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Abstract

The mechanics of balance control essential in biped locomotion has attracted much
attention in the past two decades. There are three requirements in designing balance
controllers: (1) maintaining the postural stability, (2) improving the energy efficiency of
the control systems and (3) satisfying the constraints ‘between the foot-link and the

ground.

In spite of the attempts, there has been little success in developing balance controllers
which satisfy all three requirements. The lack of a constructive tool for stability analysis is
one of the obstacles. Stability analysis based on Lyapunov’s stébi]ity theory is challenging,
due both to the complexity of the system and to its inflexibility to include optimization
criterion. It has often been assumed that the constraints between the feet and the ground
are always satisfied once the feet contact the ground. However, such constraints have

significant effect on control design.

This thesis is concerned with biped balancing in the upright standing posture and the
stability analysis of the control systems. The work has been carried out with two
objectives: (1) design optimal controllers which can satisfy the constraints between the
foot-link and the ground while minimizing the energy cost, and (2) perform stability

analysis of the proposed systems using the concept of Lyapunov exponents.



The biped robot is simplified as two inverted pendulums, representing the legs and the
trﬁnk. The feet are modeled as a separate link, stationary on level ground. Two optimal
controllers are proposed in this thesis. A LQR balance control is first designed to optimize
the total energy consumption of torque outputs. A GA-based PD balance control is then
proposed to satisfy the constraints between the foot-link and the ground; as well as
minimize the energy consumption of torque outputs. The effectiveness of the control laws
are tested through computer simulations. Note that, the constraints between the foot-link
and the ground are not considered in the design of LQR controller, but their satisfaction is

tested through simulations.

Since the biped upright posture is inherently unstable, stability analysis of the control
systems is required. The concept of Lyapunov exponents is a powerful tool when
analyzing the stability of dynamic systems. However, for complex or unknown systems,

deriving system Jacobians is extremely difficult.

A novel approach based on neural networks has been proposed for Jacobian derivation.
Neural networks are used to identify the system dynamics, and then numerical Jacobians
are derived from the neural model for the calculation of Lyapunov exponents. To increase
the modeling accuracy of the biped balance system, Radial Basis Function neural
networks (RBFNNs) are employed, providing a capability for nonlinear system

identification.



it
The work contributes significantly to the stability analysis of practical complex or

unknown engineering systems in that, a reliable and constructive method for calculating

Lyapunov exponents based on neural network identification has been developed.
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Introduction 1

Chapter 1

Introduction

1.1 Motivations

Biped robots have significant advantages over conventional wheeled robots because
their mechanical design allows for better mobility. Dynamic control and the ability to lift a
supporting point off the ground give legged robots the ability to move over rough terrain
and negotiate obstacles more easily than wheeled robots. However, along with the
advantage of increased mobility, comes the challenging problems of balance control and

stability which need to be addressed through advanced design and analysis.

Maintenance of a standing biped at the upright posture is a key requirement for safe and
successful co-existence of biped robots within normal human environments. Since only
the feet are in contact with the ground, a standing biped is always subjected to constraints
(Yang and Wu 2006), 1.e., the ground reaction force being upward (the gravity constraint),
friction between the feet and the ground being lower than the maximum friction (the
friction constraint) and the pressure center being within the contact surface between the

feet and the ground (the center of pressure constraint). Much of previous research on
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balance control has been carried out under the assumption that all these constraints are

satisfied. This assumption although simplifying the problem, can be misleading.

Limited previous research on biped balance control considered the constraints between the
foot-link and the ground. However, these balance systems are not energy-efficient. Since
biped robots need to carry their energy sources, a lower rate of energy consumption would
- directly contribute to a longer work cycle. Energy efficiency is an important issue to be
resolved before the use of bipeds is viable. The design of energy-efficient control

algorithms with the satisfaction of the above constraints for biped standing is a challenge.

Another challenge in biped design is the stability analysis of control systems. Since the
upright posture of the standing biped is inherently unstable, control methods have to be
very effective and safety aspects are mandatory, 7.e., any falls are liable to result in a fatal
failure. The stability of the control systems needs be analyzed to determine the stability
region. Due to the complexity of the biped dynamics and control laws, the use of classical
stability analysis tools is extremely difficult. For example, Lyapunov’s second method is
widely used, but it is difficult to derive Lyapunov functions for complex biped models.
Alternatively, Lyapunov exponents, defined as the average exponential rates of divergence
or convergence of nearby trajectories in the state space, can characterize the system’s
stability. The calculation of Lyapunov exponents is based on system Jacobians derived
from mathematical models. Though the concept of Lyapunov exponents is an effective
stability analysis tool for biped control, it has not been widely used. One of the reasons is

the difficulty in deriving Jacobian matrices. For unknown systems it is impossible to
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determine Jacobians. Even if the models are obtained, it requires enormous work to derive
Jacobian from complex dynamics. Thus, a new approach to derive Jacobians from
complex or unknown systems should be developed for the stability analysis using the

concept of Lyapunov exponents.
1.2 Literature Review

1.2.1 Biped Dynamic Models

Biped robots are expected as a rational form of machines to act in the environment that
humans live, and to support people through interactions. In order to maintain biped
balance during standing and locomotion, the posture and motion should be generated in
real-time in accordance with the dynamics. This requires a large amount of computation
and has not been implemented to date. Therefore, biped robots should be modeled into

simple forms, which are easier to implement.

Kajita er al. (2001) introduced the three-dimensional inverted model for the walking
control of a 12-DOF biped robot. The dominant biped dynamics is represented by a single
inverted pendulum which connects the supporting foot and the center of mass of the
whole robot. The model consists of a concentrated mass at the torso and neglects the mass
and the inertial effects of the legs, which extend from the centre of the supporting base to
the location of the center of mass of the robot. The model allows for the separate
controller design.of sagittal and lateral motion, significantly simplifying the analysis of
dynamic motion. To extend the basic inverted model, Park and Kim (1998) developed a

gravity-compensated inverted pendulum model. This included the predetermined effects
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of the dynamics of the free (swing) leg on ZMP (Zero-moment point) by modeling the
robot as two separate inverted pendulums. The model assumes that the swing leg consists
of mass concentrated at the location of the feet, and that its dynamics are dominated by
gravitational acceleration. In this sense, only the static effect of the swinging leg is

considered.

Caballero er al. (2000) developed a further extension of the above model that was
applicable to biped robots. The model represents the robot as an inverted pendulum with
two quasi-static coupled pendulums. Using ZMP stability theory, this model was

successfully used to generate stable geometric gaits.

The other model is a multiple-masses inverted pendulum model, which consists of one
mass representing the torso, and multiple masses modeling the swinging leg. The foot
motion of the swinging leg is predefined, and all other trajectories are calculated

iteratively.

Li and Kato (1994) considered the model to be composed of two separate moving masses
representing the torso and the legs. Motion generation specific to the surface structure of
the ground was pre-determined, while the motion of the torso was adapted in real-time to
ensure postural stability. For traditional biped robots, the absence of a torso allows the
mass distribution to be modeled as a single point mass. Stability is then maintained by

relying on the overall motion of both the supporting leg and the swinging leg.
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Gerth and Albert (2001) then proposed a model which considered the dynamic effects of
the swinging leg. It is a two-link inverted pendulum robot model, with two masses
representing the torso and the swinging leg. The complete dynamic effect of the swinging

leg is considered for the generation of the torso motion.

Multi-link planar models are used to study biped locomotion and the related properties.
Miura and Shimoyama (1984) developed a three-link biped robot to walk sideways,
backward and forward, and studied it in both the sagittal and frontal planes. The results
served as a basis for choosing the appropriate feedback control gains. Hurmuzlu and
Moskowitz’s three-link biped model (1987) has an upright trunk with two lower limbs.
Miura and Shimoyama’s model (1984) has two lower limbs and a link located at the pitch
axis. Hurmuzlu’s four-link biped model (1987) put one link above Miura’s model. Igbal et
al. (1993) used a four-link planar model to study the stability and control of a biped

system. The model approximates gross human locomotion in the frontal plane.

A general five-link biped is modeled with a torso and two legs, cach leg consisting of a
thigh and a shank. The study of this model cén be found in Hemami er al. (1977),
Hurmuzlu (1993), Wu and Chan (2002), Ma and Wu (2002), Mu and Wu (2004). Hemami
el al. (2004) studied dynamics, stability and control of stepping, via a seven-link
two-dimensional sagittal biped model. Fulrusho and Sano (1990) developed a nine-link
biped which included the foot structure and was equipped with foot pressure and ankle
torque sensors to provide information about the conditions of contact with the floor. Their

work contributed toward the realization of smooth three-dimensional walking with the
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sole firmly gripping the floor. Abdallah and Goswami (2005) introduced a planar upright
robot model which is a single-leg plus head-arms-trunk (HAT) model in the sagittal plane.
The model contains four limbs: the feet, shank, thigh, and HAT. These rigid body limbs
are inter-connected through three actuated joints: the ankle, knee, and hip. The feet are
free to leave the ground but Abdallah and Goswami assumed that friction was sufficient to
prevent slip. The robot has four kinematic feet/ground contact states. In the flat feet phase,
the feet are flat against the ground. In the toe phase and heel phase the foot pivots around
the toe or the heel respectively. In the airborne phase, the feet completely lift off of the
ground. The robot has three dégrees of freedom (DOF) in the flat feet phase, four DOF in

each of both the Toe and Heel phases and six DOF in the airborne phase.

The balance of biped standing is a basic task for other complex motions such as
locomotion and running. Studies on upright staﬁding bipeds are commonly simplified as
inverted pendulum models, which significantly simplifies the analysis and calculation of
dynamic motion. Ito et al. (2006) modeled the biped as an inverted pendulum with a
supporting foot segment, connected at the ankle joint. The body segment moves only
within the sagittal plane. The foot segment contacts the ground with two points (heel and
toe). The foot segment does not slip on the ground and its shape is symmetrical in the
anterior-posterior direction. The ankle joint is located in the middle of the foot segment
with zero height. Pai and Patton (1997) simplified the biped as an inverted pendulum with
a triangular foot-link. The foot position is assumed to be bilaterally symmetric and

stationary, and the body link moves in the sagittal plane.
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Based on this model, Yang and Wu (2006a) investigated the effect of the constraints,
between the feet and the ground on the control design of biped standing. Although these
inverted pendulum models simplify analysis, there are resultant performance limitations.
The assumption that the model used only the ankle joint to balance the biped is valid
when the disturbance is low. JHang er al. (2006) found the ankle and the lumbosacral
swayed in approximately the same amplitude during the static upright stance of humans,
from the experiment data. They modeled the human body as a two link inverted pendulum
system, and proved that this model was reasonable and useful for studying the balance of

biped standing.

In this work, the biped is modeled as a two link inverted pendulum presenting the torso
and legs with a foot-link, which is adequate for studying various fundamental theoretical

problems related to biped standing.

1.2.2 Biped Balance Control

Bipe.d balance control is a key development in the area of biped robots and has attracted
much attention in the past two decades. Various control strategies such as adaptive control
(Hu et al. 1999, Chew and Pratt 2001), sliding mode control (Mu and Wu 2004), fuzzy
control (Meng and Zhou 2003, Cuevas ef al. 2005) and neural network control (Kun, A.

and Miller 1996, Scesa ef al. 2005) have been developed.

In considering stability conditions and balance control in biped locomotion (standing,
walking and running), several dynamic-based criteria have been defined. The criteria most

commonly used are the centre of pressure (COP) criterion (Murray et al. 1967),
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zero-moment-point (ZMP) criterion (Vukobratovi¢ et al. 1970) and the Feet Rotation
Indicator (FRI) criterion (Goswami 1999). The COP is a point between the feet and the
ground on the contact surface where the net ground reaction force actually acts. The FRI
is a point on the feet/ground surface, inside or outside the support polygon, where the net
ground reaction force would have to act to keep the feet stationary. The support polygon
of the biped is defined as the area of physical interaction between the biped and the
ground surface. During the single—support phase, it is the area of the supporting foot.
During the double-support phase it is defined as the polygon created by the boundary of
the two feet. The ZMP is defined as the point on the feet/ground contact surface where,
the total forces and moments acting on the robot are zero (Vukobratovic et al. 1970). If
ideal conditions are considered whereby neither the feet.nor ground can deform under the
load and the ground is level, the COP and ZMP locations will always coincide. ZMP is

widely used in the study of biped walking.

Park and Rhee (1998) presented a ZMP trajectory éontrol scheme which was determined
using fuzzy logic on the leg trajectories. The trunk and swing leg motions were
compensated to stabilize the locomotion. Fukuda er a/. (1997) used touch sensors on the
feet of the robot to obtain the actual ZMP trajectory. The joint motion was then
determined using recurrent neural networks with the constraint that the ZMP could move

out of the support polygon.

Balance maintenance during biped standing is essential for biped balance control. Ito et al.

