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Abstract

The Method of Moments is used for the development of a tool for analysing the input impedance

characteristics and radiation pattems ofan arbiharily shap€d microstrip structure. Input reflection

coefficients are obtained for line fed structures as well as input impedances for those fed by coaxial

cable. A simple method for characterizing loads between structures and loads from the structure to

the ground plane is given as well as a simple model for characterizing an active device between

structures. Numerical results are compared to solutions obtai¡ed using analytic methods as well as

results measured by other researchers. A consistent accuracy of less than 5% is obtained for regular

geomeFies and methods for improving the result for irregular structures are outlined.
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1 Introduction

1.1 Background and Motivation

The introduction of microwave integrated circuit (MIC) technology in the early

1950's has drastically changed the face of microwave engineering. With this technology,

transmission elements and discrete components are mounted together as with the more

common digital printed circuit board technology. By contrast, using the more faditional

microwave technologies, circuits a¡e formed by connecting discrete components through

coaxial cables or waveguides. An obvious advantage is gained by having all components

of a circuit mounted in one package as opposed to having them distributed between large

transmission line sections I I ].

There are, in MIC tech¡ology, several possibilities for the configuration of the

transmission line elements [2]. Among the common configurations are stripline, where a

cenffal conductor is sandwiched between two ground plane backed dielectric substrates, as

seen in figure l.l.1A, coplanar waveguide, where the ground planes are placed adjacent to

the centre conductor on the dielecúic, as seen in figure Ll.lB, and slotline, where the

signal is transmitted in the slot between two conductors on a dielectric, as shown in

figure 1 . l. I C. By far the most widely used format, however, is the microstrip transmission

line, as shown in figure l 1.2. The microstrip format consists of a conductor mounted on a

dielectric subsúate backed by a ground plane. Benefits of this format over the others

include its simplicity of fabrication and the access allowed to the surface conductor for
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lntroduction

placing and adjustilg discrete components. One of the main drawbacks of microstrip

however, is unwanted radiation and coupling to other elements on the same substrate. It has

become very important to designers of MIC devices to find the minimum distance required

between Ía¡smission elements that will result in an acceptable level of signal com.rption

due to the coupling of the lines (also known as cross-talk).

C

Fig. 1.1.1 Stripline (A), Coplanar Waveguide (B) and Slotline (C) Transmission Lhes

Fig. L I.2 Microstrip Transmission Line Format

B
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Introduction

Also in the early 1950's, a conductor suppofed by a ground plane backed dielectric

subsÍate was first proposed as a radiating element [3]. The radiator is referred to as a

microstrip antenna due to its similarity to microstrip t¡ansmission lines. Since this time,

literally countless investigations have been carried out on variations of this main theme, as

enumerated by Lo et al.[4]. These variations include both resonant type antennas, such as

the rectangular patch [5], the circular disc [6] and microstrip dipoles [7], and travelling

wave type antennas [8], Microstrip anten¡as, however, suffer from a number of

deficiencies which make them unattractive for some applications. One problem incuned in

using microstrip patch antennas is the i¡herently low bandwidth. Experiments into

resolving this problem have included reactive loading of the patch antenna [9], [10] or

placing parasitic elements near to it till, t12l to increase the impedance bandwidth.

Perturbations of the basic geometry may also be used to increase the bandwidth or to enable

diversity in the polarization. Linear and planar anays of microstrip patch elements are often

used to increase the radiated power and achieve a more directed beam I l3]. Recently, MIC

technology has been combined with microstrip antennas to form active antennas and active

arays which may also solve some of these problems t t al, t l5l.

The vast majority of the aforementioned antenna designs have been developed by

researchers who have used their own inh¡itive knowledge and some empirical data to

conceptualize their designs and then physically build and test them. Perfecting the design

in this manner is generally a very time consuming and costly procedure. For this reason,

the ability to perform accurate numerical analyses on microstrip structures, in general, has

gained a great deal ofinterest by antenna and circuit designers alike. To provide a tool that
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Introduction

will be useful and relevant to both circuit and antenna designs which are cunently being

investigated, the method of analysis requires generality, accuracy at higher frequencies,

and the ability to derive multiple characteristics fiom the results.

Several analysis techniques are cunently in use for these types of problems. A good

enumeration of these is given by Itoh u6l. Many methods such as cavity models, mode

matching method and the multiport network model (or planar circuit method) rely on

standard geometries, the effort to include the ki¡d of generality desired here is not trivial.

others model the relationships between cunent and voltage on these structures such as the

transmission line matrix method [7]. Using such a model, coupling and fringing effects

may be ignored or at least difficult to model. Still others, such as the microwave ci¡cuit

simulators TOUCHSTONE and Puff rely on static approximations which may not be valid

at the frequencies which today's curcuits and antennas operate. Often, a full wave analysis

is required which approximates the actual fields and takes into account high frequency and

coupling effects. To this end, the Method of Moments I I 8] has been used in many

electromagnetic scattering and radiation problems. Here, the requirement is for a

fomulation that is specific to the microstrìp problem but general enough to handle arbitr.ary

geometries operating under arbitrary feeding and loading conditions.
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lntroduction

1.2 Objectives

This work was i¡itiated in order to provide a tool for the analysis of single layer

microstrip circuits and antennas loaded with passive or active components. The main

objective in designing the tool is to enable analysis on as general a design as possible,

combining arbitrary geometries with arbitrary loading and active element integration as

represented by the active array in figure I .2. i . In order to provide infomration that will be

relevant to designers, the input impedance, far-field radiation pattems and current

distributions are all sought. A secondary objective of the project is to provide a starting

point for the continuing design of tools to analyse more complex, for example multiple

layered, structures. A final consideration in the design of such a tool is to ensure that it is

easy to use and that the time and computer memory required for the analysis of a realistic

design is not prohibitive to the use of the tool.

ACTIVE
ELEMENTS

TERMINATING
LOAD - ZL

Fig. 1.2.1 A Planar Anay Incorporating Active Elements and a Terminating Load
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Inlroduction

This document is presented in six sections. Following this section, the formulation

of the problem and the Green's Functions, which are the kemel of the integral equations

solved by the Method of Moments, a¡e described. In the third section the application of the

Method of Moments as it applies to this problem is discussed. The method of calculating

the far field radiation pattems using asymptotic expressions for the Green's functions are

also included in this thi¡d section. Special considerations are then given for dealing with

different types of excitation, placing passive loads on the structures and integrating the

microstrip structures with active devices. The frfth section presents some numerical results

and compares them with analytic approximations and previously published data. Finally,

the validity of the results are discussed along with other considerations including computer

efficiency. This final section also includes a discussion of further study that may be

appended to the current work

1.3 Comments and Assumptions

In this study of single layer microstrip structures, the ideal of generality is sought

throughout. Some assumptions, however, must be made in order to facilitate the

formulation and subsequent numerical approximation of the solution. These include:

ground plane and substrate are approximated to extend infinitely
the subst¡ate itself is assumed to be linear, isotropic and homogeneous but, in general,
lossy
the ground plane is assumed to be a perfect conductor
surface conductors are assumed to be infuitely thin

Finally, the solution is performed in the frequency domain and therefore the a time

- ior
variation of e'* is assumed and suppressed throughout the formulation and solution.
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2 The Mixed Potential Integral
Equation

2.1 Integral Equation Formulation

The boundary condition for the total electric field with respect to the arbitrarily

shaped conducting parts of the structure is given in equation 2.1.1 below [19]. When the

conductors are perfect, the tot¿l electric field tangent to the conductor surface is zero. Here,

the right hand side of the equation reflects the ohmic loss that occurs when then conductors

are not perfectly conducting.

: ñxz"ìs(ì) (2.1.1)

In this expression, È" and È' are the scattered and impressed electric field vectors

rcspectively, Z. is the surface impedance of the conductor., taken to be the classic surface

impedance of the conductor ( I *j) 
^Æ 

und J, i, the current density on the conductor.

The scattered electric field can be expressed using a scalar electric potential, y, and

a magnetic vector potential, Â ¡201. tn order for a vector to be defined, however, both the

curl and divergence must be defined. Hence, we defme Â, by relating the curl to the

magnetic field intensif, È :

È:vxÂ (2.1.2)

Page 7
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and the divergence to the scalar electric potential, yj

V. À : -;oev

The latter of which is known as the Lorentz Gauge [21].

Â (,) : JJ[d, rr¡rJ . J, (¡,)¿s,
s

Y(r) : JJcutrP'lp, (¡')¿is'
s

The Mixed Potential Integral Equarion

(2.1.3)

(2.1.6)

(2.t.7)

It then follows Ílom Maxwell's Equations that

È" (¡) : -jcoÀ (¡l - vy(Þ) , (2.1.4)

By replacing the scattered f,reld by its scalar and vector potential representation

(2.1.4) n the equation expressing the boundary condition (2.1. I )

nxÈ'1Þ¡ : jo)(kxÀ(¡)) +vv(È) +2"(âxl,(i)) (2.t.s)

The potentials can be further expressed as superposition integrals of the surface

cunents and charges with the Green's functions, which are responses to elemental sources.

The Green's tunctions <fdofl¡lfl and Gu(]l]')) represent the vecror and

potentials due to an infinitesimal current element and point charge respectively. These are

discussed in the next section, along with the techniques used to calculate them. By inserting

the superposition integrals (2.1.6) and (2.1.7) into the altered version of the boundary

Pâge 8



condition equation (2.1.5) the following expression is obtained.

È'(¡) = . l"(¡')¿s'+ vJJcutili,lo,(r,)ds,+2,1"(Þ) (2.1.8)
s'

This equation is referred to as the Mixed Potential lntegral Equation (MpIE) and,

as will be seen i¡ a future chapter, it is to this that the Method of Moments is applied

2.2 Greents tr'unctions for Layered Media

ln solving the fields in layered media, two approaches may be taken. The fust uses

well known free space Green's functions, which is expressed in spherical coordinates

iroJJca (Èli')
s

the

by

-je (l¡- Ì'l)
G(ìl¡') : "4ffi=il (2.2.1)

Using this method fictive electric and magnetic currents are used to describe the

surface and volume effects which occur in the system. These fictive sources, however, are

exÍa unknowns in the numerical solution and must be solved for 1221. The second, and

more preferable approach, is to use Green's functions specially formulated for the

particular combination of media present and therefore eliminate the requirement of fictive

sources. These specialized Green's functions were first introduced by Sommerfeld [23], to

describe radio waves propagating over lossy ground. Surface waves and dielectric losses

are then accounted for in the Green's functions and only the currents and charges existing

on the conductors are to be solved for using numerical methods.
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The vector potential in hhomogeneous media may

current that produces it 1241. In this case, it is convenient

as a dyadic as shown below.

not necessary be parallel to the

to express the Green's function

dÂ(Þ) : ô¿(ìl¡') . )"1|,¡a,, (2.2.2)

This is expressed in matrix form as

(2.2.3)

For a homogeneous medium, the vêctor potential and currents are same-directed,

thus the dyadic Green's function maintains this form except that Ci : C when s:¡, with

G the Green's function for the homogeneous medium, and Cf : 0 when .r + ¡. In a

layered medium, as is studied here, it has been shown that the vector potential produced by

a current on the interface of the layered media can be described by two orthogonal vectors

and that the vector potential produced by a current perpendicular to the interface requircs

only one component vector which is parallel to the cunent [24].

