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INTRODUCTION

Throughout our considerations we shall presuppose a knowledge

of the basic concepts of modern abstract algebra. 1In particular, we

shall presuppose a knowledge of vector spaces, rings and ideals,
elementary.Galois theory of field extensions, the construction
(intrinsic) of a temsor product of algebras as in, for example,

Zariski and Samuel [12]. Unless otherwise stated, we shall assume that
rings (subrings) are commutative with identity 1 # 0, and that algebras
are associative with identity 1 #0.

The first section deals with some properties of derivations and
gives their connections with extensions of algebra homomorphisms and
separable and inseparable algebraic extensions. In the second section
we introduce the notion of p-dependence and give further discussions
on derivation algebras. 1In both these sections, there are worked
exercises from Jacobson [9], some of which lead to results due to Baer
and Hochschild. We also derive an analogue to the normal basis

theorem. In the third section we derive a Galois type correspondence

between subfields & of a given field P which is purely inseparable

of exponent one over &, [P:2] < ®, and derivation algebras which are
finite dimensional over 8. 1In the fourth section we introduce the

notion of higher derivations (of finite rank) and examine briefly

higher derivations of purely inseparable fields P over &. We include
the case where P is a tensor product of simple extensions.

Finally, and without.-in any way making him responsible for the



contents of this work, I should like to take this opportunity to
publicly thank Dr. K. W. Armstrong most of all for the criticisms he

made and the encouragement I received during the preparation of this

thesis.
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SECTION I

Definition 1.1. A non-associative (= not necessarily

aséociative) algebra U over a field &, usually denoted by %/%, is a
vector space over & in which a product xy € ¥ is defined for x, y
in ¥ such that

(1) (%, + x)y = x¥ + XY, x(y, +-yé) = xy, + Xy

(2) a(xy) = (ax)y = x(ay), o €38

An algebra ¥ is called associative if its multiplication
satisfies the associative law

(xy)z = x{yz) , x,y, zin¥Y.
We recall that a sub-algebra of ¥ is a subspace of Y which is also a
subring. Observe that &[% , . . . , %], the ring of polynomials in the
n indeterminates %, , . . . , X, with coefficients in 2 is an algebra
(commutative) over &. For this reason, ¥[x% , . . . , x,] and
(%, .. , X,), the field of rational functions of &[x , . . . , %X;]

]

are frequently referred to as algebras over @.

Definition 1.2. A non-associative algebra U is called a

Lie algebra if its multiplication satisfies the Lie conditions
(3) £ =0, (xy)z + (yz)x + (zx)y =0
The second condition is the so-called Lie-Jacobi identity.

Definition 1.3. 1If U/® is a sub—aiéebra of an algebra B/%, a
derivation D of U/& into B/% is a mapping of ¥/3 into B/® such that

for x,y in ¥, ¢ in & ,



(4) (x +y)D=xD + yD, (xx)D = (xD)x

(5) (xy)D = (xD)y + x(yD).

Condition (4) states that D is linear. If Y = B, then we speak of a
derivation in B or a derivation of B into itself. The mapping of the
polynomial algebra 3[x] into itself given by £f(x) =+ £'(x) the formal
derivative of f(x) is clearly an example of a derivation in ¥[x].
Let Der@(ﬂ,%) denote the set of derivations of %/% into B/3.

Then D € Der@ ¥ ,8B) is a linear transformation of U/3 into B/3
satisfying the special condition (5). If D, D,, D, are linear trans-
formations of /& into B/%, x €YU, o € &, define D, + Dy, Dy, D; I
respectively by x(D; £ D) = xD; £ xD, x(Dx) = (xD)o , and

x(D D) = (xD,) (D). Thus D % Dg' , D, and DDy, are linear ﬁrans—
formations of %/& into B/§. In particular, if D, ,D, € Dery o ,®),

%,y €U, o € &, we then have

) (D £D2) = (xy)D + (xy)Dp
| = (xD)y + x(yD) * (xDz)y + x(yDz)
= (D £ xDp)y + x(yD; % yDp)
= {x(@, £0)ly + x{y(@ =01}
and
(xy) Dy = {(xy)Dle = {(xD)y + x(yD) o
| = {GED)yle + {x(yD)}o

= {D)oly + xf(yD)o?

= {x(Dw)}ly + =x{y(dx)}

This shows that D; + Dy, Dx belong to Der(.P @ ,8).



Remark 1.1. Take ¥ = B. Then we observe that Dy, D, £ D, are
derivations in B. However, it should not be inferred that D, D, is also

a derivation in B. Indeed, it is clear that

GO = (G} = D)y + x(yD,) D,
{G@oy)yIne + {x(p)in,

= x(D D)y + (xD) (yDo) + (xD)(yD,) + x{y(D,Ds)}

Hence (xy)(D,Dp) # {X(Dng)}y + x{y(DyD=)} for all x,y in B. In view
of this remark, we can say no more than Der (B,8) = Der (B) is a

subspace of £(8,8) = £(8) the space of linear transformations in B.

Definition 1.4. TLet U be an associative algebra. If
D, Dy, Do, . . . belong to Der U, then the Lie product or additive
commutat§r of D, and D; is given by [D,, D] = D;Dy - DDy . It is
clear that [D,, D;] belongs to £(). We next observe that the

following relation is satisfied
f T4 |
(6)  [D,D] =0; |[D,D], Dy + [[B,Dg], Dy + {[Dg,D1, By =0

The first part of the relation (6) is evident. The second part

follows immediately since

<

[(D1D2 - D2D1> g Ds]

[Dl:Dza]; D’J =
= (DyD; - DD )D; - D;(Dy D, - DyD;)
= D,D:Dg - DD Dy - Dy Dy + DyD,D,
.
L[_DE,DS], D,;! = (DoDy - DgD)D, - D, (DD - DyD)
= DpDgD, - DgD,D, - Dy D2 Dg + D, DgD,
(05,01, bw! = (DD, - ;DD - Dy (DgD, - D, D)
L .

1

= DyD; Dy - DDyl - DoDgD; + DD, Dy.




We next observe that

[D; + Dz, Dg] (D, + D2)Dy - Dg(Dy + D)
= DD, + D,Dg - DyD, - DyDy
= D,Dy - DgD, + DD, - DD,

= [D1 ;Dg] + [D2 )Ds] 2

[

[D, ,D; + D4l D, (D, + Dg) -(D; + Dg)D,
= DDy + DDy - DD, - DgD,

= [Dl;De] + [D1 JDS]

and  o[D,D;] (D D) - o(D2Dy)

= (aD;)D; - Dy (D) = [oD; ;D51
Since o(D;D;) - a(D,D;) = DlA(ozDg) - (@D2)D, = [D,,ab:] ,
we must therefore have
a[D; ,D2] = [oDy,D2] = [D,,aD2] for any o € ¢

We have already shown (cf. Remark 1.1) that
(xy) D;D2 = {x(D; D)}y + (xD,) (yDo) + (xD) (yDy) + x{y(D,D:)}.
Since this relation is clearly symmetrical in D1 and Dy,

(xy)DoD; = {x(DeD,)}ly + (xD2) (yDy) + (xDy) (yD2) + x{y(D:D,)}.

il

Clearly x{y(D2)} - x{y(@D)} = x{y(D,;D2) - y(©:D,)}
and be(ope)ly - {x@p)ly = {x(®% - D20}y

Therefore (xy)[D;,De] = (x[D,D:1)y + =x(y[D; ;1) .

Hence D, D, , Dy belong to Deré @) and o € & together imply that
D, £Dy, Do, [‘D.1 ,Do ] belong to Der@ @) . These observations lead to the

following definition:



Definition 1.5. Der % the set of derivations in the algebra

N is called the Lie algebra of derivations or simply the derivation -

algebra of Y.

Let D be a derivation in ¥ and x,y € %. Then induction on k

gives the Leibniz rule

k-1
M et = Ny + ) (e oo+ xeo®
i=1

where (?) is the usual binomial coefficient1 k(kl—zl) i ik -1 +.1)

Proof. Take DO = 1. Then (7) holds for k = 1 by definition. We
may point out that if D; = D, in Remark 1.1, the formula (7) holds for

k = 2. Let us now assume that (7) holds for all k <n. Since

i

(xy)Dn+l = {(xy)D}Dn = {(xD)y + x(yD)}Dn, we now have
D™ = {ED)y I + {x(yD)}p"
n-1
- @y + ) (De™ et + e e
. i=1

n-1
+ o + ) () eh oo+ @™
=1

= ~(an+1)y + i o™ (o™t _h)(@) * (hrjl» + x(yp™h
k=1

+
Since (E) + <h?1> =k<nhl> , we now have

This coefficient will be assumed to be a rational integer.



, n .
+ + + i +1 -
(xy)Dn 1 _ (an 1)y 4 E: (nil>(xDl)(yDn 1 iy +~x(yDn+l) .
i=1

Thus (7) holds for all rational integers k=1,2, « o o &

Tf the characteristic of & is 0 we can divide (7) by k! and

obtain. the relation

Kk k k-1 i k-i k
D XDy
(8) &y) 7 = (‘{k!) + E <}1d') >(}E£-i)!>+ X(i]!) ‘

o - |
(’f?i)(%%‘i;ﬁ | Sl

We shall now give a direct comnection between derivations and

i
o~

automorphisms. Let 9 be the polynomial algebra &[x] where & is a field of

characteristic 0. Let a derivation D in ¥ be defined by f(x)D = ff(x)

the formal derivative of £f(x) € ¥[x}. Comnsider the series
2
D D
G = expD = 1+ 11 + ET-+

I1f f(x) is of degree n, then f(x) Dn+1 = 0. Hence the series f(x)G

converges. We assert that £(x)G = f(x + 1).

Let us set f£(x) = aoxn + alxn-1 + agxn—z + .. .+ a 1% +oa
. .n n-1 n=2 ey
Then £(x)G = ayx + ax + apx +.. . ta X +oa
/n\ n-1 n-1\_n-2 n-2\_n-3 2
+oaoly)xF a1< L) ag( T an_2<1)x +a 4
(o n-2 n—l) n-3 /n-2\ n-4
+ ao\zjx + al< 5 )% +-a2\ 2 ) + + a

. toay



Rearranging the terms, we now have

/ - -
F(x)G = ax + aokgﬁxn L ao(;‘)xn 2 L+ a
+ alxn-l + a1<n£1>xn—2 + .. . ta +..
.« o . . + a,
n n-1
=a(x+ 1) +a(x+1) + . .. .+ a = f(x +1) € 3[x]

This shows that f(x - 1)G = f(x), whence G is onto.

Since the map D is lineaf, it is clear that the mapr is also linear.
Consequently, in order to show that (f(x) h(x))G = £(x)G - h(x)G, we need
only verify this statement for f(x) = x" and h(x) = xs, 0 £r,s. We

have seen that f(x)G

it

(x + l)r and h(x)G = (x + 1)S. Therefore

r+s

(f(x) h(x))G = xr+SG (x + 1) = f(x)G - h(x)G. Finally, we assert

that the kernel of the map G is the zero polynomial. Let

hix) = bmxm + . . .+ byx + by Ee an arbitrary non-zero polynomial of
degree m. Then bm # 0. Hence h(x - 1) = bm(x - 1)m + .

+ b (x - 1) + by, is also a non-zero polynomial of degree m. This

shows that the kernel of the map G is the zero polynomial. We have

thus shown that exp D is an automorphism of &[x].

Definition 1.6. Let @ be a field of characteristic p

(= 0 or otherwise). A restricted Lie algebra of characteristic p is an

algebra R, over ? in which the multiplication [x,y] satisfies

P

[x,y] = - [y,x]

[[X)Y];z:j + EYJZJ) XI + !j:z;X];Y:} =0 ,




and for every y inﬁip there exists an-element called yI)such that
p times
_ T N -\ _
L. o e e [Ex,y],y[, e e v ..yl = [x,yP] for any x €ER.

A restricted subalgebra Ré of Rp is a subalgebra containing
yp for‘every y ian; . Similarly we define a restricted ideal, etc,
It should not be inferred that this element yP is necessérily an
ordinary'p—tﬁ ﬁoﬁef since mﬁltiplication is not necesggrily associ-

ative. If p # 2, [x,x] =0 for all x € Rp and Rp is then a Lie

algebra.

Exercise 1.1. Let % be an (associative) algebra over & and
d € 9. Verify that the mapping Iyt a2~ [a,d] = ad - da is a

derivation in %. Such a mapping is called an inner derivation in %.

Prove that

| Idld1+ﬂéde = alldl + aéldg > O €% , and
|
! 1 = [I, ,I . Show that if & is of characteristic p £ 0
[dljd'Z] [le d2] 1 1 1 1 p7— 2
= p """
then I (Id)

Proof. Let a,b €% , a # 0. Then we have

It

(ab)Id (ab)d - d(ab)
= abd - adb + adb -~ dab
= a(bd - db) +(ad - da)b

= a(b I;) +{a Ib

Since Id is evidently linear, Id is a derivation in U.



Now a I = alond, +axdy) ~(yd, + ady)a
Ofldlﬂzde 1Y 26’2 11 2d2

= aod -odataod -ogda

= a(I%dl + ICYede)
Since a Iozd = alyd) - (wd)a
= g(ad) - o(da) = o(ad - da)
~implies that Io_/d = o l’d , we must have
Lo d togds Iy toely

Next, a I[dl;de] = af[d ,d;] - [4; ,d5]a
= adid, - adyd, - dydza + dydya
= add, - dyad, - dyad, + dyd, a
+ dgad1 - adgd1 +d ad, -d,da
= (ady - dya)d; - dy(ad; - d, a)
- (ady - dza)d, + 4, (ady - dga).

