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ABSTRACT

The inverse problem of scattering, also known as profile inversion, is.
encountered in many areas of Science, e.g. Quantum Mechanics, Electro-
magnetic Theory, Geophysics, Roentgenology, etc. Regar&less of the
particular measurement techniques and the ﬁavelength band, the mathe-
matical problems encountered are similar in that they result in the in~
version of associated integro—differéntial equations or of equivalent

formulations.

In the presented study, the inverse problem of electromagnetic scatter-
ing is treated using the novel concept of inverse boundary conditions.
The térget characteristics of unknown two~ and three-dimensional scat-
terers need to be determined from the knowledge of the incident and
. the scattered fields, given everywhere in the vicinity of the scatterer,
assuming thét the laws governing the‘interactioﬁ satisfy the Leontovich
or scalar boundary conditions. The novel set of inverse boundary
cohditions‘(IBCs), resulting from the inversion of the Leontovich
boundary conditions, is employed to recover the electrical sige, the
surface locus SO(E) and the averaged local surface impedance n(r)
directly from the total near field e%pressions which are assumed to
be given in the Sommerfeld region so that they can be computed every-
ﬁhere. Of particular importance is the cognizance that a set of exact
independent necessary and not locally but globally sufficient inverse
boundary conditions (IECs) exists and is required to uniquely resolve

the electromagnetic inverse problem of scattering by conducting shapes.




The analysis is verified by numerical computation for cylindrical and

spherical mono- and two-body configurations assuming arbitrarily polar-

ized plane wave incidence. Coordinate transformation and analytic con-

tinuation techniques, well established for circular cylindric wave
functions, are employed to recover the characteristic parameters for
those regions of the scattering surface which lie within the minimum

circle enclosing the scatterers. Three-dimensional analytic contin-

‘uation is introduced to verify the applicability of the novel set of

IBCs to the most general three-dimensional configurations. The theor-
etical analysis of analytic continuation and two-body scattering in
two—- and three-dimensions is‘supplemented)where particular emphasis-
is laid on an analysis of errors which are caused by'coordinate origin
dispiacement, series tfuncation,‘numerical quadraturé and measurement

uncertainty of Fourier coefficients.

The presented results demonstrate that.the inversion of the conducting
multibody problem can uniquely be resolved thus proving the importance
of the novel 4Ansatz (IBCs) introduced to the inverse theory of electro-
magnetic scattering. As a by-product, the direct scattering‘solutioné
to ;he two=-cylinder and two-sphere problems with impedance boundary
conditions have been obtained. A novel truncation approach for em-
ploying vector wave functions in analytic continuation based on the
éoncepf of inverse boundary conditions has been proposed which should

also be of relevance to direct scattering problems.

In essence, the hypothesis is set forth that an entirely new approach
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to the general inverse problem of. scattering must be undertaken in

case that more than one of the many characteristics are to be deter—
mined simultaneously. Namely, the Ansatz of exact independent necessary
not locally but globally sufficient inverse boundary conditions, whose
existence has been uniquely proVed.for the electromagnefic case,could
open up new avenues of attaining deeper insight into inverseiproblems

in other areas of Science.
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RESUME

Le probléme inverse de la diffusion se recontre dans de nombreuses
disciplines scientifiques telles que la mécanique quantique, l'électro—‘
magnétisme, la géophysique, la Roentgénologie; etc... Qﬁelles que soient
le techniques de mesure et les longueurs d'onde éonsiderées, les prob-
lemes mathématiques rencontrés sont communs du fait qu'ils rdsultent
d'une inversion des &quations integro-différentielles assocides ou de

formulations équivalentes.

Dans la présente étude, le probléme inverse de la diffusion &lectro-
magnétique est traité, en utilisant le nouveau concept de conditions
inverses de passage. Les caractéristiques de cible de diffuseurs
inconnus 5»deux ou trois dimensions doivent €tre déterminées a partir
des champs incidents et difqués connus au voisinage du diffuseur

-en supposant.que les loié d'interaction satisfont les conditions de
passage de Léontovich ou scalaires. Le nouvel ensemble de conditions
de passage (IBCs), résﬁltant de 1'inversion des conditions de passage
de Léontovich, est utilisé pour retrouver la dimension électrique,

la forme de la surface diffusante So(£)let la valeux moyenne locale
de 1'impédance de surface m(r) directement & partir des expressions
dﬁ champ proche total qui sont supposées données dans la région de
Somﬁerfeld telles qu'eiles puissent €tre calculées de partout. Il est
trés important de noter 1'existence d'un ensemble de conditions inverses
de paésage exactes, indépendantes et globalement (non localement)

suffisantes (IBCs) qui sont nécessaires pour donner une solution



unique au probléme inverse de la diffusion par corps. conducteurs.

L'analyse est verifiée par calcul numérique dans le cas d'un ou deux
cylindres ou sphéres, en supposant une onde plane de polarisation
arbifraire. Les techniques de transformation de coordonnées et la
détermination analytique de proche en proche bien établies pour une
fonction d'onde cylindrique circulaire sont utilisées pour retrouver

les parametres.caraétéristiqués pour les régions de la surface diffusante
qui se trouvent a l'intérieur du plus petit cercle entourant les
diffuseurs. Une détermination de proche en proche a trois dimensions
est introduite pour verifier l'applicabilité du nouvel ensemble de
conditions de passage inverses (IBCs) au cas le plus genéral, celui
d'une configuration a trois dimensions. L'analyse théorique du calcul
de proche en proche et la diffusion par deux corps a deux ou trois
dimensions est suppléée lorsque 1'on attache une importance particuliére
a 1'analyse des erreurs dues a un déplacement d'origine des' coordonnées,
une troncature de série, une quadrature numérique et a une mesure

» . 3 » 0 -~ 3 ’
incertaine des coefficients des series de Fourier.

Les résultats présentés prouvent que 1'inversion du probleme du con-
ducteur multi corps a une solution unique prouvant ainsi 1'importance
du nouveau concept (IBCs) introduit dans la théorie inverse de la
diffusion électromagnétique. En résultat secondaire, les solutions
‘de la diffusion directe pour les problémes des deux cylindres'et des
deux spheres avec une impédance aux conditions de passage, ont eteé

obtenues. Une nouvelle approche de troncature pour utiliser une fonction




d'onde vectorielle dans la détermination de proche en proche, basée
sur le concept des conditions de passage inverses a &té proposée; elle

serait €galement en rapport avec les problémes de diffusion directe.

Par nature méme, 1'hypothése est posée selon laquelle une approche
entiérement nouvelle du prébléme invetrse de la diffusion doit étre
engagée dans le cas du plus d'une des nombreuses caractéristiques
doivent &tre déterminées simultanément. En particulier, le concept

de conditions inverses de passage, exactes, ipdépendantes, nécessaires
et globalement (non localement) suffisantes, dont 1'existence a été
démontrée &tre unique dans le cas de la diffusion électromagnétique,
pourréit ouvrir de nouvelles voies 3 une meilleure approche du probléme

inverse de la diffusion dans d'autres domaines de la Science.
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- _ZUSAMMENFASSUNG

Das inverse Problem der Streuung spielt in vielen, wenn nicht gar allen
Fachgebieten der Naturwissenschaft eine zunehmend bedeutendere Rolle,
wie z.B. in den Fachbereichen der Quantenmechanik, der elektro—
magnetischen Theorie, der Geophysik, der Rontgenologie, u.s.w. Wenn
man von den partikularen MeBtechniken und dem Wellenlénggnbereich
absieht, sind die auftretenden mathematischen Probleme ahnlich, indem
diese die Inversion derAassoziierten Integrodifferentialgleichungen

oder entsprechend gleichwertiger Ausdricke verlangen.

In der vorliegenden Arbeit wird das inverse Problem der elektromag-—
netischen Streuung mittels des Ansatzes inverser Randbedingungen
behandelt. Im besonderen sollen die charakteristischen Eigenschaften
von zwei- und drei-dimensionalen Streukarpern.von den gegebenen
einfallenden und gestreuten Féldern bestimmt werden wobei vorausgesetzt
wird, dafB das gebeﬁgte Feld uberall bekannt ist, und daB die Randbeding~
ungen der Leontowitsch oder skalaren Impedanzbedingung genigen. Der
neue Satz von inversen Randbedingungen, der von der Inversion der
Leontowitsch Bedingung abgeleitet wurde, wird angewandt um die elek-
trische Grdge, die Oberflichengestalt SO(E), und die durchschnittlicﬁe
ortliche Oberflichenimpedanz n(r) unmittelbar vom gesamten Nahfeld -
zuv bestimmen, das im Sommerfeldschen Bereiche als bekannt und berechenbar
vorausgesetzt wurde. Von besonderer Bedeuﬁung ist die Erkenntpis, daB
ein Satz exakter, von einander unabhdngiger, notwendiger und nicht

ortlich jedoch global geniigendey inverser Randbedingungen (IBCs)
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existiert und notwendig istum das inverse Problem der elektromagnet-

ischen Streuung von leitenden Streukorpern eindeutig zu 1dsen.

Die theoretische Untersuchung wird durch numerische Rechnungen fur
kreiszylindrische und kugelfdrmige Ein- und Zwei-Korperstreuung fur
beliebig polarisierten Planarwellen-Einfall nachgeprﬁft. Methoden der
Koordinatentransformation und der analytischen Fortsetzung, die fur
kreiszylindrische Wellenfunktionen hinreichend begrundet sind, werden
angewandt um die charakteristischen Eigenschaften auch jener Bereiche
zu bestimmen, die im kleinsten den Streukorpern umschriebenen Kreise
liegen.. Drei—diménsionale analytische Fortsetzung wird eingefuhrt um
die Anwendbarkeit des neuen Satzes der inversen Randbedingungen fur
drei -dimensionale Streukorper allgemeiner, kontinuierlich gekrummter
Oberflachengestalt nachzuprﬁfen. Die thebretischa1Untersuchungen der
neueingefﬁﬁrten Methoden der zwei- und drei- dimensionalen analytischen
Fortsetzung und der Mehrkorperstreuung wird durch numefische Berech- -
nungen erganzt. Eine Untersuchung der ﬁnvermeidlich impliziten Rechen-
fehler, die durch Koordinatentransformation, numerische Quadratur,
Begrenzung der Reihenordnung der Vektorwellenentwicklung . uﬁd durch
MeBunscharfe der Fouriér Koeffizienten  hervorgerufen werden, wurde

mit besondener Sorgfalt durchgefiihrt.

Die erhaltenen Ergebnisse zeigen, daf die Inversion der leitenden
Mehrkdrperstreuung eindeutig geldst werden kann, was die Bedeutung
des angewandten, neuen Ansatzes zum inversen Problem der elektromag—

netischen Streuung vortrefflichst beweist. Weiterhin werden neue
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Lésungen zum direkten Problem der Streuung von zwei kreisformigen
Zylindern und von zwei Kugeln, deren Oberflachenbeschaffenheiten die
skalate Impedanzbedingungen erfillen, angefiihrt. Eine neue Behand-

lung des Problems der impliziten Fehlerberechnung fur die Anwendbarkeit

~von Vektorwellfunktionen wird eingefuhrt, die auf dem Ansatz der

inversen Randbedingungen beruht und somit auch von Bedeutung fur das

direkte Streuungsproblem sein sollte.

Im wesentlichen wird die Hypothese aufgestellt, daB.ein ganz neuer
Angriff des allgemeinen invérsen Problems der Streuung unternommen
werden ﬁuB, falls mehr als nur eine der vielen charakteristischen
Eigenschaften gleichzeitig gefunden werden soll. Nimlich, der Ansatz
von exakten, von einanden unabhangigen, notwendigen, nicht dSrtlich

so jedoch global geniigenden iﬁversen Randbedingungen, deren Existenz.
fur den elektromagnetischen Wellenbereich eindeutig bewiesen wurde ,
konnte neue Wege offnen um ein bessere Einsicht in inverse Probleme

anderer Fachbereiche zu erhalten. -
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INTRODUCTION

The field of inverse scattering encompasses a variety of problems in-
cluding the classic problem of target identification. Curiosity of
man to perceive remote objects resulted in the invention of the telescope.
The necessity to detect distant hostile objects during World War II

was responsible for the rapid development of radar at a pace which
never ceases to amaze those who work in this field. 1In the period of

- a few years radar technology was brought from a laboratory concept to

a mature discipline resulting in equipment which has had a significant
effect én the past defense research work. The sophisticatioﬁ of some
of the radar systems is -such that in addition to their conventional
functions they can be used for estimating target shape. With the ad-
vent of Doppler-radar, sonar operated systems, Fourier optics and aper-
ture synthesis, it is now possible to localize and attain a good res-

olution of otherwise remote objects.

Barton [ll.]’ who analyséd radar returns from Sputnik II, was the first
to report successful shape estimate. Since the military has‘been
impressed by the possibility of building practical shape estimating
radar syétems, most of the work in this field is classified. However,
Brindley [29 ] has disclosed some of the results of the United States
Air Force manual radar signature analysis program.l Bafes [15 ] has dis-
cussed the question regafding what constitutes the minimum  radar system
with which meaningful estimates can be made of the shape of any arti-

ficial satellite which has not been designed either to cooperate with




or to confuse the radar system.

There has been a very limited activity in the field of inverse scatter-
ing in electromagnetics, which is directed towards the goal of target
identification. No one has yet succeeded in determining‘the actual
shape, size and the material constituent; 6f remote objects. Part of
the reason for the slow development in inverse scattering is.the'com—
plexity of the problem which involves very accurate measurements of

the far field. Many scientists are not yet convinced about the unique-
ness of the solution, which might be obtained by inverting measured
data. Taking all these problems into consideration, any contribution
to this field will be of great help in achieving the ultimate goal of

practical target identification.

With this aim in mind the inverse scattering problem has been treated

in this work using the concept of inverse scattering boundary conditions
for the profile characteristics inversion of perfectly and imperfectly
conducting shapes. Starting with simple canonical shapes, vié, éylinder
and sphere, it has been shown how the method can be extended to the more
complicated two-body cases which assimilate general curved bodies. To
recover the em fields in the cavity regions, analytic continuation

methods have been employed. It is shown how the concept of profile inver-

sion can be exploited to study the truncation errors in field expansions.




chapter one

SURVEY OF LITERATURE

1.1 THE PROBLEM OF PROFILE INVERSION

Profile inversion is a very generalized concept. In maﬁy areas of
physical science, fundamental functions that define or describe a
physical medium are .computed from experimental data through a differ-
ential equation and the reconstruction ofithe basic function or some
of its properties constitutes the general class of inverse problems.
In other words,the study of inverse problems consists in the development
of mathematical techniques to obtain information on.the cause of scatter-
ing from the parameters that are measured in a scattering experiment.
The direct scattering problem of any kind is defined as the problem

of prediéting the scattered quantities given the incident quantities,
the relevant description of the scatterer and given the appropriate
laws governing the interaction. The direct problem is normally more
aﬁenable to solution than the inverse problem due to the absence of
both data limitations and experimental errors in the former. In most
inversion problems it is important to deduce the spatial variation
,(fadial height ete.) of the fundamental»function from the experimental
data, hence the inclusion of the term profile. The inverse problem

is encountered in many disciplines of science and engineering and a
comprehensive treatment of the problem in various fields is given din
Ref.[89 ]. Since similar techniques may apﬁly to various fieldé, it
is considered worth-while to give a brief account of inverse probiems

in the related fields.




1.2 INVERSE PROBLEMS IN RELATED FIELDS

1.2.1 INVERSE PROBLEM IN QUANTUM MECHANICS

In the framework of quantum mechanics major attention has been given
to the case of non-relativistic particle interacting via a potential,
with a scattering center or equivalently, that of two particles inter-
- acting through a potential depehding_on their relative distance. It
is well known in quantum mechanics that the scattering of particles
by a potential field is completely determined by the asymptotic fofm
of the wave functions at infinity. In accordance with Heisenberg's
idea it is precisely the asymptotic behavior of the wave functions
that has physical meaning[l].The question therefore naturally arises
as to whether it is possible to reconsfruct the potential from the
knowledge of the wave function at infinity [lJQ,go,loa]. In general,
the problem is more complex and difficult than those in the other

disciplines.

The scéttering of spinless particles is described by the time independ-

ent Schrodinger equation which in appropriate units reads

[-v? + V(r)]w = EY . ’ (1.2.1)

Where V? is Laplace's operator in three dimensions, E is the energy
of‘the‘particle and V(r) is the potential energy assumed to be spheri-

cally symmetric and rapidly decreasing to zero at large r. Ref.[ 90]




Now the transformation kernel may be obtained through a fundamental

integral equation

r .
K(V, VO, r, r') = f(V, Vv s Ly r') - f K(V, \ s Ty O) f(Vs VO’ P, r')p-zdp :
' 0 0 o
’ 0

(1.2.7)
obtained by analogy with the Gelfand-Levitan equation. Therefore,
the inverse problem is completely solved when f£(V, Vo’ r, r') is
knowﬁf For description of other methédé,e.g. JWKB method, Newton-

Sabatier method etc., review papers[104, 89 ] may be consulted. .

1.2,2 GEOPHYSICAL INVERSE PROBLEM

" The geophysical inverse problem is concerned with the inversion of
seismic data to obtain profiles of parameters which describe.the
earth's interior (e.g. permeability or'conductivity of earth's crust).
Suppose we have made measuremenfs of the magnetic field of the eafth.
What does this tell us about the maghetiZation of surface focks? Or
given a set of normal mode frequencies (the frequencies of free oscilla-
~tion of the earth‘obseryed after the largest earth.quake), we will

like to find the density and seismic velocities as a function of radius.

The most general theory for handling seismological inverse problems
is the Backus and Gilbert method [ 5,6,7 ] which starts with the

following general equation [94]

a
Yj - f m(r) Gj(r) dr j=1, 2,....N (1.2.8)

0




where m(r) is the property and Gj(r) is called the data kernel,

one for each‘observation ‘G which are first assumed to be error-free.
In order to localize the information to points within the earth, Backus
and Gilbert_use a linear combination of Yj's to obtain the following

final expression

a .
L= f F(r) m(r) dr (1.2.9)

0

If F(r) ‘can be chosen as a Dirac-delta function centered at T
then L would simply be m(ro),vi.é. the property we wént at the
position T, Backus and Gilbert's theory provides information about
the uncertainty in the models developed and also supplies a method of
carrying out adjustments to the model of the conductivity structure
to systematically bring the calculated response into satisfactory

agreement with the observed data, rather than having to rely on in-

spired guess werk.

Bailey[ 8 ] found a direct method whereby the conductivity structure

is reproduced from em data through the solution of a nonlinear infegro—'
differential equation which'requires precise data oﬁ a continuum of
.frequencies_from zero to infinity. Although Bailey's method is im—
practical, it presents an imporfant uniqueness proof and thus has
provided the assurance that, in general, the true conductivity'structure
of the.earth's crust can be recovered from geomagnetic variations.
Starting from data given by Banks [ 9-], a new cenductivity strﬁcture

was derived by Parker [ 951 who also studied its uniqueness. He




generalized a precedure derived by Banks and applied his cross-spectral
techniques making a considerable contribution to the geophysical in-
verse problem.Though theBackuseGilbert theory can be generalized for

non~linear problems as well [95 ],the Monte Carlo technique [145] is

often used for this case.

1.2.3 PASSIVE ATMOSPHERIC SOUNDING

Inverse problems are also encountered in passive atmospheric sounding.
In this case ﬁeasurement of the emitted terrestrial (planetary) or
reflected solar radiation is made as a function of wavelength (visible,
ultraviolet, infra-red), look angle and atmospheric optical depth
using ground based airborne or space borne systems. The data thus
obtained is inverted to yield the vertical structure of several at-
mospheric parameters, including temperature, ozone, water vapor and
trace constituents. Like other inversion problems the difficulties

are both mathematically and numerically oriented and the ultimate

choice of the best method for a particular application may not be
based on accuracy but is restricted normally by available resources,

quantity of experimental data, and a priori knowledge [ 72, 99 1.

1.2.4 ACTIVE RADAR SOUNDING

In contrast to the passive sounding techniques, active sounding is
concerned with measurement cf reflected and/or scattered radiation

from the atmospbere arising from man-made probing sources i.e. active



- radar experiments [ 35, 73 ]. Both“mondstatic and bistatic configura-
tions with pulse and continuous wave techniques are in use as well as
acoustic and electromagnetic radars. The.daté are inverted to yield
vertical profiles of wind speed and direction, turbulence, precipita-
tion, refractive index structure, particulate concentrations and gaseous

molecule concentrations.  Active remote sounding is a rapidly growing

research field and great technological advances leading to sophisticated "

sounding techniques have been made in recent years.

Active radar sounding, both monostatic and bistatic, but at wavelengths
such that the probing signals are negligibly affected by the atmosphere
but are reflected by the ionosphere, is used for the study of the
structure of ionospheric layers. Pulse or amplitude sounding of the
ibnosphere are employed,i.e; only the time delay characteristics of

the radar echoes ére used [56,96,74 ]. More sophisticated techniques
using e.g. phase, direction of arrival or polarization have appeared

in the literature but have not found extensive application [73].

1.3 ~ INVERSE PROBLEMS IN'E.M. THEORY

1.3.1 TRANSMISSION LINE THEQRY

In transmission line theory inverse scattering is distinguished by
its one-dimensional character and the fact that the waves propagate
along the line in two directions from left to right and from right

. to left. In a lossless case the transmission line equations can be




written as

dv

Iz = WL(D)T . (1.3.1)
%= iwc(zZ)v (1.3.2)

~If r(w) and p(w) represent the left and.rigﬁt amplitude reflection
coefficients,and t(w) and T(w) the corresponding transmission coef-
ficients, then a matrix of these four coefficients is called the
scattering matrix for the system. In the inverse scattering’prbblem
some part of the scattering matrix, usually the reflection coefficient
r(w)) is given and L(Z) and C(Z) or their equivalents are required
to be determined [ 46, 61 ]. Techniques used are those developed in

quantum mechanics with slight modification [89].

1.3.2 TARGET IDENTIFICATION

The inverse scattering problem which wev;fe interested in pertains to
recovering the relgvent quaﬁtities (e.g. material constituents.énd

the shape) describing the scatterer, from the given incident field

and measured scattered field;’when the laws (e.g. Maxwell's equations)
governing the interaction are assumed to be known. The study also in-
volves the determination of whether this problem is uniduely solvable
for incomplete input data,e.g. various pérmutations of incomplete
bistatic aspect angles; incomplete monostatic aspect angles, incomblete
frequency, monochromatic data only, incomplete polarization matrig,

amplitude data only, and scattered far field data only. Also of
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interest is the inverse scattering problem for which there is some
a priori information about the scatterer such as, the conductivity
of fhe scatterer is infinite or that the geometry of the problem is
of axial symmetry.

1.3.3 Solution of Inverse Scattering Problem

The scattered magnetic field at a point can be written as [ 4 ]

1 . e—jkr
‘ == ” (ixH) x V( ) dA (1.3.3)

H
-s r

p 5

and its far field approximation can be written as

i =T ” [(x) x ] e %@ 3 gy (1.3.4)
1

[

where the symbols used are explained in Fig.1l.l.

The exact solution of the inverse problem would be obtained if (1.3.3)
can be inverted. But,let alone equation (1.3.3), éven the solufion
to equation (1.3.4) has not been carried.out conclusively. The in-
version techniques described in the literature concern physiéal

optics and geometric optics .[39],subject in both cases to severe restrictioms.

In their introductory notes related to em inverse scattering, Altman

et al | 4‘] consider the following three cases:

(1) 1If the body is known to be flat and if the scattered field falls
within a small solid angle, then the body shape may be related
to the two-dimensional Fourier transform of the scattered field

as ‘a function of angle.
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| Fig.‘l.'l Bistatic Symbols and Refekencé Directions.
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Starting from the physical optics approximation, which assumes that for
a perfectly conducting scatterer fhe current on the illuminated portion
of ﬁhe scatterer is anﬂé and on the shadow side it is zero, they
show that the form function is the Fourier fransform of the scattered
field. The result is applicable only to singly—curved surfaces.

(2) 1If the target is known to be a doubly—curved convex body of
revolution whose axis of symmetry has been determined in space,
then the generatix of the body surface may be obtained from the
radar cross-section as a function of the aspect angle.

(3) 1If the body is known to be a singly-curved body of revolution
whose axis of symmetryAhas been determined in space, then the
body surface may be determined by the application of the station~
ary phase method for the azimﬁthal direction and the Fourier

transform method for the longitudinal direction.

No numerical verification for the above methods has been encountered.

The basic principles of various methods are discussed below.

1.3.4 ' PHYSICAL OPTICS INVERSE SCATTERING

A general fhree—dimensional electromagnetic vector inverse‘identity
based oﬁ the physical optics epproximation[27] has been developed by
Bojarski [ 19 , 20 ]. It states.that if vy(x) 1is the characteristic
function of the target (i.e. Yy = 1 inside the target and y = 0 out-
Aside) and T(k) can be obtained by measurement of the back—scaetered

em far field at a frequency w = (C/Z)IK|, then v(x) and I'(k) are

=

g_u

)




a Fourler transform pair where K = (20/c¢)j , w is the frequency,

j is a unit vector specifying the aspect. The identity can be expressed

as -

Y(X) = —('é%—)'g‘ J eiKX I'(x) d3k . ’(1.3.5)'
or - _

3 1 ikx E)(K) 3

v(x) = ” 57, Re _i e 2 d°k (1.3.6) o

with - )
%
r(e) = Jom oL 2("<) | (1.3.7)

which clearly requires complete scattering information, namely know—
- ledge of p(k) over all « spacey,i,e. all frequencies and all aspect

angles.

In actual practice p(k) is known only for an incomplete finite portion
of the Kk space, viz, a K-space aperture consisting ofvavlimited
(finite) frequency band. TFor this sitﬁation the threefdimensional
inverse problem can be reduced to the three-dimensional non»singular

convolution integral equation (a Fredholm IE of the first kind)[ 19, 20],

a(x) * y(x) = g(x) _ (1.3.8)
where '
g(x) = —= f e T o) w) d¥ (1.3.9)
(2m)?® : '

a(x) is the Fourier transform of A(x) defined as

Al) = C(k) wik) (1.3.10)




1 for Kk for which T(k) is known

" with aperture function C(k) = 0 if T() is not known

and (k) 1is the aperture function subject to the condition

o0

j [A()| d%k < o (1.3.11)

-C0

The integral equation (1.3.10) can be solved numerically by a Variety
of ekisting'techniques. Several closed-form solutions of this equation
for épertures of specific geometry have beenbobtained by Lewis [67,68]
and Bojarski [ 19]. Bojarski [19 ] also shows that a three-dimensional
density plot of X(x) represents the smeared geometrical image of

the surface of the scatterer, the spatial extent of the smearing

being the spatial extent, C(x) - the fesolution. This method alleviates,j
all the objections to the so éalled radar imaging technique by the
application of em inverse scattering theory, based on direct scatter-
ing theory (and not based on the heuristic model of a spatially extended
scatterer as a fictitious ensemble of identifiable, stationary, non-—
interactive, nén—dispersive, ithropic point scatterers). It there-
fore avoids the problems of converting radar images to geometrical
images by side stepping and avoiding the radar imége altogéther and
addressing itself to the problem of generating actual geometrical

images directly from the radar data.

1.3.5 GEOMETRIC OPTICS INVERSE SCATTERING

This method is based on the inversion of the geometric optics radar




cross ‘section equation given by [63 ],

R(8/2)

g(6,9) = m) (1.3.12)

where 0 1is the radar scattering cross section, R is the energy
reflection coefficient and G is the gaussian curvature. For a
perfectly conducting scatterer the monostatic radar cross section is

given by [130]

1

o(u) = 16t (u) | (1.3.13)

where u describes the direction of the incident plane wave. The

gaussian curvature G(u) at the specular pdint is given by

rl1+(dr/dz) 21"
d?r/dz?

¢ ) = (1.3.14)

Weiss[130]obtains the following two parametric equations which are also.

derived in [ 4 ] and [ 631, [Fig. 1.2]

u

1 . o 1/2 '

r(u) = { P i o(u) sin 2u du } (1.3.15)
R C 1.3.16

Z() -1 J (o) sin“u du ' (1.3.16)

Keller [ 63] treats various casesye.g. 1) two-dimensional case with
an incident field due to a line source, 2) a three-dimensional case
of a reflecting surface of revolution with a plane wave incident along

the axis of revolution or with a point source located on the axis.

f
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The resultslobtained for these cases are tabulated in Keller's paper[63].

The general case of arbitrary smooth convex closed surface in three-



- Fig. 1.2 Geometric Optics inverse scattering
| geometry.
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dimensional space is reduced to Minkowski's problem and it is shown
that the data provided by equation (1.3.12) do not suffice to determine
the‘shape of the reflector nor any part of it. But if two functions
O+(6,¢) and o (8,9) are given, corresponding to two incident waves
coming from opposité directions and if R is also known, then (1.3.12)
determines G over the complete Minkowski's sphere and the inverse probleﬁ

has a unique solution. [91].

Weiss [130] applies equations (1.3.15) and (1.3.16) to a number of
axi-symmetric bodies (e.g. prolate énd éblate spheroids, cone, cylinder
with a circular cap) for which exact cross—section results are available.
Results presented in that paper are designéd to demonstra;e the bounds
on size and shape which can be defermined. The correct shape tends

to be closer to the vertical polarization result (smaller of the radar
cross section results) and this polarization differencé is morebpro—
nounced for lower ka values (ka = 5). Doubly-curved bodies of size
k% > 2.5 can be determined fairly accufétely by this technique. Though
the direc£ scattering equation (1.3.13) doeé not apply to the case of

a singly éurved body (Becausé'of the zero gaussian curvature the geome-
tric optics result predicts an infinite radar cross seétion), the re-
sults indicate that a large class of such bodies can be quite accurate-
ly inverted. The reason for this apparent anomaly is that the inverse
procedure involves the integral of the radar cross section. Therefore,

this singularity is removed.

Geometrical optics approach has also been used by Vandenberghe and




Boerner [ 121]. Their approach is based on the fact that smooth and
convex shaped scatterers of identical curvature about the monostatic
direction give rise to identical far scattered field mégnitude in the
high frequency case. They developed an iterative averaging procedure
with the intent to recover unknown local radii of curvature of remote
~ scatterers about the specular point whichvare in fair agreement with
exac; values for elliptical cylindrical scatterers employed by them
for computation. Since the knowledge of .the near field and its phase is
not required, the method is very useful for practical applicatidn.

It should, however, be pdinted oﬁt here that for curve-fitting, some
additional information on the relative bhase differences between only
the monostatic directions of various measurement domains must also

be recoverea. Furthermore, the method is applicable only in the high

. frequency case.

1.4 APPLICATION OF PULSE TECHNIQUES FOR TARGET IDENTIFICATION

Since more information may be obtained by trénsient analysis than from
steady state results, pulse téchniques offer a convenient method for
target identification. The behavior of the leading wavefront of a
scattered pulse usually contains information about the composition of
the body, whereas the behavior of the trailing_return of a scattered

pulse is related to the shape of the body and its radii of curvature.

Freedman shows [ 441 that if a body is illuminated by a modulated

pulsed wave, the directly scattered radiation at a field point in the

£
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lit'region is composed of & number of discrete signals. These com-
ponents are generated by certain discontinuities associated Jith the
projection of the scattering body, with their magnitude proportional
to the discontinuity size and phase depending on the total associated
path. Westcn et al [135] point out the necessity of using short pulse
measurements to separate out the signals from.the various scattering
centers. They investigate the use of short pulsebdata to aetermine
the broperties of uniformly coated conducting bodies where the main
attention is paid to the illuminated portion of smooth, convex bodies

at high frequencies.

