
 Procedia Computer Science 60 (2015) 573 – 582

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2015.08.184

ScienceDirect

19th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems

Edge-based mining of frequent subgraphs from graph streams

Alfredo Cuzzocreaa, Zhao Hanb, Fan Jiangb, Carson K. Leungb,∗, Hao Zhangb

aDept. of Engineering and Architecture (DIA), University of Trieste & ICAR-CNR, Via A. Valerio 6/1, 34127 Trieste (TS), Italy
bDepartment of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Abstract

In the current era of Big data, high volumes of valuable data can be generated at a high velocity from high-varieties of data sources

in various real-life applications ranging from sensor networks to social networks, from bio-informatics to chemical informatics.

In addition, Big data are also available in business, education, engineering, finance, healthcare, scientific, telecommunication,

and transportation domains. A collection of these data can be viewed as a big dynamic graph structure. Embedded in them

are implicit, previously unknown, and potentially useful knowledge. Consequently, efficient knowledge discovery algorithms for

mining frequent subgraphs from these dynamic streaming graph structured data are in demand. On the one hand, some existing

algorithms discover collections of frequently co-occurring edges, which may be disjoint. On the other hand, some other existing

algorithms discover frequent subgraphs by requiring very large memory space. With high volumes of Big data, available memory

space may be limited. To discover collections of frequently co-occurring connected edges, we present in this paper two efficient

algorithms that require small memory space. Evaluation results show the efficiency of our edge-based algorithms in mining frequent

subgraphs from graph streams.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Knowledge discovery and data mining; frequent patterns; frequent subgraphs; graph structured data; data streams

1. Introduction and related works

With the automation of measurements and data collection, together with an increasing development and usage of

a large number of sensors, high volumes of valuable data have been produced at high velocity from a high variety

of data sources in different application areas—such as bio-informatics, chemical informatics, e-commerce, education,

engineering, finance, healthcare, science, sports and telecommunications22,30—in the current era of Big data17,21.

Mostly due to their high volumes, the quality and accuracy of data depend on their veracity (i.e., uncertainty of the

data18,24,25,26). These advances in technology have led to streams of semantic web, sensor network, social network,

and road network data9,12,15,29. These kinds of data share in common the property of being modeled in terms of graph-

structured data10,28 so that graph streams are generated. Embedded in these data are implicit, previously unknown, and

potentially useful knowledge. In order to be able to make sense of streaming data7,8,27,31, stream mining algorithms

∗ Corresponding author.

E-mail address: kleung@cs.umanitoba.ca (C.K. Leung)

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.184&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.184&domain=pdf

574 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

are needed. When comparing with mining from traditional static databases, mining from dynamic data streams11 is

more challenging due to the following properties of data streams:

1. Data streams are continuous and unbounded. To find frequent patterns from streams, we no longer have the

luxury of performing multiple data scans. Once the streams flow through, we lose them. Hence, we need some

data structures to capture the important contents of the streams (e.g., recent data—because users are usually more

interested in recent data than older ones).

2. Streaming data are not necessarily uniformly distributed; their distributions are usually changing with time.
A currently infrequent pattern may become frequent in the future, and vice versa. So, we have to be careful

not to prune infrequent patterns too early; otherwise, we may not be able to get complete information such as

frequencies of certain patterns (as it is impossible to retract those pruned patterns).

These two properties play an important role in the mining of data streams in general. They play a more challenging

role in the mining of a specific class of streaming data—namely, streams of graph structured data.

Over the past decade, both approximate and exact algorithms have been proposed to mine frequent patterns from

data streams. For instance, approximate algorithms (e.g., FP-streaming13, TUF-streaming20) focus mostly on effi-

ciency. However, due to approximate procedures, these algorithms may find some infrequent patterns or miss fre-

quency information of some frequent patterns (i.e., some false positives or negatives). An exact algorithm mines

only truly frequent patterns (i.e., no false positives and no false negatives) by (i) constructing a Data Stream Tree

(DSTree)23 to capture contents of the streaming data and then (ii) recursively building FP-trees for projected databases

based on the information extracted from the DSTree.

In recent years, several solutions have been proposed for mining graph streams. For instance, Aggarwal et al. 1

studied the research problem of mining dense patterns in graph streams, and they proposed probabilistic algorithms for

determining such structural patterns effectively and efficiently. Bifet et al. 2 mined frequent closed graphs on evolving

data streams. Their three innovative algorithms work on coresets of closed subgraphs, compressed representations of

graph sets, and maintain such sets in a batch-incremental manner. Moreover, Valari et al. 32 discovered top-k dense

subgraphs in dynamic graph collections by means of both exact and approximate algorithms. Furthermore, Chi et al. 6

proposed a fast graph stream classification algorithm that uses discriminative clique hashing (DICH), which can be

applicable for OLAP analysis over evolving complex networks. We3 previously mined frequent patterns—in the form

of collections of frequently co-occurring edges—from dense graph streams. Specifically, our previous solution finds

collections of frequently co-occurring edges, which include connected as well as disjoint edges. In many real-life

situations (e.g., social or business applications4,16,19), it is desirable to obtain collections of frequent disjoint edges

so as to help the discovery of the missing links (e.g., connect two or more disjoint groups of social entities sharing

common research or business interests).

