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INTRODUCTION

Throughout our considerations rue shall presuppose a knowledge

of the basic concepts of modern abstract algebra. Tn particular, \Â7e

shalI presuppose a knor.,rledge of vector spaces, rings and ideals,

elementary Galois theory of field exLensions, the construction

(intrínsic) of a tensor product of algebras as in, for example,

Zariski. and Samuel I12]. Unless otherwise stated, we shall assume that

rings (subrings) are commutative vIíth identity I I 0, and that algebras

are associative with identLty I I 0.

The first section deals with some propertíes of derivatíons and

gives their connections with extensions of algebra homomorphisms and

separable ancl inseparable algebraic extensions. In the second section

we introcluce Èhe notion of p-dependence and give further discussíons

on derivation a.lgebras. In both these sections, there are worked

exercises from Jacobson [9], some of which lead to results due to Baer

and Hochschild. lnle also deríve an analogue to the normal basis

theorem. Tn the third section we derive a Galois type correspondence

between subfields Õ of a given field P rvhich is purely inseparable

of exponent one over Õ, [P:Õ] < -, and derivation algebras which are

finite dimensional over Þ. In the fourth section we introduce the

notion of higher derivations (of finite rank) and examine briefly

higher derivations of purely inseparable fields P over Õ. tr'Ie include

the case v¡here P is a tensor product of simple extensions.

Finally, and without in any way making him responsible for the



contents of this r,/ork, I should like to take this opportunity to

publicly thank Dr. K. W. Armstrons most of el1 for the criticisms he

made and the encouragement I receíved during the preparation of this

thesis.



SECTION I

Definition 1.1. A non-associative (= not necessarily

associative) algebralJ over a field Õ, usually denoted by ü/Ô, ís a

vector space over Q in which a product xy € 1I is defined for x, y

in lI such that

(1) (xr + x")y = xly * *zy, x(yr + y) = xy1 I xy¿

(2) o(xY) = (cvx)Y = x(cvY), cv € Õ

An algebra Ði is called associativq if its multiplication

satisfies the associatíve law

(xy), = x(yz) s xs Ys z ínr).

[^Ie recall that a sub-algebra of 2l is a subspace of QJ which is also a

subring. Observe thaL Õlxr, . , xn], the ring of polynomials in the

n indeterminates x, , ., 4n with coeffícients in Õ is an algebra

(commutative) over Õ, For this reason, Þ[xr, . ¡ xn] and

Þ(fr, . , xn), the field of ratíonal functions of Õ[x1: . , xo]

are frequently referred to as algebras over Þ.

Definition 1.2. A non-associative algebra lJ is called a

T,ie al sebra if i*^ -"1+-'..1i^^'irn satisfies the Lie conditions_-:______::-::-::] __ Lù ttturLLUrru4LrL

(3) f =0, (r,y)z+(yz)x+(zx)y=0

The second condition is the so-called Lie-Jacobi identity.

Definition 1.3. Tf ü/Þ ís a sub-algebra of an algebra 8/Q, a

derivation D of 8J/ö into S/Õ is a mapping of !I/Þ into 8/@ such that

€^- -... i.. {ìfLvL 
^rJ 

LLL -4) * in Õ t
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(4) (x + y)D = xD * yD, (xcv)D = (xD)o

(5) (*y)n = (xD)y + x(yD).

Condition (4) states that D is l-ínear. If lJ = E, then we speak of a

derivation in E or a derivation of S into itself. The mapping of the

polynomíal algebra Õ[x] into ítself given by f(x) * f'(x) the formal

derivatíve of f(x) ís clearly an example of a derivation in Õ[x].

Let Der, (QJrS) denote the set of derivations of. rJ/Q into Ð/Õ.

Then D € Derr(lJrS) is a linear transformatíon of ü/þ into E/Õ

satisfying the special condition (5). If D, Dr, Ià are linear trans-

formations of !J/Õ into E/Þ, x € tJ, a Q. Õ, defíne D, * Dz, It}, DrIÞ

respectively by x(D, t Ib) = xDr * xD, x(Da) = (xD)ø , and

x(qÞ) = ("\)(Þ). Thus \ t.Q.., Da, and q.Ib, are linear trans-

formations of f)I/Þ inro s/Õ. rn parrícular, if DÌ ,]} € Der, (8JrB),

xfi Çl), a Ç. Õ, we then have

(xy) (4 r Dz) (xv)à t (xy)D"

= (*Dr)y + x(yDr) t (xtb)y * *(vn¿)

. (*4. f xlà )y + x(yD, + yÞ )

= [x(D, + Dz)Jy + "[v(h r ]à)J

and

(xy) n:y = [ ("v) l]ry = [ ("o)y + x(yD) Jcv

= [(xD)yJø + [x(yD)Jø

= [ ("¡)oJy + xf (yo)ø]

= ["(u1)Jy + "[y(D")]

Thís shorvs that D, X D¿, Dz belong to Derr(?Jr8) .



Remark 1.1. Take 1l = S. Then we observe rhat Dø, D, + Ib are

derivations in E. However, it should not be inferred that DlDz is also

a derivation in S. Indeed, it is clear that

(xy)(Dr%) = [(xy)DlJrb = [(*Dr)y+x(yDr)JD,

= [ (*Dr )v]i¿ + [x(yDr l ]¡:
= x(DrÞ)y + (xD1)(y&) + (xD)(yDr¡ + 

"[v(Dr]b)J

Hence ("v)(DrD,) I [x(or%)]y + *[y(orÞ)J for all xry in B. rn view

of this remark, \^/e can say no more than Der (f$r$) = Der (S) is a

subspace of s(sr$) = J(s) the space of linear Eransformations in E.

Defínition 1.4. Let tl be an associative algebra. If

D, Dr , 4, belong to Der !I, then the Lie product or additíve

commutator of D, and þ is given by [Di,'Dz] = DrIÞ - ÞDr. Ir is

clear that [Dr, Þ] belongs to s(tJ). we next observe that rhe

followíng relation is satisfied

(6) [D,D]=0; [o'or],oJ + [+,o.],d +,to.,orf,C -0
The first part of the relation (6) ís evident. The second part

follorvs immediatelv since

l'r

llDr,Þl,Da_! = [(DrD -]àDr),Dsl
= (Drlà -D¿q)DB -D3(Dt1à -DDr)

= D1þDs - ÞDrDs - DsDlIb + DaDpDl

itrr rì 'r .'l
lL.Dz,Ds, , 

"" 
= (D¿Da - Dnib )Dr - D, (làDs - Ds% )

= DDaDr - DßD?D1 - Dt%Dß + DiDs%

iJ t' Tì I n-l
Itrrrrr J, Dzl = (DsDr - DrDs)D¿ - D?(DsDr - DlDs)

= D.Dt% - DlDsÞ - IbDsDi + DaDlDs.



l,Ie next observe that

[Di * Þ, De] = (Dr + ]})Ds - Ds(D1 + D2)

= DlDo + DzDs - DsDr - D"D,

= DfDe - DsDr + DaDß - DsDe

= [Dx rD.] + [D2 ,D3] '
[D1:Dz + Du] Dr (De + Ds) -(Dz + Ds)Dl

= DrIb + D1D3 - DaDr - DsDr

= [D1 ri)2 ] { [D*,D31

and cv[D1 ,Ib ] = cv(Di D ) - cv(D lr )

= (øD, )D2 - D2 (cvD, ) = [o,D1 ,% I

Since o,(Dr%) -o(DaDl) = nr(o,Þ) - (aþ)1, = [DrrolÞ1 ,

I¡Ie musË Ëherefore have

cv[DrrÞJ = [øDrrDel = [DrraDz] for any ø € Õ

tr^Ie have already shown (cf . Remark 1.1) that

(xy) D1D = [*(DrD)Jy * (xDr)(y%) + (xÞ)(yDr) + 
"[y(DrD¿)J.

Since this relation is clearly symnetrical ín D1 and þ,

(xy)ÞDr = [*(Dror)]v + (xtÞ)(yDr) + (xDr)(yD) + x[y(DzDr)].

clearly ¡[y(orD)] - xly(D¿Dr)J = "[v(DrDe) - v(DzDr)J

and [x(DrÞ)]v - ["(%1,)]v = [x(D¿D - DpDl)]y

Therefore ("y) [Dl ,Þ ] = ("[DpD¿ ] )y + "(1[DpD ] ) .

Hence D, D¡ t Dz belong to DerrGI) and cv € Q together imply that

DI t Dz , Dd, [D'D ] belong to Derr 0l) . These observations lead to the

following definition:



Definition 1.5. Der 9J the set of derivations in the algebra

!J is called the Lie algebra of derivations or simply the derivation

algebra of !J.

Let D be a derivation in 2l and xry € 9J. Then induction on k

gives Ëhe Leibníz ru1.e

r. r¡ 
uit 

,ut i r. -i t
(7) (*y)t^ = (xD^)y * | (i)(xl')(yt^-") + x(yl^)

i=I

__,-_/k\ L' _ __ra.,_._1 _--.1._.--1 k(k-1) (k-i+1)where t . I is the usual binomial coefficient-\i/ I.2 i

Proof. Take D0 = 1. Then (7) holds for k = 1 by definition. We

may point out Ehat if Dr = D" in Remark 1.1, the formula (7) holds for

k = 2. Let us rrow assume that (7) holds for all k S n. Since
n-Ll(rry)¡t*t = [(xy)tJln = [("¡)v + x(yD)]D*, ,0" now have

, .^n*1 ., ^\ r^n r z '-r,'l(xy/u r\xD)yllt + ix(yl)Jln
n-1

= q*o'+l¡y + I (T),"ot*t) (yD'-t) * (xr) (yon)
i=1

n-1
+ (*r')(yr) + I (i)<"oj)(yr"+l-j) +*çyn'+l)

?. \J/
J=I

= 1*r'+1¡y + i ,*on,(yo'*I*,((i) *(r:r)) +*(ynn+l)
k=1

/.\ / . \ /n+1\
Since \h/ * (frlf/ = '."t-/ , we nor+ have

I-This coefficient rvi1l be assumed to be a rational inteeer.



ñr-r ñ+1 S /n+1 \ . í. n+l -'f ñ-Ll
(*y)tt*t = çxDnrr;y + ) (t;t)(xo') (yD"-'-') + x(yD"'')

i=-1

Thus (7) holds for all rational integers k = Ir2,

If the characteristic of Õ is 0 we can divide (7) by k! and

obtaín, the relation

Dk - (xrk)v * \t rx!. lfygl' l* <"lnl(B) ("v) iT = ff * 
l=r\ir /\G=tr. -î!

- + r*tl/"oo-t \- /- \it /\(r<-i)tl
i=0

\^Ie shall now give a direct connection betrveen derivations and

automorphisms. Let 9J' be the polynomial algebra Õ [x] where 0 is a field of

characteristic 0. Let a derivation D in QJ be defined by f(x)D = f'(x)

the formal derivarive of f(x) € Õ[x]. consider the series
2

c = expD = 1+D1, *Ë*

rf f(x) is of degree n, then f(x) ot*1 = 0. Hence the series f(x)G

converges. I,Ie assert that f (x)G = f (x + 1) .

Let us set f(x) = %*t + "r**-1 + ^"*n-2 + * "rr-1* * u'

Then f(x)G = ao*t + .r*t-l + "n*n-Z 
+ . * "rr-1* * ".,

. /n\ n-1 (n-l'r'--n-2 ^ (n-2\--n-3. /2¡
+ ao\i)x"-'+ ur("r'l""-'+ ""\"i-/"" 

- * * t.,-z\ii" * ur,-l

. *(;)"" -' n u,(";t)"" -t * u"(";t)""-o * . * ^n-z

. +ao
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Rearranging the terms, we now have

r(x)c = êoxû. *(i)""-t * uo(i)¡-' . . + ao

-ân

= ao(x + 1)n * ar(x + t¡n-l + . * "rr = f(x + 1) € Þtxl

This shows that f(x - l)G f(x), whence G is onto.

SÍnce the map D is linear, it is clear that the map G is also linear.

Consequently, ín order to show ,n.t (f(x) h{"))e = f(x)G'h(x)G, we need

only verify this staLement for f (x) = xr and h(x) - *", 0 I rrs ' tr^Ie

have seen that f(x)G = (x + 1)r and h(x)G = (x + 1)s. Therefore

/ \ r-l-q r-l
(rC"l rr("))c = *t*"c = (x * 1)t*" = f(x)G h(x)G. FinallY: we assert

tha.t the kernel of the map G is tlne zeto polynomial . Let

.mh(") = b_x*+ * brx * bo be an arbitrary non-zero polynomial of

degree m. rhen b* I O. Hence h(x - 1) = b*(x - 1)* +

* b, (x - 1) + bo is also a non -zero polynomial of degree m. This

shows that the kernel of the map G is the zero polynomial. We have

thus shoi¡n thai exp D is an automorphism of 0 [x] .

Defínition 1.6. Let Õ be a field of characteristic p

(= 0 or otherrvise). A restricted Lie algebra of characterístic p is an

nl ophr¡ Q, orzar Q in ruhich the multiplication Ixry] satisfies-*'-D - -!

Ixry] = - [yr*]

f t",vl ,il * l]v,"1, { * 1t","1 ,f - o ,



and for every y in ßo there exists an'element called yp such that

P times

Ivl'l
_l

t*t.
L

_ _,\..___
Í' / --'--_-:"\lIx,vl ,vl,L- " -'--r'

A restricteci subalgebra Af of ßn is a subalgebra containing

yp for every y in ei . Simila.rly we define a restricred ideal ) elc.

It should not be inferred that this element yP is necessarily an

ordinary p -th poÌ,.ier since multiplication is not necessarily associ -

ative. If p 12, [*r*] = 0 for all x € ßn and Q,n is rhen a Lie

algebra

Exercise 1.1. Let Ð be an (associative) algebra over Õ and

d e ,J,. Verífy that the mapping IU : ¿ -' [ard] = ad - da is a

derivatíon in 9J. such a mapping is ca11ed an inner derívation in ?J

Prove that

= d\Ta * d¿Is )2

= [r, ,r^ l. shor"'
2

= lr,)'o

[*ryP] for any x € Ê.

and

Õ is of characteristic p I O,

I
CY1 A1 +d) A2

r..
[o1 ,az I

then Lp
cl'

o!. € Þ
l_

that if

Proof . Let arb €11 , a 10.

(ab)I, = (ab)d-d(ab)
d-

= abd - adb * adb

= a(bd - db) +(ad

/1= a(b Id) +(a ro)b

Then we have

dab

da) b

Qin¡a r .ic a",'.lp¡t1v 1ínenr. T is a derivatiOn in 9J.-d -"
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Now a I^. , t^. )_ = a(ø, d, * azdz) -(c'lr dr + dzðe)ad\ oL1f/2 a2

= aord, -ryrdra*aa2d2 -u2d2a

= "(tor. u, * 'nrur)
since " rod ==;::.] 

.:::]' = cy(ad _ da)

implies that IrO = o Id ¡ wê must have

to, 
ur furd, = o' rdr * o"ra,

Next, " r[d, 
,d, ] 

a[d, ,d, ] - td'dã ] u

= adrd, - ad2d, - drd"a * drdra

= adrd" - drade - A""¿r, * d"dra

* drad, - adrd, * drad, - {dra

= ("dr - d, a) d, - d2 (ad, - d' a)

- (ad¿ - d2a)d, * d, (ade - daa)

= (a I, )I, - (a I, )I,
"1 v2 u? u1

= r(r¿, r% - ra"r¿, ) - a[ra, ,iq J

Hence Ir, r r = [I, ,I, ]Lst :az I or - o2

It ís clear that a IOp = [.r.lP] and that

i- --- 3 .:i+-'"- -i

a{rr)p = I ..il^,fr^,{r L L.' / )) -t) - -J --- *R

mapping u *"a¿ and d, denote the mapping a -> da. Clearly

Id = dR - d, and a(d*d") = (ad*)d, = d(ad¡ = (da)d = (adr)d*. trrre nore

that a(ru)2 = lfua - da), dl = ^d2 - 2dact + d2a.



