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Abstract

The Method of Moments is used for the development of a tool for analysing the input impedance
characteristics and radiation patterns of an arbitrarily shaped microstrip structure. Input reflection
coefficients are obtained for line fed structures as well as input impedances for those fed by coaxial
cable. A simple method for characterizing loads between structures and loads from the structure to
the ground plane is given as well as a simple model for characterizing an active device between
structures. Numerical results are compared to solutions obtained using analytic methods as well as
results measured by other researchers. A consistent accuracy of less than 5% is obtained for regular

geometries and methods for improving the result for irregular structures are outlined.
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1 Introduction

1.1 Background and Motivation

The introduction of microwave integrated circuit (MIC) technology in the early
1950’s has drastically changed the face of microwave engineering. With this technology,
transmission elements and discrete components are mounted together as with the more
common digital printed circuit board technology. By contrast, using the more traditional
microwave technologies, circuits are formed by connecting discrete components through
coaxial cables or waveguides. An obvious advantage is gained by having all components
of a circuit mounted in one package as opposed to having them distributed between large

transmission line sections [1].

There are, in MIC technology, several possibilities for the configuration of the
transmission line elements [2]. Among the common configurations are stripline, where a
central conductor is sandwiched between two ground plane backed dielectric substrates, as
seen in figure 1.1.1A, coplanar waveguide, where the ground planes are placed adjacent to
the centre conductor on the dielectric, as seen in figure 1.1.1B, and slotline, where the
signal is transmitted in the slot between two conductors on a dielectric, as shown in
figure 1.1.1C. By far the most widely used format, however, is the microstrip transmission
line, as shown in figure 1.1.2. The microstrip format consists of a conductor mounted on a
dielectric substrate backed by a ground plane. Benefits of this format over the others

include its simplicity of fabrication and the access allowed to the surface conductor for
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Introduction

placing and adjusting discrete components. One of the main drawbacks of microstrip
however, is unwanted radiation and coupling to other elements on the same substrate. It has
become very important to designers of MIC devices to find the minimum distance required
between transmission elements that will result in an acceptable level of signal corruption

due to the coupling of the lines (also known as cross-talk).

A B C

Fig. 1.1.1 Stripline (A), Coplanar Waveguide (B) and Slotline (C) Transmission Lines

Fig. 1.1.2 Microstrip Transmission Line Format
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Introduction

Also in the early 1950’s, a conductor supported by a ground plane backed dielectric
substrate was first proposed as a radiating element [3]. The radiator is referred to as a
microstrip antenna due to its similarity to microstrip transmission lines. Since this time,
literally countless investigations have been carried out on variations of this main theme, as
enumerated by Lo et al.[4]. These variations include both resonant type antennas, such as
the rectangular patch [5], the circular disc [6] and microstrip dipoles [7], and travelling
wave type antennas [8]. Microstrip antennas, however, suffer from a number of
deficiencies which make them unattractive for some applications. One problem incurred in
using microstrip patch antennas is the inherently low bandwidth. Experiments into
resolving this problem have included reactive loading of the patch antenna [9], [10] or
placing parasitic elements near to it [11], [12] to increase the impedance bandwidth.
Perturbations of the basic geometry may also be used to increase the bandwidth or to enable
diversity in the polarization. Linear and planar arrays of microstrip patch elements are often
used to increase the radiated power and achieve a more directed beam [13]. Recently, MIC
technology has been combined with microstrip antennas to form active antennas and active

arrays which may also solve some of these problems [14], [15].

The vast majority of the aforementioned antenna designs have been developed by
researchers who have used their own intuitive knowledge and some empirical data to
conceptualize their designs and then physically build and test them. Perfecting the design
in this manner is generally a very time consuming and costly procedure. For this reason,
the ability to perform accurate numerical analyses on microstrip structures, in general, has

gained a great deal of interest by antenna and circuit designers alike. To provide a tool that
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Introduction

will be useful and relevant to both circuit and antenna designs which are currently being
investigated, the method of analysis requires generality, accuracy at higher frequencies,

and the ability to derive multiple characteristics from the results.

Several analysis techniques are currently in use for these types of problems. A good
enumeration of these is given by Itoh [16]. Many methods such as cavity models, mode
matching method and the multiport network model (or planar circuit method) rely on
standard geometries, the effort to include the kind of generality desired here is not trivial.
Others model the relationships between current and voltage on these structures such as the
transmission line matrix method [17]. Using such a model, coupling and fringing effects
may be ignored or at least difficult to model. Still others, such as the microwave circuit
simulators TOUCHSTONE and Puff rely on static appréximations which may not be valid
at the frequencies which today’s curcuits and antennas operate. Often, a full wave analysis
is required which approximates the actual fields and takes into account high frequency and
coupling effects. To this end, the Method of Moments [18] has been used in many
clectromagnetic scattering and radiation problems. Here, the requirement is for a
formulation that is specific to the microstrip problem but general enough to handle arbitrary

geometries operating under arbitrary feeding and loading conditions.
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Introduction

1.2 Objectives

This work was initiated in order to provide a tool for the analysis of single layer
microstrip circuits and antennas loaded with passive or active components. The main
objective in designing the tool is to enable analysis on as general a design as possible,
combining arbitrary geometries with arbitrary loading and active element integration as
represented by the active array in figure 1.2.1. In order to provide information that will be
relevant to designers, the input impedance, far-field radiation patterns and current
distributions are all sought. A secondary objective of the project is to provide a starting
point for the continuing design of tools to analyse more complex, for example multiple
layered, structures. A final consideration in the design of such a tool is to ensure that it is
easy to use and that the time and computer memory required for the analysis of a realistic

design is not prohibitive to the use of the tool.

RADIATING ELEMENTS

K T

FEED LINE

ACTIVE TERMINATING
ELEMENTS LOAD -Z;

Fig. 1.2.1 A Planar Array Incorporating Active Elements and a Terminating Load
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Introduction

This document is presented in six sections. Following this section, the formulation
of the problem and the Green’s Functions, which are the kernel of the integral equations
solved by the Method of Moments, are described. In the third section the application of the
Method of Moments as it applies to this problem is discussed. The method of calculating
the far field radiation patterns using asymptotic expressions for the Green’s functions are
also included in this third section. Special considerations are then given for dealing with
different types of excitation, placing passive loads on the structures and integrating the
microstrip structures with active devices. The fifth section presents some numerical results
and compares them with analytic approximations and previously published data. Finally,
the validity of the results are discussed along with other considerations including computer
efficiency. This final section also includes a discussion of further study that may be

appended to the current work

1.3 Comments and Assumptions

In this study of single layer microstrip structures, the ideal of generality is sought
throughout. Some assumptions, however, must be made in order to facilitate the

formulation and subsequent numerical approximation of the solution. These include:

» ground plane and substrate are approximated to extend infinitely

+ the substrate itself is assumed to be linear, isotropic and homogeneous but, in general,
lossy

» the ground plane is assumed to be a perfect conductor

« surface conductors are assumed to be infinitely thin

Finally, the solution is performed in the frequency domain and therefore the a time

variation of ¢’*' is assumed and suppressed throughout the formulation and solution.
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2 The Mixed Potential Integral
Equation

2.1 Integral Equation Formulation

The boundary condition for the total electric field with respect to the arbitrarily
shaped conducting parts of the structure is given in equation 2.1.1 below [19]. When the
conductors are perfect, the total electric field tangent to the conductor surface is zero. Here,
the right hand side of the equation reflects the ohmic loss that occurs when then conductors

are not perfectly conducting.

ﬁx(ﬁs(%) +E’G~)J - axZ3, (M @2.1.1)

5 i .
In this expression, E and B are the scattered and impressed electric field vectors
respectively, Z is the surface impedance of the conductor, taken to be the classic surface

impedance of the conductor (1 + ) /%%f and J s is the current density on the conductor,

The scattered electric field can be expressed using a scalar electric potential, V, and
a magnetic vector potential, A [20]. In order for a vector to be defined, however, both the
curl and divergence must be defined. Hence, we define A, by relating the curl to the

magnetic field intensity, H:

H-=-VxA 2.1.2)
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The Mixed Potential Integral Equation

and the divergence to the scalar electric potential, V:

V-A = _jweV (2.1.3)

The latter of which is known as the Lorentz Gauge [21].
It then follows from Maxwell’s Equations that

E () = —jor () -VV () , (2.1.4)

By replacing the scattered field by its scalar and vector potential representation

(2.1.4) in the equation expressing the boundary condition (2.1.1)

AxB (1) = jo (xR (1) +VV () +Z (ax 3, (7)) (2.1.5)

The potentials can be further expressed as superposition integrals of the surface

currents and charges with the Green’s functions, which are responses to elemental sources.

A0 = [[[GacM] 3,00 as (2.1.6)
hY
v(n = [[e,¢le, 0 ds @2.1.7)
§

The Green’s functions ( [é A (P} ')] and G, (?|F)) represent the vector and
potentials due to an infinitesimal current element and point charge respectively. These are
discussed in the next section, along with the techniques used to calculate them. By inserting

the superposition integrals (2.1.6) and (2.1.7) into the altered version of the boundary
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condition equation (2.1.5) the following expression is obtained.

B = jmjj(i ¢l -3, 00as +V[[G, (1) p, 07 dS" + 23, (7)) (2.1.8)
§ S '

This equation is referred to as the Mixed Potential Integral Equation (MPIE) and,

as will be seen in a future chapter, it is to this that the Method of Moments is applied

2.2 Green’s Functions for Layered Media

In solving the fields in layered media, two approaches may be taken. The first uses
the well known free space Green’s functions, which is expressed in spherical coordinates

by

e*jk(lf’—f'l)
G () =

T (2.2.1)

Using this method fictive electric and magnetic currents are used to describe the
surface and volume effects which occur in the system. These fictive sources, however, are
extra unknowns in the numerical solution and must be solved for [22]. The second, and
more preferable approach, is to use Green’s functions specially formulated for the
particular combination of media present and therefore eliminate the requirement of fictive
sources. These specialized Greg:n’s functions were first introduced by Sommerfeld [23], to
describe radio waves propagating over lossy ground. Surface waves and dielectric losses
are then accounted for in the Green’s functions and only the currents and charges existing

on the conductors are to be solved for using numerical methods.
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The vector potential in inhomogeneous media may not necessary be parallel to the
current that produces it [24]. In this case, it is convenient to express the Green’s function

as a dyadic as shown below.

dA(») = Ga) - 3,0 dr (2.2.2)

This is expressed in matrix form as

)| |Gy GY G| 1 ar

= |y vy e ’
dAy G, G, G, sza'r (22.3)
dAz _G;x Gzy Gj{z- "rszd‘r’

For a homogeneous medium, the vector potential and currents are same-directed,
thus the dyadic Green’s function maintains this form except that G;f = G when s=¢, with
G the Green’s function for the homogeneous medium, and Gf; = 0 when s#r.Ina
layered medium, as is studied here, it has been shown that the vector potential produced by
a current on the interface of the layered media can be described by two orthogonal vectors
and that the vector potential produced by a current perpendicular to the interface requires

only one component vector which is parallel to the current [24].

