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University of Manitoba
Abstract

APPLICATION OF INFORMATION FUSION
METHODS TO BIOMEDICAL DATA

by Petr Jilkine

Classification of Magnetic Resonance (MR) and Infrared (IR) spectra promises to become
an effective tool for early medical diagnosis of diseases. The proposed thesis project
involves the development and comparison of classification strategies and algorithms for the
analysis of spectra of healthy and diseased tissue biopsies of various disease states. Several
methods of aggregating outcomes of classifiers are considered in order to improve the
classification accuracy, and applied to artificial and real-life spectra. Logistic regression,
linear combination of classifiers, fuzzy integration, stacked generalization and some other
methods of classifier aggregation, as well as different ways of estimating necessary
parameters are considered. The results indicate that in many cases aggregation of classifiers
improves the classification performance in comparison to that of the classifiers being
aggregated. The results on real-life spectra vary. The methods perform well on some data

sets and relatively poorly on others. Strategies are recommended to gain from classifier

aggregation.
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1. Introduction and Literature Review

The Magnetic Resonance (MR) spectrum of a biological tissue sample characterizes its
chemical composition. In particular, MR spectra are characteristics of the disease state of
the tissue, because cells in different states produce biochemical substances in different
amounts. Biochemical changes that signal the onset of disease occur earlier than manifest at
the morphological (visual) level. Thus, the possibility of early diagnosis of disease (e.g.,
cancer) via MR spectroscopy is real and very important. For example, ‘average’ (or
centroid)! spectra of healthy (or normal) and diseased brain biopsies are presented in Fig.

1.1. One observes quite substantial differences between the spectra.
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Fig. 1.1 Average spectra of brain samples in normal and diseased states.
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! The centroid spectra were obtained by averaging all available spectra for the particular disease
state, thus the spectral noise is eliminated to a great degree.



The proposed thesis project involves the development and comparison of classification
strategies and algorithms for the analysis of MR spectra of healthy and diseased tissue
biopsies of various disease states. In particular, combined classification methods based on
the aggregation of the outcomes of several classifiers are considered. Different pattern
classifiers employ different concepts, have different architectures, adjustable parameters
and, thus, behave differently even if trained on the same data set. Ideally, the combining
classifiers should take advantage of the strengths of the individual classifiers, avoid their

weaknesses, and improve classification accuracy.

Given a complete training set, a consistent® classifier is able to approximate Bayesian
(optimal) decision boundaries between classes with arbitrary accuracy [8]. In real life we
usually operate with finite training sets, often noise corrupted. Trained on these data,
different classifiers approximate the decision boundaries differently. In addition, the size of
the data set makes the classifier outcome dependent on the particular data set. We can
choose the classifier which classifies best and ignore all the others. However, potentially
useful information, which the ignored classifiers could access, can be lost. In order to avoid
this loss of information one can aggregate the classifier outcomes in some manner in the
hope of getting better classification results. This is often the situation for difficult cases,
with very limited number of data samples and high noise level (see [10] for example). In
particular, this is the case for MR spectra of biological tissues. There is usually a shortage of

experimental data. The spectra are noise-corrupted spectra with low signal-to-noise ratio,

? The asymptotic convergence of a classifier to the object of classification is called consistency.



overlapping peaks and pronounced baseline distortions. There is also some uncertainty in

the a priori tissue classification by experts.

The architecture of a combining classifier can be like the ones presented in Fig. 1.2. The
original MR spectra are first preprocessed by some technique® (or several techniques as in
the right-hand scheme). Then the preprocessed data are submitted to several different
classifiers (or to a single reliable classifier). The outcomes of these classifiers are aggregated

by an aggregation scheme. One can view the group of classifiers to be aggregated as a group

Combined output Combined output

1 I

Individual Aggregation scheme Aggregationscheme | | ...
outputs outputs

Classiﬁ< 1 [Clas?iﬁer 2y .... !Classiﬁer n [Class%r 1 |ClassitTier2 ceen %ssiﬁcr n
Preprécessed data Preproc. 1 | [Preproc. 2 | [Preproc. n
T preprocessing T T

Fig. 1.2 Possible architectures of a combining classifier.

of experts looking into the same problem from their personal points of view and stating
their opinions. The aggregation scheme is another expert who generalizes the opinions of
the experts in some manner and makes a final decision. The aggregation scheme can be as
simple as Majority Voting (MV), where all classifiers are supposed to be equally competent,

or more sophisticated, when the aggregation scheme learns the competence of different

? Some detail about preprocessing techniques used may be found on page 22.



classifiers during training. The aggregation scheme also can be a classifier such as the one

used at the previous stage.

What improvement of classification accuracy can be expected, if we aggregate several
classifiers? Some theoretical estimates of error reduction are presented in {7, 9]. It has been
shown that given some reasonable assumptions (local monotonicity of the a posteriori
probabilities about decision boundaries) a linear combination of classifiers reduces variance
in the boundary location about the Bayes boundary. If the aggregated classifiers are
unbiased, the reduction of added error® is proportional to the reduction in variance. If these
classifiers make independent errors, the variance becomes smaller by a factor of n, the
number of aggregated classifiers. In the presence of classifier bias, the error reduction is
smaller since both bias and variance need be reduced. If the bias of classifiers is small, and
the error is mainly due to variance, aggregating can be an effective tool. However, in the
case of high bias aggregating is effective only if the biases are not highly correlated. Then it
is important to keep the biases of the classifiers uncorrelated. This can be achieved by using
classifiers based on different principles or by applying the classifiers to differently

preprocessed data.

In [9] the authors considered a combining classifier based on order statistics, and
demonstrated an improvement in classifier performance. The benefits of aggregating were

demonstrated on several data sets. The authors also observed that aggregating compensates

* Error reduction is applied to the portion of total error (called added error) which occurs because
the boundary between classes is not chosen perfectly. Another portion of the total error is Bayes
error, which can’t be reduced in the problems with overlapping classes.






Another important problem known as the bias/variance dilemma [8] should be taken into
account in combined classification. The essence of the dilemma lies in the fact that the error
can be decomposed into two components, bias and variance. The bias measures how closely
the learning algorithm’s guess matches the target. The variance measures how much the
leaming algorithm’s guess ‘“bounces around” for different training sets of given size.
Attempts to reduce bias lead to an increase in variance. Keeping the variance small results
in bias increase. A compromise is usually reached as a trade-off between bias and variance,
which suggests a kind of uncertainty principle. In [9] a possible way of overcoming this
difficulty is indicated. The authors noticed that aggregation provides a method for
decoupling bias and variance. The bias of aggregated classifiers (also called individual
classifiers) should be reduced (e.g., in the case of neural network by using a larger network).

The increased variance then can be reduced during the aggregation stage.

Kohavi in [24] investigated bias and variance decomposition and, in particular, gave an
example of bias-variance trade-off during classifier aggregation using a UCI data set [25].
The data set was divided into two subsets, one to generate several training sets by uniform
random sampling without replacement, the other to evaluate bias and variance in the
expected misclassification rate. A decision tree classifier was applied to each generated
training set, and the outcomes of 50 classifiers were aggregated by a voting scheme. The
results indicate that the reduction of error is almost solely due to reduction in variance.
Although the bias increases slightly (especially for smaller training sets) the reduction of

variance is significant enough to keep the overall error smaller.



Breiman in [26] analyzed the aggregation of classifiers. In particular, arcing and bagging
algorithms were considered. In bagging one forms modified training sets by sampling the
original training set, constructs classifiers using these training sets, and has them vote for
the classes. Arcing is a more complex procedure, in which the construction of the (k+1)-th
classifier depends on the performance of the k previously constructed classifiers. The main
effect of both schemes is the reduction of variance. Arcing is more successful in this than
bagging. Instability of the classification methods used in the above schemes is essential to
improve accuracy. A classifier is called unstable when small perturbations in the training set
result in large changes in classifier outcome. Unstable classifiers characteristically have
high variance and low bias. Trees and Artificial Neural Networks (ANN) are considered
unstable classifiers. Stable classifiers have low variance, but may have high bias. K-Nearest
Neighbor (KNN) and Linear Discriminant Analysis (LDA) classifiers are considered stable,

so the above techniques have little or no effect on error rates.

Jacobs [28] reviewed two classes of aggregation methods. A Supra Bayesian procedure, in
which the decision maker treats the expert opinions as data that may be aggregated with
their own a priori distribution via Bayes rule, and a linear opinion pool, where the decision
maker forms a linear combination of the expert opinions. The first technique is theoretically
well-motivated. The disadvantage is that it may be impractical for some real-world tasks.
Defining an appropriate likelihood function for the expert opinions can involve much
guesswork. Moreover, evaluating this likelihood function can be computationally
expensive. The linear opinion pool has the advantage that it is relatively simple, and

frequently yields useful results with a moderate amount of computation. The disadvantage is



the lack of a solid theoretical foundation. A high correlation or dependence among expert
opinions makes the aggregation difficult. The author suggests that there is a need for
training procedures that result in experts with relatively independent opinions, or for
aggregation methods that implicitly or explicitly model the dependence among experts. The
analysis presented indicates that a smaller number of independent experts are worth the

same as more but dependent experts.

In [10] the effect of combining different linear least-square estimators’ on the
performance of linear regression was studied®. It was shown that by splitting the data set
into several independent parts and training each estimator on a different subset, the
performance of the combined estimation can in some cases be significantly improved. In
particular, it works for data sets with a small number of noisy samples. The improvement in
the quality of the combined estimation occurs because the decrease in variance resulting
from the independence of different estimators is larger than the concomitant increase in
bias. The author stresses that the general claim that combining experts is always helpful is
clearly fallacious. That classifier aggregation can make good classifiers better but can make

bad classifiers worse is also noted or observed in [26,31,32].

Perrone in [29] presented a general theoretical framework for ensemble methods of
constructing significantly improved regression estimates. The general idea is to generate

multiple estimates by subsampling or resampling a finite data set, and then combine them.

7 The terminology of the author is kept here. A classifier can be considered as an estimator that uses
the class memberships as attributes.

¥ Classification can be considered as a special case of regression with zero/one values, and the
results of [10] are also applicable to classification.



A hybrid estimator constructed is as good or better in the MSE sense than any of the
individual estimators. In particular, two methods were developed: Basic Ensemble Method
(BEM) and Generalized Ensemble Method (GEM). GEM was applied to the recognition of
characters and numbers. The results indicate that the GEM estimator is better than standard
techniques. For instance, the best of ten backpropogation networks with a single hidden
layer and 20 hidden units gives 89% performance for lowercase characters, the GEM
estimator gives approximately 91.5%. During training individual networks converge to
different local minima, thus their error terms are not strongly correlated. This lack of
correlation drives the averaging method, allowing to construct an improved estimate. Thus,
the averaging method can efficiently utilize the local minima that other techniques try to
avoid. It was also found in this paper that for the example considered aggregating more
than 6-8 networks doesn’t improve the BEM estimator. The authors also state that “training
a population of large nets to find the best estimator is computationally much more
expensive than training and averaging a population of small nets. In addition, small

networks are more desirable since they are less prone to over-fitting than large networks”.

David Wolpert [5] introduced the so-called Stacked Generalization (SG) in which
different classifier outcomes are aggregated via another classifier. Several classifiers (level
0) applied to preprocessed data (or a single classifier applied to differently preprocessed
data) produce class memberships. These memberships form a new set of attributes for
another classifier (level 1). Classifiers of level 0 are supposed to behave differently from

one another, i.e., their decisions should not synchronized.



Several papers show that aggregating classifiers improves the classification performance

in different applications.

In [1] a regression method is used to fuse the decisions of different recognition
algorithms. The method computes a weighted sum of the outcomes of individual classifiers
(scores) for every class. This sum reflects the confidence of the algorithm that a given
sample belongs to a particular class. The class with maximal score is considered as the most
likely class. The necessary weights are estimated by logistic regression on the training set.
The weights express the relative importance of the aggregated classifiers. Applying this
approach to the recognition of machine printed characters (a problem with 48 classes, 6
different classifiers, 19151 training samples, 12000 test samples) yields a 3% increase in
accuracy over the best individual classifier. This improvement was achieved when a set of
four classifiers out of six used in the study were aggregated. The authors noticed that
aggregating two different classifiers trained on the same preprocessed data achieves a higher
performance than the individual classifiers do. Aggregating two classifiers trained on
differently preprocessed data gives even better improvement in performance. Applying the
logistic regression approach to the handwritten digit recognition problem provides
additional benefits over individual classifiers. The authors stressed that independence of the

classifiers used is a key to better performance.

