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Abstract

This dissertation is about efficient computation of the electromagnetic fields with the
locally corrected Nyström (LCN) method as a point-based boundary element method
(BEM). The concept of surface integral equations is discussed and the electric field
integral equation (EFIE) is derived from the Maxwell’s equations. The basics of
Rao-Wilton-Glisson (RWG) method-of-moments (MoM) and the LCN method are
reviewed.

Due to its point-based nature, the LCN discretization of the EFIE has some ad-
vantages over discretizing the EFIE by the MoM which is an element-based (or basis-
based) BEM. On the other hand, due to maturity of the MoM, a large body of work
is available to resolve the numerical issues arising in MoM while there has been less
work related to the relatively new LCN. To combine the benefits of the LCN method
and the classical RWG MoM, equivalence between these BEMs are established and
their exact relationships are derived. Both the vector-potential EFIE and the mixed-
potential EFIE are covered.

Various aspects of achieving HO convergence to the correct answer using high-order
(HO) LCN method are discussed. In particular, the patch size limitation, predicting
the optimal degrees of freedom for a desired accuracy, and the effect of dynamic range
in the solution are discussed both analytically and numerically to provide concrete
motivations towards HO LCN.

The benefits of an HO BEM can not be realized unless an HO geometry representa-
tion is used in conjunction with the BEM. Non-uniform rational b-spline (NURBS)
surfaces are the most widely adopted HO geometry modelling technique in various
disciplines due to their many advantages. However, a typical mesh created out of
NURBS surfaces contain both triangular and quadrilateral elements while formulat-
ing LCN based on Gaussian quadrature rules on triangular elements have limitations.
A new class of Newton-Cotes quadrature rules for triangles is proposed to facilitate
incorporating NURBS surfaces into the HO LCN.
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Contributions

There are four scientific contributions included in this thesis. They are listed below.

Contribution #1 presented in Chapter 3: On the Equivalence of RWG
Method of Moments and the Locally Corrected Nyström Method for Solv-
ing the Electric Field Integral Equation, Reprint form IEEE Transactions on
Antennas and Propagation. (Published)

The equivalence of Rao-Wilton-Glisson (RWG) method-of-moments (MoM) and the
first-order locally corrected Nyström (LCN) method is established. The resulting
numerical scheme is a point-based discretization of the vector-potential electric field
integral equation (EFIE) and is termed RWG-via-LCN. Due to the current continuity
enforcing nature of the RWG basis functions, RWG-via-LCN ensures current conti-
nuity and produces more accurate results than the first-order LCN while forming a 4
times smaller and better conditioned matrix.

Contribution #2 presented in Chapter 4: Exact Relationship between the
Locally Corrected Nyström Scheme and RWG Moment Method for the
Mixed-Potential Integral Equation, Reprint form IEEE Transactions on Anten-
nas and Propagation. (Published)

As an extension to the work presented in Chapter 3, the relationship between first-
and zeroth-order LCN and the RWG MoM has been established and used to de-
rive the current continuity enforcing point-based discretizaion of the mixed-potential
(MP) EFIE. It is shown that in addition to the effect of current continuity enforce-
ment on first-order LCN, analytical cancellation of line charge integrals appearing
in the MP EFIE formulation, has a great impact on the accuracy of the resulting
numerical method named MP RWG-via-LCN.

Contribution #3 presented in Chapter 5: On Achieving High-Order Con-
vergence to the Correct Answer with the Locally Corrected NysrömMethod,
Appearing herein for the first time.
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The patch size limitation for the high-order (HO) LCN is explained based on the
Nyquist criterion. It is shown that the patch size is not only limited by the frequency,
but also the order of the discretization. Also, a new method for predicting the op-
timal number of unknowns for a desired accuracy in HO LCN is proposed. Finally,
HO imperative in electromagnetic simulations has been demonstrated by analysing
the analytical and numerical solutions of scattering from an electrically large sphere
with large dynamic range in the solution using Mie series, RWG MoM and HO LCN.

Contribution #4 presented in Chapter 6: On New Triangle Quadrature
Rules for the Locally Corrected Nyström Method Formulated on NURBS
Generated Bézier Surfaces in 3D, Reprint form IEEE Transactions on Antennas
and Propagation (Under Review).

It has been shown that incorporating non-uniform rational b-spline (NURBS) surfaces
into boundary element methods (BEM) can increase the computational efficiency. In
order to combine the LCN method with NURBS, the LCN method has to be for-
mulated on both quadrilateral and triangular elements, as NURBS generated Bézier
meshes include both triangular and quadrilateral elements. Formulating LCN on tri-
angles has limitations due to the lack of LCN appropriate arbitrary order quadrature
rules for triangles. A new family of quadrature rules for triangles has been proposed
to be used in LCN for orders from 0 to 9, inclusively.
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Chapter 1

Introduction

By Mohammad Shafieipour in partial fulfilment of the requirements of the degree of

Doctor of Philosophy (Ph.D.), March 2016.

1.1 Motivation

On May 16th, 2011, Human Rights Council of the United Nations General As-

sembly declared access to the Internet a basic human right that enables individuals

to “exercise their right to freedom of opinion and expression” [2]. Such powerful

statement by the UN would not have been possible without abundant production of

efficient and easy-to-use electronic devices which owes its availability to rapid sim-

ulation of electromagnetic fields propagating in tiniest electronic chips to massive

base stations. This example, among others, demonstrates that numerical techniques

used to provide such simulations are an important part of today’s human life. In

this Ph.D. thesis we study existing and novel techniques for such numerical analysis,

namely, computational electromagnetic (CEM) analysis of three-dimensional (3D)

scattering problems.



1.1. Motivation 2

(a) (b) (c)

Figure 1.1: DE (a) vs. IE (b,c) discretizaion of a scattering problem which has a
homogeneous (e.g. metallic) sphere as the scattering object in a homogeneous medium
(e.g. free-space). a) is the cross section of the volumetric mesh that discretizes the
object and the surrounding medium and can be used in DE techniques, b) is the cross
section of the volumetric mesh that discretizes the object and can be used in volume
IE techniques, c) is the cross section of the surface mesh that discretizes the boundary
of the object and can be used in boundary element techniques.

1.1.1 Formulation

There are in general two types of formulations applicable to scattering problems;

differential equation (DE) based formulations [3, 4] and integral equation (IE) based

formulations [5]. While they both originate in Maxwell’s equations, they have a fun-

damental difference in that DE based methods are formulated for the electromagnetic

fields in the entire space while IE techniques involve unknown field quantities only on

the surface of the scatterer or in its volume. These fields can then be used to evaluate

the electromagnetic fields everywhere else. As a result, discretization of the DEs of

CEM involves volume meshes including both the scatterer and the surrounding space

(Fig 1.1.a) whereas the IE techniques only discretize the scatterer itself (Figs 1.1.b

and 1.1.c). Furthermore, in solving DEs an electromagnetic field propagates from
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point A to point B through discretized space. Thus in every step of the propagation

a small amount of error is added to the solution leading to large phase errors in larger

examples. Therefore, as the size of the problem is increased, denser discretizations

are required to maintain the same error leading to even larger problem size. In con-

trast, in IE methods propagation of fields from point A to point B is performed using

Green’s functions which are commonly in the form of a closed-form and exact ex-

pression. Therefore, IE methods eliminate discretization dispersion errors to a large

extent.

Form the above discussion, it is tempting to conclude that “in general” an IE

method requires less computational resources (computational time and memory) to

solve a given scattering problem than a DE technique would require for the same

problem. This however, is not true for all cases. The reason for it is that in DEs

the pertinent electromagnetic interactions are local in nature and lead to a sparse

matrix equation as a result of discretization. Interactions in IEs, on the other hand,

are global and result in a dense system of equations. Thus when solving a particular

scattering problem, an IE method might end up using more computational resources

than a DE technique as solving a dense matrix may become computationally more

expensive than solving sparse matrix equation of a larger size. Besides, Green’s func-

tion for a particular problem might not be available and deriving Green’s functions

can lead to complicated mathematical challenges (e.g. in inhomogeneous and/or non-

linear media). Nevertheless, DE techniques can not practically be applied to certain

electrically large problems as dense discretization of the entire domain results in very

large number of unknowns (trillions of unknowns according to my observations) mak-

ing them unsolvable even with today’s powerful state of the art supercomputers. On

the other hand, assuming that the Green’s function for such problem is available, so-
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lutions can be realized by taking advantage of the reduction in number of unknowns

through IE techniques and solving the resultant dense matrix using fast iterative or

direct matrix implicit algorithms which allow for solving dense matrices up to billions

of unknowns [5–14].

In the class of IE formulations, both volume and surface based methods are avail-

able. Volume integral equation (VIE) formulations solve for the unknown field quan-

tities within the volume of the scatterer (Fig 1.1.b) whereas surface integral equations

(SIE) are formulated for the unknown field quantities on the boundary of the scat-

terer (Fig 1.1.c) and the resultant numerical methods are commonly referred to as

boundary element methods (BEM). VIE techniques have been shown to be more ef-

ficient than BEMs in solving problems involving inhomogeneous dielectrics as well

as thin layered homogenous non-conducting materials whereas BEMs based on SIE

formulations are most efficient in computing the unknown fields in the presence of

conducting materials and/or homogenous resonant dielectrics [5]. In this Ph.D. thesis

we focus on the later and therefore we adopt BEMs based on SIE formulations.

1.1.2 Discretizaion

1.1.2.1 Rokhlin’s Dogma

Choosing a proper mathematical formulation for the problem of interest is followed

by using a proper discretization scheme in order to numerically obtain the solution.

While Maxwell’s equations are the foundations for mathematical formulation of elec-

tromagnetic problems, a set of rules envisioned by Prof. Vladimir Rokhlin1 can be

used to safeguard the integrity of scientific computing. These rules have been referred
1Prof. Rokhlin is best known for the introduction of the fast multipole method (FMM) in

1985 [15]. He is currently a professor of Computer Science and Mathematics at Yale University.
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to as Rokhlin’s Dogma and presented in the form of the following rules [16]

Methods must be fast (1.1)

Errors must be controlled (1.2)

Methods must be high order (1.3)

Discretizations must be point based (1.4)

Formulations must be well conditioned (1.5)

God did not invent polynomials, he invented exponentials (1.6)

Any violation from the above rules results in an inadequate CEM technique causing

problems ranging from small inefficiencies to severe paralyzing effects. In [1], we

excluded the rule (1.6) from the list as it seemed to us too abstract for such discussion.

Our later understandings however, made us realize that even the rule (1.6) can be

seen as a practical guideline for numerical techniques. In this Ph.D. dissertation, we

will do our best to abide by these rules and will give reasons as to why any of these six

rules should not be overlooked whenever our experience, our observation or previous

work can explain.

1.1.2.2 High-Order LCN Imperative due to Rokhlin’s Dogma

In order to numerically solve SIEs, they must be discretized. As SIEs integrate

the unknown quantities residing on the boundary of the object, discretization should

be done by approximating the integrals using appropriate sums over the boundary.

However, in order to account for arbitrary shaped objects, transformations of integrals

into sums can only be done by representing the object’s boundary as small 2D discrete

fragments commonly known as elements or patches. Figure 1.2 depicts various types of
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(c)(a) (b) (d)

Figure 1.2: Different types of 2D elements used in an element-based discretization of
SIEs.

2D elements. Once elements over the boundary are available, a preferred quadrature

rule can be used to compute the integrals on the surface of these patches and by

adding contributions from all patches, the unknown quantity can be evaluated. If low-

order (LO) functions are used to approximate the solution on flat faceted elements

(Fig. 1.2b,d), the resulting discretization scheme is referred to as a LO method. In

contrast, a discretization scheme that allows for arbitrary order approximation of the

solution based on high-order (HO) surface representation (Fig. 1.2a,c) is called an HO

method1. While both LO and HO schemes can satisfy rule (1.2) by controlling the

accuracy through mesh refinement, HO methods are exponentially more efficient [1,

17–20] as they can control the accuracy by applying HO quadrature rules in addition

to reducing the size of the elements. In other words, HO schemes provide solutions

which exhibit ε = O(hp) error in the solution where h is the characteristic size of the

mesh elements and p is the order of the discretization, while LO methods can only

provide solutions with error ε = O(h). This is a manifestation of rule (1.3). Therefore,

in this Ph.D. work we do not limit our discussion to classical LO techniques and will

also discuss HO techniques.
1Sometimes in the CEM community, a method that either uses HO approximating functions or

HO elements is called an HO method. However, for a method to exhibit exponential efficiency, it
has to have both features [1, 17,19,20].
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(c)(a) (b) (d)

Figure 1.3: Different types of 2D elements used in a point-based discretization of
SIEs.

Apart from being LO or HO, a discretization scheme can either be point-based

or element-based. If the pertinent interactions are defined based on points (point-to-

point interactions), the integrals are approximated only on specific set of points on

a patch (Fig. 1.3) and the resultant method is referred to as a point-based method,

otherwise the method is formulated using method-of-moments (MoM) [20–23] where

interactions are defined based on elements and these methods are commonly referred

to as element-based methods1. While element-based methods typically produce ma-

trices with better conditioning compared to that of point-based methods, element-

based methods suffer from two major disadvantages; 1) an MoM based interaction is

computed by taking the inner product of the IE which needs computations of double

integrations. This dramatically increases the matrix fill time specially if the method

is HO [20], and 2) acceleration methods such as the multilevel fast multipole algo-

rithm (MLFMA) can not efficiently accelerate element-based interactions as they do

not allow for construction of imbalanced oct-tree structures. Point-based methods on

the other hand, require computation of single reaction integrals which leads to signif-

icantly shorter matrix fill times compared to that of MoM at HOs, and further, these
1Please refer to Section 7.2.4.1 for more insight about the terms “point-based” and “element-

based” mentioned by Prof. Gedney.
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methods can efficiently be accelerated using the MLFMA by adapting the depth of

the oct-tree to the disparity of the mesh [7, 24]. Therefore it is important to apply a

point-based method in CEM which is a manifestation of rule (1.4). Despite the avail-

ability of point-matched MoM techniques [25,26] which can efficiently be accelerated

by the MLFMA, these techniques inherit the inner product testing from MoM and

are not a suitable candidate for an HO scheme due to large matrix fill times. The

locally corrected Nyström method (LCN) [18,19] on the other hand, is a point-based

method which inherently satisfies rule (1.4) and can efficiently provide HO solutions1.

From the above discussion one can see that the HO LCN method equipped with

fast iterative or fast direct solvers satisfies all rules in Rokhlin’s Dogma with the excep-

tion that it does not guarantee rule (1.5). In order to accomplish better conditioned

matrices several techniques have been suggested for particular examples [27–29] but a

general solution is not available to date and constitutes an open research problem [1]2.

In this thesis, the LCN method is used to discretize SIEs of CEM and whenever neces-

sary, error-controlled MLFMA acceleration based on Rokhlin’s diagonal translators [1]

is applied to solve large scale examples.

1.2 Purpose of Research

As was described above, the LCN method has several advantages compared with

MoM. However, the existence of MoM in CEM originates in 1950s and as a result a

significant amount of work can be found addressing numerical issues in MoM eclipsing

the relatively new LCN (proposed in the 1990s) as a practical BEM method. Conse-

quently, MoM remains the dominating BEM technique in the industry [30–32,34,35].
1See Prof. Gedney’s comment in Section 7.2.4.2.
2Please refer to Section 7.2.4.3 for more information about this pointed out by Prof. Gedney.
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In this thesis, several novel techniques are introduced in an attempt to close the gap

between theoretical capabilities of the LCN and its practical use.

1.3 Computations

1.3.1 Commercial Software Packages

There are multiple commercial software packages available for EM simulations

[30–32,34,35]. It is probably wise to say that for an EM software package to be com-

prehensive, it ideally needs to have both differential and integral equation techniques,

both of which with the LO and HO capabilities. This is because for a particular

problem of interest, either of these techniques might perform best. For the purpose

of validating results for which analytical solutions are not available, in this thesis, we

use the software Wave3D provided by CEMWorks, Inc. [35]. Other than the process

of geometry creation, mesh generation, and visualization of the computed fields, its

core is based on broadband MoM analysis accelerated with error-controllable Mul-

tilevel Fast Multipole Algorithm (MLFMA). Therefore, its results are conveniently

compared with the results obtained from the techniques studied in this thesis. Nev-

ertheless, other commercial software can also be used for the same analysis and there

is no restriction on using Wave3D to validate results of this thesis.

1.3.2 Computing Platform

Most of the simulation results presented in this dissertation obtained by either

parallel or serial computations, have been carried out on the advanced computing

platform Grex SGI Altix XE 1300 cluster at WestGrid, part of the Compute Canada

[37]. At the time of our simulations, Grex is equipped with 316 compute nodes, each
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with two 6-core Intel Xeon X5650 2.66GHz processors (Intel Westmere architecture),

292 nodes of which have 48GB of memory and the other 24 nodes have 96GB of

memory. In this research, the Intel C++ Compiler is used.

1.4 Outline of Thesis

This thesis has 7 chapters. They are summarized below:

• Chapter 1: A brief introduction and motivation of the work is given. Some

detail about the utilized computing platform and commercial software is also

provided.

• Chapter 2: The theory behind SIE formulations is reviewed and the elec-

tric field integral equation (EFIE) is derived from Maxwell’s equations. The

advantages of using Rao-Wilton-Glisson (RWG) basis functions in MoM when

discretizing the EFIE is also reviewed. The author’s point-of-view towards a

simple description of the LCN method is also given in this chapter.

• Chapter 3: The equivalence of RWGMoM and LCN is established. The result-

ing numerical scheme is shown to be a point-based RWG MoM discretization of

the vector-potential (VP) EFIE. It has a 4 times smaller and better conditioned

matrix compared to that of the first-order LCN. It is preferred over the classical

element-based MoM due to its point-based nature and at the same time it is

computationally more efficient than the first-order LCN.

• Chapter 4: As an extension to the the work in Chapter 3, the exact relationship

of the RWG MoM and LCN is derived for the mixed-potential (MP) EFIE by

using first- and zeroth-order LCN to compute VP and scalar-potential terms of
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the MP EFIE. Due to the analytical cancellation of the line charge contributions,

it is shown that RWGMoM discretization of the MP EFIE is more accurate than

discretizing the VP EFIE via the RWGMoM where the line charge contributions

are left to be cancelled numerically.

• Chapter 5: The patch size limitation for HO LCN method is discussed in

accordance with the Nyquist criterion. It is shown that the patch size is not

only limited by the wavelength, but it is also related to the order of the dis-

cretization. A new method for predicting the optimal number of unknowns for

a desired accuracy is proposed. The motivation towards HO LCN compared to

LO methods is demonstrated by analysing solutions with large dynamic range.

• Chapter 6: A new set of quadrature rules to be applied to LCN on triangular

Bézier elements is proposed based on equidistant Newton-Cotes quadrature for-

mulae. Compared to existing Gaussian quadrature rules, they are more suitable

for LCN as they prevent the EFIE from suffering from high condition numbers

in the local correction system and the global impedance matrix. The new fam-

ily of quadrature rules are stable and effective in LCN for orders from 0 to 9,

inclusively.

• Chapter 7: The work presented in this dissertation is concluded in this chapter.

Also, comments, corrections, and suggestions of the external examiner for the

entire dissertation provided by Prof. Stephen D. Gedney are also addressed in

this chapter. Finally, possible future research directions are discussed.
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Chapter 2

Mathematical Formulation

By Mohammad Shafieipour in partial fulfilment of the requirements of the degree of

Doctor of Philosophy (Ph.D.), March 2016.

In this Chapter we review the theory behind surface integral equation (SIE) formu-

lations. We first provide an overview of fundamental formulas needed for obtaining

SIEs and then provide mathematical derivation of the electric field integral equation

(EFIE). The chapter is finished by reviewing the advantages of using Rao-Wilton-

Glisson (RWG) basis functions in discretizing the EFIE.

2.1 Fundamental Formulas

In this section we briefly discuss the fundamental formulas that are used to define

SIE formulations, namely, Maxwell’s and Helmholtz’s Equations.
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2.1.1 Maxwell’s Equations

In 1873, James Clerk Maxwell published A Treaties on Electricity and Magnetism,

his complete presentation of the laws of electromagnetics (EM) which is regarded as

one of the greatest contributions in the 19th century and the most impactful discovery

in the history of humanity (according to Einstein). In it, he mathematically formu-

lated/corrected the EM laws that were discovered by Gauss, Faraday and Ampére

through experiments. What is quite interesting (at least to me), is that for about a

decade there was not a general understanding of his work as Maxwell made no effort

to condense or simplify his work, aiming to be comprehensive rather than understand-

able. In the key chapter, entitled “General Equations of the Electromagnetic Field”,

he wrote:

These may be regarded as the principal relations among the quantities we
have been considering, some could be combined, but our object is not to
obtain compactness in the mathematical formulae.

It was Oliver Heaviside who effectively discovered Maxwell’s equations from about the

thousand pages of Maxwell’s treaties and presented them to the research community

in 1883 similar to the form we know them today as four compact and understandable

equations1. In this chapter, I will try to play Oliver’s role rather than Maxwell’s, that

is to make SIE formulations understandable and compact, rather than trying to be

comprehensive. For that, a large number of great texts already exist [5, 39–42].

Maxwell’s equations can be written in various forms depending on the assumptions

made for a particular problem. In this work, the EM fields are assumed to be produced

by a time harmonic electric source whose current density is denoted by J(r) and its

charge density is denoted by ρ(r) where a time harmonic variation of ejωt is assumed.
1More interesting facts about Maxwell’s equations as well as other great equations can be found

in [38].
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Therefore the electric and magnetic vector fields are denoted in their time harmonic

forms by E(r) and H(r), respectively. Furthermore, the medium where the fields

exist is assumed to be linear, isotropic and homogeneous. Under these assumptions,

Maxwell’s equations are written as [42]

Gauss law:∇ · E(r) = ρ(r)
ε

(2.1)

Gauss law–magnetic:∇ ·H(r) = 0 (2.2)

Faraday’s law:∇× E(r) = −jωµH(r) (2.3)

Maxwell-Ampére law:∇×H(r) = jωεE(r) + J(r) (2.4)

where ε is the electric permittivity and µ is the magnetic permeability of the medium.

Equations (2.1)-(2.3) are named after their experimental discoverers but (2.4) is

named after both Maxwell and the experimental discoverer (Ampére) as Maxwell

not only formulated it, but he also corrected it1.

2.1.2 Vector Helmholtz’s (Wave) Equations

It is quite safe to say that the most important phenomena that was understood

with the help of Maxwell’s equations is the existence and propagation of EM waves.

The equations that describe wave propagation are called vector Helmholtz’s equations

or simply vector wave equations and can be derived from Maxwell’s equations as

follows. By re-arranging Faraday’s law (2.3), one can write

H(r) = −1
jωµ

[∇× E(r)] (2.5)

1An interesting intuitive tutorial of Maxwell’s equations can be found online [43].
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If we substitute (2.5) into Maxwell-Ampére law (2.4) and assuming homogeneity of

permeability µ, we get

−1
jωµ

[∇×∇× E(r)] = jωεE(r) + J(r) (2.6)

Multiplying the above equation by (−jωµ) we get

∇×∇× E(r)− k2E(r) = −jωµJ(r) (2.7)

where k2 = ω2µε. Equation (2.7) is called inhomogeneous Helmholtz’s (wave) equa-

tion for the electric field1. Its left hand side enforces wave behaviour of the electric

field which would propagate due to the excitation given on its right hand side. Under

the assumption of homogeneous permittivity ε, it can also be shown that the wave

equation for the magnetic field is

∇×∇×H(r)− k2H(r) = ∇× J(r) (2.8)

Equations (2.7) and (2.8) will later be used to derive Green’s functions and SIEs.

2.2 Surface Integral Equations

One of the requirements for formulating IE methods is to find the appropriate

Green’s functions. Herein, we discuss two types of Green’s functions; the dyadic

Green’s function of the electric type and the dyadic Green’s function of the magnetic

type, both for free-space.
1The wave equation is usually written in a different form by simplifying the first component of

the left hand side of (2.7). In this chapter however, this form of the wave equation is chosen since
it will be used later to derive Green’s functions.
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2.2.1 Free-Space Dyadic Green’s Functions

2.2.1.1 Electric Type

The dyadic Green’s function of the electric type Ge0(r, r′) is, by definition, a

dyadic operator1 that relates the electric vector field E(r) to vector current J(r) by

E(r) = −jωµ
ˆ
V

Ge0(r, r′) · J(r′)dV ′ (2.9)

where V is the volume containing the current J(r) and the subscript “0” represents

the free-space condition indicating that the volume is an unbounded homogeneous

medium with constant permittivity and permeability. Substituting (2.9) in the wave

equation in (2.7) we get

− jωµ
ˆ
V

∇×∇×Ge0(r, r′) · J(r′)dV ′ + jωµk2
ˆ
V

Ge0(r, r′) · J(r′)dV ′

=− jωµJ(r)
(2.10)

By using the definition of the Dirac delta function δ(r, r′) and the unit dyad2 I we

can modify the second line and write

− jωµ
ˆ
V

∇×∇×Ge0(r, r′) · J(r′)dV ′ + jωµk2
ˆ
V

Ge0(r, r′) · J(r′)dV ′

=− jωµ
ˆ
V

Iδ(r− r′) · J(r′)dV ′
(2.11)

1A dyadic operator can be interpreted as a (3× 3) matrix, similar to representing a vector as a
matrix of (3× 1).

2The unit dyad is a dyadic operator that does not change a vector. A general example is the
(3× 3) identity matrix, but it can have other forms in particular situations such as in [44].
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For an arbitrary J(r), the above equation can only be satisfied if the following holds

[40]

∇×∇×Ge0(r, r′)− k2Ge0(r, r′) = Iδ(r− r′) (2.12)

Therefore the dyadic Green’s function of the electric type can be obtained by solving

(2.12). It can be shown with different techniques [40] that the solution to (2.12) is

Ge0(r, r′) = (I + 1
k2∇∇)G0(r, r′)

= IG0(r, r′) + 1
k2∇∇G0(r, r′)

(2.13)

where the double gradient operator ∇∇ produces a dyadic by acting on a scalar

function and the unit dyad I multiplied by the scalar function G0 is also a dyadic

term. The first term on the right hand side of (2.13) is sometimes referred to as the

vector-potential component of the dyadic Ge0 and 1
k2∇∇G0(r, r′) is sometimes called

the scalar-potential component of the dyadic Green’s function of the electric type.

The scalar function G0 is the free-space Green’s function

G0(r, r′) = e−jk|r−r′|

4π|r− r′|
. (2.14)

It can be shown that the dyadic Green’s function of the electric type Ge0(r, r′) has

the following symmetric properties [40]

Ge0(r, r′) = Ge0(r, r′)T (2.15)

Ge0(r, r′) = Ge0(r′, r) (2.16)

where superscript T denotes transposition. These properties will be used in Section

2.2.2 to proof the equivalence principle.



2.2. Surface Integral Equations 18

2.2.1.2 Magnetic Type

Taking curl of the definition of the electric type dyadic Green’s function (2.9) we

get

∇× E(r) = −jωµ
ˆ
V

∇×Ge0(r, r′) · J(r′)dV ′ (2.17)

Using Faraday’s law (2.3) we can then write

H(r) =
ˆ
V

∇×Ge0(r, r′) · J(r′)dV ′ (2.18)

which is the magnetic type counterpart for (2.9). Thus the dyadic Green’s function

of the magnetic type is obtained by

Gm0(r, r′) = ∇×Ge0(r, r′) (2.19)

where Ge0 is defined in (2.13). Further, due to ∇× 1
k2∇∇G0(r, r′) = 0, (2.19) can be

written as

Gm0(r, r′) = ∇× IG0(r, r′). (2.20)

Since Gm0 is the curl of Ge0, it will have its own symmetry properties [40]

Gm0(r, r′) = −Gm0(r, r′)T (2.21)

Gm0(r, r′) = −Gm0(r′, r) (2.22)

They will be needed in the next section to formulate the equivalence principle.
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S∞→∞  

S0

V0

J

V∞

E(r)

Vs

Figure 2.1: The vector BVP used to define the equivalence principle.

2.2.2 Equivalence Principle for the Electric Field

Consider the vector boundary value problem (BVP) shown in Fig. 2.1. The

volume V∞ is exterior to the object (scatterer) and has boundaries S0 and a large

spherical surface S∞ whose radius approaches infinity (S∞ → ∞), thus it contains

sources J supported by Vs but does not contain the scatterer which is bounded in V0

with surface S0. The electric field E(r) in the exterior region V∞ satisfies the vector

wave equation in (2.7). If we post-multiply (2.7) by the dyadic Ge0 we get

[∇×∇× E(r)] ·Ge0(r, r′)− k2E(r) ·Ge0(r, r′) = −jωµJ(r) ·Ge0(r, r′) (2.23)

and if we pre-multiply (2.12) by the electric field E(r) we get

E(r) · [∇×∇×Ge0(r, r′)]− k2E(r) ·Ge0(r, r′) = E(r) · Iδ(r− r′) (2.24)
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By subtracting (2.24) from (2.23) and knowing that the operator unit dyad I does

not change a vector, we can then write

[∇×∇× E(r)] ·Ge0(r, r′)− E(r) · [∇×∇×Ge0(r, r′)]

= −jωµJ(r) ·Ge0(r, r′)− E(r)δ(r− r′)
(2.25)

Integrating the above equation over the exterior region V∞ we get

ˆ
V∞

{
[∇×∇× E(r)] ·Ge0(r, r′)− E(r) · [∇×∇×Ge0(r, r′)]

}
dV

= −jωµ
ˆ
V∞

[
J(r) ·Ge0(r, r′)

]
dV −

ˆ
V∞

[E(r)δ(r− r′)] dV
(2.26)

The left hand side of (2.26) has a form similar to the vector-dyadic Green’s second

identity [41]

ˆ
V

[
(∇×∇×A) ·D−A(∇×∇×D)

]
dV

=
ˆ
S

[
(n̂×A) · (∇×D) + (n̂×∇×A) ·D

]
dS

(2.27)

where V is a volume enclosed by S and n̂ is the outward unit normal on S. In (2.26),

V∞ is enclosed by surfaces S0 and S∞ thus using the identity (2.27) it can be written

as

ˆ
S0+S∞

{
[n̂(r)× E(r)] · [∇×Ge0(r, r′)] + [n̂(r)×∇× E(r)] ·Ge0(r, r′)

}
dS

= −jωµ
ˆ
V∞

[
J(r) ·Ge0(r, r′)

]
dV −

ˆ
V∞

[E(r)δ(r− r′)] dV.
(2.28)

In the BVP which we consider here, all sources J(r) are bound to be in Vs and no

source exists at infinity. This has two consequences; 1) the integration of [J(r) ·

Ge0(r, r′)] over V∞ in (2.28) is the same as integrating it over Vs, and, 2) by applying
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the radiation condition we have E(r)→ 0 and Ge0(r, r′)→ 0 on S∞ which eliminates

the surface integral over S∞ in (2.28) [40]. Consequently (2.28) can be written as

ˆ
S0

{
[n̂(r)× E(r)] · [∇×Ge0(r, r′)] + [n̂(r)×∇× E(r)] ·Ge0(r, r′)

}
dS

= −jωµ
ˆ
Vs

[
J(r) ·Ge0(r, r′)

]
dV −

ˆ
V∞

[E(r)δ(r− r′)] dV
(2.29)

Using the definition of the dyadic Green’s function of the magnetic type Gm0 in (2.20)

and by applying n̂(r)× on Faraday’s law n̂(r)×∇× E(r) = −jωµ[n̂(r)×H(r)], we

can modify the first line of (2.29) and write

ˆ
S0

{
[n̂(r)× E(r)] ·Gm0(r, r′)− jωµ[n̂(r)×H(r)] ·Ge0(r, r′)

}
dS

= −jωµ
ˆ
Vs

[
J(r) ·Ge0(r, r′)

]
dV −

ˆ
V∞

[E(r)δ(r− r′)] dV
(2.30)

Taking advantage of the delta function sifting property we have
´
V∞

[E(r)δ(r− r′)] dV =

E(r′) if (r′ ∈ V∞) since δ(r − r′) cancels all values of the electric field except at r′.

On the other hand if (r′ /∈ V∞) or equivalently (r′ ∈ V0), we always have δ(r− r′) = 0

and consequently
´
V∞

[E(r)δ(r− r′)] dV = 0. Thus we can write

ˆ
S0

{
[n̂(r)× E(r)] ·Gm0(r, r′)− jωµ[n̂(r)×H(r)] ·Ge0(r, r′)

}
dS

= −jωµ
ˆ
Vs

[
J(r) ·Ge0(r, r′)

]
dV −


E(r′), r′ ∈ V∞

0, r′ ∈ V0

(2.31)

Usually in EM literature, the position vector r is used to indicate observation locations

and r′ is used for source locations. Thus we need to change the notation of (2.30)
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from r to r′ and vice versa

ˆ
S0

{
[n̂(r′)× E(r′)] ·Gm0(r′, r)− jωµ[n̂(r′)×H(r′)] ·Ge0(r′, r)

}
dS ′

= −jωµ
ˆ
Vs

[
J(r′) ·Ge0(r′, r)

]
dV ′ −


E(r), r ∈ V∞

0, r ∈ V0

(2.32)

By using the symmetry property of the dyadic Green’s function of the magnetic type

in (2.21) we can flip the order of the dot product in [n̂(r′)×E(r′)]·Gm0(r′, r) and write

it as−Gm0(r′, r)·[n̂(r′)×E(r′)] due to the transposition that takes place in flipping the

order of the dot product. We can then use the other symmetry property of the same

dyadic Green’s function (2.22) to exchange r and r′ of the Green’s function and write

the same component as Gm0(r, r′) · [n̂(r′) × E(r′)]. After applying similar algebraic

manipulations on
{
[n̂(r′)×H(r′)] ·Ge0(r′, r)

}
and

{
[J(r′) ·Ge0(r′, r)]

}
using (2.15)

and (2.16) we can re-write (2.32) as

ˆ
S0

{
Gm0(r, r′) · [n̂(r′)× E(r′)]− jωµGe0(r, r′) · [n̂(r′)×H(r′)]

}
dS ′

= −jωµ
ˆ
Vs

[
Ge0(r′, r) · J(r′)

]
dV ′ −


E(r), r ∈ V∞

0, r ∈ V0

(2.33)

It is common to call tangential component of the electric field E× n̂ as the equivalent

magnetic current Jm and refer to the tangential component of the magnetic field n̂×H
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as the equivalent electric current Je1

Electric current: Je(r) = n̂(r)×H(r) (2.34)

Magnetic current: Jm(r) = E(r)× n̂(r) = −n̂(r)× E(r) (2.35)

Using the above two definitions and by re-arranging (2.33) we get

ˆ
S0

[
Gm0(r, r′) · Jm(r′) + jωµGe0(r, r′) · Je(r′)

]
dS ′

− jωµ
ˆ
Vs

[
Ge0(r′, r) · J(r′)

]
dV ′ =


E(r), r ∈ V∞

0, r ∈ V0

(2.36)

In (2.36), if we assume that the scatterer is absent, the surface integral vanishes and

the resultant electric field is called the incident field Einc

Einc(r) = −jωµ
ˆ
Vs

[
Ge0(r′, r) · J(r′)

]
dV ′ (2.37)

Therefore we can re-write (2.36) as

ˆ
S0

[
Gm0(r, r′) · Jm(r′) + jωµGe0(r, r′) · Je(r′)

]
dS ′ + Einc(r) =


E(r), r ∈ V∞

0, r ∈ V0

(2.38)

Equation (2.38) is called equivalence principle for the electric field with the following

implications:

1. For the considered BVP, the electric field at any point outside the scatterer E(r)
1The equivalent electric current Je is in fact the familiar electric current that flows on the surface

of a conductor but the equivalent magnetic current Jm does not have a physical meaning and is
introduced for convenience.
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Figure 2.2: Illustration of the the equivalence principle for the electric field formulated
in (2.38).

is produced by two contributions; 1) the primary sources J in Vs producing the

incident electric field Einc, and 2) the secondary sources Je,Jm induced on the

surface of the scatterer S0 producing the scattered electric filed Escat. This is

the vector electric field analogue with the Huygens’ principle1 As shown in Fig.

