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ABSTRACT

Synthetic flow generation is a useful tool in
the design and analysis of water resdurce engineering
projects. For irrigation projects, a measurement of maximum
accumulated water deficit for the design life of the project
is an important requirement. The "range" of a series of
events is a statistical parameter which serves this purpose.
For reservoir design, the range corresponds to the size of
reservoir needed to supply a dependable flow which is equal
‘to the mean flow for the length of the series.

H.E. Hurst studied this parameter, both in theory
and for natural phenomena, and found significant differences
in these regards. That is, natural phenomena were found to
behavé in a manner which is different than theory would -
predict for independent events; The diffefence is related
to the\grouping of high and/or low events in the series, and
is called the Hurst phenomenon. A statistical parameter,
called the Hurst Constant, describes the relationship between
the range and the number of events in the series.

Hurst also dealt with the problem of partial flow
regulation, where the dependable flow is less than the mean
flow and the required reservoir size is correspondingly |
smaller. A relationsﬁip was found relating storage and range

to dependable flow and mean flow.

In this thesis, it was attempted to generate
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synthetic annual flow series for the Red River which exhibit
the Hurstlphenomenon. This was accomplished with respect

to the Hurst constant fof 60-year annual flow series, by the
use of a seasonal version of the Thoﬁas—Fiering model.

The resulting synthetic flow series were then
used to éheck Hurst's equations . for partial regulation, and
to determine the distribution of benefits for a hypothetical
irrigation project on the Red River. Routing the synthetic
flows through reservoirs of different sizes and with
_different demand flows confirmed the validity of Hurst's
equations. Also, a description of the variability of irriga-

tion benefits was found for each reservoir size and demand.
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Chapter I
INTRODUCTION

Simple engineering techniques based on the
accunulated flow diagram, such as the Ripple diagram, suffice
to determine the size of reservoir that will achieve the
degree of regulation necessary to meet predetermined irriga-
tion regquirements up to the point where the available river
flow is fully utilized. Engineers find such techniques
particularly attractive for two reasons; firstly, they lead
to a single unequivocal answer, and secondly, they employ
‘only flow data that actually have been observed. The tech-
niques thus involve the engineer in a minimum of uncertainty
and speculation. |

This is also the bésic weakness of these techni-
gques. Determining the required size of a reservoir for future
‘use is a matter in which there are no single answers and
where certainty is an illusion.

The alternative technique is to go beyond the
recorded flows and to raise the question of what flows one
might expect in the future. 1In other words, synethetic
flow series will have to be generated that are "equally
possible" as the recorded series, as far as we can tell, and
the behaviour of the reservoir must be tested with these.

Synthetic traces of riverflow must be statisti-



cally indistinguishable from the recorded series with regard
to the hydrological properties that determine the engineering
requirements. These hydrological properties differ for
different projects, dependeht on their purpose whether it
"is flood control, low flow regulation, recreation, irrigation,
etc. In the case of irrigation projects, the size of the
reservoir needed to meet the demand depends on the severity
of the dry periods. For over-year storage the grouping of
dry years is the crucial factor. It follows that one needs

a statistical parameter which measures this tendency of any
particular river if one wishes to generate synthetic flows
that are statistically indistinguishable from the recorded
flow series.

The correlation coefficient is not completely
adequate in this regard. It measures the tendency for dry
years to follow each other, but it does not measure how
severe a dry period actually cén get. For this purpose the
so-called range is a better indicator. By definition, the
range of a series of events (such as hydrologic data) is the
difference between the highést and the lowest values in a
series of cumulative departﬁres from the mean. The range of
a series of river flows corresponds to the reservoir size
which is needed to have a dependable flow out of the reser-
voir equal to the mean flow over the period covered by the
series. Figure 1.1 illustrates the concept; the range R is

equal to the sum of a and b.
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For a series of independent events the value of
R, which evidently is a statistical variable dependent on the
length of the series, has been studied by several investigators.
While the value of the range varies from sample to sample,
the mean value can be shown to increase with the number of
events in the series, N, according to the relation:

E(R) = 1.25 0N

In this equation,¢ stands for the standard deviation of the
events in the series.

The relationship shown above, however, cannot be



used to determine the size of reservoir required, for two
reasons; firstly, one hundred percent regulation is rarely
if ever attempted, and secondly, it was found that natural
rivers behave quite differently than the relationship would
indicate. Both problems have been dealt with by Hurst
(1951).

Regarding the first problem of partial regulation,
Hurst searched in vain for a theoretical relation between S,
the storage required to meet, on the average, the specified
draft B, and the range R, assuming B to be smaller than the
average flow M. He conducted, however, a large number of
experiments with coins and cards to generate synthetic series
from which he determined an experimental relationship between
the variables mentioned above. He also analysed natural
phenomena in two groups: 1) tree rings, varves,>and river
levels (Roda Gauge - Nile River), and 2) river discharge,
rainfall, and temperature. He.found that either of the two
following relationships adequately describe the relationship
of all the above obéervations:

-~ 0.08 - 1.05M = B)

log10 = =

w0

S

2

wn

oxr

0.94 - 0.96 {M - B;

The second problem is substantially more serious. When
studying a large number of natural events Hurst found that

the range almost invariably increases more rapidly with N



than the formula given above indicates, and that the formulas
given above would seriously underestimate reservoir capacity.
For the purpose of plotting the masses of data he accumulated,
and which are summérized in Table 1.1, Hurst rewrote the
above equation by taking the logarithm of the terms as
follows:

log (R/o) = K log N/2

The exponent K, which in the theoretical formula given above
has the value of 0.5 now becomes an experimental constant.

It is commonly called the Hurst constant.

Table 1.1

‘SUMMARY OF K-VALUES

Phenomena No. Mean g:i?iiign
River levels, discharges, etc. 99 0.75 0.077
Rainfall ‘ 168 0.70 0.069
Temperature and pressure 115 0.70 0.085
Annual growth of tree rings 85 0.81 0.078
Varves (Lake Saki in the 114 0.69 0.064
Crimea)
Varves (Tamiskaming, Ont., 90 0.77 0.094
Canada, and Moen, Norway)
Sunspot numbers and wheat 25 0.69 0.086

prices (combined as
miscellaneous phenomena)

Means and totals 690 (0.729) (0.092)




Differentiating the previous equation with
respect to XK, and using the data in TABLE 1.1, Hurst found
that the following relation described the mean results:

0.72

R_N _ 0.72

Thus, R/o was found to increase more rapidly
with N for natural phenomena than for chance events (for
which K = 0.5).

Hurst found the K values to be approximately
normally distributed. It can be seen that the deviation from
the value 0.5 in the theoretical formula is quite significant.

At first it was generally assumed that the
difference between the value of 0.5 found theoretically for
independent values in a series and the larger values of thé
Hurst constant for natural series was due to annual correla-
tion between successive elements in the natural series.

This assumption has proven to be untenable; the irregular
long term fluctuations of the sample means (say of 50-year
samples) exhibited by numerous natural series cannot be
explained by any)short memory dependence mechanism. The
effect of serial correlation is to raise the Hurst constant
for relatively shorf time series; if N is increased theﬁ K
drops gradually towards the value of 0.5 for any artificially
generated series using simple serial correlation (Markov
chain).

Dﬁring trial attempts at generating flows for

the Red River it was found that adequate values of the Hurst



- constant could be obtained for a 60-year period when using
a two season model, one season corresponding to the relati-
vely dry season from August to March and one corresponding
to the relatively wet season from April to July. Correla-
tions were calculated and used between successive seasons.
While this model is not likely to be acceptable for longer
time horizons and more sophisticated deels such as Frac-
tional Noise Models would have to be employed, it was
considered that the procedure that had been developed would
be adegquate for the purpose of analyzing the variability of
irrigation benefits with partial river regulation.

The study is purely hypothetical. There is no
reservoir on the Red River, nor is there any opportunity for
building one. The purpose of the study is to determine the
type of statistical distribution of irrigation benefits one
could expect for a river with considerable flow fluctuation.
In particular, the.relationships determined by Hurst for
partial regulation will be examined and checked for adequacy.

The study is divided into three parts; the first,
described in Chapter 2, deals with the generation of the
synthetic flow series. Chapter 3 considers the variability
of the irrigation benefits assuming various degrees of
development of the irrigation potential in tbe form of percen-—
tage of the average flow utilized and various degfees of
control in the form of reservoir size in terms of average

yvearly flow. Chapter 4 gives the conclusions.
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Chapter II
GENERATION OF SYNTHETIC FLOWS

Synthetic flow traces, while different from the
recorded series, must be alike to the recorded series in so
far as the important statistical characteristics are con-
cerned. For the purpose of analyzing required reservoir
capacity the important statistical parameters are: the mean,
the standard deviation, the correlation between successive

flows, the range and Hurst's constant K.
(a) Recorded Data

The data used in this thesis are from the Red
River (of the North) and consist of 60 years of consecutive
mean monthly flows at Emerson, Manitoba.

The analysis of the recorded data consisted of
the calculation of the typical statistical parameters of
mean and standard deviation of monthly and annual flows, and
corfelation coefficients for monthly flows and annual flows.
Also, the Hurst's K and the Range were calculated, for
future comparison. The data were plotted on normal and
log-normal probability paper in order to determine the
distribution types of monthly and annual flows. These may

be seen in Appendix A.




For the purpose of examining the Hurst pheno-
menon, only the annual flows are needed. The parameters

for annual flows are as follows:

" Real Number Flows Logs of Flows
Mean 36,892 cfs-~months 4,456
Standard deviation 26,690 cfs-months .3241
Range 428,908 cfs-months 6.1
K : .816 . .861
Annual serial 4076 .6005

correlation
the: flow units are in cfs-months; attained by
summing mean monthly flows in cfs units.

These figures would seem to indicate that this
recorded series for the Red River exhibits the Hurst Pheno-
menon. Note here that the values of the Hurst constant are
a little on the high side of the naturally observed ranges
(M +0) of 0;73 + 0.09 for all observations, or 0.75 + 0.677
for river statistics. |
) Figure 2.1 on the foilowing page shows a sequen-
tial plot of the recorded annual flow series. Figure 2.2 on
the next following page is a scatter diagram of these annual
flows, that is flowi vs. flowi + i.

closely enough to enable a graphical estimate of the corre-

The data do not group

lation coefficient.
The Red River annual flows were found to be log-
normally distributed, as shown by the plotting results (see

Appendix A). The computer program used for plotting this

data is listed and explained in Appendix G.
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(b) Preliminary Attempts at Flow Generation.

H.A. Thomas and later M.B. Fiering have developed
a relatively simple model for the génefation of normally
distributed flows which exhibit single serial correlation.

A transformation is necessary to generate flows that follow

a log-normal distribution but this does not present any
problem. The method can be used for the generation of annual
flows as well as monthly flows.

