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ABSTRACT

This thesis investigates two important aspects of the design

of minimal- wave digital filters, namely

1. the synthesis of nominal minimal wave digital filter
realizations, and

2. the suppression of zero-input parasitic oscillations
that could possibly occur in the filter as a result
of the finite-word-length constraint.

Concerning the synthesis problemr ân algorithm (termed the

direct wave digital (DWD) algorithm) is developed which de-

termines minimal reciprocal wave digital filter realizaLions

directly from transfer function specifications. These real--

ízaLions are based on pseudoJ-ossl-ess n-port adaptors wi th

the general scattering matrix representation introduced by

Martens and Meerkötter. The adaptor coefficients are con-

tained in two submatrices, N and K. A method for wave diqi-
tal cascade synthesis via transfer matrix factorization and

the DI¡íD alqorithm is described.

The effects of quantizlng the coefficients in N and K are

investigated. In particular, it is shown that coefficient
quantization generally yields an adaptor with a nondiagonal

port reference conductance matrix. It is further demon-

strated that the nondiagonal nature of the conductance ma-

IV



tríx makes the stability criteria developed for conventional

wave digital filters inapplicabl-e. A strictly pseudopassive

adaptor structure is then proposed. This structure is de-

rived from the pseudolossless adaptor by simply placing pas-

sivity multipliers in the reflected wave branches. Concli-

tions that are sufficient to guarantee nonlinear stabiJ-ity

are then given for specific pseudopassive adaptor structures

that can realize second-order, fourth-order and symmetric

fifth-order reciprocal filter sections.

A general procedure for the design of stable, minimal,

reciprocal wave digital filters is then formulated. The

hardware implementation of these designs is discussed. Fi-

nally, a number of ill-ustrative design examples are present-

ed.
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Chapter I

INTRODUCTION

In the most general sense, filtering is the process by which

an input signal is reshaped or modified to yield an output

signat with more desirable characteristics. The require-

ments that a filter must satisfy may be specified in either

the timer or more typically, the frequency domain. In the

latter caSe, filters are often frequency-selective in that a

range of frequencies may be attenuated or removed from the

input signal, white other frequencies are passed or ampli-

fied.
Fittering may be performed on continuous-time or dis-

crete-time signals. A continuous-time signal is one in

which the independent variable, time, takes on a continuum

of values. A discrete-time signal on the other hand, is one

that is defined at discrete instants of time and according-

ly, may be viewed as a sequence of numbers. Signals for

which both time and amplitude are discrete are called digi-

tal signals.

A filter that operates on digital signals is termed a di-

gital filter. More specifically, a digital filter is a com-

putational algorithm or process that transforms an input di-

gital signal or sequence of numbers into another sequence of

1



2

numbers exhibiting the desired properties. The algorithm

may be recursive or nonrecursive in nature.

Vle may distinguish between two classes of digital fil-

ters, namely finite impulse response (FIR) and infinite im-

pulse response (IIR) filters. The IIR cl-ass of filters has

the greatest flexibility with respect to the locations of

attenuation poles and zeroes and hence, is often preferred

when attempting to meet stringent attenuation specifica-

tions. The design of IIR digital filters comprises four

general steps:

1. Solve the approximation problem to determine a system

function H(z) that characterizes a linear shift-in-

variant ( LSI ) discrete-time system satisfying the

given performance specifications.

2. Choose a specific structure for the LSI system that

realizes H(z).

3. Impose the finite-word-Iength constraint on the dis-

crete-time filter.

4. Implement the digital filtering algorithm on a digi-

tal computer or with dedicated hardware components.

The approximation problem may be soLved directly in the

z-domain or alternativelyr one may obtain a solution in the

continuous-time domain that maps int-o an appropriate dis-

crete-time system description. This latter approach allows

one to utilize the highly advanced analog approximation pro-

cedures. There'are a number of techniques for effecting a
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transformation between analog and discrete-time system de-

scriptions. These include the impulse-invariance, the

matched z-transform, and the bilinear z-transformation tech-

niques Il'2].
The choice of structure for the LSI discrete-time filter

that is to reaLize the desired system function is complicat-

ed by the subsequent finite-word-length restriction which

necessi tates :

1. quantization or approximation of the nominal_ filter
parameters, and

2. quantization, for example by truncation or roundoff,

of the input, output, and intermediate signal quanti-

ties within the filter structure.

The errors introduced by these modifications are termed

finite-word-length effects. The first modification degrades

the frequency response of the digital filter while the sec-

ond modification introduces nonrinear error into the time

response. This latter error frây, in some instances, be cor-

related such that parasitic oscilLations (limit cycJ_es) oc-

cur at the filter output under zero-input conditions t3l. A

distinction is normally made between two types of parasitic
oscillations i.e. t) overflow oscilrations which can occur

as a result of errors introduced in modifying signals that
have exceeded the available range, and 2) granularity or un-

derflow oscillations which may result due to the roundoff or

truncation of signaJ- underflow bits. uncorrelated error in
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the time response is generally referred to as roundoff

noise. It is weIl known that the relative severity of fi-

nite-word-length effects is highly dependent on the filter

structure Í4 ,5 ,61 . CIearJ-y, it is desirable to choose f iI-

ter structures that minimize these effects, keeping in mind

other considerations such as hardware costs and speed limi-

tations.
The most straightforward filter structures that have been

established for an arbitrary IIR system function are the di-

rect, forms DI and DII, para11e1, and cascade digital struc-
tures. The DI and DII forms generally exhibit very poor

performance with respect to finite-word-length effects. More

practical are the paralle1 or cascade forms which derive,

respectively, from a partial fraction expansion or a fac-

toring of the system function into first and second-order

sections. A great deal of interest has been directed to-
wards developing second-order sections that suppress limit

cycles [7-]ll, and have low coefficient sensitivity and l-ov.¡

level-s of roundof f noise t12-141 .

An alternate structure that has received considerable at-
tention is the r,rave digital filter, introduced by Fettweis

and developed by him and his co-workers II5-tB]. The v/ave

digital filter is a high-order feedback structure thac is
derived via the digitization of an analog reference filter.
The digiLization process utilizes voltage scattering vari-
ables and the bilinear z-transformation. The reference fil-
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ter is typically a resistively terminated LC ladder network,

although other classical networks, for example the symmetric

lattice or Jaumann structures [I9 r20) , are suitab].e as pro-

totypes.

The hrave digital (WD) structure has the advantages of a

low sensitivity of the system function to coefficient quan-

tízations and relatively low levels of roundoff noise

Í2I-241. Furthermore, Fettweis and Meerkötter l25l have dem-

onstrated, using the concepts of pseudopower and stored

pseudopower, that it is possible to suppress all types of

zero-input oscillations in WD fil-ters derived from ladder or

symmetric lattice prototypes. Disadvantages include that

the WD structure requires more adders than conventionaf de-

signs employing a cascade or paralleJ. connection of direct

form low-order sections. Also, WD filters derived from non-

minimal ladder reference filters wilI not have a canonic

(i.e. minimum ) number of delays. Elimination of the degen-

eracies within such filters yields structures that are can-

onic in delays, but for which suppression of limit cycles is

no longer easily achieved t26-281.

The standard WD design procedure t17l utilizes basic

building blocks, ca11ed adaptors, that are interconnected to

yietd the filter realization. An alternate structure devel-

oped by Martens and Meerkötter 1291, is one that employs a

single n-port adaptor. This method may be applied to real--

izing WD structures based on prototypes with arbitrary to-
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pology. In particular, Lê [30] , Martens and Lâ [3]1, ir,tar-

tens and Jarmasz 132), and Jarmasz t33l have appì-ied this

technique to deriving Iimit cycJ-e-free WD filters based on

minimal- networks incJ-uding the Brune and Darlington D net-

works.

This thesis proposes an alternate approach for the reali-

zation of minimal WD filters. In particular, a strictly
pseudopassive structure based on the n-port adaptor descrip-

tion of Martens and Meerkötter is introduced. Sufficient

conditions are given for guaranteeing the compJ-ete suppres-

sion of zero-input limit cycles within this structure or a

cascade of such structures.

Chapter II serves to introduce the basic concepts intrin-
sic to the WD approach to digital filter design. A general

filter derivation is presented which utilizes the theory of

scattering variables, the concept of network partitioning

via reactance extraction, and the bilinear z-transformation.

Various WD filter configurations, including the series-par-

aIleI adaptor method introduced by Fettweis, are briefty
cons idered and the reflection-free property is discussed.

The n-port adaptor method of Martens and Meerkötter is then

described followed by a discussion on the sensitivity, roun-

doff noise, and nonlinear stability properties of conven-

tional WD filters.
In Chapter III a method of determining nominal- WD filter

designs is deveJ.oped. First, \,r¡e show that a particufar
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scattering matrix synthesis technique may be used to derive

n-port adaptor real izaLions directly from transfer function

specifications. Each adaptor realization is described by a

constant scattering matri* 9.,. Methods of parameter reduc-

tion are then considered, including diagonal transformations

on Sn and decomposition of S' into a form specified by

smaller submatrices. These latter measures resul-t in an n-

port adaptor description equivalent to that of Martens and

Meerkötter and specified in terms of two submatrices I and

5. An example is then presented to illustrate this design

algorithm which is termed the "direct wave digitaf" design

technique. Viave diqital cascade synthesis via transfer ma-

trix factorization and the "direct \,vave digital-" algorithm

is then discussed. Final1y, the consequences of quantizing

coefficients in I and 5 are considered. fn particular¡ wê

find that the quantized adaptor will 1n general no longer

possess a diagonal reference conductance matrix. As a re-

sult, the nonl-inear stability of the corresponding digital.
f ilter can no longer be guaranteed by the usua.I methocls.

Chapter IV introduces an alternate n-port adaptor struc-
ture based on the adaptor description of Martens and Meer-

kötter. Specifically, simple muftipliers are placed in all
of the outgoing branches of such an adaptor t Têsulting in a

new strictJ-y pseudopassive adaptor. Although the new struc-
ture retains the original nondiagonal reference conductance

matrix, vre show that the pseudopassive nature of the adaptor
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may be utilized to ensure complete stability in a corre-

sponding wD filter. Explicit stability criteria, incLuding

bounds on the entríes of the reference conductance matrix,

are then derived for a number of basic adaptors. These sta-

bility criteria ensure that a cascade of stable structures

will also be stable.

Chapter V presents a wD filter design procedure based on

the methods developed in Chapters III and IV. The hardware

implementation of WD filtering algorithms is then briefly

discussed. The chapter concludes with a number of illustra-

tive examples.



Chapter II

INTRODUCTION TO IVAVE DIGITAL FILTERS

The WD filter structure is derived such that it imitates in

the digital domain the properties of an analog reference

network. Tt follows that the excellent sensitivity proper-

ties that are known to exist for certain cl-asses of analog

networks can be retained in a WD real-ization. In this chap-

ter, some of the basic concepts necessary for the under-

standing of the WD approach are reviewed. Brief descrip-

tions of the conventional design techniques are presented

and some of the special properties of !'lD filters are de-

scribed.

2.I DERIVATION OF WAVE DIGITAL FILTERS

2.I.I Scattering Variables

Traditionally, an analog system is characterized in terms of

the voltages and currents measured at the ports of the net-

work. An alternate representation of a multiport network is
one that is defined in terms of wave variabl-es. If v(t) is
the voJ-tage, and i(t) is the current associated with a port,

referenced as in Fig. 2.I, we define the instantaneous re-

flected and incident voltage waves, b(t) and a(t) respec-

tively, as

9
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b(t) = v(t) - Ri(t) (2.1a)

a(t) = u¡¡) + Ri(t) (2.1b)

where R is an arbitrarily assigned port reference resis-

tance. Alternatively, in the complex frequency domain

B(s) = \t(s) - RI (-s) (2.2a)

A(s) = tr'¡t; + RI (s) (2.2b)

where s is the compLex frequency variable. ( In the future,

signal quantities may not be expressed explicitly as a func-

tion of an independent variable. Meanings shoul-d be clear

from context. )

The reference filter most commonly utilized in WD filter

design is the doubly terminated reactance two-port shown in

Fig. 2.2. Such networks exhibit maximum power transfer

(zero flat loss) at frequencies within the passband result-

ing in low passband sensitivity to element variations

[34r35]. Consider a scattering variable description of such

a two-port,
B(s) = S A(s) 12.3a)

where

If we choose the

the load ports to

Ioad resistors RS

reference

be equal

l-c
| ''l rs(sl - I
L '

L'z t

resistances

Lo the vaLue

(2.3b)

the source and

the source and

AB I 1

n, Is) A, (s)

(s)

(s)

for

of

(s) (s) S S

B(s) A(s)
1

( tç.'-)) \ -

and RL respectivelyr then

nr(s) = 2Yr(s)

nr(s) t, (s)

(2.4)

(2,5)
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I r)
a(r) > +

v(r) R

b(t)

Figure 2.Iz Definition of wave variables.
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(s) I
2

(s)

+

Er(s) V
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(s) E (s )=o
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Figure 2.22 Doubly terminatecl reactance filter.
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circumstances, the voltage wave transfer func-Under these

t ion

Sr, (s) _1ñl
n, (s)

2\,- ls I'¿'

tr(') (2.6)

(2.7 )

(2.8)

A. (s)
¿

and the familiar network transfer function

H lcl
d

v2 (s)

Er (s)

0

are equivafent- except for a frequency-independent gain con-

stant. Clearly the desired frequency response is ob,tainecj

by real-izing either of these functions.

Wave digital filters derive from continuous-time refer-
ence filters by appl-ying the bilinear z-transformation

s= (z 1)/ (z + 7)

to the circuit el-ements of the reference filter. The corre-

sponding discrete-time system is described by

1
B (z) q( A(z) (2.e)

where z is the discrete-time frequency variable. The de-

sired z-domain transfer function,

s., (z)
U¡/-\ -H(z)= 

ilã =b2ttr.rJ (2.1-o)

follows by setting A-.,2) = 0. The discrete-time frequency

response is given by H{ejor, where o is the digital frequen-

cy in radians per second (r/s), and T is the sampling peri-

od. The analog frequency Q in r/s, and ur are related by

þ = tan uT/2 (2.I1)

)z+I
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2.L.2 Network Partitioning Via Reactance Extraction

The doubly terminated network illustrated in Fig. 2.2 can be

reconfigured as in Fig. 2.3 with N consisting of an inter-

connection of two reciprocal subnetworks 14 and il. The net-
tu

work t"l contains all of the reactive elements including kt

inductors and kZ capacitors which are uncoupled and have the

value= Ll ,L2, .. . ,Lkl- tCI,C2t . . . ,aOr. The (k+2 )-port (where

k = kt + kZ) coupling network M contains only direct connec-

tions and possibly icieal transformers and is therefore inde-

pendent of frequency.

Consider a scattering variable description of the network

M. We define the port voltage vector v and the port current

vector t such that they can be partitioned with respect to
ports connecting resistive, inductive, and capacitive ele-

ments, i. e.

(2.12)

YRI
)rri

-Lr

v. Ivi

f

\l
iL 

i

.Ikl
Resistive elements are assumed to be

age source, possibly of zero val-ue.

M are defined by

in series with a volt-
The wave variabl-es for

b = v - e f (2.13a)

a = v a R _ (2.1"3b)

where R is a diagonal matrix of arbitrary port reference re-

sistances. The vectors b and a and the matrix R may be par-

titioned conformabl-e with the voltage and current vectors,
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t-
it 1_

-1,
L

"1

12

"2=o

t\ l

Figure 2.3: The reference filter; partitioned via reactance
extraction.
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h
L¡

%

I
I

i

a
-R

^L

a^{-

\
Þ a & R,_L (2.r4)

ij
R^{

The reflected and

are rel-ated by

incident voltage waves at the ports of 1",

b=Sa (2.1s)

where S is the scattering matrix describing the

straints. since M is a frequency-independent

network con-"

ne twork , .S

will be a real_ constant matrix.
SimilarJ_yr w€ may define a scattering vari able descrip-

and thetion of the network

port current vector

M. The port voltage

are partitioned such

vector

that

V

V

y{,

k
I lr'
]= l*

I

!
1

1,l¡
1,k

I\,1

i"llkl
(2 , r6)

.,... ..

The wave variables at the ports of

-ftT
are defined by

Þ_

a

V

V

(2.I7 a)

(2.r7b)+ Ri

wherer partitioned conformable with ï and i

!
b

t,
%

a
nL

to
K

R.
-L
0

0
(2.17c)

R--{.

We have the relation

l¡'; = 3('l lt') (2.18)

ne twork

overall

where S(=) represents the scattering matrix
1"M. The scattering variable characterization
network N is depicted in Fig. 2.4.

of

of

the

the
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1 íz

N
1

N2

Figure 2.52 Interconnection of ports.

Consider the port-interconnection of two networks as in
Fig. 2.5.

variabl-es

For our purposes, it is important that the wave

at the interconnection port be defined such that

br= 
^2

(2.19a )

(2.19b)

and volt-
^r

b2

The interconnection physically forces the currents

ages at the common port to satisfy the constraints

'r = '2
ír = -iz

The constraints described by (2.19 ) and (2.20)

requirement that, with respect to Fig. 2.5,

(2.20a)

(2.20b)

l" ead to the

Rr=

Equation (2.2L) states the

for defining wave variables

R2 (2,2r)

necessary compatibility condition

a2-

uz Rz

, bl bf-

v*t
1-41

at interconnection ports.



A judicious choice
tu

network M is

1B

of port reference resistances for the

È, = diag I_L LyL|,...,hl l (2.22a)

lc = di"e I r/Ct,r/c2,... '
With the above choice of reference

scribed by the scattering matrix

T/C,. ]n2tu
resistances, M

(2.22b)

is de-

!r' I 1 S I
1 + s

(2 .23 )

where ¡ I:, d polarity matrix defined by

¡. -q. + U.-{ (2.24)
1 2

(Here + denotes direct sum and Un

of dimension nxn. )

The port reference resistances

sen to satisfy the compatibility

an identity or unit matrix

for the network M are cho-

condition, i.e.

\
R RL (2.25)

R^{-

where R* = diag I RS, Rt,] . Appl ication of the

transformation to the scattering descriptions

yields the discrete-time systems

B(z) = S A(z)

bilinear
of M and

z-

M

(2.26a)

^,B¡21 = z
t¡l( z) (2.26b)

b(n) = S a(n) (2.27a)

[cnl

or equi va lently

I äc" -1) (2.27b)



!ùhere n Is

compatibiJ-itY

ports of M and

the discrete-time

condition is satisfied

19

variable. Since the

at the interconnection

\r'¡eM

[Þrr"i 
.] 

I ä,,

L*,",]= Li
f e,-c'rl _ f t.r'rl
L*,",.1 

= 

L%,', 
j

have

(", 
l

,", 
_l

( 2 .28)

The equations (2.27 ) and (2.28) specify the WD filter reali-

zation. From (2.27b) we see that the capaciLors and induc-

tors are transformed into delays and delays in series with a

sign inverter, respectively. The computational algorithm

that determines the signal values at the delays and ouLputs

of the digital filter is described by (2.27a), that is, by

g. A symbolic representation of the digital structure is

shown in Fig. 2.6. The derivation outlined above describes

in essence the strategy behind VfD filter design.

2.I.3 State-Variable De scr ipt ion of Wave DigitaÌ Filters

The state-variable description of a digital fil-ter specifies

the matrices { ArB,C,D } where the operation of the filter is

given by

¿(n)=Du(n)+Cx(n) (2.29a)

x(n+l) = B u(n) + A x(n) (2.29b)

The vectors x(n), u(n), and y(n) define the state, the in-
put, and the output of the filter at the nth time instant.