2.2, representation of the electric field (2.38) at arbitrary location r is nothing

else but a superposition of spherical waves (Green’s functions Gm0 and Ge0)

emanating from each point of the surface S0 just as was prescribed by Huygen.

2. For the considered BVP, the field representation in accordance with the equiv-

alence principle at any point inside the scatterer is zero regardless of whether

the scatterer is penetrable or not. This is called extinction theorem.

The equivalence principle shown in (2.38) is an important result and is used to derive

EFIE as explained in the next section.
1The Huygen’s principle which was first observed in 1678 states that every point of a wave front

acts as a source of a secondary spherical wave.
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2.2.3 Electric Field Integral Equation (EFIE)

From boundary conditions between free-space and perfect conductors we know

that the electric field can only approach an ideally conducting surface normally and

there is no tangential component of the electric field n̂ × E = 0 on the surface of a

perfect electric conductor (PEC) scatterer and hence there will not be any equivalent

magnetic current Jm produced on such surface

n̂(r′)× E(r′) = −Jm(r′) = 0, r′ ∈ S0 (2.39)

Thus for a PEC scatterer (object), the equivalence principle in (2.38) becomes

jωµ

ˆ
S0

[Ge0(r, r′) · Je(r′)]dS ′ + Einc(r) =


E(r), r ∈ V∞

0, r ∈ V0

(2.40)

In order to establish an IE on the surface of the object, n̂(r)× should be applied to

(2.40)

n̂(r)×
{
jωµ

ˆ
S0

[Ge0(r, r′) · Je(r′)]dS ′ + Einc(r)
}

= n̂(r)×


E(r), r ∈ V∞

0, r ∈ V0

(2.41)

To find the appropriate right hand side for (2.41), three scenarios should be considered

1. The observation point r is on S0 as a limit from outside of the object (r ∈ S+
0 )

2. The observation point r is on S0 as a limit from inside of the object (r ∈ S−0 )

3. The observation point r is on S0 right on the object’s boundary (r ∈ S0)
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Using the boundary condition in (2.39), we can see that in all three scenarios, the

right hand side is actually zero

n̂(r)×
{
jωµ

ˆ
S0

[Ge0(r, r′) · Je(r′)]dS ′ + Einc(r)
}

=


0, r ∈ S+

0

0, r ∈ S−0

0, r ∈ S

(2.42)

By re-arranging (2.42) we can write

jωµ

[
n̂(r)×

ˆ
S0

Ge0(r, r′) · Je(r′)dS ′
]

= −n̂(r)× Einc(r), r ∈ S (2.43)

This is the SIE for the electric field (i.e. EFIE) and can be discretized using IE

numerical techniques such as the method-of-moments (MoM) [23] and the locally

corrected Nyström (LCN) [19] method to find the equivalent electric current Je on

the surface of the PEC. Once Je is found, the electric field E anywhere in the domain

can be calculated using (2.40).

2.3 Discretizing the EFIE using MoM and RWG

Basis Functions

In Chapter 3, we discuss discretizing the EFIE using both MoM and LCN in such

a way that their equivalence can be established. In this section, a more familiar

form of MoM is used to discretize the EFIE using Rao-Wilton-Glisson (RWG) basis

functions and its relationship to the form of RWG MoM described in Chapter 3 is

given. The advantages of using RWG basis functions in MoM are also reviewed.
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2.3.1 The MoM System

The EFIE in (2.43) can be re-written in the following form

t(r) ·
ˆ
S0

G(r, r′) · Je(r′)dS ′ = −t(r) · Einc(r), r ∈ S (2.44)

where t(r) is an arbitrary test vector which is tangential to S0 and G(r, r′) =

jωµGe0(r, r′). The procedure in which MoM converts the EFIE (2.44) to a ma-

trix equation is by expanding the unknown function Je over a set of basis functions

[f ]

Je(r) '
N∑
n=1

Infn(r) (2.45)

and performing Galerkin’s testing of the scattered field to form a set of algebraic

system of equations

[Z] · [I] = [V ] (2.46)

where [I] contains the coefficients of expansion in (2.45), [V ] is the discrete samples

of the excitation and [Z] is the impedance matrix. Elements of [V ] are

[V ]m = −〈Einc, fm〉 m = 1, 2, ..., N (2.47)

and the elements of [Z] are the interactions between the basis fn and test fm functions

which are defined as

[Z]m,n = 〈〈G, fn〉, fm〉, m, n = 1, 2, ..., N. (2.48)
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In (2.47) and (2.48), the inner product 〈x,y〉 is defined as

〈x,y〉 ≡
ˆ
S

x · ydS (2.49)

which is a symmetric operation [23].

2.3.2 The RWG Basis Functions

As shown above, one important part of discretizing EFIE via MoM, is to choose

an appropriate basis function f to expand the unknown function Je in terms of basis

functions. Defining a unique basis function for the entire domain S0 is difficult.

Therefore in RWG MoM, S0 is subdivided into small triangular flat patches. Fig. 2.3

depicts discretization of an open surface (Fig. 2.3a) into a mesh of flat triangular

elements (Fig. 2.3b). The highlighted edge in Fig. 2.3b, is an arbitrary edge in the

mesh and it represents the red line depicted in the true geometry in Fig. 2.3a. From

physics of EM fields, it is known that the unknown field Je over the PEC, should not

result in spurious accumulation of charge density in the vicinity of this hypothetical

line. Therefore, the current flowing into this line must be the same as the current

flowing out of this line. In other words, the net current flowing into this hypothetical

line should be zero, or equivalently current continuity should be preserved across the

edge depicted in Fig. 2.3b. Defining basis functions that enforce continuity of current,

will help accurately model the physics of the unknown field (i.e. Je) yielding more

accurate numerical results.

In 1982, S. M. Rao, D. R. Wilton, and A. W. Glisson, proposed the use of a special

type of basis functions (later known as RWG basis functions due the authors’ names)
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(a)

(b)

Figure 2.3: Discretization of an open surface PEC with the aid of flat triangular
elements. The highlighted edge in (a) is an arbitrary curved hypothetical line on
the true geometry, which is represented in the mesh (b) by a flat edge between two
triangles. According to physics of EM fields, the unknown field of the EFIE (Je)
should not result in accumulation of charge on this edge. RWG basis functions ensure
that all the non-boundary edges in (b) are free of charge and hence improve the
accuracy of the numerical method.
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Figure 2.4: (a) Elements of RWG basis functions described in (2.50). (b) Depiction
of the normal component of RWG basis functions.

when discretizing the EFIE via the MoM [23]. They are defined as

fn(r) =



ln
2A+

n
ρ+
n (r), r ∈ T+

n

ln
2A−n

ρ−n (r), r ∈ T−n

0, otherwise

(2.50)

where A±n is the area of triangle T±n , ln is the length of the edge, and ρ±n (r) are

the position vectors defined with respect to the free vertex of T±n as depicted in

Fig. 2.4. The RWG basis functions defined in (2.50), have the following important

characteristics:

1. In a pair of triangles (Fig. 2.4a or b), the normal component of fn is zero on all

edges, except on the common edge which has length ln.

2. On the common edge, the normal component of ρ±n has magnitude of 2A±n
ln

as

seen in Fig. 2.4b. Therefore, the normal component of fn is normalized to 1 in

the vicinity of the common edge (e.g. ri = rj in Fig. 2.4b) and is continuos
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across the common edge.

The above characteristics, ensure that all edges of T+
n and T−n are free of line charges

and hence no spurious charge will be produced as a result of using RWG basis func-

tions in discretizing the EFIE. This can be further elaborated by analysing the surface

charge density on the triangle pair shown in Fig. 2.4 which can be computed as the

surface divergence of fn. By representing the RWG basis functions in (2.50) in the

Cartesian coordinates, it can be shown that the surface divergence of fn is (see Section

9.13 in [39])

∇‖ · fn(r) =



ln
A+

n
, r ∈ T+

n

−ln
A−n
, r ∈ T−n

0, otherwise

. (2.51)

This shows that the charge density is independent of the position vector r in each

triangle. Moreover, by summing (2.51) over the surface of T+
n and T−n , it can be seen

that the net charge on the surface of each triangle pair is zero ln
A+

n
A+
n − ln

A−n
A−n = 0

ensuring no spurious accumulation of charge over the triangle pair.

2.3.3 RWG versus Half RWG Basis Functions

By knowing that the RWG basis functions in (2.50) are defined for a pair of

triangles and there are three basis functions (edges) associated with each triangle, for a

closed geometry1, the total number of RWG basis functions becomes N = 1.5P where

P is the total number of triangles. Therefore the matrix equation in (2.46) has the

size of N = 1.5P , and the interactions defined in (2.48) may be referred to as RWG-

to-RWG interactions. It is also possible to define RWG MoM discretization, based
1To simplify discussion, it is assumed that the geometry is closed.



2.4. Discretizing the EFIE using the LCN scheme 32

on ramp-function R definition of RWG basis functions [51] which are defined on an

individual triangle rather than a pair of triangles. In Chapter 3 we use ramp-functions

in forming RWG MoM system as it facilitates establishing equivalence between RWG

MoM and first-order LCN. By comparing the ramp-functions Rk in Fig. 3.1b and

the RWG functions in Fig. 2.4, it is realized that depending on the direction of the

nth RWG basis function on the pth triangle, the kth ramp-function is Rp
k = ±fn.

Interactions defined based on R rather than f are referred to as ramp-to-ramp (or

half RWG) interactions and can form a 3P -size impedance matrix. As discussed

in Chapter 3, such impedance matrix can be converted to [Z] using sparse matrix

converters.

2.4 Discretizing the EFIE using the LCN scheme

Chapters 3 and 4 are dedicated to establishing equivalence between RWG MoM

and LCN discretizations of the EFIE in its vector-potential and mixed-potential

forms. In doing so, the exact relationship of the first- and zeroth-order LCN to

respectively vector-potential and scalar-potential in RWG MoM is derived. Refer-

ence [1] gives a clear description of the discretization of the EFIE using arbitrary

order LCN using the standard approach [18, 19]. In order to avoid repetitions, we

refer the reader to [1] for such discussion. In the next section, we give a somewhat

new description of the LCN scheme for discretizing an arbitrary scalar kernel.
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2.5 A New Way of Describing The Locally Cor-

rected Nyström Method

In this section, we give a new approach to describing the LCN method for discretiz-

ing a general scalar kernel with the hope that it complements the already existing

descriptions of the LCN method [1,18,19,55].

2.5.1 History of LCN

Simply put, the locally-corrected Nyström (LCN) method is the generalization

of the classical Nyström method so as to compute IEs with singular kernels. To

elaborate, the Nyström method is an old procedure which was introduced in the

year 1930 [52,55] that converts an IE into a sum where appropriate quadrature rules

are used to compute the sum. However, the Nyström method can not be used to

numerically compute IEs with singular kernels. In 1998 [19], the Nyström method was

generalized in order for it to be able to handle singular kernels such as the EFIE and

the magnetic field integral equation (MFIE) by “locally correcting” the quadrature

rule of interest. As such, this new method was given the name “locally-corrected”

Nyström (LCN) method.

2.5.2 Quadrature Rules

Chances are, that the reader of this dissertation is already familiar with how

quadrature rules are used, or even how they are defined. However, for the sake

of a smooth understanding of the LCN method, we start from explaining how a

quadrature rule for a 2D surface is used and defined. A quadrature rule can be used
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Figure 2.5: The canonical quadrilateral. Any quadrilateral in the 3D domain r(ξ, η)
can be mapped into the canonical domain (ξ, η).

to approximate an integral over the canonical quadrilateral (Fig. 2.5) as follows1

Q−1∑
q=0

wqf(ξq, ηq) '
ˆ 1

−1

ˆ 1

−1
f(ξ, η)dξdη (2.52)

where Q is the number of quadrature points over the 2D surface (ξq, ηq), wq are the

weights, and f(ξ, η) is the known integrand and can be computed everywhere includ-

ing (ξq, ηq). Note that any arbitrary quadrilateral can be mapped into the canonical

quadrilateral using coordinate transformation in 3D (i.e. r(ξ, η) = (x, y, z)T ) for a

particular geometry modelling such as curvilinear elements [42, 96], non-uniform ra-

tional b-spline (NURBS) surfaces [122], Bézier elements [121,122], or mapping a cube

to an exact sphere [54]. Therefore (2.52) can be used to approximate integrals over an

arbitrary 2D surface with 4 edges including both flat and curvilinear elements as de-

picted in Figs. 1.2c and 1.2d by applying the Jacobian of the transformation √g from

f(ξ, η) to f(r(ξ, η)) [1,42]. By looking at (2.52) one can realize that in order to define

a quadrature rule, for a given Q, one has to define/compute two sets of parameters.
1Note that quadrature rules can be applied to triangular 2D surfaces such as the work of Chapter

6, but here we limit our discussion to quadrilateral 2D elements.
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1) The quadrature points with abscissas (ξq, ηq), and 2) the weights wq at the quadra-

ture points. It is possible to define the abscissas right on the boundary or outside of

the canonical domain |ξ|, |η| ≥ 1 [136], but such quadrature points are not suitable

for LCN and therefore we assume −1 < ξ, η < 1. Once the quadrature abscissas are

determined, one can use different methods to compute the corresponding quadrature

weights. Depending on the position of the quadrature points, a 2D quadrature rule

with Q points can exactly integrate polynomials of up to some degree over the 2D

domain and usually as Q increases, so does the degree to which integration can be

performed without any error (exact integration). It is to be noted that if a function

can not be represented by a polynomial of finite degree (as the electromagnetic fields

often are), using a quadrature rule to integrate such integrand will always result in

numerical error. However, by increasing the order of the quadrature rule1, one can

approximate the integral to a prescribed accuracy which in turn increases the number

of quadrature points Q and hence the computational complexity.

2.5.2.1 Obtaining 2D Quadrature Weights Analytically

One way to populate the surface of the 2D domain by quadrature points, is to

use the product of 1D rules. Therefore it is important to discuss the order of 1D

rules. If equidistant points are used, the corresponding 1D Q point quadrature rule

is of order P = Q − 1 if Q is even. But if Q is odd these types of quadrature

rules can exactly integrate polynomials of up to degree P = Q. Quadrature rules

with equidistant points are also called Newton-Cotes rules [133, 134] and are the

earliest forms of quadrature rules. Later, Gauss observed that by not restricting the

quadrature abscissas on equidistant points, it is possible to create quadrature rules
1A quadrature rule is said to be of order n if it can exactly integrate polynomials of up to the

nth degree.
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Table 2.1: Quadrature abscissas Xi and weights Wi for 1D Gauss-Legendre rules
having Q quadrature points.

Q i Wi Xi
1 0 2 0
2 0 1 -0.57735026918963
2 1 1 0.57735026918963
3 0 0.55555555555556 -0.77459666924148
3 1 0.88888888888889 0
3 2 0.55555555555556 0.77459666924148
4 0 0.34785484513745 -0.86113631159405
4 1 0.65214515486255 -0.33998104358486
4 2 0.65214515486255 0.33998104358486
4 3 0.34785484513745 0.86113631159405

that can provide better accuracy in terms of the number of quadrature points. In

fact, one can analytically evaluate [55] both quadrature abscissas and weights for a

1D Q point quadrature rule that can integrate polynomials of up to degree 2Q − 1

which is considerably higher than the order of Newton-Cotes rules. These types

of quadrature rules are referred to as Gauss-Legendre quadrature rules and their

product are typically used when numerical evaluation of integrals over quadrilaterals

are performed. This is primality due to their high performance in terms of quadrature

points (hence unknowns) with respect to the accuracy as well as the fact that arbitrary

order Gauss-Legendre quadrate rules can be obtained. In other words, there is no

limitation in increasing Q and obtaining a 1D Gauss-Legendre rule with order 2Q−1.

Therefore, in this section we limit our discussion to Gauss-Legendre rules1.

Table 2.1 tabulates the ith quadrature abscissa −1 < Xi < 1 and weight Wi

for a Q point 1D Gauss-Legendre rule. The tabulated Xi and Wi can be computed

analytically for arbitrary values of Q [53]. If we use the 3-point 1D Gauss-Legendre

rule in Table 2.1 in both dimensions of the 2D coordinate system (ξ, η), we are
1In Chapter 6 we apply Newton-Cotes rules to Bézier triangles which are in the form of degenerate

quadrilaterals.
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Table 2.2: The Q = 9 point 2D Gauss-Legendre quadrature abscissas (ξq, ηq) and
weights wq formed by the product of Q = 3 point 1D Gauss-Legendre rule. Note
that W0 = 0.55555555555556, W1 = 0.88888888888889, W2 = 0.55555555555556,
X0 = −0.77459666924148, X1 = 0, and X2 = 0.77459666924148 are taken from 1D
abscissas and weights of Table 2.1 for the case of Q = 3. The same weights wq can
numerically be obtained with machine precision as explained in the next subsection
(Section 2.5.2.2) and given in Equation (2.61).

Q Q q wq ηq ξq

3 Q2 = 9 0 W0 · W0 = 0.30864197530865 X0 X0
3 Q2 = 9 1 W0 · W1 = 0.49382716049383 X0 X1
3 Q2 = 9 2 W0 · W2 = 0.30864197530865 X0 X2
3 Q2 = 9 3 W1 · W0 = 0.49382716049383 X1 X0
3 Q2 = 9 4 W1 · W1 = 0.79012345679013 X1 X1
3 Q2 = 9 5 W1 · W2 = 0.49382716049383 X1 X2
3 Q2 = 9 6 W2 · W0 = 0.30864197530865 X2 X0
3 Q2 = 9 7 W2 · W1 = 0.49382716049383 X2 X1
3 Q2 = 9 8 W2 · W2 = 0.30864197530865 X2 X2

effectively creating 2D Gauss-Legendre rule using the product of 3-point 1D Gauss-

Legendre rules. Such product results in a 2D Gauss-Legendre quadrature rule with

the abscissas and weights tabulated in Table. 2.2 and depicted in Fig. 2.6.

In order to examine the performance of the 2D quadrature rule defined in Table

2.2, we consider integrating the polynomial F p(ξ, η) which has degree p and is formed

by the sum of K = (p+ 1)(p+ 2)/2 functions that span the space of monomials1

ξiηj, i = 0..p, j = 0..p− i. (2.53)
1In this section, monomials ξiηj are used to facilitate easer implementation by the reader, Leg-

endre polynomials can also be used in (2.53), (2.57), (2.58), and (2.65).
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Figure 2.6: Depiction of the abscissas in Table 2.2.

It has the form of binomial expansion and for p = 0..4, the polynomial is

F 0(ξ, η) = 1

F 1(ξ, η) = 1 + ξ + η

F 2(ξ, η) = 1 + ξ + η + ξ2 + ξη + η2

F 3(ξ, η) = 1 + ξ + η + ξ2 + ξη + η2 + ξ3 + ξ2η + ξη2 + η3

F 4(ξ, η) = 1 + ξ + η + ξ2 + ξη + η2 + ξ3 + ξ2η + ξη2 + η3 + ξ4 + ξ3η + ξ2η2 + ξη3 + η4.

(2.54)

Here, we use the quadrature rule of Table 2.2 on F p(ξ, η) with different values of p.

Therefore in (2.52) we have Q = 9, f(ξ, η) = F p(ξ, η), and wq, ξq, ηq that are tabulated

in Table 2.2. The relative error is tabulated in Table 2.3 which is computed as

Errp =
|∑8

q=0wqF
p(ξq, ηq)−

´ 1
−1

´ 1
−1 F

p(ξ, η)dξdη|
|
´ 1
−1

´ 1
−1 F

p(ξ, η)dξdη|
(2.55)

where the double integration is done using adaptive integration routines to machine
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Table 2.3: The relative error (2.55) associated with a Q = 9 point 2D Gauss-Legendre
rule obtained from the product of 1D Gauss-Legendre rules with Q = 3 points, when
integrating an integrand of order p.

Q Q p Errp

3 9 0 9.99200722162641E-015
3 9 1 1.01030295240889E-014
3 9 2 7.72715225139109E-015
3 9 3 7.72715225139109E-015
3 9 4 4.89404435344967E-015
3 9 5 4.89404435344967E-015
3 9 6 1.76039119804376E-002
3 9 7 1.76039119804377E-002

precision1. From Table 2.3, it can clearly be seen that a 9-point 2D Gauss-Legendre

rule (Q = 9) that is created by the product of 3-point 1D Gauss-Legendre rules

(Q = 3), can exactly integrate the polynomial of up to the 5th degree (p = 5). This

is consistent with the behaviour expected from a 2D Q-point Gauss-Legendre rule

obtained from the product of Q-point 1D Gauss-Legendre rules. In particular, if a

2D Gauss-Legendre rule uses Q-point 1D Gauss-Legendre rules in both directions

of the coordinate system, it is expected to exactly integrate polynomials of up to

order 2Q− 1 over the 2D domain. Therefore, to integrate a polynomial of degree p,

there exists a computationally optimal 2D Gauss-Legendre quadrature rule that can

perform the integration over the 2D domain with machine precision.
1By recursively subdividing the integration domain (hence the term “adaptive”), quadrature rules

such as Gauss-Legendre rules can provide results with machine precision due to reducing the size of
the domain and irrespective of the order of the applied quadrature rule. The smaller the integration
domain, the smaller the variations of the integrand over the considered domain. Therefore for an
arbitrary small integration domain, practically any given function can exactly be approximated with
polynomial of order p for which a quadrature rule of order p exists to exactly integrate it. Adaptive
integration is accurate but time consuming as it applies quadrature rules to many small enough
intervals in order to produce results with prescribed precision. Mathematical software packages (e.g.
PTC Mathcad [36]) use adaptive integrations to compute an integral with an accuracy prescribed
by the user.
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2.5.2.2 Obtaining 2D Quadrature Weights Numerically

Instead of finding the quadrature weights and abscissas analytically demonstrated

in the previous subsection, it is also possible to find the weights numerically by

assuming that the quadrature abscissas are known. This can be obtained by solving

the linear system



S0
0 S0

1 . . . S0
Q−1

S1
0 S1

1 . . . S1
Q−1

... ... . . . ...

SK−1
0 SK−1

1 . . . SK−1
Q−1


·



w0

w1

...

wQ−1


=



b0

b1

...

bK−1


⇒ [S]−1 · [b] = [w] (2.56)

where the matrix on the left hand side [S] is called the “Vandermonde Matrix” [6]

and has entries

Skq = ξiqη
j
q , i = 0..p, j = 0..p (2.57)

This means that we have k = 0...(p+1)2−1 and thus in (2.56) we have K = (p+1)2.

By choosing Q = K, the Vandermonde matrix becomes square. The order of the

Vandermonde system in (2.56) is dictated by the order of the resulting polynomial

in (2.57) and since K = Q, the order of the Vandermonde matrix is at least p as a

polynomial complete to order p requires only j = 0..p − i seen in (2.53) and (2.54).

A 2D Vandermonde matrix can analytically be inverted [6]. However, due to its

relatively small size, it is computationally efficient to obtain [S]−1 numerically, by for

example LU-Decomposition. Entries of the right hand side bk are

bk =
ˆ 1

−1

ˆ 1

−1
ξiηjdξdη, i = 0..p, j = 0..p (2.58)

where the double integration can be computed adaptively using quadrature rules.
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Now we solve the the linear system in (2.56) to obtain the weights of Table 2.2.

Since K = Q = 9, [S] becomes a (9×9) matrix which has order p = 2 as i, j = 0, 1, 2.

Note that this order p = 2 is different from the order 2Q− 1 in which the resulting

quadrature weights can exactly compute the polynomials of up to that order. Using

(2.57) the resulting Vandermonde matrix is

[S] =



1 1 1 1 1 1 1 1 1

−x1 −x1 −x1 0 0 0 x1 x1 x1

x2 x2 x2 0 0 0 x2 x2 x2

−x1 0 x1 −x1 0 x1 −x1 0 x1

x2 0 −x2 0 0 0 −x2 0 x2

−x3 0 x3 0 0 0 −x3 0 x3

x2 0 x2 x2 0 x2 x2 0 x2

−x3 0 −x3 0 0 0 x3 0 x3

x4 0 x4 0 0 0 x4 0 x4



(2.59)

where x1 = 0.77459666924148, x2 = 0.59999999999999, x3 = 0.46475800154488, and

x4 = 0.35999999999999. The values of the right hand side are computed using (2.58)

and are

[b]T = [4, 0, y1, 0, 0, 0, y1, 0, y2] (2.60)

where the transpose of the matrix is shown to save space, y1 = 1.33333333333333,
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and y2 = 0.44444444444444. Finally the weights [w] are computed by (2.56) as

[w] =



0.30864197530865

0.49382716049383

0.30864197530865

0.49382716049383

0.79012345679011

0.49382716049383

0.30864197530865

0.49382716049383

0.30864197530865



(2.61)

which are exactly (with machine precision) the same as those analytically found in

Section 2.5.2.1 (Table 2.2).

2.5.3 The Nyström Method

Consider the integral equation

φ(r) =
ˆ
S

K(r, r′)J(r′)ds′ (2.62)

which can be used to evaluate the unknown function J over the surface S where φ

and K are known functions. Assuming that K is smooth, the Nyström method can

be used to evaluate such integral equation by first discretizing the surface S into Np

smaller pieces (elements)

φ(r) =
Np∑
p=1

ˆ
Sp

K(r, r′)J(r′)ds′. (2.63)
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Such geometry discretization is done as S is so large and
´
S
K(r, r′)J(r′)ds′ in (2.62)

can not be approximated using the quadrature rules explained in Section 2.5.2. There-

fore, S is broken into Np elements so that the value of
´
Sp
K(r, r′)J(r′)ds′ in (2.63)

can accurately be evaluated over Sp using quadrature rules as follows

φ(rqm) =
Np∑
p=1

Nq∑
q=1

wqpK(rqm , rqp)J(rqp) (2.64)

where rqm is the qth quadrature point on the observation patch m, rqp is the qth

quadrature point on the source patch p, and wqp is the qth quadrature weight on

the source element p. The system of linear algebraic equation in (2.64) has size

(NpNq×NpNq) and can be numerically evaluated to obtain the the values of J at the

quadrature points J(rq).

It is important to note that the weights wqp in (2.64) are exactly the weights of the

chosen quadrature rule such as the Gauss-Legendre rules discussed in Section 2.5.2.

These weights are sometimes referred to as regular weights they belong to regular

quadrature rules (e.g. Gauss-Legendre rules). Therefore, it is more efficient to obtain

the weights for the Nyström method analytically (Section 2.5.2.1), store them in a

lookup table and use them in (2.64).

2.5.4 The Generalized Nyström Method

The procedure of the Nyström method is valid so long as the kernel K in (2.62) to

(2.64) is smooth. Therefore it can not be applied to problems with singular or near-

singular kernels such as the Green’s function of the EM. By analyzing the Nyström

method, one can realize1 that it is possible to generalize this method to a method that
1The structure of this entire section (Section 2.5) is laid out in its current form to facilitate this

realization. This is a key point in understanding LCN and thus expressed explicitly here.



2.5. A New Way of Describing The Locally Corrected Nyström Method 44

is applicable to any arbitrary kernel K̃ (singular or smooth) by numerically obtaining

the weights (Section 2.5.2.2) where the desired kernel K̃ is applied to (2.58) to obtain

the right hand side1

b̃k =
ˆ 1

−1

ˆ 1

−1
K̃ · ξiηjdξdη, i = 0..p, j = 0..p (2.65)

Subsequently, by using the values of (2.65), the following system can obtain weights

w̃q capable of computing the integral with singular or non-singular kernels



S0
0 S0

1 . . . S0
Q−1

S1
0 S1

1 . . . S1
Q−1

... ... . . . ...

SK−1
0 SK−1

1 . . . SK−1
Q−1





w̃0

w̃1

...

w̃Q−1


=



b̃0

b̃1

...

b̃K−1


(2.66)

where the entries of the Vandermonde matrix [S] are the same as those in (2.57).

Therefore the system of linear algebraic equations of the generalized Nyström Method

can be written as

φ(rqm) =
Np∑
p=1

Nq∑
q=1

w̃qp,qmJ(rqp) (2.67)

where it is noticed that the weights w̃qp,qm are dependent on both the observation

and source points. This means that unlike the Nyström method, these generalized

weights w̃q can not be precomputed, but has to be computed for each pair of qm and

qp and the desired kernel K̃, i.e. K̃(rqm , rqp). The Vandermonde matrix [S] on the

other hand is unique for a given order (quadrature abscissas) and its inverse can be

precomputed and used to solve (2.66) for all cases of K̃(rqm , rqp). Therefore inverting

[S] numerically (e.g. LU-Decomposition) would not alter the computational efficiency
1In other words, the regular quadrature weights in Section 2.5.2.2 are obtained by assuming that

K̃ = 1 in (2.65) and are thus only applicable to smooth kernels.
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of such method.

In this thesis, we call this procedure, the “generalized” Nyström method as it is

a generalization of the Nyström method from smooth kernels to arbitrary kernels.

It can also be called the “globally-corrected” Nyström method as opposed to the

“locally-corrected” Nyström method explained next.

2.5.5 The Locally Corrected Nyström Method

The generalized Nyström Method, is not computationally efficient as it does not

allow for the use of regular weights wq in the system of linear algebraic equations.

However, the Green’s functions of the EM, become smooth as the distance between

the source element p and observation point qm grows. Therefore, the LCN method [19]

suggests the use of the Nyström method when the separation between qm and p is

so large (p ∈ far) that the kernel is smooth, and the use of the generalized Nyström

method, when (p ∈ near) and the weights has to be “locally-corrected”1 due to the

singular behaviour of the kernel for near source element p and observation point qm.

Mathematically this can be written as

φ(rqm) =
∑
p∈far

Nq∑
q=1

wqpK(rqm , rqp)J(rqp) +
∑

p∈near

Nq∑
q=1

w̃qp,qmJ(rqp) (2.68)

where {near} ∪ {far} = {1, ..., Np}. The (NpNq × NpNq) system of linear algebraic

equations in (2.68) can be solved to obtain the values of J at the quadrature points.

The solution can then be interpolated locally (see (16)-(18) in [19]) over a given patch

p to obtain the solution at an arbitrary point on Sp.

The order of the LCN method, is indicated by the order of the Vandermonde
1Locally-corrected as opposed to globally-corrected performed in the generalized Nyström

method.
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matrix p in (2.66). Typically, the characteristic size of the elements is denoted as h.

The error in (2.68) behaves according to the convergence rate O(hp)1 and thus by

increasing Np (h-refinement) and/or Nq (p-refinement) the accuracy of (2.68) can be

increased to a prescribed precision.

2.6 Conclusion

In this chapter we reviewed the basic mathematical formulas behind SIE formu-

lation techniques. In particular, we derived the EFIE all the way from Maxwell’s

equations in order to present a concise overview of how an integral equation formula-

tion is derived. We also reviewed the nature of RWG basis functions and explained the

motivation towards using them when discretizing the EFIE. A new way of describing

the LCN method was also given as a complementary note to LCN descriptions avail-

able in the literature. In the following two chapters, RWG basis functions are used in

conjunction with the LCN method when discretizing the vector-potential EFIE and

the mixed-potential EFIE, respectively. The resulting numerical schemes combine the

benefits of the RWG basis functions and the point-based nature of the LCN method.

1In Section 5.3.1 we show that in practice a more general convergence rate should be defined for
LCN and we introduce an experimental procedure in Section 5.3.2 that can accurately approximate
it.
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Chapter 3

On the Equivalence of RWG

Method of Moments and the

Locally Corrected Nyström

Method for Solving the Electric

Field Integral Equation

c©2014 IEEE. Reprinted, with permission, from Mohammad Shafieipour, Ian
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Abstract

The first-order locally corrected Nyström (LCN) method for the electric field in-

tegral equation is modified to ensure continuity of the current between triangular

elements of the mesh. Rao-Wilton-Glisson (RWG) basis functions are used to create

a conversion matrix from the LCN representation of the current to the RWG method

of moments (MoM) representation of the current in order to enforce continuity of cur-

rent between adjacent triangular flat patches. Benefits of the method are two fold:

first, it provides 4 times reduction in degrees of freedom and removes unacceptable

error levels in first-order LCN implementations, second, the method can be viewed

as a point-based discretization of the RWG MoM offering improved efficiency in its

acceleration with the fast multipole algorithm.
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3.1 Introduction

Today’s design of wireless communication systems such as antennas and microwave

circuits critically relies on accurate electromagnetic analysis. While there are many

techniques available for such analysis in general, those based on the numerical solu-

tion of integral equations [1, 5, 17–23, 25, 26, 46–49] become an exclusive choice when

pertinent models are electrically large [5]. Solutions to such problems have recently

become possible due to the advent of fast iterative [5–9] and direct [10,12,14] matrix

implicit algorithms.

Discretization of integral equations can be performed in either point-based [1,18,

19,25,26,47,48] or element-based [17,21–23] manners and under either low-order (LO)

or higher-order (HO) approximations of the solution. HO solution methods have an

advantage over their LO counterparts by being exponentially more efficient [1] when

controlling the accuracy beyond one or two digits is required. The trade-off, however,

is that HO methods may be substantially more difficult to implement as they require

preservation of the desired accuracy throughout all stages of the numerical scheme

including: the mesh based representation of the geometry, choice of basis functions

approximating the unknown field, rules for integration of reaction integrals, evaluation

of matrix-vector products, and possibly others [1].

Point-based methods are particularly suitable for efficient acceleration by the mul-

tilevel fast multipole algorithm (MLFMA) [19,25,26,49] since they allow for the con-

struction of an imbalanced oct-tree structure with the depth of the tree adapted to

the disparity in point sampling density over the mesh [7,24]. Classical element-based

(or basis-based) method of moments (MoM) discretization schemes [20,21,23] do not

allow for such adaptation without being cast into a point-based form [25, 26] and

therefore render analysis of multiscale models inefficient even when fast algorithms
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are employed. Because of this adaptivity point-based methods such as the locally

corrected Nyström (LCN) method [1,18,19,46–49] or quadrature sampled MoM tech-

niques [5, 25, 26] (aka point-matched MoM [18, 20]) are the methods of choice when

HO solutions of large multiscale problems are required. The major disadvantage of

the LCN discretization is that it does not enforce current continuity across element

boundaries unlike MoM discretization schemes for which construction of hierarchical

basis function spaces can be used to maintain field continuity at all orders [21]. While

enforcing continuity at the boundaries between elements makes only a minor impact

on the solution accuracy at HOs, incorporating field continuity at LOs may affect

the accuracy profoundly [1], [46]. Consequently, MoM achieves a certain accuracy

with fewer unknowns when orders lesser than 3 are sought for the solution of the

electric field integral equation (EFIE) in both 2D [46] and 3D [1]. Thus it is difficult

to justify using LCN for the solution of the EFIE at LOs (i.e. order 1 and 2). In

particular, a first-order LCN solution of the EFIE is often substantially less accurate

when compared to its first-order Rao-Wilton-Glisson (RWG) MoM counterpart [1],

despite using four times as many degrees of freedom per element1.

