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Abstract

A systematic approach based on finite element method for the kineto-elasto-
vibration analysis of high speed mechanisms is presented. The linearized
equations of motion are derived in their most general form via Lagrange’s
equation. The derivation and the final form of the equations of motion pro-
vide the capability to model a general single-loop or multi-loop planar elastic
mechanism. Explicit expressions for the resulting mass, damping and stiff-
ness matrices associated with the extra acceleration terms, namely, Coriolis,
tangential, normal and pseudo-normal components of elastic accelerations,
are listed in Appendix A. The effects of these extra accelerations are clearly

identified in the numerical simulations.

Unfortunately, the inclusion of these terms results in non-proportional
damping and asymmetric stiffness matrices, producing complex eigensolu-
tions. A general ¢ Z algorithm is employed to solve the complex eigenprob-
lem. Of particular interest in this research is to study and understand how
the extra acceleration terms influence the eigenvalues and eigenvectors of

high speed flexible mechanisms.

A finite element program has been developed for the investigation. Dif-
ferent simplification analyses are carried out to investigate the effects of the

extra acceleration terms on the free kineto-elastovibration characteristics of



high speed mechanisms.

As a numerical example, a four-bar linkage mechanism 1s analysed, tak-
ing account of its rotations. It is found that while Coriolis and tangential
acceleration components have negligible influence on the natural frequencies
and mode shapes, the effects of normal and pseudo-normal accelerations on

the free vibration characteristics of the mechanism are quite significant.
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Chapter 1

Introduction

1.1 Background

The traditional method employed in mechanism design has been based pri-
marily upon the fundamental assumption that the system is composed of
rigid bodies only. No elastic deformations will occur in such a system. This
rigid body approach is a reasona,blyr accurate method of design for mech-
anisms operating at low speeds and has led to the development of a very
broad class of mechanisms. However, with the ever increasing demand for
high productivity and operating speeds, it is no longer acceptable to assume
rigid body motions in mechanisms, especially in situations involving mecha-
nisms constructed of lightweight materials and/or operating at high speeds
where the mechanisms may undergo severe elastic deformations due to their
own inertia. Therefore, mechanism designers need to develop more advanced
mathematical models to predict the response and stability of such elastic

systems.



The kineto-elastovibration analysis’ of high speed mechanisms has been
a challenging problem for mechanism designers over the past two decades.
The research work involved consists of two aspects, namely free and forced
kineto-elastovibration analyses. There has been a tremendous achievement
in the latter field with several improvements in theoretical and numerical
techniques. Lowen and Chassapis [1], and Thompson and Sung [2] presented
two comprehensive reviews of the up-to-date research work in the design
and analysis fields of flexible mechanisms. However, there have hardly been
published papers regarding free kineto-elastovibration analysis of high speed
mechanisms. This thesis attempts to fill this void. Comprehensive stud-
1es were paid to the effects of the extra acceleration terms on the natural
frequencies and mode shapes of flexible mechanisms in this research. Some

fundamental results have been achieved.

In the area of forced kineto-elastovibration analysis of mechanisms, re-
searchers first employed analytical methods to model the problem [3—11].
It soon turns out that such a formulation procedure is always associated
with a set of complicated boundary-value problems. To solve more complex
problems involving mechanisms with many flexible components, researchers
resorted to finite element methods. Both lumped parameter approach and

continuum model have been employed.

!Computation of vibration characteristics of elastic mechanisms in motion, such as
natural frequencies, normal modes, deflections and stresses



Typically by way of finite element method, the linearized equations of
motion governing elastic mechamisms with no structural damping may be

written as
(M{g} + [Cl{g} + [K{q} = {F} (1.1)

where [A]is the conventional symmetric mass matrix, [C] denotes the motion-
induced Coriolis damping matrix? due solely to Coriolis acceleration compo-
nents of elastic deformations, and [ K] represents the total stiffness matrix, in-
cluding the conventional structural stiffness matrix [K,] and motion-induced

stiffness K], i.e.

(K] = [K,] + [Krn] (1.2)

It will be shown that [K,,] is composed of the stiffnesses due to tangen-
tial, normal and pseudo-normal components of elastic accelerations. These
acceleration terms, together with Coriolis acceleration, are defined as extra

acceleration terms in this thesis.

Some pioneering work in applying the finite element techniques to flexi-
ble mechanisms was performed by Winfrey [12,13], and Erdman, Sandor and
Oakberg [14]. Following this trend, Bahgat and Willmert [15] also investi-
gated this problem using the finite element method. While the deformation

in axial direction is approximated by a linear polynomial, the transverse de-

2also known as gyroscopic damping matrix



flection is approximated by quintic polynomials which preserve moment com-
patibility between elements. The same quintic polynomials were also used by
Cleghorn, Fenton and Tabarrok {16,17], and Cleghorn and Chao [18]. In ad-
dition to expressing the periodic forces and displacements in Equations (1.1)
in terms of truncated Fourier series as in [15], Cleghorn et al. also expressed
the global matrices in a similar manner. Dynamic strains for a four-bar
mechanism were calculated. Good agreement with the experimental data

presented in [19] was obtained.

Midha, Erdman and Frohrib {20—22] developed a systematic way to model
elastic mechanisms using finite element techniques and a novel procedure
to solve the resulting equations of motion. Later Turcic {23}, and Turcic
and Midha [24—-26) addressed themselves to the development of a general
finite element model using three dimensional elements. The equations of
motion were presented, including all the extra acceleration terms except the
pseudo-normal stifiness matrix. The modified iterative algorithm previously

developed in [20,22] was utilized to solve the governing equations.

Nath and Ghosh [27,28] considered the motion-induced damping and stiff-
nesses in their formulation. To remove the singularity in the system matrices
due to rigid body degree of freedom, a matrix decomposition method is em-
ployed. Steady state deflection of a slider-crank mechanism was favorably

compared with that of Viscomi and Ayre [4].



Based upon the principle of virtual work, Thompson [29,30] devised a
mathematical model for finite element analysis of high speed elastic machin-
ery. Later the same author, together with Sung {31], developed a nonlinear
finite element method for kineto-elastodynamic analysis of mechanisms. Ge-
ometric nonlinearity and the terms coupling the rigid body kinematics and
elastic deformations are presented in their governing equations. The displace-
ment predictions of an elastic slider-crank mechanism show good correlation
with the measured data. Still using the above mathematical model, Sung
et al. [32] presented a comprehensive experimental study on the kineto-
elastodynamic responses of slider-crank mechanisms and four-bar linkages.
Favorable correlation between the calculated deflections and experimental

results was obtained.

Sunada and Dubowsky [33,34] investigated the vibrations of elastic spa-
tial mechanisms by finite element method. The formulation was applied to
an industrial manipulator in [34] and the calculated transfer functions were
experimentally verified. More recently Bricout, Debus and Micheau {35} de-
veloped a finite element model for the dynamic analysis of spatial, multi-link,
open-loop mechanisms. The equations of motion were solved using a single

step algorithm developed by Zienkiewicz et al. [36] and Wood [37].

Apart from the continuum model in kineto-elastodynamic analysis of

mechanisms, lumped parameter approach was also employed. Examples of



such analysis are found in [38—41].

Despite the numerous investigations on forced kineto-elastovibrations of
mechanisms using both analytical and numerical methods, it is not very clear
whether or when the motion-induced damping and stiffnesses can be ne-
glected. This lack of understanding has resulted in, for example, the neglect
of Coriolis and tangential accelerations. This is not all together surprising
since the inclusion of these terms leads to the presence of non-proportional
damping and asymmetric stiffness matrix, and thus results in complex eigen-
solutions. Examples of such analysis are presented in references [3,25,27],
where these extra acceleration terms, although included in their formulation,
are neglected in the final analysis. Another term that has been routinely
ignored 1s the pseudo-normal acceleration term. This term arises from the
axial foreshortening effects due to the transverse deflection. Neglect of this
term yields incorrect solutions as it leads to the prediction of motion instabil-
ity with increasing speeds, which is contrary to the expectation of increasing
stability at high speeds. Such neglect is evident in some early publications
[15,20,38,39,42]. Still others neglected the effects of all the extra acceleration
terms [12,14,43,44]. The resulting equations of motion are still dynamic ones,

but of the following form,

[M}{g} + [K.){q} = {F} (1.3)

Although Viscomi and Ayre [4], and Thompson and Sung [31] considered

6



all the extra acceleration terms in their equations of motion, they did not
specifically investigate the influence of these terms on the response of the
system. Cleghorn, Fenton and Tabarrok [16] also considered these extra
terms, but no solution algorithm was presented for determining the complex

elgensolutions.

