
New Genetic Algorithms for Exploring Design Parameters for

MEMS

By

Ehimwenma Valerie Obaseki

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES OF
THE UNIVERSITY OF MANITOBA
IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

© Copyright by Ehimwenma Valerie Obaseki, 2017

ii

This work is dedicated to my mum and dad (Dr & Mrs Chris Obaseki) for their endless

love and support and for starting me on this journey and supporting me throughout the

journey.

iii

ABSTRACT	
The design of complex MEMS systems can be time consuming when many variables and

geometric parameters are required. Proper exploration of the design space, which is

required for finding good solutions have been a major challenge. This thesis applies novel

genetic algorithm methods (AVGM, RBAM and MORBAM) to the design of micro-

electromechanical systems (MEMS). The main objectives of the algorithms, which are

introduced in this thesis is better identification of high performance region for MEMS

geometry design and faster computational time. The Average-Mixture (AVGM) and the

Random Based Average Mixture (RBAM) Genetic Algorithm methods are applied to the

single objective problems while the Multi-Objective Random Based Method is applied to

the multi-objective problems. The main advantages of the methods over the traditional

genetic algorithm methods are their ability to identify high performance regions while

maintaining diversity by exploring the search space efficiently. These algorithms provide

many good results, which are diverse in nature.

iv

ACKNOWLEDGEMENT	

I will like to thank God Almighty for seeing me through my program.

My sincere appreciation goes to my advisor Dr. Cyrus Shafai for his guidance, mentorship

and endless support throughout my graduate program.

I will also like to thank Dr. Ken Ferens and Dr. Dean McNeil for their assistance and the

knowledge they instilled in me while offering their courses in class.

I also appreciate my family for their support and encouragement throughout my program.

My mum and dad (Dr and Mrs Chris Obaseki) sponsored and encouraged me through the

process from the beginning to the end and I am very grateful to them.

I appreciate my husband (Emmanuel Briggs) whom I got married to while completing my

program for his love and support.

I will also like to thank Amy Dario for all her administrative assistance throughout the

program. She’s been nice and really supportive from the moment I started my program to

when I ended the program.

My appreciation also goes to Mount-First Ng, Guy Jonatschick and other Faculty of

Engineering members who in one way or the other made it possible for me to complete my

program by maintaining the computer systems and keeping the servers working.

v

TABLE OF CONTENT

	
ABSTRACT	...	iii	

ACKNOWLEDGEMENT	..	iv	

TABLE OF CONTENT	..	v	

LIST OF FIGURES	...	vii	

LIST OF TABLES	..	ix	

CHAPTER 1	...	1	
INTRODUCTION	...	1	

1.1	 MEMS SYSTEM DESIGN AND GENETIC ALGORITHM	..	1	
1.2 GENETIC ALGORITHM	..	5	
1.2	 STRENGTHS OF GENETIC ALGORITHM	..	5	
1.4 FACTORS TO CONSIDER WITH GENETIC ALGORITHM	...	6	
1.5 THESIS OBJECTIVE	..	7	
1.6 THESIS OUTLINE	..	9	

CHAPTER 2	...	10	
GENETIC	ALGORITHM	BACKGROUND	...	10	

2.1	 THE ALGORITHM	...	10	
2.2	 GA BASIC OPERATIONS	..	12	
2.4	 MULTI-OBJECTIVE GENETIC ALGORITHM	..	16	

CHAPTER 3	...	18	
3.1	 Average Mixture (AVGM)	...	20	
3.2	 Random-based Average Mixture (RBAM)	...	26	
3.3	 Multi-objective Random-based Average Mixture (MORBAM)	30	
3.4	 The GAs Evaluation	...	32	

CHAPTER 4	...	33	
APPLICATION	OF	GENETIC	ALGORITHM	TO	A	SIMPLE	END	LOADED	CANTILEVER	BEAM	WITH	
AND	WITHOUT	MASS	..	33	

4.1	 MEMS CANTILEVER BEAM	..	33	
4.1.1	End	loaded	Cantilever	(Concentrated	load	at	free	end)	..	34	
4.2 DESIGN PARAMETERS USED FOR THE CANTILEVER BEAM	35	

CHAPTER 5	...	37	
COMPLETE	DESIGN	OF	COMB	DRIVE	..	37	

5.1	 INTRODUCTION TO MEMS COMB DRIVE	...	37	
5.2	 LATERAL DEFLECTION	..	38	
5.3 SPRINGS AND FLEXURAL DESIGN FOR THE COMB DRIVE ACTUATOR	39	
5.4 FOLDED FLEXURE	...	40	
5.5 APPLICATION OF GENETIC ALGORITHM TO COMB DRIVE	42	

CHAPTER 6	...	44	
EVALUATION	OF	THE	AVGM	AND	RBAM	GENETIC	ALGORITHMS	IN	FULFILMENT	OF	
OBJECTIVES	...	44	

vi

6.1	 EXPLORATION AND EXPLOITATION	...	44	
6.2 DIVERSITY CREATED BY THE ALGORITHM	..	47	
6.3 INITIAL STARTING POPULATION AND SELECTED SUBSET	48	
6.4 SELECTION TECHNIQUE	...	49	
6.5	MEAN VALUE	..	53	
6.6 CROSSOVER EFFECT	...	55	
6.7 MUTATION EFFECT	...	58	

CHAPTER 7	...	61	
MULTI-OBJECTIVE	GENETIC	ALGORITHM	...	61	

7.1	 EVALUATION	OF	MORBAM	GENETIC	ALGORITHMS	APPLIED	TO	THE	CANTILEVER	AND	
COMB	DRIVE	ACTUATOR	..	63	
7.2	 MULTIOBJECTIVE	EVALUATION	OF	THE	CANTILEVER	...	63	

CHAPTER 8	...	71	
CONCLUSION	AND	FUTURE	WORK	...	71	

REFERENCES	...	73	

APPENDIX		A:	MATLAB		CANTILEVER		AVGM	CODE	...	78	

APPENDIX	B:	MATLAB	CANTILEVER		RBAM		CODE	...	82	

APPENDIX	C:	MATLAB	MORBAM	CANTILEVER	CODE	...	86	

APPENDIX	D:	PYTHON		RBAM		CANTILEVER	CODE	..	95	

APPENDIX	F:	RBAM	COMB	 DRIVE	..	98	

APPENDIX	E:	MATLAB	MORBAM	COMB	DRIVE	CODE	...	102	

		

	

	

	

	

	

	

	

	

	

	

	

	
	

vii

LIST OF FIGURES

Figure	1.1	MEMS	Cantilever	Beam	..	2	

Figure	1.2	MEMS	Comb	Actuator	..	3	

Figure	2.1	The	Genetic	Algorithm	...	11	

Figure	2.2	Genetic	Algorithm	Population	..	12	

Figure	2.3	Single	Point	Crossover	..	14	

Figure	2.4	Two	Point	Crossover	..	15	

Figure	2.5	Uniform	Crossover	...	15	

Figure	3.1	RBAM	and	AVGM	GA	methods	...	23	

Figure	3.2	MORBAM	GA	...	31	

Figure	4.1	The	Cantilever	Beam	..	33	

Figure	5.1	The	Comb	Drive	..	37	

Figure	5.2.		Folded	Flexure	..	40	

Figure	6.1(a)	Shows	results	obtained	using	the	AVGM	for	the	cantilever	beam	(b)	shows	
results	obtained	using	RBAM	for	the	cantilever	beam	(c)	shows	results	obtained	using	
the	AVGM	for	the	comb	drive	actuator	(d)	shows	results	obtained	using	RBAM	for	the	
comb	drive	actuator.	..	44	

Figure	6.2(a,c,e)	Shows	the	results	obtained	using	the	AVGM	for	the	length,	width	and	
thickness	of	the	cantilever	beam	respectively	(b,d,f)	shows	number	of	solutions	
obtained	using	RBAM	for	the	length,	width	and	thickness	of	the	cantilever	beam	46	

Figure	6.3(a)	Shows	the	number	of	solutions	obtained	using	the	AVGM	for	the	cantilever	
beam	(b)	shows	number	of	solutions	obtained	using	RBAM	for	the	cantilever	beam	(c)	
shows	number	of	solutions	obtained	using	the	AVGM	for	the	comb	drive	actuator	(d)	
shows	number	of	solutions	obtained	using	RBAM	for	the	comb	drive	actuator.	48	

Figure	6.4(a)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	cantilever	
beam	without	elitism,	(b)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	
the	comb	drive	without	elitism.	..	50	

Figure	6.5	(a),	(b),	(c),	(d)	Shows	the	number	of	solutions	obtained	using	the	AVGM	for	
the	cantilever	beam	with	different	percentage	selected	as	elite.	(a)	10%,	(b)	20%,	(c)	
40%,	(d)	50%.	...	51	

Figure	6.6	(a),(b),(c),(d)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	
cantilever	beam	with	different	percentage	selected	as	elite.	(a)	15%,	(b)	30%,	(c)	39%,	(d)	
45%.	...	52	

Figure	6.7(a),(c)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	
cantilever	beam	with	different	percentage	selected	as	mean	value.	(a)	1%,	(c)	4%.	(b),(d)	
Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	comb	drive	actuator	

viii

with	different	percentage	selected	to	as	mean	value.		(b)	1%,	(d)	4%.	53	

Figure	6.8(a),(c)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	
cantilever	beam	with	different	percentage	selected	as	mean	value.	(a)	8%,	(c)	15%.	
(b),(d)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	comb	drive	
actuator	with	different	percentage	selected	to	as	mean	value.		(b)	8%,	(d)	15%.	54	

Figure	6.9	Shows	the	number	of	solutions	obtained	using	the	AVGM	for	the	cantilever	
beam	with	different	percentage	of	gene	selected	for	crossover.	(a)	33.3%,	(b)	66.6%.	
Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	cantilever	beam	with	
different	percentage	selected	for	crossover.	(c)	33.3%,	(d)	66.6%.	55	

Figure	6.10	Shows	the	number	of	solutions	obtained	using	the	AVGM	for	the	comb	drive	
actuator	with	different	percentage	of	gene	selected	for	crossover.	(a)	12.5%,	(b)	25%,	(c)	
37.5%,	(d)	50%.	...	56	

Figure	6.12	(a),(c)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	
cantilever	beam	with	different	percentage	selected	to	mutate.	(a)	1%,	(c)	5%.	(b),(d),	
Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	comb	drive	actuator	
with	different	percentage	selected	to	mutate.	(b)	1%,	(d)	5%.	59	

Figure	6.13	(a),(c)	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	
cantilever	beam	with	different	percentage	selected	to	mutate.	(a)	10%,	(c)	15%.	(b),(d)	
Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	comb	drive	actuator	
with	different	percentage	selected	to	mutate.	(b)	10%,	(d)	15%.	60	

Figure	7.1.	(a),	shows	how	increase	in	deflection	for	the	cantilever	causes	a	decrease	in	

resonance	frequency	(106),	(b)	shows	the	maximum	result	that	can	be	found	when	
evolving	the	algorithm	towards	a	single	objective	(deflection).	62	

Figure	7.2)	Shows	result	using	MORBAM	for	resonance	frequency	(106)	and	deflection	
and	b)	shows	result	obtained	using	RBAM.	...	64	

Figure	7.3	Results	obtained	using	the	MORBAM	for	the	cantilever	a)	10%	elite,	b)20%	
elite,	c)30%	elite,	d)	40%	elite.	..	65	

Figure	7.4	Results	obtained	using	the	MORBAM	for	the	cantilever.	a)50%	elite,	b)60%	
elite,	c)70%	elite,	d)80%	elite,	e)90%	elite.	...	66	

Figure	7.5	Results	obtained	using	the	MORBAM	for	comb	drive.	a)	10%	elite,	b)	20%	
elite,	c)	30%	elite,d)	40%	elite.	..	68	

Figure	7.6	Results	obtained	using	the	MORBAM	for	comb	drive.	a)50%	elite,	b)60%	elite,	
c)70%	elite.	..	69	

Figure	7.7	Results	obtained	using	the	MORBAM	for	comb	drive.	a)80%	elite,	b)90%	elite.
...	70	

ix

LIST OF TABLES
Table 2.1: GA Terms and their Meaning	...	11	

Table 3.1: Variable and their Representation	..	19	

Table 3.2: GA representation	...	32	

Table 4.1: Material Properties of Poly-silicon	..	36	

Table 4.2: Genetic Algorithm Parameters for Cantilever	..	36	

Table 4.3: GA representation	...	36	

Table 5.1: Design Parameters for Comb Drive GA	...	43	

Table 6.1: Plot Terms and Meaning	...	47	

Table 7.1: Multi-Objective GA representation for the Cantilever Beam	64	

Table 7.2: Objectives for the Comb Drive Actuator	..	67	

1

	
	
	
CHAPTER 1
INTRODUCTION

1.1 MEMS SYSTEM DESIGN AND GENETIC ALGORITHM

Micro-electromechanical systems (MEMS) refer to systems with at least one dimension

being small in the order of micrometers, and which combine electrical and mechanical

properties. They are fabricated with the use of integrated circuit batch- processing

technologies [2]. These systems are often more reliable than macro systems, are light-

weighted with low cost, can produce high frequency operation. They are applied in the

automotive industry, for example in the use accelerometer for airbag system. MEMS

applications also extend to the industrial, military and consumer market. MEMS are used in

life science and technology for tissue engineering, smart bandages, implantable devices,

drugs delivery etc. They are also used in personal care and technology for sensor (used for

safety and health monitoring), built-in cooling system. They are used in electronics for high

capacity batteries, fuels cells, printers etc.

MEMS are made up of four different components; Microelectronics, Microactuators,

Microstructures and Microsensors. They are applicable in various industrial, and medical

fields and there is need to improve their design by optimizing the modeling techniques and

creating strategies to aid in their design (some analysis needs to be done before the

fabrication process). Searching for the right design parameters can be a complicated process

without the knowledge of how to start. Traditional methods of designing complex MEMS

have been improved with the use of computational modeling simulation software. However,

this presents challenges because a lot of experiments and simulations for various design

2

options still have to be performed with software.

Optimization algorithms that are robust need to be introduced for better exploration of

the search space. MEMS designs usually involve systems with numerous design variables

and conflicting objectives. For example, consider a simple MEMS cantilever beam in Fig.

1.1, obtaining a high resonance frequency would mean lower deflection and vice versa.

These objectives are dependent on the length, width, thickness and the material property of

the cantilever beam. These numerous design variables can be quite time consuming to find

and \would require a robust search algorithm for the exploration of the search space.

Optimizing the design the comb actuator of Fig. 1.2 poses a greater challenges, and again

there are conflicting objectives that need to be managed.

Figure 1.1 MEMS Cantilever Beam

3

Figure 1.2 MEMS Comb Actuator
There are different methods of searching for suitable and optimized solutions that can

be used for MEMS design. Some examples are brute force (exhaustive search), hill

climbing, simulated annealing, and genetic algorithm.

The exhaustive search involves exploring the entire search space. This could require a

lot of computational time.

Hill Climbing is quite different from simulated annealing and genetic algorithm in the

way it accepts solutions, it has a way of accepting better solutions. It starts with an initial

solution, generates some neighboring solutions, selects the best and continues until better

neighboring solutions are founds. It searches by walking its way up until it can’t find any

neighboring solution better than the present solution, then it stops. One major drawback to

this approach is that it might end up in the local optimum. When the algorithm stops, there’s

a possibility that it can get to a low point before climbing back up and so accepting weaker

solutions to attain the global optimum is sometimes needed. This makes the algorithm quite

a greedy search for always going with the better solution.

Simulated annealing idea borrows its name from the industrial process of annealing

4

where the material is heated above critical point to soften it and it is gradually cooled in

order to erase defects in its crystalline structure producing more stable and regular lattice

arrangement of atoms [3]. Similar to genetic algorithm, the simulated annealing process also

involves the use of a fitness function. The simulated annealing process only involves one

candidate solution as opposed to that of GAs, which consists of a population of candidate

solutions. Although hill climbing has a means of generating good solutions, simulated

annealing has a better way of avoiding getting stuck in the local optimum. Simulated

annealing escapes this local optimum by the way it accepts its solutions by accepting weaker

solutions occasionally. If the neighboring solution is better than the current solution, it

accepts it unconditionally. If the solution is worse than the current solution it considers

certain factors like how bad the solution is and how high the temperature (annealing

schedule) is. The algorithm is likely to accept worse solutions with higher temperature.

A genetic algorithm (GA) is an evolutionary algorithm that can be used for optimizing

engineering design parameters. GAs are optimization techniques that apply natural selection

and are from the family of evolutional algorithms. Genetic algorithms basically use

“survival of the fittest”, in which the fittest individuals are likely to make it to the next

generation for crossover. Genetic algorithms (GAs) make use of exploration and

exploitation by searching the search space and exploiting the good solutions.

Genetic algorithms don’t necessarily find the best solution (global optimum) but they

deal with solutions that are good enough. GAs possess several traits, which makes them

distinct from other Evolutionary Algorithms; they make use of the crossover and mutation

operators that help maintain certain amount of diversity in the population and prevents it

from being stuck in the local optimum. This diversity helps the algorithm achieve a global

search faster because it gives the GA the opportunity to explore the space faster for

5

possible solutions. At the beginning high diversity is maintained but towards the end, the

diversity should be kept minimum to avoid losing the good accumulated results.