When generating monthly flows the dependence
between successive flows is expressed in the serial correla-
tion between successive months. Since the correlation
between flows that are more than one month apart in time
reduces rapidly this model results in annual flows that are
virtually indpendent.

An annual model, on the other hand is too coarse
for reservoir design. For the purpose of preliminary investi-
gation, five 60-year series of monthly flows and ten 60-year
series of annual flows have been generated. The results are

tabulated in Appendix B.

However, it was noticed that the statistical
distribution of monfhly flows for the different months were
not similar. The monthly flows for the "wet" months of April
to July were log-normally distributed. The monthly flows
for August to March were of lower magnitude and had a distri-

bution between normal and log-normal. Appendix A contains

probability paper plots of these monthly flows.
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Therefore, it was decided to attempt another
approach using two seasons formed by the addition of monthly
flows for the above mentioned months. These seasons shall
‘be called the "wet" and "dry" seasons, for lack of more
suitable terminology. The wet season has flows which are
log-normally distributed, while the dry season has flows
which are in between a normal and a log-normal distribution.
The distribution of annual flows (from wet season to wet

season, or April to April) remains log-normal. These graphs

may be seen in Appendix A.

'The statistical parameters for the "seasonal"
(April-April) annual flows are slightly different than for
the calendar annual flows, but rather insignificantly so,

as a comparison with the table on page 9 shows.

Real Number Flows Logs of Flows ~
Mean 36,381 4.443
Standard deviation 27,336 .332
Range 426,969 5.8
Hurst K ' .808 .842
Annual serial .3930 .5814

correlation
It was decided to use the Thomas-Fiering method
to generate wet and dry season flows and then form annual
flows by addition. It was further assumed that the dominant
wet season flows are log-normally distributed. To obtain a
normal distribution for the T-F model the logarithms of the

flows were used. The dry season flows were left as real
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numbers which would imply a normal distribution when used
in the T-F model. Therefore, the numerical analysis gave
the mean and standard deviation of the logarithms of the
wet season flows as well as the real values of the dry season
flows, and gave the correlation between the time series of
alternating logarithm-real-logarithm-real-logarithm etc.
numbers for the series of wet-dry-wet-dry-wet etc. seasons.
Correspondingly, the generation process produced in alter-
nating fashion the log of a wet season flow, the real value
of a dry season flow, etc. To obtain the annual flow series,
‘the annual flow for each year was found by adding the anti-
logarithm of the synthetic wet season flow to the synthetic
dry season flow, resulting in a series of real'number annual
flows..

The mean, standard deviation, and correlation.

coefficients for the seasonal flows are:

N , Wet Season Dry Season  Symbol
Mean ) 4.310 8868. MEAN
Standard deviation 0.3394 6682, SIGMA
Correlation coefficient 0.4987 0.6511 ROE

The wet season correlation coefficient describes
the dependence of the log value of the wet season flow values
on the preceeding real number flow values, and vice versa.
for the dry season correlation coefficient.

Using the notation of the above table, and the

subscripts 1 and 2 for wet and dry seasons respectively, the
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generation process is described by the following two equa-
tions used in alternating fashion. The subscript N repre-
sents the year of the generated flow value, and thus
increases by one each time the cycle returns to the first
equation. In the third term, V is a random number from a
distribution with a mean of 0.0 and a standard deviation of

1.0; a new value of which is used for each step in the

process.
FLOW(l,N) = MEAN(l)
+ SIGMA(l) x ROE(1l) x FLOW(Q,n—l) - MEAN(2)
STGMA (2)
1
+ V x SIGMA(1) xN/l ~ ROE(1) 2
FLOW(Z,N) = MEAN(Z)

"+ SIGMA(2) x ROE(2) x | FLOW(1l,n-1) - MEAN(1l)
SIGMA(2)

+ V x SIGMA(2) xq/l ROE (2) 2

~

As in the Thomas-~Fiering method, the first term
is the mean for the season, the second term is the component
due to the influence of the preceeding value, and the third
term is a random component. For the first generation of a
wet season flow, the second term was assumed to be equal to
zero in order to begin the process.

The preliminary runs for this approach indicated
promise, with all of the parameters being relatively close
to the desired recorded or theoretical values. These figures

may be seen in Appendix B.
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This method of generation was then applied to
a more intensive study, with 50 different flow series of 60
years of annual flows being generated and analysed.

The figures for the average values of all the
parameters and the standard deviations of their distributions

(which were assumed to be normal) are given below and

discussed:
Mean of
Generated Standard Recorded
Parameter " Values Deviation Values
REAL NUMBER FLOW VALUES:
Mean Annual Flow 37674. 5703. 36,381
Standard Deviation
of Annual Flows 27427. 7272. | 27,336
Range 309550. : 106764 426,969
Hurst Constant .711 .063 .808

Yearly Correlation .325 .143 .393
| LOGARITHMIC FLOW VALUES:

Mean Annual Flow 4.466 ’ .063 4.443

Standaxrd Deviation

of Annual Flows -314 -030 -332
Range ' 3.628 .862 5.8
Hurst Constant .720 .056 .842
Yearly Correlation .348 113 .581

For the real number flows, the mean annual flow
and standard deviation are very close to the recorded values.
The mean value of the range of generated flows is about one
standard deviation below the range of recorded flows. The
mean and spread of values for the Hurst constant is quite

satisfactory, having nearly duplicated the world wide trends
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for this'parameter. The average generated annual serial
correlation is about 0.5 ¢ below the recorded serial corre-
lation.

For the log number flows, the mean annual value
and the standard deviation are both quite close to the
recorded value. Once again the values of the Hurst constant
approximafe closely the world-wide natural distribution.

The mean value of the range of generated values is about

2.5 standard deviations below that of the recorded log number
flows. The mean generated annual serial correlation is

about 2 standard deviations below the recorded value.

The flow data distribution types were reproduced
as faithfully as could be expected. Four series of synthetic
wet season, dry season, and annual flows for varying values
of K and R were plotted for comparison with recorded flow
distributions. The four plotted series had values of Hurst's
K, and Range which were:

1. small
2. large

3. close to the values for the recorded flow
series

4. close to the mean values for all the generated
flow series.

For all four example series the seasonal and
annual flows were distributed similarly to the recorded

flbws.* These may be seen in Appendix C. For the log normally

*Note: the dry season synthetic flow distributions are
irregular at the bottom end because of the built-
in check to curtail generation of negative flows,
which can happen when using this procedure for a

normal distribution.
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distributed wet season and annual flows, the best fit line
from the recorded flow distribution is shown for comparison
with the generated flow series.

The computer programs used in this analysis and

generation are shown and explained in Appendix D.

Also, the four sample generated flow series were

plotted in sequential order and may be seen in Appendix C.

These compare reasonably well with the recorded flow series,
except that the high correlation of recorded annual flows
for the dry decade of the 1930's is not exhibited to the

same extent in the generated series.
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Chapter III
VARIABILITY OF IRRIGATION BENEFITS

The synthetic flow model will now be used,
firstly to vérify Hurst's equations for the required reser-
voir capacity as a function of the demand in terms of the
average river flow. Secondly, the distribution of irrigation

benefits resulting from different capacities will be studies.

Hurst's equation for partial flow regulation
expresses the required reservoir storage in terms of the
range. Both demand and mean flow are made dimensionless by
dividing their difference by the standard deviation. The

empirical formula is as follows:

5= .94- .96 B2
where S = reservoir size
R = range
M = mean annual flow
B = annual flow demand ( mean flow)
0 = standard deviation of annual flows

It is evident from this formula that it is not valid over the
entire range of values since for M = B, S = R. Hurst pointed

this out in his paper. For M, Jd, and R the average parameter
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values of all generated flow series were used:
M= 37,674 c.f.s.-months
g = 27,427 c.f.s.-months

R = 309,551 c.f.s.~-months

For the purpose of this study three cases have been analyzed,
corresponding to three degrees of flow regulation
(1) Demand B = Mean Flow M = 37,674 cfm.
This means full regulation S = R = 309,551 cfm.
(2) Demand B =M - 0.1 0 = 34.931 cfm.
Hurst's formula gives for this case
S = 0.65 R = 205,000 cfm.
(3) Demand B =M - 0.2 7 = 32,188 cfm.
Hurst's formula gives for this case

S = 0.511 R = 158,000 cfm.

It

With these three reservoir sizes, S = R, § = 0.65 R and S
0.511 R, and the corresponding annual demands, the behaviour
of the reservoir was analyzed for 50 periods, each of 60
years duration. Irrigation benefits were also calculated
for each case and each period in a manner that will be
explained below.

The reservoir regulation criteria were established
only for annual regulation as in Hurst's work, because the
variations of flow and demand during the year can be dealt

with separately. The criteria are as follows:



1. The reservoir is assumed to be full at the
start of the flow series. Storage losses are

ignored.

2. Change in storage = annual flow - annual
demand. 1.e. Storage is increased when annual
flow is greater than annual demand and vice
versa. The reservoir supplies the required
supplement or stores the excess, except as in

3 and 4 following.

3. When annual flow-exceeds annual demand and the
required change in storage is greater than the
available volume, the excess is wasted, and

the reservoir is full.

4. When the annual demand is greater than the
annual flow, ana the reservoir storage is less
than the required supplement, the reservoir
storage is added to the annual flow, demand is

not met; and the reservoir is empty.

The results of the analysis are assembled in

Appendix E in the form of cumulative distribution curves.

The most important result is that for each case the reservoir
provides the demand flow without failure in 50% of the genera-
ted flow series. Full irrigation benefits are thus obtained
in half of the series. This confirms the wvalidity of the

Hurst formula for partial regulation in the sense that the
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specified demand is met with a 50% probability. It should be
noted that the period of 60 years used is the same as the
one for which the range was calculated; this is of course a
prerequisite. |

The number of times the reservoir was full in
each 60-year synthetic serieswas also recorded and the results

are shown on the graphs in the Appendix E. This number is

an indicator of the amount of water wasted; it can be expected
to increase as the reservoir size and the demand are decreased.
Average number of timeé full in 60 years were found to be 4,

8 and 13 for the three reservoirs in order of decreasing

size,

To determine the irrigation benefits for any
given flow series a simplified benefit function was derived
from which the irrigation benefits for each year were deter—
mined; these were then converted to é present worth wvalue.

It was assumed that the irrigation benefits are
proportional to the amount of water supplied up to the point
where the design demand is fully met; beyond this point the
benefits are assumed to remain constant. Since irrigation
entails operational costs, a total crop loss corresponds to
negative benefits; these were assumed to amount to one half
of the maximum positive benefits. This amounts to assuming
that the operatbnal costs are equal to one third of the crop
value when irrigation demands are met. The resulting benefit

function is shown on Figure 3.1.
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In this theoretical study the interest was not
a very critical, K factor. Hence, without any great amount of
justification, a value of 6% was chosen. This figure is

used to determine the present worth of benefits derived in

the future.
FIG. 3.1 — BENEFIT FUNCTION
-3 [het flow] |
1.0 - 2] demandl 2
| N— =0
n
+
§ 0.5+
9]
+
(1\ .
L 0.0 net Flow
“C) 7 demand
Q9
-0.5-

/

The total benefits (Sumben) of any given flow
series are reduced to a present worth value found by summing
the present worths P.W., of the benefits (Bp) of each year

(n = the number of years in the future of the annual benefit).

