IMPACT OF VARYING COMMUNITY NETWORKS ON DISEASE
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Abstract. We consider the spread of an infectious disease in a heterogeneous environment,
modelled as a network of patches. We focus on the invasibility of the disease, as quantified by the
corresponding value of an approximation to the network basic reproduction number, R, and study
how changes in the network structure affect the value of Rg. We provide a detailed analysis for two
model networks, a star and a path, and discuss the changes to the corresponding network structure
that yield the largest decrease in Rg. We develop both combinatorial and matrix analytic techniques,
and illustrate our theoretical results by simulations with the exact Ro.
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1. Introduction. Advanced science and technology have made our world an in-
creasingly connected place. Globalization and urbanization bring not only benefits,
but also attendant consequences such as the spread of emerging and re-emerging infec-
tious diseases. Historically, plague, cholera and influenza have resulted in millions of
human deaths, and insight into the spread and control of these diseases has shaped our
modern society, particularly in medicine and public health. Recent emerging diseases
such as HIV/AIDS, SARS and Ebola highlight the need for scientific investigations
of disease spread via transport networks [43]. As disease vectors (e.g., mosquitoes
and ticks) can also be carried via human/goods transportation, the outbreak and
spread of vector-borne diseases such as dengue, Lyme disease, malaria, West Nile
virus, yellow fever, and Zika virus have exhibited strong spatio—temporal patterns
[15, 22, 26, 37, 40, 41, 42, 47] (also see the recent special issues [31, 39]), partly due
to the interplay between disease epidemiology and vector ecology. Spatio—temporal
patterns have also been observed for many waterborne diseases caused by pathogenic
micro—organisms such as bacteria and protozoa that are transmitted in water/river
networks [3, 20, 33, 38, 45, 46]. One of the main scientific challenges is to deter-
mine the connection between disease risk and the change of network structures (as a
consequence of human behavior and/or environmental uncertainty). Recent studies
using statistical data from climate, environmental and disease surveillance have shown
inconsistent and geographically variable results. For example, a discrepancy in the
correlation with precipitation has appeared in the literature of waterborne diseases:
a significant positive association between heavy rainfall and waterborne diseases is
often observed [9, 13, 16, 23, 32] (also see the review paper [30]), while increased
prevalence of waterborne diseases has also been reported as an unexpected conse-
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quence of drought [6] and the anthropogenic protection against annual flooding [10].
Detailed discussions of this discrepancy, as a consequence of human behavior and/or
climate change, have been surveyed in [4, 29], while rigorous scientific explanations
and theoretical insights are lacking, due to the complexity and multiple time—scales.

Many existing studies in the literature have focused on the aggregation of disease
dynamics at each geographical region (or patch) via a static movement (or commu-
nity) network, either for the situation where the time scale of the dispersal among
patches is much faster than the scale of patch demography/disease dynamics, or with
the focus on monotonicity of disease invasibility with respect to dispersal speed or
travel frequency; for example, see [1, 8, 17, 18, 19, 44]. Recently, a general result
on the spectral monotonicity of a perturbed Laplacian matrix in [12] has provided a
theoretical insight on the aggregation. Specifically, for a square matrix A = Q — L,
where @ = diag{qx} is a diagonal matrix encoding within—vertex (within—patch) pop-
ulation/disease dynamics and L is a Laplacian matrix describing population dispersal
among patches in a heterogeneous environment (of n patches), the monotonicity and
convexity of the spectral abscissa of A, s(A), with respect to dispersal speed pu is
established: %;4) < 0 and %
scale of population/disease dynamics is like the decoupled (no movement) system,
s(A) = max{qy}, while the limiting behavior with a faster time scale of dispersal is
the u-weighted average, s(4) = >, _, urqx, where u = (ug,us,...,u,)" is the nor-
malized right null vector of L. As pointed out in [12], these results also are related
to the reduction principle in evolution biology [2, 25] and the evolution of dispersal
in patchy landscapes [27]. For many heterogeneous infectious disease models, the
network basic reproduction number Ry, a threshold determining whether the disease
dies out or persists, can be approximated as the u-weighted average of the individual
patch reproduction numbers R(()k), Ro = > pe1 ukng), when the dispersal among
geographic regions is faster than the disease/population dynamics; see, e.g., [17, 44]
for waterborne diseases, [12, 19, 21] for general diseases of SIS or SIR type, and [§]
for the analog in a continuous spatial landscape.

In this paper, we investigate the impact of varying community networks on disease
invasion in a heterogeneous environment. Our motivation comes from the spread of a
waterborne—disease such as cholera in a heterogeneous network, in which the pathogen
(the bacterium Vibrio cholerae) moves along water in a hydrological landscape (e.g.,
a river network) or the host moves between regions. If the network structure changes,
our goal is to determine how this affects the network basic reproduction number Rq
for the spatial spread of the disease. The quantity Rq is important as it usually
determines a threshold for disease extinction (when Ry < 1) or persistence (when
Ro > 1), and gives guidance for disease control strategies.

First, we consider a toy model of a 4-node path graph network with counter—
intuitive numerical results showing opposite monotonicity of Ry corresponding to a
bypass from upstream to downstream (e.g., due to flooding). As depicted in Figure 1,
we consider the spread of a pathogen (e.g., cholera) on a path network of 4 patches
(vertices) with vertices 1, 2, 3, 4 sequentially located along a river, where vertex 1
is upstream and vertex 4 is downstream. We assume that each nonzero movement
rate, m;; from vertex j to vertex ¢, on the path has value 1. As shown in [17, 44]
the associated next generation matrix takes the form K = FV~! = D,G' DG,
where F is the matrix of new infections, V' is the matrix of transitions, D, = diag{g; },
Gw = diag{d;} + L, D, = diag{r;} and G; = diag{u;}. Here the parameters g;, d;, r;
and p; are the linearized indirect transmission rate (from pathogen to host), pathogen

> 0. The limiting behavior with a faster time
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 3

decay rate, pathogen shedding rate and decay rate of infectious host individuals in
patch ¢, respectively, (i = 1,2,3,4). The matrix L is the 4 x 4 Laplacian matrix
associated with M, i.e., L = diag{>_,; m;i} — M, where M = (m;;) with m;; > 0
representing the pathogen/host dispersal from patch j to patch i. Then the exact
network basic reproduction number is Ry = p(FV~!) = p(D,Gy' D,.G;'), where p
denotes the spectral radius. For simplicity, we set r;/u; = 1,0; = 1 in each patch,
with the base ¢; value taken to be ¢ = 0.195. In this case, the basic reproduction
number in patch ¢ is equal to g;. We consider two scenarios in which the network
has a “hot spot”, i.e. a vertex ¢ at which the linearized indirect transmission rate
g; (or equivalently Rg’)) is higher than those of the other vertices, and an arc that
bypasses the hot spot. In the first case (see the left plot in Figure 1), the hot spot
is assumed to be located at vertex 2 with an additional bypass downstream from
vertex 1 to vertex 3 being included, specifically, g1 = ¢35 = g4 = ¢, g2 = 10q, and

1+ ms1 -1 0 0

-1 2 -1 0

L= . In the second case (see the right plot in Figure 1),
—ms1 -1 2 -1
0 0 -1 1
the hot spot is located at vertex 3 and a new bypass from vertex 2 to vertex 4 is
1 -1 0 0
. . -1 2 -1
included with ¢ = ¢2 = q4 = ¢, g3 = 10g and L = 0 +_71n42 9 _01
0 —My2 -1 1
ma3i mq2
oF 2050 OO
1 1.02
0.08l 1.01
1 ....................................................... -
© 0.96+ 53
0.99
0.94r 0.98
0.92 0.97
0O 2 4 6 8 10 12 14 0o 2 4 6 8 10 12 14
masp My2

Fi1G. 1. With the hot spot at 2, Ro decreases as m31 increases (left plot); with the hot spot at
3, Ro increases as maa increases (right plot).