\

Let us assume that

.bv(8') a(I ') ^ = ad^-o

Then

--L1 / ^a(I,)r¡'r - (ad" +-o \

n*1
ad^-'-

,n*lao

+ (-d)k. fo, all 15k ln.

10

k-1
+ t lf)c-u>iadk-i

'¿ \ l-l
í=1

i.^-'
z ,r ! !!r-!( -ol ao -f(Ð

n-L

T
i=1

¡n- d\ad-- +

/n+1'1, ,rj-,n*1-j
\ ¡ /(-d)"ad

n
çì+)
i =l

n

T/
J

Í=1
J-

Y

or

This shows Ëhat

- /k\k=p, \i/=,

a(ru)P=adP*(
22

Yt = 'Y ror arr

or equivalently

( -a) 
-'a/a

(B') trot¿s for all k = !r2,
ç^- ^^^L -. - 1 )_,!U! saurl L - Lt /

-d)P.. tr^Ie know that p = Z

y € eI. Tf p ís odd, (-d)P

ntl+ (-d)"'*a

In particular, if

Hence

^oÕc. LT p = ¿t

,* .pHence (I,)' = l,Þ- cl' O-

n-1
ç1
)

iJ

i=1

-r
llo., ,rlt_-

0), Lei

(i)c-ali'd'-i +

((Ð . (j:')) ( -d) 
j'un*l-r

(-d)"Ð

+ (-a)t+l"

1.

PiS
n

-o- .

i-l-lI - lln.rll .d: .I o . . ¡Lgr\lL'
L-

n fr'moq

---J\- \ n
= [â.¡cl'l.

ID'DP ]

to

,lGi
I

We may here comment that if DrDr are elements of Derr(9J), ÐJ an

algebra over Õ r,rith characteristi c p I O t the above method shorvs that

(e)

In

i--t-'.
I
L

thí.s case (p f

P Limes

------l\'-
ri
TìIt lt

bnízts rule (7)

I

reduces
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(*y)nP = (*nP)y+x(ynP)

and so implies that DP € Der*(11). Hence Der^(g) is a restricted Liea' 9'
algebra of characteristic p I O.

Remark 1.2" Following upon the results of Exercise 1.1, it can be

shown that "9(?J) the set of ínner derivat.ions in lJ is a restricted

right ideal in Der ($) . It remains to shorv that T,^ = [I,,Dl is in

"9(ü), where D € Der (?J), d e U.

Proof. We have seen that Id = dR - dL. By definition,

(da)D = (dD)a * d(aD). Put otherrn'ise, (da)D - d(aD) = (dD)a. This

can be vrritten in operator form as [dLrD] = (dD)f,. SímiLarlry,

(ad)D - (aD)d = a(dD) can be written as [dRrD] = (dD)n. Hence we

obtain the relation

(dD)n - (dD)l = (dnD - DdR) - (di,D - DdL)

- (dn-dL)D-n(dn-dr) = [(dn-dL),D]

Since (dD)n - (dD)i, = IdD, r. now have TOO = [IUrD1 .

Remark 1.3. Let c be an element of the centre of S (i.e., cx = xc for

all x in S) and D € Derr(9Ir8). Let c* denote the mapping x -> xc in S.

Then Der, (9JrB) is closed under right multiplication by cn.

It is clear thar (x + y)o "* = ((x + y)o)"* = (xD + yD)cn

=xD"R*yD.*.

rf ø € Õ, (xø) D "R = (C*lo¡ "R (C"ol.,) "
/\

= ((xn)c/a = (xDc*)cz

Hence D c* is linear. If y is an element oft), we also have



L2

+

y+

Therefore D c* is an element of DerrQI,E).

This result may be specíaLized for the caselJ = E where E is a

field P over Õ. Moreover, wíthout specifying which field is the base

field of P, l¡e observe that Der (P) is closed under right multiplication

by elements g., p € P.- ' t(-

In order to give another connection between derivaEions and

homomorphisms, let us construct the so-ca1led algebra of dual numbers.

t?
Recall that if (x-) is the príncipal ideal generated by *- over the base

c:^1 Å Ã ÊL^. ., ? '--2, E---.- ^ L--j-lreru y, ',,=,. ' 4 (x-) ancl x * (x-) form a basis for the algebra

) ? .2
Þ [x] / ("') over 0. Let us denote the coset x * (x-) in Õ [x] / (x-) by

a
t and set 5 = Þ [x] I (x'). Then 6 is an associative algebra with

basis (1rt) over Þ and the multiplication rule t2 = 0. If S is an

arbitrary (associative) algebra over Õ, form the algebra (= Kronecker

or tensor product) $ Øg over Þ (see, e.g. Zariski and SamueL lLzJt

pp. fB2-183). Here, multiplication is defi.ned by

(br a ur)(Þ I "a) = b,rb I rilÞ, b. € 8, u. € 6

In particular, (b8 1)(18 t) = bE t and (fAb)(te 1) = t8b.

Since b Ø I = 1 E b and I I t = t I l, r,ve must therefore have

b I t = t I b. If we identify 16 with the subalgebra of the elements

b A 1, b Q Ë and identifyG with the subalgebra of the elements

18 u, u € G, then the elements of Ð E 6 can be uniquely r'rritten as

q + bt, b. € t. This follows readily from the fact that any element

x (yD) c

x(y D c*)

/\(xy)Dc* = \(xl)r+x(yo)/c* = (xD)yc

= (xD)cy -F x(yD)c = (x D cO)



be uniquely rvritten as ryr * ,ttzt, a. € Õ.
I

= tb and the multíplication rule

(br + b2r)(b3 + b4r) = brba + (brb4 + b2b3)r 
'

l3

of G can

have bt

(10)

InSESwenow

ÉçA
]-

The algebra s I 5 is called the algebra of dual numbers over s. This

construction shows that if E is an arbitrary (associative) algebra, then

E is indeed a subalgebra of an (associative) algebra Y Ín which there is

an element t such that t2 = 0, bt = tb for all b € S, and every element

u € I can be uniquely written as b, + bot, b. € S.-a

Let D be a derivation of !I into 1ì. Define a mapping s = s(D)

ofllíntoE86bv

(11) "-r." = a+(aD)r

rhen (a + b)s = (a + b) + (C" * o)o)t, a,b { ?J

= (a + b) + (aD + bD)t = a + (aD)È + b + (bD)r

= ""+b" ,

i 
mu(*,v)" = w+(C*>l) t , cv€Þ,

' = **((aD)ç¡)r= aa+(aD)tcr

= (a + (al) t)o, = r"o . Hence rhe mapping s is\,/

linear. Furthermore, lue have

"'b" = ("+(aD).)(o*(bD)r) = ab+a(bD)r+(aD)rb

= al + (a{nD) + (aD)o). = ab + ((ab)n)t = ("b)"

Hence the mapping s is a homomorphísm of tJ into s g g. Let us no\{

consider a mapping n of E E 6 into Ë given by

(a+bt)-n(a+bt)fl = a, arb€S

Then (a + bt)t¡" + dt¡t = ac (,. n bt) (c + dr))t uy ,,rr" (10). rr



\,

t4

is clear that the mapping n is linear. Hence the mapping fT is a

homomorphism of S A g into B r,¡hich is the identity on E. In particular,

if. a (. ü and the mapping s is defined as in (11), then

srr / \TT.'" = [ a * (aD)t) = ". This shows that the mapping s is one-to-one\/
qe

(f - 1), since E" = a2s would imply that EsrT - azsTT, that is a, = %,

Conversely, let s be any homomorphism of 1I into S A g such that

a"t' =a, a€Ql . Thenwehave."="+bt, a€S, b€S The

uniqueness of the form a * bt implies that b is uniquely determinecl

by a. Hence, we have the mapping D:a + b and ure may write

as = a + (aD)t. inle shall nol,v prove that D is a derivation of !J into E

Proof. Since the mapping s is linear ¡ (a+ c)s = ." + "".

Therefore (a*c) +(r^+c)D)t s s / \ / r

\. /, = a" + c" = \" * (aD)t/ + (c + (cD)t/

/\= (a {- c) + ((aD) r- (co)/t

Hence ( a *c )D = aD + cD. trnle also have (u")" = ascy.

/\</\Thereforeary+((acv)DJt = ao6y = (a* (aD)t)cv , dQ.Q\' / -' \ ' /--

= "d + ((at)o,)t
\/

We have therefore shorvn that D is linear. Since ^""" = (u")" for all

arc re 1) ,
/ tl t, ¡r \ / i
Ia+ (aD)t]tc+ (cD)t) = ac*[(aD)c)t+[a(cD))t\ /\ / \' / \' '/

= (ac)s = ac+((ac)n)t\/

Hence (ac)D = (aD)c * a(.D). This completes the proof that D is a

derivation of 2J into Ð.

inle can theref ore state the f ollowing result (cf . Jacobson [9] ,
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p. t69).

Theorem 1.4. If 9l is a subalgebra of I and D is a derivation of

!I into 8, then s : a -> a + (aD)t is an isomorphism of !J into the

algebra of dual numbers $ I g over E such that ."* = ". Conversely,

any homomorphism of 2l into E A g satisfying this condition has the form

a + a + (aD)t where D is a derivation of li into E.

Here the author [9] gives tr^/o consequences of this connection

between derivations and isomorphisrns. First, if two derivations

coincide on a set X of generators ofQI, these derivations are identical.

Secondly, if s is a homomorphism of 2l into E I G such that *tt = x for

x€X, thenasfr= afor all a€!t. Hence s defines aderivationD in

the manner indicated.

Exercise 1.2. Let fJ

that the mapping D of 1I into

mapping

subalgebra of an algebra $. Verify

a derivation if and only if the

m^çi)vc--¡-.+ÞOL¿l.Zmatrlges over Ð is an

Ehat D is a derivation of 8J 4 h L tRr!rL9 ¿ç) arlu 4ru \ ç.

(q I

^ldT

1-^ ^

01 J-.O -L¡i

s: a->

of Q-l into the

i somorphism.

]-" ,Jt

Lt u-r

rnatrix algebra

Proof. Suppose

hle then have

tt.â + rlt¡ \-
=l

rì
t+

'-;f'
b)D' la*b aD+bD,

ilbJ i o a+bjçá + ir¡s
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and (ab) -

l^Ie also have

if and only if a = b.

Conversely, suppose

the linearity of s implies

Þ

(aD)b +

S.S
AD

lu bD itlIip bl

an isomorphism.

linear. Since we

r"+ b"

It is clear that

have

frhìì

=

there for e

IÞ A Ug! IVO

aD

-)

= (aD)b

into S.

t-

l'D
I

I
I

i0

S,S
dU

-;
Ln

i
l-
i..

o:
.l

+ e l'hTl\

(aD)b + a(bD)

ab

h er¡o l-hrr c ^rnr¡arl

t-

I

I

lo

r ^^.l*
Il0

¡"
I

lo
ì-'

l"o
I

L0

i.
lo

_:
D^,

Ði
I,tñl

J

t-
ias
I

I

L0

i

cy.lt
-!

¡'-
.du
I

I
Itn

bt:
t=

bl

(ro') I
i=
Iadi

ìi-aD; iø.1
ti
l^a1 , u

-/eh\ lì'
I

-labl
I

-t r
aDi ibtiti

llal r0J

-laD"
I

I
I

el

J

(aD)cy;
I

1adl

+

n lhlì\
I

ì
I

^J

ab

-
ia
I

I

I

ô

Hence the mapping s is an isomorphism of !I into

\^/e mus E

thar D

atsÍs

atDis

;iD,
t=

l
I

L
ìD
i
i

I

l0t.,

rh

rh

o)

ab

i
^L

i

;0-
We

T-
laD
I
i

lo
l_

í-

f

!

!^lu

have

ti on

.-:

^+ ltl
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Definition 1.7 . An element c of a subalgebra !J of an algebra

g whose image under a derivation D of tJ into $ is zero is called a

D -cons tant .

Remark 1.4. The relation (11) implies that an element c € 9l is

a D-constant if and only if cs = c for the isomorphísm s = s(D).

Remark 1.5. The set of D-constants form a subalgebra of ?l v¡ith

identíty 1 I 0.

Proof. IË is clear that 12 = I implies that 12D =

(1D)1+ l(fD) = 1D. Hence l-D = 0 for every derivatio eJ into S.

Let arb €tl beD-constants ando € Õ. Then (a*b)D =aDf bD = 0¡

(ary)D = (aD)cv = 0 and (ab)D = (aD)b + a(bD) - 0.

Remark 1.6. If S is cormnutative and 0 is of characteristic p.

Ëhen every p-th power ín 9J is a D-constant.
'')

Proof. By.definition, a- = a(aD) + (aD)a = Za(aD) for all
1r))

" F U. It is clear that a"D = (a-D)a * a-(aD) = 2a(aD)a * a-(aD)
t r, 1, --l= 3a' (aD). Let us assume that a^D = ka^-'(aD) for all k É n" Then

"'*1D == 

::i];,.."":;::, 
=="',.':':]'.1,:;j:"

It norv follor^¡s by induction that

(12) "kD = k"k-l(aD), k=L,2,

Take k = p and conclude that aP is a D-constant.

Remark 1.7 " If tI = P is a field over Õ . then the set of

D-constants of P form a subfielcl f of P which contains Þ. Moreover.



the trivial derivation D = 0 is the only derivation on Õ

Proof. SíncecyD = (1 .a)D = (11)a = 0 forallcv€Õ t

0 s f. In view of Remark 1.5, it remains only to show that for all
, -|a t' O in l, a - is also in f. This is clear since

0 = lD = (" r-l)t = (aD)"-l * 
"1.-1O¡

implies Ëhat

-1 -?(13) a*D = -(aD)a , fora1l a€ÎJ

-1Hencea€f ,a10, implies thata-€f . Since6yD=0fora1l

a € Õ and for all D in Derr(p), D = 0 is the only derivation on Õ.

Exercise 1.3. Let D be a derivation in P/Õ, f the subfield of

D-constants of P over Õ. Prove that the elements Pt t gz: . r g* of

P are linearly independent over f if and only if the so-called Wronskian

determinant

1B

A_

Pr Pe "Pr "Pm

alìañañalìYa" v2" ' V-" " n*"
I

r-1 r-1 r-1 r-'l
nTl-^añ--^n--aTl-91 u atu . v u . v v'|m

' m-l m-l m-l m-1
o,D^" 

* orD"' * . O D^'- 
* 

" . . o D"' *'ilm

=Q

In order to prove that this condition holds, r.re shall use the

follorvins 1"rr*".1

1S"", e.g.: Scott, R. F. and Mathe\,/s, G. 8., [11] t pp. 36, 62-63.



