A Signature File Algorithm for Large Image Databases

By

Weihua Lu

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Master of Science
Department of Computer Science

University of Manitoba,
Winnipeg, Manitoba,Canada

Copyright © 2007 by Weihua Lu

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

A Signature File Algorithm for Large
Image Databases

BY
Weihua Lu
A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Weihua Lu © 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC’s agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Signature file, which is an indexing technique, has been extensively studied in text
retrieval. It acts as a filtering mechanism which is able to screen out the most non-
qualifying documents, thus, confining document searches to smaller relevant candidate
sets. Many methods for organizing signature files have been proposed to improve
searching speed since querying a large signature file sequentially is very time con-
suming. However, these methods have limitations when they are applied to image
databases since the distinct characteristics of image databases have not been taken
into account.

The goal of this research is to design an indexing algorithm for large image
databases. This proposed algorithm, called the Image Signature Tree (IST), re-
trieves an image in a database based on image objects and spatial relations between
the objects contained in an image, as well as image sizes and formats. Signature file
technique is adopted in this algorithm.

Performance evaluation is conducted both analytically and experimentally. The
analytical study of the performance in term of signature reduction ratio was conducted
based on probability theory. The retrieval cost, signature reduction ratio, storage cost

and update cost are studied by simulation.

il

v

Acknowledgements

I would like thank for my thesis supervisor Dr. Yang Jun Chen. Thank you for
giving me the opportunity to work with you, leading me going through each phase of
this research, encouraging me when I felt frustrated.

I would like to thank Dr. Peter Graham and Dr. Neil Arnason for helping me
solve many issues happened during the graduate study at the UM these years.

Many thanks go to the members of my thesis examining committee, Dr. Car-
son Kai-Sang Leung, Dr. Attahiru S. Alfa for giving me valuable comments and
suggestions for improving the quality of my thesis work.

My parents, how can I express my gratitude to you in words! “you raise my up.
I can fly because you give me the wings.” Without your support, I don’t think I can
finish this study. My brothers, you always set good examples for me to follow.

I would thank for Miriam and Irma who taught me Bible. My soul finally finds
her family which she pursued all these years. In the Christian family, she finds that
so many people share the same belief with her, therefore she doesn’t feel lonely any
more. She becomes more peaceful, more courageous, more confident. Next, I would
like to thank my roommates and classmates, I feel so lucky that I have many friends
in Winnipeg to share joys and tears together. I would also extend my gratitude to
my colleagues in my workplace. Your smiles melt the snow of the Winnipeg. I would
like to thank for all the eyes that care about me. How I wish could name you all.
Thank you everyone!

I would like to thank the department of computer science of the University of
Manitoba for the departmental fellowship. I also like to express my deep apprecia-
tion to Dr. Yang Jun Chen for the financial support from his Natural Sciences and

Engineering Research Council (NSERC) research grant.

vi

Contents

1 Introduction

1.1 Motivation and Problem Definition
1.2 Preliminaries
1.2.1 Signature File Technique
1.2.2 Image Retrieval
1.3 Objective of thisresearch
1.4 Organization

2 Literature Review
2.1 Signature Algorithms
2.1.1 Sequential Signature File
2.1.2 Bit SliceFile e
2.1.3 Multi Level Signature File
2.1.4 Partitioned Signature File
2.1.5 Signature Tree L
2.1.6 Balanced Signature Tree
2.2 Signature File in Image Research
2.3 Partitioned Signature File Research

3 Image Signature Tree Algorithm
3.1 ImageModel

vil

© O~ R W

10

13
13
13
13
14
15
16
17
19
21

23

3.2 Image Signature Tree Algorithm,
3.2.1 Partitioning Algorithm fora BST
322 QueryProcessing
3.23 Imsertiono
324 Deletion

4 Analysis

4.1 Control Parameters e

4.2 Performance Metrics L.
4.2.1 Storage Cost
4.2.2 Signature Reduction
4.2.3 Retrieval Cost(RC) L.
424 Update Cost(UC)

5 Implementation

5.1

5.2

Prototype o
5.1.1 Introduction Lo
5.1.2 System Overview
5.1.3 TestData
5.1.4 Working Platform
5.1.5 Implementation of IST
Partitioned Signature Tree

6 Experimental Results

6.1
6.2
6.3
6.4

Working Platform L
Test Data
Storage Overheads
Signature Reduction

6.4.1 Signature Reduction with Weight

viii

33
33
35
35
36
37
38

39
39
39
41
42
42
43
47

6.4.2 Signature Reduction with Data Size 58

6.5 Partition Access against Query Weight 59
6.6 Retrieval Cost Lo 59
6.7 Update Cost 62
6.7.1 Inmsertion Cost 62

6.7.2 Deletion Cost L 63

7 Discussion and Conclusions 65
7.1 Summary of Contributions 65
7.2 Future Work 66

A An Example for Analyzing a Balanced Signature Tree 69

ix

List of Tables

1.1

4.1
4.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Al

Signature construction and comparison 5
Control parameters e 34
Signature drops against weight 37
Comparison of storage overheads of BST against PST 56
Signature reduction ratio against weight 57
Signature reduction ratio against thesize 58
Retrieval cost oo 60
Retrieve time of the PST 61
Insertion time of PST 62
Usage of partitions 63
Deletion time of PST 63
Signature Drops against Weight 71

X1

xii

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
5.3
0.4
5.5

Spatial relationshipo 8
Signature file and bit slice signature file 14
Multi level signature fileo 14
Partitioned signature fileo 15
Signature tree 17
Basic signature tree structure 18
Weight-based method 19
Balanced signature tree 20
Imagemodel 23
Image signature tree 25
Spatial relation treeo 26
Partitioning scheme 1. 27
Partitioning scheme 2 28
Partition splitting 29
An image retrieval system 41
Query interface 42
The folder tree 43
The folder datafile L 44
Image signature in a partition e 45

xiii

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al
A2
A3
A4
A5
A6

How to construct size signature 46

Schema diagram for the database 46
Report o 47
Class diagram for PST 48
The flow chart for PST 49
Store the tree toan array 51
Search procedure 52
Load an array from disk 53
Generate the key tree froman array 53
Signature reduction of the PST against weight 57
Signature reduction ratio of the PST 58
Partition access against query weight 59
Retrieval timeo 61
Retrieval time vs. processes 61
Insertion time of PST 62
Deletion time 64
A Balanced Signature Tree 69
Case 1: Query Signature Weightis4 70
Case 2: Query Signature Weight is3 71
Case 3: Query Signature Weightis2 72
Case 4: Query Signature Weight is 1 73
Case 5: Query Signature Weight is0 73

Xiv

Chapter 1

Introduction

Signature file is an indexing technique that has been investigated extensively in the
document access area. It has been widely applied in office automation [14], software
libraries [29] and database application systems [26].

A signature is a binary bit string that represents a word in an abstract format.
The main idea of signature technique is that a document is considered as a list of
words and is decomposed into n blocks. The words in each block are transformed into
signatures with a hashing function. These signatures are superimposed (i.e. bitwise
OR) together to form a block signature, and these block signatures are stored in a
file named a signature file. The nature of this superimposed mechanism implies that
a block signature covers its member signatures. If a query signature is not matched
with a block signature, it must not match with any of its member signatures either.
"Therefore, the signature file technique is able to function as a filter that can discard
non-qualified information.

If signatures are stored sequentially in a signature file, searching signatures one by
one in a large database is still time consuming. Therefore, many efforts have been un-
dertaken to improve searching performance. Examples are the bit-slice method [25],

the multilevel tree [21], signature trees [4] and partitioning signature files [22, 30, 33].

2 CHAPTER 1. INTRODUCTION

Bit-slice adopts a column-wise storage method to avoid the large amount of unnec-
essary database accessing. Multilevel tree uses a tree structure to filter nonqualified
data from root to leaf level by level. Signature tree organizes a signature file into
a binary tree to improve the searching speed. Partitioning signature files divide the
signature file into various parts to speed up the searching process.

Recently, there has been increasing interests in applying the signature file tech-
nique to the multimedia technology. John Eakins and Margaret Graham [8] clas-
sify image queries into three levels of abstraction: “primitive features such as color
or shape, logical features such as the identity of objects shown, and abstract at-
tributes such as the significance of the scenes depicted”. Obtaining logical and ab-
stract features of an image automatically is still in the research stage. Automatic
retrieval of images from databases based on their primitive features is called the
Content Based I'mage Retrieval (CBIR) that has developed rapidly during the last
two decades. Available commercial systems are QBIC, Virage and Image Scape.
Existing indexing algorithms are R tree [15], SR tree [17] and K—D—B tree [2].
However, these algorithms become inefficient in large image databases because com-
paring images one by one needs a large amount of time. The goal of this research is
to design an efficient indexing algorithm that can be used to speed up image retrieval.
In this research, I extend a model which is known as Retrieval by Spatial Similarity
(RSS) [28]. This model searches images based on not only dbjects, but also spatial
relationships among the objects contained in a picture. For example, suppose there is
an image with a man sitting in a car. Then, this image will be considered as having
two objects: “a man and a car”. The spatial relationship between the two objects is
a “containing” relationship. The proposed indexing algorithm can answer the query
such as “Find all the images including a car and a man”, as well as “Find all the
images with a man in a car”.

The proposed algorithm, called the Image Signature Tree (IST'), consists of three

1.1. MOTIVATION AND PROBLEM DEFINITION 3

parts: Folder Signature Tree (F'ST), Balanced Signature Tree (BST) and Spatial
Relation Tree (SRT'). FST is created based on the paths where images are stored.
The goal of F'ST is to filter out the folders that do not contain the target images.
BST is a binary-tree-like signature file algorithm aiming at the retrieval of images
with target objects. SRT is introduced to locate the images with the constraints by

spatial relationships between the target objects.

1.1 Motivation and Problem Definition

An indexing algorithm for large image databases should have an efficient search capa-
bility. However, image data are not well-defined as the key words used in traditional
textual databases, which makes it more challenging to devise a powerful indexing
mechanism over images.

During the last two decades, much research has been done on this issue. For
instance, M PEG—T7 provides a standard for describing contents of multimedia, which
includes colors, textures, objects as well as events. Retrieval by spatial similarity
(RSS) [28] is a significant approach which searches images based on certain spatial
relationships among the objects contained in a pictures. In addition, several modeling
approaches [28] have been developed to extract different visual contents of images,
such as the color based model, texture based model and shape-based model, which
can be used specify searching scopes and objects for the image database retrieval.
All these methods are also called content-based image retrieval approaches. The
basic idea of content-based image retrieval is to transform the important feature of
the image into a high dimensional points(feature vector) and perform the nearest
neighbor search, which refers to search the close to a given query feature vector.

Existing multimedia indexing algorithms such as R tree [15], and SR tree [17]

established on the objects’ spatial location. They use either bounding rectangle or

4 CHAPTER 1. INTRODUCTION

bounding sphere to define the shape of the regions within one image. Therefore, they

are only able to retrieve the target image by comparing the images in the database

one by one. This will cause an I/O bottleneck if the database is large. To relieve

“the problem, it is necessary to screen out unrelated images before doing similarity
comparison with CBIR [28] technique.

In this research, I try a new way to index images, by which the so called signatures

file technique is combined with RSS to discard unrelated images as early as possible.

Consequently, the following two problems are investigated.
o How to utilize the filtering power of signature file technique in image retrieval.

o How to speed up the image retrieval, insertions and deletions by using the

combination of the signature file technique and RSS model.

Experiments have also been done to show how efficiently my method can screen out

non-qualified images for the image retrieval.

