A VHSIC
HARDWARE DESCRIPTION LANGUAGE COMPILER
FOR LOGIC CELL ARRAYS

by

Bing Liu

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements of the degree of
Master of Science

in Electrical and Computer Engineering

Winnipeg, Manitoba, Canada

© Bing Liu, January 1990

Bibliothéque nationaie
du Canada

National Library
of Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada~de reproduire, préter,
distribuer ou vendre des copies de sa thése

-de quelque maniére et sous quelque forme

que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

I1SBN ©0-315-71751-3

Canada

A VHSIC HARDWARE DESCRIPTION LANGUAGE COMPILER

FOR LOGIC CELL ARRAYS

BY

BING LIU

A thesis submitted to the Faculty of Graduate Studies of

the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1990

Permission has been granted to the LIBRARY OF THE UNIVER-
SiTY OF MANITOBA 1o lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies oi the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's written permission.

ABSTRACT

This thesis presents a development of a VHSIC Hardware Description Language
(VHDL) compiler for Logic Cell Arrays (LCAs). First, the concept of electronic circuit
engineering and the electronic circuit development cycle using computer aided engineering
(CAE) tools are reviewed; and the motivation of this research work is provided. Then,
the architecture, design methodology and the significance of LCA are described. Thirdly,
the VHDL is briefly reviewed and a VHDL architectural description subset for LCA is
defined as the input of the compiler; the Xilinx Netlist Format (XNF) is chosen as the
target of the compiler. Finally, the development, testing and verification of the VHDL
compiler for LCA is described. Two of the examples implemented from the VHDL

descriptions are presented to demonstrate the compiler.

_ii-

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Dr. Witold Kinsner, my advisor, and
Dr. Robert D. McLeod for their excellent guidance, endurable motivation and consistent

support throughout the course of this research.

My thanks go to Dr. William L. Kocay for his comments and suggestions on my
thesis. I am also grateful to Mr. J. Dickson, who helped me to simulate one of the

examples, and all the other fellow students for their help.

I would also like to thank my wife who helped me a great deal during my writing of

this thesis, my parents, and family for their encouragement.

The financial support of this research work provided by the National Science and
Engineering Research Council (NSERC) of Canada through Dr. Kinsner's grant and
Dr. McLeod's grant, Canadian Microelectronics Corporation, and the University of
Manitoba is gratefully acknowledged. The LCA Xilinx Netlist Format Specification and

the LCA External Netlist Tool Kit provided by Xilinx Inc. is also acknowledged.

TABLE OF CONTENTS

Page

ABSTRACT eveereeseesmmarinanmemismmssmnsssieesieaiinnsais st s st i
ACKNOWLEDGEMENT ccococerrerorsiiiuiimanrciniiannnenerseess i
TABLE OF CONTENTS «rcoeerrererrnmtinsuiiniaiinertarianiianasss v
LIST OF FIGURES - cvetremmmmaritiiiiian s een s vi
LIST OF TABLES «ccvvreeietiiommemerereriniinniene e viil
LIST OF ABBREVIATIONS «reroeccercntniiiannroneniinannianentenenrrneas ix
CHAPTER 1: INTRODUCTION «ccccerrerrareninecnrimriaennnraanearene 1
1.1. Electronic Circuit Engineering ... 3
1.1.1. Electronic Circuit DeSign «ececeeresesraressrmraenrreennnnnronaenrerenrsssee 3
1.1.2. Prograrnn]ablc Loglc DEVICES +eerrrrrererarnmnsesietsnsmiitsinimiueaneeees 7
1.1.3. Prototyping .. 8
1.2, MOUVALION «rerererersesrarramantastoitiiaiiiuinuiasseiessutittiannareessarrsonnioreses 9
1.3. Thesis Objectives .. 10
1.4, ThesiS SIIUCLUTE ++vveeveesrnsnneneersrosenmiaiiuasantastonasenauarsontssinrnseses 11
CHAPTER 2: XILINX LOGIC CELL ARRAYS ooooemessesnniseiens 12
2.1. Architecture of Xilinx LOglC Cell AITays «vsrereeseernmmrerrersrisenrennnneees 13
2.1.1. Conﬁgurable nglc BIOCKS r-vverreeersresennensasnesiisisinuantionuarercnees 18
2.1.2. Input/{)utput BIOCKS covvrveeersrerssnsrsnsannassonuiiuoiiaiensiinnsiessnne 18
2.1.3. Programmablc INEICONNECHONS ++veerrerrrsarersresorsennaassisanrosarssns 18
2.2, XilinX LCA DEvVICES +evcrveererreresrseruirianmimntiuustinnmarunesinersisssssns 19
23. LCA Design Methodo]ogy ... 21
2.3.1. Design FENMTIES +ovveevvrerooersnnsesnnesnuamsantiensaianeionsanesnuasnsnerantees 22
2.3.2. Design Implcmentation .. 24
2.3.5. Design VerifICation ««-eerrerersrrerenrmrenratsuonesnmiaeneeneierennntanenrenee 25
2.4, SUMUIATY «evveserenrerorsssrnnsssnsmatuauestinminiinatnnratesssnessomrensrisnnssssss 26
CHAPTER 3: THE VHSIC HARDWARE DESCRIPTION LANGUAGE 27
3.1. Features Of VHDL «:erorerseereesnirntitinmaiaiansmiinersnerarinsrsanninerinis 28
3.1.1. Design Entjty ... 29

-1V -

3.1.2. Interface Descripﬁon ...
3.1.3. Body Description ..

3.1.3.1L
3.1.3.2.
3.1.3.3.

Architectural Descnpuon ...
Dataflow Descripﬁon ...
Behavioural Dcsmpnon ..

3.14. TprS ..
3.1.5. Slgnals ...
3.1.6. Packages ...
3.2, Suppoﬂed VHDL Subset +reeveoreercaness DR LRI LR LR L L ELEA AR
32.1. Inputhutput Pin Descripﬁon ...
3.2.2. Predefined Types FOr LA «eevesvrrenstannernsannenetenniruaiinaeseienenees

3.3. Summary

CHAPTER 4: A VHDL COMPILER FOR LCA DESIGN -:ccoeeveeveeeen
4.1. Lexical Analysis ...
4.1.1. LEX — A Lexical Analyzer GENETALOT +rorerrrrereemrensrstsessrnaesaraene

4.2. Parsing

4.2.1. YACC — Yet Another Compiler Compiler «:ecoocrrersraerormereremiererens
4.3, Stack Maching «ceereseererrereenmnieisuiianiiatontnronssrsnratenransatetssarses
4.3.1. Stack Machine INSITUCHONS ««revrerererrresarensmroriurairimnrarananntee
4.3.2. Internal VHDL Representation (TVHDL) cevevererreemssseranmmnnnneneecn.
4.4. Xilinx Netlist Format Generation «++eeesrreeerssramemeraresturiaitnatnree
4.4.1. Internal Xilinx Netlist Format (IXNF) and WriteNet «-ecxcoerereerereaeees

4.5 Flattening

CHAPTER §

: IMPLEMENTATION, TESTING AND VERIFICATION

5.1. Test 1: 16-bit Liner Feedback Shift Register «ececrcrerrerearerrermerenreremmee
5.2, Test2: 4-bit ALU «errererreraraesntarsnrnineesroriiiianraerenuesestenrnrsests

CHAPTER 6

: CONCLUSIONS AND RECOMMENDATIONS -:-:ocee

REFERENCES «-crceeeeeetureemaammmmetetnammiisiamiisisssieniiiassass oo

APPENDIX A: EXAMPLES AND SIMULATION RESULTS .cocooeeee

APPENDIX B: VHDL USER'S GUIDE «-reeeersereerecsmuninenmnninceennee:

APPENDIX C: KEYWORD LIST -:eeerereeesresrunnersessinunmnanasniinn

APPENDIX D: GRAMMAR OF SUPPORTED VHDL SUBSET .-+«

APPENDIX E: STANDARD XNF LIBRARIES LIST :coooveeeeeeeerereeees

APPENDIX F: PROGRAM LIST :--eevveeersrrnnererornssssnninnnnninnnenesnnes

29
30
30
31
32
34
35
36
37
37
38
38

40
44
45
47
47
49
50
53
54
54
54

56
57
61
67
70
74

97

LIST OF FIGURES

Figure Page
1.1. Electronic Circuit deSign PrOCESS «+++rsrsresssssssssssrerstrrsteimuiens 4
1.2. Electronic circuit development cycle using CAE tools «-eoerererenranieeeeneee. 6
2.1. The architecture of Logic Cell AITays «+eereessserrrnssmsarriameeriiniii. 14
2.2. Configurable Logic Block (CLB): 3000 Series «:corerrercnrrerrmeermreneeeen 15
2.3. Configurable Input/Output Block (IOB): 3000 Series -«----oeorreerareieacen 16
2.4. Programmable Interconnections: 3000 Serigs «-c-ceorrerverereiirieen . 17
2.5. LCA dESIZN PIOCESS «v+rerersesessesorsiiimmunmniitrrertenitnesiaiesis 23
3.1. Interface description of a full adder «+-r+eeeseseresreerermnmneniniiaaa, 30
3.2. Body descriptions of design entity «++-sseeerreeesmmiieeminine 30
3.3. Architectural body description of a full adder «-«+-c-errrineneriiiriein 31
3.4. Dataflow body descriptions of a full adder erceoerarerrirsreiirieninnneee 32
3.5. Behavioural body description of a AND gate with interface description «+--- 33
3.6. VHDL type ClassifICAtiON tree sevserrrresrsrstriiinattiuiiiaiinran it iiiintiiiiens 34
3.7, TypPe AECIATAON «+eveesernrreeserunresrintrnesiiitt ittt 35
3.8. Signal deClaration ««++e-eseeeeessurssariinsinitt 36
3,9, Package deClaration ««e-eosereeserrrseronnttien 36
3.10. Interface description of a full adder with pin association «e«ersseeereeeeeesees 38
4.1 The position of the VHDL compiler in the LCA design process «:+«-«-e-- 41
4.2 The structure of the VHDL compiler for LCA design «reeeverererererenieaeeee 43
4.3 The lexical analyzer of the VHDL COMPIlEr «+++sssesesssessssesesssssesninnnnns 45
4.4 The parser of the VHDL COMPIlEr +++++serererrereesessommnmmmnniisssnnninene: 48
4.5 The stack machine of the VHDL COMPAIEr «+++eerererererarsenemmmininiiiien, 51
4.6 Internal VHDL IePresentation «-+seessssssssesrreccterneiinmmmmiiniiiiiass 53
4,7 Xilinx Netlist Format generation .. 56

5.1
5.2

53
5.4

5.5
5.6

The schematic Of the 16-bit LESR +«-+teervrrsanmnrmrinnsetmiimis
The graphic output of the simulation the 16-bit LFSR ‘
implemented from the SCEMALC «««+vereresrssmrssrerssssnis s
The layout of the 16-bit LESR implemented from the VHDL description -
The graphic output of the simulation of 16-bit LFSR

implemented from the VHDL desCripion «+essseseseesssssinssssssesensecse
The schematic of the 4-bit ALU «++«rrreererrnsserrammmmi,

The graphic output of the simulation of the 4-bit ALU

implemented from the SCREMALC +-crerrrrrrrrrrrreerisrisiisiiiiaiiiniiuneteeis
The layout of the 4-bit ALU implemented from the VHDL description -«
The graphic output of the simulation of 4-bit ALU

implgmented from the YHDL descrip HLOM vrerrrrsrsrescrssrasnnsasisssinnaanns

-Vii -

58

59
60

61
63

64
65

66

LIST OF TABLES

Table Page
2.1 Xilinx Logic Cell Array device table «+«+ereeesrsmmsenssmrsnninnmssees 21
4.1 Stack machine inSHUCHON table +rr+rerrrerereesraaeen: 52
5.1 The Operation of the 4-bit ALU ««sesessmsssesmrsmmmssassnsnssnsssis s 62

- viii -

ASIC
CAD
CAE
CAT
CAV
CLB
DRC
IC
10B
IVHDL
IXNF
HDL
LCA
LFSR
PAL
PCB
PLD
SMB
VHSIC
YHDL
VLSI
XNF

LIST OF ABBREVIATIONS

Application Specific Integrated Circuit.
Computer Aided Design

Computer Aided Engineering
Computer Aided Testing

Computer Aided Verification
Configurable Logic Block.

Design Rule Checker

Integrated Circuit

Input/Output Block

Internal VHDL representation
Internal Xilinx Netlist Format
Hardware Description Language
Logic Cell™ Array

Linear Feedback Shift Register.
Programmable Array Logic

Printed Circuit Board
Programmable Logic Device
Surface Mount Board

Very High Speed Integrated Circuit
VHSIC Hardware Description Language
Very Large Scale Integration
Xilinx Netlist Format

CHAPTER 1

INTRODUCTION

The design of electronic systems always involves the design of electronic circuits,
often in the form of either integrated circuits (ICs) using very large scale integration (VLSI)
or very high speed ICs (VHSIC), or printed circuit boards (PCBs). The design process of
electronic circuits can be considered as a transformation of a behavioural description of the
circuit concepts into a physical description of the circuits suitable for implementation. A
behavioural description is the highest level of abstraction, providing only the functional
characteristics of circuits with no specified way of implementing them. For example, the
behavioural description of a subtraction unit simply states that the output be the difference
of the two inputs. For complex circuits, the transformation is achieved by a hierarchical
decomposition from behavioural description to architectural description, then to physical

description.

The architectural description is closer to the final implementation because it provides
the necessary building blocks and the connections among the blocks with or without the
information of how to implement the circuit. The architectural description defines the
architecture of the circuit and its organization if the implementation information is
contained. An architecture may be implemented in different approaches. For example, the

architecture of the processor SPARC has two organizations implémcntcd by two companies

-1-

respectively [RISC89]. The architectural description of a subtraction unit would show the
negation modules, the summation modules, the carry lines, and the connections among
them. The architectural description may have many different levels. The lower the level,
the more the detailed building blocks and their connections become. The architectural
description at the lowest level is used for placement and routing to generate physical

descriptions.

The physical descriptions are the lowest level of circuit description, in which the
geometrical representation of the circuits is provided. The physical description is also
called circuit layout. At this stage, the circuits are ready to be implemented. Depending on
the target technologies of circuit implementation, many different forms of physical
description are possible. Common technologies include the use of standard components
mounted on PCBs, or surface mount boards (SMBs), and semi-custom or full-custom

integrated circuit (IC) fabricated on silicon dies, and programmable logic devices (PLDs).

While the behavioural description is textual, architectural and physical descriptions
may be textual or graphical. Textual descriptions specify circuits in the forms of hardware
description languages (HDLs) that are formalized modular languages. The graphic
description is called schematic, which requires sketching programs that allow the user to

physically place circuitry on a display screen.

As the circuit technology develops, the complexity of a circuit increases
exponentially. This ever increasing circuit complexity has rendered manual intervention
tedious, error-prone and time consuming. On the other hand, the demand for application

specific IC (ASIC) is also increasing. As a result, computer-aided tools have been

-2-

developed to help implement and verify circuit designs. Electronic circuit engineering now
utilizes computer-aided engineering (CAE) tools, including computer-aided design (CAD)
tools, computer-aided verification (CAV) tools, and computer-aided test (CAT) tools, to
reduce the design effort, turnaround time and design error, and at the same time to

improve the design quality.
1.1. Electronic Circuit Engineering

The design process of electronic circuit is shown in Fig. 1.1. The concept of a
circuit is first studied to establish the behaviour of the circuit. The behaviour is specifiedin
behavioural description, which is used for modeling and prototyping to verify the

specification, and for decomposition into architectural description [Kins86].

The architectural description is used for functional simulation to verify the circuit
design at early stage. The building blocks are placed and the connections among the blocks
are routed towards the target technology of implementing the circuits. Placement and

routing generates the physical description of the circuit, i.e. the circuit layout.

The physical description is also used for simulation to verify the function and
timing delay of the circuit. The circuit is manufactured using the circuit layout if the

simulation is passed. The product must be tested before the acceptance.
1.1.1. Electronic Circuit Design

The CAE tools are used throughout the design process. The circuit design

development cycle using CAE tools includes three stages: design entry, design

-3-

CIRCUIT CONCEPT

v v

\
(SPECIFICATION

y

BEHAVIOURAL MODELING OR
DESCRIPTION PROTOTYPING
v ¥
DECOMPOSITION
. L —

ARCHITECTURAL

DESCRIPTION —’CS'MULA“ON J
‘ A

C PLACEMENT AND J
ROUTING

PHYSICAL
DESCRIPTION

(MANUFACTURING J

(PRODUCT TESTING J
AND ACCEPTANCE P
CIRCUIT CONCEPT

<>

D PROCESS
[_] DESCRIPTION
—— DATAFLOW

L

m

Fig. 1.1. Electronic circuit design process [after Kins86].

implementation and design verification. The CAE tools used at different stages are shown

in Fig. 1.2.

The CAD tools include three groups: (i) schematic capture; (i) HDL compilation;
and (iii) placemént and routing. Schematic capture tools are the sketching programs that
users can place the building blocks on a display screen and draw the connections among the
blocks. The schematics are converted to an architectural description. HDL compilation
tools accept textual circuit descriptions. At the highest level the compiler decomposes the
behavioural descriptions into architectural descriptions, and converts the architectural
descriptions to a level for placement and routing. Placement and routing tools accept the

architectural description at the lowest level , and generate the circuit layout.

The CAV tools include design rule checkers (DRCs) and simulators. Simulators

accept textual descriptions and simulate the functions and timing delay of the circuits.

The circuit descriptions have to be formed into machine understandable formats,
and entered into the computers in order to use CAE tools. This is the design entry stage.
The CAE tools may accept the descriptions at the behavioural, architectural, or physical

level in text using a text editor, or graphic using a schematic capture tool.

The CAE tools may perform decompositions, conversions, and placement and
routing at the design implementation stage. If the design entries are at the behavioural
level, HDL compilers decompose them into an architectural description. As design entries,
architectural descriptions may be in textual or graphical forms. If graphical descriptions are
entered into the computers, the schematic capture tools extract the circuit descriptions into a
textual format. The architectural descriptions at high level must be converted into a lower

-5-

level suitable for placement and routing. The circuit designs can be implemented after the

physical descriptions are generated by placement and routing.

DESIGN ENTRY
« TEXT EDITOR ——

+ SCHEMATIC CAPTURE TOOL

l

DESIGN IMPLEMENTATION
« HDL COMPILATION TOOL
» PLACEMENT AND ROUTING TOOL

l

DESIGN VERIFICATION

« DRC
« SIMULATOR
« CAT TOOL

Fig 1.2. Electronic circuit development cycle using CAE tools.

While behavioural descriptions provide a great promise for the future, the
decomposition from a behavioural description to an architecture that matches the function
specification still remains difficult [Sang86]. More research is needed in this area. In
general, it is also very difficult to obtain optimized layouts from automatic placement and
routing due to the complexity of this problem. However, acceptable layouts may be

obtained for the Programmable Logic Device (PLD) target technology because its regular

-6-

architecture provides constraints, thereby reducing complexity of the problem.

At the design verification stage, the DRC checks the design according to the design
rules and reports design rule violations. Simulations must then be carried out at different
levels to verify the functions of the designs. Design verification helps the designers té find
out design faults at early design stages. Simulations provide design modelling at the

behavioural description level, and worst-case analysis at the physical description level.
1.1.2. Programmable Logic Devices [Kins89]

The first PLD device, the Field-Programmable Logic Array (FPLA), was
introduced by Signetics in the early 1970s. In 1975, Monolithic Memories followed with
their Programmable Array Logic (PAL) devices [BiCo81, MoMe81]. Both PLDs were
based on fusible-link technology. In the early 80s, the devices were used extensively in
different practical industrial and experimental applications, requiring moderate random
logic and small sequencers with high reliability. Later, implementation of more complex
circuits demanded more complex PLDs, a number of which were introduced by Advanced
Micro Devices, Fairchild Semiconductor, GE/Intersil, Harris Semiconductor, Intel,
National Semiconductor, Texas Instruments, and newer companies such as Actel, Altera,
Cypress Semiconductor, Exel Microelectronics, Lattice Semiconductor, and VLSI
Technology [Marr86, Coll86a, Coll86b, Coll87, Meye87, Smit88, Free83, Actel88].
Many of those devices have advanced from the old fusible-link technology to floating-gate-
based ultraviolet-erasable PLDs (UVEPLDs or simply EPLDs) and electrically erasable
PLDs (EEPLDs) [Goet86], as well as from the old bipolar to CMOS technologies. A

recent example of such devices is the CMOS electrically-configurable gate arrays -

-7-

[AGGC88] which combine the flexibility of mask-programmable gate arrays and
convenience of user-programmable PLDs. Notice that while the EPLDs cannot be
reprogrammed in situ, the EEPLDs can be reprogrammed in place at the expense of slow

programming times and high programming voltages.

The Logic Cell Array (LCA), introduced by Xilinx in 1985 [Land85b, CDFHS6,
Wynn86, Coll86a, Land87, Xili86a to Xili88] is a CMOS static-memory-based user
programmable gate arrays. The LCA devices combine the flexibility of gate arrays with the
instant (literally) availability of PLDs. The connections of the gate arrays are controlled by
the memory cells so that LCAs are reprogrammable. Its density is between 1200 and 9000

gates with a 20,000 gate part announced for 1990.

1.1.3. Prototyping

Simulation verifies that the functions of the circuit according to the circuit
definition. It also provides the worst-case analysis and verification of the critical timing
path. However, simulation is limited to subsystem level [Shae87]. Prototyping can

enhance simulation as the essential part of the circuit design process.

On the other hand, prototyping allows the circuit to be tested in the target system
that it is intended for, and facilitates debugging of the circuit in real time, including the
unpredictable timing of asynchronous events. Nevertheless, prototype implementations of
complex electronic circuits are difficult. The task of building such prototypes can be

simplified significantly by the use of electronic breadboarding.

An alternative implementation methodology has been provided by the Logic Cell

-8-

Array (LCA) technology, in which the wiring is done electrically rather than mechanically.
Furthermore, once the system has been developed by using computer-aided tools, it can
then be verified and modified easily, thus permitting the desired concept of analysis-by-

implementation to be a realistic goal.
1.2. Motivation

PLDs have been used extensively to reduce the design complexity and turn around
time. However, the flexibility of PLDs is limited because of their AND-OR plane
architectures. Full-custom ICs can provide design flexibility, speed, reliability, small
size, and security of designs, but they are very costly and time consuming. Gate arrays
have higher flexibility and density than PLDs, and less design cost and turn around time
than full-custom ICs. However, the design cost and turn around time of gate arrays are

still much higher than those of PLDs.

LCAs have a great potential by combining the advantages of both PLDs and gate
arrays. The density of LCA is up to 9000 or higher equivalent gates. Xilinx provides a
development system supporting various schematic capture téols and logic synthesis tools
such as PALASM. Although it is useful, PALASM has its limitation in general circuit
design. At present, a general HDL is not available as a design entry option for LCA

design.

Schematic capture tools have the direct visual representation. However, as the size
of the design increases, graphical specifications become more difficult to create and

modify. Hardware description languages are becoming increasingly popular as more

-9-

programmers become interested in hardware design and more designers become interested
in software design. Textual descriptions can be created using a standard text editor, are

easy to store and modify, and also serve as written documentation.

The VHSIC Hardware Description Language (VHDL) is an emerging standard for
hardware description languages [Arms89]. The VHDL has the ability to describe circuits
from as simple as a gate to as complex as a miCrOProcessor. The VHDL is aiso able to
describe the circuits in both behavioural and architectural description. The aim of this
thesis is to develop a VHDL compiler integrated with the front end of the Xilinx
development system in order to (i) facilitate the LCA design, and (ii) model an electronic
circuit design using VHDL and prototype it using LCA instantaneously. This approach

merges the advantages of both VHDL and LCA technologies.
1.3. Thesis Objectives

The sbjccﬁves of this research work are:
1. To study Xilinx Logic Cell Arrays methodology, and its importance in the circuit
design process.
'2. To study hardware description languages (HDLs) and to select an HDL for LCA.
3. To design a VHDL compiler for LCA design.

4. To implement, test and verify the compiler.

Xilinx provides a circuit-layout tool. Its input language is described by the Xilinx
Netlist Format (XNF). The exact format of XNF is proprietary and cannot be described in

this thesis, but it is freely available from Xilinx to interested people.

-10-

The VHDL compiler developed in this thesis translates an architectural description
subset of VHDL into the Xilinx netlist format, which is used by Xilinx circuit-layout tool.
The design of the parser of the compiler is acconiplished by using parser generation tools in
Unix environment, which accept regular expressions of the grammar and produce the

parser.

This compiler enables the designer to use hardware description language as the
design entry option. Compared with the traditional graphical design entry approach,
hardware description languages are easy to create and modify, and serve as documentation
of the design. This compiler can also provide an interface with other VLSI design systems
so that the LCA can be used for prototyping of the VLSI design. In addition, we anticipate
that graphical design system will be unable handle the increasingly complexity of
sophisticated system design. For this reason, the VHDL tool developed here will directly
contribute to our efforts in promoting system level design space exploration in our

laboratory.
1.4, Thesis Structure

Chapter 2 reviews the architecture of Xilinx LCAs, and the methodology of circuit
design in LCAs. Chapter 3 gives an overview of VHDL. An architectural description
subset of VHDL is defined as the input of the compiler. The output of the VHDL compiler
is the Xilinx Netlist Format. Chapter 4 describes the design of the compiling algorithm.
Chapter 5 represents the implementation, testing and verification result with two examples.
Chapter 6 draws the conclusions of this research work and describes the possible further

development and recommendations.

