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Abstract

A systematic approach based on frnite element metl.rod for the kineto-elasto-

vibration analysis of higli speed mechanisms is presented. The iinearized

equations of motion are de¡ived in tireir most general form via Lagrange's

equation. The derivation and tire final form of the equations of motion pro-

vide the capability to model a general single-loop or multi-loop planar elastic

mechanism. Explicit expressions for the resulting mass. damping and stiff-

ness matrices associated rvith the ext¡a acceleration terms, namely, Coriolis,

tangential, normal and pseudo-normal components of elastic accelerations,

are listed in Appendix A. The efiects of these ext¡a accelerations are clearl¡'

identified in the nunerical simulations.

Unfortunately, the inclusion of these terms ¡esults in non-proportional

damping and asymmetric stifiness matrices, producing complex eigensolu-

tions. A general QZ algorithm is employed to soive the complex eigenprob-

lem. Of particular interest in this research is to study and understand how

the extra accele¡ation te¡ms influence the eigenvalues and eigenvectors of

high speed flexible mechanisms.

A finite element program has been developed for the investigation. Dif-

ferent simplification analyses are carried out to investigate the efects of the

ext¡a acceleration terms on the free kineto-eÌastovibration characteristics of



high speed mechanisms.

As a numerical example, a four-bar linkage mechanism is analvsed, tak-

ing account of its rotations. It is found that *'hile Coriolis and tangential

acceleration components have negligible influence on the natu¡al frequencies

and mode shapes, the effects of normal and pseudo-norrnal accelerations on

the free vibration cha¡acteristics of the mechanism are quite significant.



Acknowledgments

The author rvishes to express his sincere thanks to Professor Ray P.S. Han

for his supervision and financial support throughout the I\{Sc program and

during the work on this thesis.

The author would also like to thank his rvife for her patience, encourage-

ment and sacrifices.

llt



Contents

Abstract

Acknowledgments

List of Figures

List of Tables

Introduction

1.1 Background

L2 Research Scope

1

1

7

Formulation I
2.7 Introduction I
2.2 Derivation of Element Matrices ...... 10

2.2.I Kinetic Energy of Element ...... 10

2.2.2 Stra.in Energy of Ðlement ...... 17

2.2.3 Potential Energy due to Axial Force . 19



2.2.4 Element Ðquations of Motion

2.3 System Governing Equations

trYee Vibration Analysis

3.1 Introduction

3.2 Solution Scheme.

20

¿Ð

3.3 Numericai Examples

3.3.1 Verification Example

3.3.2 A Rotating Four Bar

26

26

30

I\{echanism

Conclusions and Recommendations 64

4.I Conclusions .... 64

4.2 Recommendations . ....... 66

Bibliography

Appendix

A List of Element Matrices

67

76

76

7E

EO

B

c

IJserts Manual for Program FKEV

Program for Flee Kineto-Elastovibration Analysis



List of Figures

2.7 A general beam element at the undefo¡med and deformed con-

figurations depicted in the associated coordinate systems 11

3.1 Finite element model 3 for the crank rocke¡ mechanism [25] . . 33

3.2 Natu¡al frequency vs. crank angle . . . 36

3.3 ltatural frequency vs. c¡ank angle . . . . 37

3.4 Natural frequenc5't's. cra¡k a¡gle . . . . 38

3.5 A general crank ¡ocker mechanisn [15] .. ..... 39

3.6 Natural frequencS'vs. crank angle . . . 47

3.7 Natural frequency vs. crank angle . . . . 42

3.8 Natura-l frequency vs. c¡ank angle . . . . 43

3.9 Natural frequency vs. c¡ank angle . . . 44

3.10 Natural frequency parameter vs. ¡otational speed parametet 46

3.11 Natu¡al frequency parameter vs. rotational speed parameter 47

3.12 Natural frequency parameter vs. rotational speed paramete¡ 48

3.13 Natural frequency parameter vs. ¡otational speed parameter 49

vl



3.14 Percentage

rad/sec

3.15 Percentage

rad/sec

error in natural frequenc¡'vs. crank angle, O:500

error in natural frequency vs. crank angle, O=500

51

3.16 Percentage error in natural frequency vs. crank angle, O:500

rad/sec 53

3.17 Percentage erro¡ in natural frequelcy vs. crank angle, Q=500

rad/sec 54

3.18 Percentage error in natural {requency vs. crank angle, O:1000

rad/sec 55

3.19 Percentage error in natural frequency vs. crank angle, O=1000

rad/sec 56

3.20 Percentage e¡ror in natural frequenc]'vs. crank angle, O:1000

rad/sec 57

3.21 Percentage error in natural frequency vs. crank angle, O:1000

rad/sec 58

3.22 Fundamental mode shape, d = 10",O:1000 rad/sec ..... 60

3.23 Second mode shape, d : 10", 0=1000 rad/sec . . . 6i

3.24 Tlrird mode shape, , : 10o, 0:1000 rad/sec . . . . 62

3.25 Forth mode shape, d : 10", O=1000 rad/sec . . . . 63

vll



List of Tables

3.1 Simplificatiol Indices .......32
3.2 Characteristics of a Four-Bar Crank Rocker Mechanism [25] 34

3.3 Characte¡istics of a Four-Ba¡ Mechanism [15] . . 40



Chapter 1-

Introduction

1.1 Background

The traditional method employed in mechanism design iras been based pri-

marily upon the fundamental assumption that the system is composed of

rigid bodies only. No elastic deformatio¡rs n'iiì occu¡ in such a system. This

rigid body approach is a reasonabl¡, accurate method oI design for mech-

anisms operating at lorv speeds and has led to the development of a ver¡'

broad class of mechanisms. Horvever, with the ever increasing demand for

high productivity and operating speeds, it is no longer acceptable to assume

rigid body motions in mechanisms, especiall¡' in situatio¡rs involving mecha-

nisms constructed of lightu'eight mate¡ials and/or operating at high speeds

where the mechanisms may undergo severe elastic deformations due to their

orvn inertia. Therefore, mechanism designers need to develop mo¡e advanced

mathematical models to predici the response and stability of sucir elastic

systems.



The kineto-elastovibratiol analysisr of high speed mechanisms has been

a challenging problem for mechanism designers over tlte past two decades.

The resea¡ch work invoh'ed consists of trvo aspects, namel5' f¡s6 and fo¡ced

kineto-elastovibration analyses. Tlie¡e has been a tremendous achievement

in the latter fieid with several inprovements in theoretical and numerical

techniques. Lowen and Chassapis [1], and Thompson and Sung l2l presented

trvo comprehensive ¡evies's of the up-to-date research work in the design

arld analysis fie1ds of flexible mechanisms. Horvever, there have hardly been

published papers regarding free kineto-elastovibration analysis of high speed

mechanisms. This thesis attempts to fllI this void. Comprehensive stud-

ies were paid to the effects of the extra acceleration terms on the natural

frequencies and mode shapes of flexible mechaltisms in this ¡esearch. Some

fundamental results hal¡e been achieved.

In the area of forced kineto-elastovibration anal]'sis of mechanisms, re-

searclìers flrst employed analytical methods to model the problem [3-11].

It soon turns out that such a formulation procedure is ahvays associated

with a set of complicated bouudary-value problems. To solve more complex

problems involving mechanisms rvith man¡' flexible components, researchers

resorted to finite element methods. Both lumped parameter approach and

continuum model have been employed.

rComputation of vib¡ation cha¡acte¡istics of elastic mechanisms in motion, such as
natural frequencies, normal modes, deflections and st¡esses



Typically by rvay of flnite element metliod, the linearized equations of

motion governing elastic mechanisms rvith no structural damping ma¡'be

t'ritten as

lit'rl{ö} + icli,i} + lrl{s} = {¡} (1.1)

n'here [,41] is the conventional symmetric mass matrix, IC] denotes the motion.

iuduced Coriolis darnping matrix2 due solel¡' to Co¡iolis acceleration compo-

nents ofelastic deformations, and [K] represents the total stiffness matrix, iu-

cluding the conventional structural stifiness matrix [K,] and motion-induced

stiffness [K-], i.e.

lKj _ v{"1+ lK.,l (r.2)

Ii will be shon'n that I1{-] is composed of the stifnesses due to tangen-

tiaJ, nornral and pseudo-normal components of elastic accelerations. Tirese

acceleration terms, together rvith Co¡iolis acceleration, are defined as extra

acceleration terns in this ihesis.

Some pioneering work in applying tire finite element techniques to flexi-

ble mechanisms was performed by Winfrey [12,13], and Erdman, Sandor and

Oakberg [14]. Follorving this trend, Bahgat and \4¡illmert [15] also investi-

gated this problem using the finite element method. While the deformation

in axial direction is approximated b¡' ¿ linear polynomial, the transverse de-

2also known as gyroscopic damping matrix



flection is approximated by quintic polynomials rvhich preserve mome¡rt com-

patibility betrveen elements. The same quintic polynornials were also used by

Cleghorn, Fenton and Tabarrok [16,17], and Cieghorn and Chao [18]. In ad-

dition to expressing the periodic forces and displacements in Equations (1.1)

in terms of truncated Fourier series as in [15], Clegliorn et al. also expressed

the global matrices in a similar manner. Dynamic strains fo¡ a fou¡-bar

mechanism we¡e calculated. Good agreement ivith the experimental data

presented in [19] was obtained.

lr{idha, Erdman and Frohrib [20-22] developed a systematic rval'to model

elastic mechanisms using finite element techniques and a novel procedure

to solve the resulting equations of motion. Later Turcic [23], and Turcic

and Midha [24-26] addressed themselves to the development o{ a general

finite element model using three dimensional elements. The equations of

motion rvere presented, including all the ext¡a accele¡ation terms except the

pseudo-normal stifiness mat¡ix. The modified ite¡ative algorithm previously

developed in 120,221 rvas utilized to solve the governing equations.

Nath and Ghosh [27,28] considered the motion-induced damping and stif-

nesses in their formulation. To remove the singularity in the system matrices

due to rigid body degree of freedom, a matrix decomposition method is em-

pioyed. Steady state deflection of a slider-crank mechanism was favorably

compared rviih that of Viscomi and Ayre [4].



Based upon the principle of vi¡tual *'ork, Thompson [29,30] devised a

mathematical model for frnite element analvsis of high speed elastic machin-

er5'. Later the same author, together with Sung [31]. developed a nonlinear

finite element method for kineto-elastod¡'namic analysis of mechanisms. Ge-

ometric nonlinearity and the terms coupling the rigid body kinematics and

elastic deformations are presented in their governing equations. The displace-

ment predictious of an elastic slide¡-c¡ank mechanism.[611, good correlation

with the measured data. Still using the above mathematical model, Sung

et al. [32] presented a comprehensive experimental stud¡' on the kineto-

elastodynamic ¡esponses of slide¡-crank nechanisms and four-bar linkages.