In both cases the hot spot is bypassed, in the same direction, but the effects on
Ry are markedly different, as shown in Figure 1. This unexpected behavior motivates
our investigation of the effect of network structure on Ry.

The remainder of the article is organized as follows. Some preliminary results are
provided in section 2. Two different methods, one combinatorial and one algebraic,
are employed to investigate the impact of varying community networks on disease
invasion, in sections 3 and 4, respectively. Applications to specific networks are il-
lustrated in section 5, including an explanation of the counter—intuitive numerical
results above. Disease control strategies involving varying the community network
are considered in section 6, and concluding remarks are given in section 7.
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2. Preliminaries. From consideration of a system of ordinary differential equa-
tions governing the dynamics of cholera under the assumptions that humans become
infected through contact with pathogens in the water, and that the water movement
is faster than the pathogen decay rate, it has been established [17, 44] that Ry is
approximated (from the exact value, given by the spectral radius of the next gen-
eration matrix) by a linear combination of the basic reproduction numbers in each
patch in isolation. The constants in this linear combination are the components of
the normalized right eigenvector of the Laplacian matrix of the community network.
The specific aim of this work is to determine how this eigenvector and R change with
alterations in the network structure. We consider a strongly connected network, and
assume that the network maintains this property when changed.

To be more precise, let M = (m;;) > 0 denote an n x n irreducible matrix rep-
resenting the pathogen/host movement in a heterogeneous environment of n patches.
In particular, when 1 < ¢,j < n are distinct, m;; > 0 represents the pathogen/host
dispersal from patch j to patch i. We assume that m; = 0 for ¢ = 1,...,n. Let
G = G(M) be the weighted digraph associated with M. That is, in G there is an arc
j — i from vertex j to vertex ¢ of weight m,; if and only if m;; > 0. Let L be the
Laplacian matrix of G(M), i.e.,

(21) L:diag(Zmﬂ,Zmig,...,me)fM.

i#1 i#2 i#n
Notice that each column sum of L is 0, and thus 0 is an algebraically simple eigenvalue
of L (since M is irreducible). Evidently the all ones vector, 17, is a left null vector for
L. For each k = 1,...,n, let Cyy = det(L,x)) be the principal minor of L formed by

deleting its k-th row and column. Consider the vector u = (u1, us,...,u,) ', where
C
(2.2) =2 k=1,...,n.
> Cu
i=1

Denote the adjugate of L by adj(L), and recall that Ladj(L) = adj(L)L = det(L)I =
0. Hence adj(L) = 217, where x is a nonzero vector in the right null space of L. It
now follows that u is the right null vector of L, normalized so that 17w = 1.

As shown in [17, 44] (also see [8]), when the time scale of movement is substan-
tially larger than the time scale of the disease dynamics, the coefficients uy defined
above serve as weights to aggregate the disease dynamics from each patch. For this
reason, uy is called the network risk of patch k. In particular, the network basic re-
production number Ry can be approximated by the u—weighted average of the patch
basic reproduction numbers Rék); that is,

n
(2.3) Ro~ Y uRy.
k=1

This expression (2.3) separates the structure of the movement network and the
within—patch disease dynamics, and thus provides a new approach to investigate the
impact of changes in the network on disease invasion. Specifically, we first investigate
how a change to the network structure affects the network risks u, and then utilize
the aggregation in (2.3) to understand how varying the network affects the disease
invasibility (i.e., the value of Ry).

Since ug depends on the cofactor Cky as in (2.2), it can be expressed in terms
of the sum of weights of spanning rooted trees [11, 36] by using Kirchhoff’s Matrix—
Tree Theorem. Calculating the weights of such trees gives a combinatorial method
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 5

for finding the sign of

d‘fzfj, the derivative of ug with respect to a change in the arc
7 — 1. This combinatorial approach is developed in section 3, and may be convenient
for some cases, such as small networks or networks with specific structures.

In addition, there is a well-established algebraic tool for understanding how
changes in the movement matrix M affect the entries in the right null vector u of the
Laplacian matrix L. Since L is a singular and irreducible M—matrix, the eigenvalue 0
of L is algebraically simple; so, while L is not invertible, it has a group inverse, that
is, a unique matrix L# such that LL# = L#L, LL#¥L = L, and L#¥ LL# = L#. The
group inverse has been used effectively to analyse how changes in an irreducible non-
negative matrix affect its Perron eigenvalue and eigenvector (see for example [14, 34])
and our results in section 4 are informed by that approach. We refer the interested
reader to [7] for background on generalized inverses in general, and to [28] for the use
of the group inverses in the study of M—matrices in particular.

With the group inverse method developed in generality, in section 5.1, we illustrate
this method with a star network in which one patch is the hub connected to several leaf
vertices. Such a network structure is appropriate as a model for a large city connected
to smaller cities or suburbs, with humans commuting in each direction. Then in
section 5.2, we illustrate the general results for a path network, which models cholera
outbreaks in communities living along a river. For these two network structures, we
consider control strategies for restricted cases of the two networks (section 6), and
derive results on how changes to the network can help to minimize disease invasion.

3. Combinatorial method: counting spanning rooted trees. It follows
from Kirchhoff’s Matrix—Tree Theorem [11, 36] that the cofactor of the (k, k) entry
of L can be interpreted in terms of spanning rooted trees:

(3.1) Crow = Y w(T) =Wy,
TeTy
where T}, is the set of spanning in-trees rooted at vertex k and w(7) = [[  my;

JA)EE(T

is the weight of a spanning in—tree T rooted at k. The notation Wy iI(ItI‘OdliC(;d in
(3.1) is convenient for tracking how wy = %7 defined in (2.2), behaves as the
network structure changes. Specifically, we consider a small change of the m;; value
(for a fixed ordered pair (¢,7)) in the movement network, say m;; — m;; + €, and
explore how the value of w; responds; to do so, we focus on the sign of ijZ' (We
note in passing that if m;; is zero, we only consider positive values of ¢, and in that
setting ddTij is interpreted as the derivative from the right.) Notice that such a change
m;; — my; + € affects two entries of L; the (7, j) entry and the (7, j) entry.

