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ABSTRACT

Mixed designs, which contain one or more repeated measures factors in

addition to one or more independent groups factors, are used in a variety of

disciplines, including the clothing and textiles discipline. While many researchers may

adopt the conventional analysis of variance (ANOVA) procedure to test repeated

measures hypotheses in such designs this approach is not recommended, particularly

for omnibus tests of interactions, as it is known to be highly sensitive to departures

from the derivational assumption of multisample sphericity. Furthermore, omnibus

tests of interactions in mixed designs are not useful in providing specific information

on the localized sources of these effects.

A content analysis of clothing and textiles literature published between 1987

and 1993 revealed that the conventional ANOVA approach is popular for testing

repeated measures hypotheses. However in using mixed designs, clothing and textiles

researchers do not take full advantage of the factorial structure of the data, either by

not testing for the presence of interactions or by following omnibus tests of--

interactions with tests of simple effects which do not provide relevant information

about the specific nature of variable interactions.

It is shown that in two-factor designs, tetrad contrasts are the only viable way

to probe interactions. Monte Carlo simulation techniques were used to collect

empirical familywise Type I error and power rates for ten procedures for testing

multiple tetrad contrast hypotheses in mixed designs when the multisample sphericity

assumption was violated. Only three procedures provided acceptable control of error



rates; these relied on a test st¿tistic formed using an estimate of the standard error of

the tetrad contrast based on only those data used in defining the contrast (i.e., a

nonpooled test statistic), in combination with either a Studentized maximum modulus,

Hochberg (1938) step-up Bonferroni, or Shaffer (1986) modified sequentially rejective

Bonferroni critical value. Minimal power differences between these three procedures

were observed.

The application of these nonpooled tetrad contrast procedures to data from a

hypothetical clothing and textiles data set was made with a computer program based

on a general linear model approach to hypothesis testing using a nonpooled statistic.

lll
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CHAPTER 1

INTRODUCTION

Preamble

Researchers in a variety of disciplines conduct investigations in which serial

measurements are made on the same unit of analysis on one or more dependent

variables. These observations typically occur as a function of time or as a result of

experimental manipulations. Regardless of the manner in which the data arise, the

measurements obtained for each unit of analysis are correlated, and the independent

variable under investigation is known as a correlated groups or repeated measures

(RM) factor.

As Lovie (1981) notes, interest in the application of analysis of variance

(ANOVA) techniques to data from RM designs dates from the 1940s. Much of this

work was conducted by psychologists, who drew on the writings of such notable

statisticians as Fisher (1935) and Snedecor (1937). This early research focussed on the

formulation of an ANOVA F statistic that could be used to test for the presence of a

RM effect.

In the post-1950s era, interest among both statisticians and psychologists

centred on statistical validity problems relevant to RM analyses incorporating the ,

ANOVA F statistic- This research was prompted in large part by the knowledge that

the mathematical assumptions which underlie traditional procedures for testing

hypotheses in RM designs will, in practice, rarely be satisfied. Therefore. concern
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existed that the results of a RM analysis which incorporated conventional data analytic

techniques would be invalid, and therefore provide misleading information.

As Lindsey (1993) notes, RM designs today enjoy a high degree of popularity

in many different disciplines, from biology, to economics, to zoology. Contemporary

investigations of methods for RM analyses have not been the exclusive domain of

either statisticians or psychologists, but instead have been conducted by researchers

from various backgrounds. As a result, this field of inquiry has a strong

interdisciplinary focus.

The current project is a continuation of the examination of the appropriateness

of statistical procedures for RM analysis, and accordingly, portions of this

investigation should be of interest to researchers from a diverse range of disciplines.

At the same time, this study also narrows its focus, and considers applications of RM

methodologies (i.e., combinations of research design and analysis procedures) in the

clothing and textiles (C&T) discipline.

The C&T orientation of the current study was selected for two reasons. First,

in comparison to other disciplines, the C&T discipline is relatively new, and, as a

result, lacks a well-defined base of both theoretical and methodological knowledge

which researchers can use in formulating research problems, planning study designs,

and choosing methods of dat¿ analysis (Nagasawa, Kaiser, & Hutton, 1989). Second,

while RM designs find usage by researchers in the C&T field, there is always the

potential for such designs to find a wider range of applications. Thus, this study will

serve in part to introduce RM designs to some C&T researchers, and reinforce the
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use of such designs and appropriate analysis strategies for others. The following

discussion provides a more detailed discussion of the objectives and rationale for the

current research project.

Introductor]¡ Remarks

In the C&T field, RM designs have a number of different applications. One

example is where individuals are asked to rate the overall acceptability of a garment

during repeated wear trials; a second is where study participants are asked to record

their perceptions of the personal traits of stimulus figures dressed in different clothing

styles in which some detail, such as level of fashionability, has been manipulated; a

third is where fabric properties are evaluated during multiple cycles of laundering.

One research question typically of interest to researchers who use RM designs

is: Do differences among the RM sample means provide sufficient evidence to infer

differences in the study population means? Investigations in other disciplines have

demonstrated that applied researchers routinely adopt the conventional ANOVA F¡lest

to obtain an answer to this question (Brigham, 1974; Ekstrom, Quade, & Golden,

1990; LaTour & Miniard, 1983). This approach is generally considered inappropriate,

since it rests on an assumption known as sphericity, which is unlikely to be satisfied

in the majority of data-analytic situations. For the sphericity assumption to be met,

the population variance-covariance matrix of the repeated measurements must be

structured so that the variances of the differences between scores at all pairs of RM

factor levels are equivalent. Furthermore, for mixed designs, in which repeated

measurements are made for each of several independent groups of units of analysis,
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the more stringent assumption of multisample sphericity must be satisfied; this

requires homogeneity of the common variance of the pairwise RM differences across

groups. Because of the restrictive nature of these assumptions, investigations of the

use of RM methodologies in various disciplines have concluded that applied

researchers seldom adopt correct strategies for testing correlated effects in RM

designs.

As with research data from other disciplines, it is likely that C&T data will

often not satisfy the mathematical assumptions underlying the conventional ANOVA

method for analyzing correlated effects in RM designs. Consequently, C&T

researchers may not be using data-analytic strategies that will produce valid results,

which in turn, may lead them to conclude that differences exist in their study

populations, when in fact none are present. Such erroneous conclusions *" Uno*n *

Type I errors.

These err:Js have, on several occasions, been noted as a cause for concern

among C&T researchers. Because much of the research in the C&T field is

exploratory in nature and replication studies are rarely published (Turnbull & Lix,

1991), false positive results may be given undue importance in directing the course of

future research. Moran (1986) suggests that :

ïve, as consumers of research, are often not as careful about evaluating

findings as we should be (after all, if it gets published, the findings should be

trustworthy). We tend to overgeneralize the findings of a single study on a

single sample and suggest that these findings (and often even the more
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speculative interpretations that go along with these findings), are facts

applicable to much broader groups. This tendency will probably always be the

case and thus it becomes incumbent upon the researcher to do what he or she

can to avoid the publication of misleading data, i.e., Type I errors. (p. 380)

It would, however, be unjustified to discontinue using RM designs for the

investigation of research problems in the C&T field, or, for that matter, in other

fields of scientific inquiry. Given an equal sample size, a correlated groups design

usually offers greater power to detect a treatment effect than an independent groups

design in which each unit of analysis is evaluated at only one point in time or under a

single experimental condition (Kirk, 1982, p. zaQ. The former design is generally

more efficient than the latter because the degree of variability among observations

made on a single unit of analysis will typically be smaller than the degree of

variability among observations made on several different units of.analysis. Since less

error variability is likely to be present in a correlated groups design than in an

independent groups design, the former provides for a greater probability of detecting

a true difference among the population means. Consequently, researchers who make

use of RM designs may require smaller sample sizes to achieve results comparable to

those that could be obtained using an independent groups design. Thus, the adoption

of a RM design is one way to make better use of scarce research resources.

Instead of abandoning RM designs, the solution lies in the identification of

tests that are insensitive, or in other words, robust to mathematical assumption

violations in RM designs. Monte Carlo simulation techniques are valuable in this
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when assumptions are violated to various known degrees in the simulated data. Based

on the results obtained from manipulation of the simulation model, it is possible to

make recommendations to researchers on the appropriate use of these statistical

procedures. In other words, the purpose of simulation studies is to provide

information on the conditions under which a st¿tistical test will produce valid results.

Statement of the Problem

Both Damhorst (1990) and Turnbull and Lix (1991) have noted the trend

towards the use of more complex research designs and analysis procedures among

C&T researchers, which is due in large part to the recognition that clothing as a form

of human behaviour is a multifaceted process. For example, because it is well known

that the "relevance of [clothing] information is dependent upon the setting and

background cues" (Damhorst, p. 6), C&T researchers are more likely to be interested

in examining the joint effect of two or more independent variables on a dependent

variable, than in studying the predictive ability of only a single independent variable.

As a consequence, tests of interactions may be of greater importance to C&T

researchers than those of individual or main effects.

Mixed designs may be particularly useful to C&T researchers, as they offei

the opportunity to investigate differences in responses of independent groups of units

of analysis under exposure to all levels of one or more RM factors; these groups may

be formed, for example, on the basis of age or sex. C&T researchers who use mixed

designs may be interested in determining whether the pattern of differences among
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RM sample means are the same across levels of an independent groups factor, and

consequently will test for an interaction. Past research has demonstrated, however,

that conventional procedures for analyzing interactions in mixed designs may be

highly sensitive to departures from derivational assumptions. In recognition of this,

Algina and Oshima Q99Ð and Keselman, Carriere, and Lix (1993) examined

alternative solutions for testing omnibus interaction effects in mixed designs under

departures from the multisample sphericity assumption; both sets of authors concluded

that the investigated procedures could produce valid results under assumption

violations.

While the procedures described by Algina and Oshima Q99$ and Keselman et

al. (1993) enable researchers to obt¿in valid tests of omnibus interaction effects in

mixed designs, i_nterest generally extends beyond identification of a significant

omnibus result to the determination of the localized source of this result. For

example, Lix (1995) found that in both correlated and independent groups designs,

C&T researchers routinely follow a significant omnibus main effect result with

multiple pairwise comparisons of treatment means to tease out the specific source of

the effect. In factorial designs, Kaufman, Dudley-Marling, and Serlin (1986) and

Rosnow and Rosenthal (1989a) have confirmed that many researchers conduct tesß on

simple effects when a significant interaction is obtained, including simple main effect

tests and simple pairwise comparisons. However, as these authors note, such

procedures are inappropriate for examining interaction effecs and researchers who

adopt such an approach are Iikely to misinterpret a significant result. Specific
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procedures for probing interactions, known as interaction contrasts, are available, but

as Boik (1993) notes, most applied researchers are not familiar with these techniques.

To summarize, C&T researchers may either already use mixed designs in their

research or find the adoption of such designs beneficial, the use of mixed designs

implies interest in examining one or more variable interactions, and research has

demonstrated that applied researchers may frequently misinterpret the nature and

source of an interaction in their data by failing to adopt techniques which allow for

the exploration of this effect. Furthermore, because procedures for testing interactions

in mixed designs are known to be highly sensitive to departures from the multisample

sphericity assumption, it is likely that procedures for probing interactions will suffer

from this same weakness. Yet at present, no studies have investigated potentially

robust solutions for conducting tests which are designed specifically for probing

interactions within the context of mixed designs. The resuls of simulation studies

which investigate the robustness of statistical techniques for probing interaction effects

in RM designs should therefore provide relevant information for C&T researchers as

well as researchers in other fields where mixed designs find a high degree of usage.

Purpose of Proposed Research

Recommendations on improvements in data-analytic strategies are often môst

meaningful when they are accompanied by documentation of existing research

practices. This documentation is useful for directing recommendations to appropriate

audiences and for providing empirical evidence of inadequacies in currently adopted

methodologies. Accordingly, one purpose of the present research is to investigate the
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use of RM designs by researchers in the C&T field, particularly the strategies adopted

for testing interaction effects in mixed designs. This investigation is undertaken via a

content analysis of published C&T research.

A second purpose is to use simulation techniques to examine the efficacy of

several multiple comparison procedures (MCPs) for probing interactions via

interaction contrasts in mixed designs when the multisample sphericity assumption is

not satisfied. Lix (1995) found that while a number of different MCPs are used by

C&T researchers, procedures which do not provide control of the overall probability

of committing at least one Type I error among the overall set of comparisons,

otherwise known as the familywise Type I error rate (FWR) are routinely selected.

Furthermore, the issue of violations of derivational assumptions is rarely considered

when selecting a MCP. The MCPs considered in this project utilize an approximate

degrees of freedom (df) test statistic which is based on the solutions of Welch (1947,

1951).and James (1951 , 1954) for testing the equality of means in the presence of

variance heterogeneity.

Study Rationale

Green (1984) notes that the home economics discipline has been criticized for

is failure to produce research papers which address methodological issues in data'

analysis. This is particularly evident in the C&T field. At present, only a single study

has addressed specific inadequacies in data analysis conducted by C&T researchers

(Lix, 1995). This represents a significant gap in the development of the field,

because, as Schumm (1982) argues, an integrated understanding of theory, variable
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measurement, and statistical analysis is necessary for researchers to competently

conduct scientific investigations (see also Nagasawa et al., 1989). Furthermore, since

new developments in data-analytic techniques are continually appearing in the

literature, it is essential for applied researchers to be exposed to these innovations so

that they are aware of the range of choices available, and accordingly, select

statistical techniques which are most appropriate for achieving the stated objectives of

their investigations.

Because C&T researchers may find it advantageous to adopt RM designs in

their investigations it is import¿nt that researchers understand how to proceed in the

analysis of correlated data. This involves an awareness of: (a) the types of research

questions that can be addressed with such designs, (b) why and how data may not

conform to the assumptions underlying traditional methods of RM analysis, (c)

problems with existing data analysis strategies, (d) alternative methods of analysis,

and (e) how to implement these alternative procedures. The present research will

address these issues within the context of techniques for examining va¡iable

interactions.

. However, as noted at the outset of this introduction, the findings of this study

will be applicable to other disciplines. C&T research tends to be interdisciplinary in

nature (Turnbull &. Lix, 1991), hence it is likely to be exhibit characteristics

representative of research in other fields, such as marketing and psychology. As well,

this study will add to the growing body of knowledge of RM analysis procedures

found in such fields as st¿tistics and psychology.
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Stud]¡ Limit¿tions

The following limitations on the scope of this research project are noted:

The investigation of the use of RM methodologies in the C&T field is limited

to published research. This restriction was applied for two reasons. First,

published works are likely to have the greatest influence on the way in which

researchers conduct their own studies. Researchers may tend to emulate the

approaches towards design and analysis taken in published works in the hopes

that this will improve the chances of having their own works accepted for

publication. Secondly, unpublished works are often more difficult to identify

and their existence is rarely documented in published indices. Without a

systematic approach available to identify unpublished works, their inclusion in

this investigation might allow for bias to enter into the study selection process.

However, the exclusion of unpublished works may, in and of itself, create

bias, as unpublished works are often systematically different from their

unpublished counterparts; they may contain fewer statistically significant

result, or a greater number of methodological flaws, or both (Greenwald,

1975; Moran, 1986).

This study only considers methods for probing interactions within the context

of two-factor designs that cont¿in only a single dependent variable. These

methods may be generalized to higher-order designs and designs that contain

multiple dependent variables which are being investigated simultaneously.

2.
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However, before considering their use in more complex designs, it is

important to consider the issue of robustness in a simple design.

Definition of Terms

Throughout this study, the following terms and concepts will find frequent

usage, and are defined here in detail for purposes of clarity:

T)¡pe I Error Rate: The probability of erroneously rejecting a true null hypothesis.

Familywise Error Rate (FWR): The overall or joint probability of committing at least

one Type I error in a complete family of hypothesis tests.

Per Comparison Error Rate (PCR): The probability of committing a Type I error

when testing a given hypothesis.

Balanced Design: A research design in which group sizes a¡e equal. When group sizes

are unequal the design is unbalanced.

Contrast (Comparison): A set of coefficients which specifies a comparison among a

set of population means, and defines a hypothesis of interest to the researcher. At

least two contrast coefficients in the set must be nonzero, and the coefficients must

sum to zero.

Orthogonal Contrasts: A set of unrelated (uncorrelated) contrasts. The sum of the

crossproducts of the coefficients of each pair of orthogonal contrasts is equal to zero

when the design is balanced. For unbalanced designs, a pair of contrasts is orthogonal

if the weighted sum of the crossproducts of a set of coefficients are equal to zere,

where the weights are equal to the inverse values of the group sizes.
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Linearl]¡ Independent Contrasts: A set of contrasts in which no individual contrast

can be formed from a linear combination of any other contrast(s) in the set.

Pairwise Comparison: A contrast in which two means are compared.

Complex Contrast: A contrast in which more than two means are compared.

Marginal (Main) Effect: The effect of one treatment (experimenøl) factor that is

obtained when the population values are averaged across the levels of all other

factors. This averaging may be conducted using either weighted or unweighted values

when the design is unbalanced.

Simple Effect: The effect of one treatment factor at a particular level of another

factor, or at a combination of levels of two or more factors.

Omnibus Test: A test that is used to evaluate differences among more than two

different groups of units of analyses, and has degrees of freedom equal to those

available for the effect under investigation.
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CHAPTER 2

REPEATED MEASURES APPLICATIONS IN THE

CLOTHING AND TEXTILES LTTERATURE

The first objective of this study was to assess the use of RM methodologies in

the C&T literature, particularly with respect to mixed designs. This chapter begins

with a discussion of: (a) the various types of RM research designs that may be

adopted by the applied researcher, (b) methods for analyzing correlated effects, and

(c) the derivational assumptions on which these procedures rest. An examination of

the literature on the use of RM methodologies in other disciplines follows. A

description of the method used to conduct a search of the C&T RM literature and to

define the characteristics of this literature concludes the chapter.

An Overview of Repeated Measures Designs

In a simple RM design, a single group of units of analysis (e.g., study

participants) is evaluated at each level of one RM factor. A single group_of units of

analysis may also be evaluated at each combination of levels of two or more RM

factors; such a design is referred to as a factorial RM design. In contrast, in a mixed

design, units of analysis are classified on the basis of one or more independent groups

factors and are evaluated at each level of a single RM factor, or at each combination

of levels of two or more RM factors. Such designs are denoted as mixed because both

independent groups and correlated groups factors are involved. All of these RM

designs may be univariate in nature, such that each unit of analysis is evaluated on

only a single dependent variable, or they may have a multivariate structure, such that
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each unit of analysis is measured at each level of the RM factor(s) on multiple

dependent variables.

Anal)¡sis Procedures and Associated Derivational Assumptions

Single-Group Designs

Simple repeated measures designs. Let Yik denote the kth score for the ith unit

of analysis (i : 1 ,..., N) in a simple RM design in which only one dependent

variable is under investigation. The observations Yi : [Y,, ... Y,*] are assumed to be

independently and normally distributed random variables with mean vector

p: [h... l.¿K] of dimension 1 x K and variance-covariance matrix Ð of dimension

K x K. The omnibus null hypothesis under consideration is Ho: þt : ... : ¡r*. The

conventional univariate statistic used to test H" is F : MSK/MSKS, where MS* is the

mean square for the RM effect, and MSo is the mean square error (MSE).

When the variances of the K repeated measurements are equal, and the

covaria¡ces among them are equal, the variance-covariance matrix, Ð, is said to

possess compound symmetry (Kirk, 1995, p.275). Compound symmetry is a

sufficient condition for the conventional ANOVA F statistic to follow an F

distribution under the null hypothesis. However it is not a necessary condition.

The necessary condition underlying the conventional ANOVA approach for

testing H. is sphericity or circularity (Huynh & Feldt, 1970; Rouanet & I-æpine,

1970), which, in matrix notation, is defined as
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(2.r)

where C is a K x (K - 1) orthonormal contrast matrix for the K RM, À is a

scalar > 0, I is an identity matrix, and superscript T is the transpose operator. For C

to be orthonormal, the columns of C must form a set of (K - 1) orthogonal contrasts

among the levels of the RM factor. Furthermore, each column must have a length of

one, or in other words, CrC : Içç_r¡.

Another way of stating this sphericity assumption is based on the algebra of

expectations. It may be shown that

êe-s = û. * o?, - Zpu,ooo*, . (2.2)

Equation 2.2lllustrates that the variance of the difference between scores at any pair

of levels of the Rlvf factor may be expressed as a function of the corresponding

variances and covariance. The latter is a function of the correlation among the

repeated measurements and the standard deviations. When variances are_equal for all

possible pairwise difference variables, the data are spherical. As is apparent from

Equation 2.2, when there are only two levels of the RM factor, the sphericity

assumption is trivially satisfied, since only a single difference variable can be formed.

One way in which violations of the sphericity assumption may arise is because

of variations in the degree of correlation among dependent variable scores at all pairs

of levels of the RM factor, a situation that may be encountered in many data-analytic

problems. For example, in the C&T discipline, in studies of the acceptability of a

garment during repeated wear trials, successive trials may be evaluated in a similar
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manner and therefore may be highly correlated, whereas trials separated by a greater

length of time may give rise to dissimilar evaluations, and will not be as highly

correlated. It is rarely possible to limit the existence of such serial correlation patterns

when the units of analysis are studied as a function of time. However, in situations

where the RM factor is an experimental variable, it is important for units of analysis

to be randomly exposed to the factor levels to limit the existence of deleterious carry-

over effects that may give rise to nonspherical data. Unfortunately, many researchers

may not attend to the issue of randomization in designing an experiment, which may

have serious implications for the validity of the statistical procedures that are used in

data analysis.

Box (1954) proved that under the null hypothesis, the usual F statistic is

approximately distributed as an F variate with (K - l)e and (K - lXN - l)e df. The

parameter e is an index of the degree of sphericity in the population covariance

matrix. In matrix notation.

[tr(CrÐC)]'? Q.3)(K-1)tr[CrEç12'

where tr is the trace operator, and the remaining elements are as previously defined.

The parameter e may assume a range of values, from an upper bound of 1.0 wheri

sphericity is present in the data, to a minimum of (K-1)-1.

For testing the hypothesis of no RM effect, one could compare the computed F

statistic to a critical F value with numerator and denominator df adjusted by e .

However, it is unlikely for researchers to have information about the population
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parameter e . Therefore, one approach suggested for testing the null hypothesis is to

compare the computed F statistic to a critical value (CV) for which the numerator and

denominator df have been adjusted by a factor equal to the lower bound of e (Geisser

& Greenhouse, 1958). Accordingly, the F statistic is compared to a CV with 1 and

(N - 1) df. This approach, often referred to as a conservative F test, is not widely

recommended, as it may result in a test that is insensitive to differences among the

RM population means (Rogan, Keselman, & Mendoza, t979).

Greenhouse and Geisser (1959) suggested using a sample estimate, ê, for df

adjustment, which is computed by replacing Ð in Equation 2.3 with the sample

covariance matrix, Ê. However, Collier, Baker, Mandeville, and Hayes (1967) found

ê to be a biased estimate of the population parameter for values of e greater than

0.75, particularly when sample sizes were small. Hence, Huynh and Feldt (1976)

recommended ã. where

ë=min[,. NCr-rl¿-z l.
L (K-l)tN-1-(K-1)lêl

(2.4)

Finally, Quintana and Maxwell (1985) proposed ë, due to the findings of

Maxwell and Arvey (1982) that õ tends to produce an excessive number of Type I

errors under conditions in which sample size is small and/or there are a large number

of repeated measurements (see also Quintana & Maxw ell, 1994). This estimate is

defined as
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(2.s)ã = minft ,rllq + e)f .

A multivariate procedure may also be adopted to test the null hypothesis. Due

to the existence of correlations among the repeated measurements, Cole and Grizzle

(1966) argue that multivariate analysis of variance (MANOVA) is the appropriate

procedure to adopt. Under this analysis strategy, the K RM are transformed into a set

of (K - 1) Iinearly independent difference variables. For the simple RM design,

Hotelling's (1931) T2 statistic is used to test the null hypothesis of equality of the

means of these difference variables. This approach makes no specific assumptions

regarding the structure of Ð, although the assumptions of independence of

observations and multivariate normality must be satisfied.

Factorial repeated measures designs. When testing correlated effects in

factorial RM desþns using the conventional ANOVA approach, both overall and local

sphericity assumptions must be considered (Mendoza, Toothaker, & Crain, 1976).

The ovérall sphericity assumption is satisfied when the C matrix in Equation 2.1

defines a set of orthonormal contrasts for all of the levels of the RM factors, while a

local sphericity assumption is satisfied when C defines an orthonormal contrast matrix

for a particular effect of interest (e.g., a main or interaction effect). Overall and local

sphericity need not be simultaneously satisfied in a single set of data, although the

former, which is the more stringent assumption, implies that the latter will be met.

The conventional ANOVA F statistic can be computed in different ways depending on

whether or not the researcher is willing to assume that the data conform to the overall

sphericity assumption. In the case where neither assumption is likely to be met, either



20

a univariate df-adjusted procedure, or Hotelling's (1931) T2 procedure may be

adopted. However, with respect to the former, it is important to note that a different

value of ê, ê, or ã can be computed for df adjustment for each effect under

investigation.