1.2 Preliminaries

1.2.1 Signature File Technique

The signature file approach [11] was originally introduced for textual retrieval. A sig-
nature is a binary bit string that represents a word in an abstract format. The main
idea of signature technique is that a document is considered as a list of words and is
decomposed into n blocks. Each word of a block is transformed into a signature with
a hashing function. These signatures are superimposed (i.e. bitwise OR, denotes as
V) together to form a block signature, and these block signatures are then stored
sequentially in a file named a signature file. Table 1.1 illustrates the construction of
a block signature using the superimposed coding method, where a block of a docu-

ment consists of three words, “sun”, “moon” and “star”. The signature “001010110”

1.2. PRELIMINARIES 5

Text Signature

sun 001 010 110

moon 101 100 100

star 000 110 101

block signature Vv 101 110 111
Query Query signature Block signature Result
sun 001010110 A 101110111 = 001010110 match
football 010000011 A 1011110111 = 000000011 no match
building 100000011 A 101110111 = 100000011 false drop

Table 1.1: Signature construction and comparison

is generated using a hashing function to represent “sun”, the signature “101100100”
represents “moon” and “000110101” represents ”star”. The block signature is created
by superimposing these three signatures. Each 1 in a block signature implies that
the bit at the same position in its member signatures should also be one. In other
words, the block signature covers its member signatures. If a query signature does
not match a block signature, it must not match any of its member signatures. There-
fore, signature file technique functions as a filter that is able to _discard non-qualified
information.

Table 1.1 shows a typical query processing with a signature file: given a query,
the query signature is compared with each block signature in a signature ﬁie. Those
unmatched signatures are screened oﬁt from candidates for further checking. The
remaining candidate signatures are called drops, and their corresponding text are
further examined against the query text. The resulting drop set falls into two cate-
gories: those seemingly matched, but actual non-qualified signatures, are called false

drops, while those exactly matched signatures are called true drops. Therefore, when

6 CHAPTER 1. INTRODUCTION

querying a signature file, there are three types of outcomes, as shown in table 1.1:(1)
match(s A s, = sg), that is, for every bit set to one in the query signature s,, the
corresponding bit in object signature s is also set to one. This means that document
contains the real query text. In this case, the query signature is “001010110”, and the
query result is also “001010110”, so these two signatures are matched. (2)unmatch
(s A sq # s4), that is, there are some bits in s, not same with the object signature s.
In this case, the query signature is “010000011”, and the query result is “000000011”,
these two signatures are apparently not matched. (3)false drop(s A s, = s,). In this
case, the query signature is “100000011”, and the query result is also “100000011”.
These two signatures seem to be matched. However, the corresponding document
does not have word “building”. This signature is called the false drop.

Superimposed method increases the density of 1’s in a block signature, resulting
in the degraded filtering ability. As shown in table 1.1, each member signature has
4 bits set 1, while the block signature has seven bits set 1. As more 1’s appear in s,
the false drop probability increases. Intuitively, using longer signature can decrease
false drop probability. However, it will increase the storage overhead.

The false drop probability [9, 21] is crucial in evaluating signature file performance,
because it affects the number of database accesses and the query processing time. This
probability can be calculated by using the following equation: Pf(z,w) = (1 — (1 —
2)*)*, where z is the number of distinct words a signature block contains. w is the
weight of a member signature, i.e., the number of 1’s the signature contains, m is the
length of a signature, and « denotes the weight of block signature.

False drop is an inherent problem associated with the signature file method. There
are two reasons for the false drop occurring in signature file. One is that the super-
imposed method does not provide one-to-one mapping for the block signatures to the
corresponding sets of words, in other words, two different sets of texts might map

to the same block signatures, this will result in a signature seems to in an expected

1.2.. PRELIMINARIES 7

block signature, actually, it is not included. Another is that the hash function dur-
ing signature generation does not provide one-to-one mapping for the signatures to
the corresponding word either. That is, two different texts might map to the same
signature. This will cause false drops.

The hash function [10] is a method that turns some data (hash field) into a (rel-
atively) small number(hash address) with a function or an algorithm. One common
hash function is the h(K) = K mod M function, which returns the remainder of an
integer hash field value K after division by M, the hash address is between 0 to M,
which is smaller than original scope from 0 to K . Some hash functions involve to
apply arithmetic or logical function on hash field to generate the hash address. Other
hash functions select some digits in the hash fields to form the hash address. Some
signature files use triplet hashing algorithm to generate the signature. For example:
the signature for the word “research” is expected to be with a length 16 and a weight

[42 ” [43 kb [43 » 113 3

4. Then “research” is decomposed into a set of triplets: “res”, “ese”, “sea”, “ear”,
“arc”, “rch”. Using a hash function, we have h(res) = 4, h(ese) = 8, h(sea) = 9,
h(ear) =-10. Since the expected signature only has 4 bits, so we neglect the rest

142

of two triplets: “arc”, “rch”. Thus, we establish a signature for “research” which is

“0001000111000000”.

1.2.2 Image Retrieval
Image Extraction

The complexity of image retrieval lies in visual feature extraction. John Eakins and
Margaret Graham [8] defined three levels of image features: primitive features, logical
features and abstract features.

Most research work focuses on abstracting an image automatically by using its

primitive features such as color, texture, shape and spatial relationships. The idea is

8 CHAPTER 1. INTRODUCTION

to employ a mathematical high dimensional vector to depict the visual feature of an
image. For example, a color could be digitalized into a scale of color level according
to its three basic color elements: red, green and blue. Therefore, an image can be
represent by a collection of pixels with various gray levels labeled as digital numbers.
In other words, an image can be regarded as a matrix with various elements. Thus,
an image can be abstracted into a dimensional feature vector. Image retrieval is
performed through comparing the query image color feature against the color feature
of the images stored in databases.

Obtaining a logical feature means extracting a semantic feature of an image such as
identifying objects in an image. Automatic retrieval for this high level visual feature
of an image is a challenging topic. The idea of most research is to define a model
for each iject basea on its primitive features, and use data mining techniques to
identify the objects that an image contains. Kherfi and Ziou [18] think there is a need
to define standards for image description. Up to now, there is no significant research

on retrieving abstract features reported. Retrieval by spatial similarity (RSS) [28]

—— O

Disjoint Overlap Meets
Crossing Equal Contains

Figure 1.1: Spatial relationship

is a technique that searches images based on certain spatial relationships among the
objects contained in pictures [12]. Possible topological relationships between objects
are classified intQ six categories, which are: disjoint, overlap, meets, contains, crossing
and equal. Due to the current state of research in image retrieval, I use keywords to

represent the identified objects in an image, and created a signature for each keyword

1.3. OBJECTIVE OF THIS RESEARCH 9

in this research.

Image Storage

There are two major approaches [7] for storing images in database. One is to embed
images directly in an OLE Object field in a database table. The ‘other is to store
images on disk or on the network and specify image locations and file names in a
database.

Object Linking and Embedding (OLFE) is the technology developed by Microsoft
Corporation for sharing files among different applications By which a picture can be
stored as a word document. The main idea of storing images with OLFE technology
is to accommodate each image in a database as an OLFE Object. Therefore, images
can be stored in a database just like other data types, such as text, number and
so on. This method is convenient for migration because the images are stored in a
database. However, this method can increase the database size because it creates
an additional data to render object, which are normally greater than the size of the
objects themselves.

Since the size of a database sﬁpported by any commercialized system is limited by
database size [3]. For example, the maximum size of database that Microsoft access
supports is 2 GB, while Microsoft SQ L 2005 database does not exceed 4 GB. The first
method is not suitable for large amount of images. So, I choose the second method
to handle the images. The proposed algorithm functions as a filter that cuts off the

non-qualified images to reduce the number of disk accesses.

1.3 ~Objective of this research

Firstly, this research uses an image model to identify image features to facilitate

querying. This model describes images based on Retrieval by Spatial Similarity(RSS)

10 CHAPTER 1. INTRODUGCTION

model that represent the images by the domain objects and their relationships, and
it extracts the image features by their formats and pixel sizes.

Secondly, a signature file algorithm, known as an Image Signature Tree (IST), is
presented to retrieve images in a database. The IST consists of three parts: Folder
Signature Tree (F'ST'), Balanced Signature Tree (BST) and Spatial Relation Tree
(SRT). FST is created based on the paths where images are s‘tored. The goal
of FIST is to filter out the folders that do not contain the target images. BST is a
signature file algorithm aiming at the retrieval of images containing the target objects.
SRT is introduced to locate all those images satisfying constraints specified by the
spatial relationships between the target objects.

Thirdly, this research presents an efficient partitioning scheme for BST. The
BST organizes the signatures in the signature file into a binary tree-like structure.
When the image database gets very large, a balanced signature tree could exceed
the size of main memory, resulting in a memory bottleneck. Therefore, the index
may need to be tailored smaller to fit into main memory. For this reason, an extra
partition scheme is proposed to divide the BST into smaller parts with each part
holding the same key. This scheme saves the searching space and supports the parallel
programming. Furthermore, this scheme provides a dynamic structure that facilitate
image insertions, deletions.

Finally, this research provides an in-depth analysis for the balanced signature tree
based on probability theory. Simulations are conducted to compare the theoretical

value and experimental results.

1.4 Organization
The rest of the thesis is divided into six chapters. They are organized as follows:

e Chapter 2: Literature Review. This chapter discuss the related work and pro-

1.4. ORGANIZATION 11

vides the background for this research. It begins with an overview of the signa-
ture file technique, followed by an introduction of some signature file algorithms.
Then it presents some basic knowledge of image retrieval and image storage.
Finally, it discusses the application of the signature file technique on signature
file, with focus on the related work done on partitioning of signature files in the

literature.

e Chapter 3: Image Signature Tree Algorithm. This chapter introduces the main
algorithm, that is called as Image Signature Tree (I.ST'). First, it presents an
image model that aims at defining searching scope and features of an image.
Next, it gives a detailed description of the image signature tree algorithm. This

chapter ends up with a discussion of an efficient partitioning scheme for BST'.

e Chapter 4: Analysis. This chapter presents a probabilistic analysis for the
signature reduction ratio of Partitioned Signature Tree (PST) algorithm. It
describes the performance metrics, including the update cost, the retrieval cost,

and a list of control parameters.

e Chapter 5: Implementation. This chapter shows implementation details. It
starts with a description of the implementation of a prototype system with the
IST algorithm, which can be used to retrieve an image or several images from

the database. Then, it describes how to implement the PST.

e Chapter 6: FEzperimental Results. This chapter presents and analyzes the ex-
perimental results. First, a theoretical analysis is conducted on the performance
of BST and PST using methodology in the chapter 4. Then test results are
demonstrated to show the difference between these two strategies. It also pro-

vide the analysis for the simulation results.

e Chapter 7: Discussion and Conclusions. This chapter summarizes the contri-

12

CHAPTER 1. INTRODUCTION

butions of this research and suggests the future research directions.

Chapter 2

Literature Review

This chapter provides a broad overview of the background material on which the
thesis builds. The first section describes various signature file algorithms. Following
this, a selection of related work on image retrieval is presented in 2.2. In 2.3, the
research efforts to improve the performance of the sequential signature file algorithms

by the partitioning approach are reviewed.

2.1 Signature Algorithms

2.1.1 Sequential Signature File

Sequential signature file is the simplest way for organizing signatures. Searching
a signature is done by comparing signatures one by one. The performance of this
method depends the size of the given signature file and the length of each signature

in it. Therefore, this method is not efficient when applied to a large database.

2.1.2 Bit Slice File

Roberts [25] proposed a bit slice (BS) method which regards a signature file with n

signatures with length m as a table with n rows and m columns. Such table is then

13

14 CHAPTER 2. LITERATURE REVIEW

Signature file: bit-slice file:

C1 C2C3 C4.C5 C6 €7 C8] [| cjclejcccslcics] []
0 0 1 0 1 0 0 1 |/[st] 0 [0 [T o |1 [o |0 1] [s1]
0 1 1 1 0 0 1 o0 |[s7 0 {1 {1 |1 oo |1 |0 |[S2]
00 1 0 1 1 0 1 ||S3] o (o 1o [v 1o |1 | s3]
11 0 0 1 0 1 0 |4 Pjrfofoj1jofr o[
0 0 1 1 1 0 0 1]JS o o {1 |1 |1 jo o |1 |][S5]
1 1 1 0 0 1 1 0 |/S6] Ty o o 1|1 |o | [S6]
0 0 0 1 0 0 1 1]][s] 0 {0 0 {1 [0 fo |1 |1 |[ST]
0 1 0 1 0 1 1 0] |[s8 0 {1 fo |1 Jo |1 |1 |0 | [s8]

Figure 2.1: Signature file and bit slice signature file

divided into m slices. Each slide corresponds to a column and stored in a different
file. When answering a query signature with w 1’s, only w corresponding columns
of files are checked. Compared to sequential signature file, this method can save
™m — w unnecessary accessing time. However, the maintenance cost is very large. For

example, if we update a signature in BS, m bit-slice files need to be accessed.

