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ABSTRACT

The inverse problem of scattering, also knov¿n'as profile inversion, is

encountered ín many areas of Science, e.g. Quantum Mechanics, Electro-

magneËic Theory, Geophysics, Roentgenology, eËc. Regaråless of the

particular measurement Ëechniques and the wavelength band, the maËhe-

matical problems encountered are similar in that they result in the ín-

ùersion of associated integro-differentíal equations or of equivalent

formulations.

In the presented study, the inverse problem of electrornagne.tic scatter-

ing is treated using the novel eoncept of inverse boundary conditions.

The target characterisËics of unknown tr¡/o- and three-dimensional scaL-

terers need to be determíned from the knowledge of the incident and

the scaËtered fields, given everywhere ín Èhe vícinity of the scaËterer,

assuming that the laws governing the interaction satisfy the Leontovích

or scalar boundary conditions. The novel set of inverse boundary

conditions (IBCs), resultíng from the inversion of the Leontovich

boundary condíËíons, is employed to recover the electrj-cal síze, the

surface locus S o(r) and the averaged local surface impedance n(r)

directly from the Ëotal near field e:ipressions which are assumed Ëo

be given in the Sommerfeld region so thaË they can be computed every-

where. Of particular importance is the cognizance that a set of exact

independent necessary and r,ot LocaLLy hut gLobaLly sufficienË inverse

boundary conditions (iECs) exists and is required to uniquely resolve

the electromagnetic inverse problem of scatt,ering by conducting shapes.



I1

The analysis is verífied by numerical computation for cylindrical and

spherícal mono- and two-body configuratÌons assuming arbitrarily polar-

ized plane ülave íncidence. Coordinate tïansformaÈion and analytÍc con-

Ëinuation Èechniques, well established for cÍrcular cylindrfc wave

functions' are employed to recover Èhe characteristic parameters for

those regíons of the scatËeïing surface which 1íe within the mínímum

cj-rcle enclosíng Ëhe scatterers. Three-dímensional analytic cont.in-

uation is introduced to verify the applícability of the novel set of

IBCs t.o the most general three-dímensional configurations. The theor-

etical analysis of analyLic contínuation and two-body scatËering in

two- and three-dimensíons is supplementedrwhere particular emphasis

is laid on an analysís of errors which are caused by coordinate origin

displacemenË, series truncation, numerical quadraËure and measurement

uncertainËy of Fourier coefficients.

The presenËed resulLs demonstrate that the inversion of Ëhe conducËing

multibody problem can uniquely be resolved thus proving Ëhe importance

of the novel Ansatz (IBCs) introduced to the ínverse theory of electro-

magnetic scaËtering. As a by-product, the direct scatËeríng solutions

to the two-cylinder and two-sphere problems with ímpedance boundary

conditions have been obtained. A novel truncation approach for em-

ploying vector wave functions in analytic conËinuation based on the

concept of inverse boundary conditions has been proposed which should

also be of relevance to direct scattering problerns.

trn essence, the hypothesis is set forth that an entírely new approach
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.t.o the general inverse problem of scattering must be undert,aken in

case ËhaË more than one of the many characteristícs are to be deuer-

nined simultaneously. Namely, Ëhe Ansq.tz of exact independent necessary

not LoeaLLy but gLobaLly sufficient inverse boundary condítions, whose

exístence has been uniquely proved for the electromagnetic casercould

open up neqr avenues of aËtaining deepêr insight into inverse problems

Ín oËher areas of Science.
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RESI]ME

Le problème inverse de la diffusion se recontre dans de nombreuses

discíplines scientifiques telles que la mécanique quantique, 1télectro-

magn6tisme, la g6ophysique, la Roentgénologie, etc... Quelles que soÍent

1e technj.ques de mesure et 1es longueurs dronde considerées, les prob-

lèmes maÈhénatiques renconËrés sont conmuns du faiË qutils résultenË

dtune inversion des áquations ínËegro-dÍff6rentielles associées ou de

formulatíons équivalentes .

Dans la présente étude, le problème inverse de la diffusion 61ecËro-

magnátique esL traíté, en uËilisant le nouveau concept de conditions

inverses de passage. Les caractéristiques de cible de dí.ffu.seurs

incor¡nus à <ieux ou trois dimensiors doivent être détermínées à partir

des champs incidents et diffusés connus au voisinage du diffuseur

en supposant que 1es loj-s dtinteraction satísfont les conditíons de

passage de Láont.ovích ou scalaíres. Le nouvel ensemble de conditions

de passage (rscs), résultant de ltinversion des conditions de passage

de Léontovích, est utilisé pour retrouver la dímension électrique,

la forme de la surface díffusante S^(r) et la valeux moyenne locale0-

de ltimpédance de surface n(l) directement à partir des expressions

du champ proche Ëotal,quí sonË supposées donn6es dans la région de

sommerfeld telles qurelles puissent être ca1cu1óes de partout. rl est

Èrés important de noter lrexist,ence dtun ensemble de condítions inverses

de passage exacËes, indápendantes et globalement (non localement)

suffÍsantes (IBCs) qui sonË nécessaires pour donner une solution



unique au problème inverse de la diffusion paï corps. conducteurs.

Lfanalyse est verifiée par calcul numérique dans 1e cas dtun ou deux

cylindres ou sphères, en supposant une onde plane de polarisation

arbitraire. Les techníques de transformation d.e coordonnées et la

déterrninaËion analytique de proche en proche bien établies pour une

fonction d!onde cyLindrique círculaire sont utilisóes pour retrouver

les parametres caract6ristíques pour J-es régions de 1a surface diffusante

qui- se tïouvent à Itintéríeur du plus petit cercle entouranË les

diffuseurs. Une détermÍnation de proehe en proche à trois dimensions

est íntroduiEe pour várifier lrapplicabí1íté du nouvel ensemble de

conditions de passage inverses (IBCs) au cas le plus g6nâraL, celuÍ,

drune configuration à Ëroís dímensíons. Lranalyse th6orique du calcul

de proche en proche et la diffusion par deux corps à deux ou troís

dimensions est supplé6e lorsque lron aËtache une importance particulíère

à ltanalyse des erreurs dues à un d6placement drorigine des coordonnées,

une troncature de série, une quadrature num6ríque et à une mesure

Íncertaine des coefficíents des s6ríes de Fouríer.

Les r6sultats présentés prouvent que ltinversion du problème du con-

ducteur rnulti corps a une solution unique prouvant ainsi ltimportance

du nouveau concept (IBCs) inËroduit dans la théorie inverse de la

diffusion électromagnétíque. En résultat secondaire, 1es solutions

'de la diffusion directe pour les problèmes des deux cylÍndres et des

deux sphères avec. une impédance aux conditions de passage, ont 6tê

obËenues. Une nouvelle approche de troncaËure pour utÍliser une fonction



d'onde vecÈorielle dans la détermination de proche en proche, basáe

sur le concept des condíËions de passage inverses a été proposée; elle
serait égalernent en rapport avec les problèmes de diffusion directe.

Par nature même, lrhypoËhèse est pos6e selon laquel1e une approche

enËièrement nouvelle du problème inveise de 1a diffusion doit être

engag6e dans 1e cas òu plus dtune d.es nombreuses caractórisËiques

doivent être déterminées simultanément. En particulier, 1e concept

de conditions inverses de passage, exacËes, indépendantes, nfcessaires

et globalement (non localement) suffisantes, dont liexistence a 'et,e

dérnontrée être unique dans le cas de la diffusion 61ecËromagn6tique,

pourraít ouvrir de nouvelles voies à une meilleure approche du problème

inverse de la díffusion dans dtauËres domaines de 1a science.
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ZUSAMMENFASSUNG

Das inverse Problem der Streuung spielt in vielen, wenn nicht gar al1en

Fachgebiet.en der NaturwissenschafË eine zunehmend bedeutendere Rolle,

wie z.B. in den Fachbereichen der Quant.enmechanik, der elektro-

magnetischen Theorierder Geophysik, der RöntgenologÍe, u.s.T^r. Wenn

man von den partikulären Meßtechniken und dern trlellenlängenbereich

absieht, sind die auftretenden mathematischen Probleme ähnlich, indem

diese die Inversion der assoziierten InËegrodífferenEialgleichungen

oder entsprechend g1eíchwertiger Ausdrücke verlangen.

ïn der vorliegenden Arbeit wird das inverse Problem der elektromag-

netischen Streuung míttels des Ansatzes inverser Randbedingungen

behandelt. Im besonderen sollen die charakteristiscþen EigenschafËen

von zwei- und drei-dímensionalen Streukörpern von den gegebenen

eínfallenden und. gesÈreuËen Feldern besËimmt werden wobei vorausgesetzt

wird, da$ das gebeugËe Feld überall bekannË ist, und dag die RandbedÍng-

ungen der LeontowiËsch oder skalaren Impedanzbedingung genügen. Der

neue Satz von inversen Randbedingungen, der von der Inversion, der

Leontowitsch Bedingung abgeleíËet wurde, wird angewandt um die elek-

trische Grö$e, die Oberflächengestalt So (l), und die durchschnittliche

örtlíche OberflächenÍmpedanz \(f) unmitËelbar vom gesamten Nahfeld

zrJ bestimmen, das im Sommerfeldschen Bereiche als bekannt und berechenbar

vorausgesetzt wurde. Von besonderer Bedeutung ist die Erkenntnis, daß

eín Satz exakter, von einander unabhängiger, notwendiger und nicht

örtLíeh jedoch gLobaL genü.gendey inverser Randbeciingungen (faCs)
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existiert und notwendig istum das inverse Problem der elektronagnet-

ischen sËreuung von leitenden streukörpern eindeuËig zu lösen.

Die theoretische Untersuchung wird durch numerische Rechnungen für

kreíszylíndrische und kugelförmige Ein- und Zwei-Körperstreuung für

beliebig polarisierten Planan¿ellen-Einfall nachgeprüft. Methoden der

Koordínatentransformation und der analytischen ForËs etzrng, die für

kreiszylindrische I^Iellenfunkti.onen hj-nreichend begründet sind, werden

angewandË um díe charakterisËíschen Eigenschaften auch jener Bereiche

zu bestimmen, die irn kleinsten den Streukörpern umschriebenen Kreise

liegen. Dreí-dimensionale analyt.ische Fortse tzungwird eingeführt urn

die Anwendbarkeit des neuen SaËzes der inversen Randbedingungen für

drei -dimensionale Streukörper allgemeiner, kontinuierlich gekrümmter

OberflächengesËalt nachzuprüfen. Die theoretischer Untersuchungen der

neueingeführten Methoden der zwei- und drei- dimensionalen analytischen

ForËset,zung und der Mehrkörperstreuung wird d.urch numerische Berect¡-

nunge,Íì ergànzt. Eíne Untersuchung der unvermeidlích irnplizíten Rechen-

fehler, díe durch Koordinatentransformation, numerische Quadratur,

Begrenzung der Reihenordnung der VekËorwellenenËv¡icklung und durch

Me$unschärfe der Fourier Koeffizienten hervorgerufen werden, wurde

mit besondener Sorgfalt durchgeführt.

Díe erhaltenen Ergebnisse zeigen, da$ díe rnversion der leitenden

Mehrkörperstreuung eindeutig gelöst werden kann, was die BedeuËung

des angewandten, neuen Ansatzes zum inversen Problem der elektromag-

netischen streuung vortrefflichst beweist. weiterhin werden neue
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Lösungen zum direkten Problem d.er Streuung von zweÍ kreisförmigen

Zylindern und von zwei Kugeln, deren oberflächenbeschaffenheiten ¿1s

skalare rmpedanzbedingungen erfü1len, angeführt. Eine neue Behand-

lung des Problems der ínpli zíten Fehlerbereehnung für die Anwendbarkej-t

von vekLorwell¡sn¡tionen wird eingeführt, die auf dem Ansatz der

ínversen Randbedingungen beruht, und somit auch von Bedeutung für das

direkte Streuungsproblem seín sollte.

rm wesentlichen wird díe HypoËhese aufgestellt, da8.ein ganz neuer

Angriff des allgemeinen iruversen Problems der Streuung un¡ernonmen

werden muB, falls mehr als nur eine der víelen charakËerísËischen

Eigenschaften gleichzeitig gefunden werden so11. Närnlich, der Ansatz

von exakten, von einanden unabhängígen, notwendigen, nicht öz,tLich

so jedoch gLobal genügende;n inversen Randbedingungen, deren Existenz.

für den elektromagnetischen trIellenbereich eindeutig bewiesen wurde ,

könnte neue Ialege öffnen um ein bessere Einsicht in inverse probleme

anderer Fachbereiche zu erhalten.
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INTRODUCTION

The fíeld of inverse scattering encompasses a variety of problems in-

cluding the classic problem of target identíficaËion. curiosity of

man to perceive remote objects resulted in the invention of the telescope.

The necessity to deteet distant hostile objects during l^Iorld I^Iar II

was responsible for the rapid development of radar at a pace which

never ceases to amaze those who work in this field. In the period of

a few years radar Èechnology r¡ras brought from a laboratory concept to

a maËure discipline result.ing in equipment which has had a signifícant

effect on the pasË defense research r,¡ork. The sophisticatíon of some

of the radar systems is such that in additíon to their conventional

functions they can be used for estimating target shape. tr,Iith the ad-

vent of Doppler-radar, sonar operated systems, Fourier optics and aper-

Ëure synthesis, it ís no!ü possible to localize and attain a good res-

oluËion of otherwise remot.e obiects.

BarËon [11 ], who analysed radar returns fron Sputnik II, ï¡ras the first

to report successful shape estímaËe. since the military has 
.been

impressed by the possibility of buílding practical shape estimating

radar systems' most of the work in this field ís classifíed. However,

Brindley Í29 I has dísclosed some of Ëhe results of the Uníted States

Aír Force manual radar signature analysis program. Bates I 15 ] has dis-

cussed Ëhe quesËion regarding what constitutes the minimum radar sysËem

\,'rith vrhich meaningful estimates cari be made of the shape of any arti-

ficial satelliËe r¿tr.ich has noË been designed either to cooperate wíËh
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or to confuse the radar system.

There has been a very lirúted activíty in the field of inverse scatter-

ing ín electromagnetics, which is dírected t.owards the goal of target

identification. No one has yet succeeded in determining the actual

shape, síze and the material constituenËs of remote objects. part of

the reason for the slow development in ínverse scattering ís the com-

plexity of the problem which ínvolves very accurate measurements of

the far fíeld. Many scíentísts are not yet convinced about the unique-

ness of the solutíon, which might.be obËained by ínverting measured

data. Taking al1 these problems ínto consideration t ãny contríbution

Èo thís field r¿í11 be of great help in achieving the ultírnate goal of

practical target identificaËion.

With this aim in mind the inverse scattering problern has been treated

in this work using the concept of inverse scatt.ering boundary condítíons

for the profile characteristics ínversion of perfectly and imperfectly

conducting shapes. st.arting with sirnple canonical shapes , viz, cylinder

and sphere, it has been shovrn how the method can be extended to the more

complicated two-body cases which assimilate genera.1. curved bodies. To

recover the em fíelds in the cavity regions, analyËic contínuaËion

nethods havê been employed. It is shornm how the concepE of profile inver-

síon can be exploíted to study the truncation errors in field expansions.
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chaptez, one

SURVEY OF LITERATURE

1.1 THE PROBLEM OF PROFILE INVERSION

Profile ínversion ís a very generalized concept. rn many areas of

physical science, fundamental functions that define or describe a

physical medium are computed from experimental data through a differ-

ential equatíon and. the reconstruction of the basic function or some

of íts properties constitutes Ëhe general class of ínverse problems.

In other words, the study of inverse problems consists in the development

of mathematical techniques to obtain ínformatíon on the cause of scatter-

ing from the pàrameters that are measured in a scatteríng experíment.

The direct scattering problem of any kind is defined as the problem

of predictíng the scaËtered quantities given the incÍdenË quantities,

the relevant descriptíon of the scatterer and given the appropríaËe

laws governíng the int.eractíon. The dírect problem is normally more

amenable to solution than the inverse problem due to the absence of

both data limitations and experimental errors in the former. In most

inversj-on problems it ís important to deduce the spatial variation

(radial height etc. ) of the fundamental function from the experimental

data, hence the inclusion of the term profile. The inverse problem

is encountered in many disciplines of scíence and engineering and a

comprehensÍve treatment of the problern in various fields is given in

Ref. [89 ]. since similar techniques may apply Ëo various fields, it

is considered worth-while to gíve a brief account of inverse problems

i-n the related f ields.
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1.' INVERSE PROBLEMS ]N RELATED FIELDS

I.2.I INVERSE PROBLEì{ IN QUANTiIM MECHANICS

fn the framework of quantum meehanics major aÈËention has been given

to the case of non-relativistic particle interacting via a potential,

with a scattering cenEer or equivalently, that of two particles j-nter-

acting through a potentíal depending on their relative distance. rt

is well known in quantum mechanics that the scattering of particles

by a potenËial fíeld is completely deterrn-ined by the asymptotic form

of the wave functions at ínfinity. rn accordance with l{eísenbergts

idea it is precisely the asymptoËic behavior of the wave functions

that has physical meaning[1].The quesËion therefore naturally arises

as to whether it is possible to reconstruct the potential from the

knowledge of the wave f,unction aÈ infÍnity lL,42r9o, rc41. rn general,

the problem is more complex and dífficult than those in the oËher

disciplínes.

The scattering of spinless partieles is described by the time independ-

ent Schrödinger equatíon which in appropriate units reads

[-V2 + v(r) ]rf = ¡ip (1.2.1)

hlhere v2 is Laplacets operator in three d.i-mensions, E is the energy

of the particle and v(r) is the potential energy assumed to be spherí-

cally synunetric and rapidly decreasing to zero at large r. Ref. [ 90 ]
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Now the transformation lcernel may be obtained ttlrough a fundamental

integral equaÈion

(L.2 .7)

obtained by analogy with the Gelfand-Levitan equation. Therefore,

Ëhe inverse problem is completely solved when f(V, V , r, rt) is

known. For descrÍption of oËher meËhodsre.g. JWKB meËhod, Ner,¡ton-

Sabatier method etc., review papeïs[t04, 89 ] may be consulted.

L,2.2 GEOPHYSICAL INVERSE PROBLEM

The geophysical ínverse problem is concerned with the inversion of

seismíc data to obtain profíles of parameters whích descríbe Èhe

earthrs ínterior (e.g. permeability or conductivity of earthts crusË).

Suppose we have made measuremenËs of the magnetic field of the earth.

hrhat does thís tell us about. Ëhe magnetizatíon of surface rocks? or

given a set. of normal mode frequencies (the frequencíes of free oscílla-

tion of the earth observed after the largest earth, quake), we will

like to fínd the densiËy and seismic velocities as a functíon of radíus.

The most general theory for handling seismological inverse problems

is the Backus and Gilbert method ï 516,7 ] which starÈs with the

following general equation [94J

á'-r f\ C
i,r I _i Lp

tr
K(V, V^, r, r') = f(V, V^, r, r') - lr(v, V-, r,0) f(V, V, p, rt)p-2dpo o J o' o-

la
Y* = | t(r) G* (r) dr j = 1, 2,...,N

JJJ
0

(1.2.8)
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r,rhere rn(r) is Ëhe property and G.(r) is ca11ed the data kernel,

one for each observaLion Yj which are fírst. assumed to be error-free.

In order to localize the ínformation to points within the earth, Backus

and GÍlbert use a linear combj-nation of yrts to obtain the following

final. expression

(L.2.e)

If F(r) can be chosen as a Dirac-delta function centered at ïo,

then L would simply be rn(ro), i.e. the property \,/e r¡rant at the

position ï . Backus and Gilbertrs theory provides informatíon abouto

the uncertainty ín the models developed and also supplies a method of

carrying out adjustments to the model of the conductívíty structure

to systematically bring the calculated response into sat.ísfactory

agreenent with the observed data, rather than havíng Ëo rely on in-

spired guess werk.

Bailey [ 8 ] found a direct method whereby the conducËivity structure

is reproduced from em data through the solution of a nonlinear integro- \

dífferential equaËion which requires precise data on a continuum of

frequencies from zero to infÍnity. Although Baileyrs nethod is inr

practícal, it presents an Ímportant uniqueness proof and thus has

provideci the assurance that, in general, the true conductivíty strucËure

of the earthrs crust can be recovered from geomagnetic variaÈions.

Startíng from data given by Banks t 9 ], a ner¡/ conductivity structure

was derived by Parker t 951 who also studied its uniqueness. He

lal, = | F(r) m(r) dr

0
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generalized a procedure de-rived by Banks and applied his cross-spectral

techníques making a considerable cont.ribution to the geophysical in-

verse problem. Though theBackus-Gilbert theory can be generalized for

non*linear problems as well t95 lr¡he Monte Carlo technique t145] is

often used for this case.

L2.3 PASSIVE ATMOSPHER]C SOI]NDING

Inverse problems are also encountered ín passive atmospheric sounding.

In this case measurement of the emitËed terrestrial (planetary) or

reflected solar radiatíon is ma.de as a function of wavelength (vísible,

ultraviolet, infra-red), look angle and atnrospheríc optical depth

using ground based airborne or space borne systems. The data thus

obtained ís inverted to yield the vertical structure of several at-

mospheric parameters, including Eemperaturer, ozone, \,/ater vapor and

trace constítuents. Like other inversion problems the difficulties

are bcth mathematically and numerically oriented and the ultinat.e

choice of the best method for a particutrar applicatj-on may not be

based on accuracy but ís restricted normally by available resources,

quantity of experimental data, and a pz"Loz'L knowledge | 72, 99 ].

r.2.4 ACT]VE RADAR SOUNDING

In contrast to the passive sounding techniques, active sounding is

concerned r¿ith measurement cf reflected and/or scattered radiaÈion

from the at-m.osph.ere erising from man-made probing sources i.e. active



ra-dar experiments [ 35' 73 ]. Both¡nonostatic and bistatic configura-

tions with pulse and continuous r¡rave techniques are in use as t¡e1l as

acoustic and electromagneËic radars. The data are inverted t.o yield

vertical profiles of ¡¿ind speed and direction, turbulence, precipita-

tion, refractive index structure, particulaËe concentïations anq gaseous

molecule concentrations. Active remote sounding is a rapidly growing

research field and great technological advances leading to sophisticated

soundíng techniques have been made in recent years.

Active radar sounding, both monostatic and bistatic, but at wavelengths

such Ëhat the probing sÍgnals are negligibly affected by the atmosphere

but are reflected by the ionosphere, is used for the study of the

stTucture of íonospheric layers. Pulse or amplitude sounding of the

íonosphere are employedyi.e. only the time delay characteristics of

the radar echoes are used Is6,96,74 ]. More sophÍsticated techniques

using e.g. phase, direction of arrival or polarization have appeared

in the literature but have not. found extensive application [73].

1.3 INVERSE PROBLEMS IN E.M. THEORY

1.3.1 TRANSMISSION LTNE THEORY

rn transmission line theory inverse scattering is distinguished by

its one-dimensional character and the fact that the r¡¡aves propagate

along the line ín two directions from left to right and from right

to left. fn a lossless case the Èransmission line equations can be

fl],{} ç}



tJ i- rrj

I^Tritten as

ff = iut (z)r

$ = irc{z)v

(1.3.1)

(L.3.2)

rf r(o) and p(o) represent the left and right amplitude reflection

coefficients, and t(t¡) and T (o) the corresponding transmission coef-

ficients, then a matri-x of Ëhese four coefficients is called the

scaËtering matrix for the system. rn the inverse scattering problen

some part of the scatt.ering matrix, usually t,he reflection coefficient

r(t¡), ís given and L(z) and c(z) or theír equivalents are required

to be determined [ 46, 61 ]. Techniques used are those developed fn

quantum mechanics with slíght rnodífícation [89],.

L.3.2 TARGET IDENTIFICATION

The inverse scatteríng problem which r^re are interested in pertains Ëo

recoveríng the relavent quantities (e.g. material consÈituents and

the shape) describíng the scatterer, from the given íncídent fíeld

and measured scattered fieldr' when the laws (e.g. Maxwellts equations)

governing the interaction are assumed to be known. The study also in-

volves the determination of whether this problem is uniquely solvable

for incomplete Ínput datare.g. various permutations of incomplete

bistatic aspecË angles, incomplete monostatic aspect angles, incomplete

frequency, monochromatic data only, incomplete polarization matrix,

anplitude data only, and scattered far field data only. Also of
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Ínterest is the inverse scattering problern for which there is some

a pz,ùori information about the scatterer such as, the conductívíty

of the scatterer is infinite or that the geometry of the problem is

of axial synnetry.

1.3.3 Solutíon of Inverse Scattering Problem

(1.3.3)

and its far field approximatíon can be written as

The scattered magnetic field at a point can

% | =* lf (âx') *v(+)
'p 'ô

be written as t 4 l

dA

Ë^ = #.-jkrt ff t(ñxg) x â,1 .-jk(s'â,)¿a (1.3.4)-s 4rrr 
.J.J

where the symbols used are explained in Fíg.1.1.

The exact solution of the inverse problem would be obtained if (1.3.3) 
;

can be inverted. But,let alone equation (1.3.3), even the solution

to equation (1.3.4) has not been carried.out conclusively. The in-

version Ëechniques described in the literature concern physícal

optics and geonetric optícs [39],subject ín both cases Èo severe restrictions.

In theír introductory notes relaËed to em inverse scattering, Altman

et al | 4 ] consider the following three cases:

(1) If Ëhe body is knor¿n Lo be flat and if the scattered field falls

wíthin a small solid angle, then the body shape may be relaLed

to the two-dimensional Fourier transform of the scattered field

as a function of angle.
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Starting from Lhe physical optics approxination, which assumes that for

a perfectly conducÈíng scatterer the current on the illurninated portÍ-on

of the scatterer is z"lgt and on the shadow side it is zero, Ëhey

show that the form function is the Fouríer transform of the scatEered

field. The resuit :s applicable only to singly-curved surfaces.

(2) If the target ís knoum to be a doubly-curved convex body of

,revolutíon whose axis of syrnuretry has been determined in space,

then the generatix of the body surface may be obtained from the

radar cross-sectíon as a function of the aspect angle

(3) If the body is known to be a singly-curved body of revolution

whose axis of symnetry has been deËermined in space, then the

body surface may be det.ermined by the application of the statíon-

ary phase method for the azimuthal direction and the Fourier

transform method for the longitudínal dírection.

No numerical verification for the above methods has been encountered.

The basic príncíples of various methods are discussed below.

L.3. 4 PHYSICAL OPTICS INVERSE SCATTERING

A general Ëhree-dimensional electromagnetíc vector inverse identity

based on the physícal optics approximation [27] ]nas been developed by

Bojarski I fg ,20 ]. It states thaË if y(x) is the characreristic

function of the target (i.e. y = I inside the target and y = 0 out-

side) and f(K) can be obtained by measurement of the back-scattered

em far field at a frequency û) = (c/Ð]rc], then y(x) and f (rc) are
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a Fourier transform pair where K = (2u/ c) j , ûJ is the frequency,

j is a unit vector specifying the aspect. The identiEy can be expressed

asæ

Y(x) = #* | "i"* f (r<) d3< (r.3.s)
\-rrl J

or 
co

Y(x) = ì-"" I "t*"f u'^ (r.3.6)

wiËh
t(

rrr) = 1/+l p(K)+p (-K)
ln2 (1.3.7)

which el'early: requires complete scattering informatlon, namely know-

ledge of p(r) over all K spaceri.e. all frequencies and all aspect

angles

In actual practice p(rc) is known only for an incomplete finite porËion

of the K space, viz, a K-space aperture consísting of a lirnited

(finite) frequency band. For this situation the three-dímensional

ínverse problem can be reduced to the three-dimensional non-singular

convolutíon integral equation (a Fredholm rE of the first kind) [ 19, 20],

a(x) * y(x) = g(x) (1.3.8)

where

t I ircx-..
s (x) = | e^'-" f (rc) ur(rc) d3r< (1. 3.9)

çztr) 3 
å

a(x) is the Fourier transform of A(r<) defined as

A(<) = C(rc) o(rc) (1.3.10)
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[f for K for whích f (r<) is known
wíËh aperËure function C(rc) = '{ ^

I 
0 if f (r) is not knornm

and o(K) ís the aperture funct,ion subject to the condition

I
I | ; .l -â
I lA(K) | d'K < oo

J

(1.3. 11)

The integral equatíon (1.3.10) can be solved numerically by a varíety

of existing techniques. Several closed-form solutions of Ëhis equation

for apertures of specifi-c geometry have been obËaÍned by Lewis [67,68]

and Bojarski t 191. Bojarski [ 19 ] also shows that a three-dimensional

density plot of X(x) represenËs the smeared geometrical image of

the surface of the scatterer, the spatial extent of the smearíng

being the spatial extent, C(x) - Ëhe resolution. Thís method allevi"a."

all the objections to the so called radar imaging Ëechnique by the

applícation of em inverse scatt.ering theory, based on direct scatter- ,

ing theory (and not based on the heuristic model. of a spaËially extended

scatterer as a fictitious ensemble of ídentifiable, stationary, non-

interactíve, non-dispersiver isotropic poínt scatËerers). It there-

fore avoíds the problems of converËing radar images to geometrical

images by side stepping and avoiding the radar ímage altogether and

addressing itself to the problem of generat.ing actual geometrical

images directly from Ëhe rad.ar data.

1.3.5 GEOMETRIC OPTICS INVERSE SCATTERING

This method is based on the inversion of the geometric optics radar
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cross section equation given by [ 63 ],

D (a t2)
o(0,0) = Æ@ËÃ; (L.3.L2)

(1.3.14)

where o is the radar scaËtering cross section, R is the energy

reflection coefficient and G is the gaussian curvature. For a

perfectly conducting scatterer the monostatic radar cross section is

given by [ 130]

o(u) = nC-I(u) (1.3.13)

vrhere u describes the direction of the incident plane ürave. The

gaussian curvature G(u) at the specular point is given by

e- '(,r) - r[t+(ar/az)z]L
d2-r /dZ2

I,Ieíss[130]obtains the following two parametric equations which are also

derived in I A I and I 63 l, [Fig. 1.2]

ru. 1 t rl.
r(u) = i f I o(u) sin 2u du Ì '' (1.3.15)

r|

u
I f* o(u\

z(u) = * I ,(é sin'u du (1.3.16)
ftl

;

Ke1ler t 63] treats various casesre.g. 1) two-di-mensíonal case with

an incj-<lent field due to a line source, 2) a three-dimensional case

of a reflecËing surface of revolution with a plane wave incident along

the axis of revolution or with a point source located on the axis.

The results obtained for these cases are tabulated in Kellerrs paper[63].