. For both simple and factorial RM designs,

many researchers favour the multivariate approach over univariate df-adjusted

procedures, as the former is exact, while the latter are only approximate tests of the

null hypothesis (Keselman & Keselman, 1993; O'Brien & Kaiser, 1985). However, it

is known that Hotelling's (1931) T2 test can be sensitive to departures from the

multivariate normality assumption when total sample size is less than 30 (Lix,

Keselman, & Keselman, 1995). Furthermore, the multivariate procedure is not

uniformly more powerful than a univariate one. The relative power advantage of

either approach is a function of the alternative hypothesis, the structure of Ð, and the

relationship between these two factors (Barcikowski & Robey, 1990; Davidson,

1972).

Mixed Designs

The simplest mixed design cont¿ins a single independent groups factor, A,

with j : 1, ..., J levels and n, units of analysis withineach level of A (Ð,n, : N),

and a single correlated groups factor, B, with k : 1, ..., K levels. tæt y¡t represent

the ftth measure on the ith unit of analysis (i : 1,...,8) in theith group. The

observations Yü : [Y'¡r ... Y¡*ì are assumed to be independently and normally

distributed, with mean vector F¡: l\y...F¡xl and covariance matrix Ð,.
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Under the conventional approach to RM analysis, the null hypothesis of no

RM main effect, Hor lr.r : ... : ¡r.,¡, where ¡,1.* is the kth marginal RM mean, is tested

via F* : MSx/MSç57¡. Here, MS* and MS*r,, are the mean square for the RM effect

and the MSE, respectively. In the latter term, the forward slash is used to indicate

that units of analysis are nested with groups. The null hypothesis of no interaction

effect is Ho: F¡u- lt.u- þ:. * l¿.. : 0 for all j and k, where F.u, F¡., and ¡r.. are

respectively the RM, group, and grand means. This hypothesis is tested via

F¡*x : MSr*r(/MSKrrr, where MSr** is the interaction mean square and MS*r' is as

previously defined. Finally, the null hypothesis of no group main effect,

Hot l¿r. : "' þ!., is tested via F, : MS¡/MSs/r, were MS, is the group mean square,

and MSr,, is the MSE.

In order for the ANOVA F test to provide a valid test of either the RM main

or interaction effect in a mixed design, the assumptions of multivariate normalitv and

independence must be satisfied. In addition, it is assumed that the sphericity

assumption holds, that is,

CrÐeC = ÀI¡¡ç_1¡ , (2.6)

where Eo is the population covariance matrix that has been averaged (pooled) across

the levels of the grouping factor, and the remaining elements are as defined for the

simple RM design. Furthermore, for multisample sphericity to exist (Huynh, 197g),

the covariance matrix of the orthonormal contrast variables must be equal across all

Ievels of the grouping factor. [n matrix notation, this assumption is represented as
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(2.1)
CrÐ1C =CrÐ2C = "' =CrÐrC = ÀI,*_,., .

For the ANOVA F test to provide a valid result for a test of the independent groups

main effect, the multisample sphericity assumption need not be satisfied. However, it

is assumed that homogeneity of variances exists across the levels of the grouping

factor for the average value of the repeated measurements.

For the mixed design, Box (1954) showed that under the hypothesis of no RM

main effect, F* is approximately distributed as an F variable with (K - l)e and

(K - 1XN - J)e df. Similarly, F.* is approximately distributed as an F variate with

(J - lXK - l)e and (K - IXN - J)e df under the hypothesis of no RM interaction. The

population parameter, e, is computed in the same manner as for the simple RM

design, with the exception that Ð is replaced with \ in Equation 2.3.

Any one of the ê, ë, or ã df-adjusted F tests may be adopted for testing

correlated effects in mixed designs when is it unlikely that.the dat¿ will conform to

the sphericity assumption. The ê statistic is defined in the same manner as for the

simple RM design, with the exception that Êo replaces Ð in Equation 2.3. However,

the ë statistic (Huynh & Feldt, 1976; læcoutre, 1991) is defined as.

f-ìõ=minlr.Wl (2.8)
L ',K-l)tN-J-(K-1)1êJ

Finally, the ã statistic is computed using Equation 2.5.

Data from mixed designs may also be analyzed using a multivariate procedure.

In order to test the.RM main effect, the grouping factor is ignored, and the set of
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linearly independent difference variables are pooled across the levels of the grouping

factor. Hotelling's (i931) T2 statistic is used to assess whether the vector of means for

these difference variables is equal to the null vector. For the interaction effect, the

hypothesis of interest is equality of the vector of mean difference variables across the

levels of the grouping factor. Hence the problem is reduced to a one-way independent

groups MANOVA on the difference scores, and the null hypothesis may be evaluated

using Hotelling's T2 when the number of groups is equal to two, or one of: (a)

Hotelling-Lawley (Hotelling, 1951; Lawley, 1938) trace, (b) Pillai-Bartleg (Bartle6,

1939; Pillai, 1955) trace, (c) Roy's (1953) largest root criterion, or (d) wilks' (rg3z)

likelihood ratio, for multi-group mixed designs.

In order for a multivariate procedure to provide a valid test of the data,

multivariate normality is assumed, as is equality of the group orthonormal cova¡iance

matrices. However, the data need not be spherical.

In mixed designs, the multivariate approach is generally favoured over either

of the ê, õ, or ã tests when the design is balanced, provided that the degree of

inequality of the group orthonormal covariance matrices is not large (Keselman, Lix,

& Keselman, 1994). However neither the univariate or multivariate approach is

considered to be appropriate when the design is balanced but the degree of inequaliry

of the group covariance matrices is large, or when the design is unbalanced,

regardless of the degree of covariance heterogeneity. Specific information concerning

the operating characteristics of the univariate and multivariate approaches under such

conditions is discussed in a subsequent chapter.
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Multivariate Repeated Measures Designs

All of the methods for analyzing correlated effects have been described within

the context of a design in which only a single dependent variable is under

consideration, or in which each of several independent variables is being evaluated in

isolation. In those instances where the data structure is multivariate in nature and the

researcher is interested in conducting tests of hypotheses for the set of dependent

variables, a multivariate MANOVA procedure may be adopted. Hotelling's (1931)

test is again used to test multivariate RM hypotheses in either simple or factorial RM

designs as well as to test main effect hypotheses in the mixed design. Any one of the

four multivariate procedures described previously for analyzing interactions in the

mixed univariate design can be applied to test interactions in a mixed multivariate

experiment. However, the statistics for testing multivariate RM main or interaction

hypotheses may be computed in different ways, depending on whether or not the

researcher is willing to assume that multivariate (multisample) sphericity is sati-sfied.

Boik (1991) provides specific details of the methods available for computing

multivariate statistics under these two approaches.

Probing Correlated Effects

In many instances, the researcher will follow a significant test of a RM effect

with contrasts to probe that effect. Alternatively, the researcher may elect to bypass a

test of the omnibus hypothesis altogether in favour of a series of contrasts to aid in

the identification of the localized source of the effect. In both instances. the mosr
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common approach is to conduct pairwise comparisons of the RM means (Jaccard,

Becker, & Wood, 1984; Lix, 1995).

In the simple RM design, the test statistic for performing these comparisons

may be computed in two different ways; the choice of one approach over the other is

a function of the assumptions the researcher is willing to make about the data. In the

first, the test statistic incorporates the MSE term used to test the omnibus hypothesis.

This statistic is known as a pooled statistic because the error term is based on the data

from all levels of the RM factor. The sphericity assumption must be satisfied for such

an approach to provide valid tests of pairwise comparisons (Keselman, 1982). The

alternative, a nonpooled test statistic, uses an error term based on only that data

associated with the particular levels of the RM factor that are being compared and is

equivalent to a paired t statistic (Maxwell, 1980). Thus, each pairwise comparison

statistic has a separate error term. Since only two levels of the RM factor are used to

derive the test statistic, the sphericity assumption is trivially satisfied. However, it is

still assumed that the dat¿ follow a multivariate normal distribution.

The same concepts of pooled and nonpooled statistics apply to pairwise

comparisons in factorial RM designs and in mixed designs. However, pooling may be

conducted in different ways, and is a function of whether the researcher is probing a

marginal effect or a simple effect. For example, in the A x B mixed design described

previously, pairwise comparisons of the Factor B marginal means may be conducted

using a test st¿tistic which employs an error term based on the usual MSE for the

omnibus test, which is pooled across all of the data. The use of such a statistic
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necessarily assumes that multisample sphericity is satisfied (Keselman & Keselman,

1988). Alternatively, the test statistic may incorporate an error term based on only

that data at the two levels of Factor B which are a part of the comparison and thus

only requires homogeneity of the group orthonormal covariance matrices, not

sphericity. Pairwise comparisons of the Factor B simple main effect means at a

particular level of Factor A may be made using an error term based on the usual

MSE, which assumes that the data conform to the multisample sphericity assumption.

These tests may also be conducted using the MSE computed at a particular level of

Factor A (Keselman & Keselman, 1993); this approach is only dependent on

sphericity of the variance-covariance matrix at the chosen level of the grouping factor.

Alternatively, the test statistic may employ an error term which is pooled over neither

the Factor B or Factor A levels, and is therefore based on only that data used in

defining the comparison of interest. This nonpooled statistic is not dependent on either

component part of the multisample sphericity assumption.

Repeated Measures Designs and the Applied Researcher

The information provided to this point on methods available for RM analysis

may be too technical in nature for the applied researcher. Individuals requiring a less

complex discussion have a number of sources at their disposal. Most statistical :

textbooks include a section on RM analyses; Maxwell and Delaney (1990) provide an

excellent treatment of this topic. O'Brien and Kaiser (1985) give a simplistic

discussion of MANOVA methods for RM analysis which includes a basic introduction

to matrix algebra. Barcikowski and Robey (1984) and l,ooney and Stanley (1989)
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consider data analysis procedures for single-group and mixed designs, respectively.

Selected authors in the home economics discipline have also dealt with RM analyses

within the context of family studies research problems (see Ball, McKenry, & Price-

Bonham, 1983; sanik, 1983; schumm, Barnes, Bollman, Jurich, & Milliken, 1985;

Schumm, Bugaighis, & Jurich, 1985).

Assessing Repeated Measures Methodologies in Other Disciplines

As a result of the variety of procedures available for the analysis of RM data,

a number of studies in various fields of scientific inquiry have investigated

applications of RM methodologies by applied researchers and used this information to

formulate recommendations on appropriate methods of RM analysis. This section

provides a summary of both the findings and recommendations of these content

analyses.

Brigham (1974) surveyed research reports published between 1969 and I97l in

Ergonomics to examine the popularity of a variety of different statistical procedures.

RM analyses were adopted in 2l of the 108 studies which the author identified and in

all of these, the conventional ANOVA F procedure was adopted. Brigham criticized

this approach, and suggested that a conservative F procedure should have been used

instead. Furthermore, the author noted that if this strategy had been used, 13 of the

2'l articles would no longer have reported significant results.

LaTour and Miniard (1983) evaluated published articles in two marketing

journals for the period 1974 to 1979 to identify studies employing conelated data.

The authors included studies using simple, factorial, and mixed designs. Of the 55
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research reports which the authors identified, 24 reported the use of the conventional

ANovA approach for testing hypotheses on RM effects, and therefore the

consequences associated with possible violations of the (multisample) sphericity

assumption were not considered. None of the studies reported the use of a df-adjusted

procedure, but in one article the authors relied on a conservative F test. In only two

of the 55 studies was MANOVA adopted. LaTour and Miniard also identified two

papers in which the RM factor was erroneously treated as an independent groups

factor in the computation of ANOVA F statistics. Finally, in several papers in which

a mixed design was used, tests of simple independent group effects were conducted at

each level of the RM factor(s), thereby bypassing tests of an omnibus RM effect. In

their conclusions, l¿Tour and Miniard recommended a multivariate approach to RM

analysis since it is "the most versatile of the analytic methods" (p. 55). Furthermore,

they suggested that a multivariate analysis is likely to afford statistical power which is

comparable to that of a df-adjusted procedure.

In a more recent study, Ekstrom et al. (1990) evaluated analysis procedures

applied to test correlated effecß in mixed designs in the psychiatric RM literature for

a six-month period in 1988. The authors' most significant finding was that more than

one third of the 63 articles they identified did not include sufficient information to

conclude what type of analysis had been performed, although in many of these articles

it appeared that the traditional ANOVA approach had been adopted. In seven studies

MANOVA was used to test RM main or interaction effects and in another four studies

a df-adjusted test was used. A further 16% only reported the results of tests of simple
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independent group effects conducted at each level of a single RM factor or at each

combination of levels of two or more factors. Ekstrom et al. also recommended a

multivariate approach and, like l¿Tour and Miniard (1983), noted that it is likely to

perform well in comparison to a df-adjusted procedure for detecting a false null

hypothesis.

Assessing Repeated Measures Methodologies in the Clothing and Textiles Literature

The three studies which investigated applications of RM methodologies in

other disciplines all found that applied researchers routinely adopt a conventional

ANOVA approach for testing correlated effects despite its reliance on the stringent

(multisample) sphericity assumption. The popularity of this approach does not seem to

have faded over time, despite the repeated admonishments against its use that have

appeared in the literature and the favour directed towards the use of MANOVA.

While the authors of these papers provide important insights into the ways in

which applied researchers test RM effects, there are a variety of issues which they did

not consider. Specifically, methods for probing omnibus effects were not evaluated in

any detail, despite the known popularity of MCPs (Jaccard et al., 1984; Lix, 1995).

Furthermore, while many of the studies included in these investigations employed

either factorial RM designs or mixed designs, a deøiled report of the manner in

which interaction effects were analyzed was not given and neither was the choice of

an error term for conducting follow-up tests.

The present assessment of the use of RM designs in the C&T literature was

designed to provide a more thorough evaluation of the use of RM methodologies than
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has previously been conducted. Although the primary goal was to examine methods of

interaction analysis in mixed designs, procedures used for testing correlated effects in

other types of RM designs were not excluded. Thus, as a whole, the current study

provides a timely successor to the works of previous authors, as it extends the

knowledge of methods used by applied researchers for testing RM effects into the

1990s.

Literature Search

Four journals may be regarded as primary sites for publication of C&T

research reports that are read by North American researchers. These are: (a)

Canadian Home Economics Journal, (b) Clothing and Textiles Research Journal, (c)

Home Economics Research Journal, and (d) Journal of Consumer Studies and Home

Economics. Although the Journal of Home Economics may also be viewed as central

to the C&T field, it does not currently publish reports of original research. Articles

dealing with textile science topics may also be found in the Textile Research Journjrl

and Journal of the Textile Institute. However, these two journals are not considered

central to the c&T discipline due to their more speciarized focus.

The four major journals of the discipline could provide a representation of

applications of RM methodologies in the C&T discipline. However, it is well known

that C&T research has a strong interdisciplinary focus (Oliver & Mahoney, 1991;

Turnbull & Lix, 1991) and for this reason, researchers frequently publish in journals

of other disciplines (Hutton, 1934). For example, in a citation analysis of three

volumes of the Clothine and Textiles Research Journal published between l9B2 and



31

1990, Oliver and Mahoney identified 165 different journals referenced in 72 articles.

It was therefore deemed important to include journals of other disciplines in the

content analysis in order to gain a comprehensive view of the treatment of correlated

data in C&T research.

Reports of original research published between 1987 and 1993 were

considered. This seven-year period was selected in order to allow for the

identification of possible trends in RM analyses adopted by researchers in the C&T

field.

All articles in the four journals considered central to the C&T discipline were

individually reviewed for their relevance to the current research project.

Computerized literature searches were conducted to identify C&T RM research

reports published,in other journals. The primary tool for these searches was the

Clothing and Textile Arts CD-ROM. This index encompasses English-language serial

literature published between 1970 and 1992 that deals with clothing as a form of

human behaviour, as well as textile and apparel arts. With respect to the latter, only

applied textile science, as opposed to pure textile science topics, are included since

the focus of the C&T discipline is the relationship between humans and either apparel

or textile products (Kaiser & Damhorst, 1991). Each entry in the dat¿base is

accompanied by a brief summary, which aided in the identification of articles

employing RM methodologies.

Other CD-ROM data bases were searched, as the Clothing and Textile Arts

CD-ROM does not cover the most recent year of the designated time period and may



32

not comprehensively cover all published literature relevant to the current study. These

data bases included Psychlit, Medline, and the Science Citation Index. All entries in

the first source are accompanied by abstracts, as are the majority of entries in the

second; the Science Citation Index does not provide abstracts.

Where a summary or abstract was not available, or where details of the

methodology were not clearly defined in a summary or abstract, the original article

was consulted to determine whether a RM design had been used in conducting the

research. Articles from journals not found in the University of Manitoba library

system were excluded unless a summary or abstract specifically indicated that a RM

design had been used. In the latter case, the articles were obtained through the

interlibrary loan system.

Sixteen major content areas are used to categorize entries in the Clothing and

Textile Arts CD-ROM: consumer, social-psychological, clothing selection, functional,

energy, industry, textile science, historical, merchandising, clothing fabrication, _
handicapped, cultural, costume design, medical, professional issues, and textile

design. Because each entry may be classified using more than one subject identifier,

research articles contained in each of the 16 subject areas were reviewed for the

period 1987 to 1992. The Psychlit, Medline, and Science Citation indices were :

searched for selected time period using a variety of key terms, including dress,

clothing, apparel, fashion, uniforms, textile(s), and fabric.

The following criteria were used to identify relevant articles in these literature

searches:
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only research encompassing the study of clothing or textile products (i.e.,

bedding, window coverings, carpets) was considered. For the purpose of this

research, clothing is defined as any textile item which covers all or part of the

body and contains as least one seam. Schlick (1991) defines two categories of

clothing: (a) that which covers the torso, including undergarments,

outergarments, and overgarments; and (b) that which covers body extremities

(leglfoot, head/neck, hand/arm). No RM research articles which considered

footwear were identified in the literature search. Several which focussed on

headgear were retrieved, but most were excluded as they dealt with helmets,

and therefore were not contained within the boundaries of the definition of

clothing adopted for this study. A small number of research reports on gloves

were retrieved, and most of these were included in the investigation. Finally,

no RM research which focussed solely on accessories, where an accessory is

defined * ul item worn as decoration or carried in addition to the garment

(Schlick, 1991) was idenrified.

Research articles not contained in the four core journals were not included

unless at least one clothing variable was manipulated. This resulted in the

exclusion of most of the studies on physical attractiveness, self-concept, and

body perceptions, as well as many articles found in medical, agricultural, and

environmental journals. For example, entomological research dealing with

protection of humans from insects frequently mentions clothing, but generally

2.
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is not concerned with the effect that clothing has on insect repellency. Such

articles were not considered to fall within the realm of the C&T discipline.

3. If the data base entry identified the citation as an abstract, or as coming from

the popular serial literature (i.e., Psychology Toda]¡, Consumer Reports), the

citation was excluded.

4. Articles in which all of the RM factors had only two levels were excluded. In

such cases, the sphericity assumption is trivially satisfied, and the researcher

need not make a decision among the various univariate and multivariate

procedures for data analysis.

Data Coding

A data base of C&T RM research articles was est¿blished using the Pro-Cite

software package,(Personal Bibliographic Software, Inc., 1992). Each article was

perused to identify specific information considered essential to characterizing the

features of the literature. Information obt¿ined for each article was recorded in a

single data base entry.

Cit¿tion information. Citation information, including article title, author

name(s), year of publication, journal, volume and issue numbers, and page numbers

was recorded. As well, the education unit, research unit, or company affiliation oi the

first author was recorded; if this was not provided, the affiliation of the author

responsible for requests for reprints was recorded.

Subject area. The introduction of each article was perused to identify the

subject area of the research. Initially, the retrieved articles were classified on the
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basis of content using a scheme developed by oliver and Mahoney (1991), which

contained the following categories: apparel design and manufacturing, consumer

issues, cultural/historical, educational, merchandising, social/psychological, and

textile science. However, the classifications created by these authors were too broad,

as most of the C&T RM articles fell within the boundaries of the categories of

consumer issues, social/psychological, and textile science. Not all of the content areas

defined by Oliver and Mahoney were represented among the retrieved articles since

RM methodologies are not appropriate for addressing all C&T research problems

(e.g., cultural/historical research). A more detailed categorization scheme was needed

to provide specific information on the research areas in which RM methodologies are

used.

A revised,scheme was developed from the work of Kaiser and Damhorst

(1991). These researchers identified three global content areas of C&T research

through a survey oflhe membership of the lnternational Textile and Apparel

Association: (a) textile product evaluation, which "emphasize[s] the connections

between product attributes or properties and human responses to these tangible

characteristics" (p. a); (b) appearance and social realities, which "connects human use

of textiles, clothing, and related artifacts with human perceptions of the social order--

how everyday life is defined, shaped, and organized on the basis of social

relationships and meanings" (p. 5); and (c) textile and apparel production/distribution

systems, which is "concern[ed] with [the] relationship of oneproduct (e.g., fiber) to
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another (e.g., fabric) throughout the product pipeline, culminating with the purchase

of apparel or other textile-related end-products by consumers" (p. 5).

Kaiser and Damhorst (1991) identified common research topics that fall within

the boundaries of each of these content areas. Using these topics as a basis, a detailed

method of categorizing research topics was created specifically for use in the current

context. The content areas, along with their definitions, which were created bv the

author, were:

1. Textile Product Evaluation

(a) Quality: Objective or subjective evaluations of the structural or

visual integrity of clothing or textile products; use of brand name as a

cue to quality.

(b) Performance: Objective or subjective evaluations of mechanical,

physical, chemical or biological properties of crothing or textile

products.

(c) care/Maintenance: Responses of clothing or textile products to

laundering or drycleaning; care labelling; Evaluations of detergent

properties.

(d) comfort: Physical sensations of clothing or textile properties, '

including tactile, thermal, moisture, and motion sensations:

Psychological comfort.
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(e) Protective Clothing: Evaluations of performance or comfort of

functional clothing intended for personal protection in specialized work

environments.

2. Appearance and Social Realities

(a) Fashion: Fashion awareness and acceptance; Fashion opinion

Ieadership; Evaluations of clothing fashionability.

(b) Aesthetics: Subjective evaluations of liking or attractiveness of clothing

or textile products.

(c) Social Judgments: Perceptions of gender orientation, age, social class,

or group/organizational membership via clothing cues.

(d) character Judgments: Assessments of personal attitudes, beliefs, or

values,via clothing; Effect of clothing on self-concept.

(e) Occupational Perceptions: Evaluations of employment characteristics

and job zuitability via clothing cues; Use of uniforms to identify

occupational status; Effect of clothing on perceptions of occupational skill

and ability.

3. Textile and Apparel Production/Distribution Systems

(a) Retail Operations: Store buying and selling operations; Retail

personnel; Consumer perceptions of stores and/or store brands.

(b) Marketing: Consumer perceptions of advertising and promotional

strategies; Effect of advertising campaigns on consumer buying practices;

Perceptions of ,the marketability of new product innovations.
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Each article was classified according to the major subject area. Additionally,

where the research topic overlapped content areas, a second subject classification was

used.

Research design. Three categories were used to define the type of research

design: simple, factorial, and mixed. The design was further categorized as either

univariate (i.e., involving a single dependent variable) or multivariate (i.e., involving

multiple dependent variables). In articles where the details of more than one study, or

more than one phase of a research project were reported, each type of research design

was noted. For both factorial and mixed designs, the number of RM factors was

recorded. As well, the number of levels of each RM factor was identified for all three

types of designs. Finally, for mixed designs, both the number of independent groups

factors, and the number of levels of each such factor were recorded.

Information was obt¿ined regarding the total number of units of analyses for

which data was collected. Every attempt was made to identify the final size of the

sample, as this number sometimes differed from initial sample size due to the

presence of missing data. This was particularly evident in research articles which

employed a survey format.

Mixed designs were further classified as either balanced or unbalanced. :

Wherever possible, the number of units of analysis in each group (cell) was also

recorded, and this information was used to quantify the degree of group (cell) size

imbalance, using a coefficient of variation (e.g., see Box, 1954, p.300). For
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example, in the A x B

coefficient is given by

mixed design described previously in this chapter, this

J

Ð (n, - Ð'/J
j =1

(2.e)
An. =

J

where n is the average group size.

Data analysis. Information concerning methods for testing hypotheses

involving RM main, interaction, and simple effects was obtained through examination

of the Method and Results sections of each research article. As Latour and Miniard

(1983) and Ekstrom et al. (1990) observed, most applied researchers adopt the

conventional ANOVA, conservative ANOVA, df-adjusted ANOVA, or MANOVA

procedures for testing RM effecs. Additionally, some researchers will employ RM

designs containing quantitative covariates, and the data from such designs may be

znalyzed using conventional analysis of covariance (ANCOVA), conservative

ANocvA, df-adjusted ANCovA, or multivariate analysis of covariance

(MANCOVA) rechniques. where a df-adjusred ANovA or ANCovA F resr was

used, it was noted whether the ê, ê, or ã adjustment factor was adopted. For RM

designs which are multivariate in nature, and which are analyzed as such, multivariate

MANOVA or MANCOVA procedures may be used.

Nonparametric and trend analysis procedures may also be used to test RM

effects (Maxwell & Delaney, 1990). The former approach is often adopted when the

researcher is unwilling to assume that the data satisfy the assumption of multivariate
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normality, or when the data are comprised of ranks. The latter may be used when the

levels of the RM factor(s) represent quantitative, rather than qualitative, differences in

the presence of an experimental treatment.

