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ABSTRACT

This research investigates the appropriateness of Information-Theoretic-Based (ITB)
metrics compliant with finite sense stationarity (FSS) and derived from the Variance Fractal
Dimension Trajectory (VFDT), to augment network security against traffic anomalies. From the
distinct and vast cyberattacks (infection, exploitation, probing, deception, cracking, concurrency,
and unknown) types, this research focuses in those stemming from concurrency and specifically
in Distributed Denial-of-Service (DDoS) cyberattacks.

In this research, the design and application of robust methodologies and metrics to
achieve powerful descriptors is pursued. The strength of ITB metrics, applied in alternate
research areas like steganography, is a robust justification for this study. The usage of ITB
metrics, rooted in multi- and polyscale analysis, for detecting network disruptions is novel in the
network security area. This thesis introduces a novel multiscale analysis methodology,
multiscalors, which permits the usage of arbitrary operators and transforms to be functional in
the multiscale domain for inspecting complex signals. Multiscalors provide an analysis depth and
insights into the signals that exceeds by far what other types of monoscale based analysis offer.
Multiscale-based metrics have been scarcely utilized in the cybersecurity ecosystem. This thesis
also showcases specific applications of metrics and methodologies powered by multiscale
analysis for DDoS detection.

The methodology presented formulates robust features, based on multi- and polyscale
analysis, and successfully classifies DDoS disruptions. Such methodology integrates knowledge
from: (i) Data acquisition, by verifying DDoS instances and deriving complementary data from
them; (ii) design and implementation of ITB metrics, based on multiscalors operators for
analysis; (iii) feature extraction, by applying such metrics to the PREDICT datasets, (iv)
preparation of feature vectors that are highly representative of the Internet traffic characteristics
carrying DDoS cyberattacks, and (v) classification of anomalies through Adaptive Resonance
Theory (ART) as a non-supervised neural network that has provided the real-time component in
the detection of DDoS attacks establishing the time classification in the one second mark.
Concerning ART, through this research a new methodology, parametogram, for properly
defining the vigilance parameter for both classification approaches used, ART1 and FuzzyART,
has been designed, tested, and validated.

Applications of the multiscalors based metrics in this research target Cyber-Physical-
Social Systems (CPSS), e.g., Industrial Internet-of-Things (IloT) sustained by the fact of the
usage of non-simulated Internet traffic, which contains legitimate DDoS attacks. This research
corroborated the detection of anomalies in Internet traffic with a high classification precision for
which the multiscalor methodology is essential for extracting relevant features characterizing the
DDoS cyberattacks examined.
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DDoS attack. The rest of the occurrences are formed with normalized real valued vectors
as part of the analysis applied to the original dataset. The H&R DDoS attack and the
normal traffic is also NOrMAliZed. ........c.c.eeiuiiiiiiiiiiie e R8
Fig. R.6. Unsupervised classification of feature vector instances F'V, (containing 42 real
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter
values for p spanning in the interval [0, 1]. ..ot R9
Fig. R.7. Synthetic dataset with 30 percent noisy occurrences of the alphabet first five letters
(represented in matrices 7x5 reshaped into a 42 real valued vector) replacing the DNS
DDoS attack. The rest of the occurrences are formed with normalized real valued vectors
as part of the analysis applied to the original dataset. The H&R DDoS attack and the
normal traffic is also NOrmMalized. ............oovuiiiiiiiiiiiie e R11
Fig. R.8. Unsupervised classification of feature vector instances F'V, (containing 42 real
valued scalars describing the DDoS dataset) through FuzzyART with a vigilance parameter
values for p spanning in the interval [0, 1]. ... R12
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Relation by definition
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Equivalence
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Neuron inputs
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Accumulator function
Code alphabet
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Incoming vector illustrating normalization option in FuzzyART
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Automatic response to an attack
Attack flows

Attack method and/or technique
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Aggregated DDoS attack flows length integration
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False negative
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Comparison layer in ART
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Recognition layer in ART
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False negative rate
False positive rate

A given feature vector
Activation function

Genuine traffic flows

Doane’s binning rule
Freedman-Diaconis’ binning rule
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Scott’s binning rule
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Shannon’s entropy
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Indicator for DDoS attacks
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Packet
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Probability for attack packets
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CHAPTER 1

INTRODUCTION

1.1  Scientific, Engineering, and Humanitarian Preamble

Current research in engineering follows a twofold approach [Kins015] by embracing both
the scientific method (e.g., [Blak0O12]) and the engineering method (e.g., [Koen(003],
[Kins009]). Theodore von Karman (an aerospace engineer from CalTech) attempted to explain
the difference between science and engineering: “Science is about understanding nature,
understanding what is. Engineering is about creating what has never been” [WulfO08]. Pure
science is analytic with the intent to understand nature, while pure engineering is synthetic with
the intent to build things. Many contemporary scientists and engineers operate between these two
extremes [Kins015].

The difference between the two methods used to be very wide. However, with the advent
of high-performance computer simulation tools, the difference is diminishing as simulated
prototypes resemble physical prototypes, and multiple simulations can provide a much broader
insight into its operation than it is possible through testing of a single prototype. Furthermore,
many advanced technologies (such as nanotechnology devices) require deep science in order to
do deep engineering [Kins015].

This unification is further justified by the shift from engineering design for enhanced
consumer consumption (going back to the industrial revolution) to engineering for humanity
[Kins015] as demonstrated by many new initiatives in major technical organizations such as the
Institute of Electrical and Electronic Engineers (IEEE) and the American Academy of Arts and
Sciences (AAAS) (e.g., [Kins014], [WulfOO08]). This social/humanitarian method should also be
added to the scientific/engineering method in order to make the discovery/development process

more stable (sustainable). The older single-method approach resembles a monopod —useful to
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take quick snapshots on the go, but not useful to take a video. Even the two-method approach
appears incomplete when one considers a responsible stewardship in a technological democracy
[KinsO15]. The research conducted and described herein is sustained by a tripod (i.e., science,
engineering, and humanitarian methods). The different research stages (proposal, experiments
planned to be conducted, and conclusions presentation) presented here and its potential derived
works, first and foremost, have a tripartite motivation looking for the betterment of our rapidly
growing digital society. The specific problem undertaken in this research is described as follows.

The cybersecurity research presented in this thesis is very relevant because it summarizes
years spent by the author in a cybersecurity framework that changed both dynamically and
rapidly. These transformations occur as a consequence of the fast evolution of the technologies
that enable and support the Internet communications, the appearance of new and more
intense/harmful cyberattacks, the cybersecurity ecosystem struggling aggressively to be current
and aware of new cyberthreats, and the cyberattackers finding new vulnerabilities and exploiting
them. Were all the years spent in this research worthy? Absolutely. Having gone through all the
raw data, signal acquisition, data analysis, techniques and methods, modeling, applied machine
learning, and all the coding subtleties has been one of the most gratifying learning experience.
Nonetheless, as this experience seems to conclude, this thesis encapsulates some of the
dynamical operations in cyberspace, which are never ceasing and will always be coated with

novelty in both the cyberoffense and cyberdefense fronts.

1.2 Motivation and Problem Definition

Recently, humanity started swimming in a new sea of technology with the Internet-of-
Things (IoT) as its recent tidal waves. Everyday diverse devices (e.g., air-conditioning systems,
heating systems, thermostats, stoves, laundry machines, driers, refrigerators, TVs, to name a few)
join the IoT ecosystem. Specialized networked industrial ecosystems, Industrial Internet-of-
Things (IIoT), seek to take advantage of data flows for creating smart processes. However,
humanity should not forget that the Internet has active predators exploiting everything (e.g.,
software leading to hacks or connections leading to exposed hardware). This realization should
(1) shake everyone because many aspects of human life are now networkable and sharable

through software and hardware platforms (often in the form of codesign) and (ii) pose a
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challenging question: Who with a right mind jumps in water full of predators? It is clear that
adversaries threaten physical, economic, and national security. As an example in the physical
world, adversaries have demonstrated hacking of an automobile connected to the Internet. This
example of automobile hacking can be extrapolated to an industrial realm where a process
controller can be abused and misused. When software hacking leads to deep implications in the
physical world, very logically if humanity is dependent on Things that are indefensible either
such dependence should be diminished, or such Things should be more defensible. Security
researchers are working on the second option to catch up with predatory adversaries [Corm(014].

In order to be a step ahead of cyberoffense, cybersecurity is in constant need of new
analysis techniques, methodologies, and machine learning approaches that can effectively and
accurately classify anomalies. This research embarks precisely in an attempt to diminish the gap
between cyberattacks occurrence and their detection from the cybersecurity front. At the onset of
this research, distributed denial of service (DDoS) detection ranks past a time interval that
comprises minutes, if a well-trained machine learning model is used. This sets a challenge for the
achievements in this research, if considered as a detection benchmark. In regard to the machine
learning model selected, this has been pragmatically chosen to be adaptive resonance theory
(ART), which specifically considers two of its variants ART1 and FuzzyART.

Events that occurred in the midst of the 2020 global pandemic, have demonstrated that
the world around us functions in a sea of networked systems. Whether for virtual meetings, IoT
devices, remote sensing, online shopping, reliable news, government and health advice, or when
to go out to get groceries, these networks and the services that operate on them are vital to a
functioning society. These networks and services have become not only critical, but also vital,
infrastructure, in a way that mirrors discussions about roads, hospitals and electrical grids. The
work presented in this thesis could facilitate efforts within the security ecosystem for improving
resiliency.

The collective term for this underlying support is infrastructure, and when the associated
services are considered essential to society, we refer to the associated underlying support as
critical infrastructure. An additional popular definition of critical infrastructure is any
underlying service support that, if removed (even temporarily), would create serious problems

for society. If any of the critical infrastructure components became degraded or unavailable, the
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consequences to society would be severe. A problem with critical infrastructure security is that
practitioners tend to apply protections that were designed for smaller systems. This is an issue,
because the needs of a large and small computer system can be as different as one might find for,
say, a jumbo jet or bicycle. Maintenance, monitoring, trust, and compliance are example factors
that are directly influenced by size, scale, and scope. The demands of infrastructure, however,
especially in support of critical services, introduce considerably more risk, primarily due to the
increased consequences of attack [Amor(020].

There are 16 critical infrastructure sectors (i.e., chemical, commercial facilities,
communications, critical manufacturing, dams, defense industrial base, emergency services,
energy, financial services, food and agriculture, government facilities, healthcare and public
health, information technology, nuclear reactors, materials and waste, transportations systems,
and water and wastewater systems) whose assets, systems, and networks, whether physical or
virtual, are considered so vital to the United States that their incapacitation or destruction would
have a debilitating effect on security, national economic security, national public health or safety,
or any combination thereof [Cybe020]. The main grounding force in cybersecurity is having
deep knowledge about the importance of the assets that are in need to be defended. This often
boils down to intellectual property. However, different stakeholders might have different
priorities and value for the assets that they own [Amor(020].

It is vital that these network systems continue to operate in the face of adversity such as
DDoS attacks. In order to respond to a DDoS attack, it is paramount that first the attack can be
detected so that there is proper awareness about it. Classic methods for DDoS detection include:
Packets profile based detection of time-to-live (TTL), packet score, spectral analysis, distances to
distinguish between flash crowds and traffic carrying an attack, monoscale entropy detection,
metrics similarity based on distances, and correlation of flows, among the most common. An in
depth and extensive report on these methodologies is found in Appendix A.

Nonetheless, these methods are insufficient and limited because: Attackers could use
random distributions to make a DDoS attack look like normal traffic, DDoS packets scores can
be made to mimic normal traffic packets scores, measurements based on distances are prone to
ignore significant parts of the signal of interest when this one is embedded in a dynamical

environment, spectral analysis loses the connection to time unless a short-time form is used and
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still then a precise connection to time cannot be achieved, attackers could make a DDoS attack to
mimic a flash crowd, and monoscale entropy detection fails to detect DDoS efficiently because
both normal traffic and a DDoS attack can have similar monoscale entropy values.

After considering how hard is to detect or isolate a DDoS attack from normal traffic and
the shortcomings from the DDoS detection methods just commented on, it is clear that a DDoS
detection method that could effectively and robustly perform within the challenging and
dynamical nature of Internet traffic is needed. The core of this research is to assess if the
performance of multi- and polyscale features could provide a valuable answer for this need.

Cybersecurity is an area already with a past that has thought significant lessons to
computer security related companies and individuals; a present in which corporations and
agencies cooperate for developing better computer security systems (CSSs) to battle against
known or unknown forces wanting to access relevant data and computer assets; and certainly a
future claiming for the embodiment of the very best CSS in which the most advanced
mathematical theories and engineering practices developed by humans today would then be used
to construct them. Cybersecurity has been a concern in the modern information era since the days
of the Milwaukee 414s teenage hackers in the early 1980s (capable of breaking into the Los
Alamos National Research Laboratory and the Sloan-Kettering Cancer Center amongst other
prominent computer systems) [Voll015] until now. In the late 80s the “Morris worm” was
released at the Massachusetts Institute of Technology (MIT) by Robert T. Morris (creator of one
of the first web-based applications to build and host online stores sold to Yahoo in 2005)
graduate student at Cornell University [DaviOl15]. The Morris worm, first computer worm
Internet-distributed, infected computer systems at U.S. universities, research centers, and
military bases and caused an estimated $20 million USD worth of damage [Davi015]. This attack
prompted the Defense Advanced Research Projects Agency (DARPA) to fund the establishment
of the Computer Emergency Response Team (CERT) at Carnegie Mellon University, in
Pittsburgh, for anticipating and solving cybersecurity challenges [DaviO15 and Pate015]. CERT
until now continues partnering with government, academia, law enforcement, and industry to
develop methods and tools to deal with cyberthreats [Pate015].

Many online resources exist that summarize the frequency and associated trends of

different cybersecurity events. Some of these resources are the following: PrivacyRights is a
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repository for data breach incident reports, Hackmageddon is a website which collects public
reports of cybersecurity incidents, Databreaches.net is a website that collected databreach
incidents, Cyberwire is a cybersecurity-focused news service which provides daily briefing of
cybersecurity news. While these resources create reports that show the relative frequency of
events, they do not provide comprehensive details about them that are supported by specific data
measurements. Some resources categorize cybersecurity events by event type, attack pattern, and
type of malware [SaFF019]. This in this research, this becomes part of the motivation for
developing strong metrics capable of extracting meaningful features from network traffic.

As specific malware examples, one can think about the Slammer and Nachi worms that
occurred in 2003, which used UDP ports for SQL activities and ping cascading respectively. The
Nachi worm, supposedly a vigilante worm, was responsible to create 40% of the active sessions
on the Internet in the late part of 2003 [Amor020]. A highly specialized malware was the Stuxnet
worm from 2010, which targeted some facilities of Iran’s nuclear industry and since then has
metamorphosed and spread to other industries related to the energy sector. One shall recall that a
worm works by finding a system with a vulnerability, replicating the malware program onto that
system, and then executing remotely such malware. The usage of worms has declined
significantly in later years because attackers have found that botnets, like the ones used for
DDoS, are more powerful, which makes them an attack weapon of choice in cybersecurity
[Amor020]. It is challenging for companies wanting to hire cybersecurity professionals to assess
the knowledge, experience, and value the credentials of new individuals joining their workforce
[Plat15]. This uncertainty is a problem for the cybersecurity industry causing either (i) that
financial firms, government agencies (i.e., the Federal Bureau of Investigation (FBI)), and
telecommunications companies hire “ethical” hackers or (ii) rolling out educational programs to
equip professional engineers with the latest hacking techniques, methodologies, tools, and tricks
[Roze015a].

Cybersecurity firms and mass media report successful cyberattacks daily, which are
growing in terms of complexity and volume ([ArGu021], [Gree021] and [MaCa021]). Diverse
and recent cyberattacks have targeted and affected Canadians including: (i) The Equifax breach
that exposed information about 19,000 Canadians, hundreds of thousands of Britons, and 145

million Americans [Desc020]; (ii) Canadian researchers becoming a target for spear-phishing
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cyberattacks on COVID-19 research [Nowa020]; (iii) in August 2020, the Canada Revenue
Agency (CRA) temporarily shut down its online services after confirming being hit by two
cyberattacks that compromised 5,500 accounts [Pali020]; (iv) the Chartered Professional
Accountants Canada, which sets standards and guidance for 210,000 accountants, was subject to
phishing attacks exposing personal and contact information of 329,000 individuals, including
members and other stakeholders [Solo020]; (v) in July 2019, TransUnion confirmed that the
personal data of 37,000 Canadians was compromised when someone illegally used a legitimate
business customer's login [BickO19]; and (vi) in October 2019, the Canadian Internet
Registration Authority (CIRA) reported that 71% of organizations experienced at least one
cyberattack that impacted the organization in some way, including time and resources, out of
pocket expenses, and paying ransom [Call019]. This list recalls a few impactful cybersecurity
incidents impacting Canadians.

Many mobile app developers rely on third-party programs (i.e., Google Maps or
Facebook) to be integrated into their programs without understanding how these are using the
data collected and whether they might cause potential privacy or security threats to the users.
Moreover, many developers do a poor job of encrypting the data that comes from mobile apps
[Roze015b]. Smartphones and tablets companies have not developed a default setting on devices
to encrypt data from mobile apps or make it simpler for mobile app developers to do this on their
own [Roze015b]. Even if mobile apps developers would care about security, their skill set to
build in security is lacking [Roze015b]. In our data-reliant world cyberthreats take many forms,
including troublemakers hijacking electronic equipment, hackers conducting cyberespionage, or
globe-spanning cybercrime rings perpetrating bank fraud, to mention a few [Pate015].
Cybersecurity today involves much more than defensive measures. Organizations should also
build secure foundations and anticipate security challenges like designing secure code, finding
software vulnerabilities, putting management structures in place to deal with risks, and
identifying possible threats from inside a company [Pate015]. Computer technology companies
are making their best efforts to keep both the products placed on the consumers’ hands and their
online services safe from hackers. Even with all this, there are neither standardized metrics for

gauging software security [Pate015] nor cybersecurity systems that incorporate cognition in their
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operations. Appendix B contains a report of the diversity of computing systems in the modern
cybersecurity ecosystem.

It is the growing demand for better CSS that motivates the efforts put in the research
presented here. This thesis work attempts to follow closely both the scientific (e.g., [Blak012])
and engineering methods (e.g., [Koen003] and [Kins009]) by appealing to their analytic and
synthetic nature respectively [Kins020]. Many contemporary scientists and engineers operate
between these two extremes [Kins020]. This amalgam is worth highlighting because this
research work explores deep aspects of mathematics and puts them into action, by
engineering the implementation of systems, for augmenting network security with the
ultimate goal of making this world a safer place for everyone. Henceforth, this research
approach expands from engineering design to engineering for humanity ([KinsO14] and

[Kins020]).

1.3 Network Security

Social networking and content sharing have become ubiquitous and essential in our
modern society. Certainly, our society cannot be conceived without the complex networking it
has achieved so far. Social media is fast changing the public discourse in society and setting
trends and agendas in very distinct topics (e.g., environment, politics, technology, and
entertainment). Social media feeds are effective indicators of real-world concerns and possible
future reactions to a given event [AsHuO010]. Society is dependant of the Internet since it requires
many applications that are Internet-based [YuO14].

Data security in networking scenarios is certainly a major concern as there could be
multiple vectors of attack. New common network security adversaries (CNSA) are motivated not
only by economics or greed (financial gain), but also by ideology (political views) [Yu014].
From the insights of deep research, two adversaries are relevant: (i) Even though, in general,
adversaries lack talent in their attacks sophistication they have demonstrated that security
companies are also, in general, doing a poor job, and a new form of “hacking power” is
potentially available to everyone. (ii)) On the other hand, nation state sponsored security
adversaries and espionage actors (motivated by politics and ideologies) are much more

sophisticated for preparing and launching attacks (e.g., adaptive, adaptive-persistent, deliberate,
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goal-oriented, persistent, or undeterred) to undertake a given target. Many companies have been
affected, losing a form of trade secret or intellectual property, by adaptive-persistent adversaries
(APA) [CormO14].

The combination of CNSA and APA has eroded even more the degree of security of our
digital society, which globally is falling short even though the best and brightest that know about
security and adversaries are in the front line of defense [Corm014]. Due to the nature of the
Internet and the lack of cyber laws, cyberspace has been a heaven for intelligent attackers. It is
easy to launch attacks, but hard to identify the persons who commit the attacks and even harder
to bring them to justice. One critical form of attack in cyberspace is the distributed denial-of-

service (DDoS) attack.

1.3.1 Disruptions in Networked Computer Systems

Disruptions are unwanted phenomena reaching networked computer systems by either
attacks or intrusions. Intrusion techniques have been the object of extensive research [LiJo997].
Anomalies, surreptitious scans and server nudges are attempts to compromise a system’s
integrity. About 90% of disruptions attempt to induce a ‘buffer overflow’ through digital entry
points into computer hardware and operating systems thorough which superfluous amounts of
data are written into a system’s memory in an attempt to make it fail, opening it up to
exploitation [Perk010].

The motivations are multiple ranging from: (i) Installing malicious software (intended to
co-opt system resources, keystroke loggers, and to scan user information and passwords), on
everyday computer systems; (ii) stealing computing power in high-performance computer
systems, intellectual property and instrument designs in organizations, health data, or private
communications data; and (iii) deploying highly complex cyberweapons, potentially designed for
economic, political, or military intentions, in critical infrastructure [Perk010].

“There is no sector that has been able to withstand this onslaught of intrusions,” advises
Steven Chabinsky, deputy assistant director in the cyber division of the FBI in Washington DC.
Protection of sensitive data is one of the most challenging tasks in computer systems [Perk010].

Most information technology (IT) professionals suggest ensuring that large or sensitive

data stores are managed by a centralized IT team that can monitor and administer systems,
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keeping a close watch over traffic and limiting access. Within this scheme, some Universities
firewalls block millions of daily scans from Internet drive-bys looking for open communications
ports according to cyberinfrastructure services. A “significant percentage” of these scans are
likely to stem from “professionals in the employ of organized crime”. Many common disruptions
are simply ignored [PerkO10]. Worse yet, many of them are undetected by current network
security technologies and thus go unreported.

Some institutions use a battery of common but effective defenses (e.g., pushing operating
system and antivirus patches out to users, remotely monitoring network traffic, establishment of
secure virtual private networks (VPNs) for encrypted communication and virtual machines
(VMs) acting as hardware surrogates).

VMs allow for easy rolling back to put a hacked computer back online, secure
professionally, monitor continuously, back-up and restore easily, and in the event of a breach

contain intrusions effectively by operating on an isolated architecture [Perk010].

1.3.2 Cyber-Physical Systems

Technological progress has made possible significant advances in the computation and
communication fields, and enabled the emergence of large, networked infrastructures (e.g.,
agriculture, farming, food, transportation, health care, manufacturing, supply chain, and energy
domains) [SuRHO16].

Such large systems already include what are known as embedded systems, i.e.,
computational systems designed to control and/or monitor a physical system. Although the
concept of embedded systems has been in use for many years, the growing trend of
interconnecting many physical and computational components to form large networks presents
new challenges and requires novel approaches to design, control, and cybersecurity [SuRHO16].

The concept of cyber-physical systems (CPS) was introduced in 2006 [KuBL994]. A
CPS may be described as a typically large networked system, made of tightly interconnected
physical and computational components, operating in a networked fashion. The history of CPS
may be traced to the seminal article titled “As we may think” by Vannevar Bush in 1945
([CFBGO006] and [SuRHO16]).

Significant advances in the fields of communications and network engineering;
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computation, control and systems theory and engineering; information systems; Internet
engineering; and sensor systems have led to the progression of the human-machine experience,
thus paving the way for the evolution of the theory and hardware of CPS ([PFNDO006] and
[SuRHO16]).

CPS may be seen as similar to the Internet, but applied to the physical world. For
example, IoT [BiVSO013] may be considered as an enabler for CPS because CPS applications
require efficient sensing and communication infrastructures. CPS are at the frontiers of the
engineering and computer science fields because of the aim to combine the most recent advances
in both disciplines. The systems integration approach is therefore a central element to the CPS
concept. Current challenges at the frontier of both fields include architectures, interoperability,
networked control, standards and test procedures, verification and validation, and security. CPS-
enabled critical infrastructures (e.g., energy, transportation, or smart cities) may possess the
promise of solutions to the grand challenges facing the engineering community in the twenty-
first century ((CRDBO11] and [SURHO16].

Only considering the technical aspects is insufficient, especially when humans are
expected to use and be impacted by the designed CPS. A system can operate perfectly from a
technical point-of-view, but if its users are unable to understand how to interact with it or are not
convinced of its usefulness, the system may never reach the point of fulfilling the intended
purpose. Thus, the social aspects of such systems must be considered in the design process

[SuRHO16].

1.3.3 Cyber-Physical-Social Systems

An emerging, yet challenging, frontier for CPS applications is the inclusion of the social
aspect in engineering. The end-user of a critical engineering infrastructure determines the utility
of that domain, and any advance should also increase the quality of life of the end-user. A
“smart” infrastructure includes an active end-user (sometimes described as a “prosumer’) with a
notably different role in participation than in the past [GuYS012]. The active end-user, enabled
with information in real-time or near real-time and the ability to make decisions, is no longer a
passive participant in the control and operation of the critical infrastructure. An empowered end-

user, with a hitherto unprecedented level of information and control, is a paradigm shifting
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concept such as residents of “smart” homes in the electricity domain controlling their energy
usage to save money and provide grid ancillary services. To understand, model, simulate,
develop, build, test, analyze, and enhance these futuristic manifestations imposes a fundamental
requirement of the consideration of the social (and societal) aspect of CPS. The human-centric
CPS, which marks the next generation of CPS, is called the cyber-physical-social system (CPSS)
([SBRS007] and [SuRHO16]). A CPSS integrates computation, physical components, and human
cognition to achieve socially aware advancement in the operation of critical infrastructures and

their interdependencies [SuURHO16].

1.4 Research Questions Posed A Priori

The significance of networked computer systems in our information era is categorical.
Our society is absolutely dependent on services provided by networked computer systems,
becoming more dependent on them as time progresses. This has become evident in critical times
as society has to rely on virtual environments to function when there are unexpected limitations.
New digital services are created on a daily basis with the capacity of pragmatically changing and
impacting everyone. Nevertheless, safeguarding networking environments is certainly the
greatest challenge in cybersecurity. Within cybersecurity, the aim of maintaining a given
network operational and accessible to legitimate users, the appropriate and accurate detection of
DDoS attacks is of fundamental importance ([AaAr013] and [Kasp014]). The literature provides
a large number of examples in which distinct metrics are used to extract features of network
traffic that could lead to detection of DDoS attacks. Considering the complex cybersecurity
scenario, the main research question is: Can new multi- and poly-scale-based metrics be helpful
in deriving a set of features capable of detecting DDoS attacks accurately and effectively? Can a
deep learning (DL) architecture, from the feature extraction perspective, utilizing adaptive
resonance theory (ART) as the pragmatic machine learning approach offer a high classification
performance when processing a polyscale feature vector?

Secondary research questions stemming from the previous one are: From the introduced
multiscale-based metrics, which are the per case relative merits for analyzing data and signals
obtained in networked computer ecosystems for detecting disruptions by DDoS? Which are the

relative performances of the multiscale-based operators considered in the metrics design? If these
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multiscale-based metrics are collectively aggregated or processed further as poly-scale-based
metrics, can these be considered robust metrics to characterize DDoS disturbances found in data
streams in networked ecosystems?
The thesis question in the research presented is:
Can new multi- and polyscale-based metrics as a set of features, capable of enabling
arbitrary operators, detect DDoS attacks through adaptive resonance theory based
ANNs with a high classification performance (accurately and effectively) considering

a time-multifractality approach?