2.1.3 Multi Level Signature File

1 -""“—_fm—_fﬁ:::~-

—_
' | Ll K—?—‘, N »
g L r{,\ [T* blac
} | [A \1 ¢
\y
LAY
tg*::x 1 —
| b
Si:l Gl
I C - p———y . 1
L S o—
S |
Level 1 Level ne1 Leveln Text
signetures signefures sigratures blocks

Figure 2.2: Multi level signature file

Multi-level signature file [21, 33|, as shown in figure 2.2, is a b-ary tree structure

with n levels. Different from binary tree with each parent having two children, this

2.1. SIGNATURE ALGORITHMS 15

b-nary tree has b children for each parent. The signatures in the lowest level, nth
level, are generated from text blocks. Each signature of n — 1th level is a parent node
with b children of signatures at level n, and is generated from a group of text blocks
which create its b children signatures at level n. The advantage of this method is that
it filters non-qualified documents at higher level, reducing unnecessary accesses at

lower level. However, it creates extra storage overheads for the high-level signatures.

2.1.4 Partitioned Signature File

The idea of partitioning scheme [22] is to divide a signature file into small parts in
which the signatures hold the same key. Figure 2.3 shows an example of a partition
scheme. It involves two levels. The first level is a key table; the second level contains
all the signatures that are partitioned into several parts. The signatures in a part
have the same key. When a query signature comes, it was first checked against the
key table to find all the parts with a matching key. Then all the signatures in these
parts will be further examined. The partitioning scheme skips the further checks
with unmatched partitions. Therefore, it improves the performance by reducing / /O

accessing time.

000 01000000000000

000 01000010000000 Partition 0
000 61000010000100
Key table

006 001 01000010000000
001 001.01001000010000 Partition 1

‘001 61000010000010
001 010100010006001

111

111.61000010000010
000100001000 Partition p-1

11
111
111.01010001000100

01
01

Figure 2.3: Partitioned signature file

16 CHAPTER 2. LITERATURE REVIEW

2.1.5 Signature Tree

A signature tree (ST') [4] is constructed based on the so-called signature identifiers
which is defined as follows:

Definition (Signature identifier) Let S = $1.85...s, denote a signature file. Con-
sider s;(1 < i < n). If there exists a sequence: ji,...75 such that for any k # (1 < k <
n),we have s;(j1, ...Jn) # sx(j1, ---Jn), then we say s;(j1, ...Jx) identify the signature s;.

Definition (Signature tree) A signature tree for a signature file S = s;55...s,, where
s; # sj for i # j and |si| = m for k= 1,...,n, is a binary tree T such that

1. For each internal node of T, the left edge leaving it is always labeled with 0
and the right edge is always labeled with 1.

2. T has n leaves labeled 1,2,...n, used as pointers to n different positions of s;,
So... and s, in S. Let v be a leaf node. Denote p(v) the pointer to the corresponding
signature.

3. Each internal node v is associated with a number, denoted sk(v), to tell which
bit will be checked. |

4. Let iy,...i, be the numbers associated with the nodes on a path from the
root to a leaf v labeled i (then, this leaf node is a pointer to the ith signature
in S, i.e p(v) = 7). Let py,...pn be the sequence of labels of edges on this path.
Then, (51, p1).--(r, pr) make up a signature identifier for s;, s;(71,...n)-

Figure 2.4 illustrates a process for constructing a signature tree from a signature
file. A successful signature search works as follows: given a query signature, we start
from the root of the ST and get internal node value n, check the query signature
at position n. If it is 1, we only need to further query the right subtree; if it is 0,
we continue to search both left and right subtrees. The above process is performed
recursively until the leaf level is reached. All the reached signatures are the candidates
which satisfy the users’ query except for false drops.

Signature tree is different from ordinary Binary Tree (BT') in two sides: First,

2.1. SIGNATURE ALGORITHMS 17

<1 011001000101 | SertS1 Insert s2 /@\)

S2 111011001111 —) i i
s1 52

S3 111101010111 | s1] [s2]

S4 011001101111

Signature

file Insert s4

lnsertsB @ :> /6 @)
= ® ’i VAN S SN
(] 2] [55]

Figure 2.4: Signature tree

it has more basic structures than the binary tree does. Figures 2.5 shows its four
different basic structures. While the ordinary binary tree only has the one type
structure which is similar to the type A. Type A has three internal nodes; Type B
has two signatures and one internal node; Type C and D has three signatures and
two internal nodes. This complex structure makes signature tree more complicated
than binary tree in term of construction, storage and retrieval. Since signature size
is usually longer than internal nodes, it requires more storage space. This feature
requires that signature tree should have different storage and retrieval scheme than
the binary tree. Second, the internal nodes in ST act as not only link roles as in binary
tree, but also as position pointers. Once the ST is constructed, the connections among
the nodes are fixed. Any changes to the internal nodes will lead to a totally different
ST. So, the balancing tree to make the left and right sub-tree have equal or almost

equal depth by rotation in the BT is not applicable to the ST.

2.1.6 Balanced Signature Tree

In order to avoid the worst case of ST, Chen [5] proposed a weight-based method to

organizes a signature file into an approximately balanced binary tree.

18 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Basic signature tree structure

Weight-based method

A signature file S = 515,...5, can be considered as a Boolean matrix. Let WS[i] be
the sum of 1’s in the ith column, and S; ; be the bit of signature S; in the jth column.
Define CW[i] = [WS[i] — 3 *n|(i = 1,2..n), and then choose the first column j
where CWj] is the minimum as a pivot column. The signatures are divided into two
groups: G; where S;; =0, and G, where S;; = 1.

For example, suppose we have a set of signatures GO = {sl, s2, 3, s4}, here,
s1 = 000100, s2 = 010100, s3 = 000011, s4 = 101010. According to the weight-based
method, GO can be divided into two groups {s3, s4} and {s1, s2}. This procedure is

shown in Figure 2.6.

Balanced signature tree

Constructing a signature tree is a recursive procedure. First, the original signature

sets Gy is split into two groups GG; and G5 according to the weight-based method by

2.2. SIGNATURE FILE IN IMAGE RESEARCH 19

=4 12 31415 %

i~ 0 0 01|90 o /®\

82 0 1+ o0l1lo 0 \ 7.

S3 s 0 o011 1 @
33 1 5 t |01 9 @ ’
WS 1031 1212 1 2
o 11 1109 G (G2)

(GO)

Figure 2.6: Weight-based method

the pivot column d. Next, the pivot column d is formed as a internal node P, with
value of d. The left child of Fy is the group where S; 4 equals zero, while The right
child is the group where S; 4 equals one. Then, subgroup G; and G, are split as in
the first step, generating a position node P; and its subgroups Gi; and Gis, as well
as P and G; and (99, respectively. At this stage, Py updates its left child to P, and
right child to P». Next, subgroups G11, Gi2, Ga1 and Gas continue the first step until
all the descendant subgroups contain only one signature. Figure 2.7 shows a process

for generating a BST.

2.2 Signature File in Image Research

Nascimento and Chitkara [24] proposed a new signature file technique based on color
similarity to retrieve image databases. The main idea of this algorithm is to use
signature bit-strings to represent the high-dimensional features extracted from images.
They compare this new signature algorithm against a SR-tree in terms of storage
overhead and querying process, and claims that storage overheads for 2000 binary
images with signature method are 97% smaller than SR-tree [17], while query saving
is over 80%. The weak point of this research is that they have not used any signature
file technique to improve querying speed.

Kwae and Kabuka [9] introduced a two signature multi-level signature file (2SM LSF’)

20 ' CHAPTER 2. LITERATURE REVIEW

n=3

1 2 3}4]5 8
1 "o 5 0]110 o /®\
s2 01 o0i1le » Q 7.
s3 0 0 o0jol1 1
S3 10 110110 @ @
ws 11 122 1
o 1 o1 1106f86 1 G1) (G2)
(GO)
n=2 1213 4 5 8§
S1 0 }0J0 1.0 0
$2 I EREEERE TS /@\
) o f1je 2 a0 7.
) I ERERERES /@\
(G1) S > >
ns2 4 2 3 .4 5§ [s31] s4][s1] 52
$3 REEEREEEEREERE
4 16 1010
WS 4 8 it 2
cW L0 10 1y
(G2)

Figure 2.7: Balanced signature tree

as an indexing method for image databases. This algorithm is an extension of multi-
level signature file. It consists of two types of signatures. The first type is an exact
multi-level tree which is used to retrieve the objects that an image database contains,
while the second type is a sequential signature file which is used for retrieving images
based on the image objects and their spatial relationships. The advantage of this
method is that it can address different query requests, such as, finding all images in-
cluding a given set of objects or finding all images with specified spatial constraints.
Furthermore, an analytical result demonstrates that 2SM LSF has smaller storage
requirement and more efficient querying speed than the existing signature file tech-
niques. However, the author has not provided useful experimental results to verify
the analytical estimation.

Lee and Huang [20] implemented a signature algorithm based on image objects
and spatial relationships between objects. This algorithm differs from 25M LSF in

two aspects: 1) signatures are created with only one object in an image and the spatial

2.3. PARTITIONED SIGNATURE FILE RESEARCH 21

relationships between an object and the rest of objects in the image; 2) signature files
are organized by a Hierarchical Relation (H R) graph instead of multi-level signatures.
H R graph speeds up the signature searching process by introducing virtual signatures
that are not associated with real images. Those virtual signatures, however, increase

the storage requirement.

2.3 Partitioned Signature File Research

Zezula [30] proposed a partition scheme named quick filter using linear hashing to
group similar signatures into one page. The advantage of this method is that it
supports dynamic storage structure that allows a large amount of insertions into
databases. Moreover, Zezula and Rabitti studied the so called quick filter [33], and
concluded that this method is superior to sequential signature file and multilevel
signature file when querying weights are high. Lee and Leng [22] presented three
partitioning schemes: the Fixed Prefix method, the Extended Prefix method and
the Float Key method. These three methods share a common feature, that is, the
original signatures are converted into a partition key table and the corresponding
signature partitions. The difference between these three methods lies in the scheme of
generating the partition keys from signatures. Fixed Prefix method extracts partition
key with a fixed length and a fixed starting position. Extended Prefix method selects
a key with variable length but with a fixed starting position. Float Key method
chooses a key with a variable position but with a fixed length. The major advantages
of these methods are their simple structure. However, they do not support dynamic
storage structure. When one partition overflows, the schemes become inefficient.
Gradi, et al. [13] suggested a frame slice partitioned scheme to reduce the up-
date cost caused by bit-sliced storage scheme. Lin [23] implemented the frame-slice

signature on Unix workstations and studied the performance in term of false drop

22 CHAPTER 2. LITERATURE REVIEW

probability and response time. Zezula et al. [32] introduced an approach that com-
bines the key-based partitioned method and bit-sliced signature file. This hybrid
method shows good searching performance, however, the update cost is still high.
They further suggested integrating key-based partition scheme with frame-slice ap-
proach. Kim and Chang [19] integrated hashing method and frame slice technique
together and proposed a new scheme called a horizontally divided parallel signature
file. The approach shows superior performance compared to frame-slice by Gradi and
other parallel signature file algorithms published in the literature.

Zezula and Tiberio [31] introduced a Hamming filter that extends quick filter.
However, it fails to distribute signatures evenly into partitions, causing unbalanced
work loads among partitions. To solve this problem, Shin et al. [27] proposed a
dynamic signature file declustering method based on the signature difference. It
adopted hamming filter when partitioning a signature file. This is different from
my proposed partition scheme, which is based on data structure key and signature

difference.