Favo¡able correlation betrveen the calcula.ted deflections and experimental

¡esults was obtained.

Sunada and Dubowsky 133,34] investigated the vibrations of elastic spa-

tial mechanisms by finite element method. The formulation t'as applied to

an industrial manipuiator in [34] and the calculated transfer functions we¡e

experimentaliy ve¡ified. More recentl¡' Bricout, Debus and Micheau [35] de-

veloped a finite element model for the dvnamic analysis of spatial, multi-link,

open-loop mechanisms. The equations of motion rvere soh'ed using a single

step algorithm developed by Zienkiewicz et at. [36] and Wood [37].

Apart from the continuum model in kineto-elasiodynamic analysis of

mechanisms, Iumped parameter approach rvas also employed. Examples of



such analysis are found in [38-41].

Despite the numerous investigations on forced kineto-elastovibrations of

mechanisms using both anall'tical and numerical methods, it is not very clear

rvhether o¡ t'hen the motion-induced damping and stifrnesses can be ne-

glected. This lack of understanding has resulted il, for example, the negleci

of Co¡iolis and tangentia.l acceleratious. This is rlot all together surprising

since the inclusion of these te¡ms leads to the presence of non-proportional

damping and as5'mmetric stiffness matrix, and thus ¡esults in conplex eigen-

solutions. Examples of such analysis are presented in refe¡ences 13,25,271,

where these extra acceleration terms, although included in their formulation,

are neglected in the final arìalysis. Another te¡m that has been routinely

ignored is the pseudo-normal acceleration term. This term arises from the

axial foreshortening efrects due to the t¡anst'erse deflection. Neglect of this

term yields incorrect solutions as it ieads to the prediction of motion instabil-

ity rvith increasing speeds, rvhich is contrary to the expectation of increasing

stability at high speeds. Such neglect is evident in some early publications

[15,20,38,39,42]. Still others neglected the effects of all the extra acceleration

ierms [12,14,43,44]. Ttre resulting equations of motion are still dynamic ones,

but of the follorving form,

I¡11{q}+[¡r,]{s}:{¡} (1.3 )

Although Viscomi and Ayre [4], and Thompson and Sung [31] considered



all the extra acceleration terms in their equations of motion, they did not

specifically investigate the influence of these ter¡ns on the response of the

system. Cleghorn, Fenton and Tabarrok [16] also considered these extra

terms, but no solution a.lgorithm rvas presented for determining tÌre compìex

eigensolutions.

As has been outlined above, majority of the rvork is focused upon the

solution of system response. Only a ferv of them presented some results

on the free vib¡ation characteristics of elastic mechanisms. Kalaycioglu and

Bagci [44], and Turcic and lVlidha [25] studied the natu¡al frequencies of

elastic mechanisms s'ith a1l the extra acceleration terms ignored. In fact, the

natural frequencies they obtained are merely those of a structure at difierent

configurations governed by Equations (1.3). Based on this research rvork,

Ha.r., Zn and Xu [45] {ormulated the problem u'ith all the extra acceleration

terms considered. They also presented the axial {oreshortening efrect by

a kinetic energy approach. A thorough investigation into the efiects of the

ext¡a acceleration terms on the free vib¡ation characteristics of a crank-rocker

mechanism is presented in references [46,47].

1.2 Research Scope

As pointed earlier, numerous work on forced vibration anaJysis of flexible

mechanisms has been presented. However, little rvork has been done in the



f¡ee vibration analysis of elastic mechanisms, especially rviren the extra accel-

eratio¡r terms are conside¡ed. The purpose of this research is to address the

lack of comprehensive study of horv these extra accele¡ation terms influence

the free 'r'ibration cb.a¡acteristics of elastic mechanisms, especially during high

speed operations. Finite element approach t'ill be emplo¡'ed to formulate the

problem.

The balance of this thesis is divided into three chapters u'ith

r Chapter 2 De¡ivation of the equations of motion by flnite element

method via Lagrange's equation. S¡'stematic representations of the

motion-induced influence, namell' f[¿ Coriolis damping matrix, tan-

gential, normal and pseudo-normal stifiress matrices, are presented.

r Chapter 3 F¡ee vibration analysis of flexible mechanisms. The influ-

ence of the extra acceleration terms on the dynamic cha¡acteristics of

the system is investigated.

r Chapter 4 Conclusions ald ¡ecommendations.

r .A,ppendix A List of element mat¡ices.

r Appendix B Use¡'s manual lor program FKE\i.

r Appendix C Program fo¡ free kineto-elastovibration analysis.



Chapter 2

Formulation

2.1 Introduction

The equations of motion governing flexible mechanisms are derived and pre-

sented in this chapter, Displacement flnite element method is employed to

formulate the governing equations. It involves representing the flexibie mech-

anism, assumed to be operating at a constant input velociiy, b¡' a moving

frame. At every instant of the periodic motion, the rigid body conflguration

of the nrechanism is treated as an instanlaneous stracture formed by a series

o{ Eule¡-Bernoulli beam elements. Each moving member of the mechanism

is discretized by as man5'finite elements as desired for accurac¡'. Both trans-

verse and longitudinal deflections are taken into account in the finite element

anaJysis.

The absolute motion of each frnite element is decomposed into a rigid body

displacement and an elastic deformation measured in a moving coordinate



systen fixed on the element in its undefo¡med state. It is assumed that the

vibrations of the mechanism are caused by the mechanism's o$,n inertia only,

and that no structural damping exists in the s¡'stem. Due to the presence

of the driving torque on the input crank, it behaves as a rotating cantilever

beam.

2.2 Derivation of Element Matrices

2.2.L Kinetic Energy of Element

Figure 2.1 shows a general flexibìe bearn element governed by the Euler-

Bernoulli bearn theory in tv'o corresponding configurations, namely the de-

formed and undeformed configurations. Elastìc deflections of the eiement in

transverse and longitudinaJ directions are superimposed upon the prescribed

rigid body motions. The equations of motion a¡e derived in their most general

form using Lagrange's equation. Corioiis, tangential, normal and pseudo-

normal accele¡ation components of elastic deformations are clearly identified

in tlie lormulation.

Three frames of re{e¡ence are adopted in the analysis, as shown in Fig-

ure 2.1. The first is the ine¡tia or global coordinate s¡'stem, represented by

OXY rvith its origin arbitrarily located. The second is anothe¡ global coor-

dinate system, Org with the origin at the same point. The last one, o{4 is

the element-oriented coo¡dinate system or the iocal coordinate system, whose

10



Figure 2.1: A general beam element at the undeformed and deformed con-
figurations depicted in the associated coordinate systems

11



origin is at the left hand etid of the element as depicted. The dife¡ence be-

tiveen OX)' alnà Oæy lies in the fact that the latter is a rotating system,

rvhich is so selected that the z-axis keeps parallel to the center-line of the

beam element.

The displacement vecto¡ expressed in o{4 coordinate system is given by

*"t={ ;[å:'] ] 
: I¡¿r{s"} (2 1)

s'irere z({,l) and r,'({, ú) represent the longitudinal and transverse deflections

at any point rvithin the element, respectively, and [1{] is the shape function

matrix and {q"} is the element nodal quantitS' r'ector. These latter trvo

matrices are given by

,nr,_lN, o o Na o o ll'"r - L o ¡ú, /ús o /f, iú6 l
(2 2)

a¡rd

(2.3 )

in which,

3(1 - 0'- 2(1 - O'

t2

'"' {i
ir1 -

N,:



¡/g

¡ú.,

¡/5

¿((1- o'
(

et2 - tt3

-rc'\ - e)

rvlrere ( - (lI anà I is the length of the element.

It should be pointed out that the selection of the shape functions is not

unique and can be based on a number of diferent theories and approximations

depending upon the characteristics of the particular problem to be analysed.

Horvever, to obtain monotonic convergence of the finite element solution, as

the number of elements in the analysis increases, the shape functions must

satisfy the follorving requirements:

1. The functions must be continuous rvithin the element and across the

element boundaries s'hen the element is joined to other elements. This

is necessary to ensure that the displacement functious will also be con-

tinuous.

2. The assumed functions must be able to represent constant (including

zero) values of ¡elevant strains and stresses. A consequence of this

requirement ensures zero strains rvithin the element for rigid bodS'dis-

placement mode.

3. The shape functions must satisfy the compatibility conditions between

13



elements.

Once the shape functions have been selected, the st¡ains and stresses

rvithin the element can be dete¡mined as functions o{ the nodal quantit)'

vector {q"}.

tet {Ã} and i.R¡} be the position vectors of defo¡med aìd undeformed

positions of point P, measured in OXI' coordinate sl'sten. Then, {Ê} can

be expressed as

{Ãi = {Ão} +IArlr{u} (2.4)

u'here 1,4¿] is the transformation matrix from global coordinate to loca.l co-

ordinate, given b¡'

i.4,1 = [ cosd sind 
I-'r 

[-sind cosd ]

Substituting Equations (2.1) into Ðquations (2.4) yields the following,

{,a} : {åo} + [,A¡]Î[ff]{q,i (2.5 )

The velocity at point P of the element is given by difierentiating Equa-

tions (2.5) with respect to time, i.e.

{Ã} = {so} + [/tî[¡r]{q,} + I.4¡i?t¡/l{4"}

Thus, the kinetic energy of the element can be obtained from

(2 6)

L4



(2.7)

rvhere p is the mass densit¡', .4 the cross sectionaL a¡ea of the element, and o
denotes the time derivative. Substituting Equatiols (2.6) into Equation (2.2)

yields,

1ît," = ; J" 
pr ({a,}'{å.i + 2{Ã,irl, ¡lîl¡ül{s"}

+2{Ro\r IAf lNl { ¿" } + {s. }' l¡{1" t,Arl [á¿]" I¡¿l {q" }

+2{q.}r [N]r lÀ¿l i,{rl" l¡rl { d"}

+{d"}1lNl"[,{,]t.4¡l"lNl{,i}) d€ (2.8)

Noting that

[A,]íA,l' : lI)

fAflft,)r = þz¿1

Ðquation (2.8) becomes

r. = ;&.j't^.){s"} + Çk.}'l*.)tq.} + ò{q.}r Irn;l{q.}

+I I"t pA{i¿"\'{n,}¿¿ + 
!o' o.t{ao},1À,lrtnl{s"}d€

+ t"' n.t{ito}'[.t,]11//l{,i"}d€ (2.s)

r. : r¡ 

l"' c,+ta]l'{R}d€

[A,]lÀ,1':rli -å 
]

15



rvhere

It is noticed that frn"] is the conventional symmetric mass matrix, and

[rni] is a skerv-symmetric secoldary mass matrix. Explicit expressions for

botli matrices are givel in Appendix A. Fu¡ther anal¡rsi5 shou's that the

iuclusion of [rni] will eventuall¡' result in tire geueration of the matrices as-

sociated rvitir the Coriolis and tangential accelerations, both of rvhich are

conside¡ed here.

