the times and data to the file
% trafficlANraw.mat for further processing.
6

? Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryßpobox.com)
å Revision 2.Ol on July 12, 2OO3 at 2:45 am (Centrat)

cfear all variables,.
ddir :' ../.. /Traffic Recordings/LAN - Bell-corer;
cd (ddir) ;

count : 0,.

len = 1000001;
time : zeros (1, ten);
bytes : zeros (1, l_en) ;

% initial variabfes
% number of packets

fid : fopen ( 'BC-pAugB 9. TL' , ' r' ) ;
L : num2str (fgets (fid) ) ;
i : 0;
while not (strcmp (L, '-1' ) ) % for each packet. . .

i : 1 + 1,.
while (L(1,1) :: ' ') % remove leadj_ng spaces

L : L (I ,2:Iength (L) ) ;
end å while
spaces : flndstr (L, ' ') ; % flnd spaces
j : spaces (1);
whife (L(1,j:j+1) ' ') % remove middle spaces

L = strcat(L(1,1: j) ,L(I,j+1:fength(L)));
end ? while
spaces: findstr(L, ' '); å find spaces
j : spaces(2);
1 - 1 t1 ',1 .- 1\.! - L \!t r. )-!) ; % remove trailing spaces

j : spaces(l); ? find marker
time(1,i) : str2num(L(1, 1:j-1) ) ;
bytes(1,i) : st12num(L(1, j+1:length(L) ) ) ;
L : num2str(fgets(fid) ) ;

end % while
fcfose (fld) ;
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if (1 < len) Z crop final- variables
time: time(1,1:i);
bytes : bytes (1, 1 : 1) ,.

end % if
trafLAN : zeros(length(time),2); å save final variables
trafLAN(:,1) : time';
trafLAN( :,2) : bytes',.
save - . / . ./matlab/ma]c/LraffícLANraw.mat trafLAN,.
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8.11 Get VoIP File Info
(getfileinfoVolP.m)

% getfiJ-einfoVolP creates the file trafficVofpraw.mat
z

? This program extracts the VoIP trafflc info from the flle
? voipld.txt and saves the times, data, and protocol- info
? to the fil-e trafficVolPraw.mat for further processing.
9o

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revision 1.0 on July 12, 2003 at 7:15 pm (Central)

cfear all variables;
ddir =' ../../Traffic Recordings,/VoIp - TRLabs,,.
cd(ddir);
maxl-en = 5000000;
time : zeros (1, maxlen) ,'

bytes : zeros (1,maxlen);
prot: char(zeros(maxlen,3)),. % protocol (UDp, etc.)

fid : fopen ('voipld.txt','r' ),.
L = num2str(fgets(fid)); Z ignore cofumn headers
L : num2str (fgets (fid) ) ;

i : 0;
while not (strcmp (L, '-1' ) ) % for each packet. . .

i : i + 1;
while (L(1,1)::' ') % remove leading spaces

L = L(7,2:Iength(L));
end % while
spaces: findstr(L, ' '); å find spaces
¡ : spaces(1);
while (L(1,j:j+1) ' ') ? remove middl_e spaces

L : strcat(L(1,1: j) ,L(L,j+1:length(L)));
end % while
spaces: findstr(L, ' '),. % find spaces
j : spaces(2);
while (L(1,j:j+1) ' ') ? remove middle spaces

L = strcat(L(1,1:j),L(7,j+1:length(L) ) ) ;
end % while
spaces : f indstr (L, ' ') ,. % f ind spaces
j : spaces (3);
while (L(1,j:j+1) ' ') % remove middle spaces

L : strcat(L(1,1: j) ,L(I ,j+1:l_ength(L)));
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end å while
L : debfank(L); Z remove tralling spaces

spaces: fj_ndstr(L, ' '); % find spaces
time (1, i) = str2num(L( (spaces (1)+1) : (spaces (2)-I)));
bytes (1,1) : str2num(L( (spaces(3)+1) :length(L) ) ) ;
z = L( (spaces (2)+I) : (spaces (3)-1) ) ;
prot (i, 1:J_ength(z) ) : z;

L : num2str(fgets(fid) ) ;
end å while
fcl-ose (fid);

1f (i < maxlen) % crop final variables
time = time(1,1:i);
bytes: bytes(1,1:i);
VolPprot = prot(1:1, : ) ;

end % if
trafvoIP : zeros (length (time) ,2) ;
trafVoIP(:,1) : ti_me'; % save flnat variables
trafVoIP( :,2) : bytes' ;

save .. / . ./matl-ab/maL/LraffícVofpraw.mat trafVolp Volpprot;
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B.l2 Get WWW File Info
(getfileinfoWWW.m)

% getfileinfoWWW creates the file trafficWWWraw.mat
z

% This program extracts the WWW traffic info from the files
% listed in WWWnames.mat and saves the t.imes and data to the
% file traffictrdWtr{raw.mat for further processing.
z

% Required functlons: none

? Copyrì-ght (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 2.02 on July 12, 2003 at 1:10 am (Central)

cl-ear all- vari-ables,.
load . . /mat,/Wwwnames.mat;
ddir : '../../Traffic Recordings/www - Boston University',.
cd (ddir) ;
numfifes : length(Wlüwnames); % get WWW fifes names

count : 0,' % initial variables
startfen:110000;
time : zeros(l,startfen),.
bytes : zeros (1, startlen) ,.

extj-me : zeros (1, startÌen) ;

fori:1:numfiles
i

% for each file...

fid : fopen (deblank (WWwnames (i, : ) ) ,'r, ) ;
L : fgets (fid);
while (L -: -1)

wadd: findstr(L, "");
L : strcat (L(1: (wadd(1)-1) ),L( (wadd(2)+I) :lengrh(L) ) );
dspaces : f indstr (L, ' ') ,. % find doubl_e spaces
while (not (isempty (dspaces) ) )

strrep(L, ' ', ' t); % replace doubl_e spaces
dspaces : findstr(L, ' '); å find double spaces

end % while
spaces : findstr(L, ' '),. % find markers
tmptime : str2num(L( (spaces(1)+1): (spaces (2)-I)));
tmpbytes : str2num(L( (spaces (3)+1) : (spaces (a) -1) ) );
tmpextime : str2num(L( (spaces(4)+1):length(L) ) );
if ((tmpbytes -:0) c (tmpextime -= 0.0))

count : count + 1; % save new data
time(1.count) : str2num(L( (spaces(1)+1) : (spaces (2)-I) ) ) ;
bytes(1,count) : str2num(L( (spaces(3)+1): (spaces(a)-1) ) );
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extÍme(1,count) : st12num(L( (spaces(4)+1) :length(L) ) ) ;
end ? if
L : fgers (fid) ;

end % while
fclose ( fid) ;

end % for

if (count < startlen) å crop finaf variab]es
time : time (1, 1:count) ;
bytes = bytes (1, 1 :count),.
extime : extime (1, 1 :count),.

end % if
time : time - min(time) + 1ì Z change time offset
trafWWW = zeros (Iength (time), 3) ;
trafWWW(:,1) = tlme'; å save final variabl-es
trafWWW(:,2) = bytes','
trafWWVü( :,3) = extime' ;
save .. / .. /matlab/mat/trafficV{VùWraw.mat trafWWW;
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8.13 Graph Siamese Fighting Fish Traffic
(graphFish.m)

3 graphFish graphs the Siamese Fighting Fish trafflc at
% different time scales
z

% To visualÌy demonstrate the seÌf-affine nature of the
% Siamese Fighting Fish traffic, this program graphs the
% fish trafflc at three different time scales.
6

å Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.11 on July 17, 2003 at 2:05 am (Central-)

cl-ear al-l- variables,'
l-oad ../maL/II0202I9.mat; Z load traffic

x1 : x1 ./ I0; % length ln cm
cfearxyzt-;

k : 10; % scaÌing rate

tl = zeros(1,length(x1)); % time (100 ms)
for 1 : 1: length (t1 )

t1(i) : i / (60 * 10); ? time (min)
end ? for

x2 : zeros (1, floor (Iength (x1) /k) ) ; % second scafe
for i : 1: (length(x1)/¡¡

x2(i) : sum1x1 ( (i*k)-(k-1) : (i*k) ) ) ;
end 3 for
L2 : L1- (1:length(x2)); t2 : L2 .* k;

x3 : zeros(l-,fl-oor(length (x2) /y¡¡' ?; third scale
for i : 1: (length (x2) /k)

x3(i) : sum(x2((i*k)-(k-1) : (i*k) ) ) ;
end % for
t3 = t2 (1:length(x3) ); t3 : t3 .* k;

figure;
subplot (3, 1, 1) ,' plot (t1, x1) ,'

title('Averaged over 0.1 sec intervafs'),.
ylabel ('X (cm / 0.1 sec) ') ;
subplot (3,1,2) ; plot ( L2, x2) ;
title('Averaged over 1 sec interval-st);
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ylabel ('X (cm / sec) I ),.
subplot (3, 1, 3) ; plot (t3,x3) ;
title (rAveraged over 10 sec intervalst) ;
ylabel ('X (cm / 10 sec) ');
xlabel('Time (min)');
?orient landscape
?print
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B.l4 Graph LAI\ Traffic
(graphLAN.-)