Before establishing our main results, we introduce some additional notation and
tools from matrix theory and graph theory. Let L;;¢) denote the matrix obtained
from L by deleting the i—th and j—th rows and k—th and ¢—th columns. Let W,ij
denote the sum of the weights of all spanning in-trees rooted at k containing the arc
J — i, and let W denote the sum of the weights of all spanning in-trees rooted at
k that do not contain the arc j — ¢. Notice that Wy = W,ij + WkN”

First we prove the following two lemmas.

LEMMA 3.1. Assume i # j. Then
(3.2) W = my;| det(Lij k)|

Proof. From the all-minors Matrix-Tree Theorem [11], | det(L(;; x5 )| is the sum
of the weights of all spanning forests F that contain exactly two in—tree components,
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one rooted at k containing vertex ¢ and the other rooted at j. Adding the arc j —
i of weight m;; in F, yields a spanning in-tree 7 rooted at k containing j — i;
in particular, m;;w(F) = w(7T). The identity (3.2) follows after performing this
operation for all spanning forests. 0

We note here that strictly speaking, the right side of (3.2) is not defined in the
case that k = j. However, we may adopt the convention that det(L;; xr)) = 0, and
then (3.2) will also hold when k = j.

LEMMA 3.2. Let Wiy, = Cyy, = det(L ). Then, for any i # j,

dWy
— |det(Les 1)l-
dmij ‘ e( (J,k]))|

(3.3)

Proof. Straightforward calculations, along with (3.2), yield

AW _ lim (le] + W]:ij)|mi<7+5 — (le] + Wl:ij”mm‘
dmij o e—0 €
e—0 €
= | det(Lij i)l
resulting in (3.3). 0

As with (3.2), when k = j, we interpret both sides of (3.3) as being zero.
In particular, if m;; > 0 for ¢ # j, it follows from Lemmas 3.1 and 3.2 that
AW, W’
dmij ey '
Now we are ready to prove the main result arising from this combinatorial method.

(3.4)

THEOREM 3.3. For any given k,i,j, i # j,

d
(35) bgl’l(d;i];) = sgn(| det(L(”,kj))| Z Wg — Wk Z | det(L(”’gJ))D .

04k 04k

If, in addition, m;; > 0, then

(3.6) sgn(juk) —sen (W YW -y w).
s (#k

mij

Proof. Taking the derivative on both sides of (2.2) with respect to m,; yields

(37) duk _ 1 (de ZWg _ sz sz )
L L

dmij (EZ WZ)Q dmij dmij

Substituting (3.3) into (3.7), after the cancellation of the case ¢ = k, yields (3.5).
Additionally, if m;; > 0, then it follows from (3.4) that

(3.8) duy, _ 1 (W]? ZW@ W Z W;J)

dmij (Zi Wl)z ey £k vk My
(3.9) [ — VA (WU + WNU) _ (W” + WNW) W
mij(Zé Wé)z( * #Zk ¢ ¢ k k #Zk ¢ )
(3.10) =————— = (W2 Y WY -—Ww." Yy W),
gty (W W - W S
resulting in (3.6). d

This manuscript is for review purposes only.
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The sign identities (3.5) and (3.6) characterize how the network risk at patch k
changes as a function of the movement from patch j to patch ¢. If more information
on the movement network is provided, the exact sign of dd;ifj may be able to be
determined. If patch k is the head of the altered arc j — ¢ (i.e.,'j = k), then the sign
of the change in the network risk dcf;fbfj is determined in the following result, regardless

of the network structure.

THEOREM 3.4. For any given ki, i # k, dur < 0.

dmik

Proof. Since there is no spanning in-tree rooted at k that contains the arc k — i
(ie., leaving the root vertex k), W;” = 0. It follows from the irreducibility of M that
there exists at least one spanning in—tree rooted at k, which certainly does not contain
the arc k — ; thus W,:““ > 0. If my > 0, then there exists at least one vertex £ # k
at which a spanning in—tree containing £ — ¢ is rooted, and hence ng > 0. It follows
from (3.6) that d‘f;‘ik < 0.

If m;, = 0, then (3.5) can be utilized to establish the result. Specifically, there
is no spanning forest of two components both of which are rooted at k, which is
reflected in our convention that det(L;;xx)) = 0. Similarly, the irreducibility of M
implies that Wj > 0 and | det(L;; )| > 0 for some £ # k. O

Notice that none of the in—trees rooted at k include the arc k — 4, so any increase
of m;, does not alter Wy, but increases all other Wy, ¢ # k. Consequently, all terms
in the first sum of (3.5) or (3.6) vanish, as shown in the proof of Theorem 3.4. In
contrast, perturbations of my; change W}, and other Wy, ¢ # k, which requires more
discussion.

If patch k is the tail of the altered arc j — i (i.e., k = i), and the restriction is
added that the only path from j to k is the arc j — k, then the proof of the following
result proceeds by an analysis similar to that used to prove Theorem 3.4.

THEOREM 3.5. For any given k,j, j # k, if the arc j — k is the only path from

j to k, then W,:kj =0, and Uk
M

> 0.

In section 4, we generalize Theorem 3.5 by using the group inverse to remove the
restriction on the number of paths from j to k.

4. Algebraic method: computing the group inverse. Suppose that L is an
irreducible Laplacian matrix with zero column sums, as in (2.1). Recall from section
2 that there is a unique group inverse L# such that LL# = L#L, LL#L = L, and
L#LL# = L#. The left and right null spaces of L are necessarily one-dimensional,
and are spanned by 1T and u, respectively, where u = (ug,...,u,)" is the right null
vector of L, normalized so that 1Tu = > u; = 1. From Corollary 7.2.1 of [7], it
now follows that L#L =T —ulT.

Consider a perturbation L = L+ E of L such that L is also a singular and
irreducible M—matrix with 1T L = 0. We seek the normalized right null vector of L
i.e., the vector @ such that L& = 0 and 17@ = 1. Since (L + E)& = 0, we have
L#(L + E)i = 0, and hence (I —ul ") + L#Ew = 0. Thus (I + L¥ E)i = u. Since
I + L#E is invertible (see [34], or Lemma 5.3.1 in [28]), this gives

(4.1) i=(I+L*E) 'u

At the end of this section, we provide an explicit expression for L#.
The following technical result is useful in proving Theorem 4.2 below.

This manuscript is for review purposes only.
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LEMMA 4.1 ([24, 35]). Let  and y be column vectors of dimension n. If y'x #
—1, then ([ +axy" )t =1 — ﬁmﬁ.

Here is one of the main results in this section.

THEOREM 4.2. Let L be an irreducible M—matriz as defined in (2.1).
a) Suppose that L + €F is an irreducible M-matriz with 1TF = 0 for all € in a
neighborhood of 0. Then the directional derivative of u with respect to F is —L# Fu.
b) Perturb m;; — m;; +¢€ (where e > 0 when m;; = 0) with 1 <1i # j <n, and denote
the corresponding right null vector for the Laplacian (normalized to have sum 1) by
w. Then fork=1,...,n,

(4.2) G — up = — cujep L¥(ej —ei) eu; (LY, — LT
l+ee[L#(ej —e;) 1+ e(ij — Lﬁ)
Moreover,
duk
(4.3) e _ujeEL#(ej —e;) = _uj(Lk#j — Lﬁ), k=1,...,n,
ij
1 d 1 d
and — 2k _ _ - uk’ k=1,...,n.
uj dmi; u; dmyj;

Proof. a) For e sufficiently small,
1

(4.4) (I+eL#F)" =1-eL*F + O().