Chapter 3

Image Signature Tree Algorithm

This chapter focuses on the methods and techniques used in this thesis. This chapter
first introduces an image model designed to describe the images features. Next, it
describes the Image Signature Tree algorithm in detail by introducing its three basic
operations, such as query process, insertion and deletion. Finally, it introduces a

partitioned signature tree algorithm that is the core component of I.ST algorithm.

3.1 Image Model

Format
Subject
Province
- bmp
Califomnia Bridge
png
i Kansas — Sea
Country Minnesota Montain Spatial
Image Iationshi
Qther Other Tite relationship
America River Disjoint
Canada Aberta Lake I Peopte [
|Sceneryi— bt Mantobe F Prairie Stono Equal
China Ontario Snow
Other
Bei Jing Sea
) Montain
Shan Xi
*— Yun Nan L Brdge eng‘ﬁ”<15€5
Wide <3400
Other Other

Figure 3.1: Image model

23

24 CHAPTER 3. IMAGE SIGNATURE TREE ALGORITHM

The model designed to describe an image is illustrated as shown in Figure 3.1. It
consists of a set of abstract features, a set of object features and a set of primitive
features.

The abstract features include:

type: such as wallpaper, scenery, sports, car, animal and so on.

subject: such as fish, bird and so on.

title: such as salmon, catfish and so on.

e size: such as 680x1200, 800x 780 and so on.

format: such as JPG, GIF, BMP, PNG and so on

The object features include a set of keywords which describe an image. The
primitive features include: DISJOINT, OVERLAP, MEET, CONTAIN, CROSSING
and EQUAL.

3.2 TImage Signature Tree Algorithm

According to the image model, an image signature can be defined. It consists of five
fields: a folder field, an object field, a relation field, a size field and a file extension
type field. Folder signature is based on the abstract feature of the image model.
For example, in the above image model, the “scenery” signature is generated by
superimposing its subfolders. The subfolder “country” is generated by superimposing
its subfolders. The length of folder signature is chosen based on the number of its
subfolders for the purpose of minimizing the false drop probability. These folder
signatures finally form a multilevel signature tree.

The object signature is obtained based on the objects in an image. For an image

with & objects, the object signatures are generated by a hash function, and these &

3.2. IMAGE SIGNATURE TREE ALGORITHM 25

Query

’Type 1 signa!ure| 'Type 2 signa(urel IType n slgna(ure'

Folder
Signature

l Location 1 signature I ILocalion 2 signamre‘ lux:allon 3 signature |

I

/@\7
d @\ Signature

> & > Tree
3
- - Image
IOb;ect Field | Relation Field lsize Field lFormat Fieldl signhatures

Spatial
Relation Tree Image

Database

'
G

Figure 3.2: Image signature tree

object signatures are superimposed together to form a block signature, which is the
object field of an image signature. k objects in an image have k% (k — 1) relationships,
which fall into six categories: DISJOINT, OVERLAP, MEET, CONTAIN, CROSS-
ING and EQUAL. The relation signatures of an image are superimposed together to
generate the relation field. Since there are only six spatial relationships defined in
this research, I use a six-bit string to represent relation signatures. For example, I
use “100000” to stand for the “DISJOINT” relation and “000010” to represent the
“CONTAIN” relation. If all the object pairs in an image belong to the “DISJOINT”
and the “CONTAIN” relationships, then the image relationship signature is “100010”.
The size field and the format field are generated similar to the relation field.

An IST, as illustrated in Figure 3.2, includes three different types of trees: folder
signature tree, balanced signature tree and spatial relation tree.

The FST is created by superimposing the subfolders level by level. The leaf of a
folder tree is pointed to the root of balanced signature tree. The leaf of a signature

tree is the object field of image signatures, it also points to the relation field, the size

26 CHAPTER 3. IMAGE SIGNATURE TREE ALGORITHM

101001
/é\@
L
0'\‘5\0\ e % ves @Q[
o

1
110010000001111| !100110110000101{ |11o11ooooooo11

Object 1 [100010000000101| |1060010100000101] (110010000000111}Object 3

Object 2 [110010000001101} |160010010000101| [100110000000101|Object 6

Object 3 [110010000000111 100110000000101

Figure 3.3: Spatial relation tree

field as well as the format field.

To further locate the images queried by spatial relationships between the target
objects, I introduced a Spatial Relation Tree (SRT'), as shown in Figure 3.3. The
root of SRT is a relation field of an image. It has six children which represent six
spatial relationships of object pairs in an image. The leaf nodes of SRT are ﬁhe block

signatures of objects within the same relationships.

3.2.1 Partitioning Algorithm for a BST

If the image database is very large, a BST could exceed the size of main memory. To

solve this problem, I proposed two partitioning schemes for a BST.

Scheme 1

Since the BST is constructed from top to down, the first scheme I present also Worksv
in top-down order. The idea is to specify a fixed partition size and start to construct
the first partition as the BST»does. Once the partition is oversized, new children
partitions are generated to continue the uncompleted splitting process. Figure 3.4
illustrates this method. The advantage of this method is that the tree in every

partition is balanced. This balanced tree structure in turn benefits the signature

3.2. IMAGE SIGNATURE TREE ALGORITHM 27

retrieval. However, waste of partition space caused by a partition is a big problem.
As shown in Figure 3.4, some partitions only contain one signature. If these small
partitions are merged into one partition to save storage space, the tree structure in
each partition will be damaged, and the signature search will use more time. Another
problem is that more space may be wasted when the larger partition size is used. The
larger partition size allows one partition to accommodate more nodes or signatures.
But this will result in more number of nodes at the bottom level for each partition
tree. These nodes are connected to the children partitions by parenting of the root of
the partition trees. As the partition number increases, the inherent inefficient storage
use for each partition will cause more space waste. Therefore, this scheme is not a

robust way to partition the balanced signature tree.

Figure 3.4: Partitioning scheme 1

Scheme 2

Scheme 2 is proposed to solve the problems occurring in scheme 1. Like other par-
titioned signature file schemes, the signatures in a partition are organized into a

balanced signature tree. Figure 3.5 illustrates the structure of scheme 2. The parti-

28 CHAPTER 3. IMAGE SIGNATURE TREE ALGORITHM

tioned signature tree involves two levels. The first level is a key tree; the second level
is the partitions that are a set of balanced signature trees. The key tree represents
the set of keys: {00,010,011,10,11}, the partition 1 has a key {00}. This key is
comprised of two bits, the left child of the node with value of 4 determines the first
bit “0” and the left child of the node with value of 1 determines the second bit “0”.
Therefore, in this partition, all the signatures with a common feature, which is to a
0 bit at the position 4 and the position 1. Partition 5 has a key {011}. This key
consists of three bits, the left child of node with value of 4 determines the first bit
“0”, the right child of node with value of 1 determines the second bit “1”, the right
child of node with value of 6 determines the third bit “1”. All the signatures with a
“0” bit at position 4, a “1” bit at position 1 and a “1” bit at position 6 are organized
into this partition. Leaves of the key partition tree contain the partition identification

number and the total signature numbers of that partition.

key tree EF_%) /éx ﬁﬁé—l [%ﬂ

partition @Q
3

Figure 3.5: Partitioning scheme 2

3.2. IMAGE SIGNATURE TREE ALGORITHM 29

ﬁj%
E“@(

v | o o) o e | o

—

@‘\r
Rro
9‘\

[

partition splitting

@R
@x

s
Ec
C

0,

partition rééﬁj 7@) partition (g)
£ &b &0 o 5

Figure 3.6: Partition splitting

E

Contrary for scheme 1, scheme 2 uses a signature tree in its key tree part which
sacrifices a little balance. However, Scheme 2 improves on the scheme 1 in partition
space use. When a new inserted signature happens to cause a partition over its size,
instead of splitting at the bottom, the partition breaks from the root. As shown in
Figure 3.6, the root (the node with value 8) of the signature tree in that partition
will move to the key partition tree. The left subtree (the root is the node with
value 9) and right subtree (the root is the node with value 7) will form into two new
partitions. Each new partition is nearly half the size of the old partition. Once these
new partitions grow to be oversized, they can be divided into smaller ones.

There are several advantages of this partitioning scheme. First, it distributes
the signatures into partitions with a uniform size, alleviating the I/O bottleneck
caused by over accessing in one partition. Second, it allows dynamic partitioning,
which facilitates large numbers of insertions in a database while sacrificing only some

equilibrium of the signature tree.

30 CHAPTER 3. IMAGE SIGNATURE TREE ALGORITHM

3.2.2 Query Processing

Once the folder signature tree, signature tree and spatial tree are created, IST can
answer the following three types of queries :

Algorithm: IST retrieval type 1
Objective: Search for all images including object O; and O; with subject F}
1. Construct a query signature for an image I
2. Start from root of IST, go to folder signature tree. If there is no Fj directory,
algorithms stops. Otherwise, go to step 3
3. Go to the key partition tree, search the partitions containing the query signature,
if the result is zero, algorithm stops. Otherwise, go to step 4
4. Go to the signature tree in each candidate partition, search for target signatures

matched with the query signature.

Algorithm: IST retrieval type 2
Objective: search for Image I containing object O; and O;, and O; and O; meets
1. Generate query signature of image I and the relationships signature between O;
and O;
2. Start from root of IST, go through F ST and enter into key partitions tree
3. Search the partitions containing the query signature. If the result is zero, algo-
rithm stops. Otherwise, go to step 4
4. Go to the root of signature tree in each candidate partition, search for target signa-
tures matched with query signature. If the result is zero, algorithm stops. Otherwise,
go to step 5
5. Enter into relation field. If it contains “meets”, search the relationships signature

for O; and O;. Otherwise, algorithm stops.

Algorithm: IST retrieval type 3

3.2. IMAGE SIGNATURE TREE ALGORITHM 31

Objective: search for all JPG images containing object O; and O;

1. Generate a query signature for an image I and a relationship signature between
O; and O;

2. Start from root of IST, go through F'ST and enter into key partitions tree

3. Search the partitions containing the query signature. If the result is zero, algo-
rithm stops. Otherwise, go to step 4

4. Go to the root of signature tree in each candidate partition, search for target signa-
tures matched with query signature. If the result is zero, algorithm stops. Otherwise,
go to step 5

5. Enter into format field, if it contains JPG, retrieve this image from disk. Other-

wise, algorithm stops.

3.2.3 Insertion

Algorithm: Insertion

Objective: insert an image I with objects O; and O;

1. Assign the inserted image an identifier and generate an insert signature for an
image I and a relationship signature between O; and O,

2. Start from root of IST, search the corresponding folder

3. Go to the PST. Allocate the image I into the corresponding partition based on
its signature, increase the signature count at the leaf node. If the count number is
less than the partition size, go to step 6

4. Go into signature tree, and split the signature into two partitions, the root of
signature tree migrates to the key partition tree as new leaf node

5. Update the partition number of key partition tree and signature count information
at new leaf node

6. Go into signature tree, insert image I signature at the leaf level, and establish a

pointer to image, fill the relation field, format field and size field, and so on

32 CHAPTER 3. IMAGE SIGNATURE TREE ALGORITHM

7. Construct an SRT tree based on relationship between O; and O;.

3.2.4 Deletion

Algorithm: Deletion

Objective: Delete Image I with objects O; and O;

1. Generate the supposed to be deleted signature of image I

2. Start from root of IST, go to the PST

3. Go to the corresponding partition based on the deleted signature. Decrease the
corresponding signature count at the leaf node

4. Enter into the signature tree, find the target signature, delete the SRET tree and

delete the signature, including relation field, size field and so on.

