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ABSTRACT

The object of this thesis is to discuss some problems which arise

in the numerical solution of differential equations defined on semi-

infinite intervals. For the problem l"+f(x)y= 0 , known ¡esults are

made use of to derive properties of the derivatives of the solution. The

eigenvalue problem -J" + f(x)y = hy , y(0) = 0 for which there exists a

sequence of eigenvalues X., , where Lt<Lz<1.3 <..., is discretized by

an infinite system of linear equations using a ñnite difference scheme.

The sequence of eigenvalues ¡t¿,i=1,2,...,, for the discretized system

are found. Upper bounds are derived fol the difference between the

eigenvalues of the continuous and the discretized system. The

behaviour ofthe eigenfunctions as ¡ tends to infinity is also discussed.

An example is given to illustrate the theory.
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INTRODUCTION

The behaviour of solutions and their derivatives is of impoltance

in developing an error analysis in the numerical solution of

differential systems which are analogous to Sturm-Liouville systems

but defrned on infinite intervals. Estimating eigenvalues and the

discussion of the nature of eigenfunctions in such problems as x

tends to infinity is in general a difficult problem. Also, developing an

error analysis needs the behaviour of the de¡ivatives. The object

of the present work is two-fold. Firstly, for the system

t"+f (x)y=a,y(0) =A,lim /(.r)="", we know the behaviour of the
I -)æ

solution r¡¡der some further conditions on f(x) . We make use of these

results to discuss the behaviour of the derivatives of the solution for all

* > 0. Secondly, for the eigenvalue problem -1"+f(x)y=Ly,y(0)=0,

we apply finite difference methods and using known results, we

calculate the eigenvalues of the discretized system. The discretized

system is a system of infrnite linear alegebraic equations. We also

develop, for the first time, error bounds for the eigenvalue problems

and establish the required result for eigenfunctions, viz., limy(.r) = 0 .

In the process we also develop some useful results for tridiagonal finite

and infinite matrices. In fact, we give upper and lower bounds for the

lv



inverse elements of a diagonally dominant tridiagonal inñnite matrix.

A novel procedure adopted is to use different constant step lengths for

the ñnite difference scheme in discussing each eigenvalue problem.

Schrödinger's one-dimensional equation with potential x2 is used to

illustrate the theory and some numerical results are given.



1.1

CIIAPTER 1

PRELIMINARIES

Boundary Value pmblems

We are mainly interested in the two systems

Y" +f(x)Y = 0, y(a) = A, Y'(a)= a, (s1)

and

-t"+f(x)y= fy, y(a)= A, (s2)

under suitable restrictions on /(r). As regards lSl), our interest is in

the behaviour of the solution and its higher order derivatives for the

entire semi-infinite interval (a,""). For (52) , we will develop a novel

procedure by using simple finite difference methods to discuss

eigenvalues and eigenfunctions complete with an error analysis.

For both systems we will assume that /(.r) is nonnegative for

x > 0, and that /(x) tends to infinity as r tends to infinity. The

analysis of these systems usually leads to application of one of the

following topics: continued fractions, infrnite series, infinite

matrices, or infrnite products. The above systems have been studied

extensively in the literature particularly when they have been defined

on finite intervals. In the use of finite difference methods, the common

procedure is to assume either a constant step length (å > 0) or a



variable step length (h,k=1,2,3,...,). For (52), we will use a

combination of both procedures of constant and variable step lengths.

In problems concerning finite intervals, the error in the evaluation of

solutions is usually expressed as O(hP), for a given integer p(p>0)

with the implicit understanding that one can reduce the step length to

obtain better estimates for error bounds. Clearly, this will not always

be possible in the case of infinite intervals, as we need either a constant

å or a nest of variable step lengths å* such that iA* = - to enable us
Ì=l

to give an error analysis for the entire semi-infinite interval.

To develop an error estimate of a given method for the numerical

solution of a differential system, usually additional assumptions are

needed about the solution of the system. These assumptions require

that the solution possess derivatives of a certain order, belonging to

definite function spaces. This puts great demands on the properties

of the solution . For example, to get a meaningful error estimate in the

numerical solution of a boundary value problem for an equation of

second order, a bounded fourth order derivative of the solution is

required. This does not present much diffrculty in the case of ñnite

intervals, as solutions and their derivatives can reasonably be

assumed to be continuous and hence bounded. In the case of infinite

intervals, it is usually very difficult to know the behaviour of the

solution or its derivatives at infinity.

1.2 An oscillatory system

I-et f(x), (.r > 0) satisfy the conditions



(i) / is positive;

(ii) /', its derivative, is nonnegative and continuous and (Al)

(iii) lim /(r) = "".x-)æ

Then it is well-known (McShane [10]) that each solution of

y"+Í(x)y--0, ir>0

has infinitely many zeros and lyl is bounded and the values of ly(x)l

at successive maxima form a decreasing sequence. It has been shown

(GMP I5l) that it does not necessarily follow that

Ir¡gr(.r) = o

McShane [10] gives a number of sets of growth conditions on

f (x) to insure the behaviour of y(x) as ¡ tends to infinity. One set of

conditions states that under (41), (2) holds for (1) with the additional

hypothesis

o)

(2)

{lt) t. nonincreasing for ¡ above some ¡-.
f(x)

One such example is given by f (x) = y2.

We now consider

(A2)

v" +p(x)y = 0

wherc p(x) satisfies (.41) and we will denote þ,)i, to be the sequence

of zeros of y(-r) , {w¡}p1 to be the sequence of zeros of y'@) and {yi}Ër

(3)



the sequence formed by y¡ = y('rrí) . Further, we will denote

\9:,t-\lt: bV h

The following results are known to Sansone [15]:

(Ð 0.tr.t2.... ; lyrt> lyrl .... (4)

(ii) ti<ri<ti*t, wi<ti <wi+r, i- 1,2,3....

(iii) to*l - tn s tr - tr-r, hn*ishr'

(iv) I ¿- ana I A-. ,-t) bothdiverge.L¿ n ,(-J n+] Í
n=l n=l

(v) -+<h,<-# ,--! .<t^*1-t.<-+t!p(wn*) " 
^l 
r@) tlp1,*r) " tl pQ")

For the differential equation (3) we will now consider the properties of

higher order derivatives of solutions of (3). To do so, we will consider

the expression

la, (x) y' (x)]" + ç,(x)la,(x)y' (x)f

- d J"' +2 d: J" + a'r' y' + q ra,y'

= y'f-a,p + ai + a,ç,]+ yf-a,p' -zal,pl

=0,

if we choose

^d, p , -d.+d,,p_¿- =:_ and Qt=L.dtPdl

Integrating we get

(on using (3))



",=# and rhus 
^= 

r-lU(#) (5)

[#) .þ-"(#)l#) '
which is of the form

g1vlng

z"+(pt@)z=O , z=dJ', (6)

where c, and g, are given by (5).