Kennaugh and Moffat [64 ] suggest that the impulse response waveform
of a target is a concept that replaces sets of numbers for a target
by e useful characteristic function. This function is simple in
form, related to the geometrical properties of the target and permits
extrapolation to new configurations. Furthermore, knowing this func-
tion only approximately for a target, it is possible to predict the
reflectivity as a function of frequency cr signal waveform. They
illustrate the nature and utility cf impulse responee waveforms for
specific cases. Pulse techniques are_also studied in some of the
jpapers (e.g. [150,151]) in a.special issue of the Proceedings of the

IEEE on 'Radar Reflectivity' (August, 1965) and in [152].

Various other papers based on pulse response methods are reviewed by
Vandenberghe in [ 122] where he also cites signature comparison methods

used by Defence Departments and scattering matrix measurement techniques.
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He also mentions the case in which the scattering geometry is nonf
stationary. In this case, the translatory vector, giﬁing the direction
of épinning,a vector determining spinning rate and a third vector, out-
lining the direction<and rate of tumbling)have to be specified in terms

of a stationary fixed time space reference system [4].

Graf investigates the relationship between the Doppler frequency spectrum
'énd.the structure of a rotating body in a recent report [47 ]. He

shows that analysis of the intensities in the Doppler frequency[37]
spectra permits conclusions to be drawn on the shape of the body. By
appropriately processing the complex Doppler spectra,it.isvpossible to

get a highly resolved image of the object as seen from the direction

of the axis of rotation. Both the procedures are treated theoretical-

ly and are confirmed by experiments with microwaves of 3.2 cm wavelength.

1.5 EXACT SOLUTION OF ELECTROMAGNETIC INVERSE PROBLEMS

In contrast with the approximate methods of previous sections Which
employ either geometric or physical optics approximations, the exact
methods are based on a rigérous treatment of Maxwell's eﬁuations.

A series of technical reports on inverse scattering have been puBlished
by Weston and his associates at the University of Michigan. In [139],
théy introudce the concept of equivalent sources originally analysed

by Saunders [105], Weyl [143],Wilcok [146] and Mﬁligr [85,86]fo? vector

and scalar cases. The concept of ‘equivalent sources pertains to




the assumption that the scattered field may be thought of as arising
from a set of equivalent sources on or within the body if the surface
of the body is infinitely differentiable; and is important in the
inverse scattering studies since the radii of the minimum convex sur-
facé which encloses the equivaient sources is related to the conver-

~ gence of any expansion technique utilized to derive the near scattered
field of the target from the observed far field. As Weston points

out [134], from a practical stand point, when a finite set of measure-
ments is made, the scattered field has to be approximated by a finite
sum, -and the knowledge of the domain of convergence 1is important
for estimating the errors in the scattered field in the vicinity of
the surface. This was ignored by Bates [ 14 ] when he assumed that

the absolute yalue of thesum of an iﬁfinite series of terms of order

€ was less than e, where € is a small parameter. Weston et al[139]
also show that the plane wave representation converges part way in-
side smooth,convex portions of the‘body, thus establishing the concept
that the minimum convex shape enclosingnfhe equivalent sources often
may be inside the actual scattering body. For.non—magnetic and im-
perfectly conducting bodies, it is shown that the exact totai field
inside the body could be represented in terms of the plane wave expan-
sion involving the far field'quantities. This representation involves
an apprdpriate split up Qf the far field data and a fundamental problem
still exists to uniquely determine the split up from the knowledge of
the far field data alone. This indicates the need of additioﬁal in-

 formation, perhaps‘the knowledge of the complete scattering matrix for

. :
all frequencies. The boundary condition E x E = 0, which is applicable
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for the case of perfectly conducting bodies, is introduced. They also sug-
gest the use of the monostatic bistatic theorem due to Kell to determine
the‘material characterieitcs of the scatterer. Kell's theorem[62]states
that for sufficiently smooth bodies, the bistatic cross section for

the transmitter direetion k and receiver direction %o is equal to
the monostatic cross section for the transmitter-receiver direction

(k + ﬁb) with k # 0 in the limit of vanishing wavelengths; It is
shown that two polarization measurements of the cross—section at one
non~zero bistatic angle (back~scattering) determines the reactive sur-
face impedance n = u + iv , apart from the sign ofvthe imaginary part,
where such surfaces would correspond to poor conductors or absorber-
coated conductors. However, the case where the ratio of the bistatic
moﬁostatic cross-section is unity for both polarizations,only yields

u = 0. The method has not been verified numerically and no estimate

of accuracy for the value of n dis given.

An inversion technique which reproducescfhe radial variation of the di-
electric constant in a Aielectric target from its microwave scatter-
ing pattern is presented by Fedotowsky et al [43 ]. The numerical
feasibility of this method has been illustrated by applying it to
experimentally measured scattering patterns. They have developed in-
version criteria which show that details in a target, much smaller

than the wavelength, cannot be reproduced.

As relates to the general inverse problem of em diffraction, another

relevant inverse identity, derived by Weston and Boerner [136,137]
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and based on an integral equation given by Barrar and Dolph [10 1,
must be mentioned. This inverse identity proves that the total field
produced by a plane wave incident upon a scattering-object can be ex-
pressed at all points in space as the sum of the incident field and
the Fourier transform of a quantity which is related to the scatter-
ing matrix requiring data over the entire frequency range and can be

written as

m .
1 f oJprx

T (p,K)+dp  (1.4.1)
(2'”')3/2 2 p2_k2 - -

(k) = B (x,k) +

where —© < p <x,  k represents the direction of the. incident wave
H - ) 3 )

and T (p,k) is a measurable function proportional to the far scattered
field in the direction p related to the scattering matrix. It should
be noted that Weston's identity is geheral,i.e. holds also for the
conducting_case. Furthermore, the obtained results 1end’themselves

to the construction of synthetic Fourier transform holograms [80 ],[113]
and thus may open up new avenues of attacking the inverse problem of

em scattering. A similar identity was earlier derived by Moses [83].

) - * N ) - 3 3
The inverse boundary condition E x E = 0 was verified numerically
in [137], where spheres of different radii were identified with an

additional boundary condition ]Eil - |E ! = 0 which is based on the -
A * »

physical optics approximation. It is proved that Ex E =0 is a

necessary but not sufficient’condition’but the physical optics con-

dition (lE,| - |E l = 0) is a necessary and sufficient condition,
=i =g :

though it is valid only in the limit of high frequency. Their results
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also indicate that it is possible to determine those portions‘of'the
prolate spheroid which lie within the minimum sphere enclosing the
body but outside the sphere enclosing the equivalent sources. Imbriale
and Mittra [ 54, 55 ] also demonstrate that the knowledge of the
incident field and the scattered far fields,at one frequency, is suffi-
cient to determine the size, shape andAloéation of a perfectly conduct-
ing scatterer. The natural boundary condition for a perfectiy con—
ducting body (i.e. the téngential electric field component is zero) is
used to detérmine closed surfaces. Methods of analyticvcontinuation
for the two-dimensional case are used to obtain exterior and interior
expansions in order to determine convex as well as concave portions of
the scatterer. They.reconstruct circular and elliptic ¢ylinders,
strips and two cylinders. Though the method represeﬁts a useful analytic‘
continuation technique for fhe two-dimensional case, the reconstructed
surfaces for the treated cases do not match very well with the targets
used, except for the case of a circular cylinder. They also touch upon
the subject of determining.the Scatterer‘when the far field pattern

is known in a limited sector. The mean square error is minimiéed be~
tween the observed values and its series representation by using Rosen~
brock's rotating coordinate.system method [ 100 ]Effectsof noise in the

far field on reconstruction of the targets is aemonstrated by intro-

ducing different levels of noise (error) in the calculated coefﬁicients.

The question as to what information about the body can be recovered, .
if the scattering matrix (phase and amplitude) is known only over an

angular sector and is measured in the far field is studied by Weston




and Boerner in [136]. Employing spherical vector wave functions,
they show that the near field representation can be determined by
matrix inversion for rotationally symmetric scatterers with end-on
incidénce; The recovery process involves instability and a definite
loss of accuracy because of inversion of a matrix to recover the co-

efficients., This problem has been studied in some detail by Boerner

- and Vandenberghe for rotationally symmetric bodies [25,26]. They show that

for the spherical case the optimum distribution for the polar 6 de-
pendence of the N measurement aspect angles involved in the associated
determinant is given by the N zeros of the optimization function [25]

m _ 1

0.(U) = ———— _m ,
nUy 1 P Prveme, U (1.4.2)
r

with

X
_ . r-(cosatcosB) /2 -
X = Coser (1.4.3)

Ur - \(cosa—cosB)/Z] ’ T

o and B define the polar sector to which the measurements are confined
and PE represent associated Legendre's polynomials. A similar but

simpler equation holds for»cylindri¢al case [26].

It is shown in [25 ] analytically that the unknown expansion coefficients
can be recovered with standard double-precision matrix inversion tech-
niques to the degree of accuracy dictated only by any suitable measure-
ment technique . To achieve a non-singular matrix inversion a novel,
determinate optimization procedure for the measurement aspect angles is

derived and proved for the cylindrical case in [26] and the spherical case



in [25]. 1In both cases it is also shown that the eiectrical radius
ka of a perfectly conducting cylinder or a sphere can be directly re-
covered from a finite number of contiguous expansion coefficients.
Furthermore, relationships between contiguous expansion coefficients
of both electric and magnetic type result which are relevant to the
general inverse problem since the scattered field can be uniquely ex-
pressed in terms of only one set of expansion coefficients associated
with either the electric or magnetic vector wave functions. Vanden-
berghe and Boerner [123] also show that for an elliptical cylinder
the characteristic parameters of the ellipse i.e. the principal axes

a'

and b' and the eccentricity € , can be directly recovered from the
expansion coefficients associated with circular cylindrical ﬁave—
functions. Similarly the characteristic parameters of the ellipse,
generating the prolate.sphetoid (the inter focal distance d and the
eccentricity €), can directly be recovered from the expansion coeffi-
cients in the spherical.wave function expansions [124]., Extension of
this idea to © conducting canonical sﬁéﬁes (cylinder and sphere)‘is
carried out by Boerner and Das in [ 24] where they make use of the
hypothesis that the Fourier tbefficients contain all necessary and
sufficient information to recover the electrical size p and the
material surface impedance n of homogeneoué scatterers. In particular
they showbthat o and n can be recovered. from a characteristic

equation, which has identical analytic form for the circular cylindric

and the spherical case, by iterative methods.

In a most recent publication Hill [ 52] considers the inverse scattering




from a perfectly conducting prolate spheroid in the quasi-static -
domain of a magnetic dipole. He shows that from one observation of
the radial and transverse scattered magnetic fields, the parameters

which identify the spheroid (inter—focal distance and eccentricity)

can be uniquely recovered. The intermediate step requires the deter-
mination of the two magnetic polarizabilities. It is possible to

choose the observation point anywhere, even coincident with the source

field if desired. Similar results are obtained for the prolate spher-

oid by a transformation. Obviously, the appfoach is valid only for

the geophysical problem since the case treated is quasi-static.

Finally, Weston [132] considers the inverse problem in which the co-
efficients of a partial differential equation are to be determined
.frqm the knowledge of the asymptotic behavior of solution. He makes
use of the- theory of hyperbolic differential equations to determine
the solution of this time dependent inverse problem. He has applied

the analysis to electromagnetic scatteriﬁg from a slab of varying

conductivity and permittivity. The uniqueness of the method is demon-

strated in [142].

1.6 FORMULATION OF THE PROBLEM

It has already been mentioned in the literature review that the first

attempt to resolve the inverse problem rigorously using inverse bound-
ary condition was made by Weston, Bowman and Ar [139,140] where they

X : ‘
used E x Ef to invert perfectly conducting closed smooth shapes.

But the bodies encountered in practice are rarely, if ever, perfectly



conducting. Therefore if the target identification theory has to

achieve any practical value, methods to invert conducting shapes

havé to be established. An attempt to determine the impedance of conduct—
ing shapes was made by Weston et al in [139 ], where they suggest the use
of the monostatic bistatic theorem of Kell. But no proper methods

have been suggested for inverting the profile of such bodies.

%
Inspection of the inverse condition Ex E suggests a similar

boundary condition ﬂ_x,ﬂ% for perfectly conducting bodies. The two forms
together helped Boerner [136 ] to arrive at the conclusion that there

must be some combination of above two .conditions which should be

valid for the bodies with arbitrary surface impedance. Starting with

the Leontovich impedance boundary condition, its affine form and their
conjugated formulations, he established two vectors whose properties

are discussed in detail in chapter two. This fhesis commences with

the aim of exploiting the properties of these two vectors for inversion

of conducting shapes.

Chapter two briefly reviews the impedance boundary conditions and the
restrictions which have to be satisfied by the body for their applica-
tion. The detailed derivation of the vector triplet, whose properties

result in the required inverse boundary conditions,is also presented.

Chapter three presents the formulation of a set of inverse scattering
boundary conditions resulting from theorems of chapter two. The ex-

pressions for recovering the surface impedance and the surface locus
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are derived and the question of uniqueness of the inverted profile is

considered.

Chapter four analyses the two-dimensional cylindrical mono-and two-
body probleﬁs. The direct scattering solution for two parallel circular
cylinders with impedance boundary is obtained. Applicafion of-tﬂé
inverse Boundary conditions with the aid of two-dimensional analytig

continuation methods is illustrated for these two-dimensional shapes.

Chapter five considers three-dimensional mono—énd two—bddy spherical
shapes and presents direct scattering solutions for the two-sphere problem
with arbitrary radii and surface impedances and illuminated by an
arbitrarily polarized wave making an angle a. with the line of centers.
Three—dimensional analytic continuation is introduced. The inverse
boundary conditions are then applied to these three-dimensional shapes

to recover the profile.

The analysis of the errors,. arising due to truncating the series re-
presenting the elettromaghetic fields to a finite number of terms, is
presented in chapter six where a novel approach for determining the
‘truncation order is sﬁggested.

The ideas presented in this work.are sumﬁarized in chapter seven which
also lists the contributions resulting from the present study. New
problems arising out of this work are pointed ouﬁ and some suggestions

are made for their possible solution.




Appendixz A.l presents the derivation of the orthogonal triplet A, B

and D and various other important relations.

The coefficients of the fifth degree equation, for the phase angle

Y of the surface impedance, n are listed in Appendix A.2.

Appendix A.3 defines the coefficignts appearing in the three-dimensional
§ector wavé function addition theorem.‘ A threewterm recursion formula
to calculate these coefficient is listed. Finally, the coefficients

of the addition theorem for the specialized case of translation

along z-axis and then recursion formula are presented.

Appendix A-4 briefly reviews the truncation criteria of Cabayan et al.
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chapter two

THE CONCEPT OF INVERSE BOUNDARY CONDITIONS

2.1 INTRODUCTION

In direct problems of scattering and diffraction the shape and the
material constituents of the scatterer which are known a priori to-
gether with the pre-specified incident field, may be incorporated into
the boundary conditions. On the other hand, in the inverse probleﬁ,

in general, ﬁo information. about the scatterer may be assumed. There-
fore, iﬁ‘this case such boundary conditions must be sought which depend
neither on the shape nor the material properties of the scattering body,

but allow one to specify those characteristic parameters uniquely
“from the néar field recovered from far field measurements. Since it
‘was shown in Boerner and Vandenberghe [ 25]>and in Boerner and Aboul-
Atta [ 21] that the near field representation can be found to an accuracy
dictated only by measurement, the question remains as to how many and
which characteristic parameters must be defined to uniquely determine

the shape, the size and the material constituents of the unknown scatter—
er. Disregarding the local depqlarization effects, it was found suffi-
cient to specify the following paraméters expressed in terms of an
orthogonal three-dimensional systeml Xl, x2 and x3 as

i) the proper surface locus S(xl, XZ, Xa)
ii) a relative iocal surface impedance n(xl, X, x3) which is a
scalar quantity, or the interior propagation constant

kint(x1’ X, Xs)




Thus at least three independent characteristic equations.expressed
ip.terms of the diffracted near field E = Ei + Es and H = gi +.§S
must be sought to determine the surface locus S(xl, x2, xé) and the
modulus and phase of the surface impedance n = [njexp(3¥). If such

a set of independent scalar and vector equations exists, which can be
employed to uniquely determine S(xlg X, s Xa) and n(xl, X s x3>’then
‘one may argue that the inverse scattering boundary condition IEKE*I =0
does constitute the remaining part of such a set of independent equa-
tions for the degenerate case of N = 0. The derivation of such a

set of boundary conditions was first attempted by Weston and Boerner

in a récent report [lBﬂ,where it was anticipated that theAconcept of
an impedance boundary condition can be favorably employed to determine
the shape of imperfectly conducting shapes. The aim_of the present
study is to show that the Leontovich or scalar boundary conditions do
offer the desired forﬁulation and the properties of the vectors A =
gxg*-nnfggg* and B = ng*ngnfgxg* result in  the required boundary
conditions for recovering the profile and surface impedance of the

scattering objects [23 ].

Since the derivation of these novel conditions requires the application
of‘the Leontovich boundary condition and its complementary and conju~
gated formulations, its relevant properties need to be reviewed for

the express purpose of deriving criterions of applicaﬁility as well as
defining the notation. Section 2.4 , presents the derivation of the
vectors A and B. The propefties of these vectors are summarized ih‘

Theorems 1 and 2 and.in Theorem 3, their degenerate nature at the




_Specular point on a smooth and closed scatterer is analysed.

2.2 THE LEONTOVICH OR IMPEDANCE BOUNDARY CONDITIONS

The impedance boundary conditions, which are widely emﬁloyed in dif-
fraction problems in which it is desirable to take into account the
material constituents and/or surface characteristics of the body, may

be stated in its simplest form as [82 ]

(2.2.1)

Here the tangent fields at the surface S of the conductor have been
expressed in terms of the effective electric and magnetic surface
currents

=fAxH and = -fi x E (2.2.2)

e L
where A is a unit outward normal to the surface and E and H represent
the total electric and magnetic fields respectivelybin the region sur-
rounding the body. The quantity 1n 1is the relative impedance of the
body, designated as Leontovich impedance and has been normalized with
respect to ZO, the intrinsic impedance of free space. TFor a body

composed of a material of large refractive index, n = ]n|e3w may be

written as
u

-0
u

n= =t -+ i) 174, (2.2.3)

0 0

where | and U represent the permeabilities and € and ¢ the
0 0
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permittivities. of free space and the body material, respectively.

Parameter G represents the conductivity of the body.

In the analysis of the flat boundary the fundamental assumption was[51,
-106] that the refractive index of the body is much larger than that
of free space i.e.

[N| >> 1 . (2.2.4)

The above condition is sufficient to ensure that within the medium,
the field is varying slowly along the surface and behaves essentially
as a piane wave propagating in the direction of the inward normal. For
the case of a | curved surface, with p, the smallest radius of cur-

vature at the point in question, the restriction
|N] ko >> 1 (2.2.5)

ensures that the field shall vary little within a wavelength along the

surface.

The above restrictions were valid for semi-infinite (or open) bodies.

For closed surfaces an additional restriction

§ << o ' (2.2.6)

is imposed to ensure that no outward travelling field appears on the
farther side of the surface. Here ¢ is the skin depth in the con-

ductor and is defined by

§ = (-“l}zi‘l)‘l/2 (2.2.7)
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in terms of which the wave impedance and the wave numberbare
n=Zo-1) wus ko (1+)/8 (2.2.8)

1
If o > we, inequality (2.2.6) can be written as

ag : .
('5*—2—&'%— )l/zkp >>.1 » (2.2.9)
4] 0 :

which in turn reduces to the inequality (2.2.5) if the conduction

current dominates. On the other hand, if the displacement current
dominates the inequality (2.2.6) represents an additional restriction
which is stronger than (2.2.5). It may be pointed out here that due
to restriction (2.2.6), lossless objects such as dielectrié slabs,
cylinders and spheres have been shown to be untreatable by the imped-
ance boundary condition, regardless of dimensions (Leontovich[66 ]),
i.e. for a body to be treated by the impedance boundary condition its
surface impedance must be complex and condition & << p must be

strictly satisfied.

As Mitzner [ 82]‘has pointed out, a modification to treat smaller
radii of curvature is implicit in Rytov [103] and is given eXplicitly
(but with an error of a factof of 2, which has been corrected by
Mitzﬁer) by Léontovich {66 ]. The corrected form of the boundary

condition is

K, = (1-p)nK_ . Ky = -(HpIK (2.2.10)
u v v u

for homogeneous conductors. Here the parameter p is defined by



b= g (koK) = %(l+i)6(|<v—|<u) | (2.2.11)

and u and v are principal curvature coordinates so oriented that

e, x & =1 o (2.2.12)

-and Ky and Kv are principal curvatures defined positive when

a pointsvoutwards from the body.

Mitzner [ 821, fofmulates the scatterihg problem in terms of two
coupled integral equations relating the effective electric and mag-
netic surface currents Ee and_gm. Each of the two equations involves
the constitutive parameters of only one medium and is éspecially suited
to the case of a high conductivity scatterer. Mitzner's formulation

is quite general,and under increasingly restrictive assumptions,can
lead first to an explicit expression for gm in terms of Ke’ then a
curvature dependent boundary condition relating the two currents, and

finally the usual Leontovich boundary condition.

Senior [106 ] shows that for the case of statistically uniformly in-
homogeneous surfaces whose refractive index N = —* gatisfies the

0
restriction (2.2.4) and an additional restriction

‘%ﬁ vnl << 1 | (2.2.13)

the impedance boundary condition of eq. (2.2.1) involves averaged

values of fields and the surface impedance. It should be noted that

R T
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.the average fields are detefmined by the average value of N and not
by the average value of € or o. In (2.2.13) Vn represents spatial
Qariation of n.
The impedance boundary condition may also be derived for'statisticelly
rough surfaces, in which case it can be replaced by a generalized im-
pedance condition applied at the neighboring mean surface [107]. The sur-
‘face impedance is a tensor function of the direction at which the
field is incident as well as the statistical properties of the irregu-
larities, but simplifies in certain particular cases. Since the Taylor
series about the mean surface is used, it is clear that the expansion
will oely be valid if the behavior of the field at the actual surface
differs only slightly from the behavior on the mean surface. There-
foreylarge gradients or abrupt changes in gradients cannot be allowed
since such perturbations may produce significant changes in the field

in their vicinity [18].

Weston has also generalized the concept of impedance boundary conditions
to the consideration of scattering from complex shapes [133,138], He has
postulated two theorems concerning the class of surfaces whieh'are
invariant under 90° rotation about some axis of the body. The practi-
cal aspects of designing absorber layers are also considered in his
paper. It should be noted that the admissible case of a purely real
surface impedance which is not zero or infinity, can be encountered

for multiple layer coated perfectly conducting scatterers [133, 126 ]
and under certain conditioﬁs for statistically rough perfectly conduct-

ing scatterers [107].




2.3 FORMULATION OF A SET OF CHARACTERISTIC EQUATIONS

Since the aim of this study is to obtain an inverse set of‘boundary
conditions, the a priori knowledge of the surface locus S = S(x) or
its unit local normal fi = ﬁ(;),or_its local impedance ﬁ = n(x) cannot
be assumed. Therefore, to resolve the two unknowns S(x) and 1N .in
the impedance boundary condition ( IMBC),additional formulations .of

IMBC are required which, however, must contain. identical information

so that the surface locus S(r) and the impedance n(r) can be found

from the knowledge of total electric and magnetic fields.

The Leontovich or impedance boundary condition can be written as
E- (8*B)di= ZAxH (2.3.1)

0

in which all the quantities involved have been defined in Section 2.2 .

The first additional relation is found by applying a vector product

operation of A into (2.3.1) yielding

H- (b*H)A = -gyoa x E (2.3.2)

Thus (2.3.2) corresponds to (2.3.1) under the transformation E + H ,

Z H -~ -YOE and N > & where & = 1/n denotes the relative averaged
0 =l
local admittance. Senior [108] has shown the affinities of this trans-
formation with Babinet's principle and has proved the invariance of

- this transformation attributing 1n to the material constituents of

the body.
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.In addition to (2.3.1) and (2.3.2), its conjugated formulations are

required and introduced [136] as

* * * *

E - (A“E)fi = n Zoﬁ x H (2.3.3)
% x_ X . *
H - (@*H)i=-&§YAxE : ' (2.3.4)

The validity of statements (2.3.3) and (2.3.4) must strictly. assume
that all implied field quantities E'and H , as well as the relative
local surface impedance 1 = n(r) are analytical functions,and

1= ﬁ(;) is piecewise continuous, satisfying the sét of linear eqgs.
(2.3.1) and (2.3.2) which in tufn satisfy Maxwell's equations. In-
essence the conjugation of (2.3.1) and (2.3.2) implies the reversal
of the reactive character of all implied electromagnetic quantities;

thus the pair (2.3.1) and (2.3.2) bears similar affinities as does the

pair (2.3.3) and (2.3.4), for a surface of reversed reactive character.

Applying scalar and vector product operations to (2.3.1) and (2.3.4)
on one another a complex set of interdependent scalar and vector

equations results [136,23] which are tabulated in Appendix A,1l.

2.4 THE ORTHOGONAL VECTOR TRIPLET JQ;_E_AND‘Q

Employing properties of the derived set of scalar and vector equations

as tabulated in Appendix A.1l, the following three orthogonal vectors

(shown in Fig. 2,1) can be defined [136,23].
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FIG. 2.1. Orthogonal Vector Triplet A, B, D and
Additional Vectors E1, Eq.



A4 = 0 (2.4.1)
4B = 0 (2.4.2)
B=1xA (2.4.3)
A=3Bx1f (2.4.4)

Thus it follows directly that

A'A = (Bxf)+ (Bxf) = BeB-(A°B)? = B+B = (AxA)-B = fi- (AxB) = 4D
' (2.4.5)

and

A*B = (fixB)*B = nN{(BxB) = 0 (2.4.6)

From inspection of (2.4.1) to (2.4.6) it follows that the two purely
imaginary vector quantities A and B . are perpendicular to one another
and taﬁgent to the local scattering surface. Therefore its cross
product D =_éAX_§7a purely negative real vector quantity, must be

directed along the local outward normal @ = A(r) of the local

scattering surface S(r), where

o

= A xB = [fi-(&xB)]A = (A*A)A = (B°B)A (2.4.7)

Therefore, the local outward surface normal is defined as

AxB

Ax X
- (AxB) ~ Ar

(2.4.8)

~
n =

Iw (3>

I> Iw
|w| |

- These striking interrelations between A, B and D are.formulated
in the following as Theorem 1, 2 and 3, [136,23].
Theorem 1 - 1If the electromagnetic behavior in the vicinity of a

scatterer satisfies the Leontovich or scalar impedance boundary condition

@

) 4'\



E- BB)A =

=8>
™
jm

(2.4.9)

where E = g& + gs and H Zo(ﬁi + ES) then the following purely

reactive vector quantities

A

% % % :
ExE -nn HxH ' (2.4.10)

* * * '
B=n(E xH) - n (ExH ) o (2.4.11)

are orthogonal and are in the plane of the scatterer, and its vector

product, a purely real vector quantity

D = AxB = [f*(AxB)]f = (A+A)A = (B+B)A (2.4.12)

is directed along the outward local normal of the scatterer which is

given by
AxB  AxB |
a =§§=_—1§'_13_ (2.4.13)
Thus the three vector quantities
A = BxA B = fixA D = AxB = [fi* (AxB)]A (2.4.14)

constitute a right-handed orthogonal vector triplet with identical

magnitude

A*A = B*B = fi*D (2.4.15)

Theorem 2 - 1If the electromagnetic behavior in the vicinity of a
scatterer satisfies the Leontovich or impedance boundary condition,

then the following two independent scalar equations

* %* * * * X K K, Kk %
A-B = [(E-E)-nmn (H-H)I[nE -BEH)I-NEDEE )N *H H)I]

-n*(E*'E*>[(§'§)—n2 (H*H)] = 0 (2.4.16)



*

A*A-B'B = [EE)-n?@BDI[E E)n"2@ 1) 1-[@E)-nm" @r® 12

+InE B+ @ 1) 12-4m” @) @ 1) < 0 (2.4.17)

can be employed to specify the surface locus and the modulus and‘phase
of the complex scdlar impedance 1 = In[exp jP. The local surface
fi can be recovered from

2(AxB)
" T EABE T

2[(BxE )-mn" (HxH )] x [n(E x@)-n" (ExH) ]

(L@ B @B I[E E )+ 2@ H) - [ @ E )+ @E) 2-[nE B)-n (&5 1%)

(2.4.18)

It is to be noted that if both the surface locus S(x) and the complex
impedance n = Inlexp(jw) are a priori unknown, an additional independ-
ent characteristic equation would be required to uniquely determine

the shape and the material surfaée properties of the scatterer in
question._ Such a third independent characteristic equation was, how-
ever, not found. Therefore,the degeneracy of the vectors A and B

in the back scattering direction is exploited.

2.5 THE DEGENERATE BACKSCATTERING CASE

Although Theorems 1 and 2 are derived from the Leontovich boundary
condition, and should hold in general, the properties of the basic
vector quéntities A and B must be further analysed for the case

in which the incident wave is locally normal to a smooth imperfectly




conducting surface. Since the local region of a smooth écatterer may
be considered to be a section of a planar surface of homogeneous sur-
face impedance, the.analysis of the degenerate properties of A and
B 1is best facilitated by considering the case of normal plane wave
incidence on an infinite planar and semi-transparent bounding surface.
In this case, by Fresnel's laws of reflection, the reflected electric
and magnetic field quantities must be along the same direction as the
incident electric and magnetic field quantities, respectively. There-
fore the total electric and total magnetic field vectors in the back-
scattering direction must be perpendicular to one another, i.e.

EH = 0

' %
everywhere along the backscattering direction. Furthermore E xH and
* .
ExH in B are along the same direction and the modulus of their
absolute values must be‘identical; i.e.
* * %
B = n(Ex)n ExH = 0

in the backscattering direction, but since A*A-B

*B =0, we have
* % % '
A= (EXE )-nn (HxH ) = 0
in the backscattering direction.
Theorem 8 - 1If the electromagnetic behavior in the vicinity of a
smooth, piecewise continuous scatterer satisfies the Leontovich or
scalar impedance boundary conditions then the following three independ-

ent characteristic equations

E’E_'= 0 : (2.4.19)
% % &%

B=n(E xH)-n (ExH ) = 0 (2.4.20) .
* * %

A= (BxE )-nn (HxH ) = 0 (2.4.21)




are satisfied everywhere along the radiant vector in the Backrscattering
direction. ‘In this particular degenerate case, i.e. for normal incidence
on a locally planar scattering surface, the properties of Theorems 1 and
2- cannot be employed to recover the proper surface locus So(g) and the

agssociated relative surface impedance.

It should be noted that the degeneracy condition satisfies the tangent-
iality conditions fi « A= 0 and i + B =0 as 0 is synonymous with the

unit vector in backscattering direction.

Therefore, for points lying on the proper surface SO(E)and in the neigh-
borhood of the specular point for which the incident wave is normal to
the local surface, the properties of Theorems 1 and 2 hold uniquely,
whereas thé degenerate condition of Theorem 3 should present a reason-—
able first order approximation. Therefore it should be possible to
recover the proper surface locus So(z) "as well as the complex éur—
face impedance for smooth and closed scatterers whose surface impedance
is homogeneous i.e. n(r) = n = const., by employing the three theorems

simultaneously as is shown in Sections (3.4).

2.6 INTERPRETATION OF ORTHOGONAL-VECTORS A and B

The exact physical interpretation and the reason for the orthogonality
of the vectors A and B are not yet clear. However, in a recent pub-
lication Musha [88] shows that the terms ExE* and HxH* represent.

torque density caused by the electric and the magnetic fields, respec-




tively. Vector B is the difference of a term proportional to the -
poynting's vector and its complex conjugate and is, therefore, propor-

tional to the reactive energy in an electromagnetic wave.