All of the previously described analysis procedures are appropriate when the

dependent variables are continuous in nature or are treated as continuous. or where

rank scores are obtained in the case of a nonparametric procedure. In some situations,

responses for a particular dependent variable may represent frequencies. Methods for

testing hypotheses involving proportions might include z tests or chi-square tests of

independence or association (Glass & Hopkins, 1984).

Information pertaining to the use of MCPs for testing hypotheses concerning

pairs of means was recorded. The specific strategy adopted to control either the FWR

or the PCR was noted, as was the use of either a pooled or nonpooled test statistic.

Based on previous research (Jaccard et al., 1984; Lix, 1995) the following

procedures were deemed most likely to be represented among the RM articles, and

are briefly described here for purposes of clarity:

1. Multiple t tests: Each pairwise comparison t statistic is evaluated at the cy

Ievel of significance using the cv, tlr - ur2; vf , the | - alz cenrile of

Student's t distribution with z df, where z is the error df.

2. Scheffe (1953): Each pairwise comparison t statistic is evaluated with the

CV, {(K - 1)F[1 - cu; K - l, ,f]n, where K is the number of means in the

family, and F[l - d; K - l, r]is the 1 - cY centile of the F distribution with

(K - 1) and z df.
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3. Bonferroni (Dunn, 196i): The t statistics are evaluated for significance

using t[l - ul(2C), z], where C represents the number of pairwise comparisons

in the family and v is as previously defined.

4. Fisher's (1935) læast Significant Difference (l-.SD): This procedure begins

with an omnibus test of the null hypothesis. If this hypothesis is rejected,

multiple t tests are conducted for all possible pairs of means (see #1);

otherwise testing stops.

5. Tukey's (1953) Honesrly significanr Difference (HSD): The cV used in

hypothesis testing is q[l - d,K, vfry'Z, the 1 - @ centile of the Studentized

range distribution, where K and r/ are as previously defined.

6. Duncan's (1955) Multiple Range: This method involves a stepwise approach

to hypothesis testing. In a set of K means, one begins by ranking the me¿ns in

ascending order. The cv used in assessing whether two means are

significantly different is q[(1 - d)p-r, p, vfly'2, where p represents the number

of steps between ordered means and v is as previously defined. Thus, the

significance level varies as a function of p. The hypothesis associated with the

largest pairwise difference, which corresponds to means that are said to be

P : K steps apart, is tested first. Successive pairs of ordered means are tested

for statistical significance only if they are contained within the range of a

previously rejected hypothesis, otherwise they are declared nonsignificant.

7. Newman-Keuls (Keuls, 1952; Newman, 1939): This method also involves a

stepwise approach to hypothesis testing, but unlike Duncan's (1955) method,
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the level of significance is nor modified according to the varue of p.

consequently, the cv used is q[cv; p, u]1y'2. The sequence of hypothesis

testing is the same as that described for Duncan's method.

Multiple t tests allow for control of the PCR whereas the Bonferroni (Dunn, 1961),

Scheffe (1953), and Tukey (1953) HSD MCPs control the FWR. While the Fisher

(1935) LSD, Duncan (1955) Multiple Range, and Newman-Keuls (Keuls, 1952;

Newman, 1939) procedures are popular among researchers, it is known that none of

these can limit the FWR ro cY (Lix, 1995).

Independent and dependent variables. Information concerning the independent

and dependent variables investigated in each study was collected as a means of

providing more detailed information on the types of C&T research problems

addressed using RM methodologies. As well, the manner in which the dependent

variable was operationalized (i.e., continuous versus Likert scale) was noted, as were

the number of response points in the case of Likert scales.

Additional information. Problems of assumption violations noted by the

researchers, preliminary tests for violations of derivational assumptions, and

additional comments pertaining to the data analysis were also recorded, including

citations of specific statistical reference materials. :



43

CHAPTER 3

RESULTS OF A CONTENT ANALYSIS OF THE CLOTHING AND TEXTILES

REPEATED MEASURES LITERATURE

A total of 101 C&T research reports which employed RM methodologies were

retrieved from the literature through a search of various C&T journals and CD-ROM

dat¿ bases. The findings of the content analysis a-re presented in this chapter.

Citation Information

The search of the C&T RM literature extended from 1987 to 1993 inclusive.

An average of Á research reports were obtained for each year in this period

(SD : 2), with a range from 18 in 1988 to 11 in 1992.ln each of these a¡ticles, at

least one RM factor had more than two levels.

Table 1 conúains information pertaining to the journals in which the C&T RM

articles were published. One third were found in three journals which are central to

the C&T discipline: Clothing and Textiles Research Journal, Home Economics

Research Journal, and Journal of Consumer Studies and Home Economics. The

was not represented among the

identified research reports. As expected, the Clothing and Textiles Research Journal

contained the greatest number of C&T RM articles (f : 24).

Two thirds of the articles were published in 21 different journals that are

peripheral to the discipline. The largest number of these reports (f : 13) were
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Table 1

Frequency of RM Research Reports by Journal

Journal

C&T Core Journals

Clothing and Textíle Research Journal
Journal of Consumer Studíes and Home Economícs
Home Economics Research Journal

Peripheral Journals

Avíatíon, Space, and Environmental Medicíne
Ergonomícs
Perceptual and Motor Skílls
American Industri al Hy gi ene As s o ciati on J o urnal
Textile Res eørch Journal
European Journal of Applíed Physíology
Journal of Applíed Socíal Psychology
Journal of the Textile Institute
Archives of Environmental Contamínation and Toxicology
ASHRAE Transactioru
Empirícal Studies of the Arts
Hospital and Community Psychiatry
International Archives of occupational and Environmental Health
Journal of Early Adolescence
Journal of Interdisciplínary Qtcle Research
Journal of Police Sciences and Adminístratíon
Journal of Socíal Behavior and Personaltty
Journal of Spons Sciences
Medicine and Science ín Sports and Exercise
Psychotherapy
The Physician and Sponsmedicíne

TOTAL

24
5

4

13

t2
12

6
6

2

2
2

1

1

I
I
I
1

I
1

1

I
1

1

1

101
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published in Aviation. Space. and Environmental Medicine, however, almost an equal

number were found in Ergonomics and Perceptual and Motor Skills (f : 12,

respectively).

The affiliation of the first or primary author was recorded for each of the

resea¡ch articles contained in the data base. This information was rather difficult to

categorize given the variety of education and research unis which were listed.

However, on the basis of the author address provided with each article, it was

possible to discern that 49 of the 101 articles had a first or primary author associated

with a home economics/human ecology, consumer studies, or C&T education or

research unit. An additional 15 of the articles were associated with a primary or first

author from a health, recreation, physiology, or kinesiology unit, and 13 were

associated with a defense, aviation, naval, or army research unit. Smaller numbers of

researchers were affiliated with psychology, psychiatry, communications, occupational

health and safety, engineering, human development, marketing, and statistics. For

three articles, the first or primary author was affiliated with a private company.

Finally, it should be noted that while slightly less than half of the articles had a first

or primary author with a home economics/human ecology, consumer studies, or C&T

background, several of the studies were collaborative, and therefore one or more

individuals with such an affiliation may have been a paft of the research team.
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Subject Area

Table 2 contains information pertaining to the classification of the C&T RM

articles by subject area. As well, a cross-classification by subject for the four journals

containing the greatest number of articles is included.

The information contained in Table 2 reveals that the majority of the articles

(i.e., f :70) dealtwiththegeneral topicof textileproductevaluation. Withinthis

category, the greatest attention was directed at RM research problems dealing with

protective clothing (f :25), although comfort topics were also frequently studied

(f : 20). Many of the articles pertaining to textile product evaluation were contained

in Aviation. Space. and Environmental Medicine and Ergonomics. However, neither

comfort nor performance research was concentrated in any single journal.

Another 34 articles dealt with appearance and social realities as they relate to

clothing. The greatest number of these articles (f : 10) focussed on the use of

clothing in making occupational perceptions. The occupational perceptions articles

tended to be scattered across a variety of different journals, while the remainder of

the research reports in the appearance and social realities caregory were contained in

either the Clothing and Textiles Research Journal or Perceptual and Motor Skills.

Finally, only ten of the 101 research reports focussed on textile and apparel '

production and distribution systems and the majority of these were published in the

Clothing and Textiles Research Journal. Table 2 reveals that every subject area but

carelmaintenance was represented in the primary journal of the field, that is, the

Clothing and Textiles Research Journal. Most of the RM articles (f : 5) pertaining to



tl'7

Table 2

RM Research Repors by Subject Area and Major Journal

TOTAL CTzu ASEM
(N : 101) (f :24) (f : 13)

ERG PMS
(f : 12\ (f: 12)

Subiect Area %%%

Textile Product Evaluation

Protective Clothing
Comfort
Performance
Care/Maintenance

Quality

Appearance and Social Realities

Occupational Perceptions
Character Judgments
Aesthetics I

Fashion
Social Judgments

Production/D istribution Silúems

Marketing
Retail Operations

833 14 108 14 ttl

16 6l

10

25 | 4 9 69 6 50
202832354
15 2 8 215 325
6

4312

1028
9 62s
83t2
428
3 3t2

34 97s
2t7
217
433
18

32510 62s
628--
4 477 __:'l

Note: CTRI : Clothing and Textiles Research Journal; ASEM : Aviation. Space.
and Environmental Medicine; ERG : Ergonomics; pMS : perceptual and Màmr
Skills; Column totals may exceed the specified N or f and percent4ges may exceed
100 because each article could be classified in up to two categories.
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this one topic were found in either the Home Economics Research Journal or Journal

An investigation of the types of RM research designs which were adopted to

investigate C&T research problems revealed that in 22 of the articles one or more

simple RM designs was used, another 38 articles incorporated at least one factorial

RM design, and 43 articles reported analyses associated with at least one mixed

design. Since some articles reported the results of more than a single study or more

than one phase of a project, the tot¿l number of articles classified by research design

exceeds the total of 101. In addition, it is important to note that one article in which

the authors st¿ted that a simple RM design had been used, revealed, upon closer

inspection, to involve a one-way independent groups design with multiple dependent

variables; this article was excluded from further analysis.

Table 3 contains a cross-classification of articles by subject area for the three

different types of RM designs. This table reveals that simple and factorial RM designs

were used proportionately more often to investigate textile product evaluation research

problems than were mixed designs. The latter were more often used for addressing

research questions in the area of appearance and social realities, particularly with '

respect to aesthetics and character judgments. A higher percentage of articles which

focussed on apparel production and distribution systems reported the use of simple

RM designs rather than factorial or mixed designs. Finally, the majority of the

occupational perceptions articles (60%) reported the use of factorial RM designs.
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Table 3

RM Research Reports b)¡ Subject Area and Research Design

Simple
(f : 22)

Factorial
(f : 38)

Mixed
(f : 43)

Subject Area %f%

Textile Product Evaluation

Protective Clothing
Comfort
Performance
Care/Maintenance

Quality

Appearance and Social Realities

Occupational Perceptions
Character Judgments
Aesthetics
Fashion
Social Judgments

Production/Distribution Siliems

Marketing
Retail Operationsa

26

6

I
8

4

18

29

T2

T2

4
1

t)

836
15
314
29
29

32

T6

4ãJI
512
614
T2
^ãJI

616
13
t3
l:

I4
314
t4
29

76

JI
3T

1i
a
J

24

60

I4
19

19

9

/11AL

18 1

I JI
T2

529
29

Note: See the note from Table 2.
'One article in this category was deleted from the analysis because it used an
independent groups design, not a repeated measures design as indicated by the
authors.
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Simple Repeated Measures Designs

Table 4 contains information pertaining to the characteristics of the research

reports which incorporated at least one simple RM design. For this subset of 22

articles, the number of levels of the RM factor ranged from three to 15, with four

being the most common number. In eight of the research articles, all of which

focussed on protective clothing, the functional qualities of multiple garments were

evaluated in wear trials. In another five articles, all of which were contained in the

appearance and social realities category, participants assessed the overall image

projected by a stimulus model in various clothing styles as a means of studying the

nonverbal cues provided by dress. A variety of other RM factors were used in the

remaining studies, including fabric type (i.e., variation in fibre content) and laundry

detergent type. It is also interesting to note that only one study specifically indicated

that the order of presentation of treatments to units of analysis had been randomized

to remove possible sequence effects; in this instance, study participants were asked to

evaluate mutiple types of fabrics in a clothing comfort study.

In all 22 simple RM articles the units of analysis were human subjects. Total

sample size ranged from four to 604; the latter value was associated with a study in

which the RM factor had 74levels. This sample size seems excessively high, given

the power advantage that may be achieved by adopting a RM design instead of an

independent groups design. Not surprisingly, almost all of the statistical tests reported

in this study were significant at the selected criterion of significance (i.e., cy : .05).



Table 4

Profile of Simple RM Designs (f = 22)

Variable

Number of RM Factor lævels
3

4
5
6
>6

Total Sample Size
<10
tt -25
26-50
sl - 100

> 100

Nature of the Design
Univariate
Multivariate

5

8

6
3
aJ

-/o

23

36
27
T4

14

8

2
À-
+

5

7
t6

Variable

Analysis Procedure
Conventional ANOVA
Conventional ANCOVA
Conservative ANOVA
MANOVA

Descriptive Analysis Only
Incorrect Analysis
Not Stated
No Omnibus Analysis

Other

Pairwise MCP
Multiple t Tests
Bonferroni
Tukey HSD
Duncan's Multiple Range
Fisher's LSD
Newman-Keuls

Not Stated

36

9
18

18

23

32
4aIt

I
I
J

+
J
aì
2

18

+

+

l4

18

l4
14

9

aJ

2
2

1

1

1

t4
9
4
4
+

4



52

However, the author did not consider that the power to detect an effect, regardless of

the size of the effect, would essentially be equal to one. In the one study in which

total size was equal to four, no statistical tests were performed, perhaps because the

authors felt that the results of such tests would not be meaningful given the small

number of observations on which they would be based. Instead, graphical plots of the

data were used to descriptively analyze the results.

The majority of the simple RM research reports involved the investigation of

more than one dependent variable. For example, in the wear studies, participants

typically provided physiological and psychological response data. The former includes

such variables as skin and rect¿l temperature while the latter includes variables such

as thermal and sweat sensation. In the image evaluation studies, multiple personal

traits (i.e., intellect, sociability, professionalism) were usually assessed for each style

of dress, typically using 5-point Likert scales.

While multivariate designs were used in the majority of the articles, in none of

these was a multivariate approach to dat¿ analysis adopted. Instead, researchers

conducted separate analyses for each of the dependent variables. While a wide variety

of analytic techniques were adopted in the 22simple RM articles, four of these used

no inferential statistics, and instead only reported results associated with a descriptive

analysis, such as means and standard deviations or frequencies and percentâges.

Graphical plots were also used in some of these articles to describe the data.

The conventional ANOVA approach, which assumes that the data conform to

the sphericity assumption, was used to test at least one omnibus hypothesis in four
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articles; in one of these articles the conventional ANCOVA F test was also used to

test selected hypotheses. The three articles which did not clearly specify a method of

analysis also appeared to incorporate the conventional approach to testing the RM

effect, as all three studies reported that an ANOVA method had been used. However,

this could not be confirmed due to insufficient details of the methodology (i.e., df

were not reported). In three articles the authors adopted Hotelling's (1931) Tø

procedure for testing an omnibus hypothesis.

For two of the three articles in which the correlated data was incorrectly

analyzed, the RM factor was erroneously treated as an independent groups factor in

the computation of the omnibus F statistic. Furthermore, in one of these articles the

design was also flawed, as some, but not all, subjects provided more than one set of

data (i.e., more than one replication). In the third article which incorporated an

incorrect analysis, the authors acknowledged that the data were obtained from a RM

design, but they chose to ignore this in the analysis and conducted statistical tests

appropriate for an independent groups factorial design.

Of the three articles which were classified in the other category, two reported

the results of correlations among several dependent variables at each level of the RM

factor. One reported the results of a select number of complex contrasts, which were

conducted in addition to a test of the omnibus hypothesis using MANovA.

In two articles, no omnibus analysis was conducted; the authors proceeded

directly to pairwise mean comparisons using multiple t tests. However, in 56%

(f : 10) of the 18 articles in which inferential analyses were performed, the omnibus
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test was followed by pairwise comparisons; the most popular MCPs for conducting

these tests were the Bonferroni (Dunn, 1961) and Tukey (1953) HSD methods. In two

articles the authors indicated that the means were probed using a MCP, however, the

procedure adopted for controlling the Type I error rate was not specified.

Three quarters of the 12 articles in which a MCP was used did not contain

sufficient detail to determine whether a pooled or nonpooled t st¿tistic had been

adopted. However, of the remaining studies, two used a nonpooled statistic, and only

one used a pooled statistic.

It should be noted that in two of the22 simple RM research reports, the

omnibus analysis was preceded by a test of the sphericity assumption. In one case, the

authors reported the use of Bartlett's (1937) technique and a significant result was

obtained; the author elected to use MANOVA to test the omnibus hypothesis.

However, in this article it is not clear that the author understood the rationale for this

test, as it was reported that although a significant result was obtained, the ANOVA F

test is known to be robust to violations of the variance homogeneity assumption if

group sizes are equal. Since only a single group of units of analysis is under

investigation in a simple RM design, this explanation is not relevant. In the second

article, the preliminary test of the sphericity assumption was nonsignificant and the

authors elected to use the conventional ANOVA approach. Finally, in another

research report, the authors' concern over possible violations of the sphericity and

multivariate normality assumptions led them to transform the data prior to analysis.
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Factorial Repeated Measures Designs

Tables 5 and 6 contain information pertaining to the characteristics of articles

incorporating at least one factorial RM design. As Table 5 reveals, of the 38 research

articles contained in this subset, the individual or joint effecs of two RM factors were

studied inTI% of the articles, three RM factors were considered in nine reports, and

more than three RM factors were investigated in only two articles. A count of the

number of RM factor levels revealed that the factorial studies typically involved at

least one RM factor with only two levels, in addition to one or more factors with

three or more levels. Most often, the levels of one RM factor represented styles of

clothing, particularly protective clothing, which were evaluated in wear trials

(f : 15). often, at least one additional RM factor was time (f : 16), yet in the

majority of these articles, time was treated as a fixed effects factor rather than a

random effects factor. Also popular in the wear studies was the investigation of

various styles of protective gear under different environmental conditions (e.g.,

va¡iations in temperature and/or humidity) or different levels of intensity of human

activity. In six of the articles study participants were involved in making image

evaluations of the impressions conveyed by multiple styles of dress within an

occupational context; all of these studies contained only two factors, and the second

one typically related to the characteristics of the stimulus model (e.g., sex, age, body

type). Overall, in only two articles did the authors indicate that use of random
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Table 5

Profile of Factorial RM Desiens: Design Variables (f : 3g)

Variable

Number of RM Factors
2
õ
J

4
>4

Number of RM Factor Levels
2
a
J

4
5

6
>6

Total Sample Size
<10
11-25 i

26-s0
s1_100
> 100

Nature of the Design
Univariate
Multivariate

7l
24

3
a
J

66
8

10

8

8

32
68

27
9

1

1

29
20
15

5

4
13

25
J
4
-J
3

12

26

76
53
39
T3

10

34

Note: See the note from Table 4.
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assignment of treatments to study participants. In both cases, different types of

protective gear were evaluated.

In all but three articles, human subjects were the units of analysis. Textile

laboratories were the unit of analysis in two articles and individual fabric samples

were studied in the third. In the majority of the articles (66%) a roral sample size of

no more than ten units of analysis was reported, but total sample size varied

considerably, from one to 300. However, while more than one quarter of the simple

RM articles reported a total sample size greater than 100, less than l0% of those

which incorporated a factorial RM design did so.

Like the simple RM articles, the majority of the articles which incorporated a

factorial design reported the investigation of more than a single dependent variable.

For example, in the wear studies, both physiological and psychological response data

were collected from study participants. In the occupational perceptions research

articles, a variety of skill-related and personality characteristics were considered (i.e.,

professionalism, competence, trustworthiness). Where Likert scales were used, the

number of response points varied considerably, from three to 20. In the former case,

a colour preference scale was involved. In the latter case, several 2g-point scales were

used to evaluate subjective responses on a number of dependent variables (e.g.,

clothing comfort, clothing temperature) in a wear study; the authors noted that neither

validity nor reliability of the scales had been previously esrablished and they did not

conduct such assessments as part of their investigation.
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As Table 6 reveals, unlike the simple RM articles, three of the factorial RM

articles incorporated a multivariate approach to RM analysis. In all cases this analysis

was conducted for a main effect factor with only two levels, which means that the

local multivariate multisample sphericity assumption was trivially satisfied. For all

three studies a significant main effect test was followed by univariate analyses (i.e.,

paired t tests) for each dependent variable.

A univariate approach to data analysis was used in the majority of the factorial

RM articles and, as anticipated, the conventional ANOVA F test was the most

popular among all of the methods Qa%). Additionally, of the nine research reports in

which adequate details of the analysis strategy were not provided, all appeared to

incorporate the conventional ANOVA approach, but again, this information could not

be clearly determined due to a lack of details.

Unlike the simple RM articles, none of those incorporating a factorial design

reported the use of MANOVA for testing correlated effects. However, in four

articles, df-adjusted tests were conducted; the ê correction factor was adopted in three

and in one, the ê statistic was used.

The RM data from four articles were analyzed, using other methods. In two of

these, due to extremely small total sample sizes (i.e., two or less), the authors

reported the use of small sample F and t statistics to test main effects; however, due

to a lack of details of these statistics, it is not clear how they were computed. In

another research report, frequency data were collected, and Fisher's (1935) z test was
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Table 6

Profile of Factorial RM Design: Analysis Variables (f : 38)

Variable ol
/o

Analysis Procedure
Conventional ANOVA
DF-Adjusted ANOVA
DF-Adjusted ANCOVA
Multivariate MANOVA

Not Stated
Descriptive Analysis Only
No Omnibus/Simple Effect Analysis
Incorrect Analysis
Trend Analysis

Other

Effect Tested
Marginal Main
Interactiori
Simple Main
Simple Interaction
Cell Means

Pairwise MCP
Tukey HSD
Multiple t Tests
Fisher's LSD
Bonferroni '

Duncan's Multiple Range
Scheffe
Nonparametric

Not Stated

Effect Probed
Marginal Main
Simple Main

24
10

a
J

8

a/1L+

i3
10

a
J
aJ

9
4
1

-J

9

5

+

I
1

2T

10

15

2

I

6
4
/1T

1

1

1

1

10

t3
1,4

55
26
39

5

3

16

10

10
a
J

3

J
a
J

10

34

Note: See the note from Table 4.
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used to test for differences in frequencies between the two levels of one factor at each

level of the second factor. In the fourth study, a single complex contrast was applied

to test a hypothesis for the data associated with one RM factor following tests of main

and interaction effects using the conventional ANOVA approach.

It is surprising to note that of the 38 factorial RM articles, only ten specifically

reported that tests of interaction effects had been conducted. However, it may be that

tests of interaction effects were conducted, but due to nonsignificance, were not

reported. Marginal main effect test results were provided in 55% of the articles.

Seven of the 22 studies (18%) provided the results of simple main effect tests, but no

results for omnibus tests.

As expected, tests of simple main effects were often conducted following a

significant interaction (f : 6). In two studies simple interaction effect tests were

conducted; in one, these tests were used to probe a significant three-way interaction

and in the other, tests of simple interaction effects were conducted instead of a test of

the three-way interaction. Finally, in one article, after the authors performed tests of

simple effects, the factorial structure of the data was reduced to a one-way model,

and a test for an overall effect was conducted on the cell means.

The data were incorrectly analyzed in only a single research report. In this

case, the researchers erroneously treated the dat¿ as though it were obtained from a

mixed design, rather than a factorial RM design, in the computation of main and

interaction effect test statistics.
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In half of the RM research articles in which a factorial design was used,

pairwise comparisons were used to probe the source of a marginal or simple effect. In

four articles (18%), however, the authors bypassed both omnibus and simple effect

tests in favour of multiple t tests on either marginal or simple pairs of means. In

another study the nonparametric Wilcoxon sign rank test was used to evaluate

pairwise differences among the RM factor levels (Marascuilo & Mcsweeney, lgTl),

and was not preceded by an omnibus nonparametric analysis. The PCR was controlled

for these nonparametric comparisons at a : .05. Tukey's (1953) HSD procedure was

most frequently adopted to control the FWR (27%). Fisher's (1935) LSD was also a

popular procedure (I8%). Finally, in four research reports the specific procedure used

to control the error rate for multiple pairwise comparisons w¿rs not given.

The authors of the great majority of research reports in which pairs of means

were probed to identify the localized source of an effect did not indicate whether a

pooled or nonpooled error term had been adopted (i.e., f : 19). Four of the studies,

however, did clearly indicate that an error term which pooled across none of the

factors was selected; such an approach does not assume that either local or overall

sphericity assumptions are satisfied.

One set of authors acknowledged the potential for an inflated FWR when '

conducting multiple omnibus tests, as a result of performing separate univariate

analyses for each of several dependent variables in a multivariate design.

Consequently, Scheffe's (1953) method was adopted to control the error rate for the

entire family of main effect tests. However, it is surprising to note that these same
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authors proceeded to conduct multiple t tests following a significant omnibus result

(i.e., Duncan's LSD method), adopting an cv : .05 significance level for each t test.