1.5 Thesis Statement

This thesis addresses the development of an early anomalies detection system, in
Internet/network traffic, supported by both polyscale analysis based robust metrics and
pragmatically focused on an unsupervised machine learning model based on ART.

The focal application herein is the detection of departures, from what is perceived as the
expected behaviour from clear Internet/network traffic, through polyscale analysis based
methodologies that allow the implementation of arbitrary operators.

The multiscale analysis methodologies of reference, the variance fractal dimension and
the variance fractal dimension trajectory, are extensively exploited to harness their analysis
power and through them a new methodology, known as multiscalors, has been posed through
this research effort. Robust operators are used through multiscalors, which provide a set of
relevant features, a vector, that are channelled pragmatically to ART machine learning models.

The relevant metrics describe a DDoS cyberattack with diverse degrees of multiscale
resolution in order to build up incremental learning within the ART machine learning models in
the procurement of the real-time classification of DDoS cyberattacks causing anomalies in
Internet traffic.

This research considers multi- and polyscale analysis inspired modelling for enhancing
cybersecurity: (i) The development of an early anomalies detection system for a cognitive
computing engine system, which proposes the supporting architecture; (ii) a signal analysis
methodology, multiscalors, capable of extracting features from a signal analogous to perception

stages in neurological systems; and (iii) a learning process based on modeling of the short and
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long-term memories of the human brain represented through ART implementations, which
provides powerful unsupervised algorithms applied in DL with a novel viewpoint [SiPKO17],

from the feature extraction perspective.

1.6 Statement of Objectives of the Research

This research effort presented in the area of network security involves the following
stages: (i) Access to a relevant dataset that contains a documented DDoS attack; (i1) Insight
development through the deep inspection of the DDoS dataset and deriving packet flows for
understanding the dynamics of a concurrent attack; (iii) Implementation of robust information
theoretic based (ITB) metrics (variance fractal dimension (VFD) and variance fractal dimension
trajectory (VFDT)); (iv) Processing mechanism isolation of the VFD and the VFDT in an effort
to harness the multiscale analysis power so that alternative and arbitrary operators can be used in
the multiscale domain; (v) Operators definition and implementation through the previous
processing mechanism for achieving robust metrics; (vi) Compare the qualitative performance
between the metrics implementation in this research; (vii) DDoS attacks feature characterization
through the multi- and polyscale metrics; (viil) Preparation of feature vectors and their proper
representation for further processing in machine learning models; (ix) Implementation of ART
based artificial neural networks (ANNs) models pragmatically as a detection, analysis, and
classification methods. The metrics prepared are then amalgamated into a feature vector,
characterizing disruptions caused by DDoS attacks in networked computer systems, and then fed
into the ART models. These classification models associate DDoS disruptions to discernible
collections, classes; and (X) Examination of the machine learning models classification precision

as well as comparing their relative merits.

1.7 Organization of the Thesis

This thesis consists of the subsequent construction: (i) The background theory is covered
in chapters II to IV; (ii) chapter V is dedicated to experiment design; (iii) chapter VI describes
the experimental results and discussion; (iv) conclusions about the research conducted in this

thesis are presented in Chapter VII; and (v) detailed appendices are also available.
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The first background chapter, Ch. II, introduces the fundamental network security
concerns that are relevant to this research. Of special importance is the description of distributed
denial-of-service as a focal point in this work. Overview of DDoS attacks is discussed along with
the malicious networks required to launch them. Concealment aspects are also mentioned, and
different detection methods rooted in information theory are included.

Chapter III presents feature extraction as a whole. This chapter describes topics like the
traffic sensing of Internet/network traffic, signal conditioning, metrics design capable of
detecting network anomalies, concepts of monoscale and multiscale analysis, the implementation
of the VFDT as a precursor to the new multiscale methodology, multiscalors, introduced in this
research, the selected multiscalor operators, secondary signal analysis methodologies applied to
the multiscalor components, and the preparation of the extracted features so that the selected
machine learning models are capable to process them for successful classification of anomalous
events.

Chapter IV encompasses the cornerstone machine learning models pragmatically chosen
and utilized for classification of Internet traffic in this research. These models are based on the
adaptive resonance theory implementations, ART1 and FuzzyART. A complete description of
the various generations of ART is also surveyed and explored in detail.

The design of experiments is addressed in Ch. V. It begins describing the computing
resources utilized to carry out the dataset analysis. The integration of packet count and packet
length is described. Also, the isolation of attack traffic and attack flows is fully covered.
Validation of the VFD algorithm is carried through white noise. The signal processing pipeline
involving signal conditioning, analysis, feature extraction, and classification through ART is
provided. The selected operators used as multiscale metrics are presented. Secondary signal
analysis methodologies applied to multiscalors components are also introduced in an effort to
create composite and more robust features. The feature preparation in a vector form so that it can
be processed by the ART approaches is covered.

The experimental results and discussion provided in Ch. VI depicts the practical
implementation of the research conducted. Contributions from the packets count and data rate in
single attack flows to the overall attack traffic are analysed. The results of analysing known

white noise signals through the VFD are also covered. A test case for preparing features through
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denoising, nonlinear filtering, and quantization with Internet/network traffic is presented. The
results of the multiscalor operators and secondary processing methodologies are shown and
commented. The preparation of the feature vector and the classification results are also
discussed.

The conclusions of the research conducted are finalized in Ch. VII. Appendices
containing complementary information are also included. These appendices provide information
about: IIoT, the dataset containing DDoS attacks used in this study, signal processing definitions,
taxonomies of computer systems disruptions, ensembles of classifiers, diversity of computing
systems in cybersecurity, the geometric interpretation of FuzzyART learning, histogram binning,
malicious networks, DDoS attacks detection and software defined networking, and
computational intelligence approaches. Furthermore, extensive and detailed outcomes are
included, as part of these appendices: Results of selected primary operators applied through
multiscalors, results of selected secondary operators applied to variance multiscalor, results of
selected secondary operators applied to skewness multiscalor, results of synthetic classes
detection through ART1, results of selected secondary operators applied to skewness multiscalor,
results of synthetic classes detection through FuzzyART, confusion matrices for ARTI

performance, and confusion matrices for FuzzyART performance.
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CHAPTER 11

NETWORK SECURITY AND

DISTRIBUTED DENIAL-OF-SERVICE

2.1 Distributed Denial-of-Service

A cyberattack usually consists of several stages such as reconnaissance, DDoS, man in
the middle (MITM), elevation of privilege, data tampering, among others. Attackers first gather
information about the target system during the reconnaissance phase to identify network
topology, software versions, and critical targets to attack [HXCLO14]. After attackers gain
knowledge about the system, they plan further attacks by researching known vulnerabilities
against the detected software versions; possible attack vectors and pivot points for bypassing
firewalls and intrusion prevention systems (IPSs); and options for removing evidence after the
attack, such as deletion and manipulation of system logs [ZKHCO019].

Distributed denial of service has been the most prominent attack in CPSs over the last
decade. Myriads of new strategies and approaches have been proposed to defend against
different types of DDoS attacks. DDoS attacks have become a weapon of choice for hackers as
well as for cyber terrorists [DaVS020]. DDoS attacks require an especially sharp real-time
capability for analysis. Additionally, despite the obvious wave-like effects that are experienced
after a DDOS attack, only subtle indicators are generally present for analysts in advance of such
attacks [Amor020].

Based on various techniques such as cloud computing, software defined networks (SDNs),
backbone web traffic, big data strategies, and data science, DDoS attack detection can be
categorized into filtering mechanism, routers function, network flow, statistical analysis, and

machine learning [DaVS020].
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A demonstration of the first documented cyberattack that could destroy a 27 tons diesel
engine coupled to a generator was conducted, as a proof of concept, by the Department of
Homeland Security, at the Idaho National Laboratory (INL) in 2007. This cyberattack is now
known as Aurora to describe when circuit breakers are opened and closed, resulting in an out-of-
phase condition that can damage alternating current (AC) equipment connected to the grid.
Communication protocols used by control systems and supervisory control and data acquisition
(SCADA) systems vary based on the design of utilities. The most common protocols are DNP,
Modbus, IEC 60870-5-103, IEC 61850, Telnet, QUIC4/QUIN, and Cooper 2179. Compromising
any of these protocols would allow a malicious agent to control systems outside utility
operations. Communications protocols compromise allows access to devices and the ability to
compromise their associated passwords to infiltrate a system. An electricity system comprises
generation resources, transmission facilities, distribution facilities, and participation within an
energy marketplace. A compromised power grid, through a cyberattack, hinders the reliability of
its operation is in question and the interconnection of resources and execution of market
transactions becomes highly disrupted and ultimately stopping [SBWH13].

Major cyberattacks, in its majority DDoS, have been detected in ICSs, CPSs, and CPSSs
for at least a decade. Some of the most known cyberattacks are described as follows. In 2010,
Stuxnet attacked nuclear enrichment centrifuges in Iran, causing severe equipment damage. In
2012, Shamoon worked against national oil companies in South Arabia and Qatar. In 2014,
German Steel targeted a metallurgic mill in Germany, and Havex carried out an espionage
campaign focusing on energy, aviation, pharmaceutical, defense, and petrochemical sector
targeting victims primarily in the United States and Europe. In 2015, BlackEnergy3 (BE3)
attacked the power grid in Ukraine. In 2016, the Mirai botnet was used in some of the largest and
most disruptive DDoS attacks, and Sandworm struck the Ukrainian power grid. In 2017, HatMan
(also known as TRITON and TRISIS) affected Triconex controllers by modifying firmware to
add additional programming, Crash Override (known as Industroyer) also targeted Ukraine’s
power grid, Palmetto Fusion attempted intrusions of USA energy utilities, BrikerBot attempted
to permanently destroy insecure IoT devices, and Dragonfly 2.0 targeted the energy sector in
Europe and North America [ZKHCO019].

Based on the attackers research and the ultimate goals of the attack, several types of
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attacks may be launched. DDoS attacks against either ICSs or CPSSs may aim to disrupt
communication between the SCADA master and slaves, which could cause the SCADA master
to lose control of local control systems and actuators. Privilege escalation may be needed to
access the low-level hardware on a system or to read and write to protected system files;
necessary escalation of privileges can be achieved using zero-day attacks and known
vulnerabilities in the operating system and software used. Interception of commands and sensor
data can be performed using an MITM attack, while data tampering and false data injection
attacks go a step further to modify sensor data in transit in order to mislead the monitoring
systems and operators while the attack is in progress. Data tampering could alter SCADA
masters commands to cause the actuator to actuate inappropriately; it could alter the feedback
process data to manipulate the control; and it also could alter data in a data historian to modify
the operation log and system control-related data to obfuscate the details of the attack, which
misleads the defender in postattack analysis [ZKHCO019].

Following the math on botnet-originated DDoS attacks produces frightening conclusions
from the perspective of national critical infrastructure protection. If a bot running on a home PC,
for example, can originate one million bits per second or 1 Mbps, then doing the math on how
big an aggregate DDoS attack might be for botnets of different sizes can be inferred. Botnet data
generation volumes can grow quickly. Since botnets in the last years have ranked in millions of
bots, then a million size botnet can generate 1 Tbps, which is more than enough to knock off a
large size enterprise gateway (typically in the 10 Gbps range) or cause an Internet backbone (100
Gbps) to get congested. For any essential network that provides a service to society that cannot
be replaced, or whose removal could lead to loss of safety or lives, becoming the target of a
DDoS attack could be substantially damaging. Given the relatively modest work required to
build a ten thousand-member botnet, it becomes much too easy to interrupt infrastructure.
Consider that with the IoT, billions of poorly secured devices have been scattered across the
global Internet. If botnets begin to efficiently harness the attack capacity of these devices, then
DDoS attacks of immense strength might be produced. This provides a glimpse of the potential
for DDoS attacks that the world has not seen is real. Furthermore, if a significant series of
concurrent DDoS attacks were to be initiated at the same time to the same set of targets, it is

unclear if the associated volumes could be stopped [Amor(020].

Jesus David Terrazas Gonzalez
~19—



POLYSCALE BASED CYBERSECURITY Ch. 2: Network Security and DDoS

A challenging problem in networks arises from their characteristics of packet switching,
variable bit-rate and on-demand bandwidth. Approaches to address this problem require
knowledge not only of the statistics of the source, but also of the rules for assembling the packets
in order to monitor traffic.

Intrusion detection systems (IDS) detect unauthorized access to the system. There are
three types of IDS: Signature-based, anomaly-based, and hybrid. Signature-based IDSs are
developed to detect known attacks using their documented behaviour. This class of IDS is very
effective for known attacks with low false alarm rates but are not able to detect zero-day attacks
since the IDS is not yet aware of this behaviour. Anomaly-based IDSs, on the other hand, model
the normal behaviour using data mining techniques or machine learning algorithms and report
deviations from normal behaviour as an anomaly or potential attack. They are customized to the
normal behaviour of each system to detect attacks, including unknown attacks, making it
difficult for attackers to learn the capabilities of IDSs, further complicating attackers ability to
launch undetectable attacks. The very nature of this makes anomaly-based IDSs result in a high
number of false positives [BuGu016]. The hybrid IDS is a combination of signature-based and
anomaly-based detection; this approach combines the accuracy of signature-based approaches for
known attacks with the generalizability of anomaly-based systems [ZKHCO019]. Anomaly-based
IDS over signature-based has a better detection accuracy, which favours the detection of unseen
attacks, but at the expense of a lot of false identification of unusual activities as anomalous
[HOHRO15].

Data-driven, hybrid IDSs, are promising approaches to enhance industrial control systems
(ICSs) cybersecurity and the situational awareness of defenders. Cybersecurity is defined as:
“Strategy, policy, and standards regarding the security of and operations in cyberspace, and
encompass[ing] the full range of threat reduction, vulnerability reduction, deterrence,
international engagement, incident response, resiliency, and recovery policies and activities,
including computer network operations, information assurance, law enforcement, diplomacy,
military, and intelligence missions as they relate to the security and stability of the global
information and communications infrastructure.” This definition is obtained from the National
Initiative for Cybersecurity Careers and Studies (NICCS) [NatiO18].

A recent survey of cybersecurity research using data mining and machine learning
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algorithms identified the following methods as effective in cyber-attack detection: Clustering,
decision tree (DT), genetic algorithms (GAs), naive Bayes, support vector machine (SVMs),
ANNSs, and random forest (RF) ([BuGu016] and [ZKHCO019]).

Automated generation of attack trees is used in cybersecurity analysis to give an analyst a
view of all the ways in which an attack can be carried out [BLNS020]. Attack trees can consider
DDoS. However, this requires a library of attack templates, and an abstract model of the network

architecture under attack [DaVS020].

2.1.1 Overview of DDoS Attacks

The Internet has become an important part of our society in numerous ways, such as in
economics, government, business, and daily personal life. An increasing number of critical
infrastructures (e.g., smart grid and air traffic control) are managed and controlled via the
Internet ([KPHDO15], [KPBHO15] and [OzBr015]), in addition to traditional infrastructure for
communication. Today’s cyberspace is rife with cyberattacks, such as DDoS, information
phishing, financial fraud, email spamming, among the most known ([KSSS014] and [Yu014]).

Cyberattacks on communications networks can be categorised into either passive (e.g.,
eavesdropping or traffic analysis) or active attacks (e.g., spoofing or DDoS) [DaVS020]. Among
various cyberattacks, denial-of-service (DoS) attack is a critical and continuous threat in
cybersecurity. DoS attacks are implemented by either forcing a victim computer to reset or
consume its resources (e.g., access to application programming interfaces (APIs) [BaAZ014],
CPU cycles, memory or network bandwidth ([BeDe014] and [BKBKO014])). Hence, the targeted
computer no longer provides its intended services to legitimate users. When the DoS attacks are
organized by multiple distributed computers, it is called DDoS attack, which is a popular attack
method in the cyberspace [KaspO14]. Network security branches into three categories:
Confidentiality, availability and integrity. DDoS attacks belong to the availability category
[YuO14].

DDoS continues to plague the availability of online services. As cybersecurity problems,
DDoS are evolving and non-stationary. The constant deployment of new services and protocols
adds to Internet traffic additional non-stationarity. Attack patterns in DDoS shift as new

protocols and applications are introduced, further compounded by burstiness, seasonal variation,
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and diversity of network traffic across varying timescales. When it comes to cyberdefense
against DDoS, it is difficult to apply machine learning-based techniques and defenses in practice.
Cyberattacks and anomalies have measurable consequences and symptoms which allow a skilled
analyst to infer new signatures for detection by misuse-based classifiers, conversely unseen
attacks may only be defended against after-the-fact. It has been long-hoped that anomaly-based
detectors would surpass the element of surprise by making effective use of statistical measures
(monoscale analysis) [SiIRP020]. This research in particular, goes beyond the use of statistical
measures and centres on the search of long range dependencies by characterizing Internet traffic
with multi- and polyscale measures. Long-term expectations in cybersecurity are to augment
what existing misuse-based solutions can provide, by automatically alerting, recording and
controlling what are believed to be illegal system states [SiRP020].

The idea of denial of service appeared in the digital world in 1984 from the research on
operating systems [Glig984]. With the booming of the Internet in the middle of the 1990s, DDoS
attacks are getting more and more familiar to general public ([FuO11] and [PeLROO7]). It is
reported that there were only six DDoS related attacks in 1988. The first well-documented DDoS
attack appears to have occurred on August 1999, when a DDoS tool called ‘Trinoo’ was
deployed in at least 227 systems, to flood a single University of Minnesota computer, which was
knocked down for more than two days [DaVS020].

In 2000, well-known web sites, such as CNN, Amazon and Yahoo, became the targets of
DDoS attacks, and the attack rate was around 1 Gigabit per second, Gbps. In 2007, a DDoS
attack rate reached 70 Gbps. In 2013, the peak of the biggest DDoS attack reached 300 Gbps
[YuO14]. Also, the first quarter of 2013 registered the average attack bandwidth exceeded 48.25
Gbps [AsLa014]. In 2016, the largest DDoS attack was carried out by the Mirai botnet based on
IoT, which compromised devices targeting the domain name system (DNS) provider Dyn,
affecting many popular sites including Twitter, Reddit, Spotify, GitHub and the New York
Times [Losh016]. In 2018, GitHub was taken offline briefly by a 1.35 Terabit per second (Tbps)
DDoS attack, confirmed and mitigated by Prolexic Technologies, the DDoS mitigation
subsidiary of Cambridge, MA, company Akamai. Also in 2018, Arbor Networks confirmed a 1.7
Tbps DDoS attack requiring just one line of Python code against vulnerable memcached

(distributed memory object caching systems intended to speed up dynamic web applications)
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servers [Hell018]. In 2019, 8.4 million DDoS attacks were detected, every minute 16 DDoS
attempts took place. The most powerful DDoS attack recorded in 2019 held a bandwidth of 622
Gbps. However, as noted by Netscout, such attacks can generally be considered “overkill” and
would most likely draw the attention of law enforcement. Thus, attacks are now generally
becoming “stealthier” between 100 to 200 Gbps. The number of DDoS campaigns beyond the
300 Gbps mark has dropped [Osbo020]. Imperva reported volumetric DDoS attacks on the
following occasions for 2019: January 2019 sustained a 500 million pps (packets per second)
attack in layers 3/4, and April 2019 peaked at 580 million pps in layers 3/4. This last incident is
considered the largest DDoS attack by packet count to date [Cran019]. Another DDoS event in
2019 involved a botnet that coordinated 402,000 different Internet protocol (IP) addresses,
directed a peak flow of 292,000 requests per second (RPS) in layer 7, and a nonetheless
interesting fact, it also lasted 13 days [Simo019].

For 2020, the DDoS trends are described next. DDoS attacks are anticipated to reach 14.5
million by 2022, according to 2017 data from the Cisco Visual Networking Index (VNI). DDoS
attacks, both in size and number, have been on a downward trend since the FBI shut down 15 of
the largest DDoS-for-hire websites in December 2018. DDoS attacks can represent up to 25
percent of a country’s total Internet traffic while they are occurring. China and the USA ranked
as the top two targets for DDoS attacks in Q2 2019, with 63.8 percent and 17.5 percent of the
attacks, respectively. Neustar discovered in its DDoS attack research that the increasing trend of
strategic, “low-intensity incursions” that degrade the performance of servers over time. Using
these lowball attacks enables hackers to carry out longer attacks that fall below the level of
intensity that would trigger DDoS defenses. A significant number of attacks feature over four
vectors. The number of IoT devices that are estimated to exist by the end of 2020 is 20.4 billion,
according Gartner. IoT devices, notorious for lacking any real IT security or cybersecurity
measures, are vulnerable to DDoS attacks. According to Bulletproof, a DDoS attack could cost
up to $120,000 USD for a small company or more than $2 million USD for an enterprise
organization. A10 Networks tracked more than 23 million DDoS weapons (infected computers,
IoT devices, and servers). According to Kaspersky, in 2019 although DDoS attacks are down, a
clear increase in politically-motivated DDoS attacks was registered. Akamai indicates that

financial organizations are seeing a rise (800 attacks between December 2018 and May 2019,
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which is 40% of the attacks during this time) in DDoS attacks. IBM X-Force indicates that more
than 80% of all observed activity from Mirai botnet variants in 2019 targeted the
media/information services and insurance industries. From $2.4 billion USD in 2019, it is
estimated that the DDoS protection and mitigation market would reach $4.7 billion USD by 2024
[Cran020].

Scientists in Synopsys state that performing amplified DDoS attacks using memcached
servers is trivial because this service was never intended to be connected to the public Internet
but originally designed and implemented for an internal, benign environment, so it actually
responds to requests without requiring authentication and its implementation of user datagram
protocol (UDP) is flawed returning a large number of bytes when queried with a small number of
bytes causing an amplification as much as 50,000 times the request [HellO18].

All occurrences of DDoS attacks can be neither detected nor documented, but the
available information about the DDoS attacks that have been detected and documented indicates
that DDoS remains one of the major threats for network security [AsLa014]. DDoS attacks are
getting highly sophisticated with the potential to be launched from any layer (application,
protocol, session, transport, network, data-link, and physical) of the open systems interconnect
(OSI) model [Kuma0O16], and diverse types targeting distinct weaknesses [Java018]. DDoS
detection through IDS, either network or host based, is very useful for collecting forensic
evidence that may be used in legal proceedings if the attacker is prosecuted [BAUMO14].

Despite all the efforts from industry participants and academia, DDoS attack is still an
open problem. Some of the essential reasons for this passive situation are: (i) The design of the
ARPARNET network lacked a security focus. The Internet originated from this private network,
ARPARNET. As a private network, there were very limited security concerns in the original
design [PeLR0O07]. This private network became a public network in the 1990s, and now many
applications have become an essential part of the Internet. Security patches have been developed
and installed to circumvent the inherent vulnerabilities; however, the effectiveness of these
efforts is sometimes limited. For example, the Internet was designed stateless, therefore, a
receiver has no information about which routers a received packet went through. Hence, it is
easy to perform source IP spoofing; (ii) Internet is the largest man-made system in human

history. Cyberspace is huge, complex, and stays in an anarchy status; (iii) Cyber attackers are
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enjoying one incredible advantage of the cyberspace: It is hard for defenders to technically
identify attackers. Moreover, there lacks international laws or agreements among nations to bring
cyber criminals to justice who commit crimes in one country but are living in other countries;
(iv) Hacking tools and software are easy to obtain. An attacker may not need profound
knowledge of networking or operating systems to initiate a cyberattack [YuO14].

Distinct instances of DDoS attacks have been scrutinized and it is found that the attack
can be mitigated by one of these three approaches or defense mechanisms, namely, attacker-end
approach, victim-end approach, and in-network approach, depending on their locality of
deployment. The existing detection approaches can be categorized into statistical, soft
computing, clustering, knowledge-based, and hybrid. These approaches can also be classified as
supervised or unsupervised based on the type of dataset. In the evolution of IDSs, anomaly-based

detection is more preferred than signature-based detection [DaVS020].

2.1.1.1 How to Launch DDoS Attacks

DDoS attacks can be launched in two forms: (i) A system is targeted by sending one or
more carefully crafted packets (e.g., “ping-of-death” attack causes some operating systems to
crash, freeze, or reboot), which are designed based on the vulnerability of the victim; and (ii)
Using a large amount of traffic to exhaust the resources of a victim, such as network bandwidth,
computing power, or operating system data structures, among others. Henceforth, the quality of
service of the victim is significantly degraded or disabled to its legitimate clients [YuO14]. The
most well-known DDoS attacks are transfer control protocol (TCP) TCP-SYN flood, Internet
control message protocol (ICMP) ICMP/UDP flood attack, ping-of-death, Smurf, process table,
UDPstorm, syslogd, mailbomb, and Apache2, which consume the uplink bandwidth or server
bandwidth [BoAy013].

Launching an effective DDoS attack requires cyber attackers to firstly establish a network
of computers, which is known as a botnet or army. The individual controlling a botnet is called
botmaster or botnet owner. Attackers take advantage of various techniques (referred to as
scanning techniques) to find vulnerable hosts on the Internet to gain access to them ([PeLR007],
[SCGKOI11], and [CCGPO10]). The next step for the attacker is to install programs (known as

attack tools) on the compromised hosts. The headquarters of a botnet is called command and
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control (C&C) server. The command and control server communicates with its bots for updating
the attack tools, and issuing attack orders [Yu014].

Sustaining C&C servers from detection may require botnet programmers: (i) Setting up
intermediate nodes as stepping-stones between the C&C server and bots, and (ii) encrypting the
messages of their communication with cryptographic techniques [Stin006]. Avoiding evictions
may require botnet programming techniques like IP flux or domain flux, to conceal their C&C
servers [Yu014].

Two different DDoS attack classes: Typical DDoS attack and distributed reflection
denial-of-service (DRDoS) attack. Unlike typical DDoS attacks, a DRDoS attack network
consists of C&C servers and reflectors. In a DRDoS attack bots, led by C&C servers, send a
stream of packets with the victim’s IP address as the source IP address to uninfected machines
(reflectors). A variation of a DDoS attack in cloud computing is the economic denial-of-
sustainability (EDoS) attack [SqQASO11] or the fraudulent resource consumption (FRC) attack
[IdTJO13]. DDoS defense can be classified into three categories: Detection, mitigation and

traceback [Yu014].

2.1.1.2 Challenges in DDoS Related Research

Understand the cyberspace theoretically and deeply. The American National Research
Council proposed a new research field as network science in 2006 for advancing knowledge of
networks and networking. The majority of current dominant Internet modelling is based on the
random graph model proposed in 1959, which is far before the birth date of the Internet and the
Web. Recent observations indicate that there is a great discrepancy between the random graph
based models and reality. Power law (usually represented by the Zipf or the Pareto distributions)
has been found to be pervasive in nature, for example economics and man-made systems, such as
individual income among a group of people, or word frequency in a language. Researchers have
also found many phenomena in cyberspace that follow power-law relationships (e.g., popularity
of web pages follows the Zipf distribution [BCFP999] and the size of web documents follows the
Pareto distribution [CrBe997]) [YuO014].

Understand our cyber opponents in a correct way. It is hard to collect, or share

cyberattacks data from industry and government agencies. Cyber opponents are only partially
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defined, or the information is misleading. Understanding opponents in time and in an appropriate
manner is mandatory [YuO14].

Solid consideration of the previous two aspects, effective and efficient strategies to defeat
cybercrimes, including DDoS attacks, can be designed. Nevertheless, this aspect is very

challenging.