= (aI,)I, - (aT1,)I
(dldg( ds

d
= a(I, I ~I,1I.) = a1 I
( d, dp "d, d, ’7dy
Hence I I I
[dy ,d,] q, o1, ]
Tt is _clear that a Idp = [a,dp] and that
. p times -
-
a(Id)p = e e .Ua’d]’d; s oo+ o o dl Let dR denote the
L 2 . R

mapping a - ad and dL denote the mapping a - da. Clearly

]
il
[
1

dL and a(deL) = (adR)dL = d(ad) = (da)d = (adL)dR. We note

that a(Id)2 = [(ad - da), d] = ad2 - 2dad + dZa.



Let us assume that

k-1 }
k . -
8" a(Id)k = adk + 31 (l>(—d)ladk Py (—d)ka for all 1 £k € n.

io]
Then
QF} ] A
a(Id)n+1 = (adn + ) (ril)(-d)ladn‘l + (-d)na>d
‘ i=1 '
- n-'l s . ‘
A ! n i n-i n
- d(ad + z (i>(-d) ad + (~d) a>
i=1
n B .
L Y ((“) + (,“ ))(-d)Jadn”"J + (-,
o k| j-1
i=1 v
n
_ adn+l + S‘ (n?l)(_d)Jadn+l—J + (—d)n+la
i=1

This shows that (8') holds for all k = 1,2, . . . 1In particular, if

k = p, (?) =0 for each i =1, 2, . . . , p -~ 1. Hence

a(Id)p = ad® + (~d)Pa. We know that p = 2 or p is odd. If p = 2,

yo = 5% for all y €9. If p is odd, (-d)P = -dP. Hence (Id)p =1

| a?

or equivalently
p times

— AN -
i \,

Tz .
{~ o e o e .{Ia,d],@j, c o s . o d % = [a,d?].

We may here comment that if D,D, are elements of Der@éu), 9 an

algebra over & with characteristic p # 0, the above method shows that

p times

b VN N "'v

(9) L;“. C . Enl,ﬁi, ﬁ[, e e D% = [p, ,DP]

In this case (p # 0), Leibniz's rule (7) reduces to



\ 11
)PP = (xDP)y + x(yDF)
and so implies that pP € DerQGﬁ). Hence Der@CH) is a restricted Lie

algebra of characteristic p # 0.

‘Remark 1.2. Following upon the results of Exercise 1.1, it can be
shown that J(U) the set of inner derivations in ¥ is a restricted
right ideal in Der (U). It remains to show that IdD = [Id,D] is in

S@), where D € Der (U), d € U.

Proof. We have seen that Id = dR - dL. By definition,
(da)D = (dD)a + d(aD). Put otherwise, (da)D - d(aD) = (dD)a. This
can be written in operator form as [dL,D] = (dD)L. Similarly,
(ad)D -~ (aD)d = a(dD) can be written as [dR,D] = (dD)R. Hence we

obtain the relation

(dD)p - (dD); = (dgD - Ddp) - (d;D - Dd,)
= (4 - 4D - D(dy - d) = [(dy - d),D]
Since (dD)R - (dD)L = IdD’ we now have IdD = [Id,D].

Remark 1.3. Let c be an element of the centre of B (i.e., cx = xc for

all x in ®) and D € Der@GH,%). Let c_ denote the mapping x - xc in B.

R

Then Derééu,%) is closed under right multiplication by cp -

((x + y)D)cR = (xD + yD)cR

il

It is clear that (x + y)D cr

=x D cR +yv De

R ((Xﬂ)D) cp ((xD)a) c

((xD)c> @ = (xDec)o

R

i
I

If v €%, (xy) D c

Hence D cr is linear. If y is an element of ¥, we also have




12

((xD)y-+ x(yD))cR_ = (xD)yec + x(yD)c

(xy)D °p

(xD)cy + x(yD)e = (xD cR)y + x(y D CR)

Therefore D R is an element of DerQGH,%).

This result méy be specialized for the case ¥ = B where B is a
field P over &. Moreover, without specifying which field is the base
field of P, we observe that Der (P) is closed under right multiplication

by elements p,, p € P.

In order to give another connection between derivations and
homomorphisms, let us construct the so-called algebra of dual numbers.
Recall that if (xz) is the principal ideal generated by x2 over the base

field &, then 1 + (xz) and x + (xz) form a basis for the algebra

C%[x] / (xz) over &, Let us denote the coset x + (x2) in 3[x] / (xz) by

t and set € = &[x] / (XZ). Then € is an associative algebra with
basis (1,t) over & and the multiplication rule t2 = 0. If%B is an
arbitrary (associative) algebra over 3, form the algebra (= Kronecker
or tensor product) B ® € over & (see, e.g. Zariski and Samuel [12],

pp. 182-183). Here, multiplication is defined by
(b, ®ui?(b2 ® u) =bb ®uw , biE%, uiE@ .

In particular, (b ® 1)(1 ® t)

it

b® t and (1 ® b)(t® 1) = t ® b,

Since b® 1= 13 band 1 ® t

"

t ® 1, we must therefore have

b® t =t ® b, If we identify B with thé subalgebra of the elements
b® 1, b € B and identify € with the subalgebra of the elements

1® u, u € €, then the elements of B ® € can be uniquely written as

+ b, t, b, € 8. This follows readily from the fact that any element
» by y



13
of € can be uniquely written as o + ot, 3 €%. In B Q€ we now

have bt = tb and the multiplication rule
(10) (by + byt)(by + byt) =b;bs + (byb, + byby)t , bi €%

The algebra B ® € is called the algebra of dual numbers over B. This

construction shows that if B is an arbitrary (associative) algebra, then
B is indeed a subalgebra of an (associative) algebra ¥ in which there is
an element t such that t2 =0, bt = tb for all b € B, and every element

u € ¥ can be uniquely written as b, + byt, bi € B,

Let D be a derivation of U into W. Define a mapping s = s(D)

of ¥ into B ® € by

il

(11) a > a° a+ (ab)t

Then (a + b)S

(a +b) + ((a +~b)D>t, a,b £

= (a+b) + (aD +bD)t = a+ (aD)t +b + (BD)t
= as +p° R
and (a)® = av + ((a(.Y)D>t , @ €8,

ay + (ab)tw

= ay + ( (aD)o./>t
(a + (aD)t)a

s
a o . Hence the mapping s is

linear. Furthermore, we have

il

a°b® (a ¥ (aD)tXb + (bD)t> = ab + a(bD)t + (aD)th

ab + <a(bD) + (aD)b)t .= ab +-<(ab)D>t = (ab)S .

Hence the mapping s is a homomorphism of % into B ® €. Let us now

consider a mapping m of 8 ® € into B given by
(a + bt) » (a + bt)Tr = a, a,b €9 .

, T
Then (a + bt)ﬂ(c + dt)1T = g¢c = ((a + bt) (¢ + dt)) by rule (10). 1It
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is clear that the mapping 7 is linear. Hence the mapping ™ is a
homomorphism of 8 ® € into B which is the identity on 8. 1In particular,
if a € ¥ and the mapping s is defined as in (11), then

2" = (a + (abh) t>TT

(1 - 1), since als = ags would imply that alSTT = ag'.sn-, that is a; = & .

a., This shows that the mapping s is one-to-one

-Conversely, let s be any homomorphism of U into B ® € such that

aSTT:ei, ac¥y ., Thenwehaveas=a+bt, a€®, be€B . The

uniqueness of the form a + bt implies that b is uniquely determined
by a. Hence, we have the mapping D:a -+ b and we may write
s

a” = a+ (aD)t. We shall now prove that D is a derivation of ¥ into B .

Proof. Since the mapping s is linear, (a + c)s = 2%+ c®.

il

Therefore (a + ¢) + ((a + c)D>t 2%+ c° = (a -+ (aD)t\) + (c + (cD)t>

(a + ¢) + ((aD) + (CD))t'.
Hence (a +¢c)D = aD + cD. We also have (ao.')S = asa/.

Thereforeaoz+<(aoz)D>t = a% = <a+ (aD)t)a/ , o €d
|

p .
= ay + K(aD)oz)t .

We have therefore shown that D is linear. Since a®c® = (ac)s for all

a,c, &€ %,

{ / 3
(2 (aD)t)\c + (cD)t/

1t

ac -+ ((aD)c)t + (a(cD))t

(au:)S = ac + <(ac)D>t .
Hence (ac)D = (aD)c + a(cD). This completes the proof that D is a

derivation of ¥ into B.

We can therefore state the following result (cf. Jacobson [9],

'
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p. 169).

Theorem 1.A. If ¥ is a subalgebra of B and D is a derivation of
U into B, then s : a > a+ (aD)t is an isomorphism of ¥ into the
algebra of dual numbers 8 ® € over © such that 2T = a. Conversely,

any homomorphism of % into % ® € satisfying this condition has the form
a > a+ (aD)t where D is a derivation of ¥ into 9.

Here the author [9] gives two consequences of this connection
between derivations and isomorphisms. First, if two derivations
coincide on a set X of generators of ¥, these derivations are identical.
Secondly, if s is a homomorphism of ¥ into B ® € such that x*" = x for
x € X, then a®" = a for all a € Y. Hence s defines a derivation D in

the manner indicated,

Exercise 1.2. Let % be a subalgebra of an algebra B. Verify

that the mapping D of ¥ into B is a derivation if and only if the

mapping

of % into the matrix algebra B, of 2 X 2 matrices over ® is an

isomorphism. '

Proof. Suppose that D is a derivation of ¥ into $ and a,b € B.

We then have
s i(a+ b) (a + b)D!

(a + b) = ! :

0 a+ b j



We also have

if and only if a =

.

Conversely, suppose that s is an isomorphism.

b.

| AR
8]

o

aﬁﬁ f% b-E
RS
2| 0 b}
ay (aa/)D_E faa
o=
o | LO
aﬁ? 371-1 0
P ’;
ab  (ab)D’ "ab
ab iO
aD| b bD '
i ‘ =
QJ ?O b
aDi ) B bDE
2] o b

Hence the mapping s is

the linearity of s implies that D is linear.

(ab)®

11

T

ab

|

™

(ab)ﬁ:
ab g

aD:. ib  bD’

o
O
o

we must therefore have (ab)D = (aD)b + a(bD).

that D is a derivation of Y into B.

16

(ab)b + a(bﬁ;
i

—

ab

an isomorphism of ¥ into

It is clear that

Since we have

:ab (aD)b + a(bDil

?0 ab

We have thus proved
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Definition 1.7. An element c of a subalgebra ¥ of an algebra
B whose image under a derivation D of % into B is zero is called a

D-constant.

Remark 1.4. The relation (11) implies that an element ¢ € % is

a D-constant if and only if ¢® = ¢ for the isomorphism s = s{D).

Remark 1.5. The set of D-constants form a subalgebra of YU with
identity 1 # 0.

Proof. It is clear that 12 = 1 implies that 12D =

(1D)1 + 1(1D) = 1D. Hence 1D = 0 for every derivation D of 9 into B.

Let a,b € 9 be D-constants and ¢ € . Then (a £ b)D = aD % bD = 0,

i

(a)D = (aD)x = 0 and (ab)D (aD)b + a(bD) = 0.

Remark 1.6. Tf % is commutative and @ is of characteristic p,

then every p-th power in ¥ is a D-constant.

Proof. By-definition, a2 = a(aD) + (aD)a = 2a(aD) for all

a €Y. It is clear that a3D = (a2D)a + az(aD) 2a(aD)a + az(aD)

il

= 3a2(aD)° Let us assume that akD = kak—l(aD) for all k £ n. Then

n+1

a D nanul(aD)a + an(aD)

il
1t

(anD)a + an(aD)

i

nan(aD) + an(aD) = (n+ 1) an(aD).
It now follows by induction that
(12) a0 = k & "(ap), K=1,2, . . ..

Take k = p and conclude that aP is a D-constant.

Remark 1.7. If U =P is a field over &, then the set of

D-constants of P form a subfield I' of P which contains &, Moreover,
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the trivial derivation D 0 is the only derivation on & .

it

Proof. Since oD (L+a)D = (D)oo = 0 forall g€ d ,
3 € T. In view of Remark 1.5, it remains only to show that for all

a#0inT, a”! is also in I'. This is clear since

-1

0 = 1D = (aa )b = (aD)a'1+a(a"1D)

implies that

(13) a'D = - (aD)a? , for all a €9 .
J

Hence a €' , a # 0, implies that a-l €T . Since oD =0 for all

o € & and for all D in Deré(P), D = 0 is the only derivation on &.
Exercise 1.3. Let D be a derivation in P/&, I' the subfield of

D-constants of P over &. Prove that the elements p;, pz, - « « , 0 of

P are linearly independent over I' if and only if the so-called Wronskian

determinant
Py Pz SRS .« o e pm
i ptD p%D o e . p¥D e o o pr
b= plfDr"1 pg‘fDr.‘l o« o e p:‘Dr—l o o . p;pr-1 =0
p;Dm"l pgsz_l C o piDm—l N p;Dm-l

In order to prove that this condition holds, we shall use the

following lemma.

1See, e.g., Scott, R. F. and Mathews, G. B., [11], pp. 36, 62-63.
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Lemma 1.0. Let a r denote the element in the t-th row (column)

t

and r~th column (row) of an m X m determinant (aij)’ Atr denote the
minor corresponding to aips and A denote the value of the determinant.

If & __ denotes the Kronecker delta (6 =1, ifr =s, and §__ =0, if
rs rs rs

r #£ s), then

) oa A = s b -

S S
T tr € r

(14)

Secondly, if

Alk Ais © e Alf

Ark Ars . o e Arf
M = . . .

iAtk AtS e o o Atf

*
is an h X h determinant and A

determinant of

a. a, .
ik is
a a .
Lk rk rs
A =
a a .
tk ts

formed from A by deleting the h

elements A ,

e
h =

(15) A 6 = AM

is

the complementary (m - h) X (m - h)

- %
. arf
. atfv

rows and h columns which contain the

then we have the identity

We next remark that A can be regarded as a polynomial in the m

variables aij , L i, j £m.

