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ABSTRACT

The object of this thesis is to discuss some problems which arise
in the numerical solution of differential equations defined on semi-
infinite intervals. For the problem y"+f(x)y=0, known results are
made use of to derive properties of the derivatives of the solution. The
eigenvalue problem —y"+f(x)y=Ay, y(0)=0 for which there exists a
sequence of eigenvalues 4, , where A; <A, <A3<.., is discretized by
an infinite system of linear equations using a finite difference scheme.
The sequence of eigenvalues p;,i=12,...,, for the discretized system
are found. Upper bounds are derived for the difference between the
eigenvalues of the continuous and the discretized system. The
behaviour of the eigenfunctions as x tends to infinity is also discussed.

An example is given to illustrate the theory.
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INTRODUCTION

The behaviour of solutions and their derivatives is of importance
in developing an error analysis in the numerical solution of
differential systems which are analogous to Sturm-Liouville systems
but defined on infinite intervals. Estimating eigenvalues and the
discussion of the nature of eigenfunctions in such problems as «
tends to infinity is in general a difficult problem. Also, developing an
error analysis needs the behaviour of the derivatives. The object

of the present work is two-fold. Firstly, for the system

y'4+f(x)y=0,y0)=A, lim f(x)=o, we know the behaviour of the

x—se0
solution under some further conditions on f{x). We make use of these
results to discuss the behaviour of the derivatives of the solution for all
x 2 0. Secondly, for the eigenvalue problem —y"+f(x)y=A4y,y0)=0,
we apply finite difference methods and using known results, we
calculate the eigenvalues of the discretized system. The discretized
system is a system of infinite linear alegebraic equations. We also

develop, for the first time, error bounds for the eigenvalue problems
and establish the required result for eigenfunctions, viz., limy(x)=0 .

In the process we also develop some useful results for tridiagonal finite
and infinite matrices. In fact, we give upper and lower bounds for the

iv



inverse elements of a diagonally dominant tridiagonal infinite matrix.
A novel procedure adopted is to use different constant step lengths for
the finite difference scheme in discussing each eigenvalue problem.
Schrodinger's one-dimensional equation with potential x Z is used to

illustrate the theory and some numerical results are given.



CHAPTER 1
PRELIMINARIES

1.1 Boundary Value problems

We are mainly interested in the two systems
Y'+f(x)y=0, y(a)= A, y'(@)=B, (S1)

and
=Y'+f(x)y= Ay, y(a)y=A, (52)

under suitable restrictions on f(x). As regards (S1I), our interest is in
the behaviour of the solution and its higher order derivatives for the
entire semi-infinite interval (a,e0). For (S2), we will develop a novel
procedure by using simple finite difference methods to discuss
eigenvalues and eigenfunctions complete with an error analysis.

For both systems we will assume that f(x) is nonnegative for
x>0, and that jf(x) tends to infinity as x tends to infinity. The
analysis of these systems usually leads to application of one of the
following topics: continued fractions, infinite series, infinite
matrices, or infinite products. The above systems have been studied
extensively in the literature particularly when they have been defined
on finite intervals. In the use of finite difference methods, the common

procedure is to assume either a constant step length (£>0) or a



variable step length (4,k=1,2,3,...,). For (S2), we will use a
combination of both procedures of constant and variable step lengths.
In problems concerning finite intervals, the error in the evaluation of
solutions is usually expressed as O(k”), for a given integer p (p>0)
with the implicit understanding that one can reduce the step length to
obtain better estimates for error bounds. Clearly, this will not always
be possible in the case of infinite intervals, as we need either a constant

h or a nest of variable step lengths 4, such that th =oo to enable us

k=1
to give an error analysis for the entire semi-infinite interval.

To develop an error estimate of a given method for the numerical
solution of a differential system, usually additional assumptions are
needed about the solution of the system. These assumptions require
that the solution possess derivatives of a certain order, belonging to
definite function spaces. This puts great demands on the properties
of the solution . For example, to get a meaningful error estimate in the
numerical solution of a boundary value problem for an equation of
second order, a bounded fourth order derivative of the solution is
required. This does not present much difficulty in the case of finite
intervals, as solutions and their derivatives can reasonably be
assumed to be continuous and hence bounded. In the case of infinite
intervals, it is usually very difficult to know the behaviour of the

solution or its derivatives at infinity.

1.2 An oscillatory system
Let f(x),(x>0) satisfy the conditions



(1) f is positive;

(ii) [, its derivative, is nonnegative and continuous and (A1)

(ili) Hm f(x)=-eo.

X—yco

Then it is well-known (McShane [10]) that each solution of
Y'+f(x)y=0 , x20 (D

has infinitely many zeros and |yl is bounded and the values of |y(x)l
at successive maxima form a decreasing sequence. It has been shown

(GMP [5]) that it does not necessarily follow that
linly(x) =0 . (2)

McShane [10] gives a number of sets of growth conditions on
f(x) toinsure the behaviour of y(x) as x tends to infinity. One set of
conditions states that under (A1), (2) holds for (1) with the additional

hypothesis
S

£~ ig nonincreasing for x above some x. (A2)

f(x)
One such example is given by f(x)=x2.

We now consider

y'+px)y=0 3

20

where p(x) satisfies (A1) and we will denote {3}, to be the sequence

of zeros of y(x), {w;}i.; tobe the sequence of zeros of ¥'(x) and (¥}



the sequence formed by y;=y(w;). Further, we will denote
wig—w; by i .

The following results are known to Sansone [15]:

@ O0<t <ty<. ly 0> Iy, (4)
(i1) L<w <t W<t <wy, i=1,2,3...
(ii1) Eoop b, St b 4 hn+1 <h, .
(iv) i hn and i (tn+1 —t n) both diverge.
n=1 n=1
") id id v/d ;< T

——— <}, < : Sty =1, <
PWi1) P ) - pG,)

For the differential equation (3) we will now consider the properties of
higher order derivatives of solutions of (3). To do so, we will consider

the expression

[ ()Y (0] + 0,00 (0)y' ()]
= oy 20y oy 9,04
=y[-ap+o; + oy | +3[-aup - 204 (on using (3))
=0,
if we choose

YoP gpg g ="HEHP

Integrating we get



o = _w/% and thus ¢ =p—+p [-\/%J (5)

giving

)l [

which is of the form
"+ (x)z=0 , z=ay', (6)
where oy and ¢, are given by (5).

Similarly, we have

[0, (0)y" ()] + @, (1) @, (x)y"]

=[-pye,] + @,[-0,p y]

==y [2(po,) ]+ ylp(po,) — (pe,)'—o,,pl (on using (3))

=0,
if we choose

pa, =1 and 0, = p(pay)—(pay)" .
P
Hence
|
o, =— and ©,=p , (7

giving



which is of the form

2"+ (x)z=0 , z=o0,y" , ®

where o, and ¢, are given by (7).

