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Abstract

The mechanics of balance control essential in biped locomotion has attracted much

attention in the past two decades. There are three requirements in designing balance

controìlers: (1) maintaining the postural stability. (2) improving the energv effrciency of

the control systems and (3) satisfying the constraints between the foot-link and the

ground.

In spite of the attempts, there has been little success in developing balance controllers

which satisfy all three requirements. The ìack of a constructive tool for stability analysis is

one of the obstacles. Stability analysis based on Lyapunov's stability theory is challenging.

due both to the complexity of the system and to its inflexibility to include optimization

criterion. It has often been assumed that the constraints between the fèet and the ground

are always satisfied once the feet contact the ground. However, such constraints have

significant eflect on control design.

This thesis is concerned r,r'ith biped balancing in the upright standing posture and the

stability analysis of the control systems. The work has been carried out with two

objectives: (1) design optimal controllers which can satisfy the constraints between the

foot-link and the ground while minimizing the energy cost, and (2) perform stability

analysis of the proposed systems using the concept of Lyapunov exponents.



The biped robot is simpiified as two inverted pendulums, representing the legs and the

trunk. The feet are modeled as a separate link. stationary on level ground. Two optimal

controllers are proposed in this thesis. A LQR balance control is first designed to optimize

the total energy consumption of torque outputs. A GA-based PD balance control is then

proposcd to satisfy the constraints between the foot-link and the ground; as well as

minimize the energy consumption of torque outputs. The effèctiveness of the control laws

are tested through computer simulations. Note that, the consffaints between the foot-link

and the ground are not considered in the design of LQR controller, but their satisfaction is

tested through simulations.

Since the biped upright posture is inherently unstable, stability analysis of the control

systems is required- The concept of I-yapunov exponents is a powerful tool u'hen

analyzing the stability of dynamic systems. l-lowever, for complex or unknown systems,

deriving system Jacobians is extremely difficult.

A novel approach based on neural networks has been proposed for Jacobian derivation.

Neural networks are used to identify the system dynamics, and then numerical Jacobians

are derived from the neural model lor the calculation of Lyapunov exponents. 'fo increase

the modeling accuracy of the biped balance system. Radial Basis F-unction neural

netwoïks (RBFNNs) are employed, providing a capability for nonlinear system

identifìcation.



The rvork contributes significantly to the stability analysis of practical complex or

unknown engineering systems in that, a reliable and constructive method for calculating

Lyapunov exponents based on neural netu'ork identification has been developed.
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Introduction

Chapter I

Introduction

1.1 Motivations

Biped robots have significant advantages over con\/entional wheeled robots because

their r¡echanical design allows for bettel mobility. Dynamic control and the ability to iift a

supporting point off the ground give legged robots the ability to move over rough terrain

and negotiate obstacles more easily than r¡,,heeled robots. Flowever, along u,ith the

advantage of increased mobility, comes the challenging problems of balance control and

stability q,hich need to be addressed through advanced design and analysis.

Maintenance of a standing biped at the upright posture is a key requirement for safe and

successful co-existence of biped robots within normal human environments. Since only

the feet are in contact with the ground, a standing biped is always subjected to constraints

(Yang and Wu 2006), i.e., the ground reaction force being upward (the gravity constraint),

friction between the feet and the ground being lower than the maximum friction (the

friction constraint) and the pressure center being within the contact surface between the

feet and the ground (the center of pressure constraint). Much of previous research on
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balance control has been can'ieci out under the assumption that all these constraints are

satisfied. This assumption although simplifying the problem, can be misleading.

Limited previous research on biped balance control considered the constraints between the

foot-linl< and the ground. Hou'ever. these balance systems are not energy-efficient. Since

biped robots need to carry their energy sources, a lower rate of energy consumption would

directly contribute to a longer rvork cycle. Energy efÏciency is an impoflant issue 1o be

resolved before the use of bipeds is viable. 'fhe design of energy-efficient control

algorithms with the satisfaction of the above constraints for biped standing is a challenge.

Another challenge in biped desigr-r is the stability analysis of control systems. Since the

upright posture of the standing biped is inherently unstable, control methods have to be

very effective and sal'ety aspects are mandatory, i.e., any falls are Iiable to result in a fatal

failure. The stability of the control systems needs be analyzed to determine the stability

region. Due to tire compiexity of the biped ciynamics anci controi iaws, tire use oi cÌassicaì

stability analysis tools is extremel,v difficult. For exatnple^ Lyapunov's second method is

widely used, but it is diflìcult to derive Lyapunov functions for complex biped models.

Alternatively, I-yapunov exponents, defined as the average exponential rates of divergence

or convergence ol nearby trajectories in the state space, can characterize the system's

stability. The calculation of Lyapunov exponents is based on system Jacobians derived

from mathematical models. Though the concept of Lyapunov exponents is an effective

stability analysis tool for biped control, it has not been widely used. One of the reasons is

the diffìculty in deriving Jacobian matrices. F-or unknown systems it is impossible to
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determine Jacobians. Even if the models are obtained, it requires enormous work to derive

Jacobian from complex dynamics. Thus, a new approach to derive Jacobians from

complex or unk¡own systems should be developed for the stability analysis using the

concept of Lyapunov exponents.

1.2 Literature Review

1.2.1 Biped Dynamic Models

Biped robots are expected as a raiional form of machines to act in the environment that

humans live. and to support people through ìnteractions. In order to maintain biped

balance during standing and locomotion, the posture and motion should be generated in

real-time in accordance nith the d-vnarnics. This requires a large amount of computatìon

and has not been implemented to date. Therefore. biped robots should be modeled into

simple forms, r,vhich are easier to implement.

Kajita et al. (2001) introduced the three-dimensional inverled model for the walking

control of a l2-DOF biped robot. The dominant biped dynamics is represented by a single

inverted pendulum r.vhich connects the supporting foot and the center of mass of the

rvhole robot. J'he model consists of a concentrated mass at the torso and neglects the mass

and the inertial effects of the legs. r,vhich extend from the centre of the supporting base to

the location of the center of mass of the robot. 'fhe model allows for the separate

controller design.of sagittal and lateral motion, significantly simplifying the analysis of

dynamic motion. To extend the basic inverted model, Park and Kim (1998) developed a

gravity-compensated inverted pendulum model. This included the predetermined effects
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of the dynamics of the free (swing) leg on ZMP (Zero-moment point) by modeling the

robot as two separate inverted pendulums. The model assumes that the swing leg consists

of mass concentrated at the ìocation of the feet. and that its dynamics are dominated by

gravitational acceleration. In this sense. only the static effect of the swinging leg is

considered.

Caballero et al. (2000) developed a further exlension of the above model that was

applicable to biped robots. The model represents the robot as an inveúed pendulum with

two quasi-static coupled pendulums. Using ZMP stability theory, this model was

successfully used to generate stable geometric gaits.

l-he other model is a multiple-masses inverted pendulum model, which consists of one

mass representing the torso. and multiple masses modeling the swinging leg. The foot

motion of the swinging leg is predefined. and all other trajectories are calculated

iteratively.

Li and Kato (1994) considered the model to be composed of two separate moving masses

representing the torso and the legs. Motion generation specific to the surface structure of

the ground was pre-determined, while the motion of the torso was adapted in real-time to

ensure postural stability. Iror traditional biped robots, the absence of a torso allows the

mass distribution to be modeled as a single point mass. Stability is then maintained by

relying on the overall motion of both the supporting leg and the swinging Ieg.
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Gerth and Albert (2001) then proposed amodel which considered the dynamic effects of

the swinging leg. It is a two-link inverted pendulum robot model, with two masses

representing the torso and the swinging leg. The complete dynamic effect of the swinging

leg is considered for the generation of the torso motion-

Multi-link planar models are used to study biped locomotion and the related properties.

Miura and Shimoyama (1984) developed a three-liril< biped robot to walk sideways,

backward and forward, and studied it in both the sagittal and frontal planes. The results

served as a basis for choosing the appropriate feedback control gains. Flurmuzlu and

Moskowitz's three-link biped model (19S7) has an upright tmnk u'ith two lower limbs.

Miura and Shimoyama's model (1984) has two lor,,er lintbs and a link located at the pitch

axis. Hurmuzlu's four-link biped model (l987) put one link above Miura's model. lqbal et

al. (1993) used a four-link planar model to study the stability and control of a biped

system. The model approximates gross human locomotion in the frontal plane.

A general fìve-link biped is modeled with a torso and tu,o legs. each leg consisting of a

thigh and a shank. The study of this model can be f-ound in Hemami et al. (1977),

i-Iurmuzlu (1993), Wu and Chan (2002), Mu and Wu (2002),Mu and Wu (200a). Ilemami

et al. (2004) studied dynamics. stability and control of stepping, via a seven-link

two-dimensional sagittal biped model. Furusho and Sano (1990) developed a nine-link

biped which included the foot structure and was equipped with foot pressure and ankle

torque sensors to provide infomation about the conditions of contact with the floor- Their

work contributed toward the realization of smooth three-dimensional walking with the
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sole fìrmly gripping the floor. Abdallah and Goswami (2005) introduced a planar upright

robot model r,vhich is a single-leg plus head-arms-trunk (HAT) modei in the sagittal plane.

l-he model contains four limbs: the feet. shank, thigh, and IÌAf. These rigid body limbs

are inter-connected through three actuated joints: the ankle. knee. and hip. The feet are

free to leave the ground but Abdallah and Gosrvami assumed that friction was sufficient to

prevent slip. The robot has four kinematic feet/ground contact states. In the flat feet phase,

the feet are flat against the ground. In the toe phase and heel phase the foot pivots around

the toe or the heel respectively. In the airborne phase, the feet completely lift off of the

groun<l. The robot has three degrees of freedom (DOF) in the flat feet phase, four DOF in

each of both the Toe and I'leel phases and six DOF in the airborne phase.

l-he balance of biped standing is a basic task for other complex motions such as

locomotion and running. Studies on upright standing bipeds are corrìrrìonly simplifiecl as

invefted pendulum models, which significantly simplifies the analysis and calcuiation of

ciynamic motion. Ito et ai. (2006'S mocieieci the biped as an inverteci penciuium with a

supporling foot segment, connected at the ankle joint. 'l'he body segment moves only

within the sagittal plane. 'fhe fbot segment contacts the ground with tw'o points (heel and

toe). The f-oot segment does not slip on the ground and its shape is symmetrical in the

anterior-posterior direction. 'l'he ankle joint is located in the middle of the foot segment

r,vith zero height. Pai and Patton (1997) simplified the biped as an inverted pendulum with

a triangular foot-link. The foot position is assumed to be bilaterally symrnetric and

stationary, and the body link moves in the sagittal plane.
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Based on this model, Yang and Wu (2006a) investigated the effect of the constraints.

between the feet and the ground on the control design of biped standing. Although these

inverted pendulum models simplify analysis. there are resultant performance limitations.

The assumption that the model used only tìre ankle joint to balance the biped is valid

when the disturbance is low. Jtang et al. (2006) found the ankle and the lumbosacral

swayed in approximately the same amplitude during the static upright stance of humans,

from the experiment data. They modeled the human body as a two link inverted pendulum

system. and proved that this model was reasonable and useful for studying the baìance of

biped standing.

In this work. the biped is modeled as a t\ /o link inverted pendulum presenting the torso

and legs rvith a foot-link, which is adequate for studying various fttndamcntal theoretical

problems relaled to biped standing.

1.2.2 Biped Balance Control

Biped balance control is a key development in the area of biped robots and has attracted

much attention in the past two decades. Various control strategies such as adaptive control

(Hu el al. 1999, Chew and Pratt 2001), sliding mode control (Mu and Wu 2004). fuzzy

control (Meng and Zhou 2003, Cuevas et a\.2005) and neural network control (Kun. A.

and Miller 1996, Scesa et al.2005) have been developed.

In considering stability conditions and balance controi in biped locomotion (standing,

walking and ruming), several dynamic-based criteria have been defined. 'fhe criteria most

commonly used are the centre of pressure (COP) criterion (Murray et al. 1961),
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zero-moment-point (ZMP) criterion (Vukobratovió. et al. 1970) and the Feet Rotation

Indicator (FRI) criterion (Gosu,ami 1999). The COP is a point between the feet and the

ground on the contact surface where the net ground reaction force actually acts. The FRI

is a point on the feet/ground surface, inside or outside ihe support polygon. r.l'here the nei

ground reaction force would have to act to keep the fèet stationary- The support polygon

of the biped is defined as the area of physical interaction between the bíped and the

glound surface. During the single-support phase, it is the area of the supporting foot.

During the double-supporl phase it is defined as the polygon created by the boundary of

the two feet. The ZMP is defined as the point on the feet/ground contact surface where,

the total f-orces and moments acting on the robot are zero (Vukobratovic et al. 1910).Tf

ideal conditions are considered whereby neither the fcet-nor ground can deform under the

load and the ground is level. the COP and ZMP locations rvill always coincide. ZMP is

wideiy used in the study of biped walking.

Park and l{hce (ì998) presenteci a ZMP trajectorv controi scheme which was cietennined

using fuzzy logic on the leg trajectories. 'fhe lrunk and swing leg rnotions were

compensated to stabilize fhe locomotion. Fukuda et al. (1997) used touch sensors on tile

feet of the robot to obtain the actual ZMP trajectory. The joint motion r.r,as then

determined using recurrent neural networks with the constraint that the ZMP could move

out ofthe support polygon.

Balance maintenance during biped standing is essential f'or biped balance control. Ito et al.