Since, for example, the coefficient of
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al;agg N is +1, A is a polynomial which is not identically
zero. Hence the relation (15) is an identity in which each member is
a polynomial in ﬁhe m2 variables aij’ 1<i, j <m, with A% 0.
Therefore, we obtain the relation

(15 M = APhE

Proof (Exercise 1.3). We recall that Prs P2s - - . p_ are

linearly dependent over I' if and only if there exist ¢;, cp, . . . c.

in I' , not all c, = 0, such that ¢;p; + cppp + . . . + cPp = 0. Let

us assume that this condition holds. Write A briefly as

(L, D, . . ., Dm—l)‘pl, Doy o o pm\ and denote the minor correspon-
ding to prDm—l by the Wronskian Ar. If each P € I' , there is nothing
to prove since pka =0 for k =1,2, . .. , m-1. We shall assume

that not all ps € I'. We next observe that (cipi)D = ci(piD),

2 >_A 2 ko K
(cipi)D = <ci(piD) D = Ci(piD ). If we assume that (Cipi>D = ci(piD )

1
- <(cipi)Dn>D - (Ci(piDn)>D = Ci(piDnH)

implies that (cipi)Dk = ci(pka) for all k =1, 2, . . . . Hence

for all k < n, then (cipi)D

cy Py, tegpy .. +-cmpm = 0

cl(plD) + cp(pgD) + 0. L+ cm(me) = 0

s e 0

1 1

T _m-1 - - .
¢ (py D7) + cp (D" )+...+cm(mem y = 0

is a system of m linear equations which has non-trivial solutions in

the Ci' This shows that A = 0.

Conversely, assume that A = 0 but one of the Wronskians, say Al,

does not vanish. Let us write
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P1 pr-l pr—l—l pm

A, = py D . pr-lD pr+lD . . . pmp
: m-2 m-2 m-2 m-2

p, D « e e pr—lD pr+lD . e e e me

m-2 A
as (1, b, . .. ,D )‘plpg e v e W P . pm] . It follows

directly from the rule for differentiating a determinant that

m-3 m~-1
AD=(,D, ...,D" 7, D

' A
. )!plpg I T oml which is the

r
m-2 . .
minor corresponding to prD . Similarly, ASD is the minor correspon-

ding to pSDm—Z. From (15'), we see that A = 0 implies that

(8, D), - A_(A.D)

In particular, (ArD)Al - Ar(AlD) = 0. We now have

, -1 _ -1 -1
' -1 -2
-2
- ((ArD)Al - Ar(AlD)>A1 - 0.
Hence ArA;1 = c_ €T . By (l4) above, Bioy +bpp + . . L+ Ampm = 0.

This proves that + 2+ . . .+ cp =0, which is of the required -
P P S 02 m’m ’ q

form.

Finally, we observe that if one of the Wronskians, say Al =0 ,
we can start with Al as the leading Wronskian and arrive at a

particular relation of the form pg + cspé + .. .0+ cmpé =0, p' €P.
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We now recall two results on extensions of homomorphisms and

give reference to corresponding results on extensions of derivations.

(i) Let ¥ be a subring (with 1) of a field P, M be a subset of
non-zero elements of 9 containing 1 and closed under multiplication,
MM the subring of P generated by ¥ and the inverses of the elements of

1, a €9, b €M}). Let s be a homomorphism of 9 into a

M. GHM = {ab
field P’ such that @3# 0 for every B € M. Then s has a unique

extension to a homomorphism S of MM into P’. Moreover, S is an

isomsrphism if and only if s is an isomorphism. (cf. Jacobson [9],
pp. 2-3).
The corresponding result on derivations is given by the following

theorem (Jacobson [9], p. 170),

Theorem 1.B. Let P be a field over &, ¥ a subalgebra of P/%
(containing 1), M a multiplicatively clo;ed subset of non-zero elements
of Y containing 1, and let MM be the subalgebra of P of elements of the
form ab—l, a €%, b€M. Let D be a derivation of % into P. Then D

can be extended in one and only ome way to a derivation of MM into P.

Remark. Here we observe that the isomorphism a + a + (aD)t of ¥
into P ® € the algebra of dual numbers over P has a unique extension
to an isomorphism s of %M'into P ® € given by

(ab ™ H® = a7t 4 ((aD)b‘l - ab”z(bn)>t

Since (ab_l)D' (aD)b-1 - ab—z(bD), we can write

Il

(ab-l)S ab-—1 + ((abﬁl)D>t. ‘It can easily be shown (cf.

discussion leading to Theorem 1.A) that the mapping 0 associated with
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s of mM into P and given by

(16) 8 : ab ' > (aD)b™' - ab~2(bD)

i

(ab 1D

is indeed a derivation of ﬂM into P.

Remark. Let 9 be a subalgebra over 3 of a field P/ , D a
derivation of % into P, &, , &, . . . , ém be elements of P. Let
By, %, o s Xm) be a polynomial in %[x;, Koy o o o g Xm]’

Xy, %o v v o5 X indeterminates. If fD(xlJ Koy, o o o xm) is the
polynomial obtained from f by replacing the coefficients by their
images under D, then © : f = fD(gl,gg, . e ,gm) is a derivation of
L I me into P. Secondly, if we define the partial

derivative of

and denote its value at (§,, €5, . . . , £ ) by (§£~>
! m o0xi/x =€, s
373
g (2 s al derivation of ¥
then T : \3x1/x:= £ is also a derivation o [, X35 o o o 5 %pl
] J

into P.

Proof. Inm NUl[x, %, . . . xm] addition and multiplication by
elements of ¢ are defined coefficientwise in the usual manner. Hence
it is clear that the mapping 6 is linear over &. It is therefore

sufficient to show that 8 : fg - ng + ng holds for monomials
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£, 8 €U[x, x5, « . xm]. Let f = x 1 . .. kam and

g = B xiﬁl e+ o X o , a8 €U, 0<k,, Ej < p. We then have

ng + ng = (D) §1kl . .. §mkm (Bglzl . .. §m£

m)

vag b .LLg (e g h g )

]

r, T,
(ems+atm) g™ ..., r =t 4,

(g2)® .

fl

This shows that ¢ : fg - ng + ng .

In the second case we have

mofgrap (k, +4) g ... giri’l c.LEm
= 0B . L L g T g T g e, L L g T g e
= o kiglkl. . giki"l . gmkm g g, . gizio . gmzm
faga. . gMl L Lg g zigiz?. L.t g de

- (§£;>xj=§j g + f <§§;>

Since 7 is clearly linear, T is also a derivation.

1755

Finally, we remark that the mapping

D /3f
£ f + (aXi)XﬂiE , M, €8,
7]

is a derivation of AU{x , xm] into P follows immediately from the

17

fact that the set of derivations of U[x, , . . . , xm] into P is closed

under addition and right multiplication by elements of P.
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A second result on homomorphisms is given by

(ii) Let ® and B’ be commutative rings, Y a subring of B’', and s a
homomorphismfof 9 into B. Let X be a set of generators of the ideal R]
of polynomials f in Alxy , Xz, « « « 5 X1, X, inde?erminates, such that
£(ty, tg, « - - t) =0, {tg, t5, . . . £} B'. Then there exists a
homomorphism S of A[t, , tg, « + .« , tr] into B such that aS = a,
: 5 ,
a €%, and t;° = Uy 1=1is=rvr, if and only if gs(ul, o s yu) =0
for every g € X. (Here g? is obtained from g by replacing the
coefficients of g(x,, . . . Xr) by their images under s.) If S exists,

then it is unique (cf. Jacobson [9], pp. 5-6).

The corresponding result on derivations is given by the following

theorem (cf. Jacobson [9], pp. 170-172).

Theorem 1.G. Let % be a subalgebra over & of a field P/® and
let €, , €5, . . . §m, Mys Mas o ¢ ﬂm be elements of P, D a derivation
of % into P. Let R be the ideal of polynomials £(x,, . . . , %) in
Ulx , « « .+ , %p] such that £(§;, . . . ;) =0 and let X be any set of
generators for R. Then D can be extended to a derivation D of
Y[Eg, , . . ., E,] into P such that §iD =T, i=1,2, ... ,mn if

and only if

an e, . e) + (§X>nl - 0

. p -
J B

for every g € X. 1If this extension exists, then it is unique.

erﬂa

1

1

“Remark. The condltlon (17) can be replaced by

(18> fD(gllJ L E ) +§ <a )ﬂl = 0
: i=1 X576

for any £ € 8.
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§
\

Proof. Let £

K’ k=1,2, ..., be arbitrary polypomials in

r
Ulx,, « « « , x]. Then f = §1 fkgk,' 8, € X. Since D is a derivation

1 m —

- o k=1
of Ulx,, . . ., 3m] into P and every &, € X satisfies

gk(§1; s e e g) =0,

m
r : r
Y D D, _ D
£ = ), (f g g ) = z £,8,
k=1 : pc ]
. _ a
0g
Similarly, (g ) = ) £ axk , whence
| L=y ks L=y
r 3¢
§1<§§_) T = ;1 £ ( k) Ni . We must now have
£ aXl X.= SR k axl <. =
1 J ] i k=1 j j

-
~1
N
eV}
=
~—
=3

e

!
Fh

. o

a7
g

+

Jh
~]
N
oY
|
3
~
=

o

+

= \OX. - L5 \Ox%y -
i Lxy=Ey i 3755
o)
+ng+fy<—gl)“
T L axl «.=F .
* i3
= r-0 = 0, by (17).

For the remainder of this section we shall be interestéd
mainly in derivations in a field P/®. Suppose that E is a subfield of
P/® and D is a derivation of E/& into P/®. Let € be an element of P.
If £ is transcendental over E, then, as a special case of Theorem 1.C
With # =0, D can be extended to E[E] so that § » T, any chosen
elemenf of P. We may now apply Theorem 1.B and extend D on E[£]

uniquely to the subfield E(E) of P of elements of the form fg—l where

f, g € E[E], g # 0, so that § » 7. Hence we have the following remark.
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Remark 1.8. Let E be a'subfield of P/% ana D a derivation of
E/% into P/&. Let § € P be transcendental over E and T be any
element in P. ThenrD can be extended to E[E] so that § -~ T|. Moreover,

D can be extended to the subfield E(E) of P such that § - 1.

Next assume that € is algebraic over E so that E[E] = E(£) and
let £(x) be the minimal polynomial of € over E. Then it is well known
(see, e.g. Jacobson [7], p. 100) that the ideal ® in E[x] of the
polynomials h(x) such that h(§) = 0 is the principal ideal (f(x)).
Hence Theorem 1.C shows that D can be extended to E(E) such that

€ -+ T if and only if
(19) £ + £/(E)M = 0

where £f'(x) is the formal derivative of f(x). Recall that an element
€ is separable over E if its minimal polynomial £(x) € E[x] has no
repeated roots in its splitting field (i.e., the field in which it
factors linearly). Let us first assume that € is separable. Then
f?(g) # 0 and (19) gives a unique value of T = -fD(é)' f'(g)—1 . In
particular, if D = O on E then § + 0 and, in this case, D = 0 is the

only extension of D to E(£). We can now state the following

Remark 1.9. If E(E) is separable algebraic over E, then a
derivation of E/® into P/3 can be uniquely extended to a derivation of
E(§)/% into P/&. If D =0 on E, then D = 0 is the only extension of D

to E(§).

Secondly, we suppose that € is inseparable (= not separable)

over E. Then f,(g) = 0 and D can be extended to E(£) so that £ - 1,
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D
any chosen element of P if and only if f () = 0. Let the minimal

polynomial for € be f(x) = x4 alxn-1 + .. .+ as a; € E . Then

fD(g) = (aln)gn"l + .. .+ (anD). Since the minimal polynomial for
€ is of degree ﬁ, fD(g) = 0 if and only if each aiD = 0. This proves

the following:

Remark 1.10. TIf € is inseparable algebraic over E, then a
derivation D of E into P can be extended to E(E) so that £ - 1, any
element of P, if and only if each coefficient of the minimal polynomial

of € is a D-constant.

In general, it may be pointed out that the condition (19) for
the extendibility of D to E(§), € algebraic over E, is connected to a

previous result on homomorphisms given by

(1i1) Let ¥ and B be commutative rings, & a subfield of B, t an
element of B which is algebra over &, and s an isomorphism of & into
U. Then s can be extended to a homomorphism S of &[t] into U so that
tS =u, if and only if fs(u) = 0 for the minimal polynomial f(x) of
t over &. When the extension exists it is unique (cf. Jacobson {971,

p. 6).

Here we observe that in the case of extendibility of D to E(t),

uniqueness is achieved only for t separable (algebraic) over E.

Now let P = &(§,, €5, . . . , §m)'be a finitely generated
extension field of 3. Let R be the ideal in %y, + o oy xm] of
polynomials £(x,, . . . , xm) such that £(§,, . . ., §m) = 0 and let

X be a basis for R. If D is a derivation of the polynomial algebra
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®[g,, . . . §m] over & into P over &, then D has a unique extension to
P over ¢ (cf. Theorem 1.B). We have seen (cf. Remark 1.7) that D =0
is the'only derivation on &. Theorem 1.C applied to D = 0 on & shows
that there exists a derivation D of e[E, , « o ., §m] over ¢ into
P over 2, and hence §(§,, . . . , §m) = P into itself, such that

>y i=1,2, ... ,m if and only if

(20) ZG’L) M = o0
i

for every g € X. By the relation (18), we can replace (20) by

e ) (3 M- o
1 Xj—gj

for any f € R. Moreover, we have the following criterion.