For the third order derivative, we have

[or,)y" 0] + 0300 0y ()]

=0,y +2a;yiv + O!;y + P,y

= o [(—py)"' 1+ 205 (—py)"+(@,0; + 03)y"" (on using (3))

=y [-yp + @y0, + as]

+ y"[—3a3p‘—2a'3p] + y‘[-3cx3p"—4a;p']+ y[—a3p'”-—2a;p"]

m ' 1 H L] N
=y {—a3p + Q,0, + 0, + ;(3053;) +4o,p )}

" 1 ! 11 ! 1 1 ‘ 1 1me ' "
+y {——30:310 =20,p+Bo,p"+Ho,p )[;) +(—p—)(a3p +20,p )}

on using y=-y"/p,y'= —y'”[l]— y(l] . Equating the coefficient of
P p

y"' to zero, we get



_2i;= 3p2pr+3 plpn_ppm
oy P +2ApY - pp"

which on integration yields (with constant of integration assumed to be

Zero)
n 05" =tn(p’ +2p' Y - pp")
or
i
a3 = 3 1\2 w (9)
VPP +2(p'Y — pp
Now equating the coefficient of y" =0, we get
3p" 4o, p' .
¢3=p——£—-—3£———i . (10)
p a3 p a3
Hence we have
2"+p3(x)z=0 , z=03y", (11)

where o3 and ¢, are given by (9) and (10) respectively.

Similarly, for the fourth order derivative, we can write

(ay” ) +94(x)(0gy™)
= Oc4y"i + 2a:1yv + yiv(a; + (p40£4)

=0y (—py)i“ + Za; (—py)"'+yi"(a; + @404) (on using (3))



it1 t

= _a4[pylv +4 pl y|n+6 prr yn_|_4p y +pr y]

1 rn 1 "

+3p" y"+3p" y'+p"' y)

—20,(py

+ yiv(a; + @4(14)

Now using

and

and thus, we can express y,y',y" intermsof y" and y* toyield



(0™ Y +@4(04y"™)

=yiv[a;+a4fp4—2‘%‘

\2 "
p (Hz(@ _%]

"n 1 [_Spl+p_—3 £2— p‘)
+y‘”[20£;1 —p+3£)——+2£2 2p d
p T p [1+p_3 YD

iV "
" 1 [ 6p”+—p—p___ .p_2 p‘)
+0y 4(—p'+£——}+2—%— —< 4 |
p) p [1+—§(p' z_p_z)

Equating the coefficient of y"' =0, we get

2 _ur (Y

_29_:1_ — 4p3p' +8(p|)3 +8pp|pll_4p p +4pllp1n_2p p
ad p4 +8p(pl)2 _4p2pu+3(pu)2 —2p,p!“

Since the numerator on the right side is the derivative of the

denominator, we can write

1
o, = .
) \/p‘*+8p(p’)2—4p2p”+3(p")2—2p'p"'

(12)
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Now equating the coefficient of yi Y to zero, we get

go4=-—ﬁ+ﬂiﬁ,[p—3f—)+2ﬁ(p'—£—j+p. (13)
a, o,p p p p
Hence, we get

4o, (x)z=0 , z=ay", (14)

where o 4 and ¢ , are given by (12) and (13) respectively.
We can now conclude that, if P, satisfies (Al) with f(x)=¢, ,

then z(x)=a,y" has all the properties of y(x) in (1) and the respective

estimates (4) hold. In particular for i=2, BA oscillatory and its zeros

P
and values of I—}i— at successive maxima have the estimates given in
p
(4). If further, ¢, satisfies (A2) with f(x)=¢, , then lim z(x)=0 for

x—yoo

all i.

1.3 An example

Consider the differential equation
y||+ﬁ2a2x2,ﬂ—2y — 0 ,

which has two linearly independent solutions given by

CxJ
b 3

(45)

where Jy represents the Bessel's function of order v and C is an

(o)

arbitrary constant. For the particular case
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YV+xPy=0 , yO)=1, y®=0 , p>0 (14)

the unigue solution is given by

)’(x)=Cw/§J(h 1 )( izx%zj

pt2

for a suitable value of C. From Olver [11], y(x) has the asymptotic

expansion given by
$(x) ~ CNx (%)E[COS(Z“——— )2( 1y 2t ( )Z( 1y ngjf,”)}

p+2
x ? and v=———l—— with explicit formulas for A_(v).
p+2 p+2 S

where z=

Rewriting the expansion, we have

1
p+2)5 1 2 22 g 1R S(p+2)“ A,
X)~|{—— | —1CO0S x* + ———-7:2—-1 <

p_+2 oo 25+1
o psin| —2—x2 +—"__1g Z(—l)s(“z) Aﬁ”‘, ]
p+2 2p+4 4 2 x(p+2)(s+5)
as x — o, Clearly y(x)—>0 as x—> ., Assuming the validity of

differentiating both sides of the expansion, we can verify that

Yix) Y ¥y Y
x% E) xp 3 x?,_z}_; ) xzp

all tend to zero as x — oo . For the case p =2, it implies that
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yx) oy yx Yy
Y0, x ¥ X x

tend to zero as x — oo .

Reverting to our results in Section (1.3), we have the following

table for
(a‘_y(i) )“+(D,-(05,-)?(£)) =0, (17)
0; (x) oy
=0 x* y(x)
' 2_ 2 y'(x)
i=1 -
X x
i=2 x? y (Zx)
X
i=13 2 6x® +108x% y"'(x)
(x* +6)* ——"'6 1
(x° +6x°)2
=4 N 16x1* +696x1% +1344x5 + 374452 ¥ (x)
(x®+24x% +12)?

(x8 +24x% +12)2

All the functions in the last column tend to zero as x tends to infinity
since all the ¢’'s satisfy (A1) and (A2). It can easily be seen that the

asymptotic expansions in the case p=2 give basically the same

results as the above table when x — oo .

T -
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CHAPTER 2
SOME RESULTS CONCERNING INFINITE MATRICES

2.1 Diagonally dominant finite matrices

Consider the finite linear system

Yax,=b , i=123..,n . (1)
j=t

If the matrix A=(g;) is strictly diagonally row dominant, i.e.,
n
olagl=Yla;l , 0<o;<l , i=12,...,n , 2)
=1
J#E
and if a. # 0 for i=1,2,...,n, then it is well-known that (1) has a unique

solution and by Cramer's Rule we have

= b, j=12,....n . 3
! ZcIetA k J " G)

In the above, Aij represents the cofactor of a; in A and det A

represents the determinant of A. Further, from equations (10) and

A

(13) in Ostrowski [13], we have for the elements Al =(ﬁ] , the
e

inverse of A, the following inequalities:

and
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1 A 1

SF i IS , i=1,2,_“’n. (5)
la(1+0,) ~ |detAl” 1a,l(1- o))

Similar results hold if A 1is strictly diagonally column

dominant. Setting

a=1111ki<n[iakkl(l—crk)] , (6)

Varah [22] establishes that

A7, =max Y | Ay I<—1— (7

when the matrix A satisfies (2).
We will now prove an important theorem using mathematical

induction concerning M-matrices.