The Green's functions for both the scalar and vector potentials are derived by

solving the homogeneous Helmholtz equations subject to the boundary conditions relevûrt

to the geometry.

loo) loï oX 4] 1,,.0,

þo,l: loï ",Ì 
c'o,l.lL,,a,

V4 l.'; "'l "';) V,,o'
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The Mixed Potential Inreeral Eouâr¡on

Io'

Io'

:0

:0

(2.2.4)

(2.2.s)

As the geometry under consideration is homogeneous in the transverse (x & y)

directions and i-nlomogeneous in the vertical (¿) direction these equations are solved in

cylindrical coordinates. The solution involves the consideration of two cases. The first is to

fild the Green's functions in the tra¡sverse directions. A horizontal electric dipole (HED)

is considered. The FIED has cunent, 1, and infinitesimal length d/ and exists on the intedace

of the dielectric substrate and the air. The second case considered is that of a vertical

electric dipole (\¡ED) thathas the same properties as the ÉIED but is oriented perpendicular

to the i¡terface and is embedded in the dielectric substrate. The solution of the Green's

function invokes a transformation to the spec[al domain followed by a separation of

variables solution of the differential (Helmholø) equation, and then an inverse

transformation back to the space domain. Analytical solutions have been solved for both

cases of the current and the for the charges on the interface and embedded in the substrate

by several authors [24], [25] and will not be repeated here. Instead, they are manipulated

from these sources into a form that is convenient for calculation using the numerical

method described later in this chapter. The Green's functions are given, therefore, in these

convenient forms for both the vector and scalar potentials in the following two sections for

both horizontal and vertical sources.

+ *2)Ã

+Ê)v
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The Mixed Potential Intesral E{uation

2.3 Vector Potential Green's Functions

For currents defined on the air-dielectric interface the vector potential Green's

functions ue givenby [24]:

ci(p) : ?nl*;ororrrorooo e.3.1)

cip(o,zo) = *j##ffiY-rr&pp)kpzdkp (2.3.2)

In the previous expressions, Drø = uo+ ucoth (uh.)

Dr* : ust, + utanh (uh)

u : {rfi-r}ç,

" 
= {-fi-4

Noting further that C'ì : O'o'

cY;':c''l:o
Gi' : cosqcop

cfl : singcip

defines the dyadic components for each of the potentials for transvelsely oriented currents.
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When the cunent is vertically oriented within the substrate the vector potential

Green's function is calculated from [25]:

for-h<zo<z<zr<0

G'] @,2,, z,) =

[6]cosh (u(2,+h)) (øcosh (uzo) - e,uosinhluz)) _ .. . .

nJ J s(k{) krdk, (2.3.3)

0

and

lor -h3 zr1z1zo10

c'f @, zn, z,) :

F6lcosh (u(2.+ h) ) (acosh (ø2") - e,.øosi.nh (ø2,) ) _ .. . .-YI " Js(krn)krdk, (2.3.4)2") ø (øsinh (uh) + e,.uocosh (uh))
0

2.4 Scalar Potential Green's Functions

The scalar potential Green's function for sources in the air-dielectric interface a¡e

given by [24]:

D 1 isinh l¡r (z + h.\\N
G';(p,2.) : n%lffiCr;¡;e;ro(kpp)kpdkp (2.4.t)

Pâge 13



The Mixed Potential Integral Equation

N : uo+ utzrth (uh)

When the source is vertically oreinted and imbedded in the subsüate, the Green's

functions a¡e 1251:

for-h<zo<z<2r( 0

c(,{Þ, zo, z,) :

I itioh (u(2,+h) ) (aoe,cosh (uz) - usinh(uz.)) 
-¡ O\KPP ) KPí.KP2neoe,J a (øsinh (uh) + uoe,cosh (uh))

and for -lr < z" 3 z3 zo30

cl,@,2,, z,) :

t I sintr (u(zo+h)) (øoe,cosh (ø2,) -usinh (uz,)) 
-

zrr*j Jo(kpl) kpdkp (2'4'3)

(2.4.2)

t( Numerical Techniques for the Solution of Sommerfeld
Integrals

The preceeding Green's functions represent the form of the Sommerfeld integrals

best suited to calculation using a real axis integration path in the complex plane. They are

a specialized form of the more general Hankel transform equations first given by

Sommerfeld. The transformation from the Hankel function to the first kind Bessel function

eases the calculation by reducing the infinite integral of integration to a semi-inf[iite
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The Mixed Potentiâl Integral Eouation

interval. still, the numerical calculation of these integrals must be performed with great

care as the Green's functions are the kemel of the MPIE and thus the critical part of the

method. The semi-infhite intewal is broken up into three sections as the sommerfeld

Integrals exhibit different characúeristics in each of the three. The methods used for

integrating the general integral

G = JFGìro@kp)dkp
0

are given in the next sections.

(2.s.1)

Interval 10<¿p<Ëo

In the interval, 0 . fro . fr., there exists a branch cut corresponding to the point b.

This is due to a discontinuity in the derivative of the D.u term and, while it does not cause

a deformation of the path of integration, may cause a problem in tryi¡g to numerically

integrate near that point. The solution is a simple change of variable. The variable of

integration, ko, is represented by kocos (l) , with / as the new variable ofintegration. Then

r/Ào : -¿or¡n (t) t)t andthe interval is changed from [0, *o] to 
l!r,O] , 

tnus'

ln &rltoiú,kp)dkÞ+Jr{rocos(r))"/o(pftocos(r))kosin(r)rr (2.5.2)

This integral i¡ computed using a Gauss Legendre [26] quadrature.
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The Mixed Potential lntegral Eouation

Interval 2 ko< kp. kop,

There will always exist at least one pole in the integrand due to the root of DTM. A

great sinplification can be acheived if the case of only this pole existing is considered. This

condition is mai¡tained if the criteria koh (e, - l) < n,/2 is enforced. For a lossless

(lm {e"} : 0) function this pole is on the real axis, and the pole can be found using a

simple bisection scheme. When the relative permittivity is complex, however, the pole

moves below the real axis and the imaginary pa¡:t becomes more negative as the imaginary

part of the relative permittivity becomes more significant. There is also a discontinuity in

the derivative of the Dr" term at the point k, : ko as before. The first concem is handled

by extracting the pole in the integrand for the integrals which contain the DrM term. A

function that behaves similarly to the integrand nea¡ the pole but that is analytically

integrable is subtracted from the integrand then integrated on its own and added to the f¡nal

result. To find the exact location of the pole for a complex relative permittivity, a time

consuming complex root finding routine would be needed, however an approxirnation,

good for electrically thin substrates is [27]:

Re {pv}

Im{pv) : -(e,'

: r.[r * . le'- l)2\
(kohf L 

I2e,.'- )
(2.s.3)

(2.s.4)
( k^h\_,)""ô[{J

Where e,. : €,.'( 1 - tanô) and tanô is the loss tangent of the dielectric
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The resulting integral can be described as shown below

1 : (¡-4) +4 (2.s.5)

Where 1, is the integral of the singular function subtracted from the integrand. A

function which is assured to behave in the same manner as the integrand near the pole is

derived from the residue of the integrand

Res : ,lim,,F(kìJo@kì (kp-pv)
Ko-- pv

(2.s.6)

By subtracting the function, Res / (ko- nv) , over the entire interval, the integrand

becomes regular and easy to integrate numerically. The subhacted part is then integrated

analytically. After the extraction of the pole, the branch cut is handled by, once again, a

change of variable. This time the variable of integration, ko, is expressed as kocosh (r) .

With this change, dko becomes ko sinh ( r) ¿t and the interval is transformed from

koJl,

J
ko

lro, *oF,) to [0, acosh[^le,.J] .*",

F (ko'tJo(pk) dko=

(r'ipro.o, (¡) ),/o (p,tocos (¡) ) - (,tocosh (t) - pv)
Res

acoshf

J
0

)toriot {rl at

ko,F,

. !"ffb*,' (2.s.7)
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The last part is analytically integrated by

o'f' *", n, - n"rr.l(toJr,-n, {prt\'* (t*{pù)')
| _nK : _tnl
l" (kr- nv)--0 2 *[ ge {pv} _ ko)z + (rm {pv} )2 )

, io",l u^,(koJ-'r-:':o'¡ l* "*l^Í 
{oi} -.ooll

- \ \ tm\Pvj / \ Imp{pv} t) (2.s.8)

Interval 3 konfl,< ko< *

ln the final inærval, the integrands oscillate as the conesponding Bessel function.

Since this part of the integral is the dominant part in the nea¡ field region, it is exûemely

important that special care be taken in its evaluation. A nonlinear transforrnation was first

studied based on Shanks method [28]. This method provided no easy way to automatically

check for the relative error in the terms and a new algorithm was sought. A special

technique was then developed, based on the method of averages [24]. The method of

averages is applied to integrals of the form:

The Mixed Potential ¡ntesral Eauation

(2.s.9)

(2.5.10)

Page l8

where/is an oscillating function of x and g is a function that converges monotonically to

zero. If the oscillatory part is approximately periodic, as the Bessel function for example,

then the integral can be represented by the sum of integrals over each half-period as

r : !f{x)s{*)ax
4

dl

I : ]f@sQ)dx+ trnj)
4



n li+t

where Ij : Iri andr! : Jf¡)s<Ðax
¡_ I ci

Where ct, are the zeroes of the oscillating function /(-r). When the function g(x)

converges monotonically, the successive terms of the series Ij altemately overestimate and

underestimate the value of the integral. Taking the average of any two successive terms of

this series, therefore, serves as a first orde¡ approximation to the value of the integral. The

terrns in the series of these averages is given by

. It +lltL n n+lI :-n2 (2.s. r 1)

Using this method, it is recognized that once again the series represented by 1l also

altemately overestimates and underestimates the value of the integral (the value of the limit

of the infinite series). By taking the averages once again, a better approximation of the sum

is found. This procedure is repeated until an acceptable level of error between estimates is

obtained.