The general case of arbítrary smooth convex closed surface in Ëhree-
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dimensional space is reduced to Minkowskits problem and it is shown

that the data provided by equatíon(1.3.L2) do not suffice to determine

the shape of the reflector nor any part of it. BuÈ if two functions

o, (0,0) and o-(0,0) are gíven, corresponding to tr^/o incident waves+-

coming from opposite d.irections and if R j-s also knornm, then (1 .3.12)

determines G overthecomplete Minkowskirs sphere and the inverse problem

has a uníque solutíon t911.

Inleiss [ 130] applies equarions (1.3.15) and (1.3.16) ro a number of

axi-syrnrnetric bodies (e.g. prolate and oblate spheroids, cone, cylinder

\,üiËh a circular cap) for which exacË cross-section results are available.

ResulËs presented in that paper are desi.gned to demonstraËe the bounds

on size and shape which can be determined. The correct shape tends

to be closer to the vert,ical polarizaEion result (smaller of the radar

cross section results) and this porarization difference is more pro-

nounced for lower ka values (ka = 5). Doubly-curved bodies of size

k9" > 2.5 can be determined fairly accurately by this technígue. Though

the dírect scattering equatton (1.3.13) does not apply to the case of

a síngly curved body (because of the zero gaussi.an curvature the geome-

tric optics result predicts an infiniËe radar cross section), the re-

sults indicate that a large class of such bodíes can be quíÈe accurate-

ly inverted. The reason for thís apparent anomaly is that the inverse

procedure involves the integral of the radar cross section. Therefore,

this singularity is removed.

Geometrical optics approach has also been used by vandentergt" arra
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Boerner I tzll. Theír approach is based on the fact that smooth and

convex shaped scatterers of identical curvature about the monosÈatic

direcÈíon give rise to identical far scattered field magnitude in the

high frequency case. They developed an Íterative averaging procedure

with the íntent to recover unknown local radii of curvature of remote

scatterers about the specular poínt which are in faír agreement wiËh

exact values for elliptical cylindrical scatterers employed by them

for computation. Since the knowledge of the n.ear fíeld and its phase is

not requíred, the method is very useful for practical application.

It should, however, be pointed out here that for eurve-fitting' some

additional ínformation on the relative phase differences between only

t.he monostatic directions of various measurement domains must also

be recovered. Furthermore, the method is applicable only ín the high

frequency case.

L.4 APPLICATION OF PULSE TECHNIQUES FOR TARGET IDENTIFICATION

Sínce more informatíon may be obtained by transient analysis than from

steady state results, pulse technÍques offer a convenienÈ method for

target identification. The behavior of the leadíng wavefront of a

scattered pulse usually contains information about the composition of

the body, whereas the behavíor of the trailing reËurn of a scattered

pulse is related to the shape of Ëhe body and its radii of curvature.

Freedman shows | 44 I thaË if a body is illuninated by a rnodulated 
.

pulsed l,ravê¡ the directly scattered radiation at a field poinË in the
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lit region is cornpose<i of a riumber of discrete sígnals. These corn-

ponents are gerierated by certain discontinuities assocíate¿ Jitn tf,.

projection of the scatteríng body, r¿ith their magnitude proportional

to the discontinuity síze and phase depending on the toËal associated

path. tr^leston et al [ 135] poÍnt out the neeessity of using short pulse

measuremerits to separate out the signals from the various scat.tering

centers. They investígate the use of short pulse daËa to determine

the properties of uniformly coated conducting bodies where the main

attention is paid to the íllumínated porËion of smoothreonvex bodies

at high frequencíes.

Kennaugh and MoffaE [64 ] suggest thaË the impulse response waveform

of a targeE is a concept that replaces sets of numbers for a target

by a useful characteristic funcËion. Thís function is simple in

form, related to the geometrical properties of the t,arget and permib

extrapolation to new configurations. FurËhermore, knowing this func-

tíon only approximately for a target, it is possible to pred.ict the

reflectivity as a function of frequency or sígnal waveform. They

íllustrate the nature and utility of imputrse response waveforr¡ s for

specífíc cases. Pulse techniques are also studied in some of the

papers (e.g. [f50,151J) in a special issue of the proceedings of the

IEEE on 'Radar Reflectívity' (August, 1965) and ín [152].

varÍous other papers based on pulse response methods are reviewed by

Vandenberghe in I tZZl where he also cites signature comparison methods

used by Defence Departments and scaÈtering matrix measurement tecúniques.
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He also mentíons Ëhe case in v¡hich the scattering geometry is non-

stationary. rn this case, the translatory vector, giving the dírection

of spinníng ra vector determining spinning rate and a third vector, out-

lining the direction and rate of turnblingrhave to be specified ín terms

of a staÈionary fixed Ëime space reference system l4l,

Graf ínvestigates the relatíonship between the Doppler frequency spectrum

and the structure of a rotating body in a recent report. 147 l. IIe

shows that analysís of the intensities in the Doppler frequency[37]

spectra permits conclusions to be drawn on the shape of the body. By

appropriately processing the complex Doppler spectrarit ís possible to

get a híghly resolved image of the object as seen from the direction

of the axis of rotati.on. Both the procedures are treated theoretícal-

ly and are confirmed by experiments ririËh microwaves of 3.2 cm wavelength.

1.5 EXACT SOLUTION OF ELECTROMAGNETIC INVERSE PROBLEMS

In contrast with the approximate methods of previous sectíons which

employ eiËher geometric or physical optics approxímations, the exact

methods are based on a rigorous treatment of Maxwellts equations.

A series of technícal reports on inverse scatteríng have been published

by trnleston and hÍ-s associares at the universíty of Michigan. rn [139],

they introudce the concept of equivalent sources oríginally analysed

by saunders [105], tleyl lr43lrtrrrilcox t146l ana tuürier [85,86]for vecror

and scalar cases. The concept of equívalent sources pertains to
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the assumption that Ëhe scattered field rnay be thought of as arising

fron a set of equivalent sources on or within the body if the surfaee

of the body is infinitely differentiable; and is important in the

inverse scattering studies since the radií of the minimum convex sur-

face whÍch encloses the equívalent sources is related to the conver-

gence of any expansion technique utilized to deríve the near scattered

fíeld of Ëhe target from the'observed far field. As üleston points

out [ 134], from a practical stand point, when a fíníte set of measure-

ments ís made, Ëhe scattered field has to be approximated by a finit.e

sum, and the knowledge of the domain of corì.vergence is important

for estimating the errors in the scatËered field in the vicinity of

the surface. This was ignored by Bates [ 14 ] when he assumed that

the absolute value of ttÊ sum of an infinite series of terms of order

e \¡ras less than Ê , where e is a small parameter. trnleston et al [139]

also show that the plane vrave representatíon converges part way in-

side smoothrconvex portions of the body, thus est.ablishing the concept

that the minimum convex shape enclosing the equÍvalent sources ofËen

may be ínside the actual scattering body. For non-magnetíc and im-

perfectly conducting bodies, it is shor¿n that the exact total field

inside the body could be represented in terms of the plane wave expan-

sion involving the far field quantities. Thís representation involves

an appropriate split up of the far fíeld data and a fundamental problem

still exists to uniquely determine the split up from the knowledge of

the far field data alone. Thís indicates Ëhe need of additional in-

formation, perhaps Ëhe knowledge of the complete scaÈtering matrix for

all frequencies. The boundary condition E x E* = 0, which is applícable



{ir,4 i!,

for the case of perfectly conducting bodies, is introduced. They also sug-

gest the use of the nqnestatic bistatic Ëheorem due to Kell to deterrnine

the material characterisitcs of the scatterer. Kellrs theorenï62lstates

that for sufficiently smooth bodies, the bÍstatic cross section for

the transmit.ter direction k and receiver direction â^ is equal to

the monostatic cross sectíon for the transmitt.r-r"."irrer direction

(t< + á*) wirn k # 0 in rhe limit of vanishing wavelengrhs. rr is
ü

shor,m that two poLarízatíon measurements of the cross-section at one

non-zero bistatic angle (back-scattering) determines the reactive sur-

face impedance rì = u * iv , apart from the sign of the irnaginary parË,

where such surfaces would correspond to poor conductors or absorber:

coaËed conductors. However, the case v¡here the ratio of the bistatic

monostatic cross-section ís uníty for both polarizations, only yields

u = 0. The method has not been verified numerically and no estimate

of accuracy for the value of n is given.

An inversion technique whích reproduces Ëhe radial variation of the dí-

electric constant in a dielectric target from its mÍcrowave scatter-

ing pattern is presented by Fedotowsky eË al [ 43 ]. The numbrical

feasibility of this rnethod has been illustrated by applying it to

experi-menEally measured scattering patterns. They have developed in-

version criteria which show that details in a target, much smaLler

than the wavelength, cannot be reprod.uced.

As relates to the general ínverse problem of em díffraction, another

releva.nt ínverse identity, derived by l,leston and Boerner [136 ,I37]
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and based on an integral equation given by Barrar and Dolph I fO ],

rust be mentioned. This inverse identity proves that the total field

produced by a plane r¡rave incident upon a scatteríng object can be ex-

pressed at all poínts in space as the sum of the incident field and

the Fourier transform of a quantity which is related to the scatter-

ing matrix requiring data over the entire frequency range and can be

ü/ritten as

ip'x *Ê 
cp,E) . dr (1. 4.1)E(x,k) = E. (x,k) . ffi

oo

I
I

J p'-k'

where -æ ( p ( ær _E represents the direction of the incident wave

and T (-p.rL) is a measurable functíon proportíonal to the far scattered

field in the dírection p. related to the scatteïing matrix. It should

be noËed that l^Iestonts identíty is general¡i.e. holds also for the

conducËing case. FurËhermore, the obtained result.s lend thernselves

to the constructíon of synthetic Fourier transform holograms tB0 ], [113]

and thus may open up ne\¡r avenues of aËtackíng Ëhe ínverse problem of

em scattering. A similar ídentity was earlíer deríved by Moses [83].

The inverse boundary condition E x E* = 0 was verified. numerically

ín [ 137], where spheres of dÍfferent radii were identífied wiËh an

addirional.boundary condiríon lfrl le"l - 0 which Ís based on rhe

physical optics approximation. It is proved that E x g* = g is a

necessary but not sufficient conditionrbut the physical optics con-

dition (ln,l - lq_l = Ol is a necessary and sufficient, condiËíon,- ,-f_ t r-S I

though iË is valid only ín the 1ímit of hígh frequency. Their results
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also indícate that it is possible to determine those portions of the

prolate spheroid which 1íe within the minimum sphere enclosing the

body but outside the sphere enclosing the equivalent sources. Imbriale

and Mittra [ 54,55 ] also demonstrate Ëhat the knowledge of the

incident fíeld and Ëhe scattered far fíeldsJaÈ one frequency, is suffí-

cient to determine the size, shape and location of a perfectly conduct-

ing scatterer. The natural boundary condition for a perfectly con-

ducting body (i.e. the tangential electric fíeld component is zero) is

used to determine closed surfaces. Methods of analytic continuatíon

for the two-dimensional case are used to obtain exterior and interior

expansions in order to deterrn-lne corivex as well as concave porÈions of

the scatterer. They reconstruct circular and e1líptíc cylind.ers,

strips and two cylinders. Though Ëhe meËhod represenEs a useful analyt.íc

continuation technique for the two-dirnensíonal case; the reconstructed

surfaces for the treated cases do not match very well with the target,s

used, except for the case of a circular cy1índer. They also touch upon

the subject of determining the scatËeïer when the far field pattern

is known in a limited sector. The mean square error is minimized be-

tr^/een the observed values and iËs series representation by usíng Rosen-

brockrs rotating coordinate syst.em methodIlO0J.Effectsof noise in the

far field on reconstructíon of the targets is demonstrated by intro-

ducing different levels of noíse (error) in the calculated coefficienÈs.

The quesÈion as to what information about the body can be recovered,

if the scattering matrix (phase and amplitude) is known only over an

angular sector and is measured in the far fíeld is studied by i{eston
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and Boerner in [136]. Ernploying sphericar vector wave functions,

they show that the near fíeld representation can be determined by

matrix inversÍon for retationally symmeÈric scatterers w-ith end-on

incidence. The recovery process ínvolves instabilíty and a definiËe

loss of accuracy because of inversion of a matrix to recover the co-

efficienËs. This problem has been studíed in some detail by Boerner

and Vandenberghe for rotatíonally symmetric bodies [25126]. They show that

for the spherical case the optimr:m distribution for the polar 0 de-

pendence of Ëhe N measurement aspect angles involved in the assocíated

determinant is given by Ëhe N zeros of the optimization function [25]

oil(u J =

r

r m-l(1-u - )-Z-r
ril;'_, (u,) (L.4.2)

with

Y"r- ( coso,* cosß) / 2@ X, = cosO, (1.4.3)

cr and ß

and rfi

simpler

defíne the polar sector to which the measurenents are confined

represent associated Legendrefs polynomials. A similar but

equation holds for cylindrical case 1261.

It is shown in [ 25 ] analytically that the unknown expansion coefficients

can be recovered wíth standard doubl-e-precision matrix ínversion tech-

niques to the degree of accuracy dictated only by any suitable measure-

ment technique . To achieve a non-singular matrix inversion a nove1,

determinate opËimizatíon procedure for the measurement aspect angl-es is

deríved and proved for the cylindrical case in 1,261 and the spherical case
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in [25 ]. In both cases it is also shoum that the electrical radius

ka of a perfectly conducting cylinder or a sphere can be directly re-

covered from a finit.e nuuber of conËiguous expansion coefficients.

Furthermore, relationships between contiguous expansion coefficients

of both electric and magnetic type result which are relevant to the

general inverse problem sínce the scattered fíeld can be uniquely ex-

pressed in terms of only one set of expansion coeffícients associaËed

with either the elecÈric or magnetic vector wave funcËíons. vanden-

berghe and Boerner lr23l also show rhaË for an ellíptical cylinder

Ëhe characteristic parameters of the ellipse i.e. the principal axes

ar and bt and the eccentricity e , can be dírectly reeovered from the

expansion coefficients associated with circular cylíndrical \^rave-

functions. similarly the characteristic parameters of the e11ípse2

generating the prolate spheroid (the inter focal disËance d and the

eccentricity e)¡ can directly be recovered from the expansion coeffi-

cienËs ín the spherical ürave function expansion s ll24l. ExÈension of

this idea to conductíng canonical shapes (cylinder and sphere) is

carried out by Boerner and Das in t 241 where Ëhey make use of Ëhe

hypothesis that the Fourier coefficíents contain all necessary and

sufficíent informaËion to recover the elect.rical size p and the

material surface impedance n of homogeneous scatterers. In particular

they show that p and n can be recovered. from a characterist,ic

equation, which has identical analyËic form for the circular cylindric

and the spherical case, by iterative methods.

In a most recent publication Hill [ 52] considers the inverse scattering
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from a perfectly conductÍng prolate spheroid ín the quasi-sÈatic

domain of a magnetic dipole. He shows that from one observaËion of

the radial and transverse scattered magnetíc fields, the parameters

which ídentify the spheroid (inter-focal distance and. eccentricíty)

can be uníquely recovered. The fntermediate step requires the deter-

mination of the two magnetic polarizabilities. rt is possible to

choose the observation point anywhere, even coincid.ent T¡rith the source

field íf desired. Sirnilar results are obtained for the prolate spher-

oid by a transformation. obviously, the approach ís valid only for

the geophysical problem since the case treated is quasi-static.

Finally, weston ll32l considers the inverse p'roblem in which the co-

efficients of a partial differential equaËion are to be determined

from the knowledge of the asymptotic behavior of solution. He makes

use of the theory of hyperbolic differential equations to determine

the solutíon of thís time dependent inverse problem. He has applied

the analysis to electromagnetic scattering from a slab of varying

conductivity and permittivity. The uniqueness of the method is demon-

strated in ll-42l

L.6 FORMTILATION OF THE PROBLEM

It has al ready been mentioned Ín the literature revier¡ that the fírst

attempt to resolve the inverse problem rigorously using ínverse bound-

ary condi.tion \nras made by tr{eston, Bowman and Ar [139,140] where they
.L

used F x E to invert. perfectly conducting closed smooth shapes.

BuË the bodies encountered in practice are rarely, if ever, perfectly
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conducting. Therefore if the target identíficatíon theory has to

achieve any practical value, methods to ínvert cond.ucting shapes

have to be established. An attempt to deËermine the irnpedance of conduct-

ing shapes v/as rnade by weston et al ín [139 ], where they suggest the use

of the monostatic bistatic theorem of Kell. But no propeï methods

have been suggesËed for ínvertÍng the profile of such bodíes.

rnspection of the inverse condition -r * g* suggesËs a similar

boundary condition g * g* for perfectly conductíng bodies. The two forms

together helped Boerner 1136 ] to arrive at the conclusion that there

must be some combination of above two condítions which should be

valid for the bodies with arbiÈrary surface impedance. Starting with

Ëhe Leontovich impedance bound¿ry condítion, its affine form and their

conjugated formulations, he established two vectors whose properties

are díscussed in detail ín chøpter tao. This thesis commences with

the aim of exploiting the. properties of these two vecËors for ínversíon

of conducting shapes.

Chaptet' tuo bríefly reviews the impedance boundary conditions and the

restrictions which have to be sati-sfied by Èhe body for their applica-

tion. The detailed derivation of the vector triplet, whose properties

result in the required inverse boundary conditions, is also presented.

Chapten thv'ee presents Ëhe formulaËion of a seË of inverse scattering

boundary conditions resulting from Ëheorems of chaptez, h,¡o. The ex-

pressions for recovering the surface impedance and the surface locus



, ii¡ ij i¡

are derived and the question of uniqueness of the inverted profile is

cons idered.

chapter four anaryses the two-dimensíonal cylindricar mono- and two-

body problems. The direct scattering solution for two parallel circular

cylinders with impedance boundary is obtained. Application of the

Ínverse boundary conditj-ons with the aid of two-dimensional analvtic

continuatíon methods is illustrated for these two-dimensional shapes.

Chapten fdue considers three-dímensional mono-and two-body spherical

shapes and presents direct scatterÍng solutions for the two-sphere problem

with arbitralry radiÍ and surface impedances and ílluninated by an

arbitrarily polarized wave making an angle o with the líne of 
".rrÈ.r". 

l

Three-dímensíonal analytic continuat.ion is introduced. The ínverse

boundary conditions are then applied to these three-dimensional shapes ,

to recover the profile.

The analysis of the errors,, arisíng due to truncatíng the series re-

presentíng Ëhe elecÈromagneËic fíelds to a finite number of terms, ís

presented ín chøptez' si,æ where a novel approach for deterrnining the

truncation order is suggested.

The ideas p,resenËed in this work are sunmarized in ehapter, sel)enwhich

also lists the contributions resulting from the present study. New

probl-ems arising out of this work are pointed out and some suggestions

are made for their possíble solution.
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Appendir 4.1 presents the derívation of the orthogonal rriplet A, B

and D and various other important relations.

The coefficients of the fífth degree equation, for the phase angle

ili of the surface impedance, ¡ are listed ín Appen&)æ A.2.

Appenf,iæ 4.3 defines the coefficients appearing in the Ëhree-dimensional

vecEor wave functi-on addítion theorem. A three-term recursion formula

Ëo calculate these coeffícient is listed. Finally, the coefficients

of the addition Eheorem for the specialized case of Lranslatíon

along z-axis and then recursion formula are presented.

Appendiæ A-4 briefly revíews the truncatíon critería of Cabayan eË al.
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chapten h,lo

THE CONCEPT OF INVERSE BOUNDARY CONDITIONS

2.r INTRODUCTION

rn direct problems of scattering and diffraction the shape and the

material constituents of Ëhe scatterer which are knor"m a. prioru to-

gether with the pre-specified incident field, may be incorporated inËo

the boundary conditions. on Ëhe other hand, in Ëhe inverse probrem,

in general, no informatíon, about, Èhe scaËtereï may be assumed. There-

fore, in Ëhís case such boundary conditions must be sought which depend

neither on the shape nor the materiaL propertíes of the scattering body,

but allow one to specify those characteristic parameters uniquery

from Ëhe near field. recovered from far fíeld measurements. Since Ít

was shovm ín Boerner and vandenberghe [ 25 ] and in Boerner and Aboul-

Atta [ 21 ] Ëhat the near field representation can be found to an accuracy

dictated only by measurement, the question remains as to horr many and

which characteristi-c parameËers must be defined to uniquely determine

the shape, the size and Ëhe maËerial constituents of Èhe unknown scatter-

er. Disregarding the local d,epoLarization effecËs, it was found suffi-

cient. to specify the followíng parameters expressed ín Ëerms of an

orthogonal three-dimensíonal system *r, *, and x, as

í) the proper surface locus S(xr, *r, *r)

ii) a relative local surface impedance n(xr, *2, *3) which is a

scalar quantity, or the interior propagation consËant

kirra (*, , x, , x, )
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Thus at least three independent characËeristic equaËíons expressed

in terms of the diffractednear field E =E+E" andH =Ei.+I"
must be sought to determine the surface locus t(*r, *r, *r) and the

modulus and phase of Ëhe surface impedance | = In[""p(jü). rf such

a set of independent scalar and vector equations exists, which can be

employed to uniquely deternine S (x, ; xr, x, ) and n (x, , *2, *, ), then
'one may ar$ue thaË the inverse scattering boundary conditio., le*nol = O

does constítute the remainíng part of such a set of índependent equa-

tions for the degenerate case of I = 0. The derivaËion of such a

set of boundary conditíons was first attempted by Weston and Boerner

in a recenË report Ir36]rwhere it was anticipated thaÈ the concept of

an ímpedance boundary condition can be favorably employed to determine

the shape of imperfecËly conducting shapes. The aim of the present

study ís to show that Ëhe Leontovich or scalar boundary condi¡ions do

offer the desired formulation and the properties of the vecÊors A =
*t(****

ExE -nn Hxg and B = lë xll-l ExH result in the required boundary

condítions for recovering the profile and surface impedance of Ëhe

scatËering objecrs t ZS l.

Since the derivation of these novel conditions requires the applicatíon

of Ëhe Leontovich boundary condítion and its complementary and conju-

gaËed formulatíons, íts relevant propertíes need to be reviewed for

the express purpose of deriving críterions of applicability as r"rell as

defining the notaÈion. section 2.4 , presents the derívation of the

vectors A and B. The propertíes of these vectors are surmarized in

Theorems 1 and 2 and. in Theorem 3, Ëheir degenerate nature at Ëhe
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specular point on a smooth and closed scatterer is analysed.

2.2 THE LEONTOVICH OR IMPEDANCE BOUNDARY CONDITIONS

The impedance boundary condítíons, r^rhich are widely employed in dif-

fraction problems in which it is desirable to take into account the

material constituents and/or surface characteristics of the body, may

be stated in its si-mplest f orm as t 82 ]

K:-¡Zñx--1n o
K

-
(2.2.r)

(2.2.3)

Here the tangent fields aË the surface S of the conductor have been

expressed in terms of the effect.ive electric and rnagnetic surface

current.s

K_Ê =NXTI and =-nx11 (2.2.2)

where â is a unit outward normal to the surface and E and I represent

Ëhe total electríc and magnetic fíelds respectíveLyrin the region sur-

rounding the body. The quantity n is the relative inpedance of the

body, designated as Leontovich impedanee and has been normalized with

respect to Z-, the intrinsic ímpedance of free space. For a bodyo 
._,.

composed of a material of large refractive index, rì = lnl"Jq may be

wriËten as

K
-1n

un=tf ci* t
0

")
ûJe '

U

where U and U represent the
0

perneabilíties and e and e the
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permiËtivitíes of free space and the body material, respectively.

Parameter o represents the conductivítv of the bodv.

In the analysis of the flat boundary the fundamental assumption was [51,

106] that the refractive index of the body ís much larger than Èhat

of free space í.e.

Iul >> 1 (2 .2. 4)

The above condition is sufficient, to ensure that \,üíthin the medÍ.um,

Ëhe field is varying slor^rly along the surface and behaves essentially

as a plane \¡iave propagating in the direcËion of the inward normal. For

the case of a curved surface, with g, Ëhe smallest radius of cur-

vaÈure at. the point in quest,ion, the restriction

lul kp >> 1 (z.z.s)

ensures that the field sha1l vary little within a wavelength along the

surface.

The above restrictions \¡/ere valid for semi-infínite (or open) bodies.

For closed surfaces an additional restriction

6 << p (2.2.6)

is imposed to ensure Ëhat no outward travelling field appears on the

farther side of the surface. Here 6 ís the skín depLh in the con-

ductor and is defíned bv

_t¡^
) ''¡ OUO\ -7- (2.2.7)
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in terms of which the wave impedance and Ëhe wave number are

n = j {r-i¡ ,u5 , k" = (t+i¡¡5 (2.2.8)

t
If o >> Lúe, inequality (2.2.6) can be written as

( 
#= Z# )'/'rp ,, r ( 2.2.s)

00

whích in turn reduces to the ÍnequaliÈy (2.2.5) if the conduction

current domínates. 0n the other hand, if the displacemenË current

dominaËes the Ínequality (2.2.6) represenrs an additional restriction

whích is sËronger than (2?2.5). rt may be pointed out here that due

Ëo restriction (2.2.6)r lossless objects such as dielectric slabs,

cylinders and spheres have been shov,¡n to be untreatable by the imped-

ance boundary condition, regardless of dimensions (Leontovich[66 ]),
i.e. f.or a body to be treated by the irnpedance boundary condition íËs

surface ímpedance must be complex and conditíon ô << O must be

stricËly satísfied.

As Mitzner I 82] has pointed out, a modífication to treat smaller

radii of curvature is irnplicit in Rytov [103] and is given explicitly
(buL with an error of a factor of 2, which has been corrected by

Mitzner) by Leontovich 166 ]. The corrected form of the boundarv

condíËion is

K,n = (t-p)tKe , Kr = -(l+p)nKe e.2.LO)---u -v v u

for homogeneous conductors. Here the parameter p is defined by
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= ä 
(r< -rc,r) = f{r*i)o(*.,,=",, Q.2.rL)

oriented thatand u and v are príncipal curvature coordinates so

^^^e xe =nuv (2.2.L2)

positive when

uniformly

sat.isf ies

and K andK areuv
^-Íi poÍnts outwards

prÍncipal curvatures defined

from the body.

] shows that for the case of statístically

surfaces whose refractive index N = U

uo]l
(2.2.4) and an addítional restricÈion

11 |l¡n vnl << 1

MiËzner L 82 l, formulates the scattering problen in terms of two

coupled integral equatíons relaËing the effective electric and mag-

netíc surface currents K. and K . Each of the two equations involves

the constitutive parameËers of only one medium and is especially suíted

to the case of a high conducËivity scatterer. Mitznerts formulation

is quite generalrand under íncreasíngly rest.ricËive assumpËionsrcan

lead firsË to an expliciË expression for 5o, in terms of Ä., then a

curvature dependent boundary condít.ion relaËing the two currents, and

finally the usual Leontovich boundary condition.

Senior [96

homogeneous

restríction

l_n-

the

(2.2.L3)

the impedance boundary conditíon of eq. (2.2.1) involves averaged

values of fields and the surface impedance. rt should be noted that
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Ëhe average fields are determined by the average value of n and not

by the average value of e or o. Tn (2.2.L3) V¡ represents spatíal
varÍatíon of n.

The ímpedance boundary condition may also be derived for staËistically

rough surfaces, ín which case it can be replaced by a generalized irr-

pedance condition applied at the neighboring mean surfacetl0T]. The sur-

face impedance is a tensor function of Ëhe direction at which the

field is íncídent as well as the staËistical properties of the írregu-

larities, but sirnplifíes in certain partícular cases. Sínce the Taylor

series about the mean surf,ace is used, it ís clear that the expansíon

will only be valíd if Ëhe behavior of the field at the actual surface

differs only slightly frorn the behavior on Ëhe mean surface. There-

f.ore¡J-arge gradíents or abrupE changes ín gradients cannot be allowed

since such perturbatíons may produce signíficant ehanges in the field

in their vicinity [18].

tr{eston has also generaLízed the concept of impedance boundary eonditions

Ëo the consideration of scattering from comprex shapes [133r138]. He has

postulaÈed two theorems concerning Ëhe class of surfaces which are

ÍnvaríanË under 90o rotat.ion abouË some axis of the body. The pracËi-

cal aspects of designing absorber layers are ¿lss considered in hís

paper. rË should be noted that the admissíble case of a purely real

surface impedance whích is not zero ot infinity, can be encountered

for multíple layer coaÈed perfectly conducting scatterers I t33, 1.26 ]

and under certaín condiÈíons for statistically rough perfectly eonduct-

ing scatterers [ 107].
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2.3 FORMULATION OF A SET OF CHARACTERISTIC EQUATIONS

Sínce the aím of this study is to obËain an inverse set

conditions, the a pnioz,i knowledge of the surface loeus

E- (â.H)â=-EYoâxE

of

b

boundary

= S(r) or

its unít, local normal â = â(l)ror its local inpedance n = n(Ë.) cannot

be assumed. Therefore, to resolve the two unknorrms s(r) and n in

the irnpedance boundary condiÈion ( fMAc)radditional formulations of

IMBO are required which, however, musË contaín identical informatÍon

so that the surface locus s (r) and the impedance n (r) can be found

from the knowledge of toeal electrie and magnetic fíelds.

The LeontovÍch or impedance boundary condítion can be written as

in which all the quanÈities involved have been defined in Sectíon 2.2

The fírst additional relation is found by applying a vector product,

operaËíon of â into (2.3.1) yielding

Thus (2.3.2) corresponds to (2.3.L)

ZH->-YE and n->E where E=0- 0-
local admittance. Senior [108 ] .has

formation wiÈh Babinetrs principle

this Ëransformation attributíng n

the body.

(2.3.L)

(2.3.2)

under the transformation E + H,

L/n denotes the relative averaged

shown the affiniËies of thís Ërans-

and has proved the invariance of

Ëo the material constituents of
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. In addition

required and

to (2.3.1) and (2.3.2),

introduced If:0 ] as

its conjugated formulations are

(2.3.3)

(2.3.4)

&
E

-å

(n'E

.L

(n. fi

&

)â=nZî,xH
0

û
)â = - f'.Y nx E

The validiËy of sËatements (2.3.3) and (2.3.4) must stricrly assume

Èhat all implíed field quantiËíes E and H , as well as the relatíve

local surface impedance n = l(r) are analytical functionsrand

ñ = â(f) is piecewise continuous, satisfying the seË of lÍnear eqs.

(2.3.1) and (2.3.2) which ín Ëurn satisfy Ma:<v¡ellts equations. In

essence the conjugation of (2,3.1) and (2.3.2) implíes the reversal

of the reactive eharacËer of all implied elecLromagnetíc quanËities;

thus the pair (2.3.1) and (2.3.2) bears símílar affinities as does the

paír (2.t.:, and (2.3.4), for a surface of reversed reactive character.