Similarly, we have

[ar(x)t" Q)]" + q,(x)fa,,(x)y")

=l-wa,) + qrl-a,p yf

_ _y,12(par)'l+ ylp(par) _ (pa"),,_drerpl (on using (B))

=0,

if we choose

pdz=L and e2=P@dù-(Pd)".
dzP

Hence

1

,==o and Qz= P , Q)

giving



(i) .,(#)='

which is of the form

z"+rp2@)z=0 , z= d,2y" ,

where o, and <p, are given by (7).

For the third order derivative, we have

[a,(¡)y" (x)] + qo,(x)[a,(.r)y" (x)]

= d3y'+zd;yi" + d,:;y"'+%%y"'

= aJ(py)"'l+2d,(py)"+(p,a,+ d,¡y"' (on using (3))

= y"'Í_qp + %ar+ a;1

+ y"l-3arp' -2a|pl + y' l-3arp" 4a'rp' I + y[- arp"' -2arp" ]

( ., 1 I
- y"'l-arp + (hd, + o'3a:-1Jq,rp" + arp')l

lp)

I /r\' ì

+ y" ), 4 a, p' -z a 3p + (3 d,3p" +4 d,.p' ) - | +f ! l1a,,p"' +z al"p" ¡l
[ \p/ \p) ]

on using y---y"/p,y'=-, (Ð-t[Ð Equating the coefficient of

y" to zero, we get



nd3 ,3p2 p' +3 p'p"-pp"'-LA--F¡V¡ç*

which on integration yields (with constant of integration assumed to be

zero)

In al = ¿'1Oz +2@')'- PP") '

OT

%=æ#ñ

Now equating the coefficient of y"' = 0, we get

g'= 
'-3P" 

-4a' P' -dz
P dtP dt

Hence we have

z"+r4@)z=0 , z= dz!"' ,

where ø3 and 14 are givenby(9) and (10) respectively.

Similarly, for the fourth order derivative, we can write

1a oy¡u ¡" + tp o1x¡1a oyi' ¡

= a¿yui * 2a'¿y" + y¡' lal) + eqdq)

= a t? py)i' + 2d o( py)"' +yi' @,:; + e 4o,, ù (on using (3))

lqì

(10)

(1 1)
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= -qllpyiu + 4 p'y"'+6 p" y"+4p"' y'+piu yf

- Za)@ y"' +3p' y" +3 p" y' + p"' y)

+ y¡" @'; + gqd+)

Now using

y=-L -{-, lllp p \p)

and

v"=-,'(Ð-r"(;) , (;)

we can solve the last equation to obtain

(zv"'p' ytl
,, l-7--v)V=#" (. . 2(p')' p" lI t+--- I

I p' p")

and thus, we can express y, y', )" in terms of y"' and y'" to ¡eld
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Taoyi'¡"+çoTaoyi'¡

' (-to'*t--1L o'\
- y''lo'i + aoqo - z 9!l--!--Í--)

P (' -z(P')' - P"\
l'--T-7)

(-uo"*{-tl:0,\
iPp-)

T4""rÐ
d,-1 - a¿Pl

,,(-'r.I-'# o))

71;4ã-ql
\ p' p'))

(.ur".{-04 ¡))\ p p')lt
(r*4<r'>'-4ì l'
\ p- p'))

*r"'¡ro:of-, *t L*z
tp
t

I

."^l^(-o.T).,#

n d'o _4ptp +8(p')3 +8pp'p"-4p2p"'+4p" p"'-2p'p'"-'a_

Since the numerator on the right side is ühe derivative of the

denominator, we can write

Equating the coefficient of y"' = 0, we get

da=
"'lpo +8p(p')' - 4p2p"+3(p")2 -2p' p"'

(12)



t0

Now equating the coefficient of yi' to zero, we get

,,=-1.1,#(,-'T).,i(r-T)., (13)

Hence, we get

z"+cpo(x) z=0 , z=dol'u ,

where on un¿ g+ are given by (12) and(13) respectively.

We can now conclude that, if g, satisfies (41) with fe)= e, ,

then z,(x) = ø,y(t) has all the properti es of y(x) in (1) and the respective

estimates (4) hold. In particular for i =2 ,L is oscillatory and its zeros
p

r.ra uutrr". of lll at successive maxima have the estimates given in
lpl

(4). If turther, g, satisfies (42) with f(x)=g¡ , then lim zí(x)=O fo.f

all i.

1.9 6¡ s¡ample

Consider the differential equation

Y" +B2a2x2Þ-2Y =g,

which has two linearly independent solutions given by

c "lV J( , .,{axP)

l-2p)

where J¿ represents the Bessel's function of order u and C is an

arbitrary constant. For the particular case

(14)
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y"+)cP y-0 ],(0)=1 y'(0)=0 p>0 (14)

the unique solution is given by

y(x)=c^ti rl*l(O,*)

for a suitable value of C. From Olver [11], y(¡) has the asymptotic

expansion given by

y (x) - c "G (z)'l*,(, - + -* ") i .' r ft P *,, 
" 
(, - + - i ")à.1 ) " 

4*tÐ 
l

¡ tl2
where z = ¿ 

= 
r; u.,A , = --! with explicit formulas for A.(u).p+2 p+2

Rewriting the expansion, we have

,<,¡ - ( o *'\i 4b",( := r# * 
= 

o 
. - lo)i1-,*1, *' )'" ¿,"

v n / xi \p+t^ -rr*-7tL)zr\-L)l 2 )7r*Ñ

**inl 2,+.ffi_i,)ån,,"(#)'*' #llP +z

as .f -) - . Clearly y(r) -+ 0 as x -+ æ Assuming the validity of

differentiating both sides of the expansion, \¡/e can verify that

y'(x) y"(x) y"'(¡) y'"(r)
'rP'3P'v2P

x2 " xz "

all tend to zero as x -+ Ø . For the case p = 2, it implies that
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)'(r) )"(r) y"'(r) y'" (x)ytx),_ï,_1,-V_, 7
tend to zero âs f -+ ó

Reverting to our results in Section (1.3), we have the following

table for

j=0

i=l

.'-.t

i=3

i=4

(a,yü))" +rp,ça,yt)¡ = g .

Q¡Q)

x2

x'
x2

" 6x6 + 1.08x2r'-L-
(.r- + 6)'

l6xta +696xro +1344x6 +3744x2

(17)

d,.y(i)

v(x)
v'(x)

x
v" (x)-7-
v"'(r)

(x6 +612¡i

x2+
(xE + 24xa + 12)z

All the functions in the last column tend to zero as r tends to infinity

since all the rp's satisfy (A1) and. (A2). It can easily be seen that the

asymptotic expansions in the case p=2 grve basically the same

results as the above table when x, -) æ .