Definition: An M-matrix is an n x n real matrix, A= (a;), such that

(i) a,; <0,1#j,
(ii) A is nonsingular, and
Gip AT=o0.

If A is a strictly diagonally dominant matrix, then Price [14]
proves that det A >0 if a; > 0 forall i.

Theorem 1.

Let A =(a{”) be a real strictly row diagonally dominant p xp

matrix in the sense that

n

() _

a’ = Ylal>0 ,
=1

J=i
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where 4 <0,i#j. Then (A(p))_1>0 and hence AP is an M-

matrix.

Proof: We will show that (A?)" >0 by induction. Since for p =1, the

statement is true, we will verify the statement for p = 2. Since

detA® >0, then

2 2
(A(Z))*l — 1 a’(22) _a1(2) >0,
de[A(z) (2) (2)

& 4

in view of asz) <0,i#j and a(?‘) >0 . Assume the theorem to be true

for p=n, ie, Afj”) >0, afj") <0,i#j. Since A™ is strictly diagonally
dominant, detA™ >0. To prove the result for p=n+1, we will

consider the linear system

Nalx, =b , i=12,..,n+1 . (8)

Since a*"” >0 and A" is strictly diagonally dominant, we can solve

the system to give

n+l A,E}"H) 5 o
X.=y —3eopb  j=12,...,0+1 .
J ;det A(n+1) k -] ( )
Putting j=n+1, we get
ntl A(HH)

“chﬁ:m koo a0
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From (8), we get for i=n+1,

n (n+1)

n+i n+1,1
xn+] {n+1) - Z (n+1) J‘ (1 I)

an+1 ntl j=1 an+1 a+l

which we will use to eliminate X .1 in (8) for i=12,...,n toget
{rn+l}

a;
Zc(")x =h——2mlp ., i=12,..,n, (12)

a+l,a+1

where the matrix C" = (c(”)) , Lj=12,...,n isgiven by

(r4l) _(r¥1}
) Gnerj Ginnl
Cj =y (1)
an+1,n+E
For i=j,
(n+1) _(n+1)
(n) _ _(ntl) _ an+1 i a: n+1
Cu au {n+1)
@it ntt
ntl
> gm0 _| gD Fint] !a; e+l
= Qi D)
n+l,n+1
(rtl) | _(n+1)
> a;"al ]}
>0.
For i=#j , clearly
e <a’ <0 (by def. of ¢j).

Further, c™ is strictly diagonally dominant since for i = 1,2, ... , n ,
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ia(n+11)|; (le-l) n I (nill) (?Hl-l)i
{n) _ (n) ( +1) il Ny J (n+1) %n Ayt J
€y Z'c 2 g T D Zla It Z n1 ;I
n+1l,n+1 Byt ntl j=1
J#i ;¢:
> afth - Zla‘"*”! a7t
J;Ez
n+1
> ai(in-i-l) . Zlai(jn-l-l}l
>0
Now solving (12) by Cramer's Rule, in the usual notation
n C(") a(n+1)
— kntl .
-xj zd tc(n) [b —an_i_l N _]-—].,2,...,” . (13)
k=1 n+ln+l

It is clear that the coefficients of b,(i=1,2,...,n) in (13) are nonnegative
and by comparing the coefficients of b,(i=1,2,...,n) from (9) and (13)

we conclude that

(n+1)

LU0 j=12n, k=12 n],
e

since the bi's are arbitrary.

It only remains to show that

A >0 k=12,...,n+1 . (14)

k,n+1

From (11) and (13), we get

(n+1) (n} (n+1
e b % i Cyj ]—b agn) b
n+l = a(u+1) (n+1) detC(")L (n+1) n+l

ntlntl  j=1%eln+l k=1 Qi1 n+l
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Observing as before that the coefficients of the bi's are nonnegative

and comparing with (10), we conclude (14). Hence the theorem.
Now we will prove a theorem on tridiagonal matrices which will

express all the cofactors in terms of principal subdeterminants. We

are concerned with the tridiagonal p xp matrix A=(g;) where every
off diagonal element is —1. We will use the notation A" to represent

a principal tridiagonal submatrix of size (s—r+1)x(s—r+1)

whose diagonal entry in the first row is a,. and the diagonal entry in

the last row is a .
88

Theorem 2. Let A=A"" be an n xn tridiagonal symmetric matrix

with each nonzero off diagonal element being equal to -1. If

A,
A‘lz[d tﬂA J , then we can express the cofactors A, in  terms of
e

principal subdeterminants as follows:

A; =det A Vdet AV 1<i<j<n

where detA"” and det A”*"" are each defined to be unity. A similar

result holds for 1<j<i<n.

Proof. Due to symmetry, we need only consider 1 <i<j<n. The cases

when 1=1,j=1 and 1i=n,j=n hold trivially, while when

i=1, j=n, we have



-1 Ay -1
-1 ay; -1
A, =(-1)""det
_1 an—-l,n—l
L. —1 =
— (_I)né-l (_1)n+1
=1
Forthecase i=1,1<j<n,
[~1 ay -1 j
“1 a33 "‘1
Ay = ()M det
! -1 a0
-1 -1
i 0 A(j+1,r1)—

= det AUFL)

Similarly, we can establish for 1<i<n, j=n, that 4 ,=1. For the

case 1<i=j<n,

_ A(l,i—l) 0
Aﬁ - 0 A(i+1n)

=det A" det A“

Finally, for the case 1<i<j<n,



A; = (=1)" det

|_A(1,='~1)

20

-1

-1 a4,

-1

A(j+1.n)

By expanding the determinant according to the column i, (0,0, .. , 0,1,

-1,0, ..., 0), we get

Ay = D)D) det

+(=D(=D"™ det

=D1+D2

[ A0i-2) 7
-1
0 i+1it+1 -1
-1 Gyniva 1
-1oa
-1 -1
A{j+1,n)
[ ACLi-1)
-1 Ti2iv2 -1
=l G -1
| }
—1 aj_l’j_l
-1 -1
(j+l,n)
AYY ]

Expanding the first determinant again according to the column i,

(0,0 ... 0,-1,0, ..., 0) we get,
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[ A | g 7]
0 i -1
~1 Givz,iv2 -1
D, = (1) (—1y "2 det .
-1 Ay o
-1 1-1

A(j+1,n)

Proceeding in the same manner by expanding the above determinant

according to column i, (0,0, ..., 0,-1,0,0 ... 0) we get

fa, -1 O ]
0 auyim -1
-1 Gzive 1
D, = (=1)"/ det
-1 ;1,4
-1 -1
] 0 A |

=0 (on expanding according to the first column)

The second term of the expansion of Aij is
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_A(l,i—l)

D, =(—=1)"*/ det

-1 -1
A(f+l,n)

J

Proceeding in the same manner, we finally get, after some

simplifications,

{1,0-1 O
Aii = dCt[ 0 A(j-i-l,n)]

=det ANV det AV

2.2 Diagonally dominant infinite matrices

Consider the infinite linear system

Za,-jxj=b,- , i=1,2,..., (16)
Jj=1

where the infinite matrix A= (a;) is strictly diagonally row dominant

in the sense

o;la;l= lea,--l ,0<0;<1,i=12, ..., . (17)
J‘:

J#i

Shivakumar and Wong [19] have established the following theorem.
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Theorem 3: Let, for the system (16) and (17) the following hypotheses
hold:

i) Y <o,

= la,l

(ii) ilaﬁISM for some M and all i
7=

j#i
(iii) Z!a,.jl < oo for each fixed j
i=1

(iv) the sequence {5}  isbounded.