The Green’s functions for both the scalar and vector potentials are derived by
solving the homogeneous Helmholtz equations subject to the boundary conditions relevdnt

to the geometry.
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(V*+# )R - 0 2.2.4)
Lv2+kzjv =0 (2.2.5)

As the geometry under consideration is homogeneous in the transverse (x & y)
directions and inhomogeneous in the vertical (z) direction these equations are solved in
cylindrical coordinates. The solution involves the consideration of two cases. The first is to
find the Green’s functions in the transverse directions. A horizontal electric dipole (HED)
is considered. The HED has current, /, and infinitesimal length df and exists on the interface
of the dielectric substrate and the air. The second case considered is that of a vertical
electric dipole (VED) that has the same properties as the HED but is oriented perpendicular
to the interface and is embedded in the dielectric substrate. The solution of the Green’s
function invokes a transformation to the spectral domain followed by a separation of
variables solution of the differential (Helmholtz) equation, and then an inverse
transformation back to the space domain. Analytical solutions have been solved for both
cases of the current and the for the charges on the interface and embedded in the substrate
by several authors [24], [25] and will not be repeated here. Instead, they are manipulated
from these sources into a form that is convenient for calculation using the numerical
method described later in this chapter. The Green’s functions are given, therefore, in these
convenient forms for both the vector and scalar potentials in the following two sections for

both horizontal and vertical sources.
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2.3 Yector Potential Green’s Functions

For currents defined on the air-dielectric interface the vector potential Green’s

functions are given by [24]:

XX !‘LOOO 1
G, (p) = ﬁjl—)—;Jo(kpp)kpdkp 23.0)
0

i It h (u(zo+h))
0 _ Fop.cos Z
G, (pz,) znjcosh (uh) DypDopy,
0

2
Jy (kpp) kp a’kp (23.2)

In the previous expressions, Dy = u, + ucoth (uh)

Dry = uge, + utanh (uh)

2 2
u = kp - koer

uy = ./ki—ké

Noting further that Gi;y = G";x
G, =G} =0
Gir = costGi‘p
Iy o p
G, = singG,

defines the dyadic components for each of the potentials for transversely oriented currents.

Page 12



The Mixed Potential Integral Equation

When the current is vertically oriented within the substrate the vector potential

Green’s function is calculated from [25]:

for—hSzOSzSzZSO

Gy(p,z,2,) =

oo

uo‘[cosh(u(zs+h.)) (ucosh (uz,) —eruosinh (uzo))

2 u (usinh (uh) + € u_cosh (uh)) ToCkop) kdk, (2.33)

0

and

for—hSzSSzSZOSO

Gi\z (p’ Zo’ Zs) =

Mo rcosh (u(z, +h)) (ucosh (uz.) —€,u_sinh (uz))
2n u (usinh (uh) +€ u cosh (uh))
0

JoUep)kydk  (23.4)

24 Scalar Potential Green’s Functions

The scalar potential Green’s function for sources in the air-dielectric interface are

given by [24]:

oo

H 1
Gy (p.2,) = 5—]
%

Sinh(r"(z"Jrh')WJ k p)Yk dk 2.4.1)
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where N = uy+ utanh (uh)

When the source is vertically oreinted and imbedded in the substrate, the Green’s

functions are [251:

for—hSzOSzSzJSO

Gz(p’ Zp Zs) =
“sinh (u(z,+h)) (uye,cosh (uz,) — usinh (uz,))

[
215808rj u(usinh (uh) + uye cosh (uh))
0

Iy (kpp) kpdk (2.4.2)

p

andfor—h.SzSSzSzoSO

Vv
Gy (P 2 2,) =

o0

1 sinh (u (z,+ 1) ) (u,e, cosh (uz;) —usinh (uz))
211:808’.{ u (usinh (uh) + uge,.cosh (uh))

Jo Uk pYkydk, (243

2.5 Numerical Techniques for the Solution of Sommerfeld
Integrals

The preceeding Green’s functions represent the form of the Sommerfeld integrals
best suited to calculation using a real axis integration path in the complex plane. They are
a specialized form of the more general Hankel transform equations first given by
Sommerfeld. The transformation from the Hankel function to the first kind Bessel fupction

eases the calculation by reducing the infinite integral of integration to a semi-infinite
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interval. Still, the numerical calculation of these integrals must be performed with great
care as the Green’s functions are the kemel of the MPIE and thus the critical part of the
method. The semi-infinite interval is broken up into three sections as the Sommerfeld
Integrals exhibit different characteristics in each of the three. The methods used for

integrating the general integral

G = jF(kp)JO (pky) dk, (2.5.1)
0

are given in the next sections.

Intervall 0 < kp < ko

In the interval, 0 < kp < k,,, there exists a branch cut corresponding to the point .
This is due to a discontinuity in the derivative of the D term and, while it does not cause
a deformation of the path of integration, may cause a problem in trying to numerically
integrate near that point. The solution is a simple change of variable. The variable of
integration, k 0 is represented by k,cos (#) , with t as the new variable of integration. Then

dk, = ~kosin (1) dt and the interval is changed from [0, k,] to [g o] , thus:

T

ko 2
JF (k)T (pky) die, = [F (kgeos (1) )7 (pkycos (1)) kysin (1) dr (2.5.2)
0 0

This integral is computed using a Gauss Legendre [26] quadrature.
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Interval 2 ko <k, < ko[,

There will always exist at least one pole in the integrand due to the root of Dy A
great simplification can be acheived if the case of only this pole existing is considered. This
condition is maintained if the criteria k i (e - 1) <n/2 is enforced. For a lossless
(Im{e,} = 0) function this pole is on the real axis, and the pole can be found using a
simple bisection scheme. When the relative permittivity is complex, however., the pole
moves below the real axis and the imaginary part becomes more negative as the imaginary
part of the relative permittivity becomes more significant. There is also a discontinuity in
the derivative of the D.., term at the point kp = k, as before. The first concem is handled
by extracting the pole in the integrand for the integrals which contain the D ,, term. A
function that behaves similarly to the integrand near the pole but that is analytically
integrable is subtracted from the integrand then integrated on its own and added to the final
result. To find the exact location of the pole for a complex relative permittivity, a time
consuming complex root finding routine would be needed, however an approximation,

good for electrically thin substrates is [27]:

2 (g, - 1)?
Re{pv} = kol 1+ (kyh) —_— (2.5.3)
2e ’

r

ol 2.5.4
= (2.5.4)

Im{pv} = -(g/ 1) tanﬁ[

Where €, = €/ (1~tand) and tand is the loss tangent of the dielectric
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The resulting integral can be described as shown below

I=(-1)+I (2.5.5)

Where [ is the integral of the singular function subtracted from the integrand. A
function which is assured to behave in the same manner as the integrand near the pole is

derived from the residue of the integrand

Res = kpli-r)nva(kp)JO(pkp) (kp—pv) (2.5.6)

By subtracting the function, Res/ (kp - pv) , over the entire interval, the integrand
becomes regular and easy to integrate numerically. The subtracted part is then integrated
- analytically. After the extraction of the pole, the branch cut is handled by, once again, a
changé of variable. This time the variable of integration, kp, is expressed as k,cosh (¢) .

With this change, dkp becomes k,sinh (r)dr and the interval is transformed from

[ ko kq ,\/e—,] to [0, acosh( ,JejJ] . Thus

ko e,
j F (k) J o (pky) dk, =
kU
acoshﬁ
f (F( k. cos (1) )] (pkacos (1)) — Res Jk sinh (1) dt
) PXo 0P (kgcosh (1) —pvy )0

koo,

Res

————————— . 2.5-7
+ (kp_pv)dkp 2.5.7)
k()
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The last part is analytically integrated by

k{}j[e_, Res db = Eﬁfln (’%J‘Z‘Re {pv} )2 + (fm{pv} )2
0 (ky—pVv) p. 2 (Re {pv} —k0)2+ (Im {pv})°
' ko f€,~Re{pv} Re{pv} -k,

+_]R€S( atan[ Tm {pvy J+ atan(————lmp vy ]J (2.5.8)

Interval 3 ko ,‘/e_r < kp < oo

In the final interval, the integrands oscillate as the corresponding Bessel function.
Since this part of the integral is the dominant part in the near field region, it is extremely
important that special care be taken in its evaluation. A nonlinear transformation was first
studied based on Shanks method [28]. This method provided no easy way to automatically
check for the relative error in the terms and a new algorithm was sought. A special
technique was then developed, based on the method of averages [24]. The method of

averages is applied to integrals of the form:

I = j F(x) g (x)dx (2.5.9)

where fis an oscillating function of x and g is a function that converges monotonically to
zero, If the oscillatory part is approximately periodic, as the Bessel function for example,

then the integral can be represented by the sum of integrals over each half-period as

oy

I = jf(x)g(x)a!x+ lim /

n—>

! (2.5.10)
a
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o

n i+l
where I; = ZI? and I? = jf(x)g(x)dx
o

i=1 )
L

Where o, are the zeroes of the oscillating function f{x). When the function g(x)
converges monotonically, the successive terms of the series I,]J alternately overestimate and
underestimate the value of the integral. Taking the average of any two successive terms of
this series, therefore, serves as a first order approximation to the value of the integral. The
terms in the series of these averages is given by

5 I+

+ 1
I = —"——2”—— (2.5.11)

Using this method, it is recognized that once again the series represented by / i also
alternately overestimates and underestimates the value of the integral (the value of the limit
of the infinite series). By taking the averages once again, a better approximation of the sum
is found. This procedure is repeated until an acceptable level of error between estimates is

obtained.