Lemma 1.1. Let P = G §r, .o . §m) be a finitely
generated extension field-of &. Then 0 is the only derivation of P

into itself if and only if P is separable algebraic over 3.

|
|
]

Proof. Assume that P is separable algebraic over &. We have
seen (cf. Remark 1.7) that 0 is the only derivation on &. By Remark
1.9, if €, is separable algebraic over ®, then D = 0 is the only
derivation on @(gl). In the same way, if €, € P, €z £ $(8,), then g,
is separable algebraic over & and so over $(€,), and we now have D = 0
is the only derivation on $(8,, €2). We can repeat this process for a
finite number (=m) of times and thus obtain that D = 0 is the only
derivationvof 8CE,, . .., §m) = P into itself. Conversely, let

r < m be the largest integer such that P is not separable algebraic
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over 8(§,, . . ., §r) = &', Then @’(grf

over &’or is inseparable over &’ by the transitivity of algebraic

l) is either transcendental

separability. 1In either case we have observed that the zero
derivation on @"éan be extended to a non-zero derivation D on @'(§r+l)
such that §r+1D =T, an arbitrary element of P. Since, by assumption,
P is separable over &(§,, . . . , §r+l) we can extend this derivation
to a non-zero derivation of P into itself (cf. Remark 1.9). Hence, 0

is the only derivation if P is separable algebraic over 3.

Exercise 1.4. Let P =38(E,, . . ., §m). Show that P is
separable algebraic if and only if there exist m polynomials
g (%, 5 . & xm), C e e gm(xl, e ey Xm) in 8[x,, « . ., Xm] such

that 0 = g (5§, . . . ,E) =.. .=gm(gl', -+« , &) and the

det <(§§§>

Proof. By Lemma 1.1, P is separable algebraic over & if and

Jacobian J

Xk=§k> Pe

only #f D = 0 is the only derivation of P into itself. By (21), this is

equivalent to
m 3g1 .
}:(5§3> (ng) =0, i=1,2, ..., m,
j:l xk—gk
where this system of m homogeneous linear equations has only trivial

solutions (§.D) = 0 for all j =1, 2, . . . , m. Such solutions are
J J P J

possible if and only if J # 0.
We have seen that the system Deré(P,P) = Der@(P) of derivations
in a field P/ is a Lie algebra of linear transFormations which is

/

restricted if the characteristic of ¢ is p # 0, and that Deré(P) is
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closed under right multiplication by Pgs P € P. IfD € Der (P), then
define Doy = Dp . From a discussion given in Jacobson [9], pp..19-201
it is seen that £(P,P) = £(P), the system of linear transformations in
P, with ApR =Ap, A€ £(P), op € P, is a right vector space over P.
Hence, DerQ(P) is a subspace of the right vector space £@<P) over P.
Let us denote the dimensionality of DerQ(P) over P by [Der@(P):P]R .
Then another connection between derivations and separable algebraic

extensions is given by the following theorem.

| Theorem 1.D. If P =&(&,, . . ., gm), then [DerQ(P):P]R is
the smallest rational integer s such that there exists a subset
s ={g , ... 8 Yo (g, ..., gm} such that P is separable
i s =

algebraic over 3(S). (Jacobson [9], pp. 178-179)

" 8
Proof: Consider the mapping D » (§,D, . . . , gmp) of

Der@(P) into P(m)
(m)

,the right vector space of m-tuples (p,, . . . , pm),
pj €P. In?P , equality, addition, and scalar multiplication is

defined coordinate-wise in the usual manner. Let D, D, be elements of

Der@(P). Then (§,D, . . . , ng> + (€D, o o . ngl)

= <§1(D +D)y - ., gm(D + Di)). Hence De + D_le = (D + Dl)e. We
also have (§,Dp, . . . , §mDp) = (§,D, . . ., ng)p. Hence

(Dp)e = Dep; We now suppose that §iD =0, i=1,2, ... ,m 1In

this case D = 0 since the §i generate P over &. This shows that the
kernel of this mapping is 0. This mapping is therefore P-linear and
one-one. Let (D,, . . ., DS) be a right basis of Deré(P) over P.

(m)

Then s < m and the image of Der@(P) in P has the basis

(ngj, e e ngj), 1 £j <s. We now see that the rank of the
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s X m matrix (giDj) is s, so we can re-order the §i's so that
det (giDj) #0, 1 <i, j £s. We now set E = @(gi, Ce e §s) and
let D be a derivation of P/E into itself. Then D is also an element of

Deré(P) and so

Since & , . . o , §s belong to E, we also have

o
i
U
w)
]

s
?j (giDj)pj fori =1,2, ..., s.
j=1

Since det (EiDj) # 0, then every pj = 0 and hence D = 0. Therefore, by
Lemma 1.1, P is separable algebraic over E = &(§,, . . . , §)). Next
suppose that there is a subset {§ , . . . , §t} of the §i'S (re-ordered
appropriately) such that P is separable algebraic over

@(g;,‘. e ey gt). We now use these €'s to map Der@(P) into P(t) by
means of D » (§,D, . . . , §tD). It is clear that this map is
P-linear. If § D =0 = -+« =§D, then D maps &(E,, . . . §t) into

0 and so D is a derivation of P/&(E,, . . . , §t) into itself. Since

P is separable algebraic over (g, , . . . , §t), D = 0. This map is

therefore P-linear and one-one. Hence s = [Der@(P):P]R < t.




SECTION 2

Definition 2.1. If the only elements of an algebraic extension

P/% which are separable are the elements of &, then P is said to be

purely inseparable over 3. Similarly, an element p is said to be purely

inseparable over & if 8(p)/3® is purely inseparable.

Remark 2.1. An element p € P/ is purely inseparable over 2 if
e
and only if p is a root of the polynomial P - a, a € $, e some non-

negative rational integer (cf. Jacobson [9], p. 48). Tt is clear that

ife=0,p € 8.

Definition 2.2. We shall call e thé exponent of the purely
inseparable element p. If there exists a maximum k for the exponents of
the elements of P, we say that P is of exponent k over §; otherwise, the
exponent of P/$ is infinite.

Let P/& be purely inseparable of exponent e = 1. If p, o € P,

then pp = a € &% and Gp =b € 3. We recall that (p + g)p = pp + cp.

Heﬂce (p % g)p =at+b €d. We also see that if p # 0, (p—l)p = a—1 € 3.
Therefore the p-th powers of P form a subfield PP of P over &, It now
follows that P is purely inseparable of exponent < 1 over & if and only

if PP ¢ . Hence we may also say that any field P is purely inseparable

of expement < 1 over @(PP).

Remark 2.2. If P/® is a field of characteristic p # O and E/&
is a subfield of P/&, then D is a derivation of E/& into P/& if and only

if D is a derivation of E/3(EP) into p/5 (EP).

Proof. We recall that if D is a derivation of E/& into P/®,

then aPD = pap—l(aD) = 0 for all a € E, and that the set of D~-constants

33
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forms a subfield T of E over &. Hence I' 2 &(EF). Moreover, if ¢ € T,
a € E, then (ac)D = a(cD) + (aD)c = (aD)c. This shows that D is also a
derivation of E/T" into P/T'. Since I' 2 @(EP), it follows that a
derivation of E/§4into P/& is also a derivation of E/@(Ep) into

P/@(Ep) and the converse is immediate.

Since E is purely inseparable of exponent £ 1 over @(Ep), in
discussing derivations of E/& into P/® we can consider only those

subfields E/® which are purely inseparable of exponent <1,

Remark 2.3. If & is a field of characteristic p # 0, then
xP - a, a €% is irreducible in ¥[x] unless a = bp, b € &, in which

case x¥ - a = (x - )P in d[x].

Proof., Suppose xP - a factors linearly in K[x], K a field over
. Ifb is a root of x* - a, then X -a=xP -bP = (x - b)P in K[x].
Assume that x° - a = f(x) g(x) in ¥[x] where the degree of f(x) is k,
1 £k < p. Then in K[{x] we must have f(x) = (x - b)k since

factorization in K[x] is unique. But we have
(x - )< = x5 - kbx + . . . + (D)K.

This implies that kb € & and consequently b € . In this case we now

have =P - a = (x - b)p in 3[x].

Remark 2.4. Let P = &(E,, §5, . . . §m) be a finitely generated
extension field of 3 with characteristic p'# 0, and gi €P,
P

'gi £3(5,, - - ., gi_l), satisfy the minimal polynomial x* - a,,

a, € 8. Then [P : 8] = P < o,




Proof. We recall that since xP - a, is irreducible in ¥[x]

(see Remark 2.3), [8(E,) : 8] =p. Now §, € P, §, € &(§,) implies that

%P - ay is irreducible in &(§;)[x]. For otherwise, a; = Bp,

B € 2(€,) and hence &; = B8 € 8(§,) which is impossible. It now follows,

a fortiori, that xP - ap is also irreducible in 3[x]. Hence

[8(51 ,E2) ¢ 8] = [8(51, €) : 8(E4)1[8(Ey) : 8] = po

(See, e.g., Herstein [3], p. 168). This process terminates after m

applications and we now have {P:3] = pm < @,

It will be seen later that the theory of derivations in the case
of characteristic p # 0 is connected with the study of purely
inseparable extensions of exponent e = 1. In order to show this, we

shall introduce a special kind of dependence relation.

 Definition 2.3. An element p € P is said to be p-dependent in P
over & on the subset S of P if p € @x(S) where & = @(Pp). We indicate

this relation by p <, S .

Accordingly, we call a finite subset S of P p-independent if
G ﬁp S - {o} for all ¢ in S, and say that any arbitrary subset S of an
arbitrary field P is p-independent if every finite subset F of S is

p-independent.

Definition 2.4. A p-independent subset B of P over & which is
such that every element of P is p-dependent on B is called a p-basis

for P over &. In this case, P = @&(B).

We next recall the following theorem for an arbitrary set P and




a set of four axioms for a generalized dependence relation.

I If 0 €5, then 0 <SS (= o depends on S).
II If p <5, then p <F for some finite subset F of S.
Il If p <5 and every o in S satisfies ¢ < T, then p < T.

IV -~ If p<S and p £8S - {o} where ¢ € S, then ¢ < (S - {c}u {p}).

Basis Theorem. The set P has a basis. Moreover, any two bases

have the same cardinal number (Jacobson [9], pp. 154-155).

We next show that p-dependence satisfies the conditions of the given

axioms.

First, if ¢ € S, then g € @*(S) or equivalently o <P S. Secondly,
since § = UF, the union of all finite subsets F of S, p € @*(S) implies
that p € é*(F) for some finite subset ¥ of S. Hence, if p <p S, then
P <p F. Next, if p € é*(S) and every ¢ in S satisfies o € é*(T), then

p €8(T). Thatis, if p <, S and every o in § satisfies o <, T, then

p
p <p T. We next suppose that p € 3°(S), 0 £ 3%(s - {o}) where ¢ € S,
and write S - {o} = T. It is now clear that é*(T) is a proper sub-
field of 3%(T,o) = @*(T,p,c) and of @*(T,p). It is also clear that

o € @*(T,G), o ¢ é*(T) and that p € @*(T,p), o ¢ Q*(T) by assumption.

From the discussion with regards to Remark 2.4, we now have

[6°(T,0)0:8 (D] = [87(T,0,0):87 (D] = p

[87(T,p):87(T)]

..

We assert that o € @K(T:p). For otherwise o € é*(T,p,c) and

o ¢ é*(T,p) would imply that [@*(T,p,c): Q*(T,p)] = p , which is

impossible since [@K(T,p,o): @*(T)] = [é*(T,p): @*(T)] = p. Hence,
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if p <pS and p {p S - {o} for some ¢ in S, then o <p (s - {c}u {pD.

We can now apply the Basis Theorem and state the following:

Let P be a field of characteristic p # 0, P purely inseparable
(algebraic) over & of exponent one. Then P has a p-basis. Moreover,

any two p-bases have the same cardinal number.

I£f F = {pl, Doy o o o pm} is a p-independent set, then

p; ¢ @x(pl, Poy o o o pi-l> and p;? =, € 3" . As we have seen

earlier, we now have [é*(pl, Po, o o « pm): §*] = pm. Hence, the p

m

elements

. ) )
(22) 0 p2 .. Lo ™, 05k <p,

ata

form a basis for @ﬁ(pl, s e ey pm) over 3. Conversely, we suppose

that the pm elements given by (22) form a basis for @*(pl, e e, P)

over & . Then [3°Coy, o « - Pm)i @K] =p™. If, for example,

Ps € @A(pl, <. e s Py _1), then we have [8%(py, . . . , p): & ]
o 0

1l

[87Coys « v 5 ) 8 (oys o o v s p; I8 Cpas v v e sipy y)e 0]
< pm—lo. plO—1 = pm—1 which is a contradiction. Therefore the Py

are p-independent.

Remark 2.5. A maximal p-independent set B is necessarily a

p-basis.

Proof. We first assert that if T € P satisfies T ¢p B, then
BU {0} is p-independent. Otherwise we must have an £ € B such that
€<, U N} -{fghH. since § £ (B - {EH = U M} - {5} - {MD),

P
then Axiom IV implies that T <p B=(B - {€}U {€}) which contradicts
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the hypothesis of our assertion. This shows that our assertion holds.,
In particular, if B is maximal, we must therefore have p € P satisfies

p <p B for all p € P. Hence B is a p-basis.

Theorem'Z;A. Let P be an arbitrary field of characteristic
p #0, % a subfield and E an intermediate field. Let B be a p-basis of
E over 8. Let 8§ be an arbitrary mapping of B into P. Then there exists
one and only one derivation D of E/§ into P/% such that 8D = §(B8) for

every B € B.

