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This cbWs prcsents a rnethod of i d e n m g  the swra of radio transmissions by 

analysis of the transitnts exhibitcd at the start of ths trailsmitted signal. It is m o t i d  by 

the intriguhg possiiity of i&ntif@g radio traasmitters used in violation of fcderai and 

international nguiations. As wcii, such a systcm could bc directly uscd for analysis or 

classification of other nonstationary signais such as speech or power systcm transients. 

The system developed in t h  thesis uses a rnultifiactal analysû for precise 

segmentation of a transmitter transient h m  the ambient chanael noise. This is criticd to 

ensure that the portion of the signal king analysed does aot contain mcaningless noise 

and, at the same timc, zcpresents the entire transition b m  noise to signal. Then. using a 

similar mdtifraaal mtthod, signifscant feaains of the transient arc extracted and stored 

for n e d  network analysis. This modelling proccss is quaily important as it provides a 

means to d u c e  the size of the data for efficient neural neiwork processing. while 

providing signikant empûasis on the most impo-t features. F i y ,  the transient mode1 

is classified using a Pmbabilistic Neural Network (PNN). 

Expcrimcntal mults indicate that this classincation system is fast and accurate. 

The three stages of segn#ntation. f w  m o n .  and ciassification are performed in 

about a half second for a 16 kB transitnt Ia the most successfui expcriment, the system 

was trained with 160 out of the 415 avaiiable transitnts. nprrsenting cight dincrent 

classes of transmittcrs. Tcstiag tbe system with the remainiag 255 transients yiel&d 

nsuits in which 96.9% of them werc classifieci corztctly* 



F i  of a& 1 would Iütt to îhank my advisor, Dr. W. Kinsner, for his unending 

support and guidancc throughout the writing of this thesis. Dr. Kinsner encouraged me to 

undertakt rhis course of study and providcd me with motivation to see it through to 

completion. He has show me that research can k both rewading and exciting. 

1 would iikc to ththanL my supe~sors in the Canadian Armed Forces, past and 

pnsent, for thcir support and undcrstanding of the timc cornmitment involved for a project 

of this magnitude. Spaifically Major Al Deutscher, Captain Kathy Boulet, and Captain 

Rob Mchtosh ,me acknowledged. 1 would also üke to thank Mr. Tom Silleüa, Head Coach 

of the Canadian Military Pcntathion Team, for bis encouragement throughout the 

completion of this thcsis. 

1 would like to thank rcsearchtrs h m  the Communications Research Centre 

(CRC) for providing the set of radio transmitter ttansients usai for testing the system 

developcd in this thcsis. 

The fnendship and discussions providcd by my colbagues in the Delta Research 

Group arc also acknowledged. 1 would especialiy üLe to thanlr Jason Tmnstra, who was 

&O studying transmitter transients, for his discussioas about these "nasty Iittie signais". 

1 would like to thank my famüy for th& constant support and encouragement 

during this iesearch and in al1 of my other endcavours. Finally, 1 would lilrc to tharil Tracie 

for ber patience and love. 



Table of Contents 

.............................................. CHAPTERI ~ O D U C T I O N  1 

.................................... Background and Motivation 1 

................................. The Repcoc~ssing Stage 2 

............................. The Fcaturc Extraction Stage 3 

The Classification Stage ................................. 3 

............................... Thesis Statement and Objectives - 4  

.......................................... ThesisOrganization 4 

................... CHAPTER II FRACI'AL DIMENSION AND ~ ~ U L T I F R A C M L ~  6 

.......................................... FractaiDimwions -6 

......................... Morphological-Based Dimensions 7 

.......... Entmpy-Based Single and Multifiactal Dimensions - 9  

............................ Spectrum-Bd Dimnsions 12 

............... ............ Variance-Basai Dirmnsio~l~ ; 13 

................. Fractal Dimensions for Transient Analysis 14 

............................ Caicuiating the Variancc Dimension 15 

.................................... . Fractal Mtasuzcs vs T i  18 

............... Local Fractal Dimensions and Muitifiactality 18 







Table of Contents 

....................... Rejection of Unknown Trs~ients 108 

............................. Muitimodai Segnmtation 110 

............... Transformation of Fmtal Tmjcctory Mode1 113 

............................ Confidence Measufcs and the PNN 117 

SummaryofChapcr6 ...................................... 119 

...................... CHAPTER W CONUUSIONS AND R~COMME~UIBATIONS -121 

.............................................. Conclusions 121 

Contributions ............................................. 122 
.......................................... Recornmtndations 123 

................................ APPENDIX A 'CAC-MM FILE S T R U ~  A-1 

................................... &PENDIX B TAC-MM SOURCE CODE B-1 

... APPPSDIX C DATA AND SOPTWARE mm FRACUL DIMEI~ISION V~R~FICATION C-1 

APPENDED TZUNSIENTSMTEE~~ESTSET ......................... D-1 

..................... APPENDIX E EX~ER~MENTAL C~ASS~FICAION RESULIS El 



List of Figures 

Ambient channt1 noise foiiowd by radio transmission .................... - 3  

Covering set made up ofsymmetndy aligneci vels ( A f k  [Kins94a]) ........ 8 

A gmph of log(P(f)) vs log@ for finding the power spctrum exponenent, ..... 13 

Exarnpleofdyadic so~ucnœ withNT=256 and K i 5  ................... -16 

Pseudocade for variance fiactal dimension dcdation .................... 17 

Window for calculathg the local hicta1 dimension of a signal .............. 19 

Separating the transient h m  the ambient noise in a raw signal ........... -22 

................................... Alignmnt of the fiactai tmjectory -26  

........................... An example of multifiactal fatme extraction 28 

...... ciasses X and O plotted on a plane with one u b w n  ( A f k  Wast931) 32 

ArchitectureofthePNN ............................................ 36 

......................................... Parzen's approximatcd PDF 38 

Bracketing triplet and test point in g o k n  section mhimization ............. 47 

......................................... Fractal mode1 of transien t. -49 

........................ TAC-MM user display ana; default view options 65 

..................... TAC-MM user display ana; secondary view options 67 

............................................... File:Newdialogbox 68 

.................................. Edit Fmtd P8t~mcters dialog box. 72 

.................................... PNN: Classify rcsults dialog box, 76 

PNN: Classity - Add Transient to Database dialog box ................... - 7 6  

PNN: Mode Parmeters - Select Classification Mode dialog box ............ 78 

Parameters far verikation of TAC-MM variana dimension caicuiations ..... 82 

Cornparison of expected and calculatecl fRasl dimernions ................. 84 

........... FBm signal generated ushg direct spectral n I t e ~ g  with = 1.0. 85 

Parameters to show contrast between dyadic and linear time incrcmcnts ..... -87 

Parameters for vcrification of PNN module in TAC- MM. ................. 88 

..................... Test signal generated to cause the basic PNN to f d  -91  

Parzimetcrs for verification of enhancd PNN structure in TAC-MM ......... 92 



List of Figures 

................................. 6 1. Transient in unrcsohed chular buffer 97 

.............. 6.2. Resohtion of circular buffer containing nok and a transien t. 98 

6.3. TAC-MM parameters foi tcsting Training Set #1 ....................... 101 

6.4. Caasiswitly misdassified Force 1 transient. ........................... 113 

6.5. Comparison of (a) mulîihwtd mode1 and (b) transfomud mode1 ........... 114 

6.6. TAC-MM parameters for tcsting eight dement tninsformed mode1 ......... 116 



List of Tables 

Vaincation of h t a l  dimension trajectory calcuiations .................. -83 

Conttasting dyadic and lincar tirnt incrcrnents for Da caicuiations .......... -87 

Transmittcrs used for testhg the thesis ................................ -99 

Confusion matiix with rtsults fiom Validation Set # 1 ................... 103 
Canfiision matrix with rcsults fiom Validation Set # 2 ................... 105 

Confbsion matrix with rcsuits ûom Validation Set # 3 ................ ; .. 106 

Confusion matrix with results h m  test for mjection abiiity ............... 110 

Confiision ma& h m  Validation Set # 1 using multimodal segmentation . . .  1 1 1 

Confusion matrix from Validation Set 1 2 using rnuitimodat segmentation . . .  112 

Confusion matrix from Vaiidation Set # 3 using muitimodai segmentation . . .  112 

.................... Classification nsuïts ushg tmnsfomed b c t a l  mode1 116 

.................... Classification resufts using eight elernent mode1 size 116 



List of Abbreviations 

1-NN 

BPN 

CRC 

DIB 

EMD 

fBm 

FFI' 

GCNN 

GUI 

k8 

k-NN 

ms 
LSR 

MB 

MFC 

MLFN 

N'UT 

NRML, 

PDF 

PNN 

QMD 
RBF 

SDI 

SNR 

TAC-MM 

WSNN 

Singie N-t Neighbour 

Backpropagation Neîwork 

Cornmunidons Rtsearch Cenm 

Mce Independent Bitmap 

Euclidean Minimum Distana 

fiactional Brownian motion 

Fast Fouricr Transfoml 

Gram-Charlier Neural Netwodc 

grapbical user interface 

kilobytes 

k Neanst Neighbour 

kilosamples per second 

lest squares regression 

mwbyte 
Microsoft Foundation Class 

multiple layer feedforward network 

U.S. National Institute of Standards anc 

Normal Parameûic Classifier 

probabiliîy density fiinction 

Probabilistic N e d  Network 

Quaciratic Mïnimum Distance 

Radial Basis Functions 

singe document intcrfhe 

signal to noise ratio 

Transient Analyser and Classifier using Multifractal Modelling 

Weighted Several Nearest Ncighbour 



List of Symbols 

List of Symbols 

lowet bound for search range in univatiate optîmïzation 
u p p i  bound fot seaich range in univariate Optimization 
pawer spectnim exponent 
a timG-vïuyiag signal 
index for dinmnt classes in a training set 
number of différent classes in training set 
Euclidem distance, scaied by sigma, betwccn X and X, 
Euclidean distance, scaled ôy multipk sigrnas, bctween X and X, 
time increment et the kth pair in variance dimension calculation 
fiactal liimcnsion 
spcctrai dimnsion 
corrclation dimension 
Euciidam dimension 
Hausdo~Besicovitch dimension 
Hausdofl Mesh dimension or Box-Counting dimension 
information dimension 
RCnyi dimension 
variance dimension 
time-varying variance dimension (üajectory) 
continuous emn function for PNN processiag 
embeûding Euclidean dimeasion 
expccted value of the vector Y given the vector X 
kquency 
actual PDF for a given class, c 
joint PDF b e ~ c c n  the vector X and the vector elemnt y, 
baunded minimum in univariate opthbation 
estimateci PDF for a given class, c 
estimated joint PDF between the vector X and the vector ekmnt y, 
prior probabilities of encountc~g a mmber of class, c 
Hunt enponcnt 
the Shannon enaopy of tbc k t a l  in uifonnation dimension calculation 
generalizad entropy function for Rényi dimtnsion calculation 
general purpose index variab1e 

i index for vcls in fiactal dimtnsion calculation 
index for oderai pairs in d a n c e  dimension calcuiation 
numbcr of OfdCTCd peiR in varhœ dimension caicuiation 
las associateci with misclasifjing a case that belongs to a class, c 
consecutive seprch point muitiplig in u n i d t e  o p ~ o n  
mrin of variance dimension trajectory 
number of trainiiig cases for a given clas, c 
fnquency of vel intersection in oarelation dimnsion caldation 
number of samples betwan points in variance dimension dculation 
frequeecy summation in iofodonlcocoaelation dimension caiculation 



List of Symbols 

numbcr of cornparisons at the kth th incrunent in Da calculation 
numbu of points in univariate gobai search range 
number of semples in timc interval. T 
numbcr of vels in k t a l  dimension caldation 
numbcr of data points in an input -or for PNN processing 
pbability of vcl interscction in carrelation dimension caicuiation 
power spcctnim&nsity 
the moment orderin generalizcd entmpy fûnction of RCnyi dimension 
intemal confidence mcaswc of X in ciass c in PNN processing 
index for kainhg case in traîniag set (h&x for pattern laycr neuton) 
number of training cases in training set (aumber of pattern layer neumns) 
sum of all sUmmation neuron activation fiunctions in PNN pmcessing 
scaliag paraxnctcr in Parzen PDF cstimator 
VBVianœ 
standard dcviation of variance dimension trajtctory 
window spacing in local hctal dimtnsion calculation 
timt 
thieshold in transient t r igge~g mechanism 
size of time intervai 
an activation function for summation neuron, c 
size of ve1 in fiactal dimension calcdation 
Fourier transform of a sipal 
golàen-section number for univariate optimization 
fixed window width in local fiactal dimension calculation 
weight huiction in Pamn PDF estimator 
ith element in sample vector, A?, for PNN paxsssing 
vaiue on x-axis of log-log plot for nactal dimension caicuiation 
sampk vector for PNN proassing 
rth sample vcctor in PNN eainiag set 
iih elemnt of PNN output vector, Y 
cth clexnent of PNN output vtctor, Y, (for eaining case r) 
vaiue on y-axis of log-log plot for fhctal dimension calculation 
wctor at output of PNN 
exponent for sequena of t h e  incrcments in variance dimension calculation 
triai point in univariate opu'mi79tioa 



Chapter 1 : Introduction 

1.1 BarLIpamdand Moüvaüon 

A system which cm accuratcly i&uw the source of d o  transmissions would be 

an invaluabie tool for govcrnment, military, or civilian situations where uaauthorieed use 

of the electromagnetic spwtrum occm [ShawW], -921. [CRC92]. For example, it 

would be especially usefid for authentication of air trafic control or police dispatch radio 

transmissions. Altematively, such a system wouid provide evidence for the prosecution of 

persons engaging in iiiegal use of radio ~ransmitters. In a military theatre of operations, the 

ability to idcntify the source of radio transmissions, in combination with standard 

elecaonic warfarie assets such as direction-hdhg and trïangulation systems, would 

provide commanders with invaluable stratcgic information. 

The concept of transmitter transient anaiysis and classification has becn proposed 

by Kinsner in 12 intcrnal reports, starthg h m  1993, and dinerat parts of the 

impiemcntation have been studied by his students Piet941, Buda941, [Shaw94], 

[An&95]. [Khan95], [gwoL95], ~oon9s]. [Twn97]. Spccifically, the transient &ta 

acquisition system usd for wllccting daCa for this rcscarch is describecl in Kwok95], 

pwn95]. and moon97]. It is aiso summaïized in Section 6.1 of this thesis. 

This thesis focuses on a method of ciassifying radio transmitters by anaiysing the 

transient which occurs at the start of each transmission. The mthod requim thrre distinct 

stages for the classiflcaiion of a raw radio transmission. These stages are as follws: 
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1. Repmcessing; 

2. Fiahue extraciion; and 

3. Classification. 

A short discussion about csch stage. dong with a description of the various pmb1ems 

which exist in th& irnplcmentation, will now foilow. 

1 -1. I ne Pmp1~cessb8g stage 

The pqromssing stage separates a transient fiom a raw signal ncorded at 44.1 

kilosampks per second (ksps) and 16 biîs pr sample. Each recordhg contains 16,348 

sarnples or almost 32 kilobytes (kB) of data. The signals contain ambient channel noise 

which is followd by the start of a radio transmission similar to that shown in Fig. 1.1. Due 

to the nonstationary nature of ûansmittcr transients, though, the task of separating the 

-transient fbm the channel noise is very difncult. It involves hding the exact time when 

the ambient channel noise, which is comlated to some unknown degree, ceases, and the 

traasicnt begins. However, despite king completdy detcrministic. mmy transients exbibit 

characteristics similar to noise due to their high degree of imguiarity. Thus. to some 

extent, we are left with the problcm of separating noise h m  noise with a dinercnt degree 

of correlation. The appmach pxesented in this bs i s  utilues a multihctal analysis to 

characterize the d e p  of ineguiarity dong the duration of the signal. If, within this 

chafactctizstion, a significant change occuff. it triggers the start of the transient and a 

fixed numbcr of consecutive samplcs can be removed JtaItuig at that point. In this thesis, 

the separateci transient contains 2 kilosamples (4kB) and is indicatcd between the dashed 

venicai lines in Fig 1.1. 
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Fig. 11.. Arnbient chanml noise followed by radio transmission. 

After the transient has becn separated h m  the less rc1evant data in the raw signai, 

it must bc M e r  rcduced in size before it can be classifiecl in a rtasonable amount of time 

and to a high degrce of accuracy. The faturc exîraction stage providcs a more efficient 

representation of the transient in tcrms of &ta ielevanct and storage requicements. 

Characterization of significant features withia a transient is achieved through the use of a 

multifiactd analysis similar to that used in the pnpmcessing stage. The rcsulting signal is 

a much more consistent npreseatation of the primarily nonstationary transient signal and, 

more importantiy, can be signifîcantly rcduced in size. Success has been achieved with a 

reduced transient sizc down to 32 elements. Alm. using a transformation of the 

multifiactal model. data reduction down to 8 elemnts is accomplished. 

1.1.3 The Class@cation Stage 

The h a 1  stage of this system is the classinet itsclf. W e  use a neural network model 

for classification. 'Ibo potential neural network models are worth consideration. These are 

the standard fttdforward neural network, okn refmed to as the Backpmpagation 

Network (BPN) [RuMc8q, aad the incmingly popuiar Robabilistic Neural Network 

(PNN) [Spec88], Wastgs]. Afkt an maiysis of both types of networks, the PNN is chosen 
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because of its fast training sped. highly accurate mults, and sound mathematical 

founàations. 

1.2 "rhtds Sltement M d  Objectives 

The purpose of this thesis is to prcscnt a rcliable system for classification of 

trammitter transitnts using fiactai stgmentation, k t a l  modeiihg, and neural networks. 

To accomplish this purpose, the foliawing objectives are met 

A consistent rnetbd for separating transmitter transients h m  ambient channel 

noise is reqwritd., 

A technique which yields compact and highly reprcseatative models of 

transmittcr transients is sequired; and 

An effective neural network architecture for classification of multifiactai 

transient models must be impkmnteà 

13 ThesisO~anhation 

The organization of this thsis broadly rtfiects the sequence of the classification 

scheme and. more specificaüy, the logical d~ve1opment of the ricsearch. Sufficient 

background iaformation is provided to fdly describe each module in the classification 

scheme. This includes an analysis of pmblcms encorntercd thmughout the rescarch dong 

with the motivation for seleaing various techniques us& to solve these pmblems. 

Chapter 2 begins with a compamîive discussion of ftactal dimensions and the 

standard integtr (Euciidean) dimensions. Various f k t d  dimensions are outlined, and 

multifractality is discussed as an appropriate method for characterization of nonstationary 

signais. The variance fnrtal dimension is seleteci for use in this application. Details for 
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calculating the variance k t a l  dimension an provided and the concept of fracta1 

trajcctory is explawd 

Chapter 3 provides the bas& for impltmcnting the variance ffactal dimension 

trajectory iri the rdes of segmentation and feature extraction. Tb s c o p  of this discussion 

is limited to thc dinct application of pmœssbg the nonstationary transicnts h m  radio 

transmitters. The parameter settings rrquirrd to distiaguish between thesc two d e s  are 

discussed, dong with an expianation of how efficient data tcduction can k rcalized, 

Chapter 4 c o ~ n c e s  with an analysis of the PNN dative to the popular BPN and 

standard statistical classincation techniques. This demonstrates the specinc motivation for 

the selection of the PNN as the classifier used in this system. Rimarily though. a detailed 

description of the PNN is @vtn dong with specific information about its implementation 

in this thesis. 

Chapter 5 prescrits the detailed design of the system. This includes a description of 

the program designed for îesting the thesis, TAC-MM, with specinc regard to its various 

features and iimitations. This chapter then discusses the methodoIogy used for verifying or 

proving the implementation of each module. 

Chapter 6 presents the arperimental nsults achieved in this thesis. This is. 

however, preaded by a description of the test data used in the experimnts. An analysis of 

the nsults explains exactiy what bas ôeen accomplished and addnsses the important issue 

of confidence mcasluts. 

Chapter 7 provides conclusions, bascü on the cxperimtntd results, as to the 

feasibility of the system descnbd and the contributions made by this thesis. The thesis 

closes with ncommndations for furthcc nsearch into this topic. 
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FRACML DIMENSION AND MULTI~IKACTACITY 

This cbepter focuscs on &finitions, appiicatioos, and computational details of 

fkactal dimensions and muitifiactality. Section 2.1 bcgiiis with a gcneral discussion on this 

topic. Several Mercnt classcs of fhctai dimensions are discussed, and the variance-fkactd 

dimension is chosen as the most appropriate modeIling method for this application. 

Section 2.2 presents a detded pmcedure for calculating the variance fkactai dimension 

cornpiete with pseudacode for implementation of the main iterative loop. Specifîc 

emphasis is placeci on the proper selection of various parameters to ensure that the 

calculation is accurate. A m u r e  of local Eractal dimension is discussed in Section 2.3, 

and multifiactality is M e r  àetined to includc signais which exhibit tirne-varying Eractal 

dimensions. Finally, the variance hctal dimension trajcctory is described as the 

multiffactal measure to be used for segmentation and feature extraction of transients. 

2.1 FractaiDtmeIlSiOns 

The Euclidean dimension, DE. of an object is often consided to be the srnailest 

possible integer space ont0 which the object can be ernbedded. It is well known that the 

dimension of a point is O, tk chension of a Une is 1, the dimension of a plane is 2, and 

the dimension of a vdumtric object is 3. Howcver, the concept of dimnsion can be 

generalizcd further to include fiactional qusrtitics as weil as integtrs. These an referred 

to as fracta1 dimensions. 
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A fractal dimension, D, can k intcrp~ted as the "degree of meandering" (or 

roughness, brokemess, and irreguiarity) of an objcct -Ma]. For example. although a 

coastline is immeasutable in erms of length, it has a certain characteristic degrce of 

maaderiag. If the object is nguiar in shape, it will have a fiactal dimension which is the 

same as its topoIogical dimcnsion. If, howevcr, the objcct is imguiar, the h t a I  

dimension will be higher. Thus, the concept of nactal dimension provides us with a meam 

to charactcrizt the gtometry of any shape, abject. or signal. 

Variws formal fiactal dimension definitions e x k  According to the information 

content under consideration, these can be classifiecl into the general categories of 

morphological, entropy, spectral, and variance based dimensions [Kins94a]. Eafh of these 

general categories will now be discussed dong with a brief description of their 

implementation. Then, it WU be shown why the variance k t a I  dimension is best suited 

for fracta1 modeilhg of mivariate temporal signals, such as the tninsmitter transients 

king analysed in this thesis. 

2.1. I Morphological-Based Dimensions 

A morphological-bas& dimension characterias the geometncal complexity of a 

fracta1 object. The morphological dimension of a Eractal abject is also hown as the 

Hausdorff-Besicovitch dimcnsion, DHB. In p~actia, however, Dm is nearly impossible to 

calculate, and many dinercnt ways to appfoximate it have k e n  devcloped. One of the 

more popular wthods, due to its relative simplicity in calculaiion, is the Hausdorff mesh 

dimension, DHM. It is calculated by lïrst definhg a coverhg set made up of volume 

elemnts, or vels for short [KiasWa], of size v and &ped symmctricaiiy as in Fig. 2.1. 

Then, a quantity, N, is obtahed by countiag the minimum nurnber of boxes requirad to 
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Fig. 2.1. C o v e ~ g  set made up of symmetricaily aligned vels (After ms94aJ). 

completely cover a given object. Appmpnately, the dimension discusscd hem 

commonly called the box counting dimension. 

If we assume that a power-law relationship exists between the size of the vel and 

the number of covering vels at each vel size as in 

Solving for Dm in this quation nquires an iterative process in which Nv is dettrmbed 

for di&nnt sizes of v = vi and plotted on a log-log plot where 
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Yi = (2.3) 

for every value of vi. Dm is the slope of the appmximating straight line in the log-log 

plot. 

2.1.2 Entmpy-Based Single and Mul~actal  Dimensions 

As the pmriously descriid morphological-based dimensions consider only 

geometric feaanes, they are suitable only when the disûiiution of the fractal is unSom. 

Entmpy-based dimensions, however, cm be used when the distri%ution of a fkactal is not 

uniform. In these dimensions, the probability distribution of a dynamical system or the 

distribution of a mesure of a spatial fracta1 is taken into account dong with its 

geometrical featurcs. One popular entropy-based dimension is the information dimension, 

DI Ws94aJ. To calculate the information dimemion, we will again consider a covering 

of N, vels, each with a diameter v. Then. DI cm be obtained h m  

where H, is the Shannon entropy of the b t a l  @en by 
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and pj is the probability of intersection of tbe k W  with the jth vel. To calculate pi. we 

detemine the relative fiequency, np with which the fhctal htersects the jth vel as 

where 

Notice that NF refers only to the part of the fhctal covered by the vels, and incnases as the 

size of the vels dccnases. The information dimension, DI. as desai id  by Eq. 2.5. can 

now be obtained from the dope of a log-log plot as before. 

An improvement to the information dimension is the correlation dimension, D, It 

provides consideration to more than just entropy, it accounts for the correlation between 

pairs of neighbouring points on the *ta1 [Kins94a]. To descni. Dc we will consider a 

coveriog set made up of N, vels of size v as in the information dimension. We will again 

assume that thejth vel i s  intersecteci by the &ta1 with a fiequency ni. The probability of 

the jth vd, pi. will then be defked as 

where 
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Notice tbat this probability dtfiaition h identical to that used in the information 

dimension. Now, assume that the pawcr-law rclationship shown in Eq. 2.11 holds between 

the sum of the s q u d  probabilitits over ail of the vels of size v [.ns94a]. 

Then, the comlation dimension is given as 

Solving for Dc in the above equation can be done as Mon,  by an iterative process where 

data for Mcttnt  values of v are plotted logarithmically and the dope of the appmximating 

iine is determinai. 

The infomution dimension. DI. and the comlation dimension. Dc, are both 

special cases of the gencraiized entropy dimension. or. the Rtnyi dimension WnySS]. 

The Rtnyi dimension utilizeJ a generalized cntmpy fimction as givtn by 
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when q is a value called the moment o&r. Notice that for q = 2, & becornes the 

comlation integrai h m  the numerator in Eq 2.12. It can dso k shown that for q = 1, HI 

is equivaient to the informafion dimension [Kias94a]. Based on the pnaal ised entropy 

bction, Rényi's generaiizcd &ta1 dimension is given by 

log &,Q 

If clacrent dimcnsion measurcments arc obtaind while varying q, a ffactai object 

has a n o n - d o m  probability distrii'bution and is said to bc multifiactal. Cdcdating the 

.R6nyi dimension of a multifiactal object for different values of q gives a range of variation 

in D, which could Mcate the characteristic d e p  of complerity for that object 

-94a]. This type of muitifractal measunment lends itself to a wide assortment of 

appiicatioas such as modclling of dynamical qstems, texture andysis of images FeKi951, 

and the study of nonstationary signals. 

2.1.3 Spectrum-Based Dimensions 

A spcctrum-based dimension chairacterizes a b t a l  signal using spectral analysis 

techniques such as the Fourier tramform. Specincdy. the spectral dimension, Dg, of a 

signal is dctcnnincd h m  its power qcctmm &nsity, P m  which is calcdated by 
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where V(B is the signal's Fourier trsasfonn. Then, a value called the power spectrum 

exponcnt, B. can be determined h m  

by applying a curvc-fitting algorithm to estimate the dope of a log-log plot, as in Fig. 22. 

Fig. 2.2. A graph of log(P(B) vs logo for hding the power spectnim exponent, p. 

Finaily, we can calculate Dg h m  

whexe E is the embedding Euclidean dimension, which is one for a time senes with a 

single independent variable. 

2.1.4 Variance-Bascd DUnensiom 

Vatia1~~9b8std dimen~i011~. Iüre the spe~tnim-bascd CI~SS, u ~ e d  for 

characterizhg the &ta1 components of a tirne senes. To calculate the variance 

dimension, 4, let the timc series of interest be defined as a signal, BO.  wbich is 

continuous in tim, t. Then, the Vanana, d, of its amplitude changes over a time 

incremcnt and is rclated to the tim incremnt according to 
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where H is a value caiied the Hurst exponcnt. By sctting At = If2 -tll, and (dB)& = B k )  - 
B(tl), we can deannine H h m  

Fially, the variance dimension can k detcrmined fiam 

wherc E û the embedding Euclidean dimension and bas a value of one for a time series 

with a single independent v~eble .  

2.1.5 Fractal Dimensions for Transient Analysis 

In this application, we are nquind to determine the dimension of a singfe variable 

temporal signal. For the nrSt taro fiactal classes, morphologically-based and cntropy- 

based the transient wodd fbt  have to k plotid onto s o m  two dimensional surface 

before aaalysis can k p d o r m b  In this situation, a problem arises because we do not 

imow what the relative scak ktwetn tbe time axis and the signal should be in order to 

acbieve accumtc dinmsion calculatio~~s. However, assuming that an appropriate scaüng 

factor has been found, we arc sa lefi with a massive (213 X 216 bits) array of data to 

process. The memory mpid, and especially, the prarssing time involveci h m  would be 

far too large for a practical implementation. 
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The spectrai and variance dimasions am, perhaps. moxe appropriate for 

dimension calculation of a univariate tcmparal signal. However, in incalating the spectral 

dimension, we ate limitai to window s h s  which are powers of two if aie Fast Fourier 

Transfonn 0 is used. Discretc Fourier T d o r m  rncthods for othm window sizes 

would rquk unrrasonably large amounts of proccssing time. Also, the choice of window 

size in the Fourier traasform may intmduce artif8cts which couid suiously a&ct the 

accuracy of the iwuits -94a]. Iii cornparison, the variance dimension cm be 

pedormed on any sufnciently large window size. Its primary advantage. though, is tbat 

since it does not requin? a whdow in the Fourier sense, no window artifacts are 

intmduced. Thus. the d a n c e  dimension, Da, is the best choice for this particular 

2.2 Caldating the V'ance Dimenska 

In this section, the algoritbm used for calculating the variance frsctd dimension is 

discussed Emphasis is on the various parameter settings which must be considered in a 

general implementation of this algorithm. Specific details for analysis of üansients in the 

segmentation and fmre extraction roks will be left for Chapter 3. For this discussion, 

coisider a signal sainpled over a tim intemal, T, with a constant sampling rate of la. 

This produces a sample spacc with NT samples colîccted at equal tim internais. 6t. 

Rior to calculating the variancc dimension of a signal. we must establish the 

number, K, of o d e d  pairs, and thus the numkr of tirne inczicmcnts, which wiii be 

rquired for finding H in Eq. 2.19. T b  must k considercd in conjunction with the 
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increasing sequence of time increments, (Ml ,  Ai2, ... &}, which WU k used. It is very 

important Ullit the tim incrcments not excecd the kngth of the signal, 

as unpledictable zcsults will occur. Since the variance pairs are to be spread evenly on a 

log-log plot, successk iime increments should follow a sequence which is either Lùiear or 

dyadic. Thus, to satisfy the condition at Eq. 2.21, it is quired that 

Y%N, 

where Y = 1 for a hear sequence and Y = 2 for a dyadic sequence. Fig 2.3 shows an 

example of a dyadic sequence with NT= 256 and K= 5. 

Fig. 2.3. Example of dyadic scquence with Ni = 256 and K = 5. 

Now that the sequencc and numkt of time inarments have bcen sclected, 

Var(Al3Jk cm k calcuiatcd for each time increment accordhg to 
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where Nt = NT - nk. nieo the vaIues (Sb vd can bc calculateci for the log-log plot by 

Implementation of Eqs. 2.23. 2.24. and 2.25 for al l  t h e  increments can be done using 

nested loops such that the outer loop cycles tbrough each time increment and the inner 

Iwp cycles through each sampk in the signal accordhg to the pseudocode of Fig. 2.4. 

f o r  k = 1 to K C 
suml=suxn2=0.0 
nk = \yk 
Nk = NT Iik 
for n = 1 to Nk C 

Fig. 2.4. Pseudocode for variance fractal dimension caiculation. 

Thn, rathtr than h m  a plot, H can be cietCrminecl using least squares rcpssion 

(LSR) as iJl 
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F i y ,  the variance dimension. Da, is given by Eq. 2.20 using the value obtaincd for H. 

mical  values for Da are 1.0 for a highly pcriodic and well behaved function such as a 

sine wave and increese to 2.0 for completely uncomIatcd white noise. 

2 Fractai Measores vs. Time 

2.3.1 Local Fractal Dimensions and Multij?actality 

A discussion on the concept of local fracta1 dimension is required before a more 

detaiied description of multifiactality CM be given. A local fiactal dimension refers to a 

dimension value obtained h m  calculations on a limited ana of the fiactai shape, object, 

or signal. The purpose of ushg this limited area is to assign a precise dimension to a 

specific point in the fkactal. A common approach to calculating local fiactal dimensions is 

by using a moving window that selects data h m  only within its bound&es. It is 

straightforward to apply this technique to a univariate signai. B(t). by sliding the window, 

which has nMd width, dong the tim axis as in Fig. 2.5. 

A shape, object, or signal cm be referred to as a pure fracta1 if its local &ta1 

dimension is the same evcry~herc. H m .  a transient or other nonstationary signal, is 

not pure fractal because its fractality is time m g .  This type of signal codd be more 

appmpriately charactcrized by a mode1 consisting of several local na*al dixncnsions taken 

at dinerent points in tirne. An extension to the concept of muitifractality, as pnviously 
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Fig. 2.5. Wmdow for caIcuiating the local fracta1 dimension of a signal. 

discussed, deals with signals or objects which have varying local fixtal dimensions. A 

fractal measwe over a support set is calied rnultifkactal if local measures on different parts 

of the support have dinerent dimensions mcs92]. 

2.3.2 Vatiance Fractal Dimension Trajectory 

It should now be clear that tbe variaace fiactal dimension calculation can readily 

be applied to a multifractal signal by finding the local &ta1 dimensions for successive 

portions of the signal. When tbese local fiactal cümensions are considered in sequence, we 

have a rnultifi.acta1 characterization which can be rcferred to as the variance &ta1 

dimension trajectory [ G m .  

Refening back to Fig 2.5, the ideal size for the window width, K is somewhat 

ambiguous and depends on the n a t w  of the signal king analysed. A rtlatively large 

window size will cause the dimensions of locally distinct fractals to be buried within the 

dimension of their most signincant neighbouriag h t a l  and, at the same timc, will k 

computationally expensivc. However, using a window size which is too smaIl will provide 

insufncient data for the analysis. Tbcorcticaliy, î k  pmpes size of the window should resuit 

in the variancc dimasion king equal to a constant value Rényi dimension. Selecting the 
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window size for signal segmentation and feature extraction in transients wül be fûrther 

discussed in Chaptu 3. 

It is also very important to select aa approprie spacing. S. betwecn successive 

wiadaws To ennut Qat the entire signal is comidercd, selection of the window spacing 

should be ia the range from a sin* sample up to the width of the window. If the window 

spacing is too small. calcuiation time becornes an issue. If it is too large. important details 

in the trajectory could be lost. Chapter 3 WU also dcscriib this parameter in the specific 

contexts of signai segmentation and feanire extraction. 

2.4 Summary of Chrrpter 2 

This chapter described the use of fracta1 dimensions to characterize shapes, 

objccts, and signals. After a brief summary of various dimension calculation techniques, 

the variance fracta1 dimension was selected for transient analysis and descni in detail. 

Multifiactality was then discussed and the variance hctal dimension trajectory was 

prescnted as a usefbl extension to the variance dimension. Chapter 3 wiU naw descn'be the 

parameter settings used for finding the variance fiactal dimension trajectory in both the 

segmentation and feature extraction modes of this system. 
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MULTIFRACTAL MODELLING OF ~ S I E N T S  FOR 
SEGMENTATION AND F E A m  EXTRACTION 

In tbis chsptcr, specitic information is pmvided for irnpltmenting the variance 

fracta1 dimension trajectory in the d e s  of segmentation and featurc extraction. 

Specificaily, Section 3.1 prcsents the motivation for using this technique in the 

preprocessing stage where segmentation of the transient h m  the ambient channel noise 

occurs. The parameter settings nquind to implemcnt frsictai segmentation are presented 

in detail and the problem of aligning the trajtctory to the original signal is addressed. In 

Section 3.2, the variance fiactal dimension trajectory is explaineci in its role as a feature 

extractor for the second module of our classification system. Agah, the parameter settings 

required for this technique are explainai in detail. It is aiso shown how sipaincant data 

reduction c m  be rcaüzed simply by changing S. the window spacing parameter. 

