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Abstract. We consider the spread of an infectious disease in a heterogeneous environment,5
modelled as a network of patches. We focus on the invasibility of the disease, as quantified by the6
corresponding value of an approximation to the network basic reproduction number, R0, and study7
how changes in the network structure affect the value of R0. We provide a detailed analysis for two8
model networks, a star and a path, and discuss the changes to the corresponding network structure9
that yield the largest decrease in R0. We develop both combinatorial and matrix analytic techniques,10
and illustrate our theoretical results by simulations with the exact R0.11
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1. Introduction. Advanced science and technology have made our world an in-14

creasingly connected place. Globalization and urbanization bring not only benefits,15

but also attendant consequences such as the spread of emerging and re–emerging infec-16

tious diseases. Historically, plague, cholera and influenza have resulted in millions of17

human deaths, and insight into the spread and control of these diseases has shaped our18

modern society, particularly in medicine and public health. Recent emerging diseases19

such as HIV/AIDS, SARS and Ebola highlight the need for scientific investigations20

of disease spread via transport networks [43]. As disease vectors (e.g., mosquitoes21

and ticks) can also be carried via human/goods transportation, the outbreak and22

spread of vector-borne diseases such as dengue, Lyme disease, malaria, West Nile23

virus, yellow fever, and Zika virus have exhibited strong spatio–temporal patterns24

[15, 22, 26, 37, 40, 41, 42, 47] (also see the recent special issues [31, 39]), partly due25

to the interplay between disease epidemiology and vector ecology. Spatio–temporal26

patterns have also been observed for many waterborne diseases caused by pathogenic27

micro–organisms such as bacteria and protozoa that are transmitted in water/river28

networks [3, 20, 33, 38, 45, 46]. One of the main scientific challenges is to deter-29

mine the connection between disease risk and the change of network structures (as a30

consequence of human behavior and/or environmental uncertainty). Recent studies31

using statistical data from climate, environmental and disease surveillance have shown32

inconsistent and geographically variable results. For example, a discrepancy in the33

correlation with precipitation has appeared in the literature of waterborne diseases:34

a significant positive association between heavy rainfall and waterborne diseases is35

often observed [9, 13, 16, 23, 32] (also see the review paper [30]), while increased36

prevalence of waterborne diseases has also been reported as an unexpected conse-37
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quence of drought [6] and the anthropogenic protection against annual flooding [10].38

Detailed discussions of this discrepancy, as a consequence of human behavior and/or39

climate change, have been surveyed in [4, 29], while rigorous scientific explanations40

and theoretical insights are lacking, due to the complexity and multiple time–scales.41

Many existing studies in the literature have focused on the aggregation of disease42

dynamics at each geographical region (or patch) via a static movement (or commu-43

nity) network, either for the situation where the time scale of the dispersal among44

patches is much faster than the scale of patch demography/disease dynamics, or with45

the focus on monotonicity of disease invasibility with respect to dispersal speed or46

travel frequency; for example, see [1, 8, 17, 18, 19, 44]. Recently, a general result47

on the spectral monotonicity of a perturbed Laplacian matrix in [12] has provided a48

theoretical insight on the aggregation. Specifically, for a square matrix A = Q− µL,49

where Q = diag{qk} is a diagonal matrix encoding within–vertex (within–patch) pop-50

ulation/disease dynamics and L is a Laplacian matrix describing population dispersal51

among patches in a heterogeneous environment (of n patches), the monotonicity and52

convexity of the spectral abscissa of A, s(A), with respect to dispersal speed µ is53

established: ds(A)
dµ ≤ 0 and d2s(A)

dµ2 ≥ 0. The limiting behavior with a faster time54

scale of population/disease dynamics is like the decoupled (no movement) system,55

s(A) = max{qk}, while the limiting behavior with a faster time scale of dispersal is56

the u-weighted average, s(A) =
∑n
k=1 ukqk, where u = (u1, u2, . . . , un)> is the nor-57

malized right null vector of L. As pointed out in [12], these results also are related58

to the reduction principle in evolution biology [2, 25] and the evolution of dispersal59

in patchy landscapes [27]. For many heterogeneous infectious disease models, the60

network basic reproduction number R0, a threshold determining whether the disease61

dies out or persists, can be approximated as the u-weighted average of the individual62

patch reproduction numbers R(k)
0 , R0 =

∑n
k=1 ukR

(k)
0 , when the dispersal among63

geographic regions is faster than the disease/population dynamics; see, e.g., [17, 44]64

for waterborne diseases, [12, 19, 21] for general diseases of SIS or SIR type, and [8]65

for the analog in a continuous spatial landscape.66

In this paper, we investigate the impact of varying community networks on disease67

invasion in a heterogeneous environment. Our motivation comes from the spread of a68

waterborne–disease such as cholera in a heterogeneous network, in which the pathogen69

(the bacterium Vibrio cholerae) moves along water in a hydrological landscape (e.g.,70

a river network) or the host moves between regions. If the network structure changes,71

our goal is to determine how this affects the network basic reproduction number R072

for the spatial spread of the disease. The quantity R0 is important as it usually73

determines a threshold for disease extinction (when R0 < 1) or persistence (when74

R0 > 1), and gives guidance for disease control strategies.75

First, we consider a toy model of a 4–node path graph network with counter–76

intuitive numerical results showing opposite monotonicity of R0 corresponding to a77

bypass from upstream to downstream (e.g., due to flooding). As depicted in Figure 1,78

we consider the spread of a pathogen (e.g., cholera) on a path network of 4 patches79

(vertices) with vertices 1, 2, 3, 4 sequentially located along a river, where vertex 180

is upstream and vertex 4 is downstream. We assume that each nonzero movement81

rate, mij from vertex j to vertex i, on the path has value 1. As shown in [17, 44]82

the associated next generation matrix takes the form K = FV −1 = DqG
−1
W DrG

−1
I ,83

where F is the matrix of new infections, V is the matrix of transitions, Dq = diag{qi},84

GW = diag{δi}+L, Dr = diag{ri} and GI = diag{µi}. Here the parameters qi, δi, ri85

and µi are the linearized indirect transmission rate (from pathogen to host), pathogen86
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 3

decay rate, pathogen shedding rate and decay rate of infectious host individuals in87

patch i, respectively, (i = 1, 2, 3, 4). The matrix L is the 4 × 4 Laplacian matrix88

associated with M , i.e., L = diag{
∑
j 6=imji} −M , where M = (mij) with mij ≥ 089

representing the pathogen/host dispersal from patch j to patch i. Then the exact90

network basic reproduction number is R0 = ρ(FV −1) = ρ(DqG
−1
W DrG

−1
I ), where ρ91

denotes the spectral radius. For simplicity, we set ri/µi = 1, δi = 1 in each patch,92

with the base qi value taken to be q = 0.195. In this case, the basic reproduction93

number in patch i is equal to qi. We consider two scenarios in which the network94

has a “hot spot”, i.e. a vertex i at which the linearized indirect transmission rate95

qi (or equivalently R(i)
0 ) is higher than those of the other vertices, and an arc that96

bypasses the hot spot. In the first case (see the left plot in Figure 1), the hot spot97

is assumed to be located at vertex 2 with an additional bypass downstream from98

vertex 1 to vertex 3 being included, specifically, q1 = q3 = q4 = q, q2 = 10q, and99

L =


1 +m31 −1 0 0
−1 2 −1 0
−m31 −1 2 −1

0 0 −1 1

. In the second case (see the right plot in Figure 1),100

the hot spot is located at vertex 3 and a new bypass from vertex 2 to vertex 4 is101

included with q1 = q2 = q4 = q, q3 = 10q and L =


1 −1 0 0
−1 2 +m42 −1 0
0 −1 2 −1
0 −m42 −1 1

.102
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Fig. 1. With the hot spot at 2, R0 decreases as m31 increases (left plot); with the hot spot at
3, R0 increases as m42 increases (right plot).