-11-

CHAPTER 2

XILINX LOGIC CELL ARRAY

Programmable gate arrays (PGAs) have become increasingly prominent in the past
two years, and the signs are that this trend is set to continue [Micr89]. Programmable
logic technology has been dominated by devices based on the PLA architecture for the last
ten years. As IC technology has advanced, it has become possible to produce larger and
larger PLAs, However, the efficiency of PLA utilization decreases as PLA size increases,
and the fixed allocation of device pins to array and flip-flop outputs reduces the flexibility
of the PLDs. The architecture of gate arrays is being adopted to large programmable

devices to solve the problems.

Gate arrays are semi-custom devices based on any array of simple cells surrounded
by an interconnection network. In standard gate arrays technology, the interconnection
pattern is defined by metallization layers applied at the final stage of manufacture. PGAs
dispense with this final stage by possessing a fixed interconnection network which includes
programmable crosspoints or switches. The logic cell array (LCA) introduced by Xilinx in
1985 is one of the PGA families. This chapter provides a brief review of the architecture of
the LCA, the devices of LCA , the LCA design methodology and the LCA development

system.

-12-

2.1 Architecture of Xilinx Logic Cell Arrays

The logic cell array family is a group of high-density, high-performance, user-
programmable gate arrays [CDFH86, HDKN87, Micr89, Xili89]. The LCA architecture
is similar to that of other gate arrays, with an interior matrix of configurable logic blocks
(CLBs) and surrounding ring of I/O interface blocks (IOBs). Interconnect resources with
programmable routing sources occupy the channels between the rows and columns of logic
blocks, and between the logic blocks and the I/O blocks. The .architecture is shown in Fig.
2.1. Like a microprocessor, the LCA is a program-driven logic device. The functions of
the configurable logic blocks and 1/O blocks, and their interconnections, are controlled by
a configuration program stored in the on-chip static memory. The crosspoints of the

programmable routing sources are turned on or off by memory cells controlled switches.

There are three stages of utilizing an LCA device: i) configuration program
generation, ii) configuration, and iii) operation. First, a configuration program is
generated from the circuit design. Then, the configuration program is loaded either
automatically from an external memory on power-up, or by a microprocessor on command
as a part of system initialization. The methods of loading the configuration program are
determined by logic levels applied to configuration mode selection pins at the time of
configuration. The form of the data may be either serial or parallel, depending on the
configuration mode. The programming data are independent of configuration mode
selected. Finally, the configured LCA device functions just like an ASIC chip. The LCA
device can be reconfigured by loading a new configuration program, since the

configuration program is stored in an on-chip RAM like memory.

-13-

™

CONFIGURABLE
INPUT/OUTPUT BLOCKS

E 2l
-

OO&!DOD ejslalsiale)
FufululnfolaRuRu)
toooooo0e]l
100000 D03
oo oooo0d
oo oooo0d
oo oo ool
sdoojlocoooo]
st oAoo oo @l

oopPobHoco 00000

T
i
C e

INTERCONNECT

PROGRAMMABLE

CONFIGURABLE
LOGIC BLOCKS

- 14 -

2.1. The architecture of Logic Cell Arrays [from Xili89].

Fig.

‘(68X Wwox] $auss 000 H(FTD) ooig o180 A|qemsyuo) T°g

"81g

m_OA

]

9
0 NI
au E —
r{e) B
9]
NOLLONM
TVIHOLVNISINOD
4
Re)
30 (]
0
o) Nid
ad d

319vN3
X0010

SINIWITA 3OVHOLS HO

21907 IHOLYNIGWOO WOYL -

M0010

<mOOo uw

NId

13834

sindinoe -

13s34 ¢

F1aVNI MO0T0 + -

0070

Nl viva L

3SOdHNd-TVHINYD §

SINdNI6 -

SLINIWIT3 IOVHOLS OML -

JID0T TVIHOLVYNIGNOD -

-15-

[681X Woxy] $9UsS 000E (O ooid ndinoAnduj s[qeinsyuo) “€°T

31d

SHD010
13$34 V801D +
4344N8 LNdNI _
SOWD 4
HO LL N
/13 .
I~ . | Gawasion SMD010 O/ ITILINW
r\\\ N
p- 103HI0 (z5 MOOL-}08)
m_ dN-TINd LNdNI TYNOILJO
<
y344ng
N3ONA3H OL
i . , 1y 10 3SION 30NA3H O
avd] 31vH M31S 318v10313S -
N _/ (31gvN3
q 1NdLNO)
s1 JOULNOD
® 5)viS-I34HL OGNV LNdLNO HOA
JSNIS 21901 ITEVIWAVYHOOHd
dnTind| | 3lvy | |3odnos AN ANI 1Nd1NO a3193HIa HO d3y31S1D3Y
3nissvd| | mais | |Lndino Sl 1no
N ~ e 1NdNI 1O3HIa NV d3431SID3Y -
0N SNOILO GITIOHLINOD-WYHDOYd

-16-

[681[1X WOy} SAUag OOE 10°Uu0dISI] JqemeIdold “p°7 814

a10

a10

XIHLVW

HOLIMS

g710

a10

MO8 -

Jn08av -

1437 -

1HOM -

Sa70 IN3OVrav

OL LO3INNOQHILINI 10341d -

T3NNVHO H3d TVINOZIHOH 2 -
TANNVHO Hid TVOULHIA Y -

SIANITONOT »

S3INIMIVINOZIHOH § -
SANM TVOLHIAAS -

LOANNODHILNI I3SOdHNd-TYHINID -

2.1.1. Configurable Logic Blocks

The core of the LCA is a matrix of identical Configurable Logic Block (CLBs).
Each CLB contains programmable combinatorial logic and storage registers as shown in
Fig. 2.2. The combinatorial logic section of the block is capable of implementing any
Boolean function of its input variables. The registers can be loaded from the combinatorial
logic or directly from a CLB input. The register outputs can be inputs to the combinatorial

logic via an internal feedback path.

2.1.2. Configurable Input/Output Blocks

The periphery of the LCA is made up of user programmable Input/Output Blocks
(IOBs). Each block can be programmed independently to be an input, an output, ora
bidirectional pin with three-state control as shown in Fig. 2.3, Inputs can be programmed
to recognize either TTL or CMOS. Each IOB also includes flip-flops that can be used to

buffer inputs and outputs.
2.1.3. Programmable Interconnections

The flexibility of the LCA is due to resources that permit program control of the
interconnection of any two points on the chip, as shown in Fig. 2.4. Like gate arrays,
the interconnection resources of LCA include a two-layer metal network of general purpose
Jines that run horizontally and vertically in the rows and columns between the CLBs.

Programmable switches connect the inputs and outputs of [OBs and CLBs to nearby metal

-18 -

lines. Crosspoint switches and interchanges at the intersections of row and columns allow
signals to be switched from one path to another. Long lines run the entire length or width
of the chip, bypassing interchanges to provide distribution of critical signals with

minimum delay or skew. Adjacent CLBs can be connected by direct interconnections.

2.2. Xilinx LCA Devices

The first generation of LCAs introduced in 1985 has been incorporated as two
devices in the XC2000 series in density ranging from 1200 to 1800 gates [CDFH86,
Micr89, Xilig9]. Each XC2000 CLB contains combinational logic and a signal storage
element. The combinatorial logic of the block is capable of implementing any Boolean
function of up to four variables, or any two independent functions of up to three variables
in each. The storage element in the CLB can be configured as an edge-triggered flip-flop or
a transparent latch. The XC2000 series IOBs include a register in the input path and a
three-state buffer in the output path. The programmable interconnections include direct
interconnects, five general purpose lines and two long lines per vertical channel and four

general purpose lines and one long lines per horizontal channel.

The second generation of LCA introduced in 1987 is embodied in the XC3000
family [HDKN87, Micr89, Xili89]. It consists of five compatible devices ranging 2000
to 9000 gates densities. The XC3000-series CLB includes a wider combinatorial logic
circuit, two storage elements, and dedicated logic that implements clock, reset, and I/O
selection functions as shown in Fig 2.2. The nine inputs of the CLB include five general-

purpose inputs to the combinatorial logic, and clock, clock enable, reset, and direct data

-19-

inputs to the register. The two outputs of the CLB can be driven by the combinatorial logic
or the the Q output of the registers. Each combinatorial logic of the CLB can be configured
in any one of the three modes. Any single Boolean function of five input variables can be
implemented. A second option offers any two independent functions of four variables in
each. The third option is to create two independent functions of four variables in each,
multiplexed into a single function by the E input to the block. The two registers of the CLB
are edge-triggered D-type flip-flops. Clocking is provided by the dedicated clock input of
the block; the clock path has an option invert, allowing the flip-flops to be leading or
falling-edge triggered at each block. Asynchronous reset and clock-enable inputs are also
provided at each CLB. The D input to each flip-flop can be driven by the output of either
of the two logic functions that can be generated in the combinatorial circuit, or by a direct

data input to the block that bypasses the combinatorial logic.

Each IOB of XC3000 controls one pin. There are two registers in each IOB — one
in the input path and one in the output path as shown in Fig. 2.3. Input signals pass
through an input buffer to the D input of a register. The input register of the IOB can be
configured as an edgetriggered flip-flop or a transparent latch. The output path includes a
programmable invert for determining the polarity of the output signal. The signal then goes
to the D input of the output register. This register is always an edgetriggered flip-flop. The
direct or registered output signal can be sent to the output buffer, which is a three-state

buffer.

The programmable interconnections of XC3000 include direct interconnects, five

general purpose lines and four long lines per vertical channel and five general purpose lines

-20-

and two long lines per horizontal channel as shown in Fig. 2.4.

The XC4000 series, the third generation of LCA announced for 1990, are twice as
fast as prior devices, and feature densities as high as 20,000 gates, on-chip static RAM and
greatly improved utilization [Goer89, Wils89]. The devices of XC2000 series and

XC3000 series are listed in Table 2.1.

Table 2.1. Xilinx Logic Cell Array device list.

DEVICES XC2064 | XC2018] XC3020 {XC3030 [XC3042 [XC3064 [XC30980
EQUIVALENT GATES || 1200 1800 2000 3000 4200 8400 9000
CLBS - 64 100 64 100 144 224 320
(ROW X COL) (8 X 8) (10X 10) | (8 X 8) (10X 10) [(12X12) }{16 X 14) |(20X 16)
CLFS 128 200 128 200 288 448 640
FLIP-FLOPS 122 174 256 360 480 688 928
IOBS 58 74 64 80 96 120 144
PACKAGES 48DIP 68PLCC | 68PLCC |B4PLCC [84PLCC [122PGA | 132PGA
68PLCC |84PLCC | 84PLCC |84PGA |84PGA 175PGA
88PGA | 84PGA | B4PGA 132PGA
PROM SIZE (BITS) 11,404 |17,006 |14,819 [22,216 {30,824 |46,104 |64,200
MEMORY (KBYTES)™ {| 2,048 2,048 2,048 2,186 3,584 4,846 6,144

* The PROM size required to store the configuration program for the devices.
*% The RAM of the CAD station required to design the devices using the LCA
development system.

2.3. LCA Design Methodology

Integrated circuits of the LCA complexity need advanced CAE tools if they are to be
used effectively. Like electronic circuit design using CAE tools, the LCA design process is
partitioned into three main steps: entry, implementation, and verification [Micr89,

Xili89]. The design process for LCA is shown in Fig. 2.5. An integrated development

-21-

system for design and implementation of LCA is provided by Xilinx. This provides the
user with an effective, convenient, low risk method of logic design entry, simulation,

configuration program generation and verification for single chip logic design.

The LCA development system is an open system — the designer can choose from
among several popular CAE programs and workstations, allowing the use of existing
familiar tools to develop LCA-based design. The development system is available for
PC-AT and PS/2 personal computers, and their fully compatible clones. In addition,

tools are also available for Sun, Apollo, and Vax/VMS workstations.

Many different schematic editors and simulators are available fér entering and
verifying circuit designs. To provide a bridge to existing CAE tools, Xilinx has defined an
intermediate design description format called the Xilinx Netlist Format (XNF) [Xili88e].
Any design entry tools can be used to enter LCA designs if the output of the design entry
can be translated into XNF file [Xili88f]. Similarly, any simulator can be used to verify

LCA designs if the XNF file can be translated into the netlist format of that simulator.
2.3.1. Design Entry

An LCA design can be entered by using schematic capture, Boolean equations, or
state machine equations in PALASM format. Xilinx supports various schematic capture
tools, such as FutureNet DASH, Dasiy AIE or EED 1, Mentor IDEA and OrCAD SDT.
The design entry is translated into an XNF file. Other design entry methods can be

supported with an appropriate XNF translator.

-2

USER TEXT
SYMBOL EDITOR
LIBRARY ‘

(BOOLEAN)
SCHEMATIC
CAPTURE

EQUATIONS
__(PALASM) /

SCHEMATIC PDS TO XNF
TO XNF
1
CL__) XNF
XNF FILE XNF FILE OPTIMIZATION

DESIGN ENTRY | XNFMERGE |

..

DESIGN IMPLEMENTATION DESIGN VERIFICATION
XNF FILE
USER
PLACEMENT : .,
CONSTRAINTS [XNFTOLCA] [LCATO XNF) [XNE 7O SILOS]
AUTOMATIC fEp|T LCA (LCA J :
PLACEMENT : (NeTusT) (STIMULD)
AND ROUTING (XA(‘m DEi'GN FI'LE
' v . [SILOS SIMULATOR |
MAKEBITS :
(XACT) § SIMULATION
: RESULTS
BIT FILE : L
LEGEND: MAKEPROM §
— (XACT) i | XACTOR
DATA FLOW ;
m— y C [N crﬂcun
PROCESS CONFIGURATION > -
PROM FILE ; DESIGN
DATA & FILES . VERIFICATION

Fig. 2.5. LCA design process{after Xilinx].

-23-

Designers typically enter the designs hierarchically, by first creating a top-level
description that defines the application in terms of major functional blocks. Lower-level
descriptions decreasing the logic in each of the larger blocks are then entered, using
marcos defined by the designer or supplied in the standard library. There is no limit to the
number of levels within the hierarchical design. Two design examples will be seen later in

Chapter 3.

2.3.2. Design Implementation

Implementing designs in LCA entails mapping the desired logic into the CLBs and
IOBs of the LCA architecture. The automatic LCA implementation tools include logic
reduction and logic partitioning, placement and routing, and design editor and
configuration program generation [Micr89, Xili89]. Once a design has been translated into
an XNF file, the design is mapped into the programmable resources of the LCA by a
program called XNF2LCA. The XNF2LCA program performs two operations: logic
reduction and logic partitioning. Logic reduction is the process of deleting unused logic
from the design, permitting liberal use of the library, without any penalty when 2 macro
has unused functions. The remaining logic is automatically partitioned into pieces that can
be implemented within individual CLBs and IOBs. As much logic as possible is grouped

into each block. The result is a design file called LCA.

Each CLB and IOB of the design is "placed" by assigning it to one of the discrete
blocks within an LCA and is "routed" by specifying the programmable interconnection

paths used to implement the connections among the blocks. Placement and routing can be

-24 -

performed automatically with placement and routing software, interactively with graphic
based design editor, or combination of the two. The automatic placement and routing
(APR) program searches for the optimum placement by using the simulated annealing

algorithm and then routes the nets that interconnect the blocks.

The core of the development system is the LCA design editor XACT. The XACT
provides the designer with the ability to graphically enter, place, route, and manipulate
LCA designs, and to generate the LCA configuration program data after the placement and
routing. The generated configuration program data can be download through the download

cable, which provides a convenient approach to program a breadboard or prototype unit.
2.3.3 Design Verification

After the implementation of the design, its operation must be verified. Both APR
and XACT calculate the worst-case delays through both the logic block and the routing
resources. A simulator PC-SILOS is also available from Xilinx with a converter that
converts the XNF to the SILOS simulation netlist and a dummy simulation stimulus file.
The stimulus file is tailored to define the input pattern and which signals to be examined
and with what timing. The XNF file may come from the design entry or form an '
implemented design by converting the design to XNF file. Designs which have not been
routed can be simulated with unit delay data. Routed designs include worst-case timing of

functional blocks and their interconnections.

The verification can also be done by in-circuit testing tools such as Xilinx

-25-

XACTOR, or by IC testing devices such as AXIC tester.

2.4. Summary

The LCA technology provides a fast turn around time and high flexibility, and
allows users to implement ASIC design easily and quickly. It also provides a practical
approach for ASIC breadboarding. For educational purposes, the Xilinx development
system demonstrates the whole process of digital system design. In this environment, an
HDL should be available as an option for design entry. Since the development system is an
open system with XNF as the interface, an HDL compiler can be developed to generate the

XNF file.

=26 -

CHAPTER 3

THE VHSIC HARDWARE DESCRIPTION LANGUAGE

The VHSIC Hardware Description Language (VHDL) is a newly-adopted IEEE
standard hardware description language that supports architectural, dataflow and
behavioural styles of design and documentation for digital systems. A number of CAE
tools have been developed to support VHDL [AAIR88, LCAC8S8, Saun87]. The
motivation for the development of the VHDL CAE tools has been the need for a standard
medium of communication for transmitting hardware design data from one organization to
another [DeGag86]. Such communication is necessary for the following four reasons
[Shah86]: (i) from the viewpoint of the hardware component vendor, it allows formal
specification of the behaviour of the component; (ii) from the viewpoint of a componént
user, it allows formal specification of the functionality required of the component for
procurement purposes; (iii) from the viewpoint of the hardware design engineer, it
provides a standard for sharing information within a design team, even among designers
working at different levels of abstraction; and (iv) from the viewpoint of the CAE tool
developer, it provides a wider user-base for tools, thereby creating a better return on

investment.

Beginning in 1983, the U.S. Department of Defense sponsored the

development of the VHSIC Hardware Description Language (VHDL). The original

-7 -

intent of the language was to serve as a means of corﬁmunicating designs from one
contractor to another in the Very High Speed Integrated Circuit (VHSIC) program.
However, the design of the language has received input from many individuals in
computer industry and thus reflects a consensus of option as to what characteristics a

hardware description language should have [Arms89].

In August 1985, Version 7.2 of the language was released by the Department
of Defense, representing the completion of the first major stage of the language
development. The IEEE sponsored a further development of VHDL, with the goal to
establish a standard version of the language. In June 1987, eligible IEEE members
voted to accept Version 7.2 as the standard version and in December 1987, it was
officially so designated by the IEEE [VHDLS8]. This chapter gives a brief overview of

IEEE standard VHDL as well as a subset of VHDL for LCA design.

3.1. Features of YHDL

VHDL allows design and documentation of digital circuits from the system level
to the gate level, and supports bottom-up as well as top-down design methodologies
[Meye89]. Although designed to be independent of any underlying technology, design
methodology, or environment tool, the language is extendible to various hardware
technologies, design methodologies, and the varying information needs of design
automation tools. In VHDL, not only the architecture of a circuit is defined, butits
organization can be defined as well. The integration and unification of architecture and

organization information is provided in VHDL.

-28 -

VHDL describes the functionality and organization of hardware system at
various levels of abstraction. The concept of design entity is the primary abstraction
mechanism of the language [LMSh86]. Starting with design entity, we discuss the

basic features of VHDL in this section.

3.1.1. Design Entities

One of the characteristics of hardware devices is that their functionality can be
defined for the most part independent of the environment in which they operate. This
characteristic allows components from various sources to be wired together to create
new and more complex designs. VHDL reflects this characteristic in its overall
organization, by emphasizing the ability to describe isolated components, called
design entities, which can then be combined with other component descriptions to
form more complex descriptions. In VHDL, a design entity consists of an interface

description and one or more alternative body descriptions.

3.1.2. Interface Description

The interface contains a set of definitions common to alternative bodies. Such
definitions capture the external view of hardware entity and specify communication
channels between the design entity and the outside world. An example of interface
description for a full adder is shown in Fig. 3.1. The interface description names the
entity and describes its inputs and outputs. The port description of interface declares

signals visible externally, including the mode of the signals (e.g., in or out) and the

=29 -

type of the signals (e.g., BIT). BIT is a predefined signal type in VHDL.

entity FullAdder is
port (X, Y, Cin: in Bit; Sum, Cout: out BIT);
end FullAdder;

Fig. 3.1. Interface description of a full adder.

3.1.3. Body Descriptions

After the interface description, the specification of the behaviour of the entity is
required. In VHDL, three styles of body descriptions are possible: architectural,
dataflow, and behavioural, as shown in Fig. 3.2. The three styles can be combined
within an architectural body description. In general, the three styles are used

separately as alternative body descriptions for a design entity.

DESIGN ENTITY
INTERFACE DESCRIPTION
ARCHITECTURAL DATAFLOW BEHAVICURAL
DESCRIPTION DESCRIPTION DESCRIPTION

Fig. 3.2. Body descriptions of design entity.

3.1.3.1. Architectural Description

The architectural description captures the schematic view of hardware and

consists primarily of interconnected components. The behaviour of the components is

-30 -

externally defined. The architectural description involves (1) component declaration,
which defines interface to components used in a design, and (ii) component
instantiations, which create one or more instances of a declared component. An
example of the architectural description of the full adder is shown in Fig. 3.3. Note
that each instantiation has a unique label associate with it as well as a port map. The
port map creates an association between the inputs and outputs of the components

declared and the instantiation components by positions.

architecture Structure of FullAdder is

component XOR2 port (Ain, Bin, Output);
end component;
component AND2 port (Ain, Bin, Output);
end component;
component OR2 potrt (Ain, Bin, Output);
end component;

signal A, B, C: Bit;

begin
ADDO: XOR2 port map (X, Y, A);
ADD1: XOR2 port map (A, Cin, Sum);
CARRY0: AND2 port map (A, Cin, B);
CARRY1: AND2 portmap (X, Y, C);
CARRY3: OR2 port map (B, C, Cout);
end Structure,

Fig. 3.3. Architectural body description of a full adder.

3.1.3.2. Dataflow Description

The dataflow description specifies data transforms being performed in terms of
concurrently executing register transfer level statements. It is more abstract than the

architectural description.

231 -

One advantage of the architectural description is the ability to express the
parallelism inherent in hardware operation, In contrast, purely architectural description
cannot express what each component actually does, since component behaviour is
externally defined. However, the dataflow description allows the simultaneous
expression of parallelism and behaviour. For example, AHPL is a register transfer

level language which has been used widely in industrial and educational area [HiPe87].

architecture Dataflow of FullAdder is
signal A, B: Bit;
begin
A<=XorY,;
B <= A and Cin;
Sum <= A xor Cin;

Cout <= B or (X and Y);
end Dataflow;

Fig. 3.4. Dataflow description of a full adder body.

An example of dataflow description for the full adder is shown in Fig. 34.
Dataflow descriptions are created through the use of concurrent signal assignment
statements. Such statements execute in response to event or changes in signal values

referenced within the statements.

3.1.3.3. Behavioural Description

The behavioural description, the most abstract style, specifies data transforms
in terms of algorithms for computing output responses to input changes. Component

networks modeled with concurrent signal assignment statements represent both design

-32-

architecture (in terms of component interconnection) and design behaviour (in terms of
data transforms performed). However, it is sometimes necessary to describe
behaviour without biasing that description toward a particular implementation. A pure
behavioural description, entailing little or no architectural information, is more
appropriate in such situations. For example, Mentor has developed the Behavioural
Language [Ment84]. In VHDL behavioural description can be written by using process
statement. An example of a behavioural description for an AND gate with its interface

description is shown in Fig. 3.5.

entity AndGate is
port (inputs: in Bit_Vector(1 to 2);
Result: out Bit),
end AndGate;

architecture Behaviour of AndGate is

begin
process (Inputs)
variable Temp: Bit,

begin
Temp = "1";
foriin Inputs’Range loop
if Inputs(i) = '0' then
Temp ="0",
exit;
end if;
end loop;
Result <= Temp after 10ns;
end process;

end Behaviour;

Fig. 3.5. Behavioural description of an AND gate with interface description.

-33.-

A process statement contains a declarative part and a statement part. However,
only sequential statements such as if, case, and loop statements can be written in its
statement part. Such statements describe algorithms that specify how a component will

respond to changes on input signals by causing changes on output signals.

A process statement is initially sensitive to an associated list of signals. An
event on any of those signals will cause the process to execute, and will potentially

cause the process to modify certain output signals.

3.1.4. Types

VHDL is strongly typed and supports a variety of data types. The data type
classification is shown in Fig. 3.6. VHDL also allows the designer to define new data
types as they are needed. For example, two new types BYTE and WORD can be

created using type declaration as shown in Fig. 3.7.

TYPES

SCALAR COMPOSITE

NUMERIC

[ENUMERATION] [FHYSICAL] [ARRAY] [RECORD/

Fig. 3.6. VHDL type classification tree [after Arms87].

-34 -

type BYTE is array (0 to 7) of BIT;
type WORD is array (0 to 15) of BIT;

Fig. 3.7. Type declaration.

INTEGER and REAL are two predefined numeric types with the standard
numeric operation defined upon them; designers may define additional numeric types
by specifying their range of values. Enumeration types include values that are either
character literals or identifiers. VHDL predefines several enumeration types including
type BOOLEAN, type BIT, and type CHARACTER. Standard logic operations are
available on BOOLEAN or BIT objects. Designers may also define their own
enumeration types. Physical types allow expression of measurements. A physical type
declaration specifies a set of units, all defined in terms of some based unit, and all

measuring the same quantity.

The two classes of composite types in VHDL are array and record types;
elements of an array type must be the same, whereas elements of record type may
differ. Predefined array types BIT_VECTOR and STRING represent arrays of bits and
arrays of characters respectively. Logic operations defined on BITs are defined on

BIT_VECTORS as well.