2.2 Baseline for Anomalies

Anomaly detection requires defining a baseline for the network behaviour [AsLa014].
This baseline, supported by specific traffic features, is a depiction of the acceptable network
behaviour. The traffic features are further fed into a classifier, part of a network security engine
(NSE), which can assist in making automated decisions and triggering specific threat mitigation
and defense events. The baseline can be set by the information provided by the features that

characterize the normal traffic.

2.3 Summary

The concepts related to network security and DDoS have been provided. DDoS attack
variants have also been addressed. DDoS attack launching techniques are covered extensively as
well as research challenges for DDoS. The next chapter delivers discussion about Internet traffic,
its preparation through signal conditioning and subsequent stages for its analysis. A novel and

advanced signal processing methodology, multiscalors, is presented.
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CHAPTER III

MULTISCALORS BASED FEATURE EXTRACTION

Much of the past modeling, analysis and synthesis of autonomous intelligent systems,
autonomic systems, cognitive systems, and natural cognitive processes have been conducted
using monoscale metrics that had yielded features later used in machine learning approaches
[KinsO11]. The proposed cognitive system here uses the fundamentals of both multiscale and
polyscale analysis for extracting useful features capable of providing relevant information
content for the detection of cyberthreats as DDoS.

Cognition is the ability for a system or systems to monitor, record, sample, test, and be
aware of the surrounding environments and then to adapt, modify, or change the system to
improve the quality-of-service (QoS), including learning from past experiences [Bull014].

In this research, Internet/network traffic is considered for cognitive analysis through a
pragmatic set of subsystems. In this chapter, a clear walkthrough of all the signal analysis
methodologies required for feature extraction is provided. This digital journey includes: The
sensing of the Internet/network traffic, the context about monoscale analysis and its limitations,
the critical importance of multiscale analysis for sifting information available in long range
dependencies, the novel methodology “multiscalors” that allows arbitrary operators and signal
analysis methodologies to be functional in the multiscale analysis context, the statistical
moments used as multiscalors operators and the secondary signal analysis methodologies further
applied to the multiscalors components, and the preparation of the features to be used

subsequently by machine learning stages.

3.1 Internet Traffic
Will Leland and Daniel Wilson [LeWi991] present a preliminary analysis of unique high-

quality data and comment in detail on the presence of “burstiness” across an extremely wide
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range of time scales: Traffic “spikes” ride on longer-term “ripples,” that in turn ride on still
longer term “swells,” and so forth. These self-similar patterns at different scales in Internet traffic
are due to the presence of long-range dependencies. This self-similar or fractal-like behaviour of
aggregate Internet traffic is very different from both conventional telephone traffic and from
currently considered formal models for packet traffic (e.g., pure Poisson or Poisson-related
models such as Poisson-batch or Markov-Modulated Poisson processes [HeLu986], packet-train
models [JaR0986], and fluid flow models [AnMS982]), which places a strong requirement for a
new traffic modeling perspective. The term “self-similar” was coined by Mandelbrot ([Kins020]
and [LTWWO994]).

Internet data shows that the generally accepted argument for the “Poisson-like” nature of
aggregate traffic, namely, that aggregate traffic becomes smoother (less bursty) as the number of
traffic sources increases is unrealistic. In fact, using the degree of self-similarity as a measure of
“complexity,” it is observed that the burstiness of Internet traffic typically intensifies as the
number of active traffic sources increases, which contradicts commonly held views
[LTWW994].

The studies about self-similar processes by Benoit Mandelbrot [Mand969] are later
extended by Murad S. Taqqu and Joshua B. Lévy [TalLe986], based on aggregating many simple
renewal reward processes exhibiting inter-renewal times with infinite variances. These studies
focus originally in an economic framework involving commodity prices and it is also applicable
in the context of high-speed packet traffic like the case of Internet traffic [LTWW994].

Slowly decaying variances, long-range dependence, and a spectral density obeying a
power-law are different manifestations of the underlying stationary process X. In their research
about Internet traffic, tested through Ethernet local area network (LAN) traffic, Will Leland and
Daniel Wilson conclude that: (i) Internet traffic is statistically self-similar, irrespective of when
during the four-year data collection period 1989-1992 the data was collected and where it was
collected in the network, (ii) the degree of self-similarity measured in terms of the Hurst
parameter H is typically a function of the overall utilization of the Ethernet and can be used for
measuring the “burstiness” of the traffic (namely, the burstier the traffic the higher H ), (iii)
major components of Ethernet LAN traffic such as external LAN traffic or external TCP traffic

share the same self-similar characteristics as the overall LAN traffic, and (iv) the packet traffic
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models still considered in the literature are incapable of capturing the self-similarity properties of
Internet traffic [LTWW994]. There are novel research works using self-similarity measures to
assess network flows through the Hurst exponent [LXKX020]. It has been found that normal
OpenFlow traffic usually has a low degree of self-similarity due to the unique SDN/OpenFlow
architecture, but when subject to saturation attacks has a higher degree of self-similarity
[LXKX020]. Hence, self-similarity fluctuations are used for anomaly detection.

The ample indications of the impact of the self-similar nature of Internet packet traffic for
engineering, operations, and performance evaluation of high-speed networks elaborated by Will
Leland and Daniel Wilson in their study: (i) Source models for individual Internet users showing
extreme variability in terms of interarrival times of packets (i.e., the infinite variance syndrome),
(i1)) commonly used measures for “burstiness” such as the index of dispersion (for counts), the
peak-to-mean-ratio, or the coefficient of variation (for interarrival times) becoming no longer
meaningful for self-similar traffic and becoming replaced by the Hurst parameter (or other
methodologies capable of self-similar behaviour analysis), (iii) the nature of congestion produced
by self-similar network traffic models differing drastically from that predicted by “standard
formal statistical models” displaying a far more complicated picture than has been typically
assumed, and (iv) first analytic results showing a clear distinction between predicted
performance of certain queueing models with traditional input streams and the same queueing
models with self-similar inputs [LTWW994], seem to be overlooked by some.

Henceforth, the research conducted in this thesis considers methodologies capable of
analyzing Internet traffic that are capable of capturing its self-similarity properties, as is the case

of multiscalors that are fully described at the end of this chapter.

3.2 Internet/Network Traffic Sensing

Internet traffic sensing is a computer networking term for intercepting data packets
crossing or moving over a specific computer network. Malicious agents can also use traffic
sensing techniques to steal data that is being transmitted over a network [TechO17b].

One type of Internet sensing is packet filtering, in which filters are applied over network
nodes or devices where data is captured. Conditional statements determine which data is

captured (e.g., a filter might capture data coming from ABC route and having W.X.Y.Z as an IP
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address) [Tech017b].

Instead of filtering a specific portion of a packet, complete packets can also be captured.
The full packet includes two things: A payload and a header. The payload is the actual contents
of the packet, while the header contains extra information, including the packet's source and

destination address [Tech017b].

3.3 Signal Conditioning

Once a packet is captured through a packet analyzer, it is stored temporarily so that it can
be dissected. The packet is inspected to help diagnose and solve network problems and
determine if network security policies are being followed [TechO17b].

A packet analyzer (aka a sniffer, network analyzer, or protocol analyzer) is a computer
application used to track, intercept and log network traffic that passes over a digital network. A
packet analyzer also may be used by malicious agents to intrude on networks and steal
information from network transmissions [Tech017a].

A packet analyzer shows the complete status of all network activities by providing a
complete picture of bandwidth and resource utilization. Every action of a packet analyzer is
performed in real-time [TechO17a].

Signal conditioning of the sensed traffic is achieved by the data that a sniffer provides
about individual packets intercepted. These data usually include the following: Packet number,
arrival time, source IP, target IP, protocol, size, and additional information. Both the
Internet/network traffic sensing and the signal conditioning mirror the light path that takes place

in the human eye, which goes through the cornea, pupil, lens, and fovea.

3.4 Signal Analysis for Detection of Network Anomalies

Metrics design has the ultimate purpose of preserving the key features (e.g., natural
sounding speech, edges and textures in images, motion in video) of signals (e.g., audio, images,
video) [Kins002]. It is then of extreme importance developing robust metrics, which would be
capable of identifying key features in the signals and data of interest pertaining to network
security in this research.

It has been extensively discussed in the literature that energy itself carries no information
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and that energy-based metrics are of no use to tackle highly complex research problems (e.g.,
those posed by cognitive systems). However, for completeness, energy-based metrics commonly
used in engineering problems, as is the case of data compression, are included here and not
limited to mean squared error (MSE), mean energy of the source (MES), signal to noise ratio
(SNR), and peak SNR obtained by taking the peak source energy (MESmax) [Kins002].

The increasing number of nodes on the networks, different protocols and port numbers,
new applications (e.g., multimedia delivery or cloud services) challenges network administrators
and researchers when measuring and monitoring Internet traffic on high speed networks.
Network monitoring branches into active, where network routers are queried directly and
periodically to collect statistics, and passive, where the network is analysed only at the edge
routers and the network measurement parameters are deduced by applying mathematical
formulae [DDHTO008].

Fractal signal processing seems suitable for both direct and indirect measurements of
networks features and anomalies due to the self-similarity nature of network traffic [Kins020].
Network traffic flows are neither completely understood in their dynamics nor easily
controllable. The fractal properties of time series are revealed by the presence of self-similarity, a
rigorous statistical property. Self-similarity denotes fractal behaviour where similar patterns in
the new time series are obtained regardless of the sampling time scale used for examining the
data ((DDHTO008] and [Kins020]).

Detection of anomalies is a major goal in network security monitoring. Anomalies
represent deviations from normal network behaviour. The network anomalies sources are
network failures and performance problems (e.g., file server failures, broadcast storms, and
transient congestion) or network security (e.g., denial of service attacks variants and network
intrusions). Network anomalies are characterized by correlated transient changes in measured
network data that occur prior to or during an anomalous event [ThJi003]. The term transient
fluctuations refers to the measured data abrupt fluctuations occurring in the same order of
magnitude of the sampling interval [DDHTOO08]. The idea of events taking place on all scales on
an object (self-similarity) is important because it indicates long-range relations (power-law
distributions) [Kins020]. Similarly, the Devaney definition for fractal states that it is a self-

similar object whose fractal dimension exceeds its topological dimension [Kins020].
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It is not possible to identify network transients using current probing tools or dedicated
monitoring software. Hence, the analysis of network transients requires the development of
specialized and robust metrics, as presented in this research, which are rooted in fractal
techniques and methodologies. Network anomaly detection methods are [DDHTO008]: Rule-
based approaches [ScKW996], finite state machine models [LaWD992], pattern matching
[CISc004] (implemented in field programmable gate arrays (FPGAs)), and statistical analysis
[Duff004]. Statistical analysis based methods are capable of continuously tracking the behaviour
of the network and require no significant recalibration or retraining [DDHTO008]. Methods
incorporating fractal analysis for network security are also present in the literature ([KhFKO15a]

and [KhFKO015b]).

3.5 Monoscale Analysis

Monoscale analysis of a signal requires (in the context of cybersecurity): (i) An epoch of
Internet traffic, the overall period of interest in the system from which such signal is acquired;
(i1) a stationary frame that produces continuous segments, derived from the epoch, that may be
either non-overlapping or partially overlapping; and (iii) either an operator or a transform
affecting the samples contained in the operating frame. The epoch realization of a signal is

sampled with a regular scale defined by ot =1/ f,, where f, represents the sampling frequency

satisfying f, > f,, which is the requirement for the sampling frequency to exceed the Nyquist

frequency ([Kins020], [PrMa996]).

The sampling period, ot, creates inherently a constant distance between samples,

analogous to a ruler with a single scale unit. Monoscale analysis, in different schemes and
applications, follows the conventional treatment of sequences connected with most of the signal
processing being done in the traditional monoscale ecosystem. Hence, monoscale analysis
utilizes all the information available within an epoch, which when acquired satisfies the Nyquist
sampling frequency. Our scientific and technological society is familiar with the monoscale
analysis approaches predominantly. Monoscale analysis is based on a single frame of an epoch at

a time. The set of samples contained in a frame are operated on or transformed.
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3.5.1 Monoscale Information-Theoretic Based Measures

The objective measures described previously based on energy (e.g., MSE and peak SNR),
carry no information and they do not agree with subjective quality measures. An instance of a
subjective measure is the evaluation of the quality of an image according to the mean opinion
score (MOS) protocol. The MOS protocol requires a set of human observers that are proficient
for deeply appreciating fine, precise details, and specific features about an event or experience.
Each expert provides a measure that describes the perceived experience. The sum of all the
measures provided by each expert or judge is then averaged by the observers set size. The MOS
protocol is regarded as one of the best methods for judging the subjective quality of images
[WaBo006]. Hence, energy-based metrics are not suitable to look for features in either signals or
data because of the ambiguity potential. Instead, information-theoretic-based metrics should be
considered in feature extraction. Consequently, all of the studies in this thesis consider objective
metrics based on information theory. Examples of the relevance of information-theoretic based
metrics in engineering problems are: (i) An edge of an object in an image may not carry much
energy, but it may be critical in its shape recognition, (ii) a stop consonant in speech may be
insignificant energetically and broadband spectrally, but it may be critical in speech recognition,
(i11)) whispering a message requires negligible energy, but the message itself unquestionably
carries information, (iv) formants of the utterance and their transformations in time carry much
more information than their energy, (v) fricatives also convey more information that would be
implied by their energy [Kins004]. Non-energy based metrics relate to the concepts of
information, a measure of complexity, and entropy. For measuring sets related to processes
governed by power-law relationships, the Lebesgue and Hausdorff measures can be used.

Measure here means assigning a number #(s) to a set in an n-dimensional space with the
purpose of characterizing such set. This projected number is enclosed in the interval [0, co]. The
Lebesgue measure assigns a number () to an n-dimensional set that exists in the Euclidean

space. The Hausdorff measure is a generalization of Lebesgue that is operational in lower
dimension subsets from an n-dimensional set (e.g., a curve, a surface, or a fractal set, where each

of them could be contained in a 3-dimensional set) [Edga008].
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3.6 Multiscale Analysis

Multiscale analysis inspects an epoch with a varying scale, frame, denoted by Az. The
samples contained in a frame can be discontinuous when compared with an epoch in the
monoscale sense and are further partitioned by volume elements or vels. A frame is usually
bigger than the sampling period, Atz > dt. However, if the frame size either equals the vel size or

matches the sampling period (A7 =dt), an epoch is then digitally processed according to the

monoscale analysis. A frame should include at least 30 vels to satisfy minimal statistical
significance in order to have validity for multiscale analysis [Kins994].

It has been in the last decades that innovative signal processing approaches based on
fractal measurements have been developed, as described above, for creating frames containing
discontinuous samples. The discontinuity in the samples contained in a frame allows searching
for information that may be scattered at different scales in an epoch. These unconventional
approaches depart from monoscale analysis and allow signal processing to develop new
techniques and methodologies applicable as potential solutions to real engineering problems.
Cybersecurity signals particularly require the searching of information which may be dispersed
in a dataset, hence, the need for multiscale analysis in cybersecurity. The information-theoretic

based multiscale analysis methodology, VFDT, and the implementation are described next.

3.6.1 Variance Fractal Dimension Trajectory

This subsection describes a polyscale methodology that measures the complexity of a
signal [KinsO11]. The methodology of polyscale analysis requires simultaneously computing: (i)
A partitioning process in which the signal scale between samples is multiplied or divided by a
constant factor, which creates subsignals (scaled signals), (ii) an information-theoretic-based
measure for each scaled signals, which describes them numerically, and (iii) a complexity-based
measure for the overall number of subsignals created by the partitioning process. The
partitioning process allows accessing properties of the subsignals, based on the scale size used at
a given stage, for their analysis, while the information-theoretic-based measure compresses the
subsignal to a single number or subsignal subdescriptor, and the complexity-based measure

compresses the subdescriptors further to a complexity measure or signal descriptor.
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If the subsignals, organized according to the partitioning process, present variation of
their properties resembling a power law through the distinct involved scales, then it is concluded
that the signal under analysis is a fractal, and subsequently a fractal dimension describing those
properties can be computed. The calculation of a fractal dimension in terms of variance known as
VFED ([Kins020], [KiGr008], [KiGr010], [Kins007], [KCCP003] and [KCCP006]) is used as a
tool to determine the complexity of signals produced by natural phenomena or synthetized by
computers. This subsection describes and verifies the implementation of the VFD algorithm by
relying on a known process, as is the case of Gaussian white noise (GWN) and uniform
distributed noise.

A time series can be analysed directly in time by computing the spread of the increments
in the signal amplitude (i.e., through its polyscale variance denoted as o”. The variance fractal
dimension can be computed in real-time [Kins020]. An important characteristic of the VFD is
that it does not require a window in the Fourier sense, and therefore it does not introduce
corresponding artifacts [Kins020].

The variance fractal dimension, D,_, is determined by the Hurst exponent (in honour of

Harold Edwin Hurst) denoted by H and which measures long-term dependences in a time series.
A Hurst exponent falling in the interval H =[0, 0.5] denotes a time series having long-term
alternations between high and low values (or uncorrelated) in contiguous samples (e.g., a given
sample with a low value would probably be followed by a sample with a high value. This
alternating tendency would persist a long time into the future), whereas a Hurst exponent in the
interval H =[0.5, 1] (e.g., H =0.91 for the Nile river, which reflects its long droughts) is an
indicator of a time series with a long-term positive autocorrelation (e.g., a given sample in the
series would be followed by a sample of similar value and further samples long time into the

future would tend to fall into similar values). A special case is presented when H =0.5, which is
an indicator of a time series that is completely uncorrelated [Kins020].
The variance, o, of the amplitude increments of a signal B(t) (continuous or discrete in

time) over a frame Ar is related to the time increment according to the following power law

[Kins020]
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var[B(t,)— B(1)] ~|t, -1,

|2H

3.1
where var(e) denotes the variance operator, the symbol ~ reads “is proportional to”, and 7,

stands for a time instant.

For Ar=|r,—1t| and (AB), =B(t,)—B(t,) the exponent H can be calculated from a

log-log plot by Shannon [Shan948]

H = lim 1(10&’ [Var(AB)A’]} (3.2)

A0 log, At

in the analysis performed here, the base b is 2. The embedding Euclidean dimension E (i.e., the
number of independent variables in the signal under analysis), the VFD can be computed from

D,=E+1-H,1<D_ <2 and 0<H <1 (3.3)

3.6.2 Implementation of the Variance Fractal Dimension Trajectory

A signal sampled over a time interval 7" with a constant sampling rate given by

f=1/6t (3.4)
where ot is the interval between two consecutive samples, produces a sample space with N,

points. This sample space is defined by

. T
N, =int (gj 3.5

t
The implementation of the technique to calculate the VFD in a digital signal consists of
the following stages [Kins020]: (i) The signal sample space of NV, points is identified and stored
in an array for further manipulations. (ii) The number of sizes of At (for creating the distinct
scales or subsignals) at which the spread of AB should be computed for the log-log plot is

obtained by A7, =n, , At<T. The frame Ar should not exceed the total sampling time 7 of
the sample space. The parameters for the loop computation of the VFD are prepared as follows:

K =int Elog”—NTj (3.6)

log,
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where b=2, in this case, is the base to form a b-adic sequence for time intervals n,;
K, =[log,(8,192)/logh], where, as an example, N, =8,192 (desirable to be greater than 30

for statistical significance) represents the number of samples contained in the frame for the first

computation in the loop; K,, =K —K,,; and K

low

>1. The main loop to obtain the VFD
performs k cycles from k=K,; to k=1 in which the number of samples at each k is n, =b".
The number of windows in the signal is represented as N, =int(N,/n, ), and the variance for
each stage is then

var(AB), = var[(B(jn,)~ )~ (B(j~Dn) )]

1 N, e 1 N, 2
|:Nk —m, _1”:2,'_1 (AB); [ZFI(AB)]} } 3.7)

N, —m,

el DA

The amplitude increment is given by

(AB), = B(jn,)—~B((j—)n,) for j=1, .., N, (3.8)

Figures 3.1 and 3.2 describe graphically the calculation of the VFD for developing

intuition for its internal process.
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Fig. 3.1. Application of the variance fractal dimension (VFD) to an arbitrary signal. The segments in blue denote the time
displacement applied at a given scale. After [Kins020].

The log values X, =log[n, ] and Y, =log[var(AB), ] are stored for the log—log plot and

the least-squares fit to obtain the slope s of the line is obtained using

S:KZ;XI'Y[‘_Z,:XZ‘ZLYI' 3.9)
! .
kYL X [ XX

The Hurst exponent is computed by H =(1/2)s, and the VFD is obtained by applying (3.1).

For a non-stationary sequence, this process is repeated on successive windows (either
non-overlapping or overlapping) to obtain a VFDT [Kins020]. If the VFDT is constant, then the
sequence is a monofractal in time. Also, if the VFDT has segments with different slopes, the
sequence is then a multifractal in time. Both VFD and VFDT, as multiscale analysis
methodologies, have been extensively studied and used by the author ([TeKiO12a], [TeKiO12b],
[TeKiO12c], and [TerrO12]). Similarly, monoscale statistical analysis has been performed

[TeKiO13a].
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At, =n,0t
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Fig. 3.2. Variance fractal dimension (VFD) calculation for a signal with 512 samples. The three segments in blue denote
distinct time scales displacements. After [Kins020].

Considering the VFDT as a process for signal multiscale analysis of lower order
moments, a generalized multiscale analysis methodology that utilizes arbitrary operators for

searching properties can be derived. Such multiscale analysis methodology is introduced next.

3.7 Multiscalors: A Generalized Multiscale Analysis Methodology

This thesis introduces a novel generalized multiscale analysis methodology
“multiscalors” capable of making arbitrary operators functional in multiscale analysis.
Characterization of signals, in a given time frame, is provided by moments (e.g., mean, variance,
skewness, or kurtosis) classically operative in monoscale analysis only. Multiscalors i1s a
methodology that has been devised for allowing a selected operator or a given signal analysis
methodology of interest for being functional in the context of multiscale analysis.

The generalized multiscale analysis of a digital signal utilizing arbitrary operators

requires deriving a sequence with multiscale nature from the signal B(¢), such a sequence is
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provided by (3.8) and an arbitrary operator is utilized on it for each value of j. Hence, this
multiscale analysis methodology is defined by the multiscalor operator

E,.[] (3.10)

Where = represents an arbitrary operator applied in a multiscale approach, Ill is a short hand

notation indicating that such operator is applied in multiscale analysis, n refers to the multiscalor
component (one of n data streams created as a result of applying a given operator), « in this case
represents either a set of samples or their relationships (e.g., AB that represents the amplitude
differences of the signal B(r) over the time increment Ar) from the operating frame. Hence, the

—
-

term multiscalor is introduced in this research when referring to O [].

Equation (3.10) stands for a generalization of (3.1), which allows for utilizing arbitrary
operators in multiscale analysis. The mathematical operators that restrict (3.1) have been
removed in order to create a sequence resembling the activity in the multiscale analysis domain
for a given signal. The operators that have been removed are the variance and the Hurst exponent
H. Hence, this generalization provides results based on raw data inherently extracted from
multiscale analysis rather than providing explicit links to power laws and fractal dimensions.
Nevertheless, the process for creating b-adic sequences, for the signal under analysis, is
maintained intact. It is precisely this mechanism that allows access to the long-range
dependencies that may be present in the signal under multiscale analysis. The availability of such
a raw multiscale sequence allows the utilization of any arbitrary operator (conventionally applied
in the monoscale analysis domain only) in multiscale analysis. Consequently, this thesis
investigates processes, such as the Internet traffic, governed by power-law relationships.

The quantities that are crucial in the b-adic process for the creation of the multiscale

signal are K, K, , K, , and K,

- ow- The loop involved in the computation of these quantities
has previously been used for the computation of the variance and the variance fractal dimension
trajectory ([TeKiO11], [TeKiO13b]). Now, since the mathematical operations have been adapted,
the variance can be replaced with any arbitrary and optimal operator, or even further a
combination of them. Thus, multiscalors becomes the pivotal methodology empowering the

search for long range dependencies in this research. It is important to note that computational

Jesus David Terrazas Gonzalez
4] -



POLYSCALE BASED CYBERSECURITY Ch. 3: Multiscalors Based Feature Extraction

technologies supporting multiscalors methodologies introduced through this research and
specific applications for DDoS detection are covered by intellectual property protection in the

form of patents ([TeKiO19a] and [TeKi0O19a]).

3.7.1 Variance

The variance reflects the dispersion degree of a probability mass function (pmf) of
random variables around the mathematical expectation. It shall be noticed that the value of
variance is always positive. Variance is used to describe important indicators of fluctuations in
signals (e.g., image denoising) [ZhWCO012].

Variance is defined as:
1 f
ol =—"(x,—u)’ (3.11)
Nk

where x; is the individual realization of the random variable X, N, is the sample size of X, and

M 1s the expected value of X [ZhWCO012].
In this thesis, variance is further defined as:

m, = ° (3.12)

3.7.2 Skewness

Skewness is the third statistical moment that characterizes a pmf by measuring its
asymmetry. The values for the skewness provide important information: (i) It is zero for
symmetric distributions, (ii) when it is positive, its main mode is positioned to the left and
usually a long tail is positioned to the right, and (iii) when it is negative, its main mode is
positioned to the right and usually a long tail is positioned to the left. For the last two cases, it
should be noted that the more negative/positive the skewness is an indication that such pmf
differs significantly from a Gaussian and its process has no resemblance with a symmetric
population [DoSe011].

Skewness is defined as:

(x-u)' | E(x-p)

y=E | - (3.13)
o (o
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where E is the expectation operator, x is the individual realization of the random variable X,
M 1s the mean, and o is the standard deviation.

In this thesis, skewness is further defined as:

m, =y (3.14)

Research work related to the application of skewness in multiscalors has been published
by the author of this thesis. This can be found in ([TeKiO18] and [Terr020]), where the
generalized multiscale analysis methodology has been introduced. This publication states that the
results obtained through the skewness multiscalor applied to Gaussian random noise (GRN) are
congruent in value with monoscale analysis. Nevertheless, multiscale analysis can have access to

the information found in the long-range dependencies.

3.8 Selected Signal Analysis Methodologies Applied to Multiscalors

Epiphenomena

When applying an arbitrary operator via multiscalors to a given signal, a form of
epiphenomena occurs creating a number of multiscale sequences packaging the information
content (potential long-range dependencies) of the original data. The number of multiscale
sequences is dependent on the size of the processing frame.

It 1s also possible to examine further the by-products of the multiscalors epiphenomena
with alternative monoscale and multiscale approaches to gain more insight concerning the
information content in the original data. Nevertheless, for the purposes of this research, selected
operators are applied through multiscalors in a single level only. The selected operators are

described next.

3.8.1 Cumulative Sum

Consider x[n], defined to be an ordered sequence of numbers, where index n is an
integer in the range —oo to +oo. The purpose of n is to keep track of the relative ordering of
values in sequence x. When a specific time value is associated with n, such as nT seconds, then
the sequence x[n] becomes a discrete-time signal [LaGo018].

There are plenty of known discrete-time signals, signal properties (e.g., energy and

power, summable sequences, periodic sequences, or sum of periodic sequences), and signal
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operations (e.g., time shift, time reversal, time scaling, or cumulative sum, or backward

difference). This thesis considers the cumulative sum operator of a discrete-time signal x[n],

which is itself a function of the independent time index n. The cumulative sum is defined as

([CPFS014], [LaGo018], and [Page954]):
s=Y" xn] (3.15)

In this research, only the pure cumulative sum is considered and alternative complex
measures (e.g., scoring systems, control charts, change detection monitoring) are kept aside as

the discrete sum S reflects the digital content accumulated over time.