The WD filter realization specified by (2.27 ) and (2.28)

is afso described by the system
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Figure 2.62 The general wave digital filter structure.
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5(n*t) = I h (n) ( 2.30b )

where

þo(n) I ur{") þ.(n) ]
T a^(n)

--1) I ar(n) g.(n) ]
T

( 2.30c )

9R, and aD'and q is partitioned

Equivalently,

conformabl-e with ÞR'Þ¡'

tu
l*

(n)

(n+ 1)

cc311 ltz a. (n)

a^ (n)
--1)åår, L\z

(2.31)
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In

B^(z)
-K

fer :11 à 9zr ì no{r)* 9rz(
_1

ztJ-IS^-)'
- -¿¿ (2.32)

2.2 ALTERNATE WAVE DIGITAL FILTER STRUCTURES

Intrinsic tq the WD design procedure is the partitioning of
the reference network into subnetworks rn the manner illus-
trated in Fig. 2.3. The wD filter rear-ization follows from

the voltage wave scattering representation of the subnet-

works. Regarding the scattering representationsr w€ note

that the port reference resistances at ports connecting re-
active or resistive el-ements are determined by the el_ement

values. consequently, the scattering variable description
of the frequency-independent coupling network will be unique

to within a permutation of variabl-es. This seems to impJ.y

that there is a corresponding unique digital structure.
However, cônsider the coupling network partitioned into a

number of smal-]er subnetworks. This partitioning, and the

subsequent scattering variable descriptions of the resultant
subnetworks, are not necessarily unique. clearly, alternate
wD filter structures are possible. This is easiJ-y under-

stood with the aid of an example.

Consider the analog prototype shown in Fiq.2.7.
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Figure 2.72 An example reference filter.

In Fiq. 2.8 we have reconfigured this prototype network in

the form introduced in Fig. 2.3. Another possible collfigu-

ration is illustrated in Fig. 2.9.¡ the coupling network is
viewed as the interconnection of three subsections. The VJD

design procedure with this latter configuration involves

finding a scattering variable description for each of the

smaller subsections. As before, the port reference resis-
tances at the ports of the subsections that connect elements

are constrained by the associated el-ement va1ues. However,

at the interconnection between two of the subsections, the

value of the port reference resistance is not similarly re-

stricted. The scattering matrices determined for l11r M2,

and M3 describe, in the discrete-time domain, signal-fl_ov¡

networks which interconnected in the manner suggested by

Fig. ,i.9, determine the computational algorithm of the WD

filter real-ization.

The conventional WD design process tIZl utilizes the con-

figuration suggested by Fig. 2.9 to implement filter designs
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based on doubly terminated LC ladder reference filters. The

signal-fLow subnetworks are termed adaptors. Signal-ftow

networks derived from analog subsections such as Ml and M3

are called series adaptors since they imitate the series

connection of analog eLements, while similarly, digital net-

works derived from subsections such as Mz are called paral-
1el adaptors. These two el-ementary adaptor types are suffi-
cient for the realization of WD designs based on ladder

reference networks. Adaptors have al-so been derived for the

symmetric lattice 179,201, Brune [3]r331, and Darlington D

t30l secLions.

A generalized n-port adaptor has been introduced by Mar-

tens and Meerkötter 129). This method may be applied to a

lossless reciprocal frequency-independent network of any to-
pology. The n-port adaptor derives all of the elementary

adaptors described above and may be applied to deriving WD

realízaLions based on a single adaptor.

2.3 THE REFLECTION-FREE PROPERTY

Consider the interconnection of two arbitrary frequency-in-

dependent lossÌess networks M a.,¿ ü, described by the scat-
tering matrices E- and i (Fig. 2.I0). The topologicat con-

straints for the networks M and ü can be expressed as

b{:; ll;l
tql
L' I 

=

c
3-l t

åzr

3,,

szt

1',
S..
-z¿

b

l=j

a

a--ú

(2.33)
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\¡/here g and g have been partitioned conformable with the

vvave vectors. The corresponding discrete-time structure is
represented in Fig. 2.II as a signal-flow graph. From Fig-

ure 2.I7 we see that if the parameters 3r_r_ and SZZ are both

nonzero, a delay-free path will exist within the signal-flow
graph describing the two interconnected adaptors. This con-

dition violates the necessary requirement that for the

structure to be computable or realizable, every feedback

path must contain at l-east one delay el_ement [36r37] .

Clearly, a desired condition is that one of the reflection
coef f icients, either 3r-, or s22, be identically zero tlTl .

Consider the analog network M. Vle have

e = bl"22 "l
v-Rr

^ v+Ria=U
--o

R. - R
d

R- + Ra =0 "d
-o

(2.34a)

(2.34b)

whe re

1
R¿

0a
-o

The quantity Rd is recognized to be the driving point resis-
tance of the network M at the interconnection port, with all
other ports terminated in their port resistances. It fo1-

l-ows that if we choose the reference resistance R at the in-
terconnection port to be equal to Rd, we have the condition
S22= 0. This port is then sai,r to be reflection-free. A

similar resul-t will hold for the network ü if \^/e wish in-
stead, to ensure 3f r.= 0. In summary, a judicious choice of
the common port reference resistances assigned to adaptor
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interconnection ports ensures the realizability of the cor-

responding digital filter structure.

2.4 THE N-PORT ADAPTOR

The generalized n-port adaptor has been well described rn

literature Í28,29r311. Consider an n-port reference network

of interconnections and possibly ideal transformers. The

port voltage vector v and the port current vector i may be

partitioned according to "l-ink" and "tree" ports, i.e.

(2.3s)

where the subscripts t and.Q, identify the "tree" and "1ink"
ports, respectively. The corresponding reflected and inci-
dent voltage wave vectors, b and a, and the diagonal matrix

R of reference resistances may be similarly partitioned

T-l
. 114 I1=l I

t-t11 I

L_t J

l*l
"l-rl

V

9_IuR=l

Ir

t^ I
la!. Ia =l ilrla I

L_tJ

rqTr
--tu

qi

(2.36)
R_L

Martens and Meerkötter

matrix description of

pendent network can be

where S has

submatrix q

network by

shown that

e xpres sed

rec iprocal

in the form

(2.37)
2K

been partitioned conformabl-e with b and a. The

¿ is derived from the "cutset" matrix O

ItqT*I -r-S=l
| ,*L_

(u

Í29) have

a l-ossl-ess

the scattering

frequency- inde -

of the
tt tree tt

2aT
-'r1"

!.

U

partitioning 0 according to "link" and



ports, that is Q = t

the topology of the

defined by

0 L
U Clearly Qn

2B

is dependent only on

coupling network. The submatrix K is

K= ¡.9r*gogd )-1 99s (2. 38 )

where G.=R-
L 

-L

ing matrix

-1 -land G =R^ '.
-y- -v,

Al-ternate forms for the scatter-
S are given by

c
!.

0

qil f -s
I

u ll-z*_J L _

o I [-u

;ll;
qTl

qJ
(2.3e)

u-qTx-_L_

'äl IqlL
!.

9.

ol Iu

;lL;
q;

(2.40)
K g-rg;

The decomposition of (2,40) serves to display the eigenva-

lues of the I matrix. In (2.39) aIl of the matrices are

self-inverse which ensures that S is self-inverse i.e.

S S
1 (2.4r)

In addition, S satisfies I31l

ST GS=G (2.42a)

where

q B '=l
Gn

0

q. l
q.l (2.42b)

is the diagonal positive

trix. The results (2.4I)

sTc

definite reference conductance ma-

and (2.42) also imply

S G (2.43)
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Properties (2.42) and (2.43) derive from the losslessness

and reciprocity of the reference coupling network, respec-

tively. Property (2.42) is very important with respect to
the nonlinear stability of WD filter structures.

The matrix E has a very useful network interpretation

1291. Consider the n-port reference network with all of the

"tree" ports terminated in their port resistances, and all
of the "link" ports terminated in their port resistances in
series with a voltage source. It fotlows that

(2.44)

(2.45)

and

where en denotes the vector of "fink" voltage
-v"

(2.37 ) and (2.45)

(2.46)

sources. From

(2.47 )

orr utilizing (2.44) and (2.46)

(2.48)

Thus the el-ements of K are voltage transfer ratios from the

"fink" sources to the "tree" branches. This network inter-
pretation of K may often be applied in expressing the coef-

ficients of 5 as a useful function of a reduced number of
parameters. This is the case for n-ports with a ladder to-
pology.

Lt = 2rt

a. = Q

-t

Ln = 9-9.

b- -- 2K a^_L _-L

ert
-'arI-v¿
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ff a network contains k erements whose val-ues may be cho-

sen independently, then allowing for impedance scaling, the

transfer function will have k-l degrees-of-freedom. An n-

port adaptor is said to be canonic in multipliers if the

number of multipliers is equal to the number of degrees-of-

freedom in the transfer function of the prototype network.

consider a network or a portion therof, with a ladder topol-
ogy. The Qø matrix will have entries that are *f, -1, or 0.

All of the multiplier coefficients will be contained in K.

since K is of dimension tx.Q, (t is the number of "tree" ports

and .Q. is the nuJnber of "]ink" ports) there may be as many as

t.Q, coefficients. Equation (2.38) expresses K in terms of a

canonic number of parameters, that is, the k-l ratios of in-
dependent reference conductance val-ues. But the relation in
(2.38) is not usefuL in the sense that these parameters can-

not correspond to multipliers in a hardware real-ization.
However, for the ladder topoJ-ogy it is always possibre

(through application of the network interpretation) to ex-

press K in terms of another canonic set of independent pa-

rameters with the property that each parameter can corre-
spond to a single mul-tiprier in a hardware implementation

t291. we note that a one-to-one mapping wilr exist between

these, and every two canonic sets of parameters. clearry,
n-port adaptors derived from ladder networks can be made

canonic in muLtipliers.
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These resurts for the crass of networks with a radder to_
poJ-ogy are the same as those originally derived by Fettweis.
fn fact, n-port adaptors (for ladder networks) can be deter_
mined such that the murtipliers are identical to those of
the conventional wD structure composed of an interconnection
of series and paral1e1 adaptors. Accordingly, the elementa_
ry series and parallel adaptors can also be derived by this
method. similar resurts can be obtained for the cr_ass of
networks with a lattice or Jaumann structure.

2.5 SPECIAL PROPERTIES OF WAVE DIGITAL FTLTERS

The I'r7D cl-ass of fitters is known to perform wel_r with re_
spect to finite-word-rength effects. fn particular, wD fil_
ters have been found to exhibit. attenuation characteristics
with low sensit.ivity to variations in fil-ter coefficients
[38-4]l ' and to have relativery low levefs of roundoff error
[40 ' 42] - Furthermore, Fettweis and Meerkötter l25l have
shown that for a rarge crass of wD filters, i.e. those based
on Lc l-adder or r-attice prototypes, zero-input osciltations
of any type can be compretely suppressed. rn this section
we review the concepts that exprain the speciaJ- properties
of the WD structure.
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2.5.I Sensitivity and Roundoff Noise

The transformation that maps an analog reference network

into a l-inear discrete-time wD network preserves many of the

desirable properties of the continuous-time network as anal--

ogous properties in the díscrete-time system. consider for
example, the important cLass of vtD filters that are derived
from Lc ladder or Lattice reference fil_ters. rn the previ-
ous section we noted that there exists a one-to-one mapping

between the set of independent port reference conductance

values and a canonic set of mul_tiplier coefficients. How-

ever, in a wD real-ization the independent port conductance

values (reflection-free ports have dependent port conduc-

tance values) are determined directly from the val-ues of the
elements in the reference filter. clearry a one-to-one map-

ping exists between these el-ement values and the adaptor
multipJ- ier coefficients. euantization of the multipr ier
coefficients can thus be interpreted equivaJ.ently as a vari-
ation in the element values of the reference filter. Ele-
ment variations degrade the frequency response of the analog
prototype and this is mirrored in the discrete-time domain.

The coefficient sensitivity of the wD structure will there-
fore depend on two factors:

1. the sensitivity of the er-ements in the reference fil-
ter to coefficients in the digital- structure, and

2. the sensitivity of the reference filter frequency re-
sponse to variations in the el_ement vaLues.
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Accordingly, the sensitivity properties of a wD structure
are directly dependent on those of the reference firter.
Doubly terminated reactance filters are known to be highLy

insensitive [34r35] and hence, the relative insensitivities
of the associated VüD designs.

Fettweis lzzl has linked the sensitivity of a structurers
attenuation characteristic to coefficient quantization with
the roundoff noise generated within the structure. Fettweis

contends that signal quantizations can be modelled equíva-

lentry as coefficient fluctuations, and argues that a struc-
ture that exhibits low coefficient sensitivity will also
have reduced leve1s of roundoff noise. Therefore, !{D fil-
ters are expected to display superior noise performance and

this has been verifieci experimentally 140,421.

2.5 .2 The Concepts of Pseudopower and Stored Pseudopower

wave digital filters are derived as an interconnection of
elementary building blocks. The building blocks, incJ_uding

adaptors, sources and sinks, and deJ-ay elements, are derived
as wave multiports or rdave n-ports. consider a wave n-port
with the scattering variable description

B(z) = S(z) A(z)

and l-et g denote the diagonal reference conductance matrix
associated with s( z ) . The instantaneous pseudopower p(n )

absorbed through the n-port at the nth time instant is de-
fined as l2l-l
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- glcnl G b(n) (2.4e)

An n-port adaptor derived from a lossless reciprocal fre-
quency-independent network is described by a constant scat-
tering matrix s that satisfies the property sTsg=g. Hence

the pseudopower absorbed by the adaptor has the value

P(n) = t'c"l g (2.s0)

rn this case we refer to the adaptor as being instantaneous-
ly pseudolossless. simi J-arl-y , if instead p (n ) à 0 f or all n,
the adaptor is described as being instantaneously pseudopas-

sive.

Fettwe is and Meerkötter 1,251 have also introduced the
concept of stored pseudopower. consider a singJ-e delay
(possibly in series with an inverter) connected to a port
with a port reference conductance G (Fig. 2.I2).

a (n) b(n)

G

Figure 2.I2: A delay connected to a port of port
conductance G.

p(n)="Ttn)ga(n)

( t'q!-)a(n)=o
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pseudopower ps(n) stored in the delay in the time inter-
(n,n+l) is defined by

)
ns(n) = G a'(n) (2.51)

where Lhe subscripts D

ports that are terminated

A general linear WD filter

2.I3. Let the n-port adaptor

ing system

b=Sa

with the ports ordered such that

tol
I5l

and

in

crease

the n

section is represented in Fig.

scatter-N be described by the

(2.52a)

(2.52b)

R differentiate between those

a delay or source and sinkr rê-

I bo(n)

ql
%l

.=[$
Il0
L_

s-=[
t

o=[hl
Lbl

spectively. The matrix g is the diagonaJ- matrix of refer-
ence conductances and À is the polarity matrix that serves

to identify those ports at which an inverter is connected in
series with the de1ay.

The pseudopower stored in the deJ-ays of the filter sec-

tion in the. time interval (nrn+1) is given by

Pr (n) T ÞÐ (n) (n) qlt"l ta tr-)\

where we note that the wave variables have been defined with

( 5 \in)ItqoåÞo

respect to the adaptor. (Observe that the vector
in fact the "next state" vector of the filter.)

in the stored pseudopower at the nth time instant

1S

The in-

IS

(2.54)Aps (tr) R, (n- 1)n, (n)
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e*(n) b- (n)
-lJ

z

G.
-t(

b^ (n)
-l(

Figure 2.13: A l-inear \^/ave digital
an n-port adaptor with
matrix.

filter section based on
a diagonal conductance

oTt since ao(n) I b^(n-l),
--u

ApS (t ) = uÏ(n)
-L) 9Ð(n) \(n) elc"t çÐ(n) 5(n) ( 2. s5 )

Also consider the

N at the ,,th time

pseudopower absorbed by the n-port adaptor

i ns tant ,

r*(n)=t'(n)Ga(n)-ff'l G b(n) (2.56)

From ( 2. 55 ) and (2.56)

aps (n) -pN-4,",g\tn) +
T

eR (n) G^ a. (n)
--1\ -t(

(2 .57 )

In the absence of outside signals, i.e. 9R=o ' hre have

qflr'r S hAp
S

(n) -P^ (n) (n) (2.s8)



Furthermore, if the adaptor N is pseudopassive

cond i t ion

Âps(r,) . -Þfifnl q \{n)
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we have the

that the port reference conduc-

the quadratic expression on the

a negative definite function of

for all n ( 2. se )

Given that G is diagonal and

tances are always positive,

right hand side of (2.59) is
the filter output variables.

The canonic ( in terms of muftipliers) n-port adaptors de-

scribed in section 2.4 are pseudolossress even after coeffi-
cient quantization. Consequently | (2.59) is always satis-
fied for the WD filters based on these adaptors.

2.5 .3 Nonl inear Stability

The analysis presented in the previous section appries for
linear operating conditions. rn a practical implementation

the finite-word-length constraint requires that quantizers

be introduced into the l-inear system. Naturafly, we wish

the resulting nonlinear filter to be stable, that is, to
suppress parasitic oscillations within the structure.

The nonlinear filter is said to be output stable if under

zero-input and for arbitrary initjal conditions, the output
becomes permanentJ-y zero in a f inite time. Furthermore, a

filter is said to be completely stabre if under the same

conditions, the states become permanently zero in a finite
time Í251. Note that complete stability ensures output sta-
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bility since the output variables are linear functions of
the states. output stability impries freedom from observ_
able oscillations whire comprete stabirity implies freedom

from both observable and unobservable oscillations.
The nonlinear rüD firter structure that results when quan-

tizers are introduced before the derays of the previousry
linear filter, is depicted in Fig. 2.14.

T I
a- (n)
-t( bo(n) b_D (n) :

!*{"1

gR

Þ*(n)

ñ
I

Figure 2.I4: A \^/ave digital f ilter
quantizers.

implemented with

adaptor is
the delays

The reflected wave vector
tudenoted by b.

(nrn+I), and

corre spond i ng

The pseudopower

to the nonl- i near

Pg(n) stored in
the time interval_

pseudopower at the

of the nonl-inear filter in
the increase in the stored

0

T

a

5

N
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be determined as in the previous sub_

S (2.60)
and

(2.6r)

Note that in order to simplify the notationr w€ no longer
specify quantities explicitly in terms of the discrete-time
variable. The pseudopower absorbed by the nonl_inear adaptor
N is given by

(2.62)

From (2.6r ) and (2.62 ) and assuming zero-input condi tions ,

\de obtain

p =4EL(r%lt$¿to

T^
55eÐ¡ïs=4gb

ü¡r="rqa-tq!

4qh^i
-P¡ - (2 .63 )

The stored pseudopower, as defined in (2.60), is a posi-
tive definite function of the "next state" of the wD filter.
The quantity ol, is the first backward difference of the
stored pseudopower. rf AËs can be shown to be negative
semi-definite under zero-input conditions, the stored pseu-

dopower serves as a Lyapunov function for the nonl_inear fil-
ter. Fettweis and Meerkötter have utilized this property to
derive conditions on numerical operations that guarantee the
stability of nonl_inear WD filters.
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following generaJ_ theorems based
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on material

Theorem

A digital firter is output stabr_e if there exists a func_
tion V(n) such that, f or n = 0r1r 2r....

i) v(n) is a positive definite function of the signal_s
incident at the delays of the filter at the nth
time instant, and

ii ) under zero-input conditions, AV( n ) (which is de_
fined as AV(n) = V(n)-v(n_L)) is nonpositive and
moreover, is negative if any signal at the output
of the firter at the nth time instant remains
nonzero.

Proof:

A digital- fir-ter impJ-emented with finite-word_J_ength
arithmetic wirl be a finite state machine. Therefore, under
zero-input conditions, the filter signal parameters must ei_
ther become permanentry zero after a finite time, or be sus_
taining oscirrations. However, if one of the output vari-
ables is carrying out periodic oscirlations with nonzero
amplitude, V(n) must decrease within each oscilration cycJ_e
by a finite amount. This implies that eventuatly V(n) must
decrease berow zero. This contradicts the assumption that
v(n ) is positive def inite. clearJ-y the f irter cannot sus-
tain oscillations at the output and is therefore output sta-
b]e.

?.1
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Theorem

A digitar firter is completely stable if there exists a

f unction V(n) such that, for n = 0,7.ì2,,,.
i) v(n) is a positive definite function of the signals

incident at the delays of the filter at the nth

time instant, and

ii ) under zero-input conditionsr av(n) is nonpositive

and moreover, is negative if any signal incident at
the delays of the filter at the nth time instant
remains nonzero.

The proof for Theorem 2.2 is similar to that for Theorem 2.r
and is not given here.