3.1 ThPkpmcesshgSty 

3.1.1 Motivation 

In the context of removhg a transient h m  a raw signal for neural network 

classification, fmding the exact start of the transient is criticai. If a poition of the signal 

containhg the transient is rcmoved at a position h m  before the actual start of the 

transient, the classifier will k forceci to deal with an arbitrary amount of imlevant 

c h m l  noise. This wouid lead to higbIy m l i a b k  muits despite that die neural nctwork 

wouid evcnhially leam to ignore the beginning of each transient Obviously, when 
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successive traasients like this are pmcessed, the mtwork wouid be constantly trying to 

adapt to a vsryiag dwation of leadhg noise. The pmblem compounds itself when the 

transitnt is extractcd too late from the raw signai. In this situation, part or alI of th most 

relevant i n f d o n  couid k comphcly ûuncated. No statistical, human, or neural 

network classifier stands a chance under such circumstances. 

3.1.2 Fracttal Segmentatjon 

As discussed d e r ,  the variance fiactal dimension üajectory is a good t&l for 

studying the local âactaiity of a signal. Howevtr, for this mcthod to work for segmentation 

of a transient h m  the ambient charme1 noise beforc the transient, it must be assumed that 

the chatmel noise and the transient exhibit dinenat multifiactal characttlistics. Figure 3.1 

shows how a transient can be segmenteci h m  noise using the fiactal trajectory. 

Sample Number 

Fig. 3.1. Separating the transitnt h m  the ambient noise in a raw signal. 
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The figure shows the ideal scenario wherc the dunemion of the transient is much 

lowct Uian the âimension of the ambient chamel noise. In this case, it is straightforward to 

find the start of the transicnt, Howmt, in many situations, it is ditncult to determine what 

of cbangt in the firactai trajectory actuaiiy marks this point in the. Somehes, the 

rlimtnsion of the transient is much closer to or, in iare circumstances, even hi* than the 

dimension of the ambicnt channcl noise. 

A s~table way to îrigger the statt of the transient is to find the earliest tirne when 

the dimension, D&), compareci with the mean, pmttj, of the portion of the raw signal 

containhg noise is sufnciently di&rent as follows: 

where r is a certain threshold. The te- is the standard deviation of the signal and 

is intended to compensate for ambient c h e l  noise which has time-varying fkactality 

within itself. Also, in this implementation, the mean, p~a(~1, and the standard &viation, 

ah(tl, are calculated only for @lee.T/4. Thus, we have imposed a simple limitation on the 

format of the niw signal: tbat it must contain a minimum Tl4 sarnples of ambient channel 

noise beforc the onset of the transient. 

3.1.3 Segmentation Panuneters 

This section will âiscuss the variance dimwion parameters which are best suited 

for segmentation. The most straightfomard parameter here is sttting the spacing 

paramter, S, for the sliding window. This should be set as near as possible to 1 such that 

calculation tirne nmains within the toltranct of the user. Thcoretically, setting this d u e  

to 1 will ensure that no signüicant transition is m i d  and dow for exact thesholding in 
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the time sale  as detemiined by Eq. 3.1. Settïng the window size is not as criticai. Siace we 

are lwlriag for a large transition and not fine details, we can set it a linle on the high side 

to ensure statistical validation. It has k e n  found that a window site, ï4( on the order of 2' 

is SuffiCient for this purpose. 

The scquenct of tim incremcnts, At, and the number of hm, K. must also be set- 

For segmentation, a linear scquence of timc hcrrments, L\tL = ( l&, St ,  ..., =}, is most 

appropriate [GrKi94]. 1t should be noted that adjacent samples, among other are 

compared here. This ensures that highly unrorrelated noise will yield high dimnsions and 

more comlated signals wiil show lower dimensions. 

The number of time incrrmats to consider, and thus the number of ordmd pairs 

obtained for the LSR algorithm. must be sclected carefully. It was found that if too few 

increments were considend, spikes were occumDg in the trajeztory during signifïcant 

transitions. At first, the notion that these spiires couid bc used as trigger points was 

considered. However. it was quickly deteminecl that these spikes were merely M a c t s  of 

the dimension calculation caused by sudden scale changes at transition points. Since the 

transition points seldom had consistent, if any, sale changes, this idea was abandoned. 

The spikes found at the transition points could Vimially be eliminated by increasing the 

number of ordered pairs significantly. We arc, howevw. Limitcd by the size of the window, 

W, and the amount of tirnt that it takcs to calculate the trajcctory. It was found that a value 

of about K = 10 produceci nasonable d t s  for this class of signals. 

Fiially, the thnshold, T, must be set to trigga the start of the tcansient. At this 

stage, we have &termincd r by trial and emr. Despite the existence of the compensation 

term, am(tl in Eq. 3.1. there is SU no guamntet that the channe1 mise will not show 
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significant changes as to falsely trigger a îransient. Also. some transients may not have 

fhctal dimensions which are as dinereat h m  the channcl noise as others. In this case, the 

extraction will not be triggemi uniil afat the onset of the transient and much valuable 

UifoTmation wil l  be lost Some success has been achievcd by setting s to some value 

amund 0.08 (8%). but this depends largely on the settings of the fiactal parameters. Also. 

it should be notod that selection of this value9 in conjunction with the cornparison scheme 

of Eq. 3.1. is the most significant obstacle in this system and w m t s -  future 

consideration. 

RI .4 Alignment Issues 

Since niiding the exact start of the transient is so critical. it is necessary to 

comtly  aiign the hctal trajectory with the original signal. At first, it was unclear 

whether the dimension calculateci from each window should be aiigaed with the start of 

the window, the end of the Mndow, or with the middle of the window to repment some 

sort of average. To resolve this issue, an extreme case, as shown in Fig. 3.2, was 

considered. This figure depicts white noise, followed by a pure sine wave, and then white 

noise again. The dimension was aligned with the nrSt sample in each window of s i n  1024 

samples. In theory. the dimension should k 2.0 for the noise portions and 1.0 for the 

sinusoid. Howcver, analysis of the dimension shows that the transition h m  noise to signal 

occurs in the correct location whik the transition ftom signal to noise occurs far too early. 

in fact, the transition finm signal to noise occws exactly 1024 samples too soon (the width 

of the window). The dimension of each window, in fact, kcoms mugbly the dimnsion 

of the most unconelated part of the signal within that window. Thus, it cm bc cwcluded 

that the dimension is to be aligoed with the start of the MDdow if we are st81c:hing for a 
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Fig. 3.2. Aiignmnt of the k t a l  îrajectory. 

transition h m  high to low and with the end of the Mndow for the opposite case. In the 

context of searching for the start of a transient, the vast major@ of which exhibit a high to 

low transition, the dimension should therefore be aligneci with the start of the windows. 

3.2 The Feature Extraction Stage 

3.2.1 Motivation 

The next stage in this scheme is refend to as feahur extraction. in generai, feature 

extraction pmvides a more meaninghil and significant rcprescutation of a signai &anm. 

At the same tim, the ncw rrpresentation contaias f ~ ~ g  data points aad thus faditates 

more efficient manipulation and storage. When dealiog with cornputer classification 

algorithms. biis type of data duction is very important. For example, the size of the 

ainsients bcig analysed in this systcm is 2û48 samples, far more than could be 

realistically handled by m a t  classifiers. 
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As previously stateâ, the variance nactal dimension trajectory is a rnuitifiactal 

mode1 of a signal. It is made up of several local fiactal dimensions and m a l s  the 

multifhctid nature of the originai signal This systcm nîies heavily on the existence of 

consistent and unique muitifktality for a given clas of signai to produce a sufncient 

characterization. Data nduction is achieved siniply by inaeasing the amount that the 

window is shiAcd for successive calcuiations. For instance, if the transient is 2048 samp1es 

in length, a window shift parameter, S. set at 32 will yield 64 dimension valu&. This 

represents a significant &ta nduction and is much more manageable for neural network 

pmcessing. Another feature provided by this analysis is data normalization. By yielding 

results which, when accurateiy calculated, am ktween 1.0 and 2.0 ngardless of the range 

of the original signal, m e r  scaling is unnecessary for neural network processing. 

3.2.2 Multifractal Feuturc Extraction Parmeters 

The parametric settings for feam extraction are significantly different h those 

used for segmentation. Figure 3.3 shows the same transient selected in Fig. 3.1. except that 

it i s  alnady separated fhm the channe1 noise and the fhctd trajectory d e c t s  feature 

extraction parameters. Compared to the dimension trajectory calculations with 

segmentation parameters, significantly i n c d  detail is noticeable. This provides the 

classifier with more distinctive featurts and a higher degree of separation between 

different classes of tcansients. 

The patamctcr scttings shouid begin with the window spacing being sclected, as 

previously dtscribed, to cietetmine the amount of daîa &don which is to be achieved. It 

is important that this be selected conscrvative1y sa that signifiant k t a i  characteristics 

are not neglected in the modeilhg proctss. The s k  of the sliding window, shouid be 
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Sample Num ber 

Fig. 3.3. An example of multifiactal featwe extraction. 

set to a value that is close to that used for the segmentation. Setting W = 28 or 2' should be 

sufncient to aUow statistical validity while not burying important fkactal characteristics in 

an excessively generalized hctal dimension. 

The sequence of time incnments, At, is aialsa quite different for feature extraction. 

A dyadic sektion, such that Atk = (26t. 46, ..., 2K&}, is most appropriate for feaîure 

extraction [KiGM]. Notice first that adjacent sarnples an not compand This, combined 

with generally larger tim shifis, causcs tbe dimension to be somwhat higher and more 

varicd than with the segmentation parameters. The number of tim increments, & 

considend here should be somwhaî Iowa. This is largely due to th physical limitations 

imposai by the smalltr sliding window and the fasta growing dyadic time incrtments, 

Atk A valuc near K= 8 has k e n  fouad to produce favoutable results. 
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3 3  Spmmuyof chape3 

This chaptcr has shown how to use tht vadana fiactal diwusion trajcctory for 

segmentation and for f«iturr extraction. The most sigiuncant dinerence between the two 

modes is that the squence of tirne incrtmtnts is lincar for segmentation and dyadic for 

f~ature extraction. It has ai60 ban shown that by simply adjusting the spacing between 

successive windows in the fahuit extraction mode, higbiy efficient data reduction can be 

ac hieved, 

The nrSt two modules of this transient classification system, prepmessing and 

feature extraction. will be mrisited in Chaptcr 5 wherc the LAC-MM software modules are 

descnid and verïfication is p e i f o d .  The next chapter, however, deals completely with 

the PNN and how it is implemented in the classification module of this system. 
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CHAPTERIV 

THE PROBABILISTIC NEURAL NETWORK 

Neural networks are ofkm uscâ as ciassifiers. The standard nemi network u s a i  for 

classification is the multiple layer fetdfomd network (MLFN), often d e d  the 

Backpropagation Network (BPN). ït has p w d  to wodc well in many different 

applications and thus warrants consideration for any classification problem. Furthemore, 

this type of aetwork, given sufficient training t h e  and neural proccssing uni&, cm modtl 

any linear or non-lintar deterministic fiinction. Howmr. pmblerns mise when we try to 

define "sufncient" with reference to the aumber of pfocessing units and the required 

training time. It is not knowa how rnany pmcessing units are necessary and, compounding 

this problem, training could take weeks for a large &ta set However, h u g h  estimation, 

trial, and emr, it is possible to find an architecture which works weU. Another problem 

arises when more classes or sampIes must be added to the training set; a ncw architecture 

must be found and in all likelihood, the network wodd have to be trained again h m  the 

start. Worse stül. as mathematical verifkation of a MLFN is impossible, its picdicted 

resuits must usudy be accepteci on faith -31. This is unacccptablt in our 

application. 

A more suitable candidate for the c 1 d t r  in this application is the Robabiîistic 

Neural Network (PNN). Section 4.1 gives som senerd background information on neural 

networks and the PNN. It cornpans neural networks to standard statistical classification 

schemm and shows why neural networks arc supenor for most applications. Specific 
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problems associated with the popuiar MLFN neural network are discussed in detaii and it 

is show that the PNN ovcrcomes thme pmblems whiie impmving classification. One 

important point îs that the PNN has a strictiy &fineci aschitechire, as shwn in Section 4.2. 

which is not subject to triai and enw testing. In M o n  4.3, training of the basic PNN is 

discusscd and algorithms are prsented Powerfid extensions to the basic PNN 

architecture, as used in this thesis, arc discusstd in Section 4.4. Fi~aiIy, Section 4.5 

addresses the Bayes Ciassification paradigm and shows how the PNN can provide 

mathematically sound confidence levels. 

4.1 Nemû Network and PNN Foundation 

4.1.1 Brief History of the PNN 

The PNN is based on a statistical algorithm first proposecl in 1972 Weis721, long 

before neural networks even existe& Due to relatively large computational and storage 

requirements for its implementatiorr, though, the algonthm was all but forgotten for 

several years. However, in 1988, Donald Specht showeâ how the algorithm couid be spiit 

up into a number of simple processes which could operate in p d e l ,  much like in neural 

networks [Spec88], [Spec90a]. Resent day cornputers allow us to implement bis 

technique, thus making the PNN a practical W t y  @Mast95]. 

4.1.2 Classijication with Compln Chrs Distnbufions 

The primary use of the PNN is for classification. Despite that g d  statistical 

techniques for classification have cxistcd for ycars, the= arc some potential characteristics 

of the distribution of the transient data which would pnclude Wu use. Thus, we wiU 

digress furtber to show the motivation for selecting a neural network classifier in this 

system. 
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Much like the MLFN and otkr neural nctwork modcls, the PNN can handle 

decision d a c e s  wbich aie as cornplex as necessary or as simple as desircd [Spec90b]. To 

fUy unàerstand thc impact of this capbility we WU consider a simple classification 

pmb1em with two classes, X and O. Assume that m e m h  of these classes art M y  

descriid by two vafiables such that they ctui be plottcd on a plane as in Fig. 4.1. An 

unknown class, ?, is also shown on tbe plot. Ilie job of the classifier, giwn the information 

shown on the plot, would be to determine ifthe unknown class belongs to X or O. 

Fig. 4.1. Classes X and O p10tted on a plane with one unknown (After wast93 1). 

Examination of Fig 4.1 shows that the uaknown is probably a member of Class X. 

However, certain featwes of the distribution of these two classes would cause failure for 

standard statistical classification algorithms [Mast93], [MastgS]. Fht,  the multimvdal 

distribution of the classes, o b s m d  as severai independent clusters for a single class, 

immediately pncludes the usc of centroid-based classincation schemcs which make the 

assumption that each class has a multivanate normal distnition and a single meao. In 

anaiysis of transmittet transients. thcse multimodal distributions WU likeIy occur due to 

varianas in transmission frrquency, ambient channe1 noise. electronic component 

tolemces, and segmentation inconsistencies. A nasonable alternative would be to 
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abandon the nomality assumption and use a nonpararnetric nearest-neighbour classifier. 

However5 M e r  inspection of the ex8mpIe in Fig 4.1 shows that this wodd &O fd. Such 

an eff't cwld be p d e n t  in our transient analysis due to inadquate rcprescntation of 

certain classes during training and, again, h m  segmentation inconsistencies. 

Neural networks pfform well under conditions which cause complex class 

distributions. Tbey aie bown to be fu superior in situations where a multimodal 

distri'bution of the population data exists. Furthemore. rather than conside~g ody the 

nearest neighbour(s) amund a certain data point, most neural networks can be configured 

to consider population densities throughout the entire domain of the distribution. 

4.23 AdvmtagesofthePMVOvernhc~ 

The PNN has useful characteristics drawn fiom both neural networks and 

statistical analysis. First of aU, as explained previously, the PNN has the neurai network 

characteristic of being able to effkctiveIy handle even the most cornplex data dishn'butions. 

At the s a m  tirne though, it is besed on established statistical priaciples which ailow fidi 

insight into its operation ad, in som situations, mathematically sound confidence levels. 

In facf the classification abilities of the PNN approach optimal Bayesian, as will be 

furthet discussed in Section 4.5. 

Another advantage of the PNN, in comparkon to the MLFN, is that it has a strictly 

dehed architecture. A coroilary ta this is that the= are virtually no parameters which 

must be set by the usa, allowing its implernentation to k mlatively straightfonuard. The 

trcmendous impact of tbis characteristic can best be reaüzed afta atkmpting to impkment 

a MLFN and select parameters such as the numbcr of layers, the number of neurons in 
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each hidden and output layer, and various leamhg rate setttogs depending on the vaining 

aigorithm king used  

When a MLFN encountcrs a training sample which is grossly enoncous, weight 

updates wiii be of a commemurately iarge ork This causes the entire network to 

overcompensate for a single samplc and thenby reduces its ability to effstively mode1 the 

entire data distribution without inmasing the nwnber of pzocessing neurom. nie PNN, in 

cornparison, wiJi handle such a situation with minimal problem ad, as an added benefit, 

produce accurate rcsuits if the sampk is in fect a valid data vector. For instance, it is 

possible that samples which may seem to k grossly emneous only appear as such due to 

the common occurrence of having only sparse training data available. T'us, another 

feature of the PNN is that it works well in situations where training samples are relatively 

Spa= [Spec90bJ. 

The most important advantage of the PNN is that it trains orders of magnitude 

faster thaa a similarly tasked MLFN. In many cases, training the PNN is vir&ually 

instantaneous. The implications of this speed improvement are numemus. Fit, nsearch 

time n o d y  spent training the neural network can be better spent on other portions of a 

project or in reducing the total tim spent on tk projwt. For instance, with the transient 

ciassincation system dtscnid in this thesis. mon triais could be attempted with various 

parameter seniags for the first two stages of the systcm. Altematively, this training time 

duction could lead to the fiiturt developrnent of a systtm which could cap- and luun 

transieats directly in =al-the. 

As a final note. two studics conductecl by the US. Natioaal uistitute of Standards 

and Tecbnology (NIsT) will be cited. The fint study cornparcd several classical and 
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neural network tecbniqucs for classification on a database of FBI fingerprints m T 5  1631. 

The second study compPred the same techniques for classification using a U.S. Postal 

SeNice database of handwrittcn digits [sTS209]. The techniqut~ compared were 

Euclidean Minimum Distance (EMD), Quadratic Minimum Distance (QMD). Nomial 

Parametric Classifier (MML). Singk Ntartst Neighbaur (1-NN), k Nearrst Neighbou 

0. Wcightcd Several Neanst Ncighbour (WSNN). MLFN, Radiai Basis Fuctiom 

(RBF1 and RBF2). and the PNN. A sipaincant xedt of both shidies is that the PNN 

yielded the lowest aror rate of ai i  methods testeci. 

4.1.4 Disammtages of the PNN 

The principal disadvantage of the PNN is that the entire aaining set must k stored 

for the classification of unknown pattem. However, in the case of these traasients, this 

will iikely not become a significant problexn. Using a very consemative data nduction 

parameter, each transient could be characterized by 64 double pncision numbers for a 

totai of 512 bytes of storage space. This wouid allow for storage of around 50,000 

fransients on a typical desictop cornputer (32 MB) with ample space remaining for an 

operating system and pmcessing software. 

The only other critichm of the PNN is that i classincation speed is slow and 

thenfore it is ranly suitable for reai-timc applications Wast931. Howewr, with m e n t  

micmprocessor technology, this no longer appuus to be a pmblem. T m  done in this 

thesis, for a moderate si& problem, show classification time to be on the order of 

hundredths of a second on a standard desktop PC. 
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4.2 The Basic PNN 

4.2.1 Architecture 
a 

At first glanc~. the architecturt of thc PNN rtsembIes that of the MLFN- Figure 

4.2 shows that the PNN consists of several layers of peraUtl processing units, or nemns. 

Fig. 4.2. Architecture of the PNN. 

The exact n u m k  of neurons in each iayer is determincd by the data which exists for the 

training set. The number of input neurons, which sem no hctional purpose other than to 

store the data for distribution to the next layer, is equal to the number of separable 

parameters used to describe the objects to ôc cclassifîd. Thus, the n m k r  of @ut neurons 

b cqual to the number, p. of data points in a sample vector, X. The pattem laya can be 

considacd to bc tw-mional and contains one n t m n  for each training case. 

Specifically, it repxcsents a certain numbet of training samplcs (f, 4, é, ...) frwi each of C 

differcnt classes for a total of R training samples. In brief, each neuron in the pattern laycr 
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cornputes a distance masure betwcen the unlaiown input and the training case represented 

by that neuron. An activation hiaction, known as the Pantn window, is then applied a> the 

distance masure as WU be explaincd later in this d o n .  In the sununation layer, Fig 4.2 

shows that thcre is one nemn for each of the C classes. These nemns surn the values of 

the pattern layct nemas comsponding to that class to obtain an estirnatcd density 

fiindion of the class. The number of neurons in the output iayer is ais0 q u a i  to the 

number of classes, C. The output layer is o h  a simple threshold disrriminator which 

activates a single neuron to -sent the projected class of the unknown sample. In more 

advanced implementations. the neurons in this layer cm bias the d t s  to cornpensate for 

prior class probabilities and the cost of misclassifying a sample âam a certain class. These 

factors will be M e r  addresseci in Section 4.5 duhg the discussion on Bayes 

Classification. 

4.2.2 Parun's Method of Density EstàMrion 

Before a detailed description of pnx:essïng in the PNN can bc given. a suitable 

class-conditional probabiiity density hinction (PDF) esrimator must be reviewed. In 1962, 

Panen prescnted a mcthod of estimating a &ariate probability density fwiction h m  a 

random sample [Pacc62]. His PDF estimator converges asymptoticaily to the mie density 

as the n u m k  of samples increases towards a f U y  comprehensive rcpresentation of the 

class data. As shown in Fig 4.3, it fînds the PDF by summing severai beU-shapeâ weight 

functions, W(x), each of which is assignai to a ample h m  the class. In this example, 

there are 8 samples fbm a single class in the training set centercd at 0.15,0.22,0.27,0.30, 

0.40, 0.60, 0.65, and 0.85. Notice how this scheme ailows for a muitimodal distniution 

within the class. Panen's density approximation is simply the s u m  of the 8 weight 
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X 

Fig. 4.3. Paaen's approximated PDF. 

fwictions multiplied by a constant. Fonnally, if there are nc training cases for a given class. 

c. then the estirnatecl PDF for that class, g&), is 

where O defines the width of the bell cww thM surrom& each semple point Pmper 

choice of the value for CF is critical to the pcrfonnanœ of the PNN. If o is too small, 

individual training cases wili be considercd only in isolation and we wiil be left with 

essentiaily a n-t-aeighbour classifik Wast931. HOWCVC~, if the value of a is too hi@, 

details of the density will be b l d  toge- and., d e s s  thc di&nnt classes arr very well 
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separated, confusion would certainly ttsuit. Selecting a suitable value for a WU be 

discussed in Section 4.3. 

The weight function, W(x), is almost always chosai to k the normalized Gaussiaa 

function as 

While other weight fwictions are theoretically possible. the Gaussian is well-behaved and 

ideaily shaped for this implementation. It has bcen shown in practice to pefiorm weli and 

is almost always the fwiction of choice for practical applications. 

Referring back to Fig. 4.2, we sec that the PNN has p inputs. Thertforc the PDF 

estimator must take into account all of these input variables in order to achieve an accurate 

density estimation. In 1966. a mans to extend Panen1s method to the multivariate case 

was intmduced [Cac066]. However. it is somewhat more complicated because it allows 

eaçh of the input values to have its own scale factor, 6. This N l y  gtncral density estimator 

for a class, c, is given by 

where, as in Eq 4.1. n, is the numkr of sarnples which exist for the class. To d u c e  the 

complexity of Eq 4.3, we makc a few common simplincations. First, for the basic PNN 

model, we will assume that 9 sale factors are equal such that al = a2 = ... = a. Then we 
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can achicve M e r  economy by letting the multivariate weight function become the 

product of the univariate weight fiiactiom as show11 in 

Now, with thse two simplifications, the dcnsity esthuitor cm bc stated explicitly 

as 

where X npresents the input vector XI, ..., xp. Notice that the distance fiinction, IE-XJI~, is 

simply the standard Euclidean distance for the vcctor, X. The density estimator aven in 

Eq. 4.5 is the foundation of the original PNN proposed by Specht [Spec88], [Spec90a]. It 

is also the cstimator used in most PNN impkmntations and has a history of good 

performance Wast9SJ. 

4.2.3 PNN Pmessing 

Examine once again the architecnu~ of the PNN in Fig. 4.2. To classify the 

unknown case, X, at the input layer, the network propagates a signal fornard as shown by 

the amrws on the neuron cninections. The input layer, as stated pnviously, holds the 

unknown sample for distribution to each node in the pattern layer. To explain the exact 

calcuiation which taLes place in the pattern neUron wc shall again consider Eq. 4.2. Since 

we are classifyiag using relative classconditional PDFs arnong di&rent classes. we can 
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eliminate any constants which exist in the huictions. Thus, we are left with some constant 

multiple of the densitics for di classes, which when considercd in relative terms, would 

yield identicai icsuits to those obtained by using tme dcnsities. The weight function given 

at Eq. 4.2 can be nplaccd ôy the uiuiormalized Gawian in 

where d ( ~ & ) ~  is a a-scaicd, q u a r d  Euclidean distance computed betwan the unknown 

sample. X, and the training case. k' as caiculated by 

Note that the constant 2 in the exponentid of Eq. 4.2 has been absorbed into the value of a 

as a M e r  ~ a n s  to simplify îhe cdculation. 

Computations puformed by the pattern neumns can now be specifically explained. 

Each pattern neuron cornputes the O - d c d  Euclidean distance, given by Eq. 4.7, between 

the unknown and the training case which it ItpZCStnts. Then the weight function is appkd 

to this distance as dtscnbed by Eq 4.6. These weightcd distance measwtments are then 

propagated forward, as shown by Fig 4.2, to the summation newon which corresponds to 

the class of îhc irajning case representd by each pattern neuron. 

The summation neumns, just as their name implis, perform a simple summation 

of the weighted distance meas\vcmcnts for the class they nprcsent. This computation is 

similar to Eq 4.5. Howmr, due to the simplifications deriwd in Eqs. 4.6 and 4.7. a 
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sigdicantly d u c e d  classification function. which is mmly a multiple of the PDF 

descriid by Eq. 4.5, can be used as in 

It shodd k nottd that the factor. Ih, in Eq 4.8 is not constant unless thae is an equal 

n u m k  of training samples for eech class, and thus, could not be eliminatd in the general 

case. SpecificalIy. this factor compensates for unqual nprrsentation of di&xent classes 

which may exist in the training set Othenvise. the network would k significantiy biased 

toward cbooshg the class with thc most cases in the aaiDing set In some cases though. 

this b i s  may be desirable if the number of samples from cach claa in the training set is 

carefully selected to be proportional to theîr probability of king encorntend. The idea of 

incorporating prior probabilitia in a m e r  s d a r  to this, will be expanded upon in 

Section 4.5. 

The output layer of the PNN is usualiy a simple thnshold discriminator. AU of the 

outputs h m  the newons in the summation layer are exarnined and the iargest one is 

selected. Then, only the output layer ncuron which comsponds to that newon in the 

summation layer is activated. The index of the activatecl newon in the output layet 

npnswts the prtdicted class of the sample at the input layer. Section 4.5 will discuss 

some possible extensions to Ur computatio11~ perfomd by the output layer. 

Examination of Eq. 4.8 ieveais a potentid pmblem which may be encountered. 

Taking the expontnt of a negativc number wili quickly yield a value of zero as the 

magnitude of the number iricrrases. If the &own case. X. and the training case, X, are 
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extremely different, the sununation obtaintd for that class may be zero. While this may 

appear to bc a desirabk tfftct, it would k c o m  impossible to select the right class if the 

unknown is substantially d i f f i n t  h n  PU tmining cases and di of the summations 

become zao. A simple solution to this pb1em is to fieg its OcCumena during 

classification and yield a resdt which shows that tbis case klongs to none of the lmow 

classes. In practice, this problem wiii be a me OOcUCTtna, but an example will be show 

in Subsection 5.2.2 where it is encounterd. A potcntiaily positive consequcnce -of this 

situation is that it proides a simple mjed mechaniSm when a wildly different and 

pmbably h o w n  sample is encountcmd. 

4.3 XkahingthePNN 

Like the MLFN, the PNN utüizes a supemised leaming scheme. This maas that 

during the leamhg process, selected trainhg cases are prescnted to the neural network 

dong with the comct output. The network then adapts itself to produce the correct output 

when similar cases are seen. However, unlike the MW;N, the PNN does not need to be 

trained extensively to produce good results. W1th most problems, the PNN WU produce 

sufficient nsults Mth the opthbation of just one scaIing parameter, a, in the Panen 

density estimation. This task can k prfonned quickly. using one of scved standard 

univariate optimizaton mthods. 

4.3.1 An E m r  Funetion for the PNN 

For training a neural aetworiE, a maas to mcaswc its performance, as a hction of 

a, is nquircd so that we how how well the nctwork is pdonniig and when to case 

training. Sincc the PNN is a classifier, an intuitive m u r e  of emr would bc to simply 

iterate through the e n t h  training set. clwityiiig each lmown training case as if it were 
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unicnown. The n u m k  of corrcct classifications could bc counted and this would become 

the mesure of error for the n e t w d  Hwevtr, examhaion of Eq. 4.6 and Eq. 4.7 shows 

rhat thb wodd mt be an effitiu enrn mcasure. The pmblem occurs whai the training 

case at the input is cornpend with itseIf at its conesponding pattern layer neumn. The 

Euclidean distance would be zero, and tkrefore, the weight hction would nach full 

activation for every input in the training case, regardas of the value of a. Such a 

tremndous bias wouid artainly cause the network to correctly classify my case in the 

training set, r e n d e ~ g  this cnor mcasure uselcss. 

A similar, yet effective, alternative to the above technique is called the holdout 

method [Spec90b]. It involves the same iteration through the training set as descnid 

above, except for one smaii denation. Wûen a training case is presented to the network for 

classification, the correspnâing neuron in the pattern layer is temporarily removed and 

the network classifies using R - 1 pattern layer nemas. Using this technique, no bias is 

introduced as a result of comparing a training case to itself. This methd is especially 

useful in the common situation wherc it is desired to makc maximum use of a timited data 

set. In practice, it has k n  shown to producc very g d  zitsuits. However. it should be 

noted that the rcsults achieved in training using this technique wiU still be panially biased 

by the training set kcause the classifîcation of the training case king left out is still 

involved in the choice of a. mically, this would cause the training enor to be siightly 

better than tbat obtained using completely unknown samples. Whe- possible, efforts 

shouid be made to leave a sigaifiant aumber of sampks aside during training for a true 

validation of the network 
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4.3.2 Optimizing Sigma 

Now that we have a means to masure the pgfonnance of the PNN for a given 

value of a, a method for finâing the oprimal value of o can k established. Since we are 

optimizing a fwction with one variable, a ~ y  of several dinmnt unismiaie opu'mi7iition 

algorithms could be employd Himever, the= are some considerations which should be 

made beforc selffcùig a technique. First, sincc we are iteratbg through the entire üaining 

set for cach evaluation of a, the timc q u i n d  can quickiy becorne Iarge as it is 

pmporrional to the square of the oumber of training cases. Thus. we mua do as few 

evaluations as possible for each value of a. A h ,  due consideration should be given to the 

possibility that multiple minima may exist. It wouid be somwhat carelas to accept the 

first local minimum found because better results may be achieved at a different value. 

The optimization technique used in this thesis is pedonned using two distinct steps 

Wast951. F i  a trivial global search is conducteci at Ns points over a range h m  a to b. 

The emw meawre is determineci at the lower bound of the selected range, a, and then at 

logarithmic inte& until the upper bound, 4 is rcached. Poinîs along the search range are 

incremented by a multiple, m. as calculated in Eq. 4.9, such that the ratio of adjacent 

points is qua1 

This logarithmic spachg, as opposeci to lincar spacing, is used ôecause the e&ct of O in 

the emr fiinctioa is multiplicative rathcr thin additive. N m  that the intemal has been 

evaluatcd et N, points. the point with the lowest emr is selsded, along with the adjacent 



Chapter 4: The Robabilistic Neural Network 

points on b t h  sides. for use in computations during the next step. The only potential 

problem with tbis global search occm when the minimum exists at one of the endpoints 

of the interval. In this situation. the routine continues stcpping out in that direction until 

the emr fundion turns up. Despite this safety mcchanism, though, a r e  shouid be taken to 

try to avoid thû situation by setting the endpoints appmpriatdy. Values on the order of 

0.ûûl up to 100 may be r e q u i d ,  depending on the size and complcxity of the problem. 

Also. in ordet to ensure that a global minunum is actually found, the number of-search 

points, N, should be set as high as possible while remaining within the tolerance of the 

user in terms of processing tirne. At the termination of this algorithm. a bounded 

minimum, y. will be found. The values of o end b again bound the intend of the 

miaimwi, cxcept that they have becom the calculaad values which were acijacent to y in 

the initial search. 

After a rough bounded nrinimum has been found using the rudirnentary 

minimiiation algorithni &scrikd above, the next step is to refine the value of a using the 

golden section technique. In this minhhtion schem, thme points are kept track of such 

that the emr measure at the centre point is las than that of either of its neighbom. Again, 

we wiii refer to these points as a, b, and yfor the two endpoints and the bounded minimum 

respectively. 

nie golden section technique considers thc brackcting triplet of points and 

evaiuates the masure of m r  at an intennediatc point ktween eitha a and y or betwcen y 

and b. Suppaae a point, r. is stlecttd betwetn a and y. as shown in Fig 4.4, and the 

aieasure of crror is evaiuated thcre. 
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Fig. 4.4. Bracketing triplet and test point in golden section mhimhation. - 

If the masure of crror at z is Iess than the m r  masure at y, then z becomes the 

new middle point and y becoms the new endpoint (is. b = y anci y = 2). Otherwise, z 

becomes the new endpoint on the lefk side (Le. a = a. In either case, one of the endpoints 

is dropped and the middle point in the new triplet is the best minimum achieved so f'. 

Then, the pnness is repeated until the différence in the em>r acbieved for successive 

iterations becomes insisnificant, or until the width of the i n t e d  becornes small enough. 

The issue of placing the test point, z, must be addressedt 1t is nasonable to select 

the test point such that it is in the wi&r of the two intemals because, given no other 

information, this is the ana where the minimum likely exïsts. It can be shown that, within 

the wider of the two intemis, an optimum placement nde exists -921. That is, given 

a brackcting triplet of points, the next point to be trieci is a M o n  0.38197 into the larger 

of the two intemals from the cumnt minimum. This value is dctermined fiom 
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where w is d e d  the golden meun or the goldcn section. hence the name of this 

minimi7irtion procedure. 

4.4 ImprovingtheBdcPNN 

Examine the modelled trammitter tramicnts shown at Fig. 3.3 and Fig 4.5. A 

cornmon characteristic bctwctn these modeis is that the variance dimension trajectory is 

higher at the start of the traosient aud then tapers off. This featwe exists in many of the 

transient models because the initial nsponse of the system is somewhat noisy before 

smoothing off near the end of the transient Additiondiy, since consistent segmentation of 

the transiont h m  the ambient channe1 noise is sometimcs not achieveà, the beginning of 

dinerent transients may in f a t  comist of some unknown quantity of imlevant noise. 

Given this relatively consistent feanut among the transient models' values, it follows that 

the classification algorithm may benefit by aIiowiag dinerent scaiing factors for the 

Panen PDF estimators at each of the inputs. Existence of variable sale factors for 

different inputs enabks a relative measure of importance, in terms of &ectiag 

classification ability, to be assigned to di&rent input variables. This could assist in 

dealing with the somewhat ambiguous duration of noise possible at the beginning of the 

segmented transients. The ovcrall contribution of insignificant inputs could be weighted 

such that their Muence in the classification would be mtmmmà . .  * . This section gives 

details on impltmenthg the concept just dedbed in order to achicve a n r y  powerful 

extension to the basic PNN wast95]. 
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Fig. 4.5. Fractal mode1 of transient. 

4.4.1 The Multiple-Sigma PDF Estimotor 

Now that the= exists a clear motivation to ailow individual scaüng parameters for 

each of the P input variables in the PNN, a different weighted and squared Euclidean 

distance must be used as in 

where r is the index of the curnnt training case. Note that there is a minor computational 

expense, relative to Eq. 4.7, in that a M i o n  is rquired for each iteration of the 

summation rather than a single division aftet the sununation. 

The classification function can now be updaîed for the multip1e-o PNN. If we 

assume that the Gaussian wcight function is retaincd, tbc multiple of the PDF described in 
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Eq. 4.8 nmains identical, except that the new distance measure, 6(XX,), is included as 

shown in Eq. 4.12. 