% graphlAN graphs LAN traffic at dlfferent time scal_es
z

% To visually demonstrate the self-affine nature of LAN
å traffic, this program graphs the LAN traffic at three
% dif ferent time scal-es.
6

å Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
å Revision 1.1 on July 14, 2003 at 4:30 pm (Central)

cl-ear alf variabl-es,.
l-oad . . /mat. /trafficLANraw.mat;
T1 = trafLAN;
cl-ear trafLAN; Z save memory

L = ceil (T1 (length (T1) ) *100); ? new length
T2 = zeros(L,2);
T2(:,7): ((1 : 1 : L) ') ./ I00; e" 70 ms time scal_e

.ì1 
- 

1. i1 
- 

1.JI - f t L¿ - !,

T2 (i2,2) : T1 ( iL,2) ;
rinc : 0.01; ? compression rate
r = rinc,'
fori].:2:length(T1) %compressedtlme

if (T1(i1,1) > r)
i2=í2+7;
r:r+rinc;

end % 1f
T2 (í2,2) : T2 (i2,2) + T1 ( l"I,2) ;

end % for
T=T2;

,,1 
- 

m / . a \ .Ãr - r\.t¿l¡

x1 = x1 ./ L024; Z KB scale
+1 - \at. 1\.L \. t Lt I

clear T T2; % save memory

k : 10; % scaling rate

x2 : zeros(1,floor(length(x1)/k) ); % second scal-e
for i : 1: (Iength (xl) /k)

x2(i) : sum(x1( (1*k)-(k-1) : (i*k) ) ) ;
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end % for
L2 : LI (l:length(x2)); L2 : t2 .* k;

x3 : zeros (1, fl-oor(length (x2) /k)); % third scaf e
for i = 1: (length (x2) /k)

x3(1) : sum(x2((1*k)-(k-1) : (1*k) ) ) ;
end % for
t3: L2(1:J-ength(x3)); t3 : t3 .* k;

figure;
subplot (3, 1, 1) ; plot (t1,xl),.
title ( tAveraged over 10 msec intervafs' ) ;
yJ-abel ('KB / 10 msec');
subplot (3, I,2) ; plot ( t2, x2) ;
title('Averaged over 100 msec intervals'),.
ylabel ('RB / 100 msec'),'
subplot (3, 1, 3) ; plot (t3,x3) ;
title ( 'Averaged over 1 sec intervals' ) ;
ylabel ('lKB / sec'),'
xlabel- (rTime (sec)' ) ;
åorient landscape
%print
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8.15 Graph VoIP TraffÏc
(graphVoIP.m)

% graphVolP graphs VofP traffic at different time scales
z

% To visually demonstrate the self-affine nature of VoIp
? traffic, this program graphs the VoIP traffic at three
% different time scales.
z

? Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
? Revislon L.2 on July 16, 2003 at 11:55 pm (Centra1)

clear af f variabl-es;
load ../maL/trafficVoTP.mat,. % load traffic
x1 : T(:,2);
x1 : x1 ./ 7024; ? KB scal-e
+1 - 11 t. -1 \.t \. t Lt I

t1: t1 ./ (60*60); å time (hours)
cl-ear T,' ? save memory

k = 10; % scal-ing rate

x2 : zeros ( 1, floor (length (xI) /y¡ ¡ . å second scale
for 1 = 1: (lengt.h (x1) /¡¡

x2(í) : sum1x1 ( (i*k)- (k-l) : (i*k) ));
end % for
t2 : t7 (1:length (x2)); L2 = L2 .* k;

x3 : zeros ( 1, f loor (length (x2) / k) ) ; ?; third scal_e
for 1 : 1: (length (x2) /Y¡

x3(i) : sum(x2((i*k)-(k-1) : (i*k) ) ) ;
end ? for
L3 : t2 (1: length (x3) ) ; t3 = t3 . * k;

x4 : zeros (1, floor (length (x3) /¡¡ ¡ - % fourth scafe
for i = 1: (Iength (x3) /k)

x4 (i) : sum(x3 ( (i*k)- (k-1) : (i"k) ));
end % for
t4 : t3(1:length(x4)); t4 = t4 .* k,'

subplot (4,I,I) ; plot (t1, x1),.
tj-tle ('Averaged over 0.1 sec intervals' ) ;
ylabel (tlKB / 0.1 sec' ) ;
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subplot (4,I,2); pfot (t2,x2);
title ('Averaged over 1 sec intervals' ) ;
ylabel('KB / 1 sec');
subplot (4t7,3); plot (t3,x3);
title ( 'Averaged over 10 sec interval-s' ) ;
ylabel ('KB / 10 sec') ,.

subplot (4, I, 4 ) ; plot (t4 , x4) ;
title ( 'Averaged over 100 sec intervalst ) ,.

ylabel ('RB / 100 sec' ) ,.

xl-abel ('Time (hrs)' ),.
?orient landscape
%print
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B.f 6 Graph \ryWW Traffic
(graphWWW.m)

? graphWWw graphs WWW traffic at different time scales
9o

% To visually demonstrate the self-affine nature of WVùW

å traffic, this program graphs the lrùllùW traffic at three
% different time scafes.
z

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.1 on July 14, 2003 at 4:30 pm (Central-)

clear al-l variables;
Ioad ../maL/LrafficWWW.mat; ?; load traffic

x1 : x1 ./ (7024*1024); ? MB scal_e
cl-ear T,' ? save memory

t1 = linspace(1,1ength(x1),length(x1) )'; % time (sec)
t1 = t1 ./ (60*60*24); ? time (days)

k : 10; å scaling rate

x2 : zeros(1,fJ-oor(length(x1)/k) ) ; % second scale
for i : 1: (length(x1)/k)

x2 (i) = sum(x1 1 1i*k)- (k-1) : (i*k) ));
end % for
t2 : tI (1:length(x2)); L2 : L2 .* k;

x3 : zeros(1,floor(length (x2) /y¡', - % third scal-e
for i : 1: (length (x2) /k)

x3(i) = sum(x2( (i*k)-(k-1) : (i*k) ) ) ;
end % for
t3 : L2 (1: length (x3) ) ; t3 : t3 . * k;

subpl-ot (3, 1, 1) ; plot (t1, x1),.
title('Averaged over 1 sec intervafs'),.
ylabel('MB / sec');
subplot (3,I,2); plot (t2,x2);
titfe ('Averaged over 10 sec intervals' ) ;
ylabel ('l4B / 10 sec'),.
subplot (3, 1,3) ; plot (t3, x3) ;
title ('Averaged over 100 sec intervals' ) ;
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ylabel ( 'MB / 100 sec' ) ,.

xlabel ('Time (days) ' ) ;
?orient landscape
þP!rrrL
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B.l7 Histogram Modelling
(HistModel.m)

? HlstModef model-s the statisticaf histograms
z

% This program uses garnma distributions to model the
? statistical histograms of the 8D trajectory.
6

% Required functions: none

? Copyrlght (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 7.I2 on July 28, 2003 at 10:15 am (Central_)

clear all variables;
l-oad ../mat/TXHist.mat; Z load histograms
TmXHlstN : TmXHist ./ sum(TmXHist);
TvXHistN : TvXHist ./ sum(TvXHist);
TsXHistN : TsXHist ./ sum(TsXHist),.
TkXHistN : TkXHist ./ sum(TkXHist);

? MEAN

f igure (1) ,'

f : TmXHistN;
x = 1:length(f);
bar (f) ; titfe ('Histogram of the MEAN' ) ;
?orient landscape; print;

exp_x = 0; % mean (mu)
fori:1: length(f)

exp*x: exp_x + x(i) * f(i);
end % for

exp_x2 = 0; % variance (sigma squared)
fori=1: length(f)

exp_x2: exp_x2 + (x(i)-exp x)^2 * f(i);
end % for

b : exp_x2 / exp_xì eo Gamma dlstribution
a : exp_x ,/ b;
f_gammaK: ((x (a-1)) .* exp((-x) ./ b)) / ((ø^a) * gamma(a));
f_gammaK : f_gammaK ./ sum(f gammaK) ,.

figure (2 ) ;
bar (f_gammaK) ,'

title(['MEAN - Gamma Dlstribution Mode], ã: ',num2str(a), ,, b =
',num2str(b)l);
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%orient landscape,. print,.