3.1.5. Signals

VHDL supports architectural and dataflow descriptions through the use of
signals. Signals can be used to represent wires or buses in a architectural description or

to represent data transmissions in a dataflow description. Signals may retain state and

-35.

as such may be used to represent memory elements such as flip-flops and registers.

Signals may have different types. Before their use, signals must be declared to
define their names and the types associated with them. As shown in Fig. 3.8, an
example of signal declaration signals RESET and CLOCK with type BIT, INPUTS

and OUTPUTS with type BYTE, and ADDRESS_LINES with type WORD.

signal RESET, CLOCK : BIT;
signal INPUTS, OQUTPUTS: BYTE;
signal ADDRESS_LINES : WORD;

Fig. 3.8. Signal declaration.

3.1.6. Packages

For frequently used declarations, a package may be created to avoid writing
declarations repeatedly when they are needed. The package has a name associated with
it. A package can be used to share declarations among many other design units, or
collect declarations relating to a particular abstraction. Declarationsin a package may be
made visible by referring to the package. A package declaration example is shown in

Fig. 3.9.

package BYTE_WORD is
type BYTE is array (0 to 7) of BIT;
type WORD is array (0 to 15) of BIT;
end;

Fig. 3.9. Package declaration.

-36-

3.2. Supported Subset

VHDL is a very complicated language. It is very difficult to develop a compiler
which is able to accept the whole set of VHDL, especially for the decomposition from
behavioural description to architectural description. It is a better approach to divide the
task into several stages. We choose to develop a compiler that accepts a VHDL
architectural description subset as the first step. Further development can be built up on

this stage.

The VHDL subset supports the interface and architectural body description.
Package declaration is also supported so that a group of type declarations can be
referred by more than one entity. Pin declarations and several predefined signal types
are added into the subset to support the LCA design. A User's Guide and the
Backus—Naur (BN) form syntax description of the supported subset can be found in

Appendix B and Appendix C.

3.2.1. Input/Output Pin Descriptions

In standard VHDL, the physical positions of interface ports cannot be
specified, However, the I/O pin numbers of a design in LCA have to be explicitly
defined for implementation using the LCA development system. If a I/O signal is not
connected with a IOB or pin of the LCA, the logic partitioning and reduction program
considers this signal no source. Thus, the signal and its loads are reduced. For this
purpose, a pin description clause is added into interface description after the port
description. For example, the full adder interface with its pin association description is

-37 -

shown in Fig. 3.10.

entity FullAdder is
port (X, Y, Cin: in Bit; Sum, Cout: out Bit);
pins (X P11;
Y: P13;
Cin: P24;
Sum: P34;
Cout: P35);
end FullAdder;

Fig. 3.10. Interface description of a full adder.

3.2.2. Types for LCA Design

Signals can have flags in an LCA design. The flags are used to control the
automatic placement and routing (APR) process [Xili88f, Xiii89}. "L" is used to tell
the APR to route a signal through a long line across the row or column of the array.
"C" tells APR that it is a critical route so that APR gives this signal the highest priority.
"N" tells APR that it is a non-critical route so that APR gives it the lowest priority. "X"
assures that this signal stays outside of CLBs. To cope with those flags, four
predefined types BIT_L, BIT_C, BIT_N, and BIT X are added into VHDL,

corresponding to the flags L, C, N, and X.

3.3. Summary

This Chapter describes a sophisticated hardware description language, capable
of supporting architectural, dataflow, and behavioural styles design and

documentation for digital circuits from a single gate to a complex system. It is too

-38 -

difficult to develop a compiler for the whole set of the language. A subset of VHDL
needs to be adopted for a class of circuits design such as LCAs. As the first step, A

~ VHDL architectural description subset is chosen for LCA design.

-39 -

CHAPTER 4

‘A VHDL COMPILER FOR LCA DESIGN

Various VHDL design systems have been implemented to support the design of
digital systems. There are basically two approaches to implement such a VHDL design
system {Gilm86, Mars88]: i) a full-scale VHDL design system {Saun87], including
VHDL analysis to compile the VHDL design files into a design library, synthesis to create
the hardware layout and simulation to verify the design; and ii) an embedded VHDL design
system in which the VHDL compiler is combined with an existing CAE system [AAIRSE].
In this system, VHDL is used as an approach for design entry, with the compiler
generating a description format acceptable by the CAE system, while the CAE tools are

used to implement and verify the design originally described in VHDL.

The second approach has several advantages, such as the availability of simulation
model library, schematic capture and fault simulation, and a large existing user base.
Since we have a dedicated CAE system for LCA design, the second approach is selected in

which the VHDL compiler for LCA design is embedded within the existing CAE tools.

The position of the compiler in the LCA design process as shown in Fig. 2.5. is
shown by the shadowed area in Fig. 4.1. As we described in Chapter 2, the LCA

development system supported by Xilinx has an interface with the high level entry and the

- 40 -

SYMBOL
LIBRARY

SCHEMATIC
CAPTURE

SCHEMATIC
TO XNF

(XNF FILE)

USER TEXT

DESIGN ENTRY

..................................

EDITOR
; | 1
4 ™\
BOOLEAN
EQUATIONS VHDL
(PALASM) DESIG FILE
PDS TO XNF VHDL TO XNF
COMPILER
XNF
opr XNF FILE
rXNFMERGE
... e

v

[XNF TO SILOS]

AUTOMATIC | epiT | CA LCA
PLACEMENT || (xACT) | | DESIGN FILE . (uetusn) (sTmMuL)
AND ROUTING I ’ l : * *
' # : |'SILOS SIMULATOR |
MAKEBITS : v
(XACT) : SIMULATION
: RESULTS
BIT FILE : :
MAKEPROM l
LEGEND: (XACT) . | XACTOR
DATA FLOW v : v
CONFIGURATION : [IN-CIRCUIT
PROCESS PROMFLE [% y DESIGN

Fig. 4.1. The position of the VHDL compiler in the LCA design process.

.41 -

simulation tools. The Xilinx Netlist Format (XNF) is accepted by the LCA development
system as an interface for implementation and is generated by the LCA development system

for simulation.

The VHDL compiler for LCA design is a one-pass compiler supporting a subset of
standard VHDL for hierarchical architectural descriptions. It accepts VHDL design files
and compiles the design files into the XNF files. Then, the design implementation and
simulation are accommodated using the existing LCA development system. The structure
of the compiler is shown in Fig. 4.2. The compiler consists of the following five

components: a lexical analyzer, parser, stack machine, netlist generator and flattener.

VHDL design files are typed in and edited using a standard text editor such as VI in
UNIX system. The lexical analyzer reads the VHDL design files and converts them into
meaningful lexical chunks called tokens. The parser calls lexical analyzer to obtain the
tokens and checks the syntax of the VHDL design files. If there are any syntax errors,
they are reported by the parser. Otherwise, the parser generates a code for the stack
machine. The code executed on the stack machine is a linear array of the instructions of the
stack machine and parameters for the instructions. The stack machine generates an internal
VHDL representation (IVHDL), and also reports any semantic errors. In the netlist
generation stage, first the IVHDL is converted into an internal XNF (IXNF) representation
which is subsequently translated to XNF file. Both IXNF and XNF are formats supported
by Xilinx [Xili88e, Xili88f]. The XNF files in different hierarchical levels are stored in
the design library. Each design entity in VHDL results in an XNF file in the design library.

A standard library can also be established by adding the XNF files which are proved to

-42 -

VHDL2XNF
COMPILER

STACK NETLIST
PARSER MACHINE GENERATION | | FLATTENING
ry
b
LEXICAL
ANALYZER
\ 4
VHDL XNF FILE
DESIGN
FILES
CONF S
SYMBOL DESIGN STANDARD
TABLE LIBRARY LIBRARY
LEGEND:
— DATAFLOW
T: TOKENS ——— ACCESS CALL
1 process

C: STACK MACHINE INSTRUCTION CODE
V: INTERNAL VHDL REPRESENTATION {iVHDL)

1 INPUTOROUTPUT
(O TEMP STORAGE

Fig. 4.2. The structure of the VHDL compiler for LCA design.

-43 -

be eligible designs. Current standard libraries are provided by Xilinx. The library
list is included in Appendix E. - A program supported by Xilinx flattens the hierarchical
XNF files. The flattening program reads the XNF files in the design library and the XNF
files of the standard components in standard library, checks the syntax of the NXF files,

and generates a flattened XNF file, which is used for implementation of the design.

4.1. Lexical Analysis

The lexical analysis is the first phase of the compiler. The lexical analyzer is a
subroutine of the parser as shown in Fig. 4.2. Its main task is to read the VHDL design
files and produce as output a sequence of tokens that the parser uses for syntax analysis.
Each token represents a logically cohesive sequence of characters or string, such as an
identifier, a keyword, a punctuation character, or an operator. In general, there is a set
of strings in the input for which the same token is produced as output. This set of strings
is described by a rule called a pattern associated with the token. The pattern is said to
match each string in the set. The string forming a token is called the lexeme for the token.
The lexemes are stored in a symbol table for later use. The lexical analysis uses the
patterns to identify the tokens. Upon receiving a "get next token" request from the parser,
the lexical analyzer reads the input files until it can identify the next token, and then passes

the token to the parser.

The secondary task of the lexical analyzer includes stripping out comments and
white spaces in the form of blanks, tabs, and newline characters from the VHDL design

files, as well as counting line numbers which can be used in association with error

- 44 -

messages. The structure of the lexical analyzer is shown in Fig. 4.3.

There are tools for constructing lexical analyzer from special-purpose notations
based on regular expressions. LEX [LEX86], a lexical analyzed generator tool is used to

generate the Iexicai analyzer of the VHDL compiler.

LEXICAL
ANALYSER
S
=
PRINTING WRITING & SEARCHING
SYNTAX ERROR SYMBOL TABLE

l l

e [SYMBOL]

TABLE
Séﬁ%‘é . LEGEND:
MESSAGE DATA FLOW

ACCESS CALL
PROCESS

T: TOKENS

S: SYNTAX ERROR MESSAGE ——] INPUTOROUTPUT

() TEMP STORAGE

Fig. 4.3. The lexical analyzer of the VHDL compiler.

4.1.1. LEX — A Lexical Analysis Generator

LEX is used in the following manner. First, a specification of the lexical analysis
is prepared by creating a program using regular expressions to describe all the patterns and
fragments of C programs to be executed when a matching string is found. Then, the
program is run through the LEX to produce a C program lex.yy.c. The program lex.yy.c

- 45 -

is the pattern-matching algorithm of the lexical analyzer.

The specification of the lexical analysis consists of three parts:
declarations
% %o
patterns and actions
%%
auxiliary procedures
The declarations section includes declarations of variables, constants, and definitions.

The patterns and actions are statements of the form:

23] {actiony}
P2 {actiony}
Pn {action,}

where each p; is a regular expression and each action; is a program fragment describing
what action the lexical analyzer should take when pattern p; matches a lexeme. In LEX,
the actions are written in C; in general, however, they can be any implementation
languages. The third section holds whatever auxiliary procedures are needed by the

actions. The specification of the lexical analyzer can be found in Appendix F.

When called by the parser, the lexical analyzer begins reading its remaining input,
one character at a time, until it has found the longest prefix of the input that is matched by
one of the regular expressions p; . Then, it executes action; Typically, action; will

return the control and the token to the parser. If the token is an identifier, the acfion; also

- 46 -

searches the symbol table and writes the identifier into the symbol table if it is not in the

table.
4,2, Parsing

The second phase of the compiler is syntax analysis or parsing. The parser obtains
a string of tokens from the lexical analyzer, as shown in Fig. 4.2, and verifies that the
string can be generated by the grammar for the source language. After the tokens pass the
syntax checking, they are used to generate the output of the parser. The output of the
parser of the VHDL compiler is a sample stack machine code which is a list of instructions
and the parameters for the instructions. The tokens are used as the parameters in the code.
The parser is also expected to report any syntax errors. The structure of the parser is

shown in Fig. 4.4.

There are many different algorithms for syntax analysis and tools to generate
parsers. Every programming language has rules that prescribe the syntactic structure of the
well-formed programs. The syntax of programming language constructs can be described
by context-free grammar or Backus-Naur Form (BNF) notation. YACC [YACCR6], a
parser generator that accepts a context-free grammar description and generates an LALR

parser, is used to generate the parser of the VHDL compiler.
4,2.1. YACC — Yet Another Compiler Compiler

A parser can be constructed using YACC by creating a file containing a

-47 -

specification of the parser first. Then, YACC wransforms the file into a C program called

y.tab.c using the LALR method [ASUI86]. The program y.tab.c is a representation of an

LALR parser, along with other C routines.

PARSER

PRINTING
SYNTAX ERROR

SYNTAX
ERRCR
MESSAGE

T: TOKENS
C: STACK MACHINE INSTRUCTION CODE
S: SYNTAX ERROR MESSAGE

RN

STACK MACHINE
CODE GENERATION

SYMBOL
TABLE

LEGEND:

® DATAFLOW
——— ACCESS CALL

[process
—"_] INPUTOR OUTPUT
() TEMP STORAGE

Fig. 4.4. The parser of the VHDL compiler.

A specification of the parser has three parts:
%

C language declarations

.48 -

YACC declaration. lexical tokens, grammar variables,
precedence and associativity information

%%

grammar and actions

%%

supporting C routines

The specification of the parser of the VHDL compiler can be found in Appendix E.

Alternate rules are separated by "I'. Any grammar rule can have an associated
action, which will be performed when an instance of that rule is recognized in the input.
An action is a sequence of C statements enclosed in braces { and }. Within an action, $n
(thatis, $1, $2, etc.) refers to the value returned by the n-th component of the rule, and

$$ is the value to be returned as the value of the whole rule.

The parser of the VHDL compiler has basically one kind of action which is to add
new instructions and tokens as parameters in the code for the stack machine. Different

grammar rule recognition result in different instructions added to the stack machine code.

4.3, Stack Machine

After the parser process, the result is a list of instructions for a stack machine. The
stack machine is a simple computer. When an operand is encountered, it is pushed onto a

stack; most operators operate on items on the top of the stack.

A stack machine results in simple compiler. It is just an array containing operators

-49 -

and operands. The operators are the machine instructions; each is a function call with its
arguments, if any, following the instructions. Other operands may already be on the
stack. A stack machine is also easy to modify and expand by changing the instruction

functions, or adding new instructions.

The structure of the stack machine is shown in Fig. 4.5. For example, to handle a
signal declaration
signal X: BIT;

the following code is generated by the parser:

CODE COMMENTS

idpush Push symbol table pointer onto stack,

X identifier X;

idpush Push symbol table pointer onto stack;

BR . predefined type BIT;

scode Create a Signal record to store the declaration.

In the code, the boldface strings are stack machine instructions and the others are the
parameters for the instructions. When this code is executed on the stack machine, the

result is an internal VHDL representation of the signal declaration.
4.3.1. Stack Machine Instructions
The stack machine of the YHDL compiler has 46 instructions. When the VHDL

subset is to be expanded, new instructions can be easily added into the existing instruction

set. The instructions and their brief function descriptions are shown in Table 4.1.

-50-

STACK
MACHINE

INSTRUCTION_1 INSTRUCTION_2

INSTRUCTION_n

®)
®) \ o) ‘0/
£ (@)
0]
E\ ‘}
PRINTING SYMBOL
SEMANTIC ERRORS PUSH POP [TABLE
OPERAND
STACK
SEMANTIC
ERROR
MESSAGE
LEGEND:
— DATAFLOW
C: STACK MACHINE INSTRUCTION CODE ACCESS CALL
V: INTERNAL VHDL REPRESENTATION (IVHDL) [Process

E: SEMANTIC ERROR MESSAGE
O: OPERANDS

—] INPUTOROUTPUT
() TEMP STORAGE

Fig. 4.5. The stack machine of the VHDL compiler.

-51-

Table 4.1.

The stack machine instructions.

INSTRUCTION FUNCTION INSTRUCTION FUNCTION

[INTPUSH PUSH INTEGER ONTO STACK AND LOGIC AND
[DPUSH PUSH IDENTIFIERONTO STACK || NAND LOGIC NAND
POP POP ID OR INT FROM STACK OR LOGIC CR
PCODE PROCESS PACKAGE NOR LOGIC NOR
CHKPL CHECK PACKAGE NEME XOR LOGIC XOR
UCODE PROCESS USE-CLAUSE EQ EQUAL
ECODE PROCESS ENTITY NE NOT EQUAL
CHKE CHECK ENTITY NAME GT GREATER THAN
PPCODE PROCESS PINS GE GREATER OR EQUAL
ACODE PROCESS BODY LT LESS THAN
CHKA CHECK BODY NAME LE LESS OR EQUAL
TCODE PROCESS TYPE NEGATE NEGATIVE
CDCODE PROCESS COMPONENT DECLA. || ADD ADDITION
FPCODE PROCESS FORMAL PORT SUB SUBTRACTION
IDFIRST PROCESS IDENTIFIER MUL MULTIPLICATION
IDLIST PROCESS IDENTIFIER LIST DIV DIVISION
SCODE PROCESS SIGNAL MOD MODEL
CICODE PROCESS COMPONENT INST. REM REMAININGG
CHKCL CHECK COMPONENT LABEL POEWR POWER
SIMNAME PROCESS SIMPLE NAME ABSL ABSOLUTE
FORCODE PROCESS FOR STATEMNET NOT LOGIC NOT
IFCODE PROCESS IF STATEMENT EVAL EVALUATE VARIABLE
CHKGL CHECK GENERATE LABEL STOP STOP STACK MACHINE

INTPUSH, IDPUSH and POP are the three instructions that manipulate the

operands stack. STOP halts the stack machine. The other instructions generate the

IVHDL using the symbol table. The instructions on the left side of Table 4.1. process the

declarations and statements, check the semantic of the VHDL design file. The instructions

on the right side of Table 4.1. process the logic, relational and mathematical operations.

When the stack machine code generated by the parser is executed, the resultisa

group of records that contain the information from the VHDL design files. These records

are denoted as Internal VHDL representations (IVHDL.).

-52-

4.3.2. Internal VHDL Representation (IVHDL)

The Internal VHDL Representation (IVHDL) is a list of records called entity list.

Some items in the records are sublists which are lists of some other records. The relation

of the lists is shown in Fig. 4.6.

ENTITY
LIST
USE-CLAUSE COMPONENT PIN
LIST DECLARATION LIST LIST
PACKAGE FORMAL PORT COMPONENT SIGNAL
LIST LIST INSTANTIATION LIST LIST
ACTUAL PORT
LIST
TVPE LEGEND:
LIST 1 RECORDLIST
PARENTAL AND CHILD LIST RELATION,
— HIGHER LEVEL ARE PARENTAL LISTS

Fig. 4.6. Internal VHDL representation.

-53-

4.4. Xilinx Netlist Format Generation

After the IVHDL is obtained, it has to be converted into the internal Xilinx Netlist
Format (IXNF) in order to generate the XNF files. Xilinx provides a program for the

generation of the XNF file from IXNF.

The conversion starts from the entity list, since each design entity results in an
XNF file. Then, the sublists in entity list are read, such as signal list, formal port list,
pin list and component instantiation list. The actual port list is read when component
instantiation is read. While the IVHDL is read, the corresponding IXNF is generated.

The structure of the netlist generator is shown in Fig. 4.7.

4.4.1. Internal Xilinx Netlist Format

Xilinx provides the internal Xilinx Netlist Format (IXNF) and a program to
generate the XNF files from the IXNF. The IXNF is also a group of record list that

represents the XNF. WRITENET reads the lists and creates XNF files.

4.5. Flattening

The XNF files generated by WRITENET are still hierarchical files. Some XNF
files are the components in the higher XNF files, The XNF files need to be flattened
before the design can be implemented. Xilinx also provides the flattening program which

reads all the XNF files in the design library and the used XNF files in standard libraries,

-54 -

also checks the syntax of the XNF files and reports any XNF syntax errors.

NETLIST
GENERATION

READ READ
SIGNAL FORMAL PORT]

READ
CPMPONENT WRITENET

PRINTING

SEMANTIC ERRORS

l

SEMANTIC
ERROR
MESSAGE

£: SEMANTIC ERRCR MESSAGE

V: INTERNAL VHDL REPRESENTATION {IVR)
X: INTERNAL XILINX NETLIST FORMAT (IXNF)

READ
ACTUAL PORT

DESIGN
LIBRARY

LEGEND:
—P DATAFLOW

ACCESS CALL

[process

—_| INPUTOROUTPUT

Fig. 4.7. Xilinx Netlist Format generation.

-55 -

CHAPTER 5

IMPLEMENTATION, TESTING AND VERIFICATION

The VHDL compiler is implemented on a SUN workstation in the C language. The
C program code has a total of 1371 lines. The LEX and YACC tools in the UNIX system
are used to generate the lexical analyzer and the parser. The LEX specification has 75
lines, which results in 537 lines of C program code generated by LEX. The YACC
specification has 285 lines, which results in 651 lines of C program code generated by
YACC. The total 2559 lines of C code are compiled together with C program code
provided by Xilinx for writing and flattening the XNF files. The sizes of the VHDL
compiler for LCA are 98304 KBYTE for SUN3 and 106496 KBYTE for SUN4. The

program lists can be found in Appendix E.

An IBM PC/AT compatible computer is used for the Xilinx LCA Development
System. The PC and the SUN workstation communicate through Ethernet. The XNF files
generated by the VHDL compiler can be transmitted from the SUN workstation to the PC

for implementation.

The VHDL descriptions of circuit designs are compiled into XNF files. The circuit
is implemented and verified using the XNF files. There are two criteria to verify the VHDL

compiler: i) the XNF files generated by the VHDL compiler must follow the syntax

-56 -

specification of the XNF; and ii), the LCA design in VHDL must function as required.
During the implementation, the logic partitioning and reduction program reads the XNF
files and checks syntax. Thus, the syntax of the XNF files is verified. The same designs
are also entered using the schematic capture tool FutureNet, implemented and verified.
The implementation and verification results of both designs in schematic and VHDL of the
same circuit are compared in order to verify the function of the VHDL design. The designs
can also be implemented in a demonstration board. Our testing shows the VHDL compiler
works properly. Several examples are used to test and verify the compiler. The results of
two examples, a 16-bit liner feedback shift register (LFSR) and a 4-bit ALU, are

presented as follows.

5.1. Test 1: 16-bit Liner Feedback Shift Register

The first example is a 16-bit Liner Feedback Shift Register (LFSR). The
polynomial of the LESR is
x2+ex’+1

A computer simulation of this LFSR is included in A.3. of Appendix A.

The LESR is entered using the schematic capture tool FutureNet and implemented
using the LCA automatic implementation tool. The schematic of the 16-bit LFSR is shown
in Fig. 5.1. The symbols FDRD and FDS are standard cells form the standard library.
The FDRD is a D flip-flop with reset. The FDS is a D flip-flop with set. The
implementation is simulated using SILOS. The simulation result is included in A.4. of

Appendix A. A graphic output of this simulation is also shown in Fig. 5.2. The

-57-

comparison of A.3. and A 4. of Appendix A shows the implementation works properly.

FEEEER ﬂ*‘@
Kld
(X
Hid

23012

3
q

ad

FOUT

°
Lo
Pl
f“ *b;{ LE:1F]
3
a
31
[=]
v
o
(=
L)
B
3,

Qad s

[]

-
o
x
o
o

POUT 1
, o | >
1 -

]

&)
90
|2~
v
o
S

2
a

a4
[+3:1-F]

Q

POUT

s

E%i
a
sof
3 —
[
F]
1
£t
=]
v
o
c
o
@«
>,

Qo

POUT

o
ral
‘g{aau:

5 >
| > sout
ol
\

POUT

=]
o

ad
51 daas 12
g
o '
o 1
a
?
asg

0y
-)
q
t—o] cues
(31
(=]

Cuds

POUT

za
F]
q
el
q
hd
=1
<
5

B1 g4

POUT

sqo
%
&

3
4|
B
EN
q

(103§
o

;
”4‘“1

Fig. 5.1. The schematic of the 16-bit LFSR.

- 58 -

* P/C-SILOS 3C.8 * LFSR_SCH.DAT

0 3000 6000 9000 12000 15000
R O o R $ommmm e +

CLOCK.PAD _##4S844RRREARARRURANEHRIRERRECRAGRARANERNIROAREREEY 1

RESET.PAD - 2

QO.PAD - - - -~ _— - == T - - -— 4

Q1.PAD - - - - == - — -~ 5

Q2. .FPAD ——__=-__-- - v T~ - -— [

Q3.PAD - - -- -—- = = - -~ =1

Q4.PAD - Tt T T te_ Tttt Tttt T s Tt~ 8

QS.PAD e bt e it e it S]
Q6.PAD e ettt S e 10
Q7.PAD ettt e Bt e it e e 11
Q8 .PAD et it T Tt i it Sl B e i 12
Q9.PAD - - mm mmm e m= - mme < T Sttt T - 13
QLO.PAD _ ~ == o= ——— e m= = = = = S T - —— 14
Q11.PAD - e = - —— - === - - - 15
Q12 .PAD - - = == -— - === - - - 16
Q13.PAD - - = - — - == == - _ 17
Q14.PAD __ - - - -- —— - e - - _ 18
Q15.PAD - - - - _— - — - - - - 19

Fig. 5.2. The graphic output of the simulation of the 16-bit LFSR
implemented from the schematc.