In both cases the hot spot is bypassed, in the same direction, but the effects on103

R0 are markedly different, as shown in Figure 1. This unexpected behavior motivates104

our investigation of the effect of network structure on R0.105

The remainder of the article is organized as follows. Some preliminary results are106

provided in section 2. Two different methods, one combinatorial and one algebraic,107

are employed to investigate the impact of varying community networks on disease108

invasion, in sections 3 and 4, respectively. Applications to specific networks are il-109

lustrated in section 5, including an explanation of the counter–intuitive numerical110

results above. Disease control strategies involving varying the community network111

are considered in section 6, and concluding remarks are given in section 7.112
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2. Preliminaries. From consideration of a system of ordinary differential equa-113

tions governing the dynamics of cholera under the assumptions that humans become114

infected through contact with pathogens in the water, and that the water movement115

is faster than the pathogen decay rate, it has been established [17, 44] that R0 is116

approximated (from the exact value, given by the spectral radius of the next gen-117

eration matrix) by a linear combination of the basic reproduction numbers in each118

patch in isolation. The constants in this linear combination are the components of119

the normalized right eigenvector of the Laplacian matrix of the community network.120

The specific aim of this work is to determine how this eigenvector and R0 change with121

alterations in the network structure. We consider a strongly connected network, and122

assume that the network maintains this property when changed.123

To be more precise, let M = (mij) ≥ 0 denote an n × n irreducible matrix rep-124

resenting the pathogen/host movement in a heterogeneous environment of n patches.125

In particular, when 1 ≤ i, j ≤ n are distinct, mij ≥ 0 represents the pathogen/host126

dispersal from patch j to patch i. We assume that mii = 0 for i = 1, . . . , n. Let127

G = G(M) be the weighted digraph associated with M . That is, in G there is an arc128

j → i from vertex j to vertex i of weight mij if and only if mij > 0. Let L be the129

Laplacian matrix of G(M), i.e.,130

(2.1) L = diag
(∑
i 6=1

mi1,
∑
i6=2

mi2, . . . ,
∑
i 6=n

min

)
−M.131

Notice that each column sum of L is 0, and thus 0 is an algebraically simple eigenvalue132

of L (since M is irreducible). Evidently the all ones vector, 1>, is a left null vector for133

L. For each k = 1, . . . , n, let Ckk = det(L(k,k)) be the principal minor of L formed by134

deleting its k–th row and column. Consider the vector u = (u1, u2, . . . , un)>, where135

(2.2) uk =
Ckk
n∑̀
=1

C``

, k = 1, . . . , n.136

Denote the adjugate of L by adj(L), and recall that Ladj(L) = adj(L)L = det(L)I =137

0. Hence adj(L) = x1>, where x is a nonzero vector in the right null space of L. It138

now follows that u is the right null vector of L, normalized so that 1>u = 1.139

As shown in [17, 44] (also see [8]), when the time scale of movement is substan-140

tially larger than the time scale of the disease dynamics, the coefficients uk defined141

above serve as weights to aggregate the disease dynamics from each patch. For this142

reason, uk is called the network risk of patch k. In particular, the network basic re-143

production number R0 can be approximated by the u–weighted average of the patch144

basic reproduction numbers R(k)
0 ; that is,145

(2.3) R0 ≈
n∑
k=1

ukR(k)
0 .146

This expression (2.3) separates the structure of the movement network and the147

within–patch disease dynamics, and thus provides a new approach to investigate the148

impact of changes in the network on disease invasion. Specifically, we first investigate149

how a change to the network structure affects the network risks uk, and then utilize150

the aggregation in (2.3) to understand how varying the network affects the disease151

invasibility (i.e., the value of R0).152

Since uk depends on the cofactor Ckk as in (2.2), it can be expressed in terms153

of the sum of weights of spanning rooted trees [11, 36] by using Kirchhoff’s Matrix–154

Tree Theorem. Calculating the weights of such trees gives a combinatorial method155
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for finding the sign of duk

dmij
, the derivative of uk with respect to a change in the arc156

j → i. This combinatorial approach is developed in section 3, and may be convenient157

for some cases, such as small networks or networks with specific structures.158

In addition, there is a well–established algebraic tool for understanding how159

changes in the movement matrix M affect the entries in the right null vector u of the160

Laplacian matrix L. Since L is a singular and irreducible M–matrix, the eigenvalue 0161

of L is algebraically simple; so, while L is not invertible, it has a group inverse, that162

is, a unique matrix L# such that LL# = L#L,LL#L = L, and L#LL# = L#. The163

group inverse has been used effectively to analyse how changes in an irreducible non-164

negative matrix affect its Perron eigenvalue and eigenvector (see for example [14, 34])165

and our results in section 4 are informed by that approach. We refer the interested166

reader to [7] for background on generalized inverses in general, and to [28] for the use167

of the group inverses in the study of M–matrices in particular.168

With the group inverse method developed in generality, in section 5.1, we illustrate169

this method with a star network in which one patch is the hub connected to several leaf170

vertices. Such a network structure is appropriate as a model for a large city connected171

to smaller cities or suburbs, with humans commuting in each direction. Then in172

section 5.2, we illustrate the general results for a path network, which models cholera173

outbreaks in communities living along a river. For these two network structures, we174

consider control strategies for restricted cases of the two networks (section 6), and175

derive results on how changes to the network can help to minimize disease invasion.176

3. Combinatorial method: counting spanning rooted trees. It follows177

from Kirchhoff’s Matrix–Tree Theorem [11, 36] that the cofactor of the (k, k) entry178

of L can be interpreted in terms of spanning rooted trees:179

(3.1) Ckk =
∑
T ∈Tk

w(T ) =: Wk,180

where Tk is the set of spanning in–trees rooted at vertex k and w(T ) =
∏

(j,i)∈E(T )

mij181

is the weight of a spanning in–tree T rooted at k. The notation Wk introduced in182

(3.1) is convenient for tracking how uk = Wk∑
`W`

, defined in (2.2), behaves as the183

network structure changes. Specifically, we consider a small change of the mij value184

(for a fixed ordered pair (i, j)) in the movement network, say mij → mij + ε, and185

explore how the value of uk responds; to do so, we focus on the sign of duk

dmij
. (We186

note in passing that if mij is zero, we only consider positive values of ε, and in that187

setting duk

dmij
is interpreted as the derivative from the right.) Notice that such a change188

mij → mij + ε affects two entries of L; the (i, j) entry and the (j, j) entry.189

Before establishing our main results, we introduce some additional notation and190

tools from matrix theory and graph theory. Let L(ij,k`) denote the matrix obtained191

from L by deleting the i–th and j–th rows and k–th and `–th columns. Let W ij
k192

denote the sum of the weights of all spanning in–trees rooted at k containing the arc193

j → i, and let W∼ijk denote the sum of the weights of all spanning in–trees rooted at194

k that do not contain the arc j → i. Notice that Wk = W ij
k +W∼ijk .195

First we prove the following two lemmas.196

Lemma 3.1. Assume i 6= j. Then197

(3.2) W ij
k = mij |det(L(ij,kj))|.198

Proof. From the all–minors Matrix–Tree Theorem [11], |det(L(ij,kj))| is the sum199

of the weights of all spanning forests F that contain exactly two in–tree components,200
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one rooted at k containing vertex i and the other rooted at j. Adding the arc j →201

i of weight mij in F , yields a spanning in–tree T rooted at k containing j → i;202

in particular, mijw(F) = w(T ). The identity (3.2) follows after performing this203

operation for all spanning forests.204

We note here that strictly speaking, the right side of (3.2) is not defined in the205

case that k = j. However, we may adopt the convention that det(L(ij,kk)) = 0, and206

then (3.2) will also hold when k = j.207

Lemma 3.2. Let Wk = Ckk = det(L(k,k)). Then, for any i 6= j,208

(3.3)
dWk

dmij
= |det(L(ij,kj))|.209

Proof. Straightforward calculations, along with (3.2), yield210

dWk

dmij
= lim
ε→0

(W ij
k +W∼ijk )|mij+ε − (W ij

k +W∼ijk )|mij

ε
211

= lim
ε→0

(mij + ε)|det(L(ij,kj))|+W∼ijk −mij |det(L(ij,kj))| −W∼ijk

ε
212

= |det(L(ij,kj))|,213214

resulting in (3.3).215

As with (3.2), when k = j, we interpret both sides of (3.3) as being zero.216

In particular, if mij > 0 for i 6= j, it follows from Lemmas 3.1 and 3.2 that217

(3.4)
dWk

dmij
=
W ij
k

mij
.218

219 Now we are ready to prove the main result arising from this combinatorial method.220

Theorem 3.3. For any given k, i, j, i 6= j,221

(3.5) sgn
( duk
dmij

)
= sgn

(∣∣det(L(ij,kj))
∣∣∑
` 6=k

W` −Wk

∑
6̀=k

∣∣ det(L(ij,`j))
∣∣).222

If, in addition, mij > 0, then223

(3.6) sgn
( duk
dmij

)
= sgn

(
W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
6̀=k

W ij
`

)
.224

Proof. Taking the derivative on both sides of (2.2) with respect to mij yields225