(2006) proposed a biped stance maintenance method that contains the integral feedback of
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the ground reaction forces, which is used to improve the convergence of the posture to the
equilibrium upright position. As a result, the biped posture could adaptively change with
respect to external forces. Abdallah and Goswami (2005) presented a two-phase control
strategy for robust balance maintenance under a force disturbance. The first phase, called
the Reflex Phase, is designed to withstand the immediate effect of the force. The second
phase is the Recovery Phase where the system is steered back to a statically stable “home”

posture.

The standing biped is always subjected to three constraints between the feet and ground,
which include the ground reaction force being upward (gravity constraint), friction
between the feet and the ground being lower than the maximum friction (friction
constraint), no tipping—ov& about the toe or the heel and the center of pressure being
within the feet/feet (COP constraint). However, research on the effects of constraints on

biped locomotion is sparse.

One distinguished work is from Yang and Wu (2006a), where gravity constraint, friction
constraint and the center of pressure constraint during biped standing have been
considered. They investigated the effects of these constraints on balance control and
showed such control bounds have significant effects on predicting fall prevention during
biped standing. Such bounds make the control design challenging. They also found that
angular velocity plays a crucial role in satisfying the constraints. Furthermore, Yang and
Wu (2006b) proposed a PD-based switching state feedback control to stabilize the biped

at the upright position while satisfying the constraints between the feet and the ground.
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The controller is a simple PD control, as the control is within the control bounds; and it

takes the value of the control bounds as it approaches the bounds value.

The design of biped balance control should consider reducing energy consumption of
control systems. Since biped robots need to carry their energy sources, a lower rate of
energy consumption would directly contribute to a longer work cycle. This is an important
issue to be resolved before the use of biped robots is practically viable. So, the design of
low energy control algorithms is essential. Silva and Tenreiro Machado (1999) analyzed
the energy consumption of walking robots by controlling the locomotion variables.
Yamasaki ef al. (2002) developed control algorithms to reduce the energy consumption of

humanoid robots.

The linear quadraﬁc regulator (LQR) optimal feedback is one of many tools to improve
control performance. A set of optimal feedback gains may be found which minimizes a
quadratic index and makes a closed-loop system stable (Lewis 1986, Bryson and Ho
1987). Many applications of LQR have been reported (see Johnson and Grimble (1987)
for details) in recent years. Genetic algorithm (GA) is another optimization tool which 1s
often employed in nonlinear problems and multi-objective optimizations. Arakawa and
Fukuda (1996) used a GA to generate the natural motion of biped locomotion with energy
optimization. Cabodevial e al. (1997) designed an optimal gait for a biped robot based on
the expansion of the joint trajectories by Fourier’s series using a GA. Golubovic and Hu
(2003) presented a GA approach to the development of a locomotion gait for Sony

quadruped robots. Capi et al. (2003), Park and Choi (2004) used GAs to generate the
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optimal trajectory for biped walking. Garder er al. (2006) combined an incremental
approach with GA to generate precise walking patterns. Much of the above work focused

on energy consumption of walking robots.

For balance-keeping during biped standing, Ghorbani and Wu (2007) developed a general
regression neural network (GRNN) feedback control. The GRNN controller was also
designed to minimize an energy-related cost function while satisfying the constraints
between the feet and the ground. The optimization has been carried out using the genetic
algorithm (GA) and the GRNN was directly trained during an optimization iteration

process to provide the closed loop feedback optimal controller.

In my work, both the energy-efficiency and the satisfaction of the constraints between the

feet and the ground are considered for the balance control design of standing bipeds.

1.2.3 Stability Analysis

Stability analysis investigates the long-term behavior of motion under the influence of
disturbance' in the initial states. For stable motion, the effects of the disturbance are
insignificant, i.e., the disturbed motion stéys close to the undisturbed one. In an unstable
case, an infinitesimal disturbance causes a considerable change in the motion. The

stability of the biped balance control is a crucial issue and requires analysis.

Lyapunov’s stability theory is widely used in the stability analysis of nonlinear control
systems (Wu et al. 1998a, 1998b). Lyapunov (1892) not only introduced the basic

definition of stability for nonlinear systems, but also proved many of the fundamental
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theorems. The key requirement in proving system stability using Lyapunov’s stability
theory is to construct a Lyapunov function. Since no constructive rules or suggestions
were given in this theory, the construction of a Lyapunov function for a nonlinear system
remains a great challenge, which restricts the applications of this theory. In the past forty
years, numerous techniques have been proposed to construct Lyapunov functions for
special nonlinear systems. Among others, these techniques include the method of analogy
with linear systems by Barbasin (1960), the method of integration by parts by Ponzo
(1965), and Huaux (1967), the method of system energy by Marino and Nicosia (1983),
the integral methods, the scalar-Lyapunov-function method and the intrinsic method by
Chin (1986, 1987, 1988 and 1989) and the extended integral method by Wu (Wu 1996 and

references cited in).

It 1s iinportant to point out that Lyapunov’s stability theory is based on conventional
solution theory, i.e., the dynamic systems must be smooth. For the stability analysis of
non-smooth systems, Lyapunov’s second method needs to be extended. Paden and Sastry
(1987) first generalized Lyapunov’s second method by imposing a non-zero upper bound
of the derivative of the Lyapunov function with respect to time. They proved that the
states of the system (solution in the sense of Filippov) converge to the equilibrium point in

a finite time.

Another extension of Lyapunov’s stability theory based on Filippov’s solution theory was
done by Southwood et al. (1990) where the derivative of Lyapunov functions on the

discontinuity surfaces were replaced with Dini-derivate. The most recent and systematic
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extension of Lyapunov’s second method for non-smooth dynamic systems was developed
by Shevitz and Paden (1994) in which a non-smooth Lyapunov function is constructed.
Their result is a theory applicable to systems with switches, for which Lyapunov functions

are only piece-wise smooth.

The above extensions of Lyapunov’s stability theory to non-smooth systems were based
on the belief that non-smooth Lyapunov functions are natural for non-smooth dynamic
systems. However, the main challenge in the construction of non-smooth Lyapunov
functions is the evaluation of the derivatives of Lyapunov functions when the solution
trajectories approach the discontinuity surfaces. Wu (1996) proved that if the existence
and uniqueness of Filippov’s solution are guaranteed, Lyapunov’s second method can be
applied directly to non-smooth dynamic systems. Furthermore, in reference (Wu er al.
1998b), a method is developed to construct smooth Lyapunov functions for non-smooth
systems and it is shown that the construction of smooth Lyapunov functions is much
easicr for some engineering systems as compared to its non-smooth counterpart. The work
was further extended for the determination of non-smooth Lyapunov functions (Wu and
Sepehri 2001). Wu’s work provided a solid framework in the study of posture stability and

control of biped movement.

Lyapunov’s stability theory has been used to analyze biped posture stability. Early work
on the stability of biped models was restricted to small deviations about a vertical stance
(Vukobratovic et al. 1970, Golliday and Hemami 1976, Hemami and Golliday 1977,

Hemami and Cvetkovic 1977). Hemami and Wyman (1979) proposed a modeling and
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control method to a constrained dynamic system with application to a three-link biped
based on Lyapunov’s linearization method. Feedback linearization and pole-assignment
techniques were used for the control of such nonlinear systems. Igbal er a/. (1993) studied
human postural and movement stability for simple voluntary movements, by means of a
frontal four-link mathematic biped model. Hemami and Utkin (2002) studied Lyapunov
stability of constrained and embedded rigid bodies. They presented a systematic method
of stabilizing the systems and a procedure for constructing Lyapunov functions. Hemami
et al. (2006) developed a quantitative framework to study the biomechanics and neural
basis of the ankle strategy for maintaining posture stability. In their work, the stability of
the biped was determined near the vertical stance by computing the poles, while the biped

equations were linearized about the erect posture.

Although Lyapunov’s second method is a powerful one, due to the lack of construction
methods, 1t is difficult to derive a Lyapunov function for highly nonlinear systems. Thus,
an alterative method is needed for the biped balance control (Wu e al. 2005). Sekhavat et
al. (2004) employed the concept of Lyapunov exponents to analyze the stability of
nonlinear dynamical systems and showed that the method is constructive and powertul.
The concept of invariant exponents in the study of the stability of nonlinear differential
equations was first introduced in 1889 by a Russian mathematician, Sonya Kovalevskaya,
and was developed fully in 1892 by another Russian mathematician, Alexandr

Mikhailovich Lyapunov.

The Lyapunov exponents have many important dimensions and computability directly
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from data, without solving the differential or difference equations describing the
corresponding dynamical systems (Kinsner 2003). A Lyapunov exponent is a number that
reflects the rate of divergence or convergence, averaged over the entire attractor, of two
neighboring state space trajectories. The calculation of the Lyapunov exponents can be

grouped into two classes, mathematical models and time series.

Oseledec (1968) gave the theory of Lyapunov exponents in a form adapted to the needs of
the theory of dynamical systems and of ergodic theory. Benettin e al. (1980) presented
the theoretical results which are necessary for the numerical computation of all Lyapunov
exponents. Wolf and collaborators (Wolf et al. 1985) described algorithms for calculating
the spectrum of Lyapunov exponents from systems of which the equations are known.
This model-based algorithm has been successfully applied to many smooth dynamic
systems. Miiller (1995) extended Wolf’s method into non-smooth dynamic systems, i.e.,
the ordinary differential equations contain non-differentiable terms. He pointed out that
the required linearized equations have to be supplemented by certain transition conditions
at the instances of discontinuities. Since Lyapunov exponents are calculated numericalvly
over a long period of time, Mikens (2002), and Mikens and Gumel (2002) developed

nonstandard finite difference techniques to improve numerical stability and computing

efficiency (Sekhavat ef al. 2005).

Yang and Wu (2006b) use Lyapunov exponents to analyze the stability of PD switching
feedback control for biped standing, and determined a stability region. Ghorbani er al.

(2007) employed Lyapunov exponents for stability analysis of a general regression neural
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network (GRNN) feedback control which is used for balance-keeping during biped
standing, and determined a stability regiQn of this neural network controller. England and
Granata (2007) quantified the local dynamic stability of a biped walking gait using
maximum finite-time Lyapunov exponents Ay A monotonic trend between Ay, and
walking velocity was observed with smaller Ay, at slower walking velocities, which
indicates more stable walking dynamics. The limitation of using mathematical models for
the calculation of Lyapunov exponents is that the mathematical models are not always
available. Even when mathematical models are available, the calculation of Lyapunov

exponents can be unfeasible due to the models’ complexity and uncertainties.

Another method for calculating Lyapunov exponents is based on time series. The most
attractive advantage of using time series is that the data can often be measured
experimentally without explicit knowledge of the dynamic models. The basic idea behind
this method is to follow sets of trajectories over short time-spans and compute their rates
separation, then average those rates over the attractor. Wolf ez al. (1985) described a
computational method for approximating the largest Lyapunov exponents directly from
the rate of separation of neighboring points. Sano and Sawada (1985) proposed a method
to determine the spectrum of several Lyapunov exponents (including positive, zero, and
even negative ones) from the observed time series of a single variable. Abarbanel er al.
(1997) reviewed research on the calculation of Lyapunov exponents based on time series
for chaotic systems. Sakai et al. (2003) analyzed the effect of extra reconstructed
dimensions on the Lyapunov spect-rum, which includes spurious Lyapunov exponents of

unknown dynamical systems. This method is much better at calculating positive
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exponents than negative ones, as the methods for calculating Lyapunov exponents based
on a time series were developed primarily to analyze chaotic systems. The procedures are
not reliable to calculate zero and negative exponents (Wolf er al. 1985) for potentially

stable engineering systems.

In this work, the stability of the biped balance system is analyzed using the concept of
Lyapunov exponents. The calculation of Lyapunov exponents is based on the
mathematical model of the biped. In order to analyze the stability of complex or unknown
systems using the concept of Lyapunov exponents, a new neural network approach is
proposed. Neural networks are used to identify the system dynamics and then the
Lyapunov exponents can be calculated based on the Jacobians, derived from the neural

model.

- 1.2.4 System Identification Based on Neural Networks

System identification grew out of the statistics and engineering literature in the 1960s,
motivated by the need to predict and control the behavior of complex systems (Box and
Jenkins 1976). It is a method for using measured data to create or improve the
mathematical mode] of the object being tested. It has been described as the process of
selecting the mathematical model form and then, using measured test data, systemically
adjusting the parameters based on predefined criterion, until the best possible correlation
is achieved between the predicted and the measured response (Matzen and McNiven
- 1976). There have been a number of general references that range from the applied
(Jenkins and Watts 1968, Ljung 1987) to the theoretical (Soderstrom and Stoica 1987)

ends of the spectrum, as well as those which explicitly focus on the identification of
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physiological systems (Marmarelis and Marmarelis 1978).

Central to the framework of system identification is the idea that components of a
complex system can be represented as black boxes. As more 1s learned about a complex
system, the goal becomes to reduce the relationship fo smaller and smaller black boxes,
until a sufficient level of detail has been achieved. This method is widely used in many
research areas, such as civil engineering, electronic engineering, chemical engineering, etc.
(Fukushima and Sugie 1999, Yue and Schlueter 2002, Kruglov e al. 2002, Bykov er al.

