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ABSTRACT 

This research investigates the appropriateness of Information-Theoretic-Based (ITB) 
metrics compliant with finite sense stationarity (FSS) and derived from the Variance Fractal 
Dimension Trajectory (VFDT), to augment network security against traffic anomalies. From the 
distinct and vast cyberattacks (infection, exploitation, probing, deception, cracking, concurrency, 
and unknown) types, this research focuses in those stemming from concurrency and specifically 
in Distributed Denial-of-Service (DDoS) cyberattacks. 

In this research, the design and application of robust methodologies and metrics to 
achieve powerful descriptors is pursued. The strength of ITB metrics, applied in alternate 
research areas like steganography, is a robust justification for this study. The usage of ITB 
metrics, rooted in multi- and polyscale analysis, for detecting network disruptions is novel in the 
network security area. This thesis introduces a novel multiscale analysis methodology, 
multiscalors, which permits the usage of arbitrary operators and transforms to be functional in 
the multiscale domain for inspecting complex signals. Multiscalors provide an analysis depth and 
insights into the signals that exceeds by far what other types of monoscale based analysis offer. 
Multiscale-based metrics have been scarcely utilized in the cybersecurity ecosystem. This thesis 
also showcases specific applications of metrics and methodologies powered by multiscale 
analysis for DDoS detection.  

The methodology presented formulates robust features, based on multi- and polyscale 
analysis, and successfully classifies DDoS disruptions. Such methodology integrates knowledge 
from: (i) Data acquisition, by verifying DDoS instances and deriving complementary data from 
them; (ii) design and implementation of ITB metrics, based on multiscalors operators for 
analysis; (iii) feature extraction, by applying such metrics to the PREDICT datasets, (iv) 
preparation of feature vectors that are highly representative of the Internet traffic characteristics 
carrying DDoS cyberattacks, and (v) classification of anomalies through Adaptive Resonance 
Theory (ART) as a non-supervised neural network that has provided the real-time component in 
the detection of DDoS attacks establishing the time classification in the one second mark. 
Concerning ART, through this research a new methodology, parametogram, for properly 
defining the vigilance parameter for both classification approaches used, ART1 and FuzzyART, 
has been designed, tested, and validated. 

Applications of the multiscalors based metrics in this research target Cyber-Physical-
Social Systems (CPSS), e.g., Industrial Internet-of-Things (IIoT) sustained by the fact of the 
usage of non-simulated Internet traffic, which contains legitimate DDoS attacks. This research 
corroborated the detection of anomalies in Internet traffic with a high classification precision for 
which the multiscalor methodology is essential for extracting relevant features characterizing the 
DDoS cyberattacks examined.  
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Fig. I.81. Shannon’s entropy H applied to the skewness multiscalor 4th component 43|||
( )m  

quantized with Lloyd’s methodology. The DDoS attack dynamics are clearly seen. Also, a 
hit and run DDoS attack is seen. ........................................................................................ I47 

Fig. I.82. Shannon’s entropy H applied to the skewness multiscalor 5th component 53|||
( )m  

quantized with Lloyd’s methodology. The DDoS attack dynamics are clearly seen. Also, a 
hit and run DDoS attack is seen. ........................................................................................ I48 

Fig. I.83. Shannon’s entropy H applied to the skewness multiscalor 6th component 63|||
( )m  

quantized with Lloyd’s methodology. The DDoS attack dynamics are clearly seen. Also, a 
hit and run DDoS attack is seen. ........................................................................................ I48 

Fig. I.84. Shannon’s entropy H applied to the skewness multiscalor 7th component 73|||
( )m  

quantized with Lloyd’s methodology. The DDoS attack dynamics are clearly seen. Also, a 
hit and run DDoS attack is seen. ........................................................................................ I49 

Fig. J.1. Confusion matrix for ART1 with vigilance parameter 0.07ρ = . The matrix displays: 

(i) 985 cases for clear traffic, (ii) 850 cases for a DDoS attack, (iii) 22 false cases for a 
DDoS attack, and (iv) 17 false cases for clear traffic. .......................................................... J1 

Fig. J.2. Confusion matrix for ART1 with vigilance parameter 0.088ρ = . The matrix 

displays: (i) 994 cases for clear traffic, (ii) 848 cases for a DDoS attack, (iii) 13 false cases 
for a DDoS attack, and (iv) 19 false cases for clear traffic. ................................................. J2 

Fig. J.3. Confusion matrix for ART1 with vigilance parameter 0.09ρ = . The matrix displays: 

(i) 994 cases for clear traffic, (ii) 848 cases for a DDoS attack, (iii) 13 false cases for a 
DDoS attack, and (iv) 19 false cases for clear traffic. .......................................................... J3 

Fig. J.4. Confusion matrix for ART1 with vigilance parameter 0.07ρ = . The matrix displays: 

(i) 0 cases for clear traffic, (ii) 867 cases for a DDoS attack, (iii) 1007 false cases for a 
DDoS attack, and (iv) 0 false cases for clear traffic. ............................................................ J3 

Fig. J.5. Confusion matrix for ART1 with vigilance parameter 0.09ρ = . The matrix displays: 

(i) 1007 cases for clear traffic, (ii) 3 cases for a DDoS attack, (iii) 0 false cases for a DDoS 
attack, and (iv) 864 false cases for clear traffic. ................................................................... J4 

Fig. K.1. Confusion matrix for FuzzyART with vigilance parameter 0.1ρ = . The matrix 

displays: (i) 0 cases for clear traffic, (ii) 867 cases for a DDoS attack, (iii) 1,007 false cases 
for a DDoS attack, and (iv) 0 false cases for clear traffic. ................................................. K1 

Fig. K.2. Confusion matrix for FuzzyART with vigilance parameter 0.632ρ = . The matrix 

displays: (i) 913 cases for clear traffic, (ii) 735 cases for a DDoS attack, (iii) 94 false cases 
for a DDoS attack, and (iv) 132 false cases for clear traffic. ............................................. K2 

Fig. K.3. Confusion matrix for FuzzyART with vigilance parameter 0.633ρ = . The matrix 

displays: (i) 920 cases for clear traffic, (ii) 761 cases for a DDoS attack, (iii) 87 false cases 
for a DDoS attack, and (iv) 106 false cases for clear traffic. ............................................. K3 

Fig. K.4. Confusion matrix for FuzzyART with vigilance parameter 0.634ρ = . The matrix 

displays: (i) 908 cases for clear traffic, (ii) 759 cases for a DDoS attack, (iii) 99 false cases 
for a DDoS attack, and (iv) 108 false cases for clear traffic. ............................................. K4 



POLYSCALE BASED CYBERSECURITY  List of Figures 
 

 

Jesus David Terrazas Gonzalez    
 − xxxi −  

Fig. K.5. Confusion matrix for FuzzyART with vigilance parameter 0.9ρ = . The matrix 

displays: (i) 1007 cases for clear traffic, (ii) 14 cases for a DDoS attack, (iii) 0 false cases 
for a DDoS attack, and (iv) 853 false cases for clear traffic. ............................................. K4 

Fig. Q.1. Synthetic dataset with occurrences of the alphabet first five letters (represented in 
matrices 7x5 reshaped into a 168 binary vector) replacing the DNS DDoS attack. The rest 
of the occurrences are formed with random binary vectors that replace the H&R DDoS 
attack and the healthy traffic. ............................................................................................. Q2 

Fig. Q.2. Unsupervised classification of feature vector instances FVn (containing 168 binary 
scalars matching the DDoS dataset) through ART1 with a vigilance parameter values for 
ρ  spanning in the interval [0,  1] . ...................................................................................... Q3 

Fig. Q.3. Synthetic dataset with 10 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 168 binary vector) replacing the DNS DDoS 
attack. The rest of the occurrences are formed with random binary vectors that replace the 
H&R DDoS attack and the healthy traffic. ......................................................................... Q4 

Fig. Q.4. Unsupervised classification of feature vector instances FVn (containing 168 binary 
scalars matching the DDoS dataset) through ART1 with a vigilance parameter values for 
ρ  spanning in the interval [0,  1] . ...................................................................................... Q5 

Fig. Q.5. Synthetic dataset with 20 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 168 binary vector) replacing the DNS DDoS 
attack. The rest of the occurrences are formed with random binary vectors that replace the 
H&R DDoS attack and the healthy traffic. ......................................................................... Q7 

Fig. Q.6. Unsupervised classification of feature vector instances FVn (containing 168 binary 
scalars matching the DDoS dataset) through ART1 with a vigilance parameter values for 
ρ  spanning in the interval [0,  1] . ...................................................................................... Q8 

Fig. Q.7. Synthetic dataset with 30 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 168 binary vector) replacing the DNS DDoS 
attack. The rest of the occurrences are formed with random binary vectors that replace the 
H&R DDoS attack and the healthy traffic. ......................................................................... Q9 

Fig. Q.8. Unsupervised classification of feature vector instances FVn (containing 168 binary 
scalars matching the DDoS dataset) through ART1 with a vigilance parameter values for 
ρ  spanning in the interval [0,  1] . .................................................................................... Q10 

Fig. R.1. Synthetic dataset with occurrences of the alphabet first five letters (represented in 
matrices 7x5 reshaped into a 42 real valued vector) replacing the DNS DDoS attack. The 
rest of the occurrences are formed with normalized real valued vectors as part of the 
analysis applied to the original dataset. The H&R DDoS attack and the normal traffic is 
also normalized. ................................................................................................................... R2 

Fig. R.2. Unsupervised classification of feature vector instances FVn (containing 42 real 
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter 
values for ρ  spanning in the interval [0,  1] . ...................................................................... R3 

Fig. R.3. Synthetic dataset with 10 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 42 real valued vector) replacing the DNS 
DDoS attack. The rest of the occurrences are formed with normalized real valued vectors 



POLYSCALE BASED CYBERSECURITY  List of Figures 
 

 

Jesus David Terrazas Gonzalez    
 − xxxii −  

as part of the analysis applied to the original dataset. The H&R DDoS attack and the 
normal traffic is also normalized. ........................................................................................ R5 

Fig. R.4. Unsupervised classification of feature vector instances FVn (containing 42 real 
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter 
values for ρ  spanning in the interval [0,  1] . ...................................................................... R6 

Fig. R.5. Synthetic dataset with 20 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 42 real valued vector) replacing the DNS 
DDoS attack. The rest of the occurrences are formed with normalized real valued vectors 
as part of the analysis applied to the original dataset. The H&R DDoS attack and the 
normal traffic is also normalized. ........................................................................................ R8 

Fig. R.6. Unsupervised classification of feature vector instances FVn (containing 42 real 
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter 
values for ρ  spanning in the interval [0,  1] . ...................................................................... R9 

Fig. R.7. Synthetic dataset with 30 percent noisy occurrences of the alphabet first five letters 
(represented in matrices 7x5 reshaped into a 42 real valued vector) replacing the DNS 
DDoS attack. The rest of the occurrences are formed with normalized real valued vectors 
as part of the analysis applied to the original dataset. The H&R DDoS attack and the 
normal traffic is also normalized. ...................................................................................... R11 

Fig. R.8. Unsupervised classification of feature vector instances FVn (containing 42 real 
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter 
values for ρ  spanning in the interval [0,  1] . .................................................................... R12 

 
 



POLYSCALE BASED CYBERSECURITY  List of Abbreviations 
 

 

Jesus David Terrazas Gonzalez    
 − xxxiii −  

LIST OF ABBREVIATIONS 

 AAAS American Academy of Arts and Sciences 
 AC Alternating current 
 ACM Association for Computing Machinery 
 AcR Accuracy ratio 
 ADI Active digital identity 
 ADP  Adaptive dynamic programming 
 AI  Artificial Intelligence 
 AIR Automated Intrusion Response 
 ANN Artificial neural network 
 APA Adaptive-persistent adversaries 
 API  Application programming interface 
 AR Augmented reality 
 ARP  Address resolution protocol 
 ART Adaptive resonance theory 
 ASIC Application-specific integrated circuits 
 BE3 BlackEnergy3 
 BGP  Border gateway protocol 
 BNN  Backpropagation neural networks 
 BP Backpropagation 
 C&C  Command and control  
 CAN Computer and network attacks 
 CalTech California Institute of Technology 
 CAS Complex adaptive system 
 CDJV Interval-adapted pyramidal filtering algorithm of Cohen, Daubechies, 
  Jawerth, and Vial 
 CDMA  Code division multiple access 
 CDN  Content delivery network 
 CERT Computer Emergency Response Team 
 CIRA  Canadian Internet Registration Authority 
 CLP Conditional legitimate probability 
 CNSA  Common network security adversaries 
 COI Class-of-Interest 
 COTS  Commercial off-the-shelf 
 CPS Cyber-physical-system 
 CPSS Cyber-physical-social system 
 CSMA/CA Carrier sense multiple access with collision avoidance 
 CSS  Computer security system 
 CTO Chief technology officer 
 CSU Colorado State University 
 CySS Cyber-social systems 
 DARPA Defense Advanced Research Projects Agency 
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 DCM Data collection mechanisms 
 DCS Distributed control systems 
 DDoS Distributed denial-of-service 
 DF Domain flux 
 DFT  Discrete Fourier transform 
 DGA  Domain generation algorithm 
 DHS Department of Homeland Security 
 DL Deep learning 
 DNS Domain name system 
 DoS  Denial-of-service  
 DPWS Device Profile for Web Services 
 DRDoS  Distributed reflection denial-of-service 
 DT Decision tree 
 EATCS European association for theoretical computer science 
 ECG Electrocardiogram 
 EDoS  Economic denial-of-sustainability 
 EMG Electromyogram 
 ERF Extensible record format 
 EU European Union 
 FA Flux agents 
 FAR False Alarm Rate 
 FaaS  Fog-as-a-service 
 FBI Federal Bureau of Investigation 
 FDMA  Frequency division multiple access 
 FEN  Fog edge nodes 
 FF Fast-flux 
 FFM Fast flux monitor 
 FFN Fast fluxing network 
 FFNA Fast fluxing network attack 
 FFSN  Fast flux service network 
 FN False negative 
 FoF Factory of the future 
 FOF Features of features 
 FP False positive 
 FPGA Field programmable gate arrays 
 FRC Fraudulent resource consumption 
 FRD  Fog reference design 
 FS  Fog server 
 FSS Finite sense stationarity 
 GA Genetic algorithm 
 GPS Global positioning system 
 GRN Gaussian random noise 
 GWN Gaussian white noise 
 H2H  Human-to-human 
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 H&R Hit and run 
 HSN Human social networks  
 HTML5 Hypertext mark-up language version 5 
 HTTP  Hyper-text transfer protocol 
 I Infectious 
 IaaS  Infrastructure-as-a-service 
 ICMP  Internet control message protocol 
 ICN  Information centric network 
 ICS Industrial control system 
 ICT  Information and communication technology 
 idd Independent and identically distributed 
 IDS Intrusion detection system 
 IEEE Institute of Electrical and Electronic Engineers 
 IEEE 802 Networking protocols family of standards 
 IEEE 802.3  Ethernet networking protocol standards 
 IEEE 802.11  Wireless local area networks and Wi-Fi networking protocol standards 
 IEEE 802.15.1  Bluetooth networking protocol standards 
 IEEE 802.15.4  ZigBee networking protocol standards 
 IEEE 802.15.6  Body area networks networking protocol standards 
 IEEE 802.15.7  Visible light communications networking protocol standards 
 IEEE 802.24  Smart Grid networking protocol standards 
 IIoT Industrial Internet-of-Things 
 INL Idaho National Laboratory  
 IoP Internet-of-People 
 IoS Internet-of-Services  
 IoT Internet-of-Things 
 IoTSN IoT social networks 
 IoV Internet-of-Vehicles 
 IP Internet protocol 
 IPS Intrusion prevention system 
 IP2HC  IP-to-hop-count  
 IRC  Internet relay chat  
 ISI/USC The Information Sciences Institute at the University of Southern California  
 ISP Internet service provider 
 ISR  Intelligence, surveillance, and reconnaissance 
 IT Information technology 
 ITB Information Theoretic Based 
 KL Kullback-Leibler divergence 
 LAN Local area network 
 LHC Large Hadron Collider 
 LMS Least Mean Square 
 LTI Linear time invariant 
 LSQ Least squares quantization 
 LTM Long-term memory 
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 M2M Machine-to-machine 
 M&C Monitoring and control 
 MAC Medium access control 
 MCPSS  Medical-cyber-physical-social systems 
 MES Mean energy of the source 
 MESmax Peak source energy 
 MISE  Mean integrated squared error 
 MIT Massachusetts Institute of Technology 
 MITM Man in the middle 
 MLP  Multilayer perceptron 
 MNN Multilayer neural networks 
 MoE Mixture of experts 
 MOS Mean Opinion Score 
 MSE Mean squared error 
 MSN Mobile social networks 
 NAT  Network address translation  
 NFC  Near field communications 
 NSA National Security Agency 
 NSE Network Security Engine 
 NHS National Health Service 
 PAC Programmable automation controller 
 PAM Pulse-amplitude modulation 
 PaaS  Platform-as-a-service 
 PCM Pulse-code modulation 
 pdf Probability distribution function 
 PLC Programmable logic controller 
 pmf probability mass function 
 pps Packets per second  
 PREDICT Protected Repository for the Defense of Infrastructure Against Cyber Threats 
 PSD Power spectrum density 
 OCDF  Observed cumulative distribution function 
 OG Overgeneralization 
 opdf  observed probability distribution function 
 OS Overspecialization 
 OSI Open systems interconnect 
 OSPF  Open shortest path first 
 PPM  Probabilistic packet marking 
 QoS  Quality-of-service 
 R Recovered 
 RAS  Reliability, availability, serviceability 
 RESTful Representational State Transfer 
 RF Random forest 
 RFID  Radio frequency identification 
 RIP Routing information protocol 
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 RPS Requests per second 
 S  Susceptible 
 SaaS  Software-as-a-service 
 SCADA Supervisory control and data acquisition  
 SDN Software defined network 
 SI Susceptible-infectious model 
 SIGACT Special Interest Group on Algorithms and Computational Theory 
 SIoT Social IoT 
 SIoV Social IoV 
 SIR  Susceptible-infectious-recovery model 
 SIS  Susceptible-infectious-susceptible model 
 SNR Signal to noise ratio 
 SOA Service-oriented architecture 
 SOM  Self-organized maps 
 SoS System of systems 
 SPD Stability-plasticity dilemma 
 SSS Strong sense stationarity 
 STM Short-term memory 
 SVM support vector machine 
 SVHN  Street View House Numbers 
 TAR True Alarm Rate 
 TCP Transfer control protocol 
 TDMA  Time division multiple access 
 TN True negative 
 TP True positive 
 TTL Time-to-live 
 UDP  User datagram protocol 
 updf  Underlying probability distribution function 
 UWN Uniform white noise 
 VANET Vehicular ad hoc network 
 VFD Variance fractal dimension 
 VFDT Variance fractal dimension trajectory  
 VLSI  Very large integrated circuits 
 VM Virtual machine 
 VNI Visual networking index 
 VPN  Virtual private network 
 VSN Vehicular social network 
 WBAN  Wireless body area network 
 WoT Web-of-Things 
 WSAN  Wireless sensor and actuator network 
 WSN  Wireless sensor network 
 WSS Wide sense stationarity 
 WTA Winner takes all 
 ZCR Zero-crossing rate 
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LIST OF SYMBOLS 

 ∼  Proportional to  

 ≜  Relation by definition 
 |||  Shorthand notation indicating a Ξ  operator is applied in multiscale analysis 

 |||n  A specific multiscalor component 

 ≡   Equivalence 
 { }i   Set notation 

 { }ix  Neuron inputs 

 { }iw  Synaptic weights 

 [ ]i   Vectorial notation 

 ( )ζ i   Accumulator function 

 Γ   Code alphabet 
 CΓ  Coding alphabet 

 Σ  Source alphabet composed of elements jσ   

 ∩   Set intersection operation utilized in ART1 
 ∧   Fuzzy MIN operator or continuous AND utilized in FuzzyART 
 [ ,  ]m nh h  Time-to-live range 
 α  Infection rate 
 FAα   Choice parameter for FuzzyART 

 iα  Legitimate traffic when hackers spoof a single source 

 jα  Attack flows magnitude with the delay j  at the edge router 

 kα  Legitimate traffic when hackers are aware of detection mechanisms 

 Pα  Pareto index 

 ( )tα  Time zone information 

 a  Incoming vector illustrating normalization option in FuzzyART 
 ja   Label where the sample ( )js t  falls in for quantization 

 A   Automatic response to an attack 
 iA  Attack flows 

 tecA  Attack method and/or technique 

 resA   Attack harmful results 

 souA  Attack source 

 . [ ]Al n  Aggregated DDoS attack flows length integration 

 . [ ]iA l n  A single DDoS attack flow length integration 

 . [ ]A p n  Aggregated DDoS attack flows packet integration 
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 . [ ]iA p n  A single DDoS attack flow packet integration 

 1 2{ ,  ,  ...}a a  Value spaces in packets attribute A 

 ,  ,  ...A B  Packets attributes 

 β  Pairwise rate of infection 

 FAβ  Learning rate parameter in FuzzyART   

 b   Index for a b-adic process 
 ( )B t   Signal continuous or discrete in time 

 Ĉ  A given statistics estimate in Freedman-Diaconis’ Binning Rule 
 iC  Legitimate client 

 nC  A given coefficient for an exponential function 

 ( )nC ∆  Cost function to be minimized in Shimazaki-Shinomoto's choice 

 ( )CLP i   Conditional legitimate probability 

 δ   Discrimination threshold in indication function ,i jX XI   

 tδ  Sampling period 
 ∆  Unit of time 
 H∆  Decrease in Shannon’s entropy 

 B∆   Amplitude difference in signal B  
 t∆  Sample displacement 
 id   Noisy data element 

 ( , )D p q   Kullback-Leibler (KL) distance for p q≠   

 ( , )HD p q  Hellinger distance 

 ( , )JD p q  Jeffrey distance 

 ( , )SD p q  Sibson distance 

 Dσ  Variance fractal dimension 

 [ ]XXDFT R   Autocorrelation DFT 

 e  Natural logarithm 

 Ie   Empirical wavelet coefficients in thresholding denoising 

 E  Euclidian dimension 
 [ ]E i  Expectation 

 ER  Error rate 

 f̂  Predicted value for f  

 f  Unknown function in Donoho’s sense 

 0f   Nominal frequency 

 Nf   Nyquist frequency 

 pf  Probability mass function 

 sf  Sampling frequency 
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 fn   False negative 

 fp   False positive 

 [ ]F n  Frame for a multiscalor operator 

 F1  Comparison layer in ART 
 jF1  A given neuron in the comparison layer F1  in ART 

 F 2  Recognition layer in ART 
 jF 2  A given neuron in the recognition layer F 2  in ART 

 FNR  False negative rate 
 FPR  False positive rate 
 nFV  A given feature vector 

 g  Activation function 

 iG   Genuine traffic flows  

 ˆ
Dh   Doane’s binning rule 

 ˆ
FDh   Freedman-Diaconis’ binning rule 

 kh   Hop count 

 ˆ
Sch   Scott’s binning rule 

 ˆ
Sh   Sturges’ binning rule 

 H   Hurst exponent 
 ( )H i  Shannon’s entropy 

 
2|||

[ ]nH m  Shannon’s entropy applied to each variance multiscalor component 

 
3|||

[ ]nH m  Shannon’s entropy applied to each skewness multiscalor component 

 ( )fH X  Entropy of flows 

 idd  Independent and identically distributed 
 int  Integer value  
 I  Infectious individuals 
 I  Vector of elements 1 2( ,  ,  ...,  )NI I I . Inputs for ART. 

 AI  Indicator for DDoS attacks 

 iI  Input binary pattern for ART1 

 jI  Shannon’s self-information 

 tI  Infected hosts at time t 

 0I  Hosts infected initially 

 ,i jX XI   Function indicating whether a DDoS attack is present. Flow correlation 

coefficient 
 j  Index used to traverse samples in  given window for a VFD calculation 

 J  Neuron receiving the largest jT  input from the F1  layer 
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 cmJ  Total number of classes used in a confusion matrix 

 k  Number of cycles for computing a VFD 

 ( )kσ i    Gaussian kernel 

 bufK   Number of points in the log-log plot that are discarded to obtain a VFD 

 hiK  Maximum number of points in the log-log plot that are considered to obtain a 

VFD 
 maxK  Maximum number of points included in the log-log plot to obtain a VFD 

 lowK  Minimum number of points in the log-log plot to obtain a VFD 

 ( )K t    Sinc pulse 

 λ   Birth rate 
 1ℓ  The 1L  norm 
 2ℓ  The 2L  norm (Euclidean distance) 
 L  Parameter for the calculations of the synaptic connections bu

ijz  

 lim   Function limit 
 logb   Logarithm base b   

 µ   Mean. Expected value 

 ( )µ i  Generalization of measure 

 1SS
m  First statistical moment in choice cost function ( )nC ∆  

 2m   Variance. Second statistical moment 

 2SS
m  Second statistical moment in choice cost function ( )nC ∆  

 
2|||n

m   A given component of the variance multiscalor 

 3m   Skewness. Third statistical moment 

 
3|||n

m   A given component of the skewness multiscalor 

 M  Bag of all the symbols and strings that forms a message 
 M  Number of neurons in the F 2  layer in ART1 
 MAD  Median absolute deviation 
 Mo  Mode 
 ( )tη i   Soft thresholding nonlinearity in thresholding denoising 

 n   Sample index in a time series 
 cn   Number of committed neurons in ART1 

 in  Legitimate packets 

 jn   Event in the Shannon’s entropy sense 

 kn  Number of samples used to calculate a VFD at a given cycle k  
 ℕ   Natural numbers 
 N   Total population  
 aN  Attack packets  
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 idN  Unique node identifiers 

 SN   Size of the source alphabet in Shannon’s entropy sense 

 kN   Number of windows to calculate a VFD in a frame  

 mN  Measured packets 

 nN  Normal packets 

 TN  Sample space 

 , [ ]
i jX X kρ  Correlation coefficient 

 jp   Probability of an event in the Shannon’s entropy sense ( thj  symbol) 

 p  Packet 

 .p X   Attribute X  of packet p  

 kp  Hop-count kh  probability 

 P  Precision 
 Pr  Probability 
 Pra   Probability for attack packets 

 Pr ( ,  ...)a ia   Joint probability among attack packets with attributes 

 Prm   Probability for measured packets 

 Pr ( ,  ...)m ia   Joint probability among measured packets with attributes 

 Prn   Probability for normal packets 

 Pr ( ,  ...)n ia   Joint probability among normal packets with attributes 

 qα   A set of quanta with a v finite value used in quantization 

 Qα   Disjoint v sets used in quantization 

 
2|||

[ [ ]]nQ S m  Quantization of cumulative sum applied to each variance multiscalor component 

 
3|||

[ [ ]]nQ S m  Quantization of cumulative sum applied to each skewness multiscalor component 

 
2|||

[ [ ]]nQ H m  Quantization of Shannon’s entropy applied to each variance multiscalor 

component 
 

3|||
[ [ ]]nQ H m  Quantization of Shannon’s entropy applied to each skewness multiscalor 

component 

 Q[Z
n
[m

2|||n
]]  Quantization of ZCR applied to each variance multiscalor component 

 
3|||

[ [ ]]nnQ Z m  Quantization of ZCR applied to each skewness multiscalor component 

 , [ ]
i jX Xr k  Correlation between two flows  and  for i iX X i j≠  with the same length N   

 ρ   Vigilance parameter in ART 

 , [ ]
i jX X kρ  Correlation coefficient between two flows iX  and jX  

 , [ ]
p qX X kρ  Correlation coefficient between two flash crowds pX  and qX  
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 R Recovered individual 
 R  Recall 
 jR  Rectangle with corners defined by vectors ju  and jv  

 ( )XXR i  Autocorrelation function 

 σ̂   Standard deviation estimate 
 σ   Standard deviation 

 2σ   Variance 
 Dσ  Noise level in Donoho’s sense 

 jσ   Element (source symbol) of a source alphabet Σ   

 
3mσ  Tuning parameter in Doane’s binning rule 

 s   Slope 
 ( )s t   Voltage signal  

 ( )js t  Value of s  at the thj  sampling instant 

 S  Susceptible individual 
 S  Cumulative sum 
 

2|||
[ ]nS m  Cumulative sum applied to each variance multiscalor component 

 
3|||

[ ]nS m  Cumulative sum applied to each skewness multiscalor component 

 FS  Total streams present in the Internet/network traffic 

 sgn( )i   Sign function 

 . [ ]S l n   Total stream flows length integration 

 . [ ]S p n  Total stream flows packet integration 

 ( )t i  Time sampling instant 

 it   An element of standard Gaussian white noise  

 n̂t  Estimated threshold for Donoho’s denoising 

 nt  Chosen threshold for Donoho’s denoising 

 tn   True negative 
 tp   True positive 

 T   Total time over which a sample space TN  is obtained 

 jT  Choice functions. Input to the thj  F 2  neuron in ART1 

 JT  Choice function for the active neuron in the layer F 2  in ART1 

 γ   Skewness 

 ( )xγ  Label function in quantization 

 1γ  Constant for Donoho’s denoising 

 jγ  Encoding symbols of a coding alphabet cΓ  

 noγ   Normalization option for FuzzyART 
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 u  Activation potential 
 ju  Vector containing 1 2( , )a a=a    

 c
jv  Vector containing 1 2(1 , 1 )c a a= − −a    

 var( )i   Variance operator 

 ,
ˆ ( ,  )mV A Bσ   Correntropy for two finite data sequences A  and B  

 iV  Input from the ith F 2  neuron to the F1  in ART1 

 V   Vector of elements 1 2( ,  ,  ...,  )Nv v v   

 W  A frequency value used in Lloyds quantization 
 [ ]w i   Window with a stationary segment of a signal for ZCR digital computation 

 θ   Activation threshold or bias 
 Ξ   Arbitrary operator applied in a multiscale approach 
 

|||n
Ξ   A given component of a given multiscalor 

 ix   Individual realization of the random variable X  

 Nx  A given neuron in the recognition layer F1  

 [ ]x n   Ordered sequence of numbers (time series) in relation to sample index n   

 χ   Sample space of X  

 X  Discrete random variable 
 X   Vector of elements 1 2( ,  ,  ...,  )Nx x x   

 [ ]iX n  Network flow where 1i ≥  represents the network flows, and n  denotes the thn  

element in the data sequence 
 kX   Abscissa value in the log-log plot at a given cycle k   

 pX  and qX  Flash crowds 

 0' [ ]X j  Delayed fingerprints by j  time units 

 'iX  Fingerprint of flow iX  
 jy  Output from the thj  neuron in the F 2  layer in ART1 

 iY  and jY  Noise flows 

 kY  Ordinal value in the log-log plot at a given cycle k  

 jz  Weight vector in ART 

 iz   Standard Gaussian white noise 

 bu
ijz   Strengths of the bottom-up synaptic connections 

 td
jiz   Strengths of the top-down synaptic connections 

 Z  Zero-crossing rate 
 antiZ  Detection rate when hackers are aware of detection mechanisms 

 mZ  Detection rate for multiple sources 
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 nZ   Zero-crossing rate in digital implementation  

 
2|||

[ ]nnZ m  ZCR applied to each variance multiscalor component 

 
3|||

[ ]nnZ m  ZCR applied to each skewness multiscalor component 

 sZ  Detection rate for single source 
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CHAPTER I                                                              

INTRODUCTION 

 

1.1 Scientific, Engineering, and Humanitarian Preamble 

Current research in engineering follows a twofold approach [Kins015] by embracing both 

the scientific method (e.g., [Blak012]) and the engineering method (e.g., [Koen003], 

[Kins009]). Theodore von Karman (an aerospace engineer from CalTech) attempted to explain 

the difference between science and engineering: “Science is about understanding nature, 

understanding what is. Engineering is about creating what has never been” [Wulf008]. Pure 

science is analytic with the intent to understand nature, while pure engineering is synthetic with 

the intent to build things. Many contemporary scientists and engineers operate between these two 

extremes [Kins015]. 

The difference between the two methods used to be very wide. However, with the advent 

of high-performance computer simulation tools, the difference is diminishing as simulated 

prototypes resemble physical prototypes, and multiple simulations can provide a much broader 

insight into its operation than it is possible through testing of a single prototype. Furthermore, 

many advanced technologies (such as nanotechnology devices) require deep science in order to 

do deep engineering [Kins015]. 

This unification is further justified by the shift from engineering design for enhanced 

consumer consumption (going back to the industrial revolution) to engineering for humanity 

[Kins015] as demonstrated by many new initiatives in major technical organizations such as the 

Institute of Electrical and Electronic Engineers (IEEE) and the American Academy of Arts and 

Sciences (AAAS) (e.g., [Kins014], [Wulf008]). This social/humanitarian method should also be 

added to the scientific/engineering method in order to make the discovery/development process 

more stable (sustainable). The older single-method approach resembles a monopod —useful to 
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take quick snapshots on the go, but not useful to take a video. Even the two-method approach 

appears incomplete when one considers a responsible stewardship in a technological democracy 

[Kins015]. The research conducted and described herein is sustained by a tripod (i.e., science, 

engineering, and humanitarian methods). The different research stages (proposal, experiments 

planned to be conducted, and conclusions presentation) presented here and its potential derived 

works, first and foremost, have a tripartite motivation looking for the betterment of our rapidly 

growing digital society. The specific problem undertaken in this research is described as follows. 

The cybersecurity research presented in this thesis is very relevant because it summarizes 

years spent by the author in a cybersecurity framework that changed both dynamically and 

rapidly. These transformations occur as a consequence of the fast evolution of the technologies 

that enable and support the Internet communications, the appearance of new and more 

intense/harmful cyberattacks, the cybersecurity ecosystem struggling aggressively to be current 

and aware of new cyberthreats, and the cyberattackers finding new vulnerabilities and exploiting 

them. Were all the years spent in this research worthy? Absolutely. Having gone through all the 

raw data, signal acquisition, data analysis, techniques and methods, modeling, applied machine 

learning, and all the coding subtleties has been one of the most gratifying learning experience. 

Nonetheless, as this experience seems to conclude, this thesis encapsulates some of the 

dynamical operations in cyberspace, which are never ceasing and will always be coated with 

novelty in both the cyberoffense and cyberdefense fronts. 

1.2 Motivation and Problem Definition 

Recently, humanity started swimming in a new sea of technology with the Internet-of-

Things (IoT) as its recent tidal waves. Everyday diverse devices (e.g., air-conditioning systems, 

heating systems, thermostats, stoves, laundry machines, driers, refrigerators, TVs, to name a few) 

join the IoT ecosystem. Specialized networked industrial ecosystems, Industrial Internet-of-

Things (IIoT), seek to take advantage of data flows for creating smart processes. However, 

humanity should not forget that the Internet has active predators exploiting everything (e.g., 

software leading to hacks or connections leading to exposed hardware). This realization should 

(i) shake everyone because many aspects of human life are now networkable and sharable 

through software and hardware platforms (often in the form of codesign) and (ii) pose a 
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challenging question: Who with a right mind jumps in water full of predators? It is clear that 

adversaries threaten physical, economic, and national security. As an example in the physical 

world, adversaries have demonstrated hacking of an automobile connected to the Internet. This 

example of automobile hacking can be extrapolated to an industrial realm where a process 

controller can be abused and misused. When software hacking leads to deep implications in the 

physical world, very logically if humanity is dependent on Things that are indefensible either 

such dependence should be diminished, or such Things should be more defensible. Security 

researchers are working on the second option to catch up with predatory adversaries [Corm014]. 

In order to be a step ahead of cyberoffense, cybersecurity is in constant need of new 

analysis techniques, methodologies, and machine learning approaches that can effectively and 

accurately classify anomalies. This research embarks precisely in an attempt to diminish the gap 

between cyberattacks occurrence and their detection from the cybersecurity front. At the onset of 

this research, distributed denial of service (DDoS) detection ranks past a time interval that 

comprises minutes, if a well-trained machine learning model is used. This sets a challenge for the 

achievements in this research, if considered as a detection benchmark. In regard to the machine 

learning model selected, this has been pragmatically chosen to be adaptive resonance theory 

(ART), which specifically considers two of its variants ART1 and FuzzyART. 

Events that occurred in the midst of the 2020 global pandemic, have demonstrated that 

the world around us functions in a sea of networked systems. Whether for virtual meetings, IoT 

devices, remote sensing, online shopping, reliable news, government and health advice, or when 

to go out to get groceries, these networks and the services that operate on them are vital to a 

functioning society. These networks and services have become not only critical, but also vital, 

infrastructure, in a way that mirrors discussions about roads, hospitals and electrical grids. The 

work presented in this thesis could facilitate efforts within the security ecosystem for improving 

resiliency. 

The collective term for this underlying support is infrastructure, and when the associated 

services are considered essential to society, we refer to the associated underlying support as 

critical infrastructure. An additional popular definition of critical infrastructure is any 

underlying service support that, if removed (even temporarily), would create serious problems 

for society. If any of the critical infrastructure components became degraded or unavailable, the 
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consequences to society would be severe. A problem with critical infrastructure security is that 

practitioners tend to apply protections that were designed for smaller systems. This is an issue, 

because the needs of a large and small computer system can be as different as one might find for, 

say, a jumbo jet or bicycle. Maintenance, monitoring, trust, and compliance are example factors 

that are directly influenced by size, scale, and scope. The demands of infrastructure, however, 

especially in support of critical services, introduce considerably more risk, primarily due to the 

increased consequences of attack [Amor020]. 

There are 16 critical infrastructure sectors (i.e., chemical, commercial facilities, 

communications, critical manufacturing, dams, defense industrial base, emergency services, 

energy, financial services, food and agriculture, government facilities, healthcare and public 

health, information technology, nuclear reactors, materials and waste, transportations systems, 

and water and wastewater systems) whose assets, systems, and networks, whether physical or 

virtual, are considered so vital to the United States that their incapacitation or destruction would 

have a debilitating effect on security, national economic security, national public health or safety, 

or any combination thereof [Cybe020]. The main grounding force in cybersecurity is having 

deep knowledge about the importance of the assets that are in need to be defended. This often 

boils down to intellectual property. However, different stakeholders might have different 

priorities and value for the assets that they own [Amor020].  

It is vital that these network systems continue to operate in the face of adversity such as 

DDoS attacks. In order to respond to a DDoS attack, it is paramount that first the attack can be 

detected so that there is proper awareness about it. Classic methods for DDoS detection include: 

Packets profile based detection of time-to-live (TTL), packet score, spectral analysis, distances to 

distinguish between flash crowds and traffic carrying an attack, monoscale entropy detection, 

metrics similarity based on distances, and correlation of flows, among the most common. An in 

depth and extensive report on these methodologies is found in Appendix A. 

Nonetheless, these methods are insufficient and limited because: Attackers could use 

random distributions to make a DDoS attack look like normal traffic, DDoS packets scores can 

be made to mimic normal traffic packets scores, measurements based on distances are prone to 

ignore significant parts of the signal of interest when this one is embedded in a dynamical 

environment, spectral analysis loses the connection to time unless a short-time form is used and 
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still then a precise connection to time cannot be achieved, attackers could make a DDoS attack to 

mimic a flash crowd, and monoscale entropy detection fails to detect DDoS efficiently because 

both normal traffic and a DDoS attack can have similar monoscale entropy values. 

After considering how hard is to detect or isolate a DDoS attack from normal traffic and 

the shortcomings from the DDoS detection methods just commented on, it is clear that a DDoS 

detection method that could effectively and robustly perform within the challenging and 

dynamical nature of Internet traffic is needed. The core of this research is to assess if the 

performance of multi- and polyscale features could provide a valuable answer for this need. 

Cybersecurity is an area already with a past that has thought significant lessons to 

computer security related companies and individuals; a present in which corporations and 

agencies cooperate for developing better computer security systems (CSSs) to battle against 

known or unknown forces wanting to access relevant data and computer assets; and certainly a 

future claiming for the embodiment of the very best CSS in which the most advanced 

mathematical theories and engineering practices developed by humans today would then be used 

to construct them. Cybersecurity has been a concern in the modern information era since the days 

of the Milwaukee 414s teenage hackers in the early 1980s (capable of breaking into the Los 

Alamos National Research Laboratory and the Sloan-Kettering Cancer Center amongst other 

prominent computer systems) [Voll015] until now. In the late 80s the “Morris worm” was 

released at the Massachusetts Institute of Technology (MIT) by Robert T. Morris (creator of one 

of the first web-based applications to build and host online stores sold to Yahoo in 2005) 

graduate student at Cornell University [Davi015]. The Morris worm, first computer worm 

Internet-distributed, infected computer systems at U.S. universities, research centers, and 

military bases and caused an estimated $20 million USD worth of damage [Davi015]. This attack 

prompted the Defense Advanced Research Projects Agency (DARPA) to fund the establishment 

of the Computer Emergency Response Team (CERT) at Carnegie Mellon University, in 

Pittsburgh, for anticipating and solving cybersecurity challenges [Davi015 and Pate015]. CERT 

until now continues partnering with government, academia, law enforcement, and industry to 

develop methods and tools to deal with cyberthreats [Pate015].  

Many online resources exist that summarize the frequency and associated trends of 

different cybersecurity events. Some of these resources are the following: PrivacyRights is a 
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repository for data breach incident reports, Hackmageddon is a website which collects public 

reports of cybersecurity incidents, Databreaches.net is a website that collected databreach 

incidents, Cyberwire is a cybersecurity-focused news service which provides daily briefing of 

cybersecurity news. While these resources create reports that show the relative frequency of 

events, they do not provide comprehensive details about them that are supported by specific data 

measurements. Some resources categorize cybersecurity events by event type, attack pattern, and 

type of malware [SaFF019]. This in this research, this becomes part of the motivation for 

developing strong metrics capable of extracting meaningful features from network traffic. 

As specific malware examples, one can think about the Slammer and Nachi worms that 

occurred in 2003, which used UDP ports for SQL activities and ping cascading respectively. The 

Nachi worm, supposedly a vigilante worm, was responsible to create 40% of the active sessions 

on the Internet in the late part of 2003 [Amor020]. A highly specialized malware was the Stuxnet 

worm from 2010, which targeted some facilities of Iran’s nuclear industry and since then has 

metamorphosed and spread to other industries related to the energy sector. One shall recall that a 

worm works by finding a system with a vulnerability, replicating the malware program onto that 

system, and then executing remotely such malware. The usage of worms has declined 

significantly in later years because attackers have found that botnets, like the ones used for 

DDoS, are more powerful, which makes them an attack weapon of choice in cybersecurity 

[Amor020]. It is challenging for companies wanting to hire cybersecurity professionals to assess 

the knowledge, experience, and value the credentials of new individuals joining their workforce 

[Plat15]. This uncertainty is a problem for the cybersecurity industry causing either (i) that 

financial firms, government agencies (i.e., the Federal Bureau of Investigation (FBI)), and 

telecommunications companies hire “ethical” hackers or (ii) rolling out educational programs to 

equip professional engineers with the latest hacking techniques, methodologies, tools, and tricks 

[Roze015a].  

Cybersecurity firms and mass media report successful cyberattacks daily, which are 

growing in terms of complexity and volume ([ArGu021], [Gree021] and [MaCa021]). Diverse 

and recent cyberattacks have targeted and affected Canadians including: (i) The Equifax breach 

that exposed information about 19,000 Canadians, hundreds of thousands of Britons, and 145 

million Americans [Desc020]; (ii) Canadian researchers becoming a target for spear-phishing 
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cyberattacks on COVID-19 research [Nowa020]; (iii) in August 2020, the Canada Revenue 

Agency (CRA) temporarily shut down its online services after confirming being hit by two 

cyberattacks that compromised 5,500 accounts [PaLi020]; (iv) the Chartered Professional 

Accountants Canada, which sets standards and guidance for 210,000 accountants, was subject to 

phishing attacks exposing personal and contact information of 329,000 individuals, including 

members and other stakeholders [Solo020]; (v) in July 2019, TransUnion confirmed that the 

personal data of 37,000 Canadians was compromised when someone illegally used a legitimate 

business customer's login [Bick019]; and (vi) in October 2019, the Canadian Internet 

Registration Authority (CIRA) reported that 71% of organizations experienced at least one 

cyberattack that impacted the organization in some way, including time and resources, out of 

pocket expenses, and paying ransom [Call019]. This list recalls a few impactful cybersecurity 

incidents impacting Canadians. 

Many mobile app developers rely on third-party programs (i.e., Google Maps or 

Facebook) to be integrated into their programs without understanding how these are using the 

data collected and whether they might cause potential privacy or security threats to the users. 

Moreover, many developers do a poor job of encrypting the data that comes from mobile apps 

[Roze015b]. Smartphones and tablets companies have not developed a default setting on devices 

to encrypt data from mobile apps or make it simpler for mobile app developers to do this on their 

own [Roze015b]. Even if mobile apps developers would care about security, their skill set to 

build in security is lacking [Roze015b]. In our data-reliant world cyberthreats take many forms, 

including troublemakers hijacking electronic equipment, hackers conducting cyberespionage, or 

globe-spanning cybercrime rings perpetrating bank fraud, to mention a few [Pate015]. 

Cybersecurity today involves much more than defensive measures. Organizations should also 

build secure foundations and anticipate security challenges like designing secure code, finding 

software vulnerabilities, putting management structures in place to deal with risks, and 

identifying possible threats from inside a company [Pate015]. Computer technology companies 

are making their best efforts to keep both the products placed on the consumers’ hands and their 

online services safe from hackers. Even with all this, there are neither standardized metrics for 

gauging software security [Pate015] nor cybersecurity systems that incorporate cognition in their 
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operations. Appendix B contains a report of the diversity of computing systems in the modern 

cybersecurity ecosystem. 

It is the growing demand for better CSS that motivates the efforts put in the research 

presented here. This thesis work attempts to follow closely both the scientific (e.g., [Blak012]) 

and engineering methods (e.g., [Koen003] and [Kins009]) by appealing to their analytic and 

synthetic nature respectively [Kins020]. Many contemporary scientists and engineers operate 

between these two extremes [Kins020]. This amalgam is worth highlighting because this 

research work explores deep aspects of mathematics and puts them into action, by 

engineering the implementation of systems, for augmenting network security with the 

ultimate goal of making this world a safer place for everyone. Henceforth, this research 

approach expands from engineering design to engineering for humanity ([Kins014] and 

[Kins020]). 

1.3 Network Security 

Social networking and content sharing have become ubiquitous and essential in our 

modern society. Certainly, our society cannot be conceived without the complex networking it 

has achieved so far. Social media is fast changing the public discourse in society and setting 

trends and agendas in very distinct topics (e.g., environment, politics, technology, and 

entertainment). Social media feeds are effective indicators of real-world concerns and possible 

future reactions to a given event [AsHu010]. Society is dependant of the Internet since it requires 

many applications that are Internet-based [Yu014].  

Data security in networking scenarios is certainly a major concern as there could be 

multiple vectors of attack. New common network security adversaries (CNSA) are motivated not 

only by economics or greed (financial gain), but also by ideology (political views) [Yu014]. 

From the insights of deep research, two adversaries are relevant: (i) Even though, in general, 

adversaries lack talent in their attacks sophistication they have demonstrated that security 

companies are also, in general, doing a poor job, and a new form of “hacking power” is 

potentially available to everyone. (ii) On the other hand, nation state sponsored security 

adversaries and espionage actors (motivated by politics and ideologies) are much more 

sophisticated for preparing and launching attacks (e.g., adaptive, adaptive-persistent, deliberate, 
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goal-oriented, persistent, or undeterred) to undertake a given target. Many companies have been 

affected, losing a form of trade secret or intellectual property, by adaptive-persistent adversaries 

(APA) [Corm014].  

The combination of CNSA and APA has eroded even more the degree of security of our 

digital society, which globally is falling short even though the best and brightest that know about 

security and adversaries are in the front line of defense [Corm014]. Due to the nature of the 

Internet and the lack of cyber laws, cyberspace has been a heaven for intelligent attackers. It is 

easy to launch attacks, but hard to identify the persons who commit the attacks and even harder 

to bring them to justice. One critical form of attack in cyberspace is the distributed denial-of-

service (DDoS) attack. 

1.3.1 Disruptions in Networked Computer Systems 

Disruptions are unwanted phenomena reaching networked computer systems by either 

attacks or intrusions. Intrusion techniques have been the object of extensive research [LiJo997]. 

Anomalies, surreptitious scans and server nudges are attempts to compromise a system’s 

integrity. About 90% of disruptions attempt to induce a ‘buffer overflow’ through digital entry 

points into computer hardware and operating systems thorough which superfluous amounts of 

data are written into a system’s memory in an attempt to make it fail, opening it up to 

exploitation [Perk010]. 

The motivations are multiple ranging from: (i) Installing malicious software (intended to 

co-opt system resources, keystroke loggers, and to scan user information and passwords), on 

everyday computer systems; (ii) stealing computing power in high-performance computer 

systems, intellectual property and instrument designs in organizations, health data, or private 

communications data; and (iii) deploying highly complex cyberweapons, potentially designed for 

economic, political, or military intentions, in critical infrastructure [Perk010]. 

“There is no sector that has been able to withstand this onslaught of intrusions,” advises 

Steven Chabinsky, deputy assistant director in the cyber division of the FBI in Washington DC. 

Protection of sensitive data is one of the most challenging tasks in computer systems [Perk010].  

Most information technology (IT) professionals suggest ensuring that large or sensitive 

data stores are managed by a centralized IT team that can monitor and administer systems, 
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keeping a close watch over traffic and limiting access. Within this scheme, some Universities 

firewalls block millions of daily scans from Internet drive-bys looking for open communications 

ports according to cyberinfrastructure services. A “significant percentage” of these scans are 

likely to stem from “professionals in the employ of organized crime”. Many common disruptions 

are simply ignored [Perk010]. Worse yet, many of them are undetected by current network 

security technologies and thus go unreported. 

Some institutions use a battery of common but effective defenses (e.g., pushing operating 

system and antivirus patches out to users, remotely monitoring network traffic, establishment of 

secure virtual private networks (VPNs) for encrypted communication and virtual machines 

(VMs) acting as hardware surrogates).  

VMs allow for easy rolling back to put a hacked computer back online, secure 

professionally, monitor continuously, back-up and restore easily, and in the event of a breach 

contain intrusions effectively by operating on an isolated architecture [Perk010]. 

1.3.2 Cyber-Physical Systems 

Technological progress has made possible significant advances in the computation and 

communication fields, and enabled the emergence of large, networked infrastructures (e.g., 

agriculture, farming, food, transportation, health care, manufacturing, supply chain, and energy 

domains) [SuRH016]. 

Such large systems already include what are known as embedded systems, i.e., 

computational systems designed to control and/or monitor a physical system. Although the 

concept of embedded systems has been in use for many years, the growing trend of 

interconnecting many physical and computational components to form large networks presents 

new challenges and requires novel approaches to design, control, and cybersecurity [SuRH016]. 

The concept of cyber-physical systems (CPS) was introduced in 2006 [KuBL994]. A 

CPS may be described as a typically large networked system, made of tightly interconnected 

physical and computational components, operating in a networked fashion. The history of CPS 

may be traced to the seminal article titled “As we may think” by Vannevar Bush in 1945 

([CFBG006] and [SuRH016]). 

Significant advances in the fields of communications and network engineering; 
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computation, control and systems theory and engineering; information systems; Internet 

engineering; and sensor systems have led to the progression of the human-machine experience, 

thus paving the way for the evolution of the theory and hardware of CPS ([PFND006] and 

[SuRH016]). 

CPS may be seen as similar to the Internet, but applied to the physical world. For 

example, IoT [BiVS013] may be considered as an enabler for CPS because CPS applications 

require efficient sensing and communication infrastructures. CPS are at the frontiers of the 

engineering and computer science fields because of the aim to combine the most recent advances 

in both disciplines. The systems integration approach is therefore a central element to the CPS 

concept. Current challenges at the frontier of both fields include architectures, interoperability, 

networked control, standards and test procedures, verification and validation, and security. CPS-

enabled critical infrastructures (e.g., energy, transportation, or smart cities) may possess the 

promise of solutions to the grand challenges facing the engineering community in the twenty-

first century ([CRDB011] and [SuRH016]. 

Only considering the technical aspects is insufficient, especially when humans are 

expected to use and be impacted by the designed CPS. A system can operate perfectly from a 

technical point-of-view, but if its users are unable to understand how to interact with it or are not 

convinced of its usefulness, the system may never reach the point of fulfilling the intended 

purpose. Thus, the social aspects of such systems must be considered in the design process 

[SuRH016]. 

1.3.3 Cyber-Physical-Social Systems 

An emerging, yet challenging, frontier for CPS applications is the inclusion of the social 

aspect in engineering. The end-user of a critical engineering infrastructure determines the utility 

of that domain, and any advance should also increase the quality of life of the end-user. A 

“smart” infrastructure includes an active end-user (sometimes described as a “prosumer”) with a 

notably different role in participation than in the past [GuYS012]. The active end-user, enabled 

with information in real-time or near real-time and the ability to make decisions, is no longer a 

passive participant in the control and operation of the critical infrastructure. An empowered end-

user, with a hitherto unprecedented level of information and control, is a paradigm shifting 
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concept such as residents of “smart” homes in the electricity domain controlling their energy 

usage to save money and provide grid ancillary services. To understand, model, simulate, 

develop, build, test, analyze, and enhance these futuristic manifestations imposes a fundamental 

requirement of the consideration of the social (and societal) aspect of CPS. The human-centric 

CPS, which marks the next generation of CPS, is called the cyber-physical-social system (CPSS) 

([SBRS007] and [SuRH016]). A CPSS integrates computation, physical components, and human 

cognition to achieve socially aware advancement in the operation of critical infrastructures and 

their interdependencies [SuRH016].  

1.4 Research Questions Posed A Priori 

The significance of networked computer systems in our information era is categorical. 

Our society is absolutely dependent on services provided by networked computer systems, 

becoming more dependent on them as time progresses. This has become evident in critical times 

as society has to rely on virtual environments to function when there are unexpected limitations. 

New digital services are created on a daily basis with the capacity of pragmatically changing and 

impacting everyone. Nevertheless, safeguarding networking environments is certainly the 

greatest challenge in cybersecurity. Within cybersecurity, the aim of maintaining a given 

network operational and accessible to legitimate users, the appropriate and accurate detection of 

DDoS attacks is of fundamental importance ([AaAr013] and [Kasp014]). The literature provides 

a large number of examples in which distinct metrics are used to extract features of network 

traffic that could lead to detection of DDoS attacks. Considering the complex cybersecurity 

scenario, the main research question is: Can new multi- and poly-scale-based metrics be helpful 

in deriving a set of features capable of detecting DDoS attacks accurately and effectively? Can a 

deep learning (DL) architecture, from the feature extraction perspective, utilizing adaptive 

resonance theory (ART) as the pragmatic machine learning approach offer a high classification 

performance when processing a polyscale feature vector? 

Secondary research questions stemming from the previous one are: From the introduced 

multiscale-based metrics, which are the per case relative merits for analyzing data and signals 

obtained in networked computer ecosystems for detecting disruptions by DDoS? Which are the 

relative performances of the multiscale-based operators considered in the metrics design? If these 
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multiscale-based metrics are collectively aggregated or processed further as poly-scale-based 

metrics, can these be considered robust metrics to characterize DDoS disturbances found in data 

streams in networked ecosystems?  

The thesis question in the research presented is: 

Can new multi- and polyscale-based metrics as a set of features, capable of enabling 

arbitrary operators, detect DDoS attacks through adaptive resonance theory based 

ANNs with a high classification performance (accurately and effectively) considering 

a time-multifractality approach? 

1.5 Thesis Statement 

This thesis addresses the development of an early anomalies detection system, in 

Internet/network traffic, supported by both polyscale analysis based robust metrics and 

pragmatically focused on an unsupervised machine learning model based on ART. 

The focal application herein is the detection of departures, from what is perceived as the 

expected behaviour from clear Internet/network traffic, through polyscale analysis based 

methodologies that allow the implementation of arbitrary operators.  

The multiscale analysis methodologies of reference, the variance fractal dimension and 

the variance fractal dimension trajectory, are extensively exploited to harness their analysis 

power and through them a new methodology, known as multiscalors, has been posed through 

this research effort. Robust operators are used through multiscalors, which provide a set of 

relevant features, a vector, that are channelled pragmatically to ART machine learning models.  

The relevant metrics describe a DDoS cyberattack with diverse degrees of multiscale 

resolution in order to build up incremental learning within the ART machine learning models in 

the procurement of the real-time classification of DDoS cyberattacks causing anomalies in 

Internet traffic. 

This research considers multi- and polyscale analysis inspired modelling for enhancing 

cybersecurity: (i) The development of an early anomalies detection system for a cognitive 

computing engine system, which proposes the supporting architecture; (ii) a signal analysis 

methodology, multiscalors, capable of extracting features from a signal analogous to perception 

stages in neurological systems; and (iii) a learning process based on modeling of the short and 



POLYSCALE BASED CYBERSECURITY  Ch. 1: Introduction 

 

 

Jesus David Terrazas Gonzalez    
 − 14 −  

long-term memories of the human brain represented through ART implementations, which 

provides powerful unsupervised algorithms applied in DL with a novel viewpoint [SiPK017], 

from the feature extraction perspective. 

1.6 Statement of Objectives of the Research 

This research effort presented in the area of network security involves the following 

stages: (i) Access to a relevant dataset that contains a documented DDoS attack; (ii) Insight 

development through the deep inspection of the DDoS dataset and deriving packet flows for 

understanding the dynamics of a concurrent attack; (iii) Implementation of robust information 

theoretic based (ITB) metrics (variance fractal dimension (VFD) and variance fractal dimension 

trajectory (VFDT)); (iv) Processing mechanism isolation of the VFD and the VFDT in an effort 

to harness the multiscale analysis power so that alternative and arbitrary operators can be used in 

the multiscale domain; (v) Operators definition and implementation through the previous 

processing mechanism for achieving robust metrics; (vi) Compare the qualitative performance 

between the metrics implementation in this research; (vii) DDoS attacks feature characterization 

through the multi- and polyscale metrics; (viii) Preparation of feature vectors and their proper 

representation for further processing in machine learning models; (ix) Implementation of ART 

based artificial neural networks (ANNs) models pragmatically as a detection, analysis, and 

classification methods. The metrics prepared are then amalgamated into a feature vector, 

characterizing disruptions caused by DDoS attacks in networked computer systems, and then fed 

into the ART models. These classification models associate DDoS disruptions to discernible 

collections, classes; and (x) Examination of the machine learning models classification precision 

as well as comparing their relative merits. 

1.7 Organization of the Thesis 

This thesis consists of the subsequent construction: (i) The background theory is covered 

in chapters II to IV; (ii) chapter V is dedicated to experiment design; (iii) chapter VI describes 

the experimental results and discussion; (iv) conclusions about the research conducted in this 

thesis are presented in Chapter VII; and (v) detailed appendices are also available. 
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The first background chapter, Ch. II, introduces the fundamental network security 

concerns that are relevant to this research. Of special importance is the description of distributed 

denial-of-service as a focal point in this work. Overview of DDoS attacks is discussed along with 

the malicious networks required to launch them. Concealment aspects are also mentioned, and 

different detection methods rooted in information theory are included.  

Chapter III presents feature extraction as a whole. This chapter describes topics like the 

traffic sensing of Internet/network traffic, signal conditioning, metrics design capable of 

detecting network anomalies, concepts of monoscale and multiscale analysis, the implementation 

of the VFDT as a precursor to the new multiscale methodology, multiscalors, introduced in this 

research, the selected multiscalor operators, secondary signal analysis methodologies applied to 

the multiscalor components, and the preparation of the extracted features so that the selected 

machine learning models are capable to process them for successful classification of anomalous 

events. 

Chapter IV encompasses the cornerstone machine learning models pragmatically chosen 

and utilized for classification of Internet traffic in this research. These models are based on the 

adaptive resonance theory implementations, ART1 and FuzzyART. A complete description of 

the various generations of ART is also surveyed and explored in detail. 

The design of experiments is addressed in Ch. V. It begins describing the computing 

resources utilized to carry out the dataset analysis. The integration of packet count and packet 

length is described. Also, the isolation of attack traffic and attack flows is fully covered. 

Validation of the VFD algorithm is carried through white noise. The signal processing pipeline 

involving signal conditioning, analysis, feature extraction, and classification through ART is 

provided. The selected operators used as multiscale metrics are presented. Secondary signal 

analysis methodologies applied to multiscalors components are also introduced in an effort to 

create composite and more robust features. The feature preparation in a vector form so that it can 

be processed by the ART approaches is covered. 

The experimental results and discussion provided in Ch. VI depicts the practical 

implementation of the research conducted. Contributions from the packets count and data rate in 

single attack flows to the overall attack traffic are analysed. The results of analysing known 

white noise signals through the VFD are also covered. A test case for preparing features through 
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denoising, nonlinear filtering, and quantization with Internet/network traffic is presented. The 

results of the multiscalor operators and secondary processing methodologies are shown and 

commented. The preparation of the feature vector and the classification results are also 

discussed. 

The conclusions of the research conducted are finalized in Ch. VII. Appendices 

containing complementary information are also included. These appendices provide information 

about: IIoT, the dataset containing DDoS attacks used in this study, signal processing definitions, 

taxonomies of computer systems disruptions, ensembles of classifiers, diversity of computing 

systems in cybersecurity, the geometric interpretation of FuzzyART learning, histogram binning, 

malicious networks, DDoS attacks detection and software defined networking, and 

computational intelligence approaches. Furthermore, extensive and detailed outcomes are 

included, as part of these appendices: Results of selected primary operators applied through 

multiscalors, results of selected secondary operators applied to variance multiscalor, results of 

selected secondary operators applied to skewness multiscalor, results of synthetic classes 

detection through ART1, results of selected secondary operators applied to skewness multiscalor, 

results of synthetic classes detection through FuzzyART, confusion matrices for ART1 

performance, and confusion matrices for FuzzyART performance. 
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CHAPTER II                                                                            

NETWORK SECURITY AND                                         

DISTRIBUTED DENIAL-OF-SERVICE 

 

2.1 Distributed Denial-of-Service 

A cyberattack usually consists of several stages such as reconnaissance, DDoS, man in 

the middle (MITM), elevation of privilege, data tampering, among others. Attackers first gather 

information about the target system during the reconnaissance phase to identify network 

topology, software versions, and critical targets to attack [HXCL014]. After attackers gain 

knowledge about the system, they plan further attacks by researching known vulnerabilities 

against the detected software versions; possible attack vectors and pivot points for bypassing 

firewalls and intrusion prevention systems (IPSs); and options for removing evidence after the 

attack, such as deletion and manipulation of system logs [ZKHC019].  

Distributed denial of service has been the most prominent attack in CPSs over the last 

decade. Myriads of new strategies and approaches have been proposed to defend against 

different types of DDoS attacks. DDoS attacks have become a weapon of choice for hackers as 

well as for cyber terrorists [DaVS020]. DDoS attacks require an especially sharp real-time 

capability for analysis. Additionally, despite the obvious wave-like effects that are experienced 

after a DDOS attack, only subtle indicators are generally present for analysts in advance of such 

attacks [Amor020].  

Based on various techniques such as cloud computing, software defined networks (SDNs), 

backbone web traffic, big data strategies, and data science, DDoS attack detection can be 

categorized into filtering mechanism, routers function, network flow, statistical analysis, and 

machine learning [DaVS020]. 
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A demonstration of the first documented cyberattack that could destroy a 27 tons diesel 

engine coupled to a generator was conducted, as a proof of concept, by the Department of 

Homeland Security, at the Idaho National Laboratory (INL) in 2007. This cyberattack is now 

known as Aurora to describe when circuit breakers are opened and closed, resulting in an out-of-

phase condition that can damage alternating current (AC) equipment connected to the grid. 

