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ABSTRACT

This thesis investigates two important aspects of the design
of minimal wave digital filters, namely

1. the synthesis of nominal minimal wave digital filter

realizations, and

2. the suppression of zero-input parasitic oscillations

that could possibly occur in the filter as a result

of the finite~-word-length constraint.
Concerning the synthesis problem, an algorithm (termed the
direct wave digital (DWD) algorithm) is developed which de-
termines minimal reciprocal wave digital filter realizations
directly from transfer function specifications. These real-
izations are based on pseudolossless n-port adaptors with
the general scattering matrix representation introduced by
Martens and MeerkOtter. The adaptor coefficients are con-
tained in two submatrices, N and K. A method for wave digi-
tal cascadé synthesis via transfer matrix factorization and
the DWD algorithm is described.

The effects of quantizing the coefficients in N and K are
investigated. In particular, it is shown that coefficient
quantization generally yields an adaptor with a nondiagonal
port reference conductance matrix. It is further demon-

strated that the nondiagonal nature of the conductance ma-




trix makes the stability criteria developed for conventional
wave digital filters inapplicable. A strictly pseudopassive
adaptor structure is then proposed. This structure is de-
rived from the pseudolossless adaptor by simply placing pas-—
sivity multipliers in the reflected wave branches. Condi-
tions that are sufficient to guarantee nonlinear stability
are then given for specific pseudopassive adaptor structures
that can realize second-order, fourth-order and symmetric
fifth-order reciprocal filter sections.

A general procedure for the design of stable, minimal,
reciprocal wave digital filters 1is then formulated. The
hardware implementation of these designs is discussed. Fi-

nally, a number of illustrative design examples are present-

ed.
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Chapter I

INTRODUCTION

In the most general sense, filtering is the process by which
an input signal is reshaped or modified to yield an output
signal with more desirable characteristics. The require-
ments that a filter must satisfy may be specified in either
the time, or more typically, the frequency domain. In the
latter case, filters are often frequency-selective in that a
range of frequencies may be attenuated or removed from the
input signal, while other frequencies are passed or ampli-
fied.

Filtering may be performed on continuous-time or dis-
crete-time signals. A continuous-time signal 1is one in
which the independent variable, time, takes on a continuum
of values. A discrete-time signal on the other hand, is one
that is defined at discrete instants of time and according-
ly, may be viewed as a sequence of numbers, Signals for
which both time and amplitude are discrete are called digi-
tal signals. |

A filter that operates on digital signals is termed a di-
gital filter. More specifically, a digital filter is a com-
putational algorithm or process that transforms an input di-

gital signal or sequence of numbers into another sequence of
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numbers exhibiting the desired properties. The algorithm
may be recursive or nonrecursive in nature.

We may distinguish between two classes of digital fil-
ters, namely finite impulse response (FIR) and infinite im-
pulse response (IIR) filters. The IIR class of filters has
the greatest flexibility with respect to the locations of
attenuation poles and zeroes and hence, is often preferred
when attempting to meet stringent attenuation specifica-
tions. The design of IIR digital filters comprises four
general steps:

1. Solve the approximation problem to determine a system
function H(z) that characterizes a linear shift-in-
variant (LSI) discrete-time system satisfying the
given performance specifications.

2. Choose a specific structure for the LSI system that
realizes H(z).

3. Impose the finite~word-length constraint on the dis-
crete~-time filter,

4. Implement the digital filtering algorithm on a digi-
tal computer or with dedicated hardware components.

The approximation problem may be solved directly in the
z-domain or alternatively, one may obtain a solution in the
continuous-time domain that maps into an appropriate dis-
crete-time system description. This latter approach allows
one to utilize the highly advanced analog approximation pro-

cedures. There are a number of techniques for effecting a
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transformation between analog and discrete-time system de-
scriptions. These 1include the impulse-invariance, the
matched z-transform, and the bilinear z~transformation tech-
niques [1,2].

The choice of structure for the LSI discrete-—-time filter
that is to realize the desired system function is complicat-
ed by the subsequent finite-word-length restriction which
necessitates:

1. quantization or approximation of the nominal filter

parameters, and

2. quantization, for example by truncation or roundoff,

of the input, output, and intermediate signal quanti=-
ties within the filter structure.

The errors introduced by these modifications are termed
finite-word-length effects. The first modificaﬁion degrades
the frequency response of the digital filter while the sec-
ond modification introduces nonlinear error into the time
response, This latter error may, in some instances, be cor-
related such that parasitic oscillations (limit cycles) oc-
cur at thé filter output under zero-input conditions [3]. A
distinction is normally made between two types of parasitic
oscillations i.e. 1) overflow oscillations which can occur
as a result of errors introduced in modifying signals that
have exceeded the available range, and 2) granularity or un-
derflow oscillations which may result due to the roundoff or

truncation of signal underflow bits. Uncorrelated error in
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the time response 1is generally referred to as roundoff
noise., It is well known that the relative severity of fi-
nite-word-length effects is highly dependent on the filter
structure [4,5,6]. Clearly, it is desirable to choose fil-
ter structures that minimize these effects, keeping in mind
other considerations such as hardware costs and speed limi-
tations.

The most straightforward filter structures that have been
established for an arbitrary IIR system function are the di-
rect, forms DI and DII, parallel, and cascade digital struc-
tures. The DI and DII forms generally exhibit very poor
performance with respect to finite-word-length effects. More
practical are the parallel or cascade forms which derive,
respectively, from a partial fraction expansion or a fac-
toring of the system function into first and second-order
sections., A great deal of interest has been directed to-
wards developing second-order sections that suppress limit
cycles [7-11], and have low coefficient sensitivity and low
levels of roundoff noise [12-14].

An alterﬁate structure that has received considerable at-
tention is the wave digital filter, introduced by Fettweis
and developed by him and his co-workers [15-18]. The wave
digital filter is a high-order feedback structure thatc is
derived via the digitization of an analog reference filter.
The digitization process utilizes voltage scattering vari-

ables and the bilinear z-transformation. The reference fil-




5
ter is typically a resistively terminated LC ladder network,
although other classical networks, for example the symmetric
lattice or Jaumann structures [19,20], are suitable as pro-
totypes.

The wave digital (WD) structure has the advantages of a
low sensitivity of the system function to coefficient quan-
tizations and relatively 1low levels of roundoff noise
[21-24}. Furthermore, Fettweis and Meerkdétter [25] have dem-
onstrated, using the concepts of pseudopower and stored
pseudopower, that it is possible to suppress all types of
zero—input oscillations in WD filters derived from ladder or
symmetric lattice prototypes. Disadvantages include that
the WD structure requires more adders than conventional de-
signs employing a cascade or parallel connection of direct
form low-order sections. Also, WD filters derived from non-
minimal ladder reference filters will not have a canonic
(i.e. minimum ) number of delays. Elimination of the degen-
eracies within such filters yields structures that are can-
onic in delays, but for which suppression of limit cycles is
‘no longer eésily achieved [26-28].

The standard WD design procedure [17] utilizes basic
building blocks, called adaptors, that are interconnected to
yield the filter realization. An alternate structure devel-
oped by Martens and Meerk&tter [29], is one that employs a
single n-port adaptor. This method may be applied to real-

izing WD structures based on prototypes with arbitrary to-
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pology. In particular, L& [30], Martens and L& [31], Mar-
tens and Jarmasz [32], and Jarmasz [33] have applied this
technique to deriving limit cycle-free WD filters based on
minimal networks including the Brune and Darlington D net-
works.

This thesis proposes an alternate approach for the reali-
zation of minimal WD filters. In particular, a strictly
pseudopassive structure based on the n-port adaptor descrip-
tion of Martens and Meerkdtter 1is introduced. Sufficient
conditions are given for guaranteeing the complete suppres-
sion of zero-input limit cycles within this structure or a
cascade of such structures.

Chapter 11 serves to introduce the basic concepts intrin-
sic to the WD approach to digital filter design. A general
filter derivation is presented which utilizes the theory of
scattering variables, the concept of network partitioning
via reactance extraction, and the bilinear z-transformation.
Various WD filter configqurations, including the series-par-
allel adaptor method introduced by Fettweis, are briefly
considered }and the reflection-free property is discussed.
The n-port adaptor method of Martens and Meerkdtter is then
described followed by a discussion on the sensitivity, roun-
doff noise, and nonlinear stability properties of conven-
tional WD filters.

In Chapter III a method of determining nominal WD filter

designs 1is developed. First, we show that a particular
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scattering matrix synthesis technique may be used to derive
n-port adaptor realizations directly from transfer function

specifications., Each adaptor realization is described by a

constant scattering matrix S,. Methods of parameter reduc-
tion are then considered, including diagonal transformations
on §n and decomposition of S5 into a form specified by
smaller submatrices. These latter measures result in an n-
port adaptor description equivalent to that of Martens and
MeerkStter and specified in terms of two submatrices N and
K. An example is then presented to illustrate this design

algorithm which is termed the "direct wave digital" design

technique. Wave digital cascade synthesis via transfer ma-

trix factorization and the "direct wave digital" algorithm
is then discussed. Finally, the consequences of quantizing
coefficients in N and K are considered. 1In particular, we
find that the quantized adaptor will in general no longer
possess a diagonal reference conductance matrix. As a re-
sult, the nonlinear stability of the corresponding digital
filter can no longer be guaranteed by the usual methods.
Chapter IV introduces an alternate n-port adaptor struc-
ture based on the adaptor description of Martens and Meer-
kétter. Specifically, simple multipliers are placed in all
of the outgoing branches of such an adaptor, resulting in a
new strictly pseudopassive adaptor. Although the new struc-
ture retains the original nondiagonal reference conductance

matrix, we show that the pseudopassive nature of the adaptor




8
may be utilized to ensure complete stability in a corre-
sponding WD filter. Explicit stability criteria, including
pounds on the entries of the reference conductance matrix,
are then derived for a number of basic adaptors. These sta-
bility criteria ensure that a cascade of stable structures
will élso be stable.

Chapter V presents a WD filter design procedure based on
the methods developed in Chapters III and 1IV. The hardware
implementation of WD filtering algorithms 1is then briefly
discussed. The chapter concludes with a number of illustra-

tive examples.




Chapter II

INTRODUCTION TO WAVE DIGITAL FILTERS

The WD filter structure is derived such that it imitates in
the digital domain the properties of an analog reference
network. It follows that the excellent sensitivity proper-
ties that are known to exist for certain classes of analog
networks can be retained in a WD realization. 1In this chap-
ter, some of the basic concepts necessary for the under-
standing of the WD approach are reviewed. Brief descrip-
tions of the conventional design techniques are presented
and some of the special properties of WD filters are de-

scribed.

2.1 DERIVATION OF WAVE DIGITAL FILTERS

2,1.1 Scattering Variables

Traditionally, an analog system is characterized in terms of
the voltages and currents measured at the ports of the net-
work. An alternate representation of a multiport network is
one that is defined in terms of wave variables. If v(t) is
the voltage, and i(t) is the current associated with a port,
referenced as in Fig., 2.1, we define the instantaneous re-
flected and incident voltage waves, b(t) and a(t) respec-

tively, as
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b(t) = v(t) - Ri(t) (2.1a)

a(t)

i

v(t) + Ri(t) , (2.1b)
where R is an arbitrarily assigned port reference resis-

tance. Alternatively, in the complex frequency domain

B(s) = V(s) - RI(s) (2.2a)
A(s) = V(s) + RI(s) (2.2b)
where s is the complex frequency variable. ( In the future,

signal quantities may not be expressed explicitly as a func-
tion of an independent variable. Meanings should be clear
from context.)

The reference filter most commonly utilized in WD filter
design is the doubly terminated reactance two-port shown in
Fig. 2.2. Such networks exhibit maximum power transfer
(zero flat loss) at frequencies within the passband result-
ing in 1low passband sensitivity to element variations
[34,35]. Consider a scattering variable description of such

a two-port,

B(s) = S A(s) (2.3a)
where
B, (s) A (s) S..(s) S, .08
B(s) = | ! Ats) = | ! sesy = | M 5 (2.3b)
Bz(s) Az(s) 821(5) 822(5?

If we choose the reference resistances for the source and
the load ports to be equal to the value of the source and
load resistors Ry and R; respectively, then

Bz(s) = 2V2(s) (2.4)

A(s) = E (s) (2.5)
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o
Figure 2.1: Definition of wave variables.
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@
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REACTANCE
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Figure 2.2:

Doubly terminated reactance filter.
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Under these circumstances, the voltage wave transfer func-
tion

Bz(s) { =

21080 = X |
Lay(s) = 0

2v2(5)
'E1f53 (2.6)

and the familiar network transfer function

V,(s)
E,(s)

Ha(5) = (2.7)

are equivalent except for a frequency-independent gain con-
stant. Clearly the desired frequency response is obtained
by realizing either of these functions.

Wave digital filters derive from continuous—-time refer-

ence filters by applying the bilinear z-transformation
s =(z-1)/(z+ 1) (2.8)

to the circuit elements of the reference filter. The corre-

sponding discrete-time system is described by

-1
) A®) (2.9)

B(z) = S(

where z 1is the discrete~time frequency variable. The de-

sired z-domain transfer function,

lo.v]
~

IS
~

. 2 - z -1
Hz) = A T S0 (2.10)
follows by setting A.,z) = 0. The discrete-time frequency

response is given by H(erT) where w is the digital frequen-
cy in radians per second (r/s), and T is the sampling peri-
od. The analog frequency ¢ in r/s, and w are related by

¢ = tan wT/2 (2.11)
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2.1.2 Network Partitioning Via Reactance Extraction

The doubly terminated network illustrated in Fig. 2.2 can be
reconfigured as in Fig. 2.3 with N consisting of an inter-
connection of two reciprocal subnetworks M and %. The net-
work % contains all of the reactive elements including kl
inductors and k2 capacitors which are uncoupled and have the

values Ll,L2,...,L The (k+2)=-port (where

kl’cl’c2""’ck2'
k = kl + k2) coupling network M contains only direct connec-
tions and possibly ideal transformers and is therefore inde-
pendent of frequency.

Consider a scattering variable description of the network
M. We define the port voltage vector v and the port current
vector i such that they can be partitioned with respect to

ports connecting resistive, inductive, and capacitive ele~

ments, i.e.

- .
AL [iR
.
ey =01 (2.12)
Y | = |

Resistive elements are assumed to be in series with a volt-
age source, possibly of zero value. The wave variables for

M are defined by

o
1]
|<
1
|
[+

(2.13a)

"
+
=

L (2.13b)
where R is a diagonal matrix of arbitrary port reference re-
sistances. The vectors b and a and the matrix R may be par-

titioned conformable with the voltage and current vectors,
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H iy il 1

> > L
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s |

e ~ |
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R >+ l_ — e e
e2=0 vy ~ N _—l
) = il 1 |

=~ > c
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_!C 'ic t O >k2 ‘
l TS |
- s l
Lo |
L ]

Figure 2.3: The reference filter; partitioned via reactance
extraction.
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]
i (2.14)
|

The reflected and incident voltage waves at the ports of n

&L
|
i
!
-
-]
[l
—_
| o
~

are related by

b=Sa (2.15)

where S is the scattering matrix describing the network con-
straints. Since M is a frequency-independent network, S
will be a real constant matrix.

Similarly, we may define a scattering variable descrip-

n Y
tion of the network M. The port voltage vector v and the

v
port current vector i are partitioned such that
" v .
v Y volAL o A
=i |7 e IV R (2.16)
Yol | % ic i
v
The wave variables at the ports of M are defined by
av] Y] AV
b=v-R1 (2.17a)
AV} v AV
a=yv+R1 (2.17b)
n n
where, partitioned conformable with v and i,
N y v
b a R 0
b= L 3 = ;L R=| T N (2.17¢)
5¢ ac 8 R
We have the relation
n
B(s) = $6s) K(s) (2.18)

V]
where S(s) represents the scattering matrix of the network
",
M. The scattering variable characterization of the overall

network N is depicted in Fig. 2.4.
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4 i,
-1-—-————81 3.2-———P‘
N] /v vy Ry NZ

Figure 2.5: 1Interconnection of ports.

Consider the port-interconnection of two networks as in
Fig. 2.5. For our purposes, it is important that the wave
variables at the interconnection port be defined such that

by = 3

a, = b2 (2.19b)

(2.19%a)

The interconnection physically forces the currents and volt-
ages at the common port to satisfy the constraints

(2.20a)

Vit V2

i1 = -iz (2.20b)
The constraints described by (2.19) and (2.20) lead to the

requirement that, with respect to Fig. 2.5,
R, = R, (2.21)

Equation (2.21) states the necessary compatibility condition

for defining wave variables at interconnection ports.
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A judicious choice of port reference resistances for the

f\) .
network M is

v .

BL = diag| Ll,Lz,...,Lkl ] : (2.22a)

W\ .

R, = diag| l/Cl,l/Cz,...,l/Ck2 ] (2.22b)
V)

With the above choice of reference resistances, M is de-

scribed by the scattering matrix

_1-5s
Ss) =122 (2.23)
where I is a polarity matrix defined by

L= -Ekl‘ }_sz (2.24)

(Here + denotes direct sum and U, an identity or unit matrix
of dimension nxn.)
The port reference resistances for the network M are cho-

sen to satisfy the compatibility condition, i.e.

