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ABSTRACT

Mixed designs, which contain one or more repeated measures factors in
addition to one or more independent groups factors, are used in a variety of
disciplines, including the clothing and textiles discipline. While many researchers may
adopt the conventional analysis of variance (ANOVA) procedure to test repeated
measures hypotheses in such designs this approach is not recommended, particularly
for omnibus tests of interactions, as it is known to be highly sensitive to departures
from the derivational assumption of multisample sphericity. Furthermore, omnibus
tests of interactions in mixed designs are not useful in providing specific information
on the localized sources of these effects.

A content analysis of clothing and textiles literature published between 1987
and 1993 revealed that the conventional ANOVA approach is popular for testing
repeated measures hypotheses. However in using mixed designs, clothing and textiles
researchers do not take full advantage of the factorial structure of the data, either by
not testing for the presence of interactions or by following omnibus tests of—
interactions with tests of simple effects which do not provide relevant information
about the specific nature of variable interactions.

It is shown that in two-factor designs, tetrad contrasts are the only viable way
to probe interactions. Monte Carlo simulation techniques were used to collect |
empirical familywise Type I error and power rates for ten procedures for testing
multiple tetrad contrast hypotheses in mixed designs when the multisample sphericity

assumption was violated. Only three procedures provided acceptable control of error

ii



rates; these relied on a test statistic formed using an estimate of the standard error of
the tetrad contrast based on only those data used in defining the contrast (i.e., a
nonpooled test statistic), in combination with either a Studentized maximum modulus,
Hochberg (1988) step-up Bonferroni, or Shaffer (1986) modified sequentially rejective
Bonferroni critical value. Minimal power differences between these three procedures
were observed.

The application of these nonpooled tetrad contrast procedures to data from a
hypothetical clothing and textiles data set was made with a computer program based

on a general linear model approach to hypothesis testing using a nonpooled statistic.
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CHAPTER 1
INTRODUCTION
Preamble

Researchers in a variety of disciplines conduct investigations in which serial
measurements are made on the sarﬁe unit of analysis on one or more dependent
variables. These observations typically occur as a function of time or as a result of
experimental manipulations. Regardless of the manner in which the data arisé, the
measurements obtained for each unit of analysis are correlated, and the independent
variable under investigation is known as a correlated groups or repeated measures
(RM) factor.

As Lovie (1981) notes, interest in the application of analysis of variance
(ANOVA) techniques to data from RM designs dates from the 1940s. Much of this
work was conduc&:d by psychologists, who drew on the writings of such notable
statisticians as Fisher (1935) and Snedecor (1937). This early research focussed on tﬁe
formulation of an ANOVA F statistic that could be used to test for the presence of a
RM effeét.

In the post-1950s era, interest among both statisticians and psychologists
centred on statistical validity problems relevant to RM analyses incorporating the
ANOVA F statistic. This research was prompted in large part by the knowledgé that
the mathematical assumptions which underlie traditional procedures for testing

hypotheses in RM designs will, in practice, rarely be satisfied. Therefore, concern



2

existed that the results of a RM analysis which incorporated conventional data analytic
techniques would be invalid, and therefore provide misleading information.

As Lindsey (1993) notes, RM designs today enjoy a high degree of popularity
in many different disciplines, from biology, to economics, to zoology. Contemporary
investigations of methods for RM analyses have not been the exclusive domain of
either statisticians or psychologists, but instead have been conducted by researchers
from various backgrounds. As a result, this field of inquiry has a strong
interdisciplinary focus.

The current project is a continuation of the examination of the appropriateness
of statistical procedures for RM analysis, and accordingly, portions of this
" investigation should be of interest to researchers from a diverse range of disciplines.
At the same tim63 this study also narrows its focus, and considers applications of RM
methodologies (i.e., combinations of research design and analysis procedures) in the
clothing and te;gtiles (C&T) discipline.

The C&T orientation of the current study was selected for two reasons. First,
in comparison to other disciplines, the C&T discipline is relatively new, and, as a
result, lacks a well-defined base of both theoretical and methodological knowledge
which researchers can use in formulating research problems, planning study designs,
and choosing methods of data analysis (Nagasawa, Kaiser, & Hutton, 1989). Seﬁond,
while RM designs find usage by researchers in the C&T field, there is always the
potential for such designs to find a wider range of applications. Thus, this study will

serve in part to introduce RM designs to some C&T researchers, and reinforce the



use of such designs and appropriate analysis strategies for others. The following
discussion provides a more detailed discussion of the objectives and rationale for the
current research project.

Introductory Remarks

Ih the C&T field, RM designs have a number of different applications. One
example is where individuals are asked to rate the overall acceptability of a garment
during repeated wear trials; a second is where study participants are asked to record
their perceptions of the personal traits of stimulus figures dressed in different clothing
styles in which some detail, such as level of fashionability, has been manipulated; a
third is where fabric properties are evaluated during multiple cycles of laundering.

One research question typically of interest to researchers who use RM designs
is: Do differenceg among the RM sample means provide sufficient evidence to infer
differences in the study population means? Investigations in other disciplines have
demonstrated that applied researchers routinely adopt the conventional ANOVA Fiest
to obtain an answer to this question (Brigham, 1974; Ekstrom, Quade, & Golden,
1990; LaTour & Miniard, 1983). This approach is generally considered inappropriate,
since it rests on an assumption known as sphericity, which is unlikely to be satisfied
in the majority of data-analytic situations. For the sphericity assumption to be met,
the pbpulation variance-covariance matrix of the repeated measurements must be
structured so that the variances of the différences between scores at all pairs of RM
factor levels are equivalent. Furthermore, for mixed designs, in which repeated

measurements are made for each of several independent groups of units of analysis,



the more stringent assumption of multisample sphericity must be satisfied; this
requires homogeneity of the common variance of the pairwise RM differences across
groups. Because of the restrictive nature of these assumptions, investigations of the
use of RM methodologies in various disciplines.have concluded that applied
researchers seldom adopt correct strategies for testing correlated effects in RM
designs.

As with research data from other disciplines, it is likely that C&T data will
often not satisfy the mathematical assumptions underlying the conventional ANOVA
method for analyzing correlated effects in RM designs. Consequently, C&T
researchers may not be using data-analytic strategies that will produce valid results,
which in turn, may lead them to conclude that differences exist in their study
populations, wheg in fact none are present. Such erroneous conclusions are known as
Type I errors.

These errors have, on several occasions, been noted as a cause for concern
among C&T researchers. Because much of the research in the C&T field is
exploratory in nature and replication studies are rarely published (Turnbull & Lix,
1991), false positive results may be given undue importance in directing the course of
future research. Moran (1986) suggests that

we, as consumers of research, are often not as careful about evaluating

findings as we should be (after all, if it gets published, the findings should be

trustworthy). We tend to overgeneralize the findings of a single study on a

single sample and suggest that these findings (and often even the more



speculative interpretations that go along with these findings), are facts
applicable to much broader groups. This tendency will probably always be the
case and thus it becomes incumbent upon the researcher to do what he or she
can to avoid the publication of misleading data, i.e., Type I errors. (p. 380)
It would, however, be unjustified to discontinue using RM designs for the
investigation of research problems in the C&T field, or, for that matter, in other
fields of scientific inquiry. Given an equal sample size, a correlated groups design
usually offers greater power to detect a treatment effect than an independent groups
design in which each unit of analysis is evaluated at only one point in time or under a
- single experimental condition (Kirk, 1982, p. 240). The former design is generally
more efficient than the latter because the degree of variability among observations
made on a single lunit of analysis will typically be smaller than the degree of
variability among observations made on several different units of analysis. Since less

error variability is likely to be present in a correlated groups design than in an

independent groups design, the former provides for a greater probability of detecting
a true difference among the population means. Consequently, researchers who make
use of RM designs may require smaller sample sizes to achieve results comparable to
those that could be obtained using an independent groups design. Thus, the adoption
of a RM design is one way to make better use of scarce research resources. |

Instead of abandoning RM designs, the solution lies in the identification of
tests that are insensitive, or in other words, robust to mathematical assumption

violations in RM designs. Monte Carlo simulation techniques are valuable in this



respect, because they can be used to examine the behaviour of statistical procedures
when assumptions are violated to various known degrees in the simulated data. Based
on the results obtained from manipulation of the simulation model, it is possible to
make recommendations to researchers on the appropriate use of these statistical
procedures. In other words, the purpose of simulation studies is to provide
information on the conditions under which a statistical test will produce valid results.

Statement of the Problem

Both Damhorst ( 1990) and Turnbull and Lix (1991) have noted the trend
towards the use of more complex research designs and analysis procedures among
C&T researchers, which is due in large part to the recognition that clothing as a form
of human behaviour is a multifaceted process. For example, because it is well known
that the "relevance of [clothing] information is dependent upon the setting and
background cues . (Damhorst, p. 6), C&T researchers are more likely to be interested
in examining the joint effect of two or more independent variables on a dependent
variable, than in stﬁZIying the predictive ability of only a single independent variable.
As a consequence, tests of interactions may be of greater importance to C&T
researchers than those of individual or main effects.

Mixed designs may be particularly useful to C&T researchers, as they offer
the opportunity to investigate differences in responses of independent groups of .units
of analysis under exposure to all levels of one or more RM factors; these groups may

be formed, for example, on the basis of age or sex. C&T researchers who use mixed

designs may be interested in determining whether the pattern of differences among



RM sample means are the same across levels of an independent groups factor, and
consequently will test for an interaction. Past research has demonstrated, however,
that conventional proéedures for analyzing interactions in mixed designs may be
highly sensitive to departures from derivational assumptions. In recognition of this,
Algina and Oshima (1994) and Keselman, Carriere, and Lix (1993) examined
alternative solutions for testing omnibus interaction effects in mixed designs under
departures from the multisample sphericity assumption; both sets of authors concluded
that the investigated procedures could produce valid results under assumption
violations.

While the procedures described by Algina and Oshima (1994) and Keselman et
al. (1993) enable researchers to obtain valid tests of omnibus interaction effects in
mixed designs, interest generally extends beyond identification of a significant
omnibus result to the determination of the localized source of this result. For
example, Lix (1995) found that in both correlated and independent groups designs,
C&T researchers routinely follow a significant omnibus main effect result with
multiple pairwise comparisons of treatment means to tease out the specific source of
the effect. In factorial designs, Kaufman, Dudley-Marling, and Serlin (1986) and
Rosnow and Rosenthal (1989a) have confirmed that many researchers conduct tests on
simple effects when a significant interaction is obtained, including simple main éffect
tests and simple pairwise comparisons. However, as these authors note, such
procedures are inappropriate for examining interaction effects and researchers who

adopt such an approach are likely to misinterpret a significant result. Specific
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procedures for probing interactions, known as interaction contrasts, are available, but
as Boik (1993) notes, most applied researchers are not familiar with these techniques.
To summarize, C&T researchers may either already use mixed designs in their
research or find the adoption of such designs beneficial, the use of mixed designs
implies interest in examining one or more variable interactions, and research has
demonstrated that applied researchers may frequently misinterpret the nature and
source of an interaction in their data by failing to adopt techniques which allow for
the exploration of this effect. Furthermore, because procedures for testing interactions
in mixed designs are known to be highly sensitive to departures from the multisample
sphericity assumption, it is likely that procedures for probing interactions will suffer
from this same weakness. Yet at present, no studies havé investigated potentially
robust solutions fgr conducting tests which are designed specifically for probing
interactions within the context of mixed designs. The results of simulation studies
which investigate the robustness of statistical techniques for probing interfl_ction effects
in RM designs should therefore provide relevant information for C&T researchers as
well as researchers in other fields where mixed designs find a high degree of usage.

Purpose of Proposed Research

Recommendations on improvements in data-analytic strategies are often most
meaningful when they are accompanied by documentation of existing research |
practices. This documentation is useful for directing recommendations to appropriate
audiences and for providing empirical evidence of inadequacies in currently adopted

methodologies. Accordingly, one purpose of the present research is to investigate the



9

use of RM designs by researchers in the C&T field, particularly the strategies adopted
for testing interaction effects in mixed designs. This investigation is undertaken via a
content analysis of published C&T research. |

A second purposé is to use simulation techniques to examine the efficacy of
several multiple comparison procedures (MCPs) for probing interactions via
interaction contrasts in mixed designs when the multisample sphericity assumption is
not satisfied. Lix (1995) found that while a number of different MCPs are used by
C&T researchers, procedures which do not provide control of the overall probability
of committing at least one Type I error among the overall set of comparisons,
otherwise known as the familywise Type I error rate (FWR) are routinely selected.
Furthefmore, the issue of violations of derivational assumptions is rarely considered
when selecting a MCP. The MCPs considered in this project utilize an approximate
degrees of freedom (df) test statistic which is based on the solutions of Welch (1947,
1951)/2Amd James (1951, 1954) for testing the equality of means in the presence of
variance heterogeneity.

Study Rationale

Green (1984) notes that the home economics discipline has been criticized for
its failure to produce research papers which address methodological issues in data’
analysis. This is particularly evident in the C&T field. At present, only a single.study
has addressed specific inadequacies in data analysis conducted by C&T researchers
(Lix, 1995). This represents a significant gap in the development of the field,

because, as Schumm (1982) argues, an integrated understanding of theory, variable
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measurement, and statistical analysis is necessary for researchers to competently
conduct scientific investigations (see also Nagasawa et al., 1989). Furthermore, since
new developments in data-analytic techniques are continually appearing in the
literature, it is essential for applied researchers to be exposed to these innovations so
that they are aware of the range of choices available, and accordingly, select
statistical techniques which are most appropriate for achieving the stated objectives of
their investigations.

Because C&T researchers may find it advantageous to adopt RM designs in
their investigations it is important that researchers understand how to proceed in the
analysis of correlated data. This involves an awareness of: (a) the types of research
questions that can be addressed with such designs, (b) why and how data may not
conform to the a§sumptions underlying traditional methods of RM analysis, (c)
problems with existing data analysis strategies, (d) alternative methods of analysis,
and (¢) how to implement these élternative procedures. The present resggrch will
address these issues within the context of techniques for examining variable
interactions.

However, as noted at the outset of this introduction, the findings of this study
will be applicable to other disciplines. C&T research tends to be interdisciplinary ‘in
nature (Turnbull & Lix, 1991), hence it is likely to be exhibit characteristics |
representative of research in other fields, such as marketing and psychology. As well,
this study will add to the growing body of knowledge of RM analysis procedures

found in such fields as statistics and psychology.
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Study Limitations

The following limitations on the scope of this research project are noted:
The investigation of the use of RM methodologies in the C&T field is limited
to published research. This restriction was applied for two reasons. First,
published works are likely to have the greatest influence on the way in which
researchers conduct their own studies. Researchers may tend to emulate the
approaches towards design and analysis taken in published works in the hopes
that this will improve the chances of having their own works accepted for
publication. Secondly, unpublished works are often more difficult to identify
and their existence is rarely documented in published indices. Without a
systematic approach available to identify unpublished works, their inclusion in
this invest,igation might allow for bias to enter into the study selection process.
However, the exclusion of unpublished works may, in and of itself, create
Wbias, as unpublished works are often systematically different from their
unpublished counterparts; they may contain fewer statistically significant
result, or a greater number of methodological flaws, or both (Greenwald,
1975; Moran, 1986).
This study only considers methods for probing interactions within the context
of two-factor designs that contain only a single dependent variable. These
methods may be generalized to higher-order designs and designs that contain

multiple dependent variables which are being investigated simultaneously.
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However, before considering their use in more complex designs, it is
important to consider the issue of robustness in a simple design.

Definition of Terms

Throughout this study, the following terms and concepts will find frequent
usage, and are defined here in detail for purposes of clarity:

Type I Error Rate: The probability of erroneously rejecting a true null hypothesis.

Familywise Error Rate (FWR): The overall or joint probability of committing at least

one Type I error in a complete family of hypothesis tests.

Per Comparison Error Rate (PCR): The probability of committing a Type I error
when testing a given hypothesis.

Balanced Design: A research design in which group sizes are equal. When group sizes
are unequal the design is unbalanced.

Contrast (Comparison): A set of coefficients which specifies a comparison among a

set of population means, and defines a hypothesis of interest to the researcher. At
least two contrast coefficients in the set must be nonzero, and the coefficients must
sum to zero.

Orthogonal Contrasts: A set of unrelated (uncorrelated) contrasts. The sum of the

crossproducts of the coefficients of each pair of orthogonal contrasts is equal to zero
when the design is balanced. For unbalanced designs, a pair of contrasts is orthogonal
if the weighted sum of the crossproducts of a set of coefficients are equal to zero,

where the weights are equal to the inverse values of the group sizes.
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Linearly Independent Contrasts: A set of contrasts in which no individual contrast

can be formed from a linear combination of any other contrast(s) in the set.

Pairwise Comparison: A contrast in which two means are compared.

Complex Contrast: A contrast in which more than two means are compared.

Marginal (Main) Effect: The effect of one treatment (experimental) factor that is

obtained when the population values are averaged across the levels of all other
factors. This averaging may be conducted using either weighted or unweighted values
when the design is unbalanced.

Simple Effect: The effect of one treatment factor at a particular level of another
factor, or at a combination of levels of two or more factors.

Omnibus Test: A test that is used to evaluate differences among more than two
different groups of units of analyses, and has degrees of freedom equal to those

available for the effect under investigation.
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CHAPTER 2

REPEATED MEASURES APPLICATIONS IN THE
CLOTHING AND TEXTILES LITERATURE

The first objective of this study was to assess the use of RM methodologies in
the C&T literature, particularly with respect to mixed designs. This chapter begins
with a discussion of: (a) the various types bf RM research designs that may be
adopted by the applied researcher, (b) methods for analyzing correlated effects, and
(c) the derivational assumptions on which these procedures rest. An examination of
the literature on the use of RM methodologies in other disciplines follows. A
description of the method used to conduct a search of the C&T RM literatﬁre and to
define the characteristics of this literature concludes the chapter.

An Overview of Repeated Measures Designs

In a simple RM design, a single group of units of analysis (e.g., study
participants) is evaluated at each level of one RM factor. A single group,_of units of
analysis may also be evaluated at each combination of levels of two or more RM
factors; such a design is referred to as a factorial RM design. In contrast, in a mixed
design, units of analysis are classified on the basis of one or more independent groups
factors and are evaluated at each level of a single RM factor, or at each combination
of levels of two or more RM factors. Such designs are denoted as mixed becaus-e both
independent groups and correlated groups factors are involved. All of these RM
designs may be univariate in nature, such that each unit of analysis is evaluated on

only a single dependent variable, or they may have a multivariate structure, such that
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each unit of analysis is measured at each level of the RM factor(s) on multiple
dependent variables.

Analysis Procedures and Associated Derivational Assumptions

Single-Group Designs

Simple repeated measures designs. Let Y, denote the kth score for the ith unit
of analysis (i = 1 ,..., N) in a simple RM design in which only. one dependent
variable is under investigation. The observations Y; = [Y,, ... Yk] are assumed to be
indepeﬁdently and normally distributed random variables with mean vector
¢ = [y ... pg] of dimension 1 x K and variance-covariance matrix X of dimension
K x K. The omnibus null hypothesis under consideration is H,: p, = ~ = pg. The

‘conventional univariate statistic used to test H, is F = MSy/MSgs, where MSy is the
mean square for Fhe RM effect, and MSgq is the mean square error (MSE).

When the variances of the K repeated measurements are equal, and the
covari&nces among them are equal, the variance-covariance matrix, X, is said to
possess compound symmetry (Kirk, 1995, p. 275). Compound symmetry is a
sufficient condition for the conventional ANOVA F statistic to follow an F
distribution under the null hypothesis. However it is not a necessary condition.

The necessary condition underlying the conventional ANOVA approach for
testing H, is sphericity or circularity (Huynh & Feldt, 1970; Rouénet & Lepine,.

1970), which, in matrix notation, is defined as
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C'EC =N, (2.1)
where C is a K x (K - 1) orthonormal contrast matrix for the K RM, N is a
scalar > 0, I is an identity matrix, and superscript T is the transpose operator. For C
to be orthonormal, the columns of C must form a set of (K - 1) orthogonal contrasts
among the levels of the RM factor. Furthermore, each column must have a length of
one, or in other words, C'C = I .

Another way of stating this sphericity assumption is based on the algebra of

expectations. It may be shown that

o(zk_k,) = ori +op — 20,.0,0,, . (2.2)

Equation 2.2 illustrates that the variance of the difference between scores at any pair
of levels of the RM factor may be expressed as a function of the corresponding
variances and covariance. The latter is a function of the correlation among the
repeated measurements and the sfandard deviations. When variances are’gqual for all
possible paifwise difference variables, the data are spherical. As is apparent from
Equation 2.2, when there are only two levels of the RM factor, the sphericity
assumption is trivially satisfied, since only a single difference variable can be formed.

One way in which violations of the sphericity assumption may arise is because
of variations in tile degree of correlation among dependent variable scores at all‘ pairs
of levels of the RM factor, a situation that may be encountered in many data-analytic
problems. For example, in the C&T discipline, in studies of the acceptability of a

garment during repeated wear trials, successive trials may be evaluated in a similar
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manner and therefore may be highly correlated, whereas trials separated by a greater
length of time may give rise to dissimilar evaluations, and will not be as highly
correlated. It is rarely possible to limit the existence of such serial correlation patterns
when the units of analysis are studied as a function of time. However, in situations
where the RM factor is an experimental variable, it is important for units of analysis
to be randomly exposed to the factor levels to limit the existence of deleterious carry- -
over effects that may give rise to nonspherical data. Unfortunately, many researchers
may not attend to the issue of randomization in designing an experiment, which may
have serious implications for the validity of the statistical procedures that are used in
data analysis.

Box (1954) proved that under the null hypothesis, the usual F statistic is
approximately digtributed as an F variate with (K - 1)e and (K - 1)(N - 1)e df. The
parameter e is an index of the degree of sphericity in the population covariance

matrix. In matrix notation,

K-Dtr[CTZC]’

where tr is the trace operator, and the remaining elements are as previously defined.
The parameter e may assume a range of values, from an upper bound of 1.0 when
sphericity is present in the data, to a minimum of (K-1).

For testing the hypothesis of no RM effect, one could compare the computed F
statistic to a critical F value with numerator and denominator df adjusted by e.

However, it is unlikely for researchers to have information about the population
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parameter e. Therefore, one approach suggested for testing the null hypothesis is to
compare the computed F statistic to a critical value (CV) for which the numerator and
denominator df have been adjusted by a factor equal to the lower bound of e (Geisser
& Greenhouse, 1958). Accordingly, the F statistic is compared to a CV with 1 and
(N - 1) df. This approgch, often referred to as a conservative F test, is not widely
recommended, as it may result in a test that is insensitive to differgnces among the
RM population means (Rogan, Keselman, & Mendoza, 1979).

Greenhouse and Geisser (1959) suggested using a sample estimate, &, for df
adjustment, which is computed by replacing X in Equation 2.3 with the sample
covariance matrix, £. However, Collier, Baker, Mandeville, and Hayes (1967) found
€ to be a biased estimate of the population parameter for values of e greater than
- 0.75, particularly‘ when sample sizes wefe small. Hence, Huynh and Feldt (1976)

recommended €, where

emin|1, NE-De-2 ] = gy
K-DIN=1-& D

Finally, Quintana and Maxwell (1985) proposed €, due to the findings of
Maxwell and Arvey (1982) that & tends to produce an excessive number of Type 1
errors under conditions in which sample size is small and/or there are a large number
of repeated measurements (see also Quintana & Maxwell, 1994). This estimate is

defined as
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€ =min[1, 1/2¢ +9)]. 2.5)

A multivariate procedure may also be adopted to test the null hypothesis. Due
to the existence of correlations among the repeated meas'urements, Cole and Grizzle
(1966) argue that multivariate analysis of variance (MANOVA) is the appropriate
procedure to adopt. Under this analysis strategy, the K RM are transformed into a set
of (K - 1) linearly independent difference variables. For the simple RM design,
Hotelling’s (1931) T? statistic is used to test the null hypothesis of equality of the
means of these difference variables. This approach makes no specific assumptions
regarding the structure of X, although the assumptions of independence of

observations and multivariate normality must be satisfied.

Factorial repeated measures designs. When testing correlated effects in
factorial RM designs using the conventional ANOVA approach, both overall and local
sphericity assumptions must be considered (Mendoza, Toothaker, & Crain, 1976).
The oveérall sphericity assumption is satisfied when the C matrix in Equation 2.1
defines a set of orthonormal contrasts for all of the levels of the RM factors, while a
local sphericity assumption is satisfied when C defines an orthonormal contrast matrix
for a particular effect of interest (e.g., a main or interaction effect). Overall and lpcal
sphericity need not be simultaneously satisfied in a single set of data, although the
former, which is the more stringent assumption, implies that the latter will be met.
The conventional ANOVA F statistic can be computed in different ways depending on
whether or not the researcher is willing to assume that the data conform to the overall

sphericity assumption. In the case where neither assumption is likely to be met, either
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a univariate df-adjusted procedure, or Hotelling’s (1931) T? procedure may be
adopted. However, with respect to the former, it is important to note that a different
value of &, €, or e can be computed for df adjustment for each effect under
investigation.

