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ABSTRACT

The properties of symmetrical 4-port microwave junctions are
considered. The symmetries of such 4-port junctions may be utilized
to effect a reduction to an equivalent network consisting of junctions
with two-ports interconnecteg:by a network of ideal transformers. A
virtue of this presentation is that it allows one to trace incident
and reflected waves through the internal structure of the original
junction. Employing the scattering matrix representation, the match-
ing criteria for the case of generalized lossless matching two-ports
are introduced and thus ultimately an analytical closed form solution
of the impedance transformation loci is derived. Since in practice
it is almost impossible to manufacture ideally symmetrical E - H
junctions, both the theoretical (ideally symmetrical) and the practical
(slightly asymmetrical) cases are treated separately. Transformation
loci for E - H junction are plotted theoretically as well as experi-
mentaily° Furthermore an automated electronic tuning device (general
outline only) is suggested with the help of the analytical'transformr

ation properties of the E - H tuner.
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Chapter 1

1.1 INTRODUCTION

The ultimate aim is to derive an analytical closed form solution of
the impedance transformation loci of various microwave junctions and

to use it for the design of automatic tuners.

The concept of complex conjugated impedance matching (Megla,1961) is
briefly broached in context with the basic approach to the problem.
Consider Fig.l, (which represents the gross simplified equivalent
circuit of the principal set-~up as shown in Fig.2). Here Vo denotes
the open-circuited voltage of the generator, Zg = Rg + ng the Jlumped
generator impedance at the input transformation plane of the

linear device, and Zp =R + jXL the transformed load impedance of

the entire linear microwave device. Since the load current may

be defined as IL V'O(Zg + ZL)—l, the received real load power is

given by 2

Yo &

2(Zg+ZL)(Zg+ZL)* (1.1.1a)

L

% }=
1/2 Re{ILVL }

where the superscript * denotes the complex conjugated quantity.

Maximum real power is transferred if the optimization conditions
9
oRy,
that RL # 0, i.e.

(P.) = 0 and -ji—(P ) = 0 are satisfied subject to the condition
L BXL L

R =R and X =-X_ or 2 = Z% (1.1.1b)
g L g L
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Assuming that a critical maximum of the load power is obtained
from known power-dependent changes of the linear device, the input
impedance of the entire non-linear device can then be precisely deter-
mined from the matching éondition (1.1.1b) if the transformation prop-
erties of the tunable lumped generator impedance are known (Boerner,
1963). To employ the concept of complex conjugated impedance match-
ing at extremely low power densities, it is sufficient to isolate the
load~dependent generator impedance (Altschuler,1962) and to cascade an
impedance transformer between the isolated generator and the load so
that the generator side input impedance of the transformer is matched
to the characteristic waveguide impedance as is shown in Fig.2. Since
it is anticipated that the output impedance of the impedance trans-
former may require any possible passive value to match the conjugated
transformed load impedance, the transformation junction must be de-

signed such that the entire passive impedance can be transformed.

A microwave device for which it is known that it satisfies these
transformation properties is the lossless hybrid T junction of Fig.3.
The illustrated E-H junction is a commonly employed immittance trans-
former in microwave technology and it consists of a symmetrical
series (E-arm) - parallel (H arm) - junction of rectangular waveguides
with identical cross-sections which are operated in the fundamental
TE10 mode (Montgomery and Griesheimer,1947). In particular, it is
assumed that the junction is isotropic and lossless and that the
design is geometrically symmetric, i.e. the E and H arms have a common

symmetry plane about which the transformation planes 1 and 2 are




symmetrically spaced as is indicated in Fig.3. Under these idealized
assumptions, the E and H arms are decoupled (Stosser,1961) as is veri-
fied by the unitarity conditions derived in Appendix I, where the

slightly asymmetrical design case is treated as well.

In applying the E - H junction as an immittance trénsformer, the H(3)
and E(4) arms are terminated in tunable short-circuited plungers and
by proper choice of the equivalent transformation lengths %3 and 24
from the central symmetry planes, it is possible to transform the load
dependent reflection coefficient I'z (plane 2) into the input reflec-
tion coefficient I'y = 0 (plane 1) as defined in Fig.4. 1In practice,
the transformation problem is solved by either measuring T, , employ-
ing directional couplers, or by measuring the absorbed maximum

power P_ of the load device by changing %; and %, until I'; = 0 or

L

PL = Pmax' The exact functional dependence of I, on %3, %, and the
design parameters of the hybrid junction may commonly be of little
interest to the experimentalist, though the transformation behaviour

is known to be highly non-uniform in the case of unmatched E - H tuners
(Sucher and Fox, 1963). However, if the hybrid T junction is to be
employed as an automated, controllable impedance transformer in a
measurement procedure based on the principle of complex conjugated
impedance matching, the analytical transformation properties must be

defined in a closed form mathematical representation in dependence of

the scattering parameters of the four-port as derived in Chapter 3.

To properly analyze the transformation properties of symmetrical E - H
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tuners, the properties of various symmetrical designs have been deter-
mined by measurement. Measurement procedures as described in detail
(Chapter 5) and illustrated in the self-explanatory Fig.5, have been

employed using the Owens' method (Owens, 1969) to increase the measure-

ment accuracy in regions of high VSWR. Measurement data compiled in
Chapter 5 for symmetrical E - H tuners show that if port 1 or 2 is
matched and one of the tunable short-circuited plungers is held on fixed
position whereas the other stub is moved over one-half wavelength and
vice versa, circular transformation loci for the input impedance results
at port 2 or 1, respectively. Neglecting the slight losses, it is found
that any one of these transformation loci intersects the matching point,
i.e.I'=8,, =0, and ail loci are tangent to the unit mismatch circle,
i.e. lPl = 1, as is shown in Fig.6a. Thus two families of circular
transformation loci result in the Smith Chart, i.e. locus LB(Q,3

const., %, = turnable) whose intersection point defines the load-side
reflection coefficient S,, = Fi as shown in Fig.6b. 1In particular, it
is found that for the lossless case the entire passiﬁe region of the
impedance plane can be transformed if the E and H arms are decoupled

and not entirely mismatched in which case the two families of circular

loci are explicitly independent of one another.

In order to analyze these experimental results, the matching criteria

for a generalized lossless reciprocal matching two ports are given in
Chapter 2, employing the scattering matrix approach (Carlin and
Giordano,1964). Although the general properties of hybrid T junctions

are rather well established in the literature (Kahn, Oono,...1956;
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Brand,1969), the unitary properties are carefully reviewed in Appendix
I. The resulting identities are then employed in Chapter 3 and in
Chapter 4 respectively, to define the general expression for the reflec-
tion coefficient S,, =I‘i of isotropic, lossless, symmetrical (as well
as slightly asymmetrical) hybrid T junction and '3-db short slot'
directional coupler. Based on the analysis of Chapter 3, the analyt-
ical transformation equations required for conjugate impedance match-
ing are established in Chapter 6. Both the matching conditions of
defining the stub lengths %, and £, for a given P: = 8,, and of deter-
mining [, = sz for known stub lengths £, and £, are derived. The
detailed analysis of the closed férm solution of the intersecting im-
pedance transformation loci presented in Chapter 6 was not found in
the literature. 1In addition, the analysis of matching errors due to
slightly coupled E and H arms as well as losses in the tunable stubs

seem to be novel to the best of the author's knowledge.

These properties are effectively appliedvin Chapter 7 to general de-
sign problems of automated and controllable input power matching
devices. How these properties can be used in general design problems

of microwave technology is summarized in the conclusions.




Chapter 2

MATCHING CRITERIA FOR LOSSLESS TWO-PORTS

AND

REDUCTION FROM FOUR-PORT TO TWO-PORT JUNCTION.

2.1 MATCHING CRITERIA FOR LOSSLESS TWO-PORTS

Since the ultimate aim is to derive an analytical closed form solution
of the impedance transformation loéi, the matching criteria for the
case of generalized lossless matching two-ports are introduced employ-
ing the scattering matrix representation (Carlin, Oono, Kahn, Bele-
vitch, 1956). Using these criteria, it must be shown that for a given
symmetrical hybrid T junction an arbitrary load side reflection co-

efficient T, for which |I'|<l can be transformed in all cases into

The symmetrical hybrid T junction whose decoupled E & H arms are term-
inated in tunable short-circuited plungers, may be considered a loss-
less two-port between the transformation planes 1 & 2. 1In Fig.4, the
equivalent two-port configuration is presented, where the associated

scattering matrix is defined by

[B..] [ST] [AT] (2.1.1a)

T
with

~

o]

—
|

b; _ a1 _ rS11 Si2
[bz]’ [AT] = [az]’ [ST] = [S21 322] (2.1.1b)

and

a, = T',b,, b, =T,a, h (2.1.1c)
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The input reflection coefficient Fl resulting from the cascaded trans-
formation two-port and the load one-port thus becomes (Carlin and

Giordano, 1964).
I'2°812553 S1; - P2°Det{[ST]}
1 - T25z2 1 - I2822

Fl = §;; + (2.1.2)

which must vanish for matching conditions. Assuming that the two-
port is lossless, the scattering matrix must be para-unitary (Carlin,

1956), i.e.

|311|2 + |521|2 =1 (2.1.3a)
152212 + |812]2 =1 (2.1.3b)
* *

811812 + S21822 = 0 (2.1.3¢c)

*
where Suv denotes the complex conjugate of Suv' For a lossless,
reciprocal two-port the following conditions follow from (2.1.3)

S22 »
Det {[ST]} =— 5, |s11] = [s22]

S11 (2.1.4)
and Islzl = |821|

If conditions (2.1.3) and (2.1.4) are resubstituted into (2.1.2), it
is found that the input reflection coefficient of a lossless reciprocal

two-port reduces to

S22 S22 = Tz
I, =—% 1 -T,5,, (2.1.5a)
S11
resulting in the following matching criterior
*
Ty =8S,,, [Ty # 1 (2.1.5b)

which is a necessary and sufficient condition for a lossless, recip-
rocal matching transformer. Furthermore, condition (2.1.5b) satis-—

fies condition (1.1.1b), i.e. complex conjugated impedance matching,




where the criteria for matching any arbitrary passive load impedance,

i.e. |F2|<l, follows directly from (2.1.5b) and is given by
0 < |S22] < 1 (2.1.6a)

0 < Arc(Sz2) < 21 (2.1.6b)
It is well known that the transformation condition (2.1.6) is not sat-
isfied by many of the commonly employed microwave devices (Kahn, 1956)
and only a restricted domain of T, can be transformed, e.g. double-
stub matching. Thus it will be shown that the lossless, symmetrical

E-H tuner and 3 -db coupler do, in general, satisfy condition (2.1.6).

