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Abstract

In this thesis a problem of determining the maximum number of cycles for the
following classes of graphs is considered: triangle-free graphs; K,-free graphs; graphs
with m edges; graphs with n vertices and m edges; multigraphs with m edges and

multigraphs with n vertices and m edges.
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Chapter 1

Introduction

1.1 Types of problems considered

The main theme of this thesis is determining the maximum number of cycles in
a graph with different restrictions. My interest in this topic was initiated by my
academic supervisor David Gunderson in January 2014, in the begining of my Ph.D.
program. Durocher, Gunderson, Li and Skala [20] were interested in the question of
how many cycles can a triangle-free graph have (this question was motivated by the

study of path-finding algorithms). The authors of [20] posed the following conjecture.

Conjecture 1.1.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For each n > 4, the
balanced complete bipartite graph Ky o1, n/2) contains more cycles than any other

n-vertex triangle-free graph.

Gunderson, Tsaturian and I [10] were able to prove this conjecture for the case

1



n > 141 (see Theorems|3.4.1| and [3.4.2| here). We also posed the following conjecture

and question.

Conjecture 1.1.2 (Arman-Gunderson-Tsaturian, 2016 [10]). For any k > 1, if an

n-vertex Cop1-free graph has the mazimum number of cycles, then G = Kfﬂ EXE
2 1°L2

Question 1.1.3 (Arman-Gunderson-Tsaturian, 2016 [10]). For k > 4, what is the
mazximum number of cycles in a Kj-free graph on n vertices? Could it be that the

only cycle-maximal Kj-free graphs are Turan graphs?

Miklés Simonovits [44] suggested that the Regularity Lemma [46] might be used
to answer Question [I.1.3] or prove Conjecture [1.1.2] but at the time we could not
overcome certain technical difficulties of such an approach (see Section for more
details). In January 2014, after a preprint of the paper [10] appeared on arXiv.org,
we received an email from Alex Scott [41], in which he informed us that he and a
student of his could (by using the Regularity Lemma) prove Conjecture and
answer affirmatively Question for n large enough. However, their results were
not published at the time of the preparation of this thesis.

In February 2016, after a talk in the combinatorics seminar at University of Mani-
toba, Dr. Karen Gunderson [25] asked us if Sergei T'saturian and I had considered the
question of determining the maximum number of cycles in a graph with a given den-
sity, which motivated me and Tsaturian to investigate the following two questions.

For any graph G, let C'(G) denote the number of cycles in G.


https://arxiv.org/

Question 1.1.4. For m > 3 let C(m) denote the mazimum number of cycles in

any graph with m edges. What is C(m) and for which graphs G with m edges does

Question 1.1.5. Among all graphs G with a fized number of vertices and a fized

number of edges what is the maximum of C(G)? Which graphs achieve the mazimum?

Tsaturian and I were not able to completely answer either of those two questions,
but we did provide [9] useful estimates for the maximum number of cycles in each
case (these estimates are also presented in Chapter {4 of this thesis). For instance,
we proved that if G is a graph with m edges that has the maximal number of cycles

and C'(G) is the number of cycles in G, then
1.37" < O(G) < 1.443™.

Also, Tsaturian and I [9] proved that if G is a graph with the maximum number
of cycles among all graphs with n vertices and average degree d = d(n), such that

lim,, ,o, d(n) = oo, then for n large enough,

(4) oty <ci@ < a+oy (1)

e

Tsaturian and I could not answer Question nor Question and so were
motivated to reconsider the main tool used to obtain an upper bounds for the number
of cycles (technical Lemma [4.3.1). We came to the conclusion that even if this tool

is not very precise in estimating number of cycles in a graph, it is a very precise



tool in estimating the number of cycles in a multigraph. We were able to prove
(Theorem here) that for a multigraph G that has the maximum number of

cycles among all of the multigraphs with n > 2 vertices and m > 3 edges and for

s= ) a=t -
S50 (s + 1)) < O(G) < SAG)(s s + Dot i T > 3
27 a 4 T oon—17"
VB < OG) < SAG)- (VB it 28

Also, Tsaturian and I |9] were able to prove (Theorems 4.2.3] [4.2.4] |4.7.2| here)

that if G is a graph (or a multigraph) with m edges and the maximum number of
cycles, then the maximal degree of G is at most eleven and the minimal degree of G
is at least three.

After receiving the email from Alex Scott [41], T was trying to answer Ques-
tion affirmatively without using the Regularity Lemma [46]. Lemma
proved to be a useful tool in estimating the number of cycles in a graph, so I used it
to approach Question[1.1.3] Recall, that 7'(n,r) is a Turdn graph — complete r-partite
graph on n vertices with sizes of partite sets differing by at most one, and ¢(n,r) is
the number of edges in T'(n,r). 1 was able to prove (Theorem here) that for
n large enough, any K, -free graph G with n vertices and m < t(n,r) — 2r*nlogn
edges has fewer cycles than T'(n,r).

Also, I proved (Theorems [5.2.2] here and [8]) estimates on the number of



cycles in the Turén graph T'(n,r), namely that there exists a constant ¢ such that

s (M) e < (—”) (L2

Finally, I want to note that it is possible to estimate the number of cycles in a

graph G by using an adjacency matrix of G. If A is a square matrix then the trace
of A is defined to be the sum of the diagonal entries of A and is denoted by tr(A).
Perepechko and Voropaev [37] proved that if A is an adjacency matrix of a graph
G, and for every subset S of [n], Ag is the submatrix of a matrix A with the set S
of rows and columns deleted and for any 3 < k < n, ¢, is the number of cycles of
length £ in G, then

k .
Cr = %Z(—l)k_i (g:;) Z tr(Alg).

|S|=n—i

Hence, the following formula for the number of cycles in GG holds:

cE)=3 5 <—1>’f-i(§j;) S tn(al).

|S|=n—i

I believe that this formula might be used to estimate the number of cycles in a
K,-free graph, or in a graph with m edges, but I was not able to use it for a question

of maximizing the number of cycles.

1.2 Structure of the thesis

Chapter [2| contains basic notation and Chapters [3] contain original research.

The main problem considered in this thesis is the problem of estimating the number



of cycles in graphs with different restrictions.

In Chapter [3, the question of determining the maximum number of cycles in a
triangle-free graph on n vertices is considered. All of the results in Chapter [3] are
present in the paper of Arman, Gunderson, Tsaturian [10]. The main result of
Chapter [3| Theorem [3.4.1], establishes the existence of ng € Z* such that for any
n > ng, the only triangle-free graph on n vertices with the largest number of cycles
is Kn/2),[n/2]-

In Chapter [d] the question of determining the maximum number of cycles in a
graph with a given number of edges is considered. Most of the results presented
in Chapter || are also present in the paper of Arman and Tsaturian [9]. Some of
other results in Chapter |4 were obtained individually (as noted). The main result of

Chapter (4] states that for m large enough,
1.37™ < C(m) < 1.443™,

In Chapter [, the question of determining the maximum number of cycles in an
H-free graph G on n vertices is considered. All of the results in Chapter 5| are original
individual research. In Section [5.2] the question of estimating the number of cycles
in a Turdn graph is considered. The main result of Section [5.2| is Theorem [5.2.6),

which states that for n large enough

C(T(n,r)) > grgc_%+1 (n(r — 1))71'

re

In Section [5.3| an estimate on the number of cycles in a K,-free graph is given and



the main result of Section [5.3|is Theorem [5.3.2] which states that for n large enough,

any K, i-free graph G with n vertices and m < t(n,r) — 2rinlnn edges,

C(G) < C(T(n,r)).



Chapter 2

Basic notation and definitions

2.1 Basic Notation

In this thesis notation mostly follows Bollobds’ book [13|. For k € ZT, let [k] =
{i € Z;1 < i <k}, and for a set S, denote [S]* = {T' C S : |T| = k}. For a set V,
let [V]? = {{z,y} : x,y € V,z # y} be the collection of all unordered pairs of the
elements of V. A graph G is an ordered pair (V| E), where V # () and F C [V]%
Elements of V' are called vertices and elements of E are called edges. An edge
{z,y} € E(G) can be denoted by xy. The neighbourhood of a vertex v € V(G) is
Ng(z) ={y € V(G) : xzy € E(G)}, and the degree of a vertex z is deg,(x) = |N(z)|.
When it is clear what G is, the subscript G can be deleted, writing simply N(x)
and deg(z). If Y C V(G), the subgraph of G induced by Y is denoted by G[Y].

If Y € V(G), the subgraph of G induced by V(G)\Y is denoted by G\Y. Denote



the average degree of a graph G by d(G), the maximum degree by A(G), and the
minimum degree by (G). The complete graph on n vertices is denoted by K, (where
E=[V].

A graph G = (V, E) is called bipartite if and only if there is a partition V' = AUB
so that £ C {{z,y} : v € A,y € B}; it E = {{z,y} : v € A,y € B}, then G is
called the complete bipartite graph on partite sets A and B, denoted by G' = K4, p/-
The balanced complete bipartite graph on n vertices is K|, /2).rn/21 (this graph is also
the Turan graph 7'(n,2), see below). A cycle on m vertices is denoted by C,,. The
complement of a graph G is denoted by G.

For n,r € Z* define the Turdn graph T'(n,r) to be the graph with n vertices,
such that V(T'(n,r)) can be partitioned into r sets Vi, V5, ..., V, in a way such that

for any ¢ # j, ||Vi| — |V;]| <1 and so that edge set

E(T(n,r)={{z,y}:xeV,, yeV,, i#j}

Define t(n,r) = |E(T(n,r))| and let £ =n mod r, then

Hnr) = o <1_1> =0

T 2r

For any graph G let C'(G) be the number of undirected cycles in G.

Also, the common notations o(n),(n) are used: a function f(n) = o(n) if and

(n)

only if lim,, fT = 0; f(n) = Q(n) if and only if lim sup,,_, |@| > 0.
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2.2 Stirling approximation and relative inequali-
ties

The number e is the base of the natural logarithm. Stirling’s approximation

formula says that as n — oo,

nl = (1+ o(1)vV2mn <g)" (2.1)

In 1955, Robbins [40] proved the following approximation for factorials, valid for all
n > 1:

1 n\" 1 n\”
et/ 27n - (—) <n! <emn\2mn - (—) .
e

e

The following consequence of Robbins’ approximation is used (valid for all n > 2):

2mn <%)n <nl<e-vn (g)n (2.2)



Chapter 3

Counting cycles in triangle-free

graphs

3.1 Motivating question

All graphs in this chapter are simple and undirected. All of the results presented
in this chapter are taken from the paper of Arman, Gunderson and Tsaturian [10].
The research in this chapter was motivated by a paper of Durocher, Gunderson, Li
and Skala [20], where the maximum number of cycles in a triangle-free graph was

considered. Durocher, Gunderson, Li and Skala [20] posed the following conjecture:

Conjecture 3.1.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For every n > 4, the
balanced complete bipartite graph Kiy, o1, n/2) contains more cycles than any other

n-vertex triangle-free graph.

11
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The authors of |20] confirmed Conjecture when 4 < n < 13, and made a

progress toward this conjecture in general.

Conjecture holds true for n > 141 (see Theorems [3.4.1| and |3.4.2| below).

Along the way some other results are proved that are of independent interest — e.g.
estimates for the number of cycles in K, /27, |n/2) (Theorem and estimates on
the number of hamiltonian cycles in a triangle-free graphs (Lemma .

Even though Conjecture |3.1.1| arose from a very specific problem in computing
(see [15]), it can be considered significant in two areas of graph theory: counting
cycles in graphs, and the structure of triangle-free graphs. In recent decades, bounds
have been proved for the maximum number of cycles in various classes of graphs.

Some of these classes include
e complete graphs [27],
e planar graphs [4,5,/16],
e outerplaner graphs and series-parallel graphs [19],
e graphs with large maximum degree without a specified odd cycle [11],
e graphs with specified minimum degree [49|,

e graphs with a specified cyclomatic number or number of edges [2,21],24}31]

(see also [33, Ch4, Ch10]),

e cubic graphs [3,/17],
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e graphs with fixed girth [36],

e k-connected graphs [32],

e hamiltonian graphs [38]42,49],

e hamiltonian graphs with a fixed number of edges |26],
e 2-factors of the de Bruijn graph [22],

e graphs with a cut-vertex [49)],

e complements of trees [29,39,/51],

e random graphs [47].

In some cases, ( e.g., [11,38]) the associated extremal graphs were found.

By Mantel’s theorem [34], among graphs on n vertices, the triangle-free graph
with the most number of edges is the balanced complete bipartite graph Ky, 21 n/2)-
Since K7y 21, |n/2) is the triangle-free graph on n vertices with the most number of
edges Conjecture might seem reasonable, even though KT, 21 |n/2) contains no

odd cycles.
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3.2 Preliminaries and estimate on the number of
cycles in T'(n,2)

The following shows that among all bipartite graphs, the balanced one has the

most cycles.

Lemma 3.2.1 (Durocher-Gunderson-Li-Skala, 2015 [20]). For n > 4, among all
bipartite graphs on n vertices, Ky 21, \n/2) has the greatest number of cycles; that is,

Knj21,1n/2) 18 the unique cycle-mazximal bipartite graph on n vertices.

So, to settle Conjecture [3.1.1] it is then sufficient to prove that a cycle-maximal

triangle-free graph is bipartite. To this end, the following result might be essential:

Theorem 3.2.2 (Andrasfai, 1964 [6]). Any triangle-free graph G on n vertices with

5(G) > 2n/5 is bipartite.