Lernma 1.0. L.a "a, 
denote the element

and r-th column (row) of an m X m determinant

minor correspondíng to .Lr, "td A denote the

If ôrs denotes the Kronecker delta (ôr" = 1,

r I s), then

\-(14))aAÂ^\-'l t" *tr '^ts trso

Secondly, íf

L9

in Ëhe t-th row (column)

("., ,) , Ar.,^ denote the
¡J

value of the deËerminant.

ifr=srandô."=0rif

oru or"

rK

--tk

is an h X h determinant and A

deterrninant of

is the complementary (m-h)x(m-h)

4..l-r

rr

tt

which contain the

A

A
ar

A--rf

A
tt

I,I

r

t

rS

A
Lù

formed from A by deleting the h rows and h columns

:',-:k

elements [ , then r'¡e have the identity

(1 s)

We next

variables a.. t

o

IN

-rk

EK

A*is

rq

Lù

h:k
AAAL} AM

remark that A can be regarded as a polynomial in the

L < í, i I m. Since, for example, the coefficient

rr,

of
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al,azz . "rr* is -l-1 , A ís a polynomíal which ís noL ídentically

zero. Hence the relation (15) is an identity in which each member is

a polynomial in the *2 variables a. ., I < í, j I m, wi th A + 0.

Therefore, we obtain the relatíon

. ".1^*(15') M = A"- ,.,

Proof (Exercise 1.3). We recall thaË pr s gz: . p* are

linearly dependent over f if and only if there exist c1 : ce: . "*
inf , notall "í =0, such that %pl *""p, +. . +co.,g*=0. Let

us assume that this condition ho1ds. I^Irite I briefly as

(1, D, , o*-I) | g' p" , p*l and denote the minor correspon-
. *m-1ding to prD-- - by the Inironskian ar. rf each pi € f , there is nothing

to prove since píDk = O for k = !;2, , m-1. We shall assume

Ëhat not all p. € f . '[^Ie nexr observe rhar ("ipi)O = "i(p.D),2 / .\ 2 k v(crOr)D- = \c.(p.D)/o = "i(Orl-¡. If lre assume rhar (c.pr)no = cr(O.no)

for all k s n, rhen (crpr)ot*t = ({"ror)o")o = ("rCoit"))o = c.(þiDt*l)

ímplies that (c.pr)nk = "r{O.ok) for all k = lr 2, Hence

cr9l + %Pe + . . . * "*P* = Q

c,(o"D)+ceG¿D)+ . +c_(pD) = 0r .r¿ . þ \'.< m."m ,

:
I --'l --1. l^ n"'-') + ce (p, o*-r) + + c (p Dm-1¡ = 0"1.\yl Y ¿t ,w2\vzu .t , 

*.,*

is a system of m linear equations which has non-trivial solutions in

the c. . This shorvs that A = 0.
I

conversely, assume that a = 0 but one of the trIronslcians, sây a ,- r'
does not vanish. Let us write
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P1 Pr-l 9rf1 Pm

Élr- o.D o .D o ,.D'¿ r-r rtr oD,m

..;

' 4 t m-2 m-2 -m-2^ rlrrr-¿ n -Dt"-t n -Dttt - . . p D"vI" Pr-L" vr*l" 'm

as (1, D, . , o*-2) lp, p, . . â, p*l rE follows

directly from the rule for differentiating a determinant that
_1 _1t 

^ArD = (I , D, . , D"'-', D"'-') | ox o" . p, o*l which is the

minor corresporiding to nrD*-'. Símilarly, A"D is the minor correspon-
m-)

ding to goD"'-'. From (15'), $re see that A = 0 irnplies that

(arn)4" - Ar(AsD)

AD AD--r -s

^^-r "s
= 0 , rrs = 7r2, . , m

In particular, (A.l¡4, - Ar(4D) - 0. We norv have

-'l -1 -1
ì (Arq*)D = (Arl¡6r* + Ar(Ar'D)

-1 -2= (arl)4r- - ar(a'D)al bv (13),,

/\-)
= ((ArD)Ar - Ar(ArD)/A;- = O

-lHenceArAr- = cr€f Sy(14)aboverArgr+ABp¿ + .+A*g*=0.

This proves that pl t "¿p. + + "*g* = 0, rvhich is of the ren'irerl

form.

Fina11y, we observe that if one of the Wronskians, say A, - 0 )

\"/e can start vrith A., as the leading inlronskian and arrive at a

parlicular relation of rhe form pj -f c"pl + . + c*g/ = O: Oj e f .
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We now recall two results on extensions of homomorphisms and

give reference to corresponding results on extensions of derivatíons.

22

(i) Let tf be

non-zero elements of 9T

subring (with 1) of a field P, M be a subset of

containing 1 and closed under mulLiplication,

. homomorphism of Ð into a

Thenshasaunique

Moreover, S is an

If . (ol, = [t¡-1 , a Ç.e),

field P' such that 9"1

tjlt the subring of P generated by ltJ and the inverses of the elements of

€ uJ). Let

for every B

extension to a homomorphism S of \ into P/.

isomsrphism if and only if s is an isomorphism. (cf. Jacobson [9],

pP. 2-3) .

The corresponding result on derivations is given by the followíng

theorem (Jacobson [9] , p. 170) .

Theorem 1.8. Let P be a field over Õ , ÐJ a subalgebra of P/Þ

(containing 1), l{ " multiplicatively closed subset of non -zero elements

of ?.1 containing 1, and let ?Inn be the subalgebra of P of elements of the

-'lforrn ab -, a 8.U, b € M. Let D be a derivation of ?J into P. Then D

can be extended in one and only one T¡ray to a derivation of O,\4 into P.

Remark. Here we observe that the isomorphism a + a + (aD)t of?l

into P I G the algebra of dual numbers over P has a unique extension

to an isomorphism s of U* ínto P Ø g given by

(ab -)" = ab

-lSince (ab *)D 
=

-1 e(ab ) -

discussion leading

sbeab

0

-2 
çrnl )

, Lüe ca

-1 | -1*+[(aD)b--ab
\

-t -t(aD)b--ab-(bD)

-1 / -1 \ab**[(ab*)D]t.\' /
to Theorem 1.4) th

t

n rvri te

It can easily be shorcn (cf .

at the mannínq â associated r+ith
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s of tJM into P and given by

(16) 0 : "b-1 
* (.D)b-l - "r-21u1; = (a¡-l)l

ís indeed a derivation of Ð, into P.

Remark. Let ÐJ be a subalgebra over Þ of a field P/Õ , D a

derivatíon of 9J ínto P, E' Ez, , E* be elements of P. Let

f(xr: xz: . , **) be a polynomial in9J[xr: xet , x*1 ,

\t xz: . , xm, indeterminates. If fD(xr s h¡ . , **) is the

polynornial obtainecl from f by replacing the coefficíents by their
__D

images under D, then 0 : f -> f" (81 ,Ez, ,E*) is a derivation of

'Jf\, 
xz, . , **] into P. SecondLy, if we derine the partial

derivative of

, -ç ^ .. ki .. 
*t

lt""k*^t 'Ìn

relative to x. as

/ÀF \
and denote its valire r¡ (E' Ez, E*) bV (ä/*.=g. 

,

/àf \
then TT:f *l-] _ ísalsoaderivationof?J[xrr&r" ,xrn]\dx1zx¡= Ç,

into P 
"

Proof . In ?il[xl : >b : . **] addition and multiplication by

elements of Õ are defined coefficientwise in the usual manner. Hence

it is cl-ear that the mapping 0 is l-inear over Õ. It is therefore

sufficient to shor+ thaf â : ic -> fDe + fnD hold" for mononiials
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frE€ü.[\r*., .**]. Letf =o*rk, .*h"rrd
0.0g=Bxr-l .x"m: cyg€ü, 0<k.rnjar. Wethenhave

Pe + rsD = (cvn) gru-, . E*þ (ggr¿r . E*r*)

, -q -k /. !,+ cy Er . E,nh (Cro¡ <r" . g*'*)

/\f= (i"n¡B + o,(BD)) gitr . E*tt, ri = ki * /i ,

= (rg)D

This shows Èhat 0 : fg * fDg + fgD

In the second case we have

TT : fg -, a g (ki + !,r) E,tt . gr_tt-t . E*t*

= oB kiE, tt . grtt-t. . . E*t* * øg .ø.gri . grtt-t. . E*t*

= ø k.çrkr. gr.ut-t. . . gþ I Er¿r. . Eror. .. E*r*

+ oEru,. . grnt. . ç*u* B!..grxt...çr.nt-'... E*'*

= fè!-\ q -,- - fÞs-\\èxr/xr=5, - \ðx./xr=9,

Since n is clearly linear, n is also a derivation.

Final1y, \^¡e remark that the mapping

r-,rD*($) lr- , Tìr€e,
- "j=sj

is a derivation of 9J[x,., , **] into P follows immediately from the

fact that the set of derivations of !I [x,. , , **] into P is closed

under addition arrd ri chf nrrl f in.l i e.¡tíon bv elements of F.
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A second result on homomorphisms is given by

(ií) Let-t and E' b" "o**rltative rings r lJ a subring of $', and s a

homomorphism of lJ into S. Let X be a set of generators of the ideal R

of polynomials f ín U[xr.r xar . , *r], x. índeterminates, such that

f(t', ta, . tr) = 0, [q, ta, arJ s fS'. Then there exists a

homomorphism s of r)i[t1 ¡ te, t,.] into E such that "S = "",
a € ?I, and t-J = *i, 1 = i = rt íf and only if g"(rr, . r rr) = Q

for every g € X. (Here g" i" obtained from g by replacing the

coefficients of g(x., , . x-) by their images under s.) If S exists,

then it i" sníque (cf. Jacobson [9], pp.5-6).

The corresponding result on derivations is given by the following

Ëheorem (cf . Jacobson [9], pp . L7O.-T72) .

Theorem 1.G . Let ÎJ be a subalgebra over Õ of a field P/0 and

let (, , le, . E*, 11 , 1ìa, Tì* be elements of P, D a derivation

of eJ into P. Let 6l be the ideal of polynomials f(\, , xm) in

lJ[R, . , **] such that f(Çr, E*) = 0 and 1et X be any set of

generators for ñ. Then D can be extended to a derivation D of

U[Çr, , Ernì intoP such thatE'D=Tli, i =1r 2, . rm, if

and only if
m\-

F \ | \'

' Þm' :-
i=1

If this extension exísts, then it is unique.

n
( 17\ o" (F\¡, / b \>1 , .

foreveryg€X.

( 18)

/ào \t3) 1;\QX;/_- *-

J -J

Remark. The condítion (17) can be replaced

D /àr \ -f"(Er, , Ç*) +./. \ò"J tti_ = o

I t=I t *j==j

ç^.-----ca^lur dLry r ç lf/ .

by
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Proof . Let fk, k = L, 2, . , be arbitra.ry polynomials in

\q
9J[x1 r ,**]. Thenf =) fkgk, gk€X. SinceDisaderivation

k=1
of QI[a, , To'] into P and every gk € X satisfies

8¡(51: , E*) = 0,

rr
P= T ,-D D. | - D

å 
\'k 8k* tk*k ) = 

u!, 
tksk

r
similarry,(*.) - = I r-(*) , whence'---i x.=5. k=l ""'i-xr=(.

t fèE-\ Th = T f * /òs&\ ",. 1,- -..¿ \ò"{/ ': = 1., l- tf. \a*i rli_ . Inie must norv have
i ^*j=Sj ik=l '*j=Ej

^D l' /àf \ n D \- ¡ò8'\ n{ + ,: (ò*i ',t- = fiei" * f, ¿ (ò*/ ,rí- +
t '---r' xj=Çj I '""r' *j=Çj

', I(*) n'-
i r *j=sj

= 0, bV (17).

foD+-ror

r.0

For the remainder of Ëhis section rve sha1l be interested

mainl-y in derivati-ons in a field P/þ. suppose that E is a subfield of

P/Þ and D is a ðerivation of E/e into P/Õ . Let Ç be an element of p.

rf g Ís transcendental over E, then) as a special case of rheorem l-.c

v¡ith fi, = 0, D can be extended to E[g] so that 3 * Tì t any chosen

element of P. ile may noiv apply Theorem 1.8 and extend D on E[[]

uniquely to the subfielcl E($) of P of elements of the forrn fg-1 *h"."

fr 8€ E[g], gto, so thatE *Tl. Hencervehave thefollorvingreniark.
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Remark 1.8.

E/Þ into P/Õ. Let (

element in P. Then

D can be extended to

27

Let E be a subfield of P/6 and D a derivarion of

€ P be transcendental over E and Tl be any

D can be extended to E[g] so that E * Tl. Moreover,

the subfield E(Ç) of P such that I + 1¡.

Next assume that ( is algebraic over E so that E[(] = E(g) and

let f(x) be the minimal polynomial of Ç over E. Then iË is well knor,¡n

(see, e.g. Jacobson [7], p. 100) rhar rhe ideal Q in E[x] of rhe

/ ..\polynomials h(x) such that h(Ç) = 0 is rhe principal ideat (f(x)).
Hence Theorem 1.c shorvs that D can be extended to E(g) such that

E -'Tì if and only if

(19) rD(ç) + f/(E)Tì = o

where ¡'(*) is the formal derívatíve of flx)- Recall that an element

! is separable over E if irs minimal polynomial f(x) € n[x1 has no

repeated roots in íts splitting field (i.e., the fíeld in which it

factors linearly) . Let us first assume that ( is separa.ble. Then

.lì.-1f:(g) I 0 and (19) gives a unique value of Tl = -f"(g). t,(g)-t . In

particular, íf D = 0 on E then Ç * 0 and, in this caser D = 0 is the

only extension of D to E(g). I^ie can no\^¡ state the fo1l0wing

Remark 1.9. If E(g) is separable algebraic over E, then a

derivatíon of E/0 into P/Õ can be uniquely extended to a derivation of

e(E)/O into P/Þ. If D = 0 on E, rhen D = 0 ís rhe only exrension of D

Eo E(5.' e

Secondly, r.re suppose that Ç ís inseparable (= not separable)

over E. Then f '(-q) = 0 ancl D can be exteaded to E(g) so that S -'Tì,
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any chosen element of P

polynomial for Ç be f(x)
n ñ-1f-(g)=(arD)Ç" +.

Ç is of degree n, fD(g)

Èhe follorving:

if and only if fD(g) - 0. Ler rhe minimal
n n-1= x * arx - + . . . * ârr: a. € E . Then

. + (arrD). Since the minimal polynomial for

= 0 if and only if each a_.D = 0. Thís proves

2B

Remark 1.10. If Ç is

derivation D of E ínto P can

element of P, if and only if

ofÇisaD-constant.

inseparable algebraic over E, then a

be extended ro E(ç) so rhaL E * 1 s any

each coefficient of the minimal polynomial

rn general, it may be pointed out that the condition (19) for

the extendibility of D to E(g), ( argebraic over E, is connected to a

previous result on homomorphisms given by

(iii) Let tl and E be commutative rings , Q ^ subfield of $, t an

element of .B r¿hich is algebra over Õ, and s an isomorphism of Þ into

u. Then s can be extended to a homomorphism s of Þ[t] into 9J so that
.St = u, it ancl only if t"(rr) = 0 for the minimal polynomial f(x) of

t over Õ. hrhen the extension exists it is unique (cf. Jacobson [9],

p. 6).

Here r¡e observe that in the case of extendibility of D to E(t),

uniqueness is achieved only for t separable (algebraic) over E.

Now let P

extension field

polynomials ¡(xt

X be a basis for

- lPe\S1 r 5p.'