The method of averages is only part of the algorithm used here. In some of the

Sommerfeld integrals the inægrands decay effectively to zero before any significant

oscillation occurs. The effect is noticed when the source and observation points do not have

the same z values, and úe hyperbolic functions in the integrand dominate. In this case the

method ofaverages will be less accurate than a simple truncation of the integral. Hence, the

method is also required to recognize when the hyperbolic fr¡nctions dominate and and a
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simple numerical integration over a truncated interval is required. Furthermore, the

appropriate truncated interval must be obtained

The algorithm developed here calculates the approximate value of the variable of

integration, ¡, for an integrand approaching zero, this is denoted ¡'. If the value of ¡' is

less than the first root of the integrand, corresponding to the oscillating function, a simple

truncated inægration is performed in the intewal [a, x'] .

(2.s.t2)

Other wise the method of averages is implemented. There are, however, some cases

where the integrand decays to zero but not within the first half period, or cases when the

integral converges faster that the method of averages will. This situation, then, is also

introduced into the algorithm. After calcuiating the value of the integral over each half-

period as it is required, a decision is made. If the value of the integral over the most recent

half-period is less than 0.l%o of the value of the integral over the previous half-period then

the averaging is terminated and the value of the summed series up to that point is used.

Otherwise the method of averages is continued, and the algorithm is repeated using an exit

criteria of 0.1Vo for the difference in consecutive averages. The total algorithm is best

illustrated by a flow-chart (figure 2.5.1).

r: Jfrx)s@)a,
a
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DETERMINE TI{E VAII.JE
WHEN TTIE FUNCTION

DECAYS TO ZERO

LESS THAN
FIRSTZERO

CALCTILATE TRI.JNCATED
VALI.IE FOR TFIE INTEGRAL

ALCULATE THE INTEGRAL
FROM a TO,v¡ (:1¡ )

CALCULATE TFIE INTEGRAL
FROM x¡ TO x,,*1 ( : /,r¡)

I^*t-I"< I, x 0.lo/o l INTEGRAL = 1,*I

CALCULATE AVERAGES
UP TO

I r'-t

IT CRITERIA
MET? INTEGRAL : Inn 

-l

Fig. 2.5.1 Flow Chart Representing the Calculation of Oscillating lntegrals
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3 Moments Method Solution of the
MPIE

3.1 Overview

The Method of Moments (MoM) can be applied to equations of the form I l8]:

¿(E) : c (3.1.1)

Where L is a linear operator on the unknown responset E, aod ç is the known

excitation.

In the application of the MoM to equation (3. l.l), the unknown response is

expanded over a set ofbasis functions in the domain ofI as:

Ë=TaEJ L¿ II J,I

HeÍe, a,, are the amplitudes of each basis function, f,, .

(3.t.2)
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A set of testing functions (w1, lr2, wr,...) are then defined in the range of t along with

an inner product, (f, g), which satisfies the following:

Uù : K,J)

<úf +þs,h) : u(f,h> +9<s,h) (3.1.3)

<f,J>>0
:0

iff+o
if/: 0

The application of the testing function through the inner product, as defined above,

leads to a linear expression of equation (3.1.1):

la,,(L (E,), *,) : \Ç, r,,) (3.1.4)

Some care must be taken in the selection of the basis and testing functions. First,

the set of basis functions must be capable of a reasonable approximation of the unknown

response. Clearly, the number of terms taken in the summation is related to the accuracy of

the obtained solution. Another consideration is the ease in which the operator L is applied

to the basis functions, .r,r . Finally, as the testing fr¡nction is required in order to enforce the

equality of equation (3. 1 . I ) it is necessary that it is of a similar order as the basis functions

so that the computational effort expended in applying the basis functions is not wasted in

the testing.
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3.2 Basis Functions for Surface Conductors

Segmentation of the Conducting Surface

In applying the MoM to solve for the currents on the surface conductor, the arbitrary

shapes of the conductors are replaced by groups of rectangular cells, which will henceforth

be called charge cells, as shown in figure 3.2.1. The boundary of the conductor, then, is

approximated as closely as possible by a "Man-hattan" type boundary where curves are

replaced by series of straight line segments. To simplify some of the resulting calculations,

all charge cells are all taken to be of the same dimensions, (^¿ Ày) . A scheme where

different sized charge cells may be used, but this scheme would involve much more

complicated programming and could not take advantage to the time saving techniques

introduced later in this chapter.

Some definitions are made here in order to clarify the description of the basis

functions. The current is approximated, as described in the next section, by overlapping

basis functions. Each cunent basis function is defined over a current cell which consists of

two adjacent charge cells whose interface is perpendicular to the direction of the current as

shown in figure 3.2.2. An arbitrary x-directed current cell, whose centre is designated as

r,, will be given the label S,, the corresponding charge cells are Si and Sf. The centres

of the two charge cells, Þr, and il, respectively, are connected by a test segment C..,. The

overlapping cells and corresponding test segments occur in both the x and y directions,

hence a charge cell may belong to a maximum of four different cunent cells and its centre

may be a terminus for up to four test segments. A similar notation is used for y-directed

current cells.
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Fi9.3.2.1 Segmentation of an Arbitrary Shaped Conducting Surface

Fig.3.2.2 Specifications for the Current and Charge Segments
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Current Basis Functions

As previously stated, the main goals in selecting a basis function are first to ensure

that the basis function is capable of a reasonable approximation of the unknown response

(the current) and secondly to etrsure the application of the linea¡ operator to it results in a

relatively simple solution scheme. A further consideration here is that a basis function for

the surface charge is also required and that these charge basis functions are related to the

gradient of the current basis functions. Therefore the derivative of the cunent basis

functions are also required, and must be relatively simple to derive. IVith this in mind, the

basis functions for the current are chosen to be overlapping üiangular roof-top frrnctions as

in [19], shown in figure 3.2.3 A and expressed mathematically, for x directed cunent cells

centred at (x¡,I), and y directed current cells centred, at (x,,)y' by:

for

for

lx - x.l
r,i (È) : l- ¡,

lx - x,l <A.r ^a ly-y,l<Lì

(3.2.1)

(3.2.2)r.(¡)vt' '
, lv-vl: t- 

¿y

^lr-rrl<ay and y'-x,l<l
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Where Âx and Ây are the dimensions of a charge cell as previously def,rned. It

then follows that the current distribution in thex and y directions are approximaæd by the

two summations

and

Dividing by

density is preserved.

'rr: fri¡r",

'r: L*T'rfr,
j= r

(3.2.3)

(3.2.4)

in these equations ensures that definition of a current

Fig.3.2.3 Basis Functions for the Surface Current (A) and Charge (B)

It':- and 
-Âx Ly
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Moments Method Solution of the MpIE

Charge Basis Functions

The basis functions approximating the surface charge density follow easily by the

application of the continuity equation (3.2.5) to the cunent basis functions

V '1, + jcop" : 0 (3.2.5\

Through this, then, the charge basis functions are given as rectangular pulse

functions with unit magnitude defined over each half of a cunent cell as shown in figure

3.2.3 B.

n(ì,) : I

for 
l-r - .r,l s ^j aro l, - ,l= I .

(3.2.6)

The chalge disü'ibution on the surface conductor as approximated by these basis

functions is given by the series

'":,-*-rÐ[ 
i,,,(n(,i)- "(';)) 

. f ,,,(n(ç). "(';))] e.27)
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Moments Method Solurion of the MPIE

3.3 Basis Functions for Vertical Wire Components

Segmentation of Wire Components

The overlapping basis function approximation of the cur¡ent is used with the wi¡e

sections in a manner similar to that of the surface conductors, Thus, the wires are

segmented similarly to the conducting surface. As shown in figure 3.3.1 the wire is divided

up into charge cells of equal height, Àe. Two charge cells with centres z! and z-,

respectively comprise one cunent cell which is centred at zi . A test segment czi connects

the cenFes of the two charge cells in a mamer analogous to the surface test segments.

Fig. 3.3.I Segmentation of Wire Components
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Current Basis Functions

The cunent basis function chosen he¡e should be analogous to the surface current

basis functions to maintain homogeneity in the numerical solution and is thus chosen to be,

once again, a triangular function. The total current in a wire segment is 1., . At the

frequencies that we are interested in, the cunent can be assumed to exist totally on the

surface of the conductor by the skin effect. Since there should be no variation of the in the

angular direction, that surface current density is the total current in the wire divided by the

circumference of the wire. Applying the triangular fr¡nction to the current density in the

wire gives the cunentbasis function for a current cell centred at zias shown in figve3.3.2

,.: ,-l'-''lzt Lz
(3.3.1)

For lz - z,l< Lz

At the point where the wire touches the ground plane, this function description must

be altered. Since the current exists above the ground plane but not below, the basis function

for this current is simply the same triangle function with the same properties except that it

is only defined on one charge cell, directly above the ground plane as shown in figure 3.3.2

Fig. 3.3.2 Cunent Basis Functions Over the Wire Elements
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It then follows that the currents in the z-direction will be approximated by the

summation:

Nz

J",: +Lr,¡T,¡ (3.3.2)
,'t

where r" is the radius of the conducting pin.

Charge Basis Functions

Once again by application of the continuity equation (3.2.5) to the cunent basis

functions the charge density basis functions are determined to be unit magnitude

rectangular pulses defined over the charge cells.

ror lz-z¡l<!

II (2,) : I

The charge distribution over the wire components is therefore approximated by the

summation:

(3.3.3)

,,= yn-L,nro,-it.,(n('l)-"(';)) (3'3'4)
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3.4 Tieatment of Junctions Where Wires Meet Surface
Conductors

Current Across a Junction

At the point where a wi¡e contacts the microstrip surface, a special function must

be defined to convert the z-directed currents on the wire to planar currents on the surface

and vice-versa. This function must follow three specific criteria. First, the current must be

continuous at the contact point. All current in the z-direction must be converted into current

in the x and y directions. The cunent must also spread evenly away from the contact point

in each direction, at least locally. Finally the function must decay to zero at some distance

from the contact point that is comparable to the segmentation of the microstrip surface. A

simple model for the current on the surface local to thejunction is used here which f,rts very

well with the use of the rooftop basis functions. The cunent enters lhe surface through a

half triangle function similar to that used for a wire close to the ground plane in the previous

section. The current enters through the point of contact and spreads equally in each

direction as shown in figure3.4.l. at the junction point (xr, )r, 0) this is mathematically

described by

Jjur: J u,¡2 + J ,'irî + J 
¡,¡r9

(3.4.1)
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t,,: +nr"',(t-H) (3.4.2)

(3.4.3)

(3.4.4)

For lzl < Âz

J r¡, : fi'ts' {' -,¡ 1(' -+#)

t r, : Lo*s isn {t - t ¡ 1(t - #)

For lx-xrl<^j aoo ú-tl<L]

We note here that the total z-directed current at the junction is equal to 1, and that

on the surface, rhe roral current " +(1,) : t,

t,
Fig.3.4.l Description of the Current at Junction
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Charges at a Junction

The charge basis functions are once again found by applying the continuity

equation (3.2.5) to the different cunents found in the description of the junction. It should

be noted here that while the basis functions describing the current are discontinuous at the

junction point, it has been ensured that the current itselfis continuous and any effects of the

discontinuous parts cancel each other. With this in mind then, the charges at the junction

are described by a single two dimensional pulse over the charge cell on the surface

conductor and a z-directed pulse function over the charge cell adjacent to the surface, on

the wire.