Selecting an analysis procedure. For both simple and factorial RM designs,
many researchers favoﬁr the multivariate approach over univariate df-adjusted
procedures, as the former is exact, while the latter are only approximate tests of the
null hypothesis (Keselmaﬁ & Keselman, 1993; O’Brien & Kaiser, 1985). However, it
is known that Hotelling’s (1931) T? test can be sensitive to departures from the
multivariate normality assumption when total sample size is less than 30 (Lix,
Keselman, & Keselman, 1995). Furthermore, the multivariate procedure is not
uniformly more ppwerful than a univariate one. The relative power advantage of
either approach is a function of the alternative hypothesis, the structure of X, and the
relationship befween these two factbrs (Barcikowski & Robey, 1990; Dangl_son,
1972).

Mixed Designs

The simplest mixed design contains a single independent groups factor, A,

with j = 1, ..., J levels and n; units of analysis within each level of A (E,.nj = N),

and a single correlated groups factor, B, with k = 1, ..., K levels. Let Y répresent
the kth measure on the ith unit of analysis (i = 1,...,n) in the jth group. The
observations Yy = [Yy; ... Yix] are assumed to be independently and normally

distributed, with mean vector p; = [u; ... k] and covariance matrix L.



21

Under the conventional approach to RM analysis, the null hypothesis of no
RM main effect, Hy: g, = - = py, where u, is the kth marginal RM mean, is tested
via Fy = MS/MSyg,. Here, MSy and MS,g,, are the mean square for the RM effect
and the MSE, respectively. In the latter term, the forward slash is used to indicate
that units of analysis are nested with groups. The null hypothesis of no interaction
effect is Hy: py - py - ;. + . = 0 for all j and k, where K 45, and p_ are
respectively the RM, group, and grand means. This hypothesis is tested via
Fra = MSy«/MSg;, where MS, ¢ is the interaction mean square and MS/, is as
previously defined. Finally, the null hypothesis-of no group main effect,
Hg: . = - py, is tested via F; = MS,/MS,,, were MS, ié the group mean square,
and MSq, is the MSE.

In order fgr the ANOVA F test to provide a valid test of either the RM main
or interaction effect in a mixed design, the assumptions of multivariate normality and
independgnce must be satisfied. In addition, it is assumed that the sphericity

assumption holds, that is,

C'Z,C =Ny, , (2.6)
where X, is the population covariance matrix that has been averaged (pooled) across
the levels of the grouping factor, and the remaining elements are as defined for-the
simple RM design. Furthermore, for multisample sphericity to exist (Huynh, 1978),

the covariance matrix of the orthonormal contrast variables must be equal across all

levels of the grouping factor. In matrix notation, this assumption is represented as
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2.7)
CTE,C=C'L,C=---=C"L,C =Ny, -

For the ANOVA F test to provide a valid result for a test of the independent groups
main effect, the multisample sphericity assumption need not be satisfied. However, it
is assumed that homogeneity of variances exists across the levels of the grouping
factor for the average value of the repeated measurements.

For the mixed design, Box (1954) showed that under the hypothesis of no RM-
main effect, Fy is approximately distributed as an F variable with (K - 1)e and
(K - I)(N - J)e df. Similarly, Fy is approximately distributed as an F variate with
(J - DK - e and (K - 1)(N - J)e df under the hypothesis of no RM interaction. The
population parameter, ¢, is computed in the same manner as for the simple RM
design, with the exception that I is replaced with X, in Equation 2.3.

Any one of the ¢, €, or e df-adjusted F tests may be adopted for testing
correlated effects in mixed designs whén is it unlikely that the data will conform to
the sphericity assumption. The ¢ statistic is defined in the same manner as for the
simple RM design, with the exception that f)p replaces X in Equation 2.3. However,

the € statistic (Huynh & Feldt, 1976; Lecoutre, 1991) is defined as,

. (N=-J+DEK-1)e-2 (2.8
g mm[l’(K——I)[N—J—(K—l)]é]' (2.8)

Finally, the e statistic is computed using Equation 2.5.
Data from mixed designs may also be analyzed using a multivariate procedure.

In order to test the RM main effect, the grouping factor is ignored, and the set of



23

linearly independent difference variables are pooled across the levels of the grouping
factor. Hotelling’s (1931) T? statistic is used to assess whether the vector of means for
these difference variables is equal to the null vector. For the interaction effect, the
hypothesis of interest is equality of the vector of mean difference variables across the
levels of the grouping factor. Hence the problem is reduced to a one-way independent
groups MANOVA on the difference scores, and the null hypothesis may be evaluated
using Hotelling’s T? when the number of groups is equal to two, or one of: (a)
Hotelling-Lawley (Hotelling, 1951; Lawley, 1938) trace, (b) Pillai-Bartlett (Bartlett,
1939; Pillai, 1955) trace, (c) Roy’s (1953) largest root criterion, of (d) Wilks’ (1932)
likelihood ratio, for multi-group mixed designs.

In order for a multivariate procedure to provide a valid test of the data,
multivariate norm(ality is assumed, as is equality of the group orthonormal covariance
matrices. However, the data need not be spherical.

In mix_ed designs, the multivariate approach is generally favoured over either
of the &, €, or ¢ tests when the design is balanced, provided that the degree of
inequality of the group orthonormal covariance matrices is not large (Keselman, Lix,
& Keselman, 1994). However neither the univariate or multivariate approach is
considered to be appropriate when the design is balanced but the degree of inequality
of the group covariance matrices is large, or when the design is unbalanced,
regardless of the degree of covariance heterogeneity. Specific information concerning
the operating characteristics of the univariate and multivariate approaches under such

conditions is discussed in a subsequent chapter.
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Multivariate Repeated Measures Designs

All of the methods for analyzing correlated effects have been described within
the context of a design in which only a single dependent variable is under
consideration, or in which each of several independent variables is being evaluated in
isolation. In those instances where the data structure is multivariate in nature and the
researcher is interested in conducting tests of hypotheses for the set of dependent
variables, a multivariate MANOVA procedure may be adopted. Hotelling’s (1931)
test is again used to test multivariate RM hypotheses in either simple or factorial RM
designs as well as to test main effect hypotheses in the mixed design. Any one of the
four multivariate procedures described previously for analyzing interactions in the _
mixed univariate design can be applied to test interactions in a mixed multivariate
experiment. However, the statistics for testing multivariate RM main or interaction
hypotheses may be computed in different ways, depending on whether or not the
researcher is willing to assume that multivariate (multisample) sphericity is satisﬁed.
Boik (1991) provides specific details of the methods available for computing
multivariate statistics under these two approaches.

Probing Correlated Effects

In many instances, the researcher will follow a significant test of a RM effect
with contrasts to probe that effect. Alternatively, the researcher may elect to bypass a
test of the omnibus hypothesis altogether in favour of a series of contrasts to aid in

the identification of the localized source of the effect. In both instances, the most
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common approach is to conduct pairwise comparisons of the RM means (Jaccard,
Becker, & Wood, 1984; Lix, 1995).

In the simple RM design, the test statistic for performing these comparisons
may be computed in two different ways; the choice of one approach over the other is
a function of the assumptions the researcher is willing to make about the data. In the
first, the test statistic incorporates the MSE term used to test the omnibus hypothesis.
This statistic is known as a pooled statistic because the error term is based on the data
from all levels of the RM factor. The sphericity assumption must be satisfied for such
an approach to provide valid tests of pairwise comparisons (Keselman, 1982). The
alternative, a nonpooled test statistic, uses an error term based on only that data
associated with the particular levels of the RM factor that are being compared and is
equivalent to a pgired t statistic (Maxwell, 1980). Thus, each pairwise comparison
statistic has a separate error term. Since only two levels of the RM factor are used to
derive the tes’t< statistic, the sphericity assumption is trivially satisfied. However, it is
still assumed that the data follow a multivariate normal distribution.

The same concepts of pooled and nonpooled statistics apply to pairwise
comparisons in factorial RM designs and in mixed designs. However, pooling may be
conducted in different ways, and is a function of whether the researcher is probing a
marginal effect or a simple effect. For example, in the A x B mixed design deséribed
previously, pairwise comparisons of the Factor B marginal means may be conducted
using a test statistic which employs an error term based on the usual MSE for the

omnibus test, which is pooled across all of the data. The use of such a statistic
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necessarily assumes that multisample sphericity is satisfied (Keselman & Keselman,
1988). Alternatively, the test statistic may incorporate an error term based on only
that data at the two levels of Factor B which are a part of the comparison and thus
only requires homogeneity of the group orthonormal covariance matrices, not
sphericity. Pairwise comparisons of the Factor B simple main effect means at a
particular level of Factor A may be made using an error term based on the usual
MSE, which assumes that the data conform to the multisample sphericity assumption.
These tests may also be conducted using the MSE. computed at a particular level of
Factor A (Keselman & Keselman, 1993); this approach is only dependent on
sphericity of the variance-covariance matrix at the chosen level of the grouping factor.
Alternatively, the test statistic may employ an error term which is pooled over neither
the Factor B or Eactor A levels, and is therefore based on only that data used in
defining the comparison of interest. This nonpooled statistic is not dependent on either
component part of the multisample sphericity assumption.
Repeated Measures Designs and the Applied Researcher

The information provided to this point on methods available for RM analysis
may be too technical in nature for the applied researcher. Individuals requiring a less
complex discussion have a number of sources at their disposal. Most statistical
textbooks include a section on RM analyses; Maxwell and Delaney (1990) provide an
excellent treatment of this topic. O’Brien and Kaiser (1985) give a simplistic
discussion of MANOVA methods for RM analysis which includes a basic introduction

to matrix algebra. Barcikowski and Robey (1984) and Looney and Stanley (1989)
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consider data analysis procedures for single-group and mixed designs, respectively.
Selected authors in the home economics discipline have also dealt with RM analyses
within the context of family studies research problems (see Ball, McKenry, & Price-
Bonham, 1983; Sanik, 1983; Schumm, Barnes, Bollman, Jurich, & Milliken, 1985
Schumm, Bugaighis, & Jurich, 1985).

Assessing Repeated Measures Methodologies in Other Disciplines

As a result of the variety of procedures available for the analysis of RM data,
a number of studies in various fields of scientific inquiry have investigated
applications of RM methodologies by applied researchers and used this information to
formulate recommendations on appropriate methods of RM analysis. This section
provides a summary of both the findings and recommendations of these content
analyses.

Brigham (1974) surveyed research reports published between 1969 and 1971 in
Ergonomics to examine the popularity of a variety of different statistical procedures.
RM analyses 'were adopted in 27 of the 108 studies which the author identified and in
all of these, the conventional ANOVA F procedure was adopted. Brigham criticized
this approach, and suggested that a conservative F procedure should have been used
instead. Furthermore, the author noted that if this strategy had been used, 13 of the
27 arﬁcles would no longer have reported significant results.

LaTour and Miniard (1983) evaluated published articles in two marketing
journals for the period 1974 to 1979 to identify studies employing correlated data.

The authors included studies using simple, factorial, and mixed designs. Of the 55
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research reports which the authors identified, 24 reported the use of the conventional
ANOVA approach for testing hypotheses on RM effects, and therefore the
consequences associated with possible violations of the (multisample) sphericity
assumption were not considered. None of the studies reported the use of a df-adjusted
procedure, but in one article the authors relied on a conservative F test. In only two
of the 55 studies was MANOVA adopted. LaTour and Miniard also identified two
papers in which the RM factor was erroneously treated as an independent groups
factor in the computation of ANOVA F statistics. Finally, in several papers in which
a mixed design was used, tests of simple indepeﬂdent group effects were conducted at
each level of the RM factor(s), thereby bypassing tests of an omnibus RM effect. In
their conclusions, LaTour and Miniard recommended a multivariate approach to RM
analysis since it 1s “the most versatile of the analytic methods" (p. 55). Furthermore,
they suggested that a multivariate analysis is likely to afford statistical power which is
comparable to that of a df-adjusted proceduré. B
In a more recent study, Ekstrom et al. (1990) evaluated analysis procedures
applied to test correlated effects in mixed designs in the psychiatric RM literature for
a six-month period in 1988. The authors’ most significant finding was that more than
one third of the 63 articles they identified did not include sufficient information to
conclude what type of analysis had been performed, although in many of these érticles
it appeared that the traditional ANOVA approach had been adopted. In seven studies

MANOVA was used to test RM main or interaction effects and in another four studies

a df-adjusted test was used. A further 16% only reported the results of tests of simple
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independent group effects conducted at each level of a single RM factor or at each
combination of levels of two or more factors. Ekstrom et al. also recommended a
multivariate approach and, like LaTour and Miniard (1983), noted that it is likely to
perform well in comparison to a df-adjusted procedure for detecting a false null
hypothesis.
Assessing Repeated Measures Methodologies in the Clothing and Textiles Literature

The three studies which investigated applications of RM methodologies in
other disciplines all found that applied researchers routinely adopt a conventional
ANOVA approach for testing correlated effects despite its reliance on the stringent
(multisample) sphericity assumption. The popularity of this approach does not seem to
have faded over time, despite the repeated admonishments against its use that have
appeared in the literature and the favour directed towards the use of MANOVA.

While the authors of these papers prbvide important insights into the ways in
which applied resegrchers test RM effects, there are a variety of issues which they did
not consider. Specifically, methods for probing omnibus effects were not evaluated in
any detail, despite the known popularity of MCPs (Jaccard et al., 1984; Lix, 1995).
Furthermore, while many of the studies included in these investigations employed
either factorial RM designs or mixed designs, a detailed report of the manner in -
which interaction effects were analyzed was not given and neither was the choicé of
an error term for conducting follow-up tests.

The present assessment of the use of RM designs in the C&T literature was

designed to provide a more thorough evaluation of the use of RM methodologies than



30

has previously been conducted. Although the primary goal was to examine methods of
interaction analysis in mixed designs, procg:dures used for testing correlated effects in
other types of RM designs were not excluded. Thus, as a whole, the current study
provides a timely successor to the works of previous authors, as it extends the
knowledge of methods used b‘y applied researchers for testing RM effects into the
1990s.

Literature Search

Four journals may be regarded as primary sites for publication of C&T

research reports that are read by North American researchers. These are: (@

Canadian Home Economics Journal, (b) Clothing and Textiles Research Journal, (c)

Home Economics Research Journal, and (d) Journal of Consumer Studies and Home

Economics. Although the Journal of Home Economics may also be viewed as central
to the C&T field, it does not currently publish reports of original research. Articles

dealing with textile science topics may also be found in the Textile Research Journal

and Journal of the Textile Institute. However, these two Journals are not considered
central to the C&T discipline due to their more specialized focus.

The four major journals of the discipline could provide a representation of
applications of RM methodologies in the C&T discipline. However, it is well known
that C&T research has a strong interdisciplinary focus (Oliver & Mahoney, 199‘1;
Turnbull & Lix, 1991) and for this reason, researchers frequently publish in journals
of other disciplines (Hutton, 1984). For example, in a citation analysis of three

volumes of the Clothing and Textiles Research Journal published between 1982 and
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1990, Oliver and Mahoney identified 165 different journals referenced in 72 articles.
It was therefore deemed important to include journals of other disciplines in the
content analys.is in order to gain a comprehensive view of the treatment of correlated
data in C&T research.

Reports of original research published between 1987 and 1993 were
considered. This seven-year period was selected in order to allow for the
identification of possible trends in RM analyses adopted by researchers in the C&T
field.

All articles in the four journals considered central to the C&T discipline were
individually reviewed for their relevance to the current research project. |
Computerized literature searches were conducted to identify C&T RM research
reports published(in other journals. The primary tool for these searches was the
Clothing and Textile Arts CD-ROM. This index encompasses English-language serial
literature published’ 4between 1970 and 1992 that deals with clothing as a form of
human behaviour, as well as textile and apparel arts. With respect to the latter, only
applied textile science, as opposed to pure textile science topics, are included since
the focus of the C&T discipline is the relationship between huméns and either apparel
or textile products (Kaiser & Damhorst, 1991). Each entry in the database is
accompanied by a brief summary, which aided in the identification of articles
employing RM methodologies.

Other CD-ROM data bases were searched, as the Clothing and Textile Arts

CD-ROM does not cover the most recent year of the designated time period and may
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not comprehensively cover all published literature relevant to the current study. These
data bases included PsychLit, Medline, and the Science Citation Index. All entries in
the first source are accompanied by abstracts, as are the majority of entries in the
second; the Science Citation Index does not provide abstracts.

Where a summary or abstract was not available, or where details of the
methodology were not clearly defined in a summary or abstract, the original article
was consulted to determine whether a RM design had been used in conducting the
research. Articles from journals not found in the University of Manitoba library
system were excluded unless a summary or abstract specifically indicated that a RM
design had been used. In the latter case, the articles were obtained through the
interlibrary loan system.

Sixteen mgjor content areas are used to categorize entries in the Clothing and
Textile Arts CD-ROM: consumer, soéial-psychological, clothing selection, functional,
energy, industry, textile science, historical, merchandising, clothing fabrication,
handicapped, cultural, costume design, medical, professional issues, and textile
design. Because each entry may be classified using mbre than one subject identifier,
research articles contained in each of the 16 subject areas were reviewed for the
period 1987 to 1992. The PsychLit, Medline, and Science Citation indices were
searched for selected time period using a variety of key terms, including dress, |
clothing, apparel, fashion, uniforms, textile(s), and fabric.

The following criteria were used to identify relevant articles in these literature

searches:
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Only research encompassing the study of clothing or textile products (i.e.,
bedding, window coverings, carpets) was considered. For the purpose of this
research, clothing is defined as any te;(tile item which covers all or part of the
body and contains as least one seam. Schlick (1991) defines two categories of
clothing: (a) that which covers the torso, including undergarments,
outergarments, and overgarments; and (b) that which covers body extremities
(leg/foot, head/neck, hand/arm). No RM research articles which considered
footwear were identified in the literature search. Several which focussed on
headgear were retrieved, but most were excluded as they dealt with helmets,
and therefore were not contained within the boundaries of the definition of
clothing adopted for'this study. A small number of research reports on gloves
~ were retric;ved, and most of these were included in the investigation. Finally,
no RM research which focussed solely on accessories, where an accessory is
defined as an item worn as decoration or carried in addition to the garment
(Schlick, 1991) was identified.

Research articles not contained in the four core journals were not included
unless at least one clothing variable was manipulated. This resulted in the
exclusion of most of the studies on physical attractiveness, self-concept, and
body perceptions, as well as many articles found in medical, agricultural; and
environmental journals. For example, entomological résearch dealing with

protection of humans from insects frequently mentions clothing, but generally



34

is not concerned with the effect that clothing has on insect repellency. Such
articles were not considered to fall within the realm of the C&T discipline.
3. If the data base entry identified the citation as an abstract, or as coming from

the popular serial literature (i.e., Psychology Today, Consumer Reports), the

citation was excluded.

4, Articles in which all of the RM factors had only two levels were exéluded. In
such cases, the sphericity assumption is trivially satisfied, and the researcher
need not make a decision among the various univariate and multivariate
procedures for data analysis.

Data Coding
A data base of C&T RM research articles was established using the Pro-Cite

software package( (Personal Bibliographic Software, Inc., 1992). Each article was

perused to identify specific information considered essential to characterizing the

features of the literature. Information obtained for each article was recorded in a

single data base entry.

Citation information. Citation information, including article title, author

name(s), year of publication, journal, volume and issue numbers, and page numbers
was recorded. As well, the education unit, research unit, or company affiliation of the
first author was recorded; if this was not provided, the affiliation of the author |
responsible for requests for reprints was recorded.

Subject area. The introduction of each article was perused to identify the

subject area of the research. Initially, the retrieved articles were classified on the
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basis of content using a scheme developed by Oliver and Mahoney (1991), which
contained the following categories: apparel design and manufacturing, consumer
issues, cultural/historical, educational, merchandising, social/psychological, and
textile science. However, the classifications created by these authors were too broad,
as most of the C&T RM articles fell within the boundaries of the categories of
consumer issues, social/psychological, and textile science. Not all of the content areas
defined by Oliver and Mahoney were represented among the retrieved articles since
RM methodologies are not appropriate for addressing all C&T research problems
(e.g., cultural/historical research). A more detailed categorization scheme was needed
to provide specific information on the research areas in which RM methodologies are
used.

A revised scheme was developed from the work of Kaiser and Dambhorst
(1991). These researchers identified three global content areas of C&T research
through a survey of ‘the membership of the International Textile and Apparel
Association: (a) textile product evaluation, which "emphasize[s] the connections
between product attribptes or properties and human responses to these tangible
characteristics" (p. 4); (b) appearance and social realities, which "connects human use
of textiles, clothing, and related artifacts with human perceptions of the social order--
how everyday life is defined, shaped, and organized on the basis of social
relationships and meanings" (p. 5); and (c) textile and apparel production/distribution

systems, which is "concern[ed] with [the] relationship of one product (e.g., fiber) to
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another (e.g., fabric) throughout the product pipeline, culminating with the purchase
of apparel or other textile-related end-products by consumers" (p. 5).

Kaiser and Damhorst (1991) identified common research topics that fall within
the boundaries of each of these content areas. Using these topics as a basis, a detailed
method of categorizing research topics was created specifically for use in the current
context. The content areas, along with their definitions, which were created by the
author, were:

1. Textile Product Evaluation

(a) Quality: Objective or subjective evaluations of the structural or
visual integrity of clothing or textile products; Use of brand name as a
cue to quality.

(b)( Perféfrﬁance: Objective or subjective evaluations of mechanical,
physical, chemical or biological properties of clothing or textile
products. |

(c) Care/Maintenance: Responses of clothing or textile products to
laundering or drycleaning; Care labelling; Evaluations of detergent
properties.

(d) Comfort: Physical sensations of clothing or textile properties,
including tactile, thermal, moisture, and motion sensations; |

Psychological comfort.
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(e) Protective Clothing: Evaluations of performance or comfort of
functional clothing intended for personal protection in specialized work
environments.

2. Appearance and Social Realities

(a) Fashion: Fashion awareness and acceptance; Fashion opinion
leadership; Evaluations of clothing fashionability.

(b) Aesthetics: Subjective evaluations of liking or attractiveness of clothing
or textile products.

(c) Social Judgments: Perceptions of gender orientation, age, social class,
or group/organizational membership via clothing cues.

(d) Character Judgments: Assessments of personal attitudes, beliefs, or
values’via clothing; Effect of clothing on self-concept.

(e) Occupational Perceptions: Ev.éluations of employment characteristics
and job sP_itability via clothing cues; Use of uniforms to identify
occupational status; Effect of clothing on percéptions of occupational skill
and ability.

3. Textile and Apparel Production/Distribution Systems

(a) Retail Operations: Store buying and selling operations; Retail
personnel; Consumer perceptions of stores and/or store brands.

(b) Marketing: Consumer perceptions of advertising and promotional
strategies; Effect of advertising campaigns on consumer buying practices;

Perceptions of the marketability of new product innovations.
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Each article was classified according to the major subject area. Additionally,
where the research topic overlapped content areas, a second subject classification was
used.

Research design. Three categories were used to define the type of research

design: simple, factorial, and mixed. The design was further categorized as either
univariate (i.e., involving a single dependent variable) or multivariate (i.e., involving
multiple dependent variables). In articles where the details of more than one study, or
more than one phase of a research project were reported, each type of research design
was noted. For both factorial and mixed designs, the number of RM factors was
recorded. As well, the number of levels of each RM factor was identified for all three
types of designs. Finally, for mixed designs, both the number of independent groups
factors, and the number of levels of each such factor were recorded.

Information was obtained regarding the total number of units of analyses for
which data was collected. Every attempt was made to identify the final size of the
sample, as this number sometimes differed from initial sample size due to the
presence of missing data. This was particularly evident in research articles which
employed a survey format.

Mixed designs were further classified as either balanced or unbalanced.
Wherever possible, the number of units of analysis in each group (cell) was alsé
recorded, and this information was used to quantify the degree of group (cell) size

imbalance, using a coefficient of variation (e.g., see Box, 1954, p. 300). For
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example, in the A x B mixed design described previously in this chapter, this

lz;(nj“ﬁ)m | 2.9)
An =37

— 9
n

coefficient is given by

where n is the average group size.