(2006) proposed a biped stance maintenance method that contains the integral feedback of
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the ground reaction forces, r,vhich is used to improve the convergence of the posture to the

equilibrium upright position. As a result. the biped posture could adaptively change with

respect to external forces. Abdallah and Goswami (2005) presented a tn'o-phase control

strategy for robust balance maintenance under a force disturbance. The first phase, called

the Reflex Phase, is designed to withstand the immediate effect of the force. The second

pìrase is the Recovery Phase u'here the systern is steered back to a statically stable "home"

posture.

The standing biped is always subjected to three constraints between the feet and ground,

which include the ground reaction f-orce being upward (gravity constraint), friction

between the feet and the ground being lower than the maximum friction (friction

constrainl). no tipping-ovL-ï about the toe or the heel ancl the center of pressure being

within the feet/feet (COP constraint). Flowever, research on the effects of constraints on

biped Iocomotion is sparse.

One distin-euished work is fiom Yang and Wu (2006a), where gravity constraint, fiiction

constraint and the center of pressure constraint during biped standing have been

considered. They investigated the effects of these constraints on balance control and

showed such control bounds have significant effects on predicting fall prevention during

biped sranding. Such bounds make the control design challenging. They also found that

angular velocity plays a crucial role in satisfying the constraints. Furtherllore, Yang and

Wu (2006b) proposed a PD-based switching state feedback control to stabilize the biped

at the upright position while satisfying the constraints between the feet and the ground.
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The controller is a simple PD controi, as the control is within the control bounds, and it

takes the value of the control bounds as it approaches the bounds value.

The design of biped balance control should consider reducing energy consumption of

control systems. Since biped robots need to carry their energy sources, a lower rate of

energy consumption would directly contribute to a longer work cycle. This is an important

issue to be resolved before the use of bìped robots is practically viable. So, the design of

low energy control algorithms is essential. Silva and Tenreiro Machaclo (1999) analyzed

the energy consumption of walking robots by controlling the locomotion variables.

Yamasaki et al. (2002) der,'eloped control algorithms to reduce the energy consumption of

humanoid robots.

The linear quadratic regulator (LQR) optimal feedback is one of many tools to improve

control perf-ormance. A set of optimal feedback gains may be found which minimizes a

quadratic inciex an<i makes a cioseci-ioop system stabie (Lewis i986. Bryson and l-io

1987). Many applications of LQR have been reporled (see Johnson and Grimble (1987)

for details) in recent years. Genetic algorithm (GA) is another optimization tool rnhich is

often employed in nonlinear problems and multi-objective optimizations. Arakawa and

Fukuda (1996) used a GA to generate the natural motion of biped locomotion with energy

optimization. Cabodevial et al. (1997) designed an optimal gait for a biped robot based on

the expansion of the joint trajectories by Fourier's series using a GA. Golubovic and Hu

(2003) presented a GA approach to the development of a locomotion gait for Sony

quadruped robots. Capi et al. (2003), Park and Choi (2004) used GAs to generate the

10
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optimal trajectory for biped walking. Garder et al. (2006) combined an incremental

approach with GA to generate precise walking patlerns. Much of the above work focused

on energy consumption of walking robots.

For balance-keeping during biped standing, Ghorbani and Wu (2007) developed a general

regression neural network (GRNN) feedbaclt control. The GRNN controller was also

designed to minimize an energy-related cost function while satisfying the constraints

between the feet and the ground. The optimizafion has been carried out using the genetic

algorithm (GA) and the GRNN was direcriy trained during an optimization iteration

process to provide the closed ioop feedback optimal controller.

In my work, both the cnergy-efficiency ancl the satisfaction of the constraints between the

feet and the ground are considered for the balance control design ofstanding bipeds.

1 .2.3 Sta bility An alysis

Stability analysis investigates the long-term behavior of motion under the influence of

disturbance in the initial states. Iror stable motion. the effects of the disturbance are

insignif-icanf, i.e., the disturbed motion stays close to the undisturbed one. In an unstable

case, an infinitesimal disturbance causes a considerable change in the motion. The

stability of the biped balance control is a cmcial issue and requires analysis.

Lyapunov's stability theory is widely used in the stability analysis of nonlinear control

systems (Wu et al. 1998a, 1998b). Lyapunov (1892) not only introduced the basic

definition of stability for nonlinear systems, but also proved many of the fundamental

11
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theorems. The key requirement in proving system stability using Lyapunov's stability

theory is to construct a Lyapunov function. Since no constructive rules or suggestions

r.vere given in this theory, the construction of a Lyapunov function for a nonlinear system

remains a great challenge. which restricts the applications of this theory. In the past forty

years, numerous techniques have been proposed to construct Lyapunov functions for

special nonlinear systems. Among others, these techniques include the niethod of analogy

with linear systems by Barbasin (1960). the method of integration by parls by Ponzo

(i965), and Huaux (1967), the method of system energy by Marino and Nicosia (1983),

the integral methods, the scalar-Lyapunov-function method and the intrinsic rnethod by

Chin (1 986, 1981. 1988 and 1989) and the extended integral method by Wu (Wu 1996 and

references cited in).

It is important to point out that L,vapunov's slability theory is based on conventional

solution theor-v, í.e., the dynamic systems must be smooth. F'or the stability analysis of

non-smooth systems, Lyapunov's seconci method needs to be exrendecÌ. Facien ancl Sasiry

(1987) first generalized Lyapunov's second method by imposing a non-zero upper bound

of the derivative of the Lyapunov function u,ith respect to time. They proved that the

states of the system (solution in the sense of Filippov) converge to tlre equilibriurn point in

a finite time.

Another extension of Lyapunov's stability theory based on Filíppov's solution theory was

done by Southu,ood et al. (1990) where the derivative of Lyapunov functions on the

discontinuity surfaces were replaced with Dini-derivate. The most recent and systematic



lntroduction

extension of Lyapunov's second method for non-smooth dynamic systems rvas developed

by Shevitz and Paden (1994) in u'hich a non-smooth Lyapunov function is constructed.

Their result is a theory applicable to systems with switches, for which Lyapunov functions

are only piece-wise smooth.

The above extensions of Lyapunov's stability theory to non-smooth systems were based

on the belief that non-smooth Lyapunov functions are natural for non-smooth dynamic

systems. Horr,,ever, the main challenge in the construction of non-smooth Lyapunov

functions is the evaluation of the derivatives of Lyapunov functions rvhen the solution

trajectories approach the discontinuity surfaces. Wu (1996) proved that if the existence

and uniclueness ol Filippov's solution are guaranteed. l.yapunov's second rnethod can be

applied directly to non-smooth dynamic systems. F-uÍhermore, in reference (Wu el a/.

1998b), a method is developed to construct smooth Lyapunov functions for non-smooth

systems and it is shown that the construction of smooth Lyapunor, ñtnctions is much

easier for some engineering sysrems as compareci io its non-smooth countetparl. The lvork

was further extended for the detennination of non-smooth Lyapunov functions (Wu and

Sepehri 2001). Wu's work provided a solid framework in the study of posture stability and

control of biped movement.

Lyapunov's stability theory has been used to analyze biped posture stability. Early work

on the stabilitl, of biped models was restricted to small deviations about a vertical stance

(Vukobratovíc et al. 1910, Golliday and Hemarni 1976, Hemami and Golliday 1977-

Flemanri and Cvetkovic 1977). Hemami and Wyman (1979) proposed a modeling and

r3
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control method to a constrained dynamic system with application to a three-link biped

based on l.yapunov's linearization method. Feedback linearization and pole-assignment

techniques were used for the control of such nonlinear systems. lqbal et al. (1993) studied

human postural and movement stability for simple voluntary movements, b,v means of a

frontal four-link mathematic biped model. Hemami and Utkin (2002) studied Lyapunov

stability of'constrained and embedded rigid bodies. They presented a systematic method

of stabilizing the systems and a procedure for constructing Lyapunov functions. Hemami

et al. (200ó) developed a quantitative framework to study the biomechanics and neural

basis of the ankle strategy for maintaining posture stability. In their work, the stability of

the bipecl rvas determined near the vefiical stance b-v cornputing the poles, while the bipeci

equations r,vere linearized about the erect posture.

Aithough I-yapunov's second method is a powerful one, due to the lack of construction

methods. it is clifficult to derive a Lyapunov finction for highiy nonlinear systems. 'l'hus.

an aìterative method is needed lbr the bipeci baiance controi (Wu e/ ai.2005'). Sekhavat e¡

al. (200\ ernpìoyed the concept of Lyapunov exponents to analyze the stability of

nonlinear dynamical systems and showed that the rnethod is constructive and por,verfil.

The concept of invariant exponents in the study of the stability of nonlinear differential

equations r.vas first introducecl in 1889 by a Russian mathematician. Sonya Kovalevskaya,

and \\¡as developecl fully in 1892 by another Russian mathematician, Alexandr

Mikhailovich Lyapunov.

The Lyapunov exponents have many important dimensions and computability directly



Introduction 15

from data, without solving the differential or difference equations describing the

corresponding dynamical s-vstems (Kinsner 2003). A Lyapunov exponent is a.number that

reflects the rate of divergence or convergence, averaged over the entire attractor. of trvo

neighboring state space trajectories. fhe calculation of the l-yapunov exponents can be

grouped into two classes, mathematical models and time series.

Oseledec (1963) gave the theory of Lyapunov exponents in a fcrrm adapted to the needs of

the rheory of dynamical systems and of ergodic theory. Benettin er al. (1980) presented

the theoretical results which are necessary for the numerical computation of all Lyapunov

exponents. Wolf and collaborators (Wolf et al. 1985) described algorithms for calculating

the spectrurn of Lyapurlov exponents from systems of which the equations are knorvn.

This model-based algorithm has been successfully applied to manv smooth dynamic

systems. Mtiller (1995) extended Wolf's method into non-smooth dynamic systems. i.e.,

the ordinar-v differential equations contain non-difTerentiable teüns. IJe pointed out that

the required linearized ecluations have to be suppiementeci by certain transition conciitions

at the instances of discontinuities. Since Lyapunov exponents are calculated numericall-v-

over a long period of time. Mikens (2002), and N4ikens and Gumel (2002) developed

¡onstandard finite diffèrence techniques to improve numerical stability and computing

efficiency (Sekhavat et a|.2005).

Yang and Wu (2006b) use Lyapunov exponents to analyze the stability of PD switching

feedback control for biped standing, and determined a stability region. Ghorbani et al.

(2007) employed Lyapunov exponents for stability analysis of a general regression neural
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netr.vork (GRNN) feedback control which is used for balance-keeping during biped

standing, and determined a stability region of this neural netr.vork controller- England and

Granata (2007) quantified the local dynamic stability of a biped walking gait using

maximum finite-time L,l'apunov exponents Xu^. A monotonic trend between l",y7n_, and

waiking velocity was observed r.l,ith smaller Xy* at slower rvalking velocities, which

indicates more stable waiking dynamics. The limitation of using mathematical modeis for

the calculation of Lyapunov exponents is tirat the mathematical models are not always

available. Even when mathematical models are available, the calculation of Lyapunov

exponents can be unfeasible due to the models'complexity ancl uncertainties.

Another method for calculating Lvapunov exponents is based on time series. The most

attractive advantage of using time series is that the data can often be measured

experimentally without explicit knowledge of the dynarnic models. The basic idea behind

this method is to follorv sets of trajectories over short time-spans and compute their rates

-1_^-_---^tt^-- .r-^- ^-.^--^^^ ¡L^^^ +L^ ^++-^^+^- \r/,-tf .,t -l / 1ôa<\ l^^^-:L^l ^ul SuIJalatlull. Lltu.u avutd.Ëc uluSs .l 4tu5 rJvcr Lrlu dr.rldLrrjl. vvLrr_r t r ur- \r2oJ) uË5Llluçu a

computational method for approxirnating the largest Lyapunov exponents directly from

the rate of separation of neighboring points. Sano and Sawada (1985) proposed a n'ìethod

to determine the spectrum ol several Lyapunov exponents (including positive, zero, and

even negative ones) from the observed time series of a single variable. Abarbanel et al

(1997) reviewed research on the calculation of Lyapunov exponents based on time series

for chaotic systems. Sakai e¡ ai. (2003) analyzed the effect of extra reconstructed

dimensions on the Lyapunov spectrum. which includes spurious Lyapunov exponents of

unknown dynamical systems. This method is much better at calculating positive
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exponents than negative ones, as the methods for calculating Lyapunov exponents based

on a time series were developed primarily to analyze chaotic systems. The procedures are

not reliable to calculate zero and negative exponents (Wolf et al. 7985) for potentially

stable engineering systems.

In this work, the stability of the biped balance system is analyzed using the concept of

Lyapunov exponents. The calculation of Lyapunov exponents is based on the

mathematical model of the biped. In order to anal-vze the stability of complex or unknown

systems using the concept of Lyapunov exponents, a new neural network approach is

proposed. Neural networks are used to identify the system dynamics and then the

Lyapunov exponents can be calcuiated based on the Jacobians, derived from the neural

model.

1.2.4 System Identification Based on Neural Nefworks

System icientifìcation gre\¡ out of the statistics ancÌ engineering iirerature in ihe i96Ûs,

motivated by the need to predict and control the behavior of complex systems (Box and

Jenkins 1976). It is a method for using measured data to create or improve the

mathematical model of the object being tested. It has been described as the process of

selecting the mathematical model form and then, using measured test data, systemically

adjusting the parameters based on predehned criterion, until the best possible correlation

is achieved between the predicted and the measured response (Matzen and McNiven

1976). There have been a number of general references that range from the applied

(Jenkins and Watts 1968, Ljung 1987) to the theoretical (Soderstrom and Stoica 1987)

ends of the spectrum, as well as those which explicitly focus on the identification of
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physiological systems (Marmarelis and Marmarelis 1978).