(3.4.s)

3.5 Testing Functions

In selecting of a proper testing function the main requirement is that the level of

accuracy aimed for in the choice of the basis functions is not compromised. For instance,

it is not reasonable to define complicated two dimensional basis functions over the entire

surface of the conductor and then test with a Dirac-delta weighting function essentially

enforcing the equality at only a fixed number of points. However, once again the simplicity

of applying the functions and time needed for computations must also be considered. A

Galerkin method m4y be used, in essence using the same function for testing as is used for

the basis function. This method may become computationally expensive due to the

Page 34

r, : å lnåo 
n o ¡ - *r*-L-"n u¡f



complexity involved. The choice made here is the use of unidimesional pulse functions,

also called razor functions. For the surface conductor and the wire, the razor functions a¡e

defined flom the cenffe of a charge cell to the cenfe of the adjacent charge cell as shown

in figure 3.5.1. Testing with these functions ensures that the boundary condition is enforced

on straight line segments on the conductors, but requires less computation than the Galerkin

method. In fact it is a compromise between accuracy and efficiency.

In the case of the current segment adjacent to the ground plane, only one charge cell

conesponds to the segment and iherefore the testing segment is truncated at the ground

plane as shown in figure 3.5. 1. A testing function conesponding to the junctions must also

be defined so that the number of unknown current coefficients does not exceed the number

of equations. In the same way as the cuÍent cell beside the ground plane, the testing

function for the junction is defrned by a razor function joining the contact point of the wire

with the microstrip surface and the centre of the charge celljust below the surface. Previous

works [37] have included segments on the surface near the junction as part of this test

function, but that is considered here to be somewhat complicated and unnecessary as the

testing already performed on the surface makes this testing rcdundant
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SURFACE
CONDUCToR

-a-'- frlr",n*o"

wl)l-"
t tl

- wlll
cnoun¡ pl¡¡¡p-.7

Fig. 3.5.1 Razor Testing Functions Across the Conductors

The testing function is implemented through the definition of the inner product,

here the inner product is the integral operation ofequation (3.5.1) over the entire surface of

the structure. Integration is the definition of the inner product used in most MoM

applications.

(w(x),s(x)): (3.s.1 )

Using this definition, and the previously defined testing functions, the effect of

inposing the testing oD the MPIE is to integlate the function along a series of finite line

segments defined over all conductors in the given structure.

J sQ) ', 
(x) ttx

.ç
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3.6 Discrete Green's Functions

Discrete Scalar Potential Green's Function

The notation and computation of the moment matrix is simplified through the use

of discrete Green's Functions. For the scalar potential, the discrete Green's functions are

the suporposition integrals of the basis function for the charge distribution over one charge

cell with the scalar Green's function for sources on that charge cell given an observation

point. we additionally multiply by a factor of 2neo to ease the notation later. This factor

will later be divided out again

For charges associated with the surface elements

(3.6.1)

For charges associated with the vertical elements, the charge is spread evenly

around the circumference of the wire. When the source and obserryation points have the

same x and y components, or when the distance between source and observation points is

very large, the angular distribution of the charge has a negligible effect or no effect, on the

integration. In this case the discrete Green's function is obtained only by integr.ating in the

z-direction and multiplying by the circumferen ce, 2nr,. Then

tl u, Ð : ffiiloi, rr,, z,lì,, o) . r (f)r/s,

Lz
'i'.

r;(t,i) : ot .J GiO¡,zilrj,z¡).trk)dz,
Lz

'j2

(3.6.2)
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When the distance between the source and observation points is small but not zero,

however, the radius of the wire is a considerable part of the distance between source and

observation points and is not negligible. In this case, the discrete Green's function is

calculated using the double integral

Lz

- 2tt 't )
v LILL^ - -tlu,Ð : #j J oT<r,,z,l(r,,2y').r (z)ttzdÊ

'oÀz
"j)

(3.6.3)

Discrete Vector Potential Grcen's tr\rnctions

The discrete vector potential Green's functions are defined in a similar manner as

those of their scalar counterparts except that the integration is performed over a cunent cell

and the rooftop basis functions a¡e used as the source. In this case the function is multiplied

by a factor of 2n/ po here to ease the notation later.

rl' (ilÈ,,') : ffil !.o;' 
rìlì') . r.,,(r,) ds, (3.6.4)

rï(iti,') : ffi¡.5";rìlì').r,,,(r')ds' (3.6.s)

Similar expressions for IJov and IJot are obtained by exchanging y for x and vice

versa in the above equations,
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When the surface cunent describes the current at a junction, the discrete Green's

function is found ir a similar manner with the exception that the integration is taken over a

single charge cell and the basis function is that of the junction fi.¡nction as written in

equation (3.2.3) or (3.2.4). This results in the form:

rl(¡lÈ,,') : #J!..ï1r¡i'¡ 
.(s;snr,-',')(, -l-z#))dt' (3.6.6)

'Where, 
once again the expression for doi is obtained by exchanging y and .r in the

previous expression. When the effect of the junction in the z direction is desi¡ed, the

discrete Green's function is:

ry(ÞlÞ,,'):

#JI.; ulÌ') .(sisn ("-*,,') ( , -l--io'l))as' .

#^*S ¡.t"1 
u¡ r';' ( s;sn 1v - r,,'l ( r - tt#))^' (3.6.7)

The discrete Green's function for vertical currents are obtained by integrating over

the cunent cell on lhe wires.

r:' (i| ¡,,') : _*-- J !^"'.; 
Qlt,) . r,,, (r,) ds, (3.6.8)
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The Green's functions are, by definition, singular when the source and observation

points coincide. Therefore, when the discrete Green's functions are to be calculated for

source and observation points in the s¡me cell, numerical techniques alone will notbe able

to accurately computô the surface integral.

When the cell is on a wire section the singularity is easily avoided by applying the

testing of the field to the cente of the wi¡e. Since, because of the skin effect at high

frequencies, the current will exist mainly on the outer circumference of the wire, the source

and observation points will never coincide.

In the case where the cell is on the surface conductor, the singularity conesponding

to a zero separation distance must fhst be extracted. Fortunately, this singularity is very

closely associated with the inverse of the distance of separation, for both the vector and

scalar potential Green's functions. The function obtained after extracting the singular part

will be regular and easy to integrate using numerical techniques. The extracted function can

then be integrated analytically and added back to the result. For the vector and scalar

potentials, the singular part is determined by considering the Green's function for the static

ff:0) case. It will then follow that ko : 0, and by substituting this into the expressions for

the Green's functions;

^sing I

"rv : tpGJ l)

1

2W

(3.6.e)

(3.6. r0)
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This singular part is then integrated over the charge and cunent cells using the

following two equations [29]:

JJ{;øa. : .rlog (y + R) + ylog (x + R)
lx'+y'

ll x 1 ')) ¡ r rdtdx 
: jrR+x-loS(r+R)

,Jx' + y

where necessary,

(3.6.11)

(3.6.12)

3.7 Generating and Solving the Matrix Equation

All that remains, then, is to approximate the appropriate potential is to sum up the

discrete Green's Functions scaled by the basis function coefficients over the entire

structure. That is

u^y'ür(..\Nvl\
f;Àol : I {.,,1;r;(}l},¡) +2rT(}l},,)J+ ) rr,,llrïv(}l},,,) +?r;,(}l},).J

* ! 2.,.;to¡,1 * ! ro(.tr;itrl,'ol +irli()l)Á) +2rT(illr)) o.r.,,

and

#r,,, : i,,,,(.fl(o¡ri) - rf(r¡r;)). 1,,,,(.í(trt;)- rfl(r¡r;))u ¡:l ¡n-l

. i,.,(.i('¡r¡)-ri(r¡r;)). !,,-(.i(,¡ri)-r|(r¡r;)) <r.r.r>
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ln the preceding equations, Nx, Ny, Nz, and Nj a¡e the number of cunent cells in

the x, y, and z directions and the number of junctions respectively. The 1r, are the

coefñcients representi¡g the ith current basis ft¡nction in the ç direction. Recalling

equation 2.1 .4.

È' (¡) : - j<oÂ (¡) - vy (i) (3.7.3)

The application of the testing function to this is equivalent to taking a line integral

over each of the test segments. For the th¡ee directions

Replacing the scattered field by these expressions in the MPIE, a matrix equation is

obtained of the form:

J rltrl dx: -i., J o.ttr*-[u[r],)-v[r;,jJ
Cxi Cxi

J n',rn ø : -i, J a, rrt.rr-[ v[i], ) - rlr;))cvi cyj

J Qr>taz: -i. J e.rrlar[v(r:-.)-(l.-JJ
Czk Czk

Z^
íztfrt :;Ívt

(3.7.4)

(3.7.s)

(3.7.6)

(3.7.7)

The form of the Z matrix depends on the type of feed and load conditions which are

described in detail in the next chapter, and is solved using a simple Gaussian elimination
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technique.Similarly, the form of the excitation vector is dependent on the type of feed and

is also detailed in the following chapter

3.8 Techniques to Improve Computation Speed

The discrete Green's functions for both the scalar and vector potentials in a given

structure and at a given frequency are only dependent on the separation disrance between

source and observer cells and the size of the current or charge cells themselves. Since, in

segmenting the surface conductors and wire components, a uniform size was used

throughout, some symmetry effects may be used to en_hance the speed of calculating the

discrete Green's functions. When one discrete scalar Green's function is calculated for a

given source-observation separation distance then, this can be used for all elements with

the same source-observer separation distance as shown in figure 3.8.1 . Here, then

tIç,i) : rl,a,p¡

For the vector potential, once a calculation is made for the discrete Green's

Íì¡nction, all elements which have the same distance of separation between both charge

cells comprising the source and observation cells as shown in figure 3.8.1 are then kxown.

ti U,m) : ri @,n)
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Moments Method Solution of the MPIE

Fig. 3.8.1 Symmetry in the Discrete Green's Functions

In addition to this, as the variation in both the scalar and vector Green's ñ¡nctions

are very shong only in the region where the source and observation points are very close,

some approximations may be made when separations are large. Figure 3.8.2 shows the real

and imaginary parts of the scalar Green's function for source and observation points on the

air-dielectric interface as a function of the distance in wavelengths. It is plainly shown here

that at a separation ofone quarter wavelength, the Green's Function is well out of the region

where the strongest variations occur. A similar characteristic is found for the vector

potential. Therefore one quarter wavelength is chosen as the th¡eshold for using the

aforementioned approximation.