2,2 REDUCTION FROM FOUR-PORT TO TWO-PORT JUNCTION

To determine the restriction on the transformation properties of hybrid
T junctions, the two-port scattering parameters %“) as defined in
Fig.4 must be expressed in terms of the scattering four-port para-
meters SUV° Therefore,the equivalent transformation circuit of the
hybrid four-port as defined in Fig.7 is introduced, where the tunable
short circuited sections of the E and H arm one~ports are combined into

a separate two-port defined by

[B.]

s [SS] [AS] (2.2.1a)

with

(Ag] = 1231 and (8] = [2°] (2.2.1b)

S] )
Since the E and H arms are adjusted independently, the E and H arm one-

ports are decoupled, i.e. Ssg = Sgs = 0, and therefore

Sss 0

[Sg1 = [577g, ] (2.2.1c)

Mo
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Although, for all practical design reasons, it may be assumed that
the waveguide junction itself is lossless, the losses due to imperfectly
tuned shorts as well as those due to wear of the stub guide walls
must be considered in thé definition of Sgss and Sgg. These internal
one-port reflection coefficients are straightforwardly obtained from
transmission line theory (King,1965), where it is assumed that the
" waveguide sections of the respective stubs and arms are matched to a
common characteristic impendance. The normalized one-port input im-
pedance may therefore be defined as
ZL + tanhy? tanhu + tanhv
Z, = = tanh(utv) (2.2.1d)

in 1+ ZLtanhyﬁ 1 + tanhu tanhv

Where ZL = tanhv represents the normalized complex load impedance

of the tunable short, and Y = v/% = o + jB the complex propagation
constant with o the attenuation constant and B the phase constant

- of the stub guide section.

The internal reflection coefficient Suu(u = 5,6) is thus given by

Zinu-l tanh (ut+v) -1

S - = . =
HU Zin +1 tanh(u+v)u+l

—exp—2(u+v)u (2.2.1e)

which for the lossless case reduces to

S = - -298 & = - 23 2.2,1f
uu exp JBUU exp J<1>u ( )‘

The formulation of the scattering matrix [SH] of the equivalent four-
port hybrid T junction is based on the assumption that the material
constituents are isotropic, implying reciprocity (Carlin & Giordano,

1964), i.e. S = § and therefore
: 15\Y Vi



[s,] = [5,1" (2.2.2a)

where the superscript T denotes matrix transposition.

Furthermore, it is assumed that the losses of the hybrid T junction
are negligible and therefore [SH] must satisfy the unitarity condition

(Carlin & Giordano, 1964),i.e.
*T
[sy) ~ [84] = [E] (2.2.2b)
where [E] is a diagonal identity matrix. Without introducing symmetry

conditions and employing the wave definitions of Fig. 7, the

following results;

[B.] [A.] [Ql I[TIf J[A.]
T S| A1 - . g T (2.2.3a)
[B,] (a1 |m17 R | 1a,]

where
C1a] = 311, [8) = [D1) and a1 = [2°1,08,1=[271(2.2.3b)

The submatrices [Q}, [T], its transposes.[T]T and [R] are defined with

(2.2.2) and (2.2.3) by

811812 S13 S14 S33 834
= T] = d[R] = 2.2.3
[Q) =[3122220, 70 = (322 Sh¥lamd[R] = [330 3041 (2.2.30)

The desired scattering matrix [ST] of the equivalent transformation
two-port, as defined by (2.1.1a) and in Fig.4, can be obtained from
(2.2.3a), where

[BT] [Q][AT] + [T][AA] (2.2.43)

(3,1]

T
A [T] [AT] + [R][AA] (2.2.4b)

However, since at the transformation planes 3 and 4 the following

15




s
<0

identities must be satisfied according to the definition of Fig.7.

[AA] = [BS] and [BA] = [AS] (2.2.5a)
it follows that [AA] = [SS][BA] or

(8,1 = (5.1 1a,] (2.2.5b)

A S A T
Substituting (2.2.5b) into (2.2.4b) and solving for [AA] yields
_ -1 -1, T
(4,1 = {5170 = [R]} “hem)tra] (2.2.5¢)

which when substituted into (2.2.4a), results in the desired formula-

tion of the scattering matrix [ST] defined in (2.1.1a)

: -1 -1 T
[sp] = {[Q] + [T]+ {[8;] "~[RI} "[T]1} (2.2.6a)
where with D = {(—l— - s )G—l— -s )-s21}
s 33° s by 3y
55 66
s =s + {s2 (—l— -s )25 s s +s? G—l— -s )}1(2'2°6b)
11 11 13 S Ly 13 14 34 14 S 33" D
66 55
1
§ =§ =g +{s s (-5 )~s (s s +s s
12 21 12 13 23 S66 by 34 14 23 13 24
.2,
+s s 6—l— -5 )}-l (2.2.6¢)
1% 24 S 337" D
55
s =s +{s? G—l— -s )+2s s s +s2 6—l— -s )yl(2.2.6d)
22 22 23 S66 4y 23 24 34 24 S __ 33°D

Since in practice it is almost impossible to manufacture ideall& symme t-
rical E-H tuners, both the theoretical (ideally symmetrical) and the
practical (slightly asymmetrical) cases are treated separately in the
following chapter, utilizing the unitarity identity derived in

Appendix I.




Chapter 3

HYBRID T-JUNCTION TUNERS

3.1 IDEALLY SYMMETRICAL E-H TUNERS

If it is assumed that the properties of the E-H junction is geometrically
symmetric i.e. the E and H arms have a common symmetry plane about

which the transformation planes 1 and 2 are symmetrically spaced and

no dents or obstacles are perturbiqg the fields in the junction, then

the symmetry conditions given in (I-7) must be satisfied, i.e. 822 =

S11, 823 = S13, S24 = —s14 and s3y = 0, where s33 # 0 and sy # O

for an unmatched symmetrical E-H tuner.,

Subject to these conditions, it is found that the equivalent two-port

is symmetric, where

g2 SZ
= = 811 + 13 + 13 3.1.1
S11 = S22 11 7 1/S55-S33 = 1/See-Suu ( 2)
and
s2 52
s12 = 821 = 832 *F 1.3 - 11 (3.1.1b)

1/S55-S33  1/S66=Sun

substituting expressions (I-9a) and (I-9b) for si;; and si2, respective-
ly, a more convenient representation of the two-port scattering para-

meters is found.

o* S* :
1 S13 [1 522] 1 Sy It S::]
- _ + 3.1.2a
S11 = S22 =2 g% T1/Ss55-S33] 2 S* [1/S66=Suu] ¢ )
13 14
% *
s (1S3, s [1-2kb
3 Sss 1 1 Se6

(3.1.2b)

Si2 = 821 =2 *3 [1/Sss5-S33] 2 [1/S66=Suu]

%*
51 Siy
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Employing the notation S = [§ j d bstituti th -
ploying o " l u\)Iexp J¢UV and substituting e ex

pressions of sss5 and sgg as defined in (2.2.1f) for the purely loss-
less tuners, i.e. SUU = —exp—2j¢u, into (3.1.2a), yields with ¢s55 =

¢3 and ¢ee= ¢y.

- Mexp y k]S s3lexpti (205-65)
822 = fz{eXP Jz(¢13_¢3’1+|833]exp~j(2¢3—¢33)

14| Sy | expti (20u—duu)
TH[Sua | oxp—7 (20u—Gu )’ (3.1.3a)

+ exp j2(d14—ds)

For further analysis it is convenient to define the zero-setting
of the adjustable stubs 2 = %3 and RS = %y with respect to the fixed
P

reference planes of the H and E arms so that

] v )
$s = ¢3“Q%i and ¢y =¢u‘$%i (3.1.3b)
which when substituted into (3.1.3a) results in
2 ]
s22 = —3{exp j(013-203 (¢3, |Sss|)+exp 3(014-204(du,]Sus|M(3.1.3¢)

where O13 and 0,4 are defined by (I-10d) and (I-10e) of Appendix I,

and

1-|s |
_ -1 H

@U = tan {l+ 5
HU

Inspecting (3.1.3), it is obvious that for a lossless, symmetrical

]
tan ¢U}’ u= 3, 4 (3.1.34d)

hybrid T junction the entire complex plane of the reflection coeffi-
cient s22 = Fi can be transformed, as long as the short-circuited
tuners are lossless, |333|<l and lsuul<1, and ¢3j énd ¢y are independ-
ently adjustable over the ranges 0<¢3<m and 0<¢y<m.

Introducing the abbreviations

Y3(¢p3 = Const.,¢, adj)=[@14—2@u(¢:,lshu|)-W] (3.1.4a)
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¥y (b = Const.,ds adj)=[0135-205(ds, |s5s])-7 (3.1.4b)
(3.1.3¢c) can be then rewritten as
s22 = 3{exp jPy+exp jPs}
“Hexp 3SR rerp-g 58 Texp YY) (3.1.40)

- + *
— cos(ﬂiiﬁi)exp jGQQEYi)=p2

The analytical transformation properties (3.1.4) as related to the
concept of complex conjugated impedence matching are derived and

interpreted in Chapter 6.

3.2 SLIGHTLY ASYMMETRICAL E-H TUNERS

Since in practice it is found that slight coupling of the transform-

ation arms exists even for optimized designs, perfect symmetry can no

longer be justified if the E-H tuner is to be employed as an accurate
immittance matching device. Therefore, first order perturbations

from the ideally symmetrical design case must be analyzed which re-

present either a slight shift of the E and H arm symmetry planes with
respect to port 1 and 2 or a slight off~axis dent in the main junction,

or angle of E or H arm plane different from 90° with respect to.the main arm.
Denoting the scattering coefficients of the perturbed case by OUV’
and inspecting the symmetry constraints given in (I-5) and (I-6) of

Appendix I, it is shown in (I-13) and (I-14) that a slight asymmetric-

al phase shift in the transformation coefficients 03, 023, 014 and
O2y results in coupling of the transformation arms. Namely, if it 1s

assumed that,



™D
€3

013 = Si13exp jO13 s 023=513eXp jO13
(3.2.1a)
O1y = Syyexp jO1y R O24 = =Si1nexp-jdiy
and
011 = Siiexp jdi11, O12 = Sy, Oz22 = Sypiexp-jdy11  (3.2.1b)

then the coupling coefficient is finite for s;3 # sis, where

*
Can = =i S13S1ysin(si13-s14)S11C0S S11
3k J [(Sl3l2COS 2613*[514|2b08 2614] ?

S13# S14(I-15a)

and 033 and O34 will change in modulus and phase as is shown in (I-15c)

and (I-15d).

Employing these assumptions, the above stated perturbation require-
ments are satisfied and it is possible to obtain an estimate of the
transformation error. In order to analyze the first order perturba-
tion effects in the most general way, both the two port reflection

coefficient 05, and the mean 822 = %(011 + 0s9) are evaluated, where

in terms of 033, O34 and Ouy

. 1 1
O22 = {SlleXP—J511[Q§;; —033)C§Z; ~Oy1) =074 ]

+ S%sexp(‘2j613)(1/566‘6ku)+S%HQXP('2j614)(1/555“033)
. 1 1 2 -1
- Zslssluexp—J(513+51u)03u}{C§;; —Oss)fgzg ~Oyy)=0%y} (3.2.2a)

and

- 1 1 2
O22 = %(011+022)={511C03511[Cg“— -033)65—— ~0u4)=034]
55 66

+ S¥3c0s 2813(1/Se6~0uy)+STycos 28,4(1/S55-033)

1 -1
+ 2j51351uSin(513+31u)034}{Cg%; -Uau)(gzz ~0y4) =04y} (3.2.2b)
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where G33, O3y, Oy, and &§;; are defined in (I-15) and the modulus
and phase constraints of the unperturbed scattering coefficients Suv

are satisfied by the relations given in (I-8) to (I-12).

