CLASSIFICATION OF TRANSMITTER TRANSIENTS
USING FRACTAL MEASURES AND
PROBABILISTIC NEURAL NETWORKS

By

Donald B. Shaw

A Thesis
Submitted to the Faculty of Graduate Studies
in partial fulfilment of the requirements
for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba, Canada

Thesis Advisor: W. Kinsner, Ph.D., P.Eng.

© D. Shaw; August 1997

(xiv + 126 + A-2 + B-150 + C-24 + D-17 + E-42) = 375 pp.

vl

National Library

Bibliothéque nationale

Your fils Votre référence

Our fig Notre référence

L’auteur a accordé une licence non
exclusive permettant a la

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Weilington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-23494-0

Canadi

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
COPYRIGHT PERMISSION

CLASSIFICATION OF TRANSMITTER TRANSIENTS USING
FRACTAL MEASURES AND PROBABILISTIC NEURAL NEIWORKS

by

A Thesis submitted to the Facuity of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

DONALD B. SHAW © 1997

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and to UNIVERSITY MICROFILMS to publish an
abstract of this thesis.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright

owner.

Abstract

ABSTRACT

This thesis presents a method of identifying the source of radio transmissions by
analysis of the transients exhibited at the start of the transmitted signal. It is motivated by
the intriguing possibility of identifying radio transmitters used in violation of federal and
international regulations. As well, such a system could be directly used for analysis or
classification of other nonstationary signals such as speech or power system transients.

The system developed in this thesis uses a multifractal analysis for precise
segmentation of a transmitter transient from the ambient channel noise. This is critical to
ensure that the portion of the signal being analysed does not contain meaningless noise
and, at the same time, represents the entire transition from noise to signal. Then, using a
;imﬂar multifractal method, significant features of the transient are extracted and stored
for neural network analysis. This modelling process is equally important as it provides a
means to reduce the size of the data for efficient neural network processing, while
providing significant emphasis on the most important features. Finally, the transient model
is classified using a Probabilistic Neural Network (PNN).

Experimental results indicate that this classification system is fast and accurate.
The three stages of segmentation, feature extraction, and classification are performed in
about a half second for a 16 kB transient. In the most successful experiment, the system
was trained with 160 out of the 415 available transients, representing eight different
classes of transmitters. Testing the system with the remaining 255 transients yiclded

results in which 96.9% of them were classified correctly.

Acknowledgements

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. W. Kinsner, for his unending
support and guidance throughout the writing of this thesis. Dr. Kinsner encouraged me to
undertake this course of study and provided me with motivation to see it through to
completion. He has shown me that research can be both rewarding and exciting.

I would like to thank my supervisors in the Canadian Armed Forces, past and
present, for their support and understanding of the time commitment involved for a project
of this magnitude. Specifically Major Al Deutscher, Captain Kathy Boulet, and Captain
Rob McIntosh are acknowledged. I would also like to thank Mr. Tom Silletta, Head Coach
of the Canadian Military Pentathlon Team, for his encouragement throughout the

-completion of this thesis.

I would like to thank researchers from the Communications Research Centre
(CRC) for providing the set of radio transmitter transients used for testing the system
developed in this thesis.

The friendship and discussions provided by my colleagues in the Delta Research
Group are also acknowledged. I would especially like to thank Jason Toonstra, who was
also studying transmitter transients, for his discussions about these “nasty little signals”.

I would like to thank my family for their constant support and encouragement

during this research and in all of my other endeavours. Finally, I would like to thank Tracie

for her patience and love.

-V~

Table of Contents

TABLE OF CONTENTS

COPYRIGHT PAGE ¢ 4cccccvccescancerecsasssacasassassooncacsssessasccnnne i
THESIS APPROVAL FORM .. .coccesescecccccrsocssccccosccnssocacnssssssasaelil
ACKNOWLEDGEMENTS ...cc00c0c0ssccscssssosssccscccccsoscccssacssssasssedV
TABLE OF CONTENTS. c cccoovecorscocsassscsscassssosscsssssscssssscocecseV
LISTOFFIGURES ...ccccetesccrrecccsccsrscocasscssssessccsnccsasevecccas IX
LISTOFTABLES ¢ ¢ ccceoesecsscsosccsosesssssasnseocssscssanncsassssances Xl
LIST OF ABBREVIATIONS . ¢ ¢ cvcoecceosacsasscocascsccosccscasnssssesssssssXil

LISTOFSYMBOIS D000 00 OGP0 OCERDCPOPOROOOTP OO ONEPROOPPOSNSIOECIETIIPRPEOSPRIEOGRNTSETS ﬁii

CHAPTER]I INTRODUCTION..:cv0oecceccesncoassscessccscscasscssasnccascsel
Background and Motivation...........oovviiiiiiiiiiiiiiiinn... 1

The Preprocessing Stage.cceveeiiiiennnnnnnneeenns 2

The Feature Extraction Stageccovvernnnenninnnnn. 3

The Classification Stageocvviiinniiiiiinenennnnn. 3

Thesis Statement and Objectivesccoviiviinninininnennnn. 4

Thesis Organizationc.civiiieiieriireneeienencnnanns 4

CHAPTER II FRACTAL DIMENSION AND MULTIFRACTALITY .cccocevsccovccccces®
Fractal Dimensions.coviieieniiiiieerenennecannnnnancns 6
Morphological-Based Dimensionscc0veinnn. 7

Entropy-Based Single and Multifractal Dimensions 9

Spectrum-Based Dimensionsccccenuevuennn. 12
Variance-Based Dimensionst 13

Fractal Dimensions for Transient Analysis 14

Calculating the Variance Dimensioncoceiiinenne. 15

Fractal Measuresvs. Timecoeiiiiinviinnenan.. 18

Local Fractal Dimensions and Multifractality 18

Y-

Table of Contents

CHAPTER III MULTIFRACTAL MODELLING OF TRANSIENTS FOR SEGMENTATION AND
mmmmon...........‘..........'..'.....'I.O...21

The Preprocessing Stage.coovveeernnraneeneeercenntannnes 21
MOBVALON. . .. coceveevecnsocsanseceacnsocosnnosananes 21

Fractal Segmentationc.ccoevreeeeenenaaccenccns 22
Segmentation Parametersc.oiiiietiiiiiianns 23
AlignmentISSUES. ovinrieiaiiniiiiiiieaiient 25

The Feature Extraction Stagecoverrrcccnecenacencnnenns 26
MOtVALION. . .. cevveerereacnnscrssnoanascccassncecnns 26
Multifractal Feature Extraction Parameters 27
Summary of Chapter3ccouiniinmnrnnnecnetentieeenns 29
CHAPTER IV THE PROBABILISTIC NEURAL NETWORK. cccccoeccccccccccccccns 3
Neural Network and PNN Foundationcohvenneiann. 31
Brief History of he PNNcoiiiiiiiiianenn 31
Classification with Complex Class Distributions. 31
Advantages of the PNN Overthe MLFN 33
Disadvantagesof the PNNcineieneeinnen, 35

The BasiC PNN citiirieeercenrsnnacnasocsesoncossncannns 36
Architectur®ccvvveevcncnnorencenocscsersonsonnes 36
Parzen’s Method of Density Estimation 37
PNNProcessingcooeveveeeeecccnesnnnnnnnncaannns 40
Training the PNNoiiiiiiiiiiiiiiiieiiieeees 43
An Error Functionforthe PNNcocovinent. 43
Optimizing Sigma.cooviiiiiineaneeneinent 45
Improving the Basic PNN........oooiiiieiininciiieienen.. 48
The Multiple-Sigma PDF Estimator....................... 49

A Continuous Error Function forthe PNN.................. 50

Vi-

Table of Contents

Derivatives of the Continuous Error Function 54
Training the Multiple-Sigma PNN Using Conjugate Gradients . 56
Other Extensions to the PNN Classifier 58
Bayes Classification and Confidence Levelscucvenen 59
Bayes’ Strategy for Classificationcc00nnenn 59
Implementing Bayes’ Methodinthe PNN 61
Bayesian Confidence Measures forthe PNN 62
Summary of Chapterdcceeiiueernenicncncncnennns 63

Using the TAC-MM Software Packagec.coeenenene 65
The UserDisplay Area.........cccevnuvenencncenccncnns 65
TheFile MenuU.ocoiiverenrenncnncaosesoanannsces 68
The Edit Menucovvveerenireiennronroccecenennnncs 70
The View Menucccvvererrienarncnccscscoconanns 73
TheNeural NetMenu.cooveierneneecccccconeens 75
TheHelpMenu.ooviinnicinninnnnnnaacnecnnnenes 80

Verification of the System Software Modules 80
Multifractal Segmentation and Feature Extraction. 81
The PNNClassifier.coovvereiieneeernecencaennns 88

Summaryof Chapter 5cooeiiiiiiiniiareneetienenanns 94

CHAPTER VI CLASSIFYINGTRANSMITI'ERTRANSIEN’IS.......................95

The ThesiS Test Set. . ..o vveereereeseseanncssacsnasoasananes 95
Transient Capturing Systemooeeeereeeeerananeees 95
The TransientFile Structurecoiveeineciennennnn 96
Composition of the TestSetooviiieieneeennnn 98
Testingand Results.ccoiiniinneininniineeriereeeennns 99
Training Set # 1 (First 20 Transients).cctnnn. 99
Training Set # 2 (Random Selectionof 10) 104
Training Set # 3 (Random Selectionof30) 106

-vii-

Table of Contents

Rejection of Unknown Transientsc.c.o... 108
Muitimodal Segmentationc.oeiiinnn. 110
Transformation of Fractal TrajectoryModel 113
Confidence Measuresandthe PNNol 117
Summaryof Chapter6ccovieiiiinenencnnnanennnnnn. 119

CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS. ¢« . ccccovesccccssssssse 121

ConCIUSIONScoviiiiiiiieierenenesenocannononoasannnens 121
Contributionsccoiiiiiiiiiiiiiiiiii el 122
Recommendations.covteetieeerrenneooencacoennansnans 123

REFERENCES ooo-co-oo-ooocoo.claao.oocooo.oooc-oao.oooooo-oeoo.cooco-124

APPENDIX A TAC-MM FILE STRUCTURES «.ccvcecceassccssassccsoesasssssAel
APPENDIXB TAC-MM SOURCE CODE ..cccocoeecceasscocssanccsossncssss Bel
APPENDIX C L'ATA AND SOFTWARE FOR FRACTAL DIMENSION VERIFICATION. .. C-1
APPENDIX D TRANSIENTS IN THE THESIS TEST SET . c.cvcvcevvrvecrccscssess D-1
APPENDIX E EXPERIMENTAL CLASSIFICATION RESULTS.cc00ctcecsaccsss Eol

-viii-

1.1
2.1.
2.2,
2.3,
2.4.
2.5.
3.1.
3.2.
3.3.
4.1.
42.

43.
44.
4.5.
5.1.
52.
53.
54.
5.5.
5.6.
5.7.
538.
59.

5.10.
5.11.
5.12.
5.13.
5.14.

List of Figures

LIST OF FIGURES
Ambient channel noise followed by radio transmission..................... 3
Covering set made up of symmetrically aligned vels (After [Kins94a]). 8
A graph of log(P(f)) vs log(f) for finding the power spectrum exponent, P. 13
Example of dyadic sequence with NT =256 andK=S.................... 16
Pseudocode for variance fractal dimension calculation. 17
Window for calculating the local fractal dimension of asignal. 19
Separating the transient from the ambient noiseinarawsignal. 22
Alignment of the fractal trajectory.coiniiiieiiiiiaaa, 26
An example of multifractal featureextraction.ol 28
Classes X and O plotted on a plane with one unknown (After [Mast93]). 32
Architecture of the PNN.iiiimiiiiiiiiiiiiiii it 36
Parzen's approximated PDF.c.coiiiiiiiiiiiiiiieiinnnan.. 38
Bracketing triplet and test point in golden section minimization. 47
Fractal modelof transient.ciieiiiiiinernrricnoncnnnnenss 49
TAC-MM user display area; default viewoptions.ccevvnn... 65
TAC-MM user display area; secondary viewoptions. 67
File: NewdialogboxX.ccoveiiiiiiiiieiiiiiiieeinencneanennen. 68
Edit: Fractal Parametersdialogbox.cciiiiiiiiennnn. 72
PNN: Classify results dialogbox.cooviiiiiiiiinriiiiennnn.. 76
PNN: Classify - Add Transient to Database dialogbox. 76
PNN: Mode Parameters - Select Classification Mode dialogbox. 78
Parameters for verification of TAC-MM variance dimension calculations. 82
Comparison of expected and calculated fractal dimensions. 84
FBm signal generated using direct spectral filtering withf=1.0. 85
Parameters to show contrast between dyadic and linear time increments. 87
Parameters for verification of PNN module in TAC-MM. 88
Test signal generated to cause the basic PNNtofail. 91
Parameters for verification of enhanced PNN structure in TAC-MM. 92

-iX-

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

List of Figures

Transient in unresolved circularbuffer. il 97
Resolution of circular buffer containing noise and a transient. 98
TAC-MM parameters for testing Training Set #1. 101
Consistently misclassified Force 1 transient.0.0..... 113
Comparison of (a) multifractal model and (b) transformed model. 114
TAC-MM parameters for testing eight element transformed model. 116

5.1
5.2.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

List of Tables

LIST OF TABLES

Verification of fractal dimension trajectory calculations.
Contrasting dyadic and linear time increments for D, calculations.
Transmitters used for testing the thesis. oot
Confusion matrix with results from Validation Set#1.
Confusion matrix with results from Validation Set#2.
Confusion matrix with results from Validation Set#3.
Confusion matrix with results from test for rejection ability.
Confusion matrix from Validation Set # 1 using multimodal segmentation. ..
Confusion matrix from Validation Set # 2 using mujtimodal segmentation. ..
Confusion matrix from Validation Set # 3 using multimodal segmentation. ..
Classification results using transformed fractalmodel.

.83
. 87

103
105
106
110
111
112
112

6.10. Classification results using eight element model size. 116

-Xi-

1-NN
BPN

SDI

SNR
TAC-MM
WSNN

LIST OF ABBREVIATIONS

Single Nearest Neighbour
Backpropagation Network
Communications Research Centre
Device Independent Bitmap
Euclidean Minimum Distance
fractional Brownian motion

Fast Fourier Transform
Gram-Charlier Neural Network
graphical user interface

kilobytes

k Nearest Neighbour

kilosamples per second

least squares regression

megabyte

Microsoft Foundation Class
multiple layer feedforward network

U.S. National Institute of Standards and Technology

Normal Parametric Classifier
probability density function
Probabilistic Neural Network
Quadratic Minimum Distance
Radial Basis Functions

single document interface
signal to noise ratio

List of Abbreviations

Transient Analyser and Classifier using Multifractal Modelling

Weighted Several Nearest Neighbour

-Xii-

List of Symbols
List of Symbols

lower bound for search range in univariate optimization

upper bound for search range in univariate optimization

power spectrum exponent

a time-varying signal

index for different classes in a training set

number of different classes in training set

Euclidean distance, scaled by sigma, between X and X,

Euclidean distance, scaled by multiple sigmas, between X and X,
time increment at the kth pair in variance dimension calculation
fractal dimension

spectral dimension

correlation dimension

Euclidean dimension

Hausdorff-Besicovitch dimension

Hausdorff Mesh dimension or Box-Counting dimension
information dimension

Rényi dimension

variance dimension

time-varying variance dimension (trajectory)

continuous error function for PNN processing

embedding Euclidean dimension

expected value of the vector ¥ given the vector X

frequency

actual PDF for a given class, ¢

joint PDF between the vector X and the vector element y,.

bounded minimum in univariate optimization

estimated PDF for a given class, ¢

estimated joint PDF between the vector X and the vector element y,.
prior probabilities of encountering a member of class, ¢

Hurst exponent

the Shannon entropy of the fractal in information dimension calculation
generalized entropy function for Rényi dimension calculation
general purpose index variable

index for vels in fractal dimension calculation

index for ordered pairs in variance dimension calculation

number of ordered pairs in variance dimension calculation

loss associated with misclassifying a case that belongs to a class, ¢
consecutive search point multiplier in univariate optimization
mean of variance dimension trajectory

number of training cases for a given class, ¢

frequency of vel intersection in correlation dimension calculation
number of samples between points in variance dimension calculation
frequency summation in information/correlation dimension calculation

-xiii-

List of Symbols

number of comparisons at the kth time increment in D calculation
number of points in univariate global search range

number of samples in time interval, T

number of vels in fractal dimension calculation

number of data points in an input vector for PNN processing
probability of vel intersection in correlation dimension calculation
power spectrum density

the moment order in generalized entropy function of Rényi dimension
intemnal confidence measure of X in class c in PNN processing

index for training case in training set (index for pattern layer neuron)
number of training cases in training set (aumber of pattern layer neurons)
sum of all summation neuron activation functions in PNN processmg
scalmg parameter in Parzen PDF estimator

variance

standard deviation of variance dimension trajectory

window spacing in local fractal dimension calculation

time

threshold in transient triggering mechanism

size of time interval

an activation function for summation neuron, ¢

size of vel in fractal dimension caiculation

Fourier transform of a signal

golden-section number for univariate optimization

fixed window width in local fractal dimension calculation

weight function in Parzen PDF estimator

ith element in sample vector, X, for PNN processing

value on x-axis of log-log plot for fractal dimension calculation
sample vector for PNN processing

rth sample vector in PNN training set

ith element of PNN output vector, ¥

cth element of PNN output vector, ¥, (for training case r)

value on y-axis of log-log plot for fractal dimension calculation
vector at output of PNN

exponent for sequence of time increments in variance dimension calculation
trial point in univariate optimization

-Xiv-

Chapter 1: Introduction

CHAPTER]

INTRODUCTION

1.1 Background and Motivation

A system which can accurately identify the source of radio transmissions would be
an invaluable tool for government, military, or civilian situations where unauthorized use
of the electromagnetic spectrum occurs [Shaw94], [Marc92], [CRC92]. For example, it
would be especially useful for authentication of air traffic control or police dispatch radio
transmissions. Alternatively, such a system would provide evidence for the prosecution of
persons engaging in illegal use of radio transmitters. In a military theatre of operations, the
ability to identify the source of radio transmissions, in combination with standard
electronic warfare assets such as direction-finding and triangulation systems, would
provide commanders with invaluable strategic information.

The concept of transmitter transient analysis and classification has been proposed
by Kinsner in 12 internal reports, starting from 1993, and different parts of the
implementation have been studied by his students [Diet94], [Ruda94], [Shaw94],
[Ande95], {Khan95], [Kwok95], [Toon95], [Toon97]. Specifically, the transient data
acquisition system used for collecting data for this research is described in [Kwok95],
[Toon95), and [Toon97]. It is also summarized in Section 6.1 of this thesis.

This thesis focuses on a method of classifying radio transmitters by analysing the
transient which occurs at the start of each transmission. The method requires three distinct

stages for the classification of a raw radio transmission. These stages are as follows:

Chapter 1: Introduction

1. Preprocessing;

2. Feature extraction; and

3. Classification.
A short discussion about each stage, along with a description of the various problems
which exist in their implementation, will now follow.
1.1.1 The Preprocessing Stage

The preprocessing stage separates a transient from a raw signal recorded at 44.1
kilosamples per second (ksps) and 16 bits per sample. Each recording contains 16,348
samples or almost 32 kilobytes (kB) of data. The signals contain ambient channel noise
which is followed by the start of a radio transmission similar to that shown in Fig. 1.1. Due
to the nonstationary nature of transmitter transients, though, the task of separating the
transient from the channel noise is very difficult. It involves finding the exact time when
the ambient channel noise, which is correlated to some unknown degree, ceases, and the
transient begins. However, despite being completely deterministic, many transients exhibit
characteristics similar to noise due to their high degree of irregularity. Thus, to some
extent, we are left with the problem of separating noise from noise with a different degree
of correlation. The approach presented in this thesis utilizes a multifractal analysis to
characterize the degree of irregularity along the duration of the signal. If, within this
characterization, a significant change occurs, it triggers the start of the transient and a
fixed number of consecutive samples can be removed starting at that point. In this thesis,
the separated transient contains 2 kilosamples (4kB) and is indicated between the dashed

vertical lines in Fig 1.1.

2-

Chapter 1: Introduction

e d—_—

|
l
l l
I
[

Fig. 1.1. Ambient channel noise followed by radio transmission.

1.1.2 The Feature Extraction Stage
After the transient has been separated from the less relevant data in the raw signal,
it must be further reduced in size before it can be classified in a reasonable amount of time
and to a high degree of accuracy. The feature extraction stage provides a more efficient
representation of the transient in terms of data relevance and storage requirements.
_Characterization of significant features within a transient is achieved through the use of a
multifractal analysis similar to that used in the preprocessing stage. The resulting signal is
a much more consistent representation of the primarily nonstationary transient signal and,
more importantly, can be significantly reduced in size. Success has been achieved with a
reduced transient size down to 32 elements. Also, using a transformation of the
multifractal model, data reduction down to 8 elements is accomplished.
1.1.3 The Classification Stage
The final stage of this system is the classifier itself. We use a neural network model
for classification. Two potential neural network models are worth consideration. These are
the standard feedforward neural network, often referred to as the Backpropagation
Network (BPN) [RuMc86], and the increasingly popular Probabilistic Neural Network

(PNN) [Spec88], [Mast95]. After an analysis of both types of networks, the PNN is chosen

Chapter 1: Introduction

because of its fast training speed, highly accurate results, and sound mathematical

foundations.

1.2 Thesis Statement and Objectives
The purpose of this thesis is to present a reliable system for classification of
transmitter transients using fractal segmentation, fractal modelling, and neural networks.
To accomplish this purpose, the following objectives are met:
* A consistent method for separating transmitter transients from ambient channel
noise is required;
e A technique which yields compact and highly representative models of
transmitter transients is required; and
* An effective neural network architecture for classification of multifractal

transient models must be implemented.

1.3 Thesis Organization

The organization of this thesis broadly reflects the sequence of the classification
scheme and, more specifically, the logical development of the research. Sufficient
background information is provided to fully describe each module in the classification
scheme. This includes an analysis of problems encountered throughout the research along
with the motivation for selecting various techniques used to solve these problems.

Chapter 2 begins with a comparative discussion of fractal dimensions and the
standard integer (Euclidean) dimensions. Various fractal dimensions are outlined, and
multifractality is discussed as an appropriate method for characterization of nonstationary

signals. The variance fractal dimension is selected for use in this application. Details for

Chapter 1: Introduction

calculating the variance fractal dimension are provided and the concept of fractal
trajectory is explained.