Chapter 4
Analysis

Since the performance of the signature tree depends upon the distributions of “1”s
and “0”s of a signature file, the probabilistic (average-case) analysis is selected as
a tool for evaluating the filtering ability of the algorithm. This chapter provides a
probabilistic analysis for the partitioned signature tree in term of signature reduction
ratio, retrieval cost as well as theoretical analysis in terms of update cost. The
control parameters that affect the performance of the PST are listed in section 4.1.
Furthermore, the performance metrics are explained in section 4.2. The focus of this

chapter is the analysis of the signature reduction ratio of the balanced tree.

4.1 Control Parameters

Table 4.1 lists several variables that will affect the performance measures. They
include: the total number of images, the size of the partition, the size of key tree,
and so on. Since the number of edge traversed through the key tree by each search
is variable, the average number of edge(k), as well as the average weight in the query

key Wekey are used to simplify the analysis.

33

34

CHAPTER 4. ANALYSIS

total number of images in a database

partition i

size of a partition

number of distinct objects in a signature file

number of distinct objects in partition F;

Bl

average length of key tree

Wakey

weight in a query key signature

number of 1’s in an object signature

Wy

number of 1’s in an image I object signature

number of 1’s in a query signature

length (in bits) of a signature

mko

length (in bits) of a key tree node

mpo

length (in bits) of a balanced tree internal node

total number of bits in storage

Table 4.1: Control parameters

4.2. PERFORMANCE METRICS 35

4.2 Performance Metrics

4.2.1 Storage Cost

Before analyzing the storage cost for the PST, let us go back to review the four
basic structures in Figure 2.5 in the chapter 2. Type (B),(C) and (D) indicate that
every two signatures need one internal node to distinguish the bit difference. Type
(A) illustrates that every two internal nodes needs one internal node to retain the
parent-children relationships. For a signature tree with n signatures, it has n — 1
internal nodes. we can conclude that storage cost for a signature tree is the sum of
n signatures and n — 1 internal nodes. For the same reason, the storage cost of a
partitioned signature tree is the partition numbers n, plus n, — 1 key tree nodes.

The storage size of the PST is determined by the size of the key tree and the
partition, as well as the number of partitions and the storage size of signatures.

The total number of partitions (n,) can be calculated through dividing the total

number of images (n) by the maximum partition size (p), as shown in equation 4.1:
np = [n/p] (4.1)

Thus, the storage size of key tree, My, is:
Myey = (np — 1) x mko; (4.2)

The storage space for the balanced signature tree includes internal nodes M,,4. and

signature leaves Mignature- They are calculated by the following formulas:
Myode = (n — 1) x mpoj; (4.3)

Msignature =mxn (44) .

where m is calculated by using the following formula given in [21].

m=(1/In2)%sIn(1/PH) (4.5)

36 CHAPTER 4. ANALYSIS

and

Pf=0.5" (4.6)

Therefore, the total storage cost of the partitioned signature tree, M, is:

M= Mkey + Mroge + MSignature (47)

4.2.2 Signature Reduction

The signature reduction ratio is the total number of signatures for further checked
against the query text over the total number of signatures, as shown in equation 4.8.
It reflects the filtering ability of a signature file algorithm to cut off the unmatched
signatures. The smaller signature reduction ratio is, the better filtering performance
a signature file algorithm has. It is affected by the length of a signature, the weight
of signatures, and the signature file size [21]. Therefore, for the same size BST and
PST, if signature length and the weight of signature are same, the signature reduction

rates are equal.

The total number of drops
The total number of signatures

(4.8)

Signature reduction ratio =

Assuming a BST has the signatures of length m bits. If the given query signature

is of a weight 4, then the signature drops will be (0.5)¢ x 2™ [21].

5)t % 2m :
Signature reduction ratiolweight = 1] = %——— = (0.5)° (4.9)
The average number of signature drops of a BST is:
) m m . m m . m
Average signature drops = » X;P, = 2™ % (0.5)" * (_)/Zm =) 0.5 (_ >
i=0 =0 ¢ i=0 ¢

(4.10)

4.2. PERFORMANCE METRICS 37

Weight | Signature Drops Numbers of Signature | Probability
i X = 0.5" x sample space(2™) | with same weights (T) (T) /2™
i=m 2mx (1/2)F =1 1 1/2™
i=m-1 | 2™ % (1/2)* =2 m m/2™

i=

i=1 (2™) % (1/2) =m m m/2m

i=0 (2™) % (1/2)0 = 2m 1 | 1/2m

Table 4.2: Signature drops against weight

4.2.3 Retrieval Cost(RC)

This research assumes that the partition is the basic unit for data transfer between
the main memory and the external storage device, and I/O access cost is the main
cost during querying process. Therefore, the retrieval cost of the partitioned signature

tree depends on the number of activated partitions.

Partition Activation Probability

The partition activation probability, Pr, can also be derived from the signature re-

duction analysis. Equation 4.11 gives the formula.

Pr = (f_) /2 (4.11)

Wakey

So, the activated partitions, F,, can be obtained with equation 4.12.

T — — k
P, = 2F % 0.5%kev 5 Pr = 0.5%key % (> (4.12)
Wakey

Retrieval Cost of Partitioned Signature Tree

The retrieval cost of the key tree, KRC), is:

KRC =1%1/O Cost (4.13)

38 CHAPTER 4. ANALYSIS
The activated partitions cost, PRC, is as follows:

PRC = P, I/O Cost (4.14)
Therefore, the retrieval cost of partitioned signature tree, RC), is:

RC = KPC + PRC (4.15)

4.2.4 Update Cost(UC)

An update of the partitioned signature tree could be an insertion or a deletion op-
eration. For simplicity, the costs of partition splitting and partition merging are not
considered in this research.

The insertion operation, (UCT), includes the retrieval cost and the signature in-

sertion cost.

UCI = Retrieval Cost + Insertion Cost (4.16)

The deletion operation, (UCD), involves the retrieval cost and the signature dele-

tion cost.

UCD = Retrieval Cost + Deletion Cost (4.17)

For a better understanding how the signature reduction ratio is achieved, I give

an example in appendix A to illustrate the analytical estimation.

Chapter 5

Implementation

This chapter describes the prototype of the Image Retrieval System using I57. Due
to the lack of real test data, we created a set of bit strings to represent signatures
and map them to folder texts and image objects. The purpose of implementing the
prototype was to demonstrate how to locate the desired image without loading it into
memory. This chapter begins with the discussions of the file system and DBMS,
proceeds with the system design and ends up with some implementation details.
Finally, the implementation of the PST algorithm is presented using the flow chart

and the class relationships diagram.

5.1 Prototype

5.1.1 Introduction

A database is a collection of data stored in a computer in such a way that information
can be retrieved from it [10]. Before the emergence of database, the file system was the
dominant way for people to organize data and it is still in use in our daily life. In the
file system, the application programs control the data directly, this make it efficient in

dealing with small numbers of items. However, file system suffers from the separation

39

40 CHAPTER 5. IMPLEMENTATION

and isolation of data when people need to cross-refer the related information [6]. For
example, assume that in an online store, the customer order file and the product stock
file are accessed and maintained by two programs respectively. If a customer buys a
product from the store, then, the quantity of this product in store should be decreased
by one. Since the product stock file is totally separated from the customer order file,
some work need to be updated the product stock file. To make the matter worse,
the problem with data inconsistency becomes more severe. Moreover, isolated files
produce a huge amount of data redundancy which wastes both time and space. In
addition, program-data dependence, the inherent feature of the file system, restricts
the portability and reusability of the application system.

The limitations of the file system have led to the introduction of databases. The
database approach solves the problems by separating application program from data,
organizing the related data logically and sharing data among the applications.

The main component of the database approach is the Database Management
System(DBMS). A DBMS is a software system that supports the creation, mainte-
nance and access to the database. It provides a Data Definition Language (DDL) for
users to define a database and a Data Ménipulation Language (DM L) for users to
retrieve and update data from database. Through controlling access to the database,
DBMS offers a number of advantages including security, data consistence, data shar-
ing and so on.

Among the variety of DBMSs, the Relational Database Management System
(RDBMS) is most extensively used, such as Microsoft Access, Microsoft SQL and
Oracle. The relational database organizes the data based on the relations or say
tables with rows and columns. The rows represent the collection of records, and
columns represent the attributes contained in each record.

The indexing technique is used to speed up the retrieval of the records in databases.

Normally, there are two types of indexes. The first type is called secondary access

5.1. PROTOTYPE 41

Image Candidate
Database Image Sets

Signature
File

Geonerator

Query Image

——

FREIE
Ganorator

Query
Signature

Figure 5.1: An image retrieval system

paths. That is, the indexes are separated from data files which contain the set of
records, but hold one field of the data which links to the corresponding records.
Based on that field, an index file can be sorted or ordered so that searching can be
efficiently executed without touching the original data file. DBMS can create and
delete an index. Examples of such indexes are single-level index, clustering, B-tree
and so on. The second type of index integrates the index and data file together. In

this thesis, the 15T was implemented as the first type.

5.1.2 System Overview

Figure 5.1 provides a simple view of the system. A signature file is created to represent
images in the database. When a user queries an image from the database, he/she
must specify expected the features of the image, these features are transformed into
a query signature and delivered to the system. The IRS searches the signature file
for the query signature. The searching result is a collection of candidate images that
the user desires.

Figure 5.2 shows the query interface for the system. This interface allows users
to define the target image features, such as image categories, image objects, the

relationships between objects, image format, the size of images, and so on. After

42 CHAPTER 5. IMPLEMENTATION

defining all the parameters, the user can run the query by pressing the “Query”

button.

Figure 5.2: Query interface

5.1.3 Test Data

The test data is synthetic. With the proposed image model, an image can be trans-
formed into a textual record with a special structure. In traditional document retrieval
systems, the signature for the text is a bit string generated with a hashing method.
Hashing methods can be applied to image databases. For the prototype test data, I
generated a list of bit strings. Each bit string with a length [and w 1’s corresponds
to an image object. The image signature is achieved by superimposing all the object

signatures that an image contains.

5.1.4 Working Platform

The working platform will be based on a Toshiba Satellite M35X-S161 notebook
with a 1.30GHz Intel Celeron Processor, a 60GB disk and 512M bytes of memory.

Microsoft SQL 2000 is selected as a database system. JDBC' technology is utilized

5.1. PROTOTYPE 43

101001010110 Scenery
‘\6)

= by,
o !E: //0',7

|
inocwoooooom] Foononooomoo[[1011010000011]

superimposed 2 i
. = B vl
O““\d S =) O, Country
T Q
100000000000101[I1ooo1ooooooo1o1| [100010000000100' [100010100000101] [1 1001000000001 1
po .,
o 5y
T
[1000100100001011 [1101 10000000101] |100110000000101l
. 3 A 'y Province
superimposed O‘i‘\ = ’/o',)
[1 10010000000001] . (1 10010000000100] 1010010000000101]
o
T Cy,
O“‘\é o ﬁ”"o
(&)
/ | \
|oooo1oo1oooo101] lﬁomooooocowo[loooomooooomm]
Subject
Image Signature Image Signature Image Signature
Tree Pointer Tree Pointer Tree Pointer

Figure 5.3: The folder tree

for Java programs to access the database.

5.1.5 Implementation of ST

This section summarizes how to implement each component of 15T

Figure 5.3 illustrates the structure of the folder tree. Retrieving the folder at
each layer is equivalent to searching words in the document. Sometimes one folder
contain many subfolders, if superimposing all the signatures for each subfolder without
extending the signature length, the false drop probability will increase. In order to
lower the false drop probability of signature file, this folder needs to be decomposed
into groups so that each group contains small number of distinct words. As shown
in Figure 5.3, the first subfolder is divided into n groups, the signatures of group

member are superimposed together to form a new signature.