Nevertheless, one can conclude from [18] that MoM and LCN are equivalent solu-

tions if the following four conditions are met: (1) the same complete set of polynomials

of order P is preserved in both dimensions of the surface coordinate system in MoM’s

basis functions as well as the LCN’s local correction procedure yielding equal number

of degrees of freedom in both methods, (2) the MoM’s testing integrals are approxi-

mated with fixed-point quadratures of the same order P as the underlying quadrature

rule of the LCN, (3) the same near and far regions are defined in both methods, and

(4) the same numerical techniques are used to evaluate the near field integrals. Under
1See comment by Prof. Gedney in Section 7.2.6.1.
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these conditions LCN can be viewed as a particular point-based discretization of a

special case of MoM. In this paper, we extend this equivalence to the case of RWG

MoM and first-order LCN discretizations on triangular elements by establishing an

exact relationship between matrices of these two unequally sized systems. Such equiv-

alence allows to eliminate the loss of accuracy in first-order LCN discretization of the

EFIE and reduce the number of degrees of freedom. Specifically, sparse matrices

are introduced such that their pre- and post-multiplications of the LCN generated

impedance matrix produces exactly the RWG MoM impedance matrix. The latter is

one quarter of the size of the original LCN impedance matrix and at the same time

produces more accurate solutions due to current continuity enforcement. The intro-

duced method can also be viewed as an alternative to the point-matched MoM for

casting the element-based RWG MoM into the form of a point-based discretization

which both preserves the continuity of current between adjacent mesh elements and

is more suitable for acceleration by the MLFMA.

This chapter is organized as follows. Sections 3.2 and 3.3 present a description

of the LCN method and RWG MoM, respectively. These sections provide sufficient

details of the near and far contributions to the LCN and RWG MoM impedance ma-

trices with the goal of explicitly identifying the relationship between the two systems.

Section 3.4 provides derivations of basis conversion matrices that allow conversion

from the LCN system to the RWG MoM system. Section 3.5 presents the numerical

results demonstrating the exactness of the derived conversion from LCN to RWG

MoM, and demonstrates the impact of enforcing continuity of current on the accu-

racy of the first-order LCN discretization of the EFIE and the conditioning of its

impedance matrix.
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Figure 3.1: (a) Point-based discretization of a PEC scatterer using triangular flat
patches (mesh), (b) “Half” RWG basis or ramp functions (R1,R2,R3), (c) Barycentric
triangle, and (d) Covariant unitary vectors a1 and a2 on a flat triangular patch with
reduced size (a1 = l2, a2 = l1).

3.2 The Locally Corrected Nyström Method

In this section we present the LCN formulation of the EFIE in order to compare

it to the RWG MoM system. Additional details on the LCN method can be found

in [19] and [18].

3.2.1 LCN Formulation

From the equivalence principle [39], the EFIE governing the induced electric cur-

rent density on a PEC scatterer described by a surface S is expressed as

t(r) ·
ˆ
S

G(r, r′) · J(r′)ds′ = −t(r) · Einc(r), r ∈ S (3.1)

where G is the dyadic Green’s function1 [40], t(r) is an arbitrary test vector tangential

to S and Einc is the incident electric field. The LCN method in general is capable of

being formulated for practically arbitrary surface discretizations but in this work we
1Note that in Chapter 2, this dyadic Green’s function is denoted as Ge0, but here the subscripts

are omitted as this chapter only deals with the dyadic Green’s function of the electric type in
free-space.
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restrict ourselves to triangular flat patches to establish its equivalence to RWG MoM.

Thus, the surface S is discretized into Np triangular flat patches

t(r) ·
Np∑
p=1

ˆ
Sp

G(r, r′) · J(r′)ds′ = −t(r) · Einc(r) (3.2)

In the LCN method, testing is done by means of the covariant unitary vectors1 tan-

gential to the surface defined as in [42]

a1 = ∂r
∂ξ
, a2 = ∂r

∂η
(3.3)

where the surface of the patch is locally defined by a two-dimensional space (ξ, η).

Note that for a given flat patch, a1 and a2 are constant. Testing the vector integral

equation in (3.2) yields a pair of scalar integral equations

ami ·
Np∑
p=1

ˆ
Sp

G(r, r′) · J(r′)ds′ = −ami · Einc(r) (3.4)

where i = 1, 2 and the superscript m indicates that ami corresponds to the observation

patch m. In order to numerically solve (3.4), J is expanded over a1 and a2 (J(r) =

J1(r)a1 + J2(r)a2)2 and a set of observation points is enforced

ami ·
Np∑
p=1

ˆ
Sp

G(rqm , r′) ·
[
J1(r′)ap1 + J2(r′)ap2

]
ds′ = −ami · Einc(rqm) (3.5)

1Covariant unitary vectors do not necessarily have unit length and the term unitary is due to
their relation to some other set of basis functions. This will be shown later in (3.34).

2Generally in the LCN method this is divided by the Jacobian √g which is beneficial since it will
cancel the Jacobian when the surface integral in (3.4) is mapped into barycentric (ξ, η) coordinates.
In this work however, √g is constant (twice the area) over triangular flat patches and will be omitted
from our notation.
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where the observation points rqm are chosen to be at the abscissa of the qth quadra-

ture point on the observation patch m (Fig. 3.1a) which will result in a square system

of equations when the integration in (3.5) is approximated by an Nq-point quadra-

ture rule. Due to its singular behaviour, the kernel G in (3.5) becomes a rapidly

varying function as the separation between the source and observation patches de-

creases1. Thus the integral in (3.5) cannot be approximated to a desired precision

with a fixed quadrature rule for the nearby source and observation triangles. This is

circumvented by employing a “locally-corrected” quadrature rule such that a set of

underlying polynomials weighted by the singular kernel are integrated exactly to a

given precision2 [19]. In the LCN method it is possible to use any arbitrary Nq-point

quadrature rule. However, in this work we limit ourselves to a 3-point quadrature

rule required for establishing its equivalence to RWG MoM. Hence (3.5) is discretized

as

∑
p∈far(m)

3∑
qp=1

[
ωi1qmqp·J

1(rqp) + ωi2qmqp·J
2(rqp)

]
+

∑
p∈near(m)

3∑
qp=1

[
ω̃i1qmqp·J

1(rqp) + ω̃i2qmqp·J
2(rqp)

]
= −ami · Einc(rqm)

(3.6)

where ωijqmqp
and ω̃ijqmqp

are the standard and locally-corrected weights, respectively,

evaluated for observation point rqm and source point rqp . Here, i = 1, 2 corresponds

to testing with ai and j = 1, 2 indicates the projection of current J on aj. The

locally-corrected quadrature rule effectively “corrects” the standard 3-point quadra-

ture scheme in order to evaluate the singular integrals. For consistency between the

two sets of weights, the abscissa points of the locally-corrected quadrature rule with
1This is true for every individual observation point rqm and source patch p. However, throughout

this paper and without loss of generality, we define near and far regions based on the distance
between the centroids of the source and observation elements to simplify notations.

2See Prof. Gedney’s comment in Section 7.2.6.2.
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weights ω̃ are chosen to be the same as those in the standard “regular” quadrature

rule having weights ω. This ensures that the unknowns are the same and is required

for implementing the MLFMA.

3.2.2 LCN System

The discretized EFIE in (3.6) is a linear system of 6Np equations with 6Np un-

knowns which can be written in matrix form as

[ZLCN] · [J ] = [E] (3.7)

where [J ] and [E] are the vectors of unknown coefficients and the right-hand-side,

respectively, and [ZLCN] is the impedance matrix and has the form

[ZLCN] =

 [Z far
11 ] [Z far

12 ]

[Z far
21 ] [Z far

22 ]

+

 [Znear
11 ] [Znear

12 ]

[Znear
21 ] [Znear

22 ]

 (3.8)

where [Z far
ij ] and [Znear

ij ] are respectively filled with regular quadrature weights ωij

and locally-corrected quadrature weights ω̃ij. In the standard LCN procedure, an

iterative or a direct linear solver is applied to (3.7) without attempting to enforce

continuity of the current.
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3.2.3 LCN Local Interactions

3.2.3.1 Far field

Referring back to (3.6), the qm, qpth entry of a (3 × 3) matrix [ωij] defining the

interactions between far patches m and p is simply

[ωij]qm,qp = ωqmωqpami ·G(rqm , rqp) · apj (3.9)

where ωqn is the standard quadrature weight associated with the abscissa point rqn on

patch n. Note that unlike standard LCN, the observation weight ωqm is included in

(3.9) (also later in (3.11)) in order to permit observation patch integrals analogous to

RWG MoM1. A (6× 6) element-to-element2 (local) impedance matrix for far patches

m and p can be defined as

[ω] =

 [ω11] [ω12]

[ω21] [ω22]

 (3.10)

3.2.3.2 Near field

To solve for the weights ω̃ijqmqp
, a set of scalar basis functions Fk(r) are distributed

over the source patch such that Jjk(r) = Fk(r)aj. In this work we limit ourselves up

to order one basis functions (k = 1, 2, 3) on triangular flat patches to establish LCN

equivalence to RWG MoM. Thus, we use F1(r) = 1, F2(r) = ξ(r) and F3(r) = η(r) as

the basis functions where ξ and η are barycentric coordinates defined on a triangle

as shown in Fig. 3.1c. These basis functions formed by the monomials (ξ, η) are

generally preferred on triangular patches due to their simplicity and effectiveness [19]
1See Prof. Gedney’s comment in Section 7.2.6.3.
2The term element-to-element refers to the interactions between quadrature points on the source

and observation elements (Fig. 3.1a) and should not be interpreted as LCN being an element-based
method.
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but here they are particularly adopted since they can be used to exactly represent

RWG basis functions as shown later in (3.30). The (3 × 3) matrix of the locally-

corrected quadrature weights [ω̃ij] defining the interactions between near patches m

and p can then be obtained by solving the system

3∑
qp=1

ω̃ijqmqp
Fk′(rqp) = ωqmami ·

ˆ
Sp

G(rqm , r′) · J
j
k′(r′)ds′ (3.11)

where i, j ∈ {1, 2} and qm ∈ {1, 2, 3}. The small linear (3 × 3) system of equations

in (3.11) can be solved to determine the locally-corrected weights ω̃ijqmqp
that will

accurately integrate all currents described by Jjk′(r′). In matrix form, (3.11) for

qm, k
′ = 1, 2, 3 can be written as

[L] · [ω̃ij]T = [κ̃j]T · [ami ] (3.12)

where superscript T denotes transposition and the ((3× 3)× (3× 1))1 matrix [ami ] =

[diag(ami )] is local to patch m. The qm, k′th entry of the ((3 × 3) × (3 × 1)) matrix

[κ̃j] is

[κ̃j]qm,k′ = ωqm

ˆ
Sp

G(rqm , r′) · J
j
k′(r′)ds′. (3.13)

In (3.12), [L] is a (3 × 3) Vandermonde matrix [50] independent of both the source

and observation patches2 with the k, qnth entry [L]k,qn = Fk(rqn). We can now define
1The notation ((A × B) × (C × D)) indicates that the matrix has (A × C) elements and each

element has (B×D) entries making the actual size of the matrix (AB×CD). The same convention
is used throughout the paper.

2Generally in LCN, [L] is dependent on the source patch due to the possibility of mixed-order
basis function sets, but in this work we have a unique (3 × 3) matrix since we limited the work to
F1(r), F2(r) and F3(r) required for the equivalence.
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a (6× 6) element-to-element impedance matrix for near patches m and p as

[ω̃] = [am]T ·
[
[κ̃1] [κ̃2]

]
·
(
[F ]−1

)T
(3.14)

where the ((3× 3)× (6× 1)) matrix [am] is local to patch m and is defined as

[am] =
[

[diag(am1 )] [diag(am2 )]
]

(3.15)

In (3.14), the (6× 6) matrix [F ] is

[F ] = [diag([L])] (3.16)

and its inverse [F ]−1 can be obtained analytically as [L] is a two-dimensional Vandermonde-

type system [6]. We would like to note here that the form of [ω̃] in (3.14) is chosen to

facilitate establishing equivalence between RWG MoM and LCN near interactions.

3.3 RWG Method of Moments

3.3.1 RWG MoM Formulation

Consider again (3.1) and (3.2). In RWG MoM, the surface current J(r′) is ap-

proximated using RWG basis function expansion on patch p

J(r′) '
3∑

k′=1
bpk′R

p
k′(r′), r′ in patch p (3.17)

where bpk′ are the current coefficients to be determined numerically. Since only a

single triangular element is considered, Rp
1, Rp

2 and Rp
3 are referred to as “half”
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RWG basis or ramp functions (Fig. 3.1b) [51] as opposed to the conventional RWG

basis functions which are defined for a pair of triangles and are formed by two ramp

functions [23]. The ramp functions are chosen here since they facilitate establishing

equivalence between first-order LCN and RWG MoM. By plugging (3.17) into (3.2),

and knowing that the current coefficients bpk′ are constant over an individual cell,

RWG MoM converts the EFIE into

t(r) ·
Np∑
p=1

3∑
k′=1

bpk′

ˆ
Sp

G(r, r′) ·Rp
k′(r)ds′ = −t(r) · Einc(r) (3.18)

Next, Galerkin’s testing is performed by taking the inner product of (3.18) with the

three ramp functions Rm
k (r) on the observation triangle Sm

ˆ
Sm

Rm
k (r) ·

Np∑
p=1

3∑
k′=1

bpk′

ˆ
Sp

G(r, r′) ·Rp
k′(r′)ds′

 ds = −
ˆ
Sm

Rm
k (r) · Einc(r)ds

(3.19)

where k ∈ {1, 2, 3} and m, p ∈ {1, 2, ..., Np}. The subscripts k, k′ are the ramp index

defined on the observation patch m and source patch p, respectively. Now a linear

system can be formed by approximating the outer integrals on both sides of (4.3)

3∑
qm=1

ωqmRm
k (rqm) ·

Np∑
p=1

3∑
k′=1

bpk′

ˆ
Sp

G(rqm , r′) ·R
p
k′(r′)ds′


= −

3∑
qm=1

ωqmRm
k (rqm) · Einc(r)

(3.20)

where the first-order approximation (3-point quadrature rule) is used as it allows us

to establish equivalence with the first-order LCN formulation.
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3.3.2 RWG-MoM System

The linear system of equations in (3.20) can be written in matrix form as

[z] · [b] = [v] (3.21)

where [b] (unknown coefficients) and [v] (right-hand-side terms) are (3Np×1) matrices

and [z] is the (3Np× 3Np) impedance matrix. Even though the linear system defined

in (3.21) can be solved as is, it does not produce satisfactory results since it does not

enforce continuity of the current across triangle edges. Therefore RWG MoM enforces

continuity of the current between elements by casting (3.21) into the form

(
[u]T · [z] · [u]

)
· [I] =

(
[u]T · [v]

)
[Z] · [I] = [V ]

(3.22)

where the (3Np×1.5Np) sparse matrix [u] unifies ramp functions into RWG functions1.

The 1.5Np-size linear system in (3.22) can be solved using an iterative or a direct linear

solver to obtain [I] and finally the ramp basis function coefficients are obtained by

[b] = [u] · [I] which gives the solution to the current J(r′) via (3.17). It is important

to realize that [Z] in (3.22) is 4 times smaller than [ZLCN] in (3.7) but the RWG

MoM linear system produces more accurate results since it preserves continuity of

the current across cell boundaries.
1To simply discussion and without loss of generality, it is assumed that 3Np is divisible by 2 and

the geometry is closed. Since two ramp functions contribute to an RWG function, each column of
[u] has two non-zero entries; 1 if the ramp and RWG functions have the same direction, and −1
otherwise.
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3.3.3 RWG MoM Local Interactions

To fill out the (3Np× 3Np) impedance matrix [z], the left side of (3.20) is reduced

to obtain the ramp-to-ramp (local) interactions between patches m and p

3∑
qm=1

ωqmRm
k (rqm) ·

ˆ
Sp

G(r, r′) ·Rp
k′(r′)ds′ (3.23)

3.3.3.1 Far field

In the case that the observation patch m and source patch p are well separated,

the kernel of the integral in (3.23) is smooth and is approximated by a fixed-order

quadrature rule. To establish equivalence with first-order LCN, the same first-order

quadrature rule used for LCN is applied

3∑
qm=1

ωqmRm
k (rqm) ·

3∑
qp=1

ωqpG(rqm , rqp) ·Rp
k′(rqp) (3.24)

In matrix form, the ramp-to-ramp (3× 3) impedance matrix for far patches m and p

can be expressed as

[zfar
mp] = [Rm]T · [g] · [Rp] (3.25)

where the qm, qpth element of the ((3× 3)× (3× 3)) matrix [g] is

[g]qm,qp = ωqmωqpG(rqm , rqp) (3.26)

and the ((3×3)×(3×1)) matrix [Rn] is local to the nth patch and its qn, kth element

is [Rn]qn,k = Rn
k (rqn).
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3.3.3.2 Near field

For the near field region, the convolutional integral in (3.23) must be performed

to the desired precision (2 digits). Thus the contribution to the ramp-to-ramp (3×3)

impedance matrix for near patches m and p is expressed as

[znear
mp ] = [Rm]T · [g̃] (3.27)

where the qm, k′th entry of the ((3× 3)× (3× 3)) matrix [g̃] is

[g̃]qm,k′ = ωqm

ˆ
Sp

G(rqm , r′) ·R
p
k′(r′)ds′. (3.28)

Note that the RWG MoM described above discretizes the vector-potential EFIE as

opposed to the mixed-potential EFIE [56], where the dyadic kernel in (3.28) is de-

composed into vector- and scalar-potentials and further simplification of the scalar-

potential is possible [23]. The vector-potential EFIE is adopted here since it is the

one used in the standard LCN formulation and is required for the sought equivalence.

3.4 RWG MoM via first-order LCN : RWG-via-

LCN

In this section, we establish exact relationships between ramp-to-ramp RWG

MoM impedance matrices ([zfar
mp], [znear

mp ]) and the first-order element-to-element LCN

impedance matrices ([ω], [ω̃]) using local conversion matrices. The resulting conver-

tors will then be used to derive RWG MoM from the first-order LCN discretization,

hence the name “RWG-via-LCN”. RWG-via-LCN is a discretization method that com-
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bines the benefits of both the point-based LCN formulation and current continuity of

RWG MoM.

3.4.1 RWG-via-LCN Formulation

By comparing (3.13) and (3.28) it is recognized that a relationship must be es-

tablished between Jjk′(r′) and Rp
k′(r′) in order to formulate RWG-via-LCN. Therefore

we begin by relating the basis functions used in the two methods. Supressing the

notational dependence on element p for simplicity, the three ramp functions Rk can

be represented by a cyclic rotation

Ri+1(r) = li+1

2A [li+2+1Si+1+1(r)− li+1+1Si+2+1(r)] (3.29)

where i ∈ {0, 1, 2} and the underline represents the modulo 2 operation (x = x mod

2). In (3.29), S1, S2 and S3 are the element shape functions [57], lk is the length of

the vector defined on the kth edge lk as shown in Fig. 3.1b and A is the triangle area.

By mapping the triangle in Fig. 3.1b to the barycentric triangle (Fig. 3.1c) we have

S1 = ξ, S2 = η and S3 = 1− ξ− η. Note also that l1 = −a2, l2 = a1 and l3 = a2− a1

as depicted in Fig. 3.1d where the size of a1 and a2 are reduced to enhance visibility.

Therefore we can rewrite (3.29) in terms of Fk(r) and ai

R1(r) = l1
2A [−F1(r)a1 + F2(r)a1 + F3(r)a2]

R2(r) = l2
2A [−F1(r)a2 + F2(r)a1 + F3(r)a2]

R3(r) = l3
2A [F2(r)a1 + F3(r)a2].

(3.30)
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Thus [Rn] in (3.25) can be written as

[Rn] = [an] · [F ]T · [ψn] (3.31)

where [an] and [F ] are defined in (3.15) and (3.16), respectively. In (3.31), the (6×3)

matrix [ψn] belongs to patch n and is constructed using (3.30)

[ψn] =



−1 0 0

1 1 1

0 0 0

0 −1 0

0 0 0

1 1 1



·


l1
2A 0 0

0 l2
2A 0

0 0 l3
2A

 (3.32)

where the first three rows of [ψn] represent F1(r)a1, F2(r)a1 and F3(r)a1, the second

three rows represent F1(r)a2, F2(r)a2 and F3(r)a2, and the kth column is for Rk.

Next, consider the reciprocal unitary vectors defined in [42] as follows1:

a1 = a2 × n̂, a2 = n̂× a1 (3.33)

where a1, a2 are defined in (3.3) and n̂ is normal to the surface. The reciprocal unitary

vectors ai in (3.33) are constant for a given flat patch and form a complete reciprocal

vector basis function space with the unitary vectors of (3.3) on patch n such that

ain · anj = δij (3.34)
1See Prof. Gedney’s correction to equation (3.33) in Section 7.2.6.4.
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where ain and ani are defined for patch n and δij is the Kronecker-Delta1. Using (3.34)

one can show that

[I6] = [αn]T · [an] (3.35)

where [Ii] is the (i × i) identity matrix and the ((3 × 3) × (6 × 1)) matrix [αn] =

[[diag(a1
n)] [diag(a2

n)]] is local to patch n. It can also be shown that the operator

[an] · [αn]T is a ((3× 3)× (3× 3)) matrix local to patch n and satisfies2

[Rp] = [ap] · [αp]T · [Rp] (3.36)

Transposing the above equation for patch m will result in

[Rm]T = [Rm]T · [αm] · [am]T (3.37)

The identities shown in (3.36) and (3.37) will be used in the definition of RWG-via-

LCN local interactions explained next.
1Kronecker-Delta δij is unity when i = j and zero when i 6= j.
2Although [an] · [αn]T is not [I9], it has (3× 3) block diagonal elements with l2 norm = 1 which

act like the unit dyad on vectors tangential to the nth patch. This makes the operator local to patch
n.
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3.4.2 RWG-via-LCN Local Interactions

3.4.2.1 Far field

Substituting (3.36) and (3.37) into (3.25) and noticing that [am]T · [g] · [ap] is

exactly equal to [ω] in (3.10) we arrive at

[zfar
mp] = [Rm]T · [αm] · [ω] · [αp]T · [Rp] (3.38)

Equation (3.38) can be used to convert LCN far interactions [ω] to RWG MoM far

interactions [zfar
mp]. Fig. 3.2 depicts the construction of global transformation matri-

ces from the local transformation provided above plus unifying ramp functions into

RWG functions using [u]. Through (3.38), the ramp current coefficients [bp] can be

converted to ramp coefficients at the quadrature points qp using [Rp]. Then LCN cur-

rent coefficients [Jp] can be obtained by [αp]T . Thus a transformation of unknowns

from [bp] to [Jp] is performed by

[Jp] = [αp]T · [Rp] · [bp] (3.39)

If we substitute (3.31) into (3.39) and knowing that [αp]T · [ap] is the identity matrix

(3.35), we can write

[bp] = [ψp]† ·
(
[F ]−1

)T
· [Jp] (3.40)

where the superscript † represents the pseudo inverse and [ψp]† can be computed by

means of the the generalized inverse [58]. The transformation of unknowns from the

ramp basis to the covariant basis (3.39) and vice versa (3.40) will be used in the near

field transformations explained next.
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[  ]T

   Electric field basis translations    Current basis translations

Observation 
RWG

Source
RWG

(R on p)[b ](R at qp)(ai at qp)[J ]
[ZLCN]

[u]T [u][R]T [R][  ] 

[I ]

(ai at qm)(R at qm)(R on m)
[z ]
[Z ]

Figure 3.2: Basis translation interpretation of the RWG-via-LCN method (3.50).
Reading from right to left, in the current translations, the source RWG current coef-
ficients [I] are converted to ramp current coefficients [b] through [u]. With the aid of
[R], the ramp current coefficients [b] are converted to the coefficients of the ramps at
the source quadrature points qp. Then with the help of [α]T , current coefficients [J ] of
a1 and a2 are obtained. Note that in (3.50), conversion from [b] to [J ] is done in one
step using [R] = [α]T · [R], but here both steps are shown to provide better insight.
Translations of the electric field basis will occur in reverse order on the observation
triangle m producing RWG electric field coefficients. In the process of conversion, the
(6Np×6Np) first-order LCN impedance matrix [ZLCN] is converted to the (3Np×3Np)
half RWG MoM impedance matrix [z]. Then, by enforcing continuity of the current
on [z] the (1.5Np × 1.5Np) RWG MoM impedance matrix [Z] is obtained. Using
the depicted conversion, despite a point-based discretization of the EFIE in [ZLCN],
element-based current coefficients [b] are determined and can be used to obtain the
current anywhere on a patch using (3.17).
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3.4.2.2 Near field

The three RWG MoM’s ramp functions Rk in (3.30) can parametrically be related

to the monomials Fi of the LCN method as follows

Rk(r) =
3∑
i=1

xk1
i (r)Fi(r)a1 +

3∑
i=1

xk2
i (r)Fi(r)a2 (3.41)

where k ∈ {1, 2, 3} and xkji are members of [ψn] in (3.32). By substituting (3.41) into

(3.28) we can write

[g̃] =
[
[κ̃1] [κ̃2]

]
· [ψp] (3.42)

where [κ̃i] is identical to that defined in (3.13). If we multiply (3.40) by (3.42), [ψp]

and [ψp]† will cancel from the right hand side and we get

[g̃] · [bp] =
[
[κ̃1] [κ̃2]

]
·
(
[F ]−1

)T
· [Jp] (3.43)

Pre-multiplying the left hand side by [Rm] and the right hand side by an equivalent

matrix [Rm]T · [αm] · [am]T in (3.37) we obtain

[Rm]T · [g̃] · [bp] = [Rm]T · [αm] · [am]T ·
[
[κ̃1] [κ̃2]

]
·
(
[F ]−1

)T
· [Jp] (3.44)

Since [am]T ·
[
[κ̃1] [κ̃2]

]
· ([F ]−1)T is precisely [ω̃] in (3.14) we can write

[Rm]T · [g̃] · [bp] = [Rm]T · [αm] · [ω̃] · [Jp] (3.45)

Substituting (3.39) into (3.45) we get

[Rm]T · [g̃] · [bp] = [Rm]T · [αm] · [ω̃] · [αp]T · [Rp] · [bp] (3.46)
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Eliminating [bp] from both sides and using (4.15) we finally get

[znear
mp ] = [Rm]T · [αm] · [ω̃] · [αp]T · [Rp] (3.47)

which can be used to exactly convert the LCN near interactions matrix [ω̃] to the RWG

MoM near interactions matrix [znear
mp ]. It is interesting to realize that the conversions

from first-order LCN to RWG MoM in far (3.38) and near (3.47) regions have the

exact same form, making it possible to define a unified global conversion from LCN

to RWG MoM explained next.

3.4.3 RWG-via-LCN System

Based on the transformations developed for local interactions in the previous

section, we can form a (3Np × 3Np) matrix which is derived from [ZLCN] in (3.8)

and is identical to [z] defined in (3.21) by applying a global conversion from [ZLCN]

to [z]

[z] = [R]T · [ZLCN] · [R] (3.48)
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where [R] is a (6Np × 3Np) matrix defined as

[R] =



[R1
1] [0] . . . [0]

[0] [R1
2] . . . [0]

... ... . . . ...

[0] [0] . . .
[
R1
Np

]
[R2

1] [0] . . . [0]

[0] [R2
2] . . . [0]

... ... . . . ...

[0] [0] . . .
[
R2
Np

]



. (3.49)

In (3.49), every [0] represents a matrix of (3 × 3) zeros and [Ri
n] is a (3 × 3) matrix

defined for the ith unitary vector on patch n with the qn, kth entry [Ri
n]qn,k = ain ·

Rn
k (rqn). The global conversion formulated in (3.48) shows that the first-order LCN

and MoM procedures are equivalent in the sense that an exact relationship between

their matrices can be established. This is consistent with [18]. Note however, that

here LCN and MoM systems under the study have different sizes and the introduced

basis converter (3.49) is a non-square matrix which reduces the degrees of freedom

unlike the equivalence shown in [18] for equally sized systems. The continuity of

current on (3.48) is then enforced by forming a (1.5Np × 1.5Np) matrix

[Z] = [u]T · [R]T · [ZLCN] · [R] · [u] (3.50)

which is identical to [Z] defined in (3.22). The RWG-via-LCN method (3.50) facil-

itates transformation of the LCN impedance matrix [ZLCN] to that of RWG MoM

impedance matrix [Z], thus enforcing continuity of current on the LCN method. The
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stages of basis conversion are depicted in Fig. 3.2.

3.4.4 RWG-via-LCN Implementation

3.4.4.1 Cancellation of Line Integrals

To compute [ZLCN] in (3.50), the integration with the dyadic kernel in (3.13) needs

to be numerically evaluated. Therefore, it is rewritten as [39]

[κ̃j]qm,k′ = −jη0ωqm

k0

[
k2

0 ·
ˆ
Sp

G(rqm , r′)J
j
k′(r′)ds′ + ∇

ˆ
Sp

∇G(rqm , r′) · J
j
k′(r′)ds′

]

(3.51)

where G is the free-space Green’s function1. The first term on the right hand side of

(3.51) has a singularity of O(1/R) and can analytically be computed to controllable

accuracy since the triangle is flat [59]. It is also possible to use methods capable of

handling both flat and curvilinear triangles [60,61]. By making use of vector identities,

the second term can be separated into two parts (see formulas (92)-(94) in [19])

∇
ˆ
Sp

∇G(rqm , r′) · J
j
k′(r′)ds′ =

ˆ
Sp

∇G(rqm , r′)
[
∇′‖ · J

j
k′(r′)

]
ds′ −

˛
Cp

[
ê′p · J

j
k′(r′)

]
[∇G(rqm , r′)] dl′

(3.52)

where Cp is the contour bounding Sp and êp is the outward normal to Cp tangential

to S. The first term on the right hand side of (3.52) is a surface integral which is

hypersingular at vanishing separation of the source and observation elements but its

order of singularity can be reduced to O(1/R) (see formulas (95)-(105) in [19] and

(32)-(33) in [18]). Since triangles are flat, it can be computed to controllable accuracy
1Note that in Chapter 2, this Green’s function is denoted as G0, but here the subscript is omitted

as this chapter assumes free-space.
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by analytic evaluation of the singular integrals [59]. Other singularity cancellation

schemes [60–62] applicable to both flat and curvilinear elements may also be used.

Since it is assumed that the quadrature points are interior to Sp and do not lie on the

contour Cp, the contour integral in (3.52) is non-singular and can be computed di-

rectly using adaptive quadrature. However, in the construction of [Z] using (3.50), the

contour integral computed in (3.52) will be cancelled numerically due to the proper-

ties of RWG basis functions that is enforced through the conversion. To understand

why this cancellation occurs, we need to interpret the exact conversions that take

place in relation (3.50). Fig. 3.2 depicts the interpretation of this transformation.

From the figure, one may see that through current transformations, RWG coefficients

[I] are transformed to LCN coefficients [J ]. Similarly, in the process of electric field

transformations, LCN coefficients will be converted back to RWG coefficients. Thus,

through the introduced transformations, Jjk′(r′) in (3.52) will have the same prop-

erties as Rp
k′(r′) which is orthogonal to ê′p on two edges along Cp and has the same

contribution with opposite sign from the adjacent triangle on the third edge. Con-

sequently
[
ê′p · J

j
k′(r′)

]
= 0 on two edges of the triangle and the line integrals vanish

over these edges. The line integral on the other (third) edge is non-zero but will be

cancelled numerically in (3.50) due to the same contribution with opposite sign from

the neighbouring triangle. Thus the contour integral in (3.52) may be omitted when

filling [ZLCN] in (3.50). In fact, [∇′‖ ·J
j
k′(r′)] is constant on triangular flat patches and

(3.52) may be reduced to

(
∇′‖ · J

j
k′

) ˆ
Sp

∇G(rqm , r′)ds′ (3.53)

where (∇′‖ ·J
j
k′) is local to patch p. We would like to note that (3.53) is not applicable

to the local conversion of the near field (3.47) since [znear
mp ] is defined based on ramp
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functions and not RWG functions and preserves the third line integral discussed above.

3.4.4.2 Solving the System

Once the impedance matrix of the LCN method [ZLCN] is filled according to

the descriptions given in this paper or any standard first-order LCN implementation

[18,19] on triangular flat patches, the sparse matrices [R] and [u] are used according

to (3.50) to obtain the RWG-via-LCN’s impedance matrix [Z] via sparse matrix-

vector products with O(N) complexity. Then, the system (3.22) can be solved with

[V ] directly determined by RWG MoM to obtain the numerical solution [I]. It is

also possible to evaluate the excitation vector via the LCN’s right-hand-side [V ] =

[u]T · [R]T · [E], to accommodate ease of implementation.

3.4.4.3 MLFMA Acceleration

RWG-via-LCN features an important attribute of the LCN scheme, namely the

representation of the fundamental interactions in the point-based form. The point-

to-point interactions defined in [ZLCN] (Fig. 3.2) constitute projections of vectors

of the scattered electric field produced at the quadrature points by the vector point

sources (electric dipoles) located at the same points. As a result, far interactions

in the matrix-vector product [ZLCN] · [J ] can be calculated by applying MLFMA to

the point interactions which is inherently an N-body problem [63]. When accelerat-

ing the computation of these interactions with the high frequency MLFMA based

on plane wave field expansions, the fact that interactions are point-based, permits

more levels to be used in the MLFMA tree when compared to basis-based MoM im-

plementations [64] where the number of MLFMA’s levels are limited by the size of

the basis functions [26]. Further, accelerated algorithms for RWG-via-LCN can ex-
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ploit imbalanced MLFMA trees where the depth is locally adapted to the density of

discretization dictated by the model [24].

3.5 Numerical Results

3.5.1 RWG MoM vs. RWG-via-LCN

It is worth noting that all equations presented in Section 3.4 are exact and were

numerically confirmed to be accurate down to machine precision. As a comprehensive

example, Fig. 3.3 presents the relative deviation of [Z] obtained by RWG-via-LCN

(3.50) from its counterpart defined by RWG MoM (3.22), for far and near regions.

The mesh has 32 elements producing a (48 × 48) matrix thus there are totally 482

points in the figure. It is clear that the deviations are due to machine precision. This

supports the fact that the introduced transformations are exact and the two matrices

are computationally equivalent. Thus RWG MoM and RWG-via-LCN yield identical

solutions.

3.5.2 RWG-via-LCN vs. LCN

In all simulations herein, both LCN and RWG-via-LCN systems were solved di-

rectly by LU-decomposition in order to avoid introducing additional errors into the

solutions, ensuring a reliable error analysis. The average and maximum relative errors

of the surface transverse currents J evaluated by LCN and RWG-via-LCN methods
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Figure 3.3: Comparison of the (48 × 48) impedance matrix [Z] obtained by RWG
MoM (3.22) and its equivalent counterpart obtained by RWG-via-LCN (3.50) for far
and near regions. There are a total of 482 points in the figure each corresponding to
Err(Zi,j) = |ZRWG MoM

i,j − ZRWG-via-LCN
i,j |/|ZRWG MoM

i,j | where i, j = 1, ..., 48.
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were calculated using

MeanErr(J) = 1
3Np

3Np∑
i=1

∣∣∣JNum
i − JRef

i

∣∣∣
|JRef
i |

MaxErr(J) = max

∣∣∣JNum
i − JRef

i

∣∣∣
|JRef
i |

 , i ∈ {1, .., 3Np}
(3.54)

respectively, where JNum
i is the current magnitude |J| at the quadrature points qm

approximated by the numerical solution (LCN or RWG-via-LCN) and JRef
i is the

reference solution at qm. Analysis of the surface current at the quadrature points

qm is required as LCN is a point-based method and solves for the currents at these

points. Deviation from these points requires interpolation [19].

3.5.2.1 Uniform Discretization of a Sphere

The sphere we consider has a radius of 1m and is centered at the origin. It

is discretized by 4,832 flat surface triangular elements with minimum element size1

hmin = 0.024m, maximum element size hmax = 0.065m and maximum deviation from

the true radius ε = 1.74 × 10−3. The sphere is excited by the volumetric current

j = I`δ(r − r′) of a radial electric dipole with moment I` = ẑ · 1A · m located at

r′ = ẑ · 10 meters.