As has been outlined above, majority of the work is focused upon the
solution of system response. Only a few of them presented some results
on the free vibration characteristics of elastic mechanisms. Kalaycioglu and
Bagei [44], and Turcic and Midha [25] studied the natural frequencies of
elastic mechanisms with all the extra acceleration terms ignored. In fact, the
natural frequencies they obtained are merely those of a structure at different
configurations governed by Equations (1.3). Based on this research work,
Han, Zu and Xu [45] formulated the problem with all the extra acceleration
terms considered. They also presented the axial foreshortening effect by
a kinetic energy approach. A thorough investigation into the effects of the
extra acceleration terms on the free vibration characteristics of a crank-rocker

mechanism is presented in references [46,47].

1.2 Research Scope

As pointed earlier, numerous work on forced vibration analysis of flexible

mechanisms has been presented. However, little work has been done in the



free vibration analysis of elastic mechanisms, especially when the extra accel-
eration terms are considered. The purpose of this research is to address the
lack of comprehensive study of how these extra acceleration terms influence
the free vibration characteristics of elastic mechanisms, especially during high
speed operations. Finite element approach will be employed to formulate the

problem.

The balance of this thesis is divided into three chapters with

o Chapter 2 Derivation of the equations of motion by finite element
method via Lagrange’s equation. Systematic representations of the
motion-induced influence, namely the Coriolis damping matrix, tan-

gential, normal and pseudo-normal stiffness matrices, are presented.

o Chapter 3 Free vibration analysis of flexible mechanisms. The influ-
ence of the extra acceleration terms on the dynamic characteristics of

the system is investigated.
e Chapter 4 Conclusions and recommendations.
e Appendix A List of element matrices.
¢ Appendix B User’s manual for program FKEV.

s Appendix C Program for free kineto-elastovibration analysis.



Chapter 2

Formulation

2.1 Introduction

The equations of motion governing flexible mechanisms are derived and pre-
sented in this chapter. Displacement finite element method is employed to
formulate the governing equations. It involves representing the flexible mech-
anism, assumed to be operating at a constant input velocity, by a moving
frame. At every instant of the periodic motion, the rigid body configuration
of the mechanism is treated as an instantaneous structure formed by a series
of Euler-Bernoulli beam elements. Each moving member of the mechanism
is discretized by as many finite elements as desired for accuracy. Both trans-
verse and longitudinal deflections are taken into account in the finite element

analysts.

The absolute motion of each finite element is decomposed into a rigid body

displacement and an elastic deformation measured in a moving coordinate



system fixed on the element in its undeformed state. It is assumed that the
vibrations of the mechanism are caused by the mechanism’s own inertia only,
and that no structural damping exists in the system. Due to the presence
of the driving torque on the input crank, it behaves as a rotating cantilever

beam.

2.2 Derivation of Element Matrices

2.2.1 Kinetic Energy of Element

Figure 2.1 shows a general flexible beam element governed by the Euler-
Bernoulli beam theory in two corresponding configurations, namely the de-
formed and undeformed configurations. Elastic deflections of the element in
transverse and longitudinal directions are superimposed upon the prescribed
rigid body motions. The equations of motion are derived in their most general
form using Lagrange’s equation. Coriolis, tangential, normal and pseudo-
normal acceleration components of elastic deformations are clearly identified

in the formulation.

Three frames of reference are adopted in the analysis, as shown in Fig-
ure 2.1. The first is the inertia or global coordinate system, represented by
OXY with its origin arbitrarily located. The second is another global coor-
dinate system, Ozy with the origin at the same point. The last one, of7 is

the element-oriented coordinate system or the local coordinate system, whose

10



Figure 2.1: A general beam element at the undeformed and deformed con-
figurations depicted in the associated coordinate systems
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origin is at the left hand end of the element as depicted. The difference be-
tween OXY and Ozy lies in the fact that the latter is a rotating system,
which is so selected that the z-axis keeps parallel to the center-line of the

beam element.

The displacement vector expressed in oén coordinate system is given by

_Jul6t) | oy
w={ w0 = a0 2.1)
where u(¢,1) and v(€,¢) represent the longitudinal and transverse deflections
at any point within the element, respectively, and [N] is the shape function
matrix and {g.} is the element nodal quantity vector. These latter two

matrices are given by

Ny, 0 0 Ny O O

7l —
[A]- 0 N2 N3 0 Ns Ne

(2.2)

and

{qe} =

“in which,
Nl = 1- C
Ny = 3(1-¢P-2(1-¢)°

12



N5 - 3(2—2{3

No = —10°(1-0)
where ( = ¢/I and [ is the length of the element.

It should be pointed out that the selection of the shape functions is not
unique and can be based on a number of different theories and approximations
depending upon the characteristics of the particular problem to be analysed.
However, to obtain monotonic convergence of the finite element solution, as
the number of elements in the analysis increases, the shape functions must

satisfy the following requirements:

1. The functions must be continuous within the element and across the
element boundaries when the element is joined to other elements. This
1s necessary to ensure that the displacement functions will also be con-

tinuous.

2. The assumed functions must be able to represent constant (including
zero) values of relevant strains and stresses. A comsequence of this
requirement ensures zero strains within the element for rigid body dis-

placement mode.

3. The shape functions must satisfy the compatibility conditions between

13



elements.

Once the shape functions have been selected, the strains and stresses

within the element can be determined as functions of the nodal quantity

vector {qe}.

Let {R} and {Ro} be the position vectors of deformed and undeformed
positions of point P, measured in OXY coordinate system. Then, {&#} can

be expressed as
{R} = {Ro} + [A]"{u} (2.4)

where [A4;] is the transformation matrix from global coordinate to local co-

ordinate, given by

—sinf  cosf

Al { cosf sin9}
Al =

Substituting Equations (2.1) into Equations (2.4) yields the following,
{R} = {Ro} + [A)"[N){gc} (2.5)

The velocity at point P of the element is given by differentiating Equa-

tions (2.5) with respect to time, i.e.
{R} = {Ro} + [A}"[NHae} + [ATT[N){g.} (2.6)

Thus, the kinetic energy of the element can be obtained from

14



7. = 5 [ pALRYT{RYde (27)

where p is the mass density, A the cross sectional area of the element, and ()

denotes the time derivative. Substituting Equations {2.6) into Equation (2.7)

vields,

T = 5 [ oA (R s} + 2(Ro) AN e
2B AN + (o INTLANAT N o
e N LAV )

+{g T INTTLAJIASTINT{ g} dé (2.8)

Noting that
[l =[]
LA{A)T = 6211
and
=43 7 |
Equation (2.8) becomes
T = @l Im{ad + o fal Imal{a + 6a il e)
+3 [ AT (R} + [ AL} TLATTIN a.}g
+ [ pAURYTIATIN g (29)

15



where

m.] = [ pAINTFINIde (2.10)

[0 =1 ]
[mel = fo pA[NfT[l Ol[def (2.11)

It is noticed that [m.] is the conventional symmetric mass matrix, and
[m] is a skew-symmetric secondary mass matrix. Explicit expressions for
both matrices are given in Appendix A. Further analysis shows that the
inclusion of [m] will eventually result in the generation of the matrices as-
sociated with the Coriolis and tangential accelerations, both of which are

considered here.

In order to obtain the element equations of motion by Lagrange’s equa-

tion, the following manipulations are helpful.

a 5‘?2’:} = [me{de} + Blm{a} + BlmIl{.)

- foi pAINTT ([Ad{Ro} +AJ{Re}) &6 (2.12)

T, ., Cr ! Tt
5ray = Olmel{ack + flmii{a) + [ pAINTIAN R} (213)

To evaluate the integrations in Equations (2.12) and (2.13), the rigid

body velocity and acceleration are approximated by

{Ro} = [AdTIN}{po} (2.14)
{Ro} = (A [N){Fo} (2.15)

16



where the vector {po} is composed of the nodal coordinate components of
rigid body configuration of the element, given by

AT
Yo
g
T20

Y20
g )

{po} =<

Substituting Equations (2.14) and {2.15) into Equations (2.12) and (2.13)

vields,
Ty = Imaa) - dmitad + fmila)
+8{m;) {po} + [me]{Fo} (2.16)
aﬁi’:} = 02[m){g.} + 6m)T{g.} + 6mz]" (5o} (2.17)

2.2.2 Strain Energy of Element

The strain energy of the element due to transverse and longitudinal deflec-

tions is given by
V. = —1 fl {EA[u'(§ t)]2 + EIv"(€ t)]z} d§ (2.18)
e 2 0 3 H] -

where E is the modulus of elasticity, / the area moment of inertia, ( ) =
d—d(g) and ()’ = %51. The axial and transverse displacements are given

respectively by

17



W) = wON(E) + wENE) (219)
v(E,t) = wn(t)Na(€) 4+ () Ns(é)
sl N5(€) + () V(E) (2.20)

Substituting Equations (2.19) and (2.20) into Equation (2.18) gives

Vo = 3l kNa) (2.21)

where [k] is the structural stiffness matrix of the element, given by

. L EA 0 -
= [ | B [ viae (222
in which,
[ATX] B AT{ On OH N‘; Ou Ou
! 0 N, N, 0 N N,

The explicit expression for [k?] is given in Appendix A.