In some other situations, it is more efficient to find only the collections of frequent connected edges. Hence, in

this paper, we present two algorithms that find collections of frequently co-occurring connected edges from streaming

graph structured data:

1. Our first algorithm is an indirect 2-step one that first discovers all frequent edges and then prunes irrelevant

(disjoint) edges at a post-processing step, whereas

2. our second algorithm is a direct 1-step one that pushes the pruning step early in the mining process for discovering

all frequent connected edges.

Consequently, regardless which of the two edge-based algorithms was applied, only relevant patterns (i.e., frequent

connected subgraphs) are returned to users. Moreover, as high volumes of streaming graph structured data can be

generated at a high velocity, data may be too big to fit into memory. Both algorithms were designed in such a way

that they use limited memory in the efficient mining of frequent subgraphs from graph streams.

The remainder of this paper is organized as follows. The next section gives background. Section 3 presents our

first algorithm, which builds an on-disk data structure to capture and maintain relevant streaming graph structured

data, recursively discovers collections of frequent edges, and then prunes those disjoint edges at a post-processing

step. Section 4 presents our second algorithm, which pushes the pruning step early in the mining process. Evaluation

results and conclusions are given in Sections 5 and 6, respectively.

575 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

2. Background

In this section, we provide background on frequent pattern mining from streams, with a focus on stream mining

with (i) a global DSTree, (ii) a global DSTable, and (iii) a global DSMatrix. These three data structures were designed

to serve as global structures for capturing important contents of batches of streaming transaction data within the

current sliding window. With these global structures, local structures (e.g., local FP-trees) can be built from which

frequent patterns can be mined.

2.1. Stream mining with a data stream tree (DSTree)

An exact algorithm mines frequent patterns from streaming data by first constructing a Data Stream Tree (DS-
Tree)23, which is then used as a global tree for recursive generation of smaller FP-trees (as local trees) for projected

databases. Due to the dynamic nature of data streams, frequencies of items are continuously affected by the insertion

of new batches (and the removal of old batches) of transactions. Arranging items in frequency-dependent order may

lead to swapping—which, in turn, can cause merging and splitting—of tree nodes when frequencies change. Hence,

in the DSTree, transaction items are arranged according to some canonical order (e.g., alphabetical order), which can

be specified by the user prior to the tree construction or mining process. Consequently, the DSTree can be constructed

using only a single scan of the streaming data. Note that the DSTree is designed for processing streams within a

sliding window. For a window size of w batches, each tree node keeps (i) an item and (ii) a list of w frequency values

(instead of a single frequency count in each node as in the FP-tree for frequent pattern mining from static databases).

Each entry in this list captures the frequency of an item in each batch of dynamic streams in the current window.

By so doing, when the window slides (i.e., when new batches are inserted and old batches are deleted), frequency

information can be updated easily. Consequently, the resulting DSTree preserves the usual tree properties that (i) the

total frequency (i.e., sum of w frequency values) of any node is at least as high as the sum of total frequencies of its

children and (ii) the ordering of items is unaffected by the continuous changes in item frequencies.

Such a global DSTree is always kept up-to-date when the window slides. The actual mining process is “delayed”

until it is needed. To start mining, the mining algorithm first traverses relevant tree paths upwards and sums the

frequency values of each list in a node representing an item (or a set of items)—to obtain its frequency in the current

sliding window—for forming an appropriate projected database. Afterwards, the algorithm constructs a local FP-tree

for the projected database of each of these frequent patterns of only 1 item (i.e., 1-itemset) such as an {x}-projected

database (in a similar fashion as in the FP-growth algorithm for mining static data14). Thereafter, the algorithm

recursively forms subsequent FP-trees for projected databases of frequent k-itemsets where k ≥ 2 (e.g., {x, y}-projected

database, {x, z}-projected database, etc.) by traversing paths in these FP-trees. As a result, the algorithm finds all

frequent patterns. As items are consistently arranged according to some canonical order, the algorithm guarantees the

inclusion of all frequent items using just upward traversals. Moreover, there is also no worry about possible omission

or double-counting of items during the mining process. Furthermore, as the DSTree is always kept up-to-date, all

frequent patterns—which are embedded in batches within the current sliding window—can be found effectively.

Note that the DSTree mainly relies on the assumption—usually made for many tree-based algorithms14—that all

trees (i.e., the global tree together with subsequent FP-trees) fit into the memory. For example, when mining frequent

patterns from the {x, y, z}-projected database, the global tree and three subsequent local FP-trees (for the {x}-, {x, y}-
and {x, y, z}-projected databases) are all assumed to fit into memory. However, there are situations (e.g., for streaming

graph structured data) where the memory is so limited that not all these trees can fit into memory.