Ro
"]
R = Ry (2.25)
R
=C

where BR = diagl RS’ RL]. Application of the bilinear z-
Y
transformation to the scattering descriptions of M and M

yields the discrete-time systems

B(z) = S A(z) (2.26a)

HOEE RO (2.26b)
or equivalently

b(n) = S a(n) (2.27a)

Bn) = £ 2(n-1) (2.27b)
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where n is the discrete-~-time variable. Since the
compatibility condition is satisfied at the interconnection
ports of M and ﬁ, we have

by [3m a, () _[EL(M]

bem) | | Z ) 2| | B 120
The equations (2.27) and (2.28) specify the WD filter reali-
zation., From (2.27b) we see that the capacitors and induc-
tors are transformed into delays and delays in series with a
sign inverter, respectively. The computational algorithm
that determines the signal values at the delays and outputs
of the digital filter is described by (2.27a), that is, by
S. Agsymbolic representation of the digital structure is
shown in Fig. 2.6. The derivation outlined above describes

in essence the strategy behind WD filter design,

2.1.3 State-Variable Description of Wave Digital Filters

The state-variable description of a digital filter specifies
the matrices {A,B,C,D} where the operation of the filter is

given by

y(m) = D u(n) + C x(n) (2.29a)

x(n+1) = B u(n) + A x(n) (2.29b)

The vectors x(n), u(n), and y(n) define the state, the in~-

put, and the output of the filter at the nth

time instant,
The WD filter realization specified by (2.27) and (2.28)

is also described by the system
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5 l
bp
= “
>
%
a-

Figure 2.6: The general wave digital filter structure.

bp®) 517 855 || 3™
= (2.30a)
bp(m) 521 S| Bp™
ap(n+l) = 2 b (n) (2.30b)
where
_ T T
bp() = [ by () b(n) ] apm) = [a,(n) a,(n) ] (2.30¢)
and S is partitioned conformable with ER’ ED’ apr and ap-
Equivalently, '
b, (n) S S. a_(n)
-R - 11 12 —R (2.31)
3 (1) 25y LSy || 3pW
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Clearly, the quadruple {21§22r§l§21'§12'§11} defines a
state-variable description of the wave digital filter. 1In

the z-domain, the system in (2.31) becomes

Bplz) = 155y + 5,020 -28,.)" s, ] A(z) (2.32)

2.2 ALTERNATE WAVE DIGITAL FILTER STRUCTURES

Intrinsic to the WD design procedure is the partitioning of
the reference network into subnetworks in the manner illus-
trated in Fig. 2.3, The WD filter realization follows from
the voltage wave scattering representation of the subnet-
works., Regarding the scattering representations, we note
that the port reference resistances at ports connecting re-
active or resistive elements are determined by the element
values. Consequently, the scattering variable description
of the frequency-independent coupling network will be unique
to within a permutation of variables. This seems to imply
that there 1is a corresponding unique digital structure.
However, consider the coupling network partitioned into a
number of smaller subnetworks. This partitioning, and the
subsequent scattering variable descriptions of the resultant
subnetworks, are not necessarily unique. Clearly, alternate
WD filter structures are possible. This is easily under-
stood with the aid of an example.

Consider the analog prototype shown in Fig.2.7.
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el(s) e2(5)=0

Figure 2.7: An example reference filter.

In Fig. 2.8 we have reconfigured this prototype network in
the form introduced in Fig. 2.3. Another possible configu-
ration is illustrated in Fig. 2.9.; the coupling network is
viewed as the interconnection of three subsections. The WD
design procedure with this 1latter configuration involves
finding a scattering variable description for each of the
smaller subsections. As before, the port reference resis-
tances at the ports of the subsections that connect elements
are constrained by the associated element values. However,
at the interconnection between two of the subsections, the
value of the port reference resistance is not similarly re-
stricted. - The scattering matrices determined for My, My,
and M3 describe, in the discrete~time domain, signal-flow
networks which interconnected in the manner suggested by
Fig. +.9, determine the computational algorithm of the WD
filter realization.

The conventional WD design process [17] utilizes the con-

figuration suggested by Fig. 2.9 to implement filter designs
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Figure 2.8:

The example filter reconfigured as in Fig.

Figure 2.9:
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An alternate configuration.
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based on doubly terminated LC ladder reference filters. The
signal-flow subnetworks are termed adaptors. Signal-flow
networks derived from analog subsections such as Ml and M3
are called series adaptors since they imitate the series
connection of analog elements, while similarly, digital net-
works derived from subsections such as M, are called paral-
lel adaptors. These two elementary adaptor types are suffi-
cient for the realization of WD designs based on ladder
reference networks. Adaptors have also been derived for the
symmetric lattice [19,20], Brune [31,33], and Darlington D
[30] sections.

A generalized n-port adaptor has been introduced by Mar-
tens and Meerkdotter [29]. This method may be applied to a
lossless reciprocal frequency-independent network of any to-
pology. The n-port adaptor derives all of the elementary

adaptors described above and may be applied to deriving WD

realizations based on a single adaptor.

2.3 THE REFLECTION-FREE PROPERTY

Consider the interconnection of two arbitrary frequency-in-
n
dependent lossless networks M and M, described by the scat-
v
tering matrices S§ and £ (Fig. 2.10). The topological con-

3"
straints for the networks M and M can be expressed as

A" n
b, St S|l & b 311 g12 a
= ny = n, n, n, (2-33)
b Sp1 Syl @ 5, S5100 501
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where S and g have been partitioned conformable with the
wave vectors. The corresponding discrete-time structure is
represented in Fig. 2.11 as a signal-flow graph. From Fig-
ure 2.11 we see that if the parameters 311 and 522 are both
nonzero, a delay-free path will exist within the signal-flow
graph describing the two interconnected adaptors. This con-
dition violates the necessary requirement that for the
structure to be computable or realizable, every feedback
path must contain at least one delay element [36,37].
Clearly, a desired condition is that one of the reflection

Y
coefficients, either S;, or S,,s be identically zero [17].

Consider the analog network M. We have

R -
_ b © _ v - Ri _d

512 % & = VIR = R, + R (2.34a)

a =0 ia =0

0 - =0 -

where
= v

Ry = 11 (2.34b)

a =90

_-O —

The quantity Rd is recognized to be the driving point resis-
tance of the network M at the interconnection port, with all
other ports terminated in their port resistances. It fol-
lows that if we choose the reference resistance R at the in-
terconnection port to be equal to Rd’ we have the condition
S,o= 0. This port is then sai. to be reflection-free. A
similar result will hold for the network % if we wish in-
3}

stead, to ensure S;;= 0. 1In summary, a judicious choice of

the common port reference resistances assigned to adaptor




26

b=13 ~
L — < >
> ~ 0
i + . + s
i M i i M t I
v R v R ~ v
- S % S o
b = a=>»= ~ ~
—0 €— _ - 2,
o———me] ——————0

Interconnection of two frequency-independent

Figure 2,10:
multiport networks.
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A signal-flow graph describing the

Figure 2,11:
interconnection of two adaptors.
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interconnection ports ensures the realizability of the cor-

responding digital filter structure.

2.4 THE N-PORT ADAPTOR

The generalized n-port adaptor has been well described in
literature [28,29,31]. Consider an n-port reference network
of interconnections and possibly ideal transformers. The
port voltage vector v and the port current vector i may be

partitioned according to "link" and "tree" ports, i.e.

L

v
-4 .
y= = (2.35)

Yt 2t
where the subscripts t and % identify the "tree" and "link"
ports, respectively. The corresponding reflected and inci-

dent voltage wave vectors, b and a, and the diagonal matrix

R of reference resistances may be similarly partitioned

b a ] R, 0
2 2 R &

E: _a_= | —R_= (2.36)
b, 2, | 0 R

Martens and Meerkdtter [29] have shown that the scattering
matrix description of a lossless reciprocal frequency-inde-

pendent network can be expressed in the form

20 K-U 2 (U-KQ )

(2.37)

[n
1

2K U- 2K Q)
where S has been partitioned conformable with b and a. The
submatrix gzis derived from the "cutset" matrix Q of the

network by partitioning Q according to "link" and "tree"
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ports, that is Q = [Q, Ul. Clearly Q, is dependent only on

the topology of the coupling network. The submatrix X is

defined by
K= (6 +Q G Q) ?*q ¢ (2.38)
k=058 5% ) .
where §t=5t—l and §2=§£_1. Alternate forms for the scatter-

ing matrix S are given by

vl ollv g

S = (2.39)

[=3
el
1
N
j o=
<
o
|=

T
= —QQ (2.40)
0 T

U- K
! SRS

The decomposition of (2.40) serves to display the eigenva-

T=
]
£
o=
£
I
=
T~
=

|
=
<
o=
| =

lues of the S matrix. In (2.39) all of the matrices are

self-inverse which ensures that S is self-inverse i.e.

1

s=5s (2.41)
In addition, S satisfies [31]
sTes=0 (2.42a)
where
G 0
-1 29 2
G=R" = . (2.42b)

Se
is the diagonal positive definite reference conductance ma-

trix. The results (2.41) and (2.42) also imply

T
s 6G=58¢6 (2.43)
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pProperties (2.42) and (2.43) derive from the losslessness
and reciprocity of the reference coupling network, respec-
tively. Property (2.42) is very important with respect to
the nonlinear stability of WD filter structures.

The matrix K has a very useful network interpretation
[29] . Consider the n-port reference network with all of the
"tree" ports terminated in their port resistances, and all

of the "link" ports terminated in their port resistances in

series with a voltage source. It follows that
b, = 2v, (2.44)
a, =0 (2.45)
and
&4 & (2.46)

where ey denotes the vector of "1link" voltage sources. From

(2.37) and (2.45)

b, = 2K gy (2.47)
or, utilizing (2.44) and (2.46)

v, = Ke, (2.48)

Thus the elements of K are voltage transfer ratios from the
"link" sources to the "tree" branches. This network inter-
pretation of K may often be applied in expressing the coef-
ficients of K as a useful function of a reduced number of
parameters. This is the case for n-ports with a ladder to-

pology.
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If a network contains k elements whose values may be cho-
sen independently, then allowing for impedance scaling, the
transfer function will have k-1 degrees-of-freedom. An n-
port adaptor is said to be canonic in multipliers if the
number of multipliers is equal to the number of degrees-of-
freedom in the transfer function of the prototype network.
Consider a network or a portion therof, with a ladder topol-
ogy. The 92 matrix will have entries that are +1, -1, or 0.
All of the multiplier coefficients will be contained in K.
Since K is of dimension tx% (t is the number of "tree" ports
and £ is the number of "1link" ports) there may be as many as
t2 coefficients. Equation (2.38) expresses K in terms of a
canonic number of parameters, that is, the k-1 ratios of in-
dependent reference conductance values. But the relation in
(2.38) is not useful in the sense that these parameters can-
not correspond to multipliers in a hardware realization.
However, for the ladder topology it 1is always possible
(through application of the network interpretation) to ex-
press K in terms of another canonic set of independent pa-
rameters with the property that each parameter can corre-
spond to a single multiplier in a hardware implementation
[29]. We note that a one-to-~one mapping will exist between
these, and every two canonic sets of parameters. Clearly,
n~port adaptors derived from ladder networks can be made

canonic in multipliers.
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These results for the class of networks with a ladder to-
pology are the same as those originally derived by Fettweis.,
In fact, n-port adaptors (for ladder networks) can be deter-
mined such that the multipliers are identical to those of
the conventional WD structure composed of an interconnection
of series and parallel adaptors. Accordingly, the elementa-
ry series and parallel adaptors can also be derived by this
method. Similar results can be obtained for the class of

networks with a lattice or Jaumann structure.

2.5 SPECIAL PROPERTIES OF WAVE DIGITAL FILTERS

The WD class of filters is known to perform well with re-—
spect to finite-word-length effects. 1In particular, WD fil-
ters have been found to exhibit attenuation characteristics
with low sensitivity to variations in filter coefficients
[38-41], and to have relatively low levels of roundoff error
[40,42]. Furthermore, Fettweis and Meerkdtter [25] have
shown that for a large class of WD filters, i.e. those based
on LC ladder or lattice prototypes, zero-input oscillations
of any type can be completely suppressed. In this section
we review the concepts that explain the special properties

of the WD structure.




2.5.1 Sensitivity and Roundoff Noise

The transformation that maps an analog reference network
into a linear discrete-time WD network preserves many of the
desirable properties of the continuous-time network as anal-
ogous properties in the discrete-time system. Consider for
example, the important class of WD filters that are derived
from LC ladder or lattice reference filters. In the previ-
ous section we noted that there exists a one-to-one mapping
between the set of independent port reference conductance
values and a canonic set of multiplier coefficients. How-
ever, in a WD realization the independent port conductance
values (reflection-free ports have dependent port conduc-
tance values) are determined directly from the values of the
elements in the reference filter. Clearly a one-to-one map-
ping exists between these element values and the adaptor
multiplier coefficients. Quantization of the multiplier
coefficients can thus be interpreted equivalently as a vari-
ation in the element values of the reference filter. Ele-
ment variations degrade the frequency response of the analog
prototype and this is mirrored in the discrete-time domain.
The coefficient sensitivity of the WD structure will there-—
fore depend on two factors:

1. the sensitivity of the elements in the reference fil-

ter to coefficients in the digital structure, and
2. the sensitivity of the reference filter frequency re-

sponse to variations in the element values.
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Accordingly, the sensitivity properties of a WD structure
are directly dependent on those of the reference filter.
Doubly terminated reactance filters are known to be highly
insensitive [34,35] and hence, the relative insensitivities
of the associated WD designs.

Fettweis [22] has linked the sensitivity of a structure's
attenuation characteristic to coefficient quantization with
the roundoff noise generated within the structure. Fettweis
contends that signal quantizations can be modelled equiva-
lently as coefficient fluctuations, and argues that a struc-—
ture that exhibits low coefficient sensitivity will also
have reduced levels of roundoff noise. Therefore, WD fil-
ters are expected to display superior noise performance and

this has been verified experimentally [40,42].

2.5.2 The Concepts of Pseudopower and Stored Pseudopower

Wave digital filters are derived as an interconnection of
elementary building blocks. The building blocks, including
adaptors, sources and sinks, and delay elements, are derived
as wave multiports or wave n-ports. Consider a wave n-port
with the scattering variable description
B(z) = S(z) A(2)

and let G denote the diagonal reference conductance matrix
associated with S(z). The instantaneous pseudopower p(n)
absorbed through the n-port at the nth time instant is de-

fined as [21]
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T T
p(n) =a (n) Gam) - b (n) Gb(n) (2.49)
An n-port adaptor derived from a lossless reciprocal fre-
quency-independent network is described by a constant scat-
tering matrix S that satisfies the property §T§§=g. Hence

the pseudopower absorbed by the adaptor has the value

pn) = a'(m) (G6-5 G6S)am)=o0 (2.50)

In this case we refer to the adaptor as being instantaneous-
ly pseudolossless. Similarly, if instead p(n) 20 for all n,
the adaptor is described as being instantaneously pseudopas-
sive.

Fettweis and Meerk&tter [25] have also introduced the
concept of stored pseudopower. Consider a single delay
(possibly in series with an inverter) connected to a port

with a port reference conductance G (Fig. 2.12).

>

a(n) b(n)

Figure 2.12: A delay connected to a port of port
conductance G,
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The pseudopower ps(n) stored in the delay in the time inter-

val (n,n+l) is defined by

pg(n) = G 2% (n) (2.51)

A general linear WD filter section is represented in Fig.
2.13. Let the n-port adaptor N be described by the scatter-
ing system

b=5a (2.52a)

with the ports ordered such that

[t J=] L [% @
b1 as= el (2.52b)
=D g )

where the subscripts D and R differentiate between those
ports that are terminated in a delay or source and sink, re-
spectively. The matrix G is the diagonal matrix of refer-
ence conductances and 1 is the polarity matrix that serves
to identify those ports at which an inverter is connected in
series with the delay.

The pseudopower stored in the delays of the filter sec-

tion in the time interval (n,n+l) is given by

_ T _ . T
Pg(n) = (Zby() )" Gy £by(n) = by(m) G, by(n) (2.53)
where we note that the wave variables have been defined with
respect to the adaptor. (Observe that the vector E_QD(n) is
in fact the "next state" vector of the filter.) The in-

th

crease in the stored pseudopower at the n time instant is

then

fpg(n) = pg(n) - pg(n-1) (2.54)
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b_(n) a_(n)
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Figure 2.13: A linear wave digital filter section based on
an n-port adaptor with a diagonal conductance

matrix.
or, since ED(n) = g;gD(n—l),
T T
Aps(n) = by(m) _G_D(n) BD(H) - ay(m) QD(H) _a_D(n) (2.55)

Also consider the pseudopower absorbed by the n-port adaptor

th

N at the n time instant,

py(n) =2 (n) Ga(m) - b () 6 b (2.56)

From (2.55) and (2.56)

Bpg(n) = -py - by(m) Gy by(n) + ar(n) Gy ay(n) (2.57)

In the absence of outside signals, i.e. ap=0, we have

fpg(n) = -py(n) - g;(n) Gy b (m) (2.58)
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Furthermore, if the adaptor N is pseudopassive we have the

condition
T
Aps(n) < -ER(n) ER QR(n) for all n (2.59)

Given that G is diagonal and that the port reference conduc-
tances are always positive, the quadratic expression on the
right hand side of (2.59) is a negative definite function of
the filter output variables.

The canonic (in terms of multipliers) n-port adaptors de-
scribed in Section 2.4 are pseudolossless even after coeffi-
cient quantization. Consequently, (2.59) is always satis-

fied for the WD filters based on these adaptors.

2.5.3 Nonlinear Stability

The analysis presented in the previous section applies for
linear operating conditions. 1In a practical implementation
the finite-word-length constraint requires that quantizers
be introduced into the linear system. Naturally, we wish
the resulting nonlinear filter to be stable, that is, to
suppress parasitic oscillations within the structure.

The nonlinear filter is said to be output stable if under
zero-input and for arbitrary initial conditions, the output
becomes permanently zero in a finite time. Furthermore, a
filter is said to be completely stable if under the same
conditions, the states become permanently zero in a finite

time [25]. Note that complete stability ensures output sta-
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bility since the output variables are linear functions of
the states. Output stability implies freedom from obsery-
able oscillations while complete stability implies freedom
from both observable and unobservable oscillations.

The nonlinear WD filter structure that results when quan-
tizers are introduced before the delays of the previously

linear filter, is depicted in Fig. 2.14,.

r— - - -7 - T T T
| |
T ) 2
|2 by () b (n) &
D—— — Q|
| |
l Sx S % | T
B () by (n) a(0) |
giSipe N ) |
| . |
| N©
e o o — e

Figure 2.14: A wave digital filter implemented with
quantizers,

The reflected wave vector corresponding to the nonlinear
AV AV

adaptor 1is denoted by b. The pseudopower Pg(n) stored in

the delays of the nonlinear filter in the time interval

(n,n+l), and the increase in the stored pseudopower at the
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nth time instant, can be determined as in the previous sub-
section, i.e.

Py = (2807628 =8 g8 (2.60)
and
o808y - 515, 5,

Note that in order to simplify the notation, we no longer
specify quantities explicitly in terms of the discrete-time
variable. The pseudopower absorbed by the nonlinear adaptor
ﬁ is given by

v T

_ T
py=2a Ga-

o2
joe

6

(2.62)

From (2,61) and (2.62) and assuming zero-input conditions,

we oObtaln

n N AT
bpg = -py - b (2.63)

I

SR

The stored pseudopower, as defined in (2.60), is a posi-
tive definite function of the "next state” of the WD filter.
The quantity Ags is the first backward difference of the
stored pseudopower. If Ags can be shown to be negative
semi-definite under zero-input conditions, the stored pseu-
dopower serves as a Lyapunov function for the nonlinear fil-
ter. Fettweis and Meerkdtter have utilized this property to
derive conditions on numerical operations that guarantee the

stability of nonlinear WD filters.
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We state the following general theorems based on material

in [25].