18



2.2.3 Potential Energy due to Axial Force

The potential energy due to axial force, F; in an element can be expressed

as

, 1 v\’
W, = 5/0 F (6‘_6) dé (2.23)

The axial force, F; can be approximately determined via a static analysis

of the element. It can be shown [16] that,

1 .
Fe = F —pAo(l—&)+ §p/—192(12 - £%)

_ fE ' Aiide (2.24)

where F, is the external axial force applied at the right hand end of the
element, and &;o the absolute rigid body acceleration component in axial
direction at the left hand end of the element. If there are no externally
applied forces in the system, the right hand end force of the element is simply
part of the actions from adjacent element. For small deformations as assumed
in this analysis, F; is computed based upon the original undeformed rigid

body configuration.

It is observed that the last term in Equation (2.24) will result in nonlinear
expression for W, when Equations (2.23) and (2.24) are combined. The
assumption of small deformations is invoked to justify the neglect of the

nonlinear terms in W, expression. Therefore, combining Equations (2.23)

19



and (2.24) and neglecting the nonlinear term yield,

W= e} k) (2:25)

where

k) = [rvr |0 | miae

= (KDY (R (RS (2.26)

Expressions for {k/?], [k?] and [kf?] are given in Appendix A.

2.2.4 Element Equations of Motion

The Lagrange’s equation for an unconstraint element can be written as

d oL aL
———— — ={0 2.27
490) e =~ 220
where the Lagrangian L is given by
L=V, -T, +W, (2.28)

Substituting Equation (2.28), together with Equations (2.16), (2.17) , (2.21)

and (2.25), into Equations (2.27) yields the element equations of motion,

[mei{ge} + [cel{ge} + [kel{g.} = {fe} (2.29)

20



where

[ce] = 28[m]] (2.30)
(ko) = [k2)+ (kL] + [R]] + [K]] (2.31)
in which
k"] = —6%m,)
k] = é{m;l

{fel = —[mel{po}

and [kZ] is given by Equation (2.22), [k/] by Equation (2.26).

A detailed discussion of the damping matrix and the various stiffness ma-
trices is now in order, to appreciate their respective contributions. Firstly, it
is observed that the Coriolis damping matrix, [c.] is solely motion-induced,
caused by the Coriolis components of elastic accelerations. Unfortunately,

this is a non-proportional damping matrix and results in complex eigensolu-

tions.

Secondly, the element stiffness matrix defined by Equation (2.31) com-
prises four component matrices. The structural stiffness matrix, [k?] is the
usual stiffness matrix, composed of both bending and axial stiffnesses, and
requires no further introduction. The other three component matrices are

known as motion-induced stiffnesses as they are related to motion. The first

21



of these, [kf] is the tangential stiffness. The skew-symmetry of this matrix
unfortunately destroys the symmetry of the overall stiffness matrix. Its pres-
ence is due only to the tangential components of elastic accelerations. This
term, which is routinely ignored in many previous work, is often a necessary
term as the tangential accelerations can have non-zero or even significant val-
ues in some parts during the motion of a mechanism even if the mechanism

operates at a constant angular velocity, especially at high speed motions.

The remaining two component stiffness matrices in Equation (2.31) are
symmetric and act in the axial direction. The first term, [k7] is due only to
the normal components of elastic accelerations. At high speeds, its effects
are quite significant, as will be shown in the next chapter, and should not
be neglected. The last term, [k!] is given the name pseudo-normal stiffness
matrix since the components of it are related to the normal acceleration
components of elastic deformations of the member. Again, this term has

been neglected in several early works on rotating flexible mechanisms and

this results in the incorrect conclusion of instability for this type of motion.

It was shown in reference [45] that this pseudo-normal stiffness matrix is
identical to that obtained from the kinetic energy representation of the axial

foreshortening effect due to transverse deflection.

22



2.3 System Governing Equations

Once the element equations of motion are obtained, the system governing
equations can be derived with the help of the global transformation matrix

[R], given by

[ cosf# siné 0 0 0 0]
—sinf cosf 0 0 ] 0
B-| 0 0 1 0 00 (2.3

0 0 0 cosff sinf 0
0 0 0 —sinf cos@ 0
0 0 0 0 0 1]

The element nodal quantities expressed in the global and local coordinate

systems are related by the following equations,

{e} = [Ri{¢} , (2.33)
1%} = [RI{4} (2.34)
{¢} = [R{q} (2.35)

where {¢;} is the nodal quantity vector expressed in global coordinate, given

by

{q;} = 4 U,
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Substituting Equations (2.33)—(2.35) into Equations (2.29) and pre-multiplying

the resulting equations by [R]? yield,

mi{ac} + [ g} + ki{a} = {/} (2.36)
where
[m] = (R [m.][R]
[e} = [R] [c][R]
[k] = [R]" (k][ R]
{f} = [RI"{f}

Thus the governing equations of the system can be obtained by applying

superposition theory.

(Mg} + [CH{g} + [K g} = {F} (2.37)
where
(M} = ;{m}i

€)= $ldh
(K= SlH

(F} = il{f},-
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and {g} is the nth order nodal quantity vector of the entire system, expressed
in the inertia coordinate system, m represents the number of elements in the

system. Solution of these equations of motion is discussed in the next chapter.
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Chapter 3

Free Vibration Analysis

3.1 Introduction

Despite the numerous investigations on the kineto-elastodynamics of mecha-
nisms using both analytical and numerical methods, there have hardly been
published results on free vibration analysis of flexible mechanisms, especially
when the extra acceleration terms of the Coriolis, tangential, normal and
pseudo-normal accelerations, are taken into consideration. The pui‘pose of
this chapter is to study and comprehend how these extra acceleration terms
influence the natural frequencies and mode shapes of mechanisms, especially
during high speed motions. Both natural frequencies and mode shapes are
presented with varying degree of simplifications. The following section deals

with the solution technique of the free vibration problem.
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3.2 Solution Scheme

The equations of motion governing the vibration problem are given by Equa-

tions (2.37) as follows,

[M}{g} + [CHq} + [KN{q} = {F} (3.1)

where [M], [C], [K], {¢} and {F} are defined in the previous chapter.

The governing equations for free vibration analysis are obtained when the

right hand side of Equation (3.1) is set to zero, i.e.

Mg} + [CH{} + iK]{q} = {0} (3.2)

Noticed that the damping matrix [C] in Equations (3.2) is non-proportional
and thus solution of these equations gives rise to complex eigenvalues and
eigenvectors. Unlike proportionally damped linear systems, where the equa-
tions of motion for the system could be uncoupled by means of a normal
coordinate transformation and then solved with no great difficulty, a sys-
tem with non-proportional damping could not be solved by this conventional

modal analysis method.

The solution scheme described here involves converting the n equations,
defined by Equations (3.2), into a 2n equation system with real coefficient

matrices. This is done as follows [48],
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(0] [M} | ] {d} —[M] (o] | ) {ar | _ [ {0}
BRI R N@-{a) oo
These equations are often referred to as the “reduced” form of Equations (3.2),

and may be written as

[AH#} + [Bl{y} = {0} (3-4)

where
= o
m=
and

o-{13)

Observe that both [A] and [B] are now real and of order 2n. However,
symmetry in these two matrices is destroyed due to the presence of the skew-
symmetric Coriolis damping matrix and the non-symmetric stiffness matrix
(K. Solution of Equations (3.4) will be found in which the displacements

and velocities have the form e*!, namely

{v} = v{y} (3.5)

where v is the complex eigenvalues of Equations (3.4).
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Equations (3.4) is then written as follows in terms of the unknown quan-

tity v and unknown eigenvector {y},

v[A{y} = ~[BN{y}

Thus the governing equations for free vibration analysis are

[L(A)K{y} = {0}

where

and []] is the identity matrix.

(3.6)

Evaluation of the determinant in Equations (3.7) leads to an equation

of order 2n in A. Solution of this equation, which is achieved using the

@ Z algorithm developed by Moler and Stewart [49], results in a set of 2n

eigenvalues, namely A;, A, ..., Asn. For a stable system, each of these roots

will be either real and negative (for a critically damped or overdamped mode)

or complex with a negative real part (for an underdamped mode) in conjugate

pairs. This negative real part, i can be interpreted as the natural frequencies

of the free vibration and is obtained from

1 .
ykzxzak+zﬁk
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Corresponding to each eigenvalue, A, there exists an eigenvector, {y*)} with
2n components. For distinct eigenvalues, the corresponding eigenvector is

computed from the columns of the 2n by 2n adjoint matrix [L{A)]. That is,

{y¥} = e {J5(M)} = {7} (3.9)

where {J/} denotes any column of the adjoint matrix [J;;(Ax)] and ¢ is the

proportionality constant.