The LFSR displayed in Fig. 5.2. is described in VHDL description to test our
VHDL compiler. The VHDL description of the LFSR is included in A.1. of Appendix A.
This VHDL description is compiled by the VHDL compiler which generates the XNF file
for implementation using the LCA automatic implementation tool. The LCA layout of the

LESR implemented from the VHDL description is shown in Fig. 5.3.

The LFSR implemented from the VHDL description was also simulated using
SILOS. A graphic output of the simulation is shown in Fig. 5.4. The comparison of

Fig. 5.2. and Fig. 5.4. shows the LFSR implemented from the VHDL description

works properly.

- 59-

Prmt Desi n LFSR_ HDL LCA 2064PC68 33) XACT 2. 10 Wed Sep 20 07:33 28 1989

[=

i

AGC AD l (e 0]} 008 AH
3
]]_ 5
L} T T i ;
1 ot gl
'S
BA [:1:] BC BO 8E [ea)] 007 8H
z 1
UL :
: L. L L T T g
2)
] ‘
1 N
4 CA ca [CC co CE QD% oos{r* CH
e — L L |1 1
I7
r=—
e N (-
6 DA 08 0C o0 OF oo o8} 1T DR
%
] REE:
L L. L L aE
1
v
c

|
|
|
|
|
I
g
g (8 |

I B

3
3
3
3
3

(78
1

.

v
.

8]

i
¥

Al

3

2L
(9

(=53] BR9)
{
1
9.
=
-

HB HC HC HE HG

[
[
{
!
!
l
[
!

[]
7]

-
Fesladl

Fig. 5.3. The layout of the 16-bit LFSR implemented from the VHDL description.

* P/C-BILOS 3C.8 * LFSR_HDL.DAT

0 3000 6000 9000 12000 15000
Homm e n o R Hemmmmm e Fommmm o +
CLOCK _§R4RERRRRARRALRURUERERERBURIRARACAORURRARERERRAREE 1
RESET - 2
Q0 - - - - m—— = - - -~ 4
Q1 e - -—_ 5
Q2 -~ - - — e —— - - Y -
Q3 - - - - e = - - -— -= 7
Q4 e T e -
0s - - - - e
Q6 - . . T LT T T TI-Z.TZ-7 10
o1 - . L. . T . . __T T T T 1
Q8 < . oo .. oo T T .- f_'_'::_'_'__?_'_" 12
09 - = - f__:__f___f_f___f_____________ - 13
Q0 - - T Te. LT IT T T TT I DT
o11 - = e .- — e e - - 15
Q12 - - - - — - - - - - 16
Q13 - - - - —— mem e - - 17
Qid - - - - e e e - - 18
Qs _ - - - - — - e e - - - 19
Fig. 5.4. The graphic output of the simulation of the 16-bit LFSR

5.2, Test 2:

The second example is a 4-bit ALU with two control lines. The operation of the
ALU is shown in Table 5.1. C1 and CO are the two control lines, CIN is the carry in, |

and Q are the two 4-bit inputs, COUT is the carry out, and F is the 4-bit output.

The ALU is entered using the schematic capture tool FutureNet and implemented
using the LCA automatic implementation tool. The schematic of the 4-bit ALU is shown in

Fig. 5.5. The symbols GADD and RD4 from the standard cell library are one-bit full

implemented from the VHDL description.

4-bit ALU

-61 -

adder and 4-bit data register. The data register is used to store Q because of the limitation
of the number of switches useable for inputs on the demonstration board used for testing

the design.

Table 5.1. The operation of the 4-bit ALU.

CONTROL LINES
C1 co F
0 0 F=Q+ CIN
0 1 F=1+ Q +CIN
1 0 F=~l+Q+CIN
1 1 F=1111 +Q + CIN

The implementation of the ALU was simulated using SILOS. A graphic output of
the simulation is shown in Fig. 5.6. The implementation was also tested on a DEMO

board, which shows the design works properly.

The VHDL description of the 4-bit ALU is written to test our VHDL compiler. The
VHDL description of the ALU is included in A.2. of Appendix A. This VHDL description
is compiled by the VHDL compiler which generates the XNF file for implementation using
the LCA automatic implementation tool. The LCA layout of the ALU implemented from

the VHDL description is shown in Fig. 5.7.

The ALU implemented from the VHDL description was simulated using SILOS
and also tested on the demonstration board. A graphic output of the simulation is
shown in Fig. 5.8. Both the testing on the demonstration board and the comparison of
Fig. 5.6. and Fig. 5.8. show the ALU implemented from the VHDL description

works properly.

-62 -

qwvdD

aAvdo

~1_8ns vz
3 X130 J 1 i Q
ED ga 4ng1 w1
2o vay Za
) 1q
60 ea
AN
1 1ns @
€0 A &5 193] 0 1 €l 0 1 I
aqyo 4ng1 avet
0 ~JT1 €3 ¢ g | €8
ingo vl ev
1 zHs T2
21 0 1 1 Q
[Ae] N4t avdl
NNI
3 5] OA~
20 199 5 tg < }.Ens 81
0 U1 Z3 s Fl T 01 1
4ngo Y Zy ingt TVl
R < |..tns T
O M n:._mﬁ advel
LX) 12
10 - A_f ﬁ s g TS
4ngo > ¥ 1y e @
o ~J1 1
o 4ng1 Avdl
0o .
NI a1g
Z SAAL) €E1d
g0 1 53 15 ui3] 0 I 0 1 <
aav9 g ad o dndl ava1
0 ~JT 84 s o
ingo L Iv av THON [T ~1_ens T4
1 0 ~J1 1
ang avar

Fig. 5.5. The schematic of the 4-bit ALU.

-63 -

* P/c_

SW4

SW2
SW1

SW5

SW6

SW7

C4

o3

02

0l
o0

Fig.

SILOS 3C.8 * ALU4_SCH.DAT

11

13

15
16
17
18

5.6. The graphic output of the simulation of the 4-bit ALU

implemented from the schematic.

Print Design: ALU4_HDL.LCA (2064PC68-33), XACT 2.10, Wed Sep 20 01:20:25 1989
@ EE)E)

£

é

7B A
I,

F

hl

3] FEv] [FE3] FEe
e

E N R

£ B9

L'\

=Py

Eos]poE)

BE

A

CE

(A

3

G

8F BG

¥
{

e
CF <G

3
[

D oG

(¥
L3

3 G

(3

(9
L8

-

(=)

Fig. 5.7. The layout of the 4-bit ALU implemented from the VHDL description.

- 65 -

* P/C-SILOS 3C.8 * ALU4_HDL.DAT

04

03
02
01
o0

Fig.

0 1000 2000 3000 4000 5000
T Fomm e SR —— e S +

11

13

15
i6
17
18

5.8. The graphic output of the simulation of the 4-bit ALU

implemented from the VHDL description.

- 66 -

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

An electrical circuit may include tens of hundreds of components. It is one of the

most difficult problems to cope with the complexity in circuit design process. CAE tools
have been developed to help the designers implement and verify their designs. A circuit
description has to be entered into the computer in machine understandable forms in order to
use CAE tools. Circuit description may be in textual format or graphical format, or both.
Hardware Description Languages (HDLs), formalized modular languages to describe
electronic circuits, are becoming increasingly popular because they are easy to create,

modify and store.

The technology to implement a circuit design is also an important factor of design
complexity. It is very difficult to obtain optimized circuit layout for a full custom VLSI,
while acceptable layout may be obtained for semi-custom VLSI such as gate arrays and
PLDs. The user programmable gate arrays LCA combines both the flexibility of gate

arrays and the instant availability of PLDs. The LCAs are also reprogrammable.

The density of LCAs is from 1200 to 9000 equivalent gates. A dedicated CAE
system is provided to support the LCA design. A circuit design can be entered using

schematic tools or PALASM. However, the device like LCA should have the option of

-67 -

using an HDL as design entry. In this thesis, a subset of the IEEE standard VHDL is
chosen for LCA design. A VHDL compiler was developed to accept VHDL architectural
descriptions and generate the XNF files for LCA implementation tools. The
implementations from VHDL descriptions using the compiler are the same as those from

schematics using the schematic capture tools supported by Xilinx.

This compiler enables the designer to use hardware description language as the
design entry option. Compared with the traditional graphical design entry approach,
hardware description languages are easy to create and modify, and serve as documentation
of the design. This compiler can also provide an interface with other VLSI design systems
so that the LCA can be used for prototyping of the VLSI design. In addition, we anticipate
that graphical design system will be unable handle the increasingly complexity of
sophisticated system design. For this reason, the VHDL tool developed here will directly
contribute to our efforts in promoting system level design space exploration in our

laboratory.

As demonstrated in the previous chapters, this research work has the following key
contributions:

1. Studied the LCA technology and its design methodology. Its instant
implementation is especially well suited for electronic breadboarding and
educational purposes. An HDL is needed for LCA as a design entry option. The
HDL for LCA can be compiled into XNF, which is the interface of the LCA
implementation tools.

2. Studied HDLs, especially the VHDL. A VHDL architectural description subset is

-68 -

chosen and adopted for LCA design.
Developed a VHDL compiler for LCA design. The compiler accepts the VHDL
architectural description files and generates the XNF files. Tools such as LEX and
YACC for compiler design and the stack machine structure are used in the compiler
design for easy further development,
The compiler is tested and verified through examples. Two examples are

demonstrated to show the compiler works properly.

Further development of the research work is recommended as follows:

The compiler can be expanded to accept VHDL dataflow and behavioural
descriptions. The work should concentrate on the development of the synthesis
form the dataflow and behaviour to architecture.

A platform can be developed for educational purpose. An AHPL compiler for
LCA can be developed, since it is used widely in educational areas.

A platform can be built for VLSI design prototyping. The design entry method
used for the VLSI design can be adopted for LCA. Thus, a VLSI design can be

prototyped using LCAs easily before its fabrication.

- 69 -

[AAIRSS]

[Acte8E]
[AGGC8E]

[Arms89]

[ASU186]

[AWSc86]
[Bart88]
[BiCo81]
[Burs87]

[CDFH86]

[Coel88]
[Cole86]

[Coll86a]

REFERENCES

R.D. Acosta, M. Alexandre, G. Imken, and B. Read, "The Role of
VHDL in the MCC CAD System," 25th ACM/IEEE Design Automation
Conference, 1988, pp. 34-39..

The ACT Family Products. Sunnyvale (CA): Actel Inc. 1988

K. El-Ayat, A.E. Gamal, R. Guo, J. Chang, E. Hamdy, J. McCollum,
and A. Mohsen, "A COMS electrically configurable gate array,” IEEE
Inter. Solid-State Circuits Conf., 1EEE Cat. 88CH2562-7, 1988,
pp. 76-77.

JR. Armstrong, Chip-level Modeling with VHDL. Englewood Cliffs
(NJ): Prentice Hall, 1989, 148pp.

AV. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison-Wesley Publishing Company, 1986,
796pp.

J.H. Aylor, R. Waxman, and C. Scarratt, "VHDL—Feature Description
and Analysis," IEEE Design & Test, April 1986, pp. 17-27.

D. Barton, "Behavioural Descriptions in VHDL," VLSI System Design,
June 1988, pp. 28-33.

J. Birkner and V. Coli, PAL: Programmable Array Logic Handbook.
Sunnyvale (CA): Monolithic Memories, Inc. 1981

D. Bursky, "Enhanced programmable arrays challenge gate array density,"
Electronic Design, September 17, 1987, pp. 83-86.

W.S. Carter, K. Duong, R.H. Freeman, H.-C. Hsieh, J.Y. Ja,
JE. Mahoney, L.T. Ngo, and S.L. Sze, "A user programmable
reconfigurable logic array," IEEE Custom Integrated Circuits Conf., IEEE
Cat. CH2258P2/86, 1986, pp. 233-235.

D.R. Coelho, "VHDL: A Call for Standards," 25th ACM/IEEE Design
Automation Conference, 1988, pp. 40-47.

B.C. Cole, "Field-Programmable Logic: A new market force,"
Electronics, January 27, 1986, pp. 25-31.

R. Collett, "ASICs: Take your pick," Digital Design, June 1986,
pp. 29-36.

=70 -

[Coll86b]
[Coli87]
[DeGa86]
[Donn85]
[Free88]
[Futu88]
[GDPa86]
[Gilm86]
[Goer89]
[Goet86]

[HDKN87]

[HiPe87]
[Holl87]
[KePi84]
[Kins86]
[Kins89]
[Land85a]
[Land85b]

[Land87]

R. Collett, "Programmable logic declares war on gate arrays," Digital
Design, July 1986, pp. 32-39.

R. Collett, "Reports from the PLD front," ESD: The Electronic System
Design, February 1987, pp. 46-54.

A. Dewey and A. Gadient, "VHDL Motivation," [EEE Design & Test,
April 1986, pp. 12-16.

J. Donnell, "Crosspoint switch: A PLD approach,” Digital Design,
July 1985, pp. 40-44.

R. Freeman, "User-programmable gate arrays," IEEE Spectrum,
Dec. 1988, pp. 32-35.

DASH: Schematic Designer. Chatsworth (CA): FutureNet. 1988

D.D. Gajski, N.D. Dutt, and B.M. Pangrle, "Silicon Compilation
(Tutorial)," [EEE Custom Integrated Circuits Conf., CH2258-2/86, 1986,
pp. 102-110.

A. S. Gilman, "VHDL—The Designer Environment," IEEE Design &
Test, April 1986, pp. 42-47.

R. Goering, "Can Xilinx challenge masked gate arrays?" High
Performance System, Sept. 1989, pp. 13-14, 19

E. Goetting, "EEPROM-based ASIC propels programmable logic to new
levels of complexity,” Electronic Design, May 1, 1986, pp. 201-206.
H.-C. Hsieh, K. Duong, J.Y. Ja, R. Kanazawa, L.T. Ngo,
L.G. Tinkey, W.S_. Carter, and R.H. Freeman, "A second generation
user-programmable reconfigurable gate array," IEEE Custom Integrated
Circuits Conf., IEEE Cat. CH2430-7/87, 1986, pp. 515-521.

F.J. Hill and G.R. Peterson, Digital Systems: Hardware Organization and
Design, 3rd ed. Jhon Wiley & Sons, Inc., 1987, 601pp.

E.E. Hollis, Design of VLSI Gate Array ICs. Englewood Cliffs (NJ):
Prentice-Hall, Inc., 1987, 507pp.

B.W. Kernighan and R. Pike, The UNIX Programming Environment.
Englewood Cliffs (NJ): Prentice-Hall, 1984, 357pp.

W. Kinsner, Computer-Aided Engineering of Electronic Circuits: An
Introduction. Technical Report MC86-2, Sept. 1986

W. Kinsner, Background On PLDs. Technical Report, University of
Manitoba, 1989.

S. Landry, "Application-specific ICs relying on RAM implement almost
any logic function," Electronic Design, October 31, 1985, pp. 123-131.
S. Landry, "Printer buffer proves RAM-based logic's strength and
versatility," Electronic Design, November 14, 1985, pp. 139-144.

S.L. Landry, " 'Designer' logic and symbols with Logic Cell Arrays, "
IEEE Micro, February 1987, pp. 51-59.

-71 -

[Laut86]

[LCACSS8]

[LEX86]
[LMSh86]
[Marr86]
[Mars88]

[Ment84]
[Meye87]

[Meye&9]

[Micrg9]

o [MoMe81]

[NaSag6]
[RISC89]
[Sang85]
[Saun87]
[Shae87]
[Shah86]
[SIMUB88]

[SLMS85]

[SmBo87]

D.P. Lautzenheiser, "Semicustom IC offer new possibilities for software
protection,” EDN, June 12, 1986, pp. 177-182.

M. Loughzail, M. Cote, M. Aboulhamid, and E. Cerny, "Experience
with the VHDL environment," 25th ACM/IEEE Design Automation Conf.,
CH2540-3/88, 1988, pp. 28-33.

UNIX Programmer's Manual: LEX — A Lexical Analyzer Generator. SUN
Microsystems, 1986, pp. 119-140.

R. Lipsett, E. Marschner, and M. Shahdad, "VHDL—The Language,"
IEEE Design & Test, April 1986, pp. 28-37.

K. Marrin, "PLDs slow advance of gate arrays in low-end designs,”
Digital Design, February 1, 1986, pp. 43-54.

E. Marschner, "VHDL Design Environment," VLSI System Design,
September 1988, pp. 40-82.

Behavioural Language. Reference Manual, Mentor Graphics Corp., 1984.
E.L. Meyer, "Programmable logic overview," VLSI Systems Design,
October 1987, pp. 62-70.

E. Meyer, "VHDL opens the road to top-down design," Computer Design,
February 1, 1989, pp. 57-62.

"Programmable Gate Arrays: Devices and application," Microprocessors
and Microsystems, vol. 13: Special Issue, June 1989. ‘
The Programmable Array Logic. New York: McGraw Hill, 1981 (2nd ed.)
J.D. Nash and L.F. Saunders, "VHDL Critique," IEEE Design & Test,,
April 1986 pp. 54-65.

RISC: Recent Developments in Processor Design. The 32th
IEEE Videoconference Seminars via Satellite, Oct. 1989.

A.L. Sangiovanni-Vincentelli, "An overview of synthesis system," [EEE
custom Integrated Circuits Conf., CH2157-6/85, 1985, pp. 221-225.
L.F. Saunders, "The IBM VHDL Design System," 24th ACM/IEEE
Design Automation Conference, 1987, pp. 484-490.

D. Shaer, "Tools help you retain the advantages of using breadboards in
gate-array design,” EDN, March 18, 1987, pp. 81-88.

M. Shahdad, "An Overview of VHDL and Technology," 23rd Design
Automation Conference, 1986, pp. 320-326.

SILOS. Menlo Park (CA): SIMUCAD Inc. 1988

M. Shahdad, P. Lipsett, E. Marschner, K. Sheehan, H. Cohen,
R. Waxman, and D. Ackle, "VHSIC Hardware Description Language,"
Computer, February 1985, pp. 94-103.

D.E. Smith and T.B. Bowns, "Regain lost I/O ports with erasable PLDs,"
Electronic Design, March 19, 1987, pp. 151-156.

-72 -

[Smit88]

[Tare87]
[VHDLSE]

[Waug88]
[Wils89]
[Wynn86]
[Xili86a]

[Xili86b]
[Xili88a]

[Xi1i88b]
[Xili88c]
[X1li88d]
[Xili88e]
[Xili88f]
- [Xili89}

[YACC86]

D. Smith, "User-programmable chips take on broader range of
applications," VLSI Systems Design, July 1988, pp. 88-93.

R.S. Tare, UNIX Utilities. McGraw-Hill Book Company, 1987, 387pp.
IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1987.
New York: IEEE Press, 1988.

T. Waugh, "Programmable array serves as a controller for dynamic
RAMSs," EDN, February 18, 1988, pp. 169-176.

R. Wilson, "Xilinx boosts array density," Computer Design: News
Edition, August 1989, p. 1.

P. Wynn, "In-Circuit Emulation for ASIC based designs,” VLSI
Systems Design, Oct. 1986, pp. 38-45.

The Programmable Gate Array Design Handbook. San Jose (CA): Xilinx,
Inc. 1986.

XACT: LCA Development System. San Jose (CA): Xilinx, Inc. 1986.
Programmable Gate Arrays: Components and Development Systems.
San Jose (CA): Xilinx, Inc. 1988.

Programmable Gate Arrays: XC3000 Logic Cell Array Family. San Jose
(CA): Xilinx, Inc. 1988.

LCA Programmable Gate Array: User’s Guide. San Jose (CA): Xilinx,
Inc. 1988.

The Programmable Gate Array Design Handbook, 2nd ed. San Jose (CA):
Xilinx, Inc. 1988.

LCA Xilinx Netlist Specification. San Jose (CA): Xilinx, Inc. 1988.

LCA External Netlist Tool Kit. San Jose (CA): Xilinx, Inc. 1988.

The Programmable Gate Array Data Book. San Jose (CA): Xilinx, Inc.
1989.

UNIX Programmer’'s Manual: YACC — Yet Another Compiler Compiler.
SUN Microsystems, 1986, pp. 143-182.

-73 -

APPENDIX A

EXAMPLES AND SIMULATION RESULTS

A.l. VHDL DESCRIPTION OF THE 16-BIT LFSR

This is the architectural description of a 16-bit LFSR.
it is used for testing the VHDL2XNF compiler, Version 2.

Bing Liu
Department of Electrical Engineering
University of Manitoba

package BUSES is

type BUSS_16 Is array (0 to 15) of BIT;

end;

use BUSES;
entity LFSR16 is

port { CLK : in BIT;

RET : in BIT;

Q: out BUSS_18);
pins { CLK : P19;

RET : P20;
Qlo) : P22;
Q1) . P53;
Q2) . P54,
Q3) : P55;
Q4) : P56;
Q{s) . P57;
Qfe) : P58;
Q7)) : P59;
Q(8) : Pé1;
Q{9 : P62;
QU10) : P63;
Q(11) : P64,
Q{12) : P&5;
Q(13) : P66;
Q(14) : P67;

-74 -

Q(15) : P68);
end;

architecture LFSR_BODY of LFSRi6 Is
component fdrd port (D, C: InBIT;

RD: in BIT;

Q: cut BiT);
end component; -- D flip-flop with reset from standard library
compenent fds port (D,C: In BIT;

S: in BIT;

Q: out BIT);
end component; - D flip-flop with set from standard library
component xor2 port (11, 12 : In BIT;

0: out BIT);
end component; - 2inputs XOR gate from standard library
component ibuf port (| in BIT;

0 out BIT);
end component; - inputbuffer from standard library
component obuf port (e in BIT;

O: out BIT);
end component; -- output buffer from standard library

signal X1, X2, CLOCK, RESET : BIT;
signal QD : BUSS_1s;

begin
for cnt in 0 to 15 generate
obuf port map (QD{cnt), Qfcnt));
end generate;

ibuf port map (CLK, CLOCK);
ibuf port map (RET, RESET);

xor2 port map (QD(0), QD(4), X1);
xor2 port map {QD(0), QD(11), X2),

LFSR : for ¢nt In 0 to 15 generate
if cnt = 0 generate

fds port map (QD(cnt+1), CLOCK, RESET, QD(cnt));

end generate;
if (cnt > 0) and (cnt < 3) generate

fdrd port map (QD(cnt+1), CLOCK, RESET, QD{cnt));

end generate;
it cnt= 3 generate
fdrd port map (X1, CLOCK, RESET, QD{(cnt));
end generate;
If (ent > 3) and {cnt < 10) generate

fdrd port map (QD{(cnt+1), CLOCK, RESET, QD(cnt);

end generate;
if cnt = 10 generate
fdrd port map (X2, CLOCK, RESET, QD(cnt));
end generate;
if {cnt > 10) and (cnt < 15) generate

=75 -

fdrd port map (QD(cnt+1), CLOCK, RESET, QD{cnt));
end generate;
if cnt = 15 generate
fdrd port map (QD(0), CLOCK, RESET, QD{cnt));
end generate;
end generate LFSRH;

A.2. XNF FILE OF THE 16-BIT LFSR GENERATED FROM THE

VHDL DESCRIPTION

LCANET, 1 :
PROG, FLATTEN, 1.00, Created from: lfsr16.hdl, Wed Sep 20 02:10:05 1989
PROG, vhdI2XNF, 2.00, Created from: lfsr16.hdl, Wed Sep 20 02:10:05 1989
PART, 2064pc68-33
SYM, Cutput-18, xor
PIN, 1,1, QD4

PIN, 2,1, QDO

PIN, O, O, X1

END

SYM, Qutput-17, xor
PIN, 1,1, QD11

PIN, 2,1, QDO

PIN, O, 0, X2

END

SYM, DI-2-16, OR
PIN, 1,1, QD1

PIN, 2, |, RESET
PIN, 0, O, DI-16
END

SYM, Q-1-16, DFF
PIN, C, |, CLOCK
PIN,D, |, DI-16

PIN, Q, O, QD0

END

SYM, Q-2-15, DFF
PIN, C, 1, CLOCK
PIN, D, |, QD2

PIN, Q, O, QD1

PIN, RD, |, RESET
END

SYM, Q-2-14, DFF
PIN, C,1,CLOCK
PIN, D, 1, QD3

PIN, Q, O, QD2

PIN, RD, 1, RESET
END

-76 -

SYM, Q-2-13, DFF
PiN, C, I, CLOCK
PIN, D, I, X1

PIN, Q, O, QD3
PIN, RD, I, RESET
END

SYM, Q-2-12, DFF
PIN, C, |, CLOCK
PIN, D, 1, QD5
PIN, Q, O, QD4
PIN, RD, I, RESET
END

SYM, Q-2-11, DFF
PIN, C,1,CLOCK
PIN, D, [, QD&
PIN, Q, O, QD5
PIN, RD, I, RESET
END

SYM, Q-2-10, DFF
PIN, C, {, CLOCK
PIN, D, I, QD7
PIN, Q, O, QD6
PIN, RD, I, RESET
END

SYM, Q-2-8, DFF
PIN, C, I, CLOCK
PIN, D, |, QD8
PIN, Q, O, QD7
PIN, RD, I, RESET
END

SYM, Q-2-8, DFF
PIN, C, 1, CLOCK
PIN,D, |, QD9
PIN, Q, O, QD8
PIN, RD, I, RESET
END

SYM, Q-2-7, DFF
PIN, C, I, CLOCK
PIN, D, |, QD10
PIN, Q, O, QD9
PIN, RD, I, RESET
END

SYM, Q-2-6, DFF
PiN, C, I, CLOCK
PIN,D, I, X2

PiN, Q, O, QD10
PIN, RD, I, RESET
END

SYM, Q-2-5, DFF
PIN, C, 1, CLOCK
PIN, D, I, QD12
PIN, @, O, QD11

-77 -

PIN, RD, |, RESET

END

SYM, Q-2-4, DFF

PIN, C, |, CLOCK

PIN, D, I, QD13

PIN, Q, O, QD12

PIN, RD, I, RESET

END

SYM, Q-2-3, DFF

PIN, C, I, CLOCK

PIN,D, I, QD14

PIN, Q, O, QD13

PIN, RD, I, RESET

END

SYM, Q-2-2, DFF

PiN, C, [, CLOCK

PIN, D, 1, QD15

. PIN, Q, O, QD14

PIN, RD, I, RESET

END

SYM, Q-2-1, DFF

PIN, C, 1, CLOCK

PIN, D, I, QDO

PIN, Q, O, QD15

PIN, RD, |, RESET

END

SYM, LFSR_BODY19, IBUF
PIN, O, O, RESET

PIN, .1, RET

END

SYM, LFSR_BODY20, IBUF
PIN, O, O, CLOCK

PIN, 1,1, CLK

END

SYM, LFSR_BODY21, OBUF
PIN, O, O, Q15

PIN, I, 1,QD15

END

SYM, LFSR_BODY22, OBUF
PIN, O, 0, Q14

PIN, 1, QD14

END

SYM, LFSR_BODY23, OBUF
PIN, O, 0, Q13

PIN, 1,1, QD13

END

SYM, LFSR_BODY24, OBUF
PiN, O, O, Q12

PIN, 1,1, QD12

END

SYM, LFSR_BODY25, OBUF
PIN, O, O, Q11

PIN, 1,1, QD11

-78 -

END
SYM, LFSR_BODY26, OBUF

PIN, O, 0, Q10
PIN,1,1,QD10

END

SYM, LFSR_BODY27, OBUF
PiN, O, O, Q9

PIN, I, |, QD9

END

SYM, LFSR_BODY28, OBUF
PiN, O, O, Q8

PIN, I, 1, QD8

END

SYM, LFSR_BODY?29, OBUF
PIN, O, O, Q7

PIN, I, |, QD7

END :