It is to be noted that it was found more convenient to express the
resulting two port reflection coefficients 0y, and 0,2 in terms of
Si115 S12, S13 and Sy4 as will be further pursued in the error analysis
of Chapter 6. Furthermore, it follows from (3.2.2a) and (3.2.2b) that
the larger the AS =813~814, the smaller is the total transformation

domain.




Chapter 4

3-db COUPLERS AS TUNING DEVICES

4.1 INTRODUCTION

At high power levels the type of tuner most commonly used is a "3-db
short-slot " (coupler), which is a hybrid junction with short circuits
in the two output arms as shown in (Fig.8). Earlier it was demon-
strated that the E-H tuner is effective over a wide range of wave
guide wave 1léngths, limited only by the effectiveness of the short
circuit, losses and defects in symmetry and not by basic operating
principle. The 3-db short-slot's tuning action is limited in fre-
quency by its ability to maintain a 3-db power split, although it has

the advantage of being usable at high power levels.

A general approach to a quantitative analysis of the operation of the
'3-db short-slot' is possible by utilizing the special relationships
for the scattering matrix of a four port, reciprocal lossless junction
and the special properties associated with 3-db directional couplers.
Expressions for the reflected wave at the input terminal will be
developed. Again the range of the reflection coefficient that can be
matched will be determined by deriving the range of the input reflec-
tion coefficient (impedance) that can be obtained with a match on the

output terminal.




5 db COUPLER

@ _ o©

1 | SLIDING
SHORT CIRCUIT

® @

Fig. 8 Schematic of 3db "Short Slot" Tuner



4.2 PERFECTLY MATCHED 3-db COUPLER (IDEAL CASE)

Ref [11] gives the expression for the input reflection coefficient
when it is possible to choose a symmetrical reference plane with
respect to wave guide ports, such that the scattering matrix elements

take on the following values,

S11 = Ss2 = S33 = Sy =0 (perfectly matched)
Si2 = S35, = 0 (infinite directivity)
1 .1
and Si13 =75 3 S =35

and T'; 1is given by,

Iy = sin(2328%) expl; @320 4m/) ] (4.2.1)

where ¢3 is a linear measure of the distance between the short in

arm 3 and the reference plane of port 3. ¢4 is a similar measure for
the short in arm 4. The same reference has also analysed the in-
fluence of the coupler imperfection. However it was assumed that
symmetry is still present and the junction is still matched and de-

coupled, but the coupling is not exactly 3-db. So,

313:';_ Y1 + A
whence,
1
Sll“::/i 1-A

where A<<1l and thus the expression for the input reflection coeffi-

cient beccmes

r, = [A cos(l”—f*’—;l@i)+j sjn(ﬂ’i‘gp-‘*)]-exp[j(ﬂ’i;ﬂh)]




This shows that all values of the reflection coefficient may be
generated except those having a magnitude less than A, or in other
words, loads having a reflection coefficient magnitude less than A
cannot be matched perfectly. The worst effect is that a perfectly
matched load will not permit a reflection coefficient less than A at

the input.

4.3 TRANSTFORMATICN LOCI OF MISMATCLED AND

IMPERFECTLY COUPLED 3-db TUMERS

So far the case when all four ports are perfectly matched was dis-
cussed. This is a condition which is difficult to achieve in practice.
In this section transformation properties are aﬁalysed when the term-
inals are not perfectly matched. However the assumption of symmetry
and infinite directivity still holds true. Under these cenditions

the scattering matrix elements take on the following values,

S11 = S22 = S33 = Sy # O (imperfect matching)_

Si12 = S3s =0 (infinite directivity)

1 - ‘ 1
Si3 =/5 vl + A, 3 Si1y = j/E V1 + A
(4.3.1)
S23 = j/% V1 + A, ; Souy =/% VI + A,
where A; and A, are small perturbations in power split because of
imperfect coupling. It is also assumed that
A1<<l ¢ Ay« 1

and A1 # Az




subjected to cenditions (4.3.1), eqa.(2.2.6d) becomes

S§3 Sgu

(1/Sss5-s33) * (1/S66=Suu)

S22 = S35 + (4.3.2)

Eqn. (I-6b), gives S,, of the four port in terms of SU and SU [where
3 4

u=1x, 2, 3, 4] and their conjugates:

1 [ o
—_— e Qs Ckx . * -Q% % Q% k3
S22 *  * % % S23“1‘*“33 (513323 Sluszu)sau “faszqsuu
S13524-523514

but, also because of symmetry and infinite directivity,

S;3 = S,, and Slu = 523 and 534 = (
so,
S,, = ——2—- {s¥|s,.|%s# s, |% }
22 k9 %9 331923 vy 122y
Sa24=523
from eqn.(4.3.1),
SF2 = 82, =3 + Ay)
2 —_c2 = _1
Sz"s SZ"3 3(1 + As)

so,
(82 - s#2) = 1+ 3(A1 + A2) = 1 + A"
where A' is the average of the two perturbations A; and A, i.e.
AT =3 (At L2)
substituting all these in the expression for the four port §,,,

So2 = (S§31823|2—S§4|SZQI2)/(1+A') (4.3.3)

and thus equation (4.2) for equivalént s,, becomes

-

! %
Sp9 T - , 8%3(1+A')-1833|2!323I2+533/Ss5|523|2
1+A (1/555—533)* (4.3.4)
S‘2214,(14%&')+!SM|2IS:zulz—'giilszulz
+ See

(1/S66-Suu)




From expression (4.3.1), it is found that

2

|Sp_3|2 = =573 and ISZL,IZ =

and thus

= 152312 {S§3/355—183312_(1+Av)}
147" (1/855~S33>

S22

2 2 %
" [S2u] '{1+A'+|Suul —Suu/sss}
14" (1/866-Suu)

Eqns (I-4b) and (I-4e)give, [after putting Sz, = 0]

1
o

|313|2 + |sz3|2 + lsaalz =

and  |S14|% + |S24|% + |Susl?

1

Putting values of |513|2, lSzglz, |Slq|2 and {szulz

equations, it is found

=A'

lsss|2

=A!

G

which imposes another condition on A; and A, i.e.

A + Ay <0
now S*
2 % 9 Ihh _
Spp = |S2s] {7533/555-1 - lszut,‘{ See
147" 1/S55-S33 14A! 1/Se6-Suy
or
* %

_ 1,1+A2y S33/Ss5=1, 3 1+A3, - Syu/See-1
s22 = 20 ) [1/3 s 1 -3¢ )[l/S o]
1+Av 55 33 1+Ay 66 L i

according to eqn (2.2.1f), define

sss = —exp(-2¢3)

see = —exp(-2jdy)

27

2
24

(4.3.5)

into these two

} (4.3.6a)

(4.3.6b)




where ¢3 = 323 and ¢y = BLly.

Here B is the imaginary part of the propagation constant i.e.

B = 2n/)\g, Ag being guide wave length.

]

writing; Sa3s !Saslexp(j¢33)

|Suu|exp(Gouu)

and Sy

the expression for s;zof eqn (4.3.6b) becomes,

_ 1/1+Ao\ (1+]S33|exp j(2¢3~d33) Y
s2z = 2(T0) Iy S33 exp—j(2¢3—¢33)] exp (=23¢s)

1 14+Ay, (1+[Suulexp j(2¢u=¢uu) .
- 2(1+A%)[1+ S:: exp-j(2¢:-¢::)l exp(-2j¢u)

(4.3.7)

For the convenience of further analysis, redefine the zero setting

of the adjustable stubs Rp = L3 and QS = fy with respect to fixed

reference planes of the H and E arms. So define,

b3 = b3 - 3s/e

]

b

by — bun/2

Then eqn (4.3.7) becomes

1+|533|9XP(2j¢;)

l+'SggleXp(—2j¢;

1+
S22 = %(l+ﬁ%)[

lexp(-23j¢3)

1+A1)[1+|Su4|eXP(2j¢L)

1 .
= AT BTs, Texp (2505 ) | P (- 230w)

now define,

L
_ -1 |s33|sin 2¢3
83 = tan [l+[5331cos 2¢§]
and
L
e“ = tan-l[lsk4|51n 2¢4 ']

1+{syy|cos 2¢;

then,

(4.3.8)

(4.3.9a)

(4.3.9b)

NS

&0
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s20 = 3GIRP) expl25 (85=03) 1~ ATaL) exp 23 (Bu=u) ]

Let,
Yy (¢ = const, ¢3 = variable) = 2(83~¢3)
Y3(¢3 = const, ¢y = variable) = 2(04~dy)
so that,

S22 = (1+A,)exP(JIPz+) z(l+A,)exP(JlP3)

after replacing A; by (2A'-A2) and readjusting

S22 = %‘ﬁ%‘r[exp(jllw)-exp(jl!}s)] “ )
.3.10

¥ rpebrylenn (iUs)+exp (393) 1~ Fyarrexp (395)]

This can be rewritten as

(2-0")cos 582y 15 14"y sin (B5HS) e 5 iy

A1+A2>

S
S22 = AT

when A' is replaced by (—=—=), this expression becomes

e 1"3)+J 51n(-'w—-—'w—)]exp J(}!J_s’LW_u) (4.3.11)

*
Fz = 822 = [1+A'bos

A" = AZ‘AI

where 3

From eqn (4.3.11) variation of the magnitude of the sz, of the

equivalent two port junction is found out to be

All

TIAT < |322| <1 (for a lossless junction) (4.3.12)

Eqn (4.3.12) shows that loads having reflection coefficient magnitude

1" )
less than AT can not be matched perfectly. Also, since the mag-

nitude of s;3 can not be less than (A"/14A'), a perfectly matched
load at the output will give rise to an input reflection coefficient

of (A"/1+A").



4.4 COMPARISON OF TRANSFORMATION DOMAIN FOR A

MATCHED AND AN IMPERFECTLY MATCHED 3-db TUNER

In section 4.2 it was shown that for perfectly matched and imperfect-
ly coupled cases the load reflection coefficient cannot be less
than A. Whereas in the case of an imperfectly matched junction it
cannot be less than A"/1+A'. The conditions imposed on A;, A, are
Ay # A2
and A + A2 <0
now if it is assumed that imperfection in power is 0.1 db i.e.

3-db = 0.1 db.

Si13

then |A]

0.023.
In the case of an imperfectly matched 3-db tuner, let
|A1] = 0.023 (corresponding to 3 + 0.1 db)

and  |As|

0.031 (corresponding to 3 * 0.12 db)

1]

Here there can be two cases:
Case (i) Ay and A, both are negative

so, A + Ay <0

now A" = 0.004
A' = ~0.027
"r 0.004 | _
and thus |1+A,[ = |1_0.027| = 0.00412
Case (ii) Ay = positive = +0.023
Ay = negative = -0.031

hence A + Ay <0

-0.027

now, A"

¢

€D



and A' = ~0.004

A" I _ I —0.027l
1+A'Y T '1-0.004

therefore | = 0.0271

This shows that the performance of an imperfectly matched 3-db
tuner could be better than that of a perfectly matched 3-db tuner,
provided the imperfection in power split (coupling) is such that,

Ay and A, both are negative. This is true only at one end of the

band.

Sy

[



Chapter &

MEASUREMENTS

5.1 PURPOSE OF MEASUREMENTS

Although the term "network parameters'" is usually associated with
lumped equivalent circuit representations, it will be taken here to
refer also to the elements of any descriptioﬁ which characterize the
input-output behaviour of the structure, and in particular, matrix
representations. The choice of the scattering matrix representation
was influenced by the following considerations

(a) ultimate use of the structure; the network operates as a
complex conjugated load matching device.