With the introduction of multiple values for o in the PNN, a different rnethod for 

finding th& opthal values is ais0 nqllcd because the simple univariate oPtu-tion 

schemes presented in the previous section are not sufficent. hstead, a multivariate 

opthkation scheme is necessary. The conjugate gradients algoritbm, to be explained in 

Subsection 4.4-4, is recommended [Mast9s] and used in this thesis. A significaat problem 

exists in implementing such an opthkation technique in that derivatives of the erra 

function, with respect to the scaiing parameters, are required, Unfortunately, with the 

simple counting criterion used as an emr fûnction in the basic PNN. meaningfbl 

denvative calculations are impossible. 

4.4.2 A Continuous Emr Function for the PNN 

To aiiow for derivative calcuiations, and to break possiile ties in the results 

achieved h m  the discrete emr aiterion, a continuous function of the a weights is 

req-d as a masure of network error. To begin this discussion, consider a vector, L such 

that it rcpresents the output vector of the PNN. Thus. the v a o r  will have C elements such 

that Y = QI, .... y& ARcr a classiftcation by the PNN, Y will be filled with Os except for a 

sinpie 1 in the position rcpresenting the pndictcd class of the case at the input of the 

network. For instance. if the* is a network intendcd to classiry from five dif5erent classes, 
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and the case at the input is a mmber of the second clpss, the comct output of the nehuork 

is Y = (O, 1,0,0,0). 

The PNN can now k considered as a mapping hction bctwecn the input vcctor, 

X, and the output vector. Y; The implications of this arc signifîcaat in that it shows the 

potcntiai for the PNN to act as mon thaD just a classifier; pcrhaps m n  as a general 

mapping function iüre the MLFN [Spec91], [Mastgq. Howevtc, since the PNN 

implementation in this thesis is pircly for dassification. this discussion wili focus on how 

the notion that the PNN provides a mapping betwccn X and Y le& to an intercsting 

validation of the PNN [SCHA91]. Detaüs of this validation can then k used to derive a 

continuous error function. 

In statistical tcrms. we can Say that X is an independent vector and that each 
- 
eiement of Y is dependent upon H. If the joint PDF of X and each element of Y; fXY(X, y,), 

is known, then the conditional expectation of Y for a given X, EuiK(X), can be obbtained 

h m  

when the ratio of integrais is applied separately for each ekment of E The joint PDF of X 

aad y, cm be estimatcd by apptndiag y, to the end of the X vector and using the 

muitivariate Panen estimatot of Eq. 4.12. Now, the cstimated joint PDF, gKy(X, y=), c m  be 

substituted directly into Eq. 4.13. giving the following expansion: 
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Solving the above equation ùy numerical maas wouid be impractical. Fortunattly. since 

the Gaussian weightiag fiiaction was uscd for hding gX-(X. y,). Eq. 4.14 can be 

simpIified immensely to obtain 

where R is the number of training samples for the entire training set. Notice that each 

element of Y is simply a scaled density estimator which is similar to Eq. 4.12. except that 

it is not normaiized for the numbcr of training cases in each class. However. the class 

count normalization factor can be directly addd to each element of Y without affecting 

this derivation. 

During training, since Y is known, it can k used to calculate the ermr fuaction for 

the PNN directly. An activation function for each of the C sumaiion nturons will now k 

dehed as 
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which is the same as Eq. 4.12 because the y,, term allows only the m g  cases from 

class c to c o n t r i i  to the summation. An intemal confidence measm. qc(X). of x 

belonging to class. c, can k defineci as in 

where 

which, except for the l/n, factors, is identical to the denominator in Eq. 4.15. Finally, we 

c m  state the continuous emr fiinction, e(X), for a @en training sample. X, as follows: 

where c repxesents the correct class for the trainiag sample. This error function agrees with 

intuition because ifq,(X) = 1 and qi(X) = O for 1 i + c, then e(X) wiIl bacom O. However, 

when the outcome is not pcrfkt, all available idormation is considered, including the 

kvel of activation for classes othu ttian the corn*. one, c. To find the average emr for a 

single pass through the entire training set, simply ibrate through the training set, 

cumulating a sum of e(X) for each case, and then divide the sum by the number of cases in 

the training set, R. 
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4.4.3 Demtatives of the Continuour Ermr Funcrion 

Now that there is a continuous e m r  function for the PNN, we cm calculate its first 

and second derivatives with respect to the scaliog parameters. These denvatives will be 

used for optimization of the scaling parameters. Sincc the objective of training the PNN is 

to minimize the average of e(X) for all training cases, and the values of op are constant for 

aU training ceses. derivative calcuiations of e(X) with rrspect to ap should be calculated 

separately for each case and then averaged. Thus, differctltiating Eq. 4.19, with respect to 

6' gives 

for a single input vector, X. The second derivative is then obtained by dinerentiating Eq. 

4.20 to yield 

To nnish solving the derivatives shown above, we require the first and second 

partial derivatives of the interna1 confidence measurcs, qc(X), with respect to the scaling 

parameters. Howtver before m g  these derivatives, some intermediate definitions will 

be rcquirtd to make the equations more manageable. Thcse are given as 



Chaptn 4: The Robabilistic Neunil Network 

Now, the f h t  and second partial derivatives of the intemal confidence measures, q , O ,  

with respect to the scaiing parameters can be given as 

The resuits show in Eq. 4.26 aad Eq. 4.27 can be directly substituted iato Eq. 4.20 and 

4.21 as required to complete the definitions of the f h t  an second derivatives of the 
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4.4.4 Tmihirtg the Multiptelri@nu PMV Using Conjugate Gradentr 

Details on initiaüzing and training the scaiing parameters in the improved PNN 

wiii now k discusstd. However. since tbcm are somt signiticant difkrences ktween 

training the multip1e-d mode1 comparcd with the basic PNN, an ovemiew of the whole 

pmcess is necessacy. In training the impmvcd PNN. then wüi be two distinct steps. 

Common to both stcps is that we WU continue to use the holdout method whereby the 

pattern layer neuron cozmponding to each training case, X, is temporarily removed and 

the network is trained using R - 1 pattern layer neurons. To commence training, the scaling 

parameters are selected as if the network were the basic PNN mode1. This means that a i i  

scaiing parameters will be initiaiized to the same value using the fast univariate 

minimiistion technique. This provides a good starting point for the more advanaed 

multivatiate mhimization procedure and avoids the requirement for this procedure to 

conduct a global search at its relatively slow rate. 

In the second training step, the netwodr iterates through the training set as before. 

However, as weil as calculating the emr function, e(X), for each training case, X, it also 

calculates the htst and second the derivatives of the emr function with respect to each of 

the P scaling parameters, t+,. Then. after caiculating each of these values, they are added 

to ninniag totals to &tain an emr function and denvacives cumdated for the entire 

training set. These cumulateci values an then divided by the number of training cases to 

yield the average error and the average derivatives for the entin training set. The 

multivariate optimitation mthod, conjugate gradients, then uses the derivative 

iaformation, and average emr measures. to fmd new values for a i l  op. The iteration is then 
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repcakd, cakuIating new average denvatives aud errors, and updating xaiing factors until 

a sufncient accumcy bas ban achimd or succcssivt improvcmcnts becorne negiigiile. 

The conjugatc @ent algorith used for this training is a very powerful and 

popuiar muitivanatc q t h b t i o n  technique. Iii fiut, in addition to its utility in the PNN, it 

is knowa to be one of the best inethods for tnining a MLFN wat931. A fidl explanation 

of conjugate gradients would requin a chaptct in itseif and many excefient references can 

provide a sufficiently detailed description mla'lt], -1, MastgS]. Instcad we will 

discuss the relevant feanires of the conjugate gradient algorithm and show why this 

mthod is appropriate for use in PNNs. 

The most sigoincant feature of the conjugate gradient method is its convergence 

speed in cornparison to other popular techniques. For instance, it is signifîcantly faster 

than the popuiar steepest descent method of optimi7istion which is oftea used for training 

the MLFN. Also, it eliminates the calculation, storage. and manipulation of a large 

Hessian matrix as would be nquired in Newton or quasi-Newton optimization techniques. 

This advantage is especiaily prevalent in neural network implementations which, since 

there arc usudy many variables to be optimized, wouid require massive Hessian matrices. 

Another advantagc is that the conjugate gradients method does not require second 

.derivative information, which may k impossible or inefficient to calculate in some 

applications. However, as shown pmriously. second derivative information is readily 

avdable and can k efficiently computed for the PNN. A slight modification to the 

conjugate gradients algorithin incorporatcs these second derivatives to estimate an 

efficient scaling factor for the iine seer~h and sigaificatltly speeds convergence Wast951. 

Specificaiiy, the implernentation in this thesis uses the Polak-Ribiere -21 conjugate 
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gradients algorithm witb Mastem' modification to take advantage of the readily avaïlable 

second derivatives 

4.4.5 Other Extensions to the PNN Chsifier 

Several other usefiil extensions exist for tht PNN in its tole as a classifier and will 

be mentioned hem for completcness m n  though they are not used in this aiesis. The most 

logicai extension to the multiple-o PNN is to aiIow separate scaling parameters for each of 

the di&nnt classes as well as for each of the input values. Such a model would-enable 

specific input variables to have more or lcss importance for some classes but not 

necessariiy for others. The utility of this is obvious in rnany different classification 

problems, perhaps even this one. However, such power is not without cost, especially in 

terms of time required to train the scaiing parameters. For instance, if we had a training set 

with 100 inputs and 100 dinerent classes, there wouid be a total of 10,000 scaling 

parameters to train. Intuition suggests that this would require 1 0  times the trainhg the  

than without this specific modification. In practice though, because of interactions 

between the increased number of parameters, this modification would result in a training 

time which is several hundred times pater. Additionally, with this much representational 

power, there exists a strong possibility of overfitting the data and hindering the network's 

ability to generalize in the presence of slightly diffèrent input vectors. 

Another modification to the basic PNN model is the Gram-CharIier Neural 

Network ( G o  -21, Wt9s]. In the GCNN, a Gtam-Cbarlicr series is used 

instead of Panen windows for approximatibg the classconditional PDFs. This resuits in a 

network which rquires ncgiigible storage, cm pcrform fast classibcation, and trains 

instantaneously h m  explicit formulas. Howtvcr, tbm are drawbacks to this method 
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which limit its gened applicability in compar*on to the PNN. Specificaiiy, this mode1 

cannot handlc the diverse range of distn'butions that the PNN can. Aiso, muitimodal 

distniutions and distnbtions that are not rrasonably close to normal will wt be handled 

welI by this netwok Obviously. this p l u d e s  its use in îhis thesis. but the OCNN should 

sî i l l  be considered as a p0werfi.ù extension ta the PNN when the distniution of the data is 

suitable. 

4.5 Bayes Ciassîûcation md Conmdence Leveb 

Bayes' method of classification is a widely acccptcd standard for implementing 

decision d e s  [Spac90a]. This section explaias the Bayes classification strategy and shows 

how the PNN can be smictured to approach the Bayes optimal decision surface. Fmally, 

we give an explanation of how and when Bayesian confidence estimates can be computed 

for the PNN. 

4.5.1 Bayes' Strategy for Chs#cation 

The objective of Bayes' mthod is to m h i m k  the expected risk of 

misclassincation for a given decision surfixe. Assume bat we have a colkction of 

sampies h m  C Wrent  classes in&xed as c = 1, .... C. Each of these sainples is a vector 

X = ( x ~ ,  ..., xp). We wiil now defhe a value. ho for a class which defines its probability of 

o c c d g  in the data set. This vaiue will be rcfened to as the prior probability of a class. c. 

According to what is generaiiy known as Bayes' Posailate, prior probabilitics should be 

assumed equal when nothing is k n m  to the contrary -3). Another value. 1, will 

now be &nacd as tht los associateci witb misclassifyiog a case which klongs to class, c. 
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In practice, these values are ais0 set to be qua1 unlcss there is compelling reason to do 

othemise. Fmally, we will denDe f X X )  to be the true PDF for a class, c. 

the definitions @en above we can state the Bayes dccision nile. An unlcnown 

sampIt, 8, is classifled into class c if 

for ail classes i not qua1 to c. Any algonthm îhat a p p b  the above d e  to a decision 

surface is said to bc Bayes optimal. In practice, it is difEicult to build a classifier which 

completcly satisfies this d e  because the actual PDF, fJX), is usuaUy unknown. However, 

using Panen's mthod of density estimation, we cm find a teasonable estimated PDF. 

gJX), when the= is a comprehensive training set. 

An intuÏtive discussion on the Bayes decision ruie WU be given as proof of Eq. 

4.28. Since the PDF, fJX), is proportional to the concentration of the members of class c 

around the unkaown case, then the f J . 1  with the highest value may well represent the 

correct class. However, since a mchanism exists to consider prior probabilities of 

encountering a case from a certain class, then a class with a higher pnor probability should 

be favound. Finally, we want to m h h h  the loss associatcd with misclassifjhg a 

member of class c. Thenfore, if class c has a high loss associated with misclassification of 

one of its rnembers, then it s h d d  be favouzed in an attcmpt to avoid this loss. As long as 

the values used for thcse thne criteria tue scaled pmpcrly. simple multiplication of them 

shouid yield a sufficient balance fiom wbich to base a decision upon. 
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4.5.2 ImpIemenring Bayes' Method in the PMV 

By Wtue of the design of thc PNN. the PDFs for cach class, &(O, or at least 

estimatcs of them, an alnady taken into considcration during classification. AU that 

temains is to add a mecbanian to cjeai with prier pmbabilities, ho and the pmjected loss, 

f" associateci with rnisciassifying a case tha< blongs to a class, c. In SubSection 4.2.3 we 

eluded to a method of incorporating @or pmbabilities into the PNN by carefully selecting 

the number of oaiaing cases h m  cach class to be proportional to their probability of 

behg encountered. This is an ided method in cases where the structure of the available 

training set may be the only means adable for determinhg @or pmbabilities. However, 

the formulas for the PNN mode1 used in this thesis have included a factor, lfn- which is 

designed to remove the effect of uncqual class represcntation from the winiag set. Tbis is 

done to pro- the user from accidentally inûoducing a bias due to inadequate 

representation of the &ta set, as so often is the case. hîead, if there is sufncient reason to 

introduce prior pmbabilities into the PNN decision, thcn is a more elegant and dehirate 

methodology. That wouid be to change Eq. 4.8 so that it is multiplied by h, as in 

for aiî of the pattern layer nemns. Note that, in the multiple+ PNN, the same change 

would be applied to Eq. 4.12 and Eq. 4.16. 
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Th incorporation of pmjectcd losses wociated with misclassification of a certain 

class is done exactiy th seme way as for the pior probabilities. Modifying Eq. 4.8 again. 

we couid muitiply by t, as in 

and the same change couki bc appiied to Eq. 4.12 and 4.16 for the muitipleir PNN mudel. 

4.5.3 Buyesian Confidence Mearums for the PNN 

Part of the appeal to the PNN is that mathematically sound conndence atimates 

cm ofkn be cornputed for its decisions wast9q. However. there are two conditions 

which must be met in order to achieve accurate confidence estirnates. The first condition is 

that the classes in the possible data set must be mutualiy exclusive. This means that no 

case can possibly f d  into mon thaa one class. The other condition is that the training set 

must be exhaustive in that it npresents dl possible c l a s s  fairly and completely. This 

means tbat the PDF estimates, gJX', must be vcry close to the true PDFs. Now, assuming 

that the training set is mutually exclusive and exhaustive, Bayes' theorem cm be used to 

directly compute the probability that an unknown sample, X. belongs to class c as in 

where gJX) rcpnsents the output activation of each of C summation ncurons repnsenting 

the possible classes. Uofortunatciy, due to possible inconsistencies in segmentation of 
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transients, the data used in this thcsis does not fit the 6rst criterion. Then, assuming the 

segmentation problem can be Z E S O ~ V ~ ,  it would be somwhat difncult to satisfy the 

second criterioa outside of a laboratory. Chapter 6 WU discuss more genenc techniques 

for assessing the confidence level of the decisions. 

4.6 SpmmulolCbapter4 

This chapter has stated that, for classiacation, the PNN is a more accurate and 

practical neural network moQl than the MLFN. Details of its smicturt, operation, and 

training were given. A powerful extension to the basic PNN was then discussed dong with 

detailed derivations for an e-tive training algorithm. The chapter ended with a general 

discussion on Bayes' Classification paradigm. 1t showed how the PNN cm appmach the 

Bayes optimal decision surface and, under certain conditions, provide mathematically 

sound confidence levels. 

Exact parameter settings and results achieved for PNN classification of 

muitifractal transient models will be discussed in Chapter 6. A detailed description of 

TAC-MM, the software package developed to impkwnt  the transient classification 

system, WU now foiiow. 
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CHAPTER V 

SOFTWARE ~MPLEMENTATION AM) V~RIFICATION 

The pcoc~ssing tcchoîqucs descri'bed up to this poiot for the thne modules of the 

transient classification system have becn assembled into a comprehensive and flexible 

software package caiied TAC-MM f lmient  Analyser and Classiikr using Multifhctal 

ModeUing). This software is a 32-bit, singit document interface (SDI) Wmdows 95 

application. It is written in the CH language, with Microsoft Foudation Class (MX) 

extensions, and compiled using Miaosoft Viual C++ Version 5.0. The source code hles 

are included in Appendix B to this thesis. To facilitate ease of use, an intuitive user- 

interface has been developed such that it conforms closely with standards for a Wmdows 

95 program as prescriid by Mimsoft. 

This chapter describes the various featuns and limitations of the TAC-MM 

software and explains how to implemcnt it for analysis and classification of transients. The 

discussion is stnictured to refiect the organization of the program mnus rathcr than fkom a 

procedural perspective. Section 5.1 provides spccific information about every menu 

function in the TAC-MM program. 'Ibis is, however. pproocde by a general introduction to 

the user interface and the transient display arca. Then. in order to ensm the validity of tbis 

m h ,  we must prove that the software operates accordhg to its design and that 

numerid proccssing techniques are çodeâ prol?crIy. Section 5.2 details the procedures 

used to vcw the preproccssing, fatue extraction. and classification modules of this 

system, 
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5.1 Ushg tùe TAC-MM Software hckage 

5.1.1 Thr UserDisployAma 

Since TAC-MM utilues a grapbicai user interface (GUI) for its implemcntation, a 

discussion on its operation should begin with a description of the user display arca. Figure 

5.1 shows the main viewing m a  of the program dong with the various CO-d 

interfaiccs for selecting program fiinctions. Starting at the top of the viewing window, the 

menus arc arranged in the standard fashion with push-button style controis for the most 

common user fuoctions. The fiinctions that have push-button controis are indicated with a 

picture of the button b ide  its description in this section. The different menus are 

categorued as Fie, Edit, Wew, Neural Net, and Help. 

Fig. 5.1. TAC-MM user display ana; default vicw options. 
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The transient viewiDg area has k e n  divideci into two windows as shown. In the 

upper vicwing whdow, a raw signai is displaycd dong with the varianec nacral dimension 

îrajcctory of that signai. It bas two differcnt display modes. In the first mcxîc, the user can 

view the segmentation of th raw signal aiong with the variance dimension mjectozy 

waveform. The transicnt, as dctcctcd by the prcp~ocessing module of the system, is the 

pat  of the signal ktween the verrieai daahed lines. In the second viewing mode, only the 

part of the signal ~tlcctcd as king the transient is displaycd. The variance dimension 

trajectory displaycd in this mode is the rnultifhctal mode1 of the transient obtained with 

featm extraction parameters. Notice that this window has no mil bars; it is anisotropic 

in that it wil l  always display the entire signal to the Ievel of detail possible within the size 

of the window. .Thus, a larger window size will allow a greater Ievel of detail to be 

displayed. 

The lower window in the view serves two purposes. In its default mode, it provides 

a zwmed view of the cumnt raw signal. Every sample in the raw signal is displayed on a 

pixel by pue1 basis. Horizontal resiziag of this window does not &ct the level of detail 

seen by the user but does change the number of samples displayed. A horizontal moll bar 

is available in diis viewing mode so that different parts of the signal can be viewed. 

Vertical mizing of the lower wiadow, as with the upper window, wül provide a mming 

effcct whcreby the mgnitude of the signal kwms more detailcd In the second view 

mode for the lower window, pertinent training and batch classification information is 

displaycd Far instance, if Uiis viewing mode is scleaad after training, classifîcation 

nsults will be shown for each sample in the training set aiong with the total emr achieved 
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for the training set. Figure 5.2 shows the program's display m a  when the alternative 

viewing modes have ban sel& for both the top and bottom viewing windows. 

Fig. 5.2. TAC-MM user display ana; sccondary view options. 

As with most Wmdows pmgnuns, TAC-MM &es use of the status bar at the 

bottom of the window to display pertinent information. The left side of the status bar 

displays a more detailed description of menu hmctions or push buttons as the user passes 

the mouse pointer over them. On the nght si& of the stahis bar, an index of the current 

transient in the display wiodow is givm dong with the class number of the îransient. For 

instance, if dim arc 50 tmnsients in tbe cumnt document, the 13th one is cumntly king 

displayed, and it belongs to class number 5, the right si& of the satus bar will read 

'Transient # 13 of 50. Class: 5". 
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5.1.2 The File Menu 

Beforc discussing the user comumds in the Fie menu. the structure of the data in 

WC-MM wiil be explaincd For this pmgram, a document is defincd as a database or 

coiiection of transient models. The document complctely &thes the set of transients and 

aU pertinent parameter settings for the ciinwt classGxtion probiem, Since 7AC-MM is a 

SDI application. oniy one document can k opencd at one tirne. 

Fik: New 

This menu fimction aiiows the user to start a new document or database of 

transieats. It brings up the dialog box shown in Fig. 5.3 for the user to enter pertinent 

Fig. 5.3. Fie: New dialog box. 

iafomtion about the new document. Tht LAC-MM software can effectivcly handle a raw 

file size of up to 25000 samples aud sny masonable transient size within the niw me. 

Notice that various pamnetets for the b t a l  segmentation and feanut extraction can be 

spccincd by the user. Specifically, the window widtb, W. for the segmentation and for 
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faturc extraction can k set individuaiiy as disnissed in Chaptcr 3. Also. the number of 

ordercd pairs, K. for the LSR must k chown for both îbc segmentation and feattm 

extraction stages. Note that the sequence of timt incrcmuits bctwan the oidertd pain is 

fked automatidy as lincar for the segmentaîion stage and as dyadic for the feature 

extraction stage. The thrrshold for t r igge~g the start of the transient, s h m  Eq. 3.1, mut 

dso be seltctcd by the user. For the segmentation stage, the window spacing. W, is 

automatically set to 1. However, as detailcd in Chaptcr 3. W must be spccincd for the 

feature extraction stage in order to estebiish the amount of data nduction to be achieved. 

For cornparison pwposes. th software cm accomplish the data duction and 

modelling of the transient by a simple moving average iastead of using the mdtihctal 

method d e s c n i  up to this point. In this schemc, supersamples are generated by 

averaging a number of contiguous sarnples h m  the raw signal as defined by the window 

shift parameter enicnd for the feature extraction. Thus, the resuiting model is the same 

size as a muitifhclsil model with the same window shin parameter. To enable this 

modeilhg method. the value -1 should be entend for the number of Vanance pairs in the 

feaaire extraction. The segmentation stage of the system is not afBected in any way by 

using this alternative rnodelliag technique. 

File: Open a , Save , Save As 

These menu commands allow the user to load and Save the document. Whcre 

appropriate. the Wmdows 95 common nle dialogs are bmught up for selectirig a filename 

and wrifyiag the command. It shodd be cmphasizcd at îhis point that, in order to keep 

documents to a manageabk size, only the modelled tmsients and a path to the raw source 

fiie are saved in the document. If the user chooses to view any pm of the raw s o u m  file at 
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a later the, the program wiii automaticaily attempt to load it ~ r n  the origindy specified 

fîie path. If the source file is not avaiiable at this location, then it WU not be displayed on 

the screen, but the modtl of the transient WU stilI be availaôle. 

Fh: Wt a , - p t C v i t ~ , ~ ~ ~ ~  

Thce commands also perform their standard functions. Tbe print command wili 

produce a hiudcopy of either the upper or lowcr viewing window, depending on which one 

is cunently active. A simple mouse click in either the top or bottom window wi select 

either as king the active one. It is a g d  idea to check îhe p ~ t  preview before printing to 

ensure that the correct window is indecd selected The page sctup command allows the 

user to select the paper size, the paper orientation, the margins, the @ter, and other 

printer specifïc parameters. 

File: Recent File List 

After the TAC-MM software has been used several times on a single machine, the 

nle menu will contain the names of up to four documents most ncently used. Selecting 

any of these fdes will automatically load the document without having to search for the 

name in the Open File dialog box. 

File: Exit 

This comrnand wiJi close TAC-MM. Howmr. before closing, it WU check that no 

unsaved changes have k e n  made to the document and give the user an oppoRunity to Save 

the changes. 

5.1.3 The EriitMenu 

The Edit menu contaias the common Wmdows copy (to clipboard) function and 

cornmands for f o r g  various changes to the cumnt document These changes include 
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the ability to change any of the fractal parameters onginaiiy set for the document and for 

adding new tmnsitnts or dcIeting existing oncs from the database. 

Wt= ~ P Y  lmye a 
This cornmand copies the image in the uppr viewing window to the Wmdows 

clipboard as a device independent bitmap (DIB) for insertion into reports and other 

graphical or text-based prescntations. 

Edik Add lhmient 88 
Selecting this command allows the user to add a transient to the cumnt training 

database (the document). It brings up the common file selection dialog box and prompts 

the user to chwse a flename. Then, it will check to see if the file matches the expected 

fornuit Specifically, it checks for the correct number of 16 bit integer samples as & h e d  

by the user during the creation of the document The raw file should also contain specinc 

information about the transmission in a file trailer as per Appendix A to this thesis. Once 

the file is loaded into memory, the program commences with the segmentation and feature 

extraction process. Depending on the speed of the machine, the length of the raw me. and 

the parameters set for the variance dimension trajectory calcuiations, this process may take 

a few seconds. However, uniess the user chooses to change the k t a I  parameters in the 

future, this will be the oniy time that these calcuiatiom are performed on the given 

transient. Then, the user WU be pmmpad to enter the chus number of the transient for the 

neural network training. Finaliy, the modeiïcd transient, dong with other pertinent 

information from the fde trailer, is addcd to the document immediately foiïaMng the 

m i e n t  currendy displayed on the scntn. 
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Edk Ddete "ïimdent pI 

This command allows the uset to delete a transient fiom the cumni document 

When scIccttd, it will prompt the user to confirm the action and then deletes the transient 

which is cuicntly shown in the upper v i h g  window. 

Edit: Fractel Pmrametecs 

Since TAC-MM is primerily a nseareh tml, a fcanirt hiis k a  hcluded so that the 

parameters for the variance fractai dimension trajectories cm be easily modificd without 

starthg a new document. Chmsing this command brings up the dialog box shown in Fig. 

5.4. The checkboxes above the segmentation and the feature extraction parameters select 

Fig. 5.4. Edit: Fractal Paramttets dialog box. 

the grwp of parameters tbat arc to be changcd. Either one or both can be checkd. The raw 

file size and the transient size cannot be changed mies a new document is starmi, but are 

displayed in the dialog box as a reminder for determinhg the data nduction &sircd The 
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method of modeilhg the transients by averaging can again be selected by e n t e ~ g  the 

value -1 for the number of variance pairs in the fcaturc extraction. When the user selects 

OK. the update procc~s commtnccs and couid take severai minutes because the new 

models for each traasicnt must k individualiy coastructeâ fhm the original rasv files. It is 

cspecially time-consuming if new segmentation pararneters en sct because of the single 

sample window spacing in that stage. 1t is important to note that when the b t a l  

parametcm have k e n  change& the PNN will require training to adapt itself to the new 

transient models. 

5.1.4 The Vtav Menu 

The view menu contains the commands for changing the appearance of the 

window, the data that appears on the scmen, or the display modes of the viewing windows. 

View: Tmlbar, Status Bar, Split 

These are common Wmdows menu commands for selecting the appearance of the 

program window. If there is a check beside the Toolbar menu item, then the toolbar will be 

displayed. The same applies to the Status Bar selection. In their defauit modes, these 

feahues are sclected aud both the toolbar and the status bar are visiôle. Selecting the Split 

commaad allows the user to change the vertical position of the splittcr bar betwan the two 

windows to increase the size of either one of them. This function can just as easily be 

performed by cûagging the splitter bar with the mouse. however, the menu function has 

been rctaincd for standardization. 
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View: Segmentation Vkw / Thmient Merr 

A checkxnark btside eithet of tbese menu items selects the mode of the upper 

viewing window. As shown in Fig. 5.1, the defsiuit mode is Segmentation view. The 

Transient viewing made is shown in Fig. 5.2. 

View: Raw Sigtuü 

A checkmark b i d e  this menu item allows the raw signal of the current recordhg 

ta be displayed in the upper viewiag window* By dcfault, this menu item is checked, but 

the user may choose to disable it in order to inincase the display detail of the variance 

dimension trajectory. 

View: Fractai Trqjectory 

A checkmark beside this menu item dows the k t a l  dimension trajectory of the 

current recordùig to k âisplayed in the upper viewing window. By default, this menu item 

is checked, but the user may choose to disable it in order to increase the didisplay &tail of 

the raw signal. 

View: Zoomed Raw Signal / Clrssillcation Stats 

A checkmark beside either of these menu items selects the mode of the lower 

viewing window. As shown in Fig. 5.1. the default mode displays the mmed raw signal. 

The classification stats viewing mode is shown in Fig. 5.2. 

Vkw: Nat I( 

This command causes the next transient in the databasc to be displayed. 

Depending on the type of view seIected, either the segmentation process or the modcl of 

the trarisient will be displayad. If, howevtr. the original path of the raw file is no longer 

valid, then only the modeiled trartsient can be displayed. 
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View: Previ011s .I 
This command causes the prtvious ttansieat in the database to k displayed in the 

ViewingaruL 

Mew: ~eurb a 
This command bdgs up a didog box which allows tk user to enter s e d  

parameters to h d  a particular transient in the database The user cari choose to search for 

a spccifîed class number. transmittcr make. trammitter modei, transmittcr serial number, 

transmit date, or transmit the. 

5.1.5 ï k  Neural Net Menu 

The Neural Net Menu contains al1 commands which dircctly pertain to the 

operation and training of the PNN classifier. 

Ne& Net: ClrSsipI BI 
This command brings up the standard Wrndows dialog box for selecting a füe. 

When a fde is chosen, it is checked for conformance to the expected format and loaded 

into memory. However, since the transient may be completely unknown, misshg 

information in the fiel& of the file trailct is acceptab1e. Segmentation and modtIliag of the 

transient then t a b  place in accordance wiîh th parameters set for the cumnt document. 

Finally. the PNN classifies the rnodciied transient and cornputes a Bayesian confîdence 

level. At this point, if thc muit obtaincd at cach sununation neuron was equal to zero, the 

software assigns a mcaningless prcdicted class of -1 and a confidence level of 0.0%. This 

means that the unknom cese is dramaticaliy difllercnt h m  all cases in the test set and the 

PNN is unable to rcndcr a decision. Tbe rtsults arc displaycd in a dialog box as shown in 

Fig. 5.5. Notice also that the activation of tk winning neuron is displayed. If this value is 



Chaptcr 5: Sofiwarc Implementation and Verification 

below a certain thieshold, a meaningless pndicted class of -1 and a confidence level of 

0.0% will be displayed. The neuron activation infinmation is q u i r d  for selecting 

rtjcction thrcsholâs as wül be discussed lata in this section and in Cbapter 6. 

Fig. 5.1 PNN: Classify rcsuits dialog box. 

After the results are displayed, the user is given the option to simply accept the 

classification tesults or to add the transient to the cumnt database in order to increase the 

number of training samples for that class. When Add to Database is selected, the program 

brings up the dialog box shown at Fig. 5.6 in order to enter information about the 

transmitter if it did not exist in the raw file. If the traiismission is t . y  b m  an unknown 

Fig. 5.6. PNN: Classify - Add Tmicnt to Database dialog box. 
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source, then only the &îe and tllne will probably be included in the raw file and the user 

WU have to fiII in the otber fields if information is avdable. 

N e d  Nct: Batch ChsWy 

This fiinction is mothet which bas beca specificaüy designed to aid in the role of 

rescarcb tool for TAC-MM, It riUows ciassification of several untcnown transients at one 

timc and produces a rrport listing the rcsults achimd for each traasient. When the 

cornmaad is selectcd, the Windaws file dialog box is displayed and a batch List file (.blf) 

must be chosen. This fi, which must be formatted as per Appcndix A, specifies the file 

paths and correct classes of the transients to be classified. After the batch classification 

process has been completeâ, a report of the results c m  be displayed in the lower viewing 

window by selecting the appropnate viewing mode. The report may also be printed by 

selecting the Rint command whüe the batch classification ~ s d t s  arc displayed in the 

lower viewing window. Appendix E of this thesis contains examples of these printed 

reports. If a predicted class of -999 is show in the report for a certain case, this mms that 

there was no transient found in that particuiar me. 

Neural Net: Mode Parametem 

Since there cumntly exists some inconsistencies with the segmentation pnnrs in 

this system, a feature nferred to as ll~~ltimodal segmentation bas been added as an option 

to the classifîcation schemt. In mitirnodal segmentation. several possible m i e n t  start 

points are flagged in the raw nIe of an unlniown transient. Then. separate transient models 

are co11~tnictcd starting at each of these points and each one is classifieci individuaily by 

the PNN. The prrdictcd class of the modcl classifiecl with the hightst winniiig neuron 

activation level is chosen as the comt  one. This feature cm be enableci by selecting the 
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Mode Parameters menu item and choosiog muitimodal segmentation in the dialog box 

shown in Fig. 5.7- Then, the four paramtttrs listed in the dialog box must be set. The 

Fig. 5.7. PNN: M d e  P m e t t m  - s.ka Classification Mode dialog box. 

number of modes is simply the numbet of different fiactal models to be constructed for 

each unknown transient. This value should remah somewhat consemative as execution 

tirne may become a factor. The lower and upper ihresholds represent the value r used in 

triggering the start of the transient as pet Eq. 3.1. The successive segmentation positions 

are triggered by a linearly incrcasing thnshold bounded by these two values. For instance, 

if the lower threshold is set to 5, thc upper threshold is set to 6, and there is to be 6 

segmentation modes, then the successive ûansient modcls will k segmenteci using 

thnsholds of 5.0,5.2.5.4,5.6,5.8, and 6.0. Thc final parameter in the dialog box specses 

the minimum separation, in number of samples, btwten successive transient startpoints. 

This provides a maas to overcomt the potential of a rclatively extnme, yet fdse, change 

in the variance Aimcnsion trajcctory causing identical transient modcls ail triggcred at the 

samc spot. Thus by sethg the minimum separation to a sigaiticant value, the chances of 
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finding the correct transient start arc significantly imptoved, and fuahermore, it can be 

ensurrd that each mode1 is substantially di&nnt. 

Neurai Nek MtWze Sigmas 

This fiinaion begins the training pocesç d e s c n i  in Subscction 4.32 and sets alï 

of the PNN scaling pamcters to a cornmon value. &fore proacding with training 

though, the user b promptecl to provide a search range and the number of search points for 

the initial global search. The program autornaticaily switches over to the golden section 

0 . .  mmmmtion after compIeting the giobal searçh as defincd by the user This wül continue 

mtil successive ittrations ykld insignificant improvement or until it is halted by the user. 

Training to this stage results in the basic PNN demibed in Sections 4.1 to 4.3, except that 

the continuous enor function is used instead of the simple counting error function. 