3.8.2 Zero-Crossing Rate

Many signals are quasistationary, as is the case of speech, and their properties (e.g., level-
crossings, zero-crossings, energy, and information theoretic related features) are often studied by
segmenting them in windows that are stationary within that specific window [ShSe012]. Even
though speech is a non-stationary signal, it remains nearly unvaried for small segments (i.e., for
10 to 50 ms) [JaBMO13].

Stationarity ranges from wide sense stationarity (WSS) to strong sense stationarity
(SSS). New and versatile approaches that do not fall in extremes have been proposed in the
literature as is the case of finite sense stationarity (FSS) [TeKiO13b].

An intuitive indication of how “busy” a signal becomes can be estimated by the number
of times it crosses either the zero-activity line for alternating signals, or some other reference
level for oscillating signals. The zero-crossing rate (ZCR) is defined as the number of times the
signal crosses the reference within a specified interval.

In its simplest form, the frequency of a sinusoid is estimated as half the number of zero-
crossing counts per second [ShSe015]. More formally, ZCR is a measure of “frequency

composition” of a signal, which is more valid for narrowband signals such as sinusoids
[JaBMO13]. A sinusoid of frequency f, sampled with a frequency f, produces f,/ f, samples

per cycle, which possess two zero crossings per cycle. This results in the ZCR defined as

[JaBMO13]
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2/
f,

The interpretation of the average ZCR for broadband signals is less precise. However, the

Z= (3.16)

use of short-time average ZCR could provide good estimates of the signal properties [JaBMO013].
The definitions of ZCR for discrete computation is defined as [JaBMO013]

Z,= Z:Ho [|Sgn(X[n]) —sgn(x[m —1])|:| win—m] (3.17)
where the sgn(e) is defined as the sign function and w[e] represents the window containing a

stationary segment of the signal under analysis.

The sign function is represented as [JaBMO013]

sgn(x[n]) = { ]2 0 (3.18)

-1, x[n]<O
and the stationary window is [JaBMO013]

wln] = (3.19)

L, 0<n<N-1
2N

0, otherwise.

where N represents the total number of samples contained in the window. An estimation of the
frequency content of a signal is provided by the ZCR by the occurrences, in a given time
interval/frame, of a sign change in a given signal. The rate at which zero crossings occur is a
simple measure of the frequency content of a signal.

Zero crossing rate is very useful for discriminating a broadband signal from noise.
Furthermore, ZCR helps in determining the beginning and the end of segments of interest in a
signal [JaBMO13].

Research work related to zero-crossing rate has been published at two international
conferences ([TeKiOl6a] and [TeKiO16b]) and in two journals ([TeKiOl6¢] and [TeKiO16d]).
This research work relates to: (i) The generation of processes with the characteristics of Lévy
walks, which reflect the dynamics of Internet traffic and its relevance in cybersecurity is
portrayed, (ii) the direct computation in the time-domain for obtaining the ZCR and its

advantages for real-time implementations of feature extraction of signals, (iii) the insight
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provided by the ability of ZCR to identify sections in a composite signal, and (iv) the practical
application of ZCR in cybersecurity by inspecting a dataset containing a documented DDoS

attack where the beginning and the end of the cyberattack were identified clearly.

3.8.3 Entropy

Information theory addresses two fundamental concerns in communication theory: (i)
The ultimate data compression through enfropy measures, and (ii) the ultimate transmission rate
of communication through the channel capacity (computed from the noise characteristics of the
channel). Reliable communications are bounded between the compression limit, entropy, and the
data transmission limit, channel capacity. All data compression schemes, and modulation
schemes exist within these limits.

Entropy is a probabilistic measure, oriented to determine redundancy, of the spread of
probabilities of individual symbols in the source with respect to the equal (uniform) symbol
probabilities. When the source entropy is maximum due to equal probabilities of the source
symbols there is no redundancy in the source alphabet. This random, patternless like, source
cannot be compressed without a loss of information. The difference between entropies from the

source and the code determines the quality of the code.

3.8.3.1 Self-Information

Information is interpreted as the reduction in uncertainty of the frequency of occurrence
for a symbol representing an event. Stated in another form, uncertainty reduction causes

information gain.

The Shannon’s self-information [/ ; of the n; event is defined as

I(O'j) = IJ. £ log, L =—log, Pj [information unit, or u] (3.20)
j

where p; = p(o;) for brevity and denotes probability, and b in the Shannon’s entropy sense is

the size of the coding alphabet I'. required to code each symbol. Since each symbol probability

is confined to the unit interval p; =10, 1], the self-information is non-negative / ; =10, eo]. Fora

binary coding alphabet I'. ={0, 1}, b=2, and u =bit (binary digit), while for natural base
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b=e, u=nat (natural digit), and for =10, and u =Hartley [Kins004]. Self-information

measures the information content carried by a specific symbol provided by an information
source. It is observed that the symbols with smaller probabilities, less common, carry more self-
information, while the symbols with higher probabilities, more common, carry smaller self-
information. Self-information is also known as surprisal due to its relation to surprise. The
higher the self-information is, the higher is the potential for surprise. Compactly, self-
information measures the importance, inversely proportional to probability, of a specific symbol

provided by a source.

3.8.3.2 Shannon’s Entropy

Shannon’s entropy concept, now a fundamental notion through the sciences, is of
particular importance for communications and cryptography [Stin006]. Shannon’s theorems state
how reliable communications are and how much meaningful information is conveyed over a
given channel ((BBMWO014], [Shan948], and [Shan949]).

Shannon’s entropy also provides a measure for the average self-information, regardless of
the message size. Entropy is then a weighted average of probabilities [Kins004]. It is then

defined as the average (expected) value of self-information

Ny
H2Y p(c)I(o)) (3.21)
j=1
Ny
H=-) p(c)log, p(o)) (3.22)
j=1
H==3" p(j)log, p()) (323
j=1
H :—ZS: p;log, p; [u/symbol] (3.24)

j=1
where N, is the size of the source alphabet X ={o,, 0,, ..., O'NS} and p(o;)=p(j)=p,; is the
probability of the j” symbol taken from the corresponding pmf f , =[P, Pys s Py, 1. When

all the probabilities are equal, the weighted average turns into a simple average. This entropy

function is non-negative and concave in f, ([CoThO05] and [Kins004]). It is important to
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highlight that plenty of other entropic measurements exist. The classical Shannon’s entropy has

been considered in this research as a base case.

3.9 Features Availability

Kulikowski and Weiss [WeKu991] discussed that any learning computer system is at the
mercy of the sample data and the features quality. A given feature ideally should be highly
representative of the raw data phenomena under analysis. However in practice, this varies
depending on the analysis methodologies or techniques used for such analysis. It is assumed that
Kulikowski and Weiss refer to data and features processed in a monoscale setting. The research
work presented in this thesis is multiscale in nature and reflects the Internet/traffic (signals with a
high spiky behaviour) dynamics that permeate into all the scales due to the fractal nature of this
type of traffic. Kulikowski and Weiss consider that features fall within three categories,
completely noisy, somewhat noisy, and completely predictive, but no criteria for determining
clearly how a feature can be classified in any of the three is provided. Nevertheless, one would
expect that applying denoising techniques to the outcomes of a feature, this would acquire a
more predictive nature in the sense that it would become less spiky. The specific research work
introduced in this thesis for feature extraction considers an initial stage of multiscalor operators
(variance or skewness) followed by a secondary operator (cumulative sum, ZCR, or Shannon’s
entropy). After this, denoising would help for increasing the predictive power of the features
utilized, according to the point of view of Kulikowski and Weiss. Imprinting this predictive
nature into the extracted features reduces the number of classes created by ART and provides a
more compact output for interpreting the DDoS attacks occurrences. To the best of the author’s
knowledge, increasing the predictive power of features through multiscalors components would
become the first reported case of applying denoising methodologies on processed data through
multi- and polyscale analysis.

In order to increase the predictive power in the results yielded by multiscalor operators in
the multiscalor components, two denoising techniques are utilized Donoho’s denoising
(multiscale based) and nonlinear filtering (median filter with monoscale nature). These denoising
techniques increase the predictive capacity of multiscalor components by reducing the spiky

behaviour of the extracted features.

Jesus David Terrazas Gonzalez
—48 —



POLYSCALE BASED CYBERSECURITY Ch. 3: Multiscalors Based Feature Extraction

3.9.1 Denoising

There are various wavelet based denoising schemes attempting to reject noise by damping
or thresholding in the wavelet domain [Don0995]. A formal approach of the term denoising has
been proposed by Donoho [Dono995] and has shown how wavelet transforms may be used to
optimally “de-noise” in such interpretation.

An unknown function f on [0, 1] can be recovered from noisy data
d=f(«t)+o,z,i=0, .., n-1 (3.25)

where #,=i/n, z,, is a standard Gaussian white noise (independent and identically distributed

idd
(iid); denoted by z, — N(0, 1), and 0}, is a noise level. Donoho’s interpretation of “denoising”

is setting as a goal the optimization of the mean-squared error
— ~ 2 _ n—1 . .
n 1EHf - fH = Y EF I~ £ n) (3.26)
1'//1
where ¢* represents the I norm (Euclidean distance), E[9] represents expectation, and there is

the condition that with high probability f is at least as smooth as f [Dono995]. Many

statistical techniques optimize the mean-squared error causing a trade-off between bias and

variance keeping the two terms about the same order of magnitude [Dono995].

3.9.1.1 Thresholding denoising procedure

i.  Apply the interval-adapted pyramidal filtering algorithm of Cohen, Daubechies, Jawerth,

and Vial (aka CDJV) to the measured data (d,. /Nn ), obtaining empirical wavelet

coefficients (e,).

ii.  Apply the soft thresholding nonlinearity
17,(y) =sgn(y)(l yI-1), (3.27)
coordinatewise to the empirical wavelet coefficients with specially chosen threshold

t, =7 -0-42log(n)/n, and %, is a constant.

iii.  Invert the pyramid filtering, recovering

(f)t), i=0, .., n—1 (3.28)
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It has been proved that in addition to the good visual quality, the estimator has an
optimality property with respect to mean-squared error for estimating functions of unknown
smoothness at a point [Dono995].

It has been proven that in Donoho’s denoising, two phenomena, smoothing and adapting,
are held with considerably generality. Smoothing holds because with high probability fn is at

least as smooth as f, with smoothness measured by any of a wide range of smoothness measures.

oy

Adapting holds because achieves almost the minimax mean-square error over every one of a

wide range of smoothness classes, including many classes where traditional linear estimators do
not achieve the minimax rate. Some additional properties of Donoho’s denoising are: (i) The
coefficient reconstruction is noise free, (ii) using thresholding or other nonlinearities in the
Fourier domain cannot match its broad adaptive thresholding in the wavelet domain, (iii) it has a
special optimality enjoyed by no other nonlinearity, (iv) it adapts easily to higher dimensions and

to sampling operators which compute area averages rather than point samples, and (v) the noise
level f does not have to be known and it suffices to apply the threshold 7, = 3,6+/2log(n)/n,

where the scale estimate 6 = MAD /0.6745, with the MAD, median absolute deviation, value of

the appropriate normalized fine-scale wavelet coefficients (\/; Wik )k [Dono995].

3.9.2 Non-Linear Filtering

Nonlinear filtering techniques provide a better trade-off between noise smoothing and the
retention of fine details. The non-linear filtering technique used here is median filtering, which
has proven to be useful for the suppression of impulse like or shot disturbances in images and it
falls into classical digital signal processing techniques. Median filtering has interesting
advantages like: (i) Avoiding blurring of edge features, (ii) causing no reduction in contrast since
the output values come from the values present in the neighbourhood, (iii) non-shifting
boundaries, and (iv) having less sensitivity to extreme values (outliers) causing a more efficient
removal [Prat001].

In the one-dimensional form, the median filter consists of a sliding window

encompassing an odd number of pixels. The center pixel in the window is replaced by the
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median of the pixels in the window. The median of a discrete sequence q,, a,, ..., a, for N odd
is that member of the sequence for which (N —1)/2 elements are smaller or equal in value and
(N—-1)/2 elements are larger or equal in value. Hence, the neighbouring pixels are ranked

causing that the median of this sorting would become the new value for the central pixel

[Prat001].

3.9.3 Quantization

Data provided to an ART neural network are required to be presented in the form of a
binary array. Hence, after non-linear filtering one needs to apply a method that would create a
binary array. The method that is followed here is least squares quantization (LSQ), which
utilizes the idea of spacing quantum values closely in the voltage regions where the amplitude of
a digital signal produced by a pulse-code modulation (PCM) system is expected [L1oy982].

The Shannon-Nyquist sampling theorem is at the core of PCM systems. The sampling

theorem asserts that a voltage signal s(¢), —oo <t < oo, containing only frequencies less than W

cycles/s or Hz can be recovered from a sequence of its sample values according to

o

s@)= . s(t)K(t—1;), —eo<t<oo (3.29)

Jj=—o00

where s(z,) is the value of s at the 7™ sampling instant

J .
t.=——, —oo, j,o0 3.30
oW J (3.30)
and where
sin 2zaWt
K({t)=—————, —oo,t,00 3.31
® 27Wt ( )

is a sinc sint/t pulse of the appropriate width [L1oy982].
A pulse-amplitude modulation (PAM) system is based on the sampling theorem alone. A

sequence

v S(T), 8(2,), s(2), ... (3.32)

Jesus David Terrazas Gonzalez
—~51—



POLYSCALE BASED CYBERSECURITY Ch. 3: Multiscalors Based Feature Extraction

of samples of the signal s(7) is sent over a channel. The receiver constructs the pulses K(r—1;)
and adds them together, with the received amplitudes s(z,), as in (3.29), producing an exact

representation of the original band-limited signal s [Lloy982].

In PCM, instead of sending the exact sample values (3.32), the signal voltage range is
partitioned into a finite number of subsets. The information to which subset a sample happens to
fall in is then transmitted to the receiver. The receiver has a source of fixed representative
voltages, quanta, one for each of the subsets. When the receiver is informed about a sample
falling into a subset, it uses its quantum for that subset as an approximation to the true sample
value and constructs an approximated band-limited signal [Lloy982].

The noise signal is the difference between the receiver-output signal and the original
signal. The noise power is the average square of the noise signal. PCM considers the given
number of quanta and certain statistical properties of the signal for determining the subsets and

quanta that are best in minimizing the noise power [L1oy982].

Formally, a quantization scheme consists of a class of sets {Q,, O,, ..., O,} and a set of
quanta {q,, ¢,, ... q,}. The {Q,} are any v disjoint subsets of the voltage axis which, taken

together, cover the entire voltage range. The {gq,} are any v finite voltage values. The number v

of quanta is to be regarded throughout as a fixed preassigned number [L1oy982].

A partition {Q,} is associated with a label function ¥(x), —oo < x <oo, defined for all

(real) voltages x by

. .. (3.33)
y(x)=1 if x liesin Q,,

y(x)=2 if x liesin Q,,

y(x)=v if x liesin Q,

Therefore, the label a; of the set that a sample s(z;) falls in is defined as

a; =y(s(t;)), —o< j<oo (3.34)

Consequently, the PCM based signal when sent over is then a sequence of labels

ey Ay, Ayy Gy e (3.35)
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where each a; is one of the integers {1, 2, ..., v} [Lloy982].

These labels contain information of the multiscalors based features in a compressed form
and then become the binary code that is utilized as input to the ART neural network. Only the

description of the quantization conceptual framework relevant to this research is provided.

3.10 Summary

The need for multiscale signal analysis is extensively discussed during this chapter. The
discussion is built up around the monoscale analysis limitation for accessing information present
in the long-range dependencies of processes, which is something that multiscale analysis, by its
fractal nature, can surpass. The discussion for signal analysis based on multiscalors focuses in
network security by aiming to detect the presence of DDoS attacks.

This chapter provided an in depth description of the distinct required subsystems for
feature extraction. The sensing of the Internet/network traffic by sniffing packets is the means of
signal acquisition. Context about monoscale analysis and its limitations is provided by
highlighting that energy based metrics are inadequate for resolving information present in long-
range dependencies. The critical importance of multiscale analysis for sifting information
available in long range dependencies then becomes apparent. The novel methodology
“multiscalors”, allowing arbitrary operators and signal analysis methodologies to be functional in
the multiscale analysis context, is introduced as the main contribution of this research work. The
statistical moments (variance and skewness) used as multiscalors operators and the signal
analysis methodologies (cumulative sum, zero-crossing rate, and Shannon entropy) applied to the
multiscalors components are presented in detail. Lastly, the methodologies applied to the
extracted features (Donoho’s denoising, non-linear filtering, and quantization) in order to make
them readily available for to further by machine learning stages (i.e., ART). The next chapter

elaborates deeply on computational intelligence methodologies considered in this research.
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CHAPTER IV

COMPUTATIONAL INTELLIGENCE APPROACHES

UTILIZED FOR DISTRIBUTED DENIAL OF SERVICE

DETECTION

In machine learning, supervised, semi-supervised or hybrid, and unsupervised are three
ways to classify anomalous packets from normal packets. Supervised methods have the privilege
of differentiating anomalous and normal data from a labelled dataset. Unsupervised methods, on
the other hand, segment a dataset into different clusters where the strength of the clustering
usually lies within the algorithm itself [DaVS020]. Appendix C covers computational
intelligence approaches in depth.

Ensemble learning, i.e., combining multiple classifiers to form a more powerful classifier,
has been well-studied in the machine learning community and it has been proposed for some
cybersecurity applications in DDoS detection. Ensembles are selected in some cases because
they usually provide better results than a single classifier and many classification problems have
benefited from the idea of combining multiple classifiers. Appendix D provides more
information about ensemble classifiers [DaVS020].

Both surveys of machine learning based intrusion detection approaches (e.g.,
[HOHRO15] and [AZZS019]), and a systematic literature review and taxonomy of DDoS attacks
[YuUSO019] are necessary to know the machine learning landscape for both IDS and DDoS. An
interesting survey about DDoS mechanisms against DDoS is found in [ZaJTO13].

Yusof and Selamat [YuUSO019] perform an in-depth analysis on DDoS attack types as
well as on existing DDoS detection and attack prediction techniques. Also, factors behind the

DDoS attacks are identified. Moreover, they have classified and ranked 53 articles from different
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digital libraries (e.g., Science Direct, ACM Digital Library, IEEE Xplore, Springer, and Web of
Science) related to DDoS detection and prevention. It was found that 30% of these articles use
machine learning techniques as their detection or prevention strategy [DaVS020].

Alessa et al. [AZZSO019] reviews and analyses the research landscape for IDSs,
considering DDoS and other cyberattacks, based on DL techniques. Alessa et al. [AZZS019]
focus on 68 articles with the keywords ‘deep learning’, ‘intrusion’ and ‘attack’ and their
variations in four major databases, namely Web of Science, Science Direct, Scopus, and IEEE
Xplore. Three proportions are found: Developing an approach for evaluating or identifying
intrusion detection techniques using the DL approach (72.06%), studying/applying articles to the
DL area (22.06%), and discussing frameworks/models for running or adopting IDSs (5.88%)
[AZZS019]. Three phases are proposed for detecting DDoS: Data collection and training, feature
extraction and selection, and DL detection [AZZS019]. This phases, even though not available at
the beginning of the research proposed here and being recently proposed, fit into research work
carried in this thesis.

Research work that considers plenty of machine learning approaches are available and is
well documented in the literature. Detection performance on some of the approaches already
surpass 95% of precision [HOHROI15]. However, some of the training datasets used in the
literature contain 99% of normal data and 1% of anomalous data to make their model run
efficiently and accurately in detecting anomaly by learning from normal behaviour [HOHRO15].
In perspective, the dataset studied here contains 46% of anomalous data as a DDoS attack.

It is important to reiterate that the research herein developed and presented focuses on the
development of deep robust features and on the usage of ART, as core machine learning
approach. This premise aids mainly for understanding the mechanisms behind ART in-depth,
which could allow envisioning methods for tuning the vigilance parameter. This knowledge gain
creates the possibility of extrapolating the lessons learned regarding alternate machine learning
approaches and also further improves the precision and recall results that would be obtained
throughout this research.

The research presented in this thesis explores DL from the following views: (i) The depth
of the computing stages, a novel viewpoint in DL investigated here, (ii) the extraction of robust

features via multiscalors, a new methodology, through applying multi- and polyscale analysis,
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and (iii) performing classification of the abstract features obtained via adaptive resonance
theory, an unsupervised machine learning approach used in the context of multi- and polyscale
analysis based DL for the first time.

The features obtained from the deep architecture by multiscalors (capable of extracting
robust and refined abstract features) are used in the detection of classes of interest through ART
as the machine learning approach.

This could be seen as a novel approach in DL, and might be even considered as an
element of a new cognitive approach to DL. This argument appears to be justified because DL
could be safely regarded as the study of models that involve a greater amount of composition of
either learned functions or learned concepts than traditional machine learning [GoBCO016]. The
novel composition of “features of features” (FOF), as a cognitive element of DL, carried
throughout this research captures a clearer and more refined view on the behaviour of the
Internet traffic under study. Two machine learning models based on ART, ARTI1 and
FuzzyART, are implemented throughout the thesis and a comparison of performance between

them is established.

4.1 Adaptive Resonance Theory

Human memory has the ability to learn new things without forgetting things learned in
the past (e.g., recognizing parents after not seeing them for some time while learning new faces
in the interim). This capability is highly desirable in ANNs as many of them tend to forget old
information when incrementally adding new information [FrSk991].

An ANN usually performs pattern-classification operations by being trained with a set of
exemplars or patterns. Training allows the encoding of information in the ANN by adjustment of
the weight values. Once the training is deemed adequate, the ANN is put into production and no
additional weight modification is permitted. This operational scenario is acceptable provided the
problem domain has well-defined boundaries and is stable. Unfortunately, in many realistic
situations, the environment is neither bounded nor stable [FrSk991].

If an ANN is presented with a previous unseen input pattern, there is generally no built-in
mechanism for the network to be able to recognize the novelty of the input. The ANN does not

know that it does not know the input pattern [FrSk991].
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The previous discussion describes practically the stability-plasticity dilemma (SPD)
coined by Stephen Grossberg. The SPD can be stated as a series of questions: How can a
learning system remain adaptive (plastic) in response to significant input, yet remain stable in
response to irrelevant input? How does the system know to switch between its plastic and its
stable modes? How can the system retain previously learned information while continuing to
learn new things? In response to such questions, Grossberg, Carpenter, and other colleagues
developed adaptive resonance theory, which seeks to provide answers. In fact, an approach to
solve the SPD is to add a feedback mechanism between a competitive layer and the input layer of
a network. This feedback mechanism facilitates: (i) Learning of new information without
destroying old information, (ii) automatic switching between stable and plastic modes, and (iii)
stabilization of encoding of the classes done by the nodes. This feedback mechanism is exploited
by ART and variants, (input vectors in a binary, analog or grayscale, or fuzzy form), that are
suitable for pattern-classification problems in realistic environments [FrSk991].

ART gets its name from the way in which learning and recall interplay in the network. In
physics, resonance occurs when a small-amplitude vibration of the proper frequency causes a
large-amplitude vibration in an electrical or mechanical system. In an ART network, information
in the form of processing-element outputs reverberates back and forth between layers. If the
proper patterns develop, a stable oscillation ensues, which is the neural-network equivalent of
resonance. During this resonant period, learning, or adaptation, can occur. Before the network
has achieved a resonant state, no learning takes place, because the time required for changes in
the processing element weights is much longer than the time that it takes the network to achieve
resonance [FrSk991].

A resonant state is attained if: (i) The network had learned to recognize a previous input
vector, then a resonant state would be achieved quickly when that input vector is presented.
During resonance, the adaptation process reinforces the memory of the stored pattern; (ii) the
input vector is not immediately recognized, and then the network searches through its stored
patterns looking for a match. If no match is found, the network enters into resonant state
whereupon the new pattern is stored for the first time [FrSk991].

Thus, the ART neural networks respond quickly to previously learned data, yet remains

able to learn when novel data are presented. Grossberg has focused mainly on modelling actual
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macroscopic processes that occur within the brain in terms of the average properties of
collections of the microscopic components of the brain (neurons). Thus, a Grossberg processing
element may represent one or more actual neurons [FrSk991].

ART was developed from the observation of biological phenomena, regarding vision,
speech, cortical development, and cognitive-emotional interactions. This theory is based on three
biological principles highlighted by the following characteristics: (i) Signal normalization.
Ability of biological systems to adapt themselves to environments that change all the time (e.g.,
the human vision system can adapt to different amounts of light; (ii) Contrast intensification.
Capability of identifying subtle details in the environment through successive observations (e.g.,
the respiratory system can perceive, almost instantly, a clean environment that began being
polluted with carbon monoxide); and (iii) Short-term memory. Capacity to temporarily store
sensorial information from the contrast intensification mechanism, before it can be decoded for
decision-making [NHABO17].

One of the main features of ART networks is the ability to learn new patterns, when new
samples are presented, without destructing previously extracted knowledge. This characteristic is
associated with the plasticity/stability dilemma, where the system is flexible, adaptive, enough to
incorporate environmental changes, whereas it must also be stable to preserve the knowledge
already gained. This distinctive quality makes it one of the best ANNs architectures, which can
deal with the stability/plasticity dilemma in a coherent and systematic way. Other distinctive
characteristics are the following: (i) ART architecture has biological plausibility, which is
principled by the signal normalization, contrast intensification, and short-term memory
principles; (ii) the network training is always stable and after this stabilization (convergence), the
presentation of a pattern that fits one category already created, directly activates the neuron
corresponding to that group, with no need to initiate the search phase. In this case, the network
works as an autonomous associative memory; (iii) the selection of the winner neuron in the
recognition phase is also always stable. Once an input vector is associated with a group
represented by a neuron in the recognition layer, this same unit always wins the competition,
regardless of some eventual posterior adjustment in the forward or backward weights when a
new training sample is presented; (iv) the occurrence of adaptive resonance depends, mainly, on

how close the input sample is to the vector that represents the cluster, indicated by the winner
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neuron. If the distance, weighted by the vigilance parameter, is acceptable, then, an adaptive
resonance state is achieved, what in biological terms, corresponds to the gain and extension of
neural activity; and (v) the level of details in each new class included in the network structure is
based on the vigilance parameter value. The larger the value, the finer details and distinctive
characteristic are considered from the patterns to be inserted [NHABO17].

Unlike some other neural architectures, it is verified that both the training phase and the
operating phase of an ART network are included in the same algorithm, since its topology
always needs to perform a similarity test to categorize the input sample. Furthermore, this
learning is processed in an unsupervised manner, allowing the inclusion of knowledge inside
classes that are already represented by existing neurons, or, evaluating if there is a necessity for
the inclusion or enablement of other neurons as the samples bring new relevant knowledge

[NHABO17].
4.1.1 ART: Equations Descriptions

4.1.1.1 Type-1: STM and LTM States Solved with Differential Equations

When the ARTI1 architecture was first reported, it was presented as a biologically
inspired neural system described by a set of short-term memory (STM) and a set of long-term
memory (LTM) nonlinear and coupled time domain differential equations. STM equations
described the instantaneous activation evolution for the neurons as a function of the externally
applied inputs and the present set of interconnection weights, while LTM equations described the
time evolution of the adaptive interconnection weights, which store the knowledge and
experience of the complete system. In ART, STM equations settle much faster than LTM
equations [SeLLAO12].