Theorem 2.r specifies a condition that is sufficient to
guarantee the output stability of a nonl-inear digitar fil-
ter. For a wD filter of the type shown in Fig. 2.r4r ârì

equivalent condition is that the nonl-inear n-port adaptor Ñ

be pseudopassive i.e.

(2.64 )

This resul-t follows from (2.63). since in generaÌ, n-port
adaptors will be pseudolossless under l-inear conditions r \dê

can reinterpret (2.64) as the constraint

(2 .6s )

Given that I is positive definite

2.2

>0pN

bTcb<otrct

satisfied if quantizations arethe

l8

and diagonal,

carried out such

(2.65) is
that

(2 .66 )s lb lt I r2r,,. ,n1 1

È, f4i"T

'/ii l,trnri¡ r¿ ,r ¡
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condition (2.64) or more specifically (2.66), represents a

general criterion that will guarantee the output stability
of. conventional WD filter designs.

we note that the nonlinear adaptor Ñ may be real ized as

an interconnection of individual adaptors ftn, k = r,2,...rK.
Let us denote the pseudopower absorbed by ftk as Ë0. rt is
shown in 12I,25) that

and accordingly, that

tu 5t
PN = 

ul, Pt

1>0 kP¡

(2.67)

(2.68 )
2r.. K

is sufficient to guarantee the output stability of the fil-
ter. condition (2.68) is ensured by reguiring that the cri-
teria in (2.66) apply at the ports of each aeaptor ftO.

rf a linear wD system based on a pseudopassive n-port
adaptor is free from any oscill-ations ( including unobserv-

abre ones) and the nonl-inear modifications are carried out
according (2.66) (also ensuring trOr_ >

the nonlinear filter will be completery stable t251. How-

ever, a pseudoJ-ossl-ess reciprocal wD system will be free
from arl oscillations under linear conditions if and only if
it is minimal t281. Given the criteria in (2.66), it fol-
lows that complete stability can onry be guaranteed for min-

imal wD networks. v'Iave digital filters based on Ìadder ref-
erence networks that have redundant reactive el_ements , for
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exampl-e those that real-ize finite attenuation poles, will be

nonminimal. Methods for elininating the redundant states

ot t equivalentì-y, removing the excess delays have been de-

veloped 126-281. However, these moclifications generally

change the nature of the wD structure in a manner that in-
validates the simple stabiJ-ity criterion in (2.66). Recent-

ry, Martens and Jarmasz 1,321 have demonstrated a method to
overcome this problem.

cl-assen et al . 1,431 and Meerkötter 144l have also studied
the stability of wD filters under forced response condi-
tions. rn particufar, overfl-ow quantization characteristics
(only slightly more restrictive than those suggested by

(2.66)) have been specified to guarantee the stabirity of
the forced response.



Chapter III

AN APPROACH TO THE SYNTHESIS OF WAVE DIGITAL
FI LTERS

The first step in wD filter design is to determine an appro-

priate anal-og reference network. The usual procedure for
doi ng so i s as f ol l-ows :

1. Map specifications given in the digital domain to the

analog domain.

2. solve the approximation problem to determine a suita-
ble analog transfer function.

3. Synthesize a doubly terminated reactance network that
real-izes the desired transfer function.

Normally, the approximation and synthesis probrems are both

soLved with the aid of filter design tables [45]. Hov¡ever

when dealing with nonstandard transfer functions , for exam-

p1e those arising in cascade realizationsr a direct synthe-

sis remains necessary.

rt was noted in section 2.r that the voltage vüave trans-
fer function srr(s) of a reactance two-port network is re-
lated to the vortage transfer function Ha(s) of the corre-
sponding doubry terminated filter by ( assuming port
reference resistances are chosen appropriately)

sr, (s) 2H fs')a' '

44
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rt follows that the transfer function synthesis problem can

be reinterpreted as a scattering matrix synthesis problem.

vongpanitlerd 146) has introduced a simple technique for
the synthesis of l-ossl-ess reciprocal scattering matrices.

rn chapter r r r vre show that th is same technique may be ap-

plied to deriving nominal- I{D fil-ter designs. rn particular,
v¡e develop an algorithm based on the methorl described in
Í461 that facilitates WD filter synthesis incluciing cascacìe

synthesis.

3.1 THE SCATTERING I'IATRIX OF A LOSSLESS TWO-PORT

The normalizedl scattering matrix description s(s) of a rear
loss]ess two-port may be written in the canonic form l4l1

s (s) 1

cG)
H (s)

oF(-s)

F (s)

-oH (-s)
(3.1)

where o is a scalar of val-ue +1 or -1. The polynomials

F(s)' H(s), and G(s) are termed the canonic polynomial-s and

they have the f o1J-owing properties:

I. They are real polynomial_s.

2. c(s) is strictJ-y Hurwitz.

rf the voltage scattering matrix description s(s) of anm-port network is derived with the condition thtt all port
reference resistances are each of unit val-ue, then s(=l iscalled the normalized scattering matrix.

I
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its leading coefficient is equalF(s) is monic i.e.
to unity.
F(s), G(s), anri H(s) satisfy the equation

G(s) G(-s) H(s) H(-s) * F(s) F(-s)

wh ích is of ten called the Fef dtkel_l_er

For a reciprocal lossless two-port, F(s) is
pure odd polynomial that satisfies

3

4

(3 .2)

equat ion .

a pure even ott

F(s) = oF(-s) (3.3)

Therefore, for the lossless reciprocal case, s(s) is a sym-

metric matrix.

An mxm reaf rational scattering matrix is called lossl_ess
bounded real (LBR) if t4A1

1. S(s) has all elements analytic in Re tsl > 0
¡n2. S'(-s)S(s) - U

rt is r"r]- k;r,l f ¿il rhar any mxm scartering matrix S (s )

that characterizes a l-inear, time-invariant, lumped, finite,
l-ossless m-port wi ll be l-ossress bounded reaf . one mav eas_

i1y verify that the scattering matrix describecl by ( 3. I )

satisfies the LBR properties.
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3.2 SCATTERING MATRIX SYNTHESIS

The generar scattering matrix synthesis problem has been

considered in Í48 | 491 . The speciaJ- case of l-ossless recip-

rocal synthesis has been shown to be particularly straight-
forward t461.

The lossfess reciprocar synthesis problem can be briefly
stated as follows. Given an mxm (in our case 2x2) symmetric

LBR normalized scattering matrix s(s), determine an m-port

network N consisting of ideal transformers and positive in-
ductors and capacitors that real-izes s(s) as its scattering
matrix description. Let us assume that the network l.J which

synthesizes the prescribed s(s) consists of an interconnec-

tion of two lossless subnetworks Nl and 
^2 

as depicted in
Fig. 3.1. The network Nz is constrained to contain all of
the reactive el-ements, including kt inductors and kz capaci-
tors which are uncoupled and whose val_ues are

LI,L2t...ttnr_rCL,C2t...tr*r. The subnetwork Nl is a nondy-

namic (m+k)-port (where k = kl* k) containing only direct
connections and ideal- transformers. Note that the struc-
tures represented in Figures 2.3 and 3.1 are essentially the

same. The network Nt will have a normalized scattering ma-

trix descriptionr say Sn. Since *l is by assumption a re-
ciprocal lossless frequency-independent network, gn is sym-

metric and constant, and satisfies the LBR properties.

Assuming knowl-edge of gn, the construction of the network

Nt is refativety straightforward t491. A synthesis of S(s)
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----> (ur)

S(s)

-N
Figure 3.1: Network partitioning via reactance extraction.

follows directJ-y from a synthesis of s. by terminating the
ports of Nt with the appropriate capacitors and inductors as

shown in Fig. 3.1. consequently, the synthesis problem can

be restated as follows. Given an mxm symmetric LBR normal_-

ized scattering matrix s(s), determine a lossless reciprocal
nondynamic (m+k )-port network N1 (described by the normar_-

ized scattering matrix gn) which when terminated with the
appropriate r eactive elements, yields a network N real_ ízing
Þ(s¡.

vongpanitlerd 146) sor-ved the above synthes is probrern
with state-variabre techniques. rn particular, he describes
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a method for deriving the symmetric constant matr'* gn that

specifies the coupring network Nl-, directly from the pre-

scribed s(s) matrix. A characteristic of this synthesis

method is that solutions for the network N will utilize the

minimum number of reactive el-ements, the number beinq the

degree of the scattering matrix. rn addition, these reac-

tive elements are restricted to be each of unit value. The

normal-ized scattering matrix s., is, by definition, deter-
mined with port reference resistances that are al-so of unit
value. Therefore, ât the interconnection ports between the

networks NI and *2, the port reference resistances Ry i =

r ,2 , .. . r k are rel-ated to the values of the reactive elements

by

rh terminated in an inductor, and

R, = 1/C. = 1

terminated in a capacitor. From the dis-
2.I, it is clear that the scattering ma-

an n-port adaptor for the network u.

is LBR, it has the property

if rhe i port is

rhif rhe i port is

(3.4)

R IL.
1I

sTs =[J{l {t

S S =lJ
-lt -l

cussion of Section

trix S_ specifies
-tt

Since the matri¡ 9.,

and given S is symmet', ic, we also have-n

(3.s)



Clearly, (3.4) and (3.5) correspond

respectively, with G = U.

Having determined Srr, one may then

N synthesizing S(s). Terminating the

tors of unit vafue yields an analog

transfer function
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to (2.42) and (2.4I)

construct the

network with

filter with a

network

resisi-

voltage

u"(s)= +ä3 (3.6)

where it is assumed that S(s) has the form given in (3.1).

since N incorporates a minimaf number of reactive elements,

the analoq filter may serve as a prototype for minimal vJI)

real ízaLions. However, we have noted that sr., already speci-

fies an n-porC acìaptor, albeit in terms of a large number of
parameters (there will be (2+k)2 entries in gn). Terminat-

ing the ports of this adaptor with the appropriate delays

(some in series with inverters), sinks, and sources yields a

I/üD f ilter reali zation.

rt is apparent that the scattering matrix synthesis meth-

od discussed within this section can arso be util ized in di-
rect !'ID filter design. A possible wD filter design algor-
ithm may be as fof l-ows:

1. Given a desired analog transfer function Hu ( s ) ,

(Ha(s) is restricted to be realizable with a doubly

terminated reactance filter), 1et S2l(s) = 2Ha(s)

where S21(s) = F(s)/c(s).
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Solve the Feldtkeller equation, i.e. equation (3.2),
for the unknown polynomial H(s) and with F(s), H(s),
and G(s), construct a scattering matrix S(s) in the

form of ( 3.1 ) .

utilize the synthesis algorithm discussed earl_ier to
determine an n-port adaptor ( described by ån) which

when properly terminated, yields a I¡iD f ilter real iza-
tion with the desired system function srr(z-r/z+r).

3.3 PARAMETER REDUCTION

rn section 3.2 we discussed the possibility of applying the

synthesis algorithm discussed in 146l to the design of t!t)

filter realizaLions. specificalry, one can directly deter-
mine a scattering description s' that describes an n-port
adaptor real-ization. However, it was noted that the con-

stant matrt* gn will- have (2+k)2 entries (where k is the de-
gree of the filter) and as such, does not represent an at-
tractive adaptor realization. ctearly it is desirabfe to
expre== 9n in terms of a reduced number of parameters.

3.3.1 Decomposition of Scattering Matrices

2

3

A self-inverse

Posed into the

constant matrix, say A ¡ r,ãt\ always be decom-

form t65l

T
A = P' F M F P:--- (3.7a)

where



,=f
t

-U NT g

U-2K
u

U
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-U
(3.7b)

that (3.7) is essentially
(2.39) .

be self-inverse (eguation

decomposition (3.7) to Sr.,

0

and t is a permutation matrix. The decomposition argorithn,
is described in Appendix A. Note

the same decomposition as that of
The scattering matrix S., will

( 3.5 ) ) and thus we can apply the

to yield

(3.8)

where F^ and Mn are of the form given in (3.7b) and contain
the submatrice= \r, and Kn, respectively. Furthermore, since
S., is also an orthogonal matrix (equation (3.4) ) it can be

shown that the following is true:

(3.e)K
-f'l

TS = P' F Nl F P{¡ -rì -fi --ir -

1^
NT
-ft

N-lI+TI
)(

tl

rt is apparent that ( 3. 9 ) corresponds directry to ( 2. 3B )

with I = q. rn fact the matrices *n and Kn are directry
anal-ogous to the matrices eL and { introduced in Section
2.4. rt follows that *n characterízes the topology of the
network represented oy g.,r and Kn will have the same network
interpretation discussed earr-ier. Let the matrj" I., be of
dimension Lx9-. The matrix Kn will be of the same dimension
and Sr., will be of dimension (t+.q.)x( t+.e,) .



3.3.2 Transformations on Scatterinq Matrices

Let the scattering

convention that the

wave vector a can be

t5f l that if i ê, B, C,D

H(z), and if T is

matrix S be defined
-n

reflecLed wave vector
partitioned as

53

according to the

and the incident

(3.11)

assoc i a ted

well known

Þ

( 3.10 )

where the subscripts R and D identify those ports at which,

in a I¡JD filter real-ization, sources/sinks and delays dre

connected, respectively. (The polarity matrix ¿ identifies
those ports at which an inverter is connected in series with
the delay.) We may partition the scattering matri* g' con_

formable with the b and a vectors, i.e.

t e.l
a =l I

L."l' lll

cltzI
E =L

att
QCuî I u¡ ¡

A state-variable description of the WD filter
with sn is given by {rq2z,Lgzt,gtz,.grr}. rr is

_ -'l -rt T -ATrT *BrCTrD 
]

us;;.;;"
the quadruple

a realization of a system function
nonsingul-ar transformation, then

a real-ization. Accordingly, J-et

filter real ízaLÍons specified by

1S

] is

any

afso

range of

{r -1 -1Is..T
- -¿¿ -

T I S",,
- -zL ltÌSr. T,

Define the matrix G by

cr /z
u"
-¿
0

9_

T

(3.i2)

(3.r3)
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If we have the condition

T- 1 - - _-1L= L I (3. r_4 )

then the transformations suggested in ( 3.12 )

the following transformation on Sn:

grtz I' qt/'

is orthogonal, it is obviously true

can be reinter-

preted as

(3.ls)

Since S
-n

,^r/ z
ttr

tha t

.T -Tì5-{t çc-r/2rr (G
r/2

)
T q1

/)
G
-r/ 2

S
1/1

tr (cr/2 )r qt /2

or we may write
*{t

G1
^T\ (cr/2)r .1U

/2 q (G
r/2 T /2 (3.r6)

where

b=b r/2
SJI 9

r/2 (3.17)

Furthermore, if we also have the condition that

T
T T is positive definite and diagonal (3.18 )

then (3.16) can be written as

sTw !_ u (3.re)

where E = 1c7/z )TGr/2 is
trix. From (3.17) it is
follows that the matrix S

a positive definite diagonaf na-

clear that q is self-inverse. It

represented in (3.19) is the scat-

n-port adaptor with a port refer-

. We can thus concl- ude that i f a

tering description of an

ence conductance matrix W

transformation matrix T satisfies the conditions in (3.14)
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álld (3.18), the subsequent filter realization specified by

(3.12 ) retains the WD structure.

Consider those cases for which the transformation

I I and thus G, is diagonal. A diagonat ! obviously

fies the conditions (3.14) and (3.18). The matrix

fined as in (3.17), is therefore a scattering matrix.

thermore,

matrix

satis-

S, de-

Fur-

qTGq=q (3.20 )

conductance matrix.

express S as

where g

Utilizing
now represents the diagonal

(3 . B ) in (3. I7 ) al-l-ows us to

S- G-r/zPTF M F PGr/2
--ït -{t J't - -

oT¡ since pTp = u,

T
S = P' P G

r/2 pTp M F PJt -{t Jì -
G
r/2 t'r (3. 21 )

Partition the diagonal matrix PGI/2PT conformable with F
-n

r/2
{

^r/2(i
4
0

0 (3 .22)PG t,'
It is straightforward to show that, given (3.21) and (3.22) |

S may be reexpressed as

!. P
T FMFP (3.23a )

where

F
!.

0

fl
UI
-l

[-ut-
M=l

| -zr.L_

9_

U

( 3. 23b )
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and

N.

K

^r /2
G

-t
-1 /')

N G.^,.
-fl -i¿ (3.24a)

G-r/2
-t

K -r /29s (3.24b)JI

From ( 3.9 ) and ( 3.24 ) we obtain

K =( G-.t + N % N
T _l

) 
*NG^

- -v.
( 3. 2s )

analogous to the expression in (2.38). (The pGpT matrix is
the port conductance matrix of the adaptor when the ports
are partitioned according to "l-ink" and "tree" ports instead
of source/sink and delay ports.)

The diagonal- transformations given in (3.24) may be ap-
plied to reducing the number of entries in Nn that are not
0'+1 t ot -1. rn this way the scattering matrix g can be

specified in terms of a reduced number of parameters.

3.4 DESIGN EXAMPLE

Let us clarify some of the concepts introducecj in the earli-
er sections with the aid of an example. Assume that we wish
to design a wD filter based on an analog reference fitter
that exhibits a third-order lowpass Butterworth attenuation
characteristic with a r r/s cutoff frequency. The desired
analog transfer function is given by

H
r/2

s + 2s + 1
a

(s)
3 +2s ) (3.26 )



A doubly terminated IossLess two-port

a voltage transfer function will have

wave tranfer function given by

I

s +2s 2
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that realizes Ha(s) as

a (normalized) voltage

(3 .27 )
srr(s) = ä3 3 +2s+1

solving the FeldtkeÌler equation for the unknown polynomial

H(s)r wê obtain a solution

(3.27) and

i.e.

H(s) = 5

(3.28) we

' ( 3.28)

construct a scattering matrixUs ing

S(s)'

rl
,'.J3

S

1 f"
L'

s(s)

r/6

r/6

-/7/s

- /2/z

â./ s

r/6

r/6

-/2/ s

/7 /z

Æ/s

-/2/s

-/2/ s

r/s

0

2/3

-/2 /2

/2 /z

0

0

0

/2/z

/2/ 3

2/s

0

r/3

(3.2e)

(3.30 )

?
+ ¿5 +2s+t

The scattering matrix synthesis technique discussed ear-
lier is to be applied to determining a l_ossl_ess reciprocal
network N that real_izes S(s). With this technique, the net_
work N is regarded as an interconnection of two subnetworks
Nl and N2, as depicted in Fig.3.r. The subnetwork Nl is
described by a constant scattering matrix s' and the reac-
tive elements contained in Nz are all of unit value. one

solution for S,., is the following:

-T1



where the wave vectors b and a

5B

have the form specified by

given by( 3.10 ) . The polarity matrix I is
ol

Iqrlå Iu
lo
can

(3.31)

A WD filter realization be derived directJ-y

has been

from S and
-n

part it ionedt , that is {I 92 z,Llzr,Êtz,9tr} where sn

conformable

Let us

with b and a as in (3.11) .

the form suggested by ( 3. B ) .decompose S--n i nto

One such decomposition yields

Jì

-,fz /z

/2/ 2

0

"Õ/z

,f2/2

1

K-{ì

-,4/4

'r2/4

0

f,z/ o

,/2/6

r/3

l- !.p =l
lr-L-r

u.
-¿

0
(3. 32 )

Consider the diagonal transformations described by (3.24).