Figure 3.4 depicts the time snapshot of the θ̂-directed current density θ̂<[Jθ(θ)e−2iπft]

at t = 0 seconds obtained using LCN and RWG-via-LCN methods, due to a time-

harmonic excitation at f = 100MHz. From this figure, it is observed that the current

obtained by the LCN method is notably non-smooth compared to the RWG-via-LCN

solution. Fig. 3.5 plots the magnitude of the current shown in Fig. 3.4 against

the Mie series solution [65] along the meridian of the sphere (θ = 0◦ ∼ 180◦). It
1Element size is the radius of the circumscribing circle.
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LCN RWG-via-LCN

Figure 3.4: Comparison of the θ̂-directed surface current numerically computed by
LCN and RWG-via-LCN at f = 100MHz. The mesh has 4,832 triangular flat ele-
ments. Fig. 3.5 plots the magnitude of the same currents against Mie series as a
function of θ.

can be seen that the LCN current deviates severely from the true solution whereas

the RWG-via-LCN method provides a smoother solution due to current continuity

enforcement. Fig. 3.6 plots the mean and maximum relative errors of the current

produced using both LCN and RWG-via-LCN methods estimated by (3.54) at multi-

ple frequencies (hmax < λ/10) with the reference solution obtained analytically using

Mie series. From this figure one can see that at higher frequencies the two methods

have similar performance. For lower frequencies, enforcement of current continuity

greatly influences the accuracy of the RWG-via-LCN method where the LCN method

fails to provide satisfactory performance1.

As was mentioned earlier, the impedance matrix of the RWG-via-LCN method

[Z] is 4 times smaller than that of the LCN method [ZLCN] due to current continuity

enforcement. This lead not only to faster solution due to problem size reduction but
1See Prof. Gedney’s comment in Section 7.2.6.5.
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Figure 3.5: The magnitude of current density as a function of θ for numerical solutions
(LCN and RWG-via-LCN) against the analytic solution (Mie series) at f = 100 MHz.
Fig. 3.4 is the snapshot of the same current density on the surface of the sphere.
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Figure 3.6: Mean and maximum relative errors in the current computed by (3.54) for
scattering from a 4,832 element PEC sphere at different frequencies (hmax < λ/10)
using the LCN and RWG-via-LCN formulation of EFIE.
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Figure 3.7: Condition numbers of the (6Np×6Np) first-order LCN impedance matrix
[ZLCN] and (1.5Np×1.5Np) RWG-via-LCN impedance matrix [Z] for the PEC sphere
example with 4,832 triangular flat patches.

also improves the matrix condition number. Fig. 3.7 compares the condition numbers

of the LCN and RWG-via-LCN impedance matrices at different frequencies. Improved

conditioning of the matrix results in faster convergence of RWG MoM compared to

the LCN when iterative matrix equation solvers are used.

3.5.2.2 Multiscale Discretization of an F5 Aircraft Model

In order to demonstrate the effect of current continuity on the LCN method for a

practical multiscale geometry, we compared the results obtained by LCN and RWG-

via-LCN methods for an F5 model (Figs. 3.8 to 3.10)1 that fits within a cuboid

with dimensions (−4.09 ≤ x ≤ 4.09, −9.9013 ≤ y ≤ 4.2765, 0.0740475 ≤ z ≤ 3.35)
1Note that these three figures are all depicted in Fig. 8 of [89] but have been separated herein to

improve visibility.
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in meters and meshed with 10,146 elements. The mesh has minimum element size

hmin = 0.011m and maximum element size hmax = 0.311m, making a large maximum

to minimum element size ratio which ensures the multiscale nature of the problem [24].

The excitation is the same as in Section 3.5.2.1 but located at r′ = ŷ ·10+ ẑ ·3 meters.

As a reference solution, a more highly discretized mesh (101,716 elements) simulated

by the commercial tool Wave3D [35] was considered.

Figures 3.8 to 3.10 provide snapshots of the time-harmonic current density at

t = 0s and f = 50MHz obtained by the three aforementioned methods. In these

figures, part of the surface is magnified from a different angle for better visualization.

It can be seen that the RWG-via-LCN method (Fig. 3.10) can produce a solution

which agrees well with the reference solution (Fig. 3.8) and is visibly more accurate

than the LCN solution (Fig. 3.9). Fig. 3.11 plots the mean relative error of the

current produced using LCN and RWG-via-LCN methods for various frequencies

(k0hmax < 1) estimated by (3.54) with the reference solution obtained by Wave3D.

Near the geometric edges in the model, the maximum relative error may exceed

100%. In such regions the error was capped at 100% in the calculation of MeanErr(J)

in (3.54). Fig. 3.11 shows trends similar to those observed for the PEC sphere

example provided in Fig. 3.6. Current continuity makes a great impact on the

solution accuracy at lower frequencies.

3.6 Conclusion

In this work, a method for introducing current continuity into the first-order LCN

formulation of the EFIE has been presented. The resulting system of equations has

been shown to be equivalent to RWG MoM. The conversion from LCN to RWG

MoM is exact and can easily be incorporated into existing LCN implementations in
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Reference Solution

Figure 3.8: The surface current density at t = 0s numerically computed as the refer-
ence solution for Figs. 3.9 and 3.10. The solution is computed by a commercial tool
(Wave3D) with a dense mesh (101,716 elements). The magnification has been done
from a different angle for better visulization.
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LCN Solution

Figure 3.9: The surface current density at t = 0s numerically computed by the LCN
method at f = 50MHz. The mesh has 10,146 triangular flat elements. The reference
solution has been obtained by a commercial tool (Wave3D) with a much denser mesh
(101,716 elements) and is depicted in Fig. 3.8. The RWG-via-LCN solution with the
same mesh is depicted in Fig. 3.10. The magnification has been done from a different
angle for better visulization.
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Proposed Solution

(RWG-via-LCN)

Figure 3.10: The surface current density at t = 0s numerically computed by the RWG-
via-LCN method at f = 50MHz. The mesh has 10,146 triangular flat elements. The
reference solution has been obtained by a commercial tool (Wave3D) with a much
denser mesh (101,716 elements) and is depicted in Fig. 3.8. The LCN solution with
the same mesh is depicted in Fig. 3.9. The magnification has been done from a
different angle for better visulization.
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Figure 3.11: Mean relative error in the current for scattering from the F5 aircraft
model shown in Figs. 3.8 to 3.10 at different frequencies (k0hmax < 1) using the
LCN and RWG-via-LCN formulation of the EFIE, when compared with the reference
solution obtained by a commercial tool simulated on a much denser mesh.
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O(N) operations. The advantage of the proposed RWG-via-LCN method over the

standard first-order LCN method is that it produces more accurate results and at the

same time has a 4 times reduction in degrees of freedom with improvement in the

condition number of the impedance matrix. Its advantage over classical element-based

RWG MoM is that the former is a point-based method and can be accelerated using

an imbalanced-tree MLFMA implementation as an alternative to the point-matched

RWG MoM. In order to achieve the equivalence between LCN and RWG MoM, the

vector-potential EFIE was adopted. A point-based discretization of the RWG MoM

for the mixed-potential EFIE via the Nyström method will be a subject of future

work.
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Chapter 4

Exact Relationship between the

Locally Corrected Nyström Scheme

and RWG Moment Method for the

Mixed-Potential Integral Equation

c©2015 IEEE. Reprinted, with permission, from Mohammad Shafieipour, Jonatan

Aronsson, Ian Jeffrey, and Vladimir Okhmatovski, IEEE Transactions on Antennas

and Propagation, November 2015.
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Abstract

The exact relationship between the Rao-Wilton-Glisson (RWG) method-of-moments

(MoM) and the locally corrected Nyström (LCN) method for the mixed-potential

(MP) electric field integral equation (EFIE) is presented as an extension to our work

where we established analogous exact relationship for solving the EFIE in its vector-

potential (VP) form. It is shown that in order to achieve one such relationship for

the MP EFIE, the first- and zeroth-order LCN methods must be respectively used

for the discretization of the VP and scalar-potential terms of the MP EFIE. The re-

sulting numerical scheme is a point-based RWG MoM discretization of the MP EFIE

via the Nyström method. Due to the MP formulation of the EFIE, the proposed

method establishes notably higher accuracy compared to either RWG MoM or LCN

discretizations of the EFIE in the VP form. The increased accuracy is attributed

to the analytical cancellation of the line charge contributions in the MP formulation

as opposed to numerical cancellation inherent in the VP formulation of the EFIE.

The detailed study and explanations of the above cancellations is presented along

with their impact on the accuracy of the respective schemes for both canonical and

realistic scattering targets at different frequencies.
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4.1 Introduction

The moment method (MoM) [17,30,66], and the locally corrected Nyström (LCN)

method [1,18,19,39], are established as accurate and economical numerical techniques

for solving the general three-dimensional scattering [67], antenna placement and radi-

ation [31], circuit analysis [32,33], electromagnetic compatibility, and other problems

in computational electromagnetics (CEM) [68–75]. The economy of computational

resources in the MoM and LCN are due to boundary element method (BEM) dis-

cretization of homogeneous regions [72,76] as opposed to the volumetric discretization

of the regions required in schemes based on direct partial differential equation (PDE)

discretizations including the finite-element method (FEM) [77], finite-difference-time-

domain (FDTD) [78], finite integration technique [79], and others. Additional savings

of computational resources in the MoM or LCN can be achieved for specialized ap-

plications that allow for abstraction of the complex environment into the pertinent

Green’s function [56, 80, 81]. The accuracy of the MoM/LCN solutions is attributed

to the exact satisfaction of the radiation conditions [39] and description of the wave

propagation phenomena across homogenous regions [5]. This is unlike discretization

schemes based on the PDEs directly such as FEM and FDTD, where the wave propa-

gation phenomena across electrically large regions leads to accumulation of the errors

in the field approximation [5, 78].

The advantages offered by the MoM and LCN solutions are commonly plagued by

numerical instabilities, inefficiencies, and errors unique to these BEM discretization

schemes. Due to the maturity of the MoM dating back to the late 50s, a large body

of work [5, 17, 20, 30, 64–66, 82–87] can be found alleviating numerical issues in MoM

whereas there has been less work related to these issues addressing the relatively

new LCN invented in the late 90s [19]. This is despite the fact that LCN has been
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shown to offer various advantages compared to MoM such as cheaper error-controlled

evaluation of the singular integrals [20], higher efficiency of acceleration with fast al-

gorithms [5], and simple physically consistent handling of material junctions [72]. The

LCN scheme, however, is known to be more prone to low-frequency breakdown [88]

and producing ill-conditioned matrices [1] when solving for the electric field integral

equation (EFIE). It is also substantially more inaccurate and inefficient in its first- and

second-order forms compared to the RWG MoM when discretizing the EFIE [1, 89].

The above disadvantages have been partially responsible for the relatively slow adop-

tion of LCN in the research community and leaving MoM to remain the dominating

BEM technique in the industry [30–32,34,35].

In this work we propose a new methodology termed RWG-via-LCN which com-

bines the benefits of the two BEM schemes by establishing an exact relationship

between the LCN scheme and the RWG MoM. This work is a sequel to our work

in [89] where we established such an exact relationship between the RWG MoM and

first-order LCN solutions of the EFIE in the vector-potential (VP) form which here we

refer to it as VP RWG-via-LCN. In this paper we develop analogous exact relation-

ship between the RWG MoM and LCN solutions of the EFIE in the mixed-potential

(MP) form yielding the MP RWG-via-LCN. Discretization of the MP EFIE (or simply

MPIE) [56] offers higher accuracy of the solution and higher computational efficiency

compared to the discretization schemes for the VP EFIE, be it MoM, LCN, or VP

RWG-via-LCN. The reason for these benefits is due to the analytic (exact) cancella-

tion of line integrals appearing in the MPIE when discretized with RWG MoM. In

contrast, discretization schemes dealing with the VP EFIE, inherently require these

cancellations to be performed numerically where more computational resources are

required while additional error may be introduced into the numerical technique. In
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order to establish the desired exact relationship between the RWG MoM and LCN

discretizations of the MPIE, the first- and zeroth-order LCN schemes are used for dis-

cretization of the VP and scalar-potential (SP) terms of the MPIE, respectively. The

constraints imposed on the RWGMoM discretization of the MPIE besides the obvious

requirement of using the same meshes, include: a) establishing the same separation

between the near and far interactions in the RWG MoM as well as in the first- and

zeroth-order LCN discretizations, b) evaluation of the near interaction RWG MoM

integrals in the VP and SP terms of the MPIE in exactly the same way as the calcu-

lation of the same integrals in local corrections of the two LCNs, and c) performing

the discretization of the RWG MoM far interaction integrals of the MPIE’s VP and

SP terms with the first- and zeroth-order quadrature rules, respectively. Under these

conditions, the zeroth- and first-order LCN discretization matrices can be used to pro-

duce the RWG MoM impedance matrix with machine precision. The resulting MP

RWG-via-LCN discretization carries the advantages of LCN’s point-based discretiza-

tion such as more efficient acceleration by fast algorithms as well as the benefits

stemming from the current continuity enforced RWG MoM. These benefits include a

four times lower count of pertinent degrees of freedom (DOF) in RWG MoM com-

pared to first-order LCN, its increased accuracy, better conditioning of the matrix,

and lower computational complexity. The proposed MP RWG-via-LCN method can

also be viewed as a mechanism for facilitating LCN with the techniques previously

developed exclusively for the RWG MoM discretization of MPIE such as Calderon

multiplicative preconditioning [82], Helmholtz decomposition techniques [83, 85, 86],

multiresolution preconditioners [87] and others.

A new method of current continuity enforcement for the LCN method known as

constrained LCN (CLCN) [90] has been proposed since the initial submission of this
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work. In CLCN, current continuity is enforced by using auxiliary matrices obtained

from non-trivial solutions of local continuity constraint systems. Consequently, cur-

rent continuity enforcement can be applied to LCN impedance matrix at arbitrary

orders. However, at higher orders the impact of current continuity on accuracy of

the solution is known to diminish while it has a profound impact in low-order dis-

cretization schemes such as the classical zeroth- and first-order MoM and LCN. In this

work we introduce a technique to enforce current continuity in LCN at these orders

through its relationship with the classical MP RWG MoM. Besides the improvements

of accuracy which results from the current continuity enforcement along with the

analytical cancellation of the line integrals in MPIE, the relationship established in

this work allows to link the low order LCN schemes to the techniques eliminating the

low-frequency breakdown of the EFIE based on loop-tree, loop-star, and loop-charge

decompositions as well as Calderon identity methods [82, 83, 85–87]. In the CLCN

approach, however, such low-frequency breakdown elimination is enabled through the

discretization of the augmented EFIE (AEFIE) instead of the original EFIE. Due to

the separate discretization of surface charges as well as surface currents, the number

of DOF in the solution of the AEFIE is twice that for the EFIE when discretized with

CLCN. This makes the CLCN approach notably more expensive than the proposed

MP RWG-via-LCN approach when low-frequency solutions are sought.

4.2 Mixed-Potential RWG Method-of-Moments

In this section, we describe RWG MoM discretization of the MP EFIE in a form

that it can be related to the LCN method. The time-harmonic EFIE for a perfect
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electric conductor (PEC) in dyadic form is [91]

t(r) ·
ˆ
S

G(r, r′) · J(r′)ds′ = −t(r) · Einc(r), r ∈ S (4.1)

where G is the dyadic Green’s function, t is a test vector tangential to S, J is

the unknown surface current density, Einc is the incident electric field, and r is the

observation point on S. In (4.1) and throughout the paper, the e+j2πft is assumed

and suppressed, where f is the frequency of the time-harmonic fields (and sources)

and t denotes time. The RWG MoM approximates J using RWG basis functions. In

this paper we use ramp (half RWG) function representation of RWG basis functions

as it facilitates establishing exact relationship between RWG MoM and the LCN

method [89]. The surface current J at an arbitrary location r′ is represented as

J(r′) '
3∑

k′=1
bpk′R

p
k′(r′) (4.2)

where bpk′ are the current coefficients and Rp
k′ are the ramp functions, both defined

for arbitrary triangular flat patch p. By taking the inner product of (4.1) with Rm
k

and discretizing the surface S into Np elements we can write

ˆ
Sm

Rm
k (r) ·

Np∑
p=1

3∑
k′=1

bpk′

ˆ
Sp

G(r, r′) ·Rp
k′(r′)ds′

 ds = −
ˆ
Sm

Rm
k (r) · Einc(r)ds (4.3)

where k, k′ are the ramp index defined on the surface of the observation patch Sm

and source patch Sp, respectively, k = 1, 2, 3, and m, p ∈ {1, 2, ..., Np}. From (4.3),

one can define the ramp-to-ramp interactions between patches m and p as a (3× 3)

matrix

[zmp] =
ˆ
Sm

Rm
k (r) ·

ˆ
Sp

G(r, r′) ·Rp
k′(r′)ds′ds, k, k′ = 1, 2, 3 (4.4)
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By decomposing G into its VP and SP components, the ramp-to-ramp interaction

of (4.4) can be written as [zmp] = [zAmp] + [zΦ
mp] where [zAmp] is obtained by the VP

component of the dyadic kernel

[zAmp] = −jη0k0

ˆ
Sm

Rm
k (r) ·

ˆ
Sp

G(r, r′)Rp
k′(r′)ds′ds,

k, k′ = 1, 2, 3
(4.5)

and [zΦ
mp] is obtained through the kernel’s SP component which can be written as [39]

[zΦ
mp] = −jη0

k0

ˆ
Sm

Rm
k (r)·[

∇
ˆ
Sp

∇G(r, r′) ·Rp
k′(r′)ds′

]
ds, k, k′ = 1, 2, 3

(4.6)

where G is the free-space Green’s function. The typical approach to mitigating the

hypersingular kernel in (4.6) is by shifting the inner gradient operator to act onto the

basis function [19,89]

[zΦ
mp] =− jη0

k0

ˆ
Sm

Rm
k (r) ·

˛
Cp

∇G(r, r′)
[
Rp
k′(r′) · ê′p

]
dl′ds

− jη0

k0

ˆ
Sm

Rm
k (r) ·

ˆ
Sp

∇G(r, r′)
[
∇′‖ ·R

p
k′(r′)

]
ds′ds

k, k′ = 1, 2, 3

(4.7)

where Cn (n = 1, 2, ..., Np) is the contour bounding Sn and ên is the outward normal

to Cn tangential to Sn. The inner product testing with the differentiable ramp-

functions Rm
k (r), facilitates the use of surface calculus identities [92] to shift the

gradient operators in (4.7) to act on the test function. Subsequently, [zΦ
mp] may be
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obtained by a sum of four terms1

[zΦ
mp] =jη0

k0

˛
Cm

Rm
k (r) · êm

˛
Cp

G(r, r′)Rp
k′(r′) · ê′pdl′dl

+jη0

k0

˛
Cm

Rm
k (r) · êm

ˆ
Sp

G(r, r′)∇′‖ ·R
p
k′(r′)ds′dl

+jη0

k0

ˆ
Sm

∇‖ ·Rm
k (r)

˛
Cp

G(r, r′)Rp
k′(r′) · ê′pdl′ds

+jη0

k0

ˆ
Sm

∇‖ ·Rm
k (r)

ˆ
Sp

G(r, r′)∇′‖ ·R
p
k′(r′)ds′ds, k, k′ = 1, 2, 3.

(4.8)

However, since a ramp-function Rn
o (o = 1, 2, 3) is orthogonal to ên on two edges along

Cn, the dot product Rn
o · ên vanishes on these two edges. On the remaining edge, we

have Rn
o · ên = 1 but the contribution from this ramp will be cancelled by a ramp from

the adjacent triangle when current continuity is enforced by combining the two ramps

into an RWG function. Therefore, the first three terms in (4.8) containing line charge

contributions, can analytically be eliminated in RWG MoM. Furthermore, RWG basis

functions help simplify the fourth term of (4.8) as the divergence of a ramp-function is

constant over one triangle. This is commonly referred to as a pulse: ∇‖ ·Rn
o = lno /A

n,

where lno is the length of the oth edge of the nth patch and An is the area of the nth

triangle. Thus the SP component of the ramp-to-ramp interaction can be reduced to

[zϕmp] = jη0

k0

lmk l
p
k′

AmAp

ˆ
Sm

ˆ
Sp

G(r, r′)ds′ds, k, k′ = 1, 2, 3 (4.9)

where the small letter ϕ is used in the notation to distinguish the reduced SP [zϕmp]

and the full term SP [zΦ
mp] in (4.6) to (4.8). This convention has been used throughout

the text. If the RWG MoM computes [zΦ
mp] for its SP contribution, it discretizes the

1Note that the expression (4.8), is merely a transition between (4.7) and (4.9) and is never
numerically evaluated in the context of RWG-via-LCN techniques. The VP RWG-via-LCN [89]
discretizes (4.7), while the proposed MP RWG-via-LCN computes (4.9).
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VP EFIE [56] yielding the VP RWG MoM [89]. Otherwise [zϕmp] is computed as the

SP contribution resulting in the RWG MoM discretization of the MPIE [23] and is

referred to as the MP RWG MoM. In order to discretize (4.5) and (4.9), with the goal

of establishing an exact relationship between MP RWG MoM and the LCN method,

we first approximate the outer integrals over Sm using quadrature rules. The outer

integral in (4.5) is approximated using a first-order (3-point) quadrature rule

[zAmp] ' −jη0k0

3∑
qm=1

ωqmRm
k (rqm) ·

ˆ
Sp

G(rqm , r′)R
p
k′(r′)ds′, k, k′ = 1, 2, 3 (4.10)

where ωqm is the quadrature weight associated with the abscissa point rqm . The outer

integral in (4.9) is discretized using a zeroth-order (1-point) quadrature rule

[zϕmp] '
jη0

k0

lmk l
p
k′

AmAp
ωcm

ˆ
Sp

G(rcm , r′)ds′, k, k′ = 1, 2, 3 (4.11)

where ωcm is the quadrature weight at the centroid of the triangle rcm .

For a smooth kernel (G is smooth when source and observation triangles are suf-

ficiently far apart1), fixed-point quadrature rules can be used to discretize (4.10) and

(4.11). Approximating (4.10) and (4.11) using first- and zeroth-order rules, respec-

tively, the ramp-to-ramp (3 × 3) impedance matrix for far patches m and p can be

expressed as

[zfar
mp] = [lm]T · ϕ · [lp] + [Rm]T · [A] · [Rp] (4.12)

where the (1 × 3) matrix [ln] is local to patch n with entries [ln]o = lno and ϕ is the

(1× 1) scalar interaction between the centroids of the observation rcm and source rcp

1Similar to [89], near and far regions are defined based on centroids of the elements for the sake
of simplicity. Alternatively, near and far regions can be defined based on the minimum distance
between the observation point and source patch.
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elements

ϕ = jη0

k0

1
AmAp

ωcmωcpG(rcm , rcp) (4.13)

In (4.12), [Rn] is a ((3 × 3) × (3 × 1))1 matrix with the qn, kth element [Rn]qn,k =

Rn
k (rqn), and [A] is a ((3× 3)× (3× 3)) matrix with its qm, qpth element as

[A]qm,qp = −jη0k0ωqmωqpG(rqm , rqp)I (4.14)

where I is the unit dyad.

In the near field region, the convolutional integrals in (4.10) and (4.11) are singular

and should be evaluated using singularity subtraction or cancellation techniques such

as [59–61]. Thus the contribution to the ramp-to-ramp (3× 3) impedance matrix for

near patches m and p is

[znear
mp ] = [lm]T · ϕ̃ · [lp] + [Rm]T · [Ã] (4.15)

where the qm, k′th element of the ((3× 3)× (3× 1)) matrix [Ã] is defined as

[Ã]qm,k′ = −jη0k0ωqm

ˆ
Sp

G(rqm , r′)R
p
k′(r′)ds′ (4.16)

and the (1×1) scalar interaction between the centroid of the observation element rcm

and source patch p is

ϕ̃ = jη0

k0

1
AmAp

ωcm

ˆ
Sp

G(rcm , r′)ds′. (4.17)

1The notation ((A×B)× (C ×D)) is borrowed from [89] indicating that the size of the matrix
is (AB × CD) with (A× C) elements each of which having (B ×D) entries.
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Based on the local ramp-to-ramp interactions of (4.15) and (4.12), MP half RWG

MoM system can be constructed followed by enforcement of current continuity similar

to that of (21) and (22), respectively, in [89], to build the 1.5Np-size1 MP RWG MoM

linear system

([Zϕ] + [ZA]) · [I] = [V ]

[Z] · [I] = [V ]
(4.18)

where [Zϕ] contains the SP terms and [ZA] contains the VP terms of the MPIE’s

global impedance matrix [Z]. Note, that the above described MP RWG MoM formu-

lation discretized with first- (3-point) and zeroth-order (1-point) rules in its vector-

and scalar-potential terms, respectively, is one of the many forms of the MP RWG

MoM which could be applied. This particular form of the MP RWG MoM, however,

is special in the sense that it can be directly related to the point-based LCN for-

mulation and is required to build the proposed MP RWG-via-LCN. If more accurate

integration results are needed, mesh refinement can be applied as opposed to using

more sample points in discretizing the VP and SP integrations.

4.3 The Locally Corrected Nyström Method

To formulate MP RWG-via-LCN, first- and zeroth-order LCN techniques should

be constructed in a form that they can be related to the VP and SP contributions of

the MP RWGMoM, respectively. One such first-order LCN formulation was presented

in [89] and so we restrict ourselves to zeroth-order LCN here. The LCN formulation

can be used to discretize an integral equation solving an unknown scalar quantity
1For the sake of simplicity and without loss of generality, it is assumed that the geometry is

closed.
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σ(r′) over the surface S

ˆ
S

K(r, r′)σ(r′)ds′ = φinc(r), r ∈ S (4.19)

where φinc(r) is the known excitation function and K(r, r′) is the kernel that may or

may not exhibit singular behaviour. Discretizing (4.19) over Np elements we obtain

Np∑
p=1

ˆ
Sp

K(r, r′)σ(r′)ds′ = φinc(r), r ∈ S (4.20)

Next, the integral over Sp should be discretized. Using a zeroth-order (1-point)

quadrature rule yields a zeroth-order LCN. To facilitate computations of singular

and near singular integrals through the local correction procedure, the discretiza-

tion of the surface integral over Sp should be written for near and far interactions

separately ∑
p∈far(m)

ωσ(rcp) +
∑

p∈near(m)
ω̃σ(rcp) = φinc(rcm) (4.21)

where ω is the regular weight describing the interactions between centroids of the

source cp and observation cm patches

ω = ωcmωcpK(rcm , rcp) (4.22)

provided that m and p are far enough apart that K is smooth. In (4.22) and further

below in (4.23), contrary to standard notation of the LCN [1,18,19], the observation

weight ωcm is included in the LCN weights in order to allow for observation patch

integrals analogous to RWG MoM. This convention was also used in [89]. The locally-

corrected weight ω̃ in (4.21), is obtained using a zeroth-order basis function F (r) = 1.

Therefore the Vandermonde matrix of the zeroth-order LCN becomes a (1× 1) unity
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matrix [1] and the LCN weights are obtained by

ω̃ = ωcm

ˆ
Sp

K(rcm , r′)ds′. (4.23)

A zeroth-order LCN implementation would compute ω and ω̃ for a desired kernel

[18,73–75]. By solving the resulting Np-size system [Z0th-LCN] · [σ] = [φ], the unknown

coefficients are obtained.

4.4 Mixed-Potential RWG-via-LCN

4.4.1 Scalar-Potential Contribution via Zeroth-Order LCN

By comparing the scalar interactions of the MP RWG MoM in (4.13) and (4.17)

with the zeroth-order LCN’s regular and locally-corrected weights in (4.22) and (4.23),

it is realized that by applying the following kernel

K(r, r′) = jη0

k0AmAp
G(r, r′) (4.24)

to zeroth-order LCN, one can exactly reproduce the scalar interactions of the MP

RWG MoM via the regular ω = ϕ and locally corrected weights ω̃ = ϕ̃, for far

and near regions, respectively. Since triangles are flat, methods capable of handling

both flat and curvilinear triangles are applicable to compute singular integrals of the

near field [59–61]. Note, that when establishing the exact equality ω̃ = ϕ̃, one must

use the same technique when computing the locally corrected weights (4.23) and the

SP interactions in the MP RWG MoM (4.17), otherwise the equality is prone to

approximations only as accurate as the least accurate integration result.
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Figure 4.1: Basis translation interpretation of the MP RWG-via-LCN method formu-
lated in (4.29) and (4.31). In the process of current basis translations, source RWG
current coefficients [I] will be converted to ramp current coefficients [b] via the unifier
[u] which maps ramp-functions onto RWG functions. Then with the aid of [R], current
coefficients of the first-order LCN [J ] are obtained. This will be followed by VP basis
translations in the reverse order on the observation patch m to produce observation
RWG VP coefficients. During this process the (6Np× 6Np) VP part of the first-order
LCN matrix [ZA1st-LCN] with the kernel in (4.25) is converted to (3Np × 3Np) VP half
RWG matrix [zA] and subsequently (1.5Np × 1.5Np) VP RWG matrix [ZA]. For
charge, basis conversion is from [I] to [b] similar to that of the current except that [b]
is the coefficients of dimensionless∇‖ ·R, hence no arrow on the ramps. Then through
[l], coefficients of charge [σ] are obtained for the centroid of the source triangle cp.
This will be followed by SP basis translations on the observation element m in the re-
verse order which results in observation RWG SP coefficients. During this process, the
(Np×Np) zeroth-order LCN matrix [Z0th-LCN] with the kernel in (4.24) is converted to
(3Np×3Np) SP half RWG matrix [zϕ] followed by enforcing current continuity which
gives the (1.5Np × 1.5Np) SP RWG matrix [Zϕ]. Depending on the implementation
preference, current continuity can be applied once [Z] = [u]T · ([zA] + [zϕ]) · [u], or
separately on [zA] and [zϕ] matrices [Z] = [ZA] + [Zϕ]. In order to properly illustrate
the proportionality of [Z0th-LCN] with respect to [ZA1st-LCN], interactions in [ZA1st-LCN]
are depicted by ticker lines representing interactions for both a1 and a2 while each
line in [Z0th-LCN] represents one interaction for P which is the inverse of the area of
the triangle.
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4.4.2 Vector-Potential Contribution via First-Order LCN

The equivalence of the first-order LCN and RWG MoM for the VP EFIE was

shown in [89]. Using a similar approach and by applying the VP part of the dyadic

kernel

GA(r, r′) = −jη0k0G(r, r′)I (4.25)

to first-order LCN discretizaion, it can be shown that the VP contribution of the MP

RWG MoM can be obtained using regular [ωA] and locally corrected [ω̃A] weights, for

far and near regions, respectively. This is done by the basis conversions introduced

in [89] which are used in the next section to define MP RWG-via-LCN’s local inter-

actions. Note that the superscript A is used in the notation of the LCN weights to

indicate that they are obtained by only applying the VP part of the dyadic kernel

(4.25).

4.4.3 Mixed-Potential RWG-via-LCN Local Interactions

Based on the exact representations of the SP and VP contributions to the MP

RWG MoM discussed in sections 4.4.1 and 4.4.2, we can define local interactions of

the MP RWG MoM ([zfar
mp], [znear

mp ]) based on the local interactions of the first-order

([ωA], [ω̃A]) and zeroth-order (ω, ω̃) LCN discretizations, yielding the MP RWG-via-

LCN local interactions. For the far field region we have

[zfar
mp] = [lm]T · ω · [lp] + [Rm]T · [ωA] · [Rp] (4.26)
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where [Rn] is a (6× 3) matrix defined as

[Rn] =

 [R1
n]

[R2
n]

 (4.27)

with [Ri
n] being a (3 × 3) matrix defined for the ith unitary vector on patch n with

its qn, kth entry [Ri
n]qn,k = ain ·Rn

k (rqn) where ain is the reciprocal unitary vector local

to patch n [89]. Similarly for the near field region we can write

[znear
mp ] = [lm]T · ω̃ · [lp] + [Rm]T · [ω̃A] · [Rp] (4.28)

Since (4.28) and (4.26) have the same form, it is possible to define unified global

converter matrices for VP and SP contributions as explained in the sequel.

4.4.4 Mixed-Potential RWG-via-LCN System

A global transformation of first- and zeroth-order LCN matrices to the global

(1.5Np × 1.5Np) impedance matrix of the MP RWG-via-LCN [Z] has the following

form

[Z] = [u]T · ([l]T · [Z0th-LCN] · [l] + [R]T · [ZA1st-LCN] · [R]) · [u] (4.29)

where [u] unifies ramp functions onto RWG functions and [R] exactly converts RWG

current coefficients to its first-order LCN counterpart, both of which are sparse ma-

trices and explicitly defined in [89] (see (22) and (49) therein). Here, [Z0th-LCN] is

the (Np × Np) zeroth-order LCN matrix and [ZA1st-LCN] is the (6Np × 6Np) VP part

of the first-order LCN matrix which are filled with the kernels of (4.24) and (4.25),
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respectively. Finally, [l] is a (Np × 3Np) matrix defined as

[l] =



[l1] [0] . . . [0]

[0] [l2] . . . [0]
... ... . . . ...

[0] [0] . . .
[
lNp

]


(4.30)

where every [0] represents a matrix of (1× 3) zeros. The stages of global transforma-

tions of (4.29) are depicted in Fig. 4.1.

4.4.5 Mixed-Potential RWG-via-LCN Implementation

4.4.5.1 Local Transformations

The global transformations formulated in (4.29) (also in (4.31) as well as (50)

of [89]), while beneficial to understand the techniques, are not explicitly performed in

practice. Instead, we fill out the (1.5Np×1.5Np) RWG-via-LCN impedance matrix [Z]

by locally obtaining [zfar
mp] and [znear

mp ], and adding or subtracting the contribution to

[Z] based on the alignment of the corresponding RWG and ramp functions. While the

complexity of a direct conversion form the global LCN matrix to the global RWG-via-

LCN matrix (both MP and VP) isO(N), performing the conversion locally, eliminates

the need for saving (6Np × 6Np) [ZA1st-LCN] and (Np ×Np) [Z0th-LCN] matrices.

4.4.5.2 Multilevel Fast Multipole Algorithm (MLFMA) Acceleration

The proposed MP RWG-via-LCN method greatly facilitates acceleration of the

RWG MoM with the MLFMA [24, 67] as it casts the interactions of the RWG basis

functions into the point-based form established by the underlying LCN discretiza-

tions. As MLFMA is most efficient when applied to the acceleration of point-to-point
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interactions, in the proposed scheme, the product of [Z0th-LCN] and [ZA1st-LCN] matrices

with the vectors are accelerated with the MLFMA for scalar Helmholtz kernel. Eval-

uation of each x, y, and z component of the VP and SP at the observation quadrature

points are handled separately with the scalar kernel MLFMA [93–95]. This approach

is commonly termed as MP MLFMA as opposed to the dyadic MLFMA typically

applied directly to the RWG basis-function-to-basis-function interactions.

4.4.5.3 Low-Frequency Stable Formulations

The low-frequency stable formulations available for RWG MoM through loop-tree,

loop-star, loop-charge, and Calderon based techniques [82,83,85–87] become directly

applicable to the LCN through the relationship established in this work. For that

purpose, in the impedance matrix of the RWG MoM [Z] (4.18), the SP contribution

[Zϕ] and the VP contribution [ZA] are separately related to the LCN impedance

matrices according to the following exact relations

[Zϕ] = [u]T · [l]T · [Z0th-LCN] · [l] · [u],

[ZA] = [u]T · [R]T · [ZA1st-LCN] · [R] · [u]
(4.31)

which are also depicted in Fig. 4.1. Subsequently, the scalar- and vector-potential

MP RWG MoM matrices ([Zϕ], [ZA]) can be directly used in the low-frequency stable

formulations. Thus, the proposed MP RWG-via-LCN scheme combines the benefits

of the point-based LCN discretization and low-frequency stable MoM formulations.

Note, that this is unlike the standard LCN [18] and VP RWG-via-LCN [89] which

discretize VP EFIE and can not be directly related to the low-frequency stable dis-

cretization schemes. It is important to mention also that the Helmholtz decomposition

and preconditioning techniques based on RWG MoM low-frequency stable formula-
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tions do not introduce additional unknowns into the formulation. This is unlike the

methods based on the discretization of the AEFIE which discretize both current and

charge and, thus, at least double the number of unknowns [88,90].