. Chapter 3 provides the basis for implementing the variance fractal dimension
trajectory in the roles of segmentation and feature extraction. The scope of this discussion
is limited to the direct application of processing the nonstationary transients from radio
transmitters. The parameter settings required to distinguish between these two roles are
discussed, along with an explanation of how efficient data reduction can be realized.

Chapter 4 commences with an analysis of the PNN relative to the popular BPN and
standard statistical classification techniques. This demonstrates the specific motivation for
the selection of the PNN as the classifier used in this system. Primarily though, a detailed
description of the PNN is given along with specific information about its implementation
in this thesis.

Chapter 5 presents the detailed design of the system. This includes a description of
the program designed for testing the thesis, TAC-MM, with specific regard to its various
features and limitations. This chapter then discusses the methodology used for verifying or
proving the implementation of each module.

Chapter 6 presents the experimental results achieved in this thesis. This is,
however, preceded by a description of the test data used in the experiments. An analysis of
the results explains exactly what has been accomplished and addresses the important issue
of confidence measures.

Chapter 7 provides conclusions, based on the experimental results, as to the
feasibility of the system described and the contributions made by this thesis. The thesis

closes with recommendations for further research into this topic.

-5-

Chapter 2: Fractal Dimension and Multifractality

CHAPTER II

FRACTAL DIMENSION AND MULTIFRACTALITY

This chapter focuses on definitions, applications, and computational details of
fractal dimensions and multifractality. Section 2.1 begins with a general discussion on this
topic. Several different classes of fractal dimensions are discussed, and the variance fractal
dimension is chosen as the most appropriate modelling method for this application.
Section 2.2 presents a detailed procedure for calculating the variance fractal dimension
complete with pseudocode for implementation of the main iterative loop. Specific
emphasis is placed on the proper selection of various parameters to ensure that the
calculation is accurate. A measure of local fractal dimension is discussed in Section 2.3,
and multifractality is further defined to include signals which exhibit time-varying fractal
dimensions. Finally, the variance fractal dimension trajectory is described as the

multifractal measure to be used for segmentation and feature extraction of transients.

2.1 Fractal Dimensions

The Euclidean dimension, Dg, of an object is often considered to be the smallest
possible integer space onto which the object can be embedded. It is well known that the
dimension of a point is 0, the dimension of a line is 1, the dimension of a plane is 2, and
the dimension of a volumetric object is 3. However, the concept of dimension can be
generalized further to include fractional quantities as well as integers. These are referred

to as fractal dimensions.

Chapter 2: Fractal Dimension and Multifractality

A fractal dimension, D, can be interpreted as the “degree of meandering” (or
roughness, brokenness, and irregularity) of an object [Kins94a]. For example, although a
coastline is immeasurable in terms of length, it has a certain characteristic degree of
meandering. If the object is regular in shape, it will have a fractal dimension which is the
same as its topological dimension. If, however, the object is irregular, the fractal
dimension will be higher. Thus, the concept of fractal dimension provides us with a means
to characterize the geometry of any shape, object, or signal.

Various formal fractal dimension definitions exist. According to the information
content under consideration, these can be classified into the general categories of
morphological, entropy, spectral, and variance based dimensions [Kins94a). Each of these
general categories will now be discussed along with a brief description of their
implementation. Then, it will be shown why the variance fractal dimension is best suited
for fractal modelling of univariate temporal signals, such as the transmitter transients
being analysed in this thesis.

2.1.1 Morphological-Based Dimensions

A morphological-based dimension characterizes the geometrical complexity of a
fractal object. The morphological dimension of a fractal object is also known as the
Hausdorff-Besicovitch dimension, Dyg. In practice, however, Dy is nearly impossible to
calculate, and many different ways to approximate it have been developed. One of the
more popular methods, due to its relative simplicity in calculation, is the Hausdorff mesh
dimension, Dg,. It is calculated by first defining a covering set made up of volume
elements, or vels for short [Kins94a], of size v and aligned symmetrically as in Fig. 2.1.

Then, a quantity, N,, is obtained by counting the minimum number of boxes required to

-

Chapter 2: Fractal Dimension and Multifractality

UM 7\
- _4/ a N, =28 \

Fig. 2.1. Covering set made up of symmetrically aligned vels (After [Kins94a]).

completely cover a given object. Appropriately, the dimension discussed here is
commonly called the box counting dimension.
If we assume that a power-law relationship exists between the size of the vel and

the number of covering vels at each vel size as in

)
v-N "™ Vv (2.1)

v

then Dy can then be obtained from

logN,

D,,, = lim 2.
HM = "ol—og(l.j 2.2)
v

Solving for Dy, in this equation requires an iterative process in which N, is determined

for different sizes of v = v; and plotted on a log-log plot where

8-

Chapter 2: Fractal Dimension and Multifractality

,‘- = IogN v; (2'3)

and

z = log(vl) 4

s

for every value of v;. Dy, is the slope of the approximating straight line in the log-log
plot.
2.1.2 Entropy-Based Single and Multifractal Dimensions

As the previously described morphological-based dimensions consider only
geometric features, they are suitable only when the distribution of the fractal is uniform.
Entropy-based dimensions, however, can be used when the distribution of a fractal is not
uniform. In these dimensions, the probability distribution of a dynamical system or the
distribution of a measure of a spatial fractal is taken into account along with its
geometrical features. One popular entropy-based dimension is the information dimension,

D; [Kins94a]. To calculate the information dimension, we will again consider a covering

of N, vels, each with a diameter v. Then, Dy can be obtained from

. HV
Pr= 2, g aim @
where H, is the Shannon entropy of the fractal given by
N,
H, = -3, pjlogp; (2.6)
j=1

-9-

Chapter 2: Fractal Dimension and Multifractality

and p; is the probability of intersection of the fractal with the jth vel. To calculate p;, we

determine the relative frequency, n;, with which the fractal intersects the jth vel as

n.
= bm %
Pj = valgl- NF (2-7)
where
NV
Ne= Xn, (2.8)
j=1

Notice that N refers only to the part of the fractal covered by the vels, and increases as the
size of the vels decreases. The information dimension, Dy, as described by Eq. 2.5, can

now be obtained from the slope of a log-log plot as before.

An improvement to the information dimension is the correlation dimension, D_. It

provides consideration to more than just entropy, it accounts for the correlation between

pairs of neighbouring points on the fractal [Kins94a]. To describe D, we will consider a
covering set made up of N, vels of size v as in the information dimension. We will again
assume that the jth vel is intersected by the fractal with a frequency ;. The probability of

the jth vel, p;, will then be defined as
n.
p; = lim =+ 2.9)

where

Chapter 2: Fractal Dimension and Muitifractality

N,
Np= Xn (2.10)
j=1

Notice that this probability definition is identical to that used in the information
dimension. Now, assume that the power-law relationship shown in Eq. 2.11 holds between

the sum of the squared probabilities over all of the vels of size v [Kins94a],

N,
D
Zp}’-—v < (2.11)
i=1

Then, the correlation dimension is given as

N,

log X, p}
D, = lim j=1 2.12)
v—=0 __log)

Solving for D in the above equation can be done as before, by an iterative process where
data for different values of v are plotted logarithmically and the slope of the approximating
line is determined.

The information dimension, D;, and the correlation dimension, D, are both
special cases of the generalized entropy dimension, or, the Rényi dimension [Rény55]).

The Rényi dimension utilizes a generalized entropy function as given by

1
H = ~—jlog X p§ -=<q<e (2.13)

-11-

Chapter 2: Fractal Dimension and Multifractality

where g is a value called the moment order. Notice that for ¢ = 2, H, becomes the
correlation integral from the numerator in Eq 2.12. It can also be shown that forg = 1, H;

is equivalent to the information dimension [Kins94a). Based on the generalized entropy

function, Rényi’s generalized fractal dimension is given by

N,

log ZP}
D = lm 1 _ =i .14)
q-1 log(v)

If different dimension measurements are obtained while varying g, a fractal object
has a non-uniform probability distribution and is said to be multifractal. Calculating the
Rényi dimension of a multifractal object for different values of g gives a range of variation
in D, which could indicate the characteristic degree of complexity for that object
[Kins94a). This type of multifractal measurement lends itself to a wide assortment of
applications such as modelling of dynamical systems, texture analysis of images [FeKi95],
and the study of nonstationary signals.
2.1.3 Spectrum-Based Dimensions

A spectrum-based dimension characterizes a fractal signal using spectral analysis
techniques such as the Fourier transform. Specifically, the spectral dimension, D, of a

signal is determined from its power spectrum density, P(f}), which is calculated by

1 :
P = lim vl (2.15)
T

-12-

Chapter 2: Fractal Dimension and Muitifractality

where V(f) is the signal’s Fourier transform. Then, a value called the power spectrum

exponent, f, can be determined from
1
P~ ﬁ (2.16)

by applying a curve-fitting algorithm to estimate the slope of a log-log plot, as in Fig. 2.2.

Fig. 2.2. A graph of log(P() vs log(f) for finding the power spectrum exponent, p.

Finally, we can calculate Dg from

Dp=E+3’—"2'E.(1s|353) 2.17)
where E is the embedding Euclidean dimension, which is one for a time series with a
single independent variable.
2.1.4 Variance-Based Dimensions
Variance-based dimensions, like the spectrum-based class, are used for
characterizing the fractal components of a time series. To calculate the variance

dimension, Dg, let the time series of interest be defined as a signal, B(z), which is

continuous in time, t. Then, the variance, 62, of its amplitude changes over a time

increment and is related to the time increment according to

-13-

Chapter 2: Fractal Dimension and Multifractality

Var(B(s,) -B (1)1 ~ [t = [

(2.18)

where H is a value called the Hurst exponent. By setting Az = If; -¢)l, and (AB),, = B(1,) -

B(t;), we can determine H from
H= lim 1 log [Var(AB) ,,] 2.19
ar—02 log (A7)
Finally, the variance dimension can be determined from
D,=E+1-H (2.20)

where E is the embedding Euclidean dimension and has a value of one for a time series
.with a single independent variable.
2.1.5 Fractal Dimensions for Transient Analysis

In this application, we are required to determine the dimension of a single variable
temporal signal. For the first two fractal classes, morphologically-based and entropy-
based, the transient would first have to be plotted onto some two dimensional surface
before analysis can be performed. In this situation, a problem arises because we do not
know what the relative scale between the time axis and the signal should be in order to

achieve accurate dimension calculations. However, assuming that an appropriate scaling
factor has been found, we are still left with a massive (213 % 2! bits) array of data to

process. The memory required, and especially, the processing time involved here would be

far too large for a practical implementation.

Chapter 2: Fractal Dimension and Multifractality

The spectral and variance dimensions are, perhaps, more appropriate for
dimension calculation of a univariate temporal signal. However, in calculating the spectral
dimension, we are limited to window sizes which are powers of two if the Fast Fourier
Transform (FFT) is used. Discrete Fourier Transform methods for other window sizes
would require unreasonably large amounts of processing time. Also, the choice of window
size in the Fourier transform may introduce artifacts which could seriously affect the
accuracy of the results [Kins94a]. In comparison, the variance dimension can be
performed on any sufficiently large window size. Its primary advantage, though, is that
since it does not require a window in the Fourier sense, no window artifacts are

introduced. Thus, the variance dimension, Dg, is the best choice for this particular

problem.

2.2 Calculating the Variance Dimension

In this section, the algorithm used for calculating the variance fractal dimension is
discussed. Emphasis is on the various parameter settings which must be considered in a
general implementation of this algorithm. Specific details for analysis of transients in the
segmentation and feature extraction roles will be left for Chapter 3. For this discussion,
consider a signal sampled over a time interval, 7, with a constant sampling rate of 1/0t.
This produces a sample space with Ny samples collected at equal time intervals, z.

Prior to calculating the variance dimension of a signal, we must establish the
number, K, of ordered pairs, and thus the number of time increments, which will be

required for finding H in Eq. 2.19. This must be considered in conjunction with the

-15-

Chapter 2: Fractal Dimension and Multifractality

increasing sequence of time increments, {At;, A, ... Atx}, which will be used. It is very

important that the time increments not exceed the length of the signal,

At ST

as unpredictable results will occur. Since the variance pairs are to be spread evenly on a

log-log plot, successive time increments should follow a sequence which is either linear or

dyadic. Thus, to satisfy the condition at Eq. 2.21, it is required that

v <N,

where ¥ = 1 for a linear sequence and ¥ = 2 for a dyadic sequence. Fig 2.3 shows an

example of a dyadic sequence with Ny=256 and K = 5.

- Atg=nsdis .
Ary=n ity - :
__An=n :

0 2 4 8 16 32 74

Fig. 2.3. Example of dyadic sequence with Ny =256 and K = 5.

Now that the sequence and number of time increments have been selected,

Var(AB),;, can be calculated for each time increment according to

-16-

Chapter 2: Fractal Dimension and Multifractality

1 Nk 2 l Nt :
Var (AB), = g1 2 (AB), - N 2 (AB), (2.23)
=1 r=1
where N = Ny - n;. Then the values (2}, 4;) can be calculated for the log-log plot by
% = log n, (2.24)

¢: = log [Var (AB)] @25

Implementation of Egs. 2.23, 2.24, and 2.25 for all time increments can be done using
nested loops such that the outer loop cycles through each time increment and the inner

Ioop cycles through each sample in the signal according to the pseudocode of Fig. 2.4.

for k =1 to K {
suml=sum2=0.0
nk = ‘Pk
Nk = NT = Dy
for n =1 to N {
AB = Bpupk — By
suml+ = AB * AB
sum2+ = AB
}
Var (AB), = (suml-(sum2?/N))
/ (N~1.0)
}

Fig. 2.4. Pseudocode for variance fractal dimension calculation.

Then, rather than from a plot, H can be determined using least squares regression

(LSR) as in

-17-

Chapter 2: Fractal Dimension and Multifractality

don 330
izl /\i=l (2.26)

2H = =1 Y'd K 2
2
KZ:,--(Z@]

i=1l

i=1

Finally, the variance dimension, Dy, is given by Eq. 2.20 using the value obtained for H.
Typical values for Dg are 1.0 for a highly periodic and well behaved function such as a

sine wave and increase to 2.0 for completely uncorrelated white noise.

23 Fractal Measures vs. Time
2.3.1 Local Fractal Dimensions and Multifractality

A discussion on the concept of local fractal dimension is required before a more
detailed description of multifractality can be given. A local fractal dimension refers to a
dimension value obtained from calculations on a limited area of the fractal shape, object,
or signal. The purpose of using this limited area is to assign a precise dimension to a
specific point in the fractal. A common approach to calculating local fractal dimensions is
by using a moving window that selects data from only within its boundaries. It is
straightforward to apply this technique to a univariate signal, B(t), by sliding the window,
which has fixed width, W, along the time axis as in Fig. 2.5.

A shape, object, or signal can be referred to as a pure fractal if its local fractal
dimension is the same everywhere. However, a transient or other nonstationary signal, is
not pure fractal because its fractality is time varying. This type of signal could be more
appropriately characterized by a model consisting of several local fractal dimensions taken

at different points in time. An extension to the concept of multifractality, as previously

-18-

Chapter 2: Fractal Dimension and Multifractality

Ba)

Time

Fig. 2.5. Window for calculating the local fractal dimension of a signal.
discussed, deals with signals or objects which have varying local fractal dimensions. A
fractal measure over a support set is called multifractal if local measures on different parts
of the support have different dimensions [Vics92].

2.3.2 Variance Fractal Dimension Trajectory

It should now be clear that the variance fractal dimension calculation can readily
be applied to a multifractal signal by finding the local fractal dimensions for successive
portions of the signal. When these local fractal dimensions are considered in sequence, we
have a multifractal characterization which can be referred to as the variance fractal
dimension trajectory [Grie96].

Referring back to Fig 2.5, the ideal size for the window width, W, is somewhat
ambiguous and depends on the nature of the signal being analysed. A relatively large
window size will cause the dimensions of locally distinct fractals to be buried within the
dimension of their most significant ngighbouring fractal and, at the same time, will be
computationally expensive. However, using a window size which is too small will provide
insufficient data for the analysis. Theoretically, the proper size of the window should result

in the variance dimension being equal to a constant value Rényi dimension. Selecting the

-19-

Chapter 2: Fractal Dimension and Multifractality

window size for signal segmentation and feature extraction in transients will be further
discussed in Chapter 3.

It is also very important to select an appropriate spacing, S, between successive
windows. To ensure that the entire signal is considered, selection of the window spacing
should be in the range from a single sample up to the width of the window. If the window
spacing is too small, calculation time becomes an issue. If it is too large, important details
in the trajectory could be lost. Chapter 3 will also describe this parameter in the specific

contexts of signal segmentation and feature extraction.

24 Summary of Chapter 2

This chapter described the use of fractal dimensions to characterize shapes,
objects, and signals. After a brief summary of various dimension calculation techniques,
the variance fractal dimension was selected for transient analysis and described in detail.
Multifractality was then discussed and the variance fractal dimension trajectory was
presented as a useful extension to the variance dimension. Chapter 3 will now describe the
parameter settings used for finding the variance fractal dimension trajectory in both the

segmentation and feature extraction modes of this system.

-20-

Chapter 3: Multifractal Modelling of Transients for
Segmentation and Feature Extraction

CHAPTER III

MULTIFRACTAL MODELLING OF TRANSIENTS FOR
SEGMENTATION AND FEATURE EXTRACTION

In this chapter, specific information is provided for implementing the variance
fractal dimension trajectory in the roles of segmentation and feature extraction.
Specifically, Section 3.1 presents the motivation for using this technique in the
preprocessing stage where segmentation of the transient from the ambient channel noise
occurs. The parameter settings required to implement fractal segmentation are presented
in detail and the problem of aligning the trajectory to the original signal is addressed. In
Section 3.2, the variance fractal dimension trajectory is explained in its role as a feature
extractor for the second module of our classification system. Again, the parameter settings
required for this technique are explained in detail. It is also shown how significant data

reduction can be realized simply by changing S, the window spacing parameter.

3.1 The Preprocessing Stage
3.1.1 Motivation

In ﬁe context of removing a transient from a raw signal for neural network
classification, finding the exact start of the transient is critical. If a portion of the signal
containing the transient is removed at a position from before the actual start of the
transient, the classifier will be forced to deal with an arbitrary amount of irrelevant
channel noise. This would lead to highly unreliable results despite that the neural network

would eventually leam to ignore the beginning of each transient. Obviously, when

21-

Chapter 3: Muttifractal Modelling of Transients for
Segmentation and Feature Extraction

successive transients like this are processed, the network would be constantly trying to
adapt to a varying duration of leading noise. The problem compounds itself when the
transient is extracted too late from the raw signal. In this situation, part or all of the most
relevant information could be completely truncated. No statistical, human, or neural
network classifier stands a chance under such circumstances.
3.1.2 Fractal Segmentation

As discussed earlier, the variance fractal dimension trajectory is a good tool for
studying the local fractality of a signal. However, for this method to work for segmentation
of a transient from the ambient channel noise before the transient, it must be assumed that
the channel noise and the transient exhibit different multifractal characteristics. Figure 3.1

shows how a transient can be segmented from noise using the fractal trajectory.

T =T
| [
| |

= ! |

/5]

2

= | |
| |
| |

g > T I

3, .t — |

‘T 164 |

!E 144 [

g |

121
= mr _ g
o 2043 409 Tie4 8192

Sample Number

Fig. 3.1. Separating the transient from the ambient noise in a raw signal.

Chapter 3: Multifractal Modelling of Transients for
Segmentation and Feature Extraction

The figure shows the ideal scenario where the dimension of the transient is much
lower than the dimension of the ambient channel noise. In this case, it is straightforward to
find the start of the transient. However, in many situations, it is difficult to determine what
type of change in the fractal trajectory actually marks this point in time. Sometimes, the
dimension of the transient is much closer to or, in rare circumstances, even higher than the
dimension of the ambient channel noise.

A suitable way to trigger the start of the transient is to find the earliest time when
the dimension, D4(t), compared with the mean, Wpqy,), of the portion of the raw signal

containing noise is sufficiently different as follows:
|Po (8) —1p, (')l > (T-Mp_y +%p,) (3.1)

where T is a certain threshold. The term, Gpqy) is the standard deviation of the signal and
is intended to compensate for ambient channel noise which has time-varying fractality
within itself. Also, in this implementation, the mean, J15y(,), and the standard deviation,
GD‘,(,,', are calculated only for #=1...7/4. Thus, we have imposed a simple limitation on the
format of the raw signal: that it must contain a minimum 774 samples of ambient channel
noise before the onset of the transient.
3.1.3 Segmentation Parameters

This section will discuss the variance dimension parameters which are best suited
for segmentation. The most straightforward parameter here is setting the spacing
parameter, S, for the sliding window. This should be set as near as possible to 1 such that
calculation time remains within the tolerance of the user. Theoretically, setting this value

to 1 will ensure that no significant transition is missed and allow for exact thresholding in

-23-

Chapter 3: Multifractal Modelling of Transients for
Segmentation and Feature Extraction

the time scale as determined by Eq. 3.1. Setting the window size is not as critical. Since we

are looking for a large transition and not fine details, we can set it a little on the high side

to ensure statistical validation. It has been found that a window size, W, on the order of 2°
is sufficient for this purpose.

The sequence of time increments, Az, and the number of them, K, must also be set.
For segmentation, a linear sequence of time increments, Az, = { 15¢, 28¢, ..., K¢}, is most
appropriate {GrKi94]. It should be noted that adjacent samples, among other pairs, are
compared here. This ensures that highly uncorrelated noise will yield high dimensions and
more correlated signals will show lower dimensions.

The number of time increments to consider, and thus the number of ordered pairs
obtained for the LSR algorithm, must be selected carefully. It was found that if too few
increments were considered, spikes were occurring in the trajectory during significant
transitions. At first, the notion that these spikes could be used as trigger points was
considered. However, it was quickly determined that these spikes were merely artifacts of
the dimension calculation caused by sudden scale changes at transition points. Since the
transition points seldom had consistent, if any, scale changes, this idea was abandoned.
The spikes found at the transition points could virtually be eliminated by increasing the
number of ordered pairs significantly. We are, however, limited by the size of the window,
W, and the amount of time that it takes to calculate the trajectory. It was found that a value
of about K = 10 produced reasonable results for this class of signals.