2003, Deng et al. 2003).

Neural networks provide an effective framework for the identification and control of
nonlinear systems (Liu ef al. 1989, Narendra and Parthasarathy 1990, Fang and Chow
2000). In recent years, considerable effort has been focused on the use of radial basis
function neural networks (RBFNNs) (Chen and Billings 1992). Unlike multilayer
perceptrons which originate from the field of biological science, RBFNNs are rooted
primarily in the theory of multivariable functional interpolation in high-dimensional space
(Broomhead and Lowe 1988, Powell 1985). It is a powerful computational tool, which has
advantages of faster learning algorithms, better approximation capabilities and local
minimum problem avoidance (Ai-Amoudia and Zhang 2000, Gomm and Yu 2000, Rank
2003). It can identify relatively high-order systems and hés increasingly been used in
many practical areas such as control, signal processing, pattern recognition, systems

identification and time series prediction.
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RBFNNs tend to have improved training characteristics in comparison to standard
feed-forward neural networks, due to their localized nature and the fact that they are linear
in weight (Gorinevski 1996). They can also be made compact by having the number of
points about which the radial basis functions are centered, grow and shrink, to obtain a
minimal network (Platt 1991, Kadirkanmanathan and Niranjan 1993, Yingwei ef al. 1997).
Various functions have been investigated and used as the radial basis function (RBF) for
RBFNN, including Gaussian function (Schagen 1986), thin-plate splines (Duchon 1977),

multi-quadratics (Hardy 1971) and inverse multi-quadratic functions (Powell 1987).

The original RBFNN requires that there be as many as hidden units, known as the RBF
centers as the data points, which is prohibitively expensive to implement in computational
terms when the number of data points is high. Several methods have been proposed to
overcome this difficulty. Poggio and Girosi (1990) provided an approximate approach
which involves searching for a suboptimal solution in a lower-dimensional space. This is
done by using a standard technique known in variational problems as the Galerkin method.
Moody and Darken (1989) developed a method in which the RBF centers are chosen in a
self-organized fashion. Chen er al. (1991) suggested using an orthogonal Least Squares
Learning algorithm to choose the RBF centers from data points. The selected centre
maximizes the increment to the explained variance of the desired outputs and the -
algorithm does not suffer numerical ill-conditioning problems. All of these effects have

focused on the selection and computation of the RBF centers.

Another important component of the RBF network is weight. Langari and Wang (1995)
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proposed a modified RBF network in which the regression weights are used to replace the
constant weights in the output layer that can reduce the number of hidden units

significantly.

1.3 Objectives

There are two objectives in this research. The first is, to design two balance systems
that enable a biped robot to remain in an upright posture during standing. The standing
biped 1s modeled as a two-link inverted pendulums presenting the leg and the torso with a
foot-link. Two optimal controllers are developed. An LQR balance controller is designed
to minimize the torque outputs of the control system. A GA-based PD controller is used to
ensure the satisfaction of the constraints between the foot-link and the ground as well as
optimize the energy consumption of the control systems. The second objective, is to
analyze the stability of the proposed control systems using the concept of Lyapunov

exponents.

In this work, the stability region of the biped balance systems is also determined using the
concept of Lyapunov exponents. A new method is proposed to determine Jacobians for
complex or unknown systems, a 'basic requirement in the calculation of Lyapunov
exponents. RBFNNs have been employed to identify the biped balance systems. Then, the
numerical Jacobians can be derived from the neural model for the calculation of Lyapunov

exponents.
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1.4 Thesis Organization

The remainder of this thesis is divided into four chapters. A description of each is
outlined below:
* Chapter 2 introduces the background and key concepts of Lyapunov exponents and
system identification using neural networks. This chapter also describes the methodology
used to calculate Lyapunov exponents for the biped balance system based on neural
network identification. The biped model and the feet constraints during biped standing are

discussed as well.

Chapter 3 describes a classical feedback state balance control system using a linear
quadratic regulator (LQR) technique. The stability of the proposed controller is analyzed
using the concept of Lyapunov exponents and the stability region is determined. In

simulation, the results of Lyapunov exponents based on the neural model are compared to

the results based on the mathematical model.

Chapter 4 details a GA-based PD balance control system for biped standing. GA 1s
employed to ensure the satisfaction of the feet constraints as well as to optimize the total
energy consumption of the torque outputs. The stability of the proposed controller is
analyzed using the concept of Lyapunov exponents and the stability region is determined.
The results of Lyapunov exponents based on the neural model, and the mathematical

model are compared.

Chapter 5 discusses and evaluates the proposed balance systems and the Lyapunov
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exponents as a tool for stability analysis. It will also draw conclusions about system
identification based on neural networks, and recommended future developments are

outlined.
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Chapter 2

The Calculation of Lyapunov Exponents

Based on Neural Models

2.1 Introduction

The concept of Lyapunov exponents is an important tool in categorizing the
steady-state behavior of dynamical systems, determining instability of the systems,
classifying invariant seis and approximating the dimension of strange atiractors or other

nontrivial invariant sets. It works for discrete as well as continuous systems.

The calculation of Lyapunov exponents can be carried out using two approaches. One is
based on the mathematic models of physical systems. However, such models are not
always available. Even if they are obtained, deriving system Jacobians, which is crucial in
the calculation of Lyapunov exponents, can be unfeasible due to the model complexities.
The other method for calculating Lyapunov exponents is based on a time series which can
be measured experimentally. This method is currently used for analyzing unknown

systems without explicit knowledge of the mathematic models. This method has been
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developed primarily to analyze chaotic syslem. It 1s not reliable for calculating zero and
negative exponents (Wolf 1985). This is because the linear analysis used in the method
becomes totally inaccurate when the displacement due to local data-set curvature is
comparable to the thickness of the data set. In order to solve the above problems, a new

approach, where neural networks are used to identify the physical system, is developed.

In this work, radial basis function neural networks (RBFNNs) are employed due to their
capacity for nonlinear system identification. This neural model will be used to derive the
Jacobians and used as the mathematical model of the system. This allows the Lyapunov
exponents to be determined using the first method, which is based on mathematical
models. This proposed approach can avoid the complexity of deriving Jacobians. For the
calculation of Lyapunov exponents based on a time series, the proposed approach can be

an alternate method.

This chapter is organized as follows. Section 2.2 introduces the concept of Lyapunov
exponents and the method to calculate Lyapunov exponents based on mathematical
models. Section 2.3 describes the structure of RBFNN and the approach to derive
Jacobians from neural models. Biped balance systems are used to demonstrate the

efficiency of the proposed neural method in Section 2.4.
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2.2 Stability Analysis Using the Concept of Lyapunov

Exponents

2.2.1 The Concept of Lyapunov Exponents

Lyapunov exponents (or characteristic numbers) were first introduced by Lyapunov
(Lyapunov 1892) in order to study the stability of non-stationary solutions of ordinary
differential equations (ODEs). They have since been extensively studied in the literature
to diagnose chaotic systems (Dieci ef al. 1997). As described in the work of Oseledec
(1968), the concept of Lyapunov exponents provides a meaningful way to characterize the
asymptotic behavior of a nonlinear dynamical system. Wolf er a/. (1985) defined the

spectrum of Lyapunov exponents in the manner most relevant to spectral calculations.

Given a smooth dynamical system in an n-dimensional state space as shown below:
x=f(x1), x(0)=x,,xeR" 2.1

where x ={x,,...,x,} is the state vector, and f(x,7)is a continuously differentiable

vector function. When monitoring the long-term evolution of an infinitesimal n-sphere of

initial conditions, the sphere will become an n-ellipsoid due to the locally deforming

th

nature of the flow. The /" dimensional Lyapunov exponent is then defined in terms of the

length of the ellipsoidal principal axis||dx, ()] as follows:

1 e o) _
ﬂ,,_}l_{g[ 1n|]5x1(to)“} (i=1,....n) (2.2)

where /, is ordered from largest to smallest. “chI(IO)H and ]f5x,(1)“ denote the lengths of
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the " principal axis of the infinitesimal »n-dimensional hyper-ellipsoid at initial and

current time instances, 7y and 1, respectively.

The concept of Lyapunov exponents provides a generalization of the linear stability
analysis for perturbations of steady state solutions to time-dependent solutions. Lyapunov
exponents are global properties and independent of the trajectory chosen to calculate them
(the fiducial trajectory). This independence is a consequence of a theorem of Oseledec
(Oseledec 1968), which applies in the limit of infinite time. However, in practical
application, we are usually dealing with finite-time Lyapunov exponents, which are

defined as:

y) —llnM (i=1....,n) (2.3)

Lo )
In the limit as time ¢ — o, the finite-time Lyapunov exponents converge to the true

Lyapunov exponents (Thiffeault and Boozer 2001).

The above definition of Lyapunov exponents indicates that Lyapunov exponents, 2,

(i=1,...,m), are the average exponential rates of divergence or convergence of nearby orbits
in the state space where n is the number of Lyapunov exponents, which is equal to the
dimension of the state space of the system. The Lyapunov exponents are related to the
expanding or contracting nature of different directions in the state space. Since the
orientation of the ellipsoid changes continuously as it evolves, the directions associated
with a given exponent vary in a complicated way through the attractor. Therefore, one

cannot speak of a well-defined direction associated with a given exponent.



The Calculation of Lyapunov Exponents Based on Neural Models 27

A common approach in visualizing state-space motion is to imagine how a small length,
area, or higher-dimensional element might evolve in time. An example of such elements is

an initially infinitesimal ball that has a radius ox(0) at time ¢=0(in three-dimensional

state space). As the ball evolves under the action of a non-uniform flow it will eventually
distort. Since we have assumed an infinitesimal state-space element, the change in space,
we presume, will be determined only by the linear part of the flow. It remains an ellipsoid

as it evolves.

ox,(1)1is the i (7=1,2 and 3) member of the set of the principal axes of the ellipsoid at time.

The end-points of each principal axis are considered to be neighboring points in the

state-space. We measure the growth or shrinkage of each principal axis (1) over the

entire attractor, according to whether its endpoints get closer or farther apart. That means
that we get a Lyapunov exponent for each principal axis. The largest Lyapunov exponent
measures the rate of expansion of the first principal axis - the one that shows the largest
amount of growth (or the slowest rate of shrinkage) over the attractor. The second
Lyapunov exponent measures the rate of change of the second principal axis, and so on

down to the smallest Lyapunov exponent (Williams 1997).

The concept of Lyapunov exponents is an important tool in categorizing steady-state
behavior in a dynamic system, determining instability of the system, classifying invariant
sets and approximating the dimension of strange attractors or other nontrivial invariant

sets (Wolf er al. 1985, Miiller 1995, Williams 1997). A negative Lyapunov exponent
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indicates an average convergence of trajectories; a positive exponent indicates an average
divergence. Negative Lyapunov exponents typify non-chaotic attractors. At least one

positive Lyapunov exponent usually happens only on chaotic attractors.

In dissipative systems, an attractor with one or more positive Lyapunov exponents is
generally said to be strange or chaotic. Based on the fact that (1) one Lyapunov exponent
of any limit set other than an equilibrium point must be zero, and (i) the sum of the
Lyapunov exponents of dissipative systems must be negative, the hyperbolic attractors
can be classified as follows (Williams 1997):

¢ For an exponentially stable equilibrium point, 4,<0 (i=1,...,n)

o For an exponentially stable limit cycle, 4,=0 and 4,<0 (/=2,...,n)

e For an exponentially stable k-torus, 4;=...=/4;=0 and /<0 (i=k+1,....n)

e For a chaotic attractor, 4,>0 and > 4,<0 (i =1,....n)

Using a 2D state space as an example, the Lyapunov exponents of dynamic systems can
be classified as follows:

(a)A, <0: The orbit attracts to a stable fixed point. Negative Lyapunov exponents are
characteristic of dissipative or non-conservative systems (the damped harmonic oscillator
for instance). Such systems exhibit exponential stability; the more negative the exponent,
the faster the systems move to the steady state. Super-stable fixed points have a Lyapunov
exponent of 4 = —o0. This is akin to a critically damped oscillator in that the system heads
towards its equilibrium point as quickly as possible. Nearby points on the trajectory will

converge closer and closer as shown in Figure 2.1(a).
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(b) A, =0: A Lyapunov exponent of zero indicates that the system is in some sort of steady

state mode. A physical system with this exponent is conservative. Such systems exhibit
stability in the Lyapunov sense. Nearby points on the trajectory will stay at the separation

all of the time, as shown in Figure 2.1(b).