The plots of A and B over the surface of a sphere of electrical
radius ka = 5.0 and surface impedance n = 0.5 are presented in
Figs. 2.2a and 2.2b. The directions of the vectors were computed at
an interval of 5° in both 6 - and ¢ - direétions. The orthogonality
of the two vectors is evident from the plots. In the back-scattering
directipn both vectors are identically zero and they exhibit singular

nature near the nodal lines.
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chapter three

FORMULATION OF A SET OF INVERSE SCATTERING BOUNDARY CONDITIONS

3.1 INTRODUCTION

In applying the concept of inverse scattering boundary conditions, it

is assumed that the expressions for the total electric and magnetic

rields in the viecinity of the surface of a scattering body can be re-
covered from the measured far field data, as is analysed in Weston and .
Boerner [136] and in Boerner and Vandenberghe [25 ]. Thus, given the
expressions for the total fields which can be computed in the vicinity

of the surface of a scattering body, the next step is to employ techniques
which will locatevthe surface of the body and will enable one to determine

its associated averaged material surface properties. Since the electro-

magnetic fields can be continued into the regions inside the Wilcox

circle/sphere by analytic continuation methods, the entire profile of

.convex or concave bodies can be recovered.

In establishing the required sets of inverse boundary conditions;it

was found convenient to distinguish between the perfectly electric,
perfectly magnetic and the imperfectly conducting cases. lThis order of
presentarion facilitates linking known results with the new concepts
introduced. Furthermore, such a scheme wes found necessary since for
the degenerate perfectly conducting cases adeitional boundary conditions
are being introduced which, though implicitly interlaced, dQ not hold

in the imperfectly conducting case.




Obviously>the simplest case to start with is that of the perfectly con~-
ducting bodies, for which only the shape and size are to be recovered.
Therefore, in this chapter we first list the inverse boundary conditions
for perfectly conductingcases and discusé the questions of uniqueness

of the recovered profile. The general inverse boundary conditions are
discussed in detail, iﬁ Section 3.4 and it is shown that the inverse
boundary conditions of Section 3.2 can be derived from the general case
by letting n go to zero for aperfect electric conductor and n go to in-
finity for a perfect magnetic conductor. The éxpressions for the mag-

nitude and phase of the surface impedance are derived in section 3.4.

3.2 INVERSE BOUNDARY CONDITIONS FOR PERFECTLY CONDUCTING BODIES

The inverse boundary conditibns for this special case can easily be
derived from the direct boundary conditions whichyin simple words, state
that the tangential component of the electric field and the normal
component of the magnetic field vanish afuthe surface of an electrically
perfectly conducting body. For a magnetically perfectly conducting

body E and H interchange roles. Mathemafically the above two conditioné

can be stated as i x E=0 and A * H = 0.

An obvioﬁs consequence of these unique direct boundary conditions is
fhat fi x_g* = 0 as well as fi -_E* = 0. Therefore necessary and
sufficient conditions for a point to lie on fhe surface of a perfectly
conduct%ng body are that at that point the total electric (E ;-Eitgs)

and magnetic H = Z (H,+H ) fields must satisfy
- = 0 =i =s -

S,

i >




(e

Vool

E-H=0 necessary and sufficient (3.2.1)
or

E *H =0  rnecessary and sufficient (3.2.2)

Exceptions of-these conditions are the cases of local normal incidence
on any scatterer, or normél plane wave incidence on a cylindrical struc-
ture for either purely parallel or normal éolarization, in which case

E * H. vanishes identically. Another inverse condition, derived first

- by Weston [139] results from the fact that fi x_gl= 0 and 1 x Ef = 0.
Therefore, ExE*=0 holdson the surface of a perfect conductor. Physically

this condition means that for the case of a perfectly conducting body, the

E field has real direction.

Another approximate but important condition results from the physical
optics éurrent approximation which may be stated as Lgil - |§%| = 0.
It must be hotea that this condition though unique, only yields an
approximate surface which approaches smooth, convex portions of the
correct surface in the limit of high frequency scattering. The bound-
ary condition stating that the tangential component of the electric
field is zero has also been eﬁﬁloyed by some authors for the target
identification of perfectly conducting shapes [ 54,55 ]. All these
boundary_conditions discussed'above are summarized below

E tangential ~ 0 exact, necessary and suffictent .(3.2.3)

{IEII - IESI} = 0 approximate, necessary and suff‘iciant (3.2.4)

E+<H=0 exact, necessary and sufficient (3.2.5)




ExE =0 exact, necessary but not sufficient (3.2.6)

Similar boundary conditions}with H and E interchanged, apply to the

perfectly magnetic conducting case and may be stated as

Etangential = 0 ewxact, necessary and sufficient (3.2.7)
'{lﬁ_il - IE_SH = 0 approximate, necessary and sufficient (3.2.8)
He+*E=20 exact, necessary and sufficient (3.2.9)
% ' ’
H x g_c = 0 exact, necessary but not sufficitent (3.2.10)
3.2.1 QUESTIONS OF UNIQUENESS

Considering the fact that the total field éxpressions are formulated as
the sums Qf the incident and the scattered fields, it is apparent that

an interferénce—like pattern should result whenever a given total field
expression is associated with a conjugated total field expression in

terms of scalar or Vector product operations. Consequently, if a sur-
face So(g) is found which éatisfies (3.2.1) and/or (3.2.2),.it must

be the correct surface. Whereés, even if a surface Sm(g) is found

such that it satisfies one and/or all of the conditions (3.2.1) to (3 2.6),
it would not necessarily be the correct surface So(;), since these

conditions are not unique and not independent.

Considei the scattered field due to a smooth, perfectly conducting,

convex surface S, and assume that analytic expressions for both the
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total electric and magnetic fields are known everywhere exterior to

the equivalent source region which is enclosed by S. 1In seeking the
surféce S by looking for the surface on which the total electric and
magnetic fields obey the required boundary conditions given in (3.2.1)
to (3.2.6), it could be possible that more than one eligible surface
may be found for a particular wave number k. Therefore, assume that
two perfectly conducting surfaces SO and Sl, which surround the equi—‘
Valen£ source region and are taken to be smooth, are found from any one
of the above stated inverse conditions. Then, in the volume V between
the two surfaces, within which the medium is assumed to Be linear,
homogeneous, isotropic and lossless, the total electric field satisfies

the source free wave equation [137]

(V> +k*) E=0 (3.2.11)

and/or
% *

(2 +K2)E =0 (3.2.12)
together with the equations

VeE=0 (3.2.13)

. - o |
V«E =20 (3.2.14)

Similarly, the total magnetic. field satisfies the source free wave

equations ‘ '
(V2 +k?) H=10 | (3.2.15)

and/or

V2 +K2) gl_* =0 (3.2.16)

together with the equations




VeH=0 ’ (3.2.17)
or

v e H = 0 . (3.2.18)

However, solutions of these equations in the simply connected cavity

V- such that

B>
b
=
It
o

and/or ixE 0 (3.2.19)

and/or

=)
fa
1
o]

and/or Aa+«H =0 (3.2.20)

on the bounding surfaces, S0 and S1 » exist only for a discrete

set of eigenvalues. Thus, if k varies continuously, the shape of S1
must change in order to satisfy the boundary conditions since, by def-
inition, the scattering surface S0 is independent of the wavelength

of the incident field. The requirement that SO remains unchanged as
‘the frequency is varied cqntinuously, therefore; allows determination

of the scattering surface uniquely, since the geometry of the additional
surfaces depends on‘the frequency. Thus one method of discriminating
the proper surface 1ocusAfrom the family of pseudo loci is to employ

at least two frequencies. It is readily observed that the inverse con-

* * * x
ditions ExE =0, E - H=0, E+«H =0, and HxH =0 are

dependent. on one anothe;,i.e. the resulting discrete sets of eigen-

frequencies for all of these four conditions must be identical. On the
' * *
contrary, the inverse conditions E + H=0 and E « H =0 are

unique, since if there could exist a second surface § on which
. 1

*
fAxE=0 and i+ H=0 or ixE =0 and f + H = 0, respectively,




the surface S1 must be an existing, perfectly conducting surface
because the two unique direct boundary conditions 1@ x E=0 and
fi * H=20, or ‘their cénjugated forms , aré being satisfied
simultaneously. Therefore, the conditions E*H=0 and E* = H* = 0
are uniqug and will yield only one zero which defines the proper surface
locus So. The obvious cases for which these conditions are violated

are those for which E and H are always perpendicular, for example,

in the case of local normal incidence and for normal plane wave incidence
on cylindrical structures for either parailel or normal polarization,
Although the inverse conditions E X_E* =0 |, .E* | =.0 s E '_E% = 0
and H X.E* = 0 are necessary but not sufficient conditions and, further-
more, depend on one another, it should still be possible to discriminate
the proper surface locus of é closed and smooth scatterer from the
'interior caustic generated' and the ‘'exterior' pseudo loci, since these
Wpseudo loci are not closed. The application of the boundary copditions

to the total fields results in interferenée like patterns. Therefore,

no pseudo loci can exist in the shadow regicn of the scatterer and the
generated pseudoc laci are opeh'surfaces. In this sense,the inverse boundary

condition (3.2.6) is not locally but globally sufficient when the

scattering body is closed and smoocth.

The question of uniqueness for perfectly conducting bodies has beén
discussed in more detail by Weston in [134],where he suggests the use of a
different incident wave but of the same frequency to eliminate the pseudo

loci. He eliminates those surfaces which do not enclose (or are not




enclosed by) the proper surface S by using the fact that in this
0

case they would not contain any singularities of the em field. In order
to determine the set of measurements required to eliminate pseudo locus

S1 as a candidate for the surface of the obstacle, he considers the

properties of eigenfunctions given by

E(y) = 2 f M % V$ do_ (3.2.21)

s

in detail. Here ¢ and K are defined by the following relations

.-k ) .
¢=2‘%§—R—) R = |x-y] (3.2.22)

where y is any point in volume V enclesed by the surface and x is

the variable of integration over the surfaces $ =S + S and
0 1

Ax @ -HE) (3.2.23)

_'I:l—z

Do

A . ; . i - +
where 1 is the unit outward normal to the surfaces,and H and H
are the respective values of magnetic field on the interior.and exterior

of the surfaces.

The necessary and sufficient conditions for E(y) to represent the

modes is that } must satisfy the following integral equations

n+ f Ady) x (U x V¢) dox =0 vy € S0 (3.2.24)
s

T i) x Wx V) do =0 yes (3.2.25)
. S

There is only a finite number N of independent eigenfunctions (Em,

j%n) [155]. Weston also argues that an upper-bound N for the pseudo




surfaces can be obtained and he proves that only a finite set of
measurements (in practice only a few) at one frequency but different

incidence will eliminate the pseudo loci.

3.3 THE IMPERFECTLY CONDUCTING CASE n # 0 or

Having discussed the inverse boundary conditions for the idealized
situation of electrically perfectly conducting bodies, we now attempt
the derivation of these cohditions for the more practical case of im-
perfectly conducting shapes. TFirst of all, the fact must be reconsider-
ed that the Leontovich condition which, though not entirely unique,

may be considered most practical for treating the scattering problems
of electromagnetic waves by imperfectly conducting bodies of regulér
and smooth shape. Obviously; the physical importance of this condition
has not been fully exhausted and, as stated in Theorem 1, it is wvital
"to note that two purely reactive vector quanitiies A and B exist which
lie in the local plane of the scattering bbdy (3 *A=1+B=0), are

orthogonal (A * B = 0) and are of equal magnitude (A * A= B * B).

These basic properties are now exploited to establish novel inverse

boundary conditions.

In contrast'to the perfectly conducting case for whiéh only the proper
surface locus is to be determined; for the imperfectly conducting casé,
in addition, both modulus and phase of tﬁe éveraged surface_impedance
n = |n|exp jy must be recovered. However since modulus and phase of

n are involved in all the independent relations derived in Section 2.4

?




those must be‘brespecified"in a first step and then the proper surface
locus muét be discriminated re-employing the expressions of the ap-
propriate éomplex local surface impedance. Furthermore,it is logical
to treat three different cases for which it is assumed that (in 40
or <« known and S(r) is to be determined, (ii) n = ]nf and S(r) are
to be determined and (iii)’n(y)and S(x) afe to be determined from the
expressions of the total electric and magnetic fields given in the
vicinity of the bounding surface. An additional case in which the
shape of the body is known but its surface impedance and the eleétrical

size is to be determined is also considered.

3.4.1 Nn#0 or ® KNOWN AND S(x) IS TO-BE DETERMINED

Assuming that the relative surface impedance is known ¢ priori or can

be recovered by other means, as e.g. described in Weston, Bowman and

Ar [139], and that the total electric and magnetic fields can be com-

puted idin the vicinity of the scattering gufface, then the two independ-
ent conditions A.B=20 éﬁd A ;_é = B &« B of Theorem 2 caﬁ be
employed to uniqueiy determine the proper surface locus S(r). Any

one of these conditions, by itself, is necessary but not Locally sufficient;

producing in addition to the proper surface locus an infinity of pseudo

loci. However, since

AB = [EE)-m" @5 1meE"n + N (EE 1nEm) [(E5EY)

_n*z@"-g")]-n*@*-_ﬂ_*)[@@-nz@ﬂ?] =0 GuD




e

B = [EB)-n?@BI[EE) 0™ @ E) [ - @’ 12
% x * 2 % % * _
+ ME *B)+ n(E*H )1*-4nn E-H)(E *H) =0 (3.4.2)

are independent conditions, pnly the resulting proper surface loci
will be identical, whereas the independent sets of additional loci

do not coincide. Therefore, if 1 is given, the proper surface
locus can bevdetermined from the total field expressions given in the

vicinity of the bounding surface for one single frequency only.

For the case in which 1 = 0, the second characteristic equation

(3.4.2) reduces to

* % k% *_,
(EXE )+ (ExE ) = (E-E)(E °E )-(E*E)* =0 n=20 (3.4.2a)
and similarly for & = 1/n = 0 the same equation becomes

* * x % *
(HxH )-(HxH ) = E-H@EE) - @EHE)* =0 &

1/n =0 (3.4.2b)

- In both of these special cases, it is not possible to determine the

outward local normal from (3.4.2).

3.4.1a PROOF OF UNIQUENESS (IMPERFECTLY CONDUCTING CASES)

Consider the scattered field dué to a smooth surface S(r) on which
the Leontovich boundary condition is satisfied and the relative im-
pedance TN is known. Let usvassume that analytic expressions for
.the total field E and H are known everywhere exterior ﬁo the equivalent

source region which resides in S(x). In seeking the surface SQE) by



looking for the surface on which either A*B =0 or AcA = E:E,‘it
is possible that more than one eligible surface may be found for a

particular wavenumber k.

Let us assume, therefore, that two surfaces % (r) and S‘(E)‘have been
found on which eithér A*B =0 or ﬂéfé = B*B. Both these surfaces
vsurround the equiValent source region and are taken to be smooth.

In the volume V between the two surfaces the total electric and_

magnetic fields satisfy the source-free wave equations
(V4+k?)E = 0 (V?4+k®)H = 0 (3.4.3)
together with the equations

VeE = 0 VeH = 0 (3.4.4)

However, solutions of these equations in the simply connected cavity
"V such that

E- (A*B)i=ni x H - (3.4.5)

on-the:béunding surfaces S&(E) and Sl(z) exist only for a discrete
. set of real or comblex eigen?frequencies depending on whether 1 is
real or complex, respectively. Thus, if k wvaries continuously, only
the shape Sl(g) must change in order to satisfy the boundary condition

since, by definitionj S (r) is independent of wavelength.
0= .

The requirement that S, () remain unchanged as the frequency is'varied.

coﬁtinuously7therefore,allows determination of'the scattering surface

uniquely._
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If n is known, the proper surface locus can be discriminated from
the additional sets of pseudo-loci by computing the two independent
characteristic equations (3.4.1) and (3.4.2) along fadiant vectors

for various aspect angles. Since these equations represent independent
properties of the vectors A and B,and SO(E) in both cases remains
.constant, the additional pseudo loci can easily be discriminated be-
cause, they do not overlap for the two conditions. Furthermore, since
the total field expressions are being defined as the vector sums of

the incident and the scattered fields, plots of the orthogonality'and
the normality conditions display interference—like patterng, Therefore,
the psuedo loci cannot be closed in the shadow region of the object
while the locus representing the finite, closed and smooth scatterer

is closed. This additional property leads to unique determination of
the propertsurface locus by employing either the orﬁhogonality or the
normality cbndition at one and the same operating frequency, assuming
that both the electric as well as magnetic near field expressions are

given over the entire unit sphere of directionms. Therefore, this

property makes each of the ZocaZZy insufficient orthogonality and

normality conditions globally sufficient.

3.4.2 n_ REAL OR IMAGINARY AND S (x) ARE TO BE DETERMINED
0

For the case in which n = In| is not known a priori, the two independ-
ent characteristic equations (3.4.1) and (3.4.2) are first employed to ‘
determine the modulus of the relative surface impedance n. For

n= ln[ the orthogonality condition A *B = 0 simplifies to
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% 5 % % | %
AB = |n|[ExE)-|n|?ExH )] [E xW)-E=xH )] =0 (3.4.6)
and therefore the square modulus becomes

(ExE")+ [ (& xH)- (Ext1) ] |
In|? = : - ~ (3.4.7)
Y (ExE) - [(B xH)- (BxH )]

Similarly, the normality condition A*A-B*B = 0 can be simplified,

resulting in a quadratic equation for the square modulus,
" *|, o % * * *
In|*|Ht” | 2-2{n | *{[ (ExE") * (HxH )~ (B xH) * (ExHl ) ]
+ 5 [Ea| %+ |m |21} + |ExE"|? = 0 (3.4.8)

and therefore,another two-fold solution for the square modulus is

found, where

{(EXE*)-(HXH*)-(E*XH)'(EXH*)+ 1 E*xg 24| Ext |21}
2 = e T e T atis —=
Inll 2 * * -

’ (HxH )~ (HxH ) ..

+ L (I (ExE") () - (B M) (ExH ) ]

C(mxE) e (Hxt)

+ 3 UlE"a ]+ s | 2102 | Be |2 |2} (3.4.9)

Since the orthogonality (3.4.1) and the normality (3.4.2) conditions
are independent of each other, it should be possible to discriminate

the proper value of the surface impedance by simultaneous computation



Hed

of (3.4.7) and (3.4.9). TFor a point lying on the surface, only one

of the solutions of (3.4.9) provides the proper value of [n|2 which‘
must be identical to that obtained,vat that point from the single value
provided by (3.4.7). The value of no calculated from (3.4.7) at

each point along a radiant vector is substituted into.equations (3.4.1)
and (3.4.2) to caleulate the orthogonality'and the normality conditions.
at thgse points. The point at which equations (3.4.1) and (3.4.2)

have a coincident minimum,in addition to the values of one of the roots
of (3.4.9) being identical with the. root of (3.4.7),is the proper point
on the surface. Another point for which the above two conditions aré
satisfied simultaneously cannot exist because (3.4.1) and (3.4,2)

are independent relations.. Furthermore, the resulting values of the
sqﬁare modulus must vary continuously and uniformly sihce the expressions
for the total field vectors FE and H are assumed to be analytic. Thus
both the modulus Inl and the point on the proper surface can be direct-
bly and uniquely specified from simultaneous computation of (3.4.7),
(3.4.9), (3.4.1) and (3.4.2). For the purpose of increasing the res-
olution, the method outlined in (i) may be repeated usihg thevcdrrect
value of the surfaée impedancé'calculated‘above. It is to be noted
that for the case in which n = 1 exp jY, both Y and So(E) can

be uniquely determined by applyipg a procedure identical to that out-

lined above.

3.4.3 - n = [n| exp j¥ and S (r) ARE TO BE DETERMINED.
] EL

For this general case, in which neither the modulus nor the phase of.

n =n{(r,w) are assumed to be known a priori , the two necessary but not
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sufficient (though independent) conditions A°B = Q and A<A =_§{§

must again provide all the required information, since no additional
unique condition has been found in Section 2.4 , However, if it is
known that n 1is homogeneous, the degeneraéy condition can be employ-.
ed in the neighborhood of the back-scattering direction to recover the
correct value of the surface impedance n..

Defining _Ezg* = ja, _Exg* = jb, _E*xﬂ = £&+jd and n = lnl(cosw+jsinw),

the basic vector quantities A and B become

A=jla- [n|?b] (3.4.10)

It

B=2[n| j [c siny + d cosy] (3.4.11)

and from A*B = 0 it follows that

. ae

2 _ =
lnl bec siny + bed cosy (3.4.12)
and similarly AcA - B*B = 0 becomes -

'éfélenlzéfhfln'ubf§7= 4|nJ2[gfgsin2w+2gfgsinwcos¢+dfdcos2w] (3.4.13)

Substituting (3.4.12) into (3.4.13) results in a fourth order equation

in tan ‘
e tan"yte tan e tan2w+eqtaml)+e5 =0 (3.4.14)
1 2 3

where the coefficients e,. are given in Appendix A.2.

From equation (3.4.14), it follows that, in general, a four-fold




solution for the phase ¥ of n results, and with (3.4.12) we obtain a
four-fold solution for n = ln!exp(jw). But only oné of these four
resuiting roots can be the correct value of n. It is to be noted

that this four-fold solution was to be expected since the four complement-
ry sets of tﬁe Leontovich equation had been employed to derive the

unique relationships summarized in Theorem 1 and 2. In order to dis-
‘criminate the proper value of 1 uniquely, at least another independ- _
‘ent bésic vector would be required so that addifional iﬁdependent and
necessary. conditions coﬁld be obtained. Therefore, for a general case,
it is not yet possible to uniquely determine an arbitrary unknown

n = n(r’w) .

However, if it is known that n = In'exp j¥ 1is homogeneous and that
the scatterer is closed and smooth, the degeneracy conditions as sum-
marized in Theorem 3 can be favorabiy employed to uniquely specify.the
proper surface locus as well as n = ln[exp j¥ from the given éet of
total near field data computed in the vicinity of the scattéring sur-
face. In accordance with Theorem 3, the procedure is to detefmine

0, A=0 and B =20

first the Backscattering point for which E-H
and then to apply the degeneracy condition A = 0 and B~ 0 at neigh-
boring points, in addition to computing Y and ]n] from (3.4.14)
and (3.4.12) respectively. Although the degeneracy condition can be
strictly applied only at the specular point as defined in Theorem 3,
it is a sufficient first—ofder approximation if the curvature of the
scattering surface in the neighborhood of that‘point is varying con-

tinuously and slowly.




Thus to discriminate the proper values of n from the resulting four
roots of (3.4.14) and (3.4.12), modulus and phase of 1 are computed

as first order approximations from A=0, B =0, where

%
, | B
In|? = "@)— (3.4.15)
and %
ExH
exp _‘]21[) ~ (3.4.16)
E xH

Thus, once sufficient confidence in having discriminated the prober
value of N 1is attained by repeated computation of (3.4.14), (3.4.15)
along radiant'vectors for different neighboring aspect angles, the
discriminated proper n is directly substituted into the orthogonality
and normality conditions, A°*B = 0 and A*A = B*B fespectively. Sim—
ultaneous computation along the radiant vectors thus should allow local
: discriminatioﬁ of the exact point on the proper surface So(g) as has

been explained in Subsection 3.4.2 .

If the scatterer is known té be inhomogeneous but nondispersive, double
frequency éhecking techniquesnéy be employed. In this technique,

values of the phase P and the magnitude |n| of the surface impedance
are calculated from equations t3.4.14) and (3.4.12) for two or more
frequencies?v The correct value ofvsurface‘impedance will be found to
be stationary along the radiant vector at the point which lies on the

surface; while all other values will shift with change of frequency.
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It is important to mention here that equations (3.4.15) and (3.4.16)
are the special cases of the more general equations resulting from the

orthogonality of the vectors A, B and i which yields

|
o

fe (B - [n]? B’ =

=
[
1

(3.4.17)

fi (ngxxﬁ_ -nExH ) =0 (3.4.18)

=3
*
| o
I

Therefore, the general expressiomns for !n] and Y are given by
2 LRE :
Inf? = —— (3.4.19)

exp(j2¢y) = ———7pF— (3.4.20)
i+ (E xH)

But, unfortunately the unit normal vector # cannot bé determined
independently of A and B and the equation of the surface of the
scatterer. But, if the shape of the body is known (i.e. @ is known)
and only the unknown 7 of the scatterer and its electrical size are
to be détermined, equations (3.4.19) and (3.4.20) can be successfully

employed.




chapter four

APPLICATION OF INVERSE BOUNDARY CONDITIONS TO TWO-DIMENSIONAL BODIES

4.1 INTRODUCTION

In ordef to demonstrate the vaiidity of Tﬁeérems 1 to 3, as postuléted
in Section 2.4 and>the applicability of the established sets of in-
verse boundary conditions as derived in Sections 3.2 - 3.4, the identi-
fication procedure for two—dimensional mono-body and two-body shapes_
is presented in this Chapter. The model.targets chosen are circular
cylinders of arbitrary radii and afbitrary, though homogeneous, mat-
erial surface properties. This choice was dictated by the fact that
sufficiently accurate information on the diréct scattering solutions

is available fo; cylindricaibscatterers for which the electric and
magnetic fields in the vicinity of the scattering surface satisfy the
Leontovich or scalar impedance boundary condition. Since sufficiently
accurate data for the cylindrical scattefing case with inhomogeneous
relative surface impedance 'n(g) was not found in the literatufe [28],

only the homogeneous cases are considered here.

The formulation of the electrdmagnetic fields, to which the inverse
boundary conditions are applied, is based on the approach of Boerner
et al [ 25] where the far scattered transverse field components are
related to the Fourier coefficients of a properly truncated expansion -
in terms of circular cylindrical wave functions [49 ] via the scattered

field matrix.




The a priori annown expansion coefficients are recovered via a matrix
inversion procedure to a degree of accuracy dictated oniy by measure-
menr of both the amplitude and phase of the bistatic transverse scat-
tered electric field components according to the theorems on optimal
measurement aspect allocation [25 ,26 ]. Since the main objective

of this thesis is to demonstrate the validity of the derived inverse
boundary conditions,the results presented in [25 ] are readily applied
and thus it is assumed that a sufficient number of Fourier coefficients

has been recovered to the required degree of accuracy.

The direct scattering solution for a_single circular cylinder with
arbitrary surface impedance will be employed for obtaining the required
Fourier coefficients. Since the direct scattering solution for two
parallel circular cylinderslwith arbitrary radii and arbitrary sur-
_face impedances is not available in the literature, Olaofe's approach
[92 ] for dielectric cylinders has been extended to this more general
case in Section 4.2.2. 1In order to calcuiate the electromagnetic
fields within the minimum circle enclosing the body, analytic contin-
uation methods havé been employed and a brief review of this technique
is given in Section 4.3. Finally Section 4.4 presents tﬁe numerical

verification of inverse boundary conditions.

4.2.1 THE MONOBODY CIRCULAR CYLINDRICAL CASE

Consider a plane electromagnetic wave, arbitrarily polarized, travelling

along and in the direction of the negative x-axis and normally incident




on a circular cylindrical scatterer of electrical radius ka and
surface impedance n as illustrated ‘in Fig. 4.1. The incident field
can be resolved in two components [41 ], the parallel polarized (E, )
and the normal polarized (E,) components with respect to the cﬁrvi—

linear circular cylindric coordinate surface [102,841, i.e.
E .= (E_Lad) + Ey &) exp (-jkx) (4.2.1)
where the time dependence exp(-jWwt) has been suppressed and k re-

presents the free space wavenumber.

Without presenting elaborate detail, the parallel component of the
incident field and the Z-component of the scattered field at point

1
P (Fig.4.1) can be expressed as

Ey(ri0) = L1 I_(ke)exp(ing) (4.2.2)
n=—0
EZ(r,¢) =E ) D" AnHél)(kr)eXp(jn¢) (4.2.3)
n==00 .
and
Hg(r,¢) = (E/z2) nz_w(—j)anﬂél)(kr)exp(jn¢) (4.2.4)
where Hél)(kr) deéignates the cylindrical Hankel function of the

first kind and of order n and argument kr, and the remaining field

components result from direct application of Maxwell's equations.,

The T™M and the TE Fourier coefficients An and Bn’ respectively,

are functions only of the radius -a and the averaged relative surface
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impedance 1, given for the considered case by

3 (ka)=inJ. (ka)

- - - (4.2.5)
Hél)(ka)—jnHél) (ka)

and
_ n, (ka)-3 J! (ka)

(D (ka)-3 8" (ca)

where Jn(ka) represents the Bessel function of order n and argument
ka and the primed expressions denote differentiation with respect

to kr(=ka).

It should be noted that the superposition of existent TM(An) and
TE(Bn) fields [ 2 ] are strictly required in the cylindrical case of

normal plane wave incidence for the valid applicability of the inverse

boundary conditions derived in Section 3.4 [23].

4.2,2 THE TWO-BODY CIRCULAR CYLINDRICAL CASE

The method of solution presentéd in tﬁis subsection follows that of

van der Hulst [125] and Olaofe [92 ] in which the fields are expressed
in terms of the Debye transvefse-magnetic and electric scalar potential
functions, and well established methods of coordinate origin transforma-

tion [115, 54,147, 78,136] are employed. .

Consider. two infinite, non—overlapping,»pérallel circular cylindric




scatterérs of arbitrary radii a1 and a2, and homogeneous relative
surface impedances nl and n2 illuminated by a mixed—pblarized
plane wave, normally incident at an angle B with respect to the
geodesic of length d > (a1+a2)7 connecting the centers O1 and

02 of the two scatterers, as illustrated in Fig. 4.2. The total
field is represented in terms of two scalar potential functions,

_ _ ., IM _ - o IE
name;y the TM(Einc = EZ = Y~ ) and the TE(Hinc HZ ‘ Y~7) modes

[125], where the potentials of the incident field are given by

b (a0 = ey [ D™ 3 Gapexp(no,) (4.2.7)
and

o (r,0,) = e, 1 0TI G emng) (4.2.8)
where

e, = exp[jkd(2-i)cosB] (4.2.9)

and i = 1 or 2 designates the cylinder of radius a1 or a2 and of

surface impedance 1 or né, respectively.
1

The scattered field potentials UiM and VEE for the TM and TE,components ‘

are respectively given [ 92] by

U, ,0,) = Z_wian(fj)“H§1?(kri)exp<jn¢i) (4.2.10)
and ' v
Vi) = T b ™Y e exp (o) (4.2.11)

=0

where i3 and ibn are the scattering coefficients of cylinder .

i(=1 or 2) in the presence of cylinder i'(=2,1) # i(1,2).
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In order to apply the boundary conditions on cylinder i(=1,2),
the fields of cylinder i'(=2,1) have to represented in the coordinate
system of cylinder i(1,2). Employing Watson's scalar addition theorems
[133] in accordance with the definition of»Fig. 4,2, i.e.
exp (Jn0_ )H(l)(kr )=(-1) {Z H(l)(kd)J (kr Jexp(-320 ) (4.2.12)
=—00 .

and .

eXp(JnG )H<1)(kr )= Z 1% (1)(kd)J (r Jexp (-320,)  (4.2.1)
g="o |

the total field . UEOt outside the ith cylinder for the TM case is

given by
UEOt(ri,¢i)=nZ_m(—j)n{[€iJn(kri)+ianHé1)(kri)]exp(jn¢i)

+ e exp (in8) 2 (-pnz-D+ed-1) (1)(kd)J (krexp(-326)}  (4.2.14)

2:—00

It is now convenient to introduce the fdllowing abbreviation

[o]

s1gh, = Z_w(_j)2(_1)£(2fi)+n(i—1) a,H (i%(kd)exp(JQB) (4.2.15)A
so that (2.2.8) reduces to
00 = ] LD Ted G e 8O (e )
n=~o
i,iA_nJ_n(kri)exp(fjnB) exp(jn¢ij}' (4(2.16)

Application of the scalar impedance boundary condition (2.3.1) onto



-]
~
e

(4.2.16) at r, = a; results in

tot _ _jﬂ —_3 tot
Up  (rs95) = 57 [0 (r59)1] (4.2.17)
so that
2, = A [e, 4" A exp(~inB)] (4.2.18)

where Ai denotes the TM coefficients as defined in equation (4.2.5)
for independent mono-body scattering froﬁ a circular cylinder of radius
a; and surface impedance ni. The corresponding results for thé TE
case can be obtained by following ébsimilar approach. In this case

the total magnetic potential is given by

tot e n Ay
V(90 = nZ_m{(—J) [e,3, Ger)4b H Y (kr )]
i;iB_nJ_n(kri)exp(-jnB)}exp(jp¢i) (4.2.19)

with

b =B [€i+(‘j)ni,iBfnexp(—jnB)] (4.2.20)
and

¥ iR (e-i)tn(i-1) (1) » |
priBem I CHTETTEETE, by (k) exp (3268) (4.2.21)

and B; denotes the TE coefficients as defined in (4.2.6) for in-
dependent mono-body scattering from a circular cylinder of radius a;

and surface impedance ni.
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Equations (4.2.18) and (4.2.20), each of which consists of two coupled
equations, can be solved either by a matrix inversién or by an itera-
tion method where for convenience the latter method has been employed.