A finite element program has been developed based on this proposed
formulation and solution scheme. The @ Z algorithm which is used for solving

the complex eigenproblem is available in the IMSL! package.

3.3 Numerical Examples

The solution scheme outlined previously is first checked by comparing the
computed solution with published results. Fairly good agreement was ob-

tained.

The free vibration problem of Turcic and Midha [25] for a four-bar crank
rocker mechanism is used to verify the solution scheme. Having assessed the
accuracy of the proposed solution scheme, the effects of the extra acceleration

terms on the eigenvalues and eigenvectors are studied using a four-bar linkage,

nternational Mathematics and Statistics Library
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where the motion-induced damping and stiffnesses are taken into account.

Since the focus of this analysis is to ascertain the effects of the extra ac-
celeration terms on the free kineto-elastovibrations of the mechanism, several
models with different degree of simplifications are analysed. These simplifi-

cations are summarized in Table 3.1.

To facilitate numerical simulations, the following non-dimensional param-

eters are introduced, namely
s non-dimensional natural frequency parameter, A;
e non-dimensional rotational speed parameter, o

® percentage error in natural frequency, €

These are defined respectively as:

wf
No= 2

Wy

Q
o = —

0

Wy

J 1

Wi — W
£ = —1—1;X100%

w.

where w! (:=1,2,3,..; 7=0,1,...,5) is the 7th mode natural frequency for
the jth case under consideration and  is the input angular velocity. The

latter quantity is assumed to be constant.
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Table 3.1: Simplification Indices

Motion Index | Motion Type
case ( 3=0 non-rotating mechanism, namely a structure
case 1 J=1 full solution, that is all terms included
case 2 1=2 Coriolis damping matrix neglected
case 3 =3 tangential stiffness matrix neglected
case 4 =4 normal stiffness matrix neglected
case 5 =5 pseudo-normal stiffness matrix neglected

Further details of the verification analysis and the results of subsequent

investigation are presented in the following sections.

3.3.1 Verification Example

A four-bar crank rocker mechanism with lumped masses at the crank-coupler
and coupler-follower junctions is used as an example for verifying the accu-
racy of the proposed formulation and solution scheme. A sketch of the mech-
anism is depicted 1n Figure 3.1 and its characteristics are listed in Table 3.2.
This problem was suggested and solved by Turcic and Midha [25] for its free
vibration solutions. In a manner similar to their investigation, the results
here are computed for three finite element models of the mechanism. The
first model is based on a three element discretization scheme, the second us-
ing a six element scheme, and the third, a nine element scheme. In all of these

models, each moving member is discretized with one, two and three elements
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O, .
777 ;L 0O,

Figure 3.1: Finite element model 3 for the crank rocker mechanism|25]
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Table 3.2: Characteristics of a Four-Bar Crank Rocker Mechanism [25]

Length Area Moment of Inertia
Crank | 10.80 cm 1.07 cm? 1.62 x 1072 cm*
(4.25n) | (0.17 in?) (3.88 x 10~ in?)
Coupler | 27.94 cm 0.41 cm? 8.67 x 10™* cm*
(11.00 in) | (0.063 in?) (2.08 x 10~5 in)
Follower | 27.05 cm 0.41 cm? 8.67 x 10~* cm*
(10.65 in) (0.063 in?) (2.08 x 107% in?)
Distance between ground pivots, 0,0, 25.40 cm
(10.00 in)
Lumped mass of the bearing assembly 4.52 x 1072 kg
at the crank-coupler junction, m, (2.53 x 107* slug)
Lumped mass of the bearing assembly 3.75 x 107% kg
at the coupler-follower junction, m, (2.53 x 107" slug)
Modulus of elasticity, E 7.1 x 107 kPa
(1.03 x 107 psi)
Mass density, p 2.71 x 10® kg/m?
(2.54 x 107 slug/in®)
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of equal lengths, respectively. All extra acceleration terms are neglected in
this verification study and the mechanism is considered to be a static linkage
or a structure, so as to be consistent with the results of [25]. Thus the gov-
erning equations for the free vibration analysis, as given by Equations (3.2)

H

are reduced to:
[M]{g} + [K]{q} = {0} (3.10)

where {K| comprises only the structural stiffness matrix, namely both axial
and bending stiffnesses. The variation of natural frequency with the crank
angle for the first three modes are plotted in Figures 3.2—3.4. Exact compar-
1son with the results of Turcic and Midha [23] is difficult since their solutions
do not start precisely at y—axis. Thus their numerical values at 0° and 360°
do not quite agree as they should. Nevertheless, the results obtained here

are almost identical to those calculated by them.

3.3.2 A Rotating Four Bar Mechanism

Having evaluated the accuracy of the proposed formulation and the solu-
tion scheme, an investigation into the effects of the extra acceleration terms
on the eigenvalues and eigenvectors with the mechanism operating at high
speeds is now presented. A sketch of this mechanism, taken from Bahgat and
Willmert [15], is depicted in Figure 3.5. Its geometric and material properties

are listed in Table 3.3.
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Figure 3.5: A general crank rocker mechanism {15]
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Table 3.3: Characteristics of a Four-Bar Mechanism [15]

Length Area Moment of Inertia
Crank | 12.70 cm 1.61 cm? 8.66 x 107! cm*
(5.00 in) (0.25 in?) (2.08 x 1072 in*)
Coupler | 27.94 cm 1.61 cm? 8.66 x 107! cm*
(11.00 in) | (0.25 in2) (2.08 x 102 in?)
Follower | 26.67 cm 1.61 cm? 8.66 x 107! cm?*
(10.50 in) (0.25 in?) (2.08 x 1072 in*)
Distance between ground pivots, 0,0, 25.40 cm
(10.00 in)
Modulus of elasticity, £ 2.07 x 10® kPa
(3.00 x 107 psi)
Mass density, p 7.76 x 10® kg/m?
{7.25 x 107* slug/in®)

Several finite element models with different discretization schemes have
been investigated. Computational experience shows that the five element
model, where the input crank is treated as one element and the coupler
and follower are discretized into two elements each, gives reasonably accu-
rate results. Therefore, only the results associated with this model will be

presented.

Due to the change of geometry of the mechanism during motion, its nat-
ural frequencies vary as a function of the input parameters during a cycle of
its motion. The dependence of natural frequencies on the gross motion (rigid

body motion) defined by crank angle, 6 is shown in Figures 3.6—3.9 for the
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first four modes.

Only case 1 results are considered as the purpose here is to identify a
region suitable for a more detailed analysis involving the effects of the extra
acceleration terms. From these plots, it appears that the position around
¢ = 10° is one such desirable region. Observe also that each order of natural
frequency experiences its minimum value at different locations as the mech-
anism moves through a cycle of its motion. The critical operating speed of
a mechanism corresponding to its lowest natural frequency and the position
at which this minimum natural frequency occurs, determines the critical ge-
ometry of the mechanism. As mentioned in [44], this critical geometry of a
mechanism provides a very useful and economical tool for its elasto-dynamic

design.

Figure 3.10—3.13 shows the variation of natural frequency parameters
against input rotational speeds for cases 0—5 at the position, § = 10° for the
first four modes. According to the definition of natural frequency parameter,
the response curves for case 0 for all modes are horizontal lines. This is
expected as the mechanism is now a stationary structure. The complete
solution which includes solving for the complex eigenquantities is indicated
by case 1. Solutions with varying degree of simplifications are denoted by
cases 2 — 5. Observe that at low operating speeds, for instance, a < 0.1, the
errors introduced by these approximations are very small. However, for high

speed mechanisms, these errors can be significant, with the exception of case
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2 and case 3 where the Coriolis damping matrix and the tangential stiffness
matrix are neglected. In both situations, the simplified solutions match quite

closely to the complete solution, namely case 1.

The error due to the neglect of the normal stiffness matrix increases with
increasing speeds. In particular, the error in the fundamental mode frequency
prediction at o = 0.56 is approximately 8.5%. This set of graphs also reveals
that the largest source of error is introduced by the neglect of the pseudo-
normal stiffness matrix. Obviously, from the fundamental mode frequency
response curve, incorrect results would be obtained if this term is dropped.
The results should indicate increasing stability with increasing speeds, as the
mechanism becomes stiffer and stiffer due to the increasing large axial forces.
But when this term is neglected as was done by some researchers mentioned
earlier, the results show increasing instability with increasing speeds, an error

that was also noticed by Cleghorn et al. [16].

