
A Sigmature Fi[e ,&ågoritFaraa for l,arge lnaaage Ðatabases

By

\Meihua Lu

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

Department of Computer Science
University of Manitoba,
Winnipeg, Manitoba,C anada

Copyright @ 2007 by Weihua Lu

THE UNIVERSITY OF MANITOBA

FACULTY OF G*RA-DUATE STT]DIES

COPYRIGHT PERMISSION

A Signature File Algorithm for Large
Image Databases

BY

Weihua Lu

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCB

\ileihua Lu @ 2007

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMlÆroQuest) to microfilm, sell copies and to publish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Signature file, which is an indexing technique, has been extensively studied in text

retrieval. It acts as a filtering mechanism which is able to screen out the most non-

qualifying documents, thus, confining document searches to smaÌler relevant candidate

sets. Many methods for organizing signature flles have been proposed to improve

searching speed since querying a large signature file sequentially is very time con-

suming. However, these methods have limitations when they are applied to image

databases since the distinct characteristics of image databases have not been taken

into account.

The goal of this research is to design an indexing algorithm for large image

databases. This proposed algorithm, called the Image Signature Tlee (1,97), re-

trieves an image in a database based on image objects and spatial relations between

the objects contained in an image, as weil as image sizes and formats. Signature file

technique is adopted in this algorithm.

Performance evaluation is conducted both analytically and experimentally. The

analybical study of the performance in term of signature reduction ratio was conducted

based on probability theory. The retrieval cost, signature reduction ratio, storage cost

and update cost are studied by simulation.

Ilt

iv

Acknowledgements

I would ìike thank for my thesis supervisor Dr. Yang Jun Chen. Thank you for

giving me the opportunity to work with you, leading me going through each phase of

this research, encouraging me when I felt frustrated.

I would ìike to thank Dr. Peter Graham and Dr. Neil Arnason for helping me

solve many issues happened during the graduate study at the UM these years.

Many thanks go to the members of my thesis examining committee, Dr. Car-

son Kai-Sang Leung, Dr. Attahiru S. Alfa for giving me valuable comments and

suggestions for improving the quality of my thesis work.

My parents, how can I express my gratitude to you in words! "you raise my up.

I can fly because you give me the wings." Without your support, I don't think I can

finish this study. My brothers, you always set good examples for me to foliow.

I would thank for Miriam and Irma who taught me Bible. My souÌ finally finds

her family which she pursued all these years. In the Christian family, she finds that

so many people share the same belief with her, therefore she doesn't feel lonely any

more. She becomes more peaceful, more courageous, more confident. Next, I would

like to thank my roommates and classmates, I feel so lucky that I have many friends

in Winnipeg to share joys and tears together. I would also extend my gratitude to

my colleagues in my workplace. Your smiles melt the snow of the Winnipeg. I would

ìike to thank for all the eyes that care about me. How I wish could name you all.

Thank you everyone!

I wouìd like to thank the department of computer science of the University of

Manitoba for the departmental fellowship. I also like to express my deep apprecia-

tion to Dr. Yang Jun Chen for the frnancial support from his Natural Sciences and

Engineering Research Council (NSERC) research grant.

vi

Contents

Introduction

1.1 Motivation and

L.2 Preliminaries

Objective of th

Organization

Literature Review

2.I Signature Algorithms

2.7.I Sequential Signature File .

2.I.2 Bit Slice File

2.I.3 Multi Level Signature File

2.1.4 Partitioned Signature File

2.L5 Signature Tlee

2.I.6 Balanced Signature Ttee

Signature File in Image Research

Partitioned Signature File Research

fmage Signature Tbee Algorithm

Problem Definition

is research

1

.)

4

1.2.7 Signature File Technique

1.2.2 Image Retrieval

4

7

9

10

13

13

13

13

14

15

16

77

19

27

23

23

1.3

t.4

2.2

2.3

3.1 Image lViodel

vtl

3.2 Image Signature Ttee Algorithm

3.2.I Partitioning Algorithm for a BST

3.2.2 Query Processing

3.2.3 Insertion

3.2.4 Deletion

24

26

30

31

32

Ðt
.,) L)

.t.)

ot
t)d

35

Analysis

4.I Control Parameters

4.2 Performance Metrics

4.2.7 Storage Cost

4.2.2 Signature Reduction

4.2.3 Retrieval Cost(RC)

4.2.4 Update Cost(UC)

Implementation

5.1 Prototype

5.1.1 Introduction

5.I.2 System Overview

5.i.3 Test Data

5.7.4 Working Platform

5.1.5 Implementation of IST .

5.2 Partitioned Signature Ttee

Experimental Results

6.1 Working Platform

6.2 Test Data

6.3 Storage Overheads

6.4 Signature Reduction

6.4.I Signature Reduction with Weight

36

JI

3B

39

39

39

4T

42

42

43

47

55

55

rtr
tJd

56

56

57

viii

6.4.2 Signature

Partition Access

Reduction with Data Size .

against Query Weight

58

59

59

62

62

63

Retrieval Cost

Update Cost

6.7.L Insertion Cost

6.7.2 Deletion Cost

Discussion and Conclusions 65

7.1 Summary of Contributions 65

7.2 F\rture Work 66

A An Example for Analyzing a Balanced Signature TYee

6.5

b.C)

6.7

69

TX

List of Tables

1.1 Signature construction and comparison

4.1 Control parameters .

4.2 Signature drops against weight

6.1 Comparison of storage overheads of BST against P^97

6.2 Signature reduction ratio against weight

6.3 Signature reduction ratio against the size

6.4 Retrieval cost

6.5 Retrieve time of the PST

6.6 Insertion time of P,S?

6.7 Usage of partitions

6.8 Deletion time of PST .

4.1 Signature Drops against Weight

56

57

58

60

61

62

63

63

77

34

J1

X1

xii

List of Figures

1.1 Spatial relationship

2.L Signature file and bit slice signature file .

2.2 Multi level signature file

2.3 Partitioned signature file

2.4 Signature tree

2.5 Basic signature tree structure

2.6 Weight-based method

2.7 Balanced signature tree .

3.1 Image model

3.2 Image signature tree

3.3 Spatial relation tree .

3.4 Partitioning scheme 1 . . .

3.5 Partitioning scheme 2 . . .

3.6 Partition splitting

5.1 An image retrieval system

5.2 Query interface

5.3 The folder tree

5.4 The folder data flle

5.5 Image signature in a Partition

8

T4

I4

15

t7

18

19

20

23

25

26

27

28

29

4L

42

43

44

45

xltl

5.6

5.7

5.8

5.9

5.10

5.11

5.r2

5.13

5.74

6.1

6.2

6.3

How to construct size signature

Schema diagram for the database

Report

Class diagram for PST .

The flow chart for P^97

Store the tree to an array

Search procedure

Load an array from disk

Generate the key tree from an arrav

Signature reduction of the P^97 against weight

Signature reduction ratio of the PS?

Partition access against query weight

A Balanced Signature Ttee

Case 1; Query Signature Weight is 4

Case 2: Query Signature Weight is 3

Case 3: Query Signature Weight is 2

Case 4: Query Signature Weight is 1

Case 5; Query Signature Weight is 0

4f)

46

6.4 Retrieval time

6.5 Retrieval time vs. processes

6.6 Insertion time of PS?

6.7 Deletion time

47

48

49

51

52

53

rt

57

58

69

70

7L

7q

I,J

59

61

61

62

64

4.1

^.2
4.3

^.4
4.5

4.6

xtv

Chapter 1

fntroduction

Signature file is an indexing technique that has been investigated extensively in the

document access area. It has been widely apptied in office automation [14], software

libraries [29] and database application systems [26].

A signature is a binary bit string that represents a word in an abstract format.

The main idea of signature technique is that a document is considered as a list of

words and is decomposed into n blocks. The words in each block are transformed into

signatures with a hashing function. These signatures are superimposed (i.e. bitwise

OÃ) together to form a block signature, and these block signatures are stored in a
file named a signature file. The nature of this superimposed mechanism implies that

a block signature covers its member signatures. If a query signature is not matched

with a block signature, it must not match with any of its member signatures either.

Therefore, the signature file technique is able to function as a filter that can discard

non-qualified information.

Ifsignatures are stored sequentially in a signature file, searching signatures one by

one in a large database is still time consuming. Therefore, many efforts have been un-

dertaken to improve searching performance. Examples are the bit-slice method [25],

the multilevel tree [21], signature trees [] and partitioning signature frIes 122,30, 3g].

CueprBR 1. INrRooucrro¡l

Bit-slice adopts a coiumn-wise storage method to avoid the large amount of unnec-

essary database accessing. Multilevel tree uses a tree structure to filter nonqualified

data from root to leaf level by level. Signature tree organizes a signature file into

a binary tree to improve the searching speed. Partitioning signature files divide the

signature file into various parts to speed up the searching process.

Recently, there has been increasing interests in applying the signature file tech-

nique to the multimedia technology. John Eakins and Margaret Graham [8] clas-

sify image queries into three levels of abstraction: "primitive features such as color

or shape, logical features such as the identity of objects shown, and abstract at-

tributes such as the significance of the scenes depicted". Obtaining logical and ab-

stract features of an image automatically is still in the research stage. Automatic

retrieval of images from databases based on their primitive features is called the

Content Based Image Retri,eual (CBIR) that has developed rapidly during the last

two decades. Available commercial systems are QBIC,Virage and Image Scape.

Existing indexing algorithms are R tree [15], ,S-R tree [17] and K-D-B tree [2].

However, these algorithms become inefficient in large image databases because com-

paring images one by one needs a large amount of time. The goal of this research is

to design an efficient indexing algorithm that can be used to speed up image retrieval.