The method of averages is only part of the algorithm used here. In some of the
Sommerfeld integrals the integrands decay effectively to zero before any significant
oscillation occurs. The effect is noticed when the source and observation points do not have
the same z values, and the hyperbolic functions in the integrand dominate. In this case the
method of averages will be less accurate than a simple truncation of the integral. Hence, the

method is also required to recognize when the hyperbolic functions dominate and and a
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simple numerical integration over a truncated interval is required. Furthermore, the

appropriate truncated interval must be obtained

The algorithm developed here calculates the approximate value of the variable of
integration, x, for an integrand approaching zero, this is denoted x’. If the value of x’ is
less than the first root of the integrand, corresponding to the oscillating function, a simple

truncated integration is performed in the interval [q, x'] .

I = jf(x) g (x)dx (2.5.12)

Other wise the method of averages is implémented. There are, however, some cases
where the integrand decays to zero but not within the first half period, or cases when the
integral converges faster that the method of averages will. This situation, then, is also
introduced into the algorithm. After calcuiating the value of the integral over each half-
period as it is required, a decision is made. If the value of the integral over the most recent
half-period is less than 0.1% of the value of the integral over the previous half-period then
the averaging is terminated and the value of the summed series up to that point is used.
Otherwise the method of averages is continued, and the algorithm is repeated using an exit
criteria of 0.1% for the difference in consecutive averages. The total algorithm is best

illustrated by a flow-chart (figure 2.5.1).
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Fig. 2.5.1 Flow Chart Representing the Calculation of Oscillating Integrals
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3 Moments Method Solution of the
MPIE

3.1 Overview

The Method of Moments (MoM) can be applied to equations of the form [18]:

LE) =¢ (3.1.1)

Where L is a linear operator on the unknown response, £, and ¢ is the known

eXxcitation,

In the application of the MoM to equation (3.1.1), the unknown response is

expanded over a set of basis functions in the domain of L as:

E=Yak, (3.1.2)

Here, a, are the amplitudes of each basis function, &, .
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A set of testing functions (w;, w;, w;,...) are then defined in the range of L along with

an inner product, (f, g) , which satisfies the following;:

8 =<&h
(af+Bg ) = alfihy +B{g A (3.1.3)
(5, H>0 if f#0
=0 if f =0

The application of the testing function through the inner product, as defined above,

leads to a linear expression of equation (3.1.1):

Sa LE),w,) = (5w, (3.1.4)

Some care must be taken in the selection of the basis and testing functions. First,
the set of basis functions must be capable of a reasonable approximation of the unknown
response. Clearly, the number of terms taken in the summation is related to the accuracy of
the obtained solution. Another consideration is the ease in which the operator L is applied
to the basis functions, x, . Finally, as the testing function is required in order to enforce the
equality of equation (3.1.1) it is necessary that it is of a similar order as the basis functions
so that the computational effort expended in applying the basis functions is not wasted in

the testing.
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3.2 Basis Functions for Surface Conductors

Segmentation of the Conducting Surface

In applying the MoM to solve for the currents on the surface conductor, the arbitrary
shapes of the conductors are replaced by groups of rectangular cells, which will henceforth
be called charge cells, as shown in figure 3.2.1. The boundary of the conductor, then, is
approximated as closely as possible by a “Manhattan” type boundary where curves are
replaced by series of straight line segments. To simplify some of the resulting calculations,
all charge cells are all taken to be of the same dimensions, (Ax, Ay) . A scheme where
different sized charge cells may be used, but this scheme would involve much more
complicated programming and could not take advantage to the time saving techniques

introduced later in this chapter.

Some definitions are made here in order to clarify the description of the basis
functions. The current is approximated, as described in the next section, by overlapping
basis functions. Each current basis function is defined over a current cell which consists of
two adjacent charge cells whose interface is perpendicular to the direction of the current as
shown in figure 3.2.2. An arbitrary x-directed current cell, whose centre is designated as
r.; Will be given the label S;, the corresponding charge cells are S; and S:. The centres
of the two charge cells, P_;I. and ?-;. respectively, are connected by a test segment C ;. The
overlapping cells and corresponding test segments occur in both the x and y directions,
hence a charge cell may belong to a maximum of four different current cells and its centre
may be a terminus for up to four test segments. A similar notation is used for y-directed

current cells.
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P
I

-

X

Fig. 3.2.1 Segmentation of an Arbitrary Shaped Conducting Surface

Yy A

v

xi xi

. X

Fig. 3.2.2 Specifications for the Current and Charge Segments
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Current Basis Functions

As previously stated, the main goals in selecting a basis function are first to ensure
that the basis function is capable of a reasonable approximation of the unknown response
(the current) and secondly to ensure the application of the linear operator to it results in a
relatively simple solution scheme. A further consideration here is that a basis function for
the surface charge is also required and that these charge basis functions are related to the
gradient of the current basis functions. Therefore the derivative of the current basis
functions are also required, and must be relatively simple to derive. With this in mind, the
basis functions for the current are chosen to be overlapping triangular roof-top functions as
in [19], shown in figure 3.2.3 A and expressed mathematically, for x directed current cells

centred at (x;, ;) , and y directed current cells centred at (x Y j) by:

T () = 1—m (3.2.1)
X Ax
for
[x—x|<Ax and Iy—yf|S7y
and
=i
T, () = I_Tf (3.2.2)
for
Ax

ly—yjl <Ay and ]x—xASE
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Where Ax and Ay are the dimensions of a charge cell as previously defined. It
then follows that the current distribution in the x and y directions are approximated by the

two summations

1 Nx
Jsx = A_y_zllxiTxi (3.2.3)
i=
and
| &
= B2 G20
j=

Dividing by BJ} and Zl)—) in these equations ensures that definition of a current

density is preserved.

Fig. 3.2.3 Basis Functions for the Surface Current (A) and Charge (B)
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Charge Basis Functions

The basis functions approximating the surface charge density follow easily by the

application of the continuity equation (3.2.5) to the current basis functions

V-3 +jop, =0 (3.2.5)

Through this, then, the charge basis functions are given as rectangular pulse
functions with unit magnitude defined over each half of a current cell as shown in figure

3.2.3 B.
M(F) = 1 (3.2.6)

A

A
for ]x—)ci]S-—2ic and [y—yE.IS—z—.

The charge distribution on the surface conductor as approximated by these basis

functions is given by the series

ps=j(oAleyL§ "xf(n(?':) - H(?ED 55 ’yj(n(?;) * H(’i’))] B.2.7)

=1 j=1
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3.3 Basis Functions for Vertical Wire Components

Segmentation of Wire Components

The overlapping basis function approximation of the current is used with the wire
sections in a manner similar to that of the surface conductors. Thus, the wires are
segmented similarly to the conducting surface. As shown in figure 3.3.1 the wire is divided
up into charge cells of equal height, Az. Two charge cells with centres z: and z;
respectively comprise one current cell which is centred at z,. A test segment C,; connects

the centres of the two charge cells in a manner analogous to the surface test segments.

Fig. 3.3.1 Segmentation of Wire Components
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Current Basis Functions

The current basis function chosen here should be analogous to the surface current
basis functions to maintain homogeneity in the numerical solution and is thus chosen to be,
once again, a triangular function. The total current in a wire segment is ;. At the
frequencies that we are interested in, the current can be assumed to exist totally on the
surface of the conductor by the skin effect. Since there should be no variation of the in the
angular direction, that surface current density is the total current in the wire divided by the
circumference of the wire. Applying the triangular function to the current density in the

wire gives the current basis function for a current cell centred at z, as shown in figure 3.3.2

(3.3.1)
For ]z - Zil <Az

At the point where the wire touches the ground plane, this function description must
be altered. Since the current exists above the ground plane but not below, the basis function
for this current is simply the same triangle function with the same properties except that it

is only defined on one charge cell, directly above the ground plane as shown in figure 3.3.2

Fig. 3.3.2 Current Basis Functions Over the Wire Elements
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It then follows that the currents in the z-direction will be approximated by the

summation:

‘]sz - m 2 IziTzi (3.3.2)
where r_ is the radius of the conducting pin.

Charge Basis Functions

Once again by application of the continuity equation (3.2.5) to the current basis
functions the charge density basis functions are determined to be unit magnitude

rectangular pulses defined over the charge cells.

II(z;) =1 (3.3.3)

For [z~zl-] < 3

The charge distribution over the wire components is therefore approximated by the

sumimation:

Nz
1 + ]
Ps = jolnr, Az 2 IZ,-(H(ZI-)—H(ZI.)) : (3.3.4)
i=1
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34 Treatment of Junctions Where Wires Meet Surface
Conductors

Current Across a Junction

At the poinf where a wire contacts the microstrip surface, a special function must
be defined to convert the z-directed currents on the wire to planar currents on the surface
and vice-versa. This function must follow three specific criteria. First, the current must be
continuous at the contact point. All current in the z-direction must be converted into current
in the x and y directions. The current must also spread evenly away from the contact point
in each direction, at least locally. Finally the function must decay to zero at some distance
from the contact point that is comparable to the segmentation of the microstrip surface. A
simple model for the current on the surface local to the junction is used here which fits very
well with the use of the rooftop basis functions. The current enters the surface through a
half triangle function similar to that used for a wire close to the ground plane in the previous
section. The current enters through the point of contact and spreads equally in each
direction as shown in figure3.4.1. at the junction point (xj, Yp 0) this is mathematically

described by

Jun = ijz + Jpj_x'% + Jpjyj’ (34 l)
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Where:
J .=——1—1.(1_1Z-'] (3.4.2)
wi T 2mr AT Az -
For |z] €Az
J =—I—Sin(x—x)l(1—|—x—:x—j|) (3.4.3)
vix T GAy PV TN T 2R -
1 ( |y—y,-|)
Jpjy = 4Axszgn(y—yj)1j I——2—Ay— (3.4.4)

Ax Ay
For ]x—les—z—— and ly—y|S7

We note here that the total z-directed current at the junction is equal to / f and that

on the surface, the total current is 4( 4—111) = [.