Communication protocols used by control systems and supervisory control and data acquisition 

(SCADA) systems vary based on the design of utilities. The most common protocols are DNP, 

Modbus, IEC 60870-5-103, IEC 61850, Telnet, QUIC4/QUIN, and Cooper 2179. Compromising 

any of these protocols would allow a malicious agent to control systems outside utility 

operations. Communications protocols compromise allows access to devices and the ability to 

compromise their associated passwords to infiltrate a system. An electricity system comprises 

generation resources, transmission facilities, distribution facilities, and participation within an 

energy marketplace. A compromised power grid, through a cyberattack, hinders the reliability of 

its operation is in question and the interconnection of resources and execution of market 

transactions becomes highly disrupted and ultimately stopping [SBWH13]. 

Major cyberattacks, in its majority DDoS, have been detected in ICSs, CPSs, and CPSSs 

for at least a decade. Some of the most known cyberattacks are described as follows. In 2010, 

Stuxnet attacked nuclear enrichment centrifuges in Iran, causing severe equipment damage. In 

2012, Shamoon worked against national oil companies in South Arabia and Qatar. In 2014, 

German Steel targeted a metallurgic mill in Germany, and Havex carried out an espionage 

campaign focusing on energy, aviation, pharmaceutical, defense, and petrochemical sector 

targeting victims primarily in the United States and Europe. In 2015, BlackEnergy3 (BE3) 

attacked the power grid in Ukraine. In 2016, the Mirai botnet was used in some of the largest and 

most disruptive DDoS attacks, and Sandworm struck the Ukrainian power grid. In 2017, HatMan 

(also known as TRITON and TRISIS) affected Triconex controllers by modifying firmware to 

add additional programming, Crash Override (known as Industroyer) also targeted Ukraine’s 

power grid, Palmetto Fusion attempted intrusions of USA energy utilities, BrikerBot attempted 

to permanently destroy insecure IoT devices, and Dragonfly 2.0 targeted the energy sector in 

Europe and North America [ZKHC019]. 

Based on the attackers research and the ultimate goals of the attack, several types of 
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attacks may be launched. DDoS attacks against either ICSs or CPSSs may aim to disrupt 

communication between the SCADA master and slaves, which could cause the SCADA master 

to lose control of local control systems and actuators. Privilege escalation may be needed to 

access the low-level hardware on a system or to read and write to protected system files; 

necessary escalation of privileges can be achieved using zero-day attacks and known 

vulnerabilities in the operating system and software used. Interception of commands and sensor 

data can be performed using an MITM attack, while data tampering and false data injection 

attacks go a step further to modify sensor data in transit in order to mislead the monitoring 

systems and operators while the attack is in progress. Data tampering could alter SCADA 

masters commands to cause the actuator to actuate inappropriately; it could alter the feedback 

process data to manipulate the control; and it also could alter data in a data historian to modify 

the operation log and system control-related data to obfuscate the details of the attack, which 

misleads the defender in postattack analysis [ZKHC019]. 

Following the math on botnet-originated DDoS attacks produces frightening conclusions 

from the perspective of national critical infrastructure protection. If a bot running on a home PC, 

for example, can originate one million bits per second or 1 Mbps, then doing the math on how 

big an aggregate DDoS attack might be for botnets of different sizes can be inferred. Botnet data 

generation volumes can grow quickly. Since botnets in the last years have ranked in millions of 

bots, then a million size botnet can generate 1 Tbps, which is more than enough to knock off a 

large size enterprise gateway (typically in the 10 Gbps range) or cause an Internet backbone (100 

Gbps) to get congested. For any essential network that provides a service to society that cannot 

be replaced, or whose removal could lead to loss of safety or lives, becoming the target of a 

DDoS attack could be substantially damaging. Given the relatively modest work required to 

build a ten thousand-member botnet, it becomes much too easy to interrupt infrastructure. 

Consider that with the IoT, billions of poorly secured devices have been scattered across the 

global Internet. If botnets begin to efficiently harness the attack capacity of these devices, then 

DDoS attacks of immense strength might be produced. This provides a glimpse of the potential 

for DDoS attacks that the world has not seen is real. Furthermore, if a significant series of 

concurrent DDoS attacks were to be initiated at the same time to the same set of targets, it is 

unclear if the associated volumes could be stopped [Amor020]. 
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A challenging problem in networks arises from their characteristics of packet switching, 

variable bit-rate and on-demand bandwidth. Approaches to address this problem require 

knowledge not only of the statistics of the source, but also of the rules for assembling the packets 

in order to monitor traffic. 

Intrusion detection systems (IDS) detect unauthorized access to the system. There are 

three types of IDS: Signature-based, anomaly-based, and hybrid. Signature-based IDSs are 

developed to detect known attacks using their documented behaviour. This class of IDS is very 

effective for known attacks with low false alarm rates but are not able to detect zero-day attacks 

since the IDS is not yet aware of this behaviour. Anomaly-based IDSs, on the other hand, model 

the normal behaviour using data mining techniques or machine learning algorithms and report 

deviations from normal behaviour as an anomaly or potential attack. They are customized to the 

normal behaviour of each system to detect attacks, including unknown attacks, making it 

difficult for attackers to learn the capabilities of IDSs, further complicating attackers ability to 

launch undetectable attacks. The very nature of this makes anomaly-based IDSs result in a high 

number of false positives [BuGu016]. The hybrid IDS is a combination of signature-based and 

anomaly-based detection; this approach combines the accuracy of signature-based approaches for 

known attacks with the generalizability of anomaly-based systems [ZKHC019]. Anomaly-based 

IDS over signature-based has a better detection accuracy, which favours the detection of unseen 

attacks, but at the expense of a lot of false identification of unusual activities as anomalous 

[HOHR015]. 

Data-driven, hybrid IDSs, are promising approaches to enhance industrial control systems 

(ICSs) cybersecurity and the situational awareness of defenders. Cybersecurity is defined as: 

“Strategy, policy, and standards regarding the security of and operations in cyberspace, and 

encompass[ing] the full range of threat reduction, vulnerability reduction, deterrence, 

international engagement, incident response, resiliency, and recovery policies and activities, 

including computer network operations, information assurance, law enforcement, diplomacy, 

military, and intelligence missions as they relate to the security and stability of the global 

information and communications infrastructure.” This definition is obtained from the National 

Initiative for Cybersecurity Careers and Studies (NICCS) [Nati018]. 

A recent survey of cybersecurity research using data mining and machine learning 
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algorithms identified the following methods as effective in cyber-attack detection: Clustering, 

decision tree (DT), genetic algorithms (GAs), naïve Bayes, support vector machine (SVMs), 

ANNs, and random forest (RF) ([BuGu016] and [ZKHC019]). 

Automated generation of attack trees is used in cybersecurity analysis to give an analyst a 

view of all the ways in which an attack can be carried out [BLNS020]. Attack trees can consider 

DDoS. However, this requires a library of attack templates, and an abstract model of the network 

architecture under attack [DaVS020]. 

2.1.1 Overview of DDoS Attacks 

The Internet has become an important part of our society in numerous ways, such as in 

economics, government, business, and daily personal life. An increasing number of critical 

infrastructures (e.g., smart grid and air traffic control) are managed and controlled via the 

Internet ([KPHD015], [KPBH015] and [ÖzBr015]), in addition to traditional infrastructure for 

communication. Today’s cyberspace is rife with cyberattacks, such as DDoS, information 

phishing, financial fraud, email spamming, among the most known ([KSSS014] and [Yu014]). 

Cyberattacks on communications networks can be categorised into either passive (e.g., 

eavesdropping or traffic analysis) or active attacks (e.g., spoofing or DDoS) [DaVS020]. Among 

various cyberattacks, denial-of-service (DoS) attack is a critical and continuous threat in 

cybersecurity. DoS attacks are implemented by either forcing a victim computer to reset or 

consume its resources (e.g., access to application programming interfaces (APIs) [BaAZ014], 

CPU cycles, memory or network bandwidth ([BeDe014] and [BKBK014])). Hence, the targeted 

computer no longer provides its intended services to legitimate users. When the DoS attacks are 

organized by multiple distributed computers, it is called DDoS attack, which is a popular attack 

method in the cyberspace [Kasp014]. Network security branches into three categories: 

Confidentiality, availability and integrity. DDoS attacks belong to the availability category 

[Yu014]. 

DDoS continues to plague the availability of online services. As cybersecurity problems, 

DDoS are evolving and non-stationary. The constant deployment of new services and protocols 

adds to Internet traffic additional non-stationarity. Attack patterns in DDoS shift as new 

protocols and applications are introduced, further compounded by burstiness, seasonal variation, 
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and diversity of network traffic across varying timescales. When it comes to cyberdefense 

against DDoS, it is difficult to apply machine learning-based techniques and defenses in practice. 

Cyberattacks and anomalies have measurable consequences and symptoms which allow a skilled 

analyst to infer new signatures for detection by misuse-based classifiers, conversely unseen 

attacks may only be defended against after-the-fact. It has been long-hoped that anomaly-based 

detectors would surpass the element of surprise by making effective use of statistical measures 

(monoscale analysis) [SiRP020]. This research in particular, goes beyond the use of statistical 

measures and centres on the search of long range dependencies by characterizing Internet traffic 

with multi- and polyscale measures. Long-term expectations in cybersecurity are to augment 

what existing misuse-based solutions can provide, by automatically alerting, recording and 

controlling what are believed to be illegal system states [SiRP020]. 

The idea of denial of service appeared in the digital world in 1984 from the research on 

operating systems [Glig984]. With the booming of the Internet in the middle of the 1990s, DDoS 

attacks are getting more and more familiar to general public ([Fu011] and [PeLR007]). It is 

reported that there were only six DDoS related attacks in 1988. The first well-documented DDoS 

attack appears to have occurred on August 1999, when a DDoS tool called ‘Trinoo’ was 

deployed in at least 227 systems, to flood a single University of Minnesota computer, which was 

knocked down for more than two days [DaVS020]. 

In 2000, well-known web sites, such as CNN, Amazon and Yahoo, became the targets of 

DDoS attacks, and the attack rate was around 1 Gigabit per second, Gbps. In 2007, a DDoS 

attack rate reached 70 Gbps. In 2013, the peak of the biggest DDoS attack reached 300 Gbps 

[Yu014]. Also, the first quarter of 2013 registered the average attack bandwidth exceeded 48.25 

Gbps [AsLa014]. In 2016, the largest DDoS attack was carried out by the Mirai botnet based on 

IoT, which compromised devices targeting the domain name system (DNS) provider Dyn, 

affecting many popular sites including Twitter, Reddit, Spotify, GitHub and the New York 

Times [Losh016]. In 2018, GitHub was taken offline briefly by a 1.35 Terabit per second (Tbps) 

DDoS attack, confirmed and mitigated by Prolexic Technologies, the DDoS mitigation 

subsidiary of Cambridge, MA, company Akamai. Also in 2018, Arbor Networks confirmed a 1.7 

Tbps DDoS attack requiring just one line of Python code against vulnerable memcached 

(distributed memory object caching systems intended to speed up dynamic web applications) 
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servers [Hell018]. In 2019, 8.4 million DDoS attacks were detected, every minute 16 DDoS 

attempts took place. The most powerful DDoS attack recorded in 2019 held a bandwidth of 622 

Gbps. However, as noted by Netscout, such attacks can generally be considered “overkill” and 

would most likely draw the attention of law enforcement. Thus, attacks are now generally 

becoming “stealthier” between 100 to 200 Gbps. The number of DDoS campaigns beyond the 

300 Gbps mark has dropped [Osbo020]. Imperva reported volumetric DDoS attacks on the 

following occasions for 2019: January 2019 sustained a 500 million pps (packets per second) 

attack in layers 3/4, and April 2019 peaked at 580 million pps in layers 3/4. This last incident is 

considered the largest DDoS attack by packet count to date [Cran019]. Another DDoS event in 

2019 involved a botnet that coordinated 402,000 different Internet protocol (IP) addresses, 

directed a peak flow of 292,000 requests per second (RPS) in layer 7, and a nonetheless 

interesting fact, it also lasted 13 days [Simo019]. 

For 2020, the DDoS trends are described next. DDoS attacks are anticipated to reach 14.5 

million by 2022, according to 2017 data from the Cisco Visual Networking Index (VNI). DDoS 

attacks, both in size and number, have been on a downward trend since the FBI shut down 15 of 

the largest DDoS-for-hire websites in December 2018. DDoS attacks can represent up to 25 

percent of a country’s total Internet traffic while they are occurring. China and the USA ranked 

as the top two targets for DDoS attacks in Q2 2019, with 63.8 percent and 17.5 percent of the 

attacks, respectively. Neustar discovered in its DDoS attack research that the increasing trend of 

strategic, “low-intensity incursions” that degrade the performance of servers over time. Using 

these lowball attacks enables hackers to carry out longer attacks that fall below the level of 

intensity that would trigger DDoS defenses. A significant number of attacks feature over four 

vectors. The number of IoT devices that are estimated to exist by the end of 2020 is 20.4 billion, 

according Gartner. IoT devices, notorious for lacking any real IT security or cybersecurity 

measures, are vulnerable to DDoS attacks. According to Bulletproof, a DDoS attack could cost 

up to $120,000 USD for a small company or more than $2 million USD for an enterprise 

organization. A10 Networks tracked more than 23 million DDoS weapons (infected computers, 

IoT devices, and servers). According to Kaspersky, in 2019 although DDoS attacks are down, a 

clear increase in politically-motivated DDoS attacks was registered. Akamai indicates that 

financial organizations are seeing a rise (800 attacks between December 2018 and May 2019, 
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which is 40% of the attacks during this time) in DDoS attacks. IBM X-Force indicates that more 

than 80% of all observed activity from Mirai botnet variants in 2019 targeted the 

media/information services and insurance industries. From $2.4 billion USD in 2019, it is 

estimated that the DDoS protection and mitigation market would reach $4.7 billion USD by 2024 

[Cran020]. 

Scientists in Synopsys state that performing amplified DDoS attacks using memcached 

servers is trivial because this service was never intended to be connected to the public Internet 

but originally designed and implemented for an internal, benign environment, so it actually 

responds to requests without requiring authentication and its implementation of user datagram 

protocol (UDP) is flawed returning a large number of bytes when queried with a small number of 

bytes causing an amplification as much as 50,000 times the request [Hell018].  

All occurrences of DDoS attacks can be neither detected nor documented, but the 

available information about the DDoS attacks that have been detected and documented indicates 

that DDoS remains one of the major threats for network security [AsLa014]. DDoS attacks are 

getting highly sophisticated with the potential to be launched from any layer (application, 

protocol, session, transport, network, data-link, and physical) of the open systems interconnect 

(OSI) model [Kuma016], and diverse types targeting distinct weaknesses [Java018]. DDoS 

detection through IDS, either network or host based, is very useful for collecting forensic 

evidence that may be used in legal proceedings if the attacker is prosecuted [BAUM014]. 

Despite all the efforts from industry participants and academia, DDoS attack is still an 

open problem. Some of the essential reasons for this passive situation are: (i) The design of the 

ARPARNET network lacked a security focus. The Internet originated from this private network, 

ARPARNET. As a private network, there were very limited security concerns in the original 

design [PeLR007]. This private network became a public network in the 1990s, and now many 

applications have become an essential part of the Internet. Security patches have been developed 

and installed to circumvent the inherent vulnerabilities; however, the effectiveness of these 

efforts is sometimes limited. For example, the Internet was designed stateless, therefore, a 

receiver has no information about which routers a received packet went through. Hence, it is 

easy to perform source IP spoofing; (ii) Internet is the largest man-made system in human 

history. Cyberspace is huge, complex, and stays in an anarchy status; (iii) Cyber attackers are 
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enjoying one incredible advantage of the cyberspace: It is hard for defenders to technically 

identify attackers. Moreover, there lacks international laws or agreements among nations to bring 

cyber criminals to justice who commit crimes in one country but are living in other countries; 

(iv) Hacking tools and software are easy to obtain. An attacker may not need profound 

knowledge of networking or operating systems to initiate a cyberattack [Yu014].  

Distinct instances of DDoS attacks have been scrutinized and it is found that the attack 

can be mitigated by one of these three approaches or defense mechanisms, namely, attacker-end 

approach, victim-end approach, and in-network approach, depending on their locality of 

deployment. The existing detection approaches can be categorized into statistical, soft 

computing, clustering, knowledge-based, and hybrid. These approaches can also be classified as 

supervised or unsupervised based on the type of dataset. In the evolution of IDSs, anomaly-based 

detection is more preferred than signature-based detection [DaVS020]. 

2.1.1.1 How to Launch DDoS Attacks 

DDoS attacks can be launched in two forms: (i) A system is targeted by sending one or 

more carefully crafted packets (e.g., “ping-of-death” attack causes some operating systems to 

crash, freeze, or reboot), which are designed based on the vulnerability of the victim; and (ii) 

Using a large amount of traffic to exhaust the resources of a victim, such as network bandwidth, 

computing power, or operating system data structures, among others. Henceforth, the quality of 

service of the victim is significantly degraded or disabled to its legitimate clients [Yu014]. The 

most well-known DDoS attacks are transfer control protocol (TCP) TCP-SYN flood, Internet 

control message protocol (ICMP) ICMP/UDP flood attack, ping-of-death, Smurf, process table, 

UDPstorm, syslogd, mailbomb, and Apache2, which consume the uplink bandwidth or server 

bandwidth [BoAy013]. 

Launching an effective DDoS attack requires cyber attackers to firstly establish a network 

of computers, which is known as a botnet or army. The individual controlling a botnet is called 

botmaster or botnet owner. Attackers take advantage of various techniques (referred to as 

scanning techniques) to find vulnerable hosts on the Internet to gain access to them ([PeLR007], 

[SCGK011], and [CCGP010]). The next step for the attacker is to install programs (known as 

attack tools) on the compromised hosts. The headquarters of a botnet is called command and 
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control (C&C) server. The command and control server communicates with its bots for updating 

the attack tools, and issuing attack orders [Yu014]. 

Sustaining C&C servers from detection may require botnet programmers: (i) Setting up 

intermediate nodes as stepping-stones between the C&C server and bots, and (ii) encrypting the 

messages of their communication with cryptographic techniques [Stin006]. Avoiding evictions 

may require botnet programming techniques like IP flux or domain flux, to conceal their C&C 

servers [Yu014]. 

Two different DDoS attack classes: Typical DDoS attack and distributed reflection 

denial-of-service (DRDoS) attack. Unlike typical DDoS attacks, a DRDoS attack network 

consists of C&C servers and reflectors. In a DRDoS attack bots, led by C&C servers, send a 

stream of packets with the victim’s IP address as the source IP address to uninfected machines 

(reflectors). A variation of a DDoS attack in cloud computing is the economic denial-of-

sustainability (EDoS) attack [SqAS011] or the fraudulent resource consumption (FRC) attack 

[IdTJ013]. DDoS defense can be classified into three categories: Detection, mitigation and 

traceback [Yu014]. 

2.1.1.2 Challenges in DDoS Related Research 

Understand the cyberspace theoretically and deeply. The American National Research 

Council proposed a new research field as network science in 2006 for advancing knowledge of 

networks and networking. The majority of current dominant Internet modelling is based on the 

random graph model proposed in 1959, which is far before the birth date of the Internet and the 

Web. Recent observations indicate that there is a great discrepancy between the random graph 

based models and reality. Power law (usually represented by the Zipf or the Pareto distributions) 

has been found to be pervasive in nature, for example economics and man-made systems, such as 

individual income among a group of people, or word frequency in a language. Researchers have 

also found many phenomena in cyberspace that follow power-law relationships (e.g., popularity 

of web pages follows the Zipf distribution [BCFP999] and the size of web documents follows the 

Pareto distribution [CrBe997]) [Yu014]. 

Understand our cyber opponents in a correct way. It is hard to collect, or share 

cyberattacks data from industry and government agencies. Cyber opponents are only partially 
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defined, or the information is misleading. Understanding opponents in time and in an appropriate 

manner is mandatory [Yu014]. 

Solid consideration of the previous two aspects, effective and efficient strategies to defeat 

cybercrimes, including DDoS attacks, can be designed. Nevertheless, this aspect is very 

challenging. 

2.2 Baseline for Anomalies  

Anomaly detection requires defining a baseline for the network behaviour [AsLa014]. 

This baseline, supported by specific traffic features, is a depiction of the acceptable network 

behaviour. The traffic features are further fed into a classifier, part of a network security engine 

(NSE), which can assist in making automated decisions and triggering specific threat mitigation 

and defense events. The baseline can be set by the information provided by the features that 

characterize the normal traffic. 

2.3 Summary 

The concepts related to network security and DDoS have been provided. DDoS attack 

variants have also been addressed. DDoS attack launching techniques are covered extensively as 

well as research challenges for DDoS. The next chapter delivers discussion about Internet traffic, 

its preparation through signal conditioning and subsequent stages for its analysis. A novel and 

advanced signal processing methodology, multiscalors, is presented.   
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CHAPTER III                                                                                

MULTISCALORS BASED FEATURE EXTRACTION  

 

Much of the past modeling, analysis and synthesis of autonomous intelligent systems, 

autonomic systems, cognitive systems, and natural cognitive processes have been conducted 

using monoscale metrics that had yielded features later used in machine learning approaches 

[Kins011]. The proposed cognitive system here uses the fundamentals of both multiscale and 

polyscale analysis for extracting useful features capable of providing relevant information 

content for the detection of cyberthreats as DDoS. 

Cognition is the ability for a system or systems to monitor, record, sample, test, and be 

aware of the surrounding environments and then to adapt, modify, or change the system to 

improve the quality-of-service (QoS), including learning from past experiences [Bull014]. 

In this research, Internet/network traffic is considered for cognitive analysis through a 

pragmatic set of subsystems. In this chapter, a clear walkthrough of all the signal analysis 

methodologies required for feature extraction is provided. This digital journey includes: The 

sensing of the Internet/network traffic, the context about monoscale analysis and its limitations, 

the critical importance of multiscale analysis for sifting information available in long range 

dependencies, the novel methodology “multiscalors” that allows arbitrary operators and signal 

analysis methodologies to be functional in the multiscale analysis context, the statistical 

moments used as multiscalors operators and the secondary signal analysis methodologies further 

applied to the multiscalors components, and the preparation of the features to be used 

subsequently by machine learning stages. 

3.1 Internet Traffic 

Will Leland and Daniel Wilson [LeWi991] present a preliminary analysis of unique high-

quality data and comment in detail on the presence of “burstiness” across an extremely wide 
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range of time scales: Traffic “spikes” ride on longer-term “ripples,” that in turn ride on still 

longer term “swells,” and so forth. These self-similar patterns at different scales in Internet traffic 

are due to the presence of long-range dependencies. This self-similar or fractal-like behaviour of 

aggregate Internet traffic is very different from both conventional telephone traffic and from 

currently considered formal models for packet traffic (e.g., pure Poisson or Poisson-related 

models such as Poisson-batch or Markov-Modulated Poisson processes [HeLu986], packet-train 

models [JaRo986], and fluid flow models [AnMS982]), which places a strong requirement for a 

new traffic modeling perspective. The term “self-similar” was coined by Mandelbrot ([Kins020] 

and [LTWW994]).  

Internet data shows that the generally accepted argument for the “Poisson-like” nature of 

aggregate traffic, namely, that aggregate traffic becomes smoother (less bursty) as the number of 

traffic sources increases is unrealistic. In fact, using the degree of self-similarity as a measure of 

“complexity,” it is observed that the burstiness of Internet traffic typically intensifies as the 

number of active traffic sources increases, which contradicts commonly held views 

[LTWW994]. 

The studies about self-similar processes by Benoit Mandelbrot [Mand969] are later 

extended by Murad S. Taqqu and Joshua B. Lévy [TaLe986], based on aggregating many simple 

renewal reward processes exhibiting inter-renewal times with infinite variances. These studies 

focus originally in an economic framework involving commodity prices and it is also applicable 

in the context of high-speed packet traffic like the case of Internet traffic [LTWW994]. 

Slowly decaying variances, long-range dependence, and a spectral density obeying a 

power-law are different manifestations of the underlying stationary process .X  In their research 

about Internet traffic, tested through Ethernet local area network (LAN) traffic, Will Leland and 

Daniel Wilson conclude that: (i) Internet traffic is statistically self-similar, irrespective of when 

during the four-year data collection period 1989-1992 the data was collected and where it was 

collected in the network, (ii) the degree of self-similarity measured in terms of the Hurst 

parameter H  is typically a function of the overall utilization of the Ethernet and can be used for 

measuring the “burstiness” of the traffic (namely, the burstier the traffic the higher H ), (iii) 

major components of Ethernet LAN traffic such as external LAN traffic or external TCP traffic 

share the same self-similar characteristics as the overall LAN traffic, and (iv) the packet traffic 
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models still considered in the literature are incapable of capturing the self-similarity properties of 

Internet traffic [LTWW994]. There are novel research works using self-similarity measures to 

assess network flows through the Hurst exponent [LXKX020]. It has been found that normal 

OpenFlow traffic usually has a low degree of self-similarity due to the unique SDN/OpenFlow 

architecture, but when subject to saturation attacks has a higher degree of self-similarity 

[LXKX020]. Hence, self-similarity fluctuations are used for anomaly detection. 

The ample indications of the impact of the self-similar nature of Internet packet traffic for 

engineering, operations, and performance evaluation of high-speed networks elaborated by Will 

Leland and Daniel Wilson in their study: (i) Source models for individual Internet users showing 

extreme variability in terms of interarrival times of packets (i.e., the infinite variance syndrome), 

(ii) commonly used measures for “burstiness” such as the index of dispersion (for counts), the 

peak-to-mean-ratio, or the coefficient of variation (for interarrival times) becoming no longer 

meaningful for self-similar traffic and becoming replaced by the Hurst parameter (or other 

methodologies capable of self-similar behaviour analysis), (iii) the nature of congestion produced 

by self-similar network traffic models differing drastically from that predicted by “standard 

formal statistical models” displaying a far more complicated picture than has been typically 

assumed, and (iv) first analytic results showing a clear distinction between predicted 

performance of certain queueing models with traditional input streams and the same queueing 

models with self-similar inputs [LTWW994], seem to be overlooked by some. 

Henceforth, the research conducted in this thesis considers methodologies capable of 

analyzing Internet traffic that are capable of capturing its self-similarity properties, as is the case 

of multiscalors that are fully described at the end of this chapter. 

3.2 Internet/Network Traffic Sensing 

Internet traffic sensing is a computer networking term for intercepting data packets 

crossing or moving over a specific computer network. Malicious agents can also use traffic 

sensing techniques to steal data that is being transmitted over a network [Tech017b]. 

One type of Internet sensing is packet filtering, in which filters are applied over network 

nodes or devices where data is captured. Conditional statements determine which data is 

captured (e.g., a filter might capture data coming from ABC route and having W.X.Y.Z as an IP 
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address) [Tech017b]. 

Instead of filtering a specific portion of a packet, complete packets can also be captured. 

The full packet includes two things: A payload and a header. The payload is the actual contents 

of the packet, while the header contains extra information, including the packet's source and 

destination address [Tech017b]. 

3.3 Signal Conditioning 

Once a packet is captured through a packet analyzer, it is stored temporarily so that it can 

be dissected. The packet is inspected to help diagnose and solve network problems and 

determine if network security policies are being followed [Tech017b]. 

A packet analyzer (aka a sniffer, network analyzer, or protocol analyzer) is a computer 

application used to track, intercept and log network traffic that passes over a digital network. A 

packet analyzer also may be used by malicious agents to intrude on networks and steal 

information from network transmissions [Tech017a]. 

A packet analyzer shows the complete status of all network activities by providing a 

complete picture of bandwidth and resource utilization. Every action of a packet analyzer is 

performed in real-time [Tech017a]. 

Signal conditioning of the sensed traffic is achieved by the data that a sniffer provides 

about individual packets intercepted. These data usually include the following: Packet number, 

arrival time, source IP, target IP, protocol, size, and additional information. Both the 

Internet/network traffic sensing and the signal conditioning mirror the light path that takes place 

in the human eye, which goes through the cornea, pupil, lens, and fovea.  

3.4 Signal Analysis for Detection of Network Anomalies  

Metrics design has the ultimate purpose of preserving the key features (e.g., natural 

sounding speech, edges and textures in images, motion in video) of signals (e.g., audio, images, 

video) [Kins002]. It is then of extreme importance developing robust metrics, which would be 

capable of identifying key features in the signals and data of interest pertaining to network 

security in this research. 

It has been extensively discussed in the literature that energy itself carries no information 
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and that energy-based metrics are of no use to tackle highly complex research problems (e.g., 

those posed by cognitive systems). However, for completeness, energy-based metrics commonly 

used in engineering problems, as is the case of data compression, are included here and not 

limited to mean squared error (MSE), mean energy of the source (MES), signal to noise ratio 

(SNR), and peak SNR obtained by taking the peak source energy (MESmax) [Kins002]. 

The increasing number of nodes on the networks, different protocols and port numbers, 

new applications (e.g., multimedia delivery or cloud services) challenges network administrators 

and researchers when measuring and monitoring Internet traffic on high speed networks. 

Network monitoring branches into active, where network routers are queried directly and 

periodically to collect statistics, and passive, where the network is analysed only at the edge 

routers and the network measurement parameters are deduced by applying mathematical 

formulae [DDHT008].  

Fractal signal processing seems suitable for both direct and indirect measurements of 

networks features and anomalies due to the self-similarity nature of network traffic [Kins020]. 

Network traffic flows are neither completely understood in their dynamics nor easily 

controllable. The fractal properties of time series are revealed by the presence of self-similarity, a 

rigorous statistical property. Self-similarity denotes fractal behaviour where similar patterns in 

the new time series are obtained regardless of the sampling time scale used for examining the 

data ([DDHT008] and [Kins020]). 

Detection of anomalies is a major goal in network security monitoring. Anomalies 

represent deviations from normal network behaviour. The network anomalies sources are 

network failures and performance problems (e.g., file server failures, broadcast storms, and 

transient congestion) or network security (e.g., denial of service attacks variants and network 

intrusions). Network anomalies are characterized by correlated transient changes in measured 

network data that occur prior to or during an anomalous event [ThJi003]. The term transient 

fluctuations refers to the measured data abrupt fluctuations occurring in the same order of 

magnitude of the sampling interval [DDHT008]. The idea of events taking place on all scales on 

an object (self-similarity) is important because it indicates long-range relations (power-law 

distributions) [Kins020]. Similarly, the Devaney definition for fractal states that it is a self-

similar object whose fractal dimension exceeds its topological dimension [Kins020]. 
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It is not possible to identify network transients using current probing tools or dedicated 

monitoring software. Hence, the analysis of network transients requires the development of 

specialized and robust metrics, as presented in this research, which are rooted in fractal 

techniques and methodologies. Network anomaly detection methods are [DDHT008]: Rule-

based approaches [ScKW996], finite state machine models [LaWD992], pattern matching 

[ClSc004] (implemented in field programmable gate arrays (FPGAs)), and statistical analysis 

[Duff004]. Statistical analysis based methods are capable of continuously tracking the behaviour 

of the network and require no significant recalibration or retraining [DDHT008]. Methods 

incorporating fractal analysis for network security are also present in the literature ([KhFK015a] 

and [KhFK015b]). 

3.5 Monoscale Analysis 

Monoscale analysis of a signal requires (in the context of cybersecurity): (i) An epoch of 

Internet traffic, the overall period of interest in the system from which such signal is acquired; 

(ii) a stationary frame that produces continuous segments, derived from the epoch, that may be 

either non-overlapping or partially overlapping; and (iii) either an operator or a transform 

affecting the samples contained in the operating frame. The epoch realization of a signal is 

sampled with a regular scale defined by 1/ ,st fδ =  where sf  represents the sampling frequency 

satisfying ,s Nf f>  which is the requirement for the sampling frequency to exceed the Nyquist 

frequency ([Kins020], [PrMa996]).  

The sampling period, ,tδ  creates inherently a constant distance between samples, 

analogous to a ruler with a single scale unit. Monoscale analysis, in different schemes and 

applications, follows the conventional treatment of sequences connected with most of the signal 

processing being done in the traditional monoscale ecosystem. Hence, monoscale analysis 

utilizes all the information available within an epoch, which when acquired satisfies the Nyquist 

sampling frequency. Our scientific and technological society is familiar with the monoscale 

analysis approaches predominantly. Monoscale analysis is based on a single frame of an epoch at 

a time. The set of samples contained in a frame are operated on or transformed. 
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3.5.1 Monoscale Information-Theoretic Based Measures 

The objective measures described previously based on energy (e.g., MSE and peak SNR), 

carry no information and they do not agree with subjective quality measures. An instance of a 

subjective measure is the evaluation of the quality of an image according to the mean opinion 

score (MOS) protocol. The MOS protocol requires a set of human observers that are proficient 

for deeply appreciating fine, precise details, and specific features about an event or experience. 

Each expert provides a measure that describes the perceived experience. The sum of all the 

measures provided by each expert or judge is then averaged by the observers set size. The MOS 

protocol is regarded as one of the best methods for judging the subjective quality of images 

[WaBo006]. Hence, energy-based metrics are not suitable to look for features in either signals or 

data because of the ambiguity potential. Instead, information-theoretic-based metrics should be 

considered in feature extraction. Consequently, all of the studies in this thesis consider objective 

metrics based on information theory. Examples of the relevance of information-theoretic based 

metrics in engineering problems are: (i) An edge of an object in an image may not carry much 

energy, but it may be critical in its shape recognition, (ii) a stop consonant in speech may be 

insignificant energetically and broadband spectrally, but it may be critical in speech recognition, 

(iii) whispering a message requires negligible energy, but the message itself unquestionably 

carries information, (iv) formants of the utterance and their transformations in time carry much 

more information than their energy, (v) fricatives also convey more information that would be 

implied by their energy [Kins004]. Non-energy based metrics relate to the concepts of 

information, a measure of complexity, and entropy. For measuring sets related to processes 

governed by power-law relationships, the Lebesgue and Hausdorff measures can be used. 

Measure here means assigning a number ( )µ i  to a set in an n-dimensional space with the 

purpose of characterizing such set. This projected number is enclosed in the interval [0,  ]∞ . The 

Lebesgue measure assigns a number ( )µ i  to an n-dimensional set that exists in the Euclidean 

space. The Hausdorff measure is a generalization of Lebesgue that is operational in lower 

dimension subsets from an n-dimensional set (e.g., a curve, a surface, or a fractal set, where each 

of them could be contained in a 3-dimensional set) [Edga008]. 
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3.6 Multiscale Analysis 

Multiscale analysis inspects an epoch with a varying scale, frame, denoted by .t∆  The 

samples contained in a frame can be discontinuous when compared with an epoch in the 

monoscale sense and are further partitioned by volume elements or vels. A frame is usually 

bigger than the sampling period, .t tδ∆ >  However, if the frame size either equals the vel size or 

matches the sampling period ( ),t tδ∆ =  an epoch is then digitally processed according to the 

monoscale analysis. A frame should include at least 30 vels to satisfy minimal statistical 

significance in order to have validity for multiscale analysis [Kins994]. 

It has been in the last decades that innovative signal processing approaches based on 

fractal measurements have been developed, as described above, for creating frames containing 

discontinuous samples. The discontinuity in the samples contained in a frame allows searching 

for information that may be scattered at different scales in an epoch. These unconventional 

approaches depart from monoscale analysis and allow signal processing to develop new 

techniques and methodologies applicable as potential solutions to real engineering problems. 

Cybersecurity signals particularly require the searching of information which may be dispersed 

in a dataset, hence, the need for multiscale analysis in cybersecurity. The information-theoretic 

based multiscale analysis methodology, VFDT, and the implementation are described next. 

3.6.1 Variance Fractal Dimension Trajectory 

This subsection describes a polyscale methodology that measures the complexity of a 

signal [Kins011]. The methodology of polyscale analysis requires simultaneously computing: (i) 

A partitioning process in which the signal scale between samples is multiplied or divided by a 

constant factor, which creates subsignals (scaled signals), (ii) an information-theoretic-based 

measure for each scaled signals, which describes them numerically, and (iii) a complexity-based 

measure for the overall number of subsignals created by the partitioning process. The 

partitioning process allows accessing properties of the subsignals, based on the scale size used at 

a given stage, for their analysis, while the information-theoretic-based measure compresses the 

subsignal to a single number or subsignal subdescriptor, and the complexity-based measure 

compresses the subdescriptors further to a complexity measure or signal descriptor. 
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If the subsignals, organized according to the partitioning process, present variation of 

their properties resembling a power law through the distinct involved scales, then it is concluded 

that the signal under analysis is a fractal, and subsequently a fractal dimension describing those 

properties can be computed. The calculation of a fractal dimension in terms of variance known as 

VFD ([Kins020], [KiGr008], [KiGr010], [Kins007], [KCCP003] and [KCCP006]) is used as a 

tool to determine the complexity of signals produced by natural phenomena or synthetized by 

computers. This subsection describes and verifies the implementation of the VFD algorithm by 

relying on a known process, as is the case of Gaussian white noise (GWN) and uniform 

distributed noise. 

A time series can be analysed directly in time by computing the spread of the increments 

in the signal amplitude (i.e., through its polyscale variance denoted as 2.σ  The variance fractal 

dimension can be computed in real-time [Kins020]. An important characteristic of the VFD is 

that it does not require a window in the Fourier sense, and therefore it does not introduce 

corresponding artifacts [Kins020]. 

The variance fractal dimension, ,Dσ  is determined by the Hurst exponent (in honour of 

Harold Edwin Hurst) denoted by H  and which measures long-term dependences in a time series. 

A Hurst exponent falling in the interval [0,  0.5]H =  denotes a time series having long-term 

alternations between high and low values (or uncorrelated) in contiguous samples (e.g., a given 

sample with a low value would probably be followed by a sample with a high value. This 

alternating tendency would persist a long time into the future), whereas a Hurst exponent in the 

interval [0.5,  1]H =  (e.g., 0.91H ≈  for the Nile river, which reflects its long droughts) is an 

indicator of a time series with a long-term positive autocorrelation (e.g., a given sample in the 

series would be followed by a sample of similar value and further samples long time into the 

future would tend to fall into similar values). A special case is presented when 0.5,H =  which is 

an indicator of a time series that is completely uncorrelated [Kins020]. 

The variance, 2 ,σ  of the amplitude increments of a signal ( )B t  (continuous or discrete in 

time) over a frame t∆  is related to the time increment according to the following power law 

[Kins020]  
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where var( )i  denotes the variance operator, the symbol ∼  reads “is proportional to”, and ( )t i  

stands for a time instant. 
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in the analysis performed here, the base b  is 2. The embedding Euclidean dimension E  (i.e., the 

number of independent variables in the signal under analysis), the VFD can be computed from 

 1 ,  1 2 and 0 1D E H D Hσ σ= + − ≤ ≤ ≤ ≤        (3.3)  

3.6.2 Implementation of the Variance Fractal Dimension Trajectory  

A signal sampled over a time interval T  with a constant sampling rate given by 

1/sf tδ=            (3.4)  

where tδ  is the interval between two consecutive samples, produces a sample space with TN  

points. This sample space is defined by 
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(3.5)  

The implementation of the technique to calculate the VFD in a digital signal consists of 

the following stages [Kins020]: (i) The signal sample space of TN  points is identified and stored 

in an array for further manipulations. (ii) The number of sizes of t∆  (for creating the distinct 

scales or subsignals) at which the spread of B∆  should be computed for the log-log plot is 

obtained by 
max max

,  .K Kt n t T∆ = ∆ ≤  The frame t∆  should not exceed the total sampling time T  of 

the sample space. The parameters for the loop computation of the VFD are prepared as follows:  
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where 2b = , in this case, is the base to form a b-adic sequence for time intervals ;kn  

[ ]buf log (8,192) logbK b= , where, as an example, 8,192TN =  (desirable to be greater than 30 

for statistical significance) represents the number of samples contained in the frame for the first 

computation in the loop; hi max buf ;K K K= −  and low 1.K ≥  The main loop to obtain the VFD 

performs k  cycles from hik K=  to 1k =  in which the number of samples at each k  is .k
kn b=   

The number of windows in the signal is represented as ( )intk T kN N n= , and the variance for 

each stage is then  
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The amplitude increment is given by 

 ( ) ( ) (( 1) )  for  1,  ...,  j k k kB B jn B j n j N∆ = − − =
     

(3.8)  

 Figures 3.1 and 3.2 describe graphically the calculation of the VFD for developing 

intuition for its internal process. 
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Fig. 3.1.1  Application of the variance fractal dimension (VFD) to an arbitrary signal. The segments in blue denote the time 
displacement applied at a given scale. After [Kins020]. 

 

The log values log[ ]k kX n=  and log[var( ) ]k kY B= ∆  are stored for the log log−  plot and 

the least-squares fit to obtain the slope s  of the line is obtained using 

 1 1 1
2

2 2

1 1

K K K

i i i ii i i

K K

i ii i

K X Y X Y
s

K X X

= = =

= =

−
=

 −
 

∑ ∑ ∑

∑ ∑
       

(3.9)  

The Hurst exponent is computed by H = (1/ 2)s, and the VFD is obtained by applying (3.1). 

For a non-stationary sequence, this process is repeated on successive windows (either 

non-overlapping or overlapping) to obtain a VFDT [Kins020]. If the VFDT is constant, then the 

sequence is a monofractal in time. Also, if the VFDT has segments with different slopes, the 

sequence is then a multifractal in time. Both VFD and VFDT, as multiscale analysis 

methodologies, have been extensively studied and used by the author ([TeKi012a], [TeKi012b], 

[TeKi012c], and [Terr012]). Similarly, monoscale statistical analysis has been performed 

[TeKi013a]. 
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Fig. 3.2.2  Variance fractal dimension (VFD) calculation for a signal with 512 samples. The three segments in blue denote 
distinct time scales displacements. After [Kins020]. 

 

Considering the VFDT as a process for signal multiscale analysis of lower order 

moments, a generalized multiscale analysis methodology that utilizes arbitrary operators for 

searching properties can be derived. Such multiscale analysis methodology is introduced next. 

3.7 Multiscalors: A Generalized Multiscale Analysis Methodology 

This thesis introduces a novel generalized multiscale analysis methodology 

“multiscalors” capable of making arbitrary operators functional in multiscale analysis. 

Characterization of signals, in a given time frame, is provided by moments (e.g., mean, variance, 

skewness, or kurtosis) classically operative in monoscale analysis only. Multiscalors is a 

methodology that has been devised for allowing a selected operator or a given signal analysis 

methodology of interest for being functional in the context of multiscale analysis. 

 The generalized multiscale analysis of a digital signal utilizing arbitrary operators 

requires deriving a sequence with multiscale nature from the signal ( ),B t  such a sequence is 

0 2 4 6 8 10 12 14 16

δ t

NT −1 = 511
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δ t
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provided by (3.8) and an arbitrary operator is utilized on it for each value of .j  Hence, this 

multiscale analysis methodology is defined by the multiscalor operator  

|||
[ ]nΞ i            (3.10)  

Where Ξ  represents an arbitrary operator applied in a multiscale approach, |||  is a short hand 

notation indicating that such operator is applied in multiscale analysis, n refers to the multiscalor 

component (one of n data streams created as a result of applying a given operator), i  in this case 

represents either a set of samples or their relationships (e.g., B∆  that represents the amplitude 

differences of the signal ( )B t  over the time increment t∆ ) from the operating frame. Hence, the 

term multiscalor is introduced in this research when referring to 
|||

[ ]nΞ i . 

 Equation (3.10) stands for a generalization of (3.1), which allows for utilizing arbitrary 

operators in multiscale analysis. The mathematical operators that restrict (3.1) have been 

removed in order to create a sequence resembling the activity in the multiscale analysis domain 

for a given signal. The operators that have been removed are the variance and the Hurst exponent 

.H  Hence, this generalization provides results based on raw data inherently extracted from 

multiscale analysis rather than providing explicit links to power laws and fractal dimensions. 

Nevertheless, the process for creating b-adic sequences, for the signal under analysis, is 

maintained intact. It is precisely this mechanism that allows access to the long-range 

dependencies that may be present in the signal under multiscale analysis. The availability of such 

a raw multiscale sequence allows the utilization of any arbitrary operator (conventionally applied 

in the monoscale analysis domain only) in multiscale analysis. Consequently, this thesis 

investigates processes, such as the Internet traffic, governed by power-law relationships. 

The quantities that are crucial in the b-adic process for the creation of the multiscale 

signal are hi max buf low,  ,  ,  and .K K K K  The loop involved in the computation of these quantities 

has previously been used for the computation of the variance and the variance fractal dimension 

trajectory ([TeKi011], [TeKi013b]). Now, since the mathematical operations have been adapted, 

the variance can be replaced with any arbitrary and optimal operator, or even further a 

combination of them. Thus, multiscalors becomes the pivotal methodology empowering the 

search for long range dependencies in this research. It is important to note that computational 
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technologies supporting multiscalors methodologies introduced through this research and 

specific applications for DDoS detection are covered by intellectual property protection in the 

form of patents ([TeKi019a] and [TeKi019a]). 

3.7.1 Variance 

The variance reflects the dispersion degree of a probability mass function (pmf) of 

random variables around the mathematical expectation. It shall be noticed that the value of 

variance is always positive. Variance is used to describe important indicators of fluctuations in 

signals (e.g., image denoising) [ZhWC012]. 

Variance is defined as: 

2 2

1

1
( )kN

ii
k

x
N

σ µ
=

= −∑         (3.11)  

where ix  is the individual realization of the random variable ,  kX N  is the sample size of ,X  and 

µ  is the expected value of X  [ZhWC012]. 

 In this thesis, variance is further defined as: 

 2
2m σ=           (3.12)  

3.7.2 Skewness 

Skewness is the third statistical moment that characterizes a pmf by measuring its 

asymmetry. The values for the skewness provide important information: (i) It is zero for 

symmetric distributions, (ii) when it is positive, its main mode is positioned to the left and 

usually a long tail is positioned to the right, and (iii) when it is negative, its main mode is 

positioned to the right and usually a long tail is positioned to the left. For the last two cases, it 

should be noted that the more negative/positive the skewness is an indication that such pmf 

differs significantly from a Gaussian and its process has no resemblance with a symmetric 

population [DoSe011]. 

Skewness is defined as: 

γ = E
x − µ

σ








3













=
E x − µ( )

3

σ 3
       (3.13)  
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where E  is the expectation operator, x  is the individual realization of the random variable X ,  

µ  is the mean, and σ  is the standard deviation. 

 In this thesis, skewness is further defined as: 

 3m γ=            (3.14)  

 Research work related to the application of skewness in multiscalors has been published 

by the author of this thesis. This can be found in ([TeKi018] and [Terr020]), where the 

generalized multiscale analysis methodology has been introduced. This publication states that the 

results obtained through the skewness multiscalor applied to Gaussian random noise (GRN) are 

congruent in value with monoscale analysis. Nevertheless, multiscale analysis can have access to 

the information found in the long-range dependencies. 

3.8 Selected Signal Analysis Methodologies Applied to Multiscalors 

Epiphenomena 

When applying an arbitrary operator via multiscalors to a given signal, a form of 

epiphenomena occurs creating a number of multiscale sequences packaging the information 

content (potential long-range dependencies) of the original data. The number of multiscale 

sequences is dependent on the size of the processing frame.  

It is also possible to examine further the by-products of the multiscalors epiphenomena 

with alternative monoscale and multiscale approaches to gain more insight concerning the 

information content in the original data. Nevertheless, for the purposes of this research, selected 

operators are applied through multiscalors in a single level only. The selected operators are 

described next. 

3.8.1 Cumulative Sum 

Consider [ ],x n  defined to be an ordered sequence of numbers, where index n is an 

integer in the range  to +−∞ ∞ . The purpose of n is to keep track of the relative ordering of 

values in sequence x. When a specific time value is associated with n, such as nT  seconds, then 

the sequence [ ]x n  becomes a discrete-time signal [LaGo018]. 

There are plenty of known discrete-time signals, signal properties (e.g., energy and 

power, summable sequences, periodic sequences, or sum of periodic sequences), and signal 
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operations (e.g., time shift, time reversal, time scaling, or cumulative sum, or backward 

difference). This thesis considers the cumulative sum operator of a discrete-time signal [ ],x n  

which is itself a function of the independent time index n. The cumulative sum is defined as 

([CPFS014], [LaGo018], and [Page954]): 

[ ]
k

n
S x n

=−∞
=∑          (3.15)  

 In this research, only the pure cumulative sum is considered and alternative complex 

measures (e.g., scoring systems, control charts, change detection monitoring) are kept aside as 

the discrete sum S reflects the digital content accumulated over time. 

3.8.2 Zero-Crossing Rate 

Many signals are quasistationary, as is the case of speech, and their properties (e.g., level-

crossings, zero-crossings, energy, and information theoretic related features) are often studied by 

segmenting them in windows that are stationary within that specific window [ShSe012]. Even 

though speech is a non-stationary signal, it remains nearly unvaried for small segments (i.e., for 

10 to 50 ms) [JaBM013]. 

Stationarity ranges from wide sense stationarity (WSS) to strong sense stationarity 

(SSS). New and versatile approaches that do not fall in extremes have been proposed in the 

literature as is the case of finite sense stationarity (FSS) [TeKi013b]. 

An intuitive indication of how “busy” a signal becomes can be estimated by the number 

of times it crosses either the zero-activity line for alternating signals, or some other reference 

level for oscillating signals. The zero-crossing rate (ZCR) is defined as the number of times the 

signal crosses the reference within a specified interval. 

In its simplest form, the frequency of a sinusoid is estimated as half the number of zero-

crossing counts per second [ShSe015]. More formally, ZCR is a measure of “frequency 

composition” of a signal, which is more valid for narrowband signals such as sinusoids 

[JaBM013]. A sinusoid of frequency 0f  sampled with a frequency sf  produces 0/sf f  samples 

per cycle, which possess two zero crossings per cycle. This results in the ZCR defined as 

[JaBM013] 
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02

s

f
Z

f
=            (3.16)  

The interpretation of the average ZCR for broadband signals is less precise. However, the 

use of short-time average ZCR could provide good estimates of the signal properties [JaBM013].  

The definitions of ZCR for discrete computation is defined as [JaBM013] 

sgn( [ ]) sgn( [ 1])  [ ]n m
Z x n x m w n m

∞

=−∞
=  − −  − ∑      (3.17)  

where the sgn( )i  is defined as the sign function and [ ]w i  represents the window containing a 

stationary segment of the signal under analysis. 

The sign function is represented as [JaBM013] 

sgn( [ ])
1, [ ] 0

1, [ ] 0

x n
x n

x n

=  ≥

− <

        (3.18)  

and the stationary window is [JaBM013] 

[ ]
1

, 0 1
2
0, otherwise.

w n

n N
N

= 
 ≤ ≤ −



        (3.19)  

where N represents the total number of samples contained in the window. An estimation of the 

frequency content of a signal is provided by the ZCR by the occurrences, in a given time 

interval/frame, of a sign change in a given signal. The rate at which zero crossings occur is a 

simple measure of the frequency content of a signal. 

Zero crossing rate is very useful for discriminating a broadband signal from noise. 

Furthermore, ZCR helps in determining the beginning and the end of segments of interest in a 

signal [JaBM013]. 

Research work related to zero-crossing rate has been published at two international 

conferences ([TeKi016a] and [TeKi016b]) and in two journals ([TeKi016c] and [TeKi016d]). 

This research work relates to: (i) The generation of processes with the characteristics of Lévy 

walks, which reflect the dynamics of Internet traffic and its relevance in cybersecurity is 

portrayed, (ii) the direct computation in the time-domain for obtaining the ZCR and its 

advantages for real-time implementations of feature extraction of signals, (iii) the insight 
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provided by the ability of ZCR to identify sections in a composite signal, and (iv) the practical 

application of ZCR in cybersecurity by inspecting a dataset containing a documented DDoS 

attack where the beginning and the end of the cyberattack were identified clearly. 

3.8.3 Entropy 

Information theory addresses two fundamental concerns in communication theory: (i) 

The ultimate data compression through entropy measures, and (ii) the ultimate transmission rate 

of communication through the channel capacity (computed from the noise characteristics of the 

channel). Reliable communications are bounded between the compression limit, entropy, and the 

data transmission limit, channel capacity. All data compression schemes, and modulation 

schemes exist within these limits.  

Entropy is a probabilistic measure, oriented to determine redundancy, of the spread of 

probabilities of individual symbols in the source with respect to the equal (uniform) symbol 

probabilities. When the source entropy is maximum due to equal probabilities of the source 

symbols there is no redundancy in the source alphabet. This random, patternless like, source 

cannot be compressed without a loss of information. The difference between entropies from the 

source and the code determines the quality of the code.  

3.8.3.1 Self-Information 

Information is interpreted as the reduction in uncertainty of the frequency of occurrence 

for a symbol representing an event. Stated in another form, uncertainty reduction causes 

information gain.  

The Shannon’s self-information I
j
 of the jn  event is defined as 

1
( ) log log ,  [information unit, or u]j j b b j

j

I I p
p

σ ≡ = −≜

    
(3.20)

 

where ( )j jp p σ=  for brevity and denotes probability, and b in the Shannon’s entropy sense is 

the size of the coding alphabet CΓ  required to code each symbol. Since each symbol probability 

is confined to the unit interval [0,  1],jp =  the self-information is non-negative [0,  ].jI = ∞  For a 

binary coding alphabet {0,  1},  2,C bΓ = =  and bitu ≡  (binary digit), while for natural base 
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,  b e u nat= ≡  (natural digit), and for 10,b =  and Hartleyu ≡  [Kins004]. Self-information 

measures the information content carried by a specific symbol provided by an information 

source. It is observed that the symbols with smaller probabilities, less common, carry more self-

information, while the symbols with higher probabilities, more common, carry smaller self-

information. Self-information is also known as surprisal due to its relation to surprise. The 

higher the self-information is, the higher is the potential for surprise. Compactly, self-

information measures the importance, inversely proportional to probability, of a specific symbol 

provided by a source. 

3.8.3.2 Shannon’s Entropy 

Shannon’s entropy concept, now a fundamental notion through the sciences, is of 

particular importance for communications and cryptography [Stin006]. Shannon’s theorems state 

how reliable communications are and how much meaningful information is conveyed over a 

given channel ([BBMW014], [Shan948], and [Shan949]).  

Shannon’s entropy also provides a measure for the average self-information, regardless of 

the message size. Entropy is then a weighted average of probabilities [Kins004]. It is then 

defined as the average (expected) value of self-information 

1

( ) ( )
SN

j j
j

H p Iσ σ
=

∑≜          (3.21)  

1

( ) log ( )
SN

j b j
j

H p pσ σ
=

= −∑        (3.22)   

1

( ) log ( )
SN

b
j

H p j p j
=

= −∑         (3.23)  

1

log  [u/symbol]
SN

j b j
j

H p p
=

= −∑        (3.24)  

where sN  is the size of the source alphabet 1 2{ ,  ,  ...,  }
SNσ σ σΣ =  and ( ) ( )j jp p j pσ ≡ ≡  is the 

probability of the thj   symbol taken from the corresponding pmf 1 2[ ,  ,  ...,  ]
Sp Nf p p p= . When 

all the probabilities are equal, the weighted average turns into a simple average. This entropy 

function is non-negative and concave in pf  ([CoTh005] and [Kins004]). It is important to 
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highlight that plenty of other entropic measurements exist. The classical Shannon’s entropy has 

been considered in this research as a base case. 

3.9 Features Availability 

Kulikowski and Weiss [WeKu991] discussed that any learning computer system is at the 

mercy of the sample data and the features quality. A given feature ideally should be highly 

representative of the raw data phenomena under analysis. However in practice, this varies 

depending on the analysis methodologies or techniques used for such analysis. It is assumed that 

Kulikowski and Weiss refer to data and features processed in a monoscale setting. The research 

work presented in this thesis is multiscale in nature and reflects the Internet/traffic (signals with a 

high spiky behaviour) dynamics that permeate into all the scales due to the fractal nature of this 

type of traffic. Kulikowski and Weiss consider that features fall within three categories, 

completely noisy, somewhat noisy, and completely predictive, but no criteria for determining 

clearly how a feature can be classified in any of the three is provided. Nevertheless, one would 

expect that applying denoising techniques to the outcomes of a feature, this would acquire a 

more predictive nature in the sense that it would become less spiky. The specific research work 

introduced in this thesis for feature extraction considers an initial stage of multiscalor operators 

(variance or skewness) followed by a secondary operator (cumulative sum, ZCR, or Shannon’s 

entropy). After this, denoising would help for increasing the predictive power of the features 

utilized, according to the point of view of Kulikowski and Weiss. Imprinting this predictive 

nature into the extracted features reduces the number of classes created by ART and provides a 

more compact output for interpreting the DDoS attacks occurrences. To the best of the author’s 

knowledge, increasing the predictive power of features through multiscalors components would 

become the first reported case of applying denoising methodologies on processed data through 

multi- and polyscale analysis. 

In order to increase the predictive power in the results yielded by multiscalor operators in 

the multiscalor components, two denoising techniques are utilized Donoho’s denoising 

(multiscale based) and nonlinear filtering (median filter with monoscale nature). These denoising 

techniques increase the predictive capacity of multiscalor components by reducing the spiky 

behaviour of the extracted features. 
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3.9.1 Denoising 

There are various wavelet based denoising schemes attempting to reject noise by damping 

or thresholding in the wavelet domain [Dono995]. A formal approach of the term denoising has 

been proposed by Donoho [Dono995] and has shown how wavelet transforms may be used to 

optimally “de-noise” in such interpretation. 

An unknown function f  on [0,  1]  can be recovered from noisy data 

( ) ,  0,  ...,  1i i D id f t z i nσ= + = −        (3.25)  

where / ,  ,i it i n z=  is a standard Gaussian white noise (independent and identically distributed 

(iid); denoted by   (0,  1),
idd

iz N∼  and Dσ  is a noise level. Donoho’s interpretation of “denoising” 

is setting as a goal the optimization of the mean-squared error 

2

2 11 1 2

0
ˆ ˆ( ( / ) ( / ))

n

n

i
n E f f n E f i n f i n

−− −

=
− = −∑

ℓ
     (3.26)  

where 2ℓ  represents the 2L  norm (Euclidean distance), E[�] represents expectation, and there is 

the condition that with high probability f̂  is at least as smooth as f  [Dono995]. Many 

statistical techniques optimize the mean-squared error causing a trade-off between bias and 

variance keeping the two terms about the same order of magnitude [Dono995]. 

3.9.1.1 Thresholding denoising procedure 

i. Apply the interval-adapted pyramidal filtering algorithm of Cohen, Daubechies, Jawerth, 

and Vial (aka CDJV) to the measured data ( )/ ,id n  obtaining empirical wavelet 

coefficients ( ).Ie  

ii. Apply the soft thresholding nonlinearity 

( ) sgn( )(| | )t y y y tη += −         (3.27)  

coordinatewise to the empirical wavelet coefficients with specially chosen threshold 

1 2 log( ) / ,nt n nγ σ= ⋅ ⋅  and 1γ  is a constant. 

iii. Invert the pyramid filtering, recovering 

*ˆ( )( ),  0,  ...,  1n if t i n= −         (3.28)  
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It has been proved that in addition to the good visual quality, the estimator has an 

optimality property with respect to mean-squared error for estimating functions of unknown 

smoothness at a point [Dono995]. 

It has been proven that in Donoho’s denoising, two phenomena, smoothing and adapting, 

are held with considerably generality. Smoothing holds because with high probability *ˆ
nf  is at 

least as smooth as f, with smoothness measured by any of a wide range of smoothness measures. 

Adapting holds because *ˆ
nf  achieves almost the minimax mean-square error over every one of a 

wide range of smoothness classes, including many classes where traditional linear estimators do 

not achieve the minimax rate. Some additional properties of Donoho’s denoising are: (i) The 

coefficient reconstruction is noise free, (ii) using thresholding or other nonlinearities in the 

Fourier domain cannot match its broad adaptive thresholding in the wavelet domain, (iii) it has a 

special optimality enjoyed by no other nonlinearity, (iv) it adapts easily to higher dimensions and 

to sampling operators which compute area averages rather than point samples, and (v) the noise 

level f  does not have to be known and it suffices to apply the threshold 1
ˆ ˆ 2 log( ) / ,nt n nγ σ=  

where the scale estimate ˆ / 0.6745,MADσ =  with the ,MAD  median absolute deviation, value of 

the appropriate normalized fine-scale wavelet coefficients ( )
1 1,j k

k
n w −⋅  [Dono995]. 

3.9.2 Non-Linear Filtering 

Nonlinear filtering techniques provide a better trade-off between noise smoothing and the 

retention of fine details. The non-linear filtering technique used here is median filtering, which 

has proven to be useful for the suppression of impulse like or shot disturbances in images and it 

falls into classical digital signal processing techniques. Median filtering has interesting 

advantages like: (i) Avoiding blurring of edge features, (ii) causing no reduction in contrast since 

the output values come from the values present in the neighbourhood, (iii) non-shifting 

boundaries, and (iv) having less sensitivity to extreme values (outliers) causing a more efficient 

removal [Prat001].  

In the one-dimensional form, the median filter consists of a sliding window 

encompassing an odd number of pixels. The center pixel in the window is replaced by the 
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median of the pixels in the window. The median of a discrete sequence 1 2,  ,  ...,   for  oddNa a a N  

is that member of the sequence for which ( 1) / 2N −  elements are smaller or equal in value and 

( 1) / 2N −  elements are larger or equal in value. Hence, the neighbouring pixels are ranked 

causing that the median of this sorting would become the new value for the central pixel 

[Prat001]. 

3.9.3 Quantization 

Data provided to an ART neural network are required to be presented in the form of a 

binary array. Hence, after non-linear filtering one needs to apply a method that would create a 

binary array. The method that is followed here is least squares quantization (LSQ), which 

utilizes the idea of spacing quantum values closely in the voltage regions where the amplitude of 

a digital signal produced by a pulse-code modulation (PCM) system is expected [Lloy982]. 

The Shannon-Nyquist sampling theorem is at the core of PCM systems. The sampling 

theorem asserts that a voltage signal ( ),  ,s t t− ∞ < < ∞  containing only frequencies less than W  

cycles/s or Hz can be recovered from a sequence of its sample values according to 

( ) ( ) ( ),  j j
j

s t s t K t t t
∞

=−∞

= − − ∞ < < ∞∑        (3.29)  

where ( )js t  is the value of s at the jth sampling instant 

,  , ,
2j

j
t j

W
= − ∞ ∞          (3.30)  

and where 

sin 2
( ) ,  , ,

2

Wt
K t t

Wt

π

π
= − ∞ ∞         (3.31)  

is a sinc sin /t t  pulse of the appropriate width [Lloy982]. 

A pulse-amplitude modulation (PAM) system is based on the sampling theorem alone. A 

sequence 

1 0 1...,  ( ),  ( ),  ( ),  ...s t s t s t−         (3.32)  
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of samples of the signal ( )s t  is sent over a channel. The receiver constructs the pulses ( )jK t t−  

and adds them together, with the received amplitudes ( ),js t  as in (3.29), producing an exact 

representation of the original band-limited signal s  [Lloy982]. 

In PCM, instead of sending the exact sample values (3.32), the signal voltage range is 

partitioned into a finite number of subsets. The information to which subset a sample happens to 

fall in is then transmitted to the receiver. The receiver has a source of fixed representative 

voltages, quanta, one for each of the subsets. When the receiver is informed about a sample 

falling into a subset, it uses its quantum for that subset as an approximation to the true sample 

value and constructs an approximated band-limited signal [Lloy982]. 

The noise signal is the difference between the receiver-output signal and the original 

signal. The noise power is the average square of the noise signal. PCM considers the given 

number of quanta and certain statistical properties of the signal for determining the subsets and 

quanta that are best in minimizing the noise power [Lloy982]. 

Formally, a quantization scheme consists of a class of sets 1 2{ ,  ,  ...,  }vQ Q Q  and a set of 

quanta 1 2{ ,  ,  ...,  }vq q q . The { }Qα  are any v disjoint subsets of the voltage axis which, taken 

together, cover the entire voltage range. The { }qα  are any v finite voltage values. The number v 

of quanta is to be regarded throughout as a fixed preassigned number [Lloy982]. 

