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University of Manitoba 
Abstract 

APPLICATION OF INM)RMATION FUSION 
METHODS TO BIOMEDICAL DATA 

by Petr JiIkine 

Classification of Magnetic Resonance (MR) and h h e û  (IR) spectra promises to becorne 

an effective tool for early madical diagnosis of diseases. The proposed thesis project 

involves the development and comparison of classincation strategies and algorithms for the 

analysis of spectra of healthy and diseased tissue biopsies of various disease states. Several 

methods of aggregating outcornes of classifiers are considered in order to impme the 

classification accuracy, and applied to &cial and mal-life spectra. Logistic regression, 

linear combination of classifiers, fuzy integration, stacked generaijzation and some other 

methods of classifier aggregation, as well as Werent ways of estimating necessary 

parameters are considered The redts indicate that in many cases aggregation of classifiers 

improves the classification paformance in comparison to that of the classifias being 

aggregated. The results on real-Me spectra v q .  The methods pedorm well on some data 

sets and relatively poorly on 0 t h .  Strategies are recommended to gain h m  classifier 

aggregation. 
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1. Introduction and Literatwe Review 

The Magnetic Resonance (MR) spectnun of a biological tissue sample characterizes its 

chernical composition. In particular, MR specûa are characteristics of the disease state of 

the tissue, because ceils in different states produce biochemical substances in different 

amounts. Biochemicai changes thht signal the onset of disease occur earlier than manifest at 

the morphological (visual) levei. Thus, the possibility of early diagnosis of disease (e.g., 

cancer) via MR spectroscopy is real and very important. For example, 'average' (or 

centmid)' spectra of healthy (or n o r d )  and diseased brain biopsies are presented in Fig. 

1.1. One obsaves quite substantial differaces between the spectra. 

Fig. 1.1 Average spectra of brain samples in normal and diseased states. 

' The centroid spectra were obtained by averaging ali available spectra for the p d c u i a r  diseas 
state? thus the spectrai noise is elirninated to a great degree. 



The pmposed thesis pject involves the belopment and camparison of classification 

strategies and algorithms for the anaiysis of MR spectra of healthy and diseased tissue 

biopsies of various disaise states. In particular, combined classification methods based on 

the aggregation of the outcomes of severai classifiers are cons ic id  Different pattern 

classifiers employ diff't concepts, have different architectures, adjustable parameters 

and, thus, behave dinetently even if trained on the same data set. Ideally, the combining 

classifiers should take advantage of the strengths of the individual classifias, avoid their 

weaimesses, and improve classificatim accuracy. 

Given a complete training set, a consistene classifer is able to approximate Bayesian 

(optimai) decision boundaries between classes with arbitrary accuracy [8]. In real Iife we 

usuaüy operate with finite training sets, o h  noise compteci. Trained on these data, 

different classifiers appmximate the decision boundaries M a e n t y .  In addition, the size of 

the data set d e s  the classifier outcome dependent on the particular data set We cm 

choose the classifier which classifies best and ignore all the others. However, potentially 

useful information, which the ignored classifiers could access, can be lost. In order to avoid 

this loss of information one can agpgate the classifier outcomes in some manner in the 

hope of getting better classincation results. This is often the situation for difficult cases, 

with very limiteci number of data samples and high noise level (see [LOI for example). In 

particular, this is the case for MR spectra of biological tissues. There is unially a shortage of 

experimental data The spectra are noise-corrupted spectra with low signal-to-noise ratio, 

The asymptotic convergence ofa classifier to the object of classification is d e d  consistency. 



overhpping peaks and pnniounced basehe distortions. Thae is also some uncertainty in 

the apriori tissue classification by experts. 

The architecture of a combining classifier can be like the ones presented in Fig. 1.2. The 

original MR spectni are fht preprocesseâ by some technique3 (or several techniques as in 

the right-hand scheme). Then the preprocessed data are submitted to severai different 

classifiers (or to a single diable classifier). The outcomes of these ciassifiers are aggregated 

by an aggcegation scheme. One can view the group of classifias to be aggregated as a group 

Combined output 

. 
on scheme 1 

Classifier 1 1 (classifier 2 

1 Prepmcessed data 1 
1 pnp-ing 

C o m b i i  output 

1 Orininal data 1 1 Original data 1 

Fig. 1.2 Possible architectures of a combining classifier. 

of experts looking into the same problem h m  their personal points of view and stating 

their opinions. The aggregation scheme is another expert who generalizes the opinions of 

the experts in some mmner and makes a nnal decision. The aggregation scheme c m  be as 

simple as Majonty Voting 0, where ai i  classifiers are supposed to be equally competent, 

or more sophisticateâ, when the aggregatbn scheme learns the cornpetence of different 

Some d a  about praprocssing techniques used may be found on page 22. 



ciassifiers during training. The aggregation schezne a b  cm be a classifier such as the one 

used at the previous stage. 

What improvement of classification aa~rscy can be expx&x$ if we aggregate several 

classifiers? Some theoretical estimates of enor rrduction are presented in [7,9]. It has been 

shown that given some nasonable assumptiom (iocal monotonicity of the O posteriori 

probabilities about decision buundaries) a Iinear combinatition of classifiers reduces variance 

in the bowidary location about the Bayes boundary. If the sggregated ciassifiers are 

unbiased, the reduction of added error4 is proportional to the reàuction in variance. If these 

classiners make independent exrom, the variance becornes smaller by a factor of n, the 

number of aggregated classifiers. In the presence of classifier bias, the a o r  reduction is 

smailer since both bias and variance need be rechiced If the bias of classifiers is small, and 

the m r  is mainly due to variance, aggregating cm be an effective tool. However, in the 

case of high bias aggregating is effectve only if the biases are not highly correlateci. Then it 

is important to keep the biases of the classifiers uncorrelated This can be achieved by using 

classifiers based on different principles or by applying the classifiers to differently 

preprocessed data. 

In [9] the authors considered a combining classifier based on orda statistics, and 

demonstrated an improvement in classifier performance. The benefits of aggregating were 

demonstrated on several data sets. The authors &O observed that aggregating compensates 

4 Emr reduction is applied to the portion of total ermt (caiied added emr) which occurs because 
the boundary between cIasses is not chosen perfkdy. Amher portion of the total error is Bayes 
error, which can't be reduced in the pmblems with overlapping classes. 





Another important problem hown as the bias/varïance dilemma [8] shouid be taken into 

account in combined classification. The essence of the dilemma lies in the fàct that the error 

can be decomposed into two components, bias and Variance. The bias measuns how closely 

the leaming algorithm's guess matches the target. The variance measures how much the 

learning algoritbm's guess '%ounces around" for cW&mt training sets of given size. 

Attempts to d u c e  bias lead to an increase in variance. Keeping the variance small results 

in bias increase. A compromise is w d y  reached as a trade-off between bias and variance, 

which suggests a kind of uncertainty principle. In [9] a possible way of overcoming this 

difa.culty is indicated The authots noticed that aggregation provides a method for 

dexoupling bias and variance. The bias of aggregated classifiets (also caiied indiviidual 

classifiers) should be reduced (e.g., in the case of neural network by using a larger network). 

nie increased variance then can be reduced âuring the agregation stage. 

Kohavi in [24] investigated bias and variance decomposition an4 in particular, gave an 

example of bias-variance trade-off during classifier aggregation using a UCI data set [2S 3. 

The data set was divided into two subsets, one to generate several training sets by uniform 

random sampling without replacement, the other to evaluate bias and variance in the 

expecteà misclassincation rate. A decision tree classifier was applied to each generated 

training set, and the outcornes of 50 classifiers were aggregated by a voting scheme. The 

results indicate that the reduction of error is almost solely due to reduction in variance. 

Although the bias increases slightly (especially for smaller training sets) the reduction of 

variance is sigdicant enough to keep the overall error smaller. 



Breiman in 1261 analyzed the aggregatim of classifiers. In parti&, arcing and bagghg 

algorithms were considered. In baggiag one fonns moâifïed training sets by sampling the 

original training set, constructs classiGers using these training sets, and has them vote for 

the classes. Arcing is a more complex procedure, in which the comtmction of the (hl)-th 

classifier depends on the performance of the k previously coristnicted classifiers. The main 

effect of both scbemes is the reduction of variance. Arcing is more successful in this than 

bagging. Instability of the classitication methods used in the above schemes is essential to 

improve accuracy. A classifier is called unstable when s d  perturbations in the trainhg set 

result in large changes in classifier outcome. Unstabie classifiers characteristically have 

hi& variance and low bis.  Trrn, and Artifïcial N d  Networks (ANN) are considered 

unstable classifiers. Stable classifiers have iow variance, but may have high b i s .  K-Nearest 

Neighbor 0 and Linear Discriminant Analysis &DA) classifiers are considered stable, 

so the above techniques have little or no effect on error rates. 

Jacobs [28] reviewed h ~ o  classes of aggregation methods. A Supra Bayesian procedure, in 

which the decision maker treats the expert opinions as data that may be aggregated with 

their own a priori distribution via Bayes d e ,  and a linear opinion pool, where the decision 

rnaker forms a linear combination of the expert opinions. The h t  technique is theoreticaily 

weli-motivated. The disadvantage is that it may be impractical for some real-world tasks. 

Defining an appropriate likelihood function for the expert opinions can involve much 

guesswork. Moreovez, evaluating this likelihood fiinction can be computationally 

expensive. The linear opinion pool has the advantage that it is relatively simple, and 

fhquently yields useful results with a moderate amount of computation. The disadvantage is 



the lack of a miid theoreticai foundaticm. A high correlation or dependence among expert 

opinions d e s  the aggregation difncuit. The author auggests that there is a need for 

trainhg pmcedures that d t  in a<perts with relatively independent opinions, or for 

aggregation methods that implicitly or explicitly mode1 the dependence arnong experts. The 

analysis presented indicates that a d e r  number of independent experts are worth the 

same as more but dependent experts. 

In [IO] the effact of combining different hear least-square estimators' on the 

performance of Linear regression was studied8. It was shown that by splitting the data set 

into several independent parts and training each estima- on a diffèrent subset, the 

paformance of the combined estimation can in some cases be signincantly irnproved, In 

particular, it works for data sets with a small number of noisy samples. The improvement in 

the quality of the combined estimation occurs because the decrease in variance resulting 

h m  the independence of clBennt estimators is larger than the concomitant inaease in 

bis. The author stresses that the geneml claim that cornbining experts is always helpfûl is 

clearly fallacious. That classifier aggregation can make good classifiers better but cm make 

bac! classifiers worse is also noted or observed in [26,3 1,321. 

Perrone in [29] presented a general theoretical framework for ensemble methods of 

constructing significantly improved regression estimates. The general idea is to generate 

multiple estimates by subsampling or resampling a finite data set, and then combine them. 

- - -  

7 The tenninology of the author is kept hem. A classifier can be considered as an estimator that uses 
the class memberships as attributes. 
Classification can be considered as a special case of =gression with zero/one values, and the 
results of [lO] are also applicable to classification. 



A hybrid estimator CO- is as good or betta in the MSE sense thau any of the 

individual estimators. In particular, two methods were àeveloped: Basic Ensemble Methoci 

(BEM) and Generalized Ensemble Method (GEM). GEM was applied to the tecognition of 

characters and numbers. The results indicate that the GEM estimator is better ùian standard 

techniques. For instance, the best of ten backpropogation networks with a single hidden 

layer and 20 hidden units gives 89% pedormaace for lowacase chiiracters, the GEM 

estimator gives approximately 91.5%. During training individual networks convqe to 

different local minima, thus th& enw terms are not stn,ngly correlated. This lack of 

correlation drives the averaging method, allowing to construct an improved estimate. T'US, 

the averaging methoâ can efficiently utilize the local minima that other techniques try to 

avoid. It was also found in this paper that for the example considered aggregating more 

than 6-8 networks doesn't improve the BEM estimator. The authors also state that "trainhg 

a population of large nets to find the best estimator is computationally much more 

expensive than training and averaging a population of small nets. In addition, small 

networks are more desirable since they are less prone to over-fitting than large networks". 

David Wolpert [5] introduced the so-called Stacked Generalization (SG) in which 

different classiner outcornes are aggregated via another classifier. Several classifiers (level 

O) applied to preprocessed data (or a single classifier applied to diffmtiy preprocessed 

data) produce class membmhips. These membemhips form a new set of attributes for 

another classifier (level 1). Classifiers of level O are supposed to behave differently f bm 

one another, i.e., their decisions should not synchronizeâ. 



Several papas show that aggregaîhg classifiers improves the ciassifi:cation pafonnance 

in diffaent applications. 

In [l] a regnssion method is used to fuse the decisionsi of à B i t  recognition 

algorithms. The methoci computes a weighted sum of the outcornes of individual classifiers 

(scores) for evay class. This sum nflects the confidence of the algorithm that a given 

sarnple belongs to a particuiar class. The ciass with msximal score is considered as the most 

iikely class. The necessary weights are estimated by logistic ngnssion on the training set. 

The weights express the relative importance of the aggregated classifias. Applying this 

approach to the recognition of machine printed chrnacteR (a pmblem with 48 classes, 6 

different classiners, 1915 1 training samples, 12000 test samples) yields a 3% increase in 

accuracy over the best individual classifier. This impmvement was achieved whai a set of 

four classifia out of six used in the study were aggtegated. The authors noticed that 

aggregating two different classifiers trained on the sarne preprocessed data achieves a higher 

performance than the individual classiners do. Aggregating two clessiners trained on 

differently preprocessed data gives even better impmvement in performance. Applying the 

logistic regression approach to the handwritten digit recognition problem provides 

additional benefits over individual classifiers. The authors stressed that independence of the 

classifiers ued is a key to better perfomumce. 