J

Fig. 3.4.1 Description of the Current at Junction
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Charges at a Junction

The charge basis functions are once again found by applying the continuity
equation (3.2.5) to the different currents found in the description of the junction. It should
be noted here that while the basis functions describing the current are discontinuous at the
junction point, it has been ensured that the current itself is continuous and any effects of the
discontinuous parts cancel each other. With this in mind then, the charges at the junction
are described by a single two dimensional pulse over the charge cell on the surface

conductor and a z-directed pulse function over the charge cell adjacent to the surface, on

the wire.
S (RS S S N (3.45)
ps - j(l)I:AXAy i AZ2TU‘C Zj ] 4.,
3.5 Testing Functions

In selecting of a proper testing function the main requirement is that the level of
accuracy aimed for in the choice of the basis functions is not compromised. For instance,
it is not reasonable to define complicated two dimensional basis functions over the entire
surface of the conductor and then test with a Dirac-delta weighting function essentially
enforcing the equality at only a fixed number of points. However, once again the simplicity
of applying the functions and time needed for computations must also be considered. A
Galerkin method may be used, in essence using the same function for testing as is used for

the basis function. This method may become computationally expensive due to the
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complexity involved. The choice made here is the use of unidimesional pulse functions,
also called razor functions. For the surface conductor and the wire, the razor functions are
defined from the centre of a charge cell to the centre of the adjacent charge cell as shown
in figure 3.5.1. Testing‘with these functions ensures that the boundary condition is enforced
on straight line segments on the conductors, but requires less computation than the Galerkin

method. In fact it is a compromise between accuracy and efficiency.

In the case of the current segment adjacent to the ground plane, only one charge cell
corresponds to the segment and therefore the testing segment is truncated at the ground
plane as shown in figure 3.5.1. A testing function corresponding to the junctions must also
be defined so that the number of unknown current coefficients does not exceed the number
of equations. In the same way as the current cell beside the ground plane, the testing
function for the junction is defined by a razor function joining the contact point of the wire
with the microstrip surface and the centre of the charge cell just below the surface. Previous
works [37] have included segments on the surface near the junction as part of this test
function, but that is considered here to be somewhat complicated and unnecessary as the

testing already performed on the surface makes this testing redundant
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SURFACE
CONDUCTOR
CHARGE
CELLS
MRE—

GROUND PLANE_ 9"

Fig. 3.5.1 Razor Testing Functions Across the Conductors

The testing function is implemented through the definition of the inner product,
here the inner product is the integral operation of equation (3.5.1) over the entire surface of
the structure. Integration is the definition of the inner product used in most MoM

applications.

(w(x), g(x)) = jg(x)w (x) dx (3.5.1)
A

Using this definition, and the previously defined testing functions, the effect of
imposing the testing on the MPIE is to integrate the function along a series of finite line

segments defined over all conductors in the given structure.
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3.6 Discrete Green’s Functions

Discrete Scalar Potential Green’s Function

The notation and computation of the moment matrix is simplified through the use
of discrete Green’s Functions. For the scalar potential, the discrete Green’s functions are
the superposition integrals of the basis function for the charge distribution over one charge
cell with the scalar Green’s function for sources on that charge cell given an observation
point. We additionally multiply by a factor of 27e o to ease the notation later. This factor

will later be divided out again

For charges associated with the surface elements

?j,O) -H(:"j)de (3.6.1)

2ne
H, ., 0 H
Ly, )) = m!JGv(rf’zi

For charges associated with the vertical elements, the charge is spread evenly
around the circumference of the wire. When the source and observation points have the
same x and y components, or when the distance between source and observation points is
very large, the angular distribution of the charge has a negligible effect or no éffect, on the
integration. In this case the discrete Green’s function is obtained only by integrating in the
z-direction and multiplying by the circumference, 2rr, . Then

Az

Zj+7

Vi) = 0 V2P I (z,)d 3.6.2
I‘V(I:J) = A—Z J. Gv( i’zi’ j’zj) ) (Zj) Zj ( ).
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When the distance between the source and observation points is small but not zero,
however, the radius of the wire is a considerable part of the distance between source and
observation points and is not negligible. In this case, the discrete Green’s function is

calculated using the double integral

.zj+é—z
V(i) = %0 T 2G" Pzl T (z,) dz d0
0, A

Discrete Vector Potential Green’s Functions

The discrete vector potential Green’s functions are defined in a similar manner as
those of their scalar counterparts except that the integration is performed over a current cell
and the rooftop basis functions are used as the source. In this case the function is multiplied

by a factor of 21/, here to ease the notation later.

T (7)) _= ™ AyHG Gy -T,, (r)dS’ (3.6.4)
<o, = ™ Ay”GA( ) T, (') dS’ (3.6.5)

Similar expressions for Iy and I”, are obtained by exchanging y for x and vice
Y A A y ging

versa in the above equations.
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When the surface current describes the current at a junction, the discrete Green’s
function is found in a similar manner with the exception that the integration is taken over a
single charge cell and the basis function is that of the junction function as written in

equation (3.2.3) or (3.2.4). This results in the form:

’

u4AyHG“(’”1 (sign(x-xn')(1_%)]ds' (3.6.6)

xj

Ly R =

Where, once again the expression for 1%/ is obtained by exchanging y and x in the
previous expression. When the effect of the junction in the z direction is desired, the

discrete Green’s function is:

zZj
r; (?[?n’) =

g 4A .”Gd(’;‘l (”'8'1 (x—x,,’)(l-I ;Ax ’lndS’

zy . , - n’ ’
u4A jG () (Szgn(y~y”)(1——2—5—))dS (3.6.7)

The discrete Green’s function for vertical currents are obtained by integrating over

the current cell on the wires.

2 27 zz
SR = ) - Y dS’ 3.6.8
Ty () u02nrJSjG" [}y - T, (r)dS (3.6.8)
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The Green’s functions are, by definition, singular when the source and observation
points coincide. Therefore, when the discrete Green’s functions are to be calculated for
source and observation points in the same cell, numerical techniques alone will not be able

to accurately compute the surface integral.

When the cell is on a wire section the singularity is easily avoided by applying the
testing of the field to the centre of the wire. Since, because of the skin effect at high
frequencies, the current will exist mainly on the outer circumference of the wire, the source

and observation points will never coincide.

In the case where the cell is on the surface conductor, the singularity corresponding
to a zero separation distance must first be extracted. Fortunately, this singularity is very
closely associated with the inverse of the distance of separation, for both the vector and
scalar potential Green’s functions. The function obtained after extracting the singular part
will be regular and easy to integrate using numerical techniques. The extracted function can
then be integrated analytically and added back to the result. For the vector and scalar
potentials, the singular part is determined by considering the Green’s function for the static
(f=0) case. It will then follow that k, = 0, and by substituting this into the expressions for

the Green’s functions;

gie 1 (3.6.9)

ey —— (3.6.10)

Page 40



Moments Method Solution of the MPIE

This singular part is then integrated over the charge and current cells using the

following two equations [29]:

dydx = xlog (y+R) + ylog (x+R) (3.6.11)

Lo

= LR+ Pog (v +R) (3.6.12)

flEe -}

where necessary.

3.7 Generating and Solving the Matrix Equation

All that remains, then, is to approximate the appropriate potential is to sum up the
discrete Green’s Functions scaled by the basis function coefficients over the entire

structure. That is

oA () = 21(xf;‘;"ﬁlfaa+2F§:“<Hm) nym( Iy (R, +204 (7, >)

n=1 m=1

: j _ . y
+ Y TGy + Y Ijk(.%rjf(m-k) +3T% (}) +2F:f(?|?k)] 3.7.1)
[=1 k=1 ‘

and

o H H 4 H H
ot - + -
g2 vy« 31 (em)-0m )+ F o (m0vs)-eovs)

n=1 =1
i 3 H. v
+ Z’Zz(rzblﬁ]’ﬁ[?’i?}))+ Y I,-k(l‘v(fwz)—rv(?[?;n (3.7.2)
I=1 k=1
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In the preceding equations, Nx, Ny, Nz, and Nj are the number of current cells in
the x, y, and z directions and the number of junctions respectively. The Igi are the
coefficients representing the ith current basis function in the ¢ direction. Recalling

equation 2.1.4.

B () = —joR (M) -VV( (3.7.3)

The application of the testing function to this is equivalent to taking a line integral

over each of the test segments. For the three directions

JE.ax = —jo | Ax(i‘)dx—( v( >_’;.J - v(f;ijj (3.7.4)
Cxi Cxi
[EXMdy = —jo [ 4, dy_( v(%;jj_v(?;jjj (3.7.5)
Cyj Cyj
j E (Pdz = —jo | A,() dz—(v(%-:kj- v(%;k)J (3.7.6)
Czk Czk

Replacing the scattered field by these expressions in the MPIE, a matrix equation is

obtained of the form:

Z
[Z111] =

0
T (V] 3.7.7)

The form of the Z matrix depends on the type of feed and load conditions which are

described in detail in the next chapter, and is solved using a simple Gaussian elimination
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technique.Similarly, the form of the excitation vector is dependent on the type of feed and

is also detailed in the following chapter

3.8 Techniques to Improve Computation Speed

The discrete Green’s functions for both the scalar and vector potentials in a given ‘
structure and at a given frequency are only dependent on the separation distance between
source and observer cells and the size of the current or charge cells themselves. Since, in
segmenting the surface conductors and wire components, a uniform size was used
throughout, some symmetry effects may be used to enhance the speed of calculating the
discrete Green’s functions. When one discrete scalar Green’s function is calculated for a
given source-observation separation distance then, this can be used for all elements with

the same source-observer separation distance as shown in figure 3.8.1. Here, then

Ty () = Ty Gy k)

For the vector potential, once a calculation is made for the discrete Green’s
function, all elements which have the same distance of separation between both charge

cells comprising the source and observation cells as shown in figure 3.8.1 are then known.

