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Abstract

In this thesis a problem of determining the maximum number of cycles for the

following classes of graphs is considered: triangle-free graphs; Kr-free graphs; graphs

with m edges; graphs with n vertices and m edges; multigraphs with m edges and

multigraphs with n vertices and m edges.
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Chapter 1

Introduction

1.1 Types of problems considered

The main theme of this thesis is determining the maximum number of cycles in

a graph with different restrictions. My interest in this topic was initiated by my

academic supervisor David Gunderson in January 2014, in the begining of my Ph.D.

program. Durocher, Gunderson, Li and Skala [20] were interested in the question of

how many cycles can a triangle-free graph have (this question was motivated by the

study of path-finding algorithms). The authors of [20] posed the following conjecture.

Conjecture 1.1.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For each n ≥ 4, the

balanced complete bipartite graph Kdn/2e,bn/2c contains more cycles than any other

n-vertex triangle-free graph.

Gunderson, Tsaturian and I [10] were able to prove this conjecture for the case

1



2

n ≥ 141 (see Theorems 3.4.1 and 3.4.2 here). We also posed the following conjecture

and question.

Conjecture 1.1.2 (Arman-Gunderson-Tsaturian, 2016 [10]). For any k > 1, if an

n-vertex C2k+1-free graph has the maximum number of cycles, then G = Kdn2 e,bn2 c.

Question 1.1.3 (Arman-Gunderson-Tsaturian, 2016 [10]). For k ≥ 4, what is the

maximum number of cycles in a Kk-free graph on n vertices? Could it be that the

only cycle-maximal Kk-free graphs are Turán graphs?

Miklós Simonovits [44] suggested that the Regularity Lemma [46] might be used

to answer Question 1.1.3 or prove Conjecture 1.1.2, but at the time we could not

overcome certain technical difficulties of such an approach (see Section 5.1 for more

details). In January 2014, after a preprint of the paper [10] appeared on arXiv.org,

we received an email from Alex Scott [41], in which he informed us that he and a

student of his could (by using the Regularity Lemma) prove Conjecture 1.1.2 and

answer affirmatively Question 1.1.3 for n large enough. However, their results were

not published at the time of the preparation of this thesis.

In February 2016, after a talk in the combinatorics seminar at University of Mani-

toba, Dr. Karen Gunderson [25] asked us if Sergei Tsaturian and I had considered the

question of determining the maximum number of cycles in a graph with a given den-

sity, which motivated me and Tsaturian to investigate the following two questions.

For any graph G, let C(G) denote the number of cycles in G.

https://arxiv.org/
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Question 1.1.4. For m ≥ 3 let C(m) denote the maximum number of cycles in

any graph with m edges. What is C(m) and for which graphs G with m edges does

C(G) = C(m)?

Question 1.1.5. Among all graphs G with a fixed number of vertices and a fixed

number of edges what is the maximum of C(G)? Which graphs achieve the maximum?

Tsaturian and I were not able to completely answer either of those two questions,

but we did provide [9] useful estimates for the maximum number of cycles in each

case (these estimates are also presented in Chapter 4 of this thesis). For instance,

we proved that if G is a graph with m edges that has the maximal number of cycles

and C(G) is the number of cycles in G, then

1.37m ≤ C(G) ≤ 1.443m.

Also, Tsaturian and I [9] proved that if G is a graph with the maximum number

of cycles among all graphs with n vertices and average degree d = d(n), such that

limn→∞ d(n) =∞, then for n large enough,

(
d

e

)n
(1 + o(1))n ≤ C(G) ≤ (1 + o(1))n

(
d

2

)n
.

Tsaturian and I could not answer Question 1.1.4 nor Question 1.1.5, and so were

motivated to reconsider the main tool used to obtain an upper bounds for the number

of cycles (technical Lemma 4.3.1). We came to the conclusion that even if this tool

is not very precise in estimating number of cycles in a graph, it is a very precise
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tool in estimating the number of cycles in a multigraph. We were able to prove

(Theorem 4.7.1 here) that for a multigraph G that has the maximum number of

cycles among all of the multigraphs with n ≥ 2 vertices and m ≥ 3 edges and for

s =
⌊

m
n−1

⌋
, α = m

n−1
− s

8

27
s(s1−α(s+ 1)α)n−1 ≤ C(G) ≤ 3

4
∆(G)(s1−α(s+ 1)α)n−1 , if

m

n− 1
≥ 3;

4(
3
√

3)m−4 ≤ C(G) <
3

4
∆(G) · ( 3

√
3)m , if

m

n− 1
≥ 3.

Also, Tsaturian and I [9] were able to prove (Theorems 4.2.3, 4.2.4, 4.7.2 here)

that if G is a graph (or a multigraph) with m edges and the maximum number of

cycles, then the maximal degree of G is at most eleven and the minimal degree of G

is at least three.

After receiving the email from Alex Scott [41], I was trying to answer Ques-

tion 1.1.3 affirmatively without using the Regularity Lemma [46]. Lemma 4.3.1

proved to be a useful tool in estimating the number of cycles in a graph, so I used it

to approach Question 1.1.3. Recall, that T (n, r) is a Turán graph – complete r-partite

graph on n vertices with sizes of partite sets differing by at most one, and t(n, r) is

the number of edges in T (n, r). I was able to prove (Theorem 5.3.2 here) that for

n large enough, any Kr+1-free graph G with n vertices and m ≤ t(n, r)− 2r4n log n

edges has fewer cycles than T (n, r).

Also, I proved (Theorems 5.2.2, 5.2.6 here and [8]) estimates on the number of
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cycles in the Turán graph T (n, r), namely that there exists a constant c such that

c

n
2
3
r2− r

2
+1

(
n(r − 1)

re

)n
≤ C(T (n, r)) ≤

(
e2n

r

) r
2
(
n(r − 1)

re

)n
.

Finally, I want to note that it is possible to estimate the number of cycles in a

graph G by using an adjacency matrix of G. If A is a square matrix then the trace

of A is defined to be the sum of the diagonal entries of A and is denoted by tr(A).

Perepechko and Voropaev [37] proved that if A is an adjacency matrix of a graph

G, and for every subset S of [n], AS is the submatrix of a matrix A with the set S

of rows and columns deleted and for any 3 ≤ k ≤ n, ck is the number of cycles of

length k in G, then

ck =
1

2k

k∑
i=2

(−1)k−i
(
n− i
n− k

) ∑
|S|=n−i

tr(AkS).

Hence, the following formula for the number of cycles in G holds:

C(G) =
n∑
k=3

1

2k

k∑
i=2

(−1)k−i
(
n− i
n− k

) ∑
|S|=n−i

tr(AkS).

I believe that this formula might be used to estimate the number of cycles in a

Kr-free graph, or in a graph with m edges, but I was not able to use it for a question

of maximizing the number of cycles.

1.2 Structure of the thesis

Chapter 2 contains basic notation and Chapters 3, 4, 5 contain original research.

The main problem considered in this thesis is the problem of estimating the number



6

of cycles in graphs with different restrictions.

In Chapter 3, the question of determining the maximum number of cycles in a

triangle-free graph on n vertices is considered. All of the results in Chapter 3 are

present in the paper of Arman, Gunderson, Tsaturian [10]. The main result of

Chapter 3, Theorem 3.4.1, establishes the existence of n0 ∈ Z+ such that for any

n ≥ n0, the only triangle-free graph on n vertices with the largest number of cycles

is Kbn/2c,dn/2e.

In Chapter 4, the question of determining the maximum number of cycles in a

graph with a given number of edges is considered. Most of the results presented

in Chapter 4 are also present in the paper of Arman and Tsaturian [9]. Some of

other results in Chapter 4 were obtained individually (as noted). The main result of

Chapter 4 states that for m large enough,

1.37m ≤ C(m) ≤ 1.443m.

In Chapter 5, the question of determining the maximum number of cycles in an

H-free graph G on n vertices is considered. All of the results in Chapter 5 are original

individual research. In Section 5.2, the question of estimating the number of cycles

in a Turán graph is considered. The main result of Section 5.2 is Theorem 5.2.6,

which states that for n large enough

C(T (n, r)) ≥ c

n
2
3
r2− r

2
+1

(
n(r − 1)

re

)n
.

In Section 5.3 an estimate on the number of cycles in a Kr-free graph is given and
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the main result of Section 5.3 is Theorem 5.3.2, which states that for n large enough,

any Kr+1-free graph G with n vertices and m ≤ t(n, r)− 2r4n lnn edges,

C(G) < C(T (n, r)).



Chapter 2

Basic notation and definitions

2.1 Basic Notation

In this thesis notation mostly follows Bollobás’ book [13]. For k ∈ Z+, let [k] =

{i ∈ Z; 1 ≤ i ≤ k}, and for a set S, denote [S]k = {T ⊆ S : |T | = k}. For a set V ,

let [V ]2 = {{x, y} : x, y ∈ V, x 6= y} be the collection of all unordered pairs of the

elements of V . A graph G is an ordered pair (V,E), where V 6= ∅ and E ⊆ [V ]2.

Elements of V are called vertices and elements of E are called edges. An edge

{x, y} ∈ E(G) can be denoted by xy. The neighbourhood of a vertex v ∈ V (G) is

NG(x) = {y ∈ V (G) : xy ∈ E(G)}, and the degree of a vertex x is degG(x) = |N(x)|.

When it is clear what G is, the subscript G can be deleted, writing simply N(x)

and deg(x). If Y ⊂ V (G), the subgraph of G induced by Y is denoted by G[Y ].

If Y ⊂ V (G), the subgraph of G induced by V (G)\Y is denoted by G\Y . Denote

8



9

the average degree of a graph G by d(G), the maximum degree by ∆(G), and the

minimum degree by δ(G). The complete graph on n vertices is denoted by Kn (where

E = [V ]2).

A graph G = (V,E) is called bipartite if and only if there is a partition V = A∪B

so that E ⊂ {{x, y} : x ∈ A, y ∈ B}; if E = {{x, y} : x ∈ A, y ∈ B}, then G is

called the complete bipartite graph on partite sets A and B, denoted by G = K|A|,|B|.

The balanced complete bipartite graph on n vertices is Kbn/2c,dn/2e (this graph is also

the Turán graph T (n, 2), see below). A cycle on m vertices is denoted by Cm. The

complement of a graph G is denoted by G.

For n, r ∈ Z+ define the Turán graph T (n, r) to be the graph with n vertices,

such that V (T (n, r)) can be partitioned into r sets V1, V2, . . . , Vr in a way such that

for any i 6= j, ||Vi| − |Vj|| ≤ 1 and so that edge set

E(T (n, r)) = {{x, y} : x ∈ Vi, y ∈ Vj, i 6= j}.

Define t(n, r) = |E(T (n, r))| and let ` ≡ n mod r, then

t(n, r) =
n2

2

(
1− 1

r

)
− `(r − `)

2r
.

For any graph G let C(G) be the number of undirected cycles in G.

Also, the common notations o(n),Ω(n) are used: a function f(n) = o(n) if and

only if limn→∞
f(n)
n

= 0; f(n) = Ω(n) if and only if lim supn→∞ |
f(n)
n
| > 0.
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2.2 Stirling approximation and relative inequali-

ties

The number e is the base of the natural logarithm. Stirling’s approximation

formula says that as n→∞,

n! = (1 + o(1))
√

2πn
(n
e

)n
. (2.1)

In 1955, Robbins [40] proved the following approximation for factorials, valid for all

n ≥ 1:

e
1

12n+1

√
2πn ·

(n
e

)n
< n! < e

1
12n

√
2πn ·

(n
e

)n
.

The following consequence of Robbins’ approximation is used (valid for all n ≥ 2):

√
2πn

(n
e

)n
< n! < e ·

√
n
(n
e

)n
. (2.2)



Chapter 3

Counting cycles in triangle-free

graphs

3.1 Motivating question

All graphs in this chapter are simple and undirected. All of the results presented

in this chapter are taken from the paper of Arman, Gunderson and Tsaturian [10].

The research in this chapter was motivated by a paper of Durocher, Gunderson, Li

and Skala [20], where the maximum number of cycles in a triangle-free graph was

considered. Durocher, Gunderson, Li and Skala [20] posed the following conjecture:

Conjecture 3.1.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For every n ≥ 4, the

balanced complete bipartite graph Kdn/2e,bn/2c contains more cycles than any other

n-vertex triangle-free graph.

11



12

The authors of [20] confirmed Conjecture 3.1.1 when 4 ≤ n ≤ 13, and made a

progress toward this conjecture in general.

Conjecture 3.1.1 holds true for n ≥ 141 (see Theorems 3.4.1 and 3.4.2 below).

Along the way some other results are proved that are of independent interest – e.g.

estimates for the number of cycles in Kdn/2e,bn/2c (Theorem 3.2.4) and estimates on

the number of hamiltonian cycles in a triangle-free graphs (Lemma 3.3.3).

Even though Conjecture 3.1.1 arose from a very specific problem in computing

(see [15]), it can be considered significant in two areas of graph theory: counting

cycles in graphs, and the structure of triangle-free graphs. In recent decades, bounds

have been proved for the maximum number of cycles in various classes of graphs.

Some of these classes include

• complete graphs [27],

• planar graphs [4, 5, 16],

• outerplaner graphs and series-parallel graphs [19],

• graphs with large maximum degree without a specified odd cycle [11],

• graphs with specified minimum degree [49],

• graphs with a specified cyclomatic number or number of edges [2, 21, 24, 31]

(see also [33, Ch4, Ch10]),

• cubic graphs [3, 17],
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• graphs with fixed girth [36],

• k-connected graphs [32],

• hamiltonian graphs [38,42,49],

• hamiltonian graphs with a fixed number of edges [26],

• 2-factors of the de Bruijn graph [22],

• graphs with a cut-vertex [49],

• complements of trees [29,39,51],

• random graphs [47].

In some cases, ( e.g., [11, 38]) the associated extremal graphs were found.

By Mantel’s theorem [34], among graphs on n vertices, the triangle-free graph

with the most number of edges is the balanced complete bipartite graph Kdn/2e,bn/2c.

Since Kdn/2e,bn/2c is the triangle-free graph on n vertices with the most number of

edges Conjecture 3.1.1 might seem reasonable, even though Kdn/2e,bn/2c contains no

odd cycles.
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3.2 Preliminaries and estimate on the number of

cycles in T (n, 2)

The following shows that among all bipartite graphs, the balanced one has the

most cycles.

Lemma 3.2.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For n ≥ 4, among all

bipartite graphs on n vertices, Kdn/2e,bn/2c has the greatest number of cycles; that is,

Kdn/2e,bn/2c is the unique cycle-maximal bipartite graph on n vertices.

So, to settle Conjecture 3.1.1, it is then sufficient to prove that a cycle-maximal

triangle-free graph is bipartite. To this end, the following result might be essential:

Theorem 3.2.2 (Andrásfai, 1964 [6]). Any triangle-free graph G on n vertices with

δ(G) > 2n/5 is bipartite.

See also [7] for an English-language proof of Theorem 3.2.2 and related results.

Theorem 3.2.2 is sharp because of C5 (or a blow-up of C5).

Lemma 3.2.3 (Durocher-Gunderson-Li-Skala, 2015 [20]). For n ≥ 4, the number of

cycles in the balanced complete bipartite graph is

C(Kbn/2c,dn/2e) =

bn/2c∑
k=2

bn/2c! dn/2e!
2k(bn/2c − k)!(dn/2e − k)!

. (3.1)

Two modified Bessel functions (see, e.g., [1]) are used:

I0(x) =
∞∑
k=0

x2k

22k(i!)2
; (3.2)
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I1(x) =
∞∑
k=0

x2k+1

22k+1i!(i+ 1)!
. (3.3)

In particular, when x = 2 is used in either modified Bessel function, useful approxi-

mations are obtained:

2.27958 ≤
∞∑
i=0

1

(i!)2
= I0(2) ≤ 2.279586; (3.4)

1.5906 ≤
∞∑
i=0

i

(i!)2
=
∞∑
k=0

1

k!(k + 1)!
= I1(2) ≤ 1.59064. (3.5)

The following form for the number of cycles in Kbn/2c,dn/2e gives a way to estimate

the right hand side of (3.1) in Lemma 3.2.3:

Theorem 3.2.4 (Arman-Gunderson-Tsaturian, 2016 [10]). For n ≥ 12,

C(Kbn/2c,dn/2e) ≥
bn/2c! dn/2e!

2 bn/2c
·


I0(2) if n is even

I1(2) if n is odd

(3.6)

≥ π
( n

2e

)n
·


I0(2) if n is even

I1(2) if n is odd,

(3.7)

and as n→∞,

C(Kbn/2c,dn/2e) = (1 + o(1))


I0(2)π

(
n
2e

)n
if n is even

I1(2)π
(
n
2e

)n
if n is odd.