In order to obtain the element equations of motion by Lagrange's equa-

tion, the folloiving manipulations are helpful.

W¿ = !: PAIN)rlNtdt

i.^;i: 
lol 

pAtrr' 
| Î -å 

] rrrø

d ôT.
;ñ;J = [-"]{s"} + dln :]{d"} + llmal{q.}

+ 
lo' rAINl' (t,i,l{å,} +la¿l{lio})d{

ffi: s,[^"]{s"} + Ìttn;114"¡ + 
lo' 

na[N,I.ti]{A,}d€

[,{¡]" [¡ú]{po }

1,4¿1"[1ú]{p.}

16

(2.10)

(2.11)

(2.12)

(2. i3)

(2.14)

(2.15)

To evaluate the integrations in Equations (2.12) and (2.13), the rigid

bod¡' r'elocity and acceleration are approximated by

{¿o}

{Ã'}



n'here the vector {p¡} is composed of the nodal coo¡dinate components of

rigid body configuration of tlie elemeut, given by

li;ìI ø I

{n"}=\ },^l

I'r )

Substituting Equations (2.14) and (2.i5) into Ðquations (2.12) and (2.13)

yields,

d aT,ãffi = [*']{a'} + à¡^;114"¡ + otm;l{q')

+a¡,n;1r1¡o¡ + [-.]{po} (2.16)

AT" ;,t
ñã = e'I*.]{s"} + e¡*;1114.¡ + e[,n;]r 1¡o¡ (2.17)

2.2.2 Strain Energy of Element

The strain energy of the element due to transverse and longitudinal deflec-

tions is given by

1/ r l'r,. - t lo \EA[u'(€,t)]2 + El[a"(€,t)]'z] dt (2.18)

n'here E is the modulus of elasticity, I the area moment of inertia, ( )' :

f and ( )" = H-. The axial and transverse displacements are given

respectively b¡'

L7



u(t,t) : "'(¿)/ú'({)+ur(t)N.(€) (2.1e)

a(t,t) = "'(¿)1rr(d) +01(¿)¡ú3(€)

+?,(t)¡/s(€) + o,(¿)N6(d) (2.20)

Substituting Equatiols (2.19) and (2.20) into Equation (2.18) gives

1-
t'. = i{s")'V,it{s.} (2.21)

u'here [frjl is the structura] stiffness mat¡ix of the element, given b¡,

rtu:l= l'rw-l'l"i ;,] r"-iø (222)

in u'hich,

¡¡_l:l¡,i o ¡¿; o l,,',-10 ¡,ií Ní 0 Ní 
^(l

The explicit expression for [frj] is given in Appendix A.
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2.2.3 Potential Energy due to Axial Force

The potential energy due to aúal {orce, F6 in an element can be expressed

as

(2.23)

The axial force, -Q can be approximately determined via a static analysis

of the element. It can be shown [16] that,

*.='rl,'u(#)'*

Fe = F, - pAi¡o(t - Ð +ltpAi)'(P - €')

- l"oma¿ (2.24)

ri'here F, is the external axial fo¡ce applied at the right hand end of the

element, and ö1¡ the absolute rigid body acceleration component in axial

direction at the left hand end of the element. If there are no externally

applied forces in the system, the right hand end force of the element is simply

part ofthe actions from adjacent element. For small defo¡mations as assumed

in this analysis, .fl. is computed based upon the original unde{ormed rigid

bod¡' c6tt6tutu,tott.

It is observed that the last term in Equation (2.24) will result in nonlinear

expression for W" when Equations (2.23) and (2.24) are combined. The

assumption of small deformations is invoked to justify the neglect of the

nonlinear terms in H/" expression. Therefore, combining Ðquations (2.28)
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a.nd (2.24) arìd neglectiÌLg the nonlinear term yield,

w.:|{t.},tnlk.}

tk! = l"F,r¡{t' [ 3 I ] r',i*
: l,rj'l+tte!,1+lk!31

(2.25)

(2.26)

(2.27)

Expressions for l&j1], fftj'z] and [,bj3l are given in Appendix A.

2.2.4 Element Equations of Motion

The Lagrange's equation for an unconst¡aint element can be written as

dôL ôL
*at"¡-a{qJ=to}

rvhe¡e tire Lagrangian .C is given b¡'

L=11 -7.+VI'. (2.28)

Substituting Equation (2.28), together u'ith Bquations (2.16), (2.tT) , (2.21)

and (2.25), into Equations (2.27) yields the element equations of motion,

l^à{,ì.} + {""1{,i"} + [¿,]{c"}: {.f"} (2.2s)



wlÌere

1"" l

le"l

20ltn.1¡

le:l+ t&:l+ [kl] + [Èj]

(2.30)

(2.31)

in u'hicb

lk:l = -o'IÌn")

tkil -- iil.rnal

{/"} = -[*"]{po}

A detailed discussion of the damping matrix and the various stiffness ma-

trices is nou'in order, to appreciate their respective contributions. Firstly, it

is observed that the Coriolis damping matrix, lc"] is sotely motion-induced,

caused by the Coriolis components of elastic accele¡ations. Unfortunatel¡',

this is a non-proportional damping matrix and ¡esults in complex eigensolu-

tions.

Secondly, the element stifiness matrix defined by Ðquation (2.31) com-

prises four component matrices. Tl.re structural stifness matrix, [&j] is the

usual stifness matrix, composed of botli bending and axial stiffnesses, and

requires no further introduction. The other three component mat¡ices a¡e

knorvn as motion-induced stiffnesses as they are related to motion. The first
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o{ these, [kj] is the tangential stifness. The skew-symmetry of this matrix

unfortunatel¡' destroys the symrnetr5' of the overall stifrness matrix. Its pres-

ence is due onl¡' to the tangential components of elastic accelerations. This

term, u'hich is routinel¡' ignored in man¡'previous rvork, is often a necessar¡,

term as the tangential accelerations can have non-zeto oÌ e\¡en significant val-

ues in some parts durilg the motion of a mechanism even if tlìe mechanism

operates at a constant angular velocitl', especiall5' at high speed motions.

The remaining tl'o component stifness mattices in Equation (2.31) are

symmetric and act in the axial direction. The fi¡st term, [Æi] is due olrly to

the no¡mal components of elastic acceleratious. At high speeds, its effects

are quite significant, as I'ill be shorvn in the next chapter, and should not

be neglected. The last term, ffrj] is given the narne pseud,o-normal stiffness

natrix since the components of it a¡e related to the normal acceleration

components of elastic deformations of the member. Again, this term has

been neglected in several early works on rotating flexible mechanisms and

this results in the incorrect conclusiou of instability for this type of motion.

It was shown in ¡eference [45] that this pseudo-normal stifness mattix is

identical to that obtained from the kinetic energy representation of the axial

foreshortening efect due to transverse deflection.
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2.3 System Governing Equations

Once the element equations of motion are obtained, the system governing

equations can be derived rvith the help of the global transformation matrix

[.,R], given by

tÃl=

cosd

-sinú
0

0

0

0

sináO 0 0 0

cosá0 0 0 0

01000
0 0 cosd sind 0

0 0 -sind cosd 0

00001

t¿l{sJ}

tÃl{,i;}

IÃl{s;}

(2.32)

The element nodal quantities expressed ir tlie global and local coordinate

systems are related by the following equations,

{s"}

{,i" }

{ s"i

(2.33 )

(2.34)

(2.35 )

where {q;} is the nodal quantit¡' vector expressed in global coordinate, given

by

u1

I/.t
ô

Uz

V
!L2

{sã} =



Substituting Equations (2.33)-(2.35) into Ðquations (2.29) and pre-multiplying

the resulting equations b¡' [,R]" yield,

l*j{,il} + i"j{â;} + t¡l{s"} = {l}

lml: [R]rþn"llal

[c]_ lÀ11[c"][.R]

[À] : [A]"[e"][.R]

{/} = tÃl'{¿}

(2.36 )

u'he¡e

Thus the governing equations of the s5'stem can be obtained by applying

superposition theory.

lMl{ii} + lcl{4} + tKl{si : {¡}

[A,I]:D[ïn).
i=r

tcl= Ii4'
i=1

[r]= I[¡]'
i=1

{¡i = I{/i'

(2.37)

s'here



and {q} is the rrth order noda.l quantity vector of the entite system, expressed

in the inertia coordinate system, m represents the number of elements in the

system. Solution of these equations of motion is discussed in the next chapter.

25



Chapter 3

Free Vibration Analysis

3.1 Introduction

Despite the numerous investigations on the kineto-elastodynamics of mecha-

nisms using both analytical and numerical metirods, there have hardly been

published results on free vib¡ation analysis of flexible mechanisms, especiall¡'

t'hen the extra acceleration terms of the Coriolis, taugential, normal and

pseudo-normal accelerations, ¿re taken into conside¡ation. The purpose of

this chapter is to stud3' and comprehend ìrow these extra acceleration terms

influe¡ice the natural lrequencies and mode shapes of mechanisms, especiaJly

during high speed motions. Both natural frequencies and mode shapes are

presented with varying degree of simplifications. The following section deals

with the solution technique of the f¡ee vibration problem.
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9.2 Solution Scheme

The equations of motion governing the vibration problem are given b¡,Equa-

tions (2.37 ) as follou's,

F/liq) + tcl{{} + l¡rl{s}: {¡l (3.1)

n'lrere lìy'1, Pl,lKl,{q} and {F} are defined in the previous chapter.

The governing equations for free vibratiou analysis are obtained when the

right hand side of Equation (3.1) is set to zero, i.e.

Ãrl{ö} + icl{,i} + [K]iqi = {o} (3.2)

Noticed that the dampiug matrix [C] in Equations (8.2) is non-proportional

and thus solution of these equations gives rise to complex eigenvalues and

eigenvectors. Unlike proportionaJly damped linear systems, s,here the equa-

tions of motion for the system could be uncoupled by means of a normal

coordinate transformation and then sol.r'ed rvith no great difrculty, a s¡,s-

tem rvith non-proportional damping could not be solved b)'this conventional

modal anal¡'sis method.

