
The Relationship between (16, 6, 3)-Balanced
Incomplete Block Designs and (25, 12)

Self-Orthogonal Codes

by

Navid Nasr Esfahani

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

July 2014

c© Copyright 2014 by Navid Nasr Esfahani

Thesis advisor Author

G. H. John van Rees Navid Nasr Esfahani

The Relationship between (16, 6, 3)-Balanced Incomplete

Block Designs and (25, 12) Self-Orthogonal Codes

Abstract
Balanced Incomplete Block Designs and Binary Linear Codes are two combinato-

rial designs. Due to the vast application of codes in communication the field of coding

theory progressed more rapidly than many other fields of combinatorial designs. On

the other hand, Block Designs are applicable in statistics and designing experiments

in different fields, such as biology, medicine, and agriculture. Finding the relation-

ship between instances of these two designs can be useful in constructing instances

of one from the other. Applying the properties of codes to corresponding instances

of Balanced Incomplete Block Designs has been used previously to show the non-

existence of some designs. In this research the relationship between (16, 6, 3)-designs

and (25, 12) codes was determined.

ii

Contents

Abstract . ii
Table of Contents . iii
List of Figures . iv
List of Tables . v
Acknowledgments . viii
Dedication . ix

1 Background 1
1.1 Block Designs . 1
1.2 Codes . 5

2 Introduction 12
2.1 Related Work . 13
2.2 Problem Description . 15

3 Classification of Designs into Codes Generated by Incidence Matri-
ces 16

4 Enumeration of Self-Orthogonal (25, 12) Codes 35
4.1 Theoretical Background for the Iterative Enumeration 35
4.2 Iterative Computation of (25,12) Self-Orthogonal Codes 43

4.2.1 Generating (25,6) Self-Orthogonal Codes 43
4.3 Generating (25, 12) self-orthogonal codes from (26, 13) self-dual codes 45

5 Augmenting (25,10) and (25,11) Codes to (25,12) Codes 47

6 Analysis and Conclusion 59
6.1 The Relationship for Smaller Values of λ 59
6.2 The Relationship between Residual Designs and Codes 62
6.3 Analysis . 62

iii

List of Figures

3.1 Corresponding Graph of Code C . 23

iv

List of Tables

1.1 A8 ⊕ A8: A generator matrix of a (16, 8) code 11
1.2 E16: A generator matrix of a (16, 8) code, [17] 11

2.1 (6λ− 2, 2λ, λ)-Residual Designs and their corresponding SBIBDs . . . 15

3.1 Distribution of Designs with respect to the Rank of their Incidence
Matrices . 17

3.2 Distribution of Designs in Weight Distribution classes 20
3.3 C1 . 24
3.4 C2 . 24
3.5 C3 . 24
3.6 C4 . 24
3.7 C5 . 25
3.8 C6 . 25
3.9 C7 . 25
3.10 C8 . 25
3.11 C9 . 26
3.12 C10 . 26
3.13 C11 . 26
3.14 C12 . 26
3.15 C13 . 27
3.16 C14 . 27
3.17 C15 . 27
3.18 C16 . 27
3.19 C17 . 28
3.20 C18 . 28
3.21 C19 . 28
3.22 C20 . 28
3.23 C21 . 29
3.24 C22 . 29
3.25 C23 . 29

v

vi List of Tables

3.26 C24 . 29
3.27 C25 . 30
3.28 C26 . 30
3.29 C27 . 30
3.30 C28 . 30
3.31 C29 . 31
3.32 C30 . 31
3.33 C31 . 31
3.34 C32 . 31
3.35 C33 . 32
3.36 C34 . 32
3.37 C35 . 32
3.38 C36 . 32
3.39 C37 . 33
3.40 C38 . 33
3.41 C39 . 33
3.42 C40 . 33
3.43 C41 . 34
3.44 C42 . 34
3.45 C43 . 34
3.46 C44 . 34

4.1 (25,12) Self-Orthogonal Codes . 46

5.1 C45: An augmentation of (25,10) code C1 48
5.2 C46: An augmentation of (25,10) code C1 48
5.3 C47: An augmentation of (25,10) code C1 49
5.4 C48: An augmentation of (25,10) code C2 49
5.5 C49: An augmentation of (25,10) code C2 50
5.6 C50: An augmentation of (25,10) code C3 50
5.7 C51: An augmentation of (25,10) code C3 51
5.8 C52: An augmentation of (25,10) code C4 51
5.9 C53: An augmentation of (25,10) code C4 51
5.10 C54: An augmentation of (25,10) code C4 51
5.11 Augmentation of dimension 10 codes to codes of dimension 11 from

Chapter 3 . 51
5.12 C55: An augmentation of (25,11) codes C8, C52, and C53 52
5.13 C56: An augmentation of (25,11) codes C5, C13, C50, and C51 52
5.14 C57: An augmentation of (25,11) codes C19, C48, and C49 52
5.15 C58: An augmentation of (25,11) codes C9, C17, C52, and C54 52
5.16 C59: An augmentation of (25,11) codes C11, C24, C45, and C46 53
5.17 C60: An augmentation of (25,11) codes C22, C46, and C47 53

List of Tables vii

5.18 C61: An augmentation of (25,11) codes C6 and C15 53
5.19 C62: An augmentation of (25,11) code C18 53
5.20 C63: An augmentation of (25,11) code C10 54
5.21 C64: An augmentation of (25,11) code C7 54
5.22 C65: An augmentation of (25,11) code C23 54
5.23 C66: An augmentation of (25,11) code C16 54
5.24 C67: An augmentation of (25,11) code C20 54
5.25 C68: An augmentation of (25,11) code C21 55
5.26 C69: An augmentation of (25,11) code C14 55
5.27 C70: An augmentation of (25,11) code C12 55
5.28 Augmentation of codes of dimension 11 to codes of dimension 12 from

Chapter 3 . 57
5.29 Updated values for the number of designs in Codes 58

6.1 Average number of designs per code 64

Acknowledgments

First of all, I would like to show appreciation to my supervisor, Professor van Rees,

for all his guidance and support. I would also like to thank my advisory committee

members, Professor Bate and Professor Li for their helpful comments, and Professor

Spence and Professor Bouykukliev for kindly providing me with the designs and codes.

I need to extend thanks to Grigory Shamov and Gilbert Detillieux for their generous

help in using computing resources. And last but not least, I want to express my

gratitude to my family for their loving support, and also to my dear friends, who

gave me their company, happiness, and support from the first day to the present.

viii

To my siblings, Farid and Parinaz

ix

NOTATION

N {0, 1, 2, 3, . . . }
Z {. . . ,−2,−1, 0, 1, 2, . . . }
Z+ {1, 2, 3, 4, . . . }
a mod b The remainder of a divided by b

⊕ XOR operator

a[i] for a vector or an array a the ith element of a

(a0a1 . . . an) A vector or an array with the elements a0 to an

[AB] A matrix with parts A and B

Ik The identity matrix of rank k

|S| for a set S The cardinality of S

|M | for a matrix M The determinant of M

M t for a matrix M The transpose of M

a ∈ S a is a member in set S

T ⊂ S T is a subset of S, and |T | < |S|
T ⊆ S T is a subset of S, and |T | ≤ |S|
T ∩ S The intersection of set T with set S

T ∪ S The union of set T and set S

Chapter 1

Background

This chapter includes the definitions and notations that will be used in the pro-

ceeding chapters. However, it only covers the basic knowledge needed in the following

chapters. For more detailed information and explanations, there are books available

on block designs such as “Combinatorial Designs”[24], “Combinatorial Designs: Con-

struction and Analysis”[20] and on coding theory such as “An Introduction to Error

Correcting Codes with Applications”[23]. All the definitions in this chapter are bor-

rowed from the above-mentioned books [23; 20].

1.1 Block Designs

Definition 1. Let v, b, k, r, and λ be positive integers. For any v-set V and set

collection B = {Bi | Bi ⊂ V, |Bi| = k, i = 1, 2, . . . , b}, the pair (V,B) is a Balanced

Incomplete Block Design (BIBD), if and only if

t ∈ V, |{Bi | t ∈ Bi}| = r

1

2 Chapter 1: Background

and

∀t1, t2 ∈ V, t1 6= t2, |{Bi | t1 ∈ Bi, t2 ∈ Bi}| = λ.

A design with these parameters is called a (v, b, r, k, λ)-design or (v, k, λ)-design in

short form.

Variety or treatment are common terms for the elements of V . The elements of

B (Bi, 1 ≤ i ≤ b) are called blocks.

Example 1.1. Let V = {a, b, c, d} and B1 = {a, b}, B2 = {a, c}, B3 = {a, d}, B4 =

{b, c}, B5 = {b, d},and B6 = {c, d}. If B = {B1, B2, B3, B4, B5, B6}, then (V,B) is a

(4, 6, 3, 2, 1)-design.

Counting the total occurrences of all varieties, first by considering the varieties in

each block and doing it once again by counting the occurrences of each variety in the

design will result in the following proposition.

Proposition 1.1. [20, p. 5] In a (v, b, r, k, λ)-design rv = bk.

Choosing a variety t1, then counting the total number of pairs that contain t1, once

by calculating the number of pairs that t1 forms in different blocks, and calculating

this value again using the definition of λ, leads to the proposition below.

Proposition 1.2. [20, p. 4] In a (v, b, r, k, λ)-design r(k − 1) = λ(v − 1).

Although the results from Propositions 1.1 and 1.2 can be used to show that no

(6, 3, 3) exists (r = 3×5
2

= 7.5 which is impossible), they do not guarantee that there

is a design for parameters satisfying these conditions.

Definition 2. Matrix Mv×b = {mij} is the incidence matrix of a BIBD if and only if

mij =

{
1 ti ∈ Bj

0 ti /∈ Bj.

Chapter 1: Background 3

If M is the incidence matrix of a (v, b, r, k, λ)-design, then there are exactly k 1s

in each column of M and exactly r 1s in each row of M . Also, for each pair of rows

ri and rj, i 6= j in M , ri · rj = λ.

Example 1.2. The matrix M is an incidence matrix of the (4, 2, 1)-design in Example

1.1.

M =

 1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

As mentioned above, each row of M has three 1s and there are two 1s in each column

of M . Also, for each distinct pair of rows, their dot product is equal to 1.

Proposition 1.3. [21] In a (v, b, r, k, λ)-design, b ≥ v.

The above proposition can be proven by contradiction. Suppose b < v. Add v− b

columns of 0 to M to generate matrix M+. Since MMT = M+M
t
+, |MM t| should

be equal to |M+M
t
+| = |M+||M t

+|. However, calculating the determinant of MM t

will result in rk(r − λ)v−1 6= 0. On the other hand, due to the added zero columns

|M+| = 0. As the calculation of determinant results in both a zero value and a non-

zero value, the assumption that b < v is wrong. Hence, in any balanced incomplete

block design, b ≥ v.

Definition 3. Two block designs (V,B) and (V̂ , B̂) are isomorphic if and only if

|V | = |V̂ |, |B| = |B̂| and there exist bijections α : V → V̂ and β : B → B̂ such that

for any variety t in V and any block Bi ∈ B if t is in Bi then α(t) is in β(Bi) and

vice versa.

In other words, two designs are isomorphic if and only if 1) the labeling of the

varieties of one is a relabeling of the varieties of the other, 2) the labeling of the blocks

4 Chapter 1: Background

of one design is a relabeling of the blocks of the other design, and 3) corresponding

varieties appear together in corresponding blocks.

Example 1.3. Let V̂ = {a, c, d, g} and B̂ = {{a, c}, {a, d}, {a, g}, {c, d}, {c, g}, {d, g}}.

Define α : V → V̂ such that α(a) = a, α(b) = c, α(c) = d, and α(d) = g and define

β : B → B̂ such that β((a, b)) = (a, c), β((a, c)) = (a, d), β((a, d)) = (a, g), β((b, c)) =

(c, d), β((b, d)) = (c, g), and β((c, d)) = (d, g). From the definition, (V,B) and (V̂ , B̂)

are two isomorphic designs.

Definition 4. A (v, k, λ)-design is symmetric if and only if v = b.

Example 1.4. Let V = {a, b, c, d, e, f, g} and B = {{a, b, c}, {a, d, e}, {a, f, g}, {b, d,

g}, {b, e, f}{c, d, f}, {c, e, g}}. Since |V | = |B|, (V,B) is a (7, 3, 1)-SBIBD.

It does not necessarily mean that a symmetric BIBD (SBIBD) has a symmetric

incidence matrix. From Proposition 1.1, it can be concluded that in an SBIBD, r = k.

Theorem 1.4. (Bruck-Ryser-Chowla Theorem [20, p. 30,32]) For any symmetric

(v, k, λ)-design, if v is even, then k − λ is a perfect square, otherwise (if v is odd)

there exist integers x, y and z, where at least one of them is non-zero, such that

x2 = (k − λ)y2 + (−1)
(v−1)

2 λz2

Sometimes it is possible to generate new designs from the known designs. Sym-

metric designs are a type of design, from which new designs can be obtained.

Definition 5. For any (v, v, k, k, λ) SBIBD, where k ≥ λ + 2, one can remove any

arbitrary block B0 ∈ B from the design, as well as all varieties in that block, and

construct a new (v − k, v − 1, k, k − λ, λ) design (V \ B0, {Bi \ B0 | i = 1, 2, . . . b}).

Chapter 1: Background 5

The resultant design is called a residual design. Any design with the parameters of a

residual design is called a quasi-residual design.

Example 1.5. Consider the (7, 3, 1)-SBIBD from Example 1.1. If {b, e, f} is removed

from the blocks, and omit b, e, and f from all the remaining blocks and V , the result

(V̂ , B̂) with V̂ = {a, c, d, g} and B̂ = {{a, c}, {a, d}, {a, g}, {c, d}, {c, g}, {d, g}} will

be a residual (4, 2, 1)-design. It can be seen from Example 1.3 that the resultant

(4, 2, 1)-design is isomorphic to the (4, 2, 1)-design from Example 1.1.