Then the system has only one bounded solution. The theorem implies

the existence of A~ , the inverse of A and (i) and (ii) imply

So<o . (19)

Note thatif g, >0, one can establish that det A and all the principal

minors Aii are positive. If in addition, a;<0 , i#j, then Al>0

and we will term the matrix A as an infinite M-matrix. By assuming
la(1-0,)28>0,

and by the method of trunecations, it can be shown using Shivakumar

[17] that

1A,1< o) A,

0o

J#i,
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1 <l A; < 1

s —_ » i = 1,2, sy e (20)
lg;l(1+0,) ~ detA  lagl(t-o;)

Also if {]aii I (l-ci)} is a strictly increasing sequence, we can

extend (7) to

o0

iiA“llL,oz max Z
Isises £

1
<=,
o

Ay
det A

where

o=la,l(l-0o)

2.3 Comparison of two matrices

For the two matrices (finite or infinite)
B(A)=D—-2AhI, B(u)=D-uh*l,
we have, formally,
B(A)=Bw)~A-wr’l

yielding after some calculations

B (A)= B () + (A — A’ B (A)B™ (1)
and

B™(A)=B7 ()l = (A - kB~ ()]

Hence
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B (A NBGon,

22
1-p , (22)
where
B=lA —wIRIB (<1 . (23)
As a consequence of the above, we obtain
B,(A) _ B, (1) =(l—#)h25: By(A) B, (1) 24)
detB(1) detB(u) “~ det B(1) det B(u)
Similarly, if A(RQ)=Ar-D,A(u)=puh*I-D , we will have
Ai(Q) Ay = (- & Ay(A) Ay (u) 25)
detA(Z) detA(w) oy det A(A) det B(u)

2.4 A Computational procedure
For computation, we reproduce the procedure given in [18] with

some modifications, to expand an infinite matrix A% =D - uh?I ,

where D is tridiagonal with diagonal elements dii and each off-

diagonal element being —1. The method is based on the row expansion
of a determinant. We note that under our conditions, det4a®®
diverges as & — o . Therefore, we will consider det AT for a fixed

large % . Starting the expansion for AR by its first row, we can write
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det AY® = (g | — uh?)det AP — der AGH)
= (d)y = 1h*)[(dyy — ph?)det APF) — det AR ] = der aGH)
=[(dy; — ph*)(dy, — ph*) = 11det ACR) — (d; = uh®)det AR |

Proceeding similarly, we get

det A = p det AR — p  det aGHH

where

Py =ps(d -1,5-1 _luhz) “Ps2, 5= 2,3,...,

and
Pe=0, b =1

We can now formally write

det A4 p,  detAUTLH
det ALK ~ P Doy det AR |7

If A" is strictly diagonally dominant and if

oo

d,—ph* =Y 1d,|
j-1

J#i

i
—

is a strictly increasing sequence, we can write

1 det AGHLR) 1
2 s (s,k) s 2 :
dgs—Hh™+1  detA™ dy s —Hh" —1
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We wish to find an eigenvalue u for A, ie., "deta®=0" .
However, this determinant diverges, as noted earlier. Also, since
detA* >0 for k£ >s>n by Price [13], the sign of detAM® is the same

det AD¥) . .
as that of d—_AmT and this ratio tends to a limit as 2 —» « as seen in
etA™”

(1,00)
[17, Corollaries 1 and 2]. We will denote this limit as g—c—t—i—(;—;—)- ,
etA™”
. : det AR :
which has the same sign as —y forall £>s>n. We will now
det A%

consider the following cases to determine the sign of det A% .

(i) If p,, and p, are of opposite signs then det A%

has the same sign as (-p,_,).
(ii) If P, and p, are of the same sign, and if

(a) Ps L 7, then det AM% g of
Ps1 ds,s_uh —1

same sign as p,_;.

(b) Ps L , then detA™® igof

Ps—1 ds,s - #hz +1

the same sign as (-p,_;).
(iii) If neither (i) or (ii) holds, p, , and p, are calculated
for higher values of s till (i) or (ii) holds. There is a
remote possibility that neither of the conditions (i) and/or

(i1) are satisfied for a reasonable value of s. The main
det A0

m is to use the
el !

idea in finding the sign of
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method of bisection to locate a value of p such that
g:—:%; =0 . This of course needs two values of p

such that detA"* has opposite signs for the two

values of pt. By this process, one can achieve upper
and lower bounds for the eigenvalues u to any required

degree of accuracy.
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CHAPTER 3
Eigenvalue Problems

3.1 Introduction.
In this chapter we study the solution of the system

-y "+ i)y =ky, (1)
¥0)=0, (2a)
Yo} =0, (2b)

where f(x) monotonically increases to infinity as x increases to
infinity. This system is an analog of the classical Sturm-Liouville
eigenvalue problem which is defined on a closed interval [a,b]. The
theoretical study of boundary value problems on semi-infinite intervals
has not substantially contributed to the numerical solutions of such
problems, as in most cases the restrictions concern the solution y{(x)
and its derivatives and are not easily verifiable. Numerical methods of
solution (see Aziz [2] )frequently involve replacing the given problem
by one on a finite interval or involve experimentation with a succession
of finite intervals. These procedures have been used to considerable
advantage by Lentini and Keller [8]. Gerek and d'Oliveira [6] use a
continued fraction calculation using the replacement of the boundary
conditions method. The methods preclude the matching of solutions to

the expected exponentially decaying nature of the solution. Other
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numerical experiments are described by Fox [4] and an account of the
WKB method can be found in Bender and Orszag [3]. Truhlar [21]
uses the finite difference technique to discuss the one dimensional
Schrodinger equation on (0,~) and the method again involves finite
matrices. Recently Lund and Riley [9] have given a collocation method
using sinc collocation basis elements and Whittaker Cardinal
functions. For finite element techniques, see Schoombie and Botha
[16].

It is well-known that (1), (2a) together with y(a) =0 in a
Sturm-Liouville equation has an infinite number of eigenvalues
AysAy s, (A, 5o as n—> o) which are all real and positive if fx) is
chosen to be a positive function tending to infinity as x tends to
infinity. For details concerning the nature of solutions, including
exponential decay, see [7].