Mixed Designs

Tables 7 and 8 contain information pertaining to the characteristics of the 4i

research reports in which at least one mixed design was used. As Table 7 reveals, one

third of the mixed designs were two-way designs involving a single grouping factor

and a single repeated measures factor and 35 % were four-way designs. Half of the

articles reported the use of a mixed design with only a single grouping factor and this

factor typically had only two levels. In two thirds of the a¡ticles a mixed design which

had only one RM factor was used; this factor frequently had three levels. However,

one third of the articles incorporated a mixed design in which at least one RM factor

had more than six levels; the maximum value was 14.

The variable most frequently used for classifying study participants into

independent groups was sex (f : 9), although a variety of demographic and personal

attributes were used, including geographic location, age, income, college major,

height, and weight. In four articles, participants were assigned to groups on the basis

of scores obtained on indices designed to measure fashion leadership, self-monitoring

style, fashion type, or psychological type. ln 17 articles, participants were randomly

assigned to independent experimental treatment groups.

In 11 of the 43 mixed articles, the{evels of the RM factor represented sfyles

of dress designed to portray different images. Time was rarely used as a RM factor in



T
ab

le
 7

P
ro

fil
e 

of
 M

ix
ed

 D
es

ig
ns

: 
D

es
ig

n 
V

ar
ia

bl
es

 (
f =

 4
3)

V
ar

ia
bl

e

N
um

be
r 

of
 S

tu
dy

 F
ac

to
rs

2 a J 4 >
4

N
um

be
r 

of
 G

ro
uo

in
g 

F
ac

to
rs

1 2 >
2

N
um

be
r 

of
 G

ro
up

in
g 

F
ac

to
r 

Le
ve

ls
2 a J 4 >

4
N

ot
 S

ta
te

d

N
um

be
r 

of
 R

M
 F

ac
to

rs
1 2 >

2

I+ 10 15

/o

aa JJ 23 3s r6

N
ot

e:
 S

ee
 t

he
 n

ot
e 

fr
om

 T
ab

le
 4

.

22 15 9

33 10 8 7 2

29 t2 5

V
ar

ia
bl

e

51 35 2l

N
um

be
r 

of
 R

M
 F

ac
to

r 
Le

ve
ls

2 a J Á + 5 6 >
6

T
ot

al
 S

am
pl

e 
S

iz
e

<
10 tI 
-2

5
26

-5
0

5t
 -

75
76

 -
 1

00
10

1-
15

0
>

 1
50

N
ot

 S
ta

te
d

N
at

ur
e 

of
 G

ro
up

 S
iz

e 
E

qu
al

ity
/In

eq
ua

lit
y

B
al

an
ce

d
U

nb
al

an
ce

d
N

ot
 S

ta
te

d

77 23 19 t6 )

67 28 12

10 22 10 3 6 l2

of /o

^a LJ 51 23

7 t4 28

6 7 4 7 a J 2 11 6

t4 t6 9 t6 - 5

26 t4

t4 25 4

32 58 t6

63



64

the mixed designs (f : 4). In six articles the authors noted that randomization was

used in assigning RM factor levels to study participants; three of the studies were

concerned with image evaluations of multiple dress styles, two dealt with comfort of

different clothing styles, and one focussed on protective gear.

A noteworthy point is that in seven of the research articles the units of analysis

were fabric samples. In all cases, the performance of different fabrics were evaluated

during multiple laundering or weathering cycles.

Total sample size varied considerably, from four units of analysis to more than

1000. As is evident from Table 6, the majority of the mixed designs were unbalanced.

In several instances, this imbalance was implied from the study format (i.e., survey),

and specific values of group (cell) sizes were not given. For those studies in which

this information was provided, the coefficient of variation of group (cell) size

inequality ranged in value from .056 to .862. For the study in which the former value

was obtained, the ratio of the largest to the smallest group size was 16 to 15, while

for the latter value, the ratio for cell sizes was i4 to l.

Like the simple RM research articles, the majority of those which incorporated

a mixed design were multivariate in nature (see Table 8). A much greater variety of

dependent variables were investigated in mixed designs than in either the simple or

factorial RM designs, and included clothing quality, attractiveness, and perceived

intelligence in the image evaluation studies, and perceived comfort, thermal sensation,

heart rate, and oxygen consumption in wear trials. Fabric samples were evaluated on



Table 8

P.ofile of Mi*.d D.signs' Drsign and Analyri, Va.irbl., (f : 43)

Variable

Nature of the Design
Univariate
Multivariate

RM Analysis Procedure
Conventional ANOVA
Conventional ANCOVA
DF-Adjusted ANOVA
MANOVA
Multivariate MANOVA

Descriptive Analysis Only
Not Stated
Nonparametric
Incorrect Analysis
No Omnibus Analysis
Trend Analysis

Other

RM Effect Tested
Marginal Main
Interaction
Simple Main
Simple Interaction

l7
26

19

2

4
2
I

8

T

J
2

2

2

ol/o

40
60

44
5

9
)
2

t9
9
7
5

5
5

2

Note: See the note from Table 4.

Pairwise MCP
Newman-Keuls
Fisher's LSD
Scheffe
Multiple r Tesrs
Tukey HSD
Nonparametric
Duncan

Not Stated

RM Effect Probed
Marginal Main
Simple Main
Cell Means

Interaction MCP
Multiple t Tests
Ciccheni

Variable

25

15

l7
3

58
35
40

7

5
T

4
2
aJ

2

1

07
/o

t2
9
9
5
7

5
2

18
1aIJ
2

12

42
30

5

65
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such attributes as colour change, weight loss, and wrinkle resistance. Where Likert

scales were used the number of scale points ranged from three to 14.

As Table 8 reveals, only one of the articles reported the adoption of a

multivariate approach to data analysis. In this article, a significant test of a RM

marginal main effect was followed by separate univariate analyses for each dependent

variable using the conventional ANOVA F test. In keeping with the results reported

for the simple and factorial RM designs, the most common method of analyzing

correlated effects in mixed designs was the conventional approach, which was

represented in 44% of the 43 research reports. In four articles, insufficient det¿ils

were available to determine the method of analysis adopted, but in all cases the

information provided by the author(s) would suggest that a conventional ANOVA

approach had been selected. In four of the research reports a df-adjusted procedure

was adopted, but the correction factor was not specified in any of these. MANOVA

_was 
applied to the analysis of the RM effect(s) in only two of the publications.

In the simple and factorial RM articles only parametric analyses of marginal or

simple main or interaction effects were performed. This was not so for the mixed

research reports, as three studies reported the use of Friedman's (1937) nonparametric

test. In one of these studies the authors noted that a nonparametric analysis was :

adopted due to concern over possible violations of the assumptions associated with a

parametric analysis; in another, the data collected were rank values and consequently

a nonparametric analysis was necessary. At the same time, in this particular study the

authors also performed parametric analyses on mean ranks, and thus were not
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consistent in their approach to the data. The last of the three articles also reported the

results of an inconsistent analysis, as the authors noted that Friedman's test was

adopted because the dependent variable was measured using a Likert scale, which

constituted ordinal, rather than interval level dat¿. However, the authors proceeded to

descriptively analyze the study results using means.

Two of the mixed studies reported an incorrect analysis of the RM effect. In

one, the RM factor was treated as an independent groups factor in the computation of

ANOVA F statistics. In the other, the authors began by testing the RM main effect in

an appropriate manner, using the conventional ANOVA approach. However, they

then proceeded to treat each level of the RM factor as a separate dependent variable,

and applied an independent groups MANOVA to test each of several independent

groups effects. This was followed by independent groups ANovA F tests.

Trend analysis was used in two studies, and was applied to test for a main

effect trend or a simple main effect trend or both. The one study which was classified

in the other category reported the use of z tests for analyzing frequen cy data.

Finally, it is important to note that four articles did not report any tests

associated with a RM effect. In three of these, tests of simple independent group

effects were conducted at each level of the RM factor or at each combination of levels

of two or more RM factors. In the fourth, chi-square tests of independence were

performed at each level of one RM factor.

The content analysis also revealed that for mixed designs, researchers typically

were either only interested in testing marginal main effects, or only reported results
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associated with RM main effects. However, while only slightly more than one third of

the research reports clearly identified that a RM interaction effect hypothesis had been

tested, this was a greater percentage than for the single-group factorial studies, in

which only 26% reported tests of interaction effects.

Among those articles in which the authors indicated that a significant

interaction had been obtained (i.e., f : 11), seven reported follow-up tests of simple

main effects, and in another one, simple interaction effects were used because the

model contained more than two factors. In another article, significant two-way

interactions in a four-way model were followed by pairwise comparisons among the

cell means (i.e., the data were reduced to a one-way model).

It is surprising to note that the authors of four articles reported testing both

main and simple main effects, but not interaction effects; another three reported tests

of simple RM main effects only.

Significant main effect test results were routinely followed by pairwise mean

comparisons. In only two research reports were marginal or simple main effect tests

bypassed in favour of multiple t tests.

Among all of the procedures identified for conducting pairwise comparisons,

the Newman-Keuls (Keuls, 1955; Newman, 1939) MCp was used with the greatest

frequency (12%). However, in an equivalent number of articles the authors did not

report sufficient det¿ils to identify the method for controlling the Type I error rare.

The Scheffe (1953) and Fisher (1935) I,SD procedures were also popular (9%,

respectively).
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Two of the mixed research reports reported specific tests to probe the

interaction effect. In one, multiple t tests were applied to test interaction contrasts,

this approach will be discussed in detail in the following chapter. However, this was

also the study in which the data represented rank scores, and thus a parametric

analysis can not be considered appropriate. Furthermore, the authors did not indicate

that interaction contrasts were being conducted to probe an interaction. In another

study, a method for probing interactions suggested by Cicchetti (1972) was adopted.

Under Cicchetti's approach, unconfounded cell mean comparisons are conducted, and

either a modified Tukey (1953) HSD or Scheffe (1953) approach is recommended for

controlling the FWR. Unconfounded cell mean comparisons are those that involve

pairs of means in the same row or column of a matrix of the individual factor level

combination means. The authors of the study in which Cicchetti's approach was

adopted did not describe which approach to FwR control was selected.

Finally, as with the single-group factorial research reports, it was rarely

possible to determine whether a pooled or nonpooled multiple comparison test statistic

had been adopted. Of the 18 studies in which a marginal main effect was probed, only

one study clearly indicated that an error term which did pool across the levels of the

RM factor was used. Furthermore, of the 13 articles in which a simple main effeót

was probed, only one study reported using a MCP in which the test statistic employed

an error term that w¿N not pooled across the levels of the independent groups factors.

As a final comment, the authors of one article reported the application of a test

of the sphericity assumption to the data prior to testing any RM effects. Because this



70

test was nonsignificant, the authors elected to adopt the conventional ANOVA

approach to test RM main and interaction effects

Synopsis of the Content Anal]¡sis

The results of this content analysis of the C&T RM literature communicate

four distinct messages: (a) there is a great deal of diversity in the use of RM designs

in the C&T literature, (b) researchers do not report sufficient details of their research

methodology, (c) researchers continue to cling to traditional methods of RM analysis,

and (d) there is a great deal of inconsistency in the analysis of RM effects,

particularly with respect to the analysis of interaction effects.

The content analysis did reveal that researchers who investigate C&T research

problems typically adopt RM designs which contain more than one experimental

factor, as less than one quarter of all articles reported the results of an analysis

associated with a simple RM design. Furthermore, the majority of the articles dealt

with research questions related to the evaluation of textile or apparel products,

particularly protective clothing. Beyond this, however, few similarities emerged. RM

designs were not always used in the analysis of human subject data, and may be

adopted, for example, in studies of fabric performance. With respect to the design of

the studies, there was great variation in such characteristics as total sample size and

the number of RM factor levels, and the types of independent and dependent variables

under investigation. A diverse range of statistical analysis procedures were also used.

An additional noteworthy point is that it was not surprising to find that a

large number of C&T RM articles were published in journals of other disciplines.
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Given the interdisciplinary nature of C&T research, it frequently deals with subject

matter appropriate for publication in many different types of journals. As well,

investigators from other disciplines may often consider research problems which

directly or indirectly focus on clothing or textiles, even though they may not have

specific training in these areas.

Similar to the fÏndings of Ekstrom et al. (1990), many of the articles lacked

information about key aspects of the research projects. As Lavori (1990) notes, this is

a severe problem because "clear exposition of design and analysis conveys a

reassuring sense of mastery by the investigator, disarms critics, makes work useful

and repeatable, and keeps us all from error" (p.775). Several of the research reports

contained insufficient details to accurately conclude what method of RM analysis had

been adopted for testing a marginal or simple effect. Beyond this, there was a lack of

information concerning other aspects of the methodology, such as the number of units

of analysis represented at each level of one or more independent groups factors and

whether randomization techniques were used in applying RM treatments to units of

analysis. One of the more important details that was not available in the majority of

the research reports was the choice of a test statistic to probe marginal or simple

effects. This information is critical to the reader's understanding of the assumptioús

the researcher is making about the data and has important implications for the validity

of the dat¿ analvsis.
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With respect to the third message communicated by this content analysis,

Table 9 contains a summary of the findings pertaining to methods of testing correlated

effects in all types of RM designs. Separate frequency analyses are provided for the

period from 1987 to 1989 and from 1990 to 1993, as a means of assessing

differences in the methods adopted over time. Consistent with the results reported by

Ekstrom et al. (1990) and l¿Tour and Miniard (1983), the convenrional ANOVA

approach was most popular, and was represented in approximately one third of all of

the articles. Moreover, use of this approach changed very little over the two time

periods considered in Table 9. However, a dramatic reduction in the number of

articles which did not clearly state what method of analysis had been adopted was

observed. If, in fact, these articles incorporated the conventional ANOVA approach,

then this would suggest a decline in popularity of conventional methods for RM

analysis. Twice as many articles reported the use of either a df-adjusted test or

MANOVA in the latter time period as compared to the former, but the extent to

which either approach was adopted was, overall, very small.

It must be questioned why this trend continues, despite the great volume of

literature that urges researchers to consider MANOVA and df-adjusted procedures.

Perhaps this can be explained in part by examination of the statistical references

which were cited in the research reports included in this data base. The most popular

texts cited were by winer (1962, rgTr),which, while being excellent texts on

research design, do not incorporate recent information on RM analysis procedures
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Table 9

Methods for Testing RM Effects bl¡ Year of Publicarion (N : 100)

RM Analysis Procedure

t987 -

(n:

f

1990 - 1993
(n : 53)

f%

1989
47)

%

Conventional ANOVA
Conventional ANCOVA

Conservative ANOVA

DF Adjusted ANOVA
DF Adjusted ANCOVA

MANOVA
Multivariate MANOVA

Not Stated
Descriptive Analysis Only
No Omnibus/Simple Effect Analysis
Nonparametric
Incorrect Analysis
Trend Analysis

Other

28
4

13

2
18

1

6

34

2

11

6

6

6

15

2

9
A

a
J

J

3

8

1

)
2

4

2

4
2

28
15

6

6
4
2

2
fI

2

I

T3

7
J
a

2
1

2

Note: See the note from Table 4.
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(see Appendix A for a complete listing of the statistical references cited in this content

analysis). It was surprising to note that of the 25 different statistical references cited

in the research reports, 17 were published prior to 1980. The most current text was

by Vercruyssen and Hendrick (1989). Moreover, the majority of the a¡ticles analyzed

in this content analysis did not conlain any statistical references. This may imply that

many researchers are not awate of the problems associated with adopting the

conventional approach to RM analysis, or of alternative procedures discussed in

current statistical sources.

Furthermore, while a small number of articles reported the use of a

preliminary test for the sphericity assumption, this test does not provide a sound basis

for a decision regarding the method of analysis to adopt. It is known that sphericity

tests are sensitive to departures from multivariate normality. For this reason, failure

to reject the null hypothesis does not necessarily mean that the data are spherical

(Cornell, Young, Seaman, & Kirk, 1992). Furthermore, even if the null hypothesis is

not rejected, the data may not be spherical, again because of the known sensitivitv of

these tests to violations of the normality assumption.

Finally, it appears that while researchers are electing to use factorial designs,

they are not taking full advantage of the factorial structure of the data, by failing to

investigate joint variable effects of RM factors. This should not be surprising, as

Rosnow and Rosenthal (1989b) describe the results of tests of interaction effects as

"the most misinterpreted empirical results in psychology" (p. lzg2). perhaps this

statement needs to be expanded to include the c&T field as well.
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This content analysis suggests that researchers most often consider only main

effects in their analysis of factorial designs. Where interaction effects were tested,

these effects were typically probed in a manner that is inconsistent with the omnibus

hypothesis, through the use of simple main effect tests and simple pairwise

comparisons. In other instances, authors only reported the results of simple main

effect tests, perhaps because interaction effect tests were bypassed in favour of the

former analyses. It is impossible to know the reason why researchers choose to

conduct main effect tests more often than interaction effect tests in factorial designs.

This may be due to a lack of understanding of the meaning of an interaction effect or

of the information that can be gleaned from an interaction test.

While it is a simple matter to change the manner in which research results are

reported so that more details a¡e forthcoming to the reader, it is a more crucial

concern that analysis procedures which will produce valid results are selected by

researchers, and that these procedures are applied correctly to a set of data in a way

that will produce meaningful results. The remainder of this research project is devoted

to examining robust methods for interaction analysis, particularly as they apply to

probing variable interactions. The mixed design was the most popular of the RM

designs used by C&T researchers and it will form the basis for the subsequent

investigation.
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CHAPTER 4

TESTING INTERACTIONS IN MIXED DESIGNS

This chapter reviews the research on the operating characteristics of

conventional univa¡iate, df-adjusted univariate, and multivariate procedures for testing

interactions in mixed designs. A discussion of alternative methods of interaction

analysis is also provided.

Univariate and Multivariate Tests of Interactions

Both theoretical and empirical studies have been used to study the behaviour of

univariate and multivariate procedures for analyzing interactions in mixed designs.

Huynh and Feldt (1980) computed exact Type I error rates for the conventional

ANOVA F test in a mixed design with three groups and five RM and a total sample

size of either 18 or 33. For balanced designs in which equality of the group

covariance matrices existed, the number of Type I errors consistently exceeded the

nominal value (a liberal test) when € was less than .75. Error rates for the F test were

as high as -12 for c : .05 when e : .39. Increasing total sample size had the effect

of decreasing the liberalness of the F test, but error rates for the F test were never

less than cv (a conservative test).

When group sizes were unequal and covariance matrices were heterogeneous,

but sphericity was present in the data, Huynh and Feldt (19S0) found rhat the F tesr

was very sensitive. In one case where group sizes were in the ratio of 1:5:5, and the

first group exhibited an average correlation (p) of .10 among the RM, while the

remaining two groups exhibited average correlations of .90, the actual rate of Type I
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errors was .65 for a nominal value of .05. Conversely, when a large group size was

paired with small values of p, the rate of Type I errors was considerably less than the

nominal value (e.g., less than .0001 for o : .05).

Huynh and Feldt (1980) also.considered the effects of violating the

multisample sphericity assumption (i.e., e < 1.00 and unequal år), but only when

group sizes were equal. Under such conditions, the F test again proved to be liberal

when a high degree of nonsphericity existed in the data, with a maximum value of

.16. Based on the results of the study, Huynh and Feldtconcluded that "in all

situations under investigation, the test for interaction proved to be more vulnerable

than the one for treatment [main] effects, especially when the plot [group] sizes are

not equal" (p. 71).

Belli (1988) employed Monte Carlo techniques to examine the robustness of

multivariate tests in a mixed design containing two groups and five levels of the RM

factor when the data were spherical. The tests examined, Hotelling-Lawley (Hotelling,

1951; [,awley, 1938) rrace, Pillai-Bartlen (BaÍlert, 1,939; pillai, 1955) rrace, Roy,s

(1953) largest root, and Wilks' (1932) likelihood ratio, could not, in general, provide

Type I error control under conditions of group size imbalance when heterogeneity of

group covariance matrices existed. Belli noted that even when group sizes were equal

and existed Tn combination with heterogenous covariance matrices, only the pillai-

Bartlett trace could control the rate of false positives, and then only when the degree

of heterogeneity was small.
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Keselman and Keselman (1990) considered a mixed design where the number

of groups was set at three and the number of RM was set at either four or eight, in a

Monte Carlo study. In the case of four RM, the ê, õ, and e df-adjusted F tess and

the Pillai-Bartlett (Bartlett, 1939: Pillai, 1955) trace criterion provided robust tests of

the interaction when multisample sphericity was violated but group sizes were equal,

and also when group covariance matrices were homogeneous but sphericity was not

present in the data.

However, the df-adjusted F tests and the MANOVA test were sensitive to

violations of multisample sphericity when the design was unbalanced. In situations

where group sizes and covariance matrices were positively paired, so that the group

with the largest sample size also exhibited a covariance matrix with the largest

element values, all statistical procedures were conservative. This degree of

conservatism increased with increases in group size inequality and covariance matrix

heterogeneity. Holding all else constant for this condition of positive pairings, the

conservatism of the univariate tests increased as e approached its upper bound of i.0.

In the situation of a negative pairing, where the group with the largest sample

size also exhibited a covariance matrix with the smallest element values, the number

of false positives exceeded the nominal alpha level under both univariate and

multivariate testing. The liberalness of these statistical procedures increased as the

degree of group size inequality and covariance heterogeneity increased. paralleling the

findings for conditions of positive pairings, the liberalness of the univariate tests

increased as the degree of nonsphericity in the dat¿ decreased.
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When the RM factor had eight levels, Keselman and Keselman (1990) found

neither the univariate nor multivariate procedures could offer robust tests of the

interaction effect when the data were nonspherical, even when the covariance matrices

were homogeneous. When multisample sphericity was violated and group sizes were

unequal, the same pattern of positive pairings resulting in conservative tests, and

negative pairings leading to liberal tests, was identified, albeit the results were more

extreme.

Finally, Keselman, Keselman, and Lix (in press) considered whether the use of

both a univariate and multivariate procedure in a combined testing strategy could offer

Type I error control for tests of the interaction in a mixed design with either four or

eight levels of the RM factor, when total sample size ranged from 30 to 191. The ê F

and Pillai-Bartlett (Bartlett, 1939: Pillai, 1955) trace statistics were each computed,

and if either were significant at the .025 level, then the null hypothesis was rejected.

The authors found that this combined approach could not limit the rate of Type I

errors to the nominal .05 level when the multisample sphericity assumption was

violated. Furthermore, the error rate remained consistently high when unequal

covariance matrices and unequal group sizes were negatively paired, even for the

largest total sample size condition investigated

Robust Tests of Interactions

While researchers have long been advised to avoid the conventional ANOVA

procedure for testing correlated effects, the studies described in the previous section

illustrate that even df-adjusted ANOVA and MANOVA procedures should not be
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adopted to test for the presence of an RM interaction in mixed designs if the

assumption of multisample sphericity is untenable, particularly if the design is

unbalanced. However, two alternative approaches have been shown to provide Type I

error control for tests of both RM main and interaction effects in the majority of

situations in which the multisample sphericity assumption is violated and the design is

unbalanced.

Algina and Oshima (1994) demonstrated that robust tests of RM effects may be

obtained using Huynh's (1978) improved general approximate univariate statistic. This

procedure involves calculation of the usual F statistic for a test of the interaction.

However, a modified CV, which reflects the degree of violation of the multisample

sphericity assumption, is used in assessing statistical significance. While the procedure

developed by Huynh can provide effective Type I error control in a variety of

situations, it has the disadvantage of being comput¿tionally complex, and is not

currently av_ailable in any st¿tistical software package.

Keselman et al. (1993) found that an approximate df Welch-James (James,

1951, 1954; Welch, 1947,1951) multivariate procedure described by Johansen (1980)

can control the Type I error rate for tests of interactions in unbalanced mixed designs.

Welch developed a st¿tistical test for equality of means in the one-way independent

groups design when the assumption of equal variances across groups can not be

considered tenable; this st¿tistic uses a nonpooled estimate of error variance. The

multivariate analog of Welch's procedure was developed by Johansen for designs with

more than two groups.
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A general linear model (GLM) approach can be used to illustrate the

application of Johansen's (1980) approximate df solution for mixed designs. Let

Y = Xp +f , (4.1)

where Y is an N x p matrix of scores on p repeated measurements, N is the total

sample size, X is an N x r design matrix with rank(X) : r, p is an r x p matrix of

nonrandom parameters (i.e., population means), and { is an N x p matrix of random

error components. Denote Y¡ : Y .(41Ð as a Hadamard product (Searle, 19g7, p.

49), where \ is theith column of X ( : 1 ,..., r) and consists entirely of zeros and

ones, 1o is a p x 1 vector of ones, and ' is the dot product function, such that y, is

an element-by-element product matrix. The model assumes that the observations in \
are independently distributed normal variates with mean vector B, and variance-

covariance matrii I ti..., i.d. N(pj, Ð¡)1, where B, is thejth row of É and Ej * Ðj, Q

# i').

l-et

p=(XtX)-lXrY, Ø.2)

represent an estimate of the matrix of population means and

Ê _ (Yj - \4)'(\ _ 44) Ø3)-iF,

estimate Ð,, where q : XTE, and p, estimates 8,.
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The general linear hypothesis is

Ho:R¡r =0, (4.4)

where R. : c I ut, c is a df. x r matrix which controls contrasts on the

independent groups factor(s), with rank(C) : dfc ( r, IJ is a p x dfu matrix which

controls contrasts on the correlated factor(s), with rank(tl) : dfu < p, and g is the

Kronecker or directproduct function. Furthermora, F: vec(Br) : l0r...p.lt, where

0:: Íp¡t--. pil.In Equation4.4, ¡r is the column vector with rp elements obt¿ined

by stacking the columns of Br. The 0 column vector is of order df" x dfu.