Ch oos e

,:/' diag[ -/2/2, /2¡z 1 (3.33a )

(3.33b)t'' di.ag[ 1, 1, ,f2/2 )

such that

1l

\ cll2 ru c^r/z
-t -{'t -J¿

-1 1 ( 3.34a )

0t

!
r/4

-r/4

0

r/6

r/6

r/3

c-r/ z

-t
K GT^/z-rì -l

( 3. 34b )
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The matrices N and K specify an arternate n-port adaptor re-
alization. The adaptor scattering matrix s is defined as in
(3.23). The matrix s satisfies the equation sTcs = G with

PT E ) f = diag[ 1, l, L/2, L/2, t/Z ] ( 3.3s )
( +G Gn

-t

Note that the matrix
(3.13) with

The WD filter
described by

in turn can

real ízaLion based

the quadruple {¡ t-
this alternate adaptor is

rr-1szt,gt2r,s11Ì which

pract ica l_

correspond

quant i ze d

G in (3.35) is of the form specified in

T = diagl ,f2/2, -/2/2, fz/z l ( 3. 36 )

on

tg,
nr l

be characterized by only three unique parame-

ters, i.e. the three unique entries in I. In a

filter realization, these three parameters wirl
to multiprier coefficients and accordingly wilr be

to a finite word-Iength.

filter wilt only require

A hardware implementation of the

three multipliers.
This section has served to illustrate the wD design

cess proposed in section 3.2 and developed in section
Henceforth, for the sake of clarity, we shaLl refer to

pro-

3. 3.

this
a1-design process as the ',direct

gori thn.

wave digital" (DWD) design



Let S (s )

tion of a

3.5 CASCADE SYNTHESIS

represent the normalized scattering

real- l-ossl-ess two-port network N.

where

60

matrix descrip-

We may write

B (s) = S (s) A(s)

where B (s ) is the ref lected \^Jave vector

cident \,rave vector. The system in (3.37)

in the form

Y(s) = T(s) X(s)

and A(s)

may be

Y(s) I 81(s) At(s) ]r I A2 (s) 82 (s) ]x (s)

The matrix T(s) is called the transfer
N. For real lossless two-ports, the

transfer matrix is given by l47l

( 3. 37 )

is the in-

reexpressed

(3.38a)

T (3.38b)

matrix of the network

canonic form of the

(3.3e)
oG(-s) H(s)

oH(-s) G(s)

polynomials

respe ct i ve 1y .

are constrained

,I
r(s) = frÐ 

L

where the parameter o and

are the same

forms of S(s)

Cons i de r

as those represented in

and T (s ) are very s impJ-y

r^(s),
-z

F(s), H(s), and G(s)

(3.1). The canonj-c

rel-ated.

by the transfer matri-
The wave variables at

as fof lows:

(3.40a)

(3.40b)

the cascade connection of two real lossless

ne twork s Nt and N2 ðescribedtwo-port

ces T. (s)
-l-

the ports and N

and

ofN I 2

Y, (s)

Y. (s)
_L

(s)

X. (s)
-1

X- (s)
-¿

(s)=!1

=T"_L



At the interconnection

cons traint

port we have the

6I

addi tional

(s) (3.41)

From (3.40) and (3.4I) we obtain

(3 ,42)

We recognize that the matrix T(s) defined by

(3.43 )

is the transfer matrix for the two-port cascade network.

From T(s) a scattering description of the cascade network,

say S(s), is easily determined.

Conversely, consider a lossl-ess network N described by

the scattering matrix S ( s ) or the transfer matrix T( s ) .

Factorization of T(s) into the form suggested by (3.43) a1-

lows one to represent N as a cascade connection of two sub-

networks described by the transfer matrices !1{s) and 12(s).

It is well known that the cascade synthesis of lossl-ess

two-ports may be accomplished via factorization of the

transfer matrix [50,52]. Fettweis t5O1 has published a

thorough study of the s:ubject which includes a relatively
straightforward approach to solving the factorization prob-

lem. Let us examine briefly some aspects of the factoriza-
tion process.

,.

r (s)



The transfer matrix T(s)

N, is to be represented as a

ces T.,(s) and T.(s). These
-I -Z

to have the form

62

of a lossless two-port network

product of the transfer matri-
Iatter matrices are restricted

T (s) 1

F=T1''

oG. l-sl1-

oH, (-s)

(s)

(s)

H
I

I

_L- \,2 (3.44 )

( 3.4s )

by n, that is,
following con-

(3.46)

(3 .47 )

(3.48)

-1 G

where the porynomials F,(s), Hr(s)r and Gr(s) have the same

properties as the polynomials F(s), H(s), and c(s). The

first step in the matrix factorization is the following
polynomial factorization :

F(s) = Fr(s; Fr(s)

Let the degree of the network N be designated

n = deg G(s). Given (3.2), we can state the

straints:

n ¿ deg H(s) and n I deg F(s)

Consequently, given that n. = deg Gr(s),I

n. 2 deg Hi(s) and n. ) deg Fi(s) i = 7r2

In addition,

n= +
2

nn1

The transmission zeros (attenuation poJ-es) of the network N

are defined by the polynomiar F(s) and the degree n. The

distribution of these transmission zeros among the networks



represented by T1(s) and 12{s) is determined

the factorization ( 3.45 ) .

Through repeated factorizations, T(s) may

as a product of R matrices, i.e.

r (s)

Each transfer matrix Ti(s)
the cascade realization of
have the factorization

(s) r- (s)
-'1(

defines a lossless

N. Corresponding
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by (3.48) and

be represented

(3.4e)

network N, inI

to (3.49 ) we

= T, (s) T.

F(s) r, (s) F2 (s) Fn (s) (3. s0 )

The factorization in (3.50) determines the minimum degree

that each section in the cascade network must have. For re-
ciprocal l-ossless (reactance) networks, F(s) is a pure even

or pure odd polynomial. The zeros of F(s) necessarily form

a quad in the s-plane, arranged symmetrically about the ori-
gin t351. Exceptions to this are when zeros occur as conju-
gate pairs on the imaginary axis ¡ ot as positive-negative
pairs on the rear axis. rf F(s) is factored into as many

poJ-ynomials as possible, the maximum degree of any polynomi-
a1 wirl be four. rt follows that any arbitrary l_ossl_ess

network N can be realized as a cascade of basic networks of
zeroth, first, second, and fourth order.

rn summaryr given a normalized scattering matrix s(s) de-
scribing a l-ossless network N, transfer matrix factorization
can be utilized to specify N as a cascade of l_ossl_ess sub-
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neth¡orks N., with the respective scattering descriptions1

s., (s). rn the context of wD cascade synthesis, each subnet-_L

work will represent the reference filter for a wD filter
section. The DWD design approach appears to be especiaJ_1y

convenient in the reciprocar case since the section designs

can be determined directry from the scattering matrices

I1(s).

3.6 WAVE DIGITAL CASCADE
Þ'RõÞnnrY-

SYNTHESIS: THE REFLECTION_FREE

Transfer matrix factorization may be utilized in represent-
ing a Lossless reciprocal two-port network as a cascade of
two-port subnetworks. since each two-port subnetwork is de-

scribed by a normarized scattering matrix, vùe may apply the

DWD algorithm to determine wD realizations for each subnet-

work in the cascade. These wD sections are then intercon-
nected to yield a WD filter design.

wave digital sections are interconnected at the adaptor

level. rt has been demonstrated earlier, that at the inter-
connection of two adaptors, the following conditions are

necessary:

1. port reference resistances satisfy the compatibility
criterion, and

2. one of the adaptor ports is reflection-free.
Regarding the DWD design technique, the adaptor scatter-

ing matrices are determined with the condition that refer-
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ence conductances (resistances) are of unit value at inter-

connection (source and sink) ports. This impJ-ies that the

compatibility criterion is always satisfied at interconnec-

tions. However, these adaptors wiIl not in general have re-

flection-free ports. In this section we discuss how this

situation may be rectified.
Consider the n-port adaptor corresponding to an arbitrary

WD section in a cascade realization. Let the adaptor scat-

tering matrix, say S, be specified in terms of the subma-

trices N, K, and P as suggested in (3.23). For the sake of

simplicity assume the wave variables have been ordered such

that P = U. Accordingly, S has the decomposition

(3.51 )

The submatrix K is given by (3.25) where

(3.s2)

is the port reference conductance matrix. Assume that Lhe
. rhi"" port of the adaptor is an interconnection port and let
the reference resistance at that port be designated by R,.

Port i will be reflection-free if the scattering matrix ele-
ment S.,. is iclentically zero. As demonstrated in Section11

2.3 ,

Rdi R.
1

S ( 3. s3 )
t_1 R,. + R.cl1 1

S=Fl,lF

G = G^ i G_L _L



where

other ports

theC learly

guarantees the reflection-free
can be rewritten as

1+S
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point resistance at port i with all
in their reference resistances.

property. Equation ( 3.53 )

11
(3. 54 )

of an

va 1-

will

I
nehT

R-. isot- the driving
termi nated

condition
R.

1
R..
clr

R Rdi 11 c
l-I

The reference resistance at an interconnection port
adaptor designed via the DwD argorithm wirr be of unit
ue. rn other words, the adaptor scattering matrix g
have been determined with the reference resistance R

Let us determine another scattering matrix s I based on

reference resistance at port i, Rl , given by

I

I

R.
1

R..
dr-

( 3. s4 ) .

as those

matrix G'

where R¿i is determined by

sistances remain the same

port reference conductance

the property

G jj

The scattering

network, hence

= l/R, 'ot

matrices S t

S I has the

All other reference

for q. Therefore,

corresponding to S '

(3.5s )

re-

the

has

G,.
J)

j = 1,2,.,,,T1

and S describe the

decomposition
I

(3.56a)

(3.s6b)

same coupling

( 3. s7 )

1Éi.

I

b..
11

¡=FM
t

!_
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speci fically N, rema 1 ns unchanged fromwhere

(3. sl).

which can

or

The

be

more

matrix Itlr is specified

determined as follows:

t
5'

r=1
k = 1/2

rt_

by the submatrix Kr

(3. s9 )

(3.58a)

where

(3.sBb)

Port i of the new adaptor determined by s r will be refl_ec-
tion-free. rn order to maintain the compatibility condi-
tion, a similar process must be carried out with the inter-
connected network, that is, the new scattering descripLion
based on the changed reference resistance (at the intercon-
nection port) must be determined.

The procedure described above can be utirized to ensure

that, ât each port-interconnection of adaptors, one adaptor
has that port reflection-free. rt must be emphasized that
the modifications entailed in this procedure do not affect
the linear behaviour of the cascade realization as viewed

from the output.

The reflection-free condition praces constraints on the

entries of the K matrix. suppose the matrices I and Ä are

of dimension tx.Q.. with regards to the form specified in
( 3.51 ) ' it is easiry shown that if port i is one of the

f i rs t f, ports , S i i= 0 requi res that

T
N

tt
( G- + N G^_L __LK

It
= G^ i G

-y" -t

t [gu

G

nrt



wheren andk arerI 11

ternatively, íf port

requires that

6B

entries of N respectively. Al_-

i is one of the last t ports,

and K,

q-

11 0

As will be

cons ide ri ng

9"

TK
r=1

seen 1ater,

coefficient

. n. =fI 1r r/2 (3.60 )

these eguations become useful- when

quantization.

3.7 BASIC ADAPTORS FOR MINI¡'IAL RECIPROCAL FILTER SECTIONS

3.7.1 The Quantized Adaptor

The DWD synthesis technigue yields digital filter designs

based on n-port adaptors. The design algorithm essentially
assumes infinite precision representation of the adaptor

coefficients. However, for practical real- izations it is
necessary that these coefficients be quantized to a finite
accuracy.

Nominal adaptor designs are described by a constant scat-
tering matrix, say %. we sharr- assume that wave variabLes

are ordered such that \de may partition as follows

(3.6r )

where the subscripts R, Lt and c identify those ports to
which sources and sinks, delays in series with inverters,
and delays are connected, respectivery. As discussed earLi-
€rr s^ and the corresponding diagonal conductance matrix G_'-oJ---o

satisfy the equation

b

a
--l{

a,
-l ,

.i<,

b_R

qL

%



Furthermore, vJe

of submatrices,

have shown that

that is
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(3.62)

S can be specified in terms

sTc S =G--o -o { --o

-o

where

9.

U

M

s =PTF Ir{ F p
--O -O --O -iJ -

(3.63a )

(3.63b)
T

{
U

[-u
F =l-o loL_

N -U

-2K
-o

-{

Let us consider the entries of l'lo and Ko to be the coef-
ficients of the adaptor. This is the same approach taken by

Lô [30] , and Martens and Lâ t3f1. euantization of the en-
tries i¡ Io and Ko yields the matrices N and K, respective-
ly. The submatrices I and I determine a quantized adaptor
described by a scattering matrix S where

(3.64 )

and the matrices F and M have the same form specified by

(3.63b) with % "; q r"ntaced by I and K, respecrivety.
The independent entries in I" and L do not, in general,
specify a canonic set of parameters. consequently, s no

longer satisfies an equation such as (3.62) for a diagonal
port conductance matrix. However, it is always possible to
determine a symmetric positive definite matrix, say G, such

that

( 3.65 )

IU¡rq= f

T
S' G S = G



Since S is very

fn fact

terms
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ttcl-osett to S
J .r, we can expect G to be "close"

I is general.Iy near-diagonal, that is, off-
are much smaller in magnitude than diagonal

to G-o
d i agonal

terms.

We may

l-ues (see

express g

(2.40)), i
in the form that displays the eigenva-

e

T _t
S = P' T 

^ 
T ^ P (3.66a)

where, given that N is of dimension tx!.r

!-
-K

t'lT r t'l
q"l

9¿

0

0

A (3.66b )
gt

substituting ( 3.66a ) into ( 3.65 ) , \â¡e obtain the eguation

¡lrrn T
t o )t . ( { r r Lr I i g

or

^
( T

T PGP T
) /\

T T
T T PGP T (3.67)

Assume a

f ormabl-e

block diagonal PGPT

with the T matrix, i

matrix that is partitioned con-

e

PGPT =f
G'g

g

0l

;l ( 3.68 )

Then

(q K NT) GN (U
-,

ruT xl
T

[NGn (U-N'K)
_L !l T

K
T GK

-L-
T T

+
T PGP I

u G,,,
_L

U Tur rl GK
-L-

IE N *9t

(3.6e )



To satisfy (3.67 )

identically zero.

or

where

qu (

7I

the off-diagonal terms in (3.69) must be

Theref ore v/e requi re

(3.70a)

(3.70b )

!G_tf*)=U

G*Q=NGn
a__--.1'

t'll-tA (a K u.

rt follows that any g¿ and Gt satisfying (3.70) also define
a G matrix that satisfies (3.67 ) and thus (3.65). rn other
words ' solutions to ( 3.70 ) are al-so sol-utions to (3. 65 ) .

rn (3.70)' the unknown quantities are the el-ements of GL

and G. . Given that the square matrices Gn and G, are of di-
-t ---" 

-r -L
mension LxL. and txt, respectively, there are g,2 + L2 unknown

quantities that must be determined. rf we constrain our-
seLves to only symmetric soLutions, the number of unknowns

is reduced to L(9"+I)/2 + t(t+I)/2.
The matrix equation in (3.70) can be expressed equiva-

lently as a system of .q.t homogeneous Ìinear equations. For

symmetric Gø and Gt there are more unknowns Lhen linear
equations with the conseguence that the system is undeter-
mined. This generarly a1l-ows us to find sorutions in which

some of f-diagonal_ terms itr 9.t, and Ga are exactly zero.



72

3.7 .2 First-Order Sections

The nominal n-port adaptor corresponding to a first-order
section designed via the DWD technique is described by a 3x3

scattering matrix. The decomposition in ( 3.63 ) invariably
yields adaptor real ízaLions that are equivalent to the

three-port series or parallel adaptors introduced by Fett-

weis I151. The series adaptor realizations employed in Lhe

examples presented within this thesis have the following

structure:

l (k1i)2*1 
' (3.71)

T q'l
ql

9.

u._L

r=[K1N 1

It can be shown that if port I is

and if port 2 is reflection-free,
this adaptor is shown below.

reflect ion-free

lç^.= I/2. The¿I

kr l=
symbol

r/2,
for

b
Ĵ

e^
3

^2

The stroked output indicates that in this case, port 2 is
reflection-free. The adaptor coefficients are all contained

in 5 and they aji.'e canonic in number. Therefore, the quan-

tized adaptor always has a diagonaJ- reference conductance

matrix associated with the adaptor scattering matrix. That

this is true, is easily demonstrated through (3.70). Assume

that the conductance matrix has a diagonal form with

"1

bt bz



G. = diagl Sr, EZ ) v- diag I g
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(3 .7 2)

(3.73)

(3.7s)

J

The matrix

and can be

g defined in (3.70b), will be of dimension 2xI
represenLed by

,

O=is
9rr

9zt

Equation ( 3. 70a ) can be rewritten as

Q=G*-1 NG^
-L --)L

(3.74)

substituting (3.72) and (3.73 ) inLo (3.74) , lve obrain
Es/Et

zr/ e,

clearly, (3.75) can always be satisfied for arbitrary en_
tries in a and therefore diagonal. sor-utions for Gn and 

"aalways exist. Accordingly, one can a,-ways determine a diag_
onaf G to satisfy ( 3.65 ) .

simir-ar resur-ts hold for the paralrer adaptor. I¡Je do not
discuss them here.

3.7.3 Second-Order Sections

The reciprocar second-order sections designed with the DI,JD

algorithm are based on a four-port adaptor. The decomposi_
tion in (3'63) invariably yields adaptor reaÌ ízations that
are at most, a variation of the standard wD adaptor for a
Brune or Darlington C section t3f1. One general_ adaptor re_
ali zation that may be obtained via the DI^'D approach has the
structure specified below.

Qrr

9ztli
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T
11 q qrl

'l
N K (k1¡ ) 

2 *z P
1n u"

( 3.76 )

Nominal vüD filter designs based on this adaptor can also be

derived by conventional methods, from an analog reference

filter with the structure depicted in Fig. 3.2.

L

R
S

E R
L

Figure 3.22 Brune reference network.

If port I of the adaptor

flection-free, the entries

speci f ied

in K must

by (3.76) is to be re-
.satisf y the following:

k t1 + k r/z (3.77 )T2

Similarly, if port 2 is to be reflection-free,

k2I +nk
22

r/z (3.78)

The symbol for this adaptor is shown below.

b
3

a
J

t1
^z

b
1

bz

b.
ar 4



In

wi I1

this,

general, the quantized adaptor scaLtering

not satisfy (3.65) with a diagonal G matrix.
assume a diagonal solution exists, that is
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matrix S

To see

(3.80)

( 3. Bl )

How-

Froni

(3.82)

(3. 84 )

Gn = diag[ gr, gq )G-_L diagI gI, g2 ] (3 .7e )

I defined in (3.70b), will be of dimension 2x2

represented as

The

and

ma tri x

may be

Q=

Equation (3.74 ) becomes

There are

ever, in

( 3.81 ) we

tries of A

[o' qrz I _ | er/e, eo/ srlrr-t"l
Lort qzz ) lzr/ e, nE+/.2 

)

only three independent conductance ratios.

(3.8t) four equalities must be satisfied.

9rt

9zt

9tz

Qzz

can derive Lhe foJ-Iowing constraint on the en-

tzt Qit

Utilizing the definition for

k

Q, (3.82) can be rewritten as

detK)
(3.83)

general,

and thus

9zz 9tz

k
11 22

ktZkZl + det K ( ktz * k2t * kZZ )

where detK designates the determinant of 5. In

(3.83) is not satisfied by the quantized pa.rameters

a diagonal solution for G does not usually exist.
Solutions can be found with the following form:

n

Ir,
= 

Lr"

go
g¿G* = diag[ 9,, g. ]_LL¿.

g4
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We can show

lor t

LO,,

this
9tz

9zz

by again considering (3.74), i.e
(es * s)/s, (eq , so)/s,
(es * ne)/e, (nB4 * z)/e, (r. Bs )

There

sur ing

tri es

are now four independent ratios of conductances, en-
that (3.85) can always be satisfied for arbitrary en-

in Q. Solving ( 3. B5 ) yietds

oò1 9zt * 9zz (3.86a)92 ngt2 + Qrr

oò3 (n-1) Qrr Qzt +n det Q (3.86b)
ûè2 (nqrz * Qlt) (n-t)

s4 (n-t) en 9zz + det Q

g2 (nqu ert) (n-1)
(3. B6c )

+

oèo nQzt ttz 9tt 9zz (3.86d)g2 (tqrz * etr) (n-1)

The conductance matrix for this adaptor is given by

G P
T ¡9nt9.)l=9rig¿ (3. 87 )

similarly, one may show that sofutions for G can be ob-
tained with the alternate form

G*
a

= ltt
l'"

ooo

oÞ2

Gn = diag[ g-,_LJ s+l (3.88 )

The conductance

are then

E¡

ratios, given in terrns of the entrics of Ç,

(n-1) tzt ezz + det Q

g2 n detQ*(n-1)atten (3.89a)
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g3 (nqz t + q.,.,) det Q (3.89b)
E2 n det Q + (n-1) Qrr QrZ

84 Gzz + q,r) det Q

n detQ+(n-l)eit9n (3. B9c )g2

go _ 9tt 9ZZ - n 9n 9Zt
n det e + (n_l) Qtt QrZ

(3.89d)
g2

3.7 .4 Fourth-Order Sections

l4inimal reciprocal fourth-order wD sections will employ a

six-port adaptor. The DwD technique can be used to obtain
adaptor designs t ot alternatively, a \,ùave adaptor derived
for the standard Darlington D section t3o1 may be employecì.