See also [7] for an English-language proof of Theorem and related results.

Theorem is sharp because of Cj (or a blow-up of Cj).

Lemma 3.2.3 (Durocher-Gunderson-Li-Skala, 2015 [20]). For n > 4, the number of

cycles in the balanced complete bipartite graph is

[n/2]
- [n/2)! [n/2]!
C(K o) = ) 2k([n/2] — B)([n/2] — k)"

k=2

(3.1)

Two modified Bessel functions (see, e.g., [1]) are used:

ZE2k

Io(z) = kzg 2%(2.!)2; (3.2)
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o 2k+1

Ii(z) = ;m (3.3)

In particular, when x = 2 is used in either modified Bessel function, useful approxi-

mations are obtained:

=1
2.27958 < > e = 1,(2) < 2.279586; (3.4)

=0 ’
1.5906 <y —— — = [(2) < 1.59064. 35
I I e 35)

The following form for the number of cycles in K|, /2 1n/2] gives a way to estimate

the right hand side of (3.1)) in Lemma[3.2.3}
Theorem 3.2.4 (Arman-Gunderson-Tsaturian, 2016 |10]). For n > 12,

M . Iy(2) if n is even

21n/2) (3.6)

C(Kns2),mm/21) =
L(2) ifnis odd

n Iy(2) ifnis even
n 0
> (—) : (3.7)
2
‘ L,(2) if n is odd,

and as n — 00,

L(2)m (£)" if n is even
C(Kn/2pfn/21) = (1 +0(1)) (3.8)
L(2)m (&) if nis odd.
Proof: Using (2.2)), the proof that (3.7) follows from (3.6) is elementary (by using

Stirling’s approximation), and so is omitted.



By Lemma |3.2.3] write

Ln/2]
(/2] [n/2]!
CWtormora) = 2 G{Tafa] = [/ 2T =57

16

[n/2]
_ /2 oy 3 /2 59
~2[n/2] k(|n/2] — K)!([n/2] — k) '
Case 1 (n even): Suppose that for £ > 2, n = 2/, and set
¢ -2
Z Z — Z Z'
k=2 =
Then equation becomes
[n/2]! [n/2]!
K = 1
C(Knya),mm/21) 22 (3.10)
Claim: For ¢ >4, agyq < ag. (This claim is needed later only for ¢ > 6.)
Proof of Claim:
-2
14 (+1 1 (41
e e = ; (f—z’ - £+1—z') @2 20 —1))?
B § i 41
(L= =92 2((0 - 1))
B § i Lol e
—(C+1=a =@ e—1) 2((¢—1)!)?
- 1 B (+1
e—1) 2((¢—1)")32
2((0 =12 — (L4 1)6(0—1)
2((6—=1)h2ee —1)
>0 (for ¢ > 4),

finishing the proof of the claim.
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Since the sequence {a,} is non-increasing and bounded below (by 0, for example),

limy_, o, ay exists. To find this limit, first apply partial fractions:

T2 é)(*)? B #* =
im0 \C T U im0 \&* im0 \E T U
-2 2
Put b, = ; )2 and ¢, = zz = zl)(z')Q Then

L
Il
—~
~
|
S
SN—
—~
~.
=
[\

s
Il
=)

I
(]
—
[

|
N Bl
—
.
N

no

+
—

[

|
SRS
~—
—

.
N

no

=0 =4
_ 3 +H 1
T =3 = (= DI =)l
02
3 1
< 3y
=3 =il —1)il
-2
3 1
<
= z—3+;(%—4>u
-2
3 1 1 .
< m+z 2 a (since ¢ > 4)
< 3 +e
(-3 U

where the last line is based on e =) 7 %
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Therefore, limy_,,, ¢, = 0, and so

lim a, = lim (by + ¢)
{—00 {—00

- b
AL
= 1y(2) (by (3-4))-

Since ay is non-increasing for ¢ > 6, for n > 12,

[n/2]! [n/2]!

o i)

C(K\|nja),tn/2)) 2

which proves the even case of (3.6). By (3.4)), as n — oo,

/20t /21!

C(K|n/2),n/21) = (1 +0(1)) 2|n/2|

(2),
and by Stirling’s approximation ({2.1]), the proof of the even case of (3.8) is complete.

Case 2 (n odd): Suppose that for £ > 6, n = 2¢ + 1. The proof follows the even

case, and so is only outlined. Put

/—

V]

< ¢ B ¢
af_;k(f—k)!(zﬂ_k)!_, (C—d)il(i + 1)

(2

I
o

Claim: For £ > 4, ayyq1 < ay.



Proof of claim: Letting ¢ > 4,

—92 .
1 (+1
Ay — Gpy1 ;E—l—l—l g_i>.i!(i+1)!_2(€—1)w!
-2 ; 1 1 (+1

( (0 — 1)l — (L+1)
2(0 — 1)If!

>0

i Y

finishing the proof of the claim.

Therefore, lim,_, ., a, exists. To find this limit, write
-2 -2

1 1
“= Z < il(i+1)! Tl i

i

I\
)

-2 =2

Letting b, = Z m and ¢, =
— il !

1
bserve that
2; (€ —a)il(i + 1y Oerve e

1=

—

[\

0—2

3 e

< -
(E—zz'z—i—l +; —zz'z—i—l) €—3+ ’

14

Il
=)

and so hm cy = 0. Thus,
{—00

[e.9] o0

> z—l—l
: ~ lim by — _
ZIH&W Zggo t- Zz' 2+1 Z (1+1)! Z

= =

L 1= =) G+ 2—1)f 20—

19



20
which, by (3.5)), is equal to I;(2). Then again
[n/2]! [n/2]!
e AL

2[n/2]
0@+

C(K\nj2),[n/21) = (2)

I,(2)

(£+1)-L(2) (by 2.1))

and as n — 00,

n

C(Knja) fnj21) = (1 +0(1))m (2_€>n - 11(2).

This completes the proof for odd n, and so the proof of the lemma. n

Lemma 3.2.5 (Arman-Gunderson-Tsaturian, 2016 |10]). Let H be a triangle-free

graph on 6 vertices with x,y € V(H). Then there are at most 9 different x—y paths.

Proof: Consider two cases.
Case 1: H contains no copy of Cs. Then H contains no odd cycle, and so is

bipartite. Without loss of generality, add edges to H to make H a complete bipartite
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graph. There are only four different complete bipartite graphs on six vertices, namely
K, K5, Ko4, and K33. By inspection, in any of these, the maximum number of
paths between any two vertices is at most 9 (which is realized for Kj3).

Case 2: H contains a copy of C5. Suppose that z1, xo, x3, 4, x5, 1 forms a cycle
C, and that z¢ is the remaining vertex. Then xg is adjacent to at most two vertices
of C. If x4 is adjacent to fewer than two vertices of C'; add an extra edge or two so
that z¢ is adjacent to precisely two vertices of C'; without loss of generality, suppose
that xg is adjacent to z; and z3. Then the maximum number of paths between any

two vertices is 4 (for example, between xs and xg). O

3.3 Counting cycles through a vertex or an edge

Lemma 3.3.1 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists ng € Z* so
that for every even integer n > ng, if G' is a triangle-free graph on n wvertices, and

nnfl

r1x9 € E(Q), then the number of cycles containing the edge x1x5 is at most 1O7TW.

Proof: Let G be a triangle-free graph on n vertices, and let x1x5 € E(G). For each
k=4,...,n, let ¢; denote the number of cycles of length k that contain the edge
z122. The goal is to give an upper bound for ), c.

Let 2 <i < "7_4. An upper bound on ¢y; + ¢9;41 is first calculated; to do so, count
all possible cycles of the form w1, xs,..., 29 Or Ty, T9,...,T941. For each j > 1,

there are at most d; = |N(z;)\{z1,...,2;-1}| ways to choose an x;;;. Note that
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N(z;) N N(xj41) = 0, since otherwise a triangle is formed with x; and ;4. Also,
[(N(z)\{21, -2 ) U (N (i) {2, D < VG, -z} = n =
Therefore,
dj + djpa < [N(zp)\a1, -z b+ IN (250 \ {21, - 5]
= [(N(@)\zr, w0 ) U N @)\, 2|
<n-— ja

and thus

s < "] [ (3.11)

Using (3.11]), the number of ways to choose vertices 3, x4, ..., xy; so that zy, zo,

T3, Ty, ..., Tz form a path is at most

s < (52 (15252 o

If there is an edge x9;21 € E(G), there is one cycle xy,xs, ..., xg; of length 24,

and no cycles of the form x1,x,,..., 29,11 because otherwise, x1,To;, To;11 form a
triangle. So, in total, there is exactly one cycle that contains the path zq,xs, ..., xo;
and has length 2¢ or 2¢ + 1. If there is no edge x9;x1, there is no cycle xq, ..., xy;
and at most n — 2¢ cycles of the form zq, ..., xo;x9;11. In any case, there are at most
n — 2i cycles of length 2i or 2¢ 4+ 1 containing the path zq, ..., xo;.

By these observations and inequality (3.12)),

i—1
9
Cait o < (n—20) [ | (" j) (3.13)

Jj=1
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To evaluate ) ,_, ¢k, separate the sum into two parts:

n— (n—6)/2
ch = Z (coi + C2i41)
k=4 i=2
(n—6)/2 1 gin?
<y (m—mH( ' )) (by E13)
i=2 j=1
(n=6)/2 n2yp\ 2
— Z (n — 2i) (((“))'>
=2 2

n—2 2
> >|> (2- (1.591) — 3) (by (3.3))

<0.19(<";2>!)2. (3.14)

k=n—4
n—> nT_G n— 2] 2
d; < ( )
el

ways to choose a path x1,z9,...,2, 4, and by Lemma [3.2.5 there are at most 9

paths that connect z,,_4 and z;7 in the graph G\{x1,...,x,_5}; that is, there are at

n

most 9 ways to complete the path x1, s, ..., 2, 4 to a cycle. Therefore,
anﬁ
> a=oI (
j=1

by n—22j)2:9.((7g?—!2))2!)2:§<<n;2)!>2' .

Adding equations (3.14)) and (3.15)),

kzn;ck <0.19 ((”T_Z)!)2+% ((R;Q)!)2:2'44(<n;2>!)2~ .16)
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By Stirling’s approximation, as n — oo,

2.44 ((” S 2) !)2 = (1 +0(1))2.44 ("2_ 2>n_2 m(n—2)
e (57)
i

=1+ 0(1))2.447r

nfl

(2e)"

n—1

= (14 0(1))2.447 = 4¢? -

= (1 0(1)9.T67 5

n—1

(2e)"

< 107 (for n suff. large)

completing the proof of the lemma. O]

By a closer inspection, Lemma holds for the value ng = 97.

Lemma 3.3.2 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists ng € Z* so
that for every odd integer n > ng, if G is a triangle-free graph on n vertices, and

1172 € E(G) with degg(x2) < 2n, then the number of cycles containing the edge

nn— 1

T1%2 18 at most 7. 817r(2 o

Proof: The proof is similar to that of Lemma [3.3.1] Let G be a triangle-free graph
on n vertices, and let 129 € E(G), where deg(zy) < %n For each k =4,...,n, let
¢, denote the number of cycles of length k£ that contain the edge zx-.

For3<i< 75 an upper bound on cg;_1 + ¢, is first calculated; to do so, count
all possible cycles of the form x1,xs,..., 291 Or X1,Ts,..., 2. As in Lemma [3.3.1}

for each j > 1, there are at most d; = |N(x;)\{z1,...,z;_1}| ways to choose an 1,
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and

d;dj g < V;JJ : [”;ﬂ _ (3.17)

Using 1’ and the fact that dy < %n, the number of ways to choose vertices

T3, X4, ..., To_1 SO that xq,x9, 23,24, ..., 29,1 form a path is at most
2i—2 2i—2 o 2
[[d=d]]d< =" (d2j1d2j12)
j=2 j=3 j=1
i—2 )
2 n—27—1 n—25—1
< Z
<l (=5 =)
J=1
2 =2 /n— 27 —1
== C— 1
5" ] ( 2 ) (3.18)
7=1

If x9;_121 € E(G), there is one cycle of length 2i — 1 and no cycles of length 2i;
if there is no such edge, there are no cycles of length 2 — 1 and at most n — 27 + 1

cycles of length 2i. By these observations and (3.18]),

—27—1
Coic1+ Coi < (n—2i+ 1) nH( J ) ) (3.19)

To evaluate Y ,_, ¢k, separate the sum into three parts:

ch—C4+ZCk+ Z Ci..
k=4 k=n—4

First,

ey < dyds < n-n=n? (3.20)
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Next,
n—>5 nTiﬁ
Cr = (c2i—1 + C2i)
k=5 i=3
n3s 2 2
2 T —2j—1
< [<n— TRER I ] (by B19))
i=3 j=1
ns 2 2
2 - —2j—1
_SHZ[W_%—’_D, (n 2‘] )]
=3 j=1
n—>5 2
> S (L5
n—>5
2 ((n—3) )2 2. 2j
=-n ! e
5 2 = )
n—>5
2 (<n—3>|>2 2. 2j 2 2.2
=gn : nz 2 2
5"\ 72 2. O @)
2 n—3 2
<zn(("52)) B1o-3) (by (33))
n—3 2
:0.076n<( 5 )‘) : (3.21)
To count Z ¢k, note that by (13.20)), there are at most
k=n—4
n—>5 (n—=7)/2

H d; =ds - H dajy1daj 2

i=2 j=1

ways to choose a path xi, 2o, ..

n—7
2 & (n—2j—1\°
< Z R —
<=

.y Tp_yg, and by Lemma [3.2.5] there are at most

9 ways to complete to a cycle (by paths that connect x,_4 and z;) in the graph

G\{z1,...,7,_5}. Therefore,
n—"7
" 2 & (n—2j—1\> 2 ((52))° 9 n—3\\’
kzzn_f’“— 5”]1;[1( 2 ) 5 (N2 10 (( 2 >>
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Adding (3.20)), (3.21), and (3.22)), as n — oo,
n ~3\\? 9 n—3\\>
<n210. =9, 2 !
ch_n +0076n<( 5 )) +10n(( 5 ))
k=4
9 n—3 ?
=n® +0.976n (|~ ! (3.23)

—n2 4 (1+ 0(1))0.976n(n — 3)7 <"2_e3>n3

— (14 o(1)0.976mn - <" — 3>H (2¢)°

(2e)" n
n" 11
=(1 1))0. . —(2e)?
(1+0(1))0.9767 2 63( e)
nn—l
=(1 1))7. :
(1+0(1))7.8087 2
nnfl
<7817 o) (for n suff. large),
completing the proof. O

By a closer inspection, Lemma holds for the value ng = 24729.