Nemû Net: Opümize SIgQiis 

Selecting this command implemnîs the multiple-sigma PNN mode1 discusseâ in 

Section 4.4. A simple dialog box is brought up that allows the user to siart and stop 

conjugate gradients training or to rctum to other program operatiom. Rior to invoking the 

m d t i . a t c  optimhtion, though, the PNN scaling parameters must be initialized using 

the pmiously described menu fuaction. Once this minhhtion piocedurc beghs, it will 

continut until tbrce successive ittrations fail to yield significant improvcmcnt or until the 

user sclects stop. During this opthbation, regular progress updates afe displaycd ta aid in 

dttennining when sufticient aaining bas bcen completad 

N e a d  Net: Set Rejectim Tbmhdd 

This command allows the usa to set a threshold for nj&g ûansitnts that do not 

belong to any of the classes rcprescnted ôy the training set. This fmturc is critical in any 

-79- 
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practical appiication as a maos to avoid misc1assiryiag completely new transients. It is 

implemntbd duhg the ciassincation proccss by comparing the 1-t summation nemn 

in the network to the rejdon threshold befm normalization. In tbïs way, a strict 

cornparison cm be madc betwcen the two values and if the activation of the winning 

neuron is wt large cnough. then the case is rejcctcd. In a typical PNN implemntation, the 

rejection mcchanism imrolves thnsholding the Bayesian coniïdcnce, which provides the 

relative activation of the wiaaing newon comparcd to the loding neurws. Howevcr, the 

mchaDism implemented in TAC-MM penorms an absolute cornparison htcad of a 

relative comparison. Iliis is much more usefui in the typical situation where the training 

set is not mutually exclusive and exhaustive. Since the default setting for this value is zero. 

it must be initialized to some higher value before this feature becornes functional. 

5.1.6 ïk Heip Menu 

The typical fuactions found in a Wmdows Help Menu are not implemented in this 

version of TAC-MM. Future misions will k l y  indude information as it is presented in 

tbis chapter. Ho- tbere is one function, About 1'AC-MM , which can be 

selected to show the cumnt versian of the software. 

5.2 VeMcation of tbe System Sdtwllte Modules 

There are a total of 47 sourrc code files for TAC-MM as listed at Appendix B to 

this thesis. A brief o v t ~ t w  of cach file, in tcm of its content and purpose. is givcn in 

Table &1 at the start of the Appendix. To vem tbat the numcrid algorithsi coded in 

these files actually perform as expected, smral tests have ken  conductcd. Details of 

these tcsts wiii now follow. 
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5.2.1 Mulwactal Segmmtation anà Featum Ektruction 

Since the segmtntaîion and faturc eXtfEtCfion stages of TAC-MM are both 

implemcated using many of the same routines, t h q  could be verincd concmrently. F M ,  

the variance &ta1 dimension trajcctory caicuiation was checkcd for accuracy using 

signals with boum frectai dimtnsions. This startcd with a simple verifkation usbg a sine 

wave and white Gaussian noise gcnerated by the Park-Miiier irnplementation of a linear 

congmential mdom numba gencrator -21. These signals were mcasured at the 

expected b t a l  dimension m c a s u ~ ~ ~ n t s  of 1.0 and 2.0 rrspectively. However, these 

basic tests only CO- the most straightforward of the possible variance e t a l  dimensions 

and brefore do not provide solid evidence of functionality. To accomplish this, several 

signals with intermediate h t a l  dimensions were gcnerated using a technique refend to 

as d k c t  specnul filtering [Kins94c]. Specificaily, this technique provides an efficient 

means, using spectrai analysis, for spthesis of signals wbich exhibit fiactional Brownian 

motion (mm). In its implementation, a spectral exponent, b, is specified to geacrate fBm 

with a certain characteristic degree of persistcnce. The fiactal dimension of the fBm can 

be calcuiated using 

which was nrSt introductd in Chaptcr 2 for tbe closely relateci spectrum-based 

dimensions. 

The direct spectral f i l te~g aigorithm is irnplemented using a four step proass as 

follows (Kins94Cl: 

1. Gcneratc Gaussian noise on N points. 
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2. Calculate tfie discrctt Fowier transform of the Gaussian noise. 

3. Filter the spcctnim of the Gaussian noise in accordance with the desimi p. 

4. Calcuiate the inverse Fourier transform to obtain the fBm, 

Further details about this pmccss can be intcfpfcttd h m  the source code listed at the end 

of Appendix C to this thesis. 

To mify the scgmntation and faturt extraction stages of TAC-MM. 9 Werent 

fBm signals. spanning the range ktween 1.1 and 1.9, werc generated using the technique 

descn'bed above. Then, a new documnt was crrated in TAC-MM with the foilowing 

parameter settings: 

I .Fsatun Extracbion Wrianœ Pairs 
Featum E>dr#oon-~ndw shi(~ 

Fig. 5.8. Parameters for verifkation of TAC-MM variance diwnsion calculations. 

At the expense of processing time, the parameter settings for segmentation have k e n  set 

to the maximum values allowed by the program so that fiactal dimension calculations are 

as accurate as possible. The segmentation tbreshold is not important in this test and has 

therefore been set to its lowcst possible value to ensure that at least somc part of the raw 

signai is tagged for multifiactal mddtuiag. The parameters for the featurt extraction stage 

are set as typicai modeUing parameten to emphasizc the contrast ôetwcen the two stages. 
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The 9 fem signals were then added to the new document database so that 

segmentation and feature extraction c o u  be perfolmd on cach one indmdually. The 

calculateci fiactal üajcctory of each test signal is shown at Appendix C for both the 

segmentation and the featurr extradon stages. The variance dimension trajectories were 

then avcragcd to obtain a singie fhctal dimension, b ,  for each signal. Tbesc nsuits are 

prcsented in Table 5.1. nie standard deviation of the variance dimnsions caiculated on 

successive windows is also shown in order to provide a quantitative rcprtsentatiori of the 

ievei of variation exhibitcd dong the trajectory of the different signals. 

Table 5. 1 : Verifkation of fhctal dimension üajectory calculations. 

Analysis of the results shows that the caicuiatcd fiactal dimensions an much 

closer to the expccted k t a i  chcnsions near the middle of the intemai and tend to skew 

slightly tbwarâs the midâie at the extrcmes. Fi- 5 9  depicts this sLeMng e&ct more 

ciearly. This rrsult seems somewhat suspicious, especially since accurate fiactal 

dimension caiculations w m  previously achicved at the extreme edges of the intmal for a 
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1.0 1.2 1.4 1.6 1.8 2.0 
Expected Variana Dimension 

Fig. 5.9. Cornparison of expected and calcuiated fracta1 dimensions. 

sine wave and white Gaussian noise. The kegularities encountered in this situation are 

possibly caused by incomct variance dimension cdcdations, fBm sipals which arc not 

completely accurate in terms of their noise characteristic. or a combination of both of 

these factors. Since excellent resuits were achieved for most of the variance dimension 

calculations, especidy near the centre and at the exeemt ends of the interval, it can be 

concluded that the majority of th problem is with the -ai noise characteristic of the 

fBm signals in the test set This deduction cm be supported by a simple test where a fBm 

signal with B = 1.0 is generated ushg the same routine as the other signals. Theoreticaiiy, 

a signal consisting entirely of white Gawian noise, with Da = 2.0, should be pmduced. 

Figun 5.10 shows that tbe signal obtiiined h m  this procedure is obviously cornlateci to 

some extent and is -fore aot whitc Gaussian noise. Addiag this signal to the cumnt 
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Fig. 5.10. FBm signal generated using dina spectral filtering with $ = 1 .O. 

TAC-MM document yields Da = 1.88 in the segmentation stage and 1.89 in the feature 

extraction stage. which both seem nasonable fiom observation of the signal. 

Despite the pmious conclusion that the testing discrepancies were primarily 

resulting h m  inahquate test data, it wouid be somewhat presmptuous to state that the 

results obtahed pedcctly characte* the variance dimensions of the fBm signais in the 

test set Therc an simply too many possible parameter settings in the implementation of 

thesc variance dimension ~tlta~urcments to n u k  such a statement. It will be shown later 

that variations in the fracta1 parameters can have a signincant impact on the results 

achieved for dimension calcdations. Thueforr. it is k l y  that a smaii portion of the 

obsemd emr in the ppnvious test was caused by a lack of range depth in thc variance 

dimension calculation. To increase the @th of the variance dimension calculation would 

require increasing the window size and/or the numba of variance pairs. This wouïd, 
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however, be at substantial cost in tgms of piocessing t h e  and would not yield 

pmportionately better resuits. 

Given the imperfat nsuits achievcd during the mification of the variance 

dimension calculations, it is worthwhiIc to digres sornewhat and disniss the impact of 

this apparent problem. Fot the set of test signais, it is significant that th measured 

variance dimension increased as the value of decmd,  or es the signals becam more 

uncornlateci. Thus, we ltnaw that the measured resuits do reflect the relative dcgree of 

correlation for a &en signai, despite the possibility that they may aot indicate the exact 

fiactal dimension. For fiactd segmentation, this is sufncient since we are concemeci only 

with fiadhg niathe changes in a signai's comlation; the actual d a n c e  dimension is of 

no concem. For the feature extraction stage of our analysis, this is equally tme as long as 

the parametes for the dimension calculations =main consistent for a l l  of the models in a 

given database. In fact, for the firactal modehg, it is beneficial to work with a depth of 

dimension calculation which is l a s  than ideal in otder to emphasize the varying 

mul thc td  characteristics of a signal. 

The last test pedormed to v e w  the operation of the rnultifiactal analysis in this 

system was to prove that the dyadic sequence of the incnmcnts for the feature extraction 

is indeed more appropriate than t&e Lincar scquence uscd in segmentation. Referrhg back 

to Table 5.1, it is clear that the standard deviation of the fracta1 trajectorks obtained using 

feature extraction paramcters are sigaificantly higkr than the trajectorics obtained ushg 

segmentation parameters. Since feature extraction is intended to cmphasize the important 

characteristics of the signal, this is the desped effkct. It shows that these patamettrs allow 

a mechanism which is capable of npnsenting various feahins using variation within a 
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broader scde. However, the data shown in Table 5.1 is considerably biased to this effect 

because the depth of the h t a l  Wysis is much Iowa for the featute extraction thaa for 

the segmentation. L order to remove this bias, a new document was aeatcd such that alI of 

the fractal parameters, cxccpt the scquence of time inacments, were set idcnticaliy as 

follows: 

Fig. 5.1 1. Parameters to show con- betwcen dyadic and lincar t h e  inc~crnents. 

The same D m  signals were then added to the new document and the nsults obtained are 

shown in Table 5.2. Again, sharp contrast in the standard deviation of the trajectories 

Tablc 5 2  Contrasting dyadic and liacar time inmments for De caicuiations. 
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obtained for the segmentation and thc feature extraction stages is observed. It can 

thenfore be concluded that the dyadic scqucnce of time incnmnts is indeed more 

suitabit than a liacar sequcnct in this contai. Notice a h ,  as pmRously ailuâed to, the 

sigdicant change in somc of the dinir!nsion mcasunmcats ccsulting Erom the different 

parameter settings. 

5.2.2 Tkc P M  Classifier 

Venficatîon of the basic PNN classifier used in TAC-MM was a relatively 

straightfowad proccss. A set of 16 sinusoida1 signais was gentratecl for training the PNN. 

The sipals werc identical except for a phase shift such that the entire range of O to 21c 

radians was spamed by the signals in incrcments oflr18 radians. Each signal couid then be 

treated as an individual class because of its unique phase characteristic. Since the holdout 

method of PNN training requins a minimum of two cases h m  each class, a second 

identical set of signals was generated and white Gaussian noise was addecl to the new 

signals such that each one had a signal to noise ratio (SM) of 10 dB. Combiniag these 32 

signals, wbich repmented 16 düferent classes, a suf6cient training set was developed to 

verify the operation of the PNN. 

A new document was then crcated in TAC-MM with the following parameters: 

Fig. 5.12. Parameters fol verification of PNN module in TAC-MM. 
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It is important to discuss a few of the parameters setected above. Fit, seîthg the 

segmentation keshold to zero activates a feture of the software which d o w s  it to bypass 

the segmentation stage of this qstem. Iristead, each "traasitnt" is modelled staning at a 

position 114 the n u m k  of samples into the raar signal. This fc8t-m is aiticai in the 

vesification of the PNN module so that it can be isolateâ from the other modules and testcd 

separately. E q d y  important for isolation of the PNN moduk is setting the feature 

extraction variance pairs to -1 which, as previously indicaîed, replaces the -fracta1 

modeiiing pmcess with a simple moving average. Since the ffeture extraction window 

shifi parameter has ban set to four. the 2 W  sampies in tbe rnodelled part of the signal are 

miuced to 512 samples by the averaging scheme. The parameters indicated by an astcrisk 

in the above chart are insignificant due to the exclusion of the ftactal segmentation and 

modelling stages. 

After the 32 training signals were added to the document, the PNN scaling 

parametas w m  initiaihi using the default search range. W1thi.n a few seconds, the 

initialization routine had ended at an average e m  of 0.0, as calculateci by Eq. 4.19 for 

each training case. Also, it showed a total of zero misclassifications for the training set 

This is especiaîly signincant since, using the holdout mthod, the neural mtwork is 

classifyiag the noisy signals based only on knowledge of the dean signals and vice-versa. 

Such results could dtîhitely not have ban achievcd by a multi-layer feedforwd neural 

network given so little training tim! 

To pedonn the actual vaincation of the PNN. it was ncxasasy to produce a set of 

test signais which wouid not be used for trainhg of the network. This the. hawevtr, the 

16 sinusoicial signals werc gcnerated such that each one was virhially burieci in white 
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Gaussian noise at a SNR of -10 dB. Before discussing the mdts obtained, it is important 

to point out that the white Gaussian mise added to each signal within this data was 

synthesized h m  a unique Stquence of pscudorandom numbers. The sequence of 

pseudorandom numkrs wes obtsinad using the Park-Miller implementation of a linear 

congnientid taridom numkt gcnerator -1. Great care was taken to ensure that 

each signal, both in the eaining set and the test set. had a diffcrtnt sequeme so that the 

detaiis of the noise would rcmain completdy mtaningicss duriag classification. Testing 

the network with this set of signals yielded perfect nsults whercby each of the compted 

signais was classsed with 1ûû96 confidence leveL A similar test set was then generated 

such that each signal had a SNR of -15 dB. The massive deviation of thc signals in this test 

set h m  any of the original signals finaily caurd the PNN to fd. all  test signals in 

this set, the distance summation became too large and its negative expoaent was driven to 

zero as discussed at the end of Subsection 4.2.3. Apptopriately, the software yielded a 

meaningless classification result and displaycd zero confidence Ievel after each pndiction. 

Due to the penodic and weU-behaved nature of the previous set of test signais, 

there was no opportunity to v e w  the training of the advanced PNN features implemented 

in TAC-MM. Specifïcally, none of the fmtutcs within the signals wen any more important 

than others for classification purposes. Thereforc, no b e d t  could k rralizcd by varying 

individuai scaling parameters for each of the discrete elements of the input signal. To 

vert@ the advanced PNN structure and training mutines, yet another set of test signais was 

developed as shown in Fig 5.13. This set of test signals was especidly designcd to cause 

classification faüure ushg the basic PNN mode1 with ody one scaling parameter. The 

signal begins with unique white Gaussian noise followed by a relativdy low power sine 
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Fig. 5.13. Tcst signal gcnerated to cause the basic PNN to fail. 

wave which is characterized by its phase only. Finally, the signal ends with aaother phase 

characterized sine wave which has 10 times the power of the pmrious poztion of the 

signal. The siausoidai portions of the signal shown, whea considerd separately, are 

contaminateci with additive white Gaussian noise at 5 dB SNR. Examination of this signal 

suggests that. during the distance summation, irrclevant variations in the high-power noise 

at the start of the signal wouid completdy bury any characteristic phase ciifferences in the 

iow-pow.r sinusoida1 portion of the signai. F-0rtI the problem is compounded by 

the phase diffezenas and noise c o n ~ o n  of the relatively high-power sinusoid at the 

end of îhe signal. 

The set dcsigned to test the advancd PNN structure consistcd of 64 signals 

repmnting 16 diffcrent ciasses. Each class was a permutation of the 0, M. W4. 3W8 

phase shifts for the lm-power sine wave and the sam four phase sbif'ts for the hi@-powet 
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sine wave. Again, special carc was taken to wure that aii additive white Gaussian noise, 

as weU as the pure noise at the start of the signal, was unique. For each of the 16 classes, 

then was four signais Mth diffc~cot magnitudes of noise addtd to the sinusoicial sections. 

One of the four signais had no noise acûicd to tk sinusoidal sections and the other three 

had SNRs of 20 dB, 15 dB, and 10 dB. 

A new document was then w t e d  in TAC-MM with the following parameters: 

Fig. 5.14. Parameters for verifkation of enhanced PNN structure in TAC-MM. 

Kt is important to nview some of the parameters selected above. First, the segmentation 

threshold bas been set to zero to bypass the segmentation stage of this system and mode1 

the 'bnsients" statting et a position 1/4 the nurnber of samples into the raw signal. The 

transient size has k e n  set to 6000, which muins that the portion of the signal modeiled as 

the transient will have 2048 samples of pure white Gaussian noise, 2048 samples of the 

low-powet sine wavc, and 1904 ssmplcs of the àigh-powet sine wave. Also, the featue 

extraction variance pairs parameter is set to -1 to n=pIace the fractal modeiling pcocess 

with a moving average. Since th feahirt extraction window shift parameter is set to 30, 

the 6000 samp1ts in the modeilcd part of the signal am d u c c d  to 200 samples by the 



Chaptcr 5: Software Implernentation and Verification 

averaghg scheme. The paramcters indicated by an asterisk in the above chut  are again 

iasignificant due to the exclusion of the fractal segmntation and modeliing stages. 

The 64 signals in the training set were tben added to the document descri'bed 

above. The scaiing puameters werc init iabd using a comprehensiw ~earch range at 

Io00 points spread logarithmicaily ava the intanl from 0.0001 to 1000. Aher th global 

seerch and the single variable golden section minimilrition, the basic PNN mode1 was able 

to comctly classify, using tht holdout mthoâ, only 18 of the 64 training signais. The 

average emr across all training sipals was 0.7415. At this point, no attempts were made 

to test the mtwork with unknown signais as classification resuits would be certainly 

unfavourab1e. Instead, trainhg was continueci using the conjugate gradients multivariate 

optjmization scheme. Wlthin five minutes (431). the routine had 'leamed" appropriate 

scaling parameters and the PNN could corrtctly classify each signal in the training set 

using the holdout method 

To ver* that this network could comctly classify unknowns, a simila- set of 16 

signais was generated such that each of the two sinusoidal parts had a SNR of -10 dB. 

Once more, the leading and additive white Gaussian noise squences wezc unique for a i i  

cases. The network comctly classifieci each signai in the set with 100% confidence. This 

example cleerly demonstrates the powu of the enhancd PNN with separate scaiing 

parameters for cach input. 

One final set of test sigoals. identical to the previous exeept with a S N R  of -15 dB, 

was then gtnerated for verifying this network. In this tcst, oaly 6 out of 16 signals were 

classilied corrcctly, sigaifying that -15 dB is sgato ncar the ievcl of noise whue the 

classifier fails. Anothcr dtlibcrate failtue can be induad by atternpting to classify a 
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completely different signai h m  any of those in the eaining set. This was accomplished by 

using one of the sine waves generatcd for tûc vaincation of the basic PNN model. 

Attcmpting to classify with ont of tbtse completely UnLDown signals causai the negative 

exponent of aU distaace s~llllllations to k o m c  mo; produchg a maningless nsult with 

096 confîdenœ level* 

5.3 Smamu~r dChpter 5 

This chapter has demonstrateci the d u s  f«uures and limitations of the TAC-MM 

software package for analysing transmitter traosients. Details of the user interface, menu 

structure, and software implementation have been pmvided. Then, a comprehensive sens 

of tests was conducted in order to verify that the d o u s  computational mutines were 

functioning correctly. To accomplish this. specific stages within the transient analysis and 

classification schem were isolatexi and tested for predetermined resuits. In doing so. it 

was shown that the PNN classiner is a very powerfid and much faster alternative to the 

popular MLFN classiner. 

Chapter 6 will begin with an introduction to the data used for testing this thesis. 

Severai tests are conducted using tbis data and results are presented in the form of 

confusion matrices. F i y .  conclusions are made as to the success of ihis scheme for 

ciassiQing radio trammitter transients. 



Sino the fiindamental purpose of this thesis is to devclop a system which can be 

used to prcdict 8CCUt8tCIy the source of a radio transmission based on anaiysis of its 

trausicnt signature, the TAC-MM software package must be tested using more than just 

artificiaily gentratcd d m  sets. In this chapter, details of testing with a set of actual 

transrnittcr transicnts will be prescnted. F i  Section 6.1 pmvides a description of the 

capturing system, the nle format, and the composition of the set of traasients used to test 

this thesis. Then, in Section 6.2, particulan of the testing pmcess are discussed almg with 

a prcsentation of tbc nsults achieved for the various tests. This chapter closes with an 

analysis of these results in Section 6.3, focushg specificaily on the various confidence 

measures available for this system. 

6.1 The Thesis Test Set 

6 .  I Trmrient Captuthg System 

The set of transients used for testhg this thesis was captumi by the 

Communications Rcsearch Ccnm (Cm, Ottawa, ushg a system ~pccially implemented 

for this purpose by Toonstra and Kinsner at the Uniwnity of Manitoba ~bon9î& It uses 

an Icom IC-R7W communications ~cceiver and a SoundBlarter 16 sound cPd running on 

a PC. The S o d l a s t e r  continuously samples the output of the IC-R7000's discriminator 

at 44,100 kHz to 16 bits accuracy on its left c-1. 'Ihe signal is stomi in a mughiy 32 

kB (16,348 samples) circular buffkr until the systcm nceivcs a fnafkcr triggcr signal 



through the right channel of the SoMdBlaster. The marLcr is derived h m  the speaker 

output of the IC-R7000 and activates wben the software detccts a bnak in the squelch 

level kyond a OC- ihreshold At this point, the bu&r coUccts a finaï 8,192 samplcs and 

disengages h m  tbe collection pnness so that thc data can be writttn to disk for funber 

processiag. Each transient file is nemcd uniquely acconiiag to a scbeme devcloped by 

Kinsner. 

Sincc the trigger is very much dependant upon the squelch levcl, it cannot be relieci 

upon to capture a transient beginning at a consistent point in tirne. The continuous 

recording on the left chamel, howcvtr, pmvides a means to mhhize the impact of the 

unreliable markcr. Specifically, it provides sunicient data to enable the TAC-MM system 

to perform segmentation of the îmsicnts h m  the ambient channel noise More 

beginnllig the modeUing and classification pniasses. Notice that it would be intexesthg to 

develop a transient capturing system based on a d - t ime  rnultifiactal aoalysis as a 

îriggering mechanism. This might locate the transient at a relatively consistent point dong 

its transmission and eliminate the requirement for off-line segmentation as it is done in 

TAC-MM. 

6.1.2 The Tnursient File Stnrcture 

Aftet the transients were coilectcd using tbe system describcd above, they were 

storcd on disir in an unresoived circular bunir. W e  a transient did txist in all of îhe files, 

its start point could bc found anywherc withia the 16348 samples. Figurc 6.1 gives an 

example of this situation. This  type of file farmat would k vay  difncult for the TAC-MM 

software to analyze since there txists two incidents of nry shaq chaagt in the miance 

fractal dimension. The problem occurs when the k t  significmt dimension transition is 
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noise, as shown in the example, rather than the expected noise to signal 

Fig. 6.1. Transient in unresolved circular buffer. 

With the signal shown in Fig. 6.1. the start of the transient cari be locaîed roughly 

using visual inspection. Since TAC-MM ody requïres that the transient be pfcceded by 

channel noise for a minimum of 114 the duration of the file, realignment of each signai was 

performed visualiy so that the transition from noise to signal accwccd near the centre of 

the füe. Thn, cqual portions were bwicated fkom the start and the end of each file to 

obtain a signal 8.192 samples in sizc, with the üansient beginaing approximstcly in the 

centre. This procedure was performed dclikaîcIy to obtain a smallcr size signai, while 

ensuring that adquate noise was included in the file. Ezamples of these tnincated fîles cm 

be found at Appcndix D to this thesis. 

Note that the TAC-MM software wodd work fine using îhe larger signal, but since 

rnanual adjustmnt was king conductecl anyway. the size of the file was darrased to 
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impmve the spctd performance of the f iacd segmentation process. It shouid M e r  be 

if the circdar bu&r had k c n  resolved at the timc of data co11t~tion by the acquisition 

software. This wuid have bcen accomplishcd tnvially by writiiig the bu&r to disk starting 

at the location of the data pointer w k n  the next saaiple was to have becn writttn as 

shown in Fig. 66.. 

Fig. 6.2. Rcsdution of circular buffer containing noise and a transient 

6.1.3 Composition of the Test Set 

The set of transien& used to test this thesis were colIected by the CRC in Ottawa, 

Ontario. They used the acquisition system d t s c n i  in Section 6.1, and the nles were 

provided for this research in their original, umsolved format as s h o w  in Fig. 6.1. The set 

consisted of 415 transients, &tri%uted approximately wenly arnong eight different 

tninsmiaets. Specincaily, thcre werc thr# KenwOOd modcls, thne Force mcxiels, and two 

Yaesu models as shown in Table 6.1. A b  shmm in Table 6.1 is the c h s  identification 

number assigncd to each transmiticr model. This number is for use by the classification 

stage of the system. A single txsmpIe of segmentation and feature extraction from each 

transrnitter cm bc found at Appenàix D in this thesis. The images shown have ken 
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processed by TAC-MM, using the paramcters for the fkst expriment discussed in the next 

section. 

Table 6.1: Transmitters used for tcJting the &sis. 

6.2 'IèstfngandResoits 

There was a total of threc different training sets constnicted using the set of 

transients dcscribcd above. The @ce training sets cliffer in the number and seleztion of 

transients used for training the PNN as opposed to the transients held back for validation 

purposes. Afk  conduchg classification tests with the thrce different training sets, 

separate experiments were p e r f o d  to test the PNN's rejection ability, the multimodal 

segmentation ftolture, and a new transformation of the fractal modeIliag pnicess. AU tests 

were conductecl using TAC-MM on a 133 MHz Pentium PC, with 48 MB RAM, undn the 

Microsoft Windaws 95 operathg system. 

6.2.1 TmUIing Set # 1 (Fm 20 Transimts) 

In this experiment, the het 20 traositnts coîlected for each transmitter were usai 

as the trainhg set. This selection of transients represcnts less than half of the available 
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transients and has a composition which, king the first 20 transients coilected, reflects a 

situation as it would Iürcly occur in a practical application of this systnii. A new document 

was created in TAC-MM using thc & f a t  parameters for the soAw8ct. This sets the raw 

nle sizc to 8192 sarnplcs and the kngth of the transient to 22048 samples. The other 

parametefs, for the fktd segmentation and mOdtUing pmœs~t~, arc insignifiant at this 

lime as they Mi k modititd aftcr som initial tcstiag is pcrformed, Tbcn, the 160 

tmsients for this trainhg set werc adâed to the document iadividudy dong viïth the 

class identification n u m k  for each ont, This left a total of 255 ûansients for the 

validation set. 

Before results of this experiment could be assessed in brins of the PNN's 

classification ability, a sufticient set of &ta1 paramters for both the segmentation and 

fcahm extraction stages had to be found. Shce thce arc six separate parameters to set, a 

mthodology for isolation of som or one of the variables was ntctssary. Using a 

systematic approach, a set of good, yet perhaps not optimal, parameters was found. The 

approach uscd in these expcrimtnts starts with isolation of the segmentation stage by 

eiiminating the &ta1 madehg of tbe traasjent and replacing it with the simple moving 

average. The amount of data duction selected uskg this technique was qual for ali 

trials, at 128 supersampIts. to ensure sufncient transient cbanmcnstics w m  ~ittaincd. h 

this rnanner, suitable parameters for fiactal segmentation could be found bcforr aaemptùig 

to find paramtas for the fe8turt extraction. 

As with any oph'miiration or selection of pammters, an objective measurc of 

performance must bc utilized. For the se&mcntation stage of this cxperinicnt, the 

perfonnaact measme was a combination of visual inspection and PNN trials. It should be 
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noted, despite what may k implicd by a visual performance assessment, that this 

approach is by no means subjective. hstead, the ability to inspcct the data M y  

provides a rapid maris for distanihg cleariy unfavourablc resuits. For instance, if the 

depth of the fractal d y s i s  is too l m ,  such that signincant variations are noticcd before 

transition points, then the usa is able to discarci this aial without going through the neural 

network testing proass. Another example wouid be if the segmentation thrrshold is set 

too lm, the user can clearly sce that false Ctaiisients are king t r i g g d  at dinerent points 

dong the ambient channel noise. When rcsults appear to be satisf8ctory, the performance 

measurc becomes the average m o r  of the PNN when it is ta~ked to leam the training set. 

Afier suitable segmentation parameters have been found, the focus could be shifted over to 

selection of parameten for the feature extraction stage. This ptocm would also select 

parameters with respect to the PNN's average training emr, but additionally, batch 

classification rcsults for trarisients in the validation set were also considmd before endhg 

Conducting the parametnc search descnaed above, the 

yield the best results is as follows: 

configuration found to 

Fig. 6.3. TAC-MM p m n ~ t c m  for testing Training Set II .  
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Since an exhaustive search was not con du^ no claim of optimality wül be made for 

these parmeters. Howmr, ihcy do provick a suitable balance ktwccn spee4 data 

reduction, and favoufable ciassification d t s .  Notice that the transient size was rcduced 

from 2048 samples d o m  to oniy 32. AAer selecting these parameters, the PNN was 

traincd up to the initiakation stage only. with all scahg patameters set to the same value. 

This training tmk 16 seconds to completc. At this level of training, the PNN muid 

co-tly classify 147/160 transicnts in the training set, using the holdout mtûodI More 

importantly though, it was able to conectly classify 243/255 traasients in the validation 

set. This npresents a suaws rate of 95.3%. It is also notable that the 255 ûamients in the 

validation set werc segmenteci, modelIed, and classificd in 131 seconds or in about a half 

second each. Details of the classification resuiîs can be found at Appendix E of this thesis. 

For the present the, the confidence measwes and winning neuron activations show for 

each validation case should be disregadxi as tbey wiIl be discussed in Subsection 6.24 

and in Section 6.3. 

A more descriptive aaalysis of the mdts of this experiment can be deriveci h m  a 

coanision ma&, which is a standard tool used for testhg any type of classifier. The 

matrix shows the various patterns of misclassification that are obtained from a validation 

set. Table 6.2 is the confusion mstrix with the results achimd nOm this experiment. 

Notice tbat the confusion matrix has one row and one mlumn for each class. 

Interpretation of the matru is straightfomarcl. For instance, the numbcr in the Class 2 row 

and the Qass 1 column is the n u m k  of cases that are tnily memûers of Cîass 2 but have 

bcen classi6ed into Qass 1. Ideaily then, the confusion matrix for a perfect classincation 

experiment wodd bc saictly diagonal. In this confusion matrix. the m a  within the thicker 
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Table 6.2: Coafiision matrix with results h m  Validation Set # 1- 

lines represents ali of the ûansmitters fiam the same manufacturer. A misclassincation 

into any of the classes h m  the same manufktmer is certainly more crsditable than a 

completely inaccurate result. 

From this expetiment, it can be seen that the transients that were most often 

classined incomctly were h m  the Force 1 and the Kenwood 3 traasmitters. How&r, it 

is signincant that ali of the misclassifications in the Kenwood 3 category were mistaken 

for trsnsmitters b a t  by the same manufactwer. In fact, out of the total 12 

misclassifications, only two of them werc classfied outside of the comct manufiicturtr. It 

is also signifïcant that the transmitters rcpresentad by Class 4 and Class 6 were classified 

pafcctly eveq tirne- Furtbermore, resuits fiivouring Class 3 end Clas 7 are also 

noteworthy. with only one misclassification each. A conclusion tbat CM k drawn from 

this anaiysis is tbat dccisions fawuring thcse cIasses CM be accepted with high 

confidence, rcgardltss of the Baycsian confîdence level dculatcd by TAC-MM. 



A final note wiil k made about the training process before pfesenting mdts for 

the 0 t h  experimcnts. It was previously noted that, in this expriment, the PNN was 

initializd only, and that all of the scaling parameters werc set equai. It was fomd rhat 

optimization of individual scaîing paratncters, whilt grratly reducing the classifîcation 

a m r  for the training set, did not sigaificantly i m p m  the classification ability of the 

network when deaüag with the validation set. In fact, optimïzation of the scaüng 

parameters causai the network to produce conficience levcls at or n#it 10096. even for 

incomct classifications. This is obviously an undesirable side.effect as it nnders the 

aiready invalid co&dence measmes use1ess- 

6.2-2 Tminhg Set # 2 ( . m  Seleciion of 10) 

In this expriment, 10 transients h m  each trammitter were select& at m d o m  to 

make up the training set. This Ieft a total of 335 transients for the validation set A similar 

paramtnc search was conductcd as d e s a i d  in thc previous experiment. Since the s a m  

transients aze being used, just in differcnt set combinations, the parameters selected for 

segmentation in the prcvious expriment were again found to be successful. However, a 

slight change ws made in the aumber of variance pairs in the feature extraction stage. A 

value of nine was uscd instead of eigbt as for the pvious experirnent. Initially, this 

dinerent setting seems somewhat suspicious because the sam set of ttansients bave been 

mode11ed and compartd, with the only differcnce king the composition of the trainiag set. 

However, fûrther analysis shows that a slightiy di&rcnt PNN scaiing parameter was 

selected k a u s e  of the dinercnt training set. This, in turn, caused the PNN to react 

di&rentIy to the M e n n t  mode1 parameters aiid justifies the slight variation. 



As with the prcvious exptttolent, trainhg was only conducted to the initiakation 

stage to prevent ovutraining of the network and kause  fiirther trainhg did not improve 

performance. The mults obtained for the validation set are iisteci at Appndix E of this 

thesis. and the confusion mstrix is shown in Table 6.3. As cxpected, the ~Iassification 

ability ushg this training set was substantially I o w a  with only 306/335 or 913% of 

transients ciassifiw correctly. Tbis This of coursc. atir'butable to the d e r  size of the 

training set and the commensuratcly lawa l ikei ihd of each validation case Gding a 

match in the training set. 

Table 6.3: Confusion matrix with rcsults h m  Validation Set # 2. 

Examination of the nsults from this cxperiment shows tbat out of the total 29 

rnisclassi6~ati~)ns, only seven of them wen complctely wrong in terms of the 

manufhcturicr of tbc traasmitttr. A&itiolltlUy, 14 of the em~d w u e  c d  by confusion 

between the Force 2 and Force 3 transmittem. This is significant because the clsssification 

nite of the cntk test set is hcavily biaced by a common confusion between ody these two 
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tran~mittcrs. Equay signifiant is that the classification rate for two of the transaiitters is 

perfcn The~foct, h m  tbis analysis, it can be concluded thet nsults in favour of Class 4 

or Qass 7 can be acceptai with much more artainty than those for Ciass 1 or Class 2. 

Transients f'rom Ciass 6 aiso produad arcellent d t s .  

6.2.3 Tihing Set X 3 (Ran&rn SeIe~n*m of 30) 

This training set consistcd of 30 ûansients fkom each class, selecttd mdomly, 

leaving 175 transients in the validation set Again, the same parameters for the 

segmentation wcrc found to bc moat effkctîve. Aiso the pafamctcrs used for f e u  

extraction werc identicai to the ones seiected for Training Set # 2. In this expriment, the 

network was iaitialized using the single scalipg parameter as in the other two experiments. 

The rcsults obtained for the validation set are lisucd at Appendix E to this thesis and the 

confusion matrix is shown in Table 6.4. 

Table 6.4: Confusion matrix with xesults b m  Validation Set # 3. 
1 

ClassO Class7 

1 

20 

Class5 

2 

ClassO 
I 

Class 1 

aa~s 2 

Class 3 

Class 4 

Class 5 

Class 6 

a a s s  7 

Class6 

2 

Class 1 

19 

1 

18 

2 

- 

Uass2 

1 

21 

Class3 

18 

1 

Class4 

20 

2 

21 

28 

- 



The classification ability, using this validation set, was slightly lower than that of 

the first set with 165/175 or 94.3% of traasients classined correctiy. This is somewhat 

surprising conside~g that a largcr training set was used These d t s  demonstrate that, 

in addition to the numbu of cases in the training set, the quality of the oaiaiag set is also 

important I&aily, the trainiDg set w d d  be stn~ctured such that ail possible patterns for 

each class arc rtpzc~cntcd. However, dcspite that the b a t  way to ensure this is to increase 

the size of the training set, this docs not parantee absolutc success, especially in an 

environment where the signals contain a significmt amount of noise. Therefore, since this 

training set is substantially dinerent hm, rather than a simple addition to the f h t  training 

set, it is possible that the mixture of transients is not as compzchensive as it couid be. The 

mdts from this experimcnt, wben cornparcd to those achieved in the h t  expriment, do 

nfiect simiiar emr patterns, though. Specifically, anaiysis of the validation set results at 

Appendù E shows that tive tra~sients misclassincd in this experiment were quivalently 

rnisclassified in the fint experiment. Since these same tniosients are consistently 

misclassine& it is iikely that this is caused by segmentation faults where either too much 

noise precedes the transient or sipnincant characteristics have been truncated. It is 

noteworthy that Classes 4.6, aad 7 continue to produce utcelient nsults. 