Y (Lm) =T (m,n)
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Fig. 3.8.1 Symmetry in the Discrete Green’s Functions

In addition to this, as the variation in both the scalar and vector Green’s functions
are very strong only in the region where the source and observation points are very close,
some approximations may be made when separations are large. Figure 3.8.2 shows the real
and imaginary parts of the scalar Green’s function for source and observation points on the
air-dielectric interface as a function of the distance in wavelengths. It is plainly shown here
that at a separation of one quarter wavelength, the Green’s Function is well out of the region
where the strongest variations occur. A similar characteristic is found for the vector
potential. Therefore one quarter wavelength is chosen as the threshold for using the

aforementioned approximation.
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Fig. 3.8.2 Real and Imaginary Parts of the Scalar Potential Green’s Function as a Function

of Source - Observation Point Separation Distance
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The approximation for the discrete scalar Green’s function is obtained by assuming
that the Green’s function itself is constant over the surface of the charge function that it is

integrated over. That is, for the scalar potential:

HG;I(?,-, z;|7, 0) - 1L (7)) dS; = Gy 2, P, 0) AxAy (3.38.1)
Si
and
5+ 52
14 Vv
[ eyoz|ryz) Tz de; = Gy Oz, 2 Az (3.82)
. Az
Lj_i'
Similarly, for the discrete vector potential Green’s functions
1 X ’ - ’
EJJG; (P (7)) -T,, (r)dS" = Gy (?] (7)) Ax (3.8.3)
Sl‘!
__1__ xx , ( o ( _]x—xn’l)) Al
4Ay[.[§'.GA (P (7)) - | sign(x=x )| ] T ds’ | = o (3.8.4)
1 o ! ! ’ P ’
Z\"}}JJG"H (¥) T, (¥)dS = G P (7) (cosd) Ax (3.8.5)
and
i 2z , , , 22,5 ray
2n r;w.,.JSjGA (1 (#)) - T, (1) dS" = G (7 (7)) Az (3.8.6)

These approximations are possible due to the simple nature of the basis functions

and the fact that the segmentation is uniform across the conducting surface.
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3.9 Calculation of the Far Field Radiation Patterns

Electric Field of a Horizontal Electric Dipole

The radiated electric field pattern is calculated by first considering a horizontal
electric dipole (HED) oriented in the u direction on the surface of the dielectric substrate.
We have already seen that the electric field can be expressed as a vector potential and scalar

potential by the equation:

E=—jwd-VV (3.9.1)
to which the usval Lorentz Gauge is imposed
V-4 = —jopeV (3.9.2)

Finally, then, the electric field for a HED on the air-dielectric interface is given by

the equation;

B = —jod+ 1 _vvA (3.93)
JOUE

The vector potcntial,ﬁ, created by a HED is given by the Sommerfeld Integral

expression of the diadic Green’s function, equation.
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When the distance between source and observation points is very large, an
asymptotic approximation of the Sommerfeld Integral expression of the Green’s function
can be used. This approximation is obtained using a saddle point method as given in [35].
The final expressions for the electric field has two components. The first component is a
spherical wave dominant at angels greater than the grazing angle of m/2. The other
component is a surface wave which travels along the substrate surface. Here, we choose
only the first component. Transforming the asymptotic expressions for the Green’s

function into spherical coordinates, leads to the expressions for the electric field due to a

single HED:
JOu T e_jklr
By = - 71—1:—COS¢COSBT—jercosBcotklh.T r (3.9.4)
. 1 —jkyr
_Jen . €
¢ 2x sm@cosecose_ Tcotk,hT r (3.9.5)
! 3.9.6
E,_~0(—2] (3.9.6)
¥
where

1

2 2
T =|¢g, —sind (3.9.7

The mechanism for the radiated field is further approximated to be dominated by

the currents on the surface, the effect of currents on the embedded wires are neglected.
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Electric Field Due to a Surface Conductor

To simulate the surface conductor with an arbitrary current distribution, an array of

the cuirent cells which were used for the method of moments solution of the current

distribution is considered. A pattern multiplication approach is the taken to determine the

far field due to the conductor. The element patterns are given by the expressions 3.9.4 and

3.9.5. The array factor is then obtained by considering the patch as an array of its composite

current cells. Each u directed current cell of the conductor has a current density given by

equations (3.2.3) and (3.2.4) which can be written in uv-coordinates as:

{ Nu
Jsu = :E; 2 Im'Tm'

i=1

Integrating the roof-top basis function over a current cell gives the result;

1 N
o] [ Tun (7 dS” = Au
s,
The array factor for the current in each direction therefore becomes:

Nu k)
J ‘o Fe .r'
E Aulw.e

i=1

(3.9.8)

(3.9.9)

(3.9.10)

where the values for the current elements, /, ., are obtained directly from the MoM

solution
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Using the pattern multiplication approach, the normalized far field in each of the

E (¢ = 0)and H (¢ = n/2) planes are calculated using the following four equations:

In the E-plane:

E

6~ T - je,cos@cot (k hT)
!

TcosB

Nx

jk, (F,- %) sin@
z AxIxt.e
=1

Ny . o
cos@ Jk, (¥, -9} sin®
= Ayl .
Eq; cos8—jTcot (k hT) _Zl iy €
1=
In the H-plane:
Ny . .
TcosH jk, (¥, ) sin®
Eg = Ayl .
®  T-je,cosOcot (k hT) '21 Hyi€
I =
Ny
cosB jk, (7, - %) sin®
E@ - z Ax’xie
=1

cos®-jTcot (k hT)
i =

(3.9.11)

(3.9.12)

(3.9.13)

(3.9.14)
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4 Modelling Feeds, Loads and Active
Devices

4.1 Line Fed Antennas and Devices

A common way to feed an antenna, especially in the environment of an array, is by
microstrip line, as shown in figure 4.1.1. Practically, the line is fed via some kind of
connector, making a transition from the transmit electronics to the feed line. This is the
same mechanism for feeding MIC circuits and devices. A very simple model is used here
to represent this type of feed, in which a voltage source is placed in series with the
microstrip line. Using the example of a feed line oriented in the x-direction, the source is
set to unit magnitude and zero phase and the separation in the line at the source is specified
to have zero width. The following expression for the impressed electric field on the

segment containing a source in the x-direction is:

E.=08()) 4.1.1)
As currents will only exist on the surface of the substrate, the matrix equation 3.7.7

takes on the form:

Z Z |1l Z,
xx Txy bV X 4,1.2
2n ( )
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When testing with the razor function is imposed on equation 4.1.1, the excitation

vector obtained has zeroes at all entries except for a unit element over the excited segment;

[Vl =1[.001000..] (4.1.3)

RADIATING
PATCH

I

FEED LINE

Fig. 4.1.1 Line Fed Microstrip Patch Antenna

Current Magnitude

Feed Line

Fig. 4.1.2 Example of a Current Standing Wave on the Microstrip Line
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Using this type of excitation the input reflection coefficient of the device is found
through studying the current magnitudes on the line.The standing wave ratio (SWR) is
obtained by comparing the maximum and minimum value of the current standing wave
pattern on the line as shown in figure 4.1.2. The current is approximated as a cubic function
local to the points where the maximum and minimum on the line occur. The coefficients of
this cubic function are determine by studying the basis function coefficients around these
points. The actual locations of the maxima and minima are found using a Newton-Raphson
root finding algorithm to find where the derivative of the cubic function is zero. Finally, the

input reflection coefficient at a reference point, x,, is determined by:

I
SWR = 2 (4.1.4)
_ SWR-1
00 O] = ST (4.1.5)
o (T, (%)) = Blx,—x,,.) (4.1.6)

In the above phase equation, [ is obtained by finding the distance between two

consecutive current maxima which will be one half of the line wavelength. Then

B - 4.1.7)

One final point to note here is that when the input reflection coefficient is required,
the geometry must be such that there are at least two maxima on the line. For the results
found in subsequent chapters a feed line of one wavelength at the lowest frequericy

considered was used.
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4.2 Coaxial Feeds

A coaxial pin is also often used for feeding a microstrip patch antenna. Using this
method the transmission line and electronics can be kept behind the radiating element and
therefore do not interfere with the radiation from the patch. In simulating a coaxial feed,
the vertical current elements and a junction as described in the previous chapter are utilized.
The coaxial pin extends from the ground plane to the surface conductor as shown in
figure 4.2.1. Using the equivalence principle, the outer radius of the coaxial cable can be

enclosed by the ground plane and replaced by an equivalent frill of magnetic current [30]

as shown in figure 4.2.2

CONDUCTING PATCH
FEED PROBE /

AN

CONNECTOR GROUND PLANE

Fig. 4.2.1 Probe Fed Microstrip Patch
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Fig. 4.2.2 Frill of Magnetic Currents in the Ground Plane

Then, the electric field created by this frill of current is analytically calculable. Only
the vertical component is considered, which is given by the expressions.

M, - =2V _ (42.1)
)

¢
pln(l—)

a

ke (ot M) +at)  ikofel (gt h) 467
%4 e e
b f T3 2 2
1“(&] (¢g+h) +a J(zo+h.) +b

Where a and b are the radius of the coaxial pin and the radius of the opening at the

E_(p=0,z,) = (4.2.2)

ground plane respectively.

As a result of this form of feed, the excitation vector calculated will be zero for test
segments corresponding to the surface conductor at the interface, and for test segments

corresponding to the wire and junction.

%
V, = [Ed (4.2.3)

Z

@
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The input impedance is then found simply by Ohm’s law dividing the voltage

specified on the coaxial line by the current found on the pin, at the ground plane.

Z, == (4.2.4)

In the case of both the coaxial probe feeding configuration and the passive loading

as presented in the next section, the matrix equation takes on the form:

(4.2.5)

where the calculation of V_ is performed as above. The full expressions for the

various components of this matrix are also give in Appendix A.
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4.3 Passive Loading

Often, a microstrip circuit contains discrete elements on the surface used for
matching devices. Pins and other reactive loads between the conducting patch and the
ground plane have be recently used to increase the bandwidth of microstrip antennas as
well. A simple model may be constructed of a passive load at any point where the current

is continuous in one direction as in figure 4.3.1 below.

Fig. 4.3.1 Loads Parallel (A) and Perpindicular (B) to the Conducitng Surface

The effect of the load is a change of electric field where the load is placed. This field

takes the form of [31]:

E=— (4.3.1)
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Where V, is the voltage drop across the load which is described by Ohm’s law

V, = 2,1, and Al is the linear distance over the conductor where the load exists.

The current in the loaded cell is a function of currents in adjacent cells and thus the
éxpression for the field at a loaded cell should reflect this. This results in a complicated
expression of the field including different elements. However, if the load is considered to
be concentrated in the infinitesimal gap between the charge cells of the loaded current cell,
the mathematical description of the load can be simplified so that it only affects one term

of the moments matrix [32]. In this case then,

E=-v3() (43.2)

This can be added to the impressed field due to all other sources since the media are
all linear. The right hand side of the MPIE is then altered to reflect this and the testing

function is applied.