Tim Kam Ho applied several methods, such as highest rank, Borda count and logistic 

regression to handwritten digit recognition and degraded multifont machine-printed 

character and word recognition [q. The strength of the methods was demonsûated in 

problems with a large number of classes. In a w o d  recognition ntperiment four classifiers 



. . .  
w m  used to discnmmate between 1365 ciasses. An improvement of 7.8% was achieveâ, 

h m  86.1% acciaacy for the best individual classifier to 93.9% for the aggregation by a 

dynamidy s e l 4  model. In M several combination techniques were considered. The 

authors found that for the analyzed data a Dempster-Shafer bssed method obtained high 

recognition and refiabiiity rates. 1t is aiso robust. Appiication of the method to US zip codes 

showed signiscant improvement over the performance of individual classifiers. A 

performance of 98.9% was achieved, whüe the pedorma~ce of the best individual classifier 

was 93.9%. 

In [27] a hybrid system for protein secondary stnichire prediction was developed. Thnx 

different expais based on neural network, memory-based reasoning and statistics leamed 

the mapping between amino acid sequences and secondary structures h m  the known 

secondary stnictures. A combiner (a neural net) took the predictions h m  the three experts 

and made a final prediction. The database included 107 protein h m  the Brookhaven 

Protein Data Bank. The set of al1 proteins contain 19,861 amino acids, 1 13 subunits. There 

were three possible outcomes (elernents of the secondary structue): a-helix, Pstrsnd and 

coil. The way the system was trained is interesting. The training set was divideci into two 

parts. One part was used to train the experts. The outcomes of the experts on the other part 

of the training set were used to train the combiner. The reason for dividing the training set 

into two parts was that the behaviot of each expert on the training data can be very different 

h m  its behavior on the proteins whose structures were unlaiown; their p a f o m c e  on the 

data that they were not trained on (the second half of the training set) reflecteâ their 

behavior on truly unknown protein structures, which was exactly what the combiner shouid 



know about and be trained on. Atter the trasiing of the combiner was completed, each 

expert was trained again with the whole eainicg set. These ûained experts together with the 

trained combina foimeci a trained hybrid system. The hybrid system haà an overaîi 

performance of 66.40/0, which was higher than individual experts and ail previously reported 

algorithms. Cornpanxi to each expext, the hybrid system producd better results in of 

the number of secondary stnichires (rather than the number of resiâues) that were predicted 

c o d y .  This was important h m  the biologid point of view. 

Joydeep Ghosh in [15] applied a number of aggregation methods to the classification of 

underwater acoustic signais. 1t is a diflïcuit pmblem because of the low signal-toaoise ratio 

and the high degree of variability in the signals emanating h m  the same type of sound 

source. Four approaches to evidence combination were presented and compared using 

realistic oceanic data. They Uicluded an entropy-baped weighting of the outcornes of 

individual classifiery a method based on the combination of confidence factors in a rnairner 

similar to that used in MYCIN expert system, majority voting and a simple averaging. A 

multi-layer perceptron augmented with weight decay sûategy and two kemel-based 

classifiers were among individual classifiers king aggregated, AU combining techniques 

gave better results than those obtained by the best individual classifier. 

üi [Il] Rogova considemi an aggcegation mahod based on the Dernpster-Shafer theory 

of evidence. The pmposed method leads to a considerabIe improvement of classification 

accuracy without complex computations. The method has the useful pmperty of penalizing 

overoptimistic and oveRrained classifias. Application of this method to hand-printed digits 

led to the reduction of misclassification error by 15-300% Experiments showed that a better 



resuit is not necessariiy achieved on aggregating ciassifiers with better individual 

performance. Independence of the cIsissifiers is a more important factor in aggregation. It 

was also noticed that classification of differently pnpocessad &ta provide more 

independent d t s  dian different architectms of neural networks. 

Hashem considered a combination of different neural networks to achieve better 

performance 1121. Optimal linear combination of the outcomes of neural networks was 

proposed to improve the accuracy of a 'combined' modd Accuracy was measured by 

MSE, optimality was achieved by mhhkhg this MSE. The method was applied to the 

problem of approximating a function. The a-gation of six neund networks gives 88% 

bena accuracy (MSE = 0.000017) than the best individuai neural network (MSE = 

0.000137). Thus, to get the same occruacy one can individuaily train several "smail" 

networks and aggregate them, rather than train a single "large" network. Aithough the 

authors applied their approach to a regcession problem, it can also be used in classification. 

The attractiveness of this approach is its linearity with respect ta the unknown weights, 

which converts the estimation of the weights to a simple matrix inversion problem. 

In [13] variants of the majority vote were considereâ, and combined performances of 7 

classifiers on a set of handwritten numerals were analyzad In particular, a weighted 

majority vote approach was implemented The values of the weights were obtained by 

opthkation of an objective fùnction. The objective fimction was chosen to i n m e  

recognition on one hand, and to d u c e  emu rate on the other. Application of the method to 

a set of 4645 1 numerals demonstrated 2.2% improvernent by the cornbineci classification. 



F u z y  set based methods have recently achieved succeas in pattern recognition and 

classification [2,3,14]. F u r y  methods don't provide solutions to aiî problems, but they can 

be usenil in situations when featutes, criteria, etc. are vague. This is o h  the case in pattern 

recognition. Fuzzy integration is one of the approaches used in pattern classification. F u a y  

integration is a nonlinear way b combine multiple sources of infoxmation. Basically, the 

F u z y  Integral O is an aggnegation operator. Suppose we use n classifiers to classw an 

unknown sample. Each classina 

provides a confidence value that this . 
sample belongs to a particular class. 

Fqintegrai F w q m a m e s  . a 

We aggregate these individual 

confidence values by FI into a global Classifier1 Classifier 2 ..... Classifier n 
L 

- 

A 

confidence value. This value 

represents the likelihd or degree of 

 certain^ th& the hOwn sample Fig. 1.3 Architecture of a H-combining classifier. 

belongs to a particular class, taking into account al l  the evidence available, Fig. 1.3. The so- 

called Fuzy Measures (FMs) underlying fuzy integration play the role of weights for the 

ciiffernt classifiers and their subsets. For n classifiers and an m class problem there are m2" 

fuPy measures (2m of them are trivial and are equal to 1 or O). Classification perfomuince 

obviously depends on the FMs, thus their accurate estimation is very important. FMs could 

be obtained by an expert estimating the relative importance of the classifiers and their 

subsets, or by le-g these h m  a training set. If mmy classifiers are aggregated by FIy 

then it is practically impossible to effeaively determine FMs by an expert. Estimation of 

FMs h m  the training set repuVes a constrained nonlinear optimization technique. 



The process of classincation by an FI-combining classifier is as foiiows. The FMs are 

estimaied for every class h m  the training set, using some criterion. Given a sample, 

evidence provided by aii individual classifiers is integrated with respect to correspondhg 

class Fus, resulting in an overall confidence value for eadi ciass. The sample is assigneci to 

the ciass with the highest overall confidence value. 

Keller in [2] examineci the FI as a decision making tool for object recognition. In 

particuiar, FI was used to fuse the results of two neural network based classifiers in a 

handwritten charactet recognition problem. It was s h o w  that the combned classification 

achieved 4% higher conect classification rate than the best of the individual classifiers. 

Application of FI to automatic target recognition gives 92.6% correctness vs. 90.9% by a 

Bayes classifier and 86.4% by a Dempster-Sbafer classifier. 

The FIs for classification purposes were also analyzed by Grabisch and Nico!as [3]. in 

paaicular, the problem of i d e n m g  the FMs was considered Several methods of learning 

FMs firom a training set were considered. They included a perceptron-like critenon 

rninimizing the number of misclassifïed samples, a quadratic aror-like criterion minimizUig 

the ciifference between expected and actual outcornes, and a genaalized quadratic criterion. 

The authors also detived the minimal number of training samples necessary to estimate 

correctly the fuzzy measures. Application of a number of dinerent approaches to simulated 

and rd-life data demonstrateci the validity of the methods. The generalized quadratic 

critaon was found to give the best d t s .  The authors emphasized that the problem of 

identifjing fuzzy measures is crucial to the FI a~proach. 



In [20] outcornes of several nemal network classiners were aggregated by the Sugeno 

fÙzzy integral. Sugeno's A-fbzzy mcasun was used Calculation of FI with respect to A- 

measun only requires knowledge of the so-called fuay densities (which in essence are FMs 

for single classinas). F u z y  densities cm be interpreted as the de- of importance of 

corresponding classinas. FMs for subsets of classiners can be caîculated recursivel>P. The 

method was applied to handwritten chamter recognition. F u z y  densities were assigned, 

based on how well the corresponding networks pafonned on the training set It has been 

demonstrated that aggngating by FI increases recognition rates in cornparison with 

individual networks, majority voting and Borda comt meulods applied to the same 

networks. 

Tresp in [19] considered a iinear combination of s e v d  estimators. The weights were 

proposed not to be constant but dependent on the input. Several methods of obtaining the 

weighted hctions were considered The method was applied to the Boston housing &ta 

set (13 inputs, one continuous output). The training set coosisted of 170 samples and 20 

classes obtained by k-mean clustering. Application of the proposed methods gave smaller 

errors than did individual networks. 

Recently several papers on the bias-variance decomposition of misclassincation rate have 

appeared [26,3 1,321. Friedman in [3 11 investigated how an errer in the target probability 

estimates affects classification error when these estirnates are used in a classification d e .  

The biadvariance trade-off is very different for the classification emr h m  the estimation 

error on the probabilities themselves. The dependence of the estimation error on bias and 



variance is additive. However, there is a m n g  interaction effect in the classification emn. 

Friedman introduced the notion of 'boundary bias'. "The effect of boundary bias on 

classification emn can be mitigated by low variance. Simikulyy the effect of variance 

depends on the value (espedly the sign) of the boundary bias. Therefore, low vanance c m  

be very important for classification but low (estimation) bias is not. AU that is required is 

that the boundary bias be negative. This being the case, one can reduce classification enor 

toward its minimal (Bayes) value by redzlcing variance alone. In this sense variance tends to 

dominate the bias." This explains why some methods don't wodc properly for fhction 

estimation because of high bias, but pafomi well for a classification problem when the 

biased estimates of pbabilities are used in the classification d e .  Several examples are 

provided to demonstrate that misclassification m r  is not simply related to estimation error. 

The author concluQs that "good pmbability estimates are not necessary for good 

classification; similarly, low classincation emr does not imply that the corresponding class 

probabilities are being estimated accurately." 



1.1 Brief Description of Individual Classifiers 

F u q  &Netirest Neighbor Classifier 

The KNN classifia has o h  been used in pattern recognition pmblems. The decision nile 

provides a simple noaparametric procedure to assign a class label to a sample, based on the 

labels of the K c1oosest neighbm of the sample in the space of vectors charactexizing the 

samples. A KNN classifier doesn't require training. The crisp JSNN classifier assigns a 

sample to the majonty class among K nearest neighboxs. The fiuy KNN classiner assigns 

class memberships to the sample. 

Let a be a vector characterizhg the k-th sample of the eaining set, and the sample's 

membership in class c (01, ...,m). Denote by g the vector c h a r a c t a g  an unknown 

sample, and by b(iJ its membership in class c. This mernbaship is calculated as follows: 

A value of s=2 was used. The membership of the k-th sample of the training set in classc 

1 for the îrue class of the sample 
% ={ O otherwise 

was chosen. Class label for the sampIe is assigned 

according to the maximal value among the memberships. The fuey KNN classifier was 

implemented in [38] according to [33]. 



Linear and Quadratic Discrimuiant Analysis 

In disgimiiient analysis the spectra of the samples are assumed to be normaiiy distriiiuted 

about the mean (average) spectra of conesponding classes. This distribution is charactaized 

by the mean vector and the covariance ~mtrix: 

a is the mean vector and is the covariance matrix for class c, the expectation Ec) is 

taken over all possible samples of class c, which are c- by the observation 

vectors =. The mean vector and covariance matrix are usualiy unknown and have to be 

estimated h m  training set during training phase: 

index k goes through all N,  samples of class c of the training set. After the mean vectors 

and the covariance matrices are estimated, the probabilities of difkent classes are 

~alculated'~: 

The sample is assigwd to the class correspondhg to the maximal probability. if I f m t  

classes have different covariance matrices and these are estimated separately, the methocl is 

caiîed Quadratic Discriminant Analysis (QDA). 

'O The apriori probabiiities for diffèrent classes are wumed to be same. 
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If the covariance matrix is assumed to be the same for ail classes, then it is calculateci as 

follows: 

In this case the quaciratic term - Xx Z-'Z in the exponent in Eq. (1.1.1) becornes - 

independent of c, and caa be ignoreâ, resulting in Linear Discriminant Analysis (IDA). 

LDA and QDA classifiers are implemented in [35]. 

M c i a l  Neural Network 

The cornputer package NeuralWorks Professional WLUS [40] was used to mate a 

M c i a l  Neural Network (ANN) classifier. An ANN is a seif-adaptive leaming system 

composed of Lay- cf processing elements or neurons. Every nemn has several inputs and 

correspondhg weights (or input conneetion strengths) and combines, usually by a 

summation, the values of the inputs into a value, which is then modified by a -fer 

hction into an output value. 