4.1.1.2 Type-2: STM States Solved with Algebraic Equations and LTM

States Solved with Differential Equations
In an ART system, if the input patterns are held stable long enough so that STM
equations reach their steady state, this steady state can be computed directly without solving the
STM differential equations. The STM steady state can be obtained by solving a set of algebraic

equations, properly sequenced. Hence, in this description of an ART system, the STM state is
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computed by solving algebraic equations and the LTM evolution is computed by solving the

corresponding differential equations [SeLA012].

4.1.1.3 Type-3: STM and LTM States Solved with Algebraic Equations

If input patterns are held constant long enough so that both STM and LTM equations
settle to their respective states, then the ART system operation can be described by solving
properly sequenced algebraic equations only. This description corresponds to the particular case
called Fast Learning in the original ART1 paper. When the FuzzyART, ARTMAP, and
FuzzyARTMAP algorithms were reported, they were described in their Type-3 or Fast Learning
version, or, at the most, a Slow Learning LTM update was considered in which finite difference
equations instead of differential equations are used [SeLAO012].

Most of the reported work on ART architectures and their applications is developed as
software algorithms, running on conventional sequential computers. However, the parallel nature
of these architectures and the simplicity of its components calls in a natural way for hardware
implementations, similar to what nature has done with brains in living beings. Also, the fact that
these ART, its variants, and other architectures can be combined hierarchically to build higher
level cognitive systems that solve complicated engineering problems (e.g., robotics, vision
systems and speech recognition), makes it even more attractive to develop a set of hardware
components to be used in more complicated and hierarchically structured systems. There have
been some attempts in the past to implement in hardware some of the aspects of ART
architectures. However, they were intended to emulate Type-l or Type-2 descriptions of ART,
and the results were bulky and inefficient pieces of hardware that could only realize part of the
functionality of the powerful ART algorithms [SeLA012].

The author of this thesis gathers that the Type-3 description of ART, as it is behavioural,
is preferred in most implementations targeting conventional sequential hardware, and specialized
applications in very large integrated circuits (VLSI) or application-specific integrated circuits

(ASIC).
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4.1.2 ART: Topological Distinctions

4.1.2.1 ART1

The first ART neural network model appeared in the open literature in 1987 and is known
as ARTI. It is an unsupervised learning neural clustering architecture whose inputs are patterns
composed of binary values and it groups them into categories according to a similarity criterion
based on Hamming distances, modulated by a variable coarseness vigilance criterion. As a result,
a set of extraordinary mathematical properties arises, rarely present in other algorithms of similar

functionality [SeLAO012].

4.1.2.2 ART2

Additionally in 1987, almost simultaneously to the ART1 publication, a similar algorithm
named ART2 was published intended to cluster input patterns composed of analog valued

(continuous) values. It is relatively more complicated than ART1 [SeLAO012].

4.1.2.3 ART3

Presented in 1990, this ART topology is configured with binary inputs or analog inputs
(continuous) and unsupervised training that uses multilevel topology and the chemical properties

of neurotransmitters for the searching process of a better solution [NHABO17].

4.1.2.4 ARTMAP

Introduced in 1991, ARTMAP are supervised learning architectures that can be trained to
learn the correspondence between an input pattern and the class to which it belongs, analogously
to the popular backpropagation (BP) algorithm. The advantage of these ARTMAP architectures
with respect to BP are mainly that they converge in a few training epochs (while BP converges in
the order of thousands to even hundreds of thousands) and they are able to learn more
complicated problems for which BP is inadequate [SeLA012]. ARTMAP is configured with both
binary inputs or analog inputs and supervised training in real time and it requires two ART

networks in its structure to function [NHABO17].
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4.1.2.5 FuzzyART

Similarly introduced in 1991, a FuzzyART architecture was reported which extended the
original ART1 functionality by generalizing its operators using fuzzy set theory concepts. The
result is that FuzzyART can take analog valued patterns as input while keeping the original

mathematical properties present in ART1 [SeLAO012].
4.2 Computational Intelligence Algorithms Applied

4.2.1 ART1

The ARTI1 architecture is a massively parallel neural network pattern recognition
machine which self organizes recognition codes in response to a sequence of binary valued input
patterns. The system receives a sequence of binary valued input patterns clustering them into a

set of categories in an unsupervised way [SeLAO012].

4.2.1.1 ART1 Architecture

The topological structure of an ART1 system is shown in Fig. 4.1. It consists of two
layers of neurons or processing cells named F1, comparison layer, and F2, recognition layer.

Each neuron in layer FI receives the binary value of an input pattern. There are N neurons in

layer F1. Hence, the input pattern I, (i=1, ..., N) has N binary values ‘0’ or ‘1’ [SeLA012].

F2 (WTA)
OO ) —r=
td T
Zﬂ j
Zbu
w |k
(N R A A
I I I I, Comparator

Fig. 4.1. Topological structure of the ART1 architecture. From [SeLA012].
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Input patterns presented to layer FI cluster into categories, and a neuron in layer F2

represents a possible category. Each neuron in layer F/ is connected to all neurons in layer F2

through bottom-up synaptic connections of strength zfj’.”. Index i indicates that the connection

goes from the i™ neuron in layer F1 to the jth neuron in layer F2. Bottom-up weights zfj’.” are of

continuous nature and they may take any value within the bounded interval [0, 1] [SeLA012].

The input to the /™ F2 neuron is given by N

N
T,=Y z'l, forj=1, .. M (4.1)
i=1

l

where M denotes the number of neurons in the F2 layer. The terms 7, known as choice

functions, represent a certain “distance” between the stored pattern z' =z, z,%, ..., zy;, and

input pattern 1 =(1, 1,, ..., I;) [SeLAO12].
Neurons in layer F2 operate in such a way that their output y, is always ‘0°, except for
the neuron receiving the largest 7, input from the F7 layer. This F2 neuron, let us call it J, has

output ‘1’ [SeLAO012],

y, =1t T) =max {T;} )
Yies =0
Each F2 neuron is connected to all F1 neurons through top-down synaptic connections of

td
ji

[SeLAO12]

strength z', which are binary-valued. Thus, the /™ FI neuron input from the F2 layer is

M
V= zzjfl,’yj :z;‘f, fori=1, .., N (4.3)
j=1

A vigilance subsystem, denoted as the comparator in Fig. 4.1, verifies the appropriateness

of the F2 neuron designating the active category. This vigilance subsystem compares the norm of

vector X=(x,, X,, ..., X, ), defined as [SeLA012]

x, =VI, or X=VNI=z} NI (4.4)
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4.2.1.2 ART1 Dynamics

The time evolution of the state of all F/ and F2 neurons is governed by a set of time
domain nonlinear and coupled differential equations, called short-term memory equations, and

the present state of F'/ and F2 neurons is called short-term memory. The time domain evolution

u

of the set of weights zfj’. and zz‘f is governed by another set of time domain nonlinear differential

equations called long-term memory equations, and the set of values stored in weights zg” and z’/‘f

is called long-term memory [SeLAO012].

The time constant associated to the LTM equations is much slower than that of the STM
equations. Consequently, if an input pattern I is presented to the F/ layer, the STM settles first.
If the input pattern I is held constant at the FI layer input until all STM equations and the
vigilance subsystem settle, it is possible to describe the STM dynamics using an algebraic
description of the steady state of the STM differential equations. Furthermore, if the input pattern
I is held constant until LTM settles, then it is also possible to describe the LTM dynamics using
algebraic equations that define the steady state of the LTM differential equations. It is in this
case that the dynamic description of the ARTI architecture is referred to as “Fast Learning
ART1”. This type of description is the one used in this thesis. The Fast Learning algorithmic
description of the ART1 architecture is shown in Fig. 4.2. Note that only two parameters are
needed, p which is called the vigilance parameter and takes a value in the interval [0, 1], and
parameter L which takes a value larger than ‘1’ [SeLAO012].

First, all interconnection weights are initialized. These weights store the knowledge or
experience of the ART1 system. Therefore, after initialization they do not hold any information
on categories, clusters, nor past input patterns provided. Bottom-up weights are initialized to

zf}” =L/(L-1+N) and top-down weights to z;j’ =1. Now the system is ready to receive its first

input pattern I=(1, I,, ..., I,) where I, may be either ‘0’ or ‘1’. At this point, the input to

1

each neuron in the F2 layer is computed [SeLA012],

N
T, =Y I, forj=1, .., M (4.5)

i=l
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Initialize Weights

z4 =1

ji

bu L

z, =————
7 L-14N

!

Read Input Pattern

] I=(1, 1, ... 1)

!

N
T, =Ez§“[i

i=1

Winner-Takes-All

y,=Lif T, =max‘/.{T/.}

y;=0 if j=J

Vigilance
Parameter

pll| = [1nz!]

Update Weights
td _ td
2, (new)=1nz’ (old)

L 7' (new)
L—1+] Z‘Jd(new) |

bu _
2 (new)=

Fig.4.2. Algorithmic description of ART1 functionality. From [SeLAO012].

The neuron receiving the largest input 7, is activated in the F2 layer, while all others are

deactivated. Thus, if 7, is the maximum of all 7, inputs, then y, =1 and y,, =0. Once an F2

node is active, the vigilance subsystem checks if it is appropriate. The vigilance subsystem action

is characterized by the vigilance parameter o set to a value in the interval [0, 1]. If the following

condition is satisfied [SeLAO012]
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td
< % (4.6)
where
N
IT=>"1,
= 4.7)

N
dy_ i
ITNzy 1=) 1.2
i=1

The active F2 category neuron J is selected for LTM update. Otherwise, the F2 neuron J
is shut off, by making 7, =0, and a new F2 neuron becomes active. The active neuron is

checked by the vigilance subsystem and it is deactivated if it does not satisfy its condition. This
process continues until an active F2 neuron meets the vigilance criterion. Once a neuron in F2 is
found the bottom-up and top-down connection weights related to this node are updated according
to [SeLAO012]
td td
z,; (new) = z;; (old)1,
. L 7 (new) (4.8)
7 (new) = 4
L—1+12z; (new)|

or, in vector notation [SeLA012]

z} (new) =1Nz" (old)
wd 4.9
z) (new) = Lz, (,Zlew) “2
L—1+1Z7 (new)|

Now the system is ready to receive the next input pattern [SeLA012].

If an F2 category neuron j has not yet been chosen for category storage it is considered as

td
ji

an uncommitted neuron and its weights zf;“ and z9,i=(, 2, ..., N), still preserve their

initialized values. On the other hand, if an F2 neuron has already been selected, at least once, for
storage, it is referred to as a committed neuron. Note that initially, since all weights are equal, the

first time all F2 inputs T, are computed with equation (4.5), they are identical, and it is not
possible to choose a maximum among them. This can be solved by making M =n_+1, where n,

is the number of committed neurons. This way, initially n. =0 and M =1, which means that
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only the first F2 neuron is available for competition. As soon as this neuron is chosen for storage

n.=1 and M =2, so that next time the competition is between one committed and one
uncommitted neurons. Once the second neuron is chosen for storage n, =2 and M =3, and so

on. The competition in the F2 layer is always between the n. committed neurons and one

uncommitted neuron. Note also that an uncommitted neuron always satisfies the vigilance

criterion for any p e [0, 1] because [SeLA012]

ﬂ td
w—m—

=—=1> 4.10
11 |11 p ( )

Therefore if, at a given time, the maximum 7, corresponds to an uncommitted neuron,

this neuron would be chosen for storage and become committed [SeLA012].

4.2.1.3 ART1 Properties

The ART1 architecture possesses interesting properties, which set it apart favourably
from other clustering algorithms. Some of these properties are listed and explored subsequently

[SeLAO12].

4.2.1.3.1 Vigilance or Variable Coarseness

One of the most important characteristic features of ART1 is the possibility to externally
tune the coarseness with which categories should be formed. ART1 contains a vigilance
subsystem, controlled by a vigilance parameter p, that provides this functionality [SeLA012].

The vigilance parameter p can be set to any value in [0, 1]. The smaller p is set, the
more input patterns are clustered together into the same category, which means a higher
generalization capability. The higher o gets causes more attention to be paid to differences
among input patterns, which produces a larger number of categories [SeLA012].

By looking at the algorithmic description of ART1 in Fig. 4.2, one may wonder what the
purpose of the vigilance subsystem might be. Why do one need to check whether or not

pIIl < IINZY | (4.11)
if category J has already been selected by the Winner-Takes-All? The answer is related to the

self-scaling property discussed next [SeLAO12].
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4.2.1.3.2 Self-Scaling
This property allows features to be treated as either noise or signal, according to context.

For example, consider two patterns I, and z* differing only in one feature, but it is a feature out

of three. Therefore, it seems reasonable to classify each pattern as belonging to two different

categories. In this case, the feature that makes the difference is considered a ‘critical feature’ or

signal. Now, consider two patterns I, and z} differing in one feature, but now it is a mismatch

of one feature out of 15. Therefore, it seems reasonable to classify them into the same category.

In this case, the feature that makes the difference is considered as ‘noise’ [SeLAO012].

Patterns I, and I, are considered new input patterns and patterns z and z’
characterize stored categories. If pattern I, is presented to the F/ layer and the category
characterized by weight template z" received the largest input T, then the vigilance subsystem
would accept this category for pattern I, if [SeLAO12]

td
< % - % —0.6666 (4.12)

Consequently, if parameter p is initially set to a value higher than 0.666, pattern I, would not
be stored into the category characterized by weight template z'/ [SeLA012].
For pattern I, the condition would change to [SeLA012]

td
< 'Ibﬂ—zblzﬂzo,%g (4.13)
LI 15

Hence, if for example the vigilance parameter is set to p =0.85 patterns I, and z’

would have been clustered together, but patterns I, and zf would not. These examples also
illustrate the role of vigilance parameter p . The larger or closer it is to ‘1°, the more categories
are formed, and more attention is paid to the ‘details’ that distinguish the input patterns. The
smaller p is, or closer to ‘0’, less attention is be paid to ‘small details’ and more input patterns
are be clustered into the same categories, resulting in a smaller number of categories and more

generalization capability, for the same sequence of input patterns [SeLAO12].
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4.2.1.3.3 Self-Stabilization in a Small Number of Iterations

All the interconnection weights in the system that are subject to learning reach a
stationary value after a finite number of presentations of a sequence of arbitrarily many and
arbitrarily complex binary input patterns [SeLAO12].

Initially, when a category j is uncommitted, it stores a template with all its elements

z’/‘l’ =1. When category j becomes committed by an input pattern I, it loses the elements z’/‘f such
that the corresponding I, =0, [SeLA012]
2! (new) = ' (old)1, (4.14)

Hence, each category j progressively loses elements. However, the number of elements a

category can lose is at most N. Consequently, if we denote as n; the number of times the weight
template z’;’ of category j is submitted to change, then [SeLA012]

n, <N (4.15)

J
If there are M categories in the system, the number of times the weights in the system are
changed is limited to a maximum of NXM. In practice, the system weights always stabilize in a

reduced number of input pattern presentations [SeLAO012].

4.2.1.3.4 On-line Learning

For many clustering algorithms, given a set of exemplars or input patterns, the clusters or
categories are computed off-Line. If a new exemplar needs to be added, then the system
knowledge has to be erased and retrained with the updated database. off-Line learning means that
learning phase and performing phase are separate phases. In ART1 this does not happen. ART1
can be trained on-Line, in other words, it learns while it performs. Every time a new input pattern
is given, ART1 answers with a category (either committed or uncommitted) and updates the
weights that trigger this category to incorporate the new knowledge. This on-line learning

property makes the ART1 an ideal candidate for real-time clustering [SeLA012].

4.2.1.3.5 Capturing Rare Events

The ART1 algorithm is able to learn and form clusters with input exemplars that appear

very rarely. Thanks to its on-line learning capability, ART1 can learn a rare input pattern with
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only a single exemplar presentation. Since the pattern is rare it solicits an uncommitted node.
The rest of patterns, since they differ significantly from this rare one, would never choose its

category for update, and consequently cause no alterations onto it [SeLA012].

4.2.1.3.6 Direct Access to Familiar Input Patterns

An input pattern I is said to have direct access to a stored category j, if this category is
the first one chosen by the winner takes all (WTA) in the F2 layer, and the vigilance criterion is
met. As the human cognitive system, ART1 has the ability to quickly recognize an object which
is familiar to the system. No matter how many recognition codes (or categories) the system may
store, after stabilization the system always directly accesses the code of patterns that have been

learned, or which are very similar to other input patterns learned previously [SeLAO012].

4.2.1.3.7 Direct Access to Subset and Superset Patterns
Suppose that a learning process has produced a set of categories in the F2 layer. Suppose

that two of these categories, j, and j,, are such that z < z% (this means that if z%, =1 then it
must be 2%, =1, but if z}; =0 then ¥, can either be ‘0’ or ‘1’). In this case z is a subser
template of z’z, or equivalently z, is a superset template of z’;’ . Mathematically, in vector

notation, this can be expressed as [SeLA012],
2N =7 (10

Consider two input patterns I’ and I such that [SeLA012],

1) _ d — td td td
V=2 =(z;, 2;, ... Z;y
“4.17)

td

(2) _ jtd _— td td
| =z, =(z Lo e Ly

J:
The direct access to subset and superset property assures that input I has direct access

to category j, and that input I'” has Direct Access to category j, [SeLA012].
First, suppose input I is presented to the system. Computing the values of 7, and T},

[SeLAO12],
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- Lzzlliu)zfi _ L‘I(”ﬂl“)‘ _ L‘I(l)‘
B B R 2 B | G I AT &
. (4.18)
) LZ:’:I Ii(l)z_t/'ji B L‘I(D ﬂ1<2>‘ B L‘I“)‘
BUL-1+[2Y] L-1+1?] L-141®)

Since [TV I<IT® 1, it follows that T ;, >T, . (recalling that L>1) and therefore category
J; 1s selected by the F2 layer. This category consequentially is also accepted by the vigilance
subsystem because [SeLAO012]

‘I(” N Zt;f ‘I(”‘
td - ‘I(l)‘ =1z p (419)

Ji
On the other hand, if input pattern I’ is presented at the input [SeLA012],
N 1
IO Y

L1+ L1+ L-141Y)

. (4.20)
- LZiZIIi(Z)Z;;ii _ L‘I(Z) ﬂI(Z)‘ ~ L‘I(Z)‘
BUL-1#]e]  L-1+[1%]  L-14)1?)]

Since function Lx/(L—1+x) is an increasing function with x, it results that 7, > T,

and category J, is then chosen by the F2 layer, and accepted by the vigilance subsystem since
[SeLAO012]

LIS L (4.21)
T |

)

4.2.1.3.8 Biasing the Network to Form New Categories
Independent of the vigilance parameter p, parameter ‘L’ biases the tendency of the
network to form a smaller or larger number of categories. In particular, parameter L biases the

tendency of the network to select a new uncommitted category before a committed one. When an

input pattern I is presented, an uncommitted neuron is chosen before a committed one j if
[SeLA012]
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|
i (4.22)
L-1+\z7| L-1+N
This inequality is equivalent to [SeLA012]
N[ENz|-[2¢|1
L-1> — (4.23)
i _‘I Nz

Therefore, increasing L increases the tendency to select an uncommitted neuron before a

committed one [SeLA012].

4.2.2 FuzzyART

FuzzyART is a clustering neural network architecture which self-organizes recognition

codes in response to sequences of analog or binary input patterns [SeLAO12].

4.2.2.1 FuzzyART Architecture

The FuzzyART architecture is shown in Fig. 4.3. It has the same structure as the ART1
system shown in Fig. 4.1. It consists of two layers of computing cells or neurons F/ and F2, and

a vigilance subsystem controlled by an adjustable vigilance parameter p e [0, 1] [SeLAO12].
Layer FI is the input layer composed of N input cells. Each input cell receives a
component [, €[0, 1] of the continuous input vector I=(I, I,, ..., I,). Layer F2 is the
category layer. It is composed of M cells, each one representing a possible category. Each
category cell receives an input T;. Each FI layer neuron i is connected to each F2 layer neuron
J by a synaptic connection of weight z:/’.”. Each F2 layer neuron j is connected to each F/ layer

neuron i by a synaptic connection of strength zf In FuzzyART zfj’.” = z’/‘f Consequently, from

now on the weights as z, =z, = z; [SeLA012].
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F2 (WTA)
G0 G () (O (O () p—2ee
td T
ji /
Zbu
N S R B R pyly
I, I I I, Comparator

Fig. 4.3. Topological structure of the FuzzyART architecture. From [SeLA012].

The main differences between the ART1 and FuzzyART architectures are: (i) The input
vectors are continuous in nature. Thatis I=(1, 1,, ..., I,,) is an N dimensional vector with each
component [, [0, 1], (ii) there is only one set of analog valued weight vectors
z,=(g;, Zy;» - 2y) for j=1, 2, ..., M, and (iii) in the computation of the choice functions
T;, the learning rule, and the vigilance criterion, the intersection operation (1 (binary AND) is

substituted by the fuzzy MIN operator A (continuous AND) [SeLA012].

4.2.2.2 FuzzyART Operation
Figure 4.4 shows the flow diagram of FuzzyART. Initially in FuzzyART, all the

interconnection weights z, are set to ‘1’. When a continuous input vector I=(1,, I,, ..., I,)) is

applied to the system, each F/ layer neuron receives a component I, € [0, 1]. Then each F2 layer
category neuron receives an input 7;, which is a measurement of the similarity between the

continuous-valued input pattern I and the continuous-valued weight template

Z;=(2y;5 Zyj»> - Tnj) stored in category j [SeLA012],

- ‘I/\zj‘

J

i} (4.24)
ayy +|2 |
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where A is the fuzzy MIN operator defined by (XAY), =min(X,, V), |X| is the ¢' norm

X|=2 1,

choice parameter ¢, takes values in the interval (0, o) [GFBH996]. A small choice parameter

, and @, 1s a positive parameter called ‘choice parameter’ [SeLAO12]. The

of «, =0.01 is sometimes used, as it has been shown that the clustering performance is
generally robust to this parameter [MeTWO013]. However, a value of «,, =1 is also suggested.
The jth F2 cell gives an output y; either with a value of ‘1" if this cell is receiving the largest 7,

input or ‘0’ otherwise [SeLAO012].

Initialize Weights
z. =1
Ji

l

Read Input Pattern

I=(1, 1, ... 1)

|

|IAzA
- J

! a+‘z.‘
J

}

Winner-Takes-All

y,=1if TJ=man{Tj}

y;=0if j=J

Vigilance
Parameter

pll| = [Inz)|

Update Weights

1 z,(new) = B(A Az, (0ld))+(1- B)z,(old)

Fig. 4.4. Algorithmic description of FuzzyART functionality. From [SeLA012].
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=1 if T.=max .{T.
y-] J J{ ]} (4.25)
Y., =0 otherwise

In this way, the F2 or WTA layer selects the category J whose stored template Z, most
closely resembles input pattern I according to the similarity criterion T, =IIAz,|/(a+lz;])

[SeLAO12].
For the winning category J, the vigilance subsystem checks the condition [SeLA012],

Pl < [Taz,| (4.26)
If this condition is not true, category J is discarded by making 7, =0. In the next
iteration, layer F2 selects the category with maximum 7, and the vigilance criterion defined in

the equation above is verified again. The search process continues until layer F2 finds a winning

category capable of fulfilling the vigilance criterion [SeLA012].

When a category J meeting the vigilance criterion is activated, its weights z, are updated
according to the rule [SeLA012]

z,(new)= B, Az, (old))+1- .z, (old) (4.27)
where [, is the parameter known as ‘learning rate’, which is confined to S, €[0, 1]

[SeLAO12].

4.2.2.2.1 Fast-Commit Slow-Recode Option

For efficient coding of noisy input sets, it is useful to set S, =1 when the learning

category J is an uncommitted neuron (fast-commit) and f3,, <1 after the category is committed
(slow-recode) [SeLA012].
With this option, the first-time category J becomes active z,(new)=1I, allowing an

adequate response to inputs that may occur only rarely and in response to which a quick and
accurate performance may be needed [SeLAO012].
When a committed category needs to be updated [, <1, thus preventing features that

have been incorporated into it from being deleted when a noisy or partial input appears. Only a

persistent change in a feature allows deleting it from a category template [SeLA012].
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4.2.2.2.2 Input Normalization Option
A category proliferation problem may occur in some ART systems when the norm of

input vectors |I| can be made arbitrarily small. This problem of category proliferation is avoided

in the FuzzyART system when the input vectors are normalized before being processed by the

system [SeLAO012].

An input vector |I| is said to be normalized when there exists a constant ¥, >0, such
that |I| =y, for all input vectors I. One way of normalizing the input vectors could be to divide

each incoming vector a by its norm |I| =a/ |a|. However, this method may lose the information

about the input amplitude. Consider, for example, the two-dimensional incoming vectors

a, =( 1) and a,=(0.1, 0.1). The first vector a, indicates a high value of the two vector
components, while the second vector a, indicates a low value of both vector components.

However, both vectors a, and a, produce the same normalized input vector I=(1/2, 1/2) and

is treated by the system in the same way [SeLAO012].
To avoid loss of information, Grossberg and Carpenter proposed the complement coding

rule for the normalization of the input vectors. This rule consists of expanding an N-dimensional

incoming vector a=(q,, a,, ..., a,) to a 2N-dimensional vector defined by [SeLA012]
I=(a, a°)=(qa,, a,, ..., ay, a,, a;, ..., ay) (4.28)

where a; =1—aq, for i=1, 2, ..., N. This way, all the input vectors I are normalized [SeLA012]

N N N N
=Y a+Y a =y a+N-Y a=N (4.29)
i=1 i=1 i=1 i=1

but the amplitude information is preserved. The two vectors a, and a, discussed above produce

1=

a, a‘

two different input vectors I, =(1, 1, 0, 0) and I, =(0.1, 0.1, 0.9, 0.9) and are treated by the

system in a different way [SeLAO12].

In the case of a FuzzyART system with the complement coding option, the weight

vectors z, are also expanded to 2N-dimensional vectors [SeLA012],

zj:(uj, u;) j=12, ... M
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(4.30)
which are initially set to z,=(, ... 1), so that u, =(, ... 1), and v, = ..., D. The same
learning rule defined by z,(new)= (I Az, (0ld))+ (- B)z,(old) is still valid for updating the
z; vectors [SeLAO12]. Appendix E includes an explanation about the geometrical interpretation

of complement coding.

4.3 Summary

The adaptive resonance theory underpinnings have been introduced. Specific equation
models are discussed. The topological distinctions for different generations of ART are
presented. The computational intelligence algorithms, ART1 and FuzzyART, applied in this

research are explored in depth.
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CHAPTER V

DESIGN OF EXPERIMENTS

This chapter is dedicated for describing the experiments details. This description follows
the theoretical framework introduced in the previous chapters. The experiments are described
with the required detail so that they are reproducible. The experimental environment available is
also described. This description previous to executing the experiments provides completeness for
the specific route taken in this research to this point. The results of experiments after conducting

them are described in the next chapter.

5.1 Experimental Platform

The experiments are executed in two computer systems: (i) A server with an Intel Xeon
dual (2.93 GHz) microprocessor, 48 GB of RAM memory, Windows Server 2008 R2 Enterprise,
and MATLAB R2019a; and (i1) A Mac Pro with a 2 Quad-Core Intel Xeon (2.4 GHz)
microprocessors, 12 GB of RAM memory, MacOS X High Sierra (10.13.2), and MATLAB
R2019a.