Central to the framework of system identification is the idea that components of a

complex system can be represented as black boxes. As more is learned about a complex

system, the goal becomes to reduce the relationship to smaller and smaller black boxes,

until a sufficient level of detaíl has been achieved. This method is widely used in many

research areas, such as civil engineering, electronic engineering. chemical engineering, etc.

(Fukushima and Sugie 1999- Yue and Schlueter 2002, Kruglov et al.2002,Bykov et al.

2003,Deng et a|.2003).

Neural netw'orks provide an eÍ1èctive framework for the identification and control of

nonlinear systems (Liu et al. 1989. Narendra and Parthasarathy 1990, Fang and Chow

2000). In recent years, considerable effort has been focused on the use of radial basis

function neural networks (RBFNNs) (Chen and Biliings 1992). Unlike multilayer

perceptrons which originate from the fieici of bioiogicai science, RBFNIJs are rooteci

primarily in the theory of multívariable functional interpolation in high-dimensional space

(Broomhead and Lor,ve 1988, Powell 1985). It is a powerlul computational tool, which has

advantages of faster learning algorithms, better approximation capabilities and local

minimum ¡rroblem avoidance (Ai-Amoudia and Zhang 2000, Gomm and Yu 2000, Rank

2003). It can identify relatively high-order s)'stems and has increasingly been used in

many practical areas such as control, signal processing, pattern recognition, systems

identification and time series prediction.
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RBFNNs tend to have improved training characteristics in cornparison to standard

feed-foruard neural networks, due to their localized nature and the fact that they are linear

in r.r,eight (Gorinevski 1996). 1-hey can also be tnade compact by having the number of

points about rvhich the radial basis functions are centered. grou' and shrink. to obtain a

minimal network (Platt 1991, Kadirkanmanathan and Niranjan 1993, Ying"vei et al. 1997).

Various functions have been investigated and used as the radial basis function (RBF) for

RBFNN, including Gaussian function (Schagen 1986), thin-plate splines (Duchon 1977),

multi-quadratics (Hardy 1971) and inverse multi-quadratic functions (Powell 1987).

1'he original RBFNN requires that there be as many as hidclen units, known as the RBF

centers as the data points, which is prohibitiveiy expensive to implement in computational

temrs when the number of data points is high. Several methods have been proposed to

o\¡ercome this difficuìty. Poggio and Girosi (1990) provided an approximate approach

which involves searching for a suboptimal solution in a lorner-dimensional space. This is

done by using a standard tecl-urique kno'uvn in variational problems as the Gaierkin methoci.

Moody and Darken (1989) developed a method in u'hich the RBF centers are chosen in a

self-organized fashion. Chen et al. (1991) suggested using an orthogonal Least Squares

Learning algorithm to choose the RBF centers from data points. The selected centre

maximizes the increment to the explained variance of the desired outputs and the

algorithm does not suffèr numerical ill-conditioning problems. All of these effects have

focused on the selection and computation of the RBF centers.

Another important component of the RBF network is rveight. Langari and Wang (1995)
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proposed a modified RBF network in which the regression weights are used to replace the

constant weights in the output layer that can reduce the number of hidden units

significantly.

1.3 Objectives

'lhere are two objectives in this research. The first is, to design two balance systems

that enable a biped robot to remain in an upright posture during standing. 'fhe standing

biped is modeled as a two-iink inverted pendulums presenting the leg and the torso with a

foot-link. Two optimal controllers are developed. An LQR baiance controlìer is designed

to minimize the torque outputs of the control system. A GA-based PD controller is used to

ensure the satisfaction of the constraints betrveen the f'oot-link and tiie ground as well as

optirnize thc energy consumption of the control systems. f'he second objective, is to

analyze the stability of the proposed control systems using the concept of Lyapunov

exponents.

In this work, the stability region of the biped balance svstems is also determined using the

concept of Lyapunov exponents. A new method is proposed to determine Jacobians for

compìex or unknown systems. a basic requirement in the calculation of Lyapunov

exponents. RBFNNs have been employed to identify the biped balance systems. Then. the

numerical Jacobians can be derived from the neural model for the calculation of Lyapunov

exporlents.

20
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1.4 Thesis Organization

The remainder of this thesis is divided into four chapters. A description of each is

outiined belor¡':

Chapter 2 introduces the background and key concepts of Lyapunov exponents and

system identification using neural networks. 1'his chapter also describes the methodologl'

used to calculate Lrvapunov exponents for the biped balance system based on neurai

network identification. The biped model and the feet constraints during biped standing are

discussed as well.

Chapter 3 describes a classical feedbacl( state balance control system using a linear

quadratic regulator (LQR) technique. The stabiiity of the proposed controller is anal¡,zed

using the concept of Lyapunov exponents and the stability region is determined. In

simulation, the results of l-yapunov exponents based on the neural model are compared to

the results based on the mathematical model.

Chapter 4 details a GA-based PD balance control system for biped standing. GA is

employed to ensure the satisfaction of the feet constraints as well as to optimize the total

energy consumption of the torque outputs. The stability of the proposed controller is

analyzed using the concept of Lyapunov exponents and the stability region is determined.

The results of Lyapunov exponents based on the neural model, and the mathematical

model are compared.

21

Chapter 5 discusses and evaluates the proposed balance systems and the Lyapunov
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exponents as

identification

outlined.

a tool for stability analysis.

based on neural networks,
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and recommended
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ChapteY 2

The Calculation of Lyapunov Exponents

Based om Neural Models

2.1Introduction

The concept of Lyapunov exponents is an important tool in categorizing the

steady-state beiravior of dynamical s,vstems, determining instability of thc systems,

cÌassiíying invariant seis anci approximarin-e ihe dimension of strange atrracrors or other

nontrivial invariant sets. It works lor discrete as well as continuous systems.

The calculation of Lyapunov exponents can be carried out using t\.vo approaches. One is

based on the mathematic models of physical systems. However, such models are not

always available. Even if they are oblained, deriving system Jacobians, rvhich is crucial in

the calculation of Lyapunov exponents, can be unfeasible due to the model complexities.

The other method for calculating Lyapunov exponents is based on a time series u,hich can

be measured experimentally. 'fhis method is currently used for analyzing unknown

systems u'ithout explicit knowledge of the mathematic models. This method has been
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developed primarily to analyze chaotic system. lt is not reliable for calculating zero and

negative exponents (Wolf 1985). This is because the linear analysis used in the method

becomes totally inaccurate when the displacement due to local data-set curvature is

comparable to the thickness of the clata set. In order to solve the above problems. a new

approach, r.l'here neural networl<s are used to identi['the physical system, is developed.

in this work, radial basis function neural networks (RRFNNs) are employed due to their

capacity for nonlinear system identification. l-his neural model will be useci to derive the

Jacobians and used as the mathematical moclel of the system. This allows the Lyapunov

exponents to be determined using the first method. which is based on mathematical

models. 'Ihís proposed approach can avoid the complexity of deriving Jacobians. For the

calculation of Lyapunov exponents based on a time series, the proposed approach can be

an alternate rnethod.

This chapter is organized as follows. Section 2.2 introduces the concept of Lyapunov

exponents and the method to calculate l,.vapunov exponents based on mathematical

models. Section 2.3 describes the structure of RBFNN and the approach to derive

Jacobians from neural models. Biped balance systems are used to demonstrate the

effìciency of the proposed neural method in Section 2.4.
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2.2 Stability Analysis Using the

Exponents

Concept of Lyapunov

2.2.1The Concept of Lyapunov Exponents

I-yapunov exponents (or characteristic numbers) were first introduced by Lyapunov

(Lyapunov 1892) in orcler to study the stability of non-stationary solutions of ordinary

differential equations (ODEs). They have since been extensively studied in the literature

to diagnose chaotic systems (Dieci et al. 1997). As described in the work of Oseledec

(1968), the concept of Lyapunov exponents provicies a meaningful way to characterize the

asymptotic behavior of a nonlinear dynamical syslem. Wolf el al. (1985) defined the

spectrum of l,yapunov exponents in the manner most relevant to spectral calculations.

Given a smooth dynamical system in an n-dimensionai state space as shown below:

¡=f(x.t), x(0)=to,r€R" (2.1)

where x = {rr ,...,x,}' is the state vector. and .f (x,t) is a continuously diflèrentiable

vector lunction. When rnonitoring the long-term evolution of an infinitesimal r-sphere of

initial conditions, the sphere will become an ¡r-ellipsoid due to the locally deforming

nature of the flow. The l'r'dimensional Lyapunov exponcnt is then defined in terms of the

length of the ellipsoidal principal axislláx,11;llas follorvs:

,:mli,"ìH#] (i:, n) (2.2)

where2,is ordered from largest to smallest lløirrll anO llax,ll;ll denote the lengths of
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Lhe í'h principal axis of the infinitesirnal n-dimensional hyper-ellipsoid at initial and

current time instances, /, and l, respectively.

The concept of Lyapunov exponents provides a generalization of the linear stability

analysis for perturbations of steady state solutions to time-dependent solutions. Lyapunov

exponents are global properties and independent ofthe trajectory'chosen to calculate them

(the fiducial trajectory). This independence is a consequence of a theorem of Oseledec

(Oseledec 1968), which applies in the limit of infinite time. Fioweve¡ in practical

application, we are usually deaiing with finite-time l-yapunov exponents, which are

defined as:

26

A, =!,n.1]ä",(r)]L (i=l....,n) (2 3)I llòr, (ro )ll

ln the limit as time / -) Ø, the finite-rime l-yapunov exporlents converge to the true

Lyapunov exponents (Thiffeault and Boozer 2001).

The above definition of Lyapunov exponcnts indicates that l-yapunov exponents,.2,,

(i=1,....n), are the average exponential rates of divergence or convergence of nearby orbits

in the state space where ¡z is the number of l-yapunov exponents. which is equal to the

dimension of the state space of the system. 'fhe Lyapunov exponents are related to the

expanding or contracting nature of different directions in the state space. Since the

orientation of the ellipsoid changes continuously as it evoives. the directions associated

with a given exponent vary in a complicated way through the attractor. Therefore, one

cannot speak of a well-defined direction associated with a given exponent.
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A common approach in visualizing state-space motion is to imagine horv a small iength.

area, or higher-dinrensional element might evolve in time. An example of such elements is

an initially infinitesimal ball that has a radius rlx(O) at time ¡ = 0 (in tllree-dimensional

state space). As the ball evolves under the action of a non-uniform flow it will eventually

distort. Since we have assumed an infinitesimal state-space element. the change in space,

we presume, u,ill be determined only by the linear part of the flow. lt remains an ellipsoid

as it evolves.

óx,(l) is the i'h (i:7,2 ancl 3) member of the set of the principal axes of the ellipsoid at tinre.

Tìre end-points of each principal axis are considered to be neighboring points in the

state-space. We measure the growth or shrinkage of each principal axis âx,(l) over the

entire attractor, according to whether its endpoints get closer or f-afher apart. That means

that we get a Lyapunov exponent for each principal axis. The largest Lyapunov exponent

rneasures the rate of expansion of the first principal axis - the one that shows the largest

amount of growth (or the slowest rate of shrinkage) over the attractor. The second

Lyapunov exponent measures the rate of change of the second principal axis, and so on

down to the smallest I-yapunov exponent (Williams 1997).

The concept of Lyapunov exponents is an important tool in categorizing steady-state

behavior in a dynamic system, determining instability of the system, classifying invariant

sets and approximating the dimension of strange attraciors or other nontrivial invariant

sets (Wolf et al. 1985, Müller 7995, Williams 1997). A negative Lyapunov exponent
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indicates an average convergence oftrajectories: a positive exponent indicates an average

divergence. Negative Lyapunov exponents typify non-chaotic attractors. At least one

positive Lyapunov exponent usually happens only on chaotic attractors.

In dissipative s1,stems, an attractor with one or more positive Lyapunov exponents is

generally said to be strange or chaotic. Based on the fàct that (i) one Lyapunov exponent

of any iiniit set other thzur an equilibrium point must be zero, and (ii) the sum of the

Lyapunov exponents of dissipative systems must be negative, the hyperbolic attractors

can be classified as follows (Williams 1997):

. For an exponentíally stable equilibrium point. 2,<0 (i=1,...,n)

o For an exponentially stable limit cycle.2¡:0 and i,<0 (i:Z,...,n)

For an exponenlially stable k-torus, )"¡:...:it:O and 2,<0 (i:À+1.,...n)

For a chaotic attractor , i,ÈIand 12¡<0 (i : 1,...,n)

Using a 2l) state space as an example. the Lyapunov exponents of dynamic s-vstems can

be classifìcd as fbllows:

(a) )", < 0: T'he orbit attracts to a stable fixed point. Negative Lyapunov exponents are

characteristic of dissipative or non-conservative systems (the damped harmonic oscillator

for instance). Such systems exhibit exponential stability; the more negative the exponent,

the faster the systems move to the steady state. Super-stable fixed points have a Lyapunov

exponent of 1",= -co. This is akin to a critically damped oscillator in that the system heads

towards its equilibrium point as quickly as possible. Nearby points on the trajectory will

converge closer and closer as shown in Figure 2.1(a).
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(b) )",:0: A Lyapunov exponent of zero indicates that the system is in some sort of steady

state mode. A physical s.vstern r.r'ith this exponent is conservative. Such systems exhibit

stability in the Lyapunov sense. Nearbv points on the trajectory rvill stay at the separation

all of the time. as shown in Figure 2.1(b).