In this research, I extend a model which is known as Retrieval by Spatial Similarity

(ÃSS) [28]. This model searches images based on not only objects, but also spatial

relationships among the objects contained in a picture. For example, suppose there is

an image with a man sitting in a car. Then, this image will be considered as having

two objects: "a man and a car". The spatial relationship between the two objects is

a "containing" relationship. The proposed indexing algorithm can answer the query

such as "Find all the images including a car and a man", as well as "Find all the

images with a man in a car".

The proposed aìgorithm, called the Image Signature Tlee (1S"), consists of three

1.1. MorIvarIoN AND PRoer,nN4 Dpprivlrrox

parts: Folder Signature Ttee (FSZ), Baìanced Signature Tlee (BST) and Spatial

Relation Ttee (,9.B7). FSf is created based on the paths where images are stored.

The goal of FST is to filter out the folders that do not contain the target images.

BST is a binary-tree-like signature file algorithm aiming at the retrieval of images

with target objects. ,9-B? is introduced to locate the images with the constraints by

spatial relationships between the target objects.

1.1 Motivation and Problem Definition

An indexing algorithm for large image databases should have an efficient search capa-

bility. However, image data are not well-defined as the key words used in traditional

textual databases, which makes it more challenging to devise a powerful indexing

mechanism over images.

During the last two decades, much research has been done on this issue. For

instance, M P EG -7 provides a standard for describing contents of multimedia, which

includes colors, textures, objects as well as events. Retrieval by spatial similarity

(RSS) [28] is a significant approach which searches images based on certain spatial

relationships among the objects contained in a pictures. In addition, several modeling

approaches [28] have been developed to extract different visual contents of images,

such as the color based model, texture based model and shape-based model, which

can be used specify searching scopes and objects for the image database retrieval.

All these methods are aiso called content-based image retrieval approaches. The

basic idea of content-based image retrieval is to transform the important feature of

the image into a high dimensional points(feature vector) and perform the nearest

neighbor search, which refers to search the close to a given query feature vector.

Existing multimedia indexing algorithms such as.R tree [15], and.9R tree [17]

established on the objects' spatial location. They use either bounding rectangle or

CHeprnn 1. IirrRooucuox

bounding sphere to define the shape of the regions within one image, Therefore, they

are only able to retrieve the target image by comparing the images in the database

one by one. This will cause an IIO bottleneck if the database is large. To relieve

the problem, it is necessary to screen out unrelated images before doing similarity

comparison with C BI R [28] technique.

In this research, I try a new way to index images, by which the so called signatures

file technique is combined with ,R,S^9 to discard unrelated images as early as possible.

Consequently, the following two problems are investigated.

o How to utilize the filtering power of signature file technique in image retrieval.

c How to speed up the image retrieval, insertions and deletions by using the

combination of the signature file technique and .R,S,S model.

Experiments have also been done to show how efficiently my method can screen out

non-qualified images for the image retrieval.

L.2 Preliminaries

L.2.I Signature File Technique

The signature file approach [11] was originally introduced for textual retrievai. A sig-

nature is a binary bit string that represents a word in an abstract format. The main

idea of signature technique is that a document is considered as a list of words and is

decomposed into n blocks. Each word of a biock is transformed into a signature with

a hashing function. These signatures are superimposed (i.e. bitwise OR, denotes as

V) together to form a block signature, and these block signatures are then stored

sequentiaÌly in a file named a signature file. Table 1.1 illustrates the construction of

a block signature using the superimposed coding method, where a block of a docu-

ment consists of three words, "sun", "moon" and "star". The signature "001010110"

L.2. PREllt',ttuaRteS

Text Signature

sun

moon

star

001

101

000

010 1i0

100 100

110 101

block signature V 101

Query Query signature Block signature

sun 001010110 A 101110111

football 010000011 A 1011110111

buiìding i00000011 A 101110111

110 111

Result

001010110

00000001 1

100000011

match

no match

false drop

Table 1.1: Signature construction and comparison

is generated using a hashing function to represent "sun", the signature "101100100"

represents "moon" and "000110101" represents "star". The block signature is created

by superimposing these three signatures. Each 1 in a block signature implies that

the bit at the same position in its member signatures should also be one. In other

words, the block signature covers its member signatures. If a query signature does

not match a block signature, it must not match any of its member signatures. There-

fore, signature flle technique functions as a filter that is able to discard non-qualified

information.

Table 1.1 shows a typical query processing with a signature file: given a query,

the query signature is compared with each block signature in a signature file. Those

unmatched signatures are screened out from candidates for further checking. The

remaining candidate signatures are called drops, and their corresponding text are

further examined against the query text. The resulting drop set falls into two cate-

gories: those seemingly matched, but actual non-qualified signatures, are called false

drops, while those exactly matched signatures are called true drops. Therefore, when

Cuepr¡n 1. Ixr:RooucuoN

querying a signature fiÌe, there are three types of outcomes, as shown in table 1.1:(1)

match(s A sq : so), that is, for every bit set to one in the query signature sn, the

corresponding bit in object signature s is also set to one. This means that document

contains the real query text. In this case, the query signature is "001010110", and the

query result is also "001010110", so these two signatures are matched. (2)unmatch

(sAsn # sn), that is, there are some bits in sn not same with the object signature s.

In this case, the query signature is "010000011", and the query result is "000000011",

these two signatures are apparently not matched. (3)false drop(s A sn : sn). In this

case, the query signature is "100000011", and the query result is also "100000011".

These two signatures seem to be matched. However, the corresponding document

does not have word "building". This signature is called the false drop.

Superimposed method increases the density of 1's in a block signature, resulting

in the degraded filtering ability. As shown in table 1.1, each member signature has

4 bits set 1, while the block signature has seven bits set 1. As more 1's appear in s,

the false drop probability increases. Intuitively, using longer signature can decrease

false drop probability. However, it will increase the storage overhead.

The false drop probability [9, 21] is crucial in evaluating signature file performance,

because it affects the number of database accesses and the query processing time. This

probability can be calculated by using the following equation: Pr(*,tr) : (t - (1 -

#)')",where r is the number of distinct words a signature block contains. ur is the

weight of a member signature, i.e., the number of 1's the signature contains, rn is the

length of a signature, and a denotes the weight of block signature.

False drop is an inherent problem associated with the signature file method. There

are two reasons for the false drop occurring in signature file. One is that the super-

imposed method does not provide one-to-one mapping for the block signatures to the

corresponding sets of words, in other words, two different sets of texts might map

to the same block signatures, this will result in a signature seems to in an expected

I.2. PRer,rl,rrrueRrps

bÌock signature, actually, it is not included. Another is that the hash function dur-

ing signature generation does not provide one-to-one mapping for the signatures to

the corresponding word either. That is, two different texts might map to the same

signature. This will cause false drops.

The hash function [10] is a method that turns some data (hash field) into a (rel-

atively) small number(hash address) with a function or an algorithm. One common

hash function is the h(K) : K mod M function, which returns the remainder of an

integer hash field value K after division by M , the hash address is between 0 to M ,

which is smaller than original scope from 0 to K . Some hash functions involve to

apply arithmetic or logical function on hash field to generate the hash address. Other

hash functions select some digits in the hash fields to form the hash address. Some

signature frles use triplet hashing algorithm to generate the signature. For example:

the signature for the word "research" is expected to be with a length 16 and a weight

4. Then "researcht' is decomposed into a set of triplets: "res", "ese", "sea", "ear",

"atc" , "rch". Using a hash function, we have h(res) : 4, h(ese) : 8, h(sea) : 9,

h(ear) : 10. Since the expected signature only has 4 bits, so we neglect the rest

of two triplets: "arc", "rch". Thus, we establish a signature for "research" which is

"000i000111000000".

L.2.2 Image Retrieval

Image Extraction

The complexity of image retrieval lies in visual feature extraction. John Eakins and

Margaret Graham [8] defined three levels of image features: primitive features, logical

features and abstract features.

Most research work focuses on abstracting an image automatically by using its

primitive features such as color, texture, shape and spatial relationships. The idea is

CHepr:Bn 1. INrRooucuoN

to employ a mathematical high dimensional vector to depict the visual feature of an

image. For example, a color could be digitaiized into a scale of color level according

to its three basic color elements: red, green and blue. Therefore, an image can be

represent by a coÌlection of pixels with various gray levels labeled as digital numbers.

In other words, an image can be regarded as a matrix with various elements. Thus,

an image can be abstracted into a dimensional feature vector. Image retrieval is

performed through comparing the query image color feature against the color feature

of the images stored in databases.

Obtaining a logical feature means extracting a semantic feature of an image such as

identifying objects in an image. Automatic retrieval for this high level visual feature

of an image is a challenging topic. The idea of most research is to define a model

for each object based on its primitive features, and use data mining techniques to

identify the objects that an image contains. Kherfi and Ziou [18] think there is a need

to define standards for image description. Up to now, there is no significant research

on retrieving abstract features reported. Retrieval by spatial similarity (ASS) [28]

(---)O'Jeç ril

Figure 1.1: Spatial relationship

is a technique that searches images based on certain spatial relationships among the

objects contained in pictures [i2]. Possible topological relationships between objects

are classifred into six categories, which are: disjoint, overlap, meets, contains, crossing

and equal. Due to the current state of research in image retrieval, I use keywords to

represent the identified objects in an image, and created a signature for each keyword

Disjoint

ti-
Crossing

Overlap

()

Equal

Meets

lo-ll-l
Contains

1.3. Oe;ocrrvp oF THrs RESEARCH

in this research.

Image Storage

There are two major approaches [7] for storing images in database. One is to embed

images directly in an OLE Object field in a database table. The other is to store

images on disk or on the network and specify image locations and file names in a

database.

Object Linking and Embedding (OLE) is the technology developed by Microsoft

Corporation for sharing files among different applications By which a picture can be

stored as a word document. The main idea of storing images with OLE technology

is to accommodate each image in a database as an OLE Object. Therefore, images

can be stored in a database just like other data types, such as text, number and

so on. This method is convenient for migration because the images are stored in a

database. However, this method can increase the database size because it creates

an additional data to render object, which are normally greater than the size of the

objects themselves.