2.2. Stream mining with a data stream table (DSTable)

To deal with situations where the memory is so limited that not all these trees can fit into memory, the Data Stream
Table (DSTable)5 was proposed. The DSTable is a two-dimensional table that captures on the disk the contents of

transactions in all batches within the current sliding window. Each row of the DSTable represents a domain item. Like

the DSTree, items in the DSTable are arranged according to some canonical order (e.g., alphabetical order), which

can be specified by the user prior to the construction of the DSTable. As such, table construction requires only a

single scan of the stream. Each entry in the resulting DSTable is a pointer that points to the location of the table entry

(i.e., which row and which column) for the “next” item in the same transaction. In addition, the DSTable also keeps

576 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

w boundary values (to represent the boundary between w batches in the current sliding window) for each item. By

doing so, when the window slides, transactions in the old batch can be easily identified for removal and transactions

in the new batch can be easily added.

Like the DSTree, the DSTable is always kept up-to-date when the window slides. The corresponding mining

algorithm first extracts relevant transactions from the DSTable. Then, the algorithm (i) constructs an FP-tree for the

projected database of each of these 1-itemsets and (ii) recursively forms subsequent FP-trees for projected databases

of frequent k-itemsets (where k ≥ 2)—by traversing the paths of these FP-trees—to find all frequent patterns.

Because the DSTable also keeps w boundary values for each row (representing each of the m domain items) to

facilitate easy insertion and deletion of contents in the DSTable when the window (of size w batches) slides, the

DSTable needs a total of m × w boundary values. Moreover, each table entry is a pointer that indicates the location in

terms of row name and column number of the table entry for the “next” item in the same transaction. When the data

stream is sparse, only a few pointers need to be stored. However, when the stream is dense, many pointers need to be

stored. Given a total of |T | transactions in all batches within the current sliding window, there are potentially m × |T |
pointers (where m is the number of domain items). Furthermore, during the mining process, multiple FP-trees need to

be constructed and kept in memory (e.g., FP-trees for all {a}-, {a, c}- and {a, c, d}-projected databases are required to

be kept in memory).

2.3. Stream mining with a data stream matrix (DSMatrix)

To avoid storing many pointers (i.e., potentially m × |T | pointers, where m is the number of domain items and |T |
is the number of transactions in all batches within the current sliding window) when the memory space is limited,

Data Stream Matrix (DSMatrix)3 can be used. Generally, a DSMatrix is a two-dimensional structure that captures the

contents of transactions in all batches within the current sliding window by storing them on the disk. The DSMatrix

is a binary matrix, which represents the presence of an item x in transaction ti by a “1” in the matrix entry (ti, x) and

the absence of an item y from transaction t j by a “0” in the matrix entry (t j, y). With this binary representation of

items in each transaction, each column in the DSMatrix captures a transaction. Each column in the DSMatrix can be

considered as a bit vector.

When the window slides, the DSMatrix keeps track of any boundary between two batches so that transactions in the

older batches can be easily removed and transactions in the newer batches can be easily added. Unlike the DSTable

(in which boundaries may vary from one row representing an item to another row representing another item due to the

potentially different number of items present), boundaries in DSMatrix are the same from one row to another because

we put a binary value (0 or 1) for each transaction. Hence, the DSMatrix only keeps w boundary values (where

w � m×w) for the entire matrix, regardless how many domain items (m) are there. Moreover, as DSMatrix uses a bit

vector to indicate the presence or absence of items in a transaction, the computation does not require us to keep track

of the index of the last item in every row, thus incurring a lower computation cost. Given a total of |T | transactions

in all batches within the current sliding window, there are |T | columns in our DSMatrix. Each column requires only

m bits. In other words, the DSMatrix takes m × |T | bits (cf. potentially 64m × |T | bits for dense data streams required

by the DSTree).

3. Our indirect 2-step edge-based algorithm for mining frequent subgraphs from graph streams

After reviewing three structures (i.e., DSTree, DSTable, and DSMatrix) for mining data streams, let us present

in this section our indirect 2-step edge-based algorithm for mining a specific class of streams—streams of graph
structured data (i.e., graph streams). Like the general data streams, the graph streams can also be divided into

batches. However, unlike the general data streams (in which each batch contains multiple transactions), each batch

in the graph streams contains multiple graphs. Each graph G = (V, E) consists of |V | vertices and |E| edges. See

Example 1, which represents some insertions, deletions, and/or updates on the linkages among linked data in graphs

or networks (e.g., linked documents in a semantic web, friendships in a social network, connections in sensor or road

networks).

577 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

Table 1. A list of neighboring edges for the graph stream in Example 1 (Observation 1).

Edge Neighboring edges Edge Neighboring edges Edge Neighboring edges

a b, d, e and f c b, d, e and f e a, b, c and d
b a, c, e and f d a, c, e and f f a, b, c and d

Fig. 1. A stream of graph structured data (Example 1).