(c) 7, > 0: The orbit is unstable. No matter how close, nearby points on the trajectory will

diverge to arbitrary separation, as shown in Figure 2.1(c).

| ,' \' / 
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(a) 2¡<0 (b) iir:0 (a) 2¡>0

Figure 2.1 Different orbits projected on the l'å dimension different l,yapunov exponents

2.2.2 The Calculation of l-yapunov Exponents Based on Mathematical

Models

Lyapunov exponents are defined by the long-term evolution of the axes of an

infrnitesimal sphere of states. Wolf el al., (1985) developed algorithms for calculating the

spectrum of Lyapunov exponents from systems where the dynamic equations are knon'n.

The procedure of calculating Lyapunov exponents from differential equations can be

implemented by def,rning the principal axes with initial conditions whose separalions are
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as small as the computer limitation allows, and evolving such principal axes with the

nonlinear equations of motion. A "fiducial" trajectory (the center of the sphere) is defined

by the action of'the nonlinear equations of motion on some initial conditions. The

trajectories of points on the surface of the sphere are defined by the action of the

linearized equations of motion on points infìnitesimally separated from the fiducial

trajectory. In particular, the principal axes are defined by the evolution via the linearized

equations of an initially orthonormal vector frame anchored to the fiducial trajectory. This

leads to the following set of equations (Wolf er al. 1985).
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l*t,iì | rixir)) ì

1r.,,, I 
= 

l-t1-'çr;¡q",,, J

(2.4)

(2.s)

/ is the

where Ø,1,¡ is called the slate transition rnatrix of the linearized system rÎx(l) = V,¡,¡õx(0)

and the variation equation. V,¡,.¡=./(x(t))y,,,r. is a matrix-valued tirne-varying linear

ciiffelcntial equation. lt is derived by the linearization of the vector fìeld along the

trajectoryx(r). The Jacobian ,f QQ\ is defined as

,¡f-',:i¡ll:91 =4Ðl
drl,=..1,¡ dx I¡=r1r)

for numerical integrations are
[ "(¡u) I l""l{ '"' l:{ "lwhere
[ø,,,¡(ro)J l1 J

The initial conditions

identify matrix.

Lyapunov exponents are calculated by following the evolution of the volume of the

hyper-ellipsoid spairned by âx,(i=l ,,..,n), via separately following the evolution of 6x,

using an integration method. i'lowever the vectors 6xr,6xr,...,&,, may tend to align as
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t-+æ. This alignment makes the calculations unreliable (Parker and Chua 1989). To

solve the problem, õxr(t) ,6xr(t),.,.,6x,,(t) are reorthonormalized at each integration step.

This is done by including the Gram-Schmidt Reorthonormalization (GSR) scheme in the

calculation procedure. Gram-Schmidt reorthonormalization generates an ofthonormal set

{ur,...,u,,\ of n vectors rvith the propert.v that {u, ,...,u,1 spans the same subspace

aslr6xr,..-,6x,,\ .

Figure 2.2 shows the geornetrical interpretation of the orthonomalization for âx,(È)

andõxr(k) (lç=I^...,K and K is the number of integration steps). They are orlhogonalized

into v' (k) andvr(k) , then normalized into a,(Æ) and u.(k) .

õxr(k)
'v...

Figure 2.2 Orrhonormalization of two vectors ãxr(k) and âxr(À)

Let the linearized equations of motion, act on the initial f¡ame of orthonomal vectors to

give a set of vectors {õxr,6xr,...,âr,}. T'he orientation-preserving properlÍes of GSR mean

that the initial labeling of the vectors may be done arbitrarily. The GSR provides the

following orthononnal set {u,ur,...,u,} as defined below:

õxr(k)

v' ('t)
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v, =á)r, , ur=l\
llY'll

v, = 6x, - (6x,ur)u,, u, = 
lþ.,rli'

vn = õx, - (6*,,rrlr, -...- (ä",,,r,-,)r,,-r. r, = 
ilr:ï

(2.6)

Where (,) signifies the inner product. GSR procedure allor.vs the integration of the vector

frame for as long as required for Lyapunov spectrum convergence. At the ,Kå state, the

GSR procedure produces orthonormal vector frame tLt,L{2,...,u,,\, and for the K chosen

large enough, the Lyapunov exponents are:

1-/ul -

7r*

1-/L-

*ELnllu,(r)ll

ìiÐ,Lnllu'(t)ll

*äLnllz'('t)li

(2.1)

where ft is the tirnc-step size.

This model-based algorithm described by Wolf and his collaborators (Wolf et al. 1985)

has been successfullv applied to many dynamic syslems. Sekhavat (Sekhavat 2004)

demonstrated the above procedure of calculating l-¡,apunov exponents on the sirnple

three-dimensional Lorenz system. Yang and Wu (Yang and Wu 7006a) used the concept of

Lyapunov exponents fo analyze the stability of a PD-based switching state balance control

during biped standing.
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Overall, the procedure for calculating of Lyapunov exponents based on a mathematic

model is described as follou's:

Stepl: Choosing initial conditions for the nonìinear system and the linear system

(orùonormal frame) as shown in Equation (2.4)

Step2: Integrating nonlinear and linear equations simultaneously. obtaining the initial

states for the next step.

Step 3: Using GSR procedure to obtain the reortlionornral frame using Equation (2.6).

Step 4: Calcr"rlating l-yapunov exponents by Equation (2.7).

Step 5: Repeating Step 2 to Step 4. until convergent values of Lyapunov exponents are

obtained.

Tlie most difficult part in the calculation of Lyapunov exponents; is deriving Jacobiarls in

-. ,^ -\ . I I l,- ^---¡^-.^ ^^1.,^.L:^ --^Lt^- {L^ -^-.+trquallon (/.)) lor colnplcx ol-utìKllurvn 5ysrËil1s. lil uLuul ru )urvs uilJ Pruulç1il. urs rIs^L

section presents a neural approach to derive Jacobians based on RBITNN system

identification.

2.3 System Identification Based on Neural lr{etworks

In order to analyze the stability of cornplex or unknown systems using the concept of

Lyapunov exponents. system identification is required for the determination of the

Jacobian matrices. System identification is the process of building good models of

dynamic systems based on measured data from the actual processes. The mathematical
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model in this case is the black box. r.vhich describes the relationship between the input and

output signais. To adequately model the systems. neural netr.vorks must be ttsed. Previous

studies in system identification have demonstrated that neural netrvorl<s are successful in

modeling many non-linear systerns, by comparing simulated data with real data (Chen et

al. 1992).

2.3.1 Radial Basis Function Neural Network (IìBFNN)

Unlike multilayer perceptions which originate fiom the field of biological science,

radial basis function neural netrvorks (RBFNNs) are rooted prirnarily in the theory of

multi-variabìe functional interpolation in the high-dimensional space. l-he architecture of

the radial basis function network is a rnultilayer feed-forward networl< that consists of

three layers. tlre input, the hidden and the output layers. A typical RBFNN configuration

with a single output is shown in Figure 2.3.

,rl

x2

Y

bias

/--l
ni@,1/'\7

r4,

Yl¡

Vt" ,/--ì\' eè,
14, L

Figure 2.3 Typical RBFNN architecture

The input iayer connects the network to the environmenl. X:{x1,x2,...,tr} is the input

feature vector, where K is the number of input units. The second layer applied a nonlinear
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transformation (activation function) from the inpul space to the hidden space, which is

highly climensional. Various functions have been tested to serve as the activation functions

for RBITNN (Chen 1991).In system identification applications, the Gaussian functiorr is

preferred (Bors and Gabbou.i 1994). lt is supposed that, the radial vector of RBFNN

adopts multivariable Gaussian function. The centers are usually chosen to be a subset of

the data or distributed uniformly in the input domain. l-he output of hidden neuron y is

denoted by þ,and is given by

r, rl2

llx - c .ll
d. =exp(-L"t), j=1,2,...,Lr \ 

?,h,
(2.8)

where L are the numbers of hidden units. Ç:1c t,cz,...,cx]r is the center vector for neuronT.

ln the basic form, all inputs are connected to each hidden neuron and the norm is typically

taken to be the Euclidean distance. Geometrically, a radial basis lunction represents a

bump in the multidimensional space as shown in Irigure 2.4. lvhose dimension is given by

the nunber of entries.

tf
o.si

I08i

o'f

- osi

ool

0.3 i

o-2i

otl
0r

0

lnput

Figure 2.4 Gaussian function

The output unitsy implement a weighted sum of hidden unit outputs:

i = *oxbias +1.,ú,
l=l

Gaussian function

(2.e)
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where w are the output rveights. each corresponding to the connection betrveen a hidden

unit and an output unit.-fhe rveightsr,rrshow the contribution of a hidden unit to the

respective output unit. This is irnpractical and it u,ould be easier if only one of the

parameters nere adjustecl. To cope with this problem a bias neuron is used. The bias

neuron lies in one layer. It is connected to all of the neurons in the next layer, but none in

the previous layer and it alu'ays emits l Since the bias neuron emits 1. the weights

connected to the bias neuron are adcled directly to the combined sum of the other weights.

RBIjNNs are characterizecl by their localization (center) and by an activation hypersurfàce.

In the case of Gaussian functions these are centered about a grid point C¡ and scaled by a

coefficient parameter b,.'I-he actívation functiond,influence, decreases according to the

Euclidean distance lrom the center Cj For high-precision grids, these

weights w, effectively moulcl the input--or"rtput behavior of the RBFNN to that of the

system being identifìed. For lorv-precision grids, the computed weights]r/serve as an

effective initial guess for a learning algorithm based on the least mean plant output at time

ir which can be pre-computed. This means that data samples located at a large Euclidean

distance from the RBF center will fail to activate that basic function. 'l-he maximu¡n

activation is achieved when the data sample coincides with the center vector.

2.3.2 RBFNNs Training Algorithms

By means of training, the neural network models the underlying function of a certain

mapping. ln order to model such a mapping, r.ve have to find the network weights and

topology. There are t\.vo categories of training algorithms: supervised and unsupervised.

36
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In a supervised application, we are provided u,ith a set ol data samples called a "training

set" for u'hich tlie corresponding netu'ork outputs are knor¡'n. In this case the netrvork

parameters are found such that, they minirnize a cost function:

tt

- t, ^\2l::-lV-Vl2"
(2.10)

(2. r 1)

whereydenotes the RBF output vector andyrepresents the output vector associated with

the a data sample X from the training set. An adaptive training algorithm for minimizing a

given cost filnction is a gradient descent algorithrn with momentum. The gradierrt descent

method is an iterative method for finding a local minimum of some function.

Assume that we have a lunctionJ(x) and that u,e start out in x(0) havingthevalue./(x(0))-

We wislr to f,rnd a confìguralion x(m), wheref(x) attains its minimum value. To do this, we

can iteratively update the point r.ve stand in by going in the opposite direction of the

gradient of Jft). 'l'hc ciirection of the gradient is the direction u,hich increasesy'x) the most.

Recalling that the gradient of a function is the parrial derivatives i,vith respect to the

variables in the function as

During the iteration, if the step size rvith which rve update our current position is too big

we rnight fail to reach the minimum. Therefore, in order to control the movement rate at

each iteration; we introduce a learning rate ¡t.The general procedure can now be rvritten at

epoch k+l asfollows:

r(Æ + l) : x(k) - pvf (x&)) (2.12)
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rvhere vf (x@): u{g!l'). 
The algorithm stops when rhe position ¡ has nor changed

ôx(k)

after an iteration, in rvhich case we have arrivcd at a local minimum. This process is

illt¡strated in the following F'igure 2.5. Note that. we cannot say u,hether or not the

minimum we have arrived in, is actually the global minimum_

x(0)

Irigure 2.5 Gradient descent algorithm

To make this method an order of magnitude rrìore efficient: ,we can nroclify the Iearning

ol,'^"i+h- r^ i-^1".1^ -ô ãvlrõ tõ-ßq¡Èvr rLr¡rrr lv ,¡¡vru\¡! o¡r v^ttq twlt¡¡

r(Æ + l) = x(k) - ¡NJ $ft))+r7n¡(x1t ¡) (2.13)

r,vhere n¡(xçtc¡)=f(*(Ð)-f(*G_D),,t is rhe momenrum consranr. rytJ(xft)) is

generally called the momentum term and has tu,o functions. First. it can smooth out local

irregularities in the minimization function allowing the gradient descent to follow a

consistent path. Secondly, it allows the minimization process to increase in speed r.r,hen

there are Iortg periods of identical gradient evaluations. Gradient descent rvith momentum

allows a netrvork to respond not only to the local gradient, but also to recent trends in the

error surface. Acting like a low-pass filter. momentum allows the network to ignore small

features in the error surface. Without momentum. a network can get stuck in a shallorv
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local minimum. With momentum. a netr.vork can slide through such a minimum.

Gradient descent u'ith momentum depends on two training parameters ¡r and ii. ry is set

betrveen 0 (no morrentum) and values close to I (lors of monrenturn). A momentunt

constant of l. results in a netr.vork that is completely insensitive to tlle Iocal gradient and

therefore, does not learn properly. The centers of the RBFNN are initialized randomlv.

By connecting the neurons in a layered array, we can derive the RBF algorithm based on

the gradient descent r,vith momentum method described as follou,s:

Step I : Find the error L(k) = lOfO¡ - i(k))' ar step ir.
¿

Step 2: Change the connection weiglits in the output Iayer and hidden layer in the

f-ollorving way:

w ¡(k + l) : u,, (k) - ¡tYv,,(k) + rl\u, ,(k)
b,(.k + 1) -- b,(k\ - pv b ,(k) + n\b,(k)
c,,(k + l) = c,,(k) - ¡tY c,,(k) + rl\c,,(k)

rvhere:

vw t,r) = 
ôE(k) _ eE(k) ai&)

l' ' ôrv,(k) ôy(k) àv,(k)

tw,(k)=w,(k)-w,(k-l)

= -(vG) - i&ùø,G)
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Lc,,(k) = c,,(k) - c,,(k - 1)

Step 3: ìf the error becomes lou'er tlian a

Otherwise, replace kby- k-t 1 and go to step i.