A back-propagation network is an ANN thet propagates foiward the input througb the 

hidden layers to the output layer, determines the emr  at the output layer by comparing the 

actual and desired outcornes, and then propagates the emxs back through the network to the 

input layer. The constmcted back-propagation ANN classifier has 1 hidden layer with 5-10 

nodes. The number of inputs depends on the dimensionality of the preprocessed spectra and 



the number of outputs on the number of classes, Fig 1.4. The hypabolic tangent hction 

was used as the transfer fùnction. 

Output: class asSignulent 

t 
Output layer 

Hidden iayer 

Input layer 

Input: prepmessed spectra 

Fig. 1.4 The architecture of the ANN classifier used in this thesis. The classifier has one 
hidden layer with 5-10 nodes. The number of inputs is quai to the dimensionality of 
preprocessed spectta, the number of outputs to the number of classes. 

A back-propagation ANN classifier l e m  by examples, i.e., the classifier seKadapts by 

rno-g intemal weights when samples with known class identity are presented to it. This 

process is cded leaming. The weights were updated after 1 epoch (or training cycle) i.e., 

a f k  all training samples were presented once to the classifier (socded cumulative delta 

l e d g  d e ) .  The error at the output layer was the mot mean sqyare m r .  Back- 

propagation network assumes no dependency between output values. However, in 

classification problems there exists such a dependency between outputs. A sofûnax 

activation fhction was used on the output layer in order to solve this problem [40]. The 



constructed ANN ciassifier was trained for 50,000 epochs and then its paforrnance 

evaluated using a test set. 

1.2 Brief Description of Preprocessing Techniques 

Spectca usually are sampled at 500-3000 points. The number of spectra available rarely 

exceeûs 100 sarnpies per class. Ciassifying such hi@-dimensioad data with that s d  

number of samples cannot always be perfomed or often gives unreliable resuits. Thus, the 

dùnensionality of the spectra has to be Teduceci before classification. Severai techniques to 

reduce the dimensionality of spectra were used in this thesis. They are now briefly 

described 

Condensinn swctra A spectrum is divideci into contiguous subregions. The average (or 

median) amplitude of the spece~m is computed in each subregion. Considering these 

averagdmedian amplitudes as new attributes reduces the dimensionality of the spectrum to 

the number of the subregions. 

Selectin~ o~timal renions bv Dwamic Profzrammbq - Even af€er spectral condensation, the 

dimensionality may still be too high for some of the classiners. The next logicd step is to 

choose a subset of those regions that contribute most to discrimination among the classes. 

Depenàing on the number of regions one wants to select and the total number of regions in 

the spectra this cm be a very time conmuning proceûure. The foliowing near-optimal 

procedure was used to chwse such a subset [35]. Suppose for the sake of argument that the 

total number of regions in each qectnm is 100, and 10 regions are to be selected. First, 100 

lists are created, each containing one attribute, the average (or median) amplitude of 

spectrum in the comsponding region, Fig. 1.5. Then each of 99 unused attributes is added 



one at the time and LDA classification of the training set is performed. The attnbute giving 

the best classification is added to the considemi list. The same procedure is applied to evay 

List, resulting in 100 iists now containhg 2 ~ i u t e s .  The procedun is repeated uutil the 

required number of attriiutes is selected. Then the List giving the best classification accuracy 

is selected among the 100 lists. Thus, the 1OO-dimensional condensed spectra are 

transformed into a set of 10-dimensional attributes. 

Lists of attributes 

...... 
select second attn'bute 

select third attribute 1 1 1 1 

........................................................................ 
select 10-thattribyte 1 , , 1 , , 1 , 

1 , ...... 1,55,. . .,13 2,100 ,..., 65 3,12 ,..., 97 100,87 ,..., 57 

select the best list 

Fig. 1.5 An example of setecting 10 out of 100 regions in spectra contributhg optimaily to 
discrimination among classes. (See text for details) 

Seleclioa o~timal restions bv Genetic Algorithm (GA). Instead of selecting a subset of 

regions in the list of contiguous subregions one cm optimize the boundanes of the desired 

number of subregions in order to fhd the regions in spectra whidi are maximally 



discriminatory. The following procechire was used [35]. For a preselected number of regions 

the boudaries were randomly changed by GA, the average amplitudes of spectra 

in these regions were caicuiated and useâ as atûi'butes in an LDA classifier. This p e s s  

was repeated mtil the MSE between the desireci membership values (1/0) and the ones 

obtained by LDA becorne smail for the training set. The best regions found during 

optimization were saved. An example of region selection by GA is show in Fig. 1.6. The 

two centroid spectra of two different classes and the regions selected by GA are shown. 

Fig. 1.6 Application of Genetic Aigorithm to selecting a given number of regions in the spectra 
responsible for rnaximaily discriminatioon. Avemge ampliaides of spectra in these regions give the 
best classification accuracy on the training set. In this example the centroid specûa of two classes 
(bw and high grade -mas) as well as the regions selected by GA are shown me Merence 
between the two centroid spectra is also shown at the bottom. This figure was kindly provideci by A. 
Nilulin. 



2. Aggregation Methods 

We now describe the aggtegaticm methods used. 

One of the ways to aggregate several classifias is to calculate a weighted sum of their 

outcomes. The weights are constant and express the relative importance of the classifiers. 

The values of the weights are estimated 60m how well the wmbining classifier @omis on 

the training set. This approach rrquins estimating of a srnall number of parameters (Le., 

number of aggregated classifiers plus one) compared to some of the other methods 

considered later. 

Suppose a sample (or an observation) has been submitted ton classiners Ci, C2, ... G. 

Their outcomes are the de- of confidence~~={x~~, xk, ..., h} that this samp1e belongs 

to class c. Stated differently, we obtain a vector of class c memberships, assigned by the 

classifiers. Ifm is the totai number of classes, we obtainm such vectors for every submitted 

sample. The foliowing aggregation hct ion is proposecl for everys: 

where wi, ..., W. are constant weighto, wo is a bias. Given a sample, the value of&,@ is 

calculated for each class c. &,wJ npresents the degree of confidence of the combining 

classifier that the sample belongs to class c. Notice, that the weights are the same for every 

class (i.e., independent of c). 



Suppose 6) is a bimry value associatecl with each samplz. @J = 1 if c is the tme class 

of the sample, and &) = O otherwise". The eqected vaiue of &) is 

One expects that the likelihood of ciass c being the tnie class (i.e., z&)) is greater when it 

is ranked higher by the combining classifier. The relatiomhip between the degree of 

confidence and the tendency of being the tnie ciass is expected to be a monotomic fùnction. 

Ais0 one expects that n(&) + O when the components of the vector are smaîi, and z(s) 

- 1 when they are large. Suppose the hct ion n t )  has the followhg fom 

In fact, this transformation converts the degree of confidence (2.1.1) into the range [O, 11. 

A training set is used to estimate the values of the parameters wo, wi, ..., w,,. The weights 

should be chosen such that the performance of the combining classifier is optimized. There 

are several ways to mesnire the pediormance. One is to consider the outcornes of the 

combining classifier as memberships in the corresponding classes, md try to make them as 

close as possible to the d e s i d  one/zero values for all samples of the training set. For the k- 

th samPlel2 of the training set the error is 

l1 in fact f&) depends on îhe c h  c cdy, not on For convenience we use the notation Q) 

'* index kwill appear in vector to denote the A-th sample. 



Calculating the mor over ail training samples we get the MSE on the training set, which 

wearegoingtominimizewithnspecttothevector~ 

N is the total number of training samples. This is an unweighted MSE, because aU classes 

have the same (unit) weight. There is another way to calculate the MSE, taking into account 

the numbtx of samples/ciasses in the training set. It is a weighted MSE : 

Nc is the numba of training samples of class c. 

The MSE on the training set measures the estimation error of target probabilities rather 

tban the classification error. The minkhtion of the MSE does not necessarily lead to the 

maximization of the classification pdonnance (in tenns of the nwnber of comctly 

classineci samples). 

If the performance of the combining classifier is defined as the number of correctly 

classiEied samples of the training set (Le., we minimize the number of misclassifieci 

samples), the fiinction to be minimlzed . .  . 
is not continuous, but piece-wise constant. This 



means that many vectors = give the same @~rmatlce for the combining ciassifier. The 

ac t ion  to minimize is: 

where s denotes the class corresponding to max(n(xy ,wJ . However, the d t s  of such 

classification are o h  h n y  (i.e., such a classifier is unable to distiriguish h e e n  good 

and poor solutions). Classification of the sample is consideml fuay if the membership in 

the predicted class is smder than (m+1)/2m, where m is the number of classes. Otherwise it 

is considered crisp. 

A slight modification of the objective ftnction (2.1.5) might improve the crispaess of 

classification. Instead of minimizing the number of misclassined samples one can minimize 

the number of misclassined and t'uzzily classified samples together. 

One can also combine the previously considered criteria, obtaining the weighted sum of 

the MSE on the training set (2.1.3) or (2.1.4) and the number of misclassifïed samples 

(2.1.5) 

Hete p is a parameter, possibly to be optimized 



As was mentioned earlier, for wery observation of the training set m différent values of 

(2.1.2) are computed. The class correspcmding to the maximal one is considered as the 

most likely class for this obsewation. Now let us not just choose the maximai value, but 

also maximize the squareà différence between the nt) cotresp01ldi.g to the true class of the 

sample and tbat of every other class 

Here index s in 5 denotes the true class of the sample. 'Iliis way one is able not only a 

choose a solution, but also to disaiminate betwee. unequivocal and ambiguou solutions. 

Taking into account that Osn(*)s 1 and that the desired values are unity for the true class of 

the sample and zero for ail others, this problem can easily be converted into a m h h b t i o n  

problem : 

Consider a generalized version of the above criterion. Suppose one has an increasing 

hction, for instance a sigmoid-type hction 

Applying the hct ion 'p(.) to the Merence in expression (2.1.7) can enhance the 

discrimination between good and bad classifications. 1 applied the hct ion Y(.) not to the 



différence of n(-)S. but to the difference off)s in (2.1.1) instead. The Mer the ciifference, 

the closer Y(-) to uni@ Then the fiinciion to be minimized . .  . talces the foliowing form: 

Notice that for the objective hction (2.1 .IO) the bias wo in (2.1 .l) is not nqued 

Finally, similarly to the hybnd Cnterion (2.1.6), one can combine (2.1.1 O) and (2.1 S): 

By m i . g  the MSE, one is trying to raise the degree of confidence to unity that the 

sample belongs to the true ctass, and make it zero for all other classes. Actuaily, if the 

degree of confidence is 0.9 instead of 1.0, for instance (and others are still close to zero), the 

sample is stiîl classifieci correctly and Cnsply. In other words, the classiner became worse 

with regard to the estimation emr, but in tnms of classification error it as good as the 

original one. This example shows that the classification e m r  responds to the m r  in the 

underlying membership estimates differentiy than does the estimation aror. It also helps to 

understand why the improvement of the latter does not necessarily lead to the improvement 

of former. Indeeâ, if the class probabiiity estimates are 0.9 for the tnie class and about zero 

for others, their impmvement to unity and zero doesn't change classification performance at 

all. The foilowing objective function is worth tlying: 



p is a weight and index s denotes the class cormponding to max(n(x~,wJ). The threshold 
C 

is an additional parameter. The k t  term of (2.1.12) keeps the class memberships in the 

necessary range and the second term helps minimize the number of misclassified samples. 

After the weights are estimateci one can apply the algorithm to a test set For a sample 

the algorithm has not seen More the values of the fiinction II(&,@ are calculated for evay 

class c. The sample is assigned to the class with the largest value of n(Jt,d. 

In order to estimate the unknown vector w, the different objective fùnctions above were 

minimized by a simulated annealing simplex p r o c h  [17]. This procedure tries to h d  the 

global minimum of a bction of many variables. On a number of tests (in particular, 

fiinctiom with enormous number of minima) the above procedure was able to fmd either a 

global minimum or one of the deepest minima 

What is the idea of the simulated annealing simplex minimization? The ordinary simplex 

moves in the space of variables controlled by fùnction values at the simplex vertices. In 

annealing simplex mkimization some positive random values which depend on the control 

parameter (analog of temperature) are added to the function values. These 'hnperature- 

boosted" values are now responsible for the simplex movanent and allow the simplex 



method to escape h m  local Whiie travershg the space of variables the simplex 

algorithm retains the best minima it has fomâ. Then the 'kmperature" of the system is 

reduced slightly, and the simplex continues its trip h m  the best found minimum, etc. Of 

course there is no guarantee that a global minimum will ever be found But in general this is 

not required The most important thing is to find a ' g d  enough' minimum, and not get 

trapped in local minima. Noticey that in orda to achieve good results a p p e r  annealing 

scheâuie is very important. Furthemore, some intemal parameters. of the mhbhation 

proceâurey such as the initial temperature of the system and the initial size of simplex have 

to be set properly. This minimization proceâure can be @te time consuming, âepending on 

the dimensionality of the problem and complexity of the objective hction. The Logistic 

Regression (LR) classifier is implemented in 1371. 