U VAR]ANCE

f igure (3 ) ,'

f : TvXHi-stN,.
x : 1: length ( f) ;
bar(f); title('Histogram of the VARIANCET);
%orient landscape; print,.

exp_x : 0,' % mean (mu)
for i = 1 : J-ength(f)

exp_x: exp_x + x(i) * f (i);
end % for

exp_x2 : 0,' å variance (sigma squared)
fori:1: length(f)

exp_x2 : exp x2 + (x(i)-exp x)^2 * f(i);
end % for

b : exp_x2 / exp x; % Gamma distribution
a:exp_x/b,'
f_gammaK: ((x (a-f¡¡ .* exp((-x) ./ b)) / ((b^a) * gamma(a));
f_gammaK : f_gammaK ./ sum(f gammaK);
figure(4);
bar (f_gammaK) ;
titfe(['VARTANCE - Gamma Distribution Mode]t ã =',num2str(a), ,, b:
',num2str(b)l);
%orient landscape,' print;

% SKEWNESS

f igure (5 ) ,'

f : TsXHistN,.
x : 1: length (f) ;
bar (f ) ; title ( 'Histogram of the SKEWNESS , ) ,.

åorient landscape,. print;

avn v - f^l .ç^¡,^-v, %mean (mu)
forl:1: length(f)

exp_x: exp_x + x(i) * f(1);
end U for

exp_x2 : 0,' % variance (sigma squared)
for i = 1 : lengt.h(f)

exp_x2 = exp_x2 + (x(i)-exp x)^2 * f(i);
end % for
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b : exp_x2 / exp x; % Gamma dlstribution
a=exp_x/b;
f_gammaK : ((x (a-f ¡¡ .* exp((-x) ./ b)) / ((b^a) * qamma(a));
f_gammaK = f_gammaK ./ sum(f gammaK) ,.

f igure (6) ,'

bar (f_gammaK) ,'

tltle(['SKEWNESS - Gamma Distribution Modeft ã: ',num2str(a), ,, b :
', num2str (b) I ) ;
Sorient landscape,' print;

? KURTOSIS

f igure (7 ) ,'

f : TkXHistN;
x = 1:length(f ),'
bar (f ) ; title ( 'Histogram of the KURTOSIS ' ) ,.

%orient landscape,' print;

expx=0; %mean (mu)
forl:1: length(f)

exp_x: exp_x + x(i) * f(i);
end ? for

exp_x2 : 0,' % variance (sigma squared)
fori:1: length(f)

exp_x2 = exp x2 + (x(i)-exp x)n2 x f(i);
end % for

b : exp_x2 / exp_x; Z Gamma distribut.ion
a : exp_x ,/ b;
f_gammaK: ((x (a-1)) .* exp((-x) ./ b)) / ((b^a) * gamma(a));
f_gammaK : f_gammaK ./ sum(f gammaK) ,.

figure(8);
bar (f_gammaK) ,'

title(['KURTOSIS - Gamma Dlstribution Mode]_t ã = ',num2str(a), ,, b :
',num2str(b)l);
åorient landscape; print;
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8.18 Local Histogram Modelling
(LHistModel.m)

% LHistModel models local statlstical histograms
Á

% This program uses gam.ma distributions to model_ the
3 local statistical histograms of the 8D trajectory.
z

å Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.01 on July 28, 2003 at 10:25 am (Central-)

clear af I variables,.
load ../mat/TmX.mat; Z load trajectories
l-oad . . /mat,/tmx.mat;
load . ./mat/tvx.mat;
load ../mat,/TsX.mat;
load . . /mat/Tkx.mat;

TmXs : hist(TmX(200000:209000),100) ; % local_ histograms
TmXs : TmXs ./ sum(TmXs);
TvXs : hist (TvX (200000:209000), 100) ;
TvXs = TvXs ./ sum(TvXs);
TsXs = hlst (TsX(200000:209000), 100) ;
TsXs : TsXs ./ sum(TsXs);
TkXs : hist (TkX(200000:209000), 100) ;
TkXs : TkXs ./ sum(TkXs);

f : rFmvc.

x : 1:length(f);
figure; bar (f) ;

exp_x : 0; ? mean (mu)
fori:1: length(f)

exp_x: exp_x + x(i) * f(i);
end % for

^.,^ .,4 - ^.exp_xz : u,. % variance (sigma squared)
fori:1: length(f)

exp_x2 : exp_x2 + (x(i)-exp x)^2 * f(i);
end å for

b : exp_x2 / exp_x; Z Gamma distribution
a : exp_x ,/ b;
f_gammaK: ((x .^ (a-1)) .* exp((-x) ./ b)) / ((ø^a) * gamma(a));
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f_gammaK : f_gammaK ./ sum(f_gammaK) ,.

figure; bar (f_gammaK) ;
titl-e(['Gamma Distrlbution Model , ã: ',num2str(a), ,, b :r,num2str(b)l);
xl-abel ('Bin' ),' ylabel ( tProbability' ),.

f : TvXs;
x : 1: length ( f) ;
figure; bar (f) ;

avn v : fl .s^v^-v,%mean(mu)
for i : 1 : J-ength(f)

exp_x: exp_x + x(i) * f(i);
end % for

^-.* --ô ^ ^exp_xz : U,' ? variance (sigma squared)
fori:1: length(f)

exp*x2 : exp_x2 + (x(1)-exp x)^2 * f(i);
end % for

b : exp_x2 / exp x; % Gamma distribution
a : exp_x / b,'
f_gammaK: ((x (a-1)) .* exp((-x) ./ b)) / ((b^a) * gamma(a) ),.
f_gammaK : f_gammaK . / sum(f_gammaK) ;
f igure; bar (f_gammaK) ,.

title(['Gamma Distribution Modef, ã:',num2str(a), ,, b =r,num2str(b)l);
xlabel- ('Bin') ,' ylabe1 ('Probability') ;

f - 
rFcvo.

x : 1: length (f) ;
f igure; bar (f ) ,'

^-,-- ., _ ^-exp_x = u/' % mean (mu)
fori:1: length(f)

exp_x: exp_x + x(i) * f(i);
end U for

^.,^ ,,Ô - n.exp_xz = u; % variance (sigma squared)
fori:1: length(f)

exp_x2 : exp_x2 + (x(1)-exp x)^2 * f(i);
end % for

b : exp_x2 / exp_x; Z Gamma distribution
a : exp_x ,/ b;
f_gammaK : ((x (a-1)) .* exp((-x) ./ b)) / ((b^a) * gamma(a));
f_gammaK : f_gammaK ./ sum(f_gammaK);
figure; bar (f_gammaK) ;
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title(['Gamma Distribution Modett d =',num2str(a), ', b =
',num2str(b)l);
xlabel- ('Bin' ) ; yIabeI ('Probability' ) ;

f : rFlzvc.

x : 1: length ( f) ;
flgure; bar (f) ;

exp_x = 0; % mean (mu)
for i = 1 : J-ength(f)

exp_x: exp_x + x(i) * f(i);
end U for

exp_x2 -- 0; % variance (sigma squared)
for i : 1 : length(f)

exp_x2: exp_x2 + (x(i)-exp_x)^2 * f(i);
end % for

b : exp_x2 / exp_x; Z Gamma distribution
a : exp_x ,/ b,'
f_gammaK: ((x (a-r)) .* exp((-x) ./ b)) / ((b^a) * gamma(a));
f_gammaK : f_gammaK ./ sum(f_gammaK) ,.

figure; bar (f_gammaK) ;
titl-e(['Gamma Distribution Modef, ã: ',num2str(a), ,, b :
',num2str(b)l);
xlabel- ( tBin' ) ; ylabet ('Probability' ) ;
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8.19 PIot Classes
(plotclasses.m)

function plotclasses (data, c, d) ;

% data - data polnts
% c - classes (2, 3, . -. t 10)
% d - dimensions to plot (2 or 3)
z

% PLOTCLASSES(DATA,C,D) returns a 2D or 3D plot of the
? classes C in DATA.
z

? Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryßpobox.com)
å Revision 2.02 on July 28, 2003 al 7:30 am (Central)

c7 : zeros(size(data) ); i1 : O; Z cl_asses to plot
c2 = zeros(size(data) ); i2 = O;
c3 : zeros (size (data) ); i3 : O;
c4 : zeros (size (data) ) ; i4 : O;
c5 = zeros (size(data) ); i5 : 0;
c6 : zeros (size (data) ); i6 : O;

for i : 1:length(data)
:tfr (c(1) :: 1)

i1 : i1 + 1;
c1(i1,:) : data(i,:);

elseif (c(i) := 2)
t2:i2+I;

? assign data to classes

c2 (i2 , :, ) : data (i,
elseif (c(i) :: 3)

i3:i3+1;
c3(i3,:) : data(i,

efseif (c(1) :: 4)
'i 4 = iA + 1.

c4 (i4 , :, ) : data (1,
el-seif (c (i ) := 5 )

iq: iq r'1 .

c5(15,:) : data(i,
efseif (c(i) :: 6)

ì^ - rA I l.

c6(i6,:) : data(i,

);

);

);

end ? if
end å for
c1: c1(1:i1,:);
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c2 = c2(I:í2,:);
c3: c3(1:i3,:),'
aA: aA(1.;A .\.