Lemma 3.3.3 (Arman-Gunderson-Tsaturian, 2016 |10]). Let H be a triangle-free

graph on k vertices. Then H has at most e? (;—e)k hamailtonian cycles.

Proof: Let x; be the first vertex of a hamiltonian cycle. For each ¢ > 1, there
are at most d; = |N(z;)\{z1,...,2;}| ways to choose a vertex z;;;. Note that
N(z;) N N(z;41) = 0 because if the intersection contains some vertex v, then v, z;,

and x; 1 form a triangle. Also,

IN(z)\{z1,. .., 2} UN(zip)\{z1, ..z | < |[VH)\{z1, ... 2} =k — i
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Therefore,

di + diy = [N(@)\{@1, ... 2} + [N (zi)\{z1, - @i }
= |N(z)\{z1,..., 2} UN(zir)\{x1, ..., Tis1}]

Sk/‘—l,

and thus d;d; ;1 < \_%J . (%W

When £k is odd, the number of hamiltonian cycles is at most

k—2j4+1| [k—2j+1
2 2
k—2j+1\°
2
k1Y, 2
2 ) )

e
v |
-

k—1 5t
Hdi = H daj_1dy; <
i=1 =1

I
<. ~ .
i off T
S/ ~ " =

(

and by (2.2), this number is at most

2

R A TGO Y S A AL S A%
6%_1 ek—3 k 2¢ (1_{_%)/? 2e
L k
< e? <—)
- 2 )

completing the proof for odd k.
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When £k is even, similarly obtain

k-1 2 2 : :
k—27+1 k—27+1
o (T o) = (T[S [
7j=1
2

i=1

k-1

T 2 k—2\ 52 +3
DT () () CE((A2)) <k (%) *
_j:1 2 2 2 2 ’ -2 6%

(k=21 (k=2\""/k\" 1 k"
e ) ) Ty

k—2

k
“(z)
2e

completing the proof for even k, and hence for the lemma. O

IN

3.4 Main theorems

In Theorem [3.4.1], Conjecture [3.1.1] is proved for sufficiently large n. Then in

Theorem [3.4.2] a lower bound on such n is given.

Theorem 3.4.1 (Arman-Gunderson-Tsaturian, 2016 [10]). There exists ng € Z* so
that for any n > ng, the triangle-free graph on n vertices with the largest number of

CZ/CZ@S 18 KLH/QJ’[TL/2".

Proof: Let G be a triangle-free graph on n vertices. It is first shown that if G
contains a vertex of small degree, then G has far fewer cycles than does K|, /2) n/21-
Let # € V(G), and assume that deg(z) < Zn. Cycles in G are counted according

to whether or not they contain x.
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First, the number of cycles not containing x are counted. Any cycle in G\ is a
hamiltonian cycle for some subgraph, and so the number of cycles in G' not containing

x is loosely bounded above by

Z (number of ham. cycles in G[Y]) (3.24)
YCV(O)\x

2 n—1 E\*
< 2= 3.
< Z < k; )e <26> (by Lemma [3.3.3)

(3.25)

Next, the number of cycles containing x are counted. Each cycle C' containing x
has exactly two edges (in C') incident with x, and so the number of cycles containing
T is

1
= Z (number of cycles containing xy). (3.26)
yeN(z)

By Lemma for even n, the expression ([3.26) is at most

n—1

1 2 n
—~—n-107rn—:27r(£> .
2 5 (2e)" 2e
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In this case, for n sufficiently large, the total number of cycles in G is at most

n\" 2e%tZ ;p\n Qe2et2 n\”" n\”"
2 (3) () =2 (30) =207 (3)
m 2e + n 2e T n 2e/ i 2e

However, by (3.6, the number of cycles in K|, /2| /2 is (for n even) at least

2.279587 (£)".

Let n be odd; then by Lemma [3.3.2 the expression ((3.26) is at most

n—1

1 2 n n\"
S Zn 781 — 1.562 (—) 2
5 5" 7.8 W(Qe)" 5627 5 (3.27)

Thus, for odd n sufficiently large, by (3.27) and (3.25) the total number of cycles

in GG is at most

n 2 2e+2 n n
1.5627 <3> 4+ (ﬁ> < 1.57x (;) .

2e n 2e e
By in Theorem , the number of cycles in K|, 2] [n/2] for n odd is at
least 1.59067 (2£)".
In both the even and odd case, if G contains a vertex of degree at most %n, then
G has far fewer cycles than does K|, 2 rn/2]-
So assume that 6(G) > 2n. Then by Theorem , G is bipartite. By Lemma

3.2.1], the number of cycles in G is maximized by K\, 2| [n/2]- O

Theorem 3.4.2 (Arman-Gunderson-Tsaturian, 2016 [10]). The statement of Theo-

rem with ng = 141 s true.

Proof: To show that ng = 141 works, further estimations on C(K|, 2| 1n/2]) are

needed for n > 141. Both when n is even and when n is odd, (3.10)) holds (but the
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expression for a, changes). Since each (one for odd, one for even) sequence of a,s are

non-increasing for n > 140, by (3.10)),

[n/2]! [n/2]!
C(K ns2),fn/21) < a2

\
(

[n/2]! [n/2]!
= Tl )

\

a7y for n even

arzo for n odd

2.302786 for n even
(3.28)

1.60067 for n odd.

(The values of azg and ay; were calculated by computer.) With these estimates in

hand, now Theorem [3.4.1|is proved with ng = 141. Let G be a triangle-free graph on

n > 141 vertices. First, it is proved that C'(G) < 6-C(K|,/2),n/21) for G having odd

number of vertices. This result is then used to prove the statement of Theorem [3.4.2

for even number of vertices in G. Finally, Theorem [3.4.2] is verified for odd number

of vertices in G.

Without loss of generality, assume that there is a vertex of degree at most %n

(since otherwise, the theorem is proved by Theorem and Lemma (3.2.1)). In the

following calculations, bounds given in (2.2)) and Theorem are used freely.

Case 1: Let n > 141 be odd. By (3.23)) from the proof of Lemma [3.3.2) the

number of cycles passing through an edge zy in G is at most n? + 0.976n (("7_3) !)2.
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Then the number of cycles in G is bounded by

1 2 n—3 2 2e2¢t2 sp\n
< - Zn.|n2+o. 2, (-)
C(G)_2 s |n +0976n(< i >>]+ - e
2
nd k) ﬂ[n2+0.976n n=3)) ] n—1
e (2297 (n— 1)
n—1 nT—lgnTJrll I,(2)

1,(2) - — -
+1,(2) W(Qe) (n.jl(g)ﬂ)

_ 8 n2 2626+2 1
< C(Kinj2),mny21) - (10 10 = (0.976) (n2 — 1) + — > ) A6

< C(Kinja) fnj2)) - 6.

Case 2: Let n be even and n > 142. Then by (3.16)), the proof of Theorem [3.4.1}

and by the result in Case 1,

n—2

(@) < % - §n~2.44 << )!>2+6-C(KWHW)

2244 (("32))°  n/2)! [n/2)! Io(2)

Rl 1) 2(n/2]

6 Ot [234])
C(Kin/2)fn/2))

6. 1.60067 . L= 21!

N 2[5 ]
< C(KL”/2J7M/21) I1o(2) + Io(2) Ln/;LJ!;ZJ/Q]! (by (3.28))

+ C(Kn/2),[n/21)

4
5

44 6-1.60067 2>

- 2.
:C(Ktn/%[n/ﬂ)( I(2) + 1y(2) n

< C(KLn/QJ”'n/2'|> (for n > 142).
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Returning to the case when n is odd, using equation (3.28]) again,

~10 4 8 ) 2302786 Ll
1071 4 3(0.976) (22) 2.

n2— 2LEJ
C(G) < C(K | nja).fn)2]) - * /
[n/20 21 L) 1(2) - R
o | 10719 + £(0.976) <#) 2.302786
n n ’ *
= ln/2],Tn/2] L(2) L(2)-(n+1)
< C(Kjnya) fn/21) - 09947
< C(Kn/2) fn/21)-
This completes the proof of the theorem for n > 141. o

3.5 Concluding remarks

Another question related to Conjecture that might be interesting is:

Question 3.5.1 (Arman-Gunderson-Tsaturian, 2016 [10]). What is the mazimum

number of cycles in a graph on n vertices with girth at least g?

The case g = 3 is trivial and Theorem addresses this question for g = 4;
however, there seems to be little known for g > 5.

A type of stability result also follows from the techniques given in this chapter.
Theorem [3.4.1] shows that among all triangle-free graphs with n vertices and m =

{%J edges, K[ﬂ 2] has the most number of cycles. Let £ = o(n), and set m =
2 [7L2

n2

{TJ — (. If G has n vertices and m edges, and has the most number of cycles among
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all triangle-free n-vertex graphs with m edges, then the same argument as in the
proof of Theorem [3.4.1| shows that G is bipartite. By the maximality of the number
of cycles, one possibly can show that G is a subgraph of K M=,z

For 14 < n < 140, Conjecture [3.1.1] remains open. With a bit more care, it ap-
pears that with the techniques in this chapter, one might be able to prove Conjecture
for the even n to n > 100 or so, but the techniques used here do not seem to
leave much room for the odd n. Skala [45] has suggested that Lemma might be

proved for graphs with slightly more vertices, and such an improvement might yield

modest improvements for the bound on n for which Theorem holds.



Chapter 4

Counting cycles in a graph with

given number of edges

4.1 Overview of the results

Counting the number of cycles in a graph is a problem that was studied for dif-
ferent classes of the graphs: graphs with given cyclomatic number, planar graphs,
3-regular and 4-regular graphs, and many others (see the list in Section . How-
ever, only a few general bounds (that are only based on number of vertices and
edges, or only number of edges) for a number of cycles in a graph are known. In this
chapter bounds on the number of cycles in a graph as a function of number of edges,

or vertices and edges, are presented.

As in Chapter 3 let C'(G) denote the number of cycles in a graph G. In 1897,

36
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Ahrens |2| proved that for a graph G with n vertices, m edges and k components,
m—n+k<C(G)<2m 1. (4.1)

The lower bound in (4.1]) is tight; for example, it is achieved by any disjoint union
of cycles and trees. In 1976, the tightness of the upper bound in (4.1)) was shown by
Mateti and Deo [35] and the only graphs for which the upper bound is tight are K,
K4, K33 and K4 —e. In 2008, Aldred and Thomassen [4] improved the upper bound
in by showing that for a connected graph G,

15

C(@) < 1—62’“—”“. (4.2)

In 1981, Entringer and Slater [21] considered C(G) for the class of connected
graphs with a fixed cyclomatic number r = m — n 4+ 1. It follows from the results
of [21] that there is a 3-regular connected graph G for which C(G) > 2"~'. Shi
[42], in 1994, presented for all » > 1 an example of a hamiltonian graph G with
CG)=2"""4+(r—-1)(r—2)+1.

In 2009, Kirédly [30] investigated C(G) for several classes of graphs: the union
and the sum of two trees (the sum of two trees is the multigraph that is formed by
the disjoint union of edges of two trees), 3-regular and 4-regular graphs, and graphs
with the average degree 4. Kiraly also conjectured that there is a constant ¢, such

that for any graph G that has m edges,

C(G) < e(1.4)™.
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Aldred and Thomassen [4] also studied C(G) for the class of planar graphs. Ar-
man, Gunderson and Tsaturian [10] studied C'(G) for the class of triangle-free graphs
on n vertices (our findings are also presented in Chapter . In 2006, Teunter and
van der Poort [48] considered the question of counting the number of hamiltonian
cycles in a graph with a given number of vertices and edges by using techniques
similar to those used in Section E.3]

In this chapter, C'(G) is investigated for two classes of graphs and multigraphs:
those with n vertices and m edges, and those with m edges.

Theorem below states that if a graph G has n vertices and m edges, then
C(G) < o (4.3)

For graphs with sufficiently large number of edges and average degree at least
4.25 the bound in (4.3)) is better than in (4.2)).