Applying scalar and r¡ecËor product operatíons to (2.3.1) and (2.3.4)

on one another a complex set of interdependent scalar and vector

equations results lL36r23l whích are tabulated in Appendt)æ Ã,L,

2.4 THE ORTHOGONAL VECTOR TRIPLET A, B AND D

g

Employing properties of Ëhe derived set of scalar

as tabulated in AppendLæ L.L, the followíng Ëhree

(shown in Fig. 2.1) can be defined 1L36,231.

and vector equations

orthogonal vecËors
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Thus iË follows directly that

A.A = (Br<fi) . (Bxâ) = B.å- (â. B)'

and

(2.4.L)

(2.4.2)

(2.4.3>

(2. 4.4)

(â{A).8 - â. (exs) = â.9
(2.4. s)

â'A =

n.-6 =

IJ=N1<A

A=Bxâ

=BrB=

A.B = (âxB)..B = â(Bxn) = 0 (2.4 .6)

From inspection of (2.4.L) to (2.4.6) it follows that the two purely

imagínary vecËor quanÈities A and B are perpendicular to one another

and tangent to Ëhe local scatterÍng surface. Therefore iËs cross

product D = A * !1^ purely negative real vector quantiÉy, must be

directed along the local outward normal â = â(r) of the local

scattering surface S(f), where

D=

Therefore, the

A x B = [â.(¿xS)]â =

local outward surface

Axq 4"Ë A"s
ãG;Bt=m=Bõ

(4.4)â = (B'B)â (2.4.7)

normal ís defíned as

(2.4.8)

A, B and D are formulated

3, 1L36,231.

[ì=

These striking interrelations between

in the following as Theorem 1, 2 and

Theoz,em 1- - If the electromagnetic behavior in the vicinity of a

scat.terer satisfíes the Leontovich or scalar impedance boundary condition
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E- (ñ.s)ñ= ñ

whereE=E.+E and
-l_ -s

reactive vector quantíËies

***
A = ExE -nn HxH

*
B = r(_E 4E)

are orthogonal and are

producË, a purely real

z(H.+
0 -l-

**-n(sxH)

in the plane of the scatterer,

vector quantíty

(2.4.e)

then Ëhe following purely

, (2.4.10)

(2.4. 11)

and iËs vector

xH

H= ës)

D=A*å

is directed along

gÍ-ven by

Thus the three vecËor quantities

= [ñ. (tu<s)]â = (A.A)â = (E.B)â (2.4.L2)

the ouEward local normal of the scatËerer r¡hich is

(2. 4.L3)
AxB AxB¡--

lì =- A.A B. B

A=Bxñ g=â4A D= 4*å= Iâ.(étq)lâ (2.4.L4\

vector triplet with identicalconstitute a right-handed orthogonal

magnÍ.t,ude

A.A=B.B=â..D (2. 4 . Ls)

Theoz'em 2 - rf the electromagnetic behavior in the vicinity of a

scatterer satísfíes the Leontot'íctr or íripedarricr€l 1:üurdary condiËion,

then the following Ëwo independenË scalar equations

.un)-no, (ëo.Ho) l

(2.4.16)-nn{g".H*)[ig's¡-rz (g'n) ] = o



4.ê-8.å = t (g. n¡-n' {g-s¡ 1 I {¡o. no¡-no' (ëo.go) J- [ cg. ¡*

- ?t * - *. -^ ?t rá *+tn(e.H)*n (¡.n )l'-4nn"(E.n)(9".H"¡ = g

+J.

)-nn" (H'n"¡ 1 
z

(2.4.L7)

can be employed to specify Èhe surface locus and the modulus and phase

of the complex scâlar impedance n = lnl."p jü. The lo,cal surface

â can be recovered from

2 (Axg)
1ì =-- A.A+B.B

(2.4.L8)

rt is to be noted that if both the surface locus s (g) and the couplex

ímpedance n = Inl."p13,¡¡ are a priori, unknown, an additional índ.epend-

ent characteristic equation r¿ould be required Ëo uníquely determÍne

the shape and Ëhe material surface properties of the scatterer in

question. Such a third independent characterístic equaEion was, how-

ever, not found. Therefore, the degeneracy of Lhe vecËors A and B

ín Ëhe back scattering direction is exploited.

2.5 THE DEGEN-ERATE BACKSCATTERING CASE

Although Theorems 1 and 2 are derived from the Leontovích boundary

condiËion, and should hold in general, Ëhe propert.ies of the basic

vecËor quanËities A and B musË be further analysed for the case

in whích the incident rnrave is locally normal to a smooth imperfectly
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. 
conducting surface. Sínce the 1ocal region of a smooth scatterer may

be considered Ëo be a section of a planar surface of homogeneous sur-

face impedance, the analysi-s of the d.egenerate properties of A and

B is best facilíËated by considering the case of normal plane wave

Íncidence on an infiníte planar and semi-transparent bciunding surface.

In thís case, by Fresnelrs laws of reflection, the refleeted electric

and magnetic field quantities must be along the same directíon as the

íncident electric and magnetíc field quantities, respectively. There-

fore the total electric and total magnetic fíeld vectors in the back-

scaËtering direction must be perpendicular to one another, i.e.

E"H=0

everywhere along the backscattering direction. Furthermore
&

g4g in B are along the same direction and the modulus of

absoluËe values must be ident,ical , i.e.
*:trt

B = r¡ (E xII)-n ExH = Q

in the backscattering direcËion, buË since A.A-B.B = Or we have
ú

[ = (ExE")-nno(r*"o) = O 
-

in the backscatteríng direction.

Theoz,em 3 - If the electromagnetic behavior in the vicínity of a

smooËh, piecewise continuous scatterer satisfies Ëhe Leontovich or

scalar ímpedance boundary condítions Ëhen the follor¿ing three independ-

ent characteri.stic equations

E.H = 0

¿
E xH and

theír

(2.4.r9)

(2 .4 .20)

(2.4.2L)

B = t(U xll)-n (nxn ¡ = g

***
A = (nxE )-nn (ttxtt ¡ = 6
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are satisfied everyruhere along the radiant vector in the back-scattering

dírection. In this particular degeneraËe case, i.e. for normal incidence

on a locally planaï scattering surface, the properties of Theorems 1 and

2 cannot be employed to recover the proper surface locus S (¡) and the
0

associated relative surface imoedance.

It should be noted that the degeneracy condition satisfies the Ëangentr

ialÍty conditíons ñ. A= 0 and fl. å= 0 as âis synonymous with the

unlt vector in backscattering directíon.

Therefore, for points lyíng on the proper surface So (I)and in the neigh-

borhood of the specular point for which the incident wave is normal to

the local surface, the properties of Theorems I and 2 hold uniquely,

whereas the degenerate condition of Theorem 3 should present a reason-

able fírsË order approximatíon. Therefore it should be possible to

recover Ëhe proper surface locus So (f) as well as Lhe complex sur-

face ímpedance for smooth and closed scatterers whose surface impedance

is homogeneous i.e. n(l) = n = const., by employing the three theorems

símultaneously as ís shown ín SecËions (3.4).

2.6 INTERPRETATION OF ORTI{OGONAL-VECTORS

Ihe exact physical interpretation and the reason for the orthogonality

of the vecËors A and B are noË yet clear. Ilor¿ever, in a recent pub-

lication Musha [BB] shows thaË the Ëerms ExE* and lIxH* represent

torque densiËy caused by Ëhe electric and the magnetíc fields, respec-

AandB
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IÍvely. Vector B is the difference of a term proportional to the

poyntingrs vector and its complex conjugate and is, Ëherefore, propor-

tional to the reactive energy ín an electromagneËic !¡ave.

The plots of A and B over the surface of a sphere of electrical

radius ka = 5.0 and surface írnpedance rì = 0.5 are presented in

Figs. 2.2a ar,d 2.2b. The directions of the vectors \¡rere computed aË

an inËerval of 5o in both 0 - and Q - directions. The orthogonality

of the two vectors ís evident from the p1ots. In the back-scattering

directíon both vectors are identicalLy zero and they exhíbít singular

naËure near the nodal lines
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FORMJLATION OF A SET OF INVERSE SCATTERING BOUNDARY CONDITIONS

3.1 INTRODUCTION

In applying the concept of inverse scattering boundary conditions, it

is assumed thaË Ëhe expressions,for, the total electric and magnetie

fíelds in the vi-cinity of the surface of a scattering body can be re-

covered from the measured far field dat.a, as is analyse<1 j-n l^leston and

Boerner [136] and in Boerner and Vandenberghe 125 l. Thus, given the

expressions for the total fields which can be computed in the vicinity

of the surface of a scattering body, the next st.ep i-s to employ techniques

which will locate the surface of the body and will enable one to determine

its associated averaged material surface propertÍes. Since the electro-

magnetic fields can be contínued inËo the regions inside Ëhe I^Iílcox

circle/sphere by analytic continuation methods, the entire profile of

convex or concave bodies can be recovered.

In establishing the required sets of inverse boundary conditions, it

was found convenient to distinguish between the perfectly electric,

perfectly magnetic and the imperfectly conducting cases. This order of

presentation faciliËates linking known results with the neT¡r coricepts

íntroduced. Furthermorer'such a scher,re wa.s found necessary sínce for

the degenerât.e perfectly conducting cases acldi.tional bound.ary conditions

are being introduced which, though implicitly interlaced, do noË hold

in the imperfecËly conductíng case.
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Obviously, the simplest case to start wiËh is that of the perfect.ly con-

ducting bodies, for which only the shape and size are Ëo be recovered.

Therefore, in this chapter we first list the inverse boundary condítions

for perfectly conductingcases and díscuss the questions of uniqueness

of the recovered profile. The general ínverse boundary condiËions are

discussed in detail, Ín Section 3.4 and it is shor,¡n that the inverse

boundary conditions of Section 3.2 can be derived from the general case

by letting ¡ go to zero for aperfect electric conductor and n go to in-

finity for a perfect magnetic conductor. The expressions for the mag-

nitude and phase of the surface impedance are derived in section 3.4.

3.2 INVERSE BOI]NDARY COND]TIONS FOR PERFECTLY CONDUCTING BODTES

The inverse boundary conditions for thís specj-al case can easilv be

derived from the direcÈ boundary conditions whichrin simple wordsrstate

that the tangential component of the electríc field and Ëhe normal

component of the magneËic field vanish at the surface of an electrically

perfectly conducting body. For a magnetícally perfectly conducting

body E and H interchange roles. Mathematically the above two condiÈíons

canbestatedas ñxE=0 and â.H=0.

An obvious consequence of these unique dírect boundary conditions is
'+ú
that ñxE =Q aswellas â.Ii =Q. Thereforenecessaryand

sufficient conditions for a poÍnt to lie on the surface of a perfectly

conducting body are that at that point the total electric (u = gr+E)

and magneric H = zo ca*q) fields musr satisfy
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E'H=0 neees saz,A and suffici.ent, (3.2.1)

necessayA and suffiaùent (3.2.2)

Exceptíons of these conditions are the cases of local normal incidence

on any scatËerer, or normal plane wave incidence on a cylindrical st,ruc-

ture for either purely parallel or normal polarization, in which case

E ' H, vanishes identically. Another inverse condition, deríved first

by trnleston [L3g]lresults from the fact that ñ x E = 0 and â x g* = O.

Therefore, å*E*=0 holds on the surface of a perfect conductor. Physically

this condition means that for the case of a perfectly conducting body, the

E field has real direction.

Another approximate buË ímportanË condition resulËs from the physical

optics current approximation which rnay be stated as lU, I ln_I - O.'-l-' '-s'
It must be noted that Lhis condítion though unique, only yíelds an

approximaÊe surface which approaches smooth, convex portions of the

correct surface in the lirnit of high frequency scattering. The bound-

ary condition stating that Ëhe tangential component of the electric

field is zero has also been employed by some authors for the target

identification of perfectly conducting shapes [ 54,55 ]. All these

boundary conditions díscussed above are sunmar1zed below

E -^-^^-!r-1 = 0 eæq.ct, neeessarV and. sufficient (3.2.3)
- tangentr_al

{lg, | - l¡^l} = o øppnoæùmate, neeessal,A and suffieient (3.2.4)
'-1_ ' '---S '

&&

_E oH =0

E'H=0 eæa,ct, necessarA and. suffíeient; (3.2.5)
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Ex

Similar boundary condj-tionsrwith H and

perfectly magneËic conducting case and

f lu I
L t¡¡. I'-a'

Ho

Hx

eæa,cts neeessazy but not suffícient (3.2.6)
+

E -0

i-nterchangedrapply to the

be stated as

lÌ = 0 qpproæ,Lftiq.te, necessaz,g and suffieíent (3.2.8)

eæact, necessarA and sufficient (3.2.9)

eæe,ct, necessarA but not suffiateizt (S.2.LO)

E

may

gtangerrtírl = 0 eæe,ct, necessa.rV and sufficient (3.2.7)

- ls'-

Ë= o

J..

H=

3.2.L QUESTIONS OF UNIQUENESS

ConsiderÍng the fact that the total field expressions are formulat,ed as

Ëhe sums of the incídent and the scatËered fíelds, it is apparent thaË

an interference-like pattern should result, whenever a given total fíe1d

expression is associated r¿ith a conjugated toËal field expression in

terms of scalar or vecÈor product operations. consequently, if a sur-

face S^ (r) is found which satisfies (5,2.1) and/or (3.2.2), ir musÈ

be the correct surface. trrlhereas, even íf a surface sr(g) is found

such that it satisfies one and/or all of rhe condiríons (3.2.r) to (3.2.6),

ít would not necessarily be the correct surface S" G), since these

conditions are not unique and noË independent.

consíder the scattered field due Èo a smooth, perfecÈly conducting,

convex surface S, and assume that analytic expressions for both the
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total electric and magnetic fields are known everywhere exterior to

the equivalent source region which ís enclosed by S. In seeking the

surface S by looking for the surface on whích the total electric and

magnetic fields obey the required boundary conditions given in (3.2.1)

to (3.2.6), ít could be possíble that more than one eligible surface

may be found for a partícular Ttave number k. Therefore, assume Ëhat

two perfectly ccnducting surfaces so and Sr, whích surround the equi-

valenË source region and are taken Ëo be smooËh, are found from a.ny one

of the above stated inverse conditions. Then, in the volume V between

the two surfaces, within r,¡hich the medium is assumed to be línear,

homogeneous, isot.ropic and lossless, the total electric field satisfies

the source free r¡rat'e equatíon [137]

and/or

Ëogether with the equatíons

v'E=o

V.E =0

(v2 + k2) E = o

&J-

(V2 + ¡^z¡ E'- = 0

(3.2.1r)

(3.2,r2)

(3.2.13)

(3.2.\4)

Sinílarly, the total magnetic field satisfies the source free wave

equations
(V2+k2)H=o (3.2.L5)

andf or
úú

(V2 + k^2) H^ = 0

together with the equations

(3.2.16)
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V. H=0 (3.2.l-7)

V. (3. 2 . 1B)

However, solutions of these equations in

V such that

the sirnply connected cavity

NXE=U and/or =Q (3.2.re)

andf or

â.H=o and/or (3 .2.20)

on the bounding surfaces, so and t, , exist only for a discreÈe

set of eigenvalues. Thus, if k varies continuously, the shape of t,

must change in order t.o satísfy the boundary conditíons sínce, by def-

init.ion, the scattering surface to Ís independent of the wavelength

of the incídent field. The requírement. that so remains unchanged as

the frequency is varied. continuously, Èherefore, allows determination

of the scattering surface uniquely, since the geometry of the additional

surfaces depends on the frequency. Thus one method of discrimlnating

the proper surface locus from the family of pseudo 1ocí is to employ

at least two frequencies. It ís readily observed that the inverse con-
*:t*rtditions ExE =0, _E .ë=0, E.H =0, and HxH-'=O are

dependent on one anoEherri.e. the resulting díscrete sets of eigen-

frequencies for all of these four conditions must be ídentical. On the

contrary, the inverse conditions E . H = 0 and E* . H* = 0 are

unique, since if there could exist a second surface t, on which

ôxE=0 and â'H=o or âxE*=o and â.ëo=0rrespectivery,

*g =0

ú
nxE

+
H =0
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the surface s must be an exísting, perfectly conducting surfaceI

because the tvro unique direct boundary conditions â x E = 0 and

â ' n = 0, or 'Ëheir conjugated forms , are beÍng saËisfied

simulËaneously. Therefore, the condít.Lons E . H = 0 and E* . H* = 0

are unique and will yield only one zero whích defines the proper surface

locus S The obvíous cases for which these conditions are violated
0

are those for which I and H are always perpendicular, for example,

in the case of 1ocal normal incÍdence ancl for normal plane wave incídence

on cylíndrical structures for either parallel or norrr¡Érl poLatíza¡ion.

Althotrghtheinverseconditions ExE*=0 , Eo.H=O , E.H*=0
.L

and H x H = Q are necessary but noË sufficíent conditions and, further-

more, depend orl one another, it should sti11 be possible Ëo díscríminate

the proper surface locus of a closec and srnooth scatterer from the

rinterior caustíc generatedt and Ëhe rext,eríort pseudo locí, since these

pseudo loci are not closed. The applicat,íon of the boundary conditions

to the total fíelds results in interference like patterns. Therefore,

no pseudo loci can exíst in the shadow regícn of the scatterer and the

generated pseudc loci are open surfaces. In this sense¡Ëhe inverse boundary

condition (3.2.6) ís nor LoeaLLy but gLabaLly sufficienr when rhe

scatÈering body ís closed and smooth.

The quesËíon of uniqueness for perfectly conducting bodies has been

discussed in rnore detail by I^Ieston in [f¡4J¡where he suggesls the use of a

different incident r¿ave but of the same frequency to eliminate the.pseudo

loci.. 'He eliminates those surfaces which do not enclose (or are not



enclosed by) the proper surface to by using the facË that in this

case they would not contain any sÍngula"rities of the em field. In order

to deËermine the set of measurements required to elíminate pseudo locus

s as a candídate for the surface of the obstacle, he consíders theI

properties of eigenfunctions given by

(3.2.2r)

in detail. Here Q and U are de.fineci by the following rela.tions

, exD ('ikR)
Q = -ãñ- r( = lx_-vltrl (3.2.22)

where y is any point in volume v enclosed by the surface arrd x l'-s

the variable of í.nlegr:ation over the surfaces t = to * S, arrd

(3.2.23)

where â is the unit outrnrard normal to the surfaces, and _L and l!+

are the respective values of magnetíc field on the ínt.erior and exterior

of the surfaces.

The necessary and suffícient conditíons for E(v) to represent the

modes ís that U must satísfy the following integral equaÈions

(3.2.24)

(3.2.2s)

There Ís only a finite number N of independent eigenfunctions (%,

4) [155]. Weston also argues thaÈ an upper-bound N for the pseudo

å Ê ö-.- ¡'

fE(y)=2 l¡rxVQdo*
tt

I
ll+ | â(v) x (¡x VQ) do__ = 0 y e S

-)x-o

I
ll+ ¡a{v)x(uxV0)do*=0 ye s,

S
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surfaces can be obtained and he proves

measurements (in practice only a few) at

incidence wí11 elimínate the pseudo loci.

that only a finite set of

one frequency but differenÈ

?? THE IMPERFECTLY CONDUCTING CASE n I 0 or

Having discussed the inverse boundary conditions for the idealized

siÈuation of elecËrically perfectly conductíng bodíes, r¡re nov/ aÈtempt

the derivation of these conditions for Ëhe more practical case of inr

perfectly conducting shapes. First of all, the fact must be reconsider-

ed that Ëhe Leontovich condition which, though not entirely unique,

may be consídered most practical for treatíng the scattering probleurs

of electromagnetic v/aves by irnperfectly conductíng bodies of regular

and smooth shape. Obviously, the physical importance of this condition

has not been fu11y exhausted and, as stated in Theorem 1, it is vital

to note that two purely reactive vector quanitiies A and B exist. which

lie in the local plane of the scattering body (â . A = â . B = 0), are

orthogonal (A . B = 0) and are of equal magnitude (A . A = E . Ð.

These basíc properËies are now exploited Èo establish novel inverse

boundary conditions.

rn contrast'to the perfectly conducËing case for which only the proper

surface locus is to be determined; for the imperfectly conductíng case,

in addition, both modulus and phase of the averaged surface ímpedance

rì = Inl."p jrf urust be recovered. However sínce modulus and phase of

n are involved in all the independenË relations derived in Section 2.4
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those must be'þrespecified'/in a fírst step and then the proper surface
locus must be discri-minated re-ernploying the expressíons of the ap_
propriate complex 10ca1 surface impedance. FurthermorerÍt is 10gíca1
fo treat three different cases for which it is assumed that (í)n # 0

or oo knornm and S(r) is Ëo be derermí-ned, (ii¡ ¡ = lnl and s(r) are
to be determined and (iii),n(¡)and s(s) are to be determined from the
expressions of the Ëotal elecËric and magnetic fields given in the
vicinity of the bounding surface. An additional case in which the
shape of the body is knou¡n but its surface impedance and the electrical
size is to be determined is also considered.

3.4.L
DETERMINED

Assuming that the relative surface impedance is knovm a pr"Loni or can
be recovered by other means, as e.g. described in'Ieston, Bowman and
Ar [139 ], and that the totar electric and magnetic fields can be corr-
puted in the vicinity of the scattering surface, then the Èwo i.ndepend_
entconditj.ons A.B=0 and AnA=B.B ofTheorem2 canbe
employed to uniquely determine Ëhe proper surface locus S (Ð. Anv

one of these conditíons, by iÈself, Ís necessary but not LocaLLy sufficient,
producing in addition to the proper surface locus an infinity of pseudo
locí. HoweVer, since

A'ë = [ {g'n"¡-¡no{4.Hn¡ ] tn(a*.ri) * n*(-E*u") r-n (g.H¡ I {go.u*¡

-n", (n'*."*) l-no{¡*.uo) [ (u.u)-n2 (g.H¡ ] = o (:.4.1)
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and

A.ê-å. B = [ (n'E)-n, {g. H¡ I t {go. r*¡-n*, ("n. no) 1- t (g. n*)-nn* (g. no) ],

+ [n (st'.H)* fr(u.n*) ]r-4nn*(¿.H) (g'*.Eo) = 0 (3.4.2)

are independent conditÍons, onry the resulting proper surface loci

will be ídentical, whereas the independent sets of additional loci

do not coincide. Therefore, if n ís given, the proper surface

locus can be determined from the toËal field expressíons given in Ëhe

viciníty of the bounding surface for one singre frequency only.

For Ëhe case in whích rì = 0, Ëhe second characteristic equation

(3,4.2) reduces to

- *. *. * * *^(ex_E).(gxg¡ = (E.n)(s".s")-(E.g"l2 =O rì =0 (3.4.2a)

and similarly for E = L/n = 0 the same equation becomes

. *. ?t- * * *^(Ii4g).(gxH ¡ = (E.H)(g'-.n"¡ - (H.n")Z =o t= 1/n=0 (3.4.2b)

rn both of these special cases, it ís not possible to determine the

outward 1ocal normal from (3. 4.2).

3.4,LA PROOT' OF I]NIQUENESS (IMPERFECTLY CONDUCTING CASES)

consider the scattered field due to a smooth surface sk) on which

the Leontovich boundary conditíon ís satísfied and the relative in¡-

pedance I is known. Let us assume that analytí-c expressions for
the total field E and. H are known everywhere exterior to the equivalent

source region which resides in s(¡). rn seeking the surface s(r) by



Í [l--' II Tì'

looking for the surface on

is possible that more than

partícular wavenumber k.

whích either A.B =

one eligible surface

0 or A.A = B.B,

may be found for

ir

a

LeË us assume, therefore, Ëhat two surfaces so (I) and S, (r) have been

found on which either A.B = 0 or A.A = B.B. Both these surfaces
surround Ëhe equivalent source region and are taken to be smooth.

rn the volume v between the two surfaces the total electric and

magnetíc fields satisfy the source_free vrave equations

(V2+k2)E=O (V2+k2¡H=9

together with the equatíons

V.E=0 V.H=0

(3.4.3)

(3. 4.4)

However, solutions of these equations in the símp1y connected cavity
V sueh that

E - (â.8)â = ¡ñ x H (3. 4. s)

on the bounding surfaces to (:) and s, (:) exíst only for a discrete
set of real or comprex eigen-frequencies dependíng on whether n is
real or complex, respectivery. Thus, if k varies continuously, onry
the shape s (r) must change ín order to satisfy the boundary conditíon1-

since, by definition, So (t) is independent of wavelength.

The requirement that s" (g) remaÍn unchanged as the frequency is varíed
continuously, therefoterallows deterrnination of the scattering surface
uniquely.
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rf n is known, the proper surface locus can be discriminaËed from

the additional sets of pseudo-loci by computíng the two índependent

characteristic equations (3.4.1) and. (3.4.2) along radiant vectors

for various aspect angles. since these equations represent indqpendent

properties of the vectors A and Brand so(r) in both cases remains

constant, the addÍtional pseudo loci can easily be discriminated be-

cause, they do not overlap for the two conditions. Furthermore, sínce

the total field expressions are being defined as the vector sums of

the íncídent and the scaËtered fields, plots of the orthogonality and

the normality conditions display interference-like patterns. Therefore,

the psuedo loci cannot be closed in the shadow regíon of the object

while the locus represent,ing the finite, closed and smooth scatterer

is closed. This additional property leads to unique determination of

the proper surface locus by ernploying either the orthogonality or the

normality condition at one and Èhe same operating frequency, assuming

that both the electríc as well as magnetic near field expressions are

given over the entire unit sphere of dírections. Therefore, Ëhis

property makes each of dne LocaLLy ínsufficient orthogonality and

normality conditíon s gLobaLL¡7 sufficient.

3.4.2 N B.EAL OR IMAGINARY AND S^ (r) ARE TO BE DETERMINED
u

For the case in which n = Inl is not knov¡n a pz.iorL, the two independ-

ent characteristic equations (3.4.1) anð, (3.4.2) are first emproyed to

determíne the modulus of the relaËive surface impedance n. For

n = Inl Ëhe orthogonality condition A .B = 0 simplifies ro
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A'B =

and therefore

Inli

Similarly, the normality

resulting in a quadratic

ln I t rg*gol- ln l '(n*u*) J. [ (E*xg)- (Eïgo) ] = 0

the square modulus becomes

(g*g*). t (e*xg)- {g*g*) I
+.q¿

(ttxtt ). t (g xg)- (sxu ) l

condiËion fuA-B.B = 0

equaËion for the square

(3. 4. 6)

(3. 4.7)

can be símplified,

modulus,

ln I 
u l"q'* l'-zlnl'{ t {¡*go¡. lnxg*)- (so4g). g+-l I

t lg"*gl '*lg*s"-l 'l ) * l-EnEo l' = 0

and theref.oreranother two-fold solution for the square

found, where

lnl'' l¡2

r rg"E-l . {g*g*)- <g-ngl. (E*H*)+ *r lg-gl t*lg+go 
| 
,l I

**
(ttxU ). (HxlI )

,1-2 (3.4. B)

modulus is

+J-
(uxtt ). (HxH )

{{ f (g"E-). (g*Itn )- (e*xg). (E*H*) l

,1-1 t lg*agl '* lg* 
* 
l'l:-'-l u*uo | ' l4*"o | '] (3 .4.e)

(3.4.1) and Ëhe normaliry (3.4.2) condirions

other, it should be possible to discriminate

surface impedance by sirnultaneous computation

Since the orthogonalíty

are independent of each

the proper value of the
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of (3.4.7) and (3.4.9). For a poínr lying on rhe surface, only one

of the solurions of (1.+.9) provides the proper value of lnl, r¿hich

must be identícal to thaË obtained, at that point from the síngle value
províded by (3.4.7). The value of lo calculated from (3.4.7) at
each point along a radiant vector is substítuËed into equations (3.4.1)

and (3.4.2) to caleulate the orthogonality and the normality conditions.

at those poinrs. The poinr ar whích equarions (3.4.1) and. (3.4.2)

have a coincident minimumrin addition to the values of one of the roots
of (3.4.9) being identícal wírh rhe root of (3,4.7),is rhe proper poinr

on the surface. Another point for which Ëhe above Ëwo conditions are

satisfied simultaneousry cannot exíst because (3.4.r) and, (3.4.2)

are independent relations. FurËhermore, the resulting values of the

square modulus must vary continuously and uniformly since the expressions

for the total field vectors E and H are assumed Ëo be analytic. Thus

both the modulus lnl and the point on the proper surface can be direct-

ly and uniquely specified from simultaneous computatíon of (3,4.7),

(3.4.g), (3.4.1) and (3.4.2), For the purpose of increasing rhe res-

olution, the method outlined in (i) may be repeated using the correcË

value of the surface impedance calculated above. rt is to be noted

that for the case in which r = 1 exp jú, both .lr and so (:) ca'.

be uniquely determíned by appJ-ying a procedure identical to that ouË-

lined above'.

^tlJ.4.3 n = Inl exp jil.r and S^(r) ARE TO BE DETERMINED

For thís general case, in which neither the modulus nor the phase of

n = n (rrw) are assumed to be known a prioz-i , the tr¡ro necessary buË not
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sufficient (though independent) conditions A.B = 0 and A.A = B.B

must again provide alr the required information, since no addiËional
unique condition has been found in section 2.4 Ho$rever, if it is
known that rì is homogeneous, the degeneracy eonditíon can be empl0y-
ed in the neighborhood of the back-scaËteríng direction to recover the
correct value of the surface impedance n.

Defining ExE* = ja, HxH* = jb, En*H = g*jd and n = ln I (cosi!+jsinrf),
the basic vector quantities A and B become

A = jla - lnlt ¡l

s = 2lnl j [c sinrf + d cosr!]

and from A.B = O it follows thar

a"c sinrf * a.d cosr/;

(3. 4. 10)

(3.4.11)

lnl'= b.c s,ínr/; * b.d cosrl; ß.4.r2)

and símilarly 4.4 - B.B = 0 becomes

a' e-2ln f 'za.q+ln I 
uÞ.Þ = + ln I 

2 [c. "sin2i¡+zc.4sinrlcosiJ¡t-d._d.cos2r¡1 (3. 4. 13)

substituting (3.4.r2) inro (3.4.13) resulrs in a fourrh order esuation
in tan p

ertana{r.fe.tan3{rfertan2{rfeutanV.rfeu = O ß.4.I4)

where the coefficÍenrs ., are given ín Appendiæ A,.2.