For this experiment, training tbe individual scaling parameters did yield better 

classification rtsuits h m  the validation set. Aftet the network was initializcd, two 

iterations of the conjugate gradients algorithm were periormed in about 12 seconds. This 

bmught the training set cmr from 16 misclassincations down to m e n .  However, more 

importantly, it improvtd the classification rate of the validation set to 168/175 or 96%. 

Specific nsults for this test can aiso be found at Appcndix E. The sigaincantly increased, 



and perhaps m n  more invalid, codidtnce Itvtls shouid be noad in this data for most of 

the test signals. 

6.2.4 RejeCtidll of Unkumnr T-icns 

An important measme of a classifier's me&, in addition to its abiiity to classify, is 

its abiiity to ncognize when it c a ~ o t  classifjc Idcaily, a chifier shouid rtjcct any case 

which does not belong to any of the classes that it bas trained with. Givm the architecture 

of the PNN, whue an unlmown case is cornparrd to aU known cases and the closest one is 

automatically selected, it is impossible to have an output newon represcnt the reject 

catcgory. However, thae are two simple mchanisms which are commonly used for 

deaihg with this situation. The f i t  techaique lus already bcen discussed as an autometic 

rejection when the distance summatiom of Eq. 4.11 becorne so high that the negative 

exponent goes to zero for all cases. This would oniy han* exame cases thou@. 

AIternative~y, the computed Bayesian confidena measure might be used, despite 

that it is invalid because the trauiing set is obviously not exhaustive. A simple thnshold 

can be set where if the confidence is below that value, that case would be put in the mject 

category. Since the pnsent implcmentation of TAC-MM has no built in Bayesian 

confidence thresholding mechanism. the user would be responsible for establishing and 

fiagging these casm immediately aftcr classincation. 

To test the Baycsian confidence thnsholding xœchanism, the fmt training set was 

modifieci such that ali casa b m  two of the transmitters were n m d  SpecikaUy, the 

signais h m  the Yaesu 1 and Ymu 2 traasmitters wcrc nmovcd from the training set, but 

not frwi the validation set. The original aactal parameters estabiishcd for this training set 

were rctaincd and the confidence tbteshold for flagging a rejectcd case was to be set after 



analysis of a significant amount of data However, a qui& scan of the classification results 

showed thet this =jeCaon mechanism faikd miserably in this test The PNN's winner- 

t e - a l 1  design falseiy chsifieci cvcry Yaesu 1 aad Ywu 2 transient with daunting 

conviction. 

h ta tb probkm encountcrcà above, a n w  rcjtction mechanism was 

specially designcd as descn'bod in S u b d o n  5.1.5 of this thesis. Briefiy, iiistead of 

thresholding the BayeJian confidence mcaswe, the winallig sunmation neubn is 

thresholded before nonnalizacion. Using this approacb, a transient can be rcjected if the 

activation of the winning neuron is too low, regardless of the activation level of the other 

neurons. To test this new technique, the same training set and parameter settings werc used 

as descriid above. After the nrSt triai. examination of the winning neuron activations in 

the batch classification report sbwed that the rejcction threshold shouid be set at 10-*O. 

The nsuits for the subsequent expriment are shown in Table 65, and âetailed at 

Appendix E. 

From Table 6.5, rcsuits for the six traiisients in the training set show tbat 176/187 

or 94.1% w m  classihi c o d y .  This is comparable to mults achieved in the h t  

experiment, exccpt that three of the transients niisciassifkd in the nrSt exprrimcnt have 

now been rejocted This is cspecialiy signifiant because bach of the transicnts clarsified in 

the wmg m a n u f ' r  in the h t  atprriment clas an rcjcctcd. Therefott, with the 

exception of the njected casess these d t s  nfiect pezfect classification of the traasicnts' 

trabsmittcr rnanuf'huiers. Mo= n h t  to this discussion, thougâ, is tbat m r y  Yaesu 

transient has becn appqybttly bankihed to the mjcct cakgory. 
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Table 6.5: Confusion matrix with rcsuits from test for rejection ability. 

6.2. S MdtimOclclI Segmentation 

In this set of experiments. the multimodal segmentation option of TAC-MM was 

tested. For cornparison purposes, the initial expaimnts using the three different training 

sets were rcpeaîed with identical parameter setthgs, except that multimodal segmentation 

was used. The mode panmeters were set for fbe di&nnt segmentation points, spaced 

linearly between thresholds of Jmn and eight, with a minimum separation of 35 sarnples 

between successive transient start points. In di experiments. the PNN was trained to the 

initialization state only. 

For the first rrainiag and validation sets, mults are shown in Table 6.6 and aic 

&tailcd at Appendix E. Ovcrall. significant improvcment is setn with 247/255 ot %.9% 

correct classifications within the validation set. The confusion matrix shows that only one 

trausient was classificd outside of the correct maaufactwtt category. Additionaliy, three 

classes of ~raasitnts weie classined corzcctly evay the. 
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Table 6.6: Confusion ma& h m  Validation Set # 1 using multimodal segmentation. 

For the second set, results arr shown in Table 6-7 and are detailed at Appendix E. 

Again, si@cant improvement is s a n  over the first experhent with this training set, 

with correct classification of 311/335 or 92396 of the traasients ia tbis validation set. 

Referring to the confusion m a e  and the classification reports at Appendix E, only the 

single Force 1 transient is in the wrong manufacturer category again. ûthecwise a i l  

transienu are at least classified within the correct rnanuf&cturtr* It is also signifïcant that 

16/24 misclassifications arc between the Force 2 and the Force 3 tcansmitters. 

Classification rcsults for the third set arc shown in Table 6.8 and are detailed at 

Appendix E. Using thû training set, thc PNN c o d y  classifieci 167/175 or 95.4% of the 

msients in Validation Set # 3. Again, the same Force 1 transient is the only one thM is 

classificd in the wrong manufacturtr category. Figure 6.4 shows that this particular 

m i e n t  has two abnormal spikes which cause its dimension trajectoq to be &ectcd 

significantiy~ However, despite the high confidence levels shown for tùe incomct 

classi!ïcations of this transient, individual classification trials show very low winning 



Table 6.7: Confusion matrix h m  Validation Set # 2 using multimodal segmentation. 

Table 6.8: Confusion ma& h m  Validation Set # 3 using multimodal segmentation. 
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Fig. 6.4. Consistently misciassined Force 1 transient. 

6.2.6 Transftormation of F-1 Tmjectory Model 

During the testing process, an implemcntation error caused a transformation of the 

muitifiactal model which produced sigaificantly improved nsuits. Specifically the 

nurnber of variance pairs was accidentaiiy set, coatrary to the limitation of Eq. 2.22, such 

that the spacing between cornparcd sampks could exceed the limits of the window size. In 

this case, the routine inadvertently set V~F(AB)~ to zero for a i l  values of k that caused the 

dyadic spacing (29 to excced the whdow size. Then, a ftatllre initiaily intendcd to avoid 

unneccssuy calculations w k n  Var(AB)k quds am. caused the pmgmm to ckrcment the 

index for the summations in the U R  algorithm. However, the multiplicative K in two 

terms of the U R  algorithm was not decremcntcd. Iaaefore, if the number of variance 

pairs is set one higher than it shouid theo~~ticaüy k, the least squares ngnssion is 

transfo4 into 



which produces significantly M e n n t  nsults than its original fom (Eq 2.26). Figure 6.5 

shows the di&cnce in the calculatecl trajectorks using this transfomtion. The most 

Fig. 6.5. Cornparison of (a) muîtifiactal mode1 and (b) transformd model. 



O ~ V ~ O U S  diaetence is that the transforrned dimensions are lower than the h t a i  

dimensions. For this set of signals, the h t  summation in the numerator of Eq. 6.1 is much 

larger tban the nrJt term of the denominaor. This incrcascs the magnitude of H and, 

r~fefig back to Eq. 2.20. d#xeascs the value obtaincd for D, 

The overall reduccd vaiues in the transformed mode1 do not, however, mnstitute an 

expianation for irnpmvtd classification mults. Furthcr analysis of Eq. 6.1 and Fig. 6.5 

shows that the transfod model attenuates the effect of highly uncomlated poaion~ of 

the signal. Since a slight segmentation error could hclude inclevant chaiinel noise at the 

beginning of the transient, dehiirate aitwuation of this noise during modeiiïng could 

definitely assist in the classification process. At the same the,  while nducing the impact 

of imlevant noise, it is clear that the transfonned model =tains the important &ta1 

characteristics of the signal. 

The acnial results acbieved using the transfomed &ta1 mode1 wiii now be 

presented For these experiments, rather than setting the number of variance pairs to an 

unreasonably high number, the TAC-MM source code was modified to deiiberately 

implement Eq. 6.1. This aüows objective cornparison of the modeilhg methods using 

identicai parameter settings. Each of the first thnt urperirnents was rcpeated using 

identicai fiactal parameters and the transformai ftactai modcl. Muitimodal segmentation 

was not used and, again, eaining was only prfomwd up to the Iliitiabtion state for each 

expesiwnt. As showa in Table 6.9, significantly irnpmvcd results c m  bc seen for each of 

the trajning sets. 

Fuaher testing with the tmmforiiled fractal model yielded some surprishg results. 

It was found that a M e r  reduction in data she could k achieved while significantly 
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Table 6.9: Classification CCSUits using tra~sfoEed -ta1 model. 

1 Validation Set # 1 1 243/255 (95.3%) 1 244/255 (95.7%) 1 
- . - - - - - - - - -  - 

[ Validation Set # 2 1 306B35 (91.3%) 1 3 l4/33S (93.7%) ( 
1 Validation Set # 3 ( 169175 (94.3%) 1 170/175 (97.1%) ( 

improving classScation rates. Specifically, thc thne training sets were tested using the 

b. - 
; RawFikSizs ; L .  
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Fig. 6.6. TAC-MM parameters for testing eight element transformd -1. 

Notice that with the window shin parameter set to 256, the fracta1 model has been reduced 

from its original 2048 samples to just eigbt elements. This is a sigoincarit achievement in 

terms of storage nquirements and PNN processing tim, allowing for a much larger 

database of transients. The classification results achieved for these expcrimnts are 

summarirrA in Table 6.10. 

Table 6.10: Classification msults using eight element mode1 size. 

1 Vaiidation Set # 2 1 3 l8/W (94.9%) 1 267/335 (79.7%) 1 

- 

Validation Set # 1 

T d o d  
Fracta1 Mode1 

247/255 (96.996) 

Original 
Fractal Mode1 

2191255 (85.9%) 



Fit, it can k seai that with these parameters, the eaosformed k t a i  models 

pcrform comparably to or baier then tkir similsr, yet las compact, countcrparts. This is 

l h l y  attributable to the les  detailcd modclling of mise at the start of cach transient, thus 

furthtr nduchg thc effet of siight inconsistcncies in segmentation. Thereforc, these 

bemr rcsults arc 8chievad by masking details which arc prominent, yet insignincmt for 

classification. For cornparison puqoscs, Tabk 6.10 also shows the classification muits 

using these parameters for the Onginal aactsl modcUing proass. Rom this compdson, it 

is clcar that the original Wtal models. which tend to place more emphasis on noise. 

perform considerably worse than the transformed madels at these parameter seüings and 

this leve1 of data reduction. 

63 Confidence Measpres and tbe PNN 

Observation of the classincatian nports gtnerated in Appendix E show that the 

confidence masures calculated by TAC-MM for this database of transien@ are virhially 

meaningless. As previously àiscusscd, the= are sevual reasons for this, including the 

theomticai liniitations that none of the training set pmutations are mutually exclusive or 

exhaustive. From a computational point of vitw, tbe contcmptuously high confidence 

levels setn for some of the misclassifications are causcd by a combination of the PNN's 

winner-take-ail architecture and the Gaussian weighting fuaction used in its Patzen 

density estbation. During training of the PNN. the scaling pmmetcrs arc inclincd toward 

bccomiiig as small as possible, whüe stili being able to classify similar cases, such that the 

total e m  is d u d  Howewr, ihis causes the Gaussim wcight hctions to bccom very 

nam>w and, if a case is encounterd that is not close to any of the training cases, thw the 

distance summations tend to appmach zero for all possible classes. In this situation, the 
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sunmiation neurons can easily adopt variations betwecn lowl* and 10-" with only s d  

diâerences in the Euclidean distance summations. Then, w k n  it coms to sclecting the 

nemn with the highest activation, the one that is seiecteâ tends to k disproportionately 

larger than the otha neurons and a very bigh confidence lcvel is produced, 

The computationd probkm d e s n i i  above is au inhennt limitation of the PNN 

architecture* It is especiaily p d c n t  when the PNN exmuters cases which arc uniilce 

any of the cases in the training set. Howevtr, this is not a wciidocwncntcd problëm and 

certainly warrants fiutber nscarch so that a convincing solution CM be found. One 

possible solution is to select a dinercnt weighthg fiinction than the Gaussim that is 

sirnilar in shape, but does not eqmnentially go to wo at its extrtmes. This would give a 

better relative measure of activation between possible classes and would Iürely produce 

lower confidence levels for a i l  decisions- 

Another potential solution might k found with an approach similar to that of 

Subsection 6.2.4. wherc the absolute valut of oniy the winning neuron was used to tngger 

rejectîon of a decision. It seems logid that this idea could be extendeci, for a given 

training set and PNN at a certain traincd stMe. such tbat some sort of exponcntial mapping 

fhction can be determineci betwecn the activation levcl of the winning ncuron and the 

coveted d m  of percent confidence. This type of exponentiai mapping sctms more 

logical than what is cumntly used and would not n q u k  chaaging the Gaussian weight 

function which othcmise produces such &vourable results. 

Despite tbat the cornputeci confidence m&asms for this training set arc not relevant 

for whatmr nason, the enperimental classification msuits themsclves cm be used to 

make a statement of corrfidence. A rieasanable &finition of confidence in tb contefi is 
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the PNN's pmbubility afm4hig  a comct &cision Wast93J. W1th this broad &finition, 

the relative or absolute activation levd of winaing neurons cannot k tegardeci as the only 

possible meam for measuring coafidclre 1eveis. For example, consider a set of data with 

wbich, for several dinuent permutations of trauiing sets and VaIidation sets, a classifier 

consistentiy pdonns at 95% accutacy. Thus, assuming that a M a r l y  rcp~sentative 

training set is always wed, the probabiiity of the PNN making a comct decision should be 

0.95, with no other information given. Then, for an individual classification triai, if the 

activation level of the winning neuron is consi&d, the 95% confîdence lcvel can k 

m e r  adjusted accordingIy. In this context, the nsuits achieved in tbis thesis show that 

this system is very accurate. It produces results with coafidtnce levels between 90% and 

979, dependhg on the training set, the winning neuron activation, the segmentation 

options. and modelling technique. 

A final point should be made about the traasients analyscd in this thesis. 

Obsemation of the ambient chaMcl mise in îhe raw signals at Appendix D shows that the 

capturing system exhibits a nonlincar charactct2stic. It is possible that this nonlinearity 

would have an effect on the nsults obtained using tbis classification system. For this 

réason, every effort shouid be made to capnue unknown traasients using the same system 

that was used for caphiring a given training set. Aittnratively, and prhaps more 

favourably. a lincar capauing system couid be developcd and irnp1eraented. 

4 4  Smmnsr~rofCbiptrr6 

This chaptcr kgan with a brief description of the tramnitter ûsnsients used for 

testing this thesis. Some detaüs of the acquisition, prepl~ccssing, and composition of the 

training set w e n  provided. Then. severai tests wen conductcd on the data and relevant 



results wtrc prrsented in confusion matrices. It is sigaificmt that in every test, the system 

implemmteû by TAC-MM comcîiy classihi ovet 90% of ail tninsients in the validation 

sets! In a separate test, it was shown that, rather than rtsorting to m*sc1assification, the 

PNN is highly capable of njccting cases which arc not part of the training set. Also. it was 

shown that the muitimodal segmentation scheme can improvc classification rcsults. The 

h a i  exptriment showed that an intercsting transformation of the 6actal modelling 

process could simuitancoudy impmve both the data nduction and the classincation 

results. Tbc chaptcr cnded with a discussion on PNN confidence measures. Some 

suggestions werc made for imponDg the standard technique and spccinc information was 

given for dttcnninihg confidena measures for the nsuits achievcd in this thesis. 

The n u t  chaptcr pnsents a concise summary of conclusions, contributions. and 

recommendations nsulting h m  this thesis. 
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CHAPTERVII 

CONCLUSIONS AND RECOMMENIBATIONS 

7.1 Cancluslons 

In this thesis, a systcm for fsst and accurate identification of radio traasmitter 

tmsients was developed. Specifidy, a thrcc stage systcm performing segmentation, 

feature extraction, and classification was implemented and tested using a set of 415 

ncorded transmitter traasients. The average pfoctssing t h e  for complcting ail thrre 

stages and rendering a decision was about half of a second per transient Experîmental 

results showed classification rates between 90% and 97%. 

The mults were achieved using transients which were segmented h m  ambient 

channel noise using an effactm fkactal aoalysis technique. This analysis is able to fiag 

transient start points earlier than conventional methods and, thesfore, retains criticai 

detaüs which would be otherwise d i s c d  as noise. Then, a multifiactal modelling 

technique is effeztiveIy used to extract sipificant features h m  the m i e n 6  and store 

them in a substantiaily nduced size array. The transients have been effectively nduced 

h m  2048 sarnples dom to 32 elements using this technique. The technique also 

normaüzes the aaa~ients without any additional effknt. FuRhcrmore, using an intmsting 

new a a n s f o d  fra*al model, data duction down to cight elemcnts was achieved with 

no loss in relevant detail. 

At the backbone of this system, a PNN is uscd to classify the transicnts with a hi@ 

&grec of accuracy and confîdence. Tbe PNN trains with signincant sized training sets in 
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only seconds and classifies individuai cases in fkactions of a second. Furthemore. for 

rcjection of trsiisients wbich arr not represented in the aaining set, an effective 

mechanhm has ken dew1oped by Umsholduig the advation kvel of the winniog neumn. 

This abiüty conüibutes significantly to the totai value of th c l d e r ' s  dtcisions. 

thesis, as listeci in Section 1.2, have ban achieved. 

7.2 Contribudoils 

This thesis has made the foU<rwing contn'butions: 

a technique for segmentation of a signal fn>m noise has k e n  stuâied and 

reked to the point when it produces relativdy consistent d t s ;  

a highly rcprmcntative, yet compact, multifractal rnodcuiag technique has 

been successfully implemnted on a set of nonstationary transient signals; 

a PNN bas been succtssfiilly implemented for accurate classification of 

modeUed transmiücr îransients; 

a ptactical exploration of the PNN's Bayesian confidence measuns has been 

conducteci and an alternative technique, using thesholding of the winning 

neutni's activation, has k e n  introduad for rcjccting low confidence 

dccisions; and 

a compfchensivt and user fnendly software pkage. TAC-Ml4 has b e n  

dcveloped to implement the transient clessification system on a standard 

desictop PC under Microsoft Wmdows 95. 
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73 Recomme~~dstiom 

Bascd on the rescatch conducted in this Wis, recomnreandations are as fohws: 

tbc parameter settings and thrsholding ndumisrn used in the segmentation 

stage of this systcm muire fiuher optimization to enable more consistent 

scparation of a transient b m  ambient channt1 noise; 

a hardware or software transient acquisition qstem should be developed with 

more linear characteristics and such that the onset of a trsasmission is triggered 

k t l y  in d îimc by the multifra*al analysis describeci in this thesis; 

a multiftactal chanrterization of the transients using the RCnyi dimension and 

Mandelbrot sptctnun should be explorcd as alternative mdeuiag schemes; 

an in ckpth analysis and mathematical proof of the transformcd fiactal model 

discovemi in ohis thesis should be conducted; 

fiirthcr modifications should be made to the PNN in order to achieve more 

usehl codîdcnce mcasutts as discussed in Section 6.3; 

a larger database of transien& is nquW for M e r  tcsting and to provide a 

suitable training set before this system can k put into practical use; and 

the software developed in this thesis is flexible enough that ît can and should 

be testcd in the processing and classification of other nonstationary signals 

such as specch. 
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Appendix A: TAC-MM File Structures 

@PEND= A 

TAC-MM FILE STRUCTURES 

The ?AC-MM software works O@ with nks in ASCII format The fik shouid be 

arrangcd so that it begins with the 16-bit positive intcger samplcs, each on its oWn iine, 

h m  the test signal. Followhg that, a file trailer may contain some or aU of the 

information shown below to identify the ttaasmission. 

53254 
27982 
15274 
Manufacturer 
Mode1 
Serial number 
Frequency of transmission 
Date 
'rime 
Location 
Coordinates 
Operator 
Receiver Manufacturer 
Receiver Mode1 
Receivtr Serial number 
Naming convention (ManuaVAutometic) 
Cammcnts 
Acquisition systcm version 



Appendix A: TAC-MM File Structures 

The TAC-MM software w o b  only with nles in ASCII format. The file should be 

arrangeci so that it bcgins with a positive intcgcr stating the n u m k  of files in the list 

Then, the fidl file path for each of the trausients in the bt, dong with the comct predicted 

dass, should foUow as shown below. 
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Table B-1: List of TAC-MM source flcs. 

I File Name 1 1 Description 1 
1 8-5 1 main M r  nle for the TAC-MM application 1 

main appiication source file; contains the applica- 
tion class CTAC-NMApp 1 
- 

implementation file for the fiame class CMain- 
Frame 

hader file for document class (XACCMMDoc, 
which dehes and manages the data witbin the 
application 

implementation file for the fiame class 
mc-MMDoc 

header ale for vicw class CCACJlMWew, which 
defîncs and manages the display in the lower view- 
ing window 

1 'IXC-me~.cpp 1 B 4 1  1 implemtntatjon fie for vicw class Cf lACCWew 1 
header file for viGw class CRawView, wfüch defines 
and manages the display in the upper viewing win- 
dow 

1 RawView.spp 1 B-52 1 implementation nlt for view class CRawVicw 1 
beadcr file for the chus CTiansientData, which is 
the storagc class for individual transmincr tran- 
sients 

Wt fiie for tbc c h  CExtract, which contiiins 
the segmentation and featme extraction mutines 
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Table B-1: List of TAC-MM source fïïcs. 

I ~ i 1 t  ~ a m c  I me I Description I 
1 PNN.h 1 B-73 1 hcada file fa the c b  CPNN, which contains ail 1 

. - - - - - -- - - - -- - 

ri%ki&pp (5 1 impiemeatation nie for the class CPNN 1 
heada file for the class CAddZnknOWILDialog, 
which c i e h  and controis the dialog box displayed 
whcn tbe user chooseJ to add a mcently classifieci 
agnsient to the database 

B-94 ixnplclt~tntation file for the class CAddUnhownDi- 1 do8 

h d e r  me for the class CBatchRogress~og, 
which cietines and controls the U o g  box displayed 
to update the user on the progress of a batch classi- 
fication 

- - -  

file for the class CBatchProgress- 

header file for the class CClassifyDialog, which 
defines and wntrols the dialog box displayed to 
show the rcsults of a classification 

- --- 

1 Class~ialog.cpp 1 B-99 1 implemeatation file for the class CClassifyDiaIog 1 
htadcr file for the class CEditFPProgressDialog, 
which delines and contmls the dialog box displayed 
to update the user on tbt progrcss of a change in 
fbtal  patameters 

B-101 implemcntation file for the class CEditFPPmgress- 1 Dialog 

hcader nle for the class CEntcrClassDialog, which 
&fiires and controls the dialog box displayed to 
enta the transmitter clas in- of a transient 
beiiig rddcd to the database 

impltrnntation file for the class CEntcrC1assDia- 
log 
headct füe fa the c l w  CEntctSigmhitParams- 
Dialog, which defins and contmIs the diaiog box 
displaycd to enter the parasnetas rsquind for the 
sigma initialization 
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Table B-1: List of TAC-MM source files. 

I ~i1e ~ a m t  I - I  Description I 
1 EntasigmaInîîParams- ( B-106 1 implementation nle for the class CEnterSigmauiit- 1 

- - - - - - - - - 

1 ~r&takamDî%~.cpp 1 B-108 1 implementation fie for the class CFmdaBmmDi- 1 

FtactalPiuamDial0g.h 

1 M0dePafam~Dialog.h 1 8-1 11 1 beadtt file for the class ~~ode~arams~ia l&,  1 
I which defines and controls the diaiog box displayed 
to change the segmentation mode parameters 

B-107 

ModeParamsDialogqp 8-1 12 implementation fde for the class CM&E%mmDia- l I log 

beadtr file for the ciass CFractaiParamDialog, 
wbich &thes and con001s the dialog box displayed 
to change the fkactd paramtters 

hader file for the cIass CNewDataBase, which 
defines and controls the dialog box displayed to 
select parameters for a new database 

impiemencation tile for the class CNewDataBase 1 

1 search~ialo~.cpp 1 B-118 1 implemntation file for the c las  CSearcbDialog 1 

B-117 hcadcr file for the class CSearchDialog, which 
dtfîues and controls the dialog box displayed to 
scarch for a specitic trimsient in the database 

- - - - - - - - 

file for the class CSetRejtctionDia- 

SetRejectionDidog.h 

1 hcader file for the class CSigrmUnitDiaiog, which ' haes anci controis ttie âiaïog ôox dispîayeà to 
apdate the user on the status of sigma initialkation 

hader file for the class CTrainSigmasOptDialog, 
which denlies end controls the dialog box displayed 
to PpaPte the on th SWS of sigma ~ p t h h -  
tia 

B-12 1 htader file for the class CSctRcjectionDialog, 
whicb defines and controls the dialog box displayed 
to set the rcjection threshold 
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Table B-1: List of TAC-MM source files, 

impknuntation fik for the class CïrainSigmasOpt- 

heada fîle for the clans CïrainingResults, which is 
the storage class for the d t s  obtained during 
training or h m  batch classiflcatioa 

hcack me for system include files. that are w d  
fkqucntly, but cire cbsnged infrqucntly 

this is a standard header file, which defies new 
ttsowce IDs for the Microsoft Dcveloper Studio 

this is a listing of al l  the Microsoft Wmdows 
rtsoums that the program uses 
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nÙs file was initiaily genmted usiag the Mictosoh Y i  CM 5.0 AppWizard- It has bewi modified as 
rcqmnd fw the -tic application. 

/I CMC-MMApp: 
11 Set 'IAC-MM.cpp for the impkmentation of this class 
// 
class CIAC-MMApp : public CWinApp 
{ 
public: 

mcMpP0; 
// Ontrides 

// CIassWizard gemratcd v h a l  function overrides 
il[ [ AFILVInI'UAL(~CMMbpp) 
public: 
virntal BOOL InitInstanceO; 
//) }AFX-VIRTUAL 

// Implementation 
w I A = M ~ - J @ ~ A P P )  
&-mg void OnAppAûc@l; 

// NUïE - the CIassWizard win add and remove mcmbcr functioos hcrc. 
Il DO N m  EDST' wbat you sa in these blocks of gcncrated code ! 

II) ) AFXMSG 
DECLARE-MESSAGEJU.APO 
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This file was initially g e d  using the Microsoft Visuai C++ 5.0 AppWizard It has ken  modifiai as 
nquired for the spif ie r i p p l i ~ o n ,  
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EnabIe3dControlsS tatico; /I Cal1 this when linking to MFC staticaily 
Hi 

LoadSidnofiIeScttingi); /I Luad standard INI Ne options Cmcluding MRU) 
// Registet the rpplicuian's document templates. Document tcmplatcs 
/I seme as the connection ktwan documents, fiame widows and views. 
CSingleDocTcmplatc* pDocTemplat~ 
pDocTemplate = ncw CSingltOacItmplate( 

mR_."UNFRA..F- 
RUNTIME,CLASS(~C~)9 
RUNTIME-CLASS(CMainFhme)* I/ main SDI fiame windaw 
RUNTIMF-CLASS(mC-Wew)); 

AddDocTemplate@Dor:Temp1ate); 
11 Enable DDE Eltacute open 
EaableSheIIOpenO; 
RcgismSheliFikQpes(?'RUE); 
// Paist cornmand line for standard shell cornman&, DDE, file opcn 
CC~mmandLineInfo cmdInfo; 
ParseCommandltine(cmdlnfo); 
II Dispaîch commands specified on the command bat 
if (!RocessS hcllCornmand(cmdhfo)) 

temm FALSE; 
// Enable dra8/dmp opcn 
mjMainWnd->Dmgkc@EiesO; 
m_pMainWn6wSetWndovIItxt("'fAC-MMw); 
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void CAboutDIg:~DataExchmse(CDataExchangc* pDX) 

CDidog:~DataExchange(pD~; 
//( (AFX-DAIIA-MAP(CAboutD1g) 
111 1 

1 
BEGIN-MESSAGEJMARCAboutDlg, CDialog) 

//( (~SG-MAPtCAboutDIg)  
/'No message habdlcrs 

1AFILMSGJMAP 
END-MESSAGE,MAPO 
// App command to nin the dialog 
void CITAC-MMApp::OnAppAboutQ 
( 

CAboutDlg aboutD1g; 
aboutDlgJ)oModalQ; 
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This nIt was inia'ally gcnemîed using the Micnnsoft V i  C++ 5.0 AppWiuvd. It has b e n  modifiai as 
qu i ra i  for the specific application, 

11 MaioFrm.h : U i t d b  of the CMainFiame class 
11 

ciass CMainFrame : pubiic CFrameWnd 
( 
protected: // -te ftMn &abation only 

CMainFrameQ; 
DECURE-DYNCRENE(CMainFrame) 

Il Amitcs 
ptected: 

CSplittcrWnd m-wndsplitter, 
pubiic: 
Il Operations 
public: 
// Overiide5 

11 Classwizard gencrated virtual fitnction ovcrrïdes 
Il( (AFXvIRm"L(cMaiiiFrame) 
pub tic: 
virtrral BOOL O n C ~ i c n ~ U C ï  Ipcs, CCtUIteCOntext* pContext); 
virtual BOOL n t C ~ W i n d o w ( ~ U C I ' &  es); 
Il} ]AFX-VIRTUAL 

// Implementaîion 
pubiic: 

virtual -CMainFrameO; 
Mdef ,DEBUG 

virnial void Assertvalido const; 
virtual void Dump(CDumpContext& dc) const; 

#endif 
CSIatnrBar m-wndSratusBar; 

pmtected: // conml bar cmMdtd members 
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This file was initially genetated using the Mimsoft Visual C++ 5.0 A p p W d  It has ban modified as 
rcquired far îhe specific application, 

II MainFrib.cpp : implemcntation of the CMair&mc class 
Il 
#inclu& "stdaa.hR 
lyinclude "ffACJ4M.h" 
Uinclude "M0inFrm.h" 
Winclude "haM(atahm 
Anclude "ïXCJlMDoc.h* 
Winclude "CAC-MMVïcw.hw 
#include "RawVitw.hn 
Wdcf DEBUG 
Mefine new DEBUG-NEIN 
#undcf TEIISJILE 
static char THlSJ.ILEfl= -FILE_; 
ücndif 
III/IIIIII/III~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII//I/IIIIIIIIIII~I/IIIIII~ 
II CMainFrame 
A@EhENTDYNCREATE(CMainFramt, CErameWnd) 
BEGIN--SAGE-MAP(CMainFrame, CFrameWnd) 

Il( {AFXJfSGGMAP(CMainFrame) 
oN-wlK-0 
ON-COMMAND(iD-WEW-S-ON, OnViewSegmentation) 
O N - C O ~ - V I E I K - F R A C T A L ~ R ~  0nViewFrar:taltrajectory) 
ON-COMWWD@-VXEW-WWSIGNAL, OnViewRawsignal) 
ONCOMMAND(ID-~.TRANSIENT, OnViewTransient) 
Il) ) AFXM S G W  

END-MESSAGE-MApo 
static UiNT indicatorsfl= 
I. 