1.2 GENETIC ALGORITHM

There are two categories of genetic algorithms solution problems namely;

• Single-objective genetic algorithm

• Multi-objective genetic algorithm

A single objective problem would be designing a physical system that has only one

objective function. The task of finding a single optimum solution is called single-	objective	

optimization	and the problem is called single-objective	problem	[1]. The single-objective

problem is a useful tool, which provides insights to the nature of the problem [1].

A multi-objective problem involves one or more competing or conflicting problems, the

task of finding one or more optimum solutions is known as multi-objective	optimization	

and the problem is called multi-objective	problem	[1].

1.2 STRENGTHS OF GENETIC ALGORITHM

There are several strengths a GA has namely;

• The most noticeable advantage of genetic algorithm is its parallelism. Most other

algorithms can find one solution at a time and if something happens the work is

abandoned and restarted. In a genetic algorithm, there’s an option to explore

multiple spaces at once due to the number of individuals or offspring. Weaker

regions can be ignored to aid the exploitation of promising regions. These factors

help the algorithm have a better chance at reaching the global optimum.

• As a result of this parallelism, many solutions can be evaluated at once. It is

particularly useful in scenarios where there are a huge number of potential

solutions. As a result of this, optimal or very good results can be found in a short

6

period of time.

• Another strength of genetic algorithm is its potential ability to escape the local

search space. In a scenario where there is a vast solution space (similar solutions),

it can be easy to settle in the local search space. Genetic algorithm operators like

population size, crossover and mutation are significant in aiding this escape and

leading the algorithm to the global search.

• The genetic algorithm has the ability to manipulate multiple parameters

simultaneously and this helps in finding multiple solutions especially in cases

where there are multiple objectives. If there is a chance that improving one

objective doesn’t necessarily decrease the other objective, the algorithm can be

pretty good at discovering it.

1.4 FACTORS TO CONSIDER WITH GENETIC ALGORITHM

There have been some problems with traditional genetic algorithm methods and

previous research works have been done to make the algorithm more efficient. Some of the

limitations observed over the years are as follows:

• The representation of the problem.

• Construction of the fitness function so that the fitness function can be found.

• Deceptive fitness function providing misleading information about the global

search space.

• The computational time.

• Proper optimization of the crossover and mutation technique. The crossover and

mutation techniques can be found that are capable of exploiting the solution space

in an efficient manner.

• Maintaining diversity, which helps prevent the loss of good solutions.

7

• Starting with a suitable population size to ensure proper exploration of the search

space.

• Preventing early convergence as a result of loss of diversity in the population.

1.5 THESIS OBJECTIVE

The main objective of this thesis is to study MEMS design with the application of new

genetic algorithm techniques. In the process of applying a genetic algorithm to the specific

MEMS design problem, methods for applying crossover, population number, and mutation

over any number of genes would be evaluated. Three novel methods of genetic algorithm

are being proposed here.

1.5.1 Average Mixture (AVGM) is applied to a problem with a single objective. It was

the first method used for the design of the simple cantilever beam. The advantage

of using this method is the low computational time required when applied to a

single objective problem like the cantilever. However, one drawback to this method

is its lack of flexibility when applied to problems with many variables (genes). It

was therefore necessary to introduce a better method with more flexibility for

problems with multiple variables.

1.5.2 Random-based Average Mixture (RBAM) is also used for a problem with a single-

objective. This was the second method tested for the design of MEMS as a result of

the lack of flexibility with the AVGM method. The RBAM method can be used for

problems with multiple genes. It was tested on problems with different genes such as the

cantilever beam and the comb drive actuator. This method is faster at generating results

than the AVGM and can be used for problems with many variables without the need to

readjust important factors for different problems.

8

1.5.3 Multi-Objective Random-based Average Mixture (MORBAM) is used for

problems with two or more objectives. This method applies RBAM to different

objectives and selects the elite from each to make up a population for uniform

crossover. The method used RBAM and not AVGM for each objective because

RBAM was a more flexible method.

The notable differences between these algorithms are seen in chapter six and seven

when the genetic algorithm methods are analyzed, evaluated and compared to see their

efficiency in maintaining diversity, speed and so producing suitable design results while

ensuring the designs can be manufactured. They apply the basic GA techniques with more

intelligent ways to crossover and mutate the genetic algorithm. The reasons for the proposed

methods are as follows;

1. Quick combination of materials, dimensions and material properties.

2. Using this analysis to determine a novel genetic algorithm method required for

devices from small to large feature sizes.

3. Maintaining diversity to facilitate MEMS feature options to select from. A MEMS

device can have multiple variable combinations that produce the same goal

(objective). This makes it possible to have many design options.

4. A genetic algorithm technique that can be applied to any MEMS problem with

many variables. Two basic methods with details on when, and when not, to use

them based on basic requirements such as the number of starting individuals in a

population, number of genes, crossover and mutation technique.

5. An evaluation method for multi-objective genetic algorithm and finding a balance

or middle point.

6. Generating a code that is reusable and easy to modify for other types of design

9

problems.

1.6 THESIS OUTLINE

This work is made up of eight chapters. Chapter two provides the basic background for

genetic algorithm by providing specific information on methods that have been used in the

past and explaining how the basic (more general) genetic algorithm works in a clearer

manner. Chapter three introduces the new methods proposed in this thesis, it also explains

why these new methods were proposed and explains how the proposed algorithms function.

Chapter four introduces the simple MEMS cantilever beam and explains how the proposed

Genetic Algorithm methods can be applied to the design of the cantilever beam by assigning

values to the variables created in the proposed algorithms introduced in chapter three.

Chapter five describes the design of a complete electrostatic comb drive actuator; it also

describes the flexural or spring design and how it can be applied to a basic comb drive and

assigns values to the genetic algorithm variables introduced in chapter three. Chapter six

evaluates how the single-objective (AVGM, RBAM) genetic algorithm methods perform,

by evaluating their results based on different terms and it also states noticeable differences

seen in the two genetic algorithm single objective problems. Chapter seven explains why

the proposed multi-objective genetic algorithm (MORBAM) is necessary by using results

obtained from the application of RBAM and AVGM GAs to the cantilever and also

evaluates the proposed MORBAM GA. The work is concluded in chapter eight with details

on how to proceed with further work in the future.

10

CHAPTER 2

GENETIC ALGORITHM BACKGROUND

2.1 THE ALGORITHM

Genetic algorithms deal with populations of individuals. Encoding these individuals

depends on the type of problem being solved. There are different ways to encode these

individuals; binary encoding, permutation encoding, value encoding and tree encoding.

Binary encoding is made up of strings of 0s and 1s. Permutation encoding is typically

used for ordering problems such as the traveling salesman problem. Value encoding is used

where complicated values such as real numbers are used. In tree encoding every value is a

tree of some objects such as functions or commands in programming language [42]. This

work uses value encoding for real values introduced in this thesis. There are different ways

of doing a GA and the flowchart in fig 2.1 shows a more general way. See table 2.1 for

descriptions of the terminologies used in the general genetic algorithm.

2.1.1 THE	STEPS	
	

The steps listed below (step 1 to step 5 are shown in the flowchart in Fig 2.1).

Step 1) Generate a random population of individuals (initialize population).

Step 2) Evaluate their fitness value (the fitness value or function is the function

the algorithm is trying to optimize).

Step 3) Create a new population by selection based on fitness value, crossover,

and mutation.

a) Select parents by fitness value.

b) Create children based on crossover and mutation.

Step 4) Replace the old population.

Step 5) Repeat from step two if still not satisfied with the results.

11

Figure 2.1 The Genetic Algorithm

	

Table 2.1: GA Terms and their Meaning

TERM MEANING
Population Group of individuals. Mathematically represented as an array of

individuals. For example, given a population size of four and three
variables in the fitness function. The population is represented as a 4 by 3
matrix. See Figure 2.2

Individual Group of genes known as a candidate solution.
Genes Genetic property of an individual, which are known as the number of

variables in the fitness function.
Parent Individual before crossover
Child Individual after crossover
Generation A series of computation is performed on the current population to produce

a new population; each successive population is a new generation.
Fitness The function to be optimized
Fitness
Value

Value of the fitness function for an individual

12

	
	

Figure 2.2 Genetic Algorithm Population

2.2 GA BASIC OPERATIONS

Genetic operators are responsible for changing the genetic information of an individual.

There are two types of operators in genetic algorithms [43]:

1. Genetic operators: crossover and mutation

2. Evolution operation: selection

2.2.1 SELECTION

A. Roulette Wheel Selection

The roulette wheel, which is known as fitness proportionate selection, is one of the

earliest methods of selection in genetic algorithm. In this case, the parents are selected

according to their fitness value. The individuals with higher fitness values have a higher

chance of being selected, which implies that the probability of selection is dependent on the

fitness value. The fittest individual occupies the largest part of the roulette wheel and the

weakest individual occupies the smallest part of the wheel.

13

B. Elitism

In this selection strategy, some of the candidate solutions are kept unchanged i.e. it

involves keeping the best candidates and taking them over to the next generation. This

method helps to prevent losing really good solutions. The method has been known to

improve the performance of a genetic algorithm by ensuring that the quality of the solution

does not decrease from one generation to the other.

C. Tournament Selection

This selection strategy is one of the most popular. It involves taking a sub-part of the

population and comparing their fitness values, thereby eliminating the loser or the ones with

the lowest fitness values. The candidate with the best fitness value is known as the winner

of the tournament.

2.2.2 CROSSOVER AND MUTATION

In genetic algorithm, crossover and mutation are basic operators and how these

processes are performed can affect the speed and efficiency of the results. There are

different ways to crossover and mutate in genetic algorithm.

A. Crossover

The crossover technique also known as recombination is one of the most important

genetic algorithm operation, and it is performed right after selection. It involves the

combination or exchange of genetic properties from different individuals in the population.

The way the genetic algorithm is encoded can also determine the type of crossover technique

used.

14

1. Single Point Crossover

This is the simplest crossover technique. It involves randomly choosing a crossover

point, which divides an individual into two distinct parts. For example, given two parents

(individual A and B), the first part of individual A could be merged with the second part of

individual B, and the first part of individual B would be merged with the second part of

individual A, forming two children (see figure 2.3).

PARENT CHILD

A A

B B

Figure 2.3 Single Point Crossover

2. Two point crossover

In this crossover technique, two points are randomly selected from an individual

(individual A) and a crossover is performed with the second individual (individual B) as

illustrated in Figure 2.4. From individual A, the first part to the first crossover point is

copied. From individual B we copy from the first to the second crossover point. The rest is

copied from individual A to form the new individual. For the second new individual the

same is done, but with the genetic materials taken from the opposite parent.

15

=

A

B

Figure 2.4 Two Point Crossover

3. Uniform Crossover

In this crossover technique, some parts of Parent A are randomly copied to Parent B,

and some parts of Parent B are randomly copied to Parent A to form two children.

PARENT CHILD

A

B

Figure 2.5 Uniform Crossover

4. Arithmetic Crossover

This crossover method involves some arithmetic operations. In the case of binary

encoding bitwise AND would be used.

16

B. Mutation

This is another basic operation in GA and it helps to randomly change the genetic

property of an individual because at some point the genetic algorithm starts to converge and

mutation is a method used to further randomize genetic properties, and so preventing the

solution from converging too soon. Examples of mutation techniques are shown below.

1. Bit inversion

This is used in binary encoding and selected bits are inverted in this instance.

11101001 => 11001001

2. Order Changing

This method is used in permutation encoding, and involves the selection and exchange

of some genes.

2 4 5 6 7 8 9 => 2 4 8 6 7 5 9

3. Adding or subtracting small values

This method is used when the genetic algorithm is value encoded. A small value is

added to or subtracted from the selected value.

10.30 12.45 2.34 5.56 => 10.40 12.45 2.23 5.56

2.4 MULTI-OBJECTIVE GENETIC ALGORITHM

The selection methods discussed earlier are based on a genetic algorithm with a single

objective. In the real world, most engineering and MEMS problems have multiple objectives

and evaluating all objectives based on a single objective could compromise the results. This

could result in one objective dominating the others, because two or more objectives might

17

be in conflict with each other. For example, consider a simple cantilever beam, with a single

objective like attaining a displacement of 10 micrometers.

Evolving the algorithm towards the displacement wouldn’t be much of a problem,

because it has just one goal, and as a result the genes can just evolve towards satisfying the

genetic algorithm requirement. However, what if for this simple cantilever beam we are

required to have two objectives, like displacement and resonance frequency? This is a

conflicting problem because they are two opposite requirements. To achieve a high

displacement, the structure would need to be less stiff. While to achieve a high resonance

frequency the structure would need to be stiffer. This can easily be seen from the

equations 2.1 and 2.2:

 (2.1)

 (2.2)
	
where, 𝑘	is the spring constant, and 𝑚	is the mass of the structure.

Several methods have been proposed for multi-objective genetic algorithm problems.

Including the weighted-sum method that assigns weight to each objective, and the Pereto

method in which no objective dominates the other and creates a sort of balance by

providing options to select from. A generic GA can easily be modified to find a set of

multiple non-dominated results [1]. The crossover operation can be modified with multiple

objectives to create new non-dominated results in unexplored parts, and most GAs do not

require the user to prioritize, scale, or weigh objectives [1]. Different multiple objective

GA have been explored such as the Niched Pereto Genetic Algorithm, Random Weighted

Genetic Algorithm (RWGA), Non-dominated Sorting Genetic Algorithm (NSGA) etc.

Displacement = Force
k

ω = k
m

18

CHAPTER 3

AVGM, RBAM AND MORBAM GENETIC ALGORITHM

After carefully reviewing and testing traditional genetic algorithm methods, I applied

them to the design of MEMS and I wasn’t satisfied with the performance of these algorithms

in optimizing the MEMS design. It was therefore relevant to introduce new GA techniques

(AVGM, RBAM and MORBAM) for better performance and reusability. The AVGM and

RBAM are applied to the single objective problems while the MORBAM is applied to the

multi-objective problems.

The significant factor in the AVGM method of genetic algorithm is the term “Average”

which signifies the use of mean values for crossover and mutation. The algorithm creates

children by recombining the generated population with the mean values of randomly picked

individuals. The mutation is also a significant part of the AVGM method; randomly

choosing individuals from the mean values to add to the children produced to make a

population and then revaluating the fitness values to pick the best individuals that would

make it to the next generation optimizes the mutation and crossover method.

The significant thing about the RBAM is the randomness in crossover and mutation

with a bit of mean value added to it. The crossover is performed in a random way and the

mutation is also based on a random method. This makes the RBAM method very efficient

with little or no need for the mutation; it generates result in a timely manner and maintains

diversity.

The MORBAM GA applies the RBAM genetic algorithm method to optimize the

multiple objectives. The RBAM is used because of its robustness.

This chapter will first provide a brief overview of each genetic algorithm method

introduced, then these methods will be explained in a clearer manner and the complete

19

algorithms will be introduced. In evaluating these new genetic algorithm methods, several

factors have been taken into consideration. These factors include:

1. Speed or computational time of the algorithm

2. Efficiency of the algorithm (exploration and exploitation)

3. Diversity created by the algorithm

4. Effect of initial starting population and selected subset of population

5. Elitism and its advantage

6. Reason for chosen crossover technique

7. Reason for chosen mutation technique

8. Reason for adding mean values of some individual

9. Effect of genetic algorithm technique on number of genes

10. Analysis of multi-objective method and how it can be applied to

any problem.

11. Reusability for other types of problems
	

Table 3.1: Variable and their Representation

Variables Representation
Initial Population 𝑃𝑜𝑝init	
Genes 𝑣i	
Individuals 𝑖𝑛𝑑i	
Selected Population 𝑃𝑜𝑝ns	
Fitness value 𝐹v	
Generation 𝑛𝑢𝑚_𝐺𝑒𝑛	

Elite Individuals 𝐸𝑙𝑖𝑡𝑒inds	
Randomly Selected Individuals 𝑃𝑜𝑝rs	
Mean values of some Individuals 𝑃𝑜𝑝avg	
Parent 𝑃	
Children 𝐶	
Fitness Objective 𝑂𝑏𝑗	
𝑃𝑜𝑝ns	–	𝐸𝑙𝑖𝑡𝑒inds	 𝑛𝑒𝑤_𝑃𝑜𝑝ns	

20

	
3.1 Average Mixture (AVGM)

The main characteristic of the AVGM genetic algorithm (see figure 3.1a) is the use of

the mean values for important operations like crossover and mutation. The steps below

provide an overview of how the algorithm works.

Steps
1) Initialization	-	Start at Gen=0	

1a) Generate an initial large population.

2) Fitness Evaluation	
2a) Evaluate the fitness.
2b) Arrange in order of fitness value.

3) Selection.	

3a) Select the population.
3b) Save the elite.
3c) Save the new population (elite excluded).
3d) Randomly select individuals from the new population.
3e) Save the new population (randomly selected individuals excluded).
3f) Create mean values from some randomly selected individuals in initial
population.

4) Evolution	

4a) Crossover: Perform a crossover between the average values and
randomly selected individuals from the rest of the population (elite
excluded). Dividing the remaining population into two and performing a
crossover.
4b) Mutate: Perform hidden mutation by replacing some individuals
(individuals that have lower fitness values) in the new population with
some mean values if the mean values have a higher fitness value.

5) Next generation is created (Gen + 1).	
6) Back to step two until satisfied.	

The discussion below further details some of the process in the steps.