More examples and properties, as well as a list of designs, up to certain values of

parameters, that contains the number of known non-isomorphic copies of each design

is provided in the Handbook of Combinatorial Designs [11].

1.2 Codes

If Vq(n) represents the set of all n-tuples over an alphabet of size q, a [n,M] block

code (or, more simply, a code) is an M -subset of Vq(n). In this research only binary

n-tuples (V2(n)) will be used. Any arbitrary n-tuple over the alphabet Σ = {0, 1} is

a word and if a word is in the code, it is called a codeword. Each codeword is said to

support the coordinates (or columns), where it has a 1.

Definition 6. For any two words, the Hamming distance between them is equal to

the number of coordinates in which they differ. The Hamming distance of codewords

a, b ∈ {0, 1}n is represented by d(a, b). In other words:

d(a, b) =
n∑

i=1

(a[i] + b[i] mod 2)

6 Chapter 1: Background

Example 1.6. Consider the following words over V2(7):

~a = (0000000),~b = (1000111),~c = (1010101), ~d = (1111110)

The the distances between these words will be:

d(~a,~a) = 0, d(~a,~b) = 4, d(~a,~c) = 4, d(~a, ~d) = 6

d(~b,~c) = 2, d(~b, ~d) = 4, d(~c, ~d) = 4.

Since Hamming distance is the only distance being used in this research, distance

will mean Hamming distance.

Definition 7. A code C has distance d if and only if the minimum distance between

any distinct pair of codewords is d.

Example 1.7. Consider a [7, 4] block code with all the words from Example 1.6. The

distance of the resultant code will be 2, as the minimum distance between distinct

pairs of codewords is d(~b,~c) = 2.

Definition 8. The weight of a word is the number of coordinates in it which contain

a non-zero value.

Example 1.8. Among the words from Example 1.6, the weight of ~a is equal to 0, ~b

and ~c are of weight 4, and ~d has weight 6.

Considering ~0n to be the n-tuple with all zeros, the weight of a word w is equal

to d(w,~0n).

Definition 9. For any code C, its Weight Distribution is an array W of length n+1,

where, for all i ∈ {0, 1, . . . , n}, W [i] is equal to the number of codewords of weight i.

Chapter 1: Background 7

Example 1.9. Consider the block code from Example 1.7. The weight distribution of

that code is:

W [0] = 1,W [1] = 0,W [2] = 0,W [3] = 0,W [4] = 2,W [5] = 0,W [6] = 1,W [7] = 0.

A code is even if all its codewords have even weight. If all codewords in a code

C have weights of the form 4k, k ∈ N, then C is doubly even. That is, all codewords

have weights which are multiples of 4.

Definition 10. For positive integers n and k with n ≥ k, a code C is a Linear Binary

(n, k)-Code if and only if it forms a k-dimensional subspace of V2(n).

So C contains 2k codewords and for each two codewords u, v ∈ C their sum

u+ v ∈ C.

Example 1.10. Let C1 be a [7, 8] block code with following codewords.

(0000000), (1000111), (1010101), (1111110), (0010010), (0111001), (0101011), (1101100)

Since for any pair of codewords in C1, their linear combination is a member of C1,

C1 is a (7, 3) linear code.

A matrix M generates C if its rows span C, i.e. any linear combination of rows of

M is a codeword in C and any codeword in C is a linear combination of rows of M .

Proposition 1.5. [23, p. 49] For any linear binary code C, its distance is equal to

the smallest weight of any non-zero codeword in C.

For each length n and distance d, there is an upper bound on the number of

codewords that a code (not necessarily linear) of length n and distance d can have.

8 Chapter 1: Background

This number is represented by A(n, d). The upper bound for the number of codewords

of length n that form a linear binary code with distance d is represented by B(n, d).

Definition 11. A Generator Matrix of an (n, k) linear binary code C is a matrix of

n columns and k linearly independent rows that generate C.

Example 1.11. Let

M1 =

[
1 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 0

]
M1 is a generator matrix for the linear code C2 from Example 1.10. However M1

is not the only generator matrix for C1. For example the matrix below is another

generator matrix for C1: [
1 0 0 0 1 1 1
0 0 1 0 0 1 0
1 1 1 1 1 1 0

]

Definition 12. Two words a, b ∈ V2(n) are orthogonal if and only if

a · b =
n∑

i=1

a[i]b[i] = 0(mod 2)

Example 1.12. Consider the words from Example 1.6. Since ~a · ~b =
7∑

i=1

~a[i]~b[i] =

0 + 0 + 0 + 0 + 0 + 0 + 0(mod 2) = 0(mod 2), ~a and ~b are orthogonal. But ~c and ~d are

not orthogonal, because ~c · ~d =
7∑

i=1

~c[i]~d[i] = 1+0+1+0+1+0+0(mod 2) = 1(mod 2).

Definition 13. The orthogonal complement of a linear binary code C, represented

by C⊥, is the subset of V2(n) that contains all the codewords which are orthogonal to

every codeword in of C.

C⊥ = {a ∈ V2(n) | ∀c ∈ C, a · c = 0}

Chapter 1: Background 9

Example 1.13. Let C2 be a (7, 3) linear binary code, with the following generator

matrix.

M2 =

[
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

]

Then C⊥2 = {(0000000), (1000111), (0101011), (0011101), (1101100), (1011010), (011

0110), (1110001), (1111111), (0111000), (1010100), (1100010), (0010011), (0100101),

(0001110), (0001110)} is the orthogonal complement for C2.

Definition 14. A linear binary code C is self-orthogonal if and only if each codeword

in C is orthogonal to all the other codewords in C (C ⊆ C⊥). And C is self-dual if

and only if C is self-orthogonal, and for any word w that is orthogonal to every c in

C, w ∈ C (C = C⊥).

Example 1.14. As can be seen in Example 1.13, C2 = {(0000000), (1000111), (01010

11), (0011101), (1101100), (1011010), (0110110), (1110001)} ⊂ C⊥2 . Therefore, C2 is

self-orthogonal.

Note that if a linear binary code C is self-orthogonal, it has to be even.

Definition 15. Two codes, C1 and C2, are equivalent if and only if the coordinates

of C2 are a permutation of the coordinates of C1.

A BIBD is embedded in a code, if the rows of the incidence matrix of the design are

codewords of the code. Since the only difference between two equivalent codes is that

the coordinates of one of them are a reordering of the coordinates of the other one, for

any BIBD, which is embedded in one code, there will be another BIBD, isomorphic

to the first BIBD, embedded in the second code. In other words, an equivalent code

does not contain a new set of embedded designs.

10 Chapter 1: Background

Example 1.15. Let

M3 =

[
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 1 1 1 0

]
be the generator matrix for C3. Then C2 and C3 are equivalent because columns of

M3 are a permutation of columns of M2.

In most cases, a linear (n, k) code can have different generator matrices, which

generate equivalent codes. For each linear binary code, C, there is at least one code in

the equivalence class of C that has a generator matrix of the form [Ik A(n−k)×k]. It is

standard for a code to be represented by a generator matrix of the form [Ik A(n−k)×k]

that generates either the same code or an equivalent code.

Proposition 1.6. If two codes are equivalent, they have the same weight distribution.

But having the same distribution does not imply that two codes are equivalent.

Proof. Any two equivalent codes C and C
′

only differ in the ordering of their co-

ordinates. Since the number of ones in each codeword remains constant after any

reordering of bits, corresponding codewords in two equivalent codes have the same

weight. Therefore, equivalent codes have the same weight distribution. In order to

check the second part, one can consider the (16, 8) self-dual codes generated by the

following generator matrices:

Table 1.1 shows the A8⊕A8 code, constructed based on the A8 matrix from Pless

[17], and Table 1.2, copied from the E16 matrix in Pless [17], are generator matrices

for two inequivalent (16, 8) codes. However, both codes share the following weight

distribution array.

W [0] = W [16] = 1,W [4] = W [12] = 28,W [8] = 198, 0 < k < 4, i 6= 4k : W [i] = 0

But the codes are not equivalent, as they have different automorphism groups [17].

Chapter 1: Background 11

A8 ⊕ A8 =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

Table 1.1: A8 ⊕ A8: A generator matrix of a (16, 8) code

E16 =

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1.2: E16: A generator matrix of a (16, 8) code, [17]

More information about linear codes, including self-orthogonal codes, can be found

in Handbook of Coding Theory [18], Theory of Error Correcting Codes [16]. Pless

[17] has also enumerated the binary self-orthogonal codes up to length 20.

Chapter 2

Introduction

Wallis [24, p. 1] informally describes a Combinatorial Design as the result of

selecting subsets from a finite set, such that these subsets satisfy some pre-defined

conditions. Balanced Incomplete Block Designs (BIBDs) and Binary Linear Codes

are two type of such designs that will be considered in this thesis.

Fisher and Yates [13, p. 25] discussed the application of BIBDs in experimental

designs. In their book [13, p. 25], they suggested BIBDs as the appropriate exper-

imental design for experiments with specific circumstances. For instance, when the

experiment is about pairs of individuals (e.g. mono-zygotic twins), or when the va-

rieties of the experiment are examined in different environments or under various

conditions.

Bhattacharya [6] found the first (16, 6, 3)-design in 1944. Later, in 1982, Denniston

[12] enumerated all the symmetric (25, 16, 3)-designs. Using the (25, 16, 3)-designs,

van Rees generated all the 1281 residual (16, 6, 3)-designs [22]. Finally, Spence gen-

erated all the (16, 6, 3)-designs [11].

The goal of my research is to find the relationship between different classes of

(16, 6, 3)-designs and (25, 12) binary linear codes. Bilous et al. [7], based on previous

12

Chapter 2: Introduction 13

works such as those by Hall et al. [14] and Bate et al. [5], used the relationship between

other instances of BIBDs and binary linear codes and the properties of those binary

linear codes to prove the non-existence of a (24, 8, 4)-design.

2.1 Related Work

The (22, 8, 4)-design had been the smallest undecided case of BIBDs for about

seven decades, before Bilous et al. [7] proved the non-existence of this design. Hence,

a large amount of work has been done on searching for that design. Since the non-

existence was proved through the relationship between possible (22, 8, 4)-designs and

(33, 16) codes, the majority of the contents of this section will be about (22, 8, 4)-

designs.

Hall et al. [14] discussed the relationship between binary (33, 16) codes and the

incidence matrix of a possible (22, 8, 4)-design. They knew that the incidence matrix

of the design, if it existed, had to be embedded in some (33, 16) codes. This point of

view enabled them to search for corresponding codes instead of the designs. For

instance, they showed that a code of length 33 should be doubly even and self-

orthogonal to contain the incidence matrix of the desired design. They also found

other necessary conditions, which cause the elimination of many possible codes. In

subsequent works, Bate et al. [5] and Bilous and van Rees [9] eliminated more classes

of (33, 16) codes.

Bilous and van Rees [8] extended the idea of searching codes for incidence matrices

of designs. They proposed searching for a part of an incidence matrix of a (22, 8, 4)-

design in the (32, 16) codes, which bounds the search domain to doubly even self-dual

codes.

In the final step, Bilous et al. [7] used computers to search the remaining codes.

14 Chapter 2: Introduction

Since the search did not find the desired incidence matrix in any code, there is no

(22, 8, 4)-design. In the future work section, they suggested searching for this kind of

relationship in (16, 6, 3)-designs, which is the main goal of this research. The (16, 6, 3)-

design was suggested since it is similar to the (22, 8, 4)-design in being a member of

the (6λ − 2, 2λ, λ) family of residual designs for λ = 3 and λ = 4, respectively; and

(16, 6, 3)-designs exist, so it is guaranteed that there are relationships to be found.

To the best of our knowledge, the search to find the (22, 8, 4)-designs, punished on

the relationship between codes and designs in 2007, was the latest research related to

finding the relationship between (16, 6, 3)-designs and (25, 12) self-orthogonal codes.

In order to determine mappings between designs and codes, it is helpful if either

the set of all codes or the set of all designs have already been constructed. It would

then be possible to consider the existing set as the domain and then generate the range

for the mapping. For this case, Spence [19] has generated all (16, 6, 3)-designs, up

to isomorphism. Having the designs makes it possible to produce the corresponding

codes for each BIBD. Therefore, the task is to generate the codes, spanned over

incident matrices, and then categorize them into equivalence classes.

As mentioned, (16, 6, 3)-designs and (22, 8, 4)-designs are related as they are from

the family of (6λ− 2, 2λ, λ) residual designs. All the designs in the Residual Design

column in Table 2.1 are also members of this class. So, λ is a possible parameter on

which to generalize the results.

Table 2.1 presents our knowledge about the first 13 members of this family.

Chapter 2: Introduction 15

λ Residual Design Existence SBIBD Existence Code

1 (4, 2, 1)
√ † (7, 3, 1)

√
[11, p.36] (7, 3)

2 (10, 4, 2)
√

[11, p.36] (16, 6, 2)
√

[11, p.37] (15, 7)

3 (16, 6, 3)
√

[11, p.37] (25, 9, 3)
√

[11, p.37] (25, 12)

4 (22, 8, 4) × [11, p.37] (34, 12, 4) × B.R.C.†† (33, 16)

5 (28, 10, 5)
√

[11, p.38] (43, 15, 5) × B.R.C. (43, 21)

6 (34, 12, 6)
√

[11, p.40] (52, 18, 6) × B.R.C. (51, 25)

7 (40, 14, 7) ?[11, p.41] (61, 21, 7) × B.R.C. (61, 30)

8 (46, 16, 8)
√

[11, p.43] (70, 24, 8)
√

[11, p.43] (69, 34)

9 (52, 18, 9)
√

[11, p.45] (79, 27, 9)
√

[11, p.45] (79, 39)

10 (58, 20, 10) ?[11, p.48] (88, 30, 10) × B.R.C. (87, 43)

11 (64, 22, 11) ?[11, p.50] (97, 33, 11) ?[11, p.50] (97, 58)

12 (70, 24, 12) ?[11, p.53] (106, 36, 12) × B.R.C. (105, 52)

13 (76, 26, 13) ?[11, p.55] (115, 39, 13) × B.R.C. (115, 57)

Table 2.1: (6λ− 2, 2λ, λ)-Residual Designs and their corresponding SBIBDs
Mathon and Rosa [11] keep track of the number of non-isomorphic BIBDs. The

table above contains a selection of the rows of their table.
† V = {a, b, c, d}, B = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}

†† B.R.C. stands for Bruck-Ryser-Chowla theorem.