2.2 Linear Combination of Classifiers 

Keeping the previous notation, again consider the task of aggregating the outcornes of n 

classifiers for an m-class problem. Consider the vector s={xiCy xzcY ..., x ~ } ,  "th element 

xicy the membersip in class c assigned by the i-th classifier. Compute a linear combination 

of these elements: 

The coefficient a, reflects the importance of the i-th classifier for class c in the combining 

classifier. Notice, that d e  LR, where the weights are the same for ail  classes, in (2.2.1) 

" the temperature has to be sufiïciently hi&. 



they are different for diffennt ciasses. In order to clas@ an unknown sample, the optimal 

values of the parameters have to be estimated nflt Consider fia) as the degree of 

confidence assigneci by the combining classifier that the samp1e belongs to class c. We 

would iike to make this confidence value as close as possible to the desirad confidence 

value a). Regard & as a random variable. The s q d  emn in estimating class c 

membership id4 

The MSE can be obtained by taking expectation ova ali possible b: 

where e = ~ ( t ( x , ) g = ) ,  = E(x, -II,'). In order to calculate the optimal values of the 

weight vector a we take the derivative with respect to qr and set it equal to zero: 

Then g, = a-' s e .  One can perfomi this procedure for ali classes and get m different 

vectors 4. The obtained values of the parameters guarantee that within the considered linear 

l4 m r  over al1 classes is the sum of the emrs for each class 
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mode1 the combining classifier gives a result not worse than that of the best individual 

chsifier in the sense of the MSE between the obtained and desireci outcornes. 

In practice, the distniution ninaion of & is usually milaiown, and one can't calculate the 

expectations above. Nevertheless, if the samples of the training set are considered 

independent, one cm estimate the vector @ and rnatrix é as foliows: 

Here indices i and j go tbn,ugh all classifiers, index k gas hugh  al training samples, c is 

the considered class, and N is the total number of the training samples. 

The advantage of this methoâ lies in the simplicity of estimating the values of the 

parameters S. It requires only the inversion of a few matrices of small dimension (the 

number of the individual classifiers), a fast and weli developed procedure. We used the 

singular value decomposition method to invert the matrices [18]. 

After all coefficients j, are calcuiated, for any sample of the test set one can calcuiate the 

values of&,&) for every class using the pmper vector and the memberships supplied 

by the individual classifiers. The simple is assigned to the class correspondhg to the 

maximal vaiue of&,&). The Linear Combination (LC) classifier is implemented in [37]. 



2.3 Entropy Classifier 

Again n clessinas, applied to an mclass problem, are to be aggregated. Denote the 

membership in class c, assigned by the i-th classifier for the sample k, as xf) . For every 

sample calculate the confidence value that the sample belmgs to classc: 

The sum is taken over all individual classiners. The weight - lE(i,k) reflects the importance 

of i-th classifier in the combining classifier. For individual classifiers, strongiy suggesting 

some parti& class, thir weight is supposed to be larger than for a less favorable classifier. 

Fig. 2.1 The dependence of the weight 
-1/E(.) for an individual classifier on the 
membership values x, assigned by this 
classifier. Case of a 3class problem. 
Individual classifier assigns the foiiowing 
membership values to the classes: al, u, 
and (1-xi l -~) .  

Fig. 2.2 The case of aggregating two 
classifiers for a 2çlass problem. The 
dependence of the confidence vaiue H(.), 
assigned by the combining classifier, on the 
memberships XI, and xk provided by 
individuai classifiers. 

The coefficient E(i,k) is defined as follows: 



and is d e d  the entropy. Notice, that the sum is taken over the classes. Several simple 

examples demonstrate how the confidence value assigned by the entropy based 

combining classifier, and the weight for individual classifia depend on the memberships 

supplieci by the individuai classifier. In Fig. 2.1 the behaviot of the weight -1/E(=) in (2.3.1) 

with respect to the memberships XI, for a 3-ciass pmblem is shown. If the outcome of the 

individual classina is close to unity for one ciass (hence close to zero for the other classes) 

the weight for this classifia in the combining classifier increases exponentiaüy. Some 

constraints on the vaiue of the weight are introduced in order to avoid such situations. This 

is done by not dlowing the membership values to be greater than (1-p) and smaller than p, 

In the caldations a vaiue offl.05 was chosen. 

The dependence of the confidence value H(.) on the memberships xic is presented in Fig. 

2.2 when aggregating two individual classifiers, applied to a Ztlass problem. ûne observes, 

that the confidence value H(.) doesn't change much for most values of xi, and x2, and 

increases when at l es t  one individual classifier strongiy suggests some particular class. 

Any sample is classifïed by assigning it to the class with the largest confidence value. 

Notice, that this appmach doesn't have aay adjustable parameters, Le., no training is 

requued. The Entropy ('NT) classifier is implemented in [37 1. 



2.4 Confidence Factor Classifier 

This approach originates h m  the techniques used in expert systems. Fht ,  the 

metnbersbips assigned by the individual classifias are mapped into a Confidence Factor 

(CF) space by the foUowing bransfo~tion: 

The previous notation is used For the considered sample the CFs coiresponding to the 

memberships assigned by individual classifiers are aggregated for every class, resulting inc 

CFs. The class corresponding to the maximal value among these CFs is considered as the 

most likely class for the considered sample. 

The following rule is used to aggregate CFs: 

1-(1-a)(l-6) ifa >0,b > O  
-CF(-a,-b) if a < 0, b < 0 

a + b, otherwise 

Positive and negative CFs are aggregated separately, the resultant positive and negative CFs 

are aggregated at the final step. 

In Fig. 2.3 the nonlinear mapping of the membership value into CF is piesenteci for the 

case of 3 classitiers as an example. Another example of how 2 CFs are aggregated 



is shown in Fig. 2.4. The CF ciassifier is implemented in [37J. 

Fig. 2.3 Mapping of the membership hto 
the confidence factor CFk for the case of 3 
classifiers. 

Fig. 2.4 The confidence factor aggregation d e .  
ConGdence mors a and b are aggregated into 
confidence factor CF. 

2.5 Fuzzy Integral Classifier 

nie Fuay Integral (FI) is a nonlinear approach to aggregating multiple sources of 

uncertain information. Before considering how the outcornes of ciiffixent classifiers can be 

aggregated by FI, some definitions an introduced, following [2,3,l6,2 11. Consider the case 

of finite spaces. A Fuzy Measure (FM) over a set X is a fiinction 

p: rY + [O, 11 

such that 

N0)=0, cl(x)=l 

@)>MA) i f B  a A 

(p is the family of ail  subsets ofX, including the empty set 0) 

Let X be a set of n information sources (e.g., classifiers) X={Cl, C2, ..., G). The values 

p.( {Ci}) (i-1, ..., n) are called fuzy densities. These densities can be interpreted to represent 



the importance of the individual ciassifiers toward answering a parti& question (such as 

class membership). The FM of a subset A of ciassiners is interpraed as the importance of 

that subset, 

Lafi) be a functim h m  Xto [0,1], and p(-) a FM onX The Su- FI of fiuictionfi) 

with respect to FM N) is defineci by 

(S.S. 1) 

where the hction values are supposed to be sorted O<fli)<ACz)s ... <AC& 1, and Ain (Ci, 

Ci+*, ..., G} . V and A denote maximum and minimum operators, respectively. The sorting 

reduces the number of subsets required to evduate the FI k m  Zn to n. 

The Choquet FI offla) with respect to M.) is defined by 

with the same assumptions as before, a ~ ~ ) = û .  

The generalized FI offi) with respect to p(-) is dehed by 

with the same assumptions as before. ûperator t is a taomq the fimction of two arguments 

t: [0,1j2 + [O, 11 

such that 



x t w l y t w  forxly,- 

x t y = y t x  

(x ty) tz=xt (y tz )  

xtO=O, x t l = x  

&YAw E (0, 11 

Think of x as the membership in some ciass provideci by the individual classifier, and y as 

the importance of this classifier in the combining classina. The job of the t-nom is to 

caldate the degree of confidence that the sample belongs to the consided class, based on 

the corresponding outcome of the individuai ciassifier and on the importance of this 

classiner. Severai examples of t-nomis used in this thesis are presented below and in Fig 

2.5. 

xty = min(x,y) = x ~y 

xty  = xy 

Let us return to the combining classifier. The n individuai classinen each 

classi@ a sample. For each class c (FI, ..., m) they provide n mernberships &={xicy xzcy ..., 

xnC} in this class. Suppose the FMs for all  classes for ali subsets Ai of the individual 

classifiers are 



t-nom (2.5.4) 

t-nom (2.5.7) ( ~ 2 0 )  

Fig. 2.5 Several examples of t-nom used in this thesis. x is the membership in some 
class provided by an individuai classifier, y is the importance of this classifier, rty is 
the degree of confidence that the sarnpie belongs to the considered class, taking into 
account bath factors x and y. 

known. In other worâs, the importance of eveq individual classifier, their pairs, triplets, 

etc., are known. The memberships are aggregated by the FI as follows: 





where t(xfb) is equal to unity for the truc class of the ample, and to zero otberwise, m is 

the number of classes, fi is the set of FMs for class c. This arar depends on aii FMs for all 

classes, denoted by Calculating the error ova  all Uaining samples d t s  in the MSE on 

the training set, which should be minimizad . .  . 
WithnspecttotheFMsy 

where N is the total number of the training samples. Eq. (2.5.1 O) is similar to the Eq. (2.1.3) 

for the LR. The difference is in the number of estimated parameters. In the FI approach 

there are m(2"-2) FMsl5 instead of the n+l weights in LR This exponentiaily growuig 

number of parameters to be estimated resüicts the FI approach to the aggregation of a 

relatively srna11 nwnber of the individual classitiers. 

One cm minimi.Ie the weighted instead of the unweighted MSE on the training set. In this 

case the objective fiinction is similar Eq. (2.1.4), with the replacement of the hction x(-) 

by the FI Fc). Minimizing the number of misclassifieci samples of the training set (the 

objective bction is similar to Eq. (2.1.5)) is another way of estirnating the FMs. The 

weighted sum of the MSE on the training set (2.5.10) and the number of rnisclassified 

samples of the training set is another objective hction (similar to Eq. (2.1.6)). ûne can 

" Two FMs, for the empty and complete sets of the individuai classifiers, are obvious in every 
class. Their values are equai to zero and unie respe&ely. 
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aiso maximize the âifkence betweai the FI for the tnie class of the sample and that for 

every other class, as was done for LR in Eq. (2.1.7): 

here index s denotes the true class of the samp1e of the training set. 

The above criterion can be generaiized the same way as for LR. Consider an increasing 

fùnction Y(-), Eq. (2.1.9). Applying this function to the Merence between the FI for the 

true class of the sample and that for every other class may enhance the diffemce between 

good and poor classincatio~~s. The larger the Merence, the closer the value of 'f(.) to 

unity. The foliowing hction is minimized: 

Finally, one can minimize the weighted sum of the above fiinction q) and the number of 

misclassified samples of the training set. In other words, ail objective hctions used for the 

weight estimation in LR are applicable here. 

The estimation of the FMs requins much more computer time than the weight estimation 

in LR, because of the higher dimensionality. A simulated annealing simplex procedure was 

used in order to minimize the objective hctions. 

A f k  all FMs are estimated, the classification of an arbitmy sarnple may be pedormed. FI 

for alî classes should be computed using corresponding memberships and FMs. The class 



comspondmg to the maximal value of the FI is cansidered as the most Wrely class for the 

sample. The FIcombining classifier is implemented in 1371. 

2.6 Simple Averaging and Majority Voting Classiners 

Another way of aggregating several individual classifiem cm be done by simple 

Averaging (AVE) of their outcornest i.e., the memôerships provideci by the individual 

classifiers for the particular sample are summarized for each class, resuiting in m o v d  

memberships. The class label for the sample is assigned according to the maximal value 

among them. This approach is a special case of the linear combination of classi6erst when 

the values of all weights are nXed and set equal to unity. This method is vey  stmight- 

forward and doesn't require any training. 

The Majority Voting 0 scheme is another simple method of aggregating classifiers. 

For an arbitraty sample one counts how many individual classifias vote for each of m 

difEerent classes, resulting in m scores. Class label for the sample is assigned according to 

the maximal score. In the case of a tie, when two or more classes obtain the same highest 

score, the average outcomes of individual classifiers for those classes are taken into account. 

Class label is assigned to the sample according to the maximal average value. 

Both meth& of aggregating individual classifiers are cwsidered in order to compare the 

classification accuracy of relatively cornplex methods (such as, LR, Fi, which nquirP 

nonhear optimization during the training phase) with that of these simple methods. These 

combining classiners are implemented in [38]. 



2.7 Staçked Generalization Classifier 

Aggregating classifias via another classifier is d e d  Stacked Generalization (SG). There 

are many diffaent schemes of stacking classifiers. The particuiar one useâ in this thesis is 

show in Fig 2.6. The original specûa are preprocessed by different methods and these are 

submitted to level O of classifiers: ' c l a s ~ ~ e r  I', .. ., 'cl4ssijier n'. Usualiy LDA, QDA, 

ANN or KNN classiners were used at this stage. nie outcomes of these classifiers form a 

new set of attributes which is submitted to the classifier of level 1. This classifier (also 

r e f d  as the combining or aggregating classifier) was limitai to either LDA or QDA 

classifiers in this thesis. If the number of the individual classifiers isn, and the number of 

classes is m, then the dimensionality of the new set of attriiutes becomes nm. This way of 

forming new attriiutes was proposeci by Wolpert [SI, and it will be calied below as 

Wolpert's method of input generation. When the dimensionality of the classified &ta 

becomes comparable with the number of the training samples, the obtaked classification 

often becomes ~~lteliable. For example, in the case of a combinhg LDA classifier the 

estimate of the pooled covariance matrix may become unreasonable; this can lead to good 

performance on the training set and poor perfomance on the test set. In such situations 

another way of gaierating input was d. the median value of the outcomes of the 

individual classifiers was chosen for the particular class for the particulet sample. That is, 

instead of n-m-dimensional input ody m-dimensional input (Mediun(xi 1 ,x21,. . . ,xn1), 

Medim(xi*,xu,. . .ad),. . . , me di on(^^^^. . .&) is used This method of input 

generation will be r e f d  to below as 'median'. The SG classina is implemented in Pq. 