\

/ I
.3 trI /

,r
m

tr / n
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Moments Method Solution of the MPIE

The approximation for the discrete scalar Green's funcfion is obtained by assuming

that the Green's function itself is constant over the surface of the charge function that it is

integrated over. That is, for the scalar potential:

J Ioi rr,,.,l i.' o) . n (¡j) dsj : cl O t z,l Þ,., 0) ÂxÁr
sj

(3.8. l )

Az
"j,2
j oY <r,, z,lt, z¡) . n k) dz¡ : cI 0,, z,lt,, z,) Lz

Lz
"jz

Similarly, for the discrete vector potential Green's functions

(3.8.2)

(3.8.3)

(3.8.4)

(3.8.s)

(3.8.6)

üJJq,o, (Þ')) . 2.," (r')ds' :ci'tr¡ tlna'

**[ J J ";,t' 
(r') )' (sis'? (x - ",,') 

(, - # ))^') : t

(ì') .r,,, (r')tls' : c;Pl¡11'; (cosQ)Á.r

#;l I 
^""; 

ul ()') )' r.,, (r' ) ds' : G:' (Þl (ì') ) 
^¿

u!jJ";",

These approximations are possible due to the simple nature of the basis functions

and the fact that the segmentation is uniform across the conducting surface.
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3,9 Calculation of the Far Field Radiation Patterns

Electric Field of a Horizont¿l Electric Dipole

The radiated electric field pattern is calculated by first considering a horizontal

electric dipole (HED) oriented in the u direction on the surface of the dielectric subsÍate.

We have already seen that the electric field can be expressed as a vector potential and scalar

potential by the equation:

È : -7oÃ-vv

to which the usual Lorentz Gauge is imposed

(3.e.1)

V .A = -jfulþEv (3.e.2)

Finally, then, the electric field for a FIED on the air-dielectric interface is given by

the equation:

È:-;o,À* lvv.À
" 

"/ope
(3.9.3)

The vector potential,À, created by a HED is given by the Sommerfeld Integral

expression of the diadic Gleen's function, equation.
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When the distance between source and observation poi¡ts is very large, an

asymptotic approximation of the Sommerfeld Integral expression of the Green's ñ¡nction

can be used. This approximation is obtained using a saddle point method as given in [35].

The final expressions for the electric field has two components. The first component is a

spherical wave dominant at angels greater than the grazing angle of n/2. Tlne other

component is a surface wave which Íavels along the subsfate surface. Here, we choose

only the ftlst component. Transforming the asymptotic expressions for the Green,s

function into spherical coordinates, Ieads to the expressions for the electric field due to a

single HED:

-ik.¡
r, = -ffcosot"ter-JE*å;",kl,r +

r, : ffsinQcose"*r-r{"¿¿r 4r-

u,-o(+\

r=(e,-sin2e

(3.9.4)

(3.e.5)

(3.9.6)

where

I

)' (3.e.7)

The mechanism for the radiated field is further approximated to be dominated by

the cunents on the surface, the effect of cur¡ents on the embedded wires are neglected.
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Electric Field Due to a Surface Conductor

To simulate the surface conductor with an arbitrary current distribution, an anay of

the current cells which were used for the method of moments solution of the cunent

disnibution is considered. A patt€m multiplication approach is the øken to determine the

far field due to the conductor. The element pattems are given by the expressions 3.9.4 and

3.9.5. The anay factor is then obtained by considering the patch as an array of its composite

current cells. Each ø directed current cell of the conductor has a current density given by

equations (3.2.3) and (3.2.4) which can be written in av-coordinates as:

r- : lir,r., (3.e.8)- J¡¡ fy 2'ur' ut

i-l

Integrating the roof-top basis function over a current cell gives the result:

:LU

The anay factol for the cunent in each direction therefore becomes:

;¿ /,r. ì \

I Lut,,d""'' "'
i= I

[¡¡r,,<oas'
s"

(3.e.e)

(3.9. r0)

whe¡e the values for the cunent elements, 1,,,, are obtained directly from the MoM

solution
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Using the pattem multiplication approach, the normalized far field in each of the

E (O:0)andH(Q : n/2) planes are calculated using rhe following four equations:

In the E-plane:

Zcos 0
Eø =

Eþ **j^t*4ø,!, o",, 
"'*' 

to' o''"

! a't
- ie,cos 0cot (kohT) '/-r

7"cos0

1- je,.cosocot (koh.T) Lr-'' ti

j,t" (¡r . i) sine

tì€

jk, (¡¡ . i) sine
e

(3.9.1l)

(3.9.12)

(3.9. l3)

(3.9.14)

ln the H-plane:

Eø: ylI
¡y'r

" _ cosO ¡- l¿ l¡ ì) sino

-O coso-iZcot (k hT\ LLxl.,,e " '

'i:t
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4 Modelling Feeds, Loads and Active
Devices

4,1 Line Fed Antennas and Devices

A common way to feed an antenna, especially in the environment of an anay, is by

microstrip line, as shown in figure 4.1.1. Practically, the line is fed via some kind of

connector, making a Eansition from the transmit electronics to the feed line. This is the

same mechanism for feeding MIC ci¡cuits and devices. A very simple model is used here

to represent this type of feed, in which a voltage source is placed in series with the

microstrip line. Using the example of a feed line oriented in the x-direction, the source is

set to unit magnitude and zero phase and the separation in the line at the source is specif,red

to have zero width. The following expiession for the impressed electric fietd on the

segment containing a source in the x-direction is:

E'.: õtÈ.) (4.r.1)

As currents will only exist on the surface of the substrate, the mahix equation 3.7.7

takes on the form:

(4.t.2)
z,.z.flrf ,olr.l'

','t;,1þ,1: 
T"V)
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When testing with the razor funcúon is imposed on equation 4. L l, the excitation

vector obtained has zeroes at all entries except for a unit element over the oxcited segment:

tyl : t...001000...ì (4.1.3 )

Fig. 4. 1 .1 Line Fed Microstrip Patch Antenna

0tÞ

o)(!

o)

()

Fig. 4.1.2 Example of a Cunent Standing Wave 0n the Microstrip Line
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Using this type of excitation the input reflection coefficient of the device is found

through studying the cunent magnitudes on the line.The standing wave ratio (SWR) is

obtained by comparing the maximum and minimum value of the cunent sranding wave

pattern on the line as shown in figure 4. 1.2. The current is approximated as a cubic function

local to the points where the maximum and minimum on the line occur. The coefficients of

this cubic function are detennine by studying the basis function coefficients around these

points. The actual locations of the maxima and minima are found using a Newton-Raphson

root finding algorithm to find where the derivative of the cubic function is zero. Finally, the

input reflection coefficient at a reference point, x, , is determined by:

swR :

lfi, (x.) 
¡

O (1i,, (.r.) )

I
¡nax

Imtn

swR- I

S}YR + 1

: B(x -x )f\rmax.

(4.1.4)

(4.1 .s )

(4.1.6 )

In the above phase equation, B is obtained by finding the distance between two

consecutive current maxima which will be one half of the line wavelength. Then

(4.t.7 )

One final point to note here is that when the input reflection coefficient is required,

the geometry must be such that there are at least two maxima on the line. For the results

found in subsequent chapters a feed li¡e of one wavelength at the lowest frequericy

considered was used,

þ:'z+
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4.2 Coaxial f,'eeds

A coaxial pin is also often used for feeding a microstrip patch antenna. Using this

method the transmission line and electronics can be kept behind the radiating element and

therefore do not interfere with the radiation from the patch. In simulating a coaxial feed,

the vertical current elements and ajunction as described in the previous chapter are utilized.

The coaxial pin extends from the ground plane to the surface conductor as shown in

figure 4.2.1. Using the equivalence principle, the outer radius of the coaxial cable can be

enclosed by the ground plane and replaced by an equivalent frill of magnetic current [30]

as shown n figure 4.2.2

CONDUCTING PATCH

FBED PROBE

GROUND PI,ANE

Fig. 4.2.1 Probe Fed Microstrip Patch
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Fig. 4.2.2 Fnll of Magnetic Cunents in the Ground Plane

Then, the electric field created by this frill ofcur¡ent is analytically calculable. Only

the vertical component is considered, which is given by the expressions.

1l'tMq:-h
Pt[;.,/

(4.2.r )

Where ¿ and b are the radius of the coaxial pin and the radius of the opening at the

ground plane respectively.

As a result of this form of feed, the excitation vector calculated will be zero for test

segments corresponding to the surface conductor at the interface, and for test segments

conesponding to the wire and junction.

zb

v, = Jø,az
zd

(4.2.3 )
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The input impedance is then found simply by Ohm's law dividing the voltage

specified on the coaxial line by the cunent found on the pin, at the ground plane.

(4.2.4)
v

tnr
tn

1t', trr t,r'fl'f lol 
t

lt,, t,,,,2..- z.,,,llt.l I o I

l;:, ;:" ;.' ;:,ll l.l 
: 

l; ,1 Ø 2 s )

lr'.' ," )' ;lll;l l;lLJ¡ JY '] TJIJJ

where the calculation of 7. is performed as above. The full expressions for the

various components of this matrix are also give in Appendix A,

In the case of both the coaxial probe feeding configuration and the passive loading

as presented in the next section, the matrix equatioû takes on the form:
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Modellins Feeds. l,oads and Active Devices

4.3 Passive Loading

Often, a microstrip circuit contains discrete elements on the surface used for

matching devices. Pins and other reactive loads between the conducting patch and the

ground plane have be recently used to increase the bandwidth of microstrip antennas as

well. A simple model may be constructed of a passive load at any point where the current

is conti¡uous in one direction as in figure 4.3.1 below.

Fig. 4.3.1 Loads Parallel (A) and Perpindicular (B) to ttre Conducifrg Surface

The effect of the load is a change of electric field where the load is placed. This field

takes the form of [3 I ]:

-v,E= 
^í

(4.3.r )
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Where V, is the voltage drop across the load which is described by Ohm's law

V, : Zrl, and Ál is the linear distance over the conductor where the load exists.