(x8 +24x4 +12¡z



t3

CIIÄPTER2

SOME RESI]LTS CONCERNING INFINTTE MATRICES

2.1 Diagonally dornina¡rt ffnite rnafuices

Consider the finite linear system

É.o,t,,x,=b, , i = 1,2,3,... ,n (1)
j=r

If the matrix A= (a,¡) is strictly diagonally row dominant, i.e.,

o¡la¡.)=\la¡l , 0to¡<1 , i-1,2,...,n , (2)
J=l
j+i

and if a.. + 0 for i=1,2,...,n, then it is well-known that (1) has a unique

solution and by Cramer's Rule we have

,,=Lffiu* i =1,2,...,n (3)

In the above, A- represents the cofactor of a.. in A and det, A

represents the determinant of A. Further, from equations (10) and

(13) in Ostrowski [13], we have for the elements ¿-t=1,4t L tfr.
[detAl'

inverse of A, the following inequalities:

lA¡J<o¡lA¡¡l , i+ i (4)

and
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r 
=l 

4, 1= , i=r,2,...,n. (5)
la,,l(1 + o,) - l¿et¿l- la,,l(7- o,) '

Similar results hold if A is strictly diagonally column

dominant. Setting

ø = minll¿¿¿l(l- o¿)l ,

Y arah L22l establishes that

jtA-r¡_=aqy.rL¡ .1 (7)* tsis^fi detA (r,

when the matlix A satisñes (2).

We will nov/ prove an important theorem using mathematical

induction concerning M-matrices.

Definition: An M-matrix is an n x n real matrix, A=(aù, such that
(i) a.,<0,i*j,

U

(iÐ A is nonsingular, and

(iiÐ A'1>o

If A is a strictly diagonally dominant matrix, then Price [14]
proves that detA > 0 if a.. >0 for all i.

Theorem l-.

Iæt AtP) = @:f,) be a real strictly row diagonally dominant p xp

matrix in the sense that

a!! -fiart>o ,

(6)
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where afj) <0,i+i. Then (A(p))-l > 0 and hence A6) is an M-

matrix.

Proof: We will show that 1¿ter¡-t > 0 by induction. Since for p = 1, the

statement is true, we will verify the statement for p = 2. Since

de¡AQ)>0, then

Ø(2\1- t .-( ay). -4?'lro,- detA2)l_ú) 
"Í?, )-

in view of af;\ <O, i * 7 and of) ,0 . Assume the theorem to be true

for p=n, i.e., eli'ro,oÍj'' =o,l+ j. Since A(') is súrictly diagonally

dominant, detÁ(") > 0. To prove the result for p = n+7, we will

consider the linear system

¿+l

\a!irt)x,=b , i=1,2,...,nr1 (8)
i=r

Since ø,{."*t) > 0 and A('+r) is strictly diagonally dominant, we can solve

the system to give

¿+l A(¡+l)*,=à#F u, i=1'2'""n+r (e)

Put'ting i = n+1, we get

'*,=7.#ur (10)



l6

From (8), we get for i = n+1,

- - 4*' -É t':;:) --"-' - ol^-T')-, ft olli':)."''

which we will use to eliminate *n*1 ir (8) for i = i,2, ... , n tn get

Ë-' 
ã(^+t)

o",.lr,=bt-:#-b"*r , i= 1,2,...,n, (12)
j=l un+l,i+l

where the matrix c(") = <tÍ;', ¡ , i, j = 1,2,..., n is given by

-(¡) - -(¡+r) t:'-l:l o:::r'l
Lij -@ij - -(,_Du^+l,i+l

For i=i,

-(¡) - ^(¿+:) o',^,ill4:i-'r'
c¡¡ -uii --"y.t:h-

>aÍïD-lal:.l'ìIffi

(1 1)

> a:i.t)-la::,Il

>0.

For l*j , clearly

t!i' < o!i, <o 1by def. of c,f")).

Further, C(n) i" strictly diagonally dominant since for í = 1,2, ... , n ,
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n taÍ::-tltta$ill 3 ,-,,, lr,t:li)llrÍtl]lle
cfrr - ) r c,lrrr 2 aþ,t) -' 

-t'\i;;n+t' i' - > | afi.')r + i:rä+#14 I lo,_,,r1J=l ai+t,Á+t I==t aiit,Á+t i-:'
j+i j*i

>- ae'*t) - 

i:, 
"lï.", - 

r afli]l t

n+1

> of*t) - )to;r*tl¡
j=r

>0

Now solving (12) by Cramer's RuIe, in the usual notation

" "þ,) l, "Í::lì , Ix,=). -*1,,,, 
Iok-- (,':I;;+T on+t I , J=1,2,...,n (13)! 

*urdetCv') l' a|,iitii,¡ "' ' 
)

It is clear that the coefficients of b,(i =1,2,..., n) in (13) are nonnegative

and by comparing the coefficients of b,(i=1,2,..., n) from (9) and (13)

we conclude that

AÍl*tl

ã;iao>o i=1,2"",n, k=r,2,"''n+r,

since the ð¿'s are arbitrary.

It only remains to show that

Aj:,.11>o,k=t,2,...,n+r (14)

From (11) and (13), we get



l8

Observing as before that the coeffrcients of the ö.'s are nonnegative

and comparing with (10), we conclude (14). Hence the theorem.

Now we will prove a theo¡em on tridiagonal matrices which will

express all the cofactors in terms of principal subdeterminants. We

are concerned with the tridiagonal p xp matrix ¡=(a¡) where every

off diagonal element is -l-. We will use the notation A(") to represent

a principal tridiagonal submatrix of size (s-r+1)x(s-r+1)

whose diagonal entry in the frrst row is o"," and the diagonal entry in

the last row is ø
ss

Theorem 2. Let A=40'd be an n x n úridiagonal symmetric matrix

with each nonzero off diagonal element being equal to -1. If
. /,4.. \

A-' =l : t' : | , then we can express the cofactors A,, in terms of(detAl

principal subdeterminants as follows:

Au = fls¡ ¿{t'i-tr ¿ et Aç+l'tt) , I<i< i <n ,

where det,A(r'o) and det A('*r'") are each defrned to be unity. A similar

result holds for llj<i<n.

Proof. Due to symmetry, we need only consider 1 < i < j < n. The cases

when i=1,j=1and i=n,j=n hold trivially, while when

i=1,j=n,wehave



For the

l<i<n , j=n , that A¡,,=I. For the

[A(',i-r) I 0 I/ 
-I________________ 

t+'-l o le'*'t1

= ¿9¡ ¿tt'i-t) ¿", ¿t;+t''¡

Finally, for the case 1<icj<n,
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-I ar*r,¡*, -1
-1 ai+2.ì+2 -1

o o,*r,,t, -1
-1 n_1

' q¡+2J+2

-1 a.- ')-t-1

-l

A- = (_1)'+r(_1;(_1¡i*i-' de

rst determinant again according to the column j,

0) we get,

I
I

+ t-f lt-f l'-tAetl

t

=Dr+D,

Expanding the fi
(0,0 ... 0,-1,0, ... ,

-1 Q¡*2,¡*2 -1
. Bi+3,;+3

-1 a. .,- -t-tJ-l

-1
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expanding the

0,0...0) we g,

,Z -l

a ¡-t,¡-t

ing to the ñrst column)

of ,4... is
LJ

0 a¡*t,¡*t -i
-1 a¡rz,¡+2 -1
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Proceeding in the same manner,

simplifications,

we finally get, after some

Diagonally dominanú irrff nite matlices

Consider the infinite linear system

io¡¡r¡ -u¡ , i=r,2,...,

where the infinite matnx A=(a,,) is strictly diagonally row dominant

in the sense

o¡la¡¡l=\la¡¡|, 0 < o¡ < l, i =1,2,...,

(16)

(17\

-1 d,*r,,*. -1
-1 d¡rq.¡*a -1

4=*{+fuh]

= detA(r';-r) . det A(i+r,¿)

Shivakumar and Wong [19] have established the following theorem,
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Theorem 3: Let, for the system (16) and (17) the following hypotheses

hold:

(t) t-l-<"",
Eí t aül

lii) ilart<U forsome M andall i
j=t
j*i

(líl) ilaut< "" for each ñxed j

(iv) the sequence {4}1, i. bounded.