+ t, . I f

c5: c5(1:i5,:);
c6 = c6(1:16,:);

l€ tÀ a\fr \u -- z)
f ì d,1rô.

hold on;
for i = 1:length(data)

end % lf
end å for
hofd off,'

el-seif (d :: 3)
f i gure ,'

pJ-ot3(c1 (:,1),c1 (

hofd on;
pJ-ot3 (c2 (: ,I) , c2 (

pl-ot3(c3(:,1),c3(
plot3 (c4 (: , I) , c4 (

p1ot3(c5(:,1),c5(
plot3(c6(:,1),c6(
hold off,'

end % if

% plot in 2D

% or plot in 3D

: ç / ^ / I \ _- T \f! \L\f / -- f .i

plot (data (i,I) , data (i,2) ,' . r')
elseif (c(i) ::2)

plot (data (i, 1), data ( i, 2),' . g' )

elseif (c(i) ::3)
plot (data (i,1), data ( i,2) ,' .b')

elseif (c(i) :: 4)
pJ-ot (data ( i,7),data ( i, 2),' .c' )

elseif (c(i) :: 5)
pJ-ot (data (1, 1),data ( i, 2),' .y' )

elseif (c(i) =: 6)
plot (data(i,1),data( i,2) ,' .m')

,2),cI(:,3),'.r');

,2),c2(:,3),'.9');
,2),c3(:,3),'.b');
,2) ,c4 (:,3), ' .c');
,2),c5(:,3),'.y');
,2) ,c6 (:,3), ' .m');
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8.20 Plot Fish Record
(plot_fish.m)

function plot_fish (x, t, traj, tmin, tmax/ Nt, wof f , bound, frec, fnum)

Á

z

z

z

z

z

z

z

z

z

z

z

6

6

z

z
9

z

z

z

ó

ó

plot_fish plots the fish trajectory and its VFDT.
x - location of the fish (1D vector)
t - time at each position (1D vector)
traj - VFDT of x (they must be the same length) (1D
tmin - first point to pì-ot (tmin >: 1)
tmax - last point to plot (tmax <= length(t)) (tmin
Nt - size of window (256, 5I2, 1024, 2049, 4096, or
woff - window offset (0 <: wn <: Nt)
bound - ensure that traj <: 2 ? (boofean)
frec - fish record identification
fnum - flgure number

vector )

( tmax)
8792)

PLOT-F]SH (X, T, TRAJ, TMIN/ TMAX/ NT, WOFF, BOUND, FREC/ FNUM) plots Ihe
position X of a fish and the variance fractal- dimension trajectory
TRAJ at all points in time T (TMIN <: T <= TMAX). If BOUND:: I,
then the ampJ"itude of TRAJ is ensured to be between 1 and 2 (incr).
FREC/ NT, and woFF are the fish record identification, window size,
and window offset, which are used in the title of figure FNUM.

Required functions: none

Copyright (c) 2003 by Robert
Revision 1.16 on July 5,2003

1f (bound :: 1)
l-l-r : rrrì.urqJ,

for k : 1 : length(tb)
1f (rb(k) > 2)

rb(k) : 2;
elself (tb(k) < 1)

rb(k) : 1;
end ? if

end % for
traj : tb;

end % if

f : 10;
r = r / (AO*60*f);

figure (fnum) ;
subplot (2,I,7);

Barry (rbarryGpobox.com)
at 6:00 pm (Centraf)

% ensure that traj <= 2 ?

% save truncated trajectory

? sampì-ing frequency
% time in hours
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plot (t (tmin:tmax),x(tmin:tmax) ),. ?; plot fish trafflc
title ( ['Fish Traffic - ', frec] ) ;
xfabel-( rTime (hrs)' ) ;
yIabel ('Distance from Mirror (mm) ') ;
subplot (2, I,2) ;
plot(t (tmin:tmax),traj (tmin:tmax) ),. % plot VFDT
title([tVFDT - window size: ', int2str(Nt), ' , vüindow DispJ-acement : ,,
int2str(woff)l);
xlabel ('Time (hrs)' ),.
ylabel ('Variance Fractal Dimension' ) ;
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B.2l PNN Classification
(PNNclassification.m)

ó

Á

PNNcI-assification classifies previously unobserved
t raffic

This program trains an optlmal PNN with to classify
previously unobserved traffic. The percent correct
cl-assification and confusion matrix are displayed.

Required functions: none

Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
Revision 1.0 on JuIy 25, 2003 at 11:15 pm (Central)

cl-ear alf variabfes;
nPC : 4;
l-oad . ./maL/PC.mat; PC : PC';
PC: PC(1:nPC,:),'

load ../mat/c3.mat; c: c3';

sigma : 0.061;

% principal components

% first 4 PCs

9¡-2.

% optimized slgma
% when 50% and c : 3

z

z

6

z

á

ó

6

6

foad . . /mat/PNNsetsSig.mat
SetTrain = SetTrainReg50;
SSetTrain = SetTrainRan50_
%SetTrain = SetTrainRan50
%SetTrain : SetTrainRan50_
%SetTrain : SetTrainRan50_
%SetTraln : SetTrainRan50

; Z training & test sets
SetTest : SetTestReg5O;
Iì SetTest : SetTestRan50_1;
2; SetTest : SetTestRan50_2,'
3; SetTest : SetTestRan50_3,'
4; SetTest : SetTestRan50_4,'
5; SetTest : SetTestRan50 5,'

ctrain : zeros (nPC, length (SetTrain) ) ;
ctest : zeros (nPC, length (SetTest) ) ;
cltrain : zeros (1, fength(SetTrain) ) ;
cl-test = zeros(1, j-ength(SetTest) ) ;

for i : 1 : length(SetTrain) % create training vectors
ctrain(:, j) : PC(:,SetTraln(j) ) ;
cltrain(j) = c(j);

end ? for
for i : 1 : Iength(SetTest) Z create test vectors

ctest(:,j) : PC( :,SetTest(j) ) ;
cltest(j) : c(j);

end å for
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T : ind2vec (cltrain ) ,. U targets
net : newpnn(ctrain,T,sigma) ; Z train pNN

Y : sim(net, ctest) ,. å test pNN

Yc : vec2ind(Y);

conmatrix: zeros(3); % confusion matrix
resu-Its : cf test - yc;
numwronÇ : Q,'

for j : 1:length(results)
if (results (j ) -: 0)

results(j) = -I; % misclassiflcatlon
numwrong:numwronq+7;

end % if
conmatrix(cltest(j),Vc1¡¡ ¡ : conmatrix(cltest(j),yc(j) ) + L;

end ? for
percor : ( 1- (numwrong/length (resul-ts) ) ) *1OO
conmatrix
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8.22 Read Fish Record
(read_fish.m)

functlon lx,y,z,tl : read fish(frec),.

? read_fish reads a data record received from Dr. pear (u of M).
% frec - fish record identification
Á

9 lv w q 41 
- 

D6 LLt!tLtrt : xEAD_FISH(FREC) reads the fish record FREC and returns
% x, Y' and Z at al-Ì times T. Tracking errors are removed using
å linear interpolation.
á

% Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revislon 1.13 on JuIy B, 2003 at 6:05 pm (Central)

T : dl-mread(frec);
l- : .P/. 1\.\. t Ll t
<t 

- 
41. 1\.

^ - l\.t¿),

r¡ : 'P/. ?\.
J t \. I Jt I

z = T(. ¿\.\. t Jt,

^ - 
ml. tr\.ç - r\.tJli

clear T,' % save memory!