It should be noted that the rate of convergence becomes very rapid

as the electrical distance between the axes increases i.e. kd > 4kam where

‘ am denotes the layer of the two radii of the scatterers [92 ].v Further—-

more, observe that for the end-fire (B = 0) case 13 = 13, and
.b_ = _.b , whereas for broad-side illumination .,a = ,,a and
i'm i -n : i'n  i'"-n

b = _,b with 1 i' (=1,2).

o = 1P A (=1,2).

4.3 TWO-DIMENSIONAL ANALYTIC CONTINUATION

In order to determine the shape and the material surface COnsﬁituents
over all surface regions enclosiﬁg the target, near field expréssions
for the tofal fields are required everywhere in.the vicinity of the
target; Since the field expansions of (4.2.15) and (4.2.16) are con-
vergent only outside the minimum circle enclosing the equivalent
sources [ 85,146], the fieid must be continued analyfically. vBy
changing the origin of the coérdinate'system one would obtain an ex—
pansion outside a different-minimum circle. Thus, by repeatedly
'changing.fhe coordinate systém and with simultaneous reformulation

of the associated field expansions, one can obtain convergent expressions
for the near scéttered field everywhere outside the minimum convex
shape énclosing the equivalent sourceé as ‘has been shdwnvin Weston,
Bowman and Ar [140]. This method, further analysed in [136], has;Been

employed by Imbriale and Mittra [ 54] for the profile. characteristics




inveréion of two-dimensional perfectly conducting shapes, using the
fact that the tangential component of the electric field vanishes on
a perfectly conducting body. The scattered field expansion,valid
outside the circle of minimum radius r, enclosing the equivalent
sources, as defined in Fig. 4.3, is

UGr,9) = Ja -1)"8 (kr)exp (jn9) (4.3.1)

=R 00

Note that for r < r, this series representation diverges, so it is
possible to determine the radius r = ra from numerical behavior of
the series for r < r_. With respect to a new circular cylindric
. coordinate system centered at 0' with all three axes parallel to
that of the initial system centered at 0, as shown in Fig. 4.3,

the field can be represented outside the circle of minimum radius

1
a

r as

oo

U(e', ') = ) ar'n(—j)mHIﬁl)(kr')exp(jmc}:')  (4.3.2)

m=—00o

1

The coefficients a ., can be expressed in terms of the a, by the

use of scalar additian theorem [115]

(1) | - (k
| o0 H "’ (kr ) J_(kr')
. Hél)(kr)exp(jn¢)= ) o ) expi(n-m)¢ ? y exp(jm$') for
M=—c Jn—m(kro) n0 Hml (kr' )

(4.3.3)

Substitution of (4.3.3) into (4.3.2) and a change of summation index

results in the following expression for a& {147]

( r >r'
0

.|
r r
0(




Field has been continued |
in the shaded region

Original Codrdinm‘e
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- FI1G.4.3. ANALYTIC CONTINUATION OF THE ELECTRO-
MAGNETIC FIELD USING OUTSIDE EXPANSION



n-m

a; = 7 a_j Jm_n(kro)éxp[j(n-m)¢0] (4.3.4)

1I=~00
where kr (<kr') denotes the electrical translation distance and
0 .

o) designates the transformation angle as defined in Fig.4.3,
0 .

Using the above expansions the field can be continued everywhere in the
vicinity of a smooth convex scatterer [75 -78 1. But for bodies of
arbitrary convex/concave.shape the fields must be expanded in terms

of cylindrical wave functions which are valid within the lérgesf

circle of radius r  which exclﬁdes the body [78 ]. Within this

0

circle defined in Fig. 4.4, the field can be expressed as

o]

Ul (x',0") = ) aé(—j)sz(kr')eXP(j,ng') (4.3.5)

§=—00
where aé , the scatfefing coefficients in the new coordinate system
can be expfessed in terms of the coefficients a associated with
the initial frame, (4.3.1) by using the addition theorem of equation
(4.3.3), notiﬁg that krab > krb. These coéfficients are given? as
is also shown in [_l4n, by |

o
a) = Z—manjn"QHz(ii(krab)exp[j (091 (4.3.6)
The expansions represented by eqﬁations (4.3.1) to (4.3.6) will be
exact if summation is performed over the complete range -» < n < o,
But, in‘practice, one has to truncate the series to a finite number
of terms and the question, at which bound one should truncate thé series

is of paramount importance for numerical éomputation and will be dis-.

cussed in chapter siz.
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4.4 NUMERIC COMPUTATIONAL VERIFICATION (2-DIM.)

In brder to invert the profile of the scattering bodies accurately
and optimally, efficient computational techniques based on maximum
use of recursivé and iterative techniques must be used. All the
programs were written in Fortran IV language, using double precision
arithmetic for special functions and single precision for all other
routines. :The special functions, the expansion coefficients, An and
Bn for the singlg cylindep,and ian ’ ibn_for two'cylinders and the
program for two-dimensional analytic continuation were generated as

subroutines which are called by the main-prdgram when required.

For the purpose of demonstrating the applicability of the various sets
of inverse boundary conditidns efficiently, the numerical verification
has been divided into two parts. The perfectly conducting cases are
treated first to introduce the identification procedure resulting from
the simultaneous application of the relevant inverse boundary conditions
- (3.2.3) to (3.2.10) and numerical methods are introduced for this

case in detail. 'The techniqués so established are then applied to the
imperfectly conducting cases employing the vérious sets of inverse

boundary conditions derived in Subsection 3. 3.

4.4.1a . PERFECTLY CONDUCTING MONOBODY CASE

The total electric and magnetic field expressions in this case are

readily obtained from the definitions of (4.2.2) to (4.2.4). The




seriés representation of these equations are truncated according'to

the criterion developed in chopter six. For the perfectly electric
conducting target of electrical radius ka = 5, selected here, the

order of truncation N of both of TM and TE field expansions eﬁployed
here was chosen to be N = 8, thus lying within the lower bound Nl =

5 and the upper bound N, = 16. The inverse conditions Q1 = Min

{ [ExE*)+ (ExE*)}, Q2 = Minﬂgﬂﬂ} and Q3 = Min{LEinc,_LEscat'}’ resulting
from (3.2.6), (3.2.5) and (3.2.4) respectively are then applied to the
computed fields. The plots of Ql, Q2 and QB'resulting from computation
along the arbitrarily chosen radiant vector defined by ¢ = 22.5° vs.
the radial distance kr are shown in Fig. 4.5a. It is evident from
this figure that the conditions Q2 and Q3 produce only one minimum,
whereas Q1 produces an infinite set'bf pseudo minima in addition to
the highly pronounced minimum specifying the proper point on the

exact surface So(£)° This behavior of these three inverse conditions
proves that Q1 is a necessary but not ZochZy sufficient. condition
but Q2 and Q3 are both necessary and locally sufficient conditions.
The proper minimum of Q1 can be discriminated with the aid of Eondi-
tions Q3 and Qz. It is evidéht from Fig. 4.5althat the cbnditions
Ql.and Q2 specify the exact point on the proper surface locus So(£)
to 'a higher of accuracy as cémpared to the physical optics condition
Q3. This statement is more strongly valid for these portions of the
scattering surface which lie in the umbra region, as hés also been
shown in Weston and Boerner [137] where they demonstrate that for the ‘

low frequency case, the physical optics boundary condition becomes

rather inadequate.
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The various loci resulting from the simultaneous épplication of Ql,

Q2 and Q3 are plotted in Fig. 4.5b demonstrating that Q1 and Q2

specify the proper surface locus to a high degree of accuracy. Further-
more, it should be observed that the additional pseudo loci are not
closed in the umbra region for the closed circular cylindrical shape

- selected here. This reflects the intérfefence behavior of the total
field expressions and thué makes the exact, necessary but not locally
sufficient condition |ExE*| = 0, globally sufficient for those cases

in which the scatterer is of closed sﬁape ["2 1. Therefore, it is
concluded that from the simultaneous application of the three inverse
boundary cqnditions Q1 = Min{{@gg*)-(gxg*)}, Q2= Min{E-H} and Q3-=
Mih{LEincl_LEscatl}’ it should be possible to uniquely and exacfly
recover the proper shape of a closed scatterer, given field data
everywhere in the vicinity and closer neighborhood of a scatterer for
‘only one operating frequency. ﬁowever, it should be noted that for
the valid application of the inverse conditions E*H = 0,and E**H = 0
or E<H* = 0 (which are not being employéd here, since they display.
the same charaéteristics as does the condition ExE* = 0 [ 231) the

incident wave must contain both parallel and normal polarized compon-

ents since otherwise E*H = E%<H = E<H* =0 everywhere [23 ].

4.4, 1b ' PERFECTLY 'CONDUCTING TWO-BODY CASE

In order to show that the inverse boundary conditions applied above,

and also employed in [23 ] to the monobody spherical cases, also hold
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for more complicated smooth and closed shapes, a two-dimensional con-
figuration of two non—overlabping electrically peffectly conducting
circular cylinders as defined in Fig. 4.2, has been selected. The
selection of this configuration results from the fact that it re—
pfesents the curves and contours of a general body and exact direct
scattering solutions for this configuration are available (Subsection
4.2.2 and [92]). The single precision expansion coefficients ;2

and ibn for the two-body configuration of Fig. 4.2 are calculated
according to (4.2.18) and (4.2.20) for n = 0 and great care has
been taken in applying valid order of truncation bounds as is ahalysed
in chapter six. The test cases selected for illustration consist of

two parallel electrically perfectly conducting circular cylinders of

equal electrical radii ka1 = ka2 = 1.0 with their centers separated
by an electrical distance kd = 4.0. Mixed polarized, normal plane
wave incidence at an angle § with respect to the line joining the

centers O1 and.O2 of the two cylinders as shown in Fig.4.2 is assumed.
Sincé the main objective of this work is to verify the validity

of the inverse boundary conditions, rather than to establish a per-
fected computationai discrimination proéedﬁre, a grid of computation-
al rays .passing through the centers of the cylinders was selected over
the entire plane. In order to demonstrate the'interferencé of the
‘individual patterns of the pseudo loci . effectively,
more compu£ational lines have beeﬁ employed in the vicinity of the
line of incidence passing through the center of the configuration.
Howevef, it should be mentioned here that a discrimination procedure

applicable in those practical cases for which no a priori information
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on the nature of the scattering geometry can be assumed, could easily
be established employing the minimax method of Rosenbrock [100}1, as

has also been proposed in [54 ].

Thus, in the presented analysis, the origins of the translated co-
- ordinates have been chosen to lie on each of thesé rays. .The scatter-
ing coefficients for each of the cylinders in the presence of the
other, as given by (4.2.18) and (4.2.20) for' n = 0, are transformed
to the new coordinate system defined in Fig. 4.4 using (4.3.5) and
(4.3.6) fér the inside analytic continuation. Due to the linearity
of the fields, the sums Cn and dn of the translated coefficienﬁs
associated with the two electrically perfectly conducting cylinders,

1 1

a', a
2 0

d 1 \ - 3 il '—
20 an tbn s an for n 0 respegtlvely, p;ov1de the scatter

ing coefficients for the twé—body configuration with respect to the
translated coordinate system; A similar approach was employed to
discriminate points lying on the minimum circle enclosing the two
scatterers where use was made of (4.3.2)Mand (4.3.4) for oﬁtside

analytic continuation.

Figs. 4.6a to 4.6d display the plots of the families of loci result—
ing from the application of the‘inverse boundary condition Q,1 =
» Min{(EgE*)‘(EgE*)} on a selected grid of rays for different. values

of the relative angle of incidence £(90°,75°,45°,0°). It is observed
that the pseudo loci Spn result from the superposition of the'familyA

of loci displayed by individual cylinders in Fig. 4.5b. In the vicinity

of that line of incidence which passes through the center of the con-
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figuraﬁion the pséudo loci are depressed inward and the depression
decreases with decreasing relative angle of incidence R  as would

be éxpected. Similar to the case of the single cylinder, the addition-
al pseudb loci Spn are not clésed in the umbra region, whereas the
exact locus SO(E) is closed, thus confirming the property that

Egg* = 0 dis a globally sufficient condition. Again, as has been

shown in the monobody case, the inverse condition Q1 specifies the
propér surface locus to a high degree of_acéuracy. Therefore, the
approximate, though pecessary and sufficient condition Q3 = Min
{[Einc’_LEs;atI} is not required except that Q2 and Q3 do aid in the
discrimination of the proper surface locus. In Fig. 4.7a the curves
resulting for the three inverse conditions Ql, Q2 and Qs are plotted
along a selected computational line C'~C" for the case of broad—side.
incidence illustrated in Fig. 4.6a whereas in Fig. 4.7b the results

are presented for the endfire case of Fig. 4.6d, thus verifying the

accuracy of the discrimination criteria established above.

.The fact that even the entire configuration of Figs.4.6d and 4.7b

can be identified so aécurately, very strongly proves the soundness

of the introduced inversion technique. Thése conditions have also
been successfully tested for-a variety of combinations of two cylinders

of non-identical radii and for arbitrary relative angle of incidence B.

Since the method of profile inversion of magnetically perfectly con-
ducting shapes follows identical procedures [ 23] no further results

are presented here.
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4.4.2 . IMPERFECTLY CONDUCTING CASES

Similar to the perfectly conducting cases, the test targets chosen
are single circular cylinders of different radii and surface impedances,
and two non-overlapping cylinders of arbitrary radii a1 and az,and
surface imbedances nl and n2 with separatipn distance d between
the centers. Since the numerical formulation of the total field
expressions is identical to that employed for the ‘perfectly cdnducting_
cases e#cept that n # 0 or o, major emphasis will be laid on the
novel conceptual approaches of discriminating the exact surface locus
SO(E) from the infinity of édditioﬁal pseudo loci Spﬁ(g) as well as
of éxtracting the proper impedance value no from the four-fold
solution which pertains to the general case of a priori unknown ﬁ.
It is assumed that a mixed pblarized incident wave is travelling per-
pendicular to the axes of the cylinders at an angle B with respect
to the line joining their centers as defined in Fig. 4.2, For the
‘sake of clarity of presentation the imperfectly conducting case has
been divided into three distinct classes.

i) N # 0 known and S(ﬁ) is to be determined

(ii) n = ]nl and S(r) are to be determined

(iii) N and S(r) are to be determined.

b.4,2a '~ Nn__# 0 KNOWN AND S(x) IS TO BE DETERMINED

In this case it is assumed that n is either known a priori or that
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n  has been recovered by other methods of electromagnetic remote
sensing as e.g. described in [139] The total electric and magnetic
fields to which the orthogonality and normality conditions of (3.4.1)
and (3.4.2)»are to be applied are calculated along a selected grid of
rays using properly truncated series expansions of equations‘(4.2.l4)
and (4.2.19). The scalars y, = Min{éﬂg} and y, = Min{Az—Bz} have
been plotted in Fig. 4.8a along a radiant vector (¢ = 45°) for a single
conductlng cylinder of electrical radius ka = 2.0 and of surface
impedance n = 0.5. A similar plot for two conducting cylindefs of
electrical radii kal = ka2 = l;O, surface impedances nl = nz = 5.0
exp(j45°), electrical separation kd = 3.0 and relative angle of
incidence B = 75°, is presented along the computational line C-C' in
Fig. 4.9a. An examination of these and many other similar plots for
different parameters reveals that only one pair of minima out of the
infinity of minima resulting from y1 and y2 is coincident, and this

| single minimum defines the correct point on thé proper surface locus
SO(E). This property makes both the ortﬁogonality and the normality
coﬁditions necessary but l§Cally insufficient. The descending ﬁarts
of y1 and y2 of tﬁis common minimum always displayed greatest slope
and fhis minimum in:general is much sharper and deeper than the rest
of the pseudo minima. Both cbnditions are seen to be applicable for
all valués of n(# 0, =), be it purely real, purely imaginary or complex.
The infinity of loci Spn and Sqn resulting from the application of
(3.4.1) and (3.4.2) respectively, are plotted in Fig. 4.8b for the

mono-body case and in Fig. 4.9b for the two-body case, on a plane




2 - 3
I - 2 F
o~ I
-1k oL
2 L -y L
A
4 .3 L
5 -4 L
6 L -5 L -
-7 L - L -
-8 L -7 [ | 1 ! l l ! |
.0 ! 2 3 4 5 6 7 8
X

Fig4.8a.Plot of Y and Y2 vs Radiant Vector X for a Cylindrical
of ka=2 and 5 =05/0° along the Ray ¢ = 45°

Target



INCIDENT WAVE

T sn# LOCUS OF MIN { AZ -
?SB# LOCUS OF MIN { A »

! ! ‘b \‘\ \“
| SN 234 Sp2\5p3 X%
Fig.4.8b. Plot of the Loci Sy, and Sp,, Of Successive Minima of

A-B% and A.B for a Cylindrical’ Target of Electrical Radius
- ka= 2 and Surface Impedance 7 =0.5




18 - 36 - mo— Single Root of (7a)
ny T One of the Roots of (7b)
16 - 32 | |
14 b 28 | | ’I
| i
12 = 24 ; o I |
| y L i
CFl e B A I
| ol \ | "‘ ili I’l
& = HE R | i
e (AR
T N NIRRT
BT . 14,\ { n ,!\!; \
VAT Sy Yo g
ore e SN RS TR
N AN/ i L NAL/
dopes
\/ : |
o= S — ‘ 2 1 R E e T o ‘81 5
X

Fig4.8c. Plot of 7y and 7, versus Radiant Vector X along a Ray (¢=45°) for a

Cylindrical Target of ka=2 and n= .5/0°

E—



o)

¢
S

am
v
.
fo

normal to the invariant Z-axis. Inspection of Fig. 4.8b shows that
for the monobody case each of the two conditions generates a series
of‘non—coincident parabolic pseudo loci in addition to the proper
coincident locus SO(E). The plots of Fig. 4.9b confirm the above
observation for the two-body case. The pseudo loci in this case are
the supefposition of the infinite families of discrete loci resulting
for ;he constituent cylinders. It should also be observed that in
both the monobody and two-body cases the pseudo interior caustics and
the exterior pseudo loci are not closed in the shadow region and only
the proper surface locus SO(E) is closed. Therefore, it is eoncluded
that each of the conditions by itself should be sufficient to discriminate
the proper locus of a system éf closed conducting scatterers, given
measurement data for one frequency only. This observation makes the
necessary but locally inSufficient orthogonality and normality condi-
tions necessary and globally sufficient. The simultaneous application
of both conditions should make the proposed inversion techniquevunique

also in those cases for which the given field data are not very accurate.

4.4.2b In| and S (r) ARE TO BE DETERMINED
E

In those cases for which n 'is known to be purely real i.e. n = n*
or purely imaginary (n = -n*), the roots of (3.4.7) and (3.4.9) have
to be calculated along a grid of rays. The values so calculated are
plotted in Fig. 4.8c along the ray ¢ = 45° for the mono-body case
illustrated in Figs. 4.8a and 4.8b. The plots for the two~body .case

are not given because the resulting curves for any individual constituent
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cylinder are alike. 1In Fig. 4.8c, no fepresents the single root of
(3.4.7) and nl is one of the roots of (3.4,9). The plot for the other
root n2 of (3.4.9) has been omitted in Fig. 4.8c since it was found
to differ from no for all points along the computational line con-
sidered. At each point along the ray the calculated value of no is
used in y2 and that of nl in y1 (as defined in (3.4.1) and (3.4.2),
respectively), resulting in plots similar to those given in Figs. 4.8a
and 4.9a. The single common minimum of yl and v, was found to be
identical only at that point for which no = nl, defining the proper
point on the proper loéus' SO(E)} The proposed single frequency dis_
crimination procedure would have to be repeated over a grid of rays
spanning the total cross—sectional plane (Z = const.) if n = n*

(or n = -n*) is inhomogeneous, whereas for the homogeneous case the
discriﬁination procedure presented in Subsection (4.3.5a) can bevused
after sufficient confidence in the accuracy of the recovered n has
been established. Employing propér truncation bounds defined in
éhapter stx, it was found that the accuracy to which 1 = n% and

S (r) can be recovered is better than 99% for all computations'performed.
o 'L

4.4.2c n = |n|lexp(jP) and S (r) ARE TO BE DETERMINED

If both modulus and phase of 1n are g ?riori unknown, then 1 must
be assumed to be either homogeneous or nondispersive. The homogeneity
-requirement is sufficient whenever the scattering geometry defines a
single convex-shaped scatterer so that the degeneraéy cqnditions of

(3.4.15) and (3.4.16) can be applied with (3.4.12) and (3.4.14) for the
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discrimination of Y and ’n,. The degeneracy condition, however,
does not hold for the general multibody case except for end-fire
incidence on an on-line collection of purely convex-shaped scatterers.

Therefore,the double~frequency discrimination method muat be applied

which requires that N to be nondispersive but may be inhomogeneous.

For the case of a single cylinder of electrical radius ka = 2.0 and

n =lconst. = 0.5 the method outlined in Subsection 3.4,3 is applied.
The results so célculated are presented in Table 4.1,in which the single
root wo of (3.4.16) and the four roots WV(V = 1,2,3 and 4) of (3.4.14)
resulting from computation along a ray ¢ = 1.0° i.e. in the immediate
neighborhood of back—scattering direction are tabulated. The correct
value of bhase Y of n is found for that particular value of wo
which is identical to one or more roots wv of (3.4.14), occuring for
the‘presented Case at X = 2.0 with wo = wz = ¢k = 0. The value of

¥ so calculated is substituted into (3.4.12) to obtain In, resulting

in 0.5, as is also shown in Table 4.1,74 guarantee pfoper discrimina~

tion of the point lying on-SO(E), the orthogonality scalar Yl,énd

the nofmality scalar thave been recalculated along the same computa-
tional line. The entries Y;'and‘Y; of Table 4.1 have been calculated
‘ﬁsing the impedance value 'qd ;esulting at each point of computation
along the selected ray while the entries Y1 and Y2 correspond to
computation for which n(x = 2.0) = 0.5 was used for all points

along the ray. To recover the entire surface locus SOQE) from field

data given everywhere for one single frequency only, it must be

assumed that n 1g homogeneous in which case the identification

—————————————e .



TABLE 4,1
Retrieval of § and lnf

for the Single Cylinder of Fig. 4.8a

xkr |y oo | v | v | v | In] 74 Y2x10° v, ¥, %10
1.7 | 28.02 | 26,00 | 29.37 | - - | 0.19 0.029» 10.102 0.195 1.34

1.8 18.45 | - - - - 0.46 {0.068 ~  |0.178 0.082 0.212

1.9 8.93 9.30 | - - | 857 o0.50 |o.019 0.250 0.019 0.011

2.0 0.00 | - 0.00 L 0.00 | 0.50 |0.032x10"7|0.568x%10"5|0.061x10™7|0. 1573107
2.1 |- 7.88 8.24 - - | 7.55 0.47 0.014 0.210 0.016 0.067

2.2 {-14.45 - - - - 0.43 [0.041 0.668 0.055 0.295

2.3 |-19.63 - ] - - - | 0.38 |0.063 0.293 0.107 0.639




procedure reduces to that for a priori known n as was analysed in

Subsection 4.3.5a .

For the general two-body configuration considered, it must be assumed
that N is nondispersive so that the double-frequency checking procedure
can be applied. The‘test configuration chosen consists of two parallel
circular cylinders of ka1 = 2.0, nl = 0.1 exp(j30°) and ka2 = 1.0, |
nz =.0.25 exp(j60°) with the centers an electrical distance kd = 5.0
apart. The incident wave is a mixed polarized plane wave normally A
incident at an angle B = 75° with respect to the line joining the
centers O1 and O2 as shown in Fig.4,10. The four roots of (3.4.14)

for cylinder 1, calculated along the line of centers with translated
origin located at 0' such that k(O'—Ol) = 3.0 and k(O'—Oz) = 2,0,

are presentéd in Table 4,2 fbr two different frequencies f1 = f and

f2 - 1.5f. For the purpose‘of specifying the proper value 1 at

“the point on So(z), a matching pair of values. Y resulting from
-computation at the. two different frequeﬁcies along the chosen computa-
tional line (01—02) were sought first. The procedure was then re-
peated for increaéingly finef’COmputational increments Ay, resulting
in..an averaged value 7 = 30.1° at x/k = 1.0. - Substituting the dis-
-criminated value - into (3L4J2), lnl is calculated along the same
ray 01—02 for bothvfreéuencies. The computed results are presented
~in Table 4.2a where the averaged valﬁe of the magnitude of the sur-
face impedance is Iﬁw= 0.1 at x/k = 1.0. Repeating this recovery

procedure for other adjacent computational lines, it was concluded

that n_ = 0.1 exp(j30.1°). The same procedure was adopted for
1 :




Retrieval of { and ln' Using Double Frequency Technique for Two Cylinder Configuration of Fig. 4.10

TABLE 4.2

. A. Computed Values for Cylinder I
At Frequency f At Frequency 1.5 f

X/k ) V2 V3 Uy in P!, V2! Ys' Yy ' In']

0.7 - - 20.44 7.06 0.74 | 28.73 - - 0.22 0.71
0.8 - - 23.20 0.00 0.70 | 28.26 - - 7.91 0.65
0.9 51.21 65.02 | 34.02 25.07 0.65 | 28.59 - - 11.86 0.64
1.0 - - - 30.22 | 22.65 0.0 - - 30.65 29.99 0.10
1.1 - - 28.54 8.39 0.60 - - 22,02 10.04 0.56
1.2 - - 26.67 | 26.46 0.44 - - 8.83 7.61 0.63
1.3 - - 28.96 | 23.77 0.33 ~- - 7.33 4.11 0.69

B. Computed Values for Cylinder II
At Frequency f - At Frequency 1.5 £

X/k U1 Y2 | Vs Wy [n] Py Ve Vs ' 'l

0.7 - - 39.84 | 30.13 1.28 | 45.74 16.75 - - 1.83
0.8 - - 45.85 | 33.00 | 0.70 - - - -~ 2.40
0.9 52.75 - - 34.27 | 0.35 - - - - 0.72
2.0 59. 46 - - | 33.88 0.85 | 47.46 61.33 - - 0.24
1.1 - - 26.91 | 12.66 0.43 - - 9.82 8.56 0.53
1.2 - - 15.67 | 10.25 0.55 - - 3.39 1.51 0.61
1.3 - - 4.16 | 3.92 - 1.19 1.17 0.64

0.63 -

Suminly
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cylinder 2 and the cofresponding values so computed are presented in
Table 4.2b where n2 has been identified as .ﬁz = 0.5 exp(j60.4°),

the average of the values at x/k = 1.0 for the two different frequencies.
It shoqld be noted, that the double=~frequency discrimination procedure
should be applicable to specify the locai n  and So(g) for all
portions of the scattering qonfiguration Qithin an error of less than -
1% as has been clearly verified by computation for a number of different
two-body configurations. However, if it is known that 1 is homo-
geneous, in addition to being nondispersive, the discriminationvpro—
cedure analysed in Subsection 4;3.53 may readily be applied. The
results for such a case are presented in Fig..10 which corresponds
_to the configuration analysed above. Finally, it should be mentioned
that the values computed were in general found to be very sensitive

to variations in the radial aistance X and, therefore, the computa-
tional incfement AX had to be considerably reduced in the final

search loop of the identification routine.
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chapter five

'APPLICATION OF INVERSE BOUNDARY CONDITIONS TO THREE-DIMENSIONAL BODIES

5.1 INTRODUCTION

In chapter four, the inverse boundary conditions established in

Sections 3.2 and 3.3 were applied to the target identification of

two—dimensional bodies. It was demonstrated that it is possible to

invert perfectly conducting mono-body and two—body-configurations

very accurately. For the case of imperfectly conducting shapes with - :
known surface impedance, each of the conditions waé- found to be suffi-

cient to discriminate the proper locus of a system of closed conduct-

ing scatterers, given measurement data for only one frequency.. If

both the locus SO(E) and the surface impedance N = |n]exp(jy) are

a priori unknown, certain restrictions had to be placed on the nature

of the target. For a smooth convex targetj n has to be either homo;

geneous 6r nondispersive,where the degenéfacy condition may be employed

for the former case and the two frequency technique for the latter.

To invert the general two-body configuration, it must be assumed that
N is nondispersive so that the double~-frequency checking procedure
‘may be applied. 1In ordér to'recover the profile characteristics of

‘those portions of the scatterer which lie within the minimum circle en-

closing the scatterers, it was found necessary to analytically con-

tinue the em fields.



In the present analysis, the application of inverse boundary condifions
to profile characteristics inversion of perfectly and imperfectly -con-
ducting spherical mono~body and two-body écatterers is considered. As
in the two~dimensional case, the choice for three—diﬁensional bodies
was dictated by the fact that sufficientlybaccurate information on the
direct scattering sclutions is awvailable ohly for spherical scatterers

satisfying the impedance boundary conditions [141,127].

A brief review of the formulation of the scattered field and direct
scattering by single sphere is presented in Section 5.2. The solution

for direct scattering by two spheres [ 30 ] has been extended in Section
5.3 to the case of imperfectly conaucting spheres satisfying impedance
boundaryvconditions. For the purpdses of recovering the profile of

those portions of the écattefer which lie within the Wilcox sphere,

methods of interior and exterior analytic continuation in three-dimensions
are introduced in Section 5.4. The numerical results for three—dimensional
bodies are presented in Section 5.5 where it is confirmed that the IBCQ

are also valid for three-dimensional scatterers.

5.2 FORMULATION OF THE SCATTERED FIELD IN SPHERICAL COORDINATES

For the three-dimensional bodies, the far field is expressed in terms
of a properly truncated expansion in vector spherical wave.functions.
The near field representation of the scattered electric and magnetic
fields is obtained by recovering the associated expansion coefficients

from the measured far field employing a matrix inversion technique
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developed by Weston and Boerner [136] and presénfed in more detail in
Boerper and VandenBerghe [25 ] and in Boerner and Aboul-Atta [21 ].
The matrix inversion technique imposes severe restrictions on the dis-—
tribution of the computed aspect angle due to the instability inherent
in the ‘associated inversionf The instabilities which in this case

are caused by the particular properties of the Hansen vector wave ex—
pansion, can be effectively studied from the properties of the deter-

minant associated with the scattered field matrix f25, 122° 1.