SYM, LFSR_BODY30, OBUF
PIN, O, O, Q6

PIN, 1,1, QD6

END

SYM, LFSR_BODY31, OBUF
PIN, O, 0, Q5

PIN, 1,1, QD5

END

SYM, LFSR_BODY32, OBUF
PIN, O, O, Q4

FIN, 1,1, QD4

END

SYM, LFSR_BODY33, OBUF
PIN, O, O, Q3

PIN, 1,1, QD3

END

SYM, LFSR_BODY34, OBUF
PIN, O, O, Q2

PIN, |, 1,QD2

END

SYM, LFSR_BODY35, OBUF
PIN, O, O, Q1

PIN, !, 1, QD1

END

SYM, LFSR_BODY36, OBUF
PIN, O, O, Q0

PIN, 1,1, QDO

END

EXT, RET, |,, LOC=P20, BLKNM=RET

EXT, @9, O,, LOC=P62, BLKNM=QS
EXT, Q8, 0,, LOC=P6&1, BLKNM=Q8
EXT, Q7, O,, LOC=P59, BLKNM=Q7
EXT, Q86, O,, LOC=P58, BLKNM=Q6
EXT, @5, O,, LOC=P57, BLKNM=Q5
EXT, Q4, O,, LOC=P56, BLKNM=Q4

-79 -

EXT, Q3, O,, LOC=P55, BLKNM=Q3
EXT, Q2, O,, LOC=P54, BLKNM=Q2
EXT, Q15, O,, LOC=P68, BLKNM=Q15
EXT, Q14, O,, LOC=P87, BLKNM=Q14
EXT, Q13, O,, LOC=P&6, BLKNM=Q113
EXT, Q12, O,, LOC=P&5, BLKNM=Q12
EXT, Q11, O,, LOC=P64, BLKNM=Q11
EXT, Q10, O,, LOC=P863, BLKNM=Q10
EXT, Q1, O,, LOC=P53, BLKNM=Q1
EXT, QO, O,, LOC=P22, BLKNM=QO0
EXT, CLK, I,, LOC=P19, BLKNM=CLK
EOF

A.3. COMPUTER SIMULATION OF THE 16_BIT LFSR

The following is the result of a computer simulation of the 16-bit LFSR
X2+ x4 1

The list shows 200 clock cycles of running time.

1000000000000000
0001000000100001
0010000001000010
0100000010000100
1000000100001000
0001001000110001
0010010001100010
0100100011000100
1001000110001000
0011001100110001
0110011001100010
1100110011000100
1000100110101001
0000001101110011
0000011011100110
0000110111001100
0001101110011000
0011011100110000
0110111001100000
1101110011000000
1010100110100001
0100001101100011
1000011011000110
0001110110101101
0011101101011010

-80 -

0111011010110100
1110110101101000
1100101011110001
1000010111000011
0001101110100111
0011011101001110
0110111010011100
1101110100111000
1010101001010001
0100010010000011
1000100100000110
0000001000101101
0000010001011010
0000100010110100
0001000101101000
0010001011010000
0100010110100000
1000101101000000
0000011010100001
0000110101000010
0001101010000100
0011010100001000
0110101000010000
1101010000100000
1011100001100001
0110000011100011
1100000111000110
1001001110101101
0011011101111011
0110111011110110
1101110111101100
1010101111111001
0100011111010011
1000111110100110
0000111101101101
0001111011011010
0011110110110100
0111101101101000
1111011011010000
1111110110000001
1110101100100011
1100011001100111
1001110011101111
0010100111111111
0101001111111110
1010011111111100
0101111111011001
1011111110110010
0110111101000101
1101111010001010
1010110100110101
0100101001001011
1001010010010110

-81-

0011100100001101
0111001000011010
1110010000110100
1101100001001001
1010000010110011
0101000101000111
1010001010001110
0101010100111101
1010101001111010
0100010011010101
1000100110101010
0000001101110101
0000011011101010
0000110111010100
0001101110101000
0011011101010000
0110111010100000
1101110101000000
1010101010100001
0100010101100011
1000101011000110
0000010110101101
0000101101011010
0001011010110100
0010110101101000
0101101011010000
1011010110100000
0111101101100001
1111011011000010
1111110110100101
1110101101101011
1100011011110111
1001110111001111
0010101110111111
0101011101111110
1010111011111100
0100110111011001
1001101110110010
0010011101000101
0100111010001010
1001110100010100
0010101000001001
0101010000010010
1010100000100100
0100000001101001
1000000011010010
0001000110000101
0010001100001010
0100011000010100
1000110000101000
0000100001110001
0001000011100010
0010000111000100

-82-

0100001110001000
1000011100010000
0001111000000001
0011110000000010
0111100000000100
1111000000001000
1111000000110001
1111000001000011
1111000010100111
1111000101101111
1111001011111111
1111010111011111
1111101110011111
1110011100011111
1101111000011111
1010110000011111
0100100000011111
1001000000111110
0011000001011101
01100000101110190
1100000101110100
1001001011001001
0011010110110011
0110101101100110
1101011011001100
1011110110111001
0110101101010011
1101011010100110
1011110101101101
0110101011111011
1101010111110110
1011101111001101
0110011110111011
1100111101110110
1000111011001101
0000110110111011
0001101101110110
0011011011101100
0110110111011000
1101101110110000
1010011101000001
0101111010100011
1011110101000110
0110101010101101
1101010101011010
1011101010010101
0110010100001011
1100101000010110
1000010000001101
£001100000111011
0011000001110110
0110000011101100

-83-

1100000111011000
1001001110010001
0011011100000011
0110111000000110
1101110000001100
1010100000111001
0100000001010011
1000000010100110
0001000101101101
0010001011011010
0100010110110100
1000101101101000
0000011011110001
0000110111100010
0001101111000100
0011011110001000
0110111100010000

clock speed is 300ns.

$ P/C-SILOS 3C8*

$ LFSR_SCH.DAT

OUTPUT 09:37:41

TIME
300
600

20QQ000000Q00QQ0
0123456789111111
.......... 012345
PPPPPPPPPP......
AAAAAAAAMAPPPPPP
DDDDDDDDDDAAAARA

DDDDDD

1000000000000000
0001000000100001

-84 -

SIMULATION OF THE IMPLEMENTATION OF THE LFSR

The following is the result of the simulation of the 16-bit LFSR implemented
from the schematic. The simulator, SILOS uses the netlist translated from the XNF
file of the LFSR. The XNF file is generated from the LCA design file which is the

physical layout of the LFSR. The list also shows 200 clock cycles simulation. The

Sept 20, 1989

900
1200
1500
1800
2100
2400
2700
3000
3300
3600
3900
4200
4500
4800
5100
5400
5700
6000
6300
6600
6900
7200
7500
7800
8100
8400
8700
9000
8300
89600
8900

10200
10500
10800
11100
11400
11700
12000
12300
12600
12900
13200
13500
13800
14100
14400
14700
15000
15300
15600
15900
16200
16500

0010000001000010
0100000010000100
1000000100001000
0001001000110001
0010010001100010
0100100011000100
1001000110001000
0011001100110001
0110011001100010
1100110011000100
1000100110101001
0000001101110011
0000011011100110
0000110111001100
0001101110011000
0011011100110000
0110111001100000
1101110011000000
1010100110100001
0100001101100011
1000011011000110
0001110110101101
0011101101011010
0111011010110100
1110110101101000
1100101011110001
1000010111000011
0001101110100111
0011011101001110
0110111010011100
1101110100111000
1010101001010001
0100010010000011
1000100100000110
0000001000101101
0000010001011010
0000100010110100
0001000101101000
0010001011010000
0100010110100000
1000101101000000
0000011010100001
0000110101000010
0001101010000100
0011010100001000
0110101000010000
1101010000100000
1011100001100001
0110000011100011
1100000111000110
1001001110101101
0011011101111011
0110111011110110

-85 -

16800
17100
17400
17700
18000
18300
18600
18800
19200
19500
19800
20100
20400
20700
21000
21300
21600
21900
22200
22500
22800
23100
23400
23700
24000
24300
24600
24800
25200
25500
25800
26100
26400
26700
27000
27300
27600
27900
28200
28500
28800
29100
29400
28700
30000
30300
30600
30800
31200
31500
31800
32100

1101110111101100
1010101111111001
0100011111010011
1000111110100110
0000111101101101
0001111011011010
0011110110110100
0111101101101000
1111011011010000
1111110110000001
1110101100100011
1100011001100111
1001110011101111
0010100111111111
0101001111111410
1010011111111100
0101111111011001
1011111110110010
0110111101000101
1101111010001010
1010110100110101
0100101001001011
1001010010010110
0011100100001101
0111001000011010
1110010000110100
1101100001001001
1010000010110011
0101000101000111
1010001010001110
0101010100111101
1010101001111010
0100010011010101
1000100110101010
0000001101110101
0000011011101010
0000110111010100
0001101110101000
0011011101010000
0110111010100000
1101110101000000
1010101010100001
0100010101100011
1000101011000110
0000010110101101
0000101101011010
0001011010110100
0010110101101000
0101101011010000
1011010110100000
0111101101100001
1111011011000010

-86-

32400
32700
33000
33300
33600
33900
34200
34500
34800
35100
35400
35700
36000
36300
36600
36900
37200
37500
37800
38100
38400
38700
39000
39300
39600
39900
40200
40500
40800
41100
41400
41700
42000
42300
42600
42900
43200
43500
43800
44100
44400
44700
45000
45300

45600
45900
46200
46500
46800
47100
47400
47700
48000

1111110110100101
1110101101101011
1100011011110111
1001110111001111
0010101110111111
0101011101111110
1010111011111100
0100110111011001
1001101110110010
0010011101000101
0100111010001010
1001110100010100
0010101000001001
0101010000010010
1010100000100100
0100000001101001
1000000011010010
0601000110000101
0010001100001010
0100011000010100
1000110000101000
0000100001110001
0001000011100010
0010000111000100
0100001110001000
1000011100010000
0001111000000001
0011110000000010
0111100000000100
1111000000001000
1111000000110001
1111000001000011
1111000010100111
1111000101101111
1111001011111111
1111010111011111
1111101110011111
1110011100011111
1101111000011111
1010110000011111
0100100000011111
1001000000111110
0011000001011101
0110000010111010
1100000101110100
1001001011001001
0011010110110011
0110101101100110
1101011011001100
1011110110111001
0110101101010011
1101011010100110
1011110101101101

-87-

48300 0110101011111011
48600 1101010111110110
48900 1011101111001101
49200 0110011110111011
49500 1100111101110110
49800 1000111011001101
50100 0000110110111011
50400 0001101101110110
50700 0011011011101100
51000 0110110111011000
51300 1101101110110000
51600 1010011101000001
51900 0101111010100011
52200 1011110101000110
52500 0110101010101101
52800 1101010101011010
53100 1011101010010101
53400 0110010100001011
53700 1100101000010110
54000 1000010000001101
54300 0001100000111011
54600 0011000001110110
54900 0110000011101100
55200 1100000111011000
55500 1001001110010001
55800 0011011100000011
56100 0110111000000110
56400 1101110000001100
56700 1010100000111001
57000 0100000001010011
57300 1000000010100110
57600 0001000101101101
57900 0010001011011010
58200 0100010110110100
58500 1000101101101000
58800 0000011011110001
59100 0000110111100010
59400 0001101111000100
59700 0011011110001000
60000 0110111100010000

A.5. VHDL DESCRIPTION OF THE 4-BIT ALU

-- This is the architectural description of a 4-bit ALU
It is used for testing the VHDL2XNF compiler, Version 2.0.

-- Bing Liu
-- Department of Electrical Engineering

- 88 -

-- University of Manitoba

package BUSES is

type CONTROL_LINES is array (0 to 1) of BIT;
type BUSS_4 Is array (0 to 3) of BIT;

end;

use BUSES;

entity ALU1 Is

port (A, B : in BIT;

Cin : in BIT;
Control : In CONTROL_LINES;
Output : out BIT;
Cout : out BIT);

end;

architecture ALU1_BODY of ALU1is
component inv port (1 : In BIT; O: out BIT);
end component; -- invertor from standard library
component nand2 port (i1, 12:InBIT; O : out BIT);
end component; --2inputs NAND gate from standard library
component gadd port (A, B, Ci: InBIT; S, Co: outBIT);
end component; -- 1-bit full adder from standard library

signal A_not, X1, X2, X3 : BIT;

begin
invertor : inv port map (A, A_not};
nand_g1 : nand2 port map {A, Control(0), X1};
nand_g2: nand2 port map (A_not, Control(1), X2);
nand g3 : nand2 port map (X1, X2, X3);
full_adder: gadd port map (X3, B, Cin, Output, Cout);
end;
use BUSES;
entity ALU4 is
port (SW5 : in BIT; -- control line 0
SW6 . In BIT; -- control line 1
Sw4 . In BIT; --canyin
SW: In BUSS_4,; --input0to 3
SW7 : in BIT; , -- clock
O out BUSS_4; --oufput 0to 3
04 out BIT); -- carry out
pins (SW7 : P11;
SW6 . P13;
SW5 . P15;
Sw4 P17;
SW(0) : P24,
Swit) . P23;
SW(2) : P21;
SWI(3) : P19;
o{0) . P29;

-89 -

(1) : P30;

of2) : P31;
C@) : P32;
4 . P33);

end,;
architecture ALU_BODY of ALU4 Is
type INTERNAL_CARRY Is array (0 to 2) of BIT;

component ALU1

port { A B: in BIT;
Cin : in BIT;
Control : in CONTROL_LINES;
Qutput : out BIT;
Cout : out BIT); :
end component,; -- 1-bit slice ALU entity previously defined
component rd4
port { D: in BUSS_4;
C: in BIT;
Q. out BUSS_4);
end component; -- 4-bit data register from standard library
component ibuf port (| : In BIT; O : out BiT};
end component; -- input buffer from standard library
component obuf port (1 : In BIT; O : out BIT);
end component; -- output buffer from standard library
signal Cany : INTERNAL_CARRY;
signal I, F, B: BUSS_4;
signal C : CONTROL_LINES;
signal Cin, Cout, Ck : BIT;

begin
for cnt in 0 to 3 generate
ibuf port map (SW(cnt), licnt)};
obuf port map (F(cnt), Olcnt));
end generate;

ibuf port map (SW5, C(0));
ibuf port map (SW6, C(1)):

ibuf port map (SW4, Cin);
ibuf port map (SW7, Clk};
obuf port map (Cout, O4);

Register : rd4 port map (|, Ck, B);

ALUS : for cnt in 0 to 3 generate
If cnt = 0 generate
ALU1 port map (l{cnt), B(cnt), Cin, C, F(cnt), Carry{cnt));
end generate;
If cnt = 3 generate

end;

A.6.

ALU1 port map (l(cnt), B(cnt), Camry(cni-1), C, F(cnt), Cout);
end generate;
If {cnt > 0) and (cnt < 3) generate
ALU1 port map (l{cnt), B{cnt), Cary(cnt-1), C, F(cnt), Carry(cnt));
end generate;
end generate ALUS;

XNF FILE OF THE 4-BIT ALU GENERATED FROM THE

VHDL DESCRIPTION

LCANET, 1

PROG, FLATTEN, 1.00, Created from: ALU4.HDL, Tue Sep 19 21:29:38 1989
PROG, vhdi2xnf, 2.00, Created from: ALU4.HDL, Tue Sep 19 21:29:37 1989
PART, 2064pc68-33
SYM, Output-21, NAND
PIN, 1,1, C0

PIN, 2,1, 13

PIN, O, O, X1-1

END

SYM, Cutput-20, NAND
PIN, 1,1, C1

PIN, 2,1, A_NOT-1

PIN, O, O, X2-1

END

SYM, QOutput-19, NAND
PIN, 1,1, X2-1

PIN, 2,1, X1-1

PIN, O, O, X3-1

END

SYM, S-5-18, XOR

PIN, 1, 1, X3-1

PIN, 2,1, B3

PIN, 3, |, CARRY2
PIN,OQ,O, F3

END

SYM, AC-4-18, AND
PIN, 1,1, X3-1

PIN, 2, 1, CARRY2

PiN, O, O, AC-18

END

SYM, BC-3-18, AND
PIN, 1,1, B3

PIN, 2,1, CARRY2

PIN, O, O, BC-18

END

SYM, Co-2-18, OR

-91-

PIN, 1,1, AB-18

PIN, 2,1, BC-18

PIN, 3, I, AC-18

PiN, O, O, COUT
END

SYM, AB-1-18, AND
PIN,1,1,B3

PIN, 2, |, X3-1

PiN, O, O, AB-18
END

SYM, Cutput-17, NAND
PIN, 1,1, C0

PIN,2, 1,12

PIN, O, O, X1-2
END

SYM, Output-16, NAND
PIN, 1,1, C1

PIN, 2,1, A_NOT-2
PIN, O, O, X2-2
END

SYM, Cutput-15, NAND
PIN, 1, [, X2-2

PIN, 2,1, X1-2

PIN, O, O, X3-2
END

SYM, S-5-14, XOR
PIN, 1,1, X3-2

PIN, 2,1, B2

PIN, 3,], CARRY1
PIN, 0, O, F2

END

SYM, AC-4-14, AND
PIN, 1,1, X3-2

PIN, 2, |, CARRY1
PIN, O, O, AC-14
END

SYM, BC-3-14, AND
PIN, 1,1, B2

PIN, 2, 1, CARRY1
PIN, O, 0,BC-14
END

SYM, Co-2-14, OR
PIN, 1,1, AB-14
PIN, 2,1, BC-14

PIN, 3,1, AC-14

PIN, O, O, CARRY2
END

SYM, AB-1-14, AND
PiN, 1,[,B2

PIN, 2,1, X3-2

PIN, C, Q, AB-14
END

SYM, Output-13, NAND

-92-

PIN, 1,1,CO

PIN, 2,1, 1

PIN, O, O, X1-3
END

SYM, Cutput-12, NAND
PIN, 1,1, C1

PIN, 2,1, A_NCT-3
PIN, O, O, X2-3
END

SYM, Qutput-11, NAND
PIN, 1,1, X2-3

PiN, 2,1, X1-3

PIN, O, O, X3-3
END

SYM, S-5-10, XOR
PIN, 1,1, X3-3

PIN, 2,1, B1

PIN, 3, |, CARRY0
PIN, O, O, F1

END _

SYM, AC-4-10, AND
PIN, 1,1, X3-3

PIN, 2, |, CARRY0D
PIN, O, O, AC-10
END

SYM, BC-3-10, AND
PIN, 1, 1, B1

PIN, 2,1, CARRY0
PIN, O, O, BC-10
END

SYM, Co-2-10, OR
PiN, 1,1, AB-10

PIN, 2, |, BC-10

PIN, 3,1, AC-10

PIN, O, O, CARRY1
END

SYM, AB-1-10, AND
PIN, 1,1, B1

PIN, 2, 1, X3-3

PIN, O, O, AB-10
END

SYM, Cutput-9, NAND
PIN, 1,1, CO

PIN, 2,1, {0

PIN,O, O, X1-4
END

SYM, Quiput-8, NAND
PIN, 1,1, C1

PIN, 2,1, A_NOT-4
PIN, O, O, X2-4
END

SYM, Output-7, NAND

-93 -

PIN, 1,1, X24

PIN, 2,1, X1-4

PIN, O, O, X34
END

SYM, 8-5-6, XOR
PIN, 1,1, X3-4

PIN, 2,1, B0

PIN, 3,1, CIN

PIN, 0,0, FO

END

SYM, AC-4-8, AND
PIN, 1,1, X34

PIN, 2,1, CIN

PIN, O, O, AC-6
END

SYM, BC-3-6, AND
PIN, 1,1, B0

PIN, 2, |, CIN

PIN, O, O,BC-6
END

SYM, Co-2-6, OR
PIN, 1,1, AB-6

PiN, 2,1, BC-6

PIN, 3,1, AC-6
PIN, O, O, CARRY0
END

SYM, AB-1-8, AND
PiN, 1,1, B0

PIN, 2,1, X3-4

PIN, O, O, AB-6
END

SYM, Q3-4-5, DFF
PIN,C, |, CLK
PIN,D, |, 13

PIN, Q, 0, B3

END

SYM, Q2-3-5, DFF
PIN,C, I, CLK
PIN,D, I, 12

PIN, Q, O, B2
END

SYM, Q1-2-5, DFF
PIN, C, |, CLK
PIN,D, |, 1

PiN, Q, O, B1

END

SYM, Q0-1-5, DFF
PIN,C, |, CLK
PIN,D, 1,10

PIN, Q, O, BO

END

SYM, INVERTOR-4, INV
PIN, O, O, A_NOT-4

-94 -

PIN,{ L, IO

END

SYM, INVERTOR-3, INV
PiN, O, O, A_NOT-3

PIN, I, 1L, H

END

SYM, INVERTOR-2, INV
PIN, O, O, A_NOT-2

PiN, I, 1, 12

END

SYM, INVERTOR-1, INV
PIN, O, O, A_NOT-1

PIN, 11,13

END

SYM, ALU_BODYS6, OBUF
PIN, O, O, 04

PIN, 1,1, COUT

END

SYM, ALU_BODY?7, IBUF
PIN, O, O,CLK

PIN, 1,1, SW7

END

SYM, ALU_BODYS, IBUF
PIN, O, O, CIN

PIN, I, |, SW4

END

SYM, ALU_BODYS, IBUF
PIN, O, 0O, CH

PIN, |, 1, SW6

END

SYM, ALU_BODY10, IBUF
PIN, O, O, CO

PIN, I, 1, SW5

END

SYM, ALU_BODY11, OBUF
PIN,O, 0,03

PIN, I, 1, F3

END

SYM, ALU_BODY12, IBUF
PIN,O, O, 13

PIN, I, 1, SW3

END

SYM, ALU_BODY13, OBUF
PIN, O, O, 02

PIN, 1,1, F2

END

SYM, ALU_BODY14, IBUF
PIN,O, O, 12

PIN, I, 1, SWe

END

SYM, ALU_BODY15, OBUF
PIN, O, O, O1

-95 -

PIN, 1, |, F1

END

SYM, ALU_BODY186, IBUF

PIN,O, O, I

PIN, I, 1, SW1

END

SYM, ALU_BODY17, OBUF

PIN, O, 0,00

PIN, 1,1, FO

END

SYM, ALU_BODY18, IBUF

PIN,O, 0,10

PIN, I, I, SWO

END

EXT, SW7, |,, LOC=P11, BLKNM=SW7
EXT, SW8, |,, LOC=P13, BLKNM=SW8§
EXT, SW5, |,, LOC=P15, BLKNM=SW5
EXT, SW4, {,, LOC=P17, BLKNM=SW4
EXT, SW3, |,, LOC=P18, BLKNM=SW3
EXT, SW2, |, LOC=P21, BLKNM=SW2
EXT, SW1, |, LOC=P23, BLKNM=SW1
EXT, SWO, I, LOC=P24, BLKNM=SW0
EXT, O4, O,, LOC=P33, BLKNM=04
EXT, O3, O, LOC=P32, BLKNM=03
EXT, 02, O,, LOC=P31, BLKNM=02
EXT, Ot, O,, LOC=P30, BLKNM=01
EXT, 00, O,, LOC=P29, BLKNM=00
EOF

-96 -

APPENDIX B

USER'S GUIDE

Very High Speed Integrated Circuit Hardware Description Language (VHDL) is a
language being developed to describe simple and complex hardware systems. It provides
the capability to hierarchically describe systems by their architectures, by their dataflow,

by their behaviours, or a combination of the three.