Since the size of a database supported by any commercialized system is Ìimited by

database size [3]. For exampìe, the maximum size of database that Microsoft access

supports is 2 GB, while Microsoft, SQL 2005 database does not exceed 4 GB. The first

method is not suitable for large amount of images. So, I choose the second method

to handle the images. The proposed algorithm functions as a filter that cuts off the

non-qualified images to reduce the number of disk accesses.

1.3 Objective of this research

Firstl¡ this research uses an image model to identify image features to facilitate

querying. This model describes images based on Retrieval by Spatial Similarity(Rss)

10 CHeprpR 1. INrRooucrroN

model that represent the images by the domain objects and their relationships, and

it extracts the image features by their formats and pixel sizes.

Secondly, a signature file algorithm, known as an Image Signature Ttee (1ST), is

presented to retrieve images in a database. The 1^97 consists of three parts: Folder

Signature Ttee (FST), Balanced Signature Tlee (B^97) and Spatial Relation Ttee

(SËT). .P^97 is created based on the paths where images are stored. The goal

of FST is to filter out the folders that do not contain the target images. BST is a

signature file algorithm aiming at the retrieval of images containing the target objects.

^9ÊT is introduced to locate all those images satisfying constraints specified by the

spatial relationships between the target objects.

Thirdly, this research presents an efficient partitioning scheme for BST. The

BST organizes the signatures in the signature file into a binary tree-like structure.

When the image database gets very large, a balanced signature tree could exceed

the size of main memory, resulting in a memory bottleneck. Therefore, the index

may need to be tailored smaller to fit into main memory. For this reason, an extra

partition scheme is proposed to divide the B ST into smaller parts with each part

holding the same key. This scheme saves the searching space and supports the parallel

programming. Furthermore, this scheme provides a dynamic structure that facilitate

image insertions, deletions.

Finally, this research provides an in-depth analysis for the balanced signature tree

based on probability theory. Simulations are conducted to compare the theoretical

value and experimental results.

L.4 Organization

The rest of the thesis is divided into six chapters. They are organized as follows:

o Chapter 2: Literature Reui,ew. This chapter discuss the related work and pro-

L.4. ORcaNrzarroN t1

vides the background for this research. it begins with an overview of the signa-

ture file technique, followed by an introduction of some signature file algorithms.

Then it presents some basic knowledge of image retrieval and image storage.

Finally, it discusses the application of the signature file technique on signature

file, with focus on the related work done on partitioning of signature files in the

Iiterature.

Chapter 3: Image Signature Tree Algorith.m. This chapter introduces the main

algorithm, that is called as Image Signature Tiee (1ST). First, it presents an

image model that aims at defining searching scope and features of an image.

Next, it gives a detailed description of the image signature tree algorithm. This

chapter ends up with a discussion of an efficient partitioning scheme for B ST.

Chapter l: Analysis. This chapter presents a probabilistic analysis for the

signature reduction ratio of Partitioned Signature Thee (PSZ) algorithm. It

describes the performance metrics, including the update cost, the retrieval cost,

and a list of control parameters.

Cl'tapter 5: Implementati.on. This chapter shows implementation details. It

starts with a description of the implementation of a prototype system with the

,I^97 algorithm, which can be used to retrieve an image or several images from

the database. Then, it describes how to implement the PST.

Chapter 6: Erperimental Resu\ús. This chapter presents and analyzes the ex-

perimental results. First, a theoretical analysis is conducted on the performance

of. BST and P,57 using methodology in the chapter 4. Then test results are

demonstrated to show the difference between these two strategies. It also pro-

vide the analysis for the simulation results.

o Chapter 7: Di,scussion and Conclusions. This chapter summarizes the contri-

L2 CseprBn 1. INrRooucrtou

butions of this research and suggests the future research directions.

Chapter 2

Literature Review

This chapter provides a broad overview of the background material on which the

thesis builds. The first section describes various signature file algorithms. Following

this, a selection of related work on image retrieval is presented in 2.2. In 2.3, the

research efforts to improve the performance of the sequential signature file algorithms

by the partitioning approach are reviewed.

2.L Signature Algorithms

2.I.L Sequential Signature File

Sequential signature file is the simplest way for organizing signatures. Searching

a signature is done by comparing signatures one by one. The performance of this

method depends the size of the given signature file and the length of each signature

in it. Therefore, this method is not efficient when applied to a large database.

2.I.2 Bit Slice File

Roberts [25] proposed a bit slice (BS) method which regards a signature frle with n

signatures with length nL aß a table with n rows and m columns. Such table is then

13

l4 CHeprBn 2.

biçslice file:

LrrsReruRE REVTEw

Sigranue tìle:

ct c? c3 cJ c5 c6 c7 c8
00t01001
01i10010
00l0ll0t
lt00l0l0
00llt00t
ttt00ì10
000t00tt
0l0l0ll0

Figure 2.1: Signature file and bit slice signature file

divided into m slices. Each slide corresponds to a column and stored in a different

file. When answering a query signature with tr 1's, only tu corresponding columns

of files are checked. Compared to sequential signature file, this method can save

n'L - 1r unnecessary accessing time. However, the maintenance cost is very large. For

example, if we update a signature in BS, r¿ bit-slice files need to be accessed.

2.L.3 Multi Level Signature File

E
lsrl
F:l
l5rl
t91i
l-sn
ls6 I

ls?l
LSJ-]

l-a

ë+rrl___l

r:-b¡nr lll I.,JrL___l
Te{

blod<s

Figure 2.2: Multi level signature file

Multi-level signature file [21, 33], as shown in figure 2.2,ís a b-ary tree structure

with n levels. Different from binary tree with each parent having two children, this

\\
\ i------------r

\ i---------r

-

Let¡el 1

signáures

i--------------- --, J.-----.---------
\ l-------------
\-r

Leüd n-1 Lwel n

signatures sigrøtures

cl C2 c3 cl c5 c6 c7 cs
0

0

0

I

0

I

0

0

0

I

0

I

0

I

0

I

I

I

I

0

I

I
0

0

0

I

0

0

I

0

I

I

I

0

I
I

I

0

ù

0

0

0

I

0

0

I

0

I

0

I

0

I

0

I

I

I

I

0

I
0

I
0

i
0

2.1. SrcNeruRB AlcoRtrstvts

b-nary tree has å children for each parent. The signatures in the lowest level, nth

level, are generated from text blocks. Each signature of n - 1th level is a parent node

v/ith b children of signatures at level n, and is generated from a group of text blocks

which create its b children signatures at level n. The advantage of this method is that

it filters non-qualified documents at higher level, reducing unnecessary accesses at

lower level. However, it creates extra storage overheads for the high-level signatures.

2.L.4 Partitioned Signature File

The idea of partitioning scheme [22] is to divide a signature file into small parts in

which the signatures hold the same key. Figure 2.3 shows an example of a partition

scheme. It involves two levels. The first level is a key table; the second level contains

all the signatures that are partitioned into several parts. The signatures in a part

have the same key. When a query signature comes, it was first checked against the

key table to find all the parts with a matching key. Then all the signatures in these

parts will be further examined. The partitioning scheme skips the further checks

with unmatched partitions. Therefore, it improves the performance by reducing "I/O

accessing time.

Part¡tion 0

Partition p-1

15

qql01010001000001

111 01oooo1 o00oo1o

Figure 2.3: Partitioned signature file

16

2.L.5 Signature Tþee

CsaprBn 2. Lrrnnanune Rpvrew

A signature tree (SZ) [4] is constructed based on the so-calìed signature identifiers

which is defined as follows:

Defi,niti.on (Si,gnature i,denti,f,er) Let ^9
: sy.s2...sn denote a signature file. Con-

sider s¿(l < i < n). If there exists a sequence: jt,...jn such that for any k + i(\ < k <

n),we have s¿(71, ...jù I s*(jt,...jn), then we sa! s¿(J1,...7¿) identify the signature s¿.

Defini,ti,on (Si.gnature tree) A signature tree for a signature file ,S : s1s2...s2, where

s¿ I s¡ for i 13 and lt*l : m for k : I,...,72, is a binary tree 7- such that

1. For each internal node of ?, the left edge leaving it is always labeled with 0

and the right edge is always labeled with 1.

2. T has n leaves labeled 7,2,...Ír, used as pointers to n different positions of s1,

s2... and s,, in ^9. Let u be a Ìeaf node. Denote p(u) the pointer to the corresponding

signature.

3. Each internal node u is associated with a number, denoted sk(u), to tell which

bit will be checked.

4. Let '\,...i,¡ be the numbers associated with the nodes on a path from the

root to a leaf u labeied i (then, this leaf node is a pointer to the 'dth signature

in ^9, i.e p(u) : i). Let p1,...pn be the sequence of labels of edges on this path.

Then,(j1, pt)...(jn,pn) make up a signature identifier for s¿, s¿(j:.,...jn).

Figure 2.4 illustrates a process for constructing a signature tree from a signature

file. A successful signature search works as follows: given a query signature, we start

from the root of the ^97 and get internal node value n, check the query signature

at position n. if it is 1, we only need to further query the right subtree; if it is 0,

we continue to search both left and right subtrees. The above process is performed

recursively until the leaf level is reached. All the reached signatures are the candidates

which satisfy the users' query except for false drops.

Signature tree is different from ordinary Binary Tiee (,B7) in two sides: First,

2.I. SrcNeruRB Ar,coRrrHvs

lnsert s1

J
[.,,il;¡
lsz r'r'to't roo't't t t I

laa tr''ro,oto,,,,' I

l* o,,,oo.,,,o',r',., I

Signature
file

t7

lnsert s2

L_)

/\

^1^¡'\,¡rEE

lnsert s3

r-1

Figure 2.4: Signature tree

it has more basic structures than the binary tree does. Figures 2.5 shows its four

different basic structures. While the ordinary binary tree only has the one type

structure which is similar to the type A. Type A has three internal nodes; Type B

has two signatures and one internal node; Type C and D has three signatures and

two internal nodes. This complex structure makes signature tree more complicated

than binary tree in term of construction, storage and retrieval. Since signature size

is usually longer than internal nodes, it requires more storage spâce. This feature

.requires that signature tree should have different storage and retrieval scheme than

the binary tree. Second, the internal nodes in ST act as not only link roles as in binary

tree, but also as position pointers. Once the ,ST is constructed, the connections among

the nodes are flxed. Any changes to the internal nodes will lead to a totaliy different

,S7. So, the baÌancing tree to make the left and right sub-tree have equal or almost

equal depth by rotation in the BT is not applicable to the ,S7.