21

Step 3c Elitism in AVGM

Elitism is a three-step process in the AVGM. The selected population (𝑃𝑜𝑝ns) is known

as the elite from 𝑃𝑜𝑝init. The elite (𝐸𝑙𝑖𝑡𝑒inds) are selected from (𝑃𝑜𝑝ns) to be added to the

new population created after crossover. The elite are also selected to make it to the next

generation.

Step 3e Mean Value Process in AVGM

The AVGM method basically involves the use of mean values in the evolutionary

processes (crossover and mutation). 𝑃𝑜𝑝avg	is derived by selecting some individuals

from 𝑃𝑜𝑝init	and obtaining the mean values of the genes to form new sub-population.

The number selected for 𝑃𝑜𝑝avg	is what determines the number of individuals selected

for crossover. These mean values are further used for crossover and mutation.

Step 4a The Crossover Process in AVGM

A uniform crossover method is used in AVGM GA. The crossover process is a two-

step process. First step involves crossover between 𝑃𝑜𝑝rs	and 𝑃𝑜𝑝avg. Second step

involves crossover between individuals in 𝑛𝑒𝑤_𝑃𝑜𝑝ns2, this is done by dividing

𝑛𝑒𝑤_𝑃𝑜𝑝ns2	into two groups and performing a crossover between both groups. One or

more genes are randomly selected in each generation, this gene is chosen as the part that is

copied from parent A and B. The randomly selected genes are then exchanged between

parents. The Children (𝐶)	are then obtained after these steps have been followed.

Step 4b The	Mutation	Process	in	AVGM	
	

The AVGM performs what is known as “hidden mutation”. After the elitism, and

population after crossover have been obtained. Some individuals are randomly selected

22

from 𝑃𝑜𝑝avg	 (this is how the hidden mutation is performed) and added to the new

population. The population ends up being slightly larger than the size of selected

population. Selecting the best individuals from this new population to make it to the next

generation then creates another form of elitism. If the value of the individuals selected

from 𝑃𝑜𝑝!"#	have higher fitness values than some individuals in the new population,

they will replace those individuals and this drops the extra individuals. This has a way of

optimizing results obtained by the AVGM GA.

23

a) RBAM	 b)	AVGM	

	
Figure 3.1 RBAM and AVGM GA methods

24

AVGM Algorithm Definition

1. Initialization
a) Generate initial starting population (𝑃𝑜𝑝init)	of size 𝑝	𝑏𝑦	𝑚 where	

𝑝	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
𝑚	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

Each individual is made up of 𝑚	genes
𝑖𝑛𝑑i	=	[𝑣I,1	𝑣I,2	…	𝑣I,m]	

The population is made up of 𝑝	individuals

	 𝑖𝑛𝑑1	
	 𝑖𝑛𝑑2	

𝑃𝑜𝑝init	=	 ⋮	
	 𝑖𝑛𝑑p-1	
	 𝑖𝑛𝑑p	

	

2. Evaluation
a) Given a function 𝑦	and a fitness objective, evaluate the fitness (Fv)	of

each individual in the population

	 Fv(𝑖𝑛𝑑1)	
	 Fv(𝑖𝑛𝑑2)	

Fv(𝑃𝑜𝑝init)	=	 ⋮	
	 Fv(𝑖𝑛𝑑p-1)	
	 Fv(𝑖𝑛𝑑p)	

b) Organize the population in order of their fitness value (Fv)	from

individual with the highest Fv	to individual lowest Fv, we would then have:

	 𝑖𝑛𝑑1	
	 𝑖𝑛𝑑2	

𝑃𝑜𝑝init	=	 ⋮	
	 𝑖𝑛𝑑p-1	
	 𝑖𝑛𝑑p	

	

𝑖𝑛𝑑1		=	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑤𝑖𝑡ℎ	ℎ𝑖𝑔ℎ𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒	
𝑖𝑛𝑑p		=	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑤𝑖𝑡ℎ	low𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒	

	 	

25

3. Selection
a) Select a subset (𝑃𝑜𝑝ns) of size 𝑛	𝑏𝑦	𝑚	from 𝑃𝑜𝑝init	where

𝑛	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
	

b) From 𝑃𝑜𝑝ns, select the first 𝑢	individuals and save as Elite individuals
(𝐸𝑙𝑖𝑡𝑒inds)	
Note: First u individuals are the best individuals because the
population has already been arranged in order of their fitness value

𝑠𝑖𝑧𝑒		𝐸𝑙𝑖𝑡𝑒inds				=			𝑢	𝑏𝑦	𝑚	
	

c) From 𝑃𝑜𝑝ns	randomly select some individuals in the population
and get their mean values and save as (𝑃𝑜𝑝avg)

𝑠𝑖𝑧𝑒		𝑃𝑜𝑝avg				=		𝑧	𝑏𝑦	𝑚	
𝑧		=		𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑃𝑜𝑝avg	

	
d) Randomly select individuals from 𝑃𝑜𝑝ns, the same size as that of the

𝑃𝑜𝑝avg	(𝑧	𝑏𝑦	𝑚) and save as 𝑃𝑜𝑝rs.	
𝑠𝑖𝑧𝑒		𝑃𝑜𝑝rs			=	𝑧	𝑏𝑦	𝑚	

e) Delete 𝑃𝑜𝑝rs	and 𝐸𝑙𝑖𝑡𝑒inds	from 𝑃𝑜𝑝ns	as save as 𝑛𝑒𝑤_𝑃𝑜𝑝ns	
𝑛𝑒𝑤_𝑃𝑜𝑝ns	=	(𝑃𝑜𝑝ns	−	𝑃𝑜𝑝rs)	-	𝐸𝑙𝑖𝑡𝑒inds	
𝑠𝑖𝑧𝑒(𝑛𝑒𝑤_𝑃𝑜𝑝ns)=(𝑛	−	(2𝑧))𝑏𝑦	𝑚	

	

4. Evolution
a) Crossover

I. Perform a crossover between the selected Parents (𝑃𝑜𝑝avg		 and
𝑃𝑜𝑝rs) by randomly picking one or more genes to crossover.

𝑠𝑖𝑧𝑒		𝐶T				=			2𝑧	𝑏𝑦	𝑚	
	

II. Randomly pick z individuals from 𝐶T		to make up 𝐶S	
𝑠𝑖𝑧𝑒		𝐶S			=		𝑧	𝑏𝑦	𝑚	

	

III. Divide 𝑛𝑒𝑤_𝑃𝑜𝑝ns2	into two groups and perform a crossover
between the two groups to create children (𝐶np2).

IV. A new selected population is created

𝑃𝑜𝑝ns		=	𝑛𝑒𝑤_𝑃𝑜𝑝ns	+	𝐸𝑙𝑖𝑡𝑒inds	+	𝐶S	+	𝐶np2	+		𝑃𝑜𝑝avg	
Note: Size of 𝑃𝑜𝑝ns	𝑑𝑜𝑒𝑠𝑛!𝑡	𝑐ℎ𝑎𝑛𝑔𝑒	

b) Mutation
I. Random select 𝑢	individuals (𝑛𝑎𝑚𝑒𝑑	𝑎𝑣𝑟sel) from

𝑃𝑜𝑝avg	
II. Add 𝑎𝑣𝑟sel		to 𝑃𝑜𝑝ns	and evaluate the fitness value
III. Select all individuals with the highest fitness values

26

as the new 𝑃𝑜𝑝ns	to make it to the next generation
Note: The number of individual selected as the new 𝑃𝑜𝑝ns	is
dependent on the size of the initial 𝑃𝑜𝑝ns	
	

5. New generation is created after mutation
6. Repeat from step 2b.

3.2 Random-based Average Mixture (RBAM)

The RBAM works with a lot of randomness, which makes it quite flexible and

applicable in many instances. The flowchart in Fig 3.1 illustrates how the algorithm works

and the algorithm definition is also provided to help explain the steps in a clear manner. The

algorithm picks a gene for crossover randomly and performs mutation in a random way too.

Steps
1) Initialization - Start at Gen=0.

1a) Generate an initial large population.

2) Fitness Evaluation
2a) Evaluate the fitness.
2b) Arrange in order of fitness value.

3) Selection

3a) Select the population.
3b) Save the elite.
3c) Save the new population (elite excluded).
3d) Randomly select individuals from the new population.
3e) Create average values by randomly selecting some individuals from initial
population.

4) Evolution

▪ Crossover: Perform a crossover between the elite and the rest of the
population.

▪ Mutate: Randomly pick some individuals from the population whose
genes would be mutated.

5) Next generation is created (Gen + 1).
6) Back to step two until satisfied.

The following discussion expands on some of these steps.

27

Step 3e Mean Value Process in RBAM

The use of mean values in RBAM basically involves the addition of mean values in the

to the newly created population after crossover and mutation. 𝑃𝑜𝑝avg	is derived by selecting

some individuals from 𝑃𝑜𝑝init	and obtaining the mean values of the genes to form new sub-

population. These mean values (𝑃𝑜𝑝avg) are added to the population have a way of making

the algorithm efficient and faster in deriving results.

Step 4a The Crossover Process in RBAM

A uniform crossover method is used in RBAM GA. A gene is randomly selected in

each generation, this gene is chosen as the part that is copied from parent A and B. The

crossover process involves the randomly selected population (𝑛𝑒𝑤_𝑃𝑜𝑝ns)	and the elite

(𝐸𝑙𝑖𝑡𝑒inds). The random genes are then exchanged between parents in 𝑛𝑒𝑤_𝑃𝑜𝑝ns, and

parents in 𝐸𝑙𝑖𝑡𝑒inds.

Step 4b The	Mutation	Process	in	RBAM	
	

The mutation process involves generating random individuals just like the

initialization step at the beginning of the algorithm. The size of the generated

individuals is always equal to the size of the 𝑃𝑜𝑝ns. One or more genes are randomly

selected from these newly generated individuals to replace some genes in the generated

population after crossover.

3.2.4 The	Final	Selection	and	New	Generation	of	Individuals	in	RBAM	
	

After the initial selection and evolution process, a final selection mechanism is used

in the RBAM. The new population is obtained after elitism, mean value process,

crossover and mutation process. The population is made up of the elite, the children

generated and the remaining individuals left untouched in the population. The size of

28

this new generation ends up larger than the size of 𝑃𝑜𝑝ns. Selecting only individuals

with the highest finest values as the new generation and disposing of the rest individuals

deploy a final selection mechanism. This is done to make this new generation equivalent to

the size of 𝑃𝑜𝑝ns.

RBAM Algorithm Definition

1. Initialization
a) Generate initial starting population (𝑃𝑜𝑝init)	of size 𝑝	𝑏𝑦	𝑚	
where

𝑝	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
𝑚	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑔𝑒𝑛𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

Each individual is made up of 𝑚	genes
𝑖𝑛𝑑i	=	[𝑣I,1	𝑣I,2	…	𝑣I,m]	

The population is made up of 𝑝	individuals

	 𝑖𝑛𝑑1	
	 𝑖𝑛𝑑2	

𝑃𝑜𝑝init	=	 ⋮	
	 𝑖𝑛𝑑p-1	
	 𝑖𝑛𝑑p	

	
2. Evaluation

a) Given a function 𝑦	and a fitness objective, evaluate the fitness (Fv)	of
each individual in the population

	 Fv(𝑖𝑛𝑑1)	
	 Fv(𝑖𝑛𝑑2)	

Fv(𝑃𝑜𝑝init)	=	 ⋮	
	 Fv(𝑖𝑛𝑑p-1)	
	 Fv(𝑖𝑛𝑑p)	

b) Organize the population in order of their fitness value (Fv)	from

individual with the highest Fv to individual lowest Fv, we would
then have:

	 𝑖𝑛𝑑1	
	 𝑖𝑛𝑑2	

𝑃𝑜𝑝init	=	 ⋮	
	 𝑖𝑛𝑑p-1	
	 𝑖𝑛𝑑p	

29

𝑖𝑛𝑑1		=	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑤𝑖𝑡ℎ	ℎ𝑖𝑔ℎ𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒	
𝑖𝑛𝑑p		=	𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑤𝑖𝑡ℎ	low𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒	

	
	

3. Selection
a) Select a subset (𝑃𝑜𝑝ns) of size 𝑛	𝑏𝑦	𝑚	from 𝑃𝑜𝑝init	where

𝑛	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	
	

b) From 𝑃𝑜𝑝ns, select the first 𝑢	individuals and save as Elite individuals
(𝐸𝑙𝑖𝑡𝑒inds)	
Note: First u individuals are the best individuals because the
population has already been arranged in order of their fitness value

𝑠𝑖𝑧𝑒				𝐸𝑙𝑖𝑡𝑒inds					=			𝑢	𝑏𝑦	𝑚	
	

c) From 𝑃𝑜𝑝ns	randomly select some individuals in the population and get
their mean values and save as (𝑃𝑜𝑝avg)

𝑠𝑖𝑧𝑒		𝑃𝑜𝑝avg				=		𝑧	𝑏𝑦	𝑚	
𝑧		=		𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑃𝑜𝑝avg	

	
d) Randomly select individuals from 𝑃𝑜𝑝ns, the same size as that of the

Elite	(𝑢	𝑏𝑦	𝑚) and save as 𝑃𝑜𝑝rs.	
𝑠𝑖𝑧𝑒		𝑃𝑜𝑝rs				=	𝑧	𝑏𝑦	𝑚	

e) Delete 𝑃𝑜𝑝rs	and 𝐸𝑙𝑖𝑡𝑒inds	from 𝑃𝑜𝑝ns	as save as 𝑛𝑒𝑤_𝑃𝑜𝑝ns	
𝑛𝑒𝑤_𝑃𝑜𝑝ns	=	(𝑃𝑜𝑝ns	−	𝑃𝑜𝑝rs)		-	𝐸𝑙𝑖𝑡𝑒inds	

𝑠𝑖𝑧𝑒(𝑛𝑒𝑤_𝑃𝑜𝑝ns)=(𝑛	−	𝑢)	𝑏𝑦	𝑚	
n		=		𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑛𝑒𝑤_𝑃𝑜𝑝ns	

	
	

4. Evolution
a) Crossover

I. Perform a crossover between the selected Parents (𝐸𝑙𝑖𝑡𝑒inds	
and 𝑃𝑜𝑝rs) by randomly picking one or more genes to
crossover.

𝑠𝑖𝑧𝑒				𝐶				=			2𝑢	𝑏𝑦	𝑚	
2𝑢		=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒	

	
II. A new selected population is created

𝑃𝑜𝑝ns		=	𝑛𝑒𝑤_𝑃𝑜𝑝ns	+	𝐸𝑙𝑖𝑡𝑒inds	+	𝐶	+	𝑃𝑜𝑝avg	
Note: Size of 𝑃𝑜𝑝ns	changes

𝑠𝑖𝑧𝑒(𝑃𝑜𝑝ns)=((𝑛	−	𝑢)	𝑏𝑦	𝑚)	+	(2𝑢	𝑏𝑦	𝑚)+(z	𝑏𝑦	𝑚)	=	(𝑛	+	𝑢)	𝑏𝑦	𝑚	
(𝑛	+	𝑘)	=	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠	𝑖𝑛	𝑡ℎ𝑖𝑠	𝑛𝑒𝑤	𝑃𝑜𝑝ns	

	
	

30

	
b) Mutation
I. Generate a population of size 𝑛	𝑏𝑦	𝑚	(similar to step one with a

population size same (𝑃𝑜𝑝ns)
II. Randomly select some individuals from the generated

population
III. Randomly select specified genes
IV. Get the individual number and gene number and exchange it with exact

individual and gene number in population created by previous step.

5. New generation is created after mutation
a) Select all individuals with the highest fitness values as the new 𝑃𝑜𝑝ns	to
make it to the next generation

Note: The number of individual selected as the new 𝑃𝑜𝑝ns	is
dependent on the size of the initial 𝑃𝑜𝑝ns	

	
6. Repeat from step 2.

3.3 Multi-objective Random-based Average Mixture (MORBAM)

This MORBAM genetic algorithm is illustrated in the flowchart in Fig 3.4 and just as

the name implies, it is used when we have two or more objectives, it is quite close to the

RBAM genetic algorithm with some addition to accommodate the multi-objective property.

The algorithm applies RBAM GA to each objective and selects the elite from each to make

up a population for crossover and mutation. The algorithm definition is also provided to

help explain the process better. The crossover and mutation are performed in a way similar

to that of the RBAM, the difference being the values that are recombined because of the

multiple objectives. The RBAM is used instead of AVGM because of its robustness and

flexibility.

Steps

1. For each objective perform RBAM (refer to section 3.2).
2. Select and save the elite from each objective.
3. Create a population by combining these elite individuals.
4. Divide the population into groups and perform a uniform crossover between these

individuals.
5. A new population is created after this crossover.

31

6. Select the elite from the new population created after crossover (best in
all objectives).

7. Selecting random individuals from the population created after crossover and
adding them to the elite create new generation.

8. Repeat from step one until satisfied.

Figure 3.2 MORBAM GA

3.3.1 The	Elite	(MORBAM_ELITE)	

The elite for multi-objective problem is selected by randomly selecting individuals

from the population after crossover (MORBAM_NEW_POP_AC), comparing each

objective in each individual, and saving the individuals with better fitness values in all

objectives.

32

3.3.2 The	Crossover	in	MORBAM	

The main crossover is performed between the individuals derived after RBAM GA has

been applied to individual objective. This crossover is performed in a similar way to the

RBAM and AVGM. A random gene is selected and exchanged between individuals. Before

arriving at the crossover point, we are certain that the population for crossover is trying to

evolve towards all objectives. After the crossover, we are certain that the population meets

a midpoint. It evolves towards all objectives and finds a balance.