(3.8)

Proof: Using (2.2), the proof that (3.7) follows from (3.6) is elementary (by using

Stirling’s approximation), and so is omitted.
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By Lemma 3.2.3, write

C(Kbn/2c,dn/2e) =

bn/2c∑
k=2

bn/2c! dn/2e!
2k(bn/2c − k)!(dn/2e − k)!

=
bn/2c! dn/2e!

2 bn/2c
·
bn/2c∑
k=2

bn/2c
k(bn/2c − k)!(dn/2e − k)!

. (3.9)

Case 1 (n even): Suppose that for ` ≥ 2, n = 2`, and set

a` =
∑̀
k=2

`

k((`− k)!)2
=

`−2∑
i=0

`

(`− i)(i!)2
.

Then equation (3.9) becomes

C(Kbn/2c,dn/2e) =
bn/2c! dn/2e!

2 bn/2c
· a`. (3.10)

Claim: For ` ≥ 4, a`+1 < a`. (This claim is needed later only for ` ≥ 6.)

Proof of Claim:

a` − a`+1 =
`−2∑
i=0

(
`

`− i
− `+ 1

`+ 1− i

)
1

(i!)2
− `+ 1

2((`− 1)!)2

=
`−2∑
i=0

i

(`+ 1− i)(`− i)(i!)2
− `+ 1

2((`− 1)!)2

=
`−2∑
i=2

i

(`+ 1− i)(`− i)(i!)2
+

1

`(`− 1)
− `+ 1

2((`− 1)!)2

>
1

`(`− 1)
− `+ 1

2((`− 1)!)2

=
2((`− 1)!)2 − (`+ 1)`(`− 1)

2((`− 1)!)2`(`− 1)

≥ 0 (for ` ≥ 4),

finishing the proof of the claim.
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Since the sequence {a`} is non-increasing and bounded below (by 0, for example),

lim`→∞ a` exists. To find this limit, first apply partial fractions:

a` =
`−2∑
i=0

`

(`− i)(i!)2
=

`−2∑
i=0

1

(i!)2
+

`−2∑
i=0

i

(`− i)(i!)2
.

Put b` =
`−2∑
i=0

1

(i!)2
and c` =

`−2∑
i=0

i

(`− i)(i!)2
. Then

c` =
`−2∑
i=0

i

(`− i)(i!)2

=
3∑
i=0

i

(`− i)(i!)2
+

`−2∑
i=4

i

(`− i)(i!)2

≤ 3

`− 3
+

`−2∑
i=4

1

(i− 1)!(`− i)i!

≤ 3

`− 3
+

`−2∑
i=4

1

i(`− i)i!

≤ 3

`− 3
+

`−2∑
i=4

1

(2`− 4)i!

≤ 3

`− 3
+

1

`

`−2∑
i=4

1

i!
(since ` ≥ 4)

≤ 3

`− 3
+
e

`
,

where the last line is based on e =
∑∞

i=0
1
i!
.
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Therefore, lim`→∞ c` = 0, and so

lim
`→∞

a` = lim
`→∞

(b` + c`)

= lim
`→∞

b`

=
∞∑
i=0

1

(i!)2

= I0(2) (by (3.4)).

Since a` is non-increasing for ` ≥ 6, for n ≥ 12,

C(Kbn/2c,dn/2e) ≥
bn/2c! dn/2e!

2 bn/2c
· I0(2),

which proves the even case of (3.6). By (3.4), as n→∞,

C(Kbn/2c,dn/2e) = (1 + o(1))
bn/2c! dn/2e!

2 bn/2c
· I0(2),

and by Stirling’s approximation (2.1), the proof of the even case of (3.8) is complete.

Case 2 (n odd): Suppose that for ` ≥ 6, n = 2` + 1. The proof follows the even

case, and so is only outlined. Put

a` =
∑̀
k=2

`

k(`− k)!(`+ 1− k)!
=

`−2∑
i=0

`

(`− i)i!(i+ 1)!
.

Claim: For ` ≥ 4, a`+1 < a`.
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Proof of claim: Letting ` ≥ 4,

a` − a`+1 =
`−2∑
i=0

i

(`+ 1− i)(`− i)
· 1

i!(i+ 1)!
− `+ 1

2(`− 1)!`!

=
`−2∑
i=2

i

(`+ 1− i)(`− i)
· 1

i!(i+ 1)!
+

1

2(`− 1)`
− `+ 1

2(`− 1)!`!

>
(`− 2)!(`− 1)!− (`+ 1)

2(`− 1)!`!

≥ 0,

finishing the proof of the claim.

Therefore, lim`→∞ a` exists. To find this limit, write

a` =
`−2∑
i=0

1

i!(i+ 1)!
+

`−2∑
i=0

i

(`− i)i!(i+ 1)!
.

Letting b` =
`−2∑
i=0

1

i!(i+ 1)!
and c` =

`−2∑
i=0

i

(`− i)i!(i+ 1)!
, observe that

c` =
`−2∑
i=0

i

(`− i)i!(i+ 1)!
+

`−2∑
i=0

i

(`− i)i!(i+ 1)!
≤ 3

`− 3
+
e

`
,

and so lim
`→∞

c` = 0. Thus,

lim
`→∞

a` = lim
`→∞

b` =
∞∑
i=0

1

i!(i+ 1)!
=
∞∑
i=0

i+ 1

((i+ 1)!)2
=
∞∑
i=0

i

(i!)2
,
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which, by (3.5), is equal to I1(2). Then again

C(Kbn/2c,dn/2e) ≥
bn/2c! dn/2e!

2 bn/2c
· I1(2)

=
`!(`+ 1)!

2`
· I1(2)

=
(`!)2

2`
(`+ 1) · I1(2)

= (1 + o(1))π

(
`

e

)2`

(`+ 1) · I1(2) (by (2.1))

> (1 + o(1))π

(
`

e

)2`

(`− 1) · I1(2)

= (1 + o(1))π

(
n− 1

2e

)n−1(
n− 1

2

)
· I1(2)

= (1 + o(1))πe

(
n− 1

2e

)n
· I1(2)

= (1 + o(1))πe

(
n− 1

n

)n ( n
2e

)n
· I1(2)

= (1 + o(1))π
( n

2e

)n
· I1(2),

and as n→∞,

C(Kbn/2c,dn/2e) = (1 + o(1))π
( n

2e

)n
· I1(2).

This completes the proof for odd n, and so the proof of the lemma.

Lemma 3.2.5 (Arman-Gunderson-Tsaturian, 2016 [10]). Let H be a triangle-free

graph on 6 vertices with x, y ∈ V (H). Then there are at most 9 different x–y paths.

Proof: Consider two cases.

Case 1: H contains no copy of C5. Then H contains no odd cycle, and so is

bipartite. Without loss of generality, add edges to H to make H a complete bipartite



21

graph. There are only four different complete bipartite graphs on six vertices, namely

K6, K1,5, K2,4, and K3,3. By inspection, in any of these, the maximum number of

paths between any two vertices is at most 9 (which is realized for K3,3).

Case 2: H contains a copy of C5. Suppose that x1, x2, x3, x4, x5, x1 forms a cycle

C, and that x6 is the remaining vertex. Then x6 is adjacent to at most two vertices

of C. If x6 is adjacent to fewer than two vertices of C, add an extra edge or two so

that x6 is adjacent to precisely two vertices of C; without loss of generality, suppose

that x6 is adjacent to x1 and x3. Then the maximum number of paths between any

two vertices is 4 (for example, between x2 and x6).

3.3 Counting cycles through a vertex or an edge

Lemma 3.3.1 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists n0 ∈ Z+ so

that for every even integer n ≥ n0, if G is a triangle-free graph on n vertices, and

x1x2 ∈ E(G), then the number of cycles containing the edge x1x2 is at most 10π n
n−1

(2e)n
.

Proof: Let G be a triangle-free graph on n vertices, and let x1x2 ∈ E(G). For each

k = 4, . . . , n, let ck denote the number of cycles of length k that contain the edge

x1x2. The goal is to give an upper bound for
∑n

k=4 ck.

Let 2 ≤ i ≤ n−4
2

. An upper bound on c2i+c2i+1 is first calculated; to do so, count

all possible cycles of the form x1, x2, . . . , x2i or x1, x2, . . . , x2i+1. For each j > 1,

there are at most dj = |N(xj)\{x1, . . . , xj−1}| ways to choose an xj+1. Note that
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N(xj) ∩N(xj+1) = ∅, since otherwise a triangle is formed with xj and xj+1. Also,

|(N(xj)\{x1, . . . , xj−1}) ∪ (N(xj+1)\{x1, . . . , xj})| ≤ |V (G)\{x1, . . . , xj}| = n− j.

Therefore,

dj + dj+1 ≤ |N(xj)\{x1, . . . , xj−1}|+ |N(xj+1)\{x1, . . . , xj}|

= |(N(xj)\{x1, . . . , xj−1}) ∪ (N(xj+1)\{x1, . . . , xj})|

≤ n− j,

and thus

djdj+1 ≤
⌊
n− j

2

⌋
·
⌈
n− j

2

⌉
. (3.11)

Using (3.11), the number of ways to choose vertices x3, x4, . . . , x2i so that x1, x2,

x3, x4, . . ., x2i form a path is at most

2i−1∏
j=2

dj =
i−1∏
j=1

(d2jd2j+1) ≤
i−1∏
j=1

(⌊
n− 2j

2

⌋
·
⌈
n− 2j

2

⌉)
=

i−1∏
j=1

(
n− 2j

2

)2

. (3.12)

If there is an edge x2ix1 ∈ E(G), there is one cycle x1, x2, . . . , x2i of length 2i,

and no cycles of the form x1, x2, . . . , x2i+1 because otherwise, x1, x2i, x2i+1 form a

triangle. So, in total, there is exactly one cycle that contains the path x1, x2, . . . , x2i

and has length 2i or 2i + 1. If there is no edge x2ix1, there is no cycle x1, . . . , x2i

and at most n− 2i cycles of the form x1, . . . , x2ix2i+1. In any case, there are at most

n− 2i cycles of length 2i or 2i+ 1 containing the path x1, . . . , x2i.

By these observations and inequality (3.12),

c2i + c2i+1 ≤ (n− 2i)
i−1∏
j=1

(
n− 2j

2

)2

. (3.13)
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To evaluate
∑n

k=4 ck, separate the sum into two parts:

n−5∑
k=4

ck =

(n−6)/2∑
i=2

(c2i + c2i+1)

≤
(n−6)/2∑
i=2

(
(n− 2i)

i−1∏
j=1

(
n− 2j

2

)2
)

(by (3.13))

=

(n−6)/2∑
i=2

(n− 2i)

( (
n−2

2

)
!(

n−2i
2

)
!

)2

=

((
n− 2

2

)
!

)2
n−4
2∑
j=3

2j

(j!)2

=

((
n− 2

2

)
!

)2
 n−4

2∑
j=1

2j

(j!)2
− 2

(1!)2
− 2 · 2

(2!)2


≤
((

n− 2

2

)
!

)2

(2 · (1.591)− 3) (by (3.5))

< 0.19

((
n− 2

2

)
!

)2

. (3.14)

To count
n∑

k=n−4

ck, note that by (3.11), there are at most

n−5∏
i=2

di ≤
n−6
2∏
j=1

(
n− 2j

2

)2

ways to choose a path x1, x2, . . . , xn−4, and by Lemma 3.2.5, there are at most 9

paths that connect xn−4 and x1 in the graph G\{x1, . . . , xn−5}; that is, there are at

most 9 ways to complete the path x1, x2, . . . , xn−4 to a cycle. Therefore,

n∑
k=n−4

ck ≤ 9

n−6
2∏
j=1

(
n− 2j

2

)2

= 9 ·
((

n−2
2

)
!
)2

(2!)2
=

9

4

((
n− 2

2

)
!

)2

. (3.15)

Adding equations (3.14) and (3.15),

n∑
k=4

ck ≤ 0.19

((
n− 2

2

)
!

)2

+
9

4

((
n− 2

2

)
!

)2

= 2.44

((
n− 2

2

)
!

)2

. (3.16)



24

By Stirling’s approximation, as n→∞,

2.44

((
n− 2

2

)
!

)2

= (1 + o(1))2.44

(
n− 2

2e

)n−2

· π(n− 2)

= (1 + o(1))2.44π
nn−1

(2e)n
(2e)2

(
n− 2

n

)n−1

= (1 + o(1))2.44π
nn−1

(2e)n
4e2 · 1

e2

= (1 + o(1))9.76π
nn−1

(2e)n

< 10π
nn−1

(2e)n
(for n suff. large)

completing the proof of the lemma.

By a closer inspection, Lemma 3.3.1 holds for the value n0 = 97.

Lemma 3.3.2 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists n0 ∈ Z+ so

that for every odd integer n ≥ n0, if G is a triangle-free graph on n vertices, and

x1x2 ∈ E(G) with degG(x2) ≤ 2
5
n, then the number of cycles containing the edge

x1x2 is at most 7.81π n
n−1

(2e)n
.

Proof: The proof is similar to that of Lemma 3.3.1. Let G be a triangle-free graph

on n vertices, and let x1x2 ∈ E(G), where deg(x2) ≤ 2
5
n. For each k = 4, . . . , n, let

ck denote the number of cycles of length k that contain the edge x1x2.

For 3 ≤ i ≤ n−5
2

, an upper bound on c2i−1 + c2i is first calculated; to do so, count

all possible cycles of the form x1, x2, . . . , x2i−1 or x1, x2, . . . , x2i. As in Lemma 3.3.1,

for each j > 1, there are at most dj = |N(xj)\{x1, . . . , xj−1}| ways to choose an xj+1,



25

and

djdj+1 ≤
⌊
n− j

2

⌋
·
⌈
n− j

2

⌉
. (3.17)

Using (3.17) and the fact that d2 ≤ 2
5
n, the number of ways to choose vertices

x3, x4, . . . , x2i−1 so that x1, x2, x3, x4, . . . , x2i−1 form a path is at most

2i−2∏
j=2

dj = d2

2i−2∏
j=3

dj ≤
2

5
n

i−2∏
j=1

(d2j+1d2j+2)

≤ 2

5
n
i−2∏
j=1

(⌊
n− 2j − 1

2

⌋
·
⌈
n− 2j − 1

2

⌉)

=
2

5
n
i−2∏
j=1

(
n− 2j − 1

2

)2

. (3.18)

If x2i−1x1 ∈ E(G), there is one cycle of length 2i− 1 and no cycles of length 2i;

if there is no such edge, there are no cycles of length 2i− 1 and at most n− 2i + 1

cycles of length 2i. By these observations and (3.18),

c2i−1 + c2i ≤ (n− 2i+ 1)
2

5
n
i−2∏
j=1

(
n− 2j − 1

2

)2

. (3.19)

To evaluate
∑n

k=4 ck, separate the sum into three parts:

n∑
k=4

ck = c4 +
n−5∑
k=5

ck +
n∑

k=n−4

ck.

First,

c4 ≤ d2d3 < n · n = n2. (3.20)
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Next,

n−5∑
k=5

ck =

n−5
2∑
i=3

(c2i−1 + c2i)

≤
n−5
2∑
i=3

[
(n− 2i+ 1)

2

5
n
i−2∏
j=1

(
n− 2j − 1

2

)2
]

(by (3.19))

=
2

5
n

n−5
2∑
i=3

[
(n− 2i+ 1)

i−2∏
j=1

(
n− 2j − 1

2

)2
]

=
2

5
n

n−5
2∑
i=3

(n− 2i+ 1)

( (
n−3

2

)
!(

n−2i+1
2

)
!

)2

=
2

5
n

((
n− 3

2

)
!

)2
n−5
2∑
j=3

2j

(j!)2

=
2

5
n

((
n− 3

2

)
!

)2
 n−5

2∑
j=1

2j

(j!)2
− 2

(1!)2
− 2 · 2

(2!)2


<

2

5
n

((
n− 3

2

)
!

)2

(3.19− 3) (by (3.5))

= 0.076n

((
n− 3

2

)
!

)2

. (3.21)

To count
n∑

k=n−4

ck, note that by (3.20), there are at most

n−5∏
i=2

di = d2 ·
(n−7)/2∏
j=1

d2j+1d2j+2 ≤
2

5
n

n−7
2∏
j=1

(
n− 2j − 1

2

)2

ways to choose a path x1, x2, . . . , xn−4, and by Lemma 3.2.5, there are at most

9 ways to complete to a cycle (by paths that connect xn−4 and x1) in the graph

G\{x1, . . . , xn−5}. Therefore,

n∑
k=n−4

ck ≤ 9 · 2

5
n

n−7
2∏
j=1

(
n− 2j − 1

2

)2

= 9 · 2

5
n ·
((

n−3
2

)
!
)2

(2!)2
=

9

10
n

((
n− 3

2

)
!

)2

.