0. Let fù

.x)

. ()bea' -m'

be the ideal in

ùuurL LrtdL t_ \51 ,l

a derivation of

=

of

fí ni re'l v ør"npr¡ ied

,.,xlof m-

Þ ì 
- 

ll ^--l I ^+. . \ t - W éllu IgL

polynomial algebra

Õ Ix,-¡

theR. If D is
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Õ[Er, , Er,r] over o ínto P over 0-, then D has a uníque extension to

P over Õ (cf. Theorem 1.8). l.ie have seen (cf" Remark 1.7) Ehat D = 0

is the only derivation on Õ. Theorem l.c applied to D = 0 on Þ shov¡s

that there exists a derivation D of Õ[[r, , E*J over Õ into
P over Õ, and hence ö (Er , , E*) = p Ínto itself, such that

Eio = nt , i = L,2, . t ns if and only if

\- /)- \(20) .) (ÏL) Tìi = 0
'r \oxi/*j=Ej

for every g € X. By the relation (1g), T¡re can replace (20) by

l- /ÀF \(21> ) (=) Tì1 = or: \ dX-. /I '--r.xj=5i

for any f € 0. Moreover, .t¡re have the following críterion.

. Lemma 1.1. Let p = Õ(Sr, . Er, E*) be a finirely
generated extension field.of Q. Then 0 is the only derivation of p

into itself if and only if p is separable algebraic over Þ.

Proof. Assume that p is separable argebraic over Õ. we have

seen (cf. Remark 1.7) that 0 is Ëhe only derívation on Õ. By Remark

1.9, if g1 is separable algebraic over Þ, then D = 0 is the only

derivation on Þ(gi). In rhe same rüay, if Ee € p, Ea É O(g1), rhen (u

is separable algebraic over Þ and so over o(gx ), and \,ve norü have D = 0

is the only derivation on Q (8,. , Ee) . h'e can repeat this process for a

finite number (=¡n) of times and thus obtain that D = 0 is the only

derivation of Q(Çr, , E*) = P into itself. conversely, 1et

r ( m be the largest int.eger such that p is not separable algebraic
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over Õ(91, , gr) = Õ'. Then Õ'{Er*r) is eíther transcendental

over Þ'or ís inseparable over o' by the t,ransitívity of algebraic

separabílity. rn eÍther case vre have observed thaË t]ne zero

derivation on Õ' "^n be extended to a non-zero derivation D on Õ'(gr+1)

such that Er+lD = I: an arbitrary element of p. since, by assumption,

P is separable over Q (Ç. , , Er11) lre can exËend this derivation

to a non-zero derivation of p into itself (cf. Remark 1.9). Hence, 0

is the only derivation if p ís separable algebraic over Q.

Exercise 1.4. Ler p = Õ(Er, . , E*). Show that p is
separable algebraic if and only if there exist ur polynomíals

q(xir . **), r B*(x1 , . , **) in Õ[x1 : . , **] such

that 0 = ft(81 .: , E*) = . . . ã g*(81 , . , E*) and rhe

Jacobian r = ."r((ffi)*,=.,) I r
K-K

Proof. By Lenrna 1.1, p is separable algebraic over Q if and

only i'f D = 0 is the only derivarion of p into íËse1f. ny (21), rhis is

equivalent to
S ¡ògi',
/(ð*) (Ern¡ = o, í:L,2, .rnr
fir""Jr*u=*u r

where Ëhis system of m homogeneous 1ínear equations has only trivial

solutions (Eru = 0 for all j = L, 2, . r E- such solutions are

possible if and only if J I 0.

We have seen that the system Dera(prp) = Derr(p) of clerivations

in a field p/a is a Lie algebra of linear transErormations ivhich is

restrícted if the characteristic of Õ is p I or.,and that Der_(p) is
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closed under right multiplication by g*, p € P. If D € Der (P) , then

riefíne Dn = Dn . From a discussion given in Jacobson [9], pp. Ig-20,*-*t^^- "vR -ìJ

ít is seen that $(PrP) = S(P), the system of linear transformatíons in

P, r+ith Apo = Ap, A € S(P), p € P, ís a right vector space over P.- 'l(

Hence, Der*(P) is a subspace of the right vector space S*(P) over P.' e- I
Let us denote the dimensionality of Derr(P) over P by [Der*(P):e]*

Then another connection between derivations and separable algebraic

extensions is gíven-by the following theorem.

Theorem 1.D. ff P = Õ(E^. . ( ), then [Der,(p):Pl- isf \)1 , . , -m,) --'-- L---Õ\-/ -K

the smallest rational ínteger s such that there exists a subset

S = f(r, ., Ei I of fE,r, ç_l such thatP ís separable
""'', , "rS

algebraic over Õ(S). (Jacobson [9], pp. 178-L79)

e
Proof: Consider the mapping D * (ErD, , (*n) of

/-\
Dera (P) into P\tr'l, the right vector space of m-tuples (p, , . , g*) ,

lm\p, e P. In P'^"', equality, addition, and scalar multiplication is
J

defined coordinate-wise in the usual manner. Let D, Dt be elements of

nerr(P) . Then (3rn, , E*D) * (ÇrDr, , E*D:.)
/\Aêâ

= (gr (D + D1), , E*(D + D1)). Hence Do + Dr' = (D + D1)". I^Ie

also have (Ernp, , Ç*Op¡ = (91D, , E*D)p. Hence

^^(Dp)" = D"o. trtre no\4l suppose that ErD = O, i = L, 2, . : ü. In

this case D = 0 since the Ç. generate P over Õ . This shorvs that the

kerrLel of this mapping is 0. This mapping is therefore P-linear an<l

one -one , Let (D., , , Dr) be a right basis of Dera (P) over P .

Then s I m and the image of Der* (P) in p(ot)hus the basis

((.D., E D.), 1< i =": We nor^¡see rhar rhe rank of rhe
1' ' "nl 1 '
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s X m matrix (liDj) is s, so r¡re can re-order the $.rs so that

det(Ç-D.)lO, L<i, j <s. I^IenowserE=Õ((. E)and'-r J -\rl , ' ,5s.
let D be a derivation of p/E into itself. Then D is also an element

Der, (P) and so

\-
D - ) D.o. , o. e P.

j=f JJ 'J

Since Çr, . , E" belong to E, we also have

å
o - 5ro ì, (Erlr)0, ror i = L, 2, . : s.

j=r
Since det (Ç-Dr) I 0, then every p, = O and hence D = 0. Therefore, byAJ J

Lemma 1.1, P is separabl-e algebraic over ¡ = Õ(Er, , E"). Next

suppose that there is a subset [El, , gtJ of the g.'s (re-ordered

appropriately) such that P is separable algebraic over

J¿

of

Õ(5r , , 5a) . We no\^¡ use these Çts to map nerr(p)

means of D + (Ern, , Ean). It is clear that this

P-Iinear:. t¡ ErD = 0 = . = EaO, Ëhen D maps Õ((r,

0 and so D is a derivarion of p/Õ(Er, , Er) inro

P is separable algebraic over Þ(Çr, . , Ea), D = 0.

therefore p-línear and one-one. Hence s = [Derr(e):p]o

/r)into Pt-' by

map is

. . E.) into-t-

itself. Since

Thíe mnn ic

< t"



Definition 2.1.

P/Õ which are separable

purely inseparable over

ínseparable over 0 if 0

Proof " I,le recall that if

then aPD = paP-t(.o) = 0 for all

SECTION 2

If the only elements of an algebraic extension

are the elements of Õ, then P ís said to be

O. Similarly, an element p is said to be purely

(p)/O is purely inseParable.

derivation of E/Þ into P/Õ,

and that the set of D-consLants

Remark 2.1. An element p € P/Õ is purely inseparable over 0 if
,''r€

and only if p is a root of the polynomial xP - ãs ã € Þ, e some non-

negative rational integer (cf. Jacobson [9], p.48). It is cl-ear that

if e = 0, p € Q.

Definitíon 2.2. trn]e sha1l call e the exp.onent of the purely

inseparable element p. If there exists a maximum k for the exponents of

the elements of P, we say that P is of exponent k over þ; otherrvise, the

exponent of P/Þ is infinite.

Let P/Þ be purely inseparable of exponent e = 1" Tf 9: o € Pt

thenpp =aeÕ andoP =b€0" üIerecall that (p io)p =pp toP.
' ,qrhÉô- üïeals.ôseethatif -1 'n =.-1 €0.Hence (p +o)P = ê ¿b € 0. I^tre also see that if B f 0, (p -)t =

Therefore the p-th powers of P form a subfielcl pP of P over S. It now

follows that P is purely inseparable of exponent < 1 over Þ if and only

if pP c ë. Hence rüe may also say that any field P ís purely inseparable

of expcnent < 1 over õ (PP) .

l_s

1I

a

D

Remarlc 2.2. If P/ø is a field of characteristic p l0 and Elo

subfield of- PlQ, then D is a derivation of E/Õ into P/Þ if and only

is a derivation of s/O (ep) into P/Õ (Ep) .

Dis

A? F'

JJ
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forms a subfield f of E over Õ. Hence f I O(EP). Moreover, LÍ. c (1,

a ç. E, then (ac)D = a(cD) + (aD)c = (aD)c. Thís shows that D is also a

derivation of E/f into P/f. Since f 2 O(np), it follows that a

derivation of E/Õ into p/Õ is also a derivation of E/Þ (EP) into

P/O(EP) and the converse is immediate.

Since E is purely inseparable of exponent 6 1 over Õ(np), in

discussing derivations of E/0 into P/Õ i¿e can consider only those

subfields E/Q i,¡hich are purely inseparable of exponent 31 .

Remark 2.3. If Õ is a field of characteristic p I 0, then

xp -&s ã €Õ is irreducible inÕlxl unless a=bP, b €Þ, inwhich

""". 
*P - a - (x - b)P i.t Õ¡*1 .

Proof. Suppose *p - a factors linearly in K[x], K a field over

O. If b is a root of xP - a, thenxP - t=*P -bp = (x -b)p ittr¡*1 .

Assume that xP - a = f(x) g(x) in Õ[x] where the degree of f(x) is k,

I < k < p. Then in K[x] we must have f(x) = (x - b)k since

f.actorization in K[x] is unique. Br-rt we have

z r tN N t r , . / r \N\x - D/ - x - KDX -r . " . 1- (-Dl

This implies that kb € Õ and consequently b € O " In this case rüe novl

have *P - a = (* - b)P in Õ[x].

Remark 2.4. Let P - O(Er , \e, E*) be a finitely generated

extension fiel-d of Õ rvith characteristic p f 0, and E, € e,

F ê ó(tr (- -). satisfv iho mínim:l n^'1 .'nn-'ia1 *p - â5i f V1'-t, , -1_1. , LJ Ltrc rtrllllrrtar POIyU.OilLAI )( - Oi,

a-€Þ. Then[P:Õ]=pm<-.1-

34
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Proof . tr^Ie recall Èhat since xl - at is irreducible in Þ[x]

(see Remark 2.3), [Õ(El) : 0] = p. Now Ç, € P, Ez É 0(Çr) implies thal

xp - a, is irreducible in O(Er)tx]. For otherwise, az = 9P,

B € Õ(91) and hence Ez = I € Q(Er) rrhich is impossible. It norv follows,

a fortíorl'., that xp - a" ís also irreducible in Õ [x] . Hence

)
[Õ(EuEe) : 0] = [Õ(Ei, Ee) : 0(5r)][0(Er) : 0]

(See, e.g.t Herstein [3], p. 168). This process terminates after m

applications and r¡/e nor{ have [e:Õ] = pm < -.

It vrill be seen later that the theorv of derivations in the case

of characteristic p I O is connected wiLh the study of purely

inseparable extensions of exponent e = l. In order to show this, rve

shal1 introduce a specíal kind of dependence relation.

Definition 2.3. An element p € P is said to be p-dependent in P

, € o*(s) where o'k = o(Pp). we indicate

&Lr^ -^1-!_.^_ r__ n (^ S .LrrIù !st4LLVLL U)l

"YY
^ ^^^-,1-'-^1.. .,^ ^^11 ^ gjÕLLururnóLJ, we ud!! d rrnite subset S of P p-independent if

a1o ÉD S - l.oj for all o in S, and say that any arbitrary subset S of an

t.niar"ty field P is p-independenL if every finite subset F of S is

p -independent .

Definition 2"4. A p-independent subset B of P over Õ which is

such that every element of P is p-dependent on B is called a p-basis

for P over Q. In this case, P = Þ"(B).

We next reca11 the follorving theorem for an arbitrâry set P and
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a set of four axioms for a genera1-i-zed dependence relation.

I If o € S, then o ( S (= o depends on S).

II If p < S, Ehen p ( F for sorne finite subset F of S.

III If p < S and every o in S satisfies o ( T, then p < T.
/ - -\IV Ifp(s andp *s -["Jwhereo€S, rhen".(t -["JU tO]).

Basis Theorem. The set P has a basis. lvloreover, any two bases

have the same cardinal number (Jacobson [9], pp . 154-155).

I^Ie next show that p-dependence satisfies the conditions of the given

axioms ..

First, if o € S, then o € Õ"1s) or equivalently o ap S. Secondly,

since S = UF, the union of all finite subsets F of S, 0 € O"(S) implies

that p e 0"(F) for some finite subset F of S. Hence, if p ap S, then

p <p F. Next, if p € O'k(s) and every o in S sarísfies o € Õ'l-çr¡, rhen

p € Õ (T). That is, if p <p S and every o in S satísfies o ap T, rhen

p apt. Inle nexr suppose rhar p € 0"'-(S), p ÉO'k(s - ["]) whereo €S,

and write S - [o] = f. It is norv clear that O'k(T) is a proper sub-

field of Õ'k(Tro) = Þ'*(T :g:o) and of O'kçrrp). It is also clear that

o € o'kqTro), o É Õ"-1r¡ and rhar p € Þ'r-çrrp), p Éo'kçr¡ by assumprion.

From the discussion rvith regards to Remark 2.4, we now have

[0"(Tro):Õ"(T)] = tÞ"(T ,p,o):Þ"(r)l = p

= ¡o'kçrrp):Þ'1-çr¡1

We assert that o € Õ"-(Trp). For otherwise o € Ot'lrrpro¡ and

o ( 0"(Trp) would imply that [0"(Trp ro) : Õ"(Trp) ] , rvhich is

ím^nae,'h1^ ô"'-^^ l-nttrt n ^\. atkrTll = l-ötl-ft ^\. ótkr.rll - n Han¡orlrHvùùru!s ùrlruu t51 \LsgsrJ/. y \r,i I : Lv \rrpl: y \r/l = p.
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g (r, S and p *^ S - l"j for some o in S, then'YY

can no\ù applV the Basis Theorem and state the

Let P be a field of characterís tíc p f O,

(algebraic) over Þ of exponent one. Then P has

any tr,/o p-bases have the same cardinal number.

o <p (s - ["J u [pl).
lô | | 

^ú71 
ño'

P purely ínseparable

a p-basis. luloreover,

a p-independent set, then
.L

= d. € Õ . As we have seen
1

. , p-)r ot'] = pm. Hence, the p

37

!!

We

IfF=l1t,gzr. ,9*Ìis
^ _*. D

Pi É Õ (P1 , Pz, . , Pi _1) and P.r

earlier, we now have [0"(p, s gzs

elements

1.
N-/oo\ ^ \^ N2 . O 
--m 

O <k. (p ,\4L) Pl -lr? .m . L

form a basis for o'k(p1 , , F-) over Õ'k. conversely, vle suppose
m.

that the pm elements given by (22) form a basis for Õ'k(pr, . , 9*)

orr"r o'k. Then [Õ*(p, , , p-) , o'*] = pm. Tr, for example,
m

-k -L
p* € Õ"(pr, . , 9n -.) , then v¡e have [Õ'k(p, , , 9-): Q"] =ro ' 'lo-L'' 'm'

J.¡axt^ ^ \. f,""t^ . s Q, )][Þ"(pr, . , g* _.,), Þ^]Lr \.HI .r . ) Y^t'z \Plr rO ro_r

m-i^ i^ -1 m-l5 p^" -. p-o " = p'-'- which is a contradictíon" Therefore the p.

are p-independent.