Theorem 2.1
A digital filter is output stable if there exists a func-
tion V(n) such that, for n = 0,1,2,....

i) V(n) is a positive definite function of the signals
incident at the delays of the filter at the nth
time instant, and

ii) under zero-input conditions, AV(n) (which is de-
fined as AV(n) = V(n)-V(n-1)) is nonpositive and
moreover, 1is negative if any signal at the output

th

of the filter at the n time instant remains

nonzero.

Proof ;

A digital filter implemented with finite-word-length
arithmetic will be a finite state machine. Therefore, under
zero-input conditions, the filter signal parameters must ei-
ther become permanently zero after a finite time, or be sus-
taining oscillations. However, if one of the output vari-
ables is carrying out periodic oscillations with nonzero
amplitude, V(n) must decrease within each oscillation cycle
by a finite amount. This implies that eventually V(n) must
decrease below zero. This contradicts the assumption thaf
V(n) is positive definite. Clearly the filter cannot sus-

tain oscillations at the output and is therefore output sta-

ble.
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Theorem 2.2
A digital filter is completely stable if there exists a
function V(n) such that, for n = 0,1,2,...
i) V(n) is a positive definite‘function of the signals
incident at the delays of the filter at the nth
time instant, and
ii) under zero-input conditions, AV(n) is nonpositive
and moreover, is negative if any signal incident at

th

the delays of the filter at the n time instant

remains nonzero.

The proof for Theorem 2.2 is similar to that for Theorem 2.1
and is not given here.

Theorem 2.1 specifies a condition that is sufficient to
guarantee the output stability of a nonlinear digital fil-
ter. For a WD filter of the type shown in Fig. 2.14, an
equivalent condition is that the nonlinear n-port adaptor ﬁ
be pseudopassive i.e.

Py 20 (2.64)

This result follows from (2.63). Since 1in general, n-port
adaptors will be pseudolossless under linear conditions, we
can reinterpret (2.64) as the constraint

cb-b'ebso (2.65)

Given that G is positive definite and diagonal, (2.65) is
satisfied if the quantizations are carried out such that

|b.| i=1,2,...,n (2.66)
1
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Condition (2.64) or more specifically (2.66), represents a

general criterion that will guarantee the output stability
of conventional WD filter designs.

We note that the nonlinear adaptor ﬁ may be realized as

an interconnection of individual adaptors ﬁk’ k =1,2,...,K.

Let us denote the pseudopower absorbed by ﬁk as gk. It is

shown in [21,25] that

5. 5% (2,67
N k=1 k .
and accordingly, that
n,
pkz 0 k=1,2,...,K (2.68)

is sufficient to guarantee the output stability of the fil-
ter. Condition (2.68) is ensured by requiring that the cri-
teria in (2.66) apply at the ports of each adaptor ﬁk’

If a linear WD system based on a pseudopassive n-port
adaptor is free from any oscillations (including unobserv-
able ones) and the nonlinear modifications are carried out

n

according to (2.66) (also ensuring bib' 20, i=1,2,...,n),

i
the nonlinear filter will be completely stable [25]. How~—
ever, a pseudolossless reciprocal WD system will be free
from all oscillations under linear conditions if and only if
it is minimal [28]. Given the criteria in (2.66), it fol-
lows that complete stability can only be guaranteed for min-—

imal WD networks. Wave digital filters based on ladder ref-

erence networks that have redundant reactive elements, for
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example those that realize finite attenuation poles, will be
nonminimal, Methods for eliminating the redundant states
or, equivalently, removing the excess delays have been de-~
veloped [26-28], However, these modifications generally
change the nature of the WD structure in a manner that in-
validates the simple stability criterion in (2.66). Recent-
ly, Martens and Jarmasz [32] have demonstrated a method to
overcome this problem.

Classen et al. [43] and Meerkdtter [44] have also studied
the stability of WD filters under forced response condi-
tions. In particular, overflow quantization characteristics
(only slightly more restrictive than those suggested by
(2.66)) have been specified to guarantee the stability of

the forced response.




Chapter III
AN APPROACH TO THE SYNTHESIS OF WAVE DIGITAL
FILTERS
The first step in WD filter design is to determine an appro-
priate analog reference network. The usual procedure for
doing so is as follows:

1. Map specifications given in the digital domain to the

analog domain.

2. Solve the approximation problem to determine a suita-

ble analog transfer function.

3. Synthesize a doubly terminated reactance network that

realizes the desired transfer function.
Normally, the approximation and synthesis problems are both
solved with the aid of filter design tables [45]. However
when dealing with nonstandard transfer functions, for exam-—
Ple those arising in cascade realizations, a direct synthe-
sis remains necessary.

It was noted in Section 2.1 that the voltage wave trans-
fer function S2l(s) of a reactance two-port network is re-
lated to the voltage transfer function Ha(s) of the corre-
sponding doubly terminated filter by (assuming port

reference resistances are chosen appropriately)

821(5) = 2Ha(s)
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It follows that the transfer function synthesis problem can
be reinterpreted as a scattering matrix synthesis problem.
Vongpanitlerd [46] has introduced a simple technigque for
the synthesis of lossless reciprocal scattering matrices.
In Chapter III we show that this same technique may be ap-—
plied to deriving nominal WD filter designs. In particular,
we develop an algorithm based on the method described in
[46] that facilitates WD filter synthesis including cascade

synthesis.

3.1 THE SCATTERING MATRIX OF A LOSSLESS TWO-PORT

The normalizedl scattering matrix description S(s) of a real
lossless two-port may be written in the canonic form [47]
H(s) F(s)

S(s) = =7 (3.1)

G(s) oF(-s) -oH(-s)
where 0 is a scalar of value +1 or -1. The polynomials
F(s), H(s), and G(s) are termed the canonic polynomials and
they have the following properties:
l. They are real polynomials.

2. G(s) is strictly Hurwitz.

If the voltage scattering matrix description S(s) of an
m-port network is derived with the condition that all port
reference resistances are each of unit value, then S(s) is
called the normalized scattering matrix. o
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3. F(s) is monic i.e. its leading coefficient is equal
to unity.

4. F(s), G(s), and H(s) satisfy the equation

G(s) G(-s) = H(s) H(-s) + F(s) F(-s) (3.2)

which is often called the Feldtkeller equation.
For a reciprocal lossless two-port, F(s) is a pure even or

pure odd polynomial that satisfies

F(s) = oF(-s) (3.3)

Therefore, for the lossless reciprocal case, S(s) 1is a sym-
metric matrix.

An mxm real rational scattering matrix is called lossless
bounded real (LBR) if [48]

l. S(s) has all elements analytic in Re [g] 2 0

2. g7

jn

(-s)S(s) =

<

It is well known [48] that any mxm scattering matrix S(s)
that characterizes a linear, time-invariant, lumped, finite,
lossless m-port will be lossless bounded real. One may eag-
ily verifyl that the scattering matrix described by (3.1)

satisfies the LBR properties.




47

3.2 SCATTERING MATRIX SYNTHESIS

The general scattering matrix synthesis problem has been
considered in [48,49]. The special case of lossless recip-
rocal synthesis has been shown to be particularly straight-
forward [46].

The lossless reciprocal synthesis problem can be briefly
stated as follows. Given an mxm (in our case 2x2) symmetric
LBR normalized scattering matrix S(s), determine an m-port
network N consisting of ideal transformers and positive in-
ductors and capacitors that realizes S(s) as its scattering
matrix description. Let us assume that the network N which
synthesizes the prescribed S(s) consists of an interconnec-—
tion of two lossless subnetworks N, and N, as depicted in

1 2

Fig. 3.1. The network N2 is constrained to contain all of

the reactive elements, including kl inductors and k2 capaci-

tors which are uncoupled and whose values are
Ll’L2”"’Lkl’Cl’CZ""’Ckz' The subnetwork Nl 1s a nondy-
namic (m+k)-port (where k = kl+ k2) containing only direct

connections. and ideal transformers. Note that the struc-
tures represented in Fiqures 2.3 and 3.1 are essentially the
same. The network Nl will have a normalized scattering ma-
trix description, say §n‘ Since Nl is by assumption a re-
ciprocal lossless frequency-independent network, §n is sym~
metric and constant, and satisfies the LBR properties.
Assuming knowledge of §n’ the construction of the network

Nl is relatively straightforward [49]. A synthesis of S(s)
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Figure 3.1: Network partitioning via reactance extraction.

follows directly from a synthesis of §n by terminating the
ports of Nl with the appropriate capacitors and inductors as
shown in Fig. 3.1. Consequently, the synthesis problem can
be restated as follows. Given an mxm symmetric LBR normal-
ized scattefing matrix S(s), determine a lossless reciprocal
nondynamic (m+k)-port network Nl (described by the normal-
ized scattering matrix 5,,) which when terminated with the
appropriate reactive elements, yields a network N realizing
S(s).

Vongpanitlerd [46] solved the above synthesis problem

with state-variable techniques. 1In particular, he describes
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a method for deriving the symmetric constant matrix §n that
specifies the coupling network Nl’ directly from the pre-
scribed S(s) matrix. A characteristic of this synthesis
method is that solutions for the network N will utilize the
minimum number of reactive elements, the number being the
degree of the scattering matrix. In addition, these reac-
tive elements are restricted to be each of unit value. The
normalized scattering matrix §n is, by definition, deter-
mined with port reference resistances that are also of unit
value. Therefore, at the interconnection ports between the
networks Nl and N2, the port reference resistances Ri’ i =
1,2,...,k are related to the values of the reactive elements
by
if the ith port is terminated in an inductor, and

Ry = 1/C; =1

if the ith port is terminated in a capacitor. From the dis-
cussion of Section 2.1, it is clear that the scattering ma-

trix En specifies an n-port adaptor for the network N.

Since the matrix gn is LBR, it has the property

ST
=

S =1U
—rl _—

and given En is symmetiic, we also have

S S
—n -n
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Clearly, (3.4) and (3.5) correspond to (2.42) and (2.41)
respectively, with G = U,

Having determined §n’ one may then construct the network

N synthesizing S(s). Terminating the network with resisi-

tors of unit value yields an analog filter with a voltage

transfer function

I
Hy(s) = 5 G(z)

—

(3.6)

where it is assumed that S(s) has the form given in (3.1).
Since N incorporates a minimal number of reactive elements,
the analog filter may serve as a prototype for minimal WD
realizations., However, we have noted that §n already speci=~-
fies an n-port adaptor, albeit in terms of a large number of
parameters (there will be (2+k)2 entries in §n). Terminat-
ing the ports of this adaptor with the appropriate delays
(some in series with inverters), sinks, and sources yields a
WD filter realization. |
It is apparent that the scattering matrix synthesis meth-
od discussed within this section can also be utilized in di-
rect WD filter design. A possible WD filter design algor-
ithm may be as follows:
l. Given a desired analog transfer function H (s),
(H_(s) is restricted to be realizable with a doubly

a

terminated reactance filter), let SZl(S)

where S21(S) = F(s)/G(s).
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2. Solve the Feldtkeller equation, i.e. equation (3.2),
for the unknown polynomial H(s) and with F(s), H(s),
and G(s), construct a scattering matrix S(s) in the
form of (3.1).

3. Utilize the synthesis algorithm discussed earlier to
determine an n-port adaptor ( described by S,) which
when properly terminated, yields a WD filter realiza-

tion with the desired system function S (z=1/z+1).

21

3.3 PARAMETER REDUCTION

In Section 3.2 we discussed the possibility of applying the
synthesis algorithm discussed in [46] to the design of WD
filter realizations. Specifically, one can directly deter=-
mine a scattering description En that describes an n-port
adaptor realization. However, it was noted that the con-
stant matrix §n will have (2+k)2 entries (where k is the de-
gree of the filter) and as such, does not represent an at-

tractive adaptor realization. Clearly it is desirable to

express §n in terms of a reduced number of parameters.

3.3.1 Decomposition of Scattering Matrices

A self-inverse constant matrix, say A, c<an always be decom-

Posed into the form [65]

A=p!

FMFP (3.7a)

where




52
T

1
|
z

]
c
jo

F= M= (3.7b)
o U -2k U
and B\is a permutation matrix. The decomposition algorithm
is described in Appendix A. Note that (3.7) is essentially
the same decomposition as that of (2.39).
The scattering matrix gn will be self-inverse (equation

(3.5)) and thus we can apply the decomposition (3.7) to S

to vield

T

=P P (3.8)

7R E M E
where En and ﬁn are of the form given in (3.7b) and contain
the submatrices ﬁn and En’ respectively. Furthermore, since
§n is also an orthogonal matrix (equation (3.4)) it can be

shown that the following is true:

=(g+ -1

K NN )TIN (3.9)
It is apparent that (3.9) corresponds directly to (2.38)
with G = U. In fact the matrices ﬁn and En are directly
analogous to the matrices Q, and K introduced in Section
2.4, It follows that En characterizes the topology of the
network represented by gn’ and En will have the same network
interpretation discussed earlier. Let the matrix En be of
dimension tx%. The matrix En will be of the same dimension

and §n will be of dimension (t+2)x(t+4%).
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3.3.2 Transformations on Scattering Matrices

Let the scattering matrix En be defined according to the
convention that the reflected wave vector b and the incident

wave vector a can be partitioned as

b a
b=| X a=| R (3.10)
5p 2y

where the subscripts R and D identify those ports at which,
in a WD filter realization, sources/sinks and delays are
connected, respectively. (The polarity matrix L identifies
those ports at which an inverter is connected in series with
the delay.) We may partition the scattering matrix §n con-
formable with the b and a vectors, i.e.

S S
- 11 —12 (3.11)
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S
et

A state-variable description of the WD filter associated

with §n 1s given by {§§22,§§21,§12,§11}. It 1s well known

{51] that if {A,B,C,D} is a realization of a system function
H(z), and if T is any nonsingular transformation, then
{T AT, T E}CT,Q} is also a realization. Accordingly, let

us consider the range of filter realizations specified by

the quadruple

-1 -1 ]
{ I. §.§22 I! I §.§21’ §12 I) §11 } (3-l2)
Define the matrix G by
U 0
=2 —_—
62 - (3.13)

|©
1
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I1f we have the condition

-1 -1
T Z=2T (3.14)

then the transformations suggested in (3.12) can be reinter-

preted as the following transformation on N

cV2 s ¢l/? (3.15)
2 20 2
Since §n is orthogonal, it is obviously true that
(E}/Z)T §§ (Efl/2)T (g}/Z)T 9-1/2 951/2 §n 9.1/2 - (9}/2)T 9}/2
or we may write
§T (9_1/2)T 91/2 S = (Ql/z)T 91/2 (3.16)
where
sbal/?s 6 (3.17)
Furthermore, if we also have the condition that
IT T is positive definite and diagonal (3.18)
then (3.16) can be written as
s'ws=w (3.19)
where W = (Gl/z)T_gl/2 is a positive definite diagonal ma-

trix. From (3.17) it is clear that S is self-inverse. It
follows that the matrix S represented in (3.19) is the scat-
tering description of an n-port adaptor with a port refer-
ence conductance matrix W. We can thus conclude that if a

transformation matrix T satisfies the conditions in (3.14)
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and (3.18), the subsequent filter realization specified by
(3.12) retains the WD structure.

Consider those cases for which the transformation matrix

T, and thus G, is diagonal. A diagonal T obviously satis-

fies the conditions (3.14) and (3.18). The matrix S, de-

fined as in (3.17), is therefore a scattering matrix. Fur-
thermore,

s'es=¢ (3.20)

where G now represents the diagonal conductance matrix.

Utilizing (3.8) in (3.17) allows us to express S as

s=62pTE u £ pgl?
. T
or, since P P =0,
s=pTpc¥2pTr m r pc2pTp (3.21)
- - = - - -n N - = - -
s . . 1/2.T .
Partition the diagonal matrix PG/ “P” conformable with For
1/2
1/2 T _ &, g (3.22)
PG P" =
- - - 1/2
o G

It is straightforward to show that, given (3.21) and (3.22),
S may be reexpressed as

s=P FMFP (3.23a)
where

T
P - M = (3.23b)

1
=
=z

i
[
=)

o

=
1
)
-

|
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and
1/2 -1/2
_rg=gt/ Nﬂi@/ (3.24a)
-1/2 1/2
_K_=9t/ !Snng/ (3.24b)

From (3.9) and (3.24) we obtain

NG N T NG

k=108 , L) NG

(3.25)

analogous to the expression in (2.38). (The EQET matrix 1is
the port conductance matrix of the adaptor when the ports
are partitioned according to "link" and "tree" ports instead
of source/sink and delay ports.)

The diagonal transformations given in (3.24) may be ap-
plied to reducing the number of entries in En that are not
0,+1, or -1, In this way the scattering matrix S can be

specified in terms of a reduced number of parameters.

3.4 DESIGN EXAMPLE

Let us clarify some of the concepts introduced in the earli-
er sections with the aid of an example. Assume that we wish
to design é WD filter based on an analog reference filter
that exhibits a third-order lowpass Butterworth attenuation
characteristic with a 1 r/s cutoff frequency. The desired

analog transfer function is given by

_ 1/2
Hy(s) = — (3.26)

ST+ 252 + 25 + 1
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A doubly terminated lossless two-port that realizes Ha(s) as
a voltage transfer function will have a (normalized) voltage

wave tranfer function given by

- F(s) _ 1
5 = Gy - 23

5 (3.27)
+ 257 + 2s + 1

Solving the Feldtkeller equation for the unknown polynomial
H(s), we obtain a solution
H(s) = s° (3.28)

Using (3.27) and (3.28) we construct a scattering matrix

8(s) = — 5 (3.29)

The scattering matrix synthesis technique discussed ear-
lier is to be applied to determining a lossless reciprocal
network N that realizes S(s). With this technique, the net-
work N is regarded as an interconnection of two subnetworks
Nl and N2,

described by a constant scattering matrix §n and the reac-—

as depicted in Fig. 3.1. The subnetwork Nl is

tive elements contained in N2 are all of unit wvalue. One

solution for §n is the following:

[ 1/6 1/6 -v2/3 -v2/2 v2/2 ]
1/6 1/6 -v2/3 v2/2 v2/3
S, =| -v2/3 -v2/3 1/3 0 2/3 (3.30)
-v2/2 V2/2 0 0 0
I v2/3 v2/3 2/3 0 1/3J
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where the wave vectors b and a have the form specified by

(3.10). The polarity matrix I is given by

'92 Q
L= (3.31)

0 u
A WD filter realization can be derived directly from S~ and
L, that is £§§22,§§21,§12,§11} where 5, has been partitioned
conformable with b and a as in (3.11).

Let us decompose §n into the form suggested by (3.8).

One such decomposition yields

-v2/2 V2/2 -V/2/4 V2/6
0 U
5 ; _ X _ = =2
Noo= | oY2/2 v2/2), K o= vV2/4 V2/6 |, P
0 ! 0 1/3 % 0 (3.32)

Consider the diagonal transformations described by (3.24).