Data analysis. Information concerning methods for testing hypotheses
involving RM main, interaction, and simple effects was obtained through examination
of the Method and Results sections of each research article. As Latour and Miniard
(1983) and Ekstrom et al. (1990) observed, most applied researchers adopt the
conventional ANOVA, conservative ANOVA, df-adjusted ANOVA, or MANOVA
procedures for te§ting RM effects. Additionally, some researchers will employ RM
designs containing quantitative covariates, and the data from such designs may be
analyzed using con_\ie;ntional analysis of covariance (ANCOVA), conservative
ANOCVA, df-adjusted ANCOVA, or multivariate analysis of covariance
(MANCOVA) techniques. Where a df-adjusted ANOVA or ANCOVA F test was
used, it was noted whether the &, €, or e adjustment factor was adopted. For RM
designs which are multivariate in nature, and which are analyzed as such, multivariate
MANOVA or MANCOVA procedures may be used. |

Nonparametric and trend analysis procedures may also be used to test RM
effects (Maxwell & Delaney, 1990). The former approach is often adopted when the

researcher is unwilling to assume that the data satisfy the assumption of multivariate
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normality, or when the data are comprised of ranks. The latter may be used when the
levels of the RM factor(s) represent quantitative, rather than qualitative, differences in
the presence of an experimental treatment.

All of the previously described analysis procedures are appropriate when the
dependent variables are continuous in nature or are treated as continuous, or where
rank scores are obtained in the case of a nonparametric procedure. In some situations,
responses for a particular dependent variable may represent frequencies. Methods for
testing hypotheses involving proportions might include z tests or chi-square tests of
independence or association (Glass & Hopkins, 1984).

Information pertaining to the use of MCPs for testing hypotheses concerning
pairs of means was recorded. The specific strategy adopted to control either the FWR
or the PCR was r}oted, as was the use of either a pooled or nonpooled test statistic.

Based on previous research (Jaccard et al., 1984; Lix, 1995) the following
procedures were deemed most likely to be represented among the RM articles, and
are briefly described here for purposes of clarity:

1. Multiple t tests: Each pairwise comparison t statistic is evaluated at the o

level of significance using the CV, t[1 - «/2; ], the 1 - o/2 centile of

Student’s t distribution with » df, where v is the error df.

2. Scheffe (1953): Each pairwise comparison t statistic is evaluated with -the

CV, {(K - DF[1 - a; K - 1, »]}*, where K is the number of means in the

family, and F[1 - a; K - 1, »] is the 1 - « centile of the F distribution with

(K - 1) and » df.
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3. Bonferroni (Dunn, 1961): The t statistics are evaluated for significance
using t[1 - «/(2C), v], where C represents the number of pairwise comparisons
in the family and » is as previously defined.

4. Fisher’s (1935) Least Significant Difference (LSD): This procedure begins
with an omnibus test of the null hypothesis. If this hypothesis is rejected,
multiple t tests are conducted for all possible pairs of means (see #1);
otherwise testing stops.

5. Tukey’s (1953) Honestly Significant Difference (HSD): The CV used in
hypothesis testing is q[1 - «, K, »]//2, the 1 - « centile of the Studentized
range distribution, where K and » are as previously defined.

6. Duncan’s (1955) Multiple Range: This method involves a stepwise approach
to hypothgsis testing. In a set of K means, one begins by ranking the means in
ascending order. The CV used in assessing whether two means are
significantly diffErent is q[(1 - o)*", p, ]2, where p represents the number
of steps between ordered means and » is as previously defined. Thus, the
significance level varies as a function of p. The hypothesis associated with the
largest pairwise difference, which corresponds to means that are said to be

p = K steps apart, is tested first. Successive pairs of ordered means are tested
for statistical significance only if they are contained within the range of é
previously rejected hypothesis, otherwise they are declared nonsignificant.

7. Newman-Keuls (Keuls, 1952; Newman, 1939): This method also involves a

stepwise approach to hypothesis testing, but unlike Duncan’s (1955) method,
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the level of significance is not modified according to the value of p- |
Consequently, the CV used is qle; p, »]/V2. The sequence of hypothesis
testing is the same as that described for Duncan’s method.

Multiple t tests allow for control of the PCR whereas the Bonferroni (Dunn, 1961),
Scheffe (1953), and Tukey (1953) HSD MCPs control the FWR. While the Fisher
(1935) LSD, Duncan (1955) Multiple Range, and Newman-Keuls (Keuls, 1952;
Newman, 1939) proceduges are popular among researchers, it is known that none of
these can limit the FWR to « (Lix, 1995).

Independent and dependent variables. Information concerning the independent

and dependent variables investigated in each study was collected as a means of
providing more défailed information on the types of C&T research problems
addressed using RM methodologies. As well, the manner in which the dependent
variable was operationalized (i.e., continuous versus Likert scale) was noted, as were
the number of response points in the case of Likert scales.

. Additional information. Problems of assumption violations noted by the

researchers, preliminary tests for violations of derivational assumptions, and
additional comments pertaining to the data analysis were also recorded, including

citations of specific statistical reference materials.
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CHAPTER 3

RESULTS OF A CONTENT ANALYSIS OF THE CLOTHING AND TEXTILES
REPEATED MEASURES LITERATURE
A total of 101 C&T research reports which employed RM methodologies were
retrieved from the literature through a search of various C&T journals and CD-ROM
data bases. The findings of the content analysis are presented in this chapter.

Citation Information

The search of the C&T RM literature extended from 1987 to 1993 inclusive.
An average of 14 research reports were obtained for each year in this period
(SD = 2), with a range from 18 in 1988 to 11 in 1992. In each of these articles, at
least one RM factor had more than two levels.

Table 1 cgntains information pertaining to the journals in which the C&T RM

articles were published. One third were found in three journals which are central to

the C&T discipline: Clothing and Textiles Research Journal, Home Economics

Research Journal, and Journal of Consumer Studies and Home Economics. The

Canadian Home Economics Research Journal was not represented among the

identified research reports. As expected, the Clothing and Textiles Research Journal

contained the greatest number of C&T RM articles (f = 24).
- Two thirds of the articles were published in 21 different journals that are

peripheral to the discipline. The largest number of these reports (f = 13) were



Table 1

Frequency of RM Research Reports by Journal
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Journal

C&T Core Journals

Clothing and Textile Research Journal
Journal of Consumer Studies and Home Economics
Home Economics Research Journal

Peripheral Journals

Aviation, Space, and Environmental Medicine
Ergonomics

Perceptual and Motor Skills

American Industrial Hygiene Association Journal
Textile Research Journal

European Journal of Applied Physiology

Journal of Applied Social Psychology

Journal of the Textile Institute

Archives of Environmental Contamination and Toxicology
ASHRAE Transactions

Empirical Studies of the Arts

Hospital and Community Psychiatry
International Archives of Occupational and Environmental Health
Journal of Early Adolescence

Journal of Interdisciplinary Cycle Research
Journal of Police Sciences and Administration
Journal of Social Behavior and Personality
Journal of Sports Sciences

Medicine and Science in Sports and Exercise
Psychotherapy

The Physician and Sportsmedicine

TOTAL

24
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published in Aviation, Space. and Environmental Medicine, however, almost an equal

number were found in Ergonomics and Perceptual and Motor Skills (f = 12,

respectively).

The affiliation of the first or primary author was recorded for each of the
research articles contained in the data base. This information was rather difficult to
categorize given the variety of education and research units which were listed.
However, on the basis of the author address provided with each article, it was
possible to discern that 49 of the 101 articles had a first or primary author associated
with a home economics/human ecology, consumer studies, or C&T education or
research unit. An additional 15 of the articles were associated with a primary or first
author from a health, recreation, physiology, or kinesiology unit, and 13 were
associated with a defense, aviation, naval, or army research unit. Smaller numbers of
researchers were affiliated with psychology, psychiatry, communications, occupational
health and safety, enginee;ing, human development, marketing, and statistics. For
three articles, the first or primary author was affiliated with a private company.
Finally, it should be noted that while slightly less than half of the articles had a first
or primary author with a home economics/human ecology, consumer studies, or C&T
background, several of the studies were collaborative, and therefore one or more

individuals with such an affiliation may have been a part of the research team.
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Subject Area

Table 2 contains information pertaining to the classification of the C&T RM
articles by subject area. As well, a cross-classification by subject for the four journals
containing the greatest number of articles is included.

The information contained in Table 2 reveals that the majority of the articles
(i.e., f = 70) dealt with the general topic of textile product evaluation. Within this
category, the greatest attention was directed at RM research problems dealing with
protective clothing (f = 25), although comfort topics were also frequently studied
(f = 20). Many of the articles pertaining to textile product evaluation were contained

in Aviation, Space. and Environmental Medicine and Ergonomics. However, neither

comfort nor performance research was concentrated in any single Jjournal.

Another 34 articles dealt with appearance and social realities as they relate to
clothing. The greatest numbér of these articles (f = 10) focussed on the use of
clothing in making occupational perceptions. The océupational perceptions articles
tended to be scattered across a variety of different journals, while the remaindef of
the research reports in the appearance and social realities category were contained in

either the Clothing and Textiles Research Journal or Perceptual and Motor Skills.

Finally, only ten of the 101 research reports focussed on textile and apparel
production and distribution systems and the majority of these were published in .the
Clothing and Textiles Research Journal. Table 2 reveals that every subject area but
care/maintenance was represented in the primary journal of the field, that is, the

Clothing and Textiles Research Journal. Most of the RM articles (f = 5) pertaining to
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Table 2

RM Research Reports by Subject Area and Major Journal

TOTAL CTRJ ASEM ERG PMS

(IN=10) f=24) (f=13) (f=12) (f= 12)
Subject Area f % f % f % f %
Textile Product Evaluation 70 8§ 33 14 108 14 117 - -
- Protective Clothing 25 1 4 9 69 6 50 -
Comfort 20 2 8 3 23 5 4 _—
Performance 15 2 8 2 15 3 25 R —
Care/Maintenance 6 — — — - —
Quality 4 3 12 S — - - -
Appearance and Social Realities 34 16 67 - - - - 9 75
Occupational Perceptions 10 2 8 - - - - 2 17
Character Judgments 9 6 25 - - - - 2 17
Aesthetics ' 8 3 12 - - 4 33
Fashion 4 2 8 — R 1 8
Social Judgments 3 3 12 — — -
Production/Distribution Systems 10 6 25 - - o 3 25
Marketing 6 2 8 - - - - 3 25
Retail Operations 4 4 17 — - - — e

Note: CTRJ = Clothing and Textiles Research Journal; ASEM = Aviation. Space,
and Environmental Medicine; ERG = Ergonomics; PMS = Perceptual and Motor
Skills; Column totals may exceed the specified N or f and percentages may exceed
100 because each article could be classified in up to two categories.




43

this one topic were found in either the Home Economics Research Journal or Journal

of Consumer Studies and Home Economics.

Repeated Measures Design Characteristics and Analysis Procedures

An investigation of the types of RM research designs which were adopted to
investigate C&T research problems revealed that in 22 of the articles one or more
simple RM designs was used, another 38 articles incorporated at least one factorial
RM design, and 43 articles reported analyses associated with at least one mixed
design. Since some articles reported the results of more than a single study or more
than one phase of a project, the total number of articles classified by research design
exceeds the total of 101. In addition, it is important to note that one article in which
the authors stated that a simple RM design had been used, revealed, upon closer
inspection, to invplve a one-way independent groups design with multiple dependent
variables; this article was excluded from furthér analysis.

Table 3 contains a cross-classification of articleé by subject area for the three
different types of RM designs. This table reveals that simple and factorial RM designs
were used proportionately more often to investigate textile product evaluation research
problems than were mixed designs. The latter were more often used for addressing
research questions in the area of appearance and social realities, particularly with -
respect to aesthetics and character judgments. A higher percentage of articles which
focussed on apparel production and distribution systems reported the use of simple
RM designs rather than factorial or mixed designs. Finally, the majority of the

occupational perceptions articles (60%) reported the use of factorial RM designs.
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Table 3

RM Research Reports by Subject Area and Research Design

Simple Factorial Mixed

(f = 22) (f = 38) (f =43)

Subject Area f % f % f %
Textile Product Evaluation 16 73 29 76 26 60
Protective Clothing 8 36 12 31 6 14
Comfort 1 5 12 31 8 19
Performance 3 14 4 11 8 19
Care/Maintenance 2 9 1 3 4 9
Quality 2 9 - - - -
Appearance and Social Realities 7 32 9 24 18 42
Occupational Perceptions 1 4 6 16 3 7
Character J udgments 3 14 1 3 5 12
Aesthetics 1 4 1 3 6 14
Fashion 2 9 1 3 1 2
Social Judgments -- -- -- -- 3 7
Production/Distribution Systems 4 18 1 3 4 9
Marketing 2 9 1 3 7

[\
\O

[}

1

t

t
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o

Retail Operations®

Note: See the note from Table 2.

*One article in this category was deleted from the analysis because it used an
independent groups design, not a repeated measures design as indicated by the -
authors.
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Simple Repeated Measures Designs

Table 4 contains information pertaining to the characteristics of the research
reports which incorporated at least one simple RM design. For this subset of 22
articles, the number of levels of the RM factor ranged from three to 15, with four
being the most common number. In eight of the research articles, all of which
focussed on protective clothing, the functional qualities of multiple garments were
evaluated in wear trials. In another five articles, all of which were contained in the
appearance and social realities category, participants assessed the overall image
projected by a stimulus model in various clothing styles as a means of studying the
nonverbal cues provided by dress. A variety of other RM factors were used in the
remaining studies, including fabric type (i.e., variation in fibre content) and laundry
detergent type. It is also interesting to note that only bne study specifically indicated
that the order of bresentation of treatments to units of analysis had been randomized
to remove possible sequence effects; in this instance, study participants were asked to
evaluate mutiple types of fabrics in a clothing comfort study.

In all 22 simple RM articles the units of analysis were human subjects. Total
sample size ranged from four to 604; the latter value was associated with a study in
which the RM factor had 14 levels. This sample size seems excessively high, given
the power advantage that may be achieved by adopting a RM design instead of én
independent groups design. Not surprisingly, almost all of the statistical tests reported

in this study were significant at the selected criterion of significance (i.e., o = .05).



Table 4

Profile of Simple RM Designs (f = 22)

Variable f % Variable £t %

Number of RM Factor Levels _ - Analysis Procedure
3 5 23 Conventional ANOVA 4 18
4 8 36 Conventional ANCOVA 1 4
5 6 27 Conservative ANOVA 1 4
6 3 14 MANOVA 3 14
> 6 3 14
Descriptive Analysis Only 4 18
Total Sample Size Incorrect Analysis 3 14
< 10 8 36 Not Stated 3 14
11-25 2 9 No Omnibus Analysis 2 9
26 - 50 4 18
51-100 4 18 Other 3 14
> 100 5 23
Pairwise MCP
Nature of the Design Multiple t Tests 3 14
Univariate 7 32 Bonferroni 2 9
Multivariate 16 73 Tukey HSD 2 4
Duncan’s Multiple Range | 4
Fisher’s LSD 1 4
Newman-Keuls 1 4
Not Stated 2 9

Note: Frequencies for each variable may exceed the total frequency and peréentages may exceed 100 because some research articles reported
the results of more than one study, or more than one phase of an analysis.

51
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However, the author did not consider that the power to detect an effect, regardless of
the size of the effect, would essentially be equal to one. In the one study in which
total size was equal to four, no statistical tests were performed, perhaps because the
authors felt that the results of such tests would not be meaningful given the small
number of observations on which they would be based. Instead, graphical plots of the
data were used to descriptively analyze the results.

The majority of the simple RM research reports involved thé investigation of
more than one dependent variable. For example, in the wear studies, participants
typically provided physiological and psychological response data. The former includes
such variables as skin and rectal temperature while the latter includes variables such
as thermal and sweat sensation. In the image evaluation studies, multiple personal
traits (i.e., intellect, sociability, professionalism) were usually assessed for each style
of dress, typically using 5-point Likert scales.

While multivariate designs were used in the majority of the articles, in none of
these was a multivariate approach to data analysis adopted. Instead, researchers
conducted separate analyses for each of the dependent variables. While a wide variety
of analytic techniques were adopted in the 22 simple RM articles, four qf these used
no inferential statistics, and instead only reported results associated with a descriptive
analysis, such as means and standard deviations or frequencies and percentages..
Graphical plots were also used in some of these articles to describe the data.

The conventional ANOVA approach, which assumes that the data conform to

the sphericity assumption, was used to test at least one omnibus hypothesis in four
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articles; in one of these articles the conventional ANCOVA F test was also used to
test selected hypotheses. The three articles which did not clearly specify a method of
analysis also appeared to incorporate the conventional approach to testing the RM
effect, as all three studies reported that an ANOVA method had been used. However,
this could not be confirmed due to insufficient details of the methodology (i.e., df
were not reported). In three articles the authors adopted Hotelling’s (1931) T2
procedure for testing an omnibus hypothesis.

For two of the three articles in which the correlated data was incorrectly
analyzed, the RM factor was erroneously treated as an independent groups factor in
the computation of the omnibus F statistic. Furthermore, in one of these articles the
design was also flawed, as some, but not all, subjects provided more than one set of
data (i.e., more than one replication). In the third article which incorporated an
incorrect analysis, the authors acknowledged that the data were obtained from a RM
design, but they chose to ignore this in the analysis and conducted statistical tests
appropriate for an independent groups factorial design.

- Of the three articles which were classified in the other category, two reported
the results of correlations among several dependent variables at each level of the RM
factor. One reported the results of a select number of complex contrasts, which were
conducted in addition to a test of the omnibus hypothesis using MANOVA.

In two articles, no omnibus analysis was conducted; the authors proceeded
directly to pairwise mean comparisons using multiple t tests. However, in 56%

(f = 10) of the 18 articles 'in which inferential analyses were performed, the omnibus
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test was followed by pairwise comparisons; the most popular MCPs for conducting
these tests were the Bonferroni (Dimn, 1961) and Tukey (1953) HSD methods. In two
articles the authors indicated that the means were probed using a MCP, however, the
procedure adopted for controlling the Type I error rate was not specified.

Three quarters of the 12 articles in which a MCP was used did not contain
sufficient detail to determine whether a pooled or nonpooled t statistic had been
adopted. However, of the remaining studies, two used a nonpooled statistic, and only
one used a pooled statistic.

It should be noted that in two of the 22 simple RM research reports, the
omnibus analysis was preceded by a test of the sphericity assumption. In one case, the
authors reported the use of Bartlett’s (1937) technique and a significant result was
obtained; the author elected to use MANOVA to test the omnibus hypothesis.
However, in this article it is not clear that the author understood the rationale for this
test, as it was reported that although a significant result was obtained, the ANOVA F
test is known to be robust to violations of the variance homogeneity assumption if
group sizes are equal. Since only a single group of units of analysis is under
investigation in a simple RM design, this explanation is not relevant. In the second
article, the preliminary test of the sphericity assumption was nonsignificant and the
authors elected to use the conventional ANOVA approach. Finally, in another |
research report, the authors’ concern over possible violations of the sphericity and

multivariate normality assumptions led them to transform the data prior to analysis.
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Factorial Repeated Measures Designs

Tables 5 and 6 contain information pertaining to the characteristics of articles
incorporating at least one factorial RM design. As Table 5 reveals, of the 38 research
articles contained in this subset, the individual or joint effects of two RM factors were
studied in 71% of the articles, three RM factors were considered in nine reports, and
more than three RM factors were investigated in only two articles. A count of the
number of RM factor levels revealed that the factorial studies typically involved at
least one RM factor with only two levels, in addition to one or more factors with
three or more levels. Most often, the levels of one RM factor represented styles of
clothing, particularly protective clothing, which were evaluated in wear trials
(f = 15). Often, at least one additional RM factor was time (f = 16), yet in the
majority of these larticles, time was treated as a fixed effects factor rather than a
randdm effects factor. Also popular in the wear studies was the investigation of
various styles of protective gear under different environmental conditions (e.g.,
variations in temperature and/or humidity) or different levels of intensity of human
activity. In six of the grticles study participants were involved in making image
evaluations of the impressions conveyed by multiple styles of dress within an
occupational context; all of these studies contained only two factors, and the second
one typically related to the characteristics of the stimulus model (e.g., sex, age,. body

type). Overall; in only two articles did the authors indicate that use of random



Table 5

Profile of Factorial RM Designs: Design Variables (f = 38)

Variable f %
Number of RM Factors
2 27 71
3 9 24
4 1 3
> 4 1 3
Number of RM Factor Levels
2 29 76
3 20 53
4 15 39
5 5 13
6 4 10
> 6 13 34
Total Sample Size
< 10 25 66
11 -25 3 8
26 - 50 4 10
51-100 3 8
> 100 3 8
Nature of the Design
Univariate 12 32
Multivariate 26 68

Note: See the note from Table 4.
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assignment of treatments to study participants. In both cases, different types of
protective gear were evaluated.

In all but three articles, human subjects were the units of analysis. Textile
laboratories were the unit of analysis in two articles and individual fabric samples
were studied in the third. In the majority of the articles (66%) a total sample size of
no more than ten units of analysis was reported, but total sample size varied
considerably, from one to 300. However, while more than one quarter of the simple
RM articles reported a total sample size greater than 100, less than 10% of those
which incorporated a factorial RM design did so.

Like the simple RM articles, the majority of the articles which incorporated a
factorial design reported th¢ investigation of more than a single dependent variable.
For example, in Fhe wear §tudies, both physiological and psychological response data
were collected from study participants. In the occupational perceptions résearch
articles, a variety of skill-related and personality characteristics were considered (i.e.,
professionalism, competence, trustworthiness). Where Likert scales were used, the
number of response points varied considerably, from three to 20. In the former case,
a colour preference scale was involved. In the latter case, several 20-point scales were
used to evaluate subjective responses on a number of dependent variables (e.g.,
clothing comfort, clothing temperature) in a wear study; the authors noted that ﬁeither |
validity nér reliability of the scales had been previously established and they did not

conduct such assessments as part of their investigation.
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As Table 6 reveals, unlike the simple RM articles, three of the factorial RM
articles incorporated a multivariate approach to RM analysis. In all cases this analysis
was conducted for a main effect factor with only two levels, which means that the
local multivariate multisample sphericity assumption was trivially satisfied. For all
three studies a significant main effect test was followed by univariate analyses (i.e.,
paired t tests) for each dependent variable.

A univariate approach to data analysis was used in the majority of the factorial
RM articles and, as anticipated, the conventional ANOVA F test was the most
popular among all of the methods (24 %). Additionally, of the nine research reports in
which adequate details of the analysis strategy were not provided, all appeared to
incorporate the conventional ANOVA approach, but again, this information could not
be clearly determjned due to a lack of details.

Unlike the simple RM articles, none of those incorporating a factorial design
reported the use of MANOVA for testing correlated effects. However, in four
articles, df-adjusted tests were conducted; the ¢ correction factor was adopted in three
and in one, the € statistic was used.

The RM data from four articles were analyzed using other methods. In two of
these, due to extremely small total sample sizes (i.e., two or less), the authors
reported the use of small sample F and t statistics to test main effects; however,. due
to a lack of details of these statistics, it is not clear how they were computed. In

another research report, frequency data were collected, and Fisher’s (1935) z test was



Table 6

Profile of Factorial RM Design: Analysis Variables (f = 38)

Variable

Analysis Procedure

Conventional ANOVA
DF-Adjusted ANOVA
DF-Adjusted ANCOVA
Multivariate MANOVA

Not Stated
Descriptive Analysis Only

No Omnibus/Simple Effect Analysis

Incorrect Analysis
Trend Analysis

Other

Effect Tested

Marginal Main
Interaction
Simple Main
Simple Interaction
Cell Means

Pairwise MCP

Tukey HSD

Multiple t Tests

Fisher’s LSD

Bonferroni -

Duncan’s Multiple Range
Scheffe

Nonparametric

Not Stated

Effect Probed

Marginal Main
Simple Main

W e O

— e QN \O

21
10
15

Pt e et e S S ON

13
14

24
10

24
13
10

10

55
26
39

16
10
10

W L W

10

34
37

Note: See the note from Table 4.
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used to test for differences in frequencies between the two levels of one factor at each
level of the second factor. In the fourth study, a single complex contrast was applied
to test a hypothesis for the data associated with one RM factor following tests of main
and interaction effects using the conventional ANOVA approach.

It is surprising to note that of the 38 factorial RM articles, only ten specifically
reported that tests of interaction effects had been conducted. However, it may be that
tests of interaction effects were conducted, but due to nonsignificance, were not
reported. Marginal main effect test results were provided in 55% of the articles.
Seven of the 22 studies (18 %) provided the results of simple main effect tests, but no
results for omnibus tests.

As expected, tests of simple main effects were often conducted following a
significant interaqtion (f = 6). In two studies simple interaction effect tests were
conducted; in one, these tests were used to probe a significant three-way interaction
and in the other, tests of simple interaction effects were conducted instead of a test of
the three-way interaction. Finally, in one article, after the authors performed tests of
simple effects, the factorial structure of the data was reduced to a one-way rhodel,
and a test for an overall effect was conducted on the cell means.