(b) type of information required directly, i.e. locus of the s22 of
the equivalent two port, as the transformation angles Y3 and Yy are

varied.

5.2 GENERAL PROCEDURE

The structure to be measured is inserted into an experimental set=-
up (see Fig.4) with which the appropriate measurements can be taken,
and the data is then analyzed to yield the desired properties of the
experimental structure. The equipment must be capable of measﬁring
the VSWR and location of the voltage minimum, from which the desired
quantities can be calculated. The VSWR and location of the voltage
‘minimum can be measured with a slotted line. The structure to

be investigated is of transmission type. Of the transmission type

oy
C%zf




structures the two port is of greatest importance since the measure-
ment of the equivalent network parameters of multiport junctions
can be reduced to the measurement of an appropriately selected

series of two ports.

5.3 HIGH VSWR MEASUREMENTS

Self explanatory Fig.5 shows the complete measurement setup. Since
the output is terminated in a sliding short, high VSWR i.e. expected
in the slotted wave guide section. The detection of Vmin for high
VSWR values is difficult. In order to have sufficient accuracy of
measurement, Owens' method [Owens, 1969] was followed. Owens
proposed taking two d measurements in the vicinity of a null (see
Fig.9). Vref is selected to be some convenient level above the

noise. TFor a particular k value of Probe-detector, measurements

are made to find d; and d;. It may be shown that;

k-1

(5.3.1)
sinzcﬂ%é)—kzsinfﬂ%é)

VSWR = //l +

5
For k2= 2 (square law detector), and when -E%g and ﬂ%é << 1, the

above equation simplifies to

)\2
VSWR = 1 +'%zza:%afy (5:3.2)

The main advantage of the Owens method is that the measurements are
concentrated around a standing wave minimum where the line voltage

is low (low impedance) and the probe influence is then small.
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Fig. © Owens' Method of Measuring High VSWR
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5.4 DESCEAMPS METHOD (Measurement of scattering

parameters of linear, reciprocal two ports)

Deschamps method involves a graphical solution of the equation

Iy = sy 4+ -Si2l2 (5.4.1)
1 11 1_8221'12 . A

for the situation where I'; is a pure reactive termination. T2 is
mapped (by measurement) into the T'; plane. The usual measurement
system follows: (see Fig.10).

Ty = -e2j62 is the unit circle in the reflection coefficient plane.
In the experimental mapping, sample points of I'; are taken so that
02 is some submultiple of Ag/2, i.e. AB2 - Ag/1l6, which gives 8
unique I'; values. I'; maps into a circle with points Ag/A apart being
linked by diameters, i.e. d;, d; are linked by a diameter (see Fig.

11la). _d; corresponds to 6, = /2 and dz corresponds to 6; = O.

In mapping I'; it is useful to recall the following conformal mapping
theorems:

(a) A circular locus always maps into a circular locus, provided

transformation is given by eqn. 5.4.1 .

(b) Angles between intersecting lines are preserved upon transformation.

An important point to be noted here is that the I'; circle encloses
all possible passive output terminations of the network and there-

fore the T'; circle encloses all possible input impedance values.




2N an

C v
A4
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I5 circle

(d)

ig. Il Deschamp’ Method for Measuring Scattering
Parameters




From theorem (a), [I'; maps into a circle for T, = ’-—eZJ62 (see TFig.
11b). O' is called the iconocenter of the I; circle and corresponds

to T, = 0, i.e. a matched load terminating the network.

The Graphical method used for locating the iconocenter follows:
(see Fig.1llc) | .
(a) Connect two "T'; diameter-comnnected" sets of frequency points

by straight lines in the T'; plane; call the intersection A.

(b) Draw a radius from C through A and drop perpendiculars to
the circle circumference from C and A ; call the two points so
locafed B and D.

(¢) Draw a straight line from B to D. The intersection with the
radius from C is the iconocenter O0'. Once the iconocenter and

the center of the I'; circle are determined the scattering coefficients

are obtained by the following construction: (see Fig.11d)

|s11] = oo’ R |s22] = cO'/R
'H
|s12] = 9 or ls12]? = R(1-|s22|%)
VR

If the phase cof the scattering coefficients referred to the specific
mechanical reference planes is required, Ehen 'y must be known for
[, =1+T, =1 for a short circuit located Ag/2 from the specified
output reference plane. (see Fig.lle).

P corresponds to I'; = 1, P' corresponds to 'y for I', = 1

$11 = <OP,00' , b2p = <CO',CK

and $12 = <K'P,K'C
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In thé practical measurement setup reference planes‘are determined
as follows:

(a) Match terminate the output and locate a minimum on the input
line. At this plane s;; = -Isll| and one has the input reference
plane located.

(b) Terminate the output with a short circuit and obtein the T,
circle. Locate the center and determine I'; for I'; = 1.

(¢) Move the output shert until T'; = CP'. The cutput reference

plane is Ag/4 away from the short.

5.5 EXPERIMENTAL RESULTS

The measurement of |sz2| and ¢52 can be accomplished in the follow-
ing manner. The output pcrt is terminated in a sliding short. A
series of measurements of VYSWR and shift in position of minimum from
the input reference plane are made corresponding to the positions

of the output short which gives TI'€, = n\g/1l6 (n being an integer

up to8), This was repeated for different settings of shorts in E

and H arms i.e. for different values of transformation angles {3

and Yy. Measurement data for symmetrical F-H tuners show that if
port 1 or 2 is matched and one of the.tunable short-circuited plungers
is heid on a fixed position whereas the other stub is moved over one-
half wave length and vice versa, circular transformation loci for

the input impedance results at port 2 or 1, respectively. Compiled
data is given in Table I, and the correspending plot of the trans-

formation loci is as shown in (Fig.12).
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Chapter 6

APPLICATION OF ANALYTICAL TRANSFORMATION PROPERTIES AND ANALYSIS

OF PARAMETERS REQUIRED TO BUILD AUTOMATED TUNING SYSTEMS

6.1 ANALYTIC-GEOMETRICAL INTERPRETATION OF THE

TRANSFORMATION PROPERTIES

It must be shown that the load side reflection coefficient r§ = Sp2
as given by (3.1.4) does indeed satisfy the experimental results
described in the Chapter 5 and illustrated in Figs.(6a) and (6b).
Therefore in Appendix II, the load side reflection coefficient Fi

is expressed in terms of either two intersecting circular or ellipti-
cal loci as derived in (II-3c) and (II-6c), respectively, and illus-
trated in Figs.1l3a, 13b and 13c. Comparing these resulting express-—
ions with the experimental data and the derived expression for si»

as given in (3.1.4) in terms of the total transformation angles Y3
and Y, it follows that (II-3c) does satisfy both (3.1.4) and the

idealized experimental results, where

T = |T|exp jw=coséwiéyi)exp j(wigyi) (II-3¢)

Before the transformation properties of E-H tuners for particular
design features are interpreted in relation with the phase constraints
given in Appendix I, the general matching procedure for the total
transformation angles Y3 and Yy are analyzed and derived. In part-
icular, two classes of matching problems must be solved.

(a) Given FjM = sgz for which matching occurs, i.e. I'y = 0, find

the associated transformation angles, Y3 = ng and Yy = qu.




*
(b) CGCiven ng and qu for which T'; = 0, find FZM = 555,

6.2 TRANSFORMATION PROPERTIES FOR THE LOSSLESS,

SYMMETRICAL CASE

The explicit dependence of Y3 and Yy on a given reflection coeffi-
cient I'; is determined by (3.1.4) and (II-3c), where
% Vs ~Wu, Vs, Ay
To, = Sip= +cos(——exp §(—1 (6.2.1a)
M 2 2
with waM and qu defining the total transformation angles for match-

ing conditions, i.e. 'y = 0.

If the complex loadside reflection coefficient FZM is given and
characterized by its modulus ]FMI and its phase ng, it follows from

(6.2.1a) that

Yoy = V2, () [0z (6.2.1b)

Viy = V2, (F) [02,] (6.2.1c)
where

|62),| = lare cos(|T2y, )| (6.2.1d)

Reinspecting the generalized form of (3.1.4) and (II-3c), it is
obvious that the total transformation angles ng and qu are not
distinguishable and may be interchanged as is verified in (6.2.1b)
and (6.2.1c) and shown in Fig.13b. This inherent degree of freedom
is also evident from the definitions given in (II-4)and (II-5).

Therefore, two pairs of solutions are obtained in addition to the




<+ 1007] UOIIDULIOJSUDA] By} Jo uolipjaidisiu] |poihpuy ¢ bid
Q‘rﬂw - .
( supjd pupbiy )
10077 |po14d1||3 BuljosssaluI 0 1007 1pjnosi) Buijoasisiul ‘g JUBI0II00D) UoN08|dey x8jdwo) D
(¥71 EoN 450
b/1=(zh+5N) 190] 100} co”,_ﬁmEHw%mcc:
4SUDA} 1O SUD1UED O SNo0T JO SJ2}U30 JO SnOQT
\\\\//\ Siglelen \\!.//
<.
}8U0D = AW, \
R N ,_ ]
€1 \ N
3 _—X y

1sU09 = YA snoon




sets of periodic multiples.

Since ¢2M = arc cos(szMl) defines, for 0 < IPZMI < 1, the equation
of a circle, CZM’ in polar coordinates as defined in Fig.l4a, it is

possible to introduce a simple analytical procedure of determining

'Q)gM and lqu.

6.3 GRAPHICAL PLOTTING PROCEDURE FOR THE DETERMINATION

OF Y3\ AND yu,, GIVEN T2, (i.e. |T2M| and Yz,

(Figs. l4a and 14b)

Plot the [FZM] circle, centered at the origin and having a radius

of IPZMl, onto the polar I'-plane. Draw the radius vector A making
an angle of —sz with the real axis (0°). The resulting intersection
with the |P2M| circle defines FjM = sgz. The circle |C¢2M], defined
as l¢2M| = |arc cos([Ple)l, is plotted such that its symmetry axis
is the radius vector A. The intersection points P3 and Py of circles
|C¢2M| and IFZMI then define the desired total transformation angles
waM and qu- Thus associated radius vectors B and C represent the
symmetry axis of the circular transformation loci ¢3M (Y3 = comst,

Yy = adjustable) and Puy (yy = const, Y3 = adjustable), whose inter-
section point defines FjM = sgz according to equation (6.2.1a) and

is shown in Fig.l4b. It is evident that the total transformation
angles are indistinguishable and do not, in general, represent the

electrical transformation length ¢; and ¢, as defined in (3.1.3).