Level 

Fig. 2.6 The architecture of the SG classifier, as applied 
to data. 



3. Results on Artincial Magnetic Resonance Spectra 

It was mentioned in the introduction that the number of MR spectra avaüable is o h  

limiteà. As a dt, the improvernent of classification accuracy due to applying different 

aggregation techniques to a set of spectra depends on the specea and on the preprocessing 

technique used. To objectively anaiyze the behavior of the aggngation methods discussed 

above, an artincial set was generated. The description of the artincial set of spectra, the 

results of applying different aggregation techniquesy and the analysis foliow. 

3.1 Artificial Set of Magnetic Resonance Spectra 

In order to make the artificial spectra look similar to real-life spectra the following 

procedure was performed. A set of mal-life proton MR specûa of brain biopsies (53 1 data 

points each) that belong to t h e  classes was considered as the starting point for this 

simulation. Centroid spectra were calculatecl for all classes. The three centroid spectra were 

considered as the average representatives of the classes (Fig. 3.1). An MR spectxum cm be 

modeled as a sum of Lorentzians plus noise. The AllFit cornputer program 1341 was used to 

select a set of 26 Lorentziam (diffemit sets of Lorentzians for Merent centroid spectra) in 

such a way, that the s u .  of these Lorentzians (or peaks) optimally fitted the considered 

centroid (Fig. 3.2). Each Lorentzim is characterized by its position, widtb, amplitude and 

phase. An artificial spectrum was generated by perturbing the position and amplitude of 

evay peak and summing the modined peaks. The width and phase of the peaks were lefi 

unchanged. Uniforni noise was also added to e v q  generated spectm. 



Fig 3.1 The thce cenîmid spscbs of d-1i.h spcctra of kam biopsies, used to g e a e  a 
set of artificial spccûa. 

The positions and the heights of the bmtzians wae ranhmly paturbed as foiiows: 

POS, = Po$ + P- (RND - 05) 

Hdght, = Hdghtf (1 + H (RND - OS))). 

Hem Pt& and Hdgiitf are the position and height of the i-th Lorentzian for ciass c obtained 

after fitting with m i t ,  JüW is a random number in [0,1]. Pl2 is the maximal shift in the 

position of the brcntpan ( m d  in points), H defiocs the amplitude variability of the 

height. An artificial spcctmm was computed as foUows: 





Here x is the current position (in points) in the spectnim being generated, Kdth, and Phasei 

are the width and phase of the i-th Lorentzim (they were not pemubed), RnID is a uniformly 

distributecl random number in [O, 11, Q is the leml of the noise added to the spectnun. 

Fig. 3.3 Several examples of the generated artificial spectra h m  the same ciass. 
The uniform noise added to the spectra is not showu. 



The spectra were generated in such a way that the three classes overlapped by choosing 

the values of the parameters P, H and Q. Merent values were tried, and the following ones 

were chosen: F 2 0 ,  H-1,Q.O.l. A total of 600 spectm (200 per class) were created, half of 

them were useû for training, the second haif for tesQig. Some examples of the generated 

spectra are presented in Fig. 3.3. 

Before any aggregation technique cm be applied, the generated spectra must be classined 

by severai classifiers. Some problems arise when a set of 531-dimensional observations is 

behg classified. For instance, discriminant analysis requires knowledge of the covariance 

ma&, which is usually estimated h m  the training set. If the number of samples in the 

training set is smaller than the dimensionality of the sample, the covariance matrix is 

singular. Even if we have enough samples to get a nonsingular estimate of the covariance 

matrix, tiùs estimate is reawnaôle oniy if the number of the training samples is larger than 

the dimensionality of the sample (it is desirable to have a few observations per dimension). 

Shce the above conditions almost never hold for mal-life spectra, the latter are usually 

preprocessed first. The same should be done to the d c i a l  specûa. Several prepmcessing 

techniques were employed to reduce the dimensionaiity of the aaincial speara They 

included the following: 

each original spectnim of 531 points was condenseci into 53 equal consecutive regions, 

and the average/median values ofthe spectrum in each region were caiculated 

the same as above for 106 regions 

12 best regions out of either 53 or 106 above were selected by dyaamic programming 

PSI 

h c i p a i  Componmt Analysis (PCA) was applied to the spectra The 20 f h t  Rincipal 

Components @Cs) were selected 1353 



every original spectnrm was split into two segments of 265 left-hand and 266 right-hand 

poinîs. AU the above pnprocessing techniques were applied to both segments 

10 best regions (with average value of the speceum in the region) were selected in the 

originai spectra by a Gmetic Algorith (GA) [35] 

After the preptocessing was done the following ciassifiers were applied to the 

Prw==dspectra: 

Linear Discriminant Analysis 

Quadratic Discnminan . - .  
t Analysis 

Artificial Neural Network 

K-Nearest Neighbor classifier 

Table 3.1 Classification of differenly preprocessed artitïcial spectra by LDA classifier. The 
following characteristics are listed: preprocessing technique, classification performance and crisp 
classification performance (in parenthesis) for both ttaining and test sets, MSE for the tmiuhg set. 
The definitions of the MSE, classification per fomce and crisp classification performance are 
given in chapter 2.1. The best achieved performance is in bold. 

Classifier and prepnicessing technique 

LDA on 12 best regions out of 106; fidl spectra; 
average value in a region 
LDA on 106 re@ons; fiil1 spectra; average value 
in a renion 
LDA on 106 regions; fiIl spectra; median value 
in a region 
LDA on 12 best regions out of 106; full spectra; 
median value in a r&ion 
LDA on first 20 PCs h m  the fidl spectra 

LDA on 12 best regions out of 53; full spectra; 
average value in a region 
LDA on 53 regions; fidl spectrq average value 

LDA on 53 regions; fbli spectra; median value 
in a region 
LDA on f h t  20 PCs fiom the lefi-hand half of 
the spectra 
LDA on 12 best regions out of 53; lefi-hand 
half of spectra; average value in a region 

Training set Test set MSE on the 

0.57 0.50 
0.833 0.717 0.2705 



Performance on test set 

L D A ~  12 best regions out of 53; Ieft-hand 
haif of spectra; m e â i i  value in a region 
LDA on 53 regions; left-hand half of spectre; 
median value in a @on 
LDA on Eitst 20 PCs fiom the right-bd halfof 
the spectra 
LDA on 12 best regions out of 53; ri@-band 
haIf of spectra; averap value in a region 
LDA on 53 regiom; nght-hand hdf of spectra; 
average value in a region 
LDA on 12 best regions out of 53; right-hand 
half of spectra; median value in a region 
LDA on 53 regions; right-hand half of spectra; 
median value in a region 

* 0.7 0.75 0.8 0.85 0.9 

Performance on training set 

Fig. 3.4 Classification performance of the individual LDAs, and the LR-combiaing classifin on the 
training and test sets, artificial spectm. Stars comspond to the LDA classifiers, s d l  diamonds to 
the aggregation of 17 available LDA classifïcaîions, big diamonds to aggregation of a subset of 7 
classifications out of 17. Difkent diarnonds of the same type correspond to different objective 
functions. 

0.67 
(034) 
0.67 

(0.55) 
0.603 
(0.33) 
0.643 
(038) 
0.707 
(0.61) 
0.66 

(0327) 
0.683 
(0.52) 

We are going to aggregate the outcornes that were obtained h m  applying the classiners to 

the differently preprocessed spectra. For example, the resuits of applyi .  an LDA classifier 

0.63 
(0353) 
0.72 

(0.597) 
0.573 

(0.347) 
0.647 
(039) 
0.693 
(0.59) 
0.603 

(0367) 
0.633 
(0.52) 

to the preprocessed artificial spectra are preseoted in Table 3.1. 

0.473 1 

0.4636 

0.5019 

0.40 18 

0.3998 

0.4148 

0.4734 



3.2 Perfo~~lii~lce of Logistic Regression Classifier 

The LR-combining classifier was applied to a%gregate the individual LDA classincations 

of Table 3.1. A subset of 7 top paforming classifications out of 17, and ail 17 

classifications were aggregated. Several objective hctions were minimized in order to 

estimate the weights for the individuai classSers. They included: 

unweighted MSE on the training set (2.1.3) 

the number of misclassified saaiples of the training set (2.1.5) 

the numba of misclassined and M y  cîassified samples of the training set 

function(2.1.10) 

unweighted MSE on the training set plus the number of misclassined samples of the 

training set (2.1.6) (the second tam of (2.1.6) had different weightp: 1,5,0.3}) 

fhction (2.1.1 1) with different values of the weight P 
unweighted MSE on the training set plus the number of misclassified samples of the 

training set (2.1.12), with different values of the threshold {0.9,0.8,0.7} 

fiuiction (2.1.8), etc. 

In some cases the estimated weights were constrained by the absolute value (Iwl<SO) during 

minimization, in othei cases no constraints were applied. The same clsssifications were 

aggregated in ali aggregation instancd6. In Fig 3.4 both individual LDA and LR-combined 

classifications of the artincial spectra are presented. The axes are: horizontal - fiaction of 

correctly classified training samples (or perfo~nance on the training set), vertical - same for 

the test set (or perfo~nance on the test set). The LDA classifiers which are being aggregated 

m shown by stars. The results of combined classification are shown by diamonds. Diffemt 

diarnonds of the same type correspond to different objective hctions. The LR-combining 

'' mhhization of dinerat objective fhctions resuits in d ~ ~ t  eshates for the weights, which 
leads to diffierent ciassification outcornes for the combining classifier. 
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classifier has an equal or better p e r f o ~ c e  on the training set (lesubstitution) than the 

individual LDA classifiers. The performance on the test set is better in most of the cases, 

although for some objective iùnctions a degradeci performance was obtained. The worst 

result was obtained when objective hction (2.1.5) was minimized during aggregation of 

17 individuai classifications. 

The performance of the LRambining classiik as a function of the number of 

aggregated classifiers was &O analyzed. For tbis purpose alI available LDA classifications 

were sorted in decreasing order of the performance on the training set, and then the subsets 

containing different numba of top performing classifications were aggregated. The MSE on 

the training set (2.1.3) was selected as the objective fiincticm. The ~sults  are shown in Fig. 

3.5. Any combined classification has smaller MSE than any individual LDA classification, 

as expected. A smaller MSE sometimes leads to an increase of the classification 

perf'onnance on the training W o r  test sets. In some situations smaiier MSE didn't lead to 

# of classifiers 

Performance on training set h 
PerfOmance on test 

# of classifiers 

Fig 3.5 LR-combining classifier. MSE on the training set (a), and classification perfommces 
on the training and test sets @) as a fiinctim of the numba of aggregated classifiers. MSE on 
the training set (2.1.3) was the objective fiinction. MSE and performances of the individual 
classifiers which were aggregated are shom as points at the position oorresponding to O 
classifiers. 



higher classification performance. The andysis of the classification pediormance on the 

training set as a firnction of the number of aggregated classifiers suggested that the optunal 

number of individual classifiers to aggregate by LR is in the 4-8 range. 

It is important that the training set contains suffiCient number of samples. To check this, 

the following produre was performed A subset of 7 classifications was selected h m  

Table 3.1 to aggregate using the combining classifier. The combining classifier was trained 

on subsets of the onginal training set containhg 180, 240 and 3 0  samples (with equal 

number of samples in each class) d t i n g  in different estimates of the weights for the 

individual classifiers. Then it was appiied to the test subset consishg of 240 samples. 

DiBerat aggregation schemes using 5 different objective hctions were trieci. The d t s  

are shown in Fig. 3.6. Stars comspond to the performance on the training set, diamonds on 

Performance 
individual 

LDA classifiers 
0.85 2 * * * 

LR classifier 

Fig. 3.6 Classification performance of LDA and LRcombining classifiers on the 
training and test sets as a hction of the size o f  the training set. 7 individual 
classifications were aggregateâ. 5 objective ~ctious were minhkd, 
corresponding to 5 Merent aggmgation schemes. Stars correspond to the 
performance on the training set, diamonds on the test set. The individual 
classifications are numbered according to Table 3.1 



Tabk 32. Six classifications of prcpniccsscd artificial spectra with the best classification 
performances on the training and test sets. Preprocessing technique, classification pnfinmance and 
crisp ciassüication performance (in parenthesis) for both îraining and test sets, and the MSE for the 
training set are presented. The best achieved Perçonaaace is in bold. 

the test set. The resuits indicate that training the LR-combining classifier on dflerent 

Classifier and preprocessining technique 

QDA on 12 best regions out of 106, fbli spectra, 
average value in a region 
QDA on 12 best regions out of 53, fiill spectra, 
average value in a region 
QDA on 12 best regions out of 53, fidi spctra, 
median value in a region 
QDA on 10 regions selecteâ by GA, fbli specûa, 
average value in a region 
QDA on fkt 20 PCs h m  the lefi-hand haif of 

QDA on 12 best regions out of 53, right-hd haif 
of spectra, average value in a region 

training sets gives different but close performance on both training and test sets. For ail 

three trainhg sets most of the considered aggregation schemes have better classification 

Training set 
(crispl 
0.87 

(0.82) 
0.897 
(0.87) 
0.893 
(0.86) 
0.843 

(0.773) 
0.717 

(0.637) 
0.873 

(0.833) 

performance on the training and test sets than do the individual LDA classifiers. Changing 

the number of the training samples h m  180 to 300 doesn't change much the performance 

Test set 
(crispl 
0.863 
(0.8 1) 
0.913 

(0.887) 
0.9 1 

(0.877) 
0.847 

(0.793) 
0.90 

(0.833) 
0.S 

(0.87) 

of the individual LDA classifiers on the training set. 