We use finite difference techniques to get an eigenvalue
problem for infinite linear algebraic systems. In this study, we do not
truncate the infinite system nor do we replace the given problem on a
finite interval. Existence, uniqueness and boundedness concerning
the inverse of the infinite matrix along with suitable estimates are
used to aid the analysis. We assume for the error analysis the
boundedness of the fourth derivative of the solution y(x) (see section
3.3) which, we will later observe, implies the exclusion of the
unbounded solution of (1) and (2). In Section (2) we give details of the

system and its discretization by using a finite difference scheme.
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3.2 The eigenvalue problem (continuous case)

We will now consider the system given by (1), (2a) and

discretize it using the points x,=kk, k=0,],... for an arbitrary but
fixed step size 2 > 0. Using Taylor's expansion for y(x) with the

differential form of the remainder, we can write

Yies1 =2V + Ve1 _ Y (&)
n 12

yx)- ,  where & e (xp_p,Xp41)
and thus, (1) and (2a,b) will be equivalent to

Vi1 + 20k = Vi1 H Ry = ARy + B (h) k=123, (3)
with ¥y = 0 and in the above notation f(x;)=f, and ¥(x;,)=y, . The

error term is given by

2
L= E) L & e G ). (@)

Writing (3) in matrix form we have
Dy=Ah*y+ h*T(h) (5)

where
Y=Ly " and T(h) = (t,(h), 1, (), Y (6)

and the matrix D= (d;), i,j=12,3,... isgivenby

-1, i=j—1,j+1],
_ 2 T
dg‘j“‘ 2+hj;’ t—j: (7)
0, otherwise.

The system (5) can be written as
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(D~ ARD) y=h"T(h) ®)

or alternately, for a fixed integer n = 1, we have our equations

decomposed into three portions

Vet H[AR = Q2+ B )1y, + Yo =—Ht, (), )
k=12,...,n—1,
Yot HAR = QA B2 £y, + Vo0 = =R, (B) (10)
Ve T2+ B, = ARy, ~ v, = B, (), (11)
k=n+ln+2,..

Where ¥, = 0. Note that, if n =0, (9) and (10) do not exist and

(11)is really (8). If n =1, (9) does not exist. For n > 1, (9)—(11) all exist.

For n > 1, we will denote the finite (n-1) x (n~1) matrix in (9) by
A=(a;) and treat (9) as a set of equations in y, , ¥, ...¥,., which can be

expressed in terms of y, and the ¢ (h)'s. We will denote the inverse of

A—l - Aji
detA )’

where A; and det A have the usual meanings. Similarly, we will

A by

denote the infinite matrix in (11) by B and treat the equations in (10) as

a set of equationsin y,,,y.,,,.. which can be expressed in terms of

Bl = B,
detB )

Y, - Also we can write
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We now proceed formally to solve (8) or (9)—(11) with y 0 =0 We

will justify the inverting of the matrices in the next section (Section
3.3). To do this, we will consider three cases, case (A) being the
consideration of (8), case (B) being the consideration of (10) and (11)

when n =1 and case (C) being the consideration of (9)—(11) when n >1.

Case A (n=0). For the system (8)

(D—-ARDy = K2 T(h)

we put (D— Ak*I)= B(1) which is consistent with our earlier notation.

Using Cramer's Rule to solve

BA)y=HT(h), (12)
we get
22 L (13)
‘de detBY Y e
where
-1 _ B]g(/l) 1
5 (l)_(detB(l) ’ 4

This gives a formal expression for the eigenvector corresponding to

the eigenvalue A .

Case B (n=1). We get from (10) and (11),
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[AR? =2+ K )]y, +y, = —H1,(h) (15)
and
Vi1 L@+ £) = AR Yy, = Yo = Ko, (B), (16)
k=23,...,.
Treating (16) as a system of linear equations in y,,y,,... and denoting

the infinite matrix by B(=B(1)), we get

¥, LMY (n
Bl y, =R t,(h) |+] O |.

Again using Cramer's Rule, we get

oa

By
yj=hy, =

i detB

B+ —Ly . j=23... a7)

B

In particular,

_hz

B

which with (15) gives on eliminating Vg s

2 (1) 2 2o Biu(d)
[Ah — Q2+ K f)+d B(A)]y_ W2t (h) - hkzzd Bmt,c(h) (18)

where we have taken note of the fact that the elementsof B and B
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are functions of A. Now substituting for ¥y in (17), we get i

J=23,... where ¥, is given by (18). For convenience, we will rewrite

(18) as
F(A)y, =~h'G,(L) (19)
where
F;(l):lhz—(2+h2ﬁ)+a'zz—§%%— (20
and
G,(1)=zl(h)+g-(%—23i(%zk(h). 3

Using (19) in (17) we get

o By(d)

2 Byj(A) Gi(A)
Y= kédetB(/’L)

=2,3,... 2
detB(A) E(A)° 23 @22)

1, (h)— h?

thereby giving the eigenfunctions corresponding to the eigenvalue A.

Case (C} (n > 2). The equation (9) can be written as

Y AW 0
Al el B9 )
yn—l tn—~1 (h) -yn

Solving the above system in terms of ¥, we get
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_ 8 AQ) _
Y;=h ZdetA(/’L)tk(h)

k=1

A,_
detA

In particular

—'}12 & Ak,m—l (A')

: (h)_.é_"-l
“~ det A(L) * Y

— n—1,
Fa-i detA "

Similarly the equations (11) can be written as

yn+1 tn-i—l(h') yﬂ
Bl ¥,.s =i Lao(B) |+ 0

Solving the above system in terms of y» we get

o B Api i(A)
= p? . Adda et AN
=it % detB) Pt Geta)

k=n+}

j=nrn+Ln+2, ... 0,

In particular,

_ 2 % B

B A
yn“ — h fk(h)"l' n+i,n+i( )

& Qet BA) detBQA) "

My, i=12,...,n-1.

(23)

(24)

(25)

(26)

Substituting for y,_ andy,,, in (10) from (25) and (26), and

rearranging we get

F,(A)y, =-h"G,(A)

where

A B
FAY=AW —(2+ K2 F )= nchnol | atlatl
o S ey w gy

27

(28)



37

and
G(/’L)=t(h)—§é‘£—l~t(h)+ iii:(h) (29)
" " k=1 detA ¢ k=n+1 detB k )

Note that (27) gives Y which on using in (24) and (25) gives y,, Ve

yn—l and ynH ’yn+2 e
We will now make suitable assumptions to justify the previous
formal results in each of the three cases A, B and C. We will make

the following assumption on f{x) for fixed A > 0

ifi<oo . (A3)
k=1 Jk

The nature of the matrices A and B will now be discussed in the

following intervals for A:

Case A (continued): For the decomposition given in case A, we will

choose the interval for A as
—oo < AP <1+ H2f . (30)

Then B(A)=D-Ak*I is diagonally row dominant and satisfies all the

conditions of Theorem (3) in view of (A3) and (30) implying the
existence of the inverse B™'(1) thereby justifying (13). In fact, B™ (1)

will be an infinite M-matrix.