A partition { }Qα  is associated with a label function ( ),  ,x xγ − ∞ < < ∞  defined for all 

(real) voltages x  by  

1

2

( ) 1   if      lies in   ,

( ) 2   if      lies in   ,

( )    if      lies in   ,v

x x Q

x x Q

x v x Q

γ

γ

γ

=

=

=

⋮

       (3.33)  

Therefore, the label ja  of the set that a sample ( )js t  falls in is defined as 

( ( )),  j ja s t jγ= − ∞ < < ∞         (3.34)  

Consequently, the PCM based signal when sent over is then a sequence of labels 

1 0 1...,  ,  ,  ,  ...a a a−          (3.35)  
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where each ja  is one of the integers {1,  2,  ...,  }v  [Lloy982]. 

These labels contain information of the multiscalors based features in a compressed form 

and then become the binary code that is utilized as input to the ART neural network. Only the 

description of the quantization conceptual framework relevant to this research is provided. 

3.10 Summary 

The need for multiscale signal analysis is extensively discussed during this chapter. The 

discussion is built up around the monoscale analysis limitation for accessing information present 

in the long-range dependencies of processes, which is something that multiscale analysis, by its 

fractal nature, can surpass. The discussion for signal analysis based on multiscalors focuses in 

network security by aiming to detect the presence of DDoS attacks.  

This chapter provided an in depth description of the distinct required subsystems for 

feature extraction. The sensing of the Internet/network traffic by sniffing packets is the means of 

signal acquisition. Context about monoscale analysis and its limitations is provided by 

highlighting that energy based metrics are inadequate for resolving information present in long-

range dependencies. The critical importance of multiscale analysis for sifting information 

available in long range dependencies then becomes apparent. The novel methodology 

“multiscalors”, allowing arbitrary operators and signal analysis methodologies to be functional in 

the multiscale analysis context, is introduced as the main contribution of this research work. The 

statistical moments (variance and skewness) used as multiscalors operators and the signal 

analysis methodologies (cumulative sum, zero-crossing rate, and Shannon entropy) applied to the 

multiscalors components are presented in detail. Lastly, the methodologies applied to the 

extracted features (Donoho’s denoising, non-linear filtering, and quantization) in order to make 

them readily available for to further by machine learning stages (i.e., ART). The next chapter 

elaborates deeply on computational intelligence methodologies considered in this research. 
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CHAPTER IV                                                                                

COMPUTATIONAL INTELLIGENCE APPROACHES 

UTILIZED FOR DISTRIBUTED DENIAL OF SERVICE 

DETECTION 

 

In machine learning, supervised, semi-supervised or hybrid, and unsupervised are three 

ways to classify anomalous packets from normal packets. Supervised methods have the privilege 

of differentiating anomalous and normal data from a labelled dataset. Unsupervised methods, on 

the other hand, segment a dataset into different clusters where the strength of the clustering 

usually lies within the algorithm itself [DaVS020]. Appendix C covers computational 

intelligence approaches in depth. 

Ensemble learning, i.e., combining multiple classifiers to form a more powerful classifier, 

has been well-studied in the machine learning community and it has been proposed for some 

cybersecurity applications in DDoS detection. Ensembles are selected in some cases because 

they usually provide better results than a single classifier and many classification problems have 

benefited from the idea of combining multiple classifiers. Appendix D provides more 

information about ensemble classifiers [DaVS020].  

Both surveys of machine learning based intrusion detection approaches (e.g., 

[HOHR015] and [AZZS019]), and a systematic literature review and taxonomy of DDoS attacks 

[YuUS019] are necessary to know the machine learning landscape for both IDS and DDoS. An 

interesting survey about DDoS mechanisms against DDoS is found in [ZaJT013]. 

Yusof and Selamat [YuUS019] perform an in-depth analysis on DDoS attack types as 

well as on existing DDoS detection and attack prediction techniques. Also, factors behind the 

DDoS attacks are identified. Moreover, they have classified and ranked 53 articles from different 
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digital libraries (e.g., Science Direct, ACM Digital Library, IEEE Xplore, Springer, and Web of 

Science) related to DDoS detection and prevention. It was found that 30% of these articles use 

machine learning techniques as their detection or prevention strategy [DaVS020]. 

Alessa et al. [AZZS019] reviews and analyses the research landscape for IDSs, 

considering DDoS and other cyberattacks, based on DL techniques. Alessa et al. [AZZS019] 

focus on 68 articles with the keywords ‘deep learning’, ‘intrusion’ and ‘attack’ and their 

variations in four major databases, namely Web of Science, Science Direct, Scopus, and IEEE 

Xplore. Three proportions are found: Developing an approach for evaluating or identifying 

intrusion detection techniques using the DL approach (72.06%), studying/applying articles to the 

DL area (22.06%), and discussing frameworks/models for running or adopting IDSs (5.88%) 

[AZZS019]. Three phases are proposed for detecting DDoS: Data collection and training, feature 

extraction and selection, and DL detection [AZZS019]. This phases, even though not available at 

the beginning of the research proposed here and being recently proposed, fit into research work 

carried in this thesis. 

Research work that considers plenty of machine learning approaches are available and is 

well documented in the literature. Detection performance on some of the approaches already 

surpass 95% of precision [HOHR015]. However, some of the training datasets used in the 

literature contain 99% of normal data and 1% of anomalous data to make their model run 

efficiently and accurately in detecting anomaly by learning from normal behaviour [HOHR015]. 

In perspective, the dataset studied here contains 46% of anomalous data as a DDoS attack. 

It is important to reiterate that the research herein developed and presented focuses on the 

development of deep robust features and on the usage of ART, as core machine learning 

approach. This premise aids mainly for understanding the mechanisms behind ART in-depth, 

which could allow envisioning methods for tuning the vigilance parameter. This knowledge gain 

creates the possibility of extrapolating the lessons learned regarding alternate machine learning 

approaches and also further improves the precision and recall results that would be obtained 

throughout this research. 

The research presented in this thesis explores DL from the following views: (i) The depth 

of the computing stages, a novel viewpoint in DL investigated here, (ii) the extraction of robust 

features via multiscalors, a new methodology, through applying multi- and polyscale analysis, 
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and (iii) performing classification of the abstract features obtained via adaptive resonance 

theory, an unsupervised machine learning approach used in the context of multi- and polyscale 

analysis based DL for the first time.  

The features obtained from the deep architecture by multiscalors (capable of extracting 

robust and refined abstract features) are used in the detection of classes of interest through ART 

as the machine learning approach.  

This could be seen as a novel approach in DL, and might be even considered as an 

element of a new cognitive approach to DL. This argument appears to be justified because DL 

could be safely regarded as the study of models that involve a greater amount of composition of 

either learned functions or learned concepts than traditional machine learning [GoBC016]. The 

novel composition of “features of features” (FOF), as a cognitive element of DL, carried 

throughout this research captures a clearer and more refined view on the behaviour of the 

Internet traffic under study. Two machine learning models based on ART, ART1 and 

FuzzyART, are implemented throughout the thesis and a comparison of performance between 

them is established. 

4.1 Adaptive Resonance Theory 

Human memory has the ability to learn new things without forgetting things learned in 

the past (e.g., recognizing parents after not seeing them for some time while learning new faces 

in the interim). This capability is highly desirable in ANNs as many of them tend to forget old 

information when incrementally adding new information [FrSk991]. 

An ANN usually performs pattern-classification operations by being trained with a set of 

exemplars or patterns. Training allows the encoding of information in the ANN by adjustment of 

the weight values. Once the training is deemed adequate, the ANN is put into production and no 

additional weight modification is permitted. This operational scenario is acceptable provided the 

problem domain has well-defined boundaries and is stable. Unfortunately, in many realistic 

situations, the environment is neither bounded nor stable [FrSk991]. 

If an ANN is presented with a previous unseen input pattern, there is generally no built-in 

mechanism for the network to be able to recognize the novelty of the input. The ANN does not 

know that it does not know the input pattern [FrSk991]. 
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The previous discussion describes practically the stability-plasticity dilemma (SPD) 

coined by Stephen Grossberg. The SPD can be stated as a series of questions: How can a 

learning system remain adaptive (plastic) in response to significant input, yet remain stable in 

response to irrelevant input? How does the system know to switch between its plastic and its 

stable modes? How can the system retain previously learned information while continuing to 

learn new things? In response to such questions, Grossberg, Carpenter, and other colleagues 

developed adaptive resonance theory, which seeks to provide answers. In fact, an approach to 

solve the SPD is to add a feedback mechanism between a competitive layer and the input layer of 

a network. This feedback mechanism facilitates: (i) Learning of new information without 

destroying old information, (ii) automatic switching between stable and plastic modes, and (iii) 

stabilization of encoding of the classes done by the nodes. This feedback mechanism is exploited 

by ART and variants, (input vectors in a binary, analog or grayscale, or fuzzy form), that are 

suitable for pattern-classification problems in realistic environments [FrSk991]. 

ART gets its name from the way in which learning and recall interplay in the network. In 

physics, resonance occurs when a small-amplitude vibration of the proper frequency causes a 

large-amplitude vibration in an electrical or mechanical system. In an ART network, information 

in the form of processing-element outputs reverberates back and forth between layers. If the 

proper patterns develop, a stable oscillation ensues, which is the neural-network equivalent of 

resonance. During this resonant period, learning, or adaptation, can occur. Before the network 

has achieved a resonant state, no learning takes place, because the time required for changes in 

the processing element weights is much longer than the time that it takes the network to achieve 

resonance [FrSk991]. 

A resonant state is attained if: (i) The network had learned to recognize a previous input 

vector, then a resonant state would be achieved quickly when that input vector is presented. 

During resonance, the adaptation process reinforces the memory of the stored pattern; (ii) the 

input vector is not immediately recognized, and then the network searches through its stored 

patterns looking for a match. If no match is found, the network enters into resonant state 

whereupon the new pattern is stored for the first time [FrSk991]. 

Thus, the ART neural networks respond quickly to previously learned data, yet remains 

able to learn when novel data are presented. Grossberg has focused mainly on modelling actual 
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macroscopic processes that occur within the brain in terms of the average properties of 

collections of the microscopic components of the brain (neurons). Thus, a Grossberg processing 

element may represent one or more actual neurons [FrSk991]. 

ART was developed from the observation of biological phenomena, regarding vision, 

speech, cortical development, and cognitive-emotional interactions. This theory is based on three 

biological principles highlighted by the following characteristics: (i) Signal normalization. 

Ability of biological systems to adapt themselves to environments that change all the time (e.g., 

the human vision system can adapt to different amounts of light; (ii) Contrast intensification. 

Capability of identifying subtle details in the environment through successive observations (e.g., 

the respiratory system can perceive, almost instantly, a clean environment that began being 

polluted with carbon monoxide); and (iii) Short-term memory. Capacity to temporarily store 

sensorial information from the contrast intensification mechanism, before it can be decoded for 

decision-making [NHAB017]. 

One of the main features of ART networks is the ability to learn new patterns, when new 

samples are presented, without destructing previously extracted knowledge. This characteristic is 

associated with the plasticity/stability dilemma, where the system is flexible, adaptive, enough to 

incorporate environmental changes, whereas it must also be stable to preserve the knowledge 

already gained. This distinctive quality makes it one of the best ANNs architectures, which can 

deal with the stability/plasticity dilemma in a coherent and systematic way. Other distinctive 

characteristics are the following: (i) ART architecture has biological plausibility, which is 

principled by the signal normalization, contrast intensification, and short-term memory 

principles; (ii) the network training is always stable and after this stabilization (convergence), the 

presentation of a pattern that fits one category already created, directly activates the neuron 

corresponding to that group, with no need to initiate the search phase. In this case, the network 

works as an autonomous associative memory; (iii) the selection of the winner neuron in the 

recognition phase is also always stable. Once an input vector is associated with a group 

represented by a neuron in the recognition layer, this same unit always wins the competition, 

regardless of some eventual posterior adjustment in the forward or backward weights when a 

new training sample is presented; (iv) the occurrence of adaptive resonance depends, mainly, on 

how close the input sample is to the vector that represents the cluster, indicated by the winner 
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neuron. If the distance, weighted by the vigilance parameter, is acceptable, then, an adaptive 

resonance state is achieved, what in biological terms, corresponds to the gain and extension of 

neural activity; and (v) the level of details in each new class included in the network structure is 

based on the vigilance parameter value. The larger the value, the finer details and distinctive 

characteristic are considered from the patterns to be inserted [NHAB017]. 

Unlike some other neural architectures, it is verified that both the training phase and the 

operating phase of an ART network are included in the same algorithm, since its topology 

always needs to perform a similarity test to categorize the input sample. Furthermore, this 

learning is processed in an unsupervised manner, allowing the inclusion of knowledge inside 

classes that are already represented by existing neurons, or, evaluating if there is a necessity for 

the inclusion or enablement of other neurons as the samples bring new relevant knowledge 

[NHAB017]. 

4.1.1 ART: Equations Descriptions 

4.1.1.1 Type-1: STM and LTM States Solved with Differential Equations 

When the ART1 architecture was first reported, it was presented as a biologically 

inspired neural system described by a set of short-term memory (STM) and a set of long-term 

memory (LTM) nonlinear and coupled time domain differential equations. STM equations 

described the instantaneous activation evolution for the neurons as a function of the externally 

applied inputs and the present set of interconnection weights, while LTM equations described the 

time evolution of the adaptive interconnection weights, which store the knowledge and 

experience of the complete system. In ART, STM equations settle much faster than LTM 

equations [SeLA012]. 

4.1.1.2 Type-2: STM States Solved with Algebraic Equations and LTM 

States Solved with Differential Equations 

In an ART system, if the input patterns are held stable long enough so that STM 

equations reach their steady state, this steady state can be computed directly without solving the 

STM differential equations. The STM steady state can be obtained by solving a set of algebraic 

equations, properly sequenced. Hence, in this description of an ART system, the STM state is 
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computed by solving algebraic equations and the LTM evolution is computed by solving the 

corresponding differential equations [SeLA012]. 

4.1.1.3 Type-3: STM and LTM States Solved with Algebraic Equations 

If input patterns are held constant long enough so that both STM and LTM equations 

settle to their respective states, then the ART system operation can be described by solving 

properly sequenced algebraic equations only. This description corresponds to the particular case 

called Fast Learning in the original ART1 paper. When the FuzzyART, ARTMAP, and 

FuzzyARTMAP algorithms were reported, they were described in their Type-3 or Fast Learning 

version, or, at the most, a Slow Learning LTM update was considered in which finite difference 

equations instead of differential equations are used [SeLA012].  

Most of the reported work on ART architectures and their applications is developed as 

software algorithms, running on conventional sequential computers. However, the parallel nature 

of these architectures and the simplicity of its components calls in a natural way for hardware 

implementations, similar to what nature has done with brains in living beings. Also, the fact that 

these ART, its variants, and other architectures can be combined hierarchically to build higher 

level cognitive systems that solve complicated engineering problems (e.g., robotics, vision 

systems and speech recognition), makes it even more attractive to develop a set of hardware 

components to be used in more complicated and hierarchically structured systems. There have 

been some attempts in the past to implement in hardware some of the aspects of ART 

architectures. However, they were intended to emulate Type-l or Type-2 descriptions of ART, 

and the results were bulky and inefficient pieces of hardware that could only realize part of the 

functionality of the powerful ART algorithms [SeLA012]. 

The author of this thesis gathers that the Type-3 description of ART, as it is behavioural, 

is preferred in most implementations targeting conventional sequential hardware, and specialized 

applications in very large integrated circuits (VLSI) or application-specific integrated circuits 

(ASIC). 
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4.1.2 ART: Topological Distinctions 

4.1.2.1 ART1 

The first ART neural network model appeared in the open literature in 1987 and is known 

as ART1. It is an unsupervised learning neural clustering architecture whose inputs are patterns 

composed of binary values and it groups them into categories according to a similarity criterion 

based on Hamming distances, modulated by a variable coarseness vigilance criterion. As a result, 

a set of extraordinary mathematical properties arises, rarely present in other algorithms of similar 

functionality [SeLA012].  

4.1.2.2 ART2 

Additionally in 1987, almost simultaneously to the ART1 publication, a similar algorithm 

named ART2 was published intended to cluster input patterns composed of analog valued 

(continuous) values. It is relatively more complicated than ART1 [SeLA012].  

4.1.2.3 ART3 

Presented in 1990, this ART topology is configured with binary inputs or analog inputs 

(continuous) and unsupervised training that uses multilevel topology and the chemical properties 

of neurotransmitters for the searching process of a better solution [NHAB017]. 

4.1.2.4 ARTMAP 

Introduced in 1991, ARTMAP are supervised learning architectures that can be trained to 

learn the correspondence between an input pattern and the class to which it belongs, analogously 

to the popular backpropagation (BP) algorithm. The advantage of these ARTMAP architectures 

with respect to BP are mainly that they converge in a few training epochs (while BP converges in 

the order of thousands to even hundreds of thousands) and they are able to learn more 

complicated problems for which BP is inadequate [SeLA012]. ARTMAP is configured with both 

binary inputs or analog inputs and supervised training in real time and it requires two ART 

networks in its structure to function [NHAB017]. 
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4.1.2.5 FuzzyART 

Similarly introduced in 1991, a FuzzyART architecture was reported which extended the 

original ART1 functionality by generalizing its operators using fuzzy set theory concepts. The 

result is that FuzzyART can take analog valued patterns as input while keeping the original 

mathematical properties present in ART1 [SeLA012].  

4.2 Computational Intelligence Algorithms Applied 

4.2.1 ART1 

The ART1 architecture is a massively parallel neural network pattern recognition 

machine which self organizes recognition codes in response to a sequence of binary valued input 

patterns. The system receives a sequence of binary valued input patterns clustering them into a 

set of categories in an unsupervised way [SeLA012].  

4.2.1.1 ART1 Architecture  

The topological structure of an ART1 system is shown in Fig. 4.1.  It consists of two 

layers of neurons or processing cells named F1, comparison layer, and F2, recognition layer. 

Each neuron in layer F1 receives the binary value of an input pattern. There are N neurons in 

layer F1. Hence, the input pattern  ( 1,  ...,  )iI i N=  has N  binary values ‘0’ or ‘1’ [SeLA012]. 

 

 

Fig. 4.1.3  Topological structure of the ART1 architecture. From [SeLA012]. 
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Reset
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Input patterns presented to layer F1 cluster into categories, and a neuron in layer F2 

represents a possible category. Each neuron in layer F1 is connected to all neurons in layer F2 

through bottom-up synaptic connections of strength .bu
ijz  Index i  indicates that the connection 

goes from the ith neuron in layer F1 to the jth neuron in layer F2. Bottom-up weights bu
ijz  are of 

continuous nature and they may take any value within the bounded interval [0, 1] [SeLA012].  

The input to the jth F2 neuron is given by ∩   

 
1

,  for 1,  ...,  
N

bu
j ij i

i

T z I j M
=

= =∑
        

(4.1)  

where M denotes the number of neurons in the F2 layer. The terms ,jT  known as choice 

functions, represent a certain “distance” between the stored pattern 1 2,  ,  ...,  ,bu bu bu bu
j j j Njz z z z≡  and 

input pattern 1 2( ,  ,  ...,  )NI I I I≡  [SeLA012].  

Neurons in layer F2 operate in such a way that their output jy  is always ‘0’, except for 

the neuron receiving the largest jT  input from the F1 layer. This F2 neuron, let us call it J, has 

output ‘1’ [SeLA012], 

1 if max { }

0

J J j j

j J

y T T

y ≠

= =

=
      

 
   (4.2)  

Each F2 neuron is connected to all F1 neurons through top-down synaptic connections of 

strength ,td
jiz  which are binary-valued. Thus, the ith F1 neuron input from the F2 layer is 

[SeLA012] 

1

,  for 1,  ...,  
M

td td
i ji j Ji

j

V z y z i N
=

= = =∑
       

(4.3)  

A vigilance subsystem, denoted as the comparator in Fig. 4.1, verifies the appropriateness 

of the F2 neuron designating the active category. This vigilance subsystem compares the norm of 

vector 1 2( , , ..., ),Nx x x≡X     defined as [SeLA012] 

i i ix V I=  or td
JX=V I=z I∩ ∩        (4.4)  
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4.2.1.2 ART1 Dynamics  

The time evolution of the state of all F1 and F2 neurons is governed by a set of time 

domain nonlinear and coupled differential equations, called short-term memory equations, and 

the present state of F1 and F2 neurons is called short-term memory. The time domain evolution 

of the set of weights bu
ijz  and td

jiz  is governed by another set of time domain nonlinear differential 

equations called long-term memory equations, and the set of values stored in weights bu
ijz  and td

jiz  

is called long-term memory [SeLA012].  

The time constant associated to the LTM equations is much slower than that of the STM 

equations. Consequently, if an input pattern I is presented to the F1 layer, the STM settles first. 

If the input pattern I is held constant at the F1 layer input until all STM equations and the 

vigilance subsystem settle, it is possible to describe the STM dynamics using an algebraic 

description of the steady state of the STM differential equations. Furthermore, if the input pattern 

I is held constant until LTM settles, then it is also possible to describe the LTM dynamics using 

algebraic equations that define the steady state of the LTM differential equations. It is in this 

case that the dynamic description of the ART1 architecture is referred to as “Fast Learning 

ART1”. This type of description is the one used in this thesis. The Fast Learning algorithmic 

description of the ART1 architecture is shown in Fig. 4.2. Note that only two parameters are 

needed, ρ  which is called the vigilance parameter and takes a value in the interval [0, 1], and 

parameter L which takes a value larger than ‘1’ [SeLA012].   

First, all interconnection weights are initialized. These weights store the knowledge or 

experience of the ART1 system. Therefore, after initialization they do not hold any information 

on categories, clusters, nor past input patterns provided. Bottom-up weights are initialized to 

/ ( 1 )bu
ijz L L N= − +  and top-down weights to 1.td

jiz =  Now the system is ready to receive its first 

input pattern 1 2( , , ..., )NI I I=I     where iI  may be either ‘0’ or ‘1’. At this point, the input to 

each neuron in the F2 layer is computed [SeLA012],  

1

,  for 1,  ...,  
N

bu
j ij i

i

T z I j M
=

= =∑
        

(4.5)  
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Fig. 4.2.4  Algorithmic description of ART1 functionality. From [SeLA012]. 

 

The neuron receiving the largest input jT  is activated in the F2 layer, while all others are 

deactivated. Thus, if jT  is the maximum of all jT  inputs, then 1Jy =  and 0.j Jy ≠ =  Once an F2 

node is active, the vigilance subsystem checks if it is appropriate. The vigilance subsystem action 

is characterized by the vigilance parameter ρ  set to a value in the interval [0, 1]. If the following 

condition is satisfied [SeLA012]  
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The active F2 category neuron J is selected for LTM update. Otherwise, the F2 neuron J 

is shut off, by making 0,JT =  and a new F2 neuron becomes active. The active neuron is 

checked by the vigilance subsystem and it is deactivated if it does not satisfy its condition. This 

process continues until an active F2 neuron meets the vigilance criterion. Once a neuron in F2 is 

found the bottom-up and top-down connection weights related to this node are updated according 

to [SeLA012] 

( ) ( )

( )
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1 | ( ) |

td td
iJ iJ i
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bu iJ
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z new z old I

L z new
z new

L z new

=

=
− +

         (4.8)  

or, in vector notation [SeLA012] 
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z I z

 z
z

z

∩

        (4.9)  

Now the system is ready to receive the next input pattern [SeLA012].  

If an F2 category neuron j has not yet been chosen for category storage it is considered as 

an uncommitted neuron and its weights bu
ijz  and ,  (1,  2,  ...,  ),td

jiz i N=  still preserve their 

initialized values. On the other hand, if an F2 neuron has already been selected, at least once, for 

storage, it is referred to as a committed neuron. Note that initially, since all weights are equal, the 

first time all F2 inputs jT  are computed with equation (4.5), they are identical, and it is not 

possible to choose a maximum among them. This can be solved by making 1,cM n= +  where cn  

is the number of committed neurons. This way, initially 0cn =  and 1,M =  which means that 
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only the first F2 neuron is available for competition. As soon as this neuron is chosen for storage 

1cn =  and 2,M =  so that next time the competition is between one committed and one 

uncommitted neurons. Once the second neuron is chosen for storage 2cn =  and 3,M =  and so 

on. The competition in the F2 layer is always between the cn  committed neurons and one 

uncommitted neuron. Note also that an uncommitted neuron always satisfies the vigilance 

criterion for any [0,  1]ρ ∈  because [SeLA012] 

| | | |
1

| | | |
uncommited

td
jz

ρ= = ≥
I I

I I

∩
         (4.10)  

Therefore if, at a given time, the maximum JT  corresponds to an uncommitted neuron, 

this neuron would be chosen for storage and become committed [SeLA012]. 

4.2.1.3 ART1 Properties  

The ART1 architecture possesses interesting properties, which set it apart favourably 

from other clustering algorithms. Some of these properties are listed and explored subsequently 

[SeLA012]. 

4.2.1.3.1 Vigilance or Variable Coarseness  

One of the most important characteristic features of ART1 is the possibility to externally 

tune the coarseness with which categories should be formed. ART1 contains a vigilance 

subsystem, controlled by a vigilance parameter ,ρ  that provides this functionality [SeLA012].  

The vigilance parameter ρ  can be set to any value in [0, 1]. The smaller ρ  is set, the 

more input patterns are clustered together into the same category, which means a higher 

generalization capability. The higher ρ  gets causes more attention to be paid to differences 

among input patterns, which produces a larger number of categories [SeLA012].  

By looking at the algorithmic description of ART1 in Fig. 4.2, one may wonder what the 

purpose of the vigilance subsystem might be. Why do one need to check whether or not  

| | | |td
Jρ ≤I   I z∩          (4.11)  

if category J  has already been selected by the Winner-Takes-All? The answer is related to the 

self-scaling property discussed next [SeLA012].  
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4.2.1.3.2 Self-Scaling 

This property allows features to be treated as either noise or signal, according to context. 

For example, consider two patterns aI  and td
az  differing only in one feature, but it is a feature out 

of three. Therefore, it seems reasonable to classify each pattern as belonging to two different 

categories. In this case, the feature that makes the difference is considered a ‘critical feature’ or 

signal. Now, consider two patterns bI  and td
bz  differing in one feature, but now it is a mismatch 

of one feature out of 15. Therefore, it seems reasonable to classify them into the same category. 

In this case, the feature that makes the difference is considered as ‘noise’ [SeLA012]. 

Patterns aI  and bI  are considered new input patterns and patterns td
az  and td

bz  

characterize stored categories. If pattern aI  is presented to the F1 layer and the category 

characterized by weight template td
az  received the largest input , then the vigilance subsystem 

would accept this category for pattern aI  if [SeLA012] 

| | 2
0.6666

| | 3

td
a a

a

ρ ≤ = =
I z

  
I

∩

        

(4.12)  

Consequently, if parameter ρ  is initially set to a value higher than 0.666, pattern aI  would not 

be stored into the category characterized by weight template td
az  [SeLA012]. 

For pattern I
b
 the condition would change to [SeLA012] 

| | 14
0.9333

| | 15

td
b b

b

ρ ≤ = =
I z

  
I

∩

       

(4.13)
 

Hence, if for example the vigilance parameter is set to 0.85ρ =  patterns bI  and td
bz  

would have been clustered together, but patterns aI  and z
a

td  would not. These examples also 

illustrate the role of vigilance parameter ρ . The larger or closer it is to ‘1’, the more categories 

are formed, and more attention is paid to the ‘details’ that distinguish the input patterns. The 

smaller ρ  is, or closer to ‘0’, less attention is be paid to ‘small details’ and more input patterns 

are be clustered into the same categories, resulting in a smaller number of categories and more 

generalization capability, for the same sequence of input patterns [SeLA012].  

 TJ
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4.2.1.3.3 Self-Stabilization in a Small Number of Iterations  

All the interconnection weights in the system that are subject to learning reach a 

stationary value after a finite number of presentations of a sequence of arbitrarily many and 

arbitrarily complex binary input patterns [SeLA012].  

Initially, when a category j is uncommitted, it stores a template with all its elements 

1.td
jiz =  When category j becomes committed by an input pattern I, it loses the elements td

jiz  such 

that the corresponding 0,i =I  [SeLA012] 

( ) ( )td td
ji ji iz new z old I=

         
(4.14)

 

Hence, each category j progressively loses elements. However, the number of elements a 

category can lose is at most N. Consequently, if we denote as jn  the number of times the weight 

template td
jz  of category j is submitted to change, then [SeLA012] 

jn N≤  
          

(4.15)  

If there are M categories in the system, the number of times the weights in the system are 

changed is limited to a maximum of .N M×  In practice, the system weights always stabilize in a 

reduced number of input pattern presentations [SeLA012]. 

4.2.1.3.4 On-line Learning  

For many clustering algorithms, given a set of exemplars or input patterns, the clusters or 

categories are computed off-Line. If a new exemplar needs to be added, then the system 

knowledge has to be erased and retrained with the updated database. off-Line learning means that 

learning phase and performing phase are separate phases. In ART1 this does not happen. ART1 

can be trained on-Line, in other words, it learns while it performs. Every time a new input pattern 

is given, ART1 answers with a category (either committed or uncommitted) and updates the 

weights that trigger this category to incorporate the new knowledge. This on-line learning 

property makes the ART1 an ideal candidate for real-time clustering [SeLA012].  

4.2.1.3.5 Capturing Rare Events  

The ART1 algorithm is able to learn and form clusters with input exemplars that appear 

very rarely. Thanks to its on-line learning capability, ART1 can learn a rare input pattern with 
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only a single exemplar presentation. Since the pattern is rare it solicits an uncommitted node. 

The rest of patterns, since they differ significantly from this rare one, would never choose its 

category for update, and consequently cause no alterations onto it [SeLA012].  

4.2.1.3.6 Direct Access to Familiar Input Patterns  

An input pattern I is said to have direct access to a stored category j, if this category is 

the first one chosen by the winner takes all (WTA) in the F2 layer, and the vigilance criterion is 

met. As the human cognitive system, ART1 has the ability to quickly recognize an object which 

is familiar to the system. No matter how many recognition codes (or categories) the system may 

store, after stabilization the system always directly accesses the code of patterns that have been 

learned, or which are very similar to other input patterns learned previously [SeLA012]. 

4.2.1.3.7 Direct Access to Subset and Superset Patterns  

Suppose that a learning process has produced a set of categories in the F2 layer. Suppose 

that two of these categories, 1j  and 2,j  are such that 
1 2

td td
j jz z⊂   (this means that if 

1
1td

j iz =  then it 

must be 
2

1,td
j iz =  but if 

1
0td

j iz =  then 
2

td
j iz  can either be ‘0’ or ‘1’). In this case 

1

td
jz  is a subset 

template of 
2
,td

jz  or equivalently 
2
,td

jz  is a superset template of 
1
.td

jz  Mathematically, in vector 

notation, this can be expressed as [SeLA012],  

1 2 1

td td td
j j j=z z z∩

          
(4.16)  

Consider two input patterns (1)I  and (2)I  such that [SeLA012],  

1 1 1 1

2 2 2 2

(1)
1, 2,

(2)
1, 2,

( ..., )

( ..., )

td td td td
j j j j N

td td td td
j j j j N

= ≡

= ≡

I z z  z   z

I z z  z   z        
(4.17)  

The direct access to subset and superset property assures that input (1)I  has direct access 

to category 1j  and that input (2)I  has Direct Access to category 2j  [SeLA012].  

First, suppose input (1)I  is presented to the system. Computing the values of 
1j

T  and 
2j

T  

[SeLA012],  
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=
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∩

∩
     

(4.18)  

Since (1) (2)| | | |,<I I  it follows that 
1 2

,j jT T>  (recalling that 1L > ) and therefore category 

1j  is selected by the F2 layer. This category consequentially is also accepted by the vigilance 

subsystem because [SeLA012] 

1

1

(1) (1)

(1)
1

td
j

td
j

ρ= = ≥
I z I

z I

∩

        

(4.19)  

On the other hand, if input pattern (2)I  is presented at the input [SeLA012],  

1

1

1

2

2

2

(2) (1) (1)(2)

1

(1) (1)

(2) (2) (2)(2)

1

(2) (2)

1 11

1 11

N td
i j ii

j td
j

N td
i j ii

j td
j

L LL I z
T

L LL

L LL I z
T

L LL

=

=

= = =
− + − +− +

= = =
− + − +− +

∑

∑

I I I

I Iz

I I I

I Iz

∩

∩
     

(4.20)  

Since function / ( 1 )Lx L x− +  is an increasing function with ,x  it results that 
2 1j jT T>  

and category 2j  is then chosen by the F2 layer, and accepted by the vigilance subsystem since 

[SeLA012] 

2

2

(2) (2)

(2)
1

td
j

td
j

ρ= = ≥
I z I

z I

∩

        

(4.21)  

4.2.1.3.8 Biasing the Network to Form New Categories 

Independent of the vigilance parameter , parameter ‘L’ biases the tendency of the 

network to form a smaller or larger number of categories. In particular, parameter L biases the 

tendency of the network to select a new uncommitted category before a committed one. When an 

input pattern I is presented, an uncommitted neuron is chosen before a committed one j if 

[SeLA012] 

ρ
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11

td
j

td
j

L NL
<

− +− +

I z I

z

∩

        

(4.22)  

This inequality is equivalent to [SeLA012] 

1
td td
j j

td
j

N
L

−
− >

−

I z z I

I I z

∩

∩
        

(4.23)  

Therefore, increasing L increases the tendency to select an uncommitted neuron before a 

committed one [SeLA012]. 

4.2.2 FuzzyART 

FuzzyART is a clustering neural network architecture which self-organizes recognition 

codes in response to sequences of analog or binary input patterns [SeLA012].  

4.2.2.1 FuzzyART Architecture 

The FuzzyART architecture is shown in Fig. 4.3. It has the same structure as the ART1 

system shown in Fig. 4.1. It consists of two layers of computing cells or neurons F1 and F2, and 

a vigilance subsystem controlled by an adjustable vigilance parameter [0, 1]ρ ∈   [SeLA012]. 

Layer F1 is the input layer composed of N input cells. Each input cell receives a 

component [0, 1]iI ∈   of the continuous input vector 1 2( , , ..., ).NI I I=I     Layer F2 is the 

category layer. It is composed of M  cells, each one representing a possible category. Each 

category cell receives an input .jT  Each F1 layer neuron i  is connected to each F2 layer neuron 

j  by a synaptic connection of weight .bu
ijz  Each F2 layer neuron j  is connected to each F1 layer 

neuron i  by a synaptic connection of strength .td
jiz  In FuzzyART .bu td

ij jiz z=  Consequently, from 

now on the weights as bu td
ij ij jiz z z= =  [SeLA012]. 
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Fig. 4.3.5  Topological structure of the FuzzyART architecture. From [SeLA012]. 

 

The main differences between the ART1 and FuzzyART architectures are: (i) The input 

vectors are continuous in nature. That is 1 2( , , ..., )NI I I=I     is an N dimensional vector with each 

component [0, 1],iI ∈   (ii) there is only one set of analog valued weight vectors 

1 2( , , ..., )j j j Njz z z=z     for 1, 2, ..., ,j M=     and (iii) in the computation of the choice functions 

,jT  the learning rule, and the vigilance criterion, the intersection operation ∩  (binary AND) is 

substituted by the fuzzy MIN operator ∧  (continuous AND) [SeLA012]. 

4.2.2.2 FuzzyART Operation 

Figure 4.4 shows the flow diagram of FuzzyART. Initially in FuzzyART, all the 

interconnection weights ijz  are set to ‘1’.  When a continuous input vector 1 2( , , ..., )NI I I=I     is 

applied to the system, each F1 layer neuron receives a component [0, 1].iI ∈   Then each F2 layer 

category neuron receives an input ,jT  which is a measurement of the similarity between the 

continuous-valued input pattern I  and the continuous-valued weight template 

1 2( , , ..., )j j j Njz z z=z     stored in category j  [SeLA012], 

 
j

j

FA j

T
α

∧
=

+

I z

z
          (4.24)  

F1

F2 (WTA)

Reset

Comparator
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where ∧  is the fuzzy MIN operator defined by ( ) min( , ),i i iX Y∧ =X Y   X  is the 1ℓ  norm 

1
,

N

ii
X

=
=∑X  and FAα  is a positive parameter called ‘choice parameter’ [SeLA012]. The 

choice parameter FAα  takes values in the interval (0,  )∞  [GFBH996]. A small choice parameter 

of 0.01FAα =  is sometimes used, as it has been shown that the clustering performance is 

generally robust to this parameter [MeTW013]. However, a value of 1FAα =  is also suggested. 

The jth F2 cell gives an output jy  either with a value of ‘1’ if this cell is receiving the largest jT  

input or ‘0’ otherwise [SeLA012]. 

 

 
 

Fig. 4.4.6  Algorithmic description of FuzzyART functionality. From [SeLA012]. 
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{ }1  if  max

0  otherwise

J j j j

j J

y T T

y ≠

= =

=
        

(4.25)  

In this way, the F2 or WTA layer selects the category J whose stored template Jz  most 

closely resembles input pattern I according to the similarity criterion | | /( | |)j j jT α= ∧ +I z z  

[SeLA012]. 

For the winning category J, the vigilance subsystem checks the condition [SeLA012],  

Jρ ≤ ∧I   I z          (4.26)  

If this condition is not true, category J is discarded by making 0.JT =  In the next 

iteration, layer F2 selects the category with maximum ,jT  and the vigilance criterion defined in 

the equation above is verified again. The search process continues until layer F2 finds a winning 

category capable of fulfilling the vigilance criterion [SeLA012]. 

When a category J meeting the vigilance criterion is activated, its weights Jz  are updated 

according to the rule [SeLA012] 

( ) ( ( )) (1 ) ( )J FA J FA Jnew old oldβ β= ∧ + −z I z z      (4.27)  

where FAβ  is the parameter known as ‘learning rate’, which is confined to [0,  1]FAβ ∈  

[SeLA012].  

4.2.2.2.1 Fast-Commit Slow-Recode Option  

For efficient coding of noisy input sets, it is useful to set 1FAβ =  when the learning 

category J is an uncommitted neuron (fast-commit) and 1FAβ <  after the category is committed 

(slow-recode) [SeLA012].  

With this option, the first-time category J becomes active ( ) ,J new =z I  allowing an 

adequate response to inputs that may occur only rarely and in response to which a quick and 

accurate performance may be needed [SeLA012].  

When a committed category needs to be updated 1FAβ < , thus preventing features that 

have been incorporated into it from being deleted when a noisy or partial input appears. Only a 

persistent change in a feature allows deleting it from a category template [SeLA012].  
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4.2.2.2.2 Input Normalization Option  

A category proliferation problem may occur in some ART systems when the norm of 

input vectors I  can be made arbitrarily small. This problem of category proliferation is avoided 

in the FuzzyART system when the input vectors are normalized before being processed by the 

system [SeLA012].  

An input vector I  is said to be normalized when there exists a constant 0noγ > , such 

that noγ=I  for all input vectors .I  One way of normalizing the input vectors could be to divide 

each incoming vector a by its norm / .=I a a  However, this method may lose the information 

about the input amplitude. Consider, for example, the two-dimensional incoming vectors 

1 (1, 1)=a   and 2 (0.1, 0.1).=a   The first vector 1a  indicates a high value of the two vector 

components, while the second vector 2a  indicates a low value of both vector components. 

However, both vectors 1a  and 2a  produce the same normalized input vector (1 / 2, 1/ 2)=I   and 

is treated by the system in the same way [SeLA012]. 

To avoid loss of information, Grossberg and Carpenter proposed the complement coding 

rule for the normalization of the input vectors. This rule consists of expanding an N-dimensional 

incoming vector 1 2( , , ..., )Na a a=a     to a 2N-dimensional vector defined by [SeLA012] 

1 2 1 2( , ) ( , , ..., , , , ..., )c c c c
N Na a a a a a= =I a  a              (4.28)  

where 1c
i ia a= −  for 1, 2, ..., .i N=     This way, all the input vectors I  are normalized [SeLA012] 

1 1 1 1

,
N N N N

c c
i i i i

i i i i

a a a N a N
= = = =

= = + = + − =∑ ∑ ∑ ∑I a  a

     
(4.29)  

but the amplitude information is preserved. The two vectors 1a  and 2a  discussed above produce 

two different input vectors 1 (1, 1, 0, 0)=I     and 2 (0.1, 0.1, 0.9, 0.9)=I     and are treated by the 

system in a different way [SeLA012].  

In the case of a FuzzyART system with the complement coding option, the weight 

vectors  are also expanded to 2N-dimensional vectors [SeLA012],  

( ), 1, 2, ...,c
j j j j M= =z u  u      

       

  
z

j
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(4.30)  

which are initially set to (1, ..., 1),j =z    so that (1, ..., 1),j =u    and (1, ..., 1).j =v    The same 

learning rule defined by ( ) ( ( )) (1 ) ( )J J Jnew old oldβ β= ∧ + −z I z z  is still valid for updating the 

jz  vectors [SeLA012]. Appendix E includes an explanation about the geometrical interpretation 

of complement coding. 

4.3 Summary 

The adaptive resonance theory underpinnings have been introduced. Specific equation 

models are discussed. The topological distinctions for different generations of ART are 

presented. The computational intelligence algorithms, ART1 and FuzzyART, applied in this 

research are explored in depth. 
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CHAPTER V                                                                                

DESIGN OF EXPERIMENTS 

 

This chapter is dedicated for describing the experiments details. This description follows 

the theoretical framework introduced in the previous chapters. The experiments are described 

with the required detail so that they are reproducible. The experimental environment available is 

also described. This description previous to executing the experiments provides completeness for 

the specific route taken in this research to this point. The results of experiments after conducting 

them are described in the next chapter. 

5.1 Experimental Platform 

The experiments are executed in two computer systems: (i) A server with an Intel Xeon 

dual (2.93 GHz) microprocessor, 48 GB of RAM memory, Windows Server 2008 R2 Enterprise, 

and MATLAB R2019a; and (ii) A Mac Pro with a 2 Quad-Core Intel Xeon (2.4 GHz) 

microprocessors, 12 GB of RAM memory, MacOS X High Sierra (10.13.2), and MATLAB 

R2019a. 

5.2 Experiments Design 

The distinct experiments conducted in this section follow directly from the research core. 

These experiments are prepared in a modular and incremental fashion so that the relevant points 

are serially connected in their respective descriptions. A high degree of care has been put into the 

experiments design for having a concrete and very complete analysis framework in which the 

research questions would be covered extensively. The experiments addressed here are conducted 

in a dataset that contains a real DDoS attack. The dataset utilized in this research contains 

enough features (e.g., precursors, attack flows, aggregated attack flows, genuine traffic flows, 

and an undisclosed attack) to be considered an example of a preliminary “gold” standard for 

detection of anomalies caused by DDoS. Additionally, this dataset is understood and one DDoS 
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attack is annotated and extensively described by the source. The full description of the details of 

such DDoS attack is included in Appendix F [Depa013]. 

The notation introduced in Ch. II is followed in the experiments design. The DDoS 

dataset analysed in this research with a traffic length N  (60 million). The total stream flows are 

compounded whether they are either attack flows or genuine flows as defined by  

F i iS A G= +           (5.1)

  
where FS  denotes all streams present in the traffic under analysis, A  denotes attack flows, G  

denotes genuine flows, and 1i ≥  represents multiple attack or genuine flows. All flows, total 

stream, attack, or genuine, are sampled within an arbitrary small time interval. 

5.2.1 Dataset Insight 

5.2.1.1 Dataset Packet Count Integration 

The number of packets in the total flows stream are integrated within a time interval of 

100 ms [Yu014]. All packets falling into this time interval are accumulated into a packet count. 

FS  is further simplified to S  when singling out a specific component of the traffic as illustrated 

in the next case. The number of packets is then represented by the data sequence . [ ],S p n  where 

n  denotes the thn  element in the sampled data sequence. Hence, a realization of the total stream 

flows packet count is represented by 

. [ ] { . [1], . [2], ...}S p n s p s p=   
        

(5.2)  

5.2.1.2 Dataset Packet Length Integration 

Similarly, from the dataset [Depa013], the packets lengths can be integrated within a 1 s 

interval. The length of the number of packets falling into these intervals is accumulated. This 

accumulated value is utilized to specify the data rate in B/s in this time series. A realization of 

the total stream flows packet length is represented by 

. [ ] { . [1], . [2], ...}S l n s l s l=   
        

(5.3)  

5.2.1.3 DDoS Attack Packet Count Integration 

The number of DDoS attack packets, considering all the attack flows being aggregated, 



POLYSCALE BASED CYBERSECURITY  Ch. 5: Design of Experiments 

 

 

Jesus David Terrazas Gonzalez    
 − 80 −  

are integrated within a time interval of 100 ms [Yu014]. All packets falling into this time interval 

are accumulated into an attack packet count. The number of all aggregated DDoS attack packets 

is then represented by the data sequence . [ ],A p n  where n  denotes the thn  element in the 

sampled data sequence. Hence, a realization of the DDoS attack packet count is represented by 

. [ ] { . [1], . [2], ...}A p n a p a p=           (5.4)  

5.2.1.4 DDoS Attack Packet Length Integration 

Likewise, the DDoS attack packets lengths can be integrated within a 1 s interval. The 

length of the number of DDoS attack packets falling into these intervals is accumulated. This 

accumulated is utilized to specify the data rate in B/s in the DDoS attack time series. A 

realization of the DDoS attack flows packet length is represented by 

. [ ] { . [1], . [2], ...}A l n a l a l=   
        

(5.5)  

5.2.1.5 DDoS Attack Flows Packet Count Integration 

The number of packets per DDoS attack flow, a per bot contribution to the overall DDoS 

attack, are integrated within a time interval of 100 ms [Yu014]. All packets falling into this time 

interval are accumulated into a DDoS attack flow packet count. The number of packets per 

DDoS attack flow is then represented by the data sequence . [ ],iA p n  where n  denotes the thn  

element in the sampled data sequence and i  denotes the thi  DDoS attack flow. Hence, a 

realization of a DDoS attack flow packet count is represented by 

. [ ] { . [1], . [2], ...}i i iA p n a p a p=   
       

(5.6)  

For the particular dataset subject of this study, the botmaster had the IP address: 

145.233.157.236. This botmaster coordinated six bots (IP addresses: 145.233.157.224, 

145.233.157.228, 145.233.157.232, 145.233.157.233, 145.233.157.234, and 145.233.157.235) 

contributing DDoS attack flows to the DDoS attack. The DDoS attack flows packet counts are 

identified by 1 2 3 4 5 6. [ ],  . [ ],  . [ ],  . [ ],  . [ ],  and . [ ],A p n A p n A p n A p n A p n A p n  which is in 

correspondence with the IP addresses listed beforehand. For more information on the specifics of 

the DDoS dataset, please refer to Appendix F. The six bot DDoS attack flows contributions are 

isolated from the dataset traffic in order to verify the botnet fingerprint. 
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5.2.1.6 DDoS Attack Flows Length Integration 

Also, the DDoS attack flows packets lengths are integrated within a 1 s interval. The 

length of the number of DDoS attack flows packets falling into these intervals is accumulated. 

This accumulation is utilized to specify the data rate in B/s for the DDoS attack flows time 

series. Following the same criteria for the IPs list described previously, a realization of the DDoS 

attack flows packet length is represented by 

. [ ] { . [1],  . [1],  ...}i i iA l n a l a l=
        

(5.7)  

5.2.2 Implementation and Validation of VFD as Reference Methodology 

5.2.2.1 VFD Validation through White Noise 

In order to verify the correct implementation of the VFD algorithm, it is necessary to 

validate that it produces results that correspond to known signals. Two white noise signals are 

generated with uniform and Gaussian probability distribution functions. The length for both 

signals is 10 million samples. After these signals are generated, they are subjected to determine 

their fractal dimension with the VFD. Since white noise is considered a space-filling curve, it is 

expected that a fractal dimension with a value of two would be provided upon verification. 

Obtaining a fractal dimension of two would confirm that the VFD algorithm is correctly 

implemented. 

The importance of validating the VFD implementation is necessary because it is planned 

to be used in the continuing stages of the proposed research. Hence, the need for verification of 

this focal algorithm. 

5.2.3 Internet/Network Traffic Pipeline: Signal Conditioning, Analysis, 

Feature Extraction, and Classification via Adaptive Resonance Theory 

Utilizing the Protected Repository for the Defense of Infrastructure Against Cyber 

Threats (PREDICT) DDoS dataset, having a minimal sampling period of 1 s,µ  a signal . [ ]S l n  

with a specific integration time of 1.0486 sn =  is created. This integration time of 1.0486 s is 

derived from a frame containing 256 samples, which are derived from frames of 4,096 of 

original DDoS dataset sampled at 1 sµ  (256 frames times 4,096 frames sampled at 1 sµ  cause an 
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integration time of 1.0486 s). The necessary number of samples in a time frame is 4,096 for 

allowing the proposed multiscalors methodology to work properly. Additionally, highlighting the 

presence of a hit and run (H&R) DDoS attack in this dataset requires a value close to 1 s for 

achieving a better visual perception. The signal . [ ]S l n  is then digitally processed for denoising, 

non-linear filtering, and quantization. At this stage, once the multiscalors epiphenomena have 

been quantized a feature vector is set for classification through ART. 

5.2.4 Feature Extraction 

5.2.4.1 Selected Operators Applied through Multiscalors 

Two statistical moments, variance and skewness, are used with the methodology 

“multiscalors” previously introduced in this thesis. Since statistical moments provide relevant 

statistical properties about a signal stemming from a given process, the variance and skewness 

reflect the spread and how biased a pmf is to either side. Since Internet traffic resembles the 

probability distribution function (pdf) of Lévy walks, the two referred statistical moments are 

appropriate. Extensive publications, related to the resemblance between Internet traffic pmfs and 

Lévy walks, by the author of this thesis are available in the literature ([TeKi016a], [TeKi016b], 

[TeKi016c], and [TeKi016d]). Hence, the multiscalors methodology utilizing two operators, 

variance and skewness, is applied to frames of 4,096 samples in size from the DDoS dataset with 

a sampling period of 1 s.µ  From each frame of 4,096 samples, the multiscalors would provide 

seven points, which correspond to the vels size from 1 72  to 2 .  

These experiments are very important because they show the application of two 

operators, which have been traditionally used only in monoscale analysis, in multiscale analysis. 

Once the multiscalors are obtained, secondary methodologies are utilized to analyse the 

multiscalor components. These are described next. 

5.2.4.2 Experiments with Selected Signal Analysis Methodologies Applied to 

Multiscalors Components 

The successive application of multiscalors in frames, 4,096 samples in size, creates seven 

components (streams) of data. Each of these multiscalors components (streams) is further sliced 
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into frames of 256 samples in length so that a secondary operator is utilized. The three secondary 

operators selected are cumulative sum, ZCR, and Shannon entropy. Publications, by the author 

of this thesis, portraying the use of ZCR are available in the literature ([TeKi016a], [TeKi016b], 

[TeKi016c], and [TeKi016d]). 

The selection of the sizes of the primary frame (where multiscalors is applied to a 4,096 

samples frame in size, which are sampled at 1 sµ ) and the secondary frame (where the three 

secondary operators are applied to a 256 samples frame in size) reflect the dynamics of the 

Internet traffic in a time of 1.0486 s. A major significance of the usage of the linked frames (by 

subsequently applying multiscalors and secondary operator) is achieving a compression factor of 

61.0486 10×  for the extracted features prior to using machine learning. It is important to 

highlight that bigger sizes (i.e., 1,024 and 4,096 samples) for the secondary frame were 

considered and experiments were also conducted on them, but these are not included in this 

document. The only size that is documented in this thesis is of 256 samples in the secondary 

frame for detecting the presence on a DNS amplification DDoS attack and these reasons are 

considered: (i) It is the worst-case scenario considered in this research due to the smaller number 

of samples involved; (ii) this frame size enables the ART neural networks to achieve a detection 

time close to one second depending on the computing power required to make a decision. ART 

based neural networks are favoured in this research due to the inherent unsupervised nature and 

overperforming alternate supervised neural networks which typically require hundreds of 

thousands of epochs for training and good quality training sets a priori. Hence, ART neural 

networks are suitable candidates for real-time applications; and (iii) considering that bigger 

frame sizes would provide smoother and even more compressed features to the ART neural 

networks at the expense of delaying detection (e.g., four seconds if a frame size of 1,024 samples 

is used and 16 seconds with a frame size of 4,096 samples).  

5.2.5 Feature Classification 

5.2.5.1 Preparation of Feature Vector for ART 

Upon achieving the compression of the raw signal through multiscale and polyscale 

analysis, the features extracted from the multiscalors epiphenomena are assembled into a feature 
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vector. The vector would then be subject for classification through computational intelligence 

utilizing ART. In order to have this feature vector ready for ART, each feature is exposed to 

denoising, non-linear filtering, and quantization.  

The feature vector for ART bundles 42 quantized scalars (each in a four bits long binary 

representation) entirely, which are identified in detail as: Seven scalars from the cumulative sum 

applied to the variance multiscalor, seven scalars from the ZCR applied to the variance 

multiscalor, seven scalars from entropy applied to the variance multiscalor, seven scalars from 

the cumulative sum applied to the skewness multiscalor, seven scalars from the ZCR applied to 

the skewness multiscalor, and seven scalars from entropy applied to the skewness multiscalor. 

5.2.5.2 Preparation of Feature Vector for FuzzyART 

An alternate computational intelligence algorithm that can be used in the context of ART 

is known as FuzzyART. FuzzyART spares quantizing the signal, which saves time in the 

preparation of a feature vector. The feature vector for FuzzyART bundles 42 non-quantized 

scalars entirely. This arrangement is described previously for ART. 

For both ART1 and FuzzyART the order of the scalars is inconsequential as the 

sensitivity parameter can be set to fingerprint minute details in distinct patterns. From the two 

vectors containing 42 scalars each, alternate vectors can be derived. Such refinement has not 

been considered within this research as it is a research problem that falls outside the scope 

defined. 

5.2.5.3 Classification Through ART 

Once the feature vector for the neural network ART1 is prepared and its scalar 

components are translated into binary representation, it is run through the MATLAB 

implementation of ART1. The ART1 neural network has been fully described previously in 

section 5.7.1. This experiment aims to determine a quantitative insight about the 

Internet/network traffic dataset under analysis. 

Since ART1 has only one parameter, the vigilance parameter ,ρ  a rule of thumb is 

followed to set its value to 0.9.ρ =  If this value would yield no successful classification results, 

alternate values in the interval [0,  1]  would be chosen and experimented with until a conclusive 
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result is achieved. 

5.2.5.4 Classification Through FuzzyART 

Correspondingly, the feature vector for the neural network FuzzyART is readied and 

value representation of its scalar components is kept unaltered because FuzzyART is capable of 

handling continuous value representations. Afterwards, the corresponding feature vector is 

subjected to the FuzzyART neural network implementation in MATLAB. Similarly, this trial 

targets getting quantitative insight about the Internet/network dataset and providing an 

alternative point of comparison with a neural network based on ART.  

FuzzyART also requires only one parameter, the vigilance parameter ,ρ  for creating 

classes for recognizing the patterns within the traffic in this specific application. A similar 

criterion is followed for setting the initial value of the vigilance parameter and finding an optimal 

value in the interval [0,  1]  that provides conclusive results about the presence of malicious 

traffic. 

Since the raw Internet traffic has been compressed significantly by a factor of 

61.0486 10 ,×  it is expected that the ART1 and FuzzyART neural networks (already capable of 

surpassing alternative neural networks, which in comparison require a high number of epochs for 

their training) are a good fit for running in real-time. 

5.3 Summary 

The available computing resources available to analyze the PREDICT dataset have been 

described. An in depth approach to further delve into details of the dataset has been provided. 

This approach starts with the raw traffic (mixture of genuine and attack traffic), the compound 

attack traffic, and the isolation of individual attack flows. For these three cases, the integration of 

the packet counts and the packet lengths over periods of time of 100 ms and 1 s are considered 

respectively. The variance fractal dimension validation is carried by using white noise with two 

distinct distributions (i.e., Uniform and Gaussian). The Internet traffic analysis pipeline is 

presented, where the key elements are feature extraction and classification through ART. The 

two statistical moments, variance and skewness, application as operators through multiscalors is 

described. The application of three secondary operators, cumulative sum, ZCR, and Shannon 
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entropy, onto the multiscalors components is proposed. The preparation of the feature vectors for 

the machine learning models, ART1 and FuzzyART, are addressed. The expected classification 

mechanism for both models is also discussed. 
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CHAPTER VI                                                                 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

The previous chapter presented the design of experiments considered in this study. Eight 

experiments are performed and shown throughout this chapter. Six of these experiments embrace 

the approach for revealing the individual contributions of bots. It shall be recalled that in order to 

achieve this, the raw traffic, the compound attack traffic, and the individual attack flows are 

analyzed. The two cases of the compound attack traffic and individual attack flows require 

isolating attack packets from the dataset. The individual attack flows packet counts, and data 

rates are analyzed to see if a contribution fingerprint to the overall attack traffic is observed. This 

is the utmost goal pursued in this segmentation of traffic. Lastly, two experiments for validating 

the variance fractal dimension are shown at the end. These experiments consider the usage of 

known signals as is the case of white noise, which was generated using two distinct probability 

distribution functions (i.e., Uniform and Gaussian). 

6.1 Dataset Packet Count Integration 

The traffic packets represented by the data sequence . [ ]S p n  are integrated over a time 

interval of 100 ms. Each point in Fig. 6.1 represents the packet count over this interval of time. 

This figure resembles normal behaviour of Internet traffic, which is noise like. By integrating the 

traffic further through a moving average filter with 128 coefficients, a smoother curve is seen in 

blue. It is difficult to identify the DDoS attack taking place at this point by visually inspecting 

Fig 6.1. It is known a priori that the DDoS attack takes place between the 446.9 seconds and 

1369.3 seconds according to the PREDICT dataset information. Knowing this and paying 

attention to the figure it is possible to see a hump in the averaged packet count between the start 

and end of the DDoS attack. 

Almost at the end of the waveform there are two spikes that do not belong to the DDoS 
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attack, but these are apparently part of genuine traffic. This provides an idea of how challenging 

it is to identify DDoS attacks based on methods that could consider energy alone and not ITB 

approaches. 

 

 

Fig. 6.1.7  Packets count of traffic in 100 ms time intervals. The packets counts averages are shown as blue coloured waveform. 

 

6.2 Dataset Packet Length Integration 

The integration of the packets data rate . [ ]S l n  over a time interval of one second is shown 

in Figure 6.2. The protuberance between the start and end of the DDoS attack is more visible and 

the spikes belonging to normal traffic are even more pronounced. Some other minor spikes start 

to pop up in different positions as well. 

6.3 DDoS Attack Packet Count Integration 

Figure 6.3 depicts the traffic belonging only to the DDoS attack . [ ].A p n  This is why 

there is no traffic before the start and after the end of the DDoS attack. It is noticeable in this 

figure of the regularity of the packets count, which is steady at rate of 120 packets per 100 ms. It 

is also noticeable that at the beginning of the DDoS attack there is some sort of preliminary 

signature and then the packet count for the attack becomes steady. 
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Fig. 6.2.8  Traffic data rate in 1 s time intervals. The traffic data rate averages are shown as a blue coloured waveform. 

 

 

Fig. 6.3.9  DDoS attack packets counts in 100 ms time intervals. The DDoS attack packets counts averages are shown as a blue 
coloured waveform. 

 

6.4 DDoS Attack Packet Length Integration 

The integration of the attack packets lengths . [ ]Al n  is showcased in Fig. 6.4. A similar 

behaviour can be seen as in the integration of the attack packets counts waveform discussed just 
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previously. Also seen is a preliminary transient signature before the attack becomes steady. Once 

this transient goes by the data rate becomes steady in a value of 0.1296 MB/s. Similarly, the 

absence of data before and after the attacks takes place, follows from the fact that the genuine 

traffic has been removed. 

 

 

Fig. 6.4.10 DDoS attack data rate in 1 s time intervals. The DDoS attack data rate averages are shown as a blue coloured 
waveform. 

 

6.5 DDoS Attack Flows Packet Count Integration 

The attack flows . [ ]iA p n  that each of the six bots is contributing towards the DDoS 

attack are isolated by filtering very specifically the source and destination IPs. The 6 attack flows 

are integrated over time intervals of 100 ms. The six figures 6.5-10 show the waveform of these 

distinct integrations correspondingly. Once the bot becomes steady it is observed that each attack 

flow is contributing 20 packets each 100 ms for the overall attack. Zooming into the contribution 

of single bots towards the overall DDoS attack is relevant because it confirms that the agents, 

part of a botnet, have very similar behaviour. It is important to highlight that not all botnets have 

the same behaviour and not all of them are expected to have a fingerprint that is easily 

identifiable. Concluding with the observations from Figs 6.5-10, it is seen that each of the six 
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bots contributes 20 packets to the overall DDoS attack depicted in Fig 6.1. 

 

 

Fig. 6.5.11 DDoS attack flow packets counts 1. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 

 

 

Fig. 6.6.12 DDoS attack flow packets counts 2. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 
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Fig. 6.7.13 DDoS attack flow packets counts 3. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 

 

 

Fig. 6.8.14 DDoS attack flow packets counts 4. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 
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Fig. 6.9.15 DDoS attack flow packets counts 5. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 

 

 

Fig. 6.10.16 DDoS attack flow packets counts 6. [ ]A p n  in 100 ms intervals. The DDoS attack flow packets counts averages are 

shown as a blue coloured waveform. 
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6.6 DDoS Attack Flows Length Integration 

The six bots contributions to the composite DDoS attack, in terms of the packets lengths 

behaviours . [ ],iA l n  ae observed in Figs. 6.11-16. The packets lengths in the six attack flows are 

integrated over a time interval of one second. It is observed that in all six cases the contributions 

of the bots, in terms of data rates, also become steady shortly after the bots have been instructed 

to launch the attack. This agrees with the previous results in terms of the packets count per attack 

flow. All figures 6.11-16 show that each bot contributes 0.0216 MB/s when attacking the victim. 

The accumulation of these steady contributions adds up to the data rate of 0.1296 MB/s 

belonging the composite DDoS attack and shown previously in Fig. 6.4. A bot contributing a 

negligible data rate for attacking a victim seems inconsequential, but one has to consider that the 

number of agents in a botnet is in the range of thousands or hundreds of thousands. It is these 

very high data rates which are extremely dangerous for businesses and dedicated services that 

our society relies on. 

 

 

Fig. 6.11.17 DDoS attack flow data rate 1. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are blue coloured.  

0 2000 4469 6000 8000 10000 12000 13693 16000 18000
0

0.005

0.01

0.015

0.02

0.0216



POLYSCALE BASED CYBERSECURITY  Ch. 6: Experimental Results and Discussion 

 

 

Jesus David Terrazas Gonzalez    
 − 95 −  

 

Fig. 6.12.18 DDoS attack flow data rate 2. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are shown as a 

blue coloured waveform. 

 

 

Fig. 6.13.19 DDoS attack flow data rate 3. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are shown as a 

blue coloured waveform. 
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Fig. 6.14.20 DDoS attack flow data rate 4. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are shown as a 

blue coloured waveform. 

 

Fig. 6.15.21 DDoS attack flow data rate 5. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are shown as a 

light coloured waveform. 
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Fig. 6.16.22 DDoS attack flow data rate 6. [ ]A l n  in 1 s time intervals. The DDoS attack flow data rate averages are shown as a 

light coloured waveform. 

 

6.7 VFD Validation  

6.7.1 VFD Validation through White Noise with Uniform Distribution 

Given the significance of the variance fractal dimension in this research, its algorithm 

implementation is verified utilizing Uniform white noise (UWN) in this experiment. Figure 6.17 

shows the first 500 samples of the signal with the characteristics of white noise with Uniform 

distribution. This figure is included here for completeness and to provide a graphical description 

of the nature of this signal. Subjecting the UWN to the VFD analysis so that its fractal dimension 

is obtained determines that it has a value of two as shown in Fig. 6.18. The value of the log base 

two corresponds to the variance of 1/12, which is characteristic of the Uniform distribution. Such 

value is found to be constant in all the different scales for which it was calculated. Hence, the 

implementation of the VFD to this point is verified to be correct. 
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Fig. 6.17.23 White noise with Uniform distribution. 