P.W.n = Bn i = 1interest = 6%
(1 + i)n
60
Sumben = g P.W.n
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Cumulative distribution curves of the total

benefits thus calculated are shown in Appendix E.

The Hurst equations are based on the means of
empirical observations, and therefore contain the inherent
requirement that the demand be fully met with a probability
of 50% in the design period. This regquirement is not
related to economics nor to any social objective. All one
can say for it is that it corresponds to present engineering
practice as determined by the use of the Rippl diagram (mass
flow analysis).  The study was therefore extended to include
a reservoir size considerably smaller than demanded by the
Hurst equations. |

. The demand was taken equal to the smallest demand
of the previqus three cases, namely 32,188 cfm. However,‘
instead of using a reservoir size of 158,000 cfm as required
by the Hurst equations a size of 60,000 cfm was used. This
reservoir size was determined by trial and error to give
zero times empty in 60 years for the most favourable of the
50 generated flow series, or at least once empty for all
other flow series.

Using the same benefit function and réservoir

regulation criteria, it would be expected that:

1. Maximum benefits should be about the same as in
the three previous cases, but should occur only

at the extreme end of the probability scale.
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2. The maximum number of times empty in 60 years
for any flow series should be greater in this
case than for the reservoir size designed by
Hurst's equation. There should be no flat

section at the low end of the curve.

3. The number of times full might also be expected

to be somewhat greater on the average.

As can be seen from the graphs in Appendix E, these
expectations were realized to a high degree. |

The distribution of benefits for the reservoir
size of 60,600 cfs-months was almost Gaussian up to a frequency
of exceedence of about 30%, where the curve flattened
considerably, most likely due to the nature of the benefit
function in combination with the relation between the reser-
voir size and demand. It is speculated that using the same
demand with a stillsmallerreservoir.would result in a
Gaussian distribution of benefits.

The distribution of the number of times full in-
60 years was Gaussian, with the average number of times‘full
being 15 and the maximum being 31. These are slightly higher
than in the pervious case for the same reservoir size, but
possibly not significantly so.

The number of times empty in 60 years was distri-
buted normally as well, and the maximum number of times
empty was 23, significantly greater than the previous study,

as expected.
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In Appendix F, the computer program for the

reservoir regulation and economic analysis of this hypothetic

irrigation project is shown.




Chapter IV

CONCLUSIONS
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Chapter IV
CONCLUSIONS

The seasonal version of the Thomas-Fiering
model was able to produce flows which exhibited values of
the Hurst Constant quite similar to those observed for
natural phenomena the world over, and with flow distributions
similar to that of the period of record. Although the
synthetic flows were deficient with respect to the annual
serial correlation and range as compared with recorded
flows, they were still useful in checking Hurst's equations
for partial regulation, and evaluating the variation of
benefits for a hypothetical irrigation project.

- Because the reservoirs designed by Hurst's equa-
tion for paftial regulation met the demand flow requirements
“for one half of the generated flow series, the equation was
found to be valid, at least for the 60-year period used in
the study. The variability of benefits from a hypothetical
irrigation project was established based on the different
synthetic flow series.

In general terms it is concluded that for a river
displaying the Hurst pheonomenon, reservoir design may be
based on the Hurst equation(s). Synthetic flow series which
exhibit similar behaviour with respect to the Hurst constant

may be used in economic analyses to determine the distribution
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of benefits which may result from possible future flow

series in the design life of a project.
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Appendix B

TABLES OF RESULTS FOR PRELIMINARY

FLOW GENERATION ATTEMPTS

Recorded calendar annual flow parameters
Thomas-Fiering method - monthly flows
Thomas-Fiering methed - annual flows
Recorded "seasonal"” annual flow parameters

Final method - preliminary study




Bl (a)

Note:

In the final analysis of output, it was discovered
~that a computer programming error had resulted in erroneous
values of annual correlation, for recofded and synthetic
flows. The values of anhual correlation were too high in

all cases, but the error was found to be consistently of the
same proportion. The erroneous figure for annﬁal correlation
of recorded flows was uséd as a basis for trial runs of'

flow generation by the Thomas-Fiering annual model only.

In the cases of the trial series using the Thomas-Fiering
monthly model and the final method (2 seasons), flows were
generated based on correct values'éf monthly and seasonal
correlations, respectively. The resulting annual correla-
tions were erroneously caiculated in all cases.

The error was corrected and calculations were
re—doné for recorded flows and the 50 synthetic flow series.
The statistical comparison of output data with recorded
data was found to be the same with both the erroneous and
the correct values of annual correlation. This is because
the error was of an approximately constant proportion. Theré—
fore, the erroneous values of annual correlation for these
trial runs have been stroked out, but left legible for
comparison. Corrected values of recorded flows have been

included.



APPENDIX B

1. Recorded calendar annual flow parameters

(a) Real flows

(b) Logs of flows 4.456

M.A.

Flow Annual ¢ Range

36,892 26,690 428,908
.3241

6.1

B2

" Annual

K
.816
.861

-Corre-

lation

orrecteac

va ]u &5

~
0%

2. Thomas-Fiering method - monthly flows (5 trial series - 60 yrs)

(a) Generated
real number
annual flows

Mean wvalue
Standard

Deviation ' -

Comments

(b) Logs of
. generated
annual flows

Mean value

Standara
Deviation

Comments

© . ¥ERROR*

47,693 (63,504 476,813  0.649  0.3563/
39,184 37,858 265,257 0.572  0.5656
36,484 24,734 364,347 0.791 0.5444
36,854 25,053 220,400 0.639  0.4Y60
34,120 23,887 251,233 0.692  0.2827
38,867 35,007 315,610 0.669 0/4334
5,250 16,945 105,008 0.081 L1217
0.K. high low a bit low  low

| *ERROR¥

4.522  .3453 3.6 0.686  0.5044/
4.429  .3682 3.3 0.641  0.4705
4.459  .3111 4.9 0.809 0.4613
4.482  .2647 2.3 0.641  0.4938
4.432  .3040 4.1 0.768 0.6106
4.465  .3187 3.6 0.709. 0,/5001
.039  .0398 1.0 0.076 L0647
0.X. 0.K. "low O.K. with quite
theory low:

® this figure is questionable, but this is not very signi=-
ficant with regard to the results of the thesis.



B3

3 Thomas-Fiering method ~ annual flows (10 trial series -~ 60 yrs)

Cy *TPROR*
‘ Corre-
M.A.flow Annual 7 Range K lation (Annua

(a) Generated 22,412 19,376 441,292 0.919  0.895/
real number 25,501 21,127 - 411,999 0.873 0.844
annual flows 38,008 33,115 735,648 0.912 0.816
34,661 26,150 444,041 0.833 0.8}8

51,843 41,092 691,859 0.830 O.8§3

28,929 19,381 405,272 0.894 0.889

35,003 23,725 296,841 0.743 0.579

41,226 32,344 654,878 0.884 0./776

19,202 11,050 112,007 0.681 0/677
Mean value 32,976 25,262 465,981 0.841 {837
0

Standard ‘
Deviation 9,692 8,523 188,861 0.076 ..068
Comments 0.K. 0.K.  O.K. too high high
: T for theory
- ) *ERROR*
(b) Logs of 4,216 0.245 2.8 0.717 0.931
generated 4.485 0.354 7.7 0.906 0.89
~annual flows 4.435 0.328 4.9 0.792 0.94
‘ 4.339 0.356 8.0 0.915 0.90¢5
4.603 0.306 5.0 0.822 0.% 3
4,437 0.305 5.9 0.869 0.879
4.427 0.370 8.3 0.915 0.864
- 4.272 0.343 7.0 0.886 0.914
4.256 0.348 7.3 0.894 0/899
Mean value 4.386 0.328 6.3 0.857 )% 895
Standard . - S o 2
Deviation 0.118 0.036 1.7. 0.064 _0 034
- Comments O.K. 0.K. - 0.K. high for high
. ’ theory.
O0.K.with
recorded
data

values

4. Recorded "seasonal" annual flow parameters

(\g “Co rr&:c tad

(a) Real flows 36,381 27,336 426,969 0.808 0.6 4?. 30

(b) Logs of flows 4.443 .332 5.8 0.842 .805 ,5814




5. Final method - preliminary study (10 trial series -

(2)

(b)

Generated
real number
annual flows

Mean wvalue

Standard
Deviation

"Comments

Logs of
generated
annual flows

Mean value

Standard
" Deviation

Comments

B4

60 vrs)

*ERROR*
M.A.- Corre- )
Flow Annual g  Range K lation (annua:

44,537 41,348 531,323 0.751 0.573/
43,591 27,793 444,278  0.815 0.781
31,663 24,111 219,459  0.649 0.619
41,884 33,524 266,693 0.610 0.444
33,830 21,909 163,769 0.591 0.526
42,795 40,291 514,057 0.749 0.571
38,826 31,499 422,586 0.763 0.529
38,708 32,474 410,584 0.746 0.594
26,812 17,260 255,873 0.793 0./495
30,561 19,491 158,521 0.616 0/513
37,320 28,970 338,714 0.708 Zﬂ567
5,888 7,890 134,362 0.079 0.086
0.K. 0.K. a bit low 0.K. O.K.

*RRRORY

4.509 .359 5.4 0.798 0.627/
4.525 .359 4.8 1 0.762 0.71%
4.368 .367 3.9 0.692 0.633
4.504 .326 3.4 0.693 0.468
4.434 .311 2.8 0.641 0:557
4.468 .387 5.0 0.751 0.588
4.477 +.315 4.7 0.798 0.670
4.393 .293 2.9 '0.675 0.463
4.453 .351 5.1 0.785 0,752
4.338 .290 4.5 0.808 0,633
4.447 .336 4.3 0.740 .613
.063 .033 0.9 0.060 A.ogz
0.K. ' 0.K. low 0.K. low



Appendix C

GRAPHS SHOWING STATISTICAL DISTRIBUTIONS
OF SAMPLE GENERATED FILOW SERIES - FOR

WET AND DRY SEASONS AND ANNUAL VALUES.

SEQUENTIAL PLOTS - SAMPLE GENERATED

FLOW SERIES

Pages: C2 - C5 Example 1 Values of X and R close

to recorded values

CY9 Example 2 - Large values of K and R

c6 -
Cl0 - Cl3 Example 3 - Small values of K and R
Cl4 - Cl7 Example 4 - Values of K and R close

to mean values of K and
R for all generated flow

series

Cl8 - C21 Seguential plots of the above four

example generated flow series.