Case B (continued). For the decomposition of the infinite system given

in Case B, we will chose 2 so that

1+ B2 fi <AR® <4+ 1*f, . B, >4+ K . (31)
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Again, we can easily verify that the matrix B*(1)=B(1) satisfies all
the conditions of Theorem 1 and hence B! exists and is an infinite M-
matrix thereby justifying (17). In addition, results given in (20) and
(21) of Chapter 2 hold.

Case C (continued). For the decomposition of the infinite system given

in case C, we will choose the interval for A as

A+ b f,_ < AR <4+ K, (32)
where

W fi >4+ 0, k=123, ...

The finite matrix A in this case is strictly diagonally dominant with a
positive diagonal although the off diagonal elements might not be
negative. Hence A ! exists justifying (23) and the results given in
equations (20) and (21) of Chapter 2 still hold. As before, we can
establish that the matrix B satisfies all the conditions of Theorem (1)
on matrix A and hence B!(A) exists and is in fact an infinite M-
matrix. Hence (25) holds and results of (20) and (21) of Chapter 2 are
applicable.

In summary, we have derived the solution to (1) and (2) for the

decompositions given in cases A, B and C to values of A as follows:
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(@) CaseA: —oo < AM? <14 K2 . K h >4+ kR,

(b)  CaseB: 1+h2f <ARt <4+ B2f , BAR >4+ R,

(c) CaseC: A+ B2 SARP <A+ BPfy,, . Wiy >d+h%f,,
k=12,3,...

3.3 The eigenvalue problem (discretized case).

The approximate eigenvalue problem is given by putting

L(W=0,k=123,.., in(8) with A replaced by u and the equations can

now be written as

Dy=ph’y , y=(pyp..) . (34)

All the results of section (3.2) hold under (A1). We will now discuss the
existence or otherwise of eigenvalues ,uhz in all the three cases

described in (33).
Case A'. In the interval

—oo < th® <1+ K2f (35)

we have from (13) and the results in Case A (continued), the infinite
system of linear equations (34) has only the null solution. We thereby

conclude that there are no eigenvalues [.Lhz of D in the interval (35).

Case B'. In the interval

1+ 12f < uh® <4+ B*f (36)

(33)
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we have from (18)

- _ 2 2 B, (1) |- _
Fl(u)y,—[uh 2+h Ji)+———det8(#)]yl 0. (37)

For uh 2 to be an eigenvalue of D in the interval given by (36), we need
F 1( 1) to vanish in that interval. We note that B,,(u)/ det B(1t) is positive
in view of B being a diagonally dominant infinite matrix. We will now
show that

(i) F(u) attains values of opposite signs in (36) and

(ii)  F(u,)= F(i,ywhenever H, > p, forall y in (36).

This will enable us to conclude that there exists one and only one
eigenvalue in the interval given by (36).

To prove (i), we note from (20) in Section 2.2,

34k f, —ph T detB(u) T 1+ kS, — uit?
2 2

At the left end point of the interval, uh>=1+4%f , we have from (37)
and (38)
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1

20 2 - -
E(u)<1+ 1 f, (2+hf1)+h2f2—h2f1

+Tl—
R (h-1)

<-1 +?} by virtue of (31)
<(.

Similarly, at the right end of the interval, uh’>=1+44*f , and we have

from (37) and (38)
E(ﬂ)24+h2ﬁ—(2+h2ﬁ)+£%§é%).
_oy B
det B(1)
>0,

thereby proving (i). To demonstrate (ii), we have

) e By()  Byp(y)
F(u) - F (i) = (1, #2)+[dct8(#1) detB(#z)]

using the results of section (2.3) and (24) in particular,

= B.(1) B,
E(#E)_E(Hz)z(ﬂl_#z)h2{1+ ;g(lu) Jg(luz) }

i det B(u,) det B(u,)
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which establishes the fact F(u,)2= F(y,) whenever u, >p, since B T
is an infinite M-matrix. Hence we have established the existence of

one and only one eigenvalue ﬂhz of D in the interval (36).

Case C'. Let for fixed n> 2,

A+ f, Sph® <4+ RS, . R > 4+R%f,
(39)
n=12,3, ...,

hold.
We have from (27)

An—l,n—l(nu) + Bn+!,r=+! (ﬂ')} v o= 0 . (40)

- 2 2 N =
[F,,(#)]}’,,—[ﬂh Q+r°1) detA(it)  detBu) |°"

We can establish the diagonal dominance of the finite matrix A(u)

with positive diagonal elements, which yields on using (39) and (A3),

1 < An—l,n—} (ﬂ-) < 1

< < _ 41
ph* =nf,  ~1" detAQ)  ph-Wf -3 “

Similarly we can establish the diagonal dominance of B(u) and that

B(u) is an infinite M-matrix, which yields on using (39) and (A3),

1 < Bn+l,n+l (Au') < 1 (42)
34h2f, —uh® " detB(u) T 1+Kf, —uh®’

As in case B', we will now show that Fn( 1) as given in (40) changes

sign once and only once in the interval (39). Using (41) and (42), we get

1 1
+ .
R —Rf,  ~3 3+Kf.,, —uk’

F ()2 ph* -2+ h”’ﬁ,)—ﬂ



43

At the right hand end point of (39),

FEQ)z4+kf —Q2+hf)~ 1 1

+
A+WPf,—hf -3 3+kf_ —4-Kf

- 1 + 1
141 (f, = fi) W (fn—f)-1

SpIREV——

5 K (fu—f)-1

>0 on using (39) .

Similarly, from (40)-(42) we have

1 1

FUSuh>—Q2+hf)— + X
B Sy r S b

At the left hand end point of the interval,

F)SA+IP], - Q4 f) -5 + T ——

5

=—§—h2(fn —fu)+

1
W (fun = fo) =3

<0
after repeated applications of (39). It now remains to show that
F(u,)>F,(1,) whenever u, >u,. From (40), we have

_ ot 2, 1A (1) _ Ay ()
F(u) = F (1) = (1, — ) +[detA(#2) detA(ul)]

n+1 A+l (ul ) Bn+1 i+l (#2 )]
det B(u,) detB(i,)
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Making suitable application of (25) of Section (2.3) for the first square
bracket and of (24) of Section (2.3) for the second square bracket above,

we get

SALL W) A W) & B, () B, ()
F _F - h?. _ 1 k,n—1 1 n~-1,k 2 k,n+l 1 n+l,k 2 .
S ){ " & derAGn) douhay) " 2, detB4n) detB(uz)}

The third term in the bracket involving elements of B 1 s nonnegative

and if we show that the second term is also nonnegative and the result

F, (1) > F, (1) whenever py >pu, follows. To do this we need only
observe that since A is a symmetrix tridiagonal matrix, A,,(%) and
A, () for any p satisfying (39) will have the same sign. Hence we
conclude that there is one and only one eigenvalue uhz of D in each of
the intervals (39).