Then the system has only one bounded solution. The theorem implies

the existence of A-1 , the inverse of A and (i) and (ii) imply

i*.- (1e)

Note that if a,, > 0 , one can establish that det A and all the principal
minors A.. are positive. If in addition, a,, S0 , i + j , then ,4-1 > 0

and we will term the matrix A as an inñnite M-matrix. By assuming

laul(1-q)>ô>0,

and by the method of truncations, it can be shown using Shivakumar

[17] that

lA,,l<o,lA,,l , j+i,



Also if {lar.l(1-o.¡¡ is a strictly increasing sequence, r¡/e can

extend (7) to

tl¿-ltt-=.u* il A' l. I* 
t<i<* *"_rld,et Al a

(20)

where

a =laì(l- or)

2.3 Comparison of úwo mafuices

For the two matrices (finite or infrnite)

B(h) = P - 1¡z¡, B(tt) = D - tth't,

we have, formally,

B(2,)=nç¡-1x-rroz,

yielding after some calculations

84 ()") = B+(p) + (L - tt)h2 Ð (L)Bu (tr)

and

B-112,¡ = 3a 1¡t¡V - (h - p)hzÐ (p)li

Hence



where

þ =t(L - tL)th\a'(p)t_< r

As a consequence ofthe above, we obtain

Bii(h) _ B j¡(tt) 
= ¡1_ u¡¡rf Br¡(L) B jkçt)

der B(X") det B(p ) -' ' f.o det B(À") det B(p)

Similarly, if A(L)= hhzt - D , AAù= ph2l - D , we will have

25

ll B1 ( L\tl <l B) (lt)ll-
1-þ

Aji(I) _ Aii(t1.) 
=¡¡1_x.,¡zi 

Au(A) A¡t @)
detA(2") detA(p) fl,detA(2.) detB(p)

(22)

(23)

(24)

(2s)

2.4 4 çernputational procedure

For computation, we reproduce the procedure given in t18l with
some modiñcations, to expand an infinite matrix .4(r'-) - D - tth2l ,

where D is tridiagonal with diagonal elements d.. and. each off-

diagonal element being -1. The method is based on the row expansion

of a determinant. We note that under our conditions, det A0'&)

diverges as k -+ ." Therefore, we w.ill consider ¿r¡ 4(l'È) for a fixed

Iatge k. Starting the expansion for A(1'¿) by its first rov/, we can write
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det A(l't) - @1r - phz) det AQ'k) - det AQ'k)

= (41- ph\I@22 - lth2)det|(3'k) - 6"¡ ¡(a.k)1- 6s¡¡(3'k)

=f(41- lthz)@zr- ¡th2¡-tldere(3'k) -(qt- lth2)detAØ'Ð .

Proceeding similarly, we get

det Á(l'¿) = p" det ¿(r'¿) - p"-r det A("+1'¿) ,

where

ps= pst(ds-t,s-t- lth2)- pr-z , s =2,3,...,

and

Po=0, A=1.

We can now formally write

detÁ(r,¿)_ - J¿u derÁ(s+I,,r)ì

derT@ - r'"-tlp"r - i;T;Ð-l'

If Ao'-) is strictly diagonally dominant and if

I r-

]a,,-un'-ltau\[ ¡-, J ,=,

is a strictly increasing sequence, we can write

1 - der A(r+1,¿) I
d,-f7¡ s ;;cr- = l; - un, -- t'
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We wish to frnd an eigenvalue ¡t lot A, i.e., "de¡A(l'-) = 6"

However, this determinant diverges, as noted earlier. Also, since

¿r¡¿(s'e)>0 for È>s>z byPrice [13], the sigrr of detÁ(l'¿) is the same

as that.f 
d*ggl# and this ratio tends to a limit as k -+ - as seen in

[1?, Corollaries 1 and 2]. We will denote this l' det'A(r'-)lmlt' as 
der AGF-I

which has the same sign as **# for all å > s > ¿ . We will now

consider the following cases to determine the sig:r of detA(l'e) :

(Ð If p,-, and p" are of opposite signs then det.A(l'¿)

has the same sign as (-p"_r).

(ii) If p._, and p. are of the same sigr, and if

same srgn as Ps_I.

(b) -¿n-. ----l------. then detA(l,¿) is of
Ps-t dr.r - ¡th' + l'

the same sigr as (-p"_1).

(iiÐ If neither (i) or (ii) holds, p,_, and p" are calculated

for higher values of s till (i) or (ii) holds. There is a

remote possibility that neither ofthe conditions (i) and/or

(ii) are satisfied for a reasonable value of s. The main

idea in finding the sisn .f d*gg# is ro use the
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method ofbisection to locate a value of p such that
¡^. ¡ (1,-)

Ï'' Î," = = 0 . This of course needs two values of I
det A\''-/

such that det,4(l'¿) has opposite sigrrs for the two

values of p . By this process, one can achieve upper

and lower bou¡ds for the eigenvalues ¡r to any required

degree of accuracy.
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3.1

CIIAPTERs

Eigenvalue Prublems

Lrfuoduction-

In this chapter we study the solution of the system

-v " + f(x)y =ì'y ,

Y(0)=0,

Y(-)=0'

(1)

(2a)

l¿b)

where f(x) monotonically increases to infrnity as r increases to

infinity. This system is an analog of the classical Sturm-Liouville

eigenvalue problem which is defined on a closed interval [a,b]. The

theoretical study of boundary value problems on semi-infinite inte'vals

has not substantially contributed to the numerical solutions of such

problems, as in most cases the restrictions concern the solution y(¡)

and its derivatives and are not easily veriñable. Numerical methods of

solution (see Aziz [2] )frequently involve replacing the given problem

by one on a finite interval or involve experimentation with a succession

of ñnite intervals. These procedures have been used to considerable

advantage by Lentini and Keller [8]. Gerek and d'Oliveira [6] use a

continued fraction calculation using the replacement of the boundary

conditions method. The methods preclude the matching of solutions to

the expected exponentially decaying nature ofthe solution. Other
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numerical experiments are described by Fox [4] and an account of the

WKB method can be found in Bender and Orszag [3]. Truhtar [21]

uses the finite difference technique to discuss the one dimensional

Schrödinger equation on (0,.") and the method again involves finite

matrices. Recently Lund and Riley [9] have given a collocation method

using sinc collocation basis elements and Whittaker Cardinal

functions. For ñnite element techniques, see Schoombie and Botha

t161.