Proof. We have seen in Remark 2.2 that we can assume that E is
purely inseparable of exponent < 1 over §. Let us assume that E D §
(that is, E properly contains 3) which means that B is non-empty and the

exponent of E/3 is one. Let 8 € B and set BB =B - {g}. Then

B ¢ @(BB) and its minimal polynomial over @(BS) is ®x® - b. We have seen

that 0 is the only derivation on @(BB)/@(BB). Hence, by Remark 1.10,

there exists a derivation DB (relative to B) of E = @(BS,B) over @(BB)

g = 8(B). Note that B'DB =0, 8’ # 8,

B’ € B. Since (B.) 2 3, a derivation D of E over (B ) into P over
B ’ 8

into P over @(BB) such that 8D

@(BB) is also a derivation D of E/3 intoP /®. Let F be a finite subset

£8,, « « o ar} of B, then Dp =D, + . . .+Dg is a derivation of

F 8
- _ ! - .
E/3 into P/& such that BiDF = 5(81), and 8 DF =0 if

8" €B - {8, « .., 8.}, i=1,2, ...,

If G is any finite subset of B containing ¥, then the restriction

of DG to 3(F) coincides with the restriction of D_ to &(F). If E is an

F

~arbitrary element of E, we can choose a finite subset F of B such that

ogf’r,

k.
€ € 3(F) and map § - gDF. Since the Pr elements 3 % . .



0= ki < p, form a basis for &(F) over & = @(Fp), the form

} S Kk
s —§:aﬂﬁa.J% SR )

aiki K € ¢, is unique for € € §(F). It is clear that there exists a
eooky A

smallest finite subset F, of B such that E € &(F,). Hence €D, = ED,
0

is the same for any finite subset F of B such that E € 8(F). Therefore
the mapping D:g - gDF is single valued. Clearly this mapping is a
derivation of E/% into P/3 since Di is a derivation of E/® into P/3.
Moreover, gD = BDF = §(B) for every 8 € B, Since E = $(B), D is unique.

Corollary 1. 1If E has a finite p-basis B, then
[DerQ(E,P): P]R = !B[.

Proof. Let A(B,P) be the set of mappings of B into P which we
can consider as a right vector space over P by defining
(6, +65)(8) = 8,(B) + 6,5(B) and (8p)(B) = 6(B)p, 6,8, 6, € A(B,P),
BE€ B, p€P. We now map Der@(E,P) into A(B,P) by sending D € Der@(E,P)
i%to its restriction § to B. Let D,D, ,b, € Der@(E,P). Then
g;(?D1 + D) = 8D + 8Dy = 6, (B) + 5,5(B) = (5, + 82)(B). We also have
B(Dp) = (BD)p = §(R)p = (6p)(8). Hence this map is P-linear. Tt is
clear that the kernel of this map is D = 0. Moreover, the theorem
shows that this map is onto. This map is therefore an isomorphism. If
B={B, 0., Bm} is finite, then the m-mappings By s o o o , 8,
such that éi(Bj) = 6ij (the Kronecker delta) form a basis for
[A(B,P): P]R. This follows immediately since det <5i(Bj)> =1#£0

implies that the system

(5191 + ... +‘5mpm)(8j) =0, 1 =3 <m, of m linear




homogeneous equations

6, (Bylp, + o o o o + 5m(31)pm =0
SI(Bm)pm + o . . .+ 5m(5m)pm =0
has only trivial solutions 0 = Py = o o o = 0" This means that the

6i are right linearly independent over P. It is also clear that the
only mapping that sends B into 0 € P is the zero mapping (= the
restriction of D = 0 on 3(B) to B). Moreover, if Ok is an arbitrary
elemeqt of P, (5ipk)(Bj) = éijpk' Hence any element of A(B,P) has the
form §,p, + . . . + SiPm’ P; € P. This means that (§,, , . . , 5m) is

a right basis for A(B,P). Therefore [A(B,P): P]R = [Deré(E,P):P]R = !B!.

Corollary 2. Every derivation of E/% into P/% can be extended
to a derivation of P/% if and only if the elements of any p-basis B of

E/% are p-independent in P/3.

Proof. Suppose the elements of any p-basis B of E/§ are
p-independent in P/§. Then B can be imbedded in a p-basis C of P/3.
If D is a derivation of E/§ into P/é, then the restriction 6 of D to B
can be extended to a mapping 6C (= the restriction of D to C) of C into
~P. By the theorem we now have a unique derivation D’ of 8(C) = P
over § into itself such that vD' = 5C(y) for all v € C. Since
BD' = 6C(B) = 6B(B) = 8D for every 8 € B, D’ is an extension of D.
Conversely? suppose B is not p-independent iﬁ P/% and let 8 be an
element of B which is p-dependent in P on BB =B - {8}. IfD”is any

derivation in P such that HD” =0 for all y € BB, since every p-th power
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of P is a D”-constant and 8 € @(PP,BB), gD’ = 0. We have seen in the

proof of the theorem that there is a‘derivation DB of E/® into P/% such
g Clearly, such a derivation cannot
be extended to P since gD” = 0 and B DB # 0 is impossible.

that 8 DB # 0 and DB =0, p€B

We shall next take 3 to be the prime field §, which can be
identified with the field of rational integers modulo p. We have seen

P

that for all rational integers x, x' = x (mod p) (Fermat's theorem).

Hence we may write @O(Ep) = EP. We shall agree to refer to a derivation
of E/§, into P/%, as a derivation of E into P. Our object is to show
that the condition given in Corollary 2 is equivalent to separability,
in the general sense, of P/E. We recall that an extension field A of a
field P is called the algebraic closure (up to an isomorphism) of P if:
(1) A is algebraic over P, and (2) every polynomial f£(x) € A[x] of
positive degree can be written as a product of linear factors in A[x].

p-l
We take E ={y €A : Yp € E}.

Definition 2.5. Let X, Y be two subspaces of a vector space S
over a field E. Then X and Y are said to be linearly disjoint over E
if the following condition is satisfied: whenever'xi, .« o ., X are

elements of X which are linearly independent over E and Yis oo oo e 5V
are elements of Y which are linearly independent over E, then the mn

products Xiyj are also linearly independent over E,

Remark 2.6. The following property is equivalent to linear
disjointness: whenever x; ,Xg, . o . , x -are elements of X which are
linearly independent over E then these elements Xy, Xp, « o ., X are

linearly independent over Y.
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Proof. Assume that X and Y are linearly disjoint over E. Let
X5 Xpy o « » 5 X be elements of X which are linearly independent over
n

E and suppose that
n -

¥.x, =0, o, €Y .
’ 1

k|
We now have 0 = '. . + . . o+ §1c V.X = C..X.¥. . Since
ch.‘!ijl = nJyJ 23 2 1] 1yJ
3 : J 1,]

X and Y are assumed to be linearly disjoint over E, we must have the
cij = 0 and hence the @, = 0, showing that the condition is satisfied.

Conversely, suppose that the condition is satisfied, Let the two sets

{xi, o o o xn} and {y;, « o + , ym} be as in Definition 2.5. Assume

that ;1 cijxiyj =0, cij € E. Since the condition is satisfied, the
1,3

the x, are linearly indepéndent over Y. Hence

} E:Cijyj =0 = z:czjyj =, e e . = E:anyj .
' ] 3 i

Since the yj are linearly independent over E, this means that every
cij = 0. Put otherwise, X and Y are linearly disjoint over E.
Definition 2.6. A field P is separable (not necessarily algebraic)
1

over a field E of characteristic p # 0 if P and Ep are linearly

dis joint over E.

We have seen (cf. Jacobson [9], p. 163) that if P is an algebraic

extension of E (possibly infinite dimensional), then P is separable over
-1
E if and only if P is linearly disjoint to EP  over E. Hence, the




following criterion is applicable in the case where P is separable

algebraic over E.

Theorem 2.b. Every derivation of E into P can be extended to a

derivation in P if and only if P is separable over E.

Proof. Assume that every derivation of E into P can be extended

to a derivation in P. Then by Corollary 2 of Theorem 2.A, every p-basis

of E over &, is p-independent in P. We must show that whenever the

elements x,, . . . , x_ of P are linearly independent over E, these
n

-1
elements x, are also linearly independent over P , or equivalently,
i

that xf’, e ey xé’ are linearly independent over E. Let
X5 0 o0 s X €Pand g, - - . , o be elements of E not all zero

such that y‘a,xf =0. If B is a p-basis for E, then

— 1
o, = Y\( Blkl . . Bkr-whereOsk <p, B.EB
i L Vikg kg ° r i S P2 Py ’

Py - gP ky ky _

Yik, ...k, € 3B = E. We now have E:ékloaokr Brte o o By 0
RN P P .

where § = > . x5 € P, We can write

kloookr ;,Ylkloookr i

E. Since the B8's are

= p
Vit ook, - Mg o) 0 Mg Lok, ©

. » - AN PP
p~independent in P/3,, we have O 6k1°°.kr Zl(nikloook ) X5 o
i r
Hence L:ﬂikl.e.kr x; = 0. Since the @, are not all zero, not all
i

ﬂikl..gkr are zero, We have thus proved that the x, are linearly

p

independent over E implies that x5 are linearly independent over E,

which is, by Remark 2.6, equivalent to separability of P/E. Conversely,
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assume that P is separable over E. Let {31: o o o Br} be an arbitrary

set of elements of E which is p-dependent in P/3%0. Then we have

0 Zykl..‘krsl .. -Brr P Vi ook (ﬂklmkr) € P

0= ki <p, mnot all yki =0, Let {xt} be a basis for P over E and

oe ek
T

n
i = 's in E, T
write nkloo.k E: Kikleoakr X the A's in hen we have
roo4o

- k. k. _ © P P
0= Z'Ykl-ookrBll" o« BT = 2(4)&1{1“01& xi>51k1. . B,
i

) - 5
That is, 0 = ) WX, where p, = ;1X. B
AT A i £ 1k1°°okr

By Remark 2.6, every by = 0 since P is separable over E. Hence the g's
are p~dependent in E/®,. Since the B's were arbitrarily chosen, it

follows that any p-basis of E/%, is p-independent in P/%, »

Remark 2.7. Let P/¢ be an extension field of § with characteristic
p, P purely inseparable of exponent one over &. Then [P:3] = pm < @ if
and only if {pl, Pase o o pm} is a p~-basis for P over §.

Proof. Suppose that {pl, e ey pm} is a p-basis for P over &, then

Remark 2.4 sﬁqws that [P:8] = pm. Conversely, assume that [P:3] = pm < o,

Clearly {pl, e ey pn} is a p-basis for P over &, n # m, would also
] n m . m .
imply that [P:8] = p # p . This shows that [P:8] = p implies that

{p1, « - . pm} is a p-basis for P over &.

Exercise 2.1 (Baer). P is purely inseparable of exponent one over

% and [P:3] = pm < «, Show that there exists a derivation D of P/&
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such that the only D-constants are the elements of %.

Proof. In view of Remark 2.7, we can take P = §(B) where
B = {x1; e e . xm} is a p-basis for P over &. A derivation D of P/% is
then completely determined by its values at the % (cf. Theorem 2.4).

Choose xiD = xixi’ Xi € % and let M be any monomial of the form

’ k k k, -1 k
%, 1, .. xmm , 0 < ki < p. Then (M)D = R N 2, .. xéﬁ“
k k, -1
1 m - .
+ o+ kX coe e X AFn = (g + e e kmxm)M. It is

clear that M = 1 implies that (M)D = 0. Let us show that we can choose

i

It

the A, so that kyr; + . . . + k) 0 if and only if each k, = 0.
i m m i

Since the x, are linearly independent over &, it is clear that the xf)

are linearly independent over 3P and hence over the prime field
3, (= @Op, using Fermat's theorem). Clearly it is sufficient to take

xi = xf’. Then the only monomial which belongs to the censtant field of

D is the trivial monomial 1 € 3. We have seen that if Mi is a monomial

- ky kn . =
of the form x, *. . . x 0 < ki < p, we can write (Mi)D = M,

0 # by € PP ¢ 5. Hence (Mi)Dn = uinMi' We obgerve that for Mi # Mj

we obtain My # uj' Suppose there exist oy €% = @(PP) such that

n
%
( S.aiMi> D = 0. Then we obtain a system
=
Oy My + oo . o F anunMn = 0
n
Cypg My + 0 0 o o F anpnnMn = 0

of n linear homogeneous equations in the oy . Since the determinant
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‘ 1 . 1
= Mg . . gan . Mn 1 R
n-1 n-1
Py Hn

Mg oo e oM oo .M T (u, -w,) # 0 for distinct M, and hence
o) LI j i

distinct By oo then we must have every a; = 0. Therefore the constant

field of D is precisely 3.

Exercise 2.2. Let D be a non-zero derivation in a field P of

-1

characteristic p # 0 over &. Show that 1'pp +Dpy + . . . + pP pp—l s

Py € P, is a derivation only if every P, = 0, i # 1. Show that if
p € P, then

k-1
(23) (Dp)k = kak + D(pEk—l) + 31 DJpj , where pj € P and

j=2

E = Dp (EDpR). Hence prove the following formula due to Hochschild:

-1
EP = (Dp)® = DPpP + D(pEP ™)

-1

Proof. We have seen that 1, D, D°, . . . , DP™" are elements of

£§(P). Write T = 1'p, + Dp, + . . . + Dp~1p If T = 0, then

p-1 °

yT = 0 for all y € P. 1In particular, let y,, Yys v oo v s yp—l be
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p linearly independent (over 3) elements of P. Then the Wronskian

(1, D, . . ., Dp'l)‘yoy1 .. yp_l‘ # 0 . This means that the p

linear homogeneous equations yiT =0,1i=0,1, ..., p -1, have
only trivial solutions p; = 0, 1i=0,1,2, ..., p -1. Hence the
operators 1, D, D°, . . . P Dp"1 are linearly independent over P.