(c) 4, > 0: The orbit is unstable. No matter how close, nearby points on the trajectory will

diverge to arbitrary separation, as shown in Figure 2.1(c).
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Figure 2.1 Different orbits projected on the i dimension different Lyapunov exponents

2.2.2 The Calculation of Lyapunov Exponents Based on Mathematical

Models

Lyapunov exponents are defined by the long-term evolution of the axes of an
infinitesimal sphere of states. Wolf et al., (1985) developed algorithms for calculating the
spectrum of Lyapunov exponents from systems where the dynamic equations are known.
The procedure of calculating Lyapunov exponents from differential equations can be

implemented by defining the principal axes with initial conditions whose separations are
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as small as the computer limitation allows, and evolving such principal axes with the
nonlinear equations of motion. A "fiducial” trajectory (the center of the sphere) is defined
by the action of the nonlinear equations of motion on some initial conditions. The
. trajectories of points on the surface of the sphere are defined by the action of the
linearized equations of motion on points infinitesimally separated from the fiducial
trajectory. In particular, the principal axes are defined by the evolution via the linearized
equations of an initially orthonormal vector frame anchored to the fiducial trajectory. This

leads to the following set of equations (Wolf et al. 1985).

()] [ fx)
{V]X(')} - {J(x([))wx(,)} (24)

where v, is called the state transition matrix of the linearized system 6x(1) =y, ,,6x(0)

and the variation equation, v, =J(x(r))y 1s a matrix-valued time-varying linear

x(1)
differential equation. It is derived by the linearization of the vector field along the

trajectory x(¢) . The Jacobian .J(x(r)) is defined as

Oox
J(l(f))~'é:' ™

(2.5)

x=x(4) x=x(1)

.. . x(1,) X, .
The initial conditions for numerical integrations are { (Et ) =4 %where I is the
V.t

1dentify matrix.

Lyapunov exponents are calculated by following the evolution of the volume of the

hyper-ellipsoid spanned by o, (i=1....,n), via separately following the evolution of o,

using an integration method. However the vectorsdx,,d,,...,d, may tend to align as
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t — . This alignment makes the calculations unreliable (Parker and Chua 1989). To

solve the problem, ox,(1),dx,(¢),....ox,(t) are reorthonormalized at each integration step.

This is done by including the Gram-Schmidt Reorthonormalization (GSR) scheme in the
calculation procedure. Gram-Schmidt reorthonormalization generates an orthonormal set

{u;,....,u,} of n vectors with the property that {u,.....u,} spans the same subspace

as{ox,,....0x, } .

Figure 2.2 shows the geometrical interpretation of the orthonormalization for dx, (k)
and &x, (k) (k=1,...,K and K is the number of integration steps). They are orthogonalized
into v, (k) and v, (k), then normalized intou, (k) andw, (k).

ox, (k)

Figure 2.2 Orthonormalization of two vectors dx, (k) and ox, (k)

Let the linearized equations of motion, act on the initial frame of orthonormal vectors to
give a set of vectors {dx,,dx,,...,d, } . The orientation-preserving properties of GSR mean
that the initial labeling of the vectors may be done arbitrarily. The GSR provides the

following orthonormal set {u,,u,,...,u,} asdefined below:



The Calculation of Lyapunov Exponents Based on Neural Models 32

Y

v, = OX, ~<5x2,ul>ul , Uy =

v, = 86, — (&, Yy == (S u, s, = H_lﬂ (2.6)
Vﬂ

Where (,) signifies the inner product. GSR procedure allows the integration of the vector

frame for as long as required for Lyapunov spectrum convergence. At the X' " state, the
GSR procedure produces orthonormal vector frame {u,,u,....,u,}, and for the K chosen

large enough, the Lyapunov exponents are:

] K
y o p— |
A, < Zl Infu, (k)

] K
A, & E; ln]{u2 (k)ﬂ .7

u, (0]

] &
A ~— Y In
\ Kh;

where £ is the time-step size.

This model-based algorithm described by Wolf and his collaborators (Wolf et al. 1985)
has been successfully applied to many dynamic systems. Sekhavat (Sekhavat 2004)
demonstrated the above procedure of calculating Lyapunov exponents on the simple
three-dimensional Lorenz system. Yang and Wu (Yang and Wu 2006a) used the concept of
Lyapunov exponents to analyze the stability of a PD-based switching state balance control

during biped standing.
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Overall, the procedure for calculating of Lyapunov exponents based on a mathematic

model is described as follows:

Stepl: Choosing initial conditions for the nonlinear system and the linear system
(orthonormal frame) as shown in Equation (2.4)

Step2: Integrating nonlinear and linear equations simultaneously, obtaining the initial
states for the next step.

Step 3: Using GSR procedure to obtain the reorthonormal frame using Equation (2.6).

Step 4: Calculating Lyapunov exponents by Equation (2.7).

Step 5: Repeating Step 2 to Step 4, until convergent values of Lyapunov exponents are

obtained.

The most difficult part in the calculation of Lyapunov exponents; is deriving Jacobians in

Equation (2.5) for complex or unknown systems. In order to solve this problem, the next
section presents a neural approach to derive Jacobians based on RBFNN system

~ identification.

2.3 System Identification Based on Neural Networks

In order to analyze the stability of complex or unknown systems using the concept of
Lyapunov exponents, system identification is required for the determination of the
Jacobian matrices. System identification is the process of building good models of

dynamic systems based on measured data from the actual processes. The mathematical
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model in this case is the black box, which describes the relationship between the input and
output signals. To adequately model the systems, neural networks must be used. Previous
studies in system identification have demonstrated that neural networks are successful in

modeling many non-linear systems, by comparing simulated data with real data (Chen et

al. 1992).

2.3.1 Radial Basis Function Neural Network (RBFNN)

Unlike multilayer perceptions which originate from the field of biological science,
radial basis function neural networks (RBFNNs) are rooted primarily in the theory of
multi-variable functional interpolation in the high-dimensional space. The architecture of
the radial basis function network is a multilayer feed-forward network that consists of
three layers, the input, the hidden and the output layers. A typical RBFNN configuration

with a single output is shown in Figure 2.3.

bias -
X o W
o N Y
& w'Lg‘
o p ° N
° ‘ ®
Xy

Figure 2.3 Typical RBFNN architecture

The input layer connects the network to the environment. X={x,x,,....xx} is the input

feature vector, where X is the number of input units. The second layer applied a nonlinear
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transformation (activation function) from the input space to the hidden space, which is
highly dimensional. Various functions have been tested to serve as the activation functions
for RBFNN (Chen 1991). In system identification applications, the Gaussian function is
preferred (Bors and Gabbouj 1994). It is supposed that, the radial vector of RBFNN
adopts multivariable Gaussian function. The centers are usually chosen to be a subset of
the data or distributed uniformly in the input domain. The output of hidden neuron j is

denoted by ¢, and is given by

), j=12,...L (2.8)

where L are the numbers of hidden units. C;={c,c,...,cx} is the center vector for neuron j.
In the basic form, all inputs are connected to each hidden neuron and the norm is typically
taken to be the Euclidean distance. Geometrically, a radial basis function represents a
bump in the multidimensional space as shown in Figure 2.4, whose dimension is given by

the number of entries.

Gaussian function

-5 0 5
Input

Figure 2.4 Gaussian function

The output units y implement a weighted sum of hidden unit outputs:

L
y=w, xbias+ij¢J (2.9)

J=1
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where w are the output weights, each corresponding to the connection between a hidden
unit and an output unit. The weightsw, show the contribution of a hidden unit to the

respective output unit. This is impractical and it would be easier if only one of the
parameters were adjusted. To cope with this problem a bias neuron is used. The bias
neuron lies in one layer. It is connected to all of the neurons in the next layer, but none in
the previous layer and it always emits 1. Since the bias neuron emits 1, the weights

connected to the bias neuron are added directly to the combined sum of the other weights.

RBFNNSs are characterized by their localization (center) and by an activation hypersurface.
In the case of Gaussian functions these are centered about a grid point C; and scaled by a

coefficient parameter b;. The activation function ¢, influence, decreases according to the
Euclidean distance from the «center (. For high-precision grids, these
weights w effectively mould the input—output behavior of the RBFNN to that of the
system being identified. For low-precision grids, the computed weightsw serve as an

effective initial guess for a learning algorithm based on the least mean plant output at time
n which can be pre-computed. This means that data samples located at a large Euclidean
distance from the RBF center will fail to activate that basic function. The maximum

activation is achieved when the data sample coincides with the center vector.

2.3.2 RBFNNs Training Algorithms

By means of training, the neural network models the underlying function of a certain
mapping. In order to model such a mapping, we have to find the network weights and

topology. There are two categories of training algorithms: supervised and unsupervised.
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In a supervised application, we are provided with a set of data samples called a “training
set” for which the corresponding network outputs are known. In this case the network

parameters are found such that, they minimize a cost function:

I a2
E=§(y—y) (2.10)

where y denotes the RBF output vector and y represents the output vector associated with
the a data sample X from the training set. An adaptive training algorithm for minimizing a
given cost function is a gradient descent algorithm with momentum. The gradient descent

method is an iterative method for finding a local minimum of some function.

Assume that we have a function f{x) and that we start out in x(0) having the value f{x(0)).
We wish to find a configuration x(m), where f(x) attains its minimum value. To do this, we
can iteratively update the point we stand in by going in the opposite direction of the
gradient of f(x). The direction of the gradient is the direction which increases f(x) the most.
Recalling that the gradient of a function is the partial derivatives with respect to the

variables in the function as

Vf(x):M (2.11)

Ox
During the iteration, if the step size with which we update our current position is too big
we might fail to reach the minimum. Therefore, in order to control the movement rate at
each iteration; we introduce a learning rate x. The general procedure can now be written at

epoch &+ as follows:

x(k +1) = x(k) — uVf(x(k)) (2.12)
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where Vf(x(k)):%)%%l). The algorithm stops when the position x has not changed

after an iteration, in which case we have arrived at a local minimum. This process is
illustrated in the following Figure 2.5. Note that, we cannot say whether or not the
minimum we have arrived in, is actually the global minimum.

x(0)

Jix) 4 e
/ \\X(, )

Figure 2.5 Gradient descent algorithm

To make this method an order of magnitude more efficient; we can modify the learning
algorithm to include an extra term

(k1) = x(k) = 9 (x(k)) + s/ (x()) (2.13)
where Af(x(k)):f(x(k))—f(x(k—l)), » is the momentum constant. 77Af(x(k)) is
generally called the momentum term and has two functions. First, it can smooth out local
irregularities in the minimization function allowing the gradient descent to follow a
consistent path. Secondly, it allows the minimization process to increase in speed when
there are long periods of identical gradient evaluations. Gradient descent with momentum
allows a network to respond not only to the local gradient, but also to recent trends in the
error surface. Acting like a low-pass filter, momentum allows the network to ignore small

features in the error surface. Without momentum, a network can get stuck in a shallow
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* local minimum. With momentum, a network can slide through such a minimum.

Gradient descent with momentum depends on two training parameters 4 and 7. 5 is set
between 0 (no momentum) and values close to 1 (lots of momentum). A momentum
constant of 1, results in a network that is completely insensitive to the local gradient and

therefore, does not learn properly. The centers of the RBFNN are initialized randomly.

By connecting the neurons in a layered array, we can derive the RBF algorithm based on

the gradient descent with momentum method described as follows:.
Step 1: Find the error E(k) = %(y(k) — (k) atstep k.

Step 2: Change the connection weights in the output layer and hidden layer in the
following way:

w (k+1)=w, (k)~ uVw (k) +nAw, (k)
b,(k+1)=0b,(k)— Vb (k)+nAb, (k)
c,(k+)=c (k)— uVc,(k)+nAc,(k)

where:

_OE(k) _BE(k) op(k) _

- ~(y(k) - 30008, (k
ow (k) Bpk) ow (k) (8 =30, (0)

Vw (k)
Aw (k)y=w (k)—w, (k-1)

SE(K) _ BE(K) (k) 04,00 _ lx ) -c @

Vb, (k)= 56 (k) (k) 09, (k) 3B, (k) ~(yh) = y(B)w (k) (k) b (k)
Ab (k)=b,(k)—b, (k-1)

_OE(k) _OE(R) ap(k) 04, (k) _ o oo e R =€ (R)
VC"(k)_ﬁcﬂ ) k) 56,(0) e, (6) (y(k) = y(k)w, (k)8 ( )_—bf 7
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Ac,(k)y=c,(k)—c (k=1 (2.14)

Step 3: If the error becomes lower than a predetermined value, stop the training.

Otherwise, replace k by k+7 and go to step 1.

In unsupervised training, the output assignment is not available for the given set. A large
variety of training algorithms has been tested for training RBFNN. In the initial
approaches, each data sample was assigned to a basis function. This solution proved to be
expensive in terms of memory requirement and in the number of parameters. On the other
hand, an exact fit to the training data may cause bad generalizations. Other approaches
choose randomly or assumed known hidden unit weights, and calculate the output

weights w, by solving a system of equations whose solution is given in the training set

(Broomhead and lLowe 1988). The matrix inversion required in this approach is

computationally expensive and could cause numerical problems in certain situations

Slotine 1994), the radial basis function centers are uniformly distributed in the data space.