5.2 Experiments Design

The distinct experiments conducted in this section follow directly from the research core.
These experiments are prepared in a modular and incremental fashion so that the relevant points
are serially connected in their respective descriptions. A high degree of care has been put into the
experiments design for having a concrete and very complete analysis framework in which the
research questions would be covered extensively. The experiments addressed here are conducted
in a dataset that contains a real DDoS attack. The dataset utilized in this research contains
enough features (e.g., precursors, attack flows, aggregated attack flows, genuine traffic flows,
and an undisclosed attack) to be considered an example of a preliminary “gold” standard for

detection of anomalies caused by DDoS. Additionally, this dataset is understood and one DDoS
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attack is annotated and extensively described by the source. The full description of the details of
such DDoS attack is included in Appendix F [Depa013].

The notation introduced in Ch. II is followed in the experiments design. The DDoS
dataset analysed in this research with a traffic length N (60 million). The total stream flows are

compounded whether they are either attack flows or genuine flows as defined by
S, =A+G, (5.1
where S, denotes all streams present in the traffic under analysis, A denotes attack flows, G

denotes genuine flows, and i >1 represents multiple attack or genuine flows. All flows, total

stream, attack, or genuine, are sampled within an arbitrary small time interval.

5.2.1 Dataset Insight

5.2.1.1 Dataset Packet Count Integration

The number of packets in the total flows stream are integrated within a time interval of

100 ms [YuO14]. All packets falling into this time interval are accumulated into a packet count.

S, is further simplified to S when singling out a specific component of the traffic as illustrated
in the next case. The number of packets is then represented by the data sequence S.p[n], where

n denotes the n” element in the sampled data sequence. Hence, a realization of the total stream

flows packet count is represented by

S.pln]l={s.pll], s.p[2], ...} (5.2)

5.2.1.2 Dataset Packet Length Integration

Similarly, from the dataset [Depa013], the packets lengths can be integrated within a 1 s
interval. The length of the number of packets falling into these intervals is accumulated. This
accumulated value is utilized to specify the data rate in B/s in this time series. A realization of

the total stream flows packet length is represented by

Si[n]={sI1], sI[2], ...} (5.3)

5.2.1.3 DDoS Attack Packet Count Integration

The number of DDoS attack packets, considering all the attack flows being aggregated,
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are integrated within a time interval of 100 ms [YuO14]. All packets falling into this time interval

are accumulated into an attack packet count. The number of all aggregated DDoS attack packets

th

is then represented by the data sequence A.p[n], where n denotes the n" element in the

sampled data sequence. Hence, a realization of the DDoS attack packet count is represented by

A.p[n]={a.p(1], a.p[2], ...} 5.4

5.2.1.4 DDoS Attack Packet Length Integration

Likewise, the DDoS attack packets lengths can be integrated within a 1 s interval. The
length of the number of DDoS attack packets falling into these intervals is accumulated. This
accumulated is utilized to specify the data rate in B/s in the DDoS attack time series. A
realization of the DDoS attack flows packet length is represented by

Alln]={alll], all2], ...} (5.5)

5.2.1.5 DDoS Attack Flows Packet Count Integration

The number of packets per DDoS attack flow, a per bot contribution to the overall DDoS
attack, are integrated within a time interval of 100 ms [Yu014]. All packets falling into this time

interval are accumulated into a DDoS attack flow packet count. The number of packets per

DDoS attack flow is then represented by the data sequence A.p[n], where n denotes the n"”

element in the sampled data sequence and i denotes the i” DDoS attack flow. Hence, a
realization of a DDoS attack flow packet count is represented by
A.plnl={a,.pll], a.pl2], ...} (5.6)
For the particular dataset subject of this study, the botmaster had the IP address:
145.233.157.236. This botmaster coordinated six bots (IP addresses: 145.233.157.224,
145.233.157.228, 145.233.157.232, 145.233.157.233, 145.233.157.234, and 145.233.157.235)
contributing DDoS attack flows to the DDoS attack. The DDoS attack flows packet counts are

identified by  A.plnl, A,.pln], A,.pln], A,.pln], A;.pln], and A..p[n],  which is in
correspondence with the IP addresses listed beforehand. For more information on the specifics of

the DDoS dataset, please refer to Appendix F. The six bot DDoS attack flows contributions are

isolated from the dataset traffic in order to verify the botnet fingerprint.
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5.2.1.6 DDoS Attack Flows Length Integration

Also, the DDoS attack flows packets lengths are integrated within a 1 s interval. The
length of the number of DDoS attack flows packets falling into these intervals is accumulated.
This accumulation is utilized to specify the data rate in B/s for the DDoS attack flows time
series. Following the same criteria for the IPs list described previously, a realization of the DDoS

attack flows packet length is represented by
A lln]={al[1], a 1], ...} (5.7)

5.2.2 Implementation and Validation of VFD as Reference Methodology

5.2.2.1 VFD Validation through White Noise

In order to verify the correct implementation of the VFD algorithm, it is necessary to
validate that it produces results that correspond to known signals. Two white noise signals are
generated with uniform and Gaussian probability distribution functions. The length for both
signals is 10 million samples. After these signals are generated, they are subjected to determine
their fractal dimension with the VFD. Since white noise is considered a space-filling curve, it is
expected that a fractal dimension with a value of two would be provided upon verification.
Obtaining a fractal dimension of two would confirm that the VFD algorithm is correctly
implemented.

The importance of validating the VFD implementation is necessary because it is planned
to be used in the continuing stages of the proposed research. Hence, the need for verification of

this focal algorithm.

5.2.3 Internet/Network Traffic Pipeline: Signal Conditioning, Analysis,

Feature Extraction, and Classification via Adaptive Resonance Theory

Utilizing the Protected Repository for the Defense of Infrastructure Against Cyber
Threats (PREDICT) DDoS dataset, having a minimal sampling period of 1 us, a signal S.[n]
with a specific integration time of n=1.0486 s is created. This integration time of 1.0486 s is
derived from a frame containing 256 samples, which are derived from frames of 4,096 of

original DDoS dataset sampled at 1 gs (256 frames times 4,096 frames sampled at 1 gs cause an
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integration time of 1.0486 s). The necessary number of samples in a time frame is 4,096 for
allowing the proposed multiscalors methodology to work properly. Additionally, highlighting the
presence of a hit and run (H&R) DDoS attack in this dataset requires a value close to 1 s for

achieving a better visual perception. The signal S./[n] is then digitally processed for denoising,

non-linear filtering, and quantization. At this stage, once the multiscalors epiphenomena have

been quantized a feature vector is set for classification through ART.

5.2.4 Feature Extraction

5.2.4.1 Selected Operators Applied through Multiscalors

Two statistical moments, variance and skewness, are used with the methodology
“multiscalors” previously introduced in this thesis. Since statistical moments provide relevant
statistical properties about a signal stemming from a given process, the variance and skewness
reflect the spread and how biased a pmf is to either side. Since Internet traffic resembles the
probability distribution function (pdf) of Lévy walks, the two referred statistical moments are
appropriate. Extensive publications, related to the resemblance between Internet traffic pmfs and
Lévy walks, by the author of this thesis are available in the literature ([TeKiO16a], [TeKiO16b],
[TeKiOl6¢], and [TeKiO16d]). Hence, the multiscalors methodology utilizing two operators,
variance and skewness, is applied to frames of 4,096 samples in size from the DDoS dataset with

a sampling period of 1 us. From each frame of 4,096 samples, the multiscalors would provide

seven points, which correspond to the vels size from 2' to 2’.

These experiments are very important because they show the application of two
operators, which have been traditionally used only in monoscale analysis, in multiscale analysis.
Once the multiscalors are obtained, secondary methodologies are utilized to analyse the

multiscalor components. These are described next.

5.2.4.2 Experiments with Selected Signal Analysis Methodologies Applied to

Multiscalors Components
The successive application of multiscalors in frames, 4,096 samples in size, creates seven

components (streams) of data. Each of these multiscalors components (streams) is further sliced
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into frames of 256 samples in length so that a secondary operator is utilized. The three secondary
operators selected are cumulative sum, ZCR, and Shannon entropy. Publications, by the author
of this thesis, portraying the use of ZCR are available in the literature ([TeKiO16a], [TeKiO16b],
[TeKiO16c¢], and [TeKiO16d]).

The selection of the sizes of the primary frame (where multiscalors is applied to a 4,096

samples frame in size, which are sampled at 1 gs) and the secondary frame (where the three

secondary operators are applied to a 256 samples frame in size) reflect the dynamics of the
Internet traffic in a time of 1.0486 s. A major significance of the usage of the linked frames (by
subsequently applying multiscalors and secondary operator) is achieving a compression factor of
1.0486x10° for the extracted features prior to using machine learning. It is important to
highlight that bigger sizes (i.e., 1,024 and 4,096 samples) for the secondary frame were
considered and experiments were also conducted on them, but these are not included in this
document. The only size that is documented in this thesis is of 256 samples in the secondary
frame for detecting the presence on a DNS amplification DDoS attack and these reasons are
considered: (i) It is the worst-case scenario considered in this research due to the smaller number
of samples involved; (ii) this frame size enables the ART neural networks to achieve a detection
time close to one second depending on the computing power required to make a decision. ART
based neural networks are favoured in this research due to the inherent unsupervised nature and
overperforming alternate supervised neural networks which typically require hundreds of
thousands of epochs for training and good quality training sets a priori. Hence, ART neural
networks are suitable candidates for real-time applications; and (iii) considering that bigger
frame sizes would provide smoother and even more compressed features to the ART neural
networks at the expense of delaying detection (e.g., four seconds if a frame size of 1,024 samples

is used and 16 seconds with a frame size of 4,096 samples).
5.2.5 Feature Classification

5.2.5.1 Preparation of Feature Vector for ART

Upon achieving the compression of the raw signal through multiscale and polyscale

analysis, the features extracted from the multiscalors epiphenomena are assembled into a feature
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vector. The vector would then be subject for classification through computational intelligence
utilizing ART. In order to have this feature vector ready for ART, each feature is exposed to
denoising, non-linear filtering, and quantization.

The feature vector for ART bundles 42 quantized scalars (each in a four bits long binary
representation) entirely, which are identified in detail as: Seven scalars from the cumulative sum
applied to the variance multiscalor, seven scalars from the ZCR applied to the variance
multiscalor, seven scalars from entropy applied to the variance multiscalor, seven scalars from
the cumulative sum applied to the skewness multiscalor, seven scalars from the ZCR applied to

the skewness multiscalor, and seven scalars from entropy applied to the skewness multiscalor.

5.2.5.2 Preparation of Feature Vector for FuzzyART

An alternate computational intelligence algorithm that can be used in the context of ART
is known as FuzzyART. FuzzyART spares quantizing the signal, which saves time in the
preparation of a feature vector. The feature vector for FuzzyART bundles 42 non-quantized
scalars entirely. This arrangement is described previously for ART.

For both ARTI and FuzzyART the order of the scalars is inconsequential as the
sensitivity parameter can be set to fingerprint minute details in distinct patterns. From the two
vectors containing 42 scalars each, alternate vectors can be derived. Such refinement has not

been considered within this research as it is a research problem that falls outside the scope

defined.

5.2.5.3 Classification Through ART

Once the feature vector for the neural network ARTI1 is prepared and its scalar
components are translated into binary representation, it is run through the MATLAB
implementation of ART1. The ARTI neural network has been fully described previously in
section 5.7.1. This experiment aims to determine a quantitative insight about the
Internet/network traffic dataset under analysis.

Since ART1 has only one parameter, the vigilance parameter p, a rule of thumb is
followed to set its value to p =0.9. If this value would yield no successful classification results,

alternate values in the interval [0, 1] would be chosen and experimented with until a conclusive
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result is achieved.

5.2.5.4 C(lassification Through FuzzyART

Correspondingly, the feature vector for the neural network FuzzyART is readied and
value representation of its scalar components is kept unaltered because FuzzyART is capable of
handling continuous value representations. Afterwards, the corresponding feature vector is
subjected to the FuzzyART neural network implementation in MATLAB. Similarly, this trial
targets getting quantitative insight about the Internet/network dataset and providing an
alternative point of comparison with a neural network based on ART.

FuzzyART also requires only one parameter, the vigilance parameter p, for creating

classes for recognizing the patterns within the traffic in this specific application. A similar
criterion is followed for setting the initial value of the vigilance parameter and finding an optimal

value in the interval [0, 1] that provides conclusive results about the presence of malicious

traffic.

Since the raw Internet traffic has been compressed significantly by a factor of
1.0486x10°, it is expected that the ART1 and FuzzyART neural networks (already capable of

surpassing alternative neural networks, which in comparison require a high number of epochs for

their training) are a good fit for running in real-time.

5.3 Summary

The available computing resources available to analyze the PREDICT dataset have been
described. An in depth approach to further delve into details of the dataset has been provided.
This approach starts with the raw traffic (mixture of genuine and attack traffic), the compound
attack traffic, and the isolation of individual attack flows. For these three cases, the integration of
the packet counts and the packet lengths over periods of time of 100 ms and 1 s are considered
respectively. The variance fractal dimension validation is carried by using white noise with two
distinct distributions (i.e., Uniform and Gaussian). The Internet traffic analysis pipeline is
presented, where the key elements are feature extraction and classification through ART. The
two statistical moments, variance and skewness, application as operators through multiscalors is

described. The application of three secondary operators, cumulative sum, ZCR, and Shannon
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entropy, onto the multiscalors components is proposed. The preparation of the feature vectors for
the machine learning models, ART1 and FuzzyART, are addressed. The expected classification

mechanism for both models is also discussed.
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CHAPTER VI

EXPERIMENTAL RESULTS AND DISCUSSION

The previous chapter presented the design of experiments considered in this study. Eight
experiments are performed and shown throughout this chapter. Six of these experiments embrace
the approach for revealing the individual contributions of bots. It shall be recalled that in order to
achieve this, the raw traffic, the compound attack traffic, and the individual attack flows are
analyzed. The two cases of the compound attack traffic and individual attack flows require
isolating attack packets from the dataset. The individual attack flows packet counts, and data
rates are analyzed to see if a contribution fingerprint to the overall attack traffic is observed. This
is the utmost goal pursued in this segmentation of traffic. Lastly, two experiments for validating
the variance fractal dimension are shown at the end. These experiments consider the usage of
known signals as is the case of white noise, which was generated using two distinct probability

distribution functions (i.e., Uniform and Gaussian).

6.1 Dataset Packet Count Integration
The traffic packets represented by the data sequence S.p[n] are integrated over a time

interval of 100 ms. Each point in Fig. 6.1 represents the packet count over this interval of time.
This figure resembles normal behaviour of Internet traffic, which is noise like. By integrating the
traffic further through a moving average filter with 128 coefficients, a smoother curve is seen in
blue. It is difficult to identify the DDoS attack taking place at this point by visually inspecting
Fig 6.1. It is known a priori that the DDoS attack takes place between the 446.9 seconds and
1369.3 seconds according to the PREDICT dataset information. Knowing this and paying
attention to the figure it is possible to see a hump in the averaged packet count between the start
and end of the DDoS attack.

Almost at the end of the waveform there are two spikes that do not belong to the DDoS
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attack, but these are apparently part of genuine traffic. This provides an idea of how challenging

it is to identify DDoS attacks based on methods that could consider energy alone and not ITB

approaches.
| I I I
12000 DDoS | DDOS H&R | H&R
Start | End DDoS :| : DDoS
! Start ;| : End
10000 ! f .
! .
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é [
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0 2000 4469 6000 8000 10000 12000 13693 16000 18000
S.p[n], (n=100 ms)

Fig. 6.1. Packets count of traffic in 100 ms time intervals. The packets counts averages are shown as blue coloured waveform.

6.2 Dataset Packet Length Integration

The integration of the packets data rate S./[n] over a time interval of one second is shown
in Figure 6.2. The protuberance between the start and end of the DDoS attack is more visible and
the spikes belonging to normal traffic are even more pronounced. Some other minor spikes start

to pop up in different positions as well.

6.3 DDoS Attack Packet Count Integration

Figure 6.3 depicts the traffic belonging only to the DDoS attack A.p[n]. This is why
there is no traffic before the start and after the end of the DDoS attack. It is noticeable in this
figure of the regularity of the packets count, which is steady at rate of 120 packets per 100 ms. It
is also noticeable that at the beginning of the DDoS attack there is some sort of preliminary

signature and then the packet count for the attack becomes steady.
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Fig. 6.2. Traffic data rate in 1 s time intervals. The traffic data rate averages are shown as a blue coloured waveform.
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Fig. 6.3. DDoS attack packets counts in 100 ms time intervals. The DDoS attack packets counts averages are shown as a blue
coloured waveform.

6.4 DDoS Attack Packet Length Integration
The integration of the attack packets lengths A.[n] is showcased in Fig. 6.4. A similar

behaviour can be seen as in the integration of the attack packets counts waveform discussed just
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previously. Also seen is a preliminary transient signature before the attack becomes steady. Once
this transient goes by the data rate becomes steady in a value of 0.1296 MB/s. Similarly, the
absence of data before and after the attacks takes place, follows from the fact that the genuine

traffic has been removed.
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Fig. 6.4. DDoS attack data rate in 1 s time intervals. The DDoS attack data rate averages are shown as a blue coloured
waveform.

6.5 DDoS Attack Flows Packet Count Integration
The attack flows A.p[n] that each of the six bots is contributing towards the DDoS

attack are isolated by filtering very specifically the source and destination IPs. The 6 attack flows
are integrated over time intervals of 100 ms. The six figures 6.5-10 show the waveform of these
distinct integrations correspondingly. Once the bot becomes steady it is observed that each attack
flow is contributing 20 packets each 100 ms for the overall attack. Zooming into the contribution
of single bots towards the overall DDoS attack is relevant because it confirms that the agents,
part of a botnet, have very similar behaviour. It is important to highlight that not all botnets have
the same behaviour and not all of them are expected to have a fingerprint that is easily

identifiable. Concluding with the observations from Figs 6.5-10, it is seen that each of the six
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bots contributes 20 packets to the overall DDoS attack depicted in Fig 6.1.
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A;.p[n], (n=100 ms)

Fig. 6.5. DDoS attack flow packets counts A,.p[n] in 100 ms intervals. The DDoS attack flow packets counts averages are
shown as a blue coloured waveform.
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Fig. 6.6. DDoS attack flow packets counts A,.p[n] in 100 ms intervals. The DDoS attack flow packets counts averages are
shown as a blue coloured waveform.
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Fig. 6.7. DDoS attack flow packets counts A,.p[r] in 100 ms intervals. The DDoS attack flow packets counts averages are

shown as a blue coloured waveform.
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Fig. 6.8. DDoS attack flow packets counts A,.p[n] in 100 ms intervals. The DDoS attack flow packets counts averages are

shown as a blue coloured waveform.
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Fig. 6.9. DDoS attack flow packets counts A;.p[n] in 100 ms intervals. The DDoS attack flow packets counts averages are

shown as a blue coloured waveform.
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Fig. 6.10. DDosS attack flow packets counts A.p[n] in 100 ms intervals. The DDoS attack flow packets counts averages are

shown as a blue coloured waveform.
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6.6 DDoS Attack Flows Length Integration
The six bots contributions to the composite DDoS attack, in terms of the packets lengths

behaviours A .I[n], ae observed in Figs. 6.11-16. The packets lengths in the six attack flows are

integrated over a time interval of one second. It is observed that in all six cases the contributions
of the bots, in terms of data rates, also become steady shortly after the bots have been instructed
to launch the attack. This agrees with the previous results in terms of the packets count per attack
flow. All figures 6.11-16 show that each bot contributes 0.0216 MB/s when attacking the victim.
The accumulation of these steady contributions adds up to the data rate of 0.1296 MB/s
belonging the composite DDoS attack and shown previously in Fig. 6.4. A bot contributing a
negligible data rate for attacking a victim seems inconsequential, but one has to consider that the
number of agents in a botnet is in the range of thousands or hundreds of thousands. It is these
very high data rates which are extremely dangerous for businesses and dedicated services that

our society relies on.
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Fig. 6.11. DDoS attack flow data rate A,.[[n] in 1 s time intervals. The DDoS attack flow data rate averages are blue coloured.
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Fig. 6.12. DDoS attack flow data rate A,./[n] in 1 s time intervals. The DDoS attack flow data rate averages are shown as a

blue coloured waveform.
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Fig. 6.13. DDoS attack flow data rate A,.[[n] in 1 s time intervals. The DDoS attack flow data rate averages are shown as a

blue coloured waveform.
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Fig. 6.14. DDoS attack flow data rate A,./[n] in 1 s time intervals. The DDoS attack flow data rate averages are shown as a

blue coloured waveform.
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Fig. 6.15. DDoS attack flow data rate A.[[n] in 1 s time intervals. The DDoS attack flow data rate averages are shown as a

light coloured waveform.
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Fig. 6.16. DDoS attack flow data rate A¢./[n] in 1 s time intervals. The DDoS attack flow data rate averages are shown as a

light coloured waveform.

6.7 VFD Validation

6.7.1 VFD Validation through White Noise with Uniform Distribution

Given the significance of the variance fractal dimension in this research, its algorithm
implementation is verified utilizing Uniform white noise (UWN) in this experiment. Figure 6.17
shows the first 500 samples of the signal with the characteristics of white noise with Uniform
distribution. This figure is included here for completeness and to provide a graphical description
of the nature of this signal. Subjecting the UWN to the VFD analysis so that its fractal dimension
is obtained determines that it has a value of two as shown in Fig. 6.18. The value of the log base
two corresponds to the variance of 1/12, which is characteristic of the Uniform distribution. Such
value is found to be constant in all the different scales for which it was calculated. Hence, the

implementation of the VFD to this point is verified to be correct.
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Fig. 6.17. White noise with Uniform distribution.
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Fig. 6.18. Variance fractal dimension applied to a sequence (10 million samples long) of white noise with Gaussian

distribution. The ten most significant variance values in the log-log plot are shown.

6.7.2 VFD Validation through White Noise with Gaussian Distribution

Including another known space-filling curve, as is the case of GWN, this experiment

extends the validation of the VFD. Figure 6.19 shows the first 500 samples of the signal with the
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characteristics of white noise with Gaussian distribution. Similarly to the previous experiment, it
is found that its fractal dimension has a value of two as shown in Fig. 6.20. The value of the log
base two corresponds to the variance of one (derived from the characteristic squared standard
deviation equals to one in a normal Gaussian), which is characteristic of the Gaussian
distribution. Such value of zero is also found to be constant in all the different scales for which it
was calculated as shown in Fig. 6.20. This fact restates that the implementation of the VFD is

correct.

6.8 Results of Selected Primary Analysis Operators Applied through

Multiscalors
The results obtained by subjecting the variance and skewness, as primary analysis
operators, to multiscalors can be found in Appendix G. No higher order moments were utilized

due to increase of computing error. It is important to highlight that the results obtained by the

variance multiscalor visually resembles in all its components (from first (m

- ) to seventh (m2III7 )

both of the DDoS attacks, the DNS amplification and the H&R, that are present in the dataset

and can be seen in Figs. G.1 to G.7 respectively located in Appendix G.
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Fig. 6.19. White noise with Gaussian distribution.
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Fig. 6.20. Variance fractal dimension applied to a sequence (10 million samples long) of white noise with Gaussian
distribution. The ten most significant variance values in the log-log plot are shown.

It is found that the skewness multiscalor visual insights are not as clear as the ones

provided by the variance multiscalor previously. Specifically, the DNS Amplification DDoS

attack is visibly identifiable in the first (m,,), second (m,,), and third (m,,) skewness

multiscalor components while the H&R DDoS attack is remarkably weak in all components of
the skewness multiscalor. Figures G.8 to G.14 found in Appendix G compile the results
pertaining the skewness multiscalor.

It is expected that upon application of secondary operators to both variance and skewness
multiscalors components, both DDoS attacks would become visibly stronger. This enhancement
is expected prior to preparing the feature vectors intended for the machine learning models.

Finding no visual resemblance hinting at the presence of DDoS attacks (as is the case for
the skewness multiscalor components) is no limitation for recognition of patterns through
machine learning, which are computing implementations capable of providing quantifiable
conclusions. This is one of the reasons for subjecting the individual components of both variance
and skewness multiscalors to a successive analysis stage. This secondary analysis stage is
designed for fitting secondary operators as cumulative sum, ZCR, and Shannon’s entropy. This

secondary analysis has a twofold purpose, collecting more robust and diverse insights into the
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dynamics of the Internet/network traffic and achieving a higher data compression for the feature
vector used in the classification stage through the ART variants implemented.

The author is acquainted with distinct areas of signal analysis in domains such as time,
time-frequency (e.g., short-time Fourier transform, short-time cepstrum), multiscale (e.g.,
wavelets and fractal analysis), and polyscale. It is the latter that is the focus in this research. In
order to achieve real-time processing, it is best to have computing methodologies and techniques
with a low impact, which in an aggregated form are capable of extracting robust features. Hence,
the reason why the three distinct methodologies, cumulative sum, ZCR, and Shannon entropy,
have been selected for further analysis of the components of both the variance and skewness

multiscalors.

For each secondary operator applied to the multiscalors components (one, Eml , to seven,

EW in this case) in the next subsection, four figures (6.21, 6.23-25) show the results of the

secondary operator applied to a given multiscalor component, a denoising stage based on
Donoho’s method, a median filtering stage, and quantization stage. The results yielded by
secondary operators lacking a significant or visible resemblance of the DDoS attack have been
removed for brevity. Nonetheless, experiments with the machine learning algorithms selected
with a feature vector incorporating all the results of the secondary operators applied to the
multiscalors components have been conducted and this is highlighted accordingly. All plots are
captioned properly to identify the secondary operator in question (cumulative sum, ZCR, or

—
ol

Shannon entropy), the multiscalor component (from first, = to seventh, EW ), and the analysis

stage (outcome of the secondary operator, denoising, non-linear filtering, and quantization). A
concrete description and discussion about the dynamics seen within the analysis stage done for
each component of both the variance and skewness multiscalors is elaborated on with the

corresponding figure provided.

6.9 Availability of Signals for Adaptive Resonance Theory
This subsection presents the DDoS dataset (a signal S.[n] with a specific integration

time of n=1.0486 s) pipelined through Donoho’s denoising, median non-linear filtering, and

Lloyd’s quantization. These three methodologies have been already described extensively in this

Jesus David Terrazas Gonzalez
- 101 -



POLYSCALE BASED CYBERSECURITY Ch. 6: Experimental Results and Discussion

thesis. The DDoS dataset used in this pipelining is depicted in Fig. 6.21.
In figure 6.21 a traffic burst is observed between n=1,600 and n=1,800. This traffic

burst has all the characteristics of a hit and run DDoS, which is a special form of DDoS that is

activated and deactivated periodically. In Figure 6.22, the details of this burst are presented.

60

50

40

MB/s

20

I | |
200 425 600 800 1000 1200 1305 1600 1800
S.[n], (n=1.0486 s)

Fig. 6.21. Traffic data rate with an integration time of 1.0486 s. The DDoS attack start (marked with a red dashed and dotted
line) and end (marked with a green dashed and dotted line) are seen at n =425 and n =1,305 respectively. Also, a hit and run
DDoS attack is seen between n=1,681 and n=1,718 .
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Fig. 6.22. Hit and run DDoS attack start (marked with a red dotted line) and end (marked with a green dotted line) are seen at
n=1,681 and n=1,718 respectively. Eleven peaks are seen during the duration of this attack.
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6.9.1 Denoising

The DDoS dataset is firstly exposed to the Donoho’s denoising methodology for which a
Coiflet wavelet with scaling factor of five has been used. This specific wavelet has been selected
because Coiflets resemble best the shape of Internet traffic. Figure 6.23 shows the results of

processing the DDoS dataset with Donoho’s denoising, which achieves a smother waveform.