The data were incorrectly analyzed in only a single research report. In this
case, the researchers erroneously treated the data as though it were obtained frofn a
mixed design, rather than a factorial RM design, in the computation of main and

interaction effect test statistics.
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In half of the RM research articles in which a factorial design was used,
pairwise comparisons were used to probe the source of a marginal or simple effect. In
four articles (18%), however, the authors bypassed both omnibus and simple effect
tests in favour of multiple t tests on either marginal or simple pairs of means. In
another study the nonparametric Wilcoxon sign rank test was used to evaluate
pairwise differences among the RM factor levels (Marascuilo & McSweeney, 1977),
and was not preceded by an omnibus nonparametric analysis. The PCR was controlled
for these nonparametric comparisons at « = .05. Tukey’s (1953) HSD procedure was
most frequenily adopted to control the FWR (27%). Fisher’s (1935) LSD was also a
popular procedure (18%). Finally, in four research reports the specific procedure used
to control the error rate for multiple pairwise comparisons was not given.

The authors of the great majority of research reports in which pairs of means
were probed to identify the localized source of an effect did not indicate whether a
pooled or nonpobled error term had been adopted (i.e., f = 19). Four of the studies;
however, did clearly indicate that an error term which pooled across none of the
factors was selected; such an approach does not assume that either local or overall
sphericity assumptions are satisfied.

One set of authors acknowledged the potential for an inflated FWR when
conducting mﬁltiple omnibus tests, as a result of performing separate univariate
analyses for each of several dependent variables in a multivariate design.
Consequently, Scheffe’s (1953) method was adopted to control the error rate for the

entire family of main effect tests. However, it is surprising to note that these same
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authors proceeded to conduct multiple t tests following a significant omnibus result
(i.e., Duncan’s LSD method), adopting an o = .05 significance level for each t test.

Mixed Designs

Tables 7 and 8 contain information pertaining to the characteristics of the 43 |
research reports in which at least one mixed design was used. As Table 7 reveals, one
third of the mixed designs were two-way designs involving a single grouping factor
and a single repeated measures factor and 35% were four-way designs. Half of the
articles‘ reported the use of a mixed design with only a single grouping factor and this
factor typically had only two levels. In two thirds of the articles a mixed design which
had only one RM factor was used; this factor frequently had three levels. However,
one third of the articles incorporated a mixed design in which at least one RM factor
had more than six levels; the maximum value was 14.

The variable most frequently used for classifying study participants into
independent groups was sex (f = 9), although a variety of derﬁographic apd personal
attributes were used, including geographic location, age, income, college major,
height, and weight. In four articles, participants were assigned to groups on the basis
of scores obtained on indices designed to measure fashion leadership, self-monitoring
style, fashion type, or psychological type. In 17 articles, participants were randomly
assigned to independent experimental treatment groups. | |

In 11 of the 43 mixed articles, the levels of the RM factor represented styles

of dress designed to portray different images. Time was rarely used as a RM factor in
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the mixed designs (f = 4). In six articles the authors noted that randomization was
used in assigning RM factor levels to study participants; three of the studies were
concerned with image evaluations of multiple dress styles, two dealt with comfort of
different clothing styles, and one focussed on protective gear.

A noteworthy point is that in seven of the research articles the units of analysis
were fabric samples. In all cases, the performance of different fabrics were evaluated
during multiple laundering or weathering cycles.

Total sample size varied considerably, from four units of analysis to more than
1000. As is evident from Table 6, the majority of the mixed designs were unbalanced.
In several instances, this imbalance was implied from the study format (i.e., survey),
and specific values of group (cell) sizes were not given. For those studies in which
this information was provided, the coefficient of variation of group (cell) size
inequality ranged- in value from .056 to .862. For the study in which the former value
was obtained, the ratio of the largest to the smallest group size was 16 to 15, while
for the latter value, the ratio for cell sizes was 74 to 1.

Like the simple RM research articles, the majority of those which incorporated
a mixed design were multivariate in nature (see Table 8). A much greater variety of
dependent variables were investigated in mixed designs than in either the simple or
factorial RM designs, and included clothing quality, attractiveness, and perceivéd
intelligence in the image evaluation studies, and perceived comfort, thermal sensation,

heart rate, and oxygen consumption in wear trials. Fabric samples were evaluated on



Table 8

Profile of Mixed Designs: Design and Anpalysis Variables (f = 43)

Variable f % Variable f %
Nature of the Design Pairwise MCP
Univariate 17 40 Newman-Keuls 5 12
Multivariate 26 60 Fisher’s LSD 4 9
Scheffe 4 9
RM Analysis Procedure Multiple t Tests 2 5
Conventional ANOVA 19 44 Tukey HSD 3 7
Conventional ANCOVA 2 5 Nonparametric 2 5
DF-Adjusted ANOVA 4 9 " Duncan 1 2
MANOVA 2 5
- Multivariate MANOVA 1 2 Not Stated 5 12
Descriptive Analysis Only 8 19 RM Effect Probed
Not Stated 4 9 Marginal Main 18 42
Nonparametric 3 7 Simple Main 13 30
Incorrect Analysis 2 5 Cell Means 2 5
No Omnibus Analysis 2 5
Trend Analysis 2 5 Interaction MCP
Multiple t Tests | 2
Other 1 2 Cicchetti 1 2
RM Effect Tested
Marginal Main 25 58
Interaction 15 35
Simple Main 17 40
Simple Interaction 3 7

Note: See the note from Table 4.
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such attributes as colour change, weight loss, and wrinkle resistance. Where Likert
scales were used the number of scale points ranged from three to 14.

As Table 8 reveals, only one of the articles reported the adoption of a
multivariate approach to data analysis. In this article, a significant test of a RM
marginal main effect was followed by separate univariate analyses for each dependent
variable using the conventional ANOVA F test. In keeping with the results reported
for the simple and factorial RM designs, the most common method of analyzing
correlated effects in mixed designs was the conventional approach, which was

- represented in 44 % of the 43 research reports. In four articles, insufficient details
were available to determine the method of analysis adopted, but in all cases the
information provided by the author(s) would suggest that a conventional ANOVA
approach had been selected. In four of the research reports a df-adjusted procedure
was adopted, but :the correction factor was not specified in any of these. MANOVA
was applied to the analysis of the RM effect(s) in only two of the publications.

} In the simple and factorial RM articles only parametric analyses of marginal or
simple main or interaction effects were performed. This was not so for the mixed
research reports, as three studies reported the use of Friedman’s (1937) nonparametric
test. In one of these studies the authors noted that a nonparametric analysis was
adopted due to concern over possible violations of the assumptions associated with a
parametric analysis; in another, the data collected were rank values and conseqﬁently

a nonparametric analysis was necessary. At the same time, in this particular study the

authors also performed parametric analyses on mean ranks, and thus were not
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consistent in their approach to the data. The last of the three articles also reported the
results of an inconsistent analysis, as the authors noted that Friedman’s test was
adopted because the dependent variable was measured using a Likert scale, which
constituted ordinal, rather than interval level data. However, the authors proceeded to
descriptively analyze the study results using means.

Two of the mixed studies reported an incorrect analysis of the RM effect. In
one, the RM factor was treated as an independent groups factor in the computation of
ANOVA F statistics. In the other, the authors began by testing the RM main effect in
an appropriate manner, using the conventional ANOVA approach. However, they
then proceeded to treat each level of the RM factor as a separate dependent variable,
and applied an independent groups MANOVA to test each of several independent
groups effects. This was followed by independent groups ANOVA F tests.

Trend analysis was used in two studies, and was applied to test for a main
effect trend or a simple main effect trend or both. The one study which was classified
in the other category feported the use of z tests for analyzing frequency data.

Finally, it is important to note that four articles did not report any tests
associated with a RM effect. In three of these, tests of simple independent group
effects were conducted at each level of the RM factor or at each combination of lévels
of two or more RM factors. In the fourth, chi-square tests of independence weré
performed at each level of one RM factor.

The content analysis also revealed that for mixed designs, researchers typically

were either only interested in testing marginal main effects, or only reported results
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associated with RM main effects. However, while only slightly more than one third of
the research reports clearly identified that a RM interaction effect hypothesis had been
tested, this was a greater percentage than for the single-group factorial studies, in
which only 26 % reported tests of interaction effects.

Among those articles in which the authors indicated that a significant
interaction had been obtained (i.e., f = 11), seven reported follow-up tests of simple
main effects, and in another one, simple interaction effects were used because the
model contained more than two factors. In another article, significant two-way
interactions in a four-way model were followed by pairwise comparisons among the
cell means (i.e., the data were reduced to a one-way model).

It is surprising to note that the authors of four articles reported testing both
main and simple rmain effects, but not interaction effects; another three reported tests
of simple RM main effects only.

_ Significant main effect test results were routinely followed by pairwise mean
comparisons. In only two research reports were marginal or simple main effect tests
bypassed in favour of multiple t tests.

Among all of the procedures identified for conducting pairwise comparisons,
the Newman-Keuls (Keuls, 1955; Newman, 1939) MCP was used with the greatest

| frequency (12%). However, in an equivalent number of articles the authors did -not
report sufficient details to identify the method for controlling the Type I error rate.
The Scheffe (1953) and Fisher (1935) LSD procedures were also popular (9%,

respectively).
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Two of the mixed research reports reported specific tests to probe the
interaction effect. In one, multiple t tests were applied to test interaction contrasts,
this approach will be discussed in detail in the following chapter. However, this was
also the study in which the data represented rank scores, and thus a parametric
analysis can not be considered appropriate. Furthermore, the authors did not indicate
that interaction contrasts were being conducted to prbbe an interaction. In another
study, a method for probing interactions suggested by Cicchetti (1972) was adopted.
Under Cicchetti’s approach, unconfounded cell mean comparisons are conducted, and
either a modified Tukey (1953) HSD or Scheffe (1953) approach is recommended for
controlling the FWR. Unconfounded cell mean comparisons are those that involve
pairs of means in the same row or column of a matrix of the individual factor level
.combination means. The authors of the study in which Cicchetti’s approach was
adopted did not describe which approach to FWR control was selected.

Finally, as with the single-group factorial research reports, it was rarely
possible to determine whether a pooled or nonpooled multiple comparison test statistic
had been adopted. Of the 18 studies in which a marginal main effect was probed, only
one study clearly indicated that an error term which did pool across the levels of the
RM factor was used. Furthermore, of the 13 articles in which a simple main effect
was probed, only one study reported using a MCP in which the test statistic emi)loyed
an error term that was not pooled across the levels of the independent groups factors.

As a final comment, the authors of one article reported the application of a test

of the sphericity assumption to the data prior to testing any RM effects. Because this
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test was nonsignificant, the authors elected to adopt the conventional ANOVA
approach to test RM main and interaction effects.

Synopsis of the Content Analysis

The results of this content analysis of the C&T RM literature communicate
four distinct messages: (a) there is a great deal of diversity in the use of RM designs
in the C&T literature, (b) researchers do not report sufficient details of their research
methodology, (c) researchers continue to cling to traditional methods of RM analysis,
and (d) there is a great deal of inconsistency in the analysis of RM effects,
particularly with respect to the analysis of interaction effects.

The content analysis did reveal that researchers who investigate C&T research
problems typically adopt RM designs which contain more than one experimental
factor, as less than one quarter of all articles reported the results of an analysis
associated with a‘simple RM design. Furthermore, the majority of the articles dealt
with research questions related to the evaluation of textile or apparel products,
particularly protective clothing. Beyond this, however, few similarities emerged. RM
designs were not always used in the analysis of human subjeét data, and may be
adopted, for example, in studies of fabric performance. With respect to the design of
the studies, there was great variation in such characteristics as total sample size and
the number of RM factor levels, and the types of independent and dependent vaﬁables
under investigation. A diverse range of statistical analysis procedures were also used.

An additional noteworthy point is that it was not surprising to find that a

large number of C&T RM articles were published in journals of other disciplines.
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Given the interdisciplinary nature of C&T research, it frequently deals with subject
matter appropriate for publication in many different types of journals. As well,
investigators from other disciplines may often consider research problems which
directly or indirectly focus on clothing or textiles, even though they may not have
specific training in these areas.

Similar to the findings of Ekstrom et al. (1990), many of the articles lacked
information about key aspects of the research projects. As Lavori (1990) notes, this is
a severe problem because "clear exposition of design and analysis conveys a
reassuring sense of mastery by the investigator, disarms critics, makes work useful
and repeatable, and keeps us all from error" (p. 775). Several of the research reports
contained insufficient details to accurately conclude what method of RM analysis had
been aoopted for :testing a marginal or simple effect. Beyond this, there was a lack of
information concerning other aspects of the methodology, such as the number of units
of analysis represented at each level of one or more independent groups factors and
whether randomization techniques were used in applying RM treatments to units of
analysis. One of the more important details that was not available in the majority of
the research reports was _the choice of a test statistic to probe marginal or simple
effects. This information is critical to the reader’s understanding of the assumptionis
the researcher is making about the data and has important implications for the Volidity

of the data analysis.
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With respect to the third message communicated by this content analysis,
Table 9 contains a summary of the findings pertaining to methods of testing correlated
effects in all types of RM designs. Separate frequency analyses are provided for the
period from 1987 to 1989 and from 1990 to 1993, as a means of assessing
differences in the methods adopted over time. Consistent with the results reported by
Ekstrom et al. (1990) and LaTour and Miniard (1983), the conventional ANOVA
approach was most popular, and was represented in approximately one third of all of
the articles. Moreover, use of this approach changed very little over the two time
periods considered in Table 9. However, a dramatic reduction in the number of
articles which did not clearly state what method of analysis had been adopted was
observed. If, in fact, these articles incorporated the conventional ANOVA approach,’
then this would suggest a decline in popularity of conventional methods for RM
analysis. Twice a; many articles reported the u-se of either a df-adjusted test or
MANOVA in the latter time period as compared to the former, but the extent to
v;ilich either approach was adopted was, overall, very small.

‘It must be questioned why this trend continues, despite the great volume of
literature that urges researchers to consider MANOVA and df-adjusted procedures.
Perhaps this can be explained in part by examination of the statistical references -
which were cited in the research reports included in this data base. The most pdpular

texts cited were by Winer (1962, 1971), which, while being excellent texts on

research design, do not incorporate recent information on RM analysis procedures



Table 9

Methods for Testing RM Effects by Year of Publication (N = 100)

1987 - 1989 1990 - 1993
(n = 47) (n = 53)

RM Analysis Procedure f % f %
Conventional ANOVA 13 28 18 34
Conventional ANCOVA 2 4 -~ -
Conservative ANOVA -- -- 1 2
DF Adjusted ANOVA 2 4 6 11
DF Adjusted ANCOVA 1 2 - --
MANOVA | 2 4 3 6
Multivariate MANOVA 1 2 3 6
Not Stated : 13 28 3 6
Descriptive Analysis Only 7 15 8 15
No Omnibus/Simple Effect Analysis 3 6 1 2
Nonparametric 3 6 - --
Incorrect Analysis 2 4 5 9
Trend Analysis 1 2 2 4
Other 2 4 5 9

Note: See the note from Table 4.
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(see Appendix A for a complete listing of the statistical references cited in this content
analysis). It was surprising to note that of the 25 different statistical references cited
in the research reports, 17 were publish'ed prior to 1980. The most current text was
by Vercruyssen and Hendrick (1989). Moreover, the majority of the articles analyzed
in this content analysis did not contain any statistical references. This may imply that
many résearchérs are not aware of the problems associated with adopting the
conventional approach to RM analysis, or of alternative procedures discussed in
current statistical sources.

Furthermore, while a small number of articles reported the use of a
preliminary test for the sphericity assumption, this test does not provide a sound basis
for a decision regarding the method of analysis to adopt. It is known that sphericity
tests are sensitive: to departures from multivariate normality. For this reason, failure
to reject the null hypothesis does not necessarily mean that the data are spherical
(Corgell, Young, Seaman, & Kirk, 1992). Furthermore, even if the null hypothesis is
not rejected, the data may not be spherical, again because of the known sensitivity of
these tests to violations of the normality assumption.

Finally, it appears that while researchers are electing to use factorial designs,
they are not taking full advantage of the factorial structure of the data, by failing to
investigate joint variable effects of RM factors. This should not be surprising, as
Rosnow and Rosenthal (1989b) describe the results of tests of interaction effects as
“the most misinterpreted empirical results in psychology" (p. 1282). Perhaps this

statement needs to be expanded to include the C&T field as well.
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This content analysis suggests that researchers most often consider only main
effects in their analysis of factorial designs. Where interaction effects were tested,
these effects were typically probed in a manner that is inconsistent with the omnibus
hypothesis, through the use of simple main effect tests and simple pairwise
comparisons. In other instances, authors only reported the results of simple main
effect tests, perhaps because interaction effect tests were bypassed in favour of the
former analyses. It is impossible to know the reason why researchers choose to
conduct main effect tests more often than interaction effect tests in factorial designs.
This may be due to a lack of understanding of the meaning of an interaction effect or
of the information that can be gleaned from an interaction test.

While it is a simple matter to change the manner in which research results are
reported so that n‘lore details are forthcoming to the reader, it is a more crucial
concern that analysis procedures which will produce valid results are selected by
researchers, and that these procedures are applied correctly to a set of data in a way
that will produce meaningful results. The remainder of this research project is devoted
to examining robust methods for interaction analysis, particularly as they apply to
probing variable interactions. The mixed design was the most popular of the RM
designs used by C&T researchers and it will form the basis for the subsequent

investigation.
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CHAPTER 4

TESTING INTERACTIONS IN MIXED DESIGNS
This chapter reviews the research on the operating characteristics of
conventional univariate, df-adjusted univariate, and multivariate procedures for testing
interactions in mixed designs. A discussion of alternative methods of interaction
analysis is also provided. |

Univariate and Multivariate Tests of Interactions

Both theoretical and empirical studies have been used to study the behaviour of
univariate and multivariate procedures for analyzing interactions in mixed designs.
Huynh and Feldt (1980) computed exact Type I érror rates for the conventional
ANOVA F test in a mixed design with three groups and five RM and a total sample
size of either 18 or 33. For balanced designs in which equality of the group
covariance matrices existed, the number of Type I errors consistently exceeded the
nomjr_lal value (a liberal test) when e was less than .75. Error rates for the F test were
as high as .12 for « = .05 when e = .39. Increasing total sample size had the effect
of decreasing the liberalness of the F test, but error rates for the F test were never
less than o (a consérvative test).

When group sizes were unequal and covariance matrices were heterogeneous,
but sphericity was present in the data, Huynh and Feldt (1980) found that the F»test
was very sensitive. In one case where group sizes were in the ratio of 1:5:5 , and the
first group exhibited an average correlation (p) of .10 among the RM, while the

remaining two groups exhibited average correlations of .90, the actual rate of Type I



77

errors was .65 for a nominal value of .05. Conversely, when a large group size was
paired with small values of p, the rate of Type I errors was considerably less than the
nominal value (e.g., less than .0001 for o = .05).

Huynh and Feldt (1980) also .considered the effects of violating the
multisample sphericity assumption (i.e., ¢ < 1.00 and unequal L;s), but only when
group sizes were equal. Under such conditions, the F test again proved to be liberal
when a high degree of nonsphericity existed in the data, with a maximum value of
.16. Based on the results of the study, Huynh and Feldt concluded that "in all
situations under investigation, the test for interaction proved to be more vulnerable
than the one for treatment [main] effects, especially when the plot [group] sizes are
not equal” (p. 71).

Belli (198§) employed Monte Carlo techniques to examine the robustness of
multivariate tests in a mixed design containing two groups and five levels of the RM
factor when the data were spherical. The tests examined, Hotelling-Lawley (Hotelling,
1951; Lawley, 1938) trace, Pillai-Bartlett (Bartlett, 1939; Pillai, 1955) trace, Roy’s
(1953) largest root, and Wilks’ (1932) likelihood ratio, could not, in general, provide
Type I error control under conditions of group size imbalance when heterogeneity of
group covariance matrices existed. Belli noted that even when group sizes were equal
and existed in combination with heterogenous covariance matrices, only the Pilléi—
Bartlett trace could control the rate of false positives, and then oﬁly when the degree

of heterogeneity was small.
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Keselman and Keselman (1990) considered a mixed design where the number
of groups was set at three and the number of RM was set at either four or eight, in a
Monte Carlo study. In the case of four RM, the ¢, €, and & df-adjusted F tests and
the Pillai-Bartlett (Bartlett, 1939; Pillai, 1955) trace criterion provided robust tests of
the interaction when multisample sphericity was violated but group sizes were equal,
and also when group covariance matrices were homogeneous but sphericity was not
present in the data. |

However, the df-adjusted F tests and the MANOVA test were sensitive to
ﬂ/iolations of multisample sphericity when the design was unbalanced. In situations
where group sizes and covariance matrices were positively paired, so that the group
with the largest sample size also exhibited a covariance matrix with the largest
element values, a!ll statistical procedures were conservative. This degree of
conservatism increased with increases in group size inequality and covariance matrix
heterogczl_leity. Holding all else constant for this condition of positive pairings, the
conservatism of the univariate tests increased as e approached its upper bound of 1.0.

In the situation of a negative pairing, where the group with the largest sample
size also exhibited a covariance matrix with the smallest element values, the number
of false positives exceeded the nominal alpha level under both univariate and
multivariate testing. The liberalness of these statistical procedures increased as the
degree of group size inequality and covariance heterogeneity increased. Paralleling the
findings for conditions of positive pairings, the liberalness of the univariate tests

increased as the degree of nonsphericity in the data decreased.
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When the RM factor had eight levels, Keselman and Keselman (1990) found

neither the univariate nor multivariate procedures could offer robust tests of the
interaction effect when the data were nonspherical, even when the covariance matrices
were homogeneous. When multisample sphericity was violated and group sizes were
unequal, the same pattern of positive pairings resulting in conservative tests, and
negative pairings leading to liberal tests, was identified, albeit the results were more
extreme.

Finally, Keselman, Keselman, and Lix (in press) considered whether the use of
both a univariate and multivariate procedure in a combined testing strategy could offer
Type I error control for tests of the interaction in a mixed design with either four or
eight levels of the RM factor, when total sample size ranged from 30 to 191. The ¢ F
and Pillai-Bartlett (Bartlett, 1939; Pillai, 1955) trace statistics were each computed,
and if either were significant at the .025 level, then the null hypothesis was rejected.
The authors found that this combined approach could not limit the rate of Type 1
errors to the nominal .05 level when the multisample sphericity assumption was
violated. Furthermore, the error rate remained consistently high when unequal
covariance matrices and unequal group sizes were negatively paired, even for the
largest total sample size condition investigated.

Robust Tests of Interactions

While researchers have long been advised to avoid the conventional ANOVA
procedure for testing correlated effects, the studies described in the previous section

illustrate that even df-adjusted ANOVA and MANOVA procedures should not be
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adopted to test for the presence of an RM interaction in mixed designs if the
assumption of multisample sphericity is untenable, particularly if the design is
unbalanced. However, two alternative approaches have been shown to provide Type I
error control for tests of both RM main and interaction effects in the majority of
situations in which the multisample sphericity assumption is violated and the design is
unbalanced.

Algina and Oshima (1994) demonstrated that robust tests of RM effects may be
obtained using Huynh’s (1978) improved general approximate univariate statistic. This
procedure involves calculation of the usual F statistic for a test of the interaction.
However, a modified CV, which reflects the degree of violation of the multisample
sphericity assumption, is used in assessing statistical significance. While the procedure
developed by Huynh can provide effective Type I error control in a variety of
situations, it has the disadvantage of being computationally complex, and is not
currently a_v,qilable in any statistical software package.

Keselman et al. (1993) found that an approximate df Welch-James (James,
1951, 1954; Welch, 1947, 1951) multivariate procedure described by Johansen (1980)
can control the Type I error rate for tests of interactions in unbalanced mixed designs.
Welch developed a statistical test for equality of means in the one-way independeﬁt
groups design when the assumption of equal variances across groups can not be
considered tenable; this statistic uses a nonpooled estimate of error variance. The
multivariate analog of Welch’s procedure was developed by Johansen for designs with

more than two groups.
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A general linear model (GLM) approach can be used to illustrate the

application of Johansen’s (1980) approximate df solution for mixed designs. Let

Y = XB+¢, “4.1)
where Y is an N x p matrix of scores on p repeated measurements, N is the total
sample size, X is an N x r design matrix with rank(X) = r, § is an r x p matrix of
nonrandom parameters (i.e., population means), and ¢ is an N x p matrix of random
error components. Denote Y; = Y -(X;1;) as a Hadamard product (Searle, 1987, p.
49), where X; is the jth column of X G = 1,..., r) and consists entirely of zeros and
ones, 1,is a p x 1 vector of ones, and - is the dot product function, such that Y;is
an element-by-element product matrix. The model assumes that the observations in Y;
are independently distributed normal variates with mean vector #3; and variance-
covariance matrix L; [i.e., i.d. N(B;, &)1, where B; is the jth row of 8 and L # L
Z ).