 

 

Fig. 6.18.24 Variance fractal dimension applied to a sequence (10 million samples long) of white noise with Gaussian 
distribution. The ten most significant variance values in the log-log plot are shown. 

 

6.7.2 VFD Validation through White Noise with Gaussian Distribution 

Including another known space-filling curve, as is the case of GWN, this experiment 
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characteristics of white noise with Gaussian distribution. Similarly to the previous experiment, it 

is found that its fractal dimension has a value of two as shown in Fig. 6.20. The value of the log 

base two corresponds to the variance of one (derived from the characteristic squared standard 

deviation equals to one in a normal Gaussian), which is characteristic of the Gaussian 

distribution. Such value of zero is also found to be constant in all the different scales for which it 

was calculated as shown in Fig. 6.20. This fact restates that the implementation of the VFD is 

correct. 

6.8 Results of Selected Primary Analysis Operators Applied through 

Multiscalors 

The results obtained by subjecting the variance and skewness, as primary analysis 

operators, to multiscalors can be found in Appendix G. No higher order moments were utilized 

due to increase of computing error. It is important to highlight that the results obtained by the 

variance multiscalor visually resembles in all its components (from first ( 12|||
m ) to seventh ( 72|||

m )) 

both of the DDoS attacks, the DNS amplification and the H&R, that are present in the dataset 

and can be seen in Figs. G.1 to G.7 respectively located in Appendix G. 

 

 

Fig. 6.19.25 White noise with Gaussian distribution. 
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Fig. 6.20.26 Variance fractal dimension applied to a sequence (10 million samples long) of white noise with Gaussian 
distribution. The ten most significant variance values in the log-log plot are shown. 

 

It is found that the skewness multiscalor visual insights are not as clear as the ones 

provided by the variance multiscalor previously. Specifically, the DNS Amplification DDoS 

attack is visibly identifiable in the first ( 13|||
m ), second ( 23|||

m ), and third ( 33|||
m ) skewness 

multiscalor components while the H&R DDoS attack is remarkably weak in all components of 

the skewness multiscalor. Figures G.8 to G.14 found in Appendix G compile the results 

pertaining the skewness multiscalor. 

It is expected that upon application of secondary operators to both variance and skewness 

multiscalors components, both DDoS attacks would become visibly stronger. This enhancement 

is expected prior to preparing the feature vectors intended for the machine learning models. 

Finding no visual resemblance hinting at the presence of DDoS attacks (as is the case for 

the skewness multiscalor components) is no limitation for recognition of patterns through 

machine learning, which are computing implementations capable of providing quantifiable 

conclusions. This is one of the reasons for subjecting the individual components of both variance 

and skewness multiscalors to a successive analysis stage. This secondary analysis stage is 

designed for fitting secondary operators as cumulative sum, ZCR, and Shannon’s entropy. This 

secondary analysis has a twofold purpose, collecting more robust and diverse insights into the 
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dynamics of the Internet/network traffic and achieving a higher data compression for the feature 

vector used in the classification stage through the ART variants implemented. 

The author is acquainted with distinct areas of signal analysis in domains such as time, 

time-frequency (e.g., short-time Fourier transform, short-time cepstrum), multiscale (e.g., 

wavelets and fractal analysis), and polyscale. It is the latter that is the focus in this research. In 

order to achieve real-time processing, it is best to have computing methodologies and techniques 

with a low impact, which in an aggregated form are capable of extracting robust features. Hence, 

the reason why the three distinct methodologies, cumulative sum, ZCR, and Shannon entropy, 

have been selected for further analysis of the components of both the variance and skewness 

multiscalors.  

For each secondary operator applied to the multiscalors components (one, 1|||
Ξ , to seven, 

7|||
Ξ  in this case) in the next subsection, four figures (6.21, 6.23-25) show the results of the 

secondary operator applied to a given multiscalor component, a denoising stage based on 

Donoho’s method, a median filtering stage, and quantization stage. The results yielded by 

secondary operators lacking a significant or visible resemblance of the DDoS attack have been 

removed for brevity. Nonetheless, experiments with the machine learning algorithms selected 

with a feature vector incorporating all the results of the secondary operators applied to the 

multiscalors components have been conducted and this is highlighted accordingly. All plots are 

captioned properly to identify the secondary operator in question (cumulative sum, ZCR, or 

Shannon entropy), the multiscalor component (from first, 1|||
,Ξ  to seventh, 7|||

Ξ ), and the analysis 

stage (outcome of the secondary operator, denoising, non-linear filtering, and quantization). A 

concrete description and discussion about the dynamics seen within the analysis stage done for 

each component of both the variance and skewness multiscalors is elaborated on with the 

corresponding figure provided. 

6.9 Availability of Signals for Adaptive Resonance Theory 

This subsection presents the DDoS dataset (a signal . [ ]S l n  with a specific integration 

time of 1.0486 sn = ) pipelined through Donoho’s denoising, median non-linear filtering, and 

Lloyd’s quantization. These three methodologies have been already described extensively in this 
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thesis. The DDoS dataset used in this pipelining is depicted in Fig. 6.21. 

In figure 6.21 a traffic burst is observed between 1, 600n =  and 1,800.n =  This traffic 

burst has all the characteristics of a hit and run DDoS, which is a special form of DDoS that is 

activated and deactivated periodically. In Figure 6.22, the details of this burst are presented. 

 

 

Fig. 6.21.27 Traffic data rate with an integration time of 1.0486 s. The DDoS attack start (marked with a red dashed and dotted 

line) and end (marked with a green dashed and dotted line) are seen at 425n =  and 1,305n =  respectively. Also, a hit and run 

DDoS attack is seen between 1,681n =  and 1,718n = . 

 

 

Fig. 6.22.28 Hit and run DDoS attack start (marked with a red dotted line) and end (marked with a green dotted line) are seen at 
1,681n =  and 1,718n =  respectively. Eleven peaks are seen during the duration of this attack.  

200 425 600 800 1000 1200 1305 1600 1800

10

20

30

40

50

60

DDoS
Start

DDoS
End

H&R
DDoS

Start

H&R
DDoS
End

1650 1681 1718 1750

10

20

30

40

50

60

H&R
DDoS

Start

H&R
DDoS
End



POLYSCALE BASED CYBERSECURITY  Ch. 6: Experimental Results and Discussion 

 

 

Jesus David Terrazas Gonzalez    
 − 103 −  

6.9.1 Denoising 

The DDoS dataset is firstly exposed to the Donoho’s denoising methodology for which a 

Coiflet wavelet with scaling factor of five has been used. This specific wavelet has been selected 

because Coiflets resemble best the shape of Internet traffic. Figure 6.23 shows the results of 

processing the DDoS dataset with Donoho’s denoising, which achieves a smother waveform. 

 

 

Fig. 6.23.29 DDoS dataset processed with Donoho’s denoising. A Coiflet wavelet with scaling factor of five is used. The DDoS 

attack start (marked with a red dashed and dotted line) and end (marked with a green dashed and dotted line) are seen at 425n =  
and 1,305n =  respectively. Also, a hit and run DDoS attack is seen between 1,681n =  and 1,718n = . 

 

6.9.2 Non-Linear Filtering 

In Figure 6.23 one still observes small peaks throughout the waveform, which are 

possible to remove with a non-linear technique, which in this case median filtering has been 

chosen. Processing the smoothed waveform with median filtering as seen in Fig. 6.24 smooths 

the waveform even further. The result of the non-linear median filtering is seen to cause an 

amplification (having a bigger impact) in the section where the hit and run DDoS attack is found. 

6.9.3 Quantization 

Figure 6.25 shows the DDoS dataset quantized with Lloyd’s methodology. Proving that a 
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complex waveform, as is the case of Internet traffic, can be quantized with Lloyd’s methodology 

provides assurance that the distinct features proposed in this thesis can be processed by the 

ART1 neural network. One has to recall that the ART1 can only process binary input vectors 

while FuzzyART can process vectors containing continuous values. 

 

Fig. 6.24.30 DDoS dataset processed with median filtering once denoised with Donoho’s methodology. The DDoS attack start 

(marked with a red dashed and dotted line) and end (marked with a green dashed and dotted line) are seen at 425n =  and 
1,305n =  respectively. Also, a hit and run DDoS attack is seen between 1,681n =  and 1,718n = . 

 

Fig. 6.25.31 Quantized DDoS dataset with Lloyd’s methodology. The DDoS attack start (marked with a red dashed and dotted 

line) and end (marked with a green dashed and dotted line) are seen at 425n =  and n = 1,305 respectively. Also, a hit and run 

DDoS attack is seen between 1,681n =  and 1,718n = . 
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6.10 Findings About the Quality Detection of Variance Multiscalor Features  

Table I condenses results for the quality detection of the secondary operators applied 

towards the variance multiscalor. The description for each case is fully provided and documented 

in Appendix H, where 72 corresponding plots and their thorough descriptions are found. 

 

TABLE I 
QUALITY DETECTION OF VARIANCE MULTISCALOR 

Multiscalor 
Secondary  
Operator 

Component 

Detection Quality 

DNS DDoS H&R DDoS 

High Medium Low High Medium Low 
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6.11 Findings About the Quality Detection of Skewness Multiscalor Features  

Results for the quality detection of the secondary operators applied onto the skewness 

multiscalor is condensed in Table II. The description for each case is fully provided and 
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documented in Appendix I, where corresponding plots and their thorough descriptions are found. 

 

TABLE II 
QUALITY DETECTION OF SKEWNESS MULTISCALOR 

Multiscalor 
Secondary  
Operator 

Component 

Detection Quality 

DNS DDoS H&R DDoS 

High Medium Low High Medium Low 

Skewness 

3|||n
m  

Cumulative Sum (S) 

       

       

       

       

       

       

       

Zero Crossing Rate 
(Zn) 
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6.12 Preparation of Feature Vector for ART1 

The different stages performing the multiscale analysis of the dataset containing DDoS 

attacks have been presented. This particular segment reveals details about how the feature vector 

needs to be shaped for further processing by ART1 in order to obtain classification outcomes 

based on the relevant descriptors. 

Once achieving the compression of the raw signal through multiscale and polyscale 

analysis, the features extracted from the multiscalors components are assembled into a feature 
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vector. Such vector would then be subject for classification through computational intelligence 

utilizing ART1. In order to have this feature vector ready for ART1, each feature is exposed to 

denoising, non-linear filtering, and quantization.  

The feature vector for ART1 bundles 42 quantized scalars (each in a four bits long binary 

representation) entirely, which are identified in detail as: Seven scalars from the cumulative sum 

applied to the variance multiscalor, seven scalars from the ZCR applied to the variance 

multiscalor, seven scalars from entropy applied to the variance multiscalor, seven scalars from 

the cumulative sum applied to the skewness multiscalor, seven scalars from the ZCR applied to 

the skewness multiscalor, and seven scalars from entropy applied to the skewness multiscalor. 

6.12.1 Features Stemming from Cumulative Sum Applied to Variance 

Multiscalor 

Figures 6.26 and 6.27 show clear details about strong features generated through the 

variance multiscalor and that are further analysed with the cumulative sum. Both of the DDoS 

attacks are noticeable with clear beginnings and ends that are persistent in all variance 

multiscalor components (from the first 12|||
m  to seventh 72|||

m ). Figure 6.26 shows a central wide 

band corresponding to the DNS DDoS attack starting and finishing in the processing frames 425 

and 1,305 respectively, and a narrow band in the right corresponding to the H&R DDoS attack 

starting and finishing in the processing frames 1,681 and 1,718 respectively. There are narrow 

bands present, which correspond to minor spikes across the traffic. The cumulative sum visually 

registers in Fig. 6.26 high quality detection features when applied onto the seven variance 

multiscalor components as previously listed in Table I. 
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Fig. 6.26.32 Segment of quantized feature vector corresponding to the cumulative sum S applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 

 

 
Fig. 6.27.33 Segment of quantized feature vector corresponding to the cumulative sum S applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 
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6.12.2 Features Stemming from ZCR Applied to Variance Multiscalor 

When the variance multiscalor components are processed through ZCR, as shown in Figs. 

6.28 and 6.29, features with good detection quality are generated. The DNS DDoS attack appears 

well segmented from the second 22|||
m  to seventh 72|||

m  components, while the H&R DDoS attack 

appears well segmented for from the first 12|||
m  to seventh 72|||

m  components. Figure 6.28 shows a 

central wide band corresponding to the DNS DDoS attack starting and finishing in the processing 

frames 425 and 1,305 respectively, and a narrow band in the right corresponding to the H&R 

DDoS attack starting and finishing in the processing frames 1,681 and 1,718 respectively. The 

ZCR visually registers in Fig. 6.28 six high quality detection features for the DNS DDoS attack 

and seven high quality detection features for the H&R DDoS attack when applied onto the seven 

variance multiscalor components as listed earlier in Table I. 

 

 
Fig. 6.28.34 Segment of quantized feature vector corresponding to the ZCR nZ  applied to the variance multiscalor components 

1 72||| 2|||
(  to )m m . 
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Fig. 6.29.35 Segment of quantized feature vector corresponding to the ZCR nZ  applied to the variance multiscalor components 

1 72||| 2|||
(  to )m m . 

 

6.12.3 Features Stemming from Shannon’s Entropy Applied to Variance 

Multiscalor 

From the secondary operators applied towards the variance multiscalor, Shannon’s 

entropy is the one that brings fewer promising outcomes as observed in Figs. 6.30 and 6.31 

where clear details of the DDoS attacks are missing. Nevertheless, the H&R DDoS attack is 

perceptible in the sixth 62|||
m  and seventh 72|||

m  component in the narrow band in the right starting 

and finishing in the processing frames 1,681 and 1,718, which appears prominently for the 

cumulative sum and ZCR cases just introduced. It shall be observed that the outcomes from the 

first and second multiscalor components lack insights about the traffic in general as observed in 

Fig. 6.30. Shannon’s entropy then only provides two high quality detection features for the H&R 

DDoS case, which have been also pinpointed in Table I. 
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Fig. 6.30.36 Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 

 

 
Fig. 6.31.37 Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 

 

6.12.4 Ensemble of Features Stemming from Secondary Operators Applied to 

Variance Multiscalor 

Figure 6.32 brings into visual perspective the outcomes from the secondary operators 
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(cumulative sum, ZCR, and Shannon’s entropy) when processing the variance multiscalor 

components. From the horizontal rows in Fig. 6.32, the first to the seventh describe the 

cumulative sum outcomes, the eight to the 14th describe the ZCR outcomes, and the 15th to the 

21st describe the Shannon’s entropy outcomes. A surface tridimensional plot is provided in Fig. 

6.33 where the amplitude differences among the three sets of secondary operators outcomes is 

easier to grasp. 

 

 
Fig. 6.32.38 Segment of quantized feature vector corresponding to the secondary operators applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 
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Fig. 6.33.39 Segment of quantized feature vector corresponding to the secondary operators applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 

 

6.12.5 Features Stemming from Cumulative Sum Applied to Skewness 

Multiscalor 

Features generated by the cumulative sum applied to the skewness multiscalor are shown 

in Figs. 6.34 and 6.35. The DNS DDoS attack is present in the first 13|||
m  and the fourth 43|||

m
 

skewness multiscalor components, while the H&R DDoS attack is present in the sixth 63|||
m  and 
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the seventh 73|||
m  skewness multiscalor components. The skewness multiscalor components 

observed in Fig. 6.34 are of lesser quality than the variance multiscalor components shown in 

Fig. 6.26, which show more defined bands containing the DDoS attacks. The four high detection 

quality skewness multiscalors are listed in detail in Table II. 

 

 
Fig. 6.34.40 Segment of quantized feature vector corresponding to the cumulative sum S applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 

 

 
Fig. 6.35.41 Segment of quantized feature vector corresponding to the cumulative sum S applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 
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6.12.6 Features Stemming from ZCR Applied to Skewness Multiscalor 

Figures 6.36 and 6.37 depict the features yielded by the ZCR applied to the skewness 

multiscalor. The first 13|||
m  skewness multiscalor component denotes the feature with the highest 

quality detection capacity for the DNS DDoS attack. The first 13|||
m , sixth 63|||

m , and seventh 73|||
m  

skewness multiscalor components show strong quality detection to resolve the H&R DDoS 

attack. Table II shows details about the detection quality for the secondary operators applied to 

the skewness multiscalors. 

 

 
Fig. 6.36.42 Segment of quantized feature vector corresponding to the ZCR nZ  applied to the skewness multiscalor components 

1 73||| 3|||
(  to )m m . 

 

6.12.7 Features Stemming from Shannon’s Entropy Applied to Skewness 

Multiscalor 

Figures 6.38 and 6.39 depict the features produced by the Shannon’s entropy applied to 

the skewness multiscalor. The DNS DDoS is detectable only by the first 13|||
m  skewness 

multiscalor component, while the H&R DDoS attack is detectable by the first 13|||
m  and from the 

fourth 43|||
m  to the seventh 73|||

m  skewness multiscalor components. The particular details about 

the Shannon’s entropy detection quality for resolving both DDoS attacks are listed in Table II. 
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Fig. 6.37.43 Segment of quantized feature vector corresponding to the ZCR nZ  applied to the skewness multiscalor components 

1 73||| 3|||
(  to )m m .  

 

 
Fig. 6.38.44 Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 
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Fig. 6.39.45 Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 

 

6.12.8 Ensemble of Features Stemming from Secondary Operators Applied to 

Skewness Multiscalor 

All the secondary operators, cumulative sum, ZCR, and Shannon’s entropy, outcomes 

when processing the skewness multiscalor components are shown in Fig. 6.40 where in the 

horizontal rows shown, the first to the seventh describe the cumulative sum outcomes, the eight 

to the 14th describe the ZCR outcomes, and the 15th to the 21st describe the Shannon’s entropy 

outcomes. A complementary surface tridimensional plot is displayed in Fig. 6.41 where the 

amplitude differences among the three sets of outcome operators are registered. 
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Fig. 6.40.46 Segment of quantized feature vector corresponding to the secondary operators applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 
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Fig. 6.41.47 Segment of quantized feature vector corresponding to the secondary operators applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 

 

6.13 Preparation of Feature Vector for FuzzyART 

From the presented multiscale analysis of the dataset including the DDoS attacks, one of 

the variations of the ART machine learning can be fitted. This approach is FuzzyART, which has 

been documented previously in this thesis background. FuzzyART can provide classification 

outcomes utilizing real valued feature vectors. Hence, the quantization stage, after utilizing the 

secondary operators, is omitted and the essential feature vector for FuzzyART is then produced. 
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Nevertheless, the features in the vector are subject to denoising and non-linear filtering. 

The feature vector for FuzzyART subsequently packages 42 real valued scalars: Seven 

scalars from the cumulative sum applied to the variance multiscalor, seven scalars from the ZCR 

applied to the variance multiscalor, seven scalars from entropy applied to the variance 

multiscalor, seven scalars from the cumulative sum applied to the skewness multiscalor, seven 

scalars from the ZCR applied to the skewness multiscalor, and seven scalars from entropy 

applied to the skewness multiscalor.  

Plots for visualizing the specific details of each secondary operator applied to the 

multiscalor operators and creating the features for the FuzzyART feature vectors are omitted to 

condense the size of this thesis. However, specifics about every feature vector are covered 

extensively in section 6.12 and particulars about their detection quality are encapsulated in Table 

II. Furthermore, plots visualizing the ensembles of the three secondary operators applied to both 

multiscalors are included.  

6.13.1 Ensemble of Features Stemming from Secondary Operators Applied to 

Variance Multiscalor 

Figure 6.42 visualizes the real-valued outcomes from the secondary operators 

(cumulative sum, ZCR, and Shannon’s entropy) when processing the variance multiscalor 

components. From the horizontal rows in Fig. 6.42, the first to the seventh describe the 

cumulative sum outcomes, the eight to the 14th describe the ZCR outcomes, and the 15th to the 

21st describe the Shannon’s entropy outcomes. The surface tridimensional plot in Fig. 6.43 show 

real valued amplitude differences among the three sets of secondary operators outcomes. 
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Fig. 6.42.48 Segment of normalized feature vector corresponding to the secondary operators applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 
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Fig. 6.43.49 Segment of normalized feature vector corresponding to the secondary operators applied to the variance multiscalor 

components 1 72||| 2|||
(  to )m m . 

 

6.13.2 Ensemble of Features Stemming from Secondary Operators Applied to 

Skewness Multiscalor 

The real valued outcomes of the cumulative sum, ZCR, and Shannon’s entropy, acting as 

secondary operators on the skewness multiscalor components are shown in Fig. 6.44, where in 

the horizontal rows shown, the first to the seventh describe the cumulative sum outcomes, the 
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eight to the 14th describe the ZCR outcomes, and the 15th to the 21st describe the Shannon’s 

entropy outcomes. A complementary surface tridimensional plot is displayed in Fig. 6.45 where 

the real valued amplitude differences among the three sets of outcome operators are registered. 

 

 
Fig. 6.44.50 Segment of normalized feature vector corresponding to the secondary operators applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 
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Fig. 6.45.51 Segment of normalized feature vector corresponding to the secondary operators applied to the skewness multiscalor 

components 1 73||| 3|||
(  to )m m . 

 

6.14 ART1 Classification 

6.14.1 ART1 Feature Vector Comprising Secondary Operators Applied to 

Variance and Skewness Multiscalors 

Consequently, pattern recognition is conducted with the premise that conclusive 

outcomes through the application of ART would become apparent when classifying instances of 
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the feature vector. 

From the feature vector prepared in section 6.12, presented earlier, one shall recall that 

ART1 only processes data in its binary representation. Hence, the corresponding binary encoding 

of the quantized values for both variance and skewness multiscalors shown in Figs. 6.32 and 6.40 

are shown here in Figs. 6.46 and 6.47 respectively. 

 

 
Fig. 6.46.52 Binary representation, in a four bits word, of the quantized values of the secondary operators applied to the variance 

multiscalor. 
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Fig. 6.47.53 Binary representation, in a four bits word, of the quantized values of the secondary operators applied to the skewness 

multiscalor. 

 

Upon close inspection of Figs. 6.46 and 6.47, it is seen that the number of rows grows 

from 21 to 84 due to the binary representation required for ART1 making a feature vector 

containing 168 binary scalars. Also, clearer patterns for both the DNS and H&R DDoS attacks 

are observed in Fig. 6.46 (variance multiscalor in binary representation) when comparing it with 

Fig. 6.47 (skewness multiscalor in binary representation). 
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6.14.2 Classifications on ART1 Feature Vector  

For finding a good vigilance parameter ρ  for ART1, a recommended rule of thumb is to 

set it to 0.9 and then observe if the classes created resemble in any form the real structure of the 

data under analysis. The outcome of this rule of thumb value for 0.9ρ =  is implemented in Fig. 

6.48. The results shown in this figure do not resemble in any form neither of the DDoS attacks as 

indicated for the number of classes created (over 1600) by ART1, almost totalling the number of 

feature vectors .nFV  The number of neurons 2 jF  in Fig. 6.48 ranking almost the same as the 

number of feature vectors indicates a high degree of specialization (overfitting) of the neural 

network. 

 

 

Fig. 6.48.54 Unsupervised classification of feature vectors FVn (42 active features for each) with a vigilance parameter value of 
0.9.ρ =   

 

It is then necessary to depart to another vicinity of values for finding a good vigilance 

parameter ρ . Since the previous outcome in Fig. 6.48 is highly specialized (overfitted), setting a 

value close to 0 is appealing. Hence the vigilance parameter is set to 0.1.ρ =  The outcome for 

this value is shown in Fig. 6.49, where remarkable achievements become apparent. First of all, 

the number of classes diminished drastically to just 20; secondly, the DNS DDoS attack is 
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identified very clearly in its beginning and end almost in its entirety; thirdly, the H&R DDoS 

attack is also visible in an outstanding form.  

 

 

Fig. 6.49.55 Unsupervised classification of feature vectors FVn (42 active features for each) with a vigilance parameter value of 
0.1.ρ =  

 

Figure 6.50 shows the outcome for a value of 0.07ρ =  for the vigilance parameter. A 

smaller number of classes, 14 only, is seen and a clearer shape for the DNS DDoS attack is 

remarkably outlined.  

6.14.3 ART1 Parametogram 

Nevertheless, one could get genuinely concerned about setting trial values for the 

vigilance parameter ρ . There is no reported method in the literature for finding a suitable value 

candidate for ρ  in ART1. Hence, this research proposes a method addressing this ART1 

shortcoming for attempting to provide a degree of certainty for choosing a suitable value for the 

vigilance parameter ρ . This method for drawing suitable values for ρ  consists in: (i) Training 

ART1 for 0ρ =  to 1ρ =  in increments of 0.001; (ii) making the hypothesis that if a number of 

elements higher than 660 has been found in a class this would correspond with a high degree of 

certainty to the DNS DDoS attack since this is represented by 880 feature vectors. Roughly this 
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step looks for matching at least 75% of the feature vectors to the DNS DDoS attack real 

occurrence. This step is described mathematically by Mo | |,nFV  where Mo represents the mode 

and nFV  is the thn  feature vector presented to ART1; (iii) finding the onsets for the beginning 

and end that encapsulate cases of occurrences around 660 events in a class. The outcome of this 

method is shown in Fig. 6.51.  

 

 

Fig. 6.50.56 Unsupervised classification of feature vectors FVn (42 active features for each) with a vigilance parameter value of 
0.07.ρ =  

 

Two vertical dash-dotted lines divide the waveform presented in Fig. 6.51 into three 

zones: (i) Overgeneralization (OG) zone where the values for  fall in the interval . 

This zone would merge classes that are unrelated into a similar one; (ii) Class-of-Interest (COI) 

zone where the values ρ  fall in the interval . Values for ρ  that can classify the 

event of interest into a single class can be found; and (iii) Overspecialization (OS) zone where 

the values for ρ  fall in the interval . This zone would split events that belong into the 

same class into two or more separate classes. 

The COI zone shows values of the vigilance parameter that starts with the dash-dotted red 

line (set at a value 0.07ρ = ) and finishes with the dash-dotted green line (set to a value of 

ρ  [0,  0.07]

(0.07,  0.216]

(0.216,  1]
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0.216ρ = ). The top blue horizontal dash-dotted line represents 880 occurrences corresponding 

to the DNS DDoS attack. The bottom blue horizontal dash-dotted line is set at 660 occurrences, 

which arbitrarily represents 75% of the occurrences within the DNS DDoS attack. The OG zone 

(to the left of the dash-dotted red line) shows a number of occurrences higher to the top blue line, 

which means that more than 880 cases where placed into a class by ART1 (denoting a high 

degree of generalization). The OS zone (to the right of the dash-dotted green line) shows a rapid 

decay for the number of occurrences in the class containing the most elements, which means that 

less than 880 cases where placed into a class by ART1 (denoting a high degree of specialization 

as ρ  gets close to 1). 

 

 
Fig. 6.51.57 Unsupervised classification of feature vectors FVn (42 active features for each represented by a four bits binary 

word) with vigilance parameter values for ρ  spanning in the interval [0,  1] . 

 

The three distinct zones present in Fig. 6.51 are generalized through piecewise single 

term exponentials of the form 2

1
CC eρ , where C1 and C2 are exponential coefficients and e  is the 

natural logarithm. Exponentials are selected as they provide a better fit for the ART1 vigilance 

parameter curve. The optimization curve fitting Trust-Region algorithm is used to find the 

coefficients characterizing each zone. The following equation represents this analysis in a 

compact form: 
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6.14.4 Confusion Matrix for Assessing ART1 Classification Performance 

To this point, a procession of different data science methodologies and techniques have 

been discussed and implemented. This procession ranges from data access, data cleaning 

(removal of corrupt entries), data preprocessing, feature extraction, and machine learning 

modeling. The performance of the machine learning models is of particular interest. Hence, it is 

where the confusion matrix comes into the spotlight as it is a performance measurement for 

machine learning classification. Classification results are often presented in the form of a 

confusion matrix, a table where the header/sum of every row is the actual/true COI and the 

header/sum of every column is the detected/predicted class. In a confusion matrix, the number of 

correctly classified samples accumulates in the matrix diagonal. Falsely classified ones will be 

found outside of the diagonal [Cai011]. False positives (a record that is classified as negative but 

is actually positive) fall above the diagonal, while false negatives (a record that is classified as 

positive but is actually negative) fall below the diagonal. The overall error rate, or simply error 

rate, is the sum of the false negatives and false positives, divided by the total number of records 

( ) /ER fn fp n= Σ + Σ . To find the false negative rate, divide the number of false negatives by the 

total number of negative classifications /FNR fn tn= Σ Σ . Similarly, to find the false positive 

rate, divide the number of false positives by the total number of positive classifications 

/FPR fp tp= Σ Σ  [Laro005].  

More formally a confusion matrix is a 2D array of size Jcm × Jcm (where Jcm is the total 

number of classes) used to report results of classification experiments. The value in row i, 

column j indicates the number of times an object whose true class is i was labeled as belonging 

to class j. The main diagonal of the confusion matrix indicates the number of cases where the 

classifier was successful; a perfect classifier would show all off-diagonal elements equal to zero 

[Marq011].  

The measures of performance used in image retrieval borrow from the field of 

  

Mo | FV
n

|=

1.874x103(e−10.79ρ ) for ρ = [0,  0.07] Overgeneralization

1.080x103(e−2.961ρ ) for ρ = (0.07,  0.216] COI

1.804x104(e−17.05ρ ) for ρ = (0.216,  1] Overespecialization









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(document) information retrieval and are based on two primary figures of merit: Precision and 

recall. Precision is the number of relevant documents retrieved by the system divided by the total 

number of documents retrieved (i.e., true positives plus false positives). Recall is the number of 

relevant documents retrieved by the system divided by the total number of relevant documents in 

the database (which should, therefore, have been retrieved) [Marq011].  

Precision can be interpreted as a measure of exactness, whereas recall provides a measure 

of completeness. A perfect precision score of 1.0 means that every retrieved document (or image 

in our case) was relevant, but this situation does not provide any insight as to whether all relevant 

documents were retrieved. A perfect recall score of 1.0 means that all relevant images were 

retrieved, but this scenario says nothing about how many irrelevant images might have also been 

retrieved [Marq011].  

Precision, P, and recall, R, measures can also be adapted to and used in classification 

tasks and expressed in terms of true positives (TP), false positives (FP), and false negatives (FN) 

as / ( )P tp tp fp= Σ Σ +  and / ( )R tp tp fn= Σ Σ +  [Marq011]. Additional metrics about machine 

learning models performance measurement are listed in Appendix D. 

In this case, a precision score of 1.0 for a given class means that every item labeled as 

belonging to that class does indeed belong to the given class, but it says nothing about the 

number of items from the class that were not labeled correctly. A recall score of 1.0 means that 

every item from a given class is labeled as belonging to the class, but it says nothing about how 

many other items are incorrectly labeled as belonging to the class [Marq011]. 

To keep things consistent, the performance of the machine learning models used in this 

research (e.g., ART1 for a vigilance parameter 0.07ρ = ) are analyzed through confusion 

matrices. The assumptions for examining this confusion matrix analysis are: (i) The feature 

vectors extracted from the data represented by the packets data rate . [ ]S l n  (where a time interval 

of 1.0486 seconds is set) would be capable of classifying positively the DNS DDoS attack for n  

in the interval [425, 1305], (ii) the data made available for this research provides no labels for the 

presence of DDoS attacks. As a consequence, through careful study of this data is how the 

interval just mentioned is set as the best candidate for the DNS DDoS detection, which occupies 

a 42 percent of the overall traffic data accessed, (iii) the highest occurrence class provided by 
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ART1 for 0.07ρ =  is labelled as “DDoS Attack”, and (iv) the rest of the classes are joined and 

labelled as “Clear Traffic”. Since a confusion matrix serves as guiding means to collapse classes 

if they are found positioned too close in the chosen feature space [Cai011]. This is useful to 

recognize falsely assumed dissimilarity between those classes and collapse them [Cai011] since 

in this case they are within the clear traffic space. 

A confusion matrix for ART1 set to a vigilance parameter 0.07ρ =  is displayed in Fig. 

6.52. 

 

 

Fig. 6.52.58 Confusion matrix for ART1 with vigilance parameter 0.07.ρ =  The matrix displays: (i) 985 cases for clear traffic, 

(ii) 850 cases for a DDoS attack, (iii) 22 false cases for a DDoS attack, and (iv) 17 false cases for clear traffic. The column 
normalization (precision): (i) 98.3% for clear traffic, and (ii) 97.5% for a DDoS attack. The row normalization (recall): 97.8% for 

clear traffic, and (ii) 98% for DDoS attack. 

 

6.14.5 Selected Classifications Based on ART1 Parametogram COI 

This subsection explores some cases that fall within the COI zone in Fig. 6.51, which has 

values of the vigilance parameter starting with the dash-dotted red line (set at a value 0.07ρ = ) 

and finishing with the dash-dotted green line (set to a value of 0.216ρ = ). Hence, it is in this 

interval [0.07, 0.216] where some specific values for the vigilance parameter ρ  are chosen. One 

experiment that corresponds to a rule of thumb is represented by 0.9ρ = . Its extreme counterpart 
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is set to 0.1ρ = . These two values are included for completeness as they have been discussed in 

the text. Three specified experiments drawn from the ART1 parametogram (Fig. 6.51) are chosen 

for the values of 0.07ρ = , 0.088ρ = , and 0.09ρ = , which are expected to have a good high 

precision and recall. The information pertaining to five experiments (including the three 

specified experiments and the two guesses) is shown in Table III where specifics about the 

feature vector components and classification metrics are found (experiments of interest are 

shaded). 

 

 

Confusion matrices for the distinct values of the vigilance parameter ρ  in ART1 shown 

in Table III are included in Appendix J as Figs. J.1 to J.5. 

6.15 Findings About ART1 Classification 

The trial and error experiments for ART1 with vigilance parameter with values of 

0.1ρ = , and 0.9ρ = , have unbalanced values for precision and recall of 97% and 93.1%, and of 

100% and 0.3% respectively for the detection of DDoS attack occurrences.  

The vigilance parameter with a value of 0.1ρ =  holds the following deductions. Some of 

the DDoS attack occurrences (60) are misclassified into clear traffic and a lower number of the 

true occurrences (25) for the clear traffic are also missed. This number of misclassifications is 

not excessive 

For the vigilance parameter with a value of 0.9ρ = , the following inferences are 

collected. A high number of DDoS attack occurrences (864) are misclassified into clear traffic 

and the entirety of the true occurrences (1007) for the clear traffic are detected. The number of 

TABLE III 
ART1 CLASSIFICATION METRICS FOR DETECTION OF A DDOS ATTACK 

Machine 
Learning 

Model 

Vigilance 
Parameter 

ρ   

Components in Feature Vector Classification Metrics 

Variance  
Multiscalor 

Skewness 
Multiscalor Total 

DDoS 
True 

Positives  
Precision Recall 

S Z H S Z H 

ART1 

0.07 

7 7 7 7 7 7 42 

850 97.5% 98% 
0.088 848 98.5% 97.8% 
0.09 848 98.5% 97.8% 
0.1 807 97% 93.1% 
0.9 3 100% 0.3% 
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misclassifications for the DDoS attack is very high. 

From the values for the vigilance parameter in ART1, 0.07, 0.088, and 0.09, which were 

systematically selected from ART1 corresponding parametogram, well balanced values for both 

precision and recall are found, 97.5% and 98%, 98.5% and 97.8%, and 98.5% and 97.8% 

respectively corresponding to the occurrences detection of the DDoS attack. 

From the vigilance parameter set to values of 0.07ρ = , 0.088ρ = , and 0.09ρ = , the 

next outcome is notable. A low number of misclassifications is found for both the clear traffic 

and the DDoS attack classes. 

The overall implementation of ART1 as a machine learning approach, with 0.07ρ = , 

0.088ρ = , and 0.09ρ = , is found overperforming when compared to FuzzyART set to the best 

suitable vigilance parameter values found through the FuzzyART parametogram. This excursion 

is described next. A more detailed description of these findings is included in Appendix J. 

6.16 FuzzyART Classification  

6.16.1 FuzzyART Feature Vector Comprising Secondary Operators Applied 

to Variance and Skewness Multiscalors  

Moreover, FuzzyART, an analogous approach to ART1 is utilized. FuzzyART is fully 

described previously in the background chapters. Both ART1 and FuzzyART have the ART 

methodology at their core and function under distinct value representations for their vectors. The 

analysis of the feature vector through an additional unsupervised neural network like FuzzyART 

provides a supplementary testing scenario useful for classifying the DDoS cyberattacks 

described by multiscalors and secondary operators. 

Once the feature vectors in section 6.13 (described previously) for FuzzyART are 

prepared, one remembers that FuzzyART requires real valued data representation to perform 

classification. Consequently, the real valued vectors shown in Figs. 6.42 (variance) and 6.44 

(skewness) can be used directly in FuzzyART. The referred real valued feature vectors 

comprised of secondary operators applied to variance and skewness multiscalors, as primary 

operators, are resketched in Figs. 6.53 and 6.54 respectively in order to improve both the flow 

and aid the text comprehension. 
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Fig. 6.53.59 Real valued representation of the non-linear filtered secondary operators applied to the variance multiscalor. 

 

The patterns indicating the presence of both the DNS and H&R DDoS attacks continue to 

be observed in Fig. 6.53 (variance multiscalor in real valued representation) clearer than in Fig. 

6.54 (skewness multiscalor in real valued representation). 
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Fig. 6.54.60 Real valued representation of the non-linear filtered secondary operators applied to the skewness multiscalor. 

 

6.16.2 FuzzyART Parametogram 

Analogously, for FuzzyART, there is no reported method in the literature for finding a 

proper value for the vigilance parameter ρ . Hence, from the experience previously gained for 

ART1 when defining ρ , the same method to define this parameter is followed for FuzzyART. 

This method for defining ρ  for FuzzyART, with small modifications fitting the required 

parameters, consists in: (i) Training FuzzyART for 0ρ =  to 1ρ =  in increments of 0.001, while 
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assigning constant values to parameters 0.01α =  and 1β = ; (ii) setting a similar hypothesis that 

if a number of elements higher than 660 has been found in a class this would correspond with a 

high degree of certainty to the DNS DDoS attack, which is represented by 880 feature vectors 

instances. This step looks for matching at least 75% of the feature vectors to the DNS DDoS 

attack real occurrence. This step is represented mathematically by Mo | |nFV , where Mo 

represents the mode (as in the experiments previously described with ART1) and nFV  is the thn

feature vector presented to FuzzyART; (iii) finding the onsets for the beginning and end that 

encapsulate cases of occurrences around 660 events in a class. The outcome of the described 

method is shown in Fig. 6.55.  

Analogously, two vertical dash-dotted lines divide the waveform presented in Fig. 6.55 

into three zones: (i) The OG zone where the values for ρ  fall in the interval [0,  0.578].  This 

zone would group classes that are otherwise unrelated into a similar one; (ii) the COI zone where 

the values ρ  fall in the interval (0.578,  0.664].  The COI contains the more values for ρ  that 

can classify the event of interest into a single class; and (iii) the OS zone where the values for ρ  

fall in the interval (0.664,  1].  This zone would split events into two or more separate classes that 

otherwise belong to the same class. 

The COI zone shows values of the vigilance parameter that begins with the dash-dotted 

red line (set at a value 0.578ρ = ) and concludes with the dash-dotted green line (set to a value 

of 0.664ρ = ). The top blue horizontal dash-dotted line represents 880 occurrences 

corresponding to the DNS DDoS attack. The bottom blue horizontal dash-dotted line is set at 660 

occurrences, which represents 75% of the occurrences within the DNS DDoS attack. The OG 

zone (to the left of the dash-dotted red line) shows a number of occurrences higher to the top 

blue line, which means that more than 880 cases where placed into a class by FuzzyART 

(denoting a high degree of generalization). The OS zone (to the right of the dash-dotted green 

line) shows a rapid decay for the number of occurrences in the class containing the most 

elements, which means that less than 880 cases where placed into a class by FuzzyART 

(denoting a high degree of specialization as ρ  gets close to 1). 
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Fig. 6.55.61 FuzzyART Unsupervised classification of feature vectors FVn (42 active features represented by real values) with 

vigilance parameter values for ρ  spanning in the interval [0,  1] . 

 

The seven distinct zones present in Fig. 6.55 are generalized through piecewise constant 

intervals and third degree (aka cubic) polynomials of the form 3 2a b c dρ ρ ρ+ + + , where a, b, c, 

and d are the polynomial coefficients. Constant intervals and cubic polynomials are selected 

because a better fit is achieved for the FuzzyART vigilance parameter curve sections. The 

optimization curve fitting Trust-Region algorithm is used to find the equations and their 

coefficients characterizing each zone. The following equations and intervals portray this 

analysis: 
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6.16.3 Selected Classifications Based on FuzzyART Parametogram COI 

Some cases within the COI zone in Fig. 6.55 are explored in this subsection. Herein the 

vigilance parameter beginning with the dash-dotted red line (set at a value 0.578ρ = ) and 

ending with the dash-dotted green line (set to 0.664ρ = ). Henceforth, the interval [0.578, 0.664] 

holds specific values of interest for the vigilance parameter ρ . The first experiment is 

represented by 0.1ρ = , while its extreme counterpart is set to 0.9ρ = . These two values are 

included for comparison purposes between FuzzyART and ART1. Three promising experiments 

are derived from the FuzzyART parametogram (Fig. 6.55) setting values of the vigilance 

parameter for 0.632ρ = , 0.633ρ = , and 0.634ρ = . The data concerning these five experiments 

is recapitulated in Table IV where particulars about the feature vector components and 

Mo | FV
n

|=

∼1860

for ρ = [0,  0.253] OG

−1.222 ×107 ρ3 + 9.101×106 ρ2 − 2.274 ×106 ρ −1.926 ×105

for ρ = (0.253,  0.283] OG

8.283×106 ρ3 − 7.978 ×106 ρ2 + 2.571×106 ρ − 2.753×105

for ρ = (0.283, 0.332] OG

∼1860

for ρ = (0.332,  0.452] OG

2.983×103 ρ3 − 3.405×101 ρ 2 − 7.74 ×103 ρ + 4.819 ×103

for ρ = (0.452,  0.578] OG

2.983×103 ρ3 − 3.405×101 ρ 2 − 7.74 ×103 ρ + 4.819 ×103

for ρ = (0.578, 0.664] COI

2.983×103 ρ3 − 3.405×101 ρ 2 − 7.74 ×103 ρ + 4.819 ×103

for ρ = (0.664,  1] OS


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classification metrics are found (relevant experiments are shaded).  

 

 

Supplementary confusion matrices corresponding with the distinct values of the vigilance 

parameter ρ  in FuzzyART used for populating information in Table IV are included in 

Appendix K as Figs. K.1 to K.5. 

6.17 Findings About FuzzyART Classification  

From the FuzzyART parametogram, it is observed that it shows a high-degree of 

nonlinear dynamics when comparing it to ART1. It is noticed that the learning section of interest 

in FuzzyART is smaller than ART1. 

The experimental values for FuzzyART vigilance parameter of 0.1ρ = , and 0.9ρ = , 

also show unbalanced values for precision and recall of 46.3% and 100%, and of 100% and 1.6% 

respectively for the detection of DDoS attack occurrences.  

A value of 0.1ρ = , for the vigilance parameter embraces the subsequent remarks. The 

entirety of the true occurrences (1,007) for the clear traffic are misclassified as a DDoS attack 

occurrences.  

For the vigilance parameter with a value of 0.9ρ = , the next comments are worth noting. 

A high number of DDoS attack occurrences (853) are misclassified into clear traffic and the 

entirety of the true occurrences (1007) for the clear traffic are detected. The number of 

misclassifications for the DDoS attack is very high. 

TABLE IV 

FUZZYART CLASSIFICATION METRICS FOR DETECTION OF A DDOS ATTACK 

Machine 

Learning 

Model 

Vigilance 

Parameter 

ρ   

Components in Feature Vector Classification Metrics 

Variance  

Multiscalor 

Skewness 

Multiscalor Total 

DDoS 

True 

Positives  

Precision Recall 

S Z H S Z H 

FuzzyART 

0.1 

7 7 7 7 7 7 42 

867 46.3% 100% 

0.632 735 88.7% 84.8% 

0.633 761 89.7% 87.8% 

0.634 759 88.5% 87.5% 

0.9 14 100% 1.6% 
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The vigilance parameter in FuzzyART with values, 0.632ρ = , 0.633ρ = , and 

0.634,ρ =  which also were analytically chosen from the FuzzyART corresponding 

parametogram, show balanced values for both precision and recall, 88.7% and 84.8%, 89.7% and 

87.8%, and 88.5% and 87.5% respectively, which relate to the occurrences detection of the 

DDoS attack. 

From the FuzzyART vigilance parameter with a value of 0.632ρ = , 0.633ρ = , and 

0.634,ρ =  the next outcome is notable. The number of misclassifications found for both the 

clear traffic and the DDoS attack classes is higher than ART1, which translates in FuzzyART 

underperforming when compared with ART1. One shall recall that FuzzyART requires three 

parameters ( ,  ,  and )α β ρ  for its tunning. When compared to ART1 the FuzzyART 

shortcomings might be because only the vigilance parameter ρ  is subjected to sensitivity 

analysis in the scope of this research. Nonetheless, finding better operational settings for 

FuzzyART would require the application of advanced optimization methodologies. A 

comprehensive account of these findings is contained in Appendix K. 

6.18 Summary 

This chapter presents the solid results of the experiments outlined for this research to this 

point. The extent of the research conducted is depicted through the results presented here. The in 

depth approach to examine the details of the PREDICT dataset have been closely followed and 

shown graphically. It has been shown that the overall attack traffic is an aggregation of the 

contributions from the six attack flows. These contributions consider the packets count and data 

rate sent towards the victim of the DDoS attack. The correctness of the VFD algorithm 

implementation has also been described. 

This chapter also presents the results obtained through a new multiscale analysis 

methodology, multiscalors, introduced in this thesis. This methodology has been tested with two 

primary operators, variance and skewness, for a processing frame of 4,096 samples creating 

seven multiscalor components. Three secondary operators, cumulative sum, ZCR, and Shannon’s 

entropy, are utilized to further analyze and compress, by a factor of a million, the multiscalor 

components. The work done in the preparation of the feature vectors for both ART1 and 
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FuzzyART is carefully described. Similarly, explanations about the classification outcomes from 

the machine learning models stemming from confusion matrices used to analyze their precision 

are well documented. 

This chapter presents results with three perspectives: (i) Very descriptive oriented to 

document minute details (an extensive collection of plots is present throughout the chapter and in 

relevant appendices), (ii) visual assessment of the different contributions of each multiscalor 

component can be easily compared, and (iii) remarking specific findings and observations about 

the detection quality of all the features derived. 
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CHAPTER VII                                                                              

CONCLUSIONS 

 

7.1 Main Findings 

The seven variance multiscalor components, 
2|||n

m , appear to have a slightly constant and 

equal power for detecting both classes of DDoS attacks, DNS amplification and H&R, under the 

cumulative sum, 
2|||

( [ ])nS m . The detection capacity tends to decrease from the first, 12|||
m , to the 

seventh, 72|||
m , variance multiscalor components as the signals become spikier. Figures H.1 to 

H.7 found in Appendix H, extensively support these conclusions. 

When applying ZCR to the variance multiscalor components, 
2|||

( [ ])nnZ m , results are not 

as defined as those coming from the cumulative sum, but the dynamics for both DDoS attacks 

are maintained and the detection capacity increases from the first, 12|||
m , to the seventh, 72|||

m , 

components. However, the dynamics for both DDoS attacks are maintained for all variance 

multiscalor components (from first, m
2|||1

, to seventh, 72|||
m ). The visual quality of the results 

appears to increase as one traverses from the first multiscalor component, 12|||
m , to the seventh, 

72|||
m . It is worth highlighting that the H&R DDoS attack appears inverted from the first, 12|||

m , to 

forth, m
2|||4

 and becomes positive for the other components. Nevertheless, the shapes of both 

DDoS attacks are preserved within all results of the ZCR run on all variance multiscalor 

components. All components waveforms appear more complex and spikier when compared with 

the cumulative sum case. A comprehensive support to these inferences is backed up by Figures 

H.29 to H.35 placed in Appendix H. 

The outcomes with less quality, compared with the cumulative sum and ZCR, are 
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contributed by utilizing Shannon’s entropy to the variance multiscalor components (H[m
2|||n

]) . 

For the DNS DDoS attack case there is neither clear beginning nor end found, whereas the H&R 

attack is found to be represented by an inverse peak in some occurrences. The DC value, in this 

case Shannon’s entropy, of the waveforms increases from the fourth, 42|||
m , to seventh, 72|||

m , 

components. These observations are documented from Figs. H.57 to H.60 located in Appendix 

H. 

Regarding the cumulative sum utilized with the skewness multiscalor components 

3|||
( [ ])nS m  results of different visual perception quality are obtained. The DNS amplification 

DDoS attack appears to have better quality for the first, 13|||
m  (Fig. I.1), and fourth, 43|||

m  (Fig. 

I.4), skewness multiscalor components, while a lesser quality for the second, 23|||
m

 
(Fig. I.2), 

third, 33|||
m  (Fig. I.3), fifth, 53|||

m  (Fig. N.5), and undiscernible contributions for the rest of the 

components. For the H&R DDoS attack case, this exhibits better quality in the sixth, 63|||
m  (Fig. 

I.6), and seventh, 73|||
m  (Fig. I.7). The shape of both DDoS attacks for the cumulative sum run on 

all skewness multiscalor components is preserved. These results are not as uniform as the ones 

obtained with the cumulative sum applied to the variance multiscalor components. Figures I.1 to 

I.7 found in Appendix I, considerably sustain these observations. 

When employing ZCR is applied to the skewness multiscalor components 
3|||

( [ ])nnZ m , the 

DNS amplification DDoS attack appears to have better quality for the first, 13|||
m  (Fig. I.29), and 

a lesser quality for the fourth, 43|||
m

 
(Fig. I.32), and no distinguishable contributions for the rest 

of the components. Concerning the H&R DDoS attack case, this exhibits better quality from the 

fifth, 53|||
m  (Fig. I.33), to the seventh, 73|||

m  (Fig. I.35). The shape of both DDoS attacks for the 

ZCR applied on all skewness multiscalor components appears in varying quality degrees. The 

results obtained from ZCR applied to the skewness multiscalor components are not as good as 

the ones obtained from the variance multiscalor components. Ample support for these deductions 

is delivered from Figures I.29 to I.35 placed in Appendix I. 
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From the employment of Shannon’s entropy on the skewness multiscalor components 

3|||
( [ ])nH m , the dynamics of the DNS DDoS attack are noticed in the first skewness multiscalor, 

13|||
m  (Fig. I.57), while the dynamics of the H&R DDoS attack are noticed in the first skewness 

multiscalor, 13|||
m  and from fourth to seventh skewness multiscalors, 43|||

m  to 73|||
m  (Figs. I.57 and 

from Figs. I.60 to I.63). These remarks are derived from Figs. I.57 to I.63, which are located in 

Appendix I. 

Through the characterization of ART ANNs, it has been observed that when the feature 

vectors are more clearly defined, a more robust class is produced. This class robustness translates 

into having a wider COI as a promising section of learning that can yield high precision 

classification results. 

The method, introduced in this research as parametogram, for finding suitable value 

candidates for the vigilance parameter ρ  needed by both ART1 and FuzzyART is aptly effective 

to select proper values fitting the mentioned machine learning models. These fitting values can 

also be grouped into a COI. The more accurate values allow both ART1 and FuzzyART to 

operate in a regime where they can achieve their best performance. The best performance cases 

for ART1 have a precision between 97.5% and 98.5%, while the best performance cases for 

FuzzyART have a precision between 88.5% and 88.7%. Hence, ART1 performs better based on 

the sensitivity analysis used for the ART based ANN models considered in this research. The 

high precision and recall achieved by ART1 proves that the multi- and polyscale features used 

are robust and relevant, and has also managed to avoid the “curse-of-dimensionality” (i.e., the 

accuracy and generalization reduces as the number of features increase) that other machine 

learning approaches suffer [DaVS020]. It is important to highlight that ART1 as a machine 

learning model exceeded the performance expectations crudely set around the 95% vicinity. 

Another perspective worth noting, since both a high precision and a high recall have been 

achieved, the dataset used in this research containing 46% of anomalous data with two DDoS 

attacks (44% for a DNS and 2% for a H&R). This dataset poses a remarkable challenging task 

for detection as the H&R class of DDoS present has a very small size when compared with the 

DNS DDoS. Alternate datasets used in the literature contain a single class of DDoS attack as 
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anomalous data in which the research is based on. With this in view, both the precision and recall 

achieved with the challenges presented by this dataset are outstanding. 

From the FuzzyART parametogram, it is observed that it shows a high-degree of 

nonlinear dynamics when comparing it to ART1. It is noticed that the learning section of interest 

in FuzzyART is smaller than ART1. 

Based on the work done and presented in this thesis, there are still many important 

questions related to DDoS. However, two that are very significant are: Is DDoS a form of 

cyberattack that is fading away? and what makes DDoS to be so prevalent and still 

proliferating? Answers to both questions are very challenging. However, in order to tackle these 

questions from the communications protocols and standards perspective, any usage of DDoS is 

highly likely related with a form of abuse focused precisely in either protocols or standards. 

Hence, as long as there are networks that operate based on protocols and standards there is a high 

potential for a DDoS type to spring up and undermine digital assets based on this critical 

infrastructure. Based on this argument, known and unseen forms of DDoS would continue to be 

lurking and hiding in the very underpinnings of the Internet and communications networks: 

Communications protocols and standards. This line of thinking poses a big question to humanity: 

Is there a way to create communications protocols and standards that cannot be abused? 

7.2 Answers to the Research Questions Posed in this Thesis 

Upon closure of the research scope proposed in this thesis, answers to the posed research 

questions are discussed in this subsection. These questions have been extensively covered 

throughout this thesis. Nevertheless, for clarity, these questions are summarized as follows. 

A set of features has been assembled into a feature vector composed of multi- and 

polyscale based metrics. The raw signal obtained from the Internet traffic has been processed 

through multiscalors, utilizing the variance and skewness operators. Then the multiscalor 

components obtained are further pipelined for analysis through secondary operators (cumulative 

sum, zero crossing rate, and Shannon’s entropy) as a form of polyscale analysis. The feature 

vector obtained has proven to be capable of reflecting the dynamics of the Internet traffic helpful 

in detecting DDoS attacks accurately and effectively. 

The feature vectors obtained have been capable of operating as a DL construct, from the 
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feature extraction perspective, because through the amalgamation of the advanced signal analysis 

stages a deep representation of the dynamics present in the long-range dependencies is retained. 

The rich representation of the Internet traffic dynamics contained in the feature vector is then 

consumed by the adaptive resonance theory models, ART1 and FuzzyART. From both machine 

learning models, ART1 and FuzzyART, it was found that ART1 achieved a high classification 

performance, ranking above the 98% of precision and recall, upon processing of the polyscale 

feature vector. The performance achieved in this research far exceeds some of latest approaches 

that consider classification methods (e.g., DDoS detection, based on semantic information about 

cybersecurity events [SaFF019] and even novel methodologies of ensemble classifiers, majority 

voting, logistic regression, and naïve Bayes, that have defeated plenty of alternative machine 

learning approaches [HOHR015]). The approach presented here is faster because it is inherently 

operating with the Internet traffic dynamics vs secondary levels of information about the 

cybersecurity event, as is the case of the research presented in the latest approaches (e.g., 

[SaFF019]). From the machine learning perspective, the early anomalies detection system 

developed in this thesis recounts the following merits: Effective detection of deviations from 

normal behaviour; discovery of unknown (due to the lack of identified fingerprints) DDoS 

attacks, which makes it difficult for attackers to exploit the capabilities of the system. Even if 

attackers would launch a novel attack, it is highly likely it would not be undetectable for this 

system; and the precision for the system being over 98% with a similar figure for recall (covering 

almost the full extent of the DDoS attack) is certainly a success because usually anomaly-based 

detection systems typically produce a high number of false positives, misclassifications, which 

undermines both precision and recall. 

For the multiscalors, the variance and skewness have been utilized as operators. The 

variance multiscalor reflects the dynamics of the DNS and H&R DDoS attacks visibly in a more 

accentuated manner than the skewness multiscalor. The skewness multiscalor has been 

maintained due to the fact that it can contribute additional representations to the feature factor 

and therefore a richer pool for detecting network disruptions induced by DDoS. By further 

analysing the multiscalor components through secondary operators, a polyscale aggregation of 

metrics into a feature vector is achieved. These feature vector has proven to contain robust 

metrics helpful to characterize DDoS disturbances found in data streams in Internet traffic. 
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The multi- and polyscale based set of features, integrated throughout the course of this 

research, has proven the utilization of arbitrary operators for analyzing Internet traffic and 

collecting dynamics representing long-range dependencies. The feature vector attained reliably 

reflects the time-multifractality nature of the Internet traffic analyzed. The examination of this 

point is sustained as evidenced by the high classification performance achieved through ART as 

the machine learning approach. Nonetheless, alternative machine learning models could also 

provide a similar classification performance to the one obtained with ART1 because the 

detection predictive strength comes from the metrics present in the polyscale feature vector.  

Furthermore and as a restatement, the ten objectives listed in Section 1.3, dataset access, 

insight development, ITB metrics implementation, isolation of the analysis mechanism from the 

VFD and VFDT methodologies, primary operators implementation, comparison of the operators 

merits, feature characterization of Internet traffic, feature vector compilation, ART based ANNs 

models implementation, and the comparison of the classification precision among machine 

learning models, has been meticulously followed, documented, and completed. 

7.3 Contributions 

A new methodology, multiscalors, capable of allowing arbitrary operators to be 

functional in the multiscale domain has been implemented. The use of feature vectors comprised 

by the characterization of time-multifractality, inherently a property of Internet traffic, has 

contributed to the high precision and confident classification of the instances in the occurrence of 

a DDoS attack. The introduction of multiscalors through the course of this research and specific 

applications for DDoS detection have culminated in intellectual property protection in the form 

of two patents. 

Industry standards in DDoS detection at the time this research was conducted fell in time 

regimes way above 10 seconds, for inspection of traffic dynamics only and ignoring a priori 

information of attacking sources, which establishes the time classification, one second detection, 

results achieved through ART in this research is very outstanding and exceptional. 

A novel approach, ART parametogram, for appropriately characterizing the performance 

of the vigilance parameter ρ  in ART based ANNs, ART1 and FuzzyART, is proposed. The use 

of the parametogram aids in accurately choosing a vigilance parameter value that can provide a 
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high precision of performance in DDoS detection through ART by making these ANNs more 

attentive and focused.  

The anomalies detection system proposed in this research has been developed at the 

closure of this research. This detection system has been tested with real Internet traffic 

containing genuine DDoS attacks. Similarly, the implementation and testing of the empowering 

backbones in this detection system, the novel employment of multi- and polyscale analysis, for 

obtaining robust metrics, and implementations of ART ANNs, ART1 and FuzzyART, have been 

accomplished. This detection system can detect departures, aka anomalies, from clear traffic 

with a high classification precision. The usage of multi- and polyscale analysis has been, with a 

high degree of confidence, the main contributor to achieving the high level of precision in 

detection. The study of advanced signal processing is what enabled the main methodology, 

multiscalors, to be used for obtaining the extraction of relevant features in this research. 

7.4 Novelty in the Thesis 

Deep multi- and polyscale analysis stages for analysing Internet/network traffic in order 

to achieve predictive metrics that describe unequivocally the dynamics of the traffic. Results 

from the primary multiscalors operators appeared somewhat noisy. However, upon application of 

secondary operators for achieving high compression and metrics diversity, and once these time-

multifractality metrics are comprised into corresponding feature vectors and fed into the ART 

implementations, these metrics proved to be highly predictive with a high classification 

precision. 

Unsupervised neural networks, based in ART, have been used for the first time in 

detection of DDoS attacks. Similarly, the fine-tuning of ART based ANNs through a 

methodology allowing the obtention of a parametogram is original and ground-breaking. 

A characterization of the ART1 neural network has been attained and introduced. The 

more defined or clear the feature vectors are, the more robust the associated class is in the sense 

that a wider interval of values for the vigilance parameter can be obtained as an operating range 

helpful in classification. 

It has been found that for both ART1 and FuzzyART, sections of learning represented in 

the parametogram can be described by exponentials, mostly decaying, constant sections, and 
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cubic polynomials. The coefficient that determines the decay intensity is smaller when the 

features are less diverse and grows when the features reflect an increment in diversity (appear to 

be more random). 
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APPENDIX A                                                                                

DDOS ATTACKS: DETECTION AND                          

SOFTWARE DEFINED NETWORKING 

 

To defend against DDoS attacks, countermeasures consist of three components: 
Detection ([AlGo006], [ASCL006], [ChHw006], [KLCC006], [KoSV007], and [WaJS007]), 
defense ([AlGo006], [BrLe005], [ChPM007], [XiLS001] and [YaPS006]), and IP trace back 
([Alji003], [SXLL008] and [YaPS005]). Detection of DDoS attacks is the most important step to 
further launch a combat against them. Methods documented in the literature for DDoS attacks 
detection include activity profiling ([FSBK003] and [MSBV006]), packet filtering ([EATB009] 
and [SoMA009]), sequential change-point detection ([ChHw006] and [WaJS007]), wavelet 
analysis ([BKPR002] and [TaCh011]), among others. The methods mentioned beforehand are 
based on specific features or fingerprints of DDoS attacks. Wanting to avoid detection, hackers 
manipulate network traffic in different forms: (i) Spoofing the source IP addresses of attack 
packets making source address distribution based detection algorithms ineffective ([DuYC008] 
and [YYZH008]), (ii) modifying the TTL value of attack packets disabling hop-count detection 
methods ([WaJS007] and [YYZH008]), or (iii) mimicking the behaviour of flash crowds 
([ChHw006] and [CKBR006]) for suddenly increasing legitimate traffic to disguise attacks 
[Yu014]. 

The DDoS detection methods so far mentioned are based on specific features 
([ASCL006], [KLCC006], [KoSV007], and [WaJS007]). Hence, these detection methods are 
passive and incapable of detecting new attacks [Yu014].  

The entropy of attack flows is a method independent from specific attack features 
([BhBK015] and [MaCh014)]. Relative entropy has been used to measure similarities between a 
known attack and suspected datasets [LeXi001]. Nevertheless, the relative entropy is not a 
perfect metric because of its asymmetrical property. Stochastic methods in the frequency domain 
and data mining techniques for DDoS detection have also been tested ([ChKT002], [LWFT007], 
and [YKPB013]). Traffic with DDoS attacks is mapped from the time domain to the frequency 
domain, and further transformed to the power spectral density for identification [ChKT002]. 
Data mining technology extracts the DDoS attack information [LWFT007]. 
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A.1 Feature Based Detection Methods 

A.1.1 Profile Based Detection 

A strategy to disguise attack sources is IP spoofing. A hop-count filter is a method to 
fight against source IP spoofing. Hackers cannot falsify the number of hops an IP packet takes to 
reach its destination although any field in the IP header can be forged [WaJS007]. Receivers 
infer the hop-count based on the TTL field of the IP header. Internet servers can establish 
mapping tables of IP addresses with their related hop-counts, known as IP-to-hop-count 
(IP2HC), from legitimate clients. Defenders can consequently discriminate spoofed IPs from 
legitimate IPs. The detection rate in three cases has been considered: Single source, multiple 
sources, and multiple sources with an awareness of the detection method [Yu014]. 

In the single source case, hackers spoof the IP source address using an IP address of a 
legitimate client, , of the victim. The client  usually submits  legitimate packets to the 

victim for a given time interval. The attacker injects aN  attack packets to the victim for the same 

time interval. It is expected that a iN n>> . The detection rate is  

1 1i
s i

a

n
Z

N
α= − = −           (A.1)  

where iα  represents legitimate traffic.  