2.2 Problem Description

The first objective of this research is to completely determine the relationship

between the list of inequivalent codes and the non-isomorphic classes of designs gen-

erated by Spence [19]. A code C is related to a design D if and only if C contains the

rows of the incidence matrix of D among its codewords. To gain more information,

it is helpful to have all the (25, 12) self-orthogonal codes. Therefore, generating all

(25, 12) self-orthogonal codes is the second goal of this thesis.

Chapter 3

Classification of Designs into Codes

Generated by Incidence Matrices

In the first step of finding the relationship between (16, 6, 3) balanced incomplete

block designs and (25, 12) self-orthogonal codes, designs were classified based on the

binary codes with the smallest dimension in which they are embedded. In this process,

there was no need to generate the designs as Spence [19] kindly provided us with his

results of generating (16, 6, 3)−designs, the number of which were recorded in the

Handbook of Combinatorial Designs [11]. In total, there are 18920 different designs

represented by their incidence matrices. In this chapter, the procedure of generating

codes that are spanned by the incidence matrices of designs will be discussed. The

discussion will be followed by explanation of the process of finding equivalent codes

and then classifying designs based on their codes.

As mentioned in the previous chapters, each codeword in a self-orthogonal code

should have an even weight. In addition to that, each pair of codewords should

share an even number of coordinates where they both have the value 1. Since the

desirable mapping is from designs with λ = 3 and r = 9, which have 24 columns,

16

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 17

to self-orthogonal even binary codes, which have 25 columns, a column of 1s was

added to the incidence matrix of each design. As a result, each new incidence matrix

spans a self-orthogonal even code. After adding the column of 1s to the incidence

matrix of each design, a basis of the new matrix was calculated through multiple row

reduction operations. Detailed information can be found in any linear algebra book,

such as Elementary Linear Algebra, by Anton [4]. The results of the computation

were generator matrices for the codes. According to the results, the ranks of these

incidence matrices are either 10, 11, or 12. The rank of an incidence matrix is equal

to the dimension of the code that is generated by the design. Table 3.1 shows the

number of designs with different ranks of their incidence matrices.

Incidence Matrix Rank Number of Designs

10 6

11 245

12 18669

Table 3.1: Distribution of Designs with respect to the Rank of their Incidence Matrices

Note that a design with an incidence matrix of rank r can be embedded in codes

of dimension d if and only if d ≥ r. In this chapter only the case where d = r

will be considered. Other cases will be explored in Chapter 5, after the (25, 12)

self-orthogonal codes are studied in Chapter 4.

In the next step, a program was developed to calculate the weight distribution

of each code by generating all the codewords of the code, and classified codes based

on their weight distribution. This primary classification revealed more information

about the distribution of designs in the codes. Having the codes classified by their

weight distribution also made it faster and easier to find the final classification. To

calculate the weight distribution of each code, all the codewords of that code were

18 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

generated and the weight of each codeword was computed. Table 3.2 contains the

information about weight distributions and the number of designs embedded in codes

with that weight distribution.

It can be seen, from Table 3.2, that there is no code with any codewords of weight

2 or weight 24. This can be explained by the definition of the design and the self-

orthogonality of the code.

Consider the weight 24 case. If there is a codeword c of weight 24 in a code C,

then any of the other codewords in C cannot have any 1 in the coordinate that is

not supported by c. Because the code is self-orthogonal and all the codewords are

even, and all the other codewords should have an even number of 1s in coordinates

supported by c. This implies that there are an even number of 1s in coordinates not

supported by c. Since there is only one such coordinate, this number should be zero.

Therefore, that coordinate will be zero in all the codewords, which means that there

is an empty block, which contradicts the definition of a BIBD. Hence, there cannot be

any codeword of weight 24 in a (25, 12) self-orthogonal code with embedded BIBDs.

Weight Distribution (only even weights)
of
Des.

Dim.

No. 0 2 4 6 8 10 12 14 16 18 20 22 24

1 1 0 1 4 82 164 346 300 77 44 5 0 0 1 10

2 1 0 3 3 78 166 346 300 81 42 3 1 0 2 10

3 1 0 0 3 90 166 328 300 93 42 0 1 0 3 10

4 1 0 1 9 182 324 654 606 185 84 1 1 0 4 11

5 1 0 1 6 180 334 660 594 179 90 3 0 0 8 11

6 1 0 2 9 178 324 660 606 181 84 2 1 0 8 11

7 1 0 1 11 180 318 660 612 179 82 3 1 0 8 11

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 19

Weight Distribution (only even weights)
of
Des.

Dim.

No. 0 2 4 6 8 10 12 14 16 18 20 22 24

8 1 0 3 9 174 324 666 606 177 84 3 1 0 11 11

9 1 0 2 6 176 334 666 594 175 90 4 0 0 12 11

10 1 0 0 8 182 328 660 600 177 88 4 0 0 12 11

11 1 0 2 11 176 318 666 612 175 82 4 1 0 12 11

12 1 0 7 8 154 328 702 600 149 88 11 0 0 12 11

13 1 0 2 8 174 328 672 600 169 88 6 0 0 16 11

14 1 0 4 6 168 334 678 594 167 90 6 0 0 16 11

15 1 0 4 11 168 318 678 612 167 82 6 1 0 16 11

16 1 0 5 9 166 324 678 606 169 84 5 1 0 20 11

17 1 0 1 8 178 328 666 600 173 88 5 0 0 26 11

18 1 0 3 8 170 328 678 600 165 88 7 0 0 64 11

19 1 0 39 36 234 592 1486 1272 261 144 27 4 0 4 12

20 1 0 21 36 306 592 1378 1272 333 144 9 4 0 8 12

21 1 0 15 36 330 592 1342 1272 357 144 3 4 0 16 12

22 1 0 12 36 342 592 1324 1272 369 144 0 4 0 26 12

23 1 0 0 21 378 640 1288 1218 381 168 0 1 0 30 12

24 1 0 17 26 314 624 1378 1236 325 160 13 2 0 115 12

25 1 0 14 26 326 624 1360 1236 337 160 10 2 0 120 12

26 1 0 19 16 298 656 1414 1200 293 176 23 0 0 172 12

27 1 0 5 26 362 624 1306 1236 373 160 1 2 0 216 12

20 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

Weight Distribution (only even weights)
of
Des.

Dim.

No. 0 2 4 6 8 10 12 14 16 18 20 22 24

28 1 0 13 16 322 656 1378 1200 317 176 17 0 0 292 12

29 1 0 11 26 338 624 1342 1236 349 160 7 2 0 612 12

30 1 0 12 21 330 640 1360 1218 333 168 12 1 0 624 12

31 1 0 1 16 370 656 1306 1200 365 176 5 0 0 836 12

32 1 0 9 21 342 640 1342 1218 345 168 9 1 0 1032 12

33 1 0 8 26 350 624 1324 1236 361 160 4 2 0 1086 12

34 1 0 10 16 334 656 1360 1200 329 176 14 0 0 1408 12

35 1 0 3 21 366 640 1306 1218 369 168 3 1 0 1818 12

36 1 0 7 16 346 656 1342 1200 341 176 11 0 0 2106 12

37 1 0 6 21 354 640 1324 1218 357 168 6 1 0 3814 12

38 1 0 4 16 358 656 1324 1200 353 176 8 0 0 4334 12

Table 3.2: Distribution of Designs in Weight Distribution

classes

Now consider the other case. Assume that there is a codeword c of weight 2 in a

code C, which is generated by an incidence matrix M . Let i and j be two distinct

coordinates in which c has 1s. This will imply that for any of the codewords in C,

including rows of M , the value in the ith coordinate is the same as the value in the jth

coordinate. If either i or j is the extra column, added to have a self-orthogonal code,

then the block represented by the ith column contains all the varieties and k = v,

which is not true, since k = 6 and v = 16. Therefore, both column i and column j

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 21

are assigned to blocks in the design and they are identical. But it is impossible for

a (16, 6, 3)-design to have identical blocks. To prove this claim, one can use exactly

the same method used by van Rees [21] for the case of λ = 4. Consider any arbitrary

block B∗ in a (16, 6, 3)-design D. Let ai be the number of blocks other than B∗ in D

that intersect with B∗ in i varieties. Since there are b = 24 blocks in D and B∗ is not

counted:
k∑

i=0

ai = b− 1 = 23. (3.1)

From the definition of a BIBD, it can be derived that any of the varieties in B∗

occur in r− 1 other blocks. If all these occurrences are counted, the result will be as

following.

k∑
i=0

iai = k(r − 1) = 48. (3.2)

We also know that each pair of varieties in B∗ occurs exactly λ− 1 times.

k∑
i=0

(
i

2

)
ai =

(
k

2

)
(λ− 1) = 30 (3.3)

From equations 3.2 and 3.3 it can be concluded that

k∑
i=0

i2ai = 2
k∑

i=0

(
i

2

)
ai +

k∑
i=0

iai = 2

(
k

2

)
(λ− 1) + k(r − 1) = 60 + 48 = 108 (3.4)

Now consider the following equation.

6
k∑

i=0

ai − 5
k∑

i=0

iai +
k∑

i=0

i2ai =
k∑

i=0

(i2 − 5i+ 6)ai =
k∑

i=0

(i− 2)(i− 3)ai

= 6a0 + 2a1 + 2a4 + 6a5 + 12a6 = 6(23)− 5(48) + 108 = 6

(3.5)

22 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

Since for all values of i, ai ≥ 0 and also all the coefficients are non-negative, a6 = 0,

which means that B∗ cannot be identical to any other block. Therefore, the incidence

matrices of (16, 6, 3)-designs do not generate any code that has weight 2.

Finally, in order to find out which designs are embedded in each code, the equiv-

alent codes needed to be determined. The search for an available tool that finds the

equivalent codes directly, was not successful. However there is a free, well known,

and fast enough program called nauty [3; 15] developed by B. D. McKay, which finds

isomorphisms in graphs. Therefore, each code C was converted into a bipartite graph

G = (V,E, U) and then corresponding graphs were examined for isomorphism. In

the process of converting a code C to the corresponding graph G = (V,E, U), each

codeword c ∈ C was represented by a vertex vc and the ith coordinate was repre-

sented by a vertex ui. If V = {vc | c ∈ C} and U = {ui | 1 ≤ i ≤ n}, then

E = {(vc, ui) | c[i] = 1}. In other words, there is an edge between two vertices, if and

only if one vertex represents a codeword, and the other corresponds to a coordinate

where that codeword is equal to 1. Example 3.1 shows the procedure for generating

the corresponding graph on a smaller scale for a (7, 3) code.

Example 3.1. Consider a (7, 3) code C, with generator matrix G.

G =

1 0 0 1 1 1 0

0 1 0 1 1 0 1

0 0 1 1 0 1 1

Therefore, the code will be C = {(0000000), (1001110), (0101101), (0011011), (1100011),

(1010101), (0110110), (1111000)}. Now the corresponding graph can be constructed as

shown in Figure 3.1. Although in this

After converting the codes into graphs, the corresponding graphs were compared

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 23

u0

u1

u2

u3

u4

u5

u6

v0000000

v1001110

v0101101

v0011011

v1100011

v1010101

v0110110

v1111000

Figure 3.1: Corresponding Graph of Code C

and classified using the shortg procedure in nauty. The results are provided in Tables

3.3 to 3.46. Each table presents the dimension of the code, the group size of its

equivalence class, i.e. the total number of codes that are isomorphic to this code, the

Weight Polynomial Number (WP No.) to find the weight distribution class of the

code in Table 3.2, and the number of designs embedded in the code. The matrix A

located below this information can be used to calculate the generator matrix G of

each code by setting G = [Idim A]. In the following chapters, each of these codes will

be referenced by its label, which appears in the caption of the corresponding table.

In this chapter, each BIBD was related to the code, generated by the BIBD. In

the next step, all the (25, 12) self-orthogonal codes will be enumerated, so that the

relationship between the (16, 6, 3)-designs and (25, 12) self-orthogonal codes will be

determined.