In Section (see Theorem 4.6.1)) it is shown that for n large enough and d =

d

d(n), such that lim,,_,o d(n) = oo, there exists a graph G with n vertices and m = §n

edges such that

C(G) > (14 o(1))" (g) = (14 o(1))" (—>

For m € Z*, let C(m) be the maximum number of cycles in a graph with m

edges. In Corollary it is shown that for all m > 1

C(m) < 8.25(V3)™ ~ 8.25(1.44229..)™,
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which, for m > 4056, implies

C(m) < 1.443™.

In Section it is shown that the extremal graphs for C(m) have bounded
degrees. Namely, it is shown that if G is a graph with m edges with C(G) = C(m),
then A(G) < 11 (Theorem [4.2.3) and §(G) > 3 (Theorem [1.2.4)).

In Section [4.5] for m sufficiently large, a graph G with m edges is constructed,

such that

C(G) > (2+V8)5 1 > 1.37™ (4.4)
Corollary and inequality (4.4]) imply that for m large enough,
1.37™ < C(m) < 1.443™. (4.5)

In Section [4.7], the problems of maximizing the number of cycles in a multigraph
with a given number of edges or with a given number of vertices and edges are
considered. It is shown (Theorem 4.7.3)) that if G is a multigraph that has the most

cycles among all multigraphs with m multi-edges, then

%(\‘”’/5)’” < C(G) < 8.25(V/3)™.



40

4.2 Maximal and minimal degree of graphs with
C(m) cycles

Recall that, for m € Z*, C(m) is the maximum number of cycles in a graph with
m edges. The main result of this section is Theorem that states that maximum
degree in a graph with m edges that has C'(m) cycles is at most eleven.

The proof of Theorem relies on the following two technical lemmas.

Lemma 4.2.1 (Arman-Tsaturian, 2017 [9]). Let k > 6 be a positive integer. For
i,j € k] such that i # j, let w;; be non-negative real numbers, such that w; ; = w,,,

and let S =3 ;i< wij. Then there exists a 6-element set D C [k] such that

6(2k —7)
> (122
¥ iz (125G
1<i<j<k
i¢D,j¢D

Proof. The proof relies on an averaging argument. For each i € [k] set w; =

Zje[k],#i Wy ;- Note that

1€[k]
Let X be a collection of all 6-element subsets of [k]. For D € X let

1<i<j<k
i¢D,j¢D
=S=> | D wiy |+ D wy
€D\ jelk], j#i i,j€D, i<j

:S_sz+ Z Wi, 5-

€D 1,J€D, i<j
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Let S(D) be the average of S(D) over all D € X. Then

__ Dpex (S — D iep Wi+ Zi,jeD,Kj wi,j)
S<D) = (k)
6

Zz‘e[kz} ZDeX,ieD W Zl§i<j§k ZDEX:i,jED Wi,

-5 —
(6) (6)
Zie[k} (kgl)wi Zl§i<j§k (kf)wivj
- S -
G )
_o ()2 ()

(6)
6(2k — 7)
— (122U g
(S
Therefore, there exists D € X, such that S(D) > S(D), i.e.,
6(2k — 7)
> S Sl S
Y (=55 7)s

1<i<j<k
i¢ D, j¢D

(c)

]

Lemma 4.2.2 (Arman-Tsaturian, 2017 [9]). Let k > 2 be a positive integer. For
i,j € [k] such that i # j, let w;; be non-negative real numbers, such that w; ; = w,,,
and let S = Zl§i<j§k: w; ;. Then there exists a partition Ay U Ay U A3 U Ay = [k],

such that

S e ()

1<l<m<4 ;¢ 4
€ Am
Proof. For all € € [4] let a, = [EH=L] (note that a; +as +as+as = k). Let X be the

collection of all ordered quadruples (A, As, A3, Ay), such that 7 = A;UA; U A3 U Ay

is a partition of [k] and for all ¢ € [4], |As| = a,. Note that
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k!

CL1!CL2!CL3!CL4!.

X =

For p = (A, As, A3, Ay) € X define

Sp)= Y. D> wy

1<l<m<4 ic Ay

J€Am

:S—Z Z W ;.

lef4]

Let S(p) be the average of S(p) over all possible choices of p € X.

W = ZpeX(S - 216[4] Zi,jeAe, i<j wi,j)

| X]
=S — Z16[4] ZpEX Zi,jeAl, i<j Wi
| X]
=9 — 216[4] ZlSKjSk ZpGX:i,jeA[ wj

X

Note that for any choice of ¢ € [4] and any choice of 4, j, such that 1 <i < j <k,

there are exactly

(k‘ - 2)!(@@)(@@ - 1)
CL1!CL2!CL3!(Z4!

quadruples p € X, such that 7,5 € Ay. Then,
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ag—1)
)/ 1X
Z Z a1|a2|a3|a4| w’j)/l ’

le[4] 1<i<j<k
(lﬂ — 2)(&@) (ag — 1) 1
-5 .9).
<l€z[4;] a1!a2!a3!a4! ) ‘Xl

-9 — (Z (k — 2)!(6@)(&( - 1)) LS. ailaslaslay!

= a1!a2!a3!a4! k!
[k—i—l—lJ (Lk—i—l—lJ ~1)
_Q_ 1 4 )
=5 <Z E(k—1) )5
le[4]
M, if k=0 mod 4

4 Y

=S hm oy ) R itk = £1 mod 4

(k—2)” if k=2 mod 4

4 Y

\

Hence, there exists a p = (Ay, Ag, A3, Ay) € X, such that S(p) > S(p). There-

fore, the partition A; U Ay U A3 U Ay satisfies the statement of Lemma [£.2.2] O

Theorem 4.2.3 (Arman-Tsaturian, 2017" [9]). If G is a graph with m edges such

that C'(G) = C(m), then A(G) < 11.

Proof. Let m be a positive integer and G be a graph with m edges. To prove
Theorem [4.2.3] it is sufficient to prove that if A(G) > 12, then there is a graph H

with m edges and with C'(H) > C(G).
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Let A(G) > 12 and u be a vertex of maximal degree in G. Let N(u) =
{uy,usg,...,u} be the neighbourhood of u (note that k > 12). For i,j € [k], i # 7,
define w; ; to be the number of paths from vertex u; to vertex u; in the graph G'\u.
Then the number of cycles in G that pass through vertex u is S = Zl§i<j§k w; ;. By
Lemma [4.2.1] there is a 6-element set D = {iy, 4, ..., i}, such that

> wy > (1 - 6}{((2:—__17» S. (4.6)
1<i<j<k
1¢D,j¢D

Suppose, upon re-indexing, that D = {k — 5,k —4,...,k — 1,k}. Lemma m

applied to the collection of real numbers w; ; with 1 <7 < j < k —6 gives a partition

1sz<zr:ng4 ig{ i = (4:(3/ik—_6()5(>12¢ :i)) (1 B %) S. (4.7)

JjE€Am

For i € [4], let U; = {u; : j € A;}. Construct a graph H by deleting u and all of
the edges incident to u, adding four new vertices vy, vs , v3, vy, then forall 1 <7 <4

adding edges from v; to each of the vertices of U;, and for all 1 <4 < 57 < 4 adding

edges v;v; (see Figure [d.1). Then |E(H)| = |E(G)].
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G: D H: D
A U1 U4 A
Ui u Uy Uy v 0s Uy
U2 U3 U2 U3

Figure 4.1: Constructing the graph H.

To count the number of cycles in H, note the following:

e Every cycle in GG that does not pass through the vertex w is still a cycle in H.

There are C(G) — S such cycles.

e Let C be a cycle in G that for some 1 < i < j < k—6 contains a path w;uu;. If
for some ¢ € [4] u; and u; are in the same class Uy, then C' corresponds to the
cycle in H that uses the path u;veu; instead of u;uu;. In the case if for some
1<l<m<4,u; € Uyand u; € U, the cycle C corresponds to the cycle that

uses the path w;vpv,,u; instead of wuu;. By (4.6), there are at least

O =k

cycles in G that use a path w;uu; with u;, u; € N(u)\D.

e Every cycle in G that for some ¢ € A, and j € A, with ¢ # m contains a path

w;uu; gives rise to additional 4 cycles in H (except the one containing w;v,v,,u;).
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For example, if £ = 1, m = 2 the four new cycles contain paths u,v,v3v2u;,
UV V40215, U;V1V3V4V2U;5 and u;v1v4v3v2u; instead of the path u;uu;. According
to , there are at least
( 3(k—6)*—4 ) <1_ 6(2k—7)> g (3k2—36k+104) g
4k —6)(k—T7) k(k—1) Ak(k — 1)

cycles in G that for some ¢ € Ay and j € A, with ¢ # m pass through a path

U U
e There are 7 new cycles in H spanned by the vertices vy, vo, v3, vy.

By all of the observations above, the number of cycles in H is

C(H) > C(G) - S+ (1 - %) S+ (% 4;(18115104) o

=C(G)+T7+S <3(k 2@% 12))

> C(G).
Therefore, H has more cycles than G. m

By inspection, for m = 7 the graphs that have the most cycles are K, plus an
edge and K, with one edge replaced by a path of length two. In the first case the
minimum degree is one and in the second case the minimum degree is two.

Tsaturian and [ stated the following theorem in [9], but we didn’t present the

proof in the paper. Here the proof is added for completeness.

Theorem 4.2.4 (Arman-Tsaturian, 2017% |9]). If m > 7 and C(G) = C(m), then

3(G) > 3.
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Proof. Assume the contrary, namely that there exists a graph G with m > 7 edges
and C(m) cycles, such that 6(G) < 2. Let m > 7 and let G be a graph having the
least number of vertices of degree two among all graphs having C'(m) cycles.

First, assume that G is connected (otherwise, identifying a pair of different ver-
tices from one component with a pair of different vertices from another component
increases the number of cycles in G.)

Also, assume that G does not contain a vertex of degree one. Indeed, if u is a
vertex of degree 1, and G\{u} is not a complete graph, then deleting the edge from
u and adding it to G\{u} increases the number of cycles. If G\{u} is a complete
graph, and vu € E(G), then the graph obtained from G by deleting two edges vy,
vvy and adding the edges uvy, uvy has more cycles than G.

Hence, assume that §(G) = 2 and let u be a vertex of degree 2 in G. Let u; and
ug be the neighbours of w in G. Assume that wyuy € E(G) (otherwise the graph H
that is obtained from a graph G by deleting the edge uu; and adding the edge uus
has the same number of cycles as G and the vertex u has degree 1).

There are four cases to consider:

Case 1: deg(u;) = 2 or deg(ug) = 2.

Without loss of generality assume that deg(u;) = 2. Since G is connected,
deg(ug) > 3. If G\{u, u, } is a complete graph, let vy, vy be two vertices of G\ {u, uy, us}.
Then the graph H obtained from G by deleting the edges uuy, ujus and adding the

edges uvy, uvy has at least 2 more cycles than G.
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In the case when G\{u, u;} is not a complete graph, let vy, v2 be two nonadjacent
vertices of G\{u,u;,us}. Then the graph H obtained from G by deleting the edges
uuy, ule, uius and adding the edges uvy, uvs, v1v9 has more cycles than G.

Case 2: deg(uy) = deg(ug) = 3 and there is a vertex us # u, such that ujug, usus €
E(G).

In this case, the only cycles in G that pass through at least one of the vertices u,
Uy Or Uy are cycles uuyusu, utuzuot and uUustzty.

Let vivy be an edge of G\{u,ui,us}, then the graph H obtained from G by
deleting the edges uuq, uusg, uius, usug and adding the edges uivy, uiv9, UV, UV

has at least four more cycles than G (see Figure .

G: H:
U2 (%] U2 U1
U us U « U3
Uy (%) Uy (%,

Figure 4.2: Case 2. Constructing the graph H.

Case 3: deg(uy) = deg(ug) = 3 and there exist two distinct vertices us and wuy
(different from u), such that ujug, usuy € E(G).

In this case, the only cycle in G that contains the path wjuus, but does not
contain the path uzujuusuy is the cycle ujuuguy.

Then the graph H obtained from G by deleting the edges uu, uu, and adding
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the edges ujuy and uous has more cycles than G (see Figure .

G: H:
U2 U9
Uy Uy
Uu U e
Uus us
uy uy

Figure 4.3: Case 3. Constructing the graph H.

Case 4: deg(uy) > 4 or deg(uz) > 4.

Assume that deg(u;) > 4 and let v; and vy be the other two neighbours of wu;
(different from wus and u). Consider the graph H obtained from G by deleting the
edge u1vy and adding the edge uvy. Every cycle in G that did not pass through edge
uq vy is still a cycle in H. Cycles in GG that contain an edge u;v, and do not contain
the vertex u correspond to the cycles in H that use the path ujuv, instead of an
edge ujvo. Every cycle in G through the path usuu,ve corresponds to the cycle in H
that uses the path usuwvs instead.

Therefore, the number of cycles in H is at least C(G) = C(m).

If there is at least one path P from vy to N(uj)\{u,us, v} that does not use
vertices {uy, us}, then uPujusu is a new cycle in H; hence H has more cycles than
G.