Note that for this higher-order section, a large variety of
I^lD adaptor real-izaLions (i.e. analog prototypes) exists.
This follows from the discussion of subsection 2.r.2; in the

fourth-order case, it is possible to apply a variety of non-

diagonaì- transformations to an initial wD adaptor design and

thus obtain many significantry different adaptor real_ tza-
t ions .

one adaptor real-ization obtained with the DvtD aJ_gorithm,

has the following general form:

I

1

1

1

I

n

0

1 ! (k )
Ioo=l-
lu-
L-r îl

1
n2

NT=
1't 3x3

(3. e0 )
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Here again, the quantized adaptor scattering description g
does not usually satisfy (3.65) with a diagonal g matrix.
However, solutions for G can be found where

q G- =
-t." (3.e])

91 Eorz o

Eor2 gz o

g4 8o4S Eo46

8o45 gs 9o56

8o46 8o56 g60 0g,

This may be demonstrated by same methods employed in the
previous sections. The matrix G is then given by

(3.e2)

3.7 .5 Filters Based on the Jaumann Structure
der Case

Fettweis, Levin, and Sedlmeyer []91, and Nouta l2}l have cle_

rived wD adaptors for the symmetric lattice, and Jaumann

structures' respectively. The Jaumann structure [47J, one

f orm of which is depicted in Fig 3.3b, is a weÌf known r-oss-
fess two-port equivalent of the symmetric rattice (Fig 3.3a)
and can be used to realize symmetric networks (i.e. netv¡orks

with the property H(s) = -oH(-s)). It is known t5:1 that
filter networks exhibiting a Butterworth, chebyshev, inverse
chebyshev, or elliptic frequency response of odd order will
be symmetric in the matched case. The Jaumann structure is
therefore suitable for real-izing firters with this targe
class of transfer functions.

!{ave Di g i ta I
rEe-¡ïTt5:õr
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(a) (b)

Figure 3.3 (a) The symmetric lattice. (b) The Jaumann
s tructure .

L

E 1

Figure 3.4 A fifth-order reference filter with the Jaumann
s tructure.

A nominal n-port

( Jaumann ) reference

speci fied by

adaptor description for the fifth-order
network represented in Fig. 3.4, is

1 -1 0 0

1

1

-1 I 0
Iq.P=l
lq

q3.l

0l
-l101

cL2
2

L1

-1 : 1

and

NT=-{ (3.93a)
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$=(9to*\ 9a.o t¡T
-1).N G.- 4 _rlo (3.93b){

where

9to = diag[ 1, 1, l/L, I/Lz)

9o = diag[ 1/L3, CL, C2 ]

(3.93c)

(3.93d)

Given knowledge of go, a nominal adaptor design follows di*
rectry. The same resurts can al-so be obtained using the DI,iD

algorithm. The form of \ imposes constraints on the en-

tries of K-, that is, given
-o'

L = (k1¡)axg (3.94a)

we find
k

11 -k21
l-n12 -kzz krs kzs

k--
J5 0 k 0 kaz 0

(3.e4b)
41

The coefficients in Ko must be quantized to a finite preci-
sion yielding the matrix K, which with N = \ and p, deter-
mines the quantized adaptor design. rf the entries in K re-
tain the form specified in (3.94b), one can show (Appendix

B) that the adaptor scattering matrix g satisfies equation
(3.65) with a matrix c of the form

(3.95a)

8-J
oÞo

0

g
o

0

09¡ = diagÍ E, E, gS, 94 f Gn =_L 86 (3.e5b)

097



Chapter IV

NONLINEAR STABILITY OF Iì¡AVE DIGITAL REALIZATIONS
WITH NEAR-DIAGONAL REFERENCE CONDUCTANCE

¡4ATRICES

rn chapter rrr we developed the DWD synthesis method for de-

termining minimal reciprocal wD filter designs based on

pseudolossless n-port adaptors. rt was demonstrated that
when the entries of N and K are chosen as the adaptor coef-
ficients, these nominal wD designs will generally be nonca-

nonic in mul-tipriers with the consequence that reference

conductance matrices associated with quantized adaptor scat-
tering descriptions are usually nondiagonar. clearly these

filter sections are not conventional wD structures and thus

the stability criterion described in section 2.5 does not

apply.

Moon t54l has shown that for a special class of filter
structures, a near-diagonal quadratic form can suffice as a

Lyapunov function. rn this chapter we propose a general

strategy, motivated in part by the concepts presented in
1541, that may be employed to ensure the stability of fil-
ters based on the adaptors introduced in Chapter III.

B1
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4.I THE CONCEPTS OF PSEUDOPOV'TER AND STORED PSEUDOPOWER
EXTENDED TO WAVE DIGITAL ST RUCTURES WITH NONDIAGONAL
eõTDuem'NcE MAIR ICES

consider a quantized filter section of the type introduced

in chapter rrr. The n-port adaptor corresponding to this
section is described by a scattering matrix, say S, which

has a reference conductance matrix g associated with it.
The matrices s and G satisfy the relation STGS=G. Assume g

is defined such that the wave vectors can be partitioned in
the familiar manner

(4.1)

where the subscripts R and D identify those ports connecting

sources and sinks, and deJ-ays, respectively. vJe shalf con-

sider only those adaptor real-izaLions for which there exists
a port reference matrix g that is bl-ock diagonal with re-
spect to the source and sink and delay ports, i.e. when G is
partitioned conformably with the wave vectors

(4,2)

t+la=l I

Lsj
o=lhl

lql

The matrix

symmetric.

Furthe r
are ordered

þÐ

assume that

such that

I is al-so assumed to be positive-definite and

q.l

sl
.=[s

Io

1lecl
u=[lIgt

%=l
L%tïl

the ports corresponding to the delays

we can partition as folLows:

(4.3)



The subscripts L and

that have a deJ-ay with

series , respect ively.
conformable with c

oa

C differentiate between those ports

and without an inverter connected in
The polarity matrix, when partitioned

then¡ lS
D

(4.4)

similarly, we can distinguish between the two ports connect-
ing sources and sinks, i.e.

¿=l
g

0

[:]l

ql
qJ

h.[l]l çool ool2
(4.s)

Eot2 E2

linear filter section is represented in Fig. 4,I.
the inverters are now placed after the delays.

C=+.

A general

Note that

å*(n)

G-*.
b- (n)

Figure 4.1: A linear wave digital
an n-port adaptor with
conductance matrix.

b^(n)_D

filter section based on
a nondiagonal

Let us extend the concepts of pseudopower and storecl
pseudopower to wD structures with nondiagonal port reference
conductance matrices. The pseudopower pr(n) stored in the

TG-Ð

eo(n)

5

N



analogous to (2.53). clearly, pr(n) is a positive definite
quadratic function. The increase in pseudopower at the nth

time instant is given by

aps (n) Rr (n)

delays of

interval-

Since Ia^(n) =

ÄPs (n) =

or equivalently

aps (n) = Þ;

a general filter section

(n,n+1) is defined by

ps(n) = qlCnl Ço þo(n)

B4

( F ig. 4. I ) in the time

(4.6)

(4.7)

bo

.T
--1)

ps(n-t)

(n-L), we may also write

I (n)

I5 (n)

(n) G^ b^(n)-'-t, -4,
Ta^1)
(n) G^ a^ (n)

---1 ) --t )

It E r 5(n)tu(n)G^ b^
-il --1)

(n)

çÐ)rTG-I- 
--lJ -

rhThe pseudopower absorbed by the adaptor N at the n

instant is defined as

pn(n) = rr(n) G a(n) - t'cr) c b(n)

in analogy to (2,56) . Introduce the matrix e^ where

t ime

0r^"t-"50=L9Ð=S
--o

q

.4uoe"-4hh.4q,.o

2GT

(4.e)

(4.10)

(4.1r)

--{

Utilizing (4.9) and (4.10), (4.8) can be re\^rritten as

-P¡
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v/here in order to simplify the notation, quantities are no

longer expressed expJ-icitJ-y in terms of the discrete-time
variable n. By assumption, the adaptor scattering matrix
satisfies the relation gTgq = g. rt is easy to verify that
this implies pN is identicarly zero or equivalentJ-y, that N

is pseudolossless. Therefore, in the absence of outside
signals ( ao= Q) ( 4. ll ) reduces to

-.K

(4.12)

From (4.12) it is evident that aps is an indefinite quadrat-
ic function. consequently, the stored pseudopower ps cannot
be utilized as in section 2.5, to prove the stabiJ_ity of the
filter section.

4.2 PSEUDOPASSIVE WAVE DIGITAL FILTERS

The stored pseudopo\,ver, def ined as in (4.6 ) , is not a suita-
ble function for proving the stability of the generaJ- l_inear
system depicted in Fig. 4.1. A similar conclusion may be

drawn with respect to the subsequent nonfinear system that
resul-ts from inserting guantizers before the delays of the
linear filter. rn this section we introduce an alternate wD

realization for which the;stored pseudopower is a suitable
function for proving stability.

qiqu^ps=4t+
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4.2.I The Pseud ssl.ve n-Port Ada tor

consider a modified linear filter section in which a l-inear
multiplier of value o, is introduced into a1l the reflected
v/ave branches of the pseudolossless adaptor N (Fiq. 4.2).
The modified n-port adaptor Nn will have a scattering de-
scription sp. clearly sp is related to s, the scatterinq
description of N, by the relation

S.=0S (4.13)

The matrix So satisfies the equations
-r

Sqg=o2g (4.r4)

Sq=q$ (4.ls)

where G is the port reference matrix corresponding to N

T

--+t !D ûU
-DP

9R 5

N

ÞRP ûU ÞR

S
P

N
PL-

Figure 4.22 A linear
s tric tJ-y

v/ave digital filter based on a
pseudopassive n-port adaptor.



Constrain the val-ue of the multipJ-ier as follows:
B7

(4.16)

(4.1e)

the passified

given by

0<a<1

(We will

unity. )

see l-ater

It follows

vector b- may be partitioned

cx is normally chosen very close to

(4.14) and (4.16) that

is common to N

conformable with

and The

b, i.e

that

from

(4.17)

Let G be the port reference matrix associated with SO. Then

from (4.9) and (4.I7 ) it is evident that the n-port adaptor

*n is strictly pseudopassive. The reflected wave vector

corresponding to the passified adaptor Np is denoted by bn

and is related to the reflected wave vector b of the adaptor

Nby

(4.18)

(The incident wave vector a

b--=ob

*n' )

h.o
[ï,]

h=
Þto

bp
I orol

= 

L 
orrl%o

The pseudopower pSp(n) stored in the delays of

filter section in the time interval- (nrn+1) is

(n)

rro (n) (4.20)

The increase in the pseudopower at the nt'h time instant is
then

aPsp (n) qfin r"l

5 \o {n)

T( I a,,(n) )' G^ I a^
- --1, -1) - ---L)9¡ Þrp

qlo r"l

(n) (4.2r\
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rh
nThe

t ime

where

( 4 .22)
io

or

pseudopower pNp(n) absorbed by the adaptor Np ut the

instant is given by

n^o (n) = J(n) c uÏcnt
-Ì:

(4.22)

From (4.2L) and (4.22) we obtain a resul-t similar to (4.r1)

aPro -PNP*4+eo-4og.hr (4.23)

na( G b- (n)

T^
hhqR+

e^ has been defined earlier.
-L)

yields a new expression for

Substituting (4.18) inro
the absorbed pseudopower,

pNp=gTg"-o't' Gb

PNp=PN*(1 b Gb (4,24)

pseudopower absorbed by the adaptor N. Con_

in (4.23) yields

2 T0

where pN

s ide ri ng

aPro

is the

(4.24)

-pN (1 4oSho +
T^

3+. !R 3R (4.25)

Given that the n-port adaptor N is pseudoJ.ossless, (4.25)
becomes under zero-input conditions

aPto 4, qo h,o2)ÞtGb+4.q- (1 (4.26)

comparing (4.26) and (4.12), it is evident that the expres-
sion corresponding to the passified linear filter section
has an additionaL negative definite term. rf the contribu-
tion of this term ensures the condition



ÂPsp -' -40 $ ho
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(4.27)

to prove the

stability of

then the stored pseudopower pSp can be used

stability of the Iinear system and possibly the
the related nonlinear filter.

For reasons that will be apparent later, we

matrix e. defined by..1(

introduce the

*=[,:,, ';',] (4.28)

where goI2 is the off-diagonal term

duce the function F(n) where

or gn. Also, we intro-

FA T .T
hP h\ìP.ul++-Pn-p * gÐ 9Ð h (4.2e)

Utilizing the definition (4.29), (4.25) becomes

*T 
SP

2

F-I (
ì-1
I_ I

o?, 2
)o,

I
aoi (4.30 )

where gi is the ith
1y the condition

diagonal term in GR (see (4.5)). CLear-

F(n) s0 for all n ( 4.31)

is sufficient
ative as long

to ensure that under zero-input, Ap

nonzero.
sP ls neg-

as the output remains

4.2.2 Cascade Realizations

Consider the cascade connection of K filter
type depicted in Fi g . 4 .2 . The b/ave vectors

sections of the

and the conduc-



tance matrix corresponding to the ports
passive adaptor *n* that connect sources

of the kth
90

pseudo_

are de-
noted ny Þnpk, C*or and 9on, respectively,

and sinks

where

b
k k

^r
k
1

k
oI2,k

qRp
LP g oò

k
2P

1,

qR=
ì.

^t(
9ì (4.32)

b k
^2

k
E ol2

k
c 2

The adaptors corresponding to the kth and

tions are interconnected according to the
4.3)

k+lst ril-ter sec-

requirement ( Fig.

b
k k+1
1n

"1 (4.33a)

k

^2
b

k+1
1P (4. 33b )

.k
5p

k
T)

. k+1
5p

k+1a*-)
k _k

!2 k+ 1:1
P

a_
-1

.k+
þzp

1

.k
9tp k+ 1

a^

Figure 4.3: fnterconnection of adaptors.

since the port reference matri* g*o is not generarry di-
agonaÌ r âfi individuar reference conductance ( resistance )

cannot be assigned to each interconnection port of *nO. The

k
a^ . k+l

9rp

L

NË N
k.1

P
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compatibility condition that was reguired with conventional
wD sections, i.e. (2.2r), does not apply here. Let us de-
fine an alternate compatibility condition for the port ref-
erence matrices 9*0, k = r ,2, . . . ,Ri at an interconnection
port we require ( Fig. 4.3 )

k+L
c g1 (4.34 )

k
a¿

k 21 , . , K- 1

If the off-diagonal

tion (4.34) becomes

sect ions .

kterms in Gñ areÃ

the same as that

of zero vaLue, condi-

for the conventional V,tD

Let the pseudopower stored in the delays of the ktr, cas-
caded filter section in the time interval (nrn+l-) be repre-

ìsented by pan . The pseudopower stored in the delays of the

complete filter in the time interval (nrn*I) is then

K

I
k= I

kD^_ = lst,

The increase in the stored pseudopower at the nth
stant is given by

k

iP

defined for the

and (4.34) , the

(a

(4.3s )

time in-

(4.36 )

(4.37)

.rhK adaptor.

expression in

K 2 ( 4.38 )

Äp'

orr utilizing (4.30), by

Ap

where Fk is the function F

With the constraints ( 4.33 )

(4.37 ) reduces to

K

-\'-L

k=1
Ap

SP

Ã

t
k=1

FK

K

I
k=1

Kg2-

2

I
i=1

ro\r)'

k
)

2 . k,2la. I

1
c1(,1) t

k
oè'i{(b i

ST

K

T

k=I

k 1
)

2
+

1

I
'51

aPtr. F b g
1P )
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It follows from (4.38 ) that if ,"ve guarantee

Fk< 0 ft = Ir2, ,K (4.39)

then under zero-input conditions,

a nonzero output.

ÂpSf will be negative for

4.2.3 Linear Stability

Consider the function F corresponding to

section of the type depicted in Fig.4
wish F to satisfy the condition

an arbitrary filter
2. In generaÌ , \¡/e

Ft0 (4.40)

Utilizing the definition in (4.29), the constraint in (4.40)

can be reexpressed as

- (1 o2lbTGb+"J.-, -bT r h -'l- ( 4. 41 )

or as

-n1 (1 2
b

T Gb rr2 (1 o2)¡TGb+ T
3Ð%0 Ò:Ð

,llu 9* hp
T*k 9'qqR-t0 ( 4 .42)

where

rì, + n, = 1 n1 ¡ 0' n2 t 0 (4.43)

The first two terms in (4.42) are negative definite while

the other terms are indefinite. Since N is pseudolossless,

vüe have the property
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T'rb' G b = a' G a (4.44)

EmpJ-oyi ng

-n, (1 - o,

this relationship in (4.42) yietds

'l fç.Þ.- 4o h Þ^o

+
Ta t tgR* fu) - n2(1 o2) c I a < o (4.4s)

orr applying ( 4. lB ) ,
(t -o2 4o$ho-40¡eo*n 1 -n

2
)-n

1
.., s lho

o 1 1L0

T t( +
1

0.)+ L :{ gÐ n2(r G I a < 0 (4.46)

Equation (4.46) is satisfied if the foltowing are true:

ïl 1
2.0J

S.g*to1 ( 4.47 a)
d

r.t2 (1 o2) G {a i e-)--Ð' >0 ( 4 ,47b)

that is, the matrices defined in
definite. Assuming (4.47) holds,

(4.47 ) are positive semi-

we then have

(r 2
F(-n c[ )

Þ; 5hp1 2 P (4.48 )g

which satisfies (4.40)

rf (4.48) holds for every filter section in a cascade re-
alization, apsr wirl aJ-ways be nonpositive. Moreover, ap

will be negative as long as any of the signars incident
the delays of the firter remain nonzero. By Theorem 2.

the linear filter will be completely stable.

ST

at

2,
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4.2.4 Nonlinear Stability

consider the filter section of Fig 4.2, implemented with fi-
nite-word-length arithmetic. Ouantizers are introduced be_

fore the delays in the linear system, resulting in a nonli-
near f ilter real-ization (Fig . 4.4) . The ref l_ected \dave

vector corresponding to the nonrinear adaptor Ñ^ is denoted-P

by b-.
-r

_l

a*_K U 5t Lj¡p

I

-lL
.l¿RP

G-_K

"û:RP U h

I

I

I

ñ-7

Figure 4 .4 A filter section based on a pseudopassive
adaptor and implemented with quantizers.

The stored

pse udopowe r
sr ectively,

pseudopower ürn and the increase

Aprn for the nonl_inear filter are

in the stored

given by, re-

frn = 4o çr Lo (4.4e)

¡lsp = 4o go L, ( å )
T
$ I%

0

T
I

I

n:Ð

a-
-'lJ0

5

N

and

"D
( 4. s0 )



Similarly, the

is given by

9s

pseudopower absorbed by the nonlinear adaptor

pN
T Ga þ;sh ( 4. s])

P
a

From ( 4.50 ) and ( 4.5I ) , we obtain a resuLt analogous to
(4.30), i.e.

¡ïro = ï
2

I
i=1

,\r)
b:

].

2 (4.52)
P

a i 5i

where

F= P*, +
T

a eÐsÐ-4ohho.4notu (4. s3 )P

A cascade of K of these nonlinear

a total stored pseudopower Èr,
stored pseudopower is given b)t

fí1ter sections will have

and the increase in the

Âp
ST

K

-L

k=1
A

r\,k

Psp ( 4 .54)

where the

respond i ng

superscript k is used to identify quantities cor-

wilI reduce

( 4.33 ) also

to the kth section. The expression in (4.54)

to a form similar to (4.38) (the constraints in
hold for the quantized variables), i.e.