The generalized test statistic given by Johansen (19g0) is

T*, = (RÊ)'ßÊR')-'(RÊ) , (4.s)

where p estimatef r, and Ê : diaglÊrln, ... Ê,/til, a block matrix with diagonal

elements Ðrlnr. This test ståtistic divided by a constant, c, approximately follows an F

distribution with_u, : df" x dfu, and, ur: ur(ur + 2)/(3^), where

e : ut + 2A - (64)/(u, + Z). The formula for rhe st¿ristic A is

A = I i þp*(RÊn'¡-'pq)' . {tr@n'çnÊR)-'Rg)}']r(o -,) . (4.6)27u't ' --'

The matrix Q is a symmetric block matrix of dimension r x p associated with X,,'

such that the (s,t)-th diagonal block of e : rn if s : r : j and is 0 otherwise.

In order to test the interaction in a two-way mixed design, g : c, and

u : u*, so that R : c¡ I t4, where c, is a (J - 1) x J matrix which defines a set of

(J - 1) linearly independent contrasts for the grouping factor, and u* is a K x (K - 1)
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R = lrrlu' (o)u' (-1)u' (o)U' | =

Itrlu' (o)u' (o)u' (-1)u'J
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matrix which defines a set of (K - 1) linearly independent contrasts for the RM factor.

For example, in a mixed design containing a grouping factor with four levels and a

RM factor with three levels, C and U matrices that may be used to obt¿in a test of the

interaction are:

[;i]
Here, the rows of C represent a set of three linearly independent contrasts among the

levels of the grouping factor, while the columns of U form a set of two linearly

independent contrasts among the levels of the RM. factor. The Kronecker product,

co I r4, it

1-10-11000000
10-1-10100000
1-10 000-11000
10-1000-10100
1-10 000000-11
10-1000000-10

and has six linearly independent rows.

Tang and Algina (1993) considered the robustness of Johansen's (1980)

statistic in a multivariate independent groups design with more than two groups, but

only for normal data, when group covariance maffices were heterogeneous and group

sizes were unequal. They observed that Johansen's solution was generally robusr,

except when the ratio of total sample size to the number of dependent variables was
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small, the homogeneity assumption was violated, and group sizes and covariance

matrices were negatively paired, in which case it produced liberal results.

Similar findings were reported by Keselman et al. (1993) for the A x B mixed

design. Moreover, they found that the effect of nonnormality was to inflate Type I

error rates. Accordingly, the authors suggested that in order to obtain a robust test of

the RM interaction hypothesis using an approximate df solution, the ratio of the

number of observations in the smallest group (i.e., n*,n ) to (K - 1) should be at least

3 or 4 to one, and preferably higher if the validity of the multivariate normality

assumption is questionable. Where there are an insufficient number of units of

analysis to achieve this requirement, the authors suggested adopting a .01 significance

criterion in order to maintain the rate of Type I errors below five percent.

Interaction Contrasts

In a mixed design, researchers are typically most interested in testing for the

presence of an interaction before examining main effects. However, the omnibus test

procedures described by Algina and Oshima Q99Q and Keselman et al. (1993) offer

no insight into the nature of the interaction and researchers will routinely foliow a

significant result with statistical tests to probe this effect (Boik, 1993; Olejnik &

Huberty, 1993: Rosnow & Rosenthal, 1989b). :

Two techniques that may be used to examine interactions are simple main

effect tests and interaction contrasts. The former approach, which, as evidenced by

the results reported in the previous chapter, is favoured by many applied researchers,

involves examining the effects of one factor at a particular level of the second factor.
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For example, for a mixed design, the researcher may test for equality of the K RM

means at each of the J levels of the grouping factor. By focusing on a particular level

of the grouping factor, this factor is eliminated from the analysis, and the researcher

is left to conduct a series of simple RM univariate or multiva¡iate tests. The

procedure used to conduct these simple main effect tests might include an df-adjusted

ANOVA or MANOVA test, or one of the two alternative procedures described

previously. The choice among these approaches depends on the assumptions the

researcher is willing to make about the data.

However, this procedure of analyzing simple main effects has been criticized

because

it is assumed that the interaction can be interpreted by determining which

simple effects are significant. It must be remembered that a significant

interaction does not indicate that one or more simple main effects are

significantly different from zero but rather that at least one contrast of one

treatment [factor] is different at two or more levels of the second treatment

[factor]. (Boik, 1975, p. 32)

The use of interaction contrasts is favoured from a theoretical standpoint since

the null hypothesis under consideration for a particular contrast is consistent with the

hypothesis associated an omnibus test of the interaction (Boik, ]993;Marascuilo &

Levin, 1970, 1976; Timm, lgg4). However, in practice, interaction contrasts are

rarely used by applied researchers (Kaufman et ar., 19g6; Rosenow & Rosenthal,

1989a). Boik suggests that this is because most researchers are not familiar with



86

"specialized multiple comparisons for interactions" (p.2), or methods for applying

these techniques with statistical software packages.

While several different types of interaction contrasts have been discussed in the

literature (Bradu & Gabriel, lg74), product contrasts have been given the most

attention (Boik, 1993; Gabriel, Putter, & rJy'ax, 1973; Johnson, 1976; Timm, rgg4).

In a two-way design, a product contrast is a Kronecker product of two vectors, each

of which forms a contrast among the levels of one main effect factor..Gabriel et al.

(1973) discuss several types of product contrasts which may be used to probe

interactions. To underst¿nd these product contrasts, it is helpful to consider some

techniques for probing effects in one-way RM designs.

Iæt p, ... ttx denote the population means for a simple RM design with

k : 1,..., K lev-els, where io estimates ¡ru. As Gabriel etal. (1973) note, to probe

the main effect, one may use deviations from the mean, of the form ôo : þk - þ.,

where ¡r. is the grand mean. 
.The 

second approach, which is the most popular for

probing main effects, is the pairwise difference, ú : Irn - þu,, where k f k,.

Interaction residuals are extensions of deviations from the mean in one-way

designs, and are defined as Tk : piu - tt:. - lt.u* p.., where F¡*, F¡., ¡t.y, ãnd ¡t.

respectively represent cell, row, column and grand population means, and ¡^r,* is

estimated bv tu. A tetrad contrast is defined as ú : (pr¡* - þ¡ò - Qty,r. - ttiù,

where i f j', k ;¿ k'. Interaction residuals and tetrad contrasts are related, as the

latter can be expressed in terms of the former. so that

ú : (yio - ^y:u,) - (li,* - "tyr,).
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To illustrate why interaction contrasts should be favoured over simple effect

tests for probing an interaction, consider a test of a simple pairwise comparison at one

level of the grouping factor that involves two different levels of the RM factor. This

simple pairwise comparison tests the hypothesis, Ho: f¿:r - lt:r,: 0, where k I k,.

Using the previously defined notation, þiu : ^yy * F¡. * Ir.r - t-1... By substituting the

appropriate elements of this equality into the simple pairwise hypothesis, the

following solution is obtained:

þ¡'*.- F¡v'=0,
@¡u+ tt¡ * þ.n- tL ) - (t¡o *lr¡. * þ.*,- tL..)=0,

(zn - to,) * (p* - l,.r,) =0.

This simple effect is only partially comprised of interaction componenrs (i.e., the

?¡r.s). Thus, if this hypothesis were rejected, one could not determine if this was due

to the difference in the marginal means, the difference in the interaction residuals, or

both. With a tetrad contrast, however, the hypothesis that is tested only involves

interaction residuals.

Since tetrad contrasts are direct extensions of the popular pairwise contrasts

for probing main effects, they are perhaps easiest for the applied researcher to

understand and interpret. In a two-way design, a tetrad contrast essentially involves

testing for the presence of an interaction between rows and columns in a 2 x 2 .

submatrix of the A x B data matrix, and represents a test for a difference in two

pairwise differences.

Two final points must be made regarding methods for probing interactions.

First, it should be recognized that Cicchetti's (1912) method of testing unconfounded
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cell mean comparisons is not an appropriate approach for probing an interaction, as

such comparisons are equivalent to simple pairwise comparisons. As was

demonstrated previously, such comparisons are in fact confounded by either row or

column main effects. Second, Rosnow and Rosenthal (1989a; 1991) recommend that

the only appropriate methods for probing interactions involve comparisons on what

they call corrected cell means. However as Boik (1993) notes, corrected cell means

are equivalent to interaction residuals. Since a tetrad contrast on the cell means can be

expressed as a contrast on the interaction residuals, the approach presented in this

research is equivalent to that advocated by Rosnow and Rosenthal.

Two choices of a test statistic exist for performing tetrad contrasts in mixed

RM designs (Keselman & Keselman, 1993, pp. 125-126). One statistic that can be

used to test Ho: Ú : 0 employs an estimate of the st¿ndard error of the contrast

which uses MS *r,r, the error mean square for the usual omnibus F test of the

interaction. The test st¿tistic is

(4.7)

where, as noted previously , j # j' and k f k, . This statistic is distributed as

Student's t with df v, : (K - lXN - J). Conducting tetrad contrasts with this statistic

may be appealing because results may be obtained using statistical software packages

such as SAS (SAS Institute Inc., 1989b). As well, because this statistic has error df
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equal to those available for a test of the omnibus interaction hypothesis, it should

provide greater power to reject the null hypothesis than other statistics. However. if

the data do not satisfy the multisample sphericity assumption, the error term for this

statistic, which involves pooling over both the RM and grouping factors, will result in

a biased estimate of the st¿ndard error of the contrast, and, as a consequence, this

statistic will produce invalid results.

An alternate statistic employs a standard error derived only from that data used

in forming the contrast and is defined as

-\*,) - (Y,,* -Y,,*,)

(4.8)

where c is a K x 1 vector of coefficients which contrasts the Ëth and k,th levels of the

RM factor. In other words, the standard error of the tetrad contrast is formed using

data from only four cells of the A x B dat¿ matrix and does not rest on the

multisample sphericity assumption. The nonpooled statistic does not follow a t

distribution, but can be approximated by Student's t with Satterthwaite (1941, 1946)

estimated df

(4.e)

n¡-1 n¡,-1
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This approximate df solution for conducting interaction contrasts may also be

conceptualized from a multivariate perspective. By forming all possible pairwise

differences among the K repeated measures and denoting these variables as

D¡ : Y¡r - Y¡r,, the test statistic may be defined as

í'í'í",
7. flj

(4.10)

where Q is the mean difference at level j of the grouping factor, sl o, is the

corresponding variance of a D variable and c, is the contrast coefficient at level j of

the grouping factor. The error df are then expressed as

/"= (4.11)

Interaction contrasts that employ a nonpooled test statistic may also be

conceptualized from a GLM perspective using Johansen's (1980) approximate df

solution. If C and U respectively denote contrast vectors on factors A and B in a

mixed design, then R : C I Lìr represents a product contrast. Furthermore, if

c : e¡, forms a contrast among two levels of Factor A, and u : r¡*, forms a

contrast among two levels of Factor B, then the Kronecker product of these two

vectors is a tetrad contrast. For example, in a mixed design with four levels of the

grouping factor and three levels of the RM factor, a tetrad contrast involving the first
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and third levels of the grouping factor and the first and second levels of the RM

factor would require the formation of the following C and U vectors

C=c,r=ll 0 -1 0],andU=u,r=

The resulting R matrix has the form

R=",,øu|=[t -1 o o o o -1 1 o o o o]..

controlling the Familywise Error Rate for Multiple Tetrad contrasts

A number of CVs have been proposed for limiting the FWR for the set of all

possible tetrad contrasts on the data. A Scheffe (1953) CV may be adopted (Boik,

1993; Gabriel et al., 1973; Marascuilo & [ævin, 1970), {z,F[l - di /t, ,"])'^, where

vt : (I - lXK - 1) and v, is the error df. However, Scheffe's method controls the

FWR across all possible interaction contrasts on the data, including the subset of

tetrad contrasts. Therefore it is likely to be less powerful than competing alternatives.

Consequently, a Studentized maximum root CV, R[l - a, p, g, vzl, where

p : min(J- 1, K - 1), q : max(J - 1, K - 1), and R[l - u,p, g,zr] is the I - a

centile of the Studentized maximum root distribution, is considered to be a better.

choice, as it is intended to provide FWR control across the set of all possible product

contrasts (Boik, 1993; Bradu & Gabriel, 1974; Gabriel et al., L973: Johnson, 19l6).

Furthermore, Gabriel et al. (1973) recommend a Bonferroni CV (Dunn, 1961),

tll - al(ZC); vrf, where C : J*K*, J- : J(J - l)/2, and K* : K(K - l)lL. Finally,

Hochberg and Tamhane (1987, p. 299) suggest that a Studentized maximum modulus

[;]
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cv, M[l - a; c, zr], where M[l - a; c, zr] is the 1 - a centile of the studentized

maximum modulus distribution, is more likely to maintain the FWR at a than a

Bonferroni CV.

An alternative to adopting one of these simultaneous MCPs is to select a

stepwise procedure. A number of stepwise procedures based on the Bonferroni

inequality have been developed, which will necessarily control the FWR for tetrad

contrasts when derivational assumptions are satisfied. However, since these methods

rely on a different CV at each stage of hypothesis testing, they may provide greater

power to detect tetrad interactions than Dunn's (1961) method. Two procedures,

derived by Hochberg (1988) and Shaffer (1986), are parricularly promising.

Hochberg's (1988) step-up Bonferroni procedure is an attractive choice

because it is one of the simpler stepwise procedures available. Hommel (1988) and

Rom (1990) have proposed Bonferroni procedures which are known to be more

powerful than Hochberg's method. However, as Dunnett and Tamhane (1992) note,

marginal power differences exist among these three procedures and Hochberg's

procedure is much easier to use than the other two.

With Hochberg's (1988) method, one begins by rank ordering the p values

corresponding to the statistics used for testing the hypotheses Hlr¡ ,..., H(") :

[i-e-Ú:(Ér¡r-tr:u,)-(p¡*-try,^,):0],sothatp<rrlpqz¡5... lprclrepresentthe

ordered p values. The decision rule is to reject H1.,¡ (m' I m; m : c ,..., l) if

Pr-r I ul(C - m + 1). Testing begins with the hypothesis corresponding to the largest

p value, p1c¡. If p1c¡ I a, all c hypotheses are rejected; if not, H,., is refained and
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testing moves to H16-r¡. If pr"-,1 < ul2, H1.-,¡ is rejected, as are all remaining

hypotheses; if not Hic-,¡ is also retained, and pr"_rl is compared to ul3, and so on. This

continues, if all previous hypotheses have been retained, until p.l is compared to alC.

Shaffer (1986) proposed a more powerful version of Horm's (lg7g)

sequentially rejective Bonferroni procedure, and has demonstrated its use for testing

tetrad contrast hypotheses. Under Shaffer's method, one proceeds in the same manner

as for the Hochberg (1988) procedure by rank ordering the p values. However, testing

begins by comparing the smallest p value, p1r¡ to ulc, and if p,,, r ulc, the

corresponding hypothesis, H11¡, is rejected, otherwise it is retained. If H(r) is rejected,

one goes on to compare the next largest p value, plz¡, to ulC.r, where Cj represents the

maximum number of remaining hypotheses that could be true, given rejection of the

previous hypothesis. one proceeds in this manner by rejecting H<_l (m : 1 ,..., c) if

P1-¡ < alCl. Shaffer has tabled values of Cj for selected A x B designs. However,

since the value of Ci may notbe readily apparent for other factorial designs (i.e.,

higher-order designs), Shaffer recommends the following approach to hypothesis

testing for tetrad contrasts in these cases: If H(1) is rejected using an alC criterion,

one proceeds to test H,r¡ by letting Cl : C - (J - 1XK - 1). If H,r, is rejected, Cj is

set equal to ci for all2 < m < c - c; + 1, and is assigned a value of c - m * I

forallm)C-C;+1.
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CHAPTER 5

SIMULATION STUDY METHODOLOGY

Overview of a Monte Carlo Study

The purpose of a Monte Carlo simulation study is to empirically evaluate the

operating characteristics of a statistic test under a range of derivational assumption

violations. Pseudorandom sets of numbers are generated using a computer algorithm

and a¡e sampled from populations with known characteristics. The simulation

experiment is designed so that the null hypothesis is either true or false. For each

replication of an experiment, a test statistic is computed from the generated data and

based on this result, the null hypothesis is either rejected or ret¿ined. Thus, depending

on the nature of the null hypothesis, empirical estimates of either Type I error or

power are obtained.

Ten procedures were selecled to investigate the viability of conducting tetrad

contrasts in mixed designs using Monte Carlo methods. A test st¿tistic employing a

pooled error term (i.e., Equation 4.7) was used, in addition to one based on a

nonpooled error term (i.e., Equation 4.8), even though it was anticipated that only the

latter would provide control of the FWR. The former was investigated to obt¿in söme

empirical evidence of the extent of bias in error rates that may result when using a

MCP which incorporates a pooled test statistic when the multisample sphericity

assumption is violated.
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The pooled and nonpooled statistics were considered in combination with

either a scheffe (1953), studentized maximum roor, Hochberg (19gg) step-up

Bonferroni, Shaffer (1986) modified sequentially rejective Bonferroni, or Studentized

maximum modulus CV. For the procedures employing a pooled test statistic, the CVs

were defined by setting vz : vp; when a nonpooled test st¿tistic was used, z, : /..

Although a Scheffe CV will be larger than either of the other four CVs, this

method was included in case the other procedures could not limit the number of Type

I errors under violations of the multisample sphericity assumption. Furthermore, both

Jaccard et al. (1984) and Lix (1995) found that applied researchers routinely adopted

Scheffe's method for pairwise mean comparisons. Thus, it was considered desirable to

determine if this is an acceptable method of controlling the FWR for tetrad contrasts.

Finally, the Hochberg (1988) and Shaffer (1936) procedures were selected over the

Bonferroni (Dunn, 1961) method for the reasons enumerated in the previous chapter.

Monte Carlo Stud]¡ Variables

The ten procedures for testing tetrad contrast hypotheses were compared for

the simplest mixed design, that is, a design containing a single independent groups

factor and a single RM factor. In addition, the design was univariate in nature.

One aspect of the study was held constant, that being the number of levels'of

the grouping factor, which was set at three. From the C&T content analysis it would

appear that in mixed designs, many researchers elect to use a grouping factor with

only two levels. However, this would not provide sufficient diversity in the present

study to investigate the behaviour of the selected tetrad contrast procedures, as data
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from both levels of the grouping factor would necessarily be involved in forming each

tetrad contrast.

Nine variables were selected to investigate the behaviour of the selected

statistical procedures with respect to Type I error and power rates. These were the:

(a) number of levels of the RM factor, (b) sphericity pattern, (c) equality/inequality of

the group variance-covariance matrices, (d) total sample size,.(e) group size

equality/inequality, (f) nature of the pairing of unequal covariance matrices and

unequal group sizes, (g) population shape, (h) nature of the null hypothesis, and (i)

population effect size. Table 10 provides summary information concerning the values

of the variables which were investigated and the following discussion deals with each

of these variables in turn.

Keselman and Keselman (1990) found that df-adjusted univariate and

multivariate omnibus procedures for_interaction tests in mixed designs became

increasingly sensitive to violations of the multisample sphericity assumption as the

number of levels of the RM factor increased. Hence, the ten procedures were studied

when the number of factor levels was set at four and eight. As well, given that more

than one quarter of the 43 mixed C&T studies included a RM factor with more than 6

levels, it would seem import¿nt to investigate the procedures for a large number of

RM factor levels.
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Table 10

Monte Carlo Stud]¡ Variables

Variable Values

RM Factor Lævels (K) 4; 8

Sphericity Pattern (e) 1.0; .75; .40

Equality/Inequality of Ð,s 1:1:1; 1:3:5

Total Sample Size (N) 30;45

Equality/Inequality of ns N : 30: g, 10, IZ (An,: .163)
6, 10, 14 (An' : -327\

N : 45: 12, 15,18 (An, : .163)
9, 15, 2l (Ar¡ : .327)

Pairing or Ð,s un: n,' 
[;ì !åïîl il, :i:äiÏ'r,
(c) unequal ns (An, : .163), unequal Ð,s,

positive pairing
(c') unequal ns (An, : .327), unequal Ð,s,

positive pairing
(d) unequal ns (Aq : .163), unequal Ð,s,

negative pairing
(d') unequal ns (An, : .327), unequal Ð,s,

negative pairing

Population Shape Normal; ¡l
Null Hypothesis Complete; partial :

Effect Size (f) .50: 1.00: 1.50



98

Sphericity Pattern

Box's (1954) correction factor, €, was used to quantify the degree of departure

from the assumption of sphericity (i.e., Equation 2.3). Without loss of generality, the

pooled variance-covariance matrix (i.e., Ðo) contained element values of ten and five

on the diagonal and off-diagonal, respectively, when sphericity was satisfied. Matrices

with e values of .75 and .40 were chosen to investigate nonspherical conditions and

represent moderate and extreme departures from sphericity, respectively. For K : 4,

the minimum value that e may attain is .33, while for K : g, the lower bound is

e : .I4.

The elements of the pooled variance-cova¡iance matrices were chosen such that

the average variance and covariance were equal to ten and five, respectively, in order

to achieve comparability across the simulation conditions. The pooled matrices values

for the K : 4 and K : I conditions can be found in Tables 11 and 12, respectively.

The effects of heterogeneity of the group orthonormal variance-covariance

matrices was investigated by creating two sets of matrices. For one set, a given

element in a covariance matrix for a particular group was equal to the corresponding

element in each of the matrices for the other two groups, so that the elements of the

group covariance matrices were in a 1:1:l ratio. For the second set, corresponding

elements in the group covariance matrices were not equal to one another. Each

element in the covariance matrix for the second group was three times that of the
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Table 11

Pooled Variance-Covariance Matrix Element Values (K : 4)

e : .'15

18.0 8.0 6.0 4.0

8.0 s.0 4.0

1.0 3.0

7.0

e:.40

23.8 11.9

9.s

6.4 0.9

s.7 2.6

3.9 2.5

2.8
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Table 12

Pooled Variance-Covariance Matrix Element Values (K : 8)

e:.75

18.0 8.0 7.0 7.0

r2.0 8.0 7.0

10.0 6.0

10.0

6.0

6.0

6.0

5.0

9.0

5.0

5.0

5.0

5.0

5.0

8.0

5.0 5.0

5.0 2.0

5.0 2.0

4.0 4.0

5.0 3.0

4.0 4.0

7.0 1.0

6.0

6.0 1.8

3.4 -1.0

3.4 t.4

3.9 2.4

2.6 t.4

2.4 t.4

3.2 r.9

2.5

e.: .40

28.8 t2.8 10.1

11 .4 8.1

9.9

9.8

7.4

7.7

8.3

8.3

6.9

6.5

5.6

5.6

7.3

4.1

5.1

4.3

4.4

4.3
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matrix for the first group. As well, each element in the matrix of the third group was

five times that of the matrix for the first group. Thus the elements in the group

variance-covariance matrices were in a l:3:5 ratio. This degree of covariance

heterogeneity was chosen because Keselman and Keselman (1990) found it to have the

greatest effect, among the heterogeneity conditions they investigated, on Type I error

rates for omnibus tests of the interaction in mixed designs.

Total Sample Size

Total sample size (N) was set at either 30 or 45, to allow investigation of the

effects of both a small and moderate sampre size. The ten procedures were

investigated when the design was balanced, and also when it was unbalanced. When

the design was balanced (i.e., group sizes were equal), there were either ten or fifteen

observations per group. Two cases of group size imbalance were considered for each

total sample size. For N : 30, Dj : 8, 10, 12 and n, : 6, 10, 14, while for N:45,

nt : 12,_-15, 18 and n, : 9, 15, 21. For both values of N, the coefficient of group

size variation (i.e., An,; see Equation 2.9) is .163 for the former condition, and.327

for the latter. Thus, both mild and moderate degrees of imbalance were considered.

For those conditions involving both unequal group sizes and unequal group

orthonormalized variance-covariance matrices, both positive and negative pairings of

these group sizes and covariance matrices were investigated, since these pairings have

been associated with conservative and liberal results, respectively, in tests of the

omnibus interaction effect in mixed designs. In the former case, the largest r\ was
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associated with the covariance matrix contåining the largest element values; while in

the latter, the largest nj w¿rs associated with the covariance matrix containing the

smallest element values.

In summary, six pairings of variance-cova¡iance matrices and group sizes were

investigated: (a) equal n¡, eQuâl Ð¡; (b) equal n,, unequal E,: (clc') unequal q, unequal

4 (positively paired); and (d/d') unequal n,, unequal I (negatively paired). The c'ld'

conditions denotes the more disparate unequal group sizes cases, while the c/d

conditions designates the less disparate unequal group sizes cases.

Population Shape

The test statistics which are the basis for the various tetrad contrast procedures

rest on the assumption of multivariate normality. Although no information on the

extent to which this assumption may or may not be satisfied was collected in the

content analysis, it would seem unlikely that it would be satisfied in all cases,

particularly given the results obtained by other researchers, such as Micceri (1989),

who analyzed the distributional characteristics of 440 educational and psychological

data sets, and found that few of these could be characterized as normal in form. Thus,

it was deemed important to examine the operating characteristics of the selected

procedures when the underlying population distribution was normal and nonnormal.