5.2.1 MONO-BODY SCATTERING

Consider a plane, homogeneous electromagnetic wave travelling along and
in the direction of the negative z-axis, polarized in the positive x
direction, and incident on a‘scatterer of arbitrary closed and smooth
shape with arbitrary homogeneous material surface properties. Let the
center of the body coincide with the origin of a spherical coordinate
system as defined in Fig. 5.1. The incident electric and magnetic
field vectors, after suppressing the time dependence exp(-jwt) may be

written as

Ei = aXEOexp[j(at—kz)] =_lEo{31n6_cos¢aR+cosecosqbae —81n¢a¢]
exp[j(at—chose] ' (5.2.1)
Hi,= —ﬁyzzlEoexp[j(at—kz)] = --H,G{sinq>§R+cosesinqbﬁe +cbs¢§¢}

exp[j(at—chose)] _ v (5.2:2)
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where k = w(u € )1/2 and Z = (u /e )1/2. For E = 1 and o, = 0,
00 0 0 0 0 t
the scattered fields at (R, ©, ¢) can be expressed in terms of a series

expansion in vector spherical wave functions [25 ] as

oo 1
E (R,0,4) = T M (R,8,$)+i"b N (R,8, 5.2.3
By ¢ nzl mZO[J _agmﬁ~gmn 0)+3 cnrle (R®,8,9)1 ( )
: - 1/2 oty ‘ . |
H_(R,6,9) = [ pe T a, N, (®,0,0)45™ M (R,6,0)]

M n=1 m=g o gt oM o
(5.2.4)

According to Muller [85 ] and Wilcox [146], for a fixed origin of co-
ordinate system the above expansion is convergent down to at 1east‘the
minimum sphere enclosing the equivalent sources of the body. Hansen's
spherical vector wave functions as derived from the Mie Series are
defined by [115]

' (1) m, ., sin ~ €1 M, COS ~

= * - .

M, (R,0,0) = +{h " GRIST(0)] T (mp) Fag-Th 1) (KRIRT(O) 220 (md) }a

pputial
(5.2.5a)

. _ n(n+l) ( ) A (1) m, .. COS "
§%mn(R,e,¢) = (B —=h ! (kR)P (co se) (@¢>}aR+{kn1 (kR)Rn(e)sin(m¢)}ae

sin

+{k(1)(kR)S ()% (mp) }a ' (5.2.5b)

%

where P:(cose) is the associated Legendre's function of the first
kind, degree m and order n, defined in [257, by
(n~m)/2

: 1 ot 2n-2v, n-m-2
PV (x = cosp) = f; (") Q-x >v=g CDYCGICTENETT
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with
aP:(COSQ)

e (5.2.6)

m =
_Sn(cose)

m
31n6 p" (cose) Rn(cose) =

and kél)(kr) denotes the derivative of the spherical Hankel function
of the first kind and order n given in terms of the cylindrical

Hankel function

(1) _
hn1 (kR) =
by
(1) _1 a (1)
kn1 (kR) = R IR { Rh 1 (xr) }

For a sphere of relative surface impedance 1, only the coefficients

a 0 and be n need to be retained for the assumed incident polarization
01 1

case. These coefficients are explicitly derived in Weston and Hemenger

[141] and with aslight modification are rewritten for the above employed

- formulation as

o _i(_qyDtl 2n+1 . v
aoln = -j(-1) E?Eii? An A (5.2.7a)
L n_ 20t
be1n-_ 3(-1) Tt (5.2.7b)

with . »
nlk j (ka)]'+j[k_j (ka)l :
A = a ? 5 an o : (5.2.83a)
: n[kéhnl (ka)]'+j[k_h 1" (ka)]

[kajn(ka)]'+jn[kajn(ka)l

B = S &) | - (5:2.8b)
[k h*" (ka) I"+in[k b7 (ka)]




N

N denote spherical Bessel and Hankel functions

where jn(ka) and
of the first kind, respectively, and the primed expressions define

first order partial derivatives with respect to ka.

The first step in the inversion procedure is to recover the coefficients
a and b from the scattered field data commonly measured in the
Smn Cmn

Fraunhofer region. This is accomplished by considering only the trans-

verse electric field components of the scattered field which after

employing the asymptotic approximations of the spherical Hankel functions

can be written as

M n :
© 8 exp (1kR)
Ej (6,0 )= {a, s (0,0 )tb R (8,0 )} ZR2E8 (5.2.9a)
GC ¢ e nzl mzo ‘%mn Smn € C Con Smn € ¢C (kR)
s oo | exp (ikR)
E¢c<ec,¢¢)=n£1 mzo{_agmnRgmn(ec’¢c)+bgmnsgmn(ec’¢c)} Gy (5-2.90)

where the spherical vector surface harmonics S - (0,¢) and R 0,9)
: Cmn Smn
are defined by

m sin
Sn(cosec)

S%mn(8,¢) = . (m¢c) | (5.2.10a)
m cos
Remn(6,¢) = Rn(cosec) cin (m¢c) (5.2.10b)
0 .

The method of recovering these a priori unknown expansion coefficients
is presented in detail in Boerner and Vandenberghe [ 25 ] for the purély

spherical symmetric case and further analytical results for the general
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non-symmetrical case are presented in Boerner aﬁd Aboul-Atta [21 ].
There it is shown that the near field expansion can be recovered to
an accuracy dictated only by any suitable measurement‘technique which
enables simultaneous recording of both the modulus and phase of the

transverse electric field quantities,

Since the primary incentive of this presentation is to establish
unique inverse boundary conditions and verify them numerically, the
expansion coefficients of equations (5.2.8a) and (5.2.8b) will be

used in the verification.

5.3 DIRECT SCATTERING BY TWO'SPHERES WITH ARBITRARY .SURFACE

IMPEDANCE

The direct'scattefing solution for two perfectly conducting spheres

has been attempted by various authors [119, 32 ,149,118]. Liang and
Lo[69-] and Crane [36 ] reformulated the‘two—sphere problem'ﬁsing a
newly derived form of the addition theorem given by Stein [112] and
Cruzan [38 1. Thé sélution of Liang and Lo [69 ] has been extended

to the case of dielectric spheres of arbitrary radii by Bruning [30 ].
-Employing the approach of Bruning and Lo [31 ], the solution to the
two-sphere problem is extended to the case where the spheres have
arbitrary surface impedance and satisfy the Leontovich impedance bound-

ary condition.

Let an arbitrarily polarized plane wave be incident at an angle «
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with the z-axis, on two spheres of arbitrary radii '‘a and b and
surface impedances n, and n, as shown in Fig. 5.2. The multi-

pole expansion of the incident field is given by

Z Z [p(m n)N(1)+q(m n)M(l)] " (5.3.1)

—1nc
. n=i1 m=-n

where the multipole coefficients of the incident plane wave can be
determined by using the orthogonality properties of the vector spheri-

cal wave functions and the trigonometric functions resulting into

.0+ 2ntl (n-m)!

= m v+is™ i
p(m,n) A FD) (afm) ! [Rn(cosu)cosy+JSn(cosa)51ny] (5.3.2a)

' _ .oty 2041 (n-m)! m ..M .
g(m,n) = j A atl) (o) ! [Sn(cosa)cosy+jRn(cosa)31ny] (5.3.2b)

with SS(cosa) and Rz(cosa) given by equations (5.2.6).

Similarly, the scattered field for sphere 0(1,2) in the presence of
sphere 0'(2,1) with respect to its own coordinate system can be ex-

pressed as

v o3 () ) |
2= 10 (4 n>M ¥+ B (m N 2] (5.2.3)
I n=); m=-1n.
o= (3) - (3) ' |
B = nZ T‘z—n[A (m, n)N 3 + Bo(m,n)gmi ] (5.2..4)

where the AO, BG for ¢ = 1,2 are the magnetic and electric type‘scatter—

ing coefficients for sphere ¢ in the presence of ¢g'. Here the

(1) ( )

vector spherical wave functions an and N involve the exponential



variation with respect to the angle ¢, i.e. exp(im¢) is to be used
in equations (5.2.5a) and (5.2.5b). The superscripts i = 1,2,3 and
4 denote the appropriate radial dependence involving the spherical

or h(z)

(1)
n - n

Bessel functions jn’ n_, s, respectively.

In order to satisfy the impedance boundary conditions on each sphere
in the presence of the other, the multipole fields about 0 have to
be expressed with respect to 0' and vice versa. The translational
addition theorems to be used for this case of translation along'z-axis

are the specialized form of the generalized theorems by Stein [112]

and Cruzan [38] which can be written as

() _ y m (1) mn (1)’ .
Mm; B v=(§ m)(AmV'Mmi * Bmv Emv ) (5.3.5a)
qulfl) ) \,=(§ ) Ay Erfl\l))' + By M{f}\l)) ). (5.3.5b)

where the wave functions on the left-hand side of (5.3.5a) and.(5.3.5b)
refer to the original set of coordinates O, while those on the right
hand side refer to the translated coofdinates 0; and (1,m) symbolizes
the larger of 1 or m (as ‘m can also be negative). For the reverse
btransiation, i.e. translation from 0' to O; the corresponding theorem

is given by

'3 ntv. m (1) .o (1) e
Moo= ] LA M - B N ] (5.3.6a)

\)=(lsm) |



Fig. 5.2. SPHERICAL TWO-BODY SCATTERING
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(3)' _ v 13DtV mn (1) _ pmn (1) ’
o v=(§ m)( DA Ny By Mﬁé ] (5.3.6b)

5.3.1 EXPANSION OF THE TOTAL FIELD AND APPLICATION OF IMPEDANCE

BOUNDARY CONDITION

The scattered fields of spheres A and B with respect to their

own centers 0 and 0 and in the presence of each other are given
1 2 .

by

L

EA - 'z Z A (m,n) M(s) + B (m,n) N(a) r>a (5.3.7a)

-S 1 —mn . 1 ~—mn
n=; m=-n

B' w0 ' '

E% = nz mz nAz(m,n) Még) + Bz(m,n) ﬁé;) r' > b (5.3.7b)

=1 | —

The total field about 0 can be written as
1 .

I (1) (1) (5) ()
E, = nzl mz_n[p(m,n)gmn +q (m,n)M +A1(m,n)M ‘ +B1(m,n)N
+ Az(m’n)vzl(_l)n+v(A$n“(¢)"B$SE;$))
£ B () | DM@y () gy () (5.3.8)
. P Ve mmy my—my SR
) =1

Similarly the total field about 0 is
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' n 1 v '
ET n-_z-l m-—z-—n[p (m n)N(l) +q' ('m’n)‘l\i['rfu%i) +A2 (m,n)b_{;;) +B2 (_m,n)_I\_I1§r31)

+ A (m,n) Z (AmnM(l) +anN(1) )

+

(1)_ (1)
an)ZMWN ?Nv)] | (5.3.9)
The magneticvfiélds are obtained by interchanging the M 's and

) . . =
N 's and multiplying the result by —ik/wy.

The impedance boundary conditions

E_ = -nZ
$) n 0H¢

- may now be applied to the total fields. After using the orthogonality
relations for Legendre's functions, the'fOllowing set of four coupled,

linear, simultaneous equations in unknown multipole coefficients is

obtained
A mm) =a (a)q (mn)+] (-1)“*“[AmVA (m,v)-B B (m,v)1}  (5.3.10a)
' n Y
Bl(m,n) = b1 (k a){pl(m,n)+ ZA(-l)n+“[A B (m, v) B A (m,v)1} (5.3.10b)
n 1 " v
A (mn) =a (kb)lg mn)+ ] (7oA (MBS (m,v)]} (5.3.100)
. n v




mv my ' '
B, (m,n) = bzn(kzb){pz(m,n)+§ [AHmBl(m,\))+anA1 (m,v)1} (5.3.104)

where the iﬁcident field coefficients P, and q, differ from p1 and
q, only by a multiplicative phase factor exp(jkd cosa) with P and

q, defined in (5.3.2a) and (5.3.2b), respectively. The expansion
coefficients as and bO of the extefnal‘fields of the spheres 1 and
2 in isolation are givennby equations (5.2.8a) and (5.2.8b), respec-

. . - my mo .
tively. The transformation coefficients Amn and an are given in

Appendix A.3.

The set of equations (5.3.10) can be solved by iterative methods or
by matrix inversion techniques. Since the iterative methods were
not found to yield accurate values for the expansion coefficients,

equations (5.3.10) were solved by matrix inversion.

5.4 THREE-DIMENSIONAL ANALYTIC’CONTINUATION

The incident and the scattered fields are expanded in terms of well
established spherical vector wave functions, where the electric and

magnetic fields are given by

L R GRS YERVN s (5.4.1)
m,n

ye) gk T (Ao + Bmn) ) (5.4.2)

CHYTT = > —mn T —mn R

Wy m,n
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with the superscripts 1,s specifying incident or scattered fieids,
A(m,n) and B(m,n) are the expansion coefficients and M(r) and N(r)

mn mn

denote the spherical vector wave functions.

Since the field expansions are valid only outside the Wilcox sphere,
. fields must be continued analytically for general scattering shapes
so that the inverse boundary conditions can be applied. Both interior
and exterior analytic continuations are required. The interior ex-
pansion valid inside the sphere S' of Fig. 5.3 can be expressed as
— (1! ('
E'= ) loyGmn) 17 4+ 8 (myn) N (5.4.3)
m,n
In order to determine the new expansion coefficients oa(m,n) and
B(m,n), the spherical vector wave functions of (5.4.1) must be trans-

~ lated into the new coordinate system O0' wusing the following addition

theorem [ 38, 112]

. ® v
r _ mn, (r')’' 1 ' ' mn (r')' v ' v
M ®:8,0) = T ] [ATMIE (RY,0%, 04BN U (RY,07,0M)]  (5.4.42)
V=1 U=-Vv. .
r T v mn, (')’ v 1 1 mnM(r')' ' ' '
N _(R,0,9) = Z Z (A Ny~ RT,0%,0 B ML, T RT,8',01) 1 (5.4.4b)
V=1 U=-V ‘
where r' =1 for interior expansion and r' = 3 for exterior ex—

. . - mn mn . L
pansion. The translation coeff1c1ents-Auv and Buv are derived in

Stein [112] and Cruzan [38 ] and for computational purposes the following
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forms were found convenient

. P
a(m’ﬁ’_u’v’p)z;r)(kd)Pg—U(coseo)exp[j(mfu)¢o] (5.4.5a)

and

m _ ijocose0 o _ ij031n80exp(—j¢o) _m
uv v (V1) P (SPRY) 2v(v+1) U-1,V

‘KR sinB .
i 031n 0exp(3¢0)

2V (V1) (vHu+1) (v-u) OLU+ v ‘ (5.4.,5b)

. . - mn ;
In the above expression, the expansion coefficient apv, relating to

the scalar addition theorem, is given by [ 112].

-

o = (- 1)“ V™ 2v+1) T 3Pam,n, -1, v,p) z;r%kd)

p

pg-u(coseo)exP[j(#hu)¢0] |  (5.4.5¢)

and is taken to vanish whenever |u| > v ; and p in (5.4.5a) and

(5.4.5b) extends from In—vl to In+vl with'integer steps of 2.

Transforming the scattered electric field Ef of equation (5.4.1)

(with r = 3) to system. 0' of Fig. 5.3, we obtain

Y v— Y VUV
m,n 1,V UV"H Y U U

B -] ] A, ) (A1) "3y R oL W eo L CIS 28
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where the translational addition theorems given by equations (5.4.5)

have been employed.

Comparison of (5.4.6), after a simple interchange of indices, with
(5.4.3) results in the following expressions for the transformed
expansion coefficients for interior expansion valid inside the circle

of maximum radius r, as shown in Fig. 5.3.

a, (m,n) = qu [AG,v) A+ B(1,v) BEY] | (5.4.7a)
&Jmm)=12v[A@ﬂDB$i+BQ5W.%g] (5.4.7b)

where Aiz and Bﬁﬁ ,defined by equations (5.4.5),involve Hankel func-

tions hél)(kr);

The expfessions for the exterior analytic continuation valid outside
the circle of minimum radius .;1 can be obtained by a similar appfoach
(Fig. 5.4). For this éase the scattered field in the translated co-

ordinate O0' may be written as

E'= ) [a (m n)M(S)

m,n

+ B (m,n) N(g) ] ’ (5.4.8)

Translating eﬁuation (5.4.1) with r = 3, - to the coordinate system

0' for exterior expansion, we obtain

( ) mn,_(3)" mn (3) (3)'
mz_n UZ [AGm, n){AZmVM“\a) +B Ny B amm) (A0 57 4B 5 3] (5.4.9)

E

&
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Interchanging the indices m and n with ¥ and v , respectivelyv
in (5.4.9) and comparing the result with (5.4.8), the exterior ex-

pansion coefficients are found to be

Ge(mn) = [ (AG,v) AL+ BGLY) B - (5.4.10a)

.Be(m,n) Z'(A(u,v)BiX + B(,V) Aiz) (5.4.10b)

where AEX and BEX , defined by equations (5.4.5),involve Bessel's

functions jn(kr).

5.5 NUMERIC COMPUTATIONAL VERIFICATION (3-DIM.)

The numerical verification for the three-dimensional case involves
the usé of a variety of_special functions,e.g.Bessel's functions,

Legendre's functions, Wigner symbols, etc. Therefore, in order to
achieve accurate inversion, maximum use of recursive and iterative

techniques has to be made.

All the special functions, the scattering coefficients .An and Bn
‘for the single sphere(5.2.8) énd_the three~dimensional analytic contin-
uation routinesvwere generated as subroutines which are called by the
main program when requiréd. The spherical Bessel functions are gen-
erated using a program developed by Shafai [110], in which he uses
backward recursion to minimize the disastrous accumulation of errors.

The Legendre's functions may be calculated using well known recursion .




~J
©w

m . » . . . . .
formulas for Pn(x) in order and degree, in either direction, without
worrying about error accumulation. Backward recursion in order was

used for the presented computatiomns.

Calculaﬁion of the translation coefficients of (5.4.5a) and (5.4.5b)
presents the most challenging problem. Tﬁe special case of (5.4.5a)
and (5.4.5b) for which translation is along z~axis has been treated in |
detail by Bruning [30 ] and his recursion relations, summarized in |
Appendixz A.3, have been employed for the calculation of the scaﬁter—
ing coefficients given by (5.3.10) for the two-sphere problem. A

three term recursion formula for the general three—dimensional‘trans—
lation has been derived using Bruning's approach [30 ] and is presented
in Appendixz A.3. For those particular cases in which the recursion
relation (A3.4) of Appendiva.3 fails to yield the value of the trans-
- lation coefficient, the original définition of these_céefficiénts,

- given in Appendix A.3 by (A3.2) was employed.

As in the two-dimensional case, the numeriéal verification of the in~-
verse boundary conditions haé‘been divided into two distinct categories.
In the first category, the numerical verification of the IBCs for per-
fectly conducting cases is considered. The second category comprises

of those targets whose surface.impedance n #0 or « satisfies Leontovich
boundary conditions. The perfectly conducting case has been subdivided
into the perfectly electric (n = 0) and perfectly magnetic (n = )
conducting cases. Under iﬁperfectly conducting scatterers the‘fo;low—

ing four cases have been treated i) n known and SO(E) to be re-




covered, ii) |n| and SOQE) to be recovered, iii) n.=.|nlexp(jw)
and SO(EQ to be recovered and 1iv) fi(r) known and n, S (r) to be
. * - 0 -

determined.

In each case the total electric and magnetic fields are computed at
different discrete points along vérious radiant vectors which for

the three-dimensiohal case are defined by the bistatic angles 6,9
with 6 and ¢ being parametrié constants and x = kR being the variable
with arbitrarily chosen finite increments Ax = kAR. The fields
‘calculated using éphefical vector wave function expansions are then
substituted info the appropriate boundary conditions applicable in

the respective cases as established in chapter three. Unless otherwise
specified, the fields empioyéd in the‘bouhdéry conditions are calculated

using the center of the body as origin of the coordinate system.

5.5.1 PERFECTLY CONDUCTING CASE

5.5.1.1 PERFECILY ELECTRIC CONDUCTING BODIES

5.5.1.1a MONO-BODY CASE

For the case-of perfectly electric cOnducting spheres the boundary

cépditions Ql = Min{|ExE*|?}, Q2 = Min{!§i|—|gs|},’Q3 = Min{E-H}
and Qu'= Min{Efgﬁ} were used and the resulting curves are plotted
‘in Fig. 5.5a. As is evident from Fig. 5.5a the conditions Q; and |

Q produce only one distinct minimum, whereas (Q and Q produce an
3 1 i 4
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Fig.5.5a. Plot of Log{|E X EX%}, LogiEi1-1E 41|, Log {|E - H|},Log|e - H¥,
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-infinite set pf identical minima. Therefore, the physical optics
condition Q2 and the condition O_3 can determine the préper sur-
face locus unambiguously. HoweVer, it is evident from Fig. 5.5b that
the physical optics condition holds with sufficient accuracy only in
the illumiﬁated region, whereas, the condition _E{E = 6 is necessary
and sufficient and holds also in thelshadow region. All the four
IBC's are plotted on a piane defined by ¢ = -90°, 90° in Fig. 5.5b
The minima of Q2 and Q3 define only the proper éurface of the body
whereas, Q1 generates an infinite nuﬁber of pseudo loci in addition
to the:locus defining the true surface of the scatterer. Similar

to the two-dimensional case, for a smooth and closed, perfectly elec-
tric conducting scatterer the proper locus is closed, But the addition-
al pseudo loci cannot be closed in the shadow region of the scatterer.
This property results from the fact that the total field expressions
implicitly describe an interference pattern._-Therefore, if it is
known «a priori that the scattering surface is closed, IBC Q1 can be
employed to uniquely specify the.proper surface locus from the total
néar field data given for only one operating frequency. This again
confirms that the Zocally insufficient condition Q1 is globally

sufficient.

5.5.1.1b TWO-BODY CONFIGURATION

In order to test the applicability of the IBCs Ql, Q and Q to the
: 2 3

general three-dimensional case, a two-body configuration was selected.



of E X g*- for a Spherical
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m=0,ka=50

_ Fig. 5.5b. Surface Loci of Success



The test case selected for presentation consists of two berfectly
conducting spheres of equal electrical radii ka1 = k32 = 0.4 with
their centers separated by an electrical distance kd = 1.2. The
electrical dimensions of the target were chosen to be small to im—
prove the rate of convergence of the total field expressions and
hence to reduce the required compﬁter time. The incident wave is
polarized normal to the z-axis and makes an angle o = 90° with

the line joining the centers as shown in Fig. 5.2. The scéttering
coefficients for each of the spheres in the presence of -the other,
given by (5.3.10a) to (5.3.10d), are transformed to the new coordinate
system. 0' of Fig. 5.3 using the interior continuation of (5.4.3)

and (5.4.7). Due to the linearity of the fieldsjthe sums C(m,n)

and D{m,n) of the translated coefficients‘ al(m,n), az (m,n) and
Bl(m,n), Bz(m,n), respectively, provide the scattering coefficients
for the two~body configuration with respect to the translated coordin-
ate.system 0'. A similar approach was employed to discriminate
points lying on the minimum circle encloéing the two scatterers where
use was méde of the exterior,énalytic continuation of (5.4.8) and

(5.5.10) as shown in Fig. 5.4, [3].

The values computed for. Ql, Q2 and Q3 are plotted in Fig. 5.6a
along a.ray 0 =0, 180°, ¢ = 180° and the loci resulting from com
putation of the three IBCs along a selected grid of réys on a plane
o) % 180° are shown in Fig. 5.6b. The origins of the translated co-
.efficients were selected to lie on each of these rays and the pseudo

loci were computed using exterior expansion of the em fields. ¥Figs.
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Fig. 5.6a. Plots of Q,=LoglE XE"?, Q=Log[IE;I-IE]] and Q;=Log[IE -HI] vs
Radiant Vector X for Perfectly Conducting Two - Sphere Configuration
kaj=kaz=04,kd=1.2 ,a=90°dlong the Ray 8=0,180°and $=180°
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Fig..5.6 b. Loci of Successive Minima of EXE* and E-H for
Two Pefectly Conducting Spheres of Elec. Radii ka;=ka,=0.4
‘and Separation between the Centers kd=1.2, @=90°



5.6a and 5.6b confirm the properties of the IBCs Ql, Q2 and Q3
stated for the single spherical scatterer. It shouldAbe observed
that similar to the two-dimensional case, discussed in Subsection
4;4.2 the pattern of pseudo loci resulting for the two;body case is
the superposition of the patterns of pseudo loci for the individual
- spheres. Therefore, it is concluded_that.by the simultaneous appli-
cation of the three IBCs, it is possible to recover the proper sur-
face locus of a closed scatterer uniquely and accurately from the.
knowledge of thé total em fields given.everywhere‘in the vicinity

of the scatterer for only one frequency.

5.5.1.2" PERFECT MAGNETIC CONDUCTING CASE

The proper éurface df a perfeétly magnetic conducting smooth and closed
scatterer can be determined using the bouhdary conditions complementary
to the set mentioned.fdr perfect electric conductprs as derivéd in
Section 3.2 i.e. QH = Min{|Hx*|?}, Qﬁz = Min{|H, |-|H [} and

-QH3 = Min{E*H}. The corresponding plots resulting from thé computation
of the_respective‘boundary conditions along a ray defined by (0 = 22.5°;
.¢ = 80°) are shown in Fig. 5.7a and the correspondiﬁgvloci‘in Fig. 5.7b.
‘As expected the IBCs Qﬁl, QH2 and QH3 for the perfectly mégnetic con~
ducting case possess the same characteristics as do their counterparts
Ql, Q2 and Q3, respectively, for the ferfectly electric conducting case.
Namely, QH2 and QH3 can again be seen to bé necessary and sufficient
conditions and QH1 is necessary, locally insufficient but globally

sufficient condition. Therefore, it is concluded that in both the
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_perfectly electric as well as magnetic conducting cases the proper
surface locus can be uniquely determined using measurements compiled

for a single operating frequency.

5.5.2 THE IMPERFECTLY CONDUCTING CASE

-The test targets selected for verifying the IBCs for this case con-
sist of mono- and two-body configurations. The formulation of the
em fields is identical to that of the perfectly conducting case ex-

cept that the appropriate value of n is substituted into.(5.2.8)

5.5.2a n KNOWN AND S (r) TO BE DETERMINED
. 0

The procedure is first verified for a single sphere centered at 0
(Fig. 5.3) using field expansions with respect to 0, and then by

displacing the origin to O0' (Fig. 5.3) using analytic continuationm.

‘The orthogonality condition Y1 = Min{A+B} and the normality condition
Y2 = Min{A%-B%} are compufed along a radiant vector. (0 = 22;§°,

¢ = 90°) for.three different values of surface impedance,\i.e.

a) purely real, b) purely imaginary,and c) complex,for a sphere of
electrical radius ka = 5 and the computed results are presented in
Figs. 5.8a, 5.8b and 5.8c. From inspection of these plots, it is
observed that the minima defining the proper point on the surface are
much sharper than those resulting for the additional pseudo loci.

The slope of the descending part of the curves Y1 and Y2 for the
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_proper minima are steeper than for the other minima. Bofh conditions
are seen to work for all values of surface impedance (M # 0 or 0‘°)

be it real, imaginary or complex, though the additionai minima are
found to flatten out as the surface impedance becomes more and mofe
reactive. Though -the simultaneous application of the two conditions
is sufficient to uniquely discriminate the proper surface locus given
computed near field expressions for only one frequency, the double~
frequency checking technique can help to discriminate the proper
minimum from some other accidently coincident minima, provided

N # n(w) i.e. the material of the body is noadispersive. TFigs. 5.9a
and 5.§b show the plots of Y1 and Y2 ve?sus the geometrical distance
resulting ffom computation using near field expressions for two
different frequencies. It can be seen, as expected, that only the
minima at R = 5 (which was chosen to be the radius of the unknown
sphere) coincide and all other minima are shifted . The loci resulting
from the use of the orthogonality condition are shown in Fig. 5.10 on
a plane ¢ = -90, 90°. The interference-like pattefn generated by
Yi possesses the properties displayed by the IBC ExE* = 0 and.EXE% =0
for the degenerate perfectly conducting cases (Fig. 5.6b).‘ Similar
behavior is also displayed by the normality condition as is clear
from Fig. 5.8 . Namely, the IBCs Y1 and-Y2 are both necessary,

locally insufficient but globally sufficient.

Fig. 5.11 presents the plots of Y1 and Y2 along a ray 0 = 45°,

it

¢ = 130° for a spherical scatterer of electrical radius ka = 0.5

and surface impedance 1 = 0.25. Here the scalars Y; and Y; have
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.been computed using field expansion with respect to the origin 0
which coincides with the center of the sphere (Fig. 5.3) and Y:

and Y: with respect to a translated origin 0' with 90= 45°, ¢0=
130° and kd = .75°, Since the fields calculated using analytic con-
tinuation are not as accurate as those calculated with respect to
the center 0, the minima of Y: and'Y:_ are not as sharp as those

of Y; and Y; but still occur at the same points along the ray.

.The loci generated by Y1 and Y2 for the two~body case are presented
in Fig. 5.12.  The same properties, as for the mono-body case, are
exhibifed by the interference pattern of Fig. 5.12, where the pseudo
locibare the superposition of the families of discrete loci resulting
for the constituent spheres. Therefore, it is concluded that each of
the IBCs 'Yl or Y2 is sufficient to uniquely discriminate the proper
locus of smooth, closed scatterers with known surface impedance 7 ,

(be it homogeneous or inhomogeneous, dispersive or nondispersivé),

given the total em fields everywhere in the vicinity of the scatterers
for only one frequency. The simultaneous application of both conditions

makes the proposed inversion technique more reliable.

5.5.2b In] and 5 (x) TO BE DETERMINED

For this particular case, the real impedance is calculated using

(3.4.7) and (3.4.9) where the former equation results in one root for

n (say n ) and the later results in two independent roots for n, (say
. 0

N and 1 ). The values of n , n and n ‘are then calculated along
1 2 _ 0 1 2 : :
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radiant vectors (excluding the backscattering direction). Now, the
value of no is substituted into the normality condition Y , whereas
, 2

nl and n2 into the orthogonality condition Y and the Min{A%-B?, n }s
. 0

1
Min{éig, nl} and Mih{éﬂg, nz} are then calculated for the above chosen
computational points along the same radiant vectors. In Fig. 5.13a
the curvesvresulting for nofR), nl(R), Min{A%-B?, no(R)} and

Min{A*B, nl(R)} are plotted versus the radiant vector R for 0 = 45°,

¢ = 60°, where the curves corresponding to the values n2= (R) have
been omitted for.the sake of clarity since there exists no value of
nz(R) which is identical to nO(R). From inspection of Fig. 5.13a,

it is seen that no(R) and nl(R) can be identical at more than one
point along a ray. However, with the aid of Min{AZ—Bz, nO(R)} and
Mih{éﬂﬁ, nl(R)} the correct point on the proper surface along that

ray can easily be discriminated sihce only at that point do the two
minima coincide. Another unique recovery criterion is to employ
(3.4.16) which specifies the phase 'w of N 1in the backscattering
direction. Since it,ié known that n = !nl, the point for which

Y = 0 can be employed along with the orthogonality and normality condi-
tions to discriminate the proper surface locus and the correct value
of n. In order to make the inversion technique more reliabié for
cases in which n dis known to be homogeneous; the above procedure

may be repeated for another frequency as is shown in Fig. 5.13b.
Comparing Figs. 5.13 and 5.13b, it is evident that e%cept for those
‘minima defining the proper point on the surface, all other minima and

all other identical values of no and nl are shifted along the ray.
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After repeated calculations for various aspect angles beionging to
the same cross-section ¢ = const., an interference-like pattern for
the family of pseudo loci similar to that illustrated in Fig. 5.10

is obtained. It should be_observed that the impedance curves no(R)
and nl(R) of Figs. 5.13a and 5.13b display the charactér of a decay-
ing standing wave similar to that known from transmission line theory

[65], i.e. n = n(R) represents a tangent-like interference curve.

The value of the surface impedance néoin the case of a smooth, closed
and homogeneous scatterer. can be determined from computation at a
éingle frequency and alongva single ray. This computed value of

n = nSO = const. may then be used as outlined in Subsection 5.5.2a

to determine the propef surface So(g). The proposed single-frequency )

discrimination procedure will have to be repeated over a grid of rays

spanning the total sphere if |n| is inhomogeneous.

5.5.2.¢c n=|n| exp(y) and 8 (r) TO BE DETERMINED

In this most general case the properties of Theorems 1, 2 and 3 of
Section 2.4 need to be employed. Since the degeneracy condition 1is
involved, only that case can be uniquely resolved for which the a

priori unknown surface impedance is homogeneous i.e. n # n(6,¢).