Taking E = eF in (4.1) and using (4.4) yields

(4.5) i=(+L*E) 'u= (I —eL*F)u+ O(e®) = u— eL#*Fu+ O(¢?).
Hence lim._,q ﬁ%“ = —L#Fu, as desired.

b) Set E = e(—e; + ¢;)e; . From (4.1), it follows that @ = (I + L#E)_lu7 and

: 1 .
Lemma 4.1 gives (I + L#E) =] — mL#(—ei —+ ej)e;r. (ObSGI‘VG that
since I + eL#(—e; + ej)ejT is invertible, 1 + eejTL#(—ei +e;) = det(I + eL#(—e; +
ej)e; ) #0.) The conclusions now follow readily. 0

Next we discuss how to find L#. From the hypotheses on L, it is easy to see that

L may be partitioned as - -
I 1"z | -1"B
T\ -2 B

where B is an (n — 1) X (n — 1) invertible matrix, w; is the first entry of w, @ =

(ug,...,u)", 2= —Bu, and 1 is the all ones column vector of dimension n — 1.
Uy
It follows from Observation 2.3.4 of [28] that
T 0 | —u 1T B!
# _ (7T p—1 T 1% _
(46) L7 = (]]. B u) ul + < —B_lﬂ ‘ B_l — B_lﬂ]lT — a]lTB_l > .

Suppose that 1 < i < j < n; partitioning out the first entry as above gives
(4.7)

/ —u; 1" B~ te; 4 \
B~ le; 4 — Q]TTB_lej,lj ’
—u 1"B Y (ej—1 —€;—1)
\B’l(ej_l —e;i—1) —ul"B 1 (ej_1 — ei_l)}

if =1,

. if 2<i<n.
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 9

From (4.7), we find that e] L#(e; —e;) > 0,j = 2,...,n. The rows and columns of L
can be simultaneously permuted to place any index in the first position, and hence

(4.8) L — L% >0, 05=1,....,n, i#]j.

Suppose that 1 < i < j < n. If we perturb m;; — m;; + € (where ¢ > 0 when
my; = 0), it follows from (4.2) and (4.7) that

euru; 1" B~ lej_q

= , 1=1,
i — = 1+66;—_1(B71€j_1jl_l,]].TBflej_l)
1 1 EU1Uj]1TB_1(€j,1 — €i71> 9<i<n
1+ 66;[1 [B—l(ej_l — €i_1) — ﬂ]lTB_l(ej_l — 61‘_1)] ’ -
For 2 </ < n, we have
B eujez—_l(B_lej,l — ’UjTB_lejfl) i1
i — = 1+66T_1(B716j,1 —ﬁI_LTBflej,l)’ ’
¢ ¢ EUj€p_q [B_l(ej_l — 61‘_1) — a]lTB‘l(ej_l — €i_1)] 9<i<n

B 1+ 68;71 [B—l(ej_l — 61‘_1) — ﬂjTB_l(ej_l — 6,‘_1)]

Remark 4.1. By considering (4.3) and (4.8) for the cases j = k and i = k, we
find an alternate proof for Theorem 3.4, and an extension of Theorem 3.5 that goes
through without the path restriction.

5. Applications to specific networks. In this section, we apply our general
results to two different networks: a star network for human transportation between
one hub and several leaves, and a path network for communities along a river.

5.1. Star network. First, we consider a star network with vertex 1 as the hub,
and 2,3, ...,n as leaf vertices, with corresponding weights mq;,m;; > 0,5 =2,...,n.
Assuming that a new arc from leaf j > 1 to leaf i > 1 is added, the following result
shows that the direction of change of the network risk u; at any other vertex (i.e.,
k # i, k # j) depends only on my; and my;.

THEOREM 5.1. For a star network, let i,j be any two distinct leaf vertices and k

be another vertex. Then sgn (ddrg’?,) = sgn(my; — ma;).
ij

To illustrate both combinatorial and algebraic methods in sections 3 and 4, we
prove the above result using two different approaches.

Combinatorial Proof of Theorem 5.1: By Theorem 3.3, it suffices to determine the
sign of

(5.1) WS W —wr Ny Wy
04k 14k

which involves the weights of certain specific spanning rooted trees. As depicted in
Figure 2, W7 = mgimaimi; [1, mis and W7 = mypimagyma; [ [, mas, where s takes
all values except 1, k, i, j, corresponding to the unique spanning in—tree rooted at k
that contains the arc 7 — ¢ and does not contain the arc j — 4, respectively. Now
we consider spanning in—trees rooted at £ # k, containing j — 4 or not, which con-
tributes terms appearing in the sums of (5.1). Specifically, we consider three cases:
¢ =i, £ = j, and all other possible values (i.e., £ = r, where r # k,i,j). As de-

. . . NZ] _ ~1J ~ij
picted in Figure 2, W™ = miimyymay [ [, mas, W = mjimimag [I, mis, W7 =
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QNN . ] —
344 mpymagmagmag [ [ mas/may; W = mamigmay [, mis + migmjimag [ mas,
345 W;J =0, WY = mpymyymiymay [ [, mis/ma,. Here s takes all values except 1, k, 1, j,
346 and notice that there are two spanning in—trees rooted at ¢ containing j — ¢ while no
347 spanning in—tree rooted at j contains j — . There is immediate cancellation in (5.1)

318 since W/ Wi = W Wi for all 7. After simplification, (5.1) becomes

349 WIS W — WS W = W W+ WY - W W+ W
0k 0k
350 = ME1M1; My H mis [milmljmlk H M1s + Mj1 M1 M1k H mls]
351 — MMM H mis [milmijmlk H M1s + MiyMij1Mig H mls]
352 = mklmlimjlmlkmij(Hmls)Q(mli - m1j),
E:if completing the proof. ’ U
Wy . Wi . Wi . Wy .
/N / / v/
=1 j S1e—1j 11— rTe—1c—]
| | | 71
k k k k
W’“NU ) Wiij ) 7 Wrij 7
AV WAY
S1e— 1 31— re—1  j
| | | dl
k k k k

Fia. 2. Spanning rooted trees with certain specific restrictions in a star network (1 is the hub).
Notice that there is no spanning in—tree rooted at j that contains the arc j — i, so W;J =0.