From equatíon (3.4.I4), it follows that, in general, a four_fold
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solutíon for the phase qr of n resultsrand wíth (3.4.12) we obtain a
four-ford solurion for n = Inl""p(jrlr). Bur onry one of rhese four
resulting roots can be the correct value of n. rt is to be noted

that this four-fold solution r¡as to be expected since the four complement-

ry sets of the Leontovich equation had been employed to deríve the

unique relationshíps summarízed in Theorern 1 and 2. rn order to dis-
criminate the proper value of n uniquely, at least another independ-

ent basic vector would be required so that additional índependent. and

necessary conditions could be obtained. Therefore, for a general case,

it is not yet possible to unlquely determíne an arbitrary unknown

n = rì(rro) .

However' if iË ís knov¡n that rl = Inl."p 3,¡, is homogeneous and that
the scatterer is closed and smooth, the degeneracy condÍtions as suûr-

marized in Theorem 3 can be favorably ernployed to unÍquery specify the

proper surface locus as well as rì = Inl."p ¡,1, from the given seË of

total near field data computed in the vicinity of the scattering sur-

face. rn accordance wíth Theorem 3, the procedure is to determine

first the backscaËteríng poínt for which E.H = 0, 4 = 0 and å = 0

and then to apply the degeneracy condition ê = O and B - 0 at neigh-

boring points, in additíon ro computing ,l, and lnl from (3.4.L4)

and (3.4.1'2) respectively. Although the degeneracy condition can be

strictry applied only at the specular point as defined in Theorem 3,

ít is a sufficíent first-order approximation if the curvature of the

scatteríng surface in the neighborhood of that point is varying con-

tinuously and slowly.
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Thus to discriminate the proper values of n from the resulting four

roots of (:.+.14) and (3.4.12), modulus and phase of rl are computed

as firstorderapproximations from A=0, B=0, where
J.

ExE
l.l2 -
| 'r | (Uxi1't¡

and

(3.4;15)

(3. 4. L6)
ExH

exp J¿v =--l-
ExH

Thus, once sufficient confidence in having discrimínaËed the proper

value of n is attained by repeated computatíon of (3.4.r4), (3.4.15)

along radiant vectors for dífferent neighboring aspect angles, the

discríminated proper n is directly subsËituted into the orthogonalíty

and normality conditions, A.B = 0 and A.A = BoB respectively. sinr,-

ultaneous compuËation along Ëhe radiant vectors Ëhus should allow local

discrimination of the exact point on the proper surface so (r) as has

been explained ín Subsection 3.4.2

If the scatterer ís knovm to be inhomogeneous but nondispersive, double

frequency checking techniques nrzf be employed. rn this techníque,

values of the phase ú and Ëhe magniËude ln I of the surface impedance

arecalculated from equations (3.4.14) and (3.4,r2) for two or more

frequencies. The correct value of surface ínnpeciance will be found to

be stationary along the radiant vector at the point which lies on the

surface, while all other values will shift wiÈh change of frequency.
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rt is important to menrion here rhar equarions (3.4.15) and (3.4.16)

are the special cases of the more general equatíons resulting from the

orthogonality of the vectors A, B and ñ which yields

ô.A = ñ. (e*E" - Inl' H*H""¡ = o (3.4.L7)

"***ñ.8 = â.(nE"xH - fl ExH") = o ( 3. 4. 18)

Therefore, the general expressions for Inl and rf are given by

â. (ux¡*)
Inl'=

ô. (ttxlt )
(3.4.19)

â" 1nx¡*)
exp (j 2þ) =

n. (un4H)
(3. 4 .20)

But, unfortunately the unit, normal vector ô cannoÈ be deterrnined

independently of A and B and the equati-on of the surface of the

scatterer. But, íf the shape of Èhe body is known (í.e. â is known)

and only the unknornm n of the scatEerer and iËs electrical size are

to be determined, equations (3.4.19) and (3,4.20) can be successfully

employed.
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APPLICATION OF INVERSE BOUNDARY CONDITIONS TO TWO-DIMENSIONAL BODIES

4.L INTRODUCTION

rn order to demonstrate the validity of Theorems I to 3, as postulated
in section 2.4 and the appricability of the established sets of in-
verse boundary conditions as derived in sections 3.2 _ 3.4, the identi_
ficaÊion procedure for two-dimensional mono-body and two-body shapes

is presented in this chapter. The model targets chosen are circular
cylinders of arbitrary radíi and arbitra'y, though homogeneous, maË-

eríal surface properties. This choice r¡ras díctated by the fact that
sufficiently accurate informatíon on Ëhe dírect scattering solutions
is available for cylindrical scatterers for which the electric and.

magneÈic fíe1ds in the víciníty of the scattering surface satfsfy the
Leontovích or scalar Ímpedance boundary condition. since sufficÍently
accurate data for the cyJ-índrical scatteríng case with inhomogeneous

relative surface impedance n (s) hras not found in the liËeraÈure [28 ],
only the homogeneous cases are considered here.

The formulation of the electromagnetic fíe1ds, to whích the inverse
boundary conditions are applied, is based on the approach of Boerner

et al [ 251 where the far scattered transverse field components are

related to the Fourier coefficients of a properly truncated expansion

in terms of circular cylindrical wave functions l,4g ] via the scattered
field matrix.
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The a pz"toz"i unknovm expansion coefficíent.s are recovered via a matrix

inversion procedure Ëo a degree of accuracy dictated only by measure-

ment of both the amplitude and phase of the bistatic transverse scat-

tered electric field components according to the theorems on optimal

measurement aspect all0cation [25 ,26 ]. since the main objective

of this thesis is to demonsËrate the validity of the derived inverse

boundary conditionsrthe results presented in [25 ] are readily applied

and thus it is assumed that a sufficient number of Fourier coefficients

has been recovered to the required degree of accuracy.

The direct scatt.ering soJ-ution for a single circular cylinder with

arbitrary surface ímpedance wíll be employed for obtaining the requÍred

Fourier coefficients. since the direct scaËtering solution for cwo

parallel circular cylinders with arbi trary radii and arbitrary sur-

face impedances is not available in Ëhe literature, olaofers approach

l'92 I for dielectric cylínders has been extended to this more general

case i-n section 4.2.2. rn order to calculate the el-ectromagnetic

fields within the mínimum circle enclosíng the body, analytic contin-
uation methods have been employed and a brief review of this technique

ís gíven ín section 4.3. Finally section 4.4 presents the numerical

verification of ínverse boundary conditions.

4.2.I THE MO{qBODY CTRCULAR CYLINDRICAL CASE

consider a plane electromagnetic \,rave, arbitrarily polarízed, travelling

along and in the direction of Èhe negative x-axis and normally incident
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on a circular cylindrícal scatterer of el_ectrical radius ka and

surface impedance rì as illustrated in Fig. 4.L. The íncident field
can be resolved in tr¿o components [ 4t ], the pararler polarized (!.,¡ )
and the normal polarized (E.) components wÍth respect to the curvi-
linear clrcular cylindric coordinate surface ltOZ,A41, i.e.

å.r," = (Erâö + E,, âr) exp (-jt<x) (4.2.L)

where the time dependence exp(-jot) has been suppressed and k re_

presents the free space wavenumber.

without presenting elaboraLe detail, the paralrel component

incident field and the Z-component of the scattered field at
I

P (Fig.4.1) can be expresseã as

of the

point

E;(r,O) = IC-¡1" Jrr(kr)exp(5nQ)
n=-æ

(-j )" orr"Ít ) {u'¡exp (¡nQ)

nl {r, o)

(kr) designates rhe cylindrical

and of order n and argument

result from direct application

(E /z) I (-j)'BrrH(t) (r.r)e>cp(jn0) (4.2.4)t n=--

(4.2.2)

(4.2.3)

Hankel function of the

kr, and the remaining field

of Maxwellt s equaÈi-ons.

and

where g(r)
n

first kind

components

The

are

Tï"f and the TE Fouríer

funcËions only of the

coefficients A

radius a and

,, and Brr, respectively,

the averaged relative surface
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impedance t1 ¡ given for the considered case bv

d

Jr, (ka)-5¡Jr, (ka)

n 
H-(t) (tt)-jnH(r)' (4.2 . s)

ì" (ka)

and

B --
4]rr(ka¡-¡ J'(ka)

n *-(r) (ka)-j ,_(i)'1ta)n"n

rnrhere Jrr(ka) represents the Bessel function of order n and argument

ka and Èhe primed expressíons denote differentiation with res'ect
to kr(-¡"¡ .

It should be noted that the superposÍtíon of existent TM(A') and

TE(B') fields | 2 I are stríctly r:equíred in the cylindricar case of
normal plane wave j_n-ci<1e,nce fcrr ¿¡" valid applicability of the inverse
boundary conditions derived in Section 3.4 t 23 l.

4.2.2 THE TI^IO-BODY CIRCI]LAR CYLINDRICAL CASE

The method of solution presenËed in thís subsectÍon foll-ows that of
van der Hulst lr25l and olaofe 192 I in which rhe fields are expressed

in terms of Ëhe Debye transverse magnetic and electrÍc scalar potential
functions, and well established methods of coordinate origin transforma-

tion [115, 54,L47 , 78,136 ] are employed.

consider two infínite, non-overl.appingr parallel circurar cvlindric
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scatterers of arbitrary radii r, and 
^r, and homogeneous relative

surface impedance" r, and \, illuminated by a mixed-porarized

plane r¡/ave' normally incident at an angre ß with respect to the

geodesic of lengrh d > ("r*"r) z connecting th.e centers O, and

0 of the trn/o, =catterers. as illustrated in Fig. 4.2. The total
field is represented in terms of two scalar potentiar functions,

namely the TM(Eirr" = Ez = üTM) ,.r¿ the TE(rrrr" = Hz = rpTE¡ *odes

llz5lo where the potentials of the Íncídent field are given by

TMÓúi" (r. ,01) = ., .^l _(-j)" Jr, (kr. )exp(jnSr)
tr---

and

where

ei = exp hkd(2-i)cosßl

and i=lor2designates

surface impedance l, or l,

the cy1índer of radius

, respectively.

(4.2.7)

(4.2. B)

(4 .2. e)

a ora andof
It

ulu c'. ,01) = ., 
-Ï -(- 

j )' J,, (kr. ) e>ç (jnôi)
n=-oo rr

The scattered field poËentials UTM 
".r¿l_

are respectively given I SZ7 to"

TEV;-
I

for the TM and TE.componenLs

(4 .2.L0)

(4.2.rL)

and

r,trhef e

i (=1 or

TMui" (r,, ör)

.,T8,ui (ri,Qí)

= j-""r'oc-:l"nj') (t '. )exp(¡nþr)

ibn (-j l"tÍt 
) ltrr) exp (jnþ. )

oo

=T L
rI=_æ

.al-n
2)

and .b are the
l_. n

in the presence of

scattering coefficients of cylinder

cylinder í'(=2,I) + i(L,2).
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In order Ëo apply the boundary conditions on cylinder i(=1r2),

the fields of cylinder it (=2r 1) have to represented in the coordinaËe

sysÈem of cylinder L(L,2). Employing ülaËsonrs scalar addition theorems

[133] in accordance wirh rhe definiríon of Fíg. 4.2, i.e.

/- \
exp(jno )H(r) (kr^)=(-1)n t "j:)(kd)J0 

(kr )exp(-jl,o ) (4.z.tz)z n 2 ¿"=_*n+y.',-ll,'---.7. - _ t.

and

r\æol\
exp (5n0 )n_( 

t ) (kr. )= | f-rllHjl) Cr.a>.t, (kr ) exp (-j.[0 ) (4.2.L3)l'n l' g=l-- ' n+J¿' r' 2' 2'

the toral field u:ot ourside rhe ith cylínder for rhe TM case is
given by

-.Eot / 
6

uf-"(r.,ôr)=_I r-¡)"{ [e-J.(kr.)+irrrHrÍt ) lt rr) ]exp(3ngr)
.n=-*tll-LrÐn

* i"., exp(jnß)n i t-rl"c z-')+('(i-t'"jiì(kd)r¿(krr)exp(-jr,oi)] 
G.2.L4)

rt is now convenient to introduce the following abbreviation

i,iAr, = ^f 
(-j)g(-1)¿(z-í)+n(i-r) - ,'(t),uu)exp(j[ß) (4.2,rÐi t o.Q,"n+,Q, \*---

so that (2.2.8) reduces to

_-Eot, eui tfi,Qi) = -4 {(-j)"Irrr,.,(kr.)+.arrn(t) {t.r) ]
rr--@ 

I ll

* i,iA-r,J-r, (krr) exp (-jnB) exp (jnqr) i (4.2.].6)

Application of the scalar impedance boundary condition (2.3.1) onto
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(4.2,L6) aË r. = a. resulrs int_I

ufot{'r,ô1) = t* ãi tu:ot(rr,or)l

so that

(4.2.L7)

(4.2.L8)

(4.2.L9)

l-where A denotes the TM coeffícients as defined in equation (4.2.5)'n
for independent mono-body scattering from a circular cylinder of rad.ius

a. and surface impedance 1,. The corresponding results for the TEr_ ' 'i
case can be obtained by following a similar approach. rn this case

the total magnetic potentíal is given by

i"r, = Ai Ier+(-j )ti, ,A,o"*n 
q-3nß) 

J

-,tot , rVi -(rÍ,Qi) = ¿ {(-j)tIeiJr,(kr.)+.brrli(t) itrr) ]
n=-æ

*i, iB-r,J-r, (krr) exp (-jnß) iexp (j nþ. )

with

ibr, = Bi Irr+(-j)ti, iB_r,"xp(-jnß) ] (4.2,20)

and

i,íBr,=,,,1 _,-rIQ'(2-i)+n(r-i).,bruÍiì(kd)exp(jr,ß) (4.2.2L)

iand B-- denotes the TE coefficients as defined in (4.2.6) for in-n

dependent mono-body scatteríng from a circular cylinder of radíus a.
l-

and surface impedance rì " .
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Equations (4.2.18) and (4.2.20), each of which consists of two coupled

equations, can be solved either by a matrix inversion or by an iËera-

tion method vrhere for convenience the latter method has been employed.

It should be noted that the rate of corrvergence becomes very rapid

as the electrical distance between the axes increases i.e. kd > 4ka*where

a denotes the layer of the two radj-i of the scaËterers [92 ]. Further-
m

more, observe that for the end-fÍre (ß = 0) case .an = iâ_n and

.b = .b , whereas for broad-síde i11umínation .a = .,ã andl_ ft l_ -n' l_ n l_' -n

,b_ = ,rb _ with í # it (=L,2)l- n l-' -n

4.3 TI^IO-DIMENSIONAL ANALYTIC CONTINUATION

In order to determine the shape and the maËerial surface constituents

over all surface regions enclosing Ëhe target, near field expressions

for the total fields are required everywhere in the vicinity of the

Ëarget. Since the field expansions of (4.2.15) and (4.2.16) are con-

vergent only outside the minimum circle enclosing the equivalent

sources [ 85, L461, the field must be continued analytically. By

changing the origin of the coordinate sysÈem one v¡ould obÈain an ex-

pansion outside a different minimum circle. Thus, by repeatedly

changing.the coordinate system and with simultaneous reformulaËion

of the associated field expansions, one can obtain convergent expressíons

for the near scattered field everywhere outsíde the minimum convex

shape enclosing the equivalent sources as has been shovm in Weston,

Bovrman and Ar [f+O]. This method, further analysed in [tSe], has been

employed by Imbriale and MitËra t S¿ ] for the profile characteristics



,ü" { 'ú

inversion of two-di-mensíona1 perfecËly conducting shapes, using the

fact that the tangentíal component of the electric field vanishes on

a perfectly conducting body. The scattered. field expansionrvalid

ouËside the circle of minimum radíu" r" enclosing the equivalent

sources, as defined in Fig. 4,3, is

u(r,Q) = i"rrt-:l"nÍt) {n'¡exp (¡nQ)
n=-æ

(4.3.1)

(4.3.2)

the

exp(jrnQ') for

(4.3.3)

Note that for . a r" this series representation diverges, so it is
possible to determine the radi-us r = r from numerical behavior ofa

the series for r a .r. I^Iith respect to a ner¡/ circular cylindric

coordinaËe system centered at 0t wíth all three axes parallel to

that of the ínitial system centered at o, as shown in Fig. 4.3,

the field can be represented outsíde the circle of minímum radius

Tt as

u'(r',0') = i a;(-j)\Ít'(nr')exp(jrngr)
m=-æ

The coefficients ât,

use of scalar additíon

Substit.ution of

results in the

can be expressed in terms of the r' by

theorem [115]

f.
I'

f1
(n-m)"j 

'ïiï-]',iLJ
u(,) (r..).xp(j,,0)= i {"Í:}e-','}Ì/L=-æ 

lJ"_*{k'o 
11

a

^td
m

expj
)rl

0

(.r t
0

(4.3.3) into (4.3.2) and

following expression for

change of

Ltt+l l

summaËion index
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r r ñ-ña'= ) a i^'"'J* -(kr )expli(n-m)ô lm _. _. n- m_n. o. --r rJ \-- 
0n=-æ

(4 .3. 4)

where kr (< kr I )
0

þ designates the
0

clenotes the electrical translation distance and

transformation angle as defíned in Fig.4. 3.

using the above expansions the fíeld can be continued. everywhere in Ëhe

vicinity of a smooth convex scatterer t75 _75 l. But for bodies of
arbitrary convex/concave shape Èhe fields must be expanded in Ëerms

of cylindrical wave functíons r¿hich are valid wi_thin the rargest
círcle of radius ro ivhich excludes the body t 7S l. hriËhin this
circle defined in Fig. 4.4, the field can be expressed as

u'(r'rô') = I ai (-j¡[.ro{tr,)exp(jl,O,)
I'Z-* L Y-

where ai , the scattering coefficients in the new coordinate system

can be expressed ín Ëerms of the coeffícíents r' associaÈed with
the initíal frame, (4.5.1) by using the additíon theorem of equation
(4.5.3), noting that kr"O > kr'. These coefficienËs are given, as

is also shoum in [ 14{, by

æ
. r n-0 l-\

"i = 
^L _"r,j.. 

-Hdi;(k."b)explj (n-.0)Q^ l
ll--w

(4.3. s)

(4 .3.6)

The expansions represenËed by equarions (4.3.1) Lo (4.3.6) will be

exact if summati-on is performed over the complete range _oo < n < co.

But, ín practice' one has to truncate the series Èo a finite number

of terms and Ëhe question, aË vrhích bound one should truncate the series
is of paramount importance for numerical computation and wirl be dis-
cussed in cLtøptet, siæ.
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4.4 NIIMERIC COMPUTATIONAL VERIFICATIOry (2-DIM. )

rn order to ínvert the profíle of the scattering bodies accuratery

and optimally, efficient computatÍonal techniques based on maximum

use of recursive and iterative techniques must be used. All the

programs were written ín Fortran rv language, using double precisÍon

arithmetic for special functi-ons and single precision for all other

routines. The special functíons, Ëhe expansíon coefficÍents, A' and

B' for the single cylinder, *d i"r, , ib' for two cylínders and the

program for two-dimensional analytic continuation r¡/ere generated as

subroutines which are called by the main program when required.

For the purpose of demonstratíng Ëhe applicability of the various sets

of inverse boundary eondítions effi.ciently, the numerical verification
has been dívided into Èr^/o parts. The perfectly conductíng cases are

treated first to introduce the idenËifícation procedure resulting from

the simulËaneous application of the relevant ínverse boundary conditions
(3.2.3) to (3.2.r0) and numerical methods are introduced for thís
case in detail. The techniques so established are then applÍed to the

imperfecËly conducting cases employíng the various sets of inverse

boundary conditíons derived in Subsectíon 3.3.

4.4 .La PERFECTLY CONDUCTING MONOBODY CASE

The total electric and

readily obtained from

magneti.c field

the definitions

expressions in this case are

of (4.2.2) Ëo (4.2.Ð. The
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series representation of these equations are truncated according to

the criterion developed in chøpter síæ. For the perfecÈly electric

conductíng target of electrical radius ka = 5, selected here, the

order of truncation N of both of TM and TE field expansíons ernployed

here r,ras chosen to be N = 8, thus rying within the 1or¿er bound N.0 =

5 and the uppsr bound Nr, = 16. The inverse condítion" Q, = Mín

{lg"¡*¡'(Exg*¡}, Q = Min{E.H} and Q = lrin{lE. I lo lÌ
2 -- 3 '-tr"l-18"."¿lÌ' resulting

from (3.2.6), (3.2.5) and (3.2.4) respecrivery are rhen applied to rhe

computed fields. The plots of Q,, Q^ and Q^ resulting from computation7 2 -3

along the arbitrarí1y chosen radiant vector defined by 0 = 22.5" vs.

the radial distance kr are shown Ín Fig. 4.5a. r.t is evident from

this figure that the condÍtions Q, "rd Q, produce only one minimum,

whereas Q, produces an infiniËe set of pseudo minima in addition Ëo

the highly pronounced minimum specifying Lhe proper point on the

exact surface to (I). This behavior of these three inverse conditions

proves that Q, is a necessary but not LoeaLLy sufficient condition

but A^ and Q^ are boËh neeessary and, LocaLLy suff.icient conditions.23
The proper minimum of Q. can be discríminated with the aid of condÍ-

I

tions Q- and Q rt is evident frorn Fig. 4.5a that the conditions'3 '2

Q, and Q, "n""ì.ry the exact point on the proper surface locus s0 (r)

to a higher of accuracy as compared to the physical optfcs condition

a^. This statement. ís more strongry valid for those port.ions of the
3

scattering surfaee which lie in Ëhe umbra region, as has also been

shown ín trrleston and Boerner [f:Z] where they demonstrate thaË for the

low frequency case, the physical optics boundary condition becomes

rather inadequaÈe.
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The various loci resulËing from the simultaneous application of Qr,

0 and 0 are olotted in Fig. 4.5b der:ronstratíng Ëhat Q and Q'2 '3 L 2

specify the proper surface locus to a high degree of accuracy. Further-

more, it should be observed that the additional pseudo loci are not

closed in the umbra region for the closed circular cylindrical shape

selecÈed here. Thís reflects the interference behavior of the ËoËal

field expressions and thus makes the exact, necessary but not LoeaLLg

sufficíent condition I n"go | = o , gLobalLy sufficienr for rhose cases

in which the scatterer is of closed shape | 2 1. Therefore, it Ís

concluded that from the simultaneous applícatíon of the Ehree ínverse

boundary condirion" Q, Mín{(s*ni,). (n*u*¡}, Qr= l,tin{n.n} and Q, =

r"fin{ lE-...^l-lU^^--l}, it should be possibte ro uniquety and exacÈty'-l_nc' '-scât' -

recover the proper shape of a closed scatterer, given field data

everywhere in the vicinity and closer neighborhood of a scatterer for

only one operating frequency. However, it should be noted that for

the valid application of the inverse condiËions E.H = Orand [*cH = Q

or E.H* = 0 (which are not beíng ernployed here, since they display.

the same characterisÈics as does the condition ExE* = 0 t 23]) the

incident \,rave must contain both parallel and normal polarized compon-

ents since otherwi-se E.H = Etr.H = E.I* i 0 everywhere tZ¡ ].

+. ¿+. l-b PERFECTLY CONDUCTING ThIO-BODY CASE

In order to show

and also employed

Ëhe inverse boundary

23 I to the monobody

conditions applied above,

spherical cases, also hold

Èhat

Ínl
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for more complicated smooth and closed shapes, a two-dimensionai con-

figuration of two non-overlapping electrically perfectly conducting

circular cylinders as defined in Fig. 4,2, has been selected. The

selection of this confíguration resulËs from the fact that it re-
presents Ëhe curves and contours of a general body and exact direct
scattering solutions for this configuration are available (Subsection

4.2.2 and [92]). The single precision expansion coefficients .a'
and ,b- for the two-body configuration of Fig. 4.2 are calculatedl_n
accordíng to (4.2.18) and (4.2.20) for rì = 0 and great care has

been taken in applying valid order of truncation bounds as is analysed

in chapteT siæ. The test cases selected for illustration consist of
two paraltrel electrically perfectly conducting ci-rcular cylinders of
equal electrical radii o", = k^, = 1.0 with their centers separated.

by an electrical dístance kd = 4.0. Mixed poLarj-zed., normal plane

wave incidence at an angle $ with respect to the line joiníng the

centers 0 and 0_ of Èhe two cylínders as shorrn in Fig.4.2 is assumed.t2

since the main objective of this work is to verify the validl_ty

of the inverse boundary conditions, rather than to establish a per-

fected compuËatíonal discrímínation procedure, a grid of computation-

al rays passing Lhrough Ëhe cenËers of the cylínders was selected over

the entire plane. rn orcler to demonstraÈe the interference of the

individual patterns of the pseudo loei eÍ.fectively,

more computaËional lines have been employed in the vicinity of the

line of incídence passing through the center of the configuration.

However, it should be mentioned here that a discrimination procedure

applicable in those practical cases for which no a pz,ioz,i information
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on the nature of the scattering geometry can be assumed, could easíly

be established employing the ninímax method of Rosenbrock [ 1OO], as

has also been proposed in t 54 l.

Thus, in the presented analysis, the origins of the transrated co-

ordinates have been chosen to líe on each of these rays. The scatLer-

ing coefficíents for each of the cylinders in the presence of the

other, as given by (4.2.L5) and (4.2.20) for rì = 0, are rransformed

to the ner,¡ coordinate system defined in Fig, 4.4 using (4.3.5) and

(4.:.6) for the inside analyËic continuation. Due ro the línearity

of Ëhe fields, the sums cr, and d' of the translated coefficients

associated with the two electrically perfectly conducting cylinders,

aj, ar and -bt , ^bl for rì = o respectivery, provide Èhe scaËter-I n- 2 rL I n ' 2 n
ing coeffícients for the two-body configuraËion with respect to the

translated coordinate system. A sirnÍlar approach was employed to

discrj-minate points lying on the minímum circle enclosing the two

scatt,erers where use r¡ras mad.e of (4.3.2) and (4.3.q) for outside

anal.ytic continuation.

Figs. 4.6a to 4.6d display the plors of rhe families of loci resulr-

íng from the applicaÈion of the inverse boundary condítion Q, =

Min{ (¡xn*) t (ExE*) } on a selected grid of rays for different values

of the relative angle of incidence ß(90',75or45"r0o). rt is observed

that the pseudo locí Sp* result frorn the superposition of the family-rr

of loci displayed by individual cylinders in Fig. 4.5b. rn the vÍciniry

of that líne of incídence vrhich passes through the center of Ëhe con-
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figuration the pseudo loci are depressed ínward and the depression

decreases wíth decreasing relative angle of incidence ß as would

be expected. Síurilar to the case of the single cylínder, the additíon-
al pseudo loci sp' are not closed in the umbra region, whereas Ëhe

exact locus S (f) ís closed, thus confirmíng the property that0

ExE* = 0 is a globally sufficient condition. Again, as has been

shovm in the monobody case, the inverse condition a- specifies the
L

proper surface locus to a high degree of accuracy. Therefore, Èhe

approximate, though necessary and sufficient conditíon Q, = Min

{l¡.-^l-le^^--ll is noE required excepr rhar Q and Q do aíd in rhe,_Inc' r_scatr- -- --a----' 2 3

discrÍmination of the proper surface locus. rn Fig. 4.7a t]ne curves

resulting for the three inverse condiËion" Qr, Q, and Q. are plotted

along a selected computational líne Ct-C" for the case of broad-side

incidence illustrated in Fig. 4.6a whereas in Fig. 4.7b the results

are presented for the endfire case of Fig . 4.6d,, thus verifying the

accuracy of the díscrimination criteria established above.

The fact that even the enÈLre configuratíon of Figs,4.6ð. and,4.7b

can be identified so accurately, very strongly proves the soundness

of the íntroduced ínversion technique. These conditions have also

been successfully tesËed for a variety of combi.nations of two cylinders

of non-identical radii and for arbitrary relative angle of incidence ß.

since the method of profíle inversion of magnetically perfectly con-

ductíng shapes follows identical procedures [ 23] no further resulÈs

are presented here.
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4.4.2 IMPERFECTLY CONDUCTING CASES

similar to the perfectly conducting cases, the test targets chosen

are single circular cylinders of different radii and surface ímpedances,

and two non-overlapping cylinders of arbitrarl radii a, and a, and

surface irnpedance" î, "tro rz with separation distance d between

the centers. since the numericar formulation of the toÈa1 fierd
expressions ís identical to that emproyed for the lperfectly conducËing

cases except Ëhat n I 0 or -, major emphasis wil-l- be laid on the
novel conceptual approaches of discriminatíng the exact surface locus
to @ from the infiníty of additional pseudo roci sprr(.) as well as

of extracting the proper ímpedance value ro from the four-fold
solution which pertains to the general case of a p,ioti unknornm n.
rt is assumed Ëhat a mixed polarized incident wave is travelling per-
pendicular to the axes of the cylinders at an angle ß with respect
to the 1íne joíning their centers as defined in Fig . 4.2. For the
sake of clarity of presentation the ímperfectly conductíng case has

been divided into three distinct classes.

(i) n # O known and S G) is Èo be derermined

(ii¡ n = lnl and S(s) are ro be dererrnined

(iíÍ-) ¡ and S(r) are to be cleterr¡íned.

4 .4 .2a

rn Ëhis case it .is assumed that n is either knornm a pnioz,i or that
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n has been recovered by other methods of eleccromagneÈic remote

sensing as e.g. described in [139]. The total erectric and magnetic
fields to which the orthogonality and normality conditions of (3.4.r)
and (3.4.2) are to be applied are calculated along a serected grid of
rays using properly truncated series expansions of equati-ons (4.2.L4)
and (4.2.f9). The scalars y, = Min{A.B} and y2 = Mín{ A2-,,2} have

been,plotted in Fig. 4.Ba along a radiant vector (ö = 45.) for a single
conducting cylinder of electrical rad.ius ka = 2.0 and of surface
Ímpedance r = 0.5. A similar proÈ for tr¿o conducting cylinders of
electrj-cal radii U", = ka, = 1.0, surface ímpedance" l, = fì, = 5.0
exp(j45o), erectrical separation kd = 3.0 and rer_ative angle of
incidence ß = 75", Ís presented along Ëhe computationar line c-c'in
Fig. 4.9a. An examination of these and many other símilar plots for
dífferent parameters reveals that only one pair of minÍma out of the
infínity of minima resurting from y, and y, is coincident, and this
single mi,nimum defines the correct point on the proper surface locus
to (r). This property makes boËh the orÈtrogonality and the normarity
conditions necessary buË locally insufficient. The descending parts
of y, and y 

" 
of thj-s common minímum always dÍsplayed greatest slope

ancl th:-s n¡inÍmum in'general rs much sharper and. deeper than the res

of the pseudo minina. Both condítions are seen to be applicable for
al1 values of n(# 0, *), be it purely rear, purely ímaginary or comprex.