Tim Kam Ho applied several methods, such as highest rank, Borda count and logistic
regression to handwritten digit recognition and degraded muitifont machine-printed
character and word recognition [6]. The strength of the methods was demonstrated in

problems with a large number of classes. In a word recognition experiment four classifiers

10



were used to discriminate between 1365 classes. An improvement of 7.8% was achieved,
from 86.1% accuracy for the best individual classifier to 93.9% for the aggregation by a
dynamically selected model. In [4] several combination techniques were considered. The
authors found that for the analyzed data a Dempster-Shafer based method obtained high
recognition and reliability rates. It is also robust. Application of the method to US zip codes
showed significant improvement over the performance of individual classifiers. A
performance of 98.9% was achieved, while the performance of the best individual classifier

was 93.9%.

In [27] a hybrid system for protein secondary structure prediction was developed. Three
different experts based on neural network, memory-based reasoning and statistics learned
the mapping between amino acid sequences and secondary structures from the known
secondary structures. A combiner (a neural net) took the predictions from the three experts
and made a final prediction. The database included 107 protein from the Brookhaven
Protein Data Bank. The set of all proteins contain 19,861 amino acids, 113 subunits. There
were three possible outcomes (elements of the secondary structure): a-helix, B-strand and
coil. The way the system was trained is interesting. The training set was divided into two
parts. Une part was used to train the experts. The outcomes of the experts on the other part
of the training set were used to train the combiner. The reason for dividing the training set
into two parts was that the behavior of each expert on the training data can be very different
from its behavior on the proteins whose structures were unknown,; their performance on the
data that they were not trained on (the second half of the training set) reflected their

behavior on truly unknown protein structures, which was exactly what the combiner should

11



know about and be trained on. After the training of the combiner was completed, each
expert was trained again with the whole training set. These trained experts together with the
trained combiner formed a trained hybrid system. The hybrid system had an overall
performance of 66.4%, which was higher than individual experts and all previously reported
algorithms. Compared to each expert, the hybrid system produced better results in terms of
the number of secondary structures (rather than the number of residues) that were predicted

correctly. This was important from the biological point of view.

Joydeep Ghosh in [15] applied a number of aggregation methods to the classification of
underwater acoustic signals. It is a difficult problem because of the low signal-to-noise ratio
and the high degree of variability in the signals emanating from the same type of sound
source. Four approaches to evidence combination were presented and compared using
realistic oceanic data. They included an entropy-based weighting of the outcomes of
individual classifier, a method based on the combination of confidence factors in a manner
similar to that used in MYCIN expert system, majority voting and a simple averaging. A
multi-layer perceptron augmented with weight decay strategy and two kerael-based
classifiers were among individual classifiers being aggregated. All combining techniques

gave better results than those obtained by the best individual classifier.

In [11] Rogova considered an aggregation method based on the Dempster-Shafer theory
of evidence. The proposed method leads to a considerable improvement of classification
accuracy without complex computations. The method has the useful property of penalizing
overoptimistic and overtrained classifiers. Application of this method to hand-printed digits

led to the reduction of misclassification error by 15-30%. Experiments showed that a better

12



result is not necessarily achieved on aggregating classifiers with better individual
performance. Independence of the classifiers is a more important factor in aggregation. It
was also noticed that classification of differently preprocessed data provide more

independent results than different architectures of neural networks.

Hashem considered a combination of different neural networks to achieve better
performance [12]. Optimal linear combination of the outcomes of neural networks was
proposed to improve the accuracy of a ‘combined’ model. Accuracy was measured by
MSE, optimality was achieved by minimizing this MSE. The method was applied to the
problem of approximating a function. The aggregation of six neural networks gives 88%
better accuracy (MSE = 0.000017) than the best individual neural network (MSE =
0.000137). Thus, to get the same accuracy one can individually train several “small”
networks and aggregate them, rather than train a single “large” network. Although the
authors applied their approach to a regression problem, it can also be used in classification.
The attractiveness of this approach is its linearity with respect to the unknown weights,

which converts the estimation of the weights to a simple matrix inversion problem.

In [13] variants of the majority vote were considered, and combined performances of 7
classifiers on a set of handwritten numerals were analyzed. In particular, a weighted
majority vote approach was implemented. The values of the weights were obtained by
optimization of an objective function. The objective function was chosen to increase
recognition on one hand, and to reduce error rate on the other. Application of the method to

a set of 46451 numerals demonstrated 2.2% improvement by the combined classification.

13



Fuzzy set based methods have recently achieved success in pattern recognition and
classification [2,3,14]. Fuzzy methods don’t provide solutions to all problems, but they can
be useful in situations when features, criteria, etc. are vague. This is often the case in pattern
recognition. Fuzzy integration is one of the approaches used in pattem classification. Fuzzy
integration is a nonlinear way to combine multiple sources of information. Basically, the
Fuzzy Integral (FI) is an aggregation operator. Suppose we use » classifiers to classify an
unknown sample. Each classifier

provides a confidence value that this 7 4 training

Fuzzy measures

Fuzzy integral

sample belongs to a particular class.

We aggregate these individual

confidence values by FI into a global | Classifierl ifier2 | ..

confidence value. This value

represents the likelihood or degree of Preprocessed Data

certainty that the unknown sample Fig. 1.3 Architecture of a FI-combining classifier.

belongs to a particular class, taking into account all the evidence available, Fig. 1.3. The so-
called Fuzzy Measures (FMs) underlying fuzzy integration play the role of weights for the
different classifiers and their subsets. For » classifiers and an m class problem there are m2"
fuzzy measures (2m of them are trivial and are equal to 1 or 0). Classification performance
obviously depends on the FMs, thus their accurate estimation is very important. FMs could
be obtained by an expert estimating the relative importance of the classifiers and their
subsets, or by leaming these from a training set. If many classifiers are aggregated by FI,
then it is practically impossible to effectively determine FMs by an expert. Estimation of

FMs from the training set requires a constrained nonlinear optimization technique.

14



The process of classification by an FI-combining classifier is as follows. The FMs are
estimated for every class from the training set, using some criterion. Given a sample,
evidence provided by all individual classifiers is integrated with respect to corresponding
class FMs, resulting in an overall confidence value for each class. The sample is assigned to

the class with the highest overall confidence value.

Keller in {2} examined the FI as a decision making tool for object recognition. In
particular, FI was used to fuse the results of two neural network based classifiers in a
handwritten character recognition problem. It was shown that the combined classification
achieved 4% higher correct classification rate than the best of the individual classifiers.
Application of FI to automatic target recognition gives 92.6% correctness vs. 90.9% by a

Bayes classifier and 86.4% by a Dempster-Shafer classifier.

The FIs for classification purposes were also analyzed by Grabisch and Nicolas [3]. In
particular, the problem of identifying the FMs was considered. Several methods of learning
FMs from a training set were considered. They included a perceptron-like criterion
minimizing the number of misclassified samples, a quadratic error-like criterion minimizing
the difference between expected and actual outcomes, and a generalized quadratic criterion.
The authors also derived the minimal number of training samples necessary to estimate
correctly the fuzzy measures. Application of a number of different approaches to simulated
and real-life data demonstrated the validity of the methods. The generalized quadratic
criterion was found to give the best results. The authors emphasized that the problem of

identifying fuzzy measures is crucial to the FI approach.
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In [20] outcomes of several neural network classifiers were aggregated by the Sugeno
fuzzy integral. Sugeno’s A-fuzzy measure was used. Calculation of FI with respect to A-
measure only requires knowledge of the so-called fuzzy densities (which in essence are FMs
for single classifiers). Fuzzy densities can be interpreted as the degrees of importance of
corresponding classifiers. FMs for subsets of classifiers can be calculated recursivel}f' . The
method was applied to handwritten character recognition. Fuzzy densities were assigned,
based on how well the corresponding networks performed on the training set. It has been
demonstrated that aggregating by FI increases recognition rates in comparison with
individual networks, majority voting and Borda count methods applied to the same

networks.

Tresp in [19] considered a linear combination of several estimators. The weights were
proposed not to be constant but dependent on the input. Several methods of obtaining the
weighted functions were considered. The method was applied to the Boston housing data
set (13 inputs, one continuous output). The training set consisted of 170 samples and 20
classes obtained by k-mean clustering. Application of the proposed methods gave smaller

errors than did individual networks.

Recently several papers on the bias-variance decomposition of misclassification rate have
appeared [26,31,32]. Friedman in [31] investigated how an error in the target probability
estimates affects classification error when these estimates are used in a classification rule.
The bias/variance trade-off is very different for the classification error from the estimation

error on the probabilities themselves. The dependence of the estimation error on bias and

? Solving an algebraic equation is required
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variance is additive. However, there is a strong interaction effect in the classification error.
Friedman introduced the notion of ‘boundary bias’. “The effect of boundary bias on
classification error can be mitigated by low variance. Similarly, the effect of variance
depends on the value (especially the sign) of the boundary bias. Therefore, low variance can
be very important for classification but low (estimation) bias is not. All that is required is
that the boundary bias be negative. This being the case, one can reduce classification error
toward its minimal (Bayes) value by reducing variance alone. In this sense variance tends to
dominate the bias.” This explains why some methods don’t work properly for function
estimation because of high bias, but perform well for a classification problem when the
biased estimates of probabilities are used in the classification rule. Several examples are
provided to demonstrate that misclassification error is not simply related to estimation error.
The author concludes that “good probability estimates are not necessary for good
classification; similarly, low classification error does not imply that the corresponding class

probabilities are being estimated accurately.”
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1.1 Brief Description of Individual Classifiers

Fuzzy K-Nearest Neighbor Classifier

The KNN classifier has often been used in pattern recognition problems. The decision rule
provides a simple nonparametric procedure to assign a class label to a sample, based on the
labels of the X closest neighbors of the sample in the space of vectors characterizing the
samples. A KNN classifier doesn’t require training. The crisp KNN classifier assigns a
sample to the majority class among K nearest neighbors. The fuzzy KNN classifier assigns

class memberships to the sample.

Let Xy be a vector characterizing the k-th sample of the training set, and uy the sample’s
membership in class ¢ (c=1,...,m). Denote by x the vector characterizing an unknown

sample, and by u(x) its membership in class c. This membership is calculated as follows:

E(/uz"yJ
;{/"!—!k"%’-l)]

A value of s=2 was used. The membership of the k-th sample of the training set in classc

u,(X)=

u, = {1 Jor the true class of the sample was chosen. Class label for the sample x is assigned

0 otherwise

according to the maximal value among the memberships. The fuzzy KNN classifier was

implemented in [38] according to [33].
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Linear and Quadratic Discriminant Analysis

In discriminant analysis the spectra of the samples are assumed to be normaliy distributed
about the mean (average) spectra of corresponding classes. This distribution is characterized

by the mean vector and the covariance matrix:

¢ =E@) Z, = E(@-p)x-p))

1 is the mean vector and I is the covariance matrix for class ¢, the expectation E(-) is
taken over all possible samples of class ¢, which are characterized by the obsewaﬁon
vectors X. The mean vector and covariance matrix are usually unknown and have to be
estimated from training set during training phase:

3 =le 2. -———Z(x"" - ) - p)
k=l

k=1

index k goes through all N, samples of class c of the training set. After the mean vectors
and the covariance matrices are estimated, the probabilities of different classes are

calculated'®:
p.x)=exp(~ Hx-p ) EMx-p)) (1.L1)

The sample is assigned to the class corresponding to the maximal probability. If different
classes have different covariance matrices and these are estimated separately, the method is

called Quadratic Discriminant Analysis (QDA).

' The a priori probabilities for different classes are assumed to be same.
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If the covariance matrix is assumed to be the same for all classes, then it is calculated as

follows:

XN
r=Y e
2y

In this case the quadratic term —%xE7'x in the exponent in Eq. (1.1.1) becomes

independent of ¢, and can be ignored, resulting in Linear Discriminant Analysis (LDA).

LDA and QDA classifiers are implemented in [35].

Artificial Neural Network

The computer package NeuralWorks Professional I'PLUS [40] was used to create a
Artificial Neural Network (ANN) classifier. An ANN is a self-adaptive leaming system
composed of layers of processing elements or neurons. Every neuron has several inputs and
corresponding weights (or input connection strengths) and combines, usually by a
summation, the values of the inputs into a value, which is then modified by a transfer

function into an output value.

A back-propagation network is an ANN that propagates forward the input through the
hidden layers to the output layer, determines the error at the output layer by comparing the
actual and desired outcomes, and then propagates the errors back through the network to the
input layer. The constructed back-propagation ANN classifier has 1 hidden layer with 5-10

nodes. The number of inputs depends on the dimensionality of the preprocessed spectra and
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the number of outputs on the number of classes, Fig 1.4. The hyperboiic tangent function

was used as the transfer function.

Output: class assignment

Output layer

Input: preprocessed spectra

Fig. 1.4 The architecture of the ANN classifier used in this thesis. The classifier has one
hidden layer with 5-10 nodes. The number of inputs is equal to the dimensionality of
preprocessed spectra, the number of outputs to the number of classes.