355  Algebraic Proof of Theorem 5.1:  Consider a star network with vertex 1 as the hub,
356 and 2,3,...,n as leaf vertices. From the hypothesis,
Zi#l mi1 —Mmi2 —Mi3 ... —Miy
—ma21 mio 0 - 0
357 (5.2) L= —ms31 0 miz ... 0
—Mpq 0 0 A Min

358 For concreteness, consider ¢ = 2 and j = 3. It follows from (4.3) that

d
359 (5.3) dr:% = —uzL#(—ey + e3).
360 To determine the sign of dffL“%, we need to compute the right hand side of (5.3).
361 As ug > 0, sgn(dfn;) = sgn(—L#(—es + e3)). Since B = diag(mia,...,m1,) is

mi2 mi3

362 diagonal, u; 1T B~ (—eq + e3) = uy (— L4 1 ), which implies that
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T mae U2
1
_ s s 1 1
(B =@l B (—es o) = | O || ua (_ N ) .
. : mi2 mis
0 Un
So
1 1
_ul - mi2 + m13)
1
T mas U2
# ml u3
SRR | o N ] PR
. . mi2 mi3
0 Un,
Thus,

sgn(ty —uy) = sgn(miz — mis),

—mi3 — Uz(mlz - m13)

sgn(tis — ug) = —sgn( ) = sgn(mi3 + uz(mi2 — mi3)),

miamis
- mi2 — uz(Miz — M3
sgn(tz — uz) = —sgn( : (1 )) = sgn(—miz +uz(miz —miz)),
mi2mM13
sgn(ty — ug) = sgn(w) = sgn(miz —miz), £ =4,...,n.
mi2Mmi3

g

COROLLARY 5.2. For a star network with vertex 1 as the hub, the direction of
change of the the network risk uy is given by the following:

d
sgn (dUk ) = sgn(my; —myy), k#i4,ji#1,j#1,
ml-j

du; du,;
sgn( Y >>0,sgn( UJ)<O.
dmij dmm

5.2. River network. Consider a path network with vertices labeled 1,2,3,...,n
consecutively located along a river, where 1 denotes the vertex that is farthest up-
stream and n is the vertex that is farthest downstream. Suppose further that the
associated movement matrix M is constant along its superdiagonal and constant
along its subdiagonal. (This corresponds to constant dispersal rates for upstream
and downstream movement.) The corresponding Laplacian matrix Lis given by

(5.4)

a -b 0 0 0
-a a+b —-b .- 0 0
R 0 —-a a+b --- 0 0
(5.5) L=
0 0 0 oo a+b =b
0 0 0 e —a b

for @ > 0 and b > 0. It suffices to consider the case that a > b; see the supplementary
material for a justification. Henceforth we restrict to the case that a > b.
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Setting o = ¢ yields

« -1 0 0 0
—a a+1 -1 0 0
R 0 —a a+1 0 0
(5.6) L=b =bL
0 0 0 e a+1 0 —1
0 0 0 —a 1

Our assumption that a > b gives a > 1, and we note that this fits with our interpre-
tation of 1 being an upstream vertex and n being a downstream vertex. It is readily

1
verified that the vector u = (u1,ug, ..., u,)" = ; (1,a,02,...,a" 1T is the

n—1

=0 &
right null vector of L normalized so that 1T« = 1. Let B denote the principal sub-
matrix of L formed by deleting the first row and column. A proof by induction on n

shows that the (k,j) entry of B~! is given by

S _{1+a+a2+m+ak1, 1<k<j<n-1,
ekB

A il+a+a?+-+adl), 1<j<k<n-—1
It can be shown by induction on n that the sum of the entries in column j of B~*

n—j—1

1"B 'e; = j Z of + Z n—-1-0a', j=1,2,....n—1

b=n—j

where the empty sum is interpreted as zero.
The following is straightforward.

LEMMA 5.3. Suppose that m > 0 and n € N. Then

n+m—1

(iof) (ia)zzm:ﬁ—kl)al—k(m%-l) ni: ot + Z (n+m —£)a*
£=0 l=n

£=0 t=m-+1
The following can be deduced from (4.7) and our expression for B~
LEMMA 5.4. For a path network, if 1 <i < j <n, then
Yiso (E+1)a’ +(J—Z)Ze Y

Ze 0
Lemmas 5.3 and 5.4, along with (4.7) establish the following result.
THEOREM 5.5. On a path network, if 1 <k < j <mn, then

#p#
Ljj = Lji =

en L#(ej —e1) =

k—2 n+k—j—1 n—2

anu YU+t =Gk > o= > (n—f-1)

=0 @\ 1= t=k—1 (=n—j+k

For j <k <n,

—j Jj—2
en L#(ej —e1) = aF~ JeTL#( —e1) = O:lkfle <Z(€+ 1)a€> )
Di—o @
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106 Theorem 5.5 yields the following result.
407 COROLLARY 5.6. For 1<k <j—1, '
k—1 n—j
« .
408 (€k+1 — € )L#( — 61) TZ (] =+ Z Oé£> > 0.
D= @ =1
ozk_
109 Forj<k<n—1, (e, —ef)L#(e;—e)) = (z 20+ 1)a ) (a—1) > 0.
- o
110 Remark 5.1. Set L = L + e(e; — e1)ejT with 1 < 7 < n and ¢ > 0 so that
111 @ —u=—cL¥(e; —e1) where ¢ = % > 0 by Theorem 4.2 b). By Theorem

112 5.5, a1 —uy >0and ap —up < 0,7 <k <n. It follows from Corollary 5.6 that @, —uy
413 is decreasing in k if « > 1. If @ = 1, @ — uy is decreasing in k for 1 < k < j and
414 constant for j < k < n.

415 Next we consider L# (e; — e;) for j,i > 1. The proofs again rely on (4.7) and our
116 expression for B!,

417 LEMMA 5.7. For a path network with 2 <1< j <mn,

0, fl1<k<i-—1,
418 6;B_1(€j,1—6i,1): ZZ 0(1 7,fZ—1<]€Sj—1,
kJJrlZ]_Oa ifj—1<k<n,
419 THEOREM 5.8. On a path network, if 2 <1i < j <mn, then
Ozkil n—j n—i—1
420 L#( — 61) = _?@ (j — Z) Z Oll + Z (n — 7 — é)O/
di—o @ £=0 f=n—j+1

121 for1<k<i. Fori<k<jy,

k—i—1 k—2
422 en L (ej —e;) = %@ ( Z 0+ 1)a’ + (k —1d) af
=0 ¥\ ¢=0 b=k—i
n+k—j—1 n—2
123 (j—k) ol — Z (n—1-1£0)a*
t=k—1 t=n—j+k

1214 Forj <k <n, el L#(ej—e;) = aFdef L#(ej —e;) = Z" S (ZJ S+ 1)at
25 +(j—1) T2 at).

426 COROLLARY 5.9. If2 <i < j <mn, then (ex41 — e )L#(ej —e;) =
ak—l n—i—1
(j—1 Za—!— Z n—i—~0)at (a—1)>0, 1<k<i-—1,
b=n—j+1
1 <1—2 n+i—j—1
. . 1—1 Y4 .
g (e G-t T Y a>>0, k=1,
127 2o @ \is =
1 k—2 n+k—j—1
—_— Z(Zo/+(ji+1)akl+ > a2>>0, i<k<k+1<j,
=0 ¥ \oZp_i =k
ak=i =2
(0%
4
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Remark 5.2. Let 2 <i < j <nande>0. Set L=1L+ ele; — ei)ejT. It follows
from Theorem 4.2 b) that

(5.7) i —u=—cL¥(e; —e;)
where ¢ = m > 0 (observe that Lj’; — Lﬁ > 0 by (4.8)). In view of Theorem
5.8, we see that

k—1

Ea% ((j—i)z;; of + 305 1(n—i—£)o/)>o, 1<k<i,

W(Z] Sl + (G- )Y at) <0, j<k<n
£=0
Observe that if i > 2 and 1 <k <n — 1, (Uky1 — upg1) — (U — uk) = —c(epr1 —
el;r)L#(ej —¢;). It now follows from Corollary 5.9 that if & > 1, then (Gg+1 — ug41) —

(Ug — ux) < 0. Hence, if @ > 1 then @y — uy is decreasing as a function of k for
1<k<n.