The recovery procedure adopted is comprehensively analysed for a

spherical model scatterer of radius a. In Table 5.1 computational




results are presented for a complex impedance 1 = 2exp(jn/12) for

a =5, ka=>5 and ka = 8 and in Table 5.2 for n = 0.25exp(j0) with

2 and ka = 3.2 respectively. Thus two sets of values with
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identical column arrangement, as defined in the heading, are presented
in each table. Although computations were carried out for many
different rays and for computational intervals 1.0 < R(AR = 0.1) < 20.0,
it was found sufficient to present values within the range 4.5 < R

(AR = 0.1) < 5.5 for one ray only. From the'iospection of Table 5.1
it can be seen that the correct values of Y and 1”' occur for
computation with ka = 5 and ka = 8 at R = a = 5 which defines the
proper surface locus, whereas the identical values.occuring for

ka = 5 at R = 4,5 for wo, wg and wu are no longer identical for ka =‘8
at R = 4.5. It is to be noted that a ‘dash' under the values of wl

to w4 indicates that the respective root of term wv was complex

and therefore,.is of no physical significance. The values given in
the last two columns result from the application of the normality

and orthogonality conditions, respectively,‘into which the proper
value of 1, resulting for R = a = 5, had been substituted, and coinci-
dence of the two very pronounced minima at R = 5 is evident ﬁrom in~
spection. Similar results are obtained for a model scatterer of radius
as=2 and impedance N = 0.25 as is shown in Table 5.2. It should be
noted that when a computational increment of AR = 0.00l was osed, the
correct minima are still‘found to coincide with the exact value of
R=a=2 of ﬁhe employed model scatterer, provided a sufficient number
of expansion coefficients, acourate up to the 7th digit are used as

is illustrated in Table 5.3 which is self-explanatory. Finally, Table




TABLE 5,1 _
RECOVERY OF PHASE Vgo» MODULUS |n_ |, AND SURFACE LOCUS S,(R=a) FOR A SCATTER HAVING AN A PRIORI UNKNOWN

HOMOGENEOUS, COMPLEX SURFACE IMPEDANCE "so",”sol exp (3% )

Selected Model Scatterer: Sphere of radius. a = 5.0 and impedance Ngo = 2.0 exp (j15°). .
Values, computed along the ray (8 = 1°, ¢ = 30°) within 4.5 S R(AR = 0.1) < 5.5 are:
woz root of (3.416); “’1' w?_’ 1!13 and ‘h,‘ roots of(3,4.14); [n]: root of (3.412) using ‘
Yoo = V3 Yy = log {|a + 4 -B -3, N Ngeti Yy =log {[A B[, n=n}

R Y Inl *y i) Wy - ¥, Y ¥
ka = 5,0 4.5 -34.597 1.972 10.824 18.306 34.608 34.575 .0.335 - 3.305
4.6 -24.836 2,161 4.959 14.035 24,862 - 24,801 0.130 -"3.591
a=25.0 4,7 ~14.096 2.268 ‘' 0.568 8.857 © 14,124 14,066 ~0.144 - 3.99¢C
4.8 - 3.275 2.267 4.496 5.808 3.259 3.286 . -0.531 - 4.692
4.9 6.643 2.165 10.442 63.079 — — . =1.180 ~ 5,121
5.0 14.994 2.003 13.308 24,556 14.983 14.933 ~9.235 -10.536
5.1 21.559 1.809 14.415 24,048 _— _— -1.311 - 4,597
5.2 26.420 1.619 15.701 - 28.979 - -_— ~0.793 - 4.269
5.3 29.775. 1.443 16.311 35.090 29.694 29.850 -0.541 - 4,123
5.4 31.825 1.286 16.353 42,070 31.865 31.782 -0.409 - 4,072
5.5 32.727 1.149 15.903 49,568 —_— -_— -0.353 - 3.987
‘ka = 8.0 4.5 42,868 0.455 T - -— -— 47.132 0.624 - 2,971
4.6 ~40.292 1.574 — - —_— — 0.488 - 3.152
a= 5,0 4.7 -29.696 - 1.905 . - -— —— 29.692 0.263 - 3.433
4.8 -15.354 2.154 T — - — - -0.096 - 3.880
4.9 0.714 2.189 — -— —-— 0.713 -0.735 - 4.786
5.0 14.994 2.001 —-—- — —_— 14.988 -8.968 - 9.800
5.1 25.317 1.710 -—- - L —-— ~0.905 - 4.435
5.2 31,587 1.424 —— —-— -— 31.585 ~0.441 - 4.109
5.3 34.456 1.179 —_— — —_— 34,416 -0.274 ~ 4.045
5.4 34.445 0.981 -— -— -—- 34.448 -0.270 © - 4,182
5.5 31.772 - 0.825 _— -_— — —_— ~0.417 - 4,769

S
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TABLE 5.2
RECOVERY OF PHASE wso’ MODULUS Insol’ AND SURFACE LOCUS SO(R=a) FOR A SCATTERER HAVING AN A PRIORI, UNKNOWN,

HOMOGENEQUS COMPLEX SURFACE IMPEDANCE n8°'= Ny, &%P (jwso)

Selected Model Scatterer: Sphere of radius a = 2.0 and impedance N, = 0.25.
Values, computed along the ray (6 = 0.5°, , ¢ = 30°) within 1.5 < R(AR = 0.1) < 2.5, are:
wo: root of (3.4.16); lPl, IPZ

» VY3 and y,: roots 0f(3.4.14)5|n|: roots of(3.4.12) using
Voo = Vo3 ¥y =log {la = A -

B +Bl,n=n_} Y, =log{]a * B[, n=n}

R ¥, [n] . ) S £, 14 Y,
ka = 2.0 1.5 7.883 — ' 6.078 22.271 82.283 81.959 - 0.700 - 4.918
1.6 - 5.551 0.496 11.305 23.012 — —_— - 0.954 - 5.360
a= 2.0 1.7 -22.195 0.326 15.030 21.941 _— — . = 1.268 - 5.950
1.8 -43.579 0.241 46.304 46.538 17.358 16,988 .~ 1.689 - 7.400
1.9 21.934 0.227 14.134 17.039 22,097 . 21,766 - - 2.362 - 6.644
2.0 0.011 . 0.250 13.287 49.910 0.005 0.000 -10.927 -11.967
2.1 -15.890 0.300 2.669 21.241 16.017 15.865 - 2.516 - 6.432
2.2 -26.448 0.365 20.263 67.646 -— ——— - 1.997 ~ 6,139
2.3 =33.320 0.441 19.131 68.386 — - -.1.734 - 6.006
2.4 -37.719 0.525 17.968 59,295 — —_— - 1.579 - 5.934
2.5 -40.373 0.618 16.317 55.656 — ——— - 1.488 - 5.923
ka = 3.2 1.5 10.666 ——— — _— 16.805 16.516 - 0.524 - 4.535
1.6 - 0.047 _— - _— 19.107 8.775 - 0.673 -~ 4.819
a=2.0 1.7 -11.222 1.006 ——— ——— 21.296 1.513 - 0.919 - 5.190
1.8 -27.028 0.492 3.543 21.206 —— — - 1.297 - 5.698
1.9 36.142 ' 0.257 — - 12.523 6.239 = 1,949 - 6.669
2.0 0.004 0.250 3.663 48.089 0.003 0.000 -11.602 -12.944
2.1 -26.018 0.330 19.773 80.849 —_— -— - 2.116 . -~ 6.314
2.2 ~39.014 - 0.458 19.920 31.007 39.059 38.957 - 1.632 - 5.981
2.3 -44,850 0.614 16.823 28.839 -— — - 1.424 - 5.878
2.4 43,384 1.800 12.880 27.050 - 46.637 46.595 - 1.348 - 5.909
2.5 : ~ 1.366 - 6.050

44.556 1.985 9.025 - 25.258 —-— ———

I
lracd
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TABLE 5.3
QUANTITIES OF TABLE 5,2 CALCULATED WITH A FINER

INTERVAL 1.99 < R (AR = ,001) < 2.005

R ¥, Inl ) , , £, Y Y,

ka = 2,0 1.995 0.971 : 0.248 13.680 . 49,161 . 0.965 - 0.962 - 5.024 - 7.785
1.996 0.778 0.249 13.628 49.993 0.772 0.768 - 5.216 - 7.886

aw=2 1.997 0.585 0.249 13.502 49,218 0.575 0.579 - 5.462 - 8.010
1.998 0.393 0.249 13.473 49.030 0.383 0.387 - 5.806 - 8.189

1.999 0.202 0.250 v 13.444 45.802 0.191 0.196 - 6.383 - 8.485

2.000 0.011 0.250 13.339 45,785 0.005 0.000 - -10.536 ~11.714

2.001 ~0.179 0.251 13.283 43,515 0.185 0.190 - 6.499 - 8.483

2.002 -0.369 . 0.251 13.214 . 42.520 0.375 0.380 - 5.866 - 8.181

2.003 -0.557 0.251 13.158 42,206 0.563 " 0.569 . - 5.504 = 8.007

2.004 -0.746 0.252 13.045 : 40,391 0.758 0.752 - 5.250 - 7.878

2.005 ~0.933 0.252 13.015 37.260 0.946 0.939 - 5.054 - 7.773"

ka = 3.2 1.995 1.708 0.248 4,127 15.414 —— - - 4.618 - 7.915
1.996 1.364 0.248 "4.037 18.018 —— — - 4,812 - 8,008

am=2 1.997 . 1.022 0.249 3,947 23.821 - - - 5.062 - 8.122
1.998 0.682 0.249 3.858 26.399 . 0.681 0.679 ~ 5.413 - 8,300

1.999 0.342 0.250 3.776 40,490 0.342 0.338. - 6.011 - 8.588

2.000 0.004 0.250 3.663 48.089 0.003 0.000 -11.602 ~12.944

2.001 -0.333 0.251 3.571 65.517" 0.337 0.334 - 6.032 -~ 8.580

2.002 -0.669 770,251 3.472 76.669 0.673 0.669 - 5.426 -~ 8.265

2.003 ~1.003 : 0.251 3.352 58.147 1.008 1.004 --5.073 - 8.080

2.004 -1.336 0.252 3.252 55.355 1.341 1.337 - 4.823 - 7.958

2.005. -1.667 0.252 3.151 45,431 1.672 1.669 - 4,630 .= 71.857




TABLE 5.4

Retrieval of Y and '[ﬁl by Double-Frequency Technique for a Single Sphere Using Interior

Analytic Continuation

Target: Sphere of elec.radius ka = 0.5 and surface impedance N = 0.25 exp jo, Fields Computed w.r.
o' (6 = 45°%, ¢ = 130°, kd = 1.0)

A. Computed Values At Frequency f£. = £

1
R V1 Y2 Vs Yy | Y Yy

.35 - - - - .2980 .02197886  .001517956
.40 - - - - .2799 .0257287 00164368

.45 - : - - - .2591 .02443074  .9319349X10 >
.50 - .01 - - . 2476 .8177150%10 > .5070390x10™°
.55 15,837 72.776 - - .2597 - .1112544 - .00496126

.60 83.707 - - 24.359 .3022 .5756167 07459009

.65 -32.007 e - 79.055 .3701 2.493501 .5519352

B. Computed Values At Frequency f2 = .8 f
R Vi Va2 Vs " In} Y3 Y2

.35 - -- - - .1348 .02881918 .005033627
.40 - - - - .1101 .03240844 005457051

.45 - - .- ' - .1897 .02915064 .005376853

.50 - .002 - - .2453 .7013585%10" > :9597663x10°

.55 78.897, - - 23.10 .3061 .1138315. .02918787

.60 31.468 -~ 78.500 - : - .3821 .5221265 .1967003 -

.65 73.221 - - 37.658 .4739 . 1.940373 1.075720
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5.4 presents the four roots wv of (3.4.14) and root |n| of (3.4.12)
for a target of elec. radius ka = 0.5 and surface impedance 1 =
0.25 exp jO. The em fields for this case were analytically continued

with respect to a translated origin (90 = 45°, ¢ = 130°, kd = 1.0).

The averaged surface impedance 1 can be seen to be {ﬁi = ,2465
¥ = .006.
5.5.2d fi(r) KNOWN, S (z) and n(z) TO BE DETERMINED

In cases, where the shape of a scatterer is known g priori, but the
electrical dimensions and the complex surface impedance Have to be
determined, the simultaneous computation of (3.4.12), (3.4.14), (3.4.19)
and (3.4.20) can resolve all of these parameters accurately and uniquely.
The method is verified in Table 5.5 for a spherical target of ka = 0.5,
n = 0.25exp(jo) for fields expanded about the center 0 of Fig. 5.3.
The entries Y; and Y; have been computed using the impedance value

of 1 resulting at each point of computation, and the entries Y1 and
Yz:correspond to computation for which n(X=0.5) = .25 exp(j0) was

used for all points along the ray. The presented results clearly in-

dicate that n(r) and S (r) can be recovered very accurately.
X 5 =

If an expression for fi(x) can be obtained independently of the condi-
tions (3.4.1) and (3.4.2), methods of Subsections 5.5.2c and 5.5.2d
could be combined to resolve the problem uniquely, given the total em

fields everywhere in the vicinity of a scatterer for only one frequency.




TABLE 5.5

Recovery of Phase wsi , Modulus Ins l and Surface Locus S° {R=a) for a Scatterer Having
(o] fe] .

an A Priori Known Shape

Selected Model Scatterer: Sphere of radius ka ='0.§ and impedance nS = 0.25 exp jo
o
Values computed along the ray (§ = 45°, ¢ = 130°) are:

ws root of (3:4.20),ns root of (3.4.19)

o o
'
X Y1 R wso : ) nso ¥l Y2

.35 1.36112 ~15.6535 39.752 3.096 .299005 " .264397
a0 .475426 -15.6272 -43.198 0.962 ~:254754  ~.565107

.45 .405271 -16.8577 ~21.603 0.477 -.922403 ~1.42820

.50 ~5.91584 . .~16.8577 . < %0002 . . 0.250 ~5.57363 -6.64025

.55 -1.22534 . - - 7.1513 .1902 -1.53615 -2.27987
, 60 1.20405 - -~ 9.3261 .2451 -1.48931  -2.26450

.65 1.35926 2.91474 9.8747 +3239 ~1.54030 ~2.29835




chapter six

TRUNCATION ERROR ANALYSIS

6.1 INTRODUCTION .

In verifying the .inverse boundary conditioﬁs of chaptéf fhree, direcf
scattering solutions for conducting cylindrical aﬁd spﬁerical shapes,

in terms of cylindrical and spherical vector wave functions respectively,
were employed. In a practical situation, the near field is to be re-
constructed from a known incident field and the measuréd far field dis-
tribution. It is assumed that the associated sets of expénsioh'coeffi—
cients explicitly contain all the necessary and sufficient information
about the unique near field expansibn. These coefficienté, represent- .
ing the unknoﬁns, must first be recovered from the finite set of measured

scattered field data as is discussed in Boerner and Vandenberghe [ 25 ]

and in more detail in Boerner and Aboul-Atta [ 21 ] where matrix inversion

procedures are proposed for recovering these coefficients. Furthermore,
employing a novel optimizatibn procedure for the encountered generalized
Vandérmonde determinants, it ié shown iﬁ Vandenberghe and Boerner [ 25 ]

that the retrieval of the unknown expansion coefficients, theoretically,

depends only on the employed ﬁeasurement technique.

However, since only matrices of finite and relatively low order (2N) can
be_inverted with the required degree of accuracy, a lower bound on the

order N of truncation of amn and bmn must be taken into consideration.

-
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In addition, since both amplitude and phase of the scattered transverse
field components must be measured, in practice, a lower bound M on
the degree of accuracy of the recovered expansion coefficients is also

inflicted.

In this chapter, the bounds at which the serieé representation of the

em fields should be truncated are discussed. The criteria for establish-
ing the lower and the upper truncation Eounds for two -dimensional bodies
are presented in Section 6.2. An outline of the extension of the
approéch used for two—dimensipnal bodies to three-dimensional cases is
given in Section 6;3. Subsection 6.4.1 describes a novel truncation
approach based on the concépt of inverse boundary conditions. The pro-
posed procedure has béen Vérified numerically in Subsection 6.4.2.
Finally, a brief numerical study of the rate of convergence of the

analytically continued fields is presented in Section 6.5.

6.2 LOWER AND UPPER TRUNCATION BOUNDS FOR TWO-DIMENSIONAL CASES

For a two-dimensional scattering gecmetry, the scattered field valid

for r > r_ in Fig. 4.3, may be expressed as

a

Pt 0}

u(r,¢) = ). aj Hél)(kr)exln(jncb) (6.2.1)

N==-00 n

where Hél) is the Haﬁkel function of first kind. The assoéiated far

field will behave as .

u(r,6) = exp(-jkr) (23/mr) M 2g (4) O (6.2.2)




where g(¢) is called the pattern function defined by

o0

g®) = ] a exp(ing) (6.2.3)
S :

The coefficients of this pattern function are subsequently used in the
reconstruction of the near field. - In practice there exists a lower
bound N,Q and an upper bound Nu for.the number of these coefficients.
The lower bound is dependent on the fact that the space acts as a filter
for the hiéhér harmonics and only thése cyiindrical modesAwhich are
" not cut off are of importance [ 48]. fhis means that the summation,
in (6.2.1) should at least extend to lnlﬁkra with r denoting the
largest dimension of the scatterer. This approximate estimate for lnl
ensures the inclusion of the dominant terms of the Fcurier spectrum
[78 ,81 ]. The upper beund N depends on r and the»error level
2 due to measurement and quadrature errors [33 ,120].
Twomey [120] discusses the inherent limitations and difficulties which
attend the inference of the function f(x) from g(y) when the kernel
K(i,y) is a smooth function of x. He also establishes criteria for
determining the upper bound on tﬁe number of terms in a series represent-—

ation of a function f(x).

Any inverse problem may be represented in the form
' b

g(y) = f k(x,y) £ (x)ax v (6.2.4)

a

where g(y) dis the measured pattern, k(x,y) represents the data




,,
i

" kernel and f(x) is the function to be recovered. In operator notation,

(6.2.4) may be written as
g = Tf (6.2.5)

where g and f represent g(y) and f£(x) respectively. In matrix

notation (6.2.5) becomes
Ax =y + € ' (6.2.6)

where A, x and y are the discrete form of the operators T, f and g,
respectively and € represents the total equivalent error vector.
Twomey [120] proves that the N equations contéined in the matrix
equation (6.2.6) are fully independent in the presence of errors only

if the inequality

er > ] el : (6.2.7)

i
is satisfied by all the eigenvalues Xn of A*A, where c¢ is a fixed

known positive number and A* '~ denotes the adjoint of A.

The error vector € includes botﬁ the quadrature errors and the ob-
sef&ational errors. The observational errors are often more serious

than the quadrature errors, which for reasonably large N and smooth
integrands can be considerably smaller than 1% - an accuracy not readily
achieved in many physical measurements [120]. 1In addition tc measure-
ment errors, in many cases an approximation is involved in reducing a
problem to a linear one, e.g. approximations involved in the derivation of

Leontovich conditions.




;t may be added bere that in (6.2.6) the larger N is, tﬁe higher the
frequencies being introduced iq the solution and the greater the in-
- stability of the solution. Therefore, increasing the number of data
points worsens, rather than improves, the discrepancies between the

solution and the expectatibn.

Cabayan et al [ 33] determine the eigen-values An of the matrix
equation associated with the two-dimensional inverse scattering problem.
Starting with Helmholtz's equation, they obtain the following expression

for the eigen-values An’ as is outlined in Appendix Ab.

] ,Hél)(krl)'z

= (6.2.8)
An lﬂél)(kra)lz

The stability criterion (6.2.7) sets a strict limit on choosing the
largest dimension of the projection space. The smallest eigenvalue

defined by (6.2.8) must be greater than the error level
=2 _ 2
e? =] e} (6.2.9)

For the specialized case in which r - o, the eigenvalues may be written
1 :

as
- 1
) 2
5 Ger )|

‘n (6.2.10)

The three regions of numerical behavior of the reconstructed em field
are shown in Fig. 6.1 which has been taken from Cabayan et al [33 ].

They explain these regions in connection with the stability criteria




30F einsufficient
information

e proper .
convergence

e numerical instability

0 20 30 a0

Fig. 6.1. Regions of Numerical Behavior of the Reconstructed
em Field: ' |



developed above. Assuming that the expansion coefficients are accurate
up to 5 to 6 digits, we can estimate the numerical error as one part

in 10%, i.e. g= 1075, Therefore, An, the cutoff eigen-value, is
related to €2 = 10 !°, sSimilar diagrams for less accurate data will

have the curve representing the upper bound nearer to the one represent-

ing the lower bound.

In order to apply the above criteria on the truncation -level N to
an off-axis cylinder, the parameter of importance for exterior contin-

1

uation of Fig. 4.3 will be T, the minimum radius enclosing the

v cylinder. The trend of the number of significant coefficient 0, for
the translated system versus ra'/A gives a convergence region si;ilar.
to and contained within, the convergence region shown in Fig. 6.1 [ 33,
87 1. As regards the order of truncation |n| =N in (4.3.4), Wilton

[ 147] states that for N > k;g the coefficients a decay  exponentially
faster than the exponential growth of the Hankel functions for r >ra

so that the scattered field representation converges. The validity of
this statement.ﬁas most recently been confirmed by Millar [78 ]. The

numerical results presented in. Section 4.4 are also in agreement, where

M in (4.3.3) was chosen to be slightly larger than the sum of kro and

148].

kr a [148]

6.3 LOWER AND UPPER TRUNCATION BOUNDS FOR THREE-DIMENSIONAL
PROBLEMS

The incident and the scattered fields for three-dimensional problems are




expanded in terms of spherical vector wave functions. THere are many
tests such as power conservation [154], statistical and numerical

cﬁecks [153] which.may be used for checking the accuracy of the obtained
results. Ludwig [70 ] describes a sensitive technique in which the
basic idea is to obtain two different spherical-wave expansions of

the same electromagnetic field. The two expansions may then be evaluated
on a common surface and compared. Ludwig argues that an égreement be-
tween the two results strongly indicates that both expansions are valid
because it is extremely unlikely that numerical errors would affect
both expansions in the same way. The two expansions may be obtained

by seleéting different coordinate origins for each expansion. To ﬁake
the test highly sensitive, the common surface should be chosen as

close as possible to the source. Obviously the method may.also be

used for two-dimensional problems.

The lower empirical bound for three-dimensional problems is also deter-
mined by the radius r, of the minimum sphere enclosing the body and
is- ’nl = kr . An empirical formula for the truncation point for an

a :

error of less than .01% in the radar cross-section for a sphere of

electrical radius ka is [109]

N~ [1+ ka + 3(ka)1/3] (6.3.1)

The upper bound form numerical stability point of view may be deter-
mined by evaluating the eigen-values of the matrix equation associated

with the three-dimensional problem. An approach similar to the one




used by Cabayan et al [ 33 ] for the two-dimensional case may be used
for the three—dimensional.problem. The details for this case are much
more complicated because the Green's function for this casé involves
dyadic operators. Therefore, only an outline of the method is pre-

sented below.

Application of Helmholtz's theorem [57 ] to the source-free region

outside the minimum sphere enclosing the body gives
™ 7

£(0,9) = kr ff

00

3G
£00,0) + gy sind o d¢ (6.3.2)

where g(6,¢) represents the far field.pattern and f£(06,¢) is the .
near field to be recovered. Here G is the dyadic Green's function

of the first kind and is given by [116],

® v

1y o ik o 20+1  (n-m)!

-gls ®R/R") 47 Z Z (-2 60) n(n+l) (ntm)!
n=j3; m=g
[a M(I)M'(l)"‘b N(I)Nl(l)] (6.3-4)
omogmn Smn Smn” Smn Smn .
where the coefficients a and b may be determined by applying
emn €on

0 ,
the Dirichlet boundary condition to the entire function .gl which may

be written as

gl @®/R") = & (R/R") +=G__IS(B_/§') (6.3.5)

Here G (R/R'), the free space dyadic Green's function, is given by

ik 2n+1 (n-m)!
Z z (2- %) n(n+l) (n+m)!

sNz3y

% -»_-}
Xy
N
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(1) '
M M' + N N' 1 R < R! (6.3.6)

In (6.3.4) and (6.3.6) 60 =1 for m=0and § =0 for m # 0.
. 0

The expansion coefficients ae and be in (6.3.4) are -

omn ) o M1l
_ . (1) g | ,
a%ﬁ.m = —Jn(ka)/hnl .(ka) (6.3.7)
R . 4. (1) '
L AR O~ LR N OF | (6.3.8)

The normal derivative of les/a(kr) at r = r is substituted into
(6.3.2) to obtain g(0,¢) in the form of a Fourier series. The ex-
pfession for g(0,¢) defines the operator T in the foilowing equation

in operator notation

g:ioi ) (6.309)

The eigen-values of the associated matrix equation may then be deter-

mined using an approach similar to that of Cabayan et al [33 ].

"6.4.1 NOVEL TRUNCATION APPROACH BASED ON INVERSE BOUNDARY

CONDITIONS

The'inverse_scattering'approach employed in this work assumes that
complete information about the scattering geometry is contained in the
expansion coefficients of the measured far field. Therefore, the

recovered parameters of the body depend on the accuracy of these expansion



goefficiehts (M digits) and the order of truncation N of the éeries
representing the field. The estimates on these lower bounds N and. -
M may then be defined from the application of the infersé boundary
conditions by properly truncating the order as well as the number of
the first significant digits of the expansion coefficients. As re-
lates to the truncation of significant digits in the expansion co-
efficients, criteria on convergence and the measurement accuracy should
be distinguished. Ohly convergence aspects are considered in the
present study, i.e. trunca;ion in the first significant figures of

any expansion coefficient irrespective of the exponential power factor.

The lower bounds ‘N and M are defined By the desired accuracy to

which the parameters of the body must be recovered. To illustrate

how estimates of the bounds on éhe order of truncation can be established,
the target identification procedure for that model case is chosen in
which the phase Y of n is assumed to be known, but the modulus

lnl and the.proper surface locus- SO(E) need to be reéovered as out-—
lined in Subsections (3.4.2), (4.3.5c¢) and (5.5.2b). Disregarding
second-order effects on truncation estimates (i.e. the dependance on
local incidence, polarization, aspect angle, etc.), the first-order
estimates on N and M may then be specified by analyzing the obtained
degree of accuracy in determining Inl, according to (3.4.12), and the
point on fhe proper surface locus, by computing the orfhogonality and
the normality conditions along any ray not coinciding with the back—
scattering direction. For each of the various different sets of ka

and n chosen, the recovery procedure is repeated by increasing the order




A

N of series truncation, and also the order M(=3,5,7 and 14) of the

truncation in significant figures of the expansion coefficients.

6.4.2 " NUMERICAL VERIFICATION

The influence of the series truncation on the accuracy of the ortho-
gonality condition is illustrated in Fig. 6.2 for the case ka = 5,

n = 2.0 emplbying single precision format for the expansion coefficients
and double precision format for the calcuiation of the field components.
From inspection of Fig. 6.2 it is found that there exists a lower

bound ‘Nz = 10, for which the proper minimum can still be distinguished
accurately, as well as' an upper bound Nu = 16 after which the effect

of additional series terms is negligible. It should be noticed that

as the order N of truncation is increased, the proper minimum becomes

- more and more pronounced, whereas the curves for x(=kR) > ka(=5) coalesce.

To analyse the specification of truncation bounds further, numerical

values of Y o= log{|A*B|, n = nSO}, Y o= log{|A-A-B*B|, n = nso}’ and
]nl are presented in Tables 6.1 and 6.2 for various differenf values of
n and for ka = 2 and ka = 5, respectively. Single precision format
was employed for the expansion coefficients. Careful inspection of

these tables indicates that it is useful to introduce three different

error bounds on the order of series truncation, i.e. Ns’ N0 . and N0 .
for which lnl can be recovered with an error of less than 5%, 0.5%
and 0.1%, respectively, so that the proper minimum in all of these cases

can still be discriminated uniquely. The additional effect of the trun-—

cation of the first M significant figures of the expansion coefficients
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TABLE 6.1
"ORDER OF TRUNCATION' ANALYSIS FOR A SPHERICAL SCATTERER OF ELECTRICAL RADIUS ka = 2.0 AND THREE DIFFERENT

VALUES OF IMPEDANCES n

Quantities, computed along the ray (8 = 30°, ¢ = 60°) within 1.9 < R(AR = 0.1) £ 2.1, are:
* A

lnl: root of (3.4,12)

where Y is assumed to be known, Y, = log {|aA

N: Order of series truncation

So

A -8B B3|, Y,=1og{|la «B[,n=n}

Target 1f |ng| = 0.99, Yo = 0° | Target II3 |n | = 0.25, Vg = 45° | Target III: |ng| = 4.0, Y = 60°
N v, oty U Y, PR . - -
N=d4 | 1.9 0.6674 1.3242 0.3049 -1.8536  -3.5207 0.2365 .- | 1.1507 0.5744 2.4909
2.0 | =-0.3906 0.9037 0.3915 -3.2718  -3.7760  0.2406 | 0.3587 0.0369 3.0342
2.1 | -0.6771 0.5326 0.4642 ~2.1598  ~2.8454 0.0981 0.9798  -0.3886 5.4156
Na=g 1.9 ~2.2690 =2.3150 0.9044+ |  1.9936 -2.4810 0.3556 1.2233 0.2609 2.7320
2.0 -3.2363 -3.3086 0.9757% | -4.1664  -4.6114 0.2515% | -1.5970  ~-1.4411  4.0769°
2.1 | -2.6985 -2.7140 1.0910 | -2.1248  -2,8381 — 0.8832  -0.0818 —
N=8 | 1.9 -2.3069 -2.3465 0.9081 .| -1.9260 -2.5035 0.3539 1.2286 0.2762 2.6913 _
2.0 | -5.1636  -5.2302 0.9902*% -5.3537  -5.8663 0.2499°1 | -2.7202 -2.8413 4.0030 "8
2.1 -2.5939 -2.6174 1.1220 | =2.1177 -2.8267 —- 0.8847  -0.0842 —-
N=10| 1.9 | -2.3065 ~2.3462  0.9081 | ~-1.9263  -2.5031  0.3540 1.2286 0.2769  2.6904
2.0 | - w - e 0.9900° % -7.5837 -7.8476 0.2500 | -4.9067  -4.6056 4,0000 "}
2.1 -2.5950  -2.6184 1.1216 | =-2.1180  -2.8271L - 0.8846  -0.0846 —
N =14 1.9 | -2.3065 -2.3462 0.9081 -1.9263  -2.5031  0.3540 1.2286 0.2769 2.6904
2.0 ~7.5258  =7.6507 0.9900 | -7.8268 -8.3777 0.2500 ~5.0664  =4.9792 4.0000
2.1 -2.5950 ~2.6184 1.1216 -2.1180  -2.8271 — 0.8846 -0.0846 —
N =16| 1.9 -2.3065 -2.3462  0.9081 | -1.9263  -2.5031  0.3540 1.2286 0.2769 2.6904
2.0 -7.5258  ~7.6507 0.9900 | -7.8368  -8.3777 0.2500 | -5.5435 -4.9792 4.0000
2.1 | -2.5950 -2.6184 1.216 -2.1180  -2.8271 — 0.88461  -0.0846 —

Superscripts i, .s, .1 indicate that ln[ is recovered with an error of less thamn 5%, 0.5%, and 0.1%, respectively

4
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TABLE 6.2
'ORDER OF TRUNCATION' ANALYSIS FOR A SPHERICAL SCATTERER OF ELECTRICAL RADIUS ka = 5.0 AND THREE DIFFERENT

VALUES OF IMPEDANCES 1

Quantities, computed along the ray (8 = 30°, ¢ = 30°) within 4.9 X R(AR = 0.1)_5 5.1, are: [n[ root of (3.4.12)

where ¢ is assumed to be known, Yl = lag {lé{ cA - B - B|,n= nSo}’ Y, = log {Ié' *B |, = ”50}
N: order of series truncation, .
Target I: lgsl = 0,01, bg = 30° Target II: Insl = 0.5, Yy = 60° .| Target III: lnSI = 2.0, bg = 0
R Y ¥ Inl Y ¥y Int |y ¥y Inl
N=26 4,9 ~1.6550 - 2.8455 0.8457 -1.1793 -1.3276 0.7267 ~1.2212 -1.6728 2.5527
© 5.0 -1.5950 - 3.0035 . 0.8033 =2.5774 ~1.5946 0.6454 ~1.5693 -2.2011 8.6745
“5.1 -1.2438 ~ 3.2793 0.6858 - =1.2078 -1.9952 0.5701 -1.4848 -1.3736 ——
N=28 4.9 ~1.5452 -~ 4,1566 0.2584 -1.2924 -2.0257 0.5694 - =1.0757 ~ -=3.1429 1.94825
5.0 ~3.0603 --4.1701 —— -2,8102 -2.5618 0.4740° -2.1483 - =3.2311 2.0561
5.1 -2.0173 - 3.8194 0.5546 -1.2893 -1.9726 0.3592 -1.9741 -1.9552 1.1004
N = 10 4.9 -1.6667 -~ 3.8703 0.4121 -1.2565 -1.8363 0.6125 » -1.1764 -2.1303 2.4664_5
5.0 -4.9774 ~ 5.1526 —-— -3.7908 -3.9809 0.5010 -4.0417 -4.5535 1.9974
5.1 ~1.8747 - 3.9460 0.4603 ~-1.2884 . -2.0277 0.3749 -1.9862 -1.6879 —
N =12 4.9 -1.6728 - 3.8405 0.4247 -1.2551 -1.8475 0.6103 | -1.1799 -2,1553 2.4317
5.0 -5.5450 ° - 6.0533 0.1230 ~4.3903 ~4.1572 0.4993"% ~4.4288 ~4.6333 1.9978
5.1 -1.8720 - 3.9676 0.4535 -1.2890 -2.0241 0.3742 ~1.9669 -1.6871 —
N = 14 4.9 ~1.6714 - 3.8440 0.4228 ~1.2551 -1.8446 0.6110 -1.1785 -2.1543 2.4345_1
5.0 ~7.0553 - 7.6268 0.1228 -5.6015 -5.5503 0.5000"? -5.8606 -6.0322 2.0000
5.1 ~1.8730 - 3.9654 0.4544 -1.2895 -2.0267 0.3749 -1.9702 -1.6886 —_—
N = 16 4.9 ~1.6714 - 3.8439 0.4228 -1.2551 ~1.8447 0.6109 -1.1786 ~2.1543 2.4344
5.0 ~7.8485 - 9.2808 0.0095"% -6.1455 -6.9517 0.5000 -6.7567 -6.7493 2.0000
5.1 ~1.8729 - - 3,9654 0.4544 -1.2895 -2.0266 0.3749 -1.9700 -1.6886 -—
N =18 4.9 -1.6714 - 3.8439 0.4228 | -1.2551 -1.8447 0.6109 -1.1786 - =2.1543 2.4344
5.0 -7.8499 ~10.3600 0.0100" % -6.1108 -6.9375 0.5000 -6.7128 -=6.7556 2.0000
5.1 -1.8729 - 3.9654 0.4544 -1.2895 02.0266 0.3749 -1.9700 - -1,6886 -—

» Tespectively

_ Superseripts s, .5, .1 indicate that ln[ is recovered with an error of less than 5%, 0.5% and 0.1%




on Ns’ N0 s and No is illustrated for M = 3, 5 and 7 in Table 6.3,

-1
employing spherical model scatterers of various electrigal sizes (ka =
1 and 2, 4, 6,....14, 16) and a set of values for ,nl, symﬁetrically
chosen about In[ = 1 within the range N = 0.02 and n = 50. First
of ali, it is observed that, as expected, Ns’ No-s and'No. increase
with increasing ka. - Furthermore, the least number N of expansion
coefficients, for any ka, is required for values of n close, but
not equal, to upity and 'Ns, No-s and No- increase as the standing

wave ratio

Ny

increases. As can be seen from Tables 6.1, 6.2 and 6.3, it is possible
to accurately recover In, and to uniqueiy discriminate the proper
locus for values of n almost equal to unity, zero or infinity. It
was noted that the bounds obtained with double~precision expansion co-
efficients.(M = 14) were identical to those obtained with single-precision
expansion coefficients (M = 7). Therefore, only values for M = 3, 5
and 7 are presented in.Table 6.3. This observation was found fo hold
also fqr those cases in which the standing wave ratio S approaches
infinity. 1In . addition, it was found that the order of magnituae of
individual expansion éoefficients evaluatea for different values of 'n
within the range 0 < 1n < », for one and the same electrical radius ka

is independent of 1.