2.L.6 Balanced Signature Tþee

In order to avoid the worst case of ST, Chen [5] proposed a weight-based method to

organizes a signature file into an approximately balanced binary tree.

1;\,/_-/\- InF'\
ÉÀ

f->\ET

oo
,/\ r/\^./ \^ -/ \eentr

(c) (D)

Figure 2.5: Basic signature tree structure

Weight-based method

A signature file S : StSz...Sn can be considered as a Boolean matrix. Let W Sli) be

the sum of 1's in the ith column, and S¿¡ be the bit of signature S¿ in the 7th column.

Define CWId] : IWSId) -] + nl(t : I,2...n), and then choose the first column 7

where CWU) is the minimum as a pivot column. The signatures are divided into two

groups: G1 where S¿,j :0 , and G2 where S¿,j :7.

For example, suppose we have a set of signatures G0 : {s7, s2, s3, s4}, here,

s1 : 000100,s2:010100, s3 : 00001t,s4:101010. According to the weight-based

method, G0 can be divided into two groups {s3, s4} and {s1, s2}. This procedure is

shown in Figure 2.6.

Balanced signature tree

Constructing a signature tree is a recursive procedure. First, the original signature

sets G6 is split into two groups G1 and G2 according to the weight-based method by

1B Cuaprpn 2. LrreRaruRE REVTEw

(B)(A)

2.2. SrcNaruRp Frln tu hvtecp RBspeRcn

Figure 2.6: Weight-based method

the pivot column d. Next, the pivot column d is formed as a internal node P6 with

value of d. The lefb child of P6 is the group where ^9,,¿ equals zero, while The right

child is the group where ^9¿,¿ equaÌs one. Then, subgroup Gr and G2 are split as in

the first step, generating a position node Pr and its subgroups Gir and G12, as well

as P2 and Gzt and G22, respectively. At this stage, Pe updates its left child to P1 and

right child to P2. Next, subgroups Gn, Grz, G21 and G22 continue the first step until

all the descendant subgroups contain only one signature. Figure 2.7 shows a process

for generating a BST.

2.2 Signature File in Image Research

Nascimento and Chitkara 124] proposed a new signature file technique based on color

similarity to retrieve image databases. The main idea of this algorithm is to use

signature bit-strings to represent the high-dimensional features extracted from images.

They compare this new signature algorithm against a S.R-tree in terms of storage

overhead and querying process, and claims that storage overheads for 2000 binary

images with signature method are gTTo smaller than ,9Ä-tree [t7], while query saving

is over 80%. The weak point of this research is that they have not used any signature

file technique to improve querying speed.

Kwae and Kabuka [9] introduced a two signature multi-level signature frIe (25 NI LS F)

19

20 CHeprBR 2. LrrpRaruRp Rpvrew

o,or,6Ð
(G1) (G2)

/?\
_{Â-

\--l -/-\

,(r\ 'tlÉ-ì É->
EÉEÈ

ü

n=2 123J36
0ooorr
1r0,J 0;1,0

!,JS 1.û r ût2.r
0ro't10

(G2)

Figure 2.7: Balanced signature tree

as an indexing method for image databases. This algorithm is an extension of multi-

level signature file. It consists of two types of signatures. The first type is an exact

multi-level tree which is used to retrieve the objects that an image database contains,

while the second type is a sequential signature file which is used for retrieving images

based on the image objects and their spatial relationships. The advantage of this

method is that it can address different query requests, such as, finding all images in-

cluding a given set of objects or finding all images with specifled spatial constraints.

Furthermore, an analytical result demonstrates that 2SMLSF has smaller storage

requirement and more efficient querying speed than the existing signature file tech-

niques. However, the author has not provided useful experimental results to verify

the analytical estimation.

Lee and Huang [20] implemented a signature algorithm based on image objects

and spatial relationships between objects. This algorithm differs ftom2SMLSF in

two aspects: 1) signatures are created with only one object in an image and the spatial

(G0)

(G1)

2.3. PnRrruoxpo SrcNaruRn Ftr-n RBsBeRcu

relationships between an object and the rest of objects in the image; 2) signature files

are organized by a Hierarchical Relation (HA) graph instead of multi-level signatures.

.Ë14 graph speeds up the signature searching process by introducing virtual signatures

that are not associated with real images. Those virtual signatures, however, increase

the storage requirement.

2.3 Partitioned Signature File Research

Zenia [30] proposed a partition scheme named quick filter using linear hashing to

group similar signatures into one page. The advantage of this method is that it

supports dynamic storage structure that allows a large amount of insertions into

databases. Moreover, Zenla and Rabitti studied the so called quick filter [33], and

concluded that this method is superior to sequential signature file and multilevel

signature file when querying weights are high. Lee and Leng l22l presented three

partitioning schemes: the Fixed Prefix method, the Extended Prefix method and

the Float Key method. These three methods share a common feature, that is, the

original signatures are converted into a partition key table and the corresponding

signature partitions. The difference between these three methods lies in the scheme of

generating the partition keys from signatures. Fixed Prefix method extracts partition

key with a fixed length and a fixed starting position. Extended Prefix method selects

a key with variable length but with a fixed starting position. Float Key method

chooses a key with a variable position but with a flxed length. The major advantages

of these methods are their simple structure. However, they do not support dynamic

storage structure. When one partition overflows, the schemes become inefficient.

Gradi, et al. [13] suggested a frame slice partitioned scheme to reduce the up-

date cost caused by bit-sliced storage scheme. Lin [23] implemented the frame-slice

signature on Unix workstations and studied the performance in term of false drop

2t

22 CuaprBn 2. LrrøRarunp Rpvtpw

probability and response time. Zens,la et al. [32] introduced an approach that com-

bines the key-based partitioned method and bit-sliced signature file. This hybrid

method shows good searching performanceT however, the update cost is still high.

They further suggested integrating key-based partition scheme with frame-slice ap-

proach. Kim and Chang [19] integrated hashing method and frame slice technique

together and proposed a new scheme called a horizontally divided parallel signature

file. The approach shows superior performance compared to frame-slìce by Gradi and

other parallel signature file algorithms published in the literature.

Zezula and Tiberio [31] introduced a Hamming filter that extends quick filter.

However, it fails to distribute signatures evenly into partitions, causing unbalanced

work loads among partitions. To solve this problem, Shin et al. [27] proposed a

dynamic signature file declustering method based on the signature difference. It

adopted hamming filter when partitioning a signature file. This is different from

my proposed partition scheme, which is based on data structure key and signature

difference.

Chapter 3

Image Signature TYee Algorithm

This chapter focuses on the methods and techniques used in this thesis. This chapter

first introduces an image model designed to describe the images features. Next, it

describes the Image Signature Ttee algorithm in detail by introducing its three basic

operations, such as query process, insertion and deletion. Finally, it introduces a

partitioned signature tree algorithm that is the core component of .IS? algorithm.

3.1 Image Model

Figure 3.1; Image model

oÐLÒ

24 Cseprpn 3. IuecB Srcl¡.ruRp TRpB At coRltrrr¡

The model designed to describe an image is illustrated as shown in Figure 3.1. Ii

consists of a set of abstract features, a set of object features and a set of primitive

features.

The abstract features include:

o type: such as walìpaper, scenery, sports, car, animal and so on.

o subject: such as fish, bird and so on.

o title: such as salmon, catfish and so on.

c size: such as 680x1200,800x780 and so on.

o format: such as JPG, GIF, BMP, PNG and so on

The object features include a set of keywords which describe an image. The

primitive features include: DISJOINT, OVERLAP, MEET, CONTAIN, CROSSING

and EQUAL.

3.2 Image Signature Tree Algorithm

According to the image model, an image signature can be defined. It consists of five

fields: a folder field, an object field, a relation field, a size field and a file extension

type field. Folder signature is based on the abstract feature of the image model.

For example, in the above image model, the "scenery" signature is generated by

superimposing its subfolders. The subfolder "country" is generated by superimposing

its subfolders. The length of folder signature is chosen based on the number of its

subfolders for the purpose of minimizing the false drop probability. These folder

signatures flnally form a multilevel signature tree.

The object signature is obtained based on the objects in an image. For an image

with k objects, the object signatures are generated by a hash function, and these ,k

3.2. Ivrecn SrcNaruRp TRpp AlcoRrrntr¿

Figure 3.2: Image signature tree

object signatures are superimposed together to form a block signature, which is the

object field of an image signature. k objects in an image have k *. (,k - 1) relationships,

which fall into six categories: DISJOINT, OVERLAP, MEET, CONTAIN, CROSS-

ING and EQUAL. The relation signatures of an image are superimposed together to

generate the relation field. Since there are only six spatial relationships defined in

this research, I use a six-bit string to represent relation signatures. For example, I

use "100000" to stand for the "DiSJOINT" relation and "000010" to represent the

.CONTAIN" relation. If all the object pairs in an image belong to the "DISJOINT"

and the "CONTAIN" relationships, then the image relationship signature is "100010".

The size field and the format freld are generated similar to the relation field.

An IST, as illustrated in Figure 3.2, includes three different types of trees: folder

signature tree, balanced signature tree and spatial relation tree.