I D - S E P ' R  II stanis line indicator 
I D - S E P ' R  

1 
int c n N a i n h a m e : : O n ~ U c r  IpCrc8cStnict) 
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tcnnno; 

1 
BOOL CMainFramc::OnCr~8tcCIient( LXREMESTRUCT Plpcs*/. 

CCreatcContwtt* pCon#xt) 
( 

vERIFY(m,wdSplitt=C~tatic(this. 2, 1)); 
vERmY(m,wndSpIintf.Crea#View(O, 0, RUNTIMEUNTIMECLASS(CRawWew), 

csizc(soo* 500). pCoatcxt)); 
VERTFY(mmwndSplitter.CIC&lCView(l, O, RUNTIMEUNTIMECLASS(CIAC-MMView), 

CSizc(100. 1 O), pConext)); 
renn TRUE; 

1 
BOOL CMainErame:~~t8teWindw(CREATESTRUcT& CS) 

Il TODO: Modify the Window class or styles hem by modifyiag 
Il the CREATESTRUCJT Cs 

cenini CFrameWnd::MmteW~ndow(cs); 

11 CMainFrame diagnostics 
#ifdef ,DEBUG 
void (3MainFtame:AsatValidO const 
{ 

CFmcWnd:MValidO; 

( 
m_wadSplittcr.SetActivePane(O, 0. NULL): 
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This fiIe was initially generated using the M i i f t  V i i  C++ 5.0 A p p W d ,  It has bcen modificd as 
tc~uited fa the spccispccific application. 
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int *GetRawSignalO { r e m  m-nRawSignal; ) 
double WetVarDimTmjO ( r e m  m,mrDimTiraj; ) 
int GdowestValue() ( retura m-nLowestVaiut; ) 
int GetIiighcstVdueO ( rie- m-nHighcaValue; ) 
int ~ e n t B e g i n s ~  (cctum m-dhnsi~~~tBeginsHete; ) 
CkansieatAtray *GetArrayO ( hturn &mOTransientArray; } 
CExtract8GetExbsctQ ( hntni BtrnJxttact; } 
cP@dupDialog *Ge@ageSehipDlgO ( r e m  &mgSDdlg; ) 
CRcsultsArray *GecRcsultsAnay() { rc~pni &mJesultsArray; } 

// Operations 
pubiic: 

BOOL ReadRawSignal(CString Filehth3ûûL M i n g ) ;  //FALSE if file not good 
iat ~ n t T " i t n t O  ( return m-aCuncatlhnsieat; ) 
void SetCunntThnsient(int Place) { munnCurrent'IhnsienîsPlafe; ) 
void Incrcmeat tunnt . en t0  (mjCmnt'II.aiuient+rl; 

updateste-aro; 1 
void ~rnentCurentltansicnQ (m,nCumntTransient==î ; 

if(m,nCu rrcnîlhsient!=- 1) 
UpdatcStatusBarQ; 

else 
UpdateStatusBarNoTtansientsO; } 

void UpdatcStatusBarO; 
void UpdateS tatusBatNoTransients0; 
void UpdateS tatusBatUnknotl~~l0; 
void VÏewNeaisUpdatingO; 
int FindNumClassesO; 
void Segmenüü1Transieats(int NewModtlSizt, 

CEditFPRogrcssDiaiog *RogrcssDlg); 
void CompuieAliModcls(int NewModclSize, CEditFPRogrcssDialog *RogressDlg); 
int SearchForClass(int Class); 
int SearcbForMake(CString Makt); 
int SearcbForModel(CString Modei); 
int SearchFotSenal(CStn'ng Serial); 
int SearchForDate(CString Date); 
int ScarchFoflie(CString 'ITie); 
void DeleteResu ItsArray O; 
void ChackWindowsMessagts(int NumChccks); 
double ComputeConfidencc(doub1e *SummationNemn, int PredictedCIass); 
int CïAC~:Mul t iModd31aSsi~(double  üighcstConfidcnct, 

double 'Activation); 
// Ovmides 

Il ClassWizard gemtated m a l  function ovarides 
//( (AFXVIKIUAL(-C-MMDOC) 
public: 
waial BOOL OnN~~DocumentQ; 
virtuai void Serialite(CAn:hiveâ ar); 
virçua( void DeletEContentsQ; 
11) I U 1 3 C . A "  

// Imp lementabtabon 
public: 

Wtwl -CCAccMMDoco; 
Wdef -DEBUG 

virtual void AssertValid0 con% 
virtual void Dump(CDumpContextBt de) const; 
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kndif 
ptected: 
// Gcneratcd message rnap fiinctions 
protccted: 

~ ~ ~ G ( . - c ~ ~  
S a m g  void OnFileNcwO; 
6 - m g  void OnDatabaseAddtmnsientQ; 
a&-msg void OnUpdateD~transi*eat(CCmdüï* pCmdtJI); 
&-mg void OnDatsbsYeDelmsientO; 
afx-msg void ûnUpdatcDatabsseDc1~ent(CCmdUI pCmdUI); 
afx-msg void OnVicwneVQ; 
afiCmsg void ûnUpdateViewRev(CCmdüI* pCmdUI); 
&-mg void OnVHwNcxtO; 
sfrcmsg void ûnUpaattVicwNext(CCmdüI* pCmdUi); 
afk-mg void OnViewRawsignalQ; 
& m g  void 0nViewFractaltrajec~)ryO; 
afkmg void OnUpdatcViewFractaitrajcctory(CC~* pCrndUI); 
&-mg void OnU@ateWewRawSignd(CCmdUI8 pCmdUI); 
afjcmg vaid ûnFiltPagesehip0; 
afx-msg void OnUpdateFilePageSenip(CCmdUI* pCmdUI); 
6-mg void OnUpdateFiIeRint(CCmdUIC pCmdUl); 
afk-msg void OnUpdateFilcnintneview(:CCmdUI* pCmdUl); 
afxafXmsg void OnUpdatcFiJcSave(CCmdUI* pCmdU1); 
afx-mg void OnNe~ralnetCl~fi.0; 
afi-mg void OnUpdatcNeuralbetClassifL(CCmdUI* gCmdUI); 
afitafitmsg void OnNcuralnctInitidiegmmO; 
&-mg void OnU@teNewalnetInitidi~gmas(CC~* pCmmn); 
afk-mg void OnEditFractaiparametersO; 
afxafXmg void 0nUpdatcEditFractalpatametcrs(CCmdU8 pCmdUI); 
afk-msg void OnViewSarchO; 
afx-mg void OnUpdateViewSearch(CCmdUI* pCrndlTI); 
af%.msg void OnNeurainetûptimizcsigmasO; 
afk~nsg void OnUpdaleNeuralnetOptimi~igmas(CC~* pCmdUI); 
afimsg void OnUpdateViewZoomedrawsi~(CCrndtn* pCmdUI); 
&-mg void OnUpdrit~ningnsuits(CCmdüï* pCmdvI); 
afk-msg void OnVicwZoomcdrawsign~; 
afx-msg void OiiViewTrainingrcmltsO; 
afx-mg void OnNcuralnetBatchclassifjQ; 
&-mg void OnUpdateNednetBatchc18s~i~(CCmdUf* pCmdUI); 
afx-mg void OnNcutalnetModeparamtttrsO; 
afk-mg void ûnUpdateNdnetModepammetcrs(CCrndüï* pCmdUf); 
ah-~nsg void ûnUyintcF;iCNcw(CCmdtn* pCmdUI); 
aüt-msg void ûnUpd~~leOpn(CCmdüI* pCmmn>; 
afk-mg void OnUpc&lcFiitclveAs(Ctmmn* pCmdUI); 
&Jmg void W W t d o ;  
aa,.gwid o n U p d a t e N ~ o n t h t e s M d ( C C m d I J I *  po; 
//l I W S G  
DECLAREJdESSAGEJ¶APO 
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'Ibis file was initially gcnerated using the Microsoft Visual C++ 5.0 AppWizardc It has k e n  modified as 
requind for tbe specific applicationc 
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// CiAC-MMDoc diagnostics 
Mdef DEBUG 
void ~ ~ : - ~ V a i i d O  const 
{ 

Q)oc~ment:AssertValidO; 
1 
void ~CJidMDoc:Dump(CDumpContcxt& dc) const 
( 

CDocument:Dump(dc); 
1 
kndif //-DEBUG 

// CfACCMMDoc commands 
void ~C~MMDoc-.:OnFiicNwO 

TRACE("Don, OnFileNcw being executed-hm); 
CNcwDatabase NewDatabaseDlg; //declare dialog dass object 
NewhtabascDlg.mmRawFi1tSiZGS192; //set defaults 
Ne~DatabaseDlg.rn~TmsicntSb2048; 
NewDatabaseDIg.m,Windc)wSi~Z6; /Segmentation window size 
NewDatabaD1g.m-V~an-: //Segmentaiion variance pairs 
N ~ ~ h t a b m e D l ~ - . h h o l d = 1 5 . 0 ;  
Ncw~Dlg .rn~odeW1ndowSize=5  12; 
N c w D a t a b a s c D l g . r n ~ o d e l V ~ ~ ~ e ~ S ;  
NewDatabascDlg.m~ode1WindowShift=~6; 
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1 
BOOL CLACCMMDoc:~cadRawSignd(CString FilePath, BOOL IsAdding) 
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if(mnCumnMenOm-~ientArray.GetUpperBo~) ( 
~ n t C m n M e n t Q :  

1 
e k  I 

UpdateStatusEar();IIstatus bar is updsted in ckcrement otherwîse 
1 
if(m-nCunentTmimt>-1) ( 

ViewNadsUpdatingQ: 
1 

{ 
m,bFileïnMemory=F-cF;- 
UpdatcAiW'is(NULJ.,): 

1 
m,PNN.SctNumCases(~TransientArray.GtSiO); 
m,PNN.SetNumCtasses(FindNumCias~t~O); 

1 
1 
void CIAC-MMDoc::ViewNadsUpdatingO 
{ 

if (m-bViewRawSignaFlag) [ 
CString PathNamr--m-Tt811SicntAnay.GetAt(mtAnCurrcntTransient~~ 

GetRawFilePathO; 
if (!ReadRawSignd(PathNme$ALSE)) ( 

for(int c W ;  ~tran~Ex~GetRawFi1eSiri);  ctr++) ( 
m-nRawSignal [ctr]=O; 

1 
1 

t 
if(m-bVimV'fimTrainps) [ 

mCExtrac~lIV~DunArrry(mrnnRawSignd, mgnaidVmDimTraj, 
m,bViewSegmentatim m,'If.ansientAnay.GaAt(mtAnanCumnfl1a11sicnt~~ 
GetTransientBegiasH~,m-lkaasientArray. 
GttANrn-nCumnt~sient~>Ge~itntModdO); 

1 
m - n ' I h a s i e n ~ ' h u i s i t n t A r r a y . G e t A 1 ( m 1 1 1 n C P r r c a ~ i ~ n t } - ~  

~ n t B c g i n s H t t i ) ;  
m,bScroIlTo'ItansienhTR~ 
UpdateAIlMews(NuLL); 

1 
void C T A C ~ : : O ~ V I C W R ~ ~ O  
I 

if ( m ~ ~ n ~ r a n s i e n t > O )  { 
DecrementCunent'hrnsient0; 
ViewNcedSUpdatingO; 

1 
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m,bScrollToTransient=TRUE; 
m,bviewStgmentation=TRuE.~ //show tran Segmentation info 
SetMdificdFlagCTRUE); 
mgNN.SetNum~mm~ientArray.GetSiZeO); 
mgNN.SetNumCl~~g~~(FindNumCi~); 

1 
1 
m-bNotCtassiryin@'RUE; 

1 
UpdateStaaisBarO; 
WewNecdSUpdatingO; 

1 
HCURSOR Anow-AfkûetAppO-SoadStandardCm~rUDCARROW; 
::SetCursor(Amniv); 

1 
double ~C-MMDoc::CornputeConii&ncc(double *SumxnatioaNe~r~n, 

int PrcdictcdCiass) 
{ 

double Confidence, SwntO.0; 
fot(inl ctrununPNN.GetNumCl~O; m++) ( 

Sum+=SumrnationNemn[ctr]; 
1 
if(Sum=0.ûlIPndictedClas~=- 1) 

sttirrn 0.0; 
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if (Segrne~tationErmtsetetFi1eEnor) { 
CStnng mcxt; 
&Micx-t 

("Tkc were %d segmentation eriws.bOrigina1 positions maineci." 
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1 
int ~CJlMDoc::ScarchForSenal(CStruig Senal) 
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t61c >> tcmp; 
FiieNamctcmp; 
~nia@t~ults->SetRawFi~ePIth~IeName); 
tfilc >> ConctCIass; 
if ( C o n # : t C I ~ K 3 ~ N u m C l a s s e s I l t t i l ~ . e a f Q ) (  

AaMessagcBox("Tncom~bc fib f0rmatm,MB,OR); 
ni,bResultsExist=FALSE; 
-; 

1 
WniagResults->SetC~ass(COCfeCtClass); 
mJ€esuItsArrayJnsertAt(ctt* TrainingResu1 ts); 

1 
tnle*close; 
CBatchnogrtssDialog Baîchna~DIg; 
BatchnogressDlg.m9n,gressB~~Limit=NumFj1es; 
m,bInBat~hnacess=TRUE; II disables ail menu fÛnctions 
BatchRrigfcssDlg.Chati); 
for(- cttaNumFiles; ctr++) ( 

CheckW~ndowsMe~~~gcs(20); 
Batchno~Dlg .OaUpaateRo~(c~+ l ) ;  
BatchnogrcssDlg.rngrcssUpdattPro~.SetPos(ctr+l); 
Chec kWindowsMcsages(20); 
if (R~wSignd(mmResultsArrayYGt~t(:~~~~GetRa~FiI~PathO~ALSE)) ( 

S(m-nNumCiassifyModes==l) ( 
r n , n T r a n s i e n t B e g i ~ ~ s H ~ t F i n d T ~ i c n t ( r n ~ n R a w S i ~ a l ~  

m-dVmDimTtaj, m,dThnsientModel); 
if (rnmnTransicntBeginsHcft!3-1) { 

SumrnaiionNc~t~n== double[NumClasses]; 
PredictcdCI8ss=m8ss=mPNN.C)assifj,(mfj,~m~ientModels 

SummationNcuton,-1 ,mUtOdRejtctnireshold~BtActivation); 
m,ResultsArtay.GetAt(c&) 
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MSG message; 
for(int cirumlhecks; m++) ( 

i f ( : *  NtJLL, O* o. PM-REMOVE)) ( 

1 
1 

1 
int CTAC~:*MultModcCIdQ(double *WinningConfidcace, 

double *Activation) 

int Redictedclass, PossiileQass; 
int -ienîB@&ke; 
double ++TrmsientM&l, **SummationNemn, HighcstActivation; 
IfiriEicatBeginsHersncw int[mmnNumClassifj,Modes]; 
TransientModcltmw double*[m,nNumClassifyModes]; 
SummatioiiNemn=new dauble*[m,nNumCl~fyModes]; 
for(int ctr* ctranannNumClassifLModes; ctr++) ( 

lhnsitntModel[ctrJ=mu double[m-ExtractGetTtansitntSizcO J; 
SummationNeuron[c~]~cw doublc[m,PNN.GctNumCf~l~~~~O]; 
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1 
void ~-MMDoc::ûnUpaatcVit~Ncxt(CcmdUI* pCmdUI) 
( 

pCmdüI->EnabIt(m-bFiIeInMemoryBt8t 
m,nCurrenrTrslnsicnt~~,'hrnsientAmy.GetUppctB~~dO 
BB!m,brnBatchROcess); 

1 
void ~ ~ : : o R U p d a t e V i e ~ F r r r t r i l t n i e c t o t y ( ~ ~ *  PmdUI) 
I 

pCma->Wle(:rn-bFiItIaMemoryâa!m,bI; 
pCrn~->S~tCheck(rn~bVit~VatDimTn~~ag ? 1 : O); 
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Tbis filt was initially genetated usiag the Micmsoft Visuai CH 5.0 AppWlzafd. It has ken moàificd as 
requireü fœ the spccüîc application. 

/I '1AC-ew.h : i n t a t r e  of the CIiAC-MMView class 
Il 

c b  CriACJîM'Mcw : public CScrollVicw 

ptcctd :  // creatc fiom daluation only 
CIAC-MMVïtwO; 
D E C L A R E D Y N ~ C C A C A ~ M V ~ C W )  

/I Atbibutes 
public: 

mcJlllmOc= GctDocumcnt(); 
// Operations 
public: 
II Ovemdes 

Il CIassW128td generated vimial hction O-des 
II( (~VIRTU'f"raC-MMVicw) 
pu biic: 
virtual void OnDraw(CDP pDO; II ovenidden to draw this view 
vuhiat BOOL AeCnaaeWinôow(CREKESTRU~& CS); 

r'niPab Vbid OnncpareDC(CDC8 pDC, CPrintWo* pfnfo = NULL); 
protecld: 
vùnial void OnInitialUpdateO; Il called first timt afiet constnict 
Wtuai BOOL ûnRcpatcRinting(CRintinfo* pInfo); 
wtual void OnBeginRinting(CDC* pDC, CPrintInfo* phfo); 
virtuat void OnEndRinting(CDC+ pDC, CPrintlnfo8 pido); 
virtual void OaUpdate(lCView* pStndu, LPARAM Mnt, CObjcct* pHint); 
virhial void ûnPrint(CDC8 pDC, CPrintùifo* pInfok 

1 A=-- 
// Iiupknatation 
ppbac: 

viltual - C f A C ~ e w O ;  
void PrintTtainingResults(CDC1 pDO; 

Mdef ,DEBUG 
vinml void AssertValid() const; 
virtwl void Dump(ChunpContextdPr dc) const; 

Uendii 
ptotected: 

CRcct m t c l i e n t ;  
int -TopMargin; 
int-* 
int m&Margîn; 
iat m-iügbtMargin; 
ht mJoaîETeight; 
int m,TtxtLinesPerPagc; 

// Genmted message map functions 
protccled: 

Il( { A n t M s G C ' I A C ~ e w )  
If) 
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DEUARE-MESSAGE,MAPO 
1; 
Uifndef ,DEBUG II debug version in TArJMMMewewcpp 
inline CiXCJMMDoc* ~ C ~ e w : : G e t D o c u m e n t O  

[ r e m  (CIAC-MMDoc8)m-pDacument; 1 
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This fiie was initidy pnemtd using the Micmoft Yinrp1 C++ 5.0 A p p W d .  It has ban modified as 
quirad for the speciiïc applicationl 

/I 'MC-MMVïew.cpp : implemmtaiion of the C i X C , e w  class 
// 
#ïnclude "stdafjt.hw 
Uinciude "'iX-MM.hW 
Uinclude "Tmdata.h" 
#ïnclude "TACJdMDoc.hw 
JSinclude "lXCmtw.h" 
#ifdef ,DEBUG 
Mefine neov DEBUG- 
hndef  THIS-FILE 
static char THISJILE[J = -F'iLE= 
kndif  
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CPoint Init(tcfiTextMar~n,~tCIien~bottom~(float)(RawSignal[O] 
-CiipYCaord)*(no8tK(float)rectClicnt.boao~SigHeight))); 

pK->MmTo(Init); 
for(int -1; ctrcRawFileSize; ctrcc) ( 

CPoint Next~ftT~xtMatgin+c~~tC1i~11tbottorn- 
((float~Si~[ctr]-CIipYCoord)* 
(fl08t~(float~iCZient.~od(float)sigHeigfit))); 

pDC->LineTo(Ncxt); 
1 
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CSize sizeTotal; 
// mDô: calculate ihe total si= of this  vie^ 
sizeTota1.c~ = siztTotal.cy = 100; 
SetScn,USizes(MMCTEXTT sittTotal); 

1 
void CTAC~~w::OnB@nRinting(CDc* PpDC,/, CPrintinfo8 PpInfo*/) 
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// C I A C ~ e w  message handlcts 
void CllAC~ew::OnUpdate(CVicw* pSender, LPARAM IHint, CObjectC pHint) 
( 

Invalidateo; 
1 
void C ' I X C ~ e w : f i n ~ n i n g R c m I t s ( C D C *  pDC) 
1 

CllACJuîMDmr pDoc = GetDocumentO; 
A S S E R T V ~ D o c ) ;  
CString Field 1, Ficld2, FieId3, Ficld4, Fields, Field6; 

int Spacinm-recaient.right/S; 
if(pDoc-xn-bTmflningResuIts) ( 

Field 1 .Format(" Training Results "); 
1 
e k  I 

Ficldl .Format("Batch Classify Rcsultsn); 
1 
CFmt BigRomanFont; 
int Size=(mm~tC1icn~*ghtn~(Fitldl .GetLength@5); 
BigRomsnFontCft8tthnt(lS*Size, Size, 0, O, 600, F U E ,  TRUE, O, 

ANSI-CHARmr" OUT-DEFAULTTPRECIS, 
UIP-D~AUL,T-PRECiS, DffAüLT-QUALIIX 
DEFAULT-PïKH I EF-ROMAN, W); 

CFant +pOldFonwDC-SclectObjcct(~i~omanFon~; 
pDC->TextOut(m~ectC1icnt,rightn~ O, Field 1); 
Field 1 Emat("'Ransient #"); 
FieId2.F011nat("FileNarne and Path"); 
F i c l d 3 ~ C l a s s " ) ;  
Fiel#Jiormat("Predictêd"); 
if(pDoc+rn,bTtPiningResuIts) 

FieldS.F6rmat(:"Ertoru); 
else 

FieldS~t("Canf(%%)w); 
Ficld6~("Activation"); 
CFont RomanFontUndet; 
RomanFontUndct.CtcateFont(O,O, 0,0,400, F A W  TRUE.0, 

ANSLCFIARST, O U T - D E F A U L T ~ ,  
CLIPDEFAUtT-PRECiS, DEFAUtT-QU-, 
DEFAULTJTKH l FF,ROMAN, N ü U ) ;  

pDC->SeIcctObject(BtRomonFontUnder); 
pDC->'TkxtOut(O. 3*Site, Field 1); 
pDC->TextOut(Spacing, 3*Site, Ficld2); 
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Field 1 Rmnat("T-tnt Un); 
Field2Somat("FileName and Path"); 
Field3Format("Classn); 
Field4~at("Predicttd"); 
if@&->m,bTraiaingResuIts) 

FieldS.Fbrmat("Emr"); 
else 

FieldS&mat("C~nf(%%)~); 
Fieid6Eormat("Activ8tionn); 
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This nle was iniiially generated using the Micfosoft Visual C++ 5.0 AppWlZBfd. It has been modifiai as 
required for the specific application. 

class CRawVitw : public CScro1fVicw 
( 
pivate: 

int m-ViewFileSize; 
int m,VmDimHtight; 
int m,RawSignaBeight; 
int mJ&TcxtMargin; 
k t  m,BottomTcxtMargïn; 
int m-TopTextMargin; 
int m-WindawXDim; 
int m,W~~dowYDim; 
CRect m~#:tCiient; 
CPoint m-Ongin; 
int m-VicwStart;//0 for enth mw signal, TdentBcginsHert for tran 
bt m,ZaomYCoord; 
int m,ClipYCootd; 

pmtcctcd: // -te h m  serialization ody 
CRawVitwO; 
DECLARE-DYNCXWUE(CRawVi~) 

// Attributes 
pub tic: 

CMCJîMDoc* GetDocumentO; 
void RintTransmittcrInfo(CDC8 pDC); 
void PlotCommonBox(CDC+ pDC); 
void PlotVarDimTraj(CDC+ pDC); 
void PlotRawSignal(CDC1 pDC); 
void AdjustForMargïns(CDC* pDC); 
void SetVicwFileSizeO; 

If Operations 
public: 
If Ovcmdea 

// ClassWizard getmated wtual function ovarides 
Il( { ~ . A t ( C R a w V i e W )  
public: 
virtual void OaDniw(CDC' pK); /I ovctiidden to draw îhis view 
W a l  BOOL n c C r e a t c W i n d o w ( ~ U C M  CS); 

virtual void 0nPreQareDC(CDC8 pDC CRintMo* pido = NULIL); 
ptccted: 
Wtual void OnInitialUpdateO; // caifed first time efter mnstnrct 
vircud BOOL ~ P r i n t i n g ( C R i n t I n f o *  pbfo); 
wniai void OnBeginRinting(CDC* pDC, CPriaîInfb* pMo); 
viruiai void ûnEndRintiag(CDC+ pDC, Cniat Ido* pInfo); 
vinual void OnUpdate(CV~eW. pSeiider* LPARAM lHint, Cûbjtct* pHint); 
virtual void OnRint(CDC* pDC, CRintlnfo* phfo); 
//) ) AFX-VIRTUAL 
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B-SI 
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Thîs file was initially geneflllcd usirg the Microsoft Visual C++ 5.0 AppWizard, It has bcen modified as 
rcquued fa the w i f i c  applicaîïon. 

II RIDO.. Modify the Windw c b  a styles h m  by modifjruig 
/I the CREAmSRUCT Cs 
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// CRawView pnnting 
BOOL cRawView::Onnepattninting(CnintInfo* phfo) 
I 

nturn Da-nting(pfnfo);//displays the Rint dialog box and mates 
/fa pinier &vhx contut  ICyou wmit to 
I ~ c b c P r ' n t d i ~ b a x w i t h  
/fvaiws other than the defmlts, assign 
//values to the mcrnbers of phfo bcfore calling. 

1 
void CRawView::OnBeginRinting(CDC* PpDC*I, CPrintInfo* PptnfoV) 
( 

// m00: add extra initialkation before printing 

// CRawViw disgnosiics 
Mdef DEBUG 
void CRnwVicw:AsutVdidO const 
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// CRawVicw message haudlas 
void CRawView::OnUpdate(CVi~~* pSendtr, LPARAM IHint, CObjcct* pHint) 
( 

Invalidate(); 
1 
void CRawView::OnPrepareDC(~ pDC, CPeintinfo* pInfo) 
I 

CScrollView::OnncparcDC@DC, phfo); 
CïAC-MMDoc* pDoc = GetDacumento; 
ASSERT-VAWD(pD0C); 
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int ~o t to~d0~b1c~N~~WindowYDi 'm-rn-Wad0~YDim)*(double )  
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protected: 
CString m - s ~ m i t u c t M a k e ;  
CString m ~ ~ d t i a M o d e 1 ;  
CString m - ~ ~ s m i ~ a l ;  
CStriag m-Daic; 
Cst#hlg ~,TMc; 
CStnng m-strRawFiltPaîh; 
int ni-n~sientBeginsHcic; 
iht m,nlkansientCIass; 
int m,nTransientModelSizc; 
double *mmTransientModtl; 

public: 
CïhsientDataQ { } 
Chnsicntûata(int TransientModelSize) 

{ m-TmientModtlriiew doubIe~r~~ll~ientModc1Si~~~; ) 
-CItansicntData() ( deletc O m,'hnsientModel; ) 
void Update'ihsientModclSize(int NewModelSk) 

( delete O m-TransientModel; 
m,'ItansieiitMadel=new doubleFJewModelSize]; 
m,nTransientModelSize=NewModc1Siti.; ) 

void Setiaiize(CArchivc8t ar); 
void SetRawFilcPath(CSüing FidePath) ( mFistrRawFilePath=FilcPath; } 
void SetTtansicntBeginsHere(int He=) ( m-nTtatlsientBeginsHc~tsHe~ie; ) 
void SetTiittcrMake(CSüing Make) ( m-strT-ttcrMakeMakt; ) 
void Se~ t t eMode I (CS t r i ng  Modcl) ( m,strTransmitterModei=M&I; } 
void SetTcansrniWaial(CSûi~g Mal)  { m,s~~mïttcrSerial=Seriai; ) 
void SetTtansznitDate(CStn'ag Date) ( m-Da-Datc; ) 
void Sefhnsrnimme(CString Tune) ( rn-Tmtt'ilmc; ) 
void SetTtansientModclSize(int TtansientMo&lSize) {m,nTransientMOdclSize= 

"fiansientModelSize; ) 
void SetTransientModel(double WansientMadtl); 
void SetTmsientCIass(int If.anClass) ( ~nTransicntCla~fstTtanCiass; ) 
int Get'hnsientBeginsHaeO ( retum m-nT'entBeginsHerc; ) 
CString GttRawFilePathO ( tetunr ~SttRawFiideParh; ) 
CString  mi^ ( rtturn ai-sdhuisrnitterMakc; ) 
CSûing GerTran~~tterModelo ( teEurn ~ s m i t t e r M o d e l ;  ) 
CStn'ng G c t M m a i O  ( riehtrn nu&hmmiÉtaSerial; ) 
Cstring t 3 d r k ( )  { rauni m,-e; ) 
CString OetDateO ( return m-Datc; ) 
double* &t'hnsientModelO ( teaun m,hansientMadtl; ) 
CString GetTitleLineO; 
int ~ s i e n t C l a s s Q  { ieaun m~'IhnsiehtClass; ) 

lyifdef DEBUG 
void Damp(CDumpContext& dc) masr; 

Ucndif 
1; 
typcdtf cLLocdptrAmiy<CObArray~ CIi.sientDaW> Cï'msientArray; 
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int m,nVatianccPairs; //number of pain to Qtnd to Isr routine. 
int m-nDyadic; //set to O if rinit intervals usecl, ~1st :  dyadic. 
int cn-nWindowSize; flsize of window for dimension calc. 
double *m-dSuml; 
double *m,dSum2; 

public: 
CEX-cto 0 //constnictoi. can only be calleci once 
void Sen'alite(CArchivc& a); 
void SetParams(int RawFileSize, int IhsientSize, 

int SegmentationWiadowSize,int SegmentaÉionVan'ancePairs, 
double Thttshhold, int ModeiWindowSize,int ModelVanananccPairs, 
int Windowshift) ( 
m,nRawFiltS~RawFiiicSizt; 
m-nTmsientSize=TransientSize; 
m,nSegmentationWindowSidegmentaiionwndowS~; 
m ~ e n t a t i o n V a r i m ~ t ~ n a r a h ' o n V a r i m ~ ~ ~ ~ ;  
~Thrtshhold='Ihrcshhold; 
~nMdelWindowSbModelWindowSize; 
ai,nModeNariarce~MadeNarian~tPairs; 
~nWmdowShifi=WindowShih; 
1 

void SetWindowSiit WindowSb) ( ~aSegmeatati~n~~d~~Si~WindowSize; ) 
void SetVatianccPairs(int VdtPaits) { m-nSegmcatationVari~Pairs=VarPairs; ) 
void Setnircshhold(double Tbrestih01d) { f n - " o i A - ~ o l d ;  } 
void SetModeiWànûowSize(int wnd~SiEe) ( m-nbkdWirdawSize=WindowSite; } 
void SetModeWuidowSliiMint W m )  { ~nWindowShifbWindowShift; ) 
void SetModeNaMrceplinci VliaPurs) { au&¶odeIVarimœPairs=V~Paics; ) 
iat GaRauFirLtS'i ( ret~rnntnRawFileSizt; } 
int GctïhnskatSizeO ( retiun rn-n'hrnsientsii; ) 
int GetVariancePaiftO ( rcturn mAbgûmuionVkioaaPairs; ) 
int GttWindowSizoQ ( ~itttan m,~trt ionWindowSiZe. ,  ) 
int GetWmdowShük() ( muni m,aWiadawShiA; ) 
int GetMadcWiiowSizeO ( rdura ~odc lWindowSizc ;  } 
ht ~ e t ~ o d e ~ v r n ' ~ ~ ~ ~ a i r s o  ( - m 0 d e w r n ' ~ c ~ P a i r s ;  
int GetModelWindowShift() { return m-nWuidowShift; ) 
double GetnireShholdO { teani m-Tbmshbold: } 
int GetTransientMociclS~ ( rem m-n'honsientSW~nWindowShi& ) 
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int FindThnsient(int *RawSignal, double WarDirnT'aj, 
dou bie -icntMoclel); 

void FiiiTtansientModel(int +RawSignal, int TransientBeginsHch, 
double UkaiiJientModcl); 

void F ü l V ' y ( i n t  +RawSignal,doubIe *VatDimTraj,bool VicwScgmentation, 
int 'honsicatBeginsHere, double ~ e n t M o d e 1 ) ;  

double CakVuDim(int *RawSignai, int StartLoc); 
void InterpolaOc(d0uble VrtDim'Iiaj, int Stadbiiit); 
void CExtmctFindMulh"hansi~nts(ï~~t *RawSignal, double *VarDUaTraj, 

double *rlfansientModel, int NumMode~, 
double Ylhnshholds, int MiaStperation, 
int ~ransientScgimHete); 

Wdef ,DEBUG 
void Dump(CDumpCantext& &) const; 

#endif 
1; 
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Uinclude anatb.b 
--SERIAL(CExtract. CObject.0) 
Micf DEBUG 
void CExttact:zDump(ChimjCmttrrt8t dc) coast 
{ 

CObjcct:~p(dc); 
dc cc "\nnlaRawmeSizc = ' << rnmesnRaw~leSize; 

1 
#endif 
void CExtract::Setialize(CAn:hive& ar) 
( 

i f(~&stO~g())  ( 
a r e  (LONG)m,nRawE'i1cSize cc &ONG)mcSnTransicntSizc 

<c (CONG)m,nSegmentationWind~~Size 
cc (L0NG)m-nSegmentatioaVàrjancePairs 
<e m-Thrzshhold cc (LONG)mThrzsnModelWindowSizt 
cc (LONG) m-nModelVariancePairs << (LONG)mmnWindowShift; 

1 
else ( 

ar» (LONG&)rn-nRawFiieSize » (L,ONG&)m-nTdcntSize 
» (tONG&)m,a~entationWmdowSite 
» (t0NG&)m,nSegmentationV~Pairs 
» m,'Iiumhhold » (LONG&)m,nModelWiadowSizt 
» (LONG&) m-nModeNariancePairs » (ZONG&)m-nwndowShift; 

1 
1 
int CExtract:SndTranSicnt(int *RawSignal,double *VarDimTraj, 

double TransicatModel) 
{ 

m,nDyadid; 
m,nWind~wSizGm~nSegmen~~tionWind~~Size., 
rn-nV~mœ~-nSegrneatationV~~ll~ePairs; 
double Meana.0, SuiDev=O.O; 
int TransientBeginsHcrc= 1; 
int G-eSim-nRawFiIeSUc-m~Wmd0wSite: //dont petform calcs 

I/past the end of file 

// the start of the file up ta 114 of the file siue 
for (int ctF-, ctran~RawFileSitel4; ce++) ( Ilnote windwoshiil  

V~~j[ctr]~cV(vDirn(EawSignrl, cîr); 
Mean+=ViDim"Raj[ctrJ; 
StdDev+cV~r";m~[ctr]*V~~Diar~j[ctr]; 

1 
Mean/=(double~mmnRawFil tS'd4); 
S ~ ~ D ~ V ~ S ~ ~ ~ ( ( S ~ ~ D ~ V / ( ~ O U ~ I ~ ~ ~ , ~ R ~ W F ~ ~ & W ~ ) ~ C M + M C I U L ) ) ;  
// Adjust &c thresbhold based on the value of the standard deviation 
double DeM'ation~m-Thteshhold/100.O)*M~~+StdDev; 
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if (ru-'Mold=û.O)/hrsed to circumvent segmentation 
TrantientBeginsH~-aRswE1eSize/4; 

if ~sientBeginsHerc!=l)  { 
for (cü=T~*cntBeginsHcre+l; c ~ s I c S i z e ;  ctri+) { 

VarDimTraj[ce]=CaicV~fDirn(RawSignal, ce); 
1 
E'iU'kansientM&I(RawSignal~ TtansientBcginsHcrc, 

TransientModel); 
1 

dclete [l m-&ml; 
delete 0 m-dSum2; 
~ t u m  TransicntBeginsHerie; 

1 
void C E x ~ * ~ l l T ~ i e n t M o d e l ( i n t  *RawSignal, int TransientBeginsHcm, 

double TransieniModel) 

Iltransient mode1 is simple movùig a- 
int ctr2, ctr3=-l; 
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//pull VatDim h m  record ... interpolate 
int ctr3=-1; 
for (int ctr=TransicntBeginsHerc; 

c t r ~ m s i e n t B e g i ~ r n m n T ~ * c n t S i ~ ;  ctr+=m,nWindowShift) ( 
ctr3++; 
VarDimTraj[ct~=TransitntModtl[ctr3~; 

1 
V~~DimTf~j[c~]=TransientModel[c~3]; //fil1 last spot with saare 

/ /vdim for interpolation 
Intcrpolatc(V&rDimTraj, TmsientBeginsHere); 

1 
1 
double CExtract::CafcVatDim(int *RawSignal, int StartLoc) 
( 

double *LagOfVbiance, *Lo80n>tltaT; 
double Sum1,SumZigtltaB; 
double Dimcnsi- 
Qubde vu, v m ;  
int tt.NoOfDeltaBs,NoOfZetoer 
Logofviuian~t-71~~ dou ble[m,nVarianœPaits+ 11; 
LogOfDcltaT=ncw double[m,nV~anccPairs+I]; 
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fo-ta- kc(StartLoc+NoOa)cltaBs); k++) ( 
DeitaB=RawSi~d~+t]-RawSipal&]; 
m-dSum 1 [t]+=DeltaB *DcltaB; 
m,dSum2[t]+=ihltaB; 

1 
t 

( 
DeItaB=RawSignal[S taitLoc-l+t]-RawSignal[StaRLoc-11; 
m-dSum 1 [t]-=DcltaB*DeltaB; 
mIHdSum2[t]-=DeltaB; 
Del~RawSignd[StartLac+NoOakltaBs- lu] 

-RawSigbal[StarttoC+Nooa)eItaB~-11; 
m-dSum 1 [t]+=DeltaB*DtltaB; 
m&um2[t]+=Del taB; 

1 
V ' m d S u m  1 [tl-(m,dSum2[t~*mm,dSum2[tn/((double)N~s)) 

/((double)NoOtDeI taBs-1 .O); 
if ( V M . 0 )  { 

N o O ~ + + ;  
1 
else [ 

LogOfVarianceCt-NoOfZerocs J=IogCVbr); 
LogOnk1 tant-NoOfZeroes]=log((douMe)t); 

1 
1 

1 
e h  

for (t=l ; tem-nVm-ancePairs; t++) [ 
Suml=o.O; 
Sum2rO.O; 
Dimen~ionP0~~~(2.O,(double)(t)); 
NoOfDtltaBm-nWindowS~int)DimensionP~~cr, 

k<(StartLac+NoOtDeItaBs); k++) ( 
DcItaB=RawSignalIk+(int)DimensionP~~~~]-RawSignal~]; 
Swnl+=DcltaB*DcltaB; 
Surn2+=DeitaB; 

1 
if(NdM)eltaBs!=O~~potect against divide by tcro 

V i S u m  1 -(SumZ*Sum2)/((doublt)NoOa)eltaBs)) 
/ ( (doubie)N~ltaBs-  1 .O); 

else 
V d . 0 ;  

if(Val==o.O) ( 
EioOIZeroes++; 

1 
dst ( 

LogOfV'~[t-NoOfZcroes]=los(v~f); 
LogOfDcltaT[t-N-]=log@imensioM; 

1 
1 

1 
double suml=O.O, sun2=0.0, sum3=0.0, sum4=0.0, sumjr0.0; 

for (int -1; ~mmnVhriancePairs-NoO~rocs); ctr++) 
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( sum l+=LoBOfDcIta~c~]*LogOfv~~[ca']; 
sumZ+=LagOfDeltaT1[ctr]; 
sum3+=~gOrVananance[ctr~; 
sumecCLogOfDeltaT[ctr~~~Ita'T[ctr~; 
sumS+=Lo~ltaT[ctr]; 

1 
/fi (m,nDydic=l) //these modirficrtions (4 lines) w a e  mde to implemcnt îhe 6raclal 
/Im>Varim++; /Etrsnsfocmation discusscd in Subsection 6.2.6 

double Slopeir(m,nV~~~l~~Pairs*surn l-swn2+sum3) 
/(~nvrnancrPairs*sumesum5*sumS); 

VhrDimt2.û-ûJ*Slopc; 
/ f i  (m-nDyadic=l) 
/lm~iVarianccPairs-; 

delete 0 LagONm-ance; 
delete 0 LogOfDeltaT; 
htum v8tDim; 

1 
void CExtract:~tctpolatc(double *VirDimTraj, int StarPoint) //lincar interpolation 
{ //fw display purposes only 

int V(~Di~leS'1zt; 
Wdef JEBUG 

int Count30; 
double Mcandl.0, S tdDeW.0; 

#endif 
if (StartPoinW) 

VarDimFilcSite=(mmnRawFiIcSize-mmnwndowSize); 
else 

VarDi~deSize3StaRPoint+mmnTransicntSi~; 
for (int ctr-StartPoint;c~rcVatDi~leSize; ctr+=mlIllnWindowShift) ( 