(2.14)

predetermined value, stop the training.

In unsupervised training. the outpllt assignment is not available for the given set. A large

variety of training algorithms has been tested for training RBFNN. In the initial

approaches, each data sample was assigned to a basis function. This solution proved to be

expensive in terms of memory rec'¡uirement and in the number of parameters. On the other

hand, an exact fit to the training data may cause bad generalizalions. Other approaches

choose randomly or assumed knorvn hidden unit weights, and calculate the output

lveights rl by solving a system of equations ll,hose solution is given in the training set

(l3roonrhead and L,owe 1988). l-he matrix inversion required in this approach is

conrputationally expensive and could cause numerical problems in cenain situations

'---t-- - -r-- -,--¡--:-. :^ ^:----..t^-\ I.- ^^.*^ -.-^-,:^.,^.,,^,1, /ì\ll^a^i ^^À I ^,,,i++ 1ôÔZ C^-^^- ^-l(wf¡gll ultr lltaUlÀ l5 )ulEtttlut,r. lll 5uilrs Prçvruu5 wurl\ \lvrc¡r\;J ar¡\r LL\vlLr r77\J. Jalilrtr arru

Slotine 1994), the radial basis function centers are r¡niformly distributed in the data space.

The firnction to be modeled is obtained by interpolation.

2.3.3 The Determination of System Jacobians Based on RBFNN Models

In this chapter, RBFNN is ernployed to identify unknou,n systems, r.vhere tlre output

continuously depends on the past input and past output. The inputs of RBFNN are the

sameasthestatevariablesof the planf x(n) atstep n.The outputsarethestaterateofthe

planfi(n + 1) at next step r+l:
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*Qt) =
x(n)-x(n-1) (2.15)

rvhere ir is the sampling rate. After exlensive training. the RBFNN model of the system

under study can be developed. Such a model is to be used to determine the Jacobian J. For

example, the Jacobian of the output À, corresponding to the input i is given as follor,vs:

(2.16)

The Lyapunov exponents can be calculated based on the above neural Jacobians. The

accuracy of the l-yapunov exponents depends on the neural model. The training of

RBFNN is a key issue for this method. In the next section, a biped balance system is

shown as an example to train RBFNN.

2.4 Case Study: Biped Balance System

In this rvorl<. a biped robot is simplified as a t\,vo-link inverted pendulum systern with

one rigid foot-link. as shown in Figure 2.6.Link I represents the leg and link 2 represents

the torso. The joints 1 and 2 are equivalent to the ankle and hip joints. The foot-link

provides a support based on the ground. The biped is assumed to move in the sagittal

plane. This model is simple but adeqr-rate for studying the dynamics and control of the

biped during standing.

J, (n\: ô*o@) = ô¡o@) =9 u,*6..:a-!!:!" 
^¡ 

\" / 
ôx,(n _ l) ôx,(n _ 1) L Ãtr^t 

bl,
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//ì,/r^' {
,/' .iY/''-i/ v.¿li nr2{

\! T,

''ó//
t.0/1
'cl:a: v
f 'ng*-- './ \<_--e. rr,r /ax 

I

)f r-
vh¡av

_Lr_, _______a.

diagram of the tr.r'o link invertedFigure 2.6. (a) simplified biped model, (b) free body'
pendulum. and (c) free body diagram of the foot-link

Themodel parameters m,-l¡, 1,1 Ii(i:1-2) arethemass.length. locationof masscenterand

moment of inertia of the link i. Lf, L".Lt, L, are the length of the foot, horizontal distance

betr,veen the ankle and tJre heel. anl<le height, horizontal distance between the mass center

of the foot and the ankle. x,oris tlle location of the center of pressure (COP) to the heel.01

and 0z are the two joint angles which are positive in the clockr,vise direction. z1 and12are

the control torques appliecl at both joints, rvhich are positive in the clockrvise direction. g

is the gravitational acceleration. Supposing that there is no friction. the equation of motion

can be derived from the Lagrangian formulation as follor.vs:

r = D(0)0 + C(0.0)0 + G(0) (2.17)

0 =10t,0?fr , 0:f0,,0r)1 and 6 =¡ë,,i)r1' .The rerms D(0) ,

be represented as follo*'s:

t7
Itl2l c2

r,vhere t =lr,trf, )

C(0,O)and G(á) can

I a.. d.-lD(0\=l " " I

ld" d")

dr, = *t, + rnrll + +2mrll,rcos9r+lr+1,
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dr, : dr, = mrll, + mrlrl,rcos0, + I,

clrr=tnrllr+1,

c(0.0\ -l- 
mrtJ,r7rsin0, - mrl,l.r(0,+ 2r)sinZrf

' lntrl,l,r0rsin0, 0 I

G(0)=l-@J,r+mrl,)gsind, - 
n4l,rgsin(0 *4)-l 

(2.1g)
L - m.l,,g sin(0, + 0r) J

If we defin edq =lQ,Qz,Qr,Qol--lo,,er,è,,Òrl, the state-space model of the biped balance

system becomes

(2.te)
- (ô + P"or,1,¡, *(r,n, * qo)' . *oi rorr,)!rrnu,

c2cosq2sin(r7, + qr) - 6(nt,l,, + mrl,)sin n,)fft O

4t=Qz

4z = 8,t

t..
q3 =l Òrl

L

-( 8,,.t
l)

ls
n^ =l- (a + Lcosq,)r, + (a + B coscl)r2

ß (.^ ß .? tl 'ì- Lsinq,l(t + Lcosq,)(Q¡ + Çq)' + (a - õ + L cos,ùu! 
)

(ßoI
* 

[- 
ta + L ro, q r)(tn,l,,+ rrrl, ) sin Qt + (a - õ + L cos q r)m,l,zsin(r7, + ù 

)s )t 
n

where

D = ntrrnrl!,tlr+ nz,lllr+ ntrllrl, + nfillrtl + mrlll, + I,l, - mltlrtl cos' q,

a = m,al + mrll + mrl!, + I, + I,

B = 2nt,ll,,

õ -- mrl!, + Ì,
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Using Newton's second and third larvs. the horizontal ancl vertical ground reaction forces

are given as:

l; =m.i.+m.i"Srrr¿¿

Fo, = rnry, + mry, * (m, * nt, * rt1.¡) I

where

lt = -l,t sin 0,01 + 1,, cos 7ri),

it = -l,tcos0,0l - l"rsin 0,1),

1, = -l,sin 0,01 + /, cos 0,¿j, - l,rsin(á, + 0r)(9, + 0r)' +/., cos(9, + 0r¡{0, + 0r)

j',, = -l,cos0,0l -/,sin e,¿),-l,rcos(d, + 0.\(0,*0.)' -/., sin(0, + 0r¡1ò,+ 0r)

(2.20)

(2.2t)

(2.22)

For tl-re ease of developing simulation program and system identifìcation, the clìscrete

form of the dynamic equations will be formulated. Using the previously defìned Equation

(2.19). the frrst order approximation of the biped for the data sarnpling can be expressed

as (å is the sampling rate):

QJn +1) = q,(n) + hqu@)

ez(n+1)=qr(n)+hqo(n)

q.þt + 1) = q^(n) * 4l ufrlr,@) - (õ(n) * Êprorn (n))r, (rr)Dl-"'" 2 '""-
(

+ 
[ 
ð(,,Xq, ( tt) + q o @))' + T o: @) cos q,(n 

)rysin s' (rr)

-(þ!),,,rtc2cosq2(ir)sin(4, @)+qr(n))-õ(n)(tn,1,.,+tr,/,)sin",trlls-l[2 )J
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h I ß(n\
4 n 

(n + l) = et,(r) + ; I - k5 (") + 

- 
cos q, (n))r, (n) + (ò (n) + B fu) cos q r(n))r r( n)Dl 2

- (trt"l . ry cos q,(n))(q, (,) + q o @))'

+ qiln¡1açtl - õ(n). ry *'ø,r,>)@sin q,(n)

*(- trtrl "rycosq2@))(nt,t,, 
+ m,t,)sinq,(n)

+ (a(n) - li (r) 
" ry cos qr(n))m2l,z

u,here D : mrtnrl 
"?rt,?, 

+ rnrlj/, + mrl2,l 
,

F >0g'

b. Friction constraint: The friction constraint ensures that

the ground:

(223)

- nrit!,ti cos2 q,(n)

(2.24)

the biped's feet do not slide on

(2.2s)

COP reside within the

\l
sin(q,(n) +ørln)) 

)S )

+nltlrti +mrllI,+ I¿"

The f-oot-linl< is not fìxed on the ground, but is required to be stationary. l'hus. the trvo

joint torques are limited by three constraints (Yang and Wu 2006b): the gravity consiraint

verifies that the I'oot-linl< does not lift fiom the ground; the friction constraint ensures the

foot does not slip and the Center of Pressure (COP) constraint requires that the COP

reside'"r,ithin the boundary of the support.

l-he constraints can be expressed as the follorving:

a. Gravity constraint: 1'he gravity constraint ensures that the biped's feet do not lift from

the ground:

lr l< "rI ¡ll1 t Ky

c. Center of Pressure Constraint: The COP constraint requires the
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boundary of supporr.

-- _rL 
- 

t, -

LuFn + tr - L,nt, g

F
.lJ

0<x,,,n<L,

Q,(n) = ./ ,,(n)8,@-l) (i,j:l,2,3,4)

rvhere the system Jacobian .J is a 4 x 4 Inatrix.

l'he 4-dimensional. state-space model Equation (2.23) leads to for-rr Lyapunov exponents.

The signs of the l-yapunov exponents provide qualitative inf,ormation about the system

stability. The linearization of the model of Equation (2.23)is:

(2.26)

(2.21)

(2.28)

ìn this thesis. RBFNN is used to identify the discrete-time nonlinear biped balance system.

1-he RBFNN model is obtained by having a network tvith four input nodes to the

st-ate q(n,\: I qi(n,\ ,4¿@) , clrØ) , Qo(n) ]. The output of the netr¡¡ork rvill be 4tÒ:

f.q,(n),qr(,t),Er{,r),àu@)]. The control law is embedded in the neural strLrcture. The

gradient descent rnethod with momentum is often too slow for practical problems. For

better performance olsystem identif rcation, both supervised and unsupervised algorithms

are employed to train the RBFNN.

First. 100 sample data. rvhich are uniformly distributed in the state space, are selected to

initialize the radial basis function centers and the weight parameters. 'Ihat means the

RBFNN adopts 100 hidden nodes foreach output structure. Then, the actual outputs of the

plant at each instance arc used as teaching signals and the problem is to adapt the network
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parameters so as to minimize the generalized error. This will be achieved using the block

diagram shown in Figure 2.7.

q(,'t) ', lip:d . q(,)
, \4odcl : -

r¡rt) -i 
i

i uut-fer j

'i, _.--l

Figure 2.7 ldentif rcation of biped balance system

Lef et, fu) denoï,e the error betrveen the system output qofu) and the RBFNN output

4o1r¡ ut time n.

e^(n) = qoØ) - 4oØ), /F7,2,3,4

The performance index function of the RBF network at time iz is defined as

(2.2e)

ctF, (ñ = !r? rr\ (2.30)
2 ^"

Note th¿rt during tlre learning or adaptation process, the RBFNNs use the systern state

q(n) rather than the netrvork state 41"; . tloruever, once the learning process is

ternrinated, the RBFNNs are independent of the systent.

Using the RBFNNs, the system Jacobians are derived as follows:

--llRBtjl l-
'i n",run.L i -l) e(n)

ìl

¡ ,, = 
ôtr 

^(n 
+1) - ô4 

^@ 
+1) =f ,",,ó,,c r, 

- ?,(n) (2.3 r)r' ôq,(n) ôq,(r) u¡t nr t ^r bi

Irr Chapters 3 and 4, this method is used for the calculation of Lyapunov exponents. To
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verify the effèctiveness of the proposed method. the l-yapunov exponents based on thc

neural Jacobians are comparecl to the ones based on ll.ìe actual Jacobians derived fiom the

mathematical model.
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3.1 Introduction

'l'he design of lou,

biped locornotion.

Chapter 3

f,QR Balance Contnol

energy-cost control algorithms is highly desirable for regulating

In this chapter. a classical state feedback control using the Linear Quadratic Regulator

(LQR) techniqr-re is proposed to stabilize the standìng biped. The LQR problem is

equivalent to a dynamic optimizalion problem for linear differential equations. lts

signifìcance for control theory r,vas fìrst discussed lully by Kalma¡r in 1960 (Kalman

1960). One of its main applications is to steer the solution of the underlying linear

differential equation to a desired reference trajectory rvith minimal cost given the dynamic

equations. Thus, LQR feedback can be used to improve energ.y effìciency of the biped

balance system.
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Since the upright posture of a biped is inherently unstable and the LQR control law is

based on the Iinearizecl biped model, the stability of such a nonlinear control system is

analyzed using the concept of Ly'apunov exponents. 'l-he l-vapunov exponents are

calculated based on the mathematical model of the biped svstem. The Jacobians

derermined using both the mathematicaì model and the neural model of the biped system

are compared, to demonstrate the ef-fectiveness of RBFNN identifìcation lor the

determination of Jacobians. Pan of the stability region of the proposed control system is

also determined using Lyapunov exponents.