Example 1. For illustrative purpose, let us consider the following stream of 9 graphs (as shown Fig. 1), where each

graph Gi = (Vi, Ei) consists of |Vi| = 4 vertices and 1 ≤ |Ei| ≤ 6 edges labelled a, b, c, d, e & f (for 1 ≤ i ≤ 9):

• V1 = V2 = . . . = V8 = V9, whereas

• E1 = {a, b, e} at time T1,

• E2 = {a, b, c, e} at time T2,

• E3 = {a, c, f } at time T3,

• E4 = {a, c, d, f } at time T4,

• E5 = {a, d, e, f } at time T5,

• E6 = {a, b, c} at time T6,

• E7 = E3 = {a, c, f } at time T7,

• E8 = E4 = {a, c, d, f } at time T8, and

• E9 = {b, c, d} at time T9.

As shown Fig. 1, edges in the above 9 graphs E1, E2, . . . , E8 & E9 are arranged in the following way that they share

some of 4 vertices:

• edges a, b & e share the same vertex;

• edges a, d & f share another vertex;

• edges b, c & f share the third of the four vertices; and

• edges c, d & e share the last vertex.

Observation 1. We observed from Example 1 that edge a (i) shares a vertex with edges b & e while (ii) sharing

another vertex with edges d & f . In other words, b, d, e and f are neighboring edges of a. Similarly, we also observed

the neighboring edges of the remaining five edges. All these neighboring edges are shown in Table 1.

With the above edge-based representation of graph streams, we can adapt a commonly used data stream processing

model—namely, the sliding window model, which allows users to focus on graph-structured data in a fixed-size time

window—to process these graph streams. Note that techniques presented in this paper can be easily adapted to the

other stream processing models.

Recall from Section 2.3 that stream mining with the DSMatrix requires the least memory space when compared

with the other two strcutures (DStree or DSTable). Thus, mining with the DSMatrix would be a good choice for

handling high volumes of graph streams. To find frequent subgraphs from these graph streams, our indirect 2-step

edge-based graph stream mining algorithm first constructs a DSMatrix to capture edges in those graphs within the

current sliding window. When a new batch of graph streams flows in, the window slides. Graphs in the oldest batch

in the sliding window are then removed from the DSMatrix so that graphs in this new batch can be added. In other

words, the mining is “delayed” until it is needed. Once the DSMatrix is constructed, it is kept up-to-date on the disk.

See Example 2.

578 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

Table 2. DSMatrices at the end of time T3, T6 and T9 (Example 2).
(a) DSMatrix at the end of T3 (b) DSMatrix at the end of T6 (c) DSMatrix at the end of T9

Row Contents Row Contents Row Contents

E1E2E3 E1E2E3 E4E5E6 E4E5E6 E7E8E9

Edge a: 1 1 1; Edge a: 1 1 1; 1 1 1; Edge a: 1 1 1; 1 1 0;

Edge b: 1 1 0; Edge b: 1 1 0; 0 0 1; Edge b: 0 0 1; 0 0 1;

Edge c: 0 1 1; Edge c: 0 1 1; 1 0 1; Edge c: 1 0 1; 1 1 1;

Edge d: 0 0 0; Edge d: 0 0 0; 1 1 0; Edge d: 1 1 0; 0 1 1;

Edge e: 1 1 0; Edge e: 1 1 0; 0 1 0; Edge e: 0 1 0; 0 0 0;

Edge f : 0 0 1; Edge f : 0 0 1; 1 1 0; Edge f : 1 1 0; 1 1 0;

Boundary: Column 3 Boundaries: Columns 3 & 6 Boundaries: Columns 3 & 6

Example 2. Consider the graph stream in Example 1. With a sliding window of size w = 2 batches (i.e., only two

batches are kept) where each batch keeps graphs for three time instances, our indirect 2-step edge-based algorithm

first constructs a DSMatrix to capture edges in those graphs within the current sliding window. Consequently, at the

end of time T3, the DSMatrix keeps the three graphs with edges E1 = {a, b, e}, E2 = {a, b, c, e} and E3 = {a, c, f } from

the first batch B1. See Table 2(a).

At the end of time T6, the DSMatrix keeps (i) these three graphs with edges E1 = {a, b, e}, E2 = {a, b, c, e} and

E3 = {a, c, f } from the first batch B1; and (ii) adds three new graphs with edges E4 = {a, c, d, f }, E5 = {a, d, e, f }
and E6 = {a, b, c} from the second batch B2. In addition, the DSMatrix also keeps track of the global boundary

information, which is applicable for all rows/graphs. See Table 2(b).

When the third batch (batch B3) of graph streams flows in, the window slides. At the end of time T9, the DSMatrix

uses the boundary information to (i) remove all columns up to Column 3 (i.e., those three graphs with edges E1 =

{a, b, e}, E2 = {a, b, c, e} and E3 = {a, c, f } belonging to the first batch B1) and (ii) keeps all graphs in Column (3+1)

to Column 6 (or more precisely, shifts all columns from Columns 4–6 to Columns 1–3). In other words, the DSMatrix

keeps the three graphs with edges E4 = {a, c, d, f }, E5 = {a, d, e, f } and E6 = {a, b, c} from the second batch B2.