For the normal distribution, pseudorandom vectors of observations

Y,j : [Y¡1, Y¡z ,..., Yu*l with mean vector F¡: LF¡r, þj2,...,1r¡*] and variance-

covariance matrix Ð, were generated using the International Mathematical and
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Statistical Library (IMSL) subroutine GGNSM (lnternational Mathematical and

Statistical Library, 1987).

Sawilowsky and Blair (1992) investigated the robusrness of Student's t statistic,

for both independent and correlated samples, using eight nonnormal distributions

identified by Micceri (1989) as representative of those found in educational and

psychological data. They found that the Type I error rates for the t statistics were

affected only under conditions of skewness where ^lt : L 64. Therefore, the

nonnormal data for the current study were obtained from a t' distribution with three

df, for which skewness and kurtosis values are It : I.63 and 7r: 4.00,

respectively. This distribution is skewed to the right. The IMSL subroutine GGCHS

(International Mathematical and Statistical Library, I9S7) was used to generate

deviates following a univariate ¡2 distribution, which were then standardized to have a

mean of 0 and a variance of 1. The corresponding multivariate observations were

obtained by a triangular decomposition of Ðj, which is often referred to as the

cholesky factorization or the square root method (Harman, 1976), that is,

Y,j = lri*"Zii ,

where L is a lower triangular matrix satisfying the equality Ð¡ : LLr and Z, is a

K x 1 vector of ¡2 variates.

Nature of the Null Hypothesis

Empirical FWRs for the ten procedures were obtained under a complete null

hypothesis, when all of the 7¡s were equal, and under a partial null hypothesis, when

not all ?¡rS wete equal. The FWR was defined as the probability that at least one
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tetrad contrast was statistically significant when the corresponding population contrast

was null. Seaman, Levin, and Serlin (1991) investigated the FWRs for a number of

independent sample MCPs, and found that the error rates were generally lower under

a partial null than under a complete null hypothesis. Keselman (1993, 1994) reported

similar findings for RM marginal mean comparisons in a mixed design. Since a

researcher can never know the nature of the null hypothesis under investigation for a

given set of data, it is advisable to select a procedure which can maintain the FWR at

d across all population mean configurations.

Effect Size

While power is generally defined as the probability of rejecting a false null

hypothesis, as Ramsey (1978) notes, in multiple comparison testing situations there is

more than one definition which may be adopted. In the current study, both all-

comparison and per-comparison power were investigated. Ramsey defined all-

comparison power as the probability of correctly rejecting all nonnull contrasts, which

corresponds to the probability of making no Type II errors (i.e., no false

acceptances). Per-comparison power is defined as the probability of rejecting a

particular nonnull contrast.

Both per-comparison and all-comparison power rates were collected for

various values of the effect size for the omnibus test of the interaction. The effect size

is given by f : ú^lú., where o. : {Ðjä ^y?rl(I - 1)(K - 1) + 1}% and ø" is the

positive square root of the difference between the average variance and average

covariance for the pooled variance-covariance matrix (Cohen, l98S). The effect size
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was arbitrarily set equal to 0.50, 1.00 and 1.50. The population cell means used to

ob-tain these three effects, for K : 4 and K : g, can be found in Tables 13 and 14.

respectively.

Verfication of the Simulation program

The simulation program was written in the FORTRAN program language. To

verify the accuracy of the random number generation process, a set of 50,000

observations was generated, first with the GGNSM subroutine and then with GGCHS

subroutine, for a specified population variance-covariance matrix and mean vector.

Variances, covariances, and means were computed for this set of data. In both cases,

the computed statistics were close to the population parameters, indicating satisfactory

performance of the program.

Design of rhe Stmulry
The ten tetrad contrast procedures were evaluated for the six pairings of group

sizes and group variance-covariance matrices under each possible combination of RM

factor.levels, total sample size, sphericity pattern, and degree of normality. Five

thousand replications of each condition were performed using a .05 significance level.

For each replication, all possible tetrad contrasts were computed on the data and each

MCP was applied to the calculated test statistics :



106

Table

fl : 0.50

f : 1.00

f : 1.50

.30t904

.301904

3.01904

.60381

.60381

6.03808

.90s7r

.90571

9.05712

.30t904

.301904

3.01904

.60381

.60381

6.03808

.90s71

.90s7r

9.0s712

r.s0952

t.s0952

.603808

3.01904

3.01904

t.20762

4.s28s6

4.52856

r.8rt42

r.s0952

1.50952

.603808

3.01904

3.01904

r.20762

4.s28s6

4.52856

t.81142

uf : Effect size
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Table 14

Population Means (¡¿,r$LfoLlnteraction Effect (J : 3: K : 8)

fl : 0.50

.3125

.3r25

3.t25

f : 1.00

.62s

.625

6.25

f :1.5

.9375

.9315

9.375

.3t25

.3125

3.125

.62s

.625

6.25

I

.937s

.9375

9.375

.3125

.3t25

3.r25

.62s

.625

6.25

.9375

.9375

9.375

.3r25

.3t25

3.125

.625

.62s

6.2s

.9375

.937s

9.375

r.s625

r.5625

.625

3.125

3.125

t.2s

4.6815

4.6875

1.875

r.5625

r.5625

.625

3.125

3.tzs

1.25

4.687s

4.687s

1.87s

r.5625

t.5625

.62s

3.t25

3.125

1.25

4.6875

4.6875

1.875

t.5625

r.5625

.625

3.125

3.12s

t.25

4.687s

4.6875

1.875

"f : Effect size
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CHAPTER 6

SIMULATION STUDY RESULTS

Type I Error Rates

A quantitative measure of robustness developed by Bradley (1978) was used to

evaluate the Type I error performance for the ten tetrad contrast procedures.

According to Bradley's liberal criterion, a test may be considered robust if its

empirical Type I error rate (â) falls within the range .5a < ã < L5ø. Bradley also

suggested a more stringent criterion of .9c < ã. < 1.1a. However, the latter was

deemed to be too conservative as only slightly inflated (or deflated) error rates would

result in a test procedure being considered nonrobust. Hence, for the nominal .05

significance level selected for this study, a robust procedure was defined as one

having an empirical FWR between .025 and.075. In the t¿bles of Type I error results

reported in this chapter, daggers (t) are used to denote values which exceed the upper

limit of this bound, and asterisks (*) are used to denote values which are less than the

lower limit of this bound

Type I error rates for the five procedures which use a test st¿tistic based on a

pooled estimate of error variance are given in Tables 15 and 16 for K : 4 and

K : 8, respectively. In these and subsequent tables, the abbreviations s, R, H, MSB,

and M are used to denote the Scheffe (1953), Studentized maximum root, Hochberg

(1988), Shaffer (1986), and Studentized maximum modulus procedures, respectively.

The data associated with a complete null hypothesis when N : 30 is provided. Since
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the FWRs for the H and MSB procedures were identical under a complete null

hypothesis, these values have not been reported separately.

What is immediately apparent from the tabled values is that none of the

procedures could control the FWR under violation of either part of the multisample

sphericity assumption. This finding holds for balanced (conditions a and b), as well as

unbalanced designs (conditions c, c', d, and d'), with the discrepancy between the

nominal and empirical values being greatest for unbalanced designs.

It is also important to note that even when the multisample sphericity

assumption was satisfied (i.e., e : 1.00; condition a), the S and R procedures

produced conservative results. This was not unexpected, given findings that have been

reported for Scheffe's (1953) method for pairwise comparisons in independent groups

designs (e.9., Carmer & Swanson,1973). Furthermore, given thatboth the S and R

procedures are designed to control the error rate for much larger families of contrasts

than the set of¿ll possible tetrad contrasts, they will tend to perform Iess optimally

than other procedures.

The M and H/MSB procedures which used a pooled test statistic were very

liberal under large departures from the assumption of sphericity of the pooled

covariance matrix (i.e., e : .40), attaining FWRs as high as .24 for K : 4 (see,

Table 15). The empirical values became even more extreme when the number of

levels of the RM factor was increased to eight; the largest value attained was .31 (see

Table 16). The nonnormal values were not consistently larger or smaller than their



110

Table 15

EmPirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic

Normal

H/MSB H/MSB

x2

a

b
c

1.00 c'
d
d'

a

b
c

.75 c'
d
d'

.009* .016*

.014* .026

.007* .015*

.003* .010*

.028 .0s4

.0ss .0947

.024* .041

.036 .061

.018* .034

.0L2* .019*

.058 
I 

.0857
.073 .1117

.070 .1007

.073 .1061

.0s4 .0771

.040 .057

.111T .1441

.139t .1837

.041 .042

.052 .055

.031 .033

.015* .016*

.083T .08sT

.140T .1447

.07t .074

.0791 .0817

.0s8 .060

.03s .036

.1201 .1247

.1711 .n4r

.ls1T .rs4l

.142Í .14s1

.108T .1111

.083T .08sT

.1921 .196I

.2281 .2311

.031

.054

.031

.023*

.0917

.ls17

.071

.0941

.058

.036

.1281

.1667

.ls17

.r461

.1107

.0831

.1907

.2371

.038

.051

.03i

.025*

.094I

.rs4l

.072

.0971

.0s9

.037

.1321

.r70ï

.154r

.r471

.r121

.08sT

.r92ï

.24rt

.006*

.013*

.006x

.003*

.025/.

.0s2

.021|"

.028

.017*

.010*

.048

.0777

.061

.070

.0s2

.039

.1067

.1387

.020*

.026

.016*

.007*

.046

.0897

.040

.048

.032

.020{"

.0771

.1167

.0e0r

.098t

.0781

.0s6

.r471

.1787

a

b

c
.40 c'

d
d'

Note: s : scheffe (1953); R : Studentized maximum root; H/MSB : Hochberg
(1988) step-up Bonferroni/Shaffer (1936) modified sequentially rejecrive Bonferroii;
M : Studentized maximum modulus; a : pairings of equal covariance matrices and
equal group sizes; 6 : pairings of unequal covariance matrices and equal group sizes;
clc' : positive pairings of covariance matrices and group sizes [c: t : t, to,- tz;
91t 

n, : 9, 10, l4l d,/d' : negative pairings of covariance matrices and group sizes
td: t l?, 10,8; d': n,:14,10,61; t: empiricalvalue < .025; f J empirical
value > .075.
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Table 16

Empirical FWRs for Tetrad Contrast Procedures Employine a Pooled Test Statistic
(Complete Null Hypothesis: K : 8: N : 30)

Normal

H/MSB H/MSB

x'

SS

e

a

b
c

1.00 c'
d

d'

.40

.000*

.001*

.000*

.000*

.003*

.007*

.002*

.004*

.001*

.000*

.008+

.012*

.016*

.028

.013*

.011*

.042

.07r

.002*

.008*

.003*

.001*

.019f

.042

.009*

.0r7'"

.0098

.005*

.033

.066

.046

.062

.041

.033

.OeeT

.1407

.036

.068

.038

.020x

.1lsT

.2087

.066

.1017

.054

.037

.r4sï

.2r31

.1687

.17sl

.r23t

.1021

.23s1

.308I

.038

.070

.039

.021*

.1 187

.2rrl

.067

.1037

.0s5

.038

.148r

.2ßr

.fl01

.1787

.rzsl

.1041

.237t

.3117

.001*

.001*

.001*

.000x

.004*

.014*

.002*

.002x

.002*

.001*

.007*

.020*

.018*

.019*

.013*

.005*

.036

.066

.002*

.010*

.0048

.001x

.020|"

.046

.009*

.016*

.010x

.003*

.031

.064

.045

.059

.034

.027

.08s1

.1341

.75

a

b

c
c'
d
d'

a

b
c
c'
d
d'

.038 .040

.069 .070

.03s .036

.024x .025*

.1201 .1231

.2081 .2141

.078T .0771

.095T .0987

.051 .0s8

.034 .035

.1441 .1411

.2281 .2331

.16sT .1681

.1761 .ngl

.133T .13sT

.0911 .0937

.23s1 .2371

.308t .3121

Note: See the note from Table 15.
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normal counterparts. In general however, Type I error rates were only slightly

affected by departures from the multivariate normality assumption.

The results associated with N : 45 for the pooled procedures have not been

tabled here, but are contained in Appendix B in Tables Bl and P;2. The FWRs are

comparable to those obtained for N : 30. In general, however, the error rarcs

associated with this larger sample size tend to be slightly less deviant, so that there

was less discrepancy between empirical and nominal values, particularly for the

normal data. For the nonnormal data this is not always the case. As a consequence,

error rates are still liberal under departures from the multisample sphericity

assumption; the maximum value attained was .34, when K : g.

Error rates for the five procedures which employ a test st¿tistic based on a

nonpooled estimate of error variance are contained in Tables 17 and 18. Again, only

those results associated with the complete null hypothesis for N : 30 are reported

Table 17 reveals that regardless of whether the data were normally or

nonnormally distributed, none of the procedures which employ a nonpooled test

statistic were liberal when the RM factor had four levels. When the multivariate

normality assumption was satisfied, the empirical values for the M procedure werè

consistently larger than those obtained for the H/MSB procedures. However, all three

procedures occasionally resulted in conservative values when the data was highly

nonspherical (e : .40). The R error rates exceeded those for the S procedure across

all conditions, but nevertheless were largely conservative, particularly for
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Table 17

Normal x2

H/MSB H/MSB

c

a .013x
b .013*
c .011x

1.00 c' .011*
d .019*
d, .030

.023* .038

.025 .039

.02s .040

.023* .037

.037 .047

.046 .055

.024* .038

.030 .045

.024* .034

.023'/" .036

.03s .046

.042 .052

;013* .022*
.013x .019*
.015x .023*
.014* .020*
.022* .029
.026 .032

.029 .032

.032 .031

.029 .033

.029 .034

.04t .049

.041 .059

.026 .033

.027 .033

.031 .03s

.029 .034

.034 .042

.047 .055

.013* .015*

.020* .023*

.018* .021*

.019* .021{-

.032 .036

.036 .043

a

b
c

.75 c'
d
d'

a

b

c
.40 c'

d
d'

.011*

.016*

.012f"

.011*

.019x

.031

.007*

.006*

.007*

.006*

.014*

.019*

.043

.045

.046

.043

.0s7

.063

.042

.0s3

.041

.042

.052

.063

.025

.023*

.025

.022*

.031

.038

.008*

.010*

.008*

.007*

.017*

.024*

.007*

.009*

.009*

.009*

.014*

.020*

.005*

.0078

.006*

.007*

.014*

.020*

.019*

.022*

.019*

.019*

.030

.040

.016*

.019*

.021*

.019*

.024*

.034

.009*

.015*

.013"

.012*

.022'.

.031

Note: See the note from Table 15.
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nonspherical data. The values for the S procedure rarely exceeded the lower bound of

Bradley's (1978) criterion.

The results for the nonnormal data in Table 17 reveal generally lower FWRs

as compared with those for normal data. In particular, the S values were conservative

for all 18 of the conditions investigated. The R procedure only exceeded the lower

bound of Bradley's (1978) criterion for negative pairings of group sizes and

covariance matrices. Finally, the H/MSB and M methods were largely conservative

under extreme degrees of nonsphericity, with minimum values of .013 and .015

respectively.

The K : 8 results associated with the smaller sample size, for both normal

and nonnormal data, are contained in Table 18. With respect to the error rates

obtained when the multivariate normality assumption was satisfied, the S method was

very conservative for all of the conditions investigated, with a mean FWR of .003.

The R procedure only surpassed Bradley's (197g) lower bound when the most

disparate group sizes were negatively paired with covariance matrices (condition d,),

across all values of e. For the most part, the H/MSB and M procedures provided

good control of the FWR when the RM factor had eight levels. However, the latter

tended to be liberal for this same d' condition, attaining a maximum value of .106.

The empirical FWRs for the stepwise Bonferroni procedures which uied a nonpooled

test statistic were only slightly greater than the upper bound of Bradley's criterion

when e : 1.0 for this negative pairing condition (i.e., ô : .076).
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Table 18

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test
Statistic (Complete Null Hl¿pothesis: K : 8: N : 30)

Normal x2

RRS H/MSB M H/MSB M

1.00

a

b

c
.75 c'

d
d'

.002i.

.004*

.002/.

.002x

.003*

.014*

.001*

.003*

.001*

.001f

.005*

.023*

.001*

.001*

.001*

.001*

.004*

.011*

.008*

.012*

.010*

.009*

.015*

.038

.009*

.015*

.010*

.009*

.019*

.033

.006*

.008*

.006*

.007*

.011*

.027

.037

.043

.036

.035

.047

.0767

.035

.046

.033

.036

.047

.069

.029

.032

.028

.027

.039

.055

.050

.0s5

.050

.049

.072

.1067

.048

.061

.047

.048

.067

.0971

.036

.043

.037

.035

.053

.075

.000*

.001*

.001*

.001*

.002t"

.007*

.001*

.001*

.0008

.001*

.004*

.007*

.001*

.002*

.002*

.001*

.004*

.011*

.003*

.005*

.005*

.003*

.010*

.0201"

.003*

.005*

.005*

.005*

.010*

.021*

.004*

.008*

.006*

.004*

.014*

.031

a

b

c
c'
d
d'

.020* .029

.027 .037

.024* .038

.021* .031

.042 .057

.050 .073

.022* .029

.029 .040

.029 .040

.02t* .030

.040 .054

.0s4 .0787

.02t* .021

.029 .039

.023* .029

.0t7* .025

.040 .051

.061 .0817

a

b
c

.40 c'
d
d'

Note: See the note from Table 15.
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As seen from Table i8, the FWRs were generally lower for nonnormal data

than for normal data when K : 8, consistent with the findings for K : 4. The M

procedure was slightly liberal for negative pairings of the more disparate group sizes

and unequal covariance matrices when e ( 1.0, attaining a maximum value of .081,

but otherwise provided good FWR control. The H/MSB nonpooled procedures were

slightly conservative for all values of e when the design was balanced and cova¡iance

matrices were equal, and when group sizes and covariance matrices were positively

paired, with a minimum value of .017.

The N : 45 results for the nonpooled tetrad contrast procedures have not been

tabled here, but can be found in Appendix B in Tables B3 and 84. As reported for

the pooled procedures, error rates tended to be less deviant from the .05 significance

level as compared with the values associated with N : 30, and as a result, no liberal

values are found in these two tables.

fa!]e 19 contains the Type I error rates, averaged across both sample size

conditions, as well as the normality and e conditions, for both K:4 and K : g. As

revealed in this table, the S procedure was conservative for both balanced and

unbalanced conditions. The R procedure only exceeded the lower bound of Bradley's

(1978) criterion once, when group sizes and covariance matrices were negatively '

paired and group sizes reflected the larger degree of imbalance. On the other hand,

the average FWRs for the H, MSB, and M procedures were neither conservative nor

liberal, but the error rates associated with the M procedure were always greater than

those associated with the former two procedures. The maximum value attained was
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Table 19

Average Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Nonpooled
Test Statistic (Complete Null Hypothesis)

K:4 K:8

H/MSB M H/MSB M

a
b
c
cl
d
o'

.009*

.010*

.008*

.009*

.013*

.019*

.011*

.016*

.020*

.018*

.019*

.0241"

.032

.021{"

.028

.031

.030

.029

.037

.042

.033

.031

.03s

.033

.033

.042

.048

.037

.001*

.001*

.001"

.001*

.002l"

.007*

.002*

.004*

.007*

.006x

.005*

.010*

.021*

.009*

.028 .036

.035 .043

.030 .039

.029 .037

.040 .053

.053 .07r

.036 .046

Note: See the note from Table 15; The ¡,r values represent empirical rates that have
been averaged acqoss all conditions.



1i8

.071, and was associated with the d'condition. Finally, the difference between the

average values for the H/MSB and M procedures was greater when K : g (i.e.,

mean difference : .01) than when K : 4 (i.e., mean difference : .004).

The data obtained for the tetrad contrast procedures under a partial null

hypothesis have not been reported here, but are available in Appendix C. Separarc

results are reported for the H and MSB procedures in these tables. Trends in findings

were similar to those reported for the data t¿bled in this chapter, and in Appendix B.

The empirical FWRs for the procedures employing a pooled rest statistic were largely

conservative when K : 4 for both values of tot¿l sample size. However, error rates

for the H, MSB, and M procedures did exceed the upper bound of Bradley's (1978)

liberal criterion when very unequal group sizes and covariance matrices were

negatively paired,(i.e., condition d'), even when e = 1.0. When the number of RM

factor levels was increased to eight, the error rates for the H, MSB, and M

procedures r¡/ere typically liberal for both the d and d' conditions. The maximum

value obtained was .229.

For the nonpooled procedures when K : 4, error rates were consistently

lower than the .05 level of significance for a partial null hypothesis for both values of

total sampl e size. As expected, and consistent with previous findings for partial null

hypotheses (Keselman , lgg3, 1994; seaman et al., 1991), the FWRs were generally

either less than the lower bound of Bradley's (1978) liberal criterion, or approached it

in value. However, in contrast with the findings for the complete null hypothesis, the

values for both Bonferroni procedures were marginally larger than the M values
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across several conditions, for both normal and nonnormal data, when K : 4. This

pattern was not evident when K : 8, for which the latter always produced larger

FWRs than the H and MSB procedures.

Power Rates

Since the procedures employing a pooled test statistic could not provide FWR

control under violations of the multisample sphericity and normality assumptions, only

the procedures which used a nonpooled test statistic are considered with respect to

power. In comparing the power rates for the five procedures, Einot and Gabriel's

(1915) criterion of denoting power differences (PDs) less than .10 as negligible, and

differences greater than .20 as substantial will be used. The power values contained

in Tables 20 and2l have been averaged across population effect sizes, values of e,

and population shapes, since the individual empirical power rates obt¿ined for various

combinations of these conditions followed the same trends that will be highlighted in

the ensuing discussion. Also contained in these tables are the mean power values (i.e.,

¡r values), which have been averaged across all investigated conditions.

Table 20 reveals that in terms of average per-comparison power rates, there

were negligible differences between the five nonpooled procedures when K : 4. As

expected, the S procedure was the least powerful, but only slightly less powerful than

the R procedure. By comparing the ¡"r values for these two procedures it is apparent

that the PD was approximately .04 for both values of N. Overall, the M procedure

was marginally less powerful than either stepwise Bonferroni procedure. The



M

.84 .82

.81 .79

.83 .82

.84 .83

.76 .75

.68 .67

MSB

N:45

.83

.80

.82

.84

.76

.67

.79 .80 .78

R

.62 .69 .78 .78 .78

.56 .65 .74 .74 .74

.6L 68 .77 .77 .77

.63 .70 .78 .79 .',78

.s0 .s9 .68 .68 .69

.39 .48 .s7 .s8 .60

.76 .79

.72 .76

.75 .79

.77 .80

.68 .72

.s9 .64

t20

K:4

M

.72 .73

.7t .75

.74 .72

.70 .68

.73 .72

.75 .73

.63 .62

.50 .51

MSB

N:30

Table 20

.55 .63 .72

K:8

-a.tJ
.69
.72
1/l.11

.62

.49

.66 .68 .66

R

.55 .6s .66 .66

.s0 .60 .60 .61

.54 .65 .65 .65

.57 .67 .67 .67

.42 .48 .51 .55

.30 .34 .34 .41

.69

.64

.68

.70

.58

.+t

a .o)
b .60
c .64
c' ,66
d .s3
d' .42

þ .58

a .46
b .40
c .45
c' .47
d .36
d' .22

tt .39 .59

.63

.48 .s6 .57

Note: See the notes from Tables 15 and 19.
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exception was for N : 30 when the most disparate group sizes were negatively paired

with group covariance matrices. The MSB procedure was more powerful than the H

method, although only by a very small degree; the difference in the ¡r values was

approximately .01 for both values of N.

Further examination of the K : 4 results in Table 20 rcveal that the nature of

the pairing of group sizes and covariances had a substantial impact on power.

Empirical power rates were greatest when the most disparate group sizes were

positively paired with covariance matrices (i.e., condition c'), and smallest for

negative pairings of very unequal sample sizes and covariance matrices (i.e.,

condition d'). To illustrate, for Shaffer's procedure, the PD between these two

conditions is .24 for N : 30 and.16 for N :45.

The K : ! data in Table 20 show greater discrepancies between the

tetrad contrast procedures in terms of average per-comparison power rates. When

N : 30, the M procedure was most powerful, as reflected in the ¡r values. The PDs

were .20 and .11for this procedure and the S and R procedures, respectively.

However, based on the average power rates, the differences between the M and

stepwise Bonferroni procedures were small. For the MSB method the difference was

.02, while for the H procedure it was .03. The N : 45 power values reveal even'

smaller differences between the M and Bonferroni procedures, although the

superiority of the former over both the s and R methods was similar.