44 CHAPTER 5. IMPLEMENTATION

i@emmww»y@w,

THolgertite “otepad

el Edt " Fomat Vi Help

‘Id FolderName Layer Parent Leaf subfolder/sigtreePointer
1 Sscenery 0 0 No 2

2 America 1 1 No 8

3 Canada 1 1 No 14

4 china 1 1 No 20

5 Korea 1 1 No 26

6 Egpty 1 1 No 29|

7 Iraq 1 1 NO 35

8 california 2 2 Yes Sigtreel
‘9 Minnesota 2 2 Yes Sigtree2
10 ohio 2 2 Yes Sigtree3
11 wisconsin 2 2 Yes Sigtree4
12 Mmichigan 2 2 Yes Sigtree5s
13 Texas 2 2 Yes Sigtree6
14 Alberta 2 3 Yes Sigtree7
15 British columbia 2 3 Yes sigtree8
116 saskatchewan 2 3 Yes sigtree9

Figure 5.4: The folder data file

Figure 5.4 shows the folder data file which is used for the construction of the
folder tree. The folder data file includes folder name, subfolder, a signature tree
pointer and so on. The Id column holds the identification number for each folder.
The second column, Folder Name, gives the category information by which images
are classified to store in the disk. The Layer column identify the folder layer. Parent
column identify the folder’s parent. Leaf column indicates whether its folder points
to a signature tree. The folder is a tree structure itself. The children of each folder
is indicated by Subfolder/SigatureTreePointer column. This column also points
to the corresponding signature tree. The given example only has three layers. Both
layer 0 and layer 1 have subfolders, while layer 2 does not have. Instead, the layer 2
links to the signature tree.

Searching a folder works as follows: 1) when a querying folder comes, the program
check the signature at the corresponding layer in the index file; 2) If the result is
matched, the program can further check the folder data to find the exact matched
folder; 3) If there is not exact matched result, the program stops. Otherwise, the
program is prepared to further compare the signature at the next layer.

Figure 5.5 shows the structure of an image signature file. It consists of five

5.1. PROTOTYPE 45

Fle Edit: Format. View Meb. : G X R o S

Imgid ImgSignature Relation Format Size

1101000100110100 110001 01000 1000000000
1110011001110110 110001 01010 0000001000
0101000100010101 110100 00001 0100000000
0100010001000110 000101 01000 0010000000
0100000001100110 111000 01100 0100000000
0100000001000110 011000 01010 0010000000
0100001001100110 011001 00100 0001000000
0110000001000100 110000 00010 0100000000

DN OYUTPA W e

Figure 5.5: Image signature in a partition

columns. The first column, Imgid, indicates the identification number of images.
The second column, I'mgSignature, is object signature, which is obtained by super-
imposing the objects in an image. The Relation column stores the relation signature.
For an image with k objects, object signatures are generated by a hash function, and
these k object signatures are superimposed together to form a block signature, which
is the object field of an image signature. k objects in an image have k * (k — 1) rela-
tionships, which fall into six categories: DISJOINT,OVERLAP, MEET, CONTAIN,
CROSSING and EQUAL. The relation signatures of an image are superimposed to-
gether to generate the relation field. Since there are only six spatial relationships
defined in this research, I use a six-bit string to represent relation signatures. For
example, I use “100000” to stand for the “DISJOINT” relation and “000010” to rep-
resent the “CONTAIN” relation. If all the object pairs in an image are belonged
to the “DISJOINT” and the “CONTAIN” relationships, then the image relationship
signature is “100010”. The size filed and the format field are generated similar to
the relation field. In this research, the variety of images formats, such as .bmp, .jpg,
Jif,.tiff,.png, are constructed into a signature. I use one signature to stand for .bmp
typek, and different signature to represent another format. The format signatures for
an image are superimposed together to form a signature. Figure 5.6 gives an example
how to construct a size signature.

The DBM Ss use so called schema to describe the database and the table layout.

46 CHAPTER 5. IMPLEMENTATION

A B C D
300 600 900
Image length width string signature
263 *300 263 <300 300=300 AA 10010000
350 * 630 |300<350 <600|300< 650<900 BC 00010100
800 * 950 |600<800 <900|950 >900 CD 00000101
1200 * 1100{1200 >500 1100 =900 DD 00010010

Figure 5.6: How to construct size signature

image Path

| Imgld | Image Path l
image Objects

| Imgld |Objec!1 |Object2]0bjec13| |Objectel
Image Relationships

| Imgld |Disjoint lOverlap l Meet l | Equal l
Image Size

] Imgld | Length | Width]

image Format
] Imgld l Image Format |

Figure 5.7: Schema diagram for the database

5.2. PARTITIONED SIGNATURE TREE 47

€lick

Figure 5.8: Report

The database schema provides the information for the specific tables within a database
as well as the relationships between tables. It is specified during the database design
and is not expected to change frequently. Figure 5.7 displays the schema diagram of
this prototype database System. The signature indexing file is linked to real database
records through I'mageld field.

Figure 5.8 shows the example of a query result. The image can be displayed by

clicking the table cell with a mouse.

5.2 Partitioned Signature Tree

Figure 5.9 displays the class diagram for the PST. Class PartitionedSignaturelree,
BalancedSignatureTree and SignatureTree are three main components in PST.

The roles and their relationships of these classes are defined as follows:

e PartitionSignatureTree. This class is responsible for dividing the signature file
into partitions and creates a key tree, which hold the key information for all
the partitions. It inherits from class BinTree, which is a tree structure for a
collection of class objects, called BTreeNode. PartitionSignaturel'ree invokes

pFEasyQueue class when it saves the key tree by the level order into the disk.

48 CHAPTER 5. IMPLEMENTATION

ListNode LinkedLIist
-data 'headbe
-next Cal} [Tumoes
+getData()
+getData() 4 isEmpty()
+setData() '*makegmp(y()
+insert|
:geg\\:em() +InserEnd(}
setNext() +removeEnd()
F Y
SignatureTreeNode BinaryTree BalancedSignatureTree
Ldatatum -SignatureTreeNode -pageld
"8ﬁhN§d9 +getRoot() SignatureTree +createl eaf()
-rightNode ; +createlnnerNode
Cali +getlefi() Inheri i «—, 0
+getNode() < +setlefl() Lrinsert() insert()
+setNode() +getnght() -search() +createArrayTree()
rgetleft() +setRight() +breathtravese() +
Hsetleft() +travBreath() R
HgetRight() +insertLeft() Inherit
HsetRight +insertRightl
g 9o Call Call
Call A —
b ‘ pEasyQueue PriorityQueue
Signatureld Signature LpLinkList CArrayList
rid -Bitset | [HisEmtpy() +add(object, priority))
[+getSignatureld(} Hength +remove() +remove(object priority)()
+setSignatureld() +suparimpose() +insert() +makeempty()
+waightOfSignature() rmakeEmtpy() 7Y
7y
Call Call
] Call
BTreeNode BinTree PartitionSignatureTree
Hdatatum EBTree -partitionid
loftTree I - nherit [Pageld
£ Nl L Nl e can
H+getNode() +2rea!% T);ee%\lo de() r+createleaf()
+setNode() i+ereatelnnerNode()
| getLeft() +createArrayTree() Linsert()
| setleft() +evelOrderStoreTree() L+search()
+getRight() HsearchBTree()
H+setRight() HloadPartition(}
HloadPage()
HsaveToFile()

Figure 6.9: Class diagram for PST

5.2. PARTITIONED SIGNATURE TREE

011001000101
111011001114
1111010101114

key tree TS Y —
~——
!# 4 ‘ 1]2)1]s] 1 I 1}[’“_‘:) -
1.2 3 4 5 6 7 Disk
Buffer

011001000101
11001001101

010001000101
010001000101

011001001161
£11001100101

partition

-{[Process n-2] |[Process n-1]

[Process 0] | [Process 1]

iR

i

— Disk

-

Figure 5.10: The flow chart for PST

49

50

CHAPTER 5. IMPLEMENTATION

After storing the key tree, it further construct the partitioned signatures into
a tree by calling BalancedSignaturelree. When searching a query signature,
it uses Signature class to create a query signature, and invokes PriorityQueue

to preserve the ID information for the activated partitions.

BalancedSignatureTree. This class constructs signatures into a balanced sig-
nature tree. This class inherits from class StgnatureTree, with some methods
overridden, such as insert,createInnerNode, etc. These overridden methods
implement the weight-based method to ensure the generation of the balanced

signature tree.

SignatureTree. This class constructs signatures into a signature tree. Although
SignatureTree and PartitionSignaturelree have some similar methods, such
as search, insertion, deletion, etc, the inherit operation is quite different. The
internal node of the Keytree in the PartitionSignaturelree is generating by a
splitting process as the BST does, while the internal node of Signaturelree is
generated by comparing the signature difference between two signatures. There-
fore, class SignatureTree inherited from class BinaryTree which has a different
tree node structure with BinTree. Signaturelree also invokes pFEasyQueue

when it traverses tree by level order.

Figure 5.10 shows the procedure of constructing the PST. First, the signature file

is scanned and divided into a number of partitions. These partitions are inserted into

an Arraylist for further constructing into a balanced signature tree. At the same

time, a key tree is created and the data values of tree nodes are buffered into an

array by the level order. This array is further stored into disk. By doing this, a key

tree is successfully stored into the disk for further retrieval. Figure 5.11 shows the

algorithm for storing tree to an array. Next, the partitions stored in the Arraylist

are constructed into balanced signature trees. Finally, these balanced signature trees

5.2. PARTITIONED SIGNATURE TREE 51

/* Purpose: store a balanced trze into a buffer
Input parameter: the root of the tree, array
Output: void */

public void levelOrderStoreTree(B Tree rootintf] b)

i

pEasyQueue q = new pEasyQueue();
B Tree mp:
Inr { =0;
q.insert(root);
if {root != null) {
if(1 <= b.size) {
while(lqisEmpty())

tmp = (B Tree)(q.removea()):

ifimp.getLeft() '= null) q.insert(tmp.getL e fi()):

if(tmp.getRight() I= null) q.insert{tmp.getRight():
bfi] = tmp.getN od2();

i+

——

—~—

Figure 5.11: Store the tree to an array

are saved into the disk. If the algorithm is implemented with multi-threads, a set
of files should be created for storing partitions to avoid potential file accessing con-
flictions during the partition retrieval. The number of files should be the same as
that of threads. Then, the partitions are distributed into those files according to
their partition identification numbers. For example, assuming there are 4 threads
executing computation. In this case, 4 files are generated to store the partitions and
one file is generated to store the key partition. On the other hand, if the algorithm
is implemented in shared-memory parallel environment, only one file is needed.

Figure 5.12 illustrates a searching procedure for the PST. When a query signature
comes, the PST loads the key tree from the disk. Figure 5.13 shows the algorithm
for loading the array for key tree from the disk, and Figure 5.14 shows the algorithm
for generating the key tree from an array. Starting from the root of the key tree,
the query is executed and result is a set of I.D. numbers for the activated partitions.
These 1.D. numbers are pushed into a priority queue. In a parallel environment, the

number of queues is the same as that of processes. When a query comes, the different

52 CHAPTER 5. IMPLEMENTATION

Query signature | g11001000101

1 2 3 4 5 B 7 8 9
4
T
v

Buffer
10 11 12 13 14 15

-1 ’ -1| 1 §10241-1 |1 3 {1024

Load partition key

-
N}
s
o

4 11024

\s

o o
& &

o = &
Priority queue L :
2 (::l
3 | —
Load partitions l
[Process 0]| [Process 1] [Process n-2 | |[Process n-1 |

5 [S5
1

O
Search balanced ,@(Q ZD\
signature tree g /‘! |§)f

Figure 5.12: Search procedure

5.2. PARTITIONED SIGNATURE TREE

/* Purpose: load a key tree from the disk
Inputf parameter: the filename for storing the kev tree, Array
Output: void

static void loadPartition(String filename, int{] readBuf)

{

File fIn;
RandomA ccessFile raf:
int length;
int offset = 0; //key tree’s offset in the file.
Try {
filn = new File(filename);
raf = new RandomA ccessFile(fIn,"r");

System.out println("‘nR estoring Partition signature tree...");

raf seek(ofset);
for (int i=0; i<length; i++) {
readBufli] = raf.readInt();

raf.close();
System_out.println("'n Page restored successfully.”);

catch(Exception e) {
e.printStackTrace();
}
}

Figure 5.13: Load an array from disk

/* Purpose: create a balanced tree from an array
Input parameter: array, array index, array size
Output: Tree

*/

public BTree CreateArrayTree(int[] a, int i, int size) {
if (i >= size)
return null;
else
try {
refum (
CreateTreeNode(a[i].
CreateArrayTree(a, 2 %1 - 1, size),
CreateArrayTree(a, 2 * 1 + 2, size)));

catch (Exception ex) {
return aull;
}
}

public BTree CreateTreeNode(int d1,BTree pl, BTree p2) {
BTree t;
t=new BTree(dl,pl,p2);
t.setLefi(pl);
t.setRight(p2);
retum t;

Figure 5.14: Generate the key tree from an array

53

54 CHAPTER 5. IMPLEMENTATION

processes can retrieve the activated partitions from the queues and its corresponding

files concurrently.