T Y T T T T
|
50 \
DDoS |
Start |
40} |
® |
~ '
& 30 \
- i
i
20 ‘
|
10+ |
|

I | I I I I
200 425 600 800 1000 1200 1305 1600 1800

S.ln], (n=1.0486 s)

Fig. 6.23. DDoS dataset processed with Donoho’s denoising. A Coiflet wavelet with scaling factor of five is used. The DDoS
attack start (marked with a red dashed and dotted line) and end (marked with a green dashed and dotted line) are seen at n =425
and n=1,305 respectively. Also, a hit and run DDoS attack is seen between n=1,681 and n=1,718.

6.9.2 Non-Linear Filtering

In Figure 6.23 one still observes small peaks throughout the waveform, which are
possible to remove with a non-linear technique, which in this case median filtering has been
chosen. Processing the smoothed waveform with median filtering as seen in Fig. 6.24 smooths
the waveform even further. The result of the non-linear median filtering is seen to cause an

amplification (having a bigger impact) in the section where the hit and run DDoS attack is found.

6.9.3 Quantization

Figure 6.25 shows the DDoS dataset quantized with Lloyd’s methodology. Proving that a
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complex waveform, as is the case of Internet traffic, can be quantized with Lloyd’s methodology
provides assurance that the distinct features proposed in this thesis can be processed by the
ART1 neural network. One has to recall that the ART1 can only process binary input vectors

while FuzzyART can process vectors containing continuous values.

40F T Y T T T T T T ‘ I
|
|
| :
30k ! H&R || H&R
D;)tzg ! gf;s DDoS | | DDos
} Start End
® |
~
8
= 20 -

10~

| | | MM |

200 425 600 800 1000 1200 1305 1600 1800
S.ln], (n=1.0486 s)

Fig. 6.24. DDoS dataset processed with median filtering once denoised with Donoho’s methodology. The DDoS attack start
(marked with a red dashed and dotted line) and end (marked with a green dashed and dotted line) are seen at n=425 and
n=1,305 respectively. Also, a hit and run DDoS attack is seen between n =1,681 and n=1,718.

121 ‘ H&R || H&R -
DDoS | DDoS DDoS | | DDos

Start | End Start || | End

| f
[ lw 1 \HMMMJHMW\

200 425 600 800 1000 1200 1305 1600 1800
S.ln], (n=1.0486 s)

Fig. 6.25. Quantized DDoS dataset with Lloyd’s methodology. The DDoS attack start (marked with a red dashed and dotted
line) and end (marked with a green dashed and dotted line) are seen at n =425 and n= 1,305 respectively. Also, a hit and run
DDoS attack is seen between n=1,681 and n=1,718 .
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6.10 Findings About the Quality Detection of Variance Multiscalor Features
Table I condenses results for the quality detection of the secondary operators applied
towards the variance multiscalor. The description for each case is fully provided and documented

in Appendix H, where 72 corresponding plots and their thorough descriptions are found.

TABLE I
QUALITY DETECTION OF VARIANCE MULTISCALOR
Detection Quality
Multiscalor S(‘;;‘;rr‘;zrry Component DNS DDoS H&R DDoS
High Medium Low | High Medium  Low

» ° °
i L] °
P L] °
Cumulative Sum (§) m., . .
m ° °
e L] °
i L] °
» ° °
i L] L]
Variance _ Moy o °
m,, Zero Crz);lsl)mg Rate m, N N
i L] L]
m, ° °
i L] L]

» ° .

i L] L]

» ° .

Shannon’s Entropy » . .

m . °

e L] L]
m, ° °

6.11 Findings About the Quality Detection of Skewness Multiscalor Features

Results for the quality detection of the secondary operators applied onto the skewness

multiscalor is condensed in Table II. The description for each case is fully provided and
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documented in Appendix I, where corresponding plots and their thorough descriptions are found.

TABLE II
QUALITY DETECTION OF SKEWNESS MULTISCALOR

Detection Quality
Multiscalor Secondary Component DNS DDoS H&R DDoS
Operator
High Medium Low | High Medium  Low
mSH\‘ [ ] L]
Wl]m2 [ ) L]
7713‘”1 'Y °
Cumulative Sum (S) m. U .
m}w L] L]
mw, L] °
Wlm7 L] °
m, ° °
m, ° °
Skewness _ My . °
m,, Zero Crz);s;ng Rate m, . N
' ms ° o
m, ° °
m, ° °
m, ° °
m, ° °
m}w [ L]
Shannorz};)Entropy m, N N
m}w L] [
mw, L] L]
"’L}m7 [ L]

6.12 Preparation of Feature Vector for ART1

The different stages performing the multiscale analysis of the dataset containing DDoS
attacks have been presented. This particular segment reveals details about how the feature vector
needs to be shaped for further processing by ART1 in order to obtain classification outcomes
based on the relevant descriptors.

Once achieving the compression of the raw signal through multiscale and polyscale

analysis, the features extracted from the multiscalors components are assembled into a feature
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vector. Such vector would then be subject for classification through computational intelligence
utilizing ART1. In order to have this feature vector ready for ART1, each feature is exposed to
denoising, non-linear filtering, and quantization.

The feature vector for ART1 bundles 42 quantized scalars (each in a four bits long binary
representation) entirely, which are identified in detail as: Seven scalars from the cumulative sum
applied to the variance multiscalor, seven scalars from the ZCR applied to the variance
multiscalor, seven scalars from entropy applied to the variance multiscalor, seven scalars from
the cumulative sum applied to the skewness multiscalor, seven scalars from the ZCR applied to

the skewness multiscalor, and seven scalars from entropy applied to the skewness multiscalor.

6.12.1 Features Stemming from Cumulative Sum Applied to Variance

Multiscalor
Figures 6.26 and 6.27 show clear details about strong features generated through the
variance multiscalor and that are further analysed with the cumulative sum. Both of the DDoS

attacks are noticeable with clear beginnings and ends that are persistent in all variance

multiscalor components (from the first m_, to seventh m_ ). Figure 6.26 shows a central wide

Il 21l

band corresponding to the DNS DDoS attack starting and finishing in the processing frames 425
and 1,305 respectively, and a narrow band in the right corresponding to the H&R DDoS attack
starting and finishing in the processing frames 1,681 and 1,718 respectively. There are narrow
bands present, which correspond to minor spikes across the traffic. The cumulative sum visually
registers in Fig. 6.26 high quality detection features when applied onto the seven variance

multiscalor components as previously listed in Table I.
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Fig. 6.26. Segment of quantized feature vector corresponding to the cumulative sum S applied to the variance multiscalor

components (m, tom,;) .
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Fig. 6.27. Segment of quantized feature vector corresponding to the cumulative sum S applied to the variance multiscalor

components (m, tom,;) .
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6.12.2 Features Stemming from ZCR Applied to Variance Multiscalor
When the variance multiscalor components are processed through ZCR, as shown in Figs.
6.28 and 6.29, features with good detection quality are generated. The DNS DDoS attack appears

well segmented from the second m,, to seventh m,, components, while the H&R DDoS attack

appears well segmented for from the first m,, to seventh m,, components. Figure 6.28 shows a

central wide band corresponding to the DNS DDoS attack starting and finishing in the processing
frames 425 and 1,305 respectively, and a narrow band in the right corresponding to the H&R
DDoS attack starting and finishing in the processing frames 1,681 and 1,718 respectively. The
ZCR visually registers in Fig. 6.28 six high quality detection features for the DNS DDoS attack
and seven high quality detection features for the H&R DDoS attack when applied onto the seven

variance multiscalor components as listed earlier in Table L.

200 425 600 800 1000 1200 1305 1400 1600 1700 1800
Fln]

Fig. 6.28. Segment of quantized feature vector corresponding to the ZCR Z, applied to the variance multiscalor components

(m,, tom,;) .

211
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15—

10—

Zn[mayo]
Fig. 6.29. Segment of quantized feature vector corresponding to the ZCR Z, applied to the variance multiscalor components

(m,, to sz) .

2011

6.12.3 Features Stemming from Shannon’s Entropy Applied to Variance

Multiscalor
From the secondary operators applied towards the variance multiscalor, Shannon’s
entropy is the one that brings fewer promising outcomes as observed in Figs. 6.30 and 6.31

where clear details of the DDoS attacks are missing. Nevertheless, the H&R DDoS attack is

perceptible in the sixth m,, and seventh m, , component in the narrow band in the right starting

and finishing in the processing frames 1,681 and 1,718, which appears prominently for the
cumulative sum and ZCR cases just introduced. It shall be observed that the outcomes from the
first and second multiscalor components lack insights about the traffic in general as observed in
Fig. 6.30. Shannon’s entropy then only provides two high quality detection features for the H&R

DDoS case, which have been also pinpointed in Table I.
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200 425 600 800 1000 1200 1305 1400 1600 1700 1800
Fn]

Fig. 6.30. Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the variance multiscalor

components (m_, to m2m7) .
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Fig. 6.31. Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the variance multiscalor

components (m2|||l to m2m7) .

6.12.4 Ensemble of Features Stemming from Secondary Operators Applied to

Variance Multiscalor

Figure 6.32 brings into visual perspective the outcomes from the secondary operators
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(cumulative sum, ZCR, and Shannon’s entropy) when processing the variance multiscalor
components. From the horizontal rows in Fig. 6.32, the first to the seventh describe the
cumulative sum outcomes, the eight to the 14" describe the ZCR outcomes, and the 15" to the
21% describe the Shannon’s entropy outcomes. A surface tridimensional plot is provided in Fig.
6.33 where the amplitude differences among the three sets of secondary operators outcomes is

easier to grasp.

(S1Zn| H)[moyn]

)
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Fln]

Fig. 6.32. Segment of quantized feature vector corresponding to the secondary operators applied to the variance multiscalor

components (m2|||l to m2m7) .
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Fig. 6.33. Segment of quantized feature vector corresponding to the secondary operators applied to the variance multiscalor

components (m, tom,;) .

6.12.5 Features Stemming from Cumulative Sum Applied to Skewness
Multiscalor
Features generated by the cumulative sum applied to the skewness multiscalor are shown

in Figs. 6.34 and 6.35. The DNS DDoS attack is present in the first m,, and the fourth m

3

skewness multiscalor components, while the H&R DDoS attack is present in the sixth m. and
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the seventh m

o Skewness multiscalor components. The skewness multiscalor components

observed in Fig. 6.34 are of lesser quality than the variance multiscalor components shown in
Fig. 6.26, which show more defined bands containing the DDoS attacks. The four high detection

quality skewness multiscalors are listed in detail in Table II.

200 425 600 800 1000 1200 1305 1400 1600 1700 1800
Fln]

Fig. 6.34. Segment of quantized feature vector corresponding to the cumulative sum S applied to the skewness multiscalor
components (m3m, to m3"|7) .

Slmae] ! Fln]

Fig. 6.35. Segment of quantized feature vector corresponding to the cumulative sum S applied to the skewness multiscalor

components (m3m, to m3"|7) .
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6.12.6 Features Stemming from ZCR Applied to Skewness Multiscalor
Figures 6.36 and 6.37 depict the features yielded by the ZCR applied to the skewness

multiscalor. The first m, skewness multiscalor component denotes the feature with the highest

and seventh m

quality detection capacity for the DNS DDoS attack. The first m,, , sixth m >

3
skewness multiscalor components show strong quality detection to resolve the H&R DDoS
attack. Table II shows details about the detection quality for the secondary operators applied to

the skewness multiscalors.

200 425 600 800 1000 1200 1305 1400 1600 1700 1800
Fln]

Fig. 6.36. Segment of quantized feature vector corresponding to the ZCR Z, applied to the skewness multiscalor components

(m,, tom,;).

kI3

6.12.7 Features Stemming from Shannon’s Entropy Applied to Skewness

Multiscalor

Figures 6.38 and 6.39 depict the features produced by the Shannon’s entropy applied to

the skewness multiscalor. The DNS DDoS is detectable only by the first m,, skewness

multiscalor component, while the H&R DDoS attack is detectable by the first m, and from the

fourth m, . to the seventh m,; skewness multiscalor components. The particular details about

the Shannon’s entropy detection quality for resolving both DDoS attacks are listed in Table II.
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Zn[mype]
Fig. 6.37. Segment of quantized feature vector corresponding to the ZCR Z, applied to the skewness multiscalor components

(m3|||1 to m3|||7) .
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Fig. 6.38. Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the skewness multiscalor

components (m,, to m3m7) .
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Himy] !

Fig. 6.39. Segment of quantized feature vector corresponding to the Shannon’s entropy H applied to the skewness multiscalor

components (mzm. to mw) .

6.12.8 Ensemble of Features Stemming from Secondary Operators Applied to
Skewness Multiscalor

All the secondary operators, cumulative sum, ZCR, and Shannon’s entropy, outcomes
when processing the skewness multiscalor components are shown in Fig. 6.40 where in the
horizontal rows shown, the first to the seventh describe the cumulative sum outcomes, the eight
to the 14" describe the ZCR outcomes, and the 15™ to the 21 describe the Shannon’s entropy
outcomes. A complementary surface tridimensional plot is displayed in Fig. 6.41 where the

amplitude differences among the three sets of outcome operators are registered.
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Fig. 6.40. Segment of quantized feature vector corresponding to the secondary operators applied to the skewness multiscalor

components (msm, to m3m7).
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(S‘Zrle)[mSIH“]

Fig. 6.41. Segment of quantized feature vector corresponding to the secondary operators applied to the skewness multiscalor

components (m,, tom,;).

6.13 Preparation of Feature Vector for FuzzyART

From the presented multiscale analysis of the dataset including the DDoS attacks, one of
the variations of the ART machine learning can be fitted. This approach is FuzzyART, which has
been documented previously in this thesis background. FuzzyART can provide classification
outcomes utilizing real valued feature vectors. Hence, the quantization stage, after utilizing the

secondary operators, is omitted and the essential feature vector for FuzzyART is then produced.
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Nevertheless, the features in the vector are subject to denoising and non-linear filtering.

The feature vector for FuzzyART subsequently packages 42 real valued scalars: Seven
scalars from the cumulative sum applied to the variance multiscalor, seven scalars from the ZCR
applied to the variance multiscalor, seven scalars from entropy applied to the variance
multiscalor, seven scalars from the cumulative sum applied to the skewness multiscalor, seven
scalars from the ZCR applied to the skewness multiscalor, and seven scalars from entropy
applied to the skewness multiscalor.

Plots for visualizing the specific details of each secondary operator applied to the
multiscalor operators and creating the features for the FuzzyART feature vectors are omitted to
condense the size of this thesis. However, specifics about every feature vector are covered
extensively in section 6.12 and particulars about their detection quality are encapsulated in Table
II. Furthermore, plots visualizing the ensembles of the three secondary operators applied to both

multiscalors are included.

6.13.1 Ensemble of Features Stemming from Secondary Operators Applied to

Variance Multiscalor
Figure 6.42 visualizes the real-valued outcomes from the secondary operators
(cumulative sum, ZCR, and Shannon’s entropy) when processing the variance multiscalor
components. From the horizontal rows in Fig. 6.42, the first to the seventh describe the
cumulative sum outcomes, the eight to the 14™ describe the ZCR outcomes, and the 15" to the
21* describe the Shannon’s entropy outcomes. The surface tridimensional plot in Fig. 6.43 show

real valued amplitude differences among the three sets of secondary operators outcomes.
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Fig. 6.42.
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Segment of normalized feature vector corresponding to the secondary operators applied to the variance multiscalor

components (mzm. to mzm,) .
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(S| Z,|H) [moyy ]

Fig. 6.43. Segment of normalized feature vector corresponding to the secondary operators applied to the variance multiscalor

components (m, tom,;) .

6.13.2 Ensemble of Features Stemming from Secondary Operators Applied to
Skewness Multiscalor
The real valued outcomes of the cumulative sum, ZCR, and Shannon’s entropy, acting as

secondary operators on the skewness multiscalor components are shown in Fig. 6.44, where in

the horizontal rows shown, the first to the seventh describe the cumulative sum outcomes, the
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eight to the 14™ describe the ZCR outcomes, and the 15" to the 21% describe the Shannon’s
entropy outcomes. A complementary surface tridimensional plot is displayed in Fig. 6.45 where

the real valued amplitude differences among the three sets of outcome operators are registered.
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Fig. 6.44. Segment of normalized feature vector corresponding to the secondary operators applied to the skewness multiscalor

components (msm, to m3m7).
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(S]Zrle)[mSIH“]

Fig. 6.45. Segment of normalized feature vector corresponding to the secondary operators applied to the skewness multiscalor

components (m%m. to mw) .

6.14 ART1 Classification

6.14.1 ART1 Feature Vector Comprising Secondary Operators Applied to

Variance and Skewness Multiscalors
Consequently, pattern recognition is conducted with the premise that conclusive

outcomes through the application of ART would become apparent when classifying instances of
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the feature vector.

From the feature vector prepared in section 6.12, presented earlier, one shall recall that
ARTT1 only processes data in its binary representation. Hence, the corresponding binary encoding
of the quantized values for both variance and skewness multiscalors shown in Figs. 6.32 and 6.40

are shown here in Figs. 6.46 and 6.47 respectively.
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Fig. 6.46. Binary representation, in a four bits word, of the quantized values of the secondary operators applied to the variance
multiscalor.

Jesus David Terrazas Gonzalez
—-125-



POLYSCALE BASED CYBERSECURITY Ch. 6: Experimental Results and Discussion

L IR W.I‘Ul‘ﬂl\‘ll”\’i i ;.| T L T R
v.m:‘.wwwaw.w.ruww*u 'ﬁﬂ Wu' i m il u’»iwur M&% wﬂ'.u.ll.%m":h\i.":'w.f:n'i'w'lu'f i
: I

1o |""“'J‘."H"."'hu‘h' wni..waﬂ LI;MII 1'.'.'1*' ,\' *# Hl;u i) "! fl.u I *ﬂg il )'.m AR L
g L JW Hupgh e Mwnul o R L
ww;u'ﬁ:h.m m"uwﬂ'f‘ﬂww’lr ki »L ”ﬁﬂ'

L | | Ny | ', bty e ! W I il
S

20

W m.\muwwummw»w

'ﬁ|'| Tbmmiuhl

il

.'r

AL T WMMWWWMMM U o e

J.Tf |yl oty e P gl b o PP T
?H ﬂﬁﬁﬁﬂ#ﬂ?mfiﬂ#h ﬁ.ﬂl}lﬁlijl[iulll% -udilf 'P%'ﬁ: :\Iﬁ I::waf i w
QI e
i mhriwwu‘-w'ﬁ i'mnﬁ.dm.l-u sty
uuwul'uu.wnu'.'”u.l"uw\w |iumw.wmwme PR 175 TR gl
Y ot vy m

ik it J”HWW!I‘ ELlS AR '.~“*f i

l’hmhu.wh'w'lhf'ﬂ‘ m ”"hﬂmﬂl HT_|‘|,\‘|:.:1,.\I\I1“|i)ﬂ.ﬂE\,,.j:\;'Jj:lpﬂl|*'|;|‘ i 'I*WII.IJ'JLIII.HP'I'\F'IH Yai uﬁ,ﬂﬁl J

S\Z |H) [m

IIIIHI ] Ll | IV 1wl

LR D AL LA

200 425 600 800 1000 1200 1305 1400 1600 1700 1800
Finl
el

Fig. 6.47. Binary representation, in a four bits word, of the quantized values of the secondary operators applied to the skewness
multiscalor.

Upon close inspection of Figs. 6.46 and 6.47, it is seen that the number of rows grows
from 21 to 84 due to the binary representation required for ART1 making a feature vector
containing 168 binary scalars. Also, clearer patterns for both the DNS and H&R DDoS attacks
are observed in Fig. 6.46 (variance multiscalor in binary representation) when comparing it with

Fig. 6.47 (skewness multiscalor in binary representation).
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6.14.2 Classifications on ART1 Feature Vector
For finding a good vigilance parameter p for ART1, a recommended rule of thumb is to

set it to 0.9 and then observe if the classes created resemble in any form the real structure of the

data under analysis. The outcome of this rule of thumb value for p=0.9 is implemented in Fig.

6.48. The results shown in this figure do not resemble in any form neither of the DDoS attacks as

indicated for the number of classes created (over 1600) by ART1, almost totalling the number of

feature vectors FV,. The number of neurons F2, in Fig. 6.48 ranking almost the same as the

number of feature vectors indicates a high degree of specialization (overfitting) of the neural

network.
1600 F T T T T T T
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1000 H B
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Fig. 6.48. Unsupervised classification of feature vectors FV, (42 active features for each) with a vigilance parameter value of
p=09.

It is then necessary to depart to another vicinity of values for finding a good vigilance

parameter p . Since the previous outcome in Fig. 6.48 is highly specialized (overfitted), setting a
value close to 0 is appealing. Hence the vigilance parameter is set to p =0.1. The outcome for

this value is shown in Fig. 6.49, where remarkable achievements become apparent. First of all,

the number of classes diminished drastically to just 20; secondly, the DNS DDoS attack is
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identified very clearly in its beginning and end almost in its entirety; thirdly, the H&R DDoS

attack is also visible in an outstanding form.
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Fig. 6.49. Unsupervised classification of feature vectors F'V, (42 active features for each) with a vigilance parameter value of
p=0.1.

Figure 6.50 shows the outcome for a value of p=0.07 for the vigilance parameter. A

smaller number of classes, 14 only, is seen and a clearer shape for the DNS DDoS attack is

remarkably outlined.

6.14.3 ART1 Parametogram

Nevertheless, one could get genuinely concerned about setting trial values for the

vigilance parameter p . There is no reported method in the literature for finding a suitable value
candidate for p in ARTI1. Hence, this research proposes a method addressing this ARTI1

shortcoming for attempting to provide a degree of certainty for choosing a suitable value for the

vigilance parameter p . This method for drawing suitable values for p consists in: (i) Training
ARTI1 for p=0 to p=1 in increments of 0.001; (i1) making the hypothesis that if a number of

elements higher than 660 has been found in a class this would correspond with a high degree of

certainty to the DNS DDoS attack since this is represented by 880 feature vectors. Roughly this
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step looks for matching at least 75% of the feature vectors to the DNS DDoS attack real
occurrence. This step is described mathematically by Mol FV |, where Mo represents the mode
and FV, is the n" feature vector presented to ART1; (iii) finding the onsets for the beginning

and end that encapsulate cases of occurrences around 660 events in a class. The outcome of this

method is shown in Fig. 6.51.

DDoS H&R ||| H&R

bl End DDoS|:||} DDoS

Start|[-/U{ End, 4

S
L—

! 1 I 1 ! L I
600 800 1000 1200 1305 1400 1600 1700 1800
Fv,

Fig. 6.50. Unsupervised classification of feature vectors FV,, (42 active features for each) with a vigilance parameter value of
p=0.07.

Two vertical dash-dotted lines divide the waveform presented in Fig. 6.51 into three
zones: (i) Overgeneralization (OG) zone where the values for p fall in the interval [0, 0.07].
This zone would merge classes that are unrelated into a similar one; (ii) Class-of-Interest (COI)
zone where the values p fall in the interval (0.07, 0.216]. Values for p that can classify the
event of interest into a single class can be found; and (iii) Overspecialization (OS) zone where
the values for p fall in the interval (0.216, 1]. This zone would split events that belong into the
same class into two or more separate classes.

The COI zone shows values of the vigilance parameter that starts with the dash-dotted red

line (set at a value p=0.07) and finishes with the dash-dotted green line (set to a value of
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p =0.216). The top blue horizontal dash-dotted line represents 880 occurrences corresponding

to the DNS DDoS attack. The bottom blue horizontal dash-dotted line is set at 660 occurrences,
which arbitrarily represents 75% of the occurrences within the DNS DDoS attack. The OG zone
(to the left of the dash-dotted red line) shows a number of occurrences higher to the top blue line,
which means that more than 880 cases where placed into a class by ART1 (denoting a high
degree of generalization). The OS zone (to the right of the dash-dotted green line) shows a rapid
decay for the number of occurrences in the class containing the most elements, which means that
less than 880 cases where placed into a class by ART1 (denoting a high degree of specialization

as p gets close to 1).
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Fig. 6.51. Unsupervised classification of feature vectors F'V, (42 active features for each represented by a four bits binary
word) with vigilance parameter values for p spanning in the interval [0, 1].

The three distinct zones present in Fig. 6.51 are generalized through piecewise single
term exponentials of the form C,e” © | where C; and C, are exponential coefficients and e is the
natural logarithm. Exponentials are selected as they provide a better fit for the ART1 vigilance
parameter curve. The optimization curve fitting Trust-Region algorithm is used to find the
coefficients characterizing each zone. The following equation represents this analysis in a

compact form:
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1.874x10°(e ") for  p=[0, 0.07]  Overgeneralization
Mol FV =y 1.080x10°(¢>*"") for p=(0.07, 0.216] CoI
1.804x10%(e""*) for  p=(0.216, 1]  Overespecialization

6.14.4 Confusion Matrix for Assessing ART1 Classification Performance

To this point, a procession of different data science methodologies and techniques have
been discussed and implemented. This procession ranges from data access, data cleaning
(removal of corrupt entries), data preprocessing, feature extraction, and machine learning
modeling. The performance of the machine learning models is of particular interest. Hence, it is
where the confusion matrix comes into the spotlight as it is a performance measurement for
machine learning classification. Classification results are often presented in the form of a
confusion matrix, a table where the header/sum of every row is the actual/true COI and the
header/sum of every column is the detected/predicted class. In a confusion matrix, the number of
correctly classified samples accumulates in the matrix diagonal. Falsely classified ones will be
found outside of the diagonal [CaiOl1]. False positives (a record that is classified as negative but
is actually positive) fall above the diagonal, while false negatives (a record that is classified as
positive but is actually negative) fall below the diagonal. The overall error rate, or simply error
rate, is the sum of the false negatives and false positives, divided by the total number of records

ER=X(fn+ fp)/Xn. To find the false negative rate, divide the number of false negatives by the
total number of negative classifications FNR =Xfn/Xtn. Similarly, to find the false positive

rate, divide the number of false positives by the total number of positive classifications

FPR =Xfp/Xtp [Laro005].

More formally a confusion matrix is a 2D array of size J., X J.n (Where J,, is the total
number of classes) used to report results of classification experiments. The value in row i,
column j indicates the number of times an object whose frue class is i was labeled as belonging
to class j. The main diagonal of the confusion matrix indicates the number of cases where the
classifier was successful; a perfect classifier would show all off-diagonal elements equal to zero
[MarqO11].

The measures of performance used in image retrieval borrow from the field of
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(document) information retrieval and are based on two primary figures of merit: Precision and
recall. Precision is the number of relevant documents retrieved by the system divided by the total
number of documents retrieved (i.e., true positives plus false positives). Recall is the number of
relevant documents retrieved by the system divided by the total number of relevant documents in
the database (which should, therefore, have been retrieved) [MarqO11].

Precision can be interpreted as a measure of exactness, whereas recall provides a measure
of completeness. A perfect precision score of 1.0 means that every retrieved document (or image
in our case) was relevant, but this situation does not provide any insight as to whether all relevant
documents were retrieved. A perfect recall score of 1.0 means that all relevant images were
retrieved, but this scenario says nothing about how many irrelevant images might have also been
retrieved [MarqO11].

Precision, P, and recall, R, measures can also be adapted to and used in classification
tasks and expressed in terms of true positives (TP), false positives (FP), and false negatives (FN)

as P=Xtp/X(tp+ fp) and R=Xtp/X(tp+ fn) [MarqO11]. Additional metrics about machine

learning models performance measurement are listed in Appendix D.