% mm_@c,qco:oEémcE._.m;:oco:oc_ém_bo_ooEanv_.@E

48400 7 Q , 1su0o\= W7

N o
Smﬁ
]
Al
[ )" (1"%1) so0 om0 = "%

w71 Wz we, UOHDNIDAZ 0IydDI9 °q jo uolpjuasaiday 4pjod D



*
6.4 GRAPHICAL DETERMINATION OF FZM = ng, GIVEN ng

AND qu (Fig. 14b)

If it is assumed that the generator side is match-isolated or means
are provided to establish that T'; = 0 and that the transformation

properties of the employed E-H tuner are precisely established, then

%
PgM = sgz is determined by definition of (6.2.1a) as
Y3, ~Vy
M M
IPZMI = cosé———i———) (6.4.1a)
Y3, sy
Yoy = — () (6.4.1b)

The analytical determination employs the inverse steps of the plot-
ting procedure described in Section 6.3, is illustrated in Fig.1l4b,
and therefore uniquely defined. It is to be noted that a unique sol-
ution for the determination of I'; can always be obtained as verified
by (6.4.1), although Y3 and ¥y are indistinguishable. However, in
the case of this particular matching problem, the design of such an
E-H tuner must be sought for which the dependence of Y3 on ¢, and

Yy on ¢3 is most stable, i.e. linearly proportional.

6.5 ALTERATIONS OF THE TRANSFORMATION DOMAIN DUE TO

LOSSES IN THE TRANSFORMATION STUBS

Since for all practical design reasons it may be assumed that the
wave guide junction itself is lossless, the losses due to imperfect
tunable shorts as well as those due to wear of the stub guide walls

must be considered in the definition of sss and sgg. The resulting




internal reflection coefficient for this case may be defined with

(2.2.1e) by
ss5 = —exp(-203)*exp(-2j¢3) (6.5.1a)
ses = —exp(-20y4)°exp(~2%y) (6.5.1b)

To obtain a straightforward understanding of the resulting altera-
tions, the effects on the idealized matched symmetrical E-H tuner
and the magic T junction are considered, in which case (3.3c) be-

comes:

~3{exp(~203) cexp (-2jd3)+exp (~204) *exp (=25 ¢1) }

MT
S22

-3{ (exp-2a3+exp-204) cos ($3=-by )+j (exp-20.3-exp-204) *sin

(Gs=01)} expti(dstds) (6.5.1¢)

From inspection of (6.5.1c), it follows that the transformation

domain for 03 # oy # 0 is reduced to
1 MLy 4
zlexP—Zag—exp—ZaqlflszzlfgIexP—2a3+exp-2au

and for this particular asymmetrically lossy case, no unique solu-
tion exists as is shown in Fig.l1l5a. However, for the symmetrically
lossy case, for which 03 = ay = o > 0, the solution is as illustrated
in Fig.15b. In particular, it is noticed that perfect matchiné is

no longer possible, ag # ay # 0, which leads to a rather Impcrtant
design requirement, namely that preferably all tuners are of identical
properties to reduce unavoidable mismatch. Only if this requirement

is satisfied, i.e. 03 = 0y, may the transformation procedures derived




o
€L

in Tection 6.2 be employed. Otherwise no unique solution is obtained

as illustrated in Fig.l5a.

6.6 ANALYSIS OF PARAMETERS REQUIRED TO BUILD AUTOMATED

TUNING SYSTEMS

When the actual control circuit is designed, it is required to
determine a readily measureable quantity which could be used to
provide a control signal for automatically adjusting the position of

shorts in E and H arms.

One well known technique for monitoring real and imaginary components
of the reflection coefficient consists of sampling and detecting the
r.f. signal at four points in the wave guide which are separated By
1/8th of the guide wavelength. When the outputs of alternate
detectors are subtracted, two signals are obtained which are prop-
ortional to real and imaginary parts of the reflection coefficient,

referred to the plane of the first detector. So in order to drive

the shorts in the E and H arms to tuned positions, there should be
an expression for transformation angles ng and qu in terms of
available control signals. (here it is real and imaginary part of

the load side reflection coefficient)

Rewriting the equation (3.1.4c)

Y3, ~Py Y3, APy
* M M
PzM = s¥2= cosé———i———)exp jG—JEE——M)

or
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waM-WuM W3M+WAM
5 ) cos ( 5 )

FR—jFi = cos(

W3M"¢4M lnb3‘”+q)l+

+ j cos( 5 )sin(——4i?—£%

Here FR is the real part of FZM, and Fi is the imaginary part of FzM.
Using trigonometric identities and equating real and imaginary parts

on both sides,

cos wsM + coslpuM = ZTR ’ (6.6.1a)

sinys, + sinpy, = 2T, (6.6.1b)

squaring both the equations

2 2 2
cos w3M+cos wkM+2COS¢3MCOSqu = 4FR (6.6.1c)
and
in2s +sin’Py +2sinps. sinly, = 472 (6.6.1d)
sin Ys\Fsin Yuy+2sindsysinPs, = 4T .6.

Adding eqn (6.6.1c) and (6.6.1d) and then subtracting eqn (6.6.1d)

from eqn (6.6.1c) and readjusting the resulting equations,

wsM + WuM = 0

¢3M - qu = 02 )
4T -T).
R i
where o1 = arc cosf——7?—7?—~1
4(FR+Ti)—1
- [2(r2412%)-1]
02 = arc cos e
+0
hence ng = 991?41




"
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Q1—02

and 'q)qM = 2

These expressions will be used during description of the control

circuit in Chapter 7.




Chapter 7

CONTROL CIRCUIT DESCRIPTION (E~H TUNER AS TUNING JUNCTION)

7.1 MONITORING THE LOAD REFLECTION COEFFICIENT AND

GENERATING CONTROL SIGNALS (Fig. 16)

Since transformation angleS'W3M and W“M have been expressed in terms
of real and imaginary parts of the load reflection coefficient,
voltages equivalent to real and imaginary parts of the load side
reflection coefficient are to be generated. These voltage levels

in turn will be used as input for the circuits, which will generate

voltage levels equivalent to transformation angles ng and qu.

The r.f. signal is sampled and detected at four points in the wave-
guide which are separated by one-eighth of a guide wavelength (these
four points are as near as possible to the load end). Outputs from
these four detector probes 1, 2, 3, 4 are fed into preamplifiers

I, II, III and IV respectively. The preamplifiers present a suitable
input impedance and provide adjustable amplification to compensate

for differences in the detectors and probes.

Outputs from pre-amps I and III are used as inputs in differential
A, whose differential output gives the real part of the reflection
coefficient existing on the waveguide (referred to the plane of the
first detector). Similarly the outputs from pre-—amps II and IV are
fed into differential amplifier B and the imaginary part of the load

reflection coefficient is generated.




The suggested circuit for the differential amplifier is a four-

stage differential amplifier. [Ref: Texas Instruments Inc. "Tran-
sistor circuit design' McGraw Hill, N.Y., 1963, P.138]. An available
circuit (which could be modified and improved upon) is designed for
maximum open loop amplification of the differential signal. Series- .
shunt negative feedback provides high input impedance and low out-
put impedance. The circuit responds to a differential signal o f 25
microvolts superimposed on a common level that varies from O to 5.0V.
The voltage gain is continuously variable from 100 to 500. The

frequency response is flat within 1% from d.c. to 1000 Hz.

7.2 SQUARING AND FUNCTION GENERATING CIRCUITS

The expression for transformation angles W3M and qu contains square
terms of PR the real part, and Ti the imaginary part of fhe load
reflection coefficient. So the output from differential amplifiers
A andAB must be squared before they can be used in other function
generating circuits. This is done by squaring circuits. Suggested
references for the squaring circuits are given in the block diagram.
However, the reference no. 3, "Square law output'" seems to be better
for the present application because of its flexibility, no critical
or expensive components are used and it could be extended to large
dynamic ranges if required. 1In this circuit a diode network and

detector provide output proportional to




the square of the input voltage. The input range of 40 db is split
into two 20-db segments. Each stage saturates and gives constant
output for voltages above operating range. For voltages below the
operating range the stage is cut off and has zero output. The com-

bination of two stages gives the desired square-law characteristic.

Function generators are in fact the heart of the whole system.
Efficiency of the system depends very much on how accurately the
function generators produce ng and qu, the transformation angles
required for complex conjugate matching. Again references for the
function generators are given on the block diagram. Without looking
at the performance practically, it is difficult to suggest any part—
icular circuit over other circuits. But in this particular case, the
idea of 'photo electric function generators" seems to have more

potential than any other circuit.

An "open loop photo electric function generator" can generate any
single valued function with an accuracy of better than one percent.
Functions of a function can be produced with slight operating modifi-
cation. Many of the problems common to closed-loop operation have

been eliminated.

Function generators are followed by averaging circuits whose outputs
give voltage levels proportional to the values of the transformation

angles ng and ng required to match the load reflection coefficient
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existing in the wave guide. Averaging circuits may be "'differential

amplifiers" preceeded by an inverter in one.

7.3 REFERENCE LEVEL

Without the information about the present position of the shorts in
the E and H arms, it is not possible to operate the Servo-motor,

and bring the shorts to the tuned position. So a reference level

is used and this reference level is controlled by the shorts in the

E and H arms. This reference level is a voltage level which is
equivalent to a transformation angle Ys or Yy corresponding to the
original position of the shorts. A study of the variation of the
transformation angle with the position of the short (in wavelength)
gives the curve of Fig. 17. Again this voltage profile could be
generated by a function generator. The input to this circuit could
be controlled mechanically by the position of the tuning shorts.

Thus the reference level gives complete information about the current
position of the shorts. This level is compared with the level
generated by the circuits whose input is controlled by the load side
reflection coefficient (i.e. levels corresponding to ng and qu, the
transformation angles required for matching the load to the input).
The difference gives a measure of the distance, as well as the direc-

tion in which the shorts are required to be moved by the servo-motor.

e

S

0




7.4 SERVO COMPARATOR CIRCUIT

In this circuit, the generated control signal is compared with the
reference voltage and thus a control signal for the Servo-motor is
generated. The suggested circuit for this purpose is a "Chopper
transistors simulated SPDT switch'" whose reference is given on the
block diagram. This circuit controls up to 50 volts with an absolute
error between reference and control voltage of less than two milli-

volts.

The circuit operates like a simple mechanical comparator system. The
comparator chopper stage, driven by the oscillator, senses the
difference between the reference voltage and the output signal of

the system, but draws very little current from the reference.

7.5 MOTOR CONTROL CIRCUIT

Many kinds of motor control circuits are available. Specific
advantages or disadvantages of a particular c;rcuit could be under-
stood only after practical study of the circuit under the condition
which will prevail in practice. However ; relatively simple, effi-
cient and reliable circuit is 'triac-diac reversing Bervo control",
whose reference is given on the block diagram. This circuit uses a
component called "triac" for a.c. power switching. This is a gate-
controlled semiconductor switch which reduces the number of components
required for a.c. power control and needs no protection from voltage

transients.




This suggested circuit is a reversing drive Zervo-control circuit
that varies the speed and direction of a series motor according to

a d.c. control signal (which will be the output from the ZServo-

comparator circuit in this case). The polarity of the control
voltage determines the direction of motor rotation, and there is
a gain pot that adjusts the slope of the speed versus the control

voltage curve.
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. Chapter 8

SUMMARY AND CONCLUSIONS

An analytical closed form solution of the impedance transformation
loci of various microwave junctions was derived. This solution was
used to find out the transformation domain of the lossless, reciprocal
'hybrid T-junctions' as well as '3-db couplers'. These transforma-
tion domains allow one to determine the restrictions on the trans-
formation properties of 'hybrid T-junctions' and "3-db couplers",

used for matching purposes.