(3.22)
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Adding (3.20), (3.21), and (3.22), as n→∞,

n∑
k=4

ck ≤ n2 + 0.076n

((
n− 3

2

)
!

)2

+
9

10
n

((
n− 3

2

)
!

)2

= n2 + 0.976n

((
n− 3

2

)
!

)2

(3.23)

= n2 + (1 + o(1))0.976n(n− 3)π

(
n− 3

2e

)n−3

= (1 + o(1))0.976πn · n
n−2

(2e)n

(
n− 3

n

)n−2

(2e)3

= (1 + o(1))0.976π · n
n−1

(2e)n
1

e3
(2e)3

= (1 + o(1))7.808π · n
n−1

(2e)n

< 7.81π
nn−1

(2e)n
(for n suff. large),

completing the proof.

By a closer inspection, Lemma 3.3.2 holds for the value n0 = 24729.

Lemma 3.3.3 (Arman-Gunderson-Tsaturian, 2016 [10]). Let H be a triangle-free

graph on k vertices. Then H has at most e2
(
k
2e

)k
hamiltonian cycles.

Proof: Let x1 be the first vertex of a hamiltonian cycle. For each i ≥ 1, there

are at most di = |N(xi)\{x1, . . . , xi}| ways to choose a vertex xi+1. Note that

N(xi) ∩ N(xi+1) = ∅ because if the intersection contains some vertex v, then v, xi,

and xi+1 form a triangle. Also,

|N(xi)\{x1, . . . , xi} ∪N(xi+1)\{x1, . . . , xi+1}| ≤ |V (H)\{x1, . . . , xi}| = k − i.
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Therefore,

di + di+1 = |N(xi)\{x1, . . . , xi}|+ |N(xi+1)\{x1, . . . , xi+1}|

= |N(xi)\{x1, . . . , xi} ∪N(xi+1)\{x1, . . . , xi+1}|

≤ k − i,

and thus didi+1 ≤
⌊
k−i

2

⌋
·
⌈
k−i

2

⌉
.

When k is odd, the number of hamiltonian cycles is at most

k−1∏
i=1

di =

k−1
2∏
j=1

d2j−1d2j ≤
k−1
2∏
j=1

⌊
k − 2j + 1

2

⌋
·
⌈
k − 2j + 1

2

⌉

=

k−1
2∏
j=1

(
k − 2j + 1

2

)2

=

((
k − 1

2

)
!

)2

,

and by (2.2), this number is at most(k−1
2

) k−1
2

+ 1
2

e
k−1
2
−1

2

=

(
k−1

2

)k
ek−3

= e3

(
k − 1

k

)k (
k

2e

)k
= e3 1(

1 + 1
k−1

)k ( k

2e

)k

≤ e2

(
k

2e

)k
,

completing the proof for odd k.
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When k is even, similarly obtain

k−1∏
i=1

di =

 k−2
2∏
j=1

d2j−1d2j

 · dk−1 ≤

 k−2
2∏
j=1

⌊
k − 2j + 1

2

⌋
·
⌈
k − 2j + 1

2

⌉ · 1
=

k−1
2∏
j=1

(
k − 2j

2

)(
k − 2j + 2

2

)
=
k

2

((
k − 2

2

)
!

)2

≤ k

2

(k−2
2

) k−2
2

+ 1
2

e
k−2
2

2

= k
(k − 2)k−1

ek−42k
= e4

(
k − 2

k

)k−1(
k

2e

)k
= e4 1(

1 + 2
k−2

)k−1

(
k

2e

)k
≤ e2

(
k

2e

)k
,

completing the proof for even k, and hence for the lemma.

3.4 Main theorems

In Theorem 3.4.1, Conjecture 3.1.1 is proved for sufficiently large n. Then in

Theorem 3.4.2, a lower bound on such n is given.

Theorem 3.4.1 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists n0 ∈ Z+ so

that for any n ≥ n0, the triangle-free graph on n vertices with the largest number of

cycles is Kbn/2c,dn/2e.

Proof: Let G be a triangle-free graph on n vertices. It is first shown that if G

contains a vertex of small degree, then G has far fewer cycles than does Kbn/2c,dn/2e.

Let x ∈ V (G), and assume that deg(x) ≤ 2
5
n. Cycles in G are counted according

to whether or not they contain x.
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First, the number of cycles not containing x are counted. Any cycle in G\x is a

hamiltonian cycle for some subgraph, and so the number of cycles in G not containing

x is loosely bounded above by

∑
Y⊆V (G)\x

(number of ham. cycles in G[Y ]) (3.24)

≤
n−1∑
k=4

(
n− 1

k

)
e2

(
k

2e

)k
(by Lemma 3.3.3)

< e2

n−1∑
k=4

(
n− 1

k

)(
n− 1

2e

)k
< e2

(
1 +

n− 1

2e

)n−1

= e2

(
n+ 2e− 1

2e

)n−1

= e2
( n

2e

)n−1
(
n+ 2e− 1

n

)n−1

< e2
( n

2e

)n−1
(

1 +
2e− 1

n

)n
≤ e2

( n
2e

)n−1

e2e−1

=
2e2e+2

n

( n
2e

)n
. (3.25)

Next, the number of cycles containing x are counted. Each cycle C containing x

has exactly two edges (in C) incident with x, and so the number of cycles containing

x is

1

2

∑
y∈N(x)

(number of cycles containing xy). (3.26)

By Lemma 3.3.1, for even n, the expression (3.26) is at most

1

2
· 2

5
n · 10π

nn−1

(2e)n
= 2π

( n
2e

)n
.
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In this case, for n sufficiently large, the total number of cycles in G is at most

2π
( n

2e

)n
+

2e2e+2

n

( n
2e

)n
=

(
2π +

2e2e+2

n

)( n
2e

)n
≤ 2.01π

( n
2e

)n
.

However, by (3.6), the number of cycles in Kbn/2c,dn/2e is (for n even) at least

2.27958π
(
n
2e

)n
.

Let n be odd; then by Lemma 3.3.2, the expression (3.26) is at most

1

2
· 2

5
n · 7.81π

nn−1

(2e)n
= 1.562π

( n
2e

)n
. (3.27)

Thus, for odd n sufficiently large, by (3.27) and (3.25) the total number of cycles

in G is at most

1.562π
( n

2e

)n
+

2e2e+2

n

( n
2e

)n
≤ 1.57π

( n
2e

)n
.

By (3.6) in Theorem 3.2.4, the number of cycles in Kbn/2c,dn/2e for n odd is at

least 1.5906π
(
n
2e

)n
.

In both the even and odd case, if G contains a vertex of degree at most 2
5
n, then

G has far fewer cycles than does Kbn/2c,dn/2e.

So assume that δ(G) > 2
5
n. Then by Theorem 3.2.2, G is bipartite. By Lemma

3.2.1, the number of cycles in G is maximized by Kbn/2c,dn/2e.

Theorem 3.4.2 (Arman-Gunderson-Tsaturian, 2016 [10]). The statement of Theo-

rem 3.4.1 with n0 = 141 is true.

Proof: To show that n0 = 141 works, further estimations on C(Kbn/2c,dn/2e) are

needed for n ≥ 141. Both when n is even and when n is odd, (3.10) holds (but the
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expression for a` changes). Since each (one for odd, one for even) sequence of a`s are

non-increasing for n ≥ 140, by (3.10),

C(Kbn/2c,dn/2e) ≤
bn/2c! dn/2e!

2 bn/2c
·


a71 for n even

a70 for n odd

≤ bn/2c! dn/2e!
2 bn/2c

·


2.302786 for n even

1.60067 for n odd.

(3.28)

(The values of a70 and a71 were calculated by computer.) With these estimates in

hand, now Theorem 3.4.1 is proved with n0 = 141. Let G be a triangle-free graph on

n ≥ 141 vertices. First, it is proved that C(G) ≤ 6 ·C(Kbn/2c,dn/2e) for G having odd

number of vertices. This result is then used to prove the statement of Theorem 3.4.2

for even number of vertices in G. Finally, Theorem 3.4.2 is verified for odd number

of vertices in G.

Without loss of generality, assume that there is a vertex of degree at most 2
5
n

(since otherwise, the theorem is proved by Theorem 3.2.2 and Lemma 3.2.1). In the

following calculations, bounds given in (2.2) and Theorem 3.2.4 are used freely.

Case 1: Let n ≥ 141 be odd. By (3.23) from the proof of Lemma 3.3.2, the

number of cycles passing through an edge xy in G is at most n2 + 0.976n
((

n−3
2

)
!
)2

.
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Then the number of cycles in G is bounded by

C(G) ≤ 1

2
· 2

5
n ·

[
n2 + 0.976n

((
n− 3

2

)
!

)2
]

+
2e2e+2

n

( n
2e

)n
=

n−1
2

!n+1
2

!

n− 1
· I1(2) ·

 n
5

[
n2 + 0.976n

((
n−3

2

)
!
)2
]

(n− 1)

n−1
2

!n+1
2

! · I1(2)


+ I1(2) · π

( n
2e

)n( 2e2e+2

n · I1(2)π

)
≤ C(Kbn/2c,dn/2e) ·

(
10−10 +

8

5
· (0.976)

(
n2

n2 − 1

)
+

2e2e+2

nπ

)
· 1

I1(2)

≤ C(Kbn/2c,dn/2e) · 6.

Case 2: Let n be even and n ≥ 142. Then by (3.16), the proof of Theorem 3.4.1,

and by the result in Case 1,

C(G) ≤ 1

2
· 2

5
n · 2.44

((
n− 2

2

)
!

)2

+ 6 · C(Kbn−1
2 c,dn−1

2 e)

=
n
5
2.44

((
n−2

2

)
!
)2

bn/2c!dn/2e!
2bn/2c · I0(2)

· bn/2c! dn/2e!
2 bn/2c

· I0(2)

+ C(Kbn/2c,dn/2e)
6 · C(Kbn−1

2 c,dn−1
2 e)

C(Kbn/2c,dn/2e)

≤ C(Kbn/2c,dn/2e) ·

 4
5
· 2.44

I0(2)
+

6 · 1.60067 · b
n−1
2 c!dn−1

2 e!
2bn−1

2 c
I0(2) bn/2c!dn/2e!

2bn/2c

 (by (3.28))

= C(Kbn/2c,dn/2e)

( 4
5
· 2.44

I0(2)
+

6 · 1.60067

I0(2)
· 2

n

)
≤ C(Kbn/2c,dn/2e) (for n ≥ 142).
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Returning to the case when n is odd, using equation (3.28) again,

C(G) ≤ C(Kbn/2c,dn/2e) ·

10−10 + 8
5
(0.976)

(
n2

n2−1

)
I1(2)

+
2.302786 · b

n−1
2 c!dn−1

2 e!
2bn−1

2 c
I1(2) · bn/2c!dn/2e!

2bn/2c


≤ C(Kbn/2c,dn/2e) ·

10−10 + 8
5
(0.976)

(
n2

n2−1

)
I1(2)

+
2.302786

I1(2) · (n+ 1)


≤ C(Kbn/2c,dn/2e) · 0.9947

< C(Kbn/2c,dn/2e).

This completes the proof of the theorem for n ≥ 141.

3.5 Concluding remarks

Another question related to Conjecture 3.1.1 that might be interesting is:

Question 3.5.1 (Arman-Gunderson-Tsaturian, 2016 [10]). What is the maximum

number of cycles in a graph on n vertices with girth at least g?

The case g = 3 is trivial and Theorem 3.4.1 addresses this question for g = 4;

however, there seems to be little known for g ≥ 5.

A type of stability result also follows from the techniques given in this chapter.

Theorem 3.4.1 shows that among all triangle-free graphs with n vertices and m =⌊
n2

4

⌋
edges, Kdn2 e,bn2 c has the most number of cycles. Let ` = o(n), and set m =⌊

n2

4

⌋
− `. If G has n vertices and m edges, and has the most number of cycles among
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all triangle-free n-vertex graphs with m edges, then the same argument as in the

proof of Theorem 3.4.1 shows that G is bipartite. By the maximality of the number

of cycles, one possibly can show that G is a subgraph of Kdn2 e,bn2 c.

For 14 ≤ n ≤ 140, Conjecture 3.1.1 remains open. With a bit more care, it ap-

pears that with the techniques in this chapter, one might be able to prove Conjecture

3.1.1 for the even n to n ≥ 100 or so, but the techniques used here do not seem to

leave much room for the odd n. Skala [45] has suggested that Lemma 3.2.5 might be

proved for graphs with slightly more vertices, and such an improvement might yield

modest improvements for the bound on n for which Theorem 3.4.1 holds.



Chapter 4

Counting cycles in a graph with

given number of edges

4.1 Overview of the results

Counting the number of cycles in a graph is a problem that was studied for dif-

ferent classes of the graphs: graphs with given cyclomatic number, planar graphs,

3-regular and 4-regular graphs, and many others (see the list in Section 3.1). How-

ever, only a few general bounds (that are only based on number of vertices and

edges, or only number of edges) for a number of cycles in a graph are known. In this

chapter bounds on the number of cycles in a graph as a function of number of edges,

or vertices and edges, are presented.

As in Chapter 3, let C(G) denote the number of cycles in a graph G. In 1897,

36
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Ahrens [2] proved that for a graph G with n vertices, m edges and k components,

m− n+ k ≤ C(G) ≤ 2m−n+k − 1. (4.1)

The lower bound in (4.1) is tight; for example, it is achieved by any disjoint union

of cycles and trees. In 1976, the tightness of the upper bound in (4.1) was shown by

Mateti and Deo [35] and the only graphs for which the upper bound is tight are K3,

K4, K3,3 and K4− e. In 2008, Aldred and Thomassen [4] improved the upper bound

in (4.1) by showing that for a connected graph G,

C(G) ≤ 15

16
2m−n+1. (4.2)

In 1981, Entringer and Slater [21] considered C(G) for the class of connected

graphs with a fixed cyclomatic number r = m − n + 1. It follows from the results

of [21] that there is a 3-regular connected graph G for which C(G) > 2r−1. Shi

[42], in 1994, presented for all r ≥ 1 an example of a hamiltonian graph G with

C(G) = 2r−1 + (r − 1)(r − 2) + 1.

In 2009, Király [30] investigated C(G) for several classes of graphs: the union

and the sum of two trees (the sum of two trees is the multigraph that is formed by

the disjoint union of edges of two trees), 3-regular and 4-regular graphs, and graphs

with the average degree 4. Király also conjectured that there is a constant c, such

that for any graph G that has m edges,

C(G) ≤ c(1.4)m.
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Aldred and Thomassen [4] also studied C(G) for the class of planar graphs. Ar-

man, Gunderson and Tsaturian [10] studied C(G) for the class of triangle-free graphs

on n vertices (our findings are also presented in Chapter 3). In 2006, Teunter and

van der Poort [48] considered the question of counting the number of hamiltonian

cycles in a graph with a given number of vertices and edges by using techniques

similar to those used in Section 4.3.

In this chapter, C(G) is investigated for two classes of graphs and multigraphs:

those with n vertices and m edges, and those with m edges.

Theorem 4.4.2 below states that if a graph G has n vertices and m edges, then

C(G) ≤


3
4
∆(G)( m

n−1
)n−1, if m

n−1
≥ 3,

3
4
∆(G) · ( 3

√
3)m, if m

n−1
< 3.

(4.3)

For graphs with sufficiently large number of edges and average degree at least

4.25 the bound in (4.3) is better than in (4.2).

In Section 4.6 (see Theorem 4.6.1) it is shown that for n large enough and d =

d(n), such that limn→∞ d(n) =∞, there exists a graph G with n vertices and m = d
2
n

edges such that

C(G) ≥ (1 + o(1))n
(
d

e

)n
= (1 + o(1))n

(
2m

en

)n
.

For m ∈ Z+, let C(m) be the maximum number of cycles in a graph with m

edges. In Corollary 4.4.3 it is shown that for all m ≥ 1

C(m) < 8.25(
3
√

3)m ∼ 8.25(1.44229..)m,
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which, for m > 4056, implies

C(m) < 1.443m.

In Section 4.2 it is shown that the extremal graphs for C(m) have bounded

degrees. Namely, it is shown that if G is a graph with m edges with C(G) = C(m),

then ∆(G) ≤ 11 (Theorem 4.2.3) and δ(G) ≥ 3 (Theorem 4.2.4).

In Section 4.5, for m sufficiently large, a graph G with m edges is constructed,

such that

C(G) ≥ (2 +
√

8)
m
5
−1 ≥ 1.37m. (4.4)

Corollary 4.4.3 and inequality (4.4) imply that for m large enough,

1.37m ≤ C(m) ≤ 1.443m. (4.5)

In Section 4.7, the problems of maximizing the number of cycles in a multigraph

with a given number of edges or with a given number of vertices and edges are

considered. It is shown (Theorem 4.7.3) that if G is a multigraph that has the most

cycles among all multigraphs with m multi-edges, then

9

10
(

3
√

3)m ≤ C(G) ≤ 8.25(
3
√

3)m.
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4.2 Maximal and minimal degree of graphs with

C(m) cycles

Recall that, for m ∈ Z+, C(m) is the maximum number of cycles in a graph with

m edges. The main result of this section is Theorem 4.2.3 that states that maximum

degree in a graph with m edges that has C(m) cycles is at most eleven.