 For the multiple source case, hackers use n legitimate clients IP addresses,  
, for spoofing. Each client injects , packets to the victim from and 

legitimate traffic is defined as . The detection rate is 

1

1

(1 )
n

i ai
m n

ai

N
Z

N

α
=

=

−
=
∑
∑

          (A.2)  

For uniformly distributed spoofed packets among the n IP addresses, the previous 
equation becomes 

1

1
1

n

m ii
Z

n
α

=
= − ∑          (A.3)  

When hackers are aware of detection mechanisms, but have no further information, an 
initial TTL with a range of  is generated using a given distribution (e.g., Gaussian). The 

probability of hop-count  is  for the chosen distribution. The legitimate traffic is defined as 

 in this case and the detection rate is 

         (A.4)  

From the defenders viewpoint, if hackers understand the victim better, they can obtain a 
lower detection rate [Yu014]. 

An alternative DDoS detection method is packet score [KLCC006], implemented at the 
victim end. By knowing the statistical distribution of legitimate packets, Bayes inference can be 
used to obtain the probability of incoming packets legitimacy. For this probability inference the 
following can be used: Packets attributes ( ,  ,  ...A B ), corresponding attributes value spaces 

Ci Ci ni

 C1,  C2 ,  ...,  Cn  N1,  N2 ,  ...,  Nn

 α1,  α 2 ,  ...,  α n
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1 2{ ,  ,  ...}a a , 1 2{ ,  ,  ...}b b , so on and so forth. The count for attack packets, normal packets, and 

measured packets are represented by , where the subscripts identify a given 

count correspondingly. For a given time interval, the following equation holds [Yu014] 
          (J.5)  

The function  denotes an accumulator and it is used to define  as 

      (A.6)  

From this, the probability distributions for packets attributes in the attack, normal and 
measured cases can be derived as 

      (A.7)  

      (A.8)  

      (A.9)  

The joint probability distribution among attributes for attack, normal and measured is 

     (A.10)  

The conditional legitimate probability (CLP) for a packet p is defined by 

     (A.11)  

 Na ,  Nn  and,  Nm

Nm = Na + Nn

 ζ (�)  Na ,  Nn  and,  Nm

Na = ζ a A = ai( )
i=1

∞

∑ = ζ a B = bi( )
i=1

∞

∑ = ...

Nn = ζ n A = ai( )
i=1

∞

∑ = ζ n B = bi( )
i=1

∞

∑ = ...

Nm = ζ m A = ai( )
i=1

∞

∑ = ζ m B = bi( )
i=1

∞

∑ = ...

 

Pra (A = ai ) =
ζ a A = ai( )

Na

,  for i = 1,  2,  ...

Pra (B = bi ) =
ζ a B = bi( )

Na

,  for i = 1,  2,  ...

...,

 

Prn (A = ai ) =
ζ n A = ai( )

Nn

,  for i = 1,  2,  ...

Prn (B = bi ) =
ζ n B = bi( )

Nn

,  for i = 1,  2,  ...

...,

 

Prm (A = ai ) =
ζ m A = ai( )

Nm

,  for i = 1,  2,  ...

Prm (B = bi ) =
ζ m B = bi( )

Nm

,  for i = 1,  2,  ...

...,

 

Pra A = ai ,  B = bj ,  ...( ) =
ζ a A = ai ,  B = bj ,  ...( )

Na

Prn A = ai ,  B = bj ,  ...( ) =
ζ n A = ai ,  B = bj ,  ...( )

Nn

Prm A = ai ,  B = bj ,  ...( ) =
ζ m A = ai ,  B = b j ,  ...( )

Nm
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where  denotes the attribute  of packet p. 

Finally, the Bayes inference for calculating the packet score or CLP of packet p is 

    (A.12)  

Packet discarding requires a threshold in the  value, which is not trivial. 

Adjusting this threshold dynamically based on the score distribution of recent incoming packets 
and the current level of system overload has been proposed previously in the literature [Yu014]. 

A.1.2 Low Rate DDoS Attack Detection 

A DDoS attack featuring a low attack rate is also known as shrew DDoS attack and it is 
harder to detect it [KuKn003]. These attacks inherent a specific characteristic: Submitting attack 
packets periodically [Yu014].  

Spectral analysis methods have been proposed to detect this kind of low rate attacks 
[ChHw006]. The theoretical foundation for this is herein introduced. For simplicity, a sequence 
of network traffic is denoted as  The autocorrelation of X is defined as 

      (A.13)  

The autocorrelation function can identify periodicity in the original signal. However, 
since it is a time domain function, and is not easy to identify the periodicity. Hence, the need to 
map it to the frequency domain through the discrete Fourier transform (DFT), where it is 
straightforward to identify periodicities since the content of a given signal is decomposed into its 
constituent frequencies. The autocorrelation DFT is defined by 

   (A.14)  

When having the output of the DFT, it is important to ensure that the power spectrum 
density (PSD) is available since it is a descriptor of the distribution of the power of a signal or 
time series in the frequency domain. Usually, the PSD shows that the energy of shrew attacks is 
concentrated in low frequency bands, while the energy of normal traffic could occupy the whole 
spectrum (in a flatter shape) under analysis [Yu014]. 

A.2 Network Traffic Based Detection 

Network traffic is a powerful feature for DDoS detection at the network layer 
[KaCV014]. Distinct methods based on network traffic have been proposed in the literature: (i) 
Mean quadratic distances measuring traffic anomalies to distinguish DDoS traffic from flash 
crowds [SLOB007], (ii) signal processing and data mining technologies for extracting DDoS 
attack information [LWFT007], and (iii) wavelets methods and techniques ([LiLe003] and 
[VeAb999]), among others [Yu014]. 

Network traffic based DDoS detections are usually performed at LANs due to the 
anarchy nature of the Internet. System administrators manage and configure routers locally. 
Cooperation among routers can be achieved to detect possible attacks. Topology of LANs can be 
modelled as a graphs. Nevertheless, the aggregation feature of DDoS attacks makes the attack 
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paths to form a tree rooted at the victim computer system. The routers located at the edge of the 
LAN are known as edge routers [Yu014]. 

Flow is defined as all the passing packets, at a given router in a LAN, that share the same 
destination address. Multiple flows may coexist at a LAN router. For an on-going DDoS attack, 
there exists one flow addressed to the victim known as attack flow. Simultaneously, there are 
many other flows that are addressed to different destinations. Not as the source IP addresses or 
TTL values of attack packets, hackers cannot spoof the attack flow as the address of the victim is 
given. Henceforth, flow based detection is independent of any specific attack features, and it can 
deal with new types of flooding attacks. One of the fundamental metrics to measure flows for 
anomaly detection is entropy ([BhBK015], [CoTh005], [NaSP013], [ÖzBr015], [ReRL014], and 
[ZJWX014]). The Shannon’s entropy of a discrete random variable X  is defined as 

      (A.15)  

where  is the sample space of X  [CoTh005]. Entropy of a random variable is a measurement 

of its uncertainty ([CoTh005] and [Yu014]).      
 The entropy of flows at a given router is called flow entropy, which represents the 
randomness of the flows at the router. The flow entropy in a router is stable in non-DDoS attacks 
[JFKY013]. For on-going DDoS attacks, the attack flow dominates the traffic on LAN routers. 
Subsequently, the flow entropy drops dramatically in a short time period (e.g., a few seconds) 
[Yu014]. 
 The assumptions in network traffic based detection are: (i) The attack packets for a given 
attack come from one botnet (generated by the same attack tools), (ii) attack packets enter the 
LAN via a minimum of two edge routers and the attack flows merge at the junction routers, and 
(iii) the network system is linear and stable when the DDoS attack is on-going. Hereafter, the 
detection algorithm is running on all LAN routers. The edge routers monitor the network traffic 
using flow entropy, which in an attack free case remains in stable. Whilst an attack is present, the 
flow entropy drops dramatically because there is one or more flows dominating the routers. 
DDoS detection requires finding a suitable threshold  for the flow entropy decrease. Variation 
of flow entropy equal or greater than  is an indicator of a DDoS attack [Yu014]. 

Attacker uses a random variable  to control the generation speed of attack packets 
known as attack rate or packet rate of attack flow. For a constant speed of packets generation 

       (A.16)  

If the number of attack packets is increased in time by shortening the attacking time t, the 
packets generation speed can be defined as 

         
 (A.17)  

where  and  are constants [Yu014]. 
Different probability distributions have been used for modelling network traffic patterns 

(e.g., the Poisson distribution) 

      (A.18)  

 A random variable  represents the packet rates of flows on a router for a given time 
interval. The vector  denotes the number of packets for  flows. The 
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probability distribution of the flows is 

      (A.19)  

 From this, the flow entropy of flows is represented by  as 

        (A.20)  

As previously discussed,  is stable in with minor fluctuations in normal network 

operations. Whereas, in a DDoS attack the packet rate of the flow targeting the victim is 
significantly larger than packet rates of other legitimate flows at the same router. Hence, 

 decreases dramatically. For a threshold  with a value , the following inequality 

to identify DDoS flooding attacks can be used 

       (A.21)  

where t and  represents time and a short time interval respectively [Yu014]. 

 For  differentiable at 0t  , the previous inequality becomes 

       (A.22)  

 Combining the previous two equations it is shown that  [Yu014]. 

A.3 Detection Against Mimicking Attacks 

Distinction of DDoS attacks mimicking flash crowds from genuine flash crowds is 
important ([BSMT014], [ChHw006], [CKBR006], and [JuKR002]). Failure in achieving this 
allows attackers mimicking flash crowds traffic features for avoiding detection. Moreover, 
detectors may treat legitimate flash crowds as DDoS attacks. Distinguishing flash crowds from 
DoS attacks has been addressed by using features like traffic patterns, client characteristics, and 
file reference characteristics [JuKR002]. However, hackers disable the detector easily by 
mimicking the flash crowds network traffic. Entropy detectors can raise alarms of crowd access 
but have difficulty distinguishing DDoS attacks from legitimate accesses of flash crowds 
[FSBK003]. Distinction of flash crowds from DDoS flooding has been tried through the change-
point detection method [ChHw006]. User browsing dynamics (e.g., number of requests for a 
given time interval) for differentiating flash crowds from DDoS attacks has also been 
implemented ([XiYu009a] and [XiYu009b]). The web pages of a given web site follow the Zipf 
distribution, but not so the DDoS attack requests. In current botnets the following features 
prevail: (i) Attack tools are prebuilt programs, which are usually the same for one botnet, (ii) a 
botmaster issues a command to all bots in a botnet to start one attack session, (iii) attack flows 
observed at the victim end are an aggregation multiple attack flows, (iv) aggregated attack and 
original attack flows have similar standard deviation, (v) the flow standard deviation is usually 
smaller than that of genuine flash crowd flows. The reason for this phenomenon is that the 
number of live bots of a current botnet is far less (usually hundreds or a few thousands) than the 
number of concurrent legitimate users of a flash crowd (usually hundreds of thousands). Hence, 
launching a flash crowd attack requires the botmaster forcing live bots to generate many more 
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attack packets (e.g., web page requests) than that of a legitimate user [Yu014].  

A.3.1 Metrics Similarity 

Metrics for similarity measurement includes first order (e.g., mean, Kullback-Leibler 
divergence, Jeffrey distance, Sibson distance, Hellinger distance) and second order metrics (e.g., 
correlation, standard deviation, and correntropy) [Yu014].  

For the case of first order metrics, two flows or sequences  and  have probability 

distribution  and , respectively. Metrics measure distance or similarity between them. 

The Kullback-Leibler (KL) distance, not a metric in a rigorous sense, is defined as 

       (A.23)  

where  is the sample space of . It shall be noticed that  for . This 

asymmetry is corrected by the Jeffrey distance combining KL distances in 

        (A.24)  

 The Sibson distance defined as 

      (A.25)  

 The Hellinger distance is defined as 

       (A.26)  

 Among the information theoretic based first order metrics, the Sibson distance is the best 
for DDoS attack detection [YTLW009]. Abstract distances do not include time information and 
are sensitive to fluctuation of flows [Yu014]. 
 For second order metrics, the correlation between two flows  with the 

same length  is defined as 

        

 (A.27)  

 Correlation describes similarity between flows [XQQL015]. In some cases, its value may 
be zero for two completely correlated flows having a phase difference. The previous definition is 
then modified to 

        (A.28)  

where  is the shift of flow  Magnitude differences might be possible for 

different sets of similar flows. Thus, unification is required through the correlation coefficient 

       (A.29)  
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Correlation coefficient is both used as similarity metric in network flow applications 
([ChZa005], [SWWJ008], and [YASR008]) and better than abstract distances in terms of 
stability.  

Correntropy is a recently invented, under a clear theoretical foundation, local tool for 
second-order similarity measurement in statistics. Correntropy is used in various disciplines 
(e.g., face recognition [HeZH011]). Correntropy is symmetric, positive, and bounded. For two 
finite data sequences  and , the similarity of the sample sequences 

 is estimated as 

       (A.30)  

where  is the Gaussian kernel defined as 

          (A.31)  

A.3.2 Flow Correlation Based Discrimination 

Most attacks detections are conducted at the victim end, also known as community 
network. The number of packets for a network flow is sampled within a time interval. A network 

flow is represented by a data sequence [ ]iX n , where  represents the network flows, and  

denotes the  element in the data sequence. If the length of a given network flow iX  is , then 

the network flow can be presented as 
       (A.32)  

where  represents the packets count in the time interval for the network flow. 

The expectation of a data sequence iX  can be defined as 

         (A.33)  

which represents the flow strength. The flow strength is the average packet rate of a network 

flow. If iX  is a DDoS attack flow, then  is known as attack strength. 

The fingerprint of flow iX  denoted by 'iX  is the flow unified representation and is 

defined by 

      (A.34)  

From this it can be shown that , which means that fingerprint of flow is an 

instance of its probability density distribution. The relationship between a network flow and its 
fingerprint is  [Yu014]. 

Current botnets (e.g., SDbot, Rbot and Spybot) employ the same program to generate 
attack packets creating as many as they can, usually with a very short delay (1 or 5 ms) between 
two attack packets. This confirms that flow fingerprint exists in attack flows for a given botnet 
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[Yu014]. 
When a DDoS attack alarm goes off, the routers in the community network sample the 

suspected flows by counting the number of packets for a given time interval (e.g., 100 ms). 
When the length of a flow  is sufficient, the correlation coefficient between suspected flows is 
obtained. In DDoS attacks, the suspicious network flows have a strong correlation (although they 
are a mixture of a number of original attack flows with different delays). The correlation 
coefficient value of two flows of flash crowds is smaller compared to two attack flows [Yu014]. 

Sampling  network flows,  allows calculating the correlation 

coefficient between two of such flows,  A function 

indicating whether a DDoS attack is present (denoted by a value of 1) or not (denoted by a value 
of 0) is defined by , where the flows  are compared through the correlation 

coefficient. The indication function  has discrimination threshold defined by  Therefore, 

the indication function can be defined as [Yu014] 

         (A.35)  

A.3.3 System Analysis on the Discrimination Method 

Theoretical analysis of the previous method effectiveness and proof of the existence of 
the threshold δ have been carried. Also, the relationship between the correlation coefficient of 
flows and their length has been explored. The attack flow convergence is addressed considering 
the following assumptions: (i) Only one server in a community network is under attack or 
experiencing flash crowds at any given time, (ii) attack packets enter the community network via 
a minimum of two different edge routers, (iii) attack packets are generated by only one botnet, 
hence the attack flows fingerprints are the same, and (iv) network delays are discrete and 
countable [Yu014].  

A flash crowd with known statistics (e.g., mean defined as nµ ) to everyone, including 

attackers, helps a botmaster to use  bots (usually at hundreds or thousands level [RZMT007]) 
to execute a flash crowd attack. However, a big number of users (e.g., hundreds of thousands of 
browsers) for generating flash crowds is required. Hence, a botmaster must exhaust bots for 
generating attack traffic with µ  mean per bot. This causes a very small timer interval of the 

attack packets for injecting sufficient attacking packets and results a very small standard 
variation of packet arrivals (e.g., 0.01σ µ=  or towards the best 0σ =  from hackers view). Once 

the attack traffic is aggregated the mean of the flash crowd nµ  is obtained, but not the standard 

deviation. The reasons for this are that the flash crowd traffic is: (i) Created by many more 
computer systems than a botnet and (ii) it has genuine distribution with a standard variation 
larger than the attack traffic. DDoS attack traffic and flash crowd traffic can be distinguished 
through the correlation coefficient. The fingerprint of flash crowds flow is the Pareto distribution 
([CrBe997] and [PaFl995]), which is defined by the probability distribution function  

( 1)Pr{ } P P

P mX x x xα αα − += = ⋅ ⋅          (A.36)  

where , and Pα  is the Pareto index. Additionally, for any two independent flash crowd 
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flows with length , the flow correlation coefficient tends to 0 when  tends to infinity. 

A DDoS attack flow iX  obtained at an edge router is usually a mixture of attack flows 

that came from  different bots. The fingerprint of the attack flow iX  can be represented by 
'
0 ,X  which is usually the same in one attack session with delays in different attack flows. 

Delayed fingerprints by  time units can then be represented by 0' [ ]X j . Hence, the observed 

attack flow can be denoted as 

       

 (A.37)  

where  represents attack flows magnitude with the delay  at the edge router. 

Considering no network delay and no background noise in two mixed attack flows iX  and 

( )jX i j≠  observed at two edge routers, their correlation coefficient , [ ] 1
i jX X kρ = . Hence, two 

DDoS attack flows from one botnet are totally correlated. It is important to consider that noise 
and delays among the attack flows from different bots exist. These attack flows features depend 
on the legitimate packets addressed to the victim and normal Internet delays respectively. Delays 
are limited when compared with fast Internet facilities. From the hackers’ perspective, all 
legitimate traffic sent from users to the victim is considered noise at the time of an on-going 
DDoS attack. Usually, the strength of the noise is much smaller compared with the strength of 
DDoS flooding attack flows [Yu014]. 

 Defining two noise flows as iY  and jY  for two DDoS attack flows iX  and jX  in an 

attack session, ,( 1), , [ ]
i jH X X kδ δ ρ δ∀ < ∃∆ >  (where δ  is the discrimination threshold and H∆  is 

the decrease of flow entropy threshold) holds when [ ] / [ ]i i HE X E Y > ∆  and [ ] / [ ]j j HE X E Y > ∆ . 

The correlation attack flows , [ ] 1
i jX X kρ =  when they are in a noiseless environment defined by 

[ ] [ ] 0i jE Y E Y= =  [Yu014].  

If the noise strength is much superior than the signal,  and , 

then the noise flows can be represented by 

           (A.38)  

and consequently . It is also known that  and when the length 

 increases [Yu014]. 
The correlation coefficient of DDoS attack flows approaches 1 if the SNR , 

is large. For an on-going DDoS attack,  and  and the correlation 

coefficient of attack flows is close to 1 [Yu014].  
DDoS attack flow can be discriminated from flash crowds by flow correlation coefficient 

at edge routers under two conditions: The length of the sampled flow is sufficiently large, and 
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the DDoS flooding attack strength is sufficiently strong. Defining  as two 

random flash crowds and  two DDoS flooding attack flows, and the 

discrimination threshold  is a given small real number. Based on condition  the 

following equation holds 

        (A.39)  

which means that the correlation of the two flash crowds is under the threshold that triggers an 
DDoS alarm. Based on condition N and SNR the following equation holds 

        (A.40)  

which means that the correlation of two DDoS attack flows is above the threshold that flags a 
DDoS attack [Yu014]. 

It is known that , [ ]
p qX X kρ  is a decrease function on  the length of flow; , [ ] 1

p qX X kρ =  

for no noise and no delay, and it decreases when the strength of noise increases, therefore, there 
must exist a value δ  where the previous probability equations hold [Yu014]. The case of interest 
for identifying DDoS attacks is the flow correlation coefficient being greater than δ  for a given 
pair of two flows.  

In a DDoS attack or flash crowds, a number of suspected flows  is available. 
Calculating the flow correlation coefficient  for any two different flows 

 leads to an integrated DDoS attack positive probability defined by 

        (A.41)  

where AI  is the indicator for DDoS attacks, and 1AI =  represents positive for DDoS attacks. The 

final decision with global information is made as follows 

         (A.42)  

which identifies a DDoS attack if at least half of the comparisons are positive [Yu014].  

A.4 DDoS Attacks in Software Defined Networking 

Avoiding security threats is the ultimate purpose of DDoS attack detection in both 
conventional and SDN approaches. The latter separates the network’s control logic (control 
plane) from the underlying routers and switches forwarding the traffic (data plane). One of the 
most notable architectures for SDN is OpenFlow. Major commercial players (e.g., Google, 
Yahoo, Rackspace, and Microsoft) are conducting research and experimentation in SDN towards 
strengthening network security. Two of the most significant attack vectors to SDN are intrusion 
and DDoS attacks. DDoS attacks usually occur as either forged or faked traffic flows in the data 
plane. When the source addresses of spoofed packets, the switch cannot match this spoofed 
packet and forwards it to the controller. Both legitimate and DDoS spoofed packets force the 
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resources of the controller to continuously process these packets resulting in exhaustion of 
resources [AsLa014].  
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APPENDIX B                                                                             

DIVERSITY OF COMPUTING SYSTEMS                                         

IN THE CYBERSECURITY ECOSYSTEM 

 

The European Union (EU) sponsored project, CyPHERS, listed the technology fields of 
embedded systems, mechatronics, IoT, big data, and systems of systems (SoS) as forming the 
landscape for cyber-physical systems (CPS) [Hens016]. 

The IoT, IIoT, CPS, CPSS and SoS describe super-systems, but while the communities of 
interest in these super-systems intersect, they do not completely overlap. The selected definitions 
below have some level of consensus within the respective communities [Hens016]. An important 
definition to consider as a super-systems are cyber-physical-social systems (CPSS). 

B.1 Complex Systems 

Computers, thunderstorms, the human brain, and corporations, are examples of complex 
systems made up of parts interacting with one another in specific ways. Outcomes of these 
interactions are hard to predict. The opportunity for a system to exhibit complex behaviour must 
be greater when there are more parts. Complex behaviour arousal does not require complex parts. 
When systems have lots of interacting parts even simple parts and simple interaction rules are 
sometimes sufficient to produce complex structure and behaviour. One of the principles 
promoted by Kauffman is summarized by the phrase “edge of chaos”. Large networks tend to be 
characterized by large domains of parameter space that exhibit chaotic behaviour and other large 
domains where frozen unchanging behaviours dominate; but at the interface, between frozen and 
chaotic domains, behaviour can become complex. Nature is full of situations where systems of 
simple parts and simple interactions self-create order and exhibit a surprising range of 
behaviours; but in the realms of life and human activity, complex systems exist (e.g., electrical, 
electronic, biochemical, genetic networks, protein-protein interfaces, and life itself). A living 
organism provides a prime example of a complex adaptive system (CAS). Other examples are a 
national economy, ant colonies, ecosystems, and the human brain. All are characterized by a 
degree of stability when confronted with changing external events. Concepts that are important 
in the study of CAS are emergence, self-organization, adaptation, homeostasis, communication, 
and cooperation. All CAS can be viewed and studied as networks, but not all networks are 
adaptive. What sets CAS apart from other complex systems are nodes with memory. Memory 
allows responses that take past events into account. CAS are characterized by nodes (agents) that 
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make decisions based on past actions and on new input. All known CAS are characterized by 
nodes and edges that are prespecified, and most, if not all, can be described as a network with 
regulatory edges. Without careful prespecification, any particular combination of nodes and 
edges that behave like CAS is simply too improbable to occur spontaneously. proteins and their 
interactions in the life network, neurons in the brain, organisms in the biosphere, and traders in 
the stock market provide a few examples of prespecified nodes with memory [Mayf013]. The 
reader can get a sense that protecting complex systems, in the CPSS context, is a very serious 
and challenging task. Hence, the need for designing very fine cybersecurity systems. 

B.2 Systems of Systems 

As early as 1971, Russell Ackoff had used the term systems of systems to describe 
combinations of individual systems that were bound together in some way, however, this was in 
the context of management science and related to enterprises, rather than the SoS more 
appreciated by systems engineers. Recently, Brook attempted to provide a general description 
applicable to all types of SoS, as follows: “A SoS is a system which results from the coupling of 
a number of constituent systems at some point in their life cycles.” The implications of this are 
that the constituent systems may, or may not have been designed to work together, but that 
through some means they are coupled so that they interoperate [Hens016]. Formally, tightly 
coupled systems are known as multi systems, while loosely coupled systems are known as 
multiple systems [Kins017].  

Future industrial infrastructures are expected to be complex SoS that empowering a new 
generation of applications and services. An example of this is the factory of the future (FoF) 
relying on an ecosystem of SoS where collaboration at large scale would take place. The 
application of the service-oriented architecture (SOA) paradigm to bring the shop-floor to 
cyberspace exposing capabilities and functionalities as services located on physical resources 
undertaking society’s needs [CBKD014]. 

Large process industry systems are a complex (potentially very large) set of frequently 
multidisciplinary, connected, heterogeneous systems that function as a complex distributed 
system whose overall properties are greater than the sum of its parts (e.g., very large-scale 
integrated devices) and systems whose components are themselves systems (e.g., systems-on-a-
chip). Industry systems link many component systems of a wide variety of scales, from 
individual groups of sensors to whole control, monitoring, supervisory control systems, 
performing SCADA and distributed control systems (DCS) functions. The resulting combined 
systems are able to address problems which the individual components alone would be unable to 
do and to yield control and automation functionality that is only present as a result of the creation 
of new, ‘emergent’, information sources, and results of composition, aggregation of existing and 
emergent feature- and model-based monitoring indexes. These very large-scale distributed 
process automation systems constitute SoS and are required to meet Maier’s criteria: (i) 
Operational independence of the constituent systems, (ii) managerial independence of the 
constituent systems, (iii) geographical distribution of the constituent systems, (iv) evolutionary 
development, and (v) emergent behaviour. Such systems should be based on process control 
algorithms, architectures and platforms that are scalable and modular (plug and play) and 
applicable across several sectors, going far beyond what current SCADA and DCS systems and 
devices can deliver today [CBKD014]. 
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B.3 Cyber-Physical-Social Systems 

The emergence of cyber-physical-social systems has revolutionized the relationship 
between computers, the physical environment, and humans (social domain). CPSS considers 
social characteristics and relations [GuYZ015], human knowledge, mental capabilities, and 
sociocultural elements. Information from cyberspace interacts with physical and mental spaces in 
the real world, as well as the artificial space mapping different facets of the real world. A CPSS 
carries out parallel execution, self-synchronization, and influences in the physical, information, 
cognitive, and social domains. These four domains are key elements in military C&C systems. 
By fusing physical, information, cognitive, and social domains, CPSS transform command and 
control organizations. To a degree, the nimbleness of a command and control organization stems 
from the fusion of its internal essential components, especially the human factors involved. Thus, 
CPSS provide an ideal paradigm for designing and constructing command and control 
organizations. Information technology has changed command and control organizations, 
flattened their structures, and formed more dynamic and complex interactions. Such 
organizations have become organic entities, including sensor, enabler, communication, and 
social networks composed of human beings. The components are closely linked, enabling 
information collection, situation awareness, planning and decision-making, and action execution 
within a loop. With the support of cognitive computing, a command and control organization is 
able to model its own conduct leading to human centricity and synchronicity. The study of 
network-centric warfare shows that an efficient military organization must be robust, resilient, 
responsive, flexible, innovative, and adaptive. These attributes form the basis of self-synchronic 
military operations conducted by a command and control organization. To effectively carry out 
command and control, the main challenge lies in the organic integration of multidomains— that 
is, the physical systems in the physical domain, cyber networks in the information domain, 
mental elements in the cognitive domain, and social networks in the social domain. 
Transregional and transdomain self-synchronization leads to the complexity and emergence of 
system operations. Because there are trade-offs between response time and decision quality, 
chaotic control might be the key to balance them under critical situations. Hence, to achieve self-
synchronization of a command and control organization, establish a chaotic control mechanism 
for the CPSS is required. The inputs are missions, events, or tasks. The CPSS automatically 
integrates an organization’s essential elements in the four domains, assigns physical resources, 
sets up sensor networks and enabler networks, constructs the command and control relationships 
in the social network, and organizes and shares relevant information as needed. The chaotic 
system’s output is the complete operational system; the entire command and control organization 
as a CPSS. In the operational process, a distributed command and control organization is both 
self-organizing ([SLSS014] and [SmKP015]) and self-adaptive in accordance with changes in 
the battlefield. Instead of pursuing an absolute central control of the organization behaviour, a 
chaotic control mechanism focuses on the harmony of the CPSS as a SoS. A framework for self-
synchronization of a CPSS is built upon self-organizing and self-adapting processes. In this 
context, a CPSS is made up of physical network, cyberspace, cognitive network, organizational 
network, and artificial societies. The physical network includes sensor, enabler, and 
communication networks, closing the sensor-to-shoot cycle. Cyberspace supplies space for 
computing, storage, information processing, and sharing services, especially situation awareness 
and decision-support services directly for command and control. The cognitive network is a 
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semantic Web based distributed knowledge management system, with the goal of managing, 
evolving, and utilizing operational rules and organization intelligence. The organizational 
network is a social network consisting of commanders and the operating personnel that play a 
key role in the command and control relationship. Artificial societies are introduced as a virtual 
world mapping of the physical network, cyberspace, cognitive network, and organizational 
network in the real world, as well as multiple future virtual worlds for exploration of possible 
scenarios. The physical network, cyberspace, cognitive network, and organizational network are 
integrated and overlapping [LYWZ011]. 

In particular, human social interaction exerts fundamental influence on cyberspace (e.g., 
using smartphones as sensors in CPSS social relationship is used to assist message forwarding). 
CPSS establishes an effective connection between human intelligence and machine intelligence. 
Another modality about CPSS is the social network aspect over CPS. Connecting the social 
space, cyberspace and physical space via social network is a promising approach. Prototypes 
towards cyber-physical social networks have already been proposed modelling persons and 
communities with abstract methods [ZYLN016]. 

CPSS fuses diverse information originating from cyberspace, physical-space and social-
space, providing human-centric computation services. The main task of CPSS is to meet people’s 
social interaction demands and to react to the physical world. Hence, the research focuses on 
developing CPSS technologies (e.g., smart home, smart transport systems, smart medical 
services, and smart cities) to support cumbersome tasks in cyber world, physical world, and 
social world to facilitate work efficiency. The inclusion of the human role in CPSS is 
fundamentally different from traditional CPS. Human’s social activities in CPSS relate to both 
cyberspace and physical space closely [ZYLN016]. 

CPSS research topics are divided into: (i) Seamless migration technologies of 
heterogeneous network, (ii) device management and discovery, (iii) context awareness and 
management, (iv) human–computer interaction, (v) user behaviour based proactive service, (vi) 
social computing, and (vii) security and privacy. They can also be partitioned by related space. 
For cyberspace and physical space, CPSS consists of: (i) Seamless migration technologies of 
heterogeneous network, (ii) device management and discovery, (iii) human–computer 
interaction, and (iv) security and privacy. Regarding cyberspace and social space, CPSS refers 
to: (i) Context awareness and management, (ii) social computing, and (iii) user behaviour based 
proactive service [ZYLN016]. 

According to Festo Head of Future Technology, Christoph Hanisch, engineers have to 
find their way into the right use of technology where the outlook of the possibilities for the 
integration of mechanics, electronics, and software puts them in a unique historic position as the 
options for matching virtual and real worlds have never been so close before. Today, engineers 
have the chance to develop mechanical architectures supported by software tools and control 
power that enabling users to achieve systems that were non-existent before [CBKD014]. 

An important aspect in CPSS are the protocols allowing connectivity to the Internet. The 
OSI model standardizes communication functions and protocols of computing systems by 
abstracting and locating them into layers: Physical (bits), data link (frames), network (packets 
and routing (e.g., IP)), transport (segments (e.g., TCP)), session (dynamic creation of network 
connections), presentation (message data syntax processing (e.g., format conversions, 
encryption/decryption for supporting the application layer), and application (network services, or 
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protocols (e.g., hyper-text transfer protocol (HTTP)), for end-user applications). [XiRa015]. 
The complexity of the data link layer causes it to split into: Medium access control 

(MAC) sublayer and logical link control sublayer. MAC is particularly relevant in CPSS because 
it is supported by the physical layer. MAC is responsible for a number of functions like 
addressing and channel access controlling mechanism. For multiple nodes in a network to 
communicate through shared medium, MAC provides channel access control mechanism known 
as multiple access protocol. For short-range wireless communications in CPSS (e.g., wireless 
sensor networks (WSNs), wireless sensor and actuator networks (WSANs), and wireless body 
area networks (WBANs)), MAC protocols often use time division multiple access (TDMA), 
where nodes access a medium in time slots, or carrier sense multiple access with collision 
avoidance (CSMA/CA), where nodes transmit when the channel is sensed as “idle”, for fair 
access of shared medium. Other communication protocols as frequency division multiple access 
(FDMA) and code division multiple access (CDMA) could also be used [XiRa015]. 

The Institute of Electrical and Electronic Engineers, IEEE, has defined a family of 
standards, IEEE 802, for networking protocols. The IEEE 802 family has included descriptions 
since February 1980 until now. Important descriptions interfacing CPSS are IEEE 802.3 
(Ethernet), IEEE 802.11 (wireless local area networks and Wi-Fi), IEEE 802.15.1 (Bluetooth), 
IEEE 802.15.4 (ZigBee), IEEE 802.15.6 (body area networks), IEEE 802.15.7 (visible light 
communications), and IEEE 802.24 (Smart Grid). Many CPSS are supported by the IEEE 802 
family like WSANs built upon the IEEE 802.15.4 (e.g., large-scale factory automation, 
distributed and process control, machinery health monitoring). These standards have greatly 
encouraged to bridge real-time (with meticulous and constrained implementations) physical 
world applications/objects to cyber world for diverse range of time-critical applications. The 
communication and computing capabilities of a cyber core are utilized to control/monitor real 
world’s objects/applications [XiRa015]. 

 Medical-cyber-physical-social systems (MCPSS), a specialized form of CPSS, is an 
integration of sensing, computation, communications, and medical processes, which can provide 
reliable and real-time services. Context-aware, life-critical, and networked medical devices are 
used to provide continuous high-quality healthcare for patients within or outside the hospital. 
MCPSS can be classified into: Invasive (in-body sensor nodes monitor physiological signs) and 
non-invasive (on-body sensor nodes are used [XiRa015]. 

Smart cities define urban environments with a new generation of innovative services for 
transportation, energy distribution, healthcare, environmental monitoring, business, commerce, 
emergency response, and social activities. The technological infrastructure of a smart city is 
based on a network of sensors and actuators embedded throughout the urban terrain, interacting 
with wireless mobile devices (e.g., smartphones) and having an Internet-based backbone with 
cloud service. The data collected and flowing through such CPSS involve traffic conditions, 
occupancy of parking spaces, air/water quality information, structural health of bridges, roads, or 
buildings, and location and status of city resources (e.g., transportation vehicles, police officers, 
or healthcare facilities). Enabling smart cities requires a cyber-physical-social infrastructure 
combined with new software platforms and strict requirements for mobility, security, safety, 
privacy, and the processing of massive amounts of data. Data reside and drive a variety of novel 
and continuously evolving applications with real-time response and stringent security 
expectations. Smart cities infrastructure consists of sensing, communicating, decision-making, 
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and actuating [Cass016]. 
Messages of CPSS are exposed to malicious agents by snooping packets in the 

communication network. Although security is a fundamental issue for CPSS, most devices in 
CPSS are resource constrained, where energy efficiency has a direct impact on the performance 
of security services (e.g., the higher the encryption strength, the more energy the algorithm 
consumes) [ZYLS017]. 

B.3.1 Cyber-Physical Systems 

It seems Helen Gill of the US National Science Foundation coined the term, cyber-

physical systems in 2006. As the name suggests, CPS have both cyber (software control) and 
physical (mechanism) elements; more specifically they are physical entities controlled by 
computer algorithms. In general, whilst they clearly encompass the field of embedded systems, 
they go beyond this in terms of complexity because of the importance of computer networking to 
their capabilities. Certainly, a key attribute of CPS seems to be an expectation that they are a 
disruptive technology through enabling new business models. The features of CPS are the ability 
to sense, contextualise, decide, and act in such a way that non-human decision-making agents 
interact with (change and are changed by) the environment. The following definition of CPS is 
probably one of the most complete available: “CPS are systems with embedded software (as part 
of devices, buildings, means of transport, transport routes, production systems, medical 
processes, logistic processes, coordination processes, and management processes), which: (i) 
Directly record physical data using sensors and affect physical processes using actuators; (ii) 
evaluate and save recorded data, and actively or reactively interact both with the physical and 
digital world; (iii) are connected with one another and in global networks via digital 
communication facilities (wireless and/or wired, local and/or global); (iv) use globally available 
data and services; and (v) have a series of dedicated, multimodal human-machine interfaces” 
[Hens016].  

Industrialists, researchers and practitioners are associating advances in computation and 
communication resources with a fourth industrial revolution (referred to as Industry 4.0 in 
Germany) where physical “things” get connected to the Internet allowing the real touchable 
world to integrate part of cyber-space. The world market of monitoring and control (M&C), 
fundamental in industrial development, is expected to grow reaching € 500 billion by 2020. 
When analysing the major application domains for real-time M&C from the large process 
industry viewpoint, these index and related expectations outline the tremendous potential and 
value [CBKD014]. 

According to the characteristic of mobility of embedded computers, CPS can be 
partitioned into: (i) Accompanied (neither wearable nor implanted), (ii) portable (two-handed 
operation), (iii) hand-held, (iv) wearable (hands-free), and (v) implanted or embedded (e.g., 
medical services to assist humans) [ZYLN016]. In CPS, numerous embedded devices with 
limited computational, communication, sensing capacities, and power supply are networked, 
enabling a variety of innovative applications. In industrial applications, a number of sensor nodes 
are attached to machines to communicate machines’ status to a computation core that sends the 
feedback control/command to actuators attached to machines. Applications of CPS include: 
Medical healthcare, home automation, environmental control, assisted living, smart city, 
transportation, traffic control, process control, automotive systems, defense systems, water 
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supply, smart grid, robotics, smart spaces, energy conservation, smart factory, industrial 
automation, battlefield surveillance, communication systems, and aerospace systems, to mention 
a few [XiRa015]. 

Characteristics of CPS include cyber capability in physical components, networking at 
multiple and extreme scales, complexity at multiple temporal and spatial scales, dynamic 
reorganization and reconfiguration, high degrees of automation, closed control loops at multiple 
scales, unconventional computational and physical substrates, and dependable even certifiable 
operations. CPS allow connectivity to control mechanical systems using embedded processors. 
The environmental states are sensed and controlled using sensors and actuators for a diverse 
range of applications. CPS provide interaction to physical world which must be safe, secure, 
efficient, and dependable. This intimate coupling of cyber and physical worlds can vary in both 
scale and size (e.g., smartphones to smart industrial applications). In CPS, the physical world’s 
processes and the cyber computation world are bridged with feedback loops, where the 
computation processes affect physical processes, and vice versa. A typical CPS consists of 
physical objects/applications, actuators, sensors, communication, and computing core. This 
coupling provides solutions for different applications, not only on large scale but also for 
personal use and at microlevel. Like transformation of human interaction via Internet, CPS 
enable the physical world to interact with the cyberworld, thus transforming how human beings 
interact with the physical world [XiRa015]. 

B.3.2 Cyber-Social Systems 

Cyber-social systems (CySS) focuses on using people social behaviours and 
relationships analysis to provide suitable information services that greatly promote the quality 
life of people. Social network is an important application of CySS and has gained increased 
attention (e.g., typical social network applications, such as and not limited to Facebook, Twitter, 
or YouTube). Multiple social network based applications exist: (i) Recommendation based on 
social network where research groups employ social networks to enable automatic 
recommendation systems providing similar preferences between various social individuals, (ii) 
electronic negotiation where autonomous agents model automatic negotiation in the electronic 
market (e.g., auctions, stock market, or forex), (iii) public sector, (iv) e-government, and (v) 
interactive entertainment [ZYLN016]. 

B.4 Internet of Things 

The Internet-of-things is a concept introduced in 1998 by Kevin Ashton [Path015] and it 
got its start in 1999 with the founding of the MIT Auto-ID Center having as a goal the 
development of a broad class of identification technologies for use in industry to support 
automation, reduce errors, and increase efficiency. The cornerstone of this technology was the 
radio frequency identification (RFID) tag, which allows to uniquely identify tagged objects 
discovering details via a centralized service. The core technologies for the IoT are, in addition to 
RFID, WSN, and near field communications (NFC) [Path015]. This initial work culminated in 
the launch of the EPC Network in 2003. After the EPC Network demonstration, the Auto-ID 
Center was split into Auto-ID Labs (developing the hardware, software, and languages that could 
be integrated into the current internet in order to realize the IoT) and EPCglobal (handling IoT 
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commercialization). The ability for objects to communicate delivers the power of the IoT, which 
is found in the form of data. It is estimated that the number of M2M communication sessions 
would be 30 times that of human-to-human (H2H) communication on the Internet. The IoT 
potential is so widely recognized that industries have begun creating their own terms embodying 
the intent of the IoT within their particular markets. Terms like IIoT, Industry 4.0, smart planet, 
smart city (a superset of smart facility), smart grid, smart facility, and smart home attempt to 
restrict the focus of IoT technology to a specific vertical industry [Blow015]. Within these new 
terms, many forms of critical infrastructure are found. Federal laws in USA mandate that any 
virtual or physical assets whose incapacity or destruction would have a debilitating impact on 
security, national economics, or national public health or safety must be considered critical 
infrastructure. 

The internet-of-things links closely to CPSS, but in this case, the focus is on sensing and 
exchanging the sensed data (via the Internet) and is less concerned with the human-machine 
interface than is the case for CPSS. A contemporary definition of the IoT is: “The IoT is a 
system of interrelated computing devices, mechanical and digital machines, objects, animals or 
people that are provided with unique identifiers and the ability to transfer data over a network 
without requiring human-to-human or human-to-computer interaction.” The development 
emphasis, then, for the IoT is the connectivity of “smart” devices, that is, devices with varying 
levels of embedded intelligence but, more particularly, devices that are uniquely identified and 
carry with them data about themselves and their environment. The IoT is, genuinely, the 
extension of the Internet from a web connecting information systems to a web connecting 
physical things that carry and use information [Hens016]. 

According to Intel CTO, Michael W. Condry, the number connected devices of all kinds 
continues to grow daily. This connectivity includes smart client devices from PCs to smart 
phones to control systems, cloud services, and even vehicles. These devices have sensors (e.g., 
accelerometer/motion, location/GPS, cameras) in addition to their computing and connection 
capabilities. This coupled with powerful cloud servers opens an environment of opportunity for 
service-based automation with control-services from the factory to the office to the home 
[CBKD014].  

Information and communication technology (ICT) (insecure and vulnerable to security 
attacks) is the key infrastructure of the IoT. Due to the limited energy and the resource 
constraints of the IoT components, it is difficult to shift in-hand security schemes into the future 
IoT. Some of the major attacks for ICT technologies are: (i) Eavesdropping, which is a passive 
attack where an attacker listens and uncovers useful information (used to exploit many malicious 
activities) during communications; (ii) spoofing, where the attacker changes the source address 
hiding its own (e.g., man-in-the-middle); (iii) DoS, which is a form of jamming attack where an 
attacker sends a bulk of useless packets to the network impeding it to execute legitimate packets 
for providing service; and (iv) DDoS, where DoS is extended by having multiple attackers 
sending bulk packets flooding the target [Path015].  

As IoT security solutions demand new energy-efficient security protocols, the use of in-
hand cryptographic and security techniques in the IoT is still an open issue, and needs further 
research to ensure that within the limited processor, memory, and power constraints, the 
traditional cryptographic and other security algorithms can be implemented in the IoT. The most 
perilous attacks aiming to disrupt and exploit vulnerabilities in IoT protocols are: (i) DoS attacks 
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on OSI layer 1 and 3, where data is sent in bulk over the radio carrier disrupting wireless 
communications. IoT routing protocols like routing information protocol (RIP), border gateway 
protocol (BGP), open shortest path first (OSPF), are prone to security attacks such as 
impersonating attacks, spoofing attacks, falsification of routing packets, or selective forwarding; 
(ii) generic attacks, due to an IoT system incapacity to use security architecture, intelligent 
firewall systems, intrusion detection systems for securing the upper layer protocols; and (iii) 
redirection attacks, through the ICMP redirect, address resolution protocol (ARP) poisoning, and 
domain name system (DNS) poisoning disrupting the communication protocols stack with the 
attacker first controlling the communication packets and then changing the data or injecting false 
data. Due to the open nature of the core IoT technologies (RFID, NFC, and WSN) a big attack 
surface for an attacker is presented making IoT core technologies insecure and vulnerable to 
attacks. IoT devices are particularly vulnerable to physical attacks, software attacks, and side-
channel attacks. A definition of privacy considers four domains: Physical, mental, decision, and 
information. Actually, privacy in the IoT is a complex sociotechnical and legal issue. The 
following are the most common requirements for the IoT: (i) User authentication, (ii) tamper 
resistance, (iii) secure execution, (iv) secure data communication, (v) identity management, (vi) 
confidentiality, (vii) auditing, and (viii) integrity [Path015]. 

B.5 Fog Computing 

Fog computing, complementary to cloud computing, is a new paradigm proposed by 
Cisco Systems in 2012 [BMZA012] extending the computing infrastructure from the centre to 
the edge of the network. The widely adopted cloud computing orchestration framework can be 
customized to fog computing systems. Facing typical limitations in computational resources and 
power supply (e.g., batteries and renewable energy) at the end devices in IoT, migration and 
offloading part of the application processing from the IoT resource-poor end devices to powerful 
backend clouds, which cannot completely accommodate current IoT applications because of: (i) 
The transfer impracticality of all the data from IoT end devices, where data are generated, to the 
backend cloud, where data are processed, due to bandwidth limitations (e.g., heterogeneous 
sensory nodes in a driverless car are estimated to generate about 1 GB per second [LJYZ017]) 
and excessive transmission costs; (ii) some users not wanting their data traversing long distances 
from end devices to the cloud due to privacy risks; (iii) the noticeable round-trip delay from end 
devices to the cloud can easily degrade the performance of delay-sensitive applications, such as 
augmented reality (AR), online gaming, social media, and video applications that require online 
analytics; and (iv) localized applications adapting dynamically to local network states and user 
contexts (e.g., dynamic adaptive video streaming to mobile users, it is difficult for remote clouds 
to rapidly respond to local contextual changes). In fact, offloaded application segments do not 
necessarily have to be executed in the cloud. Instead, edge facilities, such as commercial off-the-
shelf (COTS) routers and Wi-Fi gateways, edge data centres, and home servers, can be leveraged 
to facilitate data processing. To this end, fog computing, in which some offloaded application 
segments are pushed to edge facilities close to IoT end devices, has been developed. To handle 
the highly heterogeneous nature of fog nodes that participate in a fog computing ecosystem, a 
universal orchestration platform on top of the fog nodes is the technical enabler, which brings 
interoperability (allowing heterogeneous fog nodes to operate under the same architecture), 
software-programmability (eases the way for application developers to program based on 
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virtualized hardware, where low-level hardware details of fog nodes are shielded), and 
virtualization (divides the resources on fog nodes into resource units, such as kernel-based VMs 
and containers, shared by multiple IoT applications without mutual interference). As a natural 
extension of cloud computing to the network edge, fog computing inherits features of cloud 
computing like resource orchestration, elastic provisioning, and multi-tenancy. Interconnected 
fog nodes form a shared pool of reconfigurable computational resources. Resource-rich fog 
nodes can lease their computational resources out to execute IoT applications. Fog nodes can be 
owned by separate parties at different geographic locations, forming a massive-scale computing 
network. Fog computing should be autonomous to tackle network dynamics (e.g., on-off 
switching of IoT applications, mobility of fog nodes, unreliable access links of some fog nodes 
to the network). IoT applications can specify QoS requirements (non-trivial): Delay, throughput 
(e.g., streaming rates for video applications), and data locality, to be satisfied in the affinity-
aware offloading process. Research on fog computing can be viewed from three perspectives: (i) 
Underlying networking infrastructure, which is layered into fog-as-a-service (FaaS) (e.g., 
software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service 
(IaaS)); (ii) control, which allocates the resources in the lower physical resource layer to the 
cloud applications in the upper service layer; and (iii) physical resource; resource orchestration, 
and applications. When designing the networking architecture, most studies used the prevalent 
software-defined networking, SDN, approach [JiHT017]. 

Fog computing offers additional appealing features: Low latency, low cost, high-
multitenancy, high-scalability, and consolidation of the IoT ecosystem [ZAJW017]. Fog might 
be specified in terms of functionality as fog edge nodes (FENs), fog server (FS) and foglet, where 
FENs and FS are hardware nodes, and foglet is the middleware in charge of data exchange. 
When employing fog as a platform for IoT, a FEN accommodates adjacent smart objects for 
network access and edge computing, thus sensing, control and interoperation could be 
immediately accomplished on the FEN. An FS focuses on the interplay between FENs and the 
cloud. Hence, a FS controls, manages and coordinates FENs at their one-hop proximity, while a 
foglet offers cross-platform capability for monitoring, liaising and organizing fog resources. 
Overall, fog distributes computing, control, storage, and networking services along the cloud-to-
things continuum, and facilitates collaborations among IoT devices and applications. Emerging 
development includes fog control network, fog access network, and fog storage network. The 
combinations of fog with IoT, content delivery networks (CDN), connected vehicle, and radio 
access network have also been investigated. In industry, Intel promotes its fog reference design 
(FRD), while Cisco advocates its IOx. Both utilize FPGA technologies to cast proprietary 
hardware in a chassis as a fog node, allowing users to configure and program it after 
manufacturing [LJYZ017]. 

Fog computing essentially provides solutions for: (i) On-demand computing power for 
devices at the edge networks with limited resources, (ii) decreasing the network traffic and delay, 
and (iii) increasing network resilience. Simulations to study the effect of fog computing on 
network traffic and delay have shown that fog computing prepares a network for better response 
time in case of interactive requests and makes the edge networks more resilient to challenges in 
the core network. The IoT has introduced new types of network protocols suitable for different 
data rates, range, and energy consumption has boosted this growth substantially. This poses a 
need for the efficient processing of unexpected traffic load, which threaten the performability 
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and usability of IoT applications. Fog computing is a potential solution to tackle these problems 
and it has been shown that adding a fog layer to the architecture of the IoT increases network 
resilience. In fog computing, all event-based and real-time queries are executed in the fog and 
with processed and refined data are transferred to the cloud where needed for more processing 
and decision-making applications. The OpenFog Consortium, a group founded in November 
2015 of more than 60 companies and universities (e.g., ARM, Cisco, Dell, Intel, Microsoft, and 
Princeton University), expands the fog definition after claiming that cloud connectivity is not 
adequate for IoT. OpenFog considers fog computing as a horizontal architecture providing a 
continuum of distributed computing, storage, and network services from the cloud to the edge 
network. The application requirements and the network status split applications either to the 
cloud or to the fog. Fog may experience both challenges, which are events disrupting the normal 
operation of the network and threats which is a challenge exploiting vulnerabilities in the 
network to disrupt it. Resilience in terms of fog is defined as the ability of a system to provide 
and maintain an acceptable level of service in the face of various faults and challenges to the 
normal operation. Challenge tolerance includes: (i) Survivability [divided into many and 
targeted failures (e.g., natural disasters) and few and random failures (e.g., fault tolerance]; (ii) 
traffic tolerance [unexpected legitimate traffic and abnormal traffic (e.g., DDoS)]; and (iii) 
disruption tolerance (including delay, mobility, and connectivity, and device specific challenges 
like energy). Trustworthiness includes measurable characteristics: (i) Dependability; (ii) security; 
and (iii) performability [MoSt017]. Fog computing through CPSS provides a flexible 
orchestration and management platform that can meet the needs of emerging model Industry 4.0 
[VCJL017]. Fog computing based content aware in information centric networks (ICN) reduce 
the total content number in the caching by classing data into user-shareable and non-shareable 
before transferring to a global network [WWLL017]. 

The OpenFog consortium has defined the fog pillars as: Security, scalability, open, 
autonomy, RAS (reliability, availability, serviceability), agility, hierarchy, and programmability 
[Open017]. 

B.6 Cyber Operations 

There are many developments appearing in cyber technologies and cyber operations 
influencing innovations in social media, cybersecurity, CPSS, ethics, law, media, economics, 
infrastructure, military operations, and other elements of societal interaction. An increased 
disruption is taking place in social media, autonomy, stateless finance, quantum information 
systems, the IoT, the dark web, space satellite operations, and global network connectivity along 
with the transformation of the legal and ethical considerations of these technologies. Technical 
innovations vastly increase interconnectivity of physical and social systems and cause a growing 
need for resiliency in the vast and dynamic cyber infrastructure. Nevertheless, there is a growing 
need for cyber defenders to position themselves to dynamically respond to attacks through 
improved situational awareness, effective cyberspace command and control, and active defenses. 
There is a huge challenge posed by securing IoT’s billions of embedded devices and trillions of 
sensors in the world around us. These sensors perceive the conditions around them and provide 
information to support an almost endless array of decision-supporting and decision-making 
capabilities. IoT is revolutionizing our supply chains, manufacturing, infrastructure, 
transportation, clothing, homes, agriculture, and even our bodies. We are instrumenting the 
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world around us to a degree increasingly relying on machines to augment and make decisions for 
us. The biggest vulnerability in the vast universe of interconnected SoS and devices in CPSS is 
the network itself. This has deep implications in the electronic war battlefield of the next several 
decades. Space operations [space control (offensive space control, defensive space control, and 
situational awareness); space support (spacelift operations, satellite operations, rendezvous and 
proximity operations, and reconstitution of space forces); space force enhancement (missile 
warning, intelligence, surveillance, and reconnaissance, environmental monitoring, satellite 
communications, space-based positioning, navigation, and timing); and space force application 
(intercontinental ballistic missiles and missile defense)] have long been critical for national 
security, providing critical services as intelligence, surveillance, and reconnaissance (ISR) 
capabilities since the late 1950s. American and international space assets have evolved 
exponentially since then, by now offering nations with navigation, timing, communications, 
weather, targeting, strategic warning, and defense abilities, among the more classical ISR roles. 
Both military and civilian affairs have been so enhanced by access to space that the realm has 
become indispensable to society. However, the critical role of cyber relative to space operations 
is still somewhat out-of-focus or hazy during normal space operations. The maxim “you can’t 
have space without cyber” well known to space operators does not reflect the current 
understanding of both how true it is and the space systems’ vulnerabilities to cyber-attacks. The 
DarkNet seems accessible only to IT professionals, hackers, and computer savvy criminals. 
However, more people are turning to this underground network as anonymity becomes an 
increasing concern. This is where the never-seen-before computer malware lives and thrives. 
Anything and everything known to man, both legal and illegal, is found in the DarkNet. New 
forms of stateless currencies could surpass institutions and eliminate transparency, providing a 
perfect agency. The exploding use of social media is staggering, and the ability for populations 
and governments to stay connected is unprecedented. Human psychology and habit patterns 
observed today provide understanding of how social media could be used in the future.  Proper 
ethical behaviour in the cyber domain and making sure all societies and governments agree on 
cyber ethics is an increasingly difficult challenge. Cybersociety is defined as a combination of 
legislative actions, state and non-state actors, the military, and public-private partnerships. The 
ethical challenges of state-sponsored hacktivism and the advent of “soft” war in which warfare 
tactics rely on measures other than kinetic force or conventional armed conflict to achieve the 
political goals and national interests. Today, high school students have grown up fully immersed 
in this technological world and have a unique perspective on how individuals and society have to 
continue to adapt to it. This younger generation would add more disruption into the technological 
ecosystem [Blow015]. 

Cyberspace attacks change friendly systems through manipulating data, causing hardware 
failures, or physical destruction of objects controlled from cyberspace. Cyberspace espionage 
done well leaves defenders with no idea anyone was ever in their systems, as everything would 
still function. Resilience is not as useful in examining cyberspace espionage as a cyberspace 
attack. The Department of Homeland Security Risk Steering Committee has defined resiliency 
as, “The ability to adapt to changing conditions and prepare for, withstand, and rapidly recover 
from disruption.” A perfect perimeter defense is not possible, and even if it were, attackers are 
often within the walls as insider threats. The United States Joint Staff has defined cyberspace as, 
“a global domain within the information environment consisting of the interdependent network 
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of information technology infrastructures and resident data, including the Internet, 
telecommunications networks, computer systems, and embedded processors and controllers.” A 
very important point that comes from the definition is that while the Internet is part of 
cyberspace, it is not all of cyberspace. Most modern military equipment more complex than an 
M4 carbine has some form of processor from a humble truck to an aircraft carrier, and is thus 
part of cyberspace. There are three elements that have application to resiliency in the cyberspace 
domain; flexibility, a reduced attack surface, and the ability to respond dynamically to attacks 
[Blow015].  



POLYSCALE BASED CYBERSECURITY App. C: Computational Intelligence Approaches 

 

 

Jesus David TerrazasGonzalez   
 − C1 −  

APPENDIX C                                                                                

COMPUTATIONAL INTELLIGENCE APPROACHES 

 

Data-driven discovery is transforming modelling, prediction, and control. Diverse fields 
as machine learning, engineering mathematics, and mathematical physics are amalgamated to 
integrate modelling and control of highly complex systems, as is the case of dynamical systems, 
with modern methods in data science [BrKu019].  

Advances in scientific computing enable data-driven methods to be applied to a diverse 
range of complex systems [BrKu019] such as turbulence, the brain, climate, epidemiology, 
finance, robotics, autonomy, and nonetheless Internet traffic analysis, focal research area in this 
thesis. 

Artificial neural networks are part of the area known as Intelligent Systems (connectionist 
systems), or Computational Intelligence. Besides artificial neural networks, the intelligent system 
area includes diverse tools, such as fuzzy systems, evolutionary computing, swarm intelligence, 
artificial immunologic systems, and intelligent agents [NHAB017]. 

As Cartwright points, ANNs are among the most fundamental techniques within the field 
of Artificial Intelligence (AI). Their operation loosely emulates the functioning of the human 
brain, but the value of an ANN extends well beyond its role as a biological model. An ANN can 
both memorize and reason. It provides a way in which a computer can learn from scratch about a 
previously unseen problem. Remarkably, the exact form of the problem is rarely critical; it might 
be financial (e.g., predicting the direction of the stock market); it might be sociological (e.g., 
what factors make a face attractive?); it could be medical (e.g., detecting a broken bone from an 
X-ray); or, as in this thesis, the problem might be related to cybersecurity (e.g., DDoS detection) 
[Cart015]. 

ANNs are computational models inspired by the nervous system of living beings. They 
have the ability to acquire and maintain knowledge (information based) and can be defined as a 
set of processing units, represented by artificial neurons, interlinked by a large number of 
interconnections (artificial synapses), implemented by vectors and matrices of synaptic weights 
[NHAB017]. 

The most relevant features concerning artificial neural applications are the following: (i) 
Adapting from experience. The internal parameters of the network, usually its synaptic weights, 
are adjusted with the examination of successive examples (patterns, samples, or measurements) 
related to the process behaviour, thus enabling the acquisition of knowledge by experience; (ii) 
Learning capability. Through the usage of a learning method, the network can extract the 
existing relationship between the several variables of the application; (iii) Generalization 
capability. Once the learning process is completed, the network can generalize the acquired 
knowledge, enabling the estimation of solutions so far unknown; (iv) Data organization. Based 
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on innate information of a particular process, the network can organize this information, 
therefore enabling the clustering of patterns with common characteristics; (v) Fault tolerance. 
Thanks to the high number of interconnections between artificial neurons, the neural network 
becomes a fault-tolerant system if part of its internal structure is corrupted to some degree; (vi) 
Distributed storage. The knowledge about the behaviour of a particular process learned by a 
neural network is stored in each one of the several synapses between the artificial neurons, 
therefore improving the architecture robustness in case of neurons loss; and (vii) Facilitated 
prototyping. Depending on the application particularities, most neural architectures can be easily 
prototyped on hardware or software, since its results, after the training process, are usually 
obtained with some fundamental mathematical operations [NHAB017]. 

In 1943, using their knowledge on neurophysiology and publishing the very first article 
related to artificial neurocomputing, McCulloch and Pitts demonstrated that logical operation 
could be performed by neurons by developing a mathematical model inspired by biological 

neurons, resulting in the first conception of the artificial neuron ([McPi943], [NHAB017]).  
The information processing performed by the human brain is carried out by biological 

processing components, operating in parallel, for producing proper functions, such as thinking 
and learning. The fundamental cell of the central nervous system is the neuron, and its role 
comes down to conduct impulses (electrical stimuli originated from physical-chemical reactions) 
under certain operation conditions. This biological component can be divided into: (i) Dendrites. 
Composed of several thin extensions forming the dendritic tree. The fundamental purpose of 
dendrites is to acquire, continuously, stimuli from several other neurons (connectors) or from the 
external environment, which is the case of some neurons in contact with the environment (also 
called sensory neurons); (ii) Cell body or soma. Responsible for processing all the information 
that comes from the dendrites, to produce an activation potential that indicates if the neuron can 
trigger an electric impulse along its axon. It is also in the cell body where the main cytoplasmic 
organelles (nucleus, mitochondria, centriole, lysosome, and so forth) of the neuron can be found; 
and (iii) Axon. A single extension whose mission is to guide the electrical impulses to other 
connecting neurons, or to neurons directly connected to the muscular tissue (efferent neurons). 
The axon termination is also composed of branches called synaptic terminals [NHAB017]. 

Synapses are the connections that enable the transfer of electric axon impulses from a 
particular neuron to other neurons dendrites. There is no physical contact between the neurons 
forming the synaptic junction, hence the neurotransmitter elements released on the junction are 
in charge of weighting the transmission from one neuron to another. In fact, the functionality of a 
neuron is dependable of its synaptic weighting, which is also dynamic and dependent on the 
cerebral chemistry, as pointed by Hodkin and Huxley in 1952. The neural membrane action 
potential has negative values when resting (polarized), which means that there is a larger 
concentration of negative ions inside the membrane than at its exterior. When the nervous cell is 
stimulated (depolarized) with an impulse higher than its activation threshold (−55 mV), caused 
by the variation of internal concentrations of sodium (Na+) and potassium (K+) ions, it triggers an 
electrical impulse which propagates throughout its axon with a maximum amplitude of 35 mV, 
as indicated by Kandel in 2012. The amplitude of 35 mV, maximum action voltage, is fixed and 
strictly satisfied for all neurons when they are stimulated, however, the signal duration in time is 
variable. This fact can be observed independently of the category of the neuron (connector, 
afferent, or efferent). When the excitation ends, the membrane repolarizes, meaning the action 
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voltage returns to its resting value (−70 mV) [NHAB017].  
ANNs structures are based on known models of biological nervous systems and the 

human brain itself. The computational components or processing units, called artificial neurons, 
are simplified models of biological neurons. These models were inspired by the analysis of how 
a cell membrane of a neuron generates and propagates electrical impulses, as found by Hodgkin 
and Huxley in 1952. The artificial neurons used in ANNs are nonlinear, usually providing 
continuous outputs, and performing simple functions, such as gathering signals available on their 
inputs, assembling them according to their operational functions, and producing a response 
considering their innate activation functions. The simplest neuron model including the main 
features of a biological neural network, parallelism and high connectivity, is precisely the one 
proposed by McCulloch and Pitts in 1943, which still is the most used model in different ANNs 
architectures. The multiple input signals coming from the external environment (application) are 

represented by the set 1 2{ ,  ,  ...,  }nx x x , analogous to the external electrical impulses gathered by 

the dendrites in the biological neuron. The weighing carried out by the synaptic junctions of the 

network are implemented on the artificial neuron as a set of synaptic weights 1 2{ ,  ,  ...,  }nw w w . 

Analogously, the relevance of each of the { }ix  neuron inputs is calculated by multiplying them 

by their corresponding synaptic weight { }iw , thus weighting all the external information arriving 

to the neuron. Therefore, it is possible to verify that the output of the artificial cellular body, 
denoted by , is the weighted sum of its inputs. Hence, it is possible to see that the artificial 

neuron is composed of seven basic elements, namely: (i) Input signals. 1 2{ ,  ,  ...,  }nx x x  are the 

signals or samples coming from the external environment and representing the values assumed 
by the variables of a particular application. The input signals are usually normalized in order to 
enhance the computational efficiency of learning algorithms; (ii) Synaptic weights. 