Let

B - (XTX)qXTY , (42)

represent an estimate of the matrix of population means and

)j;j _ —Xjﬂj)T(:{j - X6;) , (4.3)
n -

estimate X;, where n; = X]X;, and B; estimates ;.
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‘The general linear hypothesis is

H:Rp =0, (4.4)

where R = C ® U”, C is a df. x r matrix which controls contrasts on the
independent groups factor(s), with rank(C) = df. <r, Uis é p x dfy; matrix which
controls contrasts on the correlated factor(s), with rank(U) = dfy; < p, and ® is the
Kronecker or direct product function. Furthermore, p = vec(BY) = [B, ... B]%, where
B; = [uj1 --. ppl- In Equation 4.4, p is the column vector with rp elements obtained
by stacking the columns of 87. The 0 column vector is of order dfc x dfy,.

The generalized test statistic given by Johansen (1980) is

Ty, = RY'RERD)'RA) , @.5)
where g estimate§ p,and £ = diag[)f)l/n1 ﬁ,/n,], a block matrix with diagonal
élements )ij/rlj. This test statistic divided by a constant, c, approximately follows an F
distribution witlj_ v = df¢ x dfy, and v, = v,(v; + 2)/(3A), where

¢ = v; + 2A - (6A)/(v; + 2). The formula for the statistic A is

A= _21.” [tr{z‘:RT(RﬁRT)-IRQj}Z +{ie (ﬁRT(Rf?RT)‘IRQj )}2}/@j -1). @6

The matrix Q, is a symmetric block matrix of dimension r x p associated with Xj,:
such that the (s,t)-th diagonal block of Q =1L ifs =t =jand is 0 otherwise.

In order to test the interaction in a two-way mixed design, C = C; and
U =T, so that R = C; ® U}, where C isa (J - 1) x J matrix which defines a set of

(J - 1) linearly independent contrasts for the grouping factor, and Uy is a K x (K - 1)
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matrix which defines a set of (K - 1) linearly independent contrasts for the RM factor.
For example, in a mixed design containing a grouping factor with four levels and a
RM factor with three levels, C and U matrices that may be used to obtain a test of the

interaction are:

1 -1 0 0 11
C=C,=f1 0 -1 0|,andU=0U,=|-1 0
10 0 -1 0 -1

Here, the rows of C represent a set of three linearly independent contrasts among the
levels of the grouping factor, while the columns of U form a set of two linearly

independent contrasts among the levels of the RM. factor. The Kronecker product,

C,®Uj, is
[1 -1 0 -110000 0 00
MUt (-HUT OUT  (©OUT i 01 ;)1 2)13(1) 01(1)3 g 88
R =@ - =
<>vU’f<0>$<1>UT<0>Urr 10 -1000-101000
HUT OU"  ©OUT (-)UT 1-10 000000-110
10 -1 0000 00-10T1

and has six linearly independent rows.

Tang and Algina (1993) considered the robustness of Johansen’s (1980)
statistic in a multivariate independent groups design with more than two groups,‘ but
only for normal data, when group covariance matrices were heterogeneous and group
sizes were unequal. They observed that Johansen’s solution was generally robust,

. except when the ratio of total sample size to the number of dependent variables was
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small, the homogeneity assumption was violated, and group sizes and covariance
matrices were negatively paired, in which case it produced liberal results.

Similar findings were reported by Keselman et al. (1993) for the A x B mixed
design. Moreover, they found that the effect of nonnormality was to inflate Type I
error rates. Accordingly, the authors suggested that in order to obtain a robust test of
the RM interaction hypothesis using an approximate df solution, the ratio of the
number of observations in the smallest group (i.e., n,;, ) to (K - 1) should be at least
3 or 4 to one, and preferably higher if the validity of the multivariate normality
assumption is questionable. Where there are an insufficient number of units of
analysis to achieve this requirement, the authors s‘uggésted adopting a .01 significance
criterion in order to maintain the rate of Type I errors below five percent.

Interaction Contrasts

In a mixed design, researchers are typically most interested in testing for the
presence of an interaction before examining main effects. However, the omnibus test
procedures described4 by Algina and Oshima (1994) and Keselman et al. (1993) offer
no insight into the nature of the intéraction and researchers will routinely follow a
significant result with statistical tests to probe this effect (Boik, 1993; Olejnik &
Huberty, 1993; Rosnow & Rosenthal, 1989b).

Two techniques that may be used to examine interactions are simple main
effect tests and interaction contrasts. The former approach, which, as evidenced by

the results reported in the previous chapter, is favoured by many applied researchers

involves examining the effects of one factor at a particular level of the second factor.
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For example, for a mixed design, the researcher may test for equality of the K RM
means at each of the J levels of the grouping factor. By focusing on a particular level
of the grouping factor, this factor is eliminated from the analysis, and the researcher
is left to conduct a series of simple RM univariate or multivariate tests. The
procedure used to conduct these simple main effect tests might include an df-adjusted
ANOVA or MANOVA test, or one of the two alternative procedures described
previously. The choice among these approaches depends on the assumptions the
researcher is willing to make about the data.

However, this procedure of analyzing simple main effects has been criticized
because

it is assumed that the interaction can be interpreted by determining which

simple effects are significant. It must be remembered that a significant

interaction does not indicate that one or more simple main effects are
significantly different from zero but rather that at‘ least one contrast of one
treatment [factor] is different at two or more levels of the second treatment

[factor]. (Boik, 1975, p. 32)

The use of interaction contrasts is favoured from a theoretical standpoint since
the null hypothesis under consideration for a particular contrast is consistent with the
hypothesis associated an omnibus test of the interaction (Boik, 1993; Marascuilé &
Levin, 1970, 1976; Timm, 1994). However, iﬁ practice, interaction contrasts are
rarely used by applied researchers (Kaufman et al., 1986; Rosenow & Rosenthal,

1989a). Boik suggests that this is because most researchers are not familiar with
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"specialized multiple comparisons for interactions" (p. 2), or methods for applying
these techniques with statistical software packages.

While several different types of interaction contrasts have been discussed in the
literature (Bradu & Gabriel, 1974), préduct contrasts have been given the most
attention '(Boik, 1993; Gabriel, Putter, & Wax, 1973; Johnson, 1976; Timm, 1994).
In a two-way design, a product contrast is a Kronecker product of two vectors, each
of which fprms a contrast among the levels of one main effect factor. Gabriel et al.
(1973) discuss several types of product contrasts which may be used to probe
interactions. To understand these product contrasts, it is helpful to consider some
techniques for probing effects in one-way RM designs.

Let u; ... pg denote the population means for a simple RM design with
k=1,...,K levgls, where {{k estimates u,. As Gabriel et al. (1973) note, to probe
the main effect, one may use deviations from the mean, of the form & = m — 1,
where p_is the grand mean. The second approach, which is the most popular for
probing main effects, is the pairwise difference, ¢ = P — M, Where k # k'.

Interaction residuals are extensions of deviations from the mean in one-way
designs, and are defined as v, = B — #5. — pyx + p, where py, B> By, and p
respectively represent cell, row, column and grand population means, and P IS
estimated by S_{jk. A tetrad contrast is defined as ¢ = (e — ) — (e — Py,
where j # j', k # k'. Interaction residuals and tetrad contrasts are related, as the

latter can be expressed in terms of the former, so that

VRS (’ij - ’ij') - (’Yj'k - 'Yj'k')-
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To illustrate why interaction contrasts should be favoured over simple effect
tests for probing an interaction, consider a test of a simple pairwise comparison at one
level of the grouping factor that involves two different levels of the RM factor. This
simple pairwise comparison tests the hypothesis, Hy: B — B = 0, where k # k'.
Using the previously defined notation, B = Y t ;. + py — p . By substituting the
appfopriate elements of this equality into the simple pairwise hypothesis, the
following solution is obtained: |

Py~ By =0,
et to—p) = (vt g —1)=0,
i = ¥ye) + (e — 1) =0.

This simple effect is only partially comprised of interaction components (i.e., the
vis)- Thus, if this hypothesis were rejected, one could not determine if this was due
to the difference in the marginal means, the difference in the interaction residuals, or
both. With a tetrad contrast, however, the hypothesis that is tested only involves
interaction residuals.

Since tetrad contrasts are direct extensilons of the popular pairwise contrasts
for probing main effects, they are perhaps easiest for the applied researcher to
understand and interpret. In a two-way design, a tetrad contrast essentially involvc_as
testing for the presence of an interaction between rows and columns ina 2 x 2 -
submatrix of the A x B data matrix, and represents a test for a difference in two
pairwise differences.

Two final points must be made regarding methods for probing interactions.

First, it should be recognized that Cicchetti’s (1972) method of testing unconfounded
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cell mean comparisons is not an appropriate approach for probing an interaction, as
such comparisons are equivalent to simple pairwise comparisons. As was
demonstrated previously, such comparisons are in fact confounded by either row or
column main effects. Second, Rosnow and Rosenthal (1989a: 1991) recommend that
the only appropriate methods for probing interactions involvé comparisons on what

they call corrected cell means. However as Boik (1993) notes, corrected cell means

are equivalent to interaction residuals. Since a tetrad contrast on the cell means can be
expressed as a contrast on the interaction residuals, the approach presented in this
research is equivalent to that advocated by Rosnow and Rosenthal.

Tetrad Contrast Test Statistics in the Mixed Desien

Two choices of a test statistic exist for performing tetrad contrasts in mixed
RM designs (Kes‘elman & Keselman, 1993, pp. 125-126). One statistic that can be
used to test H,: ¢ = 0 employs an estimate of the standard error of the contrast
which uses MS ., the error mean square for the usual omnibus F test of the

interaction. The test statistic is

- (ij _ij') - (Yj'k _Yj’k')

2 2
[ My, [-IT * H—:l
J j'

t

2

4.7

]

where, as noted previously, j > j' and k > k'. This statistic is distributed as
Student’s t with df », = (K - D(N - J). Conducting tetrad contrasts with this statistic
may be appealing because results may be obtained using statistical software packages

such as SAS (SAS Institute Inc., 1989b). As well, because this statistic has error df
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eqﬁal to those available for a test of the omnibus interaction hypothesis, it should
provide greater power to reject the null hypothesis than other statistics. However, if
the data do not satisfy the multisample sphericity assumption, the error term for this
statistic, which involves pooling over both the RM and grouping factors, will result in
a biased estimate of the standard error of the contrast, and, as a consequence, this
statistic will produce invalid results.

An alternate statistic employs a standard error derived only from that data used

in forming the contrast and is defined as

4.8)

where ¢ is a K x ‘1 vector of coefficients which contrasts the kth and k'th levels of the
RM factor. In other words, the standard error of the tetrad contrast is formed using
data from only four cells of the A x B data matrix and does not rest on the
multisample sphericity assumption. The nonpooled statistic does not follow a t
distribution, but can be approximated by Student’s t with Satterthwaite (1941, 1946)

estimated df

2
e E.c
i7 4 j
y = 0, 0y (4.9)
s T 2 T 2
[c ch/nj] . [c Ej,c/nj,]

nj—l nj,-l
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This approximate df solution for conducting interaction contrasts may also be
conceptualized from a multivariate perspective. By forming all possible pairwise
differences among the K repeated measures and denoting these variables as

Dy = Yy — Yy, the test statistic may be defined as

i

(4.10)

where ISj is the mean difference at level j of the grouping factor, S is the
corresponding variance of a D variable and ¢; is the contrast coefficient at level j of

the grouping factor. The error df are then expressed as

J
2 2
Z C Simy/ 1,
j=1
] 2
3 Lfso/n] ‘”)’“]

j=1

y = @.11)

s

Interaction contrasts that employ a nonpooled test statistic may also be
conceptualized from a GLM perspective using Johansen’s (1980) approximate df
solution. If C and U respectively denote contrast vectors on factors A and B in a
mixed design, then R = C ® U" represents a product contrast. Furthermore, if -
C = ¢; forms a contrast among two levels of Factor A, and U = u,, forms a |
contrast among two levels of Factor B, then the Kronecker product of these two
vectors is a tetrad contrast. For example, in a mixed design with four levels of the

grouping factor and three levels of the RM factor, a tetrad contrast involving the first
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and third levels of the grouping factor and the first and second levels of the RM

factor would require the formation of the following C and U vectors

1
C=c,=[1 0 -1 0],and U=u,=|-1
0

The resulting R matrix has the form

R=c,®u,=[1 -10000-110000..

Controlling the Familywise Error Rate for Multiple Tetrad Contrasts

A number of CVs have been proposed for limiting the FWR for the set of all
possible tetrad contrasts on the data. A Scheffe (1953) CV may be adopted (Boik,
1993; Gabriel et al., 1973; Marascuilo & Levin, 1970), {»,F[1 - o; »,, v,]}*, where
v, = ({J - DX -1) and », is the error df. However, Scheffe’s mefhbd controls the
FWR across all possible interaction contrasts on the data, including the subset of
tetrad contrasts. Therefore it is likely to be less powerful than competing alternatives.
Consequently, a Studentized maximum root CV, R[1 - «, p, q, »,], where
p=min(J-1,K-1),g=max(J-1,K-1),and R[1 -, p, q, »,] is the 1 - «
centile of the Studentized maximum root distribution, is considered to be a better_
choice, as it is intended to provide FWR control across the set of all possible product |
contrasts (Boik, 1993; Bradu & Gabriel, 1974; Gabriel et al., 1973; Johnson, 1976).
Furthérmore, Gabriel et al. (1973) recommend a Bonferroni CV (Dunn, 1961),

t[1 - a/(2C); »,], where C = JK*, J* = J(J - 1)/2, and K* = K(K - 1)/2. Finally,

Hochberg and Tamhane (1987, p. 299) suggest that a Studentized maximum modulus



CV, M[1 - o; C, »,], where M[1 - «; C, »,] is the 1 - « centile of the Studentized
maximum modulus distribution, is more likely to maintain the FWR at « than a
Bonferroni CV.

An alternative to adopting one of these simultaneous MCPs is to select a
stepwise procedure. A number of stepwise procedures based on the Bonferroni
ineqhality have been developed, which will necessarily control the FWR for tetrad
contrasts when derivational assumptions are satisfied. However, since these methods
rely on a different CV at each stage of hypothesis testing, they may provide greater
power to detect tetrad interactions than Dunn’s (1961) method. Two procedures,
derived by Hochberg (1988) and Shaffer (1986), are particularly promising.

Hochberg’s (1988) step-up Bonferroni procedure is an attractive choice
because it is one :of the simpler stepwise procedures available. Hommel (1988) and
Rom (1990) have proposed Bonferroni procedures which are known to be more
powerful than Hochberg’s methgd. However, as Dunnett and Tamhane (1992) note,
marginal power differences exist among these three procedures and Hochberg’s
procedure is much easier to use than the other two.

With Hochberg’s (1988) method, one begins by rank ordering the p values
corresponding to the statistics used for testing the hypotheses Hgy 5..., Hg
[i.e. ¥ = (ug - ) - (i - pye) = 0], so that Pay = Pa < ... < D represent the

ordered p values. The decision rule is to reject Hpy(m' < m;m=C ..., 1)if
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Pay < o/(C - m + 1). Testing begins with the hypothesis corresponding to the largest

p value, p. If p, < @, all C hypotheses are rejected; if not, H, is retained and



93

testing moves to Heyy. If peyy < /2, He is.rejected, as are all remaining
hypotheses; if not H,, is also retained, and pc., is compared to «/3, and so on. This
continues, if all previous hypotheses have been retained, until Py 1s compared to «/C.
Shaffer (1986) proposed a more powerful version of Holm’s (1979)
sequentially rejective Bonferroni procedure, and has demonstrated its use for testing
tetrad contrast hypotheses. Under Shaffer’s method, one proceeds in the same manner
as for the Hochberg (1988) procedure by rank ordering the p values. However, testing
begins by comparing the smallest p value, p, to «/C, and if py, < «/C, the
corresponding hypothesis, Ha), is rejected, otherwise it is retained. If H,, is rejected,
one goes on to compare the next largest p value, py,, to «/C;, where C; represents the
maximum number of remaining hypotheses that could be true, given rejection of the
previous hypothe;»is. One proceed:s' in this manner by rejecting Hgyy (m =1 ,..., Q) if
Pmy =< a/C,. Shaffer has tabled values of C for selected A x B designs. However,
since the value of C,, may not be readily apparent for otherbfactorial designs (i.e.,
higher-order designs), Shaffer recommends the following approach to hypothesis
testing for tetrad contrasts in these cases: If Hg, is rejected using an «/C criterion,
one proceeds to test H, by letting C; = C - (J - 1)}(K - 1). If H,, is rejected, C, is
set equal to C; forall 2 < m < C-C; + 1, and is assigned a value of C - m + 1

forallm > C-C; + 1.
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CHAPTER 5

SIMULATION STUDY METHODOLOGY

Overview of a Monte Carlo Study

The purpose of a Monte Carlo simulation study is to empirically evaluate the
operating characteristics of a statistic test under a range of derivational assumption
violations. Pseudorandom sets of numbers are generated using a computer algorithm
and are sampled from populations with known characteristics. The simulation
experiment is designed so that the null hypothesis is either true or false. For each
replication of an experiment, a test statistic is computed from the generated data and
based on this result, the null hypothesis is either rejected or retained. Thus, depending
on the nature of the null hypothesis, empirical estimates of either Type I error or
power are obtainc;d.

Description of Tetrad Contrast Procedures

Ten procedures were seleq_ted to investigate the viability of conducting tetrad
contrasts in mixed designs using Monte Carlo methods. A test statistic employing a
pooled error term (i.e., Equation 4.7) was used, in addition to one based on a
nonpooled error term (i.e., Equation 4.8), even though it was anticipated that only the
latter would provide control of the FWR. The former was investigated to obtain some
empirical evidence of the extent of bias in error rates that may result when usiﬁg a
MCP which incorporates a pooled test statistic when the multisample sphericity

assumption is violated.
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The pooled and nonpooled statistics were considered in combination with
either a Scheffe (1953), Studentized maximum root, Hochberg (1988) step-up
Bonferroni, Shaffer (1986) modified sequentially rejective Bonferroni, or Studentized
maximum modulus CV. For the procedures employing a pooled test statistic, the CVs
were defined by setting », = »,; when a nonpooled test statistic was used, », = V..

Although a Scheffe CV will be larger than either of the other four CVs, this
method was included in case the other procedures could not limit the number of Type
I errors under violations of the multisample sphericity assumption. Furthermore, both
Jaccard et al. (1984) and Lix (1995) found that applied researchers routinely adopted
Scheffe’s method for pairwise mean comparisons. Thus, it was considered desirable to
determine if this is an acceptable method of controlling the FWR for tetrad contrasts.
Finally, the Hochberg (1988) and Shaffer (1986) procedures were selected over the
Bonferroni (Dunn, 1961) method for the reasons enumerated in the previous chapter.

Monte Carlo Study Variables

The ten procedures for testing tetrad contrast hypotheses were compared for
the simplest mixed design, that is, a design containing a single independent groups
factor and a single RM factor. In addition, the désign was univariate in nature.

One aspect of the study was held constant, that being the number of levels of
the grouping factor, which was set at three. From the C&T content analysis it Would
appear that in mixed designs, many researchers elect to use a grouping factor with
only two levels. However, this would not provide sufficient diversity in the present

study to investigate the behaviour of the selected tetrad contrast procedures, as data
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from both levels of the grouping factor would necessarily be involved in forming each
tetrad contrast.

Nine variables were selected to investigate the behaviour of the selected
statistical procedures with respect to Type I error and power rates. These were the:
(@) number of levels of the RM factor, (b) sphericity pattern, (c) equality/inequality of
the group variance-covariance matrices, (d) total sample size,.(e) group size
equality/inequality, (f) nature of the pairing of unequal covariance matrices and
unequal group sizes, (g) population shape, (h) nature of the null hypothesis, and (i)
population effect size. Table 10 provides summary information concerning the values
of the variables which were investigated and the following discussion deals with each
of these variables in turn. |

Number of Repeated Measures Factor Levels

Keselman and Keselman (1990) found that df—adjusted univariate and
multivariate omnibus procedures forjnteraction tests in mixed designs became
increasingly sensitive to violations of the multisar_nple sphericity assumption as the
number of levels of the RM factor increased. Hence, the ten procedures were studied
when the number of factor levels was set at four and éight. As well, given that more
than one quarter of the 43 mixed C&T studies included a RM factor with more than 6
levels, it would seem important to investigate the procedures for a large numbef of

RM factor levels.



Table 10

Monte Carlo Study Variables
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Variable

RM Factor Levels (K)
Sphericity Pattern (e)
Equality/Inequality of L;s
Total Sample Size (N)

Equality/Inequality of ns

Pairing of Xs and n;s

Population Shape
Null Hypothesis

Effect Size (f)

Values

4: 8

1.0; .75; .40
1:1:1; 1:3:5
30; 45

N =30: 8,10, 12 (An, = .163)
6, 10, 14 (An; = .327)
N =45: 12, 15, 18 (An; = .163)
9, 15, 21 (An; = .327)

(@) equal ns, equal Ls

(b) equal n;s, unequal X

(¢) unequal njs (An; = .163), unequal Xs,
positive pairing

(') unequal n;s (An; = .327), unequal Ls,
positive pairing

(d) unequal ns (An; = .163), unequal Ls,
negative pairing

(d') unequal n;s (An; = .327), unequal Ls,
negative pairing

Normal; x2
Complete; Partial

.50; 1.00; 1.50
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Sphericity Pattern

Box’s (1954) correction factor, €, was used to quantify the degree of departure
from the assumption of sphericity (i.e., Equation 2.3). Without loss of generality, the
pooled variance-covariance matrix (i.e., L) contained element values of ten and five
on the diagonal and off-diagonal, respectively, when sphericity was satisfied. Matrices
with e values of .75 and .40 were chosen to investigate nonspherical conditions and
represent moderate and extreme departures from sphericity, respectively. For K = 4,
the minimum value that ¢ may attain is .33, while for K = 8, the lower bound is
e = .14.

The elements of the pooled variance-covariance matrices were chosen such that
the average variance and covariance were equal to ten and five, respectively, in order
to achieve comparability across the simulation conditions. The pooled matrices values
for the K = 4 aﬁd K = 8 conditions can be found in Tables 11 and 12, respectively.

- Heterogeneity of Group Variance-Covariance Matrices

The effects of heterogeneity of the group orthonormal variance-covariance
matrices was investigated by creating two sets of matrices. For one set, a given
element in a covariance matrix for a particular group was equal to the corresponding
element in each of the matrices for the other two groups, so that the elements of the
group covariance matrices were in a 1:1:1 ratio. For the second set, corresponding
elements in the group covariance matrices were not equal to one another. Each

element in the covariance matrix for the second group was three times that of the



Table 11

Pooled Variance-Covariance Matrix Element Values (K = 4)

e =.75
18.0 8.0
8.0

e = .40
23.8 11.9
9.5

6.0

5.0

7.0

6.4

5.7

3.9

4.0

4.0

3.0

7.0

0.9

2.6

2.5

2.8



Table 12

Pooled Variance-Covariance Matrix Element Values (K = 8)

e =.75
18.0 8.0 7.0
12.0 8.0
10.0

e.= .40
28.8 12.8 10.1
17.4 8.1
9.9

7.0

7.0

6.0

10.0

9.8

7.4

1.7

8.3

6.0
6.0
6.0
5.0

9.0

8.3
6.9
6.5
5.6

5.6

5.0

5.0

5.0

5.0

5.0

8.0

7.3

4.1

5.7

4.3

4.4

4.3

5.0

5.0

5.0

4.0

5.0

4.0

7.0

6.0

3.4

3.4

3.9

2.6

2.4

3.2

5.0

2.0

2.0

4.0

3.0

4.0

1.0

6.0

1.8

-1.0

1.4

2.4

1.4

1.4

1.9

2.5
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matrix for the first group. As well, each element in the matrix of the third group was
five times that of the matrix for the first group. Thus the elements in the group
variance-covariance matrices were in a 1:3:5 ratio. This degree of covariance
heterogeneity was chosen because Keselman and Keselman (1990) found it to have the
greatest effect, among the heterogeneity conditions they investigated, on Type I error
rates for omnibus tests of the interaction in mixed designs.

Total Sample Size

Total sample size (N) was set at either 30 or 45, to allow investigation of the
effects of both a small and moderate sample size. The ten procedures were
investigated when the design was balanced, and also when it was unbalanced. When
the design was balanced (i.e., group sizes were equal), there were either ten or fifteen
observations per group. Two cases of group size imbalance were considered for each
total sample size. For N = 30, n, = 8, 10, 12 and n; = 6, 10, 14, while for N=45,
n; = 12.1 15, 18 and n; = 9, 15, 21. For both values of N, the coefficient of group
size variation (i.e., An;; see Equation 2.9) is .163 for the former condition, and .327
for the latter. Thus, both mild énd moderate degrees of imbalance were considered.