In fact, we can improve the bounds for eigenvalues uh2 of D
in each of the intervals by considering the decomposition of (34) for

n =2 to be as follows:

Ve HER =+ R )+ =0, k=12,...n-1.  (43)

Ve HEHR R~ = =0 k=mntl. . (44)

In each of the fixed intervals for uh 2 given by (36) and (37) we has
already established that there exists one and only one eigenvalue #h2

of D. If we now consider the subinterval

A+ K f,_ Spuh® <1+ K f, (45)
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the matrices in (43) and (44) are suitably diagonally dominant and we

can write
= A W) -
yn—l - a
det A(u)
and similarly from (44)
- Bn n ) -
yﬂ o _-_U'.l'_ yn—l
det B(t)

which together gives

{1 + An—l,n—l(#) Bn,n(lu) }"'n _ 0 .
detA(u) detB(u)

In view of the fact that the expression in the bracket is positive, we

have y =0 implying that there are no eigenvalues uhz of D in the
interval (45).

Proceeding in the same manner, we now decompose (34) for

fixed n>1, as follows:

Ve IR = QR Y, +9,,, =0 , k=12,...n
—§k_1+[2+h2ﬂ_ph2]§k—§k+,=0 , k=nr+ln+2,.., 0,

in the subinterval

3+ 12 f, S puh <4+ W2f, (46)

we can show that the matrices involved are suitably diagonally
dominant and that there are no eigenvalues ,uhz of D in the interval

(46).
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In summary, we have established the existence of one and only

one eigenvalue ,uhz of D in each of the intervals

1+ 12 f, <ur® <3+h%f, , n=123,.. . (47)

3.4 Error Analysis.

In this section, we will derive error bounds for |4, —p,

»

n=123,.., where 1, represents the eigenvalues of the continuous
system described in Section (3.2) and .~ represents the eigenvalues of
the discretized case described in Section (3.3). We note that the results
derived in these sections hold for all values of A and we will assume
that for a given A, we can calculate by the numerical procedure of
section (2.4) the values of u for any required degree of accuracy. In
each of these cases, we will select that value A which will give an
upper bound for |14 - |, The process of selection of 2 in each of the

cases A, B, C of Section 3.2 will be dealt with later. In this process we

will also give information regarding the eigenvector y=(y,, ¥,,..)" in

Section (3.2) and in particular the behaviour of y; as J tends to

infinity.
If A is an eigenvalue of (1) and (2), 1A 2 will be in one of the

intervals for any given h,

L=(0,4+hf)

and

L=+ 4+h ) , n=12,...
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Also we know that there exists one and only one eigenvalue uh2 of D

in each of the following intervals:
Ty =+ R 34 B2 ), Kfug > hf, , n=123 ... .

Case (i). If 1h2 liesin I1 and uhz in J1 for a given h, we have from

(18) and (37),

hZ
Fl'(;‘l’l)_F;(#l)=_7Gi(ll) » n=0
1

or

_ 2 Bzz(xl) N Bzz(#l) =—h2 - Bkz(;{'l)
A= +detB(7ol) detB(y,) y [tl(h)+;dct3(?»;) t"(h)]

On using (24) of Chapter 2, the left side of the above equation becomes

_ ) v B,(d) B (u)
(A4 =)k [1+;det8(lk) dCtB(#I)J‘

Now using the results of Theorem 2 of Section 2.1, we get

& B,(hy)
L)+ Yy L p ()
A -p =——1—{1( ) Bl )J. (48)
B [H‘” Bip(hy) Buou])}
k=2

detB(A,) det B(i,)

If we assume from (5), for some positive constant M ,

2
max |1, (W< M f—z (Ad)

then (48) yields on using (21) and (22) of Chapter 2,
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2 -1
12, —p 1< M5 {1+”B U‘l)”] (49)

2yl 1-p

provided that f§ =12, — | BB (u)li<1 holds.

For numerical work, we can use the initial estimate

3
Ill—ﬂilﬁﬁ-i-f; (50)

where we are assuming that A, lies ; and g, lies in J;. We can use

also the initial estimate

ml—u,ls—% (51)

where we are assuming that both A, and #; lie in the interval

(1+#*f,,3+#1*f) . Numerical work now consists of finding a value of
1 1

h leading to a value of i such that Q, the right side of (49) viz:

1B~ (u )n}
=R+ ——E
Q [ l_ﬂi

is a minimum. We note that (48) can be expressed in terms of
principal subdeterminants for which we can write upper and lower

bounds, by using the results of Theorem 2 as follows:

(k—1,00)
{a(h) Ba) | gy4 3 9B m’”a(h)}

detB(4,) & detB(A,)

A, —p 1=
o N 1+ By(4) By(y) + . detB(k_l"”)(}L]) det B(k—l,w)(‘u!)
dCIB(ll) det B(y,) k=3 dCtB(/li) detB(u,)

(52)
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with an initial estimate for A as 0< A< fg- +f1 or ;:12—+f1 <A< 5—2—+f1 .
Numerical work can be carried out to find a 2 and the corresponding
4, such that the right side of (52) is a minimum.

Case (i), If /lnh‘? lies in I and ynh2 lies in Jn , we have from (27)
and (40),

2
aa,,)—Fn(u,,)=—j—Gn(7»,,> . 3, %0

where Fn( ) = 0. Rewriting the above equation, we have

An—l,n—-l (I'Ln) _ An—!,n—i(ln)]

_ 2
A, =4 +[ detA(u,)  detA(A)

_ Bn+l,n+l(ﬂ'n) _ Bn+l,n+i(2’n)
detB(u,)  detB(A,)

k=1 detA(A’n) k=n+t detB(An)

n

_ L2 n~1 [
- yh' [tn(h)_ZAk,n—l(}“n) tk(h)'l' z Bk,n+1(2’n) tk(h):l

Using the results of Section 2.3, the left hand side of the above equation

becomes

— 2 <« Ak,n—l(a’n) An-l,k (un) N Bk,n+1 (A’n) Bn«}!,k(y‘n)
A, —p)h [”; detA(A,) det A(,) +k=zm detB(A,) detB(u,,)]' &9

Noting that each of the terms in the above bracket is nonnegative we

can now estimate for Iln~—pn! using (A4), as
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2
A, —pl< Mh {1+ AT A UHIBT (A,
12|y |
-1 -1
< M Lol NAT QN HBT () (54)
12y, 1-a, 1-8,

where

a, =2, —u PNA (u i<l  and

B,=lA, - lK°IIB (u)ll<1  hold.

Again, as in Case B, we will select an h with its corresponding value

for 1, which will make Q,, the right side of (54), minimum where

-1 -1
0= 2| 14 MA@ 1B G 55)
-, 1-5,
n=23,.. . Once ,u'ns are known, the norms involved in Q ,
n=123,.., are given by (21) of Section 2. An initial estimate for
I)Ln-,un! in Q is either
3 1
A, —pl< max{rh—z—,(f,1 —f,,_,)—-’?} (56)

if we assume A’n lies in In and B, in Jn, or

A, —,u,lsh% (57)
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. ) ) 1 3
if we assume that ln and i n both are in the interval [;1—5+ fn s ZE + fnj

Note also that we can express all the cofactors in (53) and its previous
equation in terms of principal submatrices from Theorem 2, for which

upper and lower bounds are easily given.