The proof of Theorem 4.2.3 relies on the following two technical lemmas.

Lemma 4.2.1 (Arman-Tsaturian, 2017+ [9]). Let k ≥ 6 be a positive integer. For

i, j ∈ [k] such that i 6= j, let wi,j be non-negative real numbers, such that wi,j = wj,i,

and let S =
∑

1≤i<j≤k wi,j. Then there exists a 6-element set D ⊆ [k] such that

∑
1 ≤ i < j ≤ k
i 6∈ D, j 6∈ D

wi,j ≥
(

1− 6(2k − 7)

k(k − 1)

)
S.

Proof. The proof relies on an averaging argument. For each i ∈ [k] set wi =∑
j∈[k],j 6=iwi,j. Note that ∑

i∈[k]

wi = 2S.

Let X be a collection of all 6-element subsets of [k]. For D ∈ X let

S(D) =
∑

1 ≤ i < j ≤ k
i 6∈ D, j 6∈ D

wi,j

= S −
∑
i∈D

 ∑
j∈[k], j 6=i

wi,j

+
∑

i,j∈D, i<j

wi,j

= S −
∑
i∈D

wi +
∑

i,j∈D, i<j

wi,j.
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Let S(D) be the average of S(D) over all D ∈ X. Then

S(D) =

∑
D∈X

(
S −

∑
i∈D wi +

∑
i,j∈D,i<j wi,j

)
(
k
6

)
= S −

∑
i∈[k]

∑
D∈X,i∈D wi(
k
6

) +

∑
1≤i<j≤k

∑
D∈X: i,j∈D wi,j(
k
6

)
= S −

∑
i∈[k]

(
k−1

5

)
wi(

k
6

) +

∑
1≤i<j≤k

(
k−2

4

)
wi,j(

k
6

)
= S −

(
k−1

5

)
· 2S(

k
6

) +

(
k−2

4

)
· S(

k
6

)
=

(
1− 6(2k − 7)

k(k − 1)

)
S.

Therefore, there exists D ∈ X, such that S(D) ≥ S(D), i.e.,

∑
1 ≤ i < j ≤ k
i 6∈ D, j 6∈ D

wi,j ≥
(

1− 6(2k − 7)

k(k − 1)

)
S.

Lemma 4.2.2 (Arman-Tsaturian, 2017+ [9]). Let k ≥ 2 be a positive integer. For

i, j ∈ [k] such that i 6= j, let wi,j be non-negative real numbers, such that wi,j = wj,i,

and let S =
∑

1≤i<j≤k wi,j. Then there exists a partition A1 ∪ A2 ∪ A3 ∪ A4 = [k],

such that ∑
1≤l<m≤4

∑
i ∈ A`
j ∈ Am

wi,j ≥
(

3k2 − 4

4k(k − 1)

)
S.

Proof. For all ` ∈ [4] let a` =
⌊
k+l−1

4

⌋
(note that a1 +a2 +a3 +a4 = k). Let X be the

collection of all ordered quadruples (A1, A2, A3, A4), such that π = A1∪A2∪A3∪A4

is a partition of [k] and for all ` ∈ [4], |A`| = a`. Note that
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|X| = k!

a1!a2!a3!a4!
.

For p = (A1, A2, A3, A4) ∈ X define

S(p) =
∑

1≤l<m≤4

∑
i ∈ A`
j ∈ Am

wi,j

= S −
∑
l∈[4]

∑
i < j

i, j ∈ A`

wi,j.

Let S(p) be the average of S(p) over all possible choices of p ∈ X.

S(p) =

∑
p∈X(S −

∑
l∈[4]

∑
i,j∈A`, i<j wi,j)

|X|

= S −
∑

l∈[4]

∑
p∈X

∑
i,j∈A`, i<j wi,j

|X|

= S −
∑

l∈[4]

∑
1≤i<j≤k

∑
p∈X: i,j∈A` wi,j

|X|

Note that for any choice of ` ∈ [4] and any choice of i, j, such that 1 ≤ i < j ≤ k,

there are exactly

(k − 2)!(a`)(a` − 1)

a1!a2!a3!a4!

quadruples p ∈ X, such that i, j ∈ A`. Then,
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S(p) = S − (
∑
l∈[4]

∑
1≤i<j≤k

(k − 2)!(a`)(a` − 1)

a1!a2!a3!a4!
wi,j)/|X|

= S − (
∑
l∈[4]

(k − 2)!(a`)(a` − 1)

a1!a2!a3!a4!
· S) · 1

|X|

= S − (
∑
l∈[4]

(k − 2)!(a`)(a` − 1)

a1!a2!a3!a4!
) · S · a1!a2!a3!a4!

k!

= S − (
∑
l∈[4]

⌊
k+l−1

4

⌋
(
⌊
k+l−1

4

⌋
− 1)

k(k − 1)
) · S

= S


1− 1

k(k − 1)
·



k(k−4)
4

, if k ≡ 0 mod 4

(k−1)(k−3)
4

, if k ≡ ±1 mod 4

(k−2)2

4
, if k ≡ 2 mod 4


≥ S

(
1− (k − 2)2

4k(k − 1)

)
.

Hence, there exists a p = (A1, A2, A3, A4) ∈ X, such that S(p) ≥ S(p). There-

fore, the partition A1 ∪ A2 ∪ A3 ∪ A4 satisfies the statement of Lemma 4.2.2.

Theorem 4.2.3 (Arman-Tsaturian, 2017+ [9]). If G is a graph with m edges such

that C(G) = C(m), then ∆(G) ≤ 11.

Proof. Let m be a positive integer and G be a graph with m edges. To prove

Theorem 4.2.3, it is sufficient to prove that if ∆(G) ≥ 12, then there is a graph H

with m edges and with C(H) > C(G).
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Let ∆(G) ≥ 12 and u be a vertex of maximal degree in G. Let N(u) =

{u1, u2, . . . , uk} be the neighbourhood of u (note that k ≥ 12). For i, j ∈ [k], i 6= j,

define wi,j to be the number of paths from vertex ui to vertex uj in the graph G\u.

Then the number of cycles in G that pass through vertex u is S =
∑

1≤i<j≤k wi,j. By

Lemma 4.2.1, there is a 6-element set D = {i1, i2, . . . , i6}, such that

∑
1 ≤ i < j ≤ k
i 6∈ D, j 6∈ D

wi,j ≥
(

1− 6(2k − 7)

k(k − 1)

)
S. (4.6)

Suppose, upon re-indexing, that D = {k − 5, k − 4, . . . , k − 1, k}. Lemma 4.2.2

applied to the collection of real numbers wi,j with 1 ≤ i < j ≤ k−6 gives a partition

A1 ∪ A2 ∪ A3 ∪ A4 = [k − 6] with

∑
1≤l<m≤4

∑
i ∈ A`
j ∈ Am

wi,j ≥
(

3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S. (4.7)

For i ∈ [4], let Ui = {uj : j ∈ Ai}. Construct a graph H by deleting u and all of

the edges incident to u, adding four new vertices v1, v2 , v3, v4, then for all 1 ≤ i ≤ 4

adding edges from vi to each of the vertices of Ui, and for all 1 ≤ i < j ≤ 4 adding

edges vivj (see Figure 4.1). Then |E(H)| = |E(G)|.
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u

G:

U3U2

U1 U4

D

v1 v4

v2 v3

U3

H:

U2

U1 U4

D

Figure 4.1: Constructing the graph H.

To count the number of cycles in H, note the following:

• Every cycle in G that does not pass through the vertex u is still a cycle in H.

There are C(G)− S such cycles.

• Let C be a cycle in G that for some 1 ≤ i < j ≤ k−6 contains a path uiuuj. If

for some ` ∈ [4] ui and uj are in the same class U`, then C corresponds to the

cycle in H that uses the path uiv`uj instead of uiuuj. In the case if for some

1 ≤ l < m ≤ 4, ui ∈ U` and uj ∈ Um, the cycle C corresponds to the cycle that

uses the path uiv`vmuj instead of uiuuj. By (4.6), there are at least

(
1− 6(2k − 7)

k(k − 1)

)
S

cycles in G that use a path uiuuj with ui, uj ∈ N(u)\D.

• Every cycle in G that for some i ∈ A` and j ∈ Am with ` 6= m contains a path

uiuuj gives rise to additional 4 cycles in H(except the one containing uiv`vmuj).
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For example, if ` = 1, m = 2 the four new cycles contain paths uiv1v3v2uj,

uiv1v4v2uj, uiv1v3v4v2uj and uiv1v4v3v2uj instead of the path uiuuj. According

to (4.7), there are at least(
3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S =

(
3k2 − 36k + 104

4k(k − 1)

)
S

cycles in G that for some i ∈ A` and j ∈ Am with ` 6= m pass through a path

uiuuj.

• There are 7 new cycles in H spanned by the vertices v1, v2, v3, v4.

By all of the observations above, the number of cycles in H is

C(H) ≥ C(G)− S +

(
1− 6(2k − 7)

k(k − 1)

)
S + 4

(
3k2 − 48k + 104

4k(k − 1)

)
S + 7

= C(G) + 7 + S

(
3(k − 4)(k − 12)

k(k − 1)

)
> C(G).

Therefore, H has more cycles than G.

By inspection, for m = 7 the graphs that have the most cycles are K4 plus an

edge and K4 with one edge replaced by a path of length two. In the first case the

minimum degree is one and in the second case the minimum degree is two.

Tsaturian and I stated the following theorem in [9], but we didn’t present the

proof in the paper. Here the proof is added for completeness.

Theorem 4.2.4 (Arman-Tsaturian, 2017+ [9]). If m > 7 and C(G) = C(m), then

δ(G) ≥ 3.
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Proof. Assume the contrary, namely that there exists a graph G with m > 7 edges

and C(m) cycles, such that δ(G) ≤ 2. Let m > 7 and let G be a graph having the

least number of vertices of degree two among all graphs having C(m) cycles.

First, assume that G is connected (otherwise, identifying a pair of different ver-

tices from one component with a pair of different vertices from another component

increases the number of cycles in G.)

Also, assume that G does not contain a vertex of degree one. Indeed, if u is a

vertex of degree 1, and G\{u} is not a complete graph, then deleting the edge from

u and adding it to G\{u} increases the number of cycles. If G\{u} is a complete

graph, and vu ∈ E(G), then the graph obtained from G by deleting two edges vv1,

vv2 and adding the edges uv1, uv2 has more cycles than G.

Hence, assume that δ(G) = 2 and let u be a vertex of degree 2 in G. Let u1 and

u2 be the neighbours of u in G. Assume that u1u2 ∈ E(G) (otherwise the graph H

that is obtained from a graph G by deleting the edge uu1 and adding the edge u1u2

has the same number of cycles as G and the vertex u has degree 1).

There are four cases to consider:

Case 1: deg(u1) = 2 or deg(u2) = 2.

Without loss of generality assume that deg(u1) = 2. Since G is connected,

deg(u2) ≥ 3. IfG\{u, u1} is a complete graph, let v1, v2 be two vertices ofG\{u, u1, u2}.

Then the graph H obtained from G by deleting the edges uu1, u1u2 and adding the

edges uv1, uv2 has at least 2 more cycles than G.
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In the case when G\{u, u1} is not a complete graph, let v1, v2 be two nonadjacent

vertices of G\{u, u1, u2}. Then the graph H obtained from G by deleting the edges

uu1, uu2, u1u2 and adding the edges uv1, uv2, v1v2 has more cycles than G.

Case 2: deg(u1) = deg(u2) = 3 and there is a vertex u3 6= u, such that u1u3, u2u3 ∈

E(G).

In this case, the only cycles in G that pass through at least one of the vertices u,

u1 or u2 are cycles uu1u2u, uu1u3u2u and u1u2u3u1.

Let v1v2 be an edge of G\{u, u1, u2}, then the graph H obtained from G by

deleting the edges uu1, uu2, u1u3, u2u3 and adding the edges u1v1, u1v2, u2v1, u2v2

has at least four more cycles than G (see Figure 4.2).

u

u2

u1

u3

v1

v2

G:

u

u2

u1

u3

v1

v2

H:

Figure 4.2: Case 2. Constructing the graph H.

Case 3: deg(u1) = deg(u2) = 3 and there exist two distinct vertices u3 and u4

(different from u), such that u1u3, u2u4 ∈ E(G).

In this case, the only cycle in G that contains the path u1uu2, but does not

contain the path u3u1uu2u4 is the cycle u1uu2u1.

Then the graph H obtained from G by deleting the edges uu1, uu2 and adding
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the edges u1u4 and u2u3 has more cycles than G (see Figure 4.3).

u

u2

u1

u4

u3

G:

u

u2

u1

u4

u3

H:

Figure 4.3: Case 3. Constructing the graph H.

Case 4: deg(u1) ≥ 4 or deg(u2) ≥ 4.

Assume that deg(u1) ≥ 4 and let v1 and v2 be the other two neighbours of u1

(different from u2 and u). Consider the graph H obtained from G by deleting the

edge u1v2 and adding the edge uv2. Every cycle in G that did not pass through edge

u1v2 is still a cycle in H. Cycles in G that contain an edge u1v2 and do not contain

the vertex u correspond to the cycles in H that use the path u1uv2 instead of an

edge u1v2. Every cycle in G through the path u2uu1v2 corresponds to the cycle in H

that uses the path u2uv2 instead.

Therefore, the number of cycles in H is at least C(G) = C(m).

If there is at least one path P from v2 to N(u1)\{u, u2, v2} that does not use

vertices {u1, u2}, then uPu1u2u is a new cycle in H; hence H has more cycles than

G.

Assume that for all v ∈ N(u1)\{u, u2}, any path from v to N(u1)\{u, u2, v}

in G omits both vertices u1 and u2. Therefore, for any v ∈ N(u1)\{u, u2} any
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cycle that contains the edge u1v also contains the vertex u2. By symmetry, for any

v ∈ N(u2)\{u, u1}, any cycle that contains the edge u2v also contains the vertex u1.

Also, assume that G has no cut vertices, (deletion of which makes G disconnected)

otherwise identifying two vertices from different components produces a graph with

more cycles.

If there is v ∈ N(u1)4 N(u2)\{u1, u2}, assume that vu1 ∈ E(G), then vu2 6∈ G

and any cycle containing the edge vu1 is of length at least 4. There is no path from v

to N(u1)\{u, u2, v} that does not use the vertices {u1, u2}, so there is no cycle that

contains the vertices u1 and v, but does not contain the edge u1v. Then the graph

H obtained from G by contracting the edge u1v and adding an edge anywhere else

in a graph has more cycles than G.

If N(u1)4N(u2)\{u1, u2} = ∅, then the condition that for any v ∈ N(u1)\{u, u2},

there is no path from v to N(u1) together with the observation that the deletion of

the vertex v does not disconnect the graph G yields that deg(v) = 2. Hence, G is

the graph obtained by gluing k > 3 triangles by an edge. In this case G has k +
(
k
2

)
cycles. However, the graph H obtained from G by removing the common edge from

all triangles and adding it to different place in the graph has
(
k
2

)
+2(k−2)+3 cycles.

This finishes the last case and the proof of Theorem 4.2.4.
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4.3 Counting Lemma

The main result of this section is Lemma 4.3.1, which is the major tool used for

the upper bounds in this chapter and in Chapter 5.

Multigraphs are defined as in Bollobás’s book [14]. Let G be a multigrpah, the

degree degG(V ) of a vertex v ∈ V (G) is the number of edges incident to v. For two

vertices u, v ∈ V (G), denote by E(u, v) the set of all edges between u and v. For a

vertex v ∈ V (G), denote by N(v) the set of all vertices adjacent to v (by at least

one edge). A cycle of length k ≥ 2 in a multigraph G is an alternating sequence of

k distinct vertices and k distinct edges v1, e1, v2, e2, . . . , ek, v1, where for each i ∈ [k],

vi ∈ V (G), ei ∈ E(G) and any consecutive vertex and edge are incident. As in the

case of simple graphs, denote the number of cycles in a multigraph G by C(G). No

loop can be a part of a cycle, hence only multigraphs without loops are considered.