It will be interest to examine the distribution of the errors introduced by
the neglect of the various motion-induced terms, that is, cases 2 — 5, over
an entire cycle of the motion for different operating speeds. This is depicted
in the various plots given in Figures 3.14—3.17 for the first four modes,
corresponding to {2 = 500 rad/sec, and Figures 3.18—3.21  corresponding
to £ = 1000 rad/sec. The y—axis shows a comparison of the percentage errors

in natural frequencies computed by the various degree of simplifications with
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the predictions from the complete solution. In this way, errors are measured
by their departure from & —axis. As can be seen from these figures, the neglect
of the Coriolis damping matrix and tangential stiffness matrix (cases 2 and
3) over a cycle causes no perceptible errors. However, where there are errors,
the errors increase with the increase of speeds as expected, with the largest
errors occuring at the begining and ending parts of a cycle. It is apparent
that the normal and pseudo-normal stiffness matrices have more pronounced
effect on the natural frequency response than any other terms in the equations
of motion. Error as high as 38% is experienced at Q = 1000 rad/sec when
the pseudo-normal stiffness term is neglected. It is also observed that the
influence of normal stiffness matrix is usually less significant than the pseudo-

normal stiffness term.

Finally, the mode shapes for the first four modes are presented in Fig-
ures 3.22—3.25, corresponding to 6§ = 10° and Q = 1000 rad/sec. It is
noticed that the effects of the extra acceleration terms on the mode shapes
are generally small. The only exception to this is the pseudo-normal stiffness
term, which has a more significant effect on the mode shapes. Not sur-
prisingly, when the psendo-normal stiffness term is neglected, the resulting
mode shapes are approximately those for a non-rotating mechanism. This
1s expected in view of the similar trend obtained in the natural frequency

results.
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Chapter 4

Conclusions and
Recommendations

4.1 Conclusions

Presented in this thesis is a systematic formulation dealing with the free
kineto-elastovibration analysis of high speed flexible mechanism systems.
The derivation of the governing equations of motion is accomplished by us-
ing the displacement finite element technique, in which the continuously dis-
tributed mass system is modeled by a discrete system with finite number
degrees of freedom. Euler-Bernoulli beam type elements are employed in
this analysis. Both transverse and longitudinal deflections of the elements

are considered in the finite element analysis.

To eliminate the singularity in the global matrices, the mechanism is
assumed to behave as an instantaneous structure at every instant of its kine-

matic motion. It is further assumed that the absolute motion of each elas-
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tic member is obtained by superimposing the elastic deformations upon the

known rigid body motions.

Special attention in formulating the linearized equations of motion was
paid to the extra acceleration terms, namely the Coriolis, tangential, normal
and pseudo-normal accelerations of elastic deformations. As was illustrated,
the inclusion of these terms in the equations of motion leads to complex eigen-
problem. A special algorithm was employed to solve the resulting problem.
Basically, the solution procedure consists of transforming the n equations of
motion into a 2n equation system with real coefficient matrices. Then the re-
duced equations are solved by the QZ algorithm. A finite element program
was developed in accordance with the foregoing formulation and solution
scheme. With some minor modifications, the program can be extended to

the analysis of multi-loop planar mechanisms.

A four-bar linkage was used to investigate the effects of extra acceler-
ation terms on the dynamic characteristics of flexible mechanism systems.
The numerical results show that, among these extra acceleration terms, the
normal and pseudo-normal stiffness terms have the most significant influence
on the natural frequencies. Large errors are experienced when either term is
neglected. As expected, it is found that the normal acceleration term has less
significant effect on the natural frequencies than the pseudo-normal accelera-

tions. Also, incorrect stability prediction will result when the pseudo-normal
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acceleration term is neglected. On the other hand, the effects of the Coriolis

and tangential acceleration terms are negligible if neglected in the analysis.

The influence of the extra acceleration terms on the mode shapes is found
to be small. The only exception to this is when the pseudo-normal accelera-
tion term 1s neglected, which in this case yields mode shapes much close to

those of a non-rotating mechanism.

In conclusion, the normal and pseudo-normal stiffnesses should be in-
cluded in the equations of motion, to accurately model the free vibration

problem of high speed flexible mechanisms.

4.2 Recommendations

To comprehend the influence of the extra acceleration terms on the dynamics

of high speed flexible mechanisms more completely, it is recommended that

o forced kineto-elastovibration analysis, including the determination of
the elastic deflections, stresses and strains at any point of a moving

member, be carried out considering the extra acceleration terms.

o higher order polynomials be employed to improve the accuracy of

numerncal predictions.

® Timoshenko beam theory be used when modeling short stubby beams.
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Appendix A

List of Element Matrices

The conventional mass matrix and the secondary mass matrix are given by

Equations (2.10) and (2.11), respectively. Both matrices are listed below.

[ 140 0 0 70 0 0 ]
¢ 156 221 O 54 13l
m 0 221 4P 0 131 3172

m =255 70 o 0 140 0 0
0 54 131 0 156 -—22
0 —131 —312 0 —290 4P
0 —21 —31 0 -9 927
200 0 9 0 0
mi = ™ 3 0 0 2 0 0
760 0 -9 -2 0 —921 3

9 0 0 21 0 O
-2 0 0 -3 0 0

The explicit expression for the structural stiffness matrix, given by Equa-
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tion (2.22), is as follows

 EAJL 0 0 ~EAJI 0 0
0 12EI/I®  GEI/I 0 —12EI/I® GEI/P
k] = 0 6EI/I*  4EI/I 0  —GEI/R 2EIJI
e —EAJI 0 0 EAJl 0 0
0  —12EI/BB —6EI/2 0 12EI/I*® —BEI/I?
0 6EI/I>  2EI/I 0 —6EI/I’ AEIJI

The three component matrices of the pseudo-normal stiffness matrix, de-

fined by Equation (2.26), are given below,

0 0 0 0 0 0
0 36 3 0 -3 31
] F. |0 3 42 0 -3 -p
€ 300 0 0 0 0 0 0
0 -36 -3 0 36 -3
|0 3 —1* 0 -3 4 |
[0 0 0 0 0 0
0 —36 0 0 36 -6
k7o PAafo 0 60 0 P
€ 60 0 0 0 0 0 0
0 36 0 0 =36 6l
0 -6 B o 6 -2 ]
[0 ] 0 0 0 0 ]
) 0 180 66 0 —180 271
ko= A 106l 202 0 61 4P
1= "m0 1o o 0 0 0 0
0 —180 -6l 0 180 -—27i
|0 271 —412 O 271 1082 ]

where the notations are the same as those defined in chapter 2.
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Appendix B

User’s Manual for Program

FKEV

Input parameters:

NGN
NE
NEI(3)
N12(10,2)
NBC(2)
NDOF(2,3)
A(3)

E(3)

AI(3)
RHO(3)
RL(4)

NW

number of geometric nodes

number of elements

number of elements for each moving member
the end node numbers of the NE elements
the number of the constrained nodes
information for boundary conditions

cross sectional area of the moving links
modulus of elasticity of the moving links
area moment of inertia of the moving links
mass density of the moving links

length of the four links

number of different angular velocities
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S

interested in the analysis

WN(10) input angular velocities

DDTH(1) input angular acceleration

DELT angle increment

INDEX motion index, referring to Table 3.3
MKC print control variable

Output parameters:

ANGLE crank angle

P1(73,10) fundamental mode frequency
P2(73,10) second mode frequency
P3(73,10) third mode frequency
P4(73,10) forth mode frequency

Function of the subroutines:

subroutine MKQ forming the system matrices and solving for
the natural frequencies and corresponding
mode shapes

subroutine MKQE forming the element matrices

subroutine RBK rigid body kinematics of the mechanism
subroutine REF determining the right hand end forces of

the NE elements.
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Appendix C

Program for Free
Kineto-Elastovibration
Analysis

PROGRAM FKEV

CCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCeeeee

C c
C This is to do Free Kineto-ElastoVibration analysis of C
C a four-bar crank rocker mechhanism C
C C

CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee

IMPLICIT REAL*8(A-H,D0-Z)

COMMON /MKQ1/NGN,NE,NBC(2),NEI(3),N12(10,2),NDOF(2,3)

COMMON /MKQ2/RL(4),RH0A(3),TH(3),DTH(3),DDTH(3),EA(3),EI(3),

1 ALX(20),FR(20),TR,DELT

COMMON /SWITCH/INDEX,MKC

COMMON /PLDT/P1(73,10),P2(73,10),P3(73,10),P4(73,10),P5(73,10)
DIMENSION REO(3),4(3),E(3),AI(3),DDU0(50),WN(10)

DIMENSION AA(60,60),BB(60,60) ,WK(7200),RZ(7200) ,BET(60),RALF(120)
COMPLEX Z(60,60},ALF(60)

TR=DATAN(1.D0)/45.