The function to be modeled is obtained by interpolation.

2.3.3 The Determination of System Jacobians Based on RBFNN Models
In this chapter, RBFNN is employed to identify unknown systems, where the output

continuously depends on the past input and past output. The inputs of RBFNN are the

same as the state variables of the plant x(n) at step n. The outputs are the state rate of the

plant x(n +1) at next step nt+1:
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x(n)—x(n-1)

x(n) = P

(2.15)

where & is the sampling rate. After extensive training, the RBFNN model of the system
under study can be developed. Such a model is to be used to determine the Jacobian J. For

example, the Jacobian of the output £, corresponding to the input 7, is given as follows:

0%, (1) afa(n) ¢y — X, (n=1)
J — k ~ L3 B LA — 2.16
W (1) e (n—1)  &x (n— Z W, — 5 bé ( )

The Lyapunov exponents can be calculated based on the above neural Jacobians. The
accuracy of the Lyapunov exponents depends on the neural model. The training of
RBFNN is a key issue for this method. In the next section, a biped balance system is

shown as an example to train RBFNN.

2.4 Case Study: Biped Balance System

In this work, a biped robot is simplified as a two-link inverted pendulum system with
one rigid foot-link, as shown in Figure 2.6. Link 1 represents the leg and link 2 represents
the torso. The joints 1 and 2 are equivalent to the ankle and hip joints. The foot-link
provides a support based on the ground. The biped is assumed to move in the sagittal
plane. This model is simple but adequate for studying the dynamics and control of the

biped during standing.
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Figure 2.6. (a) simplified biped model, (b) free body diagram of the two link inverted
pendulum, and (c) free body diagram of the foot-link

The model parameters m,, [, I, I;(i=1,2) are the mass, length, location of mass center and
moment of inertia of the link i. Ly L, L, L. are the length of the foot, horizontal distance
between the ankle and the heel, ankle height, horizontal distance between the mass center
of the foot and the ankle. x.,, is the location of the center of pressure (COP) to the heel. 8,
and @, are the two joint angles which are positive in the clockwise direction. 7; and 1, are
the control torques applied at both joints, which are positive in the clockwise direction. g
is the gravitational acceleration. Supposing that there is no friction, the equation of motion
can be derived from the Lagrangian formulation as follows:

T =D(6)6 +C(6,0)8 +G(6) (2.17)
where 7=[r,7,]" , 0=[6,6,] , 6=[6.6,) and 6=[6,6,] .The terms D(f) ,

C(0,0)and G(0) can be represented as follows:

D(6 _[dn dlzii
0=
dy d,

_ 2 2 2
dy, =ml +ml +ml, +2mll ,cos, + 1 + 1,
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d, =d, =ml’, +mll,cos, + 1,

dy,=ml’ +1,
c(o 9) _ —mzlylczéz Sin 02 —17/12]1](.2(0.1 +92)Sin 02
; m,l 1,6, sinb, 0

G(0) = {— (ml, +m,l)gsin6, —m,l ,gsin(0, + 92)} 2.18)

-myl_,gsin(6, +6,)
If we deﬁnedq :[q],qz,q3,q4]: [Ql,gz,él,ézj, the state-space model of the biped balance

system becomes

q, =4,
q.z =4,
g :[&1 - (5+§COSC]2)‘[2 +(5(q3 +q,) +—§—q <:c>sc12)~’;—3~s.inq2

(2.19)
- (g m,l_, cosq,sin(q, +q,) — d(ml, +m,l)sin qug}/ D

q,= {— (a +—§‘COSQZ)T1 +(a + fcosqg,)rT,

—-gsin Q2((§+§COSQZ)(CJ3 +q,) +(@-o +’§COSQ2)€]§)

+ (— (0 + —’gcos g, ml, +myl)sing +(a -5+ —g—cos q,)m,l, sin(q, + qz))g}/ D

where

D=mm 21+ ml?

2 2712 12 2 212 72 2
50 DL +myl 50+ o 00+ myll L+ 1T, — my [0 cos” g,

2%¢2
a=ma +ml*+mil: +1 +1
171 241 2%¢2 1 2

L =2mll,

S=ml’ +1,
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Using Newton’s second and third laws, the horizontal and vertical ground reaction forces
are given as:
F, =mX, +mX, (2.20)
F =my, +my, + (m +m,+m, )g 2.2hH
where
i =—1,sin 6,67 +1,, cos6f,
¥, =-I,cos 6,6} -1, sin 0.6,
¥, =1 sin 002 +1, cos 6,6, — L, sin(6, + 6,6, +6,)* +1,, cos(6, +6,)(6, +6,)

5, =1 cos 0,07 —1,sin 6,6, — L, cos(6, + 6,)(6, + 6,)* =1, sin(6, + 0,)(6, +6,)  (2.22)

For the ease of developing simulation program and system identification, the discrete
form of the dynamic equations will be formulated. Using the previously defined Equation
(2.19), the first order approximation of the biped for the data sampling can be expressed
as (A is the sampling rate):

g, (n+1) = ¢,(n) + hg, (n)

q,(n+1)=gq,(n) + hg,(n)

qg;(n+1)=qs(n) + %{5@)?] (n)y—(O0(n)+ _:Bé”_) cosq, (m)1,(n)
+ (5(;1j(q3(17) +q,(m) + ’6(2’7) g2 (n)cosq, (n}j ﬁ;n) sing, (n)

_ (ﬁgﬂ myl., cosq, (m)sin(g, (1) + g, (n)) = S(m)(m,L,, +myl,)sin xMH
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g(n+)=q,(n)+ ZD?“[_ (6(m)+

B(n)
2

P 05 g, (e () + (50 + )03, ()

c0s g, (m)(g,(n) +g,(n))’

+q§(n><a<n>—5<n>+ﬁ—;’flcosqz<n>} pe)

+ [— (O(m)+ é(i@ cos g, (n))(ml,, +m,l,)sin q,(n)

—((5(”) +

sin g,(n) (2.23)

+(a(n) - S(m) + s (2”> cos g, (n))m,1, sin(q, (n) + g, (n))j g}

where D = mm, 207 + mi2 L + m) % 1+ m2IL 07+ m 021 + 1T, - m %1 cos’ g, (n)

The foot-link is not fixed on the ground, but is required to be stationary. Thus, the two
joint torques are limited by three constraints (Yang and Wu 2006b): the gravity constraint
verifies that the foot-link does not lift from the ground; the friction constraint ensures the
foot does not slip and the Center of Pressure (COP) constraint requires that the COP

reside within the boundary of the support.

The constraints can be expressed as the following:
a. Gravity constraint: The gravity constraint ensures that the biped’s feet do not lift from

the ground:

F_>0 (2.24)

£y
b. Friction constraint: The friction constraint ensures that the biped’s feet do not slide on

the ground:

< uF,, (2.25)

gx

[F

c. Center of Pressure Constraint: The COP constraint requires the COP reside within the
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boundary of support.

~ LF, +7,-Lm;g

x,, =L 2.26
cop a FLD ( )
O<x,, <L, 2.27)

The 4-dimensional, state-space model Equation (2.23) leads to four Lyapunov exponents.
The signs of the Lyapunov exponents provide qualitative information about the system

stability. The linearization of the model of Equation (2.23) is:
§,(m)=J,(mg,(n-1)  (ij=1,2.3.4) (2.28)

where the system Jacobian Jisa 4x4 matrix.

In this thesis, RBFNN is used to identify the discrete-time nonlinear biped balance system.

The RBFNN model is obtained by having a network with four input nodes to the

state g(n) = [ g,(n) . g,(n), g;(n) , ¢, (n) ]. The output of the network will be cfy(n) =

-3
—~

[c}l(n),(}z(n),fh(n),éd(;1)]. The control law is embedded in the neural structure. The

gradient descent method with momentum is often too slow for practical problems. For
better performance of system identification, both supervised and unsupervised algorithms

are employed to train the RBFNN.

First, 100 sample data, which are uniformly distributed in the state space, are selected to
initialize the radial basis function centers and the weight parameters. That means the
RBFNN adopts 100 hidden nodes for each output structure. Then, the actual outputs of the

plant at each instance arc used as teaching signals and the problem is to adapt the network
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parameters so as to minimize the generalized error. This will be achieved using the block

diagram shown in Figure 2.7.

gm-1j - . Biped G
| Model '
)
ST
! Buffer
l RB]?T ‘
’ .I networki "@ coeln)

Figure 2.7 Identification of biped balance system
Let e; (n) denote the error betv;feen the system output ¢,(») and the RBFNN output
c}k(n) at time n.
e, (n)=¢,(n—q,(n), k1234 (2.29)

The performance index function of the RBF network at time # is defined as

"

CF,(n) = %e,f(n) (2.30)

Note that during the learning or adaptation process, the RBFNNs use the system state
g(n) rather than the network state c}(n). However, once the learning process is

terminated, the RBFNNSs are independent of the system.

Using the RBFNNS, the system Jacobians are derived as follows:

ARV NURS VIS R i 1) 03
B = - K%k .

8ql(n) aq:(n) Jj=1 bkzj

ke

In Chapters 3 and 4, this method is used for the calculation of Lyapunov exponents. To
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verify the effectiveness of the proposed method, the Lyapunov exponents based on the
neural Jacobians are compared to the ones based on the actual Jacobians derived from the

mathematical model.
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Chapter 3

LQR Balance Control

3.1 Introduction

The design of low energy-cost control algorithms is highly desirable for regulating

biped locomotion.

In this chapter, a classical state feedback control using the Linear Quadratic Regulator
(LQR) technique is proposed to stabilize the standing biped. The LQR problem is
equivalent to a dynamic optimization problem for linear differential equations. Its
significance for control theory was first discussed fully by Kalman in 1960 (Kalman
1960). One of its main applications is to steer the solution of the underlying linear
differential equation to a desired reference trajectory with minimal cost given the dynamic
equations. Thus, LQR feedback can be used to improve energy efficiency of the biped

balance system.
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Since the upright posture of a biped is inherently unstable and the LQR control law is
based on the linearized biped model, the stability of such a nonlinear control system is
analyzed using the concept of Lyapunov exponents. The Lyapunov exponents are
calculated based on the mathematical model of the biped system. The Jacobians
determined using both the mathematical model and the neural model of the biped system
are compared, to demonstrate the effectiveness of RBFNN identification for the
determination of Jacobians. Part of the stability region of the proposed control system is

also determined using Lyapunov exponents.

The first objective of this chapter is to design an optimal control to minimize the torque
outputs and to keep the biped at the upright position. The constraints between the biped

feet and the ground are examined to ensure their satisfaction.

The second objective is to analyze the stability of the proposed controller using the
concept of Lyapunov exponents. To show the capability of the neural Jacobians for the
‘calculation of Lyapunov exponents, the results of Lyapunov exponents based on the neural
Jacobians derived from the RBFNN model are compared to the results based on the actual

Jacobians derived from the mathematical model.

3.2 Linear Quadratic Regulator (LQR) Theory

The approach to the design of a LQR consists of the formulation of an optimal control

problem on a semi-infinite time interval. It turns out that the solution to the optimal



LQR Balance Control 51

control problem comes in the form of a linear state law that is guaranteed to produce an
asymptotically stable closed-loop system (Goodwin ez al., 2000). Using L.QR theory, it
has been established that for a controllable linear time-invariant system, a set of optimal
feedback gains may be found which minimizes a quadratic index and makes a closed-loop
system stable. A system can be expressed in a state variable form as

x=Ax+ Bu 3.1
withx e R”, u e R". We assume here that all the states are measurable and seek to find a

state feedback control
where K is a constant matrix.

To design an optimal state-feedback controller, we define the performance index
- ] T T a9
PI =3 f()« Ox+u' Ru)dt (3.3)
Substituting Equation (3.2) into Equation (3.3) yields

Pl = % [ *"(0+ K" RK)xa (3.4)

The objective in optimal design is to select the K to minimize the performance index P/ It
should be noted that both the state x and the control input v are weighted in P/, so that if
PI is low, neither x nor u can be too large. If P/ is minimized, and since it is an infinite
integral of x, this implies that x goes to zero as  goes to infinity. This in turn guarantees

that the linear system is stable.



LQR Balance Control 32

The weight matrices Q (anxnmatrix) and R (amxm matrix) are the most important
components in LQR optimization. The performance of O and R determines the output
performance of the system. Commonly, a trial-and-error method has been used to

construct the matrices O and R. One should select O to be positive semi-definite, and R to

be positive definite. This means that the scalar quantity x’ Qx is always positive or zero, at

each time ¢ for all functions x, and the scalar quantity z” Ruis always positive at each time
t for all values of u except zero. This guarantees that P/ is well-defined. In terms of
eigenvalues, the eigenvalues of QO shoul_d be non-negative, while those of R should be
positive. If both matrices are selected diagonal, this means that all the entries of R must be
positive while those of Q should be positive, with possibly some zeros on its diagonal.

Note that R is invertible.