? For X coordinate. . .

while (e(k) =: 0) ? initial tracking errors?
k: k + 1; ? flnd the first instance of no errors

end % while
xt = x(k); % temporary value
for kt = 1 : k-1 % remove inltial tracking errors

x(kt) : xt;
end % for
k1 = k+1;

k : length(e);
while (e(k) :: 0) % finat tracking errors?

k : k - 1; % find the fast instance of no errors
end ? whife
.,+ _ .,/ì-\.xL: x(KJ; ? temporary value
for kt : k+1 : length(e) % remove finaf tracking errors

x(kt) : xt;
end % for
k2:k;
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while (k1 < k2) ? remove al-I tracking errors by
1f (e(k1) := 0) eo tinear interpolation

xt : x(k1-1); å store previous known point
d : 1; Z dj_stance between known points
while (e(k1) =: 0) Z how many tracking errors?

k1:k1+1;
d : d + 1;

end % while
inc: (x(k1) - x(k1-d)) / d; % lncrement
for kt : (k1_d+1) : (k1_1)

xt = xt + incì % interpolate
x(kt) : xt;

end % for
end % if
k1 = k1 + 1;

end % while

if (min(x) < 0)
x: x + abs(min(x)); % make distances non-negative

end % if
if (min(x) > 0)

x : x - min (x) ; % or make smalfest distance : O

end % if

% For Y coordinate. . .

wh1le (e(k) :: 0) ? initial tracking errors?
k: k + 1; ? find the first instance of no errors

end % while
Yt : y(k); % temporary value
for kt : 1 : k-1 å remove initial tracking errors

y(kt) = yt;
end U for
kl : k+1,.

k : length(e);
while (e(k) :: 0) ? final tracklng errors?

k: k - 1; ? find the last instance of no errors
end ? while
Yt = Y(k); ? temporary value
for kt : k+1 : Iength (e) % remove final tracking errors

y(kr) : yr;
end % for
1.4 - 1-.

while (kl < k2)
if (e(k1) =: 0)

% remove alf tracking errors by
? finear interpolation
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yt: y(k1-1); ? store previous known point
d : 1; % dist.ance between known poì_nts
whil-e (e(k1) =: 0) Z how many tracking errors?

k1 = k1 + 1,.

d = d + 1;
end % while
inc = (y(k1) - y(k1-d) ) / d; ? incremenr
for kt : (k1-d+1) : (k1-1)

yt : yt + inc; Z interpolate
y(kr) : yr;

end 2 for
end % if
k1 : k1 + 1,.

end % while

if (min(y) < 0)
y : y + abs(min(y) ); ? make distances non-negative

end ? 1f
if (min(y) > 0)

y : y - min(y) ,' å or make smallest distance : 0
end ? if

% For Z coordinate. . .

k : 1;
whife (e(k) := 0) å initial tracking errors?

k: k + 1; ? find the first instance of no errors
end % while
-l - - l1-\ .zL: zlK)ì ? temporary value
for kt : 1 : k-1 % remove initial tracking errors

zll¿t-\ : =t.! 
\ 

J:L 
/

end 3 for
k1 : k+1,'

k : lenqth(e);
whil-e (e(k) :: 0) ? final tracking errors?

k: k - 1; % find the fast instance of no errors
end % while
-+ - - l1-\ .LL: z\K)ì ? temporary value
for kt : k+1 : Ìenqth(e) % remove final tracking errors

z(kt) : zLì
end % for
v) : v.

while (kI < k2) ? remove al_l_ tracking errors by
if (e(k1) :: 0) % finear interpolation

zt : z (k1-1); 3 store previous known point
d : 1; Z distance between known points
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whlle (e(k1) := 0) Z how many tracking errors?
k1 : k1 + 1,.

d : d + 1;
end % while
inc : (z(k7) - z(k1-d)) / d; % increment
for kt : (k1_d+1) : (k1_1)

zt=zL +inc; %interpolate
z(kr) : ztì

end ? for
end % if
k1:k1+1;

end ? while

1f (min(z) < 0)
z : z + abs(min(z) ); ? make distances non-negative

end % if
if (min(z) > 0)

z = z - min(z); % or make smal_Iest distance : O

end % if

%save .. /mat/II020219.mat x y z t; % save record
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8.23 Rényi Multifractal Dimension Spectrum
(Renyi.m)

function Dq : Renyi(traf,gr)

?' Dq - Renyi dimension spectrum
% traf - traffic sequence
% qr - range of q
z

å nç : RENYI (TRAF, QR) returns the Renyi dimension spectrum
% of a sequence of self-afflne traffic TRAF wlth spectrum
% range QR.
z

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 2.0I on JuIy 26, 2003 at 7:30 pm (Central)

traf : traf ./ max(traf); % traf amplitude is now [-1,1]
traf : Lraf / 1.001; eo traf amplitude is now (-1,1)
Mx:1,' Mn = -1; % max and min mesh ranges

LTr : length (traf ) ,'

for w : 1 : LTr å convert traffic sequence into a
a=w-LTr/2; Z complexnumberrepresentation
a: (a/(LTr/2)) / 1.007; Z traf range is now (-1,1)
traf (w) : a + traf (w) *i;

end ? for

bin:LTr/2;
r : reaf (traf (2) -traf (1) ) * 2; ? maximum reliabl_e resofution
mx : linspace(Mn,Mx,bin+1),. ? create a mesh where
my : mx,' ? mx - rovüs; my - columns
p : zeros(bin,bin); Z # of corners in vel

forb:1:LTr?calcufatethel-ocationofavel
c : 1; Z for a given point in the sequence
target: imag(traf (b)); å row
while not((target >: mx(c)) & (target < mx(c+1)))

c:c*1;end%while
. ^ _ 1.

target: reaÌ(traf(b)); % cofumn
while not ( (target >: my (c) ) & (target < my (c+1 ) ) )

c:c+1;end%while
Y - w'
p (x, y) : p (x, y) + I; å update bin
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end ? for b

lm,nl : find(p > 0);
p : p ,/ length (traf) ; Z create probabitities
forq=-qr:qr

H : 0;
for pos : 1: length (m)

b = m(pos); c: n(pos);
H : H + ((p(b,c))^q); ? Renyi entropy

end % for
if (q -: 1) % avoid division by 0

H : (Ios2 (H) ) / (1-q) ;
end % if
D(q+qr+1) : H / Loq2(I/r);
Dq(q+qr+1) : q;

end % for q
D(qr+2) : (D(gr+1)+D(qr+3)) / 2; % when q = 1
plot (Dq, D) ,.

xl-abel-('q'),.
yJ-abel('D_q');
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8.24 Select Number of Classes
(selectnumclasses.m)

å selectnumcl-asses indicates the most likely number of
% c-Lasses in the data
6

% This program helps the user detect the most tikeJ-y
? number of classes in the data by calcuÌatlng the
å classlfication accuracy with good values of sigma
? (as determined by the program 'select.sigmas') for
? an increasing number of cl-asses from c:2 to 10.
z

? Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 7.02 on JuJ-y 24, 2003 at 2:10 pm (Central)

clear aIl- variables;
nPC : 4; ? principal components
l-oad ../mat/PC.mat,' PC = PC';
PC : PC(1:nPC,: ); å first 4 pCs

load . - /maL/ sigmas.mat,.

sigma : sigma3O;
%sigma: sì-gma40;
åsigma : sigma5O;

?; good sigmas for each
% number of classes

load ../mat/PNNsetsReg.mat; ? training & test sets
SetTrain : SetTralnReg30; SetTest : SetTestReg3O;
?SetTrain : SetTrainReg40; SetTest : SetTestReg40;
åSetTrain : SetTrainReg50; SetTest : SetTestReg5O;

c : zeros (10,length (PC) ) ; % atl classes
load ../mal/c2.mat; c(2,:) : c2' ;
l-oad ../mal/c3.mat,' c(3,:) : c3';
load . . /maL/c4.mat; c(4,:) : c4, ;
foad . ./maL/c5.mat,' c(5, :) = c5';
l-oad . . /maL/c6.mat; c(6,:) = c6, ;
load ../maL/c-7.mat; c(1 ,;) = c'7';
load ../maL/c].mat,' c(8,:) : c8';
load ../mat/c9.mat; c(9,; ) : c9','
load ../maL/cIO.mat; c(10,:) : c10';

percor = zeros(l,length(sigma)); % percent correct
percor(1,1)=100; Z always100%Gc=1
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for 1 : 1 : (length(sigma)-1) ? 9 simulations
i+1
cl-ear ctrain ctest cltrain cl-test sig T; % clear
cl-ear net Y Yc results numwrong;

ctraln : zeros (nPC,length (SetTrain) ) ,.

ctest = zeros (nPC, length (SetTest) ) ;
cltrain : zeros (1, length(SetTrain) ) ;
cftest : zeros (1, J-ength (SetTest) ) ;

for j : 1 : length(SetTraln) ? create training vectors
ctraln(:, j) : PC(:,SetTrain(j) ) ;
cJ"train(j) : c( (1+1), j) ;

end ? for
for j : 1 : length(SetTest) eo create test vectors

ctest (:, j ) : PC (:, SetTest (j ) ) ;
cltest(j) : c( (i+1),j) ;

end Z for

sig: sigma(i+1);
T : ind2vec (cJ-train) ,. ? targets
net : newpnn (ctrain, T, sig) ,. 3 train pNN

Y : sim(net,ctest); % test pNN

Yc : vec2lnd(Y);

resul-ts: cltest - Yc;
numwronÇ : Q,'

for j = 1:length(results)
1f (results(j) -= 0)

results (j ) -- -I; ? miscl-assif ication
numwrong=numwrong+7;