In this case, a precision score of 1.0 for a given class means that every item labeled as
belonging to that class does indeed belong to the given class, but it says nothing about the
number of items from the class that were not labeled correctly. A recall score of 1.0 means that
every item from a given class is labeled as belonging to the class, but it says nothing about how
many other items are incorrectly labeled as belonging to the class [MarqO11].

To keep things consistent, the performance of the machine learning models used in this

research (e.g., ART1 for a vigilance parameter o =0.07) are analyzed through confusion

matrices. The assumptions for examining this confusion matrix analysis are: (i) The feature

vectors extracted from the data represented by the packets data rate S./[n] (where a time interval

of 1.0486 seconds is set) would be capable of classifying positively the DNS DDoS attack for n
in the interval [425, 1305], (i1) the data made available for this research provides no labels for the
presence of DDoS attacks. As a consequence, through careful study of this data is how the
interval just mentioned is set as the best candidate for the DNS DDoS detection, which occupies

a 42 percent of the overall traffic data accessed, (iii) the highest occurrence class provided by
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ART1 for p=0.07 is labelled as “DDoS Attack”, and (iv) the rest of the classes are joined and
labelled as “Clear Traffic”. Since a confusion matrix serves as guiding means to collapse classes
if they are found positioned too close in the chosen feature space [CaiOl1]. This is useful to
recognize falsely assumed dissimilarity between those classes and collapse them [CaiO11] since
in this case they are within the clear traffic space.

A confusion matrix for ART1 set to a vigilance parameter p =0.07 is displayed in Fig.

6.52.

ART1 | p=0.07

Clear Traffic 2.2%

DDoS Attack 2.0%

True Class

1.7% 2.5%

Clear Traffic DDoS Attack

Predicted Class
Fig. 6.52. Confusion matrix for ART1 with vigilance parameter p =0.07. The matrix displays: (i) 985 cases for clear traffic,
(i1) 850 cases for a DDoS attack, (iii) 22 false cases for a DDoS attack, and (iv) 17 false cases for clear traffic. The column

normalization (precision): (i) 98.3% for clear traffic, and (ii) 97.5% for a DDoS attack. The row normalization (recall): 97.8% for
clear traffic, and (ii) 98% for DDoS attack.

6.14.5 Selected Classifications Based on ART1 Parametogram COI

This subsection explores some cases that fall within the COI zone in Fig. 6.51, which has

values of the vigilance parameter starting with the dash-dotted red line (set at a value p =0.07)
and finishing with the dash-dotted green line (set to a value of p=0.216). Hence, it is in this
interval [0.07, 0.216] where some specific values for the vigilance parameter p are chosen. One

experiment that corresponds to a rule of thumb is represented by p =0.9. Its extreme counterpart
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is set to p =0.1. These two values are included for completeness as they have been discussed in

the text. Three specified experiments drawn from the ART1 parametogram (Fig. 6.51) are chosen

for the values of p=0.07, p=0.088, and p=0.09, which are expected to have a good high

precision and recall. The information pertaining to five experiments (including the three
specified experiments and the two guesses) is shown in Table III where specifics about the
feature vector components and classification metrics are found (experiments of interest are

shaded).

TABLE III
ART1 CLASSIFICATION METRICS FOR DETECTION OF A DDOS ATTACK
Components in Feature Vector Classification Metrics
Machine Vigilance Variance Skewness
Learning | Parameter . . DDoS
Model p Multiscalor Multiscalor Total True Precision Recall
S Z H S Z H Positives
0.07 850 97.5% 98%
0.088 848 98.5% 97.8%
ARTI1 0.09 7 7 7 7 7 7 42 848 98.5% 97.8%
0.1 807 97% 93.1%
0.9 3 100% 0.3%

Confusion matrices for the distinct values of the vigilance parameter p in ART1 shown

in Table III are included in Appendix J as Figs. J.1 to J.5.

6.15 Findings About ART1 Classification

The trial and error experiments for ART1 with vigilance parameter with values of

p=0.1,and p=0.9, have unbalanced values for precision and recall of 97% and 93.1%, and of

100% and 0.3% respectively for the detection of DDoS attack occurrences.

The vigilance parameter with a value of p =0.1 holds the following deductions. Some of
the DDoS attack occurrences (60) are misclassified into clear traffic and a lower number of the
true occurrences (25) for the clear traffic are also missed. This number of misclassifications is
not excessive

For the vigilance parameter with a value of p=0.9, the following inferences are
collected. A high number of DDoS attack occurrences (864) are misclassified into clear traffic

and the entirety of the true occurrences (1007) for the clear traffic are detected. The number of
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misclassifications for the DDoS attack is very high.

From the values for the vigilance parameter in ART1, 0.07, 0.088, and 0.09, which were
systematically selected from ART1 corresponding parametogram, well balanced values for both
precision and recall are found, 97.5% and 98%, 98.5% and 97.8%, and 98.5% and 97.8%
respectively corresponding to the occurrences detection of the DDoS attack.

From the vigilance parameter set to values of p=0.07, p=0.088, and p=0.09, the

next outcome is notable. A low number of misclassifications is found for both the clear traffic
and the DDoS attack classes.

The overall implementation of ART1 as a machine learning approach, with p=0.07,
p=0.088, and p=0.09, is found overperforming when compared to FuzzyART set to the best

suitable vigilance parameter values found through the FuzzyART parametogram. This excursion

is described next. A more detailed description of these findings is included in Appendix J.
6.16 FuzzyART Classification

6.16.1 FuzzyART Feature Vector Comprising Secondary Operators Applied

to Variance and Skewness Multiscalors

Moreover, FuzzyART, an analogous approach to ART1 is utilized. FuzzyART is fully
described previously in the background chapters. Both ART1 and FuzzyART have the ART
methodology at their core and function under distinct value representations for their vectors. The
analysis of the feature vector through an additional unsupervised neural network like FuzzyART
provides a supplementary testing scenario useful for classifying the DDoS cyberattacks
described by multiscalors and secondary operators.

Once the feature vectors in section 6.13 (described previously) for FuzzyART are
prepared, one remembers that FuzzyART requires real valued data representation to perform
classification. Consequently, the real valued vectors shown in Figs. 6.42 (variance) and 6.44
(skewness) can be used directly in FuzzyART. The referred real valued feature vectors
comprised of secondary operators applied to variance and skewness multiscalors, as primary
operators, are resketched in Figs. 6.53 and 6.54 respectively in order to improve both the flow

and aid the text comprehension.
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Fig. 6.53. Real valued representation of the non-linear filtered secondary operators applied to the variance multiscalor.

The patterns indicating the presence of both the DNS and H&R DDoS attacks continue to
be observed in Fig. 6.53 (variance multiscalor in real valued representation) clearer than in Fig.

6.54 (skewness multiscalor in real valued representation).
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Fig. 6.54. Real valued representation of the non-linear filtered secondary operators applied to the skewness multiscalor.

6.16.2 FuzzyART Parametogram
Analogously, for FuzzyART, there is no reported method in the literature for finding a

proper value for the vigilance parameter p . Hence, from the experience previously gained for
ART1 when defining p , the same method to define this parameter is followed for FuzzyART.
This method for defining p for FuzzyART, with small modifications fitting the required

parameters, consists in: (i) Training FuzzyART for p=0 to p =1 in increments of 0.001, while
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assigning constant values to parameters & =0.01 and £ =1; (ii) setting a similar hypothesis that

if a number of elements higher than 660 has been found in a class this would correspond with a
high degree of certainty to the DNS DDoS attack, which is represented by 880 feature vectors
instances. This step looks for matching at least 75% of the feature vectors to the DNS DDoS

attack real occurrence. This step is represented mathematically by Mol FV |, where Mo

represents the mode (as in the experiments previously described with ART1) and FV, is the n"

feature vector presented to FuzzyART; (iii) finding the onsets for the beginning and end that
encapsulate cases of occurrences around 660 events in a class. The outcome of the described
method is shown in Fig. 6.55.

Analogously, two vertical dash-dotted lines divide the waveform presented in Fig. 6.55

into three zones: (i) The OG zone where the values for p fall in the interval [0, 0.578]. This

zone would group classes that are otherwise unrelated into a similar one; (ii) the COI zone where

the values p fall in the interval (0.578, 0.664]. The COI contains the more values for p that
can classify the event of interest into a single class; and (iii) the OS zone where the values for p
fall in the interval (0.664, 1]. This zone would split events into two or more separate classes that

otherwise belong to the same class.
The COI zone shows values of the vigilance parameter that begins with the dash-dotted

red line (set at a value p =0.578) and concludes with the dash-dotted green line (set to a value
of p=0.664). The top blue horizontal dash-dotted line represents 880 occurrences

corresponding to the DNS DDoS attack. The bottom blue horizontal dash-dotted line is set at 660
occurrences, which represents 75% of the occurrences within the DNS DDoS attack. The OG
zone (to the left of the dash-dotted red line) shows a number of occurrences higher to the top
blue line, which means that more than 880 cases where placed into a class by FuzzyART
(denoting a high degree of generalization). The OS zone (to the right of the dash-dotted green
line) shows a rapid decay for the number of occurrences in the class containing the most
elements, which means that less than 880 cases where placed into a class by FuzzyART

(denoting a high degree of specialization as p gets close to 1).
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Fig. 6.55. FuzzyART Unsupervised classification of feature vectors FV, (42 active features represented by real values) with
vigilance parameter values for p spanning in the interval [0, 1].

The seven distinct zones present in Fig. 6.55 are generalized through piecewise constant
intervals and third degree (aka cubic) polynomials of the form ap’ +bp” +cp+d , where a, b, c,
and d are the polynomial coefficients. Constant intervals and cubic polynomials are selected
because a better fit is achieved for the FuzzyART vigilance parameter curve sections. The
optimization curve fitting Trust-Region algorithm is used to find the equations and their
coefficients characterizing each zone. The following equations and intervals portray this

analysis:
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1860
for p=10, 0.253] oG

~1.222%107 p* +9.101x 10° p* —2.274x10° p—1.926 X 10°
for p=(0.253, 0.283] 0G

8.283%x10°p’ —7.978x10° p* +2.571x10° p—2.753x 10’

for p=1(0.283, 0.332] oG
1860
Mol FV |= for p=1(0.332, 0.452] 0G

2.983x10° p* —3.405%x10' p> —7.74x10° p+4.819x 10’
for p=(0.452, 0.578] 0G

2.983x10°p’ —3.405x10' p*> —=7.74x10° p+4.819x 10’
for p=(0.578, 0.664] CoI

2.983x10° p* —3.405x10' p> —7.74x10° p+4.819x 10’
for p=(0.664, 1] 0S

6.16.3 Selected Classifications Based on FuzzyART Parametogram COI

Some cases within the COI zone in Fig. 6.55 are explored in this subsection. Herein the

vigilance parameter beginning with the dash-dotted red line (set at a value p=0.578) and
ending with the dash-dotted green line (set to p =0.664 ). Henceforth, the interval [0.578, 0.664]
holds specific values of interest for the vigilance parameter p . The first experiment is
represented by p =0.1, while its extreme counterpart is set to p=0.9. These two values are

included for comparison purposes between FuzzyART and ART1. Three promising experiments
are derived from the FuzzyART parametogram (Fig. 6.55) setting values of the vigilance

parameter for p=0.632, p=0.633, and p=0.634. The data concerning these five experiments

is recapitulated in Table IV where particulars about the feature vector components and
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classification metrics are found (relevant experiments are shaded).

TABLE IV

FuzzYART CLASSIFICATION METRICS FOR DETECTION OF A DDOS ATTACK

Components in Feature Vector Classification Metrics
Machine Vigilance
Variance Skewness DDoS

Learning Parameter ] _

Multiscalor Multiscalor Total True Precision Recall
Model P
S Z H S V4 H Positives

0.1 867 46.3% 100%
0.632 735 88.7% 84.8%
FuzzyART 0.633 7 7 7 7 7 7 42 761 89.7% 87.8%
0.634 759 88.5% 87.5%
0.9 14 100% 1.6%

Supplementary confusion matrices corresponding with the distinct values of the vigilance

parameter p in FuzzyART used for populating information in Table IV are included in

Appendix K as Figs. K.1 to K.5.

6.17 Findings About FuzzyART Classification

From the FuzzyART parametogram, it is observed that it shows a high-degree of
nonlinear dynamics when comparing it to ART1. It is noticed that the learning section of interest
in FuzzyART is smaller than ART]1.

The experimental values for FuzzyART vigilance parameter of p=0.1, and p=0.9,
also show unbalanced values for precision and recall of 46.3% and 100%, and of 100% and 1.6%
respectively for the detection of DDoS attack occurrences.

A value of p=0.1, for the vigilance parameter embraces the subsequent remarks. The
entirety of the true occurrences (1,007) for the clear traffic are misclassified as a DDoS attack
occurrences.

For the vigilance parameter with a value of p =0.9, the next comments are worth noting.
A high number of DDoS attack occurrences (853) are misclassified into clear traffic and the
entirety of the true occurrences (1007) for the clear traffic are detected. The number of

misclassifications for the DDoS attack is very high.
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The vigilance parameter in FuzzyART with values, p=0.632, p=0.633, and
p=0.634, which also were analytically chosen from the FuzzyART corresponding

parametogram, show balanced values for both precision and recall, 88.7% and 84.8%, 89.7% and
87.8%, and 88.5% and 87.5% respectively, which relate to the occurrences detection of the
DDoS attack.

From the FuzzyART vigilance parameter with a value of p=0.632, p=0.633, and
p =0.634, the next outcome is notable. The number of misclassifications found for both the

clear traffic and the DDoS attack classes is higher than ART1, which translates in FuzzyART
underperforming when compared with ART1. One shall recall that FuzzyART requires three
parameters («, B, and p) for its tunning. When compared to ARTI the FuzzyART

shortcomings might be because only the vigilance parameter p is subjected to sensitivity

analysis in the scope of this research. Nonetheless, finding better operational settings for
FuzzyART would require the application of advanced optimization methodologies. A

comprehensive account of these findings is contained in Appendix K.

6.18 Summary

This chapter presents the solid results of the experiments outlined for this research to this
point. The extent of the research conducted is depicted through the results presented here. The in
depth approach to examine the details of the PREDICT dataset have been closely followed and
shown graphically. It has been shown that the overall attack traffic is an aggregation of the
contributions from the six attack flows. These contributions consider the packets count and data
rate sent towards the victim of the DDoS attack. The correctness of the VFD algorithm
implementation has also been described.

This chapter also presents the results obtained through a new multiscale analysis
methodology, multiscalors, introduced in this thesis. This methodology has been tested with two
primary operators, variance and skewness, for a processing frame of 4,096 samples creating
seven multiscalor components. Three secondary operators, cumulative sum, ZCR, and Shannon’s
entropy, are utilized to further analyze and compress, by a factor of a million, the multiscalor

components. The work done in the preparation of the feature vectors for both ARTI and
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FuzzyART is carefully described. Similarly, explanations about the classification outcomes from
the machine learning models stemming from confusion matrices used to analyze their precision
are well documented.

This chapter presents results with three perspectives: (i) Very descriptive oriented to
document minute details (an extensive collection of plots is present throughout the chapter and in
relevant appendices), (ii) visual assessment of the different contributions of each multiscalor
component can be easily compared, and (iii) remarking specific findings and observations about

the detection quality of all the features derived.
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CHAPTER VII

CONCLUSIONS

7.1 Main Findings

The seven variance multiscalor components, m,_ , , appear to have a slightly constant and

201 ?
equal power for detecting both classes of DDoS attacks, DNS amplification and H&R, under the

cumulative sum, (S[m to the

.]). The detection capacity tends to decrease from the first, m
21 p y 2|

>

seventh, m_., variance multiscalor components as the signals become spikier. Figures H.1 to

207
H.7 found in Appendix H, extensively support these conclusions.

When applying ZCR to the variance multiscalor components, (Z [m_]), results are not

201"
as defined as those coming from the cumulative sum, but the dynamics for both DDoS attacks

to the seventh, m

are maintained and the detection capacity increases from the first, m i

2
components. However, the dynamics for both DDoS attacks are maintained for all variance

multiscalor components (from first, m ., to seventh, m

L7 )- The visual quality of the results

appears to increase as one traverses from the first multiscalor component, m_,, to the seventh,

20

m,, ;. It is worth highlighting that the H&R DDoS attack appears inverted from the first, m_,, to

>

forth, m . and becomes positive for the other components. Nevertheless, the shapes of both

DDoS attacks are preserved within all results of the ZCR run on all variance multiscalor
components. All components waveforms appear more complex and spikier when compared with
the cumulative sum case. A comprehensive support to these inferences is backed up by Figures
H.29 to H.35 placed in Appendix H.

The outcomes with less quality, compared with the cumulative sum and ZCR, are
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contributed by utilizing Shannon’s entropy to the variance multiscalor components (H [m2II

.

For the DNS DDoS attack case there is neither clear beginning nor end found, whereas the H&R

attack is found to be represented by an inverse peak in some occurrences. The DC value, in this

case Shannon’s entropy, of the waveforms increases from the fourth, m o> O seventh, m

2l 27

components. These observations are documented from Figs. H.57 to H.60 located in Appendix
H.
Regarding the cumulative sum utilized with the skewness multiscalor components

(S[m,, 1) results of different visual perception quality are obtained. The DNS amplification

I

DDoS attack appears to have better quality for the first, m , (Fig. I.1), and fourth, m, . (Fig.

it

L.4), skewness multiscalor components, while a lesser quality for the second, m ., (Fig. L2),

third, m,

. (Fig. 13), fifth, m

> (Fig. N.5), and undiscernible contributions for the rest of the

components. For the H&R DDoS attack case, this exhibits better quality in the sixth, m,_, (Fig.

1.6), and seventh, m

L (Fig. L7). The shape of both DDoS attacks for the cumulative sum run on

all skewness multiscalor components is preserved. These results are not as uniform as the ones
obtained with the cumulative sum applied to the variance multiscalor components. Figures 1.1 to

1.7 found in Appendix I, considerably sustain these observations.

When employing ZCR is applied to the skewness multiscalor components (Z,[m, 1), the

DNS amplification DDoS attack appears to have better quality for the first, m,, (Fig. 1.29), and

a lesser quality for the fourth, m

¢ (Fig. 1.32), and no distinguishable contributions for the rest

of the components. Concerning the H&R DDoS attack case, this exhibits better quality from the
fifth, m

Al (Fig. 1.33), to the seventh, m

3l

o (Fig. L35). The shape of both DDoS attacks for the

ZCR applied on all skewness multiscalor components appears in varying quality degrees. The
results obtained from ZCR applied to the skewness multiscalor components are not as good as
the ones obtained from the variance multiscalor components. Ample support for these deductions

is delivered from Figures 1.29 to 1.35 placed in Appendix L.
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From the employment of Shannon’s entropy on the skewness multiscalor components

(H[m

” 1), the dynamics of the DNS DDoS attack are noticed in the first skewness multiscalor,

m,, (Fig. 1.57), while the dynamics of the H&R DDoS attack are noticed in the first skewness

multiscalor, m, and from fourth to seventh skewness multiscalors, m,. tom, (Figs. .57 and

from Figs. 1.60 to 1.63). These remarks are derived from Figs. .57 to 1.63, which are located in
Appendix L.

Through the characterization of ART ANNS, it has been observed that when the feature
vectors are more clearly defined, a more robust class is produced. This class robustness translates
into having a wider COI as a promising section of learning that can yield high precision
classification results.

The method, introduced in this research as parametogram, for finding suitable value

candidates for the vigilance parameter p needed by both ART1 and FuzzyART is aptly effective

to select proper values fitting the mentioned machine learning models. These fitting values can
also be grouped into a COIL. The more accurate values allow both ART1 and FuzzyART to
operate in a regime where they can achieve their best performance. The best performance cases
for ART1 have a precision between 97.5% and 98.5%, while the best performance cases for
FuzzyART have a precision between 88.5% and 88.7%. Hence, ART1 performs better based on
the sensitivity analysis used for the ART based ANN models considered in this research. The
high precision and recall achieved by ART1 proves that the multi- and polyscale features used
are robust and relevant, and has also managed to avoid the “curse-of-dimensionality” (i.e., the
accuracy and generalization reduces as the number of features increase) that other machine
learning approaches suffer [DaVS020]. It is important to highlight that ARTI1 as a machine
learning model exceeded the performance expectations crudely set around the 95% vicinity.
Another perspective worth noting, since both a high precision and a high recall have been
achieved, the dataset used in this research containing 46% of anomalous data with two DDoS
attacks (44% for a DNS and 2% for a H&R). This dataset poses a remarkable challenging task
for detection as the H&R class of DDoS present has a very small size when compared with the

DNS DDoS. Alternate datasets used in the literature contain a single class of DDoS attack as
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anomalous data in which the research is based on. With this in view, both the precision and recall
achieved with the challenges presented by this dataset are outstanding.

From the FuzzyART parametogram, it is observed that it shows a high-degree of
nonlinear dynamics when comparing it to ART1. It is noticed that the learning section of interest
in FuzzyART is smaller than ART]1.

Based on the work done and presented in this thesis, there are still many important
questions related to DDoS. However, two that are very significant are: Is DDoS a form of
cyberattack that is fading away? and what makes DDoS to be so prevalent and still
proliferating? Answers to both questions are very challenging. However, in order to tackle these
questions from the communications protocols and standards perspective, any usage of DDoS is
highly likely related with a form of abuse focused precisely in either protocols or standards.
Hence, as long as there are networks that operate based on protocols and standards there is a high
potential for a DDoS type to spring up and undermine digital assets based on this critical
infrastructure. Based on this argument, known and unseen forms of DDoS would continue to be
lurking and hiding in the very underpinnings of the Internet and communications networks:
Communications protocols and standards. This line of thinking poses a big question to humanity:

Is there a way to create communications protocols and standards that cannot be abused?

7.2 Answers to the Research Questions Posed in this Thesis

Upon closure of the research scope proposed in this thesis, answers to the posed research
questions are discussed in this subsection. These questions have been extensively covered
throughout this thesis. Nevertheless, for clarity, these questions are summarized as follows.

A set of features has been assembled into a feature vector composed of multi- and
polyscale based metrics. The raw signal obtained from the Internet traffic has been processed
through multiscalors, utilizing the variance and skewness operators. Then the multiscalor
components obtained are further pipelined for analysis through secondary operators (cumulative
sum, zero crossing rate, and Shannon’s entropy) as a form of polyscale analysis. The feature
vector obtained has proven to be capable of reflecting the dynamics of the Internet traffic helpful
in detecting DDoS attacks accurately and effectively.

The feature vectors obtained have been capable of operating as a DL construct, from the
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feature extraction perspective, because through the amalgamation of the advanced signal analysis
stages a deep representation of the dynamics present in the long-range dependencies is retained.
The rich representation of the Internet traffic dynamics contained in the feature vector is then
consumed by the adaptive resonance theory models, ART1 and FuzzyART. From both machine
learning models, ART1 and FuzzyART, it was found that ART1 achieved a high classification
performance, ranking above the 98% of precision and recall, upon processing of the polyscale
feature vector. The performance achieved in this research far exceeds some of latest approaches
that consider classification methods (e.g., DDoS detection, based on semantic information about
cybersecurity events [SaFF019] and even novel methodologies of ensemble classifiers, majority
voting, logistic regression, and naive Bayes, that have defeated plenty of alternative machine
learning approaches [HOHRO15]). The approach presented here is faster because it is inherently
operating with the Internet traffic dynamics vs secondary levels of information about the
cybersecurity event, as is the case of the research presented in the latest approaches (e.g.,
[SaFF019]). From the machine learning perspective, the early anomalies detection system
developed in this thesis recounts the following merits: Effective detection of deviations from
normal behaviour; discovery of unknown (due to the lack of identified fingerprints) DDoS
attacks, which makes it difficult for attackers to exploit the capabilities of the system. Even if
attackers would launch a novel attack, it is highly likely it would not be undetectable for this
system; and the precision for the system being over 98% with a similar figure for recall (covering
almost the full extent of the DDoS attack) is certainly a success because usually anomaly-based
detection systems typically produce a high number of false positives, misclassifications, which
undermines both precision and recall.

For the multiscalors, the variance and skewness have been utilized as operators. The
variance multiscalor reflects the dynamics of the DNS and H&R DDoS attacks visibly in a more
accentuated manner than the skewness multiscalor. The skewness multiscalor has been
maintained due to the fact that it can contribute additional representations to the feature factor
and therefore a richer pool for detecting network disruptions induced by DDoS. By further
analysing the multiscalor components through secondary operators, a polyscale aggregation of
metrics into a feature vector is achieved. These feature vector has proven to contain robust

metrics helpful to characterize DDoS disturbances found in data streams in Internet traffic.
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The multi- and polyscale based set of features, integrated throughout the course of this
research, has proven the utilization of arbitrary operators for analyzing Internet traffic and
collecting dynamics representing long-range dependencies. The feature vector attained reliably
reflects the time-multifractality nature of the Internet traffic analyzed. The examination of this
point is sustained as evidenced by the high classification performance achieved through ART as
the machine learning approach. Nonetheless, alternative machine learning models could also
provide a similar classification performance to the one obtained with ART1 because the
detection predictive strength comes from the metrics present in the polyscale feature vector.

Furthermore and as a restatement, the ten objectives listed in Section 1.3, dataset access,
insight development, ITB metrics implementation, isolation of the analysis mechanism from the
VED and VFDT methodologies, primary operators implementation, comparison of the operators
merits, feature characterization of Internet traffic, feature vector compilation, ART based ANNs
models implementation, and the comparison of the classification precision among machine

learning models, has been meticulously followed, documented, and completed.

7.3  Contributions

A new methodology, multiscalors, capable of allowing arbitrary operators to be
functional in the multiscale domain has been implemented. The use of feature vectors comprised
by the characterization of time-multifractality, inherently a property of Internet traffic, has
contributed to the high precision and confident classification of the instances in the occurrence of
a DDoS attack. The introduction of multiscalors through the course of this research and specific
applications for DDoS detection have culminated in intellectual property protection in the form
of two patents.

Industry standards in DDoS detection at the time this research was conducted fell in time
regimes way above 10 seconds, for inspection of traffic dynamics only and ignoring a priori
information of attacking sources, which establishes the time classification, one second detection,
results achieved through ART in this research is very outstanding and exceptional.

A novel approach, ART parametogram, for appropriately characterizing the performance

of the vigilance parameter p in ART based ANNs, ART1 and FuzzyART, is proposed. The use

of the parametogram aids in accurately choosing a vigilance parameter value that can provide a
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high precision of performance in DDoS detection through ART by making these ANNs more
attentive and focused.

The anomalies detection system proposed in this research has been developed at the
closure of this research. This detection system has been tested with real Internet traffic
containing genuine DDoS attacks. Similarly, the implementation and testing of the empowering
backbones in this detection system, the novel employment of multi- and polyscale analysis, for
obtaining robust metrics, and implementations of ART ANNs, ART1 and FuzzyART, have been
accomplished. This detection system can detect departures, aka anomalies, from clear traffic
with a high classification precision. The usage of multi- and polyscale analysis has been, with a
high degree of confidence, the main contributor to achieving the high level of precision in
detection. The study of advanced signal processing is what enabled the main methodology,

multiscalors, to be used for obtaining the extraction of relevant features in this research.

7.4 Novelty in the Thesis

Deep multi- and polyscale analysis stages for analysing Internet/network traffic in order
to achieve predictive metrics that describe unequivocally the dynamics of the traffic. Results
from the primary multiscalors operators appeared somewha