Cl
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Appendix D

FLOW GENERATION PROGRAM - FINAL

includes:

Explanation of program
Table of symbols

. Listing of program

VERSION

D1



D2

APPENDIX D
FLOW GENERATION PROGRAM — FINAL VERSION

The program shown here is the final version of the
flow genération and statistical analysis program. It is
,idéntical except for the main data input to  the one used to

ahalysé the recorded flow data.

Tﬁe main program is brbken intb sections with self-
éxplanafory labels which indicate the sﬁepéAinVOlved in tﬁe
analysis and‘generation process. A'great portion of the
étatements are not inherent.to the method, but‘wefe necessary

fof the logical handling of the great.améunts of output..
 Three subroutines are used. Subroutine -TEST is used in
- calculating the range of the data, and its purpose is to scaﬁ
an array.and locate thé largest and smallest'number. Sub-
routines GAUSS andvRANDU are cémmercial subfoutines which Qére
‘uéed in cdnjunctibn tb produqe-a nofmally distributed random
ﬂumber series with a given mean and standard deviation (0.0,
1.0). This is used for the random component of the generated

flow value.

A list of some of the significant symbols in the

program follows:



Symbol

MEAN (3)
SIGMA (3)
ROE.(B)

CFLOW (100, 3)
FLOW A (100, 3)
FLOW B (100, 3)

SUMDEV (100)

T(3), Y(3),
VV (200) '

RANGE

HURST

D3

Explanation

Array of mean values of seasonal

and annual flows

Array of standard deviations of

seasonal and annual flows

Array of correlation coefficients

of seasonal and annual flows

Arrays of flows, logs of flows,

and deviations from mean flows

Array of cumulative deviations

from mean flow values .

Miscellaneoﬁs arrays used for
temporary storage of intermediate

values, etc.

Range of values of cumulative devia-

tions from mean flows

Hurst's constant

"Following is a listing of the program.



O

c L7
&
C FINAL VEIPSION OF SYNTHETIC FLN4 GENFRATION PROSGRAM
C A22L YING THE HURST PHAENOMENIN THEJRY
C F0 THE RED RIVER
o
C
c N=NJIMREZP OF YFARS QF COM2PLFTE RZCORC OF MIONTHLY MZAN S_0JWS
C IYEARIS=NJMBER JF YEARS DF SYNTHITIC FLOWS DESIRZD
C
C
RTAL SIGVA(Z)sRCE(3) s FLUA(10042).T(3)
RIAL MZAN(3)e VVI{ZO0) s Y{R) o FLOWA{ 10D, 2)
REAL FLDONBR{100412)4SJUMDEV (100
1on SARMAT (r*0f% /7 /)
101 FORVAT ({I3)
102 SORMAT (20X 41255,07)
103 FORIMAT (1 % 42X 413F3.1)
L
co
C RECIRSED FLOW PARAMITEES
MZAN(1)=4,310
MZIAN(2)=R8268,785.
MIAN(Z)Y=0.443
SIGMA{1)=,.32394
SIGMA{(2)=e682,714
SIGMA{(3)=.3322
TROE{1V=ace7
RIZ(21=eH551 1
RI=E{3)1=.8082
NUM3=2
GO TO 44
C
C . MANIPJLATION £ STORAGE OF FLOX ARRAYS
51 WRITZ(R,113)
IF{NUMRcNFe3) GO TO 43
NWRITE(T75,120) MEAV(B)»SIGWA(Z)oQANGEqHUQSTsﬁﬂF(3)
D3 45 =2 ,N
45 OWE{TT3TEF_0wWA (T 3
43 CDVTIVUF
12 FIRIMAT (5F1863) .
132 TORMAT (P07 410X LOGARITHMS 3JF FLOWS?')
’ 23 B2 1T=2¢N
SLOW(TI2)= ALJGICU(FLOWA(T+2))
: SLAW(T.2)=FLOWA(I o2
22 FL0W(TW1)Y= ALOGIC({FLONA(T 41))
20 38 T=2,N
3s \“JQITE(f\o.“GQ)(FLOW(IoJ)'-J7-193)
105 SORMATIL® v, 20X 8F15,%)
ICOUNT=C )
32 T3 5% o
=4 CONTINJUE
N=TYZTARS
55 CONTINUE
- C
C
C CALCULATICGN OF MFANS CF SEASONAL FLO#S FOR EACH SEASDON
WRITE (5,100)
DD 3 J=1,3 oo
T(JY=0
23 2 1=2¢N
Ve T{JI=T(J) + FLOwW{I,J)
MEAN (J) = T(J)/(V“l)
WRRITE (5,104 JeMEAN(I)
124 TIIMAT (? 'oGXo'MFAN FLOW T0OR MIONTHT 3I12,'=¢,F10,3)
3 CONTINUE
I7 {(NUMB.ZQ.2)G0 TD 57
TMIZ AN=ME A N( 3)
WRITZ(&,1168)TUEAN
&7 CONTINUE
115 SURIMAT (P00 . SX 4, TVEAN ANNUAL FLOW=% sF10.4)
*ITE (€.10C)
C ) ) . :
C F3RM NTW ARRAY OF DEVIATIONS FRIM MEAN FLOWS
DO 5& 1=2,N.
20 5¢& J=1,23
FLOWA(T 2 J)SFLOW(T4J)
5 FLAOW(T oY =FLOR(TI s JY-NMZAN( )




LD

c ,
C CA_CU_ATION OF SEASONAL & ANNUAL STANDARD DEVIAYTIONS
D20 5 J=1,.2 , :
Y(JY=0
DD 4 T=2,N
4 YOJI=Y LY+ (FLOWT s UV YX(FLOW{TIsJ))
SIGVA(IY=S0RTIY (Y /7 (N~-11)
5 WRITE {F.105) JeSIGMA(J)
125 FORMAT (' 7 ,SX4*STANDARD DIVIATION FOR MONTHY 4124929 ,F10. 4)
G4 CIANTINUE
Y{2)=0.0C
DI 88 I=z2,N
Y{3)=Y{2Y+{(FLOW(TI+3)IX{FLOW({I3))
58 TSIGMA=SORT(Y(Z)Y/(N=-1))
SIGMA{3IT=TS IGVA
WRITE (6,11 7)TSIGMA
117 SORMAT (007 oGX«*OVERALL STANDARD DIVIATION=Z? F1064)
C
C CALCU_ATION OF RANGE & HURST CONSTANMT
SUMDIEV(1)Y=2.0
D20 12 I=2,N
_=1-1
12 SUMDIV{T)=SUMDEVIL)Y4TL0w(I+2
CALL TEZST (SUMDEV.IUCsN+3TG+SMA_L)
RANGE =BIG+ABS(SMALL)
NGO=N-1 :
KRITE (£.118&) PANGE ,NO N A
112 TIJIVAT ('O'.&X,’DANG:"q:IBoI,' N=%,13)
VALDGIC({FEANGE/TSIGVA)
p—(w~1)/2
=ALOGIC{P)
4u2qT V/w
e WRITE(ES,11SIHURST e
112 SURMAT ('0° 45X, "HURST CCONSTANT=¢,F5.3)
C
c
'q CA_CU_ATION OFSEASONAL ZORPRELATION CIEFFICIENTS
WRITE (&.1C03
T.2W{142) =C.0
20 10 JU=3142
B
C=D
D0 9 I=2.N
IF (JeNFel) GO TO 7
6 K=2
L=I-1
32 T3 ¢
7 K=J-1
, ==1 .
& CONTINJE
A=ZA+{F_Qi(T+J)EFLOWIL.KY)
= CECH(FLOM (L sKIYN{FLOW (L 4K))
D=Y({J)*xC
ROE(II=AZ7({SQRT(D)Y )
10 WRITE (641C6) JeRUE(Y)
105 FORMAT (17 % 4SX 3 'ROE(*51247)=t,F10.4)
C
C
C CALCULATION OF ANNUAL CORRFLATION
FLOW(1e3) =Ce0
A=0.0
C=0.0 .
D3 73 I=24N
J=1-1
73 AZA+FILNW(TI4+3) XFLOW(J+2) _
KERROR ————3~ C=A=FLOW [Ny 3)—————— should be C=Y(3)=FLOW (N,3) ¥ FLOW (N,3)
D=y {(3) =C
RAZ(R) =4/(SQ2T(D)Y)
74 FORIMAT(IC ", SX s 'YEARLY CORPELATIONZ ¢ o F10.4)
WRITE(AR 74T ROETRD

NUMB=NJMI+1

G
22 CONTINUE e ———————
WAITE (5.1C0)
53 CONTINUF
IF(NUM3 .20, 1)5C TO 51
I (NUMRBLE0,3)G0 TO S1
ITINUNMBTT G460 T 232

@]




SO0000

D 6.

GEMERATION OF SYNMTHETICZC FLOW SERIEg

CONTINUJE
S=1a.0

)
;L)
~ U

SEFD IX= ¢ ,10}
¥
ITTIIITIYI I I I TTITIIITIETITITIIITIIITITII0G )

X=WTTANT?D
IYEAPS—‘O

L

t—— —
<<
TH
P)
/L/U
Ny
+
—

IR_z.N
N{2)
[GMA(2)

f’ﬂ»—-
—- D

XL LKA EUZ

GRUSE (TR 52N V)
=V

-

NH <D=y 2nn
ot

e

s 0O X

‘m

1R

A
1

HEARY]

~awW{ v J
V*M 1)
SIG=S \4/\(1)

% ok

MEANC 1) 4+S 16

VES TG MA

1A,J)=10
AN(

J=1+1
CA__ GAUSS({IX:S+AMV)
VV({TI)=Vv

= MEAN(2 ¥ % BRI {2 X<WY/S 15
’ 5 : (2)% RCE(2)))

DX s "RANDOM NUMBER SERIES?T)
(VV( J)v]"l!f)

fr-‘--ﬂﬁﬂ
i (D

[N
0

N
8§

ERATED SYNTHETIC F.02¢ SERIE=S

Xe fSYNTHAZTIZ FLOW SERIES®')

‘G3 TD S

o

N
€
"
= e

FRITE(HL103 ) (FLOW(ISJ) Jd=143)
4
=t .
B MEANC3YSSIGMA(3) s RANGE s HURST,RDOE( 3)
’

(FLOWB{T.2Y,I=24N)

OO ON

SUBRODJUTINE TEST

U3RJUTTIME TEST (ARKAY S MRO% IR 8,5)

L ARRAY(1CO)

@]