READ(5,*) NGN,NE,(NEI(I),I=1,3),INDEX,MKC

DO 10 I=1,NE
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10 READ(S,%) N12(I,1),N12(I,2)
DO 20 I=1,2

20 READ(5,*) NBC(I), (NDOF(I,J),J=1,3)
READ(5,*) (RL(I),I=1,4)
D0 30 I=1,3
READ(5,*) RHO(I),A(I),E(I),AI(TI)
REOA(I)=RHO(I)*A(I)
EA(I)=E(I)*A(L)

30 EI(I)=E(I)*AI(I)
READ(5,*) DDTH(1),DELT
READ(5,*) NW, (WN(I),I=1,NW)
ND=IDINT(360.0/DELT+1.5)
WRITE(6,200) NGN,NE, (NEI(I),I=1,3)
NGN=3*NGN
NN=NGN+2
NNO=0
D0 3 I=1,2
Do 3 J=1,3

3 NNO=NNO+NDOF (I,J)
NNNO=NN-NNO
N=2*NKNO
N1=2«*}
N2=2%N
WRITE(6,225)
DO 40 I=1,NE

40 WRITE(6,230) I,N12(I,1),N12(I,2)
WRITE(6,245)
DO 50 I=1,2

50 WRITE(6,230) NBC(I), (NDOF(I,J),J=1,3)
WRITE(6,260) (RL(I),I=1,4)
DO 100 IW=1,N¥W
DTH{1)=WI (IH)
WRITE(6,270) DTH(1),DDTH{(1),DELT
DD 90 ITH=1,ND
TH(1)=(ITH-1)*DELT*TR
CALL RBK(DDUO)
CALL REF
CALL MKQ(W,N1,N2,NN,ITH,DDUO,AA,BB,WK,BET,RZ,RALF,ALF,Z,IW)

90 CONTINUE
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100 CONTINUE
DO 110 ITH=1,ND
ANGLE=(ITH-1)*DELT
WRITE(1,400) ANGLE,(P1(ITH,IW),IW=1,NW)
WRITE(2,400) ANGLE, (P2(ITEH,IW),IW=1,NW)
WRITE(3,400) ANGLE, (P3(ITH,IW),IW=1,NW)
110 WRITE(4,400) ANGLE, (P4(ITH,IW),IW=1,NW)
200 FORMAT(/1X,’INPUT DATA’//
i 10X,’NGN=’,12,5X, ’NE=’,12,5X, N1=",12,5X, N2=",1I2,5X,
2 °Na3=’,12/)
225 FORMAT(10X,’NUMBER OF ELEMENTS AND CORRESPONDING END NODES®/)
230 FORMAT(10X,418)
245 FORMAT(/10X,’THE BOUNDARY CONDITIONS’/)
260 FORMAT(/10X,’THE LEHGTHS OF THE FOUR BARS:’//10X,4F8.2)
270 FORMAT(/10X,’THE VELOCITY AND ACCELERATION OF THE INPUT LINK’//
1 10X,°W1=’,F7.2,5%,’E1=’ ,F7.2,5X, "DELT=",F7.2//)
400 FORMAT(F5.0,6F14.5)
STOP
END

SUBROUTINE MKQ(N,N1,N2,EN,ITH,DDUO,AA,BB,WK,B,RZ,RA,4A,2Z,IH)

IMPLICIT REAL*8(A~H,0-Z)
COMMON /MKQi/NGK,NE,NBC(2),NEI(3),N12(10,2),NDOF(2,3)
COMMON /MKQ2/RL(4),RHDA(B),TH(S),DTH(B),DDTH(B),EA(S),EI(B),
1 ALX(20),FR(20),TR,DELT
COMMON /SWITCH/INDEX,MKC
COMMON /PLOT/P1(73,10),P2(73,10),P3(73,10),P4(73,10),P5(73,10)
DIMENSION NOLD(&),NROW(6),EM(6,6) ,EC(8,6),EK(6,6),A0(50),
1 DDUO(50),8H(50,50),5C(50,50),5K(50,50) ,FREQ(5)
DIMENSION AA(N,N),BB(N,N),WK(N1),RZ(N1),B(N),RA(ND)
COMPLEX A(N),Z(N,N),ZO
DPI=3860.%TR
NNNO=N/2
DD 1 I=1,NN
DO 1 J=1,NN
SM(I,J)=0.
SK(I,J)=0.
1 8C(1,3)=0.
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10

11

13

14

15

NOLD(1)=3*NBC(1)-2
NOLD(2)=NOLD{1)+1
HOLD(3)=NOLD(2}+1
NOLD(4)=3%NBC(2)}-2
NOLD(5)=NOLD{4}+1
HOLD(6)=NOLD(5)+1

DO 10 J=1,3

IF(NDOF(1,J) .EQ.0) NOLD(J)=0
IF(NDOF(2,3).EQ.0) NOLD(3+J)=0
CONTINUE

D0 5 IK=1,3,2

IF(IK-2) 11,11,13

NEC=1

NE1=NEI{1)

NESUM=0

GOTD 14

NEO=NEI(1)+NEI(2)+1

NE1=NE

NESUM=REO-1

D0 5 IE=NEO,NE1
NESUM=NESUM+1
N13=N12(IE,1)*3
N23=N12(IE,2)*3

CALL MKQE{(EM,EK,EC,IK,NESUM)
PO b5 I=1,3

Db b J=1,3

I1=N13+4I-3

12=K23+I-3

J1=N13+J-3

J2=N23+J-3
SM(I1,J1)=8SM(I1,J1)+EM(I,])
SM(I1,J2)=SH(I1,J2)+EM(I,J+3)
SM(I2,J1)=SM(I2,J1)+EM(I+3,J)
SM(I2,J2)=SM(I2,J2)+EK(I+3,J+3)
SK(I1,J1)=SK(I1,J1)+EK(I,J)
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25

SK(I1,J2)=SK(I1,J2)+EK(I,J+3)
SK(I2,J1)=SK(I2,J1)+EK(I+3,J)
SK(I2,J2)=SK(I12,J2)+EK(I+3,J+3)
SC({I1,J1)=SC(Ii,J1)+EC(I,J)
SC(11,J2)=SC(I1,J2)}+EC(I,J+3)
SC(I2,J1)=5C(I2,J1)+EC(I+3,J)
SC(I12,J2)=SC(I2,J2)+EC(I+3,J+3)
CONTINUE

KK=0

NESUM=NEI (1)

DO 40 IE=NEI(1)+1,NEI(1)+NEI(2)
KK=KK+1

NESUM=NESUM+1

N13=N12(IE,1)*3
N23=N12(IE,2)*3

NROW(1)=H13-2

NROW(2)=N13-1

NROW(3)=N13

IF(KK.EQ.1) NROW(3)=NGN+i
NROW(4)=N23-2

NROW(5)=N23-1

BROW(6)=N23

IF(KK.EQ.NEI(2)) NROW(6)=NN
CALL MKQE(EM,EK,EC,2, NESUM)

DO 20 I=1,2

DO 20 J=1,2

I1=N13+I-3

12=N23+I-3

J1=N13+J-3

J2=N23+J-3
SM{I1,J1)=SM(I1,J1)+EM(I,J)
SM{I1,J2)=SM(I1,J2)+EM(I,J+3)
SM(I2,J1)=SM(I2,J1)+EM(I+3,])
SM(I2,J2)=SM(12,J2)+EM(I+3,J+3)
SK(I1,J1)=SK(I1,J1)+EK(I,J)
SK(11,J2)=SK(I1,J2)+EK(T,J+3)
SK(12,J1)=SK(I2,J1)+EK(I+3,J)
SK(I2,J2)=SK(I2,J2}+EK(I+3,J+3)
SC(I1,J1)=8C(I1,J1)+EC(I,J)
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20

30

35
40

45

50

60

SC(I1,J2)=SC(I1,J2)+EC(I,J+3)
SC(I2,J1)=5C(I2,J1)+EC(I+3,J)
SC(I2,J2)=SC(I2,J2)+EC(I+3,J+3)

CONTINUE

DO 30 J=1,6

SM(NROW(3) ,NROW(J) )=SM(NROW(3) ,NROW(J))+EM(3,J)
SM(NROW(6) ,NROW(J))=SH(NROW(8) ,NROW(J))+EM(6,T)
SK(NROW(3) ,NROW(J))=SK (NROW(3) ,NROW(J))+EK(3,J)
SK(NROY(6) ,NROW(J) )=SK (NROW(8) ,NROW(J))+EK(6,J)
SC(NROW(3),NROW(J))=SC(NROW(3) ,NROW(J))+EC(3,J)
SC(NROW(6) ,NROW(J) )=SC(NROW(6) ,NROW(JI))+EC(6,T)
CONTINUE

D0 35 I=1,2

D0 35 J=3,6,3

SM(NROW(I),NROW(J))=SM(NROW(I) ,NROW({JI))+EM(I,J)
SM(NROW(I+3) ,NROW(J))=SM(NROW(I+3) ,NROW(J) }+EM(I+3,J)
SK(NROW(I) ,NROW(J))=SK(NROW(I),NROW(J))+EK(I,J)
SK(NROW(I+3) ,NROW(J))=SK(NROW(I+3) ,NROW(JI))+EK(I+3,J)
SC(NROW(I) ,NROW(J))=SC(NROW(I) ,NROW(J))+EC(I,J)
SC(NROW(I+3) ,NROW(J))=SC(NROW(I+3) ,NROW(J))+EC(I+3,J)
CONTINUE