Finally, the threshold, T, must be set to trigger the start of the transient. At this
stage, we have determined T by trial and error. Despite the existence of the compensation

term, Opg(y in Eq. 3.1, there is still no guarantee that the channel noise will not show

-24-

Chapter 3: Mutltifractal Modelling of Transients for
Segmentation and Feature Extraction

significant changes as to falsely trigger a transient. Also, some transients may not have
fractal dimensions which are as different from the channel noise as others. In this case, the
extraction will not be triggered until after the onset of the transient and much valuable
information will be lost. Some success has been achieved by setting T to some value
around 0.08 (8%), but this depends largely on the settings of the fractal parameters. Also,
it should be noted that selection of this value, in conjunction with the comparison scheme
of Eq. 3.1, is the most significant obstacle in this system and warrants - future
consideration.
3.1.4 Alignment Issues

Since finding the exact start of the transient is so critical, it is necessary to
correctly align the fractal trajectory with the original signal. At first, it was unclear
whether the dimension calculated from each window should be aligned with the start of
the window, the end of the window, or with the middle of the window to represent some
sort of average. To resolve this issue, an extreme case, as shown in Fig. 3.2, was
considered. This figure depicts white noise, followed by a pure sine wave, and then white
noise again. The dimension was aligned with the first sample in each window of size 1024
samples. In theory, the dimension should be 2.0 for the noise portions and 1.0 for the
sinusoid. However, analysis of the dimension shows that the transition from noise to signal
occurs in the correct location while the transition from signal to noise occurs far too early.
In fact, the transition from signal to noise occurs exactly 1024 samples too soon (the width
of the window). The dimension of each window, in fact, becomes roughly the dimension
of the most uncorrelated part of the signal within that window. Thus, it can be concluded

that the dimension is to be aligned with the start of the window if we are searching for a

Chapter 3: Multifrac:al Modelling of Transients for
Segmentation and Feature Extraction

Raw Signal

£

8

o J

=

'g o

=

0% 7144 8192
Sample Number

Fig. 3.2. Alignment of the fractal trajectory.

transition from high to low and with the end of the window for the opposite case. In the
context of searching for the start of a transient, the vast majority of which exhibit a high to

low transition, the dimension should therefore be aligned with the start of the windows.

3.2 The Feature Extraction Stage
3.2.1 Motivation

The next stage in this scheme is referred to as feature extraction. In general, feature
extraction provides a more meaningful and significant representation of a signal [Lang96].
At the same time, the new representation contains fewer data points and thus facilitates
more efficient manipulation and storage. When dealing with computer classification
algorithms, this type of data reduction is very important. For example, the size of the
transients being analysed in this system is 2048 samples, far more than could be

realistically handled by most classifiers.

-26-

Chapter 3: Muitifractal Modelling of Transients for
Segmentation and Feature Extraction

As previously stated, the variance fractal dimension trajectory is a multifractal
model of a signal. It is made up of several local fractal dimensions and reveals the
multifractal nature of the original signal. This system relies heavily on the existence of
consistent and unique multifractality for a given class of signal to produce a sufficient
characterization. Data reduction is achieved simply by increasing the amount that the
window is shifted for successive calculations. For instance, if the transient is 2048 samples
in length, a window shift parameter, S, set at 32 will yield 64 dimension values. This
represents a significant data reduction and is much more manageable for neural network
processing. Another feature provided by this analysis is data normalization. By yielding
results which, when accurately calculated, are between 1.0 and 2.0 regardless of the range
of the original signal, further scaling is unnecessary for neural network processing.

3.2.2 Multifractal Feature Extraction Parameters

The parametric settings for feature extraction are significantly different from those
used for segmentation. Figure 3.3 shows the same transient selected in Fig. 3.1, except that
it is already separated from the channel noise and the fractal trajectory reflects feature
extraction parameters. Compared to the dimension trajectory calculations with
segmentation parameters, significantly increased detail is noticeable. This provides the
classifier with more distinctive features and a higher degree of separation between
different classes of transients.

The parameter settings should begin with the window spacing being selected, as
previously described, to determine the amount of data reduction which is to be achieved. It
is important that this be selected conservatively so that significant fractal characteristics

are not neglected in the modelling process. The size of the sliding window, W, should be

27-

Chapter 3: Multifractal Modelling of Transients for
Segmentation and Feature Extraction

£

(]

=

o

g 20
+

£,

E l.4'£

= 129

§ 1.0 M/\ A/&\ - AQALG
1] 512 1024 1536 2048

Sample Number

Fig. 3.3. An example of multifractal feature extraction.

set to a value that is close to that used for the segmentation. Setting W = 28 or 27 should be
sufficient to allow statistical validity while not burying important fractal characteristics in
an excessively generalized fractal dimension.

The sequence of time increments, As, is also quite different for feature extraction.
A dyadic selection, such that Az, = (28, 49t, ..., 2X8t}, is most appropriate for feature
extraction [KiGr95]. Notice first that adjacent samples are not compared. This, combined
with generally larger time shifts, causes the dimension to be somewhat higher and more
varied than with the segmentation parameters. The number of time increments, K,
considered here should be somewhat lower. This is largely due to the physical limitations
imposed by the smaller sliding window and the faster growing dyadic time increments,

At;. A value near K = 8 has been found to produce favourable results.

28-

Chapter 3: Multifractal Modelling of Transients for
Segmentation and Feature Extraction

3.3 Summary of Chapter 3

This chapter has shown how to use the variance fractal dimension trajectory for
segmentation and for feature extraction. The most significant difference between the two
modes is that the sequence of time increments is linear for segmentation and dyadic for
feature extraction. It has also been shown that by simply adjusting the spacing between
successive windows in the feature extraction mode, highly efficient data reduction can be
achieved.

The first two modules of this transient classification system, preprocessing and
feature extraction, will be revisited in Chapter 5§ where the TAC-MM software modules are
described and verification is performe. The next chapter, however, deals completely with

the PNN and how it is implemented in the classification module of this system.

-20.

Chapter 4: The Probabilistic Neural Network

CHAPTER IV

THE PROBABILISTIC NEURAL NETWORK

Neural networks are often used as classifiers. The standard neural network used for
classification is the multiple layer feedforward network (MLFN), often called the
Backpropagation Network (BPN). It has proved to work well in many different
applications and thus warrants consideration for any classification problem. Furthermore,
this type of network, given sufficient training time and neural processing units, can model
any linear or non-linear deterministic function. However, problems arise when we try to
define “sufficient” with reference to the number of processing units and the required
training time. It is not known how many processing units are necessary and, compounding
this problem, training could take weeks for a large data set. However, through estimation,
trial, and error, it is possible to find an architecture which works well. Another problem
arises when more classes or samples must be added to the training set; a new architecture
must be found and in all likelihood, the network would have to be trained again from the
start. Worse still, as mathematical verification of a MLFN is impossible, its predicted
results must usually be accepted on faith [Mast93]. This is unacceptable in our
application.

A more suitable candidate for the classifier in this application is the Probabilistic
Neural Network (PNN). Section 4.1 gives some general background information on neural
networks and the PNN. It compares neural networks to standard statistical classification

schemes and shows why neural networks are superior for most applications. Specific

-30-

Chapter 4: The Probabilistic Neural Network

problems associated with the popular MLFN neural network are discussed in detail and it
is shown that the PNN overcomes these problems while improving classification. One
important point is that the PNN has a strictly defined architecture, as shown in Section 4.2,
which is not subject to trial and error testing. In Section 4.3, training of the basic PNN is
discussed and algorithms are presented. Powerful extensions to the basic PNN
architecture, as used in this thesis, are discussed in Section 4.4. Finally, Section 4.5
addresses the Bayes Classification paradigm and shows how the PNN can provide

mathematically sound confidence levels.

4.1 Neural Network and PNN Foundation
4.1.1 Brief History of the PNN

The PNN is based on a statistical algorithm first proposed in 1972 [Meis72], long
before neural networks even existed. Due to relatively large computational and storage
requirements for its implementation, though, the algorithm was all but forgotten for
several years. However, in 1988, Donald Specht showed how the algorithm could be split
up into a number of simple processes which could operate in parallel, much like in neural
networks [Spec88], [Spec90a). Present day computers allow us to implement his
technique, thus making the PNN a practical reality [Mast95].
4.1.2 Classification with Complex Class Distributions

The primary use of the PNN is for classification. Despite that good statistical
techniques for classification have existed for years, there are some potential characteristics
of the distribution of the transient data which would preclude their use. Thus, we will
digress further to show the motivation for selecting a neural network classifier in this

system.

31-

Chapter 4: The Probabilistic Neural Network

Much like the MLFN and other neural network models, the PNN can handle
glecision surfaces which are as complex as necessary or as simple as desired [Spec90b]. To
fully understand the impact of this capability we will consider a simple classification
problem with two classes, X and O. Assume that members of these classes are fully
described by two variables such that they can be plotted on a plane as in Fig. 4.1. An
unknown class, ?, is also shown on the plot. The job of the classifier, given the information

shown on the plot, would be to determine if the unknown class belongs to X or O.

X o
X (o) o)
X 0 oX
X xxX
XQ X
20X

Oo ”;a& o

. 0905y 00o0

Fig. 4.1. Classes X and O plotted on a plane with one unknown (After [Mast93]).

Examination of Fig 4.1 shows that the unknown is probably a member of Class X.
However, certain features of the distribution of these two classes would cause failure for
standard statistical classification algorithms [Mast93], [Mast95]. First, the multimodal
distribution of the classes, observed as several independent clusters for a single class,
immediately precludes the use of centroid-based classification schemes which make the
assumption that each class has a multivariate normal distribution and a single mean. In
analysis of transmitter transients, these multimodal distributions will likely occur due to
variances in transmission frequency, ambient channel noise, electronic component

tolerances, and segmentation inconsistencies. A reasonable alternative would be to

-32-

Chapter 4: The Probabilistic Neural Network

abandon the normality assumption and use a nonparametric nearest-neighbour classifier.
However, further inspection of the example in Fig 4.1 shows that this would also fail. Such
an effect could be prevalent in our transient analysis due to inadequate representation of
certain classes during training and, again, from segmentation inconsistencies.

Neural networks perform well under conditions which cause complex class
distributions. They are known to be far superior in situations where a multimodal
distribution of the population data exists. Furthermore, rather than considering only the
nearest neighbour(s) around a certain data point, most neural networks can be configured
to consider population densities throughout the entire domain of the distribution.

4.1.3 Advantages of the PNN Over the MLFN

The PNN has useful characteristics drawn from both neural networks and
statistical analysis. First of all, as explained previously, the PNN has the neural network
characteristic of being able to effectively handle even the most complex data distributions.
At the same time though, it is based on established statistical principles which allow full
insight into its operation and, in some situations, mathematically sound confidence levels.
In fact, the classification abilities of the PNN approach optimal Bayesian, as will be
further discussed in Section 4.5.

Another advantage of the PNN, in comparison to the MLFN, is that it has a strictly
defined architecture. A corollary to this is that there are virtually no parameters which
must be set by the user, allowing its implementation to be relatively straightforward. The
tremendous impact of this characteristic can best be realized after attempting to implement

a MLFN and select parameters such as the number of layers, the number of neurons in

-33-

Chapter 4: The Probabilistic Neural Network

each hidden and output layer, and various learning rate settings depending on the training
algorithm being used.

When a MLFN encounters a training sample which is grossly erroneous, weight
updates will be of a commensurately large order. This causes the entire network to
overcompensate for a single sample and thereby reduces its ability to effectively model the
entire data distribution without increasing the number of processing neurons. The PNN, in
comparison, will handle such a situation with minimal problem and, as an added benefit,
produce accurate resuits if the sample is in fact a valid data vector. For instance, it is
possible that samples which may seem to be grossly erroneous only appear as such due to
the common occurrence of having only sparse training data available. Thus, another
feature of the PNN is that it works well in situations where training samples are relatively
sparse [Spec90b].

The most important advantage of the PNN is that it trains orders of magnitude
faster than a similarly tasked MLFN. In many cases, training the PNN is virtually
instantaneous. The implications of this speed improvement are numerous. First, research
time normally spent training the neural network can be better spent on other portions of a
project or in reducing the total time spent on the project. For instance, with the transient
classification system described in this thesis, more trials could be attempted with various
parameter settings for the first two stages of the system. Alternatively, this training time
reduction could lead to the future development of a system which could capture and learn
transients directly in real-time.

As a final note, two studies conducted by the U.S. National Institute of Standards

and Technology (NIST) will be cited. The first study compared several classical and

Chapter 4: The Probabilistic Neural Network

neural network techniques for classification on a database of FBI fingerprints [NIST5163].
The second study compared the same techniques for classification using a U.S. Postal
Service database of handwritten digits [NIST5209]). The techniques compared were
Euclidean Minimum Distance (EMD), Quadratic Minimum Distance (QMD), Normal
Parametric Classifier (NRML), Single Nearest Neighbour (1-NN), k Nearest Neighbour
(k-NN), Weighted Several Nearest Neighbour (WSNN), MLFN, Radial Basis Functions
(RBF1 and RBF2), and the PNN. A significant result of both studies is that the PNN
yielded the lowest error rate of all methods tested.

4.1.4 Disadvantages of the PNN

The principal disadvantage of the PNN is that the entire training set must be stored
for the classification of unknown patterns. However, in the case of these transients, this
will likely not become a significant problem. Using a very conservative data reduction
parameter, each transient could be characterized by 64 double precision numbers for a
total of 512 bytes of storage space. This would allow for storage of around 50,000
transients on a typical desktop computer (32 MB) with ample space remaining for an
operating system and processing software.

The only other criticism of the PNN is that its classification speed is slow and
therefore it is rarely suitable for real-time applications [Mast93]). However, with recent
microprocessor technology, this no longer appears to be a problem. Tests done in this
thesis, for a moderate sized problem, show classification time to be on the order of

hundredths of a second on a standard desktop PC.

-35-

Chapter 4: The Probabilistic Neural Network

4.2 The Basic PNN
4.2.1 Architecture

At first glance, the architecture of the PNN resembles that of the MLFN. Figure

4.2 shows that the PNN consists of several layers of parallel processing units, or neurons.

Fig. 4.2. Architecture of the PNN.

The exact number of neurons in each layer is determined by the data which exists for the
training set. The number of input neurons, which serve no functional purpose other than to
store the data for distribution to the next layer, is equal to the number of separable
parameters used to describe the objects to be classified. Thus, the number of input neurons
is equal to the number, p, of data points in a sample vector, X. The pattern layer can be
considered to be two-dimensional and contains one neuron for each training case.
Specifically, it represents a certain number of training samples (3, £, ¢, ...) from each of C

different classes for a total of R training samples. In brief, each neuron in the pattern layer

-36-

Chapter 4: The Probabilistic Neural Network

computes a distance measure between the unknown input and the training case represented
by that neuron. An activation function, known as the Parzen window, is then applied to the
distance measure as will be explained later in this section. In the summation layer, Fig 4.2
shows that there is one neuron for each of the C classes. These neurons sum the values of
the pattern layer neurons corresponding to that class to obtain an estimated density
function of the class. The number of neurons in the output layer is also equal to the
number of classes, C. The output layer is often a simple threshold discriminator which
activates a single neuron to represent the projected class of the unknown sample. In more
advanced implementations, the neurons in this layer can bias the resuits to compensate for
prior class probabilities and the cost of misclassifying a sample from a certain class. These
factors will be further addressed in Section 4.5 during the discussion on Bayes
Classification.
4.2.2 Parzen’s Method of Density Estimation

Before a detailed description of processing in the PNN can be given, a suitable
class-conditional probability density function (PDF) estimator must be reviewed. In 1962,
Parzen presented a method of estimating a univariate probability density function from a
random sample [Parz62]. His PDF estimator converges asymptotically to the true density
as the number of samples increases towards a fully comprehensive representation of the
class data. As shown in Fig 4.3, it finds the PDF by summing several bell-shaped weight
functions, W(x), each of which is assigned to a sample from the class. In this example,
there are 8 samples from a single class in the training set centered at 0.15, 0.22, 0.27, 0.30,
0.40, 0.60, 0.65, and 0.85. Notice how this scheme allows for a multimodal distribution

within the class. Parzen’s density approximation is simply the sum of the 8 weight

-37-

Chapter 4: The Probabilistic Neural Network

3.0 T T ™

2.0

W(x)

P 4

Fig. 4.3. Parzen’s approximated PDF.
functions multiplied by a constant. Formally, if there are n_. training cases for a given class,

¢, then the estimated PDF for that class, g.(x), is

nt
1 W(x-x-)
x) = . —_— 4.1
8.0 =775 .E - @.1)
where ¢ defines the width of the bell curve that surrounds each sample point. Proper
choice of the value for ¢ is critical to the performance of the PNN. If & is too small,
individual training cases will be considered only in isolation and we will be left with
essentially a nearest-neighbour classifier [Mast93). However, if the value of & is too high,

details of the density will be blurred together and, unless the different classes are very well

-38-

Chapter 4: The Probabilistic Neural Network

separated, confusion would certainly result. Selecting a suitable value for ¢ will be
discussed in Section 4.3.
The weight function, W(x), is almost always chosen to be the normalized Gaussian

function as

xz
W) = ﬁw (20;) @2

While other weight functions are theoretically possible, the Gaussian is well-behaved and
ideally shaped for this implementation. It has been shown in practice to perform well and
is almost always the function of choice for practical applications.

Referring back to Fig. 4.2, we see that the PNN has p inputs. Therefore the PDF
estimator must take into account all of these input variables in order to achieve an accurate
density estimation. In 1966, a means to extend Parzen’s method to the multivariate case
was introduced [Caco66]. However, it is somewhat more complicated because it allows
each of the input values to have its own scale factor, . This fully gencral density estimator

for a class, c, is given by

xl z X =Xp i
gc (xl! ewey xp) n oloz z cees G) (4.3)

i=1

where, as in Eq 4.1, n_ is the number of samples which exist for the class. To reduce the

complexity of Eq 4.3, we make a few common simplifications. First, for the basic PNN

model, we will assume that all scale factors are equal such that 6; = 6; = ... = 6. Then we

-39.

Chapter 4: The Probabilistic Neural Network

can achieve further economy by letting the multivariate weight function become the

product of the univariate weight functions as shown in

W(xp, ... x,) = [Wi(x) 4.4)

i=1

Now, with these two simplifications, the density estimator can be stated explicitly

| n w-f.l’
g.X) =—7— Y *° (4.5)

(2x)? *c"n_

i=1

where X represents the input vector x;, ..., x,. Notice that the distance function, IX-X; A2, is
simply the standard Euclidean distance for the vector, X. The density estimator given in
Eq. 4.5 is the foundation of the original PNN proposed by Specht [Spec88], [Spec90a]. It
is also the estimator used in most PNN implementations and has a history of good
performance [Mast95].
4.2.3 PNN Processing

Examine once again the architecture of the PNN in Fig. 4.2. To classify the
unknown case, X, at the input layer, the network propagates a signal forward as shown by
the arrows on the neuron connections. The input layer, as stated previously, holds the
unknown sample for distribution to each node in the pattem layer. To explain the exact
calculation which takes place in the pattern neuron we shall again consider Eq. 4.2. Since

we are classifying using relative class-conditional PDFs among different classes, we can

-40-

Chapter 4: The Probabilistic Neural Network

eliminate any constants which exist in the functions. Thus, we are left with some constant
multiple of the densities for all classes, which when considered in relative terms, would
yield identical results to those obtained by using true densities. The weight function given

at Eq. 4.2 can be replaced by the unnormalized Gaussian in

x,x)*
WXX) =e 0 @.6)
where d(X.X,)? is a 6-scaled, squared Euclidean distance computed between the unknown

sample, X, and the training case, X,, as calculated by

d(X, X,)2 = -13 . i |x,.-x,' ‘.|2 @.7
G iz

Note that the constant 2 in the exponential of Eq. 4.2 has been absorbed into the value of &
as a further means to simplify the calculation.

Computations performed by the pattern neurons can now be specifically explained.
Each pattern neuron computes the 6-scaled Euclidean distance, given by Eq. 4.7, between
the unknown and the training case which it represents. Then the weight function is applied
to this distance as described by Eq 4.6. These weighted distance measurements are then
propagated forward, as shown by Fig 4.2, to the summation neuron which corresponds to
the class of the training case represented by each pattern neuron.

The summation neurons, just as their name implies, perform a simple summation
of the weighted distance measurements for the class they represent. This computation is

similar to Eq 4.5. However, due to the simplifications derived in Egs. 4.6 and 4.7, a

41-

Chapter 4: The Probabilistic Neural Network

significantly reduced classification function, which is merely a multiple of the PDF

described by Eq. 4.5, can be used as in

g (X) = 4.8)

-—
n

;)
-
]
—

It should be noted that the factor, I/, in Eq 4.8 is not constant unless there is an equal

number of training samples for each class, and thus, could not be eliminated in the general
case. Specifically, this factor compensates for unequal representation of different classes
which may exist in the training set. Otherwise, the network would be significantly biased
toward choosing the class with the most cases in the training set. In some cases though,
_this bias may be desirable if the number of samples from each class in the training set is
carefully selected to be proportional to their probability of being encountered. The idea of
incorporating prior probabilities in a manner similar to this, will be expanded upon in
Section 4.5.

The output Jayer of the PNN is usually a simple threshold discriminator. All of the
outputs from the neurons in the summation layer are examined and the largest one is
selected. Then, only the output layer neuron which corresponds to that neuron in the
summation layer is activated. The index of the activated neuron in the output layer
represents the predicted class of the sample at the input layer. Section 4.5 will discuss
some possible extensions to the computations performed by the output layer.

Examination of Eq. 4.8 reveals a potential problem which may be encountered.
Taking the exponent of a negative number will quickly yield a value of zero as the

magnitude of the number increases. If the unknown case, X, and the training case, X, are

-42-

Chapter 4: The Probabilistic Neural Network

extremely different, the summation obtained for that class may be zero. While this may
appear to be a desirable effect, it would become impossible to select the right class if the
unknown is substantially different from all training cases and all of the summations
become zero. A simple solution to this problem is to flag its occurrence during
classification and yield a result which shows that this case belongs to none of the known
classes. In practice, this problem will be a rare occurrence, but an example will be shown
in Subsection 5.2.2 where it is encountered. A potentially positive consequence of this
situation is that it provides a simple reject mechanism when a wildly different and

probably unknown sample is encountered.