#ifdef JEBUG 
Count++; 
Mean+=V'arDimTraj[ctr] ; 
S tdDev+=VarDimTraj [ctrJ8VarDimTraj[ctr]; 

#endif 
for (int c-1; cm2cmcmnWindowShift; ce++) ( 

VarDimTraj[c~+ctn]=VarDimTmj[c~]+(float)((fl~t)ctr2/(fl08t) 
m,nWndowShifi)*~DimTtaj[ctr+m,n~ndowShifi]-VarDimTraj[ctr]); 

1 
1 

Wdef JEBUG 
Meanl=(double)Count; 
StdDcV=8qrt((StdDevl(double~~unt))~edill*M~)); 
TRACE(%Don .. Average from sample %d is %f", StartPoint, Mean); 
TRACE('lnDan...StandanJ Deviation is %P. StdDev); 

kndif  
1 
void C E x ~ a c t = F i u l  ti'hansients(in t *RawSignal, double + V i T m j ,  

double * ~ s i e n t M o & l ,  int NumModcs, 
double UIhreShholds, int MinSeperation, 
int rIhmientBcginsHcre) 

( 
n l n D y s d i a  
mnWindowSi~-nSegmentationWindowSi~; 
~nVarim~~~m,nSegmenraiionVan*maPsirs; 
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patected: 
int m,n'hrnsemtModelSize; //init in msûuc!or 
int m,nNumClsts; 
int m,nNumClrsses; 
double *tnJignw 
BOOL ni,bSigmasInitidized; 
BOOL mJSigmasOptimized; 
double rn-dBestErrot; 
double mJmerScarchLimit; 
double m,UpperSearr:hLimit; 
ChmientAnriy *m-mientArray; 

public: 
BOOL m-ùStopNmY/thcse 4 vars mut bc accessable by 
double IR-nU~DisplaySigma;(/tht dialog class that updates the user 
double m-dUs#DisplayEnot; 
int m-nUs~~DisplayDiscretcErr~t; 
double m-dU~~~DisplayImprovement; 
CPNNO ( m-Sigma=ncw double[l]; } /fi case ncver init 
-CPNNO { delete 0 m-Sigma; ) 
void Initialize(int T-enModelSite); 
void Serialize(CArcfüVea ar); 
iat Class@(double *Unhiown, double *SummationNeuron, int Skip, 

double Rejcctnircshold, double *Activation); 
BOOL TrainSigmasInit(int NumScan:hPoints, BOOL GlobalDone, 

double *LowerSigma, double *LowerEnar, double *MiddleSigma, 
double *MiddltEm,rp double *UpperSigma, double *UppcrErmr); 

void S e t N ~ m ~ n t  NuniCases) ( m,nNumCaws=NumrREC-C; 1 
void SetNumCIasses(ïit NumClllsscs) ( m~umCIasses=NumCIasscs; } 
BOOL GetSigmasI~tializedO ( rctm m,bSigmashitializd; ) 
BOOL GetSigmasûptimizedO { r e m  m-bSigmasOptimizcd; ) 
int O e t N u m C I ~  ( rehini m ~ n N d a s s e s ;  ) 
double GciFïïîSigmaO ( return m-Sigma[O]; ) 
void SetLowerSearchLimit(d011ble LowerScarchtit) 

( InJowctScarchL*t=.IrPraSurr:~t; ) 
void SetUppdearchLimit(doub1e UppSeafchLimit) 

( r n , U p p e r S e r t c h L i ~ t = U ~ h L l l n i t ;  ] 
B O L  GloôMja(ïït NumSumchPaiPia, Qubk *&wcrSigm~ double *IAniverEn'orp 

double Mid&Sigiii, doPMe *MiddleEmK, dode  Wppdigma, 
double WppctEnor); 

double F i d o u b l e  Sigma, int +DiscrdeEna); 
void Se~entAmyPointct(ChaasientAnay m i e n  tArray) 

( m-'hahsinitArray=TransientArray; ) 
void SetSigrnasIniti.lized(B00L hit) [ m,ôSigmuInititialized=Init; ) 
void !SetSi- 

. . 
(BWL OP) ( m,bS~gmWmized=Opt; 1 

Cstring I n - s t t U 8 ~ ~ ~ ;  
void GoldMin(doub1t -Sigma, double Wm&mrp double *MiddleSigma, 

double *MidâieEnor, double *UppetSigma, double *UpperEmr); 
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int FindDetivs(doub1e Wbknown, double *SummationN«aon, 
int Skip, double *Dcriv, double *M); 

double CmuloteEZMCAndDetivs(:double *Sigma, double *Dcriv, 
double *kM, BOOL CwnulateDaivs, int 8D-SCrttCECrOT); 

double FurdGamma(double *g, double *Gd); 
void Fi~cwDir(doublt Gunma double *g, double *b. double *Grad); 
double Uni'VatEmn(doub1e Point, double *Sigrnadouble +Base, double *D&v); 
BOOt CGGlobMin(int NumSc(uichPoints. double *LowetPointdouble *LowcrError, 

double *MiddlePoint, double *MiddlcEm~, double WpperPoint, 
double *UppcrBmr, doublc *Sigrna, double *Base, 
double *Direc); 

double BrcntMin(int ItMax, double *Lowerfoint, double WiddltPoint, 
double *UpperEbint, double MiddlcEmn, double *Sigma, 
double *Base, double *Diriec); 

BOOL TrainSigmasûpt(double Tolerancc); 
void FiuT~ningResultsArray(CRcsu1rsAnay *ResultsArray); 

Mdef -DEBUG 
void Dump(CDumpConttxt& dc) const; 

e n d i f  
1; 
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#ifdef,DEBUG 
void CPNN:Dump(CDuxnpContext& dc) const 
( 

CObjectzDump(dc); 
dc « "Hi h... CPNN Dwnp."; 

1 
Wtndif 
void CPNN::Uiitializc(int T~ientModeISize) 
( 

m,nTmsicntModelS~TtanSicntModef Size; 

delete I] m-Sigma; /had to do dummy bit in con smictor... undo it now 
m-Sigma=ncw double[m,nTransientModeISize]; 
rn-Sigxna(O]=l .O; 
m,dBestErro-999.0; 
m,dUscrDisp lay~-dBes f f i t ;  
mm,nUscrDisplayDiscrcteError-999;nU~DisplayDi~~-999; 
m,bSigrnasinitiaJiztdsFAtsE., 
m,bSigmasOptimized=FALSE; 

1 
void CPNN::Senalizc(CArchivta ac) 
r 

kt ctr; 
if(ar.Is!3toringQ) ( 

ar cc m,bSigmasfnitialized « m-bSigmasOptimized « m,dBestError 
cc m-nTdentModelSize <c ~~nNumCases « m,nNumClasscs; 

for ( c t d ;  ctran-nTransientMode1Site; CU++) ( 

ar » m,Sigma[ctr]; 
1 

1 
1 
int CPNN::ClassifL(dwble *Unknown, double *SummationN~~tr~l, int Stip, 

double Re~tTlucshold, double *Activation) 
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rcturn UnknowaClass; 
1 
BOOL cPNM:TrainSigmasInit(int NumSearrhEbini~~ BOOL GlobalDonc, 

double %owerSigma, double +LowcrEnor. 
double *MiMeSigma, double *MiddleErmr, 
double WpperSigma, double *UppaEmn) 

( 
BOOL TsNotSucccssfiil; 

rn-strU~~rM~~~~~geEormBt(~In Golden Section MUiimization Algorithm."); 
GoIdMin(LowerSigma, LowetEcror, 

MiddleSigma, MiddleError, Uppetsigma, UppcrEnm); 
rCtwnTRUE, 

1 
BOOL CPNiC:GlobMin(int NumSearchPoints, double *LowerSigma, double *LowerExror, 

double *MiddIeSigrna, double *MiddleEmr, double *UpperSigrna 
double *UppcrEnor) 

( 
iat ctr, ibest, CumntDisaa&me ReviousWmt&mr, 

LowcrDiscreteEnar, MddleDiscrcbEnar, U@rDiscteteEnw; 
double CumntSigma, CumntErrat, Rate, M d . 0 ;  
BOOL 'Lbrncd-UpFALSE. U s t r Q u i t = F '  
~~og(m~UppetScarchI.Unit~mlx,wetScarchtiinit~~umS~8t~Woint~- 1 )); 
CuthntSigma=m-LowcrStarchLimi1; 
i'best=-1; //ForpaperescspcifemnreachesO 
for ( c e  c treNum~hPoint s ;  ctr++) { 

CumntEmn=:FîadEnot(C~ntSigma, &CumntDiscreteEnor); 
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m - n U s c r D i s p 1 a y ~ D i s c r c ( c E R o r ;  I'fœ user output on t i m d  
m-nUâctDisplaySigmd3igma; 
m , d U s t t D i s p l a y ~ T o ~ r ;  
delete 0 SummationNewon; 
retumTotalEtror, 
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1 
void CPNN::GoldMin(double *berSigma, double *LxnmrErrw, double *MiddleSigma, 

double *Middl- double WpprSigms, double WpprEnor) 
( 

int CurrentDiscreteError, M i d d l e D i m  
double LcAWîdth, RightWidth, Ci~rentSigma, CumntErrot; 
double Gold=2W(l . m S . O ) ) ;  Ilribout 0.6 18 at (1 .O - 038 197) 
for C:) I IIEndIesSlaapgocsrsloagrsmccssary 

if (mJStopNowi18MiddleSigma==û) { 
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for (imt ad; ctranJiNdasscs; ctrct) ( 
SummationNe~~~n[ctr]=O.O*Jl will sum h c l s  hcte 
NaSampIcshCIass[c~r]~ 
for (int ivar=0; i~~fan~n'hansientModeISiZe.~ ivaf++) { 

v[c~~TraasientModeISi~e+ivat~.O; //Scratch for dMv caic 
w[cb.mcb.mnTransientModelSizc+ivar]=O.O; //Ditto 

1 
1 
for O; TrpCiacKm-nN-; ( 

if CIigCase!=Skip) ( //for trg pwposes* dont compare same transients 
//skip will bc -1 in clessifi mode ... nothing skipped 
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fot(ctr=oy cbunJiNumîiasscs; cW) ( 
if(NoSamplesInCiass[ctrJ!=û) 

Summnh'o~emn[ctr~NoSampleslnCI~[ctr]; //a~count for unequal trg 
//sarnple reprecsentation 

psum+=SummationN~~l~n[ctr]; 
1 
if@sum<l.sso) 

psum=l.e* 
for (m=a ctr<m,nNumClassts; ctr*) ( 

SummationNcutan[ctrJ/=psum; 
1 
/Kompute tûe derivativcs. VSum and WSwn arc the simple sums of v and W. 

for ( c m  ctranannT~ientModelSize; cîr++) ( 
vsum=wsum=o.O; 
for(int OutVar=O; OutVkr~n~aNumClasses; OutVarct) { //Cumubtc VSum and WSum 

v [ O u t V a P m , n ~ i c n t M o ü c I S ~ ] + =  
2W@sum*m,Sigma[ctr]*NoSll~npleslnC1ass[OutVar]); 

w[bitVem-nT~*entModelSize+ctr]+t 
2.W- *m-Sigma[ctr] ~-Sigma[ct~*NoSamplt~InC1~~~[OutVar]); 

VSum~v[OutVat+mmnT~icntModeISi~]; 
WSum+=w[OutVat*mmnT~icntModelSite+ctr]; 

1 
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hRinr unkXl0~nchSS; 
1 
double C P N N : : C u m u l ~ d m b I e  *Sigma double 

double * D m  BOOL CumulateDerivs, 
int *DbcmWmr) 

( 
MSG message; 
int RedictedCIass, ComctCiass, ctrl; 
double *CurrenITransient, *SummationNe\~)n, TotdE1~0dl.0, Dia, EmAct; 
*DiscrcteErmt=O, 
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( 
int ctr; cîrl, ïtMax=32767,  con^^, PoorCJ* 
double CiarentBesî, CmntValue, ntuiousBcst, Tolerance, ïmprovemcnt; 
double Dotl, DotZ, DLen, High, Scale, Gamma; 
double LawerPoint, MiddlcPoint, UppcrPoint, 

LowaEnor, MiddcError, UPQcrEnor; 
double *Sigma, *Base, *Deriv, *Di, *g, eh, *MI& 
double Convi~~gcnceTolaand.0000000001; 
ibtCUllCntDiscteteError; 
BOOL UscrQuit, I m p r o ~ t m e n t T o l ~ t a ~ ~ R e a c h e d = F ~  
m,dUscfDisplay~-dBtstEmr; 
m-nUsctDisplayDi-999; 
m,dvttrDisplayImpwernent=a.O; 
Sigma- doubfe[m-n~sientModeISk]; 
for(ctr=-0; cuan,nTfansientModeISizt-, ctrct) ( 

Sigma[cb]--Sigma[ctr]; 
1 
Base=new doubletm-nTransientModeISize]; 
Deriv=new doubf el-nTransientModeISize]; 
DUccrticw dou bIc[mCWnTmsien tMadclSize]; 
g=ncw doublc[m,nTransientModeISiZe]; 
h=nm doublefm,n~tientModclSiZe]; 
Deriv2=ncw doubIe[m-II-1; 

GtmntB--Sigma, Dcriv, M v î ,  TR'UE, 
Btc-1; 

m - d U ~ D i s p I a y ~ n t B t s t ; / / S h o u l d  alrcady qual m-dBcstEcf0t 
m , n U ~ ~ t D i s p l a y D i s c r c ~ t D i s c n t e E n o r ;  
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m-dBestError-CurrentBest; 
brtak; II And quit if tao many 

1 
eise // But a g d  itcration 

CoinnrgenceCkQ If Resets this cauntcr 
if(m,bStopNm ( 

mdBestEmdmmrRLstr 
b a k  1 ,  hm quit 

1 
Datl=Dot2=DLen=O.O; II For finding directional derivs 
High=l.cQ; If For scaling glob-min 
fot(cttl=O; ctrlan-n~sieatMode1Size; ctrl*) { 

Basc[ctrl]rSigma[ctrl]; /IWestepoutfiamhecc 
if~V2[ctrl]>High) If ItetQ track of second derivatives 

High=DcrivZ[ctrl]; If Fbr lin= seatch via glob-min 
DotI+=Dhc[ctrl]*g[ctrl]; II Directional first derivative 
Do~~ircc[ctrl]*Dir#:[ctrl]*Dtriv2[ctrl]; Il and second 
Dkn+=Dir#:[ctrl]*Direc[ctrl]; // Length of search nctm 

1 
DLen=qrt@Len); II Actual length 
ScalttDot l/Doi2* Il Newton's idcd but unstable scale 
EIigh=15/Hïgh; // Less ideal but mort stable heuristic 
if(High<l .e-4) If Subjcctively k p  it rcalistic 

Hi* 1 .e-4; 

if(ScaIKO.0) II m i s  is tmly pathological 
ScaltrHigh; II So stick with old reliablc 

else if(WKO.1 *High) If Bound the Newton scale 
Scald.l*High; Il To be close to the stable scale 

else if(Scal01 O.O*High) // Bound it botb above and below 
Scaic=lO.O*High; 

~werSearchLimit=O.O; 
ID-WppperSearc hLimit=2.WScale; 
IbWuam=r'-est; 
U--3, &bwdWa, B u l o w a h ,  BtMiddlePoint, BtMiddleError* 

&UpperPoint, &UpperEmK, Sigma Base, Direch 
if(üserQuit) ( 

if(MiddleEmn<CuncntBest) [ // lf global causcù imponmcnt 
fot(ctr1 =O; ctr lan-nTransientModeISite; cul++) ( 

Sigma(ctr1 J=Base[crri]+Midd1ePoint*Direc[~trl]; 
if[SigmaIctrl]<l.c-10) /f Limit it away fiom zero 

Sigma[ctrt]=l.etlO; If Fairly arbitrriry constant 
1 
thsmtBest=MiddlcErtar; 

1 
e k  Il Else mven ta starting point 

for(ctrl=Q ctrlan,n'hansienîModeISi~~; ctrl*) 
Sigmo[ctrl]=B~ctrl]; 

1 
m-,es-@est; 
break; // user has quit 

1 
if(ConvergenceCtr) 

CurrentBes*BrentMin(20, $LowetPaint, âMiddlePoint, BtUppcrPoint, 
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MiddleError* Sigma. Base, Direc); 
else 

CuthlltBest=BrentMin(lO, &LowerPoint, BtMiddiePoint. BtUpperPoint, 
MiddleEnar* Sigma, Base, h); 

fot(ctrl=Q ctrl<mctrnTmsientModcISUe-, ml++) ( 
Sigdctrf ]=B~[~l]+MiddIePoint+~[cttI] ;  
if(Sigma(ctrlJ4 .*IO) // Limit it nivsy h m  zero 

Sigma[ctrl]=l .e-10: // FPiitly arûi~nry constant 
1 
if(~uaent~estd.0) // If user quit dun'ng BmnîMin 

m-dBes-urrentBest; 
b m k  Ilmur has quit 

1 
U n p r o v c m e u ~ o u s B e s t - C u r r c n ~ e s t ~ ~ B e s t ;  
~dBestError=CurrentBcst; 
CwrientValue=CumulateEnorAndDeri~~(Sigma, Deriv, Mv2, TRUE 

ikCumntDiscretcError): //dc derivatives 
ASSERT(CumntValudmntBest~JImake sure this occurs... 
for(cel=û; ~trl<m~nTransientModeISizt; ml++) // Flip sign to get 

Direc[ctrl]-Deriv[ctrl]; // negaiive gradient 
m-dUscrDiiplayEttofrCunentBest; 
m , n U ~ r D i s p l a y D i ~ ~ t ~ t e ~ ~ ~ ~ ~ n t D i ~ i c E r r o r ;  
m-~serDisplayhpto~~ment=Impro~~mcnt*100.0; 
if ((Improvcment* 100.0)<=Impn,vemcntTolema) ( 

ImpronmentToleranceReachcd=TR. 
bteak* 

1 
Gamma=FindGamma(g, Disec); 
if(Gammad.0) 

Gammad.0; 
if(Gamma> 10.0) 

Gamma= 10.0; 

if(pwrC3Ctr>c2) ( // If s c v d  timcs 
if(Gamma> 1 .O) /I mit gamma 

Gamma=l.O; 
1 
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1 
double C P N N : ~ a d G ~ d o u b t e  *g, double *Grad) 

I/ Should imct tirppen (means gradient is zero!) 

1 
void CPNN:FmdIUcwDir(double Gamma, double *g, double *h, double *Grad) 

g c ~ l - t m  
~[ctrJ~[ctr)~[ctt]+Gamma*h[ctrJ; 

1 
1 
double cpNN..:UniY~Ermr(double Point, doubie *Sigma, 

double Base, double *Duec) 
( 

int DummyEnorJ/not used hem, but uscd in CumulateErrorAndDerivsO 
for(int ctr=O; man-nTransientModtlSizc; CU*) ( 

Sigma[ct~=Base[c~]+Point*Dircc[ctr]; 
if(Sigma[ctr]<i.e-IO) ( 

TRACE("Don, Sigma too small."); 
Sigma[ctr]=l .e-10; 

1 
1 
rem CumulateErrorAndDerivs(Sigma, (double *)NULL, (double *)NULL, 

FALSE, BtDummyEnor); 
1 
BOOL CPNN::CGGlobMin(int NumSearcWoints, double *LowerPoint,double *LowerEnor, 

double *MiddlePoint, double *MirkileErnw, double *UpperPoint, 
double *UppetErtor, double *Sigma, double *Base, 
double *Di=) 

{ 
int ctr, ibest; 
double CutrentPoint, ComntEnotv Rate, ncviOIISlO.0; 
BOOL nffned-Up=FUE, KboWFmtPoint=FALSE, USCZQUikFALSE; 
if (NumSeuchPointsd) ( 

NumScarchPoinîs=NumSerirhPoints; 
KnowFWoint=TRUE; 

for (ci..*, ctreNmSearchPoints; ctr++) { 
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if(cail!KnowFvStPoint) ( 
Cunen~Un~VarErmt(:CurtentPoint, Sigma Base, Direc); 

1 
e h  ( 

C u n e n s M i d d l e E r r o c  

ihst=m; 
+MiddlePoint=CumntPaint; 
*MiddlcErmr-CurrentEmn; 
* ~ P r e v i o u s ;  Il Function d u c  to its left 
'IL~~~~-UP=FACSE; ll Flag that min is not yct boonded 

1 
elst if(cIis\ibest+i)) ( // Didn't improve so chis point may 

*Uppdm=Cu~ntEnw II bc the right ncighbor o f  the best 
'ILrned-UpTRUE; Il Flag tbat min is bounded 

1 
Revi~ullcntErrof; II Kcep track for Ieft ncighbor of bcst 
if ( (C~u~)&&( ibesoO)e t s t ' I t rncd-Up)  

h& II Donc if good enough and both neighbots found 
if(m,bStopNow) { 

UserQuit=TRUE; 
bhak; 

1 
CurrcntPoint+=Ratc; 

1 
*LswttPoint-MiddlePoint-Rate; 
*UppcrPoint-MiddlePoint+Ratc; 
if (!bed-Up) (Il Must extcnd to the right (larger x) 

for (;;) // Endlas loop goes as long as necessary 
*UppcrError=Un~Y~~Error(*UpperPoint, Sigma, Base, Dinc); 
if(*UpperEm,i>*MiddlcEnor) // If function inmaJed we are done 

h a k  
if ( ( * t o w c t ~ d d l e E r r o r ) & & ( * M i d d l ~  

bnak; // Give up if flat 
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brca)t; 
1 
*UpPetfoint=%îiddlePoint; If Shift all points 
*Up-MiddleErnJr; 
+ M i d c ü e P o i n W f  int; 
Inliddtcrmir+r- 
ZLtt*3.0; // Step fiathcf each time 
%merPOillt-=Rate; 

1 
1 
rn-LoWCIS~hLÛni~LawerPoint; 
xn-Upp&ea~~hLimit=WppctPoint; 
r e t m  UsetQuit; 

1 
double CPNN:33tentMÏn(int ItMax, double *LbwerPoint, double *MiddlePoint, 

double *UpperPoint. double MiddIeError. double *Sigma 
double *Base, double *Di) 

int ctr; 
double Rd~~Distance=O.O. Stepd.0, Tol=l.e4. Toll, Ton, ep1 . e -7 ;  
double Bdo in i .  Second&stPoint, TbiBtstPoint; 
double BestEnor, SecondBtstError, ThniVdBcstEnot 
double LawPoint, MidPoint, ElighPoinî, tl, d; 
double Numentor. Dcnominator, TestDistanct, RbcentPoint, RecmtEmr; 
B c s t P o i n ~ S e c o b d B e s t P o i n ~ T h i r d B ~ ~ t P o i n t  
LowPoin WtaWcrPoin~ 
HighPoint-"CUppcrPoin t; 
B~econdBestErro~-ni-itdBestErrot=Mi&dIcE~[~r; 
for(cttr0, ctr4tMax; ctr++) ( 

Ïf(m-bStopNow) ( 
ttnini -BestEsror; 

1 
MidPaint=OSf(LawPoint+HighPoint); 
Tol l=Tol*(~(BestPoint)+eps); 
ToI2=2.+Toll; 



Appendix B: W - M M  Source Code 

Stcp=l .do; If Assures failure of nurt test 

if ((fabs(S tep)â'O5~tstDismct))  // If sluinlang 
&&(S tepcBestPoinbLowPoint) II and within hown bounds 
8tBt(Sttp+BestPoint<HighPoint)) { // ther we can use the 
ReccntPointrBestPoint+Step; // parabtic estimate 
if(-ntPoint-towPoint~o12)II // If WC are very close 

(@?igtiPoint-ReœntPaint4ïoi2)) ( // to known bounds 
ir(sestPbintcMidfoint) // then stabilize 

StegcToIl; 
else 

Stcp=-Toll; 
1 

1 
elsc { // Parabolic estimate poor, sa use golden section 

neviousDis~Ct=(BestPaint>cMidPoint)? 
LowPoin t-Btstpoinfiwoint-BcstPoint; 

Step=.38 l%6O*hviousDistance; 
1 

1 
else { 

neviousDistaa~estPoin~cMidPoint)? 
LowPoin t-BestPoin~ghPoiat-Bdoint; 

Step=38 19660*PreviousDistance; 
1 

if(RecentError~BcstErrot) ( // if we im pmvcd... 
if(RecentPoinPcBcstPoint) // Shrink the (lowpbhighpt) interval by 

LowPoint=BestPoint; // replacing the appropriate endpoint 
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if((RtcentEsror~ondBcstEmff) /f If we beat the second best 
Il(SecondBestPoin~BcstPo'u~t)) ( // or we had a dupIication 
ThitdBestPoint=SccondBestPoint; // update the second and third 
SecondBcstPoint=RumtPoint; // best, tirough aot the best. 
~ e s t E r r o r - S e c o ~  
S e c o n d B e s ~ I p 4 i . m ~ .  

1 
clse if((ReantErniFccThadBestEtmr) // Maybe at least we can 

lyThitdBcstE'oinBestPoint) // but the third kst or get 
I(TbjrdBestPoint=SccoiidBestPoint)) { // rid of a duplication 
niuasestPoint=RamtPoiat; 
ThitdBes-RecentErrot; 

1 
1 

1 

*Lo~~~Point=LawPoint; 
*MiddlePoint=%cstPoint; 
*UppcrPoint=HigWoint; 
returnBestEsror; 

1 
BOOL CPNN::TrainSigmasOpt(double Toleraact) 
( 

BOOL Irnpovcmen tTol~Reached=FALSE; 
m,bStopNow=FALSE; 
m,strUscrMessagc~t("ù1 Conjugatc Gradients Aigdthm-"); 
Impn,~tm~ntTolet~~1~fR~hed=ConjGradicntsMin~01etance); 
m,bSigmasOptimizad=TRUE; 
tcturn ImptovcmentTolcranceRcactied; 

1 
void CPNN::FillTrainingRtsuftsArray(CRt~dtsArtay *ResultsAnay) 

int PredictedCIass, CorrcctClass, ctrl; 
double *CurrentTransient, *SwnrnationNeuron, TotalEmd.0, Diff, Errer, Act; 
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This file was initidy gcaeraied using rhe Mictosoft Visual Ctç 5.0 ClassWd. It has becn modified as 
rcquired for the specific applicati*on. 
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lhis file was initially pnawcd osing MiceOSOfi Visuai Ci+ 5.0 CiassWd. 1t has b a n  modifieâ as 
required for the specific application. 

11 CBatchRogressDialog dialog 
class CBatchnagressDiafog : public CDialog 
( 
// Construction 
public: 

CBatchRogressDialog(CW~~d* pParcnt = NüLL); // standard constructor 
int m-ProgresBarLimit; 
BOOL CrtateO; 
void OaUpdateRogress(int CunrntProgress) ; 
II Diaiog Data 
Il( ( AFX~~(CBatchnogres sDia lo~  
cnum ( IDD = I D D ~ ~ O G R E S S D A L O G  ); 
CProgrwCtrl m-Updatehgress; 
//) ) A m - D m  

// Ovemdes 
// ClassWizard gencrated virtual firnction O-des 
Il( ( AFX-vInTuAL(CBatchnogrcssDialog) 
potocted: 
vutuai void DoDataExchange(CDataExchange4 pDX); 11 DDX/DDV support 
//] ) Anr//))Anr,vIRnJALWRTUAL 

// Implementation 
protected: 

// Genesated message map functions 
//( { AFXJ¶SG(CBatchProgressDialog) 
Wtual BOOL OnIaitDialogo; 
//) } AFX,MSG 
DECLARE-MESSAGE-MApo 

1; 
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This eic was initiaily gcMfatCd using the Miaosoft V i d  CH 5.0 CllssWuaré It has k e n  modifiecl as 
rrquired for thc spccific application. 

// CBatchRogressDialog message handlers 
BOOL CBatchnogressDialog::C~ 
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This file was initidly g e d  using the Microsoft Visual C++ 5.0 CiassWitnid. It has k e n  modificd as 
nquircd for ibe spccific application. 

// CCIassiQDialog dialog 
class CCldfyDialog : pubtic CDidog 
( 
// Consauction 
public: 

CClass~DiaIog(CIKnd* pPannt = NULL); // standard constnictor 
If Dialog Data 

II ( ( ~ ~ ( C C l a s i f L D i d o g )  
en- ( IDD = IDD-fXASSIFY-DIALOG }; 
double m-Confidence; 
int mJdictedC1ass; 
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+ 5.0 C l a s s W d .  ft iras becn modificd as 

Il ClassifLDialog.cpp : implementation tile 
// 
lyincludt "stdafk.hR 
#inclu& " ' r A C ~ . h U  
Anclude "Clrss'iDialog.hn 
nifaef ,DEBUG 
Mefine new DEBUGJEW 
Ihindef THIS- 
static char THISJiLEfl= -: 
kndif 
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This file was initiaiiy g e b  ushg the Miciosoft Visual C++ 5.0 Classwiard. It has ban modified as 
requid f a  tbt specific application- 

// Edi-ial0g.h : beader file 
Il 

// CEditFVRogrcssDialog dialog 
ciass C E d i ~ s D i a l o g  : public CDiaIog 

11 Consauaion 
public: 

CEditFPPmgressDiaiog(CWnd* p b n t  = NULL); Il stsadard constmctor 
int mJmgressBarLimit; 
BOOL cfcatco; 
void OnUpdatcPtognss(int CurrentRogress) ; 

// Dialog Data 
//( (AFXAFXDAîA(CEditFPRogrcssDialog) 
e n m  { IDD = IDDRXïFPPROGRESS-DIALOG ] ; 
CPrognssCtrl mgnsUpdateRo~; 
//} }AFX-Drn 

11 Overndes 
// Classwizard gcnerated virtual ftnction ovmides 
//{ { AFX-VIR'CEdiIFPProgrcssDialog) 
protected: 
virtual void DoDataExchange(CDataExchange8 pDX); // DDX/DDV support 
Il} }AFX-VIRTUAL 

// Implcmentation 
protccted: 

// Gencratcd message map functions 
//( (AFX~SG(CEditFPPr0gftssDialog) 
virtuat BOOL OnIbitDiaiog0; 
(4 ) r n A F X M G  
DECLARECLAREMEsSAGEGEMAE'O 

1; 
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This file wlis initially gmmucd using the Mic10soft Visual C* 5.0 CtassWizard. It has been modified as 
requùed for ihe specific application. 
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// EXCEPIION: OCX Roperty Pages should rcturn FUSE 
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niis me was initialiy gmratcd using die M i m f ' t  Visual C* 5.0 ClassWd. It hap ken modifiai as 
required far the specific application. 

Il EnterCf-af0g.h : h c a k  file 
Il 
//1ll/l/lll////////l/II///llll////l///1l//1///ll//ll//l////l//l///ll/l//l/ll/ 
/1 CEnterClassDidog diaiog 
class CEnterClajsDialog : public CDialog 
( 
// Consauction 
public: 

CEnterClassDiaiog(CWnd* p-nt = NUtL); l/ standard constnictar 
// Dialog Daia 

Il( (AFX-DAII7A(CEntcrClassDialog) 
enum { IDD = IDD-ENTERENTERCLASS-DIALOG 1; 
int m-'ItaasientClass; 
111 1 

II Ovetrides 
// ClassWizard gcacrated vinual hnction ovmides 
II( (Am-WW&anterCtassDialog) 
protccted: 
virtual void DoDataExchangiCDataExchangt* pDX); // DDXIDDV support 
Il) }AFXAFXVIRTU. 

// Implementation 
protEcttd: 

Il Generated message map hnctions 
// { (AFX-MSG(CEntdIassDialog) 

Il N a  the ClassWizd wiii add member fiinctims herc 
II) )AFXJbfSG 
DECLAREJMESSAGEJvfAPo 

1; 
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This file was initially genmted using the Mictosoft Visual C* 5.0 CiassWlZBtd. Tt has k e n  modified as 
requircd fm the spacific application- 
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// EntaSigm8InitParamsDiPlog.h : beadcr file 
// 
/1///////~//////////////1/////////1/////////////////////////l///~////////~/// 
// CEnterSigmsInitPaamsDialog dialog 
class CEnterSi~tParamsD'iog : public CDialog 
{ 
// Construction 
public: 

CEntcrSigmalnitParamsDialog(CWnd* pParrnt = NULL); II standard constructot 
Il Diaiog Data 

Il{ ( ~ ~ ( C E n ~ i g m a I n i t P a r a m s D i a l o g )  
enum { IDD = IDD-ENTER-SIC3dAiMTJARAMS ); 

ptected: 
uirtuai void DoI)ataExchange(CDaiaExchange* pDX); // DDX/DDV support 
11) ) AFXAFXlmruAL 
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This fde was initially gencmîal usiug the Miciosoft Visual C++ 5.0 ClassWizard. It has been modified as 
rcquired fa die spccifïc applicaci-011. 
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This file was initially generatd using the Mictosoft Visual C++ 5.0 C l a s s W i d .  It has been modifiai as 
riequird for the specific rpplicatim. 
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rem TRüE; // rtturrr TRUE unless you set the faus to a coniml 
// EXCEPTION: OC3L nopaty Pages should rcturn FALSE 

1 
void ~ a l o g : : O n M o d e I p a r a m ~ O  
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ptotectcd: 
WNal void DoDataExchange(Q)ataExchange* pDX); // DDWDDV support 
Il) )AFx-..AL 

Il Implementation 

// Gcnerated message map functions 
// ( { ~MSG(CModeParamsDia10g) 
&-mg void OnMultimodeQ; 
afx-msg void OnSingIemoW); 
viftual BûûL OnInitDiaiogO; 
II) )AFX-MSG 
DECLAREJSl3SAGE,MAPO 

1; 



Appendix B: 'CAC-MM Source Code 

' T b  file was initially genetated ushg the Microsoft Visual C++ 5.0 ClassWizard. It has ben modifieci as 
hquîred for the specific application, 

/I CModeParamsDialog dialog 
CModeParamsDialog:CMadeParamsDialog(C1d* pParcnt lWWLL*/) 

: CDidog(CModeParamsDialog:=IDD, pPannt) 

Il{ (AFX-D~(CM0dePnramcDialog)  
UlJkUk = 4; 
m-NumModes = O; 
m,MinSeparation = 0; 
~~L,ownireshhoId = 0.0; 
m-UppefIkcshhold = 0.0; 
Il} )AFX-Drn-rn  

1 
void CModeParamsDialo~:DoDataExchanBe(CDataExchan~* pDX) 

CDidog=.~DataExchangc(pD~; 
//{ (AFX-DaTb-MAP(CModePlrsmsDiaiog) 
DD-X XDCSINGLEMODE mJModc); 
DDXTMpDX, =-Dm, -od=h 
DDVJlïnMaxïnt@DX mJumModes, 1,1000); 
DDX,Text(pDX IDC-MINSEPARATION. m ~ i n ~ o n ) ;  
DDV-MinMaxInt@DX, mJMinSeparation, 1,100000); 
DDX,Tcxt(pDX, IDCJOWTHRESHHOLD, mJ.owniteshhold); 
DI)VJIinMaxDouble@DX, mJoMb&hId. O., 50.); 
DDX,'ht(pDX, Ibr--HHOLD, m-UppaThmhhold); 
DDVJlinMaxDoubte(pDX, m,Uppdlhreshhold, O., 50.); 

1 
BEûINJME!5SAGE~CMakhmmDialog, CDialog) 

//( {~GJUP(CModeFmamDialog) 
ONJN,rrt-rCKED@C~TfMODE, OnMuitimode) 
ONBN-CWCKED(DCSINGLEMODE, OnSinglemade) 
/II I - G m  

~ ~ S A G ~ - M A P O  
1//////////f////////////1//////~1///1//1//////////1//////1//1////1/~//1//1/// 
// CMadePanmsDialog message handlcrs 
void CMode~Didog,:ûnMultimode0 
{ 
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rietuni TRUE; II rcfuni TRüE unlm you set the focus to a controt 
// EXCElTiON: OCX noperty Pages should rem FALSE 

1 
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This fdc was initially gentratai using the Miczos0fit Visual C+i- 5.0 ClassWizard- It has ben modified as 
tequircd for the specjfic rrppücation. 