It is well-known that (1), (2a) together with y(a) = 0 in a

Sturm-Liouville equation has an infrnite number of eigenvalues

L, , Lr,..., (2,n -+ * as ,? -+ "") which are all real and positive if f(x) is

chosen to be a positive function tending to infinity as r tends to

infìnity. For details concerning the nature of solutions, including

exponential decay, see [?].

We use finite difference techniques to get an eigenvalue

problem for infinite linear algebraic systems. In this study, v/e do not

truncate the inñnite system nor do we replace the given problem on a

finite interval. Existence, uniqueness and boundedness concerning

the inverse of the infinite matrix along with suitable estimates are

used to aid the analysis. We assume for the error analysis the

boundedness of the fourth derivative of the solution y(x) (see section

3.3) which, we will later observe, implies the exclusion of the

unbounded solution of (1) and (2). In Section (2) we give details of the

system and its discretization by using a ñnite difference scheme.
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32 The eigenvalue problem (continuous case)

We will now consider the system given by (1), (2a) and

discretize it using the points 4= kh, k -0,1,... for an arbitrary but

fixed step size h > 0. Using Taylor's expansion for y(x) with the

differential form of the remainder, we can write

,'ç¡-l*¡-2.!]+v*-t =t#ù, where Ç¡ e(x¡-1,x¡*1)h" 12

and thus, (1) and (2a,b) will be equivalent to

-!*¡+21*-y**t+ h2f*yt,= À'h2y*+h2to(h), k -1,2,3,..' (3)

with yo=0 and in the above notation .f(xù-rt, and y(-r¿) =yo . The

error term is given by

,JD=#y'"<É,¡, (re(xr-,,xr,). (4)

Writing (3) in matrix form we have

Dy_= Ah2 y_+ hzr@) (5)

where
y_=(yt,yz...)r and T(h)=(t,(h),tr(h),...)r (6)

and the matrix D = (dr), i, j =1,2,3,... is given by

| -1, i=j-t,j+1,
¿-=]z+nr¡,, i= j,

I o, otherwise.

The system (5) can be written as

(7)
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(D - )"h2t)Y = ¡2 71¡¡ (8)

or alternately, for a fixed integer n > I, we have our equations

decomposed into three portions

y-l+Í1h2 - (2+ h'fùly, + yr,, = -hztr(h), (9)

k =1,2,... , n-l ,

y,-t +[Lhz -(2+ h'.f^)]y,+ y,*, = -h2t,(h) ,

-yk-t +12 + h2fL - )"h2lyt - !*,t = h2tih) ,

k=n+l,n+2,...

Where yo = 0. Note that, if n = 0, (9) and (10) do not exist and

(11) is really (8). If n = 1, (9) does not exist. For n > 1, (9)-(11) all exist.

For n > 1, we rvill denote the finite (n-1) x (n-1) matrix in (g) by
A - (a¡) and treat (9) as a set of equations in yr , )z ... y,_, which can be

expressed in terms of yn and the r*(å)'s. We wilt denote the inverse of

Abv

A"=rå1.
\detA/'

where .4¡ and det A have the usual meanings. Similarly, we will

denote the infinite matrix in (11) by B and treat the equations in (10) as

a set of equations in !¡+t tJ¡+2,... which can be expressed in terms of
J, . Also we can write

(10)

(11)

'"=(#)
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We now proceed formally to solve (8) or (9)-(11) \À¡ith yo = 0. We

will justify the inverting of the matrices in the next section (Section

3.3). To do this, we will consider three cases, case (A) being the

consideration of (8), case (B) being the consideration of (10) and (11)

when n = l- and case (C) being the consideration of(9)-(11) when n >1.

Case A (n=0). For the system (8)

(D - Lh2t¡y = ¡2 71¡¡

we put (D-Ah'zl)=B(1) which is consistent with

Using Cramer's Rule to solve

B1òy = h2 r(h) ,

we get

our earlier notation.

(i4)

eigenvector corresponding to

ti = n'fi,,* 
¡,rr;r<a, i =r,2,...,*

(r2)

(13)

where

t-'r^r=(m)

This gives a formal expression for the

the eigenvalue 1,

Case B (n=1). We get from (10) and (11),
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Í1h2 - (2 + hz fi)ly, + yz = -h"tr(h) (15)

-yr-,+l(2+h2n-Lh2ly*-!*+t=hztt (h), (16)

k =2,3,... , .

In particular,

y,=nLk,,ø>*ffir,

which with (15) gives on eliminating y, ,

lt"n, 
- <z * n, i>. ml. = -n,,<Ð - h,Ð.ffi ,rro, (1s)

where we have talen note of the fact that the elements of B and B -l

Treating (16) as a system oflinear equations ín yr,y,,... and denoting

the infinite matrix by BG AQD, we get

(v,\ lr,(¿)l l¡)
'[l',J= "['i"J.l?,l

Again using Cramer's Rule, we get

^ * 8,., 8",Y¡=h'Lffitr{Ð+ffih' j=2,3,"" (r7)
k=2
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are functions of 1". Now substituting fot y, in (12), we get y- ,

j = z,ts,... where J, is given by (18). For convenience, we will rewrite

(18) as

(19)\Q)v, = -h'G,(^')

where

Fr(^)= Lh'1-<Z*n'f,l*ffi

and

(20)

G,e")=¡,1¡¡ai##,rror. (2t)

Using (19) in (17) we get

yr =,.i##t*t-,n !29L9!D, i =2,3,..., (22)

thereby giving the eigenfi:nctions corresponding to the eigenvalue À.

Case (C) (n > 2). The equation (9) can be written as

^[jil ,[ï].[j]
Solving the above system in terms of yrr, we get
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,,=-o>^m',rn¡-Hv., i=i,2,..,n-t (23)

In particular

v"-,=-h'-,*#,,&)-Hv.. (24)

Similarly the equations (11) can be written as

lv.-,1 1r,.,(å)l ly"l

'['ï'J= "['i''J. [:J
Solving the above system in terms of yn, we get

''=ÊrÐ-,##tr<nt+ffin'
j = n+1,n+2, '..*. 

(25)

In particular,

,^r, = o' 
r2,0"^^W, 

trrn>+ffi t^' e6)

Substituting for y"_, andy"*, in (10) from (25) and (26), and

rearranging we get

F"Q)y" = -¡'z6^11¡ (27)

where

F,(^)= Lh'z -Q+n'f,)- L:v.t...+iË (2s)



5t

and

o^rt>=,^ro¡-iffit,<nt+ ri,H,rro, (2s)

Note tlrat (27) gives y', which on using in (24) and (25) gives Jt ,!2,...

y"_, and !¡+t ¡ !¡+2 ...

We will now make suitable assumptions to justify the previous

formal results in each of the three cases A, B and C. We w.ill make

the following assumption on f(x) for fixed å > 0:

(43)

The nature of the matrices A and B ,¡¡itl now be discussed in the

following intervals for ì,:

Case A (continued): For the decomposition given in case A, we will
choose the interval for À as

-* < A,hz <l+ h2fl

Then ,B(,X) = D - ),h21 is diagonally row dominant and satisfies all the

conditions of Theorem (3) in view of (AB) and (80) implying the
existence of the inverse ,B-'(Â; thereby justifying (18). In faú, Br(1)

will be an infinite M-matrix.