The first objective of this chapter is to design an optirnal control to minimize the torque

outputs and to keep the biped at the upright position. The constraints between the biped

feet and the ground are examined to ensltre their satisfaction-

l-he second objective is to analyze the stability of the proposed controller using the

concept of Lyapunov exponents. To shorv the capability of the neural Jacobians for the

calculation of Lyapunov exponents, Lhe results of Lyapunov expotlents based on the neural

Jacobians derived frorn the RBFNN model are compared to the results based on the actual

Jacobians derived from the mathematical model.

3.2Linear Quadratic Regulator (LQR) Theory

The approach to the design of a LQR consists of the formulation of an optimal control

problem on a semi-infinite time interval. It turns out that the solution io the optirnal

50
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control problem comes in the form of a linear state lau' that is guaranteed to produce an

asymptotically stable closed-loop system (Goodwin et al.- 2000). Using LQR theory, it

has been established that for a controllable linear time-invarianl system, a set of optilnal

feedback gains may be found 'uvhich minimizes a quadratic index and makes a closed-loop

system stable. A system can be expressed in a state variable form as

ic: Ax + Bu (3.f )

rvithx e .R", L! e R". We assume here that all the states are measurable and seek to find a

state feedback control

u=-Kx (3.2)

wherc K is a constant matrix.

1b dcsign an optimal state-feedback controller, we define the performance index

o, =:f, {,' Q, +tt.'Rtt)c[r

Substituting llquation (3.2) into IìqLration (3.3) yields

pt =! f *'e+ KI RK)x(h
2.h

(3.3 )

(3.4)

'fhe objective in optimal design is to select the Kto minimize the performance index P1. It

should be noted that both the state x and the control input z are r,r,eighted in I'1. so that if

P-I is low, neither x nor u can be too large. If'P.¡ is minimized, and since it is an infinite

integral of x, this implies thatx goes to zero as / goes to infinity. This in lurn guarantees

that the linear system is stable.
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The rveight ¡natrices Q @"xnmatrix) and R (antxmmatrix) are the most important

components in LQR optimization. l'he performance of Q and ,R determines the output

performance of the system. Commonly, a trial-and-error method has been used to

construct the nratrices Q and.R. One should select p to be positive semi-definite. and -R to

be positive definite. This means that the scalar quantity x''' 9x is always positive or zero, af

each time I for all functions x, and the scalar quantity i' Ruis alu,ays posirive at each time

¡ for all valucs of z excepl zero. 1-his guarantees that P-( is well-defined. In terms of

eigenvalues, the eigenvalues ol p should be non-negative, while those of R should be

positive. If both matrices are selected diagonal. this means that all the entries of R must be

positive rvhile those of p shoulcl be positive, r,vitlr possibly some zcros on its diagonal.

Note fhat,R is invertible.

Since the plant is linear and the performance index P1 is quadratic, the problem of

deterrnining the K to mini¡nize P.I is called the Linear Quadratic Regulator (l-QR). The

u,ord "regulator" rcfers to the fàct that the function of this leedback is to regulate the

states to zero. 'fhis is in contrast to the tracking problems. where the objective is to make

the output follow a prescribed (usually nonzero) reference command.

To find the optimal feedback K, we proceed as follows. Suppose there exists a constant

matrix P such that

52

4 G' P,) = -*'' (Q + Kr RK)x
dt

(3.5)
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Then, substituting Equation (3.5) into Equation (3.4) yields

H =-+ f 4G' pr)d, =!*''(o)P.r(o)2nù 2 " (3.6)

,uvhere lve assume that -r goes to zero as time / goes to infinity. Equation (3.6) indicates

T.haLPI is nor,v indepenclent of K. It is a constant that only depends on the auxiliary matrix

P, and the initial conditions.

Norv. we can find a matrix K so that assumption (3.5) does indeed hold. To accomplish

this, differentiate (3.5) and then substitute the state Equation (3.1) ancl control Eqr,ration

(3.2) into lìquation (3.5), yielding

i' Px + x''' P* + x' 9x + xr K'r RKx: o

x' 1t1 - BK), Px+ x' PçA- RK)x+ x' Qx+ x' Kt RKx : 0

t' lt,t - BK)t' P + P(A - BK) + ç + x, nxþ : o

(3.7)

(3.8)

(3 e)

Equation (3.9) has to hold lor everyx. fherefore, the term in square bracket must be equal

Lo zero.1-hus, we have

(t1-BK)l P+P(A-BK)+Q+K'r RK=0 (3.10)

A¡'P+PA+e+ K't ItK - K'' B''p - PBK =0 (3.1i)

This is a nratrix quadratic equation in the variable of K. One u/ay to solve it is by

completing the square. Though this procedure is a bit complicated for matrices, suppose

we select

K=R-tB'P (3.12)
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SLrbstituting Equation (3.12) into Equation (3.1 I ) gives

Ar p + pA + e + çR-' Br p¡, ItçR-' B, p\ _ (R-t Br p), B, p _ pB(R-, Brp) = 0 (3.13)

A'P+ I'A+e- PBR-tBj P =o (3.14)

'fhis result is of extreme imporlance in modem control theory. Equatiorr (3.14) is knou'n

as rhe algebraic Riccati Equation (ARE). lt is named after Count Riccati, an ltalian who

lived in the 19th century and used a similar equation in the study of heat florv. It is a matrix

quadratic equation that can be solved for the auxiliary matrix P given (A,B,Q,R). The

optimal state feedback gain is given by Equation (3.12). The minimal value of the PI

using this gain is given by Equation (3.6). which only clepends on the initial condition.

This means that the energy cost Plof l-QR control using the gains in Equation (3.12) can

be computed from the initial conditions before the control is ever applied to the system.

'l-h¡- decion nrnredrrre lnr findinp thc l.Olì- leedback K is:r rrv u!rr<¡¡ tJ¡vvvser ..^-..^D -.,- " \-

Select design parameter matrices Q and R.

Solve the algebraic Riccati equation 1-or P

Find tlre state feedback gain r"rsing K = R-t B'r P

54

There are well-developed numerical procedures for solving

routine that performs this is named lqr(A,B,Q,R). u'hich is used

the ARE. The MATLAII

in this work.
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3.3 LQR Balance Control Design for tsiped Standing

In this chapter, a biped balance system is designecl using I-QR techniques. ln order to

obtain the LQ parameters, the biped model is required to be linearized about the

equilibrium point, which is defined as the upright position of the link I and link 2.

Therefore, the system is linearized about tlre point (qr=0, Qz:0,Qr=0,Q0:0 ) ivith

fr,rrl: [0,0] . Using comlron mathematical linearization techniques, the nonlinear sine

and cosine tenns can be evaluated into linearterms. This is shown in Table 3.1.

Nonlinear sln qr sin q, cos q2 sin(q, + qr)

Linear Q: Qz I clt * Qz

'fable 3.1 Linearizing function table

55

Iìeplacing the nonlinear terms of the state-space cquation rvith the Iinear terms derived in

Table 3.1, the lincarized state-space equations can then be fonnulated. The complete

linearized state-space equations are shou,n:

:- .-It-Us

Qz = Qt

. t^ p / 6,1/
a, =16r, - (ô + 

T)r.* [u,n' 
* q)' + iui )iu,

(n I I
-l L ntrl,r(q, + 8) - 6(m,1,, + ,nrl,)Q, lS lt n'

\l ) )
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Çl+ 
:

_B
2

+l-
\.

rvhere

(3. 1 s)

D' : m,mrl!rl!, + nt,l!,I, + nz,llrl, + -ltlrtl + tnrl,2 I,

D'

- tnrl,rli

rn1 (kg) rr2 (kg) m¡(kg) /r (m) /2 (m) L¡(m) 1.. (m) Z¿ (m) L, (m) lt

48.72 28.96 2.32 0.998 0.112 0.27 0.05 0.07 0.085 0.5

Table 3.2: Biped Model Parameters

ns (3.15) and (3.16), the numerical values of

l-*.*r,+(a+ 
p)r,

ø,(ta * !>ro, 
+ Qo)' + (a - a . !lø:)

{d + 
$){rr,l,, 

+,trl,) q, + (a - a * 
!)o, rl,r(q' + q r))'1,

+I/,

The matrices I and B of LQR as shown in Equation (3.ì) are determined by the follow

equalions:

, ô4,
A,, =;! , (i.i =1,2....-4)-o0

tJ

ß =+.(i=1,2,....4..i =j.2) (3.16)
"õT

The physical parameters of the bipecl model are taken fiom the reference (Yang and Wu

2006) as shorvn in 'fable 3.2.

By using the above

theAandBmatrices

parameters and Equatio

for the biped rnodel are

Io
IloÁl,tt-l
| 13.2290
I

l-20.3763

o rol
0 0 rl

-s.osze o o 
I

48.8780 o ol
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(3.t7)

The Q and.R designed forthe lineariz-ed biped sl,stem are chosen based on trial and error

as sholvn beiow

-500 0

1000 0

0 1000

0 -s00

lrooo o I1l:l I

L o toool
(3.1 8)

The initial condition used to test this and other balance controllers was

l.8t,Qz,Qi,8nl:[-0.05rad,0.03raci.0.05rad/s.-O.03radisl. Figure 3.1 (a) and (b) show the

simulated angular displacements and control torques using l-QR control. We can see that

the proposed controller successfully stabilized the biped at the upright posture within 2.5

seconds. The control performance for other initial conditions was also tested and the

results are similar. Figure 3.2 shou,s the horizontal and vertical ground reaction forces.

The positive vertical ground reaction force Ç ensures the supporl foot is in contact with

the ground. Figure 3.3(a) show,s the horizontal ground reaction force and the upper and

[oo
looDII) - |

I 0.042s -0.t327

l-o.ttzt o.6 rse

Irooo
| -sooo:llo
Io

ol
0l

-s00 I

rooo ]

lVlatlab rvas used to determine the corresponding state-space leedback gains given by

Irosq.s 63. r 344.5 53.7-lK,,,,=l --- .^ | (3.19)tf,iß 
1273.3 206.6 t06.5 43.9 J



LQR Balance Control

lower bounds of the friction. The horizontal ground reaction force Ç is lower than the

maximrrm static friction (- FF-nandpF*), rvhich indicates the foot-link does not slip.

ì:igure 3.3(b) shows the locations of the center of pressure (COP) ancl their uppcr and

lorver bounds. The Iocation of the center of pressure X.,r' resides within the contact

surfäce betu,een the foot-link ancl the ground indicating that the foot-link does not rotate

about either its toe or its heel. The above results illustrate that the proposed LQR control

can keep the foot stationary with the given initial condition.

i
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Figure 3.1 Simulation results using LQR control:
(a) angular displacements and (b) corrtrol torques.
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Figure 3.2The ground reaction forces of the LQR control system (a) the horizontal
ground reaction force and (b) the vertical ground reaction force
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3.4 Stability Analysis

Sìnce the LQR control lar¡, is designed for the linearized system. there is no guarantee

rhat it rvili u,orl< rvell rvhen implemented on the nonlinear system.'fhis is parlicularly trLre

because the nonlinear system is not restricted close to tlie upright position. I-lowever. most

previous works failed io pi-ovide the stability'ânal'vsis of thc nonlinear control systems clue

io system complexities. In this section. I-yapunov exponents are employed to analyz-e the

stability of the LQR controller for tlie nonlinear bipcd system-

A neural approach to derive system Jacobians from RBFNN niodel is proposed for the

calculation of Lyapr-rnov exponents. The method can be used to analyze the stability of

unknorvn systems. The biped balance system based on LQR control is used to

demonstrate the effectiveness of the proposed neural method.

To adequately test the quality of the neural model (the procedure for developing the neural
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model has been detailed in Chapter 2). the numerical Jacobians derived from the neural

model using Equation (2.31) are plotted. to compare rvith the actual Jacobians derived

lrom the mathematical model with the same initial condition LQ,,Qr,gt,Qn): l-0.05rad,

0.03rad,0.}Srad/s, -0,}3rad/sl. ln the first rows of Figures 3.a@)4.a@), the solid Iines

are the actual Jacobians .r, =+(ii:l.2.3.4) determined from the marhemalical moclel,
oQ,

and the dashed lines are the neural Jacobians ,j,,=9Qj:],2-3,4) cletermined from the. 
dQL

RBFNN model. The second rows in Figures 3.a@)4. @) show the absolute errors

between the neural Jacobians and actual Jacobians (note that since some elements of'the

Jacobians are zero. the absolute errors are presented). After the biped is stabilized at tlie

upright posture, all of the JacoLrians become constants. The largest absolute error is less

than 0.06. From these results, u¡e can see that the neural model based on IìllFNN

identification is accurate to determine the actual Jacobians of the proposed bipecl balance

s)/stem.
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Figure 3.4l'he actual and neural Jacobians of the LQIì control system: the first rows show

the actual Jacobians (solid lines) and the neural Jacobians (dashed lines). the second rows

show the absolute errors between the above two Jacobians'

Four Lyapunov exponents f-or the LQR controlle(l bipecì sy'stem cluring standing as shou'n

in Equation (2.7) were calculated. Stability analysis investigates the long-term behavior of

motion under tlie influellce of disturbance ìn the initial states. The four Lyapunov

exponents in I00 seconcls are shown in F igure 3.5. ln the first rows of Figures

3.5(a)-3.5(d), the l-yapunov exponents basecl on the neural Jacobians (dashed lines) are

comparecl to the respective exponents based on the actual Jacobians (solid lines). The

second rows of Figures 3.5(a)-3.5(d) measure the relative errors of the Lyapunov

exponents based on the neural Jacobians. 'fhe lou, relative errors illustrate that the

approach to derive Jacobians from the RBFNN model of the LQR balance system is

effective for the calculation of Lyapunov exponents. After 100 seconds, since the

nonlinear term of Equation (2.23) disappeared: the Lyaputlov exponents converge to

constants u,hich are listed in Table 3.3. All of the four Lyapunov exponents are negative

indicating that the LQR control system is exponentially stable about the equilibrium point

(the biped upright posture).