Assume that a new arc from vertex j to vertex ¢ is added, where i < j; the
following result shows that the network risk uj decreases at all vertices downstream
from j and increases at all vertices upstream from i. The result follows readily from
Theorems 4.2 and 5.8.

THEOREM 5.10. Consider a path network, and suppose that 1 < i < j < n. For
any k < i, sgn( 3= d“’“ ) < 0, while for any j <k, sgn( = d“’“ ) > 0.

For the vertices k between j and i (ie., i < k < ]), the change of the network
risk uj depends on the position of the vertices as well as the magnitude of m;;.
We now revisit the toy model of a path graph network described in section 1.

EXAMPLE 1. In this example we show how the results developed in section 4 yield
insight into the toy example presented in Figure 1. We suppose that the time scale of
movement greatly exceeds that of the disease dynamics, so that the asymptotic approx-
imation Rg = Zi:l urqr applies, where u denotes the null vector of the Laplacian
matriz L, normalised so that Zizl up = 1. Taking o = 1 yields

1 -1 0 0 7T 1 =3 =5

-1 2 -1 0 1 3 -1 -3
L=1 o 5 o g emdlf=g| 5 5 5 4

0o 0 -1 1 -5 -3 1 7
vertex 1 to vertex 3 corresponds to the perturbing matriv E = msi(e; — eg)eir, and
a computation now reveals that the normalised null vector of the perturbed Laplacian

. A bypass from

5
o - 1 . .
matriz is given by 4 = i]l — 16&% 3 |- If the hot spot is at vertex 2, with
-3
. 4 ~ . .
¢ =¢q,i=1,3,4,q2 = 10q, then Ro = >, _, Urqr = q(% — 16?;7037;31); evidently this

is decreasing and concave down as a function of ms1, as is clearly reflected in Figure
1 (left plot) by computing Ry numerically.
Neat, considering a bypass from vertex 2 to vertex 4, (so that E is given by
3

42 3
16+12myo _ 1

-3

maa(ea — es)eq ) an analogous argument shows that @ = %]l —
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 15

With vertex 3 as the hot spot and q; = q,i = 1,2,4,q3 = 10q, it now follows that
Zi:l Upqr = q(%?’ + w%%) Evidently this last is increasing and concave down as
a function of mya, as depicted in Figure 1 (right plot).

Alternatively, as uy encodes the weights of spanning in—trees rooted at k, as shown
in section 3, both bypasses (from vertex 1 to vertex 3 or from vertex 2 to vertex 4)
increase uy and us but decrease ug and uy. For example, with the bypass from vertex

1 to vertex 3 of weight msy, we have

e = M2Masmas 1 _ 1 Imai
! A 4 4+ 5msgy 4 4+ 5mg ’
v — M21M23M3y + MagM31 M3 L+mg 1 1M1
2 A 4+5mg 4 4+5ma’
o — M3aM3aMay + Msamai Mg + magmgimsy  142msy 1 n ims1
3 A 4+5mg 4 4+5ma’
s — 433221 + Magmsamst + Mmagmzimiz 1+ 2ms; _ 1 %mfﬂ
4 A 4+5m3 4 4+5mg’

where A is the sum of weights of spanning in—trees rooted at any vertex, that is, A =
M12M23M34 +M21M23M34 + M23M31M34 +M34M32M21 +M34M31M12 +M34M31M32 +
M43M3aMol + Ma3Mgzamsy + Mygmszimis = 4 + bmgy. A location of a hot spot at
vertex 1 or 2 leads to the decrease of Ry due to the bypass, while a hot spot at vertex
3 or 4 leads to the increase of Ry.

ExamMpLE 2. Consider a path network on 5 vertices with an additional arc from
vertex 2 to vertex 4 being added. All other settings are the same as in Example 1.
Figure 3 shows how Rqg responds to this addition in the scenarios of the disease hot
spot, located at various different vertices. It turns out that when verter 3 is the hot
spot, there is no change in Rg, no matter how large the value of maoyg is. When the
time scale of movement greatly exceeds that of the disease dynamics, the results of
sections 3 and /j explain Figure 3. For example, the bypass decreases ui and us but
increases uy and us. Therefore, a hot spot at vertex 1 or 2 leads to a decrease of Rg
while a hot spot at vertex 8 or 4 leads to an increase of Ry, due to the bypass.

Hotspot at 1 Hotspot at 2

R,
Ro
o
o

0 2 4 6 8 10 12 14 [ 2 4 6 8 10 12 14
My my

Hotspot at 3 Hotspot at 4 Hotspot at 5

my My my

Fic. 3. The impact of a bypass in a path network of 5 vertices.
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Motivated by the observation made in Example 2 for the case that vertex 3 is
the hot spot, we use the exact network basic reproduction number to prove a general
result below, from which the observation is readily recovered.

THEOREM 5.11. Suppose that M is an irreducible movement matrix and that L
is the corresponding Laplacian matriz. Let ¢ > 0 and V = L + cl. Suppose further
that there is a permutation matriz Q) and indices i,j such that: a) F and L both
commute with Q, and b) Qe; = e;. Then for any e > 0, the basic reproduction numbers
corresponding to M and M + e(e; — e;)e] are equal.

Proof. Let E = (e —ei)e;'—. The network basic reproduction number correspond-
ing to M is p(FV 1), while that corresponding to the perturbed network M + E is
p(F(V + E)~1). We have

(5.8) F(V +E)~! = FV_l(I+e(ej - ei)ejTV_1>71

Observe that V' is a column diagonally dominant M—matrix. From Lemma 3.14
in Chapter 9 of [5], it follows that the maximum entry in any row of V=1 occurs on
the diagonal. In particular, ejTV‘l(ej —e;) > 0. It now follows that

I _elel V! N - _edel VL.
(5.9) ( +elej —eie ) 14 66;—‘/71(61' —e;) (€5 —edes

Substituting (5.9) into (5.8) yields
€ Ty, -1
— C—e)elV
1+ eejTV—l(ej —e;) (ej —ei)e
eFV =l (ej—e)e, V!
1+ eejTV_l(ej — 6i) '

FV+E)'=rviI

=FV!' -

Next, consider a positive left Perron vector y for FV~! ie. y  FV™! = Roy'.
Since F and V both commute with @, so does FV~!. Consequently, y ' QFV1QT =
Roy ', implying that (y " Q)FV ! = Ro(y' Q). Hence y ' Q is also a left Perron vector
for FV~!. Since that Perron vector is unique up to a scalar multiple, we find that
necessarily y' Q = y . In particular, y; = yTer = yTej =y;.