A back-propagation ANN classifier learns by examples, i.e., the classifier self-adapts by
modifying intemnal weights when samples with known class identity are presented to it. This
process is called learning. The weights were updated after 1 epoch (or training cycle) i.e.,
after all training samples were presented once to the classifier (so-called cumulative delta
learning rule). The error at the output layer was the root mean square error. Back-
propagation network assumes no‘ dependency between output values. However, in
classification problems there exists such a dependency between outputs. A softmax

activation function was used on the output layer in order to solve this problem [40]. The
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constructed ANN classifier was trained for 50,000 epochs and then its performance

evaluated using a test set.

1.2 Brief Description of Preprocessing Techniques

Spectra usually are sampled at 500-3000 points. The number of spectra available rarely
exceeds 100 samples per class. Classifying such high-dimensional data with that small
number of samples cannot always be performed or often gives unreliable results. Thus, the
dimensionality of the spectra has to be reduced before classification. Several techniques to
reduce the dimensionality of spectra were used in this thesis. They are now briefly
described.

Condensing spectra. A spectrum is divided into contiguous subregions. The average (or
median) amplitude of the spectrum is computed in each subregion. Considering these
average/median amplitudes as new attributes reduces the dimensionality of the spectrum to
the number of the subregions.

Selecting optimal regions by Dynamic Programming Even after spectral condensation, the
dimensionality may still be too high for some of the classifiers. The next logical step is to
choose a subset of those regions that contribute most to discrimination among the classes.
Depending on the number of regions one wants to select and the total number of regions in
the spectra this can be a very time consuming procedure. The following near-optimal
procedure was used to choose such a subset [35]. Suppose for the sake of argument that the
total number of regions in each spectrum is 100, and 10 regions are to be selected. First, 100
lists are created, each containing one attribute, the average (or median) amplitude of

spectrum in the corresponding region, Fig. 1.5. Then each of 99 unused attributes is added
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one at the time and LDA classification of the training set is performed. The attribute giving
the best classification is added to the considered list. The same procedure is applied to every
list, resulting in 100 lists now containing 2 attributes. The procedure is repeated until the
required number of attributes is selected. Then the list giving the best classification accuracy
is selected among the 100 lists. Thus, the 100-dimensional condensed spectra are

transformed into a set of 10-dimensional attributes.

Lists of attributes
1 2 3 ... 100
select second attribute L
& €k W
1,55 2,100 3,12 | ...... 100,87
select third attribute l
L 2 e —
1,55,36 2,100,52 3,1228 | ...... 100,87,73
select 10-th attribute ,L l l l
1,55,...,13 2,100,...,65 3,12,....97 | ...... 100,87,...,57
select the best list J
3,12,...,97

Fig. 1.5 An example of selecting 10 out of 100 regions in spectra contributing optimally to
discrimination among classes. (See text for details)

Selecting optimal regions by Genetic Algorithm (GA). Instead of selecting a subset of

regions in the list of contiguous subregions one can optimize the boundaries of the desired

number of subregions in order to find the regions in spectra which are maximally
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discriminatory. The following procedure was used [35]. For a preselected number of regions
the boundaries were randomly changed by GA, the average amplitudes of spectra

in these regions were calculated and used as attributes in an LDA classifier. This process
was repeated until the MSE between the desired membership values (1/0) and the ones
obtained by LDA become small for the training set. The best regions found during
optimization were saved. An example of region selection by GA is shown in Fig. 1.6. The

two centroid spectra of two different classes and the regions selected by GA are shown.

Fig. 1.6 Application of Genetic Algorithm to selecting a given number of regions in the spectra
responsible for maximally discrimination. Average amplitudes of spectra in these regions give the
best classification accuracy on the training set. In this example the centroid spectra of two classes
(low and high grade astrocytomas) as well as the regions selected by GA are shown. The difference
between the two centroid spectra is also shown at the bottom. This figure was kindly provided by A.
Nikulin,
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2. Aggregation Methods

We now describe the aggregation methods used.

2.1 Logistic Regression.

One of the ways to aggregate several classifiers is to calculate a weighted sum of their
outcomes. The weights are constant and express the relative importance of the classifiers.
The values of the weights are estimated from how well the combining classifier performs on
the training set. This approach requires estimating of a small number of parameters (i.e.,
number of aggregated classifiers plus one) compared to some of the other methods

considered later.

Suppose a sample (or an observation) has been submitted to n classifiers C,, C;, ... C,.
Their outcomes are the degrees of confidence x.={Xic, Xzc, ..., Xac} that this sample belongs
to class c. Stated differently, we obtain a vector of class c memberships, assigned by the
classifiers. If m is the total number of classes, we obtain m such vectors for every submitted

sample. The following aggregation function is proposed for everyx,:
J(XL W) =w, +wx, +w,x, +.. +W,X,, (2.1.1)

where wy, ..., W, are constant weights, wy is a bias. Given a sample, the value of {x.,w) is
calculated for each class c. f{x.,w) represents the degree of confidence of the combining
classifier that the sample belongs to class c. Notice, that the weights are the same for every

class (i.e., independent of ¢).
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Suppose #(X,) is a binary value associated with each sample. (x,) = 1 if ¢ is the true class

of the sample, and #(x.) = 0 otherwise''. The expected value of #(x.) is
E(x(x.))=1-P(t(x.)=1)+0-P(t(x.)=0) = P({(x.) = 1) = n(x,)

One expects that the likelihood of class ¢ being the true class (i.e., T(x,)) is greater when it
is ranked higher by the combining classifier. The relationship between the degree of
confidence and the tendency of being the true class is expected to be a monotonic function.
Also one expects that 7t(X;) - 0 when the components of the vector x. are small, and m(x.)

~ 1 when they are large. Suppose the function (") has the following form

__exp(f(x., W)
ft(sc,z)-“_ex o (. ) 2.1.2)

In fact, this transformation converts the degree of confidence (2.1.1) into the range {0,1].

A training set is used to estimate the values of the parameters wg, wi, ..., wa. The weights
should be chosen suck that the performance of the combining classifier is optimized. There
are several ways to measure the performance. One is to consider the outcomes of the
combining classifier as memberships in the corresponding classes, and try to make them as
close as possible to the desired one/zero values for all samples of the training set. For the k-

th sample'? of the training set the error is

" in fact (x,) depends on the class c only, not on x.. For convenience we use the notation #(x.)
12 index k will appear in vector X, to denote the k-th sample.
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5 (kw)=3 [1a®) - 2a®, w)]

Calculating the error over all training samples we get the MSE on the training set, which
we are going to minimize with respect to the vector w

N m 2
MSE(S’(_v_v))=%22[1(;9")—7:(;2",w] ~minimize (2.1.3)

k=1 c=1

N is the total number of training samples. This is an unweighted MSE, because all classes
have the same (unit) weight. There is another way to calculate the MSE, taking into account
the number of samples/classes in the training set. It is a weighted MSE :

moq N, 2
Y —3 [(a®)~#(x®,w)] ~minimize (2.1.4)

1
m .., Nc k=1

MSE(8*(w)) =

N, is the number of training samples of class c.

The MSE on the training set measures the estimation error of target probabilities rather
than the classification error. The minimization of the MSE does not necessarily lead to the
maximization of the classification performance (in terms of the number of correctly

classified samples).

If the performance of the combining classifier is defined as the number of correctly
classified samples of the training set (i.e., we minimize the number of misclassified

samples), the function to be minimized is not continuous, but piece-wise constant. This
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means that many vectors W give the same performance for the combining classifier. The

function to minimize is:
N
N,.®) =Y (1-#(x))-minimize, 2.1.5)
k=1

where s denotes the class corresponding to mcax(zr(x‘:’, w)). However, the results of such

classification are often fuzzy (i.e., such a classifier is unable to distinguish between good
and poor solutions). Classification of the sample is considered fuzzy if the membership in
the predicted class is smaller than (m+1)/2m, where m is the number of classes. Otherwise it

is considered crisp.

A slight modification of the objective function (2.1.5) might improve the crispness of
classification. Instead of minimizing the number of misclassified samples one can minimize

the number of misclassified and fuzzily classified samples together.

One can also combine the previously considered criteria, obtaining the weighted sum of
the MSE on the training set (2.1.3) or (2.1.4) and the number of misclassified samples

(2.1.5)

m 2
F(m=7i7i2[t(si"’)-n(;?’,;vz)] +B-3, (-1x™)) 2.1.6)
k=1

k=1 c=1

Here { is a parameter, possibly to be optimized.
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As was mentioned earlier, for every observation of the training set m different values of
(2.1.2) are computed. The class corresponding to the maximal one is considered as the
most likely class for this observation. Now let us not just choose the maximal value, but
also maximize the squared difference between the n(-) corresponding to the true class of the

sample and that of every other class

2

Fw) =3 3 (x(a,w)- (a®, ) ~maximize @.1.7)

k=l c»s

Here index s in X, denotes the true class of the sample. This way one is able not only te
choose a solution, but also to discriminate between unequivocal and ambiguous solutions.
Taking into account that 0<7(-)<1 and that the desired values are unity for the true class of
the sample and zero for all others, this problem can easily be converted into 2 minimization

problem :

N 2

Fw =YY (zx®,w)- #x¥,w) - 1) ~minimize (2.1.8)

k=1 ces

Consider a generalized version of the above criterion. Suppose one has an increasing

function, for instance a sigmoid-type function

win=122" k>0 2.19)
1+e®’ o

Applying the function ¥(-) to the difference in expression (2.1.7) can enhance the

discrimination between good and bad classifications. I applied the function ¥(°) not to the
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difference of n(-)s, but to the difference of f{)s in (2.1.1) instead. The larger the difference,

the closer ¥(-) to unity. Then the function to be minimized takes the following form:

1 N m
=—ﬁ§,§[ (fa®,w) - ¥, W) - 1] ~minimize (2.1.10)
Notice that for the objective function (2.1.10) the bias wy in (2.1.1) is not required.

Finally, similarly to the hybrid criterion (2.1.6), one can combine (2.1.10) and (2.1.5):

ZI~

m 2
= L3 S [ w- fa®,m)-1] +8-F, - (x®))- minim. @111
k=l ces k=t

By minimizing the MSE, one is trying to raise the degree of confidence to unity that the
sample belongs to the true class, and make it zero for all other classes. Actually, if the
degree of confidence is 0.9 instead of 1.0, for instance (and others are still close to zero), the
sample is still classified correctly and crisply. In other words, the classifier became worse
with regard to the estimation error, but in terms of classification error it as good as the
original one. This example shows that the classification error responds to the error in the
underlying membership estimates differently than does the estimation error. It also helps to
understand why the improvement of the latter does not necessarily lead to the improvement
of former. Indeed, if the class probability estimates are 0.9 for the true class and about zero
for others, their improvement to unity and zero doesn’t change classification performance at

all. The following objective function is worth trying:
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P = S EpaRw] +5-3(1-1a®) ominimize @112

k=1 c=1

where y(!?,,ﬂz{r(zi"’)—n(z?’,g) ift()— x()| 2 threshold
0 otherwise

B is a weight and index s denotes the class corresponding to max(z(x®, w)) . The threshold

is an additional parameter. The first term of (2.1.12) keeps the class memberships in the

necessary range and the second term helps minimize the number of misclassified samples.

After the weights w are estimated one can apply the algorithm to a test set. For a sample
the algorithm has not seen before the values of the function 7t(x.,w) are calculated for every

class c. The sample is assigned to the class with the largest value of 7(X.,.Ww).

In order to estimate the unknown vector w, the different objective functions above were
minimized by a simulated annealing simplex procedure [17]. This procedure tries to find the
global minimum of a function of many variables. On a number of tests (in particular,
functions with enormous number of minima) the above procedure was able to find either a

global minimum or one of the deepest minima.

What is the idea of the simulated annealing simplex minimization? The ordinary simplex
moves in the space of variables controlled by function values at the simplex vertices. In
annealing simplex minimization some positive random values which depend on the control
parameter (analog of temperature) are added to the function values. These “temperature-

boosted” values are now responsible for the simplex movement and allow the simplex
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method to escape from local minima"’. While traversing the space of variables the simplex
algorithm retains the best minima it has found. Then the “temperature” of the system is
reduced slightly, and the simplex continues its trip from the best found minimum, etc. Of
course there is no guarantee that a global minimum will ever be found. But in general this is
not required. The most important thing is to find a ‘good enough’ minimum, and not get
trapped in local minima. Notice, that in order to achieve good results a proper annealing
schedule is very important. Furthermore, some internal parameters of the minimization
procedure, such as the initial temperature of the system and the initial size of simplex have
to be set properly. This minimization procedure can be quite time consuming, depending on
the dimensionality of the problem and complexity of the objective function. The Logistic

Regression (LR) classifier is implemented in [37].