JE-di=-v + [Bo-dl = -z 1+ [B, - al (4.33)
C, C, C,

Where C; is segment that is loaded and E s 18 the field due all sources. The term
containing the impedance and current is piaced in the matrix. Since the impedance only acts
on the current directly corresponding to the test segment where the load is placed the terms
in the moments matrix éxcept the self term corresponding to the loaded current cell remain

the same and that self term becomes, for loads on the surface in the x-direction
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Z, (i) =Z_ (i,i) +Z,. (43.4)

When the load exists between the conducting surface and the ground plane, within
the dielectric subtrate, two cases may be considered. If the load is a given value, as for the
case of a diode or inductor for example. A current may placed on the surface of the
conductor using the function describing the wire-patch junction, with magnitude / . The

voltage drop at the load point can then be expressed in two ways. First using Ohms law:

V=271 43.5)

Then, by expressing the voltage as a function of the z-directed electric field,

0
V = IE.C[[ (4.3.6)
—h

Finally the electric field is expressed in terms of its vector and scalar potentials

4.4 Simplification of Coaxial Feeds and Loads

Considerable savings of both time and memory can be obtained by using a simple
approximation of the current on the wire part of a coaxial feed or load. By considering that
when is the substrate layer is thin (< A/10 ), and hence the wire section is short, the current

on the wire can be considered to be constant. Assuming this allows the wire current and the
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junction current to be represented by a single value. In turn, this eliminates the need to
calculate the effect of wire sections on other wire sections as well as effects of surface cells

on the wire sections and vice versa. With this approximation the matrix equation becomes:

417

xx Txy Txjl | x

1] = [oo v} 44.1)
yx ¥y yjly 2

N N N
N N N
N N N
=

x Ty Tzl Lz

Where the components of the Z matrix are given in Appendix A keepeing in mind
that a test segment along wire components now extends from the conductor to the ground
plane. It should also be noted here that as the thickness of the substrate increases the

approximation will become less and less valid.

4.5 Integration of Active Devices

Active devices have been successfully integrated into the characterization of
microstrip structures using time domain methods [33]. In these methods, the two device
ports are usually modelled by a load on one port and a voltage dependent current source on
the other. Then the time domain fields on the affected segments are formulated using
differential equations. The models used in these methods are usually extracted using the
small signal parameters of the device (S-parameters or Y-parameters). In extracting this
model, it is sometimes possible to add elements which are not necessarily part of the device
or, conversely, to omit part of the device due to over simplification. In the frequency
domain, the Z-parameters may been used to describe the two port device without the

formation of an equivalent circuit model. A frequency domain model for an active device
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has been given [34] where a pin is connected to the ground plane and becomes a common
point for the two ports of the device. Again this pin may add something erroneous to the
device that is being described. Instead of adding this complication, the device may be
thought of as a “black box” where the parameters given are external responses to external
conditions. Using this model, the device may be thought of as simply a two port as shown

in figure 4.5.1

Fig. 4.5.1 General Two Port Device

The port voltages and currents are linked through the network Z-matrix by

V] - ZEiZi2 11 (4.5.1)
Z

2 Z2l 22 [2

Then, by adding current to the points where the device is connected, the external
response is given. These cumrents are added in the form of the junction current basis

functions on the surface conductor introduced in an earlier chapter. Finally, the port
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voltages are determined by integrating the z-directed electric field determined by all the

surfaces currents and charges from the point of device contact to the ground plane.

V = jE-dl (4.5.2)

For each of the two ports, then, an equation can be defined that looks somewhat like

the MPIE, that is

0

—J;(—ijz—j—:)

di = Z.1.+Z.1. 453
port (i) e ( )

Using the same linearization method described in the previous chapter, the system
of equations is increased by two extra equations for each device present. Some additions
also are needed in the existing system of equations. The main goal in this formulation is to
ensure the continuity of the surface current of the device and the surface conductor. The
matrix components corresponding to wire-device and junction-device interations are

assumed negligible The final linear system will then have the form

2o Zo 2o Ly Zog| |1, v
Zye Zyy Ly Zyj Zya| |1y v,
2.2y 2. 2; 0|1 = | v, (4.5.4)
Zix Ziy Zie 25 O v,
2 Zay O 0 Zy |1y 0

The additional elements in the moments matrix are given in Appendix A
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5 Numerical Results

5.1 Introduction

In this chapter some known measured results as well as analytic and approximate
solutions are used to test the accuracy and flexibility of the methods developed and used
for the generation of the microstrip analysis tool as described in the preceding chapters. The
first section deals with some preliminary investigations that have been performed in order
to verify that the solutions produced are consistent with analytic solutions and
approximations such as transmission line theory. This section covers models for the line fed
and coaxial cable fed structures as well as the passive and active loading as has been given
in chapter 4. A simple check against an analytic solution is also performed to verify the
calculation of the far field patterns as developed in chapter 3. The remainder of the chapter
is used to compare results for specific designs that have been tested by various other
researchers. Study of new antenna design is beyond the scope of the project, any design

used is solely to test the accuracy and versatility of the model.

Page 63




Numerical Results

5.2 Validation of the Model

Current Distributions

In order to confirm that results produced are in accordance with what is
theoretically expected, a preliminary study is undertaken, using the method to analyse the
currents on a thin wire dipole over a ground plane. It is well known that for this
configurations current magnitude at the end points on the dipole will be minimum, but not
quite zero due to fringing effects. The additional minima on the line will occur at points one
half of the line wavelength apart, similarly for the maxima. With this in mind, the method
was used to analyse a centre fed, thin wire dipole of length 2A and width A/100, over a

ground plane at height (A/100) as shown in figure 5.2.1.

Fig. 5.2.1 Centre Fed Dipole Over Ground Plane
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Numerical Results

To check the convergence of the results, the analysis was performed using 10, 20,
40 and finally 100 segments/A . Figure 5.2.2 shows that the values for the magnitude and
locations of maxima and minima are consistent with theoretical expectations over all four
segmentation schemes. The figure also demonstrates that the method is convergent for
increasingly accurate models, in fact the curves for 40 and 100 segments per wavelength

are almost indistinguishable.

Legend: 10 Segments/A,
- —— - 20 Segments/A
— » — 40 Segments/A

— « + — 100 Segments/A

Fig. 5.2.2 Currents on the Centre Fed Dipole
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Numerical Results
Input Reflection Parameters

A second test is performed to verify the method of obtaining the input S-parameter
of a microstrip structure fed by microstrip line. For an open circuited line, the magnitude
of the S, parameter will be unity while the angle of the S, parameter will be dependent on
the frequency of excitation and the plane of reference that the reflection parameter is

measured at, according to the equation:

4(x —x_)
angle (S,,) = [-—""’l—’ef}lsoﬂu 180 (5.2.1)

Furthermore, if a load such as a two parallel open circuited stubs is placed at the end

of the line, the S|, parameter seen by the feed line can be calculated from.

2 (5.2.2)

where Z,, is the characteristic impedance of the microstrip line and Z ;. is calculated

using the impedance transformation equation:

_ Zp+jZ tanBl 523)
L Z +jZanBl
and the load of the parallel open circuited lines, Zr, is calculated from:
1, 2wl
ZT = ijZOCOt(—'}L—) 5.2.4)
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With this in mind, two simulations are performed, in the first, a one wavelength line
was fed at one end over a 20% bandwidth of the centre frequency the height of the substrate
is A/100. The result for the S, parameter of the open circuit line using fifty (50) segments
per wavelength along with the analytical result is given in figure 5.2.3. In the second test,
a one wavelength feed line connected to the centre of a perpendicular line of one half the
wavelength at the centre frequency is examined over a 20% bandwidth of the centre
frequency using the same height and segmentation scheme. In both cases, the The S|,
parameters of the calculated and analytic results for this simulation are also given in figure
5.2.3. While the cubic spline approximation of the current distribution on the feed line
proves to be somewhat inaccurate, giving a non-unity magnitude for S,,, an agreement to
within 5% is obtained and results for the phase of the S,, parameter are accurate to within

5 degrees.

Also of note in this comparison is the fact that the transmission line model cannot
account for fringing effects at the open circuit end. In fact if the line length were increased,
the phase of the S, parameter would be more in line with what was calculated using the
present method. For the phase of the scattering parameter, the presented method provides

more accuracy than the transmission line model.
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S11 Parameter of an Open Circuited Microstrip Line

--— 811 Open Circuit Line - MoM
—— 811 Open Circuit Line - Analytic
-— 511 T-dunction - MoM

—-— 511 T-Junction - Analytic

H 4+ O x

Fig. 5.2.3 S11 Parameters for an Open Circuit and Microstrip Circuits
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Numerical Results

Input Impedance Coaxial Pin Fed Microstrip Structures with Loads

The third test is performed to verify the result for the input impedance of the coaxial
pin fed microstrip structures as well as for loads placed on the microstrip structure. The
impedance of a microstrip line that is either open circuited, short circuited or loaded with a
known impedance can be found easily using transmission line theory. A well known low
frequency approximation for the input impedance Z;, of a loaded transmission line with

characteristic impedance Z,, can be obtained from the equation [42]:

_ I:ZL+jZOtan (Bx)]

in <0 ZO+jZLtaH (Bx) (525)

Where Z, is the impedance of the load placed on the line, B is the propagation
constant of the transmission line, 27/A 4» and x is the length of the transmission line
between the source and the load. This provides a good analytic result with which to

compare values obtained using the method and models developed.

With this in mind, a microstrip line was modelled, the line is designed to have a
characteristic impedance of 50 Ohms. The dielectric substrate is lossless with € =2.59 and
a height of 1.59 mm. The line is one wavelength at 1Ghz and is fed by coaxial pin at one

end as shown in figure 5.2.4.