4.5 Results and Discussion

In all simulations herein, the O(1/R) singularity in the zeroth-order LCN weights

ω̃ is integrated by analytical evaluation of the singular part of the free space Green’s

function Gs(r, r′) = 1/|r − r′| [59] and a zeroth-order approximation of its regular

part Gr(r, r′) = [e−jk0|r−r′| − 1]/|r − r′| to fill out [Z0th-LCN]. Matrix elements of

[ZA1st-LCN] and the first-order LCN impedance matrix [Z1st-LCN] are computed to pre-

scribed precision with relative error ε = 10−4 using Duffy transform [60] and adaptive

quadrature [18, 89]. Herein, the final system of linear algebraic equations is solved

directly by LU-decomposition. The results are quantified by means of relative error

in the approximated surface current J defined as

MeanErr(J) = 1
3Np

3Np∑
i=1

∣∣∣JNum
i − JRef

i

∣∣∣
|JRef
i |

(4.32)

where JNum
i and JRef

i are the current magnitudes |J| at the quadrature points of the

first-order rule qm obtained by the numerical and reference solutions, respectively.

4.5.1 Equivalence of MP RWGMoM andMP RWG-via-LCN

As the MP RWG-via-LCN conversions in (4.29) and (4.31) are exact, the proposed

method establishes an exact relationship between LCN and MP RWGMoM, under the

assumption that both LCN and MP RWGMoM consider the same near and far regions

along with the same choice of singularity cancellation techniques for the SP and VP
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contributions. Therefore the MP RWG-via-LCN impedance matrix [Z] in (4.29) will

be equivalent to the MP RWGMoMmatrix in (4.18) to machine precision, irrespective

of the accuracy in which the singular integrals are computed. Fig. 4.2 compares

matrix elements from the MP RWG-via-LCN versus MP RWGMoM for a PEC sphere

at 100MHz meshed with 32 triangles. Here, we use the same singularity cancellation

techniques to fill out both matrices. Thus, as described above, we analytically evaluate

Gs and apply zeroth-order approximation of Gr to compute SP contributions in both

techniques (i.e. ω̃ and ϕ̃), as well as the same adaptive integrations to compute VP

contributions in both methods (i.e. [ω̃A] and [Ã]). While adaptive integrations of [Ã]

and [ω̃A] are expected to provide results with the requested 4 digits of precision, ϕ̃

and ω̃ are 2 digits accurate due to the approximation of Gr. Nevertheless, as can be

seen from the figure, the equivalence between MP RWG MoM and MP RWG-via-LCN

is exact to machine precision, consistent with [18,89].

4.5.2 Line Integral Cancellation in VP and MP RWG MoM

In order to understand the difference between VP and MP RWG-via-LCNs or

equivalently VP and MP RWG MoMs, we need to look at how these techniques com-

pute SP interactions. While MP RWG-via-LCN as well as the general case of MP

RWG MoM [23] take advantage of exact cancellations of the terms containing line

integrals in (4.8) to compute [zϕmp] in (4.9), the VP RWG-via-LCN and VP RWG

MoM by definition, attempt to achieve analogous cancellations numerically by com-

puting [zΦ
mp] in (4.7). Although VP RWG-via-LCN may use analytical cancellation of

the source line integral over Cp in (4.7) (see also (51)-(53) in [89]), cancelling contri-

butions containing line integrals over Cm in (4.8) is not analytically possible for VP

RWG MoM. This is because, VP EFIE formulation based discretizations imply inner
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product testing using δ-functions (i.e. point-based sampling) and since δ-functions

are non-differentiable, the gradient operators in (4.7) can not be shifted onto them

to reproduce (4.8). Therefore VP RWG MoM, LCN, and VP RWG-via-LCN do

not only require more computational effort to compute SP interactions, they are also

prone to errors in numerical line integrals1 which impacts the accuracy of the solution

depending on the frequency as demonstrated below.

To numerically study these cancellation mechanisms, we consider VP and MP

RWG-via-LCN formulations in the quantitative analysis. However, since the analysis

is based on the difference of RWG MoM discretization of the MPIE and VP EFIE

formulations in general, based on (4.9) and (4.7), respectively, its results are relevant

to an arbitrary form of RWG MoM when discretizing VP and MP EFIEs. Consider

the electromagnetic scattering on a 1-meter radius PEC sphere uniformly discretized

by Np = 5, 948 triangles and excited by ẑ-directed electric dipole with time-harmonic

current situated 9 meters above the north pole of the sphere. As shown in Fig. 4.1,

the impedance matrix of the MP RWG-via-LCN can be obtained by [Z] = [ZA]+[Zϕ]

and thus we fill out (1.5Np × 1.5Np) matrices [ZA] and [Zϕ] using (4.31) as well as

the same size VP RWG-via-LCN impedance matrix of [89] which here, we refer to as

[ZA+Φ] since it is built from [zAmp] + [zΦ
mp]. The difference between matrix elements

of MP RWG-via-LCN and VP RWG-via-LCN [ZΦ−ϕ] = [ZA+Φ] − [Z] can be used

to quantify the error that appears in VP RWG-via-LCN due to the fact that it can

not perfectly cancel test line integrals over Cm and thus reduce [zΦ
mp] to [zϕmp]. The

imperfection in cancellation of the test line integrals comes from its implicit nature
1If an RWG MoM implementation obtains SP contributions using (4.8), depending on the dis-

cretization, it may or may not exhibit imperfect test line integral cancellations. If a fixed-symmetric
quadrature rule is applied along contours of the observation elements Cm, numerical cancellation of
test line integrals in (4.8) can be achieved to machine precision, numerically. Otherwise, discretiza-
tion of (4.8) is vulnerable to imperfect cancellation of test line integrals.
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Figure 4.2: Comparison of the (1.5Np × 1.5Np) impedance matrix [Z] of a 32 ele-
ment PEC sphere at 100MHz obtained by the MP RWG-via-LCN (4.29) and MP
RWG MoM (4.18). There are 482 points in the figure representing Err(Zi,j) =
|ZMP RWG MoM

i,j − ZMP RWG-via-LCN
i,j |/|ZMP RWG MoM

i,j | where i, j ∈ {1, ..., 48}.
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inherent to the VP RWG-via-LCN formulation. The latter discretizes scalar potential

contribution in the form of (4.7) rather than (4.9), which allows for only imperfect

implicit numerical cancellation of the test line integrals over Cm and leads to non-zero

values of [ZΦ−ϕ]. Fig. 4.3 plots |[Zϕ]4461,j|, |[ZA]4461,j|, and |[ZΦ−ϕ]4461,j|, which are

the magnitudes of the 4461st row of the corresponding matrices sampled in increments

of 60, i.e. at columns (j = 1, 61, ..., 8881).

At 10kHz, the elements of [zϕ] are numerically confirmed to be accurate with at

least 4 digits of precision with average relative error ε = 10−5 when compared with

the values of [zϕmp] in (4.9) calculated to machine precision. Note that the conversion

from [Z0th-LCN] to [zϕ] is exact and this error is due to the approximation made in

(4.11) plus the zeroth-order approximation of Gr. Although matrix components with

maximum relative error 10−4 for [zϕ] and [zA] seem appropriate for the low-order

RWG MoM1, the imbalance due to the k2
0 factor difference between [zAmp] and [zϕmp]

makes |[ZA]4461,j| about 8 digits of magnitude smaller than |[Zϕ]4461,j|. This means

that [Z] will essentially lose the contribution of [ZA] as the absolute error level of

[Zϕ] lies above [ZA]. This is because the absolute error level of [Zϕ] is at least 10−4

due to error of [zϕ] described above. Therefore, the MP RWG-via-LCN does not

produce meaningful results at this frequency as shown later in Figs. 4.4 and 4.5.

The VP RWG-via-LCN is also paralyzed at this frequency (Figs. 4.4 and 4.5), since

|[ZΦ−ϕ]4461,j| is larger than |[ZA]4461,j| which is an indication that the contribution of

[zAmp] will be lost in [ZA+Φ].

At 1MHz, the absolute error of [zϕ] was numerically found to be ε = 10−7 and thus

the absolute error level of [Zϕ] at this frequency is at least 10−7. This means that the

level of |[ZA]4461,j| (observed from Fig. 4.3 to be about 10−5) is 2 orders of magnitude
1Low-order methods are usually expected to provide field solutions with no more than 2 to 3

digits of precision [1].
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Figure 4.3: The magnitude of a single row of (1.5Np × 1.5Np) matrices generated for
the 5, 948 element PEC sphere. Matrices [Zϕ] and [ZA] are used in the definition
of the MP RWG-via-LCN matrix [Z] = [Zϕ] + [ZA] while [ZΦ−ϕ] = [ZA+Φ] − [Z]
quantifies the difference between [Z] and the VP RWG-via-LCN matrix [ZA+Φ]. The
same mesh is used in Figs. 4.4, 4.5, and 4.6.
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above the absolute error level of |[Zϕ]4461,j|. Therefore, the MP RWG-via-LCN is ex-

pected to produce acceptable results at this frequency. The VP RWG-via-LCN on the

other hand, still suffers from the imbalance in the vector- and scalar-potential terms

due to the k2
0 factor and fails to operate numerically. This is because |[ZΦ−ϕ]4461,j|

is, on average, above the level of |[ZA]4461,j| and only about 2 orders of magnitude

smaller than |[ZΦ]4461,j|, [ZΦ] being [ZA+Φ] − [ZA]1. This means that despite the

prescribed accuracy (ε = 10−4) imposed on the calculation of [zΦ
mp], the resultant

[ZΦ] is only 2 digits accurate with respect to [Zϕ] making the level of imperfectly

canceled line integrals [ZΦ−ϕ], on average, above the level of [ZA]. Hence, the VP

contribution [zAmp] is still not recoverable in [ZA+Φ]. The imperfection in line integral

cancellation stems from the fact that [ZA+Φ] performs numerical cancellations that

rely on the contribution from the adjacent triangle with opposite signs despite the

fact that two adjacent triangles hold the scattered electric field on two different sets

of observation points interior to each cell and not on the common edge. As a result,

matrix elements in the VP formulation [ZA+Φ] are subject to additional inaccuracies

when compared with matrix elements [Z] in the MP formulation. Specifically, despite

having two equivalent contributions with opposite signs at the same observation loca-

tion (right on the edge), [ZA+Φ] implicitly sums these contributions at two different

observation locations (at the internal quadrature points of the respective triangles)

producing a less accurate SP contribution [ZΦ] than the SP term [Zϕ] in the MP

formulation which assumes these cancellations analytically on the edge. This causes

the numerical cancellation of analogous terms in [ZΦ] with observation (outer) line

integrals over Cm (i.e. the first two terms of (4.8)) to produce relative error level of

near 10−2, well above and irrespective of the 10−4 maximum error expected from the
1Note, |[ZΦ]4461,j | is not depicted in Fig. 4.3 as it would visually overlap with |[Zϕ]4461,j |.
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adaptive quadrature integration results. Further experiments showed that requesting

more digits of precision (up to 9 digits) from the adaptive routines to evaluate inner

integrals of (4.7), does not reduce this error which corroborates earlier statements

that imperfect numerical cancellation of line integrals is independent of the source

line integrals over Cp. In fact, numerical results showed that cancellation of the inner

line integrals over the contour of the source triangle Cp (i.e. the third term in (4.8) as

well as the first term on the right hand side of (4.7) appearing in VP RWG-via-LCN)

is numerically performed down to machine precision with error level of 10−12 which

supports that only the test line integrals in (4.8) implicitly contribute to the error

of [ZΦ] observed here. It is worth noting that applying special quadrature rules to

the outer integral of (4.7) which have their quadrature points close to the edge of the

triangle was tested in an attempt to mitigate this effect in VP RWG-via-LCN to no

avail. This can be explained by the singular behaviour of the fields close to sharp

edges.

Finally, at 100MHz, both VP and MP formulations perform with similar error

levels. Although the [zϕ] interactions were numerically evaluated to be only 3 digits

accurate at this frequency1, since the level of |[Zϕ]4461,j| is comparable with the level

of |[ZA]4461,j|, the MP RWG-via-LCN is expected to exhibit good performance. The

VP RWG-via-LCN will also produce acceptable results since the level of |[ZΦ−ϕ]4461,j|

lies well below (about 3 digits) the level of |[ZA]4461,j|.

Fig. 4.4 depicts the time snapshots of the surface current at t = 0s for the above

discussed example and frequencies. Results are consistent with the described error

mechanisms.
1Note that the analytical evaluation of Gs causes [zϕ] to be more accurate at lower frequencies,

since the lower the frequency, the less impactGr and its zeroth-order approximation has in computing
[zϕ] elements.
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Figure 4.4: Time snapshots of the surface current density at t = 0s computed by VP
RWG-via-LCN (first row) and MP RWG-via-LCN (second row), corresponding to the
plots of Fig. 4.3 at three frequencies. First, second, and third columns, correspond
to 10kHz, 1MHz, and 100MHz, respectively. Results are quantified in Fig. 4.5.
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Figure 4.5: Mean relative error in the surface current MeanErr(J) computed by (4.32)
for the 5, 948 element PEC sphere example. Mie series is used as the reference solution.
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Figure 4.6: Condition numbers of the impedance matrices for the 5, 948 element PEC
sphere used to produce Fig. 4.5.
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Fig. 4.5 plots MeanErr(J) (4.32) produced by first-order LCN, VP RWG-via-LCN

and MP RWG-via-LCN for the same sphere example at different frequencies where

Mie series is used as the reference solution. The higher accuracy of the MP RWG-

via-LCN compared with VP RWG-via-LCN and first-order LCN is evident as long as

the low-frequency breakdown phenomena is not present. Specifically, the proposed

MP RWG-via-LCN provides solutions with MeanErr(J) < 2% from f = 100kHz up

to f = 300MHz but faces the low-frequency breakdown at 10kHz. The other two

methods however, have MeanErr(J) > 10% at f < 100MHz due to the imbalance

caused by the k2
0 factor in SP and VP terms of the VP EFIE, described above.

At higher frequencies where VP RWG-via-LCN and LCN can numerically operate

(f ≥ 100MHz), the VP RWG-via-LCN provides increasingly more accurate results

compared to first-order LCN as the frequency decreases which is consistent with [89].

Nonetheless, the accuracy of the MP RWG-via-LCN is superior to both of the other

methods at all frequencies while being computationally more efficient as it does not

compute the contour integrals and requires fewer operations in computation of the

SP contributions than either the VP RWG-via-LCN or first-order LCN.

Fig. 4.6 compares the 2-norm condition numbers of the impedance matrices used

in creating Fig. 4.5. While there is improvement in the condition number from

first-order LCN to MP RWG-via-LCN, the MP RWG-via-LCN has an increase in the

condition number compared to that of the VP RWG-via-LCN. This increase however,

is not severe and is well justified at lower frequencies where VP RWG-via-LCN suffers

from high inaccuracies due to the imbalance in SP and VP terms of the VP EFIE.

Moreover, as discussed in Section 4.4.5.3, the proposed MP RWG-via-LCN method

can be combined with low-frequency stable formulations unlike LCN and VP RWG-

via-LCN for which such techniques are not available.



4.5. Results and Discussion 118

4.5.3 Realistic Boeing 747 Model

The performance of the new technique was examined for a Boeing 747 airplane

model, discretized with 9, 810 triangles mesh. The model mesh has the ratio of

maximum to minimum element size [24] of about 18. The excitation is a ẑ-directed

electric dipole situated 3 meters above the tip of the aircraft. Figs. 4.7 to 4.101 are

the time snapshots of the surface current induced on the surface of the aircraft at

t = 0s using the three techniques we are considering, as well as a reference solution

(Fig. 4.7) obtained by a commercial tool, Wave3D [35]. Once again, the first-order

LCN (Fig. 4.8) and VP RWG-via-LCN (Fig. 4.9) fail to operate at the low frequency

(f = 1MHz) whereas the MP RWG-via-LCN (Fig. 4.10) maintains its accuracy.

At the high frequency (f = 100MHz), both MP and VP RWG-via-LCNs provide

acceptable results while first-order LCN shows visually less accurate results especially

at the tail of the aircraft.

Fig. 4.11 plots the mean relative error of the computed current MeanErr(J) by the

three techniques where Wave3D is used as the reference solution. Note however, that

near the geometry edges, error is capped at 100% in calculating MeanErr(J) since

maximum relative error may exceed 100% in such areas. Such a method of dealing

with singular fields near the geometry edges in computing the average error (4.32),

causes the error level to increase compared to what was shown in Fig. 4.5. However,

this does not alter the comparison we are addressing here since all three methods

under study use the same mesh. Similar behaviour as for the case of the sphere

is observed for the realistic Boeing 747 model. At low frequencies, MP RWG-via-

LCN performs much better than first-order LCN and VP RWG-via-LCN techniques,

while at higher frequencies, both RWG-via-LCN solutions are more accurate than the
1Note that these four figures are all depicted in Fig. 7 of [132] but have been separated herein

to improve visibility.
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Reference Solution (100MHz)

Reference Solution (1MHz)

Figure 4.7: Time snapshots of the current density induced at t = 0s on the surface
of the Boeing 747 model obtained by Wave3D [35] using a 283, 970 element mesh as
the reference solution for Figs 4.8 to 4.11.
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First-Order LCN (100MHz)

First-Order LCN (1MHz)

Figure 4.8: Time snapshots of the current density induced at t = 0s on the surface
of the Boeing 747 model obtained by First-order LCN with a mesh containing 9, 810
triangles. The reference solution is illustrated in Fig. 4.7 and is obtained by Wave3D
[35] using a 283, 970 element mesh. The VP RWG-via-LCN and MP RWG-via-LCN
solutions with the same mesh are depicted in Figs. 4.9 and 4.10, respectively. Results
are quantified in Fig. 4.11.
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Figure 4.9: Time snapshots of the current density induced at t = 0s on the surface
of the Boeing 747 model obtained by VP RWG-via-LCN with a mesh containing
9, 810 triangles. The reference solution is illustrated in Fig. 4.7 and is obtained by
Wave3D [35] using a 283, 970 element mesh. The First-order LCN and MP RWG-via-
LCN solutions with the same mesh are depicted in Figs. 4.8 and 4.10, respectively.
Results are quantified in Fig. 4.11.



4.5. Results and Discussion 122

MP RWG-via-LCN (100MHz)

MP RWG-via-LCN (1MHz)

Figure 4.10: Time snapshots of the current density induced at t = 0s on the surface
of the Boeing 747 model obtained by MP RWG-via-LCN with a mesh containing
9, 810 triangles. The reference solution is illustrated in Fig. 4.7 and is obtained by
Wave3D [35] using a 283, 970 element mesh. The First-order LCN and VP RWG-via-
LCN solutions with the same mesh are depicted in Figs. 4.8 and 4.9, respectively.
Results are quantified in Fig. 4.11.
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Figure 4.11: Mean relative error in the surface current MeanErr(J) obtained by (4.32)
for the 9, 810 element PEC Boeing 747 model. Wave3D [35] with 283,970 triangles is
used as the reference solution.

solution of the first-order LCN.

Runtime detail for the data presented in Fig.4.11 is given in Table 4.1. It can be

seen that the first-order LCN has much longer runtime which is mostly due to the LU-

decomposition of a 4 times larger matrix compared to both RWG-via-LCN techniques.

The VP RWG-via-LCN exhibits longer CPU times as the frequency decreases which

can be explained by the fact that SP contributions require more iterations in the

adaptive quadratures as the frequency decreases. The runtime for the proposed MP

RWG-via-LCN on the other hand remains relatively the same at different frequencies.

The memory usage for the Boeing 747 example is tabulated in Table 4.2. The

memory usage is directly affected by the size of the matrix and is independent of
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Frequency First-Order LCN VP RWG-via-LCN MP RWG-via-LCN
1kHz 66:43:25 17:15:18 6:32:03
10kHz 66:41:59 15:52:15 6:28:53
100kHz 66:42:26 14:58:19 7:37:25
1MHz 66:40:16 16:38:16 7:28:03
10MHz 61:38:07 5:26:47 6:27:06
100MHz 66:21:25 2:16:46 7:55:03
200MHz 66:58:14 3:12:55 6:35:01

Table 4.1: Runtime detail for the data presented in Fig.4.11 (hr:min:sec).

Frequency First-Order LCN VP RWG-via-LCN MP RWG-via-LCN
1kHz 54,153,448 3,525,331 3,525,365
10kHz 54,153,448 3,525,331 3,525,321
100kHz 54,153,456 3,525,325 3,525,453
1MHz 54,153,450 3,525,333 3,525,332
10MHz 54,153,444 3,525,333 3,525,335
100MHz 54,153,444 3,525,331 3,525,335
200MHz 54,153,448 3,525,336 3,525,335

Table 4.2: Memory usage for the data presented in Fig.4.11 (kb).

the frequency since LU-decomposition is used herein. As a result, as can be seen in

Table 4.2, the LCN method used about 54GB of memory while both RWG-via-LCN

techniques used around 3.5GB of memory throughout the frequency range.

4.6 Conclusion

In this paper we established an exact relationship between RWG MoM in the

mixed-potential form and the LCN schemes, resulting in a new current-continuity-

enforcing LCN discretization of the MPIE termed MP RWG-via-LCN. The MP RWG-

via-LCN is a point-based method, thus it can be efficiently accelerated by MLFMA

similar to LCN. The new technique, similar to its VP RWG-via-LCN predecessor,

enforces current continuity between triangles and produces 4 times smaller and bet-



4.6. Conclusion 125

ter conditioned matrix, compared to first-order LCN. The proposed MP RWG-via-

LCN method is computationally more efficient and yields considerably more accurate

results compared to the LCN and VP RWG-via-LCN techniques due to analytical

cancellation of the line integrals appearing in the MPIE formulation. Moreover, the

proposed MP RWG-via-LCN technique can be combined with preconditioning and

Helmholtz decomposition techniques to solve low-frequency breakdown instead of re-

sorting to AEFIE formulation which increases the DOF compared to the EFIE. The

paper also provides detailed explanations for the effect of numerical versus exact

cancellation of the line charge contributions in VP and MP forms of the EFIE and

pertinent RWG MoM discretization schemes.
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Chapter 5

On Achieving High-Order

Convergence to the Correct

Answer with the Locally Corrected

Nyström Method

By Mohammad Shafieipour in partial fulfilment of the requirements of the degree of

Doctor of Philosophy (Ph.D.), March 2016.

5.1 Introduction

In the last two chapters we introduced two novel techniques for point-based Rao-

Wilton-Glisson (RWG) method-of-moments (MoM) discretization of the electric field

integral equation (EFIE) in its vector- and mixed-potential forms. Inherent to the

nature of RWG basis functions, both schemes are low-order (LO) methods. Due to

the maturity of the LO techniques, the industry is dominated by LO methods and the
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techniques proposed in Chapters 3 and 4 might be adopted by the industry according

to the industry’s needs. However, both the industry and the research community is

making a transition from LO methods to high-order (HO) methods as HO methods

are exponentially more efficient than their LO counterparts as seen in [1] and further

explained in this chapter. It is therefore essential to not only develop novel LO

techniques (e.g. Chapter 3, and 4) for the industry’s immediate needs, but also

contribute to the development of the more efficient and newly emerging HO methods.

Although much research has already been carried out to explore the advantages

of HO schemes [1, 19, 20, 49, 96–99], in this chapter, we discuss various aspects of

achieving HO convergence to the correct answer (aka HO behaivour) using the HO

locally corrected Nyström (LCN) method in discretizing the EFIE and two other

surface integral equations (SIEs) for perfectly electric conducting (PEC) material,

namely, the magnetic field integral equation (MFIE) and the combined field integral

equation (CFIE). The MFIE can be obtained in a similar manner that EFIE was

derived in Chapter 2 and the combined field integral equation (CFIE) is an algebraic

combination of the two. Interested reader can refer to [5, 39–42] for more details on

various SIE formulations.

5.2 Patch Size Limitation for the LCN Method

HO techniques reduce the number of unknowns since they can approximate the

unknown fields on large patches [1, 19, 20, 96, 97]. Therefore the common max patch

size h limitation based on the wavelength λ imposed on LO techniques (h < λ/10)

does not have to be used in HO LCN method as it does not allow for utilization of

larger elements. Reference [96] which proposed the use of HO curvilinear quadrilat-

eral elements for HO MoM, did not attempt to formulate the patch size and showed
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through numerical results that even at high frequencies, elements larger than 0.1λ

can be used with HO MoM. The authors in [97, 99, 100] investigated the availability

of large patches using Bézier meshes for highly curved geometries but did not study

the limitation on the patch size with respect to the discretization scheme. A compre-

hensive note on HO frequency domain computational electromagnetics (CEM) [20],

suggested as an empirical law that h < 1.5λ can be used in HO CEM techniques.

In this section we demonstrate that for the LCN method to provide HO solutions,

the element size should not only be limited by the wavelength, but it should also be

defined based on the order of the discretization. The analysis is based on the spatial

sampling theorem which is a consequence of the well known Nyquist criterion applied

to the discretization of the RHS (right-hand-side) of the pertinent SIEs.

5.2.1 Spatial Sampling Theorem

It is well stablished in the field of digital signal processing [101–103] that according

to the Nyquist criterion a band-limited signal can be reconstructed uniquely by its

values sampled at uniform intervals of Ts such that

Ts ≤
1

2f (sec) (5.1)

where f is the frequency of the signal in Hz. This is known as the uniform sampling

theorem [101]. The uniform sampling theorem can also be applied to samples in the

spatial domain rather than time, in which case the theorem is called spatial sampling

theorem [104, 105]. Figure 5.1.a depicts a 1D spatial sampling of a traveling plane

wave where samples are taken at equidistance points with distance d. According to

the spatial sampling theorem, for the field of an incident plane wave to be exactly
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Figure 5.1: Illustration of 1D spatial sampling of a propagating wave using (a) Carte-
sian coordinate system, and (b) Barycentric coordinate system.

(without any error) reconstructible using the sample points, the following inequality

has to be fulfilled

d |sin(ϕ)| ≤ 1
2ν (meter), ∀ϕ (5.2)

where ν = 1
λ
is the spatial frequency of the wave. Knowing that | sin(ϕ)| ≤ 1, the

spatial sampling interval can have the following form

d ≤ λ

2 (5.3)

This theoretical limitation on the max distance between any two adjacent sampling

points will be used in the sequel to explain the limitation on the patch size for the

LCN method.
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5.2.2 Limitation on the Patch Size for LCN

One way to explain the relationship between the maximum electrical size of the

element hmax and the discretization order of the LCN is to analyse the quadrature

sampled excitation function (i.e. the RHS) with respect to the inequality in 5.3.

Consider the scalar LCN defined over the 1D domain

ˆ b

a

K(x, x′)I(x′)dx′ = φinc(x) (5.4)

where K is the kernel, I is the unknown scalar quantity, [a, b] is the interval in which

I should be evaluated, x and x′ are the observation and source points, respectively, in

1D Cartesian coordinates, and the RSH is the known forcing function. It is assumed

that the entire interval [a, b] is modelled using a single 1D element. As LCN is a point-

based scheme, it enforces the observation points at the discrete quadrature abscissas

xqn and thus we have

ˆ b

a

K(xqn , x
′)I(x′)dx′ = φinc(xqn) (5.5)

The transition from (5.4) to (5.5) takes place in all forms of the LCN method and

subsequent stages of discretization follow as discussed for example in [1, 18, 89]. It is

important to realize that in converting (5.4) to (5.5) the excitation function φinc(x)

is sampled as discrete quadrature points xqn . Fig. 5.1.b depicts such sampling where

sampling of the incident field is shown at three consecutive quadrature points over

the 1D Canonical coordinate (qn−1, qn, qn+1). According to (5.3), for φinc(xqn) in (5.5)

to be able to uniquely represent φinc(x) in (5.4), the largest distance between any two

quadrature points (δqn−1,n and δqn,n+1 in Fig. 5.1.b) should not exceed λ
2 . Therefore

for the LCN method to exhibit HO convergence, the following “convergence criteria”
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should be respected

hmax ≤
λ

δqp
(5.6)

where hmax is the maximum electrical size of the element, and 0 < δqp ≤ 2 is the

maximum distance between two neighbouring quadrature abscissas of the pth order

quadrature rule. The range (0, 2] for δqp is conveniently chosen to be consistent with

the interval of [−1, 1] in computational domain coordinate system. Note that the

criteria (5.6), is necessary for the LCN method to achieve HO convergence, but may

not be sufficient as other factors such as 2D or 3D modelling, element shape, curvature

of the edges, etc, might prevent an LCN solution to exhibit HO convergence. From

(5.6) it can be understood that the maximum electrical size of the element hmax is

not only dependent on the wavelength λ, but it is also dependent on the order of the

discretization as δqp varies for different orders of a certain quadrature rule. Fig. 5.2

compares 1/δqp for the commonly used product of 1D Gauss-Legendre rule at different

orders p = 0...19. The abscissas of the Gauss-Legendre rule reside at the roots of the

Legendre polynomials. At p = 0 where there is only one quadrature point, we have

δqp = 2, since the distance between two quadrature points is the distance between

centroids of two adjacent patches. As the order p increases, quadrature abscissas

tend to concentrate around the edge of the element. Therefore 1/δqp does not grow

linearly as p increases. Nevertheless, as can be seen in Fig. 5.2, at p = 8, the maximum

electrical size of the element hmax may be as large as 3λ1. This convergence criteria,

is larger than 1.5λ which was empirically suggested in [20] for HO CEM techniques.
1Note that usually Computer-Aided Design (CAD) tools (such as Gmsh [106]) provide the element

size h in terms of the radius of the circumscribing circle r, in which case h =
√

2r.
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Figure 5.2: 1/δqp for different orders of the Gauss-Legendre rule.

5.2.3 Numerical Results

In order to illustrate the validity of the convergence criteria presented in (5.6), we

consider electromagnetic scattering on a sphere as its analytical solution is available by

Mie series. The sphere is made of PEC material with radius of 1m which is modelled

via analytic exact cube-to-sphere mapping. The excitation is a ẑ-directed electric

dipole situated 10 meters above the center of the sphere with f = 1GHz. The CFIE

with α = 0.5 is used to obtain the solution and the basis functions are polynomial-

complete to order p + 1 where product of 1D Gauss-Legendre rule is applied [1, 18].

The sphere is discretized using 6, 24, 54, 96 and 216 elements which respectively have

hmax = 3.85λ, 2.45λ, 1.68λ, 1.3λ, and 0.89λ at the considered frequency (1GHz). The
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mean error in the computed current MeanErr(J) is calculated as

MeanErr(J) = 1
N

N∑
i=1

|JLCN
i − JMie

i |
|JMie
i |

(5.7)

where N is the number of quadrature points, JLCN
i is the LCN computed current

at the quadrature points, and JMie
i is the corresponding current evaluated by the

Mie series solution. Fig. 5.3 plots MeanErr(J) for various orders where errors larger

than 100% are capped at 100%. The dotted lines correspond to orders that do

not meet (5.6) while solid lines represent orders that respect (5.6). As can be seen

from the figure, for a certain mesh, convergence to the true solution occurs if the

convergence criteria (5.6) is met (solid lines). As expected, the convergence rate is

different for different mesh according to O(hp) convergence rate [1, 19, 20]. On the

other hand if the convergence criteria (5.6) is violated (dotted lines), the average error

of the solution remains greater than 30% irrespective of the discretization parameters

(hmax, p) indicating that the numerical results are not trustworthy. This completes

the discussion on the patch size limitation for the HO LCN method.

5.3 Predicting the Optimal Number of Unknowns

for the LCN Method

In this section we develop a procedure in which the minimum number of unknowns

for a desired accuracy can be achieved using the HO LCN method. In doing so, it is

necessary to discuss the convergence rate of the HO LCN.
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Figure 5.3: MeanErr(J) computed using (5.7) for different mesh and orders when
compared with the Mie series solution. Results are obtained using CFIE (α = 0.5).
Dotted lines represent situations where (5.6) is violated and solid lines otherwise.
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5.3.1 Theoretical Convergence Rate

In HO CEM literature, it is assumed that the convergence rate of a proper HO

algorithm with order p using characteristic element size h is ε = O(hp) [1, 18–20,96].

This assumption has been made as a general metric for the efficiency of the HO

methods. However, according to the theory presented in [107], if basis functions in-

terpolating the current are complete up to polynomial degree p in both dimensions of

the surface coordinate system, the MoM’s solution should exhibit O(h2(p+1)) conver-

gence rate. This rate is considerably higher than O(hp). Since MoM and LCN have

been shown to be equivalent [18], the same convergence rate is also expected from

the LCN method as demonstrated below.

Due to the availability of analytical solution, we present simulations of the scat-

tering on a 1 meter radius sphere excited by a radial dipole located 9 meters above the

sphere’s north pole at 1GHz. The sphere example is also desirable since it does not

have sharp edges and the LCN method has been shown to provide HO solutions for

this problem [1,18,47,48]. Here, we study the global convergence rate but due to the

smoothness of the sphere, the same analysis could be applied to the local convergence

rate as well. In order to eliminate any geometrical error, the geometry is obtained by

analytical cube-to-sphere mapping that exactly models the smooth curvature of the

sphere using quadrilateral patches. The quadrature rules were defined over these cells

as a product of 1D Gauss-Legendre rules. Mean relative error is estimated using (5.7).

Fig. 5.4 shows the mean relative error obtained by MFIE with h- and p-refinements.

Errors more than 1 have been capped at 1 in order to have a clearer plot. The red

lines represent situations where hmax violates (5.6) in at least one element whereas

blue lines are results obtained from cases where all elements have sizes h ≤ λ/δqp.

The black lines correspond to the analytical lines where ε = Ch2(p+1). It turns out
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(through experiments) that C in this example has the following closed form

C = 0.05k2(p+1)
0 ||K|| (5.8)

where ||K|| is the L1-norm of the Peano kernel [108] which can be written in terms

of the solution order p as

||K|| = 22p+3[(p+ 1)!]4
(2p+ 3)[(2p+ 2)!]3 (5.9)

It is clear from the blue lines, that at all orders, HO behaviour with convergence

almost equal to Ch2(p+1) is exhibited when the criteria (5.6) is enforced. On the

other hand where such restriction has not been enforced on h, in almost all cases,

accurate results can not be obtained and large mean relative errors close to 100%

are produced. This supports the statement that violating (5.6) is in fact violation of

the Nyquist criteria in sampling of the RHS (incident field) and completely paralyzes

the numerical method. However, there is one point in the plot at order 2 where

despite the criteria being violated, a mean error less than 1 is obtained. This can be

explained by the fact that for this case, most of the elements have sizes h ≤ λ/δq2

and actually met the criteria and the number of elements that violated it are very

few leading to relative mean error less than 100%. In fact in this particular case

we have h = 0.391m and λ/δq2 = 0.387m which indicates that most of the elements

have met the criteria. Nevertheless, the convergence rate at this point does not

exhibit Ch2(p+1) due to the small deviation from (5.6) by very few (6 out of 96)

elements. From the numerical results provided above, one can see that by respecting

the criteria formulated in (5.6), the MFIE offers theoretical convergence rate with

errors ε = O(h2(p+1)) whereas previous work [18] reported less consistent convergence
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Figure 5.4: Respecting and Violating the Introduced Convergence Criteria

with the theory [107], perhaps due to some elements violating (5.6) similar to the

case above where minor deviations from the criteria by few elements caused non-

theoretical convergence rate. Therefore, although reference [18] reported less than

theoretical convergence rate pconv > p+ 1 for the MFIE, as demonstrated above, the

theoretical convergence rate can indeed be achieved for MFIE on sufficiently smooth

objects if the criteria (5.6) is respected. Therefore by refining h and p, the error

drops as ε = O(h2(p+1)). For the EFIE, previous work [18] reported convergence

with order pconv ≤ p + 1. Our HO LCN implementation is also unable to exhibit

ε = O(h2(p+1)) for the EFIE and CFIE even if the criteria is met. In fact, due to the

non-self-adjoint nature of the electromagnetic integral operators, it is difficult (if not

impossible) to derive a general closed form expression for the error convergence [18].