2.2 Linear Combination of Classifiers

Keeping the previous notation, again consider the task of aggregating the outcomes of »
classifiers for an m-class problem. Consider the vector X;~{xXc, X2, ..., Xnc}, With element
Xic, the membership in class c assigned by the i-th classifier. Compute a linear combination

of these elements:

f(x.,.8)=a,.x, +a,x, +.+a,x,, = 8.5 X c=1l,..m (22.1)

The coefficient a; reflects the importance of the i-th classifier for class ¢ in the combining

classifier. Notice, that unlike LR, where the weights are the same for all classes, in (2.2.1)

" the temperature has to be sufficiently high.
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they are different for different classes. In order to classify an unknown sample, the optimal
values of the parameters a;c have to be estimated first. Consider f{x..a) as the degree of
confidence assigned by the combining classifier that the sample belongs to class c. We
would like to make this confidence value as close as possible to the desired confidence
value #(x;). Regard X, as a random variable. The squared error in estimating class ¢

membership is'*
& (x.,8.) = (x.) - f(Xoo8,))’
The MSE can be obtained by taking expectation over all possible x.:

MSE(5’(x.,a.)) = E(5°(x..3,)) o
MSE(8°(x..a.)) = E((«(x.) - 8! -x.)*) = E(*(x.) - 21(x, )a! - X, +(a’ -x.)*) =

=E(*(x.))-2a. -9 +a. - ®-a,

where 6= E(t(x.)Xx.), ®=E(x,-X.'). In order to calculate the optimal values of the

weight vector a. we take the derivative with respect to a. and set it equal to zero:

V. {MSE@&’(x..8,)}=0-® 2, =0

Then a,=®"'.0. One can perform this procedure for all classes and get m different

vectors ac. The obtained values of the parameters guarantee that within the considered linear

14 error over all classes is the sum of the errors for each class
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model the combining classifier gives a result not worse than that of the best individual

classifier in the sense of the MSE between the obtained and desired outcomes.

In practice, the distribution function of X is usually unknown, and one can’t calculate the
expectations above. Nevertheless, if the samples of the training set are considered
independent, one can estimate the vector 8 and matrix @ as follows:

N
k
> rx®)x

o, =-l-ix(")x(."’ 7] =1
Y Nk:l e e ' Nk=l

Here indices i and j go through all classifiers, index k goes through all training samples, c is

the considered class, and N is the total number of the training samples.

The advantage of this method lies in the simplicity of estimating the values of the
parameters &.. It requires only the inversion of a few matrices of small dimension (the
number of the individual classifiers), a fast and well developed procedure. We used the

singular value decomposition method to invert the matrices [18].

After all coefficients a. are calculated, for any sample of the test set one can calculate the
values of f{x.,a.) for every class using the proper vector a. and the memberships x. supplied
by the individual classifiers. The sample is assigned to the class corresponding to the

maximal value of f{X..a,). The Linear Combination (LC) classifier is implemented in [37].

34



2.3 Entropy Classifier

Again n classifiers, applied to an m-class problem, are to be aggregated. Denote the
membership in class c, assigned by the i-th classifier for the sample k, as x*). For every

sample calculate the confidence value that the sample belongs to classc:

n (k)
H(c,k) = lz X

n < -E(i,k) (.3.1)

The sum is taken over all individual classifiers. The weight -1/E(i,k) reflects the importance
of i-th classifier in the combining classifier. For individual classifiers, strongly suggesting

some particular class, this weight is supposed to be larger than for a less favorable classifier.

Fig. 2.1 The dependence of the weight Fig. 22 The case of aggregating two
-1/E(:) for an individual classifier on the classifiers for a 2-class problem. The
membership values x;, assigned by this dependence of the confidence value H('),
classifier. Case of a 3-class problem. assigned by the combining classifier, on the
Individual classifier assigns the following memberships x,c and x,. provided by
membership values to the classes: x;, Xp, individual classifiers.

and (1-x-xp).

The coefficient E(i,k) is defined as follows:
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EG, k)= x¥ - In(xP)
c=1

and is called the entropy. Notice, that the sum is taken over the clésses. Several simple
examples demonstrate how the confidence value assigned by the entropy based

combining classifier, and the weight for individual classifier depend on the memberships
supplied by the individual classifter. In Fig. 2.1 the behavior of the weight -1/E(:) in (2.3.1)
with respect to the memberships x;. for a 3-class problem is shown. If the outcome of the
individual classifier is close to unity for one class (hence close to zero for the other classes)
the weight for this classifier in the combining classifier increases exponentially. Some
constraints on the value of the weight are introduced in order to avoid such situations. This

is done by not allowing the membership values to be greater than (1-p) and smaller than p,

P ¥x.<p
i€, x.=4x,. ¥fpsx.<(1-p)
l1-p ¥x.>(1-p)

In the calculations a value of p=0.05 was chosen.

The dependence of the confidence value H(:) on the memberships x;. is presented in Fig.
2.2 when aggregating two individual classifiers, applied to a 2-class problem. One observes,
that the confidence value H() doesn’t change much for most values of x;; and x,; and

increases when at least one individual classifier strongly suggests some particular class.

Any sample is classified by assigning it to the class with the largest confidence value.
Notice, that this approach doesn’t have any adjustable parameters, i.c., no training is

required. The Entropy (ENT) classifier is implemented in [37].
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2.4 Confidence Factor Classifier

This approach originates from the techniques used in expert systems. First, the
memberships assigned by the individual classifiers are mapped into a Confidence Factor

(CF) space by the following transformation:
5 1w, 1
CF:E' = logn (n - _)xic +—
n n

The previous notation is used. For the considered sample the CFs coiresponding to the
memberships assigned by individual classifiers are aggregated for every class, resulting inc
CFs. The class corresponding to the maximal value among these CFs is considered as the

most likely class for the considered sample.

The following rule is used to aggregate CFs:

1-(1-a)(1-b) ifa>0,b>0
CF(a,b)=4 —-CF(~a,~b) ifa<0,b<0
a+b, otherwise

Positive and negative CFs are aggregated separately, the resultant positive and negative CFs

are aggregated at the final step.

In Fig. 2.3 the nonlinear mapping of the membership value into CF is presented for the

case of 3 classifiers as an example. Another example of how 2 CFs are aggregated
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is shown in Fig. 2.4. The CF classifier is implemented in [37].

CFi.

-1

Fig. 2.3 Mapping of the membership x;. into Fig. 2.4 The confidence factor aggregation rule.
the confidence factor CF;; for the case of 3 Confidence factors a and b are aggregated into
classifiers. confidence factor CF.

2.5 Fuzzy Integral Classifier

The Fuzzy Integral (FI) is a nonlinear approach to aggregating multiple sources of
uncertain information. Before considering how the outcomes of different classifiers can be
aggregated by FL, some definitions are introduced, following [2,3,16,21]. Consider the case
of finite spaces. A Fuzzy Measure (FM) over a set X is a function

w:2¥ 10,1
such that

® W)0, uXx)=1
® uB22uA)ifBoA
(2¥ is the family of all subsets of X; including the empty set &)

Let X be a set of n information sources (e.g., classifiers) X={C,, C, ..., Cy}. The values

#({Ci}) (&=1, ..., n) are called fuzzy densities. These densities can be interpreted to represent
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the importance of the individual classifiers toward answering a particular question (such as
class membership). The FM of a subset A4 of classifiers is interpreted as the importance of

that subset.

Let f{*) be a function from X to [0,1], and p(-) a FM on X. The Sugeno FI of function f-)
with respect to FM 4(*) is defined by
) £ou=y(FCInuA) @5.1)

where the function values are supposed to be sorted 0<fC;)<AC;)<...<ACy)<1, and 4;2 {C;,
Ci+1, ..., Cn}. V and A denote maximum and minimum operators, respectively. The sorting

reduces the number of subsets required to evaluate the FI from 2" to n.
The Choquet FI of f{*) with respect to (*) is defined by
©] fou =3 (F(C)- £(C)(4) 25.2)
i=l

with the same assumptions as before, and {C)=0.
The generalized FI of f{-) with respect to (°) is defined by

@ fou=\FC)m(4) 253)

with the same assumptions as before. Operator ¢ is a #-norm, the function of two arguments

t [0,1F - [0,1]
such that
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o xtw<ytw forx<y, w<z
® Xty=ytx

e (xty)tz=xt(ytz)

o xt0=0, xtl=x

x,y,z,w € [0,1]

Think of x as the membership in some class provided by the individual classifier, and y as
the importance of this classifier in the combining classifier. The job of the t-norm is to
calculate the degree of confidence that the sample belongs to the considered class, based on
the corresponding outcome of the individual classifier and on the importance of this

classifier. Several examples of f-norms used in this thesis are presented below and in Fig

25.
xty=min(x,y)=xAy 254)
xty=xy (2.5.5)
xty=1-min[l,[(1-x)" +(1-y)’1"’]} p>0 (2.5.6)
- ud , 720 2.5.
a0y 7 @)
xty=log, [1 o 1’“;” - 1)], O<w<oo, w#l (2.5.8)
v —
xty=maxf[0,(A+1)x+y-1)-Ag)} A2-1 | 2.5.9

Let us return to the combining classifier. The » individual classifiers each
classify a sample. For each class ¢ (¢=1, ..., m) they provide n memberships X.={Xic, X2c, ---s |
Xnc} in this class. Suppose the FMs for all classes for all subsets 4; of the individual

classifiers are
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¢t-norm (2.5.8) (w=100) t-norm (2.5.9) (A=0)

t-norm (2.5.9) (A=3) t-norm (2.5.9) (A=5)
Fig. 2.5 Several examples of t-norms used in this thesis. x is the membership in some
class provided by an individual classifier, y is the importance of this classifier, xty is

the degree of confidence that the sample belongs to the considered class, taking into
account both factors x and y.

known. In other words, the importance of every individual classifier, their pairs, triplets,

etc., are known. The memberships are aggregated by the FI as follows:
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» 2
&k p)=2[a®)- FaP.p)] .

where #(x®) is equal to unity for the true class of the sample, and to zero otherwise, m is
the number of classes, 1. is the set of FMs for class c. This error depends on all FMs for all
classes, denoted by u. Calculating the error over all training samples results in the MSE on

the training set, which should be minimized with respect to the FMs 1.

N m 2
MSE(8*(p))= %ZZ[t(;?’)-F(;E‘), p)| -minimize (2.5.10)
k=1 c=1
where N is the total number of the training samples. Eq. (2.5.10) is similar to the Eq. (2.1.3)
for the LR. The difference is in the number of estimated parameters. In the FI approach
there are m(2"-2) FMs'® instead of the n+1 weights in LR. This exponentially growing
number of parameters to be estimated restricts the FI approach to the aggregation of a

relatively small number of the individual classifiers.

One can minimize the weighted instead of the unweighted MSE on the training set. In this
case the objective function is similar Eq. (2.1.4), with the replacement of the function 7(-)
by the FI F(). Minimizing the number of misclassified samples of the training set (the
objective function is similar to Eq. (2.1.5)) is another way of estimating the FMs. The
weighted sum of the MSE on the training set (2.5.10) and the number of misclassified

samples of the training set is another objective function (similar to Eq. (2.1.6)). One can

' Two FMs, for the empty and complete sets of the individual classifiers, are obvious in every
class. Their values are equal to zero and unity respectively.
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also maximize the difference between the FI for the true class of the sample and that for
every other class, as was done for LR in Eq. (2.1.7):

N 2
G =Y ¥ (Fa®, 1)~ Fa®,p )) ~maximize

k=1 ces

here index s denotes the true class of the sample of the training set.

The above criterion can be generalized the same way as for LR. Consider an increasing
function ¥(-), Eq. (2.1.9). Applying this function to the difference between the FI for the
true class of the sample and that for every other class may enhance the difference between
good and poor classifications. The larger the difference, the closer the value of ¥(-) to
unity. The following function is minimized:

G( )=-Li2[‘f’(F(!?),ﬂ )—F(!?),ﬂ ))—1]2 ~minimize 2.5.11)
N o = =

Finally, one can minimize the weighted sum of the above function G(-) and the number of
misclassified samples of the training set. In other words, all objective functions used for the

weight estimation in LR are applicable here.

The estimation of the FMs requires much more computer time than the weight estimation
in LR, because of the higher dimensionality. A simulated annealing simplex procedure was

used in order to minimize the objective functions.

After all FMs are estimated, the classification of an arbitrary sample may be performed. FI

for all classes should be computed using corresponding memberships and FMs. The class

44



corresponding to the maximal value of the FI is considered as the most likely class for the

sample. The Fl-combining classifier is implemented in [37].