The soluiion scheme described here involves converting the z equations,

defrned by Equations (3.2), ini,o a 2a equation system rvith real coefficient

matrices. This is done as follows [48],
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I tot t¡rl I I
I i¡¿l tct I I I;l ).1-"d'' 

";', 

l{1;Ì }={isi } t"r

These equations are often referred to as the "reduced" {orm of Equations (3.2),

and may be written as

lAl{ù} + l¡l{s}: {o}

i .11 | tol lA[] It t- |[ar] lcl J

rD, I -tul tol Ir"r - L lol l/rl l

(3.4)

n'he¡e

and

,,t: { l;l }
Observe that both [,4] and lB] are no\l' ¡eal and of order 22. However,

s5'mmetry in these two matrices is destroyed due to the preselìce of the skew-

symmetric Coriolis damping matrix and the non-symmetric stifness mat¡ix

[K]. Solution of Equations (3.a) will be found in which the displacements

and velocities have tlie form e"¿, namely

{it} : "{s}

*'here z is the complex eigenvalues of Equaiions (3.4)
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Ðquations (3.4) is then x.ritten as follorvs in terms of the unknown quan.

titS' y ut ¿ unknown eigenvector {y},

,lA){y}: -[s]{si

Thus the governing equations for free vibration analysis are

(3 6)

[¿(À)]{e} : {o}

[¿())] : lBl-1 1.,11 + .\[/]

,1
u

(3.7)

where

and [1] is the identity matrix.

Evaluation of the determinant in Equations (3.7) leads to au equation

of o¡der 2n in À. Solution of this equation, which is achieved using the

QZ algoútltn developed by Moler and Stewart [49], results in a set of 2r¿

eigetrvalues, namely ì1, Àr,...,Àz,.. Fo¡ a stable s¡'stem, each of these roots

will be either real and negative (for a critically damped or overdamped mode)

or complex with a negative real part (for an underdamped mode) in conjugate

pairs. Tlris negative real parl, B¡ can be interpreted as the natural frequencies

of the f¡ee vibration and is obtained from

-- a* I iþx

to

1

)¡utc = (3.8)



Corresponding to each eigenvalue, l¡ there exists an eigenvector, 1g(r)) witli

2z components. Fo¡ distinct eigenvalues, the corresponding eigenvector is

computed from the columns of lhe 2n by 2zr. adjoint matrix [I(À)]. That is,

{utor1 - "* {4¡()¡)} : ø {"zll'} (3 e)

where {J$} denotes an¡'colum¡r of the adjoiut matrix [J,¡(À¡)] and c¡ is tlie

proportionalit¡' constant.

A finite element program has been developed based on this proposed

formulation and solution scheme. The Q Z algorithm rvhich is used for solving

the conrplex eigenproblem is availabie in the IMSll package.

3.3 Numerical Examples

The solution scheme outlined previously is first checked b¡' comparing

computed solution rvith published results. Fairly good agreement was

tained.

The free vib¡ation problem of Tu¡cic and Midha 125] for a four-bar crank

rocker mechanism is used to verif"v the solution scheme. Having assessed the

accuracy of the proposed solution scheme, the effects of the ext¡a accele¡ation

terms on the eigenvalues and eigenvectors are studied using a four-bar linkage,

lInte¡national Mathematics and Statistics Lib¡a¡r,

the

ob-
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wire¡e the motion-induced damping and stifinesses are taken into account.

Since the focus of this analysis is to ascertaiu the efects of the extra ac-

celeration terms on the free kineto-elastovibrations of the mechanisn, several

models u'ith diflerent degree of simplifications are analysed. These simplifi-

cations are summarized in Table 3.1.

To facilitate nume¡ica.l simulations, the following non-dimensional patam-

eters are introduced, namel¡'

¡ non-dimensional natural frequeucy parameter, À;

¡ no¡r-dimensional rotational speed parameter, a

. percentage error in natural frequenc¡', e

Tltese are defined respectivel)' as:

..i),=T
srl
ô

q= lã-i 
.1

. = 3 ',Arx100%
gJ;

whet. ruj U = 7,2,3,...i j = 0,1, ...,5) is the ith mode natural frequency for

the jth case unde¡ consideration and O is the input angular velocity. The

latter quantiiy is assumed to be constant.
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Table 3.1: Simplification Indices

Motion hdex Motion Type
case 0 :0 non-rotating mechanism, namely a structure
case 1 j:1 ull solution, that is all terms included
case 2 Coriolis darnpinq mat¡ix nesiected
case 3 tangential stiffless matrix neslected
case 4 normal stifness matrix neglected
case 5 .ì: o pseudo-normal stiffness matrix neglected

Further detaiìs of the verification analysis and the ¡esults of subsequent

investigation are presented in the follorving sections.

3.3.1 Verification Example

A four-bar crank rocke¡ mechanism rvith lumped masses at the crank-coupler

and coupler-follou'er junctions is used as an example for verifying the accu-

rac¡' of the proposed formulation and solution scheme. A sketcli of the mech-

anism is depicted in Figure 3.1 and its characteristics are listed in Table 3.2.

This probìem was suggested and solved by Turcic and Midha [25] for its free

vibration solutions. In a manner similar to their investigation, the results

here ¿re computed for three finite eiement models of the mechanism. The

first model is based on a three ele¡nent discretization scheme, the second us-

ing a six element scheme, and the third, a nine element scheme. In all of these

models, each moving member is discretized rvith one, trvo and three elements



Figure 3.1: Finite element modei 3 for the c¡ank rocker mechanism[25]



Table 3.2: Characteristics of a Four-Bar Crank Rocke¡ Mechanism [251

Lenøth .Area Moment of Inertia
Crank 10.80 cn

(a.25 in)
1.07 cmz
(0.17 iu'z)

1.62 x 10-z cma
13.88 x 10-a ina I

Coupler 27 .94 cm
(11.00 in)

0.41 cmz
t,. r.ib:t rn'

8.67 x 10-" cm{
(2.08 x i0-5 ina)

Follorve¡ 27.05 cni
l lu. bb rrì I

0.41 cmz
(0.063 in2

8.67 x 10-a cma
(2.08 x t0-5 ina;

Distance between ground pivots, 0102 25.40 cm
(10.00 in)

Lurnped mass of the bearing assembly
at the crank-coupier junction, rn1

4.52 x l0-¿ kg
12.53 x 10-a slus

Lumped mass of the bearing assembl5'
at the coupler-follorver junction, rn2

3.75 x 10-z kg
12.53 x 10-a sluøì

I\{odulus of elasticity, .Ð 7.1 x 107 kPa
(1.03 x 10? psi)

À4ass density, p 2.71 x 10" kg/mr
(2.54 x l}-a slus/in3
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of equal lengths, respectively. All extra acceleration terms a¡e neglected in

tlús verification study and the mechanism is considered to be a static linkage

or a structure, so as to be consistent rvith the results ol 1251. Thus the gov-

erning equations for tire free vib¡ation analysis, as given b5'Ðquations (3.2),

are reduced to:

ltrl{ö}+lrl{s}-{o} (3.10)

u'here [Kl comprises on1]' tlìe structural stifiness matrix, namely both axial

and bending stifnesses. The variation of natural frequenc¡' r'ith the crank

angle for the first three modes are plotted in Figures 3.2-3.4. Exact compar-

ison s'ith the ¡esults of Turcic and Midha [25] is difrcutt since their solutions

do not start precisely at y-axis. Thus their numerical values at 0" and 360"

do not quite agree as they should. Nevertheless, the results obtained here

are almost ide¡rtical to those calculated by them.

8.3.2 A Rotating Four Bar Mechanism

Having evaluated the accuracy of the proposed formulation and tl.re solu-

tion scheme, an investigation into the effects of the extra acceleration te¡ms

on the eigenvaìues and eigenvectors with the mechanism operating at high

speeds is norv presented. A sketch of this mechanism, taken from Bahgat and

\4¡i11me¡t 115], is depicted in Figure 3.5. Its geometric and mate¡ial properties

are listed in Tabie 3.3.
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Figure 3.5: A general crank ¡ocke¡ mechanism 115]



Table 3.3: Characteristics of a Four-Bar Mechanisn [15]

Lenstli Àrea l{oment of Inertia
C¡ank 12.70

15.00

cm
in)

1.61 cmz
(0.25 in'z)

8.66 x 10-1 cma
(2.08 x 1o-z ;nr'¡

Coupler 27 .94 cm
( 11.00 in)

1.61 cm'
(0.25 in')

8.66 x 10-1 cma
(2.08 x 10-2 in{)

Follorver 26.67
(10.50

cm
ltl

1.61 crnz
'0.25 in2)

8.66 x 10-r cma
(2.08 x 10-'zina)

Distance betrveen ground pivots, 0102 25.40 cm
(10.00 in)

i\{odulus of elasticit¡', ,Ð 2.07 x 10o kPa
(3.00 x 107 psi)

Mass densit5', p 7.76 x 103 kg/mü
(7 .25 x 70-a slus/in3)

Ser.eral flnite element nrodels t'ith different discretization schemes have

been investigated. Cornputational experience shon's that the fir'e element

model, rvhere the input crank is treated as one element and the coupler

and follower are discretized into two elements each, gives reasonably accu-

rate results. Therefore, only the results associated u'ith this model will be

presented.

Due to the change of geometry of the meclianism during motion, its nat-

ural frequencies vary as a function of the input parameters during a cycle of

its motion. The dependeuce of natural frequencies on the gross motion (rigid

body motion) defined by crank angle, á is shorvn in Figures 3.6-3.g for the

40



N

3

Áo
0.)t(t
q)

¡Ë

Ét
z

1000

800

600

400

200

0

-200

-400

-600
60 120 180 240

Crank angle, d (degrees)

Figure 3.6: Natural frequency vs. crank augle

Nlode One

a,í \

"t\\\

A = 500 rod/sec
Q = 1000 rod / sec

41



I{ode Two

ti'
\M,/ 

'-"2
U

- 

0=0
e = 500 rod / sec
Q = 1000 rod /sec

tÌ
\i

400

N

3

É
U
É
Ð
á
q)

¡d

I
(dz

0 80 120 r80

C¡ank angle,

Figure 3.7: Itatural frequency vs.

240 309

d (degrees)

crank angle

42



N

3

o

0)

fd

a3z

2000

1800

r 600

1400

1200

1000

800

600

400

200

0

80 t20 180 240 300

C¡ank angle, d (degrees)

360

Figure 3.8: Natural frequency vs. crank angle

It4ode Three

^
I t'
;i;
tll

;

- 

A=0
Q = 500 rod/sec
A = 1000 rod / sec

43



N

2500

6 ¿ooo

q)

1500

=

100f)

Iúode Fou¡

A=O
A = 500 rod / sec
Q = 1000 rod/sec

60 t20 r80 240 300

Crank angle, d (degrees)

Figure 3.9: Natu¡al frequencS' vs. crank angle

44



first fou¡ modes.

Only case 1 results are considered as the purpose here is to identify a

region suitable for a more detaiied analysis involving the effects of the extra

acceleration terms. From these plots, it appears that the position around

d = 10" is one such desirable ¡egior. Observe also that each order of natural

frequency experiences its minimum value at different iocations as the mech-

anism moves through a cycle of its motion. The critical operating speed of

a mechanism corresponding to its lo*'est natural frequency and the position

at rvhich this minimum natural frequency occurs, dete¡mines the critical ge-

ometry of the mechanism. As mentioned in [44], this critical geometry of a

mechanism provides a verv useful and economical tool for its elasto-dynamic

design.