The cunent in the loaded cell is a function ofcunents in adjacent cells and thus the

expression for the field at a loaded cell should reflect this, This results in a complicated

expression of the field including different elements. However, if the load is considered to

be concentrated in the infuritesimal gap between the charge cells of the loaded current cell,

the mathematical description of the load can be simplified so that it only affects one term

of the moments maÍix [32]. In this case then,

È : -vrô iÞr) (4.3.2)

This can be added to the impressed field due to all other sources since the media are

all linear. The right hand side of the MPIE is then altered to reflect this and the testing

function is applied.

lÈ,.at:
ct

-zrr,+ lÈ,, at
ct

-v.+JÈ,
ci

(4.3.3 )

Where C, is segment that is loaded and È, is the field due all sources. The term

containing the impedance and current is piaced in the matrix. Since the irnpedance only acts

on the cunent directly coffesponding to the test segment where the load is placed the terms

in the moments matrix äxcept the self term corresponding to the loaded current cell remain

the same and that self term becomes, for loads on the surface in the x-di¡ection
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Modelling Feeds. Loads and Active Devices

2,,(i, i) : 2,,(i,i) +zL. (4.3.4)

When the load exists between the conducting surface and the ground plane, within

the dielectric subtrate, two cases may be considered. If the load is a given value, as for the

case of a diode or inductor for example. A cunent may placed on the surface of the

conductor using the function describing the wire-patch junction, with magnitude 1;. The

voltage drop at the load point can then be expressed in two ways. First using Ohms law:

,=ZJi (4.3.s )

Then, by expressing the voltage as a function of the z-directed electric fietd,

(4.3.6)

Finally the electric field is expressed in terms of its vector and scalar potentials

4.4 Simplification of Coaxial Feeds and Loads

Considerable savings of both time and memory can be obtained by using a simple

approximation of the cunent on the wire part of a coaxial feed or load. By considering that

when is the substrate layer is thin (< À/10 ), and hence the wire seciion is short, the current

on the wire can be considered to be constant. Assuming this allows the wire current and the

0

[ø.aL
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Modellins Feeds. Loâds and Active Devices

junction cunent to be represented by a single value. In turn, this eliminates the need to

calculate the effect of wire sections on other wi¡e sections as well as effects of surface cells

on the wire sections and vice versa. lVith tlris approximation the matrix equation becomes:

(4.4.t \

Where the components of the Z matrix are given in Appendix A keepeing in mind

that a test segment along wire components now extends from the conductor to the ground

plane. It should also be noted here that as the thickness of the substrate increases the

approximation will become less and less valid.

4.5 Integration of Active Devices

Active devices have been successfully integrated into the characterization of

microstrip structures using time domain methods [33]. In these methods, the two device

ports are usually modelled by a load on one port and a voltage dependent current source on

the other. Then the time domain fields on the affected segments are formulated using

differential equations. The models used in these methods are usually extracted using the

small signal parameters of the device (S-parameters or Y-parameters). In exEacting this

model, it is sometimes possible to add elements which are not necessarily part of the device

or, conversely, to omit part of the device due to over simplification. ln the frequency

domain, the Z-parameters may been used to describe the two port device without the

formation of an equivalent circuit model. A frequency domain model for an active device

V'7,AH
: þoul
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has been given [34] where a pin is connected to the grountl plane and becomes a commoD

point for the two ports of the device. Again this pin may add something enoneous to the

device that is being described. Instead of adding this complication, the device may be

thought ofas a "black box" where the parameters given are extemal responses ta extemal

conditions. using this model, the device may be thought of as simply a two port as shown

in figure 4.5.1

Fig. 4.5. I General Two Port Device

The port voltages and culrents are linked through the network Z-matnx by

(4.s. r )

Then, by adding current to the points where the device is connected, the extemal

response is given. These cuuents are added in the form of the junction cunent basis

functions on the surface conductor introduced in an ea¡lier chapter. Finally, the port

"î T1"

Þl lz,,2,f,þf,
ú): þ,, ',,1þ,)
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Modelling Feeds. Loads and Active Devices

vollages are determined by integrating the z-directed electric field determined by all the

surfaces cunents and charges ÍÌom the point of device contact to the ground plane.

v : IE.dt (4.s.2)

For each of the two ports, then, an equation can be defined that looks somewhat like

the MPIE, that is

Ï 
^G, 

*, - t*)1, 
",,,,,0, 

: 2,,r, + z, /, (4.s.3 )

Using the same linearization method described in the previous chapter, the system

of equations is increased by two extra equations for each device present. Some additions

also are needed in the existing system ofequations. The main goal in this formulation is to

ensure the continuity of the surface current of the device and the surface conductor. The

matrix components corresponding to wire-device and junction-device interations are

assumed negligible The final linear system will then have the form

AH

v

v
v

v_

V.

0

T

lZ.r., 2.,, Z* Z.ri

lz z z z.tyx yy j. Jl
lr,z7.zl:rayzzal
lz. 2.. z. 2..tJx ty ta ll
I

(a, z¿, o o

(4.5.4',)

The additional elements in the moments mafix are given in Appendix A
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5 Numerical Results

5.1 Introduction

In this chapter some known measured results as well as analytic and approximate

solutions are used to test the accuracy and flexibility of the methods developed and used

for the generation of the microstrip analysis tool as described in the preceding chapters. The

first section deals with some preliminary investigations that have been performed in order

to verify that the solutions produced are consistent with analytic solutions and

approximations such as hansmission line theory. This section covers models for the line fed

and coaxial cable fed structures as well as the passive and active loading as has been given

in chapter 4. A simple check against an analytic solution is also performed to verify the

calculation of the far field patterns as developed in chapter 3. The remainder of the chapter

is used to compare results for specific designs that have been tested by various other

researchers. Stndy of new antenna design is beyond the scope of the project, any design

used is solely to test the accuracy and versatility of the model.
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Numerical Results

5.2 Validation of the Model

Current Distributions

In order to confirm that results produced are in accordance with what is

theoretically expected, a preliminary study is undertaken, using the method to analyse the

cu[ents on a thin wire dipole over a ground plane. It is well known that for this

ccnfigurations current magnitude at the end points on the dipole will be minimum, but not

quite zero due to fringhg effects. The additional minima on the line will occur at points one

half of the line wavelength apart, similarly for the maxima. With this in mind, the method

was used to analyse a centre fed, thi¡ wire dipole of length 2I and width l"/100, over a

ground plane at height QN/ 100) as shown in figure 5.2.1.

Fig. 5.2.I Centre Fed Dipole Over Ground Plane
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Numerìcal Results

To check the convergence of the results, the analysis was performed using 10, 20,

40 and finally i00 segments/ À. Figure 5.2.2 shows that the values for the magnitude and

locations of maxima and minima are consistent with theoretical expectations over all four

segmentation schemes. The figure also demonshates that the method is convergent for

increasingly accurate models, in fact the curves for 40 and 100 segmens per wavelength

are almost indistinguishable.

Legend: l0 Segments/À
20 Segments/},
,10 Segments/I

-.'- 100 Segments/À"

0.002

0.0015

= 0.001

0.0005

1

xl),"

Fig. 5.2.2 Cunents on the Centre Fed Dipole
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Numerical Results

Input Reflection Parameters

A second test is performed to verify the method of obtailing the input S-parameter

of a microsÍip structure fed by microstrip line. For an open circuited !ine, the magnitude

of the S,, parameter will be unity while the angle of the S,, parameter will be dependent on

the frequency of excitation and the plane of reference that the reflection parameter is

measured at, according to the equation:

(s.2.r)

Furthermore, ifa load such as a two parallel open ci¡cuited stubs is placed at the end

of the line, the S, , parameter seen by the feed line can be calculated from.

angte (s1) : 
lqG"";x'"ì ] rao + rso

z. -zc-.. Lo.rt - qqq

,, , Z7+ iZ,,tanþl
-L Zn+ jZrtanþl

and the load of the parallel open circuited lines, Zr, is calculated fr.om:

wherc Zo is the characteristic impedance of the microstrip line nd Z, iscalculated

using the impedance transformation equation:

(s.2.2)

(s.2,3)

(s.2.4)zr: rz"".t(+)
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Numerical Results

With ttris in mind, two simulations are performed, in the first, a one wavelength line

was fed at one end over a207o ba¡tdwidth of the centre fiequency the height of the substrate

is À,/ 100 . The result for the sr r parameter of the open circuit line using fifty (50) segments

per wavelength along with the analytical result is given in figure 5.2.3. In the second test,

a one wavelength feed line connected to the cenfe of a perpendicular line of one half the

wavelength at the cenûe frequency is examined over a 20Vo bandwidth of the cent¡e

ffequency using the same height and segmentation scheme. In both cases, the The 51,

parameters of the calculated and analytic results for this simulation are also given in figure

5.2.3. While the cubic spline approximation of the current distribution on the feed line

proves to be somewhat inaccurate, giving a non-unity magnitude for S,,, an agreement to

wi¡hn 5o/o is obtained and results for the phase of the S I I parameter are accurate to within

5 degrees.

Also of note in this comparison is the fact that the hansmission line model can¡ot

account for fringing effects at the open circuit end. In fact if the line length were increased,

the phase of the S' parameter would be more in line with what was calculated using the

present method. For the phase of the scattering parameter, the presented method provides

more accuracy than the ffansmission line model.
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51 1 Parameter of an Open Circuited Microstrip Line

-- S11 Open Circuit Line - MoM

-- S1 1 Open Circuit Line - Analytic
-- S1 1 T.Junction - MoM

-- 511 T-Junction - Analytic

Fig. 5.2.3 S I I Parameters for an Open Circuit and Microstrip Circuits

Numerical Results
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Numerical Results

Input Impedance Coaxial Pin Fed Microstrip Structures with Loads

The third test is pedormed to verify the result for the input impedance of the coaxial

pin fed microstrip structures as well as for loads placed on the microstrip structure. The

impedance of a microstrip line that is either open circuited, short circuited or loaded with a

known impedance can be found easily using transmission line theory. A well known low

frequency approximation for the input impedance Z¡n of a loaded tra¡smission line with

characteristic impedance Zo, canbe obtained from the equation [42]:

(s.2.s)

\Nhere Z, is the impedance of the load placed on the line, p is ttre propagation

constant of the transmission line, 2n/)"0, and ¡ is the length of the transmission line

between the source and the load. This provides a good analytic result with which to

compare values obtained using the method and models developed.