(3.7)
duk
dmij

=
1

(
∑
`W`)2

( dWk

dmij

∑
`

W` −Wk

∑
`

dW`

dmij

)
.226

Substituting (3.3) into (3.7), after the cancellation of the case ` = k, yields (3.5).227

Additionally, if mij > 0, then it follows from (3.4) that228

duk
dmij

=
1

(
∑
`W`)2

(W ij
k

mij

∑
` 6=k

W` −Wk

∑
` 6=k

W ij
`

mij

)
(3.8)229

=
1

mij(
∑
`W`)2

(
W ij
k

∑
` 6=k

(W ij
` +W∼ij` )− (W ij

k +W∼ijk )
∑
` 6=k

W ij
`

)
(3.9)230

=
1

mij(
∑
`W`)2

(
W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
` 6=k

W ij
`

)
,(3.10)231

232

resulting in (3.6).233
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The sign identities (3.5) and (3.6) characterize how the network risk at patch k234

changes as a function of the movement from patch j to patch i. If more information235

on the movement network is provided, the exact sign of duk

dmij
may be able to be236

determined. If patch k is the head of the altered arc j → i (i.e., j = k), then the sign237

of the change in the network risk duk

dmij
is determined in the following result, regardless238

of the network structure.239

Theorem 3.4. For any given k, i, i 6= k,
duk
dmik

< 0.240

Proof. Since there is no spanning in–tree rooted at k that contains the arc k → i241

(i.e., leaving the root vertex k), W ij
k = 0. It follows from the irreducibility of M that242

there exists at least one spanning in–tree rooted at k, which certainly does not contain243

the arc k → i; thus W∼ikk > 0. If mik > 0, then there exists at least one vertex ` 6= k244

at which a spanning in–tree containing k → i is rooted, and hence W ik
` > 0. It follows245

from (3.6) that duk

dmik
< 0.246

If mik = 0, then (3.5) can be utilized to establish the result. Specifically, there247

is no spanning forest of two components both of which are rooted at k, which is248

reflected in our convention that det(L(ij,kk)) = 0. Similarly, the irreducibility of M249

implies that Wk > 0 and |det(L(ij,`k))| > 0 for some ` 6= k.250

Notice that none of the in–trees rooted at k include the arc k → i, so any increase251

of mik does not alter Wk but increases all other W`, ` 6= k. Consequently, all terms252

in the first sum of (3.5) or (3.6) vanish, as shown in the proof of Theorem 3.4. In253

contrast, perturbations of mkj change Wk and other W`, ` 6= k, which requires more254

discussion.255

If patch k is the tail of the altered arc j → i (i.e., k = i), and the restriction is256

added that the only path from j to k is the arc j → k, then the proof of the following257

result proceeds by an analysis similar to that used to prove Theorem 3.4.258

Theorem 3.5. For any given k, j, j 6= k, if the arc j → k is the only path from259

j to k, then W∼kjk = 0, and
duk
dmkj

> 0.260

In section 4, we generalize Theorem 3.5 by using the group inverse to remove the261

restriction on the number of paths from j to k.262

4. Algebraic method: computing the group inverse. Suppose that L is an263

irreducible Laplacian matrix with zero column sums, as in (2.1). Recall from section264

2 that there is a unique group inverse L# such that LL# = L#L, LL#L = L, and265

L#LL# = L#. The left and right null spaces of L are necessarily one–dimensional,266

and are spanned by 1
> and u, respectively, where u = (u1, . . . , un)T is the right null267

vector of L, normalized so that 1>u =
∑n
i=1 ui = 1. From Corollary 7.2.1 of [7], it268

now follows that L#L = I − u1>.269

Consider a perturbation L̃ = L + E of L such that L̃ is also a singular and270

irreducible M–matrix with 1
>L̃ = 0. We seek the normalized right null vector of L̃;271

i.e., the vector ũ such that L̃ũ = 0 and 1
>ũ = 1. Since (L + E)ũ = 0, we have272

L#(L + E)ũ = 0, and hence (I − u1>)ũ + L#Eũ = 0. Thus (I + L#E)ũ = u. Since273

I + L#E is invertible (see [34], or Lemma 5.3.1 in [28]), this gives274

(4.1) ũ =
(
I + L#E

)−1
u.275

At the end of this section, we provide an explicit expression for L#.276

The following technical result is useful in proving Theorem 4.2 below.277
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Lemma 4.1 ([24, 35]). Let x and y be column vectors of dimension n. If y>x 6=278

−1, then (I + xy>)−1 = I − 1
1+y>x

xy>.279

Here is one of the main results in this section.280

Theorem 4.2. Let L be an irreducible M–matrix as defined in (2.1).281

a) Suppose that L + εF is an irreducible M–matrix with 1
>F = 0 for all ε in a282

neighborhood of 0. Then the directional derivative of u with respect to F is −L#Fu.283

b) Perturb mij → mij +ε (where ε ≥ 0 when mij = 0) with 1 ≤ i 6= j ≤ n, and denote284

the corresponding right null vector for the Laplacian (normalized to have sum 1) by285

ũ. Then for k = 1, . . . , n,286

(4.2) ũk − uk = − ε uje
>
k L

#(ej − ei)
1 + ε e>j L

#(ej − ei)
= −

εuj(L
#
kj − L

#
ki)

1 + ε(L#
jj − L

#
ji)
.287

Moreover,288

(4.3)
duk
dmij

= −uje>k L#(ej − ei) = −uj(L#
kj − L

#
ki), k = 1, . . . , n,289

and
1

uj

duk
dmij

= − 1

ui

duk
dmji

, k = 1, . . . , n.290

Proof. a) For ε sufficiently small,291

(4.4)
(
I + εL#F

)−1
= I − εL#F +O(ε2).292

Taking E = εF in (4.1) and using (4.4) yields293

(4.5) ũ = (I + L#E)−1u =
(
I − εL#F

)
u+O(ε2) = u− εL#Fu+O(ε2).294

Hence limε→0
ũ−u
ε = −L#Fu, as desired.295

296

b) Set E = ε(−ei + ej)e
>
j . From (4.1), it follows that ũ =

(
I + L#E

)−1
u, and297

Lemma 4.1 gives
(
I +L#E

)−1
= I − ε

1+εe>j L
#(−ei+ej)

L#(−ei + ej)e
>
j . (Observe that298

since I + εL#(−ei + ej)e
>
j is invertible, 1 + εe>j L

#(−ei + ej) = det(I + εL#(−ei +299

ej)e
>
j ) 6= 0.) The conclusions now follow readily.300

Next we discuss how to find L#. From the hypotheses on L, it is easy to see that301

L may be partitioned as302

L =

(
1̄
>z −1̄>B
−z B

)
303

where B is an (n − 1) × (n − 1) invertible matrix, u1 is the first entry of u, ū =304

(u2, . . . , un)>, z =
1

u1
Bū, and 1̄ is the all ones column vector of dimension n− 1.305

It follows from Observation 2.3.4 of [28] that306

(4.6) L# = (1̄>B−1ū)u1> +

(
0 −u11̄>B−1

−B−1ū B−1 −B−1ū1̄> − ū1̄>B−1
)
.307

Suppose that 1 ≤ i < j ≤ n; partitioning out the first entry as above gives308

(4.7)

L#(ej − ei) =



(
−u11̄>B−1ej−1

B−1ej−1 − ū1̄>B−1ej−1

)
, if i = 1,(

−u11̄>B−1(ej−1 − ei−1)

B−1(ej−1 − ei−1)− ū1̄>B−1(ej−1 − ei−1)

)
, if 2 ≤ i ≤ n.