Since the plant is linear and the performance index P/ is quadratic, the problem of
determining the K to minimize P/ is called the Linear Quadratic Regulator (LQR). The
word “regulator” refers to the fact that the function of this feedback is to regulate the
states to zero. This is in contrast to the tracking problems, where the objective is to make

the output follow a prescribed (usually nonzero) reference command.

To find the optimal feedback K, we proceed as follows. Suppose there exists a constant

matrix P such that

-(—j—;—(xTPx) =—x"(Q+K"RK)x (3.5)
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Then, substituting Equation (3.5) into Equation (3.4) yields
l d, 4 1 .,
Pl =—=| —(x" Px)dr ==x" (0)Px(0 3.6
‘2fd,<>2<><> (3.6)

where we assume that x goes to zero as time ¢ goes to infinity. Equation (3.6) indicates
that P/ is now independent of XK. It is a constant that only depends on the auxiliary matrix

P and the initial conditions.

Now, we can find a matrix K so that assumption (3.5) does indeed hold. To accomplish

this, differentiate (3.5) and then substitute the state Equation (3.1) and control Equation
(3.2) into Equation (3.5), yielding

X Px+x"Px+x"Ox+x"K"RKx =0 (3.7)

x' (A=BKY Px+x"P(A-BK)x+x"Ox+x"K"RKx =0 (3.8)

|4~ BKYT P+ P4 BK)+ 0+ K™RK v =0 39)

Equation (3.9) has to hold for every x. Therefore, the term in square bracket must be equal
to zero. Thus, we have

(A-BK) P+P(A~BK)+Q+K'"RK =0 (3.10)

A'P+PA+Q+K RK—-K'B"P-PBK =0 (3.11)

This is a matrix quadratic equation in the variable of XK. One way to solve it is by

completing the square. Though this procedure is a bit complicated for matrices, suppose

we select

K=R"'B'P (3.12)
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Substituting Equation (3.12) into Equation (3.11) gives
AP+ PA+OQ+(R'B"PY R(R'B"PY~(R'B"PY B"P-PB(R"'B"P)=0 (3.13)

A"P+PA+Q~PBR'B'P=0 (3.14)

This result is of extreme importance in modern control theory. Equation (3.14) is known
as the algebraic Riccati Equation (ARE). 1t is named after Count Riccati, an Italian who
lived in the 19" century and used a similar equation in the study of heat flow. It is a matrix
quadratic equation that can be solved for the auxiliary matrix P given (4,B8,0,R). The
optimal state feedback gain is given by Equation (3.12). The minimal value of the P/
using this gain is given by Equation (3.6), which only depends on the initial condition.
This means that the energy cost P7 of LQR control using the gains in Equation (3.12) can

be computed from the initial conditions before the control is ever applied to the system.

The design procedure for finding the LQR feedback K is:
o Select design parameter matrices Q and R.
s  Solve the algebraic Riccati equation for P

o Find the state feedback gain using K = R™'B'P

There are well-developed numerical procedures for solving the ARE. The MATLAB

routine that performs this is named Igr(4,B,0,R), which is used in this work.
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3.3 LQR Balance Control Design for Biped Standing

In this chapter, a biped balance system is designed using LQR techniques. In order to
obtain the LQ parameters, the biped model is required to be linearized about the
equilibrium point, which is defined as the upright position of the link 1 and link 2.

Therefore, the system is linearized about the point (g, =0, ¢9,=0,9,=0,g, =0) with

[7,,7,]=[0,0]. Using common mathematical linearization techniques, the nonlinear sine

and cosine terms can be evaluated into linear terms. This i1s shown in Table 3.1.

Nonlinear | sing, | sing, | cosg, | sin(g, +g,)

Linear q, q, 1 q,+q,

Table 3.1 Linearizing function table

Replacing the nonlinear terms of the state-space equation with the linear terms derived in
Table 3.1, the lincarized state-space equations can then be formulated. The complete

linearized state-space equations are shown:

g, =4qs
q'z =4,
g; {&1 -(6 +§)rz +(5(q3 +q,)’ +'§‘]§)§‘12

- (-’g myl ,(q, +q,)-0(ml + mgll)%)g}/ D
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q, = {— (a +—§—)rl +(a+ P,
—ng[(5+§>(qg+q4)2+(a—5+§)q§) (3.15)
+(— (0 + —g—)(nqlc1 +ml)g, +(a -0 +§)}772102(91 + qz)Jg /D

J

' 272 2 2 272 12 2 272 12
where D' =mm, 217 +mi T, +ml0 0 + myl5Ll0 +my T+ 1T —my L1

The matrices 4 and B of LQR as shown in Equation (3.1) are determined by the follow

equations:

A= (1 =12,..4)
dq,

B = (i=12,...4.j=12) (3.16)
oT

'fhe physical parameters of the biped model are taken from the reference (Yang and Wu

2006) as shown in Table 3.2.

my (kg) | ma(kg) | me(kg) | Hi(m) | L(m) | Lr(m) | Lo (m) | Ls m) | L:(m)y| u

48.72 | 2896 | 232 |0.998]0.712| 027 | 0.05 0.07 | 0.085 | 0.5

Table 3.2: Biped Model Parameters

By using the above parameters and Equations (3.15) and (3.16), the numerical values of

the A and B matrices for the biped model are

0 0

0 0
13.2290 -9.0929
-20.3763 48.8780

O O o -
o O = O
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[0 0

0 0
B= (3.17)
0.0428 -0.1327 .

-0.1327 0.6159

The Q and R designed for the linearized biped system are chosen based on trial and error

as shown below

1000 —500 0 0
_|=500 1000 0 0
1o 0 1000 —500

0 0 —500 1000

1000 0
R= (3.18)
0 1000

Matlab was used to determine the corresponding state-space feedback gains given by

(3.19)
2733 206.6 1065 43.9

_[1059.8 63.1 3445 53.7}
LOR =

The 1initial condition wused to test this and other balance controllers was
[q,,qz,q3,q4]=[—0.05rad,O.O3rad,0.05rad/s,—0.03réd/5]. Figure 3.1 (a) and (b) show the
simulated angular displacements and control torques using LQR control. We can see that
the proposed controller successfully stabilized the biped at the upright posture within 2.5
seconds. The control performance for other initial conditions was also tested and the
results are similar. Figure 3.2 shows the horizontal and vertical ground reaction forces.

The positive vertical ground reaction force F ensures the support foot is in contact with

the ground. Figure 3.3(a) shows the horizontal ground reaction force and the upper and
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lower bounds of the friction. The horizontal ground reaction force F, is lower than the
maximum static friction (-, and pF ), which indicates the foot-link does not slip.
Figure 3.3(b) shows the locations of the éenter of pressure (COP) and their upper and
lower bounds. The location of the center of pressure X, resides within the contact

surface between the foot-link and the ground indicating that the foot-link does not rotate
about either its toe or its heel. The above results illustrate that the proposed LQR control

can keep the foot stationary with the given initial condition.
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Figure 3.1 Simulation results using LQR control:
(a) angular displacements and (b) control torques.
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Figure 3.2 The ground reaction forces of the LQR control system (a) the horizontal

ground reaction force and (b) the vertical ground reaction force
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Figure 3.3 The constraints between the biped foot-link and the ground (a) the friction
constraint and (b) the center of pressure constraint

3.4 Stability Analysis

Since the LQR control law is designed for the linearized system. there is no guarantee
that it will work well when implemented on the nonlinear system. This is particularly true
because the nonlinear system is not restricted close to the upright position. However, most
previous works failed to provide the stability analysis of the nonlinear contro! systems due
to system complexities. In this section, Lyapunov exponents are employed to analyze the

stability of the LQR controller for the nonlinear biped system.

A neural approach to derive system Jacobians from RBFNN model is proposed for the
calculation of Lyapunov exponents. The method can be used to analyze the stability of
unknown systems. The biped balance system based on LQR control is used to

demonstrate the effectiveness of the proposed neural method.

To adequately test the quality of the neural model (the procedure for developing the neural
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model has been detailed in Chapter 2), the numerical Jacobians derived from the neural

model using Equation (2.31) are plotted, to compare with the actual Jacobians derived
from the mathematical model with the same initial condition [9,.9,,95.9,1= [-0.05rad,

0.03rad, 0.05rad/s, -0.03rad/s]. In the first rows of Figures 3.4(a)-3.4(p), the solid lines

are the actual Jacobians J, :%(iz]’=1,2,3,4) determined from the mathematical model,
’ O
J

A

and the dashed lines are the neural Jacobians }U :% (i7=1,2,3,4) determined from the
;

RBFNN model. The second rows in Figures 3.4(a)-3.4(p) show the absolute errors
between the neural Jacobians and actual Jacobians (note that since some elements of the
Jacobians are zero, the absolute errors are presented). After the biped is stabilized at the
upright posture, all of the Jacobians become constants. The largest absolute error is less
than 0.06. From these results, we can see that the neural model based on RBFNN
identification is accurate to determine the actual Jacobians of the proposed biped balance
system.

x10" (@) x10" (b)

Jacobian11
N
Jacobian12

&
L
A

Absolute Error
w o~
" n (423 o
Absolute Error
NS

en bt

&)

é 3 4
Time (s) Time (s)

(=]
-
N
w
IN
o
o
-



61

LQR Balance Control

B e e ] - L ©
m i
!
:
:
i
!
VA o<
1
!
!
'
:
1
:
! 3 ™
H —
) w
— i -
o]
5 !
) ; £
| =
! 3 o~
i
!
;
:
!
!
L [ Je
;
/
* ‘_,
< .- (=]
= ; e
TR > A 1
e N ¥ © R T R Y e
< (¢}
viuelqooer 1013 8INjosqy
e e g R SR AR
; ! :
i !
! !
!
1
H R
H
:
]
!
m
!
" 1
H B
L ; c
" =
t 4N
!
{
|
1
!
;
__ Al
H
»\ w
/ ‘
: 2
L S Y VAU o
bl ['23 (4] w ~ w0 w <
o (523
g & Jou3 9Injosqy
(=]

g lueiqooer

gy D) s e S )
1
H < 4w
ER) L 4o
—
£
£
T
L EEN b 4o
'
'
1
|
1 -
H
\
\
\ :
o : [=]
- / -
x i ‘ x o
~NTo o ¥ @ ) < %) )
~ ©
e

(e)

x 10

2r

geuelqooer

1
¢
v
i
3
\
\
\

1003 81Nosqay

x 10

Time (s)

|
QNS nh_v

lgueiqoder

wy <
1013 @njosqQy

- fomnmt
!
:
i
!
i
|
H «
'
!
'
;
!
'
:
b b 4
1 —_
1 w
H D
—_ ! Y
Kuy 1
= : £
' =
L t o~
H
!
i
!
!
'
H
d
: -
|
\
\
|
\
N
/
\
)
~\ L 1 i iy o
-~ [Te} 223 (=] o o I~ [te]
(o] (=2 -~
@D (o2}
2 o 10113 9Injosqay
yzueiqoder
e g — 0
!
!
!
:
'
]
H
j
1 4=
|
!
i
;
:
:
!
' 1o
“ 0
! G
—_ ] Py
o m £
H e
; 3 ~
|
;
:
|
i
!
H
;
L : N 1o
:
!
‘
:
b 3
‘© h o
2 ; 2
x el o [y S L O
o~ O o4 © n )
¥ Y @ 2 &

gzuelqooer

Jou3 einjosqy



62

LQR Balance Control

-~ T T 0 e TR o) S R w0 T 0 e ey S
; :
H *
; i
: i
; !
F - b < i 4 < : <
\ 1
) 1
) i
' "
1 1
B 1
H 1
™ b ™ L m dem do o 1)
0 : D |
@ = o i
& i E ;
- : =
b ~ 4o | 4oy 4o m 1™ b
: !
H '
M 1
| \
! Lo
: P
i - i) -
- - } - - ; N
; i i -
° \ :
- \ i - i
- x R T W i | e T o | =
© o - ©° STe TS e S TE T T T RS © o~ S % 3 S 8 S o
[P S N & e = fr< T TNV S I = ] e e g g
w w 0 - LT B S S 1 e 2 o o5 9 2 %
EL 10113 91Nj0sqQy A S o o S ® ¢ @ 1043 BINOSqY
Zcueiqooep ‘q iou3 aInjosqy zpueiqooer
T Lalat [asatad i t] v 1 r w & ™ —— [ e e D ey D . .
' i ' i !
H T H H
: ; i :
; i ! ;
H ; i
1 <+ 1 H i e <t p
: " i |
| ! ;
w m
i "
b m ™ el | o © e}
“ @ | o
; o z | @
" £ T E
: = ! =
i o {e b 1 o o~ p
; __
' t
H 1
| '
" :
\
- 4= | kRS -
\
o }
S |
b b n A I =L i d N =) -. c o o
~ w0 YoM 0 M~ W N M 1o} © © o g - o~ [ T - . 4
DR S ) o o © d o o o o o o 9
¢ T W Jou3 sinjosqy Q (=] v (=1 o 5 5 o o o ©o o
Leueqooer geuRIgoORr Jjou3 ainjosqy JyueIqooer 1043 Snjosqy

Time (s)

Time (s)



LQR Balance Control 63

(o) . P

.19.88 - : - -19.85¢
2 T e
SEREL U ¢ -19.9]
© \ ° L
S 19920 e 3 !
o el O -19.95) v
S © T ]
= 1994 - - j
: -20
0 1 2 3 4 5 0 1 2 3 4 5
5 oos 8
W 0.03 ]
© [
£ o002 5
2 001 2
0 e
< 0 <
0 1 2 3 4 5 3 4 5
Time (s) Time (s)

Figure 3.4 The actual and neural Jacobians of the LQR control system: the first rows show
the actual Jacobians (solid lines) and the neural Jacobians (dashed lines), the second rows
show the absolute errors between the above two J acobians.