With this in mind, a microstrip line was modelled, the line is designed to have a

characteristic impedance of 50 Ohms. The dielectric substrate is lossless with e,.:2.59 and,

a height of 1.59 mm. The line is one wavelength at lGhz and is fed by coaxial pin at one

end as shown in figure 5.2.4.

f ZL+ jzor^n (þx)1
'i^ "olzo+ ¡zrtan 1þx¡ )
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Numerical Results

, z =Àoo -

TÉRMINATION

Fig. 5.2,4 Microsfip Line Used for the Veriûcation of Loaded Result

The results for the input impedance over a 207o bandwidth about the centre

frequency for the open circuited and short circuited lines using fifty segments per

wavelength are given on the Smith chartof figure 5.2.5. The Smith chart plot of figure 5.2.6

displays results for a matched load and for an arbitrarily chosen termination of a resistance

of l0 Ohms in series with an inductance of which would add to the impedance an imaginary

part of j10 Ohms at the centre frequency. These results are compared to the transmission

line theory results and demonstrate the an agreement between theory and the method to

within about 2.5o/o of the frequency in the worst case. Once again, because of the neglect

of the fringing field in the transmission line model, the phase of the impedance as

calculated by the present method will be more reliable ttran that calculated using the

transmission line model.
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lnput lmpedance of Transmission Lines

x -- Zin Open Circuit MoM
o -- Zin Open Circuit T-Line Theory
+ -- Zin Short Circuit MoM
# -- Zin Short Circuit T-Line Theory

Numerical Results

\,\

\ v'-
\, o\

Fig. 5.2.5 Tra¡smission Line Theory and Moment Method Results for the Input

Impedances of Open Circuited and Short Circuited Microstrip Lines
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lnput lmpedance of Transmission Lines

x --- Zin - Matched Load - Calculated
o - Zin - Matched Load - T-Line Theory
+ --- Zin - Zload = 10 Ohms + 16nH - Calculated
# -- Zin - Zload = 10 Ohms + 16nH - T-Line Theory

Fig.5.2.6 Transmission Line Theory and Moment Method Results for the Ihput

Impedances of a Microstrip Line with TwoDifferent Load Schemes

Numerical Results
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Numerical Results

Radiation Patterns

A final test is performed to verify the result for the radiation pattern as obtained

using the methods described in chapter 5. For this test, the analytic result for a half-wave

dipole over a ground plane is used to compare to the calculated result. A well k¡own

analytic approximation for the radiation pattem of a thin wire dipole a antenna is given by

the following formula [41]:

(s.2.6)

where 0 is the elevation angle, É is the wave number, 2n/)" an I is the length of the

dipole. This result is multiplied by an array factor to account for the effect of the ground

plane. The array factor is obtained by considering an isotropic source and its image on the

other side of the ground plane separated by a phase of 180 degrees and a distance of twice

the substrate height. This array factor will therefore have the form.

AF (e) ". "*()<r en>cose - nl ) (s.2.7\

Where å is the substrate height. The H-plane pattern is determined analytically by

considering only the anay factor
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Numerical Results

The method is used calculate the pattems of a thin microstrip dipole 100 mm long

and 0.5 mm wide, 5 mm above a ground plane.Simulations are performed for the microstrip

dipole operating as a half-wave dipole ( 1.5 Ghz) and as a one and one quarter wave dipole

(3.75 GHz). Results obtained using the method described in chapter 5 are compared to the

analytic result obtained using equations 5.2.6 and 5.2.7. Figures 5.2.7 and,5.2.8 show an

excellent qualitative agreement in both planes of the radiation pattems, with the Moments

Method result indistinguishable from the analytic result in all cases but for the dipole

operating at3.75 GHz This result was included to demonstrate the amount of discrepancy

for a pattern with nulls. An error ofabout 2 degrees is observed in the position of the nulls

and the magnitudes of the second lobes differ by about 2dB in the range of,15dB,

exhibiting still an excellent agreement.
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E-PIane Pattern

Nulnerical Results
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Fig. 5.2.8 Far Field Patterns of a 1.25I Dipole Over Ground Plane
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Numerical Results

5.3 Active Circuits

It is becoming increasingly popular to attempt to create an "active antenna,,by

combining active elements with resonant microstrip structures. Using this method, the

power radiated by the antenna may be increased, and arrays of these elements may create

a powerful directive pattem for use in such applications as radar. It may also become

important to circuit designers to include their active elements in the full wave model of the

circuit as opposed to, for example, creating circuit models of the microstrip line sections

and using a circuit simulator to analyse the entire system.

The model ofan active load as described in Chapter 4 is one proposal for a method

in which such a device may be included in the full wave analysis. Results obtained using

the method developed are compared with the input impedance as found by the LADDER

program, a program developed in the Electrical Engineering Department at the University

of Manitoba which uses a transmission line model. This result is used only to demonstrate

that the method developed in chapter 4 provides a reasonably accurate result when

compared to well accepted methods.
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Numerical Results

Figure 5.3.1 shows a t¡ansistor connected to a microstrip feed line with a line a¡d

50 Ohm load attached at the output, the t¡ansistor reflection coefficients are given in

table 5.3. 1. The height of the subshate is L59 mm and the relative dielectric constant, e¡ ,

is 2.56. Two cases are studied here, the case of the feed and load lines only aftached to the

transistor, then the case where tuning stubs are included at input and output to attempt a

mo¡e close match. The results for the input impedances using a segmentation scheme of

twenty segments per wavelength ate also given in figure 5.3.1. They demonstrate that the

method provides a reasonable agreement with accepted theory, the üansmission line

model.

Tâble 5.3.1: Input Parameters for the Thansistor Us€d

f
(Mhz)

sll
(mag.)

sll
(ang.)

s2l
(mag.)

s2l
(ang.)

sl2
(mag)

sl2
(ang.)

s22
(mag.)

s22
(ang.)

r000 0.60 -154 13.0 87 0.056 35 0.60 -JJ

t 100 0.60 - 159 t) 7 83 0.057 35 0.59 -34

t200 0.60 - 165 1 1.6 80 0.058 36 0.58 -35

1300 0.60 -t69 10.9 76 0.057 36 0.58 -36

r400 0.60 -174 r 0.3 t5 0.058 .tt 0.57 -37

r 500 0.60 - 178 9.8 70 0.058 38 0.57 -38
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Numerical Results

Itn.e Lou,
.H LIri = 15.64mm

Lour = 60'34 mm
Ly= 22.35 mm
Lsz = 22.35 mm
Z¡= 50Ç2

FEED 

W 

MA-,CHED

Zin for ïransistor Circuits

x - LADDER Results - Without Tuning Stubs
+ -- MPIE - Without Tuning Stubs
o -- LADDER Results - With Tuning Stubs
# -- MPIE - With Tuning Stubs

)" -----Y , ,lll
- v/t
r' ,"1'/

7/

Fig. 5.3.1 lnput Impedance for TWo Different Active Circuits
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Numerical Results

5.4 Line Fed Microstrip Patch Antenna

The line feeding configuration consists of simply attaching the patch antenna to a

microstrip line. ln such a system, the line may be connected at the other end di¡ectly to the

transmit or receive circuitry or, more commonly, in an anay environment with other

antennas and lines on the same surface. This method has been studied both numerically and

experimenølly by several authors [37],[36],[38] and there exists a great deal of both

calculated and numerical data for this type of structure.

To obtain a better match between line and resonator, it is common to create an inset

feed by removing notches around the contact point betwe€n the line and patch. By varying

the dimensions of these notches a good match may be obtained. In the past this was done

by using some empirical formulae and by prototype testing. Using a software tool such as

the one developed, a model may be obtained and the notch dimensions varied on computer

rather than successive test runs. Figure 5.4. I shows a line fed microstrip antenna into which

notches may be cut in order to obtain a more desirable match. The method is first used on

the feed structure without notches to verify the accuracy of the result, then it is used on the

notched structure to demonstrate the flexibility of the method. In each case the patch is

segmented using l2x7 segments, meaning that only one cell is missing in the notched case.

The results are compared with measuled results obtained by Legay [37], shown in figure

5.4.1. Resuls obt¿ined for the unnotched model show that a close approximation of this

suucture is possible. However, a large shift in the result for the notched model suggests that

a increased segmentation may be needed around the notch area. A method of

accomplishing this is prescribed in the next chapter,
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Dr_:
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er:
win=
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Numedcal ResÙlts

x '- Sll Cãbul.têd (No Nobh*)
o * Stl rJ€ãèur€d (No¡lôbhæ)

hput lmp6dancs ot Lin6 F€d Patch Ant€nna

x -- sr1cabur6l€d (¡Jd¿¡6)
o - s11Me30red tNôhèJ

Fig. 5.4.1 S I I for Rectangula¡ Patch Antenna with Inset Line Feed
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Numerical Results

5.5 Coax Fed Microstrip Patch

When the microstrip patch antenna is fed by coaxial line, there are several effects

that contribute to the input impedance. Certainly, it is obvious that the patch dimensions as

well as the frequency and the substrate dielectric constant have a great effect. However,

several more subtle parameters such as the location of the placement of the probe on the

patch and the height of the substrate will also exert themselves. There is, additionally no

real analytic method for calculating these impedances and no intuitive result as with some

of the previous models calculated. There is, fortunately, a great deal of data both calculated

and measured available in the literature dealing with various shapes and sizes of microstrip

antennas fed by coaxial probes. One particular paper by Abboud et al. [39] uses cavity

models to calculate the input impedance for a range of frequencies and subst¡ate

thicknesses. Their calculations ate then, in tum, compared with measurements made \¡/ith

fabricated antennas. The comparison with these results, shown in figure 5.5.1, is a low

frequency antenna operating at about 660 MHz. The second, shown in figure 5.5.2, is an

antenna designed to operate at higher frequencies, about 4.35 GHz. Finally the method is

used to analyse a circular anten¡a in order to test the validity of the method on non

Iectangular structures, and compared with some measurements performed by Chew et al.

[6]. Figures 5.5.1 and 5.5.2 demonstrate that once again the method is accurate to within

about2.SVo with respect to frequency for rectangular models. Figure 5.5.3 shows that some

accuracy is lost when analysing an irregular structure but that it improves with increased

discretization of the conducting surface. All three figures also demonstrate that the method

converges toward measured results when the segmentation is increased.
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Numerìcal Results

L: t39.7 mm
W = 204.5 mm
X. : 6.35 mm
Y.: 102.25 mm
h: 1.588 mm
e,:2'59
tanô = 0.003

lnput lmpedance of Patch Antenna (139.7mm X 204.5mm)

x - Zin Calculated - MoM
o - Zin Measured

Fig. 5.5.1 Input Impedance for Coax Fed Patch Antenna Resonanf at 660 MHz
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L : 20.1 mm
W:20.1 mm
Xp: 1.1 mm
Y.: 10.05 mm
h = 1.59 mm
8' = 2.55
tanô = 0.002

lnput lmpedance of Patch Antenna (20.1mm x 20.1mm)

- Zin Calculated (Nx=Ny=7)

- Zin Calculated (Nx=Ny=21)

- Zin Meâsured

------.-.--..q-..-..--- -,.0¿..---.-o.L- - :rL -- .lL__==_j-:
i I ; .:..-------a
, ì ' \--- --'- \ ---- ,4\ L'--Y-Y'"'K:,7:./\ z'' \"/]. -,

o /t
,/ ì-'-- - !)---''./,\'/

Numerical Results

Fig. 5.5.2 Input Impedance for Patch Antenna Resonant at 4.30 GHz
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Nunrerical Results

Real Part of Input

Nx :Ny:13
Nx:Ny:21
Measured

7

õ.5
.Nõ
I

ñ-
É¿

1

o
2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

Frequency (Hz) (x1d)

Imaginary Part of Input Impedance vs. Frequency

4

3

62
.N

flr
oc
^U
\,
E-1

26 2'65 27 
Êåi**r"tra rrî&j 

2's 2s5 3

Fig. 5.5.3 Real and Imaginary Part of the Input Impedance of a Circular Disk Miscroslrip

R: 18.8 mm
Xr:4'7 mm
Yr: 18.8 mm
e¡ :2'60
ranõ:0.0018
h = 1.ó0 mm

Impedance vs. Frequency

Artenna Operating af 2.80 GHz
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Numerical Results

5.ó Reactively Loaded Antennas

Placing a reactive load between the conducting surface and ground plane has been

shown to create increased bandwidth when the load is placed properly with respect to the

coaxial feed [4O], or the addition of such a load can help to alter the input impedance seen

by the feed, as the cunents on the surface of the conductor will be adjusted, to provide a

better match with the feed [0]. Circularly polarized radiation can also be obtained if the

loading is used in conjunction with special feeding techniques [9].