2.6 Simple Averaging and Majority Voting Classifiers

Another way of aggregating several individual classifiers can be done by simple
Averaging (AVE) of their outcomes, i.e., the memberships provided by the individual
classifiers for the particular sample are summarized for each class, resulting in m overall
memberships. The class label for the sample is assigned according to the maximal value
among them. This approach is a special case of the linear combination of classifiers, when
the values of all weights are fixed and set equal to unity. This method is very straight-

forward and doesn’t require any training.

The Majority Voting (MV) scheme is another simple method of aggregating classifiers.
For an arbitrary sample one counts how many individual classifiers vote for each of m
different classes, resulting in m scores. Class label for the sample is assigned according to
the maximal score. In the case of a tie, when two or more classes obtain the same highest
score, the average outcomes of individual classifiers for those classes are taken into account.

Class label is assigned to the sample according to the maximal average value.

Both methods of aggregating individual classifiers are considered in order to compare the
classification accuracy of relatively complex methods (such as, LR, FI, which require
nonlinear optimization during the training phase) with that of these simple methods. These

combining classifiers are implemented in [38].
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2.7 Stacked Generalization Classifier

Aggregating classifiers via another classifier is called Stacked Generalization (SG). There
are many different schemes of stacking classifiers. The particular one used in this thesis is
shown in Fig 2.6. The original spectra are preprocessed by different methods and these are
submitted to level 0 of classifiers: ‘classifier I’, ..., ‘classifier n’. Usually LDA, QDA,
ANN or KNN classifiers were used at this stage. The outcomes of these classifiers form a
new set of attributes which is submitted to the classifier of level l This classifier (also
referred as the combining or aggregating classifier) was limited to either LDA or QDA
classifiers in this thesis. If the number of the individual classifiers isn, and the number of
classes is m, then the dimensionality of the new set of attributes becomes n'm. This way of
forming new attributes was proposed by Wolpert [5], and it will be called below as
Wolpert’s method of input generation. When the dimensionality of the classified data
becomes comparable with the number of the training samples, the obtairied classification
often becomes unreliable. For example, in the case of a combining LDA classifier the
estimate of the pooled covariance matrix may become unreasonable; this can lead to good
performance on the training set and poor performance on the test set. In such situations
another way of generating input was used: the median value of the outcomes of the
individual classifiers was chosen for the particular class for the particular sample. That is,
instead of n-m-dimensional input only m-dimensional input (Median(xi1,X21,...,Xn1),
Median(x12,X22,-- -, Xn2),..., Median(X\m.X2m,-..,Xnm)) is used. This method of input

generation will be referred to below as ‘median’. The SG classifier is implemented in [36].
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Classification results

Fig. 2.6 The architecture of the SG classifier, as applied
to data.
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3. Results on Artificial Magnetic Resonance Spectra

It was mentioned in the introduction that the number of MR spectra available is often
limited. As a resuit, the improvement of classification accuracy due to applying different
aggregation techniques to a set of spectra depends on the spectra and on the preprocessing
technique used. To objectively analyze the behavior of the aggregation methods discussed
above, an artificial set was generated. The description of the artificial set of spectra, the

results of applying different aggregation techniques, and the analysis follow.

3.1 Artificial Set of Magnetic Resonance Spectra

In order to make the artificial spectra look similar to real-life spectra the following
procedure was performed. A set of real-life proton MR spectra of brain biopsies (531 data
points each) that belong to three classes was considered as the starting point for this
simulation. Centroid spectra were calculated for all classes. The three centroid spectra were
considered as the average representatives of the classes (Fig. 3.1). An MR spectrum can be
modeled as a sum of Lorentzians plus noise. The AllFit computer program [34] was used to
select a set of 26 Lorentzians (different sets of Lorentzians for different centroid spectra) in
such a way, that the sum of these Lorentzians (or peaks) optimally fitted the considered
centroid (Fig. 3.2). Each Lorentzian is characterized by its position, width, amplitude and
phase. An artificial spectrum was generated by perturbing the position and amplitude of
every peak and summing the modified peaks. The width and phase of the peaks were left

unchanged. Uniform noise was also added to every generated spectrum.
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Fig 3.1 The three centroid spectra of real-life spectra of brain biopsies, used to generate a
set of artificial spectra.

The positions and the heights of the Lorentzians were randomly perturbed as follows:

Pos, = Pos; +P-(RND-05)
Height, = Height; -(1+ H -(RND - 05))).

Here Pos and Height/ are the position and height of the i-th Lorentzian for class ¢ obtained
after fitting with AllFit, RND is a random number in [0,1]. P/2 is the maximal shift in the
position of the Lorentzian (measured in points), H defines the amplitude variability of the

height. An artificial spectrum was computed as follows:
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Fig 3.2 Centroid spectrum for class 1 of MR spectrum of brain biopsies
(solid line) fitted with a sum of 26 Lorentzians (dotted line). The difference
between the original centroid and the one obtained after fitting is shown at
the bottom.



. . Height, ( Pos, ~x
Lo ,Pos,, Height,,...) = .
rentzian(x, Pos,, Height,,...) - [ Pos, _xJz kCOS(Phasei)"' Widh, sin( Phase,)

Width,

26
Spectrum(x) = 2 Lorentzian(x, Pos,,Width,, Height,, Phase,) + Q -(RND - 0.5).

=1

Here x is the current position (in points) in the spectrum being generated, Width; and Phase;
are the width and phase of the i-th Lorentzian (they were not perturbed), RND is a uniformly

distributed random number in [0,1], Q is the level of the noise added to the spectrum.

Fig. 3.3 Several examples of the generated artificial spectra from the same class.
The uniform noise added to the spectra is not shown.
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The spectra were generated in such a way that the three classes overlapped by choosing
the values of the parameters P, H and Q. Different values were tried, and the following ones
were chosen: P=20, H=1,0=0.1. A total of 600 spectra (200 per class) were created, half of
them were used for training, the second half for testing. Some examples of the generated

spectra are presented in Fig. 3.3.

Before any aggregation technique can be applied, the generated spectra must be classified
by several classifiers. Some problems arise when a set of 531-dimensional observations is
being classified. For instance, discriminant analysis requires knowledge of the covariance
matrix, which is usually estimated from the training set. If the number of samples in the
training set is smaller than the dimensionality of the sample, the covariance matrix is
singular. Even if we have enough samples to get a nonsingular estimate of the covariance
matrix, this estimate is reasonable only if the number of the training samples is larger than
the dimensionality of the sample (it is desirable to have a few observations per dimension).
Since the above conditions almost never hold for real-life spectra, the latter are usually
preprocessed first. The same should be done to the artificial spectra. Several preprocessing
techniques were employed to reduce the dimensionality of the artificial spectra. They
included the following:

& each original spectrum of 531 points was condensed into 53 equal consecutive regions,
and the average/median values of the spectrum in each region were calculated

o the same as above for 106 regions

® 12 best regions out of either 53 or 106 above were selected by dynamic programming
[35]

& Principal Component Analysis (PCA) was applied to the spectra. The 20 first Principal
Components (PCs) were selected [35)
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every original spectrum was split into two segments of 265 left-hand and 266 right-hand
points. All the above preprocessing techniques were applied to both segments

10 best regions (with average value of the spectrum in the region) were selected in the
original spectra by a Genetic Algorithm (GA) [35]

After the preprocessing was done the following classifiers were applied to the
preprocessed spectra:

Linear Discriminant Analysis
Quadratic Discriminant Analysis
Artificial Neural Network
K-Nearest Neighbor classifier

Table 3.1 Classification of differently preprocessed artificial spectra by LDA classifier. The
following characteristics are listed: preprocessing technique, classification performance and crisp
classification performance (in parenthesis) for both training and test sets, MSE for the training set.
The definitions of the MSE, classification performance and crisp classification performance are
given in chapter 2.1. The best achieved performance is in bold.

No Classifier and preprocessing technique Training set | Testset | MSE on the
__(crisp) (crisp) training set |

1 LDA on 12 best regions out of 106; full spectra; 0.73 0.70 0.3586
average value in a region (0.577) 0.50)

2 LDA on 106 regions; full spectra; average value 0.833 0.717 0.2705
in a region (0.80) (0.69)

3 LDA on 106 regions; full spectra; median value 0.783 0.727 0.3523
in a region 0.727) (0.683)

4 LDA on 12 best regions out of 106; full spectra; 0.646 0.636 0.4590
median value in a region (0.363) (0.363)

5 LDA on first 20 PCs from the full spectra 0.567 0.583 0.5315

(0.307) (0.32)

6 LDA on 12 best regions out of 53; full spectra; 0.72 0.697 0.3645
average value in a region (0.42) (0.46)

7 LDA on 53 regions; full spectra; average value 0.767 0.736 0.3296
in a region (0.683) (0.63)

8 LDA on 53 regions; full spectra; median value 0.74 0.723 0.3590
in a region (0.643) 0.617)

9 LDA on first 20 PCs from the left-hand half of 0.63 0.636 0.4890
the spectra (0.35) (0.38)

10 | LDA on 12 best regions out of 53; left-hand 0.683 0.637 0.4703
half of spectra; avergge_vaMr_egion (0.34) (0.373)
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11 | LDA on 12 best regions out of 53; left-hand 0.67 0.63 0.4731
half of spectra; median value in a region (0.34) (0.353)
12 | LDA on 53 regions; left-hand half of spectra; 0.67 0.72 0.4636
median value in a region (0.55) (0.597)
13 | LDA on first 20 PCs from the right-hand half of 0.603 0.573 0.5019
the spectra (0.33) (0.347)
14 | LDA on 12 best regions out of 53; right-hand 0.643 0.647 0.4018
half of spectra; average value in a region (0.38) (0.39)
15 | LDA on 53 regions; right-hand half of spectra; 0.707 0.693 0.3998
average value in a region (0.61) (0.59)
16 | LDA on 12 best regions out of 53; right-hand 0.66 0.603 0.4148
half of spectra; median value in a region_ (0.327) (0.367)
17 | LDA on 53 regions; right-hand half of spectra; 0.683 0.633 0.4734
median value in a region (0.52) (0.52)
Performance on test set
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Fig. 3.4 Classification performance of the individual LDAs, and the LR-combining classifier on the
training and test sets, artificial spectra. Stars correspond to the LDA classifiers, small diamonds to
the aggregation of 17 available LDA classifications, big diamonds to aggregation of a subset of 7
classifications out of 17, Different diamonds of the same type correspond to different objective

Performance on training set

functions.

We are going to aggregate the outcomes that were obtained from applying the classifiers to
the differently preprocessed spectra. For example, the results of applying an LDA classifier

to the preprocessed artificial spectra are presented in Table 3.1.
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3.2 Performance of Logistic Regression Classifier

The LR-combining classifier was applied to aggregate the individual LDA classifications
of Table 3.1. A subset of 7 top performing classifications out of 17, and all 17
classifications were aggregated. Several objective functions were minimized in order to
estimate the weights for the individual classifiers. They included:

e unweighted MSE on the training set (2.1.3)

e the number of misclassified samples of the training set (2.1.5)

e the number of misclassified and fuzzily classified samples of the training set

e function (2.1.10)

e unweighted MSE on the training set plus the number of misclassified samples of the
training set (2.1.6) (the second term of (2.1.6) had different weights: p={1, S, 0.3})

¢ function (2.1.11) with different values of the weight

o unweighted MSE on the training set plus the number of misclassified samples of the
training set (2.1.12), with different values of the threshold {0.9, 0.8, 0.7}

o function (2.1.8), etc.

In some cases the estimated weights were constrained by the absolute value (jw|<50) during
minimization, in other cases no constraints were applied. The same classifications were
aggregated in all aggregation instances'®. In Fig 3.4 both individual LDA and LR-combined
classifications of the artificial spectra are presented. The axes are: horizontal - fraction of
correctly classified training samples (or performance on the training set), vertical - same for
the test set (or performance on the test set). The LDA classifiers which are being aggregated
are shown by stars. The results of combined classification are shown by diamonds. Different

diamonds of the same type correspond to different objective functions. The LR-combining

'® minimization of different objective functions results in different estimates for the weights, which
leads to different classification outcomes for the combining classifier.
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classifier has an equal or better performance on the training set (resubstitution) than the
individual LDA classifiers. The performance on the test set is better in most of the cases,
although for some objective functions a degraded performance was obtained. The worst
result was obtained when objective function (2.1.5) was minimized during aggregation of
17 individual classifications.