Case B (continued). For the decomposition of the inñnite system given

in Case B, we rvill chose l¿ so that

i1.."

(30)

l+h2ft<1h2 <4+hzfi , h2f2>4+h2fr (31)
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Again, we can easily verify that the matrix gtz'-t 1þ = B(L) satisñes all

the conditions of Theorern 1 and hence B-1 exists and is an inñnite M-

matrix thereby justifying (17). In addition, results given in (20) and

(21) of Chapter 2 hold.

Case C (continued). For the decomposition ofthe infinite system given

in case C, we will choose the interval for À as

4+h2¡r_r<Lhz <4+hzfk

h2.ft *t> 4+ h2fk, k =r,2,3,....

(32)

where

The finite matrix A in this case is strictly diagonally dominant with a
positive diagonal although the off diagonal elements might not be

negative. Hence A -1 exists justifying (28) and the results given in
equations (20) and (21) of Chapter 2 still hold. As before, we can

establish that the matrix B satisfies all the conditions of Theorem (1)

on matrix A and hence B-1(À) exists and is in fact an infinite M-

matrix. Hence (25) holds and results of (20) and (21) of Chapter 2 are

applicable.

In summary, we have derived the solution to (1) and (2) fol the

decompositions given in cases A, B and C to values of l" as follows:
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(a) CaseA: -*<À.h2<t+h2rt , h2fz>4+h2¡r,

(b) caseB: t+h2¡r<2,h2<4+h2¡, , h2fz>4+hzfi, (33)

(c) CaseC: 4+h2¡r<2"h2 <4+h2¡r*, , h2f**t>4+h2¡r,

k = t,2,3, ...

3.3 The eigenvalue problem (discretized case).

The approximate eigenvalue problem is given by putting

t¡(h)=O,k-1,2,3,..., in (8) with Â replaced by ¡r and the equations can

now be written as

oy__¡thry_ ,l_(y,,y",...), (34)

All the results of section (3.2) hold under (41). We will now discuss the

existence or otherwise of eigenvalue s phz in all the three cases

described in (33).

Case A'. In the interval

--<ph2 <l+h2Íl (35)

we have from (13) and the results in Case A (continued), the infinite

system of linear equations (34) has only the null solution. We thereby

conclude that there are no eigenvalues phz of D in the interval (35).

Case B'. In the interval

l+hz¡<¡thz <4+h2fl (36)
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we have from (18)

n<utl,=þn"-{z+n't)+!ÁÐ-]0,=0. (37)

For ph ' to b" an eigenvalue of D in the interval given by (86), we need

Fr(lù to vanish in that interval We note that Boet) I det.B(p) is positive

in view of B being a diagonally dominant infinite matrix. We will now

show that

(Ð fi(¡r) attains values of opposite sigrs in (86) and

(ii) Fr(p) > 4?tr)whenever p, > ¡t" for atl p in (86).

This will enable us to conclude that there exists one and only one

eigenvalue in the interval given by (86).

To prove (i), we note flom (20) in Section 2.2,

1 , 8""(u) 1

3+FT- unz- = drrB(Ð =T+ h,f,- tt* (38)

At the left end point of the interval, ph2 =l+hzfi , we have from (87)

and (38)
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F,(lt) < 1 + h2 ft - (2 + hz fi) + '"--]--:;;h-Ìz- h-Jt

,1
'l-r--:-

h'(Í,- f,)

< -1 + + by vinue of (31)
4

<0.

Similarly, at the right end of the interval, ph2 =l+4h2f,, and we have

from (37) and (38)

ïet)>4+h2ft-<z+n'Ð+ffi

_ n , 822(lr)

detB(p)

>0,

thereby proving (i). To demonstrate (ii), we have

4Gt,) _ 40t,) = h, (t, _ t ) *1ffi *#t* rr,)

using the results of section (2.3) and (24) in particular,

44tt) - Ft(p,) = 1¡t, - p,¡n'{t +f . ,B'¡!') , ,Br¡9) ,l¡ f"-deta(¡t,) detB(¡tr)J
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which establishes the fact Fr(lt) >4 (/¿r) whenev et þt> ltz since B-l(p)

is an infrnite M-matrix. Hence we have established the existence of

one and only one eigenvalue þ2 of D in the interval (86).

Case C'. Let for fixed n > 2,

4+ h2fn < lth2 < 4+ h2 fn*1, h2f,t > 4+ h2¡n

n = 7,2,3, ... ,

hold.

We have from(27)

tl^(tùt, 
^ 
=þn' - rz * n" t^, - *#. 

8".""-q2] 
y. = o

1 , An-t.n-tÇt) , 1

ltht - htfn¿-1 - detA(p)' ¡thz - h2¡,_, -3

. B^",*'(lt) . 1

3+ h2 f,*t - lth2 - det9(lL)' 1 + h2 f^*, - lth2'

(39)

We can establish the diagonal dominance of the finite mattíx A(tt)

with positive diagonal elements, which yields on using (89) and (43),

(40)

(42)

(41)

Similarly we can establish the diagonal dominance of B(¡r) and that

B(tt) is an infinite M-matrix, which yields on using (39) and (AB),

As in case B', we will now show that F n\t) as given in (40) changes

sigrr once and only once in the interval (39). Using (41) and (42), we get

F,(tt)> ph'-{z+ n'¡^¡----l - + -=-l - .

lth' - h'.f^_, -3 3+ h2 f^*t - Lthz'
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At the right hand end point of (39),

F,(p)>4+h2f^-(2+h'f-'t- ^ -l ^ +---^--l- -
4 + h2 f^- h2 f^_t -3' 3 + h2 f^_t - 4 - h, f^

>0 on using (39)

Similarly, from (40)-(42) we have

F^(rt) < tth' - (z + h" f^) - ph,+ il j+ l4*=f,z

At the left, hand end point ofthe interval,

F^(tt) < 4 + h2 f^-t - Q + h'z f^) - !+ =' . - --L--3 h" (f*, - f,-r) - 3

=-5-'''' 1

3 
'h-\J"-J"ì+ 

tf u*t_I_t)i

<0

after repeated applications of(39). It now remains to show that

F,(ltr) > F,(lt) whenever ltt > ltz. From (40), we have

F 
^( 

lt t) - F^( p r) = Ut, - lt,) h' + ¡A t 
-.'' ^-t1t'.) - 

A 
^ -''' -t 

( Lt') f' detA(¡tr) detA(¡r,) '

, r4*,.,*,(1,) B,rr.^*t(ltz).,
-t d"rB(Ð d"tB(tÐ J
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Making suitable application of (25) of Section (2.3) for the ñrst square

bracket and of (24) of Section (2.3) for the second square bracket above,

we get

F^(¡t,) - \(¡t,) = n' u,, - u,\t *iffi H#. -å, *# k#\
The third term in the bracket involving elements of B -1 is nonnegative

and if we show that the second term is also nonnegative and the result

F"(ltì > {(¡r2) whenever l\> lrz follows. To do this we need only

observe that since A is a symmetrix tridiagonal matrix, 4,_r1t) and

A^-r.rÇt) for any ¡r satisfying (39) will have the same sign. Hence we

conclude that there is one and only one eigenvalue tthz of D in each of

the intervals (39).