4.3 Training the PNN

Like the MLFN, the PNN utilizes a supervised learning scheme. This means that
during the learning process, selected training cases are presented to the neural network
along with the correct output. The network then adapts itself to produce the correct output
when similar cases are seen. However, unlike the MLFN, the PNN does not need to be
trained extensively to produce good results. With most problems, the PNN will produce
sufficient results with the optimization of just one scaling parameter, ¢, in the Parzen
density estimation. This task can be performed quickly, using one of several standard
univariate optimization methods.
4.3.1 An Error Function for the PNN

For training a neural network, a means to measure its performance, as a function of
O, is required so that we know how well the network is performing and when to cease
training. Since the PNN is a classifier, an intuitive measure of error would be to simply

iterate through the entire training set, classifying each known training case as if it were

43-

Chapter 4: The Probabilistic Neural Network

unknown. The number of correct classifications could be counted and this would become
the measure of error for the network. However, examination of Eq. 4.6 and Eq. 4.7 shows
that this would not be an effective error measure. The problem occurs when the training
case at the input is compared with itself at its corresponding pattern layer neuron. The
Euclidean distance would be zero, and therefore, the weight function would reach full
activation for every input in the training case, regardless of the value of ©. Such a
tremendous bias would certainly cause the network to correctly classify every case in the
training set, rendering this error measure useless.

A similar, yet effective, alternative to the above technique is called the holdout
method [Spec90b]. It involves the same iteration through the training set as described
above, except for one small deviation. When a training case is presented to the network for
classification, the corresponding neuron in the pattern layer is temporarily removed and
the network classifies using R - 1 pattern layer neurons. Using this technique, no bias is
introduced as a result of comparing a training case to itself. This method is especially
useful in the common situation where it is desired to make maximum use of a limited data
set. In practice, it has been shown to produce very good results. However, it should be
noted that the results achieved in training using this technique will still be partially biased
by the training set because the classification of the training case being left out is still
involved in the choice of ¢. Typically, this would cause the training error to be slightly
better than that obtained using completely unknown samples. Whenever possible, efforts
should be made to leave a significant number of samples aside during training for a true

validation of the network.

Chapter 4: The Probabilistic Neural Network

4.3.2 Optimizing Sigma

Now that we have a means to measure the performance of the PNN for a given
value of , a method for finding the optimal value of ¢ can be established. Since we are
optimizing a function with one variable, any of several different univariate optimization
algorithms could be employed. However, there are some considerations which should be
made before selecting a technique. First, since we are iterating through the entire training
set for each evaluation of ©, the time required can quickly become large as it is
proportional to the square of the number of training cases. Thus, we must do as few
evaluations as possible for each value of ¢. Also, due consideration should be given to the
possibility that multiple minima may exist. It would be somewhat careless to accept the
first local minimum found because better results may be achieved at a different value.

The optimization technique used in this thesis is performed using two distinct steps
[Mast95]. First, a trivial global search is conducted at N points over a range from a to b.
The error measure is determined at the lower bound of the selected range, a, and then at
logarithmic intervals until the upper bound, b, is reached. Points along the search range are
incremented by a multiple, m, as calculated in Eq. 4.9, such that the ratio of adjacent
points is equal

log (b/a)

N-1
m=e 4.9)

This logarithmic spacing, as opposed to linear spacing, is used because the effect of ¢ in
the error function is multiplicative rather than additive. Now that the interval has been

evaluated at N; points, the point with the lowest error is selected, along with the adjacent

45-

Chapter 4: The Probabilistic Neural Network

points on both sides, for use in computations during the next step. The only potential
problem with this global search occurs when the minimum exists at one of the endpoints
of the interval. In this situation, the routine continues stepping out in that direction until
the error function turns up. Despite this safety mechanism, though, care should be taken to
try to avoid this situation by setting the endpoints appropriately. Values on the order of
0.001 up to 100 may be required, depending on the size and complexity of the problem.
Also, in order to ensure that a global minimum is actually found, the number of-search
points, N;, should be set as high as possible while remaining within the tolerance of the
user in terms of processing time. At the termination of this algorithm, a bounded
minimum, v, will be found. The \(alues of a and b again bound the interval of the
minimum, except that they have become the calculated values which were adjacent to 'y in
the initial search.

After a rough bounded minimum has been found using the rudimentary
minimization algorithm described above, the next step is to refine the value of ¢ using the
golden section technique. In this minimization scheme, three points are kept track of such
that the error measure at the centre point is less than that of either of its neighbours. Again,
we will refer to these points as a, b, and ¥ for the two endpoints and the bounded minimum
respectively.

The golden section technique considers the bracketing triplet of points and
evaluates the measure of error at an intermediate point between either a and y or between y
and b. Suppose a point, z, is selected between a and ¥, as shown in Fig 4.4, and the

measure of error is evaluated there.

46-

Chapter 4: The Probabilistic Neural Network

Fig. 4.4. Bracketing triplet and test point in golden section minimization. -

If the measure of error at z is less than the error measure at ¥, then z becomes the
new middle point and Y becomes the new endpoint (i.e. b = ¥ and Y = z). Otherwise, z
becomes the new endpoint on the left side (i.e. a = z). In either case, one of the endpoints
is dropped and the middle point in the new triplet is the best minimum achieved so far.
Then, the process is repeated until the difference in the error achieved for successive
iterations becomes insignificant, or until the width of the interval becomes small enough.

The issue of placing the test point, 2z, must be addressed. It is reasonable to select
the test point such that it is in the wider of the two intervals because, given no other
information, this is the area where the minimum likely exists. It can be shown that, within
the wider of the two intervals, an optimum placement rule exists [PTFV92]. That is, given
a bracketing triplet of points, the next point to be tried is a fraction 0.38197 into the larger

of the two intervals from the current minimum. This value is determined from

3-
wi=3w+1=0 — w=‘—fé-0.38197 (4.10)

47-

Chapter 4: The Probabilistic Neural Network

where w is called the golden mean or the golden section, hence the name of this

minimization procedure.

44 Improving the Basic PNN

Examine the modelled transmitter transients shown at Fig. 3.3 and Fig 4.5. A
common characteristic between these models is that the variance dimension trajectory is
higher at the start of the transient and then tapers off. This feature exists in many of the
transient models because the initial response of the system is somewhat noisy.before
smoothing off near the end of the transient. Additionally, since consistent segmentation of
the transient from the ambient channel noise is sometimes not achieved, the beginning of
different transients may in fact consist of some unknown quantity of irrelevant noise.
Given this relatively consistent feature among the transient models’ values, it follows that
the classification algorithm may benefit by allowing different scaling factors for the
Parzen PDF estimators at each of the inputs. Existence of variable scale factors for
different inputs enables a relative measure of importance, in terms of affecting
classification ability, to be assigned to different input variables. This could assist in
dealing with the somewhat ambiguous duration of noise possible at the beginning of the
segmented transients. The overall contribution of insignificant inputs could be weighted
such that their influence in the classification would be minimized. This section gives
details on implementing the concept just described in order to achieve a very powerful
extension to the basic PNN [Mast95].

-48-

Chapter 4: The Probabilistic Neural Network

A

-

o

5

&

g

£

3 L0

= 103 s12 1024 1536 2048

Sample Number

Fig. 4.5. Fractal model of transient.

4.4.1 The Multiple-Sigma PDF Estimator
Now that there exists a clear motivation to allow individual scaling parameters for
each of the P input variables in the PNN, a different weighted and squared Euclidean

distance must be used as in

P (x.—x .2
5(X,X)% = 2(— "’) @.11)

where 7 is the index of the current training case. Note that there is a minor computational
expense, relative to Eq. 4.7, in that a division is required for each iteration of the
summation rather than a single division after the summation.

The classification function can now be updated for the multiple-c PNN. If we

assume that the Gaussian weight function is retained, the multiple of the PDF described in

-49-

Chapter 4: The Probabilistic Neural Network

Eq. 4.8 remains identical, except that the new distance measure, X X,), is included as

shown in Eq. 4.12.

B

g.(X) = nl 3 e 4.12)
€ rel

With the introduction of multiple values for ¢ in the PNN, a different method for
finding their optimal values is also required because the simple univariate optiraization
schemes presented in the previous section are not sufficient. Instead, a multivariate
optimization scheme is necessary. The conjugate gradients algorithm, to be explained in
Subsection 4.4.4, is recommended [Mast95] and used in this thesis. A significant problem
exists in implementing such an optimization technique in that derivatives of the error
function, with respect to the scaling parameters, are required. Unfortunately, with the
simple counting criterion used as an error function in the basic PNN, meaningful
derivative calculations are impossible.
4.4.2 A Continuous Error Function for the PNN

To allow for derivative calculations, and to break possible ties in the results
achieved from the discrete error criterion, a continuous function of the ¢ weights is
required as a measure of network error. To begin this discussion, consider a vector, ¥, such
that it represents the output vector of the PNN. Thus, the vector will have C elements such

that ¥ = (y;, ..., yo). After a classification by the PNN, ¥ will be filled with Os except for a

single 1 in the position representing the predicted class of the case at the input of the

network. For instance, if there is a network intended to classify from five different classes,

Chapter 4: The Probabilistic Neural Network

and the case at the input is a member of the second class, the correct output of the network
is¥=(0,1,0,0,0).

The PNN can now be considered as a mapping function between the input vector,
X, and the output vector, ¥. The implications of this are significant in that it shows the
potential for the PNN to act as more than just a classifier; perhaps even as a general
mapping function like the MLFN [Spec91], [Mast95]. However, since the PNN
implementation in this thesis is purely for classification, this discussion will focus on how
the notion that the PNN provides a mapping between X and Y leads to an interesting
validation of the PNN [SCHA91]. Details of this validation can then be used to derive a
continuous error function.

In statistical terms, we can say that X is an independent vector and that each

‘element of Y is dependent upon X. If the joint PDF of X and each element of ¥, fx(X, y.),
is known, then the conditional expectation of ¥ for a given X, Eyx(X), can be obtained

from

(o .0 \
In Ty (X, y1) dyy [ye ey X0 dyc
Eyy X = | =2 e @.13)
[fe, @yp ay, [£, X y0) dyc

\ D

/

where the ratio of integrals is applied separately for each element of ¥. The joint PDF of X

and y, can be estimated by appending y. to the end of the X vector and using the
multivariate Parzen estimator of Eq. 4.12. Now, the estimated joint PDF, gx,(X, y.), can be

substituted directly into Eq. 4.13, giving the following expansion:

-51-

Chapter 4: The Probabilistic Neural Network

r L] -] ‘
Iyl'gxy(x:yl)d)’l ch>gxy(X,yc)dyc
Eyy(X) == s eer — (4.14)

[gx, X,y ay, | gx, (X y0) dyc

/

Solving the above equation by numerical means would be impractical. Fortunately, since

the Gaussian weighting function was used for finding gx,(X, y.), Eq. 4.14 can be

simplified immensely to obtain
[R R \
-5(x.X)*° -5(X.X,)?
Zyr.l'e 2 ooy Zyr.C'e
r=1 r=1
EY]X X = R 4.15)
-sx,x,)°
de
\ r=1 J

where R is the number of training samples for the entire training set. Notice that each
element of Y is simply a scaled density estimator which is similar to Eq. 4.12, except that
it is not normalized for the number of training cases in each class. However, the class
count normalization factor can be directly added to each element of ¥ without affecting
this derivation.

During training, since Y is known, it can be used to calculate the error function for
the PNN directly. An activation function for each of the C summation neurons will now be

defined as

u (X) = Yrc'e (4.16)

-52-

Chapter 4: The Probabilistic Neural Network

which is the same as Eq. 4.12 because the y, . term allows only the training cases from
class ¢ to contribute to the summation. An internal confidence measure, q.(X), of X

belonging to class, c, can be defined as in

u,(X)
2.X = T 4.17)
where
C
S0 = X u (X (4.18)
c=1

which, except for the 1/n, factors, is identical to the denominator in Eq. 4.15. Finally, we

can state the continuous error function, e(X), for a given training sample, X, as follows:

c
e(X) = [1-¢,(D1*+ Y [4; ;0. (0] (4.19)
i=1

where c represents the correct class for the training sample. This error function agrees with
intuition because if ¢.(X) = 1 and g(X) = 0 for all i # c, then e(X) will become 0. However,
when the outcome is not perfect, all available information is considered, including the
level of activation for classes other than the correct one, c. To find the average error for a
single pass through the entire training set, simply iterate through the training set,
cumulating a sum of e(X) for each case, and then divide the sum by the number of cases in

the training set, R.

Chapter 4: The Probabilistic Neural Network

4.4.3 Derivatives of the Continuous Error Function

Now that there is a continuous error function for the PNN, we can calculate its first
and second derivatives with respect to the scaling parameters. These derivatives will be
used for optimization of the scaling parameters. Since the objective of training the PNN is
to minimize the average of e(X) for all training cases, and the values of o), are constant for
all training cases, derivative calculations of e(X) with respect to o, should be calculated
separately for each case and then averaged. Thus, differentiating Eq. 4.19, with reépect to

Op, gives

c
de (X) aqc X) aqi, izc (X)
3, = 2{q.(X) -1] [3, +22 |9 0c (X ~ oo, (4.20)

for a single input vector, X. The second derivative is then obtained by differentiating Eq.

4.20 to yield
2
3% (X [a 4. (X)] [aqc X)] 2
—— 2 - 1 ———— 4’21

< 3°4; 10 (O
+2 Z I:qi,i:c(x)_-L—] +2

aqi’igc (X)]2
i=1 aci

[
2 do
i=1 p
To finish solving the derivatives shown above, we require the first and second
partial derivatives of the internal confidence measures, g.(X), with respect to the scaling

parameters. However before giving these derivatives, some intermediate definitions will

be required to make the equations more manageable. These are given as

Chapter 4: The Probabilistic Neural Network

du (X) 2 X Xt x,-x)"
50‘, ‘vc.P(x) =n Zyr.c'e-a(xx') '_%‘3—"2_- 4.22)
€ r=l 4
a0 X (4.23)
=W .
aof, il
R | (-2, 0" &,-x,)
_2 2)’ LX) [2 p_re 3P d.
e pat Sp Sp
9 (X) .3 4.24
acp EVP(X) - ;lvc.p (X 4.24)
C
32
20 2w, = T, , @ @25)
ac, P ol

Now, the first and second partial derivatives of the internal confidence measures, g.(X),

with respect to the scaling parameters can be given as

dg. (X) v, (D -V,(X)q. (X
aop - s (X)

(4.26)

Pe. M v, -W, X, B 2@ 4.0 -2, V,X®)
aof, - s (X) s X

(4.27)

The results shown in Eq. 4.26 and Eq. 4.27 can be directly substituted into Eq. 4.20 and
421 as required to complete the definitions of the first an second derivatives of the

continuous error function.

-§5-

Chapter 4: The Probabilistic Neural Network

4.4.4 Training the Multiple-Sigma PNN Using Conjugate Gradients

Details on initializing and training the scaling parameters in the improved PNN
will now be discussed. However, since there are some significant differences between
training the multiple-6 model compared with the basic PNN, an overview of the whole
process is necessary. In training the improved PNN, there will be two distinct steps.
Common to both steps is that we will continue to use the holdout method whereby the
pattern layer neuron corresponding to each training case, X, is temporarily removed and
the network is trained using R - 1 pattern layer neurons. To commence training, the scaling
parameters are selected as if the network were the basic PNN model. This means that all
scaling parameters will be initialized to the same value using the fast univariate
minimization technique. This provides a good starting point for the more advanced
multivariate minimization procedure and avoids the requirement for this procedure to
conduct a global search at its relatively slow rate.

In the second training step, the network iterates through the training set as before.
However, as well as calculating the error function, e(X), for each training case, X, it also
calculates the first and second the derivatives of the error function with respect to each of
the P scaling parameters, 0,. Then, after calculating each of these values, they are added
‘to running totals to obtain an error function and derivatives cumulated for the entire
training set. These cumulated values are then divided by the number of training cases to
yield the average error and the average derivatives for the entire training set. The
multivariate optimization method, conjugate gradients, then uses the derivative

information, and average error measures, to find new values for all 6,,. The iteration is then

Chapter 4: The Probabilistic Neural Network

repeated, calculating new average derivatives and errors, and updating scaling factors until
a sufficient accuracy has been achieved or successive improvements become negligible.

The conjugate gradient algorithm used for this training is a very powerful and
popular multivariate optimization technique. In fact, in addition to its utility in the PNN, it
is known to be one of the best methods for training a MILFN [Mast93]. A full explanation
of conjugate gradients would require a chapter in itself and many excellent references can
provide a sufficiently detailed description [Pola71], [PTVF92], [Mast95]. Instead we will
discuss the relevant features of the conjugate gradient algorithm and show why this
method is appropriate for use in PNNs.

The most significant feature of the conjugate gradient method is its convergence
speed in comparison to other popular techniques. For instance, it is significantly faster
than the popular steepest descent method of optimization which is often used for training
the MLEN. Also, it eliminates the calculation, storage, and manipulation of a large
Hessian matrix as would be required in Newton or quasi-Newton optimization techniques.
This advantage is especially prevalent in neural network implementations which, since
there are usually many variables to be optimized, would require massive Hessian matrices.
Another advantage is that the conjugate gradients method does not require second
-derivative information, which may be impossible or inefficient to calculate in some
applications. However, as shown previously, second derivative information is readily
available and can be efficiently computed for the PNN. A slight modification to the
conjugate gradients algorithm incorporates these second derivatives to estimate an
efficient scaling factor for the line search and significantly speeds convergence [Mast95].

Specifically, the implementation in this thesis uses the Polak-Ribiere [PTVF92] conjugate

-57-

Chapter 4: The Probabilistic Neural Network

gradients algorithm with Masters’ modification to take advantage of the readily available
second derivatives.
4.4.5 Other Extensions to the PNN Classifier

Several other useful extensions exist for the PNN in its role as a classifier and will
be mentioned here for completeness even though they are not used in this thesis. The most
logical extension to the multiple-G PNN is to allow separate scaling parameters for each of
the different classes as well as for each of the input values. Such a model would-enable
specific input variables to have more or less importance for some classes but not
necessarily for others. The utility of this is obvious in many different classification
problems, perhaps even this one. However, such power is not without cost, especially in
terms of time required to train the scaling parameters. For instance, if we had a training set
with 100 inputs and 100 different classes, there would be a total of 10,000 scaling
parameters to train. Intuition suggests that this would require 100 times the training time
than without this specific modification. In practice though, because of interactions
between the increased number of parameters, this modification would result in a training
time which is several hundred times greater. Additionally, with this much representational
power, there exists a strong possibility of overfitting the data and hindering the network’s
ability to generalize in the presence of slightly different input vectors.

Another modification to the basic PNN model is the Gram-Charlier Neural
Network (GCNN) [KiAr92], [Mast95). In the GCNN, a Gram-Charlier series is used
instead of Parzen windows for approximating the class-conditional PDFs. This results in a
network which requires negligible storage, can perform fast classification, and trains

instantaneously from explicit formulas. However, there are drawbacks to this method

-58-

Chapter 4: The Probabilistic Neural Network

which limit its general applicability in comparison to the PNN. Specifically, this model
cannot handle the diverse range of distributions that the PNN can. Also, multimodal
distributions and distributions that are not reasonably close to normal will not be handled
well by this network. Obviously, this precludes its use in this thesis, but the GCNN should
still be considered as a powerful extension to the PNN when the distribution of the data is

suitable.

4.5 Bayes Classification and Confidence Levels

Bayes’ method of classification is a widely accepted standard for implementing
decision rules [Spec90a]. This section explains the Bayes classification strategy and shows
how the PNN can be structured to approach the Bayes optimal decision surface. Finally,
we give an explanation of how and when Bayesian confidence estimates can be computed
for the PNN.
4.5.1 Bayes’ Strategy for Classification

The objective of Bayes’ method is to minimize the expected risk of
misclassification for a given decision surface. Assume that we have a collection of
samples from C different classes indexed as ¢ = 1, ..., C. Each of these samples is a vector

X =(x}, ..., x,). We will now define a value, h,, for a class which defines its probability of

occurring in the data set. This value will be referred to as the prior probability of a class, c.
According to what is generally known as Bayes’ Postulate, prior probabilities should be

assumed equal when nothing is known to the contrary [Mast93). Another value, /., will

now be defined as the loss associated with misclassifying a case which belongs to class, c.

-59-

Chapter 4: The Probabilistic Neural Network

In practice, these values are also set to be equal unless there is compelling reason to do
otherwise. Finally, we will define f(X) to be the true PDF for a class, c.
With the definitions given above we can state the Bayes decision rule. An unknown

sample, X, is classified into class c if
h.-l.-f.(X)>h;-1-f;(X) (4.28)

for all classes i not equal to c. Any algorithm that applies the above rule to a decision
surface is said to be Bayes optimal. In practice, it is difficult to build a classifier which
completely satisfies this rule because the actual PDF, f(X), is usually unknown. However,
using Parzen’s method of density estimation, we can find a reasonable estimated PDF,
g.(X), when there is a comprehensive training set.

An intuitive discussion on the Bayes decision rule will be given as proof of Eq.
4.28. Since the PDF, f.(X), is proportional to the concentration of the members of class ¢
around the unknown case, then the f(X) with the highest value may well represent the
correct class. However, since a mechanism exists to consider prior probabilities of
encountering a case from a certain class, then a class with a higher prior probability should
be favoured. Finally, we want to minimize the loss associated with misclassifying a
member of class c. Therefore, if class c has a high loss associated with misclassification of
one of its members, then it should be favoured in an attempt to avoid this loss. As long as
the values used for these three criteria are scaled properly, simple multiplication of them

should yield a sufficient balance from which to base a decision upon.

Chapter 4: The Probabilistic Neural Network

4.5.2 Implementing Bayes’ Method in the PNN

By virtue of the design of the PNN, the PDFs for each class, f.(X), or at least
estimates of them, are already taken into consideration during classification. All that
remains is to add a mechanism to deal with prior probabilities, A., and the projected loss,
I, associated with misclassifying a case that belongs to a class, c. In Sub-Section 4.2.3 we
eluded to a method of incorporating prior probabilities into the PNN by carefully selecting
the number of training cases from each class to be proportional to their probability of
being encountered. This is an ideal method in cases where the structure of the available
training set may be the only means available for determining prior probabilities. However,

the formulas for the PNN model used in this thesis have included a factor, 1/n., which is

designed to remove the effect of unequal class representation from the training set. This is
done to protect the user from accidentally introducing a bias due to inadequate
representation of the data set, as so often is the case. Instead, if there is sufficient reason to
introduce prior probabilities into the PNN decision, there is a more elegant and deliberate

methodology. That would be to change Eq. 4.8 so that it is multiplied by A, as in

h

3

"t
-dx,x,)?
g.(X) == Ye 4.29)
r=1

C]

c

for all of the pattern layer neurons. Note that, in the multiple-c PNN, the same change

would be applied to Eq. 4.12 and Eq. 4.16.