Moreover, the DSMatrix appends three new graphs with edges E7 = E3 = {a, c, f }, E8 = E4 = {a, c, d, f } and

E9 = {b, c, d} from the third batch B3. Again, the DSMatrix keeps track of the global boundary information, which is

applicable for all rows/graphs. See Table 2(c).

3.1. Step 1 of our 2-step algorithm: discovering all frequent edges

With the bitwise representation of graph streams in the DSMatrix, it is logical to mine frequent subgraphs vertically.

Specifically, our edge-based algorithm examines each row (representing an edge). The row sum (i.e., total number of

1s) gives the frequency of the edge represented by that row. Any edge with row sum (i.e., frequency) ≥ a user-specified

threshold minsup is considered frequent.

Example 3. Recall from Example 2 that important contents of the graph stream (e.g., contents of the w = 2 batches of

graphs—more specifically, edges of these graphs) shown in Example 1 are captured by the DSMatrix. Let minsup be

set to 2. When applying our 2-step edge-based algorithm to this graph stream, the algorithm counts the row sum of the

DSMatrix shown in Table 2(b) and discovers that all edges are frequent at the end of time T6 because the frequencies

of edges a, b, c, d, e and f are 6, 3, 4, 2, 3 and 3, respectively. A frequency of 6 for edge a means that edge a appears

in all 6 graphs G1,G2, . . . ,G6.

Similarly, by counting the row sum of the DSMatrix shown in Table 2(c), our 2-step edge-based algorithm finds

that edge e is no longer frequent. In other words, all except edge e are frequent at the end of time T9 because the

frequencies of edges a, b, c, d, e and f are 5, 2, 5, 4, 1 and 4, respectively. Note that the frequency of edge a is dropped

from 6 (appearing in all 6 graphs G1,G2, . . . ,G6) to 5 (appearing in only 5 graphs G4,G5, . . . ,G8).

Once the frequent singleton edges are found, we intersect the bit vectors for two edges. If the row sum of the

resulting intersection ≥ a user-specified threshold minsup, then we find a frequent edge-pair (i.e., a collection of

579 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

2 frequent edges). We then find edge-triplets (i.e., collections of 3 edges) by intersecting two edge-pairs that share a
common edge. Afterwards, we apply a similar procedure to find every collection of k edges (for k ≥ 4).

To speed up this mining step, our 2-step edge-based algorithm intersects the bit vectors for two frequent edges.

If the row sum of the resulting intersection ≥ a user-specified threshold minsup, then we find a frequent edge-pair.

Our algorithm then finds edge-triplets (i.e., collections of 3 edges) by intersecting two frequent edge-pairs that share

a common edge. The same procedure is repeated recursively by intersecting those frequent intersection results that

share some common edges to find every collection of k edges (for k ≥ 4). See Example 4.

Example 4. Continue with Example 3. After finding five frequent singleton edges a, b, c, d and f at the end of time T9,

our 2-step edge-based algorithm intersects the bit vector of frequent singleton edge a with any one of the remaining

four bit vectors (for frequent singleton edges b, c, d and f) to find three frequent edge-pairs {a, c}, {a, d} and {a, f }
with frequencies 4, 3 and 4, respectively, because (i) the intersection of −→a=111110 and −→c=101111 gives bit vector
−→ac=101110, (ii) the intersection of −→a and

−→d=110011 gives bit vector
−→ad=110010, and (iii) the intersection of −→a and−→f =110110 gives bit vector

−→a f=110110. Note that the intersection of −→a and
−→b=001001 gives a bit vector 001000 with

a row sum < minsup.

Next, the algorithm intersects (i) −→ac with
−→ad to get

−−→acd=100010, (ii) −→ac with
−→a f to get

−−→ac f=100110, and (iii)
−→ad

with
−→a f to get

−−→ad f=110010. Hence, it finds frequent three edge-triplets {a, c, d}, {a, c, f } and {a, d, f }.
The algorithm also intersects

−−→acd with
−−→ac f to find a frequent edge-quadruplet {a, c, d, f } with

−−−→acd f=100010. So

far, the algorithm has found all 1+3+3+1 = 8 collections of frequent edges containing a: {a}; {a, c}, {a, d}, {a, f };
{a, c, d}, {a, c, f }, {a, d, f }; and {a, c, d, f }.

Afterwards, our algorithm applies similar steps with the bit vectors for other edges. For instance, it intersects
−→b

with −→c ,−→d and
−→f , and finds out that—among them—only {b, c} is frequent with frequency 2. The algorithm also

intersects −→c with
−→d and

−→f to find frequent two edge-pairs {c, d} and {c, f }, each having frequency 3 as
−→cd=100011

and
−→c f=100110. It also finds a frequent edge-triplet {c, d, f } by intersecting

−→cd and
−→c f . Finally, it intersects

−→d with−→f to find a frequent edge-pair {d, f } with frequency 3. Consequently, our algorithm finds a total of 17 collections of

frequent k edges (where 1 ≤ k ≤ 4), which include 8 collections (containing a), 1+1=2 collections (containing b but

not a), 1+2+1=4 collections (containing c but not a or b), 1+1=2 collections (containing d but not a, b or c), and

1 collection (containing only f).