Chapter 6

Experimental Results

In order to test scalability of balanced signature tree algorithm as well as consistency
with the theoretical analysis in chapter 4, this chapter will present the simulation

results followed by the evaluation of performance.

6.1 Working Platform

The working platform will be based on a Toshiba Satellite M35X-S161 notebook with
a 1.30GHz Intel Celeron Processor, a 60GB disk and 512M bytes of memory.

6.2 Test Data

We have written a program to generate several signature files as the test data, with
each containing 10000, 40000, 60000, 80000, and 100000 signatures respectively. Gen-
erating a signature file includes the following two steps: First, construct a signature
by setting a binary string with length of [and weight of w. Second, superimpose n

signatures to form a block signature, and then store these block signatures into a file.

95

56 CHAPTER 6. EXPERIMENTAL RESULTS

Signature file BST PST

32 bits Experimental | Theoretical | Experimental | Theoretical
Value Value Value Value

10000 8K 5.998K 9K 5.998K

40000 32K 23.998K 33K 24.004K

60000 48K 35.998K 49K 36.022K

80000 64K 47.998K 65K 48.030K

Table 6.1: Comparison of storage overheads of BST against PST

6.3 Storage Overheads

Signature tree uses position nodes to specify its search path. These position nodes
are additional data structures to the signature file. Therefore, signature tree requires
additional disk space for these position nodes. Table 6.1 shows the storage overhead
for the BST and the PST with signatures of 32 bits in length. As can be seen, the
partitioned signature tree occupies more space than the balanced signature tree. The
reason is that the key table requires an extra space. The simulation value is 33%

larger than the theoretical value. This ratio is constant as the signature file increases.

6.4 Signature Reduction

Signature Reduction performance is conducted with SSJ code (Stochastic Simulation
in Java). A query process will be repeated 100 times. For each process, a signature
will be generated randomly , and the number of drops (including true drops and false
drops) will be collected. Finally, the drops will be obtained by averaging the sum of

drops in each process. The signature reduction rate is examined in two directions.

6.4. SIGNATURE REDUCTION 57

Weight | Signature reduction ratio
Theoretical | Simulation

10 0.9765E-05 | 0.0063

16 1.52588E-05 | 0.0013

20 9.53674E-07 | 0.0005

24 5.96046E-08 | 0.0003

32 2.32803E-10 | 0.0001

Table 6.2: Signature reduction ratio against weight

Quaery Weights

Figure 6.1: Signature reduction of the PST against weight

First, I perform the test by changing query weights. Second, I investigate the perfor-
mance on different signature file sizes. The analysis in chapter 4 indicates that BST

and PST have the same reduction rate, I only list the test results for PST.

6.4.1 Signature Reduction with Weight

Table 6.2 gives the results of the signature reduction ratio against the query signature
weight for PST. Figure 6.1 shows that the signature reduction ratio decreases as
query weight increases. The simulation results also agree with the theoretical value.

This indicates that query weight has a big impact on signature reduction rate.

58 CHAPTER 6. HEXPERIMENTAL RESULTS

Weight Signature Reduction Ratio
Theoretical | Simulation 1 | Simulation 2 | Simulation 3
10 0.9765E-05 | 0.0063 0.0052 0.004
16 1.52588E-05 | 0.0013 0.0009 0.0007
20 9.53674E-07 | 0.0005 0.0005 0.000225
24 5.96046E-08 | 0.0003 0.0005 0.000125
32 2.32803E-10 | 0.0001 0.0005 0.00005

Table 6.3: Signature reduction ratio against the size

0.007
3
0.006 -----> R it
\\
20,005 e A
3 \\ Y —e— theoretical
= B iR e R e G GEEEEEEE PR S . .
K 0.004 \\ \\\\\ —=— simulatdonl
E ; simulation?
R Ao —+— simulaton:
< ».\ N —¥%— simulation3
g O\
R \\\c ---
WA
<
0.001 . S
ST
- .,
0 t -+ t ? &
10 16 20 24 32
Query Weight

Figure 6.2: Signature reduction ratio of the PST

6.4.2 Signature Reduction with Data Size

Table 6.3 shows how the signature reduction ratio varies with different data sizes.
As shown in Figure 6.2, as signature file size increases, the signature reduction ratio
decreases. The larger the file size is, the closer to the theoretical value. This is due

to the fact that statistical variation decreases as the file size increases.

6.5. PARTITION ACCESS AGAINST QUERY WEIGHT 59

Partitions

40.00
3500
30.00
25.00
20.00
15.00
10.00
5.00 -
0.00 +EEL_

30% 70% 50% 40% 30% 10%

Figure 6.3: Partition access against query weight
6.5 Partition Access against Query Weight

Query weight affects partition accesses. Figure 6.3 shows that the number of parti-
tions accessed when 80000 signatures are divided into 80 partitions with each contain-
ing 1000 signatures. In this chart, the X axis stands for the ratio of query weight to
the signature length, while Y axis represents partition accesses. As can be seen, the
number of partition accesses increases as the ratio of query weight to the signature

decreases. This result is in accordance with the analytical prediction for a PST.

6.6 Retrieval Cost

For the small size BST and PST, the later does not show much advantage over the
former. The retrieval cost of the balanced signature tree is less than the partitioned
signature tree. This is due to I/O cost for the partitioned signature tree. According
to my test, an operation to load a partition from disk usually takes 290 ~ 320 msc.
So, the test was conducted in a multitask environment to determine if PST shows
more advantages in these circumstances. Initially, the experiments were carried out

using Java threads. Table 6.4 provides a set of results of the retrieval cost for the

60 CHAPTER 6. EXPERIMENTAL RESULTS

Signature file size Execution time (msc)
Threads 1 | Threads 2 | Threads 3

10000 391 383 425

20000 1026 624 1290

40000 1722 879 1940

60000 2273 1465 2690

80000 3077 1917 3993

Table 6.4: Retrieval cost

partitioned signature tree which is plotted as a graph in Figure 6.4. In these tests,
the partition size was set to 10000 signatures. As can be seen, the multithread
program yields fairly good performance when the thread number is 2. However,
when the thread number is over three, the search time is longer than that of the one
thread program. The reason for this is that the J éva multithread is not true parallel
processing. Java multithreaded mechanism is designed for efficiently utilizing CPU
and other resources within a process by keeping the processes to run continuously [16].
By assigning a time slot for each thread and swapping the active thread during the
execution, JV M makes the execution of several threads appear to be simultaneous.
There is only one thread accessing one physical processor at one moment in Java.
The true parallel processing requires two or more physical processors.

Since current Java program for a single processor can not run on different phys-
ical processors straightforwardly. T implemented the partitioned signature tree with
Java OpenM P on the multiprocess machine. The parallel machine I used is an
IBM Netfinity 8500 at the University of Manitoba. This computer has a shared-
memory processor (SM P) system with 8 Intel Xeon 700 Mhz processors and 7.5 GB

of memory. Figure 6.5 shows the retrieval time against different processes.

6.6. RETRIEVAL COST

4203

2000

Execution time

Retrieval cost vs. various inputsize

<000 o
2500
2200 <
2080 4
1500 1
1000 4

500 $----

—#— Thrzscs 1

e+ Thrzagds 2

—&— Trresos 2

18000

28000 +0030

Inputsize

€3308

80000

Figure 6.4: Retrieval time

Number of Processes | The Number of Processes
10 2 4 6 8
10000 396 | 353 | 326 | 318 | 316
20000 1013 | 665 | 632 | 625 | 618
40000 1625 | 976 | 637 | 625 | 618
60000 2239 | 980 | 940 | 624 | 622
80000 2859 | 1588 | 940 | 632 | 625
Table 6.5: Retrieve time of the PST
3500
3000 4
§ 2500 —e— 10000
= 2000 - ~=—20000
2 1500 4 ~a— 40000
£ 1000 deoomen —— 60000
o0 | 80000
0
1 2 4 6
The number of processes

Figure 6.5: Retrieval time vs. processes

61

62 CHAPTER 6. EXPERIMENTAL RESULTS

The Number of Insertion Insertion Time(msc)

1000 | 1500 | 2000 | 2500 | 4000
Signature file 10000 416 | 453 | 489 |609 | 1154
Signature file 20000 1008 | 1040 | 1101 | 1226 | 1792
Signature file 40000 1622 | 1679 | 1710 | 2106 | 2373
Signature file 60000 2267 | 2264 | 2400 | 2770 | 2925
Signature file 80000 2705 | 2917 | 3248 | 3438 | 3623

Table 6.6: Insertion time of PST

4060

2500 e

3000
,._,——'-“""'_FF—(//B’/‘w_ —a— Signature fle 16600
g
2508 P E——- S —a— Signature fle 20600
o

—s— Signature fle 2008C0

2000
1500 T > o —g3— Signature fle 60000

Insertion Tine

—a —w~— Signature file 80000

1000 .

s00 ———y -

1008 1500 2000 2560 4000

The Humberoflodes

Figure 6.6: Insertion time of PST

6.7 Update Cost

6.7.1 Insertion Cost

Table 6.6 presents the test results for insertion cost which is plotted as graph in

Figure 6.6. As can be seen, the insertion cost increases as the signature file increases.

When insertion causes a partition to be oversized, a new partition should be gen-
erated to accommodate new signatures. The worst case for scheme 1 in chapter 3

is when new signature is about to be inserted into a partition that is at its maxi-

6.7. UprDATE COST 63

Partition size | Partition Efficiency

Scheme 1 | Scheme 2

256 0.004 0.45
512 0.002 0.47
1024 0.001 0.48

Table 6.7: Usage of partitions

The Number of Insertion Deletion Time(msc)

1000 | 1500 | 2000 | 2500 | 4000
Signature file 10000 410 | 424 | 446 | 448 | 451
Signature file 20000 733 | 1038 | 1059 | 1088 | 1074
Signature file 40000 1588 | 1645 | 1688 | 1711 | 1714
Signature file 60000 2144 | 2239 | 2244 | 2144 | 2340
Signature file 80000 2704 | 2753 | 2880 | 2885 | 2912

Table 6.8: Deletion time of PST

mum size, an internal node is generated to identify the different bit between the new
inserted signature and one existing signature with the partition. The splitting parti-
tion occurred on this internal node. Its left and right children should go to two new
partitions. The usage of two partitions is rather low being one child signature per
partition. The usage of this partition is rather low 1/partition size. This situation
will never occur with the scheme 2 because it splits partitions from the root and

Table 6.7 gives the comparison.

6.7.2 Deletion Cost

Table 6.8 gives the test results for the deletion cost which is plotted in Figure 6.7.

64 CHAPTER 6. EXPERIMENTAL RESULTS

2500

2006 W

2500 -
= W —w— Signature file 10000
E 2000 —m— Signature file 20000
2 e e, s Signature file 40000
g .c —
‘g 1500 —s&— Signature ile §0C0C

n 5 i file -
1000 — - —x— Signature 80000
-
560 o + = ¥ ¥ ¥
4 T T T v
1000 1500 2600 2500 2000
The Htumber of Hodes

Figure 6.7: Deletion time

As can be seen, the deletion cost increases as the signature file increases. Com-
pared with the insertion cost, the deletion cost is much lower. This is because gener-

ating the new internal nodes using the weight method costs more time.