3.3.3 The	Mutation	in	MORBAM	

It is not hard to notice that mutation isn’t stated in the process. This is because each

objective has a mutation factor. The mutation is more of an internal process.

3.4 The GAs Evaluation

Evaluating the RBAM, AVGM and MORBAM GAs, depend on some factors. These

variables are listed in Table 3.2. The variables are used in each algorithm definition. The

values assigned to the variables can affect how well the genetic algorithm can solve the

problem.

Table 3.2: GA representation

Variables Value
P To be found
m To be found
n To be found
u To be found
z To be found

numGen To be found
Fitness_obj (Deflection) Given

33

CHAPTER 4

APPLICATION OF GENETIC ALGORITHM TO A SIMPLE END
LOADED CANTILEVER BEAM WITH AND WITHOUT MASS

4.1 MEMS CANTILEVER BEAM

Cantilever beams are very popular and sensitive structures in the field of MEMS. They

have a very simple mechanical structure, that’s free at one end and fixed at the other end.

There are various properties that contribute to the design of the cantilever beam such as the

geometric shape and the material properties. A good example of the MEMS cantilever beam

is the resonator. The length of the beam is usually significantly more than the thickness and

the width. Some equations are used to understand the behavior of MEMS cantilevers; the

deflection equation and spring constant equation (stiffness).

The deflection of the beam is dependent on the length (L), width (w), thickness (t), and

on the material properties of the beam. The stiffness depends on the geometric structure and

material property of the beam. Cantilevers are analyzed based of the type of load applied.

Figure 4.1 The Cantilever Beam

Beams are analyzed for a couple of reasons in MEMS, some of which include;

▪ Deflection of the beam

▪ Stiffness of the beam

▪ Resonance Frequency

▪ Internal stress at any point

▪ Maximum stress and its location

34

The focus here would be on a simple cantilever beam to illustrate how genetic algorithm

can be used for a single objective genetic algorithm with the methods initiated in chapter

three.

4.1.1	End	loaded	Cantilever	(Concentrated	load	at	free	end)	

The deflection in terms of x at any section is given as;

𝑦 𝑥 = 	 j
k

lmn
3𝑥p𝐿 − 𝑥l 																																																										(4.1)

When we substitute L into x (i.e. x= L), the maximum deflection (y) at the free end is

then given as:

𝑦 𝑥 = 𝐿 = 	𝐹 jk

lmn
																																																																								(4.2)

where 𝐹 is the force, 𝐿 is the length, 𝐸 is Young’s modulus and 𝐼 is the moment of

inertia and for a rectangular beam 𝐼 is given as:

𝐼 = 	st
k

up
																																																																																													(4.3)

𝑤 is given as the width of the beam and 𝑡	is the thickness of the beam.

The stiffness (spring constant) is derived from 𝐹 = 𝑘𝑦 and for an end loaded cantilever,

we can derive stiffness as 𝑘 = 	 lmn
jk
	

For an unloaded cantilever, the resonance frequency can be given as

𝜔w = 3.52 mn
yzj{

																																																																					(4.4)

	
𝑚l		is the mass per unit length of the cantilever.

35

4.2 DESIGN PARAMETERS USED FOR THE CANTILEVER BEAM

The techniques discussed in chapter three are applied to this simple end loaded

cantilever beam and the results are evaluated just to have an idea of how the genetic

algorithm technique is implemented. The parameters are provided in Tables 4.1 and 4.2. We

will assume a design specification of a deflection of 10 micrometers. The algorithm

discussed in chapter three can be applied and represented with Table 4.3. The results of the

evaluation using AVGM and RBAM for the design parameters of the genetic algorithm are

shown in chapter six.

36

Table 4.1: Material Properties of Poly-silicon

Properties Values

Young’s Modulus (Pa) 170×10!	

Density (kg/m3) 2320

Poisson’s Ratio 0.22

	
	
Table 4.2: Genetic Algorithm Parameters for Cantilever

Dimensions Range (𝜇𝑚)

Length (L) 10-1000

Width (w) 2-50

Thickness (t) 0.5-20

Other Parameters Desired Value

Force (N) 50

Deflection (𝜇𝑚) 10

Resonance Frequency (Hz) 1000Hz

	
	
Table 4.3: GA representation

Variables Representation
P (Initial Population size) 100, 200, 500
m (number of genes or variables) 3
n (selected Population size) 100
u (number of elite) 30
z (number of average individuals) 5
numGen 0 to 500
Fitness_obj (Deflection) 10

37

CHAPTER 5

COMPLETE DESIGN OF COMB DRIVE

Figure 5.1. The Comb Drive

5.1 INTRODUCTION TO MEMS COMB DRIVE

In MEMS, the comb drive is a laterally driven mechanical actuator, which operates by

the use of electrostatic force. It is made up of two inter-digitated fingers structures with one

comb fixed and other connected to a suspension as shown in Fig 5.1. When a voltage is

applied between the two parts of the comb drive, deflection of the moveable comb fingers

occurs by means of electrostatic force. The force generated is small and requires many

fingers to generate sufficient force [34] and this reduces the areal efficiency. The generated

force is proportional to and in the direction of increasing capacitance. When the combs

attract, overlap between the comb finger is increased and this in turn increases the

capacitance. The change in capacitance is large when the gap between the fingers decreases

and so in order to prevent side-snapping, springs usually restrict motion to the transversal

direction. The force in an electrostatic comb drive (which is a non-linear device) is

proportional to the applied voltage squared. The position of the moveable finger structure

38

is controlled by a balance between the electrostatic force and the mechanical restoring force

of the compliant suspension.

Mechanical forces also play a vital role in the actuation of electrostatic comb drive.

These mechanical forces are generated through spring structures, and they are directly

dependent on the stiffness of the flexures, which implies that when these flexures are

changed, the mechanical forces also change.

There are several applications of comb drive; they can be used to control micro

grippers, resonators, optical shutters, etc. Comb drives are easy to fabricate and with

increasing number of comb fingers and decreasing gap spacing, the electrostatic forces

increases but due to limitations of fabrication process, the dimensions are limited by

minimum feature size constraining. A comb drive with large deflection and minimum

voltage is desired here and in order to achieve such, the right combination of materials and

feature sizes are required.

5.2 LATERAL DEFLECTION

The capacitance between the stator fixed comb and the moveable comb is given as

 𝐹�� =

u
p
��
��
𝑉p = 	 w∈���

�

�
 (5.1)

where n is the number of comb fingers, ∈0	is the dielectric constant in air, 𝑏	is the width

of the comb fingers, 𝑦	is the initial comb finger overlap and d𝑦	is the comb displacement

and 𝑔	is the gap between the comb fingers.

The lateral electrostatic force is given as

 𝐹�� =

u
p
��
��
𝑉p = 	 w∈���

�

�
 (5.2)

where 𝑉	is the applied voltage between the rotor and stator. The electrostatic force acts

39

on the spring connected to the moveable comb and this results in a deflection given as;

 𝑦 = 	 w∈���
�

���
																	 (5.3)

From the above there are certain factors to consider

• Large force, large displacement and low power consumption is required for the

actuator.

• Decreased stiffness in the x-direction causes increased lateral deflection in the

y- direction.

• When the spring flexure length is increased, the stiffness in actuation

direction decreases.

• When the flexure length is increased, the displacement and capacitance increases.

• Increase in voltage produces an increase in displacement.

• From the stiffness, a direct relationship between applied voltage and displacement

covered by the finger is found.

• Number of comb fingers

• Gap between comb fingers

5.3 SPRINGS AND FLEXURAL DESIGN FOR THE COMB DRIVE ACTUATOR

Comb drive actuators have made use of a variety of spring designs, such as clamped-

clamped beam, folded beam flexure and crab-leg flexure. There has been a lot of work

concentrating on what type of beam produces maximum actuating deflection, folded beam

structure has been shown to produce large deflection with low voltage (which is desirable).

It is usually desirable to have a structure that’s stiff at one direction and compliant in the

orthogonal direction.

40

The linear spring constant is expressed as:

 𝑘� =

��
��

 (5.4)

where 𝑘!	in this case represents stiffness in the i direction, 𝐹!	and 𝑦!	represents the force

and deflection in the respective direction. This work picks a particular spring type (folded

beam) and this is used as the spring for the comb drive, as shown in Figure 5.2.

Figure 5.2. Folded Flexure

5.4 FOLDED FLEXURE

There are many benefits associated with the use of folded flexure beams which includes

high y-axis to x-axis stiffness (added stiffness to the undesired x-axis) and stress relief by

allowing the folding truss to move in the y-direction enabling beams to expand and contract.

The spring constant in the axial direction and lateral direction is found from;

𝑘� =

pmts
j

 (5.5)

𝑘� =
pmtsk

jk
 (5.6)

The stiffness ratio is given as

��
��
= (𝐿 𝑡)

p (5.7)

41

The folded beam flexure is used for large deflection and strongly reduces the

development of axial forces [44]. These large deflections can be obtained by viewing the

folded flexure as four parallel folded beams. The stiffness of the folded flexure beam in the

x-direction decreases with increased displacement in the y-direction.

These folded flexure beam are quite popular with MEMS comb drive actuator that

needs lateral movement in x-axis. The beams are anchored near the center and the trusses

allow expansion and contraction of the beams along the x-axis. Each folded beam is a

combination of two clamped guided beam connected in series [44]. The folded flexure can

be made quite stiff in the y-axis by increasing the width of the truss and made stiff in the z-

axis (while decreasing stiffness in x-axis) by increasing the beam thickness.

The beam must be flexible enough in the direction of actuation, increasing the stiffness

of the beam would require large electrostatic force and high driving voltage to cause

deflection [44].

The stiffness of the folded flexure in the x-direction is given as:

𝑘�,������� =
pmts�

k

j�
k

j�
��u�∝j�j��l�∝�j�

�

�j�
���u∝j�j��l�∝�j�

� (5.8)

The stiffness of the folded flexure (without compression of spring taken into

consideration) in the y-direction is given as:

𝑘�,������� =
pmts�

k

j�
k

�j�
���∝j�j��∝�j�

�

�j�
��u�∝j�j���∝�j�

� 																(5.9)

∝= 𝑤t 𝑤�
l
																																																									(5.10)

The spring stiffness due to compression, alone which is given by Hooke’s law, is:

42

𝑘�,�� y¡¢y£ =
pmts�
j�

																																																	(5.11)

The effective stiffness in the y-direction is given as a combination of the two springs:

𝑘�,��� =
��,¤z¥�¦§¥∗��,�¥©ª«¬ª­

��,¤z¥�¦§¥���,�¥©ª«¬ª­
																																						(5.12)

I will be solving equation 5.12 in the GA analysis of this structure.

5.5 APPLICATION OF GENETIC ALGORITHM TO COMB DRIVE
Table 6.1 provides the parameters used for the comb drive genetic algorithm with a low

applied voltage of 50V and a single objective, which requires the displacement to be 10um.

For the multi-objective case, there are three objectives (Deflection, Force and Capacitance)

to be met. The deflection has an objective of 10um while, the force has an objective of 50𝜇𝑚	

and for the capacitance the higher the value, the better it is. As explained in MORBAM,

there are three objectives in this case and in step 2 of the MORBAM, the fitness is evaluated

based on each objective and are stored separately. In the case of the comb drive, there are

three separate evaluations, making up three mini- populations that are crossed over in step

4a(II) of the MORBAM.

43

Table 5.1: Design Parameters for Comb Drive GA

DIMENSIONS/PARAMETERS RANGE
	
MIN-MAX

1) Number of moveable comb fingers (n) 3-20

2) Gap between moveable and fixed comb
fingers (𝜇𝑚)

2-10

3) Spring width (𝜇𝑚) 2-50

4) Spring length (𝜇𝑚) 10-1000

5) Thickness of actuator (t) overall (𝜇𝑚) 0.5-20

6) Initial Overlap (𝜇𝑚) 5-20

7) Length of truss (𝜇𝑚) 5-30

8) Width of truss (𝜇𝑚) 2-50

OTHER DESIGN PARAMETERS VALUES

9) Length of comb fingers (𝜇𝑚) 10

10) Width of comb fingers (𝜇𝑚) 2-50

OTHER PARAMETERS DESIRED
	
VALUES

11) Deflection (𝜇𝑚) 10

12) Force (N) 50

13) Capacitance (pF) High

14) Voltage (V) 50

44

CHAPTER 6

EVALUATION OF THE AVGM AND RBAM GENETIC ALGORITHMS
IN FULFILMENT OF OBJECTIVES

6.1 EXPLORATION AND EXPLOITATION

The terms in genetic algorithm are ‘exploration’ and ‘exploitation’. The ability for the

genetic algorithm to explore the search space is known as exploration and exploiting the

good solutions to reach a good enough or satisfactory solution is known as exploitation. The

algorithms move up to 500 generations for testing purpose, to have a good view of how the

genetic algorithm works.

a) b)

c) d)

Figure 6.1(a) Shows results obtained using the AVGM for the cantilever beam (b)

shows results obtained using RBAM for the cantilever beam (c) shows results
obtained using the AVGM for the comb drive actuator (d) shows results
obtained using RBAM for the comb drive actuator.

45

The plots in figure 6.1 and 6.2 illustrate how well the algorithm explores the search

space in the early generations and exploits the good solutions by gradually converging and

attaining the satisfactory solution. The fitness function is constructed to attain a deflection

of 10microns. The AVGM genetic algorithm method works well for the cantilever, with

results obtained as early as the first generation but doesn’t get results in the early generations

when applied to the comb drive actuator and this could be as a result of the different number

of genes (variables) in each problem. The RBAM genetic algorithm obtains results as early

as generation one when applied to the cantilever beam and comb drive actuator. This implies

that there’s a lot of flexibility when using the RBAM genetic algorithm for different

problems and this makes it a lot more efficient. We also see that the RBAM method

maintains a larger number of possible good solutions in the population.

46

a) b)

c) d)

e) f)

Figure 6.2(a,c,e) Shows the results obtained using the AVGM for the length, width

and thickness of the cantilever beam respectively (b,d,f) shows number of
solutions obtained using RBAM for the length, width and thickness of the
cantilever beam

47

6.2 DIVERSITY CREATED BY THE ALGORITHM

The diversity, which is related to how well the algorithm can explore a solution without

being stuck in the local optimum, plays an important role in the results generated by the

genetic algorithm. We want to have good options to pick from and need to be sure the

algorithm is constructed in a manner that explores the search space well enough to maintain

good diversity. The genetic algorithm can avoid getting stuck in the local optimum by its

ability to generate new potential values. The plots in fig 6.3 illustrate how well the algorithm

maintains diversity by obtaining distinct values in each generation. The plots show the

number of distinct values (see table 6.1) from the results obtained in each generation. These

distinct values contribute to the ability for the algorithm to provide a diverse range of

solutions. The conclusion is that the RBAM has a larger number of unique solutions.

Table 6.1: Plot Terms and Meaning

Term Meaning
Total Number of Solutions The number of times the goal is achieved in a

generation
Number of Unique
Solutions

The number of different values generated in the
current generation

Number of Distinct
Solutions in Each
Generation

The number of values generated in the current
generation that are different from the values
generated in the previous generation

48

	
a) b)

c) d)

Figure 6.3(a) Shows the number of solutions obtained using the AVGM for the

cantilever beam (b) shows number of solutions obtained using RBAM for the
cantilever beam (c) shows number of solutions obtained using the AVGM for
the comb drive actuator (d) shows number of solutions obtained using RBAM
for the comb drive actuator.

6.3 INITIAL STARTING POPULATION AND SELECTED SUBSET

The idea of generating an initial starting population but working with a selected subset

introduces a new method of making a genetic algorithm efficient. At the beginning of the

algorithm, an initial starting population that’s quite large helps with the exploration aspects,

ensuring that the search space is optimized by giving as many options as possible to choose

from. It’s advisable to make this initial starting population a bit large but not necessarily too

large i.e. anything from 400 to 1000 should be fine because the algorithm makes it possible

49

to explore all search space and even if something is missing, the algorithm makes it possible

to find it later. In evaluating the results in this chapter population size (P) of 500 was chosen

and a selected population size of 100 was chosen (refer to table 4.3). It is also important to

note that the AVGM and RBAM algorithm don’t suffer from traditional genetic algorithm

problem where the size of the population has to increase to decrease computational time and

find a solution. These algorithms find solutions in a timely manner regardless of the size of

initial starting population.

The selected subset ends up being the size of the population the algorithm ends up

working with. It is a percentage of the initial starting population selected to work with until

the end. In this case it’s always 100, the number increases at the end of the algorithm but

100 is always selected to work with eventually. This method introduced doesn’t work with

the initial size throughout but rather it uses it as a means to select the size to work with later

on.

6.4 SELECTION TECHNIQUE

The selection technique has been known to have a huge impact in how the algorithm

works. The algorithm saves a percentage of the population as the elite and selects the

percentage that would be crossed over.

6.4.1	ELITISM	SELECTION	MECHANISM	
	

Elitism has been widely used in this thesis to avoid loss of good solutions. The plots in

fig 6.4 show results obtained without the use of elitism, we can see that the algorithm

becomes less efficient in obtaining results. The AVGM and RBAM genetic algorithm makes

good use of the elitism mechanism. In the AVGM GA, the top best solutions are saved

while the rest of the population is recombined (crossed over). In the RBAM GA, the best

50

solutions are also saved to survive the next generation but the crossover is also performed

with the elite. The question is what percentage of the population should be saved as the

Elite?