LQIì Balance Control 64

c -06
oco^o"
u -c6
c

(a) N
E ¡zoc
o
* -1.20s

Lr.l

'f5r

ezi
I

251

I
I

1

l

oEc

I -o ê31.
ál
9.oess-:) o zo 40 60 Bo 1oo

o

õv

0.25

0.2

I

0151'
I

0 40 60
Time (s)

0 3l

orl
o 1L_ ,-

uo

c
o
coo
uJ

o
c
l
o
G
J

s
o
h
t!
o

!
o(f

s
o
E
U
o

_a
oÍ

40 60
Time (s)

(c)
-2 564,-

-2

co
co-a
ul

oc_
foo

J

o
U
o

ñ
ot

-2 568

005

-257\-:
020406080

02t- .- 

-

015i,

01r

0(
0 20 60

T¡me (s)
40

Time (s)

Irigure 3.5 The Lyapunov exponents calculated based on the actual (solid lines) and neural
(dashed lines) models of the I-QR control svstem: (a) largest l-yapunov exponent (LE) (b)

second LE (c) thirci Li: (ci) founh i-E.

Lyapunov exponents (LE) I".LE 2"" LE J LE 4"'l_E

Mathematical model -0.6276 -1.2121 -2.5698 -16.1701

Neural model -0.6314 t.2107 -2.s666 -16.2254

Relative error 0.61% 0.16% 0.12% 0.34%

Table 3.3 The Lyapunov exponents and their relative errors af'ter 100 seconds

Although the Lyapunov exponents are calculated using one trajectory. the¡r rernain the

same value witÌrin the same stability region. The determination of the stability region is an
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irnportant part of the stability analysis. To determine the stability region, the algorithm

developed by Nusse and Yorke (1998) is adapted. r.vhere the region of interest is first

divided into grid boxes. The grid box at the origin of the state-space (also caìled center

box) contains the stable equilibrium point.

Next. the size of neighboring grid boxes is chosen and the Lyapunov exponents are

calculated using the initial states from each neighboring box. If the sanre convergent and

negative exponents are obtained, the neighboring grid box belongs to the stability region.

l-o find the stability region of the proposed LQR balance system, six regions in the phase

plane are tested:

f, = {q, e [-l.5,l .Slrad,Q, el-1.5,1.S]rad.qt = }rad I s,Qq :}rad I s]

f, = lQ,e [-1.5,1 .5lrad.q, : jrad,qre [-1.5.1 .Slrad I s,qu = jrad I s\

7-, = {8, e [- 1 .5,1 .S]rad - q, = \rad, I t = }rad I s, t7 o e l-1 .5,1 .5)rad I s]

f, = {ø, = \rad,Q, el-i .5.i -5lrad,q, € [-i .5,i.51rari I 'r,Qc = jrací I s¡

I, ={q' =\rad-Qz e [-1.5.1 -5)rad.q.=jrctdls,4u €[-1 .5,1.Slradls]

I-, = {8, = jrad,c7, = jrad,Q, e [-1.5,1-S)rad I s,Qo el.-l '5,1.51rad I sl (3,20)

Each region is divided into grid boxes with the size of 0.0lrad.0.01rad,0.0lrad/s and

0.01rad/sec forq,,ez,Q.andqo, respectively. Figure 3.6 shorvs the stability region (grey

color) rvhich is determined by the largest l.yapunov exponent. ln the above stability

region, all of the largest Lyapunov exponents are negative and the mean value is -0.6313

rvith a deviation of 1.54x l0-4.
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Note that, these regions are only part of the stability region and not necessarily the entire

stability region. Finding the entire stability region of the proposed balance system is

important. but it is out of the scope of this work.
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An objective of this chapter is to develop an energy-efÏcient control system to maintain

the biped standing. A LQR fèedback is ernployed for optimal control. The limitation is the

constraints betr,veen the biped feet and the ground, which may not be satisfied during

biped balancing. Thus, a GA-based PD control satisfying the above constraìnts will be

introduced in the next chapter.

Another objective of tltis chapter is to analyze the stabilitl, s¡ LQR control Lrsing the

concept of Lyapr-rnov exponents. l-he results indicate that the LQR biped control system is

stable about the upright posture in the determined stability region.

In summary, a I-QR controller is designed to balance a biped in the r,rpright posture during

standing. The stability is analyzed using the concept of Lyapunov exponents. 'fhe

approach to calculate L1'apunov exponents based on RBFNN models is verified. Ir.urther.

the RBFNN models shorv great capability of analyzing the stability of nonljncar control

systems.
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ChapteY 4

GA-based PÐ Balaxace Control

4.1 trnfroduction

1'he design of balance conlrol la*is for stan<Jing bipeds is a challenging problem since

the constraints between the bipcd feet and the ground (Equations 2.22-2.25) have

signifìcant efÍècts on preventinq a stancjing biped frorn faiiing over.

This chapter proposes a Genetic Algorithm (GA)-based PD control, which can guarantee

the satisfaction of the constraints betneen the feet and the ground as rvell as minimize

energy consumption of torque oufput. Due to the local optirnization of PD gains according

to the initial conditions, the stability of the proposed controller should be analvzed.

However, in most of these approaches related to optimal control. stability has not been

investigated systematically. In this work. the stability is verified through the concept of

Lyapunov exponents and part of the stability region is determined as well.
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The fìrst objective of this chapter is to develop a biped balance system with the

satisfaction of the constraints betu,een the feet and the ground. The second objective is to

analyze the stability of the proposed balance sjvstem Lrsing the concept of Lyapunov

exponents.

To show the capability of the neural Jacobians for the calculation of Lyapunov exponents.

the results of the Lyapr-rnov exponents based on the neural Jacobians derived from the

RBFNN model. are compared to those based on the actual Jacobians derived from the

mathematical model. It demonstrates the capability of the proposed approach in

calculating Jacobians using neural models for determining Lyapunov exponents.

4.2 Genetic Ä.lgorithm (GA)

Genetic algorithms (GAs) are robust. siochastic and heuristic search algorithms ancl

optìmization nrethods based on biological reproduction processes, Artificial reproduction

schemes were flrst developed in the 70's (Flolland. 1992) and were more extended during

the 80's (Goldberg. 1989). The search area for the GAs is very rvide and usually

converges to a point near the global optimum. A GA is based on representing a solution to

the problem as a chromosome. 1'he GA creates a population of solutions and then applies

genetic operators to "evolve" the solutions. in order to find the best one(s).

The following outline summarizes horv the GA works:

Step 1: The algorithm begins by creating a random initial population as a srarting point

69

for the search.
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Step 2: The algorithm then creates a sequence of new populations. At each step, the

algorithm uses the indivicluals in the current generation to create the next

population. To create the new population. the algorithm performs the following

steps:

a. Score each member of the current population b1,'computing its fitness value

based on the cost function.

b. Select some individuals (called parents) in the population for reproduction

based on the relative fitness of the individuals.

c. Choose some of the individuals in the current population that have lower

fitness as elite. These elite individuals are passed on to the next population.

d. Produce children from the parents by means of a crossover and mutation

operator. A crossover takes trvo parents and srvaps parts of their genetic

informatiolr to produce rìew clrromosomes. A mutation operator produces

new single parents in thc popLrlation by randornly modifying sorne of the

genes.

e. Replace the current population rvith the children to fon¡ the next generation.

Step 3: These processes are repeated until a satisfactory individual is found or a certain

stop condition is met.

At each step, the GA uses the current population to create children that make up tlre next

generation. The algorithm selects a group of individuals in the current population called

parents, who contribute their genes, the entries of their vectors, to their children. The

algorithm usually selects individuals that have bener (lorver) fitness values, as parents.

t0
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The GA creates three types of children for the next generation:

. Elite children are the individuals in the current generation with rhe best fitness

values. These individuals automatically survive to the next generalion.

o Crossover children are created by combining the vectors of a pair of parents. if

the coding is chosen properly, two good parents produce good children.

c Mutation children are created by introducing random changes. or mutations, to a

single parent. In real evolution, the genetic material can be changecl randomly

by erroneous reproduction or other deformations of genes. In GAs, mutation can

be realized as a random deformation of the chromosomes r.vith a certain

probability. The positive effect is preservation of genetic cliversity and

avoiclance of local minima.

Compared to traditional continuous optinrization methocls. such as Neu'r-on or gradient

descent methods, the significant differences are as follou,:

l. GAs manipulate coded versions of the problem parameters instead of thc parameters

themselves.

2. While almost all conventional metliods search fi'om a single point. GAs always

operate on a whole population of points. This contributes a great deal to the

robustness of GAs. It improves the chance of reaching the global optimum and. vice

versa, reduces the risk of becoming trapped in a local stationary point.

3. Normal GAs do not use any auxiliary information about the objective function value

such as derivatives. Therefore, they can be applied to any kind ofcontinuous or
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discrete optimization problem. 1'he only thing to be done is to specify a meaningful

decoding function.

4' GAs use probabilistic transition operators while conventional methocls for continuous

optimization apply deterministic transition operators. More specifically, rhe way a

new generation is computed fiom the actual one has some random components.

4.3 GA-based PD Balance control Ðesign for Biped Standing

In this chapter, a PD balance system is desígned to stabilize the standing biped in an

upright postllre. shou'n in Equation 4.1. A GA is employed to rune the pD gains of the

controllers for a given set of initial conditions. 'fhe aims of GA are to satisfy the

constraints betu'een the bipecl feet and the ground. to minimize energ-y consumption and

keep the biped in an upright posture.

(4. 1)

It has been well-accepted that the energy to control the ¡rosition of the bipecl is closely

related to the integration of the square of the torque. with respect to time. fhus,

minimizing the torque indicates minimizing the energy consumption. 'fhe cost function J

can be defined as follows:

t ::U {c,r,' +crr,2 +cral +Coal +c,al +coql¡ar * I, c,,,,,,,,.,",d,)]

IJ

I t, = -k 
^q, 

- k 
'r,8,

\t, = -k ,rrl, - k ,rr1 o

(4.2)

C 
"o,rr,roin

if the constraints are satisfied.

if the constraints are not satisf ied (4'3)

and C¡ 0:1, 2, ..., 7) are rhe weighting coeffìcienrs. ByInSI

fo
= 

1.,

ancewhere l¡ is the final time
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using different values lor the'"veighting coefficients Ç, it is possible to tune the balance

system to meet diflerent criteria. In this work. the weighting coefficients are selected as

C7:0.001 , C2:0.001, C;:50, C+:50, C'5:10, C6:10, Cz:1000. C,on,r,,,¡,,t is the constraint

function for satisfying the constraints bet,uveen the biped foot-lìnk and the ground in

[ìqLr ati on s (2.24) - (2.27 ).

For the optimization of' the cosi function, a real-valued GA (representing each

chromosome as a real-valued number) is used because it has several aclvantages over a

binary GA (representing each chromosome as a bit string). Programrning is simple and

the searching speed is improved since encoding and decoding thc processes is not

necessary. This is due to the one-to-one correspondence betu'een a phenotype and a

genot)/pe. It is possible to define a verv large domain and easy to deal with highly

complex constraints. N4an1, experiments comparing real-valued and binary GAs have

proven that the real-valiled generates better results in terms of the solution oualitv and

computation time (Michalervich I 996).

The population size for the GA is set to 60, crossover probability is 0.8 and mutation

probatrility is 0,01. The maximum number of generations is 100. The GA rvill terminate

when a maximum number of' generations has been produced or the value of the cost

function does not improve for l0 consecutive generations. lf the constraints are greater

than Ct or aI r¡5s the biped is outside the uprighr region, { lø,l.O.OOZ , lqrl.O.O}Z,

lørl.o.oos, lørl.o.oosÌ, GAu,ill be considered to have failed to find the solurion of PD

gains.
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'fhephysicalparameters of the biped model are shown in Table 3.2.lnthe simulation.

the initial state is 4r = -0.05 rad, Qz = 0.03 racl, % = 0.05 rac!/s and

Q,t=-0.03rad/s', the final time is /¡5s and the step size is å:0.01. FigLrre 4.2 shorvs

the variation of the cost filnction J. We can see that the GA converges with 53

generations.

o-38¡ 
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0 37F
Içl.; 0.36 r
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g oesi

el
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Ë1.
s 0 331'

I
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+--:
o 31.---.. - --.r-. : 0 20 40 60 BO 100

, ""i--- Generation

,'igurc 4.2'i'hc vai'iaiioii oí'tiie ct_rsi iunciion

The PD gains obtained by the G¡\ are Kp¡:125.82, Kp2:236.21- KnF 17l.l5, and K¿¡2=

179.39. The value of the cost ftÌnction (Equation 4.2) J is 0.3134. Compared ro rhe value

of LQR control (-/:0.4030) in Chapter 3 r.vith the same initial condirion, it is clear that

GA-based PD control reduces the value of the cost function. Thìs indicates that the energy

consumed is reduced signif rcantly. Figure a3@) and (b) show the simulated angular

displacements and control torques of the proposed controller. The biped approaches tlre

upright posture rn'ithin 3 seconds. Figure a.4@) and (b) show the ground reacrion forces in

horizontal and vertical directions. Figure a.5(a) shows the horizontal ground reaction

force and the upper and lower bounds of the static frictions. Figure 4.5(b) shows the

75



GA-based PD Balance Control 76

location of the COP and the bounds of the contact surface betr,veen the foot-Jink and the

ground. From Figures 4.4 and 4.5. it can be easil¡' observed that the satisfaction of the

constraints between the leet and the ground is verified. l-he verlical ground reaction force

Çis always positive, as shorvn in Figure 4.4(b). The lorce in the horizontal direction

Fr" is alu'ays less than the maximunr'force of thc static friction (tFsrand-d,), as

slrorvn in Figure 4.5(a).1'he center of pressure in the horizontal direction is always inside

the foot length as shor.t'n in Figure 4.5(b). It is concluded that the proposed control scheme

can maintain the biped balance in an upright posture while keeping the foot stationary.