GO D W

e RN AN
—~
>
pe
Ad
>

uma Hnm
(oY)
—
l

« IR

Y{I). st )H=ARR
(AQ?AY(I eL aSIS=ARRA
CIONT INJUE

RETURN

END



L f

GAUS

oc.ueneooovetvooeoootoon.o.o.oo.ooooon..oo.cooo-oco'oncoeccooo.oouGAUS 2‘“@
e e e e GAUS 3¢
T SUBRIODUTINE GAUSS h GAUS 4n
. GAJS 5C
PURDPDSF GAUS 6&6n
CTOMPUTES A NIJRMALLY DISTRISBUTEID RANDDM NUMIER WITH A SIVEN  GAUS 70
VZAN AND STANDARD DEVIATIIN GAUS 80
v GAUS 90
USAGE GAUS 100
CALL GAUSS{IX.S+ANsV) e e e e GAUS 1T
‘ GAUS 120
DESCRIPTION 0OF PAIAMETEXS GAUS t13n
IX —=IX MUST CONTAIN AN ODD INTEGER NUMBER WITH NINZ 22 GAUS 14¢
LESS DIGITS ONM THE TI12ST ENTRY TOD GAUSS. THEREAFTER GAUS 180
IT WILL CONTAIN A UNJIFORMLY DISTRIBUTED INTEGER ANOOM  GCAUS 1&7
NUMBER GENIZRATED BY THE SUEISUTINT T0R USE DN TH=Z NEXT GAUS 17¢C
ENTRY 70 THE SUFROUTINE, GAUS 1RC
S  ~THE NESTIRED STANDARD DEVIATION OJF THE NORMAL — GAUS 13C
DISTRIBUTION. GAUS 200
AM ~THE DESIRED MEAN OF THE NJIPMAL DISTRISUTION GAUS 210
V. -THE VALUZ DT THE COMPUTED NORMAL RANDIM VARIAB_E GAUS 220
GAUS 230
REMANRKS GAUS 240
THIS SU3ROUTINE USES RANDJ WHICH IS MACHINS SPECITIC GAUS 25
_ : GAUS 26¢C
SUBROUTINES AND FUNCTION SU32R0GRAMS RIGUIRED GAUS 270
T RAENDU - GAUS 28%
GAUS 29¢C
METHOD GAUS 36P
JSES 12 UNIF0OIM RANDOM NUMBERIS TO COMDPUTE NOIMAL RANDOM GAUS 210
NUMBERS BEY CENTRAL LIMIT THEDOREM, THE RESU_T IS THEN GAUS 320
ADJUSTED TO MATCH THE GIVEN MIAN AND STANDARD DIVIATION. GAUS 33¢C
THE UNIFOXM RANDGM NUMBERS CIOMPUTED WITHIN THE SUBROUTINE GAUS 340
ARE FOUND BY THE P3WER RISIDUZ METHOD. R . GAUS 350
o ‘ GAUS 360
ceooecnoneoocoonuoooooaooeauooooocoooeooc.sou-looaoooaoocnconeeooauAUS 3-70
GAUS 3an0
SUBROUTINEG GAUSS{IX:S5,AM,V) GAUS 390
A=T.0 GAUS 4nr
DI B2 1:1 12 . GAUS 410
CALL BANDU{TIX.IY,Y) - GAUS 42¢
IX=1Y - LGAUS 43
B0 A=A+Y GAUS 44¢C
Ve {A=6.0C) %S +AM
RETURM “GAUS 460
END GAUS a7¢
RAND 1C
ob?o.ﬁcbccﬁ"0.100000000000‘3.009IOOO000‘.000.09.00000QUOCGDQQOOOOoRAND 2')
RAND 207
CSUBRCUTINE RANDU RAND &n
’ RAND S0
PURDOSE PAND &¢C
COMPUTES UNIFNRMLY DISTRIBUTED RANDOM REAL NUMBERS BETWEEN RAND 70
JTAND T T AND TIFANDOM INTEGERS LFETWEEN ZERO AND RAND 8¢
231 . EACH ENTRY USIS A3 INZJT AN IMNTEGER RANDOM NUMVEBER RAND o
AND PRODUCES A NEW INTEGER AND REAL RANDOM NUM3ER. RAND 10C
. e e I LRAND 110
USAGE RAND 127
CTALL RANDULIXIYSYFL) RAND 13¢C
' RAND 14C
DESCRID2T ION OF PARAMETERS RAND 1850
IX = FO= THE FIRST ENTRY THIS MUST CONTAIN ANY 0ODD INTEGER PRAND 1FC
MUMBER WIT-H NINE OR _ESS DIGITS. AFTER THE SIIST ENTRYL.RAND 170
IX SHOULD 3F THE PYIVIOUS VALUS JF IvY COMPUTZID BY THIS RAND 1872
SUBFOUTTNE o RAND 19¢
IY — A RESULTANT INTEFGEIR JANDOM NJUMBER REQUIRED FOR THE NEXTRAND 210
ENTPY T0C THIS SURROJUTINE. THE 2ANGE 0OF THIS NUM3ZR IS RAND 210
BETWEEN 7ZER0 AND 2%%131i RAND 220
YE_~ THE PESULTAMT UNIFQORIMLY DISTRIBUTED. T_OATING POINT., RAND 230
AN oM RUMSEF TN THE WARNGE ¢ T0 1.0 RAND 240C
RAND 250
REMARLS RAND 280
THIS SUZRDUTINE IS SPECIFIC TO SYSTEM/360 AND wILL PRODUCE  RAND 270
2%%20 TEPMS BFFORE PE2EATING, THE RETERENCE BEL2W DISCUSSESRAND 28¢C
SEEDRS (65539 HEIREY, RUN P0BLEMS, AND PINDB_EMS CIONCF2RANING RAND 2o
PANDOM DIGITS JSING THIS GENEDATION SCHEME S MACLAREN AND PAND 300
MARSAGLI A, JACM 12, P. 83-89, DISCUSS CIMGIJENTIAL RAND 21




GENEPATION METHNODS AND TESTS. THE USE OF TwO GENEFRATORS OF
THZ RANDU TYPE., OUNT FILLING A TABLE AND ONIT 2ICKING FIIM THS
TABLE « IS 0OF 3ZINEFIT TN SOME CASES. £5549 HAS BZEN

SUGGESTED AS A SEF) WHICH HAS BETTER STATISTICAL PRROPERTIES
FOR HIGH ORDER RBITS 0OF THI GEMFRATFD DFVIATE,
SEZDS SHOULD 8z CHISEN IN ACCORDANCE #ITH THE DISCUSSIONM

RAND 3
RAND 3
RAND 3
PAND 350
RAND 360
RAND 370

GIVEN 1IN THE REFEFRINCE BE.DW. ALSO, IT 'SHOULD 8Z NOTED THATRAND 3280

IF FLOATING PCINT FANDOM NUMPERS ARE DESIREDLAS ARFE

RAND 390

BVAT_ABLE FROM RAENDU, THT R[ANDOM CHARACTERISTICS A% THE
FLOATING PCINT DEVIATES AIE MOGIFIED AND IN FACT THESS
DEVIATES HAVE HIGH P2OBARILITY 3F HAVING A TRAILING LOW
CRDOEP ZERPG BIT IN THFIR FRACTIONAL PART.

RAND 4220
RAND 410
FAND 420

LRAND 434

RAND 440

SUBPCJTINES AND FUNCTION SU32ROGRAMS REQJIRED RAND 450

NONE RAND 450

RAND 470

METAOD RAND 480
POXER RESTDUF METHOD DISCUSSEDR IN I3M MANJAL C20-8011, RAND 4G0

RANDOM NUMBER GINERATION AND TESTING RAND 500
e RAND. 510

DQOD .”‘”GFQ‘CHHD.O”.HD'Q00‘0‘.000 9% ¢ OV & 0O ¢ P OO 8 O 0000'09.0009’.’...GDQGQO..O0.0RAND 520
RAND 53¢

SUZRDUTINE PANDU(IXsIYsYFL) RAND 540
IY=IX%€E553G RAND 550
TFIIVIT, 6,6 RAND 5A0
EOIY=IY421474826647+1 RAND 570
& YF_=1Y RAND 583
YFL=YF_% 4ES6613F~0 RAND 590
FETURN RAND 600
END RAND 610
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Appendix E

GRAPHS SHOWING STATISTICAL DISTRIBUTION OF
PARAMETERS FOR RESERVOIR REGULATION AND

ECONOMIC ANALYSIS

" Pages: E2 - E5  Benefits for 4 reservoir studies

E6 - E9 Times full in 60 years, for 4

resexrvoir studies

"E10 - E13 Times empty in 60 years, for 4

reservoir studies



LH3DEZS NI 3INOIIIAI sh ALH3NAEY

S5 0t 02 0& 0h 05 09 N4 Q8 ne S6° 95 66 S°GE G'66 6666
: . 130e°1

&2

f3ce’1

[3he°L

{381

1 . 139"t

IONVY = HZIS ST
NVAR = qNVWIQ -
SLIZINEE . , - . , mw,m.m .

[3hh°I

F30h°1

[39h° 1

[3gn-t

B . t30s-t

[325°1L

T [3RS°L

138s5°1

EE [365°1

= | | . 1308° 1

¥

EREREEEE YL s

1328710

t3r8°1

13g9°1

£389° 1.

[30L°1



LN2OB3d NL 23N20332X3 48 43
B2 0 0Oh 0OS 09 GL 08

S ot

85 66 S 65

£3

AONVE G9° = HZIS *SHE
oT* ~ NVIH = ANVWAQ

SIIZANEE

N RN PERRRY

13pe-t
t3ce” 1
[3dhe"l
[38¢°IL
138”1
I30R°1
(32n°1

T3Rh" L

LR
138n°1
13051
[325°1
13nS I
129571
13651
1ang -t
132971
I3xh89° 1L
139971
13@9°1

130L°1



LN3JB3d NI 33N30333X3 40 Aan3ne3gd
2 S nI 02 0g 0OW QRS 09 04 Q8 P& 5§ 89 66 S'b8 G§°GH 66768

13071

[3ec"1

[3he"1

[3g8e-1

. [3ge°1
FONVY TIS* = HZIS °SHY
0Z* - NVIH = QNVWQ

S112INag . 4 S 132nTl

(3an°1

130471

<1

139471

128n°1

[2ns-t

& : 1325710

s I3RS 71

- , 139571

F . tIgs-i

?xuvx

e [309°1
» 5 |9 8 d 2pewiasoessreadoren’] :

132971

I3hs°1

[398°1

[3e8°1L

120271




INIIU3S NI 30HINIIIXNA 40 A

2 S Dl D2 DE. 0h DS 09 De e

[Aegy e

3

00909 = 4ZIS °STY

0Z* - NVIH = ONVWIQ®

SIIAANEL

PR B.N.K

»
n¥n




LNIOH3d NI 32M30333%3 40 W3R3NE3Y84
S DI D2 DS DhOS DS DL DE D S6 66 BB S° 65 "GB

o1
e}
7]

€
o1
(3}

et , © DEATR-

Loas ©F

— 0EQ-e-

\\ﬂﬂu I TR 300°0

i 1 030072

VRVE L p

S . 03007 H

Han \
W

T | . = - 0300°s

T ) . Islelalalde!

i . . [3pa°t

@ _ . . : [302°1

” 1 T = [20%°0-

(3087t

®

i . 3 . — 13081

1agn-2

| | 1302°2
FONVY = HZIS 'STY

e v
NVEH = QNVRAQ [30h 72

o eg¥K 09 NI TINE SEWIL tang°2

{30872

t300°¢

{3p2-¢

30h°¢

30878




IN3TWId NI 3INI0IIIXI 26 AsiaNbILd

S DI D2 DO DhODSOSO. DB 065 G5 85 66 G665 6°66 6566

\\\ . DBO " &-

&7

\\\\ D302~

W. i 02000

AR £3nn°2

\awa . D300 H

_aguuv$, . — - D300

5WHU\ : Dz00"e

i —— tann-e

v . , _ _ , [ap2-1

AN

20870

\\\\yt . . I309°1
2 . .