Table 21 contains the all-comparison power rates for the five nonpooled

procedures. The ¡^r values for K : 4 reveal that the PD between the most powerful



M

Statistic (Averaged Across Effect Sizes. Sphericity Values. and Population Shapes)

.s4 .58 .64 .64 .62

.50 .s4 .60 .6t .58

.s4 .58 .63 .64 .61

.5s .s9 .6s .6s .63

.42 .48 .55 .56 ,52

.31 .37 .44 .45 .42

H MSB

N=45

.58 .59 .s6

R

.26 .39 .s2 .s2 .s0

.20 .32 .44 .44 .43

.25 .38 ,50 .50 .48

.27 .41 .53 .53 .51

.11 .24 .35 .35 .34

.03 .11 .r9 .19 .20

r22

K:4

.M

.41

.48 .s2

.47

.41,

.46

.49

.33

.20

H MSB

N:30

.42 .42

Table 21

.42 .49 .50

.36 .44 .4s

.41 .49 .50

.44 .51 .52

.28 .36 .36

.r7 .21 .22

K:8
.39

.28

.21

,27
.30
.15
.03

.21

R

.t9 .31

.35 .42 .42

.19 .28 .28

.12 .22 .22

.18 .28 .28

.21 .30 .30

.0s .ls .10

.01 .01 .01

a .36
b .31
c .36
c' .38
d .23
d' .13

tL .30

a .07
b .03
c .06
c' .08
d .04
d' .01

tL .05 .13 .2t .20

Note: See the notes from Tables 15 and 19.
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procedure, MSB, and the least powerful procedure, S, was only slightly greater than

.10 for both values of total sample size. As well, the data again reveal substantial

differences in power rates for positive (i.e., the c'condition) and negative (i.e., the d'

condition) pairings of group sizes and covariance matrices for all procedures. For the

MSB procedure, a PD of .30 exists between these two conditions for N : 30, and

this difference was .20 for N : 45.

The K : 8 data reveal that the H and MSB procedures were essentially

equally powerful for both N : 30 and N : 45. Overall, the differences between

these two procedures and S were close to .20 for N : 30, and slightly greater than

this criterion for N : 45. However, the R method was only slightly less powerful

than either H or MSB according to Einot and Gabriel's (1975) criteria. For N : 45,

rates for both the H and MSB procedures only slightly exceeded the M procedure

rates for all but the d' condition, where the latter was slightly more powerful

(PD : .01).

S]¡nopsis of Simulation Results

As anticipated, those procedures which employed a pooled estimate of error

variance could not control the FWR to a under departures from multisample

sphericity, particularly when the design was unbalanced. As well, the Scheffe (1953)

procedure which relied on a nonpooled test statistic was predictably conservative. In

keeping with theoretical expectations, the Studentized maximum root procedure

yielded higher rates of error than the Scheffe procedure, but the majority of

conditions investigated did not produce values surpassing the lower bound of
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Bradley's (1978) liberal criterion (i.e., â of .025). For the most part, the procedures

which utilized a nonpooled test statistic and either a Hochberg (1988) step-up

Bonferroni, Shaffer (i986) modified sequentially rejective Bonferroni, or Studentized

maximum modulus critical value provided good control of the FWR under violations

of multisample sphericity in unbalanced designs, even when the data were sampled

from a nonnormal population. However, all three of these procedures became quite

conservative under the combined effects of nonnormality, large departures from

sphericity, and small values of K.

Power differences among the five procedures which used a nonpooled test

statistic were not large when the number of levels of the repeated measures factor was

small and according to Einot and Gabriel's (1975) criteria, most would be considered

negligible. However differences between the least and most powerful procedures

became more pronounced when K was increased in value. Based on the

recommendations of Einot and Gabriel, Scheffe's procedure could be declared

substantially less powerful than all but the Studentized maximum root procedure under

most of the conditions investigated. Among the most powerful procedures, Hochberg

(1988), Shaffer (1986), and the Studentized maximum modulus, there was no uniform

superiority in terms of either average per-comparison or all-comparison rates. Thè

Studentized maximum root procedure was never substantially less powerful than these

procedures, but always had marginally less power for detecting nonnull tetrad

contrasts.
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CHAPTER 7

APPLICATIONS, SUMMARY, AND CONCLUSIONS

Applications of Results

As Seaman et al. (1991) have noted, the adoption of any statistical procedure

by applied researchers is largely dependent on its practicality. Based on the results of

the simulation study, it would appear that the best procedure to use when conducting

tetrad contrasts would be one which incorporates a nonpooled test statistic in

combination with either a Hochberg (1988) step-up Bonferroni, Shaffer (1936)

modified sequentially rejective Bonferroni, or Studentized maximum modulus CV.

The purpose of the following discussion is to illustrate the application of these

procedures for probing interactions using data for a mixed design. The procedures

will be considered for a mixed design containing a single independent groups factor

and a single RM factor. To place these results in a context meaningful to C&T

researchers, the example will be based on a real study by L,awson and Lorentzen

(1eeO).

In l¿wson and Lorentzen's (1990) research, a number of different sports bras

were evaluated for perceived comfort and support by women who had been classified

into groups on the basis of bra cup size. Although the actual data for this experimênt

are not available, Appendix D cont¿ins a set of hypothetical data for the perceived

support dependent variable. As the authors noted, support scores were based on the

sum of ten 5-point Likert scales; total scores for each subject could range from ten to

50. with higher scores indicating a more favourable evaluation of support. In keeping
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with the results reported by Lawson and Lorentzen, the design is unbalanced, and the

group sizes selected for illustrative purposes, according to bra cup size, are: no : 9,

nu : 13, nc : 8, and no : 5. Further, suppose that this hypothetical data set is

based on the results obtained for three different bras (i.e., K : 3). Although lawson

and l,orentzen did not make any statements regarding random assignment of the bras

to each study participant, for purposes of this example it is assumed that

randomization was employed as a means to reduce possible carry-over effects in the

evaluation of bra support.

Lix and Keselman (in press) developed a statistical program written in the

SASiIML (sAS Institure Inc., 1989a) programming language which uses the GLM

approach described in Chapter 4 to develop one or more hypotheses and test them

using Johansen's 
,(1980) 

approximate df solution. To conduct the set of all possible

tetrad contrasts for the example data set in Appendix D using a nonpooled statistic,

the researcher must specify a contrast vector for both the grouping factor and the RM

factor and each of these must form a pairwise contrast on the levels of the appropriate

factor. In using Lix and Keselman's statistical program, it is assumed that the data are

entered in a particular order, so that the scores associated with the subjects in Group

A are followed by the scores for the subjects in Group B, and so on. Appendix D'

contains the SAS/IML program written by Lix and Keselman and the additional

programming statements required to conduct all possible tetrad contrasts.

Table 22 contains the means and variance-covariance matrices for the repeated

measurements for the four groups of subjects. Figure 1 cont¿ins a plot of the mean
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support scores for each bra condition and cup size group. A variety of symbols are

used to denote the mean values associated with a particular group and lines connect

these symbols. such plots of the data may be conducted using any graphics or

statistical software package. The nonparallel lines in this graph are useful in

illustrating the existence of an interaction between cup size and type of bra and

provide a visual representation of the nature of the dat¿. This graph illustrates that

individuals in the B and C groups gave very similar evaluations of support to all of

the bra conditions, while individuals in groups A and D responded in a much different

manner.

Table 23 contzins the tetrad contrast t statistics, df, and p values produced

using the program developed by Lix and Keselman (in press). It is importrant to note

that the program computes F statistics (i.e., Equation 4.5), but these are easiry

converted to t staristics via the relationship t : {F.

Table 24 ptovides the significance criteria for each of the Hochberg (19gg),

shaffer (1986), and studentized maximum modulus methods for the set of 1g tetrad

contrasts. In this particular example all three methods produce the same significant

results, however, this may not always be the case.

With Hochberg's (1988) step-up Bonferroni method, after ranking the p values

corresponding to the nonpooled t statistics, one begins by comparing the largest p

value, which corresponds to the t statistic involving the second and third levels of the

grouping factor and the first and second revers of the RM factor (i.e., p1n_c; t_rt), to
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BRl BR2 BR3

GroupA(no:9¡

YA

^

'.UA

Group B (nu

GroupC(t:8)

v"

suC

Group D (no

: 13)

YB

Ê"

20.ss6

9.778

14.385

12.090

13.875

4.125

2s.200

13.700

35.778

6.014
t5.t94

22.769

3.346
10.8s9

22.50

-2.357
10.000

44.600

4.600
14.800

45.661

s.333
4.542
9.750

36.308

3.122
-t.756
r0.731

33.875

2.268
2.500

13.554

27.600

-3.900
2.300
2.300

-5)

YD

Êo

Note: BRl - BR3 : Bra conditions 1 through 3.
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Table 23

Tetrad Contrast Results for Hypothetical Data Set

RM Factor lævels in Tetrad Contrast

Group Factor lævels
in Tetrad Contrast

BRl-BR2 BRl-BR3 BR2-BR3

A-B

A-C

A-D

B-C

B-D

C-D

4.170
18.590

.0005

3.381
13.692

.0045

1 .815
7.047

.t121

.126
14.090

.9010

4.873
6.774

.0020

4.322
8.551
.0022

2.121
19.894

.0461

3.1s3
13.623

.0073

9.476
5.704

.0001

t.t26
16.341

.2165

7.947
6.280

.0002

6.gss
6.776

.0003

1.900
19.s16

.0724

3.79s
14.403

.4738

13.024
9.3r3

< .0001

r.049
16.740

.3089

14.508
10.481
< .0001

12.926
9.964

< .0001

t
v^

p

t
ys

p

t
ys

p

t
ys

p

t
vs

p

t
vs

p

Note: t : tetrad contrast t statistic; zs : error df; p : p value.
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Table 24

Significance Criteria for Tetrad Contrasts

RM Factor lævels in Tetrad Contrast

Group Factor lævels
in Tetrad Contrast

BR1-BR2 BR1-BR3 BR2-BR3

A-B

A-C

A-D

B-D

C-D

H
MSB
M

H
MSB
M

H
MSB
M

H
MSB
M

H
MSB
M

H
MSB
M

.00421"

.0042*
3.388*

.0056

.00s6
3.542

.0100

.0100
4.151

.0s00

.0500
3.s26

.0045x

.0050*
4.206*

.0050*

.0050*
3.920*

.0071

.0071
3.362

.0062

.0062
3.544

.0033*

.0042|.
4.491*

.012s

.0125
3.449

.0036*

.0042x
4.319*

.0039*

.0042'"
4.206*

.0083

.0083
3.369

.0250

.02s0
3.513

.0029*

.0042*
3.836*

.0t67

.0167
3.437

.0028*

.0029*
3.730*

.0030*

.0042*
3.773*

B-C

Note: H : Hochberg's (1988) step-up Bonferroni; MSB : shaffer's (19g6) modified
sequentially rejective Bonferroni; M : studentized maximum modulus:* : significant tetrad contrast.
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cv : .05. This statistic is not significant, and accordingly, the corresponding

hypothesis, H": (fr", - ps) - Q"", - tre) : 0, is retained. Testing proceeds by

comparing the next-largestp value, p(e-c;z;¡) to .0512: .025, which is also

nonsignificant. The corresponding hypothesis can not be rejected, and neither can the

seven subsequent ones (in rank order) according to the criteria given inTable24.

However, P(n-c; r-z) : .0045, which is compared to the criterion .05/9 : .0056,

produces a significant result. The corresponding hypothesis,

H": (fr* - Fo,) - Q"", - pcz) : 0, is rejected, as are all of the remaining hypotheses

which have not been tested.

According to Shaffer (1986, Table 3, p. 829), the set of tetrad contrast

hypotheses that could possibly be true in a 4 x 3 design is given by

Ars : {0 - 10, 12, 18}. This implies that for testing the ruth hypothesis, where

m : 1 ,..., 18, the significance level a/Ci is computed by finding the maximum

value in the set A,* which 
T 

less than C - m + 1. Applying this rule, if one

hypothesis was rejected, then at most 12 remaining hypotheses could be true

(i.e., Ci : 12) and the significance level for testing prrr is .05112.If, for example,

seven hypotheses were rejected then, a[ most, 10 of the remaining hypotheses could

be true and C[ : 10.

With Shaffer's (1986) method, testing is also conducted on the ranked p

values, but begins with the smallest p value, p(s-o; z-s), which is evaluated with the

criterion .05/18 : .0028. Since this result is significant, the corresponding

hypothesis, Ho: Q"r, - ps) - Qrr, - tro) : 0, is rejected. Testing proceeds by
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comparing the next-smallestp value, p(¡.-r;z-s) to .05112: .0042, which also produces

a significant result. The next five p values (in ascending order of magnitude) are also

evaluated using this criterion, and all are declared significant; the two subsequent p

values, p@-¡; r-z) and p,"-o. r-z¡, which are both evaluated using the criterion

.05/10 : .005, are also significant. However, the next p value, which corresponds to

the hypothesis, Ho: Qro, - þe) - Qt., - þct) : 0, is compared to .0519 : .0062. Since

this value is greater than the corresponding criterion, the corresponding hypothesis is

retained, as are all of the remaining hypotheses.

In order to apply the Studentized maximum modulus method to the data, a

table of CVs must be consulted. Such tables are available in a number of different

sources, such as Maxwell and Delaney's (1990) text, but the most comprehensive set

is given by Hochberg and Tamhane (1987). Since the error df for the tetrad contrast t

st¿tistics presented in Table 23 arc fractional, in order to obtå.in an exact.CV, linear

interpolation in 1/2. is necessary, and can be accomplished using the formula

M =Mvv
(7.r)

where z*- is the integer portion of v", v"*: !,_ * 1, and M* is the CV for the selected

df, obtained from the studentized maximum modulus distribution.

In interpreting these fTndings, first consider the information conveyed by a

single tetrad contrast. For example, the signficant result associated with groups A and

B and the first and second bra conditions (i.e., theupper left-hand result in Table 24),

indicates that individuals with A and B cup sizes differ significantly in their evaluation

I
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v
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of the support provided by the first and second bras. The most interesting results

given in Table 24 are that individuals with B and C cup sizes differ significantly in

their evaluations of the differences in support offered by all of the bras; this holds

true for individual wearing C and D cup sizes as well.

These results are more meaningful than those that could be obtained by

conducted simple effect tests. Suppose, for example, that the researcher elected to

compare support scores for the three bras within a particular cup size group. Such an

analysis would give no indication of the differences in perceived support offered by

different bras. Similarly, if support scores for a particular bra were compared across

the four groups of study participants, this would give no indication of how women of

different cup sizes differed in their evaluations of the investigaûed bras.

The findings of the analysis involving tetrad contrasts provides important

information that could be used by manufacturers of the sports bras considered in this

investigation. In order to differentiate their own product from competing products in

the marketplace, manufacturers need to attend to the bra attributes which contribute to

support, and provide different support features for women with different cup sizes.

This appears to be particularly important for women of larger cup sizes (i.e., C and

D), since women who wore A and B cup sizes tended to more similar in their :

perceptions of support across the different treatment conditions.

Summarl¡ of Results

The purpose of this study was twofold: (a) to examine applications of RM

methodologies in the C&T literature, particularly with respect to mixed designs and
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(b) to investigate various MCPs that are appropriate for probing interactions in mixed

designs. This research was undertaken to add to the extremely limited body of C&T

literature which has focussed on inadequacies in st¿tistical analyses encountered in the

discipline. This study also contributes to the body of knowledge on valid analyses for

RM data, much of which is found in the psychological and statistical literature.

With respect to the first part of this project, a content analysis of the C&T

literature revealed a number of important characteristics of the use of RM

methodologies in this discipline. Research designs which incorporate correlated data

are used most often by researchers who are interested in understanding how

individuals perceive and evaluate clothing or textile products, but are used

infrequently in studies that have a retailing or marketing focus. In recognition of the

fact that many factors may simultaneously impinge on individual responses to clothing

or textile products, C&T researchers typically use RM designs which contain more

than a single fagqor. but for unknown reasons, do not t¿ke full advantage of the

factorial data structure to test for the presence of variable interactions. When factorial

designs are used, C&T researchers are more often interested in understanding how

separate groups of individuals, who are classified on the basis of such variables as sex

and age, differ in their responses. Furthermore, when interactions are tested in

factorial designs, it is typically the case that researchers do not adopt procedures

which will aid in the interpretation of the nature and source of the significant result.

Finally, in conducting tests of correlated effects, C&T researchers usually rely on

conventional methods of analysis, which are generally considered to be inappropriate
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due to the stringent assumptions that the dat¿ must satisfy in order for statistical

validity concerns to be overcome in hypothesis testing.

Given this background, alternative, robust methods for testing hypotheses on

omnibus interaction effects in mixed designs and for probing interactions were

discussed. With respect to the latter issue, the use of interaction, or tetrad, contrasts

was recommended, as such contrasts involve individual interaction components and

are not confounded by the presence of marginal effects, as is the case with tests of

simple effects.

The results of a simulation study provided empirical evidence of the extent of

the bias that may result from adopting a tetrad contrast procedure which relies on a

test statistic that incorporates the conventional pooled estimate of error variance and

hence is dependent on the stringent assumption of multisample sphericity. None of the

investigated procedures could control the familywise rate of Type I error when the

multisample sphericity assumption was not satisfied, regardless of whether the design

was balanced or unbalanced. However, the tetrad contrast procedures which used a

nonpooled test statistic that does not assume multisample sphericity, rarely resulted in

inflated Type I error rates, even under the most extreme departures from this

assumption and when the dat¿ wete nonnormal in form. When this test statistic was

used in conjunction with either of two stepwise Bonferroni methods or a method that

incorporated Studentized maximum modulus critical values, the resulting test

procedures provided the greatest power to detect a nonnull effect.
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Conclusions

Investigations which incorporate multiple measurements on units of analysis

are popular in a wide variety of disciplines and can be useful in the study of research

problems which have a C&T orientation. A problem exists, however, in the lack of

adoption of procedures that will produce results which are both valid and meaningful.

More specifically, in situations where mixed designs are employed, C&T researchers

may not recognize that traditional methods of analyzing correlated effects are unlikely

to be appropriate choices given the stringent derivational assumptions on which they

rest. Furthermore, traditional strategies for examining variable interactions in such

designs may not provide the information needed to adequately describe the nature and

source of these interactions. The data-analytic problems identified in this study are not

unique to the C&T discipline, as is evidenced by research conducted in other fields of

scientific inquiry. However, they are of sufficient importance to be reemphasized in

an attempt to improve methodological practice.

Although the application of omnibus procedures to test for the presence of an

interaction may be a popular approach, the nonpooled tetrad contrast procedures

considered in this paper should be regarded as viable and appealing methods for

probing interactions. An omnibus procedure can only be regarded as a preliminary

test which provides no information concerning the specific factor level combinations

which contribute to the presence of a significant interaction. Through a content

analysis of the C&T literature it was observed that researchers often choose to

conduct tests of simple main effects following a significant overall result; from a
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theoretical viewpoint, the correct strategy is to conduct mean comparisons which

reduce the overall interaction effect into its component parts, and, as a consequence,

allow for identification of the specific source(s) of the interaction.

Often a chief concern in conducting sfatistical tests is the availability of a

statistical software that will allow the researcher to conduct analyses of interest. The

procedures for probing interaction effects considered in this paper are easily applied

to data obtained from mixed designs using a recently developed SAS/IML (SAS

Institute Inc., 1989a) program (Lix & Keselman, in press). The use of this program

for conducting tetrad contrasts was demonstrated using an example dat¿ set.

Recommendations for Future Research

The current research project provides the basis for future research in a number

of areas, including statistical knowledge of applied researchers, testing variable

interactions, and approximate degrees of freedom test procedures. The following

discussion considers each of these areas in turn.

One of the most important, but not unexpected, findings of the current review

of the C&T RM literature was that researchers continue to cling to conventional

methods of analyzing correlated effects, even though a series of studies have shown

such procedures to be inappropriate in the majority of data-analytic situations. A study

of the knowledge base and statistical decision-making strategies of researchers who

are likely to make use of RM designs might help to pinpoint reasons for failing to

consider alternative procedures and any barriers to the use of such procedures. For

example, researchers may be aware of the derivational assumptions underlying the
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statistical tests which they use, but may not perceive violations of these assumptions

as being relevant in their data analysis. However, as Moran (1986) has noted,

researchers should be encouraged to take a proactive role in removing the potential

for errors to occur in reported results.

The simulation study which investigated the use of tetrad contrasts for probing

interaction effects was limited to a situation in which only a single dependent variable

was studied. Since many research problems are concerned with the simultaneous

investigation of more than one dependent variable, it would be beneficial to consider

the operating characteristics of the recommended procedures in multivariate mixed

designs (e.g., Robey & Barcikowski, 1986). Such a study could provide relevant

information to C&T researchers, as Dàmhorst (1990) has suggested that multivariate

designs should routinely be adopted because they will provide answers to the kinds of

complex research questions which C&T researchers should be addressing to promote

theory development in the field.

Furthermore, while the tetrad contrast procedures considered in this project

were only marginally affected by the degree and form of nonnormality investigated, it

would be worthwhile to investigate procedures that may be robust to the effects of

nonnormality. Wilcox (1993) suggests that more extreme degrees of skewness than

that considered in this study are likely to be encountered in social science dat¿. He

considered the application of Yuen's (1974) method for trimrning aberrant scores from

the sample data (see also Yuen & Dixon, 1973) prior to computing an omnibus test

statistic in the simple RM design, and recommends this approach for a variety of
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forms of nonnormal data. However, Yuen's approach was designed for use with

symmetric distributions in which nonnormality arises because of outliers and full

consideration how such an approach might operate for extreme degrees of skewness

has not yet been undertaken.
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Simulatibn Results for the Complete Null Hypothesis When N : 45



156

Table B1

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic
(Complete Null Hypothesis: K : 4: N : 45)

Normal

H/MSB H/MSB

x2

S

1.00 c'
d

d'

.005*

.014*

.007*

.005*

.029

.0s0

.0211-

.031

.019*

.014x

.053

.0881

.064

.074

.0s3

.037

.Oeet

.1321

.015*

.029

.015*

.009*

.052

.0867

.040

.051

.032

.024*

.08sT

.1201

.0907

.010*

.0761

.055

.1367

.1687

.034

.056

.035

.019x

.0911

.r44ï

.013

.082t

.056

.043

.1221

.1701

.1397

.1417

.1107

.0827

.18sT

.2r71

.03s

.0s8

.036

.019*

.0eeT

.r411

.075

.0847

.057

.044

.12s1

.1721

.1421

.1437

.1137

.0847

.1877

.220ï

.008*

.018*

.006*

.0048

.027

.047

.019*

.030

.016*

.015x

.047

.071

.063

.072

.055

.040

.1037

.1397

.0211"

.032

.017*

.009x

.053

.0791

.037

.0s2

.028

.026

.075

.1081

.0e6r

.1017

.0817

.0s6

.r471

.1847

a

b

c

.04s .046

.054 .057

.034 .034

.024* .024*

.094 .0987

.133T .1367

.069 .012

.0801 .081r

.051 .052

.041 .042

.118T .r2rï

.163T .1671

.139t .1421

.1461 .1507

.119T .1221

.085T .0877

.193T .196r

.238ï .2411

a

b
c

.75 c'
d
d'

a

b
c

.40 cl
d

d'

NOTE: S : Scheffe (1953); R : Studentized maximum root; H/MSB : Hochberg
(1988) step-up Bonferroni/Shaffer (1986) modified sequentially rejective Bonferroni;
M : Studentized maximum modulus; ¿ : pairings of equal covariance matrices and
equal group sizes; 6 : pairings of unequal covariance matrices and equal group sizes;
clc' : positive pairings of covariance matrices and group sizes [c: \ : lZ, 15, 18;
c': n, : 9, 15,2ll; dld' : negative pairings of covariance matrices and group sizes

[d: n, : 18, 15, 12; d,': n,:21, 15, 9]; * : empirical value < .025; I : empirical
value > .075.
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Table B2

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Pooled Test Statistic
(Complete Null Hypothesis: K : 8: N : 45)

Normal

H/MSB H/MSB

x2

ó-

b

c
1.00 c'

d

d'

.000*

.001*

.000*

.000x

.002*

.009*

.002*

.003*

.002*

.0011

.010*

.021*

.016*

.023*

.016*

.009*

.042

.070

.002*

.007*

.002*

.001*

.015*

.040

.009*

.0208

.013*

.005*

.035

.06s

.047

.063

.043

.028

.0937

.r471

.035

.06s

.034

.023*

.1201

.1e8I

.074

.0967

.060

.033

.1487

.2281

_- r s6T

.184t

.130t

.0921

.2421

.3r71

.031

.066

.035

.024l"

.122ï

.2007

.0761

.0e8f

.061

.034

.1s07

.23r1

.1s87

.18sT

.131r

.094t

.2441

.31eI

.000*

.000*

.000*

.000*

.003*

.010*

.002*

.003*

.003*

.001*

.009*

.0201"

.010*

.023*

.014*

.008*

.034

.066

.003*

.009*

.003*

.002*

.019*

.041

.008x

.017*

.0121"

.007*

.032

.061

.043

.064

.04s

.025

.0e07

.1417

.041 .048

.07r .072

.040 .041

.022* .022*

. 118T .1201

.1981 .2021

.065 .067

.094T .09sT

.063 .064

.042 .042

.148T .ls17

.2231 .22s1

.1671 .1691

.189T .1917

.131T .1337

.093f .0947

.2331 .2361

.3121 .3141

a

b
c

.75 c'
d
d'

a

b
c

.40 c'
d

d'

Note: See the note from Table 81.
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Table 83

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test
Statistic (Complete Null H]¡pothesis: K : 4: N : 45)

Normal x2

S H/MSB H/MSB

e

a

b

c
1.00 c'

d

d'

.40

.0078

.012{"

.012*

.009*

.013*

.015*

.009*

.011*

.007*

.0111

.012*

.02r*

a .005*
b .007*
c .006*
c' .008*
d .005*
d' .010*

.019*

.023x

.023|.