The presented method is used to model the placement of reactive loads between the

conducting surface and ground plane. Part of the objective of the method developed here is

to be able to characterize different loading, as well a feeding configurations. tn this sense,

then, this type ofdevice which has been studied also by Ali-Khan et al.[10] provides a good

test as to the validity of this method for loaded microstrip structures. To confirm the

generality, two different structures a¡e studied. The first contains a single shorting pin the

same distance from the non¡adiating edge as the feed at a point presupposed to maintain the

same resonant frequency but increase the bandwidth somewhat. The dimensions of the

patch, along with the feed and load points are given in figures 5.6.I and 5.6.2. The Smith

Cha¡ts associated with each figure demonstrate the agreement with the result measured by

Richmond. The Smith charts suggest that, in general, a coarse segmentation is not adequate

for determining the quickly varying fields close to the load pin. Much better agreernent is

obtained, however, when the segmentation is increased by a factor ofabout 1.5. The second

configuration consists of a the same patch loaded with two shortinq posts, equally distant

from the radiating edge. This decription and result is given in figure 5.6.3.
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Numer¡cal Results

L:60 mm
W:40 mm
f,¡=lQmm
YF: 10 mm
h: 1.58 mm
E=2.43

Reactively Loaded Patch (XL=25mm YL=g.1mm)

x - Zin Measured
o - Zin Calculated(Nx=g Ny=6)
+ 

-Zin Calculated (Nx=15 Ny=10)

Fig. 5.6.I lnput Impedance of a Microstrip Patch Antenna Loaded with a Shorting Post at

(25.0mm.9.1mm)
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Numerical Results

L:60 mm
W:40 mm
X¡' : 10 mm
YF: l0mm
h: 1.58 mm
t, = 2.¿S

Reactively Loaded Patch (XL=17.5mm YL=10.5mm)

x - Zin Meâsured
o - Zin Calculated (Nx=g Ny=6)
+ 

-Zin Calculated (Nx=15 Ny=10)

- 
\-'',k

Fig.5.6.2lnput Impedance of a Microstrip Patch Antema Loaded with a Shorting Post at

(17.5mm, 10.4mm)

.-.-.\
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Numerical Resulls

L:60 mm
W-40mm
XF: 10 mm
YF: 10 mm
h - 1.58 mm
e, = 2.43
YLt:27.6mlf,
YLz:12.4mû
XL: 30 mm

Paich with ïwo Reactive Loads

x - Zin Measured
o - Zin Calculated (Nx=g Ny=6)
+ 

-Zin 
Calculated (Nx=15 Ny=10)

Fig. 5.6.3 Ilput Impedance of a Microstip Patch Antenna Loaded with Two Shorting

Posts
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Numerical Results

It is clearly demonsÍated once again that the method is increasingly accurate with

an increased segmentation. One reason for this, apart from the obvious reason that a finer

segmentation is capable of more accurately modelling the cunent distribution on the patch,

is that increased flexibility in the placement of the probe is realized. In the paper by

Ali-Khan, the cente frequency is maintained by displacing the probe very slightly in the

y-direction. A¡ increased segmentation for the present method allows this displacement

more accurately. Results with the increased segmentation scheme give results accurate

within about 37o of the frequency.
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Conclusions

Conclusions

6.1 Performance of the Method

It has been demonstrated that the input impedances calculated using the presented

method have an agreement with measured results consistently within five percent for the

examples shown in Chapter 5. Furthermore, the results for the radiated field are

qualitatively in agreement when compared to measured and analytic results. Major

problems of accuracy, however, do arise when the sfucture under analysis takes on an

irregular shape. Structures with increasingly thick substrates may also cause some concern

when the input impedance is to be studied. These problems may be alleviated by

considering some of the suggestions made in the next section.

An additional problem is faced when trying to determine the effect of an increased

discretization in the input impedance result. While it was demonstrated that an increased

segmentation will provide a smoother cunent distribution in the case of a single line, the

study of the effect on the input impedance is not trivial. Since the segmentation inherently

determines which poins the coaxial or microstrip feed may be situated at, an increased

segmentation will alter the choices available for inserting the model feed. An attempt was

made to create a more arbitrary expression for the fields near the feed probes and load

points but this did not provide an adequate description of the conversion ofprobe cunents

to surface cunents. The method suggested in the "Recommendations for Furtïrer Work"

section in this chapter show more promise for solving this problem.
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6.2

Conclusions

The tool that was developed using the formulation described in the first sections of

this document will provide a relatively fast method of obtaining various parameters of

interest to designers of microstrip anten¡as and circuits, approximately twenty minutes per

frequency on a Sun Sparc2 workstation. The system memory required for the single

precision version of the program is approximately 12 MBytes suggesting that this tool

could also be easily ported to PC based system. Finally, the modular nature of the progr¿un

code will allow the continuation of this work to include increasingly complex structures

and increase the output capabilities when other parameters ate to be considered.

Recommendations for Further Work

The structures that can be analysed using the Method of Moments as applied here

are general but the accuracy becomes questionable for more inegul shapes. If the

segmentation of the conducting surface is increased to the point of acceptible accuracy for

such inegular structules, computer time and memory required may become unrealistically

high. One way to improve this accuracy could to change the method of segmentation so

that geometries could be modelled more accurately without significantly increasing the

number of segments that are to be used. In addition to this fact, the cunent method is strict

in its application of the feed and load points, more generality is required. A method for

solving both issues may be to use triangular patches to discretize the conducting surface in

place of the present rectangular ones. This method may also be useful for creating a mesh

that is adaptive, using a coarse discretization where the variation in the fields and curents

are small and increasing the segmentation where they vary more rapidly, close to the feeds,

loads, and edges. The literature already shows some of this work being done [43].
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Conclus¡ons

Arother level of complexity that is not included here is the addition of extra layers

of dielecfic substrate [37]. The most significant part of the adaptation to solve this type of

problem would be to reformulate the Green's flinctions for the particular scheme of layers

that is required. A combination of the triangular mesh and the Green's functions for

multiple layers would act as an excellent tool for the analysis of a completely arbitrary

microstrip structure.

One of the major, time exhaustive, operations of the analysis is the numerical

calculation of the Green's functions. A closed form for the single layer fonnat has recently

been given by Chow et al. [44] and it may be possible to extend this formulatio¡ to multiple

layers.

A last consideration is the fact that the cunent tool was written with a single

precision floating point in order to save computation memory and time. If increasing

accuracy without regard to computation time or memory is required, the effort required for

a translation to double precision would be trivial.
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Appendix A: Components of the Impedance Matrix

Basic Components of the Matrix

Test Element -x ; Source Element - x:

¿:. : i"Gi(rj, I 
oi,) . rfl ( 4, | 4,) - .í( o;, 

I 
ri,) - rfl ( r; 

I 
r.,) )

-t,J rf, {IIl-, ) d'* i2¿{2,+ zr,,)LuJrõ,,
C.,

\N}:'ere Zrr, is any load between charge cells connected by C", and ôU is unity when i=i

and is zero otherwise.. Note that the expresion for Z¡j, is identical with Áx and Ày

exchanged and Cr, replacing C.i ,

Test Element - x; Source Element - y:

2,i., : !( rl.J(,i,1 i,). .í( r, l,;,) - .í(,;, I,i,) - .i(,î, 1,,,) )xv ko\ v\ .r¡l

Noring that t'!, : /;,

Tþst Element - x ; Source Element - z:

¿1, : l!i(¿,|'l) . .í(';, l';) - .í(';, l'"r) - .í(' l 1.") )
o
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Tþst Element - x ; Source Element - junction:

'i, 
: 

LGi(*,1,i,) 
. ri(4,1ç)- rfl(,;,1ç)- r;(,;¡1))- r. !rf, oÌp a*

c"

Similar expressions can be obtain ed for Z¡!., and Z¡lj by exchanging y for ¡ in these

two equations.

Test Element - z ; Source Element - x:

z'i, : 
[(ri(ri,l,]) 

.' rfl(4,14,)- {(i;,lr;)- {(r;lr;,))- *"1r'} op.,ta,

Tbst Element - z ; Source Element - z:

''!, 
: !r(ri(r; 

I 
o;) . .í( 0., 

I 

ou) - ri( r;, 
I 

ri) - ri( r; 
I 

r") )

-t" ! r'; {tlt,¡) a* * i2f,zr,,!^Jrõ,i

Test Element - z ; Source Element - junction:

''l 
: !o"Gi(r;lo;) . ri(r.,lrr)- {(r;,lri)- ri(r:lr"))

-r, J r; {rp,,l a* - J r! t>1t,¡ a,
c.¡ c,¡

When the test element corresponds to a junction, the expressions for the ¿ directed

test segments hold as a junction test segment is simply a z directed segment located near

the surface of the dielectric.
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Matrix Components Corresponding to Active Elements

Test Element -x ; Source Element - device port:

¿ l, : !a!i,(r:,1 r,, 
) -rfl ( r;, I 

r,, )) - *, I .r'i 
<ry o ¡ a.

Test Element - device port; Source Element - x:

z' ¡, : !r(ri(r,, p;) - rfl ( r,, 
¡ 

r;,) 
) -o 

" f orï r> lt,,) o,

Test Element - device port; Source Element - device port:

t j o : trI o,lì j) -k 
"f_ ;,i o tt o,) dz + j2Jrz,,

Where 2,., is the ry component of the unnorm alized Z matrix of the device.
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