LK) . . ) : HMD@QM

N

v , _ —- (30072

iade e
TONVY G9° = HZIS  SHY

: [z308°2
97" =~ NVIH = ANVRIQ n

*S¥X 09 NI T10d SEHIL {z09-2

[zna-e

I30Q°¢

[302°¢

[30h°Ee.

i30s5°s



n°

LN32E34 NI 30NI0IIINI 4D ADNINDIYL

Dt D2 0 0Oh DS 0% 0L D8 0B

S5 66 65 S°66 GGG

&

-

Q

"BB6

—

\ 1

2

\ g
3

*Kf

.\mw\
5

FONVE TIS* = HAZIS *STY

07* - NVEH = QNVRAQ

“SdX 09 NI TINd SHWIL

DB h-
QEg-2-
D300°D
p30nR°2
R300 %
0300°3
030078
(apn-t
(zp2°tL
[30h°E
[308°1
{z0e°L
[300°2
{30272
(30h°2
t3ngr2
{3pg°2
t300°¢
[an2-¢
[3Dn°¢

13097



LIRS NI ION033IIN S0 ASNINAIY4

DI D2 DS 0h DS DI O0: 08 06 S 65 66 5766 &°65 66768
—— _ 000" k-

03Q3°e-

papReTn

A_\\\\, D302

\\\x D300 h

-~ T 030073

. D300"8

\k\ e 1300°t
ey w e wis ) , .

- . 1an2° ¢

,wm\ . . 120h°1

7 {3091t

7 e 130"t

szl . — .
v;\\\ | - . | (30072

vl L | 130272
~009°09 = 47IS ‘STy ;

\\\ﬁw, . | 57" = NVEK = QNVRAQ taoh"e

*S¥X 09 NI “TI0d SAWIL [3pg"2

-

tang 2

I300°¢ .

{3np2-¢

[30h°¢.

{305°¢



INIWEL NI 3INI03I0XT A |
DT D02 NE DhOSDYDL D8 D06  SB 66 GG S'66 G666 66°GE

G AON3NB3YS

-

P

el

L0

TR

e

zuﬂ?b“waﬁﬁwgww%ﬁ L a7 e S e R %

L~

WWH

0%

L~

w

IONVE €9° = TZIS °SH
OT* - NVAK = QNVWIQ
*SYX 09 NI ALJWH STWIL

DBO &~
0BQ"e-
p300°0
plapnce
D20 h
Q23073
D3nn-e
[3400°1
I3p2°1

(30072

130272

130h°2
t3ps8°2
{30872
I300°¢
{3n2-¢
[30%h°¢
{305°¢



LNI0E3d NI 3IMI0IIDKI 40 A0AINDINA .
S DOl D2 NE. DhOSDg DL D@ 0O SB 85 GG S'GE G°G6 GGG

DBR"®-
e | |

1 oRo-e-

%
b
b
L

,z§§ﬁﬁﬂkﬁﬁ?ﬁs p3Inn°Q
ke \

i "~ f300°e2
n 1L | |

. B3D0"®
5“@\\\\ -

sy - . 0300°9
re - | .

. , [aleolaldel
] | ) ‘

Iy 2 ®
> . | {3p0°t

(3p2°t

» — 1" , = [305° 1

{308°t

{3gerr

{3pn-2

| | (30272
HONVYE = dZIS °*SdY¥ -

NVAR = ANVWIJ

*S¥X 09 NI ALdWE SEWIL [303°2

f308°¢

£30Q°¢

{302°¢

[230%h°e

(309°s



144 RO 5° [ -2

INS9Y3d KD 2ONA033X3 40 4

R34

AN
S Dt N2 DRg O DS D8 D2 04 «va. 58 88 BB S°66 B°GEH

& B8

&rZ

IRRR AT

aprhng

rpw

ONVE TIS*® = HZIS °*STH

0Z* = NVIH = QNVHIQ

‘SYX 09 NI XILdWI SIENIL

0RO &=
08O 2-
£300°0
030072
D200 h
Q300°9
0300°Q
(3007 L
£302°1
130h 71
(309t
[308°1
[300°2
[3gz-2
[30%°2
[309°2
tang"2
£300°€
ranz-¢
[30h°€
t309°s



E/3

| , | L30U3 NI 33M3NIIINIT 0 ASNINAIN |
- t- 51 -2 5 DI D2 D Dh DS D9 Ot D8 D6~ S8 €8 5 5°GG& 6°66 65°66

QRd " &=

.\\\ gadte-

\\\\ { 0380°0o
B 2
RWVh\»: .. .DMDD 2

7 - D200 %

K\« .

) Q30079
) mey\,
o | _ p300°Q
e | H tapact

.-MVV«‘M
o1 o
o _ ,, 130h"1
v ‘ tapg-t

7 B T . , 13067 ¢

a3
\\\\ R - _ ~{2D0"2
JN N . .

: . {3gz2°¢
A \ . . 009°09 = dZIS °SE¥

| | 07* - NVEW = QNVKIQ .
"S¥X 09 NI AldWE SEWIL {30972

]

{3n2-t

\J

(3072

tang-2

1300°¢
{(302°¢

[30%h°¢

{209°¢



Appendix F

. RESERVOIR REGULATION AND ECONOMIC

ANALYSIS PROGRAM

" including:
Explanation of progiam'.,
Table of symbols

Listing of prdgram.

Fl
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APPENDIX F

RESERVOIR REGULATION AND ECONOMIC

- ANALYSIS PROGRAM

This program is used to carry'ogt the'process aescribed
vin Chapter 3. This involves the evaluation. of reservoir
inflow, outflow, and storage aé well as economic benefits.
(discounted to present worth).for each yeaf of'the flow
- series. The program is labelled in sections which are self-

explanatory when referred to the following table of symbols:

Symbol f 'Explanation
FLOW «(60) ' ) Annual inflow to reservoir
DEMAND (3) Annual flow demand

~SIZE (3) : Reservoir size corresponding to

above demand

- SUMBEN : ‘ Sﬁmmétion of presént values of

economic benefits
STOR (61) _ Reservoir storage'for any yéar

REQ ' Required flow supplement (positive "

or negative)
DEF ~Reservoir deficit (i.e. size—storage)

-NETFLO Reservoir outflow




Symbol Explanation
BEN Economic benefits for each parti-

cular year

M, N Counters for number of times full

and times empty

'Following is a listing of the program, as used for

the analysis of 3 reservoir sizes and corresponding demands.

F3



[aEkaYoXaXaXalel

FESERVEIR® REGULATION £ ZCONOMIC ANALYSIS PROGRAMV

IN2UT DATA: FLOW SERPIFS, DEMANDS, 2FESFERVDIR SIZTS
REAL F_OW{6EC) SDEMANCIR)WSTIOR(S1Y,S172603),SUMBTN(3)
READ(S, 101
READ(S,101)Y (FLOW(I)oI=1462)
100 CORMAT (%1 9)
101 FORMAT (£F12.C)
J=1
WRITE (6100
DEMANDI({1)=22188,0
STIZZ(1Y="C 600 o
SUMGTN(IY=C .0
ST2R(1)=ST1ZE(J)
M=C
N=¢
C
c .
C RFEZESTRVOIR REGULATION & STIRAGE CALCULATIONS
: DD 10 I=1.6¢C ' .
R=T+1
REQ=CEMAND( I -FLOW(I)
DEF=SIZF(J)—=STOP{1) : .
IF(RZAQLT oC ol e ANDGAESIPEN)GTWNEF) GO T3 3
“IF(REQ.GT.V.C AND REQ«GTSTCR(ID))Y GI TO 4
NETFLO=DEMAND( J)
STOR(K)I=STCFR(I)-REQ
GO TO 5
M=V+1

NETFLO=DEMAND( J)

"STOR(KI=SIZE(Y)

WRITE(S4102 )M, 1 .

102 TORMAT (901 412F S FULL *+12.% TIMES,YEAR=1,12)
GO TO 5 -

- : A

4 N=N+1
NETFLO=ELOW(TI+STOR(T)
STIR(<)I=0eD
WRITE(E,103 )M, 1 :
FORMAT(tN ¢, IRESL,EMPTY 1,12,9 TIMES,YEAR=1,12)
CONTINUE :

~e

ECONDOMIC ANALYSIS
IF(NETFLD.GF.DEMAND(J))Y GG T3 6
8= V*l.%?*(NFTFLﬂ/(D MAND(J))I1-0.50C

GO TO 7
BEN=1.0 _
CONT IMUE , . -
DRES=BIN/ (] «CHE&X(T)) ' : ,

[ |

Telale b

SUVMBENTJIIT=CUNMIENTJITIPRES

/) ’
S17ZF (J).DEMAND(J)
£SeS

IZE=0 s F12.C04° i DFMAND=',F12.0)

wm

(6]

—
[aadle
o

AT VALUE OF BENEFITS='3F12.3)




Appendix G

PROBPLOT - PROBABILITY PLOTTING PROGRAM .

" . including:

Explanation
User's guide with éxamples

Listing of program

Gl
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CIVIL ENGINEERING PROGRAM LIBRARY - PROBPLOT
Department of Civil Engineering '
"University of Manitoba

}-od

Identification

.

PROBPLOT -~ This program produces a normal or 1og—norma1 probablllty
plot on the Calcomp Plotter,

Programmed by Dick Beare.
Modified by D. B. Letvak, surmer, 1972

Description

Input

Up to 200 data points are plotted, using the Weibull method on
linear or logarithmic probability paper. The linear scale is
divided into 20 increments, and the logarithmic scale may have
from one to four cycles. The probability scale is standard in
both cases, and the whole plot is framed in an 8%" x 11" boundary.

Preparation

Card 1: Control Card (A3, 1X, A4, IX, Aé) .

Columns
1 --3 punch LIN if a linear probablllty plot is de51red~
punch LOG if a log probability plot is desired.
+4he peweTs are 1o be /r!fT’ af‘[

.5 - 8 punch NPOW 1f/ the vertical scale which describes the data

values (e.g. 5.60 E4, will be written as 5.60 -~ an 1ncomplete
description of the value) :

-Leave blank if a complete description of the number in
‘'E~format is de51red

©10-13 punch PLSQ to have the best fit line calculated by the method

of least squares and plotted with the data.
punch NLSQ to suppress least squares fitting.