Choose
172 4 /2/2, /3)2
G " = diag[ -v2/2, v2/2 ] (3.33a)
Gl/2 = diag[ 1, 1, v2/2 ] (3.330)
-
such that
B! 1
N=c2 N V2o 1 (3.34a)
- =t -n -4 ~
0 1
1/4 1/6
1(_:9;1/2 K g_,}v/z -1/4  1/6 (3.34b)
I 0 1/3
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The matrices N and K specify an alternate n-port adaptor re-
alization. The adaptor scattering matrix S is defined as in

(3.23). The matrix S satisfies the equation §T§§ = G with

T

6=P2 (G *+6G, )P =diag[1, 1, 1/2, 1/2, 1/2 ] (3.35)

Note that the matrix G in (3.35) is of the form specified in

(3.13) with
T = diag[ v2/2, -v2/2, V2/2 ] (3.36)

The WD filter realization based on this alternate adaptor is
described by the quadruple {§2_1§222L§I_1§21,§122,§11} which
in turn can be characterized by only three unique parame-
ters, i.e. the three unique entries in K. In a practical
filter realization, these three parameters will correspond
to multiplier coefficients and accordingly will be quantized
to a finite word-length. A hardware implementation of the
filter will only require three multipliers.

This section has served to illustrate the WD design pro-
cess proposed in Section 3.2 and developed in Section 3.3.
Henceforth, for the sake of clarity, we shall refer to this

design process as the "direct wave digital" (DWD) design al-

gorithm.




3.5 CASCADE SYNTHESIS

Let S(s) represent the normalized scattering matrix descrip-

tion of a real lossless two-port network N. We may write
B(s) = S(s) A(s) (3.37)

where B(s) is the reflected wave vector and A(s) is the in-
cident wave vector. The system in (3.37) may be reexpressed
in the form

Y(s) = T(s) X(s) (3.38a)
where
N 1T (3.38b)

Y(s) = [ By(s) A (s) X(s) = [ A,(s) B,(s)

The matrix T(s) is called the transfer matrix of the network
N. For real lossless two-ports, the canonic form of the
transfer matrix is given by [47]

1 oG (-s) H(s)

F(s)

T(s) = (3.39)

oH(-s) G(s)

where the parameter o and polynomials F(s), H(s), and G(s)
are the same as those represented in (3.1). The canonic
forms of §(S) and T(s) are very simply related.

Consider the cascade connection of two real lossless
two-port networks N, and N, described by the transfer matri-
ces 21(5) and 22(5), respectively. The wave variables at
the ports of Nl and N2 are constrained as follows:

Y, (s) = T,(s) X, (s) (3.40a)

Y,(8) = T,(s) X, (s) (3.40b)
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At the interconnection port we have the additional

constraint
X (s) = Y, (s) (3.41)
From (3.40) and (3.41) we obtain
Y;(s) = T;(s) T,(s) X,(s) (3.42)
We recognize that the matrix T(s) defined by
T(s) = I,(s) T,(s) (3.43)

is the transfer matrix for the two-port cascade network.
From T(s) a scattering description of the cascade network,
say S(s), is easily determined.

Conversely, consider a lossless network N described by
the scattering matrix S(s) or the transfer matrix T(s).
Factorization of T(s) into the form suggested by (3.43) al-
lows one to represent N as a cascade connection of two sub-
networks described by the transfer matrices El(s) and 22(5).

It is well known that the cascade synthesis of lossless
two-ports may be accomplished via factorization of the
transfer matrix [50,52]. Fettweis [50] has published a
thorough study of the subject which includes a relatively
straightforward approach to solving the factorization prob-

lem. Let us examine briefly some aspects of the factoriza-

tion process.
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The transfer matrix T(s) of a lossless two-port network

N, is to be represented as a product of the transfer matri-

ces El(s) and 22(5). These latter matrices are restricted
to have the form

OGi(—S) Hi(s)

IORNE e i=1,2 (3.44)

cHi(-s) Gi(s)

where the polynomials Fi(s), Hi(s), and Gi(s) have the same
properties as the polynomials F(s), H(s), and G(s). The
first step in the matrix factorization is the following

polynomial factorization:
F(s) = Fl(s) Fz(s) (3.45)

Let the degree of the network N be designated by n, that is,
n = deg G(s). Given (3.2), we can state the following con-

straints:
n > deg H(s) and n > deg F(s) (3.46)
Consequently, given that n, = deg Gi(s),

n, > deg Hi(s) and n, 2 deg Fi(s) i=1,2 - (3.47)

i
In addition,
n=mn, +n (3.48)

The transmission zeros (attenuation poles) of the network N
are defined by the polynomial F(s) and the degree n. The

distribution of these transmission zeros among the networks
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represented by Il(s) and 22(5) is determined by (3.48) and
the factorization (3.45).

Through repeated factorizations, T(s) may be represented

as a product of R matrices, i.e.
T(s) = _T_l(s) ]“_2(5) IR(S) (3.49)

Each transfer matrix Ei(s) defines a lossless network Ni in
the cascade realization of N. Corresponding to (3.49) we

have the factorization
F(s) = F (s) F,(s) ... Fa(s) (3.50)

The factorization in (3.50) determines the minimum degree
that each section in the cascade network must have. For re-
ciprocal lossless (reactance) networks, F(s) is a pure even
or pure odd polynomial. The zeros of F(s) necessarily form
a quad in the s~plane, arranged symmetrically about the ori-
gin [35]. Exceptions to this are when zeros occur as conju-
gate pairs on the imaginary axis, or as positive-negative
pairs on the real axis. If F(s) is factored into as many
polynomials as possible, the maximum degree of any polynomi-
al will be four. It follows that any arbitrary lossless
network N can be realized as a cascade of basic networks of
zeroth, first, second, and fourth order.

In summary, given a normalized scattering matrix S(s) de-
scribing a lossless network N, transfer matrix factorization

can be utilized to specify N as a cascade of lossless sub-
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networks Ni with the respective scattering descriptions
gi(s). In the context of WD cascade synthesis, each subnet-
work will represent the reference filter for a WD filter
section. The DWD design approach appears to be especially
convenient in the reciprocal case since the section designs

can be determined directly from the scattering matrices

3.6 WAVE DIGITAL CASCADE SYNTHESIS: THE REFLECTION-FREE
PROPERTY

Transfer matrix factorization may be utilized in represent-
ing a lossless reciprocal two-port network as a cascade of
two-port subnetworks. Since each two-port subnetwork is de-
scribed by a normalized scattering matrix, we may apply the
DWD algorithm to determine WD realizations for each subnet-
work in the cascade. These WD sections are then intercon-
nected to yield a WD filter design.

Wave digital sections are interconnected at the adaptor
level. It has been demonstrated earlier, that at the inter-
connection of two adaptors, the following conditions are
necessary:

1. port reference resistances satisfy the compatibility

criterion, and

2. one of the adaptor ports is reflection-free.

Regarding the DWD design technique, the adaptor scatter-

ing matrices are determined with the condition that refer-
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ence conductances (resistances) are of unit value at inter-
connection (source and sink) ports. This implies that the
compatibility criterion is always satisfied at interconnec-
tions. However, these adaptors will not in general have re-
flection~free ports. In this section we discuss how this
situation may be rectified.

Consider the n-port adaptor corresponding to an arbitrary
WD section in a cascade realization. Let the adaptor scat-
tering matrix, say S, be specified in terms of the subma-
trices N, K, and P as suggested in (3.23). For the sake of
simplicity assume the wave variables have been ordered such

that P = U. Accordingly, S has the decomposition

S=FMF (3.51)

The submatrix K is given by (3.25) where

G=G, %G, (3.52)

is the port reference conductance matrix. Assume that the
ith port of the adaptor is an interconnection port and let
the reference resistance at that port be designated by Ri'
Port i will be reflection-free if the scattering matrix ele-

ment Sii is identically zero. As demonstrated in Section

2.3,

R,. R,
S, = T (3.53)
1 di i
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where Rdi is the driving point resistance at port i with all

other ports terminated in their reference resistances.

Clearly the condition

Ry = Ryy

guarantees the reflection-free property. Equation (3.53)
can be rewritten as

1 +8S..
ii

Ryt =Ry T 5.
11

(3.54)

The reference resistance at an interconnection port of an
adaptor designed via the DWD algorithm will be of unit val-
ue. In other words, the adaptor scattering matrix S will
have been determined with the reference resistance Ri= 1.
Let us determine another scattering matrix S' based on a new

reference resistance at port i, R;, given by

R. = R

i di (3.55)

where Rdi is determined by (3.54). All other reference re-
sistances remain the same as those for S. Therefore, the
port reference conductance matrix G' corresponding to S' has

the property

Gi.=G.,. j=1,2,....n 31 3.56a
ii Tty ] s ( )

9]
I

ii l/Rdi (3.56b)
The scattering matrices S' and S describe the same coupling
network, hence S' has the decomposition

'

L
S =EM F (3.57)
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where F, or more specifically N, remains unchanged from
(3.51). The matrix M' is specified by the submatrix K

which can be determined as follows:

1 1 1 T __1 1
K = (6 +Ng N ) N, (3.58a)

where
] t 1

& =G+ 6 (3.58b)

1]
(%}
+e
[}

Port i of the new adaptor determined by S' will be reflec-
tion-free. In order to maintain the compatibility condi-
tion, a similar process must be carried out with the inter-—
connected network, that is, the new scattering description
based on the changed reference resistance (at the intercon-
nection port) must be determined.

The procedure described above can be utilized to ensure
that, at each port-interconnection of adaptors, one adaptor
has that port reflection-free. It must be emphasized that
the modifications entailed in this procedure do not affect
the linear behaviour of the cascade realization as viewed
from the output.

The reflection-free condition places constraints on the
entries of the K matrix. Suppose the matrices N and K are
of dimension txg . With regards to the form specified in
(3.51), it 1is easily shown that if port 1 is one of the

first & ports, S.

ii= 0 requires that

L n_. kri =1/2 (3.59)
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where nri and kri are entries of N and K, respectively. Al-
ternatively, if port i is one of the last t ports, Sii= 0
requires that

. kir n,. = 1/2 (3.60)

As will be seen later, these equations become useful when

considering coefficient quantization.

3.7 BASIC ADAPTORS FOR MINIMAL RECIPROCAL FILTER SECTIONS

3.7.1 The Quantized Adaptor

The DWD synthesis technique yields digital filter designs
based on n-port adaptors. The design algorithm essentially
assumes infinite precision representation of the adaptor
coefficients. However, for practical realizations it is
necessary that these coefficients be quantized to a finite
accuracy.

Nominal adaptor designs are described by a constant scat-
tering matrix, say §O. We shall assume that wave variables

are ordered such that we may partition as follows

by E
b=|b, a=|a (3.61)
b¢ a

where the subscripts R, L, and C identify those ports to
which sources and sinks, delays in series with inverters,
and delays are connected, respectively. As discussed earli-

er, §o and the corresponding diagonal conductance matrix Eo

satisfy the equation
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T
g S0 S 7 & (3.62)

Furthermore, we have shown that §o can be specified in terms

of submatrices, that is

S =pTF M F P (3.63a)
~0 — -0 -0 —0 —
where
UN U
F = o M = (3.63b)
-0 0 U —0 2K U
— o —o —

Let us consider the entries of §O and Ko to be the coef-
ficients of the adaptor. This is the same approach taken by
L& [30], and Martens and L& [31]. OQuantization of the en-
tries in N, and K  yields the matrices N and K, respective-
ly. The submatrices N and K determine a quantized adaptor

described by a scattering matrix S where

s=P EMEP (3.64)

and the matrices F and M have the same form specified by
(3.63b) wifh §o and 50 replaced by N and K, respectively.
The independent entries in ﬁo and 50 do not, in general,
specify a canonic set of parameters. Consequently, S no
longer satisfies an equation such as (3.62) for a diagonal
port conductance matrix. However, it is always possible to
determine a symmetric positive definite matrix, say G, such

that
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Since S is very "close" to §o’ we can eXpect G to be "close"

to 90' In fact G is generally near-diagonal, that is, off-

diagonal terms are much smaller in magnitude than diagonal
terms.

We may express S in the form that displays the eigenva-

lues (see (2.40)), i.e.

s=p'TaT! P (3.66a)

where, given that N is of dimension txg%,

u-Nk N U, 0

T = A = (3.66b)
K u 0 U

Substituting (3.66a) into (3.65), we obtain the equation

( ET A -J.p )T

=
=
=
=
|
j—
it

G

or

Acrpgr TyA=T Per T (3.67)

Assume a block diagonal PGP matrix that is partitioned con-

formable with the T matrix, i.e.

PGP = = (3.68)
o &
Then
w-kdD g - e w-y o og T
T'PGP T= TEgk
| ng - B -G K NG N .G
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To satisfy (3.67) the off-diagonal terms in (3.69) must be

identically zero. Therefore we require
T

NG (U-N K)=0 K
or
G, Q=NG, (3.70a)
where
-1
QQE(E- T&) (3.70b)

It follows that any gz and Et satisfying (3.70) also define
a G matrix that satisfies (3.67) and thus (3.65). 1In other
words, solutions to (3.70) are also solutions to (3.65).

In (3.70), the unknown quantities are the elements of gﬁ
and G,. Given that the square matrices G, and G, are of di-
mension £x2 and txt, respectively, there are 22 + t2 unknown
quantities that must be determined. 1If we constrain our-
selves to only symmetric solutions, the number of unknowns
is reduced to 2(2+1)/2 + t(t+l)/2.

The matrix equation in (3.70) can be expressed equiva-
lently as a system of ¢t homogeneous linear equations. For
symmetric ER and -gt there are more unknowns then linear
equations with the consequence that the system is undeter-

mined. This generally allows us to find solutions in which

some off-diagonal terms in G, and gt are exactly zero.
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3.7.2 First-Order Sections

The nominal n=-port adaptor corresponding to a first-order
section designed via the DWD technique is described by a 3x3
scattering matrix. The decomposition in (3.63) invariably
yields adaptor realizations that are equivalent to the
three-port series or parallel adaptors introduced by Fett-
weis [15]. The series adaptor realizations employed in the
examples presented within this thesis have the following

structure:

T U
N =[1 1], K= (ki5)on » P = (3.71)
U 0
=2 -
It can be shown that if port 1 is reflection-free kll= 1/2,
and if port 2 is reflection-free, k21= 1/2. The symbol for
this adaptor is shown below.
b3i ?aa
81 O —<0 2,
b, O—e H—>—o0 b,

The stroked output indicates that in this case, port 2 is
reflection-free. The adaptor coefficients are all contained
in K and they ave canonic in number. Therefore, the quan-
tized adaptor always has a diagonal reference conductance
matrix associated with the adaptor scattering matrix. That
this is true, is easily demonstrated through (3.70). Assume

that the conductance matrix has a diagonal form with
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G, = diag[ g, g 1 Gy = diag g ] (3.72)

The matrix Q, defined in (3.70b), will be of dimension 2x]

and can be represented by
Q= (3.73)

Equation (3.70a) can be rewritten as

Q=6 Ng, (3.74)
Substituting (3.72) and (3.73) into (3.74), we obtain
= (3.75)
921 g3/8)

Clearly, (3.75) can always be satisfied for arbitrary en-

tries in Q and therefore diagonal solutions for Ez and gt
always exist. Accordingly, one can always determine a diag-
onal G to satisfy (3.65).

Similar results hold for the parallel adaptor. We do not

discuss them here.

3.7.3 Second~Order Sections

The reciprocal second-order sections designed with the DWD
algorithm are based on a four-port adaptor. The decomposi-
tion in (3.63) invariably yields adaptor realizations that
are at most, a variation-of the standard wD adaptor for a
Brune or Darlington C section [31]. One general adaptor re-
allzatlon that may be obtained via the DWD approach has the

structure specified below.
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- - i

T
= , K= (k..) , P =
L j)2x2 0, (3.76)

o

Nominal WD filter designs based on this adaptor can also be
derived by conventional methods, from an analog reference

filter with the structure depicted in Fig. 3.2.

L
R
S _‘C n:i
E RL

O 0
\9, ~J

Figure 3.2: Brune reference network.

If port 1 of the adaptor specified by (3.76) is to be re-

flection—free, the entries in K must satisfy the following:
kg + k12 = 1/2 (3.77)

Similarly, if port 2 is to be reflection-free,

k + nk = 1/2 (3.78)

21 22

The symbol for this adaptor is shown below.

b3 23
a; o—» fme—Q a2
blo._+-- v | S ®; b2
b a
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In general, the quantized adaptor scattering matrix S
will not satisfy (3.65) with a diagonal G matrix. To see

this, assume a diagonal solution exists, that is

(8]

g-t = diag| g5 &, ] —C-;-SL = diag| 835 8, ] (3.79)

The matrix Q, defined in (3.70b), will be of dimension 2x2

and may be represented as

% 2
Q- (3.80)
921 922
Equation (3.74) becomes
;95| |8sx/81 /g
iy y (3.81)
921 %22 3782 MB4/8

There are only three independent conductance ratios. How~
ever, 1in (3.81l) four equalities must be satisfied. From
(3.81) we can derive the following constraint on the en-

tries of Q:

q q
n—2bL - 11 (3.82)
97 92

Utilizing the definition for Q, (3.82) can be rewritten as

kll ( k22 - det K )

n = {3.83)
k12 ](21 + det K ( k12 + ](21 + k22 )

where detK designates the determinant of K. In general,
(3.83) is not satisfied by the quantized parameters and thus
a diagonal solution for G does not usually exist.

Solutions can be found with the following form:

_G_t=d1ag[ g5 g2] , §£= (3.84)




We can show this by again considering (3.74), i.e.

i1 2 (85 + 8578y (8, * 8,)/¢

{3.85)

91 95, (g5 + ng))/g, (ng, +g)/g,
There are now four independent ratios of conductances, en-
suring that (3.85) can always be satisfied for arbitrary en-

tries in Q. Solving (3.85) yields

f1_ %1t %2 (3.86a)
2 4y, * qq,

g3 _ (n"l) Clll q21 + n det Q_ (3 86b)
gz (nqlz + qll) (n'l)

g4 (n-1) 55 dyy * det Q (3.860)
g, (A, +qp) (0-1)

8o _ M1 912 T 911 92 (3.86d)
gz (HQIZ + qll) (1’1*1)

The conductance matrix for this adaptor is given by

T : o
G=P (Qg*gt)g‘g.t“*gg (3.87)

Similarly, one may show that solutions for G can be ob-
tained with the alternate form
g1 go .
G, = \ Gy = diag[ g5, g, ] (3.88)
go g
The conductance ratios, given in terms of the entries of 0,

are then

g1 ) (n-1) q5y q,, + det Q (3.89a)

E_Z- © ndet Q + (n-1) 417 955
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g3 _ (nq21 * qll) det Q (3.89b)
g5 n det Q + (n-1) 911 97
84 _ (o * 9y) det 2 (3.89¢)
g, n det Q + (n-1) 417 91-
R Y R VIS (3.894)
g2 n det Q + (n-1) qll q12

3.7.4 Fourth-Order Sections

Minimal reciprocal fourth-order WD sections will employ a
six-port adaptor. The DWD technique can be used to obtain
adaptor designs, or alternatively, a wave adaptor derived
for the standard Darlington D section [30] may be employed.
Note that for this higher-order section, a large variety of
WD adaptor realizations (i.e. analog prototypes) exists.
This follows from the discussion of Subsection 2.1.2; in the
fourth-order case, it is possible to apply a variety of non-
diagonal transformations to an initial WD adaptor design and
thus obtaiﬁ many significantly different adaptor realiza-
tions.,.