1 2{ ,  ,  ...,  }nw w w  are the values used to weight the input variables, which enables the 

quantification of their relevance with respect to the functionality of the neuron; (iii) Linear 
aggregator.  gathers all input signals weighted by the synaptic weights to produce an 

activation voltage; (vi) Activation threshold or bias.  is a variable used to specify the proper 

threshold that the result produced by the linear aggregator should have to generate a trigger value 
toward the neuron output; (v) Activation potential.  is the result produced by the difference 

between the linear aggregator and the activation threshold. If this value is positive, (i.e., if )  
then the neuron produces an excitatory potential; otherwise, its potential is inhibitory; (vi) 
Activation function.  whose goal is limiting the neuron output within a reasonable range of 

values, assumed by its own functional image. The activation functions can be categorized into 
two fundamental groups, partially differentiable functions (e.g., step function, bipolar step 
function, and symmetric ramp function, for which the first order derivatives are non-existent for 
all points of their definition domain), and fully differentiable functions (e.g., logistic function, 
hyperbolic tangent, Gaussian function and linear function, for which the first order derivatives 
exists for all points of their definition domain), when considering their complete definition 
domains; and (vii) Output signal.  consisting on the final value produced by the neuron given 

a particular set of input signals, and it can also be used as input for other sequentially 
interconnected neurons [NHAB017]. 
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The two following expressions synthesize the result produced by the artificial neuron 
proposed by McCulloch and Pitts [NHAB017]:  

 
         

(C.1)  

The artificial neuron operation can be summarized by the following steps: (i) Presenting a 
set of values to the neuron, representing the input variables, (ii) Multiplying each input of the 
neuron to its corresponding synaptic weight, (iii) Obtaining the activation potential produced by 
the weighted sum of the input signals and subtracting the activation threshold, (iv) Applying a 
proper activation function to limit the neuron output, and (v) Compiling the output by employing 
the neural activation function in the activation potential [NHAB017]. 

Digital computers and modern theories of learning and neural processing occurred at 
about the same time, the 1940s. Since then, digital computers are tools for modelling individual 
neurons as well as clusters of neurons, which are called neural networks. Engineering is 
constantly looking for solutions to problems. Neuroscience provides concepts and ideas for 
developing and applying ANN in such quest. These models of ANN follow the general 
understanding of the brain and the behaviour of neurotransmitters in synaptic neural links 
[FrSk991]. In 1949, the first method for training ANNs was proposed; it was named Hebb’s rule 
and was based on hypothesis and observations of neurophysiologic nature [NHAB017].  

Between 1957 and 1958, Frank Rosenblatt developed the first neurocomputer called 
Mark I Perceptron, crafting the basic model of the Perceptron. In 1960, Widrow and Hoff 
developed a network called ADALINE, which is short for ADAptive LINEar Element. Later on, 
the MADALINE, the MultipleADALINE, was proposed. It consisted on a network whose 
learning is based on the Delta rule, also known as Least Mean Square (LMS) learning method 
[NHAB017]. 

Idan Segev remarks that in 1959 [ErRé959], Wilfrid Rall realized that dendrites are 
electrically distributed devices (rather than an isopotential “point”). This ignited the need to 
understand how the synaptic current spreads from the synaptic input site to other dendritic 
regions, in particular to the soma-axon where the output is generated. Rall’s passive cable theory 
for dendrites has provided the theoretical foundation for this biophysical understanding. The 
experimental finding that the dendritic membrane is endowed with a rich repertoire of nonlinear 
voltage- and ligand-gated ion channels, and that synaptic inputs (inhibitory and excitatory) from 
different input sources target specific dendritic subdomains, suggested that dendrites (and their 
synapses) may empower neurons with enhanced computational capabilities. With this 
experimental and theoretical foundation, a new perspective emerged regarding the possibility 
that dendrites alone might implement computational functions. In 1964 Rall showed in a 
computational study that the soma voltage is sensitive to the temporal sequence of synaptic 
activation “swiping” over the dendritic tree, and that this property could be used to perform a 
fundamental computation, sensitivity to the direction of motion. It marked the beginning of the 
50-year search for “dendritic computation”. Remarkable theoretical ideas have been published 
regarding the role of dendrites in performing specific computations: (i) Detection of motion 
direction; (ii) their role in collision avoidance; (iii) storage and classification of multiple input 
features; (iv) calculation of position variables; (v) recovering input signals in the presence of 
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strong noise; or (vi) enhancing temporal resolution for coincidence detection. The first direct 
demonstration of dendritic computation was first provided by the in vivo study of Single and 
Borst in 1998. The anatomical appreciation of dendritic structure started 130 years ago, while the 
theoretical ideas about dendritic functions started 50 years ago [CuRT014]. 

The time window from 1969 to early 1980s is known for the setback/languish of ANN 
research. Some of the few works thereafter were the derivation of prediction algorithms using 
reverse gradients by Werbos in 1974, the development of ART by Grossberg in 1980, the 
formulation of the self-organized maps (SOMs) by Kohonen in 1982, and the recurrent network 
based on energy functions proposed by Hopfield in 1982. The latter is the work that brought to 
the ANNs area its original prestige from before 1969 [NHAB017]. 

Only after the end of the 1980s, scientists restored their interest in ANNs. The definitive 
comeback of ANNs is due to different reasons, such as the development of computers with 
enhanced processing and memory capabilities, the conception of more robust and efficient 
optimization algorithms, and finally, the novel findings about the biological nervous system. One 
of the fundamental works of that time was the publication of Rumelhart, Hinton and Williams’ 
book “Parallel Distributed Processing” in 1986, which brought to the spotlight one algorithm that 
allowed the adjustment of weight matrices of networks with more than a single layer. 
Consequently, solving the old problem of learning patterns from the XOR logical function. The 
proposal of this algorithm, called “backpropagation,” definitely revived and motivated research 
in ANN [NHAB017]. 

As the previous two paragraphs state, the modern renaissance of neural-network 
technology is due to the successful efforts of a handful of persistent researchers studying: 
Adaline and Madaline, backpropagation, bidirectional associative memory and Hopfield 
memory, simulated annealing, counterpropagation, SOMs, ART, spatiotemporal pattern 
classification, neocognition, Hebbian learning, DL, among other approaches. It shall be 
highlighted that it is often easy for scientists and engineers, in their pursuit of solutions to 
specific problems, to ignore completely the neurophysiological foundations of the ANN 
technology [FrSk991]. From all these approaches, this research focuses pragmatically in ART. 

Pattern recognition, the act of taking in raw data and taking an action based on the 
“category” of the pattern, has been crucial for our survival. Pattern recognition is a complex 
environment that involves modelling of the subject, pre-processing of signals for keeping 
relevant information, segmentation of data, feature extraction seeking to measure “properties”, 
and classification. Decision boundaries representing optimal trade-offs between performance on 
the training set and simplicity of classifier is one of the ultimate challenges in pattern 
classification for novel data. Classification aims to recover fundamentally the model that 
generated the patterns. Different classification techniques are useful depending on the type of 
candidate models themselves. Statistical pattern recognition, for instance, focuses on statistical 
properties of the patterns (generally expressed in probability densities). If instead the model 
consists of some set of crisp logical rules, then methods of syntactic pattern recognition, where 
rules or grammars describe decisions, are employed [DuHS001].  

A central aspect in pattern recognition problems is achieving a “good” representation, 
which both reveals simply and naturally the structural relationships among the components and 
expresses the true (unknown) model of the patterns. A representation in which the patterns that 
lead to the same action are somehow “close” to one another, yet “far” from those that demand a 
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different action is sought. The extent to which a proper representation is either created or learned 
and how near and far apart are quantified determines the success of a pattern classifier. 
Representation favours small number of features because this might lead to simpler decision 
regions, and classifiers that are easier to train. Robust features (e.g., relatively insensitive to 
noise or other errors) are desired in many scenarios. In practical applications a classifier may 
have to comply with constrains (e.g., act quickly, use few electronic components, memory or 
processing steps) [DuHS001]. 

Feature extraction takes in a pattern and produces feature values. The number of features 
is virtually always chosen to be fewer than the total necessary to describe the complete target of 
interest, and this leads to a loss in information. In acts of associative memory, the system takes in 
a pattern and emits another pattern associative, which is representative of a general group of 
patterns. Feature extraction reduces the information memory somewhat, but rarely to the extent 
that pattern classification does. Because of the crucial role of a decision in pattern recognition 
information, it is fundamentally an information reduction process (e.g., reduction from several 
thousands of bits representing colour of pixels to a single bit in a two class problem). All the 
steps involved in pattern recognition are subject to research and development. Many are domain 
or problem specific, and their solution depends upon the knowledge and insights of the designer. 
Learning comes in different forms (e.g., supervised, unsupervised, and reinforcement) 
[DuHS001]. 

Anomalies are events, items or observations that do not conform to an anticipated pattern 
or other elements available in a dataset. Detection of anomalous activity addresses specific 
problems in engineering (e.g., bank fraud, medical problems, locating errors in text or detecting 
DDoS attacks). Outliers, peculiarities, noise, deviations, surprise and exceptions are also termed 
as anomalies. Detection of anomalies is supported by two main fields of study: Statistical 
analysis and machine learning. Machine learning based detection is of special interest in this 
thesis because it offers a human-independent solution as compared with intrusion detection 
systems (IDSs) based on signatures. Signature based approaches require human intervention for 
creating, testing, and deploying the signatures. This may require hours or days, which is too long 
when dealing with rapid DDoS attacks. Machine learning based IDS can implement system 
capable of learning from data (examples/experience) and making fast decisions for test or unseen 
data [AsLa014]. Machine learning is based in advanced algorithms that extract patterns from 
input data. These patterns are identified efficiently by a ML algorithm compared to what a very 
skilled human could do when facing large amounts of information. A ML algorithm receives 
multiple instances and attributes in the training phase to form a model. This model is used to 
identify new instances when the ML algorithm is in the testing phase. There are a lot of 
prominent ML algorithms used in classification problems. Some of these algorithms inspire 
techniques from natural phenomena and could use adaptive learning [BAUM014]. 

Building a model based on a training data set that contains a collection of data examples 
or instances is a general approach carried in all detection problems in machine learning, as is the 
case of DDoS in SDN. This form of supervised training requires instances with a specific set of 
features (attributes) and the associated labels. The availability of labels defines the detection 
operating modes: (i) Supervised learning, (ii) unsupervised learning, and (iii) semi supervised 
Learning. The applicability of a specific technique for anomaly detection is determined based on 
the type of attributes [AsLa014]. Nevertheless, the problem for an assessment of DDoS attack 
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detection technique is the lack of suitable public DDoS attack datasets. The cause of this is the 
deep investigation of network traffic relates to covert information (e.g., military related). 
Datasets available in cybersecurity are not a complete representative of all traffic phenomena in 
real networks [BoAy013]. Hence, this is a strong area that could benefit from modeling for 
setting benchmarks to evaluate different intrusion detection methods. Particularly, this is the 
approach taken in this research.  

A machine learning system is a computer program that makes decisions based on 
accumulated experience from solving cases successfully. The goals of machine learning systems 
are twofold: Dealing with complex real-world decision-making problems and solving these 
problems for reaching correct conclusions [WeKu991]. 

From the systems design perspective, there are several reasons why there has been an 
increased interest in machine learning systems. New formal methods and new techniques of 
implementation have been developed. Both the cost and speed of running learning systems have 
improved dramatically over what was feasible in the late 1950s, when the first computer learning 
systems were developed [WeKu991]. 

Computer based decision-making approaches were among some of the earliest research 
programs in medical diagnosis, signal processing, image processing, and other pattern 
recognition applications. Statistical and heuristic approaches (including an early versions of 
neural nets) saw widespread implementation in the 1960s, and were augmented by expert 
knowledge-based approaches (codifying expert “rules of thumb”) in the 1970s and 1980s 
[WeKu991]. At the time of the writing of this thesis, there are complex machine learning 
approaches: Deep learning, chaos-based neural networks, or quantum computing based data 
mining [Witt014]. 

The most prominent and basic task in machine learning is prediction via either 
classification (assigning an output as a label or a categorical identification) or regression 
(finding an output value in a continuous variable). Classification is the most widely used name, 
is often associated with statistical pattern recognition and has been also used to characterize 
applications in expert systems. In statistics the classification problem is sometimes called the 
prediction problem, and in the field of machine learning it is often called concept learning. The 
fundamental goal of empirical learning is to extract a decision rule from sample data that could 
be applicable to new data. A typical learning system is designed to work with a general model. 
“Learning” consists of choosing or adapting parameters within the model structure that work best 
with the available samples and others like them [WeKu991]. 

For classification problems, a learning system can be viewed as a higher-level system that 
helps build the decision-making system itself, called the classifier. A classifier can be 
represented as a black box that produces a decision for every admissible pattern of data that is 
presented to it. The classifier has available a finite set of samples of solved (labeled) cases. The 
data for each case consists of a pattern of observations and the corresponding correct 
classification. The general structure or classifier type must be selected by the person who has 
specified the problem. The objective of the learning system is to customize the classifier 
structure to the specific problem by finding a general way of relating any particular pattern of 
observations to one of the specified classes. The set of samples, training set, therefore contains 
the data that the learning system uses to find the generalized decision rules for the classifier. The 
set of potential observations relevant to a particular problem are also referred as features. 



POLYSCALE BASED CYBERSECURITY App. C: Computational Intelligence Approaches 

 

 

Jesus David TerrazasGonzalez   
 − C8 −  

Features also go by a host of other names, including attributes, variables, tests, and 
measurements [WeKu991]. 

As only correct solved cases are used in building a specific classifier, the pattern of 
feature values for each case is associated with the correct classification or decision. Thus, 
learning in any of these systems can be viewed as a process of generalizing these observed 
empirical associations subject to the constraints imposed by the chosen classifier model. This 
generalization process is finding some solution that identifies essential patterns in the samples 
that are not overly specific to the sample data due to their limited availability or usually small 
size. If unlimited learning data were available, each pattern could be stored, and for a given 
pattern of observations one would simply look up the corresponding class that had previously 
been associated with it. Unfortunately, the number of possible combinations of values for even 
small sets of features is often huge, particularly with observations that are continuous numerical 
values. Even the most systematic and long-term record keeping is unlikely to cover all the 
possible combination of values that can arise in nature [WeKu991]. 

The simple requirement in classification methods is that the data is presented in the form 
of samples composed of patterns of observations with the correct classification. Although 
extensive computer processing dominates any learning system, people still have an important 
role to play in the design, selection, and implementation of any classifier. For a given problem, 
the relevant set of observations and conclusions must be described and defined [WeKu991]. 

One goal of a learning system is to extract decision rules from sample data. Samples are 
organized as cases, with each case consisting of measurements or feature values, and a simple 
indicator of the correct class. There are many different learning methods that can be applied to 
the same sample data. For a given application, some learning systems may do better than others. 
Any learning system is at the mercy of the sample data and the quality of the features. Even 
when no errors are made the data acquisition, the predictive capabilities of some features can be 
quite weak. Features that are no more predictive than chance can be considered noise. For any 
given application, features fall into those that are completely noisy, to somewhat noisy, to 
completely predictive. Features that appear noisy on their own may prove to be highly predictive 
when combined with other features. With a relatively large number of noisy features, the data 
can be called noisy data. Any learning system tries to extract the maximum amount of 
information from the sample data. However, the predictive capability of the features is 
fundamental to the success of any learning system [WeKu991]. 

An additional goal of a learning system is prediction on new cases, not discrimination 
between the existing sample cases. It is usually quite easy to find rules to discriminate, or 
separate, the sample cases from each other. Even with completely noisy data and hundreds of 
sample cases, classes can usually be distinguished with little difficulty. However, these 
distinctions would usually not hold up on new cases [WeKu991]. 

Some of the most known machine learning techniques used in classification are ANNs, 
support vector machines, genetic algorithms, fuzzy logic, Bayesian networks, and decision trees 
[AsLa014].  

An artificial neural network contains optimization parameters and a set of interconnected 
and weighted processing elements, which transform a set of inputs to a set of desired outputs. 
The multilayer perceptron (MLP) is a well-known ANN that allows building a non-linear 
classification decision boundary (discriminate function) in the feature space to perform as non-
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linear. Each layer between the output and the input considers a number of neurons. An MLP is 
trained (weights are modified) usually through back propagation, which follows a gradient 
descent method that calculates an error function (usually MSE). The error function considers the 
difference between the calculated output by the ANN and the desired output. Successful learning 
is achieved when the output of the ANN is brought close to the desired output by reducing the 
value of the error function through the continuous back-propagation of the error to the previous 
layer of neurons, which in turns adjust the weights of the neurons connections [AsLa014]. 

SVMs use a set of training samples, marked as either normal or abnormal, for 
classification. A SVM model extracts the samples attributes in the training to perform 
classification. Classification methods based on SVMs provide good ability of learning when 
applied to small sample datasets. SVMs have been extensively applied in cybersecurity 
[AsLa014].   

Decision trees short the instances down the tree (from the root node to some leaf node). A 
node in the tree denotes a test of some attribute of the instance. A branch descending from a node 
corresponds to a possible value for an attribute. DTs perform well with large data sets, which is 
advantageous for real-time detection in SDN given the large amounts of data. Also, DT are 
robust to noisy data and construct easily interpretable models [AsLa014]. 

Genetic algorithms employs a search method, based on hill climbing from an arbitrary 
number of genes, to find an approximate solution for an optimization task. A GA creates new 
chromosomes from one or two parents by a crossover mechanism [BAUM014]. GAs use a 
mutation mechanism to prevent selecting any local results by search algorithm, which adds new 
chromosomes with high fitness function to the initial population. Chromosomes fitted to the 
answer survive [BAUM014]. GAs have been used in IDS for detecting intrusions that are either 
novel or those based on past behaviour. The latter requires a baseline for normal behaviour, 
which is then used by the GA for learning and taking decisions when unseen patterns appear. A 
chromosome contains genes related to attributes (e.g., service, flags, login status, or superuser 
attempts). GAs accurately detect attacks that are based in common attributes [AsLa014]. 

Fuzzy logic is based on fuzzy set theory, which provides reasoning termed as an 
approximation rather than a crisp value. Fuzzy based techniques have been used in anomaly 
detection because the considered features for solving a problem are manipulated as fuzzy 
variables. In fuzzy logic, an object simultaneously fits into different classes. This flexibility is 
useful when it is difficult distinguishing classes, which is the case for IDS when differentiating 
between the normal and anomalous classes. Fuzzy logic is effective (e.g., against probes and port 
scans), but its main disadvantages are high resource consumption and large time consumed in 
training [AsLa014].  

Problems posed by cybersecurity demand computational intelligence methodologies that 
have capabilities of self- adaptation, configuration, diagnosis, optimization, organization, 
parametrization, prediction, and even generation of self-written code [NiBe016]. Hence, this 
research considers advanced computational intelligence algorithms that could fit as many of 
these demands. ANN are biologically inspired computational models attempting to simulate 
decision processes in networks of nerve cells in the central nervous system [Grau013], which 
consist of processing elements (neurons), and connections between them with coefficients 
(weights) bound to the connections. These connections constitute the neuronal structure and 
attached to this structure are training and recall algorithms. Neural networks are known as 



POLYSCALE BASED CYBERSECURITY App. C: Computational Intelligence Approaches 

 

 

Jesus David TerrazasGonzalez   
 − C10 −  

connectionist models because of the connections found between the neurons. Neural network 
modeling is an attempt to fit a line, place or hyperplane through a set of points that can through 
feature extraction be completely or almost independent. Some characteristics found in real and 
ANN are learning and adaptation, generalization, massive parallelism, robustness, associative 
storage of information, and spatiotemporal information processing [ShSa016]. 

For centuries, people have debated whether the idea of optimization can help us 
understand the human mind. Aristotle proposed that all human efforts and thought are ultimately 
based on the pursuit of (maximizing) happiness - a kind of inborn “telos”, meaning an ultimate 
object or aim. Functionality of the brain is about making choices which yield better results. 
Intelligence is about learning how to make better choices. Simple animals may be born with 
fixed rules about what actions to take, as a function of the state of their environment as they see 
it. More advanced animals, instead, have an ability to select actions based on the results that the 
actions might have. The brain optimization theory implies that the brain combines incremental 

learning with learning to be more creative - to improve the “stochastic search” of available 
options. According to Paul Werbos ([Werb007] and [Werb009]), some researchers in 
evolutionary computing or stochastic search claim that their algorithms are guaranteed to find the 
global optimum, eventually. However, such guarantees are not realistic because, for a system of 
realistic complexity, they require astronomical time to truthfully get to the optimum ([Werb007] 
and [Werb009]). 

C.1 Deep Learning 

C.1.1 History 

Deep learning has had a long and rich history, known by many names, reflecting different 
philosophical viewpoints. It has become more useful as the amount of training data has 
increased. Deep learning models have grown in size over time as computer infrastructure for DL 
has improved. Also, deep learning has solved complicated applications with increasing accuracy 
over time [GoBC016]. 

Historically, deep learning dates back to the 1940s. Deep learning only appears to be 
new, because it was relatively unpopular for several years preceding its current popularity, and 
because it has gone through many different names, only recently being called “deep learning.” 
The field has been rebranded many times, reflecting the influence of different researchers and 
different perspectives. Deep learning has been successfully used in commercial applications 
since the 1990s but was often regarded as being more of an art than a technology [GoBC016]. 

There have been three waves of development: Deep learning known as cybernetics 
(simple linear models motivated from a neuroscientific perspective) in the 1940s–1960s, deep 
learning known as connectionism ([Hebb005] and [ToMi985]) (in the context of cognitive 
science, which is an approach to understanding the mind where many models related to cognition 
spawned) or parallel distributed processing ([McRH995] and [RuMG986]) in the 1980s–
1990s, and the current resurgence under the name deep learning beginning in 2006 [GoBC016]. 

Some of the earliest learning algorithms recognized today were intended to be 
computational models of biological learning as it happens or could happen in the brain. One of 
the names that DL has gone by is ANNs. The corresponding perspective on DL models is that 
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they are engineered systems inspired by biological brains. Some kinds of neural networks 
(generally not designed to be realistic models of biological function) used in machine learning 
have sometimes been used to understand brain functionality ([GoBC016] and [HiSh991]). 

The neural perspective on DL is motivated by two main ideas: (i) The brain provides a 
proof by example that intelligent behaviour is possible, and a conceptually straightforward path 
to building intelligence is to reverse engineer computational principles behind the brain and 
duplicate its functionality, and (ii) it would be deeply interesting to understand the brain and the 
principles that underlie human intelligence, so machine learning models that shed light on these 
basic scientific questions are useful apart from their ability to solve engineering applications 
[GoBC016]. 

The modern term “deep learning” goes beyond the neuroscientific perspective on the 
current breed of machine learning models. It appeals to a more general principle of learning 
multiple levels of composition, which can be applied in machine learning frameworks that are 
not necessarily neurally inspired. Hence, today neuroscience is regarded as an important source 
of inspiration for DL researchers, but it is no longer the predominant guide for the field because 
there is not enough information about the brain to use it as a guide. One should not view DL as 
an attempt to simulate the brain. Modern deep learning draws inspiration from many fields, 
especially applied math fundamentals like linear algebra, probability, information theory, and 
numerical optimization. While some deep learning researchers cite neuroscience as an important 
source of inspiration, others are not concerned with neuroscience at all. 

It is worth noting that the effort to understand how the brain works on an algorithmic 
level is alive and well. This endeavour is primarily known as computational neuroscience and is 
a separate field of study from deep learning. Researchers frequently move back and forth 
between both fields. The field of deep learning is primarily concerned with how to build 
computer systems that are able to successfully solve tasks requiring intelligence, while the field 
of computational neuroscience is primarily concerned with building more accurate models of 
how the brain actually works [GoBC016]. 

Several key concepts arose during the connectionism movement of the 1980s that remain 
central to DL. Of significant interest is the concept of distributed representation [HiSe986], 
which conveys the idea that each input to a system should be represented by many features, and 
each feature should be involved in the representation of many possible inputs. A major 
accomplishment of the connectionist movement was the successful use of back-propagation to 
train deep neural networks ([Cun987] and [RuHW986]). During the 1990s, researchers made 
important advances in modelling sequences with neural networks ([BeSF994], [GoBC016] and 
[Hoch991]). 

In 2006, Geoffrey Hinton [HiOT006] showed that a kind of neural network called a deep 
belief network could be efficiently trained using a strategy called greedy layer-wise pretraining. 
Alternate research groups showed that the same strategy could be used to train many other kinds 
of deep networks ([BLPL006] and [RPCL006]) and systematically helped to improve 
generalization on test examples. This wave of neural networks research popularized the use of 
the term “deep learning” to emphasize that researchers could train deeper neural networks, and to 
focus attention on the theoretical importance of depth ([BeCu007], [DeBe011], [Mont014], 
[MPCB014], and [PGCB014]). Within this wave, deep neural networks outperformed competing 
AI systems based on other machine learning technologies as well as hand-designed functionality. 
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This wave began with a focus on unsupervised learning techniques and the ability of 
generalization from small datasets (e.g., [Ande935], [Fish936], [Gars900], and [Goss008]). 
There is also interest in much older supervised learning algorithms and the ability of deep 
models to leverage large labelled datasets (e.g., the public Street View House Numbers (SVHN) 
dataset [NWCB011] and statistical machine translation datasets [Stat014]) [GoBC016].  

Deep learning is now used by many top technology companies, including Apple, 
Facebook, Google, IBM, Microsoft, and NVIDIA in the United States of America, whilst 
Alibaba, Baidu, and Tencent in China. Deep learning has also made contributions to other 
sciences (e.g., visual processing models in neuroscience, prediction of molecules interaction in 
pharmacy, searching for subatomic particles in quantum mechanics, parsing microscope images 
to construct a 3-D map of the human brain, and so on and so forth) [GoBC016]. 

C.1.2 Concepts 

A hierarchy of concepts enables the computer to learn complicated concepts, by 
constructing them, out of simpler ones. A graph showing how these concepts are built on top of 
each other has multiple or many layers. Hence, the graph is deep. This approach to AI is also 
known as deep learning [GoBC016]. 

A computer can reason automatically about statements in formal languages that use 
logical inference rules. This is known as the knowledge base approach to AI. Some projects 
have sought to hard-code knowledge about the world in formal languages, but unfortunately 
none has led to a major success [GoBC016].  

Systems that rely on hard-coded knowledge suggest that AI systems need the ability to 
acquire their own knowledge, by extracting patterns from raw data. This capability is known as 
machine learning. Machine learning enables computers tackling problems involving knowledge 
of the real world and making decisions that appear subjective [GoBC016]. 

The performance of simple machine learning algorithms depends heavily on the 
representation of the data they are fed with. Each piece of information mapped into the 
representation is known as a feature. Machine learning algorithms discover how features 
correlate with diverse outcomes. It is significant expressing that feature design is not a trivial 
undertaking [GoBC016].  

The use machine learning to discover not only the mapping from representation to output 
but also the representation itself is known as representation learning. Learned representations 
often result in much better performance than the obtained with hand-designed representations 
and also enable AI systems to rapidly adapt to new tasks, with minimal human intervention. The 
quintessential example of a representation learning algorithm is the autoencoder. An 
autoencoder is the combination of an encoder function, which converts the input data into a 
different representation, and a decoder function, which converts the new representation back into 
the original format [GoBC016]. 

When designing features or algorithms for learning features, the goal is usually to 
separate the factors of variation that explain the observed data. The word “factors” refers the 
sources of influence, which are usually not combined by multiplication and are often non directly 
observable quantities. These factors may exist as: (i) Either unobserved objects or unobserved 
forces in the physical world that affect observable quantities, and (ii) constructs in the human 
mind that provide useful simplifying explanations or inferred causes of the observed data. These 
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factors are analogous to concepts or abstractions that help making sense of the rich variability in 
the data (e.g., in a speech recording the factors of variation include age, sex, accent, and the 
spoken words). 

A difficulty in many real-world AI applications is that many of the factors of variation 
influence every single observed piece of data. These AI applications require disentanglement of 
the factors of variation and discard the non-relevant ones. Deep learning solves this central 
problem in representation learning by introducing representations expressed in terms of simpler 
representations. Consequently, deep learning enables the computer building complex concepts 
out of simpler concepts [GoBC016]. 

The quintessential example of a DL model is the feedforward deep network, or 
multilayer perceptron. A multilayer perceptron is a mathematical function mapping some set of 
input values to output values. The function is formed by composing many simpler functions 
[GoBC016]. 

The idea of learning the right representation for the data provides one perspective on DL. 
Another perspective on DL is that depth enables the computer to learn a multistep computer 

program. Each layer of the representation is then analogous to the state of the computer’s 
memory after executing a pipeline/set of instructions in parallel. Networks with greater depth can 
execute more instructions in sequence. Sequential instructions offer great power because later 
instructions could refer back to results of earlier instructions. According to this view of DL, not 
all the information in a layer’s activations necessarily encodes factors of variation that explain 
the input. The representation also stores state information that helps to execute a program 
making sense of the input. This state information could be analogous to the program counter in a 
microprocessor or the pointer in a traditional computer program. This has nothing to do with the 
content of the input specifically, but it helps the model to organize its processing [GoBC016]. 

C.1.3 Awareness of Depth 

Conventionally, there are two main ways of measuring the depth of a model. The first 
view is based on the number of sequential instructions that must be executed to evaluate the 
architecture. This is analogous to the length of the longest path through a flow chart that 
describes how to compute each of the model’s outputs given its inputs. Similar to equivalent 
computer programs having different lengths depending on the language used to write the 
program. The second view, used by deep probabilistic models, regards the depth of a model as 
the depth of the graph describing how concepts are related to each other [GoBC016].  

Since it is not always clear which of these two views—depth of the computational graph, 
or depth of the probabilistic modelling graph—is most relevant, and because different sets of 
smallest elements are chosen from which to construct graphs, there is no single correct value for 
the depth of an architecture, just as there is no single correct value for the length of a computer 
program. Also, there is no consensus about how much depth a model requires to qualify as 
“deep.” However, deep learning can be safely regarded as the study of models that involve a 
greater amount of composition of either learned functions or learned concepts than traditional 
machine learning does [GoBC016]. 
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C.1.4 Deep Learning Definition 

Succinctly, deep learning (e.g., MLP) is a kind of representation learning (e.g., shallow 
autoencoders), which is in turn is a kind of machine learning (e.g., logistic regression), which is 
used for many but not all approaches to artificial intelligence (e.g., knowledge bases). Within 
representation learning, a deep learning implementation mechanism works by extracting 
simple features from the input data, then additional layers extracting more abstract features, and 
finally mapping the highest abstract features to outputs [GoBC016].  

Deep learning is an approach to machine learning that has drawn heavily on the 
knowledge of the human brain, statistics and applied math as it developed over the past several 
decades [GoBC016]. 

C.1.5 Big Data 

The size of benchmark datasets has expanded remarkably over time, from hundreds 
2(10 )  or thousands ( ) of samples  (manually compiled) used by statisticians in the 1900s to 

tens of millions ( ) of samples in the 2010s. This astronomical increate in the availability of 
data is driven by the increasing digitization of society. Since more and more of human activities 
take place on computers, more and more is recorded. As computers are increasingly networked 
together, it becomes easier to centralize records and curate them into datasets appropriate for 
machine learning applications. This phenomenon is “Big Data”, which has made machine 
learning much easier because the key burden of statistical estimation, generalizing well to new 
data after observing only a small amount of data, has been considerably lightened. As of 2016, a 
rough rule of thumb is that a supervised deep learning algorithm achieves acceptable 

performance with around five thousand ( 35 10x ) labelled samples per category and would match 

or exceed human performance when trained with a dataset containing at least ten million ( 710 ) 
labelled samples [GoBC016]. 

C.1.6 Model Sizes 

One of the main insights of connectionism is that animals become intelligent when many 
of their neurons work together. Biological neurons are not especially densely connected. 
Machine learning models have had a number of connections per neuron within an order of 
magnitude of even mammalian brains for decades. Neural networks have been astonishingly 
small, in terms of the number if neurons, until quite recently. Since the introduction of hidden 
units, ANNs have doubled in size roughly every 2.4 years. This growth is driven by faster 
computers, larger memories, and the availability of larger datasets. Larger ANNs achieve higher 
accuracy on more complex tasks. Unless new technologies enable faster scaling, ANNs are 
expected to have the same number of neurons as the human brain until at least the 2050s. It is 
worth noting that if biological neurons could represent more complicated functions than current 
artificial neurons, which are simplified models of reality, then biological neural networks could 
be even larger than what connectionism has proposed [GoBC016]. 

Model size for DL increased over time, due to the availability of faster CPUs, the advent 
of general purpose GPUs, faster network connectivity, better software infrastructure for 
distributed computing. The increase in model size is expected to continue [GoBC016]. 

103
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C.1.7 Accuracy, Complexity, and Real-World  

Since the 1980s, DL has consistently improved in its ability to provide accurate 
recognition and prediction. Moreover, deep learning has consistently been applied with success 
to broader sets of applications [GoBC016]. 

Early deep models, in the 1980s, recognize individual objects in tightly cropped, 
extremely small images. Since then there has been a gradual increase in the size of images ANN 
could process. Modern ANN process rich high-resolution photographs and do not have a 
requirement for the photo be cropped near the object to be recognized. Earliest ANN could 
recognize only two kinds of objects (in some cases, the absence or presence of a single kind of 
object), while modern ANN typically recognize at least 1,000 objects [GoBC016].  

At the same time that the scale and accuracy of deep networks have increased so has the 
complexity of the tasks that they can solve. Deep learning has succeeded in applications where 
neural networks, utilizing neural Turing machines, can learn simple programs from examples of 
desired behavior. This self-programming technology is still in its infancy, but in the future it 
could in principle spawn to more applications [GoBC016].  

Another crowning achievement of DL is its extension to the domain of reinforcement 

learning. In this context, an autonomous agent learns to perform a task by trial and error, 
without any guidance from a human. DeepMind demonstrated that a reinforcement learning 
system based on DL is capable of learning to play Atari video games, reaching human-level 
performance on many tasks. Deep learning has significantly improved the performance of 
reinforcement learning for robotics [GoBC016]. Selected computational intelligence approaches 
are presented next. 

C.2 Backpropagation Neural Networks 

Backpropagation, proposed in the 70s along with adaptive dynamic programming (ADP) 
(explained in detail in [Werb009]), is a neural technique that has a range of useful properties that 
converted it in a mainstay in contemporary pattern recognition research. Backpropagation neural 
networks (BNN) is one of the approaches of multilayer neural networks (MNN), where the 
parameters governing the nonlinear mapping are learned at the same time as those governing the 
linear discriminant. MNN overcome the drawbacks and limitations of two-layer networks and at 
least in principle provide the optimal solution to an arbitrary classification problem. At their 
base, MNN implement linear discriminants, but in a space where the inputs have been mapped 
nonlinearly. The flexibility of MNN is admitting simple algorithms allowing learning the 
nonlinearity shape from training data. Thus, the models are extremely powerful, have nice 
theoretical properties, and apply well to a vast array of real-world applications. The 
backpropagation algorithm, based on gradient descent in error, is one of the most popular and 
simple (even for complex models with hundreds or thousands of parameters) methods for 
training MNN. Neural networks are the most accessible technique for performing statistical 
pattern recognition. A number of tricks (scaling of input values and initial weights, and desired 
output values) in backpropagation are often used to improve performance and increase training 
speed. Network architecture or topology, problem dependant, plays an important role for neural 
net classification. Knowledge of the problem domain, of an informal or heuristic nature, can be 
incorporated into network architectures through choices in the number of hidden layers, units, or 
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feedback connections. Whereas the number of inputs and outputs is given by the feature space 
and number of categories, the total number of weights or parameters in the network is not (or at 
least not directly). If too many free parameters are used, generalization would be poor; 
conversely if too few parameters are used, the training data cannot be learned adequately. It is 
crucial to know that neural networks do not exempt designers from intimate knowledge of the 
data and problem domain [DuHS001]. 

Nonlinear multilayer networks (with input units, hidden units and output units) have 
greater computational or expressive power (more functions can be implemented) than similar 
networks lacking hidden units. In fact, given sufficient number of hidden units of a general type 
any function can be represented. This claim was proven by Kolmogorov and it is sustained that 
any continuous function from input to output can be implemented in a three-layer net, given 
sufficient number of hidden units, proper nonlinearities, and weights. An intuitive analogy to the 
universal expressive power of three-layer nets is inspired by Fourier’s Theorem that any 
continuous function can be approximated arbitrarily closely by a (possibly infinite) sum of 
harmonic functions. Imagine a network whose hidden units implement harmonic functions and 
proper hidden-to-output weights related to the coefficients in a Fourier synthesis would then 
enable the full network to implement the desired function. Informally speaking, harmonic 
functions for Fourier-like synthesis of a desired function are not required to be built up, but a 
sufficiently large number of “bumps” at different input locations, of different amplitude and sign, 
can be put together to give the desired function [DuHS001]. 

C.3 Supervised Learning 

While the computer can carry out many different forms of analysis, much of the potential 
for successful classification and prediction lies with the person that selects the observations for 
analysis in the first place. Technically, this form of learning is called supervised learning because 
the system learns from a set of known correctly classified cases, which have been produced by 
the human expert that “supervises” the choice of learning cases [WeKu991]. 

Any method that incorporates information from training samples in the design of a 
classifier employs learning. Learning refers to some form of algorithm for reducing the error on a 
set of training data. A range of gradient descent algorithms that alter a classifier’s parameters in 
order to reduce an error measure now permeate the field of statistical pattern recognition 
[DuHS001]. 

An IDS inspects network traffic to discover security threats (e.g., unauthorized access) 
based on predefined signatures (rules), collected information from attack packets and stored log 
files. DDoS attacks have been previously classified on packet threshold, attack duration, packet 
rate, heuristic identification of source IP address of IP-spoofed internet attacks, source and 
destination IP addresses, protocols, TTL values, least significant bytes of source IP addresses. 
However, the signature-based IDS are insufficient in detecting new or modified attacks for which 
no signature exists. This is the motivation for training machine learning algorithms so that novel 
forms of attacks would be detected and classified successfully. Network traffic analysers (e.g., 
Bro or Corsaro) provide traffic information in packets, which is used for feature selection (pre-
processing) and further fed into classifiers. The most informative 12 features used in classifiers 
according to the literature are: IP source, source country, IP source port, IP destination port, 
protocol, SYN Flag, ACK Flag, RST flag, packet length, packet time-to-live, delta time, and 
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alert. Supervised learning uses labelled training data, where classes are known, for creating a 
model to classify new instances into discrete categories. DT and naive Bayes are popular 
supervised machine learning classifiers used in DDoS detection [BaAZ014].  

C.4 Hybrid Machine Learning 

Inefficiency in terms of accuracy and computational cost in machine learning algorithms, 
has led to the creation of hybrid machine learning methods for detecting DDoS attacks. 
Specifically, a GA used for feature selection and decreasing dimensionality, and an ANN for 
attack detection for improving the detection rate [BAUM014].  

Sensors are implemented to collect the traffic (incoming, related to external accessible 
servers, and internal) passing through the network. Then, datasets including attack traffic are 
used for the evaluation of experiments [BAUM014]. 

Selection of the most significant feature sets to be used in classification is always a 
challenge in any classification problem as is the case of DDoS. Feature selection as part of pre-
processing could be generated by packet headers, payload, or protocol handshaking. Feature 
selection decreases the dimensionality of data and improves the classification performance in 
term of speed. Whereas, using all features from the dataset or traffic being monitored can cause 
large memory and disk usage and delay significantly the detection phase. Hence, the feature 
selection purpose is choosing representative features with high discriminative power 
[BAUM014]. 

C.5 Unsupervised Machine Learning 

The absence of a human expert in the training of a learning system is known as 
“unsupervised” learning or clustering, where solved cases are not known, so no classification can 
be given, and the samples consist only of observables. In this situation the goal is to identify 
clusters of patterns that are similar, thus identifying potential classes. This type of problem, also 
known classically as numerical taxonomy is far less structured, and its potential for success is 
much more limited, as it involves much more guessing [WeKu991].  

C.6 Nonparametric Machine Learning 

From a statistical pattern recognition perspective, most of these newer techniques fall into 
the class of nonparametric methods. That is, they make no assumptions about the mathematical 
functional form of the underlying population density distribution, such as that of a Gaussian 
curve. Each of the methods does assume a certain form of underlying model for the classifier or 
its learning capabilities, but within this model there are typically many possible choices 
[WeKu991]. 
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APPENDIX D                                                                             

ENSEMBLES OF CLASSIFIERS 

 

Advanced statistical learning approaches in classification consider ensembles of 
classifiers. This scheme makes linear ensembles (collections) of model fitting methods, multi-
classification, instead of using a single fit of the method in question. Hence, multi-classification 
is a form of majority logic in which a voting mechanism is implemented. Bootstrap aggregation 
and AdaBoost (short for adaptive boosting) group are known methods for making classifiers 
ensembles. These utilize a base learning algorithm many times with various training sets 
[BoAy013].  

Ensemble learning, aka multiple classification systems, have many real-world 
applications, including object detection and tracking, scene segmentation and analysis, image 
recognition, information retrieval, bioinformatics, data mining, feature selection, confidence 
estimation, missing feature, incremental learning, error correction, class-imbalanced data, or 
learning concept drift from nonstationary distributions. Viola and Jones equipped modern digital 
cameras with face detection technology through ensemble learning. Similar machine learning 
technologies are used by the tracking algorithm adopted in the Xbox Kinect sensor. However, 
applications in cybersecurity are few. Ensemble learning reduces the variance, thereby 
improving the accuracy, of an automated decision-making system. However, forms of ensemble-
based decision systems (e.g., consulting several doctors before a major medical operation, 
reading user reviews before a purchase, or calling references before hiring a job applicant) are 
second nature for the society and some (e.g., essence of democracy) have been around perhaps as 
long as the civilized communities existed. The original goal for using ensemble systems is 
analogous to the use of such mechanisms in our daily lives, improving confidence about making 
the right decision by weighing distinct opinions and combining them through some thought 
process to reach a final decision. The three pillars of the ensemble systems are: Diversity, 
training ensemble members, and combining ensemble members [ZhMa012]. 

Any classification error has two components that can be controlled: Bias, the accuracy of 
the classifier; and variance, the precision of the classifier when trained on different training sets. 
These two components have a trade-off relationship: Classifiers with low bias tend to have high 
variance and vice versa. It is known that averaging has a smoothing (variance-reducing) effect. 
The goal of ensemble systems is to create several classifiers with relatively fixed (or similar) bias 
and then combining their outputs (by averaging) to reduce the variance. In the context of 
ensemble systems, there are many ways of combining ensemble members, of which averaging 
the classifier outputs is only one method. Combining the classifier outputs may not necessarily 
lead to a classification performance that is guaranteed to be better than the best classifier in the 
ensemble. Rather, it reduces the likelihood of choosing a classifier with a poor performance. A 
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representative illustration of the variance reduction ability of the ensemble of classifiers is shown 
in Fig. D.1. 
 

 

Fig. D.1.62 Variability reduction using ensemble systems. From [ZhMa012]. 

 
Dasarathy and Sheela’s work in 1979 is one of the earliest examples of ensemble 

systems, which focused on partitioning the feature space using multiple classifiers. About a 
decade later, Hansen and Salamon showed that an ensemble of similarly configured ANNs can 
be used to improve classification performance. However, it was Schapire’s work that 
demonstrated through boosting that a strong classifier with an arbitrarily low error on a binary 
classification problem, can be constructed from an ensemble of classifiers, the error of any of 
which is merely better than that of random guessing. This theory of boosting paved the path for 
the subsequent suite of AdaBoost (short for adaptive boosting) algorithms, most popular 
ensemble-based algorithms, extending the boosting concept to multiple class and regression 
problems. Due to these seminal works ensemble-based algorithms appeared under different 
names: Bagging, random forests (an ensemble of decision trees), composite classifier systems, 
mixture of experts (MoE), stacked generalization, consensus aggregation, combination of 
multiple classifiers, dynamic classifier selection, classifier fusion, committee of neural networks, 
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or classifier ensembles. Ensemble-based systems typically differ from each other in three pillars: 
(i) Selection of training data for individual classifiers, (ii) the specific procedure used for 
generating ensemble members, and/or (iii) the combination rule for obtaining the ensemble 
decision [ZhMa012]. 

D.1 Data Sampling Selection: Diversity 

Making different errors on any given sample is of paramount importance in ensemble-
based systems. If all ensemble members provide the same output, there is nothing to be gained 
from their combination. Therefore, diversity in the decisions of ensemble members is required, 
particularly when an error is made. Ideally, classifier outputs should be independent or 
negatively correlated. Diversity in ensembles can be achieved through several strategies, 
although using different subsets of the training data is a common approach, as illustrated in Fig. 
D.1. Different sampling strategies lead to different ensemble algorithms (e.g., using bootstrapped 
replicas of the training data leads to bagging, sampling from a distribution that favors previously 
misclassified samples is the core of boosting algorithms, different subsets of the available 
features to train each classifier leads to random subspace methods, less common approaches 
include using different parameters of the base classifier like training an ensemble of multilayer 
perceptrons with a different number of hidden layer nodes or even using different base classifiers 
as the ensemble members) [ZhMa012].  

D.2 Training Member Classifiers 

The core of any ensemble-based system is the strategy used to train individual ensemble 
members. Numerous competing algorithms have been developed for training ensemble 
classifiers; nevertheless, bagging (and related algorithms arc-x4 and random forests), boosting 
(and its many variations), stack generalization and hierarchical MoE remain as the most 
commonly employed approaches [ZhMa012]. 

D.3 Combining Ensemble Members 

The mechanism used to combine the individual classifiers is the last step in any 
ensemble-based system. The strategy used in this step depends partly on classifiers used as 
ensemble members (e.g., SVM provide only discrete-valued label outputs where (simple or 
weighted) majority voting fits, multilayer perceptron or (naïve) Bayes classifier provide 
continuous valued class-specific outputs that are interpreted as the support given by the classifier 
to each class where a wider array of options is available, such as arithmetic (sum, product, or 
mean) combiners or more sophisticated decision templates) [ZhMa012]. 

Ensemble members are used in one of two general settings: Classifier selection where 
each classifier is trained as a local expert in some local neighborhood of the entire feature space, 
and classifier fusion where all classifiers are trained over the entire feature space, and then 
combined to obtain a composite classifier with lower variance (and hence lower error). Bagging, 
random forests, arc-x4, and boosting/AdaBoost are examples of the latter approach.  

Bootstrap aggregation or bagging, the training sets SB{1,2,…n} are bootstrap copies, 
extracted uniformly, from the original training set SO. AdaBoost is a machine learning 
metaheuristic algorithm formulated by Yoav Freund and Robert Schapire, from AT&T Bell 



POLYSCALE BASED CYBERSECURITY  App. D: Ensembles of Classifiers 

 

 

Jesus David TerrazasGonzalez    
 − D4 −  

Laboratories, [FrSc997] and was given the Gödel Prize in 2003. The Gödel Prize, given jointly 
by the European association for theoretical computer science (EATCS) and the Association for 
Computing Machinery (ACM) Special Interest Group on Algorithms and Computational Theory 
(SIGACT), recognizes outstanding papers in the area of theoretical computer science. AdaBoost 
can be used with many types of learning algorithms (possibly weak) to improve their individual 
performance. AdaBoost assigns a set of weights W to the original training set SO and adaptively 
modifies the weights after each classifier is trained by the main learning algorithm. The adaptive 
modifications increase the weight of misclassified instances and reduce the weight of properly 
classified instances [BoAy013]. Unlike ANNs and SVMs, the AdaBoost training process selects 
only those features known to improve the predictive power of the model.  

The features fed to a classifiers ensemble can also be selected by a machine learning 
algorithm (e.g., SVM), when these are many. The architecture of classifiers ensemble-based 
detection of DDoS is integrated by these layers: Features set (classifiers inputs), features subset 
(when features are many), classifiers, classifiers outputs, and ensemble output [BoAy013].   

The execution of the ensemble starts with a classifier acting upon the training data 
features provided as inputs. Then, the classification weights, 1 or 0, are assigned to misclassified 
instances or proper instances respectively. The next classifier (trained differently) uses the 
training data features for the misclassified instances (with value 1 in the weight field) and 
produces new outputs for them.  This process of weights updating continues for all the classifiers 
that are part of the classifiers ensemble. This boosting technique reduces the processing spent in 
each classifier progressively and diminishes the overall execution time. This time reduction is a 
consequence of a smaller set of input instances (those misclassified) for each classifier in the 
ensemble [BoAy013]. 

The classification decision to the known status (attack or normal) of the instance is 
defined as: False positive (FP) if a normal traffic instance is classified as an attack, false negative 
(FN) if an attack instance is classified as normal traffic, true negative (TN) if a normal traffic 
instance is classified successfully as normal traffic, and true positive (TP) if an attack instance is 
classified successfully as an attack [BoAy013]. 
 The algorithm classification precision for detecting DDoS attacks is defined as the ratio 
of TP to the sum of TP and FP.  
 Precision=True Alarm Rate (TAR)=TP/(TP+FP)      (D.1)  

The false alarm rate is defined as 1-precision. 
False Alarm Rate (FAR)=1-Precision=FP/(TP+FP)      (D.2)  

The accuracy, representing the ensemble correctness, is expressed as: 
Accuracy Ratio (AcR)=(TP+TN)/(TP+TN+FP+FN)     (D.3)  

Classifiers ensembles have the advantage of higher accuracy and lower false alarms 
compared to other widely used machine learning schemes in IDSs [BoAy013]. 

D.4 Fuzzy Logic in Ensemble Classifiers 

A fuzzy classifier functions with input membership functions that process the data 
features fed into the classifier. In fuzzy classifiers, the membership functions can be modified or 
trained, utilizing optimization methods like least-squares or BP gradient descent, analogously to 
the connection weights in ANN.  
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APPENDIX E                                                                             

GEOMETRIC INTERPRETATION OF FUZZYART 

LEARNING WITH COMPLEMENT CODING 

 

Let the input patterns be two-dimensional vectors . By complement coding, 

the effective input vectors are four-dimensional . In this case, each 

category j is represented by a four-dimensional weight vector [SeLA012] 

          (E.1)  

where  and  are two-dimensional vectors. Consider a rectangle  with corners defined by 

vectors  and . The size of the rectangle  can be defined as [SeLA012] 

          (E.2)  

Assuming that the system is in the fast learning mode, that is,  in the fuzzy learning 

rule. When a category becomes committed for the first time by an input pattern  that 

category learns the template  

         (E.3)  

so that  and the rectangle  is just point  and it has zero size [SeLA012]. 

When a new input pattern  is added to a category , rectangle  is expanded 

(according to the fuzzy learning rule given with ) to [SeLA012] 

     (E.4)  
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          (E.5)  

   a = (a
1
,a

2
)

   I = (a
1
,a

2
,1− a

1
,1− a

2
)

   
z

j
= (u

j
,v

j

c )

  
u

j   
v

j  
R

j

  
u

j   
v

j  
R

j

   
| R

j
|=| v

j
− u

j
|

 β =1

   I = (a,  ac ),

   
z

j
(new) = (a,  a c )

  
u

j
= v

j
= a

 
R

j  a

   I = (b,  bc )  j  
R

j

 β =1

   

z
j
(new) = (u

j
(new),  v c

j
(new))

= (u
j
(old)∧b,  v c

j
(old)∧b

c )

= (u
j
(old)∧b,  (1− v

j
(old))∧(1− b))

= (u
j
(old)∧b,  (v

j
(old)∨b)c )

∨

   

u
j
(new) = u

j
(old)∧b

v
j
(new) = v

j
(old)∨b



POLYSCALE BASED CYBERSECURITY App. E: Fuzzy-ART Complement Coding Geometric Interpretation 

 

 

Jesus David Terrazas Gonzalez    
 − E2 −  

Rectangle  may be expanded when category j incorporates a new input vector. 

Rectangle  is expanded by the minimum size needed to incorporate the new input vector  

inside the rectangle. In particular, if  is an input vector inside  no weight change occurs 

during the weight update [SeLA012].  

The maximum size that a rectangle  can reach is limited by the vigilance parameter 

This can be reasoned as follows. If an input vector  activates a category j, this 

category resets whenever [SeLA012],  

          (E.6)  

Since input vectors are two dimensional and complement coding is used,  

Hence, the reset condition becomes [SeLA012],  

          (E.7)  
but, 

      (E.8)  

Therefore, the category resets whenever [SeLA012],  
        (E.9)  

and the maximum size of the rectangles is limited by  in the 2-dimensional case. For 

input vectors with N components (2N after complement coding) the maximum size rectangle is 
limited by . Consequently, the closer  is to ‘1’ the smaller the size of the rectangles 

 is and the smaller the number of input patterns coded in each category is [SeLA012].  

The fact that rectangles grow during learning and that their maximum size is bounded 
allows the existence of a stable category learning theorem, which guarantees that no category 
proliferation occurs. If no complement coding is used, the input space ‘rectangle covering’ may 
be substituted by a ‘triangle covering’. But it turns out that the resulting triangles have a size 

which depends directly on the norm of their weight templates . This means that as  

shrinks its associate triangle shrink as well, and thus triangles close to the origin are small. 
Consequently, the number of triangles needed to ‘cover’ the input space close to the origin 
grows. This together with the fact that triangles may shrink during learning produces the 
category proliferation problem if input patterns are not normalized [SeLA012]. 
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APPENDIX F                                                                       

DISTRIBUTED DENIAL-OF-SERVICE DATASET 

 

Access to the distributed denial-of-service dataset used in this research has been obtained 
through the Protected Repository for the Defense of Infrastructure Against Cyber Threats, 
PREDICT. An agreement with the United States Department of Homeland Security (DHS) 
PREDICT Project listing the terms and conditions of use for the DDoS dataset has been signed. 
Abiding to these regulations, this DDoS dataset cannot be shared, sent, transmitted, or otherwise 
cause the Data to be transported to any country or location outside of the United States of 
America that is not on the approved PREDICT country list. Among extensive computer security 
considerations and Canada being part of the PREDICT country list, a dataset with real network 
traffic containing a DDoS attack has been made available for this research. It is important to 
highlight that this DDoS dataset is confidential. Hence, unauthorized or inadvertent use, 
disclosure dissemination, or publication of the raw dataset is prohibited. The access to this DDoS 
dataset is limited (based on an expiry date), non-exclusive, revocable, and non-transferable. Any 
attempt to translate, unlock, override, reverse engineer, or otherwise take any steps to defeat any 
anonymization or obfuscation methods or tools that may have been applied to the dataset in order 
to determine the identity of a specific individual shall not take place. If any product results from 
analysis related to this dataset, such product shall not include sensitive information derived from 
the dataset. Any publication product of research related to this DDoS dataset shall be forwarded 
to the United States Department of Homeland Security’s PREDICT Project [Depa013]. 
Nevertheless, researchers interested in accessing this DDoS dataset are encouraged to contact the 
United States Department of Homeland Security’s PREDICT Project directly to follow proper 
steps for security clearance for grating access. 

Domain name system amplification reflection attacks involve an attacker sending a flood 
of DNS ANY requests. These requests focus on asking the DNS to provide ALL the information 
about the domain, which may include mail servers, MX records, IP addresses, A records, and so 
on and so forth. Attackers queries like this to maximize the response sent to the victim. These 
ANY requests are sent to one or several DNS servers, while spoofing source address to that of 
the intended target. A poorly configured recursive DNS server sends a much larger reply to the 
target, thus amplifying the attack. This DDoS dataset contains an attack between two sites: (i) 
The Information Sciences Institute at the University of Southern California (ISI/USC) located in 
Marina del Rey California, California and (ii) The Colorado State University (CSU) located in 
Fort Collins, Colorado. The ISI/USC hosted one attacker system (IP address: 145.233.157.236, 
which probably is not present in the traces) and six recursive DNS servers (IP addresses: 
145.233.157.224, 145.233.157.228, 145.233.157.232, 145.233.157.233, 145.233.157.234, and 
145.233.157.235), while the CSU provided a single system as an intended target (IP address: 
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144.154.222.228). All data files containing the DDoS attack recording are in extensible record 
format (ERF), compressed with bzip2 [Depa013]. 

In this DDoS attack, all non-attack traffic has been anonymized and scrubbed. Since the 
attack traffic was generated only as part of this experiment (completely under control), it is 
known to not have any privacy concerns, and we preserve payloads of traffic specific to the 
attack [Depa013].  

Attack queries are replayed at 400 packets per second, each packet containing a UDP 
DNS query, which is directed to one of the six ISI/USC servers in a round-robin fashion. Each IP 
packet is 64 bytes long, thus the bit rate of the attack before amplification/reflection is 
64*400*8=205 Kbps. The data collection starts at 21:52:45 and ends at 22:25:32 on 17 June 
2013. Within this window of time, the DDoS attack starts at 22:00:12 and concludes at 22:15:34. 
This dataset contains 59,928,921 packets from which the following relevant information is 
available: Time stamp, source, destination, length, and protocol [Depa013].  
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APPENDIX G                                                                                

RESULTS OF SELECTED PRIMARY OPERATORS APPLIED 

THROUGH MULTISCALORS 

 

G.1 Variance 

The results obtained by the variance multiscalor visually resembles in all its components 

(from first ( ) to seventh ( )) both of the DDoS attacks, the DNS amplification and the 

H&R, that are present in the dataset and can be seen in Figs. L.1 to L.7 respectively. 
 

 

Fig. G.1.63 Variance multiscalor 1st component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

2  samples are used. 
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Fig. G.2.64 Variance multiscalor 2nd component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

4  samples are used. 

 

 
Fig. G.3.65 Variance multiscalor 3rd component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

8  samples are used. 
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Fig. G.4.66 Variance multiscalor 4th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

16  samples are used. 

 

 
Fig. G.5.67 Variance multiscalor 5th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

32  samples are used. 
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Fig. G.6.68 Variance multiscalor 6th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

64  samples are used. 

 

 
Fig. G.7.69 Variance multiscalor 7th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size of 

128  samples are used. 
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G.2 Skewness 

The skewness multiscalor visual insights are not as clear as the ones provided by the 
variance multiscalor previously. Specifically, the DNS amplification DDoS attack is visibly 

identifiable in the first ( ), second ( ), and third ( ) skewness multiscalor components 

while the H&R DDoS attack is remarkably weak in any components of the skewness multiscalor.  
 

 
Fig. G.8.70 Skewness multiscalor 1st component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 2  samples are used. 

 

 
Fig. G.9.71 Skewness multiscalor 2nd component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 4  samples are used. 
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Fig. G.10.72 Skewness multiscalor 3rd component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 8  samples are used. 

 

 
Fig. G.11.73 Skewness multiscalor 4th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 16  samples are used. 
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Fig. G.12.74 Skewness multiscalor 5th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 32  samples are used. 

 

 
Fig. G.13.75 Skewness multiscalor 6th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 64  samples are used. 
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Fig. G.14.76 Skewness multiscalor 7th component for the DDoS cyberattack. A processing frame of 4,096 samples and a vel size 

of 128  samples are used. 
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APPENDIX H                                                                                

RESULTS OF SELECTED SECONDARY OPERATORS 

APPLIED TO VARIANCE MULTISCALOR 

 

H.1 Cumulative Sum 

H.1.1 Cumulative Sum Applied to Variance Multiscalor Components 

The cumulative sum applied to each variance multiscalor component  provides 

meaningful results for all variance multiscalor components (from first, , to seventh, ) as 

seen in Figs. H.1 to H.7. The two DDoS attacks, DNS amplification and H&R, can be seen in the 
seven components of the variance multiscalor. The visual quality of the results appears to 

decrease as one traverses from the first multiscalor component, , to the seventh, . The 

latter showing bigger fluctuations in amplitude. Nonetheless, the shapes of both DDoS attacks 
are preserved within all results of the cumulative sum run on all variance multiscalor 
components. A number of minor spikes are visible across the traffic. These would correspond to 
either traffic transients or DDoS attack precursors (tests carried prior to launching a full force 
attack). 
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Fig. H.1.77 Cumulative sum S applied to the variance multiscalor 1st component . A processing frame of 256 samples is 

used. 

 

 
Fig. H.2.78 Cumulative sum S applied to the variance multiscalor 2nd component . A processing frame of 256 samples is 

used. 
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Fig. H.3.79 Cumulative sum S applied to the variance multiscalor 3rd component . A processing frame of 256 samples is 

used. 

 

 
Fig. H.4.80 Cumulative sum S applied to the variance multiscalor 4th component . A processing frame of 256 samples is 

used. 
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Fig. H.5.81 Cumulative sum S applied to the variance multiscalor 5th component . A processing frame of 256 samples is 

used. 

 

 
Fig. H.6.82 Cumulative sum S applied to the variance multiscalor 6th component . A processing frame of 256 samples is 

used. 
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Fig. H.7.83 Cumulative sum S applied to the variance multiscalor 7th component . A processing frame of 256 samples is 

used. 

 

H.1.2 Cumulative Sum Applied to Variance Multiscalor Components After 

Donoho’s Denoising 

Figures H.8 to H.14 depict Donoho’s denoising applied to the outcome of cumulative 
sum after processing variance multiscalor components. It is seen that noise has been reduced 

from the first, , to seventh, , components. Both DDoS attacks, DNS amplification and 

H&R, are seen more nitidly in the seven components of the variance multiscalor. The visual 
quality in the results presented in Figs. H.8 to H.14 appears to be constant from the first 

multiscalor component, , to the seventh, . The shape of both attacks has been 

maintained. The minor spikes across the traffic are still visible. 
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Fig. H.8.84 Cumulative sum S applied to the variance multiscalor 1st component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.9.85 Cumulative sum S applied to the variance multiscalor 2nd component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.10.86 Cumulative sum S applied to the variance multiscalor 3rd component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.11.87 Cumulative sum S applied to the variance multiscalor 4th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.12.88 Cumulative sum S applied to the variance multiscalor 5th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.13.89 Cumulative sum S applied to the variance multiscalor 6th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.14.90 Cumulative sum S applied to the variance multiscalor 7th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

H.1.3 Cumulative Sum Applied to Variance Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

A subsequent nonlinear filtering stage is applied to the variance multiscalor components 
after Donoho’s denoising. Figures H.15 to H.21 show the outcome of this processing stage for 

the first, , to seventh, , components respectively. A further reduction in noise is seen for 

all cases and all waveforms appear smooth. Both DDoS attacks, DNS amplification and H&R, 
are seen clearly in the seven components of the variance multiscalor. The visual quality in the 
outcomes introduced in Figs. M.15 to M.21 appears to be persistent from the first variance 

multiscalor component, , to the seventh, . Nonetheless, the seventh variance multiscalor 

component, , is wigglier than the previous six counterparts. The shape of both attacks has 

been maintained. Some of the minor spikes across the traffic have been removed. 
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Fig. H.15.91 Cumulative sum S applied to the variance multiscalor 1st component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.16.92 Cumulative sum S applied to the variance multiscalor 2nd component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.17.93 Cumulative sum S applied to the variance multiscalor 3rd component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.18.94 Cumulative sum S applied to the variance multiscalor 4th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.19.95 Cumulative sum S applied to the variance multiscalor 5th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.20.96 Cumulative sum S applied to the variance multiscalor 6th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.21.97 Cumulative sum S applied to the variance multiscalor 7th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

H.1.4 Cumulative Sum Applied to Variance Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

In order to ready the extracted features for machine learning processing through ART1, a 
quantization phase to aid the conversion of the waveform into defined amplitude level codes, 
which can easy the translation to binary codes, is required. Quantization through Lloyd’s 

methodology is shown in Figs. H.22 to H.28 for the first, , to seventh, , components 

respectively, where both DDoS attacks, DNS amplification and H&R, appear remarkably clear 

from the first, , to the fifth, , variance multiscalor components. The last two variance 

multiscalor components sixth, , and seventh, , also show the dynamics for both DDoS 

attacks. These last two components show oscillations in two of the quantized amplitude levels as 
a consequence of them being wigglier. Remarkably, the shape of both attacks appears very clear. 
Some of the minor spikes across the traffic have been translated into narrow pulses. 
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Fig. H.22.98 Cumulative sum S applied to the variance multiscalor 1st component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.23.99 Cumulative sum S applied to the variance multiscalor 2nd component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.24.100Cumulative sum S applied to the variance multiscalor 3rd component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.25.101Cumulative sum S applied to the variance multiscalor 4th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.26.102Cumulative sum S applied to the variance multiscalor 5th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.27.103Cumulative sum S applied to the variance multiscalor 6th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.28.104Cumulative sum S applied to the variance multiscalor 7th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

H.2 Zero-Crossing Rate 

H.2.1 Zero-Crossing Rate Applied to Variance Multiscalor Components 

The ZCR applied to each variance multiscalor component  provides results that 

are not as straightforward as the cumulative sum. However, the dynamics for both DDoS attacks 
are maintained as seen in Figs. H.29 to H.35 for all variance multiscalor components (from first, 

, to seventh, ). The visual quality of the results appears to increase as one traverses from 

the first multiscalor component, , to the seventh, . It is interesting to observe that the 

H&R DDoS attack appears inverted from the first, , to forth,  and becomes positive for 

the rest of the components. Besides these occurrences, the shapes of both DDoS attacks are 
preserved for the rest of the results for the ZCR analysis on the variance multiscalor components. 
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Fig. H.29.105ZCR  applied to the variance multiscalor 1st component . A processing frame of 256 samples is used. 