Card 2: Grid limits (2F10.3)

Columns

~ 1-10 minimum ordinate (lower limit of grid)

NOTE:

11-20 maximum ordinate (upper limit of grid)

that in the case of a LOG plot the second value should be equal
to the first value multiplied by 10, 100, 1000 or 10,000.



PROBPLOT - 2

_ (r5)
Card 3: Data Count (I5)
Column
1 - 5 the number of points to be plotted ‘(N points), right-justified.

Next N cards: Data Cards (F15.3)

Column :
1 ~15 value to be plotted (one per card)

. Last Cardﬁ (Ad)

Column
"1 - 4 punch STOP if no more data is to be processed.
’ punch CONT if another data group is to be processed; the
next data group is presented in the same format as the
" previous one, from card 1 to this last card.

Examgle
This exémple plots two graphs and demonsffatés log and linear
- probability plots, the best fit line through the data, and the

different ways of labelling the wvalues of the data (w1th and
without powers).

The data cards are as follows:

i
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PROBPLOT - 3
~|T0OP )
19.8 - . o
3.9 . ' 7
2.5 P!
1_4 7] i
0.98 ~ R
0.9 U'I‘QAPH uBu . 5) &‘
0.45 B T
16.0 T T T T B B
0.2 7
10.8 -7
10 D]
i1 2. _ '
CLIN HLID. - h S IR}
COWT 3
" 19.8 ) T
16.0 EI ¢
10,8 i q 4
0.9 CI |
£.4% -~ L 3 i
0.3 (ARAPH "A" L
2.5 SR o R
1.4 =
0,98 2
8.9 i F
10 ; B
Q = i

DATA BEGINS oN THIS CARD
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PROBPLOT -~ 4

Output

o
Output consists of printed output as well as the plotter diagram.
For each graph plotted, the printer output consists of a list of

the data in the order submitted and a list of the data arranged
from smallest to largest.

In the case where the least squares best fit line is plotted, the

slope and intercept of this line are included in the printed
. output. R

[}
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J/TAPE PLOTTAPE

/[ _EXEC _FORTGCG,S1ZE=90K
//FORT.SYSIN DD *

L Cmm= EmRtcRRRORRR KRR AR KR R E R R AR R R R R LK Btk R Rk R R Rk Rk R kR ok R Ak okl ek &
G- *****?***»**:*#t*t***f*#¢** AR R A AR AR AR Rk RSk Rk AR ek xRk
=== PROGRAM FOR PLATTING PROBABILITY o . .~ "
Coll 7 sk g b e R o R A B R B R R R R R R AR R K AR R R R R AR K Ak KRR RO R
Commm EER AR AR R AR R R R AR R R R A AR EE RS SRR R R R R R R SR kAR &
DIMEN§IOV I%Uf(lOOO)yY(204)qX(7OO) BC{200),PAS(200),0Q0L1L)4P (221},
1vP{10)
DATA P /. 79,1 4331074420892 :5333404135933:9934,31¢4.6214%4.94
15 28335:6746.2196:60975 1697.5037.81+,8.47459, 25/
DATA Q /2.13.'1f¢95o16e17eyd.99 /
INTEGER TYPE(6)RDsHWTVIYPE,PLTYPE,POWER )
DATA TYPE /'LOGT vLIN', " PLSQY, "NLSQV,1CONT " "NPOW"/
RD=5 ' - ..
WT=6.
HSCALF 1.242
YMIN=0.
YMAX=6.55
XMIN=0,
MAX=2,25 "
ALONG=YMAX S
. CALL PLOTS{IBUF,1000)
TCALL PLOT(0.,-10.8,-3)
XX=,5 '
"CALL PLOT(6.0410.8:—3) » ,
Cmm— folkoldr g ok Sk R R R RR R R AR R R SR SRR R R R R R R R
CToTRERD TN HUING R LG TN THE TETRST T HEEE THUUMNS NP OW IR T4 B ANK:

IN COLUMN'S FIVE THROUGH EIGHT AND “PLSQ'™ ORUPLND" WITH THE

#iﬁ§T”fETTE§WTNWEEEUWNMféN”ﬁNﬁ“TﬁEme§T—fETTEﬁfﬁ”Cﬁfﬂﬁﬁ”THIRTEENo
LIN MEANS PLOT LINEAR HORIZINTAL 6XID ’

LOG WMeanS pLOT LOuA{ITHWIC HORTZONTAL bRID
NPOW MEANS THE POWERS ON THE HIRTZIONTAL GRID LAdSCLlwy VILL 3E

LCEFT OFF "THE REAL NUMBERSJIF BLANKS ARE. ENFUUNTERFD THE PDVFMS
WILL BE PRINTED ON THE GPRAPH,

PUSQ "MEANS TO CALCULATE THE ReST FIT UINE THRHJGH THL Pd[hT)
BY THE METHCD OF LEAST SQUAES AND PLOT IT. )

NLSQ MEAMS THAT THE LEAST bQUA&ES COMPUTATION IS zﬁf

E3 3 S8 .3 312 ;n.y.l.kd sk otk o ek ok s e de sl e wts e de ok e e P2 de

REJIJTRED .

ook - S N sk deniset e e X
R R R RN IKF K "c"rl"\*’\‘"r’r‘r‘f"r(*’\ SRR P R SRR SN SIS

READ (RO, 200) VIYPE, POWER, PLTYPE T
FORMAT (A3, 1X s A%, 1XyA4) ' - o

TESo ek kR ok AR o s R R R N S R O R R R
READ IN LOWEST-GRID LINL VALUE AND HIGHEST GRID LINE VALUE FiR

FOR TIORTZCNTAL SCALE.
**********4*k***f***J*********************w*w******&**********
TREAD(RD, 201 )V EXT LeEXTH “ e - et i i e
FORMAT (2F10.3) -

o R o R g o g e A R R R R T R Rk e R R R OOR R R R R R

R L
READ IN NUMHAER JF 2IINTS TN 3k PLITTED
& ek i¢******“x*ﬁﬂ**#**:*%**’**"Li4“***¥¥1#%¥1§%¥‘#1#%~#¢%'*T ¥E

READ(RD, 203)MM _ . ;
TFORMAT(IS) .
30K K R A0 AR R R e R R R SRR R R R AR R R R R R ROR SR R K ok KXk

READ IN VERTICAL POINTS
fRm EH B R AL AR IR DA TR AT AR L AR G R RR R EERH AR A AR R R

4

3
3t
3
I
3t
3

2“4
S
F
%
L33




~ READ(RD, 204) (BCI1), [=1,MM)
204 FORMAT (F15.3)

C
C AQRANGE FLOWS FROM SH4ALLEST TO LARGEST
712 FORMATU///)
PRINT 712
PRINT 99:(‘3C(Hyl—1y"4\4) .
CALL SU&TS(BC MM)
PRINT 712 -
PRINT 99, (RC({T) yI~11"M)
99 FORMAT ('0',10F10.1)
C
C

[FIVIYPE.EQ. TYPE(I) NRLVIYPE.ET. TYPt(&)) Gag 10 206
WRITE(WT ,205) '
TTT205  FORMAT (* INPUTTERROR TZZTPROGR RAH REQUIRES TYPE “OF" HORIZURTAL CRID
1BEFORE EXECUTION CAN CONTINUE')
, CALL EXIT
206 CALL PLOT{O.,=10.8,-3)
. CALL PLOT(0.,0.6,-3) .
©2C7 IF(VIYPE.EQ.TYPE(2)) GO TO 300
C~—— PLOT OF LOGARITHYIC HORIZONTAL GRID
TM=1
208, RCT=EXTL*1. 0000110, % %M
IF{BCT.GE. EXTH) G0 TO 209
M=M+1 : '
GO 10 2238
209 IF{M.LE.4) GO TO 211
WRITE(WT,210) - : ’ T : t N
210 FORMAT(' PROGRAM WILL NOT ATTEMPT MIRE THAN 4 CYCLE LOGARITHYIC P
1PERT) ' _ S o
CALL EXIT
211 FAC=M
GL=EXTL:
N=0 N
212 IF(GL.LT.10.) GO TO 213
N=N+1 _ -
GL=GL/10.
GlTOo 212
213 IF{GL.GE.1.) GO -TO 214
NENST _
GL=GL*®10
GO TO 213
214 NN=0

no 21s 1—1, A S ‘

IF((}“JT 9.9)Y NN=1 7T _ . ‘ T e
GH{Le® (1D %¥NND ) S »

Q( I) B —- S U S SO

. 215 CONTINUE ‘

reny miemeEs Gt“ G L * 10 R G ommremTm mmemes mmndemanee T—— v » "~ ] T e T o s e o

SL=ALOGLO(GL) :

‘”AGH=ALDGLO(GH)

DIFF=AGH=-AGL

L, G L D P R e et e - . ' ~ : - .-.‘ —— ,..... P ,..T.._....,,_..-....,._.....Z.. ety :



VSC=ALCNG/DIFF
XN=FAC*(~-.8)

XN1=FAC*(-.5)

CXN2=FAC%(=.4)

HEIGHT= FAC * .1
XMAX=XMAX*FAC

FAC=1.0/FAC
PEAC=0.0

CALL FACTOR (FAC)
FPN=GL

CALL NUMBER(XN, YMINyHEIGHT sFPN;0.0,1)
IF(PONER.EQ.TYPE(6)) GO

CALL SYMBOL{XNL¢YMIN,HEIGHT y LHE s O 0s1)

CFPN=N
-~ CALL NUMBERUXNZ s YMINyHCIGHT,FPN,0. o, 1)
10 CALL PLOT(0.0450.0,3) :
B0 217 J=14M
DO 12 I=1,9 . _
TALRETALGG IO TRTTN
VAB=ALQ-AGL
T VP{I¥=(VABXVSCI+PFAC
12 CONTINUE ’
DD 216 1=1,9,2
K=1
LL=0 i ~ ik
14 IF(QIK).6T.50.) GO TO 13 . :
[FIQ(K).GT.5. 9, AND.R{K).LT.9.9) GO TO 13
FPN= 0(K) - -
[F{FPN.UT.9.5) GO T4 540
INN=-1
FPN=FPNE (1O #¥TNN) ‘
. 540 CALL NUMBER{XN,VP(K) HEIGHTFOPN,0.0,1)
[E{PONERL.EQ.TYPE(G))Y GO TO
- CALL SYMBOL (XN, VP(K),HE[GHT,IHE 0.0,1)
TTIF(FPNL.GT.1.5) GO TO 11
- N=N+1
11 EPN=N
' CALL NUMBER({XN?2, VP(K);HFIuHT FPN,0. o,—l)
13 LL=LL+1
" LF(LL.GT.1) GO TQ 216
CACU PLOT(XMIN,VPIKY3Y
CALL PLOT(XMAX,VP(K),2})
K=K+1 T
IF{K.GT.8) GO TO 215
CALL PLOT{XHAX, VP (K1) 43)
CALL “LOF(X“IN,VP(<)y2)
TTGOTTO 14T - -
216 CONTINUE
TPFAC=VP(9)
CALL PLOT(X¥IN,VP(7),3)
217 CONTTINUE ™7 T