It can be concluded that for a given ideal, symmetrical hybrid T-
junction (or '3 db-coupler') an arbitrary load side reflection
coefficient 'y for which |T'|<l can be transformed in all cases into
I'' = 0. In applying the E-H tuner as an imittance transformer, the
H(3) and E(4) arms are terminated in tunable short-circuited plungers
and by proper choice of the equivalent transformation lengths %3 and
£y from central symmetry planes, it is possible to transform the
load dependent reflection coefficient ' (plane 2) into the input

reflection coefficient 'y = 0 (plane 1).

Measurement data compiled in Chapter 5 for symmetrical E~H tuners
show that if port 1 or 2 is matched and one of the tunable short-
circuited plungers is held on fixed position whereas the other stub

is moved over one-half wavelength and vice-versa, circular trans-




formation loci for the input impedance results at the port 2 or 1
respectively. 1In particular it was found that for lossless case the
entire passive region of.the impedance plane can be transformed if
the E and H arms are decoupled and not entirely mismatched. Slight
asymmetrical phase shift in the transformation coefficients o0;3, 023,
quland 02y of the E~H tuner results in coupling of the transforma-
tion arms. Furthermore, it follows from (3.2.2a) and (3.2.2b) that
the larger the AS = 8§13 - 814, the smaller is the total transforma-

tion domain.

For an imperfectly coupled 3-db tuner eqn. 4.3.12 shows that loads
having reflection coefficient magnitude less than (A"/1 +A') can

not be matched perfectly. Also, since the magnitude of s22 can not be
smaller than (A"/1 + A'), a perfectly matched load at the output will
give rise to an input reflection coefficieﬁt of (A"/1 + A'). It was
also shown that the performance of an imperfectly matched 3-db tuner
could be better than that of a perfectly matched 3-db tuner, provided
the imperfection in power split (coupling) is such that, A; and A,

both are negative.

In Chapter 7 an electronic circuit is suggested with the help of the
analytical transformation properties of E-H tuner, deduced in Chapter
6. A four probe sensor is used to provide control information and
display the system match achieved by the tuner. Hybrid T-junction

is to be employed in future as an automated, controllable impedance




transformer in a measurement procedure based on the principle of
complex conjugated impedance matching. One typical example of com-
plex conjugated impedance matching is the measurement of the input
impedance of non-linear, active microwave devices built into a rec—
tangular waveguide supporting the dominant TE; mode. Specifically
this technique will be very helpful in the case for which the ampli-
tude of the modulation signal must be held extremely small due to
the non-linear behaviour of the active device (e.g. tumnel diode).
Therefore, standard technique of employing slotted line measurement
procedures must be excluded, since the resolution could be insuffi-

cient to obtain accurate measurement data.

The automated tuning device of Chapter 7 would have great application
in many microwave circuits. Because, although many systems maintain
proper tuning for extended periods of time during operation, operator
adjustment of the tuner is often required during start up procedures
and is occasionally necessary during operation. When the system is
detuned, full power transfer to the load is not achieved and efficiency
of the circuit goes down. Consequently for most consistent results

and operational convenience it is desirable to automate the adjust-

ments of the system tuning mechanism.
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RECOMMENDATION

The suggested tuned microwave circuit will offer a convenient
means to efficiently couple microwave energy to widely varying loads.
A typical example is microwave power transfer in a radar system,
where the rédiating or receiving antenna offers a varying impedance
to the circuits. Another example of variable load microwave power
application of the above circuit is in microwave heating. In micro-
wave heating the suggested circuit could most efficiently transfer
microwave energy to continuous thin web and filamentary types of
material. This will not only be economic but also offer consistent

product quality and operational convenience.

~J




APPENDIX I

UNITARITY IDENTITIES

It is assumed that the hybrid junction is lossless and reciprocal

but not a priori symmetrical, therefore the submatrices of [SH] must

satisfy the following unitarity identities according to (2.2.2b)

1 1e1 + 1711t = [E]

Q1 (T1 + [T17[R] = [0]

[t el + [r1°11T = [0]

r1*T1r] + RI%[R) = [E]

(1-1a)

(I-2a)

(I-3a)

(I-4a)

where [E] and [0] represent the identity and null matrices, respect-

ively, and the submatrices [Q], [T] and [R] are defined in (2.2.3c).

Evaluating the submatrix identities,

|811|2 + Islzlz + ISlglz +

*
S11S12

*
812811

5122

*®
S11S13

*
S11814

*
S12813

*
§12814

+

+

&
S12822

E3
S22812
5222

%
8512823

%
S12S2y

*
§22823

*
822824

*
S13823

*
S23513
2
|s23]
*
513533
%
S13S34

*
523833

*
§23S34

-+

+

yields

514 ]

ate
~

S14824

%
S2uS814

2
|s2u]

KA
w

S14834

Ja
w

Si4Suy

%
S24S3y

*
S2484uy

(I-1b)

(I-1c)

(I-1d)

(I-1le)

(I-2b)

(I-2¢)

(I-24d)

(I-2e)

oD



Since (I-3a) represents the complex conjugated transposition of

(I-2a), no further useful identities are obtained

l313l2 + lSzglz + IS33!2 + Iqu!z = 1 (I-4b)
* * * %

Ss13814 + s2382y4 + S3353y + s3usuy = 0 (I-4c)
* * % %*

s14513 + s21823 + s34833 + syys3y = 0 (I-4d)
Isia]? + [s2u|? + |s3u]? + |suu]? = 1 (I-4e)

These identities are employed to derive the necessary and sufficient
set of expressions enabling straightforward symmetry reduction, where

from (I-1b) and (I-le):
(1511]2—|822!2)=(l523|2~|813|2)+(]Szulz-!s1u12) (I-5a)

(I-1c¢) and (I-1d)

% % * %
_ =(s13s23t+siysay)siit(s13s23+siuS24)S22
= (I~-5b)
2 2
(Is11]€ - |s22]%)

812

(I-4b) and (I-4e):

(|533I2—|844|2)=(|81u|2+|824Iz)-(lsls|2+|52312) (I-5c)

(I-4c) and (I-4d):

* % * *
_ =(si13sintsz3say)ssst(s13siyt+sassan)syy
= ] (1-54d)
2 2
(|s33]® = |suu|®)

S3y

In addition, further explicit expressions for s;;, s12 and sy in

terms of SU and s]J (u=1, 2, 3, 4) and for s33, s3y and syy in
3 y

terms of s v and s v (v=1, 2, 3, 4) are required to simplify the
1 2

expressions of the equivalent two-port scattering matrix parameters

Sﬁv given in (3.1.2), where from (I-2b) and (I-2c):



-
ey
4

{

1 * % * % % % %
S11 = {s13524833+(s13523-S14524)534+s238145u4 ) (I-6a)
* * ry *

(Slsszu-823slu)

(I-2d) and (I-2e):

1 x % * % * % %
$22= —p;— 5% % 1523514533-(S13523-514824)834-5135245441  (I-6b)
S13524-S238514
(I-2b) and (I-2d):
1 £ % % % % x %
833= — 7% % 1~513524811+(513814-523824)512+523514522} (I-6¢)

(s13s24~s523514)

(I-2¢) and (I-2e):

1 o % % * x % %
Syu= — 55— 5% 1523514811~ (S13514=523824)S12-513524544} (I-6d)

(s13824-823814)

(I-2b), (I-2¢), (I-2d) and (i-Ze):

1 ‘ % % %
s12 = 7 5+ 5 5 t(s13s14-823521)833

2(s13s24~823811)

% % % %
+[(|823lz—lslaI2)—(|824l2-|814Iz)]Ssu-(s13814—823824)sk4} (I-6e)

and,

1 * x %

- I
S3y = T t—(s13523-s14821)811

2(s13824-523514)

‘[(|823|2—1513lz)-(lszulz—ls1ul2)]S?2+(ST3823-S?4524)S§2} (I-61£)

-SYMMETRY REDUCTION FOR THE IDEAL SYMMETRICAL CASE

If it is assumed that the design is geometrically symmetric, i.e.

the E and H arms have a common symmetric plane about which the




transformation planes 1 and 2 are symmetrically spaced and that no
dents or obstacles are perturbing the fields in the junction, the

following symmetry conditions must be satisfied

s22 = s11 = |s11] exp jo11 (I-7a)
. H arms coupling
s23 = S13 = |s13| exp jd13 [ in phase ] (I-7b)
. E arms coupling
s2y = -s14 = —|s1y| exp jb1y i anti-phase 1 (1-7¢)
s12 = |s12] exp jdi12 s s33 = [s3a| exp i¢as
and Syy = lsh#l exp jouy

Substituting (I-7) into (I-6f) and (I-5d) results in the decoupling

constraint s3zy = 0 and thus the unitarity identities reduce to

2 2 2 2
|S11I + |S]_2| + |813| + |81q.| = 1 (1-83)
% % 2 2
S11812 + si2s811 + !Slsl - |S1u| =0 (1-8b)
* * %
(s11 + s12)s13 + s13833 =0 (I-8c)
% * *
(s11 = s12)s14 + siusyy =0 (I-8d)
2 2
2 |S13l + !Ssal =1 (I-8e)
2 2
2 ls;w,l + lS‘*‘\‘l = 1 (1-8f)
and similarly equations (I-6) result in
% %
s11 = s22 = ~3{s35°%> + syt } (I-9a)
513 S1y
* s *
S12 = “%{533'—,%;‘3‘ - Squi:‘—u } (I-9h)

813 S14



Employing the triangle in-equality

la|-|b]| < |atb] <

al+lol|

it follows from (I-8c) and (I-8d) that

l IS;3l - ISLZ«»HI < |s11! < ISZEBI + lS;u,] l (I-9¢)
and
’ ISZBI _.Is;"l < sz < fs§3l + !S;“! ’ (1-9d)

which are very useful relationships for rechecking measurement data.

Since the internal reflection coefficients sji, ss3 and sy, can be
measured more accurately than the transformation coefficients si»,
s13 and siy, the relevant phase constraints are expressed in terms

of the modulus and the phase of s1;, s33 and syuy.

The phase of

: 1 2 2 213, .
Si2 = |S1zleXP jéi12 = |2(|833l +|Suu1 )—|511| l exp jo12

is defined from (I-8b) with (I-8a), (I-8e) and (I-8f) by

2 | 2
ls33]|” - |suu]
cos(p11-¢12) = T (I-10a)
b)sia]*[d]sss| %+ | sun|®=]s11 %12

The phase factors ¢13 and ¢;4 can be determined from (I-8c) and

(I-8d) with (I-10a) as:

1. . »
tan(2¢13~¢33) = J811181n¢11+l812131n¢12 = [311,512]+ (I-10b)
|s11]cosdrit|siz]|cosdr2 '



R |
3

tan(2¢14-Pyy) = ls12[singii=|siz]sing;s [s11,812] (I-10c)
|s11]cosdi1-|si2|cosdr2

Thus

]
il
It

013 (2¢013-¢33) arc tan [811,812]+ const. (I-10d)

const. (I-10e)

[

arc tan [si1,812]

i
1]

(2d14-dyy)

D1y

The interrelated phase constraint of all the six scattering para-

meters is obtained from (I-9a) and (I-9b), where with (I-10)

~{|sss]exp 3013+|suu]exp €14} (I-11a)

2|s11]|exp jo11

?{|833|exp je13—|544|exp jB14} (I-11b)

2|s1z2]exp jo12
Subtracting the squared moduli of these equations yields

2|S11|2-%|S33|2-%|84u|2
S33||sus|

cos(013-61y) = (I-12a)

Multiplying (I-1la) by the complex conjugate of (I-11b) and equating

the real and imaginary parts, results in (I-10a) and

2 2,3 .
sin(014-013) = 2|s11]" %(1833I2+|544| )-ls11] % sin(d11-d12) (I-12b)
[ssa]|suu]
and therefore
1
2]s11]* %(1533[2+|Suu‘2)—|811Izlz‘sin(¢11—¢12)

tan(014-013) =
IZIS11|2—5(|833|2+|Suu!2)]

]

[s11, s12] | (I-12c)

or

(014-013) = arc tan [si11i, s12]



where ¢12 is determined by (I-10a) and thus (0;4,-0;3) is indetermin-
ate by a factor of T. However, according to (I-9), all phase angles

can otherwise be uniquely determined.