Lemma 4.3.1 (Arman-Tsaturian, 2017+ [9]). Let G be a multigraph with n ver-

tices. For any ` ∈ [n], and any vertices v1, . . . , v` ∈ V (G), define F (v1, . . . , v`) =

N(v`)\{v1, . . . , v`−1} and define f(v1, . . . , v`) = max{degG\{v2,...,v`−1}(v`), 1}. Denote

the number of cycles in G that contain the path v1e1v2 . . . e`−1v` by C(v1e1v2 . . . e`−1v`)

(note that C(v1) is the number of cycles containing the vertex v1). For brevity, write

F` = F (v1, . . . , v`), f` = f(v1, . . . , v`), C` = C(v1e1 . . . e`−1v`). For a k ∈ [n], let
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v1e1v2e2 . . . vk be a path in G. If Fk 6= ∅, then

Ck ≤ fk · max
k+1≤t≤n
vk+1∈Fk

..
.

vt∈Ft−1

{fk+1 · fk+2 · · · ft}.

(the maximum is taken over all paths vk+1 . . . vt, such that v1 . . . vkekvk+1 . . . vt ex-

tends v1 . . . vk)

Proof. Fix n ≥ 2. Let G be a multigraph on n vertices. The proof is by mathematical

induction on ` = n− k.

Base case. Let ` = 1. Let v1e1 . . . vn−1 be a path in G; Cn−1 is to be bounded.

The condition Fn−1 6= ∅ means that Fn−1 = {vn} and it remains to be proved

that Cn−1 ≤ fn−1fn. Let s be the number of edges between vn−1 and v1. Then

Cn−1 ≤ s + (fn−1 − s)fn. By definition, fn ≥ 1; therefore s + (fn−1 − s)fn ≤

sfn + (fn−1 − s)fn = fn−1fn, which proves the base case.

Inductive step. Let i ∈ [n − 1]. Assume that the statement of the lemma holds

for ` = i, and prove it for ` = i + 1; i.e., let v1e1 . . . vn−i−1 be a path in G, and

Cn−i−1 = C(v1e1 . . . en−i−2vn−i−1) is to be bounded.

Let s be the number of edges between vn−i−1 and v1. Then

Cn−i−1 = s+
∑

vn−i∈Fn−i
en−i−1∈E(vn−i,vn−i−1)

C(v1e1 . . . vn−i−1en−i−1vn−i).
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For all possible choices of vn−i and en−i−1, according to inductive hypothesis,

C(v1e1 . . . en−i−1vn−i) ≤


fn−i max n−i+1≤t≤n

vn−i+1∈Fn−i

..
.

vt∈Ft−1

{fn−i+1 · · · ft}, if Fn−i 6= ∅

fn−i, if Fn−i = ∅

≤ max
n−i≤t≤n

vn−i∈Fn−i−1

..
.

vt∈Ft−1

{fn−i · · · ft}.

Therefore,

Cn−i−1 ≤ s+ (fn−i−1 − s) · max
n−i≤t≤n

vn−i∈Fn−i−1
..

.

vt∈Ft−1

{fn−i · · · ft}

≤ fn−i−1 · max
n−i≤t≤n

vn−i∈Fn−i−1

..
.

vt∈Ft−1

{fn−i · · · ft}.

This proves that the statement of the lemma holds for ` = i + 1, and therefore

by induction, the statement holds for all ` ∈ [n− 1].

4.4 Upper bound for number of cycles in graphs

or multigraphs

The main result of this section is Theorem 4.4.2, where an upper bound for the

number of cycles in a graph (or a multigraph) with a fixed number of vertices and

edges is given.
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The proof of Theorem 4.4.2 relies on the following lemma.

Lemma 4.4.1 (Arman-Tsaturian, 2017+ [9]). Let G be a multigraph with n ≥ 3

vertices and m edges, and let v1 be a vertex in G of degree ∆(G).

If m
n−1
≥ 3, and

⌊
m
n−1

⌋
= s, m

n−1
− s = α, then there are at most

∆(G)
2

(s1−α(s+ 1)α)
n−1

cycles in G that contain v1.

If m
n−1

< 3, then there are at most ∆(G)
2
· ( 3
√

3)m cycles in G that contain v1.

Proof. Let G be a multigraph with n ≥ 3 vertices and m edges, and let v1 be a vertex

of degree ∆(G).

For any edge e = v1v2 incident with v1, by Lemma 4.3.1, the number of cycles

that contain e is at most

f2 · max
3≤t≤n
v3∈F2

..
.

vt∈Ft−1

{f3 · · · ft} ≤ max
2≤t≤n
v2∈F1

..
.

vt∈Ft−1

{f2 · · · ft}.

Every cycle through v1 contains two edges incident to v1; therefore the number

of cycles that contain v1 is at most

∆

2
· max

2≤t≤n
v2∈F1

..
.

vt∈Ft−1

{f2 · · · ft}. (4.8)

Let v2, . . . vt be a collection of vertices that give the maximum in (4.8) with the

smallest possible t. Then ft ≥ 2 (otherwise remove all fi = 1 after the last fk ≥ 2 to

obtain the smaller collection of vertices that gives maximum in (4.8)). Then for all
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2 ≤ i ≤ t,

fi = degG\{v2,...,vi−1}(vi).

For 2 ≤ i ≤ t, all of the edge sets {viu ∈ E(G) : u ∈ V (G)\{v2, . . . , vi}} are

mutually disjoint, so f2 + · · ·+ ft ≤ m. Therefore,

∆

2
f2 · · · ft ≤

∆

2
· max

2≤t≤n
x2+...+xt≤m,
∀i∈[2,t],xi∈Z+

{x2 · x3 · · ·xt}.

So the number of cycles in G that contain v1 is at most

∆

2
· max

2≤t≤n
x2+...+xt≤m,
∀i∈[2,t],xi∈Z+

{x2 · x3 · · ·xt}. (4.9)

For a fixed t, the product x2 · · ·xt in (4.9) attains its maximum when xis (i ≥ 2)

are as equal as possible (for all i, j |xi − xj| ≤ 1), and their sum is equal to m. Let⌊
m
n−1

⌋
= s, m

n−1
= s+ α.

If s ≥ 3 (which is equivalent to m
n−1
≥ 3), let the maximum in (4.9) be achieved

for some t ≤ n and let x2, . . . , xt be a collection of xis that gives the maximum in

(4.9). If t < n, then s ≥ 3 implies that either for some i ∈ [t], xi ≥ 5, or for two

different i, j ∈ [t], xi = xj = 4. In the first case, replacing xi by xi − 2 and setting

xt+1 = 2 gives a collection of xis with a larger product. In the second case, setting

xi = xj = 3 and xt+1 = 2 increases the product of xis. Hence, the maximum in (4.9)

is achieved when t = n. For all 2 ≤ i ≤ n, xi = s or xi = s+ 1. Then the number of

cycles in G that pass through v1 is at most

∆

2
x2 · · ·xn =

∆

2
s(1−α)(n−1)(s+ 1)α(n−1) =

∆

2
(s1−α(s+ 1)α)n−1.
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If s < 3, let the maximum of (4.9) be achieved for some 2 ≤ t ≤ n and let

x2, . . . , xt be the collection of xis that gives the maximum in (4.9). Recall that

for all i, j, |xi − xj| ≤ 1. If for two different i, j ∈ [t] xi = xj > 3, then m >

6 + 3(t− 2) = 3t, and s < 3 implies that t < n. Replacing xi by xi − 1, xj by xj − 1

and setting xt+1 = 2 increases the product. Therefore, there is at most one i, such

that xi = 4. If there is i such that xi = 1, then replacing any xj (j 6= i) by xj + 1

and deleting xi increases the product. If for some i, j, k ∈ [t] xi = xj = xk = 2,

then replacing xi by 3, xj by 3 and deleting xk increases the product. Therefore,

{x2, . . . , xt} ∈ {{3, 3, . . . , 3, 2, 2}, {3, 3, . . . , 3, 4}, {3, 3, . . . , 3, 2}, {3, 3, . . . , 3}}. Then

x2 . . . xt is at most 3
m
3 , so the number of cycles that pass through v1 is at most

∆

2
x2 · · ·xt ≤

∆

2
3
m
3 .

Theorem 4.4.2 (Arman-Tsaturian, 2017+ [9]). Let G be a multigraph with n ≥ 2

vertices and m edges.

If m
n−1

< 3, then

C(G) <
3

4
∆(G) · ( 3

√
3)m.

If m
n−1
≥ 3, and

⌊
m
n−1

⌋
= s, α = m

n−1
− s, then

C(G) <
3

4
∆(G)(s1−α(s+ 1)α)n−1 =

3

4
∆(G)((s1−α(s+ 1)α)

1
s+α )m.

Proof. The proof is by mathematical induction on n.

Base case. If n = 2, there is only one multigraph on n vertices with m edges, namely



57

two vertices connected by m edges. In this case s = m
n−1

= m, and G has max{
(
m
2

)
, 0}

cycles, which is less than 3
4
m( 3
√

3)m (for the case m < 3), and less than 3
4
m ·m (for

the case m ≥ 3).

Inductive step. Let k ≥ 3 be an integer, and suppose that the statement of the

theorem is proved for n = k − 1. Let G be a multigraph with k vertices, m edges

and let v1 be a vertex of the maximal degree in G. There are two cases to consider.

Case 1: m
k−1

< 3.

If ∆(G) ≤ 2, then every edge is contained in at most one cycle, and every cycle

contains at least two edges, so the number of cycles in G is at most

m

2
≤ 3

4
∆(G) · ( 3

√
3)m.

If ∆(G) ≥ 3, then the multigraph G\v1 has at most m−3 edges, ∆(G\v1) ≤ ∆(G)

and |E(G\v1)|
|V (G\v1)|−1

≤ m
k−1

< 3, therefore, by the inductive assumption, the number of

cycles in G\v1 is at most 3
4
∆(G) · ( 3

√
3)m−3. By Lemma 4.4.1, the number of cycles

that contain v1 is at most ∆(G)
2
· ( 3
√

3)m, therefore the total number of cycles in G is

at most

∆(G)

2
· ( 3
√

3)m +
3

4
∆(G) · ( 3

√
3)m−3 =

3

4
∆(G) · ( 3

√
3)m.

Case 2: m
k−1
≥ 3.

Let s =
⌊
m
k−1

⌋
, α = m

k−1
−
⌊
m
k−1

⌋
. Note that ∆(G\v1) ≤ ∆(G) and let

y =
|E(G\v1)|
|V (G\v1)| − 1

≤ m

k − 1
.



58

The function

f(x) = (bxc)1−x+bxc(bxc+ 1)x−bxc

is non-decreasing on every interval [a, a+ 1], a ∈ Z≥0 (and hence on R+); therefore

s1−α(s+ 1)α ≥ f(3) = 3. (4.10)

If y ≥ 3, then, by the induction hypothesis,

|E(G\v1)| ≤ 3

4
∆(G)

(
(byc)1−y+byc(byc+ 1)y−byc

)k−2

≤ 3

4
∆(G)(s1−α(s+ 1)α)k−2.

If y < 3, then |E(G\v1)| < 3(k − 2), and by the induction hypothesis

|E(G\v1)| ≤ 3

4
∆(G)(

3
√

3)|E(G\v1)| <
3

4
∆(G)(

3
√

3)3(k−2)

=
3

4
∆(G) · 3k−2 ≤ 3

4
∆(G)(s1−α(s+ 1)α)k−2.

Hence, for any y, |E(G\v1)| ≤ 3
4
∆(G)(s1−α(s + 1)α)k−2, which together with

Lemma 4.4.1 and (4.10) implies that

C(G) =
3∆(G)

4
(s1−α(s+ 1)α)k−2 +

∆(G)

2
(s1−α(s+ 1)α)k−1

≤ 3∆(G)

4
(s1−α(s+ 1)α)k−1,

which proves the inductive step and hence the theorem.

A consequence of Theorem 4.4.2 is

Corollary 4.4.3 (Arman-Tsaturian, 2017+ [9]). For any positive integer m

C(m) < 8.25(
3
√

3)m.
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Proof. Let G be a graph with n vertices and m edges, such that C(G) = C(m).

If m
n−1

< 3, then, by Theorem 4.2.3 and 4.4.2,

C(m) = C(G) <
3

4
∆(G)(

3
√

3)m ≤ 8.25(
3
√

3)m.

So suppose that m
n−1
≥ 3. Let f(s, α) = (s1−α(s + 1)α)

1
s+α , then for any s > 0,

f(s, α) is monotone in α and max
s∈Z+,α∈[0,1)

f(s, α) = max
s∈Z+

s
1
s =

3
√

3. This, together with

Theorem 4.4.2 and Theorem 4.2.3, implies that for s =
⌊

m
n−1

⌋
and α = m

n−1
−
⌊

m
n−1

⌋
C(m) = C(G) <

3

4
∆(G)((s1−α(s+ 1)α)

1
s+α )m ≤ 8.25(

3
√

3)m.

Theorem 4.4.2 is stated in rather technical terms, so the following corollary is

intended to be a more readable version of Theorem 4.4.2. This corollary is stated

in the paper [9], but the proof does not appear there, so I add the proof here for

completeness.

Corollary 4.4.4 (Arman-Tsaturian, 2017+ [9]). Let G be a graph on n vertices with

average degree d ≥ 6. Then

C(G) < 3∆(G)

(
d

2

)n−1

.

Proof. Let G be a graph with n vertices, m edges and the average degree d ≥ 6. Then

m
n−1

> m
n

= d
2
≥ 3, so Theorem 4.4.2 implies that for s =

⌊
m
n−1

⌋
and α = m

n−1
− s

C(G) <
3

4
∆(G)(s1−α(s+ 1)α)n−1.
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Here, the weighted AM-GM inequality can be used to prove that

s1−α(s+ 1)α ≤ m

n− 1
. (?)

Alternatively, it is easy to verify that for a fixed s ≥ 3 the function f(α) =

s1−α(s+ 1)α is convex, and so for α ∈ [0, 1], f(α) ≤ (1− α)f(0) + αf(1). Therefore

s1−α(s+ 1)α ≤ (1− α)s+ α(s+ 1) =
m

n− 1
.

Finally,

C(G) ≤ 3

4
∆(G)(s1−α(s+ 1)α)n−1

≤ 3

4
∆(G)

(
m

n− 1

)n−1

(by (?))

≤ 3

4
∆(G)

(m
n

)n−1
(

n

n− 1

)n−1

≤ 3∆(G)

(
d

2

)n−1

.

(The last inequality is based on the fact that for n ≥ 2,
(
1 + 1

n−1

)n−1
is an increasing

function and limn→∞
(
1 + 1

n−1

)n−1
= e.)

4.5 Example of a graph with (1.37)m cycles

For n ≥ 1 let Hn be the graph on 2n+ 2 vertices with

V (Hn) = {u1, u2, . . . , un+1, v1, v2, . . . vn+1} and

E(Hn) = {uivj : i, j ∈ [n+ 1], |i− j| ≤ 1} ∪ {uiui+1 : i ∈ [n]} ∪ {vivi+1 : i ∈ [n]}.
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For example, see Figure 4.4 for H12.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

Figure 4.4: The graph H12.

Claim 4.5.1 (Arman-Tsaturian, 2017+ [9]). For n ≥ 1 denote by P (n) the number

of paths from the vertex u1 to the vertex un+1 in Hn. For all n ≥ 2,

P (n) = 4P (n− 1) + 4P (n− 2).

Note that P (n) is also equal to the number of paths from u1 to vn+1 in Hn.

Proof sketch. The proof of the claim relies on an inductive argument and an observa-

tion that each path from u1 to un+1 in Hn corresponds to exactly one of the following

eight types of paths:

• A path from u1 to un in Hn−1 followed by the path unun+1.

• A path from u1 to un in Hn−1 followed by the path unvn+1un+1.

• A path from u1 to vn in Hn−1 followed by the path vnun+1.

• A path from u1 to vn in Hn−1 followed by the path vnvn+1un+1.

• A path from u1 to un−1 in Hn−2 followed by the path un−1unvn+1vnun+1.

• A path from u1 to un−1 in Hn−2 followed by the path un−1vnvn+1unun+1.
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• A path from u1 to vn−1 in Hn−2 followed by the path vn−1unvn+1vnun+1.

• A path from u1 to vn−1 in Hn−2 followed by the path vn−1vnvn+1unun+1.

Also, note that P (0) = 1, P (1) = 5. Solving the recurrence relation P (n) =

4P (n− 1) + 4P (n− 2) leads to the inequality

P (n) ≥ (2 + 2
√

2)n.

Define the graph Gn by identifying the vertices u1 and un in Hn (see Figure 4.5

for G12). Then Gn has 2n+ 1 vertices, m = 5n+ 1 edges and

C(Gn) ≥ (2 + 2
√

2)n.

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

u1 u2

u3

u4

u5

u6u7
u8

u9

u10

u11

u12

v13 v1

Figure 4.5: G12 with 25 vertices and 61 edges.
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For an integer m, let the graph G be obtained from Gbm−1
5 c by adding (m −

5
⌊
m−1

5

⌋
− 1) edges (anywhere). Then G has m edges and for m large enough (for

m > 16855)

C(G) ≥ C(Gbm−1
5 c) ≥ (2 + 2

√
2)b

m−1
5 c ≥ (2 + 2

√
2)

m
5
−1 > 1.37m.