Figure 3.10-3.13 shorvs the I'ariatiou of natural frequency parameters

against input rotational speeds for cases 0-5 at the position, d = 10" for the

first four modes. According to the definition of natu¡al frequency paramefer,

the response curves for case 0 fo¡ all modes are horizontal lines. This is

expected as the mechanism is norv a stationary structure. The complete

solution u'hich includes solving for the complex eigenquantities is indicated

by case 1. Solutions with varying degree of simplifications are denoted bJ,

cases 2 - 5. Observe that at lorv operating speeds, for instance, a < 0.1, the

errors introduced by these approúmations are very small. However, for high

speed mechanisms, these errors can be signifrcant, rvith the exception of case
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2 and case 3 whe¡e the Coriolis danping matrix and the tangential stiffness

natrix are neglected. In both situations, the simplified solutions match quite

closel¡' ¿6 the compiete solution, namel¡' s¿gs l.

The error due to the neglect of the normal stiffness matrix increases rvith

increasing speeds. In particular, tl.Le e¡ror in the fundamental mode frequency

prediction at o = 0.56 is approdmately 8.5%. This set of graphs also reveals

that the largest source of error is introduced b¡' the neglect of the pseudo-

normal stiffness matrix. Obviously, from f he fundamental mode frequency

response curve, incorrect ¡esults u'ould be obtained if this term is dropped.

The results should indicate increasing stabitity rvith increasing speeds, as the

mechanism becomes stifier and stifre¡ due to tlie increasing large axial forces.

But rvhen this term is neglected as was done by some researchers mentioned

earlier, the results slìov' increasing instability rvith increasing speeds, an error

that s'as also noficed by Cleghorn et ai. 1161.

It u'ill be interest to examine the distribution of the errors introduced by

the neglect of the various motion-induced terrns, that is, cases 2 - 5, over

an entire cycle of the motion fo¡ difierent opetating speeds. This is depicted

in the various plots given in Figures 3.14-3.17 fo¡ the first four modes,

corresponding to O = 500 rad/sec, and Figures 3.18-3.21 corresponding

úoO = 1000 rad/sec. The g-axis shows a comparison ofthe percentage errors

in natural frequencies computed by the various degree of simplifications with
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2: Coriolis dâmping matrix neglected

3: tangenLial etiffness matrix neglected

4: normal sUffness måtrix neg¡ected

õ: pseudo-normal süffnesÊ matrlx
neglected

60 t20 r80 240 300

C¡ank angle, á (degrees)

Figure 3.17: Percentage er¡or in natura.l frequency vs. crank angle, O=500
rad/sec
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Figure 3.19: Percentage erro¡ in natural frequency vs. crank angle, O=1000
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the predictions f¡om ihe complete solution. In this t a5,, ertors a¡e measu¡ed

by their departure {rom æ-axis. As can be seen f¡om these figures, the neglect

of the Coriolis damping matrix and tangential stifiness matrix (cases 2 and

3) over a cycle causes no perceptible errors. Ilo*,ever, u,here there are errors,

the errors increase rvith the increase oI speeds as expected, nith tlie largest

errors occuring at the begining and ending parts of a cycle. It is apparent

that the no¡mal and pseudo-normal stifiress mat¡ices have more pronounced

efect on the natural lrequency response tlÌan an]' othet terms in the equations

of motion. Erro¡ as high as 38% is experienced at O : 1000 rad/sec rvhen

the pseudo-normal stiflness term is neglected. It is also observed that the

influence of normal stifiness matrix is usually less significant than the pseudo-

norm¿l stifness term.

Finally, the mode shapes for the first four modes are presented in Fig-

ures 3.22-3.25, corresponding to d = 10o and O = 1000 rad/sec. It is

noticed that the efects of the extra accele¡ation terms on the mode shapes

are generally small. The only exception to this is the pseudo-normal stifiness

term, rvirich has a more significant efect on the mode shapes. Not sur-

prisingly, when the pseudo-normal stiffness term is neglected, the resulting

mode shapes are app¡oximately those fo¡ a uon-¡otating mechanism. Tlús

is expected in view of the similar trend obtained in the natu¡al frequency

results.
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Undeformed

Configuratioo \'j

Figure 3.22: Fundamenta.l mode shape,d = 10o, O=1000 rad/sec



Figure 3.23: Second mode shape, 0 = 10",O=1000 ¡ad/sec
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Figure 3.24: Thi¡d mode shape, d - 10", O-1000 rad/sec



Figure 3.25: Fo¡th mode shape, d = 10", O=1000 rad/sec



Chapter 4

Conclusions and
Recommendations

4.L Conclusions

Presented in ihis thesis is a systematic formulation dealing rvith the free

kineto-elastovibration analysis of high speed flexible mechanism systems.

The derivation of the governing equations of motion is accomplished by us-

ing the displacement frnite element technique, in ri,hich the continuously dis-

t¡ibuted mass system is modeled by a discrete system rvith finite number

degrees of freedom. Ðule¡-Bernoulli beam type elements are employed in

this analysis. Botli transverse and longitudinal deflections of the elements

are considered in the finite element analvsis.

To eliminaie the singularity in the global matrices, the mechanism is

assumed to beirave as an instantaneous structure at every instant of its kine-

matic motion. It is fu¡ther assumed that the absolute motion of each elas-



tic member is obtained by superimposing the elastic deformations upon the

knou'n rigid body motions.

Special attention in formuiating the linearized equations of motion x'as

paid to the extra acceleration terms, namell' f|¡s Coriolis, tangential, normal

and pseudo-normal accele¡ations of elastic defo¡mations. As was illustrated,

the inclusion of these terms in the equations of motion leads to complex eigen-

problem. A special aìgorithm was employed to solve the resuìting problen.

Basicall¡,, the solution procedure consists of transforming the z equations of

motion into a 2n equation system rvith real coefi.cient matrices. Then the ¡e-

duced equations are solved by lhe QZ algorithn. A finite element prog¡am

rvas developed in accordance rvith the foregoing formulation and solution

scheme. \4¡ith some minor modifications, the program can be extended to

tire analysis of multi-loop planar mechanisms.

A four-bar linkage rvas used to investigate the effects of extra acceler-

ation terms on the dynamic characte¡istics of flexible mechanism systems.

The nume¡ical results show that, among these ext¡a acceleration terms, the

normal and pseudo-normal stiffiress terms have the most significant iufluence

on the natural frequencies. Large errors are experienced .rvhen eithe¡ term is

neglected. .A.s expected, it is found that the normal acceleration te¡m has less

significant efect on the natu¡al frequencies than the pseudo-normal accele¡a-

tions. Also, incorrect stability ptediction will result when the pseudo-normal
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acceleration term is neglected. On the other hand, the efects of the Coriolis

and tangential acceleration te¡ms are negligible if neglected in the analysis.

The influence of the extra accele¡ation terms on the mode shapes is found

to be small. The only exception to this is when the pseudo-normal accelera-

tion term is neglected, rvhich in this case yields mode shapes much close to

those of a non-rotating mechanism.

In conclusion, the normal and pseudo-normal stifinesses should be in-

cluded in the equations of notiorr, to accu¡ateh' model the {ree vibration

problem of high speed flexible meclianisms.

4.2 Recommendations

To comprehend the influence of the extra acceleration te¡ms on the dynamics

of irigh speed fleúble mechanisms more completely, it is recommended that

r forced kineto-elastovibration analysis, including the dete¡mination of

the elastic deflections, stresses and strains at any point of a moving

member, be car¡ied out considering the extra acceleration terms.

r higher order polynomials be employed to improve the accuracy of

numerical predictions.

¡ Timoshenko beam theory be used when modeling short stubby beams.
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Appendix A

List of Element Matrices

The conventional mass matrjx and the secondar¡' mass matrix are given by

Equatiols (2.10) and (2.11), respectivel¡'. Both mat¡ices are listed belou'.

l*.1 : TN

4n

m
lmJ = -OU

Tire explicit expression

140007000
0 156 221 0 54 -i3¿0 221 4t2 0 131 -312700014000
0 54 13t 0 i56 -22ll0 -13t -3P 0 -22t 4t2

-31 0 -9 2t
0900
021 00
-21 0 -21 3t
02100
0-3¿00

0 -2i270
3¿0
0-9
90

-21 0

for the structural stifiness mafrix, given by Equa-

/o



lEAlr 0 0

I 0 12Er lts 6Er lt,
fL¡r_l 0 6EIlt, 4EIltL.r-l_E.Alr 0 0

I o -128r lt3 -6Er lrL 0 6Et lr' 2Er lt

tior (2.22), is as follorvs

-EAlt 0 0

0 -t2Ðr lt" 6EI ¡t,0 -6EI lI, 2EI ltEAlr 0 0

0 r2EI lI3 -6EI lt'0 -6EI lI, 4EI lI
The tliree component matrices of the pseudo-normal stiffness matrix, de-

fined by Equation (2.26), arc giyen belon',

[ej'] =
F'

30¿

wA= 
p::'

OU

0000
0036-6t

-6120 0 P
0000
0 0-36 6I
P 0 6I -212

0 0 0 0 0 0'l
0 36 3/ 0-36 3¿l
0 3¡ 412 0 -31 -¡, Io 0 0 0 0 0l
0 -36 -3¿ 0 36 -31 I0 3¿ -t2 0 -3¿ 41, )

¡¡rtsi - PAl02
420

00
6¿0

2412 0
00

-6¡ 0

-412 0

00
-180 271

-6¿ -4l¿200
180 -271
-271 r\P

f0 0

| 0 -36lo o

lo o

t0 36

Lo -o¿

l0 0

lo 180

lo 6Ilo o

lo -reofo 271

same as those defined in chapter 2
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Appendix B

IJser's Manual for Program
FKEV

Input parameters:

NGN number of geometric nodes

NE numbe¡ of elements

NÐI(3) number of elements for each moving member

N12(10,2) the end node numbers of the NÐ elements

NBC(2) the number of tìre constrained nodes

NDOF(2,3) informationforboundaryconditions

A(3) cross sectional area of the moving links

Ð(3) modulus of elasticit5' of the moving links

AI(3) area moment of inertia of the moving links

RIIO(3) mass density of the moving links

Rt(4) length of the four links

NW numbe¡ of diferent angular velocities
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interested in the anaìysis

WN(10) input angular velocities

DDTH(1) input angular acceleration

DELT angle increment

INDÐX motion index, referring to Table 3.3

I{KC print control variable

Output parameters:

ANGLÐ crank arlgle

P1(73,10) fundamental mode frequency

P2(73,10) second mode frequencl'