CONTINUE

INEW=0

D0 70 I=1,NN

DO 45 K=1,6

IF(I.EQ.NOLD(X)) GOTO 70

CONTINUE

INEW=INEW+1

JNEW=0

DO 60 J=1,NN

DO 50 K=1,6

IF(J.EQ.NOLD(K)} GOTO 60

CONTINUE

JNEW=JNEW+1

SM(INEW,JNEW)=SM(I,J)

SK(INEW, JNEW)=SK(I,J)

SC(INEW,JNEW)=SC(I,J)

CONTINUE

DDUO(INEW)=DDUO(I)
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70 CONTINUE
CALL MAT(NNNO,AO,SMO,DDUC,O0)
DO 22 I=1,NNNO
22 DDUO(I)=-~A0(I)
IF(MKC.EQ.0) GOTD 150
WRITE(6,205)
DO 80 I=1,NNNO
80 WRITE(6,210) (SM(I,J),J=1,NNNO)
WRITE(6,215)
DO 90 I=1,NNNO
90 WRITE(6,210) (SK(I,J),J=1,NNNO)
WRITE(6,227)
DD 100 I=1,NNNO
100 WRITE(6,210) (SC(I,J),J=1,NNN0O)
150 CONTINUE
TA=N
IB=N
IZ=N
I1J0B=2
Z0=DCMPLX{1.D0,0.D0)
DD 160 I=1,NNNO
DD 160 J=1,NNNO
I1=T+NNNO
J1=J+NNNO
AA(T1,X)= SM(I,D)
AA(T,J1)=-SM(I,)
AA(I1,J1)=SC(I,T)
BB{1,J)=SM(I,J)
160 BB(I1,Ji)=SK(I,J)
CALL EIGZF(AA,IA,BB,IB,N,IJOB,RA,B,RZ,IZ,WK,IER)
IN=1
DO 180 J=1,N
DO 180 I=1,¥
Z(I,J)=DCMPLX(RZ(IN),RZ(IN+1))
180 IN=IN+2
DO 185 I=1,N
WRITE(6,270) (Z2(1,J),J=1,10,2)
185 CONTINUE
K=0
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DO 190 I=1,N,2
K=K+1
IF(K.GT.5) GOTO 195
A(I)=DCMPLX (RA(2%I-1)/B(I),RA(2%I)/B(I))
A(I)=-Z0/A4(I)
FREQ(X)=AIMAG(A(I))/DPI
190 CONTINUE
185 CONTINUE
P1(ITH,IW)=FREQ(1)
P2(ITH,IW)=FREQ(2)
P3(ITH,IW)=FREQ(3)
P4(ITH,IW)=FREQ(4)
ANGLE=(ITH-1)*DELT
WRITE(6,182) ANGLE,(FREQ(I),I=1,5)
182 FDRMAT(1X,F5.0,5F12.6)
205 FORMAT(/10X,’THE MASS MATRIX:’/)
210 FORMAT(1X,9E14.4)
215 FORMAT(/10X,’THE STIFFNESS MATRIX:’/)
227 FORMAT(/10X,’THE EFFECTIVE DAMPING MATRIX:’/)
270 FORMAT(1X,10E12.4)
RETURN
END

SUBROUTINE MKQE(EM,EX,EC,IBAR,NESUM)

IMPLICIT REAL*8(A-H,0-Z)

COMMON /MKQi/NGN,NE,NBC(2),NEI(3),N12(10,2),HKDOF(2,3)
COMMON /MKQ2/RL(4),RH0A(3),TH(3),DTHE(3),DDTH(3),EA(3),EI(3),
1 ALX(20),FR(20),TR,DELT

COMMON /SWITCH/INDEYX,MKC

DIMENSION EM(6,6),EK(6,6),EC(6,6),R(6,6),4(6,6),EKG(6,6)
S1=DSIN(TH(IBAR))

C1=DCOS(TH(IBAR))

W2=2.*DTH{IBAR)

W22=DTH{IBAR)*DTH(IBAR)

NB=NEI(IBAR)

EL=RL(IBAR)/FLOAT(NB)

EL2=EL*EL

EL3=EL2*EL
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i0

RHOAEL=RHOA (IBAR)*EL

DO 10 I=1,6

DO 10 J=1,6

EM(I,J)=0.

EK(I,I)=0.

EC(I,J)=0.

EKG(I,J)=0.0

R(I,J)=0.

R(1,1)=C1

R{1,2)=51

R{2,1)=-581

R(2,2)= C1

R(3,3)=1.

R(4,4)=C1

R(4,5)=51

R(5,4)=-81

R(5,5)= C1

R(6,6)=1.
EM(1,1)=RHDAEL/3.
EM(1,4)=.5%EM(1,1)
EM(2,2)=13./35.*RHOAEL
EM(2,3)=11.%EL/210.*RHOAEL
EM(2,5)=9./70.*RHOAEL
EM(2,6)=-13.%EL/420.*RHOAEL
EM(3,3)=EL2%RHOAEL/105.
EM(3,5)=-EM(2,6)
EM(3,6)=-EL2*RHOAEL/140.
EM(4,4)=EM(1,1)
EM(5,5)=EM(2,2)
EM(5,6)=-EM(2,3)
EM(6,6)=EN(3,3)
EK(1,1)=EA(IBAR)/EL
EK(1,4)=-EK(1,1)
EK(2,2)=12.+EI(IBAR)/EL3
EX(2,3)=6.*EI(IBAR)/EL2
EK(2,5)=-EK(2,2)
EK(2,6)=EK(2,3)
EK(3,3)=4.*EI(IBAR)/EL
EK(3,5)=-EK(2,6)
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20
22
31

30

EK(3,6)=0.5%EK(3,3)
EK(4,4)=EK(1,1)

EK(5,5)=EK(2,2)

EX(5,6)=-EK(2,3)

EK(6,6)=EK(3,3)
A3=-0,5%RHOAEL*W22

A2=RHOAEL*ALX (NESUN) /EL
A1=-A2-A3+FR(NESUM) /EL
EKG(2,2)=1.2%A1+0.6%A2+12./35.%A3
EXG(2,3)= EL*(0.1%(A1+A2)+A3/14.)
EKG(2,5)=-EKG(2,2)

EKG(2,6)= EL*(0.1%41-43/35.)
EKG(3,3)=EL2%(2./15.%xA1+A2/30.42./105.%A3)
EXG(3,5)=-EKG(2,3)
EKG(3,6)=-EL2%((2.*%A1+A2)/60.+43/70.)
EKG(5,5)=EKG(2,2)

EKG(5,8)= EL*(-.1%A1+A3/35.)
EKG(6,6)=EL2%(2./15.%A1+0,1%A2+3, /35, %A3)
DO 20 I=2,6

DO 20 J=1,I-1

EM(I,J)=EM(J,I)

EK(I,D=EK(J,I)

EKG(I,J)=EKG(J,I)

CONTINUE

IF(INDEX.EQ.0) GOTO 40
EC(1,2)=-7.%RHOAEL/20.
EC(1,3)=-RHDAEL*EL/20.
EC(1,5)=-3.*%RHOAEL/20.

EC(1,6)= RHDAEL*EL/30.
EC(2,4)=-EC(1,5)

EC(3,4)= EC(1,6)

EC(4,5)= EC(1,2)

EC(4,6)=-EC(1,3)

D0 30 I=2,6

DO 30 J=1,I-1

EC(I,1)=-EC(J,I)

CONTINUE

WiD=W22

W2D=DDTH(IBAR)
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IF (INDEX.EG.3) WiD=0.
IF (INDEX.EQ.4) W2D=0.
DO 35 I=1,6
DO 35 J=1,6
IF(IKDEX.EQ.5) EKG(I,J)=0.0
EK(I,J)=EK{(I,J)-WiD*EN(I,J)+EC(I,J)*W2D+EKG(I,J)
EC(I,J)=EC(I,J)*W2
IF(INDEX.EQ.2) EC(I,J)=0.
35 CONTINUE
40 CONTINUE
CALL MATi(6,4,R,EM,1)
CALL MAT1(6,EM,A,R,0)
CALL MAT1(6,4,R,EK,1)
CALL MAT1(6,EK,A,R,0)
CALL MAT1(6,4,R,EC,1)
CALL MAT1(8,EC,A,R,0)
RETURN
END

SUBROUTINE RBK(DDUO)

IMPLICIT REAL*8(A-H,0-Z)

COMMON /MKQ1/NGN,NE,NBC(2),NEI(3),N12(10,2),NDOF(2,3)

COMMON /MKQ2/RL(4),RHOA(3),TH(3),DTH(3),DDTH(3),EA(3),EI(3),
1 ALX(20),FR(20),TR,DELT

DIMENSION DDUO(50)

DO 1 I=1,NGN+2
1 DDUO(I)=0.