Four Lyapunov exponents for the LQR controlled biped system during standing as shown
in Equation (2.7) were calculated. Stability analysis investigates the long-term behavior of
motion under the influence of disturbance in the initial states. The four Lyapunov
exponents in 100 seconds are shown in Figure 3.5. In the first rows of Figures
3.5(a)-3.5(d), the Lyapunov exponents based on the neural Jacobians (dashed lines) are
compared to the respective exponents based on the actual Jacobians (solid lines). The
second rows of Figures 3.5(a)-3.5(d) measure the relative errors of the Lyapunov
exponents based on the neural Jacobiani The low relative errors illustrate that the
approach to derive Jacobians from the RBFNN model of the LQR balance system is
effective for the calculation of Lyapunov exponents. After 100 seconds, since the
nonlinear term of Equation (2.23) disappeared; the Lyapunov exponents converge to
constants which are listed in Table 3.3. All of the four Lyapunov exponents are negative

indicating that the LQR control system is exponentially stable about the equilibrium point

(the biped upright posture).
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Figure 3.5 The Lyapunov exponents calculated based on the actual (solid lines) and neural
(dashed lines) models of the LQR control system: (a) largest Lyapunov exponent (LE) (b)
second LE (c) third LE (d) fourth LE.

Lyapunov exponents (LE) | I"LE | 2™LE | 3“LE | 4"LE
Mathematical model -0.6276 | -1.2127 | -2.5698 | -16.1701
Neural model -0.6314 | -1.2107 | -2.5666 | -16.2254

Relative error 0.61% 0.16% | 0.12% 0.34%

Table 3.3 The Lyapunov exponents and their relative errors after 100 seconds

Although the Lyapunov exponents are calculated using one trajectory, they remain the

same value within the same stability region. The determination of the stability region is an
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important part of the stability analysis. To determine the stability region, the algorithm
developed by Nusse and Yorke (1998) is adapted, where the region of interest is first
divided into grid boxes. The grid box at the origin of the state-space (also called center

box) contains the stable equilibrium point.

Next, the size of neighboring grid boxes is chosen and the Lyapunov exponents are
calculated using the initial states from each neighboring box. If the same convergent and
negative exponents are obtained, the neighboring grid box belongs to the stability region.
To find the stability region of the proposed LQR balance system, six regions in the phase
plane are tested:

[, ={q €[-1.51.5rad,q, e[-1.5,1.5]rad .q, = Orad / s,q, = Orad / s}

I, ={q, €[-1.5,1.5]rad.q, = Orad . q, € [-1.5,1.5]rad / 5,q, = Orad / s}

I, ={q, €[-1.5,1.5})rad,q, = Orad ,q, = Orad / s,q, € [-1.5,1.5]rad / s}

I, ={q, =0rad,q, €[-1.5,1.5\rad,q, €|-1.5,1.5Jrad / 5,q, = Orad / 5}

I ={g, =0rad.q, €[-1.5,1.5]rad ,q, = Orad / s,q, €[-1.5,1.5}rad / 5}

I, ={g, =0rad,q, =Orad,q, €[-1.51.5lrad / 5,q, €[-1.5,1 .5}rad / s} (3.20)

Each region is divided into grid boxes with the size of 0.01rad, 0.01rad, 0.01rad/s and
0.0lrad/sec forg,,q,,g,and g, , respectively. Figure 3.6 shows the stability region (grey
color) which is determined by the largest Lyapunov exponent. In the above stability

region, all of the largest Lyapunov exponents are negative and the mean value is -0.6313

with a deviation of 1.54x10™.
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Note that, these regions are only part of the stability region and not necessarily the entire

stability region. Finding the entire stability region of the proposed balance system is

important, but it is out of the scope of this work.
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Figure 3.6 Part of the stability region of the LQR balance control for the biped
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An objective of this chapter is to develop an energy-efficient control system to maintain
the biped standing. A LQR feedback is employed for optimal control. The limitation is the
constraints between the biped feet and the ground, which may not be satisfied during
biped balancing. Thus, a GA-based PD control satisfying the above constraints will be

introduced in the next chapter.

Another objective of this chapter is to analyze the stability of LQR control using the
concept of Lyapunov exponents. The results indicate that the LQR biped control system is

stable about the upright posture in the determined stability region.

In summary, a LQR controller is designed to balance a biped in the upright posture during
standing. The stability is analyzed using the concept of Lyapunov exponents. The
approach to calculate Lyapunov exponents based on RBFNN models is verified. Further,
the RBFNN models show great capability of analyzing the stability of nonlinear control

systems.
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Chapter 4

GA-based PD Balance Control

4.1 Introduction

The design of balance control laws for standing bipeds is a challenging problem since
the constraints between the biped feet and the ground (Equations 2.22-2.25) have

significant effects on preventing a standing biped from falling over.

This chapter proposes a Genetic Algorithm (GA)-based PD control, which can guarantee
the satisfaction of the constraints between the feet and the ground as well as minimize
energy consumption of torque output. Due to the local optimization of PD gains according
to the initiallconditions, the stability of the proposed controller should be analyzed.
However, in most of these approaches related to optimal control, stability has not been
investigated systematically. In this work, the stability is verified through the concept of

Lyapunov exponents and part of the stability region is determined as well.
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The first objective of this chapter is to develop a biped balance system with the
satisfaction of the constraints between the feet and the ground. The second objective is to
analyze the stability of the proposed balance system using the concept of Lyapunov

exponents.

To show the capability of the neural Jacobians for the calculation of Lyapunov exponents,
the results of the Lyapunov exponents based on the neural Jacobians derived from the
RBFNN model, are compared to those based on the actual Jacobians derived from the
mathematical model. It demonstrates the capability of the proposed approach in

calculating Jacobians using neural models for determining Lyapunov exponents.

4.2 Genetic Algorithm (GA)

Genetic algorithms (GAs) are robust, stochastic and heuristic search algorithms and
optimization methods based on biological reproduction processes. Artificial reproduction
schemes were first developed in the 70’s (Holland, 1992) and were more extended during
the 80’s (Goldberg, 1989). The search area for the GAs is very wide and usually
converges to a point near the global optimum. A GA is based on representing a solution to
the problem as a chromosome. The GA creates a population of solutions and then applies

genetic operators to “evolve” the solutions, in order to find the best one(s).

The following outline summarizes how the GA works:
Step 1: The algorithm begins by creating a random initial population as a starting point

for the search.
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Step 2: The algorithm then creates a sequence of new populations. At each step, the
algorithm uses the individuals in the current generation to create the next
population. To create the new population, the algorithm performs the following
steps:

a. Score each member of the current population by computing its fitness value
based on the cost function.

b. Select some individuals (called parents) in the population for reproduction
based on the relative fitness of the individuals.

¢. Choose some of the individuals in the current population that have lower
fitness as elite. These elite individuals are passed on to the next population.

d. Produce children from the parents by means of a crossover and mutation
operator. A crossover takes two parents and swaps parts of their genetic
information to produce new chromosomes. A mutation operator produces
new single parents in the population by randomly modifying some of the
genes.

e. Replace the current population with the children to form the next generation.

Step 3: These processes are repeated until a satisfactory individual is found or a certain

stop condition is met.

At each step, the GA uses the current population to create children that make up the next
generation. The algorithm selects a group of individuals in the current population called
parents, who contribute their genes, the entries of their vectors, to their children. The

algorithm usually selects individuals that have better (lower) fitness values, as parents.



GA-based PD Balance Control 71

The GA creates three types of children for the next generation:

e Elite children are the individuals in the current generation with the best fitness
values. These individuals automatically survive to the next generation.

¢ Crossover children are created by combining the vectors of a pair of parents. If
the coding is chosen properly, two good parents produce good children.

e Mutation children are created by introducing random changes, or mutations, to a
single parent. In real evolution, the genetic material can be changed randomly
by erroneous reproduction or other deformations of genes. In GAs, mutation can
be realized as a random deformation of the chromosomes with a certain
probability. The positive effect is preservation of genetic diversity and

avoidance of local minima.

Compared to traditional continuous optimization methods, such as Newton or gradient
descent methods, the significant differences are as follow:

1. GAs manipulate coded versions of the problem parameters instead of the parameters
themselves.

2. While almost all conventional methods search from a single point, GAs always
operate on a whole population of points. This contributes a great deal to the
robustness of GAs. It improves the chance of reaching the global optimum and, vice
versa, reduces the risk of becoming trapped in a local stationary point.

3. Normal GAs do not use any auxiliary information about the objective function value

such as derivatives. Therefore, they can be applied to any kind of continuous or
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discrete optimization problem. The only thing to be done is to specify a meaningful
decoding function.

4. GAs use probabilistic transition operators while conventional methods for continuous
optimization apply deterministic transition operators. More specifically, the way a

new generation is computed from the actual one has some random components.

4.3 GA-based PD Balance Control Design for Biped Standing

In this chapter, a PD balance system is designed to stabilize the standing biped in an
upright posture, shown in Equation 4.1. A GA is employed to tune the PD gains of the
controllers for a given set of initial conditions. The aims of GA are to satisfy the
constraints between the biped feet and the ground, to minimize energy consumption and

keep the biped in an upright posture.

{ (3 :_km% _km% @4.1)

T, =—kpyq, — k59,

It has been well-accepted that the energy to control the position of the biped is closely
related to the integration of the square of the torque, with respect to time. Thus,
minimizing the torque indicates minimizing the energy consumption. The cost function .J

can be defined as follows:

"] = -;—[ J:j (Cvlz-l2 + C?.le + C3q]2 + C4Q22 + CSQ; + Céqj )d[ + _[/ Cjc‘(m.?lra imd[)] (4.2)

0 if the constraints are satisfied. )
constraint = (4‘))

C,  if the constraints are not satisfied.

where I/ is the final time instance and C;(=1, 2, ..., 7) are the weighting coefficients. By
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using different values for the weighting coefficients Cj, it is possible to tune the balance
system to meet different criteria. In this work, the weighting coefficients are selected as
C=0.001, C=0.001, C5=50. C;/=50, Cs=10, Cs=10, C7=1000. Ceomsmain is the constraint
function for satisfying the constraints between the biped foot-link and the ground in

Equations (2.24)-(2.27).

‘For the optimization of the cost function, a real-valued GA (representing each
chromosome as a real-valued number) is used because it has several advantages over a
binary GA (representing each chromosome as a bit string). Programming is simple and
the searching speed is improved since encoding and decoding the processes is not
necessary. This is due to the one-to-one correspondence between a phenotype and a
genotype. It is possible to define a very large domain and easy to deal with highly
complex constraints. Many experiments comp.aring real-valued and binary GAs have
proven that the real-valued generates better results in terms of the solution quality and

computation time (Michalewich 1996).

The population size for the GA is set to 60, crossover probability is 0.8 and mutation
probability is 0.01. The maximum number of generations is 100. The GA will terminate
when a maximum number of generations has been produced or the value of the cost

function does not improve for 10 consecutive generations. If the constraints are greater

than C7 or at 4=5s the biped is outside the upright region, {|g,|<0.002,

g,]<0.002,

lg5 <0.005, |g,]<0.005}, GA will be considered to have failed to find the solution of PD

gains.
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The physical parameters of the biped model are shown in Table 3.2. In the simulation,
the initial state is ¢, =-0.05 rad, ¢,=0.03 rad, ¢,=0.05 rad/s and
9, = ~0.03rad/s, the final time is #/=5s and the step size is #=0.01. Figure 4.2 shows

the variation of the cost function J. We can see that the GA converges with 53

generations.