A VHDL architectural description is used to describe Xilinx Logic Cell Array
(LCA) designs. The designs are mainly based on standard or custom cells and connections
of these cells. The VHDL compiler can generate Xilinx Netlist Format (XNF) files for
LCA implementation tools which generate the configuration program to configure an LCA
device. This section defines the VHDL subset and provides the procedure to

implementation a circuit design in LCA using the VHDL compiler.

B.1. SUPPORTED LANGUAGE SYNTAX

In VHDL, the primary element is called a design entity, which describes a system,
subsystem, or cell. A design entity consists of two parts, an interface and an architecture
body. The interface defines the input and output ports of the entity. The architecture body

defines the function of the entity in one of three forms: architectural, dataflow, and

-97-

behavioral description, or combination of the three.

An architectural description consists solely of instances, which define the
occurrence of some component which comprises a part of the entity. Components can be
standard cells or entities which are defined elsewhere. The connection of instances is
- accomplished by referencing the ports on the instances to ports of the entity as well as to
internal signals. signals are basically local points within an entity used to define electrically

connected nodes.

Signals and ports are of a specific type. The simplest and most common predefined
type is BIT. A BIT is a single line which can take on a single value and connect single
ports together. Four other types BIT_X, BIT_C, BIT_N, and BIT_L are predefined to
support LCA design. The X parameter on a signal tells the partitioning algorithm to make
this signal an explicit LCA net. Any signal which does not have the X parameter specified
for it may be pulled into a CLB logic function during partitioning. The X parameter is
useful for controlling the partitioning algorithm in certain cases. The C parameter indicates
that the signal is on a critical path and that all efforts should be made to minimize the delay
through this signal. This affects the partitioning algorithm and is also passed along to the
automatic placement and routing (APR) program. The N parameter indicates that the timing
of the signal is non-critical and all other signals should take precedence over it. This affects
the partitioning algorithm and is also passed along to the APR program. The L parameter is
passed along to APR and tells APR that this signal should be routed using a long-line on
the LCA. You can define new types such as an array of BITS of some arbitrary size for

easily describing buses.

. 98-

Ports also have a mode associated with them such as IN, OUT, DOT NOT (open
collector). INOUT (bidirectional), and LINKAGE (unknown). The mode of a port can be
used to check design errors such as two OUT ports connected together, nothing driving an
IN port. A pin declaration associated with port is added into the VHDL to define the pin

number of a I/O port.

The following describes the syntax of the portion of the VHDL language that is
supported by the compiler. While it is not a majority portion, it still provides a sufficient
method of describing LCA designs, and also a base for further development of the

compiler. Note that a VHDL description tends to be self-documenting.

The form of the VHDL statement definitions is given using a simple variant of
Backus-Naur Form:

1. Reserved keywords are given in boldface.

2, A vertical bar separates alternative items.
3. Square brackets enclose optional items.
4. Braces (i.e. {}) enclose a repeating item (zero or more repetition).

B.1.1. General Syntax

The computer parses the VHDL file into tokens. The end of line is simply

considered to be a delimiter between tokens. Thus statements can span as arbitrary number

of lines to improve readability. The maximum length of an input line is 80 characters.

-99 -

B.1.1.1. Comments

Comments can appear anywhere in the file. The start of a comment is indicated by

adjacent minus signs:
start_of_comment :i=--

The comment ends at the end of the line. Thus any text appearing after the start of a

comment is ignored.

Example: signal X1, X2, X3:BIT; --The part after the '--'is a comment.

B.1.1.2. Identifiers

Identifiers distinguish interfaces, bodies, signals. Identifiers must start with an alphabetic

character (A-Z) with the rest of the name alphanumeric characters or the underscore '_"
identifier ::= letter {{underline] letter_or_digit}

Note that identifiers are treated case insensitive, i.e. lowercase letters and uppercase letters
are considered to be identical. Also identifiers may not terminate with an underscore. An
identifier must be a minimum of one character in length and a maximum of 80 characters in
length. Identifiers may NOT be the same as one of the reserved keywords of VHDL. A

list of reserved keywords can be found in Appendix C.

Example: Alpha Bus16 |D_example

-100 -

B.1.1.3. Expressions

The full range of integer expressions is supported. It incorporates the usual

precedence (multiplication before addition etc.). Expressions have the form:

expression = relation {AND relation}
| relation {OR relation}

| relation {NAND relation} \

| relation {NOR relation}
| relation {XOR relation}

where the logic operators (AND, OR. ...) follow the normal Boolean rules. Relations are

of the the forms:

relation ::= simple_expression [relational_operator simple_expression]

relational_operator = =

/=] <>
| <
| <=]=<
| >
|>=]=>

simple_expression ::

adding_operator ::= + |-

-- equals

-- not equals

-- less than

-- less than or equal to

-- greater than

-- greater than or equal to

[sign] term {adding_operator term}

term ::= factor {multiplying_operator factor}

*

|/
| MOD
| REM

multiplying_operator ::=

factor :== primary [** primary]
| ABS primary

- 101 -

-- multiply

-- divide

-- modulus
-- remainder

-- to the power
-- absolute value

| NOT primary -- not
primary = name

| integer
| (expression)

For the primary, the name must be a variable of type integer. Note that integer refers to

both positive and negative integers.

Example: 6+2
6+2"i>10 -- FALSE ifi=2
6+2)"i>10 - TRUE ifi=2

B.1.2. Interface Declaration

The interface declaration defines the input and output ports for an entity. The form

of an interface declaration is:

interface_declaration ::=
entity entity_name is
port (formal_port_list);
[pins (pin_list);]
end [entity _name];

where the entity_name is an identifier. The entity_name after the end statement is optional

but if present, must be the same as the first one.

B.1.3. Formal Port List

A formal port list describes the input and output ports for an interface declaration as

-102 -

well as a component declaration. It is of the form:

formal_port_list ::= port_declaration {; port_declaration}
port_declaration ::= identifier_list : port_mode port_type
identifier_list ::= identifier {, identifier}

port_mode ::= [in] | [dot]out | inout | linkage

port_type :: = type_name | BIT

If no port_mode is specified, a default of in is assumed. The port_type must be either BIT

of some user defined type.

B.1.4.

form:;

Pin List

A pin list declaration assigns the ports of a entity to I/O pins of a LCA. Isis of the

pin_list ::= pin_association { ; pin_association }

pin_association ;= simple_name : PINNUM
| indexed_name : PINNUM

simple_name ::= identifier

indexed_name ::= identifier (simple_expression)

The PINNUM is the pin number of a LCA in the form of Pxx. The xx represents a two
digits number.

Example: entity DFF is
port (reset, clock : in BIT; q, gB: out BIT);
pins (reset : Pi12;

- 103 -

clock : P14;

qg: P26;

qB : P27;)
end DFF;

B.1.5. Architectural Body Declaration

Associated with an interface declaration is an architecture body describing the

internals of the entity. The architectural description has the following form:

architectural_body_declaration ::=
architecture body_name of entity_name is
body_declarative_part
begin
set_of statements
end [body_name];

body_declarative_part ::= {body_declarative_item}

body_declarative_item ::=
component_declaration

| signal_declaration

| type_declaration
where body_name is unique identifier and entity_name is the name of the associated
interface declaration. Note that the interface declaration must occur before the body
declaration.
Example: architecture A_body of four_bit_counter is

component rdff

port (d, reset, clock :in BIT; q, gb : out BIT);
end component;

signal t1, t2,t3, t4 : BIT,

-104 -

begin
bit0: port map rdff(t1, reset, clock, g0, t1);
bit1: port map rdff(t2, reset, t1, qi, t2);
bit2: port map rdff(t3, reset, 12, g2, t3);
bit3: port map rdfi(t4, reset, 13, g3, t4);
end A_body;

B.1.6. Component Declaration

Component declarations define the entities of instances declared in the
set_of_statements of a body. It serves to document the design by having all declarations
within the body where they are used. It also allows the use of components externally

defined somewhere else. A component declaration is in the form:

component_declaration ::=
component component_name port (formal_port_list)

where component_name is the name of the actual gate or entity.

Example: component rdff port (d, reset, clock :in BIT; q, gb : out BIT);

B.1.7. Signal Declaration

A signal declaration defines internal signals of an entity which are used in

connecting instances together. The form of a signal declaration is:

signal_declaration ::= signal identifier_list : type_mark ;

identifier_list ::= identifier {, identifier}

- 105 -

type_mark ::= type_name
| BIT
| BIT_X
| BIT_C
| BIT_N
| BIT_L

Example: signal t1, t2, 3, t4 :BIT,;

B.1.8. Type Declaration

Currently the only supported user defined type is an array of bits of the form:

type_declaration ::=
type type_name is array
(simple_expression to simple_expression) of BIT;
where the two simple expressions define a start and end range of the array. Note that the
range must be of type integer but can be either ascending or descending.
Example: type gbus is array (0 to 14) of BIT;
Thus, gbus is a type of fifteen bits starting at zero and ending at 14.

Indexed names are used to refer to a single element of an array. Thus if R is
of type gbus, R(2) refers to the third element of R.

B.1.9, Set of Statements

The set of statements of an architectural description defines the instances
comprising an entity. The order of the statements is unimportant as it is the set and not the

sequence of the statements which define the topology. The form is:

set_of_statements ::= architectural_statement {architectural_statement}

- 106 -

architectural_statement ::= component_instantiation_statement
| generate_statement

B.1.9.1. Component Instantiation Statement

A component instantiation statement creates one instance of a component in the

body of an entity. It is of the form:

component_instantiation_statement ::=
[label:] port map component_name (actual_port_list);

actual_port_list ::= port_association {, port-association}

port_association ::= simple_name | indexed_name
The label is optional but is useful in identifying the instance. The actual port list must
match the associated component formal port list by sequence in terms of number of ports

and type of ports. A simple name is an identifier while an indexed_name refers to a single

element of an array.

Example: bit0: rdff port map (t1, reset, clock, t1);

B.1.9.2. Generate Statement

The generate statement provides a means of selectively and repetitively calling a set
of statements. This is very useful for defining regular structures. The generate statement

has the form:

generate_statement ::=
[label:] generate_scheme generate

- 107 -

set_of statements
end generate [label];

generation_scheme ::= for identifier in discrete_range
| if condition

condition ::= (expression)

discrete_range ::= simple_expression to simple_expression

If the optional label is included for the generation statement, it must appear both at the start
and the end of the statement. The for generate scheme calls the set of statements the
number of times indicated by the discrete range with the identifier taking on the present

value of the discrete range:

Example: bits: foriin 1 to 3 generate
rdff port map (t(i), reset, t(i-1), q(i), t(i)),
end generate bits;
Thus the component instantiation is called three times with i equal to
1 for the first call, 2 for the second, and 3 for the last call.

The if generate scheme checks a Boolean expression (condition) and if TRUE (not
zero), calls the set_of_statements. This is useful to take care of special conditions at the

beginning or end of a regular structure.

Example: bits: foriin O to 3 generate
if i = 0 generate
rdff(t(i), reset, clock, qfi), i(i);
end generate;
if i > 0 generate
rdff(t(i), reset, t(i- 1), qfi), t(i):
end generate;
end generate bits;

This is equivalent to:

- 108 -

port map rdff(t{0), reset, clock, q(0), t(0);
port map rdff{ t(i), reset, y(0), q(1), t(1);
port map rdff(t(2), reset, {1}, gq(2), t(2);
t 1(3);

(
{
(2),

port map rdff(t(3), reset, t(2), q(3),

B.1.10. Package Declaration

Package provides a means of declaring types once which can be used in several
interface and body declarations. The form of a package declaration is:
package_declaration =
package package_name is

package_declarative_part
end [package_name];

package_declarative_part ::= type_declaration; {type_declaration;}

Example: package buses is
type BYTE is array (7 to 0) of BIT;
type WORD is array (15 to 0) of BIT;
end;

For an interface or a body to have access to the contents of a package, the "use"
clauses are used. The clause must immediately precede each interface of body declaration
where types are required. Note that if an interface declaration has access to the contents of
a package, its associated body antomatically has access to its contents (without another use

clause required). The syntax of the with and use clause is:

use_clause ::= use package_name, { package_name };

Example: use buses;

-109 -

B.2. LCA Design Procedure Using the VHDL Compiler

The procedure of LCA design using the VHDL compiler is shown as follows in steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step S:

Create and edit the VHDL design file on SUN workstation using the text editor
vi or textedit. The filename must have the extension HDL.
Run the VHDL compiler on SUN3 or SUN4:

vhd12xnf3 [-Ppart] filename HDL
for SUN3 and

vhdi2xnf4 [-Ppart] filename . HDL
for SUN4; or

vhdi2xnf3 or vhd12xnf4
using the prompts provided by the compiler. The parameter part is the number
of the LCA part to be used. The default is XC2064PC68. The compiler creates
a XNF file with the name of the highest entity in the form of
entity name.XNF.
If there is no error reported by the compiler, then continue; otherwise, go
back to Step 1.
Transmit the file entity name.XNF to the PC station for the LCA development
system through ethernet.
Use the LCA development system to implement and verify the design. See the
LCA user's manuals for details.
If the design passes the verification, then continue; otherwise, go back to
Step 1.

Design the Printed Circuit Board using the LCA.

- 110-

C.1.

C.2.

APPENDIX C

KEYWORD LIST

Keyword List of Supported VHDL Subset

abs and architecture array
begin component dotout end
entity for | generate if

in inout is linkage
mod nand nor not

of or out package
pins port rem signal
standard to type use

Xor

Predefined Types for the Supported VHDL Subset

bit

bit_x bit ¢ bit_n bit_1

- 111 -

APPENDIX D

GRAMMAR OF SUPPORTED VHDL SUBSET

The form of the VHDL statement definitions is given using a simple variant of

Backus-Naur Form:

L. Reserved keywords are given in boldface.

2. A vertical bar separates alternative items.

3. Square brackets enclose optional items.

4, Braces (i.e. {}) enclose a repeating item (zero or more repetition).

start_of_comment ::=--
identifier ::= letter {[underline] letter_or_digit}

expression = relation {AND relation}
| relation {OR relation}
| relation {NAND relation} \
| relation {NOR relation}
| relation {XOR relation}

relation ::= simple_expression [relationai_operator simple_expression]

relational_operator ;= = -- equals
: | /= <> -- not equals
| < -- less than
<=|=< -- less than or equal to
| > -- greater than
| >=]=> -- greater than or equal to

simple_expression = [sign] term {adding_operator term}
adding_operator = + | -

term ::= factor { multiplying_operator factor }

multiplying_operator :i= * -- multiply
|/ -- divide
| MOD -- modulus
| REM -- remainder
factor ;== primary [** primary] -- to the power
| ABS primary -- absolute value
| NOT primary -- not

primary ::= name
| integer
| {(expression)
interface_declaration ::=
entity entity_name is
port (formal_port_list);
[pins (pin_list);]
end [entity_name];
formal_port_list ::= port_declaration {; port_declaration}
port_declaration ::= identifier_list : port_mode port_type
identifier_list ::= identifier {, identifier}
port_mode ::= [in] | [dot]out | inout | linkage
port_type :: = type_name | BIT

pin_list ::= pin_association { ; pin_association }

pin_association ;= simple_name : PINNUM
| indexed_name : PINNUM

- 113 -

simple_name ::= identifier
indexed_name ::= identifier { simple_expression)

architectural_body_declaration ::=
architecture body_name of entity_name is
body_declarative_part
begin
set_of_statements
end [body_name];

body_declarative_part ::= {body_declarative_item}

body_declarative_item ::=
component_declaration
| signal_declaration
| type_declaration

component_declaration ::=
component component_name port (formal_port_list)

signal_declaration ::= signal identifier_list : type_mark ;
identifier_list ::= identifier {, identifier}

type_mark ;= type_name
| BIT
| BIT_X
| BIT_C
| BIT_N
| BIT_L

type_declaration ::=
type type_name is array
(simple_expression to simple_expression) of BIT;

set_of_statements ::= architectural_statement {architectural_statement}

architectural_statement ::= component_instantiation_statement
| generate_statement

-114 -

component_instantiation_statemeant ::=
[label:] port map component_name (actual_port_list);

actual_port_list ::= port_association {, port-association}
port_association ::= simple_name | indexed_name
generate_statement ::=
[label:] generate_scheme generate
set_of statements

end generate [label];

generation_scheme = for identifier in discrete_range
| if condition

discrete_range ::= simple_expression to simple_expression
condition ::= (expression)
package_declaration =
package package_name is
package_declarative_part

end [package_name],

use_clause ::= use package_name, { package_name };

-115-

E.L

List of 2000

74-138
74-161
74-42
and2b2
and3b3
and4b3
¢10bprd
clébeprd
c256fcrd
c2brd
chjcr
d2-4

fdc
fdmrd
fds

fiks

STANDARD XNF LIBRARY LIST

APPENDIX E

Series Library

74-139
74-164
aclk
and3
and4
and4b4
c10jcr
cl6berd
c2ber
c4bcp
c8bep
d2-4e
fder
fdms
fdsd

fiksd

74-151
74-194
and2
and3b
and4b
buf
cl2jer
cl6bprd
c2berd
cdber
c8ber
d3-8
fdcs
fdmsd
fdsrd

fiksrd

- 116 -

74-152
74-195
and2b
and3bl
and4bl
c10beprd
clébard
clébudrd
c2bp
c4berd
c8berd
d3-8e
fdm

fdr

fik

frs

74-160
74-352
and2bl
and3b2
and4b2
c10berd
cl6bepr
cléjer
c2br
cdjcr
c8jer

fd

fdmr
fdrd
fjked

fsr

gadd
gmux
ibuf

ldm
ldsrd
m8-1
nand2b2
nand3b3
nand4b3
nor2bl
nor3b2
nordb2
or2
or3b
ordb
rd4
rs8cr

xnor4

ft0
ftprd
gelk
gnd
inff
ldmrd
m3-1
m8§-1le
nand3
nand4
nand4b4
nor2b2
nor3b3
nor4b3
or2b
or3bl
or4bl
rd8
rs8pr

xor2

ftOr

ftr
gecomp
gpar
inv
ldmsd
m3-1le
nand2
nand3b
nand4b
ndff
nor3
nor4
nor4b4
or2bl
or3b2
ordb2
rd8cr
rs8r

xor3

- 117 -

ft2
ftrd

geqst
gxor
ioff

1drd
m4-1
nand2b
nand3bl
nand4bl
nor2
nor3b
nor4b
obuf
or2b2
or3b3
ordb3
154
xnor2

xord

ft2r

fts

gmaj
gxtl

1d

ldsd
m4-le
nand2bl
nand3b2
nand4b2
nor2b
nor3bl
nordbl
obufz
or3

or4
or4b4
rs8

xnor3

E.2. List of 3000 Series Library

74-138
74-161
74-195
and2b
and3bl
and4bl
and5b
and5b5
c10jcr
cl6beprd
c256bep
c2bcp
c2br
cdberd
cdjxrd
c8berd
d3-8e
fdcs
fdr
fiks
ftOr

frrd

74-139
74-162
74-352
and2bl
and3b2
and4b2
and5Sbl
buf
cl2jcr
cl6berd
c256bcpr
¢2beprd
c2brd
cdjx
chjer
c8jcr

fd

fdm
fdrd

frs

fts

74-151
74-163
74-42
and2b2
and3b3
and4b3
and5b2
¢10bcprd
cl6bard
cl6bprd
c256bcr
c2ber
c4bcp
cdjxc
c8bcp
d2-4
fdc
fdmr
fds

fsr

ftp
gadd

- 118 -

74-152
74-164
aclk
and3
and4
and4b4
and5b3
c10berd
clébcp
cl6budrd
¢256bcrd
c2berd
cdbeprd
cdixcr
c8bcprd
d2-4de
fdcr
fdmrd
fik

ft

ftprd

gelk

74-160
74-194
and2
and3b
and4b
and5
and5b4
c10bprd
clébepr
clgjer
c256fcrd
¢2bp
cdber
cdjxcrd
c8ber
d3-8
fdcrd
fdms
fikrd
ft0

ftr

gecomp

gligt
inff
Idsd
md-le
nand2b
nand3bi
nand4bl
nand5b
nand5b5
nor2b2
nor3b3
nor4b3
nor5b2
obufz
or2b2
or3b3
or4b3
or5b2
outff
rd8
rsdcr
rs8cr
tbuf

xor2

gmux
inlat

Irs

m4-2
nand2bl
nand3b2
nand4b2
nand5bl
ndff
nor3
nor4
nor4b4
nor5b3
oinv

or3

or4
ordb4
or5b3
outffz
rd8cr
rsdcrd
rs8crd
xnor2

xor3

gnd

inv
m3-1
m8§-1
nand2b2
nand3b3
nand4b3
nand5b2
nor2
nor3b
nordb
nors
nor5b4
or2
or3b
or4b

ors
or5b4
pullup
rd8rd
rs4rd
rs8pr
xnor3

xord

-119-

gxtl

Id
m3-le
m8-1le
nand3
nand4
nand4b4
nand5b3
nor2b
nor3bl
nor4bl
nor5b
nor5b5
or2b
or3bl
or4bl
or5b
or5b5
rd4
rs4

s8
1s8r
xnor4

xorS

ibuf
ldrd
m4-1
nand2
nand3b
nand4b
nand5
nand5b4
nor2bl
nor3b2
nor4b2
nor5bl
obuf
or2bl
or3b2
or4b2
or5bl
osc
rd4rd
rsdc
s8¢
rs8rd

xnors

APPENDIX F

PROGRAM LIST

Ak hdkkdd Vhdi h LA R SRR ot a e et it R el ey el I IR eI YT LY

Ii

Data structure for compilation program. Ivtemal VHDL representation.

*/

#define TRUE 1
#define FALSE 0

typedef struct Symbol {
char *name;
int type;
int val;
struct Symbol *next;
} Symbol;

Symbol *install(}, *lookup();
typedef union Datum {
int val;
Symbol *symb;
} Datum;
extern Datum pop{};

typedef int (*Inst)();
#define STOP (Inst) 0

/* compilation instruction code */
extern Inst prog(], *progp, *code();

7 symbol table entry */

/* symbol name */

* keywords, integer, identifier ... */
/* viaue */

I to link to another */

f* compiler stack type */

f* compilation instruction */

extern intpush(), idpush(), execute{);

extern pcode(), chkp(), wcode(), ucode(), ecode(), chke(), ppcode();
extern acode(}, chka(), tcode(}, cdcode(), fpcode();

extern idfirst(), idlist(), scode(), cicode(), chkel(}, apcode();

extern simname(), forcode(), ifcode(), chkgl(};

extern eq(), ne(), i), le(), gt(), ge();

extern and(}, nand(}, or(), nor(}, xor{);
extern add(}, sub{}, mul{), div(), mod(), rem();
extern power(}, negate(), abs(), not{), eval();

-120 -

typedef struct Type {
struct Type *next;
char *name;
int int1,int2;

} Type;

typedet struct Package {
struct Package *next;
char *name;
Type *types;

} Package;

typedef struct Clause {
Package *units;
struct Clause *next;
)} Clause;

typedef struct Fport {
struct Fport *next;
char *name;
int mode;
int type;
char *type_name;
} Fport;

typedef struct Pport {
struct Pport *next;
char *name;
int index;
char *pad,;

} Pport;

typedef struct Cdecl {
struct Cdecl *next;
char *name;
int type;
Fport *ports;

} Cdecl;

typedef struct Aport {
struct Aport *next;
char *name;
int type;
int index;

} Aport;

typedef struct Cinst {
struct Cinst *next;
char *label;
char *name;
int type;
Apoit *ports;

} Cinst;

" type declaration list */

/* next on the linked list of type */
* type name */

" lype range */

* package declaration list */
/* next on the linked list */
f* package name */

* types in the package */

/" with-use clause list */
/* package name in with-use clause */
I next package */ '

I* formal port declaration list */

/* next no the linked list */

/* formal port name */

1IN, OUT, .. Y

* BIT, TYPE_NAME */

/* if TYPE_NAME, then type name */

/* pin list of an entity */

/" next on the linked list */

/* tormal port name */

/* index, -1 for simple name */

f* component declaration list */

f* next on the linked list */

f* component name */

/* a component cell or an entity */

/* fomrmal port of the component */

I* actual port declaration */

f* next on the linked list */

f* actual port name */

* signal or entity formal port */
f* index, -1 is simple name */

f* component instance list */
/* next on the linked list */

* label */

f* component name */

I* component cell or entity */
* actual port */

-121-

typedef struct Sig {
struct Sig *next;
char *name;
int type;
char *type_name;
) Sig;

typedef siruct Entity {
struct Entity *next;
char *name;
Fpon *ports;
Pport *pins;
Clause *clause;
char *body;
Cdecl *cdecls;
Type *types;
Sig *sigs;
Cinst *cinsts;

} Entity;

#ifdef CODE

Entity *firstentity = NULL,;
Package *firstpackage = NULL,;
Type *firsttype = NULL;
Clause *firstclause = NULL;
Pport *firstpport = NULL;
Fport *irstiport = NULL;
Aport *firstaport = NULL;
Cinst *firstcinst = NULL,;
Sig *firstsigl = NULL;

Cdecl "irstcdecl = NULL;
#else

extern Package *firstpackage;
extern Entity “firstentity;
extern Type *firstiype;
extern Clause *firstclause;
extern Pport *firstpport;
extern Fport *firstiport;
extern Aport *firstaport;
extern Cinst *firstcinst;
extern Sig *firstsigl;

extern Cdecl *firstcdecl;
#endif

" signal declaration list */

/* next on the linked list */

/* signal name */

M BIT, X, N, C, L, TYPE_NAME"/
M i TYPE_NAME, type name */

7 entity list */

/* next on the linked list */

/* entity name */

/* entity formal port */

I* entity pins */

f* with-use clause list */

/* architectural body name */
I component declaration list */
/* type declaration list */

/* signal declaration list */

/* component instance list */

thddthdd vrxﬂ c hhkhhth bbbt A A A AR AR A AT AN AR AR d Rt d bbb kbR kbbb d btk bk hh i hdd

l‘i'i****i‘tiﬁ*‘*iﬁ.ﬁtiliti."*tit‘l"i’titi’ﬁ‘t!..QiQtfi‘t‘li’iltit’!t*titiIlitttitI’iii‘iItiitititiit'tittll

" vhdi2xnf

P

r AUTHOR: Bing Liu

I Dept. of Electrical and Computer Engineering
/* University of Manitoba

-122 -

*/
*
*f
*/
*

/i
/i
/*
/*
/i
/*
lt
/*
lt
li
lt
lt
/t
/*
It
li
/Q
/i
lt
li
lt
/t
/t
/i
/*
/*
/t
/*

Winnipeg, Manitoba, Canada

R3T 2N2
DATE: Sept. 6, 1989
REVERSION NUMBER: 2

REVERSION DATE: Sept. 11, 1989

DESCRIPTION: This program reads a hierarchial VHDL structural
description design file and compiles it into unfiattened
Xilinx Netlist Format (XNF) files. The XNF files are flattened
by the FLATTEN medule.