24 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 1 Contains 1 Design
Dim: 10 Group Size: 192

1 0 1 0 0 1 1 1 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1 1 1
1 1 0 1 0 0 1 1 1 0 1 0 1 0 1
1 0 0 0 0 1 0 1 1 0 0 0 0 0 1
0 0 0 1 0 1 1 1 1 1 0 0 1 1 1
1 0 1 0 0 1 1 0 1 1 1 0 1 0 1
1 0 0 1 1 0 1 1 1 0 1 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 1 0 0 1
1 1 1 1 1 0 0 1 0 0 0 1 0 0 0

Table 3.3: C1

WP No. 2 Contains 2 Designs
Dim: 10 Group Size: 2034

1 0 1 1 1 0 1 0 0 0 1 1 1 0 1
1 1 1 0 0 0 0 1 1 1 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 1 1
0 0 1 1 1 0 1 0 0 1 1 1 1 0 1
1 0 1 0 0 0 1 0 1 1 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 0 1 1 1
1 0 1 0 1 0 1 0 1 1 0 0 1 1 1
0 0 0 1 0 1 0 0 0 0 0 1 1 0 1

Table 3.4: C2

WP No. 3 Contains 2 Designs
Dim: 10 Group Size: 36

1 0 0 0 1 1 1 0 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 1 1 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 1 1 0 0 1 0 1 1
1 1 1 0 0 1 0 1 0 0 1 0 1 1 1
1 0 1 1 0 1 1 0 0 0 0 1 1 0 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 1 0 1 1 1 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 0 0

Table 3.5: C3

WP No. 3 Contains 1 Design
Dim: 10 Group Size: 36

1 0 0 0 1 1 1 0 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 0
0 0 1 0 0 1 1 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 1 1 0 0 1 0 1 1
1 1 1 0 0 1 0 1 0 0 1 0 1 1 1
1 0 1 1 0 1 1 0 0 0 0 1 1 0 0
1 1 1 1 1 1 0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 1 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 1 0 1 1 1 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 0 0

Table 3.6: C4

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 25

WP No. 4 Contains 4 Designs
Dim: 11 Group Size: 32

0 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 0 1 0 0 0 0 1 1 1 0 1 0
1 1 1 1 1 1 0 1 1 1 1 1 0 0
1 1 1 1 0 0 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 1 1 0
0 0 0 1 0 1 0 0 0 0 1 1 0 1
1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 1 0 1 1
0 0 1 0 0 1 1 1 1 1 0 1 0 0
0 1 1 1 0 1 0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0 1 1 1 1 0 0

Table 3.7: C5

WP No. 5 Contains 8 Designs
Dim: 11 Group Size: 48

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1
1 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 1 1 1 0 1 1 0 1 1 0 1
1 0 1 1 1 1 0 0 1 0 0 1 1 1
0 1 1 1 1 1 0 1 0 1 0 0 1 1
1 0 1 1 1 0 0 1 1 1 1 0 0 1
0 0 1 0 1 1 1 1 1 0 1 0 1 1
1 0 0 0 1 1 0 1 0 0 0 0 0 1
1 0 0 0 1 1 1 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0 1 1 1 1 0 0

Table 3.8: C6

WP No. 6 Contains 8 Designs
Dim: 11 Group Size: 32

1 1 1 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 0 0 1 1 0 1 1 0 1 0
0 1 1 1 0 0 1 0 0 0 1 1 1 0
1 1 1 0 0 1 1 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 1 1 0 0 1 0
0 1 1 0 0 1 1 1 0 1 0 1 0 0
0 1 1 1 1 0 0 0 0 1 1 1 1 1
0 1 0 0 1 1 0 0 0 1 1 1 1 0
1 1 0 1 1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0
1 1 1 0 1 0 0 1 1 0 1 1 0 1

Table 3.9: C7

WP No. 7 Contains 8 Designs
Dim: 11 Group Size: 48

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 0 1 1 0 1 1 1 1
0 1 0 1 1 0 0 1 1 1 1 0 1 1
1 1 0 0 1 0 1 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0 0 0 0 1 1 1
0 0 1 0 1 0 0 1 1 0 0 0 0 1
0 1 1 1 1 0 1 0 1 1 0 1 0 1
1 1 1 0 1 1 0 0 1 1 1 0 0 1
0 0 1 0 1 0 1 1 1 1 0 1 0 0
0 1 0 0 1 1 1 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1 0 1 1 1 0

Table 3.10: C8

26 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 8 Contains 7 Designs
Dim: 11 Group Size: 384

1 0 0 1 0 1 1 1 1 1 0 0 1 1
1 1 1 0 0 1 1 0 1 1 1 0 0 1
0 1 0 1 0 1 1 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0 1 0 1 0 1 1
0 1 1 1 0 0 0 1 1 1 1 0 1 1
0 0 0 1 1 1 0 1 0 1 1 1 1 1
0 0 0 1 1 0 1 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 0 1 0 1 1
0 1 0 0 0 0 0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0

Table 3.11: C9

WP No. 8 Contains 4 Designs
Dim: 11 Group Size: 288

0 1 1 0 1 0 1 1 1 1 0 0 1 1
0 0 0 1 1 0 1 0 0 0 0 0 1 1
1 1 0 0 0 0 0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 0 1 0 1 0 1 1
1 0 0 0 0 0 1 0 0 0 1 1 0 1
1 1 1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 1 0 0 1 1 0 1 1 0 1
0 1 0 0 1 0 0 0 0 1 1 0 0 1
1 0 1 1 0 0 1 1 1 0 1 0 1 1
1 0 1 1 0 0 0 0 1 1 1 0 1 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0

Table 3.12: C10

WP No. 9 Contains 12 Designs
Dim: 11 Group Size: 64

0 0 1 1 0 1 1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 1 0 1 1 0 0 1
1 0 0 1 0 1 1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 0 1 0 0 1 1 1
1 0 1 1 0 0 0 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 0 1 0 0 1 1
0 1 1 1 1 0 1 1 0 1 0 0 1 1
0 0 1 0 1 1 1 1 1 0 1 0 1 1
1 0 0 0 0 0 0 0 0 1 1 1 0 1
0 1 0 0 1 1 1 0 1 1 0 1 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 0

Table 3.13: C11

WP No. 10 Contains 12 Designs
Dim: 11 Group Size: 48

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1
0 1 1 0 1 1 1 0 0 1 1 1 0 1
1 0 1 0 1 1 0 1 1 1 0 1 0 1
1 0 0 0 1 0 1 0 1 1 1 1 1 1
0 0 1 0 1 0 0 0 0 1 0 0 1 1
1 0 1 1 1 1 1 0 0 0 0 1 1 1
1 0 1 1 1 0 1 1 0 1 1 0 0 1
0 1 1 1 1 0 1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0 1 0 0 1 0 0
0 1 1 1 1 0 0 0 1 1 0 0 1 0

Table 3.14: C12

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 27

WP No. 11 Contains 12 Designs
Dim: 11 Group Size: 64

0 1 1 0 1 0 1 1 0 1 0 1 1 1
1 1 1 0 0 0 0 0 0 1 0 0 0 1
1 0 1 1 0 1 0 0 1 0 1 1 0 0
1 0 1 0 1 0 0 0 0 1 0 0 0 1
0 1 1 1 1 0 0 0 1 1 1 0 1 1
1 1 1 0 1 1 1 0 0 0 1 0 1 1
0 1 0 0 1 0 0 0 0 0 1 1 0 1
1 1 0 0 1 1 0 0 1 1 0 1 1 1
1 0 0 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 0 1 1 0 1 1 0 1 1

Table 3.15: C13

WP No. 12 Contains 12 Designs
Dim: 11 Group Size: 12288

1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 0 1 0 1 0 0 0 1 0 1 0 0 1
1 1 1 1 1 1 1 0 0 0 1 0 0 1
1 1 1 1 1 1 0 0 0 1 1 0 0 1
1 1 1 0 1 0 1 0 1 1 0 0 1 1
0 1 1 1 1 0 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 1 0 1 0 1 0 1
0 0 1 0 1 0 0 0 0 0 1 0 1 1
1 0 1 1 1 1 1 0 0 1 1 0 0 1
0 0 1 0 1 1 0 0 1 0 1 1 1 0
0 0 1 0 1 0 0 1 0 0 0 0 0 0

Table 3.16: C14

WP No. 13 Contains 16 Designs
Dim: 11 Group Size: 64

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 0 1 0 0 0 1
0 1 0 1 1 1 0 0 1 0 1 1 1 1
1 1 0 0 1 0 1 0 0 1 1 1 1 1
0 1 1 1 1 0 1 0 1 1 1 0 0 1
0 1 0 0 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 0 1 0 1 1 0 1 0 1
0 1 0 0 1 1 0 0 0 1 1 1 1 0
1 1 0 1 1 1 0 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0 1 0 0 0 0 1
1 1 1 0 1 0 0 1 1 0 1 1 0 1

Table 3.17: C15

WP No. 14 Contains 16 Designs
Dim: 11 Group Size: 512

0 1 1 0 0 1 1 1 1 0 1 0 1 1
1 0 1 1 0 1 1 0 1 0 1 1 0 1
1 0 0 1 0 1 1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 0 1 0 0 1 1 1
1 0 1 1 0 0 0 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 0 1 0 0 1 1
0 1 1 1 1 0 1 1 0 1 0 0 1 1
0 0 1 0 1 1 1 1 1 0 1 0 1 1
1 0 0 0 0 0 0 0 0 1 1 1 0 1
0 1 0 0 1 1 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 1 0 0

Table 3.18: C16

28 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 15 Contains 16 Designs
Dim: 11 Group Size: 512

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 0 0 0 1 0 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 0 1 0 1 1 0 1 0 1
0 0 1 0 1 0 0 0 0 1 1 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 1 0
1 0 1 1 1 0 1 0 1 1 0 1 0 1
1 1 0 1 1 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 0 0 1 1 0 1

Table 3.19: C17

WP No. 16 Contains 12 Designs
Dim: 11 Group Size: 768

0 1 1 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1 0 0 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 0
1 0 1 0 1 1 1 1 0 0 1 0 1 1
0 1 1 1 1 1 1 1 1 0 0 0 0 1
1 1 1 0 1 1 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 1 0 1 0 1 1 1
1 1 0 0 0 1 1 1 1 0 1 1 0 1
1 0 0 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1 1 1 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 1

Table 3.20: C18

WP No. 16 Contains 8 Designs
Dim: 11 Group Size: 1536

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 1 1 1 0 0 0 1
1 1 0 0 1 1 1 0 1 1 0 0 1 1
0 1 1 1 1 0 0 1 1 1 0 0 1 1
0 1 0 0 1 0 0 0 0 1 1 0 0 1
0 1 0 0 1 0 0 0 0 1 0 1 0 1
0 0 0 1 1 0 1 0 1 0 0 0 0 1
0 0 0 1 1 1 0 0 1 0 0 0 0 1
1 0 1 1 1 1 1 1 1 0 1 1 1 0
1 0 1 1 1 0 0 1 0 1 0 0 1 0

Table 3.21: C19

WP No. 17 Contains 20 Designs
Dim: 11 Group Size: 48

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 1 1 1 1 0 1 1 1
0 0 1 1 1 0 0 0 0 0 1 0 0 1
1 0 1 0 1 1 1 0 1 1 1 0 0 1
0 0 0 1 1 1 1 0 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 1 0 0 1
0 1 1 1 1 0 1 0 1 1 0 1 0 1
0 1 0 0 1 1 0 0 0 1 1 1 1 0
1 1 0 1 1 1 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 1 1 1
1 1 1 0 1 0 0 1 1 0 1 1 0 1

Table 3.22: C20

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 29

WP No. 17 Contains 3 Designs
Dim: 11 Group Size: 256

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1
1 1 1 1 1 0 1 0 1 0 0 0 1 1
0 1 0 1 1 1 1 0 1 1 1 0 0 1
0 1 0 0 1 0 0 0 0 1 0 0 1 1
0 1 0 0 1 1 1 1 1 0 0 1 1 1
1 1 0 1 1 0 0 1 1 1 0 1 0 1
0 0 0 1 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 0 0 1 1 1 0 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 0 0
1 1 1 0 1 1 0 0 0 0 1 1 0 0

Table 3.23: C21

WP No. 18 Contains 2 Designs
Dim: 11 Group Size: 1536

1 1 1 1 0 1 1 0 0 1 1 0 0 1
0 1 0 0 0 1 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1 0 0 1 1 1
1 0 1 1 0 0 1 1 1 0 1 0 1 1
0 0 1 0 1 1 1 1 1 0 0 1 1 1
1 1 1 1 0 1 0 1 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 0 0 1 1 1
0 1 0 0 1 0 0 0 0 1 1 0 0 1
0 1 0 0 1 0 1 0 1 1 1 0 1 0
1 0 1 1 1 0 0 0 1 0 1 0 1 0

Table 3.24: C22

WP No. 18 Contains 52 Designs
Dim: 11 Group Size: 128

1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 0 0 1 1 1 1
0 1 0 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 1 0 1 1 1 0 0 0 0 1
0 1 1 1 1 1 1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 1 1 0 0 1 1 1
1 1 0 1 1 1 1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 1 1 0 1 0 1 1
0 0 0 1 1 1 0 1 0 1 1 1 1 1
0 1 0 0 1 1 1 0 1 0 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0 0 0

Table 3.25: C23

WP No. 18 Contains 10 Designs
Dim: 11 Group Size: 512

1 1 1 1 0 0 1 1 0 0 1 1 0 1
1 0 0 0 0 0 1 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0 1 1 1 1 0 1
0 0 1 1 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1 0 1 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 1 1 1 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 0 0 0 1 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 0 0 1 1
0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0

Table 3.26: C24

30 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 19 Contains 4 Designs
Dim: 12 Group Size: 2229534720

0 0 0 0 0 0 0 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 0 0 0 1
0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 1 1
0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1
1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 1

Table 3.27: C25

WP No. 20 Contains 8 Designs
Dim: 12 Group Size: 13271040

0 0 0 0 0 1 1 0 0 1 1 0 1
0 0 1 0 0 1 0 1 1 0 0 0 1
1 1 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1 0 1 1
0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 1 1
1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0
1 1 0 1 1 1 1 0 1 0 0 0 0
0 0 1 0 0 0 1 1 1 0 0 0 1

Table 3.28: C26

WP No. 21 Contains 16 Designs
Dim: 12 Group Size: 1769472

1 0 0 1 0 1 1 0 0 0 0 0 1
1 0 1 1 0 0 1 0 0 0 0 0 1
1 1 1 0 0 1 0 1 0 0 1 1 0
1 0 0 0 1 0 1 1 1 0 1 1 0
1 1 0 1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 1 1 1
0 1 1 1 0 1 1 1 0 0 1 1 1
1 0 0 1 1 0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0

Table 3.29: C27

WP No. 22 Contains 26 Designs
Dim: 12 Group Size: 995328

1 0 0 1 1 1 0 0 0 0 0 0 1
0 1 0 1 1 0 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0 1 0 0 0 0
1 0 1 0 1 1 0 1 1 0 1 1 1
1 1 0 1 0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 0 1 1 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 1 0 0 0 0 0 1

Table 3.30: C28

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 31

WP No. 23 Contains 30 Designs
Dim: 12 Group Size: 120960

1 1 0 1 0 1 1 0 1 0 1 1 1
0 0 1 1 0 1 1 1 1 1 0 1 1
0 1 0 0 1 1 0 1 1 1 1 0 0
0 1 1 1 0 1 0 0 0 0 0 0 1
1 1 1 0 1 1 1 0 0 1 0 1 1
0 0 1 0 1 0 1 1 0 0 0 0 1
1 0 0 0 1 1 1 1 1 1 1 0 1
1 0 0 1 0 0 0 1 1 0 0 0 1
1 1 1 0 1 0 0 0 1 1 0 1 0
0 1 0 1 1 0 1 0 1 0 1 1 0
1 0 1 1 1 1 0 1 0 0 1 1 1
1 1 1 1 0 0 1 1 0 1 1 0 1