Ap
K

-ç
k=1

ïk
['ti,' '

I
g1 * ctfol2

K
g2 G!)' I , K.2

la z) 'ä]
ST

gi (4.ss)

Clearly ¡ wt: desire the condition

<0 k i 2,.. Kïk (4.56 )



The function ï

obviously satisfies

È

tuthen F will also be

quantizations within
following is true:

corresponding to a nonfinear adaptor

the relation

96

Nn

nega t ive

Np will

F)

for nonzero b,:DP.

always be made

(4.57)

Since signal

such that the

F+ (?

where F has been defined earlier for the línear subnetwork

Np (Fig. 4.4). Given that (4.48) holds, F is negative as

long as the linear response bon remains nonzero. According-

Iy, if we guarantee that for all nonzero b'n

?'- F < -F 14.58)

(4. s9 )

also remain negative for the condition

holds for every section in a cascade reali zation,

ri ST
(4.60 )

and by Theorem 2.2, the cascade realization will be com-

pl-ete1y stable.

Assuming ( 4.48 ) holds, ( 4.58 ) is satisfied if, for alt
nonzero Þ¡p,

0+ \oÞoo

,, É .0 for an¡'k, k = I,2,r-

2_0.J $hpaL

0

F will

(4. s8 )

then

Þop* If_q

.,K + Ai 0

r Fcn (1 .T
5p ( 4 .6Ì )I

0
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util izíng the definitions for F and F, we may reexpress the

condition in (4.61) as

tu
-Ë*o * pr,¡p - 4u h \o . 4u h hp ' .,'*4 4,, g, bo

or

4ogoLo-4oSÞ¡p*

- 4o (ç*

üi, (çR h ) hp

9r) hp <n (1 - o2)
4o qo h,' (4-62)

1 )
0

Note that GR rR is a positive definite diagonal matrix.
If quantizations are performed such that

I B*orl s I u*0, 
I

í = Ir2 (4.63)

then

4o (qR c:R ) \o 4' (E, g*)hp <0 (4.64)

The constraint in (4.62) becomes

[1*n (1
2-01 r4oSbp-40$Lo >0 (4.65 )72

0,

Define the scalar quantities Yl
.)

and \z bY

Y n
(r 0 ) (4.66a)

1 I2
0

f2=\2 (1 -o2) (4.66b)

Equations (4.47 ) and (4.65 ) (-an then be expressed as

>0YlS,* gR (4.67a)

Y 2
G (q*igo)>o (4.67b)

(1 + Yr) 4o % hp - 4o S,So >0 (4.67c)



The analysis presented within this section has shown

if the constraints (4.63) and (4.67 ) are satisfied for

nonl-inear filter section in a cascade real-ization, then

overafl filter will be completely stable.

9B

that

each

the

that is, the ma-

4.3 NONLINEAR STABILITY: BOUNDS ON THE ENTRIES OF THE
õñoue rel¡c E MATRIX

In Section 4.2 we introduced a general filter section based

on a passified n-port adaptor. It was shown that the nonl-i-

near stability of the filter section or a cascade of such

sections is guaranteed if the constraints (4.63) and (4.67)

are satisfied. In this section, the requirements specified

by (4.67) are expressed in terms of constraints on the en-

tries of the port conductance matrix G.

4.3.l- General Bounds

Consider first the

trix Yf9n + eR be

general definitions

requirement of (4.67a),

positive semi-definite.

for the matrices e* and

I trr, (vr*r;sorzl=l.l
L(tr.t)Bo' z \tsz 

J

Util iz ing the

¡ wê obtain

(4.68 )

G
R

vr$ . 9*

A symmetric matrix is positive semi-definite if all of the

principal minors of the matrix are norrnegative t5f1. There-

fore, the above matrix is positive semi-definite if the fol-
Iowing are true:

Ylgl >0 ) \#2> 0 (4.69a)



,'rrrr, - (vr*r;2,
')

o12
>0
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(4.69b)

The constraints in ( 4.69a )

positive
are always satisfied, since by

definite. Therefore (4.67a ) is
or equivalently

assumption,

satisfied if
G* is

( 4.69b ) holds,

(erer) r/2 1 + Yl (4.70)
| 8ot2 |

¿
,1

The requirement

erate constraints

(4.67b) can be expressed as the two sep-

Y
2 s hr0 (4.71a)

Iz % - % - 0 (4.7rb)

The condition in (4.7l-a) is
(4.67a). AccordingIy, (4.7Ia)

holds:

similar in form to that of

is satisfied if the following

( s, e, )r/z I
2

(4.72)
lsotzl y2

The conditions specified by (4.7rb) and (4.67c) involve

the submatrix Go. The form or 9o is dependent on the order

of the reaÌization. Results will be derived for the generar

second and fourth-order filter sections. we also consider

the special fifth-order section introluced in chapter rrr
that is based on the Jaumann structure.



4.3.2 The Second-Order Case

A second-order

III, will have

section of the type introduced in

r00

Chapter

n-port

(4.73)

(4.7 4)

a 2x2 Gn matrix associated with the

adaptor. Let Go have a form consistent with (4.3), i.e.

Ie
qr=l

Ls

Yzs t,=[

3

o34

-l_, I
0

Eo34

By assumptÍon, I dias I Therefore, by ( 4.10 )

g4

l

2g

0

o34e^
--'t)

2e
o34

Util izíng (4.73) and

Condition (4.7Ib)

semi-definite ot t

equi valently

o34 \ z9q

that this
the arguments

( 4.7 5)

matrix be positive

used earlier, that

(4.74) , vre

\ z9s

Ú r-z1s

obta i n

0 r-z ) Bo,o

requ r re s

applying

(srso) r/2
2 ., (4.76)

lsos¿ |
v2

Next consider condition (4.67c) for the second-order

case. Up to this point the output of a quantizer with input

x has been denoted by Ï. Alternatively, the output of a

quant izer can be represented as x*e where e r,jpresents the

error introduced by the quantization operation (Fig. 4.5).
Assume henceforth that quantizers implement a signal modifi-
cation scheme that has the following properties (with re-

spect to Fig. 4.5 ) :



r0r

X X+e

Figure 4.5: Quantizer mode1.

sgn( e ) -sgn( x ) (4.77a)

sgn ( x+e ) sgn( x ) ( 4 .77b)

Note that this quantization characteristic satisfies the

conditions specified by (4.63). The condition in (4.67c) is

satisfied for the second-order section if, for all nonzero

x,

(i*Yrlt'gr-lg¡ï'6 (4.78)

Let the vector x be represented as x*e where e is the error

vector. The expression in (4.78) becomes

(1 * vr) T^X U-X*lJ -
qx*e;T5(x+!)>o (4.79)

Given (4.77), (4.79) is true if the entries of G

the following criteria
D satisfy

(sreo) r/2 1 + Yl c.
>2,

oÞ4
2Z (4 80)

I Bosai Y1 lsosal I 8o sal

This result is derived in

constraint in (4.67c) can

and (4.80).

Appendix C.

be replaced

It follows that the

in (4.77 )with those
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4.3.3 Block Diagonal Conductance Matrices

In some instances the ma

sider for example,

trix GO may be block diagonal. Con-

$ = diag[ G, G^ çNr (4. B1)

Examining the constraint specified in (4.7rb), it should be

obvious that if (4.81) is true, then (4.71b) can be replaced
by the equivalent requirement

Y^ G. - e. > 0¿-L -1
i = 1,2,..,rN (4.82)

where

e. = Ç. - I. G. I.
-1 -1 -1 -1 -1

(4.83)

and I has been partitioned conformably with G^, i.e.

ç-

Also consider the

true, then (4.67c)

diag[ I,, I.,..., I,,

requirement of

is satisfied if,

( 4 .84)

(4.67c). If (4.8I)

for all nonzero x,

1S

(1 *Y . T^ fuT ru
, J x- G, x - x- G. x > 0¡--¡--i- i = L12,.,.rN (4.8s)

If the submatrix G. is diagonal, then by (4. B3 ) _q.j 0 and

(4.82) is immediately satisfied for the case i=j. Further-
more, (4.85) will also be satisfied for the case i=j since,
by assumption, the signar quantization characteristic satis-
fies (4.77). Therefore, the diagonal submatrices of G

D
au-
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tomatically satisfy the stability constraints and need not

be considered.

4.3.4 The Fourth-Order Case

A fourth-order

3.5, will have

adaptor. The

the form

sect ion

a 4x4 g

solu t i on

of the type introduced in Section

associated with the n-port

derived in Chapter III has

D
matrix

for Go

5- diag t G.
-l

G. l (4.86a)

where

ç.1
g

3
uî -_L

g4

8o45

8 o46

8o45

g5

I c56

E o46

8o56

g6

(4.86b)

The polarity matrix for

X = diagl

this filter section is given by

Since G., is diagonal r \dê_I

Utilizing the definition

-r, -L, 1, 1 ]

need only consider the matrix G

( 4.83 ) , we obtain
2

Y
2

c 4
ú r-z) soqs

Y^8-¿)
YzSoso

0 ,-z ) roou

Y2 Soso

\ zEo

Y" G.
L-Z

g" ft r-z)Bo¿s (4.87)

8 r-z) to¿o

To satisfy ( 4.7lb )

definite. Let us

trices, that is

the above matrix

matrix

must be positive semi-

express the as the sum of three ma-
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(4.BBa)

where

ûzEì /2 (t 
r-z)Bo¿s 0

0

0

M1 ú r-2)eoo, û re; /z

0 0

orso)/z o (\z-2)Eo+ø

M" 000

z-2)Eoqo o (\zsì /2

(4.BBb)

(y

0

0

0

0 0

M-
-ó

Qre;/z

Í 29os6

YzEoso

úrs¿/z

If Mr, M..,¡ and M" are each positive semi-def inite, then the
-r_ 

' 
-¿' -J

matrix in (4.87 ) wilr also be. Employing the same arguments

applied in Subsection 4.3.1r rrrê f ind that (4.7lb ) is satis-
fied if

(sosr) 1/2 2(2 - y2)

---7; (4. B9a )

| 8o4sl

(s*su) r/2 2(2 - v )
2 (4. B9b )

[ 8o¿e

(sueu)
lso56l

r/2
>_2

t2

( 4.89c )
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Now consider condition (4.67c). we require that, for all
nonzero x¡

.TfuTfu(1 *y,)x'G^x-i'G^i>O¡- (4.e0)

Given that x=[x I *2 .T*3J 
'

introduce the following vectors:

Lr2= [ xt *z

Utilizing the

pressed as

(1

T I xl *, ]t I¿s lr (4.el)Ir¡ "2 x-

definitions in ( 4.91 ) , ( 4.90 ) can be reex-

* Yt) T
Ltz Ili lrz

.\,7

z \t Ltzx1

+ (1 + vr) {, [z å, - l, I, !r, (4.92a)

+ (1 * yr) trys\s - S, II, L, >0

where

W

E4/2 8o4s
h'.

g4/2 Eo46

Eo46 g6/2
r- =ltr''
-Jt

I 
soso

8o56
I Bo45 gs/2 s6/2

( 4.92b)

Clearly, if for nonzero rr2'
Ltz

ë13, and xr3 we have

!1,r'!,,'o(1 * vr) T
Xr 

"
tr1 (4.93a)

(1 * Yr) ¡T, Iz rr, - TL g !', >0 (4.e3b)

(r + Yr)
T

hs W- x^-
-3 -¿S

Ï^- w-
-¿5 -3

x^- > 0 (4.93c )

then (4.92) wirl arso be satisfied. Furthermore, notice
that each equation in (4.93) has essentially the same form

as that of (4.78). Therefore we can apply the results de-

rived for the second-order case. Accordingly, the require-
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fourth-order section if
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be satisfied for this

(sosr) r/2 ze+y
1) EL̂+ >a

I so¿ sl

J
,

I so¿s I

>_ 4 (4.94a)
lso¿s I

Y1

(sosu) r/2 2(1 + Y,; EnI1+
oè6 \ ,aq

lso¿ol
>45 (4.94b)

lso¿61 Y1 lso+ol

(srsu) t/2 2(1 * yt) 
.

Y1

oo6

|'*A
oõr

---! > 4

lsoso I -
>4 (4.94c)

lsoso I

and the signaJ. quantizations satisfy (4.77).

4.3.5 Fifth-Order Filters Based on the Jaumann Structure

The special fifth-order section introduced in Section 3.7

has a 5x5 G^ matrix associated with the n-port adaptor.
-l)

As

discussed in Subsection 3.7 .5,

the form

a general solution for GO has

G^ = diagl G., G., G" ]-1) -t -¿ -J
(4.95a)

where

G, = diagl gS, g4 ] , %

g5 soso I
| (r- =t' -Js6Jt'

is only necessary

the definition (4.

(4.esb)
8o56

S ince GI and G" are
_J

diagonal, it

. Utilizing
to con-

83), wesider the matrix G
2

0 2Eosu
c=

obtain

29os6 o

(4.e6)



107

observe that G, and g, have the same form as the matrices Go

and eo ((4.73) and (4.74)) corresponding to the second-order

section. consequently the resurts derived for that case can

also be applied here. Accordingly, (4.7rb) and (4.67c) are

satisfied for this special fifth-order section if

(srsu) r/2 )
2

¿ (4.91a)
I sos6 |

(sreu) r/2

lsoso I

and the signaJ.

\2

oò-J
a¿

I soso 
I

quantizations satisfy

> 2 (4.97b)
1+ Yl

Y1

86

' lt*u I

(4.77).

4.4 SIMPLIFIED STABILTTY CRITERIA

Let us summaríze the resul-ts deveroped in the previous sec-

tions. Nominar n-port adaptor desigDSr possibly derived via
the Dv,lD algorithm, are described by a constant scattering
matrix that will have a diagonal port reference conductance

matrix associated with it. rf the entries of the submatric-
es N and K are chosen to be the coefficients of the adaptor,

coefficient quantization generally yierds a digital struc-
ture that is no longer the image of an analog prototype.
specificarry, the scattering matrix description of the quan-

tized adaptor witr be based on a nondiagonar reference con-

ductance matrix.
rn section 4.1 the concepts of pseudopower and stored

pseudopower were extended to filter structures based on
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these quantized adaptors. However, it was shown that unlike
conventional wD realízations, the stored pseudopower cannot

be used to demonstrate linear or nonlinear stability. We

then proposed a nodified adaptor that is derived by placing

passivity multipliers in the refrected wave branches of the

original quantized adaptor. The modified adaptor was demon-

strated to be strictly pseudopassive. Furthermore it was

shown that for this crass of adaptor, the stored pseudopower

can be utirized to prove the stability of the associated

nonlinear filter if certain conditions are satisfied. rn

particular, for each filter section in a cascade realiza-
tion, constraints are placed on

t. the entries of the reference conductance matrix and

the val-ue of the passivity multiplier u (see (4.67)),

and

2. the signal quantizations performed within the nonli-
near filter (see (4.63) and 14.67c) ).

In Section 4.3, these constraints were interpreted as

bounds on the entries of the conductance matrix and as ex-

plicit conditions (i.e. (4.77)) on the signal quantization

characteristic. rn this section, the bounds on the entries
of the conductance matrix are expressed in a more simpJ-ified

and practicat form.
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4.4.1 Second-Order Sections

Let us review the resurts presented earl-ier for the second-

order section. The reference conductance matrix associated

with the passified adaptor has the form

gt 8or2

Eor2 g2 9.

G

83 8o34 (4. e8 )

0 Eo34 g4

rn order to guarantee the stability of a cascade realization
employing such a filter section, the constraints specified
by (4.70), (4.72), (4.76), and (4.80) musr att be sarisfied.
utilizíng the definitions for y1 and \2, these constraints
are listed again below.

{ s, s, )r/2
21+

2
0,

lsot2l 2
( 4.99a )

n1(1 0 )

(srer)1/2
1

lsorzl 2
1 (4.eeb)

n
2

(1 0,

(srso) r/2
2

lsosql nri.t - a2)
L ( 4. I00a )

(srso) r /'!
2

>1+ 0 (4.100b)
lsos+ | n1(1

)
0,

oè3 e4

leos¿ Ileo¡¿ |

>) (4.100c )
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As has been discussed in Chapter fII, the I matrix

associated with the adaptor of the second-order section can

be determined with either go' 2= 0 or go34= 0. If goLz= 0,

the constraints in (4.99) may be ignored and similarly if

go34= 0, (4.100) no longer applies. ,

Assume 9oI2= 0 and therefore consider (4.100). The pa-

rameters nl and \2 are as yet unspecified and may be as-

signed values arbitrarily, subject to (4.43). It is clearly

desirable to choose these values such that the maximum value

of the bounds in (4.100arb) is minimized. Since in general

o=1, the constant terms in these bounds will be of negligi-

ble significance. A close to optimal choice for the values

of nI and T1z is therefore I/3 and 2/3, respectively. The

lower bound in (4.100a) becomes

3 1< 3 ( 4.10r )
1

)
I 2

o cx

and the lower bound in (4.I00b) becomes

3a
2

31+ ) 2
(4.102)

1 0 1 0

Therefore, we may replace (4,I00) with the sufficient condi-

t ions

{ s, so )1/2 3
tÞa

J\.
t t- -

lEosal

E,4:o

Itorol' ' '
o
" oL2

o (4.103)
lsos+ | 1

a
L

0

Alternatively' assume 9o34= 0 and thus consider (4.99).

Applying an argument similar to the one discussed above

yields the result that (4.99) can be replaced by the suffi-

cient conditions
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(ersr) t/2
2

0 (4.104)
2t 8o34

lso12l 1-o

utilizing the results in (3.86) and (3.89), (4.103) and

(4.104) can be reexpressed âsr respectively,

f s f q_-_;->
r

o

3

)(f,)'
J_-7- z'
o

)
(r¿)

f
o

\.).L (4.r0s)
1-o 2

and

€s'l'z 2----:-- - 

-

f-2o I-d
(4.106)

where

t' A 
lf"-r )yrtr, + det gl"' (4.107a)

(4.107b)

(4.J.07c)

(4.r07d)

(4. t07e )

-t ,andn
stabi I i ty

in a cas-

and that

fz A

lC"-r)trrtr, + n det gl''t

f_
J

A (n-l)errgZl+ndetQ r/2

nq
A

I fn- r )lrrtr, + det glt''

f A
rQzrQ tz - qtt9zz

o

(The gi; are elements of the matrix O = K(U - NTx)I-I

is the coefficient in N. ) It is sufficient for
that the parameters of each second-order section

cade reaLization satisfy either ( 4.105 ) or ( 4. I06 )

signal quantizations satisfy (4.77).
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4.4.2 Fourth-Order Sections

For the purposes of reference, the form of the

matrix corresponding to the passive adaptor of
order section is reshown below.

conduc tance

the fourth-

g1 Eot2

Eot2 92
q

gs

n

0

0

0

E¡

oèo4 5

8o46

0

8o4 5

g5

8o56

0
G

(4.108 )

0
oÞ o46

8o56

oè6

rn order to guarantee the stability of a cascade reaLization
employing such a filter section, the constraints specified
by (4.70) , (4.72) , ( 4.89 ) , and (4.94 ) must arl be satisfied.
util izing the same approach introduced in the previous sub-

section, these constraints can be replaced (choosing tr= r/3
and \2= 2/3) with the sufficient conditions

(srsr) r/z

lsorz I

3

--I-d
(4.109a)

I zo s, )r/2 6
oè4 gtr

J>¿,

ls o¿.s Ileo¿s I

.)

lso+sl
>4 ) (4.10eb)

I 0

(sosu) r/2

lso¿o I

, j , to 
> !. 8o >.i

r-o"2 lgo¿ol 
-a' 

lgo¿al 'a
( 4.109c )

(susu)
6

gs

I 
soso I

r/2

1 - 7' lu*J
>_4 )

c.o-
:..._.-.-¿4
lsosel

( 4. 10ed )
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4.4.3 Fifth-Order Filters Based on the Jaumann Structure

The form of the

passive adaptor

shown below.

port reference matrix associated with the

of this special fifth-order filter is as

diag[ gy Ez, 83, g¿ ] q

oõ5

ooo56

0

8o56

oè6

0

0

ç.
9. 0

(4.110 )

g7

rn order to guarantee the stability of the digitar firter,
the constraints specified by (4.97) must be satisfied. The

constraints (4.70) and (4.72) can be ignored due to the di-
agonal nature or gn. using the same approach taken with re-
spect to the second-order section yields the result that
(4.97) can be replaced with the sufficient conditions

(eusu) r/2
3

g5
>2

s6

lsos6l
> 2 (4.111)

I so56 I

oEr utilizing
I 2 lsorulü

(8.4), vrith

f_f56
f

o

(f- ))
2 )

( ro)

f
o

3

2
t f >2 (4.rr2)

I 0 o

where

fs n 
lo, 

(ro * rr) - ezeq
1/2 (4.113i)

^ t\t_ =ô

^^I-

I 
oro,

1/2 (4.113b)

r/z
( 4.113c )o 9z9q

and the

pendix B

g1 are defined, with respect to the matrix Q, in Ap-



Chapter V

DESIGN OF MINIMAL !{AVE DIGITAL FILTERS

In Chapter V hre present a procedure, based on the concepts

developed in chapters rrr and rV, for the design of minimal

wD filters. The alternatives regarding the susequent hard-

\4/are implementation of these filters are then discussed.