MSE on the 
training set 

0.188 

0.150 

O. 163 

0.223 

0.4 1 8 

O. 1 83 

Several types of classifiers such as LDA, QDA, ANN, 3-NN were applied to differently 

preprocessed artincial spectra. Some of the classifia p a f o d  well, some poorly. It was 

found that QDA had the best performance on both training and test sets. LDA perfonned 

worse, ANN perfonned well on the training set, but not very weîl on the test set. The 3-NN 

classifier fded on these &ta. Six classifications with the best classification performances 

on the training and test sets were selected among ail available classifications. AU of them 



hapeened to be QDA classifications, see Table 3.2. Tbese classifications were aggcegated 

by the LR aggregation schemes using the foliowing objective fûnctions to estimate the 

weigàts for the individual ciassifiers: 

uatlweighted MSE (2.1.3) 

unnweighted MSE plus the number of miscIassifïed samples of the training set (2.1.6), 

p=5 

fiinction (2.1.1 1). p 5  

unnweighted MSE plus the number of misclassifieci and fuzzily classifieci samples of the 

training set, p 5 .  Eq. similar to (2.1.6) 

fùnction (2.1.12), tbreshold=0.8 and 

hction(2.1.8) 

the number of misclassified and -y ciassifïed samples of the training set 

The performance and crisp perfofmatlce of the individual QDA and LR-combining 

classifiers on the training and test sets are presented in Fig. 3.7. The QDAs are show by 

stars, the combined classincations by diamonds. AU aggregation schemes demonstrated an 

impmvement in classification accuracy. The classification performance of the LR- 

combining classifier increased h m  90% up to 95% on the training set (resubstitution), and 

h m  92% up to 96% on the test set. Crisp performance aie increased on both training and 

test sets for most of the combining classifiers, Fig. 3.7 (b). 



Cnsp p d o  ance on test set 
0 . 9 7  

0.75 * 0.8 O. 85 0.9 0.95 - 0.775 Cnsp performance on training set 

Fig 3.7 Classification psrfomisnce (a) and crisp classification pcrforrnance @) of the 
individuai QDAs, and LR-combining olassüm on the eaullng and test sets. Stars correspond to 
QDA classifiers, diamonds to different aggregation schemes that fùse the QDAs. 



3.3 Perfo~natlce of Linear Combination, Entropy, Confidence Factor, 

Majonty Voting, Simple Averaging, and Stacked Generalization 

Classifiers 

These six aggngating classifiers either do not require any training or the training does not 

require a nonlinear opthization, i.e., they are fiut. This is why they are being considered 

k Performance on training set 
Fig. 3.8 Classification performance of the individual L D h Y  and LC, ENT, CF, 
AVE, MV and SG-combining classifiers on the training and test sets, artincial 
spectra. Stars correspond to individual classifiers, d l  diamonds to the 
aggregation of 17 classincati011~~ big diamonds to aggregation of a subset of 7 
classifhtions out of 17. The subscripts in the SG schemes correspond to 
different aggregating classifiers and Merent ways the input was generated for 
them: 1 - LDA aud median-based, 2 - LDA and Wolpert's, 3 - QDA and 
Wolpert's 

together. In order to compare the results of applying these schemes with that of the LR- 

combineci classification the same set of the preprocessed artificial spectra (Table 3.1) was 

aggregated. The results are presented in Fig. 3.8. The individual classifiers are shown by 

stars. Small and big diamonds correspond to different subsets of aggregated classifiers: 17 





Fig. 3.9 LC-combining classifier. Classification perfont1811ce on the training and test sets (a), and MSE 
on the training set @) as a hct ion of the number of aggregated LDA classifim. Performances and 
MSE for the individual classifiers are shown as points at the positions corresponding to O c!ass%ers. 

0.75 
Pcrfonnanœ on tcst sct Perfoml~nœ on test set 

0.7 

3 6 9 12 15 
# of classifias Entropy based classifier 

Confidence Factor based classifier # of classifiers 

O.  75 Pafofma~lœ on test set 

O .  7 

0.65 

6 9 12 15 

# of classifias Averaging based classifier 

_Performance on training set 

i- Performance on test set 

1 6 9 12 15 

Majority Voting based classifier # of classifiers 

Fig 3.10 The ENT, CF, AVE and MVcombining ciassifiers. Classification performance on 
the training and test sets as a function of the number of aggregateâ classifiers. 





different test sets. For one of the test sets the aggregatim of the outcornes of the individual 

classifias improved the classification perfbrmatlce of the combining classifier. For the other 

little or no improvement was obtpineù This result suggests that the aggregation of 

classifiers doesn't always lead to better ciassification performatlce. Both the training and 

test sets were generated the same way. The only reasonable explmation why the combining 

classifiers classify one set of spectra better than the other is that the 'randomly' gemnited 

spectra of the test set happen to be distri'buted more favorably than those of the training set 

Similar analysis has been done for the SG-combining classifier. The d t s  for the LDA- 

based SG classifier with median and Wolpert's methods of input generation are presmted in 

Fig. 3.1 1. The f h t  classifier showed no improvement in the performance on the training set, 

Fig 3.1 1 (a). In fact, some deterioration occurred in cornparison to the perfo~naflce of the 

best individual classifier. This can be understood, if we look at the dependence of the MSE 

on the training set as a fiinction of the number of aggregated classifiers, Fig 3.1 1 (b). None 

of the combining classifiers has a d e r  MSE than the best individual classifier. Thus, it is 

unlilely to obtain improved performance on the training set". Nevatheless, the 

performance of this combining classifier on the test set has improved. Wolpert's SG- 

combining classifier, however, showed an improvement of the classification performance 

on both training and test sets, Fig 3.11 (c). The MSE on the training set decreases with 

increasing number of aggregated classifiers, Fig 3.1 1 (d). 

l7 Although there are examples when classifiers have larger MSE, and higher classification 
p e d o m c e  at the same tirne. 



Six classifies, which demonstrated top performa~ce on the training and test sets of 

artincial spectra, were aggregated by aU methodo considered here, as was done for the LR- 

combining classifier in chapter 3.2. The results are shown in Fig 3.12. AU combining 

* Performance on 
training set 

Crisp performance 

b) 
0.925 

test set 
SGb* 

SG1 

AVE 

t 
- -- - 

0.65 0.75 * 0.8 0.85 0.9 0.95 

Crisp performance on training set 

Fig 3.12. Classification performance (a) and crisp classification performance 
(b) of individuai QDAs and diBecent combining classifiers. Stars correspond to 
the individual classifiers, diamond to their aggregation. Combining classifiers 
are d e d  respectively. For the m&g of SGi4 see the text. 



classifias showed impved performance on the training set, an4 with the exception of 

one, on the test set. Abbreviations SGI4 mean SG classifiers with the foilowing aggregathg 

classifias and input generation methods: LDA and media- LDA and Wolpert's, QDA and 

median, and QDA and Wolpert's, respctively. Cnsp performance also improved for most 

of the methods. The cornparison of these r d t s  with those of the LR schemes (Fig. 3.7) 

indicates that some fast methods produce a similar increase in the classincation 

performance. 



3.4 Performance of Fuzzy Integrai Classifier 

Since the number of the estimated FMs of the Fkornbinin.: classifier inmeases 

exponentially with the number of aggregated classifiers, it is practicaliy impossible to apply 

this classiner to the aggregation of 17 (or even a subset of 7 out of 17) LDA classifications 

of Table 3.1. The numba of the FMs to be estimated is 3(217-2) in the first case, and 3*(z7- 

2) in the second In addition, even if such an opthkation probtem were solved, the results 

would be very unreliable, because 100 training samples per clam is obviously not enough 

for such a high-dimensional space. For the same reason the analysis of the classification 

Performance on test set 

Perfomce on training set 

Fig. 3.13 Classification performance of the individual LDAs, and the Fkombining 
classifiers on the fraining and test sets. Di&rent objective fiuictions were minnnued . .  . in 
order to estimate FMs. Stars correspond to individual classifiers, small diarnonds to 
aggregation by Sugeno FI (Si-%), big diamonâs to w g a t i o n  ôy Choquet FI (C&). 
The indices in Si-!$ and C& correspond to different objective fimctions. For their 
definîtion see the text. 



performance as a fimction of the n u m k  of aggregated classifiers was not perfonned for 

the Fi-combining classifiex. 

A subset of 3 individual classifications was selected out of the 17 LDA classifications of 

Table 3.1 to submit to the FI-combining classifier. The dimensionality of the optimilation 

LDA on 106 regions of full spechq with average values in each region 

LDA on 106 regions of fidl spectrq with median values in each region 

LDA on 53 regions of fbii specea, with average values in each region. 

The results of the FIcombuiiag classification based on the Sugeno and Choquet FIS are 

. .  . presented in Fig 3.13. DBerent objective functions were mmmmd on the training set in 

order to estimate the values of the FMs. They were: 

for the Suneno FI-combinina classifier: 

S - the unweighted MSE on the training set (2.5. 10) 

S2 - the sigrnoid-like hction (2.1.9) applied to the Meraice between the FI value for 

the true class of the sample and the FI value for any other class (2.5.1 1) 

S3 - the sigrnoid-like hction applied to the difference between the FI value for the true 

class of the sample and the maximal FI value among those for other classes 

SI - the number of misclassified samples of the trainhg set 

Ss - the weighted sum of the unweighted MSE on the training set (2.5.10) and the 

number of misclassiiled samples of the training set. The second. term had unit weight. 

s6 - the same as above but the weight was set to 5. 

Si - the weighted sum of the sigmoid-like hct ion applied to the difference between the 

FI value for the tme class of the sample and the FI value for any other class (2.5.1 l), and 

the number of misclassified samples of the training set. The second term had unit weight. 

S8 - the number of misclassified or fiizzily classifid samples of the training set 

S9 - the same as b v e  but the weight was set to 5. 





1 - Eq. (2.5.5) 2 - Eq (2.5.9) withA=l 

3 -Eq.(2.5.6)withp=û.7 4 -Eq.(2.5.7)withy=2 

5 - Eq. (2.5.9) with A 4  6 - Eq. (2.5.6)withp=2 

7 - Eq. (2.5.7) with y 2 0  

on test set 
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0.77: 
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i . .  . .  l . . . . h . . . . . . . . . . .  

Performance on training set 

Fig. 3.14 Classincation performance of the individual LDAs, and the generalized FIcombining 
classifiers on the training and test sets. Two objective fiinctions were mumuad . .  . on the training 
set in order to estimate FMs. Stars correspond to the individual classifiers, smal diamonds to the 
aggregation scheme using the fïrst objective fiinction, big diamonds to the sggregation scheme 
using the second one. Notations 1-8 correspond to Merent r-nomu used, see text for details. 

The redts  of the combined classification are presented in Fig 3.14. Stars correspond to the 

individual classifiers, small diamonds to the aggregation scheme using the first objective 

hction, big diamonds to the aggregation scheme using the second one. Notations 1-8 refer 

to the type of ?-nom used. The redts indicate that aii aggregation schemes irnproved the 

classifîcation perfoxmance on the training and test sets by 193% and 2 4 %  respectively. 



Again, the crispness of the classification didn't improve, and stayed near the average of the 

crisp paformances of the aggregated classifiers. 

Diffennt FI aggregation schemes, i.e., based on diBetent types of FIS, different objective 

hctiom and different ?-noms in the case of generalized FI, were also applied to the 

aggregation of four QDA ciassifications of the artificial set of spectni. These four QDA 

classifications are: 

QDA on the 12 best regions selacted by dynrnnic programming out of 106 regions of full 

spectrq with average vaiues in each region 

QDA on the 12 best regions sel- by dynamic programming out of 53 regions of full 

spectra, with average values in each region 

Performance on test set 
I s - 

Performance on training set 

Fig 3.15 Classification perfionnance of the individual QDAs, and different Fi- 
combining classifiers on the training and test sets. DHerent type of FIs, objective 
firnctions, and t-nom were used. Stars correspond to the individual classiners, 
diamonds to their ajgpgations. 