^*i o I rgIlU -o fl

end % for
percor(1, (i+1) ) : (1- (numwrong,/length(results) ) ) *100;

end ? for (sigma)
percor
åpercor3O: percor;
%load . . /maL/percor.mat;
?save . . /maru/percor.mat percor*;

i : l-inspace(2, length(sigma), (length(sigma) -1) ) ;
plot (i, percor (2 : length (sigma) ) ),.
xl-abel ( rNumber of Classes') ;
ylabel ( 'Percentage Correct Cfassification' ) ,'

-B-49 -



O Robert Barry Appendix B: MATLAB Code

8.25 Select Sigmas
(selectsigmas.m)

å sel-ectsigmas indicates a good value of sigma for a
å given number of cl-asses
z

? Thls program finds a value of sigma which gives the
å highest correct classification for a glven number of
? classes and a pZ / (p-L) % training,/test set rat.io
% constructed by selecting data from regular or random
? intervals.
z

3 Required functions: none

? Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 7.12 on July 23, 2OO3 at 1t-:50 pm (Centraf)

clear aÌI variables;
nÞ. = A'

f oad . . /maL/PC.mat; PC : pC'
PC: PC(1:nPC,:);

? prlncipal components

? first 4 PCs

%load ../maL/c2.mat; c : c2,
foad ../mat/c3.mat,' c = c3',.
%l-oad ../maL/c4.mat; c: c4,
%load ../maL/c5.mat,' c = c5'
%load ../maL/c6.mat; c : c6, ;
%load ../mal/c'|.mat; c: cJ';
åload ../mat/c9.mat; c: cB';
åload ../maL/c9.mat,' c: c9';
%foad .. /mat/clO.mat; c = c10

l-oad . . /mat/pNNsetsSig.mat; å training & test sets

%SetTrain : SetTrainReg30,. SetTest : SetTestReg3O;
åSetTrain : SetTrainRan30_1,. SetTest : SetTestRan3O_1;
åSetTrain : SetTrainRan30 2,. SetTest : SetTestRan30 2,.

%SetTrain : SetTrainReg40; SetTest : SetTestReg4O,.
%SetTrain : SetTrainRan4 0_1 ,. SetTest = SetTestRan4 O_1 ,.

%SetTrain : SetTrainRan40_2; SetTest : SetTestRan40_2,.
?SetTrain : SetTrainRan40 3; SetTest : SetTestRan40 3;

SetTrain = SetTrainReg50; SetTest = SetTestReg5O;
?SetTrain : SetTrainRan50_1 ,. SetTest : SetTestRan50_1 ,.

SSetTrain : SetTrainRan50 2; SetTest : SetTestRan5O 2;
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ctrain : zeros (nPC, J-ength (SetTraln) ) ;
ctest : zeros (nPC, length (SetTest) ) ;
cltrain : zeros (1,1ength (SetTraln) ) ;
clt est : zeres ( 1, length ( SetTest ) ) ;

for i:1 : length(SetTrain) Z create trainingvectors
ctrain(:,i) = PC(:,SetTrain(i) ) ;
cl-train(i) : c(i);

end % for
for i : 1 : J-ength (SetTest) e" create test vectors

ctest(:,i) : PC(:,SetTest.(i) ) ;
cltest(i) : c(i);

end % for

%sigma : zeros (I,25); % try sigmas between
?sigma(1 :25) : linspace(1,I0,19); % 0.001 and 10.0

slgma : zeros (1/ 15 ) ,. % try sigmas between
sigma(7:15) = finspace(1,5,9); Z 0.001 and 5.0

sigma(1) : 0.001ì eo constant sigmas
sigma(2) : 0.005;
sigma(3) :0.01;
sigma(4) = 0.05;
sigma(5):0.1;
sigma(6) : 0.5;

percor : zeros (1, length (signa) ) ;

slen : length(sigma),.
for i:1 : sl-en

sig = sigma(i);
T : ind2vec (cltrain) ,. % targets
net = newpnn(ctrain,T,sig) ì Z train pNN

Y : sim(net/ ctest) ,. % test pNN

Yc: vec2ind(Y);

resul-ts: cltest - Yc;
numwrOnÇ = Q;
for j : 1:length(results)

if (results (j ) -: 0)
results(j):-1; %misclassj-fication
numwrong : numwrong + 1;

end ? if
end ? for
percor(i) : 1 - (numwrong/length(results) ) ;

end % for (sigma)
percor
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plot (sigma ( 1: sÌen) / percor ( 1: slen) ) ;
xlabel('Sigmat),'
ylabel ('Percentage Correct Classification' ) ;
sigma (find (percor :: max (percor) ) )
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8.26 Verify Rényi Dimension Spectrum
(VerifyRD.*)

funct.ion IRYES, RNO, RNUM] = VerifyRD (xt, Nt)

% VerifyRD stands for "verify Rényi Dimension"
% xt - 1D vector (xt >: Nt.)
Z Nt - size of window (256t 5I2, 1024,2048, 4096, or gI92)
6

Z IRYES,RNO,RNUM] = VERIFyRD(XT/NT) returns the number of
% Rényi dimensions RYES that demonstrate mul-tifractality,
% the number RNO that do not, and the number of non-zero
% cells RNUM of XT using windows of size NT.
ó

? Required functions: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.0 on June 30, 2003 at 9:30 pm (Central)

RYES : 0,' RNO : 0;
r_min : 1,'
r_max = Nt,'
L) : zeros ( 1, J-ength (xt ) ) ;
j : 0;
while (r_max <: length(xt))
j=)+1
traf = xt (r min : r max);

traf = traf ./ max(traf);
traf:Lraf/1.001;
Mx : 1; Mn : -1,'

LTr : l-ength(traf );
rorw=1:L'l'r

a=w-LTr/2;

3 min window vafue
? max window value
% empty array (to speed up program)

? counter
å isolate a window of traffic

% traf amplitude is now [-1,1]
% traf amplitude is now (-1,1)
% max and min mesh ranges

å convert traffic sequence into a
% complex number representation

a: (a/(LTr/2)) / I.001; Z traf range is now (-1,1)
traf (w) : a + traf (w)*i,.

end % for

bin:LTr/2;
r : real- (traf (2)-traf (1) ) * 2; ? maximum reliable resol_utlon
mx : f inspace (Mn,Mx,bin+1),. % create a mesh where
my : mx,' % mx - rows; my - columns
p: zeros(bin,bin); ? # of corners in vef

? cal-culate the l-ocation of a vellorþ:1:L'I'r
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c : 1 ì eo for a given point in the sequence
target : imag(traf (b)); % row
while not ( (target >: mx (c) ) & (target < mx (c+1 ) ) )

c=c*1,'end%while
. ^ - 

l.

target: real(traf(b)); å column
while not( (target >: my(c) ) e (target < my(c+1) ) )

c:c+1;end?while
Y - ur
p (x, y) : p (x, y) + I; ? update bin

end Z for b

[m,n] : find(p > 0);
if (length (m) < Nt )

RYES : RYES + 1;
else % (Iength(m) >: Nt)

RNO:RNO+1;
end ? if
tj (j) = length(m); % store vector

r_max/l-ength(xt)*100 å dlsplay percentage complet.ion
r_min : r_min + Nt; % update window position
r_max:r_max+Nt;
end % while
RNUM: tj(1:j);
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8.27 Verify Self-Affi nity
(VerifySA.m)

function IX, Y, s, D] : VerifySA(traf, t,Nt)

% VerifySA verifies the self-affinity of a window of data
% traf - 1D vector (traf >: Nt)
Z t - corresponding time segment
% Nt - size of window (256,5I2,1024,2048, 4096, or 8192)
z

Z [X,Y,S,D] : VERIFYSA(TRAF,T,NT) returns the X and Y

? coordinates of a log-log pJ-ot, slope S, and dimension
3 D of TRAF during time T using windows of size NT.
z

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.0 on June 23, 2003 at 6:30 pm (Central)

r_min : 1,' ? min window val-ue
r max : Nt,' % max window val-ue
b = 2; Z dyadic sequence
K_Ìow = 2; % minimum separatlon
K_max : fix (Iog (Nt) /1og 15¡ ¡ ' å maximum separation
K_buf = ceil (log ( 30 ) /loq (b) ) ;
K_hi :K_max-K_buf;
x : traf(r min : r max); Z isol-ate a window of traffic

n (1) : 7ì % avoid divi-sion by zero (with N)
n(2) : 2^2; n(3) : 2^3;
if (Nt > 256) n(4) : 2^4; end % points in interval
if (Nt > 512) n(5) : 2^5; end
if (Nt > 1024) n(6) : 2^6,' end
if (Nt > 2048) n(7) : 2^1; end
if (Nt > 4096) n(8) : 2^B; end