Lastry, three examples that illustrate the design method are

presented.

5.1 DESIGN PROCEDURE

The following steps describe a procedure for the design of
minimal reciprocal WD filters.

1. Map specifications given in the z-domain to specifi-
cations in the s-domain via equation (2.11).

2. Solve the approximation problem (usual_ly with the aid

of filter tables) to determine an analog transfer
function Hu(s)= F(s) /G(s) that meets or exceeds spec-

ifications. of course, Ha(s) must be reaLizable as a

reciprocal network.

3. So1ve the Feldtkeller equation (i.e. (3.2) ) for the

polynomial H( s ).
4. Construct a normalized two-port scattering matrix

S ( s ) having the canonic form shown in ( 3.1 ) . Derive

114
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the transfer matrix T(s) from S(s), and factor T(s)

as T(s)=It(s)!Z(s)...!*{s) in order to obtain a WD

cascade realization utilizing the basic adaptors in-

troduced in Chapter III.

5. Obtain the two-port scattering matrices Sr(s),

i=1 r 2, . . . ,R corresponding to the transfer matrices

T. (s), i=l,2,...,R and utilize the DWD algorithm to_I

derive a nominal WD section realization for each

two-port description S, ( s ) . Each section will be

based on an n-port adaptor described by a constant

scattering matrix $ t ot equivalently by \, q, and

t. The matrix % satisfies the relation qot%go=%

where G^ is diagonal and positive definite.
-o

6. Redefine the reference conductances such that at each

port-interconnection of two adaptors, one adaptor has

that port reflection-free. Each redetermined adaptor

is described by a new scattering matrix $r or alter-

natively, by the submatrices Nor 5', and P. The ma-

trix S t satisfies the relation (S t)TG rS r=G I where
-9 '--O -O -O --O

G^r is diagonal and positive definite.
-o

7. Determine quantized, stable designs according to the

following steps:

a) Quantize the entries in \ and Korof each adaptor

to a given precision to obtain a quantized adaptor

described by q. (Note that the reflection-free
property must be maintained in the quantized adap-
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tor. ) The matrix S satisfies the relation STGS=G

where I is positive definite and diagonaJ- or

symmetric and near-diagonal.

b) For those adaptors with nondiagonal Gr, determine

the value of the passivity multiplier cr that sat-

isfies the appropríate stability criteria (Section

4.4).

c) Passify, as necessary, the pseudolossless adaptors

to obtain pseudopassive adaptors ( described by

S-=oS ) .
-t

d ) Check the f requency response of the resul-tant VüD

cascade realization to ensure specifications are

met. If specifications are not satisfied, return

to step (a) and increase the precision of quanti-

zations.

A possible alternative to step (7) is as follows:

a) Choose for each adaptor that is noncanonic in mul-

tipliers, a reasonabl-e value of the passivity mul-

tiplier o. (The parameter o is normally chosen to

be very close to unity in value in order to mini-

mize any adverse effects on the frequency re-

sponse. )

b) Quantize the entries in \ and 5' of each adap-

tor. For those adaptors with a subsequently non-

diagonal G, quantize to a precision that ensures

the appropriate stability criteria are satisfied.
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c) Passify, as necessary, the pseudolossless adaptors

to obtain pseudopassive adaptors.

d) Check the frequency response of the resul_tant WD

, cascade realization to ensure specifications are

met. If the specifications are not satisfied, ei-
ther return to step (b) and increase the precision

of the quantizations or return to step (a) and

choose a value of s that is cl-oser to unity in
value.

9. Scale the quantized filter structure in order to max-

imize the signal-to-noise ratio at the quantization

points while keeping the probability of overflow

within acceptable bounds [5,6]. Scaling in WD fiI-
ters is achieved by inserting the digitized equiva-

lents of tv/o-port transformers (with turns ratio n/I
where n is a power of 2) into the signal-flow graph

l25l .

10. Implement the filtering algorithm on a digital com-

puter or as dedicated hardware. Signal quantizations

must conform to the constraints specified by (4.77).

For example, a quantization characteristic that im-

plements magnitude truncation of underflow bits and

saturation arithmetic for overflows is suitable.
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5.2 IMPLEMENTATION

The basic arithmetic operation intrinsic to digitar filter-
ing algorithms is an inner product of the form

v
n
T

i=1
a. x.

11 (s.1)

where *i is an input or intermediate signar variable, ai
represents a coefficient of the filter, and y is an output

or another intermediate signal variabre. rmplementation of

the inner product may be achieved by two basic approaches.

The most straightforward approach is to use a digital multi-
prier or adder to direct].y imprement every murtiplication or

addition operation performed within ( 5.1 ) . Alternatively,
distributed arithmetic techniques can be applied. one such

technique, developed independently by Crosier et al. t5S1

and Pered and Liu [56], utilizes memory devices to record

precalcurated partial products, eliminating the need tor ac-

tual hardware multipliers. Another approach employing dis-
tributed arithmetic is that developed by Moon and Martens

1571. This technique implements an inner product using only

adders, inverters and shifters.
Consider an arbitrary pseudopassive n-port adaptor de-

scribed by So and designed via the procedures described ear-

Iier. The adaptor must be realized as a device that per-

forms the arithmetic operation

(5.2)
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The above operation can be expressed as the following system

of inner products:

ab
n
IS

i=1 Pij l \,2,, .. ,n (s.3)
J I

where b is the reflected lvave variable at the jth port and

incident wave variable at the ith port. To imple-

system in (5.3) requires as many as n2 digital mul-

t¡ 9e is represented in the familiar form

ui is the

ment the

tipliers.

c+ (s.4)

then the required number of digital multipliers can be re-
duced to a value that is equal to the number of entries in

Kt plus twice the number of entries in N that are not +1r-l_,

or 0, plus the number of passivity multipliers (usually n),

subtract the number of reflection-free ports (usually 1).

In general, this number of multipliers is more than twice as

great as the canonic number. Accordingly, WD filters based

on pseudopassive adaptors of the type discussed will not be

cost-competitive with other filter structures if implementa-

tions utilize discrete multipliers.
Alternatively, distributed arithmetic techniques can be

used Lo impJ-ement the n inner products described in (5.3).
That t,.ID filters can be implemented with distributed arith-
metic is weII known t57-601. Moreover, it is recognized

that this form of implementation can compare favorabry with

canonic multiplier based designs [57r60].
Utilizing the relation S_"=oS, rewrite (5.3) as

l

FMFP!_0 sPT
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In order that the system in (5.5) be implementable, it is
necessary that the coefficients otij be finite-word-length
binary numbers. However, it is not necessary that o and the

S, - be individually finite-word-length binary. We may ex-1l
ploit this property to keep the wordlength of the products

oS. at a minimum. This is best illustrated with an exam-1l
pre.

The vafue of o is generally close to unity. consider the

case where a value for o of I27/I28 is appropriate. The ma-

trix g has the familiar decomposition nta g I p where the

only entries in I and I that are not 0, *1, or -1 are re-
stricted to the submatrices N and 5. Assume the entries of

I have been quantized to be finite-word-J_ength binary and

the entries of K have been approximated to be rational num-

bers with a denominator of 2m.I27, where m is an integer.
It follows that S has the form

c
"B

!_ r27 s
binary numbers. The matrix Sp

(s.6)

j
1

a0
n

b. - xJ i=l
S I,2r...,n

I20

(s.5)

(s.7)

1

where the entries of

is given by

are

to
Iw

and clearly, 9n will have binary entries. Furthermore, it
should be crear that the wordlength of these entries will in
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if r and

be shorter,

the S are

I2I
utilizing this quantization scheme, than

individually finite-word-length binary.ij

5.3 TLLUSTRÀTIVE EXAMPTES

!,ùe shall demonstrate the design procedure developed in Sec-

tion 5.1 with the aid of several examples.

5.3. I First Example

Consider the following attenuation scheme:

0.5d8 > A(t¡T) > -0.5d8 for oT e I 0,r/10 r l
(5.8)

A(r¡T) > 80. OdB for oT e ¡ Sr/10,n r l

where A(ulT ) is the attenuation in dB, o is the digital f re-
quency in r/s, and T is the sampling period. A fifth-order
digital filter meeting these specifications is implemented

in the Hewlett-Packard Model 35824 spectrum analyzer as a

decimation f ilter 1.621 . Vle wish to design a WD filter by

the procedure of Section 5.1 to satisfy these same specifi-
cations.

The tolerance scheme described by (5.8) maps via (2.11)

into the following scheme in the analog domain:

0.5d8 > A(0) > -0.5d8 for 0 e [ 0,0.15838 r/s )
(s.e)

A(0) > 80. O'iB for 0 e [ 0.50953 ,- r/s ]

where ô is the analog frequency in r/s. A standard fifth-
order C0525Ig elliptic characteristic [45], frequency scaled

by the factor 0.16589, will satisfy the specifications in
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is given by

r22

frequency-normalized analog transfer function

2H (s) F (s)/G (s) (s.10 )a

where

F (s) (
) + 26.33s61 ) (

2 + 10.37590 )S s

G (s) = 1053.536 s5 + 1443.012 s4 + 2323,645 s3

+ 1752.470 s2 + 1027.4I0 s + 273.2556

transfer function ís in fact Hu(s/0.16589), how-

more convenient to frequency scale real-izations

step. The Feldtkeller equation is solved to

The desired

ever,

ata
yield

H(s)

it is

later

1053.536 s 5 + 32.00857 s
4 + 1335.894 s

3

2
(s.11)

+ 23.97851 s + 343.3522 s

The normalized two-port scattering matrix S(s) and thus

the transfer matrix T(s) follow directly from the polynomi-

als F(s), H(s), and G(s). That the matrix S(s) may be re-

al-ized as a cascade of three subnetworks is evident from the

factorization

F [s) r, (s) n, (s) Fs (s ) (5.12)

where

2 + 26.33561 , r, (s) 1 F (s)=s 2 + 10.37590n, (s) S
3

n ? nz 1 2
1 3

and

n (s.13)
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The polynomial Fi(s) and the section degree ri specify the

transmission zeros of the ith section. The transfer matrix

T(s) is factored, consistent with (5.12) and (5.I3), as

r(s) T., (s) T" (s) T, (s )
-f -L -J

(s.14 )

where

(s.14)

T.(s) describes the i_I

yields

rh section. One solution to

Hi (s ) = 25 .06908 s
2 + 2.102403 s

G1(s) = 25,08902 s
2 + 35.68219 s + 26.33561

H2 (s) 1. 151566 s

(s.ls)
G2 (s) 1.151566 s + 1

H3(s) = -$.09247I s
2

+ 0. 2607053 s

Gg(s) = 9,1472961 s
2 +13.00535s+10.37590

The section scattering matrices Si(s)r i=Ir2,3 are deter-
mined directry from the polynomiars Fi(s), Hi(s) r and Gr(s).

The DWD algorithm can be used at this point to derive nomi-

nal wD realizations based on the anarog networks represented

by the S., (s). Frequency-scaJ-ed adaptor designs2 (ahua con-_I

form with the basic structures described in Section 3.7) are

presented below.

If a reference conductance G corresponds to a port in the
reference filter that connects an inductor, frequency
scaling by the factor k* is achieved by scaling G as Gk..
Simifaifyl if c correspdnds to a port cbnnectin! a .upu"I-
tor, c is scaled as C/kf .

2
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Adap tor 1

Il
1

=[
q u.

-¿N
--o

P

50.1580 u" q

G--o

K*-o

- G* + G" = diag[ 1_L _L 1 0. 1 156209, 0. 0031808 l

I G + N c^ NT--t -{-J¿{ )-1 N G.--O --:J¿

The polarity matrix for the VID section realization is
I=diag[-lr1], implying that a delay in series with an in-
verter is connected at port 3 and a delay is connected at
port 4 of the adaptor.

Adaptor ?

N--o [1 1] T o = [n
Ls il

(r=Lr+
-{ -t

Gn = diag[ 1 1 0.07202s8 l

K - lG +N G-:O . iat :jO 
.1,

N
T _t' t'¡ G^*fr _JL--o

The polarity matrix for the WD section realization is
I=diag [-1 ] .

Ad ap tor _1

[]

I
r=[

0

ilN-{

G
--o

0. 0s482s u._L

= G- í G" = diag[ 1,
_L _L

1 0.1297453, 8.288391 l

( = lG +N G{ .:at fu:g ¡¡T
-1I . N G^' <-y"--o
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The polarity matrix for the section realization is
I=diag[-1rI].

Reference conductances must be redefined in order to en-

sure that at each port-interconnection of adaptors, one

adaptor has that port reflection-free. Choosing the refer-
ence conductances such that port 1 of adaptor 2 and port 1

of adaptor 3 are reflection-free, we obtain new adaptor re-
alizations described by

Adaptor 1.

I

K--o

0. 1 00703

0.01073s

-0.001965

0. 019548

G = diag [ 1, 0.A7ß928, 0.1156209, 0.0031808 ]-o

Adaptor 2.

I

K
-o

0.5

0.004394

G = diag[ 0.0713928, 8.722602, 0,0720258 I-{

Ad aptor 3

I

K-o

0.003946 0.4960s4

0.110370 0.I42s87

= diag | 8.122602, I, 0.1297453, 8.28839I l
I

G{
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where the submatrices \ and 3 remain for each adaptorr üñ-

changed from before.

The nominal WD realization follows directly from the

above adaptor descriptions and has the structure represented

in Fig. 5.1. The final realization based on pseudopassive

adaptors will have the structure shown in Fig.5.2. The pas-

sivity multipJ-iers present in the output (sink) branches of
the pseudopassive filter simply contribute a gain factor and

may be deleted. This leaves 6 passivity multipliers that
must be realized. With the ll multipliers required to real-
ize the pseudolossl-ess adaptors, a total of 17 multipliers
are necessary to implement the structure in Fig 5.2. This

is more than twice as many as the canonic number. A multi-
plier/adder implementation is clearly not economical. Ac-

cordingly, a practical hardware implementation will employ

distributed arithmetic techniques.

-t -1

a=0

Figure 5.1: Pseudolossless VID filter realization.
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s1ls10

s/s1o

- I/s10

s/ zss
CT 2ss I 2s6

I27

(5.16)

ct

0 0

a=0

0

Figure 5.2t Pseudopassive WD filter realization.

For this example, quantization of the coefficients was

achieved with the aid of a simple optimization algorithm.

The algorithm follows the procedure suggested in step B of

Section 5.1 and employs an exhaustive search about each nom-

inal coefficient value in order to obtain filter coeffi-

cients with short wordlength. The following results were

obtained.

Adaptor T

0

I
1 1

t K

1 50

Let us verify that this value of o satisfies one of the

stability criteria given in Section 4.4, that is, either
(4.105) or (4.106). The matrix 0 for this adaptor is given

by

Q=
0. 113785

I.341348

0.002188

2.006552
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It follows that

f
3

f
4 .t-r- 35.23 <

.255 - 2t-ì\2s6)
= 384.75

o I

f,' f ) 2

f
o

Vle see that the

that in ( 4.105 )

473.26 > = 256.50
i -255 _ 2

_ f-ì\256)

(4.106 )

adaptor

condition in is satisfied although

scattering matrix fol-is not. The

Lows from N, K, P, and o, i. e

20s -1 51 t

10

9

244

-15 -250 5 (s.17 )

44s 4 -199

-290 249 301

The reflected wave variable bt corresponding to this
adaptor also represents an output signal of the complete

filter. Since this particular output is not generalJ-y uti-
lized, it is not necessary that we implement the inner prod-

uct associated with row 1 of S^.

Adaptor 2.

N=[1 i] T !
r/2

r/2s6
t

Note that ktt =L/2r âs

adaptor

required by the refLection-free

scattering matrix fol-Iows from

con-

straint.
and P, i

The I K

ô
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0 -128

I27

727

r28

å 2
-7

1 I (s. rB )

I27 1

Ada tor 3

I 1

r/ 16

r/zss

32/ zss

2s3/ sro

40 / 2s5I ) K CI, zss / 2s6
1

Note that kIt* krr=L/2r âs required by the reflection-free

constraint. Let us verify that either ( 4.105 ) or ( 4. I06 ) is

satisfied for this adaptor. The matrix Q is given by

0.018400 L028283
( 5.19 )a

Evaluating the terms

0. 1 51133 0.5r7t72

in (4.105) and ( 4. I06 ) yields
2

f. f
4 3

2
(rs)

f
o

(r+ )

f
o

44r.25 > 59.52 > 2 327r.29 > 2
f

1
.2ss,2tñ)o

f t f 
z

f
o

389.44 >
2

1
,255 - 2
\2s6)

Clearly' the

For this

resents the

stability conditions are satisfied.

adaptor, the incident wave variable u2 also rep-

input signal (to the comPlete filter) that is

u2=0, the valuesnormally set to

of the elements

and can be set

follows:

be identicalJ-Y zeto. Given

in the second column of Sp are irrelevant

to zero. The remaining entries in Sp are as
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6

253

80

333

3

130

( 5.20 )
e+ 2-8

-r44 0 64

111 0 -189

246 0

The pseudopassive WD filter based on the adaptors de-

scribed by (5.17), (5.18), and (5.20) exhibits an attenua-

tion characteristic with a minimum attenuation of I.791 dB.

Murtiplying the filter output by an additional- factor of 5/4

yields the characteristic depicted in Fig. 5.3. Clearly
this characteristic satisfies the specifications. simula-

tions of this filter under finite-word-length and zero-input

conditions showed no parasitic oscillations as expected.

5.3.2 Second Example

Interpolation is the process by which the sampling rate of a

discrete-time signal is increased without any conversion to

a continuous-time waveform. rntegral to an interpolater is
a lowpass filter, necessary for filtering out the baseband.

An example of a tolerance scheme such a filter might need to
satisfy in the passband is given in Fig. 5.4 t631. In the

stopband the requirement is that

A(t¡tT) > 40.0d8 for oT e | 0.I4375n, n r l

We wish to design a WD filter with an attenuation character-
istic that satisfies these specifications when normalized to
have 0 dB of attenuation at oT = tr /40 r.
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t STOPBAND ATTENUATION

A/dB

80. 0

60.0

40. 0

20 .0

0

0 Tt/S 2¡/S 3r/5 4r/S T

ûJT----+

A/dB PASSBAND AI"|ENUATION

0.8

0.6

0.4

0.2

0

-0 .2

Figure 5.3: Stop- and passband attenuation for the first
example.

n /40

t¡T-->

r,/20 3r/40 .n/IO
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A/ dR

4.0

3.0

2.0

i.0

0 OT
It /40 It /20 31t / 40 It/10 5r/40

-1.0

Fi gure 5.4t Passband tolerance scheme.