We assert that T is a derivation in P only if every Py =0,
i # 1: We have seen that Dp (EDpR) is a derivation in P. If p = 2,
T becomes 1:°p, + Dp; and for x,y € P we have, on the one hand,
(xy)T = (xy)py + (xDpl)y + x(prl) , and one the other

(xT)y + x(yT) = (xpy + xDpl)y + x(ypo + prl)

(XPO)Y + X(Ypo) + (XDDI)Y + x(prl)

2(xy)py + (xDpl)y +-x(pr1). Therefore T is a derivation only if
po = 0, in which case T = Dp, . We shall now assume that p > 2. We

have seen that
K T
P ke K
G = xS + ) () oM + @My for k = 1, 2,
i=1

and that DP is a derivation in P, Now

(xT)y (%pg)y + ((xD)pi)y + ((xﬁg)p2>y ..+ <(XDP~1)pp~l>y

x(yT) = x(yp,) + x <(yD)pl> + x ((yDa)p2> + .. .+ x <(pr-l)pp—l)

x(yI) + (#Dy = 2(xy)p, + (xy)Dp, + (xD°py)y + x(yIFpy) +

p-1 p-1
.+ (xD pp~l>y + x(yD pp—l)'

We also have the relation

(xy)T = (xy)po + (xy)Dp, + (xy)D?p2 + .. .+ (xy}Dp—lpp_l
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If T is a derivation in P we must now.have p, = 0 and

k k k
(xy)D7p, = x(yD7p, ) + (xD 0 )Y, k=23, ...,p-1.
' k-1

This means that 31 (?) (xDl)(ka—l)pk = 0. Put otherwise,
i=1 ‘

k-1
ky i, . k-i . o
: D7 (yD )pk = 0. Since k < p, it is clear that p does not
i=1
- k . p-1
divide any i) - Moreover, we have just shown that 1,D,IF, . ., , D

are right linearly independent over P. Therefore if

k-1 :

k i k-i

Y D™ (yD )pk =0 for all y € P, we must have 0y = 0 for each
i=1
k=2,3, ... ,p -1. This means that if T is a derivation it must

reduce to the form E =Dp , p € P.

We next show that the relation (23) holds for k = 1,2,

If k =1, we write Dp = DpR. If k = 2, we have

(Dp)(Dp) = Dgpg + D(pD)p
D?p2 + D (p(Dp)) = Dgp2 + D(pE)
n-1

We next assume that (Dp)n = ann + D(pEnhl) + 31 Dlpi for each n < k,

i=2

(Dp)®

I

where o, € P and E = Dp. Since ka = pk—l(pD)k, we now have

n-1

(ann) (Dp) + (D(pEn—l)Dp> + z (Dipi)(Dp)
i=2

(Dp)n+1

it

_ Dn+lpn+1 + pP (pnml(pD)5n> " D(pEn)
% ;
P o(pE" ™) + T (Dl p.p + Dlpi(Dp)>
i=2

-
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n
= Dn+1pn+1 + D(pEn) + 51 DJp, s p. € P.
j;b ] J

This proves the general result given by (23).
We recall that Der (P) is closed under right multiplication by

elements of P and under p-th powers. Therefore Ep, Dppp, D(pEp-l) are

in Der (P). We also have
p-l

-1 1
EP - pPpP = D(eEP ™Y + Z Dlpi » p; €P.
i=2

Since EP - Dppp is in Der (P) we apply our preceding result and conclude

that each p; = 0, 1i=2,3, ..., p ~1l. Eence

-1
EP = (Dp)P = DPpP + D(pEP™Y).

It

Exercise 2.3. Let P =%(p,, . . . , pm), § of characteristic

pm < @, Let D be a derivation in P/é such

p#0, pf =g, €8, [P:2]
that & is the subfield of D-constants (see Exercise 2.1). Show that
the minimal polynomial of D as a linear transformation in P over & is a

so~called p-polynomial of the form

pm pm—l
(24) X¥ +gx t...F+px, B €8.

Show that every element in the algebra SQ(P) of linear transformations
in P over & can be written in one and only one way in the form

(25) 1o N-1

o + Do, +D%, + . . . +D

m
)szJOiEP“

Proof. Let us first consider the differential equation
m m-1
(D Dk, + (yD Dk, + . . .+ ykm =0, ki € P and not all ki =0.
Suppose that this equation has more than m solutions in P and let

Yis Yas = ¢ o 5 Yo be m + 1 solutions. Consider the m + 1 linear
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equations
m-1
y, (D% + D"k + .. L+ Lk = 0

and employ the notation of Exercise 1.3. We obtain non-trivial
solutions for the k; if and only if the Wronskian

2 T . .
(L,p,p°, . . ., D )|Y1:Yz: . e ey ym+l! = 0. By Exercise 1.3, this
Wronskian vanishes if and only if y,,y5, . . . , Vo1 2T linearly
dependent over &. Hence there exist at most m linearly independent

solutions of the given differential equation.

We next recall that for p # 0, Deré(P) is closed under p-th

' 2
powers. Hence D, Dp, p? ; « « « . are derivations in P over &. Since
Der@(P) is closed under right multiplication by elements of P, we now

have
Da, + DPa, + . . . +DP a
is a derivation in P over &. More generally,

| T =10, +Dg, +D%, + . . . +D

is a linear transformation in P over 3. We have seen in Remark 2.7

that {py, . . . , pm} is a p-basis for P over &. Hence the pm

monomials pf(l . p%&m , 0 < kj < p, form a basis for P over

3(PP) = 8. Choose D such that p.D = A.D., A, = pP € &. Then, as in
"L 11 1 1 ’

Exercise 2.1, if Mj is any monomial of the above form, MjD = ijj’

]
If the transformation T = 0, then €T = 0 for all € € P. 1In particular,

n, € PP c 5, by = 0 if and only if Mj =1, and p, # by whenever 1 # j.

as € takes on the values of each Mj’ we obtain the N linear equations

(Mj)T =0, j=0,1,2, .. . ,N-1. As in Exercise 2.1, we note



that MjDr = Merj' Hence we may write the above N equations as

N

-1
(MJ,'].)GO + <|»Lij)01 + . . .+ (p,J Mj)GN_ =0,

1
j=0,1,2, . .. ,N-1.

Since s # by whenever Mj # by 5 the determinant

N -1
M, Y T T
N -
M1 p,lMl V) ]M‘
i N-1
Myar MyeaMyor 0o 0 Myop My

N-1
= I .1 T (., -~ uw.,) # 0 for distinct . This means that each
o e gLy (e oy M

N-
o, =0, 1i=0,1%1, ..., N -1, whence 1, D, D, . . . , D 1 are

N-1

right linearly independent over P. Therefore 1, D, DZ®, , D

is a basis for £§(P) over P (cf. Jacobson [9], p. 20). Hence every
element of SQ(P) can be written uniquely in the form (25).

pN-

Since the set {1, D, DZ, . .. 5 1} consists of right linearly

independent elements over P, therefore the set
m-1
{p,o?, ... ,DP g {1, p, D%, . .., pN 1} also consists of

right linearly independent elements over P. Corollary 1 of Theorem

m-1
2.A implies that [Deré(P):P]R = m. Therefore {D, DP, . . . , DP } is

indeed a basis for Der¢(P) over P. We shall call D a generator of

m
Der@(P). Since DP is derivation in P over 3,

m pm-l m-2

P =D b +0? b + .. .+Db

m-1 m-2 0

for fixed bi € P. Observe that
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K K
[Dkbk, D] (060D - D(D*,)

: K K K
(DkD)bk + 05, D) - 00%)b = D (b, D).

m m-1
Therefore [DP , D] = 0 = DP (b__iD) + . . . +D(bD) and since

m-1
D, Dp, ... ,DP are right linearly independent over P, each
(biD) = 0. Hence each bi € &. Write bi = - B; and conclude that the

minimallpolynomial for D is as given by (24).

We shall now derive an analogue of the normal basis theorem for
separable normal extensions. We recall (cf. Jacobson [9], pp. 40-41)
that a field P/% is finite dimensional Galois over & if and only if P
is a sﬁlitting field over & of a separable polynomial £(x) € 3[x]. In

the latter case we call P/3 a normal extension. Let P/3 be finite

dimensional Galois over & with Galois group G = {s;, Spy o e e sn}.

S
If p € P, we call the images p * under s, € G the conjugates of p in

S.
P/3. If [P:3] =n and {p t s, € G} is a set of linearly independent

s s 5 .
elements, then the set {p ', p°2, . . ., p *} forms a basis for P over

Q.E Such a basis is called a normal basis for the Galois extension. We

call an extension field P/$ cyclic if it is finite dimensional Galois
and its Galois group G is cyclic. We next recall the following result

for finite base fields &
Any cyclic extension P/é has a normal basis over & (cf. Jacobson

;

(91, p. 61).

In particular, we observe that, if s is a generator of G, there
» s _ gn-1
exists an element p € P such that {p, p, . . . , p } is a normal

basis for P/3.
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Let P = 3(py, pgs « « « pHP, & of characteristic p # 0O,

pf) =y €3, [P:8] = pm < ® , and D be a derivation in P over &. We

can assume (see Exercise 2.3) that & is the field of D-constants,

whence D is a generator of Deré(P) and satisfies

m m-1 m~-2

o =pP g +0DP Bg* .. .+Dp_, B €.

m m=~1 m-2

In this case, xP - %P By - xP By = ¢ o . - me is in fact the minimal

polynomial of D over & (see Exercise 2.3).

Suppose (Y1, Yo, « « « yN), N = pm, is a basis for P over %

and (y,D, yp,D, . . ., yND) is an ordered set of vectors in P defined by

N
yiD = E: ajiyj s aji €® , 1i=1,2, .. ., N,
j=1
As elements of P, each yiD is represented in a unique manner as linear
combinations of y,, y5, . . . , Yy - Therefore the matrix A = (aij) is

uniquely determined by the basis (y,, yz, - . - , yN) and the ordered
set (y1D, y,D, . . ., yND). We observe that (y,D, . . . , yND)

= (Y15 « « + yN)A. Let us call A the matrix of D relative to the

basis (y,, . - . , yN). If £()\) is the characteristic function
IA - x.I', then by the Hamilton-Cayley theorem, £(D) = 0. This shows
that the minimal polynomial of D over & divides f(A). Since f(\) is also

m m m-1
of degree p = N, we must have f()) = AP - \P B, - « .+ . = AB

A .m.
This shows that the characteristic function and the minimal equation of

A are identical. We now have the matrix A is similar to the so-called

companion matrix of f£(}) given by
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0 0 ...... 0
1 . )
1 . o
B = )
. . S
1 0

with 1's in sub-diagonal and 0's elsewhere except the entries in the
N-th column corresponding to the coefficients of powers of )\ in the
characteristic function [B - A I] = £(A). Let (z, z5, . . ., zN) be
a basis for P over & such that B is the matrix of D relative to this

basis. We observe that zD = z,, 2z,D =125, . . ., ZN-lD = zy - Hence

m
s zDP _1).

.

P has a basis of the form (z, zD, zDZ?,



SECTION 3

Let P be a field extension which is purely inseparable of
exponent one over & with characteristic p # 0. As before, we let
Deré(P) denote the set of derivations of P over . We recall that
Deré(P) is a restricted Lie algebra of linear transformations in P over
® and that Der§(P) is a right vector space over P relative to right
multiplication Dp = DpR, p €P. 1In this‘section we shall consider
derivations in P as a ring &(P) of endomorphisms1 D of the additive

group (P, +) with the condition that (pc)D = (pD)o + p(cD), p,o € P.

We now suppose that © is a set of derivations in P with the
following closure properties: (1) D is closed under addition. (2) D is
closed under Lie commutation [D,, ﬁa]. (3) ® is closed under p-th
powers. (4) D is closed under right multiplication by elements
Ppo P € P. These four conditions imply that © is a subspace of the

right vector space of endomorphisms of (P, +).

Definition 3.1. Any set ® of endomorphisms of (P, +) which
satisfy conditions (1) to (4) will be called a restricted P-Lie algebra

of endomorphisms of (P, +).

Remark 3.1. It should not be inferred that © is an algebra over

P as a base field. To thié end, we shall show that the relationship

[D1: Dz]p = [Dlp, Dg] = [Dy, Dgp]

1cf. Jacobson [7], pp. 78-80.

55



56

does not hold for all p € P.

Proof. [D,, Dylp = (DyDy)p - (DD;)p = Dy (Dyp) - Dy(Dyp)
[Dyp, Dpl = (Dyp)Dy - Dp(Dyp) = (DyDy)p - Dy (pDy) - Dé(Dlp)
[Dy, Dgpl = DyDyp - DppDy = Dy (Dpp) - Dy(Dyp) - Dp(pDy)

It is now clear that this relationship holds only if
D, (pDy) = Dy(pD,) = 0. 1In this case p € C(D) the constant field of D

which is properly contained in P.

Theorem 3.A, (Jacobson). Let P be a field of characteristic
p #0 and let © bé a restricted P-Lie algebra of derivations in P such
that F@:P]R =m < @, Then: (1) if @ is the subfield of D-constants,
then P is purely inseparable of exponent £ 1 over 3 and [P:8] = pm;
(2) if D is any derivation in P over &, then D € ®; (3) if
Dy, « « ., Dm) is any right basis for © over P, then the set of

monomials Df% .. .I%fm,

0 < ki < p, Df = 1, is a right basis for the
ring QQ(P) of linear transformations of P over & considered as a right

vector space over P (Jacobson [9], pp. 186-188).

We next observe that the author [9] gives the following proposi-

tion as an exercise.