In fact, ',¡/e cân improve the bounds for eigenvalue s ¡thz of D
in each of the intervals by considering the decomposition of (34) for

n > 2 to be as follows:

y r-, +luhz - (2 + h2 fù]t k+ y¿*r = o

-i ¡-1 +f{z + n2 ¡r¡ - pn2li t- )¿*r = o

In each of the fixed intervals fot ¡th 
t g!u.., by (86) and (BZ) we has

already established that there exists one and only one eigenvalue på2

of D. If we now consider the subinterval

k--1,2,...,n-7. (43)

k=n,n+\,... . (44\

4+h2f,_t<ph2<1+h2¡^ , (45)
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the matrices in (43) and (44) are suitably diagonally dominant and we

can write

; =-A*',"-t(l);r ^-t detA(p¡ t^

and similarly from (44)

B""Ut) -y"=ãtB@)y"_t

which together gives

{r*e^-,.^-,{Ð 
8""@) - ^

t der,4(Ð d"ra(Ð,f '' 
=''

In view of the fact that the expression in the bracket is positive, we

have y = 6 implying that there are no eigenvalues phz of D in the

interval (45).

Proceeding in the same manner, we now decompose (84) for

fixed n > 1, as follows:

lr-r+Uth' - (2+ h2f)lrL+)-**, = 0, k =t,2,..., n

-rÈ-t+[2+h2fk- ph"lyr-f¿*, =0, k= n+l,n+2,...,".,

in the subinterval

3+ h2¡,< ¡rhz <4+h2fn

we can show that the matrices involved are suitably diagonally

dominant and that there are no eigenvalue s þ2 of D in the interval

(46).

(46)
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In summary, we have established the existence of one and only

one eigenvalu e þ2 of D in each of the intervals

l+ h2 ¡n < ¡th2 <3+h2¡n , n=1,2,3,... (47)

3.4 Error Analysis.

In this section, we will derive error bounds for lL"- p"l ,

n-1,2,3,..., where ,1,, represents the eigenvalues of the continuous
system described in Section (3.2) and /¿¿n represents the eigenvalues of

the discretized case described in Section (3.3). We note that the results

derived in these sections hold for all values of å. and we will assume

that for a given å, we can calculate by the numerical procedure of

section (2.4) the values of ¡r for any required degree of accuracy. In

each of these cases, we will select that value å which will give an

upper bound for I L - ¡r I . The process of selection of h in each of the

cases A, B, C of Section 3.2 will be dealt with later. In this process we
will also give information regarding the eigenvector ) = (yr ,¡', , ...)t in

Section (3.2) and in particular the behaviour of y as j tends to

infrnity.

If ,1. is an eigenvalue of (1) and (Z), 1h2 will be in one of the

intervals for any given h,

\=(0,4+h2fi)

and

I, = (4+ h2fn-1, 4+ hzf,), n=7,2,..,



Also we know that there exists one and only one eigenvalue þ2 of D
in each of the following intervals:

Jn=0+h2fn,3+h2f^), h2fn*tu h2f,, n=r,2,3,... .

Case (i). If Ahz líes in 1, and ¡rhz in J, for a given h, we have from

(18) and (37),

4Q)- 4@)=-lo,r^,r, !,to

or

( L, - tt,) h' . m - m = 
-!1,,ø * 2 #ffi , 

^ 

rl

On using (24) of Chapter 2, the left side ofthe above equation becomes

<2,_u,tnlniffiÈ##;

Now using the results of Theorem 2 of Section 2.1, we get

^,--=-;W
| ?rdetB(A) detB(¡r,)J

If we assume from (5), for some positive constant M,

maxltr(h¡l< U L

then (48) yields on using (21) and, (22) of Chapter 2,

(48)

(44)
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tA,-tt,r<lLit.ry]

provided that þ, =lh, - pJ h2lB-t Qr)ll<l holds.

For numerical work, we can use the initial estimate

lÀ., - ¡trl< j+ f, (50)
h-

where we are assuming that Â1 lies { and ¡r, lies in "/1. We can use

also the initial estimate

(4e)

')
l),r- ¡t,l<fr

where we are assuming that both Â,

(l + h2 ft ,3 + h2 fi) Numerical work now

å. leading to a value of ¡r such that e

(51)

and p, lie in the interval

consists of finding a value of

the right side of(49) viz:

o. = n"lt+ llB-'(P,)il'l

L t-þ, j

is a minimum. We note that (48) can be expressed in terms of

principal subdeterminants for which we can write upper and lower

bounds, by using the results of Theorem 2 as follows:

tr<nt+ffit,@+iþ##1,&)

, * Bo(2",) Brr(ltr) ., $ derB(¿-L-)(Â,) derB(¿-l'-)(/¿ì )'- d"tBA)d"tfu)- h ¡"tn<U d"rB(lrJ

(s2)



49

with an initial estimate for ì, as O . 
^. n3 

+ f, or 
þ+ f ,. ^.þ* 

,, .

Numerical work can be carried out to find a l¿ and the corresponding

rtl, such that the right side of (52) is a minimum.

Case (ii). If Lnh2 lies in 1o arld ¡trhz lies in J, , we have from (2?)

and (40),

F.0.)- F.(tt.)=-f;o^ø">, y,+0

wherc F n(¡t) = 0 . Rewriting the above equation, we have

(L 
^ 
- tt 

^) 
h' *l o*''"-Ju 

^l - 
A^-''^-'(L )f

¡ detA(¡t^) detA()) )

I B^.t.^-tçt^) B*r.*r(L)1
-L d"rB(/rJ - d"rBq, l

= {l' "øt - iffi ' r'o' * rt ffi ' 
r*,]

Using the results ofSection 2.3, the left hand side ofthe above equation

becomes

17^-u^trl*iffiH#..|*# ##l (53)

Noting that each of the terms in the above bracket is nonnegative we

can now estimate for I hr-ttnl using (44), as
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t L 
^ 
- rt^t< ffi{t+l 

I A-r (¡.")l+ttBr (¿")t}

. u {orl r*tt¡'ttt,)l* ll¡'f¡.¿"lr-lJ
l2ly,r [ | I- d^ I- p^ ])

where

a^=t2.^- lt^th2| A{(p,)il< 1

þ 
^ 

=l À, 

^ 
- lt 

^l 
h2 ll 81 (tt 

^)ll 
< |

Again, as in Case B, we will select an h with its corresponding value

for ¡rn which will make Q^ , the right side of (54), minimum where

a^= nlt;[l(EÀ+ rq-'(g,)irl 
(5s)L r-a. r-8, I

n = 2,3, ... Once p'rrs are known, the norms involved ín e^ ,

n = 1,2,3, ... , are given by (21) of Section 2. An initial estimate for

I Lr-ltol in P, is either

and

hold.

(s4)

(s6)

(57)

t L 
^ 
- ¡t 

^t 
< ^*{#, (f" - r"-,) - #}

if we assume ,t lies in 1 and ø in J . orn n 'n n'

tl",-U^t<þ
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if we assume that L, and ¡r, both are in the interval 
fr 

. f", þ - ,")

Note also that we can express all the cofactors in (53) and its previous

equation in terms of principal submatrices from Theorem 2, for which

upper and lower bounds are easily given.