SYMMETRY REDUCTION FOR THE SLIGHTLY ASYMMETRICAL CASE

Inspecting the symmetry constraints of (I-5) and (I-6), it is obvious
that a simplified closed form solution cannot be given for the gen-
eral asymmetrical design case. Therefore for purposes of error
analysis, the first order perturbations from the ideally symmetric
case are considered only where the scattering coefficients are de-

noted by qu. Coupling is encountered whenever
O33 # Ouy # 0 ) O11 # 022 # 0
and O23 # O13 R O24 # =01y

Therefore, it isvlbgical to treat the slightly asymmetrical mis-

matched case for

IO’zsl = |0'13| and |02u| = lqul (I-13a)
so that
013 =s13exp jO13 s Oz23 = spzexp-jl1s
(3.2.1a)
O1y =sisexp 81y ~ O2u = -siyexp-jliy
and thus from (I-5a)
2 : 2
|Ulll - Joz2]% =0 (1-13b)

and from (I-4b) and (I-4e)




2 2 2 A 2
lo3s|” = [s33]" = [o34] > louu|” = [sus|” = |osu |
where
O11 = -%{siaﬁiaisiqﬁfu [|si3] eXP+JZ513‘|Slu| exp+2j6iul (I-13¢)
S13 Siu (|813| - !Slul
* %
O12 = -%{'iii 033 = Eii Oun} (I-13d)
S13 Siy
Gap = —%{S;3U§3+ Siu % 4 [lslsl exp- 32513-ls1u| eXP‘2J514] (I-13¢)
S13 S14 (lslsl lslu[
R - % %
O3y = J‘Sln(gls O1s) (S13514033+5135145044) (I-13f)
(Is13|“=|s1s]
or
* % 2 2 % :
Gas = - Si3{(011;022) g!slsl - |314£ ] +ors)} (I-14a)
S13 [ISI3| C052513—|S1ul COSZGlu]
) x %
Gay = = 3 Sln(313—51u)813814§011+022) (-14b)
2[|513[ C082613—I31q| C082514]
* * 2 2
Oy = - 2L (011;022) [L513l - !Slulzl —o13} (I-1lkc)
S14 [|513| cos2613—[s1ql cos2814]

Inspecting the expressions of (I-13) and (I-14), it can be assumed
that

Oi12 = s12 , O11 = s11exptjdi1 s 022 = si11exp-j6i11 (3.5b)

and thus for Qi3 # O1s

~
87




*
_ —j sin(813-814)cosdii81381u811

T3y > > (I-15a)
[lslsl C082513—I31u| C08261u]
where
Is Izex +2381 3]s Izexp+'2514
exp2i811 = 13 5 pt2jQi13 1k = |
|s13]|“exp-23813=|s14 | exp-j28s
which when simplified gives
-1.]s Izsin(26 )-1s |Zsin(26 )
8§11 = tan { 13 3 13 Ly 2 L } (I-15b)
|s13]“cos(2813)=|s1u] “cos(2814)
and 033 and Oyy change in amplitude and phase
* 2 2
O35 = - 813 {Sll[lséal ~|s14] 1602611 + ooy} (I-15¢)
Si13 [Islgl 0082613—lslql C052614]
2 2 2
|033| = ]Sssl - |034|
and
* 2 2
Oy = - Lk sial]sis|“=]s1u]"Jcos8sy + o1s) ,

Sin [Islg]2c082613—lslu|2C082614

2 2 2
lows]® = [suu|” - [o34]
(I-154d)




APPENDIX II

THE TRANSFORMATION LOCI

To derive the transformation equations of the circular loci Ly (3=

const., Yu = adjustable) and Ly (Yy = const., Y3 = adjustable), it is
found convenient to relate the polar plane of the complex reflection
coefficient T = IF]exp j¥ to the Argand plane as shown in Fig.13a,

where
' = ITlexp ¥ = u + jv (II-1a)

The equation of a circular locus which intersects the origin I' = 0,
is tangent to the mismatch circle IF‘ = 1, and is characterized by
the total transformation angle wf for a fixed stub length, is given

by
(u - %coswf)z + (v - %sinwf)z = 1/4 (11-1b)

where wf is defined in the positive mathematical sense as shown in
Figs. 13a and 13b, and u and v depend on the adjustable stub

lengths of the complementary arm.

Thus the equations of the circular loci Lj and Ly, as shown in Fig.

13b, are given by

L3(¢3=const.):T§=u£+vg=u3cos¢3+V3sinw3 (I1-2a)

2
Lg(¢u=const.):F3=u3+V4=quOS¢q+VqSinwk (I1-2b)

where uz = uz(Py), vy = v3(Pu) and  uy = uy(YP3)

-




vy = v (P3)

The intersection point L3 and Lu, which defines the reflection coeffi-

cient
' = g9, = lFIexp v,
is defined by

Fs@u) = Ty@Ws3) = TWs3,Pu)  or
us(Py) = us(@3) = u@Ws,Py)
(I1-2¢)
vi(@y) = v (U3) = v(¥3,YPy)
so that,
u(cosyPa-cosy) = v(sinPy—sinfs) (II-2d)

The argument of the reflection coefficient associated with (II-2c)

is then obtained from (II-2d) as

tany = = tan Qwi§£i) (I1I-33)

e i<

Eliminating u and v for I'3; =Ty =T in (II-2a) and (II-2b)
yields

IT]? = cos® izl (11-3b)

Since ITI defines the absolute value of the radius vector in the
polar reflection coefficient plane, I' is defined by the intersection

point of two circular transformation loci L3 and Ly, where

- !
I = fFlexpjw = icoscyiiwi)expj(yigyi)
which uniquely specifies the matching procedures.
%
It is thus shown that the loadside reflection coefficient I'p =

s22 as defined in equation (3.1.4) does indeed represent the analyti-

cal expression of two intersecting circular loci L3(y3 = const.,

o0




Yy = adjustable) and Ly (P = const., Y3 = adjustable). However, it
is to be noted that the adjustable transformation angles do not, in
general, represent the tunable electric stub lengths ¢3 = B3 and

¢y =BLy , which is evident from (3.1.3) and (3.1.4).

If the E~H tuners are to be employed as automated, self-controllablev
conjugate impedance matching devices, it is found useful to derive a
procedure of determining cosiys, cosyy, sinys, and siny, only in terms
of ]PIZ and tany which are obtained from sz, if the proper equiva-
lent circuit of the microwave junction is synthesized. Such explicit
expressions in terms of Y3 and Yy can straightforwardly be obtained

by employing trigonometric expansions in (II-2) and (II-3) and form-—

ulating
5 1
o = cosPscosyy = (|T|°-1) + ——— (I1-4a)
1+ tan™y
B = sinyssiniy = 'TIZ - ——L—T (II-4b)
1~ tan™y

\)(i‘)= sinPscosyy = ___t_ii_?_lﬂ_z__ + /}I‘Iz(l—lf‘lz) (II-4c)

1+ tan'y
6t)= cosYPssinyy = _—Eéﬁﬁni_ - // lflz(l-lflz) (1I-4d)
‘ 1+ tan™¢
[aB - ﬁ) G(i—) ] =0 (II—Z&E)

It is to be noted that the ambiguity of defining a positive or neg-
ative root in (II-4c) and (II-4d) indicates that two pairs of sol-

utions exist as verified earlier. Thus explicit expressions for

=

XN




o)
-

tanys; and tany, are obtained, where

Y+ _ B _4& _ B -
tanll)3+ =5 =3 R tanws_ =% = (1I1-5a)
or
=§t__8__ =.\_):_=_B__ -
tanll)l++ T -V , taan_ 5 5 (II-5b)

For the properly synthesized equivalent circuit of a lossless, re-
ciprocal E-H tuner whose E and H arms are perfectly decoupled, the
resulting expression of tan®¥s; can only depend on ¢y = By, [since

Y3 = £(¢3 = const., ¢, = adjustable)] and that of tanyy can only de-
pend on ¢3 = BL;3. [Since Yy = f£(¢y = const., ¢3 = adjustable)]. Other-

wise the measurement results of Figs. 6a and 6b cannot be satisfied.

ELLIPTICAL TRANSFORMATION LOCI

Since experimental results obtained for the slightly asymmetrical

case indicated that the circular loci degenerate into elliptical loci
whose minor axis is the polar radius vector ('T!) in the Argand plane,
the transformation equations for slightly elliptical loci are derived

for the purpose of error analysis.

The general equation of an ellipse of eccentricity €, which intersects
the matching point I = 0, is tangent to the mismatch circle ' = 1,

and whose minor (or major axis) is inclined by an angle we with the
positive real axis u in the Argand plane, is given by

li-f(u,v,e,we) ='{(1-82c032¢€)u2-2€2cosw€sinw€uv+(1—825in2w€)
a




Q0
E-féz

2 2 2
v =(1-€ )coswe-u—(l—e )sinwg'v} =0 (I1-6a)
. . . 2 2 2 .
where a is the major axis, e" = a - b, and € = e/a is the
numerical excentricity. It is to be noted that -3 < l€’2 < 3 , where

for: R .. . .
elliptical loci with minor axis

parallel to radiant vector
=0 circular loci

elliptical loci with major axis

2 1
< <
0 ]g[ 2 parallel to radiant vector

Employing similar procedures of evaluation it can be shown that

£ € €. . E
- +
cosémiiii)exp jéyizyi)

e 2 £ €
€ . 203Uy
[gesin 5]

(IT-6¢)

represents the reflection coefficient in terms of the intersecting

elliptical loci w% (W% adjustable) = const. and WE (w% adjustable)

= const. as is shown in Fig. 13c.




APPENDIX III

COMPUTER PROGRAM FOR COMPUTION OF TRANSFORMATION LOCI OF EQN (3.2.2)
AND RELATED DISCUSSION

For the purpose of the verification of the closed form solution
(3.1.4c), the transformation loci are computed for the asymmetric E-H
junction using eqn (3.2.2a) and (3.2.2b). The plot thus obtained is
then compared with the loci, obtained from experimentally measured
data, to verify the authenticity of the solution. Because of the
limitations imposed by the available equipments, it was not possible
to fabricate an E-H junction, accurately, with desired asymmetries.
This forbids the checking of measured data, point by point with the
computed data, hence only the general shape of the transformation

loci (inside the unit mismatch circle) will be verified.