Remark 2.5. A maximal p-independent set B is necessarily a

p -basis .

Proof . We first assert that if Tl € P satisfies Tì {, U, then

B U [fì] i" p-independent. Otherwise r're must have an ç € B such that

g<- (BU [I] -igl). sinceg*^(B - tgl) = (Bu lÎl -tgl -hJ),"P"P

then Axiom IV iniplies that I .o B = (B - tgl U tgl) which contradicts
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the hypothesis of our assertion. This shows that our assert.ion holcls.

In particular, if B is maxin.ral, we must therefore have p € P saËisfies

g <p B for all p e P. Hence B is a p-basis.

Theorem 2.4. Let P be an arbítrary field of characleristic

p I O, Õ a subfíeld and E an intermediate fÍeld. Let B be a p-basís of

E over Q. Let ô be an arbitrary mapping of B into P. Then there exists

one and only one derívation D of E/Õ into P/Õ such that 8D = ô(B) for

every B € B.

Proof . I^le have seen in Remark 2.2 that vre can assume Ëhat E ís

purely'inseparable of exponent < 1 over 0. Let us assume that E : 0

(that is, E properly contains ö) whích means that B is non-empty and the

exponent of. E/þ is one. LeL B € B and set UB = U - tgl. Therr

ß É O(B^) and its minimal polynomial over Õ(B^) ís xP - b. I,Je have seen
vv

that 0 is the only derivation on Õ(BB)/Q(ug). Hence, by Remark 1.10,

there exists a derivation DU (relatí.ve to B) of E = 0(Bgrg) over Õ(Bß)

into P over Õ(8.) such that gD^ = ô(B). Note that B'Do = 0, gt l B,oÕp
B'€ g. Since O(Bg) 2 Q, a derivation D of E over 0(Bg) into P over

0(BS) is also a derivation D of. E/E intoP/Õ. Let F be a finite subset

r^ ^ 1f.h, ßrf of Br then DU = Oq. + . + OB, t" a derivation of
-tE/0 ínto P/Õ such that B.DF = ô(Bi), and 3 DU = 0 if

B'€n-[er, ,B_], i=!r2, .,r.

If G is any finite subset of B containíng F, then the restrictíon

of D^ to 0(F) coincides rvith the restriction of Do to 0(F). If ( is an
G.E

arbitrary element of E, !ùe can choose a finite subset F of B such that

g € o(F) ancl map E'EDo. since the pr elements 3¡ . 3F,
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0 5 k. < p, form a basís for Õ(F) over Õ = O(Fp), Lhe form

\-L,g = ) "r,1 ...u, frut . . ,rur ,

"tq...k, € Õ, is unique for ( € O(F). It is clear that rhere exisrs a

smallest finite subset Fo of B such that ( € o(Fo). Hence Eo, = ßouo

is the same for any fínite subset F of B such that g e o(F)" Therefore

Èhe mapping D:8. EDF,is single valued. Clearly this mapping is a

derivation of E/Õ into p/Õ since Du is a derivation of n/Õ into p/Þ.

luloreover: 8D = BDF = ô(B) for every g € B. Since E = Õ(B), D is unique.

Corollary 1. If E has a finite p_basis B, then

lDerr(Erp). pln lsl.

Proof. Let 
^(Brp) 

be the set of mappings of B into p which we

can consider as a right vecËor space over p by defining

(ô, + ô2)(g) = ôr(g) + ô2(B) and (ôp)(B) = ô(B)p, ô¡ö1 ¡ô2 € a(B'p)'

P € B, g € P. we now map Derr(Erp) into [(Brp) by sendinc D € Der.(E:p)

into its restriction ô to B. Let DrDl rDz € Derr(Erp). Then

Ê(Dr +Dz) = gDr *BDz = ôr(B) +ôa(g) = (ôr +ôz)(g). trnle also have

Ê(np) = (tsD)p = ô(ts)p = (ôp)(s). Hence this map is p-linear. rr is
clear that the kernel of this map is D = 0. Moreover, the theorem

shorvs that this map ís onto. This map is therefore an isomorphism. rf
B = [9r, 9*] is finite, then the m-mappings ôr, o , ö*

such that ôi(l3j¡ = ôij (rhe Kronecker delra) form a basís for

lA(Brp). pln. This foltows immediarely since a.t (ô.(g.l) = f + O\1 l/
.'-^1-'^^ {-L^F !L^rulprtes Lnac tne system

(ôrp, + " . . + 6*o*)(or) = 0, 1 < j sm, of m tinear
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homogeneous equations

^ /,â \^ r + ô (A)o - 0"L \ þÈL / P1 ,mt !r1 , !m

.

A /o \^ r . + ô (g )o = o"1 \Pm/Vm ' ' ,mapm/pm -

hasonlytrivíalsolutions0=pI È o ".=pm Thismeans thatËhe

6, are right linearly independent over p. rt is also clear that the

only mapping that sends B ínto 0 € p is the zero mapping (= the

restricËion of D = 0 on Õ(B) Lo B). Moreover, if g¡ is an arbitrary
elemenË of P, (Oroo)(gr) = ôijgt. Hence any elemenr of [(Brp) has rhe

formôrp, +...+ô*g*, pi€P. Thismeans that (ô1 ,. , ôor) is
a right basis for [(Brp). Therefore Ia(Brp)' p]n = [Der-(Erp):r]* = fnl

CoroLlary 2. Every derivation of E/Q into p/Õ can be extended

a derivation of p/9 íf. and only if the elements of any p-basis B of
are p-independent in p/O 

"

Proof. Suppose the elements of any p-basis B of E/Õ are

p-independent in P/0. Then B can be imbeclded in a p-basís c of p/Þ.

If D is a derivation of y,/A ínto p/øt then the restriction ôB of D to B

can be exte'ded to a mapping ôc (= the restriction of D to c) of c into
P" By the theorem ü7e no\^/ have a unique crerivation D/ of Õ(c) = p

over Þ into itself such ttiat yD, = ôa(1,) for all y € C. Since

9D'= ôc(9) = ôu(B) = BD for every g € B, D'is an exrension of D.

Conversely, sr.ippose B is not p-independent in p/Q and let p be an

element of B which is p-depenclent in p on B, = B - [gl . If D// is any

derivation in p such that L,Ð" = 0 for all p € BB, since every p-th porver

40
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of P is a D"-constant and B € O(pPr¡^), gD" =
p

proof of the Ëheorem that there ís a derivation

that g D" f 0 and ¡¡ D^ = 0r þ € Bo. C1ear1-y,U þ Þ -'

be extended to P since gD" = 0 and g D^ f 0 is
ñY

4L

0. We have seen in the

D^ of E/Õ into P/Õ such
Y

such a derivation cannot

imnnccr'h'l a

qn¡ca S

over E

x are
n

.v

the mn

trIe shall next take Õ to be the prime field Õo which can be

identified rvith the fiel-d of rational integers modulo p. I{e have seen

that for all rational integers x, *P= * (rnod p) (Fermatrs theorem).

Hence r{e may write Oo (Ep) = EP. We shal1 agree to refer to a derivation

of E/Õo into P/go as a derivation of E into P. Our object is to show

that the condition given in Corollary 2 is equivalent to separability,

in Ëhe general sense, of P/8. We recall that an extension field A of a

field P is cal1e.l t.ha rlqolrr¡.'. closure (up to an isomorphism) of p if:

(1) A is algebraic over P, and (2) every polynomial f(x) € A[x] of

positive degree can be written ac a nrnrlrror aF linear factors in A[x].
-1

I,Ie rake EP 
- 

= [V € A , yP € r].

Definition 2.5. Let X, Y be two subspaces of a vector

over a fielcl E. Then X and Y are said to be línearly disjoint

if the follorving conditíon is satisfied: r.rhenever ><., ,

elements of X rvhich are línearly independent over E and y'

are elements of Y rvhich are linearly independent over E, then

products x_.y. are also linearly independent over E.-a-l

Remark 2.6. The follorvíng property is equivalent to linear

dis jointness: rvhenever Xl ,xp, . , xn are elements of x r¿hich are

linearly independent over E then these elements \, xz) . .. , xn are

linearly inclepenclent over Y.
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Proof" Assume that X and Y are.linearly disjoint over E. Let

x72 x22 . , x' be elements of X which are linearly independent over

E and suppose that
n\-
) o.x. = 0, d. € Y
:'-t l- l- ' I

i=1

If [y,, i €IJ is abasis forYoverE, thency. = F".."., c.. €E.--r- L + LJ'J' ij
J

Wenor,rhave0 = f *,u.o + "..+ I".y.x = I"..*.rr.. Sínce'¿ 'J-J' -J nJ-J n !¿ lJ 1-lj j í,i

X and Y are assumed to be linearl-y disjoint over E, \.üe must. have the

"ij = 0 and hence the cy. = 0, showing that Lhe conditíon is satísfÍed.

Conversely, suppose that the condition is satisfiecl . Let the tr'zo sets

(1
lå., . , *rJ and [yr, " , Y*] be as in Definition 2.5. Assume

Ëhat ) ",,x*y.: = O, c_. . € E. Since the condition is satisfied, theaJ r-J ].J
LsJ

the x- are linearly inclependent over Y. Hence

Sínce the y. are linearly independent over E, this means that every
J

c,, - 0. Put otherrvise, X and Y are linearly disjoint over E.
tl

Definition 2.6. A field P is separable (not necessarily algebraic)

^-1over a field E of characteristic p t 0 Lf P and EH are linearly

disjoint over E.

We have seen (cf. Jacobson [9], p. 163) that if P is an algebraic

ext-ension of E (possibly infinite dimensional), then P is separable over
-'t

-D-l: iT ân.i ônlv it P iq lin/r.ârlv d-^1^iñF *^ !t ower Ë_ Hence- the!! r !r rr!rr.qr !J uIÞJV!I1 L LU ! vvçr ! . :rsrruL J

\'
- | ç .y.!- nJ- Jj

,F-\-
I ¿ljtj=o = )-"rjYj =

ji
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following criterion is applicable in the case where P is separable

algebraic over E.

Theorem 2.b. Every derivation of E into P can be extended to a

derivation ín P íf and only if P is separable over E.

Proof. Assume that everv derivation of E into P can be extended

to a derivation in P. Then by Corollary 2 of Theorem 2.4, every p-basis

of E over Qo is p-independent in P. We must shor,¡ that whenever the

elements x1, . , Xn of P are linearly independent over E, these
-1

elements x- are also linearly independent over EP , or equivalently,
].

. p p ..that x1' : . , "ri are linearly independent over E. Let

x.t s . r X-^ ( P and or, . s d_ be elements of E not aLL zero
n

.V p ^such that )_"i"i = 0. If B is a p-basis for E, then

- \-. &k, .Bkt.whereo<k-<p, Ê,€B,d: = ,/ Y"- r-_ h- " Þr- I- ¡I 'J rKl ...ñf

v É ö- lEp) = EP. We norv have f U, gq. . Bkt = 0tiq.",kr-ro\!/ a"kl.".kr* 'e'.

where ô, , = f' u., , *.P € pP. I¡le can write
Kr ,..K- /;l 'lt " o oK, r_

l

\,, = lTì , )P , Tì-.,- 
'- 

€ E" Since the grs aretib.:..k, t''í11 
"..kx' : 'tikr..oNr

p-inclependent in P/þo ¡ we have O = Urn 
" " "kr

1-= L (lro 
"..k )P *iP

i'T

Hence ,t Tìr'- ,- x,. = 0" Since the cy- are not aLL zero, not all
: t\'ocNr
l-

1ì''ilq- "..k, are zero. trie have thus provecl Ëhat the x. are línearly

independent over E impl.ies thtË *,.P are linearly inclependent over E,

which ís, by Remark 2.6, equívalent to separabilí-iy of. P/8" Conversely,



rr

\^/rite Îu- u = I ^rr, """k- 
*i , the Àts in E. Then we have- 

^1oo.ñf
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assume that P is separable over E. Let [9, o , gr] be an arbitrary

set of elements of E which is p-dependent in p/Qo. Then rve have

Q = f tor...kr fuq . Ê:' , yrt..okr = (Îur.".ur)P ç pp ,

0 Ik. ( p, not all yq"..U- = 0. tet [xr] be a basis for p over E and

ça P = l, P -k' -k'That is, 0 = I ur*.' where ¡_r,. L,.iq "".kr È.^t " Bror "

By Remark 2"6, every pi = 0 since p_ is separable over E. Hence the prs

are p-dependent in E/Þo. Since Ëhe g0s r^rere arbitrarily chosen, it
folloivs that any p-basis of. E/oo is p-inclependent in p/Þo .

Remark 2"7" Let P/O be an extension field of Õ with characterístic

p, P purel-y inseparable of exponent one over Õ" Then ¡f:Al = pm < * if
and only if lpr s p¡z. " . , prn] is a p-basis for p over Þ.

Proof. Suppose that [p., , p*] is a p-basis for p over Õ, then

Remark 2.4 shoivs that [p:Õ] = p*. conversely¡ assume that [p:Þ] = pR ( *.

Clearly [pr, , grr] ig u p-basis for p over Þ: n # m, rvoulcl also

irnply thar [P:Q] = pn + pt. This shor,rs rhar [p:Õ] = pm implies thar

tPr, P*J is a p-basis for P over 0.

Exercise 2.1 (Baer). P is purely inseparable of exponent one over

Þ and [P:q] = p* < -. Shorv that there exists a derivation D of p/Þ



such that the only D-constants are the elements of Þ.

Proof. In view of Remark 2.7 , we can take P = Õ (B) where

B=[*r, ..**J ís ap-basis forPoverÞ. AderivationDofP/Õ is

Ëhen completely determined by its values at the x. (cf. Theorem 2.A).

Choose x-D = À.x,, À. € Õ and let M be any monomial of the form
]- ]- 1- I

k' k- o<k (o. Then(M)D=k-"k'-1- ko ..*k**r^t . x"rn , 0 3 ki ap. Then (tq)n = \*r"t 
*Àrxrx"'-? 

m

+ + k x.kr . *k*-1^ * = (k,l_, + + k I )M. It ism mm - mm

clear that lvl = 1 implíes that (M)D = 0. Let us shor.¡ that v¡e can choose

theL. so thatkltri + ..+\rÀ*=0if andonlyif eachki=0.

Since the x- are linearly independent over Õ, it is clear Èhat the xfi'r
are linearly independent over OP and hence over the prime field

n-
0o (= Þo', using Fermatrs theorem). Clearly ít is sufficient to take

I, = *j . Then the only mon:omíal which belongs to the constant field of
11

D is the trivial monomial 1 € Õ. tr^le have seen that if M. is a monomial

-ktkm^of the form xr"!. ç", 0 I ki a p, vre can write (M.)D = þiMí,

I # $i € pP c Õ. Hence (M.)Dn = $ifoi. I^le observe that for *, # *j

we, obtaín ,r. * ç¡.. Suppose there exist ø-. € Þ = O(Pp) such that_*_.. i¡i , Þ!j- __rr__ *i
n/s-ì \( ) o,.M. ) D = Q. Then we obtain a system

\ -¡ TL/
i=1

nttlvf+qt Fll !41

n
n¡ ,' --M -Ls I l-þ] "1
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* 
"rr,n r'for.'

equationsof n linear homogeneous i- ¡L^ ^. e.í-^.e the determinantlrr Lrlç L[r . u !¡rL
I



ItMlM,'Mr'1 "i 112"2 tsn"n

,,2 M- ,, ?v ,,2 vfrl "I ILZ "2 tsn ',n

,, Dv ,, [* .. 0-
t{ "L irz "tn . Þra r"r'

1

l-lrr U'n
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fr{ lrrrM, . Mn

= þr . PJq M- I1 (*, - pj)
" i>j

n-l n-l
l¡r pn

distínct ¡¡. , then \^Ie must have evêry a

field of D is precisely Q.