Page 69



Numerical Results

COAXIAL
FEED

TERMINATION

Fig. 5.2.4 Microstrip Line Used for the Verification of Loaded Result

The results for the input impedance over a 20% bandwidth about the centre
frequency for the open circuited and short circuited lines using fifty segments per
waveléngth are given on the Smith chart of figure 5.2.5. The Smith chart plot of figure 5.2.6
displays results for a matched load and for an arbitrarily chosen termination of a resistance
of 10 Ohms in series with an inductance of which would add to the impedance an imaginary
part of j10 Ohms at the centre frequency. These results are compared to the transmission
line theory results and demonstrate the an agreement between theory and the method to
within about 2.5% of the frequency in the worst case. Once again, because of the neglect
of the fringing field in the transmission line model, the phase of the impedance as
calculated by the present method will be more reliable than that calculated using the

transmission line model.
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Numerical Results

Input Impedance of Transmission Lines

X —--Zin Open Circuit MoM
0 ----Zin Open Circuit T-Line Theory
+ —-Zin Short Circuit MoM

# ----Zin Short Circuit T-Line Theory

Fig. 5.2.5 Transmission Line Theory and Moment Method Results for the Input

Impedances of Open Circuited and Short Circuited Microstrip Lines
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Numerical Results

Input Impedance of Transmission Lines

-~-Zin - Matched Load - Calculated

— Zin - Matched Load - T-Line Theory

-—-Zin - Zload = 10 Ohms + 16nH - Calculated
—— Zin - Zload = 10 Ohms + 16nH - T-Line Theory

#H 4+ O x

Fig. 5.2.6 Transmission Line Theory and Moment Method Resuits for the Input

Impedances of a Microstrip Line with Two Different Load Schemes
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Numerical Results

Radiation Patterns

A final test is performed to verify the result for the radiation pattern as obtained
using the methods described in chapter 5. For this test, the analytic result for a half-wave
dipole over a ground plane is used to compare to the calculated result. A well known
analytic approximation for the radiation pattern of a thin wire dipole a antenna is given by

the following formula [41]:

os(l—gcosej co (E)
Eq(8) 05\ 5080 Jeos( 3

Hy(9) = n sin®

(5.2.6)

where © is the elevation angle, & is the wave number, 27t/A an [ is the length of the
dipole. This result is multiplied by an array factor to account for the effect of the ground
plane. The array factor is obtained by considering an isotropic source and its image on the
other side of the ground plane separated by a phase of 180 degrees and a distance of twice

the substrate height. This array factor will therefore have the form.

AF (6) o cos(%(k(Zh) cose—n)] (5.2.7)

Where £ is the substrate height. The H-plane pattern is determined analytically by

considering only the array factor
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The method is used calculate the patterns of a thin microstrip dipole 100 mm long
and 0.5 mm wide, 5 mm above a ground plane.Simulations are performed for the microstrip
dipole operating as a half-wave dipole (1.5 Ghz) and as a one and one quarter wave dipole
(3.75 GHz). Results obtained using the method described in chapter 5 are compared to the
analytic result obtained using equations 5.2.6 and 5.2.7. Figures 5.2.7 and 5.2.8 show an
excellent qualitative agreement in both planes of the radiation patterns, with the Moments
Method result indistinguishable from the analytic result in all cases but for the dipole
operating at 3.75 GHz. This result was included to demonstrate the amount of discrepancy
for a pattern with nulls. An error of about 2 degrees is observed in the position of the nulls
and the magnitudes of the second lobes differ by about 2dB in the range of -15dB,

exhibiting still an excellent agreement.
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- — Analytic
E-Plane Pattern Ry

P,,q (normalized in dB)

i ; {
0 45 0 45 90
® (degrees)

H-Plane Pattern

P,q (normalized in dB)

90 -45 (') 4'5 QIO
© (degrees)

Fig. 5.2.7 Far Field Patterns of a Half-Wave Dipole Over Ground Plane
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Analytic
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Fig. 5.2.8 Far Field Patterns of a 1.25 A Dipole Over Ground Plane
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5.3 Active Circuits

It is becoming increasingly popular to attempt to create an “active antenna” by
combining active elements with resonant microstrip structures. Using this method, the
power radiated by the antenna may be increased, and arrays of these elements may create
a powerful directive pattern for use in such applications as radar. It may also become
important to circuit designers to include their active elements in the full wave model of the
circuit as opposed to, for example, creating circuit models of the microstrip line sections

and using a circuit simulator to analyse the entire system.

The model of an active load as described in Chapter 4 is one proposal for a method
in which such a device may be included in the full wave analysis. Results obtained using
the method developed are compared with the input impedance as found by the LADDER
program, a program developed in the Electrical Engineering Department at the University
of Manitoba which uses a transmission line model. This result is used only to demonstrate
that the method developed in chapter 4 provides a reasonably accurate result when

compared to well accepted methods.
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Figure 5.3.1 shows a transistor connected to a microstrip feed line with a line and

50 Ohm load attached at the output, the transistor reflection coefficients are given in

table 5.3.1. The height of the substrate is 1.59 mm and the relative dielectric constant, €,

is 2.56. Two cases are studied here, the case of the feed and load lines only attached to the

transistor, then the case where tuning stubs are included at input and output to attempt a

more close match. The results for the input impedances using a segmentation scheme of

twenty segments per wavelength are also given in figure 5.3.1. They demonstrate that the

method provides a reasonable agreement with accepted theory, the transmission line

model.
Table 5.3.1: Input Parameters for the Transistor Used
f S11 S11 S21 S21 S12 S12 S22 S22
(Mhz) [ (mag.) | (ang.) | (mag.) | (ang.) | (mag) | (ang) | (mag.) | (ang)
1000 | 0.60 -154 13.0 87 0.056 |35 0.60 -33
1100 0.60 -159 12.3 83 0.057 |35 0.59 -34
1200 | 0.60 -165 11.6 80 0.058 | 36 0.58 -35
1300 | 0.60 -169 10.9 76 0.057 |36 0.58 -36
1400 0.60 -174 10.3 73 0.058 |37 0.57 -37
1500 0.60 -178 9.8 70 0.058 |38 0.57 -38
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L, L
N OUT
- Ly = 15.64 mm
FEED Jzzzzzzznzmduax"ﬁ/&afﬂw%ym”:z’m/wmwa MATCHED L()UT = 60.34 mm
§ %3 LOAD LSI = 2235 mm
Lg; 1 L L¢; =2235mm
52
| o2

Zin for Transistor Circuits

X -— LADDER Results - Without Tuning Stubs
+ -— MPIE - Without Tuning Stubs

o - LADDER Results - With Tuning Stubs

# —— MPIE - With Tuning Stubs

150 GHz

Fig. 5.3.1 Input Impedance for Two Different Active Circuits
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54 Line Fed Microstrip Patch Antenna

The line feeding configuration consists of simply attaching the patch antenna to a
microstrip line. In such a system, the line may be connected at the other end directly to the
transmit or receive circuitry or, more commonly, in an array environment with other
antennas and lines on the same surface. This method has been studied both numerically and
experimentally by several authors [37],[36],[38] and there exists a great deal of both

calculated and numerical data for this type of structure.

To obtain a better match between line and resonator, it is common to create an inset
feed by removing notches around the contact point between the line and patch. By varying
the dimensions of these notches a good match may be obtained. In the past this was done
by using some empirical formulae and by prototype testing. Using a software tool such as
the one developed, a model may be obtained and the notch dimensions varied on computer
rather than successive test runs. Figure 5.4.1 shows a line fed microstrip antenna into which
notches may be cut in order to obtain a more desirable match. The method is first used on
the feed structure without notches to verify the accuracy of the result, then it is used on the
notched structure to demonstrate the flexibility of the method. In each case the patch is
segmented using 12x7 segments, meaning that only one cell is missing in the notched case.
The results are compared with measured results obtained by Legay [37], shown in figure
5.4.1. Results obtained for the unnotched model show that a close approximation of this
structure is possible. However, a large shift in the result for the notched model suggests that
a increased segmentation may be needed around the notch area. A method of

accomplishing this is prescribed in the next chapter.
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15.30 mm
11.00 mm
17.86 mm

2.20 mm

0.80 mm
2.17

2.20 mm
1.85mm

Input Impedance of Line Fed Patch Antenna Input Impedance of Line Fed Patch Antenna
x -— 511 Cakulated (No Noiches)

x —— S11 Cakulated {Notches)
0 — 511 Measured (No Nolches) ¢ — S11 Measured (Notches)

Fig. 5.4.1 S11 for Rectangular Patch Antenna with Inset Line Feed
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5.5 Coax Fed Microstrip Patch

When the microstrip patch antenna is fed by coaxial line, there are several effects
that contribute to the input impedance. Certainly, it is obvious that the patch dimensions as
well as the frequency and the substrate dielectric constant have a great effect. However,
several more subtle parameters such as the location of the placement of the probe on the
patch and the height of the substrate will also exert themselves. There is, additionally no
real analytic method for calculating these impedances and no intuitive result as with some
of the previous models calculated. There is, fortunately, a great deal of data both calculated
and measured available in the literature dealing with various shapes and sizes of microstrip
antennas fed by coaxial probes. One particular paper by Abboud et al. [39] uses cavity
models to calculate the input impedance for a range of frequencies and substrate
thicknesses. Their calculations are then, in turn, compared with measurements made with
fabricated antennas. The comparison with these results, shown in figure 5.5.1, is a low
frequency antenna operating at about 660 MHz. The second, shown in figure 5.5.2, is an
antenna designed to operate at higher frequencies, about 4.35 GHz. Finally the method is
used to analyse a circular antenna in order to test the validity of the method on non
rectangular structures, and compared with some measurements performed by Chew et al.
[6]. Figures 5.5.1 and 5.5.2 demonstrate that once again the method is accurate to within
about 2.5% with respect to frequency for rectangular models. Figure 5.5.3 shows that some
accuracy is lost when analysing an irregular structure but that it impfovcs with increased
discretization of the conducting surface. All three figures also demonstrate that the method

converges toward measured results when the segmentation is increased.
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L =1397 mm
W =204.5 mm
Xg=06.35 mm
Yr=102.25 mm
h=1.588 mm
€ =259

tan® = 0.003

Input Impedance of Patch Antenna (139.7mm X 204.5mm)

x -— Zin Calculated - MoM
0 — Zin Measured

Fig. 5.5.1 Input Impedance for Coax Fed Patch Antenna Resonant at 660 MHz
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L=20.1l mm
W =20.1 mm
Xg= 1.3 mm
Yg=10.05 mm
h=1.59 mm

€ =255

tand = 0.002

Input Impedance of Patch Antenna (20.1mm x 20.1mm)

x — Zin Calculated (Nx=Ny=7)
0 -— Zin Calculated (Nx=Ny=21)
+ — Zin Measured

Fig. 5.5.2 Input Impedance for Patch Antenna Resonant at 4.30 GHz
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Im{Z, } (normalized)

R =18.8 mm
Xf =47 mm
Y;=18.8 mm
g€ =260
tand = 0.0018
h = 1.60 mm
Nx =Ny =13
— — Nx=Ny=21
- Measured
7 —_
6 —
75
Te-
5
=<3
!:]: |
L2
1 -
0 T T T T T T T T T T T T T T v 1
26 265 27 2.75 28 - 285 29 2.95 3
Frequency (Hz) (x10%
Imaginary Part of Input Impedance vs. Frequency
4 —
3 -
2 —
1
0 —
-1
2
-3 v T i T T T T T T T l i 1

1 f T
2.6 265 2.7 275 2.8 2.85 29 2.95 3
Frequency (Hz) (x10°%)

Fig. 5.5.3 Real and Imaginary Part of the Input Impedance of a Circular Disk Miscrostrip

Antenna Operating at 2.80 GHz
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5.6 Reactively Loaded Antennas

Placing a reactive load between the conducting surface and ground plane has been
shown to create increased bandwidth when the load is placed properly with respect to the
coaxial feed [40], or the addition of such a load can help to alter the input impedance seen
by the feed, as the currents on the surface of the conductor will be adjusted, to provide a
better match with the feed [10]. Circularly polarized radiation can also be obtained if the

loading is used in conjunction with special feeding techniques [9].