The F,ST is created by superimposing the subfolders level by level. The leaf of a

folder tree is pointed to the root of balanced signature tree. The ieaf of a signature

tree is the object field of image signatures, it also points to the reiation field, the size

25

L@ils 3 sigDalure

26 CueprBn 3. I\¿ece SrcNaruRe TnBB AlcoRnsu

Object 1

Object 2

Object 3

10010000001 1 1 1

0001 00000001 01

10010000001 101

1 001 0000000 1 1 1

Object 3

Object 6

Figure 3.3: Spatial relation tree

field as well as the format fleld.

To further locate the images queried by spatial relationships between the target

objects, I introduced a Spatial Relation Ttee (SÃ7), as shown in Figure 3.3. The

root of ^9,R? is a relation field of an image. It has six children which represent six

spatial relationships of object pairs in an image. The leaf nodes of .9Ã? are the block

signatures of objects within the same relationships.

3.2.L Partitioning Algorithm for a BST

If the image database is very large, a B,SZ could exceed the size of main memory. To

solve this probÌem, I proposed two partitioning schemes for a BST.

Scheme 1

Since the B^97 is constructed from top to down, the flrst scheme I present also works

in top-down order. The idea is to specify a fixed partition size and start to construct

the first partition as the B,S? does. Once the partition is oversized, new children

partitions are generated to continue the uncompleted splitting process. Figure 3.4

illustrates this method. The advantage of this method is that the tree in every

partition is balanced. This balanced tree structure in turn beneflts the signature

1 1 0l 1 00000001 1100110110000101

0001 01 000001 0 1

1001 1 00000001 01

3.2. Iv¡cB SrcNeruRB TRee AlconrrHrr¿

retrieval. However, waste of partition space caused by a partition is a big problem.

As shown in Figure 3.4, some partitions only contain one signature. If these small

partitions are merged into one partition to save storage space, the tree structure in

each partition will be damaged, and the signature search will use more time. Another

problem is that more space may be wasted when the larger partition size is used. The

larger partition size allows one partition to accommodate more nodes or signatures.

But this will result in more number of nodes at the bottom level for each partition

tree. These nodes are connected to the chiidren partitions by parenting of the root of

the partition trees. As the partition number increases, the inherent inefficient storage

use for each partition will cause more space waste. Therefore, this scheme is not a

robust way to partition the baÌanced signature tree.

Figure 3.4: Partitioning scheme 1

Scheme 2

Scheme 2 is proposed to solve the problems occurring in scheme 1. Like other par-

titioned signature file schemes, the signatures in a partition are organized into a

balanced signature tree. Figure 3.5 illustrates the structure of scheme 2. The parti-

27

Csap:rBn 3. Il¿acB SIcNaruRn TRpB At coRtrnrr,r

tioned signature tree involves two ievels. The first level is a key tree; the second level

is the partitions that are a set of balanced signature trees. The key tree represents

the set ofkeys: {00,010,011,10,11}, the partition t has a key {00}. This key is

comprised of two bits, the ìeft child of the node with value of 4 determines the first

bit "0" and the left child of the node with value of 1 determines the second bit "0".

Therefore, in this partition, all the signatures with a common feature, which is to a

0 bit at the position 4 and the position 1. Partition 5 has a key {011}. This key

consists of three bits, the left child of node with value of 4 determines the first bit

"0", the right child of node with value of 1 determines the second bit "1", the right

child of node with value of 6 determines the third bit "1". All the signatures with a

"0" bit at position 4, a "7" bit at position 1 and a "1" bit at position 6 are organized

into this partition. Leaves ofthe key partition tree contain the partition identification

number and the total signature numbers of that partition.

key tree

partiïion

Figure 3.5: Partitioning scheme 2

,/ \-l '-|-
#4jt

l-s-rl l-dzl

3.2. h,¡ecE SrcNeruRe TRpp AlcoRrrHv

key tree key tree

partition splitting

partition padition

Figure 3.6: Partition splitting

Contrary for scheme 1, scheme 2 uses a signature tree in its key tree part which

sacrifices a little balance. However, Scheme 2 improves on the scheme 1 in partition

space use. When a new inserted signature happens to cause a partition over its size,

instead of splitting at the bottom, the partition breaks from the root. As shown in

Figure 3.6, the root (the node with value 8) of the signature tree in that partition

will move to the key partition tree. The ìeft subtree (the root is the node with

value 9) and right subtree (the root is the node with value 7) will form into two new

partitions. Each new partition is nearly half the size of the old partition. Once these

new partitions grow to be oversized, they can be divided into smaller ones.

There are several advantages of this partitioning scheme. First, it distributes

the signatures into partitions with a uniform size, alleviating the //O bottleneck

caused by over accessing in one partition. Second, it allows dynamic partitioning,

which facilitates large numbers of insertions in a database while sacrificing only some

equilibrium of the signature tree.

29

&
Ê\ ts4ld&

30 Csnprpn 3. Iuecs SrcNeruRp Tnpn AlcoRrrHl,r

3.2.2 Query Processing

Once the folder signature tree, signature tree and spatial tree are created, I ST can

answer the following three types of queries :

Algorithm: 1.97 retrieval type 1

Objective: Search for all images including object O¡ and O¡ wíth subject F¿

1. Construct a query signature for an image 1

2. Start from root of IST, go to folder signature tree. If there is no FÆ directory,

algorithms stops. Otherwise, go to step 3

3. Go to the key partition tree, search the partitions containing the query signature,

if the result is zero, algorithm stops. Otherwise, go to step 4

4. Go to the signature tree in each candidate partition, search for target signatures

matched with the query signature.

Algorithm: 1,S? retrieval type 2

Objective: search for Image l containing object O¿ and 07, and O¿ and O¡ meets

1. Generate query signature of image -I and the relationships signature between O¿

and O¡

2. Start from root of IST, go through F,ST and enter into key partitions tree

3. Search the partitions containing the query signature. If the result is zero, algo-

rithm stops. Otherwise, go to step 4

4. Go to the root ofsignature tree in each candidate partition, search for target signa-

tures matched with query signature. If ihe result is zero, algorithm stops. Otherwise,

go to step 5

5. Enter into relation field. If it contains "meets", search the relationships signature

f.or O¿ and O¡. Otherwise, algorithm stops.

Algorithm: 1,ST retrieval type 3

3.2. IN,recs SrcNeruRe TnBp AlcoRrrsv

Objective: search for all JPG images containing object O¡ and Oi

1. Generate a query signature for an image I and a relationship signature between

O¡ and Oi

2. Start from root of IST, go through F,SZ and enter into key partitions tree

3. Search the partitions containing the query signature. If the result is zero, algo-

rithm stops. Otherwise, go to step 4

4. Go to the root of signature tree in each candidate partition, search for target signa-

tures matched with query signature. If the result is zero, algorithm stops. Otherwise,

go to step 5

5. Enter into format freld, if it contains JPG, retrieve this image from disk. Other-

wise, algorithm stops.

3.2.3 Insertion

Algorithm: Insertion

Objective: insert an image 1 with objects O¿ and Oi

1. Assign the inserted image an identifier and generate an insert signature for an

image 1 and a relationship signature between O¿ and O¡

2. Start from root of IST, search the corresponding folder

3. Go to the PSf . Allocate the image l into the corresponding partition based on

its signature, increase the signature count at the leaf node. If the count number is

less than the partition size, go to step 6

4. Go into signature tree, and split the signature into two partitions, the root of

signature tree migrates to the key partition tree as new leaf node

5. Update the partition number of key partition tree and signature count information

at new leaf node

6. Go into signature tree, insert image 1 signature at the leaf level, and establish a

pointer to image, fill the relation field, format field and size field, and so on

31

?ô
¿L CueprpR 3. Irr¿ecB SrcuRruRB TnBe AlcoRrrnrr¿

7. Construct an ,SA? tree based on relationship between O¿ and O¡.

3.2.4 Deletion

Algorithm: Deletion

Objective: Delete Image 1 with objects O¡. and O¡

1. Generate the supposed to be deleted signature of image I

2. Start from root of I ST, go to the P^97

3. Go to the corresponding partition based on the deìeted signature. Decrease the

corresponding signature count at the leaf node

4. Enter into the signature tree, find the target signature, delete the ,SA? tree and

delete the signature, including relation field, size fleld and so on.

Chapter 4

Analysis

Since the performance of the signature tree depends upon the distributions of "1"s

and "0"s of a signature file, the probabilistic (average-case) anaìysis is selected as

a tool for evaluating the filtering ability of the algorithm. This chapter provides a

probabilistic analysis for the partitioned signature tree in term of signature ¡eduction

ratio, retrieval cost as well as theoretical analysis in terms of update cost. The

control parameters that affect the performance of the PST are listed in section 4.1.

Furthermore, the performance metrics are explained in section 4.2. The focus of this

chapter is the analysis of the signature reduction ratio of the balanced tree.

4.L Control Parameters

Table 4.1 lists several variables that will affect the performance measures. They

include: the total number of images, the size of the partition, the size of key tree,

and so on. Since the number of edge traversed through the key tree by each search

is variable, the average number of edge(k), as well as the average weight in the query

key wna are used to simplify the analysis.

.).)

34 CseprpR 4. ANelysrs

n total number of images in a database

n partition i

p size of a partition

5 number of distinct objects in a signature file

S¿ number of distinct objects in partition P¿

E average ìength of key tree

UqÌceE weight in a query key signature

w number of 1's in an object signature

W¿ number of 1's in an image 1 object signature

w" number of 1's in a query signature

rn length (in bits) of a sìgnature

mko length (in bits) of a key tree node

rnpo length (in bits) of a balanced tree internal node

M total number of bits in storage

Table 4.1: Control parameters

4.2. PBR¡'oRrvreNcB MprRrcs

4.2 Performance Metrics

4.2.L Storage Cost

Before analyzing the storage cost for lhe PST,let us go back to review the four

basic structures in Figure 2.5 in the chapter 2. Type (B),(C) and (D) indicate that

every two signatures need one internal node to distìnguish the bit difference. Type

(A) illustrates that every two internal nodes needs one internal node to retain the

parent-children relationships. For a signature tree with n signatures, it has n - I

internal nodes. 'ffe can conclude that storage cost for a signature tree is the sum of

n signatures and n - I internal nodes. For the same reason, the storage cost of a

partitioned signature tree is the partition numbers no plus np - I key tree nodes.