Assume that for all v € N(uy)\{u,us}, any path from v to N(uy)\{u,us,v}

in G omits both vertices u; and wug. Therefore, for any v € N(uj)\{u,us} any
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cycle that contains the edge ujv also contains the vertex us. By symmetry, for any
v € N(ug)\{u,u1}, any cycle that contains the edge usv also contains the vertex u;.
Also, assume that G has no cut vertices, (deletion of which makes G disconnected)
otherwise identifying two vertices from different components produces a graph with
more cycles.

If there is v € N(uy) A N(ug)\{u1,us}, assume that vu; € E(G), then vus € G
and any cycle containing the edge vu; is of length at least 4. There is no path from v
to N(up)\{u,us, v} that does not use the vertices {uy,us}, so there is no cycle that
contains the vertices u; and v, but does not contain the edge u;v. Then the graph
H obtained from G by contracting the edge u;v and adding an edge anywhere else
in a graph has more cycles than G.

If N(u1) AN (uz)\{u1,uz} = 0, then the condition that for any v € N (uq)\{u, us},
there is no path from v to N(u;) together with the observation that the deletion of
the vertex v does not disconnect the graph G yields that deg(v) = 2. Hence, G is
the graph obtained by gluing k£ > 3 triangles by an edge. In this case G has k + (g)
cycles. However, the graph H obtained from G by removing the common edge from
all triangles and adding it to different place in the graph has (g) +2(k—2)+3 cycles.

This finishes the last case and the proof of Theorem (4.2.4] n
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4.3 Counting Lemma

The main result of this section is Lemma which is the major tool used for
the upper bounds in this chapter and in Chapter [5

Multigraphs are defined as in Bollobas’s book [14]. Let G be a multigrpah, the
degree deg, (V) of a vertex v € V(G) is the number of edges incident to v. For two
vertices u,v € V(G), denote by E(u,v) the set of all edges between u and v. For a
vertex v € V(G), denote by N(v) the set of all vertices adjacent to v (by at least
one edge). A cycle of length £ > 2 in a multigraph G is an alternating sequence of
k distinct vertices and k distinct edges vy, e1,vs, €3, ..., €k, v1, where for each i € [k,
v; € V(G), e; € E(G) and any consecutive vertex and edge are incident. As in the
case of simple graphs, denote the number of cycles in a multigraph G by C(G). No

loop can be a part of a cycle, hence only multigraphs without loops are considered.

Lemma 4.3.1 (Arman-Tsaturian, 20171 [9]). Let G be a multigraph with n ver-
tices. For any ¢ € [n], and any vertices vy,...,v, € V(G), define F(vq,...,v) =
N(ve)\{v1, ..., ve1} and define f(vy, ... v) = max{dege(y,, . 0, ,3(Ve), 1}. Denote
the number of cycles in G that contain the path viejvs . .. ep_1vp by C(vieqvs . .. €4 10;)
(note that C(vy) is the number of cycles containing the vertex vy ). For brevity, write

Fy = F(uy,...,v), fo= flu,...,v), Cp = C(viey...e1vp). For a k € [n], let



52

vievaes . .. v be a path in G. If Fy, # 0, then

Cr < for max {fig1 - figa--- fi}-

k+1<t<n
V1€ F

vel_1

(the mazximum is taken over all paths vgyy...v;, such that vy ... VgegURsy ...V €~

tends vy ... vg)

Proof. Fixn > 2. Let GG be a multigraph on n vertices. The proof is by mathematical
induction on £ =n — k.
Base case. Let ¢ = 1. Let vie;...v,_1 be a path in GG; C),_1 is to be bounded.

The condition F,_; # () means that F,, 1 = {v,} and it remains to be proved

that C,,_1 < f,_1f.. Let s be the number of edges between v,_; and v;. Then
Crn1 < 8+ (fao1 — 8)fu. By definition, f, > 1; therefore s + (f,_1 — 8)fn <
Sfn+ (fuo1 — 8)fu = fa_1fn, which proves the base case.
Inductive step. Let i € [n — 1]. Assume that the statement of the lemma holds
for ¢ = i, and prove it for £ = ¢ + 1; i.e., let vie;...v,_;_1 be a path in G, and
Chn_i-1 =C(vi€1...€4_j_2V,_;_1) is to be bounded.

Let s be the number of edges between v,,_;,_; and v;. Then

Ch—iz1 = 5+ E C(vi€er ... Uni—1€n—i—1Un_;).

'Unfianfi
en—i—1€E(Vn—iUn—i—1)
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For all possible choices of v,,_; and e,,_;_1, according to inductive hypothesis,

)
frmimax iy cpen {Sfrmivr - fo), i Fug # 0
Un—i+1€Fn—;

C(vlel Ce en,i,l’un,i) <

vEF—1

fn—i7 if Fo_i= 0
\

S max {fn—zft}
n—i<t<n
Vn—i€Fp_i—1

vt€EF 1

Therefore,

Cnfifl <s+ (fnfl',l — S) . max {fnil e ft}
n—i<t<n
Un—i€Fn i1

ve€Fy_1

< fo—icie max {faioo- fi}
n—i<t<n
Un—i€Fp i1

vt€Ft 1

This proves that the statement of the lemma holds for £ = 7 + 1, and therefore

by induction, the statement holds for all ¢ € [n — 1]. O

4.4 Upper bound for number of cycles in graphs

or multigraphs

The main result of this section is Theorem where an upper bound for the
number of cycles in a graph (or a multigraph) with a fixed number of vertices and

edges is given.
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The proof of Theorem relies on the following lemma.

Lemma 4.4.1 (Arman-Tsaturian, 20171 [9]). Let G be a multigraph with n > 3

vertices and m edges, and let vy be a vertex in G of degree A(G).

If 2 >3, and [%J = s, -7 — s = «, then there are at most

_A(2G) (s'%(s +1)*)""" cycles in G that contain v.

If =5 < 3, then there are at most # - (V/3)™ cycles in G that contain v, .

Proof. Let G be a multigraph with n > 3 vertices and m edges, and let v; be a vertex
of degree A(G).
For any edge e = vyvy incident with vy, by Lemma [£.3.1], the number of cycles
that contain e is at most
for max {fs--- fi} < max {fo--- fi}.

3<t<n 2<t<n

v3€Fy vo €l

’Ute'thl ’UtEFt—l

Every cycle through v; contains two edges incident to v;; therefore the number
of cycles that contain v, is at most
A
— - max {fo--- fi}. (4.8)
2 o<i<n
v €M
UtGthl

Let v, ...v; be a collection of vertices that give the maximum in (4.8)) with the
smallest possible t. Then f; > 2 (otherwise remove all f; = 1 after the last f, > 2 to

obtain the smaller collection of vertices that gives maximum in (4.8)). Then for all
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f’i = degG\{fug,...,’Uz’_l} (U'L)

For 2 < i < t, all of the edge sets {v;u € E(G) : u € V(G)\{ve,...,v;}} are

mutually disjoint, so fo + - -+ + f; < m. Therefore,

A A
for fi<5 - max  {zy-mzec-w)
2 2 2<t<n

zo+...+x:<m,

Vig[2,t),@, €2t

So the number of cycles in G that contain v, is at most

max  {x9- T334} (4.9)

2<t<n
xo2+...4+xt<m,
Vie[2,t],z,€ZT

For a fixed ¢, the product x5 - - x; in (4.9)) attains its maximum when x;s (i > 2)
are as equal as possible (for all ¢,j |z; — z;| < 1), and their sum is equal to m. Let
2] =5, 2 = s+

If s > 3 (which is equivalent to ;™5 > 3), let the maximum in (4.9) be achieved
for some t < n and let x,,...,2; be a collection of z;s that gives the maximum in
(4.9). If t < n, then s > 3 implies that either for some i € [t], z; > 5, or for two
different 4,5 € [t], x; = ; = 4. In the first case, replacing z; by z; — 2 and setting
41 = 2 gives a collection of x;s with a larger product. In the second case, setting
x; = x; = 3 and x4 = 2 increases the product of z;s. Hence, the maximum in (4.9)

is achieved when t =n. For all 2 <7 <n, x; = s or ; = s+ 1. Then the number of

cycles in G that pass through v is at most

A A A
Sle e = 58(1_a)(n_1)(5 + 1)) = E(Sl_a(s 1
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If s < 3, let the maximum of be achieved for some 2 < ¢t < n and let
Zo,...,x; be the collection of x;s that gives the maximum in . Recall that
for all 4,7, |x; — x;] < 1. If for two different 7,5 € [t| ; = z; > 3, then m >
6+ 3(t —2) = 3t, and s < 3 implies that ¢ < n. Replacing z; by x; — 1, z; by z; — 1
and setting x;,1 = 2 increases the product. Therefore, there is at most one %, such
that z; = 4. If there is ¢ such that z; = 1, then replacing any x; (j # i) by x; + 1
and deleting x; increases the product. If for some 4,j,k € [t] z; = ; = 2, = 2,
then replacing x; by 3, z; by 3 and deleting x;, increases the product. Therefore,
{zg,...,x} € {{3,3,...,3,2,2},{3,3,...,3,4},{3,3,...,3,2},{3,3,...,3}}. Then
To...Ty 1S at most 3%, so the number of cycles that pass through v is at most

A <A3?
—Tg- —33.
2 2 t_2

]

Theorem 4.4.2 (Arman-Tsaturian, 2017% [9]). Let G be a multigraph with n > 2
vertices and m edges.

If 5 < 3, then

Proof. The proof is by mathematical induction on n.

Base case. If n = 2, there is only one multigraph on n vertices with m edges, namely
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two vertices connected by m edges. In this case s = - = m, and G has max{ (Z‘) ,0}

cycles, which is less than 2m(v/3)™ (for the case m < 3), and less than 3m - m (for

the case m > 3).

Inductive step. Let k > 3 be an integer, and suppose that the statement of the

theorem is proved for n = k — 1. Let G be a multigraph with k vertices, m edges

and let v; be a vertex of the maximal degree in G. There are two cases to consider.
Case 1: 777 < 3.

If A(G) <2, then every edge is contained in at most one cycle, and every cycle

contains at least two edges, so the number of cycles in GG is at most

m
— <
5 =

A(G) - (V3)™.

=] W

If A(G) > 3, then the multigraph G'\v; has at most m—3 edges, A(G\v;) < A(G)

% < 2 < 3, therefore, by the inductive assumption, the number of

and -

cycles in G\v; is at most 3A(G) - (V/3)™ 3. By Lemma m, the number of cycles

that contain v; is at most # - (v/3)™, therefore the total number of cycles in G is
at most

A(G 3 3

B way + 2ae) - way = 2a) - (V3

Let s = | 2], a = 22 — | #]. Note that A(G\v;) < A(G) and let

_|B(G\v)| m
YTV -1 kT
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The function
f@) = (L)) (o) + 17l

is non-decreasing on every interval [a,a + 1],a € Z>o (and hence on RY); therefore
s'T¥(s+1)* > f(3) = 3. (4.10)
If y > 3, then, by the induction hypothesis,

[B(G\v)| < SA(G) ((Ly)) (L) + 1)p- )"

IN

IA
S W
>

(G)(s'7 (s + 1)*)F2
If y < 3, then |E(G\v;)| < 3(k — 2), and by the induction hypothesis

|E(G\vy)| < zA(G)(\?’/g)IE(G\m) < ZA<G)(\3/§)3(1<2)

= Z%A(G> N L ZA(G)(Sla(S + 1)a>k72'

Hence, for any y, |E(G\v1)| < 3A(G)(s'*(s + 1)*)*2, which together with

Lemma {4.4.1{ and (4.10)) implies that

_3A(G)

4

A(G)
4

AG)

C(G) 5

(3175 + 1)) 2 4 ST (s 4 1))

w

< 2 1))

which proves the inductive step and hence the theorem. O]

A consequence of Theorem [4.4.2]is

Corollary 4.4.3 (Arman-Tsaturian, 2017" [9]). For any positive integer m

C(m) < 8.25(v/3)™.
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Proof. Let G be a graph with n vertices and m edges, such that C(G) = C(m).

If -5 <3, then, by Theorem [4.2.3 and (4.4.2

C(m) = C(G) < EA(G)(\%)"‘ < 8.25(V/3)™.

So suppose that - > 3. Let f(s,a) = (s'"*(s + 1)0‘)54%047 then for any s > 0,

f(s,) is monotone in & and  max  f(s,a) = max 55 = /3. This, together with
$E€Z4,a€[0,1) SEL4

Theorem and Theorem , implies that for s = L%J and o = M — L%J
3
C(m) = C(G) < ZA(G)((sl—a(s + 1)) )™ < 8.25(V/3)™.
n

Theorem is stated in rather technical terms, so the following corollary is
intended to be a more readable version of Theorem {4.4.2] This corollary is stated
in the paper |9, but the proof does not appear there, so I add the proof here for

completeness.