4.6 Lower bound for the number of cycles with

given number of vertices and edges

In this section the lower bound for the number of cycles in a graph G with n

vertices and m edges is established. This result was never published before, but was

discovered by myself and Tsaturian independently.

Theorem 4.6.1 (Arman, Tsaturian, 2017). If d = d(n) is such that limn→∞ d(n) =

∞, then there exists a graph G with n vertices and average degree d, such that

C(G) ≥
(
d

e

)n
(1 + o(1))n.

If d > 1 is fixed, then for c = d
2
, α = 1− 1

d
and n large enough, there exists a graph

G with n vertices and average degree d such that

C(G) ≥ (1 + o(1))n

(
cc2α

e2α (1− α)(1−α) (c− α)c−α

)n

.

Proof. The statement of the theorem follows from an averaging argument for graphs

on n vertices and m edges. Let c = d
2

= c(n), then m = cn. Let N =
(
n
2

)
. Let E be
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the average of the number of cycles in all graphs with n vertices and m edges. The

lower bound on E is obtained below. First,

E =
n∑
k=3

(
n

k

)
k!

2k

(
N − k
m− k

)
/

(
N

m

)
=

n∑
k=3

n!

(n− k)!

1

2k

(
N − k
m− k

)
/

(
N

m

)
.

To simplify calculations, for 3 ≤ k ≤ n, put

ak =
n!

(n− k)!

1

2k

(
N − k
m− k

)
/

(
N

m

)
.

Let α = 1− 1
2c

+ o(1), be such that αn is an integer, then

E =
n∑
k=3

ak ≥ aαn

=
n!

(n− αn)!

1

2αn

(
N − αn
m− αn

)
/

(
N

m

)
=

n!

(n− αn)!

1

2αn

(
N − αn
cn− αn

)
/

(
N

cn

)
≥ (1 + o(1))n

(
n
e

)n(
(1−α)n

e

)(1−α)n

(N − αn)!(cn)!

((c− α)n)!N !

≥ (1 + o(1))n
nαn

eαn (1− α)(1−α)n

(
(
n
2

)
− αn)!(cn)!

((c− α)n)!
(
n
2

)
!

≥ (1 + o(1))n
nαn

eαn (1− α)(1−α)n

(
(
n
2

)
− αn)(

n
2)−αneαn(

n
2

)(n2) (cn)cn

eαn((c− α)n)(c−α)n

= (1 + o(1))n
nαn

(eα (1− α)(1−α))n

(1− 2α
n−1

)(
n
2)−αn(

n
2

)αn nαn
(

(c)c

(c− α)(c−α)

)n

= (1 + o(1))nnαn

(
2α

eα (1− α)(1−α)

)n
(1− 2α

n−1
)(

n−1
2α )

(
αn− 2α2n

n−1

)
n2αn(1− 1

n
)αn

nαn
(

(c)c

(c− α)(c−α)

)n
≥ (1 + o(1))n

(
2α

eα (1− α)(1−α)

)n

e−αn
(

(c)c

(c− α)(c−α)

)n
≥ (1 + o(1))n

(
cc2α

e2α (1− α)(1−α) (c− α)c−α

)n

.
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If limn→∞ d(n) =∞, then limn→∞ c(n) =∞, limn→∞ α(n) = 1 and

E ≥ (1 + o(1))n

(
cα2α

e2α (1− α)(1−α)

(
1 +

α

c− α

)c−α)n

≥ (1 + o(1))n

(
cα2α

e2α (1− α)(1−α)
eα

)n

.

≥ (1 + o(1))n
(

2c

e

)n
.

= (1 + o(1))n
(
d

e

)n
.

If limn→∞ d(n) 6=∞, then

E ≥ (1 + o(1))n

(
cc2α

e2α (1− α)(1−α) (c− α)c−α

)n

.

4.7 Maximum number of cycles in multigraphs

The problems of maximizing the number of cycles with a fixed number of edges

or a fixed average degree can be also considered for multigraphs.

Theorem 4.7.1 (Arman-Tsaturian, 2017+ [9]). Let G be a multigraph that has the

maximum number of cycles among all the multigraphs with n ≥ 2 vertices and m ≥ 3

edges. Let
⌊

m
n−1

⌋
= s, and put α = m

n−1
− s.

If m
n−1
≥ 3, then

8

27
s(s1−α(s+ 1)α)n−1 ≤ C(G) ≤ 3

4
∆(G)(s1−α(s+ 1)α)n−1.
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If m
n−1
≤ 3, then

4(
3
√

3)m−4 ≤ C(G) <
3

4
∆(G) · ( 3

√
3)m.

Theorem 4.7.1 was stated in the paper [9], but was not proven. Here I present

the proof of Theorem 4.7.1.

Proof. The upper bounds in Theorem 4.7.1 follow directly from Theorem 4.4.2.

Define Cn,m to be the multigraph obtained from the cycle Cn by replacing each

of some m −
⌊
m
n

⌋
n consecutive edges with

⌊
m
n

⌋
+ 1 multi-edges and the remaining⌊

m
n

⌋
n−m+ n edges with

⌊
m
n

⌋
multi-edges.

Lower bound for case m
n−1
≥ 3:

Let
⌊

m
n−1

⌋
= s, m

n−1
= s+ α. If

⌊
m
n

⌋
= s, then m

n
= s+ α− m

n(n−1)
and

C(Cn,m) =
(
s1−(α− m

n(n−1))(s+ 1)α−
m

n(n−1)

)n
=
(
s1−α(s+ 1)α

)n
s

m
n−1 (s+ 1)−

m
n−1

=
(
s1−α(s+ 1)α

)n−1
s1−α+ m

n−1 (s+ 1)α−
m
n−1

=
(
s1−α(s+ 1)α

)n−1
s

(
s

s+ 1

)s
≥
(
s1−α(s+ 1)α

)n−1 s

e
.

(The last inequality holds, since ( s
s+1

)s is decreasing function and lims→∞( s
s+1

)s = 1
e
.)

If
⌊

m
n−1

⌋
= s, m

n−1
= s+α and

⌊
m
n

⌋
= s− 1, then m

n
= (s− 1) +

(
1 + α− m

n(n−1)

)
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and

C(Cn,m) =
(

(s− 1)
m

n(n−1)
−αs1+α− m

n(n−1)

)n
=
(
s1−α(s+ 1)α(s+ 1)−αs2α− m

n(n−1) (s− 1)
m

n(n−1)
−α
)n

=
(
s1−α(s+ 1)α

)n(( s

s+ 1

)α(
s− 1

s

) m
n(n−1)

−α
)n

=
(
s1−α(s+ 1)α

)n−1
s

(
s

s+ 1

)α(n−1)(
s− 1

s

) m
n−1
−αn

=
(
s1−α(s+ 1)α

)n−1
s

(
s

s+ 1

)α(n−1)(
s− 1

s

)s−α(n−1)

≥
(
s1−α(s+ 1)α

)n−1
s

(
s− 1

s

)s
≥ 8s

27

(
s1−α(s+ 1)α

)n−1
.

(The last inequality holds, since ( s−1
s

)s is increasing function and s ≥ 3. )

The lower bound in the case m
n−1
≤ 3 is achieved by the graph Cbm+1

3 c,m with

additional n−
⌊
m+1

3

⌋
isolated vertices.

To derive an upper bound for the number of cycles in a multigraph with m edges

the following theorem (a direct analogue of Theorem 4.2.3) is used. This theorem

has not yet been published, but its statement appeared (without proof) in [9].

Theorem 4.7.2 (Arman-Tsaturian). Let G be a multigraph with m edges such that

C(G) = C(m). Then ∆(G) ≤ 11.

Proof. The proof of Theorem 4.7.2 relies on Lemma 4.2.1 and 4.2.2.

Let m be a fixed positive integer and G be a multigraph with m edges. To prove
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Theorem 4.2.3 it is sufficient to prove that if ∆(G) ≥ 12, then there is a multigraph

H with m edges and with C(H) > C(G).

Let ∆(G) ≥ 12, and let u be a vertex of maximal degree in G. Let N ′(u) =

{e1, e2, . . . , ek} be the edge neighbourhood of u (note that k ≥ 12). Let N(u) =

{u1, u2, . . . , uk} be a multiset, such that for any 1 ≤ i ≤ k, ei = uui. For i, j ∈

[k], i 6= j, if ui 6= uj define wi,j to be the number of paths from vertex ui to vertex uj

in the graph G\u , and if ui = uj let wi,j = 0. Then the number of cycles in G that

pass through the vertex u is equal to S =
∑

1≤i<j≤k wi,j. By Lemma 4.2.1, there is

a six element set D = {i1, i2, . . . , i6}, such that

∑
1 ≤ i < j ≤ k

i 6∈ D, j 6∈ D

wi,j ≥
(

1− 6(2k − 7)

k(k − 1)

)
S.

Suppose, upon re-indexing, that D = {k − 5, k − 4, . . . , k − 1, k}. Lemma 4.2.2

applied to the collection of real numbers wi,j with 1 ≤ i < j ≤ k−6 gives a partition

π = A1 ∪ A2 ∪ A3 ∪ A4 of [k − 6] with

∑
1≤`<m≤4

∑
i ∈ A`

j ∈ Am

wi,j ≥
(

3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S. (4.11)

For 1 ≤ i ≤ 4, let Ui = {uj : j ∈ Ai} (Ui is a multiset) and let Ei = {uuj :

j ∈ Ai}. Construct a graph H by deleting all of the edges incident to u; adding four

new vertices v1, v2 , v3, v4, for all 1 ≤ i ≤ 4 adding the edges from vi to each vertex

of Ui, and for all 1 ≤ i < j ≤ 4 adding the edges vivj. Then |E(H)| = |E(G)|.
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u

G:

U3U2

U1 U4

D

v1 v4

v2 v3

U3

H:

U2

U1 U4

D

Figure 4.6: Constructing the multigraph H.

To count the number of cycles in H, note the following:

• Every cycle in G that does not pass through the vertex u is still a cycle in H.

There are C(G)− S such cycles.

• Let C be a cycle in G that for some 1 ≤ i < j ≤ k−6, contains the path uiuuj.

If for some ` ∈ [4], ui and uj are in the same class U`, then C corresponds to

the cycle in H that uses the path uiv`uj instead of uiuuj. In the case if for

some 1 ≤ l < m ≤ 4, ui ∈ U` and uj ∈ Um, the cycle C corresponds to the

cycle that uses the path uiv`vmuj instead of uiuuj. By Lemma 4.2.1, there are

at least (
1− 6(2k − 7)

k(k − 1)

)
S

cycles in G that use a path uiuuj with uui, uuj ∈ N ′(u) and i, j ∈ [k − 6].

• Every cycle in G that for some i ∈ A` and j ∈ Am with ` 6= m pass through

the path uiuuj give rise to four additional cycles (except the one containing
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uiv1v2uj): the ones containing the paths uiv1v3v2uj, uiv1v4v2uj, uiv1v3v4v2uj

and uiv1v4v3v2uj. According to (4.11), there are at least

(
3(k − 6)2 − 4

4(k − 6)(k − 7)

)(
1− 6(2k − 7)

k(k − 1)

)
S =

(
3k2 − 36k + 104

4k(k − 1)

)
S

cycles in G that for some i ∈ A` and j ∈ Am with ` 6= m pass through a path

uiuuj.

• There are 7 new cycles in H spanned by the vertices v1, v2, v3, v4.

By all of the observations above, the number of cycles in H is

C(H) ≥ C(G)− S +

(
1− 6(2k − 7)

k(k − 1)

)
S +

(
3k2 − 48k + 104

k(k − 1)

)
S + 7

= C(G) + 7 + S

(
3k2 − 36k + 104

k(k − 1)
− 12k − 42

k(k − 1)

)
= C(G) + 7 + S

(
3k2 − 48k + 144

k(k − 1)

)
= C(G) + 7 + S

(
3(k − 4)(k − 12)

k(k − 1)

)
> C(G).

Therefore, H has more cycles than G.

Theorem 4.7.3 (Arman-Tsaturian, 2017+ [9]). Let G be a multigraph with m ≥ 3

edges that has the maximum number of cycles among all the multigraphs with m

edges. Then

9

10
(

3
√

3)m < 4(
3
√

3)m−4 ≤ C(G) ≤ 8.25(
3
√

3)m
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Proof. The upper bound in Theorem 4.7.3 is obtained by repeating the argument of

Corollary 4.4.3 and using Theorem 4.7.2. The example that implies the lower bound

is the same as for the second case of Theorem 4.7.1, namely Cbm+1
3 c,m (see proof of

Theorem 4.7.1 for definition).

Theorems 4.7.1 and 4.7.3 answer both questions of determining, up to a constant

factor, the number of cycles for multigraphs with a given number of edges and with

a given number of vertices and edges. I would like to conclude this section with

saying that I believe that for m ≥ 9 the graph Cbm+1
3 c,m has the most cycles among

all multigraphs with m edges, since it is the graph, for which the lower bound in

Theorem 4.7.3 is sharp.

4.8 Concluding remarks

Theorem 4.4.2 gives an upper bound for the number of cycles in a graph G with

n vertices and m edges. For a graph G with n vertices and the average degree d ≥ 6,

Corollary 4.4.4 implies

C(G) ≤ 3∆(G)

(
d

2

)n−1

.

For d = Ω(lnn), let G be a random graph G(n, p) with p = d
n−1

. Glebov and

Krivelevich [23] proved that asymptotically almost surely the number of cycles in

G(n, p) is at least
(
d
e

)n
(1 + o(1))n. Also, Theorem 4.6.1 implies that if G is a graph

with the maximum number of cycles among all graphs with n vertices and average
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degree d = d(n) such that limn→∞ d(n) =∞, then for n large enough

(
d

e

)n
(1 + o(1))n ≤ C(G) ≤ (1 + o(1))n

(
d

2

)n
. (??)

Inequality (??) and the fact that C(Kn) ≈ c√
n

(
n
e

)n
for some constant c (see [10]

for details) motivates the following conjecture.

Conjecture 4.8.1 (Arman-Tsaturian, 2017+ [9]). For any α ∈ (0, 1] and integer n

large enough, any graph G on n vertices with average degree d = αn satisfies

C(G) ≤ (1 + o(1))n
(
d

e

)n
.

As mentioned in the introduction, Theorem 4.4.3 and the result of Section 4.5

imply that 1.37m ≤ C(m) ≤ 1.443m.

Király [30] proved that if G is a 4-regular graph, then there are constants c, ε, such

that C(G) ≤ cn2(2− ε)n; he also conjectured that C(m) < 1.4m. The upper bound

in Corollary 4.4.3 is 8.25( 3
√

3)m, which inspires the following conjecture (directly

contradicting Király’s conjecture).

Conjecture 4.8.2 (Arman-Tsaturian, 2017+ [9]). For sufficiently large m, there

exists a graph G with m edges and at least (1 + o(1))m( 3
√

3)m cycles.



Chapter 5

Counting cycles in Kr-free graphs

5.1 Motivation

The authors of [10] posted a list of new conjectures.

Conjecture 1.1.2 (Arman-Gunderson-Tsaturian, 2016 [10]). For any k > 1, if

an n-vertex graph C2k+1-free graph has the maximum number of cycles, then G =

Kdn2 e,bn2 c.

Question 1.1.3 (Arman-Gunderson-Tsaturian, 2016 [10]). For k ≥ 4 what is the

maximum number of cycles in a Kk-free graph on n vertices? Could it be that the

cycle-maximal Kk-free graphs are indeed Turán graphs?

Shortly after submitting the paper [10], we received an email from Alex Scott [41]

in which he informed that he and a student of his have proved Conjecture 1.1.2 and

answered Question 1.1.3 affirmatively for n large enough, by using the Regularity

73
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Lemma [46]. Regularity Lemma implies that for any ε > 0, graph H and integer k

there is an integer N , such that for any H-free graph G with n ≥ k vertices there

is integer `, k ≤ ` ≤ N , such that G can be made `-partite by deleting at most εn2

edges. Regularity Lemma potentially allows to reduce the problem of counting cycles

in H-free graphs to the problem of counting cycles in `-partite graphs. Recall that a

graph H is called edge-critical if there exists an edge, deletion of which reduces the

chromatic number of H. Alex Scott states that if H is an edge-critical graph with

chromatic number k, then there exists integer n0 so that for all integers n ≥ n0 and

any H-free graph G with n vertices

C(G) ≤ C(T (n, k − 1)).