3.2. Step 2 of our 2-step algorithm: pruning disjoint frequent edges

Once Step 1 of our 2-step algorithm has found collections of all frequent edges—which include connected edges

such as {a, d} as well as disjoint edges such as {a, c}, Step 2 of our algorithm applies a post-processing step to check

every frequent edge to prune those disjoint ones. Based on Observation 1, if two edges are connected (by sharing

a vertex), then one edge is a neighboring edge of another. Two edges are disjoint if they are not neighboring edges

(i.e., do not share any common vertex). For instance, we check and keep {a, d} because d is a neighboring edge of a.

However, we check and prune away {a, c} because c is not a neighboring edge of a. See Example 5.

Example 5. Recall from Example 4 that Step 1 of our 2-step algorithm found 17 collections of frequent edges, which

may include some disjoint edges (i.e., false positives). So, Step 2 checks these collections to determine if any are

disjoint. Specifically, upon checking, our algorithm finds that frequent edge-pairs {a, d} and {a, f } are connected

because both d and f are neighbouring edges of a. However, as c is not a neighbouring edge of a, frequent edge-pair

{a, c} is disjoint and can thus be pruned.

Similarly, frequent edge-pair {b, c} is also connected (because c is a neighbouring edge of b); frequent edge-pairs

{c, d} and {c, f } are connected (because both d and f are neighbouring edges of c). Finally, frequent edge-pair {d, f }
is also connected (because f is a neighbouring edge of d).

Note that the four frequent edge-triplets {a, c, d}, {a, c, f }, {a, d, f } and {c, d, f }, as well as the one frequent edge-

quadruplet {a, c, d, f }, found in Step 1 are all connected.

To summarize, among the 17 collections of frequent edges, Step 2 of our 2-step algorithm prunes a disjoint edge-

pair {a, c} in this illustrative example. The algorithm returns 17−1 = 16 frequent connected subgraphs. More pruning

is expected for bigger graphs in the stream.

580 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

Observation 2. We observed from Example 5 that the 2-step algorithm does not need to check all 17 collections of

frequent k edges to determine which disjoint collections need to be pruned. Specifically, as the algorithm finds a

collection of k+1 edges by intersecting two collections of k frequent edges that share a common edge for k ≥ 2 (e.g.,

intersecting two frequent edge-pairs to get an edge-triplet), all the resulting collections of k+1 edges are guaranteed

to be connected. Hence, the algorithm only needs to check 3+1+2+1 = 7 edge-pairs.

4. Our direct 1-step edge-based algorithm for mining frequent subgraphs from graph streams

The previous section shows how our 2-step algorithm indirectly mines frequent subgraphs from graph streams by

discovering all collections of frequent edges in Step 1 and then pruning collections of disjoint edges in Step 2. Such an

indirect mining approach may incur a lot of time and effort in discovering all collections of frequent edges—including

many disjoint edges, which are then pruned.

To deal with this issue, we present our 1-step algorithm that directly mines frequent subgraphs in this section. This

algorithm first mines frequent singleton edges in the same way as in our 2-step algorithm. Then, unlike our 2-step

algorithm, we intersect the bit vectors for two connected edges—based on the neighborhood information—to find

connected edge-pairs (i.e., collections of 2 connected edges). Afterwards, we intersect two collections of k frequent

connected edges that share a common edge to get a collection of k+1 connected edges. Since the two edges for

intersection share a common edge, they are guaranteed to be connected.

Example 6. Revisit Examples 3–5. With minsup=2, our 1-step edge-based algorithm directly mines frequent sub-

graphs as follows. It first discovers 5 frequent singleton edges a, b, c, d and f . These are edges with row sums in the

DSMatrix in Table 2(c) ≥ minsup.

The algorithm then intersects bit vectors of connected edges such as (i) −→a with
−→b ,
−→d and

−→f to get
−→ab,
−→ad and

−→a f ;

(ii)
−→b with −→c and

−→f to get
−→bc and

−→b f ; (iii) −→c with
−→d and

−→f to get
−→cd and

−→c f ; as well as (iv)
−→d with

−→f to get
−→d f .

Among them,
−→b f is infrequent, and thus edge-pair {b, f } is not returned to users. Moreover, when compared with our

2-step algorithm, this 1-step algorithm saves some computation by not intersecting −→a with −→c because edges a and c
are disjoint. Similarly, our 1-step algorithm also saves some computation by not needing to count frequency for the

infrequent disjoint edge-pair {b, d} because it does not even intersect
−→b with

−→d .

Afterwards, the algorithm intersects two collections of k frequent connected edges that share a common edge to

get a collection of k+1 connected edges. For instance, it intersects
−→ad with

−→a f to get
−−→ad f ,

−→ad with
−→cd to get

−−→acd,−→a f with
−→c f to get

−−→ac f ,
−−→acd with

−−→ac f to get
−−−→acd f , and

−→cd with
−→c f to get

−−→cd f . Consequently, this 1-step algorithm

directly discovers a total of 16 frequent subgraphs (i.e., 16 collections of frequent connected edges): {a}; {a, d}, {a, f };
{a, c, d}, {a, c, f }, {a, d, f }; {a, c, d, f }; {b}; {b, c}; {c}; {c, d}, {c, f }; {c, d, f }; {d}; {d, f }; and { f }.