N : Nt ./ n; ? number of such interval-s
n(1) :0; N(1) :0; % mark invalid ceffs with zeros
fv: x(1)*ones(1,1-enqth(n)); % assign first values (fv)

ta : zeros ( 1, K_hl ) ,'

rL - +-.LV - LO,

? terms a and b in the variance
? equation that is used below

for k : 2 : Nt % look at each point in the window
lf (mod(k,b^2) :: 0) % n : 4

ta(2) : La(2) + (fv(2)-x(k))^2;
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tb(2) : rb(2) + (rv(2)-x(k) );
fv(2) = x(k); end å if

if (mod(k,b^3) == 0) Z n: B

ta(3) = ra(3) + (fv(3)-x(k))^2;
tb(3) : t.b(3) + (fv(3)-x(k) );
fv(3) : x(k); end ? if

if (Nr > 256)
if (mod(k,b^A) ::0) % n:16

ta(4) = ta(4) + (fv(4)-x(k)\^2;
tb(4) : tb(4) + (fv(4)-x(k) );
fv(4) : x(k),' end; end % ít / if

if (Nr > 512 )

if (mod(k,b^s) == 0) Z n : 32
ta(5) : ta(5) + (fv(5)-x(k))^2;
tb(5) : tb(s) + (fv(5)-x(k));
fv(5) = x(k) ,' end; end ? if / if

if (Nr > 1024)
if (mod(k,b^6) :: 0) Z n : 64

ta(6) : ta(6) + (fv(6)-x(k))^2;
tb(6) : tb(6) + (fv(6)-x(k));
fv(6) : x(k); end; end % if. / if

if (Nt > 2048)
if (mod(k,bnJ ) :: 0) Z n : L28

ta(7) : ta(7) + (fv(7)-x(k))^2;
tb(7) : tb(7) + (fv(7)-x(k));
fv(7) = x(k); end; end ? if / if

if (Nr > 4096)
if (mod (k, b^B ) :: 0 ) e" n : 256

ta(B) : ta(8) + (fv(B)-x(k))^2;
tb(B) : rb(B) + (fv(B)-x(k) );
fv(B) : x(k); end; end % if / ít

end % for

K : 0,'
fork=K_fow:Khi %cafcul_atethevarlance

K : K + 1,'
vr (K) : (ta (k) - ( ( (tb ( k) ) ^2 ) /N ( k) ) ) / (N (k) -1) ;
Vn(K) : n(k);

end % for
X : Ioq2 (Vn); ? compute X and y
Y = 1og2 (Vr);

K:Khi-K_l-ow+1,.
s1 : (K*sum(X.*Y)) - (sum(X)*sum(Y));
s2 = (K*sum(X.^2)) - ((sum(X))^2);
s : s1 / s2; % calcul-ate the slope s
u - ^ la.n : ö/ ¿; % calcul-ate the Hurst exponent
E = 1; Z Eucl-idean embedding dimension
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D = E + 1 - H; % cal-culate variance dimension

figure(1); ? plot original data
plot ( (1. /70 ) , traf) ;
xlabel- ('Time (sec)' ) ;
yIabeJ- (rDistance from Mirror (mm) ') ;

f igure (2 ) ,'

pl-ot (X,Y, 'o'); % plot X and y
grid on,'
xlabe1('loq(X) ');
yJ-abel('log(Y) ');
[P, S] : polyfit (X, Y,1) ,. % plot tine of best f it
Yl : P(1) .* X + P(2);
hofd on,'
plot (X, Y1) ;
hol-d off,'
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8.28 Verify Self-Affinity Histogram
(VerifySAHist.m)

function VFDTMSEHist : VerifySAHist (traf,Nt,wn)

% Verì-fySAHist displays a histogram of the self-affinity MSE
Z Lraf - 1D vector (traf >= Nt)
% Nt - size of window (256,572,7024,2048, 4096, or 8192)
3 wn - size of window overlap (0 <= wn <: Nt)
Z - if wn : 0 -> no overlap
Z - lf wn: p (0 < p < 1) -> p percent overJ-ap
Z - if wn : 1 -> maximum fractal- amplification
Z - if wn : n (1 < n < Nt) -> n point offset
6

å [VFDTMSEH1st] : VERIFYSAHIST(TRAF,NT,WN) returns the
% histogram of the mean square error between the points
? on the log-1og plot and the line of best fit of TRAP
? using windows of slze NT and offset WN.
z

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.0 on June 24, 2003 at 5:30 pm (Central)

if (wn :: 0) ? cafculate window offset
woff : Nt,' ? no overJ-ap

el-seif (wn :: 1)
woff : 1; å maximum overlap

efseif ( (wn > 0) & (wn < 1) )

woff:round(wn*Nt);
woff : Nt - woff; Z percentage overlap

else? (wn>1)
woff : wn; % fixed offset vafue

end % i-f
if (woff > Nt) % check for rounding errors

woff : Nt,'
elself (woff < 1)

woff : 1;
end ? if

r min : 1,' % min window val_ue
r-max = Nt; % max window val-ue
tj: zeros(1,length(traf)); ? empty array (to speed up program)
j : 0;
while (r_max <: length(traf) )

j:j+1; %counter
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b : 2; Z dyadic sequence
K_Iow : 2; ? minimum separation
K_max : fix (1og (Nt) /Iog (b) ) ; ? maximum separatlon
K_buf : ceil (Iog (30) /Iog (b) ) ;
K_hi = K_max - K_buf ,'

x = traf(r min : r max); ? isol-ate a window of traffic

n(1) : 1; ?; avoid division by zero (with N)
n(2) : 2^2; n(3) = 2^3;
if (Nt > 256) n(4) : 2^4; end ? points in interval
if (Nt > 512) n(5) :2^5; end
if (Nt > 1024) n(6) : 2^6; end
if (Nt > 2048) n(7) : 2^1; end
if (Nt > 4096) n(8) : 2^8; end

N : Nt ./ n; 3 number of such interval-s
n(1) = 0; N(1) :0; % mark invalid cells with zeros
fv = x(1)*ones(1,length(n)); ? assign first vafues (fv)

ta : zeros ( 1, K_hi ) ,'
tL 

- 
r^.VP - VAt

% terms a and b in the variance
? equation that is used below

for k : 2 : Nt ? l-ook at each point in the window
lf (mod(k,b^2) :: 0) Z n: 4

La(2) : ta(2) + (fv(2)-x(k))^2;
tb(2) : tb(2) + (fv(2)-x(k));
fv(2) : x(k); end % if

if (mod(k/b^3) := 0) % n : 8

ta(3) : ra(3) + (fv(3)-x(k) )^2;
tb(3) : tb(3) + (fv(3)-x(k));
fv(3) : x(k),' end % if

if (Nt > 256)
if (mod(k,b^4) :: 0) å n : 16

ta(4) : ta(4) + (fv(4)-x(k))^2;
tb(4) : tb(4) + (fv(4)-x(k) );
fv(4) = x(k); end,' end ? íf / if

if (Nr > 512)
if (mod(k,b^5) == 0) Z n : 32

ta(5) : ta(5) + (fv(5)-x(k))^2;
tb(5) : tb(s) + (fv(5)-x(k));
fv(5) = x(k); end,' end % if. / if

if (Nt > 1024)
if (mod(k/b^6) ::0) Z n:64

ta(6) : ta(6) + (fv(6)-x(k))^2;
tb(6) : tb(6) + (fv(6)-x(k) );
fv(6) : x(k); end,' end å it / if

if (Nr > 2048)
if (mod(k,b^'7 ) =: 0) Z n = I28
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ta(7) : ta(7) + (fv(7)-x(k))^2;
tb(7) = tb(7) + (fv(7)-x(k) );
fv (7 ) : x (k) ,. end,. end ?; if / if

if (Nt > 4096)
if (mod(k,b^8) :: 0) Z n : 256

ta(8) : ta(8) + (fv(8)-x(k))^2;
tb(8) : rb(8) + (fv(8)-x(k));
fv(B) : x(k); end,' end % if / it

end % for

K : 0;
fork:K_low:Khi %calcul-atethevariance

K : K + 1;
vr(K) (ta(k)-(( (tb(k))^2)/N(k)) )/(N(k)-1);
Vn(K) : n(k);

end % for
X : Iog2 (Vn); å compute X and y
Y : Iog2 (Vr) ;

[P, S] : polyf ì-t (X, Y, 1) ,. % f ine of best f it
Y1 : P(1) .* x + P(2);
MSE = sum( (Y-Y1).^2) / length(Y); % mean square error
tj (j) : MSE; Z store vector

r_min : r_min + woff; % update window posltion
r_max:r_max+woff;
(r-max-woff)/length(traf)*100 % dlsplay percentage completion
end å while
VFDTMSEHj-sI: tj(1:j); % finat rrajectory
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8.29 Variance Fractal Dimension Trajectory
(VFDT.m)

function Itraj,woff] : vfdt(traf,Nt,wn)