Let P =8(py, « » « , pm), & of characteristic p # 0,

m

pip Bi €%, [P:3] =p Let Der@(P) be the set of derivations in P/%,
& be a subspace of the right vector space DerQ(P) over P which is
closed under p-th powers. Prove that F is also closed under commutation

so & satisfies all the conditions of the above theorem (cf. Exercise

4, p. 190).
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The possibility that one may delete the assumption that ® be a

Lie subring of Deré(P) is answered by M. Gerstenhaber [2], p. 561. The

author [2] points out that if we define a restricted subspace of
Der (P) to be a subset which is a vector space over P and which is

closed under p-th powers, then one may make the following claim.

‘Claim. If D is a finite dimensional restricted subspace of

Der (P) and if & is the subfield of ®-constants, then D = Deré(P).

The author [2] then remarks that it follows a posteriori that

D must be a Lie subring of Der (P).

.Let P be a field of characteristic p # 0 and Der (P) denote the
set of derivations of P into itself. Given a derivation D in Der (P),
denote the constant field of D by I'. We recall that PP < T for all D
in Der (P) and that if a € P, a € I", then [I'(a): T'] = p. Suppose that
a € P satisfies aD # 0. Then setting D’ = Da(aD)—lJ we have
ap’ = (aD)a(aD)—1 = a, since P is a field. ZLet us denote the constant
field of D/ by '/ and choose an element b £ P, b # a. Then

bD’ = (bD)a(aD)-l vanishes if and only if bD = 0. Hence I' = T’.
Next, suppose that for some D in Der (P) and a,b in P we have
aD = Aa, bD = pb, A,u in 't Then
(ab)D = (aD)b + a(bD) = hab + apb = (A + p)ab

since P is a field. We alsc have

1D = 0 -1

i

(a a ")D

il

(Xa)a-l + a(a—lD). Hence anlD = - xa~l.
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It is now clear that if a;D = Aa; and azD = )lay,, A €, then

a4 _ -1 -1 ) a,
<§;>D = A a, 'a],}\ag = 0. That 13,2_2_, € T.

Therefore the set of all a in P such that aD = Aa, X\ €T , is either

reduced to the zero element or is one-dimensional over T.

Lemma 3.1, Suppose D is in Der (P) and a # 0 € P such that

aD = a. Set D’ =DP - D. Then T’ =T(a).

Proof. Since aD = a implies apP = a, it follows that aD’ = 0.

Therefore '’ 2 TI'(a). It remains to prove that I'' < T'(a).

"Set £(t) = tP - t. Since the formal derivative f/(t) of f(t)
does not vanish, f(t) has distinct roots 0,1, . . . , p - 1 in Zp the
Galois field of p elements. Therefore f(t) = t(t - 1) . . . (£t -p + 1)
over Zp. Define polynomials fi(t), i=0,1, ... ,p -1, of degree
p - 1in t by the relation fi(t) = f(t)(t - i)—l. It is clear that
fi(i) # 0 and fi(j) =0 if i # j. Suppose that
§:cifi(t) =0, c, € zp. Then §:cifi(j) =0, §j=0,1, ...,p-~1.

i 1

Since det (fi(j)> =1 # 0, each c; = 0. Put otherwise, the polynomials

fi(t> are linearly iﬁdependent over Zp' In particular, we have

1 = S‘cifi(t) for suitable ci - Zp' Since we are viewing derivations
i

in P as elements of the ring €(P), we can write

DP =D = D@ -1) ... (M -p+1) in€&®. Ifber’,

i

b(Dp -D) =0 b (D(D -1 ... ®-p+ l)>. This can be written as

i

bfi(D)(D - i) 0. Setting bfi(D) = biJ we obtain bi(D - i) =0,
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i=0,1, ... ,p=-1. It is also clear that

al(D - i) = a’D - ali = ial-l(aD) - ia" =0, Hence, for a # 0 € P,

(bi/ai)(D - i) bi(D - i)a"i - bia'Zi(ai(D - i)> =0.

This shows that

i

i . L - 24, i L
(bi/a YO - 1) (biD)a - 1bia - bia (aD - ia”)

_zi(aiD)

(b,D)a-1 -b,a
i i

I

(b./ah)p = o
1

, p - 1. However,

Therefore bi/ai € T and so bi €Er(ay, i=20,1, ..

S1f,(D)c, = 1 for suitable ¢, € Z . Hence §1c,b, = b, thus showing
AT i i ) L, i

that b € T'(a). This proves that T'' < I'(a).
Remark 3.2. If {By, - . . , Bm} cPandDy, . .., D in
Der@(P) are such that, for 1 <i, j <m, BiDj = 6ij the Kronecker delta,

then B, « « . Bm are p-independent and D, ,

. e Dm are right
linearly independent over P. Moreover, if [P:8] = pm, then
Dy, « ¢ ., Dm) is a right basis for Deré(P) over P, and

(Bys, « « « Bm) is a p-basis for P over ®.

Proof. Let us write B = {Bl, e e Bm} and denote the set

{Bl) e e . Bi—l’ Bi+l’ - . . Bm} by B If 8, « « « Bm are not

B;
p-independent, then Bi € @(BB e It is clear that for all
Pi

B D, =0, si ‘D, =0 f h g’ €B
p € &( Bi), 0D, , since 8°D, or each g’ € 8

(in particular) that BiDi = 0 which is contrary to our hypothesis that

This implies

BiDi = 1. Hence By . . ., 8, are p-independent.

Secondly, let us consider the derivation given by
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E=D0, +.. .+Dgc o, €P. If E =0, then yE = 0 for all
v mm’ i ’
y € P. In particular, BiE = 0 for each i = 1,2, . . ., m. This
implies that (BiDi)Gi =0 for each i = 1,2, . . . , m. Hence each
o; = 0 and, conséquently, the Di are right linearly independent over P.

We next assume that [P:3] = pm. It follows directly from
Remark 2.7 that (8,, . . . , Bm) is a p-basis for P over §. By
Corollary 1 of Theorem 2.A [Deré(P): P]R = m. Hence (D, . . . , Dm)
is a right basis for DerQ(P) over P.

Given D in Der (P), let ((D)) denote the smallest restricted
subspace of Der (P) containing D. We have seen that Der (P) is closed
under addition, under right multiplication Dp = DpR, p € P, and under
p-th powers. Hence ((D)) is the set of all derivations of the form
Dpo +Dpp1 + . . . . follows immediately from the fact (cf. Exercise
2.,2) that
(26)  (Dp)P = DPo, + Do,, for suitable g, ,0, € P.

1
1

} Lemma 3.2. If D € Der (P) and By, . . . , Bm are p—indepenéent
over I' the constant field of D, then ?here exist Dy, . . . Dm in ((D))
such that BiDj = éij' (These Dj are right linearly independent over P,
by Remark 3.2).

Proof. It is clear that, for example, 3.,D # 0. Otherwise, we
would have 8, € I', whence B, € I'(8;,B3, - « - , Bm), thus contradicting
our hypothesis that 8,, . . . , Bm are p-independent over I". Hence
82D has inverse (:BQD)_1 in P. Set <BzD)_153 = a € P. Then

Bo(Da) = B,. Next, write (pa)? - Da = D’ which clearly belongs to
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((D)). By Lemma 3.1, we see that the constant field of D’ is I'(g).
Since By ¢ I'(B,), we can construct D" in ((D)) (see relation (26))
such that the constant field of D” is I'(Bp , Ba). We can repeat this
process for a figite number (= m - 1) of times until we obtain D" in
((D)) with constant field I" (Bz, Bz, - - - Bm). Since
B, €T (Bzy Bas = « « Bm), we must have BlD* =)\, #0 in P. Setting

L. Di, we obtain B, D; = 1. It is clear that, for p # 0 in P, the

DN,
constant field of D € Der (P) coincides with the constant field of Dp.
This follows immediately since cDp = (cD)p = 0 if and only if cD = 0.
We haye therefore constructed D, € ((D)) such that BiDi =0, 1i#1.
We can repeat the above construction for a finite number (= m) of

times by changing the choice of the B and so obtain derivations Dj

satisfying the given condition.

Corollary. If I' is the constant field of D € Der (P), then

[P:T"] is finite if and only if [((D)) : P]R is finite, and in that
case ((D)) is the set of all derivations vanishing on I'. In

particular, ((D)) is then a Lie subring of Der (P).

Proof. Since PP ¢ r, if [p:T'] = [P:T(PP)] is infinite, then
the dimension of a p-basis of P over I" is infinite. By Lemma 3.2, we
then conclude that [(®m) : P]R is infinite. On the other hand, if
[P:T"] = pn and (B, , . . . 5 Bn) is a p-basis for P over I', then
[Derr(P):P] =n and the D, . . . , Dn of Lemma 3.2 form a right basis
for DerF(P) the Lie ring of derivations of P over I'. We now have

((D)) contains a basis over P for Derr(P) and ((D)) c DerF(P).

Therefore ((D)) = DerF(P).
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Given D,D’ in Der (P), let ((D,D')) denote the smallest restricted
subspace of Der (P) containing both D,D'. Denote the constant fields
of D,D' by T,/ respectively. If D” is an element of ((D,D’)), denote

its constant field by r’.

Lemma 3.3. Given D,D’ in Der (P), let B, Bzy + + - , B, be
elements of P which are p—independent over I', and let y € I" satisfy
yD’ #‘0. Then there exists an element D’ in ((D,D’)) such that
Brs » - - 5 B ¥ are p-independent over r. ‘Further, if
[((D,D)) : P]R is finite, there exists D’ in ((0,dD”)) such that

" =T NT’ and (")) = ((D,D')).

Proof. By Lemma 3.2, there exist Dy, Dp, . . . , Dm_in ((m))
such that BjDi = 6ij' Since each Di is a right linear combination over
P of p-th powers of D, we must have yDi =0, for each i = 1,2, . . . , m.
Let us consider the derivation E = (D' - (Dyo, + . . .+ Dmgm)> o,
p, 04 €P. IfyE =1, we must have (yD')p = 1, that is, p = (yD')-l,
If BjE =0, j=1,2, .. . , m, we must also have (BjD' - oj)p =0,
’

Since p # 0, o, = BjD

i . Let us then define E in ((D,D’)) by

= ! -1
E = (D - (Dyoy, + .. .+Dmom)>(yD)

where Oj = BjD' and so yE = 1 and ng = 0. We now have a set

{Bl, - - B y} € P and derivations Dy, . . . , Dm, E in ((D,D"))

.E = o = = .
such that BJ 0, vE 1 and yDi 0, BjDi 6ij Therefore, by
Remark 3.2, 8, Bzy « - - » Bm’ y are p-independent over K the constant

=]

field of ((D,D')) and

1 e Dm, E are right P-independent., Hence

D’ = S‘Dixi +Eyu, M,Ai € P is an element of ((D,D’)). Since E is a
. ,
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right P~linear combination of D', Dy, « . ., Dm, we can write
D’ = S‘Didi +Do, o, o € P. By relation (26),
i

) = Y 0,0 + @'w)P = ) DPy, +Dp, + Dy £, for
T i

suitable Yis Y5 Py P in P. Since every element of ((®")) has the

form D'vy + (D”)pv1 + ... ., it is now clear that ((D")) € ((,D")).

By the corollary of Lemma 3.2, I'” is the constant field of
((D")). It is clear that [ € K the constant field of ((p,D")). Since
Bis + « « Bm’ y are p-independent over K, it now follows that

By, - - -, B,y are p-independent over I'".

Since, by assumption, ((D,D’)) has finite dimension over P,
there exists D in ((D,D’)) such that the dimension of (D)) over P is
maximal. We now claim that " =rnr’. It is clear that if

a €T NT’', then ab’ = 0 and aDi =0,1=1,2, .. ., m Therefore

"

aD” =0, whence TNT/ T, I£T0” #T N T', there is an element y, in
" which is not in ' N I'’. We must now have vy, D # 0 or le' # 0,

Without loss of generality, assume that le' # 0 and let

n
p ¢ and,

- P be a p-basis for P over I'". Therefore [P:T"] =p

consequently, there exist Dy, . . . , D in ((D”)) such that
Dy, « Dn) is a right basis for ((D”)) over P. We can now

construct a new D, call it E”, such that %, . . . , X_, y; are
2 2 10 J n) 1

(3)

p-independent over T the constant field of E”. Hence

(3) S pn+1

[P:T77] and the dimension of ((E”)) over P 2 n + 1. This

contradicts the maximality of ((D”)). We must therefore have

r=rnr’.
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By the Corollary of Lemma 3.2, ((D”)) is the set of all

+(®), ((D,0))

derivations vanishing on TI'". Since ((D,D’)) ¢ Derr{]r
vanishes on I' N r'. Thus ((D,D’)) vanishes on I'”, whence

((@,D")) € ((D")). We have seen that ((D")) < ((D,D’)). Therefore

((®")) = ((0,d)).

Corollary. Let ® be a finite-dimensional restricted subspace of
Der (P) and & its constant field. Then there exists D in D such that

the constant field of D is &, whence ((D)) = Der@(P).

Proof. Let D, . . ., Dm be elements of Der (P) whose constant

(D r(m

fields are T s e e ey respectively. We shall assume that
(D, « « ., Di)) is finite dimensional for each i =1, 2, . . . , m.
In particular we shall write ® = ((Dy, . . . , Dm)). We have seen in
Lemma 3.3 that there exists an element Ez; in ((D; ,Dp)) such that
((E2)) = ((Dy, Dp)) and F(l) N F(z) = K(Z) the constant field of E, .
Now ((D, ,Dg ,D;)) is finite dimensional implies that there exists an
eiement E; in ((Ez ,Dg3)) = ((Dy ,Dp ,D3)) such that

((Eg)) = ((D; ,Dg ,D5)) and F(3)ﬂ K(z) = K(3) the constant field of Egs.
Continuing in this way, we can construct D = Em in ((Em_l, Dm)) =D

(m) (m)

such that (D)) =9 and F(l)ﬂ .. .NT =K the constant field
of D. By hypothesis, the constant field of ® is &. Since (M) =9,
we must now have K(m> = &. By the corollary of Lemma 3.2, ((D)) is the

set of all derivations vanishing on &, whence ((D)) = Deré(P).