The storage size of the P,S? is determined by the size of the key tree and the

partition, as well as the number of partitions and the storage size of signatures.

The total number of partitions (np) can be calculated through dividing the total

number of images (") bV the maximum partition size (p), as shown in equation 4.1:

no: lnlPf

Thus, the storage size of key tree, M¡"o, is:

(4 1)

Mrr"a:(nr-7)xmko; (4.2)

The storage space for the balanced signature tree includes internal nodes Mro¿u a\d

signature leaves M"isnoture.They are calculated by the following formulas:

Mnod': (n - I) * mpo;

Msignature: fn + n

where m is calculated by using the foilowing formula given in [21].

óÐ

(4 3)

(4 4)

7¡¿ : (7fln2)2 sln(I1 Pr) (4 5)

Csepren 4. Ar¡ar-ysrs

and

Pr :0.5-

Therefore, the total storage cost of the partitioned signature tree, M, is:

(4 6)

P7 - Mx.uI Mnod.t Msàgnotur"

4.2.2 Signature Reduction

(4.7)

The signature reduction ratio is the total number of signatures for further checked

against the query text over the total number of signatures, as shown in equation 4.8.

It reflects the filtering ability of a signature file algorithm to cut off the unmatched

signatures. The smaller signature reduction ratio is, the better filtering performance

a signature file algorithm has. It is affected by the length of a signature, the weight

of signatures, and the signature file size [2]). Therefore, for the same size BST and

PST, if signature length and the weight of signature are same, the signature reduction

rates are equal.

S ignatur e r educt'ion r at'io : The total number of drops
(4 8)

The total number of si,gnatures

Assuming a BST has the signatures of length m bits. If the given query signature

is of a weight e, then the signature drops will be (O.S)i * 2* l2I].

Signature recl,uct'ion rati.olwei.ght: i): P+!: (0.5)i (4.9)

The average number of signature drops of a B^97 is:

Auerage s'ignature d,rops:i*oO:iz* * (0.5)i x
i:0 i':O

(*\,r*: So.sn- (;)\¿ /' Á
(4 10)

4.2. PpRpoRtr,reNce MErilcs

Table 4.2: Signature drops against weight

4.2.3 Retrieval Cost(RC)

This research assumes that the partition is the basic unit for data transfer between

the main memory and the external storage device, and IIO access cost is the main

cost during querying process. Therefore, the retrieval cost ofthe partitioned signature

tree depends on the number of activated partitions.

Partition Activation Probability

The partition activation probability, Pr, can also be derived from the signature re-

duction analysis. Equation 4.11 gives the formula.

p,: (E \lz' (4 11)
\Ú'lt*a/'

So, the activated partitions, Po, caî be obtained with equation 4.I2.

Po:28*0.5@xPr:0.5Ð,u*-f t) Ø.n)
\Ú'tk'u/

Retrieval Cost of Partitioned Signature TYee

The retrieval cost of the key Lree, KRC, ís:

JI

Weight

i

Signature Drops

X : 0.5¿ x sample space(2)

Numbers of Signature

with same *eignts(|)

Probability

(T) tr*
l:m 2**(rl2)i:r 1 t12

i:m-1 2^ * (tf2)i :2 m rr¿/2^

l:

i:1 (2*) * (Il2)' :Tn m rnl2*

i:0 (2^) * (tlz¡o :2* I 112*

KRC :1x I lO Cost (4.13)

38

The activated partitions cost, PRC, is as follows:

CHeprnn 4. Axelysls

pRC:p",rIfOCost

Therefore, the retrieval cost of partitioned signature tree, BC, is:

(4.14)

RC:KPC+PRC (4.15)

4.2.4 Update Cost(UC)

An update of the partitioned signature tree could be an insertion or a deletion op-

eration. For simplicity, the costs of partition splitting and partition merging are not

considered in this research.

The insertion operation, (UCI), includes the retrieval cost and the signature in-

sertion cost.

UCI : Retrieual Cost * Inserti,on Cost (4.16)

The deletion operation , (U C D), involves the retrieval cost and the signature dele-

tion cost.

UC D : Retrieual Cost t Deletion Cost (4.17)

For a better understanding how the signature reduction ratio is achieved, I give

an example in appendix A to illustrate the analytical estimation.

Chapter 5

Implementation

This chapter describes the prototype of the Image Retrieval System using 1,97. Due

to the lack of real test data, we created a set of bit strings to represent signatures

and map them to folder texts and image objects. The purpose of implementing the

prototype was to demonstrate how to locate the desired image without loading it into

memory. This chapter begins with the discussions of the file system and DBMS,

proceeds with the system design and ends up with some implementation details.

Finally, the implementation of the P,97 algorithm is presented using the flow chart

and the class relationships diagram.

5.1 Prototype

5.1.1 Introduction

A database is a collection of data stored in a computer in such a way that information

can be retrieved from it [10]. Before the emergence of database, the file system was the

dominant way for people to organize data and it is stiìl in use in our daily life. In the

file system, the application programs control the data directly, this make it efficient in

dealing with small numbers of items. However, file system suffers from the separation

39

40 CHEPTNR 5. IIVTPI,PI¿BNTATION

and isolation of datawhen people need to cross-refer the related information [6]. For

exampie, assume that in an online store, the customer order frle and the product stock

file are accessed and maintained by two programs respectively. if a customer buys a

product from the store, then, the quantity ofthis product in store should be decreased

by one. Since the product stock file is totally separated from the customer order file,

some work need to be updated the product stock fiÌe. To make the matter \røorse,

the problem with data inconsistency becomes more severe. Moreover, isolated files

produce a huge amount of data redundancy which wastes both time and space. In

addition, program-data dependence, the inherent feature of the file system, restricts

the portability and reusability of the application system.

The limitations of the file system have led to the introduction of databases. The

database approach solves the problems by separating application program from data,

organizing the related data logically and sharing data among the applications.

The main component of the database approach is the Database Management

System(DB M S). A DBM S is a software system that supports the creation, mainte-

nance and access to the database. It provides a Data Definition Language (DDL) for

users to define a database and a Data Manipulation Language (DML) for users to

retrieve and update data from database. Through controlling access to the database,

DBM S offers a number of advantages including security, data consistence, data shar-

ing and so on.

Among the variety of DBMSs, the Relational Database Management System

(RDBMS) is most extensively used, such as Microsoft Access, Microsoft SQL and

Oracle. The relationaÌ database organizes the data based on the relations or say

tables with rows and columns. The rows represent the collection of records, and

columns represent the attributes contained in each record.

The indexing technique is used to speed up the retrieval of the records in databases.

Normally, there are two types of indexes. The first type is called secondary access

5.1. PRororvpB 41

lmage
Database

Candidate
lmage Sets

E--:l
lË €l lsisn"ru'" I-ìåEl-l '"" f*P_g t --J

-1
-lolrlol

Ilebl I

Þ õl I ouerv I

---+lE Þl+ ls6natue I

le õl L,-/^
13

Figure 5.1: An image retrieval system

paths. That is, the indexes are separated from data files which contain the set of

records, but hoìd one field of the data which links to the corresponding records.

Based on that field, an index file can be sorted or ordered so that searching can be

efficiently executed without touching the original data frle. DBM,S can create and

delete an index. Examples of such indexes are single-level index, clustering, B-tree

and so on. The second type of index integrates the index and data file together. In

this thesis, the I ST was implemented as the first type.

5.L.2 System Overview

Figure 5.1 provides a simple view of the system. A signature file is created to represent

images in the database. When a user queries an image from the database, he/she

must specify expected the features of the image, these features are transformed into

a query signature and delivered to the system. The 1,R,9 searches the signature file

for the query signature. The searching resuit is a collection of candidate images that

the user desires.

Figure 5.2 shows the query interface for the system. This interface allows users

to define the target image features, such as image categories, image objects, the

relationships between objects, image format, the size of images, and so on. After

42

defining all the

button.

CHeprBn 5. Irr¿pr,pvrpNTaTroN

parameters, Lhe user can run the query by pressing the "Query"

Figure 5.2: Query interface

5.1.3 Test Data

The test data is synthetic. With the proposed image model, an image can be trans-

formed into a textual record with a special structure. In traditional document retrieval

systems, the signature for the text is a bit string generated with a hashing method.

Hashing methods can be applied to image databases. For the prototype test data, I

generated a list of bit strings. Each bit string with a length L and w l's corresponds

to an image object. The image signature is achieved by superimposing all the object

signatures that an image contains.

5.L.4 Working Platform

The working platform will be based on a Toshiba Satellite M35X-S161 notebook

with a 1.30GHz Intel Celeron Processor, a 60GB disk and 512M bytes of memory.

Microsoft SQL 2000 is selected as a database system. JDBC technology is utilized

5.1. PRororvpB

..,. T
lõo00oooooo010.l F00roo0ooooroll

t-__r_

l1
r00100000000111

Figure 5.3: The folder tree

for Java programs to access the database.

5.1.5 Implementation of I ST

This section summarizes how to implement each component of I ST.

Figure 5.3 illustrates the structure of the folder tree. Retrieving the folder at

each layer is equivalent to searching words in the document. Sometimes one folder

contain many subfoìders, if superimposing all the signatures for each subfolder without

extending the signature length, the false drop probability will increase. In order to

Iower the false drop probability of signature file, this folder needs to be decomposed

into groups so that each group contains small number of distinct words. As shown

in Figure 5.3, the first subfolder is divided into n groups, the signatures of group

member are superimposed together to form a new signature.