5. Evaluation

To evaluate our two edge-based frequent subgraph mining algorithms, we generated graph streams by using random

graph models via a Java-based generator with various model parameters (e.g., topology, average fan-out of nodes,

edge centrality, etc.) and derived edges from the graph models. In addition, we also used many different datasets

including IBM synthetic datasets, real-life datasets (e.g., connect4) from the UC Irvine Machine Learning Depository

as well as those from the Frequent Itemset Mining Implementation (FIMI) Dataset Repository. For example, connect4

is a dense data set containing 67,557 records. Each record represents a graph of legal 8-ply positions in the game of

connect 4. All experiments were run in a time-sharing environment on a 1 GHz machine. We set each batch to be

6K records and the window size w=5 batches. The reported figures are based on the average of multiple runs. Runtime

includes CPU and I/Os.

We first measured the accuracy of mining with the following structures: (i) DSTree23, (ii) DSTable5, and (iii) DS-

Matrix. Experimental results show that our two algorithms (which both use the DSMatrix) gave the same mining

results as existing algorithms that use DSTree and DSTable.

We also measured the space efficiency. Experimental results show that mining with the DSTree stored one global

DSTree and multiple local FP-trees in main memory, and thus took the largest main memory space. Mining with

581 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

Fig. 2. Evaluation results.

the DSTable and DSMatrix required less memory because the DSTable and DSMatrix were kept on disk. Our two

algorithms (Sections 3 and 4) required the least amount of memory space because they both work with bit vectors.

In addition, we measured the time efficiency. Our mining algorithms (Sections 3 and 4) also required the shortest

runtime when compared with existing algorithms that mine with the DSTree or DSTable because ours work with

bitwise and set intersection operators. Between our two algorithms, as expected, the indirect 2-step algorithm required

longer runtime than the direct 1-step algorithm because the latter mines frequent connected subgraphs directly. See

Fig. 2.

Furthermore, we performed some additional experiments (e.g., evaluating the effect of minsup). Results on Fig. 2

show that the runtime decreased when minsup increased. The results on varying the number of batches in the graph

stream show the scalability of our two edge-based mining algorithms.

6. Conclusions

In the current era of Big data, high volumes of valuable data can be generated at a high velocity from high-varieties

of data sources in various real-life applications ranging from sensor networks to social networks, from bio-informatics

to chemical informatics. In addition, Big data are also available in business, education, engineering, finance, health-

care, scientific, telecommunication, and transportation domains. A collection of these data can be viewed as a big

dynamic graph structure. Embedded in them are implicit, previously unknown, and potentially useful knowledge.

Consequently, efficient knowledge discovery algorithms for mining frequent subgraphs from these dynamic stream-

ing graph structured data are in demand. On the one hand, some existing algorithms discover collections of frequently

co-occurring edges, which may be disjoint. On the other hand, some other existing algorithms discover frequent sub-

graphs by requiring very large memory space. With high volumes of Big data, available memory space may be limited.

To discover collections of frequently co-occurring connected edges, we presented in this paper two time-efficient and

space-efficient edge-based algorithms that mine frequent subgraphs from graph streams. Our indirect 2-step algorithm

first discovers all frequent edges and then prunes disjoint edges at a post-processing step, whereas our direct 1-step

algorithm pushes the pruning step early inside in the mining process for discovering all frequent connected edges.

Experimental results show the accuracy and efficiency of both edge-based algorithms in mining frequent subgraphs

from graph streams.

Acknowledgements

This project is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

and the University of Manitoba.

582 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 573 – 582

References

1. Aggarwal CC, Li Y, Yu PS, Jin R. On dense pattern mining in graph streams. PVLDB 2010; 3(1–2):975–984.

2. Bifet A, Holmes G, Pfahringer B, Gavaldà R. Mining frequent closed graphs on evolving data streams. In: Proceedings of the ACM KDD
2011. ACM; 2011, p. 591–599.

3. Braun P, Cameron JJ, Cuzzocrea A, Jiang F, Leung CK. Effectively and efficiently mining frequent patterns from dense graph streams on

disk. Procedia Computer Science 2014; 35:338–347.

4. Braun P, Cuzzocrea A, Leung CK, MacKinnon RK, Tanbeer SK. A tree-based algorithm for mining diverse social entities. Procedia Computer
Science 2014; 35:223–232.

5. Cameron JJ, Cuzzocrea A, Leung CK. Stream mining of frequent sets with limited memory. In: Proceedings of the ACM SAC 2013. ACM;

2013, p. 173–175.

6. Chi L, Li B, Zhu X. Fast graph stream classification using discriminative clique hashing. In: Proceedings of the PAKDD 2013, Part I.
Springer; 2013, p. 225–236.

7. Cuzzocrea A. CAMS: OLAPing multidimensional data streams efficiently. In: Proceedings of the DaWaK 2009. Springer; 2009, p. 48–62.