EQUATIONS AND BLOCK DIAGRAM OF PROGRAM

The equations to be calculated are (3.2.2.a) and (3.2.2b)

Input available (assumed) are,

[

= |s;;|exp(i¢y1) = 0.3 exp(j60°)

0
-
—

1

Isaalexp(j¢33) = 0.4 exp(jl5°)
Syy = IsuuleXP(j¢qu) = 0.6 exp(j205°)
and sl" = —513 = 10

For computing |s;,! and ¢;,, (I-8a) and (I-10a) has been used.
1/2

]

2 2 2
|s12] = [I-{s11|” = (|sy3]™ + [s14]7)]

2 2
- [|833| ; lSuul _ |311|2] 1/2

o0




: INPUT
Sit + S338S44
Maognitude 8 Phase
. . » .
Compule
Siz .+ Si38 Si4
Magnitude & Phase
4 ‘g' L_ input
Compute 8138814
) S
y . . ’
. Compute a ]
O3z B044
Y g . . P
Compute
O34
. K Y
DO 11=1,37
ops =.5(11-1)
) R
Output
Si2, 53, Sie DO JJ= 137
8]2;8|3' 8]4 . . Ops = 5(JJ-1)
033 044 O34 :
° 4
' Compute :
022 & G2z .
y N \
< e \ '
ops., Opg
’ Oy & 0%y
LY /

FIG.18 BLOCK DIAGRAM OF COMPUTER PROGRAM
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Because,

1 (I-8e)

2[813'2 -+ IS33[2

1 (I-8f£)

2]s14]? + [suu]?
(I-8e) and (I-8f) were also used to calculate the magnitude of s,,
and s;, respectively. The pggse of s;; and s,;, were obtained by
using (I-10b) and (I-10c) respectively. Next s,, was computed by
using (I-15b). 044 and 0,, were computed using (I-15c¢c) and (I-15d)
respectively. It assumed that s,, = 0;,. Fig. 18., shows the

block diagram of the computation.

COMPUTER PROGRAM

WATFIV

. COMPLEX 711
COMPLEX CONJG

COMPLEX CMPLX4PD33,PD44,FD23,FD44,S1G33,S1G44, CEXP4SIG34,EF55

COMPLEX EF664YUSy DINGyCINV,S11,XELLy XEL13y XE by XE9 S13,S14,2 1522423
LCOMPLEX Z4,SIG22,PLX Wl W2, 43 yl4, w1l ,SGB22

COMPLEX Sy APH11, APH12,APH14,APH
S=CMPLX {04 s1.2)

R=2%3.14/3¢0

WGS11=0.3

WGS33=0.4

_HWGS44=0.6

PHILLo6G R~ e
PHI33=15%R

PHI44=2C5%R

SWS12=0. 5”(WGS%B*WCSB’+WGS44*WGQQQ)-HGSI]*hGSll
WGS12=SQRT(SWS12)

. SWS13=0,5 *(1.\~NCS33*hGSB3)4””_ﬂmwwnwu
WGS13=SCRT (SWS13)

SKS14=0.5%(1.C-WGS44%WGS44)

WGS14=SQRT(SWS14)
PHI12=(WGS33%WGS33~WGS44%WGS44 )/ (4*HGS11*WGS12)
P1112=ARCOS(PHL12)

 PHI12=PHI11-P1112

UP3=WGS11*SIN(PHILL)+WGSI2*SIN(PHI12)
DOWN3=WGSL1%COS(PHITI1)+WGS12%CCS{PHIL2)
UP4=WGCST1%*SIN(PHIL1)-WGS12%SIN(PHI12)
DOWN4=WGSL1XCOS(PHILL)~WGSL2%CCS(PHIL2)




20
A

P1333=ATANZ2(UP3,DOKHN?)

Pl444=ATAN2 (UP4, DOWNG )

PHI13=0,5%{PHI33+P1333)

PHI14=0.5%(PHI44+P1444)

DEL13=1.0%R

DEL 14=-DFL13 : '

UPL=WGS13%WGS13%S IN(24DELLI3)-W5S14MWGS14%SIN(2%DEL14)
DOWNL=WGS13%WGS13*CCS(2#0EL13)-WGS14%WGS14%COS(24DEL14)

DELLLI=ATAN2(UP1,DCwN1) o
X11=WGS11%CAS{PHILL)
Y11=WGS11=SIN{PHI1L)
S11=CMPLX(X11l,YLl1)
APHL1={-CELL1)%S

L APHLI3=(-2%DEL13)*S
APH14={-2%DEL14)}%S
APH==(DEL13+DELL14)*S
XEL1=CEXP{APH11)
XEL3=CEXP{APH13)
CXE14=CEXP{APH14)

__XE=CEXP(APH)
X13=WGS13%COS{PHI13)
Y13=WGS13*SIN(PHI13)
X14=WGS14*COS{PHI 14)
Y14=WGS14%SIN(PHIl&Y -

CTS13=CMPLX{X13,Y13)

S A=CMP LX U X LGy Y L &)
TATEWGSU1*COS{PHIT L) *(WCS13*WGS13~-WGS 14 *WGS 14V *COSIDEL 11) /7{ WGSL13%WG
1S13%COS(2%DELL3) ~wGS14%WGS14%CCS(2*¥DELLI4)) N ,

© B1=WGSI IS IN{PHI11)*{WCSI3%*WGS13-W3S14%WGS14)%CCSIDELLIL) /{WGS13%UWG
2S13%COS(2%DBEL13) -WGS14*%WGS14%COS(2%DEL14) )

 AALl=-[ALl+WGSL12*COS(PHIL2))

. BBI=81+WGS12*5IM(PHI12)
AA2=—A1+WGS12%COS(PHIL2)
BBR2=B1-WGS12%SINI(PHI12)
PD33=CMPLX(AALl,381)
PD&4=CMPLX(AA2,3B2)
FD33=S13/CONJG(S13)

CFD44=S14/CCNJG(514)
SIG33=FD33%PN33
SIG44=FL44%PD44
X33=REAL(SIG33)
Y33=AIMAG(SIG33)
X44=REAL(SI1G44)

Y44=AITMAG( STG44)
DEL=0CEL13-CEL14
PHI=PHI13+PHI14~-PHIL1

X34= (WG SL3%*WGS14% SIN(DEL)*WGSI1%*CCS({OCELLILY*SIN(PHI))/DCWNL
Y34 == (WGS13%WGS14%S IN{CELYAWGST11%COSIDELLLI*COS(PHI) ) /DOKWN1
SIG34=CNMPLX{X34,Y34)

WRITE(64100) WGS512,PHI12, WGS13, PHIL13, WGSl4, PHIL4

100 FORMAT(IHO 45X 4'512= 3 F6.4,%< "y FB.3,10Xy'S1250,FE04,'<"3F8.3,120Xy*S

3S14=9,T €. 4, <, B,.3)
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104 FORMAT(LHD 35Xy TRE(S22) 446Xy Y IM(S22)1 ,8X, "MAG',8X, "ANG(S22) ',

TDINR=ANT=(X34%X34=Y24%xY24)

TTI3=S14%S14%XELAXEFSS T T

WRITE(6,101) DEL 12, DEL14, DELL1

h

FORMAT(IHO 10X ' DELL3=3F7.3,12X, 'DELL14=",F7.3, 10X, "NEL11=",F7.3)

WRITE(6,102) X33, Y33, X44, Y44, X34, Y34

FORMAT(1HO, 10X, *STGMA33=4,F10.55 "y 'y F1C.54 10Xy *SIGMAA4=" yF13.5,4","

44F10.55103X ' SIGHMA34 =Y ,F10.5,4",',F10.5)
WRITE(6,104)

5Xy 'R -

S5SB22) 'y 6X, VIMISB22) 0 35Xy MAG(SB22) " 94X * ANGISB22) ' 44Xy '"PHI 3"y 66Xy 'P

6HI4 ) .
DO 2 1I=1,37

DO 3 JJ=1,37
PHI3=5%(I1I-1)%R
PHI4=5%(JJ-1)%R
ES5=—-(COS{2%PHI3) +X33)
FS5==(SIN(2%PHI3)+Y33)
EF55=CMPLX(ES5,F5)

Fo=-(SIN(2%PHI&) +Y44)
EF66=CMPLXI{E6,F6)
YUS=EFSS*EF 66

 ANT=REAL(YUS)

BNT=AIMAG(YUS)

DINI=BNT-(2*X34%Y 34}

" DINO=CMPLX(DINR,DINI)
 DINV=1.0/DINO

Z1=S11%XELL*DIND
12=S13%S13%XEL3¢EF66

24=2%S13%S14*XEXS1G34
211=21+72+723-124
S1G22=Z11*CINV
X22=REAL(S1IG22)
Y22=AIMAG(SIG22)

TPHIZ22=ATAN2(Y22,%x22Y T T T

 PLX=CMPLX(0.,SI)

WGS=X22%X22+Y22%Y22
WGS22=SQRT(WGS)
D134=CFL134DELL4
SI=2%SIN(D134)

W1=S11%COS(DELIL)*DINC
 W2=S13%S13%COS(2*DEL13)*EF66
W3=S14%S14%C0S (2%CEL14)*EF5S
Wa=S13%S14%PLX%SIG34
Wll=W14W2+W3+W4
SGB22=W1Ll%*DINV
XB22=REAL{SGB22)
YB22=AIMAG(SGB22)
PHBE22=ATAN2(YB22,XRB22)
WGB=XP22%XB22+YBZ2%YR22
WGB22=SQRT (WGB)
CPHI3=PHI3/R




PARAMETERS

(angles in radians)
Si2 = 0,4123<—O.940 s s13 = 0.6481<0.039 ,
0.017 s 81y = ~-0.017 ,

S13

033

Il

0.54+30.244 s

-0.381-30.111 ,  Ouy

S1u
811

O3y

I

n

0.5657<2.651
0.253

0.037+30.0027

Fig. 19 THEORETICALLY DETERMINED

TRANSFORMATION LOCI OF E-H TUNER

each circle correspond? to

Ya=const , Yy > O to 180 degrees




PHI4=PHI4/R
PHI22=PHI22/R
PHB22=PHR22/R
WRITE(6,103) X22,'Y22, WGS22, PHI22, XB22, YB22, WGB?22, PHB22,PHI?2
T4PHI 4

103 FORMAT(LHO ) 5XyFB o3y 5XsF R 335X F8.3,5X3F803,5X,F8.335X,F8.3,5X,F8.3
By5XsFBa395XsF5.1 ¢5X4F5.1) - ' ‘ '
WRITE(T7,11C) WGS22, PHI22

110 FORMAT(10XsF10.5,10X,F1C.5

3 CONTINUE

2 CONTINUE
sTOP
END T e e

Fig.1l9 shows the theoretically computed transformation loci,
which could be compared with Fig. 12 for experimental verification

of the theory.

DISCUSSION AND CONCLUSION

As it was pointed out earlier in this appendix, it is not con-
venient to check experimental results point bj point with computed
results. But the reverse proéess could provide a means for measuring
the asymmetry in fabricated junctions. Theoretically transformation\
loci can be plotted for all possible v?lues of s,, and Sy * The
experimentally plotted transformation loci of the junction could be

compared with these theoretical plots to obtain a first order estim-

ate of the asymmetry of the junction, (asymmetry in phase only).

Finally it is concluded that the plot of the transformation loci
obtained from the measurement, [see Fig.1l2] do verify the closed

form solution of the transformation loci of the E-H junction.