Corollary 4.4.4 (Arman-Tsaturian, 20171 [9]). Let G be a graph on n vertices with

average degree d > 6. Then

C(G) < 3A(C) (g)n_l |

Proof. Let G be a graph with n vertices, m edges and the average degree d > 6. Then

> = %l > 3, so Theorem implies that for s = L%J and a = - — s

C(G) < zA(G)(sl‘“(s + 1))t
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Here, the weighted AM-GM inequality can be used to prove that

Slia(S—F 1)a S m

()

—_

n —

Alternatively, it is easy to verify that for a fixed s > 3 the function f(a) =

s7%(s 4+ 1)* is convex, and so for a € [0,1], f(a) < (1 — ) f(0) + af(1). Therefore

s+ 1)< (1—a)s+als+1) =

n—1

Finally,

Q
a
IN
g
8
e

3
@
+
N

®
3

IA

[\
W W W
>
Q
VR
3
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3

L
—~

o

>
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B
Q
VN
3|3
N——
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w
b
a
A/~
|
S~
3
|

(The last inequality is based on the fact that for n > 2, (1 + ﬁ)n_l is an increasing

function and lim,,_,~ (1 + )n_l =e.) O

4.5 Example of a graph with (1.37)" cycles
For n > 1 let H, be the graph on 2n + 2 vertices with
V(Hn) - {Ul,U27...,Un+1,U1,U2,...Un+1} and

E(H,) ={uwwv;:i,j € [n+1],]i — j| < 1} U{uuis1 3 € [n]} U{vjvigr i € [n]}.
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For example, see Figure [£.4] for Hy,.

Uy U2 Uz Ug U5 Ug U7y U Ug U0 Ul U2 U3

vy V2 V3 U4 U5 Vg Ur Vg Vg V190 V11 Vi2 V13

Figure 4.4: The graph Hs.

Claim 4.5.1 (Arman-Tsaturian, 20177 [9]). For n > 1 denote by P(n) the number

of paths from the vertex uy to the vertex u,1 in H,. For alln > 2,

P(n) =4P(n—1)+4P(n — 2).

Note that P(n) is also equal to the number of paths from u; to v, in H,.

Proof sketch. The proof of the claim relies on an inductive argument and an observa-
tion that each path from w; to u,,; in H, corresponds to exactly one of the following

eight types of paths:

e A path from u; to w, in H,_; followed by the path w,u, 1.

A path from u; to u, in H, 1 followed by the path wu,v,  1u,s1.

A path from u; to v, in H,_; followed by the path v, u, .

A path from u; to v, in H,_; followed by the path v, v, 1,4 1.

A path from uy to u,_1 in H, o followed by the path w, 11, v, 10U 1.

A path from u; to u,_1 in H, o followed by the path wu, 1v,v, 11U, Upi1-
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e A path from u; to v,_1 in H, 5 followed by the path v, 1,V 10,Up1.

e A path from u; to v,_1 in H, 5 followed by the path v, 10,0, 10U, Up 1.

Also, note that P(0) = 1, P(1) = 5. Solving the recurrence relation P(n) =

4P(n — 1) +4P(n — 2) leads to the inequality
P(n) > (2 +2V2)".

Define the graph G, by identifying the vertices u; and u, in H, (see Figure

for G12). Then G,, has 2n + 1 vertices, m = 5n + 1 edges and

C(G,) > (2+2V2)".

Figure 4.5: G1o with 25 vertices and 61 edges.
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For an integer m, let the graph G be obtained from GLL_l | by adding (m —
5
5|2-1] — 1) edges (anywhere). Then G has m edges and for m large enough (for

5

m > 16855)

5

C(G) 2 C(Guar|) 2 2+2v2) ") > 2+ 2v2) %1 > 137,

4.6 Lower bound for the number of cycles with

given number of vertices and edges

In this section the lower bound for the number of cycles in a graph G with n
vertices and m edges is established. This result was never published before, but was

discovered by myself and Tsaturian independently.

Theorem 4.6.1 (Arman, Tsaturian, 2017). If d = d(n) is such that lim,,_, d(n) =

00, then there exists a graph G with n vertices and average degree d, such that

C(G) > (ﬁl)n (1+ o(1))".

e

If d > 1 is fixed, then for ¢ = g, a=1— = and n large enough, there exists a graph

1
d

G with n vertices and average degree d such that

C(G) > (14 o(1))" ( )(01_2:) = a)c_a) |

e (11—«

Proof. The statement of the theorem follows from an averaging argument for graphs

on n vertices and m edges. Let ¢ = ¢ = ¢(n), then m = cn. Let N = (}). Let E be
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the average of the number of cycles in all graphs with n vertices and m edges. The

lower bound on E' is obtained below. First,

2 (o) G) Xt o)/ ()

To simplify calculations, for 3 < k < n, put

%= i'k)'%(Z:Z)/(Z)

Let @ =1 — 5 4 o(1), be such that an is an integer, then

E= Zak > Gan
k=3
B n! 1 (N—an N
(n— an)!%(m—an>/<m>

o) ()
(2)" (N — an)!(cn)!

€

M)“‘“” ((¢ — a)n)!N!

e

> (1+40(1))"

. nomn ((5) — an)!(cn)!
> (1+0(1)) eon (1— ) ((c— a)n)I(})!
() mam e ey
> (1+o0(1)) con (1— o) = (g)(g) e ((c — a)n)le—n

= (14 o(1))" n (1- %ﬂ@wnm (%y

=) Q)7 c—a)

- 9o n (1— %)(%)(an_%) on (c)°
=(14+o0(1))"n ( >(1a)> " ((—
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If lim,, o d(n) = 0o, then lim,,_,,, c¢(n) = oo, lim,_,, (n) = 1 and

E>({1+o(1)" (62& (1Ci2:)(1a) (1 . Cfa)c_a)n

E> (14 o0(1)" (62& 1 a)(Clc_2:; (c— a)c_a> .

4.7 Maximum number of cycles in multigraphs

The problems of maximizing the number of cycles with a fixed number of edges

or a fixed average degree can be also considered for multigraphs.

Theorem 4.7.1 (Arman-Tsaturian, 2017 [9]). Let G be a multigraph that has the

maximum number of cycles among all the multigraphs with n > 2 vertices and m > 3

edges. Let L%J = s, and put a = 77 — 5.

If 5 >3, then

S s(s (s 107 £ (@) < SA@(s s+ 1)
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If 5 <3, then

4B < C(G) < EA@) (3.

Theorem was stated in the paper [9], but was not proven. Here I present

the proof of Theorem

Proof. The upper bounds in Theorem follow directly from Theorem |4.4.2]

Define C,, ,, to be the multigraph obtained from the cycle C), by replacing each
of some m — L%J n consecutive edges with [%J + 1 multi-edges and the remaining
L%J n —m + n edges with L%J multi-edges.

Lower bound for case >3

Let |27] = s, 725 = s+a. If [2] =5, then 2 = s + a — ;755 and

C(Cum) = <517(a7%)(8 + 1) nﬂﬁ)n

= (s'(s + 1)) " sa-1 (s + 1) 771

m

= (s""(s+ 1)0‘)71_1 §'TOTRS (5 4 1)

ey ()

> (s' (s + 1)0‘)n_1 Z.

(The last inequality holds, since (;37)® is decreasing function and lim; oo (537)° =

)

I [2] = s, 2 = s+aand [2] =s— 1 then 2 = (s 1) + (1+ 0 - 2

=
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and

C(Cn,m) = ((S — 1)%—a81+a_%>n

n

(5175 + 1)7 (s + 1)o7 (5 — 1) )

= (s7o(s + 1)2)" ((sj%)a (s ; 1),@"_1)_a>n
=(§‘%s+1VY%‘s(8jl>a“”>(sgl)gzﬂm

a(n—1) s—a(n—1)
o l1-a ayn—1 S s—1
s () (22)
)

S

(s'*(s+ 1)“)”71 :

Y
l\3|OO
BNV

(The last inequality holds, since (55%)* is increasing function and s > 3. )
The lower bound in the case - < 3 is achieved by the graph C | | with
3 b
+1

additional n — LTJ isolated vertices. O

To derive an upper bound for the number of cycles in a multigraph with m edges
the following theorem (a direct analogue of Theorem [4.2.3)) is used. This theorem

has not yet been published, but its statement appeared (without proof) in [9).

Theorem 4.7.2 (Arman-Tsaturian). Let G be a multigraph with m edges such that

C(G) = C(m). Then A(G) < 11.

Proof. The proof of Theorem [4.7.2] relies on Lemma [4.2.1] and [£.2.2]

Let m be a fixed positive integer and G be a multigraph with m edges. To prove
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Theorem it is sufficient to prove that if A(G) > 12, then there is a multigraph
H with m edges and with C'(H) > C(G).

Let A(G) > 12, and let u be a vertex of maximal degree in G. Let N'(u) =
{e1,€9,... e} be the edge neighbourhood of u (note that &k > 12). Let N(u) =
{uy,us,...,ux} be a multiset, such that for any 1 < i < k, ¢;, = wu;. For i,j €
k], © # 7, if u; # u; define w; j to be the number of paths from vertex w; to vertex u;
in the graph G\u , and if u; = u; let w; ; = 0. Then the number of cycles in G that

pass through the vertex u is equal to S =3, ;- w;;. By Lemma {4.2.1] there is

a six element set D = {iy,1s,...,14s}, such that
6(2k — 7)
i > | 1———5) 8.
2 ‘”’“( k(k—l))
1<i<j<k
1¢D,j¢D

Suppose, upon re-indexing, that D = {k — 5,k —4,...,k — 1,k}. Lemma [1.2.2]
applied to the collection of real numbers w; ; with 1 <17 < 57 <k —6 gives a partition
7T:A1UA2UA3UA4 of []C—6] with

3(k—6)*—4 6(2k —7)
i > l———= 5. 4.11
> X v (qpsanam) (- e Ay

1<l<m<4
1€ Ay

JEAm
For 1 <i <4, let Uy ={u; : j€ A} (U;is a multiset) and let E; = {uu;
j € A;}. Construct a graph H by deleting all of the edges incident to u; adding four
new vertices vy, vo , v3, U4, for all 1 <7 < 4 adding the edges from v; to each vertex

of U;, and for all 1 <i < j <4 adding the edges v;v;. Then |E(H)| = |E(G)|.
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G: D H: D
(%] V4 o
U2 U3 U2 U3

Figure 4.6: Constructing the multigraph H.

To count the number of cycles in H, note the following:

e Every cycle in GG that does not pass through the vertex w is still a cycle in H.

There are C(G) — S such cycles.

e Let C' be acycle in G that for some 1 <1 < j < k—6, contains the path u;uu;.
If for some ¢ € [4], u; and u; are in the same class U, then C' corresponds to
the cycle in H that uses the path u;vsu; instead of w;uu;. In the case if for
some 1 <1 <m <4, u; € Uy and u; € Uy, the cycle C corresponds to the

cycle that uses the path u;v,v,,u; instead of w;uu;. By Lemma there are

(-7

cycles in G that use a path wuu; with uw;, uu; € N'(u) and 4, j € [k — 6].

at least

e Every cycle in G that for some i € A, and j € A,, with ¢ # m pass through

the path w;uu; give rise to four additional cycles (except the one containing
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w;v1v2u;): the ones containing the paths w;v1v3v9u;, w;V1V4V2U;, UV1V3VLVU;

and u;v1v4v3v2u;. According to (4.11), there are at least

) (- B (552

cycles in G that for some ¢ € A, and j € A, with ¢ # m pass through a path

UU, .
e There are 7 new cycles in H spanned by the vertices vy, vo, v3, V4.

By all of the observations above, the number of cycles in H is

C(H) > O(@) - S + (1_6(2/<;—7)>S+ (3k2;(48k+104)5+7

k(k—1) k—1)
_CG) 4T+ 8 3k2—36k+104 12k — 42
B Ck(k—1)
B (3k2 48k: + 144>
3(k - 12)
=C(G)+7+S
> C(G).
Therefore, H has more cycles than G. n

Theorem 4.7.3 (Arman-Tsaturian, 2017% |9]). Let G be a multigraph with m > 3
edges that has the mazimum number of cycles among all the multigraphs with m

edges. Then

1—90(%)’” < A(VB)™ < C(G) < 8.25(V3)"
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Proof. The upper bound in Theorem is obtained by repeating the argument of

Corollary and using Theorem [4.7.2] The example that implies the lower bound

is the same as for the second case of Theorem 4.7.1, namely C' ESE (see proof of
3 b

Theorem for definition). O

Theorems [4.7.1] and [4.7.3] answer both questions of determining, up to a constant

factor, the number of cycles for multigraphs with a given number of edges and with
a given number of vertices and edges. I would like to conclude this section with
saying that I believe that for m > 9 the graph C' EEi has the most cycles among
all multigraphs with m edges, since it is the graph, for which the lower bound in

Theorem is sharp.

4.8 Concluding remarks

Theorem [4.4.2 gives an upper bound for the number of cycles in a graph G with

n vertices and m edges. For a graph GG with n vertices and the average degree d > 6,
Corollary [4.4.4] implies

C(G) < 3A(G) (g)n_l |

For d = Q(Ilnn), let G be a random graph G(n,p) with p = 4. Glebov and

n—1
Krivelevich [23] proved that asymptotically almost surely the number of cycles in
G(n,p) is at least (£)" (1+0(1))". Also, Theorem implies that if G is a graph

with the maximum number of cycles among all graphs with n vertices and average
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degree d = d(n) such that lim,,_,,, d(n) = oo, then for n large enough

(4) a+or <@ <a+omr(3) ()

e

Inequality (#*) and the fact that C(K,,) ~ = (2)" for some constant ¢ (see [10]

for details) motivates the following conjecture.

Conjecture 4.8.1 (Arman-Tsaturian, 2017 [9]). For any o € (0,1] and integer n

large enough, any graph G on n vertices with average degree d = an satisfies

C(G) < (14 o(1))" (‘—l)n.

(&

As mentioned in the introduction, Theorem [4.4.3| and the result of Section [4.5
imply that 1.37™ < C(m) < 1.443™.