-61-

Chapter 4: The Probabilistic Neural Network

The incorporation of projected losses associated with misclassification of a certain
class is done exactly the same way as for the prior probabilities. Modifying Eq. 4.8 again,

we could multiply by /. as in

h-l, = -dx,x)?
gc(x) =_°....£,ze :

n (4.30)
r=1

c
and the same change could be applied to Eq. 4.12 and 4.16 for the multiple-6 PNN model.
4.5.3 Bayesian Confidence Measures for the PNN

Part of the appeal to the PNN is that mathematically sound confidence estimates
can often be computed for its decisions [Mast95). However, there are two conditions
~whic:h must be met in order to achieve accurate confidence estimates. The first condition is
that the classes in the possible data set must be mutually exclusive. This means that no
case can possibly fall into more than one class. The other condition is that the training set
must be exhaustive in that it represents all possible classes fairly and completely. This

means that the PDF estimates, g.(X), must be very close to the true PDFs. Now, assuming

that the training set is mutually exclusive and exhaustive, Bayes’ theorem can be used to

directly compute the probability that an unknown sample, X, belongs to class c as in

Prob[c|X] = —gi(-x—)— 4.31)

zgi(x)

i=1

where g{X) represents the output activation of each of C summation neurons representing

the possible classes. Unfortunately, due to possible inconsistencies in segmentation of

-62-

Chapter 4: The Probabilistic Neural Network

transients, the data used in this thesis does not fit the first criterion. Then, assuming the
segmentation problem can be resolved, it would be somewhat difficult to satisfy the
second criterion outside of a laboratory. Chapter 6 will discuss more generic techniques

for assessing the confidence level of the decisions.

4.6 Summary of Chapter 4

This chapter has stated that, for classification, the PNN is a more accurate and
practical neural network model than the MLFN. Details of its structure, operation, and
training were given. A powerful extension to the basic PNN was then discussed along with
detailed derivations for an effective training algorithm. The chapter ended with a general
discussion on Bayes’ Classification paradigm. It showed how the PNN can approach the
Bayes optimal decision surface and, under certain conditions, provide mathematically
sound confidence levels.

Exact parameter settings and results achieved for PNN classification of
multifractal transient models will be discussed in Chapter 6. A detailed description of
TAC-MM, the software package developed to implement the transient classification

system, will now follow.

Chapter 5: Software Implementation and Verification

CHAPTER V

SOFTWARE IMPLEMENTATION AND VERIFICATION

The processing techniques described up to this point for the three modules of the
transient classification system have been assembled into a comprehensive and flexible
software package called TAC-MM (Transient Analyser and Classifier using Multifractal
Modelling). This software is a 32-bit, single document interface (SDI) Windows 95
application. It is written in the C++ language, with Microsoft Foundation Class (MFC)
extensions, and compiled using Microsoft Visual C++ Version 5.0. The source code files
are included in Appendix B to this thesis. To facilitate ease of use, an intuitive user-
interface has been developed such that it conforms closely with standards for a Windows
95 program as prescribed by Microsoft.

This chapter describes the various features and limitations of the TAC-MM
software and explains how to implement it for analysis and classification of transients. The
discussion is structured to reflect the organization of the program menus rather than from a
procedural perspective. Section 5.1 provides specific information about every menu
function in the TAC-MM program. This is, however, preceded by a general introduction to
the user interface and the transient display area. Then, in order to ensure the validity of this
research, we must prove that the software operates according to its design and that
numerical processing techniques are coded properly. Section 5.2 details the procedures
used to verify the preprocessing, feature extraction, and classification modules of this

system.

Chapter 5: Software Implementation and Verification

S§.1 Using the TAC-MM Software Package
5.1.1 The User Display Area

Since TAC-MM utilizes a graphical user interface (GUI) for its implementation, a
discussion on its operation should begin with a description of the user display area. Figure
5.1 shows the main viewing area of the program along with the various command
interfaces for selecting program functions. Starting at the top of the viewing window, the
menus are arranged in the standard fashion with push-button style controls for the most
common user functions. The functions that have push-button controls are indicated with a
picture of the button beside its description in this section. The different menus are

categorized as File, Edit, View, Neural Net, and Help.

Fig. 5.1. TAC-MM user display area; default view options.

-65-

Chapter 5: Software Impiementation and Verification

The transient viewing area has been divided into two windows as shown. In the
upper viewing window, a raw signal is displayed along with the variance fractal dimension
trajectory of that signal. It has two different display modes. In the first mode, the user can
view the segmentation of the raw signal along with the variance dimension trajectory
waveform. The transient, as detected by the preprocessing module of the system, is the
part of the signal between the vertical dashed lines. In the second viewing mode, only the
part of the signal selected as being the transient is displayed. The variance dimension
trajectory displayed in this mode is the multifractal model of the transient obtained with
feature extraction parameters. Notice that this window has no scroll bars; it is anisotropic
in that it will always display the entire signal to the level of detail possible within the size
of the window. Thus, a larger window size will allow a greater level of detail to be

-displaycd.

The lower window in the view serves two purposes. In its default mode, it provides
a zoomed view of the current raw signal. Every sample in the raw signal is displayed on a
pixel by pixel basis. Horizontal resizing of this window does not affect the level of detail
seen by the user but does change the number of samples displayed. A horizontal scroll bar
is available in this viewing mode so that different parts of the signal can be viewed.
Vertical resizing of the lower window, as with the upper window, will provide a zooming
effect whereby the magnitude of the signal becomes more detailed. In the second view
mode for the lower window, pertinent training and batch classification information is
displayed. For instance, if this viewing mode is selected after training, classification

results will be shown for each sample in the training set along with the total error achieved

-66-

Chapter 5: Software Implementation and Verification

for the training set. Figure 5.2 shows the program’s display area when the alternative

viewing modes have been selected for both the top and bottom viewing windows.

Fig. 5.2. TAC-MM user display area; secondary view options.

As with most Windows programs, TAC-MM makes use of the status bar at the
bottom of the window to display pertinent information. The left side of the status bar
displays a more detailed description of menu functions or push buttons as the user passes
the mouse pointer over them. On the right side of the status bar, an index of the current
transient in the display window is given along with the class number of the transient. For
instance, if there are 50 transients in the current document, the 13th one is currently being
displayed, and it belongs to class number 5, the right side of the status bar will read

“Transient # 13 of 50. Class: 5.

61-

Chapter 5: Software Implementation and Verification

5.1.2 The File Menu

Before discussing the user commands in the File menu, the structure of the data in
TAC-MM will be explained. For this program, a document is defined as a database or
collection of transient models. The document completely defines the set of transients and
all pertinent parameter settings for the current classification problem. Since TAC-MM is a

SDI application, only one document can be opened at one time.
File: New
This menu function allows the user to start a new document or database of

transients. It brings up the dialog box shown in Fig. 5.3 for the user to enter pertinent

Fig. 5.3. File: New dialog box.

information about the new document. The TAC-MM software can effectively handle a raw
file size of up to 25000 samples and any reasonable transient size within the raw file.
Notice that various parameters for the fractal segmentation and feature extraction can be

specified by the user. Specifically, the window width, W, for the segmentation and for

-68-

Chapter 5: Software Implementation and Verification

feature extraction can be set individually as discussed in Chapter 3. Also, the number of
ordered pairs, K, for the LSR must be chosen for both the segmentation and feature
e.xtraction stages. Note that the sequence of time increments between the ordered pairs is
fixed automatically as linear for the segmentation stage and as dyadic for the feature
extraction stage. The threshold for triggering the start of the transient, T from Eq. 3.1, must
also be selected by the user. For the segmentation stage, the window spacing, W, is
automatically set to 1. However, as detailed in Chapter 3, W must be specified for the
feature extraction stage in order to establish the amount of data reduction to be achieved.
For comparison purposes, the software can accomplish the data reduction and
modelling of the transient by a simple moving average instead of using the multifractal
method described up to this point. In this scheme, supersamples are generated by
averaging a number of contiguous samples from the raw signal as defined by the window
shift parameter entered for the feature extraction. Thus, the resulting model is the same
size as a multifractal model with the same window shift parameter. To enable this
modelling method, the value -1 should be entered for the number of variance pairs in the
feature extraction. The segmentation stage of the system is not affected in any way by

using this alternative modelling technique.

File: Open & , Save m » Save As

These menu commands allow the user to load and save the document. Where
appropriate, the Windows 95 common file dialogs are brought up for selecting a filename
and verifying the command. It should be emphasized at this point that, in order to keep
documents to a manageable size, only the modelled transients and a path to the raw source

file are saved in the document. If the user chooses to view any part of the raw source file at

-69-

Chapter 5: Software Implementation and Verification

a later time, the program will automatically attempt to load it from the originally specified
file path. If the source file is not available at this location, then it will not be displayed on

the screen, but the model of the transient will still be available.

File: Print [l , Print Preview, Page Setup

These commands also perform their standard functions. The print command will
produce a hardcopy of either the upper or lower viewing window, depending on which one
is currently active. A simple mouse click in either the top or bottom window will select
either as being the active one. It is a good idea to check the print preview before printing to
ensure that the correct window is indeed selected. The page setup command allows the
user to select the paper size, the paper orientation, the margins, the printer, and other
printer specific parameters.
File: Recent File List

After the TAC-MM software has been used several times on a single machine, the
file menu will contain the names of up to four documents most recently used. Selecting
any of these files will automatically load the document without having to search for the
name in the Open File dialog box.
File: Exit

This command will close TAC-MM. However, before closing, it will check that no
unsaved changes have been made to the document and give the user an opportunity to save
the changes.
5.1.3 The Edit Menu

The Edit menu contains the common Windows copy (to clipboard) function and

commands for making various changes to the current document. These changes include

-70-

Chapter 5: Software Implementation and Verification

the ability to change any of the fractal parameters originally set for the document and for

adding new transients or deleting existing ones from the database.

Edit: Copy Image |l
This command copies the image in the upper viewing window to the Windows
clipboard as a device independent bitmap (DIB) for insertion into reports and other

graphical or text-based presentations.

Edit: Add Transient

Selecting this command allows the user to add a transient to the current training
database (the document). It brings up the common file selection dialog box and prompts
the user to choose a filename. Then, it will check to see if the file matches the expected
format. Specifically, it checks for the correct number of 16 bit integer samples as defined
by the user during the creation of the document. The raw file should also contain specific
information about the transmission in a file trailer as per Appendix A to this thesis. Once
the file is loaded into memory, the program commences with the segmentation and feature
extraction process. Depending on the speed of the machine, the length of the raw file, and
the parameters set for the variance dimension trajectory calculations, this process may take
a few seconds. However, unless the user chooses to change the fractal parameters in the
future, this will be the only time that these calculations are performed on the given
transient. Then, the user will be prompted to enter the class number of the transient for the
neural network training. Finally, the modelled transient, along with other pertinent
information from the file trailer, is added to the document immediately following the

transient currently displayed on the screen.

T71-

Chapter 5: Software Implementation and Verification

Edit: Delete Transient

This command allows the user to delete a transient from the current document.
When selected, it will prompt the user to confirm the action and then deletes the transient
which is currently shown in the upper viewing window.
Edit: Fractal Parameters

Since TAC-MM is primarily a research tool, a feature has been included so that the
parameters for the variance fractal dimension trajectories can be easily modified without
starting a new document. Choosing this command brings up the dialog box shown in Fig.

5.4. The checkboxes above the segmentation and the feature extraction parameters select

Fig. 5.4. Edit: Fractal Parameters dialog box.

the group of parameters that are to be changed. Either one or both can be checked. The raw
file size and the transient size cannot be changed unless a new document is started, but are

displayed in the dialog box as a reminder for determining the data reduction desired. The

-72-

Chapter 5: Software Implementation and Verification

method of modelling the transients by averaging can again be selected by entering the
value -1 for the number of variance pairs in the feature extraction. When the user selects
OK, the update process commences and could take several minutes because the new
models for each transient must be individually constructed from the original raw files. It is
especially time-consuming if new segmentation parameters are set because of the single
sample window spacing in that stage. It is important to note that when the fractal
parameters have been changed, the PNN will require training to adapt itself to the new
transient models.
5.1.4 The View Menu

The view menu contains the commands for changing the appearance of the
window, the data that appears on the screen, or the display modes of the viewing windows.
View: Toolbar, Status Bar, Split

These are common Windows menu commands for selecting the appearance of the
program window. If there is a check beside the Toolbar menu item, then the toolbar will be
displayed. The same applies to the Status Bar selection. In their default modes, these
features are selected and both the toolbar and the status bar are visible. Selecting the Split
command allows the user to change the vertical position of the splitter bar between the two
windows to increase the size of either one of them. This function can just as easily be
performed by dragging the splitter bar with the mouse, however, the menu function has

been retained for standardization.

-73-

Chapter 5: Software Impiementation and Verification

View: Segmentation View / Transient View

A checkmark beside either of these menu items selects the mode of the upper
viewing window. As shown in Fig. 5.1, the default mode is Segmentation view. The
Transient viewing mode is shown in Fig. 5.2.
View: Raw Signal

A checkmark beside this menu item allows the raw signal of the current recording
to be displayed in the upper viewing window. By default, this menu item is checked, but
the user may choose to disable it in order to increase the display detail of the variance
dimension trajectory.
View: Fractal Trajectory

A checkmark beside this menu item allows the fractal dimension trajectory of the
current recording to be displayed in the upper viewing window. By default, this menu item
is checked, but the user may choose to disable it in order to increase the display detail of
the raw signal.
View: Zoomed Raw Signal / Classification Stats

A checkmark beside either of these menu items selects the mode of the lower
viewing window. As shown in Fig. 5.1, the default mode displays the zoomed raw signal.

The classification stats viewing mode is shown in Fig. 5.2.

View: Next

This command causes the next transient in the database to be displayed.
Depending on the type of view selected, either the segmentation process or the model of
the transient will be displayed. If, however, the original path of the raw file is no longer

valid, then only the modelled transient can be displayed.

-74-

Chapter S5: Software Implementation and Verification

View: Previous i

This command causes the previous transient in the database to be displayed in the
viewing area.
View: Search [

This command brings up a dialog box which allows the user to enter search
parameters to find a particular transient in the database. The user can choose to search for
a specified class number, transmitter make, transmitter model, transmitter serial n.umber,
transmit date, or transmit time.

5.1.5 The Neural Net Menu
The Neural Net Menu contains all commands which directly pertain to the

operation and training of the PNN classifier.

Neural Net: Classify

This command brings up the standard Windows dialog box for selecting a file.
When a file is chosen, it is checked for conformance to the expected format and loaded
into memory. However, since the transient may be completely unknown, missing
information in the fields of the file trailer is acceptable. Segmentation and modelling of the
transient then take place in accordance with the parameters set for the current document.
Finally, the PNN classifies the modelled transient and computes a Bayesian confidence
level. At this point, if the result obtained at each summation neuron was equal to zero, the
software assigns a meaningless predicted class of -1 and a confidence level of 0.0%. This
means that the unknown case is dramatically different from all cases in the test set and the
PNN is unable to render a decision. The results are displayed in a dialog box as shown in

Fig. 5.5. Notice also that the activation of the winning neuron is displayed. If this value is

.75-

Chapter 5: Software Implementation and Verification

below a certain threshold, a meaningless predicted class of -1 and a confidence level of
0.0% will be displayed. The neuron activation information is required for selecting

rejection thresholds as will be discussed later in this section and in Chapter 6.

Fig. 5.5. PNN: Classify results dialog box.

After the results are displayed, the user is given the option to simply accept the
classification results or to add the transient to the current database in order to increase the
number of training samples for that class. When Add to Database is selected, the program
brings up the dialog box shown at Fig. 5.6 in order to enter information about the

transmitter if it did not exist in the raw file. If the transmission is truly from an unknown

Fig. 5.6. PNN: Classify - Add Transient to Database dialog box.

76

Chapter 5: Software Implementation and Verification

source, then only the date and time will probably be included in the raw file and the user
will have to fill in the other fields if information is available.
Neural Net: Batch Classify

This function is another which has been specifically designed to aid in the role of
research tool for TAC-MM. It allows classification of several unknown transients at one
time and produces a report listing the results achieved for each transient. When the
command is selected, the Windows file dialog box is displayed and a batch list file (.blf)
must be chosen. This file, which must be formatted as per Appendix A, specifies the file
paths and correct classes of the transients to be classified. After the batch classification
process has been completed, a report of the results can be displayed in the lower viewing
window by selecting the appropriate viewing mode. The report may also be printed by
selecting the Print command while the batch classification results are displayed in the
lower viewing window. Appendix E of this thesis contains examples of these printed
reports. If a predicted class of -999 is shown in the report for a certain case, this means that
there was no transient found in that particular file.
Neural Net: Mode Parameters

Since there currently exists some inconsistencies with the segmentation process in
this system, a feature referred to as multimodal segmentation has been added as an option
to the classification scheme. In multimodal segmentation, several possible transient start
points are flagged in the raw file of an unknown transient. Then, separate transient models
are constructed starting at each of these points and each one is classified individually by
the PNN. The predicted class of the model classified with the highest winning neuron

activation level is chosen as the correct one. This feature can be enabled by selecting the

71

Chapter 5: Software Implementation and Verification

Mode Parameters menu item and choosing multimodal segmentation in the dialog box

shown in Fig. 5.7. Then, the four parameters listed in the dialog box must be set. The

Fig. 5.7. PNN: Mode Parameters - Select Classification Mode dialog box.

number of modes is simply the number of different fractal models to be constructed for
each unknown transient. This value should remain somewhat conservative as execution
time may become a factor. The lower and upper thresholds represent the value T used in
triggering the start of the transient as per Eq. 3.1. The successive segmentation positions
are triggered by a linearly increasing threshold bounded by these two values. For instance,
if the lower threshold is set to 5, the upper threshold is set to 6, and there is to be 6
segmentation modes, then the successive transient models will be segmented using
thresholds of 5.0, 5.2, 5.4, 5.6, 5.8, and 6.0. The final parameter in the dialog box specifies
the minimum separation, in number of samples, between successive transient startpoints.
This provides a means to overcome the potential of a relatively extreme, yet false, change
in the variance dimension trajectory causing identical transient models all triggered at the

same spot. Thus, by setting the minimum separation to a significant value, the chances of

18-

Chapter 5: Software Implementation and Verification

finding the correct transient start are significantly improved, and furthermore, it can be
ensured that each model is substantially different.
Neural Net: Initialize Sigmas

This function begins the training process described in Subsection 4.3.2 and sets all
of the PNN scaling parameters to a common value. Before proceeding with training
though, the user is prompted to provide a search range and the number of search points for
the initial global search. The program automatically switches over to the golden section
minimization after completing the global search as defined by the user. This will continue
until successive iterations yield insignificant improvement or until it is halted by the user.
Training to this stage results in the basic PNN described in Sections 4.1 to 4.3, except that
the continuous error function is used instead of the simple counting error function.
Neural Net: Optimize Sigmas

Selecting this command implements the muitiple-sigma PNN model discussed in
Section 4.4. A simple dialog box is brought up that allows the user to start and stop
conjugate gradients training or to return to other program operations. Prior to invoking the
multivariate optimization, though, the PNN scaling parameters must be initialized using
the previously described menu function. Once this minimization procedure begins, it will
continue until three successive iterations fail to yield significant improvement or until the
user selects stop. During this optimization, regular progress updates are displayed to aid in
determining when sufficient training has been completed.
Neural Net: Set Rejection Threshold

This command allows the user to set a threshold for rejecting transients that do not

belong to any of the classes represented by the training set. This feature is critical in any

-79-

Chapter 5: Software Implementation and Verification

practical application as a means to avoid misclassifying completely new transients. It is
implemented during the classification process by comparing the largest summation neuron
in the network to the rejection threshold before normalization. In this way, a strict
comparison can be made between the two values and if the activation of the winning
neuron is not large enough, then the case is rejected. In a typical PNN implementation, the
rejection mechanism involves thresholding the Bayesian confidence, which provides the
relative activation of the winning neuron compared to the losing neurons. However, the
mechanism implemented in TAC-MM performs an absolute comparison instead of a
relative comparison. This is much more useful in the typical situation where the training
set is not mutually exclusive and exhaustive. Since the default setting for this value is zero,
it must be initialized to some higher value before this feature becomes functional.
5.1.6 The Help Menu

The typical functions found in a Windows Help Menu are not implemented in this

version of TAC-MM. Future revisions will likely include information as it is presented in

this chapter. However, there is one function, About TAC-MM , which can be

selected to show the current version of the software.

§.2 Verification of the System Software Modules

There are a total of 47 source code files for TAC-MM as listed at Appendix B to
this thesis. A brief overview of each file, in terms of its content and purpose, is given in
Table B-1 at the start of the Appendix. To verify that the numerical algorithms coded in
these files actually perform as expected, several tests have been conducted. Details of

these tests will now follow.

-80-

Chapter §: Software Implementation and Verification

5.2.1 Multifractal Segmentation and Feature Extraction

Since the segmentation and feature extraction stages of TAC-MM are both
implemented using many of the same routines, they could be verified concurrently. First,
the variance fractal dimension trajectory calculation was checked for accuracy using
signals with known fractal dimensions. This started with a simple verification using a sine
wave and white Gaussian noise generated by the Park-Miller implementation of a linear
congruential random number generator [PTVF92]. These signals were measured at the
expected fractal dimension measurements of 1.0 and 2.0 respectively. However, these
basic tests only cover the most straightforward of the possible variance fractal dimensions
and therefore do not provide solid evidence of functionality. To accomplish this, several
signals with intermediate fractal dimensions weare generated using a technique referred to
as direct spectral filtering [Kins94c]. Specifically, this technique provides an efficient
means, using spectral analysis, for synthesis of signals which exhibit fractional Brownian
motion (fBm). In its implementation, a spectral exponent, B, is specified to generate fBm
with a certain characteristic degree of persistence. The fractal dimension of the fBm can

be calculated using

3

D E+—'2’E ,(1Sps3) 5.1)

which was first introduced in Chapter 2 for the closely related spectrum-based fractal
dimensions.

The direct spectral filtering algorithm is implemented using a four step process as
follows [Kins94c]):

L. Generate Gaussian noise on N points.

-81-

Chapter §: Software Implementation and Verification

2. Calculate the discrete Fourier transform of the Gaussian noise.

3. Filter the spectrum of the Gaussian noise in accordance with the desired f.

4, Calculate the inverse Fourier transform to obtain the fBm.
Further details about this process can be interpreted from the source code listed at the end
of Appendix C to this thesis.

To verify the segmentation and feature extraction stages of TAC-MM, 9 different
fBm signals, spanning the range between 1.1 and 1.9, were generated using the technique

described above. Then, a new document was created in TAC-MM with the following

parameter settings:
" Raw File Size -~ _ 16384
TransientSize <~ .. - 4086
| Segmentation Window Size .. " 2048
| Segmentation Variance Pairs . 25
“Feature Extraction Window Size 512
Feature Extraction Variance Pairs 5
Feature Extraction Window Shit .~ 16

Fig. 5.8. Parameters for verification of TAC-MM variance dimension calculations.