The plots in Fig 6.5 show the results using the AVGM GA with different percentage

selected as elite when applied to the design of a cantilever beam. The algorithm is run a

hundred times to have an overall picture of how many results can be generated. More results

are generated when the elitism percentage is increased.

a) b)

Figure 6.4(a) Shows the number of solutions obtained using the RBAM for the

cantilever beam without elitism, (b) Shows the number of solutions obtained
using the RBAM for the comb drive without elitism.

51

a) b)

c) d)

Figure 6.5 (a), (b), (c), (d) Shows the number of solutions obtained using the AVGM

for the cantilever beam with different percentage selected as elite. (a) 10%, (b)
20%, (c) 40%, (d) 50%.

52

a) b)

c) d)

Figure 6.6 (a),(b),(c),(d) Shows the number of solutions obtained using the RBAM

for the cantilever beam with different percentage selected as elite. (a) 15%, (b)
30%, (c) 39%, (d) 45%.
Fig 6.5 and 6.6 shows results obtained with different elitism percentage. The higher the

percentage, the more the results and the slower it converges. In fig 6.6 the number of distinct

solutions start to drop when 39% of the population are reserved as elite in the RBAM GA.

In the AVGM GA, there is no significant drop in the number distinct solutions.

53

6.5	MEAN VALUE

As explained in the earlier sections, the mean value makes up the AVGM method.

Fig 6.7 and 6.8 illustrate what happens in the case of the RBAM (for cantilever and

comb drive), when the mean value percentage is increased. The mean value addition

significantly aids in increment of the number of distinct values produced in each

generation for the cantilever beam and comb drive actuator. The number of unique

values also increases in each generation. A mean value of about 4% seems appropriate.

Another significant use of this mean value is its ability to increase computational speed.

a) b)

c) d)

Figure 6.7(a),(c) Shows the number of solutions obtained using the RBAM for the

cantilever beam with different percentage selected as mean value. (a) 1%, (c)
4%. (b),(d) Shows the number of solutions obtained using the RBAM for the
comb drive actuator with different percentage selected to as mean value. (b)
1%, (d) 4%.

54

a) b)

c) d)

Figure 6.8(a),(c) Shows the number of solutions obtained using the RBAM for the

cantilever beam with different percentage selected as mean value. (a) 8%, (c)
15%. (b),(d) Shows the number of solutions obtained using the RBAM for the
comb drive actuator with different percentage selected to as mean value. (b)
8%, (d) 15%.

55

6.6 CROSSOVER EFFECT

The number percentage of genes in each individual selected for crossover can affect the

number of unique solutions generation in each generation. Fig 6.9 and Fig 6.10 and 6.11

show how the crossover percentage affects the population. For the cantilever beam, the ideal

crossover percentage is found to be 33.3%. For the Comb Drive, the ideal percentage is

50%(see plot 6.11d).

a) b)

c) d)

Figure 6.9 Shows the number of solutions obtained using the AVGM for the

cantilever beam with different percentage of gene selected for crossover. (a)
33.3%, (b) 66.6%. Shows the number of solutions obtained using the RBAM
for the cantilever beam with different percentage selected for crossover. (c)
33.3%, (d) 66.6%.

56

a) b)

b) d)

Figure 6.10 Shows the number of solutions obtained using the AVGM for the comb

drive actuator with different percentage of gene selected for crossover. (a)
12.5%, (b) 25%, (c) 37.5%, (d) 50%.

57

a) b)

c) d)

Figure	6.11	Shows	the	number	of	solutions	obtained	using	the	RBAM	for	the	comb	drive	
actuator	with	different	percentage	selected	for	crossover.	(a)	12.5%,	(b)	25%,	(c)	37.5%,	
(d)	50%.	

58

After	carefully	analyzing	the	results,	the	ideal	crossover	percentage	for	an	even	number	of	

genes	can	be	taken	as	50%	(i.e.	the	number	of	gene	is	simply	𝑛/2).	The	number	of	genes	

selected	for	odd	numbers	(𝑛	/2	−	1).	The	crossover	technique	plays	a	very	important	role	in	

the	genetic	algorithm	and	its	results.	The	RBAM	makes	the	crossover	quite	random,	ensuring	
that	there’s	a	possibility	that	different	genes	get	crossed	over	in	different	generations.	This	
can	also	help	speed	up	the	algorithm.	

6.7 MUTATION EFFECT

A question to ask is: how do we mutate gene values? Given that each gene has different

ranges to work with, unlike the binary scheme where a string can be exchanged or like the

traditional method of encoding real-valued genetic algorithm were a value is added or

subtracted to the gene. A value can’t just be added or subtracted because we have to be sure

they stay within the specified range and can’t be exchanged either because it never converts

the values to binary strings at any point. A novel method of mutation was introduced here,

that preserves the range and introduces constant diversity while ensuring the algorithm

doesn’t get stuck in the local search space. The right mutation rate is needed to prevent too

much randomness, which prevents the algorithm from converging. The plots in fig 6.12 and

6.13 illustrate results obtained with different mutation rates applied to the cantilever and

comb drive designs. The higher the mutation rate the more random the algorithm gets.

However good solutions can also be lost in the process which can result in fewer good

solutions. In fig 6.13d we see that at the rate of 0.15, the algorithm becomes quite random

compared to 6.12a, the number of results in the former is also higher than that of the latter.

59

a) b)

c) d)

Figure 6.12 (a),(c) Shows the number of solutions obtained using the RBAM for the

cantilever beam with different percentage selected to mutate. (a) 1%, (c) 5%.
(b),(d), Shows the number of solutions obtained using the RBAM for the comb
drive actuator with different percentage selected to mutate. (b) 1%, (d) 5%.

60

a) b)

c) d)

Figure 6.13 (a),(c) Shows the number of solutions obtained using the RBAM for the

cantilever beam with different percentage selected to mutate. (a) 10%, (c) 15%.
(b),(d) Shows the number of solutions obtained using the RBAM for the comb
drive actuator with different percentage selected to mutate. (b) 10%, (d) 15%.

61

CHAPTER 7

MULTI-OBJECTIVE	GENETIC	ALGORITHM	

The equations provided for the micro-cantilever shows the relationship between length

and thickness with resonance frequency and deflection. After simplifying Equation 7.1 to

Equation 7.2, it is clear that increasing length and reducing the thickness of the cantilever

could increase deflection but decrease resonance frequency and vice versa.

 (7.1)

 (7.2)

The problem could arise when there are dual objectives to fulfill. Assuming we are

required to attain a high deflection and high resonance frequency, the conflicting interest

would make it impossible to obtain both, so a balance has to be found somehow. Evolving

the genetic algorithm towards deflection would result in a poor resonance frequency result

and evolving the result towards resonance frequency would affect the result for deflection.

The plot in Figure 7.1 (b) shows how evolving the algorithm towards deflection alone

can’t provide the maximum resonance frequency possible. The plot works with the single

objective of finding a deflection of 10𝜇𝑚	and it can be seen that the resonance frequency

doesn’t get better but worse if it’s works with the deflection objective. The algorithm was

run multiple times to see the maximum attainable resonance frequency, which is visible in

the plot. The algorithm was also tried with another single objective of finding a high

resonance frequency and Figure 7.1(c) illustrates the maximum possible resonance

frequency that can be found with the given specifications, it is clear that if it were evolving

fn =
1
2π

ω n =
1
2π

3EI
ML3

fn =
1
2π

3E
density

t
L2

62

towards resonance frequency alone, a better or higher resonance frequency result can be

found. We are left with the question of what to do when we are given more than one

objective and the answer would require optimizing the algorithm to create good options to

pick from when provided with multiple objectives. We might not get the best of each

objective but it is possible to have an overall picture of different options to select from rather

than losing totally in one objective and winning in the other.

(a)

(b)
Figure 7.1. (a), shows how increase in deflection for the cantilever causes a decrease

in resonance frequency (106), (b) shows the maximum result that can be found
when evolving the algorithm towards a single objective (deflection).

63

7.1 EVALUATION	OF	MORBAM	GENETIC	ALGORITHMS	APPLIED	TO	THE	
CANTILEVER	AND	COMB	DRIVE	ACTUATOR	
	

There are two key factors in the main multi-objective RBAM (MORBAM) GA. These

key factors are Elitism and crossover. Elite individuals are combined for each objective to

make a population that is then recombined. The elite for the MORBAM applied to the

cantilever are individuals who have better resonance frequency and deflection. The elite for

the comb Drive are the individuals with better deflection, capacitance and force. Diversity

is also maintained in the algorithm with the use of MORBAM.

In solving the GA problems, the cantilever beam has two objectives and the comb drive

actuator has four objectives (see table 7.1 and 7.2).

7.2 MULTIOBJECTIVE	EVALUATION	OF	THE	CANTILEVER	

	
The MORBAM GA applied to the cantilever works in a very efficient way. Rather than

working blindly in generations and creating excessive randomness, the algorithm utilizes

RBAM GA for each objective and the combines the elite from each objective to make up a

population to be recombined. The elite is then selected from this new population and

reserved to make it to the next generation. The recombination of different objectives ensures

that a mid-point is met between all objectives in a case where one objective doesn’t

dominate the other.

64

Table 7.1: Multi-Objective GA representation for the Cantilever Beam

Variables Representation
P 500
m 3
n 100
k 20
z 10

numGen 0 to 200
(Number of Objectives) Obj 2

ObjI (Deflection(𝜇𝑚)) 10
Obj2 (Resonance Frequency(Hz)) As high as possible

r 10

	
a) b)

Figure 7.2) Shows result using MORBAM for resonance frequency (106) and

deflection and b) shows result obtained using RBAM.
	

Fig 7.2a shows higher results can be obtained for resonance frequency for a cantilever

beam when the algorithm does not work in the direction of one objective. The results do not

settle much in one region like that of fig 7.1b because it is not aimed at one objective.

Fig 7.2b shows that for the cantilever to maintain a deflection of about 10𝜇𝑚	 the

resonance frequency converges in a certain region. This means that for a deflection of 10𝜇𝑚	

in the RBAM the resonance frequency stays around the 1000Hz region and hardly rises

above 5500Hz. Obtaining as high as 5500Hz is most likely possible due to the good method

65

of mutation for the RBAM.

The algorithm is only able to get a good mid-point between both objectives as a result

of recombination between the elite in both objectives. Fig 7.3 and 7.4 shows the results

obtained with different elite percentage. The higher the elite percentage, the more diverse

the solutions. With 10% elitism, the resonance frequency settles more below 4000Hz in Fig

7.3a with a peak (maximum) of about 1700Hz for other diverse range. In the latter plots the

concentration in the lower region is less and the resonance frequency reaches a peak of

about 2500Hz.

a) b)

c) d)
	

Figure 7.3 Results obtained using the MORBAM for the cantilever a) 10% elite,
b)20% elite, c)30% elite, d) 40% elite.

66

a)	
	

b) c)

d) e)

Figure 7.4 Results obtained using the MORBAM for the cantilever. a)50% elite,

b)60% elite, c)70% elite, d)80% elite, e)90% elite.

67

7.2	MULTI-OBJECTIVE	RESULTS	FOR	THE	COMB	DRIVE	ACTUATOR	

	
The MORBAM GA applied to the comb drive actuator also performs well and follows

the MORBAM algorithm. It is important to note that the comb drive has more objectives

than the deflection (refer to table 7.1 for cantilever multi-objective table). The results

obtained when the MORBAM GA is applied to the cantilever shows that the algorithm has

the capability of finding good solutions. Solutions appear to be more in certain regions as

shown in Fig 7.5 and 7.6 but due to the flexibility of the algorithm, good solutions can also

be found in unlikely regions. The results are also based of the elitism percentage. The results

appear more in unlikely regions when 10% is selected for as the elite.

Table 7.2: Objectives for the Comb Drive Actuator

PARAMETER DESIRED VALUES

Deflection (𝜇𝑚) 10

Force (N) 50

Capacitance (pF) High

Voltage (V) 50

68

	
a)	

	
b)	

	
c)

d)
Figure 7.5 Results obtained using the MORBAM for comb drive. a) 10% elite, b)

20% elite, c) 30% elite,d) 40% elite.

69

a)

b)

c)
Figure 7.6 Results obtained using the MORBAM for comb drive. a)50% elite,

b)60% elite, c)70% elite.

70

a)

b)	

Figure 7.7 Results obtained using the MORBAM for comb drive. a)80% elite,
b)90% elite.

71

CHAPTER 8

CONCLUSION AND FUTURE WORK

Genetic algorithm has a significant use in MEMS. MEMS design parameter problems

can be solved properly using genetic algorithm by finding significant and applicable ways

of recombination (crossover), mutating and evaluating the genetic algorithm approach. This

thesis explores different ideas and ways to use a genetic algorithm when there are different

variables to work with. Novel genetic algorithm techniques are introduced by creating smart

ways to crossover and trying out a different mutation technique. Three new techniques have

been created and tested accordingly and have their different advantages or limitations. The

results were also evaluated with the absence of an appropriate mutation technique and it

was seen that that even without the new mutation technique, the algorithm found a way to

produce good enough solutions making mutation just a plus in the algorithm. In the past,

genetic algorithms have been encoded mostly in the binary way and so there’s been not

much to say about how to mutate except from the standard mutation techniques like

(inversion, adding or subtracting a value etc). This work comes up with a new way to mutate

the genetic algorithm. These genetic algorithm techniques can be applied to any problem

and can produce good results in timely and efficient manner. It is therefore recommended

that the AVGM, RBAM and the MORBAM methods are useful for the geometric design of

MEMS. They provide quicker ways to optimize the dimensions and produce diverse design

parameters that satisfy the end goal. The RBAM, which is one of the single-objective

algorithm works better than the AVGM due to its flexibility and random nature while the

MORBAM GA works well for problems with multiple objectives. A crossover percentage

of 50% for the comb drive actuator produced unique results that were about the same size

as the total number of results generated. For the cantilever beam, selecting one gene out of

72

three genes for crossover seemed appropriate. The mutation percentage responded

differently for the different MEMS devices (cantilever and comb drive). It takes the

algorithm more generations to converge as the elite percentage is increased. The mean value

addition makes the algorithm generate results faster (takes as little as 3s), it also helps to

improve the number of distinct solution generated, and aids in the increase of the number

of unique solutions generated.

73

REFERENCES

[1] Er. Ashis Kumar Mishra, Er. Yogomaya Mohapatra, Er. Anil Kumar Mishra. 2013.

Multi-Objective Genetic Algorithm: A Comprehensive Survey.

[2] Gad-el-Hak, Mohamed. 2006. MEMS: introduction and fundamentals. Boca Raton:

CRC/Taylor & Francis.

[3] Haupt, Randy and Sue Ellen Haupt. Practical Genetic Algorithms. John

Wiley & Sons, 1998.	

[4] Suryansh Arora, Sumati, Arti Arora, P.J George, “Design of MEMS based

Microcantilever using Comsol Multiphysics”, Applied Engineering Research, Vol.7

No.11, 2012.

[5] Maziar Norouzi, Alireza K, “Design of Piezoelectric microcantilever Chemical

Sensor in Comsol Multiphysics Area”, Electrical and Electronics, Vol.2, issue

1,No.184,2009.

[6] Nitin S.Kale,V.Ramgopal Rao,”Design and Fabrication Issues in Affinity Cantilevers

for bioMEMS Applications”,Micro Electro Mechanical Systems,VOL.15,NO.6,2006 .

[7] Sandeep Kumar Vashist,”A Review of Microcatilevers For Sensing Applications”,

2007.

[8] Guanghua Wu, Ram H.Datar, Karolyn M.Hasen, Thomas Thundat, Richard J. Cote,

Arjun Majumdar, “Bioassay of Prostate-Specific Antigen(PSA) Using

Microcantilevers”, Nature Biotechnology, VOL.19, No.856,2001.

[9] Pratt R I, Johnson G C, Howe R T and Chang J C 1991 Micromechanical structures

for thin film characterization Proc. Int. Conf. on Solid-State Sens. Actuators,

Transducers ’91 (San Francisco, CA, 1991) pp 205–8.

74

[10] Groeneveld A W 1995 Electromechanical behaviour and study towards position

control of electrostatic comb drive actuators Master Thesis University of Twente,

Enschede, The Netherlands.

[11] G. Leu, S. Simion, and A. Serbanescu. MEMS optimization using genetic algo-

rithms," in CAS 2004 Proceedings, vol. 2, 2004, pp. 475{478.

[12] N. Zhou, A. Agogino, and K. S. J. Pister, \Automated design synthesis for micro-

electro-mechanical systems," in Proceedings of DETC 2002: Design Automation,

2002.

[13] Comsol Multiphysics 4.0a, COMSOL Inc., 1997-2010. [Online]. Available:

http://www.comsol.com/

[14] MATLAB R2009b, The MathWorks Inc., Natick, Massachusetts, 2009. [Online].

 Available: http://www.mathworks.com/products/matlab/

[15] S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed.

Oxford University Press, 2001.

[16] K. Deep and M. Thakur. A new mutation operator for real coded genetic algorithms,"

Applied mathematics and Computation, vol. 193, pp. 211{230, 2007.

[17] F. Herrera and M. Lozano. Two-loop real-coded genetic algorithms with adaptive

control of mutation step sizes," Applied Intelligence, vol. 13, no. 3, pp. 187{204,

2000.

[18] Teich, J., “Pareto-Front Exploration with Uncertain Objectives,” Evolutionary Multi-

Criterion Optimization, First International Conference, pp314-328, 2001.