43

=co'-
Looororooooororl

r01 10 t00000 1 1

.^o- =. \-h,

--i-'\-

F00to0t0000r0l Fot,oooo00t0l Fo'1000000010ìl

superimposed -oñs- 4
t*n-

11100100000000011 1110010000000r001 p1001000000010'll

44 CHeprne 5. Irr¿plBr,rpNTATroN

l? rá¿¿"flå.ú¡¿"i - - * "'* "-' - -'"'' - ' -'" ""-"'" -'
È õt f:æt tÊr hþ

rd rolderruame Layer parent Leaf subfolder/sìgtreeeo'inter
1 Scenerv 0
2 ¡meri cä 1
3 Canada 1
4 china 1
5 Korea l-
6 Egpty 1
7 f.raq 1
8 cal ifornia 2
9 Mi nnesota 2
10 0hio 2
1-1 l¡i sconsi n 2
a2 N'i chi gan 2
L3 TeXaS 2
74 ¡lberta 2
15 eritish columbia 2
16 saskatchewan 2

0
1
1
1
1
1
1
2
2
2

2
2
3
3
3

No8
NO 14
No 20
No 26
No 291

No 35
YEs S
YES S
YES S
Yes S
YCS S
YEs S

YES S
YES S
Yes s

gtreel
gtree2
gtree3
gtree4
gt ree 5
gtree6
gtreeT
gt ree 8
gtree9

Figure 5.4: The foìder data file

Figure 5.4 shows the folder data file which is used for the construction of the

folder tree. The folder data file includes folder name, subfolder, a signature tree

pointer and so on. The Id column holds the identification number for each folder.

The second column, FolderName, gives the category information by which images

are classified to store in the disk. The Layer column identify the folder Iayer. Parent

column identify the folder's parent. Leaf cohtmn indicates whether its folder points

to a signature tree. The folder is a tree structure itself. The children of each folder

is indicated by Subf olderf Si,gatureTreePoinúer column. This column also points

to the corresponding signature tree. The given example only has three layers. Both

layer 0 and layer t have subfolders, while layer 2 does not have. Instead, the layer 2

Iinks to the signature tree.

Searching a folder works as follows: 1) when a querying folder comes, the program

check the signature at the corresponding layer in the index file; 2) If the result is

matched, the program can further check the folder data to flnd the exact matched

folder; 3) If there is not exact matched result, the program stops. Otherwise, the

program is prepared to further compare the signature at the next layer.

Figure 5.5 shows the structure of an image signature file. It consists of five

5.1. PRoro:rvpp 45

Format sr ze
01000 1000000000
0l-010 0000001000
00001 0100000000
01000 0010000000
01100 0100000000
01010 0010000000
00100 0001_000000
00010 01_00000000

Figure 5.5: Image signature in a partition

columns. The first column, Imgi.d, indicates the identification number of images.

The second column, ImgSi,gnature,is object signature, which is obtained by super-

imposing the objects in an image. The Relati,on column stores the relation signature.

For an image with k objects, object signatures are generated by a hash function, and

these k object signatures are superimposed together to form a block signature, which

is the object field of an image signature. k objects in an image have k+(k - 1) rela-

tionships, which fall into six categories: DISJOINT,OVERLAP, MEET, CONTAIN,

CROSSING and EQUAL. The relation signatures of an image are superimposed to-

gether to generate the relation field. Since there are only six spatiai relationships

defined in this research) I use a six-bit string to represent relation signatures. For

example, I use "100000" to stand for the "DISJOINT" relation and "000010" to rep-

resent the "CONTAIN" relation. If all the object pairs in an image are belonged

to the "DISJOINT" and the "CONTAIN" relationships, then the image relationship

signature is "100010". The size filed and the format field are generated similar to

the relation fieìd. In this research, the variety of images formats, such as .bmp, .jpg,

.jif,.tiff,.png, are constructed into a signature. I use one signature to stand for .bmp

type, and different signature to represent another format. The format signatures for

an image are superimposed together to form a signature. Figure 5.6 gives an example

how to construct a size signature.

The DBIVI^9s use so called schema to describe the database and the table layout.

Flè Edit -læt

rmgid -

1
2
3
4
5

6
7
I

Vbr sCa

ImgSi gnatu re
11010001001-10100
1110011001-1-10110
01010001000101_01
0100010001000110
01000000011_00110
0100000001000110
0100001001_l-00110
011-0000001000100

nel ati on
l_10001
110001
1101_00
000101_
111000
0l_1000
011001
l_10000

46 CHepreR 5. Ivtpl-BtvlBruTATIoN

Alslclo
300 600 900

Figure 5.6: How to construct size signature

lmage Pâth

lmgld I lmage Path

lmage Relât¡onsh¡ps

lmgld lDisjoint I Overlap I Meet I .. I Equal

lmage Size

lmgld Length I Width

lmage Format

lmgld I lmage Formal

Figure 5.7: Schema diagram for the database

Lnaee lensth ridth itrrns si snature

263 * 300 263 < 300 300=300 AA I 00 I 0000

350 * 6i0 300<i50 <60c 300< 650<900 BC 0001 01 00

s00 * 950 600<800 <90c)50 >900 CD 0000010i
1200 * 1100 1200 >900 i 10û >900 DD 0001 0010

5.2. PeRrruoi.rBo StcNaruRp TRBp

Figure 5.8: Report

The database schema provides the information for the specific tables within a database

as well as the relationships between tables. It is specified during the database design

and is not expected to change frequently. Figure 5.7 displays the schema diagram of

this prototype database System. The signature indexing file is linked to real database

records through Imageld fr,eld.

Figure 5.8 shows the example of a query result. The image can be displayed by

clicking the table cell with a mouse.

6.2 Partitioned Signature Tree

Figure 5.9 displays the class diagram for the PST. Class P¿rúi,ti.onedSi,gnatureTree,

BalancedS'ignatureTree and Si,gnatureTree àre three main components in P,97.

The roles and their relationships of these classes are defined as follows:

c PartitionSignatureTYee. This class is responsible for dividing the signature file

into partitions and creates a key tree, which hold the key information for all

the partitions. It inherits from class BinTree, which is a tree structure for a

collection of class objects, called BTreeNode. Parti,tionSignatureTree invokes

pUasyQueue class when it saves the key tree by the level order into the disk.

47

48 CHaprpn 5. Itr¡pl-pt¿pi.¡TATIoN

SignatureTreeN ode

PartitionS ignatureTree

searchBTree0

Figure 5.9: Class diagram for PST

5.2. PaRrrloNpr Srciv¿ruRB TRBp 49

É-

ü

-

Figure 5.10: The flow chart for PST

fP-tl

ril;l
101000f000101 Ittt /----J

r 1001m0r01

1 100100r 101

fPrcJ:æCî] fPÆssT] P@es ll P@e$ nl I[tIJ I [t
L__) I

50 Cu¿prBR 5. Ilt¡pr-ptr¿SNTATIoN

Afber storing the key tree, it further construct the partitioned signatures into

a tree by calling BalancedSignatureTree. When searching a query signature,

it uses S'ignature class to create a query signature, and invokes Priori,tgQueue

to preserve the ID information for the activated partitions.

BalancedSignatureTree. This class constructs signatures into a balanced sig-

nature tree. This class inherits from class SignatureTree, with some methods

overridden, such as 'insert,createlnnerNode, etc. These overridden methods

implement the weight-based method to ensure the generation of the balanced

signature tree.

SignatureT[ee. This class constructs signatures into a signature tree. Although

S i, gnatur eT r ee and P artition S i gnatur eT r ee have some similar methods, such

as search, insertion, deletion, etc, the inherit operation is quite different. The

internal node of the Keytree in the PartitionS'ignatureTree is generating by a

splitting process as the BST does, while the internal node of S'ignatureTree is

generated by comparing the signature difference between two signatures. There-

fore, class SignatureTree inherited from class Bi,naryTree which has a different

tree node structure with Bi,nTree. Si,gnatureTree also invokes pEasgQueue

when it traverses tree by level order.

Figure 5.10 shows the procedure of constructing the PST. First, the signature file

is scanned and divided into a number of partitions. These partitions are inserted into

an Arraylisú for further constructing into a balanced signature tree. At the same

time, a key tree is created and the data values of tree nodes are buffered into an

array by the level order. This array is further stored into disk. By doing this, a key

tree is successfully stored into the disk for further retrieval. Figure 5.11 shows the

algorithm for storing tree to an array. Next, the partitions stored in the Arrayl'ist

are constructed into balanced signature trees. Finally, these baìanced signature trees

5.2. PeRrruoi.¡no Srcil¿.ruRB TRnn

," Purpose. :-rorr a balanced u:¿ into a buffer
Inpur param ater: rhe roo r of th; tree, arral-
Ouçur. r'oid '*.

public r-oid levelOrderSto re Tree(B Tree roo t.int[] b)

{
pF asÏQueuE Q = n¿ç' pFas]'QueueO=
B Tree rmp;
Inr i =0,
g .ins ert(ro o t)=

if(root l: null) i
if(i <: b.size) {

rr'hile(!q-rsEmp t1'O)

{
imp : (B Tree)(q-remove0):
i f(rn p -g etl eftQ !: nuil) q.insert(tmp.ge rL e ftO) :

if(mi p.g etRigh t() I: null) q -i nser(tmp. getRight0);
bfil: tmp.geùíodeO;
i+=;

]
ì
I

ij

Figure 5.11: Store the tree to an array

are saved into the disk. If the algorithm is implemented with multi-threads, a set

of files should be created for storing partitions to avoid potential file accessing con-

flictions during the partition retrieval. The number of files should be the same as

that of threads. Then, the partitions are distributed into those files according to

their partition identification numbers. For example, assuming there are 4 threads

executing computation. In this ca,se, 4 files are generated to store the partitions and

one file is generated to store the key partition. On the other hand, if the algorithm

is implemented in shared-memory parallel environment, only one file is needed.