XMAX=XMAX®FAC

CALL PLOT(0.040.0,3)

CALL FACTOR(1.0)

OGDUOOO‘.D.Q'G0.0Q..O.HD.C..QOOOOG.0.0.0QG.'00000.5‘0...1'.GBD.OO

CALCULAT{ON OF VERTICAL LUGARITHMIC PUOSTION




CAEXTL=ALGGLO(EXTL)
AEXTH=ALOGLOEXTH)

DIFF=AEXTH-AEXTL
VSCALE=ALCNG/DIFF

IF(BC(MM).GT Bc:l))’cdmfdflii
_MR=MM

DO 409 I=1,MM
Y(I1)=8C{HR)

MR=MR—1
409 CONTINUE

DO 410 T=1,%4M
BC(IY=Y(I)

410 CONTINUE
411 DO 218 [=1,MM

ABC=ALOGLO(RBCLI)) P
ABDVE=ABC—AEXTL : g

YL Y =ABOVEXVSCALE
218 CONTINUE

TTTTTTTTTTTT60 T 219

»C“"“ DDOGUOOOOQOQQ.Dl04...0..00.00.0'0.!0..0...‘0.0.0‘0000.'05.Gtcw.e.e‘,w,;,, :

C——~  PLOT UINCAR HORTZONTAL GRID
300 GL=ABS[EXTL) ‘

‘N=0

700 IF(GL.LT.9.9999) G3 TO 701
GL=GL*.01" B
N=N-1 -~

GO 10 700
701 U=({EXTH-EXTL)/20.

G=EXTL
FPN=EXTL*1 : )

CALL NUMBCQ(‘.QvYW[Ny.l FPNs0.0,42)

IC(PbiEQ EQ.TYPE(6)) GO 10 7923

CALL SY1BUL(—e51YWINyo1111 20,0451) ) Co
FPN——N , o g .

AL TNUMBER (=04 YMING ST PPN 00, ST
703 y>CALE 6.55/20s - - '

V=0
302 V=V+VSCALE

TF(V.GT.YMAXT GO T0O 303
LL=1 ~ '

TCTeEGFY T
704 FPN=G%10.%%N

TF(FPN.LE.9.9999) GO TO 705
N=N-1 '

GO 10 704
705 CALL NUMBER(=-,93;Vyals FPN;0.042)
TTF(POWER.EQ.TYPE(S)) GO TN 706
CALL" SYWBOL(".S»V,.I lHEyO Nyl)
EPN=—iy . P e B
CALL NUMBER(=o4yVyel,F PM,O 0,-1)
U706 TF({LL.GT.L) GO TO 302
CALL PLOT{XMIN,V,3) ’ T~
CALL PLOTUXMAX,V,2) — 777 B
V=V+VSCALE

TFIV.GT.YMAX) GO 1O 303
CALL PLOT{XMAX,V,3)




CALL PLOTIXMIK,V,2)
LL=2
GO TO 707 ,
303 VSCALE=6.55/0EXTH=-EXTL)
' DO 304 [=1,MM
o Y{IY=(BC(I}=EXTL)*VSCALE
304 COUNTINUE

C_'—" © ©99e800 s 000 % OF SO0 00 800000000006 0EV OO0 0D PO 0S08000000080 9600000060

C——- PLOT VEKRTICAL GRID
219 DO 220 1=1,419,2

=1 :
CALL PLOT(P{J),YMIN,3) : ' N
CALL PLOT(P(J);YMAX,2)
J=1+1
CALL PLOT(P{J).:YMAX,3)
CALL PLOTH(P(J),YMIN,2)

220 CONTINUE
"CALL PLOT(XMIN,YMIN,3)

D0 221 1=1,1 _
CALL PLOT(XMAX;YMIN,2)

CALL PLOT(XMAX, YMAX,2)
CALL PLOT(XMIN;YMAX,2)

TTTTCALLTPLOT IXMING YMING 2]
221 CCNTINUE

C—"—_ A.0GSQODQVBDQ‘CQDOOODOOQQCIOOol.Oo!0‘001O‘OOQBG.G.O.OIOOQCO.O.‘O.Q00'...«
C—=m CALCULATTDN OF WEIBULL PLOTTINSG POSITIONS
' PM=MM+1
{3]8) 222_I=1,MM
PI=PM-1

POS{1)1=PI/PM

222 CONTINUE

C’—_'— © 090 C¢C 000 €08 B0 D060 60606 0CV AL ODOCOCOLSEH 00OV LD 0 00D0O L0 0000V DHOL HS 0D 0606 8 <

C=== HORIZONTAL AXIS LETTERING -
- CALL SYMBOL(=.34=+2,.1547H 99.99 99.9 99,5 99 98 95 90

oy

170 40,0:04547) S _ o
CALL SYNBNL(4.4,=.2,.1,49H 50 40 30 20 10 5 2 1.5

11 J01,0.0,49)7 T o

CALL SYMBOL(2.62,=.4,.1,37H  FREQUENCY OF EXCEEDENCE IN PERCENT, . =

. 1:0937)

C".""’ 00 ©0 DO 6O O OO O VCDO OO OO CH DO OGO VO CV S6 00 €006 DCCOO DL OO DO OV B 00O L0000 00O LS00 O

C-——.fﬁKECUCATIGNWDFWHORTZDNTAL“PUS(TfDﬁfﬂNU“PtﬂTf@?WPﬁSTTTGNSTW—wm“_“M‘
DO 61 I=1,MM coo

APOS=1-POSIIT)
IF(API)S-0.5)30,40,450

30 R=APOS
T=SQRT{ALOG(1./R**2}) i

ORD=T=(2.515517+0.802853%T+0,.)10329%T% 2)/(1 FUIAB2TBEETRIIR926¢
LETH%2+40, 001308%T**3 ). _ »

DEST=NRD*HSCALE 77 e —
X{11=64,625=-DIST : o : :

G TO 60
40 X(I)1=4.,625

CoUTo BG

50 R=1.0-4P0OS
. T=SQRTLALOG(T./R%%2))

ORD=T={2.,515517+0.802853%T+0,010328%T%%2)/(1.+1.432783%T+0,1873266C




14 T&%2¢0. 001 308%T&%3)
DIST=NRO*HSCALE
X(I1)=DIST+4.625
60 CALL SYMBDL(X(I),Y(I),.05.4,0 0,-1)
61 CUNTINUE :
. C__-_ eocﬁoeeeooo.ooo00000‘000....000‘00000000000006000‘0900'0'000000005
C<Z= "CALCULATION OF B8EST FIT LINE T
: 1F(PLTYPE.NE.TYPE(3)) GO TO 138
62 XNO=MH
XSUM=1,
YSUM=0,
X2SUM=0., : . : :
EXY=0. ‘ N -
DO_70 I=1,M ' :
‘xsuw XSUM+X({1)
S YSUM=YSUMEY ()
TX25UM=X2SUME (X T %%2)
CEXY=EXY#{X{I)*Y(I))
70 CONTINUE
C-—- SLOPE OF LINE : '
B= (UXNO®EXY )= (XSUM*Y ”U‘))/((x&o xzsuwf’(xsuw* 2))
WRITE(WT,65) B
65 FORMATIY 'SLOPE OF LINE —',Flo 3)
C--- INTERCEPT
A= ((X7SJM»YSUM)—(EXY*XSUW))/((XND X?SUM)—(XSUW**Z))
, ARITE(WT 475) A
75 ?ﬁﬁMTTTT“TNT%ﬁﬁéﬁr =7 ,F10.3)

C"_' 'vQ'c-onoo¢o‘sooca.o-o.-ooonoon'-oeo.nooopt-ootaoo-osooooooo'ovoa

-2 PLOTTING BEST FIT LINE

A IF{A) 500,503,504

500 XT=ABS{A/B) i
X0=X{4M)-XT
YL=X0%B .
IF{YL.LE.6.55) G0 _TO 510
TTYL=6.55 . T

AWWX(MM)—XT+(YL/B)_ . i

Si0 TFIX(L)=XT)501,501,502
501 CALL PLOT{XT,Y4INy3)
CALL PLOT(X(“4)1YL12,

- GO TO 108
TE02TYS=BR{X(1)-XT)
T CALL PLOT{X(1)45YS,3)
TEALLU T PLOT (X (MM) ,YL 4 2)

GO TO 10%
503 YS=BHX(1) ' ,

=B%X (M) - .

TTE(YLL.LE.6.55) GN TN 8509 7 77 o o S
YL=hK.55 '
UM RT (YL By T e .. .
509 CALL DLATIX(T),YSe3) : ;

TTUCALL PLOTULLAM) ,YL,2) T T - - : -

GO TO 108
504 YS=A+{BxEX(1YY T

YL=A+(BEX(MY))
TTIEIYLLLEL6.55) GO TN 508 :

YL=6.55 , : '




XIMM)=(6. 55-4)/8
508 CALL _PLOTIX(1),YS,3)
CALL PLOT{X{¥M)sYL,2)
108 CALL PLOT(~1.1,-0.5,3)
CALL PLOT(-1.1:7.9,2)
_CALL PLOT{(9.9,7.9,2)
CALL PLOT(9.9,-0.542)
CALL_PLOT{12.00,0.0,-3)
Crm— il ok ik R S R AN R R R A R R R AR KK R KA F b ks KR s kSRR s me T
C--—_ RCAD _IN_THE NORD “CONT™ IF MORE DATA IS TO BE PROCE SSED
C——- PLQTTED o
C=== READ IN THE WORD “STOP™ [F NO_H0

Ko e st oL *Jv-&.*-‘-&*.&.-&-’ab*do\&*~ .-..».x..a.w«.t.a(.:
T A A A A SNy A A A - s A

READ(RD,511,END=999) IROUTE
S5T1 FORHAT (A%) e

[F(IPDUTE.EQ,TYPE(5)) GO TO 1
“555 CALL PLOT(12.00,0. 0,559)
109 CALL EXIT

END
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SUBROUTINE SORTS(BC,N)
REAL B8C{N)4LARGE
" M=N ’
8 TLARGE=BCILY

K=1

00 3 I=14+M ‘
IF{LARGE.GE.BC(I)) GO TO 3
LARGE= BC(I‘ S

: K=1

3 . CONTINUE
TEMP=RC (M)
BC{M)=BC{K)
BCIK}=TEVP
M=M=1
TFIM.NE.Q)GO TO 8-
RETURN
END

olool

REPLACE THIS CARD WITH A"7% CARD

_//GO.PLOTTAPE DD DSN=PLOT,DISP= SHR
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CONT
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STOP