[19] Ursen, B.K, “Diversity-Guided Evoluationary Algorithm,” In: Proceedings of Parallel

Problem Solving from Nature VII (PPSN-2002), p. 462-471, 2002

75

[20] Venkataraman, P., “Applied Optimization with MATLAB Programming,” John

Wiley & Sons, Inc, 2001

[21] Weeks, R. W. and Moskwa, J.J., “Automotive Engine Modeling for Real-Time

Control Using MATLAB/SIMULINK,” SAE 950417, 1995

[22] ZIMMERMANN H.-J. AND H.-J. S., “Intelligent system design support by

fuzzymulti-criteria decision making and/or evolutionary algorithms,” in Proceedings

of IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 1995

[23] Zitzler, E., Deb, K. and Thiele, L. “Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results," Evolutionary Computation, 8(2), pp. 173-195,

Summer 2000.

[24] Kokolo, I., Hajime, K., and Shigenobu, K., “Failure of pareto based MOEAs: Does

non-dominated really mean near to optimal?,” In Proceedings of the Congress on

Evolutionary Computation 2001 (CEC 2001), vol. 2, pp. 957 – 962, Piscataway, New

Jersey, IEEE Service Center, May 2001.

[25] Kirkpartrick, S., Gelatt, C. D., and Vecchi M.P. “Optimization by simulated

annealing,” Science, 220:671-680, 1983.

[26] Knowles, J. D., “Local Search and Hybrid Evolutionary Algorithms for Pareto

Optimization,” Doctoral Dissertation, The University of Reading, 2002.

[27] Knowles, J. D. and Corne, D. W., “Approximating the Nondominated Front Using the

Pareto Archived Evolution Strategy,” Evolutionary Computation 149-172, 2000.

[28] Laumanns, M., Thiele, L., et al., “Combining convergence and diversity in

evolutionary multi-objective optimization, “Evolutionary Computation, vol. 10, no. 3,

pp. 263-282, Fall 2002.

[29] Lohn, J.D., Kraus, W.F., and Haith, G.L. “Comparing a Coevolutionary Genetic

76

Algorithm for Multiobjective Optimization,” Proceeding of the 2002 IEEE Congress

on Evolutionary Computation, pp. 1157-1162, May 2002.

[30] Lu, H. and Yen, G., “Rank-Density-Based Multiobjective Genetic Algorithm and

Benchmark Test Function Study,” IEEE Transactions on Evolutionary Computation,

Vol. 5, No.4, P335-348, August 2001.

[31] Goldberg, D., 1989a, Genetic algorithms in search for optimization and machine

learning:Addison-Wesley Pub. Co.

[32] Goldberg, D., 1989b, Sizing populations for serial and parallel genetic algorithms:

Proceedings of the Third International Conference on Genetic Algorithms, Morgan

Kaufmann Publishers.

[33] Haupt, R., and Haupt, S., 1998, Practical genetic algorithms: John Wyley and sons.

[34] Rob Legtenberg, A W Groeneveld and M Elwenspoek “Comb-Drive Actuators for

large displacements” Micromech. Microeng. IOP published 96, pp 320-329 (1996).

[35] Swati Kapoor, Dinesh Kumar, B.Prasad, “MEMS Electrostatic comb actuators with

different materials by using COMSOL 3.5a” Department of Electronic Science

Kurukshetra University, Kurukshetra (2011).

[36] Rana I. Shakoor, Imran R. Chughtai, Shafaat A. Bazaz, Muhammad J. Hyder,

Masood-ul-Hassan, “Numerical Simulations of MEMS Comb-Drive Using Coupled

Mechanical and Electrostatic Analyses” PhD fellow, Department of Chemical &

Materials Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore,

Islamabad, Pakistan IEEE 7803-9262 July (2005).

[37] Tang W C, Nguyen T C and Howe R T 1989 Laterally driven polysilicon resonant

microstructures Sensors Actuators 20 25–32

[38] Brenner R A, Pisano A P and Tang W C 1990 Multiplemode micromechanical

77

resonators Proc. IEEE Micro Electro Mech. Syst. (Napa Valley, CA 1990) pp 9–14.

[39] Kanchan Sharma, Isaac G. Macwan, Linfeng Zhang, Lawrence Hmurcik and

Xingguo Xiong; “Design Optimization of MEMS Comb Accelerometer” Sensors and

Transducers, Vol. 108, Issue 7, pp 15-30, 2006.

[40] Isabelle P.F. Harouche and C. Shafai “Simulation of Shaped Comb Drive as a

Stepped Actuator for Microtweezers Application” Sensors and Actuators A Vol.123–

124, pp 540–546, March 2005.

[41] Tai-Ran Hsu; “Micro Assembly: A Technology on the Frontier of New Industrial

Automation” J. Microelectromech. Syst. Vol.10 Issue 2, pp1481–1490, 2005.

[42] Anit Kumar;Encoding Schemes in Genetic Algorithm. International Journal of

Advanced Research in IT and Engineering.

[43] Mitsuo Gen, Runwei Cheng ;	Genetic	Algorithm	and	Engineering	Design.

[44] Shefali Gupta, Tanu Pahwa , Rakesh Narwal , B.Prasad, Dinesh Kumar. Optimizing

the Performance of MEMS Electrostatic Comb Drive Actuator with Different Flexure

Springs.

 	

78

APPENDIX		A:	MATLAB		CANTILEVER		AVGM	CODE	
	
%initializing the constants
Force = 50; %given value for force
E=170; %given value for Young's_Modulus(Poly-Silicon)

ep = 0.30*100; %elite percentage
rap= ep./3;
ep2= 100-ep;

genecount = 1:3;
selgene = datasample(genecount,1,2, 'Replace', false);%select a gene

%add 5 averages
avr= 5;

Testvalue = 10.0; %termination condition(goal)
Testvalue2 = 50.0;
hh=15; %mean value factor
hhh=5; %number of random rows used to get the mean value(average)

unn = zeros(0,7);
unnn = zeros(0,7);

n=200; % number of generations the algorithm will run for.

%initialization step in the algorithm

numGen=0; %current generation

Lmin=10.0; %minimum value for length
Lmax=100.0; %maximum value for length

wmin=2.0; %minimum value for width
wmax=50.0; %maximum value for width

tmin=0.5; %minimum value for thickness
tmax=20.0; %minimum value for thickness

Pop_init_size = 500;

v1= Lmin+rand(Pop_init_size,1)*(Lmax-Lmin); %All 500 values for length(Length
genes)

v2= wmin+rand(Pop_init_size,1)*(wmax-wmin);%All 500 values for width(width genes)

79

v3= tmin+rand(Pop_init_size,1)*(tmax-tmin); %All 500 values for tickness(tickness
genes)

Pop_init=[v1 v2 v3]; %the population
Chrom= Pop_init;

%evaluate the parent population P(t)
L=(Chrom(:, 1)); %Length is the first column of the matrix
w=(Chrom(:, 2)); %width is the second column of the matrix
t=(Chrom(:, 3)); %thickness is the third column of the matrix

%constructing the fitness objective

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);

Fitness1 = (0.07586.*t)./ (L.*L);%resonance frequency
%while it doesn't meet termination condition which is testvalue
stopFlag = 0;
%starting the algorithm for n generations

while stopFlag == 0
for iii = 1:n

hh=20;
hhh=5;
hep=hh+ep;
FF = abs(Fitness - Testvalue);

F = [Chrom FF];
p =
sortrows(F,4); h
= p(1:100, 1:3);
qw = h(1:ep, 1:3);
h(1:ep,:)=[];

avg = zeros(0,1);

if iii<2
unnn = zeros(0,7);

end

%create average values based on crossover percentage
for iv = 1:hh

ab = datasample(Chrom,hhh,1, 'Replace', false);

ac = mean(ab);

80

avg = [avg; ac];

end
avg;
% select individuals to crossover same size as average
[ad, add] = datasample(h,hh,1, 'Replace', false);
h(add,:)= [];% remove selected individual to crossover

avr_sel =datasample(avg,avr,1, 'Replace', false);%randomly select average
individual to add

first = ad(:,selgene);
ad(:,selgene) = avg(:,selgene);
avg(:,selgene)= first;
Ch = [ad;avg];
Ch1= datasample(Ch,hh,1, 'Replace', false);
l=length(h);
l2=l/2;
af=datasample(h,l2,1, 'Replace', false);
ag=datasample(h,l2,1, 'Replace', false);
second = af(:,selgene);
af(:,selgene)=ag(:,selgene);
ag(:,selgene)= second;
Child11=[qw; af; ag; Ch1];
Child1=[qw; af; ag; Ch1; avr_sel];

Child = Child1;

Chrom = Child;
L=(Chrom(:,
1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);
Fitness1 = (0.07586.*t)./ (L.*L);
solChrom = Chrom;
tes = abs(Fitness - Testvalue);
sorti = sortrows(tes);
solly = [solChrom stiff Fitness1 Fitness tes];
sollyreal = sortrows(solly,7);

avr1=(length(Child11))+avr
sollyreal(101:avr1,:)=[];

81

size(sollyreal)
sollyreal2 = sollyreal(:,6);
sollyreal3 = sollyreal(:,1:5);

%now count the number of rows in column 5 that's less than 0.1
thenumber = sum(tes < 0.1)
nmm= sollyreal(:,7);
tes1 = sum(nmm < 0.1);
numGen = numGen + 1;
%for i =1:158
cv = sollyreal2(:,:);
csv = sollyreal3(:,:);
bn = size(cv);

un = repmat(numGen, bn);
unn = [csv cv un];
unnn=[unnn;unn];

stopFlag = 1;

end
end

disp(unnn);% includes all results starting from generation one

	
 	

82

APPENDIX	B:	MATLAB	CANTILEVER		RBAM		CODE	

%initializing the constants
Force = 50; %given value for force
E=170; %given value for Young's_Modulus(Poly-Silicon)
ep = 0.30*100; %elite percentage
rap= ep./3;
Testvalue = 10.0; %termination condition(goal)
Testvalue2 = 50.0;
hh=15; %mean value factor
hhh=5; %number of random rows used to get the mean value(average)
unn = zeros(0,7);
unnn = zeros(0,7);
n=200; % number of generations the algorithm will run for.

%initialization step in the algorithm
numGen=0; %current generation
Lmin=10.0; %minimum value for length
Lmax=100.0; %maximum value for length
wmin=2.0; %minimum value for width
wmax=50.0; %maximum value for width
tmin=0.5; %minimum value for thickness
tmax=20.0; %minimum value for thickness
Pop_init_size = 500;
v1= Lmin+rand(Pop_init_size,1)*(Lmax-Lmin); %All 500 values for length(Length
genes)
v2= wmin+rand(Pop_init_size,1)*(wmax-wmin);%All 500 values for width(width genes)
v3= tmin+rand(Pop_init_size,1)*(tmax-tmin); %All 500 values for tickness(tickness
genes)
Pop_init=[v1 v2 v3]; %the population
Chrom= Pop_init;

%evaluate the parent population P(t)
L=(Chrom(:, 1)); %Length is the first column of the matrix
w=(Chrom(:, 2)); %width is the second column of the matrix
t=(Chrom(:, 3)); %thickness is the third column of the matrix

%constructing the fitness objective

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);

Fitness1 = (0.07586.*t)./ (L.*L);%resonance frequency
%while it doesn't meet termination condition which is testvalue
stopFlag = 0;

83

%starting the algorithm for n generations
while stopFlag == 0

for iii = 1:n
FF = abs(Fitness - Testvalue);

F = [Chrom FF];
p = sortrows(F,4);
h = p(1:100, 1:3);
qw = h(1:ep, 1:3);
[z, qw1] = datasample(qw,ep,1, 'Replace', false);
h(qw1,:) = [];

%constructing the average value
avg = zeros(0,1);
for iv = 1:hh

ab = datasample(Chrom,hhh,1, 'Replace', false);

ac = mean(ab);

avg = [avg; ac];
end

favg=avg;%assigning favg to avg

%crossover begins here

a = datasample(z,ep,1, 'Replace', false);%selecting elite individual

%dividing elite into three and randomly seecting a column(a gene) from each division
[s b] = datasample(a,rap,1, 'Replace', false);
[s1 b2] = datasample(a,1,2, 'Replace', false);
a(b,:) = [];
[ss bb] = datasample(a,rap,1, 'Replace', false);
[ss1 bb2] = datasample(a,1,2, 'Replace', false);
a(bb,:) = [];
[ss2 bb3] = datasample(a,1,2, 'Replace', false);

sss = s;
sa=ss;
aaa=a;

[aa l] = datasample(h,ep,1, 'Replace', false);% select 30 unique from the whole

population

84

h(l,:) = [];%delete the 30 unique ones from h
mm = h; % save the rest of values in h in mm

%dividing the selected population into three so they can be recombined with the elite
[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

%recombination(crossover) happens here
uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);
%crossover ends here

childy = [uu; sss; uuk; sa; aak];%saving the children
childy2 = datasample(childy,ep,1, 'Replace', false);%randomly selected some children
Child1 = [childy2; z; mm; favg];
%children are made up of the elite(z), the averege(favg),the randomly

selected(Childy2),and the rest of the population not recombined(mm)

%mutation begins here
Lmin=10.0; %minimum value for length
Lmax=100.0; %maximum value for length

wmin=2.0; %minimum value for width
wmax=50.0; %maximum value for width

tmin=0.5; %minimum value for thickness
tmax=20.0; %minimum value for thickness
Pop_init_size = 100;

v1= Lmin+rand(Pop_init_size,1)*(Lmax-Lmin); %All 100 values for length(Length

genes)
v2= wmin+rand(Pop_init_size,1)*(wmax-wmin);%All 100 values for width(width

genes)
v3= tmin+rand(Pop_init_size,1)*(tmax-tmin); %All 100 values for tickness(tickness

genes)
Pop_init=[v1 v2 v3]; %the population

85

Chrommutate = Pop_init;
[D G] = datasample(Chrommutate,1,1, 'Replace', false);
[HH CC] = datasample(D,1,2, 'Replace', false);
Child1(G,CC) = HH;
%mutation ends here
Child = Child1; %the new population after mutation is assigned to variable called

child
Chrom = Child;
L=(Chrom(:,
1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));
Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);%stiffness
Fitness1 = (0.07586.*t)./ (L.*L);
solChrom = Chrom;
tes = abs(Fitness - Testvalue);
sorti = sortrows(tes);
solly = [solChrom stiff Fitness1 Fitness tes];
sollyreal = sortrows(solly,7);
sollyreal(101:end,:)=[];%population is selected in order of fitness(100 individuals

selected)
sollyreal2 = sollyreal(:,6);
sollyreal3 = sollyreal(:,1:5);
%now count the number of rows in column 5 that's less than 0.1
thenumber = sum(tes < 0.1)
nmm= sollyreal(:,7);
tes1 = sum(nmm < 0.1);
numGen = numGen + 1;
cv = sollyreal2(1:tes1,:);
csv = sollyreal3(1:tes1,:);
bn = size(cv);
un = repmat(numGen, bn);
unn = [csv cv un];
unnn = [unnn; unn];
stopFlag = 1

end
end

disp(unnn);% includes all results starting at numGen=1,ending at numGen=n

86

APPENDIX	C:	MATLAB	MORBAM	CANTILEVER	CODE	

for iiii=1:100;
Force = 50;
E=170;

Nind = 500; %population of 30 individual individuals
FieldDR = [10 2.0 0.5; 1000.0 50.0 20.0]; %Genes = 3; genes upper and lower bounds
ep = 0.30*100;
rap= ep./3;
Testvalue = 10.0; %termination condition
Testvalue2 = 50.0;
hh=5;
hhh=5;
F2 = 0;
Fitness= 0;
unn = zeros(0,7);
unnn = zeros(0,7);
if iiii < 2
unnnrun1 = zeros(0,7);

end
unnnrun1 = unnnrun1;
genecount1 = 1:3;
selgene = datasample(genecount1,1,2, 'Replace', false);%select a gene
sel1=50;
sel11=50;
sel2=100;
sel22=60;
ell=60;
elt=40;

% %
% %

Chrom = crtrp(Nind, FieldDR);

%evaluate the parent population P(t)
L=(Chrom(:, 1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;

87

stiff=(3.*E.*I)./(L.*L.*L);

Fitness1 = (0.68037.*t)./ (L.*L);
%while it doesn't meet termination condition which is testvalue
stopFlag = 0;
numGen=0;
while stopFlag == 0
for iii = 1:200

FF = abs(Fitness - Testvalue);
FFr = abs(Fitness1 -
Testvalue2); FFF = [Chrom FF
FFr];
F = [Chrom FF];
p =
sortrows(F,4); h
= p(1:100, 1:3);
qw = h(1:ep, 1:3);
[z, qw1] = datasample(qw,ep,1, 'Replace', false);
h(qw1,:) = [];

%second fitness

Fr = [Chrom FFr];
pr = sortrows(Fr,4);
hr = pr(1:100, 1:3);
qwr = hr(1:ep, 1:3);
[zr, qw1r] = datasample(qwr,ep,1, 'Replace', false);
hr(qw1r,:) = [];

% elitism selection

% % if iii>1<5
% % zh = unique(h, 'rows');
% % z=zh(1:30,1:3);
% %
% % end

avg = zeros(0,1);
for iv = 1:hh

ab = datasample(Chrom,hhh,1, 'Replace', false);

ac = mean(ab);