Now consider

ey FV =1 (ej —ei)e, V1

1+ ee}Vfl(ej —e;)
B €Roly; —yi)ej V7
L+ee]Vl(e; —ei)

y'F(V+E) =y FV1 -

=Roy ' =TRoy.

Hence y is a positive left eigenvector of F'(V + E)~!, (with corresponding eigen-
value Ry), from which it follows that F(V + E)~! has y as a left Perron vector and
R as its Perron value. 0

Remark 5.3. Inspecting the proof of Theorem 5.11, we find that the conclusion

holds also for negative values of ¢, provided that € > —m;; and € > —m.
j J i

As an application of Theorem 5.11, consider a river network on 2k + 1 vertices

with @ = 1, and suppose that F' is the diagonal matrix whose ¢—th diagonal entry is
1 for £ # k + 1, and whose k + 1-st diagonal entry is = > 1. Setting V = L + ¢l for
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IMPACT OF VARYING NETWORKS ON DISEASE INVASION 17

some ¢ > 0, we see that V and F' commute with the “back diagonal” permutation
matrix P, where the (¢,2k +2 —¢) entry of Pis 1 for £ =1,...,2k+ 1. Fix an index
j=1,...,2k 4+ 1, and note that Pe; = esjy2_;. From the above theorem, for any
€ > 0, the basic reproduction numbers associated with the movement matrices M and
M +e(ej — eapa— j)e;-r are equal. In particular, for a river network on 5 vertices with
a =1, adding a weighted arc from vertex 4 to vertex 2 does not affect the value of Ry.

This justifies the observation made in Example 2 for the hot spot locating at vertex
3.

6. Control strategies. The techniques developed in sections 3 and 4 inform
a strategy for controlling invasibility. Given an irreducible movement matrix M,
the control strategy corresponds to a perturbation of M, say M + E which is also
irreducible and nonnegative. Denoting the corresponding Laplacian matrices and
normalized right null vectors by L, u and i, 4 respectively, we find that the associated
network basic reproduction numbers are approximately Rg = 2221 ukR(()k) and Ry =
Sory kaRék). Our goal is then to find a suitable perturbing matrix E so as to ensure
that Ry — R is negative and, ideally, large in absolute value.

From the results in section 4, we find that

n n
(6.1) Ro—Ro= Y (ix —up)RY =3 el (I + L¥E)™ — uR{".
k=1 k=1

In particular, for a perturbing matrix F, the effectiveness of the corresponding control
strategy in mitigating the invasion can be quantified using (6.1).

In this section, we focus on a restricted set of perturbations: for distinct indices
1,7 and fixed €, we consider the effect of increasing the movement rate from patch j
to patch ¢ from m;; to m;; + €. In this case, (6.1) simplifies considerably: from the
results of section 4, it follows that in this restricted setting,

~ €Uy ~ (k)

(6.2) Ro—Ro=——————> (L}, - L})Ry".
el — L) =

Our challenge is then to select the indices ¢, j so as to minimize the expression

n

€u; # #\ 1 (k)
We remark here that for € > 0, the expression (6.2) is always valid. However, for
negative values of €, another hypothesis is required in order for the derivation of
(6.2) to hold. In that case, we need to assume that —m;; < e (otherwise there is a
danger that the network is no longer strongly connected). Evidently that additional
hypothesis is satisfied if, for example, we assume that when € is negative, its absolute
value is sufficiently small. For ease of exposition in the sequel, we only deal with the
case € > 0 in the remainder of this section.

While we focus only on perturbing a single entry in the movement matrix M, note
that these special perturbations are building blocks: any admissible perturbation can
be written as a linear combination of these restricted perturbations.

From (6.3) it is clear that the specific values of ng),k: = 1,...,n are needed
in order to assess the effect on the basic reproduction number of changing m;; to
m,; + €. However, we restrict ourselves to the following situation, in which the anal-
ysis simplifies even further. Imagine that one patch, say ¢, is a “hot spot” for the
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disease, and that the patch reproduction numbers Rék),k # ( take on a common
value. Formally we assume that for some index ¢, we have ng) = ro whenever k # /£,
with R§) > ro. Then Ro — Ro = Yj_y o sze(in — un)REY + (g — ug)RY =
70 Y et e (U — up) + (G — ug)RYY. The fact that S>7_ (it — ug) = 0, gives

(6.4) Ro —Ro = (i — ug)(RS” — r0).
For our restricted family of perturbations, we have Ro—Ro = —%(ij —
(g =

L?:)(Réé) —1p). Hence it suffices to select the indices 7, j that maximize the expres-

sion (ij - LZE.). In subsections 6.1 and 6.2, we revisit the star and river

uj
1+e(L% - L%)
networks and discuss how these perturbations affect the basic reproduction number.
6.1. Star with a hot spot. In what follows, we assume that ¢ > 0, and we con-

sider a special case. We assume that mis > mi3 > ... > my,, and impose the further
assumption that mip = mg1,k = 2,...,n. We note that when this is the case, u = %IL.

Case 1: the hot spot is located at the hub (vertex 1):
We claim that the best strategy to reduce the infection risk is to increase m,; when
mi = my1 for 2 <k < n. Perturb my; — my; + € for e >0and 1 < j <n. Then

~ cuje] L#(ej — eq) euu; 1T B~ le;_q
Uy — Uy = — = A
! ! 1—}—66}[/#(6]' —61) 1—|—6€j_1(B_1€j_1 —ﬂ]lTB_lej_1)
_ euluj/mlj >0

1 + 6(1 — uj)/mlj
Perturb m;; — my1 + € for 1 < i <n. Since B~ = diag(mia, ..., M1y),

i — eure] L# (e — e;) _ eure] L#(e; —e1) _ —eul1 "B te;
! ! 1+€€1TL#(61 —62‘) 1—6€IL#(€Z‘ —61) 1+EU1]].TBilei_1
- eu%/mu < O

1+ euy /may;
1 6/(77//7111')
n1l+e/(nm;)
{mak : 2 < k <n}, the minimum of @4, — u; is achieved at k = n, i.e.,
s 1 e/(nmiy)
min (i —u) = ——————>—.
2<k<n nl+e/(nmyy)

Since u = %]l, this gives w1 —uy = . Since my,, is the smallest among

This result indicates that the optimal strategy to reduce the infection risk is to increase
my1 when mqy = my for all k.

Additionally, we claim that, in this special case where only changing weights
between leaves is permitted, then the best strategy is to increase m,s, as we now
show. Perturbing m;; — m;; + € for 2 < i # j < n, we find that

cuje] L (ej —e;)

’ELl — Uy = —
1+ee] L#(ej —e;)
B euluj]flTBfl(ejq —ei_1)
(65) 1+ 66;_1 [B*1(6j71 . 61'71) — ﬂ]_]_TBfl(ejfl — 61',1)}
1 (1 1
B €z (TIJ - H) B 6# (ma; —ma,)
1+6( 1 _;( 1 1)) myimaj + ex ((n— Dmy; +myy)
mi; oo \myy o ma
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Note that @; — u; < 0 only if ¢ > j and hence this is the only interesting case.
1
€5z (m1; — may)

It is straightforward to show that is increasing

mima; + 6% ((’I’L — 1)m1i + mlj)
in my; and decreasing in my;. Thus the minimum is obtained at ¢ = n and j = 2.
6% (M1 —mi2)
minmiz + €L ((n — D)myy, 4+ mi2)
the most effective strategy to reduce the risk of infection is to increase mys.