% vfdt stands for "variance fractal dimension tra¡ectory"
% traf - lD vector (traf >: Nt)
% Nt - size of wj-ndow (256, 572, 1024,2048, 4096, or 8192)
% wn - size of window overlap (0 <= wn <: Nt)
Z - if wn : 0 -> no overlap
Z - if wn: p (0 < p < 1) -> p percent overJ-ap
ea - if wn : 1 -> maximum fractal- ampliflcation
Z - if wn : n (1 < n < Nt) -> n point offset
z

% [TRAJ,ffOFF] : VFDT(TRAF,NT,WN) returns the variance fractal
% dimension trajectory TRAJ and the window displacement WOFF of
% a 1D sequence TRAF using windows of size NT, and an overJ-ap
% parameter VüN.

z

å Reguired functlons: none

% Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
% Revision 1.47 on July 14, 2002 aL 4:00 pm (Central)

if (wn :: Q) % cal-culate window offset
woff : Nt; % no overlap

elseif (wn :: l)
woff = 1; % maximum overlap

elseif ((wn > 0) & (wn < 1))
woff : round(wn * Nt),'
woff : Nt - woff ì eo percentage overJ_ap

el-se ? (wn > 1)
woff : wn,' % fixed offset val-ue

end ? if
if (woff > Nt) % check for rounding errors

woff : Nt;
elself (woff < 1)

woff = 1;
end ? if

r_min : 1,' % min window value
r_max : Nt,' % max window va]ue
tj = zeros(1,length(traf) ); ? empty array (to speed up program)

while (r_max <: Iength(traf) )

j:j+I;%counter
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K_max : fix(tog(Nt) /Iog(b)); % maximum separation
K_buf = ceil ( loS ( 30 ) /1og (b) ) ;
K_hi =K_max-Kbuf;
x : traf (r min : r max),.

k - a.

Klow:2;

ta : zeros ( 1, K_hi ) ;
t.b : ta;

? dyadic sequence
% minimum separation

? isolate a window of traffic

% terms a and b in the variance
% equation that is used below

n(1) = I; % avoid division by zero (with N)
n(2) : 2^2; n(3) : 2^3;
if (Nt > 256) n(4) : 2^4; end % points in interval
if (Nt > 512) n(5) : 2^5; end
if (Nt > 7024) n(6) : 2^6; end
if (Nt > 2048) n(7) : 2^1; end
1f (Nt > 4096) n(B) : 2^8; end

N : Nt . / n; % number of such intervals
n(1):0; N(1) :0; % mark invatid cel_Is with zeros
fv : x(1)*ones (1,length(n)); å assign first val_ues (fv)

for k = 2 : Nt ? look at each point in the window
if (mod(ktb^2) :: 0) Z n : 4

ta (2) : ta (2) + (f v (2) -x (k) ) ^2;
Lb(2) = tb(2) + (fv(2)-x(k) );
fv(2) : x(k); end % if

if (mod(k,b^3) := 0) Z n: B

ta (3) = ta (3) + (fv (3) -x (k) ) ^2;
tb (3) : tb (3) + (fv (3) -x (k) ) ;
fv(3) : x(k),. end ? if

1f (Nr > 256)
if (mod(k,b^A) := 0) Z n : 16

ta(4) : ta(4) + (fv(4)-x(k))^2;
tb(4) : tb(4) + (fv(4)-x(k));
fv(4) = x(k); end,' end å if. / íf

if (Nr > 512)
if (mod(k,b^s) == 0) % n = 32

ta(5) : ta(5) + (fv(5)-x(k))^2;
tb(s) : tb(s) + (fv(5)-x(k) );
fv(5) : x(k); end,' end ? íf / íf

if (Nr > 1024)
lf (mod(k,b^6) :: 0) % n : 64

ra(6) : ra(6) + (fv(6)-x(k))^2;
tb(6) : tb(6) + (fv(6)-x(k));
fv(6) : x(k); end; end å if / if

if (Nr > 2048)
if (mod(k,b^7) :: 0) ? n : 128
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ta(7) : ta(7) + (fv(7)-x(k))^2;
tb(7) : tb(7) + (fv(7)-x(k) );
fv(7) : x(k); end,' end % if. / if

if (Nr > 4096)
if (mod(k,b^8) :: 0) Z n : 256

ta(B) : ta(8) + (fv(8)-x(k))^2;
rb(B) : tb(8) + (fv(8)-x(k) );
fv(B) : x(k); end; end % if / if

end % for

K : O;
fork:Klow:Khi % calculate the variance

Vn(K) : n(k);
end å for
X : Ioq2 (Vn);
Y : Log2 (Vr) ;

% compute X and Y

K=K_hi-K_fow+1,'
s1 = (K*sum(X.*Y)) - (sum(X)*sum(Y));
s2: (K*sum(X.^2)) - ((sum(X))^2);
s: s1 / s2; 3 cal-culate the slope s
H : s/2; Z calcul-ate the Hurst exponent
E : 1; Z Eucl-j-dean embedding dimension
D:E+1-H; %calcufatevariancedimensi-on
tj (j) : D; % create fractal- trajectory

r_min = r_min + woff ,'

r max = r max + woff ,'

å update window position

(r_max-woff)/length(traf)*100 % display percentage completion
end ? while
traj : tj(1:j); å final trajectory
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8.30 Variance Fractal Dimension Trajectory Interpolation
(VFDTinter.m)

function traj = VFDTinter (tj, Nt ,woff, newlen)

? VFDTinter interpolates the VFDT
? tj - 1D vector (tj >: Nt)
? Nt - size of window
? woff - window displacement (woff <: Nt)
% newlen - new trajectory length (newlen > length(tj))
z

3 TRAJ : VFDTINTER(TJ,NT,WN,NEWLEN) returns the lnterpolated variance
? fractal dimension traject.ory TRAJ with length NEWLEN of a sequence
% TJ, cafculated using windows of slze NT and displacement WOFF.
z

? Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryGpobox.com)
å Revision 1.0 on July 14, 2002 al 6:30 pm (Central)

traj : zeros ( 1, newl-en) ; % create empty traj ectory
traj(1:(Nt-1)) : I;
traj (Nt) : tj (1);
k : ffoor((newlen-Nt)/woff); å remainder
r_max : Nt + woff*k; % position of point in last window
traj ( (r_max-woff) :newfen) : tj (length(tj ) ); ? hold last point
trajgap: r_max - woff - 1 - Nt,' % # of trajectory points to fill
m : trajgap / (length(|-l)-2); å average separation distance
newpt = Nt + fl-oor (m/2); % next point to fill
fork:2: (length(tj)-1) % evenly spreadout trajectory

traj (floor(newpt) ) : tj (k) ;
newpt:newpt+m;

end % for

k1:Nt+1;
k2 : r_max - woff ,'

while (kI < k2) % use linear interpolation to
if (traj (k1) :: 0) % calcul-ate intermediate dimensions

trajt : traj (k1-1); ? store previous known point
d : 1; Z distance between known points
while (traj (k1) :: 0) ? how l-ong is the gap?

k1 : k1 + 1;
d : d + 1,'

end ? whll-e
lnc : (traj (k1) - traj (k1-d) ) / d; ? increment
for kt: (k1_d+1) : (k1_1)
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trajt:trajt+inc; ?interpolate
traj (kt) : trajt;

end % for
end % if
k1 = k1 + 1;

end % whife
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8.31 Variance Fractal Dimension Trajectory Statistics
(VFDTstats.m)

function ITm,Tv,Ts,Tk] : VFDTstats (traj,Nt)

% VFDTstats computes the statistics of the VFDT
% traj - 1D vector (traj >= Nt)
U Nt - size of window
6

% [TM,TV,TS,TK] : VFDTSTATS(TRAJ,NT) returns the mean, variance,
å skewness, and kurtosis trajectories of the variance fractal
å dimension trajectory TRAJ calculated using windows of size NT.
z

% Required functions: none

å Copyright (c) 2003 by Robert Barry (rbarryßpobox.com)
% Revision 1.01 on July 5, 2003 at 8:25 pm (Cent.ral_ )

ltraj : length(traj );
Tm : zeros (1,Itraj ); % create empty trajectories
Tv : Tm; Ts = Tm; Tk : Tm;
fork=2*Nt:ltraj

temp : traj ( (k-Nt+1) :k) ;
Tm(k) : mean(temp); U mean
Tv (k) : var (temp) ,. å variance (unbiased)
Ts (k) : skewness (temp,1),' % skewness (unbiased)
Tk(k) : kurtosis(temp,1); % kurtosis (unbiased)

3k
end % for

Tm(1: (2*Nt-1) ) : Tm(2*Nt) ; Z set undefined vafues
Tv(1: (2*Nt-1) ) : Tv(2*Nt),'
Ts (1: (2*Nt-1) ) : Ts (2*Nt) ;
Tk (1: (2*Nt-1 ) ) : Tk (2*Nt) ;
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