.022*

.025

.028

.019*

.024t

.019*

.020x

.024*

.036

.011*

.014*

.013*

.015*

.011*

.016*

.031

.040

.040

.036

.044

.043

.036

.039

.033

.037

.041

.050

.019*

.024*

.021*

.02s

.020*

.023x

.04r

.044

.044

.040

.049

.048

.039

.043

.035

.042

.046

.057

.019*

.026

.022*

.026

.023*

.027

.009*

.009*

.008*

.008*

.013*

.016*

.005*

.009*

.006*

.009*

.010*

.013*

.004*

.007*

.007*

.006*

.011*

.0141"

.01'l*

.019x

.018*

.017'"

.02s

.029

.013*

.020*

.016*

.018*

.020*

.027

.009*

.012*

.013*

.010*

.019*

.026

a

b
c

.75 c'
d
d'

.035 .037

.035 .038

.036 .039

.030 .034

.041 .046

.042 .047

.027 .029

.03s .038

.031 .034

.033 .036

.036 .040

.039 .044

.019* .020*

.020* .021*

.024* .025

.018* .020*

.030 .032

.03s .038

Note: See the note from Table 81.
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Table B4

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Nonpooled Test
Statistic (Complete Null Hypothesis: K : 8: N : 45)

Normal X2

R H/MSB M R H/MSB M

1.00

.40

.001*

.000*

.001*

.000x

.003*

.004*

.001*

.002*

.001*

.000*

.002+

.005*

.000*

.001*

.001*

.001*

.001*

.003*

.004*

.005*

.006*

.006*

.011*

.015*

.006*

.008*

.006*

.006*

.010*

.015*

.005*

.005*

.003*

.006*

.007*

.013*

.034

.043

.039

.044

.043

.058

.038

.045

.040

.038

.044

.049

.029

.029

.024*

.031

.034

.04i

.040

.049

.041

.052

.051

.073

.044

.051

.047

.043

.054

.064

.033

.034

.029

.035

.041

.0s0

.000*

.000*

.001*

.000*

.000*

.001*

.000*

.000*

.000*

.001*

.000*

.003*

.000*

.001*

.000*

.000*

.002*

.006*

.002*

.004*

.004*

.003*

.004*

.010*

.003*

.005*

.004*

.002*

.004*

.012*

.002*

.005*

.005*

.002*

.008*

.015*

a

b

c
c'
d

d'

a

b
c
c'
d
d'

a

b
c
c'
d

d'

.75

.024* .029

.032 .038

.029 .036

.026 .033

.034 .042

.045 .051

.022* .027

.033 .039

.028 .035

.028 .033

.036 .043

.041 .052

.020* .023*

.032 .037

.026 .031

.023* .026

.035 .04s

.043 .0s2

Note: See the note from Table 81.



160

Appendix C

I Simulation Results for a Partial Null Hypothesis
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Table C1

Empirical FWRs for Tetrad Contrast Procedures Emplol¡ing a Pooled Test Statistic
(Partial Null H]¡pothesis: K : 4: N : 30)

Normal

MSB

a

b

c
1.00 c'

d
d'

.003* .009*

.007* .013x

.003* .006*

.001*.004*

.0118 .022*

.024* .041

.011* .017*

.006* .012*

.002* .007*

.0018 .003*

.010* .02r*

.023* .044

.026 .013*

.012* .020*

.006* .013*

.003* .007*

.019* .032

.034. .0s2

.026 .031 .023*

.029 .033 .02s

.0I7* .018x .014*

.010* .012* .010*

.053 .0s9 .046

.082t .091T .073

.038 .042 .033

.029 .032 .025*

.018* .021* .015*

.009* .011* .008*

.049 .052 .043

.0811 .088r .073

_.07r .0161 .064
.041 .043 .035
.030 .032 .026
.015x .0ll/" .014*
.059 .061 .053
.086T .091T .0791

.003* .010*

.005* .0r2*

.004* .007*

.001* .003*

.013* .025*

.026 .048

.006* .015*

.006x .010*

.003* .006*

.001* .004*

.011*.024*

.02t* .035

.027 .041

.010* .020*

.005* .009*

.006* .008*

.02t* .038

.034 .051

.029 .036 .026

:3?3. :ffi. 3',1ï
.008* .010* .007*
.0s0 .0s7 .044
.0921 .101T .082t

.036 .040 .031

.028 .031 .023*

.016x .019r .014*

.008* .009* .007*

.0s2 .058 .04s

.0761 .083T .067

.072 .0711 .065

.043 .044 .038

.022* .024* .019*

.016* .018* .014*

.063 .066 .0s6

.0871 .0921 .0817

a

b
c

.75 c'
d
d'

a

b
c

.40 c'
d
d'

NOTE: S : Scheffe (1953); R : Studentized maximum root; H : Hochberg (1988)
step-up Bonferroni; MSB : Shaffer (1986) modified sequentially rejective Bonferroni;
M : Studentized maximum modulus; ¿ : pairings of equal covariance matrices and
equal group sizes; 5 : pairings of unequal covariance matrices and equal group sizes;
clc' : positive pairings of covariance matrices and group sizes [c: q : 8, 10, 12;
c': n, : 6, 10, l4l; d'ld' : negative pairings of covariance matrices and group sizes

[d: n,: 12, 10,8; d': n,: 14, 10,6]; x: empiricalvalue < .025; l: empirical
value > .075.
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Table C2

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Pooled Test Statistic
(Partial Null Hlrpothesis: K : 4: N : 45)

Normal

MSBM

a

b
c
c'
d
d'

a

b
c
c'
d
d'

.75

1.00

.40

.005* .011*

.007* .013*

.003* .005*

.002* .005x

.011*.020*

.020* .041

.012* .020{.

.005* .012*

.001* .006*

.000* .003*

.010* .023*

.017t" .034

.028 .039

.0I2* .020*

.007* .009*

.003* .006*

.015* .030

.030 .046

.032 .034 .026

.031 .037 .024*

.017* .020* .0r2*

.0118 .012* .009*

.051 .056 .041

.08sT .091T .070

.047 .0s2 .039

.034 .035 .027

.018" .019" .014*

.010* .0r2* .007*

.054 .0s9 .044

.080T .0861 .068

.072 .07s .062

.043 .046 .033

.026 .028 .022*

.012* .013* .009x

.061 .064 .0s2

.088T .090T .07s

.0048 .010*

.004* .010*

.003* .007*

.002* .005x

.011* .0201.

.023* .040

.007* .019*

.004* .010*

.002t .004*

.001* .003*

.009* .019*

.019* .036

.020* .032

.011* .020*

.006* .010*

.003* .007*

.0168 .026

.033 .051

.029 .034 .023x

.031 .035 .024*

.021* .023* .01./*

.014* .0158 .011*

.049 .0s2 .039

.08sT .091T .072

,045 .049 .034
.032 .036 .02s
.016* .017'" .013*
.011* .013* .009*
.048 .052 .04r
.072 .0771 .060

.063 .065 .0s5

.043 .046 .037

.025 .027 .02t*

.015* .016* .013*

.058 .062 .048

.089T .0771 .060

a

b

c
c'
d

d'

Note: See the note from Table Cl;
rj:9, L5,21; For d condition, n,

For c condition, n,: 12, 15, 18; For c' condition,
: 18, 15, 12; For d' condition, n, :21,15, 9.
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Table C3

Emoirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic
(Partial Null Hypothesis: K : 8: N : 30)

Normal

MSB MSB

a

b
c

1.00 c'
d
d'

.000* .002x .026 .021 .024*

.001* .004* .036 .038 .034

.000* .002* .020* .02r* .019*

.000* .000* .011* .012* .011*

.001* .009* .075 .jtt| .070

.004* .022* .140T .t441 .1317

.001* .006* .049 .050 .046

.001x .007* .046 .046 .042

.000* .001* .026 .027 .023*

.q00* .002* .014* .015* .0138

.003* .014* .081T .0S4T .078t

.009* .030 .1341 .139T .1281

.008* .030 .113T .rr7I .1107

.008* .021 .ro¡t .10sT .0997

.006x .0t7* .075 .078T .072

.001* .010* .045 .046 .043

.016* .048 .lsll .1621 .1517

.030 .074 .zrsl .2201 .2101

.021 .028 .025

.040 .042 .031

.022* .024x .020*

.0128 .014* .012*

.013 .0771 .069

.133T .138T .rzsl

.049 .050 .041

.049 .0s0 .04s

.028 .030 .026

.018* .020* .017*

.090T .094T .0867

.138t .1421 .r34i

.111T.114T.1087

.103T .106T .1001

.012 .074 .070

.049 .051 .048

.rszl .1s51 .r471

.2121 .2161 .2061

.000* .002*

.001x .005*

.000* .002*

.000* .001*

.002* .009*

.005* .025

.001*.006*

.001* .007*

.000* .003*

.000* .002x

.004* .017*

.009* .030

.006* .024*

.006* .022*

.003* .014*

.003* .008*

.014* .043

.024* .073

.75

a

b
c
c'
d
d'

a

b
c
c'
d
d'

.40

Note: See the note from Table Cl.



r64

Table C4

Empirical FWRs for Tetrad Contrast Procedures Emplo)'ing a Pooled Test Statistic
(Partial Null H]¡pothesis: K : 8: N : 45)

Normal

MSB

a

b
c

1.00 c'
d
d'

.000* .001*

.000* .003*

.000* .001*

.000* .009*

.001* .009*

.004* .011*

.001f .005*

.001* .006*

.001* .003*

.0008 .002*

.003* .011*

.006* .023*

.008* .028

.009x .032

.003* .013*

.002* .009*

.015* .047

.029 .0761

.030 .030 .021

.044 .044 .038

.026 .026 .023*

.010* .016* .009*

.0191 .0801 .071

.r3tl .138T .1231

.049 .050 .043

.049 .0s0 .043

.029 .030 .026

.018x .018* .016*

.074 .07s .066

.135T .136T .1241

.1221 .1231 .1167

.1091 .110T .t021

.072 .073 .066

.044 .045 .040

.1641 .166T .1491

.2261 .2291 .2rrl

.000*.001*

.001* .003x

.000* .001*

.000* .000*

.001* .009*

.005* .019*

.002* .006*

.001* .006*

.001* .005*

.000* .002*

.003* .014*

.007* .030

.007* .027

.006* .026

.003*.011*

.002* .009*

.012* .039

.02s .066

.033 .034 .029

.038 .039 .033

.025 .025 .022*

.013* .014* .011*

.082f .083t .071

.136T .1381 .1261

.052 .053 .048

.047 .048 .043

.032 .033 .029

.019* .019* .0I7*

.0861 .089t .0787

.140t.141T.r29Í

.1291 .131T .rr7T

.105T .106T .0977

.069 .070 .065

.053 .053 .048

.1s0T .rszl .1387

.200T .2021 .1921

a
b
c
c'
d
d'

a

b
c
c'
d
d'

.75

.40

Note: See the notes from Tables CI and C2.
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Table C5

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test Statistic
(Partial Null Hypothesis: K : 4: N : 30)

Normal X2

MSB MSB

a

b

c
1.00 c'

d
d'

.008x .013* .025*

.0t2* .018* .028

.010* .018* .029

.008* .015* .026

.010* .020* .029

.013* .022* .029

.0078 .014* .025

.009* .0t7* .029

.008* .013* .029

.008x .016* .029

.010* .02r* .031

.016* .025 .033

.007* .013* .022*

.007* .011* -.024*

.006*.011*.025*

.004* .010* .021*

.008* .014r .024*

.010* .015* .025*

.030 .023*

.033 .028

.034 .029

.031 .025

.034 .031

.032 .034

.031 .023*

.034 .028

.033 .026

.032 .027

.038 .034

.038 .036

.026 .019*

.028 .021*

.028 .02r*

.025* .019*

.028 .024*

.028 .025*

.003* .010*

.006* .015*

.005* .009*

.006* .012*

.008* .016*

.0r2* .022*

.004* .010*

.006* .013*

.004* .011*

.005* .010*

.006* .014*

.0078 .015*

.003* .006*

.005* .0108

.004* .009*

.004* .009*

.008* .015*

.012* .020*

.020* .024* .019x

.026 .029 .026

.0198 .023* .019*

.021* .024* .021*

.026 .030 .028

.032 .035 .034

.017* .022x .017*

.023* .027 .0238

.027* .026 .022*

.019* .023* .019*

.024* .031 .025

.023* .029 .027

.013* .015* .011*

.018* .022* .019*

.016* .019* .0158

.0171" .018* .014*

.026 .029 .025

.027 .029 .027

.75

a

b

c
c'
d
d'

à

b
c
c'
d
d'

.40

Note: See the note from Table Cl.
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Table C6

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Nonpooled Test Statistic
(Partial Null H)¡pothesis: K : 4: N : 45)

Normal

MSB MSB

a-

b

c
1.00 c

d
d

a

b
c

.75 c'
d

d'

.006* .0r2*

.008x .016*

.006* .013*

.005*.011*

.007* .015*

.009* .015*

.005* .011*

.007* .013*

.006* .013*

.q05*.011*

.008* .020*

.006* .012*

.005* .011*

.006* .0r2*

.003* .009*

.005* .009*

.004* .009*

.006* .0r2*

.033 .024x

.031 .029

.035 .025

.037 .026

.037 .030

.034 .028

.003* .007*

.005* .0i3*

.005* .0r2*

.004* .009*

.006* .012*

.008* .015*

.005* .011*

.006* .014*

.005* .008*

.003* .009*

.007* .014*

.004* .012*

.002l" .005*

.005* .011x

.005* .010*

.003* .007r

.005* .011*

.008* .016*

.022* .024x .019*

.028 .033 .025x

.028 .031 .023*

.024* .029 .020*

.026 .031 .024*

.028 .032 .028

.025* .027 .020*

.028 .031 .024*

.022* .027 .077*

.024* .026 .019*

.025 .030 .023*

.023* .029 .021*

.016* .017* .013*

.022* .024* .019*

.022* .025* .019*

.021* .023* .016*

.020* .023* .019*

.027 .032 .026

.030

.032

.031

.032

.032

.028

.40

a

b
c
c'
d
d'

.030 .036 .026

.031 .035 .025

.033 .036 .026

.031 .034 .0231.

.03s .039 .032

.028 .031 .026

.026 .028 .021*

.026 .029 .022*

.022* .025* .019*

.025 .027 .02t*

.023* .027 .019*

.025 .028 .020*

Note: See the notes from Tables Cl and C2.
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Table C7

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Nonpooled Test Statistic
(Partial Null Hl¡pothesis: K : 8: N : 30)

Normal x2

RR MSB M MSB M

1.00

.40

.032

.040

.035

.036

.049

.064

.031

.039

.037

.034

.047

.063

.025

.031

.027

.025

.038

.041

a

b

ct
d
d'

.001* .0068

.002* .007x

.001x.005*

.002* .007*

.002x .009*

.006* .017*

.0028 .006*

.001* .006*

.002* .006*

.0,01* .005*

.002* .010*

.009* .021*

.000* .002*._

.002* .006x

.001* .005*

.001* .005*

.002* .007*

.006* .014*

.026 .029

.028 .032

.026 .030

.028 .029

.036 .040

.04s .049

.025 .027

.029 .032

.021 .029

.025 .026

.03s .037

.048 .0s1

.Ol.gx .020*

.025 .027

.02I* .023*

.019* .021*

.030 .032

.034 .036

.001* .002*

.001* .005*

.001* .004*

.0018 .004*

.001* .006*

.003* .009*

.000* .003*

.001* .004*

.001* .003*

.001* .003*

.002* .009*

.004* .013*

.001* .004*

.001* .004*

.000* .004*

.001* .003*

.001* .005*

.004* .013*

.015* .0r7* .019*

.018* .020* .025

.0r4* .016* .02I*

.016* .019x .020*

.028 .032 .031

.028 .030 .039

.017* .019* .024*

.020* .022* .026

.02r* .023* .027

.0t7* .0201" .025

.027 .029 .036

.031 .033 .042

.015* .016* .019*

.019* .020* .025

.018* .019* .023*

.013* .014r .019*

.024'" .025 .030

.034 .037 .047

.75

a

b
c
c'
d
d'

a

b
c
c'
d
d'

Note: See the note from Table Cl.



168

Table C8

Empirical FWRs for Tetrad Contrast Procedures Emplo]¡ing a Nonpooled Test Statistic
(Partial Null Hvpothesis: K : 8: N : 45)

Normal x'

RSRS MSB M MSB M

4

b
t/

t-

d

d

.001* .004* .027

.001*.005*.033

.001x .004* .029

.0008 .002* .025

.001* .007* .035

.000* .008* .034

.000* .003* .030

.000* .004* .030

.000* .002x .029

.000* .004* .029

.000x .005* .029

.002* .006* .029

.001* .003* .029

.000* .003* .025

.000* .002* .025

.001* .0038 .022*

.001* .004* .024*

.003* .009* .031

.029 .029

.03s .035

.030 .029

.027 .027

.037 .039

.037 .041

.031 .032

.030 .031

.030 .031

.029 .029

.031 .033

.032 .031

.028 .026

.026 .026

.025 .022x

.023* .021*

.02s .02s

.032 .036

.000* .001"

.000x .002*

.001*.003*

.000* .002*

.000* .006*

.001* .007*

.000* .003r
''000* .003*
.000x .001*
.000* .001*
.001x .004*
.000r .005*

.000* .001*

.001* .003*

.000* .002{"

.000* .002*

.001* .003*

.002x .009x

.016* .jllx .0I7*

.020* .021* .022*

.019* .019* .019*

.018* .019* .020*

.030 .032 .032

.032 .034 .038

.75

1.00

.40

a

b

c
c'
d
d'

a

b
c
c'
d
d'

.020* .021*

.0248 .026

.021* .022*

.020* .021*

.027 .029

.024* .029

.020x

.026

.023*

.027*

.030

.030

.017* .017* .016x

.025 .025 .024*

.020/. .026 .019*

.019" .019* .019*

.022* .023* .023¡-

.028 .030 .032

Note: See the notes from Tables Cl and C2.
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Appendix D

Example Data Set and Computer Programming Statements for
, Tetrad Contrasts Example
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GroupA(no:9)

GroupB(nu:13)

Hypothetical Data Set

BR2

31

40
39
42
a-JJ
35
36
35

3l

20
23
21

t9
30
26
20
23
2l
26
20
2l
26

19

2l
25
20
25
22
28
20

19

26
18

2l
18

19

23
24
ll

BR1 BR3

42
47
4l
50
43
45
49
+t
47

36
31

38
42
40
37
5l
32
34
35
40
37
JJ

33
37
31

35
30
37
39
29

GroupC(t:8)

GroupD(no:5)

t4
11

15

10

16

2l
10

T2

t3
t3
20
17

15

t7
t6
15

t3
11

t4
T3

t2

30
28
26
27
27

46
50
45
40
42

2l
27
30
22
26

Note: BRl - BR3 : Support scores for bra conditions 1 through 3
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SAS/IML Program from Lix and Keselman (in press)t

*X*INVOKE THE IML PROCEDURE & DEFINE THE MODULE WJGLM***.
PROC IML:
RESET NONAME:
START WJGLM;
**r<****** *PERFORM DIAGNOSTICS AND DEFINE MATRICES ****** ****.
IF NROW(U):0 THEN U:I(NCOL(Y));
rF NROW(C) > NCOL(C) THEN PRrNT

'ERROR: NUMBER OF ROWS OF C EXCEEDS NUMBER OF COLUMNS':
IF NCOL(U) > NROW(U) THEN PRrNT

,ERROR: NUMBER OF COLUMNS OF U EXCEEDS NUMBER OF ROWS':
DO I:1 TO NCOL(NX);

X1 :J(NX[I],1,I);
IF I:1 THEN X:Xl;

ELSE X:XllXl:
END;

X:DESIGN(X);
NTOT:NROW(Y);
WOBS:NCOL(Y);
BOBS:NCOL(X);
WOBSl:WOBS-I;
{<**{<****,{<x*FoRM SIGMA MATRIX AND VECTOR OF MEANS*****)!<8***.
BHAT : INV(X' r¿¡¡ *¡' *y.
MUHAT : SHAPE(BHAT,WOBS#BOBS) ;
SIGMA : JOVOBS#BOBS, WOBS#BOBS,0) ;

DF:NX-1;
DO I:1 TO BOBS;

SIGB : (Y#X[, I]-X[, I] *BHATU, l)' *(Y#X[, I]-X[, I] *BHAT[I, ])/DF[I] ;
F:I#WOBS-WOBS1:
L:I#WOBS;
SIGMA[F: L, F: L] : SIGB/NXU] ;

END;
** *'F*{< * {<{<*CALCULATE TEST STATISTIC, DF, AND P-VALUE{<'{<**:fi **{<**.
R:C@U'; ':

T : (R*MUHAT¡' *¡¡V(R*SIGMA*R') *(R*MUHAT) 
;

A:0;
IMAT:I(\MOBS);

lFrom "Approximate Degrees of Freedom Tests: A Unified Perspective on Testing for
Mean Equality" by L. M. Lix and H. J. Keselman, in press, Ps]¡chological Bulletin.
Copyright 1995 by the American Psychological Association. Reprinted by permission.
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DO I:1 TO BOBS;

QMAT : J(BOBS#WOBS, BOBS#WOBS, 0) ;

F:I#WOBS-WOBS1:
L:I#WOBS;
QMAT[F : L, F : L] : ¡¡44'¡'
PROD : (SIGMA*R') *INV(R*SIGMA*R') *R*QMAT;

A :A * (TRACE(PROD*PROD) +TRACE(PROD)**2)/DFlIl ;

END;
A,: Al2;
DF1:NROW(R);
DF2 : DF 1 #(DF 1 +2) I (3# 

^) 
:

CVAL : DF | +2# A-6# A.l (DF | +2) :

RESULTS:J(4, 1,0);
RESULTSIU:T/CVAL;
RESULTS[2]:DF1;
RESULTS[3]:DF2;
RESULTS[4] : 1 - PROBF(RESULTS[1],DF1,DF2);
*{<**x<*{<**rF*{<****¡{<*{<*****{<{<PRINT RESULTS***'F{<***>Frk*t<*****>k*****{<**.
PRINT 'WELCH-JAMES APPROXIMATE DF SOLUTION':
PRINT'CONTRAST MATRIX:' ;

PRINT RIFORMAT:4.11,;
MUHAT:MUHAT.;
PRINT 'MEAN VECTOR:';
PRINT MUHATIFORMAT : 10.41, ;

PRINT 'SIGMA MATRIX:';
PRINT SIGMAIFORMAT : 10.41, ;

RESLAB:{'TEST STATISTIC" "NUMERATOR DF" "DENOMINATOR DF"
"P-VALUE");
PRINT'SIGNIFICANCE TEST RESULTS:';
PRINT RESULTSIROWNAME:RESLAB FORMAT: 10.4]/;
{<***:&**¡F************t*{<**END OF MODULE******r¡F***{<*¡t<'{<{<*8****{<**.
FINISH;

At this point, the SAS/IML code needed to run the program for a particular research
design is input.
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SAS/IML Programming Statements for Tetrad Contrasts

y : {19 31 42,26 40 47, L8 39 41,21 42 50, 18 33 43, 19 35 45,23 36 49,
24 35 47, 17 31 47, 14 20 36, ll 23 31, 15 21 39, 10 lg 42, 16 30 40,
21 26 37, l0 20 37, t2 23 32, 13 21 34, 13 26 35,20 20 40, t7 21 31,
15 26 33, l7 19 33, 16 21 3't , 15 25 31, 13 20 35, 11 25 30, 14 22 37 ,

132839,122029,21 4630,27 5029,30 45 26,22 4027,26 a227\;
NX:{9 1385};
C:{1_100};
U : {1, _1, 0};
PRINT 'A VS B ON BRl & BR2':
RUN WJGLM;
U : {1,0,-1};
PRINT 'A VS B ON BR1 & BR3';
RUN WJGLM;
U : {0, 1,-1};
PRINT 'A VS B ON BR2 & BR3':
RUN WJGLM;
C:{10_10};
U : {1, _1,0};
PRINT 'A VS C ON BRl & BR2';
RUN WJGLM;
U : {1,0,-1};
PRINT 'A VS C'ON BRI & BR3':
RUN WJGLM;
U : {0, 1,-1};
PRINT 'A VS C ON BR2 & BR3';
RUN WJGLM;
C:{100_1};
U : {1, _1, 0};
PRINT 'A VS D ON BRl & BR2';
RUN WJGLM;
U : {1,0,-1};
PRINT 'A VS D ON BRl & BR3':
RUN WJGLM;
U : {0, 1,-1};
PRINT 'A VS D ON BR2 & BR3':
RUN WJGLM;
C:{010_1};
U : {1,_1,0};
PRINT 'B VS D ON BRl & BR2':
RUN WJGLM;
U : {1,0,_1},
PRINT B VS D ON BR1 & BR3';
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RUN WJGLM;
U : {0, 1,-1}t
PRINT B VS D ON BR2 & BR3';
RUN WJGLM;
C:{001-t};
U : {1,_1,0};
PRINT 'C VS D ON BRl & BR2':
RUN WJGLM;
U : {1,0,_1},
PRINT 'C VS D ON BRl & BR3':
RUN WJGLM;
U : {0, 1,-1};
PRINT 'C VS D ON BR2 & BR3':
RUN WJGLM;
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