(b)

5'-.-- .__-___ |012345
T¡me (s)

Figure 4.3 Simulation results using GA-basecl pD control
(a) angular displacemenls and (b) control rorques
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Figure 4.5 The constraints betrveen the biped foot-link and the ground of the GA-based
PD control (a) The friction constra;nt. (b) The COP constrainl

4.5 Stability Analysis

The upright posture of biped stancling has an unstable eqLrilibrium point. For the

proposed GA-based PD control, the PD gains are optirnized locally. according to specifìc

initial conditions of biped model. l-he stability of the proposed controller to an unexpected

disturbance should be considered. ln this section. the stability of the proposed balance

system is analyzed Lrsing the concept ofLyapunov exponents.

Chapter 2 proposed a neural approach to derive system Jacobians from RBFNN model for

the calculation of Lyapunov exponents. l'his method can be used to analyze the stability

of unknown systems. In this chapter, the biped balance system based on GA-based PD

control is used to verify the effectiveness of the proposed neural method.

After an intensive training process of the RBFNN. all of the neural Jacobians are derived
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fiom the RBFNN model using Equation (2.31) riith the initiar condition fcr,,Qz,Q¡,Qol=

l-0'05rad,0.03rad, 0-\5rad/s. -0.\3rad/sl. Figure 4.6 shows the neural Jacobians ancl the

actual Jacobians cleriving lrom the mathematic moclel. In lhe first ro*,s of Figurcs

a.6@)-a.6$), the solid lines are the acrual Jacobians J ,, : I (i j:1 ,2.3.4) and the dashed
" ôQ,

78

lines are the neural Jacobians ,i,,=4 Qj:1,2-3-4). The second rows in't ôqr
F igLrres

4.6@)-a-6@) show the absolute errors of these neural Jacobians. Since some elements of

the Jacobians are zero, the absolute errors are presented.

After the biped stabilized in an upright posture. all of rhe elements of sysrern Jacobians

become constants, as the nonlinear terms of EqLration (2.23) disappearecl. .l-he 
largest

absolute error is less than 0.3. Ir is clear to see that the neural Jacobians are accurate in

comparison rvith the actual Jacobians. The above results illustrate that the neural

Jacobians can determine the actual Jacobians of the balance system successfully.
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FigLrre 4.6l-he actual and neural Jacobians of the GA-based PD control system:

the actual Jacobians,/u (solid lines), the neural Jacobian .ir{ii:t 2.3,4)(dashed lines).

Four Lyapunov exponents are calculatecl. fjigure 4.7 shows the lour Lyapunov exponents

in 100 seconds. l-he solid lines are the Lyapunov exponents based on the mathematical

mode[. -fhe 
dashed lines are ihe L-""apunov exponents, based on the neural model. The

relative errors of the neural Lyapunov exponenls are also shorvn in Figure 4.7 . Il is clear

to see that the reiative errors of, the neurai l-yapunov exponents are very low. 'I'he neural

Lyapunov exponents are accurate in comparison with the actual ones.

It is demonstrated that the proposed approach to calculate Lyapunov exponents based on

the RBFNN model is a constructive tool to analyze the stability of unknown systems-

After 100 seconds, all of the Lyapunov exponents converge to negative constants (Table

4.1), rvhich indicate the PD based GA co¡ltrol system is exponentialìy stable about the

biped upriglit posture.
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Lyapunov exponents (LEs) 1" LE 2"" l-E -lJ LE 4"'LE

Mathematical model -3.8499 -6,0860 -1.6922 107.3 l3 t

Neural model -3.8417 -6.I t40 -1.6887 107.3791

Relative error 0.213% 0.460Y" 0.046% 0.062%

Table 4.1 The Lyapunov exponents and theirrelative errors after 100 seconds

The PD gains of the proposed controller are in respect to specifìc initial conditions. The

results of Lyapunov exponents are different for each set of PD gains. Finding the entire

I

I
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stability region for a specific set of PD gains is extremell,'difficult ancl it is out of the

scope of this rvork.

The follou,ing is an example of-part of the stability region of the PD gain (Kpr 125.82,

Kp2:236.27- Kor 171.75. and Kp2: 119.39). The regions:

f, = {Q, e [-1.5,1 .Slrad,8, el-l.5,l.Sfrad,Qz = \ratl I s,Qo = }rad I s]

T, : {Q,e [-1.5,1 .Sfrad.Qz = \rad,4t el-!.5,1.5frad I s,qo = jrad I s]

l, = {q, e [-1.5.1 .5)rad,c1, = \rad,q, -- \rad I s,Çq e [-l '5,1 .S]rad I s]

|o : {Q, = \rad,Q, €l.-1 '5,1 .51rad -4, e l-l .5,1 'S)rut{ I s;Q,t : }rad I s}

T, = lQ, = \rad,Q, €[-1'5.1'S]rad.q. = \rad I s,Qt €[-l'5-l'5)rad I s]

I', ={Q, =\rad,q, =\rad,qre[-l'5,1 .Slrad I s,4,t €[-l'5,1'S]rad I s\ (4'3)

in the phase plane, are divided into grid boxes *,itlr sizes of 0.0lrad. 0.0lrad. 0.01rad/s

and 0.0lrad/sec f-or Qt,Qz,qrandq.r, respectively. If the same convergent and negative

largest exponent is obtained. the neighboring grid box belongs to the stability region.

The stability region (grey color) is shown in Figure 4.8. In the stability region all of the

largest Lyapunov exponents are negative and the mean valtle is -3.8417',vith a deviation

of 4.21* l0-4.
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4.6 Ðiscussion

IJalance maintenance is a current research topic in the field of biped control. An

important issue for biped control design is energ¡, conservation. In rny study, two optimal

control schemes. derived from classical LQR techniques and GA techniques, have been

proposed and implemented in the two-link biped model. In Chapter 3, the LQR balance

control is designed to optimize the total energy consumption of torque outputs. ln this

chapter, a GA-based PD control is presented to keep the biped balance in the upright

posture.

By using a GA as an optimization tool, it is easier to design an advance controller which

can _r¿uarantee the satisfaction of the constraints between the feet and the ground as rvell as

optimize the energy cc'nsurnption of controi outpr,rr-s. With the above tw.'cr balance systems

inrplemented. the biped model is able to stay upright and balance during standing, and the

total energy consumption of the torque outputs is low. In conclusion, both of trvo balance

systems are successful in stabilizing the standing biped in the upright posture.

'lb evaluate the energy efficiency of the two controllers, the cost function in Equation (a.l)

is employed. The values of the cost function J are shown in Table 4.2, with some initial

conditions. It is clear to see that the GA-based PD control has better performance for

energy consumption in comparison to the LQR control.
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In itial cond ition (ql,q2.q3,q4) LQR control GA-based PD control

-0.02rad. 0.02rad. 0.0Srad/s. -0.03rad/s 0.0229 0.0217

0. I 5rad. 0. I 5rad. 0.01radis, 0.01 radls 11.37 I l.0l

0.05rad, 0,05rad. 0-01 rad/s. -0.01rad/s 1.272 1.204

'I'able 4.2 J'he values of the cost function using LQR control and GA-based PD control

The ability to keep the foot stationary is another important issue for biped control design.

The limitation of the I-QR control is that the gains are fixed. Since the primary aim of

GA-based PD control is to guarantee the satisfaction of these foot constraints, the gains of

this control method can be adapted according to initial conditions and the constrainis

betrveen the foot-link and the ground. This means that in some cases. the LQR control

fails but the GA-based PD control may not.

Thc follorvirrg is an example '"vith the initial condition (q¡--0.045rad. q2:0.045rad.

q_r:0.001radls. qf-0.00lrad/s). Figure a.9@) and (b) shor.r' the COP constraints o1-LQIì

control and GA-based PD control. The COP ín the horizontal directionx,..r,, . violates the

lou,er bound at time ¿:0s. and the controller is terminated due to foot rotation. The

GA-based PD controller successfully stabilizes the biped in an upright posture and the

COP in the horizontal direction x,-.,,, is always within the bounds. It is concluded that the

u,orking region of GA-based PD control is larger than LQR control.
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Figure 4.9 'fhe COP constraint (

The stability of the GA-based PD control system is demonstrated by the concept of'

Lyapunov exponents and part of the stability region is determined. The method of

calculating l,yapunov expoÍìents based on RBFNN models is implernentecl on the

GA-based PD control system. The results show that the neural method is accurate in

comparison to the traditional method. ìrurther, it demonstr-ates that the proposed n-rethod

can be used to analyze the stability of complex or unknown systems rvithout explicit

knowiecige of ihe maihematic nlodels.
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Chapter 5

Conclusioms and F uture Work

5.1 Conclusions

The overall goal of this thesis is trvo-f-old: (l) to develop a control system that u,ill keep

the biped model in an r"rpright posture despite adverse disturbances. and (2) to analyze the

stability ofthe proposed control system using the concept ofLyapunov exponents.

'l'he bipeci robot is simpiifieci as two inverteci penciulurns. representing the iegs anci tire

trunk. The fèet are modeled as a separate link stationary on level grourrd. 1-he biped

moves only in the sagittal plane. A dynarnic rnodel of the above biped robot and the

inequalities resulted from the constraints betr,veen the foot-link and the ground, have been

developed.

Two optimal controllers have been designed in this thesis. A LQR balance control is first

designed to optimize the total energy consumption of torque outputs r,vhile keeping the

biped in an upright position, The LQR problem is equivalent to a dynamic optimization

problem for linear differential equations. lt steers the solution of the underlying linear
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differential equation to a desired reference trajector.v u,ith minimal cost, given

dynamic equations. Simulation results show that the LQR controller is effective

balance control r,vith lor,r, contro] torques.

Although the satisfaction of the constraints betr.veen the foot-link and the ground was no1

considered in the control design. it has been closely examined in the computer simuiations.

It has been found that the low control torques have insignificant effects on the ground

reaction forces. fror example, the vertical ground reaction force is dominated by the

gravity of the biped. The changes in the verlicai ground reaction force are rather low.

Similarly. the horizontal ground reaction lorce is lorver than the maximum static friction.

which indicates that the friction constraint can be easily' satisfied. The simulations show

that the COP constraint is easier to be violated due to the long leg and torso links and the

shon foot length. This finding is consistent with previot-ts research (Yang and Wu.2006a)

A GA-based PD balance control is then developed to keep the biped in an upright position,

minimizing the energy consurnption of torque outputs. and satisfying the constraints

betrveen the floot-link alld the ground. The effectiveness of the control laws are tested

through computer simulations. and the results show that all of the above three

requirements are satisfi ed.

The stability of the biped control systems is the fundamental requirernent for developing

biped robots. In the current biped control field, an obstacle is the lack of an effective tool

for stability analysis. ln this work, the stability of the proposed balance systems is

89
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analyzed using the concept of Lyapunov exponents. Pañ of the stability region has also

been determined using l-yapunov exponents.

The LyapLrnov exponents have been calculated using the mathematical model. for rvhìch

the determination of the Jacobean matrices is crucial. l)ue to the complexity of the biped

systems and even the unavailability of the nrathematical model. the determination of

Jacobeans is not always feasible. This prohibits the calculation of the Lyapunov

exponents.

In this thesis, a ne\À¡ approach to calculate l-,vapunov exponents based on a neural model is

proposed to analyze the stability for cornplex or unknon'n systems. RBFNN is first

employed for system identification and the Jacobians are derived lrom the neural model.

Then, the Lyapurrov exponents can be calculated using the above neural Jacobians.

For the biped systems rvith the above two optimal controllers. the Jacobians determinecl

from the mathematical models and the corresponding neural models as well as the

Lyapunov exponents from both the mathematical models and the neural models are

compared, and they agree very'uvell. For the Lyapunov exponents, the nraxìmum relative

errors are 0.6o/o and 0.5o/o for both control systems. RBFNN is used due to its outstanding

characteristic of nonlinear systern identifìcation. l-his methocl is novel in that it is a

framework, u,hich makes the calculation of Lyapunov exponents feasible.
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Conclusions and Future Work

5.2 Future Work

'fhe Iimitation of the proposed controllers is that the biped can be stabilized only in a

static environment. Future rvorl< is to develop an advanceci bipecl balance system using

adaptive control and neural network control for an unl<nou'n dvnamic environment.

Stability analysis of such control schemes is still an open problern due to the cornplexity

of the controller. Lyapunov exponents may be a good tool for this analysis. lt should be

noticed that the system Jacobians are variable, according to the environment and the

Iearning algorithm. Analysis of the stability of such confrol larv is another fiture

development.

The proposed method to calculate Lyapunov exponents based on RIIFNN rnodel is a

constructive tool to analyze the stability of unknown sysiems. l-lowever- the neural

netrvorl< should be retrained if the control law is changed.

In future work, control torques rvill be considered as inpr-rt variables of system

identification. We could find a general neural model of dynamic systems not dependent on

conlrollers.
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