 

 
Fig. H.30.106ZCR  applied to the variance multiscalor 2nd component . A processing frame of 256 samples is used. 
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Fig. H.31.107ZCR  applied to the variance multiscalor 3rd component . A processing frame of 256 samples is used. 

 

 
Fig. H.32.108ZCR  applied to the variance multiscalor 4th component . A processing frame of 256 samples is used. 
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Fig. H.33.109ZCR  applied to the variance multiscalor 5th component . A processing frame of 256 samples is used. 

 

 
Fig. H.34.110ZCR  applied to the variance multiscalor 6th component . A processing frame of 256 samples is used. 
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Fig. H.35.111ZCR  applied to the variance multiscalor 7th component . A processing frame of 256 samples is used. 

 

H.2.2 Zero-Crossing Rate Applied to Variance Multiscalor Components After 

Donoho’s Denoising 

Figures H.36 to H.42 depict Donoho’s denoising applied to the outcome of ZCR after 
processing the seven variance multiscalor components. It is seen that noise has been reduced 

from the first, , to seventh, , components. Both DDoS attacks, DNS amplification and 

H&R, are seen more nitidly from the second, , to the seventh, , variance multiscalor 

components. The visual quality in the results presented in Figs. M.36 to M.42 appears to improve 

from the first multiscalor component, , to the seventh, . Excluding the H&R DDoS 

attack shape from the first, , to forth, , components, the shape of both DDoS attacks has 

been preserved. 
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Fig. H.36.112ZCR  applied to the variance multiscalor 1st component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.37.113ZCR  applied to the variance multiscalor 2nd component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.38.114ZCR  applied to the variance multiscalor 3rd component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.39.115ZCR  applied to the variance multiscalor 4th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.40.116ZCR  applied to the variance multiscalor 5th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.41.117ZCR  applied to the variance multiscalor 6th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.42.118ZCR  applied to the variance multiscalor 7th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

H.2.3 Zero-Crossing Rate Applied to Variance Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

The subsequent nonlinear filtering stage is applied to the variance multiscalor 
components after Donoho’s denoising. Figures H.43 to H.49 show the outcome of this 

processing stage for the first, , to seventh, , components respectively. A significant 

reduction in noise is seen for the seven components and all waveforms appear smooth. Both 

DDoS attacks, DNS amplification and H&R, are seen clearly from the second, , to the 

seventh, , components of the variance multiscalor. The inversion of the H&R DDoS attack 

present from the first, , to the fourth, , is now more noticeable. The visual quality 

increment in the outcomes introduced in Figs. H.43 to H.49 from the first variance multiscalor 

component, , to the seventh, , is also more noticeable. The characteristic shape of both 

attacks, DNS amplification and H&R, has been maintained with the exclusion of the H&R DDoS 

attack shape being inverted from the first, , to forth, , components. 
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Fig. H.43.119ZCR  applied to the variance multiscalor 1st component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.44.120ZCR  applied to the variance multiscalor 2nd component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.45.121ZCR  applied to the variance multiscalor 3rd component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.46.122ZCR  applied to the variance multiscalor 4th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.47.123ZCR  applied to the variance multiscalor 5th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.48.124ZCR  applied to the variance multiscalor 6th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.49.125ZCR  applied to the variance multiscalor 7th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

H.2.4 Zero-Crossing Rate Applied to Variance Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

Analogously to the cumulative sum case, the extracted features through ZCR are readied 
for further machine learning processing through ART1, the quantization phase required for 
converting the component waveforms analysed through ZCR into defined amplitude level codes. 
The quantization through the Lloyd’s methodology is shown in Figs. H.50 to H.56 for the first, 

, to seventh, , components respectively. The visual quality improvement increases from 

the first, , to seventh, , components is noticeable, but not of the same visual quality as 

the one obtained with the cumulative sum.  Both DDoS attacks shapes, DNS amplification and 

H&R, are noticeable from the first, , to the seventh, , variance multiscalor components. 

The DNS amplification DDoS attack exhibits a peculiar sinusoidal like occurrence (shown in 

Fig. H.50) in the first, , variance multiscalor component. The inverse peaks corresponding to 

the H&R DDoS attack present from the first, , to the fourth, , variance multiscalor 

components are clearly visible after the progression of data processing starting with ZCR and 
concluding with its quantization. Besides the four inverted peaks, the rest of the DDoS attacks 
instances are preserved and resemble the results obtained with the cumulative sum, but ZCR 
does not match them in quality. It is important to notice that the DNS amplification DDoS attack 

exhibits a discontinuity shortly at the beginning from the first, , to the third, , variance 

multiscalor components. 
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Fig. H.50.126ZCR  applied to the variance multiscalor 1st component  quantized with Lloyd’s methodology. The DDoS 

attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.51.127ZCR   applied to the variance multiscalor 2nd component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.52.128ZCR   applied to the variance multiscalor 3rd component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.53.129ZCR   applied to the variance multiscalor 4th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.54.130ZCR   applied to the variance multiscalor 5th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.55.131ZCR   applied to the variance multiscalor 6th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.56.132ZCR   applied to the variance multiscalor 7th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

H.3 Shannon’s Entropy 

H.3.1 Shannon’s Entropy Applied to Variance Multiscalor Components 

Applying Shannon’s entropy to each variance multiscalor component  does not 

yield the best outcomes when compared with the previous methodologies, cumulative sum and 
ZCR. One might attribute this to the small number of samples in the processing frame, 256. 
However, experiments with bigger processing frames, 1,024 and 4,096, were carried and the 
quality of the features based on Shannon’s entropy did not increase significantly. Continuing 
with the secondary processing frame having a size of 256 in order to represent the worst case 
data processing scenario and at the same time achieving the fast anomaly detection case, one can 

see in Figs. H.57 to H.63 representing the forth, , to seventh, , variance multiscalor 

components that for the DDoS attacks, the DNS amplification based attack has neither clear 
beginning nor end whereas the H&R attack seems to be represented by an inverse peak in Figs. 
M.57 to M.60 similar to previous cases within the ZCR. The DC value, in this case Shannon’s 

entropy, of the waveforms increases from the fourth, , to seventh, , components. 
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Fig. H.57.133Shannon’s entropy H applied to the variance multiscalor 4th component . A processing frame of 256 samples 

is used. 

 

 
Fig. H.58.134Shannon’s entropy H applied to the variance multiscalor 5th component . A processing frame of 256 samples 

is used. 
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Fig. H.59.135Shannon’s entropy H applied to the variance multiscalor 6th component . A processing frame of 256 samples 

is used. 
 

 
Fig. H.60.136Shannon’s entropy H applied to the variance multiscalor 7th component . A processing frame of 256 samples 

is used. 

 

H.3.2 Shannon’s Entropy Applied to Variance Multiscalor Components After 

Donoho’s Denoising 

Figures H.61 to H.64 depict Donoho’s denoising applied to the outcome of Shannon’s 
entropy after processing variance multiscalor components. It is seen that noise has been reduced 
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from the fourth, , to seventh, , components. From both DDoS attacks, the DNS 

amplification and H&R, seem to start emerging, with faint beginning and end and as a deeper 
peak respectively, in Figs. H.61 to H.64. The visual quality in the results presented in Figs. M.62 
to M.64 appears to be more significant and increasing for the H&R attack.  
 

 
Fig. H.61.137Shannon’s entropy H applied to the variance multiscalor 4th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.62.138Shannon’s entropy H applied to the variance multiscalor 5th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. H.63.139Shannon’s entropy H applied to the variance multiscalor 6th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. H.64.140Shannon’s entropy H applied to the variance multiscalor 7th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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H.3.3 Shannon’s Entropy Applied to Variance Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

The succeeding nonlinear filtering stage seen in Figs. H.65 to H.68 show the outcome of 

this processing stage for the fourth, , to the seventh, , components respectively. A 

further reduction in noise is seen for the cases shown, but the waveforms still appear spiky. The 
DNS amplification DDoS attack seems to have more defined beginning and end in Figs. M.66 
and M.67, but not as sharp as in the previous methodologies used, cumulative sum and ZCR. The 
H&R DDoS attack is depicted as an inverted peak in Figs. M.66 to M.68. The visual quality in 
the results presented favour the detection of the H&R attack.  
 

 
Fig. H.65.141Shannon’s entropy H applied to the variance multiscalor 4th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.66.142Shannon’s entropy H applied to the variance multiscalor 5th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.67.143Shannon’s entropy H applied to the variance multiscalor 6th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.68.144Shannon’s entropy H applied to the variance multiscalor 7th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

H.3.4 Shannon’s Entropy Applied to Variance Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

Culminating the preparation of the features extracted through Shannon’s entropy, a 
Lloyd’s quantization phase is utilized for converting the outcomes of the previous nonlinear 
filtering stage into defined amplitude level codes. Figures H.69 to H.72 show the result of the 

quantization stage for the fourth, , to the seventh, , components respectively. The DNS 

amplification DDoS attack is confirmed having a more defined beginning and end in Figs. H.70 
and H.71, but not as well defined as in the quantization stages from the previous methodologies 
used, cumulative sum and ZCR. The H&R DDoS attack is confirmed as an inverted peak in Figs. 
H.70 to H.72. The visual quality in the quantized waveforms favours best the detection of the 
H&R DDoS attack in Fig. H.72. 
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Fig. H.69.145Shannon’s entropy H applied to the variance multiscalor 4th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.70.146Shannon’s entropy H applied to the variance multiscalor 5th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. H.71.147Shannon’s entropy H applied to the variance multiscalor 6th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. H.72.148Shannon’s entropy H applied to the variance multiscalor 7th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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APPENDIX I                                                                                

RESULTS OF SELECTED SECONDARY OPERATORS 

APPLIED TO SKEWNESS MULTISCALOR 

 

I.1 Cumulative Sum 

I.1.1 Cumulative Sum Applied to Skewness Multiscalor Components 

The cumulative sum applied to the skewness multiscalor components  provides 

results of different visual perception quality for the skewness multiscalor components (from first, 

, to seventh, ) as seen in Figs. I.1 to I.7. The DNS amplification DDoS attack appears to 

have better quality for the first,  shown in Fig. I.1, and fourth,  shown in Fig. I.4, 

skewness multiscalor components, while a lesser quality for the second, 
 
shown in Fig. I.2, 

third,  shown in Fig. I.3, fifth,  shown in Fig. I.5, and not distinguishable contributions 

for the rest of the components. For the H&R DDoS attack case, this exhibits better quality in the 

sixth,  shown in Fig. N.6, and seventh,  shown in Fig. N.7. The shape of both DDoS 

attacks for the cumulative sum run on all skewness multiscalor components is preserved in 
results of varying quality degrees. These results are not as uniform as the ones obtained with the 
cumulative sum applied to the variance multiscalor components. 
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Fig. I.1.149Cumulative sum S applied to the skewness multiscalor 1st component . A processing frame of 256 samples is 

used. 

 

 
Fig. I.2.150Cumulative sum S applied to the skewness multiscalor 2nd component . A processing frame of 256 samples is 

used. 
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Fig. I.3.151Cumulative sum S applied to the skewness multiscalor 3rd component . A processing frame of 256 samples is 

used. 

 

 
Fig. I.4.152Cumulative sum S applied to the skewness multiscalor 4th component . A processing frame of 256 samples is 

used. 
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Fig. I.5.153Cumulative sum S applied to the skewness multiscalor 5th component . A processing frame of 256 samples is 

used. 

 

 
Fig. I.6.154Cumulative sum S applied to the skewness multiscalor 6th component . A processing frame of 256 samples is 

used. 

 

  
(m

3|||5
)

  
(m

3|||6
)



POLYSCALE BASED CYBERSECURITY App. I: Results of Secondary Operators on Skewness Multiscalor 

 

 

Jesus David TerrazasGonzalez   
 − I5 −  

 
Fig. I.7.155Cumulative sum S applied to the skewness multiscalor 7th component . A processing frame of 256 samples is 

used. 

 

I.1.2 Cumulative Sum Applied to Skewness Multiscalor Components After 

Donoho’s Denoising 

Running Donoho’s denoising to the outcomes of cumulative sum applied to the skewness 

multiscalor components  provides results of different visual perception quality for the 

skewness multiscalor components (from first, , to seventh, ) as seen in Figs. I.8 to I.14. 

After applying Donoho’s denoising, all skewness multiscalor components are smoothed, but the 

DNS amplification DDoS attack appearing with better quality for the first, , shown in Fig. 

I.8, and fourth, , shown in Fig. I.11, components, while a lesser quality for the second, 
 

shown in Fig. I.9, third,  shown in Fig. I.10, and fifth,  shown in Fig. I.12, and not 

distinguishable contributions for the rest of the components, still holds. For the now smoother 

H&R DDoS attack case, this exhibits better quality only in the seventh, , component shown 

in Fig. I.14 and it has apparently faded in the sixth, , component shown in Fig. I.13. 
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Fig. I.8.156Cumulative sum S applied to the skewness multiscalor 1st component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.9.157Cumulative sum S applied to the skewness multiscalor 2nd component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.10.158Cumulative sum S applied to the skewness multiscalor 3rd component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.11.159Cumulative sum S applied to the skewness multiscalor 4th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.12.160Cumulative sum S applied to the skewness multiscalor 5th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.13.161Cumulative sum S applied to the skewness multiscalor 6th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.14.162Cumulative sum S applied to the skewness multiscalor 7th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 

I.1.3 Cumulative Sum Applied to Skewness Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

Continuing with the subsequent nonlinear filtering stage is applied to the skewness 
multiscalor components after Donoho’s denoising, smoother features are yielded as shown in 

Figs. I.15 to I.21 the skewness multiscalor components corresponding to the first, , to 

seventh, . After the nonlinear data processing, the DNS amplification DDoS attack is visibly 

having better visual quality (in the context of the skewness multiscalors because the variance 

multiscalors are by far better) in the first, , shown in Fig. I.15, and fourth, , shown in 

Fig. I.18, components, lesser quality for the second, 
 
shown in Fig. I.16, third,  shown in 

Fig. I.17, and fifth,  shown in Fig. I.18, and not distinguishable contributions for the rest of 

the components. The H&R DDoS attack exhibits better quality in the sixth, , and in the 

seventh, , components shown in Figs. I.20 and I.21 respectively. 
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Fig. I.15.163Cumulative sum S applied to the skewness multiscalor 1st component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.16.164Cumulative sum S applied to the skewness multiscalor 2nd component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.17.165Cumulative sum S applied to the skewness multiscalor 3rd component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.18.166Cumulative sum S applied to the skewness multiscalor 4th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.19.167Cumulative sum S applied to the skewness multiscalor 5th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.20.168Cumulative sum S applied to the skewness multiscalor 6th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.21.169Cumulative sum S applied to the skewness multiscalor 7th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 

I.1.4 Cumulative Sum Applied to Skewness Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

As previously, the extracted features through cumulative sum applied to the skewness 
multiscalors are readied for ART1 via Lloyd’s quantization to transform them into defined 
amplitude level codes that can be translated into binary representation. The figures I.22 to I.28 

show the skewness multiscalor components corresponding to the first, , to seventh, 

Lloyd’s quantization after the cumulative sum has been denoised with Donoho’s methodology 
and nonlinear filtering. After the nonlinear data processing, the DNS amplification DDoS attack 
is confirmed to have better visual quality (in the context of the skewness multiscalors because 

the variance multiscalors appear visibly better) in the first, , shown in Fig. I.22, and fourth, 

, shown in Fig. I.25, components, lesser quality for the second, 
 
shown in Fig. I.23, 

third,  shown in Fig. I.24, and fifth,  shown in Fig. I.26, and not distinguishable 

contributions for the rest of the components. Similarly for the H&R DDoS attack, it is confirmed 

that it has better quality in the sixth, , and in the seventh, , components shown in Figs. 

N.27 and N.28 respectively. 
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Fig. I.22.170Cumulative sum S applied to the skewness multiscalor 1st component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.23.171Cumulative sum S applied to the skewness multiscalor 2nd component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.24.172Cumulative sum S applied to the skewness multiscalor 3rd component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.25.173Cumulative sum S applied to the skewness multiscalor 4th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.26.174Cumulative sum S applied to the skewness multiscalor 5th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.27.175Cumulative sum S applied to the skewness multiscalor 6th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.28.176Cumulative sum S applied to the skewness multiscalor 7th component  quantized with Lloyd’s methodology. 

The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

I.2 Zero-Crossing Rate 

I.2.1 Zero-Crossing Rate Applied to Skewness Multiscalor Components 

When ZCR is applied to the skewness multiscalor components , results of 

different visual perception quality (from first, , to seventh, ), as seen in Figs. I.29 to I.35, 

are provided. Particularly, the DNS amplification DDoS attack appears to have better quality for 

the first,  shown in Fig. I.29, and a lesser quality for the fourth, 
 
shown in Fig. I.32, and 

not distinguishable contributions for the rest of the components. Related to the H&R DDoS 

attack case, this exhibits better quality from the fifth,  shown in Fig. I.33, to the seventh,  

shown in Fig. I.35. The shape of both DDoS attacks for the ZCR applied on all skewness 
multiscalor components appears in varying quality degrees. The results obtained from ZCR 
applied to the skewness multiscalor components are not as good as the ones obtained from the 
variance multiscalor components. 
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Fig. I.29.177ZCR  applied to the skewness multiscalor 1st component . A processing frame of 256 samples is used. 

 

 
Fig. I.30.178ZCR  applied to the skewness multiscalor 2nd component . A processing frame of 256 samples is used. 
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Fig. I.31.179ZCR  applied to the skewness multiscalor 3rd component . A processing frame of 256 samples is used. 

 

 
Fig. I.32.180ZCR  applied to the skewness multiscalor 4th component . A processing frame of 256 samples is used. 
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Fig. I.33.181ZCR  applied to the skewness multiscalor 5th component . A processing frame of 256 samples is used. 

 

 
Fig. I.34.182ZCR  applied to the skewness multiscalor 6th component . A processing frame of 256 samples is used. 
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Fig. I.35.183ZCR  applied to the skewness multiscalor 7th component . A processing frame of 256 samples is used. 

 

I.2.2 Zero-Crossing Rate Applied to Skewness Multiscalor Components After 

Donoho’s Denoising 

For the Donoho’s denoising of the ZCR applied to the skewness multiscalor components 

, the results of different visual perception quality (from first, , to seventh, ), as 

seen in Figs. N.36 to N.42, are smoothed. Particularly, the DNS amplification DDoS attack 

appears to have better quality for the first,  shown in Fig. I.36, and a lesser quality for the 

fourth, 
 
shown in Fig. I.39, and not clear contributions for the rest of the components. 

Related to the H&R DDoS attack case, this exhibits better quality from the fifth,  shown in 

Fig. I.40, to the seventh,  shown in Fig. I.42. The shape of both DDoS attacks, when utilizing 

Donoho’s denoising in results of the ZCR for all skewness multiscalor components, starts to 
appear smooth. 
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Fig. I.36.184ZCR  applied to the skewness multiscalor 1st component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.37.185ZCR  applied to the skewness multiscalor 2nd component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.38.186ZCR  applied to the skewness multiscalor 3rd component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.39.187ZCR  applied to the skewness multiscalor 4th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.40.188ZCR  applied to the skewness multiscalor 5th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.41.189ZCR  applied to the skewness multiscalor 6th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.42.190ZCR  applied to the skewness multiscalor 7th component  after Donoho’s denoising. A Coiflet wavelet 

with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 

I.2.3 Zero-Crossing Rate Applied to Skewness Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

When nonlinearly filtering the previous results of Donoho’s denoising from the ZCR 

applied to the skewness multiscalor components , the outcomes of different visual 

perception quality (from first, , to seventh, ), as seen in Figs. I.43 to I.49, achieve their 

highest reduction of spiky behaviour. Specifically, the DNS amplification DDoS attack emerges 

as having better quality for the first,  shown in Fig. I.43, and a lesser quality for the fourth, 

 
shown in Fig. I.46, and not clear contributions for the rest of the components. Related to the 

H&R DDoS attack case, this exhibits better quality from the fifth,  shown in Fig. I.47, to the 

seventh,  shown in Fig. I.49. The shapes of both DDoS attacks, after nonlinearly filtering 

Donoho’s denoising results of the ZCR for the skewness multiscalor components, appear 
discernible and the specifics for particular cases have been singled out. 
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Fig. I.43.191ZCR  applied to the skewness multiscalor 1st component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.44.192ZCR  applied to the skewness multiscalor 2nd component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.45.193ZCR  applied to the skewness multiscalor 3rd component 33|||

( )m  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.46.194ZCR  applied to the skewness multiscalor 4th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.47.195ZCR  applied to the skewness multiscalor 5th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.48.196ZCR  applied to the skewness multiscalor 6th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.49.197ZCR  applied to the skewness multiscalor 7th component  median filtering once denoised with Donoho’s 

methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 

I.2.4 Zero-Crossing Rate Applied to Skewness Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

Now, quantizing the nonlinear filtering the previous results of Donoho’s denoising from 

the ZCR applied to the skewness multiscalor components , the outcomes of different 

visual perception quality (from first, , to seventh, ), as seen in Figs. I.50 to I.56, are 

prepared for further processing by ART. Specifically, the DNS amplification DDoS attack is 

confirmed to have better quality for the first,  shown in Fig. I.50, and a lesser quality for the 

forth, 
 
shown in Fig. I.53, and the fifth (now visibly distinguishable, but not very strong), 

 
shown in Fig. I.54, and not clear contributions for the rest of the components. Related to the 

H&R DDoS attack case, through quantization it can be confirmed that it has better quality for the 

first,  shown in Fig. I.50, the sixth,  shown in Fig. I.55, and the seventh,  shown in 

Fig. I.56. The shapes of both DDoS attacks, after quantizing the nonlinear filtering of Donoho’s 
denoising results from the ZCR of the skewness multiscalor components, appears in their clearest 
form and the specifics for particular cases have been singled out. 
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Fig. I.50.198ZCR  applied to the skewness multiscalor 1st component  quantized with Lloyd’s methodology. The DDoS 

attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.51.199ZCR   applied to the skewness multiscalor 2nd component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.52.200ZCR   applied to the skewness multiscalor 3rd component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.53.201ZCR   applied to the skewness multiscalor 4th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.54.202ZCR   applied to the skewness multiscalor 5th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.55.203ZCR   applied to the skewness multiscalor 6th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.56.204ZCR   applied to the skewness multiscalor 7th component  quantized with Lloyd’s methodology. The 

DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

I.3 Shannon’s Entropy 

I.3.1 Shannon’s Entropy Applied to Skewness Multiscalor Components 

Applying Shannon’s entropy to the skewness multiscalor component , as seen 

in Figs. I.57 to I.63 representing the first, , to seventh, . From analysing the skewness 

multiscalor components with Shannon’s entropy, one can see that the dynamics of the DNS 

DDoS attack are noticed in Fig. I.57 (first skewness multiscalor, ), while the dynamics of the 

H&R DDoS attack are noticed in Figs. I.57 (first skewness multiscalor, ) and from Figs. I.60 

to I.63 (from fourth to seventh skewness multiscalors,  to ). 
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Fig. I.57.205Shannon’s entropy H applied to the skewness multiscalor 1st component . A processing frame of 256 samples 

is used. 

 

 
Fig. I.58.206Shannon’s entropy H applied to the skewness multiscalor 2nd component . A processing frame of 256 

samples is used. 
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Fig. I.59.207Shannon’s entropy H applied to the skewness multiscalor 3rd component . A processing frame of 256 samples 

is used. 

 

 
Fig. I.60.208Shannon’s entropy H applied to the skewness multiscalor 4th component . A processing frame of 256 samples 

is used. 
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Fig. I.61.209Shannon’s entropy H applied to the skewness multiscalor 5th component . A processing frame of 256 samples 

is used. 

 

 
Fig. I.62.210Shannon’s entropy H applied to the skewness multiscalor 6th component . A processing frame of 256 samples 

is used. 
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Fig. I.63.211Shannon’s entropy H applied to the skewness multiscalor 7th component . A processing frame of 256 samples 

is used. 

 

I.3.2 Shannon’s Entropy Applied to Skewness Multiscalor Components After 

Donoho’s Denoising 

Donoho’s denoising smooths the results obtained from Shannon’s entropy on the 

skewness multiscalor component , as seen in Figs. I.64 to I.70 representing the first, 

, to seventh, . Donoho’s denoised skewness multiscalor components analyzed with 

Shannon’s entropy shows a more defined shape for the DNS DDoS attack is noticed in Fig. I.64 

(first skewness multiscalor, ). Also, a clearer shape for the H&R DDoS attack is noticed in 

Figs. I.64 (first skewness multiscalor, ) and from Figs. I.67 to I.70 (from fourth to seventh 

skewness multiscalors,  to ). 

  
(m

3|||7
)

  
(H[m

3|||n
])

  
m

3|||1   
m

3|||7

  
m

3|||1

  
m

3|||1

  
m

3|||4   
m

3|||7



POLYSCALE BASED CYBERSECURITY App. I: Results of Secondary Operators on Skewness Multiscalor 

 

 

Jesus David TerrazasGonzalez   
 − I38 −  

 
Fig. I.64.212Shannon’s entropy H applied to the skewness multiscalor 1st component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.65.213Shannon’s entropy H applied to the skewness multiscalor 2nd component  after Donoho’s denoising. A 

Coiflet wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack 
is seen. 
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Fig. I.66.214Shannon’s entropy H applied to the skewness multiscalor 3rd component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.67.215Shannon’s entropy H applied to the skewness multiscalor 4th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.68.216Shannon’s entropy H applied to the skewness multiscalor 5th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

 
Fig. I.69.217Shannon’s entropy H applied to the skewness multiscalor 6th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 
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Fig. I.70.218Shannon’s entropy H applied to the skewness multiscalor 7th component  after Donoho’s denoising. A Coiflet 

wavelet with scaling factor of five is used. The DDoS attack dynamics are clearly seen. Also, the hit and run DDoS attack is seen. 

 

I.3.3 Shannon’s Entropy Applied to Skewness Multiscalor Components Non-

Linearly Filtered After Donoho’s Denoising 

Chaining nonlinear filtering to Donoho’s denoising incorporates a second smoothing pass 
to the results obtained from Shannon’s entropy on the skewness multiscalor component 

, as seen in Figs. I.71 to I.77 representing the first, , to seventh, . Nonlinearly 

filtering the Donoho’s denoised skewness multiscalor components analyzed with Shannon’s 
entropy confirms a clearer shape for the DNS DDoS attack is noticed in Fig. I.71 (first skewness 

multiscalor, ). Also, a clearer shape for the H&R DDoS attack is confirmed in Figs. I.71 

(first skewness multiscalor, ) and from Figs. I.74 to I.77 (from fourth to seventh skewness 

multiscalors,  to ). 
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Fig. I.71.219Shannon’s entropy H applied to the skewness multiscalor 1st component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.72.220Shannon’s entropy H applied to the skewness multiscalor 2nd component  median filtering once denoised 

with Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.73.221Shannon’s entropy H applied to the skewness multiscalor 3rd component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.74.222Shannon’s entropy H applied to the skewness multiscalor 4th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.75.223Shannon’s entropy H applied to the skewness multiscalor 5th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.76.224Shannon’s entropy H applied to the skewness multiscalor 6th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.77.225Shannon’s entropy H applied to the skewness multiscalor 7th component  median filtering once denoised with 

Donoho’s methodology. The DDoS attack dynamics are seen. Also, a hit and run DDoS attack is seen. 

 

I.3.4 Shannon’s Entropy Applied to Skewness Multiscalor Components 

Quantization of Non-Linear Filtering After Donoho’s Denoising 

Quantizing the nonlinear filtering of Donoho’s denoising from the Shannon’s entropy on 

the skewness multiscalor component , as seen in Figs. I.78 to I.84 representing the first, 

, to seventh, , prepares the metrics for further processing by ART. The quantization of 

nonlinearly filtering the Donoho’s denoised skewness multiscalor components analyzed with 
Shannon’s entropy depicts the DNS DDoS attack in its pure form achievable by the data 

processing chain utilized in this research as seen in Fig. I.78 (first skewness multiscalor, ). 

Also, the shapes for the H&R DDoS attack are depicted in their purest form achievable here in 

Figs. I.78 (first skewness multiscalor, ) and from Figs. I.81 to I.84 (from fourth to seventh 

skewness multiscalors,  to ). 
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Fig. I.78.226Shannon’s entropy H applied to the skewness multiscalor 1st component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.79.227Shannon’s entropy H applied to the skewness multiscalor 2nd component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.80.228Shannon’s entropy H applied to the skewness multiscalor 3rd component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.81.229Shannon’s entropy H applied to the skewness multiscalor 4th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.82.230Shannon’s entropy H applied to the skewness multiscalor 5th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 

 

 
Fig. I.83.231Shannon’s entropy H applied to the skewness multiscalor 6th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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Fig. I.84.232Shannon’s entropy H applied to the skewness multiscalor 7th component  quantized with Lloyd’s 

methodology. The DDoS attack dynamics are clearly seen. Also, a hit and run DDoS attack is seen. 
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APPENDIX J                                                                                

CONFUSION MATRICES FOR ART1 PERFORMANCE 

 

 The following observations are worth to highlight from the confusion matrix obtained for 
the classification through ART1 with a 0.07ρ = : (i) It presents high values for both precision 

(97.5%) and recall (98.0%) providing a high degree of confidence when it comes to properly 
identify the presence of a DDoS attack, (ii) similarly, it shows high values for both precision 
(98.3%) and recall (97.8%) providing a high degree of confidence when it comes to properly 
identify the clear traffic, and (iii) a low number of  misclassifications is found. 
 

 

Fig. J.1.233Confusion matrix for ART1 with vigilance parameter . The matrix displays: (i) 985 cases for clear traffic, 

(ii) 850 cases for a DDoS attack, (iii) 22 false cases for a DDoS attack, and (iv) 17 false cases for clear traffic.  
The column normalization (precision): (i) 98.3% for clear traffic, and (ii) 97.5% for a DDoS attack. The row normalization 

(recall): (i)97.8 % for clear traffic, and (ii) 98% for DDoS attack. 

 
 

For the confusion matrix acquired for the classification through ART1 with a 0.88,ρ =  

the subsequent observations are meaningful for sharing: (i) High values for both precision 
(98.5%) and recall (97.8%) are present, which provides a high degree of confidence for the 
proper identification of the presence of a DDoS attack, (ii) similarly, high values for both 
precision (98.1%) and recall (98.7%) are shown, also providing a high degree of confidence 
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when it comes to properly identify the clear traffic, and (iii) low number of  misclassifications, 
13 and 19 that should belong to the clear traffic and to the DDoS attack respectively, are found. 
 

 

Fig. J.2.234Confusion matrix for ART1 with vigilance parameter 0.088ρ = . The matrix displays: (i) 994 cases for clear traffic, 

(ii) 848 cases for a DDoS attack, (iii) 13 false cases for a DDoS attack, and (iv) 19 false cases for clear traffic.  
The column normalization (precision): (i) 98.1% for clear traffic, and (ii) 98.5% for a DDoS attack. The row normalization 

(recall): (i) 98.7% for clear traffic, and (ii) 97.8% for DDoS attack. 

 
 
 Tuning the implementation of ART1 to a vigilance parameter 0.09ρ =  allows achieving 

a confusion matrix with the next contemplations: (i) The high values for both precision (98.5%) 
and recall (97.8%) propose a high degree of confidence for determining the presence of a DDoS 
attack, (ii) correspondingly, the high values for both precision (98.1%) and recall (98.7%) 
provide the basis for a high degree of confidence for the classification of clear traffic, (iii) the 
number of  misclassifications is low, 13 and 19 that should belong to the clear traffic and to the 
DDoS attack respectively, (iv) the overall implementation of this machine learning approach, 
ART with 0.07ρ = , 0.088ρ = , and 0.09ρ = , is found overperforming when compared to 

FuzzyART set to the best suitable vigilance parameter values found through the FuzzyART 
parametogram. 

Upon inspection of the confusion matrix computed for the classification through ART1 
with a 0.1ρ = , the successive comments are noteworthy: (i) A sign about misclassifying some 

of the DDoS attack occurrences (60) into clear traffic because it shows a low value for recall 
(93.1.0%), when compared with the previous values for the vigilance parameter in ART1 that 
were systematically selected from the parametogram. This states that not all the true occurrences 
for the DDoS attack are detected, (ii) A slightly low value for precision (97.0%), which comes 
from the fact that some of the true occurrences (25) for the clear traffic are missed, after 
comparing with the previous values for the vigilance parameter in prior the prior experiments, 
and (iii) the number of  misclassifications for both the clear traffic and a DDoS attack (highest 
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with 60) is not too excessive. 
 

 

Fig. J.3.235Confusion matrix for ART1 with vigilance parameter . The matrix displays: (i) 994 cases for clear traffic, 

(ii) 848 cases for a DDoS attack, (iii) 13 false cases for a DDoS attack, and (iv) 19 false cases for clear traffic.  
The column normalization (precision): (i) 98.1% for clear traffic, and (ii) 98.5% for a DDoS attack. The row normalization 

(recall): (i) 98.7% for clear traffic, and (ii) 97.8% for DDoS attack. 

 

 

Fig. J.4.236Confusion matrix for ART1 with vigilance parameter . The matrix displays: (i) 0 cases for clear traffic,     

(ii) 867 cases for a DDoS attack, (iii) 1007 false cases for a DDoS attack, and (iv) 0 false cases for clear traffic.  
The column normalization (precision): (i) 0% for clear traffic, and (ii) 46.3% for a DDoS attack. The row normalization (recall): 

(i) 0% for clear traffic, and (ii) 100% for DDoS attack. 
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Regarding the confusion matrix accomplished for the classification through ART1 with a 
0.9ρ = , the successive points are striking: (i) For the DDoS attack class, it presents a high value 

for precision (100%) and a low value for recall (0.3%) providing an indication about 
misclassifying the a DDoS attack into clear traffic, (ii) for the clear traffic class, it denotes a low 
value for precision (53.8%) and a high value for recall (100%) providing an indication about a 
DDoS attack being misclassified into clear traffic, and (iii) a very high number of  
misclassifications (864) is found for the DDoS attack. 
 

 

Fig. J.5.237Confusion matrix for ART1 with vigilance parameter . The matrix displays: (i) 1007 cases for clear traffic, 

(ii) 3 cases for a DDoS attack, (iii) 0 false cases for a DDoS attack, and (iv) 864 false cases for clear traffic.  
The column normalization (precision): (i) 53.8% for clear traffic, and (ii) 100% for a DDoS attack. The row normalization 

(recall): (i) 100% for clear traffic, and (ii) 0.3% for DDoS attack. 
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APPENDIX K                                                                                

CONFUSION MATRICES FOR FUZZYART PERFORMANCE 

 

Regarding the confusion matrix achieved for the classification through FuzzyART with a 
0.1ρ = , the succeeding remarks are significant: (i) It presents a low value for precision (46.3%) 

and a high value for recall (100%) providing an indication about misclassifying the clear traffic 
into a DDoS attack, (ii) it indicates a low value for precision (0%) and a low value for recall     
(0%) providing an symptom about clear traffic being misclassified into a DDoS attack, and     
(iii) a very high number of  misclassifications (1007) is found for the clear traffic. 
 

 

Fig. K.1.238Confusion matrix for FuzzyART with vigilance parameter . The matrix displays: (i) 0 cases for clear traffic, 

(ii) 867 cases for a DDoS attack, (iii) 1,007 false cases for a DDoS attack, and (iv) 0 false cases for clear traffic.  
The column normalization (precision): (i) 0% for clear traffic, and (ii) 46.3% for a DDoS attack. The row normalization (recall): 

(i) 0% for clear traffic, and (ii) 100% for DDoS attack. 

 
 
 The confusion matrix acquired for the classification through FuzzyART with a 0.632ρ =  

yields the succeeding meaningful reflections valuable of noting: (i) A high degree of confidence 
for the proper identification of the presence of a DDoS attack is concluded due to the high values 
for both precision (88.7%) and recall (84.8%), (ii) analogously, a high degree of confidence 
when it comes to properly identify the clear traffic is also sustained due to the high values for 
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both precision (87.4%) and recall (90.7%), (iii) the number of  misclassifications starts to 
normalize (when compared to FuzzyART with a 0.1ρ = ), 94 and 132 that should belong to the 

clear traffic and to the DDoS attack respectively, and (iv) the overall performance of this 
machine learning approach, FuzzyART with a 0.632ρ = , is found underperforming when 

compared to ART1 set to suitable vigilance parameter values. 
 

 

Fig. K.2.239Confusion matrix for FuzzyART with vigilance parameter . The matrix displays: (i) 913 cases for clear 

traffic, (ii) 735 cases for a DDoS attack, (iii) 94 false cases for a DDoS attack, and (iv) 132 false cases for clear traffic.  
The column normalization (precision): (i) 87.4% for clear traffic, and (ii) 88.7% for a DDoS attack. The row normalization 

(recall): (i) 90.7% for clear traffic, and (ii) 84.8% for DDoS attack. 

 
 
 Setting the implementation of FuzzyART to a vigilance parameter 0.633ρ =  allows 

attaining a confusion matrix with the next contemplations: (i) The high values for both precision 
(89.7%) and recall (87.8%) postulate a high degree of confidence for pinpointing the presence of 
a DDoS attack, (ii) correspondingly, the high values for both precision (89.7%) and recall 
(91.4%) support a high degree of confidence for properly identifying the clear traffic, (iii) the 
number of  misclassifications is lower to FuzzyART with a 0.1ρ = , 87 and 106 that should 

belong to the clear traffic and to the DDoS attack respectively, and (iv) the overall performance 
of this machine learning approach, FuzzyART with a 0.633ρ = , is also found underperforming 

when compared to ART1 set to appropriate vigilance parameter values. 
For the confusion matrix processed for the classification through FuzzyART set to 

0.634ρ = , the following remarks are meaningful: (i) High values for both precision (88.5%) and 

recall (87.5%) are existent, which affords a high degree of confidence for the classification of the 
presence of a DDoS attack, (ii) similarly, high values for both precision (89.4%) and recall 
(90.2%) are shown, also delivering a high degree of confidence when identifying the clear 
traffic, (iii) low number of  misclassifications, 99 and 108 that should belong to the clear traffic 
and to the DDoS attack respectively, are revealed, and (iv) the overall performance of this 
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machine learning approach, FuzzyART with a 0.634ρ = , is also found underperforming when 

compared to ART1 set to appropriate vigilance parameter values. 
 

 

Fig. K.3.240Confusion matrix for FuzzyART with vigilance parameter . The matrix displays: (i) 920 cases for clear 

traffic, (ii) 761 cases for a DDoS attack, (iii) 87 false cases for a DDoS attack, and (iv) 106 false cases for clear traffic.  
The column normalization (precision): (i) 89.7% for clear traffic, and (ii) 89.7% for a DDoS attack. The row normalization 

(recall): (i) 91.4% for clear traffic, and (ii) 87.8% for DDoS attack. 

 
 

Upon assessment of the confusion matrix calculated for the classification through 
FuzzyART set to , the following arguments are outstanding: (i) An indication about 

misclassifying the a DDoS attack into clear traffic is sustained because it presents a high value 
for precision (100%) and a low value for recall (1.6%), (ii) a second signal about a DDoS attack 
being misclassified into clear traffic comes from the fact that it holds a low value for precision 
(54.1%) and a high value for recall (100%), and (iii) a very high number of  misclassifications 
(853) is exposed for the DDoS attack. 
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Fig. K.4.241Confusion matrix for FuzzyART with vigilance parameter . The matrix displays: (i) 908 cases for clear 

traffic, (ii) 759 cases for a DDoS attack, (iii) 99 false cases for a DDoS attack, and (iv) 108 false cases for clear traffic.  
The column normalization (precision): (i) 89.4% for clear traffic, and (ii) 88.5% for a DDoS attack. The row normalization 

(recall): (i) 90.2% for clear traffic, and (ii) 87.5% for DDoS attack. 

 

 

Fig. K.5.242Confusion matrix for FuzzyART with vigilance parameter . The matrix displays: (i) 1007 cases for clear 

traffic, (ii) 14 cases for a DDoS attack, (iii) 0 false cases for a DDoS attack, and (iv) 853 false cases for clear traffic.  
The column normalization (precision): (i) 54.1% for clear traffic, and (ii) 100% for a DDoS attack. The row normalization 

(recall): (i) 100% for clear traffic, and (ii) 1.6% for DDoS attack. 
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APPENDIX L                                                                   

INDUSTRIAL INTERNET OF THINGS 

 

Recently, one can observe a flourish of proposals aimed at giving social-like capabilities 
to the objects in the IoT. Such proposals address the design of conceptual platforms, software 
implemented, to develop and implement complex applications requiring direct interactions 
among objects. The major goal is building techniques to enhance the level of trust between 
objects that are “friends” with each other in a network. A social paradigm could definitely 
guarantee network navigability even if the number of nodes becomes orders of magnitude higher 
than in the traditional Internet. This navigability requires unique addressing schemes over the 
standard communication protocols to provide information and services to the final users. 
Trillions of objects are expected to take a major active role in the future network, bringing 
physical world data into the world of digital content and services. This resulting networking 
paradigm, the IoT, would provide a paramount set of opportunities to users, manufacturers, and 
service providers with a wide applicability in many productive sectors (e.g., automation, 
environmental monitoring, healthcare, inventory and product management, smart grid, smart 
home and workplace, security and surveillance). Social networking concepts integrated into the 
IoT would allow objects to interact in a human-like fashion in an advanced machine-to-machine 
(M2M) communication [AtIM014]. 

It has been more than 20 years since the first popular graphical web browser, Mosaic, 
was released. Now there is a cloud, a digital universe 4,000 Exabytes (a stack of books from 
Earth to Pluto and back 80 times) which is freely available. Everyday computers in the form of 
smartphones and tablets tap into this cloud. Soon wearable embedded computers will also 
interact with this cloud. The world has embarked into the next Internet inception through the IoT. 
Its forecast announces that it will make the current Internet look trivial. The significance of this 
is because the physical world (the planet and everything on it) is seen as part of the Internet. Real 
physical presences, things (e.g., goods, objects, machines, appliances, buildings, vehicles, 
animals, people, plants, soil), can be observed and controlled. An object in the physical world is 
abstracted into an entity in the Internet. This object abstraction requires: A unique identity (the 
IPv6 provides an unlimited number of identities), the ability to communicate, to count with 
senses, and to respond to remote control instructions [Barr012].  

Different scenarios for understanding the IoT impact to society are: (i) Connect with 
things. In the IoT, a smartphone becomes a channel to tap into things and exploit them; (ii) 
monitor things. A pacemaker can be monitored through the following: A smartphone to provide 
early warning, a remote computer running powerful algorithms 24/7 and predict weeks or even 
months ahead that a patient is heading for a problem, relatives wanting to know that a loved 
one’s heart is still beating. Telemedicine and eHealth are set to become one of the big areas in 
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the IoT. Disarray and confusion in the health system could possibly be eliminated or kept to a 
controllable degree; (iii) search for things through reality search engines (e.g., where are my 
keys?, where is my child?, what is the temperature of my food?); (iv) manage things. 51% of the 
world’s population lives in cities (some becoming megacities). Knowing where traffic, citizens, 
or energy are moving/flowing would allow managing resources better and avoid unwanted 
scenarios (e.g., traffic congestions, make better use of renewals, use energy more efficiently, 
look for the health and security of all citizens); (v) control things. Smart meters communicating 
between the appliances at home and the grid allow deciding when laundry takes place. The grid 
decides based on load balancing, energy efficiency, and use of renewals when laundry should go 
on. Decisions about which type of electricity would be used (e.g., green electricity or cheap 
electricity) are possible; and (vi) play with things. Superimpose a game environment in the real 
world around a gamer. The objects and people around become part of the game. The gaming 
industry as it is known today is set to be transformed [Barr012]. 

By 2030, each person is expected to be surrounded by 3,000 to 5,000 connected everyday 
things. Possible utopic scenarios either global or partial, or elements of them could appear (e.g., 
humans delegating control of the planet and its resources to a network of cognitive 
informatics/computing). Such network would manage, look after, and allocate the resources to 
everybody according to their needs. Society may experience a transition from democracy to 
technocracy where the planed is ruled by technology companies. The IoT could create the 
ultimate global panopticon where all things can be seen by anyone and privacy may become 
meaningless. The IoT could become a weapon of mass disruption due to terrorism and hacking in 
systems (e.g., industrial, energy, transport, healthcare, safety and security) connected to a global 
network. Recent reported hacks are the next: Deadly Wi-Fi pacemaker hack, computer worms 
affecting nuclear programs, insulin pump caused to deliver a fatal dosage, car electronics taken 
over remotely, and smart meters, to mention a few. Regardless of what the ultimate state of the 
world would be decades from now due to the IoT one thing is certain, it is set to change 
humanity. In order to make the IoT for the common good, the input and the support from people 
in the human and social sciences. Engineers need to interface and work alongside ordinary 
people to make the IoT for the good of society and individuals. The common good for societies 
would be based on exploiting senses, data, information (extracted through data mining), 
knowledge (extracted through knowledge engineering), and wisdom (ultimately derived from 
knowledge to move the human race forward) having the benefit of humanity as the main goal 
[Barr012]. 

The Internet has been one of the most important and transformative technologies ever 
invented by humans for humans. The Internet is like a fabric that is woven into everyone lives 
whether they are conscious about it or not. Countless services that humanity is dependent on 
would be inexistent without the Internet. The Internet in its Internet-of-People (IoP) form has 
certainly changed the world. The new form of the Internet, IoT, focuses not only on people but 
also on things. The IoT is the space where things share their sensory experiences through 
communication capabilities and can have a physical impact (e.g., control) in the real world. The 
IoP and the IoT intersect in things and humans having the capability to sense (e.g., touch, smell, 
see, taste, and hear) their environment. One has within reach the most advanced IoT device 
available, a smartphone. A smartphone knows: Its geo-location through the global positioning 
system (GPS), its tri-dimensional position through an accelerometer, how much light is 
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surrounding it, how close it is to the user’s face, it knows what the user is saying to it, it has an 
eye to see its surroundings, and of course ability to communicate. There are already far more 
advanced devices in the IoT available like: (i) Jawbone bracelets capable of tracking user steps 
and physical activity, knowing how well the user slept, and communicating over the network; (ii) 
Google Nest thermostats know if there is people in a room or not, learn and track home owner’s 
patterns to ensure comfort and save energy, and communicate over the Internet to be controlled;  
(iii) Philips Hue light bulbs create moods in a room by illuminating it matching a picture colours, 
dimming, respond to other things or remotely to humans; (iv) garage doors capable of being 
operated remotely; (v) weight scales that automatically log in the senses weight into an mobile 
app; (vi) pet trackers capable of logging in activities; (vii) Opto22 programmable automation 
controllers (PACs) give things the ability to sense and communicate. PACs are an alternative to 
programmable logic controllers (PLCs). Standard and commercial hardware, diverse protocols 
and open standards, an exception based logic foundation, distributed processing, common tag 
database, and multitasking, are PACs features. Correspondingly, proprietary network, 
communication, and programming and function (modelled after the relay ladder circuit logic 
foundation), continuous scanning, and mandatory duplication of data tags for interoperability, are 
PLCs features; (viii) the Hive Thermostat and Heating Control allows customers to remotely 
control the central heating system, locks, alarms, and security cameras. IoT devices in homes are 
expected to rise to trillions; (ix) Tado also provides similar IoT solutions for cooling and heating 
systems; (x) wearable medical devices linked to the IoT contributed to save 6.5 billions GBP 
during 2015 for the National Health Service (NHS) in the United Kingdom. The peace of mind 
put in the patient and families is priceless; and (xi) mobile apps providing services based on 
users geo-location and behaviour are set to indent new angles in marketing and insurances 
([Houg015] and [Skeg015]).  

 Big businesses (e.g., Apple, Cisco, General Electric, Google, Microsoft, and Samsung) 
care about the IoT ecosystem to the tune of billions of dollars. Start-ups have been acquired by 
big businesses as part of their strategic plan (e.g., Samsung buying SmartThings for 200 million 
USD or Google buying Nest for 3.2 billion USD) in the IoT industry. This may be because the 
IoT was born in 2008, a point in time having more things than people in the Internet. In 2015 
there are around 10 billions of things in the IoT on the planet and this number is expected to 
balloon to 50 billion (including automobile, healthcare, utilities and consumer electronics related 
IoT devices) by 2020. This is expected to cause probably the most massive financial movement, 
economic growth, humanity has ever experienced. The IoT with its inherent technologies, like 
ability to sense/acquire data and communicate, is expected to help making processes and systems 
that would make life easier in this planet in distinct aspects (e.g., health, safety, comfort, 
convenience, and wisdom) [Houg015]. As an example of wisdom, consider a cognitive system 
capable of warning inhabitants in a given region about a natural disaster (e.g., avalanches, 
earthquakes, forest fires, or tsunamis) long before it occurs through the IoT ecosystem.  

An alternative scenario is described as follows: An eHealth device or skin electronic 
patch monitors its user vital signs overnight and finds out its user has high-blood pressure and 
erratic breathing. This device analysed the user’s sleep for the last 8 hours, because of this, it is 
suggesting its user to take given medications and meet with the physician due to a pre-made 
appointment to further investigate health concerns. In this scenario, the physician has data 
available before the patient shows up. Would the user require immediate attention due to an 



POLYSCALE BASED CYBERSECURITY  App. L: Industrial Internet-of-Things (IIoT) 

 

 

Jesus David Terrazas Gonzalez    
 − L4 −  

emergency, the required units (e.g., an ambulance) can be dispatched to pick the patient up 
immediately, bring the patient to the hospital, and put the patient under care and observation. The 
culmination of this could be the physician saying to the patient: “Everything will be fine, you 
were suffering a heart attack, but major damages were avoided because you got the required 
treatment in just a nick of time” [Houg015].  

Nevertheless, IoT brings challenges, pitfalls and blind spots like: (i) Humanity resisting 
change, (ii) the IoT technical side being highly complex because of a high amount of embedded 
technologies, and (iii) the most important of all certainly is security and privacy [Houg015]. The 
BigBrother, a mega state watching citizens’ moves arbitrarily, has been an overall concern for 
Internet users. The big question is: How can arbitrary spying actions be counteracted? 
Legislation is the biggest defense/weakness against these actions because it provides freedom to 
or takes rights away from society. Legislation has a pivotal role for how society embraces the 
new technologies built upon the IoT (e.g., The United States of America recently enacted/ratified 
a bill setting the terms and conditions within the National Security Agency (NSA) could monitor 
citizens). Legislation should be used for developing laws protecting identities and data, but it 
should also provide mechanisms for anonymizing and sharing data (in a safe and sensible 
manner) for the Big Data ecosystem causing further benefits to humanity. This is undoubtedly a 
concern with the IoT potential to generate annually 35 trillion GB of data by 2020. This is 
certainly a huge amount of information even for BigBrother to handle successfully [Skeg015]. It 
is incomparable and amazing to control a thing remotely, but it is absolutely frustrating when 
someone unauthorized somehow hijacks that capability. Security and privacy policies pose a 
large amount of research questions for the IoT. This is a key focal point in this thesis proposal. 
The author of this document is working towards making a bulb light that could be lit in the IoT 
as having a comparable degree of security as the banking system.  Introducing new technologies 
has situated humanity dichotomising between users speaking the industry language or vice versa.  

In the IoT, each person and thing would have a locatable, addressable, and readable 
counterpart in the Internet [Butt015]. The indisputable IoT wonder is not that all persons and 
devices would be connected to the Internet, but that every device and person interconnects and 
communicates with others [Fard015]. Objects can produce and consume services and 
interact/collaborate with counterparts toward a common goal. “Smart objects” able to discover 
new services, start new acquaintances, exchange information, connect to external services, 
exploit other objects’ capabilities, and collaborate toward a common goal have already been 
conceptualized and designed to achieve a fully networked human society. Smart objects in the 
IoT need to operate in an extremely complex context full of opportunities as well as difficulties 
and threats. These smart objects are a new generation of social entities that can: (i) Interact with 
other objects in an autonomous way with respect to the owners; (ii) Crawl easily the IoT made of 
billions of objects to discover services and information in a trust-oriented way; and (iii) 
Advertise their presence to provide services to the rest of the network. The concepts and 
technologies typical of social networks are applied to the IoT to foster resource visibility, service 
discovery, object reputation assessment, source crowding, and service composition. Currently, a 
generational leap from objects with a certain degree of smartness to objects with an actual social 
consciousness is taking place. This progression encloses three stages of increasing levels of 
objects social involvement: (i) Objects can post information about their state in the social 
networks of humans, (ii) objects can interact at the application layer in social networks with 
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humans and other objects, and (iii) objects socially interact with each other to build a 
communication network. The increasing autonomy of objects in IoT would require the 
application of Asimov’s Three Laws of Robotics [(i) a robot may not injure a human being or, 
through inaction, allow a human being to come to harm; (ii) a robot must obey the orders given it 
by human beings, except where such orders would conflict with the First Law; and (iii) a robot 
must protect its own existence as long as such protection does not conflict with the First or 
Second Laws] to their social communities to keep an advantage for humans. Smart objects in IoT 
would translate the awareness of causal relationships into actions that have an impact in a social 
community [AtIM014]. 

Limited and fragmented small islands of heterogeneous smart objects, disconnected from 
each other in some IoT solutions built in isolation, are being avoided by implementing web 
protocols [e.g., Device Profile for Web Services (DPWS) or Representational State Transfer 
(RESTful) APIs] into either the objects themselves or specific objects’ proxies/gateways in the 
Web-of-Things (WoT). The services and information provided by the things can be incorporated 
in the open ecosystem of the Internet-of-Services (IoS) where applications can be created by 
using standard web languages and tools. The WoT paradigm is limited by difficulties in 
advertising, discovering, accessing, and exploiting the objects and their services. Sensing the 
physical world and acting on it is a desired capability by Internet users and services in the IoT 
[e.g., SenseWeb, Xively (by LogMeIn), and Paraimpu (by CRS4) provide a central platform to 
share sensory data, develop and develop applications]. One’s basketball shoes would be capable 
of posting data in a social network (e.g., Nike+). Ericsson Research has worked/developed the 
Social Web of Things, which provides higher degrees of autonomy and interaction between 
objects. One of its objectives is to help people master the complexity involved in the IoT 
networking paradigm by having a clearer vision of the rationale governing interactions between 
the IoT elements. Ericsson Scientists have observed that people familiarize better with IoT 
technologies if the interactions between IoT objects are presented in analogy to the interactions 
they usually experience in known social networks. Everything gives each individual object a 
unique active digital identity (ADI). This ADI provides a permanent presence online. An ADI 
corresponds to a Thing accessible on the web. Everything has the required environment and 
engines to manage ADIs. Their business idea is that manufacturers may want to provide ADIs 
along with the assets they produce. ADIs can be linked by relationships resembling social 
relationships. Nevertheless, most of the envisioned interactions still occur between objects and 
humans (through a smartphone) [AtIM014]. Jeff Hagins, SmartThings founder and chief 
technology officer (CTO) shares important lessons from IoT 
manufacturers/developers/businesses: (i) The number of connected IoT devices produces no 
profit/value, (ii) solving real-world problems produces profit/value, and (iii) the apps installed on 
the products produce profit/value. According to Jeff Hagins, the IoT can be defined as “an 
evolutionary development of the Internet in which software applications can easily make use of 
connected, everyday objects (accessible easily by software to provide rapid innovation), in order 
to solve real-world problems.” Hence, the IoT came to transform the way in which humans live 
and work by making their lives safer, smarter, and more productive [Hagi013]. It is important to 
notice that the Jeff Hagins definitions do not consider the intrinsic security and privacy of IoT 
devices. 

The main driving forces behind IoT are providing computing and communication power 
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and social entity to physical devices/objects. A degree of interaction is provided to these objects 
looking for the betterment of society. Vehicles are physical objects that started to incorporate 
social capabilities through the IoT. In 2014 alone, 85 million vehicles were shipped worldwide. 
Each of these cars had between 60 to 100 sensors (e.g., engine management, safety, and security) 
on-board. By 2020, the number of sensors per vehicle is expected to grow to 200 placing 26 
billion devices on the road by then (not including driver-less cars) [Skeg015]. Vehicles are now 
claiming a spot, known as Internet-of-Vehicles (IoV), for them in the IoT. The availability and 
steep advancement in new communication technologies has highly contributed to link vehicles to 
the Internet. Now, vehicles can easily exchange sensory, safety, efficiency, infotainment, and 
comfort-related information with other vehicles and infrastructures using Vehicular Ad Hoc 
Networks (VANETs) creating Vehicular Social Networks (VSN) sharing users centric 
information alike Mobile Social Networks (MSN) [AlSS015]. An example of such platform is 
the Toyota Friend Network where automobiles data is made available over a private social 
network. This network aims for improving customer service and building a virtual community 
among the owners in order to increase the brand customer loyalty. Nevertheless, the 
identification of the killer application and the definition of the underlying business model in IoT 
are still missing. Some efforts focus on smart environment applications, but it is not clear who 
should pay and why (e.g., user, social instances cost included in the object’s price, or user paying 
when applications are not yet available). Hence, these aspects are still open research questions 
[AtIM014]. 

Communication configurations supported by traditional networks are unicast, broadcast, 
multicast, anycast, and geocast. Smart objects social networks require new communication 
configurations in which the data consumers/receivers are characterized by their role/position in 
the social network. Such functionality can be realized as services at the application layer, but it 
would be much more effective to embed them as networking primitives. The new primitives 
should allow distinguishing whether a node is to be included among the data destinations based 
on its distance from the source, the types of relationships linking it to the source, and the policies 
(e.g., privacy) set by both the source and the node itself [AtIM014].  

Cyber-physical architectures supporting highly complex and mobile devices (e.g., 
vehicles) in the Social IoT (SIoT) leverage on cloud-based VANETs. The networked interactions 
M2M in the Social IoV (SIoV) are a critical example of a complex environment in which a 
physical object (involving a vast number of distinct industries in its design, creation, production, 
and operation) exists [AlSS015].  

The stored and transmitted data in existing objects, systems, industries, and concepts 
(e.g., Smart Cities portraying home-to-home or building-to-building interactions and exploiting 
social network relationships to solve various necessities) that would become a reality in the near 
future is a concern for humanity. Technological advancements in Information Technology 
continue enhancing existing services and creating new ones in our society (e.g., embedding 
microprocessors and communication capabilities into objects). Unlike Human Social Networks 
(HSN), IoT Social Networks (IoTSN) have features like: (i) Highly dynamic nodes, (ii) relations 
are based on similar configurations, owner interests, or manufacturer, and (iii) social interactions 
remain anonymous and include sensory data exchange [AlSS015].  

A completely integrated world is the utopic scenario for sharing data and also 
experiences. The Internet allows us to watch live events taking place anywhere and talk 
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instantaneously to people in another country through protocols (e.g., IP). The Internet protocol 
has a set of rules/guidelines allowing a person to connect with others worldwide. The Internet 
protocol forms the basis for the communications (e.g., web surfing, phone calling, emailing, or 
texting) occurring worldwide today. Furthermore, the IP allows creating and connecting the 
electronic ecosystem of the IoT. Technologies are implemented, mutually exclusive, by either 
integration (e.g., Apple technologies as a closed ecosystem) or a modular approach. An 
ecosystem is created with infrastructure, ideas, culture, and technology. An ecosystem should 
absorb and develop both evolutionary and disruptive components. Otherwise, it falls apart. The 
IoT ecosystem should be able to absorb modules attempting to disrupt its evolutionary process. 
Technologies, as the IP, are very good at supporting the IoT base, but its users are very good to 
disrupt everything. Hence, the IoT ecosystem must be incredibly robust to cope with a fast 
evolution and the complex disruptions occurring in it. All of this, considering humans as part of 
the ecosystem and not as only users [Savo015]. 

Platforms allowing users to interact with the physical world are set to become the most 
security hungry entities in the future because of the implications of the objects actions in IoT. 
This is expected to escalate even further in industrial contexts. “Conversations” among IoT 
objects may have deep implications in promoting the development of human society. Just 
imagine a fridge sending a self-driving car to the superstore to pick groceries to contribute to the 
family comfort. In the e-Health aspect, consider a healthcare manager capable of monitoring 
medicines deadline through social pills bottles, alert the physician system and get new 
prescriptions in time, get drugs availability from pharmacies through location services, and keep 
drugs in a safe place. Through the IoT, we would be witnessing a transition from networked 
robotics to social robotics, where robots would ask for help to their friends for a given purpose. 
Consider an industrial environment where a plant is capable of self-assessing its health so that 
critical parts that would start malfunctioning are automatically quoted and purchased so that 
proactive maintenance routines would be triggered to keep production in optimal levels. 
Certainly, these scenarios demand technologies capable of providing data hyper-security so that 
actions in the physical world would be safe to humanity. Data hyper-security is expected to 
become more intense in strategic cryptographic research agendas. The demand for better systems 
for securing the data created by the IoT is increasing inherently given the growth of networked 
intelligent objects.  

The development of smart objects social networks for both IoT and IIoT raises serious 
concerns on security and privacy of sensitive data and information. This fact requires research 
efforts that confront the security of the communications and evaluate the objects’ 
trustworthiness. The proposed models should account for the way the resources interact with 
each other over time and promote a shift toward trust-centric communication models in which it 
shall be possible to infer the degrees of trustworthiness from computation of the degree of the 
shaped relationships [AtIM014]. All things in the IoT are ideally connected at anytime, available 
from anywhere, and reachable by anyone. As mentioned earlier, people are seen as having 
unique addresses and be part of the IoT ecosystem, but not only that, IoT devices would also be 
inside people (e.g., smart pacemakers IoT capable and other advanced medical instruments like 
pressure and oxygen sensors). The high connectivity of devices in the IoTT, accessing critical 
infrastructure (e.g., national defense assets, power plants, or smart traffic systems) of entire 
nations, is a tremendous concern in the domain of security and privacy ([ChPB013] and 
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[Butt015]).  
In 1999, Neil Gross stated: “In the next century, planet Earth will don an electric skin. It 

will use the Internet as a scaffold to support and transmit its sensations”. Humans are now living 
actively this revolution, embodied like the IoT, as a consequence of the accelerating attribute of 
technology. Some important time gaps between technologies manifestations are: 15,000 years 
from painting and drawing to agriculture; 5,000 years to writing and the wheel; 2,500 years to 
cities and states; 1,900 to the experimental method; 325 years to industrialism; 95 years to 
electricity, the telephone and the radio; 65 years to the vacuum tube computers; 38 years to 
modern personal computers; 15 years to the Internet; and 12 years to smartphones, the cloud and 
mobile computing. The shortening gap phenomenon between technologies manifestations was 
introduced by Ray Kurzweil as “Law of accelerated returns”. This law implies that the more 
advanced humanity becomes, the faster humanity becomes at advancing. The IoT, with the 
Internet as its nervous system, is impacting every aspect (e.g., aerospace, economy, education, 
finances, health care, manufacturing, retailing, security, or transportation) of human life on Earth 
[Fard015]. Nevertheless, humanity is in its infancy for finding the path to the one common 
global goal of making planet Earth a better place to live considering we all share it. Three 
maxims supporting this goal are: (i) People above machines, (ii) faces before screens, and (iii) 
grand challenges ahead of small conveniences. Questions addressing that the IoT is not about the 
centres of technology and finance or the top 100 cities in the planet are: (i) What physical 
asset/device requires instrumentation? (ii) What data is required from that device? (iii) Who 
owns the data? (iv) Who has access to the data? (v) Who determines access rights? (vi) What is 
the minimum communication method? (Considering data disclosures to keep transparency) and 
(vii) What happens when someone violates a rule/law? All humans should have a collective role 
on deciding what they want planet Earth to look like as it is shared with more machines 
[Reze014]. Humanity is moving from social media to social businesses that encompass multiple 
venues (e.g., marketing and communication, sales, services and support, human resources, 
information technology, public relations and external communications, research and 
development, enterprise 2.0, Industry 4.0, and so on and so forth) where proximity, availability, 
responsiveness, usage of technology, transparency, expression, and the power to mobilize people 
to change systems and things are highly important. Nevertheless, the Internet, not branded, not 
owned by one company, open and considered a human right, through social networks is setting a 
new world owned by few and regulated by even less individuals. These facts make humanity 
concerned about issues like privacy, economical and ideological censorship, business cases, and 
data ownership [Caud012].  