The performance of the LR-combining classifier as a function of the number of
aggregated classifiers was also analyzed. For this purpose all available LDA classifications
were sorted in decreasing order of the performance on the training set, and then the subsets
containing different number of top performing classifications were aggregated. The MSE on
the training set (2.1.3) was selected as the objective function. The results are shown in Fig.
3.5. Any combined classification has smaller MSE than any individual LDA classification,
as expected. A smaller MSE sometimes leads to an increase of the classification

performance on the training and/or test sets. In some situations smaller MSE didn’t lead to

MSE Performance on training set b)
0.5 ‘
0-81  performance on test
0.4 0.75
0.7
0.3
0.65
\\.\'/\'—- I 3 o 5 ” 15
3 6 9 12 15

# of classifiers

# of classifiers

Fig 3.5 LR-combining classifier. MSE on the training set (a), and classification performances
on the training and test sets (b) as a function of the number of aggregated classifiers. MSE on
the training set (2.1.3) was the objective function. MSE and performances of the individual
classifiers which were aggregated are shown as points at the position corresponding to 0

classifiers.
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higher classification performance. The analysis of the classification performance on the
training set as a function of the number of aggregated classifiers suggested that the optimal

number of individual classifiers to aggregate by LR is in the 4-8 range.

It is important that the training set contains sufficient number of samples. To check this,
the following procedure was performed. A subset of 7 classifications was selected from
Table 3.1 to aggregate using the combining classifier. The combining classifier was trained
on subsets of the original training set containing 180, 240 and 300 samples (with equal
number of samples in each class) resulting in different estimates of the weights for the
individual classifiers. Then it was applied to the test subset consisting of 240 samples.
Different aggregation schemes using 5 different objective functions were tried. The results

are shown in Fig. 3.6. Stars correspond to the performance on the training set, diamonds on

Performance

. .« o L :
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LDA classifiers ¥
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180 240 300 180 240 300

Fig. 3.6 Classification performance of LDA and LR-combining classifiers on the
training and test sets as a function of the size of the training set. 7 individual
classifications were aggregated. 5 objective functions were minimized,
corresponding to S5 different aggregation schemes. Stars correspond to the
performance on the training set, diamonds on the test set. The individual
classifications are numbered according to Table 3.1
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Table 3.2. Six classifications of preprocessed artificial spectra with the best classification
performances on the training and test sets. Preprocessing technique, classification performance and
crisp classification performance (in parenthesis) for both training and test sets, and the MSE for the
training set are presented. The best achieved performance is in bold.

No Classifier and preprocessing technique Training set | Testset | MSE on the
(crisp) (crisp) | training set
1 | QDA on 12 best regions out of 106, full spectra, 0.87 0.863 0.188
average value in a region (0.82) (0.81)
2 | QDA on 12 best regions out of 53, full spectra, 0.897 0.913 0.150
average value in a region (0.87) (0.887)
3 | QDA on 12 best regions out of 53, full spectra, 0.893 091 0.163
median value in a region (0.86) (0.877)
4 | QDA on 10 regions selected by GA, full spectra, 0.843 0.847 0.223
average value in a region (0.773) (0.793)
5 | QDA on first 20 PCs from the left-hand half of 0.717 090 0418
spectra (0.637) (0.833)
6 | QDA on 12 best regions out of 53, right-hand half 0.873 0.92 0.183
of spectra, average value in a region (0.833) (0.87)

the test set. The results indicate that training the LR-combining classifier on different
training sets gives different but close performance on both training and test sets. For all
three training sets most of the considered aggregation schemes have better classification
performance on the training and test sets than do the individual LDA classifiers. Changing
the number of the training samples from 180 to 300 doesn’t change much the performance

of the individual LDA classifiers on the training set.

Several types of classifiers such as LDA, QDA, ANN, 3-NN were applied to differently
preprocessed artificial spectra. Some of the classifiers performed well, some poorly. It was
found that QDA had the best performance on both training and test sets. LDA performed
worse, ANN performed well on the training set, but not very well on the test set. The 3-NN
classifier failed on these data. Six classifications with the best classification performances

on the training and test sets were selected among all available classifications. All of them
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happened to be QDA classifications, see Table 3.2. These classifications were aggregated

by the LR aggregation schemes using the following objective functions to estimate the

weights for the individual classifiers:

unnweighted MSE (2.1.3)

unnweighted MSE plus the number of misclassified samples of the training set (2.1.6),
B=5

function (2.1.11), B=5

unnweighted MSE plus the number of misclassified and fuzzily classified samples of the
training set, B=5, Eq. similar to (2.1.6) '
function (2.1.12), threshold=0.8 and B=5

function (2.1.8)

the number of misclassified and fuzzily classified samples of the training set

The performance and crisp performance of the individual QDA and LR-combining

classifiers on the training and test sets are presented in Fig. 3.7. The QDAs are shown by

stars, the combined classifications by diamonds. All aggregation schemes demonstrated an

improvement in classification accuracy. The classification performance of the LR-

combining classifier increased from 90% up to 95% on the training set (resubstitution), and

from 92% up to 96% on the test set. Crisp performance also increased on both training and

test sets for most of the combining classifiers, Fig. 3.7 (b).
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Fig 3.7 Classification performance (a) and crisp classification performance (b) of the
individual QDAs, and LR-combining classifier on the training and test sets. Stars correspond to
QDA classifiers, diamonds to different aggregation schemes that fuse the QDAs.



3.3 Performance of Linear Combination, Entropy, Confidence Factor,
Majority Voting, Simple Averaging, and Stacked Generalization
Classifiers

These six aggregating classifiers either do not require any training or the training does not

require a nonlinear optimization, i.e., they are fast. This is why they are being considered

ENT
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Fig. 3.8 Classification performance of the individual LDAs, and LC, ENT, CF,
AVE, MV and SG-combining classifiers on the training and test sets, artificial
spectra. Stars correspond to individual classifiers, small diamonds to the
aggregation of 17 classifications, big diamonds to aggregation of a subset of 7
classifications out of 17. The subscripts in the SG schemes correspond to
different aggregating classifiers and different ways the input was generated for
them: 1 - LDA and median-based, 2 - LDA and Wolpert’s, 3 - QDA and
Wolpert’s

together. In order to compare the results of applying these schemes with that of the LR-
combined classification the same set of the preprocessed artificial spectra (Table 3.1) was
aggregated. The results are presented in Fig. 3.8. The individual classifiers are shown by

stars. Small and big diamonds correspond to different subsets of aggregated classifiers: 17
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Fig. 3.9 LC-combining classifier. Classification performance on the training and test sets (a), and MSE
on the training set (b) as a function of the number of aggregated LDA classifiers. Performances and
MSE for the individual classifiers are shown as points at the positions corresponding to 0 classifiers.
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Fig 3.10 The ENT, CF, AVE and MV-combining classifiers. Classification performance on
the training and test sets as a function of the number of aggregated classifiers.
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different test sets. For one of the test sets the aggregation of the outcomes of the individual
classifiers improved the classification performance of the combining classifier. For the other
little or no improvement was obtained. This result suggests that the aggregation of
classifiers doesn’t always lead to better classification performance. Both the training and
test sets were generated the same way. The only reasonable explanation why the combining
classifiers classify one set of spectra better than the other is that the ‘randomly’ generated

spectra of the test set happen to be distributed more favorably than those of the training set

Similar analysis has been done for the SG-combining classifier. The results for the LDA-
based SG classifier with median and Wolpert’s methods of input generation are presented in
Fig. 3.11. The first classifier showed no improvement in the performance on the training set,
Fig 3.11 (a). In fact, some deterioration occurred in comparison to the performance of the
best individual classifier. This can be understood, if we look at the dependence of the MSE
on the training set as a function of the number of aggregated classifiers, Fig 3.11 (b). None
of the combining classifiers has a smaller MSE than the best individual classifier. Thus, it is
unlikely to obtain improved performance on the training set!’. Nevertheless, the
performance of this combining classifier on the test set has improved. Wolpert’s SG-
combining classifier, however, showed an improvement of the classification performance
on both training and test sets, Fig 3.11 (c). The MSE on the training set decreases with

increasing number of aggregated classifiers, Fig 3.11 (d).

17 Although there are examples when classifiers have larger MSE, and higher classification
performance at the same time.
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Six classifiers, which demonstrated top performance on the training and test sets of
artificial spectra, were aggregated by all methods considered here, as was done for the LR-

combining classifier in chapter 3.2. The results are shown in Fig 3.12. All combining
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Fig 3.12. Classification performance (a) and crisp classification performance
(b) of individual QDAs and different combining classifiers. Stars correspond to
the individual classifiers, diamond to their aggregation. Combining classifiers
are marked respectively. For the meaning of SG,4 see the text.



classifiers showed improved performance on the training set, and, with the exception of
one, on the test set. Abbreviations SG;4 mean SG classifiers with the following aggregating
classifiers and input generation methods: LDA and median, LDA and Wolpert’s, QDA and
median, and QDA and Wolpert’s, respectively. Crisp performance also improved for most
of the methods. The comparison of these results with those of the LR schemes (Fig. 3.7)

indicates that some fast methods produce a similar increase in the classification

performance.
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3.4 Performance of Fuzzy Integral Classifier

Since the number of the estimated FMs of the FI-combinin~ classifier increases
exponentially with the number of aggregated classifiers, it is practically impossible to apply
this classifier to the aggregation of 17 (or even a subset of 7 out of 17) LDA classifications
of Table 3.1. The number of the FMs to be estimated is 3(2"7-2) in the first case, and 3-(2’-
2) in the second. In addition, even if such an optimization problem were solved, the results
would be very unreliable, because 100 training samples per class is obviously not enough

for such a high-dimensional space. For the same reason the analysis of the classification
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Fig. 3.13 Classification performance of the individual LDAs, and the FI-combining
classifiers on the training and test sets. Different objective functions were minimized in
order to estimate FMs. Stars correspond to individual classifiers, small diamonds to
aggregation by Sugeno FI (S,-Sy), big diamonds to aggregation by Choquet FI (C;-C5).
The indices in S;-Sy and C;-C; correspond to different objective functions. For their
definition see the text.
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performance as a function of the number of aggregated classifiers was not performed for

the FI-combining classifier.

A subset of 3 individual classifications was selected out of the 17 LDA classifications of
Table 3.1 to submit to the Fl-combining classifier. The dimensionality of the optimization
problem is 3-(2°-2)=18 then. These individua! classifications were:

e LDA on 106 regions of full spectra, with average values in each region
e LDA on 106 regions of full spectra, with median values in each region
o LDA on 53 regions of full spectra, with average values in each region.

The results of the FI-combining classification based on the Sugeno and Choquet FIs are
presented in Fig 3.13. Different objective functions were minimized on the training set in

order to estimate the values of the FMs. They were:

for the Sugeno FI-combining classifier:
o S - the unweighted MSE on the training set (2.5.10)

e S; - the sigmoid-like function (2.1.9) applied to the difference between the FI value for
the true class of the sample and the FI value for any other class (2.5.11)

e S; - the sigmoid-like function applied to the difference between the FI value for the true
class of the sample and the maximal FI value among those for other classes

o S, - the number of misclassified samples of the training set

e S; - the weighted sum of the unweighted MSE on the training set (2.5.10) and the
number of misclassified samples of the training set. The second term had unit weight.

o S - the same as above but the weight was set to 5.

e S, - the weighted sum of the sigmoid-like function applied to the difference between the
FI value for the true class of the sample and the FI value for any other class (2.5.11), and
the number of misclassified samples of the training set. The second term had unit weight.

e S; - the number of misclassified or fuzzily classified samples of the training set

o Sy - the same as above but the weight was set to 5.
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- Eq.(2.5.5)
- Eq. (2.5.6) with p=0.7

2 - Eq.(2.5.9) with A=1
4 - Eq.(2.5.7) with y=2
6 - Eq.(2.5.6) with p=2

1

3

5 - Eq.(2.5.9) with =0
7 - Eq.(2.5.7) with y=20
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Fig. 3.14 Classification performance of the individual LDAs, and the generalized FI-combining

classifiers on the training and test sets. Two objective functions were minimized on the training

set in order to estimate FMs. Stars correspond to the individual classifiers, small diamonds to the

aggregation scheme using the first objective function, big diamonds to the aggregation scheme

using the second one. Notations 1-8 correspond to different -norms used, see text for details.

The results of the combined classification are presented in Fig 3.14. Stars correspond to the
individual classifiers, small diamonds to the aggregation scheme using the first objective
function, big diamonds to the aggregation scheme using the second one. Notations 1-8 refer
to the type of t-norm used. The results indicate that all aggregation schemes improved the

classification performance on the training and test sets by 1-3% and 2-4% respectively.

71



Again, the crispness of the classification didn’t improve, and stayed near the average of the

crisp performances of the aggregated classifiers.