Theorem. Let P be a field of characteristic p # 0, D a

restricted subspace of Der (P) and & be the constant field of ®. Then
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[P:2] is finite only if F@:P]R is finite and in this case
D = Der@(P). Moreover, ® is then a Lie subring of Der (P), there is an
element D in D such that the constant field of D is ¢, and for any such

D we have D = ((D)S.

Proof. We have seen in the corollary of Lemma 3.3 that the
constant field of D is &, that ((D)) = Der@(P) and (D)) =9. Since
((D)) is finite dimensional over P, by the corollary of Lemma 3.2,

[P:3] is finite and ((D)) =D = Deré(P) a Lie subring of Der (P).

Let & be a subfield of P with characteristic p # 0, ® a finite
dimensional restricted subspace of Der (P). We shall denote the constant
fields of D, Deré(P) by C(®) and C (Der@(P)> respectively, and indicate
correspondence between subfields of P and restricted subspaces of
Der (P) by = . TIf & is the constant field of ©, from the theorem we

obtain the correspondence

3 - Der@(P) > C <Der§(P)> = C(®) =9,
or

D > CD) ~» DerCC@)(P) = Deré(P) =3,

This is the type of Galois correspondence which we set out to establish.




SECTION 4

Definition 4.1, Let Y be a subalgebra of an algebra B over b,
Then a sequence of mappings p(m {Dp=1, Dy, « « ., Dm} of ¥ into B is

called a higher derivation of rank m of ¥ into B if every Di is

®-Iinear and

i ‘
(27) (ab)Dj = Sw(aDi)(bDj_i) , 3=0,1, . .. , mholds for every
2

1=

a, b €Y. A higher derivation of infinite rank is an infinite sequence

{Dy=1, Dy, « « . . } of linear mappings of ¥ into B such that (27)

holds for all j =0,1,2, . . . . .

It is clear that if {Dy, D;, . . . . } is a higher derivation of

infinite rank, then the section {Do, D;, . . . , Dm} is a higher deri-
vation of rank m and any section {Dg, Dy, o« o oy Dq}, q €£m, of the
higher derivation {Dy, Dy, +« . .« , Dm} is also a higher derivation. If

we set j = 1 in (27), we obtain
(ab)D, = (aDy)(bDy) + (aDy ) (bDy) = a(bD,) + (aDy )b.

Hence the mapping D, is a derivation of ¥ into B since every Di is

(m)

assumed to be ¥-linear. We say that D is proper if D; # 0.

Let Y =9 = 3[x] where x is transcendental and let Di be the
linear mapping in % whose effect on the basis (1, x, x?, ... .) is

given by

(28) mei = <T> xm—i

1

where (?) is the usual binomial coefficient, <?> =0 if i > m. Then
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we must have

xm-}nDj - (mjn) xm+n- j

and

i

(mei)(anj_i)‘m (T) i (jz_lJ Lot

(?) < jrji) ]

We mnext make the following claim:

J
: , ‘
S‘ (?) /.n'> = \mfn> for arbitrary rational positive integers
Ly M \j-i j

1=

m, n, j with j €£m + n,

Proof. We have agreed that <mfn> =0 for j > m + n.
m
We have seen that (1 + x)" = §1 <$> xr, x an indeterminate. Hence
r=0

(1 + )"0 +x"

1
~1=
~
BB
~=
I3
H
o3
A
22
b
n

r=0 s=
mtn ]
-0 0 (DG
L 7, \1 j-i
J=v 1=
mtn
We also have (1'+ x)m(l +x)" = (1 + x)m+n = S <Hﬁﬂ> e,
=0 7
J
n
Therefore ;1 (?? <. .> = <mfn>
_1_10 1 J"l J °
i= .

We can now state that
i 3

Y ™o, ) o= ) (“‘) ( n ) e

A i j"i /‘. j

i=0 =0
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i
- T ()
L \i/ \j-i
i=0
| _ /mfn) L3 Xm+nD.
Hence {1, D;, Dy, . . . . } is a higher derivation of infinite rank in
3[x].
If & is of characteristic 0, then (28) shows that

(KD, =mm - 1) ... (- i1 K0 (i =1.2.3 . . .4) . Set
£(x)D, = £'(x) the formal derivative of £(x) € &[x]. Then i!Di = Df‘

or, equivalently, Di = E%— D;‘. More generally, if a, b € ¥/%, ¢ has
characteristic 0, then the relation (8) gives

. j . : s
(ab) ?—J!- = 31 (aDl> (??1;1)

LoNil

i=0

Hence, if D, is a derivation in ¥ and D, = Q} D;‘, then
i it

{1, o,, Dy, « . . .} is a higher derivation of infinite rank in %.

i
| In Section 1 we discussed a connection between derivations D of

U/¢ into B/¢ and homomorphisms s = s(D) of ¥ into B ® € where § is an
algebra with basis (1,t) over & with the multiplication rule t2 = Q.

In the case of higher derivations we shall introduce an algebra @(m)

m+1l mt+1

with basis (1,t, . . . , tm) over & such that t =0. If (x ) is
the principal ideal generated by xm+l over &, then we can identify @(m)
with é[x]/(xm+l). Construct the algebra B ® S(m) = %(m). If

D(m> = {1, Dyy o o vy Dm} is a higher derivation of rank m of ¥ into

B, introduce the mapping s = s(D") of ¥ into %(HO defined by
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(29) a-+a°=a+ (aD)t+ . .. +(aDm)tm.

Since each Di is &-linear, s is also linear. We have

’m m m J ]
a°p° = z (aD.) t" z (ka)t 22 (aDi)(bDj-i)tJ
i= =0 50 £=0
m
= Z (ab)D.t? = (ab)® .
§=0

(m)

This shows that s is a homomorphism of % into B We next

introduce the mapping m : a, + a,t + . . . + amtm >, e € 8. This

(m)

mapping is clearly a homomorphism of B into B which is the identity
on B, It is also clear that 2° = a for every a € ¥ and that this

requirement guarvantees that s is 1 - 1.

(m)

Conversely, let s be any homomorphism of ¥ into B such that
ST .
a~ = a, for all a € Y. Then we write
a® =a+ (aD)t+ . . .+ (aDm)tm. We now claim that {1, D;, . . . , D}

is a higher derivation of ¥ into B. This follows immediately since s is

linear implies that every Di is linear and we have

S, 8

a’b (aD )t 31 (bD )t

k =0

i
~18

=
i
o

j

j
2 FO (a0, (b0, )t

~1d

(ab)® =

1~1g

(ab)DjtJ 5

il

j=0

implies the relation (27).



70

Similar considerations apply to higher derivations of

(m)

infinite rank. The place of B ™ is now taken by the

algebra B[[t]] of power series
(30) a, +a,t+a e+ . .. ..
where the‘ai €83 (cf. Vol. I, p. 95)o1

Definition 4.2. If {Di} is a higher derivation of rank m (possibly

infinite) of Y into B, an element ¢ € Y is a constant relative to {Di}

if ¢ Di =0 for all i = 1.

We shall often refer to constants relative to {Di} simply as
{Di}—constants. We observe that if c is a {Di}—constant, ¢® = ¢ (and
conversely) for the homomorphism associated with {Di}. Let
c,, cp € U/E, be {Di}—constants. Then

s s s \8 s s
(¢ £¢c5)” =¢ *cg =c¢ & Cp, (cye)” = ¢y ¢y = ¢ ey,
. - \s s s _ .
and, if ¢ € &, cl(acg)} = ¢, (acg) = ¢, (@cy) . Moreover, since

1° = 1, the set of {Di}—constants form a subalgebra (with identity) of

the algebra 8/3. 1In particular, if Y =P is a field and b # 0 in P,

1 -1

s(bs)— = cb ., Therefore the set of

then (cb_l)S = cs(b—l)S = c
{Di}—constants form a subfield ' of P. It is clear that I' 2 & since

aD, = (l'o)D, =1 D, =0 for all ¢ € 3.
i i i

We suppose now that P/® is a field of characteristic p # 0. Let
E be a subfield of P/® and let D(m) ={1, D, . .., Dm} be a higher

derivation of rank m of E/$ into P/&. 1In general, if

0=D, =Dy, =. . .= but Dq # 0, we shall say that D(m> is of

Dq—l’

1Jacobson [9], p. 193.
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order q. 1In this case, the associated.homomorphism s = s(D(m)) of E/®

(m)

into P has the form

s _ q q+l m
(31) ¢ =¢ + (qu)t + (qu+l)t + ... (CDOE

where qu # 0 for some { in E. We shall use this to prove the

following theorem (cf. Jacobson [9], p. 194).

Theorem 4 .A. Let P/& be a field of characteristic p # 0. Let
E be a subfield of P/%, D(m) a higher derivation of rank m and order g
of E/® into P/8. Let I be the subfield of D' -constants of E and let p°
be the smallest power of p such that pe > %. Then E is purely

inseparable of exponent e over T'.

e
Proof. We have to show that QP € T for every { € E and that
e-1
there exists some { € E such that P ¢ T'. The first part is clear

from (31) since

e

es _ ,_sp° _ q m\P
P =@« —(g+(qu)t + .. .+ (gDm)t>

‘ p° p% e e
| =
| ¢h DY ET Ly )P P

e e e
= gp , since £ 9P ... =t" =0 follows

immediately from the fact that q p° > m and t¥ = 0 for all k > m. This
e
shows that gp € I'. Let us now choose an element [ € E which is not a

D"-constant. In this case, qu # 0 and

e-1 e-1 e-1 e=1
P H¥ = o+ (S £ 4
e-1 e~1

#cP since q pe—l <m. Hence (F ¢r.

We shall now consider a purely inseparable extension field
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e
P = &(€) where x* - @ is the minimal polynomial of g over &. Let

{Di} be thg higher derivation in the polynomial algebra §[x] defined by
(28) and 1let D(peil) ={1,D, « .., Dpe-l} be the higher derivation
of rank pe -1 wéich is a section of this higher derivation {Di}. Since
each Dj € {Di} is linear, [xpe - oz]Dj = xP Dj ~ab, =0 -0=0 for

1 <3< pe -~ 1. We have seen that P = &(f£) can be identified with
@[x]/(xpe— o) where (xpe- @) is the principal ideal generated by

xP< - o and that 1 + (xpe— ) «PE-1 4 (xpe- @) then form a
basis over & for &(E). Moreover, if we write xpe— o = h(x) and

f(x) € &[x] is arbitrarily chosen, then the defining relations (27)

show that

j
E: (f<x) Di) <h(x) Dj—i)
=0

(f(x) h(x)) D,

(f(x) Dj) h(x) . This implies that this

principal ideal is mapped into itself by every Dj' Hence every Dj
induces a linear mapping, which we denote again by Dj’ in P = 3(E).
The conditions in 3[x] for Dj go over to the same conditions (27) for
Dj in 3(€) since
3
xm+nDj‘= Ej(mei)(anj_i)
i=0
holds in #{x] and each Dj is linear. Hence we obtain a higher derivation

e R
D(p - in $(£) such that . . B

(32) gmpg' - <m> et m=0,1,...,p%5-1

i

We shall now show that the subfield I’ of {Di}—constants for
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e
D(P -1 is precisely &. Suppose that 3 is properly contained in T’

£
P 8,

(i.e., 8 ©T). Then the minimal polynomial of § over I' is x
£ .
per, f <e. In this case, EP € I'. On the other hand, the definition
f f
(32) gives EP Dpf = 1"# 0. This is a contradiction since EP € I' implies

£
that EP D o = 0. Hence 2 =T, since we already have & = T.
P

We next assume that P is a purely inseparable extension of &
given by P =P, P, ® . . . ® Pr the tensor product of simple extensions
e :
Pi = @(gi), ég) =y €¢&. Then P =3(& , . . ., gr) and the monomials

e.
§Jﬁ e §;ﬁ:, 0=k, <p 1) form a basis for P over &. If we set

@i =3(8, . . ., 51—1’ §i+1’ e e, Er), then P = @i(Si). By the above
argument, there exists a higher derivation of finite rank in P whose
constants are the elements of @i. This statement holds for

T
i=1,2, ..., r. Hence it is clear that 'ﬂléi = § is the subfield of
1=
P of elements which are constants relative to all the higher derivations

of finite rank in P over &.

Definition 4.3. A higher derivation in U of infinite rank is
. . . i+] . . .
called iterative if DiD' =z Di+j , and a higher derivation

J
D(m) ={D, =1,D, . . ., Dm} of finite rank m is called iterative if

s
(D DiDj = (ljj> Di+j for i + j €£m, and (2) DiDj =04if 1 + j > m.

Remark 4.1. The higher derivations defined by (28) and (32) are

iterative.

Proof. ‘Since the mappings Di defined by (28) constitute a higher
derivation {1, Dy, Dpy, o« v v } of infinite rank in &[x], we have to

show that D,D, = <1TJ> D. .. This follows readily since
i ] i i+] _



oy = () ) oy (3) (75 w0

m! (m - i)! m-1i-]j

T iTm -1 §lm-1-pr*>
_ G+ P! m! m-i-j _ <i+j) ~
i @+ ! (m-1i-pre “\i XmDi+j

Secondly, the mappings Di defined by (32) constitute a higher

N (p©-1) e .
derivation D of rank p - 1 over (§). It is clear that

_(m m-i _ i+j> o s .
§mDiDj = <i> (g Dj) = < ; ngi+j’ as above. This implies
that DiDj = <113> Dipj» t+isms= pS - 1. Since the fields of

(p©-1)

constants for D is ¢, we must have DiDj =0 for i + 3> pe - 1.
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This proves that the higher derivations defined by (28) and (32)

are iterative.
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