309
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From (4.7), we find that e>1 L
#(e1 − ej) > 0, j = 2, . . . , n. The rows and columns of L310

can be simultaneously permuted to place any index in the first position, and hence311

(4.8) L#
jj − L

#
ji > 0, i, j = 1, . . . , n, i 6= j.312

Suppose that 1 ≤ i < j ≤ n. If we perturb mij → mij + ε (where ε ≥ 0 when313

mij = 0), it follows from (4.2) and (4.7) that314

ũ1 − u1 =


εu1uj 1̄

>B−1ej−1

1 + εe>j−1
(
B−1ej−1 − ū1̄>B−1ej−1

) , i = 1,

εu1uj1̄
>B−1(ej−1 − ei−1)

1 + εe>j−1
[
B−1(ej−1 − ei−1)− ū1̄>B−1(ej−1 − ei−1)

] , 2 ≤ i ≤ n.
315

For 2 ≤ ` ≤ n, we have316

ũ` − u` =


−
εuje

>
`−1
(
B−1ej−1 − ū1̄>B−1ej−1

)
1 + εe>j−1

(
B−1ej−1 − ū1̄>B−1ej−1

) , i = 1,

−
εuje

>
`−1
[
B−1(ej−1 − ei−1)− ū1̄>B−1(ej−1 − ei−1)

]
1 + εe>j−1

[
B−1(ej−1 − ei−1)− ū1̄>B−1(ej−1 − ei−1)

] , 2 ≤ i ≤ n.
317

Remark 4.1. By considering (4.3) and (4.8) for the cases j = k and i = k, we318

find an alternate proof for Theorem 3.4, and an extension of Theorem 3.5 that goes319

through without the path restriction.320

5. Applications to specific networks. In this section, we apply our general321

results to two different networks: a star network for human transportation between322

one hub and several leaves, and a path network for communities along a river.323

5.1. Star network. First, we consider a star network with vertex 1 as the hub,324

and 2, 3, . . . , n as leaf vertices, with corresponding weights m1j ,mj1 > 0, j = 2, . . . , n.325

Assuming that a new arc from leaf j > 1 to leaf i > 1 is added, the following result326

shows that the direction of change of the network risk uk at any other vertex (i.e.,327

k 6= i, k 6= j) depends only on m1i and m1j .328

Theorem 5.1. For a star network, let i, j be any two distinct leaf vertices and k329

be another vertex. Then sgn
(
duk

dmij

)
= sgn(m1i −m1j).330

To illustrate both combinatorial and algebraic methods in sections 3 and 4, we331

prove the above result using two different approaches.332

Combinatorial Proof of Theorem 5.1: By Theorem 3.3, it suffices to determine the333

sign of334

(5.1) W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
` 6=k

W ij
` ,335

which involves the weights of certain specific spanning rooted trees. As depicted in336

Figure 2, W ij
k = mk1m1imij

∏
sm1s and W∼ijk = mk1m1im1j

∏
sm1s, where s takes337

all values except 1, k, i, j, corresponding to the unique spanning in–tree rooted at k338

that contains the arc j → i and does not contain the arc j → i, respectively. Now339

we consider spanning in–trees rooted at ` 6= k, containing j → i or not, which con-340

tributes terms appearing in the sums of (5.1). Specifically, we consider three cases:341

` = i, ` = j, and all other possible values (i.e., ` = r, where r 6= k, i, j). As de-342

picted in Figure 2, W∼iji = mi1m1jm1k

∏
sm1s, W

∼ij
j = mj1m1im1k

∏
sm1s, W

∼ij
r =343
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mr1m1im1jm1k

∏
sm1s/m1r; W

ij
i = mi1mijm1k

∏
sm1s +mijmj1m1k

∏
sm1s,344

W ij
j = 0, W ij

r = mr1m1imijm1k

∏
sm1s/m1r. Here s takes all values except 1, k, i, j,345

and notice that there are two spanning in–trees rooted at i containing j → i while no346

spanning in–tree rooted at j contains j → i. There is immediate cancellation in (5.1)347

since W ij
k W

∼ij
r = W∼ijk W ij

r , for all r. After simplification, (5.1) becomes348

W ij
k

∑
` 6=k

W∼ij` −W∼ijk

∑
6̀=k

W ij
` = W ij

k [W∼iji +W∼ijj ]−W∼ijk [W ij
i +W ij

j ]349

= mk1m1imij

∏
s

m1s

[
mi1m1jm1k

∏
s

m1s +mj1m1im1k

∏
s

m1s

]
350

−mk1m1im1j

∏
s

m1s

[
mi1mijm1k

∏
s

m1s +mijmj1m1k

∏
s

m1s

]
351

= mk1m1imj1m1kmij

(∏
s

m1s

)2
(m1i −m1j),352

353
completing the proof. �354

W ij
k

1

i

j

k

W∼iji

1

i

j

k

W∼ijj

1

i

j

k

W∼ijr

1

i

j

k

r

W∼ijk

1

i

j

k

W ij
i

1

i

j

k

1

i

j

k

W ij
r

1

i

j

k

r

Fig. 2. Spanning rooted trees with certain specific restrictions in a star network (1 is the hub).

Notice that there is no spanning in–tree rooted at j that contains the arc j → i, so W ij
j = 0.

Algebraic Proof of Theorem 5.1: Consider a star network with vertex 1 as the hub,355

and 2, 3, . . . , n as leaf vertices. From the hypothesis,356

(5.2) L =



∑
i 6=1mi1 −m12 −m13 . . . −m1n

−m21 m12 0 . . . 0
−m31 0 m13 . . . 0

...
...

−mn1 0 0 . . . m1n

357

For concreteness, consider i = 2 and j = 3. It follows from (4.3) that358

(5.3)
du

dm23
= −u3L#(−e2 + e3).359

To determine the sign of du
dm23

, we need to compute the right hand side of (5.3).360

As u3 > 0, sgn
(

du
dm23

)
= sgn(−L#(−e2 + e3)). Since B = diag(m12, . . . ,m1n) is361

diagonal, u11̄
>B−1(−e1 + e2) = u1

(
− 1
m12

+ 1
m13

)
, which implies that362
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(B−1 − ū1̄>B−1)(−e1 + e2) =


− 1
m12
1
m13

0
...
0

−

u2
u3
u4
...
un


(
− 1

m12
+

1

m13

)
.363

So364

−L#(−e2 + e3) = −



−u1
(
− 1

m12
+ 1

m13

)

− 1
m12
1
m13

0
...
0

−

u2
u3
u4
...
un


(
− 1

m12
+ 1

m13

)

.365

Thus,366

sgn(ũ1 − u1) = sgn(m12 −m13),

sgn(ũ2 − u2) = −sgn
(−m13 − u2(m12 −m13)

m12m13

)
= sgn(m13 + u2(m12 −m13)),

sgn(ũ3 − u3) = −sgn
(m12 − u3(m12 −m13)

m12m13

)
= sgn(−m12 + u3(m12 −m13)),

sgn(ũ` − u`) = sgn
(u`(m12 −m13)

m12m13

)
= sgn(m12 −m13), ` = 4, . . . , n.

367

�368

Corollary 5.2. For a star network with vertex 1 as the hub, the direction of369

change of the the network risk uk is given by the following:370

sgn

(
duk
dmij

)
= sgn(m1i −m1j), k 6= i, j, i 6= 1, j 6= 1,

sgn

(
dui
dmij

)
> 0, sgn

(
duj
dmij

)
< 0.