A standard fifth-order C052548 elliptic characteristic

[45], frequency scaled by the factor 0.1685, will map (under

the bilinear z-transformation) to a Suitable discrete-time

system function. The frequency-normalized analog transfer

function is F(s)/G(s), where

)?F(s) = ( s'+ 4.120337 ) ( s'* 1.936578 )

c(s) 20.7I83I s5 * 27.97496 s4 +

+ 37.12756 s2 +

47.34040 s

23.84069 s

3 (s.21)

+ 7.979355

Solvi ng

H(s) =

the Feldtkeller equation yields the polynomial

20.7I83L s5 * 0 .4977016 s4 * 28,48388 s

+ 0.4076646

3

s? * 8. 516512 s (5 .22)

We wish to realize the V'ID design as a cascade

networks. Accordingly, lre f actori ze F (s ) as

of three sub-

F (s) r, (s) F2 (s) FJ (s) (s.23 )
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vJhere

r, (s) 2
4. t20337 n, (s) 1 , n=(s) 2

s + S + 1.936578

Furthermore, let

n
1

2 n 1 n 2 (5.24)t 3

Factorization of the transfer matrix yields

3.436532 s
aL + 0.01879064 sH (s)

1

G1 (s) 3.579072 s2 * 4 610167 s + 4.120337

H2 (s) -r.t72634 s

(s. 2s )

Gr(s)=-1.172634s-1

Hr(s) = 1.06066g s2 * 0.21'27835 s

F r^\ - -1. 457744 s2 - 1.348403 s - I.936578u3!sJ

The DWD argorithm is then appried to determine wD section

realizaLions for each sr(s) r í=L,2,3. After redefinition of
reference conductances to ensure port 2 of adaptor I and

port I of adaptor 3 are ref lection-f ree r Ìá/€ obtain the f o1-

Iowing nominal frequency-scaled adaptor designs:

Adaptor I

1 I
r=[

g

u" ilN
--o 9r 7.01s60

I

K
-o

0. I 13330

-0. 000735

0. 060428

0.07r37s
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u-
--o diag [ 1, 7 .605779, 0.1499855, 0.1827478 )

I = diag[ -1, 1 ]

Adaptor 2

N-.o 1 l lr P

[; il
I

K
--o

0. 009209

0.015888

G
--o

L

diag [ 7 .605779, 4.408466, 0.0718468 ]

diag[ -1 ]

Adaptor f

N
--o

1 I
o =fn

Ls il1 0.397076

I

K
--o =[

-0.020847

0. i 19639

0 . s20847

0 .7 00197

G-o

å

diag [ 4.408466, I, 0.2873439, 13.16i16 l

diag[ -1, 1 ]

The nominal WD realization follows from the above adaptor

designs and has a structure similar to that shown in fig.
5.1, although in this case, port 2 of adaptor 1 (instead of
port 1 of adaptor 2) is reflection-free. QuanLization of
the nominal coefficients was again achieved with the aid of

the optimization algorithm mentioned earlier. The quantized

adaptor designs are described below.
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Adaptor I

Il
I 7 /63

0

7/126

s/126
N K a = 63/64

7

For this adaptor, the quantízed coefficients have by chance

satisfied the dependency relation ( 3. B3 ) . Consequently, the

reference conductance matrix I is diagonal and conditions

( 4. I05 ) and ( 4.106 ) are automatically satisfied. From N, K,

Pt and 0 hre obtain

42 -6s 14 7

c-1-6
:p- L

-9 0 0 I
(5.26)

96 0 -49 16

42 378 14 7

As discussed earl-ier, the output

filter section is not generally

inner product associated with row

ed.

signal bt of this first

utilized. Therefore, the

1 of S- can be disregard-

Adaptor 2

N [1 1] T I
r/r28

s/2s6

The adaptor scattering matrix S is given by

r26 -) 2

S -5 I23 52
-7

249 249 -r2l

(5.27)
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Adaptor 3

11 -r / r02

13/ r02

26/sr

9r/ r02
N K a = 255/256t ,/s

The matrix Q associated with this adaptor is calculated to
be

q=[ 0.019s20

0.212289

r,722998

3.816268
(s.28 )

Evaluating the terms in ( 4.105 ) and ( 4.106 ) yields

f s f q

fo
(f )

2 (r q)
436.68 > 3 7

45.99 > 2, 4146.57 > 2

1
,255_2
\256)

f f
o o

f
1

f
2 2

f 2rr.26 <

o 1
.255 - 2
t256)

As required,

The adaptor

one of the stability conditions is satisfied.
scattering matrix is given by

00 -s 260

-8 520

-26s

1s1

0

0

0

65 455
c+ 2 (5.2e )

-195 715

I 96

where as discussed previously, the entries of the second

cofumn in S^ are irrelevant under the condition a^=0 and can
-P 

-2

be set to zero. The WD filter based on the adaptors speci-

fied by (5.26) , (5.27 ) and (5.29 ) exhibits the magnitude-

normalized attenuation characteristic depicted in Fig. 5.5.
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t STOPBAND ATTENUATION

A/dB

50.0

40. 0

30. 0

/ // ./ / /.,/,/ / ./,/ ./ ./ // ./',/ /,/

20 .0

10. 0

0
0 It/4 r/2 3tr/4 il

r¡T --+

î
A/dB PASSBAND ATTENUATION

3.2

2.4

1.6

0.8

0

Figure 5.5: Stop- and passband attenuation for the second
example.

20 3r / 40 r /I0 Str/ 40r¡/40
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Clearly the specifications have been satisfied. Simulations

of the filter showed no zero-input parasitic oscirlations as

expected.

5.3.3 Third Example

Let us design another lowpass filter to meet the following

specif ications [64]:
0.3 dB > A(crlT) > 0 dB for r¡T e [ 0, 0.2I25r r ]

A(r¡T) > 32.15 dB for t¡T e | 0.2875n, 1T r I 
( 5' 30 )

An interpolater that increases the sampling rate by a factor
of 4 will utilize a filter of this type. An appropriate an-

alog response is a fifth-order C051549 elliptic characteris-
tic [45], frequency Scaled by the factor 0.36677. The fre-
quency-normalized analog transfer function is F(s)/G(s),

where

F(s) = s4 * 5.827753 ,2 * 7,411629

5 4 3 ( 5.3r )c (s) 1 1. 07190 s + 18.88720 s + 31.34882 s

2+ 28.52800 s + 18.91279 s + 7.411629

Solving the Feldtkeller equation yields 3

H(s) = 11.07190 s5 + 0.0005884 s4 + 15.28445 3

+ 0.00045t0 s2 + 4.604570 s (5.32)

A network with an odd order ellipLic characteristic has
the property H(s)=-oH(-s). CIearIy, this condition is not
strictly satisfied in (5.11), (5.22), or (5.32). This is
due to initial smalI errors in the coefficients of F(s)
and c(s).

3
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VtD realization to be based on a single Jaumann

nominal frequency-scaled adaptor design, ob-

the DWD algorithm, is given below.

adaptor. A

tained with

-Ll
-1 00

Ie
t=Lu ïl-1 10

1 0 I

K--o

0. 087896

-0.087896

-0.150157

IJ

0.031897

- 0. 031897

0.799685

0

0.10s143

0.105143

0

0.709809

G-{

T

diag [ 1, 1, 0.0491078, 0.1482181, 0.1155896, 1.315835, 0.2876522 l

diag[ -1, -1, -1, 1, 1 ]

Quantization of the coefficients was achieved in the

straightforward manner suggested in step B of the design

procedure in Section 5.1. The quantized adaptor design is
described by -N=N^, K, P, and 0, where

K
1FI

45

-45

-77

0

16

-16

409

0

54

54

0

363

srr / sr2

Let us

bility
verify that the given

criteria in ( 4.112) .

value of o' satisfies the sta-

For this adaptor design,
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Q=

0. 1 15578

-0.115578

-0.002513

0

0.28r407

-0.281407

5.841708

0

(4.Ir2)

3

1 .349997

r.349997

0

9 ,07 4986

( s.33 )

Evaluating the terms in yi elds

f fq 6 = 790.53 >f = 768.75
o 1

-5r1f-\st2
')

)"

t(f-)-

f
o

(ro) 2

268.84 > 2, f 2324.60 > 2

o

as required. The adaptor scattering matrix is described by

28I

I4

-664

-726

778

TT4

80

14 -32 - 108

- 108

0

-2r5

0

0

80

90 108

108

0

726

0

0

43r

28L 32 -90 -32

664 -307 - 1s4 818

.9p = 2
-9

-7 26 0 0 0 (s.34 )

-778 -64 -s37 64

-I74 r40 26 37r

80 0 0 0

The reflected wave variable bl represents a normally un-

used output of the WD filter and consequently the inner

produc.: associated with row l- of Sp can be disregarded.

Furthermorêr given u2=0, the entries in the second column of

S- can be set to zeto. The filter attenuation characteris-
-v
tic ( normal ized to be 0dB at crlT=O ) satisf ies the speci f ica-
tions as shown in Fi9.5.6. Simulations revealed no parasi-

tic oscillations under zero-input conditions.
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Figure 5.6: Stop- and passband attenuation for the third
example



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis has proposed methods for the design of minimal

reciprocal WD filters that suppress all types of zero-input

parasitic oscillations. First, the DWD algorithm was devel-

oped to facilitate the synthesis of minimal WD realizaLions

based on reciprocal pseudolossless n-port adaptors. This

algorithm determines nominal designs directly from transfer

function specifications and thus provides an alternative to

conventional synthesis procedures which utilize an analog

reference filter as a starting point. An advantage of the

DWD algorithm is that it is amenable to implementation on a

digital computer and therefore can be a useful design tool.

The problem of guaranteeing the stability of WD filters
under finite-word-length conditions was then considered. It

was demonstrated that after quantization of coefficients in

I and K, the pseudolossless WD realization does not usually

retain a diagonal reference conductance matrix. As a re-

sult, parasitic oscillations are no longer necessarily elim-

inated by applying magnitucie truncation (or any other compa-

rably simple quantization scheme) at the delays and adaptor

interconnections. A strictly pseudopassive n-port adaptor

structure was then proposed; and conditions for guaranteeing

r42
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the stabitity of filters utilizing these adaptors $rere de-

rived. These conditions include restrictions on the entries

of the port conductance matrix and constraints on the signal

quantization characteristic (magnitude truncation is a suit-

able scheme). Explicit stability formulae vrere developed

for pseudopassive adaptor structures that can realize sec-

ond-order and symmetric fifth-order reciprocal filter sec-

tions. Stability formulae for an adaptor to real-ize recip-

rocal fourth-order sections were partially developed.

The solution for the second-order section aIlows us to

determine stable minimal WD cascade networks that can close-

ly realize the important class of transfer functions that

includes the Butterworth, Chebyshev' inverse Chebyshevr and

elliptic characteristics. In contrast, the procedures de-

veloped by Fettweis 126l and Meerkötter l27l for obtaining

minimal WD networks that realize finite attenuation poIes,

yield designs for which stability is not guaranteed by the

usual methods of signal quantization. Other methods of ob-

taining stable minimal WD filters have been proposed by Ash-

ley l2}l, and Martens and Lê t311. However, these require

more complicated signal quantization schemes which can also

lead to degradation of the filter performance. Thus' the

design procedure developed within this thesis does have ad-

vantages. The approach developed recently by Martens and

Jarmasz 1,321 also yields minimal wD realizations that are

guaranteed stable when quantizers employ magnitude trunca-

tion.
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A disadvantage of our proposed design method is the

necessity of distributed arithmetic techniques for implemen-

tations to be economical. Moreover, distributed arithmetic

techniques utilizing stored products [55r56] are not readily

applied to WD cascade realízations' which cannot generally

be pipelined t601. However, the hardware :'tructure devel-

oped by Moon and Martens t57l is generally applicable and

preliminary indications are that implementations can be rea-

sonably economical. The determination of coefficient quan-

tization schemes that are tailored towards reducing the com-

plexity of subsequent distributed arithmetic implementations

is an area that requires more investigation.
Another disadvantage of this design method is that the

introduction of the passivity multipliers invariably causes

some (deterministic) degradation in the filter frequency re-

sponse. One possible approach to this problem is to predis-

tort the nominal realization to compensate for the effects
caused by the subsequent introduction of the passivity mul-

tipliers. Some success has already been obtained with this

method.

The basic strategy utilized within this thesis to obtain

stable digital filters is not restricted to WD realízaLions.

Preliminary studies have indicated that the same approach

can be applied to real izíng stable single-input-output

state-variable digital filters of arbitrary order. Whether

stable state-variable cascade (in the network sense) reali-
zations can be determined, warrants further research.



Appendix A

DECO¡4POSITION OF SELF-INVERSE }'IATRICES

In this appendix hte demonstrate that a self-inverse, real,

constant matrix S can always be decomposed as

!_ P
T tutt (4. 1a )

where

'= [i
N

T

l
U 9_

!_U
v_ (A. lb )

-2K

and where I
of dimension

sents a unit

and E are real- matrices of dimension LxL (S is

t+1,), 3 is a permutation matrix, and g repre-

matrix of appropriate dimension. Furthermore,

achieving the decomposition is described.a method for

Cons ider the nontrivial case where S * tU. Let

{A+rq+u1 (A.2)

Then
+

ts
.2
)

+
S {c d u )

1z
1

T

( I

32

+ u )
1z ( !. U )

( - U ) = 0 1a.3)

will be singular. Accord-

matrix P and a nonsingular

This result demonstiates that S+

ingly, there exists a permutation

matrix V such that

I4s
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'=[i
N

T
+

U

PS (A.4)

Since P
T

P ul

++TPS V=PS P- PV (A.s )

Define

w= (LY.) 1 (A.6)

Then from (4.4) and (4.5)

PS +
P

T

[; fl ' [; ili
lr r \tz

I tt'l
[g' Yorl

\t \¿z (A.7 )

and

( ¿
+q

P
T ,, =lr] lgr a¿z ,[il 

'
\t \rl

[ï] '

!¿t N
T vrlLv' v'rf+

(A.B)

Given (4.3), it follows that

( Ld { f -
+ T

{
+)(s )-

+! ]
T 1a.e)PS P t P q

and utilizing 1a.7) and (A.B) in 1a.9)r wê obtain

til
[u' t' + W.. q] [g , v'rf 0 (A. t0 )

Since W is nonsingular,

this implies
t Ez1 W I has maximum row rank and

q 9_11f *a¿z

22
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ot¡

W"" U l,V"
_L 1 f (A.11)

Utilizing (4.1I) in (Ã'.7) yields

[i] '
lqq \t N

T

PS*PT
(A. 12 )

From (A.2) and (4.12),

S P
T (2PS*PT U P

['**1 
- u

L 2\,

2N
T q urrt'

'] .P
T

q
'U, rt'

g,

0 ït t
-U

ilti
ruT-l

;1.pT 1e. t3 )
'2Wn.

-¿r

CIearIy (4.13 )

submatrices t
then the txß

pspT.

is the result we require with {
and N are determined through (4.4)

submatrix in the lower left hand

= Izr' The

is
of

and 2K

corner



Appendix B

A SOLUTION FOR THE CONDUCTANCE MATRIX OF THE
JAUMANN ADAPTOR

Consider the general fifth-order Jaumann prototype network

introduced in Subsection 3.7.5. The adaptor scattering rep-

resentation is specified by

11 I

I

0

1

-1 1

I

0

Iqp=l
Lq îlN K ki¡ ) 4*3

0

0

where the e¡ntries of K have the property
kt,. -k2I k

L2
--k

22
krs k^-

¿5

k
33

0 k¿t 0 kq.z

-I
0

The matrix Q, wh

form

ereQ=K (u - Nrxl wiIl have the general

q1

-q1

q,4

0

q2 q3

q3

0

q6

Q=
-q2

q5

0

Consider equation ( 3. B0 ), that is

_1o=G'NÀ-t G^-4

for the situation

148

(8.1)
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oõ5 oèo
0

0G, = diagl g1, Er, gJ, g4 ] Gn =_L go

0

g6 (8.2)
0 g7

Equation (8.1) becomes

q1

-q1

q,4

0

q'2qj

q'2 qg

qso
0q6

(gs * s)/st
- (s, * E) /s,

vo/ s,

0

(go * s)/e,
- (su * s) /e,

Eo/Es

0

\/Et
sr/ s,

0

er/ eo

1e.3)

A solution to (8.3) is given by

oò2
1 (8. 4a )

oò1

oö3 q.2
(8.4b)

91 Q4*95

CtÞ4 q3
(B. 4c )

91 Q6

tÞ5 929+ql_ r_.'Qs 1e. 4d )
g1

96 1z9s (8. 4e )
91 9¿*Q5

o
7 q3 (8.4f)

oÞ1

oÞo 9z9q

91 94 + qs (8.4s )

I 9"clearly, (8.2) and (8.4) specify a solution for G = G* +



Appendix C

DERIVATION OF BOUNDS ON THE CONDUCTANCE MÀTRIX

In this appendix we consider the condition

TT
(1 + t)" w * - (x + e)-l¡(x + e) ) 0 (c.l)

where Y is

symmetric

ande=t

a pos i tive scalar , Vl is a 2x2 positive definite
rF

elements of x = [ xt *z]-matrix, and where

"I .zl t satisfy
egn( e, )

sgn(x, + er)

the

= - egn(x t ) (C. 2a )

(c.2b)sgn(x
1

)

Bounds on

ficient to

Y and the entries of W are derived which are suf-

Equat ion

guarantee that (C.1) holds for aII nonzero x.

(C.f) reduces to the following:

Tyxt{I ,t's"-Jse)o (c.3)

Let us decompose W as

q=5*% (C.4a )

where

5 - [*,.,.
L'

0 %=

[;,,
:'lt{

22
(c.4b)

Utilizing (C.4), (C.3) can be reexpressed
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as
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tt'lox*Yt'!" x-2x T W-e
-D-

TW-e*e l.l^e-u- {J-
TT)Zx ÍJ^e*e

-{J -
(c.5)

GÍven (C.2), it follows that

TT-x l.l-e)e l,I-e
-u- {- (c.6)

Therefore, ( C.5 ) is satisfied if

T
b l* v t' !o ¡ - lt 1o e ) (2:< + ")r 1o eY x (c.7 )

The term on the right hand side of (c.7) is maximum for ar-
bitrary x when we have

(2x + "r) e.
J

I^J

L2
> 0 f = lr2, j = 1r2 r + j (C.B)t

If (C.B) holds and (C.2) is true, then

x.
t_

*j 
"tt

< 0 L = Lr2 j = Lr2 i * j (c.e)

for which

(C.B) and

the left hand side of (C.7) is minimum. Clear1y,

(C.9) define the worst case for satisfying (C.7).

(C.B) and (C.9) hold, we expand (C.7) asAs sumi ng

Y wtt x
22
I + y vzz *z - zv l*r *z wrzl

+ l*, "rl "r, * l*r.rl ,r,
> -2l"r "z wtzl + 2 lx, .z v tzl * z l*z .r wrz 

I

the property

(c.10 )

Utilizing

2 2 r/2
11

r/2wrt *1 * Hzz *2 >2w l.I
22 l*,.

Ìre can replace (C.10) with the condition

*zl (c.11)
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l/2 l/2
2v{wrr wz2 ¡wtrl} l*r *zI * l*r "r lwir * l*, "rlr2

+ zle, "zwLzl > zl*, ", "rrl + zlx, "r rrzl (c.12 )

consider the speciat case I *rl = | 
*z | .

(C.12) is satisfied if
The condition in

L/2
zv {wr r I.I

L/2

22 lttrlÌ l*r xrl + l*, "rl{"r, - zlwrrl}

+ l*, "rlrr, * t1.,. ", "rrl ) 2lx, "z "rzl 1c.13)

If we further constrain

wrr)zlwrrl , ,zzr2lwrzl

then all the terms on the left hand side of

tive definite. ClearIy (C.13) is satisfied

( c.14 )

(C.13) are posi-

if

, L/2
2ytwrr l.I

L/ 2

22 l"rzl1 ¡*, *r l ) 2lx, .z wrz 
I

ott since (C.2)

L/2
,r { "r,.

ensures l*rlrl"rl' if

VJ

L/2

22 - ¡wrrlÌ l*, "rl > zl", ", "rrl ( c.17 )

For fx, "2vLzl * o,(C.17) can be expressed as

L/2 L/2
22v {wrr I{ - ¡wrr lÌ

>1 1c.18 )

1",., I

or equi-valently,

L/2
11

r{
> 1+v

'tl"t, I

!¡
L/2
22 (c.]e )
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For the alternate casel*rl-I*r-I , the identical resuLt is
obtained. Therefore we can

f or all- nonzero x if (C.14 )

tizations satisfy ( C.2 ) .

conclude that (C.I) is satisfied

and (C.19) hold and signal quan-
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