The presented method is used to model the placement of reactive loads between the
conducting surface and ground plane. Part of the objective of the method developed here is
to be able to characterize different loading, as well a feeding configurations. In this sense,
then, this type of device which has been studied also by Ali-Khan et al.[10] provides a good
test as to the validity of this method for loaded microstrip structures. To confirm the
ge.nerality, two different structures are studied. The first contains a single shorting pin the
same distance from the nonradiating edge as the feed at a point presupposed to maintain the
same resonant frequency but increase the bandwidth somewhat. The dimensions of the
patch, along with the feed and load points are given in figures 5.6.1 and 5.6.2. The Smith
Charts associated with each figure demonstrate the agreement with the result measured by
Richmond. The Smith charts suggest that, in general, a coarse segmentation is not adequate
for determining the quickly varying fields close to the load pin. Much better agreement is
obtained, however, when the segmentation is increased by a factor of about 1.5. The second
configuration consists of a the same patch loaded with two shorting posts, equally distant

from the radiating edge. This decription and resuit is given in figure 5.6.3.
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Reactively Loaded Patch (XL=25mm YL=9.1mm)

X -—-Zin Measured
—- Zin Galculated{Nx=9 Ny=6)
+ —Zin Calculated (Nx=15 Ny=10)

[«]

Fig. 5.6.1 Input Impedance of a Microstrip Patch Antenna Loaded with a Shorting Post at *
(25.0mm.9.1mm)
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Reactively Loaded Patch (XL=17.5mm YL=10.5mm)

x —- Zin Measured
— Zin Calculated (Nx=8 Ny=6}
+ —Zin Calculated (Nx=15 Ny=10)

<

Fig. 5.6.2 Input Impedance of a Microstrip Patch Antenna Loaded with a Shorting Post at
(17.5mm, 10.4mm)
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L =60 mm

W =40 mm
XF =10 mm
YF =10 mm
h=1.58 mm
€. =243

YLl = 27.6mm
YL2 = 12.4mm
XL=30 mm

Patch with Two Reactive Loads

X — Zin Measured
o -— Zin Calculated {(Nx=9 Ny=6)
+ - Zin Calculated (Nx=15 Ny=10)

Numerical Results

Fig. 5.6.3 Input Impedance of a Microstrip Patch Antenna Loaded with Two Shorting

Posts
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It is clearly demonstrated once again that the method is increasingly accurate with
an increased segmentation. One reason for this, apart from the obvious reason that a finer
segmentation is capabl¢ of more accurately modelling the current distribution on the patch,
is that increased flexibility in the placement of the probe is realized. In the paper by
Ali-Khan, the centre frequency is maintained by displacing the probe very slightly in the
y-direction. An increased segmentation for the present method allows this displacement
more accurately. Results with the increased segmentation scheme give results accurate

within about 3% of the frequency.
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6 Conclusions

6.1 Performance of the Method

It has been demonstrated that the input impedances calculated using the presented
method have an agreement with measured results consistently within five percent for the
examples shown in Chapter 5. Furthermore, the results for the radiated field are
qualitatively in agreement when compared to measured and analytic results. Major
problems of accuracy, however, do arise when the structure under analysis takes on an
irregular shape. Structures with increasingly thick substrates may also cause some concern
when the input impedance is to be studied. These problems may be alleviated by

considering some of the suggestions made in the next section.

An additional problem is faced when trying to determine the effect of an increased
discretization in the input impedance result. While it was demonstrated that an increased
segmentation will provide a smoother current distribution in the case of a single line, the
study of the effect on the input impedance is not trivial. Since the segmentation inherently
determines which points the coaxial or microstrip feed may be situated at, an increased
segmentation will alter the choices available for inserting th¢ mode] feed. An attempt was
made to create a more arbitrary expression for the fields near the feed probes and load
points but this did not provide an adequate description of the conversion of probe currents
to surface currents. The method suggested in the “Recommendations for Further Work”

section in this chapter show more promise for solving this problem.
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Conclusions

The tool that was developed using the formulation described in the first sections of
this document will provide a relatively fast method of obtaining various parameters of
interest to designers of microstrip antennas and circuits, approximately twenty minutes per
frequency on a Sun Sparc2 workstation. The system memory required for the single
precision version of the program is approximately 12 MBytes suggesting that this tool
could also be easily ported to PC based system. Finally, the modular nature of the program
code will allow the continuation of this work to include increasingly complex structures

and increase the output capabilities when other parameters are to be considered.

6.2 Recommendations for Further Work

The structures that can be analysed using the Method of Moments as applied here
are general but the aécuracy becomes questionable for more irregular shapes. If the
segmentation of the conducting surface is increased to the point of acceptible accuracy for
such irregular structures, computer time and memory required may become unrealistically
high. One way to improve this accuracy could to change the method of segmentation so
that geometries could be modelled more accurately without significantly increasing the
number of segments that are to be used. In addition to this fact, the current method is strict
in its application of the feed and load points, more generality is required. A method for
solving both issues may be to use triangular patches to discretize the conducting surface in
place of the present rectangular ones. This method may also be useful for creating a mesh
that is adaptive, using a coarse discretization where the variation in the fields and currents
are small and increasing the segmentation where they vary more rapidly, close to the feeds,

loads, and edges. The literature already shows some of this work being done [43].
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Another level of complexity that is not included here is the addition of extra layers
of dielectric substrate [37]. The most significant part of the adaptation to solve this type of
problem would be to reformulate the Green’s functions for the particular scheme of layers
that is required. A combination of the triangular mesh and the Green’s functions for
multiple layers would act as an excellent tool for the analysis of a completely arbitrary

microstrip structure.

One of the major, time exhaustive, operations of the analysis is the numerical
calculation of the Green’s functions. A closed form for the single layer format has recently
been given by Chow et al. [44] and it may be possible to extend this formulation to multiple

layers.

A last consideration is the fact that the current tool was written with a single
precision floating point in order to save computation memory and time. If increasing
accuracy without regard to computation time or memory is required, the effort required for

a translation to double precision would be trivial.
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Appendix A: Components of the Impedance Matrix

Basic Components of the Matrix

Test Element -x ; Source Element - x:

ij 1 H o+ ]+ Hf - <t H + |5
Ly = k—(rv(rn‘ rxjj +FV(rxi ' "_rjj_rv('xi
o

xx 27 Ax
&, [T CIrpdx+ 57 (Z,+2,) a0
C, o

ad

Where Z, ; is any load between charge cells connected by C . and 3, ; is unity when i=j

and is zero otherwise.. Note that the expresion for Z;Jy is identical with Ax and Ay

exchanged and C replacing C; ,

Test Element - x; Source Element - y:

T Y N H - - H - B
ny = k—(rv[r_“. ryj] + Fv(rn. ryj) - Fv(rﬂ. "yj}]
o

+ Hf +
ryj) - FV( -

. ij ji
Noting that Z_ry = Zy_\.

Test Element - x ; Source Element - z:

ij PRV o+ + vi - |- v -
Z = —[Fv(r : rzj) +Fv(rﬂ. rzj)—f‘v(}ﬂ.

Xz k Xt
a

5)-milil)
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Test Element - x ; Source Element - junction:
ij 1{H + v o+
Zy = k—(rv( ?jj) - 1‘v( P
a

Similar expressions can be obtained for Zgj and Z;JJ by exchanging y for x in these

+ o V[ o
» fﬁ)4-rv(fﬂ

xi

- Hi -
)i,

- xj
>jj))—koj 7 () dx

two equations.

Test Element - z ; Source Element - x:

ij T H 4.+ Hf - 1.- Hi - |+ H  +
Zz,t = k—(FV(?xi ?xj) +FV(>xi ?x')"FV(?xf ?xj)_r‘l/(}xi
o

>;jjj—k0 fricpyds
Ca

Test Element - z ; Source Element - z:

ij 1 VI o s+ Vi - |s- Vi .-
Zzz = k_o(rv( }zi ;‘ajj + FV(}zi‘?zj) - rV(%i

%))

v+ Vi o+
rzj) - Fv(r;i

7z 2T A
_kOJFA (P ) dx + 572 a
C. 0

inz)_, i

Test Element - z ; Source Element - junction:
ij i H 4+ Vi o [a- H - 1o+ v
2= L(0ep)ertlls) et -

+
| k() zi r
—k, [ U5 Glrpdx— [T (3|p dx
C*i C:i

zi

)

When the test element corresponds to a junction, the expressions for the z directed
test segments hold as a junction test segment is simply a z directed segment located near

the surface of the dielectric.
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Matrix Components Corresponding to Active Elements

Test Element -x ; Source Element - device port:
ij L AHf ot |y Hf -
Zyg = ;‘(Fv(rxf rde_FV(?xi
o

Test Element - device port; Source Element - x:

i i H + H - zx
Zd.r = ]-—C—(Fv(?dilij) - Fv(%ﬁg))“"of,‘% (?‘I;’xj) dz
0

%dj))—ko j r;’(%pdj)dx
C..

Xr

Test Element - device port; Source Element - device port:

v Lp# 2 2n
Zig = k—Fv (?‘j[?‘j)—kothA (ﬂ?‘dj) dz +J—Z_Zij
° aQ

Where Z, i is the ij component of the unnormalized Z matrix of the device.
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