Table 3.31: C29

WP No. 24 Contains 115 Designs
Dim: 12 Group Size: 1474560

0 0 0 0 0 1 0 1 0 1 1 0 1
1 0 0 0 0 0 0 1 0 1 1 0 1
1 1 1 0 0 1 0 0 1 1 0 1 0
0 0 0 1 1 0 1 1 1 0 1 1 0
0 0 1 0 0 0 0 1 0 1 1 0 1
0 1 0 1 1 0 1 1 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1 0 1 1
1 1 1 0 0 1 0 1 1 0 1 1 1
0 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0

Table 3.32: C30

WP No. 25 Contains 120 Designs
Dim: 12 Group Size: 387072

0 0 0 0 0 1 0 1 0 1 1 0 1
1 1 0 0 1 0 1 1 0 0 1 1 0
0 1 1 0 1 1 0 0 0 0 0 0 1
0 1 0 1 1 0 1 1 0 0 1 1 0
0 0 1 0 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 1 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1 0 1 1
0 1 1 0 1 1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 0 1 1 0 1 1

Table 3.33: C31

WP No. 26 Contains 172 Designs
Dim: 12 Group Size: 8847360

1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 1 0 0 1 0 1
0 1 1 1 0 0 0 0 0 1 0 0 1
0 1 1 1 1 1 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 0 1 0 1
1 0 0 1 1 1 1 1 1 0 0 1 1
1 1 1 1 0 1 0 1 1 0 1 0 1
1 1 1 1 1 0 0 1 1 0 1 0 1
0 1 0 1 0 0 0 0 0 1 1 0 1
0 1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0

Table 3.34: C32

32 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 27 Contains 216 Designs
Dim: 12 Group Size: 24576

0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 1 1 0 1 0 0 0 0 0 1 1
1 0 1 0 1 1 0 1 1 0 1 1 1
0 1 1 1 1 0 0 0 1 1 1 1 1
0 0 1 1 1 1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 0 1 1 1 1 1
0 1 1 0 0 1 1 1 0 1 1 0 0
1 1 1 0 1 1 0 1 1 0 0 1 1
0 1 0 1 1 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 1 1 0 1 1 1 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1 0 0 1

Table 3.35: C33

WP No. 28 Contains 292 Designs
Dim: 12 Group Size: 884736

1 1 1 0 1 0 1 1 0 1 1 0 1
1 0 0 0 0 1 1 0 0 1 0 0 1
0 1 1 1 1 0 0 1 1 1 0 1 1
0 1 1 1 1 0 0 0 1 1 1 1 1
1 1 0 1 1 0 1 1 0 1 1 0 1
1 0 1 1 1 0 1 1 0 1 1 0 1
1 1 1 1 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 0 0 0 0 1
0 1 1 1 0 0 1 0 0 0 0 0 1
0 0 0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0

Table 3.36: C34

No.: 29 Contains 612 Designs
Dim: 12 Group Size: 73728

0 0 1 0 1 1 0 1 1 1 1 1 1
0 0 0 1 1 0 0 1 0 0 1 0 1
1 0 1 0 0 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 1 0 1 0 1
1 1 1 0 0 1 1 1 1 0 0 1 1
1 0 0 0 0 1 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1
1 0 0 0 0 0 0 1 0 1 0 1 1
1 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1 0

Table 3.37: C35

No.: 30 Contains 624 Designs
Dim: 12 Group Size: 221184

1 1 1 0 1 1 0 1 0 1 1 0 1
0 0 0 1 1 1 0 0 0 1 0 0 1
1 1 1 0 0 0 1 1 1 1 0 1 1
1 1 1 0 1 0 1 1 1 0 0 1 1
0 1 0 0 1 1 1 0 1 1 1 1 1
0 0 1 0 1 1 1 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0

Table 3.38: C36

Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices 33

WP No. 31 Contains 836 Designs
Dim: 12 Group Size: 23040

0 0 0 0 0 1 0 1 0 1 0 0 1 1
0 1 1 1 1 1 1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0 1 1 1 0 1 1
0 1 0 1 1 0 0 1 0 1 1 1 1 1
0 0 0 1 1 0 0 1 1 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 1 1 1
0 1 1 1 1 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 0 1 0 1 1 1 0
0 1 1 1 0 0 1 0 1 0 1 1 0 0
1 1 0 0 1 1 1 0 1 1 0 1 0 0

Table 3.39: C37

WP No. 32 Contains 1032 Designs
Dim: 12 Group Size: 82944

1 0 1 0 1 1 1 1 1 0 1 0 1
1 0 0 1 1 0 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1 1 1 0 0 1
0 0 1 1 1 1 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 0 0 1
0 0 1 1 0 1 0 1 1 1 1 1 1
0 0 1 1 0 1 1 0 1 1 1 1 1
0 1 0 1 0 0 0 0 0 1 1 0 1
0 1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 1 0 1 1 0 1 1 0 0

Table 3.40: C38

WP No. 33 Contains 1086 Designs
Dim: 12 Group Size: 18432

0 0 0 0 0 1 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1 0 1 1 0 0
0 1 1 0 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 1 1 0 1 1 0 0
1 1 1 1 0 1 0 1 0 0 1 1 1
1 1 0 1 1 0 0 1 0 0 1 1 0
1 0 0 1 0 1 0 0 1 0 0 0 1
1 0 1 1 1 0 0 1 0 0 1 1 0
1 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 1 1 1 0 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 0 1 1 0 1 1

Table 3.41: C39

WP No. 34 Contains 1408 Designs
Dim: 12 Group Size: 110592

1 1 0 0 1 1 1 1 0 1 1 0 1
0 0 1 1 1 0 1 1 1 1 1 0 1
0 1 1 1 1 1 0 0 0 1 1 1 1
0 1 1 1 1 0 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 0 0 1
0 1 0 1 1 1 0 0 1 1 1 1 1
1 1 1 1 0 1 0 1 1 0 1 0 1
1 1 1 1 0 1 1 0 1 0 1 0 1
1 0 0 1 0 0 1 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 1 0

Table 3.42: C40

34 Chapter 3: Classification of Designs into Codes Generated by Incidence Matrices

WP No. 35 Contains 1818 Designs
Dim: 12 Group Size: 6912

1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 1 0 1 1 1 1 1 0 1 1
1 1 1 1 1 0 0 1 0 0 0 1 0
1 0 1 0 0 1 1 1 1 0 0 1 0
1 1 1 0 0 0 1 1 0 1 1 0 0
1 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0 1 1 1 1 1
0 1 0 1 0 0 1 1 1 1 0 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 1 1 0 0 1 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0 0

Table 3.43: C41

WP No. 36 Contains 2106 Designs
Dim: 12 Group Size: 49152

1 1 1 0 1 1 1 0 1 0 0 1 1
0 0 1 1 0 1 0 0 0 0 0 1 1
1 0 0 1 1 1 0 1 1 1 0 1 1
1 0 0 1 1 1 0 0 1 1 1 1 1
1 1 0 1 1 0 0 0 0 0 0 0 1
1 0 1 1 1 0 1 1 0 0 1 1 1
1 1 1 1 0 1 0 1 1 0 1 0 1
0 0 1 1 0 0 0 0 1 0 0 1 1
0 1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 1 1 1 1 0 1 0 0
0 1 1 1 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 0 0

Table 3.44: C42

WP No. 37 Contains 3814 Designs
Dim: 12 Group Size: 9216

1 0 0 1 0 0 1 0 1 1 1 1 0
0 0 1 1 0 1 0 0 0 0 0 1 1
1 0 1 1 1 1 1 0 0 0 0 1 0
1 1 1 0 0 0 1 1 0 1 0 1 0
1 0 1 0 0 1 1 1 1 0 1 0 0
1 1 0 0 0 1 1 1 0 1 0 1 0
1 1 1 1 0 1 0 1 1 0 1 0 1
0 1 1 0 1 1 0 0 1 1 1 1 1
0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 1 1 0 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 0 0

Table 3.45: C43

WP No. 38 Contains 4334 Designs
Dim: 12 Group Size: 12288

1 0 0 1 0 0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 1 0 1 1 1 0
1 1 1 0 1 0 1 0 0 0 1 1 0
1 0 1 0 1 1 1 0 1 1 0 0 0
1 1 0 0 1 1 1 0 0 0 1 1 0
1 1 1 1 0 1 0 1 1 0 1 0 1
1 1 1 1 0 1 0 1 1 0 0 1 1
0 1 0 1 1 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 0 1 1 0 0 1
1 0 0 1 1 0 0 0 0 0 0 0 0

Table 3.46: C44

Chapter 4

Enumeration of Self-Orthogonal

(25, 12) Codes

The next step in searching for the mapping between (16, 6, 3) designs and (25, 12)

self-orthogonal codes is to generate the codes. In this chapter, first a proposed itera-

tive process of enumerating self-orthogonal (25, 12) codes will be explained. Although

this method is not time efficient, it provides us with results, which are useful in ana-

lyzing the codes. After the explanation of the above-mentioned process, the procedure

of obtaining (25, 12) self-orthogonal codes from (26, 13) self-dual codes, as well as the

distribution of the codes themselves in distance classes, will be provided.

4.1 Theoretical Background for the Iterative Enu-

meration

In order to reduce the number of occurrences of equivalent codes during the enu-

meration process for generating (25, 12) binary codes, a particular ordering on the

35

36 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

generator matrices was considered. This ordering helped the process to skip over

some of the equivalent codes. Each generator matrix generated in this ordering, is

called an Ordered Generator Matrix. Here is the definition:

Definition 16. A Generator Matrix G for a binary code C is said to be an Ordered

Generator Matrix if and only if it maintains the following rules:

1. For any row ri in G, the weight of ri is less than or equal to the weight of any

row appearing below ri.

2. For any row ri in G, the weight of ri is less than or equal to the weight of any

codeword that is a linear combination of rows of G, including ri .

3. If (1) holds with equality, then for any pair of rows ri and rj of G, with i < j,

ri should be a binary representation of a larger number than the number that rj

represents in binary.

4. If (2) holds with equality, then for any row ri in G and a codeword c ∈ C, if the

coefficient of ri in the linear combination of rows, which results in c, is not zero,

then ri should be a binary representation of a larger number than the number

that c represents in binary.

The following theorems will serve as theoretical validation of our procedure for

generating the (25, 12) binary self-orthogonal codes.

Lemma 4.1. For each (n, k) binary code C, there exists an Ordered Generator Matrix

G that generates C.

Proof. Consider the list of codewords of C, sorted in ascending order based on their

weights; and in case of tie, the codeword that represents the larger number in bi-

nary appears first. Now, let the first k codewords in our ordering, which are all

Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes 37

linearly independent, be the rows of G, preserving their ordering from the sorted list

of codewords. By definition, G is an ordered generator matrix.

Lemma 4.1 guarantees that the search domain can be restricted to the ordered

generator matrices, without the loss of any desirable code.

The property below is a straightforward derivation from Condition 4 in Definition

16. During the process of generating the codes, the algorithm will check for a code-

word that contradicts this property. If such a codeword c exists, then the algorithm

will skip that generator matrix and proceed to the next one.

Proposition 4.2. Let ri for 1 ≤ i ≤ k be the ith row of an ordered generator matrix

G. Then for any linear combination, c, of the first i rows, if the coefficient of ri in c

is non-zero, then either c has a weight greater than the weight of ri, or they have equal

weights and the binary number represented by ri is greater than the one represented

by c.

Lemma 4.3. For any (n, k) binary code C and any positive integer d, the ordered

generator matrix of C cannot contain more than blog2A(n, d)c rows of weight d.

Proof. (By contradiction) Assume C has an ordered generator matrix that includes

k̂ > blog2A(n, d)c rows of weight d. Since the rows are linearly independent, those

k̂ rows can generate a new code Ĉ of dimension k̂. Therefore Ĉ has 2k̂ > A(n, d)

codewords. By the definition of A(n, d), the distance of Ĉ is strictly less than d.

However, this implies that there is a non-zero linear combination of those k̂ rows of

weight d that has weight less than d. Since this contradicts Property 4.2, such an

ordered generator matrix cannot exist.

Using Lemma 4.3, the search can be limited to matrices with at most blog2A(n, d)c

rows of weight d. However, the following lemmas result in better bounds on the weight

38 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

of rows in an ordered generator matrix.

Proposition 4.4. For any arbitrary selection of s columns and t rows in a gener-

ator matrix G, with t > s, then there is another generator matrix Ĝ with following

properties:

1) Ĝ generates the same code as G does.

2) Ĝ is identical to G in all the rows other than the t chosen rows.

3) There are at least t − s of the chosen rows, which are in Ĝ and have all 0s in

those s columns.

Proof. Form a new matrix Mt×s from the intersection of those t rows and s columns.

Since t > s, there are at most s rows of M that can be linearly independent. Therefore

there are at least t− s linearly dependent rows in M . So, there is a set of elementary

row operations on M , which can set t − s rows of M to all-zero rows. If the same

elementary row operations are performed on the corresponding rows in G, the result

will be Ĝ, because, by the construction, it satisfies the second and the third properties.

And since only elementary row operations are used, and the code is a linear code, Ĝ

and G both generate the same code.

Note that Ĝ from Proposition 4.4 is still a generator matrix and there is no all-zero

row in it.

Lemma 4.5. For any (n, k) binary code, there exists no row of weight t > n− k + 1

in its ordered generator matrix.