Therefore neither of hp or h2(p+1) can be used in practical examples1. More generally,
1See Prof. Gedney’s comment in Section 7.2.8.4.
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an HO BEM method, has error convergence which can be represented by

ε = c1h
bp+c2

ε = c1 · hc2 · hbp

ε = ahbp

(5.10)

where a = c1 · hc2 and b are constant terms which depend on many different factors

including but not limited to1

1. Formulation (i.e. EFIE, MFIE or CFIE).

2. The electrical size of the considered scattering object.

3. The shape of the considered scattering object.

4. Choice of triangular or quadrilateral elements using either curvilinear or flat

faceted elements.

5. The chosen error estimation mechanism (i.e. mean error, max error, norm

error).

6. The parameter in which error estimation is applied for (i.e. current or RCS).

7. Choice of basis functions (i.e. ai or ai using either complete polynomial or

mixed-order which can be done either by monomials or Legendre polynomials).

8. Choice of quadrature rules (Gaussian or Newton-Cotes).

Therefore, a and b should be found experimentally for a specific problem and LCN

implementation. In the next section we explain how this can be done.
1For the reasons that will be clear later, the characteristic element size h in the mesh is excluded

from the list.
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5.3.2 Finding the Convergence Rate Experimentally

Consider the electromagnetic scattering from an exact-sphere with 96 quadrilateral

elements obtained by CFIE. We choose this example here as an analytical solution

is available and we can compare the numerical solution with the analytical solution.

But this procedure can be applied to an arbitrary smooth geometry. Observing Fig.

5.5, it can be seen that by using a minimum of three simulations, one can find the

convergence rate of a particular electromagnetic scattering problem. From the figure,

it can be seen that regardless of the reference solution being analytical (Mie series) or

numerical (Highest Order), it is possible to accurately estimate average error in the

solution. This is because, from the point of view of a solution that has average error

ε = 10−k, a solution that has error 10−k−1 can act as a proper reference solution1.

Therefore in Fig. 5.5, the computed error convergence rate (solid lines) is almost

identical to the true convergence rate found by the analytical solution (dotted lines).

Now using any 2 points ε1, ε2 and knowing that ε1 = ahbp1 and ε2 = ahbp2 , the factors

a and b can be computed. To find b we use ε1, ε2

ε1
ε2

= ahbp1

ahbp2
= hb(p1−p2)

b(p1 − p2) = logh(
ε1
ε2

)

b =
logh( ε1ε2 )
p1 − p2

(5.11)

1As an example, if the exact solution is A and the true absolute error in solution B is εB =
B − A = 10−1, a solution called C with εC = C − A = 10−2, can estimate the error in B as
B − (A+ 10−2) = 1.1× 10−1.
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Figure 5.5: Demonstration of approximating the error in a solution using the available
highest order numerical solution as the reference solution (solid lines) versus the true
error (dotted lines) computed when the analytic Mie series solution is used as the
reference solution.
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Figure 5.6: Demonstration of approximating the convergence rate experimentally
(solid lines) versus the true convergence rate (dotted lines).

but a can be found using either ε1 or ε2

ε1 = ahbp1 ⇒ a = ε1
hbp1

ε2 = ahbp2 ⇒ a = ε2
hbp2

(5.12)

Fig. 5.6, plots the estimated error convergences using the data obtained in 3rd to 6th

simulations using (5.11) and first line of (5.12). As can be seen from the figure, the

estimated curve becomes more accurate as higher orders are computed. Nevertheless,
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the curve obtained using the first three simulations seems accurate enough to estimate

a and b.

5.3.3 Computing the Number of Unknowns with respect to

the Desired Accuracy

It was shown in [1] that the number of required unknowns from 2 algorithms with

different orders can be related analytically by assuming that an HO method provide

results that exhibit errors in the order of hp. Here we derive (16) of [1] using the

generalized convergence rate ahbp in (5.10) and extend the discussion by introducing

the desired accuracy into the formulation. As was discussed in Section 6 of [1], the

number of unknowns n associated to the LCN with order p and element size h scales

in the order of

n = p2

h2 (5.13)

Now assume that the solution to a problem with the LCN can be solved by an

algorithm with max order P with characteristic element size H and it produces results

with error ε using N unknowns. To come up with a solution to the same problem

using order p < P with characteristic element size h but with the same order of error

ε using n unknowns we can write

ahbp = HP

hbp = 1
a
HP

h = bp

√
1
a
HP

h2 =
 bp

√
1
a
HP

2

(5.14)
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Substituting (5.14) into (5.13) we may write

n = p2(
bp

√
1
a
HP

)2

= p2(
1
a
HP

)( 2
bp

)

= p2

a(−2
bp

) ·H( 2P
bp

)

= p2

a(−2
bp

) · (H2)( P
bp

)

(5.15)

We also know from (5.13) that N = P 2/H2 thus by replacing H2 in (5.15) we can

write

n = p2

a(−2
bp

) · (P 2

N
)( P

bp
)

= N ( P
bp

) · a( 2
bp

) · p2

P ( 2P
bp

)

(5.16)

which is equivalent to (16) of [1] if a, b = 1. To introduce the accuracy into the above

formulae, we perform (5.14) on HP instead of ahbp

HP = ahbp

H = P
√
ahbp

H2 =
(

P
√
ahbp

)2

(5.17)
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and similarly perform (5.15) on N

N = P 2(
P
√
ahbp

)2

= P 2

(ahbp)( 2
P

)

= P 2

(ahbp)( 2
P

)

= P 2

a( 2
P

) · (h2)( bp
P

)

= P 2

a( 2
P

) · (a
a
h2)( bp

P
)

= P 2

a
( 2

P
)

a
( bp

P
)
· (ahbp)( 2

P
)

(5.18)

At this point we can use the error convergence ε = ahbp and have

N = P 2

a
( 2

P
)

a
( bp

P
)
· ε( 2

P
)

(5.19)

By substituting (5.19) into (5.16) we have

n =

 P 2

a
( 2

P
)

a
( bp

P
)
· ε( 2

P
)


( P

bp
)

· a( 2
bp

) · p2

P ( 2P
bp

)
(5.20)

After some algebraic manipulations on the exponent of a we arrive at

n = a ·
(
P 2

ε(
2
P

)

)( P
bp

)

· p2

P ( 2P
bp

)
(5.21)
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where it is noticed that the dependency to P cancels out and the number of unknowns

n can be written as

n = a · ε(
−2
bp

) · p2 (5.22)

The expression in (5.22), is significant, as it allows to compute the number of un-

knowns n at a given order p, considering that a and b are experimentally found using

the procedure in Section 5.3.2 for a desired accuracy ε. Fig. 5.7 plots (5.22) by as-

suming that p = 1, 2, ..., 10, a = 1, and b = 1 with different ε. These parameters are

chosen to be consistent in the example described in [1]. It is noticed that if a LO

method (p = 1), requires solutions with high accuracies, the number of unknowns

and therefore the complexity of the algorithm grows exponentially faster, compared

to higher order methods. For example, if 10 digits of precision is required, a 10th

order algorithm can deliver the solution with only 103 unknowns, while a 1st order

algorithm, requires 1020 unknowns. The dotted red line in the figure, corresponds to

the (16) of [1], if the number of unknowns for the max order p = 10 ( N2 therein)

is N2 = 10, 000. It can be seen that by introducing the desired accuracy, (5.22) can

provide a better metric for comparing the complexity of the algorithms compared to

(16) of [1].

5.3.4 Predicting the Optimum Number of Unknowns for a

Desired Accuracy

Formulating the number of unknowns for a desired accuracy at different orders

(5.22), facilitates predicting the optimum discretization in terms of the element size h

and order p and therefore can predict the minimum number of unknowns for a desired

accuracy as demonstrated below.
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Figure 5.7: Comparison of the number of unknowns required to reach a prescribed
accuracy using algorithms of various orders computed by (5.22).
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Let’s predict the optimum number of unknowns using the error convergence rate

available after the third simulation in Fig. 5.5 which can be seen in Fig. 5.6. Therefore

we have ε1 = 0.1003, ε2 = 0.0155, p1 = 1, and p2 = 2. Substituting them into (5.11)

and (5.12) we find a = 0.6495 and b = 1.4522. Therefore the convergence rate for

this particular example and LCN implementation is actually

ε = 0.6495h1.4522p (5.23)

and according to (5.22), the number of unknowns n for a given order p and the desired

accuracy ε can be pre-computed as

n = 0.6495 · ε(
−2

1.4522p
) · p2 (5.24)

Fig. 5.8, plots (5.24) for various accuracies and orders. The minimum number of

unknowns is shown by the red curve. It can be seen that, for example, if 4 digits of

precision is required, the order 6 solution is optimal to be used. It is interesting to

see that (5.24) is independent of the characteristic element size h. Therefore, for a

requested accuracy εreq, the element size hreq can be computed

ahbpreq = εreq

hreq = (εreq

a
)( 1

bp
)

(5.25)

which is can be written in terms of the radius of the circumscribing circle r as

rreq =
√

2(εreq

a
)( 1

bp
) (5.26)

With the above information, we know that if the requested solution accuracy is 4
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Figure 5.8: Predicting the optimal number of unknowns for a prescribed accuracy for
the example studied in Figs. 5.5 and 5.6.
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εreq p r Number of Elements MeanErr(J)
1e-2 3 0.4753 24 9.57e-3
1e-3 5 0.5850 24 6.29e-4
1e-4 6 0.5603 24 8.64e-5
1e-5 8 0.6122 24 2.77e-6

Table 5.1: Demonstration of obtaining the desired accuracy by using the optimal
algorithm when running HO LCN solver.

digits, it is optimal to run the LCN solver with the following parameters p = 6, r =

0.5603, which is essentially the 24 element exact-sphere at order 6. After running

this optimum discretizaion and comparing its results with the analytic Mie series,

we see that the computed mean relative error is 8.64 × 10−5 which is smaller than

the requested 10−4. Table 5.1, tabulates more results for various requested solution

accuracies using optimal discretizations. It can be seen that the MeanErr(J) remains

smaller than εreq in all examples. For all the simulations, the 24 element exact-sphere

is used, as all the r values in the table correspond to this mesh which has r = 0.51.

The less-refined 6 element mesh and the more-refined 96 element mesh, have r = 0.81

and r = 0.27, respectively, and thus under- or over-discretize the geometry for the

examples in the table. It should be pointed out that in the simulations of Table 5.1,

8 digits of precision was requested form the adaptive integration routines. However,

this tolerance can be matched with the desired accuracy in practice. For example, if

εrec = 10−4, only 4 digits of precision can be requested from the adaptive routines [18].

It is important to note that the LCN simulations considered here (Figs. 5.5 and 5.6)

are obtained by CFIE which demonstrates the fact that the proposed procedure of

finding the optimal unknown count can be applied to CFIE and implies its validation

in MFIE and EFIE as well. This completes the procedure in which optimum number

of unknowns can be predicted for a prescribed accuracy using the HO LCN method.
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5.4 HO Imperative in electromagnetic (EM) Anal-

ysis

By carefully analysing Fig. 5.7, it is understood that if high-precision solutions

are required, it is impractical to use LO techniques. For example, in the same figure,

it can be seen that an LO (p = 1) method can provide 6 digits of precision with 1012

(1 Trillion) unknowns while a 10th order method can provide the same accuracy using

less than 10, 000 unknowns. However, often in practice of engineering computations

it is sufficient to predict dominant electromagnetic fields with two digits of accuracy.

Therefore, from the same figure, one might argue that since in engineering problems

2 digits of precision is needed, the number of unknowns for an LO technique is not

considerably higher than in HO techniques, and hence it is more judicious to keep

working with the more mature LO techniques in engineering problems. For example

in Fig. 5.7, it can be seen that if 2 digits of precision is required, a first-order method

has to deal with about 10, 000 unknowns, while a 10th order method uses about

500 unknowns. This reduction in the number of unknowns is not significant and

may not be a strong motivation to abandon a LO implementation and adopt a new

HO method. The above argument typically applies to the engineering problems in

which only the dominant fields are of interest while EM fields of strengths which are

below a certain threshold are considered irrelevant. There is a plethora of important

applications, however, such as design for stealth [115,116], EM interference (EMI) and

EM compatibility (EMC) design [114], signal integrity analysis, and various others

[113, 118], for which this is not the case and weak EM fields require as accurate

prediction as the strong ones within the same model. In what follows, we demonstrate

how this can be achieved by studying the effect of dynamic range in the accuracy of
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a solution.

Consider the analytic Mie series solution for a PEC sphere with radius 1m, where

the excitation is an electric dipole with time harmonic current at 5GHz placed 0.25m

above the north pole of the sphere, hence the diameter of the sphere is 33.33λ. The

top part of Fig. 5.9, depicts time-snapshot of the induced current on the surface

of the sphere at time t = 0s which is obtained from the complex current Jθ as

|J |Cos(0 + arg(J)). In the lower part of the figure, the same data is plotted, over the

meridian of the sphere in terms of θ in degrees, where θ = 0 corresponds to the north

pole (near the dipole), and θ = 180 corresponds to the south pole. Fig. 5.10, plots

only the magnitude of the complex current |J | for the same data shown in Fig. 5.9.

It can be seen that the dynamic range in |J | is 2.7×10−3

3.92×10−7 = 6.83 × 103. The largest

value |J |max = 2.7 × 10−3 occurs in 0◦ < θ < 20◦ range, while the smallest value

|J |min = 3.92 × 10−7 occurs in 160◦ < θ < 180◦. It is easy to see that if a numerical

technique can provide J values with 4 digits of precision (i.e. Err(J) = 1× 10−4) in

the range 0◦ < θ < 20◦, the same numerical method can only provide results where

Err(J) = 1×10−4×6.83×103 = 6.83×10−1 over 160◦ < θ < 180◦ range. This type of

area where the magnitude of the field is low compared to the other parts is sometimes

referred to as the shade area. In the shade area, the error is about 70% despite the

fact that the numerical method can provide results with 4 digits of precision where the

error is the lowest. This poses difficulty when using LO methods. To demonstrate,

we used a commercial software [35] which uses multilevel fast multipole algorithm

(MLFMA) [5] accelerated RWG MoM to compute electromagnetic fields. First we

discretize the sphere using 1, 846, 314 flat triangular elements which corresponds to

having 9 triangles per wavelength creating 2.77 Million RWG unknowns. Results

are compared against the Mie series solution in Fig. 5.11. As summarized in Table
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Figure 5.9: Demonstration of a large dynamic range in the solution obtained by Mie
series at time t = 0s.
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Figure 5.10: Demonstration of a large dynamic range in magnitude of the solution
|J | obtained by Mie series.



5.4. HO Imperative in electromagnetic (EM) Analysis 154

0 20 40 60 80 100 120 140 160 180
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

2.77 Million RWG Unknowns

θ, degrees

|J
|,
 M

e
a
n
E

rr
(J

) 
o
v
e
r 

2
0

°

 

 

Mie series

RWG MoM with 9 Triangles per λ

MeanErr(J) over 20
°

Figure 5.11: Comparison of the solution |J | obtained by Mie series and the RWG
MoM with 9 triangles per λ.

5.2, although there are 3 digits agreement between the RWG MoM solution and the

Mie series solution over the 0◦ ≤ θ ≤ 20◦ range, the error is about 22% in the

160◦ ≤ θ ≤ 180◦ range which might be unacceptable for some applications. From

Figs. 5.12 and 5.13, and Table 5.2, it can be seen that by refining the mesh there

is improvement in the accuracy of the solution but the error in the shaded area

remains higher than 14% despite using more than 4 million unknowns in the finest

discretization. On the contrary, if we use MLFMA accelerated HO LCN [1] to do

the same simulation using 846 element exact-sphere, as can be seen in Figs 5.14 to

5.19 and summarized in Table 5.3, arbitrary accuracy solutions can be obtained even
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Triangles RWG MeanErr(J) MeanErr(J)
per λ Unknowns [0◦ ≤ θ ≤ 20◦] [160◦ ≤ θ ≤ 180◦]
9 2, 769, 471 0.0024 0.2293
11 3, 631, 350 0.0019 0.1763
12 4, 346, 841 0.0017 0.1475

Table 5.2: Summary of the LO RWG MoM performance in Figs 5.11 to 5.13.
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Figure 5.12: Comparison of the solution |J | obtained by Mie series and the RWG
MoM with 11 triangles per λ.
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Figure 5.13: Comparison of the solution |J | obtained by Mie series and the RWG
MoM with 12 triangles per λ.



5.4. HO Imperative in electromagnetic (EM) Analysis 157

0 20 40 60 80 100 120 140 160 180
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

209,088 LCN Unknowns

θ, degrees

|J
|,
 M

e
a
n
E

rr
(J

) 
o
v
e
r 

2
0

°

 

 

Mie series

LCN Order 10

MeanErr(J) over 20
°

Figure 5.14: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 10.

in the shade area. It is to be note that the noise floor at about 10−6 is due to setting

the adaptive integration tolerance as well as the MLFMA acceleration tolerance to 6

digits of precision. Finally, we substituted the values of ε1 = 0.558, ε2 = 0.0554,

p1 = 10, and p2 = 11 in Table 5.3 to compute the number of unknowns using (5.22).

Fig. 5.20 plots the number of unknowns for 2, 4, and 6 digits of precision results.

Note that these solutions have been obtained using LCN at orders 11,13, and 15 as

shown in Table 5.3. Fig. 5.20, once again, demonstrates the HO imperative in EM

analysis. To obtain the solution with 2 digits of precision, an order 1 algorithm needs

about 3 Million unknowns. If 4 digits of precision is required, the same algorithm
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Figure 5.15: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 11.

LCN LCN MeanErr(J) MeanErr(J)
Order Unknowns [0◦ ≤ θ ≤ 20◦] [160◦ ≤ θ ≤ 180◦]
10 209, 088 3.27× 10−4 0.558
11 248, 832 3.82× 10−5 0.0554
12 292, 032 3.86× 10−6 0.0047
13 338, 688 1.01× 10−6 2.44× 10−4

14 388, 800 1.00× 10−6 1.56× 10−5

15 442, 368 1.00× 10−6 2.05× 10−6

Table 5.3: Summary of the HO LCN performance in Figs. 5.14 to 5.19.
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Figure 5.16: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 12.
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Figure 5.17: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 13.
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Figure 5.18: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 14.
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Figure 5.19: Comparison of the solution |J | obtained by Mie series and the HO LCN
at order 15.
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requires about 4 Billion unknowns and 6 digits of precision can be achieved using this

algorithm if more than 7 Trillion unknowns are involved in the solution. But the HO

LCN can provide all these results with less than 0.5 Million unknowns with orders

11,13, and 15, as demonstrated in Table 5.3 and plotted in Fig. 5.20.

The large dynamic range in the solution demonstrated in this section for a PEC

sphere can be interpreted as a general case where large dynamic range in the solu-

tion calls for adopting HO techniques in practical examples. In a related published

work, we study a more practical example with similar observation on the surface of a

B2 aircraft model [109]. Below we list more practical examples requiring controlled

precision results due to large dynamic range in the solution.

• Accurate modelling of nano-scale plasmonic waveguides [110–113].

• Electromagnetic compatibility analysis of antenna to antenna coupling on elec-

trically large platforms such as an aircraft [114].

• Design of stealth aircrafts [115,116].

• Analysis of highly resonant structures [117,118].

5.5 Conclusion

In this chapter we studied various aspects of HO LCN and summarized some in-

sights as to why HO methods are preferred over LO methods by developing analytical

expressions to formulate such gains. It was shown that the HO LCN can be used to

provide exponentially more efficient results in CEM. However, the discussion in this

chapter, remains entirely based on the geometry of a sphere modelled by analyti-

cal exact cube-to-sphere mapping. This geometry was used in the discussion of this



5.5. Conclusion 164

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

Order (p)

U
n
k
n
o
w

n
s
 (

n
)

 

 

2 Digits of Precision

4 Digits of Precision

6 Digits of Precision

Figure 5.20: Comparison of the number of unknowns required to reach a prescribed
accuracy using algorithms of various orders computed by (5.22). Using HO LCN,
solutions with 2, 4, and 6 digits of precision using respectively orders 11, 13, and 15
has been computed all with less than 0.5 Million unknowns. Note that these precisions
have been achieved in the shade area and as demonstrated earlier, it is practically
not possible for RWG MoM to achieve such results.
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chapter due to the availability of its analytical solution by Mie series. Furthermore,

the exact-sphere model, ensured that no numerical inaccuracy was due to the geom-

etry representation and thus facilitated a precise discussion on the accuracy of the

discretization alone. Obviously, in practical problems, a more general HO geometry

representation should be adopted. There are two choices. First, it is possible to use

HO curvilinear elements as discussed in [72], and second, it is possible to adopt non-

uniform rational b-spline (NURBS) representation of the surface as proposed in [99].

However, in [99] it was assumed that no triangular elements are present in the model

despite the fact that NURBS surfaces usually contain both quadrilateral and trian-

gular elements. This poses difficulty in using NURBS surfaces in conjunction with a

general purpose HO LCN solver, as formulating LNC on triangles has limitations. In

the following chapter, we discuss these limitations and propose a new technique for

formulating LCN on triangular elements.
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Abstract

Non-uniform rational b-spline (NURBS) is the most widely used technique in

today’s geometric computer-aided design systems for modelling surfaces. Combining

the locally corrected Nyström (LCN) method with NURBS, requires formulating LCN

on both quadrilateral and triangular Bézier surfaces as a typical NURBS generated

Bézier mesh includes elements of both types. While on quadrilateral elements the

product of 1D Gaussian quadrature rules can be applied to LCN effectively, Gaussian

integration rules available for triangles can not efficiently be applied to LCN for two

reasons. First, they do not posses the same number of quadrature points as the

number of functions in a complete set of polynomial basis at arbitrary order. Second,

they exacerbate the condition number of the resulting matrix equation at higher

orders due to an increasing density of quadrature points near the edges and corners

of triangles. In this paper, we construct a new set of quadrature rules for Bézier

triangles (i.e. degenerate quadrilaterals) based on the Newton-Cotes (equidistant)

quadrature rules and apply these rules to the LCN solution of the electric, magnetic,

and combined field integral equations. Results show that the new family of quadrature

rules overcomes both aforementioned issues and can be applied to LCN effectively for

orders from 0 to 9, inclusively.
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6.1 Introduction

It has been shown that using non-uniform rational b-spline (NURBS) surfaces in

computational electromagnetics (CEM) can lead to a substantial increase in efficiency.

Benefits can be found for both high frequency methods such as physical optics [119]

and uniform theory of diffraction [120], as well as rigorous boundary element meth-

ods (BEM) such as low-order (LO) method-of-moments (MoM) [100], high-order (HO)

MoM [97, 121] and the locally corrected Nyström (LCN) method [99]. The advan-

tages of incorporating NURBS surfaces into a BEM technique of CEM include: 1)

precise representation of structures without introducing artificial edges [119], prevent-

ing BEMs from introducing infinite field singularities at such edges; 2) inclusion of

larger patches irrespective of curvature which leads to a reduction in the number of

unknowns [97,100,121]; and 3) desirable properties in terms of geometry design, stor-

age efficiency, and parametric geometry characterization [122,123] widely adopted by

the computer-aided design (CAD) tools industry [124–126].

When NURBS modelling is used in BEMs of CEM, a conversion from the NURBS

surface representation to a Bézier mesh is required [97,99,100,121]. This is due to the

fact that BEMs use surface tangents as basis functions while no numerically stable

algorithms for such derivatives exists for NURBS surfaces [121]. A Bézier mesh,

as shown in Figs. 6.1 and 6.2, typically contains both triangular and quadrilateral

elements. Thus computation of the electromagnetic fields on both types of elements

is required from NURBS based BEMs. This presents difficulty when NURBS surfaces

are used in conjunction with an LCN discretization of surface integral equations as the

LCN discretization on triangular elements has several limitations as will be explained

shortly. As a result, in a previous implementation of LCN discretization on NURBS

surfaces [99], triangular elements were completely avoided and numerical results were
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shown only for canonical geometries consisting solely quadrilateral Bézier patches.

In this paper, we introduce a novel formulation of the LCN on NURBS generated

Bézier surfaces by developing quadrature rules for Bézier triangles which are in the

form of degenerate quadrilaterals (Fig. 6.1b). A brief overview of the existing LCN

approaches on the triangular elements provides the motivation for this work.

The LCN method was proposed in 1998 by Canino et. al. [19] as an alternative

to the MoM for the numerical solution of electromagnetics integral equations such as

the electric field integral equation (EFIE) and the magnetic field integral equation

(MFIE). The point-based nature of the LCN method offers several advantages over

element-based MoM including: 1) computing single reaction integrals as opposed to

the double integrations of the MoM which greatly reduces the computational cost

compared to MoM [18, 20], 2) providing more flexibility in building hierarchical geo-

metric partitioning which increases the efficiency of fast algorithms [?], and 3) allowing

for mesh elements to have a vertex in the middle of an edge which facilitates the han-

dling of material junctions [48]. While LCN can be formulated for arbitrary geometry

discretizations, in the seminal paper [19], Canino and his co-authors provided numeri-

cal results which were obtained on curvilinear triangular patches based on Lyness and

Jespersen quadrature rules [127]. However, their results showed that such triangular

quadrature rules can not be efficiently applied to LCN at arbitrary expansion/basis

order as the number of testing functions formed by the product of polynomial basis

functions (e.g. monomials) in the two surface parameters, and the number of sam-

ple points do not always match. A complete set of polynomial functions to a given

order demands a set of quadrature points with equal cardinality for the resulting

Vandermonde matrix [6] to be square. Otherwise an under-determined linear system

is required and is likely to affect the error-controllability of the LCN scheme [1, 19].



6.1. Introduction 170

Furthermore, quadrature abscissas of the Gaussian quadrature rules [127–129] tend

to concentrate near the edges and corners of triangles as the order increases. Con-

sequently at higher orders, the LCN sample points become too close together which

makes the local correction system increasingly ill-conditioned. Too closely placed

sample points in the LCN method causes the EFIE to produce impedance matrices

with very high condition numbers which can prevent the LCN method from provid-

ing a correct solution. For example, in [19] it was reported that an integration rule

with more than 15 points [127] causes the EFIE to become ill-conditioned. It was

predicted [19] that inventing a new set of high-order rules on triangles with better

sample distribution might be a solution for overcoming this difficulty. In [131], the

authors took a different approach to formulating LCN on triangles. They showed that

by using extra testing functions as mixed-order polynomials whose partial derivatives

span the same space, it is possible to build square systems for the local corrections

and at the same time alleviate issues regarding the inconsistent charge representation

flowing from the implicit current expansion. In particular, they added extra mono-

mials to a complete set of monomials up to order d in order to equalize the number

of quadrature points with their custom set of monomials. However, this formulation

only guarantees to integrate the monomials (hence the current) up to order d [1],

regardless of the order of the quadrature rule, and ultimately introduces oversam-

pling into the LCN scheme. For example, a 7th order triangle rule in [129] which has

13 points, promises to integrate the current up to order d = 3 with 10 polynomial

functions. This reduces the order of the LCN method to p = 3 such that the extra 3

points and test functions in the formulation can be interpreted as oversampling. The

above-mentioned limitations might have been the reason for the LCN literature to

primarily adopt quadrilateral elements [1,18,47–49,88,90,130] rather than considering
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LCN on triangular elements [19,44,131,132].

In this paper we formulate LCN on Bézier triangles using a new set of quadrature

rules based on the Newton-Cotes quadrature formulae. The family of Newton-Cotes

quadrature rules is based on equidistant quadrature abscissas [133]. A natural gener-

alization of the Newton-Cotes formulae to the N -dimensional case for simplexes was

formulated in 1970 [134] and equidistant quadrature rules on triangles were studied

for both open and closed types1. While Newton-Cotes rules are simple to implement,

they are inefficient compared to Gaussian quadrature rules [134, 135] because a 1D

Gaussian rule with n+ 1 points can exactly integrate a polynomial of order 2n+ 1 or

less, whereas a 1D Newton-Cotes rule with n + 1 points can exactly integrate poly-

nomials of up to order n when n + 1 is even, and up to order n + 1 when n + 1 is

odd [136]. Therefore Newton-Cotes rules are not widely used when numerical evalu-

ation of integrals is required. Also, Newton-Cotes rules of high-orders (order 10 and

above [133]), may become numerically unstable. Nevertheless, in this paper we show

that in the context of the LCN scheme, constructing quadrature rules for triangles

based on the 1D equidistant rule [134] prevents the discretized EFIE from suffering

an increased condition number of the matrix equation. One such family of quadrature

rules on triangles has Q = (n+1)(n+2)/2 nodes and is inherently suitable to be used

in LCN on triangular elements as Q is the cardinality of a complete polynomial basis

of order n in 2D, resulting in a square local correction matrix. These rules integrate

the current up to an arbitrary order without introducing oversampling and support a

current representation with a self-consistent polynomial basis for the charge. Defining

LCN over triangular Bézier elements based on a uniform distribution of points was
1An open type Newton-Cotes quadrature formula samples function values at equidistant points

by ignoring the boundaries whereas a closed type Newton-Cotes formulation uses function values at
equidistant points including the starting and ending points [134].
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first presented in [137]. However, as the generalization in [134] allows for creating

rules other than open and closed types, in this paper, we create a new subset of the

generalized rules given in [134]. This new family of quadrature rules, like the 1D

Newton-Cotes rule in general, results in numerically stable Vandermonde system, is

accurate to machine precision for orders up to 9, and therefore facilitates LCN on

triangular Bézier elements for orders 0 to 9.

6.2 Geometry Representation Based on NURBS

surfaces and Bézier Meshes

6.2.1 NURBS Surfaces

The position-vector on a surface defined by NURBS which has degree P in the u

direction and degree Q in the v direction can be written as [138]

r(u, v) =
∑M
i=0

∑N
j=0 Wi,jPi,jN

P
i (u)NQ

j (v)∑M
i=0

∑N
j=0 Wi,jNP

i (u)NQ
j (v)

, u, v ∈ [0, 1] (6.1)

where Pi,j are the control points, Wi,j are the weights, and NP
i is the ith nonrational

B-spline basis function of degree P which can be obtained recursively as

NP
i (t) = t− ti

ti+P − ti
NP−1
i (t) + ti+P+1 − t

ti+P+1 − ti+1
NP−1
i+1 (t),

N0
i (t) =


1, ti ≤ t ≤ ti+1

0, otherwise


(6.2)

where ti are the knots which form a knot vector U = {t0, t1, ..., tM+P+1}. Similarly,

NQ
j is defined on the knot vector V . It can be shown that the choice of U and P
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can control the differentiability of the resulting NURBS surface along the u direction,

and similarly the choice of V and Q can control parametric continuity along the v

direction [122]. Therefore, it is possible to ensure parametric continuity over the

surface of a NURBS patch up to an arbitrary nth degree (Cn continuity). It is

also possible to enforce geometric continuity up to the second degree (G2 continuity)

between adjacent NURBS surfaces [125,139]. If a surface is Cn continuous at a point,

then both the direction and magnitude of the spatial derivatives of the radius-vector

r(u, v) in the u and v directions are equal in the vicinity of that point, up to the nth

degree. However, if the surface is Gn continuous at a point, only the direction of the

spatial derivatives of r(u, v) remain unchanged in the vicinity of that point, up to the

nth degree [140]. Hence, when creating a model geometry using NURBS, it is possible

to preserve G2 continuity throughout the entire model. This property is desirable for

CEM algorithms as it prevents the geometry modelling to introduce artificial edges

on the surface of a smooth model. Such edges cause crowding of the electromagnetic

fields and prevent HO methods from achieving the desired O(hp) error convergence in

the solution, where h is the characteristic size of the mesh elements and p is the order

of the discretization. Note, that the G2 continuity property provided by NURBS

is unavailable in alternative geometry modelling CAD approaches based on surface

representations in terms of independent curvilinear mesh elements [96,106].

6.2.2 Bézier Mesh

Geometry representation in BEMs requires surface tangent vectors ∂r(u, v)/∂u

and ∂r(u, v)/∂v which are used to form the basis functions. No numerically stable

algorithms for such derivatives exists for NURBS surfaces [121] defined by (6.1). The

MoM and LCN circumvent this difficulty by transforming NURBS surfaces into a
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Bézier mesh followed by obtaining ∂r(u, v)/∂u and ∂r(u, v)/∂v on individual Bézier

patches [97, 99, 100, 121]. The position-vector on each Bézier patch is defined as

[122,123], [121]

r(ξ, η) =
∑m
i=0

∑n
j=0 wi,jpi,jBm

i

(
ξ+1

2

)
Bn
j

(
η+1

2

)
∑m
i=0

∑n
j=0 wi,jBm

i

(
ξ+1

2

)
Bn
j

(
η+1

2

) ,

ξ, η ∈ [−1, 1],

(6.3)

where pi,j are the control points, wi,j are the weights, and Bm
i (t) are the Bernstein

polynomials of degree m defined as

Bm
i (t) = m!

i!(m− i)!t
i(1− t)m−i, t ∈ [0, 1]. (6.4)

Fig. 6.1a depicts a typical representatives of a Bézier patch. Since such a patch has

four edges l0, ..., l3, we refer to it as a quadrilateral Bézier patch. However, almost all

NURBS generated Bézier meshes contain not only quadrilateral Bézier patches, but

also triangular Bézier patches (Fig. 6.1b) where one edge is of zero length (degenerate

quadrilateral). This is referred to as a singular patch [125, 143]. From Fig. 6.2, it

can be seen that a NURBS generated Bézier mesh of a simple geometry (sphere), as

well as the model of a B2-Aircraft, contain both quadrilateral and triangular Bézier

patches. Thus, when incorporating NURBS surfaces into BEMs, they must support

formulations on both quadrilateral and triangular elements.

6.3 The LCN Discretization on NURBS Surfaces

Details of the standard HO LCN method for solving the EFIE, MFIE and the

combined filed integral equation (CFIE) can be found in [1,18,19]. In this section we
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Figure 6.1: (a) A typical (quadrilateral) Bézier patch, (b) A singular (triangular)
Bézier patch with singularity at edge l0. Both (a) and (b) can be mapped to the
canonical quadrilateral illustrated in (c) where it can be seen that l0 is the ξ-curve at
η = −1, l1 is the η-curve at ξ = 1, l2 is the ξ-curve at η = 1, and l3 is the η-curve at
ξ = −1.

Figure 6.2: A NURBS generated Bézier mesh created by a commercial tool [125] for a
sphere and a B2-Aircraft model. The sphere comprises only one NURBS with a Bézier
mesh that contains 72 quadrilateral and 24 triangular Bézier patches. The maximum
deviation from the true geometry for the sphere is 10−10m. The B2-Aircraft model
has 36 NURBS which are represented by 566 quadrilateral Bézier elements and 16
triangular (singular) Bézier elements. The magnification on the B2-Aircraft model is
presented to emphasize the presence of triangular elements. Note that the B2-Aircraft
model, which has Bézier elements with non-aligned boundaries, can still be used in
LCN as it does not enforce current continuity across elements.
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describe additional detail for constructing the proposed LCN discretization scheme

based on NURBS surfaces containing quadrilateral and/or triangular Bézier elements.