8. Cuzzocrea A, Chakravarthy S. Event-based lossy compression for effective and efficient OLAP over data streams. DKE 2010; 69(7):678–708

9. Cuzzocrea A, Furfaro F, Mazzeo GM, Saccà D. A grid framework for approximate aggregate query answering on summarized sensor network

readings. In: Proceedings of the OTM Workshops 2004. Springer; 2004, p. 144–153.

10. Cuzzocrea A, Jiang F, Leung CK. Frequent subgraph mining from streams of linked graph structured data. In: Proceedings of the EDBT/ICDT
Workshops 2015. CEUR-WS.org; 2015, p. 237–244.

11. Czarnowski I, Jedrzejowicz P. Ensemble classifier for mining data streams. Procedia Computer Science 2014; 35:397–406.

12. Fariha A, Ahmed CF, Leung CK, Abdullah SM, Cao L. Mining frequent patterns from human interactions in meetings using directed acyclic

graphs. In Proceedings of the PAKDD 2013, Part I. Springer; 2013, p. 38–49.

13. Giannella C, Han J, Pei J, Yan X, Yu PS. Mining frequent patterns in data streams at multiple time granularities. In: Kargupta H, Joshi A,

Sivakumar K, Yesha Y, editors. Data Mining: Next Generation Challenges and Future Directions. AAAI Press; 2004, chap. 6.

14. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the ACM SIGMOD 2000. ACM; 2000, p. 1–12.

15. Jiang F, Leung CK. Mining interesting “following” patterns from social networks. In: Proceedings of the DaWaK 2014. Springer; 2014,

p. 308–319.

16. Jiang F, Leung CK, Liu D, Peddle AM. Discovery of really popular friends from social networks. In: Proceedings of the IEEE BDCloud
2014. IEEE Computer Society; 2014, p. 342–349.

17. Jiang F, Leung CK, MacKinnon RK. BigSAM: mining interesting patterns from probabilistic databases of uncertain big data. In: Proceedings
of the PAKDD Workshops 2014. Springer; 2014, p. 780–792.

18. Leung CK. Mining frequent itemsets from probabilistic datasets. In: Proceedings of the EDB 2013. KIISE; 2013, p. 137–148.

19. Leung CK, Carmichael CL. Exploring social networks: a frequent pattern visualization approach. In: Proceedings of the IEEE SocialCom
2010. IEEE Computer Society; 2010, p. 419–424.

20. Leung CK, Cuzzocrea A, Jiang F. Discovering frequent patterns from uncertain data streams with time-fading and landmark models. LNCS
TLDKS 2013; 8:174–196.

21. Leung CK, Jiang F. A data science solution for mining interesting patterns from uncertain big data. In: Proceedings of the IEEE BDCloud
2014. IEEE Computer Society; 2014, p. 235–242.

22. Leung CK, Joseph KW. Sports data mining: predicting results for the college football games. Procedia Computer Science 2014; 35:710–719.

23. Leung CK, Khan QI. DSTree: a tree structure for the mining of frequent sets from data streams. In: Proceedings of the IEEE ICDM 2006.

IEEE Computer Society; 2006, p. 928–932.

24. Leung CK, MacKinnon RK. BLIMP: a compact tree structure for uncertain frequent pattern mining. In: Proceedings of the DaWaK 2014.

Springer; 2014, p. 115–123.

25. Leung CK, MacKinnon RK, Tanbeer SK. Tightening upper bounds to the expected support for uncertain frequent pattern mining. Procedia
Computer Science 2014; 35:328–337.

26. MacKinnon RK, Strauss TD, Leung CK. DISC: efficient uncertain frequent pattern mining with tightened upper bounds. In: Proceedings of
the IEEE ICDM Workshops 2014. IEEE Computer Society; 2014, p. 1038–1045.

27. Papapetrou O, Garofalakis M, Deligiannakis A. Sketch-based querying of distributed sliding-window data streams. PVLDB 2012; 5(10):992–

1003.

28. Rı́os SA, Videla-Cavieres IF. Generating groups of products using graph mining techniques. Procedia Computer Science 2014; 35:730–738.

29. Tanbeer SK, Jiang F, Leung CK, MacKinnon RK, Medina IJM. Finding groups of friends who are significant across multiple domains in

social networks. In: Proceedings of the CASoN 2013. IEEE Computer Society; 2013, p. 21–26.

30. Tanbeer SK, Leung CK, Cameron JJ. Interactive mining of strong friends from social networks and its applications in e-commerce. Journal
of Organizational Computing and Electronic Commerce 2014; 24(2–3):157–173.

31. Tirthapura S, Woodruff DP. A general method for estimating correlated aggregates over a data stream. In: Proceedings of the IEEE ICDE
2012. IEEE Computer Society; 2012, p. 162–173.

32. Valari E, Kontaki M, Papadopoulos AN. Discovery of top-k dense subgraphs in dynamic graph collections. In: Proceedings of the SSDBM
2012. Springer; 2012, p. 213–230.