All concerning questions around security and privacy boil down to this one: What if 
something, either a device or data, is accessed by someone and used in a way it is not intended 
to? The granularity, layers, of the impact span of security flaws in the IoT is identified 
decreasingly as: Humanity, global infrastructures, national critical infrastructures, computational 
devices in organizations, smart homes, smart cars, humans as individuals, smartphones, wearable 
electronics, and implantable devices in the human body. A security flaw exploited in any of these 
layers can be either deadly for a person up to a numerous group or disruptive for a given entity 
(e.g., user, organizations or countries). Ecosystems dependent on the Internet, as IoT, require 
both strong/reliable security technologies and them being easy to use. Security technologies 
require simplification so that all persons actually use them. Validation of security technologies 
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through disclosure is being challenged more and more either for letting business owning them 
profiting more or as an attempt to stop vulnerabilities. An example of this is version 5 of the 
hypertext mark-up language (HTML5) fully validated in October 2014, which includes closed 
source digital locks. This makes digital devices using HTML5 potential vessels of undisclosed 
vulnerabilities, which is an acute aspect when thinking that HTML5 is meant to replace mobile 
apps with the potential to make visible changes and manipulations in the real world. Providing 
security and privacy in the digital world is one of the toughest missions in engineering. 
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APPENDIX M                                                                             

SIGNAL PROCESSING RELATED DEFINITIONS 

 

M.1 Data 

Digital data are defined as a collection (bag) or arbitrary finite-state representations of 
source information, with no concept of temporal or special separation between the bag elements 
and no concept of the bag origin or destination. Bag elements may be equal, according to bag 
theory, while set elements must differ. Examples of data could include either an intercepted 
encrypted stream of bits (without a known beginning or end), or a financial file, or a computer 
program ([Kins004] and [Kins017]). 

M.2 Signals 

A signal is a function of independent variables such as time, distance, temperature, or 
pressure. The value of the function is called its amplitude, and the variation of its amplitude 
forms its waveform. The waveform can be either (i) unchanging (DC), (ii) periodic such as 
alternating (AC) or oscillating, (iii) aperiodic, (iv) chaotic, or (v) random (stochastic). The 
signals are either (i) analog (continuous with infinite resolution), or (ii) discrete (sampled in time 
and space, but still with infinite resolution), or (iii) digital (discrete and quantized to a specific 
resolution), or (iv) boxcar (continuous, piecewise constant with step displacements, as formed 
after a digital-to-analog converter known as DAC) [Kins004].  

M.2.1 Linear Time Invariant Signals 

The signals are classified as linear time invariant (LTI), additive invariance, or scale 
invariant, multiplicative invariance. The LTI system theory is based on the idea that periodic 
waveforms shifted by multiples of the period are the same. This also applies to stationary or 
cyclostationary signals in the sense that that their statistics do not change (i.e., either the wide 
sense stationarity, WSS, in which the first two moments do not change, or the strict sense 
stationarity, SSS, where none of the moments could change). Fourier (spectral) and wavelet 
(spectral and scale) transforms may be applied to such signals in order to extract appropriate 
features [Kins004]. Stationarity testing methods are also widely available in the literature 
[WiKP998]. 

M.2.2 Scale-Invariant Signals 

Scale-invariant (fractal) are fundamentally different from the LTI signals [Worn996]. 
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Their short-scale and long-scale behaviour are similar (i.e., they have no characteristic scale). 
Such self-similar signals (i.e., signals with one scale for time and amplitude) or self-affine 
signals (i.e., different scales for time and amplitude) must be processed differently because well-
separated samples in the signal may be correlated strongly. Unlike the LTI signals (whose 
Gaussian distributions have very short tails), the SI signals have power-law distributions that 
have long tails. Their higher order moments do not vanish. Consequently, detection, estimation, 
identification, feature extraction, and classification of fractal signals are all different from the 
LTI signals. Most of the physical signals are not LTI. Examples of such signals include speech, 
audio, image, video, telecommunication traffic signals, biomedical signals such as the 
electrocardiogram (ECG) and electromyogram (EMG), sonar, radar, seismic waves, turbulent 
flow, resistance fluctuations, noise in electronic devices, frequency variations of atomic clocks, 
and time series such as stock market and employment. They are often highly non-Gaussian, non-
stationary, and in general have a complex and intractable (broadband) power spectrum 
([Kins004] and [Kins017]). Many dynamical systems produce signals that are chaotic 
(deterministic, yet unpredictable in a long-term (e.g., [Kins020], [PeJS004], [Spro003], 
[KaSc004], and [Schr991]) ([Kins004] and [Kins017]). The common assumption that both LTI 
and SI signals originate from (and are processed by) systems that do not change in time and 
space can rarely be assured because both artefacts (such as electronic and mechanical systems) 
and living organisms age and change with the environment [Kins004].  

M.3 Symbols and Alphabets 

A symbol  is defined as a unique entity in a set. The form a symbol can take is 

limitless. Examples of symbols are: A letter or a punctuation mark in a specific natural language 
(e.g., a, A,   a Braille symbol, or a sign in the American sign language), a digit in a specific 
number system (e.g., unary {1}, binary {0, 1}, octal {0, 1, …, 7}, hexadecimal {0, 1, …, F}), 
morphs (e.g., an arbitrary font, an iconic language as Chinese, music notation, chemical 
expressions), pixels (e.g., binary, grayscale, colour), or phonemes (elementary and 
indecomposable sounds in speech) [Kins004]. 

A set of such unique symbols form an alphabet. A source alphabet, , is a set of symbols 
used to generate a message by the source. It is denoted by 

         (M.1)   
where  is the cardinality (size) of , and it is denoted by . The  operator shall not be 

confused with absolute value in this case. Also, each symbol in  is independent from one 
another. Symbol independence leads to a message with symbols arranged in either a random or 
correlated pattern as given by the message pmf [Kins004]. 

For transmission and storage, each symbol  must be encoded with other symbols from 

a coding alphabet, , which is denoted by  

        
(M.2)  

where the cardinality  gives a base of the number system from which the digits  are 

drawn. This is also the base of the logarithm used in all the subsequent calculations. For 
example, the binary coding alphabet is  with . 
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The encoded symbols  corresponding to the source symbol  constitute the code 

alphabet, , denoted by  

         (M.3)  

The source and the code alphabet cardinalities usually match. As a side note, the 
formation of compact messages requires alternative alphabets and dictionaries [Kins004]. 

M.4 Strings and Messages 

A string is a collection of symbols (a bag, according to bag theory) forming an entity  

larger than a symbol, and still smaller than a message (e.g., A string in English, “the”, coded as a 
unit results in a more compact representation than coding it to three separate symbols).  

A bag of all the symbols and strings forms a message denoted by 

        (C.4)  

Where M M≡  is the size of the message and  denotes equivalence. The vectorial notation  

allows  versus the set notation  precluding elements equality [Kins004].  

M.5 Probability 

If a message  has been formed, transmitted, and received, the pmf can be estimated 
directly from . If the symbol  occurs  times in the message of size M M≡ , the relative 

frequency of occurrence of this symbol is defined 

( )  [dimensionless]
M

j

j

n
f σ ≜

         
(M.5)  

where the symbol  above the equality sign denotes the relation by definition. With this 
definition, the following conditions are satisfied 

           (M.6)  
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where Pr stands for probability. Hence, probability in this research is defined as the relative 
frequency of occurrence when the population grows to infinity [Kins004]. 
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APPENDIX N                                                                          

TAXONOMIC IDENTIFICATION OF                         

DISRUPTIONS IN COMPUTER SYSTEMS 

 

Taxonomies have proven valuable when categorizing both real-life and artificial 
phenomena. Taxonomies provide an overall reference for studying a research problem and allow 
a systematic approach and have become an important part of the scientists’ toolbox for a long 
time [LaJL008]. In network security, taxonomies provide a useful and consistent framework for 
attacks classification. However, network security researchers still do not use taxonomies 
extensively. Previous taxonomies are focused on vulnerabilities rather than attacks. Hence, 
lacking abilities for describing attacks in and difficult for using them [WuOL011]. 

A taxonomy is not simply a neutral structure for categorizing specimens, it also embodies 
implicitly a theory of the universe from which those specimens are drawn. It defines what data 
are to be recorded and how like and unlike specimens are to be distinguished [LBMC993]. 

When creating a new taxonomy, the following four general properties need to be 
considered [LiJo997]: (i) The categories in a taxonomy should be mutually and collectively 
exhaustive, (ii) every category should be accompanied by clear and unambiguous classification 
criteria defining what specimens are to be put in that category, (iii) the taxonomy should be 
comprehensible and useful for everybody, not only to experts but also to users and administrators 
with less knowledge and experience of the field, and (iv) the terminology of the taxonomy 
should comply with the established terminology of the field [LaJL008]. 

N.1 Taxonomy of Data Collection Mechanisms  

Robust data collection mechanisms (DCM) (of ultimate importance in computer systems 
and many high-impact activities such as debugging, optimization, measurement, profiling and 
detection) fed to a detection engine is critical in disruption detection systems. Most systems rely 
on network and system call data as the input to the detection engine. The taxonomy of DCM 
considered here (providing a framework for inspecting, evaluating, and comparing) is supported 
by Axelsson [Axel000], Debar et al. [DeDW999], Larson and Jonsson [LaJo006a], Larus 
[Laru993], Lunt [Lunt993], Schroeder [Schr995], a survey of existing mechanisms as presented 
in [LaJo006b]).  

The type and quality of data relies heavily on how the collection mechanism is 
implemented and how it behaves during operation. In the disruption detection area, high quality 
input data is vital for the detection, and the properties of the collection mechanism are highly 
important for producing such data. The data collection taxonomy discussed excludes (i) 
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hardware implemented mechanisms, (ii) time or synchronization issues between parallel 
execution on multi-processor systems, and (iii) and distributed data collection [LaJL008].  

This survey of DMC is included in this research because it considers a vast number of 
previously proposed taxonomies [LaJL008]. 

N.1.1 The Ecosystem of a Data Collection Mechanism  

An ecosystem for DCM is constituted by: (i) The executing process is a running 
application or system program. (ii) The log-trigger is a set of machine instructions contained 
within the executing process. (iii) The log-control is a set of machine instructions also located in 
the executing process, or in a separate process. (iv) The DCM is then the combination of the log-
trigger and the log-control. (v) The data-target is an addressable memory area within the system, 
and either internal or external to the running process. (vi) The clock (typically a local clock) 
providing the current time. And (vii), the output device to which the collected data is transmitted 
for display, storage, or further processing [LaJL008].  

N.1.2 A Data Collection Mechanism in Action 

When the log-trigger, part of the executing process, is reached by the instruction flow, an 
alert is sent to the log-control. Then the log-control collects the content of the data target 
(memory area) and time-stamps it with the clock. The collected and time-stamped data becomes 
a log-data record, which is sent by the log-control to the output device. This releases the log-
control from its operations for awaiting next alerts sent by the log-trigger [LaJL008].  

N.1.3 Classes in Taxonomy of Data Collection Mechanisms  

The term class is used for the property upon which categorization is based. The following 
three classes are used in the revised taxonomy: Realization (when, how, and where is the 
mechanism implemented?), behaviour (when is the mechanism inserted during operation and 
what information is logged?), and log-data (what type of data does the mechanism produce?) 
[LaJL008].  

The realization of a DCM consists of: (i) The point in time the log-trigger is inserted into 
the executing process (pre-runtime or runtime). The log-control is introduced either before or 
simultaneously with the log-trigger. (ii) The level of granularity, instruction or program level, of 
the log-trigger. An instruction level log-trigger has the resolution of the hardware architecture 
(microprocessor hardware registers and single instructions can be resolved), but its semantic 
meaning is harder to comprehend. (iii) Implementation of the log-trigger (application level or 
system level), and (iv) Implementation of the log-control (application level or system level). 

The behaviour class categorizes possible methods for the log-trigger to activate the log-
control, and what actions the log-control performs when activated. These methods are trigger 
(e.g., time, event, or hybrid) or action (e.g., state save, event save, or hybrid save) based. 

A simple log-data record has both descriptive data (the observed state and event 
information regarding a specific target) and temporal data (time stamp of the observation). 

It is important to highlight that the literature for DCM for disruption detection does not 
include sources considering information-based features. This point becomes even more 
outstanding when talking about polyscale analysis methods like the VFDT described earlier. 
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N.2 Taxonomy of Computer and Network Attacks 

Preventing the success of an attack or reduce its harm led to the development of 
Automated Intrusion Response (AIR), which is an automatic response method to live (occurring) 
attacks. The taxonomy of computer and network attacks (CAN) from the point of view of AIR is 
studied and considered in this research. This CAN taxonomy considers three main classes: (i) 
Localities/sources (local and remote) from which attacks initiate, , (ii) possible methods and 

techniques (infection, exploitation, probing, deception, cracking, concurrency, and unknown) 
attackers adopt, , and (iii) harmful results (none, information leakage, rights escalation, and 

harm implementation) attacks cause, . An automatic response and classification, considering 

the previous classes, is then defined as:  [WuOL011]. From all the distinct 

form of attacks, this research focuses in DDoS. This form of concurrent attack is described in the 
next subsection. 

Asou

Atec

Ares

A = (Asou , Atec , Ares )
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APPENDIX O                                                                             

HISTOGRAM BINNING 

 

The histogram, either a representation of the distribution of data or an estimate of the 
probability distribution data, is an analysis tool in widespread use within many sciences. As an 
example, particle physics data, both experimental and phenomenological, are analysed with 
histograms [KrKr014].  

Histograms are nonparametric pdf estimators to both visualize data and to obtain 
descriptors, such as the entropy, of the underlying pdf. Quantities estimated from histogram-
based pdf models depend on the choice of the number of bins [Knut013]. 

The most important parameter of a histogram is the bin width (length of the subintervals 
in the real line that is the histogram’s base) because it controls the trade-off between presenting a 
picture with either too much detail “undersmoothing” or too little detail “oversmoothing” with 
respect to the pdf [Wand997]. 

The histogram represents the data to be comparable to the underlying probability 
distribution function (updf) of the phenomenon or model prediction that generated such data. The 
histogram, or any other representation, of a given data set as an observed probability distribution 
function (opdf). The updf depends on a set of parameters causing a set of bins for the opdf to be 
chosen in terms of those parameters. The analysis of histogrammed data can be highly dependent 
upon the set of bins chosen, which is not trivial. Histogram based analysis conducted at the Large 
Hadron Collider (LHC) yielded distinct results when distinct bin sizes are used to fit pdfs on a 
histogram. Hence, the choice of a bin set affects the analysis outcome. Bin sets are typically 
chosen by eye to be the smallest width bins such that there are “enough” statistics in the bins of 
greatest interest. Ofttimes the bin set is chosen under the constraint of aesthetic rather than 
scientific reasons [KrKr014]. 

O.1 Sturges’ Binning Rule 

The earliest published rule for selecting the bin width appears to be that of Sturges in 
1926. In 1992, Scott points out that Sturges's method is more of a number-of-bins rule rather 
than a bin width rule itself as defined by the equation: 

2
ˆ 1 logSh n= +

          
(O.1)

 
 

where n  is the number of samples [Stur926]. The bin-width defined by equation (H.1) leads to 
an oversmoothed histogram, especially for large samples. Smirnov concluded in the 50s that the 

optimal rate of decay of the bin width is 1/3n−  with respect to pL  norms [Wand997]. 
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O.2 Doane’s Binning Rule 

In 1976, Doane [Doan976] proposed a modification to Sturges’ rule that incorporates 
skewness. Both Sturges’ rule and Doane’s rule yield oversmoothed histograms, especially for a 
large number of samples. Doane’s binning rule is defined as: 

3

3
2 2

ˆ 1 log ( ) log 1D

m

m
h n

σ

 
= + + +  

 
       

(O.2)
 
 

where 3m  is the third statistical moment (skewness) of the pdf [Doan976].  

The parameter 
3mσ  is defined as [Doan976]: 

3
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O.3 Scott’s Binning Rule 

Scott’s rule proposed in 1979 is optimal if the data under analysis is normally distributed. 
This normal reference rule is defined by 

 1/3ˆ ˆ3.49Sch nσ −=
         

(O.4)
 
 

where σ̂  is an estimate of the standard deviation, so named because it is based on calibration 

with the normal distribution with variance 2σ . Modifications to this idea to allow for varying 
degrees of skewness and kurtosis have also been developed by Scott [Wand997]. 

O.4 Freedman-Diaconis’ Binning Rule 

Freedman and Diaconis research in 1981, allowed to gain understanding about that the 

asymptotic effect of the bin width on the mean 2L  error, or mean integrated squared error 

(MISE). Their work has led to the proposal of several rules of the form: 
1/3ˆ ˆ

FDh Cn−=  
          

(O.5)  

where Ĉ  is some statistic (e.g., standard deviation) [Wand997]. 
Scott and Freedman-Diaconis rules appear to be useful estimates for unimodal pdfs 

similar to a Gaussian. However, they are known to be suboptimal for multimodal densities. This 
is because these rules are derived by assuming particular characteristics of the underlying pdf. In 
particular, the result obtained by Freedman and Diaconis is not valid for some pdfs, such as the 
Uniform pdf [Knut013]. 

O.5 Shimazaki-Shinomoto's choice 

This histogram binning method is proposed to capture the time-dependent rate of 
neuronal spikes. The neurophysiological literature addresses that the bin size critically 
determines the goodness of the fit of the time histogram to the underlying spike rate. The 
Shimazaki-Shinomoto’s method objectively selects the bin size from the spike count statistics, so 
that the resulting bar or line graph time histogram best represents the unknown underlying spike 
rate [ShSh007]. 
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In the Shimazaki-Shinomoto’s method, the optimal bin size is obtained by minimizing 

the cost function ( )nC ∆  as: 
* arg min ( )nC

∆

∆ ≡ ∆
         

(O.6)  

where arg min  stands for the argument of the minimum operator that seeks to attain the smallest 

value and ∆  defines the bin size [ShSh007].  

The cost function  ( )nC ∆  is defined as: 
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(O.7)  

where 1SS
m  and 2SS

m  represent the first statistical moment, mean, and the second statistical 

moment, variance, respectively, and ∆  is changed until the smallest value for the cost function is 
achieved [ShSh007]. 

For Shimazaki-Shinomoto’s method 1SS
m  and 2SS

m  are defined as: 
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(O.9)  

O.6 Debinning Algorithms 

“Debinning” algorithms involve the relationship between the opdf and the observed 
cumulative distribution function (OCDF) from the data, and use it to construct a representation 
of the updf. The “binless” algorithm avoids bins, instead it determines the opdf as the smoothed, 
numerical derivative of the OCDF. The “binfull” algorithm uses the OCDF as a Monte Carlo 
generator for the opdf. A smoothing function is applied during the generation of a very large 
number of points [KrKr014]. 
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APPENDIX P                                                                    

MALICIOUS NETWORKS 

 

Botnets have become the engine of cyberattacks, and it is a typical and dominant 
malicious network. A botnet (e.g., Agobot, DSNXbot, evilbot, G-Sysbot, RBot, SDbot, and 
Spybot ([BCJX009], [SCGK011] and [ThSD007])) is a group of compromised computers on the 
Internet, and is controlled by botmasters through C&C. Botnets are pervasive, existing 
simultaneously in many commercial, production and control networks. Botnets sizes could be as 
large as millions [RZMT007]. Because of the number of machines, botnets can be lethal in 
bringing down targeted networks, either power grids or air traffic control networks, or 
communication networks. Attackers have mastered techniques, such as steppingstones, reflector, 
IP spoofing ([PeLR007], [ThSD007], and [WaSZ010]), code obfuscation, memory encryption 
[IaHa007], and peer-to-peer implementation technology ([ThSD007] and [BCJX009]) to cover 
and sustain their bots [Yu014]. 

Botnets have been investigated from various angles for around 10 years like: IP address 
distribution [McGu008], botnet probing events [LGCP011], Internet connectivity [ShKG012], 
size [RZMT007], and domain fluxing ([JCJL010] and [YRRR012]). Researchers utilize 
statistical learning techniques based on lexical features (e.g., domain names length, host names, 
and number of dots in URLs) and other URLs features to automatically determine if a URL is 
malicious (i.e., used for phishing or advertising spam ([MSSV009a] and [MSSV009b])). Botnets 
detection mechanisms based on (i) passive DNS traffic analysis against IP fast fluxing 
[PCDL009] and (ii) developing regular expression based signatures from a data set of spam 
URLs [XYAP008], have been developed. Infiltrated or subverted machines (bots) contact the 
botmaster at regular time intervals. These contact times can yield an opportunity for detection 
([SCGK011] and [RZMT007]) (as used by Bothunter [GPYF007] and botminer [GPZL008]. 
Network telescopes [MSBV006] have been employed to observe malicious traffic [Yu014]. 

P.1 Data Collection of Malicious Networks 

Available datasets are usually collected by honeypots [Womb015], glob experimental 
networks (e.g., the planet lab [Plan015]), or large scale monitoring systems ([YWFX009] and 
[HNGH007]). Even with datasets in place, their further processing is a challenge. A DNS request 
failure dataset is usually the results of multiple botnets. In order to study the features of an 
individual malicious network, separation of the mixed data into clusters is required. The 
unsupervised machine learning is an existing and promising tool for the clustering challenge. 
Unsupervised learning includes two categories: Clustering and blind signal separation. Existing 
algorithms are principal component analysis, singular value decomposition, mixture models, k-
means, hierarchical clustering [DuHS001], and graph spectrum [Mieg011]. Bots from one botnet 
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have more connections (e.g., the Sybil attacks in cyberspace ([YKGF008] and [YSKG009])), 
however, connections amongst different malicious networks are either actually very limited or 
none ([YWWG011] and [Yu014]. 

P.2 Topology Modeling of Malicious Networks 

The topology of a network is a piece of critical information as physicists believe that 
structure determines functions. It is especially important to understand the topology of botnets or 
other malicious networks. Knowing the topology of a given botnet allows for figuring out the 
key nodes of the network. Precise work with organizations (e.g., Internet service providers 
(ISPs)) to fight against the botnet [Fars013], by terminating possible attacks or blocking 
communication path of bots, is then possible. However, the data “flatness” restricts this wanted 
precision because when a malicious packet is intercepted, only its source IP address and 
destination address are known and the path from the source to the destination is usually hard to 
obtain [Yu014].  

The following two directions are promising for exploring topologies modelling:  
Logical topology. Current network topology models are related to physical networks, 

which may not reflect exactly overlapped networks, such as botnets. A logical model could 
represent botnets more precisely on top of the physical nodes and links [Yu014]. 

Dynamic graph. Rather than having static graphs, it is necessary to inject dynamic 
elements into the classical graph theory because the Internet and botnets are changing constantly 
[Yu014]. 

P.3 Dynamics of Malicious Networks 

Botnet dynamics includes many aspects, the most important one is the number of bots of 
a given botnet against time, and this interplay reflects the size of botnet. A direct method to 
count the number of bots is performing botnet infiltration to count bot IDs or IP addresses 
[Yu014]. The Torping botnet was hijacked for 10 days before the botmaster could be in 
command [SCGK011]. The Torping infiltration reported a footprint of 182,800 bots with a 
median and average size of live population of 49,272 and 48,532. During the 10 days takeover, 
49,294 new infections were detected, a dataset of 70 GB was acquired, and it was determined 
that 78.9% of the infected machines were behind a network address translation (NAT), VPNs, 
proxies, or firewalls [SCGK011]. DNS redirection is another method to estimate a botnet size 
[DaZL006]. Bots captured by honeypots have been analysed, their C&C servers have been 
identified using reverse engineering tools to reveal the source code. Availability of the source 
code allowed manipulation of the DNS entry related to the botnet’s Internet relay chat (IRC) 
server for redirecting the DNS requests to a given sinkhole for further examination and sizing a 
botnet footprint as big as 350,000 bots [DaZL006]. 

A challenging question in network security is: What is the density of bot or malware in 
the network? Plenty of research considers epidemic theory ([DeLD009] and [ZGTG005]) for 
modeling recruitment of malware networks [Yu014]. The epidemic model is the dominant tool 
for the estimating botnets size. It is the major theory for biology virus propagation modeling, and 
is also used by computer scientists [DeLD009]. Botnets member recruitment is similar to 
computer viruses. Henceforward, the usage of epidemic theory is appealing. Nevertheless, 
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computer virus modeling may lack accuracy after the early stage of propagation [ZGTG005]. 
Based on information theory, it is known that the probability distribution function is non-uniform 
[ChJi009]. Furthermore, the network topology has a big impact on the spread of malware 
[MiOK009].   

Botnet dynamics is a time related problem. Therefore, time series analysis methods are 
particularly suitable to address this problem [NGWL013]. Additional big research questions in 
network security are related to periodicity, frequency of bot recruitment, attacking activities, the 
distribution of a specific botnet or virus, and Internet nodes compromised since the beginning of 
a botnet [Yu014]. 

P.4 Concealed Malicious Activity Detection 

There are limited detection algorithms on malicious activity. Many illegal activities go 
undetected using current detection systems. The false negative rate of these systems is also 
essential challenge. Especially, when malicious bots demonstrate decent behaviour most of the 
time in order to fool detection systems [Yu014]. 

The network security community has started to consider the human aspect of criminal 
behaviour rather than focusing on technology-oriented methodologies only. This enhances the 
integration of the human criminal behaviour understanding and information techniques to reduce 
the false negative rate of detection as much as possible. The game theory [YuLi008] and social 
network technologies ([YKGF008] and [Yang008]) are suggested in the design of the detection 
algorithm of concealed malicious activities. Two research directions along these lines are: (i) 
Identifying the boundary of detection for a given level of security investment using game theory. 
A high frequency of malicious activity results in a high probability of being detected (e.g., 
frequent vulnerability scanning, or sensitive data downloading would make the compromised 
computer stand out from its peers); and (ii) Identifying malicious nodes using social network 
technologies. Divide all Internet based nodes into two groups, benign and malicious (e.g., 
members of one specific botnet). Communication among the nodes within each group being 
quite rich has been proven. Correspondingly, there is much less communication among nodes 
from different groups. The probability that the node is malicious increases if its amount of 
communication with known malicious nodes is high [Yu014].  

P.5 Forensics of Malicious Networks  

The capability of identifying the actual source of malicious packets sent across the 
Internet is referred as IP traceback. Methods of traceback rely on independent local networks 
with no global coordination and are incapable of accurately tracing back cyber criminals at the 
Internet level ([Lesl014] and [ReRL014]). Methods of IP traceback can be categorized into three 
major groups: (i) Deterministic packet marking (DPM) ([YKGF008], [DeFS002] and 
[XiZG009]). The source LAN marks the IP packets. It requires updating all the Internet routers 
for packet marking. However, it is problematic for scalability because only 25 spare bits are 
available in IPv4packets. Storage for packet logging for routers is currently unfeasible; (ii) 
Probabilistic packet marking (PPM) ([AlGo006] and [Good008]). Incoming packets are marked 
at the edge routers of the LAN where the potential victim resides. It only operates in a local 
range of the Internet (e.g., ISP networks), where the defender has the authority; and (iii) 
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Information theoretical based [YZDJ011]. Flow entropy variations are measured at routers for 
tracing back attack sources ([BhBK015], [DaTh015] and [Yu014]).  

The first and second methods require routers to inject marks into individual packets and 
are vulnerable to hacking (i.e., packet pollution). The third method overcomes the disadvantages 
of the previous two, although global collaboration is required for a specific tracebacks. An 
alternative that provides limited results in today’s cyberspace status, as direct traceback is almost 
impossible, is attack source inferring [Yu014]. 

P.6 Malicious Networks for DDoS Attacks  

Botnets are established by botnet-writers through programs (bots or agents). These 
programs are installed on compromised computers (hosts or zombies ([PeLR007], [SCGK011] 
and [CCGP010])) on the Internet. The bots of a given botnet are controlled by a botmaster. A 
botnet has at least one C&C server to communicate with bots and collect their data. Botmasters 
change the C&C URL frequently (e.g., weekly [SCGK011]) [Yu014]. 

Sophisticated botnets are the engines behind DDoS attacks [KSSS014], which are 
organized by attackers motivated by financial or political reward. Symantec’s MessageLabs 
states that 90.4% of total emails were spam, from which many included viruses, phishing attacks, 
and web-based malware, in June 2009. Therefore, sending spam through botnets can help to 
conduct further network attacks [Yu014]. 

Researchers have applied signature-based methods to detect botnets. However, these 
methods cannot detect new botnets as their signatures are unknown and some botnets are 
polymorphic [LiJZ009]. IRC-based approaches overcome this problem partially. Botnet 
mechanisms and botnet detection techniques have been surveyed and their classes identified: 
signature-based, anomaly-based [ChMW013], DNS-based, and mining-based ([FeSR009] and 
[YKPB013]). In order to disguise their traces and malicious activities, botnet writers design new 
strategies and mechanisms to fly under the radar. Two recent advanced botnet mechanisms are 
discussed next [Yu014]. 

P.6.1 Fast Flux Mechanism and Detection 

Fast flux (FF) refers to changing rapidly the mapping between multiple IP addresses and 
one single domain name [Ride008]. This technique makes it sophisticated to take down the C&C 
server. Networks that apply fast flux techniques are called fast fluxing network (FFN). Both 
legitimate and suspicious FFNs show characteristics like short time-to-live (TTL) and large IP 
pools [YuZW010]. Fast flux can be classified into: (i) Single flux where a domain name may be 
resolved a by flux agents (FAs) to different IPs in different time ranges, and (ii) double flux in 
which changes in both the FAs and the registration in DNS servers are done frequently. This 
provides an additional layer of redundancy within malware networks for a fast fluxing network 
attack (FFNA). Almost all compromised computers become FAs. Bots are added or removed 
from the botnet agent pool dynamically. Consequently, mechanisms blocking agents cannot take 
down the whole botnet ([ZHLK009] and [Yu014]). 

Metrics to detect fast flux service network (FFSN) empirically have been developed 
where a higher score indicated a higher fluxing degree. Results showed that distinction between 
normal network behaviour and FFSN are feasible [HGRF008]. Behaviour analysis models where 
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the behaviour of FF domains, probed in close locations, is characterized have been also 
developed. Behaviour analysis showed the number of DNS queries required to confirm an FF 
domain [ZhLK009]. Real-time (minute level) detection models for FFSN, using both active and 
passive methods in a distributed fashion, have been developed including components like 
sensors, FF monitor database, and fast flux monitor (FFM) ([CTDB009] and [Yu014]). 

P.6.2 Domain Flux Mechanism and Detection  

The disadvantage of FF is a single domain name, which is the only failure point once 
fluxing is identified. Hence, hackers developed domain flux (DF), a more survivable mechanism. 
The DF mechanism generates domain names via a domain generation algorithm (DGA). The 
C&C server and bot agents follow the same algorithm seeded by the same value to obtain 
consistent dynamic domain names [Yu014]. 

Cases of researchers cooperating with the FBI by discussing DF techniques and providing 
research findings when taking over advanced DF based botnets ([Amin008], [PoSY009], 
[SCGK011], and [Wolf008]). At some point, bots would phone “home” or the “mother ship”. 
This key component can be used by defenders to defeat botnets [Yu014].  

By reverse engineering the DGA of Torping [SCGK011], researchers revealed that its 
botmasters did not pre-register all possible domains in advance. Earlier registration of the related 
C&C server domain names of Torping, by researchers rather than the botnet owners, allowed 
taking over the botnet temporarily. The size of the Torping was then estimated by counting 
unique node identifiers  The advantages of this method over IP, potentially misled by 

DHCP, were analyzed [Yu014]. 
Supervised machine learning methods to detect and prevent users from visiting malicious 

web sites have been implemented [MSSV009a]. Classification models include naive Bayes, 
SVMs, and logistic regression on datasets (two malicious and two legitimate). These datasets 
were later used for implementing online learning approaches ([MSSV009b] and [Yu014]).  

Lightweight anomaly detection approaches using DNS failure graphs based on failed 
DNS queries have been developed [JCJC10]. Interactions between hosts and unresolvable 
domain names (auto-generated by botnets) are attributed to correlated failures originated at the 
botnet DGA. Many other approaches attempting to detect DF are available in the literature 
([PKKG010], [Yu014] and [YRRR012]).  

P.7 Modelling Malicious Networks 

The model for network virus infection and curing has been explored extensively. Models 
for monitoring and early detection of Internet worms based on epidemiology research 
[ZGTG005] have been developed. These models are appropriate for systems consisting of a large 
number of vulnerable hosts. Also, these models are effective at the early stage of the outbreaks 
of virus, and the accuracy of the models drops otherwise. The assumptions for this model are: (i) 
Two possible states, healthy or infected, for a given node in the network are defined, and (ii) The 
nodes are forever in the system with no curing process [Yu014]. 

Stochastic branching modelling for characterizing the propagation of Internet worms 
[ZGTG005] is a variant of the previous. This model focuses on the number of compromised 
computers against the number of worm scans, and a closed expression for this relationship can be 

Nid .
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defined [Yu014].  
Models considering time zone information ( )tα  (describing the impact of the number of 

botnets live members with diurnal effects) have been also implemented [DaZL006]. The 
epidemic models are current the mainstream methods for virus or malicious network in 
cyberspace [Yu014]. 

Epidemic theory has a long history in the study of biological infectious diseases. In the 
1930s, Kermack and McKendrick published a series of papers titled “Contributions to the 
mathematical theory of epidemics”. This seminal research is seen as the basis of current 
mathematical modelling of infectious diseases spreading. On different assumptions and 
scenarios, different epidemic models exist, such as the naive model, the susceptible-infectious 
model (SI), the susceptible-infectious-susceptible model (SIS), and the susceptible-infectious-
recovery model (SIR) [Yu014]. 

There are three different states for each individual in epidemic modelling: Susceptible 
(S), infectious (I), or recovered (R). Susceptible individuals are those who have not been infected 
but could be infected. Infected individuals are those who have the capability of spreading a 
disease. Recovered individuals are those who used to be infected by a disease, but they have 
been cured [Yu014].  

P.7.1 Susceptible-Infections (SI) Model 

The total population  is finite. No curing process for the disease exists. The dynamics 
are described by 

         (P.1)  

where  denotes the infected hosts at time t, and β  is the pairwise rate of infection in epidemic 

theories. The solution to the previous equation is 
          (P.2)  

where  represents the hosts infected initially.  

 The discrete form of this model is defined as 
         (P.3)  

where ∆  is the unit of time, and  defines the infection rate, which represents the average 

number of hosts vulnerable to infection by one infected host per time unit [Yu014]. 

P.7.2 Susceptible-Infections-Susceptible (SIS) Model 

A curing process exists in this model. An infected individual can be cured, but immunity 
to the disease is not achieved. Cured individuals stay in a susceptible state. No vertical 
transmission of the disease (all individuals are born susceptible), no disease-related deaths, and 
equal birth and death rates maintaining constant population, are assumed. The dynamics of an 
SIS epidemic model are 

N

dIt

dt
= β It (N − It )

It

It = I0e
βNt

I0

It = (1+α∆)It−1 − β∆I 2
t−1

α = βN
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         (P.4)  

where α  and β  denote the recovery rate and the infection rate respectively [Yu014]. 

If the birth and death dates are unequal, then the population size is variable and defined 
by 

        (P.5)  

where  denotes the birth rate. 

P.7.3 Susceptible-Infections-Recovery (SIR) Model 

In this model if individuals become infected, an immune state R can be developed. 
Hence, future infections are not possible. The SIR model dynamics are defined by 

         (P.6)  

For variable population size the SIR model is defined by 

        (P.7)  

Deterministic models, represented by differential equations of various forms, are popular 
tools. The size of susceptible and infectious population is a definite function of time in these 
models. These models describe dynamical interrelations among rates of change and population 
sizes. Mathematical theories for this type of models are well developed, and they are suitable for 
making predictions. Alternative modelling methodologies exist (e.g., stochastic based modelling, 
and random graph based modelling) [Yu014]. 
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APPENDIX Q                                                                    

RESULTS OF SYNTHETIC CLASSES DETECTION 

THROUGH ART  

 

Q.1 A Synthetic Class Representing the First Five Letters of the Modern 

English Alphabet 

Here, a synthetic feature vector matching the size of the dataset containing the DDoS 
attacks in the number of occurrences of a COI is constructed and explored to study the behaviour 
of the ART1 vigilance parameter with a distinct dataset. A class in the feature vector includes the 
first letters of the modern English alphabet. The COI in this case is represented by a column 
vector concatenating five reshaped binary 7x5 matrices that graphically represent the letters A, 
B, C, D and E. The bottom row in the matrix representing the letter E is truncated so that it 
matches in size the binary representation of the quantized outcomes of the secondary operators 
applied to the variance and skewness multiscalors totalling 168 binary scalars.  

Once this unrelated class to the DDoS attacks is formulated it would replace the 
occurrences of the DNS DDoS attack and the occurrences related to the H&R DDoS attack and 
healthy traffic is replaced with random binary scalars. The corresponding feature vector 
occurrences are shown in Fig. Q.1 where three segments appear very clear: (i) From the frame 1 
to 425 is filled with randomness, (ii) From the frame 426 to 1305 the pattern corresponding to 
the concatenated version of the first letters of the alphabet is seen, and (iii) a final section of 
random binary scalars after frame 1305. 

The method for drawing suitable values for  previously introduced is applied to the 

feature vectors shown in Fig. Q.1 in order to investigate the behaviour of the vigilance 
parameter. The corresponding results for this case are shown in Fig. Q.2. 

The waveform shown in Fig. Q.2 has the following behaviour according to the zones 
identified in the dataset containing DDoS attacks: (i) The OG zone spans for values of  in the 

interval ; (ii) the COI zone occupies the rest of the values for  denoted by the interval 

; and (iii) the OS zone is non-existent for the class describing the occurrences of the 

alphabet pattern. 
 
 
 

ρ

ρ

 [0,  0.08] ρ

 (0.08,  1]
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Fig. Q.1.243Synthetic dataset with occurrences of the alphabet first five letters (represented in matrices 7x5 reshaped into a 168 
binary vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with random binary vectors that replace 

the H&R DDoS attack and the healthy traffic. 

 
 

Figure Q.2 shows interesting behaviours: (i) The OG zone (left to the dash-dotted red 
line) can be described by a decaying exponential. One shall recall that there are 880 occurrences 
of the same event characterized by exactly the same feature vector values. Hence, when the 
vigilance parameter  is fixed close to zero, occurrences of events that are not related to the 

alphabet descriptor are merged with it, which causes the number of occurrences for the majority 
class to go over 880; (ii) the COI zone (starting at the dash-dotted red line and extending to the 
left until reaching ) maintains a constant value of 880 because the feature vector values 

describing the COI occurrences are identical; (iii) the OS zone has vanished because of the 

ρ

 ρ =1
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descriptors describing the COI occurrences are identical. 
 

 
Fig. Q.2.244Unsupervised classification of feature vector instances FVn (containing 168 binary scalars matching the DDoS 

dataset) through ART1 with a vigilance parameter values for  spanning in the interval . 

 

The OG zone present in Fig. Q.2 is generalized through a piecewise single term 

exponentials of the form C
1
eρC2 , where C1 and C2 are exponential coefficients and  is the 

natural logarithm. The optimization curve fitting Trust-Region algorithm is used to find the 
coefficients characterizing the OG zone. The COI zone present in Fig. Q.2 is described by a 
piecewise single section with constant value of approximately 880. The following equation 
represents this analysis in a compact form: 
 

  

 

Q.2 A 10 Percent Noisy Synthetic Class Comprising Representing the First 

Five Letters of the Modern English Alphabet 

The synthetic feature vector previously constructed is mixed with 10 percent of Uniform 
random noise. Therefore, this noisy feature vector is used to analyse the behaviour of the ART1 
by changing the vigilance parameter.  

The corresponding feature vector occurrences are shown in Fig. Q.3 where three 

ρ
 [0,  1]

 e
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segments are distinguishable: (i) A section comprised of random scalars from the frame 1 to 425; 
(ii) a 10 percent noisy pattern corresponding to the concatenated version of the first letters of the 
alphabet from the frame 426 to 1305; and (iii) a final section of random binary scalars after 
frame 1305. 
 

 
Fig. Q.3.245Synthetic dataset with 10 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 168 binary vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with random binary 
vectors that replace the H&R DDoS attack and the healthy traffic. 

 
 

The method for drawing suitable values for  previously introduced is applied to the 

feature vectors shown in Fig. Q.3 in order to investigate the behaviour of the vigilance 
parameter. The corresponding results for this case are shown in Fig. Q.4. 

The waveform shown in Fig. Q.4 has the following behaviour according to the zones 

ρ
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identified in the dataset containing DDoS attacks: (i) The OG zone spans for values of  in the 

interval ; (ii) the COI zone occupies the rest of the values for  denoted by the interval 

; and (iii) the OS zone is non-existent for the class describing the occurrences of the 

alphabet pattern. 
 

 
Fig. Q.4.246Unsupervised classification of feature vector instances FVn (containing 168 binary scalars matching the DDoS 

dataset) through ART1 with a vigilance parameter values for  spanning in the interval . 
 

The behaviours captured in Fig. Q.4 are: (i) The OG zone (left to the dash-dotted red line) 
has vanished because of the potential uniqueness of each occurrence (caused by the added 
random noise onto the alphabet pattern) in the feature vector. Hence, now it is more difficult for 
ART1 merging non-overlapping classes (overgeneralize), which causes a smaller OG zone; (ii) 
the COI zone (starting at the dash-dotted red line and extending to the left until reaching 

 defined by the dash-dotted green line) is described by a decaying exponential 

portraying COI values in the interval [660, 880]; and (iii) the OS zone continues being described 
by a decaying exponential for values of the vigilance parameter  rendering values 

for  in the interval [0, 660]. The appearance of the OS zone follows from the 

uniqueness provided by the random noise when added to the alphabet pattern. Hence, ART1 
disassociates the COI into smaller sets causing in the end that each occurrence is put into a single 
class with a single occurrence. 

The waveform present in Fig. Q.4 is generalized through a single term exponentials of the 

form 2

1
CC eρ , where C1 and C2 are exponential coefficients and  is the natural logarithm. The 

optimization curve fitting Trust-Region algorithm is used to find the coefficients characterizing 
this zone. The following equation represents this analysis in a compact form: 
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Q.3 A 20 Percent Noisy Synthetic Class Comprising Representing the First 

Five Letters of the Modern English Alphabet 

Now, the synthetic feature vector is mixed with 20 percent of Uniform random noise. 
Consequently, this feature vector with a higher degree of noise is now utilized to analyse the 
behaviour of the ART1 when changing the vigilance parameter.  

The corresponding feature vector occurrences are shown in Fig. Q.5 where three 
segments are distinguishable: (i) A section comprised of random scalars from the frame 1 to 425; 
(ii) a 20 percent noisy pattern corresponding to the concatenated version of the first letters of the 
alphabet from the frame 426 to 1305; and (iii) a final section of random binary scalars after 
frame 1305. 

The method for drawing suitable values for  previously introduced is applied to the 

feature vectors shown in Fig. Q.5 in order to investigate the behaviour of the vigilance 
parameter. The corresponding results for this case are shown in Fig. Q.6. 

The waveform shown in Fig. Q.6 has the following behaviour according to the zones 
identified in the dataset containing DDoS attacks: (i) The OG zone spans for values of  in the 

interval ; (ii) the COI zone occupies the rest of the values for  denoted by the interval 

; and (iii) the OS zone is non-existent for the class describing the occurrences of the 

alphabet pattern. 
The behaviours captured in Fig. Q.6 are: (i) The OG zone (left to the dash-dotted red line) 

has vanished because of the potential uniqueness of each occurrence (caused by the added 
random noise onto the alphabet pattern) in the feature vector. Hence, now it is harder for ART1 
merging non-overlapping classes (overgeneralize), which causes a smaller OG zone; (ii) the COI 
zone (starting at the dash-dotted red line and extending to the left until reaching  

defined by the dash-dotted green line) is described by a decaying exponential portraying COI 
values in the interval [660, 880]; and (iii) the OS zone continues being described by a decaying 

exponential for values of the vigilance parameter  rendering values for  

in the interval [0, 660]. The appearance of the OS zone follows from the uniqueness provided by 
the random noise when added to the alphabet pattern. Hence, ART1 disassociates the COI into 
smaller sets causing in the end that each occurrence is put into a single class with a single 
occurrence. 
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Fig. Q.5.247Synthetic dataset with 20 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 168 binary vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with random binary 
vectors that replace the H&R DDoS attack and the healthy traffic. 

 

 

The waveform present in Fig. Q.6 is generalized through a single term exponentials of the 

form 2

1
CC eρ , where C1 and C2 are exponential coefficients and  is the natural logarithm. The 

optimization curve fitting Trust-Region algorithm is used to find the coefficients characterizing 
this zone. The following equation represents this analysis in a compact form: 
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Fig. Q.6.248Unsupervised classification of feature vector instances FVn (containing 168 binary scalars matching the DDoS 

dataset) through ART1 with a vigilance parameter values for  spanning in the interval . 

 

Q.4 A 30 Percent Noisy Synthetic Class Comprising Representing the First 

Five Letters of the Modern English Alphabet 

The case for which the synthetic feature vector is mixed with 30 percent of Uniform 
random noise is now explored. Hence, this feature vector with a higher degree of noise is utilized 
to analyse the behaviour of the ART1 for a varying vigilance parameter. 

The corresponding feature vector occurrences are shown in Fig. Q.7 where three 
segments are distinguishable: (i) A section comprised of random scalars from the frame 1 to 425; 
(ii) a 30 percent noisy pattern corresponding to the concatenated version of the first letters of the 
alphabet from the frame 426 to 1305; and (iii) a final section of random binary scalars after 
frame 1305. 

The method for drawing suitable values for  previously introduced is applied to the 

feature vectors shown in Fig. Q.7 in order to investigate the behaviour of the vigilance 
parameter. The corresponding results for this case are shown in Fig. Q.8. 

The waveform shown in Fig. Q.8 has the following behaviour according to the zones 
identified in the dataset containing DDoS attacks: (i) The OG zone spans for values of  in the 

interval ; (ii) the COI zone occupies the rest of the values for  denoted by the interval 
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; and (iii) the OS zone is non-existent for the class describing the occurrences of the 

alphabet pattern. 
 

 
Fig. Q.7.249Synthetic dataset with 30 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 168 binary vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with random binary 
vectors that replace the H&R DDoS attack and the healthy traffic. 

 
 

The behaviours captured in Fig. Q.8 are: (i) The OG zone (left to the dash-dotted red line) 
has vanished because of the potential uniqueness of each occurrence (caused by the added 
random noise onto the alphabet pattern) in the feature vector. Hence, now it is more challenging 
for ART1 merging non-overlapping classes (overgeneralize), which causes a smaller OG zone; 
(ii) the COI zone (starting at the dash-dotted red line and extending to the left until reaching 

 (0.08,  1]
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 defined by the dash-dotted green line) is described by a decaying exponential 

portraying COI values in the interval [660, 880]; and (iii) the OS zone continues being described 
by a decaying exponential for values of the vigilance parameter  rendering values 

for  in the interval [0, 660]. The appearance of the OS zone follows from the 

uniqueness provided by the random noise when added to the alphabet pattern. Hence, ART1 
disassociates the COI into smaller sets causing in the end that each occurrence is put into a single 
class with a single occurrence. 

The waveform present in Fig. Q.8 is generalized through a single term exponentials of the 

form 2

1
CC eρ , where C1 and C2 are exponential coefficients and  is the natural logarithm. The 

optimization curve fitting Trust-Region algorithm is used to find the coefficients characterizing 
this zone. The following equation represents this analysis in a compact form. 
 

  

 

 
Fig. Q.8.250Unsupervised classification of feature vector instances FVn (containing 168 binary scalars matching the DDoS 

dataset) through ART1 with a vigilance parameter values for  spanning in the interval . 
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APPENDIX R                                                                    

RESULTS OF SYNTHETIC CLASSES DETECTION 

THROUGH FUZZYART 

 

R.1 A Synthetic Class Condensing the First Five Letters of the Modern 

English Alphabet 

Accordingly, a synthetic feature vector equivalent in size, because it contains the COI 
occurrences, to the dataset with the DDoS attacks. This synthetic feature vector is assembled for 
exploring the behaviour of the vigilance parameter of FuzzyART with an alternate dataset. A 
class in the feature vector includes the first letters of the modern English alphabet. The COI is 
represented by a real valued column vector (normalized) that is representative of the 
concatenation of five binary 7x5 matrices representing the letters A, B, C, D and E. The bottom 
row in the matrix representing the letter E is truncated, as beforehand, so that it matches the 
binary representation size of the quantized outcomes of the secondary operators applied to the 
variance and skewness multiscalors. The feature vector, composed of 42 real valued scalars, is 
then normalized in the interval  in order to be processed by FuzzyART. 

Once this synthetic class, unrelated to the DDoS attacks, is formulated, the occurrences of 
the DNS DDoS attack are replaced by it. The healthy traffic and the occurrences related to the 
H&R DDoS attack are replaced by surrogate data through random shuffling. The corresponding 
feature vector occurrences are shown in Fig. R.1 where three segments appear very clear: (i) 
From the frame 1 to 425 is filled with surrogate data, (ii) from the frame 426 to 1305 the pattern 
corresponding to the concatenated, real valued, and normalized version of the first letters of the 
alphabet is seen, and (iii) a final section filled with surrogate data after frame 1305. 

The method for drawing suitable values for  previously introduced for FuzzyART is 

applied to the feature vectors shown in Fig. R.1 in order to investigate the behaviour of the 
vigilance parameter. The corresponding results for this case are shown in Fig. R.2. 

The waveform shown in Fig. R.2 has the following behaviour according to the zones 
identified in the dataset containing DDoS attacks: (i) The OG zone spans for values of  in the 

interval ; (ii) the COI zone occupies the rest of the values for  denoted by the 

interval ; and (iii) the OS zone is non-existent for the class describing the occurrences 

of the alphabet pattern. 
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Fig. R.1.251Synthetic dataset with occurrences of the alphabet first five letters (represented in matrices 7x5 reshaped into a 42 
real valued vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with normalized real valued vectors 

as part of the analysis applied to the original dataset. The H&R DDoS attack and the normal traffic is also normalized. 

 
 

Figure R.2 shows interesting behaviours: (i) The OG zone (left to the dash-dotted red line 
located at ) can be described by three segments almost constant and a decaying 

exponential. One shall recall that there are 880 occurrences of the same event characterized by 
exactly the same feature vector values. Hence, when the vigilance parameter  is fixed close to 

zero, occurrences of events that are not related to the alphabet descriptor are also merged with it, 
which causes the number of occurrences for the majority class to go over 880; (ii) the COI zone 
(starting at the dash-dotted red line and extending to the left until reaching ) maintains a 

constant value of 880 because the feature vector values describing the COI occurrences are 

ρ = 0.578

ρ

 ρ =1
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identical; and (iii) the OS zone vanishes because of the descriptors describing the COI 
occurrences are identical. 
 

 
Fig. R.2.252Unsupervised classification of feature vector instances FVn (containing 42 real valued scalars describing the DDoS 

dataset) through FuzzyART with a vigilance parameter values for  spanning in the interval . 

 

The OG zone present in Fig. R.2 is generalized with piecewise curves. Three of these 
curves are approximately constant and one of them is described by a third degree polynomial of 

the form , where a, b, c,  and d are the coefficients. The optimization curve 

fitting Trust-Region algorithm is used to find the coefficients characterizing this polynomial. The 
COI zone present in Fig. R.2 is described by a piecewise single section with constant value of 
approximately 880. Lastly, the overspecialization zone is non-existent. The following equation 
represents this analysis in a compact form: 
 

ρ
 [0,  1]

aρ3 + bρ2 + cρ + d
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R.2 A 10 Percent Noisy Real Synthetic Class Condensing the First Five 

Letters of the Modern English Alphabet 

A synthetic real valued feature vector is injected with 10 percent of Uniform random 
noise. Thenceforward, this noisy feature vector is used to analyse the behaviour of the 
FuzzyART by changing the value of the vigilance parameter. 

The synthetic feature vector instance is shown in Fig. R.3 where three segments are 
distinguishable: (i) A section from frame 1 to 425 includes noisy real-valued vectors representing 
normal network/Internet traffic; (ii) a 10 percent noisy real-valued pattern, from the frame 426 to 
the 1305, corresponding to the concatenated version of the first letters of the alphabet; and (iii) a 
final section from frame 1305 onwards with noisy real-valued vectors depicting normal 
network/Internet traffic. 

The vigilance parameter  changes in the interval  in order to investigate its 

behaviour while utilizing the feature vectors shown in Fig. R.3 for each new value of . The 

corresponding results for this case are shown in Fig. R.4. 
The waveform shown in Fig. R.4 has the following behaviour according to the zones 

identified in the dataset containing DDoS instances: (i) The OG zone spans for values of  in 

the interval ; (ii) the COI zone occupies the rest of the values for  denoted by the 

interval ; and (iii) the OS zone is placed in the interval  for the class 

describing the occurrences of the alphabet pattern. 
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Fig. R.3.253Synthetic dataset with 10 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 42 real valued vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with normalized 
real valued vectors as part of the analysis applied to the original dataset. The H&R DDoS attack and the normal traffic is also 

normalized. 

 
 

Figure R.4 has presence of three zones with specific behaviours: (i) The OG zone (left to 
the dash-dotted red line) has a smaller interval  when compared with the synthetic 

class without noise, discussed in section 7.16.2, because of the potential uniqueness of each 
occurrence (caused by the added random noise onto the alphabet pattern) in the feature vector. 
Hence, FuzzyART has more difficulties for merging non-overlapping classes (overgeneralize), 
which creates a smaller OG zone. This section has two curve types: A constant value, and a 
polynomial; (ii) the COI zone (starting at the dash-dotted red line and extending to the left until 
reaching  defined by the dash-dotted green line) is described by four curve types: A 

ρ = [0,  0.178]

ρ = 0.682
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polynomial and three exponentials; and (iii) the OS zone is described by a decaying exponential 
for values of the vigilance parameter . The appearance of the OS zone follows 

from the uniqueness provided by the random noise when added to the alphabet pattern. Hence, 
FuzzyART disassociates the COI into smaller sets causing in the end that a single occurrence is 
placed into a single class. 
 

 
Fig. R.4.254Unsupervised classification of feature vector instances FVn (containing 42 real valued scalars describing the DDoS 

dataset) through FuzzyART with a vigilance parameter values for  spanning in the interval . 

 

The waveforms present in Fig. R.4 are generalized through a constant value, a third 

degree polynomial curve of the form , where a, b, c,  and d are the 

coefficients, and three exponentials of the form 2

1
CC eρ , where C1 and C2 are exponential 

coefficients and  is the natural logarithm. The optimization curve fitting Trust-Region 
algorithm is used to find the coefficients characterizing each zone. The following equation 
represents this analysis in a compact form: 

 

ρ = (0.682,  1]

ρ
 [0,  1]

aρ3 + bρ2 + cρ + d

 e
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R.3 A 20 Percent Noisy Real Synthetic Class Condensing the First Five 

Letters of the Modern English Alphabet 

In this case, the synthetic real valued feature vector is injected with 20 percent of 
Uniform random noise. Subsequently, this noisy feature vector is used to analyse the FuzzyART 
behaviour by changing the value of the vigilance parameter. 

The synthetic feature vector instance is presented in Fig. R.5 displaying three distinct 
segments affected by the injection of 20 percent noise: (i) A section from frame 1 to 425 includes 
noisy real-valued vectors representing normal network/Internet traffic; (ii) a noisy real-valued 
pattern, from the frame 426 to the 1305, corresponding to the concatenated version of the first 
letters of the alphabet; and (iii) a final section from frame 1305 onwards with noisy real-valued 
vectors depicting normal network/Internet traffic. 
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Fig. R.5.255Synthetic dataset with 20 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 42 real valued vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with normalized 
real valued vectors as part of the analysis applied to the original dataset. The H&R DDoS attack and the normal traffic is also 

normalized. 

 
 

The values of the vigilance parameter ρ  are changed in the interval  in order to 

examine its behaviour when classifying the feature vectors shown in Fig. R.5 for each value of 
.ρ  The matching results for this situation are shown in Fig. R.6. 

The curve shown in Fig. R.6 has the subsequent behaviour according to the zones defined 
in the dataset including DDoS attacks: (i) The OG zone extends for values of  in the interval 

; (ii) the COI zone has values for ρ  defined in the interval ; and (iii) 

the OS zone is located in the interval  for the class describing the occurrences of the 
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alphabet pattern. 
Figure R.6 has three zones with distinct behaviours: (i) The OG zone (to the left of the 

dash-dotted red line) has a smaller interval  when compared with the synthetic 

class without noise, discussed above in section 7.16.2, because of the potential uniqueness of 
each occurrence (caused by the added random noise onto the alphabet pattern) in the feature 
vector. Hence, FuzzyART has more difficulties for merging non-overlapping classes 
(overgeneralize), which creates a smaller OG zone. This section has two curve types: A constant 
value, and a polynomial; (ii) the COI zone (starting at the dash-dotted red line and extending to 
the left until reaching  defined by the dash-dotted green line) is described by five curve 

types: A polynomial and four exponentials; and (iii) the OS zone is described by a decaying 
exponential for values of the vigilance parameter . The appearance of the OS zone 

obeys the uniqueness delivered by the random noise when added to the alphabet pattern. Hence, 
FuzzyART disassociates the COI into smaller sets causing in the end that a single occurrence is 
placed into a single class. 
 

 
Fig. R.6.256Unsupervised classification of feature vector instances FVn (containing 42 real valued scalars describing the DDoS 

dataset) through FuzzyART with a vigilance parameter values for  spanning in the interval . 

 

The waveforms present in Fig. R.6 are generalized through a constant value, a third 

degree polynomial curve, and three exponentials of the form 2

1
CC eρ , where C1 and C2 are 

exponential coefficients and  is the natural logarithm. The optimization curve fitting Trust-
Region algorithm is used to find the coefficients characterizing each zone. The following 
equation represents this analysis: 

ρ = [0,  0.118]

ρ = 0.687

ρ = (0.687, 1]

ρ
 [0,  1]
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R.4 A 30 Percent Noisy Real Synthetic Class Condensing the First Five 

Letters of the Modern English Alphabet 

The synthetic real valued feature vector in this occasion is injected with 30 percent of 
Uniform random noise. Afterwards, the noisy feature vector supports the analysis of the 
FuzzyART behaviour through the change of the vigilance parameter value. 

The instance of the synthetic feature vector is shown in Fig. R.7 displaying three different 
segments affected by the injection of 30 percent noise: (i) A section from frame 1 to 425 includes 
noisy real-valued vectors representing normal network/Internet traffic; (ii) a noisy real-valued 
pattern, from the frame 426 to the 1305, corresponding to the concatenated version of the first 
letters of the alphabet; and (iii) a final section from frame 1305 onwards with noisy real-valued 
vectors depicting normal network/Internet traffic. 
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Fig. R.7.257Synthetic dataset with 30 percent noisy occurrences of the alphabet first five letters (represented in matrices 7x5 

reshaped into a 42 real valued vector) replacing the DNS DDoS attack. The rest of the occurrences are formed with normalized 
real valued vectors as part of the analysis applied to the original dataset. The H&R DDoS attack and the normal traffic is also 

normalized. 

 

The vigilance parameter ρ  value is changed in the interval  for inspecting 

FuzzyART’s behaviour when classifying the feature vectors displayed in Fig. R.7. This is done 
for each value of .ρ  The corresponding results of this process are shown in Fig. R.8. 

Corresponding to the zones defined in the dataset involving the DDoS attacks, the 
waveform exhibited in Fig. R.8 has the subsequent behaviour for the class describing the 
occurrences of the alphabet pattern: (i) The OG zone spreads for values of ρ  in the interval 

[0,  0.106] ; (ii) the COI zone is described in the interval (0.106,  0.679]  for values of ;ρ  and 
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(iii) the OS zone is positioned in the interval (0.679,1 ] . 

 

 
Fig. R.8.258Unsupervised classification of feature vector instances FVn (containing 42 real valued scalars describing the DDoS 

dataset) through FuzzyART with a vigilance parameter values for  spanning in the interval . 

 
Figure R.8 shows three zones that perform distinctly: (i) The OG zone, positioned left to 

the dash-dotted red line, also has a smaller interval [0,  0.106]  for this case when compared with 

the noiseless synthetic class, presented above in section 7.16.2, because of the uniqueness of 
each occurrence increases. This increase is due to the higher amount of added random noise onto 
the alphabet pattern in the feature vector when compared to the previous two cases. This creates 
a higher degree of difficulty for FuzzyART to merge non-overlapping classes, overgeneralize, 
which generates a smaller OG zone. This zone has two curve types: A constant value, and a 
polynomial; (ii) the COI zone, beginning at the dash-dotted red line and spanning to the left until 
reaching 0.679ρ =  defined by the dash-dotted green line, is described by five curve types: A 

polynomial, a constant value, and five exponentials; and (iii) the OS zone is defined by a 
decaying exponential for the interval (0.106,  0.679]  in the vigilance parameter. The size of the 

OS zone follows from the uniqueness that the random noise incorporates to the alphabet pattern. 
Hence, FuzzyART granulates the COI into smaller sets causing that a single occurrence is 
classified into a single class when 1ρ ≈ . 

Figure R.8 shows distinct waveforms: Two constant values, a third degree polynomial 

curve, and five exponentials of the form , where a and b are exponential coefficients and  
is the natural logarithm. The Trust-Region algorithm is used as optimization curve fitting to find 
the coefficients characterizing each nonlinear waveforms. The following equation encloses the 
scrutiny just described:   

ρ
 [0,  1]

 aeρb
 e



POLYSCALE BASED CYBERSECURITY App. R: Confusion Matrices for FuzzyART Performance 

 

 

Jesus David TerrazasGonzalez    
 − R13 −  

3 3 4 2 3 3

3 3 4 2 3 3

6

Mo | |
1874

for [0,  0.033] OG

4.796 10 1.354 10 8.428 10 2.11 10

for (0.033,  0.106] OG

4.796 10 1.354 10 8.428 10 2.11 10

for (0.106,  0.528] COI

790

for (0.528,  0.557] COI

6.74 10 (

nFV

ρ

ρ ρ ρ

ρ

ρ ρ ρ

ρ

ρ

=

=

− × + × − × + ×

=

− × + × − × + ×

=

=

×

∼

∼

16.44

9.34

5 9.019

0.1912

6 13.6

6 1

)

for (0.557,  0.576] COI

2.475( )

for (0.576,  0.599] COI

1.777 10 ( )

for (0.599,  0.625] COI

1.687( )

for (0.625,  0.669] COI

5.85 10 ( )

for (0.669,  0.679] COI

5.85 10 (

e

e

e

e

e

e

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

−

−

−

−

=

=

×

=

=

×

=

× 3.6 )

for (0.679,  1] OE

ρ

ρ













































 =



  

 