(5.4)371

5.2. River network. Consider a path network with vertices labeled 1, 2, 3, . . . , n372

consecutively located along a river, where 1 denotes the vertex that is farthest up-373

stream and n is the vertex that is farthest downstream. Suppose further that the374

associated movement matrix M is constant along its superdiagonal and constant375

along its subdiagonal. (This corresponds to constant dispersal rates for upstream376

and downstream movement.) The corresponding Laplacian matrix L̂ is given by377

(5.5) L̂ =



a −b 0 · · · 0 0
−a a+ b −b · · · 0 0
0 −a a+ b · · · 0 0
...

...
0 0 0 · · · a+ b −b
0 0 0 · · · −a b


378

for a > 0 and b > 0. It suffices to consider the case that a ≥ b; see the supplementary379

material for a justification. Henceforth we restrict to the case that a ≥ b.380
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Setting α = a
b yields381

(5.6) L̂ = b



α −1 0 · · · 0 0
−α α+ 1 −1 · · · 0 0
0 −α α+ 1 · · · 0 0
...

...
0 0 0 · · · α+ 1 −1
0 0 0 · · · −α 1


:= bL.382

Our assumption that a ≥ b gives α ≥ 1, and we note that this fits with our interpre-383

tation of 1 being an upstream vertex and n being a downstream vertex. It is readily384

verified that the vector u = (u1, u2, . . . , un)> =
1∑n−1

`=0 α
`
(1, α, α2, . . . , αn−1)> is the385

right null vector of L normalized so that 1>u = 1. Let B denote the principal sub-386

matrix of L formed by deleting the first row and column. A proof by induction on n387

shows that the (k, j) entry of B−1 is given by388

e>k B
−1ej =

{
1 + α+ α2 + · · ·+ αk−1, 1 ≤ k ≤ j ≤ n− 1,

αk−j(1 + α+ α2 + · · ·+ αj−1), 1 ≤ j < k ≤ n− 1.
389

It can be shown by induction on n that the sum of the entries in column j of B−1 is390

1
>B−1ej = j

n−j−1∑
`=0

α` +

n−2∑
`=n−j

(n− 1− `)α`, j = 1, 2, . . . , n− 1391

where the empty sum is interpreted as zero.392

The following is straightforward.393

Lemma 5.3. Suppose that m ≥ 0 and n ∈ N. Then394 (
m∑
`=0

α`

)(
n−1∑
`=0

α`

)
=

m∑
`=0

(`+ 1)α` + (m+ 1)

n−1∑
`=m+1

α` +

n+m−1∑
`=n

(n+m− `)α`.395

The following can be deduced from (4.7) and our expression for B−1.396

Lemma 5.4. For a path network, if 1 ≤ i < j ≤ n, then397

L#
jj − L

#
ji =

∑j−i−1
`=0 (`+ 1)α` + (j − i)

∑j−2
`=j−i α

`∑n−1
`=0 α

`
.398

Lemmas 5.3 and 5.4, along with (4.7) establish the following result.399

Theorem 5.5. On a path network, if 1 ≤ k ≤ j ≤ n, then400

e>k L
#(ej − e1) =401

1∑n−1
`=0 α

`

k−2∑
`=0

(`+ 1)α` − (j − k)

n+k−j−1∑
`=k−1

α` −
n−2∑

`=n−j+k

(n− `− 1)α`

 .402

For j < k ≤ n,403

e>k L
#(ej − e1) = αk−je>j L

#(ej − e1) =
αk−j∑n−1
`=0 α

`

(
j−2∑
`=0

(`+ 1)α`

)
.404

405
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Theorem 5.5 yields the following result.406

Corollary 5.6. For 1 ≤ k ≤ j − 1,407

(e>k+1 − e>k )L#(ej − e1) =
αk−1∑n−1
`=0 α

`

(
j +

n−j∑
`=1

α`

)
> 0.408

For j ≤ k ≤ n− 1, (e>k+1− e>k )L#(ej − e1) =
αk−j∑n−1
`=0 α

`

(∑j−2
`=0(`+ 1)α`

)
(α− 1) > 0.409

Remark 5.1. Set L̃ = L + ε(ej − e1)e>j with 1 < j ≤ n and ε > 0 so that410

ũ− u = −cL#(ej − e1) where c =
εuj

1+ε(L#
jj−L

#
j1)

> 0 by Theorem 4.2 b). By Theorem411

5.5, ũ1−u1 > 0 and ũk−uk < 0, j ≤ k ≤ n. It follows from Corollary 5.6 that ũk−uk412

is decreasing in k if α > 1. If α = 1, ũk − uk is decreasing in k for 1 ≤ k ≤ j and413

constant for j ≤ k ≤ n.414

Next we consider L#(ej − ei) for j, i > 1. The proofs again rely on (4.7) and our415

expression for B−1.416

Lemma 5.7. For a path network with 2 ≤ i < j ≤ n,417

e>k B
−1(ej−1 − ei−1) =


0, if 1 ≤ k ≤ i− 1,∑k−i
`=0 α

`, if i− 1 < k ≤ j − 1,

αk−j+1
∑j−i
`=0 α

`, if j − 1 < k ≤ n,

418

Theorem 5.8. On a path network, if 2 ≤ i < j ≤ n, then419

e>k L
#(ej − ei) = − αk−1∑n−1

`=0 α
`

(j − i)
n−j∑
`=0

α` +

n−i−1∑
`=n−j+1

(n− i− `)α`
420

for 1 ≤ k ≤ i. For i < k ≤ j,421

e>k L
#(ej − ei) =

1∑n−1
`=0 α

`

(
k−i−1∑
`=0

(`+ 1)α` + (k − i)
k−2∑
`=k−i

α`422

− (j − k)

n+k−j−1∑
`=k−1

α` −
n−2∑

`=n−j+k

(n− 1− `)α`
 .423

For j < k ≤ n, e>k L
#(ej − ei) = αk−je>j L

#(ej − ei) = αk−j∑n−1
`=0 α

`

(∑j−i−1
`=0 (`+ 1)α`424

+(j − i)
∑j−2
`=j−i α

`
)
.425

Corollary 5.9. If 2 ≤ i < j ≤ n, then (ek+1 − e>k )L#(ej − ei) =426 

− αk−1∑n−1
`=0 α

`

(j − i)

n−j∑
`=0

α` +

n−i−1∑
`=n−j+1

(n− i− `)α`

 (α− 1) ≥ 0, 1 ≤ k ≤ i− 1,

1∑n−1
`=0 α

`

(
i−2∑
`=0

α` + (j − i+ 1)αi−1 +

n+i−j−1∑
`=i

α`

)
> 0, k = i,

1∑n−1
`=0 α

`

(
k−2∑

`=k−i

α` + (j − i+ 1)αk−1 +

n+k−j−1∑
`=k

α`

)
> 0, i < k ≤ k + 1 ≤ j,

αk−j∑n−1
`=0 α

`

(
j−2∑
`=0

(l`+ 1)α`

)
(α− 1) ≥ 0, j ≤ k ≤ n− 1.

427
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Remark 5.2. Let 2 ≤ i < j ≤ n and ε > 0. Set L̃ = L + ε(ej − ei)e>j . It follows428

from Theorem 4.2 b) that429

(5.7) ũ− u = −cL#(ej − ei)430

where c =
εuj

1+ε(L#
jj−L

#
ji)

> 0 (observe that L#
jj−L

#
ji > 0 by (4.8)). In view of Theorem431

5.8, we see that432

ũk − uk =


cαk−1∑n−1
`=0 α

`

(
(j − i)

∑n−j
`=0 α

` +
∑n−i−1
`=0 (n− i− `)α`

)
> 0, 1 ≤ k ≤ i,

−cαk−j∑n−1
`=0 α

`

(∑j−i−1
`=0 (`+ 1)α` + (j − i)

∑j−2
`=j−i α

`
)
< 0, j ≤ k ≤ n.