Chapter 7

Discussion and Conclusions

This chapter presents a summary of in this thesis, and provides suggestions for future

work in this area.

7.1 Summary of Contributions

In this research, we presented an image indexing algorithm for large image databases.
This indexing algorithm uses the signature file technique that eliminates unnecessary
searches to improve retrieval speed. The motivation for this algorithm is to overcome
the limitation of the current research on image signature file methods that suffer some
serious problems, such as not utilizing the filtering feature of signature file, lacking of
experimental results or neglecting some import image features. We analyzed the per-
formance of the major components of this algorithm and evaluated it by experiments.
The primary contributions of this research are summarized as below. First, this thesis
introduced an image model that specifies the image features by extending the RSS
model. Previous image signature algorithms only considered image objects and their
spatial relationships. This model improves on this by providing image storage path
information, image pixel size as well as image format. With this model, an image is

transformed into a textual record with a special structure, which can be efficiently

65

66 CHAPTER 7. DiscussioN AND CONCLUSIONS

handled using signature files and signature trees. Secondly, this thesis presented the
Image Signature Tree algorithm that filters images level by level. Some previous re-
search on image signature algorithm suffered from either lacks of filtering ability or
did not use advanced signature file technique. This approach is based on a balanced
signature tree algorithm that exhibits high performance. An image retrieval system
is developed to demonstrate the feasibility of 15T algorithm. Thirdly, a new parti-
tion scheme is proposed to divide the balanced signature tree into partitions where
each partition holds the same key. The motivation for this scheme is to separate the
signature tree into smaller ones in the case of large number of signatures. Different
from other partitioning schemes, this scheme uses a signature tree structure as the
key. This saves search space and mitigates the false drop probability significantly.
It also supports the parallel programming. The signiﬁcant feature of this scheme is
that it is able to provide a good workload balance and partition usage. Finally, this
research provides an in-depth analysis for signature reduction ratio for the balanced
signature tree. Experiments show that simulation results are close to the theoretical

estimation.

7.2 Future Work

The following describes the possible extensions to this thesis:

7.2. FUTURE WORK 67

1. We would like to implement more signature algorithms. Through comparing
the performance with various algorithms, we can better understand the advan-
tages and weakness of the signature tree algorithm, the balanced signature tree

algorithm as well as the partitioned signature tree algorithm.

2. This thesis presented a prototype system with I.ST method. However, the lack
of a large amount of test data for .57 algorithm is the weakness of this research.
Also, this thesis has not provided a sufficient analysis for the folder tree, which

should be conducted to prove the efficiency of I.ST method.

3. The image model we designed has not captured all image features. More image
attributes, such as color, shape, etc, can be added to the image model to provide
more accurate description of images. If so, more query condition can be defined
when performing image searches. As query criteria increase, the accuracy of

expected image will increase.

4. This research assumes image objects can be identified within images. In real-
ity, extracting image objects from images is rather challenging. In the future,
automatically abstracting objects from an image will be a significant research

topic in image retrieval.

68

CHAPTER 7. DiscuUsSION AND CONCLUSIONS

Appendix A

An Example for Analyzing a

Balanced Signature Tree

Figure A.1 illustrates a balanced signature tree generated from 16 signatures. The
signature file contains the equal number of “0” bits and “1” bits. That is, there are
32 “0” bits and 32 “1” bits in the file. The balanced signature tree consists of 15
internal nodes and 16 leaves which stand for 16 signatures. |

When a query signature comes, the search is performed and the results can be
classified into five categories according to its weight:
Case 1 (w, = 4): the query signature is “1111”. Starting from the root of the bal-

anced signature tree, the first bit is checked. After that, it goes to the right subtree

S$1 0000
52 0001
S3 0010
54 0011
55 6100
S$6 0101
§7 6110
$8 o111
9 1000
10 1001

511 1030

§12 101t

$13 1100
S14 110
S15 1110

§16 1111

Signature
file

Figure A.1: A Balanced Signature Tree

69

70APPENDIX A. AN EXAMPLE FOR ANALYZING A BALANCED SIGNATURE TREE

Query-Signature
1111

Figure A.2: Case 1: Query Signature Weight is 4

to check the second bit. The highlighted edges in figure A.2 show the search path.
The resulting signature is the shadowed leaf node (S16) in figure A.2.
Case 2 (w, = 3): the query signature has four possible cases, which are 0111,1011,1101,1110.
The search processes are shown in figure A.3(a),(b),(c) and (d) respectively. No mat-
ter what case is, each of them has two signature drops.
Case 3 (w, = 2): the query signature has six possible combinations, which are
0011,0101,0110,1001,1010,1100. Figure A.4(a),(b),(c),(d),(e) and (f) illustrate the
search path for each case respectively. All of the cases share one common feature,
that is, every case results four signature drops.
Case 4 (w, = 1): the query signature has four possible cases, which are 0001,0010,0100,1000,
as shown in figure A.5. All of the cases have eight signature drops.
Case 5 (w, = 0): the query signature is 0000, and the result contains sixteen signature
drops, as shown in figure A.6.

The above illustration shows that the average number of signature drops depends
on the weight of query signature, rather than the position of “1”s in the query signa-
ture. It occurs in the space of events [1] with certain discipline. Table A.1 shows the
relationships between signature weight, the number of drops and drops occurrence
probability.

According to the table A.1, let X be the random variable of signature drops. The

Query Signature
0111

Query Signature
1011

71

1101

1110

Figure A.3: Case 2: Query Signature Weight is 3

Weight | Signature Drops Numbers of Signature | Occurrence

i X = 0.5' x sample space(2™) | with Same Weights (T) Probability(?)/ 2m
i=4 16%(1/2)*=1 1 1/16

i=3 16 % (1/2)2 =2 4 4/16

i=2 16 (1/2)2 =4 6 6/16

i=1 16x(1/2)' =8 4 4/16

i=0 16 % (1/2)° =16 1 1/16

Table A.1: Signature Drops against Weight

72APPENDIX A. AN EXAMPLE FOR ANALYZING A BALANCED SIGNATURE TREE

Query Signature Query Signature
0011 0101

0110 1001

1010 1100

Figure A.4: Case 3: Query Signature Weight is 2

73

Query Signature Query Signature
0001 0010

Query Signature
0100 1000

Figure A.5: Case 4: Query Signature Weight is 1

Query Signature
0000

Figure A.6: Case 5: Query Signature Weight is 0

TAAPPENDIX A. AN EXAMPLE FOR ANALYZING A BALANCED SIGNATURE TREE

average number of signature drops (ASD), is calculated as follows:

4
ASD =¥ X,P; = 5.0625 (A.1)

=0

Compared to the sequential signature file, the signature drops are reduced from 16

to 5.0625.

Bibliography

1]

[8]

A. O. Allen. Probability, Statistics and Queuing Theory with Computer Science
Applications. Academic Press, New York, USA, 1990.

J. L. Bently. Multidimensional binary search in database applications. IEEFE

transactions on software engineering, 4(5):333-340, 1979.

A. Bertrand. Should I store images in the database or the file
system. http://databases.aspfaq.com/database/should-i-store-images-in-the-

database-or-the-filesystem.html, 2006.

Y. Chen. Signature files and signature trees. Information Processing Letters,

82(4):213-221, 2002.

Y. Chen. On the signature trees and balanced signature trees. In Proceedings of
the 21st International Conference on Data Engineering, pages 742-753, Tokyo,
Japan, April 2005.

T. M. Connolly and C. E. Begg. Database Systems. Addison Wesley, New York,
USA, 2002.

Microsoft Corporation. Store images in a database.

http://office.microsoft.com/en-us/assistance/HP052802251033.aspx, 2006.

J. P. Bakins. Retrieval of still images by content. In Lectures on information

retrieval, pages 111-138, New York, USA, September 2001.

75

76

[9]

[12]

[13]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

E. A. El-Kwae and M. R. Kabuka. Efficient content-based indexing of large
image databases. ACM Transactions on Information Systems, 18(2):171-210,
2000.

R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addision-

Wesley, California, USA, 1994.

C. Faloutsos and S. Christodoulakis. Description and performance analysis of
signature file methods for office filing. ACM Transactions on Office Information

Systems, 5(3):237-257, 1987. _

T. Gevers and A. W. M. Smeulders. Image search engines an overview.

http:/ /staff.science.uva.nl/ gevers/pub/overview.pdf, 2003.

F. Grandi, P. Tiberio, and P. Zezula. Frame-sliced partitioned parallel signature
files. In Proceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 286-297, Copen-

hagen,Denmark, June 1992.

C. J. Guarin. Access by content of documents in an office information system. In
SIGIR ’88: Proceedings of the 11th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 629-644, New York,

USA, May 1988.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-

ceedings of the SIGMOD Conference, pages 47-57, Boston, USA, June 1984.
L. Horton. Beginning Java 2. Wrox Press Ltd, Birmingham, UK, 2002.

N. Katayama and S. Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In 1997 ACM SIGMOD International
Conference on Management of Data, pages 13-15, New York, USA, June 1997.

BIBLIOGRAPHY 77

(18]

[19]

[20]

[21]

[25]

[26]

M. L. Kherfi, D. Ziou, and A. Bernardi. Image retrieval from the world wide
web: Issues, techniques, and systems. ACM Computing Surveys, 36(1):35-67,
2004.

J. K. Kim and J. W. Chang. A new parallel signature file method for efficient
information retrieval. In CIKM 95, Proceedings of the fourth International Con-
ference on Information and Knowledge Management, pages 66—73, Baltimore,

USA, November 1995.

C. H. Lee and P. W. Huang. Image indexing and similarity retrieval based on

key objects. In ICME, pages 819-822, Taipei, Taiwan, June 2004.

D. L. Lee, Y. M. Kim, and G. Patel. Efficient signature file methods for text
retrieval. IEEE Transactions on Knowledge and Data Engineering, 7(3):423-435,
1995.

D. L. Lee and C. W. Leng. Partitioned signature files: Design issues and perfor-

mance evaluation. ACM Transaction on Information Systems, 7:158-180, 1989.

Z. Lin and C. Faloutsos. Frame-sliced signature files. IEEE Transactions on

Knouwledge and Data Engineering, 4(3):281-289, 1992.

M. A. Nascimento and V. Chitkara. Color-based image retrieval using binary
signatures. In Proceedings of the 2002 ACM Symposium on Applied Computing,
pages 687-692, Madrid, Spain, March 2002.

C. S. Roberts. Partial match retrieval via the method of the superimposed codes.

Proc. IEEE, 67(12):1624-1642, 1979.

R. Sacks-Davis, Member, IEEE, A. Kent, K. Ramamohanarao, J. Thom, and
J. Zobel. Atlas: A nested relational database system for text applications. IEEE

Transactions on Knowledge and data engineering, 7(3):454-470, 1995.

78

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

J. R. Shin, C. B. Son, J. S. Yoo, and B. M. Im. A dynamic signature file
declustering method based on the signature difference. International Journal of

Information Technology, 8(1):5, 2002.

E. Vicario. Image Description and Retrieval. Plenum Publishing Corporation,

New York, USA, 1998.

A. M. Zaremski and J. M. Wing. Signature matching: A tool for using soft-
ware libraries. ACM Transactions on Software Engineering and Methodology,

4(2):146-170, 1995.

P. Zezula. Linear hashing for signature files. In the IFIP TC6 and TC8 Interna-
tonal Symposium on Network Information Processing Systems, pages 192-196,

Sofia, Bulgaria, May 1998.

P. Zezula, P. Ciaccia, and P. Tiberio. Hamming filters: A dynamic signature file
organization for parallel stores. In 19th International Conference on Very Large

Data Bases, pages 314-327, Dublin, Ireland, August 1993.

P. Zezula, P. Ciaccia, and P. Tiberio. Key-based partitioned bit-sliced signature
file. SIGIR Forum, 29(2):20-34, 1995.

P. Zezula and F. Rabitti. Dynamic partitioning of signature files. ACM Trans-
actions on Information Systems, 9(4):336-369, 1991.