At the expense of processing time, the parameter settings for segmentation have been set
to the maximum values allowed by the program so that fractal dimension calculations are
as accurate as possible. The segmentation threshold is not important in this test and has
therefore been set to its lowest possible value to ensure that at least some part of the raw
signal is tagged for multifractal modelling. The parameters for the feature extraction stage

are set as typical modelling parameters to emphasize the contrast between the two stages.

-82-

Chapter S: Software Implementation and Verification

The 9 fBm signals were then added to the new document database so that
segmentation and feature extraction could be performed on each one individually. The
calculated fractal trajectory of each test signal is shown at Appendix C for both the
segmentation and the feature extraction stages. The variance dimension trajectories were
then averaged to obtain a single fractal dimension, Dy, for each signal. These results are
presented in Table 5.1. The standard deviation of the variance dimensions calculated on
successive windows is also shown in order to provide a quantitative representation of the

level of variation exhibited along the trajectory of the different signals.

Table 5.1: Verification of fractal dimension trajectory calculations.

B Dy, expected Dy segmentation +(Std Dev) Dy, feature extraction:(Std Dev)
2.8 1.1 1.164 ,(0.028) 1.197 ,(0.041)
26 1.2 1.241 ,(0.027) 1.259 ,(0.043)
24 1.3 1.326 ,(0.025) 1.336 ,(0.042)
22 1.4 1.415 ,(0.023) 1.422 ,(0.040)
20 L5 1.505 ,(0.022) 1.508 ,(0.039)
1.8 1.6 1.592 ,(0.022) 1.593 ,(0.037)
1.6 1.7 1.676 ,(0.021) 1.677 ,(0.035)
14 1.8 1.753 ,(0.020) 1.756 ,(0.033)
1.2 1.9 1.822 ,(0.018) 1.826 ,(0.030)

Analysis of the results shows that the calculated fractal dimensions are much
closer to the expected fractal dimensions near the middle of the interval and tend to skew
slightly towards the middle at the extremes. Figure 5.9 depicts this skewing effect more
clearly. This resuit seems somewhat suspicious, especially since accurate fractal

dimension calculations were previously achieved at the extreme edges of the interval for a

-83-

Chapter 5: Software Implementation and Verification

20

1.8 A
8 ol -— Segmentation
- - - - Festure Extraction
‘g 1.6 ‘ " Fapeemd
3 14 7
1
§ - ’,
[}
(&

1.2

1‘0 L e 2 L 3

1.0 12 14 1.6 1.8 20
Expected Variance Dimension

Fig. 5.9. Comparison of expected and calculated fractal dimensions.
sine wave and white Gaussian noise. The irregularities encountered in this situation are
possibly caused by incorrect variance dimension calculations, fBm signals which are not
completely accurate in terms of their noise characteristic, or a combination of both of
these factors. Since excellent results were achieved for most of the variance dimension
calculations, especially near the centre and at the extreme ends of the interval, it can be
concluded that the majority of the problem is with the actual noise characteristic of the
fBm signals in the test set. This deduction can be supported by a simple test where a fBm
signal with P = 1.0 is generated using the same routine as the other signals. Theoretically,
a signal consisting entirely of white Gaussian noise, with Dg = 2.0, should be produced.
Figure 5.10 shows that the signal obtained from this procedure is obviously correlated to

some extent and is therefore not white Gaussian noise. Adding this signal to the current

Chapter 5: Software Implementation and Verification

- P i .

Fig. 5.10. FBm signal generated using direct spectral filtering with §§ = 1.0.
TAC-MM document yields D, = 1.88 in the segmentation stage and 1.89 in the feature
extraction stage, which both seem reasonable from observation of the signal.

Despite the previous conclusion that the testing discrepancies were primarily
resulting from inadequate test data, it would be somewhat presumptuous to state that the
results obtained perfectly characterize the variance dimensions of the fBm signals in the
test set. There are simply too many possible parameter settings in the implementation of
these variance dimension measurements to make such a statement. It will be shown later
that variations in the fractal parameters can have a significant impact on the results
achieved for dimension calculations. Therefore, it is likely that a small portion of the
observed error in the previous test was caused by a lack of range depth in the variance
dimension calculation. To increase the depth of the variance dimension calculation would

require increasing the window size and/or the number of variance pairs. This would,

-85-

Chapter 5: Software Implementation and Verification

however, be at substantial cost in terms of processing time and would not yield
proportionately better results.

Given the imperfect results achieved during the verification of the variance
dimension calculations, it is worthwhile to digress somewhat and discuss the impact of
this apparent problem. For the set of test signals, it is significant that the measured
variance dimension increased as the value of P decreased, or as the signals became more
uncorrelated. Thus, we know that the measured results do reflect the relative degree of
correlation for a given signal, despite the possibility that they may not indicate the exact
fractal dimension. For fractal segmentation, this is sufficient since we are concerned only
with finding relative changes in a signal’s correlation; the actual variance dimension is of
no concern. For the feature extraction stage of our analysis, this is equally true as long as
the parameters for the dimension calculations remain consistent for all of the models in a
given database. In fact, for the fractal modelling, it is beneficial to work with a depth of
dimension calculation which is less than ideal in order to emphasize the varying
multifractal characteristics of a signal.

The last test performed to verify the operation of the multifractal analysis in this
system was to prove that the dyadic sequence of time increments for the feature extraction
is indeed more appropriate than the linear sequence used in segmentation. Referring back
to Table 5.1, it is clear that the standard deviation of the fractal trajectories obtained using
feature extraction parameters are significantly higher than the trajectories obtained using
segmentation parameters. Since feature extraction is intended to emphasize the important
characteristics of the signal, this is the desired effect. It shows that these parameters allow

a mechanism which is capable of representing various features using variation within a

-86-

Chapter 5: Software Implementation and Verification

broader scale. However, the data shown in Table 5.1 is considerably biased to this effect
because the depth of the fractal analysis is much lower for the feature extraction than for
the segmentation. In order to remove this bias, a new document was created such that all of
the fractal parameters, except the sequence of time increments, were set identically as

follows:

Raw File Size 16384
TiansientSize - 4096
Segmenuﬁon vwmw Stze) ,A;:.;:-: - 1024
t&gmantnﬁon Threshold " -'; 1
“Feature Extraction \Mndow Siza 1024
: Feature Extraction Variance Pairs - - 8
['Feature Extraction Window Shit ..~ "1

Fig. 5.11. Parameters to show contrast between dyadic and linear time increments.

The same fBm signals were then added to the new document and the results obtained are

shown in Table 5.2. Again, sharp contrast in the standard deviation of the trajectories

Table 5.2: Contrasting dyadic and linear time increments for D4 calculations.

B | Do, expected | Da, segmentation (Std Dev) Dy, teature extraction +(Std Dev)
28 11 1.159 (0.021) 1213 (0.044)
26 12 1232 (0.021) 1.280 ,(0.046)

24 1.3 1313 (0.022) 1.358 ,(0.047)
22 14 1.398 (0.024) 1.443 (0.046)
20 15 1.483 ,(0.025) 1.531 ,(0.044)
18 1.6 1.565 ,(0.025) 1.620 ,(0.042)
1.6 17 1.645 (0.024) 1.706 ,(0.036)
14 18 1.719 (0.022) 1.786 ,(0.028)
12 1.9 1.786 ,(0.019) 1.855 ,(0.019)

-87-

Chapter 5: Software Implementation and Verification

obtained for the segmentation and the feature extraction stages is observed. It can
therefore be concluded that the dyadic sequence of time increments is indeed more
suitable than a linear sequence in this context. Notice also, as previously alluded to, the
significant change in some of the dimension measurements resulting from the different
parameter settings.
3.2.2 The PNN Classifier

Verification of the basic PNN classifier used in TAC-MM was a relatively
straightforward process. A set of 16 sinusoidal signais was generated for training the PNN.
The signals were identical except for a phase shift such that the entire range of 0 to 2%
radians was spanned by the signals in increments of /8 radians. Each signal could then be
treated as an individual class because of its unique phase characteristic. Since the holdout
method of PNN training requires a minimum of two cases from each class, a second
identical set of signals was generated and white Gaussian noise was added to the new
signals such that each one had a signal to noise ratio (SNR) of 10 dB. Combining these 32
signals, which represented 16 different classes, a sufficient training set was developed to
verify the operation of the PNN.

A new document was then created in TAC-MM with the following parameters:

Fig. 5.12. Parameters for verification of PNN module in TAC-MM.

Chapter S: Software Implementation and Verification

It is important to discuss a few of the parameters selected above. First, setting the
segmentation threshold to zero activates a feature of the software which allows it to bypass
the segmentation stage of this system. Instead, each “transient™ is modelled starting at a
position 1/4 the number of samples into the raw signal. This feature is critical in the
verification of the PNN modaule so that it can be isolated from the other modules and tested
separately. Equally important for isolation of the PNN module is setting the feature
extraction variance pairs to -1 which, as previously indicated, replaces the -fractal
modelling process with a simple moving average. Since the feature extraction window
shift parameter has been set to four, the 2048 samples in the modelled part of the signal are
reduced to 512 samples by the averaging scheme. The parameters indicated by an asterisk
in the above chart are insignificant due to the exclusion of the fractal segmentation and
modelling stages.

After the 32 training signals were added to the document, the PNN scaling
parameters were initialized using the default search range. Within a few seconds, the
initialization routine had ended at an average error of 0.0, as calculated by Eq. 4.19 for
each training case. Also, it showed a total of zero misclassifications for the training set.
This is especially significant since, using the holdout method, the neural network is
classifying the noisy signals based only on knowledge of the clean signals and viée-versa.
Such results could definitely not have been achieved by a multi-layer feedforward neural
network given so little training time!

To perform the actual verification of the PNN, it was necessary to produce a set of
test signals which would not be used for training of the network. This time, however, the

16 sinusoidal signals were generated such that each one was virtually buried in white

-89-

Chapter §: Software Implementation and Verification

Gaussian noise at a SNR of -10 dB. Before discussing the results obtained, it is important
to point out that the white Gaussian noise added to each signal within this data was
synthesized from a unique sequence of pseudorandom numbers. The sequence of
pseudorandom numbers was obtained using the Park-Miller implementation of a linear
congruential random number generator [PTVF92]. Great care was taken to ensure that
each signal, both in the training set and the test set, had a different sequence so that the
details of the noise would remain completely meaningless during classification. Testing
the network with this set of signals yielded perfect results whereby each of the corrupted
signals was classified with 100% confidence level. A similar test set was then generated
such that each signal had a SNR of -15 dB. The massive deviation of the signals in this test
set from any of the original signals finally caused the PNN to fail. With all test signals in
this set, the distance summation became too large and its negative exponent was driven to
zero as discussed at the end of Subsection 4.2.3. Appropriately, the software yielded a
meaningless classification result and displayed zero confidence level after each prediction.

Due to the periodic and well-behaved nature of the previous set of test signals,
there was no opportunity to verify the training of the advanced PNN features implemented
in TAC-MM. Specifically, none of the features within the signals were any more important
than others for classification purposes. Therefore, no benefit could be realized by varying
individual scaling parameters for each of the discrete elements of the input signal. To
verify the advanced PNN structure and training routines, yet another set of test signals was
developed as shown in Fig 5.13. This set of test signals was especially designed to cause
classification failure using the basic PNN model with only one scaling parameter. The

signal begins with unique white Gaussian noise followed by a relatively low power sine

Chapter 5: Software Implementation and Verification

| - | e 1 I 1
[] »n L] 140 1N

Fig. 5.13. Test signal generated to cause the basic PNN to fail.
wave which is characterized by its phase only. Finally, the signal ends with another phase
characterized sine wave which has 10 times the power of the previous portion of the
signal. The sinusoidal portions of the signal shown, when considered separately, are
contaminated with additive white Gaussian noise at S dB SNR. Examination of this signal
suggests that, during the distance summation, irrelevant variations in the high-power noise
at the start of the signal would completely bury any characteristic phase differences in the
low-power sinusoidal portion of the signal. Furthermore, the problem is compounded by
the phase differences and noise contamination of the relatively high-power sinusoid at the

end of the signal.
The set designed to test the advanced PNN structure consisted of 64 signals

representing 16 different classes. Each class was a permutation of the 0, /8, n/4, 3n/8

phase shifts for the low-power sine wave and the same four phase shifts for the high-power

-91-

Chapter §: Software Implementation and Verification

sine wave. Again, special care was taken to ensure that all additive white Gaussian noise,
as well as the pure noise at the start of the signal, was unique. For each of the 16 classes,
there was four signals with different magnitudes of noise added to the sinusoidal sections.
One of the four signals had no noise added to the sinusoidal sections and the other three
had SNRs of 20 dB, 15 dB, and 10 dB.

A new document was then created in TAC-MM with the following parameters:

8192

6000

Sagmntatlon \MndowSze 2 0956
VSegmentaﬁon Varianee Paim ~_’ ..o~ 3
rSegmntaﬁonThreshold e

Faammsmmnv\nndawSze - 258
E’Featum Extracﬁon Variance Pairs -1
“Feature Extraction Window Shit -~ 30

Fig. 5.14. Parameters for verification of enhanced PNN structure in TAC-MM.

It is important to review some of the parameters selected above. First, the segmentation
threshold has been set to zero to bypass the segmentation stage of this system and model
the “transients” starting at a position 1/4 the number of samples into the raw signal. The
transient size has been set to 6000, which means that the portion of the signal modelled as
the transient will have 2048 samples of pure white Gaussian noise, 2048 samples of the
low-power sine wave, and 1904 samples of the high-power sine wave. Also, the feature
extraction variance pairs parameter is set to -1 to replace the fractal modelling process
with a moving average. Since the feature extraction window shift parameter is set to 30,

the 6000 samples in the modelled part of the signal are reduced to 200 samples by the

-92.

Chapter 5: Software Implementation and Verification

averaging scheme. The parameters indicated by an asterisk in the above chart are again
insignificant due to the exclusion of the fractal segmentation and modelling stages.

The 64 signals in the training set were then added to the document described
above. The scaling parameters were initialized using a comprehensive search range at
1000 points spread logarithmically over the interval from 0.0001 to 1000. After the global
search and the single variable golden section minimization, the basic PNN model was able
to correctly classify, using the holdout method, only 18 of the 64 training signals. The
average error across all training signals was 0.7415. At this point, no attempts were made
to test the network with unknown signals as classification results would be certainly
unfavourable. Instead, training was continued using the conjugate gradients multivariate
optimization scheme. Within five minutes (4:31), the routine had “learned” appropriate
scaling parameters and the PNN could correctly classify each signal in the training set
using the holdout method.

To verify that this network could correctly classify unknowns, a similar set of 16
signals was generated such that each of the two sinusoidal parts had a SNR of -10 dB.
Once more, the leading and additive white Gaussian noise sequences were unique for all
cases. The network correctly classified each signal in the set with 100% confidence. This
example clearly demonstrates the power of the enhanced PNN with separate scaling
parameters for each input.

One final set of test signals, identical to the previous except with a SNR of -15 dB,
was then generated for verifying this network. In this test, only 6 out of 16 signals were
classified correctly, signifying that -15 dB is again near the level of noise where the

classifier fails. Another deliberate failure can be induced by attempting to classify a

Chapter S: Software Implementation and Verification

completely different signal from any of those in the training set. This was accomplished by
using one of the sine waves generated for the verification of the basic PNN model.
Attempting to classify with one of these completely unknown signals caused the negative
exponent of all distance summations to become zero; producing a meaningless result with

0% confidence level.

5.3 Summary of Chapter §

This chapter has demonstrated the various features and limitations of the TAé—MM
software package for analysing transmitter transients. Details of the user interface, menu
structure, and software implementation have been provided. Then, a comprehensive series
of tests was conducted in order to verify that the various computational routines were
functioning correctly. To accomplish this, specific stages within the transient analysis and
classification scheme were isolated and tested for predetermined results. In doing so, it
was shown that the PNN classifier is a very powerful and much faster alternative to the
popular MLFN classifier.

Chapter 6 will begin with an introduction to the data used for testing this thesis.
Several tests are conducted using this data and results are presented in the form of
confusion matrices. Finally, conclusions are made as to the success of this scheme for

classifying radio transmitter transients.

Chapter 6: Classifying Transmitter Transients

CHAPTER VI

CLASSIFYING TRANSMITTER TRANSIENTS

Since the fundamental purpose of this thesis is to develop a system which can be
used to predict accurately the source of a radio transmission based on analysis of its
transient signature, the TAC-MM software package must be tested using more than just
artificially generated data sets. In this chapter, details of testing with a set of actual
transmitter transients will be presented. First, Section 6.1 provides a description of the
capturing system, the file format, and the composition of the set of transients used to test
this thesis. Then, in Section 6.2, particulars of the testing process are discussed along with
a presentation of the results achieved for the various tests. This chapter closes with an
analysis of these results in Section 6.3, focusing specifically on the various confidence

measures available for this system.

6.1 The Thesis Test Set
6.1.1 Transient Capturing System

The set of transients used for testing this thesis was captured by the
Communications Research Centre (CRC), Ottawa, using a system specially implemented
for this purpose by Toonstra and Kinsner at the University of Manitoba [Toon97]. It uses
an Icom IC-R7000 communications receiver and a SoundBlaster 16 sound card running on
a PC. The SoundBlaster continuously samples the output of the IC-R7000’s discriminator
at 44,100 kHz to 16 bits accuracy on its left channel. The signal is stored in a roughly 32

kB (16,348 samples) circular buffer until the system receives a marker trigger signal

-95-

Chapter 6: Classifying Transmitter Transients

through the right channel of the SoundBlaster. The marker is derived from the speaker
output of the IC-R7000 and activates when the software detects a break in the squelch
level beyond a certain threshold. At this point, the buffer collects a final 8,192 samples and
disengages from the collection process so that the data can be written to disk for further
processing. Each transient file is named uniquely according to a scheme developed by
Kinsner.

Since the trigger is very much dependant upon the squelch level, it cannot be relied
upon to capture a transient beginning at a consistent point in time. The continuous
recording on the left channel, however, provides a means to minimize the impact of the
unreliable marker. Specifically, it provides sufficient data to enable the TAC-MM system
to perform segmentation of the transients from the ambient channel noise before
beginning the modelling and classification processes. Notice that it would be interesting to
develop a transient capturing system based on a real-time multifractal analysis as a
triggering mechanism. This might locate the transient at a relatively consistent point along
its transmission and eliminate the requirement for off-line segmentation as it is done in
TAC-MM.

6.1.2 The Transient File Structure

After the transients were collected using the system described above, they were
stored on disk in an unresolved circular buffer. While a transient did exist in all of the files,
its start point could be found anywhere within the 16,348 samples. Figure 6.1 gives an
example of this situation. This type of file format would be very difficult for the TAC-MM
software to analyze since there exists two incidents of very sharp change in the variance

fractal dimension. The problem occurs when the first significant dimension transition is

Chapter 6: Classifying Transmitter Transients

from signal to noise, as shown in the example, rather than the expected noise to signal

transition.

Transmitter: Force Force 1 Serial #: Unknown
F_——f_-ﬂ'—

Raw Stgml

v
5

Disension
——¢ ¢
T T TN T T T T

g

S

B

Fig. 6.1. Transient in unresolved circular buffer.

With the signal shown in Fig. 6.1, the start of the transient can be located roughly
using visual inspection. Since TAC-MM only requires that the transient be preceded by
channel noise for a minimum of 1/4 the duration of the file, realignment of each signal was
performed visually so that the transition from noise to signal occurred near the centre of
the file. Then, equal portions were truncated from the start and the end of each file to
obtain a signal 8,192 samples in size, with the transient beginning approximately in the
centre. This procedure was performed deliberately to obtain a smaller size signal, while
ensuring that adequate noise was included in the file. Examples of these truncated files can
be found at Appendix D to this thesis.

Note that the TAC-MM software would work fine using the larger signal, but since

manual adjustment was being conducted anyway, the size of the file was decreased to

Chapter 6: Classifying Transmitter Transients

improve the speed performance of the fractal segmentation process. It should further be
noted that this manual realignment of the signal would have been completely unnecessary
if the circular buffer had been resolved at the time of data collection by the acquisition
software. This could have been accomplished trivially by writing the buffer to disk starting
at the location of the data pointer where the next sample was to have been written as

shown in Fig. 6.2.

NAAARAAAARNAN AR AN AR

Fig. 6.2. Resolution of circular buffer containing noise and a transient.

6.1.3 Composition of the Test Set

The set of transients used to test this thesis were collected by the CRC in Ottawa,
Ontario. They used the acquisition system described in Section 6.1, and the files were
provided for this research in their original, unresolved format as shown in Fig. 6.1. The set
consisted of 415 transients, distributed approximately evenly among eight different
transmitters. Specifically, there were three Kenwood models, three Force models, and two
Yaesu models as shown in Table 6.1. Also shown in Table 6.1 is the class identification
number assigned to each transmitter model. This number is for use by the classification
stage of the system. A single example of segmentation and feature extraction from each

transmitter can be found at Appendix D in this thesis. The images shown have been

Chapter 6: Classifying Transmitter Transients

processed by TAC-MM, using the parameters for the first experiment discussed in the next

section.

Table 6.1: Transmitters used for testing the thesis.

Transmitter Number of Transients Class Identifier
— T
Force 2 52 1
Force 3 52 2
Kenwood 1 50 3
Kenwood 2 51 4
Kenwood 3 52 5
Yaesu 1 58 6
Yaesu 2 50 7

6.2 Testing and Results

There was a total of three different training sets constructed using the set of
transients described above. The three training sets differ in the number and selection of
transients used for training the PNN as opposed to the transients held back for validation
purposes. After conducting classification tests with the three different training sets,
separate experiments were performed to test the PNN’s rejection ability, the multimodal
segmentation feature, and a new transformation of the fractal modelling process. All tests
were conducted using TAC-MM on a 133 MHz Pentium PC, with 48 MB RAM, under the
Microsoft Windows 95 operating system.
6.2.1 Training Set # 1 (First 20 Transients)

In this experiment, the first 20 transients collected for each transmitter were used

as the training set. This selection of transients represents less than half of the available

-99-

Chapter 6: Classifying Transmitter Transients

transients and has a composition which, being the first 20 transients collected, reflects a
situation as it would likely occur in a practical application of this system. A new document
was created in TAC-MM using the default parameters for the software. This sets the raw
file size to 8192 samples and the length of the transient to 2048 samples. The other
parameters, for the fractal segmentation and modelling processes, are insignificant at this
time as they will be modified after some initial testing is performed. Then, the 160
transients for this training set were added to the document individually along with the
class identification number for each one. This left a total of 255 transients for the
validation set.