Proof. Assume a row, r, of weight t > n−k+1 exists in the ordered generator matrix

of an (n, k) binary code. Consider the n− t coordinates which are not supported by

r. Since k − 1 > n − t, Proposition 4.4 can be applied and conclude that there is

Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes 39

a linear combination, c, of rows in the ordered generator matrix, excluding r, such

that c does not support any coordinate that is not supported by r. Now consider

the codeword r̂ = r ⊕ c. Notice that the weight of r̂ is less than the weight of r and

also r has a non-zero coefficient in the linear combination that produces r̂. But this

contradicts Property 4.2. Therefore, the ordered generator matrix cannot have a row

of weight t.

Since 16 > 25 − 12 + 1 = 14, the search for ordered generator matrices can skip

matrices containing a row of weight 16, 18, 20, 22, or 24.

Lemma 4.6. For any (n, k) binary code C with ordered generator matrix G, and for

integers t1 and t2, where 0 < t1 ≤ t2 ≤ n, if n− (t2 + t1
2

) < k− 2, then G cannot have

rows of weights t1 and t2 at the same time.

Proof. Assume r1 and r2 are two rows in G with weights t1 and t2, respectively. Let

R1 = {i | r1[i] = 1} and R2 = {i | r2[i] = 1} be sets of coordinates supported by each

of r1 and r2. Note that |R1 ∩ R2| ≤ t1
2

, otherwise r1 ⊕ r2 can replace r2. Therefore,

|R1 ∪R2| = |R1|+ |R2| − |R1 ∩R2| ≥ t1 + t2 − t1
2

= t2 + t1
2

.

Consider the k − 2 rows of G other than r1 and r2. Since k − 2 > n − (t2 +

t1
2

) ≥ n − |R1 ∪ R2|, Proposition 4.4 is applicable. Therefore, there are at least

u = k − 2 − n + |R1 ∪ R2| linearly independent linear combinations of those rows,

xj, 1 ≤ j ≤ u, such that these linear combinations do not support the coordinates

which are not supported by either r1 or r2. Define Xj = {i | xj[i] = 1}, 1 ≤ j ≤ u,

then it can be claimed that for all j ∈ {1, 2, . . . , u}, |R1 ∩ Xj| ≤ |R1 \ Xj| and

|R2∩Xj| ≤ |R2\Xj|. Assume that there is an Xj such that either |R1∩Xj| > |R1\Xj|

or |R2∩Xj| > |R2 \Xj|. Then either the weight of r1⊕xj is less than t1 or the weight

of r2 ⊕ xj is less than t2. But this contradicts Property 4.2, proving the claim.

40 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

Now it can be considered true that R1∩R2∩Xj = ∅, j ∈ {1, 2, . . . , u}. In order to

prove the claim by contradiction, assume that there is an X∗ such that R1∩R2∩X∗ 6=

∅, then, considering the fact that X∗ ⊆ R1 ∪ R2, either |R1 ∩ X∗| > |R1 \ X∗| or

|R2 ∩ X∗| > |R2 \ X∗|, which was shown to be impossible. Therefore the proof can

be continued with the assumption that for any j ∈ {1, 2, . . . , u}, R1 ∩ R2 ∩ Xj = ∅

and |R1 ∩Xj| ≤ |R1 \Xj| and |R2 ∩Xj| ≤ |R2 \Xj|, which implies that |R1 ∩Xj| =

|R2 ∩Xj|, 1 ≤ j ≤ u.

Since the rows of G are linearly independent, all the xjs are non-zero. Consider all

the linear combinations of xjs. Since there are at least u linearly independent xjs and

each of them has at least a 1 in a coordinate in R1 \R2, there is a linear combination

y of xjs that has at least u 1s in coordinates in R1 \R2. Based on the aforementioned

claim, y has the same number of 1s in coordinates in R2 \ R1. Therefore the weight

of y is at least 2u. Now consider the linear combination r1 ⊕ r2 ⊕ y with weight

|R1|+ |R2| − 2|R1 ∩R2| − 2u = t1 + t2 − 2|R1 ∩R2| − 2(k − 2− n+ |R1 ∪R2|)

= t1 + t2 − 2|R1 ∩R2| − 2(k − 2− n+ |R1|+ |R2| − |R1 ∩R2|)

= t1 + t2 + 2n− (2k − 4)− 2t1 − 2t2 = 2n− (2k − 4)− t1 − t2.

From Proposition 4.2, it can be concluded that weight of r1 ⊕ r2 ⊕ y should be

greater than or equal to t2, therefore

2n− (2k − 4)− t1 − t2 ≥ t2 ⇒ 2n− (2t2 + t1) ≥ 2k − 4⇒ n− (t2 +
t1
2

) ≥ k − 2.

But this contradicts the assumption of the lemma that n−(t2+ t1
2

) < k−2. Therefore

the assumption that r1 and r2 are rows of G is incorrect and G cannot have rows of

Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes 41

weights t1 and t2 at the same time.

From Lemma 4.6, it can be derived that rows r1 and r2 of weighs t1 and t2, where

(t1, t2) ∈ {(4, 14), (6, 14), (8, 12), (8, 14), (10, 12), (10, 14), (12, 12), (12, 14), (14, 14)} can-

not appear in the ordered generator matrix of a (25, 12) binary code.

In the special case of self orthogonal (n, k) codes, Lemma 4.6 can also be expanded

by the following corollary.

Corollary 1. For any (n, k) self-orthogonal binary code C with ordered generator

matrix G, and for integers t1 and t2, where 0 < t1 ≤ t2 ≤ n and t1 is not divisible by

4, if n− (t2 + t1
2

) = k − 2, then G cannot have rows of weights t1 and t2 at the same

time.

Proof. Assume r1 and r2 are two rows in G with weights t1 and t2, respectively. Let

R1 = {i | r1[i] = 1} and R2 = {i | r2[i] = 1} be sets of coordinates supported by each

of r1 and r2. Note that |R1 ∩ R2| ≤ 2b t1
4
c < t1

2
, otherwise r1 ⊕ r2 can replace r2 or

the code is not self-orthogonal. Therefore,

|R1 ∪R2| = |R1|+ |R2| − |R1 ∩R2| ≥ t1 + t2 − 2bt1
4
c = t2 + 2dt1

4
e.

Consider the k − 2 rows of G other than r1 and r2. Since k − 2 = n− (t2 + t1
2

) >

n− (t2 + 2d t1
4
e) satisfies the condition in Proposition 4.4, there is at least 1 non-zero

linear combination of those rows, x, such that this linear combination does not support

the coordinates which are supported by neither r1 nor r2. Define X = {i | x[i] = 1},

so X ⊆ R1∪R2 and it can be claimed that |R1∩X| ≤ |R1\X| and |R2∩X| ≤ |R2\X|.

Assume that either |R1 ∩X| > |R1 \X| or |R2 ∩X| > |R2 \X|. These cases imply

that either the weight of r1 ⊕ x is less than t1 or the weight of r2 ⊕ x is less than t2.

But this contradicts Property 4.2 and the assumption is incorrect.

42 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

Now the assumption that R1 ∩R2 ∩X = ∅ is true. In order to prove the claim by

contradiction, assume that there is an X such that R1∩R2∩X 6= ∅, then, considering

the fact that X ⊆ R1 ∪R2, either |R1 ∩X| > |R1 \X| or |R2 ∩X| > |R2 \X|, which

was shown to be incorrect. Therefore the proof can be continued with the claim that

for any R1∩R2∩Xj = ∅, |R1∩X| ≤ |R1 \X| and |R2∩X| ≤ |R2 \X|, which implies

that |R1 ∩X| = |R2 ∩X|.

Since the rows of G are linearly independent, x is non-zero. Therefore, x has at

least a 1 in the coordinates supported by either of r1 or r2. By the premises, it can be

concluded that it has at least a 1 in coordinates supported by each of r1 and r2. Since

the code is self-orthogonal, x should have at least two 1s in each set of coordinates

that are supported by r1 or r2. So, the weight of x, u, is at least 4. Now consider the

linear combination r1 ⊕ r2 ⊕ x, which will have weight

|R1|+ |R2| − 2|R1 ∩R2| − |X| < t1 + t2− 2(2bt1
4
c)−u < t1 + t2− (t1− 2)− 4 < t2− 2

But this contradicts Proposition 4.2. Therefore, G cannot have r1 and r2 at the

same time.

From Corollary 1, it can be concluded that rows r1 and r2 with weights t1 and

t2 cannot appear in the ordered generator matrix of a (25, 12) self-orthogonal binary

code if (t1, t2) ∈ {(2, 14), (6, 12), (10, 10)}.

Considering the results from Lemma 4.5, Lemma 4.6, and Corollary 1, it can be

concluded that it is impossible for an ordered generator matrix of a (25, 12) binary

self-orthogonal code to have a row of weight 14.

Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes 43

4.2 Iterative Computation of (25,12) Self-Orthogonal

Codes

For each code, there are many equivalent codes. During the enumeration of codes

these equivalent codes may be generated frequently, and consume both computational

and storage resources. In order to limit the multiple occurrence of these equivalent

codes, the process of generating (25, 12) self-orthogonal codes was broken into multiple

steps. First, the (25, 6) self-orthogonal codes were generated iteratively. The process

after that can be described as a branch and bound search, where in each step the

process would prune the branches that represent a code, which has already occurred in

a form of an equivalent code, and then the dimension of each code would be increased

by one. This step will be repeated, until the process reaches a code of dimension 12.

Detailed explanation of the process is provided in the following subsections.

4.2.1 Generating (25,6) Self-Orthogonal Codes

In the first step of generating (25,12) self-orthogonal codes, the ordered generator

matrices for (25,6) self-orthogonal codes were enumerated. In order to restrict the

search domain, the results of previous section were used. The algorithm started from a

code of dimension 1 and added up to 5 feasible rows to the generator matrix, checking

the self-orthogonality, linearity, and up to some extent the isomorphism conditions

mentioned previously. For the computation of the ordered generator matrices of the

(25,6) self-orthogonal codes, 17 threads were used on the Helium-01 computing cluster

at the University of Manitobai. One thread served as a producer and the other 16

were consumers. Since the server can only run up to 16 threads simultaneously, and

i8 Dual-Core AMD Opteron 885 2.6 GHz CPUs and 32 GB of RAM using the Scientific Linux
6.x Operating System[1]

44 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

the producer only needed to run, whenever at least one consumer’s ordered generator

matrix queue was empty. This process could be modified, in order to use more

than one server. However, the computing did not take a long time, relative to the

next steps of the process, therefore using more servers was unnecessary. The producer

enumerated the ordered generator matrices up to 4 rows, and then copied each feasible

matrix to a queue for one of the consumers. Each consumer would enumerate the other

2 rows and write the feasible matrices to a file. Finally, there were over 20,000,000

ordered generator matrices for (25,6) self-orthogonal codes. However, many of them

were equivalent. In order to remove the duplicate (25, 6) self-orthogonal codes, a

procedure like the one in Chapter 3 was used. Each code was transformed into a

corresponding graph and nauty was used to remove the isomorphic copies. For the

computation of this step, 64 cores of Helium(02-05)ii servers were exploited for about

3 weeks.

Having all the (25, 6) self-orthogonal codes up to equivalence classes, our next

step was to increase the dimension of our codes, step by step, to 12. In each step,

the dimension increased by one. This was done by adding a new row, which is not in

the code already, to the generator matrix. This operation is called an augmentation

of the code by that row. In other words, the rows that maintain the properties of the

ordered generator matrix were added to the matrix. In order to reduce the number

of equivalent codes, the 1s in each row were forced to locate in the leftmost possible

coordinates, as long as the coordinates are supported identically by the previous rows.

Then the results were compared against each other to remove isomorphic copies.

However, due to the exponential nature of the problem, all the branch and bound

methods used in this algorithm were not efficient enough. Therefore, another method

ii4 servers, each with 8 Dual-Core AMD Opteron 885 2.6 GHz CPUs and 32 GB of RAM using
the Scientific Linux 6.x Operating System [1]

Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes 45

was chosen to generate the (25, 12) self-orthogonal binary codes.

4.3 Generating (25, 12) self-orthogonal codes from

(26, 13) self-dual codes

Shortening is another method to get a linear code from another linear code. In the

process of shortening, a coordinate will be selected and the codewords with the value

1 in that coordinate will be removed from the code. Finally, the selected coordinate,

where all the codewords have zero, will be omitted. Therefore, the resultant code will

be shorter by one in length and also smaller by one in dimension. When the starting

code is self-dual, since all the codewords with the value 1 in the deleted coordinate

have been removed from the code, shortening does not harm the self-orthogonality

of the code and the shortened code will also be self-orthogonal. However it will no

longer be self-dual.

Harada and Munemasa [2] have generated all the (26, 13) self-dual codes up to

equivalence. There are 103 such codes. Shortening all of the (26, 13) self-dual codes on

every coordinate, resulted in 26×103 = 2678 (25, 12) self-orthogonal codes. However,

after classifying the codes into weight distribution classes and removing equivalent

copies of each code, 331 inequivalent (25, 12) self-orthogonal codes remained. Ta-

ble 4.1 shows the number of resultant (25, 12) self-orthogonal codes with different

distances, with or without zero-columns.

These numbers match the results from the (25, 12) self-orthogonal codes, gen-

erated by I. Bouyukliev [10], which he kindly provided to us through a personal

communication.

Since it is shown in Chapter 6 that codes with a codeword of weight 2 cannot

46 Chapter 4: Enumeration of Self-Orthogonal (25, 12) Codes

Distance With zero Col. Without zero Col. Total
2 25 105 130
4 28 168 196
6 1 3 4
8 1 0 1

Total 55 276 331

Table 4.1: (25,12) Self-Orthogonal Codes

contain a (16, 6, 3)-design, the 130 codes with distance 2 can be ignored. Also, as it

is known that there are no empty blocks in a design and the added column contains

a non-zero number of 1s, it can be implied that a code does not have an all-zero

column, if it has an embedded design. Therefore, there are only 168 + 3 = 171

(25, 12) self-orthogonal codes capable of containing (16, 6, 3)-designs.