The infinity of loci Sp' and Sq' resulting from the application of
(3'4'1) and (3,4.2) respecrively, are prorred in Fig. 4.Bb for rhe

mono-body case and in Fig. 4.9b for the two_body case, on a plane
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normal to the invariant z-axis. rnspecËion of Fíg. 4.gb shorn¡s that
for the monobody case each of the Ëwo conditions generaËes a series

of non-coincident parabolic pseudo loci in addition to the proper

coincident locus to (l). The plots of Fig . 4.gb confirm the above

observation for Ëhe two-body case. The pseudo loci in this case are

the superposition of the infinite families of discrete loci resulting

for the constituent cylinders. rt should also be observed. that in

both the monobody and two-body cases the pseuCo interíor caustícs and

the exterior pseudo loci are not closed in Ëhe shadow region and only

the proper surface locus to (l) j-s closed. Therefore, it ís concluded

thaË each of the condi.tions by itself should be sufficíent to discriminate

the proper locus of a system of closed conductíng scatËerers, given

measurement data for one frequency only. This observation makes the

necessary bux LocaLLy insuff.icient orthogonality and normality condi-

tions necessary and globaLly stffícient. The símulÈaneous application

of both conditíons should make Ëhe proposed ínversion Ëechnique unique

also in those cases for r¿hich the given fíeld data are noË very accurate.

lnl and S (r) ARE TO BE DETERMINED
0-

4.4.2b

In those cases for whích n is known to be purely real i.e. n = rìr!

or purely ímaginary (n = -nå-), rhe roors of (3.4.7) and (3.4.9) have

Èo be calculated along a grid of rays. The values so calculated are

plotted in Fig. 4.Be along the ray 0 = 45o for the mono-body case

illustrated in Figs. 4.Ba and 4.8b. The plots for the two-body case

are not given because the resulting curves for any individual constiEuent
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cylinder are alíke. Tn Fig. 4.8c, no represents the single rooË of

(3.4.7) and n, is one of the roors of (3.4.9). The plot for the orher

root n^ of (3.4.9) has been omitted in Fig. 4.Bc sínce ít was found
2

to díffer from ¡o tor all points along the computational line con-

sidered. At each point. along the ray the calculated value of rlo is

used in y^ and that of n_ ín y- (as defíned in (3.4.1) and (3.4.2),
2Il

respecËively), resulting in plots similar to those given in Fígs.4.ga

and 4.9a. The sÍng1e common mÍnimum of t, ^r.dyz was found to be

identical only at that point for which rìo = rìrr defining the proper

point on the proper locus so (r). The proposed single frequency dis-

crimination procedure would have to be repeated over a grid of rays

spanníng Ëhe Ëotal cross-sectional plane (Z = const. ) if ¡ = ¡¡:t

(or n = -¡:t) is inhomogeneous, whereas for the homogeneous case the

discrimination procedure presented in subsection (4.3.5a) can be used

aft,er sufficient confidence in Èhe accuracy of the recovered ¡ has

been established. Employing proper truncatíon bounds defined in

chaptez, siæ, it was found that the accuracy to which n = n* and

S- (f) can be recovered ís better tlnan 99% for all computations performed.0-

4.4.2c n = lnlexpl3p¡ and so(g) anr ro BE DETERMTNED

If both modulus and phase of n are q,

be assumed to be either homogeneous or

requirement is sufficienÈ whenever the

single convex-shaped scatterer so that

(3.4.15) and (3.4,Lû can be applied with

prdoni unknovm, then rì must

nondispersive. The homogeneity

scattering geometry defines a

the degeneracy conditions of

ß.+.U) and (3.4.14) for the
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díscrirninatíon of þ and lnl. The degeneracy condition, however,
does noË hold for the general rnultibody case except for end_fire
incidence on an on-l'ne collection of purely convex_shaped scaËËerers.
Therefore,the double-frequency discrimination rnethod muat be applied
which requires that rr to be nondispersive but may be inhomogeneous.

For the case of a single cylinder of electrical radÍus ka = 2. o and
l'ì = const. = 0.5 the method outlined ín Subsection 3.4.3 is applíed.
The results so carcu.r-ated are presented in Table .4.rrin which the single
rooL Ú0 of (3.4.16) and rhe four roor" üu(v = 1,2,3 and 4) of. (3.4.14)
resulting from computation along a ray ó = 1.0" i.e. in the irunediate
neighborhood of back-scattering direction are tabulated. The correct
value of phase r) of n is found for that partícu1ar value of 1þ^

which is identical Ëo one or more root" úu of (3.4.14), o"".rrrrr* lor
the presented case aË X = 2.0 with þo = úr= úu = 0. The value of
tp so calculared is substirured inro (3.4.12) ro obrain lnl resulring
in 0'5, as is arso shown ín Table 4.1,to guarantee proper di_scrÍrnina_
tion of Èhe point lyÍng on So(:), Ëhe orthogonaliËy scalar yrrand
the normality scalar yrrhave been recalculated along the same computa_
tional line. The entríes yr andy r of Table 4.r have been calculated
using the impedance valuu 1 o resulting at each point of computation
al0ng the selected ray while the entries ,, and y2 correspond to
computation for which rì(x = 2.0) = g.5 was used for all points
along the ray' To recover the entire surface.locus ,o(r.) frorn field
data given everywhere for one single frequency only, it must be
assumed that I is homogeneous in v¡hich case the identífication
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procedure reduces to that fot a prtori known n

SubsecÈion 4.3.5a

aS \¡ras analVsed in

f and

at

For the general two-body configuration considered., it must be assumed

Ëhat n is nondíspersive so that the double-frequency checking procedure

can be applied. The test configuration chosen consists of Èwo parallel

circular.cylinders of ka, = 2.0, l, = 0.1 exp(j3O") and ka, = 1.0,

l, = 0.25 exp(j60") with the centers an electrical distance kd = 5.0

apart. The incident wave is a mixed poTarízed plane \^rave normally

incident at an angle ß = 75o wíth respect to the line joining the

centers 0 and 0 as shornm in Fig.4.lO. The four roots of (3.4.14)
T2

for cylínder 1, calculated along the line of centers with translated

origin located at 0r such that k(0r-0 ) = 3.0 and k(0r-0 ) = 2rO,t2
are presented in Table 4.2 for two differenË frequencies t.,

f = 1.5f. For the purpose of specifying the proper value
2

the point on to (r), a matching pair of values U resulting from

coaputation at Ëhe two different frequencies along the chosen compuËa-

tional line (or-or) were sought first. The pïocedure was then re-

peated for increasingly finer computational increments ÂX, resulting

in..an averaged value V = 30.1o at x/k = 1.0. substítutfng the dis-

criminated value [- into (z'.q.p), Inl is calculared along rhe same

ray 0--0_ for both frequencies. The computed results are presented12
Ln TabLe 4.2a where the averaged value of the magniËude of the sur-

faee inrpedance is lñl= 0.7 at x/k = 1.0. Repearing rhis recovery

procedure for other adjacent computational lines, it was concluded

that ñ, = 0.1 ">rp(j30.1"). The same procedure was adopted for

v
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cylinder 2 and the correspondíng values so coaputed are presented in

Table 4.2b where \, has been idenrified as l, = 0.5 exp(j60.4"),

the average of the values at x/k = 1.0 for the two dífferent frequencies.

It should be noted, that the double*frequency discrimination procedure

should be applícable to specify rhe local 1 and so(t) f,or alr

portions of the scatËering configuration r"/ithín an error of less than

I"/. as has been clearly verified by computation for a number of different

two-body configurations. However, if ít is known Ëhat ¡ is homo-

geneous, in addition to being nondispersíve, Ëhe discrimination pro-

cedure analysed in Subsectíon 4.3.5a may readily be applied. The

results for such a case are presented in Fig.4.10 which corresponds

to the configuration analysed'above. Fina11y, it should be m.entioned

that the values computed were in general found to be very sensitive

to variations ín the radial distance X and, therefore, the conputa-

Ëional increnenË Ax had to be considerably reduced in the fínal

search loop of the ídenËífícaÈíon routine.
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chapter fiue

APPIiICATION OF INVERSE BOUNDARY CONDITIONS TO TIIREE_DIMENSIONAL BODIES

5.1 INTRODUCTION

Tn chøptez, foun, the inverse boundary conditions established in

Sections 3.2 and 3.3 were applied to the target idenËification of

two-dimensional bodies. It was demonstrated that it is possible Èo

invert. perfectly conductíng mono-body and two-body configurations

very accurately. For the case of ímperfectly conducting shapes with

known surface impedance, each of the conditions r^ras found to be suffi-

cient to dÍscríminaLe the proper locus of a system of closed conduct-

ing scatterers, given measurement data for only one frequency. If

both the locus S 
o 
(r) and the surf ace imped.ance rl = In I exp 13i¡¡ are

q. prio?L unknown, certaín restrictions had to be placed on the nature

of the target. For a smooth convex t.arget n has to be either homo-

geneous or nondíspersiverwhere the degeneracy condítion may be employed

for the former case and the two frequency technique for the latter.

To invert the general two-body configuration, it must be assumed that

n is nondíspersíve so that the double-frequency checking procedure

may be applied. In order Ëo recover Èhe profile characteristics of

those portions of the scatterer which lie r¿ithin the minímurn circle en-

closing Ëhe scatterers, it was found necessary to analyÈica11y con-

tinue the em fields
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In the presenË analysis, the application of inverse boundary conditions

to profile characteristics inversion of perfectly and ímperfeetly con-

ductíng spherical mono-body and two-body scatterers ís considered. As

in the Ëwo-dimensional case, the choíce for three-dimensional bodies

was dicËated by the fact that sufficiently accurate information on the

direct scattering solutÍ-ons i.s a,,"ai.J-able only for spherical scattereïs

satisfying the ímpedance boundary conciitíons [ 141 rL27]

A brief review of the formulatÍon of the scattered field and direct

scattering by single sphere is presented in Section 5.2. The solutíon

for direct scattering by two spheres t ¡O ] has been extended in Section

5.3 to the case of Ímperfectly conducËing spheres satisfying iurpedance

boundary conditions. For the purposes of recoveríng the profile of

those portions of the scatterer whích 1ie within the tr^Iilcox sphere,

methods of interior and exterior analvtic continuation in Ëhree-dimensions

are íntroduced in Sect.íon 5.4. The numeri-cal results for three-dimensional

bodíes are presented ín Section 5.5 where it is confirmed that the IBCs

are also va1íd for three-dimensional scatterers.

5.2 FORMULATION OF TIIE SCATTERED FIELD IN SPHEF'.ICAL COORDINATES

For the three-dimensional bodies, the far fíeld is expressed in terms

of a properly truncated expansion in vector spherical wave functions.

The near field represeritation of the scattered electric and magnetic

fields is obtained by recovering the associated expansioñ coefficients

from the measured far field employing a matrix inversion technique
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developed by tr{eston and Boerner [ 136] and presented in more d.etail in

Boerner and vandenbe,rghe t25 I and in Boerner and Aboul-Atta lzt 1.

The matrix inversíon technique imposes severe restrietions on the dis-

tríbuËion of the computed aspect angle due to the instabilitv inherent

in the associated inversion. The instabitities which in this case

are caused by the particular properties of the Hansen vector r¡rave ex-

pansion, can be effectively sËudied from the properties of Èhe deËer-

minanË associated with the scartered field natrix [25, I22 ].

5,2,L MONO-BODY SCATTERING

Consider a p1ane, homogeneous elect,romagnetíc wave travelling along and

in the dírection of the negative z-axis, poLarized in the positive x

direction, and incident on a scatterer of arbitrary closed and smooth

shape with arbittaxy homogeneous mat.erial surface properties. Let the

center of the body coíncide with the origin of a spherícal coordinate

system as defined in Fig. 5.1. The incident electric and magnetic

field vectors, after suppressing the time dependence exp(:jt¡t) may be

written as

u, = â*uoexpIj(or-kz)] = Eo{sin0cosQfo+cos0cos0âU -sin0âr1

exp[j (e--kRcos0]

H, = -àrz- lEoexP Ij (cxr-kz) ] = -Ho {sinQâo+cos0sinþâu +cos0â*}

(s .2. L)

(5.2.2)explj (a¿-kRcos0) 1
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\,¡here k=o(He )Itzand I -(V/e)'''. For E =1ando-=0,00 0 0 0 0 E

the scaËtered fíelds at (R, 0, 0) can be expressed in terms of a series

expansion in vector spherical wave functions 125 I as

æn
%(R,0,0) = 

,rl, *lo 
¡5t*t"3*'43*(*,e,o)+jnbe*Ao-(R,0,0) I (5.2.3)

'at*n
q (R, 0, o) = -j [ ;, t,, 

J rrir,r"*t 
r8*r,N8*r,,n, o, ç¡+¡ 

nt8*#tr"(*, 0, 0) ]

(s.2.4)

According to Müller t 85 I and trrlilcox [ 1461, for a f ixed origin of co-

ordinate system the above expansion is convergent down to at least the

minimum sphere enclosing Ëhe equívalent sources of the body. Hansenrs

spherieal vector wave functíons as derived from the Mie Series are

defined by t 1151

U"*- (R, 0, 0) = t{r, 
( r ) 1m) sT(0) lll c-O> }au- {r, 

( I ) ir.nln}col iii c*Ol ta,
ãmn 

(s .2.5a)

t*,*,0,ô) 
= t"fi*t'nÍ') lronlrftcos0)liic*olla*+{tir) 1r.n¡n}<olliic'ol}âu

tttjr ) qm) slcel lll c'ol lu. (s. 2. sb)

where pl(cosO) is the associated Legendrefs functíon of the firstn'
kind, degree m and order n, defined in ¡ 25 ], by

ef(x = coso) = $ c "i* l(r-x2,::å''/1-t>"( ï )c 2ifi"1-"-rn-2v



ï.:¿ 4

I,rith

^Tír, ^\ m -ilr, 
ðPn(coso)

sn(coso) = sirr' rn(cosu/ Rm(cos0) = -fi----_ $.2.6)

lt,\
and k"'(kr) denotes the derivative of the spherical llankel functíon

of the first kind and order n given in terms of the cylindrical

Hankel function

r,(')(m) = ( # ,'r'"Íiì/,(k*)

r. 
(') (rn) = fo å { nr,j') (m) }

by

For a sphere of relative surface impedance rì, only Ëhe coefficienËs

a and b need to be retained for the assumed incident poLarization
O tD etn

case. These coefficients are explicitly derived ín I^Ieston and Hemenger

[14f] and with asl-ight modification are rewrítten for the above employed ;

formulation as

with

"0,, = -j (-t)"*t *r*rryï oo

b"rr, = -j (-1)n #i u"

nlkajn(ka) l'+¡ [krjrr(ka) 1

n nlt^tr(t) (tr) l'+3 [t^rr-(t) (t 
") ]

(5 .2.7 a)

(s.2.7b)

(5.2. Ba)
n Ik^hìé ¡¡ an

lk"j r, 
(ka) l t +jn [k"j 

r, 
(ka) J

B=n to"nÍ') (ou) l'+jntk.{t ) (i.') l
(5. 2 . Bb)
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where j - (ka) rrr¿ h( t) denote spherical Bessel and Hankel functions-n- - n

of the f,irsË kind, respectively, and the prirned expressions define

first order partial derivatives with respect to ka.

The first step in the inversion procedure is to recover the coefficients

a and b from the scattered field data commonly measured Ín the3*r frmn
Fraunhofer region. This is accomplished by considering only the Èrans-

verse electric field components of the scattered field which after

eutploying the asymptotic approximations of the spherical ÌIankel functions

can be written as

Mn
E; io",O")= f i tr^ s-. (0^,0^)+b^ R^ (0^,0 " exp(ikR)

c n-r mro f,nin f,n:n c' c 
f,mn f,rnn t- ")t ffi 

(5'2'9a)

mn
uñ. t u 

"' 
*.' =r,1, 

J o 

t-"B,,.*3o'r, ( u"' Þ")*b;r*t;*r, ( u"' oc) Ì'ïffP $' 2' gb)

r,rhere the spherical vector surface harmonics

are defíned by

^fÍt, ^ \ sin ,S-(cos0 ) ---- (nô )n c cos 'c

So (0,0) and
i'nn

Ro (0,0)
õ'nn

(5. 2. 10a)s^ (0,0)
Imn

Ro (0,0)
õnn

= Rm(coso") :ï; ('ô") (s.2.10b)

The method of recovering these a pr"Lorù unknornm expansion coefficients

is presented in detaíl in Boerner and vandenberghe [ 25 ] for the purely

spherical synrnetrÍc case and further analytical results for Ëhe general
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non-symmetrical case are presented ín Boerner and Aboul-Atta lzt l.

There it is shor¿n that the near field expansion can'be recovered to

an accuracy dictated only by any suitable measurement technique which

enables simultaneous recording of both the modulus and phase of the

transverse electric field quantÍties.

since the prinary incentive of this presentation is to esÈablÍsh

unique inverse boundary condítions and verify them numerically, the

expansion coefficients of equations (5.2.8a) and (5.2.8b) will be

used in the verificatíon.

5.3 DIRECT SCATTERING BY TI¡IO SPHERES I^IITII ARBITRARY SURFACE

IMPEDANCE

The direct scattering solution for two perfectly conducting spheres

has been attempted by various authors Itt9,32 ,L49r l1B]. Liang and

Lo[69 ] and crane t36 ] reformulated the two-sphere problem uslng a

newly derived form of the addítion theorem given by Stein [ 112] and

cruzan t 38 ]. The solution of Líang and Lo t 69 ] has been extended

to the case of dielectric spheres of arbitrary radii by Bruning [ 30 ].
Employing the approach of Bruning and Lo t 31 ], the solution to the

two-sphere problem is extended Ëo the case where the spheres have

arbitrary surface ímpedance and satisfy the Leontovich impedance bound-

ary condiËion.

LeË an arbitrarily polarized plane r.¡ave be incident at an angle q



with the z-axís, on tv¡o spheres of arbÍtrary radii a and b and

surface impedance" I, and nb as shovm ín Fig. 5.2. The rnulti-

pole expansion of the íncident field is given by

8i,,"= i T ¡p1rn,n){i)*o(*,,,)4i', (s.3.1)
n= 1 lll=_fl

where the multipole coefficients of the incident plane r¿ave can be

determined by using the orthogonality properties of the vector spheri-

cal wave functions and the trígonometric functions resulting int.o

Símilarly, the scattered field for sphere o(1r2) in the presence of

sphere ot (2]> with respect to its own coordinate system can be ex-

pressed as

p (m,n) = j'+' ;{# *;s tnf (cosu) cosy*j sn(coso) siny I (5. 3. 2a)

q(n,n) = jt+t ffi #*f rn(.oscx,)cosy+jRm(coso)sinyl (s.3.2b)

with Sm(coso) and nl(cosa) given by equarions (5.2.6),

-o i P /'-\ l")-
4= I I [Ao(m,n)$3/+Bo(rn,")q;'] (s.2.3)

n= 1 III=_fl

4=-** Ï T [eo(m,n)n(')+no{',"1g,Íi)l cs.2.4>
' n= r m=-Il

where Ëhe Ao, Bo for O = 1r2 are the magnetic and electric type scaÈter-

ing coefficíenEs for sphere O in the presence of Or. Here the

vector spherical wave funcrions tÍ-t) 
"rr¿ 

ul1) í.nvolve the exponentlal-mn ---mn
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variation \^rith respect to the angle ö, i.e. exp(imQ) Ís to be used

in equations (5.2.5a) and (5.2.5b). The superscripts i = 1r2r3 and

4 denote the appropri-ate radía1 dependence involving the spherical

Bessel functions j-, n-, hjt) or rrjt) , respectively.-n-n-nn

In order to satísfy the impcrrÍance br-'ri¡,,1ntt condítions on each sphere

in the presence of the other, the multipole fields about 0 have t.o

be expressed with respect to 0 t and vice versa. The translational

addition theorems to be used for thís case of translatíon along z-axis

are the specialized form of the generalízed theorems by Stein tffZ ]

and Cruzan [38 ] whích can be wríÈten as

where the wave functions on the left-hand side of (5.3.5a) and (5.3.5b)

refer to the original seË of coordinates O, whíle those on the right

hand side ïefer to the translated coordinates 0t, and (lrrn) symbolizes

the larger of I or m (as can also be negative). For the reverse

translation, i.e. Ëranslation from 0r to 0, the correspondíng theorem

r_s gr-ven Dy

"(a) 
- I (a* 

"(r)' 
+ Bmn *(r)'.,-1nn ,u , mv ---mv mv -flvv=(Irm,,

æ

on(e) - I-1nn v= (i,rn)
(Rm n(t)' * urnn ,(r)'1- mv rnv mv -rnv

(5.3. sa)

(s.3. sb)

"(a)' 
----mn

TL
V=(rrm)

(_l)t+vlAtt t"t(r) - n*t *Cr) 1- mv --flv mv -1nv - (5 . 3.6a)
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Ñ)' = 
u=(i,,)(-1)'+vt^ffi 4i) - nffi qLl', (s.3.6b)

5.3.1 E)(PANSTON OF THE TOTAL F]ELD AND APPLICATION OF IMPEDANCE

BOUNDARY CONDITION

E_
-l

The scattered fields of spheres A and B with respect to their

o\dn centers 0 and 0 and in the presence of each other are givenL2
by

æn
oA - r ï r^\ ¡r^\ r ) a (5.3.7a)E = ) ) A(rn,n)M'"'+B(m,n)N\r/__€ u u I . _1nn l-. __1ruÌ

n= 1 III=_ft

Rf i 3 // \r t^llE- = )' Ï A^(rn,n) tut\3/ + B (m,n) rq)l/ rt ) b (5.3.7b):sLL/1,u,2-mn
n=l m=_n _

The total field about 0 can be written as
I

1I

= I i ¡p (m,n){1)+q q',r,¡EÍ,i'*o, (*,r,)4)*n, (*,n)nÍ3,)
n=r m=-n

* A (m,n) I (-r)t*u(Antny(r)-unn*(i).,
2' ' ' _.L r"*y::1¡! m\¡:tnv '

V=1

+ B,(m,n) [ {-r)"+u(Affi{i)-uffi\Í,,]),1 (s.3.8)
- V=r

Similarly the total fíeld about 0 is
2
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.r" ¿" -r-

fæn
E, = .1. -l_- 

tp' (m,n)N*) '+q' (rn,n)¡,rG)'+A, {r,r,)",1)'*u, (r,r,)lrG)'

+ A., (rn,n) i ceffi)'*uffi4,1)')
t v=, 

tt'

+ B'(rn,n) I caffi)-uffi4,i)lr
' v=' "'t

(s. 3. e)

The magneËic fields are obtained by interchanging the Çr's and

N--rs and mulríplying rhe result by -ik/r¡U.--mn

The inpedance boundary conditions

E^ = -nZ H.s oQ

E, = nZ H^I ou 
,

may no\^r be applied to the total fields. After using the orthogonality

relations for Legendrers funcËions, the following set of four coupled,

linear, simultaneous equations ín unknown rnultipole coefficíents is

ob tained

Ar(m,n) = a,, (k a){q (m,n)+ f l-r)t*v[AmvA rr,v)-BllBr(m,v)J] (5.3.1-0a)t In I -L 
; 

- Inn 2 ' mn 2'

B. (m,n) = b. (k_a){p. (n,n)+ [ {-r)"+ulAtvs r*,v)-BTIer(m,v)J] $.3.10b)I 1r, 1 -1 
; Illrl 2

A^ (m,n) = a^ (k^b) {q^ (m,n)+ I foÏo (*,v)+¡Tl¡. (m,v) I } (s.3.10c)2 2n 2 2 ; IIìÍl 1 mnl
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B, (ur,n) = orn(krb){p, (m,n)+ [ t{:8, (m,v)+nNe, (m,v) J} (5,3.10d)

where the incident field coefficíents p and q differ from p and-2 -2 'l
g, only by a multiplicative phase factor exp(jkd coso,) with p, and

e, defined in (5.3.2a) and (5.3.2b), respectively. The expansion

coefficients ^, and bo of the external fíe1ds of the spheres I ando'n
2 in. isolaËion are gíven by equations (5.2.8a) and (5.2.8b), respec-

tively. The transformation coefficients AtV ", 
' -mv

nn to onln are gl_ven l_n

Appendiæ Ã.3.

The seË of equaËíons (5.3.10) can be solved by íterative methods or

by mat,rÍ-x ínversion techniques. since the iterative methods were

not found to yield accurate values for the expansíon coefficienÈs,

equaËions (5.3.10) were solved by matrix inversion.

5.4 THREE-DIMENSIONAL ANALYTIC CONTINUATION

The incident and the scattered fields are expanded in Èerms of well

established spherical vector rrave funcËíons', where the electric and

magnetic fields are given by
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lrith the superscripts i,s specifying Íncident or scattered fields,

A(nrn) and B(mrn) are Ëhe expansion coefficíents and M(r) 
"rrd 

trl(t)mn rut

denote the spherical vector T¡rave functions.

Since the fíe1d expansions are valid only outside the trüilcox sphere,

fields musË be continued analytically for general seatteríng shapes

so that the inverse boundary conditions can be applíed. Both interior

and exteri-or analyËic continuations are required. The interl-or ex-

pansion valíd inside the sphere st of Fig. 5.3 can be expressed as

(s.4.3)

fn order to determine the ner¡t expansion coefficients o(mrn) and

ß(urrn), the spherical vector wave functions of (5.4,1) must be trans-

lated into Ehe new coordínate sysËem 0r using the following addition

theorem [ :9, ffZ]

E' = I toi(m,n) 4i'' + ß.(m,n) \1'']flrD

Nr (R,o,o) = i Ï rAïHî')'1p,
V=r U=-V

where rt = |

pansion. The

for interior expansion and rt = 3 fo.r exterior ex-

lranslatíon coefficients Am and Bmt are derived inUV UV

Stein lLf2l arrd Crt¿.zan [38 ] and for computational purposes the following
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forms rn¡ere found conveníent

Amr - (_t)Hiv-n 2v+1 T .:uv "" ^'ffi ) jpt"(n+1)+v(v+1)-p(p+1)l
p

a(m,n,-p,u,o)rjt) (kd)pm-P(cos0 )explj (nru)0 I (5.4.5a)- P P o- ' 'o-
and

jkR cosO lkR sínO exp(-jô )
RflD = 

" 0 0 ,,^ffi _ J 0 0 " ''0' 
^,Inn-Uv v(v+l) r*U,v 2v(v+1) *U-r,v

jkR^sinO^exp(j0^)
-0 2vúi-----s- (v+u+l) (v-u) offi,,u (s ' 4' sb)

rn the above expression, the expansion coefficient offi, relating to

the scalar addition theorem, is given by lttZ1.

oT.1 = (-r)þjv-t(2v+t) I jpr(m,n,-u,v,p) zlt)(r.a)uvDP

r|-u(cosoo)expl j (ÍF-u)Oo l (s.4. sc)

and is taken to vanish whenever lUl > v ; and p in (5.4.5a) and

(5.4.5b) extends from l"-ul to In+vl wirh inreger sreps of 2.

Transfor:ming the scatËered elecËric field C of equation (5.4.I)

(with r = 3) to system, 0' of Fig. 5.3, we obrain
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vühere the t.ranslational additíon Èheorems gíven by equations (5.4.5)

have been ernployed.

comparison of (5.4.6), after a simple interchange of indices, with

(5.4.3) results in the following expressi-ons for the transformed

expansion coefficienËs for interior expansion valid inside the circle

of maximum radi-us rb as shornm ín Fig. 5.3.

s. (m,n) = I [a(u,v) auu + n(p,v) nfi]l (s .4.7a)
H'V

ßr(m,n) = | ta(u,v) Bl: + B(u,v) Al:1 $.4.7b)
- UrV

where AUV rrrd BUV I-rr--I1 orratíons 15-4-5)mn ff ,defioed by equations (5.4.5)rinvolve Hankel func-
¡/-\

Ëions h "'(kr).

The expressions for the exterior analytic continuation valid outsíde

the circle of minimum radius d can be obtained by a símilar approach

(Fig. 5.4). For this case the scattered field in the translated co-

ordinate 0' may be written as

E'= I [cr,.{*,r,)u(3''*ße(*,r)I*)'] (5.4.8)
ü¡D

Translating equation (5.4.1) with r = 3, to the coordinate system

0t for exËerior expansion, we obËain

Er = I I r¿(rn,n) {^þÍi) '*ulþl;)'}+s(*,,,) {AiþÍi) '+BþJ;)'} I (5.4. e)
mrn urv
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rnterchanging the indices m and n with u and v , respectively

it (5.4.9) and comparing Ëhe result v¡ith (5.4.8), Ëhe exterior ex-

pansion coefficients are found to be

o"(m,n) = f (A(u,v) aw + nlp,v) nS)

ß"(m,n) = I (A(u,u)BTI + B(u,vl esl

(5.4.10a)

(s.4.10b)

where 
^ii 

and Buu , defíned by equarions (5.4.5),ínvolve Besselrs

functions j rr(kr) .

5.5 NUMERTC COMPUTATTONAL VERTFTCATTON (3-prM.)

The numerical verification for the three-dimensional case involves

the use of a variety of specíal functíonsze.g,Besselts functions,

Legendrers functions, I{ígner syrnbols, etc. Therefore, in order to

achieve accurate inversion, maximum use of recursive and iterative

teehniques has to be made.

All the special funbtions, the scattering coefficients A' and B'

for the single sphere (5.2.8) and the three-dinensional analytic contin-

uatíon rout.ines l^Iere generated as subroutínes which are called bv the

main program when required. The spherical Bessel functions are gen-

erated using a program developed by shafaí [110 ], in whÍch he uses

backward recursion to minimize tlrre disastrcus accumulatîon of errors.

The Legendrers functions may be calculated using r¿el1 known recursÍon
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formulas

worrying

used for

for P1(") in order and degree, inn-'

about error accumulaÈion. Backward

Ëhe presented computations.

eíther dírectÍon, without

recursion in order was

Calculation of the translation coefficients of (5.4.5a) and (5.4.5b)

presents the most challenging problem. The special case of (5.4.5a)

and (5.4.5b) for which translation is along z-axls has been treated in

detail by Bruníng [ 30 ] and his recursion relations, summarized in

Appendiæ 4.3, have been employed for the calculation of the scaËter-

ing coefficients given by (5.3.f0) for Ëhe two-sphere problem. A

three term recursíon formula for the general three-dimensional trans-

lation has been derived using Bruningts approach [30 ] and is presented

in Appenciiæ A.3. For those particuJ-ar cases in whích the recursion

relation (43.4) of. Appendiæ 4.3 fails to yield the value of the trans-

lation coefficient, the original definition of these coefficíents,

given in Appendiæ 4.3 by (43.2) was ernployed

As in the two-dimensional case, the nurnerical verification of the in-

verse boundary conditions has been dívided into thTo distinct categories.