Before results of this experiment could be assessed in terms of the PNN’s
classification ability, a sufficient set of fractal parameters for both the segmentation and
feature extraction stages had to be found. Since there are six separate parameters to set, a
methodology for isolation of some or one of the variables was necessary. Using a
systematic approach, a set of good, yet perhaps not optimal, parameters was found. The
approach used in these experiments starts with isolation of the segmentation stage by
eliminating the fractal modelling of the transient and replacing it with the simple moving
average. The amount of data reduction selected using this technique was equal for all
trials, at 128 supersamples, to ensure sufficient transient characteristics were retained. In
this manner, suitable parameters for fractal segmentation could be found before attempting
to find parameters for the feature extraction.

As with any optimization or selection of parameters, an objective measure of
performance must be utilized. For the segmentation stage of this experiment, the

performance measure was a combination of visual inspection and PNN triais. It should be

-100-

Chapter 6: Classifying Transmitter Transients

noted, despite what may be implied by a visual performance assessment, that this
approach is by no means subjective. Instead, the ability to inspect the data visually
provides a rapid means for discarding clearly unfavourable results. For instance, if the
depth of the fractal analysis is too low, such that significant variations are noticed before
transition points, then the user is able to discard this trial without going through the neural
network testing process. Another example would be if the segmentation threshold is set
too low, the user can clearly see that false transients are being triggered at different points
along the ambient channel noise. When results appear to be satisfactory, the performance
measure becomes the average error of the PNN when it is tasked to learn the training set.
After suitable segmentation parameters have been found, the focus could be shifted over to
selection of parameters for the feature extraction stage. This process would also select
parameters with respect to the PNN’s average training error, but additionally, batch
classification results for transients in the validation set were also considered before ending
the search.

Conducting the parametric search described above, the configuration found to

yield the best results is as follows:

Fig. 6.3. TAC-MM parameters for testing Training Set #1.

-101-

Chapter 6: Classifying Transmitter Transients

Since an exhaustive search was not conducted, no claim of optimality will be made for
these parameters. However, they do provide a suitable balance between speed, data
reduction, and favourable classification results. Notice that the transient size was reduced
from 2048 samples down to only 32. After selecting these parameters, the PNN was
trained up to the initialization stage only, with all scaling parameters set to the same value.
This training took 16 seconds to complete. At this level of training, the PNN could
correctly classify 147/160 transients in the training set, using the holdout method. More
importantly though, it was able to correctly classify 243/255 transients in the validation
set. This represents a success rate of 95.3%. It is also notable that the 255 transients in the
validation set were segmented, modelled, and classified in 131 seconds or in about a half
second each. Details of the classification results can be found at Appendix E of this thesis.
For the present time, the confidence measures and winning neuron activations shown for
each validation case should be disregarded as they will be discussed in Subsection 6.2.4
and in Section 6.3.

A more descriptive analysis of the results of this experiment can be derived from a
confusion matrix, which is a standard tool used for testing any type of classifier. The
matrix shows the various patterns of misclassification that are obtained from a validation
set. Table 6.2 is the confusion matrix with the results achieved from this experiment.

Notice that the confusion matrix has one row and one column for each class.
Interpretation of the matrix is straightforward. For instance, the number in the Class 2 row
and the Class 1 column is the number of cases that are truly members of Class 2 but have
been classified into Class 1. Ideally then, the confusion matrix for a perfect classification

experiment would be strictly diagonal. In this confusion matrix, the area within the thicker

-102-

Chapter 6: Classifying Transmitter Transients

Table 6.2: Confusion matrix with results from Validation Set # 1.

Class 4 31

Class 5 3 29

Class 6 38

Class 7 i 29

lines represents all of the transmitters from the same manufacturer. A misclassification
into any of the classes from the same manufacturer is certainly more creditable than a
completely inaccurate result.

From this experiment, it can be seen that the transients that were most often
classified incorrectly were from the Force 1 and the Kenwood 3 transmitters. However, it
is significant that all of the misclassifications in the Kenwood 3 category were mistaken
for transmitters built by the same manufacturer. In fact, out of the total 12
misclassifications, only two of them were classified outside of the correct manufacturer. It
is also significant that the transmitters represented by Class 4 and Class 6 were classified
perfectly every time. Furthermore, results favouring Class 3 and Class 7 are also
noteworthy, with only one misclassification each. A conclusion that can be drawn from
this analysis is that decisions fawﬁﬁng these classes can be accepted with high

confidence, regardless of the Bayesian confidence level calculated by TAC-MM.

-103-

Chapter 6: Classifying Transmitter Transients

A final note will be made about the training process before presenting results for
the other experiments. It was previously noted that, in this experiment, the PNN was
initialized only, and that all of the scaling parameters were set equal. It was found that
optimization of individual scaling parameters, while greatly reducing the classification
error for the training set, did not significantly improve the classification ability of the
network when dealing with the validation set. In fact, optimization of the scaling
parameters caused the network to produce confidence levels at or near 100%, even for
incorrect classifications. This is obviously an undesirable side-effect as it renders the
already invalid confidence measures useless.

6.2.2 Training Set # 2 (Random Selection of 10)

In this experiment, 10 transients from each transmitter were selected at random to
make up the training set. This left a total of 335 transients for the validation set. A similar
parametric search was conducted as described in the previous experiment. Since the same
transients are being used, just in different set combinations, the parameters selected for
segmentation in the previous experiment were again found to be successful. However, a
slight change was made in the number of variance pairs in the feature extraction stage. A
value of nine was used instead of eight as for the previous experiment. Initially, this
different setting seems somewhat suspicious because the same set of transients have been
modelled and compared, with the only difference being the composition of the training set.
However, further analysis shows that a slightly different PNN scaling parameter was
selected because of the different training set. This, in turn, caused the PNN to react

differently to the different model parameters and justifies the slight variation.

-104-

Chapter 6: Classifying Transmitter Transients

As with the previous experiment, training was only conducted to the initialization
stage to prevent overtraining of the network and because further training did not improve
performance. The results obtained for the validation set are listed at Appendix E of this
thesis, and the confusion matrix is shown in Table 6.3. As expected, the classification
ability using this training set was substantially lower with only 306/335 or 91.3% of
transients classified correctly. This is, of course, attributable to the smaller size of the
training set and the commensurately lower likelihood of each validation case finding a

match in the training set.

Table 6.3: Confusion matrix with results from Validation Set # 2.

Examination of the results from this experiment shows that out of the total 29
misclassifications, only seven of them were completcly wrong in terms of the
manufacturer of the transmitter. Additionally, 14 of the errors were caused by confusion
between the Force 2 and Force 3 transmitters. This is significant because the classification

rate of the entire test set is heavily biased by a common confusion between only these two

Chapter 6: Classifying Transmitter Transients

transmitters. Equally significant is that the classification rate for two of the transmitters is
perfect. Therefore, from this analysis, it can be concluded that results in favour of Class 4
or Class 7 can be accepted with much more certainty than those for Class 1 or Class 2.
Transients from Class 6 also produced excellent resulits.

6.2.3 Training Set # 3 (Random Selection of 30)

This training set consisted of 30 transients from each class, selected randomly,
leaving 175 transients in the validation set. Again, the same parameters for the
segmentation were found to be most effective. Also the parameters used for feature
extraction were identical to the ones selected for Training Set # 2. In this experiment, the
network was initialized using the single scaling parameter as in the other two experiments.
The results obtained for the validation set are listed at Appendix E to this thesis and the

confusion matrix is shown in Table 6.4.

Table 6.4: Confusion matrix with results from Validation Set # 3.

Class 0

Class 0
18

Class 1

Class 2

Class 3

Class 4

Class §

Class 6

Class 7

Class 1

2

19

Class 2

21

Class 3

18

Class 4

20

Class §

Class 6

21

28

Class 7

20

Chapter 6: Classifying Transmitter Transients

The classification ability, using this validation set, was slightly lower than that of
the first set with 165/175 or 94.3% of transients classified correctly. This is somewhat
surprising considering that a Jarger training set was used. These results demonstrate that,
in addition to the number of cases in the training set, the quality of the training set is also
important. Ideally, the training set would be structured such that all possible pattems for
cach class are represented. However, despite that the best way to ensure this is to increase
the size of the training set, this does not guarantee absolute success, especially in an
environment where the signals contain a significant amount of noise. Therefore, since this
training set is substantially different from, rather than a simple addition to the first training
set, it is possible that the mixture of transients is not as comprehensive as it could be. The
results from this experiment, when compared to those achieved in the first experiment, do
reflect similar error patterns, though. Specifically, analysis of the validation set resuits at
Appendix E shows that five transients misclassified in this experiment were equivalently
misclassified in the first experiment. Since these same transients are consistently
misclassified, it is likely that this is caused by segmentation faults where either too much
noise precedes the transient or significant characteristics have been truncated. It is
noteworthy that Classes 4, 6, and 7 continue to produce excellent results.

For this experiment, training the individual scaling parameters did yield better
classification results from the validation set. After the network was initialized, two
iterations of the conjugate gradients algorithm were performed in about 12 seconds. This
brought the training set error from 16 misclassifications down to seven. However, more
importantly, it improved the classification rate of the validation set to 168/175 or 96%.

Specific results for this test can also be found at Appendix E. The significantly increased,

-107-

Chapter 6: Classifying Transmitter Transients

and perhaps even more invalid, confidence levels should be noted in this data for most of
the test signals.
6.2.4 Rejection of Unknown Transients

An important measure of a classifier’s merit, in addition to its ability to classify, is
its ability to recognize when it cannot classify. Ideally, a classifier should reject any case
which does not belong to any of the classes that it has trained with. Given the architecture
of the PNN, where an unknown case is compared to all known cases and the closest one is
automatically selected, it is impossible to have an output neuron represent the reject
category. However, there are two simple mechanisms which are commonly used for
dealing with this situation. The first technique has already been discussed as an automatic
rejection when the distance summations of Eq. 4.11 become so high that the negative
exponent goes to zero for all cases. This would only handle extreme cases though.

Alternatively, the computed Bayesian confidence measure might be used, despite
that it is invalid because the training set is obviously not exhaustive. A simple threshold
can be set where if the confidence is below that value, that case would be put in the reject
category. Since the present implementation of TAC-MM has no built in Bayesian
confidence thresholding mechanism, the user would be responsible for establishing and
flagging these cases immediately after classification.

To test the Bayesian confidence thresholding mechanism, the first training set was
modified such that all cases from two of the transmitters were removed. Specifically, the
signals from the Yaesu 1 and Yaesu 2 transmitters were removed from the training set, but
not from the validation set. The original fractal parameters established for this training set

were retained and the confidence threshold for flagging a rejected case was to be set after

-108-

Chapter 6: Classifying Transmitter Transients

analysis of a significant amount of data. However, a quick scan of the classification results
showed that this rejection mechanism failed miserably in this test. The PNN’s winner-
take-all design falsely classified every Yaesu 1 and Yaesu 2 transient with daunting
conviction.

In respoase to the problem encountered above, a new rejection mechanism was
specially designed as described in Subsection 5.1.5 of this thesis. Briefly, instead of
thresholding the Bayesian confidence measure, the winning summation neuron is
thresholded before normalization. Using this approach, a transient can be rejected if the
activation of the winning neuron is too low, regardless of the activation level of the other
neurons. To test this new technique, the same training set and parameter settings were used
as described above. After the first trial, examination of the winning neuron activations in
the batch classification report showed that the rejection threshold should be set at 1020,
The results for the subsequent experiment are shown in Table 6.5, and detailed at
Appendix E.

From Table 6.5, results for the six transients in the training set show that 176/187
or 94.1% were classified correctly. This is comparable to results achieved in the first
experiment, except that three of the transients misclassified in the first experiment have
now been rejected. This is especially significant because both of the transients classified in
the wrong manufacturer in the first experiment class are rejected. Therefore, with the
exception of the rejected cases, these results reflect perfect classification of the transients’
transmitter manufacturers. More relevant to this discussion, though, is that every Yaesu

transient has been appropriately banished to the reject category.

-109-

Chapter 6: Classifying Transmitter Transients

Table 6.5: Confusion matrix with results from test for rejection ability.

Class 4 31
Class 5 2 29 1
Class 6 38

Class jL 30

6.2.5 Multimodal Segmentation

In this set of experiments, the multimodal segmentation option of TAC-MM was
tested. For comparison purposes, the initial experiments using the three different training
sets were repeated with identical parameter settings, except that muitimodal segmentation
was used. The mode parameters were set for five different segmentation points, spaced
linearly between thresholds of seven and eight, with a minimum separation of 35 samples
between successive transient start points. In all experiments, the PNN was trained to the
initialization state only.

For the first training and validation sets, results are shown in Table 6.6 and are
detailed at Appendix E. Overall, significant improvement is seen with 247/255 or 96.9%
correct classifications within the validation set. The confusion matrix shows that only one
transient was classified outside of the correct manufacturer category. Additionally, three

classes of transients were classified correctly every time.

-110-

Chapter 6: Classifying Transmitter Transients

Table 6.6: Confusion matrix from Validation Set # 1 using multimodal segmentation.
Class 6 | Class 7

38

Class 6
Class 7 |[30

For the second set, results are shown in Table 6.7 and are detailed at Appendix E.
Again, significant improvement is seen over the first experiment with this training set,
with correct classification of 311/335 or 92.8% of the transients in this validation set.
Referring to the confusion matrix and the classification reports at Appendix E, only the
single Force 1 transient is in the wrong manufacturer category again. Otherwise all
transients are at least classified within the correct manufacturer. It is also significant that
16/24 misclassifications are between the Force 2 and the Force 3 transmitters.

Classification results for the third set are shown in Table 6.8 and are detailed at
Appendix E. Using this training set, the PNN correctly classified 167/175 or 95.4% of the
transients in Validation Set # 3. Again, the same Force 1 transient is the only one that is
classified in the wrong manufacturer category. Figure 6.4 shows that this particular
transient has two abnormal spikes which cause its dimension trajectory to be affected
significantly. However, despite the high confidence levels shown for the incorrect

classifications of this transient, individual classification trials show very low winning

-111-

Chapter 6: Classifying Transmitter Transients

Table 6.7: Confusion matrix from Validation Set # 2 using multimodal segmentation.

Class 1 31 11

Class 2 5 37

Class 3 37 1 2

Class 4 41

Class 5 2 40

Class 6 47 1

Class 7 40

Table 6.8: Confusion matrix from Validation Set # 3 using multimodal segmentation.

Class0 | Class 1

Class 0

Class 1 21 1

Class 2 1 21

Class 3 16 1 3

Class 4 I 21
Class 5 “ 22
Class 6 27 1

Class 7 20

neuron activations in all experiments. Therefore, as discussed in the previous section,
judicious selection of the rejection threshold could lessen the impact of this
misclassification. Referring back to Table 6.8, it is also significant that all of the transients

from three of the transmitters have been classified correctly.

-112-

Chapter 6: Classifying Transmitter Transients

Transmitter: Force Force 1 Serial #: Unknown s
;o T '
. — !,/"\\\: { Y {' ~, !
-s ’f ff N f \-. / “\] 4 !
0 [} ‘ - 1 { ..\ 1: \'\ !
a R I ¥\ . Y H
E 3
4
g 20
é 18 ¢+ .
efb~—"" —
AN S5
g 14 4+ el %
5 124 —
=
= 10 v v v
0 512 1024 1536 2048
Sample Number

Fig. 6.4. Consistently misclassified Force 1 transient.
6.2.6 Transformation of Fractal Trajectory Model
During the testing process, an implementation error caused a transformation of the
multifractal model which produced significantly improved results. Specifically the
number of variance pairs was accidentally set, contrary to the limitation of Eq. 2.22, such
that the spacing between compared samples could exceed the limits of the window size. In

this case, the routine inadvertently set Var(AB), to zero for all values of k that caused the
dyadic spacing (25 to exceed the window size. Then, a feature initially intended to avoid
unnecessary calculations when Var(AB), equals zero, caused the program to decrement the
index for the summations in the LSR algorithm. However, the multiplicative X in two
terms of the LSR algorithm was not decremented. Therefore, if the number of variance
pairs is set one higher than it should theoretically be, the least squares regression is

transformed into

-113-

Chapter 6: Classifying Transmitter Transients

(K+1) 2”#:'-[2‘:‘]{ 29‘]

2H = i=1__ i=1 i=1 (6.1)

K K 2
(K+1) sz—[;, z,-}

i=1l i=1

which produces significantly different results than its original form (Eq 2.26). Figure 6.5

shows the difference in the calculated trajectories using this transformation. The most

Transmitter: Yaesu Yeasu 1 _ Serial #: Unknown _ospunom

Raw Signal

’J

¥

§

Multifractal Features
$

—
&

g

|
z

5 M\—

" v 0
0 1024

Fig. 6.5. Comparison of (a) multifractal model and (b) transformed model.

-
2

-114-

Chapter 6: Classifying Transmitter Transients

obvious difference is that the transformed dimensions are lower than the fractal
dimensions. For this set of signals, the first summation in the numerator of Eq. 6.1 is much
larger than the first term of the denominator. This increases the magnitude of H and,
referring back to Eq. 2.20, decreases the value obtained for Dg.

The overall reduced values in the transformed model do not, however, constitute an
explanation for improved classification results. Further analysis of Eq. 6.1 and Fig. 6.5
shows that the transformed model attenuates the effect of highly uncorrelated portions of
the signal. Since a slight segmentation error could include irrelevant channel noise at the
beginning of the transient, deliberate attenuation of this noise during modelling could
definitely assist in the classification process. At the same time, while reducing the impact
of irrelevant noise, it is clear that the transformed model retains the important fractal
characteristics of the signal.

The actual results achieved using the transformed fractal model will now be
presented. For these experiments, rather than setting the number of variance pairs to an
unreasonably high number, the TAC-MM source code was modified to deliberately
implement Eq. 6.1. This allows objective comparison of the modelling methods using
identical parameter settings. Each of the first three experiments was repeated using
identical fractal parameters and the transformed fractal model. Multimodal segmentation
was not used and, again, training was only performed up to the initialization state for each
experiment. As shown in Table 6.9, significantly improved results can be seen for each of
the training sets.

Further testing with the transformed fractal model yielded some surprising results.

It was found that a further reduction in data size could be achieved while significantly

-115-

Chapter 6: Classifying Transmitter Transients

Table 6.9: Classification results using transformed fractal model.

Previous Results New Resuits
Validation Set # 1 243/255 (95.3%) 244/255 (95.7%)
Validation Set#2 | 306/335 (91.3%) 314/335 (93.7%)
Validation Set # 3 165/175 (94.3%) 170/175 (97.1%)

improving classification rates. Specifically, the three training sets were tested using the

following parameter settings:
Raw File Size .- - 8182
TransuentSzé = ’I— Y ... 2048
" Segmentation wrndow Size 512
"Segmentation Variance Pairs 10
LSegnmmmtfon Threshold -~ - 8
'Feature Extraction Window S|ze 512
 Feature Extraction Variance Palrs ' 4
“Feature Extraction Window Shift 256

Fig. 6.6. TAC-MM parameters for testing eight element transformed model.

Notice that with the window shift parameter set to 256, the fractal model has been reduced
from its original 2048 samples to just eight elements. This is a significant achievement in
terms of storage requirements and PNN processing time, allowing for a much larger

database of transients. The classification results achieved for these experiments are

summarized in Table 6.10.

Table 6.10: Classification results using eight element model size.

Transformed

Original

Fractal Model Fractal Model
Validation Set # 1 247/255 (96.9%) | 219/255 (85.9%)

Validation Set # 2

318/335 (94.9%)

267/335 (79.7%)

Validation Set # 3

169/175 (96.6%)

157/175 (89.7%)

-116-

Chapter 6: Classifying Transmitter Transients

First, it can be seen that with these parameters, the transformed fractal models
perform comparably to or better than their similar, yet less compact, counterparts. This is
likely attributable to the less detailed modelling of noise at the start of each transient, thus
further reducing the effect of slight inconsistencies in segmentation. Therefore, these
better results are achieved by masking details which are prominent, yet insignificant for
classification. For comparison purposes, Table 6.10 also shows the classification results
using these parameters for the original fractal modelling process. From this comparison, it
is clear that the original fractal models, which tend to place more emphasis on noise,
perform considerably worse than the transformed modelis at these parameter settings and

this level of data reduction.

6.3 Confidence Measures and the PNN

Observation of the classification reports generated in Appendix E show that the
confidence measures calculated by TAC-MM for this database of transients are virtually
meaningless. As previously discussed, there are several reasons for this, including the
theoretical limitations that none of the training set permutations are mutually exclusive or
exhaustive. From a computational point of view, the contemptuously high confidence
levels seen for some of the misclassifications are caused by a combination of the PNN’s
winner-take-all architecture and the Gaussian weighting function used in its Parzen
density estimation. During training of the PNN, the scaling parameters are inclined toward
becoming as small as possible, while still being able to classify similar cases, such that the
total error is reduced. However, this causes the Gaussian weight functions to become very
narrow and, if a case is encountered that is not close to any of the training cases, then the

distance summations tend to approach zero for all possible classes. In this situation, the

-117-

Chapter 6: Classifying Transmitter Transients

summation neurons can easily adopt variations between 10719 and 10% with only small
differences in the Euclidean distance summations. Then, when it comes to selecting the
neuron with the highest activation, the one that is selected tends to be disproportionately
larger than the other neurons and a very high confidence level is produced.

The computational problem described above is an inherent limitation of the PNN
architecture. It is especially prevalent when the PNN encounters cases which are unlike
any of the cases in the training set. However, this is not a well-documented problem and
certainly warrants further research so that a convincing solution can be found. One
possible solution is to select a different weighting function than the Gaussian that is
similar in shape, but does not exponentially go to zero at its extremes. This would give a
better relative measure of activation between possible classes and would likely produce
lower confidence levels for all decisions.

Another potential solution might be found with an approach similar to that of
Subsection 6.2.4, where the absolute value of only the winning neuron was used to trigger
rejection of a decision. It seems logical that this idea could be extended, for a given
training set and PNN at a certain trained state, such that some sort of exponential mapping
function can be determined between the activation level of the winning neuron and the
coveted realm of percent confidence. This type of exponential mapping seems more
logical than what is currently used and would not require changing the Gaussian weight
function which otherwise produces such favourable results.