In conclusion it can be said that as long as S < 5 and ka < 4, M= 3

is sufficient to accurately recover Inl and the exact point on the




o TABLE 6.3 .

Truncation Analysis of N and M
Analyzed quantities, computed along the ray (6=30°,¢=60°), are: |n| root of (3.4.12) where
Y is assumed to be known, Y1=log{L§‘§:§{§|,n=ns 1}, Y2=1og{|A°B,n=nS }. Bounds on order of
seriles truncation: Ns(]nl recovered with an errdr of less than 5%),&0.5(|n recovered with
an error of less than O.SZ),N0,1(|n] recovered with an error less than 0.1%). Order of
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proper surface, whereas for 5 < S < 10, ka < 20 and 10 f;S < ®© the
values M =5 and M = 7, respectively, are sufficient. The presented
trﬁncation error analysis indicates that the accuracy required in'
recovering the expansion coefficients could be within the realm of
presently available measurement techniques employing a matrix inversion

procedure 25,21 ].

6.5 RATE OF CONVERGENCE OF ANALYTICALLY CONTINUED FIELDS

To study the rate of convergence of the analytically continued fields,
the totél electric and magnetic fields are calculated using multipole
expansions which are given by (5.4.1) and (5.4.2), respeétively. The
térgets employed for this study.consist of spheres of electrical radius
ka = 0.5, n = 0, .25, .5 and .9 centered at 0 of Fig. 5.2. The
fields are first calculated with respect to the center O along the
arbitrary ray 0 - o'l(e = 45°, ¢ = 130°) and then with respect to

the translated origin 0' (kd = 1.0, eo = 45° and ¢0 = 130°) of Fig.5.2
along the same ray 0 - 0' using analytic continuation given by (5.4.3).
The results are presented in Table 6.4, where the values ofvmagnitude
and phase of Er ~ component of the scattered electric field age tabu-
lated in column 1 with respect to the expansion about 0, and in the
next three columns with respect to the translated origin 0' for different
orders of truﬁcation N=6, 10, 14 of n in (5.4.3);» Tﬂe series -
expansion of (5.4.7a) and (5.4.7b) for the spheres of electrical

radius ka = 0.5 and n = 0, .25, .5 and .9 were truncated at v = 6
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because the higher order expansion coefficients A(u,v) and B(u,V)

- were negligible. Similar calculations for different translation para—

meters kd, 60 and ¢é revealed that many more translation coefficients
af(m,n) and B(m,n) are required to express.the em fields accurately as
the computational point approaches the true surface of the scatterer

as is evident from inspection of Table 6.4. In particular, it was
found‘that the rate of convergence of the analytically continued

fields deteriorates as the maximum radius of tﬁe_sphere of convergence
dentered at 0'increases and the more mn deviates from 1. Therefore,
in applying the iBCs, it was found useful to successively reduce the
translafion'diétance 0 - 0' in order to reduce the radius of the maximum
sphere of convergence and hence to improve the accuracy of the continued
fields. Obviously, the rate of convergence will slow down further

if analytic continuation is applied to field expressions for multi-
body scattering as the rate of convergence of the associatgd total
field expressions is very slow. In parti;ular, the number of expansion
coefficients A(u,v) and B(u,v) in (5.4.7a) and (5.4.7b) depends on

the parameters of the configuration,‘especiallybthe electrical radius
of the minimum sphere enclosing the scatterers. It should be noted
that it seems possible to obtain more efficient formulations of vector
translation theorems (5ﬂ4.4a) and (5.4.4b) which possess a faster rate
of convergence, and further studies in finding such formulations are
required to reduce the extensive computer time for coﬁputing the trans-

lation coefficients.
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chapter seven

CONCLUSIONS

7.1 SUMMARY AND DISCUSSIONS

The inverse problem of electromagnetic scattering has been resolved,
in ﬁrinciple; using the concept of inverse boundary conditions. A
variety of methods of target portrayal, based on scattering center
concepts [ 4 ], comparison of monostatic-bistatic scattering cross-
sectiohs, target signature comparison [122], the physical optics ap-
proximation [vl9,67 ], the geometric optics approximation [63 ,1301],
etc. are treated in the literature. But all these methods involve
some basic approximations in their formulation and provide a suffi-
ciently accurate solution to the profile inversion of only perfectly
conducting shapes in the limit of high-frequency scattering. There-
fore, in order to invert the profile characteristics of perfectly and
imperfectly conducting shapes,given the total fields everywhere for a
Single operating freéuency.anywhere within the entire frequency spec-

trum, additional inverse boundary conditions were required.

A first attempt in this direction was made by Weston, Bowman and Ar
[139j where it was shown that the inverse condition -ExXE* 1is an exact,
ﬁecéssary condition but is not sufficient because it generates an in-
finite set of pseudo loci, in addition to the proper surface locus
So(g) of the perfectly conducting scatterer. Since this condition,

in general, requires additional inverse boundary conditions so that
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.the' proper surface locus can uniquely be discriminated without the
aid of the physical optics condition, other necessary and sufficient
inverse boundary conditions were sought. This search fésulted in the
straightforward cognizance that E+H = 0, E¥<H = 0 and E-H* = 0 [23].
The boundary condition E*H =0 1is an exact necessary and sufficient
condition for a point to lie on a perfectly electrié or magneticvcoh—
ducting surface except in those cases for whiqh E and H are intrin-
sically perpendicular to one another. The conditions E*H =0 and
E‘H* = 0 are exact, necessary but not sufficient because they gener-
ate an infinite set of pseudo loci in addition to the proper sufface
locus SO(E) and they are not independent of ExE* = 0 for the perfect-

ly electric conducting case and of HxH*=0 for the perfectly magnetic

conducting case [23“], respectively,

The next step was to search for inverse boundary conditions which can
be applied to specify the relative, averaged, local surface material
properties, i.e. 1, in addition to simultaneously specifying the size
and the exact surface locus of curvilinear scatterers of finite radii
of curvature. It was anticipated that at least three independent
.characteristic eduations are required to uniquely specify the size,

thé shape, and the modulus and phase of the relative surface impedance
n, which, however, need not independently be sufficient by themselves
[136]. 1In fact, global pﬁysical laws and concepts, as e.g. Heisenberg's
uncertainty prineiple[50,58}inherently implied, contradict the explicit
uniqueness of the inverse problems of electromagnetic scattering.

Namely, nature reveals in real time occurences that whenever decisions




of uniqueness in remote object specification are to be pérformed,
global laws of discrimination are implied. The problem of non~
uniqueness is also high-lighted in a most recent publication by Sleeman
[111] where be discusses the three-dimensional inverse scattering
problem for the Helmholtz equation. According to Muller [ 85] and
Wilcox [146], given a radiation pattern g(6,¢), the sources which
generate the field u must lie within a closed sphere of radius .
where r, is uniquely determined‘by-_g(6,¢). For axi-symmetric fields
Cotton [34 ] has recently given more precise information concerning

the location of these sources by usiﬁg entire function theory and func-
tion théoretic methods in the theory of partial differential equations.
Similar problems have been considered by Millar [77 ] and Weston,
ﬁowman and Ar [140]. However, in both these papers some a priori know-
ledge is assumed. Sleeman's main theorems [111] state that the scatter-
ed field may be thought of as produced by a set of equivalent sources
located on or within the surface of the scattering body. At points
outside the geometrical surface of the body, the field produced by
these fictitious sources is identical to the scattered field of the
body. These fictitious sources are not, in general, unique, although,
they are confined to some finite region of space. This non—uﬁiqueness
suggests that, in general, the solution to the inverse scattering
problem is non-unique. But, the hypothesis has been proposed in[136 ]
that the inverse boundary conditions, required to uniquely resolve the
inverse problem of electromagnetic scattering, may consist of a set of
independent, exact, necessary though not sufficient conditions; How-

ever, simultaneous application of these conditions provides a unique




solution to the problem of target characteristics inversion, given
the total near field expansions everywhere for one single operating

frequency only [23].

A logical approach in the search for such inverse boundéry conditions
was to critically review the properties of the Leontovich or scalar
impedance boundary conditions [ 82], since these conditions though
approximate, are hitherto, the simplest relations known to resolve
scattering from general imperfectly conducting shépes. The intuitive
attempt to invert these direct boundary conditions, resulted in the
astounding finding [136] that two basic vectér quantities,_é = ExE*
-NN*HxH* and § = NE*xH~-n*ExH*, exist which are orthogonél;_égﬁ = 0,
lie in the local scattering plane of a smdoth curvilinear scatterer
of finite radii of curvature, ﬁ{é = fi*B = 0, and are of identical mag-
“nitude A?= B2, Obviously, both the total electric and the total mag-

netic field expressions are required which was to be expected from

the basic definition of an intrinsic impedance.

To verify the validity of the sets of inverse boundary conditions of
Sections 3.2 and 3.3, a variety of targets comprised of mono- and two-
body circular cylindrical and spherical shapes have been tested numeri-
cally. For the cylindrical bodies, well established techniques of co-
ordinate transformation and analytic continuation have beén employed

to continue the em fields in the region within the minimum circle
enclosing the body. 'Three—dimensional analytic continuation has been

introduced to treat non-canonical shapes in spherical coordinates.




The perfectly electric conducting cases have been analysed first to
eliminate the inadequacies resulting from the continual application

of the approximate physical optics condition and to provide the numeri-
cal fundament for treating the more sophisticated imperfectly conduct-
ing bodies. To demonstrate the unidueness of the novel discrimination
procedure clearly, the imperfectly conducting case for known 1 was
treated first. 1In treating the case of partially complete a priori
given information, i.e. n =n%* or n = -n*, it was demonstrated that
this case can uniquely be resolved for the inhomogeneous and dispersive
bodies, given field data everywhere for one single operating frequency
-only. For the general case of a priori ﬁnknown n , the mono-body case
for homogeneous n was treated first proving that 1 ='¢onstﬂ and
So(g) can uniquely bé recovefed,given_data everywhere for one single
operating frequency only. The degeneracy condition was employed to
resolve this case. However, for the two-body case or for the case in
which the scattering surface about monostatic direction is concave,
the double?freduency checking procedure must be applied in which case
n -must be'assumed to be nondispersive, though, it could, in general,
be inhomogeneoué. In essence, it has been demonstrated that the con-
cept of inverse boundary conditions can effectively be applied to the
inversion of conducting_shapes, though for resolving the most general

cases an additional independent condition is required.

It is important to mention here that the tangentiality condition, i.e.
ﬁjA = fieB = 0, has not yet resulted in an independent relation. It

might be possible to combine the ideas of Weyl [144] with the tangentiality




condition to obtain another independent unique relationship for convex
sqrfaces. Namely, in Weyl's problem [144,91 ], one is given positive
definite quadratic form ds? defined at every point of the‘unit sphere
and the gxistence of a closed convex surface which may be mapped one

to one onto the sphere,so that its fundamental form in terms of the
pérameters on the sphere is '452,_is to be proved. The tangentiality
condition provides the tangent plane at each point of the quadratic
surface to help achieve uniqueness. Similarly in Minkowski's problem

[ 79,1141 which is also applicable only to convex surfaces, one is
given a positive function K(fi) defined on the unit sphere (here #@
represents the inner unit normal to the sphere), and the existénce of a
closed convex surface having XK(i) as its Gaussian curvature at.the point
on the surface where the inner normal is A » is to be investigated.
The fﬁnction K(fi) is assumed to satisfy the condition, which holds

~for any regular closed convex surface,

j K(f)A dw(f) = 0
where the integration is carried over the unit sphere with dw represent-
ing the element of area on the sphere. For this case the vector

D = AxB defines the direction of the normal which could be integrated ba-

sed oy Minkowski's idea to obtain possibly another unique relation.

As has been demonstrated in Sections 4.4 and 5.5, the proposed boundary
conditions ave found to provide. parameters of the scatterers whose
surface impedance 'is purely real or purely imaginary or complex. This

observation gives rise to the hypothesis that the intuitively established




inverse boundary conditioné could represent the degenerafe subset of

a more generalized set of basic unique electromagnetic vector quantities
iﬁplicitly prescribed in the definition of Maxwell's equations [117].

In particular, it is anticipated that A and B bear close affinities
fo a more generalized complex~conjugated formulation of Maxwell's electro-
dynamic stress tensor [17 ] when abplied across a bounding curvilinear
surface of finite radii of curvature. The third unique basic vector
quantity, say N, defined along the outward local normal, was not found
to result from the inversion of the Leontovich conditions (136,23 1.

This additional basic vector quantity, which intuitively should exist,
may result from the more general formulation resulting from the Maxwell's

stress-tensor approach.

7.2 CONTRIBUTIONS TO THE FIELD OF ELECTROMAGNETIC THEORY

The proposed inversion technique should be of great importance to the
basic problem of target identification. At present radar detection is
the only means to detect remote bodieé. In spite of all the sophisti-
cations introduced after the second world war, nobody has yet been able
to determine the material properties and exact profile of reméte objects.
We do not mean to suggest here that at the present stage of develop;
ment the proposed technique will resolve the problem. But with advance-
ment in technology the following set up is suggested tb achieve the

required goal.

A high-powered transmitter illuminates the target)and the total field
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is detected by the reéeiving stations,set up at locationé whose angular
bearings are optimized according to Boerner and Aboul Atta's | 21]
optimization procedure. The received data (the magnitude and phase of
the scattered field) goes to the central processing unit where the
scattering coefficients for thg target are calculated for the approp-
riate expansion of.thebfields using matrix inversion [25 ]. Now, the
inverse boundary conditions can be applied to the total fields to re-
cover the surface impedance and the profile of the scatterer, which

can be appropriately integrated into the éroper éhape fo be displayed

on the radar screen.

Using the same procedure, bodies of interest to the radio-astronomers
can be identified. Regarding the immediate contribution to the field
of em theory, Theorems 1 to 3 presented in Section 2.4 can be employed
even for direct scattering problems, éince all the em fields have to
satisfy the orfhogonality and normality conditions of the vectors A
and B , where vector B represents the reactive energy in a wave.
Moreover, since the proposed téchnique is based on rigorous Maxwell's
equations, it provides a method for checking any future apprdximate
methods, e.g; those based on the physical or the geometrical opties

approximations.

The results analysed in Section 6.4 reveal that a new dimension has
been added to the error analysis; the lower and upper truncation bounds
NZ and.Nu, respectively, depend upon the standing wave ratio among

other relevant parameters. The estimates on the lower and the upper




.truncation bounds may be obtained by the application of inverse bound-
ary conditions. The minimum number of terms,whicﬁ results in the re-
quired degree of accuracy for the calculated surface impedahce and the
profile7defines the lower bound N . The upper bound is defined by

the number of terms beyond which no significant improvement in the
solution is obtained. In fact, beyoﬁd a certain number Nmax’ the
accuracy of the solution will deteriorate because of stability criteria

" as analysed in Section 6.2,

The proposed inversion technique can. be employed in the design of
tomograbhic apparatus and eventual supplementation of the x-ray tech-
niques by microwave techniques [ 22, 16]. As a by-product, solutions
for multibody scattering for the case of cylinders and spheres with
arbitrary surface impedances have been obtained. Similar solutions
for perfectly cbnducting cases and dielectric materials are found in
the literature [ 92, 31]7but the case of arbitrary surfacé impedance

has never been treated before, though, the extension is simple.

7.3 NEW RESEARCH TOPICS ARISING FROM THE PRESENT WORK

The present research has raised a number of questions which have to

be answered for further development of the proposed inversion technique.

More detailed physical insight into the nature of the vectors A =
ExE*—nn*HxH* and B = nE*ggjn*Egg* is needed to interpret the reasons

for their orthogonality, equality and tangentiality to the surface of




the scatterer at all the points. The possibility of their use in the

direct scattering problems is to be investigated.

The concept of.inverse boundary conditions has been applied to the
canonical shapes of cylinders and spheres and certain non-canonical
sﬁépes liké multiple cylindrical and spherical bodies. But they have
still to be tested for many other non-canonical shapes, though, there

does not seem to be any doubt in their success in achieving the inversion.

In addition to the intrinéic problem of defining a third unique vector
quantity, the problem of estéblishing a general mini-max searching routine
which can be applied in practice, still remains an open question. The
search for such a unique mini-max discrimination technique, as proposed

in Rosenbrock [100], however, was not the subject of this study.

The implementation of the novel concept of inverse boundary conditions
stiil requires the resolution of the complicated problem of recover-
ing bistatic émplitude and phase information for the measured scattered
transverse field quantities to an accuracy required here. But taking
info consideration the rapid progress on how Fourier-optical, holo-
graphic and interferometric techniques are entering the field of
measurement data recording, storage aﬁd retrieval, the answer to this

vexed question does not seem to be far-fetched.

'The practical significance of the results presented in this work would

be greatly increased if the ideas of Weston and Boerner and those ideas,




suggested in this work, could be combined with those of Jull [59,60]
who had success operating on data obtained from actual measurement on

aerials [14].

In order to approach the problem of recovering the phase, one of the
usefulvapproaches would be to exploit the ideas of Refs. [12,97,93,
128]. 1In [128,93], Adriaan Walther proves that phése reconstruction

is possible and is unique if the aperture of the lens is fiﬁite. In
.[12,13], Bates shows that the unavoidable incompleteness and imperfec-
tions of a practical hologram do not prevent an approximate reconstruc—
tion of.the unknown source, although errors are ineVitébly introduced.

Examples of source reconstruction are given in the companion paper [13].

The extension of the proposed methods of profile inversion to the case
éf moving objects is to be carried out. An immediate effect of ailow—
ing the body to have an arbitrary linear motion is that TM or TE wave
normally incident in the 0 coordinate frame, in which the source and
the observer are stationary, results in a super—positioﬁ of TM and TE
waves obliquely incident in the 0' coordinate frame in which the body

is stationary [53,98].

To conclude, extensive research is still needed in the field of inverse
5cattering if the target identification of the general cohfigurations
with arbitrary surface impedance is to become a reality. By intro-

ducing the concept. of inverse boundary conditions for the profile




characteristics inversion of conducting shapes, a new diménsion has
bgen added to tﬁe solution of this intricate problem. It is, there-
fore, hoped that the modest contribution made by the present work will
open up new avenues which will help in the eventual sqlution of this

vexed problem.




10

11.

12,

13.

REFERENCES

Z.S. Agranovich and V.A. Marchenko, 'The Inverse Problem of
Scattering Theory', Translated by B.D. Seckler, Gordon and Breach
Science Publishers, New York and London, 1963.

H.P.S. Ahluwalia and W.M. Boerner, "Application of a set of in-
verse boundary conditions to the profile characteristics inver—
sion of conducting circular cylindrical shapes'", IEEE Trans. on
Ant. and Propag. AP-21, (5), 1973,

H.P.S. Ahluwalia and W.M. Boerner, "Application of electromagnetic
inverse boundary conditions to profile characteristics inversion
of conducting spherical shapes'", ° Radio Science, submitted.

J.L. Altman, R.H.T. Bates and E.N. Fowle, 'Introductory notes
relating to em inverse scattering', The Mitre Corporation, Bedford,
Massachusetts, Rep. SR-121, 1964,

G. Backus and F. Gilbert, "Numerical applications of a formalism
for geophysical inverse problems', Geophys. J. Roy. Astr. Soc.

13, 1967, 247-276.

G. Backus and F. Gilbert, "The resolving power of gross earth
data", Geophys. J. Roy. Soc. 16, 1968, 169-205.

G. Backus and F. Gilbert, "Uniqueness in the inversion of in-
accurate gross earth data'", Phil. Trans. R. Soc. A266, 1970,
123-192,

"R.C. ‘Bailey, "Inversion of-the geomagnetic induction problem',

Proc. R. Soc. 315, 1970, 185-194.

R.J. Banks, '"Geomagnetic variations and the electrical conduct-

- ivity of the upper mantle", Geophys. J. Roy. Astr. Soc. 17, 1969,

457-487.

R.B. Barrar and C.L. Dolph, "On a three-dimensional problem of em
theory", J. Rational Mech. and Anal. 3, (6), 1954, 725-743.

D.K. Barton, "Sputnik II as observed by C-band- radar", IRE

- National Convention Record;_z, Part 5, 1959, 67-73.

R.H.T. Bates, "Holographic approach to radiation pattern measure-
ment - I, General Theory", Inst. J. Eng. Sci. 9, 1971, 1107-1121.

R.H.T. Bates, "Holographic approach to radiation pattern measure—
ment - II,Experimental Verification", Inst. J. Eng. Se¢i. 9, 1971,
1193-1208.




14,

15.

16.

17.

© 18,

19.

20.

21.

22.

23.

24,

25,

26.

104

7 {,%.

e Curt

R.H.T. Bates, '"Inverse scattering for totally reflecting objects",
Arch. Rat. Mech. and Anal. 38, (2), 1970, 123-130.

R.H.T. Bates, "Towards estimating the shapes of radar targets",
The Institution of Engineers, Australia, Elec. Eng. Trans.,
Sept. 1969, 290-294.

R.H.T. Bates, "Towards improvements in tomography", New Zealand
J. of Science, 14, (4), Dec. 1971, 883-896.

R. Becker and F. Sauter, 'Electromagnetic Fields and Interactions,
Vol. I'(Electromagnetic Theory and Relativity, Translation of
'Theorie der Elektrizitat' by Abraham and Becker, Teubner Verlag,
Germany, 1940), Blaisdell Publ. Co., New York, 1964.

P. Beckmann and A. Spizzichino, 'The Scattering of Electromagnetic
Waves from Rough Surfaces', Intern. Series of Monographs on
Electromagnetic Waves, Vol. 4, The McMillan Company, New York, 1963,

N.N. Bojarski, ' Three-Dimensional Electromagnetic Short Pulse
Inverse Scattering', Syracuse Univ. Res. Corp., Syracuse, N.Y.;
Feb. 1967.

N.N. Bojarski, “Electromagnetic inverse scattering”, in Ref. 89,
6.34 - 6,47, -

W.M. Boerner and 0.A. Aboul-Atta, "General properties of the
scattered field matrix in spherical coordinates", Utilitas
Mathematica, 3, 1973, 163-237.

W.M. Boerner and H.P.S. Ahluwalia, "Application of em inverse
scattering techniques to 3-dim. image reconstruction", Intern.
Confer. on Med. & Biol. Engineering, Session 6, Dresden,G.D.R.,
August 1973, :

W.M. Boerner and H.P.S. Ahluwalia, "On a set of continuous wave
em inverse scattering boundary conditions', Can. J. Phys.
50, (23), 1972, 3023-3061.

W.M. Boerner and Y. Das, "On a classical approach to profile
characteristics inversion of conducting canonical shapes", Can.
J. Phys. 51, 1973. o

W.M. Boerner and V.H. Vandenberghe, '"Determination of the elect.
radius of a spherical scatterer from the scattered field", Can.
J. Phys. 49, (11), 1971, 1507-1535.

W.M. Boerner, F.H. Vandenberghe and M.A.K. Hamid, "Determination
of the elec. radius ka of a circular cyl. scatterer from the
scatt. field", Can. J. Phys. 49, (7), 1971, 804-819.




27. M. Born and E. Wolf, '"Principles of Optics', Pergamon Press,
New York, Second Edition, 1964.

28. J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, 'Electromagnetic
and Acoustic Scattering by Simple Shapes', North Holland Publ.
Co., Amsterdam, Netherlands, 1969.

29. C. Brindley, "Target recognition', Space/Aeronautics, 43, (6),
June 1965, 62-88.

30. J.H. Bruning, 'Multiple scattering by spheres', Ph.D. Thesis,
Univ. of Illinois, Urbana, Illinois, 1969.

31. J.H. Bruning and Y.T. Lo, "Multiple scattering of em waves by
spheres, Part I - Multipole expansion and ray-optical solutions',
IEEE Trans. Ant. and Propag. AP-19, (3), 1971, 378-390.

32. J.E. Burke and V. Twersky, "On scattering of waves by many bodies",
Radio Science, 68D, 1964, 500.

33. H.S. Cabayan, R.C. Murphy and T.J.F. Pavlasek, "Numerical stabil-
© ity and near field reconstruction", IEEE Trans. Ant. and Propag.
AP-21, (3), 1973, 346-351.

34, D. Cotton, "On the inverse scattering problem for axially symmet~—
ric solutions of the Helmholtz equation', Quart. J. Math., Oxford
Ser. 22, 1971, 125-130. . '

. 35. "R.K. Crane, "Atmospheric radar sounding", in Ref. 89, 2.13-2.22.

36. R.K. Crane, 'Cooperative scattering by dielectric spheres',
Technical Note 1967-31, Lincoln Lab., M.I.T., Lexington, Massachu-
setts, 1967. ' '

37. J.W. Crispin, Jr. and K.M. Siegel, 'Methods of Radar Cross-Section
Analysis', Academic Press, New York, 1968. : .

38. O0.R. Cruzan, "Translation addition theorems for spherical vector
wave functions", Quart. Applied Math. 20, 1962, 33.

39. G.A. Deschamps, "Ray techniques in electromagnetics', Proc. IEEE,
60, (9), 1972, 1022-1035.

40. A.R. Edmonds, 'Angular Momentum in Quantum Mecharics', (Princeton
Univ. Press, Princeton, N.J.), 1957.

41." 0. Einarsson, R.E. Kleinman, P. Laurin and P.L.E. Uslenghi,
'Studies in radar cross-sections, L-diffraction and scattering
by regular bodies IV: "The circular cylinder', Univ. of Michigan

-Radiation Laboratory, Rept. No. 7133-3-T, 1966.



42.
43,

44,

45,
46.

47.

48.
49,

50.

51.

52.

53.

54.

55.

L.D. Faddeyev, "The inverse problem in the quantum’ theory of
scattering", J. Math. Physics, 4, (1), Jan. 1963, 72-104.

A. Fedotowsky, G. Boivin and R. Tremblay, "Inversion of microwave
scattering pattern’, Can. J. Phys. 49, 1971, 3082-3094.

A. Freedman, "The portrayal of body shape of a sonar or radar
system', The British Institute of Radio Engineers, 25, 1963,
51-64.

M.S. Gazzaniga, "One brain - two minds?", American Scientist,

.60, (3), 1972, 311-317.

B. Gopinath and M.M. Sondhi, "Inverse of the telegréph equations
and synthesis of non uniform lines", Proc. IEEE, 59, 1971, 383-392.

G. Graf, "Analysis of the doppler spectrum of rotating objects",
Deutsche Luft-und Raumfahrt, Forschungsbericht 72-46, 1972,
165 pages, DK 535.338.4/538.56.

R.F. Harrington, "On the calculation of scattering by conducting
cylinders", IEEE Trans. Ant. and Propag. AP-13, (5), 1965, 812-813.

R.F. Harrington, 'Time Harmonic Electromagnetic Fields', McGraw
Hill Company, New York, 1961.

W. Heisenberg, ”ﬁber den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik', Zeitschrift fur Physik, 43, 1927, 172-198.

E. Hiatt, T.B.A. Senior and V.H. Weston, 'Studiesg in radar cross-
section XI - Surface roughness and impedance boundary conditions',
Univ. of Mich., Dept. Elect. Eng., Radiation Lab., Ann Arbor,
Rept. No. 2500-2-T, July 1960. .

D.A. Hill, "Inverse scattering from a perfectly conducting prolate
spheroid in the quasi-static domain", Can. J. Phys. 51, 1973,
219-222,

J.D. Hunter, "Electromagnetic scattering by a transversely moving
conducting cylinder of arbitrary cross-section'", Can. J. Phys.