Hence, min<jci<n (i —u1) = which implies that

Case 2: the hot spot is located on a leaf (vertex £ # 1):
We claim that the best strategy is to increase mq, when :nn” >n—1and n # ¢, and
to increase mqy when m” - <n-— 1, as we now show. Perturblng mie — mie+ € yields

- ewez—L#(eg —e) eweztl(B’leg_l — ﬂ]flTBfleg_l)
Up—ug = — =— -
‘ ¢ 1+ee] L#(eg—e1) 1+ee, 1(B_1€[_1 —ﬂ]lTB—leg_l)
(66) n—1_1
__ew—ug/mie 1 Ty
14+ €e(1 —up)/mag nl—f—e"nlmlu '

Perturbing m;; — my1 + € leads to

~ cure, L#(e1 — €;) cure, L#(e; — e1)
Up — Uy = — = :
e 1+eef L#(e1 —e;) 1—eel L#(e; —e1)
T (p-1 21T B-1 £ 1
o R eure, (B te;—q —ul' B te;_q) 1 ;
Hence, if i # (£, Uy —up = 1+ewI B le,; - nl—:# <0
n mig
difi—r _ewe] (Blep oy —al"B7lep ) € - o0 If
and if ¢ = £, up —up = 1+ eu 1T B-te, T on gy e 1 )
nm

i # £, then the minimum of @y — uy is achieved at i = n. To compare the two different
strategies (i.e., myy and my1), we have the following conclusion: If ms/mi, < n—1,
the most effective strategy is to increase mig; If mis/mq, > n — 1, the most effective
strategy is to increase mi, provided that n # /.

2. River with a hot spot. As in section 6.1, we introduce a simplifying
hypothesis in order to make the analysis more tractable. We assume that o =1 (i.e.,
a = b), and observe that when this is the case, u = %]l.

We now have the following result.

LEMMA 6.1. Suppose that 1 <i<j<mn. Ifa=1, then
—5(-i)2n—i-j+1), 1<k<i
en L (ej—e) = (k=J)+ 5, (G —D(i+5 1), i<k<],
3 =D+ —1), j<k<n
Remark 6.1. By Lemma 6.1 and equation (5.7), it is clear that @y — ug is a
continuous, piecewise linear function and decreasing in k for 1 < k <n. For 1 < k <4,
Uy, — ug is positive and constant in k, while for j < k < n, 4y — ug is negative and
constant in k.
Assume that 1 < i < j < n. By (6.4), to minimize the infection risk, it suffices
to minimize @y — ug. Perturb m;; — m;; 4+ € with € > 0. We have
cuje) L#(e; — e;)

Up — U = — = —u;g(i, j).
L+e(L? - L%) ’
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1
When = 1, u; = % for all 1 <4 < n and min; ;(4 — ug) = ——max; ; g(i, ).
n

Minimizing Ry — Ry is equivalent to maximizing g(i, j) over ¢ and j for 1 <i < j < n.
It turns out that

el —1) em+1—-0)n+2-12) }

max _ g(i, ) :max{szree(z— )'2n+en+1—0)(n+2-10)

i, J=1,omi]
(see the supplementary material for the details).
On the other hand, if 1 < ¢ < j < n are fixed, by Lemma 6.1, ming (@, — u) can
be achieved at any j < £ < n.

7. Concluding remarks. Our study is motivated by cholera, and focuses on
disease dynamics, but our results also shed new insights on many spatial ecological
studies, for example, the evolution of dispersal in patchy landscapes as studied in
[2, 27] in a discrete time model.

Our methods give qualitative and quantitative information about the behavior of
the basic reproduction number R as the topology of the network changes, and have
applications to control strategies for mitigating disease spread among the patches.
Our analysis can be thought of as the introduction of connections on the network, or
changing the weight of existing connections. In the case that the change in a weight
is positive, we have considered optimal strategies for a star and a river network. Our
formula (4.2) is valid for all positive perturbations of a network connection, but a
negative perturbation must be small for this to remain valid. Optimal strategies
can also be formulated for a small negative change, as long as the network remains
strongly connected. The effect of breaking this strong connectivity, and thus breaking
the network topology, remains to be considered.

In patch models, the monotonicity of Ry with respect to travel frequency or the
diffusion coefficient on a static network has been studied in several papers, for ex-
ample [1, 18]; by contrast our results focus on the network topology. The network
threshold parameter Rg governs the invasibility of the disease, but not the final size or
endemicity of an invading disease. To consider this, it is necessary to use the original
dynamical model.
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Supplementary Material. 1. Suppose that L is given by (5.5). We claim that it
suffices to consider the case that a > b. To see the claim, first note that L = PLPT,
where

b —a 0 0 0
-b a+b —a 0 0
_ 0 b a-+bd 0 0
(7.1) L=
0 0 0 - a+b —a
0 0 0 —b a

and P is the n x n “back diagonal” permutation matrix such that p; n41—; = 1,7 =
1,...,n. If it happens that a < b, we then work with L instead of L.

2. Here we derive the expression for max; j—i .. n.iz; 9(4, j) given at the end of section
e[~ —1)2n—i—j+1)]
Ttek(G—i)(i+j—1)
e/n
l+e/n
€[5 (1 — )i +5—1)]
Tter(G—9)@i+7i—1)

6.2. If 1 < ¢ < 4, then by Lemma 6.1, ¢(i,j) =

max; ; g(i,j) is achieved when ¢ = n — 1 and j = n and max; ; g(¢,j) =

If j < ¢ < n, then by Lemma 6.1, g(i,5) = . Thus

max; ; g(, j) is achieved when j = ¢ and i = 1.
For the intermediate case where i < ¢ < j, using Lemma 6.1, we have
(=D +HG=i+i-D] _ e[RG-Di+i-1)]
l+et(G—i)i+i—1) ~ l4+es(G—9)(i+j—1)

g(ivj) =

Clearly it follows from the result above that max; ; g(¢,j) is achieved when j = ¢
el —1)

—— It fol-
2n+el(l—1) How 1o

and ¢ = 1. Hence, if i < ¢ < n, max; ;g(i,j) =

00—-1
lows that maxi<i<;<n g(4,j) = 2n€—|—(e€(€—)1) A parallel argument (which proceeds
by considering the indices n + 1 — j,n + 1 — %) shows that maxi<j<i<, 9(4,j) =
1-— 2 —
en + On + J . We deduce that
Mm+em+1-0)n+2-1)

el(l—1) en+1—-0)n+2-14) }

max ;9(07) :max{2n+e£(£— 1) 2n+e(n+1-0)(n+2-1)
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