In the first category, the numerical verification of the IBCs for per-

fectly conducting cases is considered. The second category comprises

of those targets whose surface impedance n l0 or * satisfies Leontovich

boundary conditions. The perfectly conductíng case has been subdívided

Ínto the perfectly electrÍc (n = 0) and perfecËly magnetic (n = o)

conciucting cases. Under imperfectly conducting scatterers Èhe follow-

ing four cases have been treated i) r¡ knornm and so(s) to be re-
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covered,

and S (r)

lnl and S^ (r) to be recovered, iii) rì. = Inle"pl¡p¡
be recover"å "oa iv) â(r) knor¿n and î, soG) ro be

deterrníned.

rn each case the total electric and magnetic fields aré computed at

different discrete points along various radiant vectors which for

the Ehree-dimensional case are defíned by the bistatic angles (0rÞ)

with 0 and $ being parametric constants and x = kR being the variable

with arbitrarily chosen finite increments Ax = kAB.. The fields

calculated using spherical vector r,¡ave function expansions are then

substituËed into the appropri-ate boundary conditions applicable in

the respective cases as established in chapter three. Unless otherwise

specified, the fields ernployed in the boundary conditions are calculated

using the center of the body as origin of the coordinate system.

5.5.1 PERFECTLY CONDUCTING CASE

5.5. 1. 1 PERFECTI,Y ELECTR]C CONDUCTING BODIES

5.5.1.1A MONO-BODY CASE

For the case of perfectly electric conducting spheres the boun.<iary

condiríons Q = Min{ l-E"n_ol'}, Q = Min{ lg, l-lg^ l}, a = uin{E.H}
I '2 '-L' '3

and Q = Min{E.g*i r¿ere used and the resulting curves are plotted'4

in Fíg. 5.5a. As is evÍdent fron Fig. 5.5a the condition" Q" and

aa/

to

Q, produce only one distÍ.nct ninimun, whereas and Q produce an
14
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infÍnite seL of identical minir.a. Therefore, the physical optics

condition a and the condition O2 'J

face locus unambiguously. Rowever, it is evident frorn Fig. 5.5b that

the physical optics condition holds with sufficient accuracy only in

the illuminated region, whereas, the condition E.IL = 0 ís necessary

and sufficient and holds also in the shadow region. All the four

IBCfs are pJ-otLed on a plane clefined by ó = -90", 90o ín Fig. 5.5b

The ninima of Q, and Q, define only the proper surface of the body

whereas, Q_ generates .an infinite number of pseudo loci in addition
I

to the locus defining the true surface of the scatterer. Sirnilar

to the two-dimensional case, for a smooÈh and closed, perfectly elec-

tric conducting scatterer the proper locus ís closed, but the addition-

al pseudo loci cannoË be closed in the shadow region of the scaËterer.

This property results from the fact that the total field expressions

ínplicitly descríbe an interference pattern. Therefore, if it is

known a priorL that the scattering surface ís closed, IBC Q, can be

employed Ëo uniquely specify the proper surface locus from the total

near field daÈa given for only one operating frequency. This again

confirms that the LoeaLLg insufficient condition Q,, t" gLobøLLg

sufficienË.

5.5. 1. lb TI^IO-BODY CONFIGURATION

In order to test the applicability of tÍr-e

general three-dimensional case, a two-body

can determine the proper sur-

IBCs Q,Q andQ tothe

configuration was select,ed.
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The test case selected for presentation consists of two perfectly

conducting spheres of equal electrical radii n", = ka, = 0.4 wíth

Èheír centers separated by an electrical distance kd = L.2. The

electrical dimensions of the target viere chosen to be small to im-

prove the rate of convêrgence of the Ëotal fíeld expressions and

hence to reduce the required computer tíme. The incident wave Ís

polarized normal to the z-axis and makes an angle cx, = 90" with

the líne joining the centers as shovm in Fig.5.2. The scattering

coefficients for each of the spheres in the presence of the other,

given by (5.3.10a) to (5.3.10d), are transformed to Èhe new coordinate

sysÈem 0r of Fíg. 5.3 using the interior contínuation of (5.4.3)

and (5.4.7). Due to the línearity of the fíeldsrthe sums C(m,n)

and D(m,n) of rhe translat,ed coefficients o (mrn), cr (m,n) and

ß- (mrn), ß_ (mrn), respectively, provide the scattering coeffícients
12

for Ëhe two-body configuration with respect to the translat,ed coordin-

ate system 0r. A sirnilar approach was employed Ëo díscriminaËe

points lying on the mínímum círcle enclosíng the two scatterers where

use T¡tas made of the exteríor analytic continuaËíon of (5.4.S) and

(5.5.10) as sho¡¿n in Fig. 5.4, t3l.

The values computed for Qr, Q, and Q, are plotÈed in Fig. 5.6a

along a r ay 0 = 0, 180", ó = 180' and the locí resulting from conr

putatíon of the three IBCs along a selected grÍd of rays on a plane

ô = 1B0o are shown in Fig. 5.6b. The origíns of the translated co-

efficienËs T¡rere selected to lie on each of these rays and Ëhe pseudo

l-oci were compuËed using exteríor expansíon of the em fields. Figs.
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5.6a and 5.6b confirm the properties of th_e IBCs Qr, Q, and Q,

stated for the single spherical scatterer. rt should be observed

that similar to the tr¡¡o-dimensíonal case, discussed in subsection

4.4,2 the pattern of pseudo loci resulting for the Ëwo-body case is

the superposition of the patterns of pseudo locí for the individual

spheres. Therefore, it is concluded that by the simultaneous appli-

cation of the three rBCs, it is possíble to recover the proper sur-

face locus of a closed scatterer uniquely and accurately from the

knowledge of the total em fields given everywhere in Èhe vicinity

of the scatËerer for only one frequency.

5.5.L.2 PERFECT MAGNETIC CONDUCTING CASE

The proper surface of a perfectly magnetic conducting smooth and closed

scatËerer can be determined using the boundary conditions complemenËary

to the set mentíoned for perfec! electric conductors as derived in

secrion 3.2 i.e. Qr, uin{luxn*12}, QH, = r"rin{ln.l-l-ql} ana

Qt, l,tin{n'g}. The corresponding plots resultÍng from the computaËion

of the respective boundary condiÈ:lons along a ray defined by (0 = 22.5",

ô = 80") are shown in Fig. 5.7a and the corresponding loci ín Fig. 5.7b.

As expected the IBCs QHr, QH, and QH, for the perfectly magnetic con-

ducting case possess the same charaeteristics as do their counterparts

Q , Q- and q , respectÍvely, for the perfectly electrÍc conducting case.

Namely; QH and QH can again be seen to be- necessary and sufflcient23
conditions and QH, is necessary, LocaLLy insufficient but gLobaLLy

sufficienË condítion. Therefore, it is concluded that in both the
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. perfectly electric as well as magnetic conducting cases the proper

surface locus can be uniquely determined using measurements compiled

for a single operating frequency.

5.5.2 THE IMPERFECTLY CONDUCTING CASE

The test Ëargets selected for verifyíng the IBCs for this case con-

sist of mono- and two-body configurations. The formulation of the

em fi-elds is identical to that of the perfecttry conducting case ex-

cept that the appropríaËe value of n is substÍtuted. into (5.2.8)

5.5.2a n KNOWN AND S (r)

-u-

TO BE DETERMINED

The procedure is first. verified for a síngle sphere centered at 0

(Fig. 5.3) using field expansions with respect to O, and then by

displacíng the origin to 0r (Fig. 5.3) usíng analyLic continuation.

The orthogonality condition Y, = Min{A.B} and the normality condítion

Y- = Min{ Ã2-I2} "ru computed along a radiant vector (Q = 22.5" ,2-
Ô = 90") for three different values of surface impedancerrí.e.

a) purely real, b) purely imaginaryrand c) complexrfor a sphere of

elect,rical radius ka = 5 and the computed results are presenËed in

Figs. 5.8a, 5.8b and 5.8c. From inspection of these plots, iË is

observed that the minima definíng the proper poínt on the surface are

much sharper than those resulting for the additional pseudo loci.

The slope of the descending part of the curves 
", 

and Y, for the
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proper minima are sËeeper Ëhan for the oÈher minima. Both condíËions

are seen to work for all values of surface ímpedance (n I 0 or æ)

be it real, imaginary or complex, though the additional mínima are

found to flatten out as the surface impedance becomes more and more

reactive. Though the simultaneous application of the two conditions

is suffícíent to uniquely díscrininat.e Ëhe proper surface locus given

computed near fíeld expressions for only one frequency, the double-

frequency checking techníque can help Ëo discrimínate the proper

minimum from some other accidenttry coincident miníma, provided

n # n(o) i.e. the materíal of Ehe body is nondispersíve. Figs. 5.9a

and 5.9b show the plots of Y, and Y, versus the geometrical distance

resulÈing from computation using near field expressions for two

dífferent frequencies. It can be seen, âs expected, that only the

minima at R = 5 (which was chosen to be the radius of the unknown

sphere) coincide and all other miníma are shifted . The loci resulting

from Ëhe use of the orthogonality condiËion are shown in Fig. 5.1-0 on

a plane Þ = -90, 90o. The interference-like pattern generaËed by

Y possesses the properËies displayed by the IBC !xE-* = 0 and ExE* = 0

for Ëhe degenerate perfectly conducting cases (Fig. 5.6b). Símilar

behavior is also displayed by the normality conditíon as is clear

from Fig. 5.8 . Narnely, the IBCs Y, and Y, are both necessary2

LoeaLLg insufficient but gLobalLy sufficient.

I = 45o,

ka = 0.5

and Yt have
2

Fig. 5.11 presents the plots of Y

0 = 130o for a spherical scatterer

and surface impedance î = 0.25.

andY alongaray
!2
of electrical radius

Here the scalars Yt
I
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been computed usíng field expansion with respecË to the origin 0

which coincides with the center of the sphere (Fig. 5.3) and yil

and Y" with respecË to a translated orígin 0r wíth 0 = 45o, 0 =¿Q0

130o and kd = .75". Sínce the fields calculated using analytic con-

Ëinuation are not as accurate as Ëhose calculated r¿ith'respect to

the cenÈer 0, the mínima of Yil and Y' are not as sharp as those

of Yr and Yt but still occur at the same points along the ray.12

The loci generated by 
", 

and Y, for the two-body case are presented

in Fig. 5.L2. The same properËies, as for the mono-body case, are

exhibiËed by the interference paËtern of Fig. 5.L2, where the pseudo

loci are the superposition of the famílies of discrete loci resulting

for the constítuent spheres. Therefore, it is concluded that each of

Ëhe IBCs Y or Y is sufficient to uníquely díscriminate the propert2
locus of smooth, closed scatterers with known surface impedance n ,

(be it homogeneous or inhomogeneous, dispersíve or nondispersive),

given the total em fields everywhere in the vicinity of the scatterers

for only one frequency. The simultaneous applícation of both conditions

makes the proposed inversion technique more reliable.

5.5.2b

For thís partícular case,

(3.4.7) and (3.4.g) where

n (say eo) and the later

¡ and ¡ ). The values of

TO BE DETERMINED

the real ímpedance is calculated using

the former equation resulLs in one root for

resulËs in two independent roots for 1, (say

rì r rl and ¡ are then calculated along

lnl and s (r)
0-
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radiant vectors (excluding the backscattering direction). No!,r, the

value of n^ is substituted ínËo the normality condition Y , whereas

n and n- irrao the orËhogonality condiËÍon Y and the.¡tirr{Al-¡2, rì },12 Io
Min{A'B, rl } and Mín{4.8, rì } are Ëhen calculated for the above chosen1 -- 2

compuËational points along Èhe same radiant vectors. ln Fíg. 5.13a

the curves resulting for n0(R), nt(R), Min{42-32, ns(R)} an¿

Min{A'B, lr(R)} are plotted versus the radiant vector R for 0 = 45o,

Q = 60o, where the curves correspondíng Ëo the values îr= (R) have

been omitted for the sake of clarity since there exisËs no value of

n (R) which ís ídentical to ¡ (R). From inspection of Fig. 5.13a,20
ít is iseen that n'(R) and nr(n) can be identical at more than one

point along a ray. However, with the aid of ltin{42-82, n^G)} an¿
0

Min{A'B, nr(R)} the correct poÍnt on the proper surface along Èhat

ray can easíly be discriminat,ed since only at Ëhat point do the two

miníma coincide. Another uníque recovery criteríon is to employ

(3.4.16) which specifies the phase {., of n in the backscattering

dÍrection. Since it is known Èhat rì = lnl, Lhe point for which

ü = 0 can be enployed along with the orËhogonality and normaliËy condi-

ÈÍons to díscrímínaËe the proper surface locus and the correct value

of n. In order Ëo make the ínversion technique more reliable for

cases in which n is knovrn to be homogeneous, the above procedure

may be repeated for another frequency as is shown in Fig. 5.13b.

Comparing Figs. 5.13 and 5.13b, it is evident that excepË for those

minima defining the proper point on the surface, aLL other miníma and

all other identícal values of n and r¡ are shifted along the ray.
01
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After repeated calculations for varíous aspecÈ angles belonging to

the same cross-sêcÈion Q = const. r âf, ínterference-like pattern for

the family of pseudo loci sírnilar to that íllusËrated in Fig. 5.10

is obtained. It should be observed thaË the impedance curves ¡o (R)

and nr(R) of Figs. 5.13a and 5.13b display the charactèr of a decay-

ing standíng wave similar Ëo Èhat known from Ëransmission line theory

[ 65 ], i.e. n = n(R) represents a tangent-líke interference curve.

The value of the surface impedance nroir the case of a smooËh, closed

and homogeneous scatterer can be deterur-ined from computaÈion at a

single frequency and along a single ray. This computed value of

rì = rì = consc. may then be used as outlined in Subsection 5.5.2a
S0

Ëo determine the pïoper surface So (r). The proposed sLngle-frequency

discriminatíon procedure will have to be repeated over a grid of rays

spanning the toËal sphere if lnl is ínhomogeneous.

5.5.2. c n = Inl ""p(jrl.r) and So(r) ro BE DETERMTNED

In Ëhís most general case Ëhe properties of Theorems 1, 2 and 3 of.

Section 2.4 need, Ëo be employed. Sínce the degeneracy condition is

involved, only that case can be uníquely resolved for which t}le a

prLoz"L unknown surface impedance is homogeneous í.e. n I n(0,Q).

The recovery procedure adopted is comprehensively analysed for a

spherical model scatterer of radius a. In Table 5.1 computational
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.results are presented for a complex ímpedance ¡ = 2exp(jn/Lz) for

a = 5, ka = 5 and ka = 8 and in Table 5.2 for rì = 0.25expfi0) with

a= 2, ka = 2 and, ka = 3.2 respectively. Thus tr¿o sets of values with

identÍcal column arrangement, as defined in the headíng, are presented

in each table. Although computat,ions T¡rere carried out for many

dífferent rays and for compuËational intervals 1.0 < R(AR = 0.1) < ZO.O,

it was found sufficient to present values within the range 4.5 < R

(Ân = 0.1) < 5.5 for one ray only. From the inspection of Table 5.1

it can be seen that the correct values of tl) and | ¡ | occur for

computation with ka = 5 and ka = B at R = a = 5 which defines the

proper surface locus, whereas the identÍcal values occuring for

ka = 5 at R = 4.5 Lor tl.,', ìf3 and tfu are no longer idenËical for ka = B

at R = 4.5. It is to be noted thaË a tdash' under the values of rf.r-

ao tlu indicates that the respective root of term üu was complex

and therefore, is of no physical sígnificance. The values gíven in

the last two columns result from the applícaËion of the normality

and orËhogonalíty conditíons, respectively, inËo which the proper

value of î, resulting for R = a = 5, had been subsËituËed, and coíncí-

dence of the tvro very pronounced minima at, R = 5 is evident from in-

spection. Símílar results are obËained for a model scatterer of radius

a = 2 and ímpedance rl = 0.25 as is shown in Table 5.2. rt should be

noted that when a computational increment of A R = 0.001 was used, Ëhe

correct minima are still found to coincide with. the exact value of

R = a = 2 of. the enployed rnodel scatterer, provided a sufficient number

of expansion coefficients, accurate up to the 7th digit are used as

is illustrated in Table 5.3 which is self-explanatory. Finally, Table



ÎABLE 5.1

REcovERY oF PHASE V"o, MoDLILUs In"ol, AND suRFAcE Locus so(R=a) FoR A scATTER HAvrNc þìt A p4ro¡r uNKNowN

HoMoGENEOUS, COMpLEX SUR¡.ACE IMPEDANCE n"o-ln"ol exp (Jú8o)

SeLeeted ModeL Scattet'er: Sphere of radius a - 5.0 and ínpedanc" l"o = 2.0 exp (J15").
Values, computed along the ray (O - 1., 0 - 30.) wftniir ¿.S . nt¿n - O.fl . S.S are:
vot rooË of (3.4:16); ú1, t2' û3 and þt roore of(3.4.u); lnl : roor of (3.412) uslng
ü"o=úo; Yr= loe {l¿, .¿ -B .å I, n-nso}; vr-1og {la . B l, n-t"o}

ka - 5.0

a - 5.0

4.)
4.O
4.7
4.8
.+.Y
qrI

(t

5.3
5.4
5.5

4.5
4,6

4,8
4.9
<^

5.1
5.2

5.5

ka - 8.0

a- 5.0

ú'o

-J4. )9 I
-24.836
-r4.096
- 3.275

6.643
L4.994
¿!. )J9
26.420
29 .77 5
31.825
J¿. I Zt

42.868
-qv.LJz
-29,696
-15.354

0.7I4
14.994
25.3L7
3r.587
J4.4)b
J4.44>
3L.772

L.Y I ¿

2.L67
2.268

¿. LO)
2.OO3
r.809

L.443
!.286
1.149

u .4)-)
L.57 4
1.905
2.L54
2.r89
2.001
1. 710
L.424
L,T79
0.981
0.825

+rll-Yl

10. 82é
4,9s9

' 0.568
4.496

10.442
13.308
L4.+L)
15.701
rO . JII
16.353
15.903

:::

*¡l¡
¿

18.306
I'+ . UJ)

8.857
5 .808

63.07 9
24.5s6
24.048
28,979
35.090
42.O70
o'_]l'

34.608
24.862
14.L24
3.259

14.983

::_-
29.694
31. 865

4¡lr

J4.)t)
24.80L
r.+. uot)
3.286

14 .9 33

:::
29 .850
tr_r_2,

4I,LJ¿

zg-.2õz

0.713
14.988

31.58s
J4. qro

34.448

-1

, 0. 335
0. 130

-0.144
-0.531
-1.180
-9.235
-1.311
-0. 793
-0.541
-0 .409
-0.353
0.624
0.488

-0.096
-0. 73s
-8 .968
,-0.905
-0.44L

'2

- J.JU)
- J.)vL
- 3.99C
- 4.692
- q ltt
-10 .536
- 4,597
- .+.2Þy

- 4.L23
- 4,072
- 3.987

- ) a71

- J.L)¿
- 3.433
- 3.880
- 4,786
- 9.800
- 4.43s
- 4.709
- 4.045
- 4.L82
- .1. toy



TÆLE 5:2

REcovERY oF PHASE Ú . MoDTILUS In I, Al.¡D SURFACE LOCUS S-(R-a) FOR A SCATTERER HAVING ATT A PHTORT, I,NKNOWN,'60' ' ao'- o

HOMOGENEOUS CoMPLEX SURFACE IMPEDANCE n"o - î"o .*p (JÚ"o)

SeLected ModeL Scatterer: Sphere of radlus a - 2.0 and lnpedanc" l"o - 0.25.

Values, compuEed along rhe ray (0 = 0.5o,,0 - 30o) ú1thtn 1.5 < R(^R - 0.1) :2.5, are:

Vo, roor of ß.A.16); þ! þt, V3 and þ4, roots of(3.4.f¿);l nl : rooÈs of(3.4.12) uslng

ú"o-úo; vr-1og{lA'Ã -å' B l, n=r"o} vr-1og{ll' s l, n-l"o}

ka - 2.0

a-2,0
1.8

2.O
11

2.2
2.3
2.4
1q

1.6
L.7

L.9
2.O

tt
,)?

tlJ

ka - 3.2

a - 2.0

7. BB3

- 5.551
-22.r95
-43.579

¿L.v J4
0.011

-15. 890
-26.448
-33.320
-37 .7L9
-.+v.J I J

r0.666
- 0.047
-IL.222
-27.O28

JO. 14¿
0 .004

-26.018
-JY.Ul.4
-44.850

43.384
44,5s6

lnl

t.;;;
o.326
0.24r
0.227
0.250
0.300
0.365
U.44L
o.525
0.618

1.006
0.492
0.257
0.250
0.330
0.458
0 .614
1.800
1.985

+rll

6.078
11.305
15 .030
46.304
L4,L34
L3.287

LV.¿OJ
19 .131
17.968
ro. Jl-l

:::
3.543

¡.ãi:
L9.773
L9.920
16 .823
12.880

9.025

*tlr-Y2

22,27L
23.OLz
2r.94r
46.538
L7.039
49.910
2L.24L
67 .646
bð. Jöo
59,295
55.656

zt-.ioo

¿elããs
80.849
31.007
28.839
27.050
25.258

+rl,.J

t':!2t

r/.J)ö
22,097

0. 005

"i:'

+rl,

tt:1t-'

16.988
2L.766

0 .000

"_:i

'1

16.805
L9.707
2L.296

12.523
0.003
:--

39.059

,.--.:-4().oJ/

- 0.700
- 0.954
- L.268
- 1.689
- 2.362
-ro.927

- L.997
-. L.734
- r.579
- 1.488

- u. )¿4
- 0.673
- 0.919
- L.297
- L.J4v
-7L.602
- ¿.Lro
- L.oJ¿
- r.424
- 1.348
- 1.366

-2

ro.)l-o
8.775
I.)IJ

6.¿Jt
0 .000

38.957

t-a-.sis

- 4.918
- 5.360

- 7 .400
- 6.644
-tr.967
- 6.432
- 6.139
- 6.006
- 5.934
- 5.923

- 4, Br9

- 5.190
- 5,698

-]-2,944
- 6.3r4
- 5.981
- 5.878
- 5.909
- 6.050

I t7



ka - 2.0

a- 2

1.995
L.996
r,997
1.998
1 000

2 .000
2 .001
2.002
2.003
2.004
2.005

1.995
1.996
L.'Y I

1.998
L.999
2 .000
2.001
2.002
2.003
2.OO4
L.VV5 ,

TABLE .5.3

QUATITITIES OF TA¡LE5.2CA].CT'LAIED WITIT A FINER

TNTERVAL 1.99 < R (^R - .001) < 2.005

ì,

ka - 3.2

a-2

u.vtL
0.778
u. )ð)
0.393
0.202
0.011

-0.179
-0.369
-0.557
-0.7 46

-0.933

1. 708
r.364
L.022
0.682
0.342
0.004

-0.333
-0. 669
-1 .003
-L. 336
-I. þb /

lnl

o.248
0.249
0.249
o,249
0.250
o.250
0.251

. 0.25L
o.25r
0.252
n tçî

o,248
0.248
0.249
0.249
0.2s0
0.250
u.z)L
u.251
o.257
o.252
0.252

*rlr-Yl

13.680
t_3.628
L3.502
LJ.+ I J

, 13 .444
13.339
L3.283
L3.2r4
LJ. L)ö
IJ . U4)
tJ . uL)

4.L27
4.UJ I
3.947
J. ö)ð
3.776
3.663
I q71

3,472
3.352
3.252
3. 151

=vz

.+y.l-or
49.993
49.2L8
49.030
45.802
45.785
¿f J. )L)
42.520
q¿.¿vo
40.391
37 .260

L5.474
18 ,018
23.82L
,Á 100

40 .490
48 .0 89
þ).)r/
76.669
58.L47
)).J))
4s .431

+rf¡.J

0.965

0.575
0.383
U. IYI
0 .005
0.185
0.375
0.563
0. 758
o,946

o.;;
0.342
0 .003
0.337
0.673
1.008
r. Jql
L.672

+rlr
q

o,962
o,768
0.579
0.387
0.196
0 .000
0.190
0 .380
0.569
0.752
0.939

0.679
0.338
0.000
o.334
0.669
1.004
1.337
L,669

't

- 5.024
- 5.2L6
- 5.462
- 5.806
- 6.383
-10.536
- 6.499
- 5. 866
- 5.504
- 5.250
- 5.054

- 4.6L8
- 4.812
- 5.062
- 5.413
- 6.011
-1 1 A^)

- 6.032
- 5.426
--5.073
- 4.823
- 4.630

'2

- 7,78s
- 7.886
- 8.010
- 8.189
- 8.485
-IL.714
- 8.483
- 8.181
- 8,007
- 7.878
- 1 114

- 7.915
- 8.008
- 8.122
- 8,300

-12.944
- 8.580
- 8,265
- 8.080
- 7.958
- 7.857

'i*,i ;



TABLE 5.4

Retrieval of rf and lnl by DoubLe-Frequency Technique for a single Sphere Using ïnterfor
. Ànalytic Continuation

Target: Sphere of elec. radíus ka = 0.5 and surface impedance n = 0.25 exp Jo, Fields Cornputed w.r.
of (e =45o, ô=f30o,kd=1.0)-o

A. computed Values At Frequency f, = f

2Ã

.4)

.50

.55

.ou

.65

ü¡

15.837

83.707

32. OO7

\tz

.ur

Ps V,,

.35

.45

.50

.b)

Vt

¿q. J)a

/ Y. UJJ

- 
'002

7A.897

31. 468 78 . 500

I J..¿1L

B. Computed Values At Frequenqy fZ = .g t

Itz

lnl

.2980

.2799

.2591

.247 6

.2597

.3022

.3701

Vs

.o2t97886 .001517956

.02572:87 .00164368

.02443074 .9319349X10-3
-? -?.8777150x70' .5070390x70'

.rrL2544 .00496126

.5756167 .07459009

2.493501 .5519352

Y¡

V¡

Y2

¿5.LV

J/.þfö

Inl

. IJCö

. L10r

.1897

.2453
. JUOI

.3821

.4739

.0288r9]8 .005033627

.03240844 .00545705I

.o29lso64 .005376853

.707358 5x10' ;9597 663x70 -

.1138315 .O29L8787

.522l-265 .1967003'

1.940373 I.075720

\-ì ¿
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5.4 presents

for a target

0.25 exp j0.

with respect

The averaged

rl.r = .000.

the four roots üu of (3.4.14) and root Inl of

of elec. radius ka = 0.5 and surface impedance

The em fields for this case !¡ere analytÍcally

to a translated origin (0 = 45o, Ö = 130', kd

surface impedance Il can be seen to be lñl =

(3.4. L2)

continued

= 1.0).

.2465

5.5.2d ñ(r) KNOI,rIN, So(g) and n(:) tO BE DETERMINED

In cases, where the shape of a scatterer is known a priort, but the

elecÈrical dimensions and the complex surface ímpedance have t.o be

det,ermined, the simultaneous eomputation of (3.4.I2), (3.4.L4), (3.4.19)

and (3.4.20) can resolve all of these parameËers accurately and uniquely.

The method is verified in Table 5.5 for a spherical target of ka = 0.5,

n = 0.25exp(jo) for fields expanded about the center 0 of Fíg. 5.3.

The enËries Yt and Yr have been cotnpuËed using the impedance value

of ¡ resultíng at each point of computation, and the entries Y, and

Y, correspond to computation for r¿hich ¡(X=0.5) = .25 exp(jO) r¡/as

used for all points aJ-ong Ëhe ray. The presented results clearly in-

dícate thaË l(¡) and So(s) can be recovered very accurately.

If an expressÍon for ñ(f) can be obtained independently of the condi-

tions (3.4.1) and (3.4.2), methods of Subsectíons 5.5.2c and 5.5.2d

could b-e combÍned to resolve ttr-e problem uniquely, given the total em

fields everywhere in Ëhe vicinity ot a scatterer for only one frequency.



TABI,.E 5. 5

Recovery of Phase rl" , Modulus 

'n"o' 

and surface Locus so (R-a) for a scatterer Having

an A PrioÍi Known Shape

SeTected Modei Scatterer: Sphere of radius ka = O.Þ and impedance

Values comput,ed along the ray (O : 45o, 0 = 1300) a¡e:
Ú"o root, of (3:4.20),nso root of (3.4.19)

. JJ

.45

1.36112

.475426

.40527L

-5.91584

-L.22534 .

I.20405

r. JSytb

EN

.55

.65

-rJ. b5J5

-r5.6272

-rþ.ð5//

. -76 .8 577

--

2.91474

q,

39 .7 52

-43,198

-¿I. bUJ

.0002

7.1s13

9.326I

9.8747

n"o - 25 exp jo

3.096

o.962

o .477

0.250

.1902

.245I

.3239

.299005

- ¿ 2547 54

-.922403

- 5. 57 363

-f,. SJbl-5

-1.48931

-¿. 3¡luJU

' .264397

-. 5þJJ.U /

-L,42820

-6.6402s

-2.27987

-2.26450

-2.29835

i--å
û31
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TRUNCATION ERROR ANALYSIS

6.1 INTRODUCTION

In verÍfying the inverse boundary conditions of. chapte:i, thtz,ee, direct

scattering solutions for conducting cylindrical and spherical shapes,

in terms of cylindrical and spherical vector Ìrave functions respectively,

were employed. rn a pracËical sítuation, the near field is to be re-

constructed from a knornm incldent field and the measured far field dis-

ËríbuÈíon. It is assurted that Èhe associated sets of expansioir coeffí-

cients explicitly contain all the necessary and sufficient information

about the unique near field expansion. These coefficíent.s, represent-.

ing the unknowns, must first be recovered from the fíníte set, of measured

scatËered field data as is discussed in Boerner and vandenberghe L zs l

and in more detail in Boerner and Aboul-Atta [ 21 ] where matrix inversion

procedures are proposed for recovering the'Se coefficients. FurÈhermore,

ernploying a novel optírnization procedure for the encountered generalized

vandermonde determinants, iË is shornm in vandenberghe and Boerner lzs l

that the retrieval of the unknown expansion coefficients, Èheotetical.Ly,

depends only on the employed 4easurement technique

However, since on1.y maËrices of finite and relatively low order (2N) can

be inverËed with the required degree of accuracy, a lower bound on the

order N of truncation of 
"r' 

and br' musË be taken into consideration.
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In addition, since both amplitude and phase of the scattered transverse

field components must be measured, in practice, a lower bound M on

Ëhe degree of accuracy of the recovered expansion coefficients is also

inflÍcted.

rn this chapter, the bounds at whích the series representation of the

em fields should be truncated are discussed. The criteria for establish-
ing the lower and the upper ËruncaËion bounds for b,ro -dimensional bodies

are presented in section 6.2. An outline of the extension of the

approach used for two-dimensional bodies to three-dimensional cases is
given ín Section 6.3. Subsectíon 6.4.1 describes a novel Ëruncation

approach based on the concept of inverse boundary conditíons. The pro-

posed procedure has been verífíed numerícal1y in subsection 6.4.2.
FÍnally, a bríef numerical study of the rate of convergence of the

analytíca1ly conÈinued fÍelds is presented Ín secËion 6.5.