Pairing of Group Covariance Matrices and Group Sizes

For those conditions involving both unequal group sizes and unequal grouﬁ
orthonormalized variance-covariance matrices, both positive and negative pairings of
these group sizes and covariance matrices were investigated, since these pairings have
been associated with conservative and liberal results, respectively, in tests of the

omnibus interaction effect in mixed designs. In the former case, the largest n, was
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associated with the covariance matrix containing the largest element values; while in
the latter, the largest n; was associated with the covariance matrix containing the
smallest element values.

In summary, six pairings of variance-covariance matrices and group sizes were
investigated: (a) equal n;, equal X;; (b) equal n;, unequal L;; (c/c’) unequal n;, unequal
X; (positively paired); and (d/d’) unequal n;, unequal L; (negatively paired). The ¢'/d’
conditions denotes the more disparate unequal group sizes cases, while the ¢/d
conditions designates the less disparate unequal group sizes cases.

Population Shape

The test statistics which are the basis for the various tetrad contrast procedures
rest on the assumption of multivariate normality. Although no information on the
extent to which tl}iS assumption may or may not be satisfied was collected in the
content analysis, it would seem unlikely that it would be satisfied in all cases,
particularly given the results obtained by other researchers, such as Micceri (1989),
who analyzed the distributional characteristics of 440 educational and psychological
data sets, and found that few of these could be characterized as normal in form. Thus,
it was deemed important to examine the operating. characteristics of the selected
procedures when the underlying population distribution was normal and nonnormal.

For the normal distribution, pseudorandom vectors of observations

Y; = [Yi, Y ,..., Yixl with mean vector # = [0 B --., gl and variance-

covariance matrix X; were generated using the International Mathematical and
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Statistical Library (IMSL) subroutine GGNSM (International Mathematical and
Statistical Library, 1987).

Sawilowsky and Blair (1992) investigated the robustness of Student’s t statistic,
for both independent and correlated samples, using eight nonnormal distributions
identified by Micceri (1989) as representative of those found in educational and
psychological data. They found that the Type I error rates for the t statistics were
affected only under conditions of skewness where v, = 1.64. Therefore, the
nonnormal data for the current study were obtained from a x* distribution with three
df, for which skewness and kurtosis values are y, = 1.63 and v, = 4.00,
respectively. This distribution is skewed to the right. The IMSL subroutine GGCHS
(International Mathematical and Statistical Library, 1987) was used to generate
deviates following a univariate x* distribution, which were then standardized to have a
mean of 0 and a variance of 1. The corresponding multivariate observations were
obtained b)/ a triangular decomposition of X;, which is often referred to as the

Cholesky factorization or the square root method (Harman, 1976), that is,

b

Yy = m+LZ,
where L is a lower triangular matrix satisfying the equality X; = LL" and Zjisa
K x 1 vector of x? variates.

Nature of the Null Hypothesis

Empirical FWRs for the ten procedures were obtained under a complete null
hypothesis, when all of the y,s were equal, and under a partial null hypothesis, when

not all ;s were equal. The FWR was defined as the probability that at least one
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tetrad contrast was statistically significant when the corresponding population contrast
was null. Seaman, Levin, and Serlin (1991) investigated the FWRs for a numbér of
independent sample MCPs, and found that the error rates were generally lower under
a partial null than under a complete null hypothesis. Keselman (1993, 1994) reported
similar findings for RM marginal mean comparisons in a mixed design. Since a
researcher can never know the nature of the null hypothesis under investigation for a
given set of data, it is advisable to select a procedure which can maintain the FWR at
o across all population mean configurations.

Effect Size

While power is generally defined as the probability of rejecting a false null
hypothesis, as Ramsey (1978) notes, in multiple comparison testing situations there is
more than one definition which may be adopted. In the current study, both all-
comparison and per-comparison power were investigated. Ramsey defined all-
comparison power as the probability of correctly rejecting all nonnull contrasts, which
corresponds to the probability of making no Type II errors (i.e., no false
acceptances). Per-comparison power is defined as the probability of rejecting a
particular nonnull contrast.

Both per-comparison and all-comparison power rates were collected for
various values of the effect size for the omnibus test of the interaction. The effect size
is given by f = g,/0,, where o, = {LX%/(J - D(K - 1') + 1}* and o, is the
positive square root of the difference between the average variance and average

covariance for the pooled variance-covariance matrix (Cohen, 1988). The effect size
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was arbitrarily set equal to 0.50, 1.00 and 1.50. The population cell means used to
obtain these three effects, for K = 4 and K = 8, can be found in Tables 13.and 14,
respectively.

Verfication of the Simulation Program

The simulation program was written in the FORTRAN program language. To
verify the accuracy of the random number generation process, a set of 50,000
observations was generated, first with the GGNSM subroutine and then with GGCHS
subroutine, for a specified population variance-covariance matrix and mean vector.
Variances, covariances, and means were computed for this set of data. In both cases,
the computed statistics were close to the population parameters, indicating satisfactory

performance of the program.

i

Design of the Simulation Study

The ten tetrad contrast procedures were evaluated for the six pairings of group
sizes and group variance-covariance matrices under each possible combination of RM

factor levels, total sample size, sphericity pattern, and degree of normality. Five

thousand replications of each condition were performed using a .05 significance level.

For each replication, all possible tetrad contrasts were computed on the data and each

MCP was applied to the calculated test statistics



106
Table 13

Population Means (uy8) for Interaction Effect (J = 3: K = 4)

! =0.50
.301904 .301904 1.50952 1.50952
.301904 .301904 1.50952 1.50952
3.01904 3.01904 .603808 .603808
f=1.00
.60381 .60381 3.01904 3.01904
.60381 .60381 3.01904 3.01904
6.03808 6.03808 1.20762 1.20762
f=1.50
.90571 .90571 4.52856 4.52856
.90571 .90571 4.52856 4.52856

9.05712 9.05712 1.81142 1.81142

f = Effect size



107
Table 14

Population Means (u;s) for Interaction Effect (] = 3: K = §)

= 0.50
3125 3125 3125 3125 1.5625 1.5625  1.5625  1.5625

3125 3125 3125 3125 1.5625 1.5625  1.5625  1.5625

3.125 3.125 3.125 3.125 .625 .625 .625 .625

f = 1.00
.625 .625 .625 .625 3.125 | 3.125 3.125 3.125
.625 .625 .625 .625 3.125 3.125 3.125 3.125

6.25 6.25 6.25 6.25 1.25 1.25 1.25 1.25
f=15
.9375 .9375 .9375 9375 4.6875 4.6875 4.6875 4.6875
9375 .9375 .9375 9375 4.6875 4.6875 4.6875  4.6875

9.375 9.375 9.375 9.375 1.875 1.875 1.875 1.875

*f = Effect size
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CHAPTER 6

SIMULATION STUDY RESULTS

Type I Error Rates

A quantitative measure of robustness developed by Bradley (1978) was used to
evaluate the Type I error performance for the ten tetrad contrast procedures.
According to Bradley’s liberal criterion, a test may be considered robust if its
empirical Type I error rate (&) falls within the range .50 < & < 1.50. Bradley also
suggested a more stringent criterion of .9« < & < 1.1a. However, the latter was
deemed to be too conservative as only slightly inflated (or deflated) error rates would
result in a test procedure being considered nonrobust. Hence, for the nominal .05
significance level selected for this study, a robust procedure was defined as one
having an empirigal FWR between .025 and .075. In the tables of Type I error results
reported in this chapter, daggers () are used to denote values which exceed the upper
limit of this bound, and asterisks (*) are used to denote values which are less than the
lower limit of this bound. |

Type I error rates for the five procedures which use a test statistic based on a
pooled estimate of error variance are given in Tables 15 and 16 for K = 4 and
K = 8, respectively. In these and subsequent tables, the abbreviations S, R, H, MSB,
and M are used to denote the Scheffe (1953), Studentized maximum root, Hochberg
(1988), Shaffer (1986), and Studentized maximum modulus procedures, respectively.

The data associated with a complete null hypothesis when N = 30 is provided. Since
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the FWRs for the H and MSB procedures were identical under a complete null
hypothesis, these values have not been reported separately.

What is immediately apparent from the tabled values is that none of the
procedures could control the FWR under violation of either part of the multisample
sphericity assumption. This finding holds for balanced (conditions a and b), as well as
unbalanced designs (conditions ¢, ¢’, d, and d'), with the discrepancy between the
nominal and empirical values being greatest for unbalanced designs.

It is also important to note that even when the multisample sphericity
assumption was satisfied (i.e., ¢ = 1.00; condition a), the S and R procedures
produced conservative results. This was not unexpected, given findings that have been
reported for Scheffe’s (1953) method for pairwise comparisons in independent groups
designs (e.g., Caimer & Swanson, 1973). Furthermore, given that both the S and R
procedures are designed to control the error rate for much larger families of contrasts
than the set of all possible tetrad contrasts, they will tend to perform less optimally
than other prdcedures.

The M and H/MSB procedures which used a pooled test statistic were very
liberal under large depeirtures from the assumption of sphericity of the pooled
covariance matrix (i.e., e = .40), attaining FWRs as high as .24 for K = 4 (see *
Table 15). The empirical values became even more extreme when the number df
levels of the RM factor was increased to eight; the largest value attained was .31 (see

Table 16). The nonnormal values were not consistently larger or smaller than their
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Table 15

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic
(Complete Null Hypothesis; K = 4: N = 30)

Normal x>
S R H/MSB M S R H/MSB M
] .
a .008* .016* .037 .038 .006* .020* .041 .042
b .014* 026 .054 .057 .013* .026 .052 .055
c .007* .015* 031 031 .006* .016%* 031 .033
1.00 ¢ .003* .010* .023*  .025% .003* .007* 015*  .016*
d .028 .054 0911 .0947% .025* .046 .0831  .0857
d" .055 0941 1511 .154% .052 .089% 1407 1447
a .024* 041 .071 072 .021% .040 .071 074
b .036 .061 0941 .097% .028 .048 0791 .0817%
c .018* 034 .058 .059 .017* .032 .058 .060
75 ¢ .012”f .019* 036 .037 .010* .020* .035 .036
d .058 0851 1281 .132¢% .048 077% Jd2017 (1247
d" .073 A1 1661 170+ 077¢ 1167 A71F (1747
i a .070 007 .151F .154¢% .061 .090 A51F (1547
b .073 061 (1461 .147% .070 .098+ 142 14575
c .054 0771 1107 .112¢% .052 .078% 1081 L111%
40 ¢ .040 057 0837  .085% .039 .056 0831 .0857
d 1117 .144%  .190%f  .192% 1067 147% A92% (1967
d" 1397  .183%F .237F  .241% 138 178 2281 .231%

Note: S = Scheffe (1953); R = Studentized maximum root; H/MSB = Hochberg
(1988) step-up Bonferroni/Shaffer (1986) modified sequentially rejective Bonferroni;
M = Studentized maximum modulus; a = pairings of equal covariance matrices and
equal group sizes; b = pairings of unequal covariance matrices and equal group sizes;
¢/c’ = positive pairings of covariance matrices and group sizes [c: n; = §, 10, 12;
¢t n; = 6, 10, 14]; d/d’ = negative pairings of covariance matrices and group sizes
[d:n; = 12, 10, 8; d": n; = 14, 10, 6]; * = empirical value < .025; 1 = empirical
value > .075.



111
Table 16

Empirical FWRs for Tetrad Contrast Procedures Employing 'a Pooled Test Statistic
(Complete Null Hypothesis; K = 8: N = 30)

Normal x>
S R H/MSB M S R H/MSB M
€
a .000* .002* .036 .038 001*  .002*  .038 .040
b .001* .008* .068 .070 .001* .010%* .069 .070
¢ .000* .003* .038 .039 .001*  .004*  .035 .036
1.00 ¢ .000* .001* .020* .021% .000*%  .001*  .024*%  .025%
d .003* .019* .115% .118% 004% 020 1207  .123%
d" .007* .042 2081 211% .014* .046 2081 .214¢%
a .002*  .009*  .066 .067 .002* .009* 0781 .077%
b .004* .017* .101f .103% 002*%  .016*  .0951 .098%
¢ .001* .009* .054 .055 .002* 010  .057 .058
.75 ¢’ .000* .005* .037 .038 001* .003* .034 .035
d .008* .033 1457 (1487 .007* .031 144 1477
d’" .012* .066 2131 2187 .020%  .064 2281 2337
a .016* .046 1681 . 1707 .018*  .045 .165% 1687
b .028 .062 A75% 178+ .019* .059 1761 179%
¢ .013* 041 237 U125¢ .013* 034 1331 .135¢%
40 ¢ .011*  .033 1027 (1047 .005*  .027 0911 .093%
d .042 099+  .235%  .237% .036 .085%  .235%  .237%
d" .071 1401 .308%  .311% .066 A34% 0 3081 .312%

Note: See the note from Table 15.
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normal counterparts. In general however, Type I error rates were only slightly
affected by departures from the multivariate normality assumption.

The results associated with N = 45 for the pooled procedures have not been
tabled here, but are contained in Appendix B in Tables B1 and B2. The FWRs are
comparable to those obtained for N = 30. In general, however, the error rates
associated with this larger sample size tend to be slightly less deviant, so that there
was less discrepancy between empirical and nominal values, particularly for the
normal data. For the nonnormal data this is not always the case. As a consequence,
error rates are still liberal under departures from the multisample sphericity
assumption; the maximum value attained was .34, when K = 8.

Error rates for the five procedures which employ a test statistic based on a
nonpooled estimgte of error variance are contained in Tables 17 and 18. Again, only
those results associated with the complete null hypothesis for N = 30 are reported
here. B

Table 17 reveals that regardless of whether the data were normally or
nonnormally distributed, none of the procedures which employ a nonpooled test
statistic were liberal when the RM factor had four levels. When the multivariate
normality assumption was satisfied, the empirical values for the M procedure were
consistently larger than those obtained for the H/MSB procedures. However, ali three
procedures occasionally resulted in conservative values when the data was highly

nonspherical (¢ = .40). The R error rates exceeded those for the S procedure across

all conditions, but nevertheless were largely conservative, particularly for



Table 17

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test

Statistic (Complete Null Hypothesis; K = 4: N = 30)
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Normal X
S R H/MSB M S R H/MSB™ M
€
a .013* .023* 038 .043 .008*  .019*  .029 .032
b .013* 025 .039 .045 010 .022% 032 .037
c .011* .025 .040 .046 .008*  .019*  .029 .033
.00 ¢ .011* .023* 037 .043 007+ .018*  .029 .034
d .019* .037 047 057 017 .030 .041 .049
d" .030 046 .055 .063 024* 040 .047 .059
a .011*  .024* .038 .042 007*  .016%  .026 .033
b .016* .030 .045 .053 009*  .019%  .027 .033
c .012*  .024* 034 041 009*  .021* 031 .035
5 ¢ 011% .023* 036 042 .008*  .018*  .029 .034
d .019% .035 .046 .052 014> .024* 034 .042
d" .031 .042 .052 .063 .020*%  .034 .047 .055
a .007* .013* .022* .025 .005*  .009*  .013* .015%*
b .006% .013* .019*  023% 007*  .015%  .020% .023*
c .007* .015* .023* .025 .006*  .013* 018+ .021*
40 ¢ .006*%  .014*  .020% .022% 007%  .012*  .019*  .021%
d .014* .022* .028 .031 014*  .022¢ 032 .036
d" .018* .026 .032 .038 020*%  .031 .036

.043

Note: See the note from Table 15.
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nonspherical data. The values for the S procedure rarely exceeded the lower bound of
Bradley’s (1978) criterion.

The results for the nonnormal data in Table 17 reveal generally lower FWRs
as compared with those for normal data. In particular, the S values were conservative
for all 18 of the conditions investigated. The R procedure only exceeded the lower
bound of Bradley’s (1978) criterion for negative pairings of group sizes and
covariance matrices. Finally, the H/MSB and M methods were largely conservative
under extreme degrees of nonsphericity, with minimum values of .013 and .015
respectively.

The K = 8 results associated with the smaller sample size, for both normal
and nonnormal data, are contained in Table .18. With respect to the error rates
obtained when the multivariate normality assumption was satisfied, the S method was
very conservative for all of the conditions investigated, with a mean FWR of .003.
The R/procedure only surpassed Bradley’s (1978) lower bound when the most
disparate group sizes were negatively paired with covariance matrices (condition d'),
across all values of e. For the most part, the H/MSB and M procedures provided
good control of the FWR when the RM factor had eight levels. However, the latter
tended to be liberal for this same d’ condition, attaining a maximum value of .106.
The empirical FWRs for the stepwise Bonferroni procedures which used a nonpooled
test statistic were only slightly greater than the upper bound of Bradley’s criterion

when e = 1.0 for this negative pairing condition (i.e., & = .076).
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Table 18

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test

Statistic (Complete Null Hypothesis; K = 8: N = 30)

Normal x*
S R H/MSB M S R H/MSB M
6 .
a .002* .008* .037 .050 .000* .003* .020*  .029
b .004* .012*  .043 .055 .001* .005* 027 .037
c .002* .010* .036 .050 .001* .005* .024* 038
1.00 ¢ .002* .008* .035 .049 .001* .003* 021*  .031
d .003* .015* .047 072 .002* .010* .042 057
d" .014*  .038 0767  .1067 .007* .020* .050 .073
a .001* .008* .035 .048 .001* .003* .022* 029
b .003* .015* .046 .061 .001* .005* .029 .040
¢ .001* .010* .033 047 .000* .005* .029 .040
J5 ¢ .001*  .009*  .036 .048 .001* .005* 021 .030
d .005* .018* .047 .067 .004* .010* .040 .054
d .023*  .033 .069 .097¢ .007* 021%* .054 078t
a .001* .006* .029 .036 .001* .004* 021* 027
b .001* .008* .032 .043 .002%* .008* .029 .039
¢ .001* .006* .028 .037 .002* .006* .023* 029
40 ¢ .001*  .007* .027 .035 .001* .004* 017  .025
d .004* .011* .039 .053 .004* .014* .040 051
dl

011+ .027 .055 .075 011* 031 .061 0817

Note: See the note from Table 15.



116

As seen from Table 18, the FWRs were generally lower for nonnormal data
than for normal data when K = 8, consistent with the findings for K = 4. The M
procedure was slightly liberal for negative pairings of the more disparate group sizes
and unequal covariance matrices when e < 1.0, attaining a maximum value of .081,
but otherwise provided good FWR control. The H/MSB nonpooled procedures were
slightly conservative for all values of € when the design was balanced and covariance
matrices were equal, and when group sizes and covariance matrices were positively
paired, with a minimum value of .017.

The N = 45 results for the nonpooled tetrad contrast procedures have not been
tabled here, but can be found in Appendix B in Tables B3 and B4. As reported for
the pooled procedures, error rates tended to be less deviant from the .05 significance
level as compared with the values associated with N = 30, and as a result, no liberal
values are found in these two tables.

Table 19 contains the Type I error rates, averaged across both sample size
conditionéj as well as the normality and e conditions, for both K = 4 and K = 8. As
revealed in this table, the S procedure was conservative for both balanced and
unbalanced conditions. The R procedure only exceeded the lower bound of Bradley’s
(1978) criterion once, when group sizes and covariance matrices were negatively -
paired and group sizes reflected the larger degree of imbalance. On the other hénd,
the average FWRs for the H, MSB, and M procedures were neither conservative nor

liberal, but the error rates associated with the M procedure were always greater than

those associated with the former two procedures. The maximum value attained was
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Average Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled

Test Statistic (Complete Null Hypothesis)

K =4 K =8
S R H/MSB M S R H/MSB M
a .008* .016%* .028  .031 001*  .004*  .028  .036
b .010* .020%* .031  .035 001*  .007¢  .035  .043
c .008* .018* .030  .033 001*  .006*  .030  .039
¢’ .009* .018* .029  .033 001*  .005*  .029  .037
d .013*  .024% 037 .042 002%  .010%  .040  .053
d’ .019* 032  .042  .048 007¢  .021*  .053  .071
g 011 .021% .033  .037 002%  .009%  .036  .046

Note: See the note from Table 15; The u values represent empirical rates that have
been averaged across all conditions.
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.071, and was associated with the d’ condition. Finally, the difference between the
average values for the H/MSB and M procedures was greater when K = 8 (i.e.,
mean difference = .01) than when K = 4 (i.e., mean difference = .004).

The data obtained for the tetrad contrast procedures under a partial null
hypothesis have not been reported here, but are available in Appendix C. Separate
results are reported for the H and MSB procedures in these tables. Trends in findings
were similar to those reported for the data tabled in this chapter, and in Appendix B.
The empirical FWRs for the procedures employing a pooled test statistic were largely
conservative when K = 4 for both values of total sample size. However, error rates
for the H, MSB, and M procedures did exceed the upper bound of Bradley’s (1978)
liberal criterion when very unequal group sizes and covariance matrices were
negatively paired'(i.e., condition d'), even when e = 1.0. When the number of RM
factor levels was vincreased to eight, the error rates for the H, MSB, and M
procedurgs were typically liberal for both the d and d’ conditions. The maximum
value obta;ined was .229.

For the nonpooled procedures when K = 4, error rates were consistently
lower than the .05 level of significance for a partial null hypothesis for both values of
total sample size. As expected, and consistent with previous findings for partial mill
hypotheses (Keselman, 1993, 1994; Seaman et al., 1991), the FWRs were gcnefally
either less than the lower bound of Bradley’s (1978) liberal criterion, or approached it
in value. However, in contrast with the findings for the complete null hypothesis, the

values for both Bonferroni procedures were marginally larger than the M values
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across several conditions, for both normal and nonnormal data, when K = 4. This
pattern was not evident when K = 8, for which the latter always produced larger
FWRs than the H and MSB procedures.

Power Rates

Since the procedures employing a‘pdoled test statistic could not provide FWR
control under violations of the multisample sphericity and normality assumptions, only
the procedures which used a nonpooled test statistic are considered with respect to
power. In comparing the power rates for the five procedures, Einot and Gabriel’s
(1975) criterion of denoting power differences (PDs) less than .10 as negligible, and
differences greater than .20 as substantial will be used. The power values contained
in Tables 20 and 21 have been averaged across population effect sizes, values of e,
and population shgpes, since the individual empirical power rates obtained for various
combinations of these conditions followed the same trends that will be highlighted in
the ensuing discussion. Also contained in these tables are the mean power values (i.e.,
p values), which have been averaged across all investigated conditions.

Table 20 reveals that in terms of average per-comparison power rates, there
were negligible differences between the five nonpooled procedures when K = 4. As
expected, the S procedure was the least powerful, but only slightly less powerful than
the R procedure. By comparing the p values for these two procedures it is appafent
that the PD was approximately .04 for both values of N. Overall, the M procedure

was marginally less powerful than either stepwise Bonferroni procedure. The



Table 20

Empirical Average Per-Comparison Power Rates for Tetrad Contrast Procedures Employing a Nonpooled
Test Statistic (Averaged Across Effect Sizes, Sphericity Values, and Population Shapes)

N =30 ‘ N = 45
S R H MSB M s R H MSB M
K =4
a .65 69 73 74 7 76 79 83 84 82
b .60 64 .69 70 68 7 76 80 81 79
c .64 68 72 73 7 75 79 82 83 82
¢ .66 70 74 75 73 77 80 84 84 83
d .53 58 62 63 62 68 72 76 76 75
& 42 A7 49 50 51 59 64 67 68 67
u 58 63 66 68 66 71 75 79 80 78
K =8
a 46 55 65 66 66 62 69 78 78 78
b .40 50 60 60 61 56 65 74 74 74
c 45 54 65 65 65 61 68 77 77 77
o 4T 57 67 67 67 63 70 78 79 78
d .36 42 48 51 55 50 59 68 68 69
P 30 34 34 41 39 48 57 58 60
n .39 48 56 57 59 55 63 72 72 73

Note: See the notes from Tables 15 and 19.
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exception was for N = 30 when the most disparate group sizes were negatively paired
with group covariance matrices. The MSB procedure was more powerful than the H
method, although only by a very small degree; the difference in the u values was
approximately .01 for both values of N.

Further examination of the K = 4 results in Table 20 reveal that the nature of
the pairing of group sizes and covariances had a substantial impact on power.
Empirical power rates were greatest when the most disparate group sizes were
positively paired with covariance matrices (i.e., condition ¢'), and smallest for
negative pairings of very unequal sample sizes and covariance matrices (i.e.,
condition d'). To illustrate, for Shaffer’s procedure, the PD between these two
conditions is .24 for N = 30 and .16 for N = 45.

The K = 8 data in Table 20 show greater discrepancies between the
tetrad contrast procedures in terms of average per-comparison power rates. When
N = 30, the M procedure was most powerful, as reflected in the p values. The PDs
were .20 and .11 for this procedure and the S and R procedures, respectively.
However, based on the average power rates, the differences between the M and
stepwise Bonferroni procedures were small. For the MSB method the difference was
.02, while for the H procedure it was .03. The N = 45 power values reveal even’
smaller differences between the M and Bonferroni procedures, although the
superiority of the former over both the S and R methods was similar.