Despite that the computed confidence measures for this training set are not relevant
for whatever reason, the experimental classification results themselves can be used to

make a statement of confidence. A reasonable definition of confidence in this context is

-118-

Chapter 6: Classifying Transmitter Transients

the PNN'’s probability of making a correct decision [Mast93]. With this broad definition,
the relative or absolute activation leve] of winning neurons cannot be regarded as the only
possible means for measuring confidence levels. For example, consider a set of data with
which, for several different permutations of training sets and validation sets, a classifier
consistently performs at 95% accuracy. Thus, assuming that a similarly representative
training set is always used, the probability of the PNN making a correct decision should be
0.95, with no other information given. Then, for an individual classification trial, if the
activation level of the winning neuron is considered, the 95% confidence level can be
further adjusted accordingly. In this context, the results achieved in this thesis show that
this system is very accurate. It produces results with confidence levels between 90% and
97%, depending on the training set, the winning neuron activation, the segmentation
‘options, and modelling technique.

A final point should be made about the transients analysed in this thesis.
Observation of the ambient channel noise in the raw signals at Appendix D shows that the
capturing system exhibits a nonlinear characteristic. It is possible that this nonlinearity
would have an effect on the results obtained using this classification system. For this
reason, every effort should be made to capture unknown transients using the same system
that was used for capturing a given training set. Alternatively, and perhaps more

favourably, a linear capturing system could be developed and implemented.

6.4 Summary of Chapter 6
This chapter began with a brief description of the transmitter transients used for
testing this thesis. Some details of the acquisition, preprocessing, and composition of the

training set were provided. Then, several tests were conducted on the data and relevant

-119-

Chapter 6: Classifying Transmitter Transients

results were presented in confusion matrices. It is significant that in every test, the system
ig:plemented by TAC-MM correctly classified over 90% of all transients in the validation
sets! In a separate test, it was shown that, rather than resorting to misclassification, the
PNN is highly capable of rejecting cases which are not part of the training set. Also, it was
shown that the multimodal segmentation scheme can improve classification results. The
final experiment showed that an interesting transformation of the fractal modelling
process could simultaneously improve both the data reduction and the classification
results. The chapter ended with a discussion on PNN confidence measures. Some
suggestions were made for improving the standard technique and specific information was
given for determining confidence measures for the results achieved in this thesis.

The next chapter presents a concise summary of conclusions, contributions, and

recommendations resulting from this thesis.

-120-

Chapter 7: Conclusions and Recommendations

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this thesis, a system for fast and accurate identification of radio transmitter
transients was developed. Specifically, a three stage system performing segmentation,
feature extraction, and classification was implemented and tested using a set of 415
recorded transmitter transients. The average processing time for completing all three
stages and rendering a decision was about half of a second per transient. Experimental
results showed classification rates between 90% and 97%.

The results were achieved using transients which were segmented from ambient
channel noise using an effective fractal analysis technique. This analysis is able to flag
transient start points earlier than conventional methods and, therefore, retains critical
details which would be otherwise discarded as noise. Then, a multifractal modelling
technique is effectively used to extract significant features from the transients and store
them in a substantially reduced size array. The transients have been effectively reduced
from 2048 samples down to 32 elements using this technique. The technique also
normalizes the transients without any additional effort. Furthermore, using an interesting
new transformed fractal model, data reduction down to eight elements was achieved with
no loss in relevant detail.

At the backbone of this system, a PNN is used to classify the transients with a high

degree of accuracy and confidence. The PNN trains with significant sized training sets in

-121-

Chapter 7: Conclusions and Recommendations

only seconds and classifies individual cases in fractions of a second. Furthermore, for

rejection of transients which are not represented in the training set, an effective

mechanism has been developed by thresholding the activation level of the winning neuron.

This ability contributes significantly to the total value of the classifier’s decisions.

Overall, the experimental results have demonstrated that the objectives of this

thesis, as listed in Section 1.2, have been achieved.

7.2

Contributions

This thesis has made the following contributions:

a technique for segmentation of a signal from noise has been studied and
refined to the point where it produces relatively consistent results;

a highly representative, yet compact, multifractal modelling technique has
been successfully implemented on a set of nonstationary transient signals;

a PNN has been successfully implemented for accurate classification of
modelled transmitter transients;

a practical exploration of the PNN’s Bayesian confidence measures has been
conducted and an alternative technique, using thresholding of the winning
neuron’s activation, has been introduced for rejecting low confidence
decisions; and

a comprehensive and user friendly software package, TAC-MM, has been
developed to implement the transient classification system on a standard

desktop PC under Microsoft Windows 95.

-122-

73

Chapter 7: Conclusions and Recommendations

Recommendations

Based on the research conducted in this thesis, recommendations are as follows:

® the parameter settings and thresholding mechanism used in the segmentation
stage of this system require further optimization to enable more consistent
separation of a transient from ambient channel noise;

« a hardware or software transient acquisition system should be developed with
more linear characteristics and such that the onset of a transmission is triggered
directly in real time by the multifractal analysis described in this thesis;

e a multifractal characterization of the transients using the Rényi dimension and
Mandelbrot spectrum should be explored as alternative modelling schemes;

* an in depth analysis and mathematical proof of the transformed fractal model
discovered in this thesis should be conducted;

o further modifications should be made to the PNN in order to achieve more
useful confidence measures as discussed in Section 6.3;

 a larger database of transients is required for further testing and to provide a
suitable training set before this system can be put into practical use; and

¢ the software developed in this thesis is flexible enough that it can and should
be tested in the processing and classification of other nonstationary signals

such as speech.

-123-

{Ande95]

[Caco66]

[CRC92]

[Diet94]

(FeKi95]

[Grie96]

[GrKi94]

[Khan95]

[KiAr92]

[Kins94a]

References

REFERENCES

Darryl Anderson, “Transient signal classification using wavelet packet bases,”
B. Sc. Thesis, Department of Electrical and Computer Engineering, University
of Manitoba, (vi+120) pp., 1995.

T. Cacoullos, “Estimation of a multivariate density,” Annals of the Institute of
Statistical Mathematics (Tokyo), Vol. 18, No. 2, pp 179-189, 1966.

CRC Report, “Transmitter Signature Analysis,” Ottawa, Ontario, 9 pp., 1992.

James Dietrich, “A wavelet analysis of transients in phase-locked loops,” B.
Sc. Thesis, Department of Electrical and Computer Engineering, University of
Manitoba, (v+89) pp., 1994.

K. Ferens and W. Kinsner, “Multifractal texture classification of images,”
Proceedings IEEE Wescanex ‘95, (Winnipeg, MB), May 15-16, 1995; IEEE
Cat No. 95CH3581-6; pp. 438-444.

W. S. Grieder, “Variance fractal dimension for signal feature enhancement
and segmentation from noise,” M.Sc. Thesis, Department of Electrical and
Computer Engineering, University of Manitoba, (ix+ 84) pp., 1996.

W. Grieder and W. Kinsner, “Speech segmentation by variance fractal
dimension,” Proc. IEEE Can. Conf. Electrical & Computer Engineering,
CCE&CE’94; (Halifax, NS), September 25-28, 1994; IEEE Cat. No.
94TH8023; pp. 481-485.

Imran Khan, “Transient analysis in frequency synthesizers,” B. Sc. Thesis,
Department of Electrical and Computer Engineering, University of Manitoba,
(vii+93) pp., 1995.

M. W. Kim and M. Arozullah, “Generalized probabilistic neural network-
based classifiers,” International Joint Conference on Neural Networks,
Baltimore, MD, 1992.

W. Kinsner, “Fractal dimensions: Morphological , entropy, spectrum, and
variance classes,” Technical Report, DEL94-4. Department of Electrical and
Computer Engineering, University of Manitoba, Winnipeg, Manitoba,
Canada, (ix+137) 146 pp., May 31, 1994.

-124-

[Kins94b]

[Kins94c]

(KiGr95]

[Kwok95]

[Lang96]

[Marc92]

[Mast93]

[Mast95]

Meis72]

References

W. Kinsner, “Batch and real-time computation of a fractal dimension based on
variance of a time series,” Technical Report, DEL94-6, Department of
Electrical and Computer Engineering, University of Manitoba, 22 pp., June
15, 1994.

W. Kinsner, “Fractional Brownian noise and the variance dimension,”
Technical Report, DEL94-3,Department of Electrical and Computer
Engineering, University of Manitoba, (viii+78) 86 pp., April 15, 1994.

W. Kinsner and W. Grieder, “Fractal amplification of signal features using
variance fractal dimension,” 10th International Conference on Mathematical
and Computer Modelling Record. ICMCM’95 (Boston, MA), July 5-8, 1995.

Raymond Kwok, “High-speed capture of turn-on transients in transmitters,”
B. Sc. Thesis, Department of Electrical and Computer Engineering, University
of Manitoba, (x+173) pp., 1995.

A. Langi, “Wavelet and Fractal Processing and Compression of Nonstationary
Signals,” Ph.D. Thesis, Department of Electrical and Computer Engineering,
University of Manitoba, (xviii+248) pp., 1996.

M. J. Marcus, “Progress in VHF/UHF Mobile Transmitter Identification,”
FCC Report, Washington , D.C., 10 pp., 1992.

T. Masters, Practical Neural Network Recipes in C++. San Diego, CA:
Academic Press, Inc, 1993, 493 pp. ISBN 0-12-479040-2,

T. Masters, Advanced Algorithms for Neural Networks: A C++ Sourcebook.
New York, NY: John Wiley & Sons, Inc, 1995, 431 pp. ISBN 0-471-10588-0.

W. S. Meisel. Computer-oriented approaches to pattern recognition. New
York, NY: Academic Press, 1972.

[NIST5163]U.S. National Institute of Standards and Technology, FBI Fingerprint Study.

[NIST5209]U.S. National Institute of Standards and Technology, Handprinted Digit

[Parz62}

[Pola71]

Classifier Study.

E. Parzen, “On estimation of a probability density function and mode.” Annals
of Mathematical Statistics, 33, pp. 1065-1076, 1962.

E. Polak, Computational Methods in Optimization, New York, NY: Academic
Press, 1971.

-125-

[PTVF92]

[Rény55]

[Ruda94]

[RuMc86]

References

W. Press, S Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in
C, Second Edition. New York, NY: Cambridge University Press, 994 pp.,
1992.

A. Rényi, “On a new axiomatic theory of probability,” Acta Mathematica
Hungarica 6, pp. 285-335, 1955.

Tena Rudachek, ‘“Phase-locked loops and their transients,” B. Sc. Thesis,
Department of Electrical and Computer Engineering, University of Manitoba,
(vii+57) pp., 1994.

D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, Paralell
Distributed Processing, vol. 1, Foundations. Cambridge, MA: MIT Press,
1986.

[SCHA91] H. Schioler and U. Hartmann, “Mapping neural networks derived from the

(Shaw94]

TSpec88)

(Spec90a]

[Spec30b]

[Spec9l}

[Toon95]

[Toon97]

[Vics92]

parzen window estimator,” Neural Networks, Vol. S, pp. 903-909, 1992.

D. B. Shaw, “Identification of Transients in Phase-Locked Loops Using
Neural Networks,” B.Sc. Thesis, Department of Electrical and Computer
Engineering, University of Manitoba, 56 pp., 1994.

D. F. Specht, “Probabilistic neural networks for classification, mapping, or
associative memory,” Proc. IEEE Int. Conf. Neural Networks, Vol. 1 (San
Diego, CA), pp. 525-532, July 1988.

D. F. Specht, “Probabilistic neural networks,” Neural Networks, Vol. 3, pp.
109-118, Jan. 1990.

D. F. Specht, “Probabilistic neural networks and the polynomial adaline as
complementary techniques for classification,” JEEE Transactions on Neural
Networks, Vol. 1, No. 1, pp 111-121, Mar. 1990.

D. F. Specht, “A general regression neural network,” IEEE Transactions on
Neural Networks, Vol. 2, No. 6, pp 568-576, 1991.

Jason Toonstra, “Wavelet analysis and genetic modelling of transients in radio
transmitters,” B. Sc. Thesis, Department of Electrical and Computer
Engineering, University of Manitoba, (vi+147) pp., 1995.

Jason Toonstra, “A radio transmitter fingerprinting system,” M. Sc. Thesis,
Department of Electrical and Computer Engineering, University of Manitoba,
178 pp., 1997.

T. Vicsek. Fractal Growth Phenoma. Signapore: World Scientific, 1992 (2nd
ed.), 488 pp. ISBN 9-810206-69-0 pbk.

-126-

Appendix A: TAC-MM File Structures

APPENDIX A

TAC-MM FILE STRUCTURES

Transient Raw File (.raw) Structure

The TAC-MM software works only with files in ASCII format. The file should be
arranged so that it begins with the 16-bit positive integer samples, each on its own line,
from the test signal. Following that, a file trailer may contain some or all of the

information shown below to identify the transmission.

30234
12453
45098

53254

27982

15274

Manufacturer

Model

Serial number

Frequency of transmission
Date

Time

Location

Coordinates

Operator

Receiver Manufacturer
Receiver Model

Receiver Serial number
Naming convention (Manual/Automatic)
Comments

Acquisition system version

Appendix A: TAC-MM File Structures

Batch List File (.bif) Structure

The TAC-MM software works only with files in ASCII format. The file should be
arranged so that it begins with a positive integer stating the number of files in the list.
Then, the full file path for each of the transients in the list, along with the correct predicted

class, should follow as shown below.

25
d:\Tran\force1\26fwo415.raw 0
d:\Tran\force1\26fwo422.raw 0
d:\Tran\force1\26fwo434.raw O
d:\Tran\force 1\26fwo440.raw O
d:\Tran\force1\26fwo443.raw 0
d:\Tran\force2\26fwq123.raw 1
d:\Tran\force2\26fwq12S.raw 1
d:\Tran\force2\26fwq132.raw 1
d:\Tran\force2\26fwq134.raw 1
d:\Tran\force2\26fwq142.raw 1
d:\Tran\force3\27fwi461.raw 2
d:\Tran\force3\27fwid463.raw 2
d:\Tran\force3\27fwi465.raw 2
d:\Tran\force3\27fwid71.raw 2
d:\Tran\force3\27fwid73.raw 2
d:\Tran\ken1\25fwn380.raw 3
d:\Tran\ken1\25fwn382.raw 3
d:\Tran\ken1\25fwn384.raw 3
d:\Tran\ken1\25fwn392.raw 3
d:\Tran\ken1\25fwn393.raw 3
d:\Tran\ken2\25fwn583.raw 4
d:\Tran\ken2\25fwn584.raw 4
d:\Tran\ken2\25fwn593.raw 4
d:\Tran\ken2\25fwn594.raw 4
d:\Tran\ken2\25fwo000.raw 4

A-2

Appendix B: TAC-MM Source Code

APPENDIX B

TAC-MM SOURCE CODE

Table B-1: List of TAC-MM source files.

File Name Page Description

TAC_MM.h B-5 | main header file for the TAC_MM application

TAC_MM.cpp B-6 | main application source file; contains the applica-
tion class CTAC_MMApp

MainFrm.h B-9 | header file for the frame class CMainFrame, which
controls all SDI frame features

MainFrm.cpp B-10 | implementation file for the frame class CMain-
Frame

TAC_MMDoc.h B-13 | header file for document class CTAC_MMDoc,
which defines and manages the data within the
application

TAC_MMDoc.cpp B-16 | implementation file for the frame class
CTAC_MMDoc

TAC_MMView.h B-39 | header file for view class CTAC_MMView, which
defines and manages the display in the lower view-
ing window

TAC_MMView.cpp B-41 | implementation file for view class CTAC_MMView

RawView.h B-50 | header file for view class CRawView, which defines
and manages the display in the upper viewing win-
dow

RawView.cpp B-52 | implementation file for view class CRawView

Trandata.h B-62 | header file for the class CTransientData, which is
the storage class for individual transmitter tran-
sients

Trandata.cpp B-63 | implementation file for class CTransientData

Extract.h B-65 | header file for the class CExtract, which contains
the segmentation and feature extraction routines

Extract.cpp B-67 | implementation file for the class CExtract

B-1

Appendix B: TAC-MM Source Code

Table B-1: List of TAC-MM source files.

File Name Page Description

PNN.h B-73 | header file for the class CPNN, which contains all
PNN processing routines

PNN.cpp B-75 | implementation file for the class CPNN

AddUnknownDialog.h B-93 | header file for the class CAddUnknownDialog,
which defines and controls the dialog box displayed
when the user chooses to add a recently classified
transient to the database

AddUnknownDialog.cpp | B-94 | implementation file for the class CAddUnknownDi-
alog

BatchProgressDialog.h B-95 | header file for the class CBatchProgressDialog,
which defines and controls the dialog box displayed
to update the user on the progress of a batch classi-
fication

BatchProgressDialog.cpp | B-96 | implementation file for the class CBatchProgress-

. Dialog

ClassifyDialog.h B-98 | header file for the class CClassifyDialog, which
defines and controls the dialog box displayed to
show the results of a classification

ClassifyDialog.cpp B-99 | implementation file for the class CClassifyDialog

EditFPProgressDialog.h | B-100 | header file for the class CEditFPProgressDialog,
which defines and controls the dialog box displayed
to update the user on the progress of a change in
fractal parameters

EditFPProgressDialog B-101 | implementation file for the class CEditFPProgress-

PP Dialog

EnterClassDialog.h B-103 | header file for the class CEnterClassDialog, which
defines and controls the dialog box displayed to
enter the transmitter class integer of a transient
being added to the database

EnterClassDialog.cpp B-104 | implementation file for the class CEnterClassDia-
log

EnterSigmalnitParams- | B-105 | header file for the class CEnterSigmalnitParams-

Dialog.h Dialog, which defines and controls the dialog box

displayed to enter the parameters required for the
sigma initialization

Appendix B: TAC-MM Source Code

Table B-1: List of TAC-MM source files.

File Name Page Description
EnterSigmalnitParams- | B-106 | implementation file for the class CEnterSigmalnit-
Dialog.cpp | ParamsDialog
FractalParamDialog.h B-107 | header file for the class CFractalParamDialog,

which defines and controls the dialog box displayed
to change the fractal parameters
FractalParamDialog.cpp | B-108 | implementation file for the class CFractalParamDi-
alog
ModeParamsDialog.h B-111 | header file for the class CModeParamsDialog,
which defines and controls the dialog box displayed
to change the segmentation mode parameters
ModeParamsDialog.cpp | B-112 | implementation file for the class CModeParamsDia-
log
NewDatabase.h B-114 | header file for the class CNewDataBase, which
defines and controls the dialog box displayed to
select parameters for a new database
NewDatabase.cpp B-115 { implementation file for the class CNewDataBase
SearchDialog.h B-117 | header file for the class CSearchDialog, which
defines and controls the dialog box displayed to
search for a specific transient in the database
SearchDialog.cpp B-118 | implementation file for the class CSearchDialog
SetRejectionDialog.h B-121 | header file for the class CSetRejectionDialog,
which defines and controls the dialog box displayed
to set the rejection threshold
SetRejectionDialog.cpp | B-122 | implementation file for the class CSetRejectionDia-
. log
SigmalnitDialog.h B-123 | header file for the class CSigmalnitDialog, which
defines and controls the dialog box displayed to
update the user on the status of sigma initialization
SigmalnitDialog.cpp B-124 | implementation file for the class CSigmalnitDialog
TrainSigmasOptDialog.h | B-127 | header file for the class CTrainSigmasOptDialog,

which defines and controls the dialog box displayed
to update the user on the status of sigma optimiza-
tion

B-3

Appendix B: TAC-MM Source Code

Table B-1: List of TAC-MM source files.

File Name Page Description
_—ee
TrainSigmasOptDialog B-128 | implementation file for the class CTrainSigmasOpt-

cpp Dialog

TrainingResults.h B-131 | header file for the class CTrainingResults, which is
the storage class for the resuits obtained during
training or from batch classification

TrainingResults.cpp B-132 | implementation file for the class CTrainingResults

StdAfx.h B-133 | header file for system include files, that are used
frequently, but are changed infrequently

resource.h B-134 | this is a standard header file, which defines new
resource IDs for the Microsoft Developer Studio

TAC_MM.rc B-137 | this is a listing of all the Microsoft Windows
resources that the program uses

B-4

Appendix B: TAC-MM Source Code

TAC-MM.h

This file was initially generated using the Microsoft Visual C++ 5.0 AppWizard. It has been modified as
required for the specific application.

// TAC_MM.h : main header file for the TAC_MM application
/]
#if 'defined(AFX_TAC_MM_H__778DC4ES_CDEC_11D0_BF54_444553540000__INCLUDED_)
#idefine AFX_TAC_MM_H__778DCAES_CDEC_11D0_BF54_444553540000__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
#ifndef _AFXWIN_H__
#error include ‘stdafx.h’ before including this file for PCH
#endif
#include "resource.h” // main symbols
i g
/I CTAC_MMApp:
// See TAC_MM .cpp for the implementation of this class
i
class CTAC_MMApp : public CWinApp
{
public:
CTAC_MMAppO;
// Qverrides
1/ ClassWizard generated virtual function overrides
/I{ {AFX_VIRTUAL(CTAC_MMApp)
public:
virtual BOOL InitInstance();
/1) JAFX_VIRTUAL
{// Implementation
I{ {AFX_MSG(CTAC_MMApp)
afx_msg void OnAppAbout();
1/ NOTE - the ClassWizard will add and remove member functions here.
/1 DO NOT EDIT what you see in these blocks of generated code !
i1} JAFX_MSG
DECLARE_MESSAGE_MAP(Q

b
HHHTHITTTTITT T T I R T T T T

Appendix B: TAC-MM Source Code

TAC-MM.cpp

This file was initially generated using the Microsoft Visual C++ 5.0 AppWizard. It has been modified as
required for the specific application.

1 TAC_MM.cpp : Defines the class behaviors for the application.

/]

#include "stdafx.h”

#include "TAC_MM.h"

#include "MainFrm.h"

#include "Trandata.h”

#include "TAC_MMDoc.h"

#include "TAC_MMYView.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] =__FILE__;

#endif

L

// CTAC_MMApp

BEGIN_MESSAGE_MAP(CTAC_MMApp, CWinApp)
NI {AFX_MSG_MAP(CTAC_MMApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

/I NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

I} JAFX_MSG_MAP
{/ Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
// Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

END_MESSAGE_MAPQ

L i

/f CTAC_MMApp construction

CTAC_MMA pp::CTAC_MMAppQ

{
{/ TODO: add construction code here,
// Place all significant initialization in InitInstance

}
g
{// The one and only CTAC_MMApp object

CTAC_MMApp theApp;
T g

/I CTAC_MMApp initialization
BOOL CTAC_MMApp::InitInstance()

// Standard initialization
I/ If you are not using these features and wish to reduce the size
/1 of your final executable, you should remove from the following
// the specific initialization routines you do