This program uses vhdl.h, init.c, symbol.c, parser.y, scanner.|,
code.c, crenet.c, and modules form Xilinx, such as netread.c,
netwrite.c, netutil.c, netparse.c, net.h and flatten.c.

ARGUMENTS: VHDL filename -- name of VHDL design file to be read.
parttype -- option, default is 2064pc68-33

EXTERNAL VARIABLES:
buff -- buffer for string operation
yyin --file pointer to VHDL file, declared in LEX.
linenio -- VHDL file line counter
pgm_name-- the name of this compiler
pgm_ver -- reversion number
parttype-- LCA parttype humber
hdiname-- VHDL source filename

f
*f
*f
*f
*f
*
*
*f
*
*f
*f
*
f
f
*/
*
*f
f
*
*/
*/
*
*f
*f
*f
*
*f
i

/itittil*ii‘ii!lilt’*i.iii.IiiQitili{Gl&i*ttti‘tili’titiii’tti‘t*ilillititilittiiItiiiitiiiitiii‘t*t.tili*t/

#include <stdio.h>
#include <ctype.h>
#include "vhdl.h"

char *stralloc();
char *pgm_name; /* the name of this compiler */
char *pgm_ver = "2.00"; I* reversion number */

char *parttype = "2064pc68-33";
char *vhdiname;

int lineno = 1;

char buff[125};

char msg[225];

int vhdlerr = 0;

extern FILE *yyin;

main (argc, argv) 7 vhdl.c*/
int arge;
char *argv(];

pgm_name = argv[0];
init();

/* LCA part number */

/* VHDL source filename */

* line counter of VHDL source file */

/* string operation buffer */

7 buffer for any message */

" semantics error counter */

* pointer to VHDL source file, used by LEX */

-123 -

it (arge==1) { f* No arguments - request file to read */

hdr(); f* print header */
printf("VHDL Filename: *); f* prompt for filename */
argvi2] = gets(buff); F* get filename */

if{(yyin=fopen(argv{2],"r"))==NULL) { * open file - check for errors */
sprintf(buff, "%s.hdl", argv(2]); /*check with extention®/
if({yyin=fopen{buff,"r")}==NULL} {
idupper{buff);
if{{yyin=fopen(buff,"r"}}==NULL) {
printf("Can't open %s \n",argv[2]);

exit{0);
}
}
argv2] = buif;
printf{("LCA part type: ™); * prompt fot partiype */
argv{1] = gets(msg); * get parttype */

if (msg[0] l= "0")
parttype = stralloc{argv{1]);
vhdliname = stralloc(argv[2])}; /* save VHDL filename */
printf{"VHDL design file is %s \n",argv{2));
}
if (arge==3) { * Correct # of arguments - open the file */
hdr(); f* print header */
if({yyin=fopen{argv[2],"r"))==NULL) { /* open file - check for errors */
sprinti{buff, "%s.hdl", argv{2)); /*check with extention®/
if{(yyin=fopen(buff,"r"))==NULL) {
idupper(buff);
if{(yyin=fopen{buff,"r"))==NULL) {
printf(*Can't open %s \n",argv[2]);
exit(0);
}

}
argv|2] = buff;

}
vhdlname = strafloc(argvi2]); /* save VHDL filename */
printf{("VHDL design file is %s \n",argv[2]};
strepy(buif, argv{1]);
it (buff{0] 1= "' || buff{1] = "p’) {
printf{"\nlitegal option\n™);
exit(0);
}
parttype = &buff[2];
parttype = stralloc(paritype);

}
if {argc==2) { * Correct # of arguments - open the file */
hdr{); /* print header */
if({yyin=fopen(argv[1],"r"))==NULL) { /* open file - check for errors */
sprintf{buff, “%s.hdl", argv{1]); /*check with extention®/
i({yyin=fopen(buff,"r"))==NULL) {
idupper(buff);
if{(yyin=fopen{buff,"r"))==NULL) {

- 124 -

printi{"Can't open %s \n",argv[1]);
exit(0);

}
argv{1] = buff;

}
vhdiname = stralloc(argv[1]); /* save VHDL filename */
printf("VHDL design file is %s \n",argv[1]);
}
if (argc > 3) { /* Too many inputs - issue error */
hdr(); 7 print header */
printi{"Error: Too many inputs.\nUsage: vhdi2xnf [-pparttype] <filename>\n");
exit(0);
}

inftcode();

if (yyparse() !=1) {
printf{(mnPassing VHDL sytanx checking.\n");

execute(prog);

}

else {
printf("\nStoped due to VHDL sytanx error.\n");
printi("Correct the error, please try again.\n");
exit{0};

}

crenet(); /" create hierarchical Xilinx Netlist Files */

it {(vhdlerr > 0) {
printf("\inStopped due to VHDL semantic error.\n");
exit{0});

}

sprintf(buff, "%s.HNF", firstentity->name); /* highest level XNF name */
fiatten(buff); /* flatten hierarchical Xilinx Netlist Files */

printf("nCompilation successfulin®);

}

f* --- end of main ----*/

/I’ *t*iitittiiittttiititi*ttiilti*il't*iii!.tt‘tililtltil'iltlt.tlitit!itiitit**t*ii’i/

I exceerror *
" *
/* AUTHOR: Bing Liu */
I Dept. of Electrical and Computer Engineering *
~ University of Manitoba i
" Winnipeg, Manitoba, Canada *
* R3T 2N2 */
/* DATE: August 6, 1989 !
" *
/ REVERSION NUMBER: 2 *!
/* REVERSION DATE: Sept. 11, 1989 *
I *

-125-

I DESCRIPTION: This program reads a hierarchial VHDL structural *

" */
 ARGUMENTS: VHDL filename -- name of VHDL design file to be read. */
" *

/‘ttiititiﬁiit‘ti‘iiti‘iitt‘QiQitt‘til".‘ii.‘i‘i‘ﬁ'tt*i.ﬁ“t‘ti.it‘*.ltttittittitl

execernor (s, 1) r* recover from run-time error */
char*s, 't;
{
waming(s, t};
vhdlerr++;
}

r*---end of exerror---*/

/tiiit!iltliitiitiiittt.*iiili’t!t.*'!iiiiiiiitit't.!i’til.ii!*it."’tttitti*i*ttt/

* yyerror *f
* Y
f AUTHOR: Bing Liu */
I Dept. of Electrical and Computer Engineering */
I University of Manitcba */
" Winnipeg, Manitoba, Canada */
I R3T 2N2 */
/* DATE: August 8, 1989 *
" *f
/* REVERSION NUMBER: 2 *
/* REVERSION DATE: Sept. 11, 1989 N
r” *
/* DESCRIPTION: This program reads a hierarchial VHDL structural *
* *
" ARGUMENTS: VHDL filename -- name of VHDL design file to be read. */
* *

/tﬂ*ﬁtitﬁ&*tititi*it***tttt.ii!ti*itiiiittit!ttit'tii*tiiiitti*ittti*titiiil***ilkl

yyerror (s) * called for yacc syntax error */
char's;

{
waming (s, {char *) 0); * indicate syntax error line number */

fprintf (stderr, * near line %A\n", lineno);

}
f*---end of yyerror--*/

ltii‘tiiiiliiti!ii.‘li’ti'iil*.*liilili.tiit!i*it‘iiilil’ti!itt‘t‘t’i*t*it*i*i*ﬁtt/

I warning *f
/t t/
/* AUTHOR: Bing Liu *f
* Dept. of Electrical and Computer Engineering */
/" University of Manitoba */
/* Winnipeg, Manitoba, Canada *f
r* R3T 2N2 *
/* DATE: August 6, 1989 */
" *f
/* REVERSION NUMBER: 2 *
/" REVERSION DATE: Sept. 11, 1989 *

- 126 -

" */

f* DESCRIPTION: This program reads a hierarchial VHDL structural *
" *
/M ARGUMENTS: VHDL filename -- name of VHDL design file to be read. */
" *

/**ii**ii’*iitt*iﬁt*ii*ilI.ti*."*iiQtiQﬁﬁitttiiiilitit.tttti*.lilt*titii*ittt*it*l

warning (s, t) /* print waming message */
char’s, *;

fprintf (stderr,"\n%s: %s", vhdiname, s);

£
fprinf (stder, * %s", 1);
return;

/*---end of warning---*/

lt*il*iikitiQiiii*ii**Q‘Qtt*ii*itiiitti*t***iii*iti*itii!iiititili&ttiiill

" hdr *f
!t tl
" AUTHOR: Bing Liu *
/* Dept. of Electrical and Computer Engineering */
/* University of Manitoba */
I Winnipeg, Manitcba, Canada */
I R3T 2N2 *
/* DATE: Sept. 11, 1989 */

/t*i*iiiitii*itttii!ii*ittttiiitiiiii*iii*iti*iti'tiiiltiii*titittiiii*i*l

hdr{) 7 Print header info */

{
printf("nvhdi2xnf, Version 2.00, November 2, 1989");
printf{"\n{c) Copyright 1989\nBing Liu");
print(™nDepartment of Electrical & Computer Engineering"};
printf("inUniversity of Manitoha™);
printf{"\nWinnipeg, Manitoba");
printf("\nCanada R3T 2N2\n\n\n");

return;

}
f*---end of hdr---*/

dhkdddhdn h1ﬁ c AR AR RN R A AR AR R A AR A AR AR AR R R A d AR Rk b kbR A AN A kA A kb kbt bbb Ak bk ok

#include "vhdl.h"
#include "x.tab.h"

static struct { * Keywords */
char *name;
int kval;

} keywords]] = {
"ABS", ABS,
*AFTER", AFTER,
"ALIAS", ALIAS,

- 127 -

"AND",

"ARCHITECTURE",

"ARRAY",
"ASSERTION",
"ATTRIBUTE",
"BEGIN",

"BEHAVIORAL",

"BODY",
“CASE",

"COMPONENT",

"CONNECT",
"CONSTANT",
"CONVERT",
"DOT",
"DOWNTO",
"ELSE",
"ELSIF",
"END",
"ENTITY",
"EXITT,
"FOR",
"FUNCTION",
"GENERATE",
"GENERIC",
n”:n,

”IN",
"INOUT™,
"IS",
"LINKAGE",
"LOOP",
"MOD",
"MAP",
"NAND",
"NEXT",
"NOR",
"NOT",
"NULL",
"OF",

"OR“,
"OTHERS",
"ouT",
"PACKAGE",
"PORT",
"PINS”,
"RANGE",
"RECORD",
"REM",
"REPORT",
"RESOLVE",
"RETURN",
"SEVERITY",
"SIGNAL",
"STANDARD",

AND,

ARCHITECTURE,

ARRAY,
ASSERTION,
ATTRIBUTE,
BEGIN_V,
BEHAVIORAL,
BODY,
CASE,
COMPONENT,
CONNECT,
CONSTANT,
CONVERT,
DOTOUT,
DOWNTO,
ELSE,
ELSIF,

END,
ENTITY,
EXIT,

FOR,
FUNCTION,
GENERATE,
GENERIC,
IF,

IN,

INOUT,

1S,
LINKAGE,
LOOP,
MOD,

MAP,

NAND,
NEXT,

NOR,

NOT,
NULL_V,
OF,

OR,
OTHERS,
ouT,
PACKAGE,
PORT,
PINS,
RANGE,
RECORD,
REM,
REPORT,
RESOLVE,
RETURN,
SEVERITY,
SIGNAL,
STANDARD,

- 128 -

/* avoid conilict with lex default */

/* avoid conilict with lex default */

init()

}

"STATIC",
"SUBTYPE",
*“THEN",
uTo-,
*‘TYPE",
"UNITS",
"USE",
"VARIABLE",
"WHEN",
"WHILE",
"WITH",
"XOR",
“BIT",
“BIT_X",
"BIT_C",
"BIT_N",
"BIT_L",

uon'

rrinstall keywords, primitives and library in tables */

inti;
Symbol *s;

for (i = 0; keywords{i].kval; i++)
install (keywords[i].name, keywordsli].kval, 0);

return;

- erd of init -----*/

ke kddkkdd

Symml c AR A A A A AN AR AN R A A AR A RN A IR A RAT AR AR ARk d R AR A h b A d kbbb hd b r b b hddddid

#include "vhdl.h"
#include "x.tab.h"

Symbo! *symlist = 0;

Symbol *lookup(s)
char's;

{
Symbol *sp;

return {0);

1

Symbol *instali(s, t, d)
char's;
intt, d;

{
Symbol *sp;
char *emalloc();

for {sp = symiist; sp = (Symbol *} 0; sp = sp->next)

STATIC,
SUBTYPE,
THEN,

TO,

TYPE,
UNITS,
USE,
VARIABLE,
WHEN,
WHILE,
WITH,
XOR,

BIT,
BIT_X,
BIT_C,
BIT_N,
BIT_L,

0

" symbol table: linkede list */

7 find s in symbol table */

if (strcmp(sp->name, s) == 0)

return (sp);
f* 0 ==> not found */

* install s in symbol table */

- 129 -

sp = (Symbol *) emalioc(sizeof{Symbol));

sp->name = emalioc(strien(s) + 1); f+1forn0' Y/
strcpy(sp->name, s);

sp->type =t;

sp->val = d;

sp->next = symilist; f*put at front of list */
symlist = sp;

return sp;

}

char *emalioc(n) I check return from malioc */
unsigned n;
{

char *p, *malloc();

p = malioc(n);

if (p==0) {
execerror("error 0: Out of memory", (char *) 0};
exit{0);

}

return p;

}

hkddkdidd E T T I I R R A R T I R I R R I T R I AR ST R ISR SR R RIS S SRR RS ISR S LR

parser.y

%ol
#include "vhdl.h"

#define code2(c1, ¢2) code(c1); code(c2)
#define code3d(c1, c2, c3) code{c1}); code(c2); code{c3)
Yo}
Yelnion { I* stack type */
Symbol *symb; /* symbol table pointer */
Inst *inst; /* translation instruction */

}
%token <symb> AFTER ALIAS ARCHITECTURE ARRAY ASSERTION ATTRIBUTE

%token <symb> BEGIN_V /7 avoid conflict with lex default */
%token <symb> BEHAVIORAL BIT BODY

%token <symb> CASE COMPONENT CONNECT CONSTANT CONVERT
%token <symb> DOTOUT DOWNTO

%loken <symb> ELSE ELSIF END ENTITY EXIT

%ioken <symbs> FOR FUNCTION

%token <symbs GENERATE GENERIC

%token <symbs IF IN INQUT IS

%token <symb> LINKAGE LOOP

%token <symb> MAP

%token <symb> NEXT

%loken <symbs NULL_V /* avoid conflict with fex defauft */
%loken <symb> OF OTHERS OUT

%token <symb> PACKAGE PORT

%token <symb> RANGE RECORD REPORT RESOLVE RETURN
%token <symb> SEVERITY SIGNAL STANDARD STATIC SUBTYPE
%token <symb> THEN TO TYPE ’

Y%token <symb> UNITS USE

-130 -

%token <symb> VARIABLE
Y%token <symb> WHEN WHILE WITH /*end of keywords list, not all are used*/
%token <symb> PINS IDENTIFIER LABEL
%ioken <symb> PINNUM BIT_X BIT_C BIT_N BiT_L INTEGER COM_NAME PACKAGE_NAME
%token <symb> ENTITY_NAME TYPE_NAME BODY_NAME SIG_NAME FPORT_NAME
%type <symbs> type_name package_name
%type <inst> generate_statement set_of_statements generation_scheme for
%iype <inst> architeciurai_statement component_instantiation_statement
%type «<inst> condition simple_expression term factor primary expression
%type <inst> label relation if entity_name component_name generate
%right '='
%left OR NOR XOR
%left AND NAND
%left EQNELTLEGTGE * relational_operator */
Yleft '+ r* adding_operator */
Yleft ™/ MODREM I* muitiplying_operator */
%left UNARYMINUS NOT ABS
Yleft POW r* popwer ** */
%%
list: f* nothing */

| list package_declaration

| list use_clause '}

| list entity_declaration

| list architectural_body_declaration

| list error { yyerrok;

printf (M\n");
return 1; /* stop when error*/}

package_declaration:
PACKAGE package_name IS
package_declarative_part
END '}’ { code(pcode); }
| PACKAGE package_name IS
package_declarative_part
END package_name ';' { code2(chkp, pcode); }

package_declarative_part:
type_declaration
| package_declarative_part type_deciaration

use__clat'Jse:
USE unit { code{ucode); }
| use_cfause '," unit { code(ucode); }
unit: '
package_name

package'_name:
IDENTIFIER { code2(idpush, (Inst)$1); }

entity_d'eclaration:
ENTITY enlity_name IS
entity_body

- 131 -

END'! { code(ecods); }
| ENTITY entity_name IS
entity_body
END entity_name '’ { code2(chke, ecode)}; }

entity_body:
port_clause "'
| port_clause '} pin_clause ';'
port_clause:
PORT '{' formal_port_list)’

pin_clau, se:
PINS (' pin_list ')’

pin_list:
pin_association
| pin_ist '} pin_association
pin_association:
simple_name "' PINNUM { code3(idpush, (Inst)$3, ppcode); }
| indexed_name "' PINNUM { coded(idpush, (Inst}$3, ppcode); }

architectural_body_declaration:

ARCHITECTURE body_name OF entity_name IS
body_declarative_part

BEGIN_V
set_of_statements

END " { code{acode); }

| ARCHITECTURE body_name OF entity_name IS

body_declarative_part

BEGIN_V
set_of_statements

END body_name ' { code2(chka, acode); }

body_nz;me:
IDENTIFIER { code2(idpush, (Inst)$1); }

body_declarative_part:
body_declarative_item
| body_declarative_part body_declarative_item

body_declarative_item:
type_declaration
| component_declaration
| signal_declaration

type_declaration:
TYPE type_name IS ARRAY
'(* simpie_expression TO simple_expression ')’
OF BIT '} { code{tcode); }

-132-

component_declaration:
COMPONENT component_name port_ctause ';’ { code{cdcode}; }
| COMPONENT component_name port_clause ;'
END COMPONENT *;' { code(cdcode); }

compon'ent_name:
IDENTIFIER { 3 = code2(idpush, (Inst)$1); }

entity_n'ame:
IDENTIFIER { $$ = code2(idpush, (Inst)$1); }

formal_port_list:
port_declaration
| formal_port_list *;’ port_declaration

port_deélaration: _
identifier_list ' port_mode port_type { code{fpcode); }

identitier_list:
IDENTIFIER { code3(idfirst, idpush, {Inst)$1); }
Videntifier_list’,' IDENTIFIER { code3(idlist, idpush, {Inst}$3); }

port_mode:

N { code2(idpush, (Inst)$1); }
|ouT { code2(idpush, {Inst)$1); }
| DOTOUT { code2(idpush, (Inst}$1}); }
| INOUT { code2(idpush, (Ins)$1); }

- | LINKAGE { code2(idpush, (Inst)$1}); }
port_type:

type_name
|BIT { code2(idpush, (Inst)$1); }

signai_d'eclaralion:
SIGNAL identifier_list "' signal_type ;' { code(scode); }

signai_t),(pe:

type_name
|1BIT { code2(idpush, (Inst}$1); }
| BIT_X { code2(idpush, (Inst}$1); }
|BIT_C { code2(idpush, {Inst}$1); }
| BIT_N { code2(idpush, {(Inst)$1); }
|BIT_L { code2(idpush, (Inst)$1}; }
type_name:

IDENTIFIER { code2(idpush, {Inst)$1); }
set_of_statements:
architectural_statement
| set_of_statements architectural_statement

architectural_statement:
component_instantiation_statement

- 133 -

| generate_statement

component_instantiation_statement:
label ' component_name PORT MAP '(' actual_port_list '}' "' {
code2(cicode, chkcl);}
| component_name PORT MAP '{' actual_port_list)'";'
{ code(cicode); }

actual _p'ort_iist:
pori_association { code(apcode); }
| actual_port_list ', port_association { code(apcode); }

port_association:
simple_name
| indexed_name

simple_ﬁame:
IDENTIFIER { code3{simname, idpush, (Inst)$1);}

indexed,_name:
IDENTIFIER '{" simple_expression ' { code2{idpush, (Inst}$1);}

generate_statement:
label "' generation_scheme generate
set_of_statements
END generate label ;' {
{$3)[1] = (Inst)$5;
($3)[2] = (Inst)$7;
code{chkgl); }
| generation_scheme generate
sel_of_statements
END generate '}’ {
($1)[1] = (Inst)$3;
($1)[2] = (Inst)$5; }
generate:
GENERATE { code(STOP); $$ = progp; }
label;
IDENTIFIER { $% = code2(idpush, (Inst)$1); }

generation_scheme:
for IDENTIFIER IN discrete_range { code2(idpush, (Inst}$2); }
| if condition

forr FOR {$8 =code3(forcode, STOP, STOP): }

discrete_range:
simple_expression TO simple_expression

it IF {$$=code3(ifcode, STOP, STOP): }

-134-

condition:
expression
expression:
relation
| expression AND expression { code{and); }
| expression NAND expression { code(nand); }
| expression OR expression { code(or); }
| expression NOR expression { code(nor); }
| expression XOR expression { code(xor); }

relation:
simple_expression
| simple_expression EQ simple_expression { code(eq); }
| simple_expression NE simple_expression { code(ne); }
| simple_expression LT simple_expression { codelty;)
| simple_expression LE simple_expression { code{le); }
| simple_expression GT simple_expression { code(gt); }
| simple_expression GE simple_expression { code(ge); }

simple_expression:
tem
| ' term %prec UNARYMINUS { $$ = $2; code(negate); }
| simple_expression '+ simple_expression { code{add}; }
| simple_expression '-' simple_expression { code(sub); }

term: factor
j term ™' term { code(mul); }
| term ¥ term { code(div); }
{ term MOD term { code(mod); }
| term REM term { code{rem); }

factor:
primary
| primary POW primary { code(power); }
| ABS primary { $$ = $2; code{abs); }
|NOT primary { 3 = $2; code(not); }
primary:
IDENTIFIER { $% = code3(idpush, (Inst)$1, eval); }
|INTEGER { $$ = code2(intpush, (Inst)$1); }
{'{" expression)' { $% = $2; }
°/o°/o

/* end of grammar */

hdddkhtdk x tab h ARRAAR AR AR AR AR RAN AR AR AR R R kR AR A AR AR Ak AR AR Ak b kb h b d b dd kb d b bt ddhddkdkdd

typedef union { * stack type */
Symbol *symb; /* symbol table pointer */
Inst *inst; * translation instruction */
} YYSTYPE;

-135-

extem YYSTYPE yyival;
define AFTER 257

define ALIAS 258

define ARCHITECTURE 259
define ARRAY 260

define ASSERTION 261
define ATTRIBUTE 262
define BEGIN_V 263

define BEHAVIORAL 264
define BIT 265

define BODY 266

define CASE 267

define COMPONENT 268
define CONNECT 269
define CONSTANT 270
define CONVERT 271
define DOTQUT 272

define DOWNTO 273

define ELSE 274

define ELSIF 275

define END 276

define ENTITY 277

define EXIT 278

define FOR 279

define FUNCTION 280
define GENERATE 281
define GENERIC 282

define IF 283

define IN 284

define INOUT 285

define IS 286

define LINKAGE 287
define LOOP 288

define MAP 289

define NEXT 280

define NULL_V 291

define OF 292

define OTHERS 293

define QUT 294

define PACKAGE 295
define PORT 286

define RANGE 297

define RECORD 298
define REPORT 299
define RESOLVE 300
define RETURN 301

define SEVERITY 302
define SIGNAL 303

detine STANDARD 304
define STATIC 305

define SUBTYPE 306
define THEN 307

-136 -

define TO 308

define TYPE 309

define UNITS 310

define USE 311

define VARIABLE 312

define WHEN 313

define WHILE 314

define WITH 315

define PINS 316

define IDENTIFIER 317

define LABEL 318

define PINNUM 319

define BIT_X 320

define BIT_C 321

define BIT_N 322

define BIT_L 323

define INTEGER 324

define COM_NAME 325
define PACKAGE_NAME 326
define ENTITY_NAME 327
define TYPE_NAME 328
define BODY_NAME 329
define SIG_NAME 330

define FPORT_NAME 331
define OR 332

detine NOR 333

define XOR 334

detine AND 335

define NAND 336

define EQ 337

define NE 338

define LT 339

define LE 340

define GT 341

define GE 342

define MOD 343

define REM 344

define UNARYMINUS 345
define NOT 346

define ABS 347

define POW 348

hkdhkdik

scanner.|

o {
#include "vhdl.h"
#include "x.tab.h"
#include <ctype.h>
int lineno;

o }

%%

(M {:

"--"\n { lineno++;

L3 i3 222 s T Rl a2 Rl a2 sl R s it R sttt s il il i sl isssld)

f* ignoring spaces and tabs */}

/* ignoring comments, but count lines */ }

- 137 -

[0-9)+ { /* integer token */
int d;
sscanf (yytext, "%d", &d);
yylval.symb = install("™, INTEGER, d);

retum (INTEGER);
}

P{0-9]+{ /* pin number token */
Symbol *s;

it ((s=lookup(yytext)) == 0)

s = install{yytext, PINNUM, 0);
yylval.symb = s;
retum (PINNUM};

fa-zA-Z][a-zA-20-9]*_*[a-zA-Z0-9]" { /* identifier token */
Symbol *s;
idupper(yytext); /* convert all inentifier to upper case */
if ({s=lockup(yytext)) == 0)
s = install(yytext, IDENTIFIER, 0};
yylval.symb = s;
return (s->type); .