3.5 The solution of the continuous system.
We will now revert to the system given by (1) and (2) which is

equivalent to (5). For values of Ah? which are not eigenvalues of D we
need to show that Y tends to zero as j tends to infinity in (5) implying
that (2b) is satisfied. We will assume that 1A% is not an eigenvalue of
D hence, implying that the expression Fn(l) is not zero for n = 1,2,3,

. We will assume the usual a-priori estimate (A4) to discuss the

behaviour of the solution as x tends to infinity.

Case A: Let —co< Ah? < 1+ 4%f; From (13) and (A4), we have

= =)
ly. < —h“
! zdetB‘l‘”’

Since B is an infinite diagonally dominant M-matrix, and from (5) of

Chapter 2,
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]ylsﬂhd' ﬁ..}_g i&..F_B_l_l_ s J>1
7712 |detB Y| SdetB  detB

k#j

Mt 1 S 1. By
<
Co12 | K- A G[%hsz A2 detB

By an elementary argument based on expanding det B by the first
row, the boundedness of Eﬁ% can be established. In view of (A3), we
conclude that Y tends to zero as j tends to infinity since o; tends to

zero as j tends to infinity.

Case B. Now let I + h2f1 <A< 4+ h2f1 . From (19) and using the fact
that B is an infinite M-matrix and that F 1( A) #0 when /'Lh2 is not an

eigenvalue of D, we have for j=2,3, ..., from (17),

B

- B
ly. ——h“ ¥ 4o, —2_|y]
<3 ZdetB i detB !

k=2

ho. —22 |y |
Z’detB 9; detB n

Using arguments analogous to Case A, we can establish that ¥ tends

to zero as j tends to infinity.

Case C. Let 4+4°f, | <Ah* <4+h%f, n=2,3,.. From (25),
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= B, B,
ryj;sﬂh“ Yy 2ty |
12 &, detB detB

ly!

4
SMh[

B = B B
i +0 ki +0 a+l,n+1
P

detB 7 it det B 7 detB

B,
In view of the fact that de;tyB and S tend to zero as j tends to infinity

and since the infinite sum is bounded, we conclude that Y, tends to

zero as j tends to infinity.

We now collect the main resuls of this chapter in the following

two theorems.
Theorem 4. For the system (1)-(2a,b), and for X, = kh, k=0,1,2,3, ...,

h >0 and fixed, let the following hypotheses hold:

<1
1) < oo A3
' Zlf(xk) (43)
Gi)  AAf(x,) > BPf()+4 , k=123, ... (A4)
i) IyVelsmM o, x20 . (A5)

Then, for all values of Ah? which are not eigenvalues of the matrix D
in (8), the system (1)-(3) has a solution. Also if Ah? is an eigenvalue of
matrix D in (8), then also the system has a solution.

Note that in the above theorem, assumption of a common value
of A 1is made for all cases A, B and C to ensure the inclusion for
discussion of all values of Ah° (other than the eigenvalues of D)in
oo < A < o0 . It should be noted, however, that the value of A in each

of the cases can be different and we have the following theorem.
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Theorem 5. For the system (1)-(3), let (A ) ~.; be an infinite sequence

of positive numbers satisfying
I f((n+Dh,) > by f (nh,) +4 (58)

. 2 .
then there exists one and only one eigenvalue unh n of D in each of

the intervals

1+ ks f (nhy) < o <3+ B2 f(nhy) (59)

n=12,3 ...

3.6 An example: Schriadinger equation
Consider the one-dimensional Schriédinger equation [19]
satisfying
d*x )
—&x—ﬁ(?»—x =0, y@=0 , y(=)=0 ,
where «x is the distance displaced, A's represent the permitted

energy levels of a particle in the potentials f(x) = x® . Itis known that

the eigenvalues An are given by 4n-1, n= 1,23, ..., and in fact a

solution v, corresponding to /ln is given by

2
Va(x)=e* PHy, (x)

where Hn(x) is the Hermite polynomial of degree n. Clearly, the

2
results of the earlier sections are applicable. For A =3, y(x) = 2xe™ /2

with the corresponding | y}v(x)i <M= 11.5661 occuring at x = 0.6167.
2 .

For A=7, yx) = (8x5-12x)e™ 2 with the corresponding | y/’(x)]1 <M

=~ 216.3994 occuring at x = 0.5124 .
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We select a value of A and then calculate u from the
computational procedure of Section 2.4 to derive lower and upper
bounds to px . Care is taken to ensure the selected % satisfies

requirements of Theorem 4 which in this case reduces & from (58) to
R(n+1h —n’h2]> 4

or

Bt > 5 4+1 , n=123 .., (60)
n

and similarly the bisection method is carried on in the interval (59)

which in this case becomes

—‘L+n2h2<,u <22 , n=123.., . (61)
hz n n h2 n

Table 1 gives the values of u 1 for various values of A, with u 1 and

h1 satisfying (60) and (61). The table also gives the evaluated

values of the upper bound Q; of O by applying (22) and (23) of Chapter
2 and we choose that value of / and hence y; that O a minimum.

In the table Q was evaluated with the estimate (50).
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Table 1
bl oA o
(lower bound
upper bound)
1.31 | 2.81623518 | 2.5732687
2.81623523
1.32 | 2.82782022 | 2.5414171
2.82782027
1.33 | 2.83985554 |2.5172919
2.83985560
1.34 1 2.85233751 | 2.4995137
2.85233761
L35 2.86526235 | 2.4870207
2.86526244
1.36 | 2.87867656 | 2.4789827
2.87867666
1.37 | 2.89242618 | 2.4747405
2.89242627
1.38 | 2.90665758 | 2.4737649
2.90665767
1.39 | 2.92131674 | 2.4756255
2.92131685
1.40 | 2.93640002 | 2.4799689
2.93640011
1.45 ] 3.01804438 | 2.5301781
3.01804447
1.50 | 3.10972542 | 2.6134532

3.10972550
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From the above table, we find that the minimum value of € ; occurs
when 5 is between 1.37 and 1.39. On further refinement we conclude
that p, = 2.90410157 gives an approximate value for /11 .

Table 2 gives the summary of calculations for the first 5

eigenvalues.

Table 2
n| h, |W,=A2, | Exactvalue of
An
1] 13782 | 2.9041 3
2| 1.0747 | 6.4304 7
310.9464 | 10.3626 11
4 10.8635 | 14.8156 15
51 0.8165 | 19.7366 19

In this example, we have shown that even with the crude
approximation that yi”(x) is bounded for all x , we can derive
meaningful eigenvalues for the continuous problem. If the value of M
is specifically known one could set up an iteration for |A-ul using
(49) and (54). It is useful to note that the expected exponential decay in

yi”(x) can lead to an assumption of the form Iyi”(x)l <Me* for

suitable values of M ; and o . Also we note from (60)
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,Z; Z k+1)“4

showing that th is divergent as expected.
k=1
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