One adaptor realization obtained with the DWD algorithm,

has the following general form:

1 1 0
T 0 Y
= = =7 7 3.90
N 1 1 1|, K (kij)SXS , P 0 o ( )
-3 -
1 n
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Here again, the quantized adaptor scattering description S
does not usually satisfy (3.65) with a diagonal G matrix.

However, solutions for G can be found where

&) 812 9 &4 8045 8046
S =) 812 8 01 So =] 8oas &5 €056 (3.91)
0 0 83 Bod6  Bose 8

This may be demonstrated by same methods employed in the

previous sections. The matrix G is then given by
g==§{-+§% (3.92)

3.7.5 Wave Digital Filters Based on the Jaumann Structure;
The Fifth-Order Case

Fettweis, Levin, and Sedlmeyer [19], and Nouta [20] have de-
rived WD adaptors for the symmetric lattice, and Jaumann
structures, respectively. The Jaumann structure [47), one
form of which is depicted in Fig 3.3b, is a well known loss-—
less two-port equivalent of the symmetric lattice (Fig 3.3a)
and can be used to realize symmetric networks (i.e. networks
with the property H(s) = -0H(-s)). It is known [53] that
filter networks exhibiting a Butterworth, Chebyshev, inverse
Chebyshev, or elliptic frequency response of 0dd order will
be symmetric in the matched case. The Jaumann structure 1is
therefore suitable for realizing filters with this large

class of transfer functions.
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ZZZ
Z )
o {1 0 -1
O— ——0
° | ° o °
Z

(a)

(b)

Figure 3,3: (a) The symmetric lattice. (b) The Jaumann
structure.

Figure 3.4:

A fifth-order reference filter with the Jaumann

structure,

A nominal n-port adaptor description for the fifth-order

(Jaumann) reference

specified by

1 -1

T
ﬁo =1 -1
1 1

and

network represented in Fig. 3.4, 1is

0 o0
o U

1 ol , P = (3.93a)
~ |u, o
0 1 Y% o
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T -1
L (9¢0+ &Jg%aﬁo ) &3§£o (3.93b)
where
Eto = dlag[ 1) 1’ l/Ll’ l/Lz ] (3.93C)
Q%O = diag| 1/L3, Cl’ C2 ] (3.934)

Given knowledge of Eo' a nominal adaptor design follows di-
rectly. The same results can also be obtained using the DWD
algorithm. The form of ﬁo imposes constraints on the en-

tries of 50, that is, given

Eo = (kij)4x3 (3.94a)
we find
ki1 = “kyy ki =~k kjz = kyg
i ) (3.94b)
kzg =0 kgyp = 0 kgp = 0

The coefficients in Ko must be quantized to a finite preci-
sion yielding the matrix K, which with N = ﬁo and P, deter-
mines the quantized adaptor design. If the entries in K re-
tain the form specified in (3.94b), one can show (Appendix
B) that the adaptor scattering matrix S satisfies equation

(3.65) with a matrix G of the form

6=¢6, g, (3.95a)

G, = diag[ g, 85, 85, 841, Gy ={¢g, g¢ 0 (3.95b)




Chapter 1V
NONLINEAR STABILITY OF WAVE DIGITAL REALIZATIONS
WITH NEAR-DIAGONAL REFERENCE CONDUCTANCE

MATRICES
In Chapter III we developed the DWD synthesis method for de-
termining minimal reciprocal WD filter designs based on
pseudolossless n-port adaptors. It was demonstrated that
when the entries of N and K are chosen as the adaptor coef-
ficients, these nominal WD designs will generally be nonca-
nonic in multipliers with the consequence that reference
conductance matrices associated with quantized adaptor scat-
tering descriptions are usually nondiagonal. Clearly these
filter sections are not conventional WD structures and thus
the stability criterion described in Section 2.5 does not
apply.

Moon [54] has shown that for a special class of filter
structures, a near-diagonal quadratic form can suffice as a
Lyapunov fuhction. In this chapter we propose a general
strategy, motivated in part by the concepts presented in
[54], that may be employed to ensure the stability of fil-

ters based on the adaptors introduced in Chapter III.
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4.1 THE CONCEPTS OF PSEUDOPOWER AND STORED PSEUDOPOWER
EXTENDED TO WAVE DIGITAL STRUCTURES WITH NONDIAGONAL
CONDUCTANCE MATRICES

Consider a quantized filter section of the type introduced
in Chapter III. The n-port adaptor corresponding to this
section is described by a scattering matrix, say S, which
has a reference conductance matrix G associated with it.
The matrices S and G satisfy the relation §T§§=g. Assume S
is defined such that the wave vectors can be partitioned in

the familiar manner

b a
-R R

b = . a-= (4.1)
2p 2y

where the subscripts R and D identify those ports connecting
sources and sinks, and delays, respectively. We shall con-
sider only those adaptor realizations for which there exists
a port reference matrix G that is block diagonal with re-
spect to the source and sink and delay ports, i.e. when G is

partitioned conformably with the wave vectors

G 0

_R —

G = (4.2)
0

8 5
The matrix G is also assumed to be positive-definite and
symmetric.

Further assume that the ports corresponding to the delays

are ordered such that we can partition as follows:

—C & -0 QC
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The subscripts L and C differentiate between those ports
that have a delay with and without an inverter connected in
series, respectively. The polarity matrix, when partitioned
conformable with QD, is then

-U

L= (4.4)
0 v

o

Similarly, we can distinguish between the two ports connect-

ing sources and sinks, i.e.

! e c -5 8012
R xR, 2R (4.5)
2 2 Eo12 &
A general linear filter section is represented in Fig. 4.1.

Note that the inverters are now placed after the delays.

agpm) ED(n)

[N >

CLD
—

b, (n)

2R gy =
L
= N "4

Figure 4.1: A linear wave digital filter section based on
an n-port adaptor with a nondiagonal
conductance matrix.

Let us extend the concepts of pseudopower and stored
pseudopower to WD structures with nondiagonal port reference

conductance matrices. The pseudopower ps(n) stored in the
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delays of a general filter section (Fig. 4.1)

in the time
interval (n,n+1)

is defined by

Pg(n) = by(n) G by(n) (4.6)
analogous to (2.53).

Clearly, ps(n) is a positive definite
quadratic function.

The increase in pseudopower at the nth
time instant is given by

Apg(n) = pg(n) - pe(n-1)

(4.7)
Since EQD(n) = QD(n—l), we may also write
T .
Apg(n) = by(m) Gy by(n) - (I a,(n) ) 6, L a,n)
or equivalently
Ap.(n) = bi(n) G. b.(n) - at(n) G. a_(n)
Pgin) = 2ptn) by Dy Y 2p &y
T
-epm) (ZGyZE -Gy ay(n) (4.8)
The pseudopower absorbed by the adaptor N at the nth time
instant is defined as
T T
py(m) =a’ (n) Gan) - b (n) Gbn) (4.9)
in analogy to (2.56). Introduce the matrix €p where
o 2g,
=Gy~ LEL=| (4.10)
26, 0

Utilizing (4.9) and (4.10), (4.8) can be rewritten as

T
Apg = Py *

+§-R§-R§-R (4.11)

T T
8 £ 8 - b & by
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where in order to simplify the notation, quantities are no
longer expressed explicitly in terms of the discfete—time
variable n. By assumption, the adaptor scattering matrix
satisfies the relation §T§§ = G. It is easy to verify that
this implies Py is identically zero or equivalently, that N
is pseudolossless. Therefore, in the absence of outside

signals (ap= 0) (4.11) reduces to

R

T
Aps-a. €y 8y - ER G

a, Sp ER (4.12)

From (4.12) it is evident that Aps is an indefinite quadrat-
ic function. Consequently, the stored pseudopower Pg cannot
be utilized as in Section 2.5, to prove the stability of the

filter section.

4,2 PSEUDOPASSIVE WAVE DIGITAL FILTERS

The stored pseudopower, defined as in (4.6), is not a suita-—
ble function for proving the stability of the general linear
system depicted in Fig. 4.1. A similar conclusion may be
drawn with respect to the subsequent nonlinear system that
results from inserting quantizers before the delays of the
linear filter. 1In this section we introduce an alternate WD
realization for which the stored pseudopower is a suitable

function for proving stability.
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4.2.1 The Pseudopassive n-Port Adaptor

Consider a modified linear filter section in which a linear
multiplier of value o is introduced into all the reflected
wave branches of the pseudolossless adaptor N (Fig. 4.2).
The modified n-~port adaptor NP will have a scattering de-
scription §P' Clearly §P is related to S, the scattering

description of N, by the relation
§P==a S (4.13)

The matrix §P satisfies the equations

T Y.
Sp 68, =0° G (4.14)
sTe=65s (4.15)
Sp 6=65 .

where G is the port reference matrix corresponding to N.

Figure 4.2: A linear wave digital filter based on a
strictly pseudopassive n-port adaptor.
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Constrain the value of the multiplier as follows:
0<a<1l (4.16)

(We will see later that o is normally chosen very close to

unity.) It follows from (4.14) and (4.16) that

T
Sp 6 Sp <6 (4.17)

Let G be the port reference matrix associated with S Then

PQ
from (4.9) and (4.17) it is evident that the n-port adaptor

NP is strictly pseudopassive. The reflected wave vector

corresponding to the passified adaptor N_ is denoted by Ep

P

and is related to the reflected wave vector b of the adaptor

N by
53= ab ‘ (4.18)

(The incident wave vector a is common to N and NP.) The

vector Ep may be partitioned conformable with b, i.e.

b b b
2Rp | 2w | Prp

b, = . bop = ) bop = ) (4.19)
2pp 2CP 2p

The pseudopower pSP(n) stored in the delays of the passified

filter section in the time interval (n,n+l) is given by

Pgp(m) = b (n) Gy b () (4.20)

h

The increase in the pseudopower at the nt time instant is

then

Bpgp() = by (m) G byp(m) = (Z 2yt )T 6, L ay(m) (4.21)
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The pseudopower pNP(n) absorbed by the adaptor NP at the nth
time instant is given by
Pyp(m) = a'(n) G a(n) - bi(n) G b, (n) (4.22)
NP < 22 - - =P .

From (4.21) and (4.22) we obtain a result similar to (4.11)

+ ;Te a_. - bT

T
“Psp = Pyp * 2 €p ap - bpp Gp bpp + 35 G ap (4.23)

where €p has been defined earlier. Substituting (4.18) into
(4.22) yields a new expression for the absorbed pseudopower,

l.e.

or

=p+ 0 -a)pTep (4.24)

where Py is the pseudopower absorbed by the adaptor N. Con-

sidering (4.24) in (4.23) yields

Pgp = Py - (- bl G by gy - by Gy by eoan 6 ag (4.25)

Given that. the n-port adaptor N is pseudolossless, (4.25)

becomes under zero-input conditions

- 2 T T LT
bogp = -(1 - @) b Gb +aje a - by G by (4.26)

Comparing (4.26) and (4.12), it is evident that the expres-—
sion corresponding to the passified linear filter section
has an additional negative definite term. If the contribu-

tion of this term ensures the condition
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<« T

bpgp < ~bpp G bpp (4.27)

then the stored pseudopower Pgp can be used to prove the
stability of the linear system and possibly the stability of
the related nonlinear filter.

For reasons that will be apparent later, we introduce the

matrix 2 defined by

C oL €012 (4.28)
—R .
8,12 O
where go12 is the off-diagonal term of QR’ Also, we intro-

duce the function F(n) where

E A T T

a (4.29)
2
bpgp = F - I (bi, - al)g. (4.30)

where gi is the ith diagonal term in ER (see (4.5))., Clear-

ly the condition
F(n) <0 for all n (4.31)
is sufficient to ensure that under zero-input, APSP is neg-

ative as long as the output remains nonzero.

4,2.2 Cascade Realizations

Consider the cascade connection of K filter sections of the

type depicted in Fig. 4.2. The wave vectors and the conduc-
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tance matrix corresponding to the ports of the kth pPseudo-

passive adaptor NPk that connect sources and sinks are de-

k k
noted by ERP r &, , and G

R Gr' respectively, where
k k k k
L bp L ! 8512
b - a = §.R= (4.32)
—RP K —R K K K
bop 2 8012 g2

The adaptors corresponding to the kth and k+lSt filter sec-

tions are interconnected according to the requirement (F

ig.
4,3)
k k+1
= 4.33a
bZP a; ( )
k k+1
= 4.33b
a, blp ( )
| bk 'ak ' k+1 | k41
2pp =) pp &
k k k+1 k+1
= 5p =) 2yp
e — > > e
Nk Nkﬂ
k k k+1 k+1
=P P 2 L2} P )
I - e~

Figure 4.3: Interconnection of adaptors.

Since the port reference matrix ng is not generally di-

agonal, an individual reference conductance (resistance)

cannot be assigned to each interconnection port of Npk. The
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compatibility condition that was required with conventional
WD sections, i.e. (2.21), does not apply here. Let us de-
fine an alternate compatibility condition for the port ref-

k

erence matrices gR r k= 1,2,...,K; at an interconnection

port we require (Fig. 4.3)

k 1
g =gy k=12, K1 (4.34)

If the off-diagonal terms in G are of zero value, condi-

k
R
tion (4.34) becomes the same as that for the conventional WD

sections.

Let the pseudopower stored in the delays of the kth cas-
caded filter section in the time interval (n,n+l1) be repre-
sented by pspk. The pseudopower stored in the delays of the

complete filter in the time interval (n,n+l) is then
Pp (4.35)

The increase in the stored pseudopower at the nth time in-

stant is given by

Kk
ApST = kzl Apsp (4.36)

or, utilizing (4.30), by

K K 2
K 2 k2, k .
bpgr = T BN T T ()" - e Y (4.37)
k=1 k=1 i=1

h

where Fk is the function F defined for the kt adaptor.

With the constraints (4.33) and (4.34), the exXpression in

(4.37) reduces to
K

Bpep = L
ST k=1

kK |l 2 1, oK. 2 K_ 12 1 K2 K| 4 1g
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It follows from (4.38) that if we guarantee
F' < 0 k=1,2,...,K (4.39)

then under zero-input conditions, APST will be negative for

a nonzero output.

4.2.,3 Linear Stability

Consider the function F corresponding to an arbitrary filter
section of the type depicted in Fig. 4.2. In general, we

wish F to satisfy the condition
F<O (4.40)

Utilizing the definition in (4.29), the constraint in (4.40)

can be reexpressed as

- e B O ey s by by R g g 0 (4.4D)
or as
S R e e R R R
'9§1>~R?-RP+?—§5R3RSO (4.42)
where
Ny +n, = 1 ™ > 0, n, >0 (4.43)

The first two terms in (4.42) are negative definite while
the other terms are indefinite. Since N is pseudolossless,

we have the property
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b'ob-2a"Ga (4.44)

Employing this relationship in (4.42) yields

2. . T T
-0y b Gb - bpp e by
+ aT [ (e, + ) -n,(1 - az) Glax<o (4.45)
= =R =D 2 =4 ==
or, applying (4.18),
2 2
(1 -a“) . T LT (1 -05)
T2 bpp Sp Bpp = Bpp L Ex + My 2 Sp 1 bp
+aT[(€ $e)—n(l-oc2)G]a<0 (4.46)
= R =D 2 =4 ==

Equation (4.46) is satisfied if the following are true:

>0 (4.47a)

n, (1-o% - (ep v gp) 20 (4.47b)

that is, the matrices defined in (4.47) are positive semi-
definite. Assuming (4.47) holds, we then have

1 -a%) T

172 bop &y bpp (4.48)

F<o-n

which satisfies (4.40)

If (4.48) holds for every filter section in a cascade re-
alization, ApST will always be nonpositive. Moreover, ApST
will be negative as long as any of the signals incident at
the delays of the filter remain nonzero. By Theorem 2.2,

the linear filter will be completely stable.




94

4,2.4 Nonlinear Stability

Consider the filter section of Fig 4.2, implemented with fi-
nite-word-length arithmetic. Quantizers are introduced be-
fore the delays in the linear system, resulting in a nonli-
near filter realization (Fig. 4.4). The reflected wave

v
vector corresponding to the nonlinear adaptor NP is denoted

=p°*

| T T T
| 2p bCXQb '%

Dk > _“3.{>:‘£_Q4:’LL
| & S c T
Bep Q bee ;qhk 2y Z

~ N
]}L- |
N |
! Np

Figure 4.4: A filter section based on a pseudopassive
adaptor and implemented with quantizers.

The stored pseudopower gSP and the increase in the stored
AV . .
pseudopower APSP for the nonlinear filter are given by, re-

srectively,

" AT "
Psp = Bpp Gp Bpp (4.49)
and
7" T N T
Bpgp = bpp Gy bpp - (L2 ) GyZay (4.50)
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Similarly, the pseudopower absorbed by the nonlinear adaptor

is given by

(4.51)

From (4.50) and (4.51), we obtain a result analogous to

(4.30), i.e.

2
Y 2 2
bPgp = Foo@ (b -a]) g (4.52)
i=1
where
A T T " T
F=-Pyp * 2 £ 2y - Bep &g bpp * 2p Ep 2 (4.53)

A cascade of K of these nonlinear filter sections will have
a total stored pseudopower gST and the increase 1in the

stored pseudopower is given by

vk

pSP (4.54)

K
g = I 0
k=1
where the superscript k is used to identify quantities cor-

responding to the K th

section. The expression in (4.54)
will reduce to a form similar to (4.38) (the constraints in

(4.33) also'hold for the quantized variables), i.e.