H_H

{
return (EQ);

II/=NI"<>H {
return (NE);
}

Il<" {

retum (LT);

ll<=HIH=<H {
return (LE);
}

uyw {

retum (GT});

n N4 (

return (GE);
}

\n { f* new line */
lingno++;

}

{ [everything else */
return{yytext[0]);
}

%%
yywrap{)

{
code(STOP);

printf ("Total %d lines have been read.\n", --lineno);

- 138 -

return {1);

}

idupper(s)
char*s;
{

charc;

for (c="s;cl="0" ¢ = *(++8))
#((c>="a) && (c <="2})
*s = toupper{c);
return;

}

khdkdh i code c AT 2L R RIS IRt A i It el st il ittt il st s R st AR adil sl s sy

#include <stdio.h>
#include <string.h>
#include <math.h>

#define CODE

#include "vhdl.h"
#include "x.tab.h"

#define NSTACK 256
static Datum stack[NSTACK]; /* interpreter stack */
static Datum *stackp; /* next free spot on stack */

#define NPROG 2000

inst prog[NPROG]; f* translater */
Inst *progp; * next free spont for code generation */
Inst *pc; f* programm counter during execution */
initcode() /* initialization for code generation */
{

stackp = stack;

progp = prog;
push(d) f* push d on to stack */

Datum d;

{ ‘
if(stackp >= &stackINSTACK]})
execerror("compiler error 1: stack overtlow”,(char *) 0);
*stackp++=d;
}

Datum pop{)
{
ii(stackp <= stack)
execemor(*compiler error 2; stack underflow”,(char *} 0),

- 139 -

return *--stackp;
}

Inst *code(t)
Inst t;
{

Inst *oprogp = progp;
if(progp >= &pregiNPROG])

/* install one translation or operand */

execerror{"compiler error 3: Design too big",(char *) 0);

‘progp++ = t;
return oprogp;
)

execute(p)
Inst *p;
{

for(pc = p; *pc I= STOP;)
: (*("pc++)();

intpush()
{
Datum d;

d.val = {(Symbol *){*pc++))->val;
push(d);
}

idpush()
{

Datum d;
d.symb = (Symbol *}{*pc++);
push(d);

}

pcode()
{

Datum d;
Package *pk;

d = pop();

/* run the translator */

f* push integer onto stack */

[* push identifier onto stack */

pk = (Package®) emalloc(sizeof(Package));
pk->name = (char*) emalloc(strien{d.symb->name) + 1};

strepy(pk->name, d.symb->name};
d.symb->type = PACKAGE_NAME;

pk->types = firsttype;
firsttype = NULL;
pk->next = firstpackage;
firstpackage = pk;

- 140 -

chkp()

ucode()

ecode()

chke()

Datum d1, d2;

d2 = pop();
d1 = pop();
if (stremp(d1.symb->name, d2.symb->name) l= 0)
warning{"Warn 1: Package name not match®, d1.symb->name);
push{dt});

Datumd;
Clause *cip;
Package "pk;

d = pop{);
pk = firstpackage;

if (d.symb->type = PACKAGE_NAME)
execerror{"Compiler Error 1: Undefined package in with clause”, d.symb->name);
clp = (Clause *) emalloc(sizeof(Clause));
clp->units = pk;
clp->next = firsiclause;
firsiclause = Clp;

Datumd;
Entity "ep;

d = pop();

ep = (Entity *) emalloc{sizeof(Entity));
ep->name = (char *) emalloc{strien{d.symb->name) + 1);
strepy({ep->hame, d.symb->name);
d.symb->type = ENTITY_NAME;
ep->clause = firstclause;

firstclause = NULL;

ep->poris = firstiport;

firstfport = NULL;

ep->pins = firstpport;

firstpport = NULL;

ep->next = firstentity;
firstentity = ep;

- 141 -

Datum di, d2;

d2 = pop();
d1 = pop();
if (stremp(d1.symb->name, d2.symb->name) != 0)
warning{("WARN 2: Entity name not match”, d1.symb->name);

push{d1);
}

ppcode()
{
Datum d1, d2, d3;

Pport *pp;

a3 = popl); f* pin number */
d2 = pop(); f* port name */
d1 = popl{); f* index, if -1 simple name */

if (d2.symb->type = FPORT_NAME)
execerror("Compiler Error 2: Undefined entity port", d2.symb->name);
pp = (Pport *) emalloc{sizeof(Pport});
pp->name = (char *) emalloc(strien(d2.symb->name) + 1});
strepy(pp->name, d2.symb->name);
pp->pad = (char *} emalloc(strien(d3.symb->name) + 1);
strcpy{pp->pad, d3.symb->name),;
pp->index = d1i.val;

pp->next = firstpport;
firstpport = pp;
}

acode ()

{
Datum d1, d2;
Entity *ep;
Type *tp, *tp1;
Clause *clp;

d2 = pop();
d1 = pop{);

ep = firstentity;
while ({ep != NULL) && (strcmp(ep->name, d2.symb->name} i= 0))
ep = ep->next;
f{ep==NULL)
execerror{ "Compiler Error 3: Undefined entity", d2.symb->name);
ep->body = (char *) emalloc{strien{d1.symb->name) + 1);
strepy(ep->body, d1.symb->name);
for (clp = ep->clause; ¢lp = NULL,; ¢ip = clp->next) {
for {tp = (clp->units)->types; tp = NULL; tp = tp->next) {
ip1 = (Type*) emalloc{sizeof(Type));
ip1->name = (char*) emalloc(strien(ip->name} + 1);

- 142 -

chkaf)

tcode()

}

strepy(tp1->name, tp->name);
tp1->int1 = tp->int1;
tp1->int2 = tp->int2;
tpi->next = firsttype;
tirsttype = tp1;
}

}

ep->types = firsttype;

firsttype = NULL;

ep->cdecls = firstcdec;

firstcdect = NULL;

ep->sigs = firstsigl;

firstsigl = NULL;

ep->cinsts = firstcinst;

firstcinst = NULL,;

Datum dt, d2, d3;

d3 = pop(); /* body name at the end */
d2 = pop(); /* entity name */
d1 = pop(); /* bodyname at the begining */
if (stremp(d1.symb->name, d3.symb->name) = 0)
warning{"WARN 3: Body name not match”, d1.symb->name);
push{dt);
push{d2);

Datum d1, d2, d3;
Type *ip;

d3 = pop();
d2 = pop();
d1 = pop();

tp = (Type®) emalloc(sizeof(Type));

ip->name = (char*) emalloc(strien(d1.symb->name) + 1};
strepy(lp->name, d1.symb->name);

d1.symb->type = TYPE_NAME;

{p->int1 = d2.val;

ip->int2 = d3.val;

tp->next = firsttype;

firsttype = tp;

cdcode ()

{

- 143 -

}

Datum d;
Cdecl *cdp;

d = pop();
cdp = {Cdecl *) emalloc{sizeof(Cdecl));
cdp->name = (char *) emalioc{strien(d.symb->name) + 1);
strepy(cdp->name, d.symb->name);
if (d.symb->type |= ENTITY_NAME)

if {d.symb->type == IDENTIFIER}

d.symb->type = COM_NAME;

cdp->type = d.symb->type;
cdp->ports = firstfport;
firstfport = NULL,;

cdp->next = firstcdecl;
firstcdecl = cdp;

fpcode ()

{

}

idfirst()
{

Datum d1, d2, d3, d4;
Fport *fp, *lirstfp = NULL;

d4 = pop(); /* port type */
d3 = pop(); /* port mode */
di.val = TRUE;

while (d1.val) {

d2 = pop(); [* port name */

d1 = pop(); /" TRUE more, FALSE last */

fp = (Fport *) emalloc(sizeof(Fport));

fp->name = (char *) emallec{strilen{d2.symb->name) + 1};

strcpy(fp->name, d2.symb->name);

d2.symb->type = FPORT_NAME;

fp->type = d4.symb->type;

if (fp->type == TYPE_NAME) {
fp->type_name = {char *) emalloc(strien{d4.symb->name) + 1);
strepy(fp->type_name, d4.symb->name};

}

fp->mode = d3.symb->type;
fp->next = firstip;

firstip = fp;

}
for {fp = firstfp; fp 1= NULL; fp = firstip) {
firstfp = fp->next;

fp->next = firstfport;
firstiport = fp;

Datum d;

- 144 -

d.val = FALSE;
push({d);

idlist()

Datumd;
d.val = TRUE;
push(d);

scode()

Datum di, d2, d3;
Sig *sp;

d3 = pop(}; /* signal type */
dt.val = TRUE;
while (d1.val) {
d2 = pop(); /* signal name */
d1 = pop(); /* TRUE more, FALSE last */
sp = (Sig *) emalloc{sizeof(Sig));
sp->name = (char *) emalloc{strlen{d2.symb->name} + 1);
strepy(sp->name, d2.symb->name);
d2.symb->type = SIG_NAME;
sp->type = d3.symb->type;
if (sp->type == TYPE_NAME) {
sp->type_name = (char *} emalloc{strlen{d3.symb->name) + 1);
strepy(sp->type_name, d3.symb->name);
}
sp->next = firstsigl;

firstsigl = sp;
}
}
cicode()
{
Datumd;
Cinst *cip;
d = pop{); /* component name */

cip = (Cinst *) emalloc{sizeof{Cinst)};

cip->name = {char *) emalloc(stren({d.symb->name) + 1);
strepy(cip->name, d.symb->name);

cip->type = d.symb->type;

cip->label = NULL;

cip->ports = firstaport;

firstaport = NULL;

cip->next = firsicinst;

firstcinst = cip;

- 145-

chkel()
{

}

Datum d;
Cinst *cip = firstcinst;
d = pop(); /* component instance label */

cip->label = {char *) emalioc(strien(d.symb->name) + 1);
strepy{cip->label, d.symb->name);

apcode {)

{

}

Patum d1, d2;
Aport *ap;

d2 = pop(); /* port name */
d1 = pop(); /* index, if -1 simple name */

ap = (Aport *) emalloc(sizeof(Aport));

ap->name = (char *} emalloc(strlen{d2.symb->name) + 1);
strepy(ap->name, d2.symb->name);

ap->type = d2.symb->type;

ap->index = d1.val;

ap->next = firstapon;
firstaport = ap;

simname()

{

}

Datumd;

‘dval = -1;

push{d);

forcode()

{

Datum d1,d2,d3;
Inst *savepc = pc;

exacute(savepc + 2); /* discrete range */

d3 = pop();
d2 = pop();
d1 = pop();

if(d3.symb->type |= IDENTIFIER && d3.symb->type 1= VARIABLE)
execerror("Compiler Error 4: Not a variable”, d3.symb->name);

d3.symb->type = VARIABLE;

for(d3.symb->val = d1.val; d3.symb->val <= d2.val; d3.symb->val++) {
execute(*((Inst **){savepc))); /* set of statement */

}
pc = *({Inst **)(savepc + 1)); /* continue */

- 146 -

ifcode()

Datumd;
Inst *savepc = pc;

execute(éavepc + 2); /* condition */
d = pop();
if(d.val) {
execute(*({Inst **){savepc))); /* set of statement */

}
pc = *{(Inst **)(savepc + 1)); /* continue */

chkgl()

Datum di, d2;
d2 = pop(); /" end labet */
d1 = pop(); * begin label */
if (strcmp(d2.symb->name, d1.symb->name) = 0)
warning("WARN 4: Label not match in generate sataement”, d1.symb->name);

and()

Datum d1, d2;

d2 = pop();

di = pop();

di.val = {d1.val = 0 &8 d2.val I= 0);
push{d1);

nand ()

Datum d1, d2;
d2 = pop();

d1 = pop{);
d1.val = (d1.val == 0 || d2.val == 0);

push{di);

Datum dt, d2;
d2 = pop();

d1 = pop{);
di.val=(d1.vall=0| d2val = 0);

push(d1);

- 147 -

nor()

Datum d1, d2;

d2 = pop();

d1 = pop();

di.val = (d1.val == § && d2.val == 0);
push{di);

xor()

Datum di, d2;

d1 = pop();
d2 = pop();
di.val = {{(d1.val == 0 && d2.val I= 0) |} (d1.val I= 0 && d2.val == O});

push(d1);

Datum d1,d2;
d2 = pop()

d1 = pop();
di.val = (d1.val == d2.val);

push(d1};

Datum d1,d2;

d2 = pop();

dt = pop();

di.val = (d1.val I= d2.val);
push{di);

—-—(9_-.-
—
=

Datum di, d2;

d2 = pop();
dt = pop();
di.val = (d1.val > d2.val);

push{d1);

Datum d1, d2;

d2 = pop();

- 148 -

le()

}

di = pop();
d1.val = (d1.val >= d2.val);
push{d1);

Datum dt,d2;

d2 = pop();
d1 = pop();
di.val = (d1.val < d2.val);

push(di1};

Datum df, d2;

d2 = pop();

d1 = pop();

di.val = {d1.val <= d2.val);
push(d1};

negate()

add()

sub(}

Dalumd;

d = pop(};
d.val = -d.val;
push(d);

Datum d1, d2;

d2 = pop();

d1 = pop();
d1.val +=d2.val;
push{d1};

Datum d1, d2;

d2 = pop();
d1 = pop(});
di.val -= d2.val;
push{d1);

- 149 -

mul()
Datum d1,d2;

d2 = pop();
d1 = pop(};

di.val *= d2.val;
push{di);

div()
Datum d1, d2;

d2 = pop();
d1 = pop();
if(d2.val == 0.0)
execerror("Compiler Error 5: Division by zero",(char *) 0);
else
di.val /= d2.vai;
push(di);

mod()

Datum di, d2;
d2 = pop();
d1 = pop();
it(d2.val == 0.0)
execerror{"Compiler Error 5: Division by zero",{char *) 0};
else
di.val = d1.val % d2.val;
push{di);

rem()

Datum d1, d2;
d2 = pop();
d1 = pop();
if(d2.val == 0.0}
execerror("Compiler Error 5; Division by zero",(char *) 0};
else {
if (d2.val < Q)
di.val = (int) abs(d1.val) * (-1);
di.val =d1.val % d2.val;

}
push(dt};

power()

- 150 -

Datum di, d2;

d2 = pop();
d1 = pop();
d1i.val = (int) pow(d1.val, d2.val);
push{di);
}
abslf)
{
Datum d;
d = pop();
d.val = {int) abs{d.val);
push(d);
)
not()
{
Datum d;
d = pop();
d.val = (d.val == 0);
push(d);
}
eval() * evaluate variable on stack */
{
Datum d;
d = pop(};
if(d.symb->type |= VARIABLE)
execerror("Compiler Error 6: Attempt to evaluate non-variable”, d.symb->name);
else
d.val = d.symb->val;
push{d};
}

ARk A kAR hAh kA EAR ARt hd Rk d kb d b hhhddddtd bbb kb h bbb bbb bbbt dbdbdbbddbb bt bbb bbbt ds

st crenet.c

#include <stdio.h>
#include <ctype.h>
#include "vhdl.h"
#include "x.tab.h"

#detine DECLA1
#include "net.h"

/*i"*i*i**iﬁttI'it*iil!'il'i.i.i’!*l*ilili’iltiiiiiit’!ili.iii.ti*.*ﬁﬁii*iti*ﬁi" I2Z222 2322 SRRt S ll

I crenet i
" *
r AUTHOR: Bing Liu */
* Dept. of Electrical and Computer Engineering *
" University of Manitoba *
" - Winnipeg, Manitoba, Canada '
r R3T 2N2 K

-151-

*/
*/
*
'
f
*f
*f
*
*/
*f
f
*l
Y
"/
Y
*
*
!
*
4
*f
*

r DATE: Sept. 7, 1989

lt

r REVERSION NUMBER:2

r REVERSION DATE: Sept. 12, 1989

/t

r DESCRIPTION: This module converts the data structure in vhdl.h into the data
I structure in net.h, writes the unfiattened Xilinx Netiist Format (XNF} files using
* the data structure in net.h,

/t

" This program uses vhdl.h, x.tab.h, and modules form Xilinx,

* such as netread.c, netwrite.c, nelutil.c, neiparse.c, net.h

/t

r ARGUMENTS: None.

/t

r EXTERNAL VARIABLES:

" buff -- buffer for string operation

T msg -- buffer for any message

I neifn -- name of the XNF file

I netfp --file being read from or written to

I comnum -- componts number, used for constract SYM name

I body --body name of a architecture, used for SYM name

/t
/t*t*titi-tltii*tti*iitttiti*ittititililiiiil—ililtiliitltiiiit'titi!tiii'*itiititiiiitltiiti!tit‘tititil*tii,
char *netin;

char *netfp;

extern char msg[255];
extern char buff[125];
extern vhdlerr;

int comnum;

char *body;

char *creatime;

crenet()

{
Entity *ep;
Sig *sip;
Cinst *cip;
Fport *ip;
Pport *pp;
SIG*s;
char when[32];

for {ep = firstentity; ep I= NULL,; ep = ep->next) {
firstprog = NULL;
lastprog = NULL;
firstuser = NULL,;
lastuser = NULL;
firstsym = NULL;
firstsig = NULL;

delsyms = NULL;
delsigs = NULL;
errcnt = 0;

- 152 -

comnum = 0;
body = ep->body;

for {sip = ep->sigs; sip I= NULL,; sip = sip->next)
rdsigl(sip, ep->types);

for (fp = ep->ports; fp I= NULL; fp = fp->next)
rdfport{fp, ep->clause);

for (pp = ep->pins; pp = NULL; pp = pp->next)
rdppori(pp);

_ for (cip = ep->cinsts; cip 1= NULL; cip = cip->next)

rdcomp(cip, ep->cdecls, ep->types);

if (strcmp(ep->name, firstentity-»>name) I= Q)
sprintf(buff, "%s.XNF", ep->name);

else
sprintf{buff, "%s.HNF", ep->name);

netfn = stralloc{buff);

timeofday(msg);
creatime = stralloc{msg);
it (vhdlerr == 0)
writenet();
}
return;

}

/*--end of crenet.c--*/

rdsigl{sip, tp)

Sig *sip;
{ Type *tp;
SIG*s;
int cnt;
char *signame;
switch (sip->type) {
case BIT:
signame = stralloc{sip->name);
s = mksig(sighame);
_ break;
case BIT_N:
signame = stralloc{sip->name);
s = mksig(signame);
s->NONC = 1;
break;
case BIT_X:
signame = stralloc(sip->name);
s = imksig{signame);
s->UEXP = 1;
break;
case BIT_C:

signame = stralloc(sip->name);
s = mksig(signame); ’
s->CRIT=1;

- 153 -

break;
case BIT_L:
signame = strailoc(sip->name);
s = mksig{signame);
s->LONG = 1;
break;
case TYPE_NAME:
while {tp != NULL && strcmp(tp->name, sip->type_name) = 0)
tp = tp->next;
if {tp == NULL) {
execerror ("Compiler Error 7: Undefined type”, sip->type_name);
break;

)
for (cnt = tp->int1; cnt <= tp->int2; cnt++) {
sprintf(buff, "%s%d", sip->name, cnt);
signame = stralloc({buff};
s = mksig{sighame};
}
break;
default:
execerror("Compiler Error 8; lllegale signal”, sip->name),;

}

return;
}
/*--end of rdsigl--*/

E rdfport(fp, clp)
> Fport *p;
Clause “clp;

Type *tp;
SIG*s;

int cnt;

char *signame;

swilch {fp->type) {
case BIT:
signame = stralloc(fp->name);
s = Imksig(signame);
break;
case TYPE_NAME:
while {cip I= NULL) {
tp = {clp->units)->types;
while (tp |= NULL && strcmp(tp->name, fp->type_name} i= 0)
tp = tp->next;
if (tp == NULL)
clp = clp->next;
alse ‘
clp = NULL;

}
i (fp == NULL) {

execerror ("Compiler Error 3: Undefined type", p->type_name);
break;

-154 -

}

for {cnt = tp->int1; cnt <= tp->int2; cnt++) {
sprintf{buff, "%s%d\0", fp->name, cni);
signame = stralloc{buff);
§ = mksig(signame);

}
break;
defauit:
execerror("Compiler Error 10: llegal formal port", fp->name);
}
relurn;

}
/*--end of rdfport--*/

rdpport(pp)
Pport “pp;
{

SIG*s;

if {pp->index 1= -1)

sprintf(buff, "%s%d\0", pp->name, pp->index);
else

sprintf(buff, "%s\0", pp->name);
s = fsigname(buff);

if (8 ==NULL) {
execerror("Compiler Error 11: Undefined formal port", pp->name);
return;

}

s->UEXT =1;

s->lcaloc = stralloc{pp->pad);
s->blkname = stralloc({buft};
PP = pp->next;

return;

}
/*--end of rdpport--*/

rdcomp(cip, cdp, tp)
Cinst *cip;
Cdecl “cdp;
Type *ip;

Fport *p;
Aport *ap;
SYM *sym;

while (cdp I= NULL && stremp(cip->name, cdp->name) = 0)
cdp = cdp->next;

if {cdp == NULL) {
execerror {"Compiler Error 12: Undeclarated component”, cip->name);
return;

}

COMNUM++;

-155-

sym = mksym();
if (Cip->label == NULL) {
sprintf(buft, "%s%d", body, comnum);
Cip->label = buff;
}
sym->name = stralloc(cip->label);
sym->symiype = symtype(cip->name};
sym->typename = stralloc{cip->name);

ap = cip->ports;

fp = cdp->ports;

while (fp I= NULL && ap 1= NULL} {
rdport(ap, fp, tp, sym);
fp = fp->next;
ap = ap->next;

}

return;

}
----end of rdcomp----/

rdport{ap, ip, tp, sym)
Aport *ap;
Fport *fp;
Type “tp;
SYM *sym;

SiG*s;
PIN *p;
char dir;
int cni;

switch (fp->mode) {
case IN:
dir="I;
break;
case OUT:
dir="0";
break;
default:
execerror ("Compiler Error 13: Illegal formal port direction”, fp->name}),
}
it (fp->type == BIT) {
it (ap->index 1= -1)
sprintf(buff, "%s%d", ap->name, ap->index};
else
sprintf{buff, "%s", ap->name};
s = fsigname(buff);
if (s == NULL) {
execerror("Compiler Error 14: Undefined actual pori”, ap->name);
return;

}
p = mkpin (s, sym);

- 156 -

p->name = siralloc{fp->name);
p->dir = dir;
if (dir == A_INPIN)
s->NOLOAD = 0;
else if {(dir == A_OUTPIN) {
if {s->NOSRC)
5->NOSRC = 0;
else
s->MULTSRC = 1;
}

return;

}
if (fp->type == TYPE_NAME) {
while {tp I= NULL &8& strcmp{tp->name, fp->type_name) != 0)
tp = tp->next;
if (tp == NULL) {
execerror {"Compiler Error 15: Undefined type", ip->type);
return;
}
for (cnt = {p->int1; cnt <= tp->int2; cnt++) {
sprintf{buff, "%s%d\0", ap->name, cnt);
s = fsigname(buff);
if (8 == NULL) {
execerror("Compiler Error 16: Undefined actual port”, buff);
return;

}
sprintf{buff, "%s%d\0", fp->name, cnt);
p = mkpin (s, sym);
p->name = stralloc(buff);
p->dir = dir;
if (dir == A_INPIN)
s->NOLOAD = 0;
else i {dir == A_OUTPIN}) {
if (s->NOSRC})
s->NOSRC = 0;
else
s->MULTSRC = 1;

}

return;

execerror ("Compiler Error 17: Undefined formal prot®, fp->name);
return;

}
/*--end of rdport--*/

timeofday(buft)
char *buff;

{
long clock;
time(&clock);

strepy(buff, ctime(&clock));

- 157 -

return;

1
{/*---end of timeofday---*/

EAARARARRAARARN ARSI Rd bt kb A b AR b A bRk A R bR bbbk kbt d kb d bbbk bk bbb bbb it

et makefile

YFLAGS = -d
OBJS = parser.o scanner.o vhdl.o code.o init.o symbol.o crenet.o netwrite.o netutil.o netparse.o
netread.o flatten.o

vhdl: $(OBJS)
cc ${OBJS) -Im -l -0 vhdl2xnf

parser.o scanner.o vhdl.o code.o init.o symbol.o crenet.o: vhdl.h
scanner.o vhdl.o code.o init.o symbol.o crenet.o: x.tab.h

x.fab.h: y.tab.h
-cmp -s x.tab.h y.tab.h || cp y.tab.h x.tab.h

- 158 -