6.2 LOI^IER AND UPPER TRUNCAI'ION BOIJNDS FOR TI,{0-DIMENSIONAL CASES

For a Ëwo-dinensional scattering gecfüetïy, the scattered field valid
for r ) r^ in Fíg. 4.3, may be expressed asa

where 
"(i).n

field will

u(r,0) = i a'..,j-tn.(r) (ur)"*n(jnö) (6.2.r)
n=-- "

Ís the Hankel function of first kind. The assocíated far
behaVe as

u.(r,o) = exp(-jkr) (2i/rtu)r/rr(þ) (ø.2.2)
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where C(0) is called the patËern functíon defÍned bv

i
e(0) = ) a-exp(jn$)

n=-æ

The coefficients of this pattern function are subsequently used in the

reconstruction of the near field. rn practice there exisËs a lower

bound Nn and an upper bound N., for Ëhe number of these coeffícients.

The lower bound is depend.ent on the fact that the space acts as a filter

for the higher harnionics and only tb.ose cylindrical modes r¿hich are

not eut of f are of ímportance t 4B]. This means that the surnrnat.ion,

in (6.2.I) shotrld at least exrend to Inl=t<r" wirh ,". denoring the

l.a.rgest dimensi.on of the scatterer. Thís approxírnate estimate for l"l
ensures the inclusíon of the dom.ínanË terms of the Fcurier speclrum

[78 , 81 ]. The upper bcrrncl N., depends on ,^ and. the errcr level

Ez due to measurement and quadrature errors [ 33 ,120].

Twomey [I2O] discusses the Ínherent limitations ancl <iiffículties whj-ch

attend the ínferenc.e of the function f (x) frorn g(v) when Ëhe kernel

k(xry) is a sntooth function of x. }Ìe also establishes crit.eria for

<ÍeËermíning the upper bound on Ëhe nuniber of terms ir. a series reDresenË-

aËion of a function f (x) .

(6 .2. 3)

(6 "2.4)

the data

Any inverse problem may. be represented in the form

,o
g (Y) = | t<(x,Y) f (x) dx

a

v¡here gg) is the measured pattern, k(xry) represents.



'{ .''r ,

.i" t1.l 
'.{'

kernel anci f(x) is the function to be recovered.

(6.2.4) nnay be written as

g=Tf

whe.re g and f repre.sent g (y) and

notation (6.2.5) becornes

In opera.Ëor nota.tion,

(6 .2. s)

In matrixf (x) respeetívely.

Ax=y*e (6.2,6)

v¡here A, x and y are the discrete form of the operators T, f and g,

respectively and e represent,s th.e total equivalent error vector.

Twomey ÏL201 proves that Ëhe N equations conta.ined in the nra.trix

equation (6.2.6) are fully independent in Ëhe presence of errors only

if Èhe ineaualitv

cÀ- >> l. .1 G.2.7)nit
is satisfi.ed by all the eigenvalues Àr, of ArtA, where c ís a f ixed

knor¿n positive number and A* denotes Èhe adjoint of A.

The error vector e includes both th.e quad.rature errors and the ob-

servaËiona.l. errors. The observatíonal errors are ofËen rp.ore seri-ous

Ëhan the quadrature errors, whieh for reasonably large N and smooth

ínËegrands can be considerably smaller than. L"A - an accuracy not readíly

achieved in many physical nieasurenents [120 ]. In addition to meå.suïe-

ment e-rrors, in many cases an approximation is j-nvolved ín reducing a

problem Ëo a linear one, e.g. approximatíons j-nvolved inthe derivation of

Leont.ovich cc,ndit.ions .



' .i þì¡;
'.'| a'\J

rË may be added h.ere thar in (6.2.6) rhe larger N is, rhe hÍg:tr,er the

frequencies being introduced in the solution and the greater the in-

stabílity of the solution. Therefore, increasing the number of data

poinÈs v/orsens, rather than improves, the clisc::epancies betr,¿eerr the

solution and the expecËation.

cabayan et al t 331 determíne tb.e eigen-values Àr, of the matrix

equation associa.ted wi.th the turo-di¡nensj.onal- inverse scatLerj-ng problem.

StarÈing with HelmhoLtzt s equaËion, they obtaín the following expression

for the eigen-values Àr., as is outlined in Appendiæ A4.

ã2=I

For the specialized

AS

(6 .2. 8)

(6.2.e)

r * @¡ Ëhe eígenvalues may be wrj.tËen
1

Irj')1rr,)12
r_-7---i-

^n ln;t, {tr") | 
2

The stability criterion

largest dimension of the

defined by (6 .2 . B) rnus r

(6.2.7) sets a strict lirnit on choosíng the

projection space. The smallesË eigenvalue

be greater than the error leve1

_2c.
l_

case in which

a
=Àn

I rÍ') 1rr") l2
(6.2.r0)

The three regions of numerical behavior of the reconstructed em field

are shor¡rn in Fig. 6.1 rvhich has been taken from cabayan et al tg¡ l.
They explain these regions in connecËíon wíth the stability criteria
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developed above. Assuming that the expansÍon coefficients are accurate

up to 5 to 6 digits' I¡Ie can estimate the numerical error as one part

in 10s, i.e. e = 10-s. Therefore, Àrr, the cuËoff eigen-value, is

related to ã2 = 16-lo. Sirnilar díagrams for less accurate data will

have the curve representing the uppeï bound nearer to the one represenË-

ing the lower bound.

rn order to apply the above critería on the truncation level N to

an off-axis cylinder, the parameter of importance for exteríor contin-

uation of Fig. 4.3 r¿ill be rt , the minímum radius enclosing the

cylinder. The trend of the number of significant coefficíent tr, for
a

the translated svstem versus r 'ystem versus ra, /\ gives a convergence regÍon similar.

Ëo and contaíned wíËhin, the convergence region shown in Fig. 6.L [ 33 ,

87 l. As regards the order of rruncarion l"l = |J j,n (4"3.4), hrílron

LL44 states that for N > kr" the coefficíents 
"r, decay exponenti-ally

faster Ëhan the exponentíal growth of the Hankel functÍons for r rr,

so that the scattered field representation converges. The validity of

this statement has most recently been confirmed by Mí11ar t za ]. The

numerical results presented i-n Section 4.4 are also in agreement, where

M ín (4.3.3) r¿as chosen to be slightly larger than the sum of kr and
o

kr t 1481.
a

6.3 LOI^IER AND UPPER TRUNCATION BOUNDS FOR THREE-DIMENSIONAL

PROBLEMS

The incident and the scattered fields for three-dimensional probrems are
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expanded in tenns of spherical vector T¡/ave funcËions. There are many

tests such as power coriservation [ 154], statistícal and nuuerical

checks t 153] which may be used for checking the accuracy of the obtained

resulËs. Ludwig t7o 1 describes a sensitive technique ín which the

basic idea is to obtain two different spherical-wave expansions of

the same electromagnetic field. The two expansions may Ehen be evaluaËed

on a conmon surface and compared. Ludwig argues that an agreemenË be-

tÍIeen the two results strongly ÍndÍcates thaË both expansions are valíd

because it is ext.remely unlikely that numerical errors would affect

both expansions ín the same r^ray. The two expansions may be obtained

by selecting dífferenË coordinate origins for each expansíon. To make

the test híghly sensiËive, Ëhe common surface should be chosen as

close as possible Ëo the source. Obviously the meËhod rnay also be

used for two-dimensíonal problems.

The lower ernpirical

mined by the radius

.lt,is lnl=kr. An

error of less than

elecËrical radius

bound for three-dirnensional problems is also deter-

x ^ of the minimum sphere enclosing the body anda

empírícal formula for the truncation poínt for an

.0L7t tn Ëhe radar cross-section for a sphere of

ka is [rOg]

N- [1+ka+3(ka)1/3] (6.3.1)

The upper bound form numerical stabílity poinË of víew may be deter-

mined by evaluating the eigen-values of the matrix equaËion associated

wiËh the three-dirnensional problem. An approach similar to Ëhe one
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used by cabayan et a1 t sg ] for the tvro-dimensíonal case may be used

for the three-dimensional problem. The details for this case are much

more complicated because the Greenfs function for this case involves

dyadic operators. Therefore, only an outline of the meËhod is pre-

sented below.

source-free region

ives

(6 .3.2)

and f(0,0) is rhe

adíc Greenrs funcËion

Applícation of Helurholtzrs theoren [57 ] to the

outsíde the minimum sphere enclosing the body g

?nr 
n ac

s(0'0) = k'o I I tcu,ol . ãõ- sino d0 ds
JoJo :

where g(0,ô) represents Èhe far fíeld paËËern

near field to be recovered. Here _g ís the dy

of the fírst kind and is given by [116] )

G -(n/r.') = + i i cr- 6 ) -++- (n-rn)!
:tS ---- ' 4"tf

":, 
*:ot- ì' n(n*l) (n+m)!

la ,(r)¡1, (r)*o *(r)r, (r) 1

f,mn-f,rnn-f,rnn f,mnlrnn-f,mn 
' (6 .3.4)

where the coeffícients ão and b- may be determíned by applying
õmn ãnn

the Dirichlet boundary condition to the entire funct.íon g.' which may

be writËen as

gr (E/3', = 9o (3/3'¡ + g1s (B/B') (6.3.s)

Here q0(E/et), the free space dyadic Greenrs function, is gÍven by

ir- æ n
so(R/¡') =#-¡ j (r-u,) 

"ffiffiiirÀ- I rlr- 0
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//\q Ult"*\ ¡l I , RÍR' (6.3.6)
õ'nn õmn ;mn ;mn

In (6.3.4) and (6.9.0) 6o = I for *=9 and6o = O forur#0.

The expansion coefficíents a._ and b" in (6.3.4) are
õmn i'mn

a =-j-(r<a)/rrjt)(r.r) (6.3.7)
eomû Àr

o.*, =-# to j,,(o)r /# Ipr,(')(p)l (6.3.8)
o

The normal derivative of ðGr"/â(kr) at r = ., is substituËed into

(6.3.2) to obtain g(0,0) in the form of a Fouríer series. The ex-

pressíon for g(Oró) defines the operator g in the following equatJ-on

ín operaËor notatíon

o=T.f (6. 3. e)

The eigen-values of the associated matríx equatíon may then be deter-

mi.ned using an approach sinilar to that of Cabayan et al [33 ].

6.4.L NOVEL TRUNCATION APPROACH BASED ON INVERSE BOUNDARY

CONDITIONS

The inverse scattering approach employed in this work assumes that

complet,e information about Ëhe scattering geometry is contained in the

expansion coefficients of the measured far field. Therefore, the

recovered parameters of the body depend on the accuracy of these expansion
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coefficients (M digits) and Èhe order of truncation N of the series

representíng Ëhe field. The estimates on these lor,¡er bounds N and,

M may then be defined from the application of the inverse boundary

conditions by properly truncating the order as well as Ëhe number of

the first significant digits of the expansion coefficients. As re-

IaÈes to the truncaËion of sígnificanÈ digits ín the expansÍ.on co-

efficlenËs, criËeria on convergence and the measuremenE accuracy should

be distinguished. only convergence aspecËs are considered in Èhe

present studyr i.e. truncation in Ëhe first significant figures of

any expansion coefficíent irrespective of the exponential- por¡/er factor.

The lower bounds N and M are defined by the desired accuracy to

which the parameters of the body must be recovered. To íllustrate

how estimates of the bounds on the order of truncation can be established,

the target ídentification procedure for that model case is chosen in

r¿hich the phase û of n is assumed to be knornm, but the modulus

lnl and the proper surface locus so(:) need to be recovered. as out-

lined in subsections (3.4,2), (4.3.5c) and (5.5.2b). Disregardíng

second-order effects on Ëruncatíon estimates (i.e. the dependance on

local incidence, poLarízation, aspect angle, etc. ), the first-order

estimates on N and M may then be specified by analryzíng the obtained

degree of accuracy in deËermíning Inl, according to (3.4.L2), and the

poÍnË on Ëhe proper surface 1ocus, by computing the orthogonality and

Ëhe normality condíËions along any ray noË coinciding r¿ith the back-

scaËtering direction. For each of the various different sets of ka

and ¡ chosen, the recovery procedure is repeaËed by inereasing Ëhe order



.-i -? .1\.

I of series

ËruncaËion in

truncaËion, and also

significant figures

the order M(=3,5,7 and 14) of

of the expansion coefficients.

the

6 .4.2 NUMERICAL VERIFICATION

The influence of the series truncation on the accuracy of the ortho-

gonallty condltion is illustrared in Fig. 6.2 for the case ka = 5,

\ = 2.0 ernploying single precision formaË for the expansion coefficients

and double precision format for Ëhe calculation of the field components.

From ínspectíon of Fig . 6.2 iË is found that there exists a rower

bound Nn = 10, for which the proper minimum can stíll be dístinguished

accurately, as well as an upper bound N,, = 16 after whích the effect

of addítional seríes terms is neglÍgíble. rt should be not,iced that

as the order N of truncaËíon is increased, the proper minimum becornes

more and more pronounced, whereas Ëhe curves for x(=kR) > ka(=5¡ coalesce.

To analyse Ëhe specifÍ.catíon

vatues of y = log{la.nl, n

lnl are presented in Tables 6

of truncaËion bounds further, numerical

= ts' j, Y, = log{l¿.¿-g.gl , rt = n"o}, and

.1 and 6.2 f.or various different values of

r¡ and for ka = 2 and ka = 5, respectively. single precision format

was employed for the expansion coefficients. careful inspection of

these tables indicates that ít is useful to int¡eduss three different

error bounds on the order of series truncation, i.e. Nu, No.u 
"rd No.,

; ,., r rfor whi-ch Inl can be recovered with an error of less Ëhan 5"/",0.5%

and 0.L%, respectively, so that the proper minimum in all of these cases

can still be discríminaËed uniquely. The additional effect of the Ërun-

cation of the firsË M sígnificant fígures of the expansion coefficients
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ÎABLE 6.1

,OPOER OF TRIJNCÀTION, ANAÏ.YSIS FOR A SPHERICAT SCATTERER OF ELECTRICAI, RADIUS KA ' 2.0 AND THREE DIFFERE¡TI

VAI.ITES OF IMPEDANCES N

QuantlÈles, courputed along the ray

where tf.r fs assuned to be known,

N: Order of eeries Eruncatlon

N-4

ñ-6

R

Tarset I: InSl = 0.99, tl" = 0'

Yr ,t; -' 
ln I

1.9
¿.v
,1

1.9

2.L

1.9
2.0

1.9

z.L

1.9
2,0
2.L

1.9
2.0
ôt

Nq8

N-10

N-14

N -16

(0 - 30', 0 = 60o) lrlrhln 1.9 < R(^R - 0.1) < 2.L, are:. lnlr roor of (3.4.12)
v, = log {le .4 -å . B l, yr - los {lt ..n l, n = nro}

0.6674 L,3242 0.3049
-0.3906 0.9037 0.3915
-0.677L 0.s326 0.4642

-2.2690 :2.3150 0.9044.
-3.2363 -3.3086 0.9757s
-2.6985 -2,7L40 1.0910

-2.3069 -2,3465 0.9081
-5. 1636 -5.2302 0.9902 's
-2.5939 -2.6174 L.L220

-2.3065 -2.3462 0.9081
- æ - æ 0.gg00'1
-2,59s0 -2.6L84 L.r2L6

-2.3065 -2.3462 0.9081
-7.5258 -7.6507 0.9900
-2.5950 -2.6L84 L,r2L6

-2.3065 -2.3462 0.9081
-7,5258 -7.6507 0.99p0
-2.5950 -2.6L84 L,2L6

rargec tti llql = 0.25.,-rf, = 45"
Yl - y' -" 

lnl 
-

Superecrfpts dr .5, .¡ lndlcate that lnl fe recovered wlth an error of leae than 52, O.52, and 0.12, respectlvely

-1.8536 -3.5207 0,2365,
-3,27r8 -3.7760 0.2406
-2.1598 -2.8454 0.0981

1.9936 -2.4810 0.3ss6
-4.L664 -4.6IL4 0.2515 s

-2,1248 -2.8381

-]-.9260 -2.5035 0.3539
-5 .3537 -5. 8663 o.24gg't
-2.L777 -2,8267

-r.9263 -2.5031 0.3540
-7.5837 -7.8476 0.2500
-2.1180 -2.827L

-L.9263 -2.503L 0.3s40
-7.8268 -8.3777 0.2500
-2.1180 -2.827L

-]-.9263 -2.5031 0.3540
-7.8368 -8.3777 0.2500
-2.1180 -2.827L

largeË III: Insl - 4.0, r¡, -
yl y2- ln I

1.1507 0,s744 2.4909
0.3587 0.0369 3.0342
0.9798 -0.3886 5.4156

L.2233 0.2609 2,7320
-1.5970 -1.4411 4.O76gs

0 . 8832 :0 .0818

L.2286 0.2762 2.69L3
-2,7202 -2.84L3 4.0030'
0.8847 -0.0842

L,2286 0.2769 2.6904
-4.9067 -4.6056 4.0000'
0.8846 -0.0846

L.2286 0.2769 2.6904
-5 .0664 -4.9792 4.0000
0. 8846 -0.0846

L.2286 0.2769 2,6904
-5 .5435 -4 .9792 4 . 0000
0.88461 -0.0846

600

r?'"..



. TABLE 6.2

'ORDER oF TRUNCATTON' AlrALYsrs FoR A spHERrcAL scAlrERER oF ELEcrRrcAr R.aDrus ka - 5.0 AND THREE DTFTERENT

VAI,UES OF IMPEDANCES N

Quantltles, coEputed along Ëhe ray

where {, ie assuroed to be knonm,

N: order of series truncatlon.

N-6

N-8

N-10

N-12

N¡14

N-16

i,t - 18

lR
ft-
| 4.e
I s.0
I s.l
t^
| 4.v
I s.0
| 5.1
I

| 4.e

| :'YI r.r
Ì

| 4.e
5.0

4.9
5;0
J.L

4.v
5.0
5.1

4.9
5.0
ç1

Tarset rt lllSl - 0.01, úS - 30"

(0 - 30o, ö - 30o)

Y,=1og{lA.A

'1"

I -1.65s0 _ 2.84ss 0.s4s7-1.5950 _ 3.0035 0.8033
-L.2438 - 3.2793 O.6858

-1.5452 - .4.7566 0.2584
-3.0603 _,4.I70L
-2.0773 _ 3.8194 0.5546

-r.6667 _ 3.8703 0.4L2L
-4.9774 - 5.1526
-r.8747 _ 3.9460 0.4603

-7.6728 - 3.8405 0.4247
-s.s4s0 _ 6.0s33 0.1230
-L.8720 _ 3.9676 0.453s

-7.6774 - 3.8440 0.4228
-7.0s53 -7.6268 0.1228
-1.8730 - 3.9654 0.4544

-r.6774 - 3.8439 0.4228
-7 .8485 _ 9.2808 0.009s.5
-L.8729 - _ 3.9654 0.4544

-L.6714 - 3.8439 0,4228 
1

-7 .8499 -10.3600 0.0100.i
-L.8729 - 3,96s4 0.4544

I

N,,

Y2 Inl

tqithfn 4.9 < R(^R = 0.1) 3 5.1, "r., lnl roor of (3.4.12)

-¿'å I, n-nro), rr- 1og {le . B l, n -tso}

Targer il: Inrl - 0.:, ú, - 60.

yl yz lnl

SuperscrÍpÈs s, .s, . ¡ indlcate that lnl

| -7.1793 -L.3276 0.7267
| -2.577t+ -L.5946 0.6454

| -r.2078 -L.eesz 0.s701

| -L,2924 _2.0257 0.5694
| -2,8L02 -2,5678 o,474os
| -1.2893 -L.9726 o.3ss2

| -t.zsøs -1.8363 o,6L2s
| -3 . 7908 -3 . 9 809 o .5010
I -1.2884 -2.0277 0,3749

| -1.2s51 -1.847s 0.6103
| -4.3903 -4.rs7z o.4gs3. s

| -1.2890 _2,0247 o.3742
-r,2s5L _I.8446 0.6110
-5 .6015 -5.5503 0.5000' I, -1.2895 -2.0267 0.3749
-1.2551 -r.8447 0.6109
-6.1455 -6.9sr7 0.5000
-L.2895 -2.0266 o.3749

-L.255L -L.8447 0.6109-6.1108 -6.9375 0.5000
-1.2895 02.0266 0.3749

Target rtr: In"l = 2.0, û" - 0

'1

-L.22I2 -I.6728 2.5527
-1.5693 -2,2oLL 8,6745
-r.4848 -r.3736
-L.0757 -3.1429 L.9482
-2,1483 -3.2311 2.05615
-I.9747 -1.9ss2 1.1004

-r.L764 -2.1303 2.4664
-4.04L7 -4.5s35 L.gg74. s

-1.9862 -1.6879
-r.1799 -2.1553 2.43L7
-4.4288 -4.6333 L.gg78
-L.9669 -1.6871
-1.178s -2.1543 2.4345
-5.8606 -6.0322 2.OO0o'¡
-r.9702 -1.6886
-1.1786 -2.7543 2.4344
-6.7567 -6.7493 2.0ooo
-1.9700 -1.6886

-r.1786 -2,7s43 2,4344
-6.7I28 -6.7s56 2.OO0O
-1.9700 -1.6886

ie recovered wlth an error of leee Ëhan SZ, O,5Z and 0.I2, respectfvely

Yz lnl

á" ':¡ I
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It Nu, No., and to., t" íllustrated for M = 3, 5 and 7 in Table 6.3,

enploying spherical model scatterers of various electrical sizes (ka =

1 and 2, 41 6,..,.I4,16) and a set of values for Inl, symmetrically

chosen about lnl = I within the range I = 0.02 and î = 50. First
of all, Ít ís observed thaË, as expected, Nu, No.,,rd *0.,,r"rease
wÍth increasing ka. - Furthermore, the least number N of expansion

coefficients, for any ka, is requíred for values of n c1ose, but

not equal, to unity and N_, N- and N
5 0.5 0

wave ratío

lrl =

increase as the standing
t

n-l
tl+1

increases. As can be seen from Tabres 6.1, 6.2 and,6,3, it ís possible

to accurately recover Inl and to uniquely discríminaËe the proper

locus for values of ¡ almost equar to uníty, ze,,o or infinity. rt
was noted that the bounds obtaíned with double-precision expansion co-

efficients (M = 14) were identical to those obtained with single-precision

expansion coefficienËs (M = 7). Therefore, only values for M = 3, 5

and 7 are presented ín Table 6.3. This observation r¡ras found to hold

also for those cases ín whích Ëhe standing v¡ave ratio s approaches

infinity. rn addition, it was found that the order of magnitude of

indívidual expansíon coeffícients evaluated for dífferent values of n

r.rithín the range 0 ( n ( -, for one and the same elect.rical radius ka

is independent of n.

ir

to

In

is

conclusion

suffícient

can be saíd that as long as S < 5 and ka < 4, M = 3

accuraLely recover Inl and Ëhe exact point on the



. TABLE 6.3Truncatlon Analysis of N and M

Analyzed quantities, computed alopg the ray (0=30',0=60o),.are: lnl =oot of (3.4.I2) where
tft is assumed to be known, Yl=log{la.A-g.glrl=lg^}, y2=1og{lA.Br¡=ls^}. Bounds on order of
serles Ë,runcatÍon: N5(l¡l recovered r,¡ith an eriSr of less ttraã SZ)lÑo.u(lnl recovered with
an error of less than 0.5%),No. t(lnl recovered wlth an error less than O'.].7Ð. Order of
truncation in slgntflcant digits of ao;rrand b.,ir! M(3,5,and Z{t4}). Dashes indicate that
the requlred accuracy had not been obtåfned, Ëåi electrical radius of the spherical model
scatÈerer analyzed

n-50 ¡¡pJ -{f
No.5 [0.

l0
8t0 t2
6¡0 ¡?

t0
t0 12
r0 12 l{

t6 lt
ró 16 ¡0

It
ró tô 20

20
20 22

24
22 28

26
28 t2

2E
2ô

30

nj

¡.20 ¡xpj -!0'
N5 

"o.t 
No.t

8t0
88t0
80¡0
c12
0 r0 t2
ôl0l?

.¡{
t4 tó
l¿ t4 ¡6

¡ó lt
ló ¡ó tô

20 20
t8 20 22

22 21
2L .72 24

2t 26
21 26 l0

2E 2t
26 2ô 30

28
2E t0 !2

n-4.0 r¡pj 40'

xt xo,l [0, ¡

¡-^.;L

'-\å
*-J

ó89
ó88
68
EC
tô¡0
rgt0

r0 ,2
l0 t2 t4
¡0 12 tl
l4
¡3 11 lólt t¡ ¡ó

l4
rt ló ¡0
15 16 20

¡6 lE
tó 20 22
16 20 22

z0 22
20 ?t 2a
20 22 2l

27
22 2\ 26
2? 24 26

26
2{ 26 28
21 ?6 2E

rl-2.0 ¡xpj 30'

[t Ho.l No.l

ó88
688
688
Et0t0
7010
lEt0
912t4

t0 12 l4
r0 12 ¡4

¡¡ l{
12 ¡1 tótl t¡ ¡6

ul{
t{ tó t8
t1 ¡ó t6

16 t8
ló l8 22
ró t6 22

t6 l8
ró t8 22
ló t8 20

22 tl
2r'22 26
22 22 26

22 ¡¡
22 2{ 2A

22 2{ ¡ó

n-0.99 crpj 0'

x¡ No.i [o.r

I
6
6

l0
¡0
¡0
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proper surface, whereas for 5< S< 10, ka<20 and 10 ( S (co the

values M = 5 and M = 7, respectively, are suffícient. The presented

truncation error analysis índj-caËes that the accuracy required in
recovering the expansion coefficíenEs could be wÍthin the realm of

presently available measurement techniques employing a matríx inversion

procedure [25 ,2L l.

6.5 RATE OF CONVERGENCE OF ANALYTICALLY CONTINUED FIELDS

To study Èhe raËe of convergence of the analytícally contínued fields,

the total electric and magneËíc fields are calculated using rnultipole

expansions which are given by (5.4.1) and (5.4.2), respectively. The

targets employed for this study consíst of spheres of electrical radius

ka = 0.5, t:¡ = 0, .25,.5 and.9 cenËered at 0 of Fíg. 5.2. The

fíelds are first calculat.ed with respect to the center 0 along the

arbítraxy xay 0 - 0t (0 = 45o, ô = 130o) and then with respect to

the translated origin 0r (kd = 1.0, 0o = 45o and þo = 130o) of Fig.5.2

along the same ray 0 - 0t using analytic continuation given by (5.4.3).

The results are presented ín Table 6.4, where the values of magniËude

and phase of E-- - component, of Ëhe scattered electric fíeld are tabu--r

lated in column 1 with respect to the expansion about 0, and in Ëhe

next Ëhree columns with respecË to the translated,origin Ot for differrent

orders of truncation N = 6, 10, L4 of n in (5.4.3). The series

expansion of (5.4.7a) and (5.4.7b) for rhe spheres of electrical

radius ka = 0.5 and rl = 0, .25r.5 and .9 were truncated at V = 6
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because the higher order expansion coefficients A(Urv) and B(Urv)

were negligible. Sirnilar calculations for different translation para-

meters kd, 0 and Q revealed that many more translation coefficients00
q(m,n) and ß(m,n) are required to express Ëhe em fields accuraËely as

the computatÍonal point approaches the true surface of Lhe scatterer

as is evident from inspection of Tablè 6.4" rn particular., it was

found that the rate of convergence of the analytícally continued

fields deteríorates as the maxímum radius of the sphere of convergence

centered at 0r increases and Ëhe nore n deviates from 1. Therefore,

in applying the rBCs, it.r¿as found useful to successívely reduce the

translation distance 0 - 0t in order to reduce the radíus of the maximum

sphere of convergence and hence to improve the accuracy of the conËinued

fields. Obviously, Ëhe rate of convergence will slow dor.m further

if analyÈíc continuaËíon is applied to field expressions for multí-

body scat,tering as Ëhe rate of convergence of the associated Eotal

field expressions is very slow. In partícular, the number of expansion

coefficients A(U,v) and B(U,v) in (5.4.7a) and (5.4.7b) depends on

the parameters of the configuration, especially the electrical radius

of the mínímum sphere enclosing the scaËterers. IË should be, noted

thaË it seems possible to obtain more efficient formulatíons of vector

translatíon theorems (5.4.4a) and (5 .4.4b) which possess a faster rate

of convergence, and further studies in finding such formulatíons are

requíred to reduce the extensive computer time for computing the trans-

lation coefficients.
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CONCLUSIONS

7.L SI]MMARY AND DISCUSSIONS

The inverse problem of electromagnetic scatteríng has been resolved,

in principre, usíng the concepË of ínverse boundary condiËions. A

variety of nethods of target porËrayal, based on scatËering center

concepts | + ], comparison of monostatic-bistatíc scattering cross-

sections, target signature comparíson lL22l, the physical optícs ap-

proximaËion I ]-9,67 ], Ëhe geometric optics approximation [63 ,130],

eËc. are t,reated in Ëhe líteraËure. But all these methods ínvolve

some basic approxímations ín their formulation and provide a suffÍ-
cÍ.enËly accurate solutíon to the prc'fi.le ínversíon of only perfecËly

conducting shapes ín Ëhe lirnit of high-frequency scattering. There-

fore, ín order Ëo invert the profile characteristics of perfectly and

irnperfecËIy conducting shapes, gíven the total fields everywhere for a

single operaËing freguency anywhere withín the entire frequency spec-

Ërum, additíonal inverse boundary conditions v/ere requíred.