Kirdly [30] proved that if G is a 4-regular graph, then there are constants ¢, €, such
that C(G) < en?(2 — €)™; he also conjectured that C(m) < 1.4™. The upper bound
in Corollary m is 8.25(+/3)™, which inspires the following conjecture (directly

contradicting Kiraly’s conjecture).

Conjecture 4.8.2 (Arman-Tsaturian, 2017" [9]). For sufficiently large m, there

exists a graph G with m edges and at least (1 + o(1))™(¥/3)™ cycles.



Chapter 5

Counting cycles in K,-free graphs

5.1 Motivation

The authors of [10] posted a list of new conjectures.
Conjecture (Arman-Gunderson-Tsaturian, 2016 [10]). For any k > 1, if
an n-vertex graph Csii1-free graph has the mazimum number of cycles, then G =
Bralls)
Question (Arman-Gunderson-Tsaturian, 2016 [10]). For k > 4 what is the
maximum number of cycles in a Ky-free graph on n vertices? Could it be that the
cycle-mazimal Ky-free graphs are indeed Turdn graphs?

Shortly after submitting the paper [10], we received an email from Alex Scott [41]
in which he informed that he and a student of his have proved Conjecture and

answered Question [1.1.3] affirmatively for n large enough, by using the Regularity

73
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Lemma [46]. Regularity Lemma implies that for any ¢ > 0, graph H and integer k
there is an integer N, such that for any H-free graph G with n > k vertices there
is integer ¢, k < £ < N, such that G' can be made /-partite by deleting at most en?
edges. Regularity Lemma potentially allows to reduce the problem of counting cycles
in H-free graphs to the problem of counting cycles in ¢-partite graphs. Recall that a
graph H is called edge-critical if there exists an edge, deletion of which reduces the
chromatic number of H. Alex Scott states that if H is an edge-critical graph with
chromatic number £, then there exists integer ng so that for all integers n > ng and

any H-free graph G with n vertices

C(G) < O(T(n, k —1)).

Result of Scott was not published at the time of the preparation of this thesis,
however it inspired me to investigate Question further. The first step toward

such an investigation is an estimate on the number of cycles in a Turan graph,

which is done in Section [5.2] namely in Theorems [5.2.2| and [5.2.6] A stability result

(Theorem for the number of cycles in K,-free graphs is given in Section .
All of the theorems in Chapter 5| are the result of my original research. In

Section the question of estimating the number of cycles in a Turdn graph is

considered. The main result of Section (Theorem shows that for any

positive integer r there exists a constant ¢ = ¢(r), such that for n large enough,

T, 1)) 2~ (”“ - 1))”.

re
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In Section [5.3|an estimate on the number of cycles in a K,-free graph is given and
the main result of Section (Theorem [5.3.2)) shows that for any positive integer r
there is positive integer ng, such that any K, ;-free graph G with n > ny vertices

and m < t(n,r) — 2r'nlnn edges has fewer cycles than T'(n,r).

5.2 Estimate on the number of cycles in a Turan
graph

The main result of this section is Theorem [5.2.6], which is later used in Section [5.3]
Theorem provide useful upper bounds for the number of cycles in a Turan

graph. The following lemma is used in the proof of Theorem [5.2.2

Lemma 5.2.1. Let s(n) be the number of sequences of length n of symbols from the
alphabet {1,2, ... 1}, such that no two consecutive symbols are the same (n-th and

1-st symbols are also consecutive). Then
s(n) = (r=1)"+ (= 1(=1)"

This Lemma is one of the classical result about chromatic polynomials of a cycle,
for reference see Birkhoff and Lewis paper [12] (thanks to Dr. Bill Kocay for point-
ing that this Lemma is a result about chromatic polynomials). Lemma and

Lemma [5.2.5| can also be rewritten in terms of colourings of a cycle.
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Proof of Lemma. The sequence s(n) satisfies the following recurrence:
s(2) =r(r—1), s@)=r@r—-1)(r-2),

s(n+2)=(r—2)s(n+1)+ (r—1)s(n) for n > 2.

Solving for the roots of the characteristic polynomial and using the initial condi-
tions yields

s(n)=(r—-1)"+r—-1(-1)"
]

Estimates in Theorem [5.2.2| show that the result of Theorem [5.2.6|is not far away

from being sharp.

Theorem 5.2.2 (Arman, 2017" [§]). For an integer r > 3 and an integer n large

O(T(n,r)) < (627”) (%)

Proof. Let V(T'(n,r)) =V, UVaU---UV,, such that |V3| > |V5| > --- > |V,| and for

enough

any i # j, |([Vi| = [V;])| < 1. For any i € [r] let V; = {v,v5,... vy, }. Finally, let

t=n— HJ T
For 3 <k <n,let s = (s1,59,...,Sk) be asequence of symbols from the alphabet
{1,2,...,7} such that no two consecutive symbols are the same (k-th and 1-st sym-

bols are also consecutive) and for any i € [r] the symbol i appears at most |V;| times

in s. For any ¢ € [k] let n; be the number of times that a symbol s; appears among
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the first ¢ symbols of s. For any i € [r] let 7 be a permutation of [|V;|]. Finally, let

_ S1 S92 83 Sk—1 Sk S1
¢= (Uﬂ”(mw o2 (na) Vs (na)r - o Vnthot ()7 Ve () ”wﬂ(nn)

2

be the cycle of length k that arises from s and 7!, 72,...,7". Moreover, every cycle

C of the length k arises from at least 2k different choices of s, 7', 72 ... 7" (there

are 2k ways to choose starting point and a direction on a cycle of length k, each

2

choice corresponds to different collection of s, 7!, 72, ..., 7"). Therefore, the number

of cycles of the length k in T'(n,r) is at most the number of ways to choose s,

7t w2, ..., w" divided by 2k, so is at most

1
55 (=D + = D) L Vot [V

et oo () ()
e\ L
<i((r—1)k+(r—1))- e{Er(LJ)

r

< i ((r = 1"+ (r = 1)) - (e (;)) (:7)”

Therefore, the number of cycles in T'(n, ) is at most

n

St () @)

k=3



78
[l

Let r be a positive integer. The following lemmas are used for the proof of

Theorem [5.2.6]

Lemma 5.2.3 (Arman, 2017" [8]). Let m and k be integers with 1 < k < %%. Let
A i be the number of sequences of length m of symbols from the alphabet {1,2,... 1},
such that no two consecutive symbols are the same (m-th and 1-st symbols are also

consecutive), and the symbol “1” appears precisely k times. Then

G = (m; ’“) (r = D¥(r —2)m %,

and

Umo = (r—2)" 4+ (=1)"(r — 2).
Proof. Let S be the collection of sequences s = (s1, Sa, . . . S ), such that for all i € [m)]
s; € [r], $;i # siy1 (With s, 41 = s1) and there are exactly k indices iy, s, . . ., i, such

that for all j € [k], s;; = 1.

Every element of S can be constructed in the following steps. First, choose the
positions of “17’s; namely choose a set S7 = {i1,49,...,0; 141 <ig < -+ < it} C S
with the property that for all ji,72 € [k], [j1 — j2| > 1 and m and 1 cannot both
belong to S;. There are (mk_k) ways to choose such a set S;. For all j € S set s; = 1.

Now, define all other values of s; for j € [m|/S;. For an index ¢ € [k] consider
the interval [s;, +1,s;,,, — 1] with [s;, +1,s; —1] = [s;, +1,m]U[1,s;, — 1]. For the

value of s;,41 there are (r — 1) possibilities to choose from (since s;,+1 # 1); for the
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value s;,1o there are (r —2) possibilities to choose from ( s;,19 # si,+2 and s;,+2 # 1);
for s;,43 there are (r — 2) possibilities ( s;,43 # Si,+2 and s;,13 # 1); similarly for all
3 < J < igp1-4, for s, there are (r —2) possibilities ( s;,4+; 7# s;+j—1 and s;,+; 7# 1).
So, there are (r — 1)(r — 2)"+17%~! ways to choose the values of all of the s; for
J € [si, + 1,5, — 1] (here I set ixyy — iy = m — iy + iy — 1). Hence, there are

k

[[or =D =2t = (e = DF(r — 2y

I=1

ways to choose the values of s; for j € [m]/S;. Finally,

1= (" )= vk - 2

Note, that according to the Lemma [5.2.3| and Lemma [5.2.1

N

mp = (r—1"+(=1)"(r —1).

Lemma 5.2.4 (Arman, 2017" [8]). Let r,m be integers, such thatr > 2 and m > r3.

Let T% > € > 0 be such that me is an integer and set c = 1 — €. Then there exist

positive constants cy(r), co(r), such that

cm
2

Z Aem e < C1(r — 1)67”\/%6_62637”.

m

T

Proof. Let
%
S = Z Qemy k-
k=

Claim: For <* > k > ™ sequence G, is decreasing in k.
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Proof of claim: Let k& > m, then

Qem, k+1 _ (ka_—f—kl_l) (T - 1)k+1 (T - 2)cm—2k—2

Aem k (kaik) ('r — 1)k‘(7~ — 2)cm—2k
_ 7“—1/ (em — k) (r — 2)?
(k+1)/ (ecm —2k)(em — 2k — 1)
(em —2k)(em — 2k —1) (r—1)

~ (k+1(cm—k) (r—2)2

The function f(x) = (Cm(;ixl))((cgfn:iﬁfl) is decreasing on the interval [%, <¢], so

Qem,k+1 < acm,%—s—l
Qe k o acm,%
(em —22)(em =22 —1)  (r—1)

(24 1) (em—m) (r —2)?
e-Be-2-p -y
Trae-D -ep
(cr—2)(c7‘—2—%). (r—1)
(14 Z)(er —1) (r —2)?
(r—2—€r)(7“—2—er—%)_ (r—l).

In order to verify that a, is decreasing it is sufficient to show

((T—Q)—ET)((T‘—Q)—GT—L> (r—1)< <1+%>((T’—1)—67’)(T—2)2.

m

After simplifying, the last inequality becomes

Cger(r—1)(r —2) = "= 177);7’ —2 L1y 4 —“”2(;_ D
< —er(r—2)% + %(r 1) — 22— E;—Q(r _ 9y,
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Further this last inequality can be rewritten as

_r(r=1)(r-2) 1)+ er?(r — 1)
<er*(r —2) + %(7’ 1) —2)? %(r — 92,

The left-hand side of the last inequality (using the assumptions r > 2, ¢ < r—2

and m > r3) is at most 0 + ¢(r — 1) + ¢ = re and the right-hand side is at least
r?(r —2)+0—e(r —2) = e(r +1)(r — 1)(r — 2), which is greater than er. This
finishes the proof of the claim.

2. ..
Hence, the sequence (acmvk)fg% is decreasing in k£ and

(5-7+7)m° im_%m— o VW (s
r /2T cm—2m (em — 2m em—2m

(em — m)em= (r —1)*(r—2) em—2
(=

) (em — Z2yen==

(¢ = HYe=Dm(p —1)% (p — 2)om=2
CHOEH

(e = 1) (Emm (g — gyem==2
(r — 1)~ (cr — 2)(e= —)m

= ci(r)v/m(r — 1) (CT — 1) - <C7’T—_22> ”?m'

= c1(r)v/m(r — 1)

r—1
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To finish the proof, it is sufficient to show that for some positive constant cy(r),

cr—1 cr—2

cr—1 Y Ay ) " 3
< 7662("’)m' 1
(T—l) (cr—?) =¢ (5 )

Taking logarithms of both sides of the inequality (5.1]), using the fact that ¢ =

1 — ¢, and applying the inequality —x — SL’Q(% + ﬁ) <In(l—-2) < —z— %2 for

T < %4 yields

cr—1 cr—1 cr — 2 cr — 2
mln — mIn
r r—1 T r—2
1
l—e—~)mhln(1- L) 1—.5—2 min (1- -
r r—1 T r—2
- ) 1 er e2r?
m — —_— — — J—
- ¢ T r—1 (r—1)2

- (1 T %) (_re—r2 N (reiT;P T — ii - 2)2)

I
/N

= —cy(r)m.
This finishes the proof of inequality (5.1)) and the lemma. m

Lemma 5.2.5 (Arman, 20177 [8]). Let r,t be integers and let n = rt. Let s(n,t)
be the number of sequences of the length n of symbols from the alphabet {1,2,... r}
such that no two consecutive symbols are the same (n-th and 1-st symbols are also
consecutive) and the number of times that every symbol appears is exactly t. Then

there is a constant ¢ = ¢(r), such that for n large enough

(r—1)"

8(”, t) Z C(n)%T_H.
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Proof. Let m be an integer, r% > €~ lnm/mé and ¢ = 1—¢€ be such that t = ecm —1.

Consider the set S; of the sequences of length ¢m from the alphabet {1,2,... 7}
such that every symbol appears at most 7* times and any two consecutive elements
are different. By Lemma [5.2.4] the number of such sequences, when m is large

enough, is at least
(r—1)" = (r—1) —rei(r — 1) /me 2™ = (1 — o(1))(r — 1)™.

By the pigeonhole principle (PHP), there are 7,j € [r], such that i # j and the

number of sequences from Sy that start with ¢ and end at j is at least

b
r(r—1)

(I —=o(1))(r—1)

Without loss of generality, assume that i = 1 and j = 2. Set Sy C 57 to be the
set of all sequences from S; that start with “1” and end with “2”.