* O for distínct M. and hence
1

. = Q. Therefore the constant
I

Exercise 2.2. Let D be a non-zero derivation in a field p of

characteristíc p t O over O. Show that l'po * Dp, * + Op-lpn_, ,

p, € f, is a derivation only if every pi = 0, i * 1. Show thar íf

P € P' then 
k-I

(23> (lp)k = okpk + tlpnk-l) + I ojoj, where o, € p and

i=2
E = Dp (=DpO). Hence prove the follorving formula due to Hochschild:

nP = (Dp)P = nPpP + D(pnP-r¡

Proof. We have seen that 1, D, ú, . , DP-l are elements of

Só(P). l,lriteT=1'po+Dpr+ . +Op-lpp_t If T=0rrhen

yT = 0 for all y € P. In particular, 1et yu s yy: ., yprl b.
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p línearly independent (over Õ) elements of P. Then the Wronskian

(1, D, , oP-l) lyoy, yp_1| # 0 This means rhar rhe p

linear homogeneous equations y.T = 0, i = 0, I, . : p - 1, have

only trivialsolutions p. =0, i=0,1,2,. :p -1. Hencethe

operators L, D, Ú, , DP-l "r. Iinearly independent over p.

I¡/e assert that T is a derivaLion in P only if every pi = 0,

í # l. I¿tre have seen that Dp (=DpR) is a derivation in P. Tf p = /,

T becomes 1'po + Dpr and for x:y € P rve have, on the one hand,

(xy)f = (*y)po + (xDpr)y + x(yDpr) , and one the other

(xT)y + x(yT) = (xpo * xDpi )y + x(ypo * yDp, )

(xpo)v + x(ypo) + (xDer)y + x(yDp1)

= z(*V)po + (xDp1 )V + x(yDg, ) . Therefore T is a derivaríon only if

po = 0, in which case T = Dgr. l^le shall nor^/ assume that p > 2. I^le

have seen that
k-1

(r.y)¡k = xlylk) + I 0 (*ni) (yrk-i) + (*lk)y for k
i=l-

and that OP is a derivation in P. Norv

(xr)y = (xpo)v * (f*lor)v + (C"f )0,)v * . . . + (C"

x(yr) = x(yso) + x (crupr) * " (crruloo) * . . * x

x(yT) + (xT)y = 2(xy)po + (xy)Dp,, + (xrF pa)y + x(yf p2) +

. * (xDP-to* .,)y + x(yDo-to^ .,)'P-r 'P-r

trrle also have the relatíon

=1 ')Lt 't

nP 
-1) 

oo _r),

( rtoo 
-t> 

on -r)

("y)T = (xy)po * (xy)Dp, + (>cy)f p, + ^ -,1+ (xy)DY -o'p-r
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If T is a derivation in P we must no\^/.have po = 0 and

kLL(xy)D^-pt = x(yD"pk) + (xD"pk)y, k = 2r3, . r p - 1.

k-1
This means that I (Ð (*ti)(ytk-i)p,- = 0. pur orherwise,':) \l/ - ' K

i=1
k-1
I ln\"ir.,nk-ir- _^ or_-L \i/ " \y" )pk Sínce k < p, it is clear rhar p does not

Í=1

/ 1.\
divíde 

""y (i) . Moreover, r¡/e have jusr shown rhar 1rDrt, . , DP-l

are right linearly independent over p. Therefore if
k-1
\-/L\ív
.)- (i) o'(vn^-t)pk = 0 for all v € P, \.üe must have 9k = 0 for each
l=l

k = 2,3,, s p - 1. This means that if T ís a derivatíon it must

reduce to the form E = Dp , g € p.

trnle nexl- show that the relation (23) holds for k = Lr2,

If k = 1, we w-rite Dp = D.pR. If k = 2, we have

(np)? = (Dp)(np) =ú& +D(pD)p
i' 

=úe" +l(o(Dp)) =úe' +D(pE)

n-1
We next assume rhar (Ds)t = Dtp^ + D(pEn-t) * I Dip. for each n ( k,

í=2
where pi € P and E - Dp. Since pko = pk-l(pl)k, we now have

,^ .n*1 ,^n n.,.- . /*, -n-1.- \ ït i(Dp)-- - = (D'o') (¡p) + (lçprn-t)on) - ). (DÍpr) (Do)

i=2

^n*1 nfl ^n / n.,1, -, .'\= D"' * o^' (p"'''(po) p") + n(prn)

n-l
-. n-1. \- / í+1 i \+ D p(pE" t) + ì, (o-'-or¡l + D'pi(Dp),)

L=2
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^n*I n*I , ^, -o. + -Í=f--'p +D(pE")+ ) DJpi, pi€P.
j:-z J J

This proves the general result given by (23).

InIe recall that Der (P) is closed under right multiplication by

elements of P and under p-th powers. Therefore EP, DPpP, D(pEp-l) are

' in Der (P) . I^le also have

p-1

¡P - rPpP = D(pEP-tl * I oipi t p;€ p.
í=2

Since EP - OPpP is in Der (P) we apply our preceding result and conclude

thaË each pí = 0, i- = 2r3, . : p - 1. Hence

uP = (Dp)P = DPpP + D(pnP-l¡.

Exercise 2.3. Let P = Õ(pr, , p*): Õ of characteristic
t^Ppru, pi =Bi€0, [P:0] =pm<*. LetDbeaderivationinP/Õ such

that Õ is the subfield of D'constants (see Exercise 2.1). Sho¡v that

the minimal polynomial of D as a linear transformation in P over Þ is a

so-called p-polynomial of the form

m m-l
(24) Xp *grxP"' +...+g*"r gi€Õ.

Show that every element in the algebra S* (P) of linear transformations

in P over Q can be written in one and only one r^ray in the form

(25) 1oo+Do1 -f Daprf ...+o*-1, N=pmror€p.

Proof. Let us first consider the cìifferential equation

(yl*)to + çynm-l)t, + *yk*=0, k. €P andnotallki=0.

Suppose that this equation has more tha.n m soh¡tions in P and 1et

Yt. Yzt , Ymfl be m * 1 solutions, Consí.der the m f 1 linear
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equations

yi(Dmi<o +D*-rk, + . + r'r<)

and employ the notation of Exercise 1.3. I^Je obtain non-trivial

solutions for the ki if and only if the tr^lronskian

11-D-Dz- n*llv-.v-- - , y ,, | = 0. By Exercise 1.3, this
\ L 

'U 'D

[,lronskian vanishes if and only if yy:ypt . , Ym*1 are línearly

dependent over Õ. Hence there exist at most m linearly independent

solutions of the given differential equation.

pO\,\ief S .

Der- (P)

have

t t*-tr-ìo ¡-nHo + +DP a , , â. €P"ootua1-m-tL

is a derivation in P over Õ. More generally t

T=1'oo+Dot *Dzo"*. +O*-to*-r, N=p*, o.€P,

ís a linear transforination in P over 0. We have seen in Remark 2.7

that [pr, , p*] is a p-basis for P over Õ. Hence the pm

mnn^mr'rl" ^ 
kl 

^ 
k* o < L { n Farm n h:qr'c fnr Þ nr¡prrLrurrurrrrdrÞ pr . . pm , v -< k, < pr form a. basís for P ove:-

Þ(pp) - O. choose D such thar o.D = Àroi., Ài = piP € Õ. Then, as in

Êuar¡4ca ) I i6 M íq :nr¡ mononli¿f Of the abOVe fOfm, M.D = Þ:M;rtt ^'j ^"'' --j- *j'.r

u,, € PP t Õ, þ, = 0 if ancl only if M. = 1: and ¡1,-. I u, rvhenever í # j.'J J J T J

If the transformation T = 0, then (T = 0 for all g € P. In particular,

¡c F tel¿ac nn t-\s values of each If., we obtain the N linear equationS

(M.)T = 0, i = 0, L,2, , N - 1. As in Exercise 2.1, we note

Inle next recall that for p + 0, Derr(P) ís closed uncler p-th
,

Hence D, DP , DP , are derivations in P over Õ. Since

is closed under right multiplication by elements of P, we now
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that I"l .Dr = *¡t*:. Hence \./e may write the above N equations as

(*j.1)oo + (pjMj)o1 + . * (,rjN -t"rroN_1 = 0,

j = 0,Tr2, , N - 1.

Since pj # t r- whenever *j # *r, the determinant

% pa% ** -tob 
I

M ,, M N-
"1 Plr'rl P'I

::

M r M N-l"N-1 trl-t'\-t hl-t I,t--N-1

N-1
T-T M 11 t' , - lJ:) I O for d'í crinnr M This means that each- tlO 'f iii 1[ii J ursL]-ncL \' rn

oí = 0, i = 0, L), N - 1, whence 1, D, D2, ., DN-l rru

right linearly índependent over p. Therefore l, D, D., , DN-l

is a basis for so(P) over P (cf. Jacobson 19], p. 20). Hence every

element of J^(P) can be written uniquely in the form (25).

since the set lL, D, D2, , ¡N-1J consists of right rinearly

independent elements_over p, therefore the set

[n, rP, , oo*-tJ e [1, D, D", . , oN-l] also consisrs of

right linearly independent elements over p. coro1l_ary 1 of Theorem

2.4 implies that [Der-(e):r]* = Therefore [n, nP, , DP*-t1 i"

indeed a basis for Der, (p) over p. tr^le sha11 call D a generator of
m

Derr(P). Since DP is derivation in p over Q,

-fl ^m-1 ^m-2Dt' = DH b*_I * Dn b*_2 * + Dbo

for fixed b- € p. Observe that
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-k L VlD'ì. . Dl = (D"b. )D - D(D"b. )
NÃÃ

k k. 1r V= (D'Ð)b. + D"(b.D) - (DD")b. = D^(b.D).K k k 'k'
m m_l

;, ï,':' .':0,'oll-, 
=".: 

i,,:' ;,"i":;'1"1";";.""1 "i..'], 
"::";'""'

(b,D) = 0. Hence each b, € 0. Write b. = - B. and conclude that the-1 1 l_

minimal polynomial for D is as given by (24)

We shall norv derive an analogue of Lhe normal basis theorem for

separable normal extensions. We recall (cf. Jacobson [9]: pp. 40-41)

that a field P/Õ is finite dimensional Galois over Õ if and onlv if p

is a splitting field over Õ of a separable pol_ynomial f(x) € 0[x]. In

the latter case we call p/Õ a normal extension. Let p/Õ be finite

dimensional Galois over Õ with Galois group C = [s1¡ s2: . , "r].
If p € P, we call the images psi ,rrlder s. € G the conjugates of p in

P/ó. If [P:Þ] = n and [0"t, "í € c] is a set of linearly independenr

elements, then the set [0"r, O]", , p"tJ forms a basis for p over

0.i Such a basis is called a normal basis for the Galois exl-ension. We

call an extension field P/0 cyclic if it is finite dimensional Galois

and its Galois group G is cyclic. l^le next recal'l rhe fol lowíns result

for finite base fields Õ :

Any cyclic extensionp/Q has a normal basís ove_r õ lcf- Tacobson

[9], p. 61).

Tn n¡rf r' ¡-,1n-
--- r -- -*-ur4! J

^,,-'^&^ ^* ^1^^^-f ¡ Çç^IÞLù dr¡ ç!çtltçIl" p !

basis for P/Þ.

"^ ^L !L^s íf - i- - Â^ñ^É4J-nr nf C Êlrarawç uuÞçtvç LrrdL, II 5I5 a g3rÌgI**__

^ ^n-lP such that I g, p- , . , p" ] is a normal
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Let P = Õ(pr s pes pm)r 0 of characteristic p t 0,

pio = yi € O, [P:Þ] = p* < æ, and D be a derivation in P over Õ.

can assume (see Exercise 2.3) that Õ is the field of D-constants,

whence D is a generator of Dera(P) and satisfies
m m-l m-?

DP =ol gr+DP gr+ *oÊurr gr€Õ.

T* +r-: ^ ,.P* ..P*-lo --p*-2rn Enrs case, x' - x' 9r - xr 9z - xp is in fact the

polynomial of D over Þ (see Exercise 2.3).
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I^Ie

minimal

Suppose (yt, yz, . : y¡), N = p*, is a basis for P over Õ

and (yrDt yBD: . , y¡D) is an ordered set of vectors in P defined by

N
\-

Y.D = ) a..v.-r lJ Ja-l
Í=1

As elements of P, each

combinations of yy s yp t

uniquely deternrined by

aôf la7- ll 1r ll

' 

Jó

, ãr, €Õ , L=Lr2, . rN.Jr

yrD ís represented in a unique manner as linear

' , YN . Therefore the matrix 6 = (a..) is

the basis (y7 , yp, . r y¡) and the ordered

yND) . tr^ie observe

= (Yr, . , Y¡)4. Let us call A the

that (yrD, r y*D)

matrix of D relative to the

basis (y., ., y¡). If f(À) is the characteristic function
lr - -llA - f f l, then by the Hamilton-Cayley the-orem, f (D) - 0. This shows

that the minimal polynomial of D over Þ divides f(À). Since f(tr) ís also
_m .m-1of degree pm = N, vre must have f([) = ÀP - trp'^' gr - trB*

This shorvs that the characteristic function and the minimal equation of

A are identical. We norv have the matrix A is similar to the so-called

¡nm^ ânr' ^ñ ñâ tr" v nf f /t1 \ oj r¡an hconì.parrl(Jrr r]!a!l rå v+ + \/\/ Þ- , *.. Jy
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00

I
1

'm

B_

10

with lrs in sub-diagonal and Ors elsewhere except the entries in the

N-th column corresponding to the coefficients of porüers of tr in the

characteristic function In - ¡. Il = f(f). Let (2, z2s . , ,N) be

a basis for P over ö such thaÈ B is the matrix of D relative to this

basis. We observe that zD = zz, zrD = 2", . , zN_l_D = ,N . Hence

P has a basis of the form ( z, zD, ,D" , , zDPn-l, .



SECTION 3

Let P be a field extensíon which is purely inseparable of

exponent one over ö with characteristic p # 0. As before, we 1-et

Der- (P) denote the set of derivations of P over 0. We recall thato-

Derr(P) is a restricted Lie algebra of linear transformations in P over

ö ¡ná thnt Tlor t'Þ\ r'q 4 rr'ohÈ rra-gfgf Spaçe OVer P relatiVe tO fightÉl+qÚ 99+õ \l /

multiplication Dp = DpR, p € P. In this section we shal-l consider

derivatí-ons in P as a ríng 8(P) of endomorphis*sl D of the additive

group (P, +) wirh rhe condirion rhar (po)D = (gD)o + p(oD), pro € p.

trIe now suppose that Ð is a set of derivations in P with the

following closure properties: (1) Ð is closed under addition. (2) Ð is

closed under Lie commutation [D' Da]. (3) Ð is closed under p-th

po\¡¡ers . (4) Ð is closed under right multiplication by elements

pg., P € P. These four condi-tions imply that Ð is a subspace of the

right vector space of endomorphisms of (P, *).

Definition 3.1. Any set Ð of endomorphisms of (P, *) which

satisfy conditions (1) to (4) will be called a restricted P-Lie algebra

of endomorphisms of (P, f) .

Remark 3.1. It should not be inferred thatÐ is an alqebra over

P as a base field. To this end, we shal1 shoiv that the relationship

[Di, D?]p = [Dr p, Dz] = [Dr, D?p]

lcf . Jacobson [7 ] -, pp . 7B-80 .
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does not hold for e'l 1 ¡ tr P.P \ r.