K
v ko [a1 2 1 Ak 2 K 1.2 1 K2 K

]

Clearly, we desire the condition

¥ <o k=1,2,...,K (4.56)

!
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The function F corresponding to a nonlinear adaptor NP

obviously satisfies the relation
F=F+ (¥-F) (4.57)

where F has been defined earlier for the linear subnetwork
NP (Fig. 4.4). Given that (4.48) holds, F is negative as
long as the linear response EDP remains nonzero. According-

ly, if we guarantee that for all nonzero EDP

¥-F<-F (4.58)

Y
then F will also be negative for nonzero bpp. Since signal

Y
quantizations within N, will always be made such that the

following is true:

~
byp =0 = B, =0 (4.59)

n ¥
F will also remain negative for the condition bpp* 0. If
(4.58) holds for every section in a cascade realization,

then

ok . n
EDP # 0 for any k, k = 1,2,...,kK = ApST <0 (4.60)

and by Theorem 2.2, the cascade realization will be com-
pletely stable.
Assuming (4.48) holds, (4.58) is satisfied if, for all

nonzero EDP'

(4.61)
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. AY)
Utilizing the definitions for F and F, we may reexpress the

condition in (4.61) as

o AT n T (1 -07) ,T
Pnp * Pap ” Bep Ep Dgp * Bpp € bpp <My ¥ bpp Sp Bpp
or
T N T T "
bpp Sp Lpp = Bpp Gp bpp * Bpp (G - £R) By
2
T {1 - o) T
~bpp (Gg - ) }ERP(”lT?DPQD?DP (4.62)
Note that gR - Ep is a positive definite diagonal matrix.
If quantizations are performed such that
AV A
| Bepyl < gy | i=1,2 (4.63)
then
T Y T
- - - .64
bpp (G - Eg) Bpp - bpp (Gg - Ep) bpp £ 0 (4.64)
The constraint in (4.62) becomes
1 a - o) bl G b -B 6 B >0
[1+m 2 J Byp Gy bpp - bpp S Bpp (4.65)
Define the scalar quantities Y; and Y, by
Y. =1 _(_1___0@ (4.66a)
1 1 2 *
o
Y, =N (]_ _az) (4.66b)
2 2
Equations (4.47) and (4.65) can then be expressed as
Yy Gyt ER20 ) (4.67a)
- H .67b
Y, G (£R+§_D)20 (4.67b)
T T C T
(1« ) g G by - By 6 By > 0 (4.67¢)
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The analysis presented within this section has shown that

if the constraints (4.63) and (4.67) are satisfied for each

nonlinear filter section in a cascade realization, then the
overall filter will be completely stable.

4.3 NONLINEAR STABILITY: BOUNDS ON THE ENTRIES OF THE
CONDUCTANCE MATRIX

In Section 4.2 we introduced a general filter section based
on a passified n-port adaptor. It was shown that the nonli-
near stability of the filter section or a cascade of such
sections is guaranteed if the constraints (4.63) and (4.67)
are satisfied. 1In this section, the requirements specified
by (4.67) are expressed in terms of constraints on the en-

tries of the port conductance matrix G.

4.3.1 General Bounds

Consider first the requirement of (4.67a), that is, the ma-

trix YlER + €, be positive semi-definite. Utilizing the

R

general definitions for the matrices £R and QR, we obtain

Y, 8 (v,+1)g

Y.G. + €. = 171 1 "ol2 (4.68)

=R (v, +1)g Y8

‘ 1 0l2 1=2
A symmetric matrix is positive semi-definite if all of the
principal minors of the matrix are nonnegative [51]. There-
fore, the above matrix is positive semi-definite if the fol-
lowing are true:

Y8, 20, Y8, 20 (4.69a)
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2 22

The constraints in (4.69a) are always satisfied, since by
assumption, gR is positive definite. Therefore (4.67a) is

satisfied if (4.69b) holds, or equivalently

/2

1
(g g,) L+ oy, (4.70)

185121 -

The requirement (4.67b) can be expressed as the two sep-

erate constraints

Y, ER - ER >0 (4.71a)
Y, QD Ty 20 (4.71b)

The condition in (4.71a) 1is similar in form to that of
(4.67a). Accordingly, (4.7la) is satisfied if the following

holds:

1/2

(gy8,) -, (4.72)

18612 Yo

The conditions specified by (4.71b) and (4.67c) involve
the submatrix Gp. The form of G, 1s dependent on the order
of the realization. Results will be derived for the general
second and fourth-order filter sections. We also consider
the special fifth-order section intrcduced in Chapter III

that is based on the Jaumann structure.




4.3.2 The Second-Order Case

A second-order section of the type introduced in Chapter
ITI, will have a 2x2 ED matrix associated with the n-port

adaptor. Let gD have a form consistent with (4.3), i.e.

_| 83 8034
Gy = (4.73)
L8034 B4

By assumption, I = diagl[ -1, 1 1. Therefore, by (4.10)
[ 0 2g
34
£, = © (4.74)
| 28034 O

Utilizing (4.73) and (4.74), we obtain
Y2 2n T =p 2 (4.75)
(Yy=2)8,34 Y284
Condition (4.71lb) requires that this matrix be positive

semi-definite or, applying the arguments used earlier, that

eguivalently

( 85 8y y1/2 2 -, (4.76)

86341 I

Next consider condition (4.67c) for the second-order
case. Up to this point the output of a quantizer with input
X has been denoted by ;. Alternatively, the output of a
quantizer can be represented as x+e where e rupresents the
error introduced by the quantization operation (Fig. 4.5).
Assume henceforth that quantizers implement a signal modifi-

cation scheme that has the following properties (with re-

spect to Fig. 4.5):
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X X+

Figure 4.5: Quantizer model.

sgn{ e ) = -sgn( x ) (4.77a)

sgn( x+e ) = sgn( x ) (4.77b)

Note that this quantization characteristic satisfies the
conditions specified by (4.63). The condition in (4.67c) is
satisfied for the second-order section if, for all nonzero

X

T AT LA
(L+y)x Gyx-X Gyx>0 (4.78)

e

) Y
Let the vector x be represented as x+e where e is the error

vector. The expression in (4.78) becomes

(1+‘Y1)£TQD2_(_-(£+S)T§_D(£+E)>O (4.79)

Given (4.77), (4.79) is true if the entries of ED satisfy

the following criteria

1/2
(g5 84 ) / 1+, &3 84

_— 1 > ——2, , > 2, 42 (4.80)
18634! Yy 18534 18534

This reéult is derived in Appendix C. It follows that the
constraint in (4.67c) can be replaced with those in (4.77)

and (4.80).




4.3.3 Block Diagonal Conductance Matrices

In some instances the matrix ED may be block diagonal. Con-

sider for example,

G, = diag[ G

S, Gysevvy Gy ] (4.81)

10 = N

Examining the constraint specified in (4.71b), it should be
obvious that if (4.81) is true, then (4.71b) can be replaced

by the equivalent requirement

Yy gi"Ei >0 i=1,2,...,N (4.82)

where

E. =G, - Z. G. I, (4.83)

-1 i - =i =i

and I has been partitioned conformably with G, i.e.

DI

I=diagl I, Zy0en, Iy ) (4.84)

Also consider the requirement of (4.67c). If (4.81) 1is

true, then (4.67c) is satisfied if, for all nbnzero X,

>0 i=1,2,...,N (4.85)

[=o

T AT
1+ Yﬂ X Eﬁ X - X 91

If the submatrix gj is diagonal, then by (4.83) Ej= 0 and
(4.82) is immediately satisfied for the case i=j. Further-
more, (4.85) will also be satisfied for the case i=j since,

by assumption, the signal quantization characteristic satis-

fies (4.77). Therefore, the diagonal submatrices of ED au-
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tomatically satisfy the stability constraints and need not

be considered.

4.3.4 The Fourth-Order Case

A fourth-order section of the type introduced in Section
3.5, will have a 4x4 G, matrix associated with the n-port

adaptor. The solution for ED derived in Chapter III has

the form
Gp = diag[ G;, G, ] (4.86a)
where
&4 €045 8046
G = 8 Gy =18us & 8056 (4.86b)

8046 Bose B¢

The polarity matrix for this filter section is given by
I = diag[ -1, -1, 1, 1]
Since G, is diagonal, we need only consider the matrix G,.

Utilizing the definition (4.83), we obtain

Y28, (Y;-2)8,45 (Y2846
Y2 G - 8y = | (s Y285 "28056 (4.87)
(Y2"2)8046 Y2856 Y286

To satisfy (4.71b) the above matrix must be positive semi-
definite. Let us express the matrix as the sum of three ma-

trices, that is
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Y2 &~ g My v My 4 (4.88a)
where
M= (ry-2)g e (v,8:)/2 0
0 0 0
MQ = 0 0 0 (4.88b)
0 0 0
Mp =0 (v,8:)/2 Y58056
0 Y5856 (v,8)/2
If Ml’ ﬂz, and §3 are each positive semi-definite, then the
matrix in (4.87) will also be. Employing the same arguments

applied in Subsection 4.3.1, we find that (4.7lb) is satis-

fied if 12
(g4 85 )

'go45§

1/2
(g, 8 ) /

18546

( 8c B¢ )1/2

12056

, 22T (4.89a)
Yo

S 2@ - ) (4.89b)

> >

> 3 (4.89¢)
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Now consider condition (4.67c). We require that, for all

nonzero Xx,

=

T VT
(1+Y1)£E X -Xx §_2

, X >0 (4.90)

Given that _>5=[xl X, x3]T, introduce the following vectors:

T T

= = _ T
Xp= Uxp X1 o= 0xp x3 1 xp=[x, x; 10 (4.91)

Utilizing the definitions in (4.91), (4.90) can be reex-

pressed as

T AT Y
(L+yy) X0 Wy X5 = Xpp Wy Xy

T \T "
Y X Wy Xy - Xy Wy X g (4.92a)
T AT "
P Ky Wy Xpg - X Wy X550 > 0
where
W= g4/2 g045 W= g4/2 8046 W= g5/2 g056
8045 gs/z g046 g6/2 g056 g6/2
(4.92b)
Clearly, if for nonzero X15s Xj3s and x,5 we have
T T o 4
.(1 ¥ Yl) %2 E& X2 7 %10 ﬂ; X190 7 0 (4.93a)
T T N
(1~ Y X3 Wy x5 - X;z ¥, x>0 (4.93b)
T N n
- 4.
(14 y)) Xpg Wo Xy - X5 Wy X572 >0 (4.93c¢)

then (4.92) will also be satisfied. Furthermore, notice
that each equation in (4.93) has essentially the same form
as that of (4.78). Therefore we can apply the results de-

rived for the second-order case. Accordingly, the require-
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ment described by (4.67c) will be satisfied for this

fourth-order section if

1/2
(g, 807 200+ g e
—_— > 5 >4 5 —> >4 (4.94a)
18045 | Y1 18045 18045
1/2
(g4 8 ) / 2(1 +vq) g4 8¢
5 , >4, —2 >4 (4.94b)
846! Y1 18046 8046l
1/2
(g g, )% 20+ ) g £
—_ —_— —_— > 4 —_— 2 4 (4.94c¢)
8056 Yy 8056l 18056l

and the signal quantizations satisfy (4.77).

4.3.5 Fifth-Order Filters Based on the Jaumann Structure

The special fifth-order section introduced in Section 3.7
has a 5x5 ED matrix associated with the n-port adaptor. As

discussed in Subsection 3.7.5, a general solution for ED has

the form
90 = diag| 91’ §2, 98 ] (4.95a)
where
g g
Y _ 155 056 _
G, = diag[ g5, 841, G, = . Sz =g, (4.95b)
8056 %6
Since El and g3 are diagonal, it is only necessary to con-
sider the matrix 92' Utilizing the definition (4.83), we
obtain
0 2g
e = 056 (4.96)
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Observe that G, and £, have the same form as the matrices Sp

section.

also be applied here.

Accordingly, (4.71b) and

satisfied for this special fifth-order section if

(4.73) and (4.74)) corresponding to the second-order
Consequently the results derived for that case can

(4.67c) are

1/2
2 -
(&5 & ) > ____;Ei (4.97a)
18556 | Y,
1/2
1 + vy
(85 & ) 1 #s > 2 B s 9 (4.97b)
18656 | Y1 18656 18056

and the signal quantizations satisfy (4.77).

4.4 SIMPLIFIED STABILITY CRITERIA

Let us summarize the results developed in the previous sec-
tions. Nominal n-port adaptor designs, possibly derived via
the DWD algorithm, are described by a constant scattering
matrix that will have a diagonal port reference conductance
matrix associated with it. If the entries of the submatric-
es N and K are chosen to be the coefficients of the adaptor,
coefficient quantization genérally yields a digital struc-
ture that is no longer the image of an analog prototype.
Specifically, the scattering matrix description of the guan-
tized adaptor will be based on a nondiagonal reference con-
ductance matrix.

In Section 4.1 the concepts of pseudopower and stored
based on

pseudopower were extended to filter structures
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these quantized adaptors. However, it was shown that unlike
conventional WD realizations, the stored pseudopower cannot
be used to demonstrate linear or nonlinear stability. We
then prbposed a modified adaptor that is derived by placing
passivity multipliers in the reflected wave branches of the
original quantized adaptor. The modified adaptor was demon-
strated to be strictly pseudopassive. Furthermore it was
shown that for this class of adaptor, the stored pseudopower
can be utilized to prove the stability of the associated
nonlinear filter if certain conditions are satisfied. In
particular, for each filter section in a cascade realiza-
tion, constraints are placed on

1. the entries of the reference conductance matrix and

the value of the passivity multiplier o (see (4.67)),
and

2. the signal quantizations performed within the nonli-

near filter (see (4.63) and (4.67c)).

In Section 4.3, these constraints were interpreted as
bounds on the entries of the conductance matrix and as ex-
plicit conditions (i.e. (4.77)) on the signal quantization
characteristic. 1In this section, the bounds on the entries
of the conductance matrix are expressed in a more simplified

and practicel form.
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4.4.1 Second~-Order Sections

Let us review the results presented earlier for the second-
order section. The reference conductance matrix associated

with the passified adaptor has the form

(4.98)

In order to guarantee the stability of a cascade realization
employing such a filter section, the constraints specified
by (4.70), (4.72), (4.76), and (4.80) must all be satisfied.
Utilizing the definitions for Yl and Yo these constraints

are listed again below.

1/2
(g, g,) / 2
—L12° .. ‘s (4.99a)
186121 n, A - o)
1/2
(g 8" X o
> -1 (4.99b)
185121 n,(1 - o)
1/2
(g, 80" )
> — -1 (4.100a)
|g034| n2(1 - o)
1/2
(85 8 ) / o (4.100b)
> 1 + —— .
180341 n, (1 - u2)
g g
—3 5 s —4 50 (4.100¢)
]g034| lg034I
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As has been discussed in Chapter 1III, the G matrix

associated with the adaptor of the second-order section can

be determined with either g = 0 or g = 0, If ¢ 0,
ol2 034

ol2™
the constraints in (4.99) may be ignored and similarly if

9034~ 0, (4.100) no longer applies.

Assume 9012 0 and therefore consider (4.100). The pa-
rameters Ny and n, are as yvet unspecified and may be as-
signed values arbitrarily, subject to (4.43). It is clearly
desirable to choose these values such that the maximum value
of the bounds in (4.100a,b) is minimized. Since in general
a=]l, the constant terms in these bounds will be of negligi-
ble significance. A close to optimal choice for the values
of N1 and n, is therefore 1/3 and 2/3, respectively. The

lower bound in (4.100a) becomes

-1 € —= (4.101)

2
] 4+ 30 = < 5 > (4.102)

1 -0 1 - a

Therefore, we may replace (4.100) with the sufficient condi-

tions
1/2
(g8, ) 3 &3 84 - (4.103)
> 5 s 2 2, 2 2: g012 =0
8634l 1 -a 8034l 12634l

~ Alternatively, assume 9034~ 0 and thus consider (4.99).
Applying an argument similar to the one discussed above
yields the result that (4.99) can be replaced by the suffi-

cient conditions




1/2
(g g) (4.104)

185121
Utilizing the results in (3.86) and (3.89), (4.103) and
(4.104) can be reexpressed as, respectively,

2 2
(£5) A

P22 £
o] (o]

> 2

|(n-Da,a,, + det 9_[1/2 (4.107a)

P/Z

|(n-1)ajya,, + n det @ (4.107b)

|(n-Da)ja,, + 0 det g|'/? (4.107c)
|(n-1)a ja,, + det |!/? (4.1074)

[na,191; - 93195, (4.107e)

(The q;4 are elements of the matrix Q = K(U - ET_)_I, and n
is the coefficient in N.) It is sufficient for stability
that the parameters of each second-order section in a cas-
cade realization satisfy either (4.105) or (4.106) and that

signal quantizations satisfy (4.77).
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4.4.2 Fourth-Order Sections

For the purposes of reference, the form of the conductance
matrix corresponding to the passive adaptor of the fourth-

order section is reshown below.

- l -
g1 512
l 0
gilz__f_z_*_“__*___
| g; 0 0 0
G =
[ (4.108)
o : 0 84 €045  8o46
| 0 8045 8 8056
| C 8046 Bos6 8 |

In order to guarantee the stability of a cascade realization
employing such a filter section, the constraints specified
by (4.70), (4.72), (4.89), and (4.94) must all be satisfied.
Utilizing the same approach introduced in the previous sub-
section, these constraints can be replaced (choosing ny= 1/3

and N,= 2/3) with the sufficient conditions

1/2
(g, g )
— 172 > 3 . (4.109a)
180121 ’ 1-a
1/2
(g, g ) g g
—"4s __SL_E_ , 4 sy —2 s 4 (4.109b)
8045 | 1 - o 18045 18045
1/2
(g,8.) g g
—4 6 ——5L~3 o =4 4, 8 Ly (4.109¢)
1046l 1 - a 18046l 12546
1/2
(g 8, ) g g
— 56’ L _6 > & -4 (4.1094)

>4, 05
18056 1-aq 18556 18656l
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4.4.3 Fifth-Order Filters Based on the Jaumann Structure

The form of the port reference matrix associated with the
passive adaptor of this special fifth-order filter is as

shown below.

diag[ g1, 8,5 825 g, ]

In order to guarantee the stability of the digital filter,
the constraints specified by (4.97) must be satisfied. The
constraints (4.70) and (4.72) can be ignored due to the di-
agonal nature of ER' Using the same approach taken with re-
spect to the second-order section yields the result that

(4.97) can be replaced with the sufficient conditions
1/2
(85 8 ) 3 &5 Be

> )

> > 2 (4.111)
18056 1 -« 12656 18056

or, utilizing (B.4), with

A 1/2
= Jaylay *+ ag) - a9, (4.1131)

A |q2q5l1/2 (4.113b)

|q2q4|1/2 (4.113c)

and the q; are defined, with respect to the matrix Q, in Ap-

pendix B.