88

avg = [avg; ac]; end

favg=avg;

a = datasample(z,ep,1, 'Replace', false);

% [s i] = datasample(m,2,1, 'Replace', false)

[s b] = datasample(a,rap,1, 'Replace', false);
[s1 b2] = datasample(a,1,2, 'Replace', false);
a(b,:) = [];
[ss bb] = datasample(a,rap,1, 'Replace', false);
[ss1 bb2] = datasample(a,1,2, 'Replace', false);
a(bb,:) = [];
[ss2 bb3] = datasample(a,1,2, 'Replace', false);

sss = s;
sa=ss;
aaa=a;

[aa l] = datasample(h,ep,1, 'Replace', false);% select 30 unique from the 100
h(l,:) = [];%delete the 30 unique ones from h
mm = h; % save the rest of values in h in mm

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

89

% Child = [z ; a; j; m];
childy = [uu; sss; uuk; sa; aak];
childy2 = datasample(childy,ep,1, 'Replace', false);
Child1 = [childy2; z; mm; favg];

% Child = [z ; a; j; kk; m; uk];
%mutate

Nind = 100; %population of 30 individual individuals

FieldDR = [10 2.0 0.5; 1000.0 50.0 20.0]; %Genes = 3; genes upper and lower bounds
Chrommutate = crtrp(Nind, FieldDR);
[D G] = datasample(Chrommutate,10,1, 'Replace', false);
[HH CC] = datasample(D,1,2, 'Replace', false);
Child1(G,CC) = HH;

%after mutate
Childd = Child1;

%mutation didn't seem to have a problem on the space; probably doesnt
%get stuck in local optimum

L=(Childd (:, 1));
w=(Childd (:, 2));
t=(Childd (:, 3));

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;

eva1 = abs(Fitness - Testvalue);
Fit1 = [Childd eva1];
Childd = sortrows(Fit1,4);
Childd=Childd(:,1:3);

% % % second objective

ar = datasample(zr,ep,1, 'Replace', false);

% [s i] = datasample(m,2,1, 'Replace', false)

[s b] = datasample(ar,rap,1, 'Replace', false);
[s1 b2] = datasample(ar,1,2, 'Replace', false);
ar(b,:) = [];
[ss bb] = datasample(ar,rap,1, 'Replace', false);
[ss1 bb2] = datasample(ar,1,2, 'Replace', false); ar(bb,:) = [];
[ss2 bb3] = datasample(ar,1,2, 'Replace', false);

sss = s;
sa=ss;
aaa=ar;

90

[aa l] = datasample(hr,ep,1, 'Replace', false);% select 30 unique from the 100
hr(l,:) = [];%delete the 30 unique ones from h
mm = hr; % save the rest of values in h in mm

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

% Child = [z ; a; j; m];
childyr = [uu; sss; uuk; sa; aak];
childy2r = datasample(childyr,ep,1, 'Replace', false);
Child1r = [childy2r; zr; mm];

% Child = [z ; a; j; kk; m; uk];
%mutate

Nind = 100; %population of 30 individual individuals

FieldDR = [10 2.0 0.5; 1000.0 50.0 20.0]; %Genes = 3; genes upper and lower bounds
Chrommutater = crtrp(Nind, FieldDR);

[D G] = datasample(Chrommutater,10,1, 'Replace', false);
[HH CC] = datasample(D,1,2, 'Replace', false);
Child1r(G,CC) = HH;

%after mutate
Childr = Child1r;

%mutation didn't seem to have a problem on the space; probably doesnt
%get stuck in local optimum

L=(Childr (:, 1));

91

w=(Childr (:, 2));
t=(Childr (:, 3));

I = (w.*t.*t.*t)/12;

Fitness1 = (0.68037.*t)./ (L.*L);

eva2 = abs(Fitness1 - Testvalue2);

Fit2 = [Childr eva2];
Childr = sortrows(Fit2,4);
Childr=Childr(:,1:3);

% % end of second objective

%%select from the general population elite based on two objectives

%%end of elite
Childr=Childr(1:sel1,:);
Childd=Childd(1:sel11,:);

Children = [Childd; Childr];
[crossing1, num]= datasample(Children,50,1, 'Replace', false);
Children(num,:) = [];
crossing2= datasample(Children,50,1, 'Replace', false);
xcr = crossing1;
crossing1(:,selgene)= crossing2(:,selgene);
crossing2(:,selgene) = xcr(:,selgene);

Childdy = [crossing1; crossing2];

% % Children = Childdy;

% % [crossing1, num]= datasample(Children,50,1, 'Replace', false);

L=(Childdy(:, 1));
w=(Childdy(:, 2));
t=(Childdy(:, 3));

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));

I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);

Fitness1 = (0.68037.*t)./ (L.*L);

92

Childddy = [Childdy Fitness1 Fitness];
el = zeros(0,5);

for u=1:sel2
[FA, FAA] = datasample(Childddy,1,1, 'Replace', false);

[FB, FBB] = datasample(Childddy,1,1, 'Replace', false);

selA = all((FA(:,4)<FB(:,4)),2);
selB = all((FB(:,4)<FA(:,4)),2);
selA1 = all((FA(:,5)<FB(:,5)),2);
selB1 = all((FB(:,5)<FA(:,5)),2);

sum1 = selA + selA1;
sum2 = selB + selB1;

if sum1<2
ansS=FA;
elseif
sum2<2
ansS=FB;
else
ansS=zeros(0,5);

end

el=[el;ansS];

end
ell1=el(1:ell,1:3);%%picking better

Child11 = datasample(Childdy,elt,1, 'Replace', false);%picking based on each obj
Child11=Child11(:,1:3);

Child = [Child11; ell1];
Chrom = Child;
L=(Chrom(:, 1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));

Fitness =

(4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t)); I =
(w.*t.*t.*t)/12; stiff=(3.*E.*I)./(L.*L.*L);

Fitness1 = (0.68037.*t)./ (L.*L);
solChrom = Chrom;
tes = abs(Fitness - Testvalue);

93

sorti = sortrows(tes);
solly = [solChrom stiff Fitness1 Fitness tes];
sollyreal = sortrows(solly,7);

sollyreal2 = sollyreal(:,6);
sollyreal3 = sollyreal(:,1:5);

%now count the number of rows in column 5 that's less than 0.1
thenumber = sum(tes < 0.1)
nmm= sollyreal(:,7);
tes1 = sum(nmm < 0.1);
numGen = numGen + 1;
%for i =1:158
cv = sollyreal2(:,:);
csv = sollyreal3(:,:);
bn = size(cv);

un = repmat(numGen, bn);
unn = [csv cv un];

unnn = [unnn; unn];

Gensol(iii) = thenumber;

end
end

unnn=sortrows(unnn,6);
unnn=unnn(unnn(:,6)<10.02,:);
unnn=unnn(unnn(:,6)>9.89,:);

solGen = unnn(:,7);
x = unique(solGen);
y=histc(solGen,x);
w1 = unique(unnn, 'rows');
w11 =w1(:,7);
w12= unique(w11);
w2 =histc(w11,w12);
%for unique results overall
[w4,ia] =unique(unnn(:,1:3),'rows');%unique rows based of first 6 columns
uA = unnn(ia,:);
w21 =uA(:,7);
w22= unique(w21);
w3 =histc(w21,w22);

unnnreal1 = unnn(unnn(:,6)> 2,:);
unnnreal = unnnreal1(unnnreal1(:,6)<10,:);

unnnrun1 = [unnnrun1; unnn];

94

end

xx= unnnrun1(:,1);
xy= unnnrun1(:,2);
xz= unnnrun1(:,3);
xzz= unnnrun1(:,6);
xzzz= unnnrun1(:,5);
xzzzz= unnnrun1(:,7);

% % ax1 = subplot(2,1,1);
plot(xzzz,xzz,'r*');
xlabel('Resonance Frequency')
ylabel('Deflection')

 	

95

APPENDIX	D:	PYTHON		RBAM		CANTILEVER	CODE	
from numpy import *
import numpy as np
import numpy.matlib

Pop_size=50
Force=50;
E=170;
ep = 0.30*100;
ep = 30
rap= ep/3;
rap=10;
Testvalue = 10.0;
hh=15;
hhh=5
;
F2 =
0;

unn = np.zeros((0, 7))
unnn = np.zeros((0,7));
cs=2;
L = np.random.uniform(low=10.0, high=100.0, size=(500,));##for population size of 500
w = np.random.uniform(low=5.0, high=50.0, size=(500,));
t = np.random.uniform(low=0.5, high=20.0, size=(500,));
Chrom=np.vstack((L, w, t)).T
L=Chrom[:,0]##assign first column to L
w=Chrom[:,1]##ASSIGN SECOND COLUMN TO W
t=Chrom[:,2]
Fitness_function=(4*Force)*(L*L*L)/(E*(w*t*t*t));
Popfit=np.vstack((L, w, t,Fitness_function)).T
numGen=0
stopFlag = 0
##fit=argsort(Popfit[:,3]);
##Pop=Popfit[fit,:];##new pop in order of fitness
while stopFlag == 0:

for iii in range(20):
FF = np.absolute (Fitness_function - Testvalue);
F= np.column_stack((Chrom,FF))
fit=argsort(Popfit[:,3]);
p = Popfit[fit,:];##sorted rows in order of fitness
h = p[0:100, 0:3];

##first 100
qw = h[0:ep, 0:3];

##elite
qw1=np.random.choice(qw.shape[0], ep, replace=False)
z=qw[qw1,:]
h = np.delete(h, qw1, 0)

avg = np.zeros((0,3));
for iv in range(hh):
##for a in range(10): or for a in range(0, 10):

ab = Chrom[np.random.choice(Chrom.shape[0], hhh, replace=False), :]
ac = ab.mean(axis=0)
avg = np.vstack((avg,ac))

favg=avg;

a = z[np.random.choice(z.shape[0], ep, replace=False), :]
b = np.random.choice(a.shape[0], rap, replace=False)

96

s=a[b,:]
b2 = np.random.choice(a.shape[1], cs, replace=False)
a = np.delete(a, b, 0)
bb = np.random.choice(a.shape[0], rap, replace=False)
ss=a[bb,:]
bb2 = np.random.choice(a.shape[1], cs, replace=False)
a = np.delete(a, bb, 0)
bb3 = np.random.choice(a.shape[1], cs, replace=False)

sss = s;
sa=ss;
aaa=a;

l= np.random.choice(h.shape[0], ep, replace=False)
aa=h[l,:]
h = np.delete(h, l, 0)##delete the 30 unique ones from h
mm = h ## save the rest of values in h in mm
q = np.random.choice(aa.shape[0], rap, replace=False);
uu=aa[q,:]
aa = np.delete(aa, q, 0)
qq = np.random.choice(aa.shape[0], rap, replace=False);
uuk=aa[qq,:]
a = np.delete(aa, qq, 0)
uuu = uu
saa=uuk
aak = aa[np.random.choice(aa.shape[0], rap, replace=False), :]
aakk=aak
uu[:,b2]=s[:, b2]
sss[:,b2]=uuu[:,b2]
uuk[:,bb2]=ss[:,bb2]
sa[:,bb2]=saa[:,bb2]
aak[:,bb3]=a[:,bb3]
aaa[:,bb3]=aakk[:,bb3]

childy = np.vstack((uu, sss, uuk, sa, aak))#stacking rows on top of each other
childy2 =childy[np.random.choice(childy.shape[0], ep, replace=False), :]
Child1 = np.vstack((childy2, z, mm, favg));

v1 = np.random.uniform(low=10.0, high=100.0, size=(100,));
v2 = np.random.uniform(low=5.0, high=50.0, size=(100,));
v3 = np.random.uniform(low=0.5, high=20.0, size=(100,));
Chrommutate=np.vstack((v1, v2, v3)).T
G= np.random.choice(Chrommutate.shape[0], 1, replace=False);
D=Chrommutate[[G],:]
CC= np.random.choice(D.shape[1], 1, replace=False);
HH=D[[CC],:]
Child = Child1
Chrom = Child
L=Chrom[:,0]##assign first column to L
w=Chrom[:,1]##ASSIGN SECOND COLUMN TO W
t=Chrom[:,2]
##Fitness = (Force)*(L*L*L)/(2*E*(w*t*t*t));
Fitness_function = (4*Force)*(L*L*L)/(E*(w*t*t*t));
I = (w*t*t*t)/12;
stiff=(3*E*I)/(L*L*L);
##Resfreq = sqrt((3*E*I)/(M*L*L*L));
Fitness1 = (0.68037*t)/ (L*L);
solChrom = Chrom;

97

tes = np.absolute (Fitness_function - Testvalue);
sorti = np.sort(tes);
solly = np.column_stack((solChrom,stiff,Fitness1,Fitness_function,tes))

nmf1=argsort(solly[:,6]);
sollyreall=solly[nmf1,:]
sollyreal=sollyreall[0:100,:]
sollyreal2 = sollyreal[:,5];
sollyreal3 = sollyreal[:,0:5];
thenumber = sum(tes < 0.1)## or (tes> 0.1).sum()
nmm= sollyreal[:,6];

nmf=argsort(sollyreal[:,6]);
nmm=sollyreal[nmf,:]
a.sum(axis=0)

bj=size(sollyreal2)
forsolly=np.zeros((bj,0));
sollyreal2=np.column_stack((forsolly,sollyreal2))
tes1 = sum(nmm < 0.1)
numGen = numGen + 1;
cv = sollyreal2[0:tes1,:];
csv = sollyreal3[0:tes1,:];
bn = len(cv)
un = np.matlib.repmat(numGen, bn,1);
unn = np.column_stack ((csv, cv, un))
unnn = np.vstack((unnn, unn));
continue

 	

98

APPENDIX	F:	RBAM	COMB	 DRIVE	

Force = 50;
E=170;

Nind = 500; %population of 30 individual individuals
FieldDR = [10 2.0 0.5; 1000.0 50.0 20.0]; %Genes = 3; genes upper and lower bounds
ep = 0.30*100;
rap= ep./3;
Testvalue = 10.0; %termination condition
Testvalue2 = 50.0;
hh=5;
hhh=5;
F2 = 0;
Fitness= 0;
unn = zeros(0,7);
unnn = zeros(0,7);

% %
% %

Chrom = crtrp(Nind, FieldDR);

%evaluate the parent population P(t)
L=(Chrom(:, 1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));

% Fitness = Force.*(L.*L.*L)./((2*E).*(w.*t.*t.*t));
Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);

% Resfreq = sqrt((3.*E.*I)./(M.*L.*L.*L));
% Resfreq = sqrt((3.*E.*I)./(M.*L.*L.*L));

Fitness1 = (0.07586.*t)./ (L.*L);
%while it doesn't meet termination condition which is testvalue
stopFlag = 0;
numGen=0;
while stopFlag == 0
for iii = 1:500

FF = abs(Fitness - Testvalue);

F = [Chrom FF];
p =
sortrows(F,4);
h = p(1:100, 1:3);
qw = h(1:ep, 1:3);
[z, qw1] = datasample(qw,ep,1, 'Replace', false);
h(qw1,:) = [];

% % if iii>1<5
% % zh = unique(h, 'rows');
% % z=zh(1:30,1:3);
% %
% % end

avg = zeros(0,1);
for iv = 1:hh

99

ab = datasample(Chrom,hhh,1, 'Replace', false);

ac = mean(ab);

avg = [avg; ac];
end

favg=avg;

a = datasample(z,ep,1, 'Replace', false);
[s b] = datasample(a,rap,1, 'Replace', false);

[s1 b2] = datasample(a,1,2, 'Replace', false);
a(b,:) = [];
[ss bb] = datasample(a,rap,1, 'Replace', false);
[ss1 bb2] = datasample(a,1,2, 'Replace', false);
a(bb,:) = [];
[ss2 bb3] = datasample(a,1,2, 'Replace', false);

sss = s;
sa=ss;
aaa=a;

[aa l] = datasample(h,ep,1, 'Replace', false);% select 30 unique from the 100
h(l,:) = [];%delete the 30 unique ones from h
mm = h; % save the rest of values in h in mm

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

childy = [uu; sss; uuk; sa; aak];
childy2 = datasample(childy,ep,1, 'Replace', false);
Child1 = [childy2; z; mm; favg];

%mutate

Nind = 100; %population of 30 individual individuals
FieldDR = [10 2.0 0.5; 1000.0 50.0 20.0]; %Genes = 3; genes upper and lower bounds
Chrommutate = crtrp(Nind, FieldDR);
[D G] = datasample(Chrommutate,10,1, 'Replace', false);

100

[HH CC] = datasample(D,1,2, 'Replace', false);
Child1(G,CC) = HH;

%after mutate
Child = Child1;

%mutation didn't seem to have a problem on the space; probably doesnt
%get stuck in local optimum

Chrom = Child;
L=(Chrom(:, 1));
w=(Chrom(:, 2));
t=(Chrom(:, 3));

Fitness = (4*Force).*(L.*L.*L)./(E.*(w.*t.*t.*t));
I = (w.*t.*t.*t)/12;
stiff=(3.*E.*I)./(L.*L.*L);

Resfreq = sqrt((3.*E.*I)./(M.*L.*L.*L));
Fitness1 = (0.07586.*t)./ (L.*L);
solChrom = Chrom;
tes = abs(Fitness - Testvalue);
sorti = sortrows(tes);
solly = [solChrom stiff Fitness1 Fitness tes];
sollyreal = sortrows(solly,7);
sollyreal(101:end,:)=[];
sollyreal2 = sollyreal(:,6);
sollyreal3 = sollyreal(:,1:5);