If s € S5, then the number of times that any symbol from the alphabet appears is

at least em — (r—1)2 = (% — e) m and at most 7*. By the PHP, there is a sequence

m
'
ni,Ng, ..., n,, such that for each i € [r], (% — e) m<n; <% and Y, n; = cm,

and the number of sequences s € Sy such that for each i € [r] the number of times

that symbol “i” appears in s is n; is at least

S0 L =D
e T Sl O e ey S v

Let S3 € S5 be all sequences s from Sy such that for each i € [r] the number of

wn
1

times that symbol appears in s is n;.
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Let S be a set of sequences of length n from the alphabet [r] such that any two
consecutive symbols are different and every symbol appears exactly ¢ =  times.
Let m be permutation of [r] that takes all elements to its successor and takes r to
1. For ans = (81,82,...,8m) € S3 define 7(s) = (7w(s1),7(s2),...,7(Sem)). Let

S1,82,...,8. € S3. For all i € [r] let ¢; = 70~ Y(s;), and let s} to be ¢; minus its last

!/
e

element. Let permutations s € S be s = s)s),...s.. Note that every symbol from
the alphabet appears exactly n; +ng+---+n, —1 =cm — 1 =t times and every
two consecutive elements are different.

The map (sy,Sg,...,8,) = s is a 1-1 map from S} to S. Hence,

S| =s(n, 1)

>|Ss]"

> (- oty
1(r=1"

rr (em)"

> (- o5 )

>(L—o(1))"
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Theorem 5.2.6 (Arman, 2017% [8]). Let r be a positive integer, then there is con-

stant ¢ = ¢(r), such that for n large enough

T, 1)) 2~ ("“ = 1))”.

re

Proof. The proof follows the lines of the proof given for Theorem [5.2.2]

Let m =r L%J Let s = (s1,52,...,8m) be a sequence of length m of symbols
from the alphabet {1,2,...,r}, such that no two consecutive symbols are the same
(m-th and 1-st symbols are also consecutive) and for any i € [r| the symbol i appears
exactly ™ times in s. For any i € [k] let n; be the number of times symbol s; appears
among the first ¢ symbols of s. For any ¢ € [r] let 7 be a permutation of [|Vj]].

Finally, let

Sk —
C = (V351 (1) Vata (g Vads(ng) * -+ » Voot (my 1) Vbt (mi)? Vit (m))
be the cycle of length m arising from s, 7!, 7% ... 7". The map (s,7!,...,7") — C

is 1-1. Therefore, by Lemma |5.2.5 the number of cycles in T'(n,r) is at least
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5.3 Maximum number of cycles in a K,-free graph

The main result in this section is Theorem [5.3.2] Lemma is proved in
Section [4.3] and here I restate it for convenience.

Lemma (Arman-Tsaturian, 2017% [9]) Let G be a multigraph with n ver-
tices. For any ¢ € [n], and any vertices vy,...,v, € V(G), define F(vq,...,v) =
N(ve)\{v1, ..., ve1} and define f(vy, ..., v) = max{dega (y,. . 0, ,3(ve), 1}. Denote
the number of cycles in G that contain the path viejvs . .. ep_1vp by C(vieqvs . .. €4 10y)
(note that C(vy) is the number of cycles containing the vertex vy ). For brevity, write
F, = F(uy,...,v), fo= flur,...,v), Cp = C(viey...e1v0). For a k € [n], let

vie1Uses ... v be a path in G. If F}, # 0, then

Ce < fer max {fip1 frro - fi}-
k+1<t<n
Vgp4+1€F

vt€Ft 1

(the mazimum is taken over all paths viiy...v, such that vy ... vxeRVEL1 ...V €T-
tends vy ... vg)

Theorem is also proved in Section [£.4 and here I restate it for convenience.
Theorem (Arman-Tsaturian, 20171 [9]) Let G be a multigraph with n > 2
vertices and m edges.

If 5 < 3, then
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C(G) < TAG) (s (s + 1)) = JAG)((s (s + 1)) o)™

Also, the following lemma is used for the proof of the main result of this section,

Theorem [5.3.21

Lemma 5.3.1 (Arman, 2017% [8]). Let r and n be positive integers such that n >

e E2]) < (222

Proof. Let m+1=mn— (n mod r), then

ﬁ(mz- V:jQD - <m+1—m:1>!(r—1)(2r—2)---(m+1(r—1))

r
k=0

<(r—1>£m+1)>!(r_1>w (m:—l)!

S.

2r +4. Then,

Using the upper bound of factorial (inequalities (2.2])),

n

I (e [57]) = L (o [5])

< S . pnm
(r=1)(m+1) b1
e2(m+1) ((r—1)(m+1) r mer (mA1\
< (r—1)r n
N re re

9 B (T*l)£m+1) il
< e*(n) ((r—1)(n) (r— 1)mj1 (ﬁ) T nem

N re re

. 6\2/7;2 (MZ 1)>"‘
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[]

Theorem 5.3.2 (Arman, 2017% [8]). For any integer r > 2 there exists a number
no, such that any K, ,1-free graph G with n > ng vertices and m < t(n,r)—2r*nlogn

edges has fewer cycles than T'(n,r).

Proof. Let G be a K, i-free graph on n vertices and with m edges. If the graph G

has average degree less then ”(T U then Theorem implies that G has at most

n(r—1)\"
3n [~/
" ( 2er )
cycles, which is smaller than the number of cycles in a T'(n,r). Hence, assume that
the graph G has average degree at least ”(T O}

Let v; be a vertex of G. Let C'(v;) be the number of cycles in G that contain v;.

Then,

C(v) < fi- max {fo- fo--- fi} (5.2)

UEEFl
vi€Fy_1

Let the path viv, ... v; be the one that gives the maximum in the right hand side
of the inequality (5.2). According to the definition of sets F; and the fact that any

subgraph of G is K, -free , for any k > 0,
Jeeke + froigr + fropro + -+ fr <e(G\{va, 03,04, ..., v—pa]) St + k=1 +2,7).
Set

S={(for far - fONE=2>k>0: fip+--+ f <max{t(n+k —t +2,r),m}}.
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Hence,

Cr < fi- 2fili>;{f2'f3"'ft}

v €F
vi€F_1

<fi (f;?}%es{ﬁ fye fi) (5.3)

Let (fa, f3,..., ft) € S be the sequence that gives the maximum in (5.3). Note
that ¢ = n, otherwise splitting one of the f; into 2 and f; — 2 increases the product.
Let kg < n be the largest number such that
fn—ko + fn—ko—H +oee fn = t<k0 + 27 T)‘
Also assume that (fs, fs,..., fn) € S is the sequence that gives the maximum in
(5.3) and has the largest possible k. Then
fn—ko = t(ko + 27 T) - t(k() + 17 T)'

For any ¢, the difference between the number of edges in T'(¢ 4+ 1,r) and T'({,r)
is equal to the minimal degree of T'(¢ + 1,7), so (using §(G) for the minimal degree

of G)

Facie = 0(T (ko +2,7)) = ko + 2 — VO i 2} .

r

With the same arguments,
Jnko—1 + frky + - A frn S t(ko +3,7) — 1

implies

fnfkofl < t(ko + 37 T) —-1- t(ko + 27 71)7
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and

k k
Faokot < 6(T (ko +3,7)) — 1= ko +3 — [ O:ﬂ 1=k t+2- [ Ojﬂ.

Note that f,—r,—1 < fa—ko- I fo—ky — fn—ke—1 = 2, then increasing f,,_x,—1 by 1
and decreasing f,,_x, by 1 results in the sequence (f},..., f!) € S that has a larger

product. Hence,

O S fn—ko - fn—ko—l S 1

If there is a & > ko + 1, such that f,_x — fn—k,—1 > 1, then decreasing f,_; by 1
and increasing f,_x,—1 by 1 results in the sequence (fs,..., f/) € S that has a larger
product.

If there is a & > ko, such that f,_p — f.—r, < —1, then increasing f,_r by 1
and decreasing f,,_j, by 1 results in the sequence (f},..., f/) € S that has a larger
product.

Finally, if there is k& > ky+1 such that f,_x,+1 = fo—k, then f,_y,—1 = fn_x, and
decreasing f,,_ by 1 and increasing f,, _x,_1 by 1 results in the sequence (f},..., f)) €
S with the same product but larger k.

Hence, the sequence (fs,..., f,) satisfies the following conditions:

e Forall k < kg for+ fo—ks1+ -+ fn=1t(k+2,7). This can be alternatively

rewritten as f,_p = k +2 — [’“jﬂ )

e For all k > ]{?0, 1< fn—k — fn—ko < 0.
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Moreover,

m 2 Zn:fz
lk:02 -
:an—k+ Z fn—k
k=0

k=ko+1

> t(ko+2,1) + (n—2 — ko) (faky — 1)
> (ko + 2)? (%) —g+(n—2—k0) (k0+1— VO:QD

Set kg = on, with 6 < 1. Then the last inequality implies

2 -1 -1
%(TT )—27‘4n10gn2m2(5n+2)2 (TQT )—g

+(n—2—6n) ((5n+1— (5n+2+1>>.

Dividing by n(“') and simplifying the left-hand side and the right-hand side of

the last inequality gives

2r 4 1 r? 8
— ot | >(20 - n—(1—-0)—+—[4— .
" " 1nn_( )n ( )r—1+n( r—1+r—1)

Provided that n is large enough, the last inequality implies

r

n — 2rt . Inn > (26 — 6*)n.

r —
After setting 0 = 1 — z, the last inequality implies

r

logn > (1 — 2
T_logn_( r)n

n—2rt

o — ot

4 ] logn > —x*n

2r T4logn
r—1 n

Lop > g2 [2logn
pu— n .

S x>
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So ko = on, withégl—r%/“j%.

Hence, the following holds:

ko
f2fn < (fn—ko)n_Q_kOH <k+2 - ’ij:Q—‘)

k=0
(o + 27\ "2 ko Jo k2
_<k0+2— - ) H<k+2—[ ; D
k=0
r 2— n—2—ko 1 ko
< (ko +2— Fo + ) ¢1(ko)? (M)
r re
2 n—2—96n _1 on
< (5n +2- on t ) c1(om)? (M)
r re
n—2 on
< c¢i(on)? <T . 1) (6n +2)" 2" ((%n)

r—1 n—2 2 n—2—dén
< ¢1(6n)? < ) (6n)" > (1 + 5—) e o
T n

<o <”(T — 1>>n (5)" (ea'i)”‘?“s” oo

r

< (M) (seioen)”

There are two cases to consider.

Case 1: 0 < %
Since on = ko and ky is positive integer, there are three possibilities for the value

of delta: § = %, o= % and 0 = % In all of this cases

oty e (DY (s

er

() ()
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Recall that C'(vy) is the number of cycles through a vertex v;, then

s (P2 (£ < (52 ().

Case 2: § > %.

n

Recall that § = 1 —2 < 1 — 72, /21982 50§ € (4,1 —7“2\/210%). For these values

of & the function f(8) = de' 579 is increasing, so

C(v1) <3 (n<r — 1)>n <5e%76+1)”

er

= <”(T—1)>" ((1—7"2 210gn> 67’2\/2“’5"> 6142\;“’%
er n

< ¢y (M) ((1—7“2 210gn) 67"2\/@) .
er n

- (n(re; 1))" (1 B 4loin)
- (n(rez 1))” (6_T4loin)n
. (n(r@; 1))” -

e () (1)

In both cases
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So, by Theorem [5.2.6]

3

5.4 Concluding remarks

It seems that to improve the result of Theorem[5.3.2] a new version of Lemmal[4.3.1]
is needed. Indeed, it is easy to verify that if Lemma [4.3.1] gives a tight bound for
the number of cycles, then Theorem [5.3.2 provides a tight bound for the number of
cycles in a Turan graph, which is possible, but I think is quite unlikely.

It is quite possible that with some effort one can prove a version of Theorem [5.3.2

for H-free graphs, where H is an edge-critical graph:

Theorem 5.4.1 (Arman, 20171 [8]). For any graph H with a critical edge and the
chromatic number r + 1 there exists a number ng, such that any H-free graph G with

n > ng vertices and m < t(n,r) — 2rinlnn edges has fewer cycles than T (n,r).

Note, that a form of this theorem is claimed to be correct by Alex Scott [41].



Chapter 6

Future work and extensions

Dr. Robert Craigen |18] mentioned to me that the question of determining the
minimum number of cycles in a graph is also interesting. I have not studied this
question thoroughly, but based on my intuition, I conjecture that for a fixed d the
minimum number of cycles in a graph G on n vertices and with density d is obtained
for a graph, obtained from a tree by identifying each vertex with a vertex of some
clique.

It seems that the number of cycles in a Turdn graph T'(n,r) is not determined
precisely for r > 3. For r > 4, it is not even known what is the exact number of
hamiltonian cycles in T'(n, r). The number of hamiltonian cycles in T'(n, 2), the num-
ber of cycles in T'(n,2) and the asymptotic order of the number of cycles in T'(n, 2)
is determined by myself, Gunderson and Tsaturian [10]. The formulas (that involve

summation) for the number of cycles in T'(n, 3) and T'(n,4) are given by Vrba [50].

95
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Also, a recursive formula for the number of hamiltonian cycles in T'(n,r) was given
by Hordk and Tovarek [28] in 1979. An interesting and maybe easy problem, in my
opinion, is to find the asymptotical order of the number of cycles in T'(n, r) for fixed

r and n tending to infinity.
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