Best: 0.3134

TR0 20 40 60 80 100
[ Generation

]

Figure 4.2 The variation of the cost function
The PD gains obtained by the GA are Kp,= 725.82, Kpy=236.21, Kp;= 171.75, and Kp=
179.39. The value of the cost function (Equation 4.2) J is 0.3134. Compared to the value
of LQR control (/=0.4030) in Chapter 3 with the same initial condition, it is clear that
GA-based PD control reduces the value of the cost function. This indicates that the energy
consumed is reduced significantly. Figure 4.3(a) and (b) show the simulated angular
displacements and control torques of the proposed controller. The biped approaches the
upright posture within 3 seconds. Figure 4.4(a) and (b) show the ground reaction forces in
horizontal and vertical directions. Figure 4.5(a) shows the horizontal ground reaction

force and the upper and lower bounds of the static frictions. Figure 4.5(b) shows the
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location of the COP and the bounds of the contact surface between the foot-link and the
ground. From Figures 4.4 and 4.5, it can be easily observed that the satisfaction of the
constraints between the feet and the ground is verified. The vertical ground reaction force

ngis always positive, as shown in Figure 4.4(b). The force in the horizontal direction

F,. is always less than the maximunr force of the static friction (uFy and— pF, ), as

shown in Figure 4.5(a). The center of pressure in the horizontal direction is always inside
the foot length as shown in Figure 4.5(b). It is concluded that the proposed control scheme

can maintain the biped balance in an upright posture while keeping the foot stationary.
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Figure 4.3 Simulation results using GA-based PD control
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Figure 4.4 The ground reaction forces of the GA-based PD control system (a) the
horizontal ground reaction force and (b) the vertical ground reaction force.
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Figure 4.5 The constraints between the biped foot-link and the ground of the GA-based
PD control (a) The friction constraint, (b) The COP constraint

4.5 Stability Analysis

The upright posture of biped standing has an unstable equilibrium point. For the
proposed GA-based PD control, the PD gains are optimized locally, according to specific
-initial conditions of biped model. The stability of the proposed controller to an unexpected
disturbance should be considered. In this section, the stability of the proposed balance

system is analyzed using the concept of Lyapunov exponents.

Chapter 2 proposed a neural approach to derive system Jacobians from RBFNN model for
the calculation of Lyapunov exponents. This method can be used to analyze the stability
of unknown systems. In this chapter, the biped balance system based on GA-based PD

control is used to verify the effectiveness of the proposed neural method.

After an intensive training process of the RBFNN, all of the neural Jacobians are derived
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from the RBFNN model using Equation (2.31) with the initial condition 9,,9,.95.9,1=

[-0.05rad, 0.03rad, 0.05rad/s, -0.03rad/s]. Figure 4.6 shows the neural Jacobians and the

actual Jacobians deriving from the mathematic model. In the first Tows of Figures

4.6(a)-4.6(p), the solid lines are the actual Jacobians J = %(i. =1,2,3,4) and the dashed
i 6 J

4
: : s 0g —
lines are the neural Jacobians ./,1=T (ij=1,2.3,4). The second rows in Figures
' g,

4.6(a)-4.6(p) show the absolute errors of these neural Jacobians. Since some elements of

the Jacobians are zero, the absolute errors are presented.

After the biped stabilized in an upright posture, all of the elements of system Jacobians
become constants, as the nonlinear terms of Equation (2.23) disappeared. The largest
absolute error is less than 0.3. It is clear to see that the neural Jacobians are accurate in
comparison with the actual Jacobians. The above results illustrate that the neural

Jacobians can determine the actual Jacobians of the balance system successfully.
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Figure 4.6 The actual and neural Jacobians of the GA-based PD control system:
the actual Jacobians J,, (solid lines), the neural Jacobian j;j (iy=1,2,3,4)(dashed lines).

Four Lyapunov exponents are calculated. Figure 4.7 shows the four Lyapunov exponents
in 100 seconds. The solid lines are the Lyapunov exponents based on the mathematical
model. The dashed lines are the Lyapunov exponents, based on the neural model. The
relative errors of the neural Lyapunov exponents are also shown in Figure 4.7. It is clear
to see that the reiative errors of the neural Lyapunov exponents are very low. The neural

Lyapunov exponents are accurate in comparison with the actual ones.

It is demonstrated that the proposed approach to calculate Lyapunov exponents based on
the RBFNN model is a constructive tool to analyze the stability of unknown systems.
After 100 seconds, all of the Lyapunov exponents converge to negative constants (Table
4.1), which indicate the PD based GA control system is exponentially stable about the

biped upright posture.
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Figure 4.7 The Lyapunov exponents calculated based on the actual (solid lines) and neural
models (dashed lines) of the GA-based PD control system: the (a) largest Lyapunov
exponent (LE) (b) second LE (c) third LE (d) fourth LE.

Lyapunov exponents (LEs) | 1"LE | 2™LE | 3“LE 4" LE
Mathematical model -3.8499 | -6.0860 |-7.6922 | -107.3131
Neural model -3.8417 | -6.1140 | -7.6887 | -107.3797
Relative error 0213% 0.460% | 0.046% 0.062%

Table 4.1 The Lyapunov exponents and their relative errors after 100 seconds

The PD gains of the proposed controller are in respect to specific initial conditions. The

results of Lyapunov exponents are different for each set of PD gains. Finding the entire
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stability region for a specific set of PD gains is extremely difficult and it is out of the

_ scope of this work.

The following is an example of part of the stability region of the PD gain (Kp,= 725.82,
Kps=236.21, Kp;= 171.75, and Kpy=179.39). The regions:
T, ={q, e[-1.51.5)rad,q, €[-1.5,1.5]rad,q; = Orad / 5,q, = Orad/ s}
T, ={q, €e[-1.51.5)rad,q, = Orad,q; €[-1.5,1.5]rad / s.q, = Orad / s}
I, ={g, €[-1.5.1.5)rad,q, = Orad.q, = Orad / s,q, € [-1.5,].5}rad | s}
I, ={q, =0rad,q, e[-1.51.5rad,q, €[-1.51.5]rad / 5.4, = Orad | s}
T ={q =0rad,q, e[-1.51.5]rad,q, = Orad /5,9, € [-1.5,1.5]rad / s}
I, ={q, = Orad,q, =Orad ,q; €[-1.5,1.5)rad / 5,9, € [-1.5,1.5]rad / s} (4.3)
in the phase plane, are divided into grid boxes with sizes of 0.01rad, 0.01rad, 0.01rad/s

and 0.01rad/sec forg,.q,.g,andg,. respectively. If the same convergent and negative

largest exponent is obtained, the neighboring grid box belongs to the stability region.

The stability region (grey color) is shown in Figure 4.8. In the stability region all of the
largest Lyapunov exponents are negative and the mean value is -3.8417 with a deviation

of 421x10™.
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Figure 4.8 Part of the stability region of GA-based PD biped balance system
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4.6 Discussion

Balance maintenance is a current research topic in the field of biped control. An
important issue for biped control design is energy conservation. In my study, two optimal
control schemes, derived from classical LQR techniques and GA techniques, have been
proposed and implemented in the two-link biped model. In Chapter 3, the LQR balance
control is designed to optimize the total energy consumption of torque outputs. In this
chapter, a GA-based PD control is presented to keep the biped balance in the upright

posture.

By using a GA as an optimization tool, it is easier to design an advance controller which
can guarantee the satisfaction of the constraints between the feet and the ground as well as
optimize the energy consumption of control outputs. With the above two balance systems
implemented, the biped model is able to stay upright and balance during standing, and the
total energy consumption of the torque outputs is low. In conclusion, both of two balance

systems are successful in stabilizing the standing biped in the upright posture.

To evaluate the energy efficiency of the two controllers, the cost function in Equation (4.1)
is employed. The values of the cost function J are shown in Table 4.2, with some initial -
conditions. It is clear to see that the GA-based PD control has better performance for

energy consumption in comparison to the LQR control.
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Initial condition (q1,92.93,94) LQR control | GA-based PD control
-0.02rad, 0.02rad, 0.05rad/s, -0.03rad/s 0.0229 0.0217
0.15rad, 0.15rad, 0.01rad/s, 0.01rad/s 11.37 11.01
0.05rad, 0.05rad, 0.01rad/s, -0.01rad/s 1.272 1.204

Table 4.2 The values of the cost function using LQR control and GA-based PD control

The ability to keep the foot stationary is another important issue for biped control design.
The limitation of the LQR control is that the gains are fixed. Since the primary aim of
GA-based PD control is to guarantee the satisfaction of these foot constraints, the gains of
this control method can be adapted according to initial conditions and the constraints
between the foot-link and the ground. This means that in some cases, the LQR control

fails but the GA-based PD control may not.

The following is an example with the initial condition (g,=-0.045rad, ¢,=0.045rad,
¢5=0.001rad/s, ¢,~-0.001rad/s). Figure 4.9(a) and (b) show the COP constraints of LQR
control and GA-based PD control. The COP in the horizontal direction x,,,, . violates the
lower bound at time =0s, and the controller is terminated due to foot rotation. The
GA-based PD controller successfully stabilizes the biped in an upright posture and the

COP in the horizontal direction x,,, isalways within the bounds. It is concluded that the

working region of GA-based PD control is larger than LQR control.
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Figure 4.9 The COP constraint (a) LQR control (b) GA-based PD control

The stability of the GA-based PD control system is demonstrated by the concept of
Lyapunov exponents and part of the stability region is determined. The method of
calculating Lyapunov exponents based on RBFNN models is implemented on the
GA-based PD control system. The results show that the neural method is accurate in
comparison to the traditional method. Further, it demonstrates that the proposed method
can be used to analyze the stability of complex or unknown systems without explicit

knowiedge of the mathematic models.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The overall goal of this thesis is two-fold: (1) to develop a control system that will keep
the biped model in an upright posture despite adverse disturbances, and (2) to analyze the

stability of the proposed control system using the concept of Lyapunov exponents.

‘The biped robot is simplified as two inverted pendulums, representing the legs and the
trunk. The feet are modeled as a separate link stationary on level ground. The biped
moves only in the sagittal plane. A dynamic model of the above biped robot and the
inequalities resulted from the constraints between the foot-link and the ground, have been

developed.

Two optimal controllers have been designed in this thesis. A LQR balance control is first
designed to optimize the total energy consumption of torque outputs while keeping the
biped in an upright position. The LQR problem is equivalent to a dynamic optimization

problem for linear differential equations. It steers the solution of the underlying linear
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differential equation to a desired reference trajectory with minimal cost, given the
dynamic equations. Simulation results show that the LQR controller is effective for

balance control with low control torques.

Although the satisfaction of the constraints between the foot-link and the ground was not
considered in the control design, it has been closely examined in the computer simulations.
It has been found that the low control torques have insignificant effects on the ground
reaction forces. For example, the vertical ground reaction force is dominated by the
gravity of the biped. The changes in the vertical ground reaction force are rather low.
Similarly, the horizontal ground reaction force is lower than the maximum static friction,
which indicates that the friction constraint can be easily satisfied. The simulations show
that the COP constraint is easier to be violated due to the long leg and torso links and the

short foot length. This finding is consistent with previous research (Yang and Wu, 2006a)

A GA-based PD balance control is then developed to keep the biped in an upright position,
minimizing the energy consumption of torque outputs, and satisfying the constraints
between the foot-link and the ground. The effectiveness of the control laws are tested
through computer simulations, and the results show that all of the above three

requirements are satisfied.

The stability of the biped control systems is the fundamental requirement for developing
biped robots. In the current biped control field, an obstacle is the lack of an effective tool

for stability analysis. In this work, the stability of the proposed balance systems is
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analyzed using the concept of Lyapunov exponents. Part of the stability region has also

been determined using Lyapunov exponents.

The Lyapunov exponents have been calculated using the mathematical model, for which
the determination of the Jacobean matrices is crucial. Due to the complexity of the biped
systems and even the unavailability of the mathematical model, the determination of
Jacobeans is not always feasible. This prohibits the calculation of the Lyapunov

exponents.

In this thesis, a new approach to calculate Lyapunov exponents based on a neural model is
proposed to analyze the stability for complex or unknown systems. RBFNN is first
employed for system identification and the Jacobians are derived from the neural model.

Then, the Lyapunov exponents can be calculated using the above neural Jacobians.

For the biped systems with the above two optimal controllers, the Jacobians determined
from the mathematical models and the corresponding neural models as well as the
Lyapunov exponents from both the mathematical models and the neural models are
compared, and they agree very well. For the Lyapunov exponents, the maximum relative
errors are 0.6% and 0.5% for both control systems. RBFNN is used due to its outstanding
characteristic of nonlinear system identification. This method is novel in that it 1s a

framework, which makes the calculation of Lyapunov exponents feasible.
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5.2 Future Work

The limitation of the proposed controllers is that the biped can be stabilized only in a
static environment. Future work is to develdp an advanced biped balance system using
adaptive control and neural network control for an unknown dynamic environment.
Stability analysis of such control schemes is still an open problem due to the complexity
of the controller. Lyapunov exponents may be a good tool for this analysis. It should be
noticed that the system Jacobians are variable, according to the environment and the
learning algorithm. Analysis of the stability of such control law is another future

development.

The proposed method to calculate Lyapunov exponents based on RBFNN model is a
constructive tool to analyze the stability of unknown systems. However, the neural

network should be retrained if the control law is changed.

In future work, control torques will be considered as input variables of system
identification. We could find a general neural model of dynamic systems not dependent on

controllers.
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