QDA on the 12 best regions selected by dynarinc pro&Lfatnmin~g out of 53 regions of full 

spactra, with median values in each region 

QDA on the 10 best regions selected by GA on fidl spectm, with average values in each 

region 

As one can see in Fig 3.15, aii  Flcombining classifiers, with one exception, showed better 

classification performance on both training and test sets. This exception happenecl to be the 

combining classifier using the generalized FI with taomi (2.5.5), and the objective fimction 

'the number of misclassined samples of the training set'. The nisp perf~cmance of the 

aggregation schemes stayeâ near the average of the crisp performances of the individual 

classifiers, Fig. 3.16. However, s e v d  aggregation schemes, baseci on 

generaiized FI, MSE on the training set (2.5.10) + the numba of misciassifieci samples 

of the training set, unit weights for both tenns, t-nom (2.5.9), kl 

generalized FI, MSE on the training set (2.5.10) + the number of misclassined samples 

of the training set, unit weights for both temis, t-nom (2.5.6), m.7 

generalized FI, objective fùnction (2.5.1 l), t-nom (2.5.6), m.7 

generalized FI, the number of misclassified samples of the training set, t-nom (2.5.9), 

a#=l 

gave a better crisp performance on both training and test sets. At the same time the 

aggregation schemes based on Sugeno FI with 'the number of misclassified samples of the 

training set', and 'hction (2.5.11) + the number of misclassified samples of the training 

set' objective fbnctions bad a worse crisp paformance than any of the individuai 

classifiers. However, for otha sets of spectra the situation may be different; it is &ta 



In general, the FI-combining classifier often improves classification @ormaoce in 

cornparison to that of the indivitbai classiners. Cnsp performance improves occasionally. 

Crisp performance on test set 

O .  775 t Cnsp performance on training set 
* * 

Fig 3.16 Crisp classification performance of four individual QDAs, and FI-combining 
classifiers on the training and test sets, d c i a l  spectra, FI aggregation schemes are based 
on Sugeno, Choquet and generalized FIS, diffmnt objective fiinctiom, which wem . .  . murimizwl on the training set in order to estimate FMs, and dwerent t-nom (for the 
generalized FI). Stars correspond to the individual classifiers, diamonds to the aggregating 
classifiers. 

3.5 Cornparison of Classification Accuracy 

Finally, all aggregation methods were compareci, while applied to the set of four QDA 

classincations, Fig. 3.17. The foiîowing schemes of the FI, LR, and SG-combining 

classifiers were applied: 

fil - Sugeno FI, objective function (2.5.1 1) + the number of misclassified samples of the 

training set, unit weights for both tums 



FI2 - Choquet FI, MSE on the training set (2.5.10) + the number of misclassified 

samples of the training set, unit weights for both terms 

R3 - generalized FI, MSE on the training set (2.5.10) + the number of misclassified 

samples of the training set, unit weights for both temis, t-nom (2.5.9), A=1 

FI4 - generalized FI, MSE on the training set (2.5.10) + the number of misclassi.tied 

samples of the training set, unit weights for both temis, t-nom (2.5.6), p10.7 

FIs - generalized FI, objective fimction (2.5.1 l), t-nom (2.55). H . 7  

LRl - MSE on the training set + the number of misclassified samples of the training set 

(2.1.6), unit weights for both terms 

LR2 - MSE on the training set (2.1.3) 

LR3 - objective hc t ion  (2.1.1 l), unit weights for both tams 

& - objective hct ion (2.1.10) 

SGl - aggregating LDA classifier, median scheme 

SG2 - aggregating LDA classifier, Wolpert's scheme 

SG3 - aggregating QDA classifiery Wolpert's scheme 

Practicaliy all methods improved classincation accuracy of both training and test sets, Fig. 

3.17 (a). The MV-combining classifier had performance close to that of the k t  individual 

classifier (slightiy beaei for the training set, and slightly worse for the test set). SG3 didn't 

perfonn well for eitber of these &ta. The ENT classifier, one LR, two SG and îhree FI 

schemes improved the d s p  classification performance for both training and test sets, Fig. 

3.17 (b). Most of the others had crisp classification perfio~nance slightly worse that that of 

the best individual classifier. One FI and two LR schemes had worse crisp performance. 

Thus, computationally simple and fast aggregation methods can perfonn as well as 

complicated and very time consuming aggregation methods. 
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Fig. 3.17 Classification (a) and crisp classification (b) performances of four QDAs, and 
various aggregation methods. Stars co~espond to individual classifications, diamonds 
to the combined classificatiotls. For the meaning of the indices of the LR, FI, and SG 
schemes see text. 



After analping the performance of the M i t  aggregation methods, thiaeen were 

seiected to apply to real-Me spectni. The description of the methods, parameters if roquired, 

and abbwiations are presented in Table 3.3. 

Table 33  Aggmgation techniques found to work weU on the artincial MR spectra These techniques 
wiU be applied to c l a s s ~ g  rd-life spectra in subsequent chapters. The abbmiaîions below will 
be used to distinguish among the methods. 

# 

, 1 
2 
3 
4 

r 

5 

1 weij&ts are constraiued by absolute values lM<50 during mmmiinih 
. .  . *on I 

? 

Generalized Fuzzy integral; objective function: the MSE on the training set 
+ the aumber of misclassifiecl training samples, Eq. similar to Eq. (2.1.Q 

A-gation technique, paramekm 
ConfidenceFactor 
Entropy 
Majority Voting 
Logistic Regression; objective function: the MSE on the training set + the 
number of misclassined training samples, Eq. (2.1.6), P=l., the weights are 
consttained by absolute values Me50 during -on 
Logistic Regression; objective hction: the MSE on the training set + the 
number of misclassüïed training samples, Eq. (2.1.6), P=5., the weights are 
constrained by absolute values lw(e50 during minimilrition 

Abbreviation 
CF 
ENT 
MV 
LRI 

LR2 

1 
Logistic Regression; objective function: the MSE on the training set + the 
number of misclassifïed and fuzzily classified training smples, Eq. similar 
to Eq. (2.1.6), p=l., the weights are constrained by absolute values Id<SO . . . 
during mmmmbon 
Logistic Regression; objective function: Eq. (2.1.12), threshold=0.8, the 

LR3 

LR,, 



In chapter 3.3 we have analyzed the dependence of classification performance of the 

combining classifiers on the number of aggregated ciassifiers. The performances of the 

individual classifiers ranged h m  less than 50% up to 85%, i.e., were vay different. It is 

interesthg to see what improvement in classification accuracy one can obtain if the 

aggregated classifiers had simiiar performances @ut of course diff-t classifications). In 

otha words, what would happen if the outcomes of individual classifiers are distributed 

about some 'average' outcorne. 

The following procedure was performed. Sets of preprocessed real-life spectra were 

classifieà by an LDA classifier. The classification outcomes (i.e., membenhips in different 

classes) were pemubed by adding 20% noise, and then nomialized. Twelve 

Logistic Regression # of classifiers Linear Combination # of classifiers 

Fig. 3.18 Classification performance of LR & LCcombining classifiers, and the MSE on the 
training set as a fùnction of the number of aggregated classifiers with similar performances. 
Ciassification performances and MSE of the aggregated classifiers are show as points at the 
position corresponding to 1 classifier. 



'classifications' were obtained this way. These classifications were aggregated by the LR 

and LC-combining classifiers. The weights for the individual classifiers were obtained by 

minimin'ng MSE on the training set. The results are shown on Fig. 3.18. The MSE of the 

combining classifiers dareases monotonically with increasing number of aggregated 

classifiers. Classification performance generaiiy increases with increasing number of 

aggregated classifiers. Crisp classification p&omiance also improves, Fig. 3.19. 

Logistic Regression # of classifiers Lhear Combination # of classifiers 

Fig. 3.19 Crisp classification performance of LR & LC-combining classifiers, and the MSE on the 
training set as a fiinction of the number of aggregated classifiers with sirnilar performances. Cnsp 
classification pafomces and MSE of the individuai classiners are shown as points at the 
position corresponding ta 1 classifier. 

3.7 Cornparison of Speed of Combining Classifiers 

Aggregation methods such as the LR, LC, and FI classifiers require estimating unknown 

parameters (weights for the LR and LC, and Fus for FI classifier) during the training stage. 

These parameters are calculated by minimiang an objective hction on the training set. In 

general, a nonlinear constrained optixnization technique is reqmed for the LR and FI 

classifiers. The weights in the LC-combiniog classifier can be estimated by inverting several 

matrices of mail dimension. The number of the parameters to be estimated increases 





3.8 Choosing Individual Ciassiners 

When many individual classifications are available, the problem of how to choose the 

classifications to aggregate arises. As was mentioned in severai papers, aggregating the best 

individual classifications does not necessarily lead to the best paformance of the combining 

classifier. The independence of classikations is a more important requkment, Suppose 

two classifias have high classification pediomiances on some data set. This means that 

most of the samples of the data set are classifieci correctiy by both ciassifiers, and just a few 

of them are misclassifieci. If the classifiers misclassify these samples into the same class, 

they are comlated in making errors, otherwise the classifiers are uucomlated. The 

mconelated classifiers are of interest to combining classifiers. This lack of correlation helps 

to Unprove the performance by aggregating these classifiers. Obviously, the better the 

performance of the individual classiners, the smaller the correlation between them in 

making emrs, just because fewer samples are misclassifieci. It is less likely that aggregating 

such classifiers will improve much the classification performance. On the other hanci, 

classifiers with low performance may be less comlated in making amrs, and although their 

aggregation may improve classification accuracy to a higher degree, this improved acauacy 

can be worse than the accuracy of a hi& Morming individual classifier. Thus, a trade-off 

between the classification performance of classifiers and the correlation among them in 

making errors has to be considered selectllig classifiers for aggngation. 

The foiiowing procedure of selecting classifiers is pmposd Denote the performance of 

the i-th classifier by Pi, and the correlation in making errors baween the i-th and j-th 

classifiers by Cu. Calculate the correlation in making m m  between ali pairs of classifiers. 





in both lists (iines 1 and 3), but the order is different. For instance, if one selects 3 

classifications for aggregation, the praposed procedm suggests selecting the two 

classifications with the best paformances (43 and 121, but classification 32 insteaâ of 

classification I l  despite the htter's betkr pafonnance. The value of parameter fi was set to 

1 o. 

The aggregation methods of Table 3.4 were applied to the aggregation of classifications 

(43,12,11) (set 1) and (43,12,32) (set 21, and the d i s  are compare4 Fig 3 20. 

Performance on test set 
l r  

Set 2 

Performance on training set 

Fig. 3.20 Cornparison of the classification petfonnances of the combinmg classifiers 
aggregating 3 classificatio~~s with the best classification performances on the iraining 
set (set l), and 3 classification with hi@ performances and low correlation in making 
emrs on the training set (set 2). Aggregation metbods of Table 3.4 were applied. 
The individual classification are shown by stars, aggregations of set 1 classifiers by 
s d l  diamonds, aggregatious of set 2 classiners by big diamonds. 

The individual classifications are shown as stars, small diamonds correspond to the 

aggregation of the classifias of set 1, big diamonds to the aggregation of the classifiers of 

set 2. The results are quite interesting. Most of the combining classifiers aggregating the 



individual classSers of set 2 have better classification performance on the trainhg set thsn 

for the classifiers of set 1. Thus, taking into account the inâependence in making mrs 

among individuai classincations while choosing what individual classifications to aggregate 

can indeed improve the classification perfo~naoce on the training set 

Crisp performance on test set 

Crisp performance on training set 

Fig. 3.21 Cornparison of the crisp classification performances of the 
combining classifiers aggregating 3 classEcations with the best classification 
perform8~1ces on the training set (set l), and 3 classifications with high 
performances and low correlation in making errots on the training çet (set 2). 
Aggregation methods of Table 3.4 were applied. The individuai classification 
are shown by stars, aggregatiom of set 1 by small diamonds, aggregaiions of 
set 2 by big diamonds. 

Now look at the results on the test set. For some reason the individual classification I l  of 

the set 1 has a significantly higher performance on the test set than alî others. This raises the 

pafomances of the combining classifiers on the test set. None of the individual 

classifications of set 2 has comparable @ormance. As a result, the classification 

perfomances of the combining classifiers aggregating the classifiers of the set 2 are worse, 



although in general they are better than the corresponding performances of the aggregated 

classifiers. In the case of aggregating classifias of set 1, the perfomiances on the test set are 

near the average of that of the aggmgated classifks. 

The cornpaison of crisp classification performances is shown in Fig 3.21. The 

performances on the training set of the combining classifiers aggregating the classifins of 

set 2 are not si@cantly bettex than that of the combining classifkrs aggregating the 

classifiers of set 1. The crisp pediormances on the test set of the combining classifia 

behave similarly to the performances on the test set. 



4. Redts on Real-Life Magnetic Resomce Spectra 

The thirteen aggregation techniques of Table 3.3, which were found to perform well on 

the set of &cial MR spectra, were applied to real-life spectra The description of the 

analyzed specûa, the preprocessing and classincation methods used, the results o f  the 

combined classification, and some analysis follow. 

A set of 2 15 proton MR spectni of brain tissue samples was classified. The spectra belong 

to tbree classes: high grade astmcytoma, meningioma and epilepsy. 84 samples constituted 

the training set, the rest were used for testing. Each spectnim consists of 550 points. Several 

preprocessing techniques were employed in order to prepare the spectra for classification. 