%now count the number of rows in column 5 that's less than 0.1
thenumber = sum(tes < 0.1)
nmm= sollyreal(:,7);

tes1 = sum(nmm < 0.1);
numGen = numGen + 1;

%for i =1:158
cv = sollyreal2(1: tes1 ,:);
csv = sollyreal3(1: tes1 ,:);
bn = size(cv);

un = repmat(numGen, bn);
unn = [csv cv un];

unnn = [unnn; unn];

stopFlag = 1; Gensol(iii) = thenumber;

end
end

solGen = unnn(:,7);
x = unique(solGen);
y=histc(solGen,x);
w1 = unique(unnn, 'rows');
w11 =w1(:,7);
w12= unique(w11);
w2 =histc(w11,w12);
%for unique results overall
[w4,ia] =unique(unnn(:,1:3),'rows');%unique rows based of first 6 columns uA = unnn(ia,:);
w21 =uA(:,7);
w22= unique(w21);
w3 =histc(w21,w22);

xx= unnn(:,1);
xy= unnn(:,2);

101

xz= unnn(:,3);
xzz= unnn(:,6);
plot(solGen,xzz,'r*'); 	

102

APPENDIX	E:	MATLAB	MORBAM	COMB	DRIVE	CODE	

c = 8.85;
%n=4;
%g=7;
E=170;%young’s modulus
den= 2.328;
Nind = 500;
r = randi([2 20],Nind,1);
%spring length, width, thickness,truss length, width
FieldDR = [10.0 2.0 0.5 5.0 2.0 5.0 2.0; 1000.0 50.0 20.0 40.0 50.0 20.0 18.0];
cr1=3;
cr2=4;
ep = 0.30*100;
rap= ep./3;
hh= 15;%%setting hh to 25 works fine
hhh=5;
Testvalue = 10.0;
Fitness = 0;
Force = 0;
unn = zeros(0,12);
unnn = zeros(0,12);
cs=4;
Chrompart1 = crtrp(Nind, FieldDR);
Chrom = [Chrompart1 r];
lb=(Chrom(:, 1));
wb=(Chrom(:, 2));
t=(Chrom(:, 3));
lt=(Chrom(:, 4));
wt=(Chrom(:, 5));
io=(Chrom(:, 6));
g=(Chrom(:, 7));
n=(Chrom(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);
ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;
kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;

103

Force = (n.*c.*t.*V.*V)./g;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;
Capacitance = (2.*n.*c.*t.*y)./g;
genecount= 8;
genecount1 = 1:8;

selgene = datasample(genecount1,4,2, 'Replace', false);

sel1=50;
sel11=50;
sel2=100;
sel22=60;
ell=90;
elt=10;
%while it doesn't meet termination condition which is testvalue
stopFlag = 0;
numGen=0;
while stopFlag == 0
for iii = 1:1000

FF = abs(Fitness - Testvalue);
FF1 =[Chrom Force Capacitance Fitness];

F = [Chrom FF];
p =
sortrows(F,9);

qw = p(1:ep, 1:genecount);
h = p(1:100, 1:genecount);
[z, qw1] = datasample(qw,ep,1, 'Replace', false);
h(qw1,:) = [];

avg = zeros(0,1);
for iv = 1:hh

ab = datasample(Chrom,hhh,1, 'Replace', false);

ac = mean(ab);

avg = [avg; ac];
end

favg=avg;

a = datasample(z,30,1, 'Replace', false);
% [s i] = datasample(m,2,1, 'Replace', false)

[s b] = datasample(a,rap,1, 'Replace', false);
[s1 b2] = datasample(a,cs,2, 'Replace', false);

104

a(b,:) = [];
[ss bb] = datasample(a,rap,1, 'Replace', false);
[ss1 bb2] = datasample(a,cs,2, 'Replace', false);
a(bb,:) = [];
[ss2 bb3] = datasample(a,cs,2, 'Replace', false);

sss = s;
sa=ss;
aaa=a;

[aa l] = datasample(h,ep,1, 'Replace', false);% select 30 unique from the 100
h(l,:) = [];%delete the 30 unique ones from h
mm = h; % save the rest of values in h in mm

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

childy = [uu; sss; uuk; sa; aak];
childy2 = datasample(childy,ep,1, 'Replace', false);
Childd = [childy2; z; mm; favg];

% Child = [z ; a; j; kk; m; uk];
%mutate

Nind = 100; %population of 30 individual individuals
r = randi([2 20],Nind,1); %with really little problems,there can be

FieldDR = [10.0 2.0 0.5 5.0 2.0 5.0 2.0; 1000.0 50.0 20.0 40.0 50.0 20.0 18.0];
Chrommutate1 = crtrp(Nind, FieldDR);

105

Chrommutate = [Chrommutate1 r];
%randomly pick which 10 row to mutate
[D G] = datasample(Chrommutate,1,1, 'Replace', false);

%select 3 columns from D
[HH CC] = datasample(D,1,2, 'Replace', false);
Childd(G,CC) = HH;

% end of 1st
obj lb=(Childd(:,
1));
wb=(Childd(:, 2));
t=(Childd(:, 3));
lt=(Childd(:, 4));
wt=(Childd(:, 5));
io=(Childd(:, 6));
g=(Childd(:, 7));
n=(Childd(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);
ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;
kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;
Force = (n.*c.*t.*V.*V)./g;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;

eva1 = abs(Fitness - Testvalue);

Fit1 = [Childd eva1];
Childd = sortrows(Fit1,9);
Childd=Childd(:,1:8);

%real end of first obj

%second objective
pf = sortrows(FF1,-9);

qwf = pf(1:ep, 1:genecount);

106

hf = pf(1:100, 1:genecount);
[zf, qw1f] = datasample(qwf,ep,1, 'Replace', false);
hf(qw1f,:) = [];

af = datasample(zf,30,1, 'Replace', false);

% [s i] = datasample(m,2,1, 'Replace', false)

[s b] = datasample(af,rap,1, 'Replace', false);
[s1 b2] = datasample(af,cs,2, 'Replace',
false); af(b,:) = [];
[ss bb] = datasample(af,rap,1, 'Replace', false);
[ss1 bb2] = datasample(af,cs,2, 'Replace', false);
af(bb,:) = [];
[ss2 bb3] = datasample(af,cs,2, 'Replace', false);

sss = s;
sa=ss;
aaa=af;

[aa l] = datasample(hf,ep,1, 'Replace', false);
hf(l,:) = [];
mm = hf;

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);
uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

childyf = [uu; sss; uuk; sa; aak];

107

childy2f = datasample(childyf,ep,1, 'Replace', false);
Child1f = [childy2f; zf; mm; favg];

% Child = [z ; a; j; kk; m; uk];
%mutate

Nind = 100; %population of 30 individual individuals

r = randi([2 20],Nind,1); %with really little problems,there can be
FieldDR = [10.0 2.0 0.5 5.0 2.0 5.0 2.0; 1000.0 50.0 20.0 40.0 50.0 20.0 18.0];

Chrommutate1 = crtrp(Nind, FieldDR);
Chrommutate = [Chrommutate1 r];
%randomly pick which 10 row to mutate
[D G] = datasample(Chrommutate,1,1, 'Replace', false);

%select 3 columns from D
[HH CC] = datasample(D,1,2, 'Replace', false);
Child1f(G,CC) = HH;
Childf= Child1f;

lb=(Childf(:, 1));
wb=(Childf(:, 2));
t=(Childf(:, 3));
lt=(Childf(:, 4));
wt=(Childf(:, 5));
io=(Childf(:, 6));
g=(Childf(:, 7));
n=(Childf(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);
ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;
kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;
Force = (n.*c.*t.*V.*V)./g;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;

Fit1 = [Childf Force];

108

Childf = sortrows(Fit1,-9);
Childf=Childf(:,1:8);

%end of second objective

%third objective
pc = sortrows(FF1,-10);

qwc = pc(1:ep, 1:genecount);
hc = pc(1:100, 1:genecount);
[zc, qw1c] = datasample(qwc,ep,1, 'Replace', false);
hc(qw1c,:) = [];

ac = datasample(zc,30,1, 'Replace', false);

% [s i] = datasample(m,2,1, 'Replace', false)

[s b] = datasample(ac,rap,1, 'Replace', false);
[s1 b2] = datasample(ac,cs,2, 'Replace',
false); ac(b,:) = [];
[ss bb] = datasample(ac,rap,1, 'Replace', false);
[ss1 bb2] = datasample(ac,cs,2, 'Replace', false);
ac(bb,:) = [];
[ss2 bb3] = datasample(ac,cs,2, 'Replace', false);

sss = s;
sa=ss;
aaa=ac;

[aa l] = datasample(hc,ep,1, 'Replace', false);
hc(l,:) = [];
mm = hc;

[uu q] = datasample(aa,rap,1, 'Replace', false);
aa(q,:) = [];
[uuk qq] = datasample(aa,rap,1, 'Replace', false);
aa(bb,:) = [];
uuu = uu;
saa=uuk;
aak=datasample(aa,rap,1, 'Replace', false);
aakk=aak;

109

uu(:,b2)=s(:, b2);
sss(:,b2)=uuu(:,b2);

uuk(:,bb2)=ss(:,bb2);
sa(:,bb2)=saa(:,bb2);

aak(:,bb3)=a(:,bb3);
aaa(:,bb3)=aakk(:,bb3);

childyc = [uu; sss; uuk; sa; aak];
childy2c = datasample(childyc,ep,1, 'Replace', false);
Child1c = [childy2c; zc; mm; favg];

% Child = [z ; a; j; kk; m; uk];
%mutate

Nind = 100; %population of 30 individual individuals

r = randi([2 20],Nind,1); %with really little problems,there can be
FieldDR = [10.0 2.0 0.5 5.0 2.0 5.0 2.0; 1000.0 50.0 20.0 40.0 50.0 20.0 18.0];

Chrommutate1 = crtrp(Nind, FieldDR);
Chrommutate = [Chrommutate1 r];
%randomly pick which 10 row to mutate
[D G] = datasample(Chrommutate,1,1, 'Replace', false);

%select 3 columns from D
[HH CC] = datasample(D,1,2, 'Replace', false);
Child1c(G,CC) = HH;
Childc = Child1c;

lb=(Childc(:, 1));

wb=(Childc(:, 2));
t=(Childc(:, 3));
lt=(Childc(:, 4));
wt=(Childc(:, 5));
io=(Childc(:, 6));
g=(Childc(:, 7));
n=(Childc(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);
ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;

110

kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;
Capacitance = (2.*n.*c.*t.*y)./g;

Fit2 = [Childc Capacitance];

Childc = sortrows(Fit2,-9);
Childc=Childc(:,1:8);

%end of third obj

Childd=Childd(1:33,:);
Childf=Childf(1:34,:);
Childc=Childc(1:33,:);

Children = [Childd; Childf; Childc;];
[crossing1, num]= datasample(Children,50,1, 'Replace', false);
Children(num,:) = [];
crossing2= datasample(Children,50,1, 'Replace', false);
xcr = crossing1;
crossing1(:,selgene)= crossing2(:,selgene);
crossing2(:,selgene) = xcr(:,selgene);

Childdy = [crossing1; crossing2];

Children = Childdy;
[crossing1, num]= datasample(Children,50,1, 'Replace', false);
Children(num,:) = [];
crossing2= datasample(Children,50,1, 'Replace', false);
xcr = crossing1;
crossing1(:,selgene)= crossing2(:,selgene);
crossing2(:,selgene) = xcr(:,selgene);
Childdy = [crossing1; crossing2];

lb=(Childdy(:, 1));

wb=(Childdy(:, 2));
t=(Childdy(:, 3));
lt=(Childdy(:, 4));
wt=(Childdy(:, 5));
io=(Childdy(:, 6));
g=(Childdy(:, 7));
n=(Childdy(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);

111

ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;
kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;
Force = (n.*c.*t.*V.*V)./g;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;

Capacitance = (2.*n.*c.*t.*y)./g;
fe= abs(Fitness - Testvalue);
Childddy = [Childdy Force Capacitance Fitness];

el = zeros(0,11);
for u=1:sel2
[FA, FAA] = datasample(Childddy,1,1, 'Replace', false);

[FB, FBB] = datasample(Childddy,1,1, 'Replace', false);

selA = all((FA(:,9)>FB(:,9)),2);
selB = all((FB(:,9)>FA(:,9)),2);
selA1 = all((FA(:,10)>FB(:,10)),2);
selB1 = all((FB(:,10)>FA(:,10)),2);
selA2 = all((FA(:,11)>FB(:,11)),2);
selB2 = all((FB(:,11)>FA(:,11)),2);

sum1 = selA + selA1 + selA2;
sum2 = selB + selB1 + selB2;

if sum1<3
ansS=FA;
elseif
sum2<3
ansS=FB;
else
ansS=zeros(0,11);

end

el=[el;ansS];

end
ell1=el(1:ell,1:8);

112

Child11 = datasample(Childdy,elt,1, 'Replace', false);
Child11=Child11(:,1:8);

Child = [Child11; ell1];

Chrom = Child;

lb=(Chrom(:, 1));
wb=(Chrom(:, 2));
t=(Chrom(:, 3));
lt=(Chrom(:, 4));
wt=(Chrom(:, 5));
io=(Chrom(:, 6));
g=(Chrom(:, 7));
n=(Chrom(:, 8));

alpha = (wt.*wt.*wt)./(wb.*wb.*wb);
ft= 8.*lt.*lt;
sd = 8.*alpha.*lt.*lb;
td = alpha.*alpha.*lb.*lb;
fut= 4.*lt.*lt;
fif = 10.*alpha.*lt.*lb;
st = 5.*alpha.*alpha.*lb.*lb;
kflex1 = (2.*E.*(t.*wt.*wt.*wt))./(lt.*lt.*lt);
kflex2 = (ft + sd + td) ./ fut + fif+ st;
kflex = kflex1 .* kflex2;
kbcomp = (2.*E.*(t.*wb))./(lb);
keff = (kflex .* kbcomp)./(kflex + kbcomp);
V = 50;
Force = (n.*c.*t.*V.*V)./g;
Fitness = (n.*c.*t.*V.*V)./(keff.*g);
y = io + Fitness;
Capacitance = (2.*n.*c.*t.*y)./g;

solChrom = Chrom;
tes = abs(Fitness - Testvalue);

sorti = sortrows(tes);
solly = [solChrom Force Capacitance Fitness tes];
sollyreal = sortrows(solly,12);
sollyreal(101:end,:)=[];
sollyreal2 = sollyreal(:,11);
sollyreal3 = sollyreal(:,1:10);

%now count the number of rows in column 5 that's less than 0.1
thenumber = sum(tes < 0.1)

113

nmm= sollyreal(:,12);
tes1 = sum(nmm < 0.1);
numGen = numGen + 1;

%for i =1:158
cv = sollyreal2(:,:);
csv = sollyreal3(:,:);
bn = size(cv);

un = repmat(numGen, bn);
unn = [csv cv un];

unnn = [unnn; unn];
stopFlag = 1;

Gensol(iii) = thenumber;

end

end
solGen = unnn(:,12);

x = unique(solGen);
y=histc(solGen,x);
w1 = unique(unnn, 'rows');
w11 =w1(:,12);
w12= unique(w11);
w2 =histc(w11,w12);
%for unique results overall
[w4,ia] =unique(unnn(:,1:3),'rows');%unique rows based of first 6 columns
uA = unnn(ia,:);
w21 =uA(:,12);
w22= unique(w21);
w3 =histc(w21,w22);

xx= unnn(:,1);
xx3= unnn(:,2);
xx4= unnn(:,3);
xx5= unnn(:,4);
xx1= unnn(:,7);
xx2= unnn(:,8);
xy= unnn(:,9);
xz= unnn(:,10);
xzz= unnn(:,11);
% plot(solGen,xzz,'r*');
ax1 = subplot(3,3,1);
plot(solGen,xy,'b*');

114

xlabel(ax1,'Generation')
ylabel(ax1,'Force')

ax2 = subplot(3,3,2);
plot(solGen,xz,'r*');
xlabel(ax2,'Generation')
ylabel(ax2,'Capacitance')

ax3 = subplot(3,3,3);

plot(solGen,xzz,'r*');
% % xlabel(ax1,'Generation')
% % ylabel(ax1,'Deflection')
xlabel(ax3,'Generation')
ylabel(ax3,'Deflection')

ax4 = subplot(3,3,4);

plot(solGen,xx,'r*');
xlabel(ax4,'Generation')
ylabel(ax4,'Length')

ax5 = subplot(3,3,5);

plot(solGen,xx1,'r*');
xlabel(ax5,'Generation')
ylabel(ax5,'G')

ax6 = subplot(3,3,6);

plot(solGen,xx2,'r*');
xlabel(ax6,'Generation')
ylabel(ax6,'N')

ax7 = subplot(3,3,7);

plot(solGen,xx3,'r*');
xlabel(ax7,'Generation')
ylabel(ax7,'Beam Width')

ax8 = subplot(3,3,8);

115

plot(solGen,xx4,'r*');
xlabel(ax8,'Generation')
ylabel(ax8,'Acuator Thickness')

% % ax9 = subplot(3,3,9);
% %
% % plot(solGen,xx5,'r*');
% % xlabel(ax9,'Generation')
% % ylabel(ax9,'Truss Length')

ax9 = subplot(3,3,9);

plot(xzz,xz,'r*');
xlabel(ax9,'Deflection')
ylabel(ax9,'Capacitance')