6.3.1 Incorporating NURBS and Bézier Mesh into BEMs

Incorporating NURBS surfaces into the standard LCN discretization scheme in-

volves the following: 1) the transformation of NURBS surfaces to Bézier patches

using the Cox-De Boor algorithm [122, 141], and 2) computing the position vector

r(ξ, η) and covariant basis functions a1(ξ, η) = ∂r(ξ, η)/∂ξ and a2(ξ, η) = ∂r(ξ, η)/∂η

for a Bézier patch by using the algorithm of De Casteljau [123, 142]. While these

algorithms can be implemented directly, their implementation is not trivial and one

can resort to the use of libraries such as openNURBS [143]. The library seamlessly

operates with the NURBS models created in Rhinoceros3D CAD environment [125]

(Fig. 6.2). To have a proper transition from parameters of a standard Bézier element

(u, v) [122, 143], parametric coordinates are fed to the library’s r(u, v) and a1,2(u, v)

functions as u = (ξ + 1)/2 and v = (η + 1)/2. The accuracy of converting the sur-

face definition from NURBS to Bézier elements can be controlled with the tolerance

parameter set in the openNURBS library at the stage of geometry conversion. The

3dm file format was used in this work.

6.3.2 LCN Formulation on Quadrilateral Bézier Elements

On quadrilateral Bézier elements (Fig. 6.1a), the product of 1D Gaussian (i.e.

Gauss-Legendre) rules with polynomial-complete basis functions is applied according

to [1, 18]. It is also possible to use mixed-order basis function set as suggested in

[47,130].
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6.3.3 LCN Formulation on Triangular Bézier Elements

In this work a new set of quadrature rules for Bézier triangles (i.e. degenerate

quadrilaterals as depicted in Fig. 6.1b) is derived from the generalized rules presented

in [134]. The new quadrature rules are applied to triangular Bézier patches in the

LCN local interactions.

6.3.3.1 Preliminaries

As the standard LCN does not apply quadrature points on the elements’ bound-

aries, we limit our attention to the class of quadrature rules for which the nodes lie

entirely within the boundaries of the domain −1 < ξ, η < 1. When forming a 1D

quadrature rule based on equidistant points of open type [134], the entire domain is

uniformly covered by the quadrature abscissas. Therefore, the distance between a

point and its adjacent boundary is equal to its distance with its adjacent quadrature

point. However, these types of abscissas are not ideal for LCN. It is more advanta-

geous to define quadrature points that maintain large distances from each other, both

within a given element, and with respect to quadrature points in the neighbouring

elements. This improves condition number of the Vandermonde matrix in the local

correction system of equations (as shown in Table 6.2) as well as the overall LCN

impedance matrix [19]. For these reasons we formulate LCN on triangular Bézier

elements based on a new set of 1D equidistant quadrature abscissas. Consider n+ 1

quadrature points over the 1D domain with the ith quadrature abscissa denoted as

xni and defined as1

xni = (−n+ 2i)/(n+ 1), i = 0, 1, ..., n. (6.5)
1Equation (6.5) is equivalent to having N = 1 and µ = 0.5 in (10) of [134] when the 1D domain

is considered to be (0 < x < 1, x 6= 0, 1).
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Figure 6.3: 1D equidistant quadrature nodes xni defined in (6.5) with n = 2 for three
consecutive 1D elements E0, E1, and E2.

Fig. 6.3 depicts the abscissas in (6.5) with n = 2 for three consecutive 1D elements.

As can be seen from the figure, the distance between a quadrature point that lies

adjacent to the boundary of one element (x2
0 on E1), has the same distance with the

quadrature point within its own element (x2
1 on E1), as well as the quadrature point

that is adjacent to the same edge from the neighbouring element (x2
2 on E0). In what

follows, this form of equidistant points is generalized to construct quadrature rule on

Bézier triangles.

6.3.3.2 Definition

We are interested in building a set of quadrature rules for the triangle shown in

Fig. 6.1b, where the edge l0 is singular (l0 → 0)1. This singular Bézier patch can

be mapped to the canonical quadrilateral shown in Fig. 6.1c, where ξ, η ∈ [−1, 1].

Therefore we construct the quadrature rules of the form

Q−1∑
q=0

wqf(ξq, ηq) '
ˆ 1

−1

ˆ 1

−1
f(ξ, η)dξdη (6.6)

whereQ is the number of quadrature points. The quadrature abscissas are represented

by ξq, ηq which are defined based on distribution of 1D abscissas in (6.5) over the
1A Bézier patch can also be singular at the other three edges (l1, l2, l3). For a singular Bézier

patch with singularity at an edge other than l0, rotation is required.
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canonical quadrilateral shown in Fig. 6.1c as follows:

ξq =xij, ηq = xni ,

i = 0...n, j = 0...i, q(i, j) = i(i+ 1)/2 + j,

(6.7)

with the total number of quadrature points Q on a triangle equal to Q = (n+ 1)(n+

2)/2. Fig. 6.4 depicts the quadrature points for the rule with n = 2, 3, 8 and 9.

Note that the resulting quadrature rules are complete to order p = n as explained

in Section 6.3.3.3. In (6.6), wq are the weights which can be obtained by solving the

linear system



S0
0 S0

1 . . . S0
Q−1

S1
0 S1

1 . . . S1
Q−1

... ... . . . ...

SK−1
0 SK−1

1 . . . SK−1
Q−1





w0

w1

...

wQ−1


=



b0

b1

...

bK−1


(6.8)

where the matrix on the left-hand side [S] has entries Skq = F k(ξq, ηq). Here, {F k(ξ, η)}

is a full set ofK polynomial functions complete to order p over the 2D domain. Hence,

p = n makes [S] a square matrix as a set of 2D polynomial functions complete to

order p has K = (p+ 1)(p+ 2)/2 functions [131]. Entries of the right-hand side bk are

bk =
ˆ 1

−1

ˆ 1

−1
F k(ξ, η)dξdη, k = 0, ..., K − 1 (6.9)

where the double integration can be computed adaptively using high-order quadrature

rules. A sufficient condition for the unique solution of matrix equation (6.8) is that

[S] is non-singular. Since [S] is a 2D Vandermonde-type system [6] this condition

is fulfilled for a finite p. TABLE 6.1 presents the computed weights for rules with



6.3. The LCN Discretization on NURBS Surfaces 180

Table 6.1: Order p, total number of quadrature points Q, local coordinates ξq, ηq, and
the weight wq for the qth quadrature node defined in (6.6).

p Q q ξq ηq wq

0 1 0 0 0 4.0000000000000000E+00
1 3 0 0 -1/2 2.0000000000000000E+00
1 3 1 -1/2 1/2 1.0000000000000000E+00
1 3 2 1/2 1/2 1.0000000000000000E+00
2 6 0 0 -2/3 1.5000000000000000E+00
2 6 1 -1/2 0 5.0000000000000000E-01
2 6 2 1/2 0 5.0000000000000010E-01
2 6 3 -2/3 2/3 1.2187500000000002E+00
2 6 4 0 2/3 -9.3750000000000040E-01
2 6 5 2/3 2/3 1.2187500000000002E+00
3 10 0 0 -3/4 1.0833333333333324E+00
3 10 1 -1/2 -1/4 4.5833333333333480E-01
3 10 2 1/2 -1/4 4.5833333333333375E-01
3 10 3 -2/3 1/4 1.7343750000000004E+00
3 10 4 0 1/4 -2.5520833333333340E+00
3 10 5 2/3 1/4 1.7343750000000009E+00
3 10 6 -3/4 3/4 -5.0520833333333440E-01
3 10 7 -1/4 3/4 1.0468750000000009E+00
3 10 8 1/4 3/4 1.0468750000000009E+00
3 10 9 3/4 3/4 -5.0520833333333390E-01

Q = 1, 3, 6 and 10 quadrature points where the base polynomials are chosen to be

the set that span the space of monomials F k(ξ, η) = ξiηj up to a given order, i.e.

i = 0, ..., p and j = 0, ..., p− i.

6.3.3.3 Order

A 1D Newton-Cotes rule with an even number of points (i.e. n + 1 is even) has

order n, while a rule with odd number of points has order n + 1 [136]. However, to

have a square matrix [S] in (6.8), we applied polynomial functions complete to order

p = n to make K = Q. As a result, the weights w0, ..., wQ−1 obtained by solving the

linear system of (6.8) provide integration results with order p = n.
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Figure 6.4: The abscissas of the quadrature rule formulated in (6.6) for orders p =
n = 2, 3, 8 and 9, which respectively have Q = 6, 10, 45 and 55 quadrature points.

6.3.3.4 Numerical Instability

Generally, 1D Newton-Cotes quadrature rules are susceptible to numerical insta-

bilities at orders higher than 9 [133] due two reasons; 1) large round-off errors due to

inexact arithmetic stemming from weights that are large but differ in sign1, and 2)

failure to converge the underlying polynomial interpolation at equidistant points. To

study such effect in the proposed rules, TABLE 6.2 tabulates the relative error ε in

sum of all the corresponding monomials for each quadrature of orders p = 0, 1, .., 15

along with the condition number κ of the corresponding Vandermonde matrix [S].

The reference solution (the right hand side of (6.6)) is obtained by adaptive integra-

tions with a maximum tolerance of 10−12. As can be seen from the table, the proposed

rules provide machine precision results for p = 0, 1, ..., 9 but the error becomes larger
1Note that the weights in Table 6.1 are not necessarily positive.
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than 10−12 for p ≥ 10. This suggests that the Newton-Cotes based quadrature rules

defined in (6.6)-(6.9), like the 1D equidistant rules, may become inaccurate for orders

p > 9 regardless of the fact that the condition number κ has a typical exponential

growth for progressively higher orders and does not exhibit an unusual increase from

order 9 to 10.

Nevertheless, in practical 3D modelling, LCN does not usually utilize such high

orders due to constraints on computational resources. Moreover, as it is suggested

generally for Newton-Cotes rules, one can build a composite rule if the integration

domain is too large [144]. In the context of LCN, this can be done by means of h-

refinement according to LCN’s convergence rate which is known to be O(hp) [1, 18].

Particularly, in the event that a triangular Bézier element (e.g. E0 in Fig. 6.5) with

a large patch size h0 demands for order p0 > 9 to achieve a desired accuracy, one can

perform h-refinement on E0 (no uniformity is required) and use different orders p1, p2

on the resulting elements E1, E2 to maintain the solution error as ε = O(hp0
0 ). Fig. 6.5

depicts such h-refinement. Specifically, the desired accuracy can be achieved as long

as hp1
1 , h

p2
2 ≤ hp0

0 , where h1 and h2 are the element size for E1 and E2, respectively.

Therefore, the introduced rule, despite its unpredictable nature for orders higher than

9, can be applied for construction of general purpose HO LCN.

6.3.3.5 Application in LCN Local Interactions

As detailed in [1,18,19], the LCN local interactions are separated into two parts;

the far region where the quadrature rule is applied directly, and the near region

where the quadrature rules are built for singular integrals. This procedure is known

as local correction. When constructing the LCN’s local corrections based on the

proposed rule, the abscissas in (6.7) are used to form the local correction system.
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Table 6.2: The relative error ε associated with a pth order quadrature rule with Q
points defined in (6.6)-(6.9). The corresponding Vandermonde matrix [S] in (6.8) has
condition number κ and is formed by K = Q polynomial functions.

p Q ε κ p Q ε κ

0 1 0.0E+00 1.0E+00 8 45 8.8E-13 4.3E+04
1 3 0.0E+00 2.4E+00 9 55 3.0E-13 1.9E+05
2 6 0.0E+00 8.3E+00 10 66 5.1E-11 8.7E+05
3 10 0.0E+00 3.2E+01 11 78 8.3E-10 3.9E+06
4 15 2.2E-15 1.2E+02 12 91 3.2E-09 1.8E+07
5 21 0.0E+00 5.2E+02 13 105 3.4E-08 8.2E+07
6 28 3.4E-15 2.2E+03 14 120 4.1E-07 3.8E+08
7 36 1.0E-13 9.8E+03 15 136 5.0E-07 1.8E+09

E0, p0

h1

E1, p1

E2, p2

h0

h2

Figure 6.5: Non-uniform sub-division of the triangular Bézier patch E0 to ensure that
the solution error remains as ε = O(hp0

0 ) by enforcing hp1
1 , h

p2
2 ≤ hp0

0 , where hi and
pi are respectively the element size and the quadrature order for Ei. The division
is done in a manner to yield only one singular element E2. This ensures that the
other element E1 is quadrilateral and therefore p1 can be chosen arbitrarily. The only
constraints is to keep p2 ≤ 9.
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This has two important implications. First, well-conditioned square local correction

systems can be formed at arbitrary orders without introducing oversampling1. Sec-

ond, the resulting LCN local interactions are not prone to an inconsistent basis for

the charge density. The first implication is because a pth order triangle rule in (6.6)

has Q = (p + 1)(p + 2)/2 integration nodes and can form a square Vandermonde

matrix using a set of polynomial testing functions complete to order p with K = Q

functions. The resulting local correction system is expected to be well-conditioned as

the equidistant points of the proposed quadrature rule produce Vandermonde systems

with reasonable condition numbers (Table 6.2). This is contrary to where the existing

Gaussian triangle rules are used to form local correction systems. Table 6.3 summa-

rizes the condition numbers κ of Vandermonde systems formed by two different Q

point Gaussian quadrature rules (i.e. [127, 129]) and K polynomial functions along

with the condition numbers of the Vandermonde systems proposed in [131] for both

directions of the coordinate system (ξ, η). For several orders, Gaussian quadrature

rules have Q 6= K which results in non-square local correction systems [19] unless

extra test functions (hence extra unknowns) are introduced [131]. Moreover, the ag-

gravating condition numbers of the resulting Vandermonde systems are the limiting

factor for applying HO Gaussian triangle rules to the LCN local interactions as a

sudden increase in the condition number (i.e. κ > 1016) can be observed for all

Gaussian based Vandermonde systems as the order increases. This agrees with [19]

where Lyness and Jespersen quadrature rules with Q > 15 were reported to pose con-

ditioning issues when forming the LCN impedance matrix. The second implication

stems from using a complete set of polynomial testing functions which yields a current

representation that also has a self-consistent polynomial basis for the charge [131].
1For instability reasons explained in Section 6.3.3.4, the resulting local correction systems are

limited to orders p = 0, 1, ..., 9.
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Table 6.3: The condition number κ of a pth order Vandermonde matrix formed by
Gaussian Q point quadrature rules and K polynomial functions.

Lyness & Jespersen [127] Dunavant [129]
p K Q κ K Q κ

0 1 1 1.00E+00 1 1 1.00E+00
1 3 3 7.36E+00 3 3 7.36E+00
2 6 6 6.02E+01 6 6 6.02E+01
3 10 12 3.30E+02 10 12 5.25E+02
4 15 15 4.00E+03 15 16 4.43E+03
5 21 21 2.58E+17 21 25 5.35E+04
6 28 28 7.84E+17 28 33 4.35E+05
7 − 36 37 3.72E+16

Wildman & Weile(ξ) [131] Wildman & Weile(η) [131]
p K = Q κ K = Q κ

3 12 9.82E+03 12 5.19E+03
4 16 6.84E+03 16 9.19E+03
5 25 1.52E+06 25 5.27E+05
6 33 2.00E+07 33 6.68E+06
7 37 9.25E+16 37 3.71E+17

For a Bézier patch with a singularity at l0, the proposed rule can be applied as

discussed in this paper directly. For Bézier elements with a singularity at one of the

other edges l1, l2, and l3, a rotation is required. In our implementation, we created

four different sets of triangular quadrature rules and applied them to the appropriate

singular Bézier elements. For testing functions, it is possible to use either monomials

[1, 19] or Legendre polynomials [18]. We used Legendre polynomials as they yield a

better condition number of the Vandermonde matrix due to orthogonality [19].

6.3.4 Computational Complexity

6.3.4.1 NURBS and Bézier Elements

Incorporating NURBS surfaces into an HO scheme increases the matrix fill time

compared to having bilinear, or interpolation-based, curvilinear elements [97]. Such
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an increase however, does not substantially impact the complexity of the HO LCN

scheme. In order to fill the matrix for a particular frequency, transformation of

NURBS surfaces into a Bézier mesh has to be performed once, which keeps the overall

computation time almost unchanged. Obtaining the position vector and its spatial

derivatives has a larger effect on the matrix fill time. However, since the LCN method

computes integrals over the source elements only, the matrix fill time is still negligible

compared to that of solving the resulting large dense matrix equation. As such, it does

not contribute substantially to the computational complexity of the LCN method,

unlike HO MoM which has to deal with high-precision integrations over both source

and test elements. Evaluating Bézier parameters in this case may notably contribute

to the computation time.

6.3.4.2 Adaptive Integration

Computing the right-hand side in the local corrections procedure [1], requires

adaptive integration [18]. The choice of HO rule used in the adaptive procedure is

independent of the rule used in the LCN local interactions. Therefore, as the product

of 1D Gauss-Legendre rules with (n+1)2 points provides integration rule in the order

of 2n+ 1, it is preferred over the Newton-Cotes based triangle rule described in this

paper. The latter, with (n+ 1)(n+ 2)/2 nodes, provides the rules of order n, making

it less efficient than the product of 1D Gauss-Legendre rules in terms of order per

number of nodes. Consequently, when splitting a triangular Bézier patch into the

regions for adaptive integrations, the canonical quadrilateral shown in Fig. 6.1c, is

recursively sub-divided into four elements over ξ and η axis. Therefore, by using the

triangular rules proposed in this paper, the complexity of the adaptive integrations

remains unchanged.
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6.3.4.3 Near and Far Regions

It is important to note that the choice of quadrature rule in the LCN procedure

directly affects the boundary between near and far regions. This boundary can be de-

termined experimentally as explained in [47]. The higher the order of the quadrature

rule, the smaller the near region. A smaller near region leads to better computa-

tional efficiency, especially when fast algorithms are employed [1]. However, having

triangular elements in the model and applying the proposed triangle rule with order

p leads to an increase in the size of the near matrix compared to having a model that

only has quadrilaterals with the product of 1D Gauss-Legendre rules. This is because

the latter approximates the integrands with order 2p+ 1 polynomials. Nevertheless,

since near and far regions can be defined uniquely for each source cell [47], in the

proposed LCN discretization technique, the size of the near matrix will not severely

increase as usually there are more quadrilateral elements than triangular elements in

a NURBS generated Bézier mesh. For example the B2-Aircraft model, shown in Fig.

6.2, has 566 quadrilateral Bézier elements and only 16 triangular Bézier elements.

When h-refinement is required, it is possible to keep the number of triangular ele-

ments unchanged by refining a singular Bézier element in a way so as to produce only

one smaller singular element, where the rest of the elements are quadrilaterals. This

refinement process is depicted in Fig. 6.6.

6.4 Numerical Results

In this section, the properties of the proposed LCN method are studied for both

canonical and realistic examples. In all simulations herein, LU-decomposition is used

to directly solve the LCN system of linear algebraic equations, leading to an error
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(a) (b) (c)

Figure 6.6: Uniform h−refinement imposed on a flat singular Bézier patch (a) such
that hbmax ' 0.5ha

max and hcmax ' 0.25ha
max where hamax is the maximum element size

in (a) and similarly for (b) and (c). This ensures that only one smaller singular
Bézier patch is produced and the rest of the Bézier elements are all quadrilaterals
(b,c) effectively keeping the near matrix as small as possible. Note that the non-
aligned (highlighted in red) boundaries in (b,c) do not pose complications in LCN as
no current continuity enforcement is required.

free matrix inversion that facilitates a reliable error analysis. The tolerance requested

from the openNURBS routines was set to 10−6.

6.4.1 Sphere

The HO methods of CEM converge to the correct field values under h- and p-

refinements with errors that exhibit ε = O(hp) behaviour [1, 18–20, 96]. One reliable

way to evaluation of the error behaviour of an HO 3D BEM scheme such as LCN is

through numerical computation of the electromagnetic fields on a sphere, which can

be compared to the analytical solution available in the form of the Mie series. The

error in the surface current density J is typically quantified in terms of the following

2-norm [55]

2-normErr(J) =

√
1
N

∑N
n=1 |JLCN

i − JMie
i |2

|JMie|max
(6.10)

where JLCN and JMie are the current magnitudes |J| at all of the quadrature points

obtained by the LCN and Mie series, respectively, with N being the total number of

points.

Figures 6.7 and 6.8 plot 2-normErr(J) for the LCN solution of scattering from



6.4. Numerical Results 189

a perfectly electric conducting (PEC) sphere obtained through discretization of the

EFIE and MFIE, respectively1. The highlighted point in Fig. 6.7 corresponds to

the data shown in Fig. 6.9. The sphere of 1m radius was excited with a radial

ẑ-directed electric dipole placed 9m above the north pole of the sphere. The time-

harmonic frequency was taken to be 100MHz. The sphere was represented with a

single NURBS surface (6.1) of degree 8 in both u and v directions (P = Q = 8). This

resulted in a sphere model having maximum deviation in the radius not exceeding

10−10m compared to the exact value of 1m. Four different meshes with 24, 48, 96,

and 336 Bézier elements were obtained from this NURBS model. In forming the

coarsest Bézier mesh, no quadrilateral elements were used and all 24 elements were

triangular Bézier elements that span from the poles of the sphere to its equator.

As was suggested in Section 6.3.4.3, h-refinement was used in a manner that kept

the number of triangular elements unchanged. Therefore, in the other three meshes,

there are 24 triangular Bézier elements adjacent to the south and north poles, and

quadrilateral elements representing the remaining surface. The 96 element case is

depicted in Fig. 6.2 and the 336 element mesh can be seen in the insets of Fig. 6.9.

The maximum element size hmax for each Bézier mesh is given in the figures2. As

can be seen from Figs. 6.7 and 6.8, the HO convergence to the correct answer has

been achieved according to an O(hp) rate for orders p ≤ 9 but the error starts to

grow for orders p > 9. This is consistent with the data shown in TABLE 6.2 where

it is observed that the proposed triangle rule is accurate to machine precision for

orders 0 to 9 but becomes unstable for orders higher than 9. For the 24 element case
1Note that the errors are plotted against the order p (rather than h) for readability reasons,

i.e. in order to clearly show the stability of the introduced rules for orders from 0 to 9 and their
instability for orders higher than 9.

2In this paper, the maximum element size corresponds to the maximum edge length as shown in
Fig. 6.5. In some CAD tools such as Gmsh [106], the element size is provided in terms of the radius
of the circumscribing circle r, in which case h '

√
2r.
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Figure 6.7: The 2-norm error (6.10) of LCN solution of EFIE for scattering on a
1m radius sphere at 100MHz. The 24 element model has only triangular Bézier
elements. The other three models with 48, 96 and 336 elements have both triangular
and quadrilateral elements as in Fig. 6.2. The highlighted point on the 336 Element
model at order p = 4 corresponds to the results shown in Fig. 6.9.

which only has triangular Bézier elements, if we consider EFIE’s order 1 and 9, the

convergence rate is 0.55(h0.88p) where h = hmax/λ = 0.47. For the same Bézier mesh,

by using orders 0 and 9, the MFIE’s convergence rate is estimated to be 0.6(h1.43p).

This is consistent with the numerical results reported in [18] where EFIE under-

converged, whereas MFIE super-converged. The error floor appearing at about 10−6

can be explained by the fact that the geometry related computations are requested

from openNURBS to be accurate up to 6 digits of precision.
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Figure 6.8: The 2-norm error (6.10) of LCN solution of MFIE for scattering on a
1m radius sphere at 100MHz. The 24 element model has only triangular Bézier
elements. The other three models with 48, 96 and 336 elements have both triangular
and quadrilateral elements as in Fig. 6.2.
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Figure 6.9: The current magnitude |J | and its normalized error Err(Jθ) = |JLCN
θ −

JMie
θ |/|JMie|max corresponding to the highlighted fourth order configuration in Fig.

6.7 which has 336 Bézier elements, 24 of which are triangular elements. As can be
seen from the left inset, 12 triangular Bézier elements are adjacent to the south pole
(the north pole is identical). The right inset depicts the model from the side.
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6.4.2 Archimedean Spiral Antenna

To demonstrate that the proposed LCN scheme exhibits HO error behaviour for

geometries formed by multiple NURBS surfaces, we analyze the radiation intensity U

[145] of an Archimedean spiral antenna shown in Fig. 6.10. The model features three

NURBS surfaces in each of its arms which are made of a spiral cylinder terminated

by two half spheres. Dimensions in terms of the wavelength λ are given in the figure.

In the CAD tool Rhinoceros3D, the G2 continuity (aka curvature continuity [125])

is ensured between all three NURBS in each arm of the spiral. This guarantees that

there is no directional tangent discontinuity between NURBS surfaces of each arm,

up to the second degree. The radiation intensity U was computed using the proposed

LCN scheme when applied to CFIE (α = 0.5) for two different Bézier discretizations.

The coarser mesh is depicted in Fig. 6.10a which constitutes 48 triangular Bézier cells

and 624 quadrilateral Bézier elements. The finer mesh also has 48 triangles but 2780

quadrilaterals due to the Bézier discretization technique introduced in Section 6.3.4.3.

The proposed LCN discretization technique was applied to the 672 element mesh with

orders p from 1 to 7, and orders from 1 to 3 for the finer mesh with 2828 elements.

The limiting factor in p for both cases is due to the size of the resulting global matrix

that was inverted directly1. Estimation of the computed solutions accuracy is done

by comparing them against the most finely discretized solution taken as the reference

solution [19]. In this example, the reference solution is chosen to be the LCN solution

with the highest order p = 7. Fig. 6.10b illustrates the surface current density of the

antenna computed by the reference solution at time t = 0s. The mean and maximum
1The maximum number of unknowns came from the finer mesh at order p = 3 which can be

computed as 2{[2780(3 + 1)2] + [48(3 + 1)(3 + 2)/2]} = 89920.
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Figure 6.10: (a) The modelling of the Archimedean spiral antenna using 6 NURBS
which resulted in a mesh that has 48 triangular Bézier elements and 624 quadrilateral
Bézier elements. (b) Surface current density at time t = 0s over the antenna simulated
by the proposed LCN method applied to CFIE with α = 0.5 at order 7. The feed is
an electric dipole represented by an arrow at the center which induces voltage across
the the two arms of the spiral. The radiation intensity U resulted from this solution
is used as the reference solution in (6.11) and Fig. 6.11

relative errors in U are computed as

MeanErr(U) = 1
Na

Na∑
i=1

|ULCN(θi, φi)− URef(θi, φi)|
|URef(θi, φi)|

,

MaxErr(U) = max
[
|ULCN(θi, φi)− URef(θi, φi)|

|URef(θi, φi)|

] (6.11)

where Na is the number of angles, ULCN(θi, φi) is the radiation intensity computed via

the LCN method at discrete angle (θi, φi), and URef(θi, φi) is the radiation intensity

of the reference solution. Fig. 6.11 plots the relative errors. It can be seen that the

proposed LCN solution shows HO convergence to the reference solution according to

O(hp) behaviour for both mean and maximum relative errors. This indicates that

by using the proposed LCN scheme, it is possible to compute radiation properties

of an antenna with arbitrary accuracies (up to machine precision) at all considered

directions.



6.4. Numerical Results 195

Order (p)

1 2 3 4 5 6

E
rr

(U
)

10-5

10-4

10-3

10-2

10-1

100

MeanErr(U), 672 Elements (h
max

=0.16)

MaxErr(U), 672 Elements (h
max

=0.16)

MeanErr(U), 2828 Elements (h
max

=0.07)

MaxErr(U), 2828 Elements (h
max

=0.07)

Figure 6.11: Mean and maximum relative errors in the radiation intensity U approx-
imated as in (6.11) for the spiral antenna where the proposed LCN scheme is applied
to CFIE with α = 0.5. The model with 672 Bézier elements is depicted in Fig. 6.10a
which is used to compute the reference solution at order p = 7 with its current density
depicted in Fig. 6.10b.
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6.4.3 B2-Aircraft Model

A very important feature offered by HO methods is in their ability to provide

comparable results with LO methods with solution accuracies of 2 to 3 digits of

precision but with fewer unknowns [20]. To demonstrate that the proposed scheme

(i.e. LCN modelled with NURBS) can reduce the number of unknowns compared to

an LO method, in this section, we consider electromagnetic scattering from a PEC

B2-Aircraft model (Fig. 6.2) obtained by LCN where the proposed discretization

scheme is applied to CFIE with α = 0.2. The excitation is the same dipole as used in

Section 6.4.1, positioned 10 meters above the nose tip of the aircraft. The wingspan

of the aircraft is 57.3λ (see Fig. 6.12). A commercial tool (Wave3D [35]) was used to

obtain the reference solution using RWG MoM with 812, 952 flat triangular elements

(hRWG
max = 0.1λ) which resulted in 1, 219, 428 RWG MoM unknowns. The proposed

solution uses a NURBS representation of the model that is depicted in Fig. 6.2. One

way to formulate LCN on the Bézier mesh depicted in Fig. 6.2, is to use the same

order on all of the Bézier elements as was done in Sections 6.4.1 and 6.4.2. However,

due to the non-uniform nature of the Bézier elements in terms of their size, it is more

efficient to formulate LCN with different orders on different elements according to

their size. The Bézier patch with the largest element size hmax was formulated with

order 5 and the rest of the elements according to the desired O(hp) error behaviour.

Therefore, the ith Bézier patch with element size hi should be formulated with order

pi such that h5
max ' hpi

i . However, as the product of 1D Gaussian rules is most efficient

on square patches, it becomes more computationally advantageous (less unknowns) to

perform h-refinement along the lengthy direction (i.e. u or v) of the elongated Bézier

elements, and use smaller orders on the resulting almost-square Bézier cells. In the

B2-Aircraft case shown in Fig. 6.2, such h-refinement resulted in 884 quadrilateral
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Bézier elements and 16 triangular Bézier elements1. Consequently, 10 of the triangular

elements had order 1, 4 had order 2 and the remaining 2 had order 4. Quadrilateral

elements were formulated with orders 1, 2, 3, 4, and 5, on respectively, 56, 108, 190, 308,

and 222 Bézier cells. This resulted in a total of 40, 024 unknowns where the largest

Bézier element had element size hmax = 2.08λ. It is worth noting that the process of

h-refinement explained above, is greatly facilitated by the openNURBS, as the library

allows for splitting individual Bézier elements in either of the u and v directions with

arbitrary ratios (for more examples see [69]). The surface current computed by both

techniques at time t = 0s are depicted in Fig. 6.12. From the figure, it can be

seen that except for some values near the geometry edges, there is a close agreement

between the two solutions despite the fact that the proposed solution uses over 30

times fewer unknowns compared to the RWG MoM reference solution. In order to

numerically compare the two solutions, the surface current magnitude along the red

line shown in Fig. 6.12 is plotted in Fig. 6.13. By comparing the position of this line

in Fig. 6.12 and Fig. 6.2, it can be realized that this line is chosen in such a way

so that it goes over both triangular and quadrilateral Bézier elements. In Fig. 6.13,

the two solutions match with 2 to 3 digits of precision at all considered points where

the number of compared values is limited by the number of LCN’s quadrature points

that reside over the considered line.

6.5 Conclusion

In this paper we proposed a new family of quadrature rules to be applied to

triangular Bézier elements for LCN discretization of the EFIE, MFIE, and CFIE.
1Note that despite the h-refinement, the number of triangular Bézier elements remains 16 which

is the same as those in Fig. 6.2. As explained in Section 6.3.4.3, this keeps the near matrix as small
as possible.
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Proposed Solution

(LCN Modelled with NURBS)
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y=-1.28m

y=-1.28m

Figure 6.12: Current density on the surface of the B2-Aircraft at time t = 0s com-
puted by the RWG MoM obtained by a commercial tool [35] and the proposed LCN
scheme. The proposed solution has resulted in over 30 times reduction in the number
of unknowns compared to the reference RWG MoM solution. The red line over the
surface at y = −1.28m has been used to plot the current magnitude in Fig. 6.13.
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Figure 6.13: Comparison of the current magnitude |J | over the red line at y = −1.28m
in Fig. 6.12. The normalized error is Err(Ji) = |JLCN

i − JRWG MoM
i |/|JRWG MoM|max.

The rule is derived from the generalized Newton-Cotes quadrature formula which is

based on equidistant points. It prevents aggravating conditioning problems for the

EFIE, unlike the Gaussian quadrature rules for triangles which have dense concen-

trations of points near the edges and vertices of triangles. The proposed triangle

rule has the same number of quadrature points as the number of polynomial basis

functions complete to a given order, resulting in a square local correction system of

linear algebraic equations. The scheme has a self-consistent polynomial basis for the

charge description and can be reliably used in the HO LCN for orders ranging from

0 to 9. Numerical results show that the proposed rule facilitates achieving HO error

convergence to the correct field values according to an O(hp) behaviour. The pre-

requisite to such error behaviour is that the LCN uses geometry models composed of

NURBS generated Bézier meshes consisting either a single NURBS surface or multi-
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ple NURBS surfaces, the latter being subject to G2 continuity requirement between

adjacent NURBS surfaces. Therefore, the introduced LCN scheme can provide solu-

tions with arbitrary accuracies up to machine precision for smooth geometries. The

proposed method when compared with the more traditional RWG MoM, has resulted

in a 30 times reduction in the number of unknowns as it allows for patches as large

as 2.08λ when engineering solutions with 2 to 3 digits of precisions are required.
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Chapter 7

Conclusions, Comments and

Future Work

By Mohammad Shafieipour in partial fulfilment of the requirements of the degree of

Doctor of Philosophy (Ph.D.), March 2016.

In this Ph.D. program, the focus was on the boundary element methods (BEMs)

used to discretize surface integral equations (SIEs) in computational electromagnetics

(CEM). In this chapter, the accomplishments and conclusions are summarized and

suggestions for possible future work are discussed. This chapter also provides Prof.

Gedney’s comments and the author’s responses about the entire dissertation.

7.1 Conclusions

This thesis started by reviewing the motivation towards BEMs in CEM in Chapter

1, followed by studying the theory behind SIEs and the desirable properties of Rao-

Willton-Glisson (RWG) basis functions when discretizing the electric field integral

equation (EFIE). The overview of RWG MoM discretization of the EFIE was given
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in an attempt to show the advantages of the current continuity enforcing nature of the

RWG basis functions so as to motivate the reader for the use of such basis functions

in the low-order (LO) locally corrected Nyström method (LCN) method. A new

description of the LCN scheme was also given as a complementary note to existing

LCN descriptions.

In Chapter 3, we argued that the LCN method at LOs, is inefficient compared

to its LO RWG method-of-moments (MoM) counterpart due to the fact that it does

not enforce continuity of current. A novel method to enforce current continuity on

first-order LCN was developed by establishing the equivalence between the first-order

LCN method and the RWG MoM. It was shown that such equivalence can increase

the computational efficiency by 4 times reducing the number of unknowns and at the

same time improving the accuracy of the method. In order to achieve the sought

equivalence, the vector-potential (VP) EFIE was used as LCN discretizes the VP

EFIE. The introduced method can also be seen as a point-based discretization of the

RWG MoM for the VP EFIE as an alternative to the VP EFIE discretized with the

point-matched MoM which is typically preferred over the element-based RWG MoM

when fast algorithms are employed.

Chapter 4, dealt with establishing the relationship of LCN and RWG MoM in

discretizing the mixed-potential (MP) EFIE. The MP EFIE formulation, when dis-

cretized with RWG MoM, facilitates analytical (exact) cancellation of line charge

contributions. The exact relationship between LCN and RWG MoM was derived to

build a point-based RWG MoM discretization of MP EFIE. It was shown that by

using MP EFIE instead of VP EFIE, notably higher accuracies can be achieved and

at the same time the computational complexity is reduced due to analytical can-

cellation of line integrals appearing in MP EFIE. A detailed study was carried out
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to shed light on why analytical cancellations are preferred over numerical cancella-

tions and their impact on the solution accuracy. The introduced method can also be

equipped with low-frequency stable formulations for wideband applications as it is

equivalent to a point-based RWG MoM discretization of the MP EFIE. This is unlike

the constrained LCN (CLCN) [90] approach, where low-frequency stable formulation

is achieved by the augmented EFIE (AFIE) which increases the degrees of freedom.

The introduced MP RWG-via-LCN, similar to the VP RWG-via-LCN method is a

point-based method and is typically preferred over element-based techniques in the

presence of fast algorithms such as the multilevel fast multipole algorithm (MLFMA).