W12=DTH(1)*DTH(1)

S1=DSIN(TH(1))

C1=DCOS{TH(1))

PN11=RL(1)%C1

PN12=RL(1) %51

VN11=-RL(1)*DTH(1)%S1

VN12= RL(1)*DTH(1)*C1

AN11=-RL(1)*(W12%C1+DDTH(1)*51)

AN12=-RL(1)*(W12*S1-DDTH(1)*C1)

DD=RL{4)-PN11i

ALP=DD
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50

DD=DD*DD+PH12%PN12
PHI=DSIGN(90.*TR,ALP)
IF(DABS(ALP).GT.1.D-20) PHI=DATAN2(-PN12,ALP)

COSA=0.5%(RL(2}*RL(2)+DD-RL(3)*RL(3))/RL(2)/DSQRT(DD)

SINA=DSQRT(1.-CDSA*COSA)
ALP=DSIGN(90.%TR,SINA)

IF(DABS(CDSA) .GT.1.D-20) ALP=DATAN2(SINA,COSA)
TH(2)=PEI+ALP

S2=SIN(TH(2))

C2=COS(TH(2))

PN21=PN11+RL(2)*C2

PN22=PN12+RL{2)*S52

ALP=PN21-RL(4)

TH(3)=DSIGN(90.*TR,PN22)
IF(DABS(ALP).GT.1.D-20) TH(3)=DATAN2(PN22,4LP)
S3=DSIN(TH(3))

C3=DCOS(TH(3))
D=RL(2)*RL(3)*(S2%C3-C2*53)

DTH(2)= RL(3)*(VN11*C3+VN12%S3)/D

DTH(3)= RL(2)*(VN12*S2+VN11%C2)}/D
W22=DTR{2)*DTH(2)

W32=DTH(3)*DTH(3)
Bi=-AN11+RL{2)*W22%C2-RL(3) *W32*C3
B2=-AN12+RL(2)*W22*S2-RL (3) *432*53
DDTH(2)=~RL{3)*(B1*C3+B2%*53} /D
DDTH(3)=-RL(2)*(B2%S2+B1%C2) /D

NESUM=0

X=0.0

Ii=NEI(1)

DO 50 K=1,I1

NESUM=NESUM+1

I2=N12 (NESUM,2)*3

X=X+RL(1) /FLOAT(I1)
DDUO(I2-2)=-X*(W12*xC1+DDTH(1)*51)
DDUO(I2-1)=-X*(W12%S1-DDTH(1)*C1)
ALX(NESUM+1) =DDU0(I2~2)*C1+DDUO(I2-1)%S1
DDUO(I2 )=DDTH(1)
ALX(NEI(1)+1)=DDU0{I2-2)*C2+DDUO{I2~1)*S2
X¥=0.0
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55

60

70

I1=NEI(2)

IF(I1.EQ.1) GOTO 55

DD 60 K=1,I1-1

NESUM=NESUM+1

I2=N12 (NESUM,2) 3

¥=X+RL(2) /FLOAT(I1)
DDUO(I2-2)=AN11-X* (W22xC2+DDTH(2)*S2)
DDUO(I2-1)=AN12-X*(W22%S2-DDTH(2)*C2)
DbUO(I2 )=DDTH(2)

IF(I1.NE.1) ALX(NESUM+1)=DDUO(I2-2)*C2+DDUO(I2-1)%S2
CONTINUE

I1=NEI(3)

NESUM=NEI (1)+NEI(2)

DD 70 K=Ii,1,-1

NESUM=NESUM+1

I12=N12(NESUM,2)*3
X=RL(3)~RL(3)/FLDAT(I1)*FLOAT(I1-K)
DDUO(I2-2)=-X*(W32%C3+DDTH{3)*53)
DDUO (12-1)=-X*(W32*S3-DDTH(3)*C3)

IF(I1.NE.1.AND.K.RE.I1) ALX(NESUM-1)=DDUQ(I2-2)*C3+DDU0(I2-1)*S3

DDUO(I2 )=DDTH(3)
DDUO(3%N12(1,1) }=DDTH(1)
DPUO(3*N12(NE,1))=DDTH(3)
DDUOG (NGN+1)=DDTH(2)
DDUO(NGN+2)=DDTH(2)
ALX(1)=0.

ALX(NE)=0.

RETURN

END

SUBROUTINE REF

IMPLICIT REAL*8(A-H,0-Z)
COMMON /MKQ1/NGN,NE,NBC(2),NEI(3),N12(10,2),NDOF(2,3)

COMMON /MKQ2/RL(4),RH0A(3),TH(3),DTH(3),DDTH(3),EA(3),EI(3),
1 ALX(20),FR(20),TR,DELT

XM1=RHOA(1)*RL(1)
XM2=RHOA(2)*RL(2)
XM3=RHOA(3)*RL(3)
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XJ1=XMI*RL(1)*RL({1)/12.
XJ2=XM2+RL{2)*RL(2)/12.
XJ3=XM3*RL(3)*RL(3)/12.

S1=DSIN(TH(1))

C1=DCOS(TH(1))

S2=DSIN(TH(2))

C2=DCOS(TH(2))

S3=DSIN(TH(3))

C3=DCOS(TH(3))

W12=DTH(1)*DTH(1)

W22=DTH(2)*DTH(2)

W32=DTH(3)*DTH(3)

DDXC1=-0.5%RL(1)* (DDTH(1)*S1+W12%C1)
DDYC1= 0.5%RL(1)*(DDTH(1)*C1-W12%51)
DDXC2=2.%DDXC1-0.5%RL (2) * (DDTH(2) *52+W22%C2)
DDYC2=2,*DDYC1+0.5%RL{(2) * (DDTH(2) *C2-W22%52)
DDXC3=-0.5%RL (3)* (DDTH(3) *S3+W32*C3)
DDYC3= 0.5%RL(3)*(DDTH(3)*C3~132%S83)
FX1=-XM1*DDXC1

FY1=-XM1%DDYC1

FX2=~XM2%DDXC2

FY2=-XM2%DDYC2

FX3=-XM3*DDXC3

FY3=-XM3%DDYC3

FIM1=-XJ1*DDTH (1)

FIM2=-XJ2*DDTH(2)

FIM3=-XJ3*DDTH(3)

A11=-RL(1)%*S1

A12= RL(1)*C1-RL(4)

A21= RL(2)%52

A22=-RL(2)*C2
Bi=-(RL(1)%*C1+0.5%RL(2)*C2~RL(4))*FY2+(RL(1)*%51+0.5%RL(2)*52) *FX2
1 -0.5%RL(3)*(C3*FY3-S3%FX3)-FIM2-FIM3
B2= 0.5%RL(2)*(C2+FY2-S2%FX2)-FIM2
DD=A11%A22-A21%412
X1=(B1%xA22-B2%A12)/DD
Y1=(B2xA11-B1%A21)/DD

X2=-X1-FX2

¥Y2=-Y1-FY2
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20

30

40

50

100
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T1=NEI(1)

I2=I1+NEI(2)

I3=I2+1
FR(I1)=-X1%C1-Yi*S1
FR(I2)= X2%C2+Y2%*52
FR(I3)=-X2%C3-Y2*S3

DO 100 I=1,3
IF(NEI(I).EQ.1) GOTO 100
EL=RL(I)/FLOAT{(NEI(I))
RHDAEL=RHOA(I)*EL
W22=DTH(I)*DTH(I)

GOTD (10,20,30), I
IE=NEI(1)

ID=-1

GOTO 40

IE=NEI(1)+NEI(2)

ID=-1

GOTC 40
IE=NEI(1)+NEI(2)+1

ID=1

K=0

I1=IE

I1=I1+ID

K=K+1
FR(I1)=FR(I1-ID)-RHOAEL*(ALX(I1-ID)-0.5%ELxK22)
IF(X.LT.NEI(I)-1) GOTO 50
CONTINUE

RETURHN

END

SUBROUTINE MAT(N,4,B,C,IND)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION A(50),B{50,50),C(50)

DO 20 I=1,N

A(I)=0.0

DO 16 J=1,N

IF(IND.EQ.0) A(I)=A(I)+B(I,J)*C(J)
IF(IND.EQ.1) A(I)=A(I)+B(J,I)*C(J)
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CONTINUE
RETURHN
END

SUBROUTINE MAT1(NW,4,B,C,IND)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(6,6),B(6,6),C(6,6)
DO 30 I=1,¥

DO 30 J=1,N

A(T,J)=0.

D0 30 K=1,N

IF(IND-1) 10,20,20
A(T,3)=A(T,J)+B(I,K)=C(K,J)
GOTO 30
ACT,D)=A(T,0)+B(K,I)*C(X,])
CONTINUE

RETURN

END