Proof. [D' D"]p = (DrDp)p - (DaDr)p = Dr(Dap) - D"(Drp)

[Drp, DzJ = (Drp)De - Dr(Drp) = (DlD?)p - Dr(pDp) - nr(Drp)

[Dr, Dzpl = DrDsp - DzpDr = Dr(Dpp) - D2(Drp) - Dp(OD1)

It is now clear that this relationship holds only if

lt(OD2) = Dp(pD1) = 0. In thís case p € C(Ð) the constant field of Ð

which is properly contained in P.

Theorem 3.4. (Jacobson). Let P be a field of characterístic

p * 0 and let Ð be a restricted P-Lie algebra of derivations ín P such

that [Ð: P]R = fr ( -. Then: (1) íf Þ is the subfield of Ð-constants,

then P is purely inseparable of exponent I I over Õ and [P:Þ] = p*;

(2) if D is any derivation in P over Þ, then D € Ð; (3) if

(D, , , D- ) is any right basis for Ð over P. fhen rhe sr"r rlf\-I ' 
- t -m'

monomials Dr\ . o*i*, O s ki ap, or_o= 1, is a right basís for the

rine S.. (P) of linear transformations of P over Õ considered as a ri.eht

vector space over P (Jacobson l9l , pp. 186-188 ) .

We next observe that the author [9] gíves the follorving proposi-

tion as an exercise.

Let P = Õ(prr, g*)r Õ of characteristic p # 0,
p^mgi'= 9, € Þ, [P:Þ] = p . Let Derr(P) be the set of derivations in P/Þ,

I{ }ra ¡ c'rlrq-r ao ¡f l.ha rí oht- r¡e¡t-^¡ cñ.^o Tro- /Þ) over p which is"'-0 t-

closcd rnder n-fh noruers- Prnrzc that 3 is also closed uncler commutation

so 3 satisfies all the conditions of the above theorerrr (cf. Exercise

4, p. 190) .
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The possibilíty that one may delete Lhe assumption that Ð be a

Lie subring of Derr(P) is answered by M. Gerstenhaber [2], p.56L. The

author [2] points out that if v¡e define a restricted subsPace of

Der (P) to be a subset which ís a vector space over P and which is

closed under p-th powers, then one may make Ehe following claim.

Claim. If Ð is a finite dimensional restricted subspace of

Der (P) and if Õ is the subfield of Ð-constants, then Ð = Dero(P).

The author l2l then remarks that it follows a posteriori that

Ð must be a Lie subring of Der (P).

LeE P be a field of characteristic p # 0 and Der (P) denoËe the

set of derivations of P into itself. Given a derivation D in Der (e) ,

denote the constant field of D by f . We recall that PP c I for all D

in Der (P) and that if a € P, a f. f, then [f(a): f] = P. Suppose that
t-1

a € P satisfies aD # 0. .Then setting D = Da(aD) -, we have

aDt = (aD)a(aD)-t - ^, since P is a field. Let us denote the constant

field of D/ by i-' and choose an element b Ç P, b { a. Then

bD/ = (bD)a(aD)-l vanishes if and only if bD = 0. Hence I- = l/.

Next, suppose that for some D ín Der (P) and arb in P we have

aD = Àa: bD = pb, Àrp in f :, Then

(ab)D = (aD)b + a(bD) = Àab * apb = (¡ + ¡-r,)ab

since P is a field. '[^le also have

lD=0=(aa-)D
-1 -1 -1 -1

= (),a)a t -f a(a -D). Hence a *D 
= - Àa -.
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Tt is now clear that if arD = trâr and arD = traa, À € f, then

/a.\ -1 -t a.(;_) D = Àarae - atÀr, - = 0. That is, =a € f .\42/ ' ç a2

Therefore the set of all a in P such that. a¡ = À.a., ¡. € f , is eíther

reduced to the zero element or is one-dimensional over f.

Lemma 3.1. Suppose D is in Der (P) and a * O < P such thaL

rD - r. Set D' = DP - D. Then f' = f(a).

Proof. Since aD = a implies aDP = a, it follows that aD' = O.

Therefore f/ : f(a). It remains to prove Ëhat f' c f(a).

'Set f(t) = tP - t. Since i:he formal derívative f'(t) of f(t)

does not vanish, f(t) has distínct roots 0r1, . s p - 1 in Zn tlne

Galois field of p elements. Therefore f(t) = t(t - 1) (t - p + 1)

over Zn. Define polynomials f.(t), i = lrL, . ¡ p - L, of degree

p - 1 in t by ttre relation f.(t) = f(t)(t - i)-1. It is clear that

f* (i) t 0 and f, (j) = 0 if L + j. Suppose thatl-a

\- \-
)c-f-(t)=0,c_.eZ_. Then )c-.f,(j)=0, j=O,L, .tp-- j..
Lr ]- t' ' L p :¡ 11'"'
ii

/\
Since det (f=(j)) = t f 0, each c- = Q. put othenvíse, the polynomials\ 1--,/ r

f.(t) are linearly independent over Zo. In particular, we have

\-r1 - ) c-f- (t) for suitable c_. € z . since \Âre are vierving derivations.r 11 1 D
i

in P as elemcnts of the ring f.(p), \üe can rvrite

¡P-r = D(D-1) (D-p+1)ínc.(p). rf b€frr

b(Dp -D) =0 =u(n(¡ - f) (D -p+1)). This canbewrirrenas\ '/
bf, (D) (D - i) - 0. Settíng bf_. (D) = b, , rve obrain b_. (D - i) = 0,t-' . " i. i' - -'--- -í\-
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i = 0r1, . , P - 1. It is also clear that
í i í í-1

rt(¡ - i) = rtD - "ti = ial-t(ro) - ial =0. Hence, for afo Ç.p,

(u./'i)(D - i) = b.(D - i)'-i - or'-"("í(o - il) = o.

lhis shows that

(¡./ai) (D - i) = (b.l)a-i - ib.a-í - or^-"("io - i"i¡

= (b . o) a-i - o ru-"( rio)

i
= (b. /a^)D = 0

Therefore b./^L €f andsob. €f(a), i=OrL, : p - 1. However,

l-\-
f t.CO>"í = 1 for suitable c. I Zp. Hence | "ibi = b, thus shorving

that b € f(a). This proves that f' c f(a).

Remark 3.2. If [gl, , 9*] Ç P and Dr, . , D* in

Derr(P) are such that, for 1 I i, j 3m, giDj = ôij the Kronecker delta,

then B, , . , B* are p-independent and D1 ¡ . , D* are right

linearly independent over P. Moreover, if [P:O] = pR, then

(Dr, . , D*) is a right basis for Derr(P) over P, and

(9r, 9*) is a P-basis for P over Õ.

Proof. l.t us write B = [9r, 8*J and denote the set

[8, , ' t 9i-1, 9i+1, B*J by Boi ' Tf B-r , B* are not

p-independent, then B. e Õ(Bg.). It is clear that for all

p € O(ugu): pD. = 0, since g'Di = 0 for each g'€ ugi. This implies

(in particular) that B.D. = 0 which is contrary to our hypothesis that

giDi = 1. Hence ß.'', 9* are p-indepenclent.

Secondly, let us consider the derivation given by
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E = Dro, * . . . + D*o*, o. € P. If E = 0, then yE = 0 for all

y € P. Tn parËicular, piE = 0 for each i = Lr2t ., m. Thís

inrplies that ($iDi)o, = 0 for each Í = Lr2, . ; il. Hence each

-n^-Jo. = u and, consequently, the D. are right linearly independent over P.

- We rrext assume that [e:Þì = pm. It follows directly from

Remark 2.7 thaL (01, 9*) is a p-basis for P over Õ. By

Corol-lary I of Theorem 2.4 [Derr(P): t]* = Hence (D1 ¡ . , O*)

is a right basis for Der, (P) over P.

Given D in Der (P), let ((D)) denote the smallest restricted

subspace of Der (P) containing D. We have seen Ëhat Der (P) ís closed

under addition, under right multiplication Dp : DpR, p € P, and under

p-th porvers. Hence ((D)) is the set of all derivations of the form

Dpo + npp, + . follows immediately from the fact (cf. Exercise

2.2) rhar

,* .p -p(26) (Dp)' - D'o, * Dc, for suitable o,o" (. P.

i Lemma 3.2. If D € Der (e) and pr, . : 8* are p-independent

over I the constant field of D, then there exist Di: . D* in ((D))

q,rnh thrf Ê Tl = ô,r. (These D. are righf linearly independent over P,*"** vi-j .r J

hr¡ Ra-rrl ? 2l

Proof. It is clear that, for example, pzD # O. Otherwise, rve

would have $, € l, whence ge € t'(BirÊs, B*), thus contradicti¡g

our hypothesis that g, , , 9* are p-independent over f. Hence

-1 -1
SeD has inverse ($zD) * in P. Set (9"D) -9e = a € P. Then

B2(Da) = 9p. Next, llrite (Dr)p - Da = D/ rqhich clearly belongs to



((D)). By Lemma 3.1, we see that the

Since Bs É f (fÞ), \^Ie can construct D//

such that the constant field of D" is

process f.or a finite number (= m - 1)

/1OI

consrant field of D' is f (Fb).

in ((D)) (see relatíon (26))

f (82 , 9"). tr^Ie can repeat this

of times until we obEain D* in

- ((D)) with constant field f (9a, Ês, . , Ê*). Since
_^L

h Êl (ge,9s, 9*), we must have È.D = Àr * 0 in p. Setting
J,- -1D"tr, - - Dl, we obtain $rD, = 1. It is clear that, for p l 0 in e, the

consËanË field of D € ler (p) coíncides rvith the constant fíe1d of Dp.

This follows inrnediately since cDp = (cD)p = O if and on1-y if cD = O.

lle have therefore constructed D, € ((D)) such that p.D. = 0, í + I.

We can repeat the above construction for a finite number (= m) of

Ëimes by changing the choice of the p and so obtain derivations D.
J

satisfying the given condition.

Corollary. If f is the constant field of D € Der (P), then

[P:f] is finite if and only íf t((D)) : Pl* is finite, and in that

case ((D)) is the set of all derivations vanishing on f. In

particular, ((D)) is then a Lie subring of Der (P).

proof. since pP s f, íf [p:f] = [p:f(pp)] is infinire, rhen

the dimension of a p-basis of P over f is infinite. By Lermna 3.2, we

then conclude that I((O)) : PiO is infinite. On the other hand, if

¡f:fl = pn and (81 ¡ , Brr) ís a p-basis for P over f, then

[Der,-(P):Pl = n and the Dr, . , D- of Lemrna 3.2 forrn a right basis-1 'n

for Derr(P) the Lie ring of derivations of P over l. trnie now have

((D)) contains a basis over P for Derr(P) and ((O)) E Derr.(P).

Therefore ((D)) = Derr(P).



Given DrD' in Der (P), let ((DrD')) denote the

subspace of Der (P) containing both DrD'. Denote the

of DrD' by f ,f ' respecEívely. If D" ís an element of

íts constant fiel d by l" .

' Lemma 3.3. Given DrD/ in Der (P), let Èi r 92,

elements of P which are p-independent over f, and let y 6 ¡

yot * O. Then there exists an element D" in ((lrD')) such

tu,

[((DrD')) ' p]n is finire, rhere exists D" in ((DrD')) such

l" =T f^l f'and ((D")) = ((DrD')).

Proof . By Lemma 3.2, there exist D, s Dz: . , D*

such that B.D- = ô_.,. Since each Tl iq n rr'oht |ins¿r com
r r "ij - ---" -i

P of p-th porÁrers of D, $Ie must have yDi = 0, for each i =

Let us consicler the derívation u = (o' - (Dro, + . + D

p, o, € P. If yE = 1, wå must have (yn')p = 1, that ís, p

If $.E = O, i = !, 2, . t frt \¡7e must also have (3.D'
iJJ

Sínce p 10, o j = rjD'. Let us then define E in ((DrD'))

E = (o'- (Dror +. +o"g*))(yn')-1

' ^ ^/vrhêrê .r = ft t) and So yE""--- "j vj*
f a o -,J c p andLPI , ' um, /

c,rnhr-la2l.AE=0:yE=l""** vj*

Remark 3.2, p'., 9¿,

field of ((DrD')) and D],

that

D))

on over

P:
,l -1

= Q. We now have a set

D,, . rD-rEin((DrD'))'m'

BrD* = ô_.r. Therefore, by
J I TJ

p-indepenclent over K the constant

F. ara ri oht P-i ndanpndoni Hpnr-or rbr!e
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smallest restricted

constant fields

((D,D')), denore

.Ê be,-m

satisfy

that

in ((

binati

1)

o ))mm./

= (yD

- o.)o
l

by

= 1 and B.E
J

derivations

and yD. = 0,-1

.ß.vare

..D

.. \-D"=)D
1¿
i

,À, * EÞ, prtri € P is an element of ((DrD')). Since E is a
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right P-linear combination of D', DL, . , D*, \¡Ie can v¡ríte

çrt
D" =.),or-or*Dcv s dt cv. €p. Byrelation (26)t

i
^\-lñ,-\-rl(D')p = Y (o.oi)p * (D'cv)P = Iornyi +Dipi *D'Py*D'p, for

ii

suitable yi: y: pit p in P. Since every element of ((D")) has the

form D"v6 + (D//)pvl + . t it is now clear that ((1")) c ((DrD')) '

By the corollary of Lenrna 3.2,l/' ís the constant field of

((D")). It ís cl-ear that f/' c K the constant fíeld of ((lrD')). Since

ft,, 9*r y are p-independent over K, it now follows that

9r , B*r Y are P-indePendent over l" '

Since, by assumption, ((DrD'¡¡ has finite dimension over P,

there exists D" in ((DrD')) such that the dimension of (D")) over P ís

maximal . \^le now claim that l" = f f^ì f '. It is clear that if

a € f ll f', then aD/ = 0 and aD. = 0: i = L, 2, ., m' Therefore

aD" -- 0, whencef nf'ç1". rf l" +f [ìf', there is an elementyr in

¡" whích is not inf n f'. I¡iemustno\ùhaveyrD +O 6r YtD'*0,

Without loss of generality, assume that YtD' * 0 and let

XI, . x' be a p-basis for P over f". Therefore [P:l-"] = pn and,

consequently, there exist D1 r . , D' in ((D")) such that

(Dr, , Do) is a right basis for ((D")) over P. We can nor¿

construct a ne\^/ D". caIL ít E" , such that xr, . r xrrr Yl are

/1\
p-independent over f\'/ the constant fielcl of E". llence

I <t ñ+t
¡e:f\t'f ,- p"-' and the dimension of ((E")) over P > n * 1. This

contradicts the maximality of ((D'l)). I^Ie must therefore have

l" =l n f'.
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By the Corollary of Lemma 3.2, ((D")) is the set of all

derívations vanishing on ¡". Since ((DrD')) s o.tf fìI/(P), 
((DrD'))

vanishes on f fì f/. Thus ((DrD')) vanishes on f", whence

((DrD')) c ((D")). we have seen that ((D")) c ((D,D')). Therefore

((D')) = ((D,D')).

Corollary. Let Ð be a finite-dimensional restricted subspace of

Der (P) and Q íts constant fíeld. Then there exists D in Ð such that

rhe constant field of D is Q, whence ((D)) = Derr(P).