So far the (16, 6, 3)-designs to self-orthogonal codes of length 25 and dimensions

10, 11, and 12 have been related. All the 331 non-equivalent (25, 12) self-orthogonal

codes have been also calculated. The only task remaining to be done, in order to find

the relationship between the (16, 6, 3) designs and the (25, 12) self-orthogonal codes,

is to find out the (25, 12) self-orthogonal codes which contain codes of dimensions 10

and 11 with embedded BIBDs.

Chapter 5

Augmenting (25,10) and (25,11)

Codes to (25,12) Codes

After classifying the designs based on the codes generated by the incidence ma-

trices of the designs, and then generating all (25, 12) self-orthogonal codes, the last

step remaining to determine the relationship between them is to search the codes of

dimension 12 for the codes of lower dimensions. However, Instead of directly search-

ing among the codewords of (25, 12) self-orthogonal codes for generator matrices of

codes of dimension 10 and 11, the codes of smaller dimension were augmented. In

other words, for each code C of dimension k, a program was developed to generate all

the codes of dimension k+ 1 which contain C. This method was more convenient, as

similar algorithms has been implemented during this research and also it generated

fewer codes and expedited the search.

In the first step, for each code of dimension 10, all the 214 possible rows of even

weight that are linearly independent to the rows in the generator matrix were gener-

ated. Since the generator matrices were stored inG = [I10 A] format, the task was only

to generate all vectors of the form (~010, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12,

47

48 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

x13, x14) with even weights. All these rows were examined to see whether or not

they maintain the self-orthogonality property of the code. At this point all the self-

orthogonal codes of dimension 11 which contain one of the initial codes of dimension

10 are known.

In the next step, the program generated the corresponding graph for each code of

dimension 11. Finally, the shortg method of nauty was used to remove all the dupli-

cates. Since it was important to know all the codes that contain each design, a script

program kept track of all the isomorphisms between graphs. The augmentation of the

(25, 10) codes with embedded designs in them resulted in 10 new codes of dimension

11 and also 5 codes of dimension 11 from Chapter 3. Among all the augmentations,

there is no code of dimension 11 that is augmented from two inequivalent codes of

dimension 10 with embedded designs in them. Therefore, there are exactly 30 in-

equivalent codes of dimension 11 with (16, 6, 3)−designs embedded in them. Tables

5.1 to 5.10 contain the information about the new (25, 11) codes and Table 5.11 shows

the augmentations which resulted in already existing codes of dimension 11.

Contains 1 Design Group Size:96 Dim:11

Augmentation of C1 by: (0000000000111011111011000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 20 126 404 646 540 241 60 9 0 0

Table 5.1: C45: An augmentation of (25,10) code C1

Contains 1 Design Group Size:64 Dim:11

Augmentation of C1 by: (0000000000110111111001010)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 20 126 404 646 540 241 60 9 0 0

Table 5.2: C46: An augmentation of (25,10) code C1

Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes 49

Contains 1 Design Group Size:192 Dim:11

Augmentation of C1 by: (0000000000000000111111000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 20 126 404 646 540 241 60 9 0 0

Table 5.3: C47: An augmentation of (25,10) code C1

Contains 2 Designs Group Size: 768 Dim: 11

Augmentation of C2 by: (0000000000111011100111010)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 3 23 120 394 652 552 239 54 9 1 0

Table 5.4: C48: An augmentation of (25,10) code C2

After augmenting all the (25, 10) codes to (25, 11) codes, the same process was

repeated for both the original and the augmented (25, 11) codes. In summary, the

whole procedure can be explained as: first the 213 possible rows of even weight,

starting with 11 zeros, were computed and tested for self-orthogonality. Second, the

corresponding graphs were generated. Third, the graphs are used for calculating the

codes up to equivalence, similar to the process in Chapter 3. The augmentation

resulted in 16 new codes of dimension 12, and 10 (25, 12) codes from Chapter 3.

Seven of the new codes and eight of the codes from Chapter 3 are augmentations of

different codes of dimension 11 which have designs embedded in them. Therefore,

there are 36 (25, 12) codes, 30 (25, 11) codes, and 4 (25, 10) codes with embedded

incident matrices of (16, 6, 3)−designs. Tables 5.12 to 5.27 present the new codes of

dimension 12. Table 5.28 shows the embedding of codes of dimension 11 in codes of

dimension 12 from Chapter 3.

Considering the designs from the embedded codes, the number of designs in some

of the codes should be updated. Table 5.29 shows the total number of designs in each

code.

50 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

Contains 2 Designs Group Size: 3072 Dim: 11

Augmentation of C2 by: (0000000000011001001000110)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 4 19 120 406 646 540 247 58 6 1 0

Table 5.5: C49: An augmentation of (25,10) code C2

Contains 2 Design Group Size: 48 Dim: 11

Augmentation of C3 by: (0000000000111010011111100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 19 132 406 628 540 259 58 3 1 0

Table 5.6: C50: An augmentation of (25,10) code C3

Finally the relationship between the (16, 6, 3)-designs and (25, 12) self-orthogonal

codes is determined. In the next chapter, this relationship will be analyzed.

Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes 51

Contains 2 Design Group Size: 48 Dim: 11

Augmentation of C3 by: (0000000000000001101101100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 0 23 132 394 634 552 251 54 6 1 0

Table 5.7: C51: An augmentation of (25,10) code C3

Contains 1 Design Group Size: 48 Dim: 11

Augmentation of C4 by: (0000000000111010011111100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 19 132 406 628 540 259 58 3 1 0

Table 5.8: C52: An augmentation of (25,10) code C4

Contains 1 Design Group Size: 108 Dim: 11

Augmentation of C4 by: (0000000000101111001101101)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 0 9 186 324 648 606 189 84 0 1 0

Table 5.9: C53: An augmentation of (25,10) code C4

Contains 1 Design Group Size: 12 Dim: 11

Augmentation of C4 by: (0000000000000001101101100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 0 23 132 394 634 552 251 54 6 1 0

Table 5.10: C54: An augmentation of (25,10) code C4

Code of Dim. 10 Row added to the generator matrix Augmentation result

C1 (0000000000010010100100000) C22

C1 (0000000000101001100000000) C24

C2 (0000000000100101000100000) C19

C3 (0000000000010101000001101) C5

C4 (0000000000101110100000001) C9

Table 5.11: Augmentation of dimension 10 codes to codes of dimension 11 from
Chapter 3

52 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

Contains 9 Design Group Size: 432 Dim: 12

Augmentation of C8 by: (0000000000001100011011000)

Augmentation of C52 by: (0000000000000001101101100)

Augmentation of C53 by: (0000000000000000110110110)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 45 270 792 1254 1098 513 112 9 1 0

Table 5.12: C55: An augmentation of (25,11) codes C8, C52, and C53

Contains 18 Design Group Size: 256 Dim: 12

Augmentation of C5 by: (0000000000001101100010100)

Augmentation of C13 by: (0000000000011111101011100)

Augmentation of C50 by: (0000000000000001101101100)

Augmentation of C51 by: (0000000000010100011010111)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 2 45 266 792 1260 1098 509 112 10 1 0

Table 5.13: C56: An augmentation of (25,11) codes C5, C13, C50, and C51

Contains 10 Design Group Size: 6144 Dim: 12

Augmentation of C19 by: (0000000000001010001110010)

Augmentation of C48 by: (0000000000011001001000110)

Augmentation of C49 by: (0000000000010010001010000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 6 45 250 792 1284 1098 493 112 14 1 0

Table 5.14: C57: An augmentation of (25,11) codes C19, C48, and C49

Contains 24 Design Group Size: 1536 Dim: 12

Augmentation of C9 by: (0000000000000110001111000)

Augmentation of C17 by: (0000000000000110010101010)

Augmentation of C52 by: (0000000000000000110110110)

Augmentation of C54 by: (0000000000010100001001011)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 4 45 258 792 1272 1098 501 112 12 1 0

Table 5.15: C58: An augmentation of (25,11) codes C9, C17, C52, and C54

Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes 53

Contains 23 Design Group Size: 512 Dim: 12

Augmentation of C11 by: (0000000000000110001111000)

Augmentation of C24 by: (0000000000000001111001100)

Augmentation of C45 by: (0000000000001100000010010)

Augmentation of C46 by: (0000000000001100000010010)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 3 40 258 808 1278 1080 493 120 15 0 0

Table 5.16: C59: An augmentation of (25,11) codes C11, C24, C45, and C46

Contains 3 Design Group Size: 4608 Dim: 12

Augmentation of C22 by: (0000000000000000111111000)

Augmentation of C46 by: (0000000000000000111111000)

Augmentation of C47 by: (0000000000010010100100000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 3 40 258 808 1278 1080 493 120 15 0 0

Table 5.17: C60: An augmentation of (25,11) codes C22, C46, and C47

Contains 24 Design Group Size: 192 Dim: 12

Augmentation of C6 by: (0000000000000110010110010)

Augmentation of C15 by: (0000000000001100110001100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 2 40 262 808 1272 1080 497 120 14 0 0

Table 5.18: C61: An augmentation of (25,11) codes C6 and C15

Contains 12 Design Group Size: 3072 Dim: 12

Augmentation of C18 by: (0000000000011111101011100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 6 45 250 792 1284 1098 493 112 14 1 0

Table 5.19: C62: An augmentation of (25,11) code C18

54 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

Contains 4 Design Group Size: 1152 Dim: 12

Augmentation of C10 by: (0000000000010011010010010)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 4 45 258 792 1272 1098 501 112 12 1 0

Table 5.20: C63: An augmentation of (25,11) code C10

Contains 8 Design Group Size: 256 Dim: 12

Augmentation of C7 by: (0000000000001100100100110)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 3 45 262 792 1266 1098 505 112 11 1 0

Table 5.21: C64: An augmentation of (25,11) code C7

Contains 52 Design Group Size: 384 Dim: 12

Augmentation of C23 by: (0000000000001010001101100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 3 40 258 808 1278 1080 493 120 15 0 0

Table 5.22: C65: An augmentation of (25,11) code C23

Contains 16 Design Group Size: 2048 Dim: 12

Augmentation of C16 by: (0000000000000110001111000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 5 40 250 808 1290 1080 485 120 17 0 0

Table 5.23: C66: An augmentation of (25,11) code C16

Contains 20 Design Group Size: 288 Dim: 12

Augmentation of C20 by: (0000000000001100110001100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 40 266 808 1266 1080 501 120 13 0 0

Table 5.24: C67: An augmentation of (25,11) code C20

Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes 55

Contains 3 Design Group Size: 768 Dim: 12

Augmentation of C21 by: (0000000000001010001101010)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 1 40 266 808 1266 1080 501 120 13 0 0

Table 5.25: C68: An augmentation of (25,11) code C21

Contains 12 Design Group Size: 12288 Dim: 12

Augmentation of C14 by: (0000000000001100011011000)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 7 40 242 808 1302 1080 477 120 19 0 0

Table 5.26: C69: An augmentation of (25,11) code C14

Contains 12 Design Group Size: 432 Dim: 12

Augmentation of C12 by: (0000000000000110010110100)

Weight Polynomial
0 2 4 6 8 10 12 14 16 18 20 22 24

1 0 0 40 270 808 1260 1080 505 120 12 0 0

Table 5.27: C70: An augmentation of (25,11) code C12

56 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

Code of Dim. 11 Row added to the generator matrix Augmentation result

C17 (0000000000011110011001010) C36

C18 (0000000000001101111001100) C36

C53 (0000000000010100111111101) C29

C23 (0000000000010100010100000) C40

C16 (0000000000011001000001000) C40

C24 (0000000000000001010000110) C42

C22 (0000000000011110100101010) C42

C21 (0000000000010100010100000) C42

C14 (0000000000001100111110010) C42

C15 (0000000000010010011011110) C42

C23 (0000000000011110011001100) C44

C16 (0000000000011111001110000) C44

C11 (0000000000010101000000100) C44

C20 (0000000000011110101010010) C44

C15 (0000000000011110101010010) C44

C12 (0000000000001010101000000) C44

C6 (0000000000001010101000000) C44

C14 (0000000000000000100101010) C32

C21 (0000000000011110011001010) C37

C12 (0000000000001100111110100) C37

C6 (0000000000001100111110010) C37

C8 (0000000000010010111101100) C43

C13 (0000000000010010010010000) C43

C18 (0000000000010010010010000) C43

C10 (0000000000010010011000000) C43

C17 (0000000000011000001100000) C43

C7 (0000000000010111111010101) C43

C8 (0000000000011110100110100) C41

C5 (0000000000010100000101011) C41

Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes 57

Code of Dim. 11 Row added to the generator matrix Augmentation result

C9 (0000000000001011001111100) C41

C7 (0000000000011011011110011) C41

C53 (0000000000010100001001011) C41

C19 (0000000000000110110000000) C38

C9 (0000000000001101000000100) C38

Table 5.28: Augmentation of codes of dimension 11 to codes of dimension 12 from
Chapter 3

Code Dimension Total # of Designs Code Dimension Total # of Designs

C1 10 1 C36 12 652

C2 10 2 C37 12 859

C3 10 2 C38 12 1049

C4 10 1 C39 12 1086

C5 11 6 C40 12 1476

C6 11 8 C41 12 1848

C7 11 8 C42 12 2151

C8 11 8 C43 12 3874

C9 11 8 C44 12 4470

C10 11 4 C45 11 1

C11 11 12 C46 11 1

C12 11 12 C47 11 1

C13 11 12 C48 11 2

C14 11 12 C49 11 2

C15 11 16 C50 11 2

C16 11 16 C51 11 2

C17 11 16 C52 11 1

C18 11 12 C53 11 1

C19 11 10 C54 11 1

C20 11 20 C55 12 9

C21 11 3 C56 12 18

58 Chapter 5: Augmenting (25,10) and (25,11) Codes to (25,12) Codes

Code Dimension Total # of Designs Code Dimension Total # of Designs

C22 11 3 C57 12 10

C23 11 52 C58 12 24

C24 11 11 C59 12 23

C25 12 4 C60 12 3

C26 12 8 C61 12 24

C27 12 16 C62 12 12

C28 12 26 C63 12 4

C29 12 31 C64 12 8

C30 12 115 C65 12 52

C31 12 120 C66 12 16

C32 12 184 C67 12 20

C33 12 216 C68 12 3

C34 12 292 C69 12 12

C35 12 612 C70 12 12

Table 5.29: Updated values for the number of designs in Codes

Chapter 6

Analysis and Conclusion

In this thesis the relationship between (16, 6, 3)-designs and (25, 12) self-orthogonal

codes has been found, and in this chapter this relationship will be analyzed. The re-

sults may be helpful in searching for new designs in the (6λ−2, 2λ, λ) family of designs.