Different FI aggregation schemes, i.e., based on different types of FIs, different objective
functions and different /-norms in the case of generalized FI, were also applied to the
aggregation of four QDA classifications of the artificial set of spectra. These four QDA
classifications are:

e QDA on the 12 best regions selected by dynamic programming out of 106 regions of full
spectra, with average values in each region
e QDA on the 12 best regions selected by dynamic programming out of 53 regions of full

spectra, with average values in each region
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Fig 3.15 Classification performance of the individual QDAs, and different FI-
combining classifiers on the training and test sets. Different type of FIs, objective
functions, and s-norms were used. Stars correspond to the individual classifiers,
diamonds to their aggregations.
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e QDA on the 12 best regions selected by dynamic programming out of 53 regions of full
spectra, with median values in each region
e QDA on the 10 best regions selected by GA on full spectra, with average values in each
region
As one can see in Fig 3.185, all FI-combining classifiers, with one exception, showed better
classification performance on both training and test sets. This exception happened to be the
combining classifier using the generalized FI with f-norm (2.5.5), and the objective function
‘the number of misclassified samples of the training set’. The crisp performance of the
aggregation schemes stayed near the average of the crisp performances of the individual

classifiers, Fig. 3.16. However, several aggregation schemes, based on

o generalized F1, MSE on the training set (2.5.10) + the number of misclassified samples
of the training set, unit weights for both terms, -norm (2.5.9), A=1

o generalized FI, MSE on the training set (2.5.10) + the number of misclassified samples
of the training set, unit weights for both terms, f-norm (2.5.6), p=0.7

o generalized FI, objective function (2.5.11), -norm (2.5.6), p=0.7

o generalized F1, the number of misclassified samples of the training set, -norm (2.5.9),
A=1

gave a better crisp performance on both training and test sets. At the same time the

aggregation schemes based on Sugeno FI with ‘the number of misclassified samples of the
training set’, and ‘function (2.5.11) + the number of misclassified samples of the training
set’ objective functions had a worse crisp performance than any of the individual
classifiers. However, for other sets of spectra the situation may be different; it is data

dependent.
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In general, the Fl-combining classifier often improves classification performance in

comparison to that of the individual classifiers. Crisp performance improves occasionally.
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Fig 3.16 Crisp classification performance of four individual QDAs, and FI-combining
classifiers on the training and test sets, artificial spectra. FI aggregation schemes are based
on Sugeno, Choquet and generahzed FIs, different objective functions, which were
minimized on the training set in order to estimate FMs, and different r-norms (for the
generalized FI). Stars correspond to the individual classifiers, diamonds to the aggregating
classifiers.

3.5 Comparison of Classification Accuracy

Finally, all aggregation methods were compared, while applied to the set of four QDA
classifications, Fig. 3.17. The following schemes of the FI, LR, and SG-combining
classifiers were applied:

o FI, - Sugeno FI, objective function (2.5.11) + the number of misclassified samples of the
training set, unit weights for both terms
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e FL - Choquet FI, MSE on the training set (2.5.10) + the number of misclassified
samples of the training set, unit weights for both terms

o FL; - generalized FI, MSE on the training set (2.5.10) + the number of misclassified
samples of the training set, unit weights for both terms, ~-norm (2.5.9), A=1

o FL - generalized FI, MSE on the training set (2.5.10) + the number of misclassified
samples of the training set, unit weights for both terms, -norm (2.5.6), p=0.7

o FI; - generalized FI, objective function (2.5.11), z-norm (2.5.6), p=0.7

e LR, - MSE on the training set + the number of misclassified samples of the training set
(2.1.6), unit weights for both terms

o LR, - MSE on the training set (2.1.3)

o LR; - objective function (2.1.11), unit weights for both terms

o LR, - objective function (2.1.10)

o SG; - aggregating LDA classifier, median scheme

o SG; - aggregating LDA classifier, Wolpert’s scheme

¢ SGj - aggregating QDA classifier, Wolpert’s scheme

Practically all methods improved classification accuracy of both training and test sets, Fig.
3.17 (a). The MV-combining classifier had performance close to that of the best individual
classifier (slightly better for the training set, and slightly worse for the test set). SG3 didn’t
perform well for either of these data. The ENT classifier, one LR, two SG and three FI
schemes improved the crisp classification performance for both training and test sets, Fig.
3.17 (b). Most of the others had crisp classification performance slightly worse that that of

the best individual classifier. One FI and two LR schemes had worse crisp performance.

Thus, computationally simple and fast aggregation methods can perform as well as

complicated and very time consuming aggregation methods.
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Fig. 3.17 Classification (a) and crisp classification (b) performances of four QDAs, and
various aggregation methods. Stars correspond to individual classifications, diamonds
to the combined classifications. For the meaning of the indices of the LR, FI, and SG
schemes see text.
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After analyzing the performance of the different aggregation methods, thirteen were

selected to apply to real-life spectra. The description of the methods, parameters if required,

and abbreviations are presented in Table 3.3.

Table 3.3 Aggregation techniques found to work well on the artificial MR spectra. These techniques
will be applied to classifying real-life spectra in subsequent chapters. The abbreviations below will
be used to distinguish among the methods.

#

Amation technique, parametcrs

Abbreviation

Confidence Factor

CF

Entropy

ENT

Majority Voting

MV

LWt |r—

Logistic Regression; objective function: the MSE on the training set + the
number of misclassified training samples, Eq. (2.1.6), f=1., the weights are

LR,

constrained by absolute values [w|<50 during minimization
Logistic Regression; objective function: the MSE on the training set + the
number of misclassified training samples, Eq. (2.1.6), 3=5., the weights are
constrained by absolute values [wj<50 during minimization

LR,

Logistic Regression; objective function: the MSE on the training set + the
number of misclassified and fuzzily classified training samples, Eq. similar
to Eq. (2.1.6), B=1., the weights are constrained by absolute values [w|<50
during minimization

LR;

Logistic Regression; objective function: Eq. (2.1.12), threshold=0.8, the
weights are constrained by absolute values [w|<50 during minimization

LR,

Generalized Fuzzy Integral; objective function: the MSE on the training set
+ the number of misclassified training samples, Eq. similar to Eq. (2.1.6),
R=l., t-norm (2.5.6), p=0.7

FI,

Generalized Fuzzy Integral; objective function: Eq. (2.5.11), t-norm (2.5.6),
p=0.7

FI,

10

Generalized Fuzzy Integral; objective function: the MSE on the training set
+ the number of misclassified training samples, Eq. similar to Eq. (2.1.6),
g=l., t-norm (2.5.9), A=1.

FI;

11

Generalized Fuzzy Integral; objective function: the number of misclassified
training samples, Eq. similar to Eq. (2.1.5), t-norm (2.5.9), A=1.

12

Stacked Generalization, aggregating classifier LDA, median scheme

13

SG,

Stacked Generalization, aggregating classifier LDA, Wolpert’s scheme

SG;
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3.6 Combining randomized classifiers

In chapter 3.3 we have analyzed the dependence of classiﬁcati(;n performance of the
combining classifiers on the number of aggregated classifiers. The performances of the
individual classifiers ranged from less than 50% up to 85%, i.e., were very different. It is
interesting to see what improvement in classification accuracy one can obtain if the
aggregated classifiers had similar performances (but of course different classifications). In
other words, what would happen if the outcomes of individual classifiers are distributed

about some ‘average’ outcome.

The following procedure was performed. Sets of preprocessed real-life spectra were
classified by an LDA classifier. The classification outcomes (i.e., memberships in different

classes) were perturbed by adding 20% noise, and then normalized. Twelve

1 1
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Fig. 3.18 Classification performance of LR & LC-combining classifiers, and the MSE on the
training set as a function of the number of aggregated classifiers with similar performances.
Classification performances and MSE of the aggregated classifiers are shown as points at the
position corresponding to 1 classifier.
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‘classifications’ were obtained this way. These classifications were aggregated by the LR

and LC-combining classifiers. The weights for the individual classifiers were obtained by
minimizing MSE on the training set. The results are shown on Fig. 3.18. The MSE of the
combining classifiers decreases monotonically with increasing number of aggregated
classifiers. Classification performance generally increases with increasing number of

aggregated classifiers. Crisp classification pirformance also improves, Fig. 3.19.
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Fig. 3.19 Crisp classification performance of LR & LC-combining classifiers, and the MSE on the
training set as a function of the number of aggregated classifiers with similar performances. Crisp
classification performances and MSE of the individual classifiers are shown as points at the
position corresponding to 1 classifier.

3.7 Comparison of Speed of Combining Classifiers

Aggregation methods such as the LR, LC, and FI classifiers require estimating unknown
parameters (weights for the LR and LC, and FMs for FI classifier) during the training stage.
These parameters are calculated by minimizing an objective function on the training set. In
general, a nonlinear constrained optimization technique is required for the LR and FI
classifiers. The weights in the LC-combining classifier can be estimated by inverting several

matrices of small dimension. The number of the parameters to be estimated increases

79






3.8 Choosing Individual Classifiers

When many individual classifications are available, the problem of how to choose the
classifications to aggregate arises. As was mentioned in several papers, aggregating the best
individual classifications does not necessarily lead to the best performance of the combining
classifier. The independence of classifications is a more important requirement. Suppose
two classifiers have high classification performances on some data set. This means that
most of the samples of the data set are classified correctly by both classifiers, and just a few
of them are misclassified. If the classifiers misclassify these samples into the same class,
they are correlated in making errors, otherwise the classifiers are uncorrelated. The
uncorrelated classifiers are of interest to combining classifiers. This lack of correlation helps
to improve the performance by aggregating these classifiers. Obviously, the better the
performance of the individual classifiers, the smaller the correlation between them in
making errors, just because fewer samples are misclassified. It is less likely that aggregating
such classifiers will improve much the classification performance. On the other hand,
classifiers with low performance may be less correlated in making errors, and although their
aggregation may improve classification accuracy to a higher degree, this improved accuracy
can be worse than the accuracy of a high performing individual classifier. Thus, a trade-off
between the classification performance of classifiers and the correlation among them in

making errors has to be considered selecting classifiers for aggregation.

The following procedure of selecting classifiers is proposed. Denote the performance of
the i-th classifier by P;, and the correlation in making errors between the i-th and j-th

classifiers by Cj;. Calculate the correlation in making errors between all pairs of classifiers.
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in both lists (lines 1 and 3), but the order is different. For instance, if one selects 3
classifications for aggregation, the proposed procedure suggests selecting the two
classifications with the best performances (43 and 12), but classification 32 instead of
classification 11 despite the latter’s better performance. The value of parameter 8 was set to

10.

The aggregation methods of Table 3.4 were applied to the aggregation of classifications

{43,12,11} (set 1) and {43,12,32} (set 2), and the results are compared, Fig 3.20.
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Fig. 3.20 Comparison of the classification performances of the combining classifiers
aggregating 3 classifications with the best classification performances on the training
set (set 1), and 3 classification with high performances and low correlation in making
errors on the training set (set 2). Aggregation methods of Table 3.4 were applied.
The individual classification are shown by stars, aggregations of set 1 classifiers by
small diamonds, aggregations of set 2 classifiers by big diamonds.

The individual classifications are shown as stars, small diamonds correspond to the
aggregation of the classifiers of set 1, big diamonds to the aggregation of the classifiers of

set 2. The results are quite interesting. Most of the combining classifiers aggregating the
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individual classifiers of set 2 have better classification performance on the training set than
for the classifiers of set 1. Thus, taking into account the independence in making errors
among individual classifications while choosing what individual classifications to aggregate

can indeed improve the classification performance on the training set.
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Fig. 3.21 Comparison of the crisp classification performances of the
combining classifiers aggregating 3 classifications with the best classification
performances on the training set (set 1), and 3 classifications with high
performances and low correlation in making errors on the training set (set 2).
Aggregation methods of Table 3.4 were applied. The individual classification
are shown by stars, aggregations of set 1 by small diamonds, aggregations of
set 2 by big diamonds.

Now look at the results on the test set. For some reason the individual classification 11 of
the set 1 has a significantly higher performance on the test set than all others. This raises the
performances of the combining classifiers on the test set. None of the individual
classifications of set 2 has comparable performance. As a result, the classification

performances of the combining classifiers aggregating the classifiers of the set 2 are worse,
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although in general they are better than the corresponding performances of the aggregated
classifiers. In the case of aggregating classifiers of set 1, the performances on the test set are

near the average of that of the aggregated classifiers.

The comparison of crisp classification performances is shown in Fig 3.21. The
performances on the training set of the combining classifiers aggregating the classifiers of
set 2 are not significantly better than that of the combining classifiers aggregating the
classifiers of set 1. The crisp performances on the test set of the combining classifiers

behave similarly to the performances on the test set.
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4. Results on Real-Life Magnetic Resonance Spectra

The thirteen aggregation techniques of Table 3.3, which were found to perform well on
the set of artificial MR spectra, were applied to real-life spectra. The description of the
analyzed spectra, the preprocessing and classification methods used, the results of the

combined classification, and some analysis follow.