P3(73,10) thi¡d mode frequenc¡'

P4(73,i0) forth mode frequenc¡'

Function of the subroutines:

subroutine MKQ forming the system matrices and solr,ing for

the natural frequencies and corresponding

mode shapes

subroutine À4KQE forming the element mat¡ices

sub¡outine RBK rigid body kinematics of the mechanism

subroutine RÐF determining the right hand end forces of

the NÐ elements.
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Appendix C

Program for Free
Kinet o- Elastovibrat ion
Analysis

P&OGRÁI'I FKEV

cccccccc cc cccccc c cccccc c ccc cccc c c c c cccccccccc ccccccc cc cc ccccc c c c c ccccc cc

C This is to do Free Kineto-Elastovibrat ion analysis of C

C a Jout-bar crank rocket nechla¡isn C\.c
cc cc cc ccccc c c ccc cccc ccc c cccccc c ccccccc c cc c ccc c cc c ccccccc ccccccc c cccccccc

IÌ'TPLICTT REAL+B (À-E, 0-Z)
CoMHoN /MKq1/NGN,NE,NBC(2),NEr(3),N12(10,2),NDoF(2,3)
c0t-1t'10N /MKQ2/RI (4), REoÁ (3), TE (3), DTE (3), DDTE (3), EA (3), Er (3),

1 ALX(20),FR(20),TR,DELT
COI'f},ION /SHITCE/INDEX ,I'f KC

GoMMoN /ploT/p1 (73, 10),p2 (73, 10),p3 (73, 10),p4(73, 10),ps (73, 10)
DTMENST0N Rro (3),a (3),E(3),Är (3),DDUo(50),tfN(10)
DTMENSI0N ÂÀ(ô0,60),BB(60,60),I,¡K(7200),RZ(7200),BET(60),RALF(120)
c0MPtEx z (60, 60),aLF (60)
TR=DÂTAN(1.00)/45.
REÂD (5, x ) NGN, NE, (NEI ( I), I=1, 3), INDEX,t'rKc
D0 10 I=1 , NE
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10 READ (5, +) N12(I,1),N12(I,2)
D0 20 I=t ,2

20 READ (5, x) NBc(I), (ND0F(I,J),J=1,3)
READ (5, *) (RL(I),I=1,a)
D0 30 I=1,3
READ(s,*) REo(I),Á(r),8(r),ar(r)
REoA (I) =RHo (I) *A(I)
EA (I) =E(I) +À(I)

30 EI (I)=E(I) *AI (I)
REÂD (5, *) DDTE(1),DELT
REÀD (s, 'i) NH, (ltN(I),I=1,NH)
ND=IDINT ( 360 . 0/DELT+1 .5)
llRITE(6,200) NGN,NE, (NEI(I), r=1,3)
NGN=3T.NGN

NN=NGN+2

I'iN0=0

D0 3 I=1,2
D0 3 J=1,3

3 NNo=NNo+ND0F (I,J)
NNNO=NN-NNO

N=2*NNN0

N1=2,r.N*N

I,l2 =2'iN
HRrTE(6,22s)
D0 40 I=1 , NE

40 liRITE(6,230) I,N12(r, 1),N12(I,2)
HBITE (6 ,24s)
D0 50 I=1 ,2

50 IIRITE(6,230) NBC(I), (ND0F(I,J),J=1,3)
l,iRITE(6,260) (eL(I),I=1,4)
D0 100 lt.l=l , Nf,l

DTE ( 1) =Hl'r (IH)
l,lR]TE(6,270) DTE(1),DDTE( 1),DEIT
D0 90 ITE=I, ND

TE ( 1) = (ITE-1) *DELT'*TR

CALL RBK ( DDUO )
CALL REF

CÀLL I'IKQ (N, N1, N2, NN, ITE, DDUO,AA, BB, t.lx, BET, RZ, RALF, ÂLF, Z, ]l,l)
90 CONT]NUE
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100 coNTtNuE
DO 110 ITE=1,ND
ANGLE= (ITE-1),iDEtT
I{RITE( 1,400) ANctE, (P1 (ITE, Il{),Ili=1,Nr.l)
HRITE(2,400) ÂNGIE, (p2 (ITE, rli), l1¡=1,¡ç¡
I^¡RITE (3, 400) aNGLE, (P3 (ITE, Itr'), Iti=1, N!t)

110 HRITE(4,400) ANGLE, (P4(TTE,Il,t),Il,I=1,Nli)
2OO FORI'îÀT(/lX,' INPTIT DATA' //

1 10X, ,NGN=, ,12,5X ¡ , NE= , , 12 ,5X, ,N1=, 
, 12, SX, ,t{2= , 

, 12 , SX,
2 'N3=' ,I2/ )

225 F()RI'1AT(1OX, ' NÜI.îBER t)F ELEI'IENTS AND C()RRESPONDING END NODES'/)
230 FoRt'taT ( 10x,4r8)
245 F0Rl'fAT(/10X,',TEE BoUNDARY CoNDITI0NS'/)
260 FoRl'rÀT(/lox, 'TEE LENGTHS 0F TEE FoUB BÂRs:,//10X,4Fs.2)
270 FORI'IAT(/10X,'TEE VELOCITY AND ACCELERATION OF TEE TNPUT LTNK'//

1 10X , ' l{1= ' , F7 .2 ,5X, 'El=r,F7.2,5X¡ ,DELT=' ,F7 .2/ /)
400 FoRt"taT(F5 . 0,6F14.5 )

STOP

END

suBRouTrNE I'tKq (N, N1, N2, NN,ITE, DDUO, ÀÄ, BB, NK, B, RZ, RA, !,, Z, rlf )

II.ÍPLICIT REÂL*8 (Â-8, t)-Z)
coMl'f 0N /r'lKQ1/NGN, NE, NBC(2), NEI (3), N12 ( 10, 2), NDoF (2, 3)
cot'il'toN /t'fKQ2lRL (4), REoA (3), rE (3), DTE (3), DDTE (3), EA (3), Er (3),

1 ALX(20),FR(20),TA,,DELT
COI.IMON /Sl.lITCE/INDEX,MKC
c0r'rMoN /ploT/pl (73, 10),p2 (73, 10),p3 (73, 10),p4(7s, 10),ps(73, 10)
Dil'lENsroN NotD(6),NRoH(6),EM (6,6),Ec(6, 6),EX(6,6),Ao (50),

1 DDUo (s0),sr'f (50,50),sc (50, 50),sK(5o,so),FBEQ (5)
DTI'IENSII)N ÂÄ (N, N), BB (N, N), I,IK (Nl), RZ (N1), B (N), RÀ (N2)
coMPLEx A(N),2(N,N),20
DPI=360 . 'tTR
NNN0=N/2

D0 1 I=I,NN
DO 1 J=I,NN
Sll (I, J)=0.
sK(I,J) =0.

1Sc(l,J)=0.
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D0 3I=1,N
D0 3 J=1,N
aA (I, J) =0.

3 BB(I,J)=0.
NoLD ( 1) =3*NBc ( 1) -2
NoLD(2)=NoLD(1)+1
l¡loLD (3 ) =N0LD ( 2 ) +r
NoLD (4) =3*NBc (2) -2
N0LD(s)=¡s1P14¡41
NoLD(6)=NoLD(s)+1
D0 10 J=l,3
IF(NDoF(1,J).EQ.0) N0LD (J) =0
IF (NDoF (2 , J) . EQ .0) NoLD ( 3+J) =0

10 CONTINUE

D0 5IK=1,3,2
rF (rx-2) 11,11,13

11 lìlEO= 1

NE1=NEI ( 1)
NESUI'r=0

G0T0 14
13 I'IEo=NEI ( 1) +NEl ( 2) + 1

NE1=NE

NESUU=NEO-1

14 D0 5 IE=NEo,NE1
NESUI'l=NESUI'j+ 1

I'113=l'¡12 ( IE, 1) *3
N23=N12 (IE,2) *3
caLL r'rKQE (Et-l , EK , EC , IK, NESUM)

ls D0 5 I=1,3
D0 5 J=1,3
I1=N13+I-3
I2=N23+I-3
J 1=N 13+J -3
J2=N23+J-3
SH(11, J1) =SU(11, Jl) +El'l (I, J)
SÌ1(I1, J2)=Sl'l(I1, J2)+El'l(1, J+3)
SM ( 12, J1) =Sl'l ( 12, J1) +El'l (I+3, J)
sM (12, J2) =St'f (12, J2) +Et't (r+3 , J+3)
SK(I1, J1)=sK(11, J1)+EK(I, J)
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sK(I1, J2) =sK(I1, J2) +EK(I, J+3)
S¡( (12, J1) =SK (12, J1) +EK (I+3, J)
sx(12, J2)=sK(12, J2)+EK(r+3, J+3)
sc(I1, J1)=Sc(I1,Jl)+Ec(I,J)
Sc(11, J2)=sc (I1, J2)+Ec (I, J+3)
Sc (12, J1) =Sc(12, J1) +Ec(1+3, J)
Sc(12, J2) =sc (12, J2) +Ec (I+3, J+3)

5 CONTINUE

KK=0

NEsUM=NEI (1)
D0 40 IE=NEI(1)+1,NEl(1)+NEI(2)
KK=XK+1

NESUI'1=NESUI'f +1

I'113=lrl12 ( IE , 1) *3
N23=N12 (IE,2) *3
NRol'l ( 1) =N13-2
NRoli (2) =N13-1
NRol,l (3) =N13
IF (t(K . E0 . 1) NR0!l(3)=NcN+1
NR0ll (4) =]'f!3-2
NRoll(s) =l{23- 1

NR0l.l (6) =l'123
IF (KK. EQ. NEI (2) ) NROr,l(6)=NN
cÄLL I'IKQE(Et'f ,EK,EC,2, NESUM)

25 DO 20 I=7 ,2
D0 20 J=t,2
I1=N 13+ I-3
I2=N23+I-3
J1=N13+J-3
J2=N23+J-3
Sll(I1,J1)=sH (I1 ,J1)+El'r(I, J)
sl'l (I1, J2) =SH (I1, J2) +EM (I, J+3)
sM(12, J1) =sM(12, J1) +Et't(I+3, J)
sM(12, J2)=slr(12, J2)+EM(I+3, J+3)
SK ( 11, J1)=sK(I1,Jl)+EK (I, J)
sK(I1, J2) =sK(11, J2) +EK(I, J+3)
SK (12, J1)=sK(12, Jl)+EK(I+3, J)
SK(12, J2)=SK(12, J2)+EK (I+3, J+3)
sc(I1, Jl)=sc(11,J1)+Ec(I, J)
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sc(I1, J2)=sc (11, J2) +Ec (I, J+3)
sc (12, J1) =sc (t2, J1)+Ec (I+3, J)
sc(12, J2) =Sc(12, J2)+EC (I+3, J+3)