First, the relationship between the smaller cases of λ = 1, 2 in the (6λ−2, 2λ, λ) family

of designs will be discussed, i.e. the (4, 2, 1)-design (λ = 1) and the (10, 4, 2)-designs

(λ = 2) will be studied, along with their corresponding self-orthogonal codes, the

(7, 3) self-orthogonal codes and the (15, 7) self-orthogonal codes, respectively. Then

the distribution of residual (16, 6, 3)-designs in different codes will be studied. Finally,

the distribution of all the (16, 6, 3)-designs in codes will be discussed.

6.1 The Relationship for Smaller Values of λ

There is only one (4, 2, 1) design, which contains all the two subsets of a 4-set

[11], which is a residual design. Since λ is odd, a column of 1s should be added to

the incidence matrix, which will grant self-orthogonality of the corresponding code.

Therefore, the corresponding code is a (7, 3) self-orthogonal code. Pless [17] shows

59

60 Chapter 6: Analysis and Conclusion

that there are two possible such codes, which have the following weight distributions:

W [0] = 1,W [2] = 3,W [4] = 3,W [6] = 1

or

W [0] = 1,W [4] = 7

Considering that r = 3 and a 1 is added to each row, the code has to have at least 4

codewords of weight 4. Therefore, the corresponding code will be the code with the

second weight distribution.

For the case of λ = 2, there are three designs, which are all residual designs.

Although they generate three codes of dimensions 5, 6, and 7, the codes of dimensions

5 and 6 are embedded in the code with dimension 7. However, if the codes were

being searched for designs, Pless [17] shows that there are 10 inequivalent (15, 7)

self-orthogonal codes. For a (10, 15, 6, 4, 2)-design, using the same reasonings that

resulted in Equations 3.1 and 3.4, will result in the following:

k∑
i=0

ai = b− 1⇒ a0 + a1 + a2 + a3 + a4 = 14 (6.1)

k∑
i=0

iai = k(r − 1)⇒ a1 + 2a2 + 3a3 + 4a4 = 20 (6.2)

k∑
i=0

i2ai = 2

(
k

2

)
(λ− 1) + k(r − 1)⇒ a1 + 4a2 + 9a3 + 16a4 = 32 (6.3)

Since, for all i ∈ {0, 1, 2, 3, 4}, ai ≥ 0, from Equations 6.1 and 6.3 it can be

concluded that a4 < 2. Now consider the case that a4 = 1. Suppose that a4 = 1.

Chapter 6: Analysis and Conclusion 61

Equations 6.2 and 6.3 can be rewritten as:

a1 + 2a2 + 3a3 = 16 (6.4)

a1 + 4a2 + 9a3 = 16 (6.5)

Subtracting Equation 6.4 from Equation 6.5 will result in the following.

2a2 + 6a3 = 0⇒ a2 = 0, a3 = 0 (6.6)

From Equations 6.4 and 6.6, it can be concluded that a1 = 16. But it is in con-

tradiction with Equation 6.1. Therefore a4 = 0, which indicates that there are no

identical blocks in a (10, 4, 2)-design. Using the same method that was used to show

that there is no codeword of weight 2 in the corresponding code of a (16, 6, 3)-design,

it can be concluded that there is no codeword of weight 2 in a code that is generated

by a (10, 4, 2)-design. This condition will reject 6 of the codes shown by Pless [17].

Two of the remaining codes have no codewords of weight 6, which implies that they

do not contain any (10, 4, 2)-design. Therefore, it would be only needed to search 2

codes to determine that only the code with the weight distribution below contains

(10, 4, 2)-designs.

W [0] = 1,W [2] = 0,W [4] = 9,W [6] = 40,W [8] = 51,W [10] = 24,W [12] = 3,W [14] = 0

62 Chapter 6: Analysis and Conclusion

6.2 The Relationship between Residual Designs and

Codes

Based on an electronic copy of all 78 of the (25, 9, 3)-designs, which Spence kindly

supplied to us, all the residual (16, 6, 3)-designs were computed. The results of per-

forming the procedure, the same one that was used in Chapters 3 and 5, on the

residual designs, shows that all 1281 residual designs enumerated by van Ress [22]

are embedded in 12 self-orthogonal codes of dimension 12. The codes with embed-

ded residual design in them are: C28, C29, C31, C33, C37, C38, C39, C40, C41, C42, C43, C44.

However, these codes have some embedded codes of dimensions 10 and 11. Calcu-

lating all the codes of dimension 12 that contain those codes of dimension 10 or 11,

and then searching the new codes for embedded designs would result in more de-

signs. Executing this procedure, one can obtain 17883 out of 18920 non-isomorphic

(16, 6, 3)-designs. More specifically, the resultant designs will be all the designs except

for those in codes C25, C26, C27, C30, C34, and C35.

6.3 Analysis

Considering the outcome of the previous sections, as well as the results from

previous chapters, may be helpful in reinforcing some of methods for searching for

designs, and also in finding new approaches for generating new designs. For instance,

it is known that for λ = 1, 2, all the designs are in one code. For the case of λ = 3, each

code which contains a design has, on average, 537 non-isomorphic designs in it, with

a minimum of 3 designs and a maximum of 4470 designs. This may be an indication

of a method to obtain new designs from known designs, simply by generating the

corresponding codes, selecting the codewords of the right weight, and searching those

Chapter 6: Analysis and Conclusion 63

codewords for more embedded designs.

For example, if only the first design found by Bhattacharya [6] was known, com-

puting the code generated by the incidence matrix of the design would show that

Bhattacharya’s design is embedded in code C44. Searching the corresponding code

would result in 4469 more designs in the first step. However, from Table 5.28, it can

be seen that C6, C11, C12, C15, C16, C20, and C23 are embedded in C44. So, if all the

designs in C44 are found, some of them generate codes of dimension 11, which are

embedded in other codes, such as C37, C40, and C42 with 836, 1408, and 2106 new

designs, respectively. Repeating this process on these codes will lead to 172 designs

in C32.

The previous examples and statistics advert the question that whether or not

searching the codes generated by known instances of designs is a doable method of

obtaining new designs. For example, for (28, 10, 5)-designs (λ = 5) with 3 known

instances [11, p.38] or (34, 12, 6)-designs (λ = 6) with 2 known instances [11, p.40],

does searching the codes generated by those known instances result in more non-

isomorphic instances of those designs?

Another remark, noticeable in (4, 2, 1)-design, (10, 4, 2)-designs, and (16, 6, 3)-

designs, is that the residual designs cover a wide range of codes, from which a large

number of designs can be obtained. This observation is important because it raises the

question that whether or not, searching the codes, generated by the incident matrices

of residual designs, an appropriate method of generating some new quasi-residual de-

signs. This approach can be helpful, as sometimes the symmetric designs are easier

to find, or, due to more interest in them, they may be generated before the residual

designs. Results might be obtained by searching through the codes corresponding to

residual (46, 16, 8)-designs or residual (52, 18, 9)-designs. The second question, mo-

64 Chapter 6: Analysis and Conclusion

tivated by the above-mentioned observations is on the properties of quasi-residual

designs, which are not obtainable from searching the codes of residual designs. In

other words, is there any distinction between the quasi-residual designs that are ob-

tainable from residual designs and the quasi-residual designs that are not?

Considering the data in Table 6.1, it can be noticed that the average number

of designs per code is relatively high, with respect to the total number of designs.

Additionally, considering the fact that Bilous et al. [7] searched (33, 16) self-orthogonal

codes to prove the non-existence of a (22, 8, 4)-design, the question can be asked that

is searching the codes an applicable method, in order to enumerate the designs for

the larger values of λ? In other words, is it the assumption that the relationship

between designs and codes, for larger values of λ, will follow the same pattern, this

approach still sounds promising true; and if it is true, is searching the codes still a

doable option?

λ # of Dsgn.s # of Codes capable of having Dsgn.s Avg. Dsgn.s per Code

1 1 1 1

2 3 2 3
2

3 18920 171 19339
171

?

Table 6.1: Average number of designs per code
? Some of the designs are counted more than once, as they generate codes of smaller

dimension and it causes them to appear in more than one code.

It is crucial to note that in order to search for designs in the codes, a specialized

clique-finder is needed (a clique is a subgraph, where all pairs of vertices are adjacent).

Consider all the codewords of the appropriate weight as vertices in a graph. Define

two vertices to be adjacent if and only if their corresponding codewords share exactly

λ coordinates where their values are 1, then a clique of order v will be a potential new

design. It cannot be expected that a general clique-finder to solve the problem for

Chapter 6: Analysis and Conclusion 65

cases as large as needed. Therefore, the process will not be time efficient. However, a

well constructed and specialized clique-finder may execute the process faster than a

conventional search, fast enough to find a clique and hence the design. Bilous et al. [7]

used such a clique-finder to prove the non-existence of (22, 8, 4)-designs (λ = 4).

Finally, one could consider the proportion of the number of codes with known

embedded designs to the number of codes with the properties required to contain

designs. Since this value seems to be decreasing as the designs become larger, it may

be possible that there should be an additional condition on the codes with designs in

them. In other words, one may study the properties of the codes which make a code

capable of containing designs.

Bibliography

[1] Website: Computer Science CentOS release (http://home.cs.umanitoba.ca/cgi-

bin/man?machines) on 01/ 30/ 2014.

[2] Website: Database of self-dual codes (http://www.math.is.tohoku.ac.jp/∼

munemasa/selfdualcodes.htm) on 05/ 27/ 2014.

[3] Website: Nauty and Traces (http://cs.anu.edu.au/∼bdm/nauty) on 11/ 13/

2012.

[4] H. Anton and C. Rorres. Elementary linear algebra: applications version. Wiley,

1994.

[5] J. A. Bate, M. Hall Jr., and G. H. J. van Rees. Structures Within (22, 33, 12, 8, 4)

Designs. Journal of Combinatorial Math and Combinatorial Computing, 4:183–

194, 1988.

[6] K. N. Bhattacharya. A new balanced incomplete block design. Science and

Culture, 9(508):163, 1944.

[7] R. T. Bilous, C. W. H. Lam, L. H. Thiel, P. C. Li, G. H. J. van Rees, S. P.

Radzisowski, W. H. Holzmann, and H. Kharaghani. There is no (22, 8, 4) Block

Design. Journal of Combinatorial Designs, 15:262–267, 2007.

66

Bibliography 67

[8] R. T. Bilous and G. H. J. van Rees. An Enumeration of Binary Self-Dual Codes

of Length 32. Codes Cryptography, 26(1-3):61–86, 2002.

[9] R. T. Bilous and G. H. J. van Rees. Self-Dual Codes and the (22, 8, 4) Balanced

Incomplete Block Design. Jounal of Combinatorial Designs, 13:363–376, 2005.

[10] I. Bouykukliev. What is Q-Extension? Serdica Journal of Computing, vol. 1:115–

130.

[11] C. J. Colbourn and J. H. Dinitz, editors. Handbook of Combinatorial Designs.

Chapman and Hall/CRC, second edition, 2007.

[12] R. H. F. Denniston. Enumeration of symmetric designs (25, 9, 3). North-Holland

Mathematics Studies, 65:111–127, 1982.

[13] R. A. Fisher and F. Yates. Statistical Tables for Biological, Agricultureal and

Medical Research. Longman, 1938.

[14] M. Hall Jr., R. Roth, G. H. J. van Rees, and S. A. Vanstone. On Designs

(22, 33, 12, 8, 4). Journal of Combinatorial Theory, Series A, 47(2):157–175, 1988.

[15] B. D. McKay. Practical Graph Isomorphism. 10th. Manitoba Conference on

Numerical Mathematics and Computing, pages 45–87, 1980.

[16] F. J. McWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes.

North-Holland, 1977.

[17] V. Pless. A Classification of Self-Orthogonal Codes over GF(2). Discrete Math,

3:209–246, 1972.

[18] V. S. Pless and W. C. Huffman, editors. Handbook of Coding Theory. Elsevier,

1998.

68 Bibliography

[19] T. Spence. (16,6,3)-designs. Personal Communication.

[20] D. R. Stinson. Combinatorial Designs: Construction and Analysis. Springer,

2004.

[21] G. H. J. van Rees. The Investigation of the Structure of a (22, 33, 12, 8, 4)-

Design, Master Essay, Dept. of Combinatorics and Optimization, Faculty of

Mathematics, University of Waterloo, 1974.

[22] G. H. J. van Rees. All Non-Isomorphic Residual (16,24,9,6,3)-Designs. Journal

of Combinatorial Mathematics and Combinatorial Computing, pages 183–194,

1988.

[23] S. A. Vanstone and P. C. Van Oorschot. An Introduction to Error Correcting

Codes With Applications. Springer, 1989.

[24] W. D. Wallis. Combinatorial Designs, volume 118 of Pure and Applied Mathe-

matic, A Series of Monographs and Textbooks. M. Dekker, 1988.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Background
	Block Designs
	Codes

	Introduction
	Related Work
	Problem Description

	Classification of Designs into Codes Generated by Incidence Matrices
	Enumeration of Self-Orthogonal (25,12) Codes
	Theoretical Background for the Iterative Enumeration
	Iterative Computation of (25,12) Self-Orthogonal Codes
	Generating (25,6) Self-Orthogonal Codes

	Generating (25,12) self-orthogonal codes from (26,13) self-dual codes

	Augmenting (25,10) and (25,11) Codes to (25,12) Codes
	Analysis and Conclusion
	The Relationship for Smaller Values of
	The Relationship between Residual Designs and Codes
	Analysis