A set of 215 proton MR spectra of brain tissue samples was classified. The spectra belong
to three classes: high grade astrocytoma, meningioma and epilepsy. 84 samples constituted
the training set, the rest were used for testing. Each spectrum consists of 550 points. Several
preprocessing techniques were employed in order to prepare the spectra for classification.
These techniques were applied to the original unnormalized spectra, as well as to
normalized spectra. They included:

o the first 18 PCs, which explain most of the variance in the spectra, were selected by PCA
for the unnormalized spectra

o the first 11 PCs were selected for the normalized spectra

e each unnomalized spectrum was condensed into 55 consecutive regions, and the mean
value of the spectrum in each region was calculated. Then 23 regions were selected by

dynamic programming
o similarly, 25 regions were selected for the normalized spectra

The preprocessed spectra were classified by ANN, LDA, QDA and KNN classifiers,
resulting in approximately two dozen classifications. The best classifications were the LDA
and ANN classifications in general. The QDA classifier performed worse than the LDA

classifier. Thus, it seemed to be more beneficial to apply the LDA classifier to differently
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preprocessed spectra rather than to apply the QDA classifier at all. The KNN classifier
performed very poorly on these spectra. 8 classifications were selected to submit to the
combining classifiers of Table 3.3. The results of the individual and combined
classifications are presented in Fig 4.1 (a). The individual classifications are shown by stars
and big diamonds. The combined classifications are shown by small diamonds. Most of the
aggregating classifiers were applied to the 8 classifications. The FI-combining classifier was

applied to four individual classifications shown by big diamonds.

Most of the aggregation methods improved the classification performance on the training
set, however only a few of them improved the performance on the test set. The crisp
classification performance on the training set was improved by a few methods (mainly, by
the LR and FI classifiers), but in general remained near the average on the test set, Fig 4.1
(b). Interestingly, classification performance on the training set was improved mainly by the
LR and FI classifiers, the ones which were trained on this set. At the same time these
classifiers perform relatively poorly on the test set. Other combining classifiers which don’t
require training (except the SG classifier) didn’t perform as well as the LR and FI classifiers

on the training set, but performed much better on the test set.

A set of proton spectra, spectra of cervical biopsies, was classified by the aggregating
classifiers. Of the 98 spectra available, 40 were used for training the combining classifiers,
the rest for testing. Each spectrum consists of 650 points. The spectra belong to 2 classes.

The spectra were preprocessed by
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o condensing each spectrum into either 65 or 130 consecutive regions, and calculating the
mean value of the spectrum in each region. Then the 12 best regions were selected by

dynamic programming

¢ selecting the 10 regions in the original spectra by GA

The preprocessed spectra were classified by an LDA classifier. The QDA classifier was also
applied, but the obtained results were poor. The KNN classifier was not applied because of
insufficient number of training samples. After the individual classifications were obtained
the combining classifiers were applied to 3 selected classifications. The results of
classification are presented in Fig. 4.2. Stars correspond to the individual classifications,
diamonds to the combining classifiers. The LR-combining classifier performed well on this
set of spectra. Both classification and crisp classification performances were improved by
aggregation. This data set is difficult to classify because of the insufficient number of the
spectra available. A very high classification accuracy can be achieved on the training set
(97.5% in the case of the LDA classifier applied to 10 regions selected by GA), yet applying
the same classifier to the test set barely achieves 64% accuracy. Aggregating individual
classifiers improved the classification accuracy on the test set from 67.2% up to 70.7%, and
crisp classification accuracy on the test set from 62% up to 67.2% by aggregating the

individual classifiers.

A set of proton brain spectra was also classified. This set has 215 spectra, 84 of them
constitute the training set, the rest the test set. The spectra belong to 3 classes. Each
spectrum consists of 550 points. The spectra were preprocessed as follows:

o the first 10 PCs were selected by applying PCA to normalized and unnormalized spectra
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Fig. 4.1 Classification performance (a) and crisp performance (b) of the individual and
combining classifiers on the training and test sets, real-life brain spectra. The individual
classifiers are shown by stars and big diamonds. Small diamonds correspond to the
combining classifiers. All aggregations were performed on the 8 individual classifiers,
except for the FI classifiers, which were applied to the 4 individual classifiers shown as big
diamonds. The definitions of the abbreviations are described in Table 3.3
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Fig. 4.2 Classification performance (a) and crisp performance (b) of the individual
and combining classifiers on the training and test sets, cervical spectra. Individual
classifiers are shown by stars. Small diamonds correspond to combining classifiers.
The definitions of the abbreviations are described in Table 3.3



o each normalized and unnormalized spectrum was condensed into 55 consecutive regions,
ard the mean value of the spectrum in each region was calculated. The best 8 regions

were selected by dynamic programming
The preprocessed spectra were classified by the ANN, LDA and QDA classifiers, and 8
classifications were selected from all obtained classifications. The combining classifiers of
Table 3.3 were applied to these classifications, and the results are shown in Fig. 4.3. Again,
stars and big diamonds represent the individual classifications, small diamonds their
aggregation. The FI classifiers were applied to the 4 individual classifiers (shown as big

diamonds).

Most of the combining classifiers improved the classification accuracy on the training set.
Only the LR and SG-combining classifiers improved the classification and crisp
classification performance on the test set. The classification performance on the training set
improved from 92.8% for the best individual classifier up to 98.8%, on the test set from
84.7% up to 87.8%. The crisp classification performance improved from 89.3% up to
98.8% on the training set, and from 83.2 for the best individual classifier up to 87.7% on the
test set. The most successful combining classifier was the LR classifier, minimizing the
MSE on the training set and the number of misclassified or fuzzily classified training

samples together.

Three classifiers of different architecture (LDA, QDA and ANN) were applied to the same
set of preprocessed spectra (the 8 best regions of the spectra selected from 55 regions by
dynamic programming). These classifications were aggregated by the same set of

combining classifiers. The results are presented in Fig. 4.4. Practically all aggregation
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methods improved both classification and crisp classification accuracy on both training and
test sets. Notice, that aggregating a fewer number of the individual classifications allows
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Fig. 4.3 Classification performance (a) and crisp performance (b) of the individual and
combining classifiers on the training and test sets, real-life brain spectra. Individual classifiers
are shown as stars and big diamonds. Small diamonds correspond to the combining classifiers.
All aggregating techniques were applied to the 8 individual classifications, except for the FI
classifiers, that were applied to 4 individual classifiers shown as big diamonds. The
definitions of the abbreviations are described in Table 3.3
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Table 3.3
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for higher classification performance on the test set, than in the case of aggregating 8
classifications (89.3% vs 87.7%). Crisp classification performance on the test set remained

the same.

These four examples demonstrated that in many cases aggregating individual
classifications improves classification accuracy. Some combining classifiers perform well
on one data set, and poorly on another. Thus, in order to achieve better performance

different methods need be tried.
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5. Results on Real-Life Infrared Spectra

A set of infrared (IR) spectra of blood serum samples was analyzed. The IR spectra have
some advantages over proton MR spectra. There is no huge water peak, which always exists
in the proton MR spectra. This peak is usually removed by water suppression from MR
spectra. The IR spectra also have a better signal-to-noise ratio. They are simpler to acquire
and less costly, so quite a few are available for the analysis. The 1362 analyzed spectra
belong to 3 different classes (396 of them are of class 1 (normal), 326 of class 2
(hyperglycemia), and 640 of class 3 (hypertriglyceridemia, hypercholesterolemia, and
lipometabolism)). Half of the spectra in each class constitute the training set, another half
the test set. First the spectra were normalized. The centroid spectra of the three classes are
presented in Fig. 5.1. The spectra within the classes are distributed about these centroid
spectra. For example, the distribution of class 1 spectra is shown in Fig. 5.2. The centroid
spectrum is shown in white on the black background of the spectra of individual samples.
Before the aggregation methods were applied, the spectra were preprocessed:

o each original spectrum of 1816 points was condensed into either 182 or 91 consecutive
regions, and the average/median values of the spectrum in each region were calculated

e the best 12 regions out of the 182/91 above were selected by dynamic programming

o PCA was applied to the spectra. The first 20 PCs were selected

o 10 regions which contribute mostly to the discrimination among the classes were
selected in the normalized spectra by GA

and classified by the LDA, QDA, and KNN classifiers. A total of 26 classifications were

obtained, four of them were selected for aggregating. They include: 3-NN classification
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Fig. 5.1 The centroid spectra of 3 classes of
IR spectra.

of normalized full-size spectra, the LDA applied to the spectra condensed into 182 regions

with the mean value of the spectra in the regions, the LDA applied to the spectra condensed
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into 182 regions with the median value of the spectra in the regions (this is the best

individual classification), and the LDA applied to the 10 regions selected by GA.

Fig 5.2 The spectra of class 1 distributed about the centroid
spectrum, IR spectra. The centroid spectrum is shown in white
on the black background of the individual spectra.



The aggregation methods of Table 3.3, which were found to work well in the case of
artificial MR spectra were used for aggregating these classifications. The results of
individual and combined classifications are presented in Fig. 5.3. The individual
classifications are shown as stars, their aggregation as diamonds. All aggregation methods
showed improved performance over that of the individual classifiers on both training and
test sets. The best individual classifier gives 91.6% and 88.8% accuracy on the training and
test sets respectively. The best performance achieved by the combining classifiers is 94.9%
on the training set, and 91.8% on the test set. The SG, FI and some LR schemes also
improved crisp classification performance. The best achieved crisp performance is 94.6%
and 89.7% on the training.and test sets respectively, vs. 90.2% and 87.4% for the best
individual classifier. Other aggregation methods had crisp performance close to that of the

best individual classifier.
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Fig. 5.3 Classification performance (a) and crisp classification performance (b) of the
individual and combining classifiers, IR spectra. Stars correspond to the individual

classifications, diamonds to their aggregation.
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6. Conclusions

Different methods of aggregating classifiers were considered and applied to both artificial
and real-life MR and IR spectra in this thesis. The author has developed, adapted and
implemented'® several aggregation methods, such as the LC of classifiers, LR and FI
classifiers, entropy based, CF based and MV classifiers. Some aggregation methods require
estimating parameters: weights for the LR and LC, and FMs for FI-combining classifiers.
An objective function is minimized in order to do this. This process is called training the
combining classifier. Several objective functions were considered in order to improve
classification accuracy of the combining classifier on the training set. An aggregation
method together with an objective function is referred to as an aggregation scheme. Several
aggregation schemes (published in the literature and constructed by the author) were
implemented for the LR and FI aggregation methods. Some of the suggested schemes
showed an improvement in classification accuracy compared to schemes in the literature. In
order to minimize the objective functions a nonlinear constrained optimization problem
must be solved in general. A simplex minimization procedure with simulated annealing was
used for this purpose. All aggregation methods and schemes were also compared among

themselves.

The number of MR spectra available for analysis is often limited. The results of applying
the aggregation methods to such data is strongly data dependent. In order to test the

aggregating methods more objectively a set of artificial MR spectra was generated. The

18 as C++ classes on SGI UNIX workstations
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artificial spectra look similar to real-life ones. The set has sufficient number of spectra for a

reliable analysis.

Different aggregating classifiers require different amounts of time to train. Training the
LR and FI-combining classifiers may be very time consuming. Training the LC-combining
classifier is much faster since it can be done by a matrix inversion. The time required to
train the SG classifier depends on the aggregating classifier. The entropy, CF and MV-
combining classifiers don’t require any training. It has been found that simple and fast
aggregating classifiers can perform as well as complicated and slow classifiers. However, in
some cases simple classifiers perform poorly in comparison with the complicated classifiers
applied to the same data. After the training is completed a new sample is classified by any

of the classifiers in negligible time.

In order to get better performance from a combining classifier one has to aggregate
individual classifiers that make errors in an uncorrelated manner i.e., different classifiers
misclassify the same samples into different classes. One strategy is to apply classifiers of
different architecture to the same data. Different classifiers look at the data from differ=nt
points of view, resulting in different classifications. Another strategy is to preprocess the
spectra differently and submit these to a single reliable classifier. Different preprocessing
techniques may select different features which distinguish the samples among the classes. A
method of selecting classifications for aggregating is proposed in this thesis. This method
takes into account both classification performance of individual classifiers and correlation
among them in making errors in such a way that high performing classifiers with minimal

correlation are selected for aggregation.

101



Combining classifiers were applied to different sets of MR and IR spectra. The results
indicate that these classifiers may in many cases lead to better classification performance
than that of the individual classifiers. Combining classifiers may also result in more crisp
classification. Just as it is difficult to choose the best classifier among different classifiers, it
is also difficult to choose the best aggregation method. Different methods perform well on
some data and poorly on others. In order to get high performance out of the combined
classification it appears that both different preprocessing techniques and different

aggregation methods must be tried.
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