Proof. Let Dr, . , D* be elements of Der (P) rvhose constant

f 1 ì ,.(rn)fields are lt"', . , r respectively. I^Ie shall assume that

((Dr, , D.)) is fínite dímensional for each i = L, 2, . , m'

In particular we sha1l write Ð = ((Dr, , Dm)). trnle have seen ín

Lemma 3,3 that there exists an e1-ement E2 in ((Dr rDa)) such that

((Ez )) = ((Dr, D¿ )) "r,d f(1) n f(2) = K(2) the constant field of E2

Norv ((DrrD2 rD")) is finite dimensional implies that there exists an

i

element E" in ((Ez ,D3)) = ((Dr rD" ,D")) such that

((EB)) = ((Dr ,D " ,D")) and f 
(3)n K(2) = K(3) the constant field of E".

Continuing in this \^iay, \.^/e can construct D = E* itt ((E*-1, D*)) = Ð

such that ((D)) =Ð "r,¿f(l)n .nf(*) =ç(*) the constantfield

of D. By hypothesis, the constant field of Ð is Õ. Since ((D)) = Ð¡

\¡re must no\^/ hovu t<(*) = q. By the corollary of Lemma 3.2, ((D)) is the

set of all derívations vanishing on Õ, rvlience ((D)) = Dera(P).

Theorem. Let P be a field of characteristic p # 0, Ð a

restricted subspace of Der (P) and Õ be the constant field of Ð. Then
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[P:Õ] is finire only if lÐ:pJ* is finire and in rhis case

Ð = Der, (P) . Moreover, Ð is then a Líe subring of Der (p) , there is an

element D inÐ such that the constant field of D is Þ, and for any such

D rrre have Ð = ((D)).

Proof. T¡Ie have seen in the corollary of Lemma 3.3 that the

constant field of D is Õ, thar ((D)) = Derr(p) and ((D)) =Ð. Sínce

((D)) is fínite dimensional over p, by rhe corollary of Lemma 3.2,

[P:Õ] is finíte and ((D)) = Ð = Oerr(p) a L;e subring of Der (p).

Let Õ be a subfield of p with characteristic p + o, Ð " finite

dimensional restricted subspace of Der (P). We shal1 denote the constant

fields of Ð, Derr(P) by c(Ð) and c (o"r.{r)) ."rpecrívely, and indicare

correspondence between subfíel-ds of p and restricted subspaces of

Der (P) by * . rf Õ is the constant field of Ð, from the theorem we

obtain the correspondence

o -n Derr(p) * c (rerr(r)) = cls¡ = Þ,

Ð -> C(Ð) -' Dera,U, (p) = Der, (p) = Ð.

This is the type of Galois correspondence ivhich \de set ouE to establish.



SECTION 4

Definition 4.1" Let tl be a subalgebra of

_ (m) r.-Then a sequence of mappíngs D'--' = tDo=I , D1 : .

called a higher derivation of rank m of QJ into E

Õ -l-inear and

¿(27) (ab)D. = ) ("D-)(bD;-r) : J = 0, r,
' i='o 

r J-r

a,b€?J. Ahig is

[Do=1, Dr, . . ] of linear mappings of 1l into

holds for all j = 0 rL 12,

It is clear that if [Do, Dr, . . ] i"

infinite rank, then the section [D¡, D1 ., . t

vatíon of rank m and any section [no , Dy,

õlxl whr"re x ís transcenclental ancl 1et D. ber L¿Lr i

whose effect on the basis (I, x, x2,

m-1

an algebra t over 0 "

",DJof lJintoS'm'

if arrarr¡ T) ie__t "í

, m holds for every

an infinite sequence

E such thar (27)

a higher derivation of

I I is a hieher deri-
m'

. D l. c lm. of the
/ 

^¿ 
t L

Y

the

. ) l-s

IS

higher derivation [Do , DL, , D*J is also a higher derivation" If

\.{e set j = 1 in (27 ), we obtain

(ab)D, = (aDo)(bDr) + (aDr)(bDe) = a(bDr) + (aD1)b.

Hence Lhe mappíng Dr is a derivation of 1l inlo E since every D.

lm)
assumed to be e-linear. We say that D\"'/ is proper if D1 # O.

!Þ

Let 2J =

linear mapping

given by

r n lll

\i/

/m\
\i/

/m\L15
\ a,i

( 2B)

where

m_X U.
I

usual binomial coefficient,

66

the 0if i>m. Then
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j
nnr-j f fql"\= x L \i/\i-i,¡

l_=u

/n+n\ m*n- i nrl-n*= t j / " - = x ui

Hence [1, Dp Dz, ] is a higher derivarion of infinite rank in

ö[x].

If Õ is of characteristic 0, then (28) shows thar
'mi!x"b_.=m(m-1) (m-i+1)xm-l (i! =L.2.3 .i). serI.

f(x)n, = f '(x) the formal derivarive of f(x) € Õ[x]. Then i!D. = Drí

or, equivalently, D. = å ort. llore generally, íf a, b €A/ø, Õ has

characteristic 0, then the relation (8) gives

nj 
j 

'
reh) :-. = i fd\ ,¡¡¡J 

t-l
\*"/ :r a, \i!/ \(j-i)!/J: 

i=o

Hence, if Dr is a derivation in ?J and D- = å nrÍ , then
I LI '

[1, D, , Dp, .] i" a higher derivatíon of infinite rank inlJ.

In Section 1 rve discussed a connection between derivations D of

?J/Õ into S/Õ and homomorphisrns s = s(D) of lJ inro Ð I g where 6 is an

algebra rvith basis (1rt) over Õ with the multiplication rule te = 0.

rn the case of higher derivatioris rùe shall introduce an algebrr g(m)

r,/ith basis (1, t, t*) over Þ such thar t**1 = 0. rt 1**+1¡ is

the nrine-inn1 i dr,:l oenar:tad hr¡ --m*l ^--^.- t -r.^- ..'^ nan i.{^-f .i a,, ç(*)ru-e+ *--* -J' x over Þ, then \üe can identi,y o
m*l . ^-l*) /-)\,rith Õ[x] /(x"''-). Construct the algcbra g 61 5\r"/ = g\rtt'r. If

^(*) rrD' = ll, D1 r , D*] is a higher derivation of rank m of 9J inro

S, introduce the mapping s = s(tm) of U into $(m) defíned by
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_. a:: 
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(2g) a + as = a + (Ðr)t + . . + (al*)tm.

Since each D- is Õ-linear, s is also línear. We havettmmj

""b" = I (aD-)ti I (bDL)rk = t Y (aD-)(bD._,.)rj
{J-.^]-LKJJ

i=0 k=0 j=0 i=0
m
\-a i

) iu"r¡o.tJ = ("b)"
.u^ J
J=u

This shows that s is a homomorphism of 9J into Ð(*) . I^le next

introduce the mapping TT : ao f ait + . . . + "*a* 
-t 

"o : a. € S. This

l-)
mapping is clearly a homomorphism of E'"'' into Ð rvhich is the identity

on E. It is also clear that ."t = a for every a € QJ and that thi.s

reoui re-r'nent srlararLt.ees that s is 1 - 1"

l*\
Conversely, let s be any homomorphism of li into E'^"' such that

asfr = a, for all a € ÐI . Then rve rvrite
S / ñ \.a- = a * (aDr)t + . . + (an*)tm. we noru c1aím that [1¡ D1 : . , D*J

r'e e híohpr derívation of ?I into E. This follows immediately since s is

linear implies that every D. is linear and r.re have

"b" 
= I (ar.)ri I çulu)rk

i=0 k=0
a$¿

= ) )_^ (aD.)(bDj_i)ri
j=0 i=0

"Ë.= (ub) " = ) Irl¡n. rJ ,
:in J
l-u

implies the relaríon (27) .



Similar considerations apply to higher derivations of

infinite rank" The place of 8(*) is norv taken by the

algebra EI I tl I of power series
(30) ao*arti-a"Lz+.

1

where the a- € S (cf. Vol. I, p. 95) "*L ...

Defini tíon 4.2. If IDíJ is a higher derivation of rank m (possibly

infiniEe) of 8l into S, an element c € !I is a constant relative to [Dr]

ifcD.=Qforalli>1"
a

We shall often refer to constants relative to [Or] símply as

fD.J-constants. We observe that if c is a [l=J-constant, cs = c (and
'i'-L'

conversely) for the homomorphism associated with IDr]. Let

cl r c" ( çü/e, ue [Dr] -cons tants . Then

(cr +c")"-"r" tczs =c' *cps (crc")"=cr""a" =cyc2:

and, íf cv ( Þ, (", {o."))" = "rt {.0"n) " = "r 
(ocr). Moreover, since

ls = 1, the set of [n.]-constants form a subalgebra (with identity) of

the algebraÐJ/Q. In particular, if !J = P is a field and b l0 in P,

Ëhen ("b-1)t = ""(u-1)" = ""(¡t)-1 = "b-1. Therefore the set of

[n.J-constants form a subfield f of P. It is clear that f 2 Þ since

cvD. = (1'ø)D. = 1 D.cy = 0 for a1l cv € Þ.al_1

We suppose noür that P/Þ is a field of characteristic p I 0. Let

E be a subfield of. PIE "r,d l.t o(*) = [], Dr, , D*l be a higher

derivaLion of ranlc m of E/Þ into P/Õ. In general, if

0 = Di - D? . = Dq-1, but Dq t 0, we shal1 say thut l(tn) is of
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order q. In this case, the associated-homomorphism

7l

s = s(o(*)) of E/Õ

into P(*) h"" the form

(31) 6"=6+((Dq)tq+((Do..r).q+l + +(61*)t 
'

where 6OO I 0 for some ( in E. We shal1 use this to prove the

following theorem (cf. Jacobson [9], p. L94).

Theorem 4.4. Let P/O be a field of characteristic p I 0. Let

E be a subfield of. Y/ó, l(*) a higher derivalion of rank m and order q

of E/Þ inro p/Þ. Let f be the subfield of Dm-constants of E and let pe

be the smallest po\,/er of p such that pe > g. Then E is purely'q

ínseparable of exponent e over f.
e

proof . tr^Ie have to shorv that (p € f for every ( € E and that
e-1

there exists some ( € E such that 6P { f. The first part ís clear

from (31) since
Þ

rrPe\s - (r'\Pt = (r+rrl-J )rq+ . + lrD )r*\p-(ç' / = \t )- = \ç ' \g'q'- ts"m" /

I =6P"*{6ro)pttqo"* . +(6D*)0".*n"

eee
=6P , sincetqP = =tmP =0fo11or¿s

inunediately from the fact that qpt>*.r,d tk = 0 for all k>m. Thís

e
shows that (p € f. Let us now choose an element ( € E which is not a

Dm-constant. In this case, COr* O and

a -'l e-l e -'1 e-f
¡rP \s = rP + lfD )P- -rqP +\t- / - ç ' \buq,/'

+ CP since q pe-t < *" Hence (P
e-l

We shall no\,/ consicler a purely inseparable extension field
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P = Q(5) i¡here *Pu - o i, the minimal polynomial of g over Þ. Let

[nr] l. the higher derivation in the polynomial algebra Õ[x] defined by
(-e -r\

(28) and let D\P -1l = [1, Dr, . , D.,J b. the higher derivation' p--I'
of rank p" - 1 which is a section of this higher derivation [DiJ. Since

each D. € [D,J is linear, [*P" - cy]D, = *Puo, - ¡uD, - 0 - 0 = 0 forJ - T-- J J -- 
J

1 < j < p- - 1. InIe have seen that p = Õ(S) can be identified rvirh
ee

Otxl/(*P - ¡v) where (xp - a) is the principal ideal generared by
êg-êr.ê

xP- - cy and that 1 + (xP-- cv): . , xP--I + (*P-- ù then form a

basis over Õ for Õ(E). Moreover, if we write *Pt- o = h(x) and

f(x) € Õ[x] is arbitrarily chosen, rhen rhe defining relarions (27)

show that 
j

/\\-/\/| çl-,\ t/-,yr,,., ,,.*)) n. = )- (t,", ur) (r.,c"l o,_r)
í=0

/\
= ( f(x) D. J h(x) . This ímplies that this\ J/

principal ideal is mapped into itself by every D.. Hence every D.

induces a linear mapping, which we denote again ¡y Di, in p = Õ(E).

The conclitions in ö[x] for D; go over ro rhe 
"a*. "oiuirions (27) for

ì-) ín öttFl qr'nna
- i *^' f, \>/

J

m*n^X L)- =
J

- Ã l--,1r¡ Y L^] 4lt

in õ /F\r¡r : \>/

-fn^
-a

We sha11

J
\-mn
) (*"D, ) (x'Ð, 

_. )J t J-!
i=0

.d each D. is l.inear" Hence r,ze obtain a higher derivation
J

such that

/nr\ -m-i e -
\i/g ' 

m=0, 1, .,p--1

norv shorv that the subf ield f of IO. I -cot's tan r-s for,-í)

holds i

o 
(1" -t)

(32)
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z ê rrtn -t tDtv L/ is precisely 0. Suppose that 0 is properly contained_in I

(i.e., O c f). Then the mininal polynomial of Ç over I i" *p' - 9,
Í

B € f, f 1 e. In this case, Ep- e f. On the other hand, the definition
çF

(32) gíves Ep-l f. = I'+ O. This ís a contradiction since gp- € f implies
D

that gP D ç = 0. Hence Õ = I, since we already have I Ç f.
p-

trle next assume that P is a purely inseparable extension of Õ

givenby P =Pt 8P?8. . APr the tensorproduct of simple extensions

Pi = Õ(gi), gI"= cy. € O. Then P = Õ(Er, , Er) and the monomials

E.kr ( kt 0 < k. a o"t, form a basis for P over Õ. ïf rve set¿L -f

Þ. = Þ(5r, , Ei-l, Ei+l, , Er), then P = Õi(gi). By the above

argument, there exists a higher derivation of fínite rank in P whose

constants are the elements of Þ.. This statement holds for
t

í = ls 2t . s r. Hence it is clear that .!rÞ. = Þ is the subfield of

P of elements which are cons tants relative to all the higher derivations

of finite rank in P over Õ.

ca11ed

o(rn) =

(1)

i tera

Proof.

derivatior I l,

shorr' that D. D .1J

tuo=r
/i

J\

Remark

D.
1

t1

er
'i\

l

Defini t

i tera ti

S ince

Tlnurt "

/i1-
\l-

4.3. A high
/i+

- -t-j \ í
,D

m

D.,. for i f
I tl

The higher

1'I

a

DI

I

1.

o

I

j

1

t

+

J

4

derivation in 2l of infinite rank is

D. ,, , and a higher derivation1+a

of finite rank m is cal1ed iterative if

i1m, and(2) DíDi=0if i*j>m.

derivations defined by (28) and (32) are

fhe mennínss Ð dafined hw f28) constitute a hieher,.o" "i \ _v/

p, ] of infinite rank in Õ[x], r're have to

It-',) D.,,. Thís follorvs readily since/ L-rJ



la':.,,)a::a.-,

m! (m - i) ! m-i-j
í!(m - i)! jl(* - i - j)l "

= (i + j) ! m! _m-i-j = /i*j\ _\
i!j! (i+j)! (*-í-j)t'- \i/"-í+j

Secondly, the mappings D. defined by (32) constituts ¿ þjohar
(pe-l) ederivatiorl D'F of rank p- - 1 over Þ(E). It ís clear that

e$.t. = /*\ /-m-i^ \ /í+i\ m

- 1 J (.i/ \g- 
-'i) = \-t'/ E^'Di+j., as above' rhis implies

/l +i\thar D-D. = ('l')l_.,, , i * j <m <p" - 1. Since rhe fields of1l\r,/].fJ

constants ¡or o(n"-l) is Õ, \^/e must have oroj = O for i + j > pt - 1.

This proves that the higher derivations defined by (28) and (32)

are iterative.
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