433

Observe that if i ≥ 2 and 1 ≤ k ≤ n − 1, (ũk+1 − uk+1) − (ũk − uk) = −c(ek+1 −434

e>k )L#(ej − ei). It now follows from Corollary 5.9 that if α > 1, then (ũk+1−uk+1)−435

(ũk − uk) < 0. Hence, if α > 1 then ũk − uk is decreasing as a function of k for436

1 ≤ k ≤ n.437

Assume that a new arc from vertex j to vertex i is added, where i < j; the438

following result shows that the network risk uk decreases at all vertices downstream439

from j and increases at all vertices upstream from i. The result follows readily from440

Theorems 4.2 and 5.8.441

Theorem 5.10. Consider a path network, and suppose that 1 ≤ i < j ≤ n. For442

any k ≤ i, sgn( duk

dmji
) < 0, while for any j < k, sgn( duk

dmji
) > 0.443

For the vertices k between j and i (i.e., i < k < j), the change of the network444

risk uk depends on the position of the vertices as well as the magnitude of mij .445

We now revisit the toy model of a path graph network described in section 1.446

Example 1. In this example we show how the results developed in section 4 yield447

insight into the toy example presented in Figure 1. We suppose that the time scale of448

movement greatly exceeds that of the disease dynamics, so that the asymptotic approx-449

imation R0 =
∑4
k=1 ukqk applies, where u denotes the null vector of the Laplacian450

matrix L, normalised so that
∑4
k=1 uk = 1. Taking α = 1 yields451

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , and L# = 1
8


7 1 −3 −5
1 3 −1 −3
−3 −1 3 1
−5 −3 1 7

 . A bypass from452

vertex 1 to vertex 3 corresponds to the perturbing matrix E = m31(e1 − e3)e>1 , and453

a computation now reveals that the normalised null vector of the perturbed Laplacian454

matrix is given by ũ = 1
41 −

m31

16+20m31


5
1
−3
−3

 . If the hot spot is at vertex 2, with455

qi = q, i = 1, 3, 4, q2 = 10q, then R0 =
∑4
k=1 ũkqk = q( 13

4 −
9m31

16+20m31
); evidently this456

is decreasing and concave down as a function of m31, as is clearly reflected in Figure457

1 (left plot) by computing R0 numerically.458

Next, considering a bypass from vertex 2 to vertex 4, (so that E is given by459

m42(e2 − e4)e>2 ) an analogous argument shows that ũ = 1
41 −

m42

16+12m42


3
3
−1
−5

 .460
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With vertex 3 as the hot spot and qi = q, i = 1, 2, 4, q3 = 10q, it now follows that461 ∑4
k=1 ũkqk = q( 13

4 + 9m42

16+12m42
). Evidently this last is increasing and concave down as462

a function of m42, as depicted in Figure 1 (right plot).463

Alternatively, as uk encodes the weights of spanning in–trees rooted at k, as shown464

in section 3, both bypasses (from vertex 1 to vertex 3 or from vertex 2 to vertex 4)465

increase u1 and u2 but decrease u3 and u4. For example, with the bypass from vertex466

1 to vertex 3 of weight m31, we have467

u1 =
m12m23m34

∆
=

1

4 + 5m31
=

1

4
−

5
4m31

4 + 5m31
,468

u2 =
m21m23m34 +m23m31m34

∆
=

1 +m31

4 + 5m31
=

1

4
−

1
4m31

4 + 5m31
,469

u3 =
m34m32m21 +m34m31m12 +m34m31m32

∆
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,470

u4 =
m43m32m21 +m43m32m31 +m43m31m12

∆
=

1 + 2m31

4 + 5m31
=

1

4
+

3
4m31

4 + 5m31
,471

472

where ∆ is the sum of weights of spanning in–trees rooted at any vertex, that is, ∆ =473

m12m23m34 +m21m23m34 +m23m31m34 +m34m32m21 +m34m31m12 +m34m31m32 +474

m43m32m21 + m43m32m31 + m43m31m12 = 4 + 5m31. A location of a hot spot at475

vertex 1 or 2 leads to the decrease of R0 due to the bypass, while a hot spot at vertex476

3 or 4 leads to the increase of R0.477

Example 2. Consider a path network on 5 vertices with an additional arc from478

vertex 2 to vertex 4 being added. All other settings are the same as in Example 1.479

Figure 3 shows how R0 responds to this addition in the scenarios of the disease hot480

spot, located at various different vertices. It turns out that when vertex 3 is the hot481

spot, there is no change in R0, no matter how large the value of m24 is. When the482

time scale of movement greatly exceeds that of the disease dynamics, the results of483

sections 3 and 4 explain Figure 3. For example, the bypass decreases u1 and u2 but484

increases u4 and u5. Therefore, a hot spot at vertex 1 or 2 leads to a decrease of R0485

while a hot spot at vertex 3 or 4 leads to an increase of R0, due to the bypass.486

1 2 3 4 5

m42

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25
Hotspot at 1

0 2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1
Hotspot at 2

0 2 4 6 8 10 12 14
0.92

0.94

0.96

0.98

1
Hotspot at 3

0 2 4 6 8 10 12 14

1

1.05

1.1
Hotspot at 4

0 2 4 6 8 10 12 14
1

1.05

1.1

1.15

1.2

1.25

1.3
Hotspot at 5

Fig. 3. The impact of a bypass in a path network of 5 vertices.
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Motivated by the observation made in Example 2 for the case that vertex 3 is487

the hot spot, we use the exact network basic reproduction number to prove a general488

result below, from which the observation is readily recovered.489

Theorem 5.11. Suppose that M is an irreducible movement matrix and that L490

is the corresponding Laplacian matrix. Let c > 0 and V = L + cI. Suppose further491

that there is a permutation matrix Q and indices i, j such that: a) F and L both492

commute with Q, and b) Qej = ei. Then for any ε > 0, the basic reproduction numbers493

corresponding to M and M + ε(ej − ei)e>j are equal.494

Proof. Let E = ε(ej−ei)e>j . The network basic reproduction number correspond-495

ing to M is ρ(FV −1), while that corresponding to the perturbed network M + E is496

ρ(F (V + E)−1). We have497

(5.8) F (V + E)−1 = FV −1
(
I + ε(ej − ei)e>j V −1

)−1
.498

Observe that V is a column diagonally dominant M–matrix. From Lemma 3.14499

in Chapter 9 of [5], it follows that the maximum entry in any row of V −1 occurs on500

the diagonal. In particular, e>j V
−1(ej − ei) ≥ 0. It now follows that501 (

I + ε(ej − ei)e>j V −1
)−1

= I − ε

1 + εe>j V
−1(ej − ei)

(ej − ei)e>j V −1.(5.9)502

Substituting (5.9) into (5.8) yields503

F (V + E)−1 = FV −1

[
I − ε

1 + εe>j V
−1(ej − ei)

(ej − ei)e>j V −1
]

504

= FV −1 −
εFV −1(ej − ei)e>j V −1

1 + εe>j V
−1(ej − ei)

.505

506

Next, consider a positive left Perron vector y for FV −1, i.e. y>FV −1 = R0y
>.507

Since F and V both commute with Q, so does FV −1. Consequently, y>QFV −1Q> =508

R0y
>, implying that (y>Q)FV −1 = R0(y>Q). Hence y>Q is also a left Perron vector509

for FV −1. Since that Perron vector is unique up to a scalar multiple, we find that510

necessarily y>Q = y>. In particular, yi = y>Qej = y>ej = yj .511

Now consider512

y>F (V + E)−1 = y>FV −1 −
εy>FV −1(ej − ei)e>j V −1

1 + εe>j V
−1(ej − ei)

513

= R0y
> −

εR0(yj − yi)e>j V −1

1 + εe>j V
−1(ej − ei)

= R0y
>.514

515

Hence y is a positive left eigenvector of F (V + E)−1, (with corresponding eigen-516

value R0), from which it follows that F (V + E)−1 has y as a left Perron vector and517

R0 as its Perron value.518

Remark 5.3. Inspecting the proof of Theorem 5.11, we find that the conclusion519

holds also for negative values of ε, provided that ε > −mij and ε > − 1
e>j V

−1(ej−ei)
.520

As an application of Theorem 5.11, consider a river network on 2k + 1 vertices521

with α = 1, and suppose that F is the diagonal matrix whose `–th diagonal entry is522