A fírst attempt ín this direction r,ras made by Ialeston, Bowman and Ar

1139 ] where it was shown that the inverse condition ExE* is an exacË,

necessary condition but is not sufficíent because it generates an in-

finite set of pseudo loci, in additÍon to the proper surface locus

s (li) of the perfectly conducting scattereï. Since this conditíon,0-

ín general, requires additional inverse boundarv conditions so that
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.the' proper surface locus can uniquely be discriminated \,rithout the

aid of the physical opËics conditÍon, other necessary and sufficient

ínverse boundary condítions r¡rere sought. Thís search resulted in the

straþhtforward cognizance that E.H = Or E*.H = 0 and E.H* = 0 [23].

The boundary conditíon E.H = 0 is an exact necessary and sufficienÈ

condit.ion for a point to lie on a perfeeÈly electríc or magnetic con-

ducting surface except ín those cases for r¿hich E and H are intrin-

sically perpendicular to one anoËher. The conditions ë*.H = 0 and

Eofl* = 0 are exact, necessary but not suffícient because they gener-

aLe an infinite set of pseudo loci in additíon to the proper surface

locus s^ (¡) and they are noË índependent of ExE* = 0 for the perfect-0-
ly electrj-c eonducËing case and of HxII:t=g for the perfectly magneËic

conducting case 123 J2 respecËívely.

The next step v/as to search for inverse boundary condítions whÍch can

be applied to specify the relative, averaged, loca1 surface mat,eríal

propertíes, i.e. rìr in addítion to simultaneously specífying the size

and the exact surface locus of curvi-linear scatÈerers of finite radii

of curvature. rt was antícípated that aË least three independent

characteristic equations are required to uníquely specífy the síze,

the shape, and the rnodulus and phase of the relative surface impedance

¡' which, however, need not independently be sufficient by Ëhemselves

1136]. rn fact, global physical laws and concepts, as e.g. Heisenbergts

uncerËainty princíple[50r58]inherently implied, contradict the explÍcit

uniqueness of the inverse problems of electromagneËic scattering.

Namely, naËure reveals in real tíme occurences that whenever decisíons
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uniqueness in remote object specificatíon are to be performed,

global lar¿s of discrimination are implied. The problem of non-

uniqueneÈs ís also high-lighted ín a mosË recent publication by Sleeman

[111] where he díscusses the three-dimensíonal inverse scattering

problem for the Helrrholtz equation. According to Müller I gs ] and

hlilcox [L46], given a radiaËion pattern g(0rÔ), the sources which

generate the fíeld u must líe withín a closed sphere of radius r"

where r- is unÍ.quely determined by s(0,6¡. For axi-symrnetric fieldsc

cotton [34 ] has recenËly given more precise ínformaËion concerníng

the locatíon of these sources by usíng entire funcËion theory and func-

tion theoreËíc methods ín the Èheory of partial dífferentíal equations.

Sinilar problems have been considered by Míl1ar Íll ] and l,rleston,

Bowman and Ar [140 ]. However, in both these papers some a pr"Loz"L know-

ledge is assumed. Sleemanrs main theorems [111] staËe that the scatter-

ed field may be thought of as produced by a set of equívalent sources

located on or within Ëhe surface of the scatteríng body. At points

outsíde the geometrical surface of the body, the fíeld produced by

Lhese fíctitíous sources is identical to the scattered fíeld of the

body. These fict,iÈious sources are not, in general, unique, although,

Ëhey are confined to some finíte region of space. Thís non-uniqueness

suggests that, in general, the solut.ion Ëo Ëhe inverse scatteríng

problem is non-unique. But, the hypothesj-s has been proposed inE36 ]

thaË Ëhe inverse boundary conditions, requíred to uniquely resolve the

inverse problem of electromagnetic scattering, may consist of a set. of

independent, exact, necessary though not sufficient conditions. How-

ever, simultaneous application of these conditíons provides a uníque
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solution to the problem of targeË characteristics

the t,otal near field expansions everywhere for one

frequency only 1231.

inversion, gíven

single operating

A logical approach in Èhe search for such ínverse bound.ary conditÍons

üIas to criËically revíew the properties of the Leontovich or scalar

impedance boundary eonditions I 82], sínce these condítions though

approximate, are hítherÈo, Ëhe sirnplest relations known to resolve

scattering from general imperfectly conductíng shapes. The intuitive

attempt Ëo ínvert these dj-rect boundary conditions, resulted in the

ast,ounding findíng t136 I that Ëwo basic vector quantÍties, A = ExE*

-nn*HxH't and B = ¡E*xl{-¡*Exlirk, exíst which are orthogonal , ê.å = O,

lie in the local scaËteríng plane of a smooËh curvilinear scat,terer

of finite radií of curvature, â.4 = â.8 = 0, and are of i.dentical mag-

nitude Ã2= 82. obviously, both the total electríc and the total mag-

neÈÍc field expressions are requíred which vras to be expecËed from

the basic defínition of an íntrinsic ímoedance.

To verify the validíty of the sets of inverse boundary conditions of

sections 3.2 and 3.3, a varíety of targets comprised of mono- and tr¿o-

body circular cylindrical and spherícal shapes have been tested numerí-

cally. For the cylíndrical bodies, well established Ëechniques of co-

ord.inate transformation and analytic contínuation have been employed

Ëo continue the en fields in the region \,rithín the minimum circle

enclosing the body. Three-dimensional analytic contínuation has been

introduced to Ëreat non-canonical shapes in spherical coordinates.
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The perfectly electric condueting cases have been analysed fi_rst to

elíminate the inadequacies resulting from the continual application

of the approximate physical opties condiËion and to provide the numeri-

cal fundament for treating the more sophisticated ímperfectly conduct-

ing bodies. To demonstrate the unÍqueness of the novel'díscrirnination

procedure clearly, the imperfectly conducting case for knoqm rì vras

treated first. rn Èreating the case of partially cornplete a. pr"iori

given ínformation, í.e. n = n* or fl = -¡/<, it was demonstrated that

Èhis case can uniquely be resolved for the ínhomogeneous and d.ispersive

bodíes, given field data everywhere for one single operatíng frequency

on1y. For the general case of a pr¿or,z, unknov¡n r¡ , the mono-body case

for homogeneous n was treat.ed first províng Ëhat rì = const. and

s^ (¡) can uniquely be recoveredrgiven daËa everywhere for one singre0-

operating frequency only. The degeneracy condition was employed to

resolve this case. However, for Èhe tr¡ro-body case or for the case in

which the scattering surface abouË monostatic dírection is concave,

the double-frequency checklng procedure must be applíed in which case

rì must be assumed to be nondispersive, though, it could, in general,

be inhomogeneous. In essence, it has been demonstrated that the con-

cept of inverse boundary conditions can effectively be applÍed to the

inversion of conducting shapes, though for resolving the most general

cases an additional independent condítion ís required..

rt is imporÈant to mention here that the tangentiality conditíon, i.e.
ñ'A = â'B = 0, has not yet resulted in an índepend.ent relat,ion. rt
mlght be possíble Ëo combine the ídeas of l.tleyl tL44l with rhe rangentialiry
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condition to obtain another independent uníque relaËionship for convex

surfaces. Namely, in weylrs problem lr44,9L ], one is given positive

definite quadratic form ds 2 defíned at every point of the unit sphere

and the existence of a closed convex surface which may be urapped one

to one onto the sphererso that its fundamental form in terms of the

parameters on the sphere is ds2, i" to be proved. The tangentiality

condi.tíon provides the tangent plane at each poínt of the quadratie

surface Èo help achíeve uniqueness. Similarly Ín Minkowskirs problem

[ 791114] which ís also applícable only to convex surfaces, one ís

given a positíve functíon K(ñ) defined on the unit sphere (here â

represents the Ínner uníË normal Ëo the sphere), and Ehe exisËence of a

closed convex surface having K(â) as íts Gaussian curvâLure at Ëhe point

on the surface where the ínner normal ís â , is Ëo be investigaÈed.

Trr'e functíon K(ñ) is assumed to sat,ísfy the condiËíon, which holds

for any regular closed convex surface,

(

.J 
*colo do(â) = o

r¿here the íntegration is carried over the unit sphere with do represenË-

ing the element of area on the sphere. For this case the vector

D = 4xå defines the directíon of the normal which could be integrated ba-

sed q¡Minkowskifs idea to obtain possibly another unique relation.

As has been demonstrated in SecËions 4.4 and 5.5, the proposed boundary

conditions ðt'e found t.o provide. parameters of the scatËerers whose

surface Ímpedance is purely real or purely ímaginary or eomplex. This

observation gives ríse to the hypothesis that the inËuitively established
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inverse boundary condit.ions could represent the degeneraËe subset of

a more generalized set of basic unique electromagnetic vector quantities

inplicitly prescribed in the definition of Ma:<r,¡ellrs equations t1171.

rn particular, it is antícipated that 4 and B bear close affinities

to a more genera1-jzed complex-conjugated formulaËion of Maro7ellfs electro-

dynamic stress tensor t17 ] when applied across a bounding curvilinear

surface of fíniËe radií of curvature. The Ëhird unique baslc vecËor

quantityr sâY N' defÍned along the ouËward 1oca1 normal , r¡ras not found

to result from the inversíon of the Leontovich conditions lL36 rz3 1 .

This addiËional basic vector quantity, which íntuitively should exíst,

may result from Ëhe more general formulation resulting from the Maxwellrs

s Ëress-tensor approach.

7.2 CONTRIBUTIONS TO THE FIELD OF ELECTROMAGNETIC THEORY

The proposed inversíon techníque should be of great importance Ëo the

basl-c problem of target identificatíon. At presenË radar detec.tion ís

the only means to detect remote bodies. rn spíte of all the sophísti-

cations introduced afËer the second world war, nobody has yeË, been able

to deËermine the material properËies and exact profile of remote objects.

We do not mean to suggest here that at the presenË stage of develop-

ment the proposed techníque wíll resolve the problem. But wíth advance-

ment in technology the following set up Ís suggested to achieve the

requíred goa1.

A high-powered t.ransmítter ílluminates the target, and the Ëot.al fíe1d
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is detected by the receíving staËionsrset up at locatíons whose angular

bearings are optimized according to Boerner and Aboul Attars [ 21]

optínizatíon procedure. The received daËa (the magnitude and phase of

the scattered field) goes to the central processing unít where the

scattering coefficÍents for the target are calculated fòr the approp:

riate expansíon of the fields using maÈrix i-nversion [25 ]. Now, the

inverse boundary conditíons can be applied to the total fields to re-

cover the surface impedance and the profíle of the scatterer, which

can be appropriately integrated Ínto the proper shape to be displayed

on the radar screen

Using the same procedure, bodies of interesË to the radio-asLronomers

can be identif,ied. Regarding the imrnediate contributíon to Ëhe field

of, em Ëheory, Theorems I to 3 presented ín sectíon 2.4 can be employed

even for direct scattering problems, since all the em fíelds have to

satisfy Èhe orthogonality and normality conditíons of the vectors A

and å , where vector B represents the reactive energy in a wave

Moreover, since Ëhe proposed Ëechnique is based on rigorous Maxwellts

equaËions, ít provides a meËhod for checking any future approximate

methods¡ e.B. those based on the physical or the geometrical opties

approximaËions

The results analysed in Section 6.4 reveal that a ner^/ dimension has

been added to the error analysis; the lower and upper Ëruncation bounds

Nn and N__, respectively, depend upon the standing wave ratio amongJ¿ U'

oÈher relevant parameters. The estímates on Ëhe lor¿er and the upper
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ary conditions. The minimum number of Ëermsrwhich results in the re-

quíred degree of accuracy for the calculated surface ímpedance and the

prof.íLerdefínes Ëhe lower bound N The upper bound is defined b1-

the number of terms beyond whích no significant improvemenË in Ëhe

sorution is obtained. rn fact, beyond a certain number No,"*, the

accuracy of the solut.ion will deËeríorate because of stability criteria

as analysed in Section 6.2,

The proposed ínversion techníque can. be employed in the design of

tomographic apparaËus and eventual supplement,ation of the x-ray tech-

niques by mícrowave technÍques I zz, tø]. As a by-product, solutíons

for multíbody scatterj-ng for the case of cylinders and spheres with

arbitrary surface ímpedances have been obtaíned. Similar solutions

for perfectly conducting cases and dielectríc materials are found. ín

the literaLure | 9Z , 31 1, but the case of arbitrary surface impedance

has never been treated before, though, the extension is sírnpre.

7.3 NEI4I .RESEARCH TOPICS ARISING FROM THE PRESENT I,{ORK

The present research has raised a number of questions which have to

be answered for further development of the proposed inversion technique.

More detailed physical insight into the nature of the vectors A =

ExE*-nntcHîx* and å = nr*€-nnE{o is needed to inËerpreÈ the reasons

for their orthogonality, equality and tangentíality to the surfaee of
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.Ëhe scatterer at all the points. The possibiliËy of their use in the

direct scattering problems is to be ínvestigated.

The concept of Ínverse boundary condítions has been applied to the

canonical shapes of cylinders and spheres and certain non-canonical

shapes like nultiple cylindrícal and. spherical bodíes. But they have

still to be tested for many oËher non-canonical sh¿pes, Ëhough, Ëhere

does not seem to be any doubt in their success in achíeving the inversion.

In additíon t,o the íntrinsic proUlem of defining a third unique vector

quantiÈy, the problem of establishíng a general míni-max searchíng routine

which can be applíed ín practice, still remains an open question. The

search for such a uniqueur.iní-nnx dj-scrimínatíon techníque, as proposed

in Rosenbrock [100], howeverrrÀTas not the subject of this study.

The inplement.ation of the novel concept of inverse boundary conditíons

still requires the resolution of the courplicated problem of recover-

ing bistatíc aurplítude and phase ínformation for the measured scatt,ered

transverse field quanÈíËies to an accuracy required here. But taking

ínto consíderation the rapid progress on how Fourier-optical, holo-

graphic and ínterferometric techníques are entering the field of

measuremenË data recording, storage and retrieval, the answer to this

vexed question does not seem to be far-fetched.

The pracËical significance of the resulËs present,ed ín this work. would

be greaËly íncreased if Ëhe ideas of trIeston and Boerner and those ideas.
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.suggested in this work, could be comhined with those of Jull [59,60]

who had success operating on daËa obtaíned from actual measurement, on

aeríals t141.

rn order to approach the problem of recovering the phasè, one of the

useful approaches v¡ould be to exploit the ideas of Refs . lL2rg7,g3,

128]. rn [128,93], Adriaan l^lalther proves that phase reconstruction

is possíble and is unique íf the aperture of the lens is finíte. rn

[12r13], Bates shows that the unavoidable incompleteness and ímperfec-

tions of a practical hologram do noË prevent. an approximate reconstruc-

Ëion of the unknol4ln source, although errors are inevitably introduced.

Examples of source reconsËructíon are given in the companion paper I13].

The extension of the proposed methods of profile inversion to the case

of moving objects ís t.o be carried out. An immediate effecË of allow-

íng the body to have an arbitrary linear moËíon is that TM or TE wave

normally incident in the 0 coordinate frame, in which Ëhe source and

the observer are st.ationary, results ín a super-position of TM and TE

r¡laves obliquely incídent in the 0r coordinaËe frame in which the bodv

ís staËionary [53,98].

To conclude, extensive research is still needed in the field of inverse

scattering if the target idenËifícation of the general configurations

with arbitrary surface impedance is to become a reality. By intro-

duclng the concept of inverse boundary conditions for Ëhe profile
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characterisËics inversion of conducting shapes, a neT/,r. dirnension has

been added to the solution of this intrícate prohlem. rt is, there-

fore, hoped that the modesË contribution made by the present work v¡il1

open up nel¡¡ avenues which will help in the eventual solution of this

vexed problem.
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appen&tæ A.I

SCALAR AND VECTOR PRODI]CT OPERATIONS ONTO THE FOUR COMPLEMENTARY

FORMULATIONS OF THE LEONTOVICH CONDITION

The relationships resulting from scalar and vector product operations

of' (2.3.1) to (2.3.4) onto one another are presented in detail ín thís

appendix. For convenience of representation, the total magnetic field

ilr ís normalized with respect to the total elecËric field E = E, by

the free-space intrinsíc impedance Z so thaX H = Z0-0
(2.3.1) to (2.3.4) assume rhe foltowing forms [136, 23]:

- lrr :t[E _

fII : tE x

III = Ix

f! = f[:k

Scalar Products

I'IorII.II

I

nfi. (sxn) = (â.8) 2 _ 
G.. n)

= (â.E)2

= ¡¡2 ¡â.tt¡ 2

- n2(â.H)2

- n2 (g'n¡

H- ancl equaËions

(41.1)

(A1.2)

(Ar.3)

(â.n¡61 -nâxHÌ=O

ñ - rtg - (â . H)âlÌ = 0

t{lEo -(ô . E*)âl - n*â x H*} = 0

:{g* * â - n*[H,r - (â . n*¡â]] = O

= (E.E) - n2(H.H)

I*.I* or II*.II*

cf. = (Ej .Eik) -

n*â. (E)kxgrÉ) = (â.e*¡ z

= Câ.¿*)t - r¡n'(â.9,¡)t

= ¡:t2(â.H,t¡2 - nx, @n.goi G1.4)
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or

c:l = (E*.Er{) + n*2 (H)k.H*) = t (â.n't¡t + not (â.H't¡rl - znoâ. (e*xn*.¡2-

f r II and I*.II*

(âxs). (âxs*) + nn*(â*l).(âan*) + n*â. (Exg*) + nâ. g.o4) = 0 (A1.6)

^, = (g.n,t¡ + nn'k(g.gol = [(â.8) (â.gn) + nn*(â.H) (â.n*¡1

- â.{n(Etkxfl) + ¡*(E¡H*)

â " A=ñ . {¡(E*xH) -¡:r(ExH*)i = 0 (41.7)

(âxs) ' (âx!.*¡ - nn* (ñxH) ' (âxit't¡ = I (41. B)

or

a = (U.U*¡ - nn*(tt.ti*¡ ='.(â.E) (â.8i,) - n¡r.(â.H) (â.tl*¡
I --

I.II* or I¡k.II

(nxr*¡.â * ¡¡:t(nxH't¡.ñ + n(ñxti).(âxn't¡ - ¡:t(âxliic). (âxe) = O (41.9)

b = [¡(E*.H) - n*(8.rl'k) ] = [n(â.¡x) (â.H) - n*(â.E) (â.n*¡ 
12-

- â't(ggo) * nn*(!xtt*)i

â.8 = â.{(gxE*) - nn*(riïEo)} = 0

n(ôxH). (âxr't¡ * ¡*(ñxH*c). (âxÊ) = 0

b. = rtg*.H) + n,t(E.iI,k) = n(â.8*) (â.H) + r¡*(â.E) (â.H*)

(A1. 10)

(A1.11)
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Vector Products

IxI*orIIxII*

â.{{u*uo¡ * nn*(uxn*)} = {n*(âxs).(âxn*.¡ - n(ñxg,t¡.(ñïg)} (er.rz)

¡ (âxn*). (ñïg) = -âo (sxE*) - -nn*â. (ggo) (A1.13)

¡x (âxs) . (â4ri*) = â. (sxg*) = nn*â. (nxu*) (A1.14)

{¡*(âxE).(âïII*) - t(âxa:t¡.(ñxH)} = 2ã. (sxs*) = 2nrt*(HxH:t).â (A1.15)

IxII*andI*xII

ff{(âxs). (âxE't) + nn*(âxH). (ñïg*)} + n(ñxE*) x (ôxH) + ¡rr(ExH*)

+n*t(sxIi*)xâlxâ=0 (41.16)

ff{(âxs)'(â{g*) * ¡¡:t(â{g)'(âx4*¡} + ¡*(âxs) x (âxn;c) + n€*ïg)

(A1.17)+ntq"Ë)xâlxâ=0

¡(âxs*) x (âxn) - n*(âxE) x (âxH*c) = â.[n(s*xH) - ¡*c(ExH*)]â = O (41.13)

I*xII-Ixfltc

= [q*.â)g - (g.â¡g,t] + nn*[(H.â)H,t - €n.âlnl

= â x t(Exg*) - rn*(nxn*)l

[ (uxu't¡ - nn)r (rrï1*) ] = {n* [gx1ñxni,¡ ] - n tHx(E,rxô) ]

+ {(ñ.E:k)E x fi - ¡¡:t(ñ.Hr.)H x â}

(A1.20)

= â{ [ (Ex.H)¡+ n*(E.H*) ] - tn(ñ.E'r) (â.H) + ¡r.(â.E) (â.n't¡ 11

\ = 0 according to (41.11)
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{ [n iâ. no¡H - ¡ (ñ. n¡ s* 1

[¡(E*xH( - ¡xçnxn*)] x

ln*(â. E)H* - ¡:r(â.H't¡e1]

(A1.21)

Thís concludes the derivation of scalar and vector product operatíons

rvhich result into the following importanË idenËities according to

(41.17), (41.10), (41.18) and (41.19) ro (41.21)

n

+

Ã-

â.A = â. t(ExE*) - nn*(g{qo)l = 0

â.8 = â. [n(n*ïg) - ¡:t(ExHx)] = 0

(!€o) - rìn*(ëïgn). = lnQoïtt) - n,t(gïgo) ] x â = B

(AL.22)

(A1.23)

x â (A1.24)

î x A (41.2s)

lie in the

(AL.26)

and

B=l(g*xil) -¡:t(ExH*)

ThusAandërepresent

local tangent plane of the

= ñ x [(exp,b - nn*(Hïg*)] =

two orthogonal vectors which

scatterer so that

A'B=0

and íts cross product D = A x B ís purely real vect.or directed along

Ëhe outhrard normal â of the scatËerer.

FurËher derails of derivation are presented ín trnleston and Boerner t136]

and ín Boerner and Ahluwalia t23l to which the reader is referred.
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cOEFFrcrENTS 0F EQUATTON (3.4.14)

The coefficients of the characteristic equation

ertan+{,r + ertan3ü + ertan2{.r * eutan{ *.u = 0

can be calculatedras ís shown ín Boerner and Ahlur¿alía [23] as

", = 4 (9. a) Q..g) (9. ¿)

+ 2 g. b) (g.g) (l.g)

= BG.d) q.g) (3...)

+2(z.b) g.g) (!. ")
- 2(a. a) (b. d) (b. ó)

e

- (c'e) Q.'a) q'3) - q'Ð e'g) (g'¿)

(A2.1)

+ 4 (3. d) g.g) Q.:) + 4 (!. d) (9.3) þ. ")
+ 2 (a.b) (b. d) (a. c) -2 (b.b) (a. d) (a. c)

e 8(=. al (j.:) (b. c) +

+ 4(c. c) (9.3) q.3)

+ 2(s.b) (g.j) (g.j)

+ 2 g.b) Q..) (". ")

= 4(c.c) (a.d) (b.c)

+ z(z.b) g.g) (!.9) +

- 2(a. a) (b'd) (b. c)

8(b. d) (d. c) (a. c)

- (=.. 
") 

(!. ¿) Q..g)

(a. a) (b. c) (b. c) -

(A2.2)

+ 4g.d) (!:") (C.:)

- (9'!) g'g) (c" s)

(b.b) (a.c) (a.c)

- (a. a) (b. c) (b. c) - (b"b) (a. c) (a. c)

(A2.3)

a G. .) (!. q) (.. ") + B (d. c) (¡.S) (=.S)

2(2'b) (9'g) þ'.) - 2(b'b) (g'¿) þ'")
(A2.4)

+

(A2. s)
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where

ia = -j(E x ë*), b = -j(g x H*), c =+[(E* x H) + (U x n*¡1

and

d = *[s x H*) -çq.* x H)]

all being vector quantities.
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append.¿æ A.3

COEFFICIENTS OF ADDITION THEORE}.{S

The possibility of obËaining the em fields in the vicinity of the

three-dirnensional scatterer accurately and optimally depends upon

effícient computation of the translation coefficients A*t and Bmo
UV UV

of (5.4.5a) and (5.4.5b). Equations (5.4.5a) and (5.4.5b) invotve

coefficients a(mrn,U,vrp) defined by the linearized expansion

pT(x)pf (x) _T_L
p

a(m,n,p,v,p)pÏu (*)

where p extends from ltt-ul to In+vl wirh inreger sreps of

coefficients a(m,n,Urvrp) in turn are defined by I38 ]

a(m,n,p,v,p) = (-l)t+u(2p+t) ¡ !n+nì l9+u4!p;m;uì l1'/'' (n-m) ! (v-U) ! (p+nrl-p) !r

(A3.1)

2. The

:)(; 'u:,)

li. i^ j" \where I I 2 3 I isthe\m m -m-m I! 2 1 2'
differenL representations for

ís Ëhe most convenient for the

p\- 
I = (-l¡n-v-nru

-m-u /

(;
V

0

(" v

\rn u

(43.2)

trüigner 3-j symbol[40,101].Out of many

3-j symbols, Van der l^Iaerden's definitÍon[40]

present discussion and is given as

I C-r)ktr. ! (n*v-p-k) ! (n-rn-k) !

k
(v+p+t¡ ! (p-v*mfk) ! (p-n-U-k) ! l-'

(43. 3)
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.Because of the multitude of factorials appearing in above definition
of 3-j syrnbols, calcularíon of (5.4.5a) and (5.4.5b) usíng (A3.3) is
highly inefficient. The following three-term recursion form.ula re-

duces the cornputation time considerably

a(mrnru,vrp)op * a(m,nrprvrp-2)on. 2* ^(mrn,urv,p-4)on_4 = o (A3.4)

r¿here

o. = - (2p-5) (p+m^-1) (n+r.r'ip+l) (-n+r¡lp) [ (p-v-3)u-m(r¡r1) ]P3

{ [ (p+rs ) (n+v-p+l) (n-wp) (p (p+v)+m(v+r¡ ¡ 1 ¡

[ (2p+1) (v-u+r) ( (m-u)p (p-t)-ur- (n-v) (n+url) ) J ]
3

oú- . = (2p-1) (2p-5) (v+U+l) t (rn-U) (p-t) (p-2)-m (n-v+l) (n+r¡r2) lP-z \-- r' \r -' \r -' 
3

-(zp-I) (p-m^-2) (n+v-p+4) (n-r¡+p-3) [p(p+v)+m(urr¡ 1
J

{ j (p+mr-2) (n+v-p+3) (n-ut-p-2) (p (p+v-2)+rn(v+l) ) I /

[ (2p-3) (v-u+l) (rn-u) (B-2) (p-3)-*s (n-v) (n+v+l) ) ] ]

- (2p-5) (p+mr-1) (n+r.r"rp+l) (-n+v+p) ¡ 1p-v-3)U-rn(v+1) l

{ [ (p-m_-1) (-n+uf.p-l) (n+v+p) (u (p-v-l)-m(ur1) ) ] /
3

t (2p-3) (v-u+l) ( (m-u)p (p-l)-r, (n-v) (n+v+l) ) I Ì

o- ,. = -(zp-L) (p-rn -2) (n+v-p+4) (n-v+p-3) tU (p+v)+m(v+1) lP-4 3

{ Kp-rr-3) (-n+v+p-3) (n+v+p-2) (u (p-v-3)-m(v+t) ) I /

t Qp-7) (v-u+l) ( (m-p ) (p-2) (p- 3)-*, (n-v ) (n-ru+l) ) I Ì
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In using (43.4) backward-recursion is used with starting values given

bv [ 30].

a(m,n,p,v,n*v) = JZ":-l)-!.! 1.lv-!)-L!- (ntv:ms-) !

(2n+2v-1)!! (n-n)t(v-u)!

ano

a(mrnri.t¡vrn*v-2) =
(2n+2v-3)

(2n-1) (2v-1) (n*v-m, ) (n+v-rnr-t)

{ (n+v-l ) lnv*mp ( 2n+2v-1 ) ] -m. I vm ( 2v-1 ) +np ( 2n-1) ]] a (m, n, v, p, n*v)

(A3. s)

For the special case of translation along the axis, the coefficients
.mn . -mn
\; and B; attain the símple form

{i = (-t)*jv-' 7ffi+it I jpt,,(n+l)+v(v+1)-p(p+1) l

a(mrnr-Drvr r)rOt (kd)

sm = (-r)*jv-t ãffi, I :pcz:o,r.d)a(ur,n,-n,v,nlzjt)Cr.al (A3.7)

where r = I for'exterior expansion and r = 3 for interior expansion.

The recursion form.ula for ccmputing a(mrnr-mrVrp)tas given in Bruning

and Lo [ 31 ], is

op-3"p-4- (an-2+an 
-r-4^' ) "n-r*otp = 0 (43. B)

rnrhere

(A3. 6 )

an = a(mrnr-mrVrp)

op = .(p)c(-p) (A3. e)
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and

c(p) = ¡f" (n+v+p+l) (n-v+p)

The two starting values are

(A3. 10)

2 = (2n-l)!!(2v-1)!! (n+v)! t^?1.r\on.|.v - (2n+2v-1) !! (n-m) l(v+m)T Lrrr'r-r''

2n*2u-1an+v-2 = ffi [vn-m2 (2n+2v-1) ]"r,*u (43.12)

Many other relevant recursion formulae are given ín. the Appendices

of [ :8,30 ].
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appendi.æ Ã,4

SI]MMARY OF CABAYAN, MURPHY AND PAVLASEK'S ANALYSIS [33]

exp tjn(0-0) l

Application of the Helmholtz theorem [57 ] to a source-free region

ouËside the ninínum circle c (Fig. 4.3) of radius r" 2 results in the

following integral equation for the far-fíeld pattern functíon g(O)

l2I1 
^e(ö) = tcr, J- rto) 

^å 
do (44.1)

o 
o' 

o\a

where f(0) represents the field on Èhe circle C and G is the

Greenrs function of the fÍrst kind that vanishes on C and is given

byt l

1 - (,1 r.lc(0,0) = È I H'r' (kr,) [rr,(kr)*crrHt,' (kr)]expIjn(O-01] (A4.2)
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The normal derivatíve ðG/â(kr) at r = r" isr
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Substítutíng (44.4) into (44.1)- we obtain
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the far field pattern
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functíon becomes

Due to measurement and numerical quadrature errotrs involved in the

reconsËruction, an upper bound is infllcted on the number of coeffi-

cients Ëo be used in the series expansions of (44.6). To sirnplify

the analysis, Cabayan et al.introduce operator notation to relate

the fíelds s and f via the operator T

c(O) = [ urre*p(-jnç)
n

s=Tfo

where the operator T is defined by (44.5).

The eígen-values of thís problem

from the eigen-value equation

T?iTó = À ó

(A4.6)

(A4.7)

can be determined directlv for Tt(T

The nunerical form of (Ã4.7) is writËen as

Ax=y*e

where A, x and y are the discrete forms of T, f and g / respectively,

and e is the tota.l equivalent error vector.

(A4. e)
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.Substitution of T f rorn (44.5), results ínto
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tr{ith the trial-eigen-functions gíven by 0r, = "*p1-5ne), 
(^4.10) yields

the follor¿ing expressíon for the eigen-values Àr,
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