// NcwDatabase.h : b d e r  6le 
// 
l/f/llll///////////////ll//l/////////////////////f///////l////l//l/////l// 
// CNcwDatabose dialog 
c1ass CNwI)atabast : public CDialog 
I 
// Consmiction 
pubiic: 

CNewD&hsc(CWnd* pPatent = NULL); II standard coasmctor 
// Dialog Daia 

JI( {AFx-Dm(CNewDatabase) 
enum ( IDD = DD-NEIK,DAIARASESEDIAUXi ) ; 
CEdit m~ode1WmdowShiftEdi~ 
CEdit mJ4odeiWiadowSizcEdit; 
CEdit m-ModcWkiaocePairsEdit; 
CEdit m,~hholdEdit;  
CEdit m-W~ndowSittEdit; 
a i t  m-VasiancePairsEdit; 
CEdit m-TransientSizcEdit; 
m i t  m,RawFtleSizeEdit; 
int rnJawFi1eSizt; 
int m-TtansientSize; 
int m-WindowSize; 
int In-var-ancePairs; 
double rn-Thhshhold; 
int m-ModelVan'anccPairs; 
int mJfodclWinûowSizt; 
int m-MudclWiadowShift; 
14 I m D m  

II O v e r r i ~  
// C l a s s W m  gencrated virtual function ovmides 
//{ {Amc~vIRTuAL(CN~~Database) 
protected: 
virtual void hDataExchange(.CDataExchange8 pDX); // DDWDDV support 
II) ) AFX-VInrUAL 

// Impltrnentation 
protected: 

// Genaatcd maqe map fiuictions 
//{ (~sG(CNcwm-) 
VirtUpl BOOL OnIiiidogO; 
111 1-G 
DECLAREJMESSAGEM 
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m,RawFil&izeEdiUUnitTcxt(S); 
ai,TmsientSiUtEdiC~itText(4); 
m-VariancePairsEdit.LimitTat(2); 
m,ModcIWindowShiftEdit.LimitText(3); 
m-ModeIvariancePallsEdi~imitText(2); 
mm,ModelWind6wSizeEditLimitTcxto;ModelWindmSizeEditLimitTcxt(4); 
rn,WindowSizeEditLimitText(4); 
m,ThricshholdEdit.LunitText(6); /M of chars uscr cm en= in edit box 

r e m  TRUE; // ntum TRUE unIess you set the focus to a control 
Il EXÇEPI1ON: OCX n0pCrt.y Pages should rctum F U  

1 
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This file was initirUy gnnrwcd using the Microsoh Visual C++ 5.0 ClwWizard. It has been modifiai as 
riequirad fm the specific application. 

// SearchDia1og.h : huder file 
// 

// CScatchDiPJog dialog 
class CScarchDialog : public CDidog 

// c o ~ c t i o n  
public: 

CSean:hDialog(CWadt p b n t  = NULL); // standard constnictor 
// Dialog Data 

// { (AIXDiUX(CSearchDialog) 
enum ( IDD = IDDSEARCWDIALOC } ; 
int mJITelUbSearrh; 
int m,CIass; 
CSEn'ng mnate; 
CString m , U  
CStn'ng m-Mclel; 
CString m-Serial; 
CSbing m-Tic; 
//} )=RATA 

// Ovenides 
// ClassWizard gencrated WtuaI f'unction ovenides 
// ( (MX-VIRTUAL(CSearchDia1og) 
protected: 
virnial void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 
//) ) A F X - m A I ,  

II Implementation 
protected: 

void DisableAUEditBoxesO; 
// Generated message map functioas 
// { (AFX,MSG(CseatchDialog) 
virtud BOOL OnInitDialogO; 
&-mg void OnCIasslRadioO; 
af%-mg void ûnRadi010; 
a f x ~ ~ g  void OnRadi020; 
&-mg void OnRadi030; 
afk-mg void OnRadido; 

void OnRadioSO; 
//) }AF%JdSG 
DECLARE-MESSAGEM 

1; 
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This file was inia'ally generaîcû using the Micmsoh Visual Ccç 5.0 CIassWizad. It has ban modified as 
required for the specific application- 

// SearchDialog.cpp : implementatim file 
/I 
Rinclude "stdafk.hW 
üinclude "Z4CJfM.h" 
#indude "SearchDidog.hU 
Wdtf JEBUG 
Udefine new DEBUGJEW 
hndef ~~ 
static char THISJiLEQ = J E E ;  
#endif 
/l!l////~//l//l//////////I//I///////I/I/////f//l///I////I//////l/f/l//////l/ 
// CSeatchDiaiog dialog 
CStan:hDidog::CSean:hDidog(CWndt pPratat 

: CDialog(CSearrhDialog:DD, pParent) 

1 
void CSca~chDidog:-J)oDataExchmgc(CDataExchge* pDX) 
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// Ig_Fiel~oSeair:W, 
11 UpdrteDmALSE); 

DhbIeAlIEditBoxei); 
G ~ ~ D I ~ W ~ ~ ~ C L A S S _ E ~ ~ ~ ) - > E ~ ~ ~ ~ ~ ~ ~ ~ O W ~ U E ) ;  
rem TRUE; Il hturn TRUE unless you set die focus to a control 

// EXCEYllON: OCX Ropcrty Rges should return FALSE 
1 
void C S ~ h D i a i o ~ ~ C I ~ i ~  
( 
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#if 
! d e ~ d ( ~ ~ O M ) I A ~ O G ~ ~ C 6 2 4 B 4 4 1 ~ 0 4 3 F ~  lD1JF55F4445533400001NCLUD 
ED3 
Udcke 
~SETREJECllONDIAL00~C624P"A1,043F,ll D lJF555444S53540000JNCLUDED- 
#if,msc,VER >t lm 

O= 
*ndDif// Jdsc-VER >c lu00 
II CSetRejectionDialog dialog 
class CSetRejcctionDidog : public CDialog 

II Constraction 
public: 

CSctRejectionDialog(Cwnd* pParmt = NüLL); Il standard conwnictor 
// Dialog Data 

//( {AFXAFXD~(CSetRejcctionDialog) 
enum ( IDD = IûD-ONRMûG ); 
doublem,dRe~tionnireshold; 
//} ) m-DATA 

// Ovemdcs 
// ClassWd gencrated virtual function ovem'des 
// ( ( AFX-VIRTUAL(C&tRejectionDialog) 
promted: 
virtual void DoDa14Exchange(~xchange* pDX); /f DDXIDDV support 
//) )AFXAFXVIRTUAL 

protccted: 
// Generated message map functions 
//( { ~ S G ( C ~ e j e c t i o n D i a l o g )  

// NOTE: the ClassWd wiU add member fiinctions here 
//) ) AFXJMSG 
DECLAREJdESSAGE-,MAFO 

1; 
//( (AFlrrnI+ocrirnONI 1 
II Micro6oft Deve1opei. Studio will insert additionai declaratiom ininediatcly bcforc the phvious linc. 
endi f  // 
!d t f ined(AF]C,SETREJECL2O~lALOG-~C624~1  ID 1~FS5-444553540000~CLUD 
ED3 
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nUs aie was initialiy poasiad using the Mi~i060ft Viaid C++ 5.0 ClassWizard. It has bccn modificd as 
required for the spacific application- 

// SigmafnitDialqppp : împlemeatation file 
// 
niuclude "ttdaa.ha 
lliuclude "'L4C-MM.h" 
lliuclude "handaîa.hn 
*clude "PNN.hU 
üinclude "SigmaInitDialog.hn 
Wdcf DEBUG 
Udefine new DEBUGSJEIH 
Wwidef THISJLE 
static chat THISJ?LEQ = -FILE-; 
üendiî 
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nturn TRUE, II rehrrn TEIüE unless you set the focus to a conÉro1 
// EXCEPTfON: OCX Rbprrcy Pages should reûm FALSE 

1 
void CSigrnaTbitDiaiog::OhTimer(UIM: nJDEvcat) 

if (nIDEvctlL-1) { 



Appendix B: W - M M  Source Code 



Appendix 0: mC-MM Source Code 

niis fik was initially gamafd using ihc Micfosoft Visual Cte  5.0 CtassWizard. It has been modifieû as 
tc~uired for the specific application. 

11 TrainSigm4sûptDialog.h : beadet file 
Il 
/////~///11////1/1/1/11/1111/11/11111/IIl~//1/// 
If CksinSigm4sOptDidog diaiog 
class ChainSignusOptDialog : public CDi'alog 
{ 
Il Construction 
public: 

ChainSigmssûptDialog(CWnd* pParent = NULL); II staaclard consmictor 
CïransientArray *m-TtllclsientAxray; 
CPNN * m C W  
double m,dImprovcmentTolerance; 

// Diaiog Data 
//{ (AFxRA~(CTrainSi~as0ptDialog) 
enum ( IDD = iDD-TRAINSIGMASOFï-DIALOG ) ; 

// NOTE: the ClassWïzard will add &ta membcts htre 
/ I l  )mR= 

// Ovemdcs 
// ClassWizard gencmtcd v h a I  tùnction ovcrrÏdes 
//( { ~ ~ A L ( ~ r a i n S i g m a s ~ a l o g )  
protcctcd: 
Wnral void DoDacaExchangc(CDataExchangc* pDX); /f DDX/DDV support 
//) )AF?CAFXrnTUAL 

// Implementation 
protected: 

// Gcnerated message map functions 
// ( {AFX~SG(cnainSigmasOptDialog) 
afk-mg void ûnStopbutton0; 
&-mg void OnTrainbuttonO; 
WtuaI BOOL OnInitDialogo; 
&-mg void û n ~ r n ~  nIDEvent); 
//) )AFXJlSG 
DECLARE-MESSAGEJMAPO 

1; 
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'Ibis 61e was initiaily genersted using the Mictosoft Visual CM 5.0 Classwizard. It tias ban modifiai as 
required fot the specific application. 

// TrainSigmas-aiog.cpp : implenmitstion file 
11 
#include "stdafir.hn 
Uinclude 7XC-MMSia 
üinclude "'hndata hm 
#inclu& "PNNhm 
Uinclude "TkainSigmas0ptDialog.h" 
Mdei DEBUG 
Mefine new DEBUG- 
Uundef THIS-FILE 
static chat THISJILE~ = J I L E ;  
#endif 

// -0SigmasûptDial0g didog 
~rainSigmasOPtDialog::ffrainSi~tDialog(CWnd* pParent 

: CDialog(CTrainSigm~~OptDidog:~D, pParent) 
( 

//{ {~DATAJNlT(CkainSigmasoptDidog) 
// N m  the ClassWizard will add mcmber initiakation hete 

11) )AFX-Drn-rn 
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potuwi: 
CSûing m,strRawFnePath; 
int m , ~ r s s ;  
int *m,nRedictedCiass; 
double *rn-dEmx 
double fm~dWinningActivation; 

public: 
CïrainingRemltsO ( ) 
CïcainingRcsults(int NumClassi@Modcs) 

( m,aRedictedClass=new int[NumClassi~Mades]; 
~dEmntncw double[NumCiassifLModes]; 
m,dWhningActivation== double[NumCiassifLModes]; 

1 
-C7ItainingRcsultsQ ( delete 0 m,nnedictedClass; 

dclete a m,dError; 
dclcte 0 m-dWinningActivation;) 

void SetRawFilePath(CSaing FilePath) ( m,strRawFilcPath=FtlePath; ) 
void SetComctClassfint ComctClass) ( m,nComctClasd0ntctC18~~; 1 
void SetffcdictedClassfint nedictebC)ass, int ModeIndex) 

{ m-nnedictedClass~odeInd~x]=ncdictedCIass: ) 
void SetEm,r(double Esror, int Moddndex) 

( m-dErro~odeIndcx]=Eiror; ) 
void SetActivaîion(double Activation, int ModeIndex) 

( m-mnningActi~tion[ModeInde~]tActiVation; } 
CString GetRawFilePathO ( return m-strRawFilePath; ) 
int GetCollcctClassQ ( rctum m-nComcrClass; ) 
int GetRedictedClass(int ModeIndex) (rem rn,nRedictedClass~odefadex]; ) 
double GctEnor(int ModeInclex) (rem m , ~ o d e I n d e x ] ;  ) 
double GetActivation(int ModeIndex) 

( rem rn,dWinain~ctivation~odeIn&x~; ) 
Wdef ,DEBUG 

void himp(CDumpCon@xt8t dc) const; 
ücndif 



Appendix B: l'AC-MM Source Code 



Appendix B: 'LAC-MM Source Code 

// stdafxh : includt file for standard system indu& files, 
// or pmjdct spacific inclade files îhat are uscü fhqwntiy. but 
/I are chmgcd infiraquentiy 
I/ 
Mefine VC-II ExcIWCt CQCTIY-uscd stufF fiOm Windows headers 
Uinclude afhtemplb 
#ïncludt 6 w i n . b  II Mn1 c m  and standard compomnts 
lyinclude <sfrtexth> II MFC extensions 
Uifndef ~ N o ~ C M N S U P P O m  
IYinclude <afXcmnb/I MFC support for Windows Common Controls 
#incIude <afXdlgsb 
#endif // 3U.XOJlXCMNSUPPûRT 
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This file was initialIy gmemtd using the Micmsoft Visuai CI+ 5.0 AppWizard, It has ban modificd as 
quired using the visual tooIs in dre M i d  Developer Studio. 
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niis nie was initialty gcnerated using the M i w f t  V i  C++ 5.0 A p p W d .  It has ben modifiecl as 
rtquired using tbc visual tools in the Micros& Developet Studio. 
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MENWiEM "&Zoomcd Raw Signal", ID-VEW~MEDRAWSIGNAL 
, CHECKED 
MENUITEM "&CIassification Stats", ID-VIEW-TRAININGRESULTS 
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// 
// Vetsion 
// 
VS-VERSIONJWO VERSIONlNFO 
FlLEwMION 1,0,0,1 
PRODUCTVERSION 1 ,O*O* 1 
FILEFLAGSMASK WfL 

Wifdef ,DEBUG 
FILEFLAGS OxlL 
alse 
FEEFLAGS OxOL 

#endif 
FILEOS Ox4L 
FILETYPE OxlL 
FltESUBTYPE OxOL 
BEGIN 

BLOCK "Scn'ngFileInfo" 
BEGrn 

BLOCK nW0904BO" 
BEGIN 
VALUE "CompanyName", "U)" 
V '  meDesm*ption", "TRANSIENT MFC ApplicationUlm 
VALUE "FileVCtSionn, " 1, O, O, 1\0" 
VALUE " I n m a m e n ,  ~ S ~ "  
VALUE "ï,cgaiCopynght", "Capynynght @ l m "  
VALUE ~ ~ " *  "W" 
VALUE "ûriginalFiilenamca, I R A N S I E N T ~ "  
VALUE "ProâuctNarnen, "TRANSIENT ApplicationV)" 
VALUE "noductVetSioaW, " 1, O, O, lu)" 

END 
END 
BLOCK "V'11eInfo" 
BEGIN 
VALUE '"ihslation", 0~409,1200 

END 
END 
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BEGIN 
IDD-ABOUTBOX, DrCUlOG 
BEGIN 

LEFTMARGIN* 7 
RIGHTMARGIN* 210 
TDPMARGIN, 7 
B m M M A R G I N *  48 

END 
IDDJEWDA'CABASERIALOG, DIALOG 
BEGIN 

LEFCMARGIN* 7 
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TOPMARGIN, 7 
BtYITûMMARGIN, 13 1 

END 
I D D - B ~ R O G R E S S ~ I A L O G ~  DIALOG 
BEGIN 

LEmUARGIN* 7 
RIGHTMARGIN, 364 
TOPMARGIN, 7 
BUîIOMMARGIN* 104 

END 
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////ll//lf///l////IlllllI//llllI/l////1//IIIfll/llllllIllIIIlIfllrIlII/llllfl 
II 
// String Table 
Il 
STiüNGTABLE PRELOAD DfSCARDABLE 
BEGIN 

BRMAINFRAME ~C~Li~CAAAA\riri.r\n.an\nTACMM~ument\nTACCMM 
Document" 
END 
STRINGIXBLB PRELOAD DISCARDABLE 
BEGIN 

AmuDsAPP-'ITILE mc- 
AFXJDSJDLEMESSAGE "Ready" 

END 
STRINGTABLE DISCARDABLE 
BEGIN 

ID-INDImRJXT "EXI" 
ID-INDrmS_cAPS "CAP" 
IDJNDICNOR-NUM "NüMn 
ID-INDICKiOR,SCRL "SCRL" 
IDJNDICrnR-OVR "OVR" 
IDJNDIC~KREC "REC" 

END 
STRINGCABLE DISCARDABLE 
BEGIN 

D m - -  "Cmte a ncw dacumeaWcw" 
Dm-0- "Open an existing documentinûpenn 
IDJiILE-UûSE "Ciose the active document'nClose" 
ID--SAVE "Save the active document\nSave" 
IDJIP.E-SA~-AS "Sax the active document with a new namebSave As" 
ID-FUPAGE-SETUP "Change the printing optionshhge Setup" 
ID-FILE-PlüNT-Sotrrrr "Change ihe pn'ntcr d printing options\nPrint Setupn 
IDIDFILEFILE- " M t  the active documentLiRùrtn 
ID-FiLEWINT-PREVEW "Display W1 pagesWnt M e w "  

END 
STRING'tABLE DISCARDABLE 
BEGIN 
IDID,APP,ABOUTAPPAPPABOUT "bisplay pogcam information, d o n  number and copyrighthAbaut" 

"Quit the application; prompts ta save documents\nExit" 
END 
STRINGTABLE DISCARDABLE 

"Open this document" 
"Open this document" 
"Open this document" 
"open thisdocumeht" 
"Open thh documentn 
"Opcn this document" 
" O p c n t h i S ~ t W  
'Opeir this documeiit" 
"Open this documenta 
"Open thïs documerit" 
"ûpm this document" 
"Op this documentn 
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Il 
Il 
Il 
Il 

ENI 
m 
BE( 
n 
II 

EN 
m 
BE( 

Il 
ENI 
m 
BE( 

XI 
n 
11 
II 
n 
II 
n 
n 
Il 
n 
n 

ENI 
Sm 
BE( 

11 
n 

ENI 
Sm 
BE( 

A 
A 
A 
A 
A 
A 
A 

ENI 
STP 
BE( 

A 
A 

ENI 
STli 
BE( 

A 
ENI 
STR 
BEC 

DJiLEJfRUFn.E13 "@en this dacument" 
D-FiLE-MRU-FILE14 "Open this document" 
D-FILEJMRUm15 "Open this document" 
DJILEJfRUJiLE16 "Open tbis documentn 
D 
LINGTABLE DISCARDABLE 
SIN 
DJEXl3"NE "Switch to the next wiadow p a n e U x t  Panew 
LPRE'KFANE "Switch back to the p r e v ï ~ ~  windaw pane\nphvicms Panew 
D 
üNGT4BL.E DISCARDABLE 
3IN 
D-WINDOW-SPLIT "Split tht active window into panesLiSplitn 
D 
üNû'i2UI.E DISCARDABLE 
JIN 
D D l T - m  "Erase the selcction\nEtasem 
D-EDiT-UEARALL AIl, evaythevwytfiingliEtase All" 
DDIT-COPY "Copy the transient image and put it on the CiipboarcnnCopy" 
D-EDIT-CUT "Cut the selection and put it on t l r  Clipboard\nCutn 
D-mnm Tind the specified tcxtWid" 
D-EDiT-PASTE lnscrt Clipbard contcnîs\nPaste" 
D-EDïT-REPW "Repeat the last action\nRtpcatn 
>BIT-REPLACE "Replace specitïc text with different ttxt\nRcplaceW 
3 -  "Select îhe entire documentliScIcct Ail" 
X m T - m  "Undo the 1st action\nUdo" 
>~~~ a e d o  the p r c v i ~ i y  undone action\nRedom 
3 
üNG'iWLE DISCARDABLE 
>IN 
>J5WVIE\KTOOLBAR "Show or bide the toolber\nToggk ToolBar" 
3-VIEW-S'lXîüS-BAR "Show or bide the status barhToggle StafusBar" 
> 
UNGTABLE DISCARDABLE 
3IN 
~JDSSSCSIZE "Change the window size" 
J3CJDSSCMOVE "Change the window positionw 
~ - I D S , S ~  "Reducc the window to an icon" 
LFxJDSSSSCMAXIMTZE "Enlarge the window to full size" 
~ IDSSCNEXTWINDOW "Switch to the acxt document wiadow" 
JX-IDS-S-W "Switch to the prevîous document window" 
S.XJDSSSCCLOSE "Close the ;irctive window and prompts to save the documcats" 
3 
LINGTABLE DISCARDABLE 
;IN 
-S-SCRESïDRE "Restah the window to namal siu:" 
,FllIDSSSCCASKLIST "Activott Task Li" 
D 
UNGTABLE DISCARDABLE 
;IN 
~ S J R E V i E W J L O S E  "Clase pint peview modc\nCuial Rm'eww 
1 
INGWLE DISCARDABLE 
m 
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'Mjust vachce seaings Cm -ent segmentation. " 
I D I D , V I E W Q R E V ~ s R E v  "Go to tbc transient in ~ A n F r e v i o u s "  
I D - v = w V I E W m  "Go to the ncxt ûaasi~t in m \ n N c x t w  
ïûIDVIEW~WSIGNAL Wcw the raw signal on the smcen." 
I D - . J R A C U U W U E ~ R Y  "View variance dimension t r a m  on screen." 
ID-SEGMENTWION-VIEW *Show * 
iD-VIEWS-ON "View entire raw signal with scgmentacion information." 
ID-VIEPVVIEPVTRANSIENT "View transient with amplificd fiactsl dimension (dyadic)." 

END 
S'i'RUUGIABtE DISCARDABLE 
BEGIN 

ID--CILASSXFY an u n k n m  inmient h m  disk and classi@ i~inClassifi" 
I D m m I G M A S  "Perlorm univatiate sigma initialization. " 
ID-NEURALNET-OPTIMlZESIGMAS 

"ûptimize sigmas using conjugau gradients algorithmu 
IDJE--NETWORKPARAhlETERS "Set neural network parameters." 
ID-mITITFRACfALSARAMETERs 

"ModifL parametets for &ta1 segmentation and feature extraction." 
ID-WEW-UX)MEDRAWSIGNAL morneci raw signal in lawcr view," 
ID-VIEW-TRAINWGRESULTS "View rcsults h m  ment training or batch classification." 
ID--B-CLASSIFY 

"Test c lass i f i~on on severai aew, but known, transients." 
I D - N m J R A L N E T M O D E P '  "Set rnulti-male classification parametcrs," 

END 
Ucndif // English (U.S.) rrsawces 
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DATA AND SOFTWARE FOR FEUCTAL DIMENSION 
V~RIFICATI~N 

This appendix contaias images of the Fractionai Brownien Motion (mm) signds 

used fot vetification of the &ta1 dimension calcuiations in TAC-MM* The images are 

printed using TAC-MM with the followuig parameter settings: 

- Raw Fik Size - - 36384 
- Transient Sie - -- rK)96 

-Segmentation Window S K ~  2048 
Segmentetion Wnance Pairs 25 
Segmentation ThnshoM f 
Featum Extraction Window Sire 512 
Feature Extraction Wriance Pairs 5 
Feature Extraction WSndow Shift - f6 

The images are arranged so that they rcpresent incmsing theoretical k t a l  dimeusions 

h m  1.1 through 1.9. An image of the IÏactaI dimasion trajectory caicdated vsing both 

segmentation parameters and featwe extraction parameters is provicieci for cornparison 

pwpo=- 

lmmuliately foUowing the images is the source code of the software used to 

generatc the fBm signals. 
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Appndù CD- and Softww for Fracta1 Dimension Verifkation 



Feature Extraction, D, = 1.2 

Transmittm: Fractional Brownian Motion: Beta = 2.6 Serial #: Unknowa 

I 

* 

m 

. p 

. 
a 

a I 

O 1024 2048 30/2 





Feature Extraction, Do = 1.3 

Transmitter: Fractional Brownian Motion: Beta = 2.4 Serial#: Unknown 

f' 

. 

1 -  

rn 

I 

I D  

L 

b 

l=. 

O 1024 2&e 3072 
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Feature Extraction, D, = 1.5 

Transmitter: Fractional Brownian Motion: Beta = 2.0 Serial #: Unknown 
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SOURCE CODE MIR FI3M.c 

// FBUc 
// This pgram poduces Fdonal Broumiau Motion 
// using Dircct Specaal Fil tering. 
// @ 1997 Don Shaw 

float gasdevflong qdum); 
void fourl(float datan, unsignai long nn, int isign); 
maino 
( 

FILE *fileptr, 
iat ctr, numbet; 
long init--3; 
char namc[30]; 
float beîa, maxdev, biggest, tannum[1000ûû],smdtcst; 
printf("\nHow many discrctc points in tbm file?(int power of 2)\nn); 
scanf(" %d",&nwnbet); 
for ( c m ;  ctrc=(number-1): ctr++) { 

rannum[2*ctt]=gasdev(&init); 
1 

pruitf("\n\nWhat is the value of Beta?"); 
scanf("ùi%f',&bcra); 
if @ta >= 1.0) { P Not white noise? */ 

strcpy(name," ftran"); 
filepWopen(namc, "wu); 
a(fiitprr = m u )  ( 

printf(wErrorinu); 
1 
e b  { 

for (CM ctr <=(numk-1): ce++) { 
fprintf(fileptr, "%An",ra~um[2*ctr]); 

1 
1 
fçlose (fileptr); 
rannurn[OJ=û.O; 
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maxdey125000; 
biggesl-v.0; 
for ( c m  ctr<r(2*numbcr); ctr+=2) ( 

if (fh(rannum[ctt])>biggest) { 
biggest=Fabs(t8~urn[ctr]): 

1 
1 
biggcsü'tmaxdev: 
for ( c m  cîrc=(2*number); ctr+=2) { 

rannum [ctr ]/=biggest; 
1 
smaIlesW.0; 
for (cu=.l), ctr<=(2*nwibcr); ctr+=2) ( 

if (rannum[ctr3<smailest) ( 
smallest==num[ctrl; 

1 
1 
for (CM ctre(2*numbcr); ctr+=2) ( 

rannum[cb]+rfabs(smallest); 
1 

printf(%What is filename?: "); 
fflush(stdin); 
gets( name 1; 
fileptrzfopen(name, " w"); 
if (fileptr = NULL) ( 

prind("Enotiiiw); 
1 
e h  ( 

for (Ctr-0; ce c= (nmbl ); a++) ( 
fiprind(filepa, "'kd\nn,(int)ruinum[2*ctr)); 

1 
fpn'ntf(filepbr, "Fractional Btownian Motion: \nu): 
fprintf(fileptr, "Beta = 96.1 An", bcta); 

1 
klose (fileptr); 
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// The foiiowing routines ah h m  the book Numecical Recipes in C 
// Copyright 1992 Cambridge University Press [PTFV92] 

float ranl(1ong *idum) 
{ 

int j; 
long k 
static long iy=O; 
static long i v m ] ;  
Qoat temp; 
if (+idum 0 O Il !iy) ( 

if (-(*idum) < 1) *idun= 1 ; 
clac qdum = -(*idum); 
fa (j=NTAB+7; j* j-) ( ' 

k=(*idum)/IQ; 
*idum=Ur(*idm-k*IQ)-IR1k; 
if(*idum<0) *idum +=M; 
if (j < MAB) ivbj = *idum; 

1 
iy=iv[OJ; 
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1 
ke(*idum)/IQ; 
*idum=IA8(*idum-k81mfR*k; 
if (*idun < 0) *idum += M. 
j= iymN;  
iy=iv[i']; 
iv[ij = 'idum; 
if((temp=AN+iy) > RNMX) rchirn RNMX; 
else rem temp; 

1 

void foarl(float datau, unsignd long nn, int isign) 
€ 

unsignd long a, mmax, m, j, istcp, i; 
double wtemp, wr, wpr, wpi, wi, theta; 
tloat tempr, tempi; 

u=nn«l; 
j=l ; 
for (i=l ; ia; i+=2) ( 

if(j>i) ( 
SW'data(jc], d a t m ;  
SWAp(data~+l],data[i+l]); 

1 
m a  >> 1; 
while(m=2&&j>m) ( 

j -= m; 
rnx-1; 

1 
j+=m; 

1 

mmax=2; 
while (n > mmax) { 

istcp=mmax cc 1; 
th~ta=isign*(6.283 I853W 17959/mmax); 
wtemp=sin(03*theta); 
wpr = -2.Wwtemp*wtemp; 
wpi=sin(iho!a); 
-1.0; 
wi-O.0; 
for (-1; m<mmrx; m+=2) { 

for (km; i e n ;  idstep) ( 
j=i+mmax; 
tempr=wP~c]-wi*data~+1]; 
t e m p i = w P q +  l]+wi*datalj]; 
d r t a [ l i * w m p r ;  
datalj+l =i+I]-tenipi; 
datai1 += tempr; 
datafi+l] += tempi; 
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&PENDIX D 

~ S I E N T S  IN THE THESIS -T SET 

This appcndix contains images of one raw recordhg h m  each cliffirent 

transmitter uscd in the thesis test set The images rire printed using TAC-MM with the 

Segmentation ThreShold 8 
. Featun &action Wndow Size - 768 
Featum Extraction @riance Pairs 8 
Feature Exbcüon Wndow Shift 64 

The images are ananged in the order of Classes O through 7 as they werr assigned in 

Chapter 6 of this thesis. An image of the fracta1 dimension trajectory caiculated using both 

segmentation parameters and feature extraction parameters is pmvided for cornparison 

purposes. 
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&PENDIX E 

EXPERIMENTAL CLASSIFICATION RESULTS 

This appendix contains the batch classification reports for the test sets usai in this 

thesis. Sptcifically, mdts are listcd fm the validation sets associatcd with the three 

different training sets u d .  Also, resuits arc listed for the test of the PNN's rejtction 

ability and for cech of the test sets using muitimodai segmentation. The reports are 

arranged as follows: 

............................................................... Validation Set # 1 (Fiit 20 Tmsients) E-2 

...................................................... Validation Set # 2 (Radom Selection of 10) E-7 

.................................................... Validation Set # 3 -dom Selection of 30) E- 14 

Validation Set #3 with Extended Training ..................................................... ..E-18 

..................................................................... Test For PNN's Rejection Abüity E-22 

Validation Set # 1 with Multimodal Segmentation .......................................... ..EE27 

............................................ Validation Set # 2 with Multimodal Segmentation E-32 

......................................... Validation Set # 3 with Multimodal Segmentation E-39 
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VALIDATION SET # 1 (FIRST 20 TRANSIENTS) 
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Transientn- aiis nedictcd Confo Activation 
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Number of Correct Classifications: 243i255. 
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VALIDATION SET # 2 (RAMWIM SELECTION OF 10) 
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Activation 

3.821~1002 
6.413dû2 
7.187eM)3 
1.28Sc-ûû3 
3.2S2c1004 
1590eM)2 
8-77ik-ûû3 
1 . 0 9 3 ~ 2  
4.444e-003 
4.243e-Qo4 
2.108dM3 
6.027ta02 
1.498~402 
2.692W3 
3.569t-002 
7.507e-004 
5.241~-ûû2 
1.102e-Qo2 
7.6ooc-003 
9.17 lC-03 
3.420tM)2 
1.553cc003 
4-85 I d 0 4  
3.956eo04 
4.485~403 
3.955eM)4 
2.755t-Oû2 
5.73Se-003 
4,939c-003 
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2.006eM)4 
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4.239ea02 
1 -387eOû2 
1.062t.001 
8.76&-ûû3 
5.247eUû3 
3.69&-iü)2 
1 . M 1 0  
4.87se-004 
9.5 l!k#l3 
1.466ea2 
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1.039~4û3 
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4.872~402 
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Transient # PicName aud Pggh 
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Activation 

1.202ca4 
1.471eûû3 
2 . 1 M 3  
5,02704) 1 1 
2.357eîW8 
6.752dIûS 
1.081dMI3 
l * l 5 8 c a 5  
1- lO8eM)4 
3-18SC-02 
3.461c-ûû2 
3.973cu# 
2 - 9 1 W  
3.809c1005 
4.6%&M7 
3.96Se-iM2 
2.196dW)4 
9.776c4w 
1.s4e-004 
3 -7îk-ûû3 
3.512t1006 
3.645e4û5 
2.086em3 
7.528~4û3 
2,734&04 
l.O77e=005 
2.86se-004 
2.885~405 
4,182dW)3 
3.606e-008 
9.171eM)5 
1 . 5 5 ~ ~  
2.718e-014 
3.21Sd13 
l.34Sk-O 13 
2 . 6 9 4 ~ 4 5  
1.506eM)7 
1,739dM5 
1.27S008 
1.524dMI5 
1.05 l e m 4  
6 . 9 8 M  19 
1.388e-ûl6 
2.076dû2 
3 . 4 7 W l l  
2.92Oc4W8 
8.871dW 
2 . M 5  
1.296eaM 
2.073dû7 
1.9366005 
9.947* 
3312dK)5 
i . 7 6 m 5  
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Activation 

3.444e-003 
8-81 lC-003 
7.42otaos 
1.03%cM)4 
1 M 2  
1.612dû8 
1.611eM)6 
4.91&#4 
1.990cM)3 
2.3 l3C1004 
3.951eM)S 
1.904eM)6 
l . l 4 M 8  
l.S57eM)9 
1.2 l3eM)3 
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VALIDATION SET # 3 (RANDOM SELECTION OF 30) 
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Number of Co- Classifications: l6W 175. 
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VÀLIDATION SET #3 vvrm EXTENDED TRAINING 
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Activation 

2.583e-004 
2.9CKt-015 
7.62ûe-006 
2.828~00 16 
5.47&-008 
1.022e-003 
8376c-009 
2332e-008 
1 .mm 
1.40k-015 
6.713e-023 
7.844e-005 
2.3710605 2.261e-014 

4.1OOe-006 
4.872~6 17 
1374e-004 
7.806e-04 
1.690e-OW 
1.634~604 
3.142~-012 
2.SO3e-Ol8 
1.269e-O 13 
7.979e-O 14 
3.13%-011 
6.675e-006 
6.059c-010 
4.1We006 
1.273e-O04 
6.214~607 
6.978c-007 
3.1 36e607 
8322~604 
1.988e-004 
1.2Sk-003 
5.844e-ûû4 
3.168e-OoQ 
5 3 9 7 m  
2587e-005 
l.%SCXU 
7.717e-005 
2-01 &-O09 
6.673e-006 
6.297t4W 
3.088e-004 
7.694c-012 
4.41 3t-08 
2.65Sûû5 
1 .û63e-OoQ 
6.6466008 
3.462C-û 12 
3.91Oe-006 
2.048e-020 
1.861t-OoQ 
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Number of Corriect Classifications: 1681175. 



Appendix E: Expenmental Classification Resul ts 



Appendix E: Experimcntal Classification Results 



Appendix E: Experimcntal Classification Results 



Appendix E: Expcrimental Classification Results 



Appendix E: Expcrimentai Ciassification ResuIts 

Number of Concct Classifications: 1764255- 



Appendix E: Experïmental CIassification Results 

VALIDATION SET #l WITH MULTIMODAL SEGMENTATION 
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Appendix E: Experimental CIassification ResuIts 

Number of Correct Classifications: 247/2!i5. 



Appcndix E: Expcrimental Classification Results 

VALIDATION SET #2 WïTE MULTIMODAL SEGMENTATION 
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Transient # FieName and Paîh 

Appendix E: Expecïmental Classification Results 

Activation 

9,029~-ûO8 
7,526ta03 
621kM)3 
3.673d)06 
l.oo&OoL 
2,602c-006 
2-463t402 
4.895~402 
1,394~402 
1-483~404 
5,41&402 
S. 16-2 
3.687cM)2 
6 . 2 W 1 7  
5.52kM)Z 
5.236dO2 
7 . 6 7 0 0 8  
1,079ed01 
7,877m3 
3 .SS!k-o2 
4 . 2 0 5 a 2  
S. 196C-ûO2 
5 . 4 1 M 2  
1.1o6C402 
1.18!bûO6 
1.658e-WS 
9.834~402 
5-13 l a 2  
9.1UdO4 
62OOeM)2 
1.32601002 
4.46&402 
5.22Oe-ûO2 
129û~-OO3 
2.843t-Oû2 
3 JSlt-ûl6 
4.502e-003 
2.857~402 
1*026d)O 1 
4.142M19 
3.236C-02 
1 . S M 2  
2.244e-002 
1-0lld)OZ 
1.474~403 
8.82!WM3 
1-6256002 
1-l23oM)Q 
8.65-5 
4.872c-004 
5.72- 
3.44sca4 
9.027c-004 
l.Sgl& 10 
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VALIDATION SET #3 m MULTIMODAL SEGMENTATION 
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Appcndk E: Experimentai Classification Results 

Number of Correct Classifications: l67/175. 