As of today, the CEM computer-aided design industry predominantly relies on

the well established LO techniques. Therefore, the novel LO techniques developed in

Chapters 3, and 4 might be good contenders in becoming industry ready products.

However, it is known that high-order (HO) methods are more efficient than their LO

counterparts and a natural progress at this point of research was to try to generalize

the work of Chapters 3 and 4 to HOs. However, it is known that the effect of current

continuity diminishes as the order increases. In fact, a new method for enforcing

current continuity for arbitrary order LCN has recently been proposed [90] which

according to one of its co-authors was inspired by the work presented in Chapter 3

which was published as a journal paper in 2014 [89]. However, numerical results of

the authors confirmed that the effect of current continuity at HOs is not profound

especially for practical examples. In the numerical results, practical examples were

given only at orders zero and one and higher orders were not even studied except for

canonical examples. For these reasons, in this PhD work a different approach was

taken in order to contribute to HO LCN scheme as a reliable BEM.

In Chapter 5, different aspects of HO LCN was studied. For example, the lim-
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itation on the patch size was derived and based on that a method was introduced

than can predict the optimum number of unknowns according to the desired accuracy

of the solution. The effect of large dynamic range in the solution was also studied

and the motivation towards using HO LCN compared to classical RWG MoM was

addressed, both analytically and numerically. Through extensive numerical results,

the imperative of adopting HO techniques were investigated by comparing LO RWG

MoM and HO LCNmethod in computing the electromagnetic scattering from a sphere

where the analytical solution is available for validating the accuracy of the results.

Using both numerical results and analytical expressions, it was demonstrated that

HO methods are exponentially more efficient than LO methods.

In Chapter 6, the work in HO LCN was continued by introducing a new family of

quadrature rules for triangles to be used in HO LCN when modelled with non-uniform

rational b-spline (NURBS) surfaces. A previous implementation of HO LCN mod-

elled with NURBS avoided using triangular elements and only applied quadrilateral

elements despite the fact that NURBS surfaces typically contain elements of both

types. Due to the limitations of Gaussian quadrature rules on triangles, a new set

of quadrature rules for triangles based on the equidistant Newton-Cotes quadrature

formula was developed. The resulting numerical scheme is capable of producing ma-

chine precision results for arbitrary smooth geometries created by convenient CAD

tools. When compared to RWG MoM, the proposed method can reduce the number

of unknowns significantly. For example, in modelling a B2-Aircraft, over 30 times

reduction in the number of unknowns was demonstrated.
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7.2 Addressing Prof. Gedney’s Comments

Prof. Stephen D. Gedney of the University of Colorado was the external examiner

of this work. Having such a top expert in the field as the external examiner was an

almost perfect match for this work as he is the author of [18] and many more related

publications which this work is heavily based-upon and related. His feedback is so

valuable that some of his comments are addressed here in their original forms. In the

remainder of this section, Prof. Gedney’s notes are in italic font, while responses are

in normal font.

7.2.1 Summary

Prof. Gedney: The overall focus of this dissertation is on the further devel-

opment of the application of the locally corrected Nyström method to solving surface

integral equation methods for the computational simulation of the scattering of electro-

magnetic waves by conducting objects. The main contributions of the dissertation are

1) the mapping of a first-order LCN discretization, to a Galerkin method of moments

scheme based on Rao-Wilton-Glisson (RWG), H(0)-divergence conforming basis func-

tions, 2) the derivation of a mixed-potential form of the LCN method that also maps

to the RWG basis, 3) the quantification of the error convergence of the LCN method

for smooth structures, and the ability to predict the discretization for a desired accu-

racy, and 4) the LCN discretization using Bézier cells for the high-order modelling

of smooth structures. The work embodied in this dissertation is deemed to be novel,

based on my own opinion, as well as the opinion of several qualified peer reviewers

who have reviewed and approved the publication of at least 3 journal papers in the

IEEE Transactions on Antennas and Propagation, within which 3 chapters of this

dissertation have been published. It is an excellent contribution to the field of com-
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putational electromagnetics, and should be commended. Response: Thank you very

much for the well-crafted summary of this dissertation and your kind recognition of

the contributions. I would like to note that the work of Chapter 6 has not been

published to date, but rather has been submitted (with major revisions) to the said

journal [147]. We hope that this work will be accepted and published in the near

future.

7.2.2 Strengths and Weaknesses of the Thesis

7.2.2.1 Strengths

Prof. Gedney: The work in this thesis presents a few significant contributions.

In my opinion, Chapters 4 and 5 are the most significant. Response: It is interesting

to me that you find the work of Chapter 5 as one of the most significant contributions

as this work has not been published or submitted for publication as a journal paper.

In fact, writing this chapter was challenging as a lot of concepts have been covered

which makes it difficult to put together as a chapter. I am glad that such difficulties

did not prevent me from writing this chapter.

Prof. Gedney: Chapter 4 presents a means of applying the LCN method to a

mixed-potential form of the electric field integral equation (EFIE). While this method

is limited to a low-order application of the LCN method, I think it can be extended to a

high-order formulation, improving the overall quality of the LCN solution of the EFIE

by reducing the hypersingularity of the EFIE kernel. Response: Such work would

be very interesting and seems to be possible. In fact, a similar work is suggested as

a future work (Section 7.3.6).

Prof. Gedney: Chapter 5 presents an analytical procedure for predicting the

convergence behaviour of an LCN solution for a smooth body using the magnetic field
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integral equation (MFIE). A closed form expression for the error convergence is de-

rived that while relying on experimental data, allows one to predict the discretization

needed for a desired accuracy for a class of problems. This has not been presented

before. Response: Predicting the convergence behaviour is not limited to MFIE and

can be used for EFIE and CFIE as the experimental finding of a and b (Section 5.3.2)

is not restricted to MFIE. In fact the numerical example given in Section 5.3.4 uses

LCN discretization of the CFIE. The fact that the numerical results in Section 5.4

are limited to MFIE is due to the unavailability of effective preconditioners to make

EFIE or CFIE converge to the desired GMRES tolerance as MLFMA acceleration is

used. Predicting the optimal number of unknowns is applicable to MFIE, EFIE, and

CFIE.

Prof. Gedney: Chapter 6 is also an excellent contribution by applying the

LCN method to more sophisticated curvilinear structures using NURBS based dis-

cretizations. Such discretizations truly lends itself to applying the full potential of a

high-order method such as the LCN method. Response: Thanks for the accurate

and interesting comments.

7.2.2.2 Weaknesses

Prof. Gedney: There are some weak points of the dissertation that should be

addressed. The first is the application of the error analysis to the EFIE of the com-

bined field integral equation (CFIE). The latter is more practical for large structures

where the MFIE could suffer from interior resonance issues. Response: We assume

that this comment is about Chapter 5 as Chapters 3, 4, and 6 do cover EFIE. In fact,

chapters 3 and 4 only cover EFIE for the reasons that are briefly explained in Section

7.3.1. In Chapter 5, overall, the discussion is applicable to MFIE/EFIE/CFIE and
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as mentioned earlier, numerical results are given for CFIE and MFIE. For large-scale

examples however, MFIE is considered due to the unavailability of efficient precondi-

tioners to help GMRES tolerance reach the desired accuracy.

Prof. Gedney: Another weak point is the Newton-Cotes triangle rule applied to

degenerate triangles formed by Bézier surface representation of the NURBS elements.

This method has potential, but as applied also has some limitations. Perhaps a true

triangle Bézier surface can be derived, and Gauss-triangle rules could be used instead.

Response: As mentioned in Chapter 6, already existing Gaussian triangle rules do

not always result in square Vandermonde matrices and produce matrices with exceed-

ingly high condition numbers at high orders. These two issues should be resolved (by

perhaps inventing a new type of Gaussian quadrature rules) before what is suggested

here can be realized and may be a subject of future research. Such method would

indeed be preferable over the method introduced in Chapter 6. The reasons are two

fold; 1) there would be no limitation to increasing the order of the Gaussian quadra-

ture rule as opposed to Newton-Cotes rules where the order is limited to p < 10, and

2) the product of 1D Gaussian rules with (n+ 1)2 points provides integration results

in the order of 2n+1 and is preferred over the Newton-Cotes based triangle rule with

(n+ 1)(n+ 2)/2 nodes which provides the rules of order n.

Prof. Gedney: The strengths far outweigh the weaknesses in this work. It is a

strong dissertation. Response: Thank you very much. In the author’s opinion, all

the methods introduced in this dissertation while have been agreed to be novel and

to the best of CEM community’s knowledge to date, are subject to improvements.

What is suggested in the future works, are those that can be envisioned at the time

of this writing and perhaps more can be suggested as further research reveals more

insights about these techniques. It would be my pleasure to see other people adopting
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these techniques and improving them.

7.2.3 Suitability of the Thesis for Awards

Prof. Gedney: This is hard for me to comment on, as I do not know the

category of awards that the University of Manitoba has. I think that this is an excellent

dissertation with a number of novel contributions, as stated above. If it were my

student I would nominate this dissertation for an award. Response: Seeing these

types of comments from a top expert in the filed reminds me why I entered this

program and adds ample joy to the success of graduation.

7.2.4 Chapter 1: Introduction

Prof. Gedney: Overall, summarizes the dissertation well and provides more

than ample background. I like the fact that Rokhlin’s dogmas are stated. This is

an important starting point. Response: Rokhlin’s dogmas are indeed important

and yet not widespread in the literature. We hope that the prospective readers of

this dissertation realize their importance and apply them to their field of scientific

computing.

7.2.4.1 Comment 1

Prof. Gedney: Page 7: You state: “otherwise the method is formulated using

method-of-moments (MoM) [20–23] where interactions are defined based on elements

and these methods are commonly referred to as element-based methods”

Comment: The method of moments is based on an expansion of interpolation func-

tions over the problem domain, and following the method of weighted residuals, com-

puting moments of the operator. Entire domain functions spanning the entire domain
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can be used or those bound by elements (cf, Peterson, Mittra, and Ray, Computational

Methods for Electromagnetics, [39]). Interpolation functions bound by elements are

more precisely referred to as finite element methods which can be used to solve dif-

ferential or integro-differential operators (c.f., P. Silverster and R. Ferrari, Finite

Elements for Electrical Engineers [57]). Though, in modern taxonomy finite element

methods are interpreted as being the solution of a differential equation. Perhaps a

clearer distinction between methods, is quadrature point based versus interpolation-

function (or expansion-function?) based methods. Response: Thank you very much

for pointing this out. The suggested terms are indeed more presice. However, us-

ing point-based instead of quadrature-point-based does not alter our discussion since

the fact that the points of the LCN method reside at the quadrature points do not

contribute to its efficient acceleration by fast algorithms. The term element-based on

the other hand may cause ambiguity due to the reasons mentioned in the comment.

Some references (e.g. [5]) have used the term “basis-based” and that is what we also

included in Chapter 3.

7.2.4.2 Comment 2

Prof. Gedney: Page 8: Some disadvantages of the LCN method should also

be listed. Don’t be afraid to address the cons. Response: Initially, the reason for

not listing LCN’s disadvantages here was that this particular discussion is about

point-based methods in general and LCN is given as an example of a point-based

method. However, as suggested, we agree that the disadvantages of LCN should also

be addressed. For that, please refer to the last paragraph of Section 4.1.
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7.2.4.3 Comment 3

Prof. Gedney: Page 8: You state: “In order to accomplish better conditioned

matrices several techniques have been suggested for particular examples [27–29] but a

general solution is not available to date and constitutes an open research problem [1].”

There are much more recent and pertinent references than [27–29] for well-conditioned

formulations. There is still a volume of on-going research on this topic. However, I

believe that within the next 5 years, this question will be settled and more easily applied

to LCN methods. Response: Thank you very much for letting us know about this.

A more recent literature review on this topic is left for prospective readers.

7.2.5 Chapter 2: Mathematical Formulation

Prof. Gedney: This chapter summarizes the derivation of the EFIE, RWG

basis, etc. This chapter is more a pre-curser to chapter 3 rather than for the entire

dissertation. I expected a more general presentation of the formulations used in the

dissertation, e.g., MFIE, CFIE, and LCN method. This is the author’s prerogative.

Response: During my time as a Ph.D. student in the University of Manitoba, I

started realizing that some concepts of the EM field can be explained in ways other

than the ones available in the literature which could facilitate easier understanding or

at least from a different point-of-view which could complement the already existing

texts. Therefore, I decided to include in this chapter those topics that were related

to the thesis and at the same time I had my own way of explaining them. Derivation

of the EFIE from the Maxwell’s equations and basics of LCN (suggested by one of

the internal examiners, Dr. LoVetri) are included for this reason. Notes related to

RWG MoM and RWG basis functions were added to the chapter to facilitate easier

transition to the next chapter as pointed out in the comment.
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7.2.6 Chapter 3: On the Equivalence of RWG Method of

Moments and the Locally Corrected Nyström Method

for Solving the Electric Field Integral Equation

Prof. Gedney: This chapter focuses on deriving a mapping between an H(0)-div

RWG based MoM scheme with the LCN method using p=1 basis. I am familiar with

the publication of this work in the IEEE Trans. On Ant. Prop., 2014, and believe

this to be a nice contribution. Nevertheless, I have some comments for the author.

7.2.6.1 Comment 1

Prof. Gedney: Page 50: You state: “In particular, a first-order LCN solu-

tion of the EFIE is often substantially less accurate when compared to its first-order

Rao-Wilton-Glisson (RWG) MoM counterpart [1], despite using four times as many

degrees of freedom per element.”

Comment: I believe this statement to be somewhat misleading. An equivalent H(0)

basis for LCN on triangles would be a 1 point quadrature rule. This would integrate

triangle functions to degree 1. This would lead to two degrees of freedom per triangle

(quadrature-point, with two vectors). Case and point, a 1 point rule will integrate

the RWG basis function exactly. This would converge with O(h2) on smooth surfaces.

This requires 2P unknowns compared to 1.5P for RWG basis. Response: The reason

for calling first-order LCN a counterpart for RWG MoM is due to the discussion made

in Section 3.4.1. Particularly, as shown in (3.30), to correlate the ramp-functions of

the RWG MoM to scalar basis functions of LCN Fk(r), it is required to choose first-

order LCN as it has (k = 1, 2, 3) where F1(r) = 1, F2(r) = ξ(r) and F3(r) = η(r).

However, the point made in the comment is valid and should have been addressed.

Thank you for your precise comment.
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Prof. Gedney: I believe that what is being implied here is that the four time

reduction in matrix dimension is specific to this method where a three-point quadrature

rule for the triangle rule is being mapped to the RWG basis. This leads to a 4 fold

reduction in the dimension of the matrix. What is interesting is that this quadrature

rule is higher-order than the RWG basis. Response: Very interesting observation.

In fact, during the writing of this contribution, we looked at the relationships between

RWG basis and scalar basis functions of LCN Fk(r), as opposed to looking at the

minimum order quadrature rule that can exactly integrate RWG basis. By doing the

latter, the RWG MoM does relate to zeroth-order LCN with 2P unknowns and the

work of Chapter 3, establishes exact relationship between RWG MoM and an LCN

solution at a higher order.

7.2.6.2 Comment 2

Prof. Gedney: Page 54: “the singular kernel are integrated exactly to a given

precision”. Integrated exactly to a given precision is contradictory. Response: True

indeed! This should be corrected.

7.2.6.3 Comment 3

Prof. Gedney: Page 56: “Note that unlike standard LCN, the observation weight

ωqm is included in (3.9) in order to permit observation patch integrals analogous to

RWG MoM”; Most LCN codes I am aware of weight the rows by the field quadrature

weight. Though, the reason this is done in standard LCN is for symmetry of the

system matrix. Response: By looking at the standard LCN [1, 18, 19], it can not

be realized that an LCN code weights the rows by the field quadrature weight for

symmetry of the system matrix. This comment bears an important insight about
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implementing LCN which was not known by the author prior to seeing this comment.

Thank you very much.

7.2.6.4 Comment 4

Prof. Gedney: Page 64: Equation (3.33) is not correct. Note that the unitary

vectors have units of length, reciprocal unitary are 1/length, and the unit vector is

unit-less. Thus, your units don’t match up. Rather, a1 = a2×n̂√
g
, a2 = n̂×a1√

g
, and

√
g = 2A for the flat triangular patch. In this case the identity in (3.34) is true. (Note,

that unitary vectors have units of length, and reciprocal unitary vectors have units of

1/length.) Response: Thank you very much for this correction. As explained in

the footnote2 of page 53, in this chapter √g is omitted from notations. However, it

is agreed that (3.33) should be corrected as explained in the comment.

7.2.6.5 Comment 5

Prof. Gedney: Page 77: “For lower frequencies, enforcement of current con-

tinuity greatly influences the accuracy of the RWG-via-LCN method where the LCN

method fails to provide satisfactory performance.”

Comment: The phenomena shown in Fig. 3.6 is interesting. Though, this would not

be consistent with results shown for smoother discretizations in Chapters 4 and 5 of

the dissertation, nor with my experience with curvilinear patches. It appears that a

low-frequency break down of the LCN discretization of the EFIE is being accelerated

by the flat faceted patch. While it is true that the lack of current continuity for the

LCN method is the reason for this, the faceted geometry is amplifying this error. In

normal LCN, one would use a curvilinear patch, and would control the geometry er-

ror. Hence, by not doing so Rohklin’s dogmas 2 and 3 are being violated! I think
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that this should be discussed in the text. Secondly, due to the facet angles, the LCN

method is modeling charge density that accumulates at the edges. This is fictitious

for the sphere, but not for a faceted geometry with corners. I would be curious to see

how your results change for smooth patching. Response: Addressing this comment

needs modification to the developed RWG-via-LCN C++ code and further numerical

results are needed. Such study would in fact be interesting. However, as part of the

code used during this Ph.D. program is now under restrictions by the government of

Canada, we are unable to conduct this study.

7.2.7 Chapter 4: Exact Relationship between the Locally

Corrected Nyström Scheme and RWGMoment Method

for the Mixed-Potential Integral Equation

Prof. Gedney: This is an interesting chapter that progresses from the previous

chapter, applying a mapping from a LCN discretization to an RWG method for the

mixed potential integral equation (MPIE). What is interesting here is that the scalar

potential part of the MPIE receives a different LCN discretization for the vector po-

tential and the scalar potential contributions. The two LCN matrices are then mapped

to the MoM impedance matrix using appropriate transformations. This is interesting,

and the first that I have seen this.

What is most interesting in this study is the impact on the low-frequency breakdown

of the LCN operator. Not surprisingly, the breakdown is associated with the scalar

potential term. It is determined that the chief source of the loss of accuracy is in

the line integrals that result from transfer of the divergence from the current onto the

Green’s function. The author nicely demonstrates that errors in the line integral are

greatly amplified. This is consistent with my experience that the line integrals have
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a large contribution to the scalar potential piece of the kernel, and that cancellation

error can be critical. The author indicates that additional error is due to the low

order approximation of the test integrals, where additional precision is lost at lower

frequencies. It appears that this is amplified by the use of a faceted mesh. Response:

Thank you for your comment. To the best of our knowledge, the important study of

the error in the line charge contributions of RWG MoM for both vector-potential and

mixed-potential EFIEs can only be found in this chapter which is a reprint of [132]

and at the time of this writing is not available elsewhere in the EM literature.

7.2.8 Chapter 5: On Achieving High-Order Convergence to

the Correct Answer with the Locally Corrected Nys-

tröm Method

Prof. Gedney: This is a very interesting contribution. The most important

being equation (5.22) (Though, it seems there has to be a simpler derivation of this!),

which allows the prediction of the number of unknowns required to achieve a desired

level of accuracy for a given order. The use of this to predict an optimal order in

terms of unknowns is quite interesting, and the validation of this for the MFIE with

the exact sphere mesh is also very nicely done. I have some remaining questions

and comments. Response: There may be a simpler derivation of (5.22) but this

particular derivation was chosen to also result in (5.16), which is a more general case

of (16) in [1].

7.2.8.1 Comment 1

Prof. Gedney: When solving the large sphere problem, the integration error was

set to a very low tolerance, and an exact mesh was used. Both of these were set very
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conservatively such that the error observed was due to the discretization. However,

due to the problem size, I have to assume that a fast solver was used. Thus, how

was the error in the FMM solution contained? That is, what were the group sizes

used? How was it ensured that non-touching near neighbor reactions were performed

to the desired precision? Response: For LCN large scale examples shown in this

chapter the multilevel fast multiple algorithm (MLFMA) was used based on [1]. This

is mentioned in the text. Therefore, one can refer to [1] for such detail.

Prof. Gedney: Also, what was the residual error used for the convergence of

the iterative solution? Or, was this solved using a direct solver? Some details on

this seem necessary. Response: The residual error used for the convergence of the

iterative solution was set conservatively as pointed out in the comment. It was set to

10−6.

7.2.8.2 Comment 2

Prof. Gedney: Predicting the optimal number of unknowns is very useful in

that it bounds the memory required for the solution using a direct solver. However,

when using fast solvers, this actually does not necessarily optimize memory. For SIE

methods, the near field block will grow as O(p2). Also, as the desired error is dropping,

the group dimension of the FMM octree will also need to increase to ensure desired

accuracy. This also will increase memory. Response: These are valid points and

should be addressed in a more general study. However as this dissertation does not

study MLFMA and only use it for proof of concepts where large scale examples are

needed, we considered such effects beyond the scope of this dissertation. Nevertheless,

as pointed out in the comment, finding the minimum value of N for a desired accuracy

of the solution using a direct solver is important and might substantially increase the
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efficiency of CEM when fast direct solvers [10,12,14,84] are used.

7.2.8.3 Comment 3

Prof. Gedney: From a practical point of view, there are other metrics that are

not necessary optimized simultaneously with N . This would include the CPU time.

Higher orders of p typically lead to larger compute times for the near field blocks that

group larger than O(N) due to the larger size of the element matrices and the increased

number of basis per cell. Also, as the tolerance is dropped, the adaptive quadrature

integrations take longer to converge. The error tolerance of fast solvers must also be

decreased. This requires larger group dimensions and an increased number of spectral

angles. Without a question, this is a more complex problem, but one that comes into

play. Finally, higher-orders p lead to higher condition numbers, which leads to an

increase in the number of iterations in the iterative solver. Response: The same

response made for the previous comment can be applied here.

7.2.8.4 Comment 4

Prof. Gedney: On page 137, the comment is made: “Our HO LCN implemen-

tation is also unable to exhibit ε = O(h2(p+1)) for the EFIE and CFIE even if the cri-

teria is met. In fact, due to the non-self-adjoint nature of the electromagnetic integral

operators, it is difficult (if not impossible) to derive a general closed form expression

for the error convergence [18]. Therefore neither of hp or h2(p+1) can be used in prac-

tical examples” (underline added.); This sentence seems to imply that the analysis

provided cannot be applied to the EFIE or CFIE. Is this true? Response: The

analysis provided can be applied to MFIE, EFIE, and CFIE which is made possible

by the availability of the experimental finding of a and b in (5.10) explained in Sec-
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tion 5.3.2. In fact, the example given in Section 5.3.3 uses CFIE to demonstrate the

validation of the method.

Prof. Gedney: If it is, then bullet item 1 in list on page 138 would not be

applicable. Or are you trying to state that it is something other than these? This

should be clarified. Response: According to the response given above, the bullet

item 1 in page 138 is applicable.

7.2.9 Chapter 6: On New Triangle Quadrature Rules for

the Locally Corrected Nyström Method Formulated on

NURBS Generated Bézier Surfaces in 3D

Prof. Gedney: This chapter introduces the application of the LCN method to

a NURBS discretization of a surface that have been represented by a combination of

quadrilateral and triangular Bézier cells. A major focus of this effort is on the han-

dling of the triangular Bézier cells by introducing a Newton-Cotes type of quadrature

rule.

The application of the LCN method to triangular cells is certainly more limited

than to quadrilateral cells. As the author points out, this is due to the fact that

for many triangle orders, optimal Gaussian quadrature rules do not yet exist for all

orders that integrate to the desired degree with a triangle number. As a consequence,

in the application of the LCN method, the local element matrices are typically under

determined, requiring a pseudo-inverse, such as a minimum norm solution. Wildman

and Weile suggest adding functions to square the system. However, this is limited

to low orders, and not of practical value. We fairly routinely use mixed meshes.

However, as pointed out by the author, it is best to minimize the number of triangles

in your mesh. Also, as pointed out in this chapter, Newton-Cote’s rules for triangles
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do exist. Pete Silvester published a set of open rules in 1970. These rules provide the

correct triangle number of points for a given order. However, the polynomial degree

is the limiting factor.

The author presents a new type of Newton-Cotes rule. However, what is not

clearly stated is that it is not a true triangle rule. Rather, it is a triangle rule that

is developed for a degenerate quadrilateral. That is, it is custom fit to the Bézier

triangles, which are degenerate quadrilaterals. The motivation for doing this is that

if a standard Gauss-quadrature rule for a quadrilateral were used, there would be a

clustering of points near the degenerate edge, leading to ill-conditioning of the system

matrix. Response: It is now mentioned in the text that the proposed rules are

applicable to Bézier triangles which are in the form of degenerate quadrilaterals.

7.2.9.1 Comment 1

Prof. Gedney: I do have a concern about using degenerate quadrilaterals. That

is, by definition, the Jacobian goes to zero at the degenerate (or singular) edge. As a

consequence, the underlying basis, which is proportional to 1√
(g)

, is singular. Granted,

this normalizes out due to the product of Jacobians. However, it is a concern. The

effect of this appears to be lessened by the use of the proposed Newton-Cotes rule as

opposed to a standard quadrilateral quadrature rule. Response: The severe effect of

conditioning issues (caused by the mentioned concern) when applying Gauss-Legendre

rules on degenerate quadrilaterals was a motivation to this work. In fact if we try

to formulate LCN on Bézier elements (which are in the form of degenerate quadri-

laterals) with the product of 1D Gauss-Legendre rules, the EFIE will not produce

meaningful results. However, the numerical results presented in this chapter show

that by using the proposed Newton-Cotes rules for Bézier triangles (i.e. degenerate
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quadrilaterals), although the Jacobian tends to zero right at the edge, its value is not

severely decreased at the quadrature points (including the nearest quadrature point

to the singular edge). Therefore, normalization of basis vectors to the Jacobian will

not raise conditioning issues as it would have when existing Gaussian rules are applied

to degenerate quadrilaterals.

7.2.9.2 Comment 2

Prof. Gedney: One interesting thing about using degenerate quadrilaterals, is

that the line integral resulting from the scalar potential term (c.f., (3.52)) along the

degenerate edge (of zero length) is non-zero. Though, one has to be careful integrating

this term b/c the ratio of the edge Jacobian (0) and the face Jacobian (also 0) must be

done correctly. The author has obviously already figured that out. Response: The

issue of having a zero by zero division when computing a non-zero line integral over

the singular edge is only valid for the value of absolute zero. The method introduced

in Chapter 6 does not encounter such difficulty. This is because when computing

the position vectors on the surface of a Bézier patch, due to the tolerance set at

the geometry conversion from NURBS surfaces to Bézier patches (Section 6.3.1),

the singular edge of a singular Bézier element does not have length of absolute zero

but its length is close to the set tolerance. In this chapter this tolerance was set

to 10−6, and hence values of both surface and edge Jacobians at the singular edge

of the singular Bézier elements are close to 10−6 and their ratio is valid and can

numerically be computed. To make sure that this ratio is computed properly, the

same integrations were carried out in dyadic form (over the surface without having to

compute line integrals over the edges) and results matched with machine precision.

Further experiments showed that if the tolerance is set to lower values such as 10−16,
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this computation remains valid and does not pose numerical issues in the method.

Nevertheless, to have a more robust implementation, it is recommended to analytically

compute this ratio as was suggested in the comment, but it was not done for the

presented numerical results of Chapter 6.

Prof. Gedney: It is not clear if the order of the triangle is consistent with the

order of the quadrilaterals. Namely, a [(p + 1) × (p + 1)] point Gaussian quadrature

rule on a quadrilateral will integrate polynomials of degree 2p+ 1, and at least for the

MFIE should converge with order O(h2(p+1)). However, a p-th order Newton-Cotes

rule on the triangle will only integrate polynomials of degree p, and will converge at

best with order O(hp+1). Based on the theory presented in Chapter 5, then mixing

a p-th order rule on quads with a p-th order NC rule on triangles, will lead to an

inconsistent convergence rate. (At least this is what appears to have been done, and

what is observed in Figs 6.7 and 6.8.) Would it not make more sense to use a (2p+1)-

th order Newton-Cotes rule on the triangle in combination with p-th order rule on the

quadrilateral? Response: Very interesting issue raised here! In fact, only after this

comment the inconsistent convergence rate was brought to our attention. Therefore it

would make sense to apply this comment to results of the MFIE (Fig. 6.8). However,

as discussed in Chapter 5, the convergence of LCN depends on many factors and

would not always remains O(h2(p+1)). For example, the convergence rate of EFIE

(Fig. 6.8) would remain less than O(h2(p+1)) regardless of the order of the triangle

rules. Therefore in Chapter 6, it is assumed that the convergence rate is O(hp) and

triangle rules are applied accordingly. Moreover, as was suggested in Section 6.4.3,

the order of each Bézier element can be chosen according to its size and O(hp) making

the order of each element according to the desired accuracy.
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7.2.9.3 Comment 3

Prof. Gedney: Observing Figures 6.7 and 6.8, it is clear that the triangle rules

and the quadrilateral rules are converging with different rates. The case with only

triangles (24 elements) is converging at a much slower rate than the case with mostly

quadrilaterals (336 elements). On these two figures, if I extrapolate the 24 element

case by choosing orders 3, 5, 7, 9 for the triangles to represent Nystrom orders p =

1, 2, 3, 4, respectively, you certainly get closer to the ideal slope. It would be very

interesting to see how this impacts the 48, 96, and 336 element case. Response: By

comparing the results of Fig. 5.3 with Figs. 6.7 and 6.8, it can be realized that the

low convergence rate of the 24 element cases in Figs. 6.7 and 6.8 is similar to the

low convergence rate of the 6 element sphere in Fig. 5.3 with hmax = 3.85λ which

is computed by Gauss-Legendre rules on quadrilateral elements. Therefore, not only

the order of the rule applied to triangular elements has its effect on the convergence

rate, the size of the elements is also important. Nevertheless, as was pointed out

earlier, one might match the order of Newton-Cotes rules with Gauss-Legendre rules

as was suggested in the comment.

Thank you for all the valuable comments. They definitely add to the quality of

the work.

7.3 Future Works

Below are the possible research that can be conducted based on the author’s

experience and understandings that resulted from this research work.

1. Mathematically and numerically demonstrate that it is possible to use same

converters as in Chapter 3 to convert first-order LCN to RWG MoM when dis-
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cretizing the magnetic field integral equation (MFIE). Although never stated

in this thesis or elsewhere, the equivalence established in Chapter 3, were ini-

tially developed based on MFIE formulation and numerical results confirmed

the equivalence for the MFIE. Due to the compact plus constant nature of the

MFIE operator however, the LCN method produces more accurate results than

the EFIE at first order. Subsequently, we found that by converting MFIE’s

impedance matrix of the first-order LCN to RWG MoM, the accuracy of the

solution degrades. The reason for it is perhaps due to the fact that RWG basis

functions assume that the current is always normal to triangles’ edges while

the LCN method has covariant basis functions in both u and v directions and

allow for arbitrary vector current on the surface of the triangle. Nevertheless,

it is known that by combining the EFIE and the MFIE, the combined filed in-

tegral equation (CFIE) can be formulated. Therefore it would be an interesting

future work to study the effect of current continuity for first-order LCN when

discretizing the CFIE. It would then be interesting to compare the RWG-via-

LCN discretization of the CFIE using both VP EFIE (Chapter 3) and the MP

EFIE (Chapter 4).

2. Extend the work of Chapter 6 to show HO convergence to the correct answer

for arbitrary geometries containing sharp edges. While such work might seem

challenging, the infrastructure developed and tested in Chapter 6 has several

characteristics that greatly motivates further work on this topic. First, it does

show HO behaviour for arbitrary smooth geometries and by elimination, we

know that the only reason for us not to have a practical general purpose HO

BEM is to not properly handle sharp edges. Second, by knowing that a possible

remedy to this problem is through hp-refinement [146] at the corners of the



7.3. Future Works 225

geometry, the fact that NURBS facilitates on-the-fly h-refinement and HO LCN

does so for the p-refinement, such a great accomplishment seem to be not-so-

out-of-reach due to the progress made in this research program.

3. By looking at the work presented in Chapter 6, it is realized that the fact that

the standard HO LCN does not require current continuity enforcement, the pro-

cess of h-refinement is easily done by using the OpenNURBS library. Therefore,

any future hp-refinement procedure, would rely on Bézier mesh that allow for

non-aligned boundaries. However, current continuity enforcement techniques

such as CLCN or continuity enforcing hierarchical basis functions [21], require

to have matching edges throughout the mesh which are sometimes called clean

meshes. This poses difficulty to enforce current continuity and at the same

time perform hp-refinement. Nevertheless, is was shown in Chapter 6 that it

is possible to enforce geometric G2 continuity over the entire NURBS gener-

ated Bézier meshes. Therefore, it would be an interesting study to compare the

performance of current continuity enforcing CLCN and the method introduced

in Chapter 6 to see the effect of G2 continuity (Chapter 6) versus C1 continu-

ity (CLCN) in the LCN discretization especially at HOs. If both techniques

show similar performance, the latter is less preferred as it only allows for clean

meshes, but if CLCN shows significant improvements, it would be a good idea

to try to develop novel current continuity enforcing techniques that allows for

non-aligned boundaries in the mesh.

4. There has been publications to handle dielectric materials by discretizing SIEs

such as PMCHWT and Müller formulations using LCN [47, 48]. We are not

entirely sure why these formulations were used in the previous work but an

educated guess leads us to believe that these formulations have been used in
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MoM and the authors in [47, 48] adopted these formulations due to their suc-

cessful applications when discretized with MoM. However, it is important to

note that these formulations were developed with the MoM discretization in

mind and more generalized formulations are also available in the literature. For

example, in [113], we successfully used the dielectric EFIE and MFIE formula-

tions of [39] to model dielectric materials. This is despite the fact that these

formulations do not lead to accurate results when discretized with RWG MoM.

Our understanding is that due to the nature of RWG basis functions, these

simpler formulations are not properly tested by RWG functions and thus one

has to deal with more complicated (and probably more computationally expen-

sive) PMCHWT and Müller formulations. The LCN method on the other hand

has covariant basis functions in both dimensions of the surface parameters and

can be used to discretize simple dielectric EFIE/MFIE formulations as demon-

strated in [113]. A study that compares the performance of LCN discretization

of PMCHWT, Müller, and CFIE formulations seem appropriate by studying

the accuracy, number of unknowns, and other aspect of the pertinent schemes.

5. The abscissas of 1D Gaussian quadrature rules tend to concentrate near the

edges and hence the maximum largest distance in a given order between any

two points becomes larger than that of 1D Newton-Cotes rules. As a future

work one can apply the product of 1D Newton-Cotes rules in Chapter 6 to

quadrilateral elements and study the reduction in the number of unknowns due

to the convergence criteria introduced in Chapter 5.

6. Although the current continuity enforcing CLCN [90] might be a discouragement

towards generalizing the work of Chapter 3 to HOs, generalizing MP RWG-via-

LCN of Chapter 4 to HOs would be an interesting future work as it uses the
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MP EFIE rather than the VP EFIE inherent in HO LCN and HO CLCN. Such

work will shed light on the advantages of discretizing the MP EFIE rather than

VP EFIE at HOs using the point-based LCN method and might improve the

performance of LCN/CLCN when arbitrary geometries are considered.

Saadi Shirazi, the 13th century Persian poet says1:

It means that this text is over but the story goes on; even hundred texts might not

be enough to describe the feelings of an enthusiast. This is exactly what I feel and in

my opinion the Computational Electromagnetics has just begun!

1In Persian culture poets are alive by means of their poems! Hence the use of present tense verb.
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