Table 21 contains the all-comparison power rates for the five nonpooled

procedures. The p values for K = 4 reveal that the PD between the most powerful



Table 21

Empirical All-Comparison Power Rates for Tetrad Contrast Procedures Employing a Nonpooled Test
Statistic (Averaged Across Effect Sizes, Sphericity Values. and Population Shapes)

N =30 N = 45
S R H MSB M s R H MSB M
K =4
a 36 42 49 50 47 54 58 64 64 62
b 31 36 44 45 41 50 54 60 61 58
c .36 41 49 50 46 54 58 63 64 61
¢ .38 44 51 52 49 55 59 65 65 63
d .23 28 36 36 33 42 48 55 56 52
.13 17 21 22 20 31 37 44 45 42
v 30 35 4 4 39 48 52 58 59 56
K=38
a .07 19 28 28 28 26 39 52 52 50
b .03 12 22 22 21 20 32 44 44 43
c .06 18 .28 28 27 25 38 50 50 48
¢ .08 21 30 30 30 27 41 53 53 51
d 04 .05 15 10 15 11 24 35 35 34
& .01 01 01 01 .03 03 11 19 19 20
u .05 13 21 20 21 19 31 42 42 41

Note: See the notes.from Tables 15 and 19.
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procedure, MSB, and the least powerful procedure, S, was only slightly greater than

- .10 for both values of total sample size. As well, the data again reveal substantial
differences in power rates for positive (i.e., the ¢’ condition) and negative (i.e., the d’
condition) pairings of group sizes and covariance matrices for all procedures. For the
MSB procedure, a PD of .30 exists between these two conditions for N = 30, and
this difference was .20 for N = 45.

The K = 8 data reveal that the H and MSB procedures were essentially
equally powerful for both N = 30 and N = 45. Overall, the differences between
these two procedures and S were close to .20 for N = 30, and slightly greater than
this criterion for N = 45. However, the R method was only slightly less powerful
than either H or MSB according to Einot and Gabriel’s (1975) ériteria. For N = 45,
rates for both the‘ H and MSB procedures only slightly exceeded the M procedure
rates for all but the d’ condition, where the latter was slightly more powerful
(PD = .01). |

Synopsis of Simulation Results

As anticipated, those procedures which employed a pooled estimate of error
variance could not control the FWR to « under departures from multisample
sphericity, particularly when the design was unbalanced. As well, the Scheffe (1953)
procedure which relied on a nonpooled test statistic was predictably conservativé. In
keeping with theoretical expectations, the Studentized maximum root procedure
yielded higher rates of error than the Scheffe procedure, but the majority of

conditions investigated did not produce values surpassing the lower bound of
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Bradley’s (1978) liberal criterion (i.e., & of .025). For the most part, the procedures
which utilized a nonpooled test statistic and either a Hochberg (1988) step-up
Bonferroni, Shaffer (1986) modified sequentially rejective Bonferroni, or Studentized
maximum modulus critical value provided good control of the FWR under violations
of multisample sphericity in unbalanced designs, even when the data were sampled
from a nonnormal population. However, all three of these procedures became quite
conservative under the combined effects of nonnormality, large departures from
sphericity, and small values of K.

Power differences among the five procedures which used a nonpooled test
statistic were not large when the number of levels of the repeated measures factor was
small and according to Einot and Gabriel’s (1975) criteria, most would be considered
negligible. Howeyer differences between the least and most powerful procedures
became more pronounced when K was increased in value. Based on the
recommendations of Einot and Gabriel, Scheffe’s procedure could be declared
substantially less powerful than all but the Studentized maximum root procedure under
most of the conditions investigated. Among the most powerful procedures, Hochberg
(1988), Shaffer (1986), and the Studentized maximum modulus, there was no uniform
superiority in terms of either average per-comparison or all-comparison rates. Thé
Studentized maximum root procedure was never substantially less powerful thaﬁ these
procedures, but always had marginally less power for detecting nonnull tetrad

contrasts.
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CHAPTER 7

APPLICATIONS, SUMMARY, AND CONCLUSIONS

Applications of Results

As Seaman et al. (1991) have noted, the adoption of any statistical procedure
by applied researchers is largely dependent on its practicality. Based on the results of
the simulation study, it would appear that the best procedure to use when conducting
tetrad contrasts would be one which incorporates a nonpooled test statistic in
combination with either a Hochberg (1988) step-up Bonferroni, Shaffer (1986)
modified sequentially rejective Bonferroni, or Studentized maximum modulus CV.
The purpose of the following discussion is to illustrate the application of these
procedures for probing interactions using data for a mixed design. The procedures
will be considereq for a mixed design containing a single independent groups factor
and a single RM factor. To place these results in a context meaningful to C&T
researchers, the example will be based on a real study by Lawson and Lorentzen
(1990).

In Lawson and Lorentzen’s (1990) research, a number of different sports bras
were evaluated for perceived comfort and éupport by women who had been classified
into groups on the basis of bra cup size. Although the actual data for this experiment
are not available, Appendix D contains a set of ﬁypothetical data for the perceivéd
support dependent variable. As the authors noted, support scores were based on the
sum of ten 5-point Likert scales; total scores for each subject could range from ten to

50. with higher scores indicating a more favourable evaluation of support. In keeping
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with the results reported by Lawson and Lorentzen, the design is unbalanced; and the
group sizes selected for illustrative purposes, according to bra cup size, are: n, = 9,
ng = 13, nc = 8, and n, = 5. Further, suppose that this hypothetical data set is
based on the results obtained for three different bras (i.e., K = 3). Although Lawson
and Lorentzen did not make any statements regarding random assignment of the bras
to each study participant, for purposes of this example it is assumed that
randomization was employed as a means to reduce possible carry-over effects in the
evaluation of bra support.

Lix and Keselman (in press) developed a statistical program written in the
SAS/IML (SAS Institute Inc., 1989a) programming language which uses the GLM
approach described in Chapter 4 to develop one or more hypotheses and test them
using Johansen’s (1980) approximate df solution. To conduct the set of all possible
tetrad contrasts for the example data set in Appendix D using a nonpooled statistic,
the researcher must specify a contrast vector for both the grouping factor and the RM
factor and each of these ﬁust form a pairwise contrast on the levels of the appropriate
factor. In using,Lix and Keselman’s statistical program, it is assumed that the data are
entered in a particular order, so that the scores associated with the subjects in Group
A are followed by the scores for the subjects in Group B, and so on. Appendix D
contains the SAS/IML program written by Lix and Keselman and the additionall
programming statements required té conduct all possible tetrad contrasts.

Table 22 contains the means and variance-covariance matrices for the repeated

measurements for the four groups of subjects. Figure 1 contains a plot of the mean
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support scores for each bra condition and cup size group. A variety of symbols are
used to denote the mean values associated with a particular group and lines connect
these symbols. Such plots of the déta may be conducted using any graphics or
statistical software package. The nonparallel lines in this graph are useful in
illustrating the existence of an interaction between cup size and type of bra and
provide a visual representation of the nature of the data. This graph illustrates that
individuals in the B and C groups gave very similar evaluations of support to all of
the bra conditions, while individuals in groups A and D responded in a much different
manner.

Table 23 contains the tetrad contrast t statistics, df, and p values produced
using the program developed by Lix and Keselman (in press). It is important to note
that the program computes F statistics (i.e., Equation 4.5), but these are easily
converted to t sta;istics via the relationship t = V'F.

Tablé 24 provides the significance criteria for each of the Hochberg (1988),
Shaffer (1986), and Studentized maximum modulus methods for the set of 18 tetrad
V contrasts. In this particular example all three methods produce the same significant
results,_ however, this may not always be the case.

With Hochberg’s (1988) step-up Bonferroni method, after ranking the p values
corresponding to the nonpooled t statistics, one begins by comparing the largest .p
value, which corresponds to the t statistic involving the 'second and third levels of the

grouping factor and the first and second levels of the RM factor (i.e., Pac; 12, tO
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Table 22

Means (3_() and Variance-Covariance Matrices (£) for Hypothetical Data Set

BR1 BR2 BR3
Group A (n, = 9)
Y, 20.556 35.778 45.667
E, 9.778 6.014 5.333
15.194 4.542
9.750
Group B (ng = 13)
Y, 14.385 22.769 36.308
£, 12.090 3.346 3.122
10.859 -1.756
10.731
Group C (n. = 8)
Y. _ 13.875 22.50 33.875
£e 4.125 -2.357 2.268
10.000 2.500
13.554
Group D (n, = 5)
Y, 25.200 44.600 27.600
2, 13.700 4.600 -3.900
14.800 2.300

2.300

Note: BR1 - BR3 = Bra conditions 1 through 3.



50

10

i I . i
BR1 . BR2 | BR3
Bra Condition
Figure 1. Graphical Representation of Mean Support Scores by Cup Size and Bra Condition
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Table 23

Tetrad Contrast Results for Hypothetical Data Set

RM Factor Levels in Tetrad Contrast

Group Factor Levels BR1-BR2 BR1-BR3 BR2-BR3
in Tetrad Contrast
A-B t 4.170 2.121 1.900
v, 18.590 19.894 19.516
p .0005 .0467 0724
A-C t 3.387 3.153 3.795
v, 13.692 13.623 14.403
p .0045 .0073 4738
A-D t 1.815 9.476 13.024
v, 7.047 -~ 5.704 9.313
p L1121 .0001 < .0001
B-C t 126 1.126 1.049
v, 14.090 16.341 16.740
p .9010 2765 .3089
B-D [ 4.873 7.947 14.508
v, 6.774 6.280 10.481
p .0020 .0002 < .0001
C-D t 4.322 6.955 12.926
v, 8.551 6.776 9.964
p .0022 .0003 < .0001

Note: t = tetrad contrast t statistic; », = error df; p = p value.
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Significance Criteria for Tetrad Contrasts
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RM Factor Levels in Tetrad Contrast

Group Factor Levels BR1-BR2 BR1-BR3 BR2-BR3
in Tetrad Contrast

A-B .0042* .0071 .0083
MSB .0042* .0071 .0083
M 3.388% 3.362 3.369

A-C .0056 .0062 .0250
MSB .0056 .0062 .0250
M 3.542 3.544 3.513

A-D .0100 .0033* .0029*
MSB .0100 .0042* .0042%*
M 4.151 4.481* 3.836*

B-C .0500 0125 0167
MSB .0500 .0125 .0167
M 3.526 3.449 3.437

B-D .0045* .0036* .0028*
MSB .0050* .0042%- .0028*
M 4.206%* 4.318%* 3.730%

C-D .0050* ..0038* .0030*
MSB .0050* .0042% .0042*
M 3.920%* 4.206* 3.773*

Note: H = Hochberg’s (1988) step-up Bonferroni; MSB = Shaffer’s (1986) modified

sequentially rejective Bonferroni; M = Studentized maximum modulus;
* = significant tetrad contrast.
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= .05. This statistic is not significant, and accordingly, the corresponding
hypothesis, Hy: (g - 82) - (c1 - Be2) = O, is retained. Testing proceeds by
comparing the next-largest p value, pu.c, 23 to .05/2 = .025, which is also
nonsignificant. The corresponding hypothesis can not be rejected, and neither can the
seven subsequent ones (in rank order) according to the criteria given in Table 24.
However, pa.c, 12y = -0045, which is compared to the criterion .05/9 = .0056,
produces a significant result. The corresponding hypothesis,
H.: (pas - pan) - (o1 - pe) = 0, is rejected, as are all of the remaining hypotheses
which have not been tested.

According to Shaffer (1986, Table 3, p. 829), the set of tetrad contrast
hypotheses that could possibly be true in a 4 x 3 design is given by
A, = {0- 10, 12, 18}. This implies that for testing the mth hypothesis, where
m=1,..., 18, fhe Significance level «/C, is computed by finding the maximum
value in the set A;; which is less than C - m + 1. Applying this rule, if one
hypothesis was rejected, tﬁen at most 12 remaining hypotheses could be true
(i.e., C; = 12) and the significance level for testing p, is .05/12. If, for example,
seven hypotheses were rejected then, at most, 10 of the remaining hypotheses could
be true and Cz = 10.
With Shaffer’s (1986) method, testing is also conducted on the ranked p‘

values, but begins with the smallest p value, pg.p. 23, Which is evaluated with the

criterion .05/18 = .0028. Since this result is significant, the corresponding

hypothesis, Ho: (g, - tps) - (upz - pps) = 0, is rejected. Testing proceeds by
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comparing the next-smallest p value, p,p. 53 to .05/12 = .0042, which also produces
a significant result. The next five p values (in ascending order of magnitude) are also
evaluated using this criterion, and all are declared significant; the two subsequent p
values, ppp. 12 and pep, 15, Which are both evaluated using the criterion

.05/10 = .005, are also significant. However, the next p value, which corresponds to
the hypothesis, H,: (ua; - pas) - (cy - pes) = 0, is compared to .05/9 = .0062. Since
this value is greater than the corresponding criterion, the corresponding hypothesis is
retained, as are all of the remaining hypotheses.

In order to apply the Studentized maximum modulus method to the data, a
table of CVs must be consulted. Such tables are available in a number of different
sources, such as Maxwell and Delaney’s (1990) text, but the most comprehensive set
is given by Hochberg and Tamhane (1987). Since the error df for the tetrad contrast t
statistics presented in Table 23 are fractional, in order to obtain an exact‘CV, linear

interpolation in 1/» is necessary, and can be accomplished using the formula

1/w_-1/ :
M =M -|_"= "l oMy, (7.1)
R VRS VP

where v, is the integer portion of »,, »,, = v, + 1, and M, is the CV for the selgcted
df, obtained from the Studentized maximum modulus distribution.

. In interpreting these findings, first consider the information conveyed by a
single tetrad contrast. For example, the signficant result associated with groups A and
B and the first and second bra conditions (i.e., the upper left-hand result in Table 24),

indicates that individuals with A and B cup sizes differ significantly in their evaluation
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of the support provided by the first and second bras. The most interesting results
given in Table 24 are that individuals with B and C cup sizes differ significantly in
their evaluations of the differences in support offered by all of the bras; this holds
true for individual wearing C and D cup sizes as well.

These results are more meaningful than those that could be obtained by
conducted simple effect tests. Suppose, for example, that the researcher elected to
compare support scores for the three bras within a particular cup size group. Such an
analysis would give no indication of the differences in perceived support offered by
different bras. Similarly, if support scores for a particular bra were compared across
the four groups of study participants, this would give no indication of how women of
different cup sizes differed in their evaluations of the investigated bras.

The findings of the analysis involving tetrad contrasts provides important
information that could be used_ by manufacturers of the sports bras considered in this
investigation. In order to differentiate their own product from competing products in
the marketplace, manufacturers need to attend to the bra attributes which contribute to
support, and provide different support features for women with different cup sizes.
This appears to be particularly important for women of larger cup sizes (i.e., C and
D), since women who wore A and B cup sizes tended to more similar in their :
perceptions of support across the different treatment conditions.

Summary of Results
The purpose of this study was twofold: (a) to examine applications of RM

methodologies in the C&T literature, particularly with respect to mixed designs and
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(b) to investigate various MCPs that are appropriate for probing interactions in mixed
designs. This research was undertaken to add to the extremely limited body of C&T
literatﬁre which has focussed on inadequacies in statistical analyses encountered in the
discipline. This study also contributes to the body of knowledge on valid analyses for
RM data, much of which is found in the psychological and statistical literature.

With respect to the first part of this project, a content analysis of the C&T
literature revealed a number of important characteristics of the use of RM
methodologies in this discipline. Research designs which incorporate correlated data
are used most often by researchers who are interested in understanding how
individuals perceive and evaluate clothing or textile products, but are used
infrequently in studies that have a retailing or marketing focus. In recognition of the
fact that many faetors may simultaneously impinge on individual responses to clothing
or textile products, C&T researchers typically use RM designs which contain more
than a single fgegor, but for unknown reasons, do not take full advantage of the
factorial data structure to test for the presence of variable interactions. When factorial
designs are used, C&T researchers are more often interested in understanding how
separate groups of individuals, who are classified on the basis of such variables as sex
-and age, differ in their responses. Furthermore, when interactions are tested in
factorial designs, it is typically the case that researchers do not adopt procedures
which will aid in the interpretation of the nature and source of the significant result.
Finally, in conducting tests of correlated effects, C&T researchers usually rely on

conventional methods of analysis, which are generally considered to be inappropriate
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due to the stringent assumptions that the data must satisfy in order for statistical
validity concerns to be overcome in hypothesis testing.

Given this background, alternative, robust methods for testing hypotheses on
omnibus interaction effects in mixed designs and for probing interactions were
discussed. With respect to the latter issue, the use of interaction, or tetrad, contrasts
was recommended, as such contrasts involve individual interaction components and
are not confounded by the presence of marginal effects, as is the case with tests of
simple effects.

The results of a simulation study provided empirical evidence of the extent of
the bias that may result from adopting a tetrad contrast procedure which relies on a
test statistic that ineorporates the conventional pooled estimate of error variance and
hence is depender}t on the stringent assumption of multisample sphericity. None of the
investigated procedures could control the familywise rate of Type I error when the
multisample sphericity assumption was not satisfied, regardless of whether the design
was balanced or unbalanced. However, the tetrad contrast procedures which used a
nonpooled test statistic that does not assume multisample sphericity, rarely resulted in
inflated Type I error rates, even under the most extreme depértures from this
assumption and when the data were nonnormal in form. When this test statistic was
used in conjunction with either of two stepwise Bonferroni methods or a methoci that
ineorporated Studentized maximum modulus critical values, the resulting test

procedures provided the greatest power to detect a nonnull effect.
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Conclusions

Investigations which incorporate multiple measurements on units of analysis
are popular in a wide variety of disciplines and can be useful in the study of research
problems which have a C&T orientation. A problem exists, however, in the lack of
adoption of procedures that will produce results which are both valid and meaningful.
More specifically, in situations where mixed designs are employed, C&T researchers
may not recognize that traditional methods of ‘analyzing correlated effects are unlikely
to be appropriate choices given the stringent derivational assumptions on which they
rest. Furthermore, traditional strategies for examining variable interactions in such
designs may not provide the information needed to adequately describe the nature and
source of these interactions. The data-analytic problems identified in this study are not
unique to the C&T discipline, as is evjdenced by research conducted in other fields of
scientific inquiry. However, they are of sufficient importance to be reemphasized in
an attempt to imp_r_gve methodological practice.

Although the application of omnibus procedures to test for the presence of an
interaction may be a popular approach, the nonpooled tetrad contrast procedures
considered in this paper should be regarded as viable and appealing methods for
probing interactions. An omnibus procedure can only be regarded as a preliminary
test which provides no information concerning the specific factor level combinations
which contribute to the presence of a significant interaction. Through a content
analysis of the C&T literature it was observed that researchers often choose to

conduct tests of simple main effects following a significant overall result; from a
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theoretical viewpoint, the correct strategy is to conduct mean comparisons which
reduce the overall interaction effect into its component parts, and, as a consequence,
allow for identification of the specific source(s) of the interaction.

Often a chief concern in conducting statistical tests is the availability of a
statistical software that will allow the researcher to conduct analyses of interest. The
procedures for probing interaction effects considered in this paper are easily applied
- to data obtained from mixed designs using a recently developed SAS/IML (SAS
Institute Inc., 1989a) program (Lix & Keselman, in press). The use of this program
for conducting tetrad contrasts was demonstrated using an example data set.

Recdmmendations for Future Research

The current research project provides the basis for future research in a number
of areas, includiqg statistical knowledge of applied researchers, testing variable
interactions, and approximate degrees of freedom test procedures. The following
discussion considers each pf these areas in turn.

One of the most important, but not unexpected, findings of the current review
of the C&T RM literature was that researchers continue to cling to conventional
methods of analyzing correlated effects, even though a series of studies have shown
such procedures to be inappropriate in the majority of data-analytic situations. A étudy
of the knowledge base and statistical decision-making strategies of researchers who
are likely to make use of RM designs might help to pinpoint reasons for failing to
consider alternative procedures and any barriers to the use of such procedures. For

example, researchers may be aware of the derivational assumptions underlying the
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statistical tests which they use, but may not perceive violations of these assumptions
as being relevant in their data analysis. However, as Moran (1986) has noted,
researchers should be encouraged to take a proactive role in removing the potential
for errors to occur in reported results.

The simulation study which investigated the use of tetrad contrasts for probing
interaction effects was limited to a situétion in which only a single dependent variable
was studied. Since many research problems are concerned with the simultaneous
investigation of more than one dependent variable, it would be beneficial to consider
the operating characteristics of the recommended procedures in multivariate mixed
designs (e.g., Robey & Barcikowski, 1986). Such a study could provide relevant
information to C&T researchers, as Damhorst (1990) has suggested that multivariate
designs should routinely be adopted because they will provide answers to the kinds of
complex research questions which C&T researchers should be addressing to promote
theory development in the field.

Furthermore, while the tetrad contrast procedures considered in this project
were only marginally affected by the degree and form of nonnormality investigated, it
would be worthwhile to investigate procedures that may be robust to the effects of
nonnormality. Wilcox (1993) suggests that more extreme degrees of skewness than
that considered in this study are likely to be encountered in social science data. He
considered the application of Yuen’s (1974) method for trimming aberrant scores from
the sample data (see also Yuen & Dixon, 1973) prior to computing an omnibus test

statistic in the simple RM design, and recommends this approach for a variety of
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forms of nonnormal data. However, Yuen’s approach was designed for use with
symmetric distributions in which nonnormality arises because of outliers and full
consideration how such an approach might operate for extreme degrees of skewness

has not yet been undertaken.
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Appendix B

Simulation Results for the Complete Null Hypothesis When N = 45
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Table Bl

Empirical FWRs for Tetrad Contrast Procedures Emploving a Pooled Test Statistic
(Complete Null Hypothesis: K = 4: N = 45)

Normal x*
S R H/MSB M S R H/MSB M
€
a .005* .015* .034 .035 .008* .021* .045 .046
b .014* .029 .056 .058 .018%* .032 .054 .057
c .007* .015* .035 .036 .006* .017* .034 .034
1.00 ¢’ .005* .008* .018* .019*% .004* .009* .024*  024*
d .029 052 0971 .099% .027 .053 .094 .098
d’ .050 0861  .1447  .147% 047 .079% 331 (1367
a .021* .040 .073 .075 .019* .037 .069 072
b .031 .051 082  .084f .030 .052 .0801 .0817%
c .019* 032 .056 .057 .016* .028 051 .052
5 ¢ .014%  .024%  .043 .044 .015%* .026 041 .042
d .053 0851 1221 .125% .047 075 181 L1215
d" .088% .120f .170Ff .172% 071 108 1637 L1677
a .064 0901  .139%7  .142% .063 .0967% JA391 (1425
b .074 .010* 1411  .143% 072 101 1461 1507
c .053 0767  .1107  .113% .055 0817 191 1227
40 ¢ .037 .055 0821  .084%t .040 .056 0851  .087%
d .099% .136% .185%f .187F 103 1475 1937 .1967%
d" 1327 1681  .217F  .2207 1397 .184% 2387 .2417%

NOTE: S = Scheffe (1953); R = Studentized maximum root; H/MSB = Hochberg
(1988) step-up Bonferroni/Shaffer (1986) modified sequentially rejective Bonferroni;
M = Studentized maximum modulus; a = pairings of equal covariance matrices and
equal group sizes; b = pairings of unequal covariance matrices and equal group sizes;
c/c’ = positive pairings of covariance matrices and group sizes [c: n, = 12, 15, 18;
¢ n; =9, 15, 21]; d/d" = negative pairings of covariance matrices and group sizes
[d: oy = 18, 15, 12; d": n; = 21, 15, 9]; * = empirical value < .025; ¥ = empirical
value > .075.
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Table B2

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic
(Complete Null Hypothesis;: K = 8: N = 45)

Normal x?
S R H/MSB M S R H/MSB M
€
a .000* .002* .035 .037 .000* .003* .047 .048
b .001* .007* .065 .066 .000* .008* 071 .072
c .000* .002*  .034 .035 .000* .003* .040 041
1.00 ¢ .000* .001* .023* .024* .000* .002* 022%  .022%*
d .002* .015* .120% @ .122% .003* .019* 1187 L1207
d .008* .040 L1981 .200% .010* .041 L1987 .202%
a .002*  .009* 074 .076% .002* .008* .065 .067
b .003* .020* .096%F .098f .003* .017* 094+  .095%
c .002* .013*  .060 .061 .003* .012* .063 .064
.75 ¢’ .001* .005* .033 .034 .001* .007* 042 .042
d .010* .035 1481  .150% .009* .032 1481 1517
d .021*  .065 2281 231§ .020%* .061 2231 .225%
a .016* .047 1561  .158% .010* .043 671 (1697
b .023* .063 .1841  .1857% .023* .064 1891 .191%
c .016* .043 1301 1317 .014* .045 A31F 1337
40 ¢ .008*  .028 0921 .094% .008* .025 0937 .094%
d .042 0931 2427 .244% 034 090+ 2337 .236%
d .070 1471 317% .319¢ .066 1417 3127 3147

Note: See the note from Table B1.