Result of Scott was not published at the time of the preparation of this thesis,

however it inspired me to investigate Question 1.1.3 further. The first step toward

such an investigation is an estimate on the number of cycles in a Turán graph,

which is done in Section 5.2, namely in Theorems 5.2.2 and 5.2.6. A stability result

(Theorem 5.3.2) for the number of cycles in Kr-free graphs is given in Section 5.3.

All of the theorems in Chapter 5 are the result of my original research. In

Section 5.2 the question of estimating the number of cycles in a Turán graph is

considered. The main result of Section 5.2 (Theorem 5.2.6) shows that for any

positive integer r there exists a constant c = c(r), such that for n large enough,

C(T (n, r)) ≥ c

n
2
3
r2− r

2
+1

(
n(r − 1)

re

)n
.
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In Section 5.3 an estimate on the number of cycles in a Kr-free graph is given and

the main result of Section 5.3 (Theorem 5.3.2) shows that for any positive integer r

there is positive integer n0, such that any Kr+1-free graph G with n ≥ n0 vertices

and m ≤ t(n, r)− 2r4n lnn edges has fewer cycles than T (n, r).

5.2 Estimate on the number of cycles in a Turán

graph

The main result of this section is Theorem 5.2.6, which is later used in Section 5.3.

Theorem 5.2.2 provide useful upper bounds for the number of cycles in a Turán

graph. The following lemma is used in the proof of Theorem 5.2.2.

Lemma 5.2.1. Let s(n) be the number of sequences of length n of symbols from the

alphabet {1, 2, . . . , r}, such that no two consecutive symbols are the same (n-th and

1-st symbols are also consecutive). Then

s(n) = (r − 1)n + (r − 1)(−1)n.

This Lemma is one of the classical result about chromatic polynomials of a cycle,

for reference see Birkhoff and Lewis paper [12] (thanks to Dr. Bill Kocay for point-

ing that this Lemma is a result about chromatic polynomials). Lemma 5.2.3 and

Lemma 5.2.5 can also be rewritten in terms of colourings of a cycle.
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Proof of Lemma. The sequence s(n) satisfies the following recurrence:

s(2) = r(r − 1), s(3) = r(r − 1)(r − 2),

s(n+ 2) = (r − 2)s(n+ 1) + (r − 1)s(n) for n ≥ 2.

Solving for the roots of the characteristic polynomial and using the initial condi-

tions yields

s(n) = (r − 1)n + (r − 1)(−1)n.

Estimates in Theorem 5.2.2 show that the result of Theorem 5.2.6 is not far away

from being sharp.

Theorem 5.2.2 (Arman, 2017+ [8]). For an integer r ≥ 3 and an integer n large

enough

C(T (n, r)) ≤
(
e2n

r

) r
2
(
n(r − 1)

re

)n
.

Proof. Let V (T (n, r)) = V1 ∪ V2 ∪ · · · ∪ Vr, such that |V1| ≥ |V2| ≥ · · · ≥ |Vr| and for

any i 6= j, |(|Vi| − |Vj|)| ≤ 1. For any i ∈ [r] let Vi = {vi1, vi2, . . . , vi|Vi|}. Finally, let

t = n−
⌊
n
r

⌋
· r.

For 3 ≤ k ≤ n, let s = (s1, s2, . . . , sk) be a sequence of symbols from the alphabet

{1, 2, . . . , r} such that no two consecutive symbols are the same (k-th and 1-st sym-

bols are also consecutive) and for any i ∈ [r] the symbol i appears at most |Vi| times

in s. For any i ∈ [k] let ni be the number of times that a symbol si appears among
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the first i symbols of s. For any i ∈ [r] let πi be a permutation of [|Vi|]. Finally, let

C =
(
vs1πs1 (n1), v

s2
πs2 (n2), v

s3
πs3 (n3), . . . , v

sk−1

πsk−1 (nk−1)
, vskπsk (nk), v

s1
πs1 (n1)

)
be the cycle of length k that arises from s and π1, π2, . . . , πr. Moreover, every cycle

C of the length k arises from at least 2k different choices of s, π1, π2, . . . , πr (there

are 2k ways to choose starting point and a direction on a cycle of length k, each

choice corresponds to different collection of s, π1, π2, . . . , πr). Therefore, the number

of cycles of the length k in T (n, r) is at most the number of ways to choose s,

π1, π2, . . . , πr divided by 2k, so is at most

1

2k

(
(r − 1)k + (r − 1)

)
|V1|! · |V2|! · · · |Vr|!

=
1

2k

(
(r − 1)k + (r − 1)

)
·
(⌊n

r

⌋
!
)r−t

·
(⌊n

r
+ 1
⌋
!
)t

<
1

2k

(
(r − 1)k + (r − 1)

)
·

e ⌊n
r

⌋ 1
2

(⌊
n
r

⌋
e

)bnr cr−t

·

e ⌊n
r

+ 1
⌋ 1

2

(⌊
n
r

+ 1
⌋

e

)bnr +1ct

≤ 1

2k

(
(r − 1)k + (r − 1)

)
·
(
e
(n
r

) 1
2

)r ( n
er

)n
.

Therefore, the number of cycles in T (n, r) is at most

n∑
k=3

1

2k

(
(r − 1)k + (r − 1)

)
·
(
e
(n
r

) 1
2

)r ( n
er

)n
≤

n∑
k=3

1

2n
((r − 1)n + (r − 1)) ·

(
e
(n
r

) 1
2

)r ( n
er

)n
<

1

2
((r − 1)n + (r − 1)) ·

(
e
(n
r

) 1
2

)r ( n
er

)n
< (r − 1)n ·

(
e
(n
r

) 1
2

)r ( n
er

)n
=
(
e2
(n
r

)) r
2

(
(r − 1)n

er

)n
.
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Let r be a positive integer. The following lemmas are used for the proof of

Theorem 5.2.6.

Lemma 5.2.3 (Arman, 2017+ [8]). Let m and k be integers with 1 ≤ k ≤ m
2

. Let

am,k be the number of sequences of length m of symbols from the alphabet {1, 2, . . . , r},

such that no two consecutive symbols are the same (m-th and 1-st symbols are also

consecutive), and the symbol “1” appears precisely k times. Then

am,k =

(
m− k
k

)
(r − 1)k(r − 2)m−2k,

and

am,0 = (r − 2)m + (−1)m(r − 2).

Proof. Let S be the collection of sequences s = (s1, s2, . . . sm), such that for all i ∈ [m]

si ∈ [r], si 6= si+1 (with sm+1 = s1) and there are exactly k indices i1, i2, . . . , ik, such

that for all j ∈ [k], sij = 1.

Every element of S can be constructed in the following steps. First, choose the

positions of “1”’s; namely choose a set S1 = {i1, i2, . . . , ik : i1 < i2 < · · · < ik} ⊆ S

with the property that for all j1, j2 ∈ [k], |j1 − j2| > 1 and m and 1 cannot both

belong to S1. There are
(
m−k
k

)
ways to choose such a set S1. For all j ∈ S1 set sj = 1.

Now, define all other values of sj for j ∈ [m]/S1. For an index ` ∈ [k] consider

the interval [si` + 1, si`+1
− 1] with [sik + 1, si1 − 1] = [sik + 1,m]∪ [1, si1 − 1]. For the

value of si`+1 there are (r − 1) possibilities to choose from (since si`+1 6= 1); for the
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value si`+2 there are (r−2) possibilities to choose from ( si`+2 6= si`+2 and si`+2 6= 1);

for si`+3 there are (r − 2) possibilities ( si`+3 6= si`+2 and si`+3 6= 1); similarly for all

3 < j < i`+1−i` , for sil+j there are (r−2) possibilities ( sil+j 6= sil+j−1 and sil+j 6= 1).

So, there are (r − 1)(r − 2)i`+1−i`−1 ways to choose the values of all of the sj for

j ∈ [si` + 1, si`+1
− 1] (here I set ik+1 − ik = m− ik + i1 − 1). Hence, there are

k∏
l=1

(r − 1)(r − 2)i`+1−il−1 = (r − 1)k(r − 2)m−2k

ways to choose the values of sj for j ∈ [m]/S1. Finally,

|S| =
(
m− k
k

)
(r − 1)k(r − 2)m−2k.

Note, that according to the Lemma 5.2.3 and Lemma 5.2.1,

m
2∑

k=0

am,k = (r − 1)m + (−1)m(r − 1).

Lemma 5.2.4 (Arman, 2017+ [8]). Let r,m be integers, such that r > 2 and m > r3.

Let 1
r2
> ε > 0 be such that mε is an integer and set c = 1 − ε. Then there exist

positive constants c1(r), c2(r), such that

cm
2∑

k=m
r

acm,k < c1(r − 1)cm
√
me−c2ε

3m.

Proof. Let

S =

cm
2∑

k=m
r

acm,k.

Claim: For cm
2
≥ k ≥ m

r
sequence acm,k is decreasing in k.
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Proof of claim: Let k ≥ m
r
, then

acm,k+1

acm,k
=

(
cm−k−1
k+1

)
(r − 1)k+1(r − 2)cm−2k−2(

cm−k
k

)
(r − 1)k(r − 2)cm−2k

=
r − 1

(k + 1)

/
(cm− k)(r − 2)2

(cm− 2k)(cm− 2k − 1)

=
(cm− 2k)(cm− 2k − 1)

(k + 1)(cm− k)
· (r − 1)

(r − 2)2
.

The function f(x) = (cm−2x)(cm−2x−1)
(x+1)(cm−x)

is decreasing on the interval [m
r
, cm

2
], so

acm,k+1

acm,k
≤
acm,m

r
+1

acm,m
r

=
(cm− 2m

r
)(cm− 2m

r
− 1)

(m
r

+ 1)(cm− m
r

)
· (r − 1)

(r − 2)2

=
(c− 2

r
)(c− 2

r
− 1

m
)

(1
r

+ 1
m

)(c− 1
r
)
· (r − 1)

(r − 2)2

=
(cr − 2)(cr − 2− r

m
)

(1 + r
m

)(cr − 1)
· (r − 1)

(r − 2)2

=
(r − 2− εr)(r − 2− εr − r

m
)

(1 + r
m

)(r − 1− εr)
· (r − 1)

(r − 2)2
.

In order to verify that acm,k is decreasing it is sufficient to show

((r − 2)− εr)
(

(r − 2)− εr − r

m

)
(r − 1) ≤

(
1 +

r

m

)
((r − 1)− εr)(r − 2)2.

After simplifying, the last inequality becomes

−2εr(r − 1)(r − 2)− r(r − 1)(r − 2)

m
+ ε2r2(r − 1) +

εr2(r − 1)

m

≤ −εr(r − 2)2 +
r

m
(r − 1)(r − 2)2 − εr2

m
(r − 2)2.
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Further this last inequality can be rewritten as

− r(r − 1)(r − 2)

m
+ ε2r2(r − 1) +

εr2(r − 1)

m

≤εr2(r − 2) +
r

m
(r − 1)(r − 2)2 − εr2

m
(r − 2)2.

The left-hand side of the last inequality (using the assumptions r > 2, ε < r−2

and m > r3) is at most 0 + ε(r − 1) + ε = rε and the right-hand side is at least

εr2(r − 2) + 0 − ε(r − 2) = ε(r + 1)(r − 1)(r − 2), which is greater than εr. This

finishes the proof of the claim.

Hence, the sequence (acm,k)
cm/2
m/r is decreasing in k and

S =

cm
2∑

k=m
r

acm,k

≤
(cm

2
− m

r
+ 1
)
acm,m

r

=
(cm

2
− m

r
+ 1
)(cm− m

r
m
r

)
(r − 1)

m
r (r − 2)cm−

2m
r

≤
(
c

2
− 1

r
+

1

r

)
m
e
√
cm− m

r
(cm− m

r
)cm−

m
r (r − 1)

m
r (r − 2)cm−

2m
r

√
2π
√

m
r

(m
r

)
m
r

√
2π
√
cm− 2m

r
(cm− 2m

r
)cm−

2m
r

≤ e
√

2r

4π

√
m

(cm− m
r

)cm−
m
r (r − 1)

m
r (r − 2)cm−

2m
r

(m
r

)
m
r (cm− 2m

r
)cm−

2m
r

= c1(r)
√
m

(c− 1
r
)(c− 1

r
)m(r − 1)

m
r (r − 2)cm−

2m
r

(1
r
)
m
r (c− 2

r
)(c− 2

r
)m

= c1(r)
√
m(r − 1)cm

(cr − 1)(c− 1
r

)m(r − 2)cm−
2m
r

(r − 1)cm−
m
r (cr − 2)(c− 2

r
)m

= c1(r)
√
m(r − 1)cm

(
cr − 1

r − 1

) cr−1
r

m(
r − 2

cr − 2

) cr−2
r

m

.
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To finish the proof, it is sufficient to show that for some positive constant c2(r),(
cr − 1

r − 1

) cr−1
r

m(
r − 2

cr − 2

) cr−2
r

m

≤ e−ε
3c2(r)m. (5.1)

Taking logarithms of both sides of the inequality (5.1), using the fact that c =

1 − ε, and applying the inequality −x − x2(1
2

+ 1
2(r−1)

) ≤ ln(1 − x) ≤ −x − x2

2
for

x < 1
r4

yields

cr − 1

r
m ln

(
cr − 1

r − 1

)
− cr − 2

r
m ln

(
cr − 2

r − 2

)
=

(
1− ε− 1

r

)
m ln

(
1− εr

r − 1

)
−
(

1− ε− 2

r

)
m ln

(
1− εr

r − 2

)
≤ m

(
1− ε− 1

r

)(
− εr

r − 1
− ε2r2

(r − 1)2

)
−m

(
1− ε− 2

r

)(
− εr

r − 2
− ε2r2

(r − 2)2
− ε2r2

2(r − 1)(r − 2)2

)
= −ε3m

(
r2

2(r − 1)2(r − 2)2

)(
2r − 3− 1

r − 1

)
= −ε3c2(r)m.

This finishes the proof of inequality (5.1) and the lemma.

Lemma 5.2.5 (Arman, 2017+ [8]). Let r, t be integers and let n = rt. Let s(n, t)

be the number of sequences of the length n of symbols from the alphabet {1, 2, . . . , r}

such that no two consecutive symbols are the same (n-th and 1-st symbols are also

consecutive) and the number of times that every symbol appears is exactly t. Then

there is a constant c = c(r), such that for n large enough

s(n, t) ≥ c
(r − 1)n

(n)
2
3
r2+1

.
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Proof. Let m be an integer, 1
r2
> ε ∼ lnm/m

1
3 and c = 1−ε be such that t = cm−1.

Consider the set S1 of the sequences of length cm from the alphabet {1, 2, . . . , r}

such that every symbol appears at most m
r

times and any two consecutive elements

are different. By Lemma 5.2.4, the number of such sequences, when m is large

enough, is at least

(r − 1)cm − (r − 1)− rc1(r − 1)cm
√
me−c2ε

3m = (1− o(1))(r − 1)cm.

By the pigeonhole principle (PHP), there are i, j ∈ [r], such that i 6= j and the

number of sequences from S1 that start with i and end at j is at least

1

r(r − 1)
(1− o(1))(r − 1)cm.

Without loss of generality, assume that i = 1 and j = 2. Set S2 ⊂ S1 to be the

set of all sequences from S1 that start with “1” and end with “2”.

If s ∈ S2, then the number of times that any symbol from the alphabet appears is

at least cm− (r− 1)m
r

=
(

1
r
− ε
)
m and at most m

r
. By the PHP, there is a sequence

n1, n2, . . . , nr, such that for each i ∈ [r],
(

1
r
− ε
)
m ≤ ni ≤ m

r
, and

∑r
i=1 ni = cm,

and the number of sequences s ∈ S2 such that for each i ∈ [r] the number of times

that symbol “i” appears in s is ni is at least

|S2|
(εm+ 1)r

≥ (1− o(1))
1

r(r − 1)

(r − 1)cm

(εm)r
.

Let S3 ⊆ S2 be all sequences s from S2 such that for each i ∈ [r] the number of

times that symbol “i” appears in s is ni.
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Let S be a set of sequences of length n from the alphabet [r] such that any two

consecutive symbols are different and every symbol appears exactly t = n
r

times.

Let π be permutation of [r] that takes all elements to its successor and takes r to

1. For an s = (s1, s2, . . . , scm) ∈ S3 define π(s) = (π(s1), π(s2), . . . , π(scm)). Let

s1, s2, . . . , sr ∈ S3. For all i ∈ [r] let ci = π(i−1)(si), and let s′i to be ci minus its last

element. Let permutations s ∈ S be s = s′1s
′
2 . . . s

′
r. Note that every symbol from

the alphabet appears exactly n1 + n2 + · · · + nr − 1 = cm − 1 = t times and every

two consecutive elements are different.