3.5 The solution of tÀe continuous sysúem.

We will now revert to the system given by (1) and (2) which is

equivalent to (5). For values of 2th2 whichare not eigenvalues of D we

need to show that y- tends to zero as j tends to in_finity in (5) implying

that (2b) is satisfied. We will assume that ),h2 is not an eigenvalue of

D hence, implying that the expression F n0) is not zero fot n = 1,2,8,

... We will assume the usual a-priori estimate (44) to discuss the

behaviour of the solution as r tends to infinity.

Case A: Let -." < )"h2 < t+ h2 ¡, From (1S) and (44), we have

- n(1,-)

ryjt <#h,>#Ã

Since B is an infinite diagonally dominant M-matrix, and from (5) of

Chapter 2,
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'' 
t = #o{*. "'li=,*.#]i' "'

1( . -ì

< Y h"-1 :........-* 
", 

I i ..---!.........- * ¿r- I It2 I h. f , - Ah. 'lf.,h"f¡_ Ah. detrlJL 'J

By an elementary argument based on expanding det B by the first
B

row, the boundedness "f a;ä can be established. In view of (43), we

. conclude t};'at y. tends to zero as j tends to inñnity since o. tends to

zero as j tends to infinity.

I CaseB. Now let l+h2¡r<Ah2 <4+h2f,. From (1g) and using the fact

that B is an infinite M-matrix and that F íA) t 0 when Ah2 is not an

eigenvalue of D, we have for j = 2,3,... , from (1?),

.

ry,t < ! nof ,Br¡ 
= 

+ o, !z;ty,t12 f,j det B 'detB''

1

12 'f,ldetB 'detB "

Using arguments analogous to Case A, we can establish that y- tends

to zero as j tends to infinity.
:

:ì CaseC. Let 4+h2fn_1 <Lhz <4+h2¡r, n_2,3,..,. From(25),
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b.t<Lto $ B*; * 4*'';,u 
,12 *ardetB detB'"

.uhol B¡¡ ao. i ," 'l*o.4*,,*,tu 
I

12 fdetB 'r!*rdetB] ' detB '"

8..
In view of the fact that #E and o, tend to zero as j tends to infinity

and since the inñnite sum is bounded, we conclude t}:'af y tends to

zeto as j tends to infinity.

We now collect the main resuls of this chapter in the following

two theorems.

Theorem 4. For the system (1)-(2a,b), and for nn = kh , h= 0,1,2,3, ... ,

å > 0 and ñxed, let the following hypotheses hold:

(i) i=l'.." (A3)
í f?r)

(ii) h2f(x**)> h2f(xù+4, k -r,2,3,...

(iii) lyiu(r). M , x>0

(44)

(45)

Then, for all values of Lh2 wlt''cin are not eigenvalues of the matrix D

in (8), the system (1)-(3) has a solution. Also if Àh2 is an eigenvalue of

matrix D in (8), then also the system has a solution.

Note that in the above theorem, assumption of a common value

of h is made for all cases A, B and C to ensure the inclusion for

discussion of all values of 1h2 (othæ than the eigenvalues of D) in

-* < 2h2 < "" . It should be noted, however, that the value of å. in each

ofthe cases can be different and we have the following theorem.
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Theorem 5. For the system (1F(3), let {h)Lt be an infinite sequence

of positive numbers satisfying

h:fl(n+1)h^l> 
"u^f 

(nn)+q (s8)

then there exists one and only one eigenvalu " lrnh2o of D in each of

the intervals

(s9)

3.6 An exanple: Scbr'ûlinger equation

Consider the one-dimensional Schrudinger. equation [19]

satisfying

d2x

ffi*t^-x')y=o y(o)=o y(-)=o

where r is the distance displaced, I's represent the pelmitted

energy levels of a particle in the potenti ùs f(x) = *' . ft is known that

the eigenvalues hn ate given by 4n-1, n = 1,2,3,... , and in fact a

solution W, corresponding to Ân is given by

vn(x) = e-'2t2 Hzn*t(x)

whete Hok) is the Hermite polynomial of degree n. Clearly, the

results ofthe earlier sections are applicable. For Â = 3, y(t) = 2*r'" /2

withthe corresponding lt'G)t <M = 11.5661 occuringat x = 0.6167.

For 1.= 7, ylx)=(8x3-12x)e-*''t *rrnthecorresponding lry''¡x)l <M

=216.3994 occuring at x=0.5124.
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We select a value of h and then calculate ¡.r from the

computational procedure of Section 2.4 to derive lower and upper

bounds to lt . Care is taken to ensure the selected å satisfies

requirements of Theorem 4 which in this case reduces å from (58) to

h:t@+l)'h: - n'zh:)> 4

ni,#¡, n=1,2,3,..., (60)

and similarly the bisection method is carried on in the interval (59)

which in this case becomes

#* r",t. ¡r,.$* n'fi , n=1,2,3,..., (61)

Table l gives the values of tt1 for various values of å, with lL1 and

å, satisfying (60) and (61). The table also g:ves the evaluated

values ofthe upper bound dof Q, by applying (22) and (23) ofChapter

2 and we choose that value of å1 and hence ¡t, that Qi a minimum.

In the table Qiwas evaluated with the estimate (50).
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Table 1

hl Itt = At

(lower bound

upper bound)

oi

1.31

t.32

1.33

t.34

1.35

1.36

1.37

1.38

t.39

1.40

1.45

1.50

2.81623518

2.8r623523

2.82782022

2.82782027

2.83985554

2.83985560

2.85233751

2.85233761

2.86526235

2.86526244

2.878676s6

2.87867666

2.89242618

2.89242627

2.90665758

2.90665767

2.92131674

2.92131685

2.93640002

2.936400rr

3.01804438

3.01804447

3.10972542

3.10972550

2.5732687

2.54t4171

2.s172919

2.4995137

2.4870207

2.4789827

2.4747405

2.4737649

2.4756255

2.4799689

2.530178r

2.6134532
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From the above table, we find that the minimum value of @, occurs

when å is between 1.37 and 1.39. On further refinement we conclude

t}rat ¡r, = 2.90410L57 gives an approximate value for Â,

Table 2 gives the summary of calculations for the first 5

eigenvalues.

Table 2

n hn lln = An Exact value of
An

)

3

4

5

r.3782

1.0747

0.9464

0.863s

0.8165

2.9041

6.4304

r0.3626

14.8156

t9.7366

3

7

ll

15

t9

In this example, we have shown that even with the crude

approximation that yiu(r) is bounded for all r , we can derive

meaningful eigenvalues for the continuous problem. If the value of M

is specifically known one could set up an iteration for lL-¡tl using

(49) and (54). It is useful to note that the expected exponential decay in

yi'?c) can lead to an assumption of the form ly¡u1.r¡l < Mp-M fot

suitable values of M, and o , Also we note from (60)
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i'r'iffi
showing that lln i. divergent as expected.

k=\
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