Table B3

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test

Statistic (Complete Null Hypothesis: K = 4: N = 45)

158

Normal X
S R H/MSB M S R HMSB M
€
a .007* .018* .037 041 .009* 017*  .035 .037
b .012* .023*  .040 .044 .009*  .019*  .035 .038
c .012*  .023* .040 .044 .008*  .018*  .036 .039
1.00 c¢" .009* .022* .036 .040 .008* 017 .030 .034
d .013* .025 .044 .049 013*  .025 .041 .046
d" .015* .028 .043 048 .016*  .029 .042 .047
a .009% .018* .036 .039 .005*  .013*  .027 .029
b .011* .024* .039 .043 .009*  .020*  .035 .038
¢ .007* .019% .033 .035 .006*  .016*  .031 .034
5 ¢ 011 .020%  .037 .042 .009*  .018*  .033 .036
d .012* .024* 041 046 .010*  .020*  .036 .040
d" .021* .036 .050 .057 .013* 027 .039 .044
a .005* .011* .018*  .019* .004*  .009*  .019* .020*
b .007* .014*  .024* .026 007+ .012*  .020% .021*
¢ .006* .013* .021*  .022% 007*  .013*  .024* 025
40 ¢ .008* .015% .025 .026 .006*  .010*  .018* .020*
d .005* .011* .020* .023* 011*  .018*  .030 .032
d" .010* .016* .023* 027 .014* .026 .035 .038

Note: See the note from Table B1.
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Table B4

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test
Statistic (Complete Null Hypothesis: K = 8 N = 45)

Normal X’
S R H/MSB M S R H/MSB M
€
a .001* .004* .034 .040 .000* .002* .024* 029
b .000* .005* .043 .049 .000* .004* .032 .038
¢ .001*  .006* .039 .047 .001* .004* .029 .036
1.00 ¢’ .000* .006* .044 .052 .000* .003* .026 .033
d .003* .011* .043 .057 .000* .004* 034 .042
d’ .004*  .015* .058 .073 .001* .010* .045 .057
a .001* .006* .038 .044 .000* .003* .022* 027
b .002*  .008* .045 051 .000* .005* .033 .039
¢ .001* .006* .040 .047 .000* .004* .028 .035
g5 ¢ .000’*7 .006*  .038 .043 .001* .002* .028 .033
d .002* .010* .044 .054 .000* .004* .036 .043
d" .005*%  .015*%  .049 .064 .003* .012%* 041 .052
a .000* .005* .029 .033 .000* .002* .020*%  .023%*
b .001* .005* = .029 .034 .001* .005* .032 .037
c .001* .003* .024* .029 .000* .005* .026 031
40 ¢ .001*  .006* .031 .035 .000* .002* .023* 026
- d  .001*  .007* .034 .041 .002* .008* .035 .045
d’ .003* .013* 041 .050 .006* .015%* .043 .052

Note: See the note from Table B1.
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Appendix C

¢ Simulation Results for a Partial Null Hypothesis
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Table C1

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic
(Partial Null Hypothesis: K = 4: N = 30)

Normal X

S R H MSB M S R H MSB M

a .003* .009* .026 .031 .023* .003* .010* .029 .036 .026
b .007* .013* .029 .033 .025 .005* .012* .030 .035 .024*
c .003* .006* .017* .018* .014* .004* .007* .018* .020* .015*
1.00 ¢ .001* .004* .010* .012* .010* .001* .003* .008* .010* .007*
d 011* .022* 053 .059 .046 .013* .025* .050 .057 .044
d’ .024* 041 .0821 .091% .073 026 .048 .092% .1017 .082%
a .011* .017* .038 .042 .033 .006* .015* .036 .040 .031
b .006* .012* .029 .032 .025* .006* .010* .028 .031 .023*
¢ .002* .007* .018* .021* .015* .003* .006* .016* .019* .014*
15 c' .001* .003* .009* .011* .008* .001* .004* .008* .009* .007*
d .010% .021* .049 .052 .043 011* .024* .052 .058 .045
d’ .023* 044 0811 .0881 .073 .021* .035 .0761 .0831 .067
a 026 .013* .071 .0767 .064 027 .041 .072 .0771 .065
b .012*% .020*% .041 .043 .035 .010* .020* .043 .044 .038
c .006* .013* .030 .032 .026 .005* .009* .022* .024* .019*
.40 c' .003* .007* .015* .017* .014* .006* .008* .016* .018* .014*
d .019* .032 .059 .061 .053 .021* .038 .063 .066 .056
d’ .034. .052 .0861 .091f .079% .034 .051 .0871 .092% .081%

NOTE: S = Scheffe (1953); R = Studentized maximum root; H = Hochberg (1988)
step-up Bonferroni; MSB = Shaffer (1986) modified sequentially rejective Bonferroni;
M = Studentized maximum modulus; a = pairings of equal covariance matrices and
equal group sizes; b = pairings of unequal covariance matrices and equal group sizes;
c/c’ = positive pairings of covariance matrices and group sizes [c: n; = 8, 10, 12;

¢t n; = 6, 10, 14]; d/d" = negative pairings of covariance matrices and group sizes
[d: n; = 12, 10, 8; d': n; = 14, 10, 6]; * = empirical value < .025; T = empirical
value > .075.



Table C2

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic

(Partial Null Hypothesis; K = 4: N = 45)
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Normal x*
S R H MSB M S R H MSB M
€
a .005* .011* .032 .034 .026 004* .010* .029 .034 .023*
b 007* .013* .031 .037 .024* .004* .010* .031 .035 .024%
c .003* .005* .017* .020* .012* .003* .007* .021* .023* .017*
1.00 ¢’ .002% .005* .011* .012* .009* .002* .005* .014* .015* .011*
d .011* .020*% .051 .056 .041 011* .020* .049 .052 .039
d’ .020* .041 .085%F .091% .070 .023* 040 .085% .091t1 .072
a .012* .020* .047 .052 .039 007* .018* .045 .049 .034
b .005*% .012* .034 .035 .027 .004* ,010* .032 .036 .025
c .001* .006* .018* .019* .014* .002* .004* .016* .017* .013*
.75 c' .000* .003* .010* .012* .007* .001* .003* .011* .013* .008*
d .010* .023* 054 .059 .044 .009* .018* .048 .052 .041
d’ 017*% .034 .0801 .0861 .068 019*% 036 .072 .077t .060
a .028 .039 .072 .075 .062 .020* .032 .063 .065 .055
b 012* .020*% .043 .046 .033 O011* .020% .043 .046 .037
c .007* .009* .026 .028 .022* .006* .010* .025 .027 .021%*
.40 c' .003* .006* .012* .013* .009* .003* .007* .015* .016* .013*
d 015*% .030 .061 .064 .052 016* 026 .058 .062 .048
d’ 030 .046 .088t% .0901 .075 .033 .051 .089t1 .077t .060

Note: See the note from Table C1; For ¢ condition, n; = 12, 15, 18; For ¢’ condition,
n; = 9, 15, 21; For d condition, n; = 18, 15, 12; For d’ condition, n; = 21,15, 9.



Table C3

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic

(Partial Null Hypothesis: K = 8: N = 30)
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Normal X
S R H MSB M S R H MSB M
€
a .000* .002* .026 .027 .024* .000* .002* .027 .028 .025
b .001* .004* .036 .038 .034 001* .005* .040 .042 .037
C .000* .002* .020* .021* .019* .000* .002* .022* .024* .020%
1.00 ¢’ .000* .000* .011* .012* .011* .000* .001* .012* .014* .012*
d .001* .009* .075 .077t .070 .002* .008* .073 .0771 .069
d’ .004* .022*% 1407 .144% 1311 .005* .025 .133% .1387 .125%
a .001* .006* .049 .050 .046  .001* .006* .049 .050 .047
b .001* .007* .046 .046 .042 .001* .007* .049 .050 .045
c .000* .001* .026 .027 .023* .000* .003* .028 .030 .026
75 c’ .000* .002* .014* .015* .013* .000* .002* .018* .020* .017*
d .003* .014* 0811 .084% .078F .004* .017* .090% .094% .086%
d’ .009*% .030 .134F .139% .128% .009* .030 .1381 .142% .134%
a .008* .030 .113f .1171 .110f .006* .024* 1111 .114% .108%
b .008* .027 .103% .105% .099%f .006* .022* .103% .106% .100t
c .006* .017* .075 .078% .072 .003* .014* 072 .074 .070
.40 c' .001* .010* .045 .046 .043 .003* .008* .049 .051 .048
d .016* .048 .157F .162% .151Ff .014* 043 .152% .155% .147%
d’ .030 .074 2157 .220F .2101 .024* .073 .212F .216%1 .206%

Note: See the note from Table C1.



Table C4

Empirical FWRs for Tetrad Contrast Procedures Employing a Pooled Test Statistic

(Partial Null Hypothesis: K = 8: N = 45)
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Normal x?
S R H MSB M S R H MSB M
€
a .000* .001* .030 .030 .027 .000* .001* .033 .034 .029
b .000* .003* .044 .044 .038 .001* .003* .038 .039 .033
c .000* .001* .026 .026 .023* .000* .001* .025 .025 .022*
1.00 ¢’ .000* .008* .010* .016* .009* .000* .000* .013* .014* .011*%
d .001* .008* .0791 .080t1 .071 .001* .009* .082% .083t1 .071
d’ .004* .017* .1371 .138% .123F .005* .019* .136% .1387 .126%
a .001* .005* .049 .050 .043 .002* .006* .052 - .053 .048
b .001* .006* .049 .050 .043 .001* .006* .047 .048 .043
c .001* .003* .029 .030 .026 .001* .005* .032 .033 .029
.75 c' .000* .002* .018* .018* .016* .000* .002* .019* .019* .017*
d .003* .011* .074 .075 .066 .003* .014* .0861 .089% .078%
d’ 006* .023* .135% .136%1 .1241 .007* .030 .140%1 .141% .129%
a .008* .028 .122% .123%1 .1161 .007* .027 .129%1 .131% A17%
b 009* .032 .109% .1101 .102+ .006* .026 .105% .106% .097%
c .003* .013* .072 .073 .066 .003* .011* 069 .070 .065
.40 c' .002*% .009* 044 .045 .040 .002* .009* .053 .053 .048
d 015* .047 .164% .1661 .1491 .012* .039 .150%1 .152% .138%
d’ 029 .0761 .2261 .2291 .2111 .025 .066 .200%1 .202%1 .192%

Note: See the notes from Tables C1 and C2.
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Table C5

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test Statistic
(Partial Null Hypothesis: K = 4: N = 30)

Normal X

S R H MSB M S R H MSB M

a .008* .013* .025* .030 .023* .003* .010* .020* .024* .019*
b .012* .018* .028 .033 .028 .006* .015* .026 .029 .026
c .010* .018* .029 .034 .029 .005* .009* .019* .023* .018*
1.00 ¢ .008* .015* .026 .031 .025 .006* .012* .021* .024* .021*
d .010* .020* .029 .034 .031 .008* .016* .026 .030 .028
d’ .013* .022* 029 .032 .034 012* .022* 032 .035 .034
a .007* .014* 025 .031 .023* .004* .010* .017* .022* .017*
b .009* .017* .028 .034 .028 .006* .013* .023* .027 .023*
c .008* .013* .028 .033 .026 .004* .011* .021* .026 .022*
15 c’ .008* .016* .029 .032 .027 .005* .010* .019* .023* .019*
d .010* .021* .031 .038 .034 .006* .014* .024* .031 .025
d’ .016* .025 .033 .038 .036 007* .015*% .023* .029 .027
a 007*% .013* .022* .026 .019* .003* .006* .013* .015* .011*
b .007*% .011* .024* .028 .021* .005* .010* .018* .022* .019*
c .006* .011* .025* .028 .021* .004* .009* .016* .018* .015%
.40 ¢’ .004* .010* .021* .025* .018* .004* .009* .017* .018* .014*
d .008* .014* .024* .028 .024* .008* .015* .026 .029 .025
d’ .010* .015* .025* .028 .025* .012* .020* .027 .029 .027

Note: See the note from Table Cl.
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Table C6

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test Statistic
(Partial Null Hypothesis: K = 4: N = 45)

Normal X

S R H MSB M S R H MSB M

a .006* .012* .030 .033 .024* .003* .007* .022* .024* .018*
b .008* .016* .032 .037 .029 .005* .013* .028 .033 .025*
c .006* .013* .031 .035 .025 .005* .012* .028 .031 .023*
1.00 ¢ .005* .011* .032 .037 .026 .004* .009* .024* .029 .020*
d .007* .015* .032 .037 .030 006* .012* 026 .031 .024*
d’ .009* .015* .028 .034 .028 .008* .015* .028 .032 .028
a .005* .011* .030 .036 .026 .005* .011* .025* .027 .020*
b .007* .013* .031 .035 .025 006* .014* .028 .031 .024*
c .006* -.013* .033 .036 .026  .005* .008* .022* .027 .017*
75 c’ .005* .011* .031 .034 .023* .003* .008* .024* .026 .018*
d .008* .020*% .035 .039 .032 .007* .014* 025 .030 .023*
d’ .006* .012* .028 .031 .026  .004* .012* .023* .028 .021*
a .005* .011* .026 .028 .021* .002* .005* .016* .017* .013*
b .006* .012* .026 .029 .022* .005* .011* .022* .024* .019*
.40 c .003* .008* .022* .025*% .018* .005* .010* .022* .025* .019*
c' .005* .009* .025 .027 .021* .003* .007* .021* .023* .016*
d .004* .008* .023* .027 .018* .005* .011* .020* .023* .018*
d’ .006* .012* .025 .028 .020* .008* .016* .027 .032 .026

Note: See the notes from Tables C1 and C2.
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Table C7

Empirical FWRs for Tetrad Contrast Procedures Emploving a Nonpooled Test Statistic
(Partial Null Hypothesis;: K = 8: N = 30)

Normal X

S R H MSB M S R H MSB M

a .001* .006* .026 .029 .032 .001* .002* .015* .017* .019*
b .002* .007* .028 .032 .040 .001* .005* .018* .020* .025
c .001* .005* .026 .030 .035 .001* .004* .014* .016* .021*
1.00 ¢’ .002* .007* .028 .029 .036 .001* .004* .016* .018* .020*
d .002* .009* .036 .040 .049 .001* .006* .028 .032 .037
d’ .006* .017* .045 .049 .064 .003* .008* .028 .030 .039
a .002* .006* .025 .027 .031 .000* .003* .017* .019* .024*
b .001* .006* .029 .032 .039 .001* .004* .020* .022* .026
c .002* .006* .027 .029 .037 .001* .003* .021* .023* .027
15 c’ .001* .005* .025 .026 .034 .001* .003* .017* .020* .025
d .002* .010* .035 .037 .047 .002* .008* .027 .029 .036
d’ .009* .021*% .048 .051 .063 .004* 013* .031 .033 .042
a .000* .002*_.020* .020* .025 .001* .004* .015* .016* .018*
b .002* .006* .025 .027 .031 .001* .004* .019* .020* .025
c .001* .005* .021* .023* .027 .000* .004* .018* .019* .023*
.40 c’ .001* .005* .019* .021* .025 .001* .003* .013* .014* .019*
d .002* .007* .030 .032 .038 .001* .005* .024* .025 .030
d’ .006* .014* .034 .036 .047 .004* .013* .034 .037 .047

Note: See the note from Table C1.
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Table C8

Empirical FWRs for Tetrad Contrast Procedures Employing a Nonpooled Test Statistic
(Partial Null Hypothesis: K = 8: N = 45)

Normal X

S R H MSB M S R H MSB M

a .001* .004* .027 .029 .029 .000* .001* .016* .017* .017*
b .001* .005* .033 .035 .035 .000* .002* .020* .021* .022%*
c .001* .004* .028 .030 .029 .001* .003* .019* .019* .019*
1.00 ¢ .000* .002* .025 .027 .027 .000* .002* .018* .019* .020%*
d .001* .007* .035 .037 .039 .000* .006* .030 .032 .032
d’ .000* .008* .034 .037 .041 .001* .007* .032 .034 .038
a .000* .003* .030 .031 .032 .000* .003* .020* .021* .020*
b .000* .004* .030 .030 .031 -.000* .003* .024* .026 .026
c .000* .002* .029 .030 .031 .000* .001* .021* .022* .023*
15 c’ .000* .004* .028 .029 .029 .000* .001* .020% .021* .021*
d .000* .005* .028 .031 .033 .001* .004* .027 .029 .030
d’ .002* .006* .029 .032 .037 .000* .005* .024* .028 .030
a .001* .003* .028 .028 .026 .000* .001* .017* .017* .016*
b .000* .003* .025 .026 .026 .001* .003* .025 .025 .024+*
c .000* .002* .025 .025 .022* .000* .002* .020* .026 .019*
.40 c’ 001* .003* .022% .023* .021* .000* .002* .019* .019* .018*
d .001* .004* .024* .025 .025 .001* .003* .022* .023* .023*
d’ .003* .008* .031 .032 .036 .002* .008* .028 .030 .032

Note: See the notes from Tables C1 and C2.
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Appendix D

Example Data Set and Computer Programming Statements for
Tetrad Contrasts Example
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Hypothetical Data Set

BR1 BR2 BR3
Group A (n, = 9)
19 31 42
26 40 47
18 39 41
21 42 50
18 33 43
19 35 45
23 36 - 49
24 35 47
< 17 31 47
Group B (ng = 13)
14 20 36
11 23 31
15 21 38
10 19 42
16 30 40
21 26 37
10 20 37
12 23 32
13 21 34
13 26 35
20 20 40
17 21 37
15 26 33
Group C (ne = 8)
17 19 33
16 21 37
15 25 31
13 20 35
11 25 30
14 22 37
13 28 39
12 20 29
Group D (n, = 95)
21 46 30
27 50 28
30 45 26
22 40 27
26 42 27

Note: BR1 - BR3 = Support scores for bra conditions 1 through 3
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SAS/IML Program from Lix and Keselman (in press)

***INVOKE THE IML PROCEDURE & DEFINE THE MODULE WJIGLM***:
PROC IML; -
RESET NONAME:;
START WIGLM:;
el x*PERFORM DIAGNOSTICS AND DEFINE MATRICES*###*#**xxx*.
IF NROW(U)=0 THEN U=I(NCOL(Y));
IF NROW(C) > NCOL(C) THEN PRINT
"ERROR: NUMBER OF ROWS OF C EXCEEDS NUMBER OF COLUMNS’:
IF NCOL(U) > NROW(U) THEN PRINT
"ERROR: NUMBER OF COLUMNS OF U EXCEEDS NUMBER OF ROWS’:
DO I=1 TO NCOL(NX);
X1=J(NX[I],1,D);
IF I=1 THEN X=XI;
ELSE X=X//X1;
END;
X=DESIGN(X);
NTOT=NROW(Y);
WOBS=NCOL(Y);
BOBS=NCOL(X);
WOBS1=WOBS-1;
el 4 FORM SIGMA MATRIX AND VECTOR OF MEANS **##sfsfssks.
BHAT=INV(X‘*X)*X‘*Y:
MUHAT=SHAPE(BHAT,WOBS#BOBS);
SIGMA =J(WOBS#BOBS, WOBS#BOBS,0);
DF=NX-1;
DO I=1 TO BOBS; v -
SIGB=(Y#X[,I]-X[,I]*BHATII, ])‘*(Y#X[ II-X[,I]*BHATIL,])/DF[I];
F=I#WOBS-WOBS1;
L=I#WOBS;
SIGMA[F:L,F:L}=SIGB/NX{I];
END:;
**********CALCULATE TEST STATISTIC, DF, AND P- VALUE**********
R=C@U"; ‘
T=(R*MUHAT)“*INV(R*SIGMA*R‘)*(R*MUHAT);
A=0;
IMAT=I(WOBS);

"From "Approximate Degrees of Freedom Tests: A Unified Pefspective on Testing for
Mean Equality” by L. M. Lix and H. J. Keselman, in press, Psychological Bulletin.
Copyright 1995 by the American Psychological Association. Reprinted by permission.
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DO I=1 TO BOBS;
QMAT =J(BOBS#WOBS,BOBS#WOBS,0);
F=I#WOBS-WOBSI;
L=I#WOBS;
QMATI[F:L,F:L]=IMAT;
PROD =(SIGMA*R)*INV(R*SIGMA*R)*R*QMAT;
A=A+(TRACE(PROD*PROD)+TRACE(PROD)**2)/DF[I];
END;
A=A/2;
DF1=NROW(R);
DF2=DF1#(DF1+2)/(3#A);
CVAL=DFI1+2#A-6#A/(DF1+2);
RESULTS=J(4,1,0);
RESULTS[1]=T/CVAL;
- RESULTS[2]=DFI;
RESULTS[3]=DF2;
RESULTS[4]=1 - PROBF(RESULTS[1],DF1,DF2);
PRINT "WELCH-JAMES APPROXIMATE DF SOLUTION’;
PRINT *CONTRAST MATRIX:’;
PRINT R[FORMAT=4.1},;
MUHAT=MUHAT";
PRINT "MEAN VECTOR:’;
PRINT MUHAT[FORMAT=10.4],;
PRINT ’SIGMA MATRIX:’;
PRINT SIGMA[FORMAT=10.4],;
RESLAB={"TEST STATISTIC" "NUMERATOR DF" "DENOMINATOR DF"
"P-VALUE"};
PRINT °SIGNIFICANCE TEST RESULTS:’;
PRINT RESULTS[ROWNAME=RESLAB FORMAT=10.4]/;

FINISH; ’

At this point, the SAS/IML code needed to run the program for a particular research
design is input. :



SAS/IML Programming Statements for Tetrad Contrasts

Y = {19 31 42, 26 40 47, 18 39 41, 21 42 50, 18 33 43, 19 35 45, 23 36 49,
24 35 47, 17 31 47, 14 20 36, 11 23 31, 15 21 38, 10 19 42, 16 30 40,
2126 37, 10 20 37, 12 23 32, 13 21 34, 13 26 35, 20 20 40, 17 21 37,
1526 33, 17 19 33, 16 21 37, 15 25 31, 13 20 35, 11 25 30, 14 22 37,
13 28 39, 12 20 29, 21 46 30, 27 50 28, 30 45 26, 22 40 27, 26 42 27};
NX = {9 13 8 5};

C={1-100}

U ={1, -1, 0};

PRINT A VS B ON BR1 & BR2’;

RUN WIGLM;

U={1,0, -1}

PRINT A VS B ON BR1 & BR3’;

RUN WIGLM;

U = {0, 1, -1};

PRINT A VS B ON BR2 & BR3’;

RUN WIGLM;

C={10-10};

U = {1, -1, 0};

PRINT A VS C ON BR1 & BR2’;

RUN WIGLM;

U={1,0,-1};

PRINT A VS C'ON BR1 & BR3’;

RUN WIGLM;

U ={0, 1, -1};

PRINT A VS C ON BR2 & BR3’;

RUN WIGLM; T

C={100-1};

U ={1,-1,0};

PRINT A VS D ON BR1 & BR2’;

RUN WIGLM;

U ={1,0, -1}

PRINT A VS D ON BR1 & BR3’;

RUN WIGLM;

U=1{01,-1};

PRINT A VS D ON BR2 & BR3’;

RUN WIGLM;

C={010-1};

U ={1, -1, 0}:

PRINT °B VS D ON BR1 & BR2’;

RUN WIGLM;

U=1{1,0,-1};

PRINT B VS D ON BR1 & BR3’;
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RUN WIGLM;
U= {0, 1, -1}
PRINT B VS D ON BR2 & BR3’;
RUN WIGLM;
C=1{001-1}
U = {1, -1, 0};
PRINT "C VS D ON BRI & BR2’;
RUN WIGLM;
U =1{1,0,-1}
PRINT "C VS D ON BRI & BR3’;
RUN WIGLM;
U= {0, 1, -1};
PRINT °C VS D ON BR2 & BR3’;
RUN WIGLM;
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doctoral dissertation entitled "Probing interactions in repeated
measures designs: Applications in clothing and textiles
research”. Please note that I was the individual who originally
developed this computer program, and that I plan to reproduce the
entire program in my dissertation. :

Sincerely,

Lisa M. Lix -
pPh. D. Candidate

Pernission granted without fee for non-exclusive, one time

use of APA-copyrighted material for the purposes stated in

your request. Permission does not apply to future editions

of your work or to its appsarance in 5 format different from

that For which you have requested permigsion., nted material
nust include full biblicgraphic citation and ti following notice.d

Copyright 19 . by the Amerlcan Pgychological A sgociation.,
‘Reprinted (ox Adapted) by permission.
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