1 for ` 6= k + 1, and whose k + 1–st diagonal entry is x > 1. Setting V = L + cI for523
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some c > 0, we see that V and F commute with the “back diagonal” permutation524

matrix P , where the (`, 2k+ 2− `) entry of P is 1 for ` = 1, . . . , 2k+ 1. Fix an index525

j = 1, . . . , 2k + 1, and note that Pej = e2k+2−j . From the above theorem, for any526

ε > 0, the basic reproduction numbers associated with the movement matrices M and527

M + ε(ej − e2k+2−j)e
>
j are equal. In particular, for a river network on 5 vertices with528

α = 1, adding a weighted arc from vertex 4 to vertex 2 does not affect the value of R0.529

This justifies the observation made in Example 2 for the hot spot locating at vertex530

3.531

6. Control strategies. The techniques developed in sections 3 and 4 inform532

a strategy for controlling invasibility. Given an irreducible movement matrix M ,533

the control strategy corresponds to a perturbation of M, say M + E which is also534

irreducible and nonnegative. Denoting the corresponding Laplacian matrices and535

normalized right null vectors by L, u and L̃, ũ respectively, we find that the associated536

network basic reproduction numbers are approximately R0 =
∑n
k=1 ukR

(k)
0 and R̃0 =537 ∑n

k=1 ũkR
(k)
0 . Our goal is then to find a suitable perturbing matrix E so as to ensure538

that R̃0 −R0 is negative and, ideally, large in absolute value.539

From the results in section 4, we find that540

(6.1) R̃0 −R0 =

n∑
k=1

(ũk − uk)R(k)
0 =

n∑
k=1

e>k ((I + L#E)−1 − I)uR(k)
0 .541

In particular, for a perturbing matrix E, the effectiveness of the corresponding control542

strategy in mitigating the invasion can be quantified using (6.1).543

In this section, we focus on a restricted set of perturbations: for distinct indices544

i, j and fixed ε, we consider the effect of increasing the movement rate from patch j545

to patch i from mij to mij + ε. In this case, (6.1) simplifies considerably: from the546

results of section 4, it follows that in this restricted setting,547

(6.2) R̃0 −R0 = − εuj

1 + ε(L#
jj − L

#
ji)

n∑
k=1

(L#
kj − L

#
ki)R

(k)
0 .548

Our challenge is then to select the indices i, j so as to minimize the expression549

(6.3) − εuj

1 + ε(L#
jj − L

#
ji)

n∑
k=1

(L#
kj − L

#
ki)R

(k)
0 .550

We remark here that for ε > 0, the expression (6.2) is always valid. However, for551

negative values of ε, another hypothesis is required in order for the derivation of552

(6.2) to hold. In that case, we need to assume that −mij < ε (otherwise there is a553

danger that the network is no longer strongly connected). Evidently that additional554

hypothesis is satisfied if, for example, we assume that when ε is negative, its absolute555

value is sufficiently small. For ease of exposition in the sequel, we only deal with the556

case ε > 0 in the remainder of this section.557

While we focus only on perturbing a single entry in the movement matrix M, note558

that these special perturbations are building blocks: any admissible perturbation can559

be written as a linear combination of these restricted perturbations.560

From (6.3) it is clear that the specific values of R(k)
0 , k = 1, . . . , n are needed561

in order to assess the effect on the basic reproduction number of changing mij to562

mij + ε. However, we restrict ourselves to the following situation, in which the anal-563

ysis simplifies even further. Imagine that one patch, say `, is a “hot spot” for the564
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disease, and that the patch reproduction numbers R(k)
0 , k 6= ` take on a common565

value. Formally we assume that for some index `, we have R(k)
0 = r0 whenever k 6= `,566

with R(`)
0 > r0. Then R̃0 − R0 =

∑
k=1,...,n,k 6=`(ũk − uk)R(k)

0 + (ũ` − u`)R(`)
0 =567

r0
∑
k=1,...,n,k 6=`(ũk − uk) + (ũ` − u`)R(`)

0 . The fact that
∑n
k=1(ũk − uk) = 0, gives568

(6.4) R̃0 −R0 = (ũ` − u`)(R(`)
0 − r0).569

For our restricted family of perturbations, we have R̃0 − R0 = − εuj

1+ε(L#
jj−L

#
ji)

(L#
`j −570

L#
`i)(R

(`)
0 − r0). Hence it suffices to select the indices i, j that maximize the expres-571

sion
uj

1+ε(L#
jj−L

#
ji)

(L#
`j − L

#
`i). In subsections 6.1 and 6.2, we revisit the star and river572

networks and discuss how these perturbations affect the basic reproduction number.573

6.1. Star with a hot spot. In what follows, we assume that ε > 0, and we con-574

sider a special case. We assume that m12 ≥ m13 ≥ . . . ≥ m1n, and impose the further575

assumption that m1k = mk1, k = 2, . . . , n. We note that when this is the case, u = 1
n1.576

577

Case 1: the hot spot is located at the hub (vertex 1):578

We claim that the best strategy to reduce the infection risk is to increase mn1 when579

m1k = mk1 for 2 ≤ k ≤ n. Perturb m1j → m1j + ε for ε > 0 and 1 < j ≤ n. Then580

ũ1 − u1 = − ε uje
>
1 L

#(ej − e1)

1 + ε e>j L
#(ej − e1)

=
εu1uj 1̄

>B−1ej−1

1 + εej−1
(
B−1ej−1 − ū1̄>B−1ej−1

)581

=
εu1uj/m1j

1 + ε(1− uj)/m1j
> 0.582

Perturb mi1 → mi1 + ε for 1 < i ≤ n. Since B−1 = diag(m12, ...,m1n),583

ũ1 − u1 = − ε u1e
>
1 L

#(e1 − ei)
1 + ε e>1 L

#(e1 − ei)
=

ε u1e
>
1 L

#(ei − e1)

1− ε e>1 L#(ei − e1)
=
−εu211̄>B−1ei−1

1 + εu11̄>B−1ei−1
584

= − εu21/m1i

1 + εu1/m1i
< 0.585

Since u = 1
n1, this gives ũ1−u1 = − 1

n

ε/(nm1i)

1 + ε/(nm1i)
. Since m1n is the smallest among586

{m1k : 2 ≤ k ≤ n}, the minimum of ũ1 − u1 is achieved at k = n, i.e.,587

min
2≤k≤n

(ũ1 − u1) = − 1

n

ε/(nm1n)

1 + ε/(nm1n)
.588

This result indicates that the optimal strategy to reduce the infection risk is to increase589

mn1 when m1k = mk1 for all k.590

Additionally, we claim that, in this special case where only changing weights591

between leaves is permitted, then the best strategy is to increase mn2, as we now592

show. Perturbing mij → mij + ε for 2 ≤ i 6= j ≤ n, we find that593

ũ1 − u1 = − ε uje
>
1 L

#(ej − ei)
1 + ε e>j L

#(ej − ei)

=
εu1uj1̄

>B−1(ej−1 − ei−1)

1 + εe>j−1
[
B−1(ej−1 − ei−1)− ū1̄>B−1(ej−1 − ei−1)

]
=

ε 1
n2

(
1
m1j
− 1

m1i

)
1 + ε

(
1
m1j
− 1

n

(
1
m1j
− 1

m1i

)) =
ε 1
n2 (m1i −m1j)

m1im1j + ε 1n ((n− 1)m1i +m1j)
.