These techniques were applied to the original umormaiized spectra, as well as to 

nonnalized spectra. They included: 

the first 18 PCs, which explain most of the variance in the spectra, were selected by PCA 

for the mormalized spectra 

the first 1 1 PCs were selected for the normalized specmi 

each unnomalized spectnim was condenseci into 55 consecutive regions, and the mean 

value of the spectmm in each region was calculateci. Then 23 regions were selected by 

dynamic programming 

similarly, 25 regions were selected for the normalized spectra 

The preprocessed spectra were classified by ANN, LDA, QDA and KNN classifiers, 

resulting in approximately two dozen classifications. The best classifications were the LDA 

and ANN classifications in general. The QDA classiner @ormeci worse than the LDA 

classifier. Thus, it seemed to be more beneficial to apply the LDA classifier to diffeffntly 



pnpiocessed spectra rather than ta apply the QDA classifier at all. The KNN chsifier 

perfbmed vay poorly on these spectm 8 ciassifications were sel& to submit to the 

comblliing classifiers of Table 3.3. The results of the individual and combined 

classincations are presented in Fig 4.1 (a). The individuai classifications are shown by stars 

and big diamonds. The combined classifications are show by smail diamon&. Most of the 

aggregating classifiers were applied to the 8 classifications. The FI-combining classifier was 

applied to four individual classifications show by big diamonds. 

Most of the aggregation meth& improved the classification performance on the training 

set, however only a few of them improved the performance on the test set. The crisp 

classification perfo~natlce on the training set was impmved by a few methods (mainly, by 

the LR and FI classifiers), but in general remaineci near the average on the test set, Fig 4.1 

(b). Interestingiy, classification @onnance on the training set was improved mainly by the 

LR and FI classifiers, the ones which were trained on this set. At the saxne time these 

classifiers perform relatively poorly on the test set. ûther combining classifiers which don't 

require training (except the SG classiner) didn't perform as well as the LR and Fi classiners 

on the training set, but performed much better on the test set. 

A set of proton spectm spectra of cervical biopsies, was classified by the aggregating 

classifiers. Of the 98 spectni available, 40 were used for training the combining classifiers, 

the rest for testing. Each spectrum consists of 650 points. The spectra belong to 2 classes. 

The spectra were preprocessed by 



c o n d h g  each spectnim into either 65 or 130 consecutive regions, and calculating the 

mean value of the specûum in each region. Then the 12 best ngions were sel& by 

dynamicprognmiming 

selecting the 10 regions in the original spectm by GA 

The preprocessed spectni were classified by an LDA classifier. The QDA classifier was also 

applied, but the obtained d t s  were poor. The K N N  classifier was not applied because of 

iasufncient number of training samples. AAer the individuai classifications were obtained 

the combining classifiers were applied to 3 selected classifications. The d t s  of 

classification are presented in Fig. 4.2. Stars correspond to the individual classincatiom, 

diamonds to the combining classiners. The LRcombining classifier paformed welî on this 

set of spectra. Both classification and crisp classification performances were improved by 

aggregation. This data set is difficult to classi@ because of the imuflïcient number of the 

spectra available. A very high classification accuracy can be achieved on the training set 

(97.5% in the case of the LDA classifier applied to 10 regions selected by GA), yet applying 

the same classifier to the test set barely achieves 64% accuracy. Aggregating individual 

classifiers improved the classification accuracy on the test set h m  67.2% up to 70.7%, and 

crisp classification accuracy on the test set h m  62% up to 67.2% by aggregating the 

individual classifiers. 

A set of proton brain spectra was also classified. This set has 215 spectra, 84 of them 

constitute the training set, the rest the test set. The spectra belong to 3 classes. Each 

spectrum consists of 550 points. The spectra were preprocessed as follows: 

the first 10 PCs were selected by applying PCA to normalized and unnormalized spechii 



Performance on training set 

Performance on test set 
r a) 

1: 

0.95: 

* 

Crisp performance on test set 

0.85: 

0.8 

0.75: 

Cnsp performance on training set 

* 
: e 

CF 
* 

0 . 7 ' - . - - .  - . - *  - - - . - - - . .  . a 

Fig. 4.1 Classification performance (a) and crisp performance (b) of the individuai and 
combining classifiers on the saining and test sets, rd-Me btain spectra The individuai 
classüias am show by stars end big diamonâs. Small diamonâs conespond to the 
combining classifiers. AU aggtegations were pedonned on the 8 individuai classifiers, 
except for the H ciassifiers, wwbich were applieâ to the 4 individual classifiers shown as big 
diamonds. The definitions of the abbmiations are described in Table 3.3 

0.7 0.75 0.8 0.85 0.9 0.95 1 



Performance on test set 

0.75 

0.7 

0.65 

0.6 

0. 55 

0.5 

0.45 

Crisp 
l 

0.8 0.85 0.9 0.95 1 

Performance on training set 

performance on test set 

C . 

. 

+ 
1 

0.5 O. 6 O. 7 O. 8 0.9 1 

Crisp performance on training se 

Fig. 4.2 Classification performance (a) and cnsp perfo~mance (b) of the individuai 
and combining ciassifiers on the training and test sets, cervical spectra individuai 
ciassifiers are show by stars. Sxuali diamonds correspond to combining chifiers. 
The definitions of  the abbrwiations are described in Table 3.3 



each nofmalized and unwmialized speanmi was condensed imo 55 consecutive regions, 

arid the mean value of the specûum in each region was calcuked. The best 8 regions 

were selected bydynamic programming 

The preprocessed spectra were classifieci by the ANN, LDA and QDA classifiers, and 8 

classifications were s e l 4  h m  aU obtained classifications. The combining ciassifiers of 

Table 3.3 were applied to these classifications, and the d t s  axe shown in Fig. 4.3. Again, 

stars and big diamonds represent the individuai classifications, small diamonds their 

aggregation. The FI classifiers were appiied to the 4 individual ciassifiers (shown as big 

diamonâs). 

Most of the combining classiners improved the classification accuracy on the training set. 

ûnly the LR and SG-combining classifiers impmved the classification and crisp 

classification perf'onnauce on the test set. n ie  classification performance on the training set 

improved fiom 92.8% for the best individual classifier up to 98.8%, on the test set fiom 

84.7% up to 87.8%. The crisp classification performance irnproved h m  89.3% up to 

98.8% on the training set, and h m  83.2 for the best individual classifier up to 87.7% on the 

test set. The most successful combining classifier was the LR classifier, minimizing the 

MSE on the training set and the number of misclassified or fuPily classified training 

samples togzther. 

Three classifiers of clSetent architecture (LDA, QDA and ANN) were appiied to the same 

set of preprocessed spectra (the 8 best regions of the spectra selected h m  55 regions by 

dynamic pmgramming). These classifications were aggregated by the same set of 

combuillig classifiers. The results are presented in Fig. 4.4. Practicaliy aiî aggregation 



methods improved both ciassiiication and crisp classification accuracy on both training and 

test sets. Notice, that aggregating a fewer numba of the individual classifications allows 
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for hi* classification performance on the test set, than in the case of aggregahg 8 

classifications (89.3% vs 87.7%). Crisp classification performance on the test set remainecl 

the same. 

These four examples demonstratecl that in maiiy cases aggregating individual 

classifications improves classification accuracy. Some combining classifiers perform weU 

on one data set, and poorly on another. Thus, in order to achieve better performance 

different methods need be tried. 



5. Results on Real-Life Idhred Spectra 

A set of infked (IR) spectm of blood serum samples was analyzed. The IR spectra have 

some advantages over proton MR spectra There is no huge water peak, which always exists 

in the proton MR spectra. This peak is usually removed by water suppression h m  MR 

spectra. The IR spectra also have a better signal-to-noise ratio. They are simpler to acquire 

and less costly, so @te a few are available for the anaiysis. The 1362 analyzed spectra 

belong to 3 different classes (396 of them are of class 1 (normal), 326 of class 2 

(hyperglycemia), and 640 of class 3 (hyperttiglyceridemia, hypercholesterolemia, and 

Lipometabolism)). Haif of the spectra in each class constitute the training set, another half 

the test set. First the spectra were noxrnalized. The centroici spectra of the three classes are 

presented in Fig. 5.1. The spectra within the classes are distributed about these centroid 

spectra. For example, the distribution of class 1 spectra is shown in Fig. 5.2. The centroid 

spectnim is shown in white on the black background of the spectra of individual samples. 

Before the aggregation methods were applied, the spectra were preprocessed: 

each original spectnim of 18 16 points was condensed into either 182 or 9 1 consecutive 

regions, and the average/median values of the spectnim in each region were calculated 

the best 12 regions out of the 18U9 1 above were selected by dynamic prognm~ing 

PCA was applied to the spectra. The h t  20 PCs were selected 

10 regions which contribute mostly to the discrimination among the classes were 

selected in the normalized spectm by GA 

and classified by the LDA, QDA, and KNN classifiers. A total of 26 classifications were 

obtained, four of them were selected for aggregating. They inclde: 3-NN classification 



Fig. 5.1 The centroid spectra of 3 classes of 
IR spectra, 

of normalized full-size spectra, the LDA applied to the spectra condemed into 182 regions 

with the mean value of the spectra in the regions, the LDA appied to the spectra condensed 



into 182 regions with the median value of the spectra in the regions (this is the best 

individual ciassificaîion), and the LDA applied to the 10 regions sel& by GA. 

Fig 5 2  The spectra of class 1 distributed about the centroid 
spectrum, IR specûa. The centroid spectrum is shown in white 
on the black background of the individual spectra 



The aggregation methods of Table 3.3, which were found to woilr weU in the case of 

artificial MR spectra were used for aggregating these classifîcations. The resuits of 

individual and combined classifications are presented in Fig. 5.3. The individual 

classincations are shown as stars, their aggregation as diamonds. AU aggregation methods 

showed improved performance over that of the individual classifiers on both training and 

test sets. The best individual classifier gives 91.6% and 88.8% accuracy on the training and 

test sets respectively. The best performance achïeved by the combining classifiers is 94.9% 

on the training set, and 91.8% on the test set. The SG, FI and some LR schemes &O 

irnproved crisp classification performance. The best achieved crisp perfomience is 94.6% 

and 89.7% on the training and test wts rrspectively, vs. 902% and 87.4% for the best 

individual classifier. ûther aggregation meth& had crisp performance close to that of the 

best individual ciassifier. 
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6. Conclusions 

DBerent methods of aggregating classifiers were considered and applieù to both artincial 

and real-life MR and IR spectra in this thesis. The author has dewelopeâ, adapted and 

imPlemented1* several aggregation methods, such as the LC of classifiers, LR and FI 

classiners, entmpy based, CF based and MV classinas. Some aggregation methods requuP 

estimating parameters: weights for the LR and LC, and FMs for F'combining classifiers. 

An objective fiinction is minimized in orûer to do this. This p e s s  is c d e d  training the 

combsiing classifier. Several objective fûnctions were considered in orda to improve 

classification accuracy of the combining classifier on the training set. An aggregation 

method together with an objective hct ion is referred to as an aggregation scheme. Several 

aggregation schemes (published in the literature and constnicted by the author) were 

implemented for the LR and Fi aggregation methods. Some of the suggested schemes 

showed an improvement in classification a c c m y  compared to schemes in the literature. In 

order to minimize the objactive hctions a nonlinear constrained optimization problem 

must be solved in general. A simplex rnhhhation procedure with simulated annealhg was 

used for this purpose. AU aggregation methods anà schemes were also compared among 

themselves. 

The number of MR spectra available for analysis is o b  limited. The results of applying 

the aggregation methods to such data is strongly data dependent. In order to test the 

aggregating methods more objectively a set of artficial MR spectra was generated. The 

l8 as C* ciasses on SGI UNIX workstattions 



artificial specûa look similar to d - M e  ones. The set has d c i e n t  number of spectra for a 

reliable analysis. 

Diffaent aggregating classinas require diffete~lt amounts of t h e  to train. Training the 

LR and FIcombining classifiers may be very time consuming. Training the LC-combining 

classifier is much mer since it can be &ne by a matrix inversion. The time required to 

train the SG classifier depends on the aggregating classifier. The entropy, CF and MV- 

combining classifiers don't require any training. It has been found that simple and fast 

aggregating classifiers can perfoxm as well as complicated and slow classifiers. However, in 

some cases simple classifiers perfonn poorly in cornparison with the complicated classiners 

applied to the same data. Af€er the training is complaed a new simple is classified by any 

of the classifiers in negligible time. 

In order to get better performance h m  a combining classifia one has to aggregate 

individual classifiers that make mrs in an uncorrelated manner i.e., different classifiers 

misclassify the same samples into difkent classes. One strategy is to apply classifiers of 

different architecture to the same data. DBerent classifiers look at the data fiom ciiffernt 

points of view, resulting in different classifications. Another strategy is to preprocess the 

spectra differently and submit these to a single reliable classifier. DBerent prepmcessing 

techniques may select different features which distinguish the samples among the classes. A 

method of selecting classifications for aggregating is pmposed in this thesis. This method 

takes into account both classification performance of inaviâual classifiers and correlation 

among them in making errors in such a way that high pedonning classifias with minimal 

correlation are selected for aggregation. 



Combining class%ers were applied to diffkent sets of MR and IR spectra. The d t s  

indicate that these classiners may in many cases lead to better classification performance 

than that of the individual classiners. Combining classiners may also result in more crisp 

classification. Just as it i3 difficult to choose the best classifier among different classifiers, it 

is also difficult to chwse the best aggregation method. Diffetent methods H o r m  well on 

some data and poorly on others. In order to get hi@ performance out of the combined 

classification it appears that both different ppnproassing techniques and différent 

aggregation methods must be tried. 
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