51, (7), 1973, 699-706.

W.A. Imbriale and R. Mittra, 'A two-dimensional inverse scatter-

“ing problem', Antenna Lab.,Univ. of Illinois, Rept. No. 69-6,

May 1969.

W.A. Imbriale and R. Mittra, "The two-dimensional inverse scatter-
ing problem", IEEE Trans. Ant. and Propag. AP-18, 1972, 632-642.



56. J.E. Jackson, "The P'(f) to N(h) inversion problem in ionospheric
soundings', in Ref.89, 4.2-4,14,

57. D.S. Jones, 'The Theory of Electromagnetism', New York, McGraw-
Hill, 1961. :

58. G. Joos, 'Introduction to Theoretical Physics', Translated from
first German edition by Ira M. Freeman, Blackie and Son Limited,
London and Glasgow, 1934.

59. E.V. Jull, "An investigation of near-field radiation patterns
measured with large antennas', IRE Trans. Ant. and Propag. AP-10,
(4), 1962, 363-369.

60. E.V. Jull, "The estimation of aerial radiation patterns from
limited near field measurements'", Proc. IEE, 110, 1963, 501-506.

61. I. Kay, "The inverse problem for transmission lines", in Ref. 89,
6.2-6.17. - '

62. R.E. Kell, "On the derivation of bistatic RCS from monostatic
measurement', Proc. IEEE, 53, Part I, 1965, 983-992.

63. J.B. Keller, "The inverse scattering problem in geometrical optics
and the design of reflectors', IRE Trans. Ant. and Propag. AP-7,
1959, 146-149.

64, E.M. Kennaugh and D.L. Moffat, "Transient and impulse response
approximations", Proc. IEEE, 53, Part I, 1965, 893-901.

65. R.W. King, 'Transmission-Line Theory', Dover Public. Inc., New
York, 1965.

66. M.A. Leontovich, "Appendix of diffraction, reflection and reflec-
tion of radio waves', (13 papers by V.A. Fock, Eds. N. Logan and
P. Blacksmith, U.S. Govt. Print Off. Washington, D.C., Rept. No.
AD-117, 276.)

67. R.M. Lewis, "Physical optics inverse diffraction', IEEE Trans.
Ant. and Propag. AP-17, (3), 1969, 308-314.

68. R.M. Lewis,.'Short pulse inverse diffraction theory', Mitre Corp.,
Bedford, Mass., MTR-322, Nov. 1966 and supplement Jan.1967.

69. C. Liang and Y.T. Lo, "Scattering by two spheres", Radio Science,
2, (12), 1967, 1481-1495.

70. A.C. Ludwig, "Numerical check on the accuracy of the sphefical
wave functions", Electronics Letters, 8, (8), 1972, 202-203.



71.

72.

73.
74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

"
2
&2

T.M. MacRobert, 'Spherical Harmonics', Intern. Ser. of Monographs
in Pure and Applied Mathematics, 98, Pergamon Press, New York,
(3rd ed.), 1967.

'C.L. Mateer,"A review of some aspects of inferring the ozone

profile by inversion of ultraviolet radiance measurements', in
Ref.89, 1.2-1.25.

L.G. McAllister, "Acoustical radar sounding of the lower atmosphere",
in Ref.89, 2.2-2.11. '

L. McCulley, "Numerical methods for reduction of topside iono-
grams", in Ref.89, 4.27-4.36.

R.F. Millar, "On the Rayleigh assumption in scattering by a
periodic surface II", Proc. Cambridge Philos. Soc., 69, 1971,
217-225, :

R.F. Millar, "Rayleigh hypothesis in scattering problems",
Electronic Letters, 5, (17), 1969, 416-417.

R.F. Millar, "Singularities of two-dimensional exterior solutions
of the Helmholtz equation", Proc. Cambridge Philos. Soc. 69, 1971,
175-188.

R.F. Millar, "Some controversial aspects of scattering by periodic
structures", XVII General Assembly of URSI, session VI-5,
Warsaw, Aug. 1972.

H. Minkowski, "Volumen und Oberfliche", Mathematische Annalen,
57, 1903, 447-495. » -

R. Mittra and P.L. Ransom, "Imaging with coherent fields", present-
ed at the Symp. on Mod. Opts., Polytech. Inst. of Brooklyn,
March 1967.

R. Mittra and D.R. Wilton, "A numerical approach to the deter—
mination of electromagnetic scattering characteristics of perfect
conductors", Proc. IEEE, 57, (11), 1969, 2064~2065.

H.M. Mitzner, "An integral equation approach to scattering from
a body of finite conductivity", Radio Science, 2, (New series),
(12), 1967, 1459-1470.

H.E. Moses, "Solutions of Maxwell's equations in terms of a spinor
notation: The direct and inverse problem", Phys. Review, 113, 1959,
1670-1679.

P. Moon and D.E. Spencer, 'Field Theory Handbook', Springer-Verlag,
Berlin, 1961.




85.
86.
87.
88.

89.

90.

91.

92.
93.
94,
95.
96.

97.-

98.
99.

100.

C. Muller, "Electromagnetic radiation patterns and source", IRE
Trans. Ant. and Propag. AP-4, (3), 1956, 224-232.

C. Muller, "Radiation patterns and radiation fields", J. Rat.
Mech. and Anal. 4, 1955, 235-246.

R.C. Murphy, 'Inverse scattering by conducting circular cylinders',
M.Eng. thesis, McGill Univ., Montreal, P.Q. Canada, 1971.

T. Musha, "Electrodynamics of anisotropic media with space and
time dispersion', Proc. IEEE, 60, (12), 1972, 1475-1485.

Nasa Technical Memorandum, 'Mathematics of Profile Inversion',
Proc. of the workshop held at Ames Research Center, Moffett
Field, Calif. July 1971.

R.G. Newton, "Introduction to the inverse quantum scattering
problem", in Ref.89, 5.2-5.13.

Louis Nirenberg, '"The Weyl and Minkowski problems in differential
geometry in the large", Com. on Pure and Applied Math. 6, 1953,
337-394.

G.0. Olaofe, '"Scattering by two cyllnders Radio Science, 5, (11),
Nov. 1970, 1351-1360.

E.L. 0'Neill and A. Walther, "The question of phase in image
formulation", Optica Acta, 63, (10), 1962, 33-40.

R.L. Parker, "The Backus-Gilbert method and its application to
the electrical conductivity problem", in Ref. 89, 7.21-7.28.

R.L. Parker, "The inverse problem of elec. conductivity in the
mantle", Geophys. J. Roy. Ast. Soc., 22, 1970, 121-138.

A.K. Paul, "The mathematical physical problem of P'(f) to N(h)
inversion for anisotropic media', in Ref. 89, 437-449.

R.P. Porter, "Diffraction-limited, scalar image formulation with
holograms of arbitrary shape', J. Opt. Soc. Am. 60, 1970, 1051~
1058.

Robert C. Restrick, III, "Electromagnetic scattering by a moving
conducting sphere', Radio Science, 3, (12), 1968, 1144-1154,

C.D. Rodgers, "Statistical retrieval. techniques for sounding the
metereological structure of the atmosphere", in Ref.89, 1.26-1.35.

H.H. Rosenbrock, "An automatic method for finding the greatest
or least value of a function", Computer Journal, 3, Oct. 1960,
175-184.

Fuvmnie

%

R
i



101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114,

M.R. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, Jr.,
'"The 3-J, and 6~J Symbols', Technology Press M.I. T., Cambridge,
Massachusetts.

G.T. Ruck, D.E., Barrick, W.D. Stuart and C.K. Krichbaum; ' Radar
Cross~Section Handbook', Plenum Press, New York, 1970.

S.M. Rytov, "Computation of the skin effect by the pertur-
bation method", Zhur. Eksp. i Teoret. 10, (2), 180-189.
[Translation available from K.M. Mitzner].

P.C. Sabatier, "Review of the inverse scattering problem at
fixed energy in quantum mechanics'", in Ref.89, 5.14-5.32.

W.K. Sauhders,A"On solution of Maxwell's equations in an
exterior region", Proc. Nat. Aca. Sci., U.S.A., 38, 1952,
342-348.

T.B.A. Senior, "Impedance boundary conditions for imperfectly
conducting surfaces", Appl. Sci. Res. (Netherlands) 8b, 1960,
418-436. '

T.B.A. Senior, "Impedance boundary conditions for statistically
rough surfaces', Appl. Sci. Res. (Netherlands) 8B, 1960, 437-
462,

T.B.A. Senior, "A note on impedance boundary conditions"
Can. J. Phys. 40, 1962, 663-665.

T.B.A. Senior and G.F. Goodrich, "Scattering by a sphere",
Proc. IEE (London) III, 1964, 907.

L. Shafai, S.J. Towaij and M.A.K. Hamid, "Fast generation of
spherical Bessel functions with complex arguments', Electronics
Letters, 6, (19), 1970, 612-613.

B.D. Sleeman, '"The three-dimensional inverse scattering problem
for the Helmholtz equation", Proc. Cambridge Phil. Soc. 73,
1973, 477-488.

S. Stein, '"Addition theorems for spherical wave functions",
Quart. Appl. Maths. 19, (1), 1961, 15.

D.J. Stigliani, R. Mittra and R.G. Semonin, "Particle-size
measurement using forward-scatter holography", J. Opt. Soc.
Am. 60, (8), 1970, 1059-1067.

J.J. Stoker, "On the uniqueness theorems for the embedding of
convex surfaces in three-dimensional space", Com. on Pure and
Appl. Mathematics, 3, (3), 1970, 231-257.

(%

4w

P

iU



™
)

[
]

AN

115. J.A. Stratton, 'Electromagnetic Theory', McGraw-Hill, New York,
' 1941.

116. C.T. Tai, 'Dyadic Green's Functions in Electromagnetic Theory',
Scranton, Intext Educational Publishers, 1971.

117.. C.T. Tai, "On the presentation of Maxwell's theory'", Proc. IEEE,
60, (8), 1972, 936-945.

118. W. Trinks, "Zur V1elfachstreuung an kleinen Kugeln'", Ann. Phys.
Dtsch. 22, 1935, 561.

119. V. Twersky, '"Multiple scattering by arbitrary configurations
in three-dimensions', J. Math. Phys. 3, 1962, 83.

120. S. Twomey, '"The application of numerical filtering to the sol-
ution of integral equations encountered in indirect sensing
measurements", J. of the Franklin Inst., 279, (2), 1964, 95-109.

121. F.H. Vandenberghe and W.M. Boerner, "A system synthesis approach
to the inverse problem of scattering by smooth convex shaped
scatterers for the high frequency case', Radio Science, 5, (12),
1972, 1163-1169.

122, F.H. Vandenberghe, 'Aspects of inverse scattering from rotation-
ally symmetric bodies', Ph.D. dissertation, Univ. of Manitoba,
Winnipeg, Canada, R3T 2N2, 1972.

123. F.H. Vandenberghe and W.M. Boerner, "On the inverse problem of
' scattering from a perfectly conducting elliptical cylinder",
Can. J. Phys. 50, (17), 1972, 1987-1992.

124. F.H. Vandenberghe and W.M. Boerner, "On the inverse problem of
scattering from a perfectly conducting prolate spheroid", Can.
J. Phys. 50, (8), 1972, 754-759.

125, H.C. van der Hulst, 'nght Scattering by Small Particles',
John Wiley, New York, 1957.

126, J.R. Wait, 'Electromagnetic Waves in Stratified Media, Intern.
' Ser. of Monogr. on Electromagnetic Waves', Vol. 3, Pergamon
Press, The McMillan Co., New York, 1962.

127. J.R. Wait and C.M. Jackson, '"Calculations of the bistatic scat- e
tering cross—section of a sphere with an impedance boundary o
condition'", Radio Science, J. of Res. Nat. Bur. Stds., 69D,

(2), 1965, 299-315.

128. A. Walther, "The question of phase retrieval in optics', Optica
Acta, 62, (10), 1962, 41-49.



129,

130.

131.

132.

133.

134,

135.

136.

- 137.

138.

139.

140,

141.

142.

st

G.N. Watson, 'A Treatise on the Theory of Bessel Functions',
Cambridge Univ. Press, New York, 1966.

M.R. Weiss, "Inverse scattering in geometrical optics limit',
J. Opt. Soc. of America, 58, (11), 1968, 1524-1528.

V.H. Weston, "Inverse scattering investigation report No. 1",
The Univ. of Michigan Radiation Lab., Rept. No. 8579-1-Q,
April 1967.

V.H. Weston, "On the inverse problem for a hyperbolic dispersive
partial differential equation", J. Math. Phys. 13, (12), 1972,
1952-1956.

V.H. Weston, 'Theory of absorbers in scattering", IEEE Trans.
Ant. and Propag. AP-11, 1963, 578-584.

V.H. Weston, '"Some special cases of the electromagnetic inverse
problem", of Ref. 89 6.48-6.57.

V.H. Weston, W.M. Boerner and D.R. Hodgins, ' Inverse scatt.
investigation - Quart. reprot no.4', The Univ. of Michigan
Radiation Lab. Rept. no. 8579-4-Q, ESD-TR-67-517, IV, Feb. 1968.

V.H. Weston and W.M. Boerner, 'Inverse scattering investigation,
Final report', Univ. of Michigan, Contract AF-19 (628)-67-C-0190,
April 1968.

V.H. Weston and W.M. Boerner, "An inverse scattering technique
for electromagnetic bistatic scattering", Can. J. Phys. 47,
(11), 1969, '1177-1184.

V.H. Weston and J.J. Bowman, "Some remarks concerning the design
of absorbers in the resonance region'", IEEE Trans. Ant. and
Propag. AP-13, 1968, 467-468.

V.H. Weston, J.J. Bowman and E. Ar, 'Inverse scatterlng investi-
gation', Final Report, Univ. of Michigan, Contract AF-19 (628)—
4884, 1966.

V.H. Weston, J.J. Bowman and E. Ar, "On the electromagnetic
inverse scattering problem", Archive for Rational Mechs and
Analysis, 31, (3), 1968, 199-213.

V.H. Weston and R. Hemenger, "High~frequency scattering from a
coated sphere", J.Res. Nat. Bur. Stds., 66D, 1962, 237-244.

V.H. Weston and R.J. Krueger, '"On the inverse problem for a
hyperbolic dispersive partial differential equation II", J.
Math. Phys. &, (3), 1973, 406-408.



203

[N

143.  H. Weyl, "Die matiirlichen Randwertaufgaben im Aussenraum fur
Strahlungsfelder beliebiger Dimension,beliebigen Ranges",
Math. Z. 56, (12), 1962, 105-119.

144, - H, Weyl, "Uber die Bestimmung einer geschlossenen konvexen
Fliache durch ihr Linienelement", Vierteljahresschrift der
naturforschenden Gesellschaft, Ziirich, b1, 1916, 40-72. o

145. R.A. Wiggins, "Monte Carlo inversion of seismic data", in
Ref. 89 , 7.2-7.9.

146, C.H. Wilcox, "An expansion theorem for em fields", J. Rat.
Mech, and Anal. &4, 1955, 235-246,

147. D.R. Wilton, "The new numerical approach to the calculation
of em properties of two-dimensional bodies of arbitrary cross-—
section", Ph.D. dissertation, Univ. of I1linois, Urbana, I11.,
1970. :

148. D.R. Wilton and R. Mittra, "A new numerical appraoch to the
calculation of electromagnetic scattering properties of two-
dimensional bodies of arbitrary cross—-section', IEEE Trans.
Ant. and Propag. AP-20, (3), 1972, 310-317.

149. N.R. Zitron and S.N. Karp, "Higher-order approximations in

multiple scattering; II. Three-dimensional scalar cases",
J. Math. Phys. 2, 1961, 402,

Additional References:

150. P, Blacksmith, Jr., R.E. Hiatt and R.B. Mack, "Introduction to
radar cross-section measurements', Proc. IEEE, 23, (8), 1965,
901~920.

151. J.W. Crispin,Jr. and A.L. Maffett, "Radar cross-section est—
' imation of complex shapes", Proccedings IEEE, 53, Part I, 1965,
972-982. '

152. F.G. Friedlander, 'Sound Pulses', London, Cambridge Univ. Press,
1958.

153, A.C. Ludwig, "Calculation of orthogonal function expansions from
imperfect data", Technical University of Demmark, Laboratory of
Electromagnetic‘Theory report R-102, 1972.

154, A.C. Ludwig, '"Near-field far-field transformations using spherical
wave expansions', IEEE Tranms., AP-19,-1971, 214-220.

155, C. Muller, 'Mathematical Theory Of Electromagnetic Waves', Springer-
Verlag, 1969. : '



appendix A.1

SCALAR AND VECTOR PRODUCT OPERATIONS ONTO THE FOUR COMPLEMENTARY

FORMULATIONS OF THE LEONTOVICH CONDITION

The relationships resulting from scalar and vector produét operations
of (2.3.1) to (2.3.4) onfo one another are presented in detail in this
appendix. For conveﬁience of representation, the total magnetic field
ET is normalized with respect to the total electric field E =-ET by
the free-space intrinsic impedance ZO so that H = ZWE and equations

T
(2.3.1) to (2.3.4) assume the following forms [136, 23]:

I :{[E- (A-B)A] - nfi x H} = 0

IT: {Exf- nlH- A - DAl} =0

III = I* :{[E* -(A - E*)A] - n*i x H*} = 0
IV = II* :{E* x i - n*[H* - (& *+ B*)Al} = 0

Scalar Products

I+« TIor II » I

¢ = (BE) - B = BB)? - n?@-m? (AL.1)

nfi* (ExH) = (A*E)® - (B°E) = n*(A+H)? - n®(H'H) (A1.2)

or

I*eI* or IT**II%*
- A A O )
ck = (E*E*) - Y (H*H¥) = (n-_E_*)2 - n*Z(n.Ezc)Z (A1.3)

n*fe (B¥xH*) = (_ﬁ.E*)Z - (E**E*) = n*z(ﬁ'ﬁ_"‘)z - n*z(ﬂ*'l_l*) (AL.4)




or

c';'c = (BE%<E*) + nx2 (H*-H*) = [(ﬁ.E*)Z + n*2 (ﬁ.ﬁ:‘c)z] - 2n*fie (E*xH*)

I « ITI and T*<II%*

d

M (EB) = 2n(+E) (AT (A1.5)

d*
1

ZH*(_@*'_}I_*) = 20*(ﬁ°§*) (ﬁ.E*)

I » I% or II-II*

(AxE) « (AXE*) + nn*(fixH).(Axl*) + n*f- (EXH*) + ni- (E*xH) = 0  (Al.6)

or .
a = (B'E*) + m¥*(H-H*) = [(f-E) (+E*) + nn*(fi-H) (A*H*)]
- A {n(E*xH) + n*(ExH*)
fie A=1f - {nE*=xH) - n*ExH*)} = 0 ' (A1.7)
(AxE) * (fxE*) - mn* (fixH) + (AxH*) = 0 | (A1.8)
or |
a_ = (E*E¥) - m*(#-H*) = (A°E) (A*E*) - nn* (A-H) (A-H*)

1

I+II% or I*-II

(ExE*) i + nn* (Hxdi*) -f + n(AxE) * (BxE%) - n* (Rxli*)* (AxE) = 0 (AL.9)

or
b= M@ - n*@EED] = [NEES @B - n* (@ E) (Br50)]
- A {(ExEF) + () }
fieB = A+ {(ExE*) - nn*(HxH*)} = 0 (A1.10)
n(AxH)+ (AXE*) + n* (AxH*) - (AxE) = 0 | (A1.11)
or

b= n(EH) + n*(g{g#) = n(f*E%) (fi*H) + n*(fE) (A*H*)



Vector Products

I x I* or II x II*
fis {(BxE*) + nn*(HxH*)} = {n*(AxE) - (%) - n(AxE*)- (ixH)} (A1.12)
N(AxE*)« (AxH) = -fi. (ExE*) = -nn*f- (HxH*) .‘. (A1.13)
n* (AxE) * (AxH*) = fie (BxE*) = nn*f- (Hxi*) (A1.14)
{n*(fxE) « (fixH*) - n(8xE*)- (AxH)} = éﬁ-(@@*) = 2nn*(HxH*)+f  (Al.15)

I x II* and I* x IT

AL (AxE) * (RxE*) + Tn* (fixdl) + (BxH*)} + n(AxE%) x (AxH) + n* (Exi¥)

+ *[(ExE*) x A] x A = 0 (A1.16)

- A{(8xE) - (AxE*) + nn* (fixH) « (AxH*) } + n*(AxE) x (AxH*) + n(E*xH) |

+n[(E*xH) x ] x A = 0 (A1.17)
n(AxE*) x (fxH) - n*(AxE) x (AxH*) = fi [n(E*xH) - n*(ExH*)]d = 0 (A1.18)

I*# x IT -~ I x II*

[n(E*xH) - n*(ExH*)] = f x {[nE*xH) - n*(ExH*)] x i}  (Al.19)
where ‘ ‘
[N(E*xH) - n*(ExH*)] = [E*x(Exfi) - E x (E*xfi)]

+ mn{ (A+B) [(AxE*) x A] - (R-H%) [ (AxH) x 4]}

[(B*R)E - (ER)E*] + nn*[ (H-A)B* - (H*-A)H]

fi x [(ExE*) - nn* (HxH*) ] | (A1.20)

i

[(ExE*) - nn*(He*)] = {n*[Ex(AxH*)] - n[EX(_E_*xﬁ)}

+'{(ﬁiE*)E %x fi - nn*(ﬁ°ﬁfl§ x A}

= A{[(E*-B)n+ n*(E-H*)] - [n(R-E*) (R~H) + n*(R-E) (R-H%)1}
“~ — d

. Z 0 according to (Al.11)




+ {IN@-E)H - n(B-H)E*] - [n*(A+E)H* - n*(A-H*)E]}

= NE*xH( - n*ExH*)] x 6 (A1.21)

This concludes the derivation of scalar and vector product operations
which result into the following important identities according to

(A1.17), (AL1.10), (Al.18) and (Al.19). to (A1.21)

0>
[ =
i

= fie [(ExE*) - nn*(HxH*)] = 0 (A1.22)

il
o

(=Y
| oo
I

fie [N (E*xH) — n* (Ext*)] (A1.23)

[
i}

Ii

(ExE*) - nn*(HxH*) = [n(E*xd) - n*Ex*)] x f = B x fi (Al.24)

and

| oo
]

n(E*gH) ~ n*(ExH*) = fi x [(ExE¥ - mn*(HxH*)] = 4 x A (AL.25)

Thus A and B represent two orthogonal vectors which lie in the

local tangent plane of the scatterer so that
AB=20 (Al1.26)

and its cross product D = A x B is purely real vector directed along
the outward normal @ of the scatterer,
Further details of derivation are presented in Weston and Boerner [136]

and in Boerner and.Ahluwalia [23] to which the reader is referred.



- appendix A.2

COEFFICIENTS OF EQUATION (3.4.14)

The coefficients of the characteristic equation

e tan*y + e tan’y + e tan®P + e tanp + e =0
1 2 3 4

5

can bevcalculated,as is shown in Boerner and Ahluwalia [23] as

fl

e

s = 4@ dddE-d)

+ 2@ab) (2:0) (b )

1]
1l

Ba+d) (b+d) (drc)

- (@2 d)b-d) - (bb)(ad)(ard)

(A2.1)

+ 4(ard) (d+d) (bec) + 4(bed) (d=d) (ar )

+2(asb) (a*d) (b+c) + 2(a*b) (b+d) (asc) -2(b+b) (a-d)(asc)

2(a+a) (b ) (be¢)

e, = 8lard)(d-c)(bro)
+ 4(cec)(a-d) (b-d)
+2(arb) (22 ) b D)

+2(ab) (o) (are)

e = 4(cec)(ard) (gfg)

+ 2(a-p) (a-d) (b- <)

- 2(2:2) (b (ko)

e, = 4l by fane)

+ 2(2b) (b0 (a-0)

(A2.2)

+

8(b-d) (d-c) (ase) + 4(d-d) (br2) (are)

(a28) (b d) o+ d) = (b+) (a-d) (ard)

(a-a)(b=c) (b2c) - (brb)(arc)(arc)

(A2.3)

4(ere) (brd) (ase) + 8(dre) (b0) (are)

-+

+ 2(arb) (brd) (are) - 2(b-b) (ard) (arc)

(A2.4)

(2:2) () (000) - (brb) (ave) (are)

(A2.5)
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where

a=-3ExE), b=-JExB), c=2[@E xB + (@ x 5]
aﬁd

d=5I[E x B9 - x B)]

all being vector quantities.




appendiz A.3

COEFFICIENTS OF ADDITION THEOREMS

The possibility of obtaining the em fields in the vicinity of the
three-dimensional scatterer accurately and optimally depénds upon
- . . . i) mn
efficient computation of the translation coefficients Auv and Buv
of (5.4.5a) and (5.4.5b). Equations (5.4.5a) and (5.4.5b) involve
coefficients a(m,n,u,V,p) defined by the linearized expansion

P:(X)PB(X) =) a(m,n,u,v,p)p§+u(x) | (A3.1)
. 5 .

where p extends from lnhvl to ln+v| with integer steps‘of 2, The

coefficients a(m,n,U,Vv,p) in turn are defined by [38 ]

' /2
o (7t (otm) ! (i)t (pmm—p) L !
amn,u,v,p) = CDTRCHD) [T S e T
n v p ) (11 vV p ) . |
0 0 0 — (A3.2)
I jz js . . .
where nom -m —m is the Wigner 3-j symbol[40,101].0ut of many

1 2 12
different representations for 3-j symbols, Van der Waerden's definition[40]

is the most convenient for the present discussion and is given as

A .\ n-Vv-m-J
= (-1)
m U -m-y

I (n+v—p)!(n—v+p)!(-n+v+P)!(n+m)!(n—m)!(v+u)!(vfp)!(ng)!(p+m+p)!(p—m—u)!]1/2
(n+otp+I)! '

T (=1 [t (nebv=p=k) 1 (n=mm-k) ! (vhk) ! (p-vimrbe) ! (pempi=k) 117 %

k
(A3.3)
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s

Because of the multitude of factorials appearing in above definition
of 3-j symbols, calculation of (5.4.5a) and (5.4.5b) using (A3.3) is
highly inefficient. The following three-term recursion formula re-—

duces the computation time considerably

a(m,n,u,v,p)ap + a(m,n,u,v,p—Z)quz + a(m,n,u,v,p—4)ap_4,= 0 (A3.4)
where
0 = =(2p=5) (p4m ~1) (whvp+l) (=nkvp) [ (p-v=3)p=m(v+1) ]

{[(P+m3)(n+V-P+l)(n—V+p)(u(P+V)+m(V+l))]/

[(2P+l)(v-u+l)((mQU)P(p-l)~m3(n—V)(n+v+l))]}

Oy = (22=1) (2p=5) (WD) [(@mit) (p=1) (p-2)-m_(n-V+1) (rbvi2) ]
= (2p-1) (p=m -2) (n+v-p+4) (n=vp=3) [ (p+V) +m(vHL) ]
{l(otm -2) (nhv-p+3) (a=vtp=2) (u(pHv-2)4m(v+1)) 1/
[(2p=3) (v-1+1) (1) (p=2) (p=3)-m_(n-v) (mv+1)) 1)
= (2p=5) (p+m_-1) (whv+p+1) (-t vp) [ (p-v=3)p-m(v+1) ]

{I (p—mg-l) (-n+vt+p-1) (otvtp) (W (p-v-1)-m(Vv+1)) 1/

[(ZP-3)(V-U+l)((mfu)P(P-l)-ms(n-V)(n+V+l))]}

. (2p-1) (p-mséz ) (otv-p+4) (n-v+p-3) [ (p+v) +m (v+1) ]
{ [(p—m3—3) (—ntv+p-3) (ntv+p=2) (u (p-v-3)-m(V+1)) ]/

[ (2p~7) (u—p+1) ((m-p) (p-2) (p-3)-m3 (n~v) (nty+1)) ]}



In using (A3.4) backward-recursion is used with starting values given

by [ 30].
_ @on-D)1Y2u-)1t (ntv-mg) !
a(m,n,u,v,ntv) = (2nF2v-1) 11 (a-m) ! (V) !
and
(2n+2v-3)

BV m2) = Y Bo-1) (nv-my) - 1)

{(n+v—l)[nv+mu(2n+29—l)]—m3[vm(Zv-l)+nu(2n—D]}a(m,n,v,u,n+V)

(A3.5)

For the special case of translation along the axis, the coefficients

AES and Bﬁg attain the simple form
Ty = (DT ] @D -]
a(m,n,—m,v,p)Zpr (kd) | (A3.6)
R CEbi 55%%%{%) g jp(ijkd)a(m,n,-m,v,p)zgr)(kd) (A3.7)

where r = 1 for exterior expansion and r = 3 for interior expansion.

The recursion formula for computing a(m,n,—m,v,p)ﬁas given in Bruning

and Lo [31 ]7is

-— - 2 =
| ap—Bap—4 (OLP_2+OLP_l 4m )ap_2+ocpap 0 | (A3.8)
where
ap = a(m,na-m9\)9‘p)
a_ = c(p)e(-p) _ ‘ (A3.9)



and

c(p) = (ntv+p+1) (n-v+p) . . (A3.10)

1
2ptl

The two starting values are

_ @on-1)1rv-0)11 (n+v)!

oty T T (@nt2v-1) 11 (n-m) ! (vtm) ! (A3.11)
2n+2v-3
“ntv-2 T (20-1) (2v-1) (a+V) [Vn-m2(2n+2v-1)]an+v (A3.12)

Many other relevant recursion formulae are given in the Appendices

of [ 38,30 1.
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appendix A.4

SUMMARY OF CABAYAN, MURPHY AND PAVLASEK'S ANALYSIS [33]

Application of the Helmholtz theorem [57 ] to a source-free region
outside the minimum circle C (Fig. 4.3) of radius ra';results in the
following integral equation for the far-field pattern function g(¢)

2T e _
g(p) = kr J £(8) Y] de | (A4.1)

where £f(8) represents the field on the circle C and G is the

Green's function of the first kind that vanishes on C and is given
by [ 1]

(0,9) ='Z% g Hil)(krl)[Jn(kr)+an§1)(kr)]exp[jn(6—¢)] (A4.2)

where

c, = —Jn(kra)/Hél)(kra) (A4.3)

The normal derivative 3G/3(kr) at r = r_ is,

a
: (1), .
: H (kr )
2G _ 1 n . _ .
360 |, T, L gy SR el ey
“fa a n Ta ‘
Substituting (A4.4) dinto (A4.l% we obtain
Loooaary o
g(d) = 5= ) ( 1 [ £(®)exp[jn(6-9) 1 ao (A4.5)
0

n Hnl)(kra)

. Defining a_ and b_ as
n n
2m

1 .
a =5 f £(6) exp (jnb) do
0



and
| (1)
. Hn (krl)

n 4 (1)
Hn1 (kro)

"the far field pattern function becomes

g(@) =) b exp(~in¢) (A4.6)
n

Due to measurément and numerical quadrature erroys involved in the
reconstruction, . an upper bound is inflicted on the number of coeffi-
cients to be used in the series expansions of (A4.6). To simplify
the anaiysis, Cabayan et al,introduce operator notation to relate

the fields g and £ wvia the operator T
g = Tf ‘ A&.7)

where the operator T is defined by (A4.5).

The numerical form of (A4.7) is written as
Ax =y + ¢

where A, x and y are the discrete forms of T, f and g, respectively,

and € is the total equivalent error vector.

The eigen~values of this problem can be determined directly for T*T

from the eigen-value equation

THTG_ = A ¢

nn

(A4.9)




Substitution of T from (A4.5),results into

1 IHr(ll)(krl)IZ 2m |
T*I¢_ = T?.Fg 2D ey ¢ (8)exp[in(6-6')] do (A4.10)
n a

With the trial-eigen-functions given by ¢n = exp(-jnB), (A4.10) yields

the following expression for the eigen-values Kn

)
)|

n = Ay S (A4.11)
|Hn (kra)l