20 CONTINUE

D0 30 J=1,6
sr'r (NR0w (3), r,tRoli (J) ) =su (NRor.l (3),NB(]l{ (J) ) +EM (3, J)
sM (NRow (6), NRor{ ( J) ) =str (NR0w (6),NRol.l ( J) ) +EM (6, J)
sX (NRot,lI (3), NRoH (J) ) =sK (NRoH (3), NR0!{ (J) ) +EK (3, J)
sK (NRow (6), NR0H (J) ) =sK (NRot¡ (6),NRoti ( J) ) +EK (6, J)
sc (NR0H (3), NR0!J ( J) ) =sc (tùRoH (3), NROH ( J) ) +Ec (3, J)
sc (Nn0w (6), NR0r.i (J) ) =sc (NRol,| (6),NRoH (J) ) +EC (6, J)

30 CONTINUE

D0 35 I=1 ,2
D0 35 J=3,6,3
sM (NRol,l (r), NRot.t( J) ) =st,l (NRow ( t),NR0[i ( J) ) +EM (r, J)
sl.r (NRor,r (I+3), NRoI,¡ ( J) ) =st'r (NR0H (r+3), NRoH ( J) ) +EM (I+3, J)
sK (NR0l.¡ (r), Nn0H (J) ) =sx (NRor.r (r), NRol.l (J) ) +EK (r, J)
sK (NRoH (I+3), NRol| (J) ) =SK (NRol.l ( I+3), NR0H ( J) ) +EK ( r+3, J)
sc (NRoH (r), NR0ti (J) ) =sc (¡,tR0t,l (r), NRo}l ( J) ) +Ec ( r, J)
SC (NR0w ( I+3), NRoli ( J) ) =sc (NRot,t (I+3), NRot¡ (J) ) +Ec (I+3, J)

35 C(]NTINUE

40 CONTINUE

INEI.J=0

D0 70 I=1 , NN

D0 45 K=1,6
rF (r.Eq.ìroLD (x) ) c0T0 70

45 CI)NTINUE

INEH=INEl.¡+1

JNEt1]=0

D0 60 J=1 , NN

D0 50 K=1,6
IF (J . EQ , NOLD (K) ) GOTO 60

50 CI)NTINUE

JNEI.I=JNEt,¡+1

Sll (INEH, JNEW) =SM(l, J)
SI( ( INE}J, JNEH)=SK(I,J)
sc (INEW, JNEW) =Sc(I, J)

60 CONTTNUE

DDUo ( INEH) =DDUo ( I)
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70 CONT]NUE

cÄLL I'IAT (NNNo,A0, SMo,DDUO, O)

D0 22 I=1,NNNo
22 DDUo (I) =-Ä0 ( I)

IF(ÌIKC.Eg.0) c0T0 150
HRTTE(6,205)
D0 80 I=1, N¡lNo

80 }IRITE(6,210) (SM(I,J), J=1,Nt'rNo)
ITRITE(6,215)
D0 90 I=1, NNIùO

90 l,lRITE(6,210) (sK(I,J),J=1,NNNo)
lrRrTE(6,227)
D0 100 I=1 , NNNo

100 HRITE(6,210) (sc(I,J),J=1,NNNo)
150 CONTINUE

IA=N
IB=N
IZ=N
IJ 0B=2

zo=Dcl'fPlx (1. 00, 0.00)
D0 160 I=1, NNNo

D0 160 J=l , NNNO

I1=I+NNN0
J1=J+NNNO

AÂ(11, J) = Sl'1( I, J )
aÀ(I,J1)=-SM(I,J)
AA (11,J1) =sc ( r, J)
BB ( 1, J) =Sll (I , J)

160 BB(I1,J1)=SK(I,J)
CALL EIGZF (AA,IÂ,BB,IB,N, ]JOB , RÄ, B, RZ, TZ, lIK, IER)
IN=1
D0 180 J=1,N
D0 180 I=1, N

Z(I, J)=Dcl'lPLX(Rz(IN),Rz(IN+1) )
180 IN=IN+2

D0 18s I=1,N
HRITE(6,270) (z(I,J) ,J=L,r0 ,2)

185 CO¡ITINUE

K=0
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D0 190 I=1,N,2
K=X+1

rF (K. cT. s) G0T0 19s
a (I)=DcMPLx (na (2xI-1) /B (r),n¡ (zxr) /B (r) )
a(I)=-20lA(I)
FREQ (K) =AIMÀG (Á (I) ) /DPI

190 C()NTINUE

195 C0NTII'IUE

P1 ( IrE, Il,l ) =FREQ ( 1)
P2 (ITH,I!r') =FREQ (2)
P3 (ITE,Ihr) =FREQ (3)
P4 (IrE,Il,¡)=FREQ (a)
ANGLE= ( ITE- 1) +DELT

hTRITE (6, 182) ANGLE, (FREQ (I) , I=1, s)
182 FoRt'fÂT ( 1X, F5.0,5F12.6)
20s FORt'laT(/10x, , THE t'lASS UATRIX : '/)
210 FoRMÁT ( lX,9814 .4)
215 F()RI'IâT(/10X,'THE STIFFI,IESS MATRIX:'/)
227 F0R¡1AT(/10X, 'TEE EFFECTM DAHPING LÍATRIX:,/)
270 F0Rt'taT ( 1x, 10812 ,4)

RETURN

END

SUBROUTIIIIE I.]IKQE (EI'l, EK , EC , IBAR, NESUI,I)

IMPLICIT REAL*E (Á-8, (] -Z)
CI)MHON /MKQ1/NCN,NE,NBC(2),NEI (3),N12 (10, 2),NDOF (2, 3)
c0r'fr'10N /t'tKQ2/RL (4), REoa (3), TE (3), DTE (3), DDTE (3), EA (3), Er (3),

1 ÄLX(20),FR(20),TR,DELT
c0HH0N /stl'ITcE/rNDEX, I'íKC

DTMENST0N EM(6, 6),EX(6, 6),Ec (6,6),R(6,6),Â(6,6), EKG(6,6)
s1=DSIN (rE ( IBÄR) )
c1=Dc0s (rE (IBAR) )
!¡2=2. xDTE (IBAR)

H22=DT[ ( IBÀR) *DTE ( IBAR)
NB=NEI (IBAR)

EL=RL ( IBÀR) /FL0Är (NB)

EL2=Et*EL
EL3=EL2*EL
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RE0AEt=ì80Á ( IBAR) xEL

D0 10 I=1,6
D0 10 J=1,6
EM(I,J)=0.
EK (I, J)=0.
Ec(I,J)=0.
EKG (I, J)=0.0

10 R(I,J)=0.
R(1,1)=c1
R(1,2)=S1
R(2,1)=-s1
R(2,2)= c1
È(3,3)=1.
R(a,a)=c1
R(4,5)=s1
R(5,a)=-s1
R(5,s)= c1
R(6,6)=1.
EM( 1, r ) =xs¡¡¡173.
EM(1,4)=.s'iElr(1,1)
Elr(2, 2)=13. /3s. *BEoÁEL

EM(2,3) =11. *EL/2t0. *nuo¿Et
E¡'l(2, s) =9 . /70 .'tRggAEL
El'l(2,6)=-13. *EL/420 . *REoÂEL

El'l(3 , 3) =EL2*REoÀEL/ 105 .

EM(3,5)=-EM(2,6)
EM (3, 6) =-EL2*REoÄEL/140.
EIl (a, a) =El'r ( 1 , 1)
El'l(5,5)=El'l(2,2)
Et'l (5,6) =-EM (2 , s)
EM (6 ,6) =Elr (3,3)
EX (1, 1) =EÀ (IBAR) /EL
EK(1,a)=-EK(1,1)
EX(2,2)=12. *EI (IBAR) /EL3
EK (2 ,3) =6 . r,EI ( IBAR) /EL2
EK(2,5)=-EK(2,2)
EK(2,6)=EK(2,3)
EK (s,3) =4. xEI (IBAR) /EL
EX (3, s) =-EK (2,6)
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20
22
.tt

EK(3,6) =0.s*EK (3,3)
EX(a,4)=EK(1,1)
EK(s,5)=EI((2,2)
EK (5,6) =-EK (2,3)
EX(6,6)=EK(3,3)
Ä3=-0 . 5xRE0ÄEL¡*I.l22

Â2=BE()ÀEL*ALX (NESU¡l) /EL
Â1=-42-43+FR(NEsul'l) /EL
EKC (2,2) =1 .2*41+0 .6*42+12 . /35. ,¡43

EKG(2,3)= EL'* ( 0. 1* (Å1+À2 ) +43/ 14. )
EKc(2,s)=-EKc(2,2)
EKG(2,6)= EL* (0. 1*Á1-43/3s . )
EXG (3,3) =EL2* ( 2. / 75 .*^r+L2/30 . +2 . / 105 . *Ä3)
EKc(3,s) =-EKc (2,3)
EKG (3,6) =-EL2* ((2.*At+Á2) / 60. +A3/70 . )
EI(c (5,5) =EI(ç (2,2)
EKG(5,6) = EL* (-.1x41+A3/3s. )
EKG (6, 6) =EL2* (2. /15. ¡i,41+0. 1*Ä2+3. /35. *Ä3)
D0 20 I=2,6
D0 20 J=1,I-1
El'l(I,J)=Er'l(J,I)
EK (I, J) =EK (J,I)
EKG(I,J) =EKc (J,I)
CONT]NUE

IF(INDEX.EQ,O) GOTO 40
Ec ( 1 ,2) =-7 . ,*REoLELl2o .

Ec ( 1 ,3) =-RE0AELrEL|2} .

Ec ( 1 ,5) =-3 . *RE0¿.EL/20 .

Ec ( 1,6) = RE0AEL*EL/3o.
Ec (2 ,4) =-Ec ( 1 , 5)
Ec(3,4)= Ec(1,6)
Ec(a,5)= Ec(1,2)
Ec(a,6)=-Ec(1,3)
D0 30 I=2,6
D0 30 J=l,I-1
Ec(I,J) =-Ec (J ,I)
CONTINUE

HîD=ï122
ll2D=DDTE(lBÀR)
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IF(INDEX. EQ.3) lll1D=o .