Chapter V

DESIGN OF MINIMAL WAVE DIGITAL FILTERS

In Chapter V we present a procedure, based on the concepts
developed in Chapters III and IV, for the design of minimal
WD filters. The alternatives regarding the susequent hard-
‘ware implementation of these filters are then discussed.
Lastly, three examples that illustrate the design method are

presented.

5.1 DESIGN PROCEDURE

The following steps describe a procedure for the design of
minimal reciprocal WD filters.
l. Map specifications given in the z-domain to specifi-

cations in the s-domain via equation (2.11).
Solve the approximation problem (usually with the aid
of filter tables) to determine an analog transfer
function Ha(s)= F(s)/G(s) that meets or exceeds spec-
ifications. Of course, Ha(s) must be realizable as a
reciprocal network.
Solve the Feldtkeller equation (i.e. (3.2)) for the
polynomial H(s).

Construct a normalized two-port scattering matrix

S(s) having the canonic form shown in (3.1). Derive
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the transfer matrix T(s) from S(s), and factor T(s)
as E(s)=gl(s)22(s)...2K(s) in order to obtain a WD
cascade realization utilizing the basic adaptors in-
troduced in Chapter III,
Obtain the two-port scattering matrices _i(s),
i=1,2,...,K corresponding to the transfer matrices
Ii(s),i=l,2,...,K and utilize the DWD algorithm to
derive a nominal WD section realization for each
two-port description §i(s). Each section will be

based on an n=-port adaptor described by a constant

scattering matrix §o’ or equivalently by Ng» and

P. The matrix S  satisfies the relation
where G is diagonal and positive definite.
Redefine the reference conductances such that at each
port-interconnection of two adaptors, one adaptor has
that port reflection-free. Each redetermined adaptor
is described by a new scattering matrix §O' or alter-
natively, by the submatrices ﬁo’ 50', and P. The ma-
trix S ' satisfies the relation (S ')TG

—0 o) -0
S,' is diagonal and positive definite.
Determine quantized, stable designs according to the
following steps:

. . . ,

a) Quantize the entries 1in N, and Ko' of each adaptor
to a given precision to obtain a quantized adaptor

described by S. (Note that the reflection-free

property must be maintained in the quantized adap-
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tor.) The matrix S satisfies the relation §T§§=§
where G 1is positive definite and diagonal or
symmetric and near-diagonal.

For those adaptors with nondiagonal G,. determine
the value of the passivity multiplier a that sat-
isfies the appropriate stability criteria (Section
4.4).

Passify, as necessary, the pseudolossless adaptors
to obtain pseudopassive adaptors (described by
§P=OL_S_) .

Check the frequency response of the resultant WD
cascade realization to ensure specifications are
met. If specifications are not satisfied, return
to step (a) and increase the precision of quanti-

zations.

8. A possible alternative to step (7) is as follows:

a)

Choose for each adaptor that is noncanonic in mul-
tipliers, a reasonable value of the passivity mul-

tiplier a. (The parameter a is normally chosen to

be very close to unity in value in order to mini-

mize any adverse effects on the frequency re-
sponse.)

. . . . _
Quantize the entries 1n N, and K ' of each adap
tor. For those adaptors with a subsequently non-

diagonal G, quantize to a precision that ensures

the appropriate stability criteria are satisfied.
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c) Passify, as necessary, the pseudolossless adaptors
to obtain pseudopassive adaptors.

d) Check the frequency response of the resultant WD
cascade realization to ensure specifications are
met. If the specifications are not satisfied, ei-
ther return to step (b) and increase the precision
of the quantizations or return to step (a) and
choose a value of o that is closer to unity in
value.

Scale the gquantized filter structure in order to max-

imize the signal-to-noise ratio at the quantization

points while keeping the probability of overflow
within acceptable bounds [5,6]. Scaling in WD fil-
ters is achieved by inserting the digitized equiva-

lents of two-port transformers (with turns ratio n/1

where n is a power of 2) into the signal-flow graph

[25].

Implement the filtering algorithm on a digital com-

puter or as dedicated hardware. Signal quantizations

must.conform to the constraints specified by (4.77).

For example, a quantization characteristic that im-

plemenfs magnitude truncation of underflow bits and

saturation arithmetic for overflows is suitable.




5.2 IMPLEMENTATION

The basic arithmetic operation intrinsic to digital filter-

ing algorithms is an inner product of the form
(5.1)

where X; is an input or intermediate signal variable, a;
represents a coefficient of the filter, and y is an output
or another intermediate signal variable. Implementation of

the inner product may be achieved by two basic approaches.

The most straightforward approach is to use a digital multi-

plier or adder to directly implement every multiplication or
addition operation performed within (5.1). Alternatively,
distributed arithmetic techniques can be applied. One such
technique, developed independently by Crosier et al. [55]
and Peled and Liu [56], utilizes memory devices to record
precalculated partial products, eliminating the need fér ac-
tual hardware multipliers. Another approach employing dis-
tributed arithmetic is that developed by Moon and Martens
[57]. This technique implements an inner product using only
adders, inverters and shifters,

Consider.an arbitrary pseudopassive n-port adaptor de-
scribed by S, and designed via the procedures described ear-
lier. The adaptor must be realized as a device that per-

forms the arithmetic operation

b=252
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The above operation can be expressed as the following system

of inner products:
n
b, = I S .. a. j=1,2,...,n (5.3)

where bj is the reflected wave variable at the jth port and
a; is the incident wave variable at the ith port. To imple-
ment the system in (5.3) requires as many as n2 digital mul-

tipliers. If S, is represented in the familiar form

_ _ T
Sp=as=aP FMEP (5.4)

then the required number of digital multipliers can be re-
duced to a value that is equal to the number of entries in
K, plus twice the number of entries in N that are not +1,-1,
or 0, plus the number of passivity multipliers (usually n),
subtract the number of reflection-free ports (usually 1).
In general, this number of multipliers is more than twice as
great as the canonic number. Accordingly, WD filters based
on pseudopassive adaptors of the type discussed will not be
cost-competitive with other filter structures if implementa-
tions utilize discrete multipliers.

Alternatively, distributed arithmetic techniques can be
used t» implement the n inner products described in (5.3).
That WD filters can be implemented with distributed arith-
metic is well known [57-60]. Moreover, it is recognized
that this form of implementation can compare favorably with
canonic multiplier based designs [57,60].

Utilizing the relation Sp=aS, rewrite (5.3) as
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n
b.= ¥ oS., a, j=1,2,...,n (5.5)

In order that the system in (5.5) be implementable, it is
necessary that the coefficients “Sij be finite-~word-length
binary numbers. However, it is not necessary that o and the

S be individually finite-word-length binary. We may ex-

ij
ploit this property to keep the wordlength of the products
asij at a minimum. This is best illustrated with an exam-
ple.

The value of a is generally close to unity. Consider the
case where a value for o of 127/128 is appropriate. The ma-
trix S has the familiar decomposition E?E M F P where the
only entries in F and M that are not 0, +1, or -1 are re-
stricted to the submatrices N and K. Assume the entries of
N have been quantized to be finite-word-length binary and
the entries of K have been approximated to be rational num-

bers with a denominator of 2m-127, where m is an integer.

It follows that S has the form

- L
S=17 5% (5.6)

where the entries of S, are binary numbers. The matrix Sp
is given by

S =g S = — (5.7)

Sp S= 178 5

and clearly, S, will have binary entries. Furthermore, it

should be clear that the wordlength of these entries will in
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general be shorter, utilizing this quantization scheme, than

if o and the Sij are individually finite-word-length binary.

5.3 ILLUSTRATIVE EXAMPLES

We shall demonstrate the design procedure developed in Sec-

tion 5.1 with the aid of several examples.

5.3.1 First Example

Consider the following attenuation scheme:
0.5dB > A(wT) > -0.5dB for wT e [ 0,7/10 r ]

A(wT) > 80.0dB for wT e [ 3m/10,7 r ] =9
where A(wT) is the attenuation in dB, w is the digital fre-
quency in r/s, and T is the sampling period. A fifth-order
digital filter meeting these specifications is implemented
in the Hewlett-Packard Model 3582A spectrum analyzer as a
decimation filter [62]. We wish to design a WD filter by
the procedure of Section 5.1 to satisfy these same specifi-
cations.

The tolefance scheme described by (5.8) maps via (2.11)
into the following scheme in the analog domain:
0.5dB > A(¢) > -0.5dB for ¢ e [ 0,0.15838 r/s ]

A($) > 80.0dB for ¢ € [ 0.50953,» r/s ] =7

where ¢ is the analog frequency in r/s. A standard fifth-

order CO052519 elliptic characteristic [45], frequency scaled

by the factor 0.16589, will satisfy the specifications in
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(5.9). The frequency-normalized analog transfer function

is given by

2Ha(5) = F(s)/G(s) (5.10)
where
F(s) = ( s% + 26.33561 ) ( s> + 10.37590 )
_ 5 4 3
G(s) = 1053.536 s° + 1443.012 s + 2323.643 s

+ 1752.470 52 + 1027,410 s + 273.2556
The desired transfer function is in fact Ha(s/0.16589), how-
ever, it is more convenient to frequency scale realizations

at a later step. The Feldtkeller equation is solved to

vield

H(s) = 1053.536 s° + 32.00857 s + 1335.894 s°

2 (5.11)

+ 23.97851 s” + 343,3522 s
The normalized two-port scattering matrix S(s) and thus
the transfer matrix T(s) follow directly from the polynomi-
als F(s), H(s), and G(s). That the matrix S(s) may be re-

alized as a cascade of three subnetworks is evident from the

factorization
= .12
F(s) Fl(s) Fz(s) FS(S) (5 )
where

Fl(s) = 52 + 26.33561 , Fz(s) =1, FS(S) = 52 + 10.37590

and

n, =2, n, =1, n, = 2 (5.13)
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The polynomial Fi(s) and the section degree n, specify the
transmission zeros of the ith section. The transfer matrix

T(s) is factored, consistent with (5.12) and (5.13), as

T(s) = T;(s) Ty(s) T(s) (5.14)

th

where gi(s) describes the 1 section. One solution to

(5.14) yields

H (s) = 25.06908 % + 2.102403 s
G, (s) = 25.08902 s® + 35.68210 s + 26.33561
H,(s) = 1.151566 s
(5.15)
G,(s) = 1.151566 s + 1
H(s) = -9.092471 s? + 0.2607053 s
G5(s) = 9.1472961 s? + 13.00535 s + 10.37590

The section scattering matrices §i(s), i=1,2,3 are deter-
mined directly from the polynomials Fi(s), Hi(s), and Gi(s).
The DWD algorithm can be used at this point to derive nomi-
nal WD realizations based on the analog networks represented
by the §i(s). Frequency-scaled adaptor design52 (that con=-
form with the basic structures described in Section 3.7) are

presented below.

If a reference conductance G corresponds to a port in the
reference filter that connects an 1inductor, frequency
scaling by the factor k. is achieved by scaling G as Gk..
Similarly, if G corresponds to a port connecting a capacl-
tor, G is scaled as G/kf.
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Adaptor 1.

1 1 0o U

1l
|
1

N H
™ |1 50.1580 U 0

6, =G, * G, =diag[ 1, 1, 0.1156209, 0.0031808 ]

-1
)

n
—
[ep]
+
Z
[op]
CLZ
-]

The polarity matrix for the WD section realization is
I=diag[-1,11, implying that a delay in series with an in-
verter is connected at port 3 and a delay is connected at

port 4 of the adaptor.

Adaptor 2.
ey} =
6,6 = G, + G, = diag[ 1, 1, 0.0720258 ]
K= (8 N G N N 6y

The polarity- matrix for the WD section realization is

L=diag[-1].
Adaptor 3.

1 1 0 U

=
HI

| lgw]
f1

1 0.054825 U 0

CLO
I
&

G
—0 -t  ~0 - -0 Iio—'-ﬁl

i
—
(2]

+
2
]
2z
—
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The polarity matrix for the section realization is
rL=diag(~-1,1].

Reference conductances must be redefined in order to en-
sure that at each port-interconnection of adaptors, one
adaptor has that port reflection-free. Choosing the refer-
ence conductances such that port 1 of adaptor 2 and port 1
of adaptor 3 are reflection-free, we obtain new adaptor re-

alizations described by

Adaptor 1.

0.100703  -0.001965

1
K
o 0.010735 0.019548

g; = diag[ 1, 0.0713928, 0.1156209, 0.0031808 ]
Adaptor 2.
) 0.5
K =
0.004394
1
G, = diag[ 0.0713928, 8.122602, 0.0720258 ]
Adaptor 3.

0.003946  0.496054

!
K
o 0.110370 0.142587

diag[ 8.122602, 1, 0.1297453, 8.288391 ]

&°-
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where the submatrices ﬁo and P remain for each adaptor, un-
changed from before.

The nominal WD realization follows directly from the
above adaptor descriptions and has the structure represented
in Fig. 5.1. The final realization based on pseudopassive
adaptors will have the structure shown in Fig. 5.2. The pas-
sivity multipliers present in the output (sink) branches of
the pseudopassive filter simply contribute a gain factor and
may be deleted. . This leaves 6 passivity multipliers that
must be realized. With the 11 multipliers required to real-
ize the pseudolossless adaptors, a total of 17 multipliers
are necessary to implement the structure in Fig 5.2. This
is more than twice as many as the canonic number. A multi-
plier/adder implementation is clearly not economical. Ac-
cordingly, a practical hardware implementation will employ

distributed arithmetic techniques.

v M

D D
(}—*— < i < ! ‘—~h{]a=0

[
Y

Figure 5.1: Pseudolossless WD filter realization.
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Figure 5.2: Pseudopassive WD filter realization.
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For this example, gquantization of the coefficients was
achieved with the aid of a simple optimization algorithm.
The algorithm follows the procedure suggested in step 8 of
Section 5.1 and employs an exhaustive search about each nom-
inal coefficient value in order to obtain filter coeffi-
cients with short wordlength. The following results were

obtained.

Adaptor 1.
1 1 51/510  -1/510
N = s K= , o = 255/256
1 50 5/510 5/255

Let us verify that this value of o satisfies one of the
stability criteria given in Section 4.4, that is, either

(4.105) or (4.106). The matrix Q for this adaptor is given

by

0.113785 0.002188
Q = | (5.16)
1.341348 2.006552
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It follows that

374 3 _
£ = 35.23 < X (255 5 = 384.75
- 1256
f. f
172 2 _
fo = 473.26 > , (255 5 = 256.50
T N256

We see that the condition in (4.106) is satisfied although
that in (4.105) is not. The adaptor scattering matrix fol-

lows from N, K, P, and a, i.e.

— -

205 -1 51 1

-15 =250 5 10
s = 278 (5.17)
—P 445 4 -199 9

-290 249 301 244

The reflected wave variable bl corresponding to this
adaptor also represents an output signal of the complete
filter. Since this particular output is not generally uti-

lized, it is not necessary that we implement the inner prod-

uct associated with row 1 of §P'

Adaptor 2.

1/2
N=[1 11 , K =
B 1/256

Note that kll=l/2, as required by the reflection-free con-
straint. The adaptor scattering matrix follows from N, K,

and P, i.e.




129

0 -128 128

S = 277 a1 127 1 (5.18)
127 127 1
Adaptor 3.
1 1 1/255  253/510
N_: 5 }_(_: 5 o = 255/256
1 1/16 32/255 40/255

Note that kll+ k12=l/2, as required by the reflection-free
constraint. Let us verify that either (4.105) or (4.106) is

satisfied for this adaptor. The matrix Q is given by

0.018400 1.028283

Q= (5.19)
0.151133 0.517172
Evaluating the terms in (4.105) and (4.106) yields
2 2
f3 f4 3 (fS) (f4)
fo = 441.25 > ‘;—j—zzgzgg , 7 = 59.52 > 2 , s = 3271.29 > 2
256 © °
S
12 2
= = 389.44 > a2y
° 256

Clearly, the stability conditions are satisfied.

For this adaptor, the incident wave variable a, also rep-
resents the input signal (to the complete filter) that is
normally set to be identically zero. Given a2=0, the values
of the elements in the second column of S, are irrelevant
and can be set to zero. The remaining entries in S, are as

follows:
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0 0 2 253
-144 0 64 80
= 2 (5.20)
111 0 -189 333

246 0 6 3

The pseudopassive WD filter based on the adaptors de-
scribed by (5.17), (5.18), and (5.20) exhibits an attenua-
tion characteristic with a minimum attenuation of 1.791 dB.
Multiplying the filter output by an additional factor of 5/4
yields the characteristic depicted in Fig. 5.3. Clearly
this characteristic satisfies the specifications. Simula-
.tions of this filter under finite-word-length and zero-input

conditions showed no parasitic oscillations as expected.

5.3.2 Second Example

Interpolation is the process by which the sampling rate of a
discrete-time signal is increased without any coﬁversion to
a continuous—time waveform. Integral to an interpolater is
a lowpass filter, necessary for filtering out the baseband.
An example of a tolerance scheme such a filter might need to
satisfy in the passband is given in Fig, 5.4 [63]. 1In the
stopband the requirement is that
A(wT) > 40.0dB for wT € [ 0.14375mw, m r ]

We wish to design a WD filter with an attenuation character-
istic that satisfies these specifications when normalized to

have 0 dB of attenuation at wT = 7 /40 r.
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T STOPBAND ATTENUATION
80.07
60.01
40.0 4
20.01
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0 w/5 2m/5 3n/5 47/5 T
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0.24
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/ /40 m/20 31/40 m/10
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Figure 5.3: Stop- and passband attenuation for the first
example.
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A/dB
4.0
3.0 - /Jizj
/
2.0 4 /1
;r;éll
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0 T T T T T wT
n/40 m/20 3n/40 n/10 51/40
~1.0 4 /S S VAV AV AV / 7

Figure 5.4: Passband tolerance scheme.