(6.5)594
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Note that ũ1 − u1 < 0 only if i > j and hence this is the only interesting case.595

It is straightforward to show that
ε 1
n2 (m1i −m1j)

m1im1j + ε 1n ((n− 1)m1i +m1j)
is increasing596

in m1i and decreasing in m1j . Thus the minimum is obtained at i = n and j = 2.597

Hence, min1≤j<i≤n(ũ1 − u1) =
ε 1
n2 (m1n −m12)

m1nm12 + ε 1n ((n− 1)m1n +m12)
which implies that598

the most effective strategy to reduce the risk of infection is to increase mn2.599

600

Case 2: the hot spot is located on a leaf (vertex ` 6= 1):601

We claim that the best strategy is to increase m1n when m1l

m1n
> n− 1 and n 6= `, and602

to increase m1` when m1l

m1n
< n− 1, as we now show. Perturbing m1` → m1` + ε yields603

ũ` − u` = − ε u`e
>
` L

#(e` − e1)

1 + ε e>` L
#(e` − e1)

= −
εu`e

>
`−1
(
B−1e`−1 − ū1̄>B−1e`−1

)
1 + εe>`−1

(
B−1e`−1 − ū1̄>B−1e`−1

)
= − εu`(1− u`)/m1`

1 + ε(1− u`)/m1`
= − 1

n

εn−1n
1
m1`

1 + εn−1n
1
m1`

< 0.

(6.6)604

Perturbing mi1 → mi1 + ε leads to605

ũ` − u` = − ε u1e
>
` L

#(e1 − ei)
1 + ε e>1 L

#(e1 − ei)
=

ε u1e
>
` L

#(ei − e1)

1− ε e>1 L#(ei − e1)
.606

Hence, if i 6= `, ũ` − u` =
εu1e

>
`−1(B−1ei−1 − ū1̄>B−1ei−1)

1 + εu11̄>B−1ei−1
= − 1

n

ε
n

1
m1i

1 + ε
n

1
m1i

< 0,607

and if i = `, ũ` − u` =
εu1e

>
`−1(B−1e`−1 − ū1̄>B−1e`−1)

1 + εu11̄>B−1e`−1
= n−1

n

ε 1n
1
m1`

1 + ε
n

1
m1`

> 0. If608

i 6= `, then the minimum of ũ`−u` is achieved at i = n. To compare the two different609

strategies (i.e., m1` and mn1), we have the following conclusion: If m1`/m1n < n− 1,610

the most effective strategy is to increase m1`; If m1`/m1n > n− 1, the most effective611

strategy is to increase m1n provided that n 6= `.612

6.2. River with a hot spot. As in section 6.1, we introduce a simplifying613

hypothesis in order to make the analysis more tractable. We assume that α = 1 (i.e.,614

a = b), and observe that when this is the case, u = 1
n1.615

We now have the following result.616

Lemma 6.1. Suppose that 1 ≤ i < j ≤ n. If α = 1, then617

e>k L
#(ej − ei) =


− 1

2n (j − i)(2n− i− j + 1), 1 ≤ k ≤ i,
(k − j) + 1

2n (j − i)(i+ j − 1), i < k ≤ j,
1
2n (j − i)(i+ j − 1), j < k ≤ n.

618

Remark 6.1. By Lemma 6.1 and equation (5.7), it is clear that ũk − uk is a619

continuous, piecewise linear function and decreasing in k for 1 ≤ k ≤ n. For 1 ≤ k ≤ i,620

ũk − uk is positive and constant in k, while for j ≤ k ≤ n, ũk − uk is negative and621

constant in k.622

Assume that 1 ≤ i < j ≤ n. By (6.4), to minimize the infection risk, it suffices623

to minimize ũ` − u`. Perturb mij → mij + ε with ε > 0. We have624

ũ` − u` = −ε uj e
>
` L

#(ej − ei)
1 + ε(L#

jj − L
#
ji)

:= −ujg(i, j).625
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When α = 1, ui = 1
n for all 1 ≤ i ≤ n and mini,j(ũ` − u`) = − 1

n
maxi,j g(i, j).626

Minimizing R̃0−R0 is equivalent to maximizing g(i, j) over i and j for 1 ≤ i < j ≤ n.627

It turns out that628

max
i,j=1,...,n,i 6=j

g(i, j) = max

{
ε`(`− 1)

2n+ ε`(`− 1)
,

ε(n+ 1− `)(n+ 2− `)
2n+ ε(n+ 1− `)(n+ 2− `)

}
(see the supplementary material for the details).629

On the other hand, if 1 ≤ i < j ≤ n are fixed, by Lemma 6.1, min`(ũ` − u`) can630

be achieved at any j ≤ ` ≤ n.631

7. Concluding remarks. Our study is motivated by cholera, and focuses on632

disease dynamics, but our results also shed new insights on many spatial ecological633

studies, for example, the evolution of dispersal in patchy landscapes as studied in634

[2, 27] in a discrete time model.635

Our methods give qualitative and quantitative information about the behavior of636

the basic reproduction number R0 as the topology of the network changes, and have637

applications to control strategies for mitigating disease spread among the patches.638

Our analysis can be thought of as the introduction of connections on the network, or639

changing the weight of existing connections. In the case that the change in a weight640

is positive, we have considered optimal strategies for a star and a river network. Our641

formula (4.2) is valid for all positive perturbations of a network connection, but a642

negative perturbation must be small for this to remain valid. Optimal strategies643

can also be formulated for a small negative change, as long as the network remains644

strongly connected. The effect of breaking this strong connectivity, and thus breaking645

the network topology, remains to be considered.646

In patch models, the monotonicity of R0 with respect to travel frequency or the647

diffusion coefficient on a static network has been studied in several papers, for ex-648

ample [1, 18]; by contrast our results focus on the network topology. The network649

threshold parameter R0 governs the invasibility of the disease, but not the final size or650

endemicity of an invading disease. To consider this, it is necessary to use the original651

dynamical model.652
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Supplementary Material. 1. Suppose that L̂ is given by (5.5). We claim that it785

suffices to consider the case that a ≥ b. To see the claim, first note that L̂ = PLP>,786

where787

(7.1) L =



b −a 0 · · · 0 0
−b a+ b −a · · · 0 0
0 −b a+ b · · · 0 0
...

...
0 0 0 · · · a+ b −a
0 0 0 · · · −b a


788

and P is the n× n “back diagonal” permutation matrix such that pj n+1−j = 1, j =789

1, . . . , n. If it happens that a < b, we then work with L instead of L̂.790

791

2. Here we derive the expression for maxi,j=1,...,n,i 6=j g(i, j) given at the end of section792

6.2. If 1 ≤ ` ≤ i, then by Lemma 6.1, g(i, j) =
ε
[
− 1

2n (j − i)(2n− i− j + 1)
]

1 + ε 1
2n (j − i)(i+ j − 1)

. So793

maxi,j g(i, j) is achieved when i = n− 1 and j = n and maxi,j g(i, j) = − ε/n

1 + ε/n
.794

If j ≤ ` ≤ n, then by Lemma 6.1, g(i, j) =
ε
[

1
2n (j − i)(i+ j − 1)

]
1 + ε 1

2n (j − i)(i+ j − 1)
. Thus795

maxi,j g(i, j) is achieved when j = ` and i = 1.796

For the intermediate case where i < ` ≤ j, using Lemma 6.1, we have797

g(i, j) =
ε
[
(`− j) + 1

2n (j − i)(i+ j − 1)
]

1 + ε 1
2n (j − i)(i+ j − 1)

≤
ε
[

1
2n (j − i)(i+ j − 1)

]
1 + ε 1

2n (j − i)(i+ j − 1)
798

Clearly it follows from the result above that maxi,j g(i, j) is achieved when j = `

and i = 1. Hence, if i ≤ ` ≤ n, maxi,j g(i, j) =
ε`(`− 1)

2n+ ε`(`− 1)
. It now fol-

lows that max1≤i<j≤n g(i, j) =
ε`(`− 1)

2n+ ε`(`− 1)
. A parallel argument (which proceeds

by considering the indices n + 1 − j, n + 1 − i) shows that max1≤j<i≤n g(i, j) =
ε(n+ 1− `)(n+ 2− `)

2n+ ε(n+ 1− `)(n+ 2− `)
. We deduce that

max
i,j=1,...,n,i6=j

g(i, j) = max

{
ε`(`− 1)

2n+ ε`(`− 1)
,

ε(n+ 1− `)(n+ 2− `)
2n+ ε(n+ 1− `)(n+ 2− `)

}
.
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