IF(II'lDEx.EQ.4) H2D=0.
D0 35 I=1 ,6
D0 35 J=1 ,6
IF(INDEX.EQ.5) EKc(I, J)=o.o
EK (I, J) =EK ( I, J) -!t lD'ÌEl'r (I, J ) +Ec (1, J) *H2D+EKG (I, J)
Ec ( I , J ) =EC ( I , J) ,iH2

IF(INDEI.EQ.2) Ec(I,J)=0.
35 CONTINUE

40 CONTINUE

caLL t'laTl(6, Ä, R, Et'í,1)
caLL r'laT1 (6,Et'Í,Ä,R, 0)
cÂLL t'lAT1(6, Á, R, EX,1)
caLL r'f aTl(6 , EK, À, R, o)
CALL MAT1 (6, A, R, EC, 1)
cÁLL t'lÂT1(6, EC, A, R,0)
RETI'RN

END

SUBR()UT]NE RBK (DDUO)

IMPLICIT REAL*8 (A-H, O-Z )
CoMMoN /r'fKQ1/NcN, NE, NBC (2), NEI (3),N12 ( 10, 2), NDoF (2, 3)
cor'rH0N /¡tKq2/RL (4), REoA (3), rE (3), DTE (3), DDTE (3), EA (3), Et (3),

1 ÄLX(20),FR(20),TR,DELT
DII,f ENSIf}N DDUO ( 5O)
D0 1 I=1 , NGN+2

1DDUo(I)=0.
H12=DTE (1) *DTE(1)
s I=DSIN (rE (1) )
c 1=Dc0s (rE ( 1) )
PN11=RL ( 1) xc1
PN12=RL ( 1) *s 1

vN1l=-RL ( 1) *DTH ( 1) *S1

VN12= RL ( 1) *DTE ( 1) *cr
aN11=-BL ( 1) + ( I.¡12,rC 1+DDTE ( 1) i.S1)

ÄN12=-RL ( 1) * ( l.i12,is 1-DDTE ( 1) '+c1)
DD=RL (4) -PN11
ALP=DD
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DD=DD*DD+PN12¡iPN12

PUI=Ds1çN (90. *TR, ALP)
IF (DABS (ÄLP) . GT. 1. D-20) PEI=DATAIII2 (-PN12, ÀLP)
c0sa=o .5* (RL (2) *RL (2) +DD-Rt (s) *RL(3) ) /RL (2) /DsQRr(DD)
SINA=DSQRT ( 1, -COSA*COSA)
ALP=DSIcN (90. *TR, SINA)
IF (DÀBS (coSA) . cT. 1 . D-20) ALP=DATAÌI2 (SÏrtA, coSA)
TE(2)=PEI+ALP
s2=SIN (TE (2) )
c2=c0s (rE (2) )
PN21=PN11+RL (2),iC2
PN22=PN12+RL (2),¡S2

ALP=PN21-RL(4)
TE (3) =9s16¡ 1tt. *TR, PN22)
IF (DABS (ÁLP) . GT. 1. D-20) TE (3) =!¡1¡¡2 ¡pN22, Âtp)
ss=DsIt'r (rE (3) )
c3=Dc0s (rE (3 ) )
D=RL (2) *RL (3) * (52*C3-C2*S3 )
DTH(2)= RL (3) ì. (VN11xCa+VN12,r.S3 ) /D
DTE(3)= RL (2) x (VN12,|S2+VN11*C2)/D
H22=DTE(2),*DTE(2)
H32=DTE (3) *DTH (3)
B 1=-AN 11+Rt ( 2 ) 'r!¡22,*C2-RL (3 ) *t.¡32*C3
B2=-4N12+RL (2) +W22'iS2-RI (3),r 32'rS3
DDTE (2) =-RL (3),* (B1xC3+82'*s3) /D
DDTH (3 ) =-Rr ( 2) * (82*52+81*C2) /D
NESUI'f=0

X=0.0
I1=NEI (1)
D0 50 X=1 ,11
NESUM=NESUH+1

I2=N12 (NESUM,2) *3
x=x+RL (1) /Ft0ÄT(I1)
DDUo (I2-2 ) =-X* (r.l12'*c1+DDTE ( 1) i.51)
DDUo ( 12-1) =-X* (!t12'IS 1-DDTE ( 1) xC1)
ÂLx(NESUH+I) =DDUo ( I2-2) 'r,c1+DDUo 

( 12- 1) *s 1
s0 DDUo(I2 ) =DDTE ( 1)

ÀLX (NEI (1) +1) =DDUo ( 12-2) *C2+DDuo (12-1) *s2
f=0.0
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I1=NEI (2)
rF(11. EQ.1) c0T0 55
D0 60 K=l,I1-1

55 NESUI'I=NESUil+1

I2=N12 (NESUM,2) x3

X=X+RL (2) /FL0ÂT ( I1)
DDUo ( I2-2 ) =ÂN11-X* ( !.l22*C2+DDTE (2) *S2 )
DDUo ( 12-1 ) -ANl2-Xi (W22+S2-DDTE (2) *C2)
DDuo(12 )=DDrE(2)
IF ( I1 . NE. 1) ÁLx (NESUl,l+1 ) =DDuo (I2-2) xc2+DDUo ( 12- 1) *S2

60 CONTINUE

I1=NEI (3)
I'lEsull=NEI ( 1) +NEI (2)
D0 70 K=I1,1,-1
I'tESU¡f =NESUM+1
I2=N12(NESUI'I,2)*3
x=RL (3) -nL (s) /FLoAT ( r1) *Ft0AT ( r1-K)
DDUo ( 12-2 ) =-I* (t.l32,r,C3+DDTE (3),iS3)
DDUo (12-1) =-X* (l.¡32xs3-DDTE (3) Éc3)
IF(I1.NE.1.ÂND.K.NE.11),ÀLX(NEsUl'l-1)=DDUo(r2-2),rc3+DDUo(12-1)ì,S3

70 DDUo(12 ) =DDTE (3)
DDUo(3*N12(1,1) )=DDTE ( 1)
DDUo ( 3*N12 (NE, 1) ) =DDTE (3 )
DDUo (NGN+1) =DDTE(2)
DDUo (t{GN+2) =DDTE(2)
ALx(1)=0.
ALx (NE) =0 .
RETURN

END

SUBROUTINE REF

IMPLICIT REAL*8 (A-E, O-Z)
cot'ü'roN /r'lKQ1/NGN, NE, NBC (2), NEI (3), N12 (10, 2), NDoF (2, 3)
CoMMoN /r,tKQ2/Rr (4), RE()A (3), TE (3), DTU (3), DDTE (3), EA (3),Er (3),

1 ALX(20),FR(20),TR,DELT
II't1=RE0A ( 1) *RL ( 1)
IM2=RE0A (2) *RL (2)
x¡13=RE0a (3) xRL (3)
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xJ1=Xl'í1*ì,t ( 1) *ÈLU) / 12.
xJ2=Xl.l2*nL (2) !t ÈL(2) /L2.
xJ3=Xl'f3*RL (3) *\Lß) / 12.
s I=DSIN (TE ( 1) )
c 1=Dc0s (rE ( 1) )
s2=DsIN (rE (2) )
c2=Dc0s (rE (2) )
S3=DsIN (Ts (3) )
c3=Dc0s (rE(3) )
h'12=DTE ( 1) *DTE ( 1)
\'22=DTH ( 2) ,*DTE ( 2)
H32=DTE (3) *DTE (3)
DDXCl =-0 . S*RL ( 1) + (DDTE ( 1) i.S 1+H 12xC 1)
DDYCI= 0 .S*RL ( 1) * (DDTE ( 1) +C 1-!r12,rs 1)
DDXC2=2 . *DDXC 1-0 . s+RL ( 2) * (DDTE (2 ) *S2+1t22,+C2 )
DDYC2=2 . +DDYC1+0 . 5*RL (2) * (DDTE (2) *C2-H22xS2 )
DDXC3=-0 .5*RL (3),r (DDTE ( 3 ) *S3+l1l32xC3)

DDYC3= 0. Si RL (3),r (DDTE (3 ),iC3-H32xS3)
FX1=-Xl-I1*DDXC 1

FY1=-Xt'11*DDYC1

FX2=-Xl'12*DDXC2

FY2=-XM2'*DDYC2

FX3=-XM3,r.DDIC3

FY3=-XI,f3+DDYC3

FIHl=-XJlXDDTE (1)
FIU2=_LJ2,¡DDTE ( 2)
FII'13=-XJ3i DDTE (3)
À11=-nL ( 1) *s1
Â12= RL (1) r,c1-RL (4)
Â21= RL (2) xs2
A22=-ÈL(2) *C2

B1=-(RI(1){,C1+0.5*RL(2)*C2-BL(4))i.Fy2+(nL(1)lis1+0.5*RL(2)xS2)+FX2
1 -0 . 5*RL ( 3 ) x (C3*FY3-53|.FX3 ) -FIM2-FIM3
B2= 0.5*Rt (2) 

'r 
(C2*FY2-52,r.FX2 ) -FIM2

DD=Â11*422-Å21*412
x1= (81*Ä22-82* A,L2) lDD
Y1= (82*411-B 1¡*421) /DD
X2=-ï.1-Fx2
Y2=-Y1-FY2
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I1=NEI (1)
I2=I1+NEI (2)
T3=T2+L
FR ( I1) =-X1*C1-Y1'rS1
FR(I2)= X2*C2+\2*s2
FR(I3) =-T2*Ca-Y2*S3
D0 100 I=1 ,3
rF(NEI(I).8Q.1) G0T0 100
EL=RL (I) /FLoaT (NEl (I) )
RE0ÄEL=RE0A (I) *EL
w22=DTE (I) *DTE (I)
c0T0 (10,20,30), I

10 IE=NEI ( 1)
ID=-1
G0T0 40

20 IE=NEI ( 1) +NEI (2)
ID=- 1

G0T0 40
30 IE=NEI(1)+NEI(2)+1

ID= 1

40 K=0

I1= IE
50 I1=I1+lD

K=K+1

FR(I1) =FB( I1-ID) -REoAEL* (ALX (I1-ID) -o. 5*ELxH22)
TF (K. LT. NEI (I) -1) Gt)T() 50

1OO CONTTNUE

BETURN

END

SUBRO1TTINE I'IÀT (N, A, B, C, ]ND)

IHPT1CTT REAL*8 (Ä-8, t)-Z)
Dil'fENSroN Â(50),8(50, 50), c(s0)
D0 20 I=l,N
A (I) =0.0
D0 10 J=1,N
lF(IND.EQ. 0) À(I)=a(r)+B(r, J),i c(J)

10 IF(IND.EQ, 1) Â(I)=a(I)+B(J,I)xc(J)
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20 C()NTTNUE

RETU&N

END

SUBRoUTINE t'lÂT1(N, A, B, C,IND)

TI,IPLICIT REAL*8 (A-E, ()-Z)
Dn'lENSr0N Â(6,6),8(6,6),C(6,6)
D0 30 I=1,
D0 30 J=1,N
a(I, J)=0.
D0 30 K=1, N

IF (rND-l) 70,20 ,20
10 A ( I, J) =A ( I, J) +B (I, K) ¡ic (K, J)

G0T0 30
20 Á (I, J) =A (I, J)+B (X,I) +c (K, J)
30 CONTINUE

RETURN

El,lD

95