A standard fifth-order C052548 elliptic characteristic
[45], frequency scaled by the factor 0.1685, will map (under
the bilinear z-transformation) to a suitable discrete-time
system function. The frequency-normalized analog transfer

function is F(s)/G(s), where

F(s) = ( 52 + 4.120337 ) ( 52 + 1.936578 )

G(s) = 20.71831 s° + 27.97496 s + 47.34040 s° (5.21)

i

+ 37.12756 52 + 23.84069 s + 7.979355

Solving the Feldtkeller equation yields the polynomial

H(s) = 20.71831 55 + 0.4977016 54 + 28.48388 S3

+ 0.4076646 s° + 8.516512 s  (5.22)
We wish to realize the WD design as a cascade of three sub-

networks. Accordingly, we factorize F(s) as

F(s) = Fl(s) Fz(s) FS(S) (5.23)

S
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where
2 2
Fl(s) = s + 4,120337 , Fz(s) =1, FS(S) = s + 1.936578

Furthermore, let

n, = 2, n, = 1, n, = 2 (5.24)

Factorization of the transfer matrix yields

H (s) = 3.436532 s2 + 0.01879064 s

G,(s) = 3.579072 <2 4 4.610167 s + 4.120337
Hy(s) = -1.172634 s
(5.25)
G,(s) = -1.172634 s - 1
H(s) = 1.060669 sZ 4 0.2127835 s

GB(S) = -1.457744 52 - 1.348403 s - 1.936578

The DWD algorithm is then applied to determine WD section
realizations for each §i(s), i=1,2,3. After redefinition of
reference conductances to ensure port 2 of adaptor 1 and
port 1 of .adaptor 3 are reflection-free, we obtain the fol-

lowing nominal frequency-scaled adaptor designs:

Adaptor 1.
1 1 0 U
I
N, = s ks
- |1 7.01560 u, 0
[ o.113330  0.060428
K =
—°  [-0.000735  0.071375




1
-G—o = diag[ 1, 7.605779, 0.1499855, 0.1827478 ]

I = diag[ -1, 1]
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Adaptor 2.
T 0 Y . 0.009209
_I\_].O::[l 1] , B: s -IS():
u, o 0.015888
1
G, = diag[ 7.605779, 4.408466, 0.0718468 ]
I = diag[ -1 ]
Adaptor 3.
-
1 1 9 Y,
I_\I.0= . R:
1 0.397076 u, o
. [ -0.020847  0.520847
K =
— 0.119639  0.700197
t
G, = diag[ 4.408466, 1, 0.2873439, 13.16116 ]

L = diag[ -1, 1]

The nominal WD realization follows from the above adaptor
designs and has a structure similar to that shown in fig.
5.1,

although in this case, port 2 of adaptor 1 (instead of

port 1 of adaptor 2) is reflection-free, Quantization of

the nominal coefficients was again achieved with the aid of

the optimization algorithm'mentioned earlier. The quantized

adaptor designs are described below.




Adaptor 1.

7/63 7/126

0 9/126

For this adaptor, the quantized coefficients have by chance
satisfied the dependency relation (3.83). Consequently, the
reference conductance matrix G is diagonal and conditions

(4.105) and (4.106) are automatically satisfied. From N, K,

P, and o we obtain

-63 14
0 0
0 -49

378 14

As discussed earlier, the output signal bl of this first

filter section is not generally utilized. Therefore, the
inner product associated with row 1 of S, can be disregard-

ed.
Adaptor 2.

1/128
B:[l l] ﬁ:
5/256

The adaptor scattering matrix S is given by
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Adaptor 3.
1 1 -1/102 26/51
N = , K = , a = 255/256
1 1/5 - 13/102 91/102

The matrix Q associated with this adaptor is calculated to
be
0.019520 1.722998

Q= (5.28)
0,212289 3.816268

Evaluating the terms in (4.105) and (4.106) yields

f3 f4 3 (f3)2 (f4)2
f = 436.68 > 5555 F = 45,99 > 2, 7 = 4146.57 > 2
0 1 - () o o}
256

f. f

1 72 2

fo = 211.26 < T————E-z—i—g)—z

256

As required, one of the stability conditions is satisfied.

The adaptor scattering matrix is given by

p— ay

0 0 -5 260

520 0 65 455
S. = 2 (5.29)
= 265 0 -195 715

151 0 8 96

b -

where as discussed previously, the entries of the second
column in S, are irrelevant under the condition a,=0 and can
be set to zero. The WD filter based on the adaptors speci-
fied by (5.26), (5.27) and (5.29) exhibits the magnitude-

normalized attenuation characteristic depicted in Fig. 5.5.
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Figure 5.5: Stop- and passband attenuation for the second
- example.
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Clearly the specifications have been satisfied. Simulations
of the filter showed no zero-input parasitic oscillations as

expected.

5.3.3 Third Example

Let us design another lowpass filter to meet the following

specifications [64]:

0.3 dB > A(wT) > 0 dB for wlT e [ 0, 0.21257m r ]

(5.30)
A{(wT) > 32,15 dB for Wl € [ 0.2875m, 7 r ]

An interpolater that increases the sampling rate by a factor
of 4 will utilize a filter of this type. An appropriate an-
alog response is a fifth-order C051549 elliptic characteris-
tic [45], frequency sgcaled by the factor 0.36677. The fre-

quency-normalized analog transfer function 1is F(s)/G(s),

where
4 2
F(s) = s + 5,827753 s” + 7.411629
5 4 3 (5.31)
G(s) = 11.07190 s~ + 18.88720 s + 31.34882 s .

+ 28.52800 s° + 18.91279 s + 7.411629

Solving the Feldtkeller equation yields3

H(s) = 11.07190 s5 + 0.0005884 54 + 15.28445 53

+ 0.0004510 52 + 4,604570 s (5.32)

et i s e St s o i S W — - —

A network with an odd order elliptic characteristic has
the property H(s)=-oH(-s). Clearly, this condition is not
strictly satisfied in (5.11]), (5.22), or (5.32). This is
due to initial small errors in the coefficients of F(s)
and G(s).
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We wish the WD realization to be based on a single Jaumann
adaptor.

A nominal frequency-scaled adaptor design, ob-

tained with the DWD algorithm, is given below.

1 -1 0 0
0o U
N=l1ooa1 1 o, p=|" 7
y o
11 0 1
[~ -1
0.087896  0.031897  0.105143
. | -0.087806  -0.031897  0.105143
——0
-0.150157  0.799685 0
0 0 0.709809
G = diag[ 1, 1, 0.0491078, 0.1482181, 0.1155896, 1.315835, 0.2876522 ]

I = diag[ -1, -1, -1, 1, 1]

Quantization of the coefficients was achieved 1in the

straightforward manner suggested in step 8 o©f the design
procedure in Section 5.1. The quantized adaptor design is

described by N=N_., K, B, and o, where

45

Lo -45
=7 S|,
0

16

-16

409

~y

54

54
, o
0

363

-l

= 511/512

Let us verify that the given value of o satisfies the sta-

bility criteria in (4.112).

For this adaptor design,




0.115578

-0.115578

-0.002513

0

0.281407

-0.281407

5.841708

0

1.349997

1.349997

9.074986

0
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(5.33)

- -

Evaluating the terms in (4.112) yields

£ £
> % . 790.53 > 5 - 768.75
£ . g2
V)
2 2
(£) (£)
- = 268.84 > 2, —— = 2324.60 > 2
o] [o]

as required. The adaptor scattering matrix is described by

[ a1 14 -32  -108 90 2 108 |
14 281 32 2108  -90  -32 108
664 664  -307 0 -154 818 0
s, = 277 | -726  -726 0 -215 0 o 726 | (5.34)
778 =778 -64 0 -331 64 0
114 -114 140 0 26 371 0
80 80 0 80 0 0 431

The reflected wave variable bl represents a normally un-

used output of the WD filter and consequently the inner

produc: associated with row 1 of -§P can be disregarded.

Furthermore, given a2=0, the entries in the second column of

S_. can be set to zero. The filter attenuation characteris-

—P

tic (normalized to be 0dB at wT=0) satisfies the specifica-

tions as shown in Fig.5.6. Simulations revealed no parasi-

tic oscillations under zero-input conditions.
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A/dB
40.0
)
30.0 1
20.0 -
10.0 -
0 . . .
0 n/4 m/2 3n/4 m
WT —>
1 PASSBAND ATTENUATION
A/dB
0.3
0.2
0.1
0 : . .
0 m/16 /8 3n/16 m/4
WT o

Figure 5.6: Stop~ and passband attenuation for the third
- example. :




Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis has proposed methods for the design of minimal
reciprocal WD filters that suppress all types of zero-input
parasitic oscillations. First, the DWD algorithm was devel-
oped to facilitate the synthesis of minimal WD realizations
based on reciprocal pseudolossless n-port adaptors. Thisv
algorithm determines nominal designs directly from transfer
function specifications and thus provides an alternative to
conventional synthesis procedures which utilize an analog
reference filter as a starting point. An advantage of the
DWD algorithm is that it is amenable to implementation on a
digital computer and therefore can be a useful design tool.
The problem of guaranteeing the stability of WD filters
under finite-word-length conditions was then considered. It
was demonstrated that after quantization of coefficients in
N and K, the pseudolossless WD realization does not usually
retain a diagonal reference conductance matrix. As a re-
sult, parasitic oscillations are no longer necessarily elim-
inated by applying magnitude truncation (or any other compa-
rably simple quantization scheme) at the delays and adaptor

interconnections. A strictly pseudopassive n-port adaptor

structure was then proposed; and conditions for guaranteeing




143

the stability of filters utilizing these adaptors were de-
rived. These conditions include restrictions on the entries
of the port conductance matrix and constraints on the signal
quantization éharacteristic (magnitude truncation is a suit-
able scheme). Explicit stability formulae were developed
for pseudopassive adaptor structures that can realize sec-
ond-order and symmetric fifth-order reciprocal filter sec-
tions. Stability formulae for an adaptor to realize recip-
rocal fourth-order sections were partially developed.

The solution for the second-order section allows us to
determine stable minimal WD cascade networks that can close-
ly realize the important class of transfer functions that
includes the Butterworth, Chebyshev, inverse Chebyshev, and
elliptic characteristics. In contrast, the procedures de-
veloped by Fettweis [26] and Meerkdtter [27] for obtaining
minimal WD networks that realize finite attenuation poles,
yield designs for which stability is not guaranteed by the
usual methods of signal quantization. Other methods of ob-
taining stable minimal WD filters have been proposed by Ash-
ley [28], and Martens and L& [31). However, these require
more complicated signal quantization schemes which can also
lead to degradation of the filter performance. Thus, the
design procedure developed within this thesis does have ad-
vantages. The approach developed recently by Martens and
Jarmasz [32] also yields minimal WD realizations that are
guaranteed stable when quantizers employ magnitude trunca-

tion.
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A disadvantage of our proposed design method is the
necessity of distributed arithmetic techniques for implemen-
tations to be economical. Moreover, distributed arithmetic
techniques utilizing stored products [55,56] are not readily
applied to WD cascade realizations, which cannot generally
be pipelined [60]. However, the hardware structure devel-
oped by Moon and Martens [57] is generally applicable and
preliminary indications are that implementations can be rea-
sonably economical. The determination of coefficient quan-
tization schemes that aré tailored towards reducing the com-
plexity of subsequent distributed arithmetic implementations
is an area that requires more investigation.

Another disadvantage of this design method is that the
introduction of the passivity multipliers invariably causes
some (deterministic) degradation in the filter frequency re-
sponse. One possible approach to this problem is to predis-
tort the nominal realization to compensate for the effects
caused by the subsequent introduction of the passivity mul-
tipliers. Some success has already been obtained with this
method. |

The basic strategy utilized within this thesis to obtain
stable digital filters is not restricted to WD realizations.
Preliminary studies have indicated that the same approach
can be applied to realizing stable single-input-output
state-variable digital filters of arbitrary order. Whether
stable state-variable cascade (in the network sense) reali-

zations can be determined, warrants further research.




Appendix A

DECOMPOSITION OF SELF-INVERSE MATRICES

In this appendix we demonstrate that a self-inverse, real,

constant matrix S can always be decomposed as

S=P EMEP (A.1a)

where

U N U]

E_: s M:
o U 2K U

(A.1lb)
and where N and K are real matrices of dimension tx¢ (S is
of dimension t+%), P is a permutation matrix, and U repre-
sents a unit matrix of appropriate dimension. Furthermore,

a method for achieving the decomposition is described.

Consider the nontrivial case where S # +U. Let

s’ 4 %?( S+ U) (A.2)
Then
(57 -8 =5 (s -U)= (s UIF(S-U)
12 i
=g (s -U)=20 (A.3)

This result demonstrates that §+ will be singular. Accord-
ingly, there exists a permutation matrix P and a nonsingular

matrix V such that

- 145 -
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., o
PSS V= (A.4)
6 U
Since BTE = U,
+ + T
PS v=PS P PV (A.5)
Define
-1
W=(PV) (A.6)
Then from (A.4) and (A.5)
T - T T
0 N 0 N W W N W W
E§+BT= i I e -1 =2 _|= [——21 —22]
o U _Q Ul ¥,y Wy U (A.7)
and
- T1 T
N[, W N[ N,
(ps ET )2 } [ 21 22] 21 22
U U
i e
r . 1 T
[N [t Xty [y W]
U (A.8)
| =
Given (A.3), it follows that
(ps ey’ ops e e (sH? -5ty =0 (2.9)
and utilizing (A.7) and (A.8) in (A.9), we obtain
R T _
N[y N v Wy - U[Hyy My =0 (A.10)
U

Since W is nonsingular, [ W,; W,,] has maximum row rank and

this implies

_“1213 +!V_22"9. =_Q_
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or,
U - W, N
W =U-Hp N (A.11)
Utilizing (A.11) in (A.7) yields
T T
N [M Uy, N (A.12)
_I_D_,S_+I_D_T= 21 21
u
From (A.2) and (A.1l2),
s=2 (2ps" el -uye
‘ oNTw . - U NTCU - WoNT )
|2l = =t =7 1=
=P P
T
| My U- 2N
U N[ -u oUW
_ pT P (A.13)
- b__Q. U 'zﬂzl U 9 U
Clearly (A.13) is the result we require with K=W,;. The
submatrices P and N are determined through (A.4) and 2K 1is

then the tx% submatrix in the lower left hand corner of

pSpY,




Appendix B
A SOLUTION FOR THE CONDUCTANCE MATRIX OF THE
JAUMANN ADAPTOR
Consider the general fifth-order Jaumann prototype network
introduced in Subsection 3.7.5.

The adaptor scattering rep-

resentation is specified by

1 1 1
-1 -1 1 - 0 U
N= 3 _IS._ (k") b E_—
1o ] 0 13743 y o
| 0 0 1_
where the entries of K have the property
k117 ko K12 = Ky ki = ky3
kg3 =0 kgp = 0 kgp = 0
The matrix Q, where Q = K (U - ETE) l, will have the general
form
[ q, 42 9 |
-9 -q q
q- 2 3
y q 0
| 0 0 q6d
Consider equation (3.80), that is
-1
g._gt _N._G.Q/ (Bol)

for the situation
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g8 g, O
G, = diag[ g;, 8, &g 8, 1 > G, =18, & O (B.2)
0 0 g,
Equation (B.l) becomes
R U B (85 + 85)/8; (8 * 85)/8 8,/2) |
|y Az | | c(eg g/, -(eg v gg)/e  g/e
a4 qg 0 8,/85 g/ 0
0 0 q 0 0
- 6_. L g7/g4_J
(B.3)
A solution to (B.3) is given by
g
2
£ = 1 ‘ .
3 (B.4a)
g q
3 _ 2
2, T (B.4b)
g q
4 3
—_— e B.
gl q6 ( i)
g 9,4
5 294
e q; R (B.44d)
g 9,4
6 . 22 (B.de)
g qa * dg
&7
. e (B.4f)
8 _ 9%
gl q4 + qs (B.4g)
Clearly, (B.2) and (B.4) specify a solution for G = G, + G, -




Appendix C

DERIVATION OF BOUNDS ON THE CONDUCTANCE MATRIX

In this appendix we consider the condition

<1+v>£TE§_-(5+s)TE(§.+£>>0 (C.1)

where Y is a positive scalar, W is a 2X2 positive definite

symmetric matrix, and where the elements of x = [ Xy x2]T
T .
and e = | e, e,l satisfy
= - C.2
sgn(ei) sgn(xi) ( a)
sgn(xi + ei) = sgn(xi) (C.2b)

Bounds on Y and the entries of W are derived which are suf-
ficient to guarantee that (C.1l) holds for all nonzero X.

Equation (C.l) reduces to the following:

T T T
YXWx-2xWe-eWe>0 (C.3)

Let us decompose W as

W= (C.4a)

éz

where

(C.4b)
w22 12

Utilizing (C.4), (C.3) can be reexpressed as
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T T
YX Wpx+yx Wyx=-2x Wye
T Yelu ete W C.5
>2x Wyete Wyete Wye (C.5)
Given (C.2), it follows that
T T
X Wyexe Wye (C.6)
Therefore, (C.5) is satisfied if
T T T T
YX Wpx+yx Wox-x Wye>(2x+e) Wye (C.7)

The term on the right hand side of (C.7) is maximum for ar-

bitrary x when we have
4 2> = 1 = 3
(2xi ei) ej le 0 i 1,2, j 1,2 i # j (C.8)
If (C.8) holds and (C.2) is true, then

x, x, W, <0 i=1,2 j=1,2 i#%j (C.9)

for which the left hand side of (C.7) is minimum. Clearly,
(C.8) and (C.9) define the worst case for satisfying (C.7).

Assuming (C.8) and (C.9) hold, we expand (C.7) as
2

2
Y Wi Xy h oy Wy, Xy - 2y x) xy Wy

+ W+ W

k) eyl W+ [xy el W, (C.10)
> -2|e1 e, lel + 2|x1 e, lel + 2|x2 e, W12|

Utilizing the property
2 2 172 1/2

WX+ W, X, 22 W, Y, le x2| (C.11)

we cah replace (C.10) with the condition
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172 1/2
2p{Wy ) Wpy = (Wl Ixp x| 4 0y e Wy + Ix, ey Wy,
+2|e1 e, W12| >2|x1 e, W12| +2[x2 e, w12| (C.12)

Consider the special case |xl|2|x2|. The condition in

(C.12) is satisfied if

172 172
2y{Wyy Wy = Il Ixp xpl + fxp e Wy, - 2]w), [}
+ |x2 e2|W22 + 2|e1 e, lel > 2|X1 e, W12| (C.13)
If we further constrain
Wiz 2wl W,, z 2w, | (C.14)

then all the terms on the left hand side of (C.13) are posi-

tive definite. Clearly (C.13) is satisfied if

172 172
2{Wyy Wy m Bl Ixp %yl > 20x) ey Wy

or, since (C.2) ensures |X2|2|e2|, if

172 1/2
zy{w11 W - |w12!} Ix, e,| > 2[x; e, Wl (C.17)

Forhﬁ e2w12|¢ 0,(C.17) can be expressed as

172 172 | !
W W - |W
Y{ 11 22 12 S 1 (C.18)
W,
or equivalently,
- 1/72 172
Y11 Va2 1+
1 722 oy 1ty (C.19)
W, Y
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For the alternate case|x2|2|xl|, the identical result is
obtained. Therefore we can conclude that (C.l1) is satisfied

for all nonzero x if (C.14) and (C.19) hold and signal quan-

tizations satisfy (C.2).
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