The map (s1, s2, . . . , sr)→ s is a 1-1 map from Sr3 to S. Hence,

|S| =s(n, t)

≥|S3|r

≥
(

(1− o(1))
1

r(r − 1)

(r − 1)cm

(εm)r

)r
≥(1− o(1))r

1

rr
(r − 1)n

(εm)r2

≥
(

(1− o(1))
1

r(r − 1)

(r − 1)cm

(εm)r

)r
≥c (r − 1)n

(n)
2
3
r2+1

.
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Theorem 5.2.6 (Arman, 2017+ [8]). Let r be a positive integer, then there is con-

stant c = c(r), such that for n large enough

C(T (n, r)) ≥ c

n
2
3
r2− r

2
+1

(
n(r − 1)

re

)n
.

Proof. The proof follows the lines of the proof given for Theorem 5.2.2.

Let m = r
⌊
n
r

⌋
. Let s = (s1, s2, . . . , sm) be a sequence of length m of symbols

from the alphabet {1, 2, . . . , r}, such that no two consecutive symbols are the same

(m-th and 1-st symbols are also consecutive) and for any i ∈ [r] the symbol i appears

exactly m
r

times in s. For any i ∈ [k] let ni be the number of times symbol si appears

among the first i symbols of s. For any i ∈ [r] let πi be a permutation of [|Vi|].

Finally, let

C = (vs1πs1 (n1), v
s2
πs2 (n2), v

s3
πs3 (n3), . . . , v

sk−1

πsk−1 (nk−1)
, vskπsk (nk), v

s1
πs1 (n1))

be the cycle of length m arising from s, π1, π2, . . . , πr. The map (s, π1, . . . , πr)→ C

is 1-1. Therefore, by Lemma 5.2.5, the number of cycles in T (n, r) is at least

T (n, r) ≥ c1
(r − 1)m

(m)
2
3
r2+1
·

r∏
i=1

|Vi|!

≥ c2
(r − 1)n

(n)
2
3
r2+1
·
(√

2π
(n
r

) 1
2

)r ( n
er

)n
≥ c

(n)
2
3
r2− r

2
+1

(
(r − 1)n

er

)n
.
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5.3 Maximum number of cycles in a Kr-free graph

The main result in this section is Theorem 5.3.2. Lemma 4.3.1 is proved in

Section 4.3 and here I restate it for convenience.

Lemma 4.3.1 (Arman-Tsaturian, 2017+ [9]) Let G be a multigraph with n ver-

tices. For any ` ∈ [n], and any vertices v1, . . . , v` ∈ V (G), define F (v1, . . . , v`) =

N(v`)\{v1, . . . , v`−1} and define f(v1, . . . , v`) = max{degG\{v2,...,v`−1}(v`), 1}. Denote

the number of cycles in G that contain the path v1e1v2 . . . e`−1v` by C(v1e1v2 . . . e`−1v`)

(note that C(v1) is the number of cycles containing the vertex v1). For brevity, write

F` = F (v1, . . . , v`), f` = f(v1, . . . , v`), C` = C(v1e1 . . . e`−1v`). For a k ∈ [n], let

v1e1v2e2 . . . vk be a path in G. If Fk 6= ∅, then

Ck ≤ fk · max
k+1≤t≤n
vk+1∈Fk

..
.

vt∈Ft−1

{fk+1 · fk+2 · · · ft}.

(the maximum is taken over all paths vk+1 . . . vt, such that v1 . . . vkekvk+1 . . . vt ex-

tends v1 . . . vk)

Theorem 4.4.2 is also proved in Section 4.4 and here I restate it for convenience.

Theorem 4.4.2 (Arman-Tsaturian, 2017+ [9]) Let G be a multigraph with n ≥ 2

vertices and m edges.

If m
n−1

< 3, then

C(G) <
3

4
∆(G) · ( 3

√
3)m.
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If m
n−1
≥ 3, and

⌊
m
n−1

⌋
= s, α = m

n−1
− s, then

C(G) <
3

4
∆(G)(s1−α(s+ 1)α)n−1 =

3

4
∆(G)((s1−α(s+ 1)α)

1
s+α )m.

Also, the following lemma is used for the proof of the main result of this section,

Theorem 5.3.2.

Lemma 5.3.1 (Arman, 2017+ [8]). Let r and n be positive integers such that n ≥

2r + 4. Then,

n∏
k=0

(
k + 2−

⌈
k + 2

r

⌉)
≤ e2

√
r
n2

(
n(r − 1)

re

)n
.

Proof. Let m+ 1 = n− (n mod r), then

m∏
k=0

(
k + 2−

⌈
k + 2

r

⌉)
=

(
m+ 1− m+ 1

r

)
!(r − 1)(2r − 2) · · ·

(
m+ 1

r
(r − 1)

)

=

(
(r − 1)(m+ 1)

r

)
!(r − 1)

m+1
r

(
m+ 1

r

)
!

= S.

Using the upper bound of factorial (inequalities (2.2)),

n∏
k=0

(
k + 2−

⌈
k + 2

r

⌉)
= S ·

n∏
k=m+1

(
k + 2−

⌈
k + 2

r

⌉)

≤ S · nn−m

≤ e2(m+ 1)√
r

(
(r − 1)(m+ 1)

re

) (r−1)(m+1)
r

(r − 1)
m+1
r

(
m+ 1

re

)m+1
r

nn−m

≤ e2(n)√
r

(
(r − 1)(n)

re

) (r−1)(m+1)
r

(r − 1)
m+1
r

( n
re

)m+1
r
nn−m

≤ e2n2

√
r

(
n(r − 1)

re

)n
.
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Theorem 5.3.2 (Arman, 2017+ [8]). For any integer r ≥ 2 there exists a number

n0, such that any Kr+1-free graph G with n ≥ n0 vertices and m ≤ t(n, r)−2r4n log n

edges has fewer cycles than T (n, r).

Proof. Let G be a Kr+1-free graph on n vertices and with m edges. If the graph G

has average degree less then n(r−1)
er

, then Theorem 4.4.2 implies that G has at most

3n

(
n(r − 1)

2er

)n
cycles, which is smaller than the number of cycles in a T (n, r). Hence, assume that

the graph G has average degree at least n(r−1)
er

.

Let v1 be a vertex of G. Let C(v1) be the number of cycles in G that contain v1.

Then,

C(v1) ≤ f1 · max
2≤t≤n
v2∈F1

..
.

vt∈Ft−1

{f2 · f3 · · · ft}. (5.2)

Let the path v1v2 . . . vt be the one that gives the maximum in the right hand side

of the inequality (5.2). According to the definition of sets Fi and the fact that any

subgraph of G is Kr+1-free , for any k ≥ 0,

ft−k + ft−k+1 + ft−k+2 + · · ·+ ft ≤ e(G\{v2, v3, v4, . . . , vt−k−1]) ≤ t(n+ k − t+ 2, r).

Set

S = {(f2, f3, . . . , ft)|∀ t− 2 ≥ k ≥ 0 : ft−k + · · ·+ ft ≤ max{t(n+ k − t+ 2, r),m}}.
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Hence,

C1 ≤ f1 · max
2≤t≤n
v2∈F1

..
.

vt∈Ft−1

{f2 · f3 · · · ft}

≤ f1 · max
(f2,··· ,ft)∈S

{f2 · f3 · · · ft}. (5.3)

Let (f2, f3, . . . , ft) ∈ S be the sequence that gives the maximum in (5.3). Note

that t = n, otherwise splitting one of the fi into 2 and fi − 2 increases the product.

Let k0 ≤ n be the largest number such that

fn−k0 + fn−k0+1 + · · ·+ fn = t(k0 + 2, r).

Also assume that (f2, f3, . . . , fn) ∈ S is the sequence that gives the maximum in

(5.3) and has the largest possible k0. Then

fn−k0 = t(k0 + 2, r)− t(k0 + 1, r).

For any `, the difference between the number of edges in T (` + 1, r) and T (`, r)

is equal to the minimal degree of T (` + 1, r), so (using δ(G) for the minimal degree

of G)

fn−k0 = δ(T (k0 + 2, r)) = k0 + 2−
⌈
k0 + 2

r

⌉
.

With the same arguments,

fn−k0−1 + fn−k0 + · · ·+ fn ≤ t(k0 + 3, r)− 1

implies

fn−k0−1 ≤ t(k0 + 3, r)− 1− t(k0 + 2, r),
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and

fn−k0−1 ≤ δ(T (k0 + 3, r))− 1 = k0 + 3−
⌈
k0 + 3

r

⌉
− 1 = k0 + 2−

⌈
k0 + 3

r

⌉
.

Note that fn−k0−1 ≤ fn−k0 . If fn−k0 − fn−k0−1 ≥ 2, then increasing fn−k0−1 by 1

and decreasing fn−k0 by 1 results in the sequence (f ′2, . . . , f
′
n) ∈ S that has a larger

product. Hence,

0 ≤ fn−k0 − fn−k0−1 ≤ 1.

If there is a k > k0 + 1, such that fn−k − fn−k0−1 > 1, then decreasing fn−k by 1

and increasing fn−k0−1 by 1 results in the sequence (f ′2, . . . , f
′
n) ∈ S that has a larger

product.

If there is a k > k0, such that fn−k − fn−k0 < −1, then increasing fn−k by 1

and decreasing fn−k0 by 1 results in the sequence (f ′2, . . . , f
′
n) ∈ S that has a larger

product.

Finally, if there is k > k0 +1 such that fn−k0 +1 = fn−k, then fn−k0−1 = fn−k0 and

decreasing fn−k by 1 and increasing fn−k0−1 by 1 results in the sequence (f ′2, . . . , f
′
n) ∈

S with the same product but larger k0.

Hence, the sequence (f2, . . . , fn) satisfies the following conditions:

• For all k ≤ k0 fn−k + fn−k+1 + · · ·+ fn = t(k + 2, r). This can be alternatively

rewritten as fn−k = k + 2−
⌈
k+2
r

⌉
.

• For all k > k0, −1 ≤ fn−k − fn−k0 ≤ 0.
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Moreover,

m ≥
n∑
i=2

fi

=

k0∑
k=0

fn−k +
n−2∑

k=k0+1

fn−k

≥ t(k0 + 2, r) + (n− 2− k0)(fn−k0 − 1)

≥ (k0 + 2)2

(
r − 1

2r

)
− r

2
+ (n− 2− k0)

(
k0 + 1−

⌈
k0 + 2

r

⌉)
.

Set k0 = δn, with δ < 1. Then the last inequality implies

n2

2

(
r − 1

r

)
− 2r4n log n ≥ m ≥ (δn+ 2)2

(
r − 1

2r

)
− r

2

+ (n− 2− δn)

(
δn+ 1−

(
δn+ 2

r
+ 1

))
.

Dividing by n( r−1
2r

) and simplifying the left-hand side and the right-hand side of

the last inequality gives

n− 2r4 2r

r − 1
lnn ≥ (2δ − δ2)n− (1− δ) 4

r − 1
+

1

n

(
4− r2

r − 1
+

8

r − 1

)
.

Provided that n is large enough, the last inequality implies

n− 2r4 r

r − 1
lnn ≥ (2δ − δ2)n.

After setting δ = 1− x, the last inequality implies

n− 2r4 r

r − 1
log n ≥ (1− x2)n

⇔ − 2r4 r

r − 1
log n ≥ −x2n

⇔ x ≥
√

2r

r − 1
r4

log n

n

⇒ x ≥ r2

√
2 log n

n
.
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So k0 = δn, with δ ≤ 1− r2
√

2 logn
n

.

Hence, the following holds:

f2 · · · fn ≤ (fn−k0)
n−2−k0

k0∏
k=0

(
k + 2−

⌈
k + 2

r

⌉)

=

(
k0 + 2−

⌈
k0 + 2

r

⌉)n−2−k0 k0∏
k=0

(
k + 2−

⌈
k + 2

r

⌉)

≤
(
k0 + 2−

⌈
k0 + 2

r

⌉)n−2−k0
c1(k0)2

(
k0(r − 1)

re

)k0
≤
(
δn+ 2− δn+ 2

r

)n−2−δn

c1(δn)2

(
δn(r − 1)

re

)δn
≤ c1(δn)2

(
r − 1

r

)n−2

(δn+ 2)n−2−δn
(
δn

e

)δn
≤ c1(δn)2

(
r − 1

r

)n−2

(δn)n−2

(
1 +

2

δn

)n−2−δn

e−δn

≤ c2

(
n(r − 1)

r

)n
(δ)n

(
e

2
δn

)n−2−δn
e−δn

≤ c3

(
n(r − 1)

er

)n (
δe

2
δn
−δ+1

)n
.

There are two cases to consider.

Case 1: δ ≤ 3
n
.

Since δn = k0 and k0 is positive integer, there are three possibilities for the value

of delta: δ = 1
n
, δ = 2

n
and δ = 3

n
. In all of this cases

f2 · · · fn ≤ c3

(
n(r − 1)

er

)n (
δe

2
δn
−δ+1

)n
≤ c3

(
n(r − 1)

er

)n(
3e3

n

)n
.
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Recall that C(v1) is the number of cycles through a vertex v1, then

C(v1) ≤ c3

(
n(r − 1)

er

)n(
3e3

n

)n
≤ c4

(
n(r − 1)

er

)n(
1

nr4

)
.

Case 2: δ ≥ 4
n
.

Recall that δ = 1− x ≤ 1− r2
√

2 logn
n

, so δ ∈ ( 4
n
, 1− r2

√
2 logn
n

). For these values

of δ the function f(δ) = δe1+ 2
δn
−δ is increasing, so

C(v1) ≤ c3

(
n(r − 1)

er

)n (
δe

2
δn
−δ+1

)n
≤ c3

(
n(r − 1)

er

)n((
1− r2

√
2 log n

n

)
er

2
√

2 logn
n

)n

e

2

1−r2
√

2 logn
n

≤ c4

(
n(r − 1)

er

)n((
1− r2

√
2 log n

n

)
er

2
√

2 logn
n

)n

.

For all positive x, (1− x)ex ≤ 1− x2

2
, so

C(v1) ≤ c4

(
n(r − 1)

er

)n((
1− r2

√
2 log n

n

)
er

2
√

2 logn
n

)n

≤ c4

(
n(r − 1)

er

)n(
1− r4 log n

n

)n
≤ c4

(
n(r − 1)

er

)n (
e−r

4 logn
n

)n
≤ c4

(
n(r − 1)

er

)n
(n)−r

4

≤ c4

(
n(r − 1)

er

)n(
1

nr4

)
.

In both cases

C(v1) ≤ c4

(
n(r − 1)

er

)n(
1

nr4

)
.
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So, by Theorem 5.2.6,

C(G) ≤
n∑
k=1

C(vk)

≤ nc4

(
n(r − 1)

er

)n(
1

nr4

)
≤ c4

(
1

nr4−1

)(
n(r − 1)

er

)n
≤ c4

n

(
1

n
2
3
r2− r

2
+1

)(
n(r − 1)

er

)n
≤ C(T (n, r)).

5.4 Concluding remarks

It seems that to improve the result of Theorem 5.3.2, a new version of Lemma 4.3.1

is needed. Indeed, it is easy to verify that if Lemma 4.3.1 gives a tight bound for

the number of cycles, then Theorem 5.3.2 provides a tight bound for the number of

cycles in a Turán graph, which is possible, but I think is quite unlikely.

It is quite possible that with some effort one can prove a version of Theorem 5.3.2

for H-free graphs, where H is an edge-critical graph:

Theorem 5.4.1 (Arman, 2017+ [8]). For any graph H with a critical edge and the

chromatic number r+ 1 there exists a number n0, such that any H-free graph G with

n ≥ n0 vertices and m ≤ t(n, r)− 2r4n lnn edges has fewer cycles than T (n, r).

Note, that a form of this theorem is claimed to be correct by Alex Scott [41].



Chapter 6

Future work and extensions

Dr. Robert Craigen [18] mentioned to me that the question of determining the

minimum number of cycles in a graph is also interesting. I have not studied this

question thoroughly, but based on my intuition, I conjecture that for a fixed d the

minimum number of cycles in a graph G on n vertices and with density d is obtained

for a graph, obtained from a tree by identifying each vertex with a vertex of some

clique.

It seems that the number of cycles in a Turán graph T (n, r) is not determined

precisely for r ≥ 3. For r ≥ 4, it is not even known what is the exact number of

hamiltonian cycles in T (n, r). The number of hamiltonian cycles in T (n, 2), the num-

ber of cycles in T (n, 2) and the asymptotic order of the number of cycles in T (n, 2)

is determined by myself, Gunderson and Tsaturian [10]. The formulas (that involve

summation) for the number of cycles in T (n, 3) and T (n, 4) are given by Vrba [50].
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Also, a recursive formula for the number of hamiltonian cycles in T (n, r) was given

by Horák and Továrek [28] in 1979. An interesting and maybe easy problem, in my

opinion, is to find the asymptotical order of the number of cycles in T (n, r) for fixed

r and n tending to infinity.
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