Figure 5.12 illustrates a searching procedure for the PST. When a query signature

comes, the PST loads the key tree from the disk. Figure 5.13 shows the algorithm

for loading the array for key tree from the disk, and Figure 5.14 shows the algorithm

for generating the key tree from an array. Starting from the root of the key tree,

the query is executed and result is a set of I.D. numbers fo¡ the activated partitions.

These I.D. numbers are pushed into a priority queue. In a parallel environment, the

number of queues is the same as that of processes. When â query comes, the different

51

CHeprBn 5. INrpLeN¿er{TATroN52

Query signature

Key træ

Search balanced
signalure tfæ

Load

Key

Priori

Load

Priority

I
^ -{â'L -

r%-fL

Figure 5.12: Search procedure

5.2. PaRrrrroi.¡Bn SrcNar:uRB TRBp

'* Purpose: load a kev tree from the disk
lnput parameter: the filename for storing the kev tree- -4rrav
Output: void

stâtic v oid loadPartition(S trin g filename. in t[] readB u fl
{

File fln:
RandomA ccessFile ¡af-
iut length:
int offset = 0' ,i kev tree's offset in the file.
Tt]' (

fin = ner',' File(filenam e):
raf = neç Randon-{ ccessFile(fla." r"):
S vstem -out,println ("':lR estorin g Partition si gnature tree..."):
ra f.s eek (ofset):
for (int i=0; i<length; i--) {

readB uf[i] = raf.readlnt();
)
ra f.c1o s e():
S vstÈm,out.printla("

r.n Pa ge resto¡ed successfully."):
)
catch(Exceptiou e) {

e.priatStackTrace();
)

Ì

Figure 5.13: Load an ârray from disk

.:+ Purpose: create a balanced tree fronr an arrav
Input parameter: arrav. ar¡av index- anav size
Outpuf: Tree

public BTree CreateAiravTree(int[] a. int i. int size) {
if (i >= size)

return uull:
else

trv {
return (

C¡eateT reeÌf ode(a[i].
CreateA¡¡avTree(a. 2 + i = 1. size).
CreateArlavTree(a, 2 + i - l. size))):

Ì
catch (Exception es) {

reh¡rn uull:
)

)

public BTree CreateTreeNode(ini dl.BTree p 1. BTree p2) {
BTr¿e t:
t = ueñ' BTree(d1,p 1-p3):
t.setleft(p 1):
t,setRight(p2):
fetum t:

Ì

trt

Figure 5.14: Generate the key tree from an array

54

processes can retrieve the activated partitions from

files concurrently.

Cuaprpn 5. In¿pr,Brr¿pNTATroN

the queues and its corresponding

Chapter 6

Experimental Results

In order to test scalability of balanced signature tree algorithm as well as consistency

with the theoreticaì analysis in chapter 4, this chapter will present the simulation

results followed by the evaluation of performance.

6.1 Working Platform

The working platform will be based on a Toshiba Satellite M35X-S161 notebook with

a 1.30GHz Iníel Celeron Processor, a 60GB disk and 512M bytes of memory.

6.2 Test Data

We have written a program to generate several signature frles as the test data, with

each containing 10000, 40000, 60000, 80000, and 100000 signatures respectively. Gen-

erating a signature file includes the following two steps: First, construct a signature

by setting a binary string with length of I and weight of tr. Second, superimpose 7?

signatures to form a block signature, and then store these block signatures into a file.

rtr
r)t)

56 CHeprpn 6. ExppRrvrpNrer, Rnsulrs

Signature file

32 bits

BST PST

Experimental

Value

Theoretical

Value

Experimentaì

Value

Theoretical

Value

10000 8K 5.998K 9K 5.998K

40000 32K 23.998K 33K 24.004K

60000 48K 35.998K 491< 36.022K

80000 64r< 47.998K 65K 48.030K

Table 6.1: Comparison of storage overheads of BST against PSZ

6.3 Storage Overheads

Signature tree uses position nodes to specify its search path. These position nodes

are additional data structures to the signature file. Therefore, signature tree requires

additional disk space for these position nodes. Table 6.1 shows the storage overhead

for the BST and the P^97 with signatures of 32 bits in length. As can be seen, the

partitioned signature tree occupies more space than the balanced signature tree. The

reason is that the key table requires an extra space. The simulation value is 33%

larger than the theoretical value. This ¡atio is constant as the signature file increases.

6.4 Signature Reduction

Signature Reduction performance is conducted with S,SJ code (Stochastic Simulation

in Java). A query process will be repeated 100 times. For each process, a signature

will be generated randomly , and the number of drops (including true drops and false

drops) will be collected. Finally, the drops will be obtained by averaging the sum of

drops in each process. The signature reduction rate is examined in two directions.

6.4. SrcNeruRs RsoucrtoN Énr)t

Weight Signature reduction ratio

Theoretical Simuiation

10 0.9765E-05 0.0063

16 1.52588E-05 0.0013

20 9.53674Ð-07 0.0005

24 5.960468-08 0.0003

32 2.328038-10 0.0001

Table 6.2: Signature reduction ratio against weight

Figure 6.1: Signature reduction of the PST against weight

First, I perform the test by changing query weights. Second, I investigate the perfor-

mance on different signature file sizes. The analysis in chapter 4 indicates that B,9T

and PST have the same reduction rate, I only list the test resuits for PST.

6.4.L Signature Reduction with Weight

Table 6.2 gives the results of the signature reduction ratio against the query signature

weight for PST. Figure 6.1 shows that the signature reduction ratio decreases as

query weight increases. The simulation results also agree with the theoretical value.

This indicates that query weight has a big impact on signature reduction rate.

Weight Signature Reduction Ratio

Theoretical Simulation 1 Simulation 2 Simulation 3

10 0.9765E-05 0.0063 0.0052 0.004

16 1.525888-05 0.0013 0.0009 0.0007

20 9.53674E'-07 0.0005 0.0005 0.000225

24 5.96046E-08 0.0003 0.0005 0.000125

DOòL 2.32803E-10 0.0001 0.0005 0.00005

58 CseprpR 6. ExpBRrrr¡pNTAL RESULTS

Table 6.3: Signature reduction ratio against the size

1'----1:

---- ¡--\-- ----------

----*--\,1\---------

0. 00?

0.006

: 0. 005

i o.ooa

: 0. 003

i

0. 001

0

+ rhlorÈtrcal
* simuladonl
+ simulationl
*Þ simìrlatioiì

20

eoèr! Eëi cht

Figure 6.2: Signature reduction ratio of the P^9?

6.4.2 Signature Reduction with Data Size

Table 6.3 shows how the signature reduction ratio varies with different data sizes.

As shown in Figure 6.2, as signature flle size increases, the signature reduction ratio

decreases. The larger the file size is, the closer to the theoretìcal value. This is due

to the fact that statistical variation decreases as the file size increases.

6.5. PaRrruoiv AccBss AcATNST Qunnv Wercur

Figure 6.3: Partition access against query weight

6.5 Partition Access against Query Weight

Query weight affects partition accesses. Figure 6.3 shows that the number of parti-

tions accessed when 80000 signatures are divided into 80 partitions with each contain-

ing 1000 signatures. In this chart, the X axis stands for the ratio of query weight to

the signature length, while Y axis represents partition accesses. As can be seen, the

number of partition accesses increases as the ratio of query weight to the signature

decreases. This result is in accordance with the analyticai prediction for a PST.

6.6 Retrieval Cost

For the small size BST and PST, the later does not show much advantage over the

former. The retrieval cost of the balanced signature tree is less than the partitioned

signature tree. This is due to TIO cost for the partitioned signature tree. According

to my test, an operation to load a partition from disk usually takes 290 - 320 msc.

So, the test was conducted in a multitask environment to determine íf PST shows

more advantages in these circumstances. Initially, the experiments were carried out

using Java threads. Table 6.4 provides a set of results of the retrieval cost for the

59

,10 00

35 00

30.00

25.00

20 00

15 00

10.00

500

000

m

æ)
ffi

æ w t!ë.H

Eilñ;l

409ó

60 Csaprpn 6. ExpnRrueNral Rpsur-rs

Signature file size Execution time (msc)

Threads 1 Threads 2 Threads 3

10000 391 383 425

20000 L026 624 I290

40000 1722 879 1940

60000 ^^no¿LI¿ r465 2690

80000 3077 t917 3993

Table 6.4: Retrieval cost

partitioned signature tree which is plotted as a graph in Figure 6.4. In these tests,

the partition size was set to 10000 signatures. As can be seen, the multithread

program yields fairly good performance when the thread number is 2. However,

when the thread number is over three, the search time is longer than that of the one

thread program. The reason for this is that the Java multithread is not true parallel

processing. Java multithreaded mechanism is designed for efiÊciently utilizing CPU

and other resources within a process by keeping the processes to run continuousiy [t6] .

By assigning a time slot for each thread and swapping the active thread during the

execution, JVM makes the execution of several threads appear to be simultaneous.

There is only one thread accessing one physical processor at one moment in Java.

The true parallel processing requires two or more physical processors.

Since current Java program for a single processor can not run on different phys-

ical processors straightforwardly. I implemented the partitioned signature tree with

Jaua OpenMP on the muìtiprocess machine. The parallel machine I used is an

IBIVI Netfini,tg 8500 at the University of Manitoba. This computer has a shared-

memoryprocessor (SMP) system with S Intel Xeon 700 Mhz processors and 7.5 GB

of memory. Figure 6.5 shows the retrieval time against different processes.

Retrieval cost vs. var¡ous input s¡z e

lnputsize

3acl

,E ?3c3

s ??0c
o -^^^

f, r:cc
ox icccU

c

8C333

6.6. RBrRrBver, Cosr 61

Figure 6.4: Retrieval time

Table 6.5: Retrieve time of the PST

Number of Processes The Number of Processes

10 2 4 o 8

i0000 396 t É.)ÐùJ 326 318 316

20000 1013 665 632 625 618

40000 7625 976 637 625 618

60000 2239 980 940 624 622

80000 2859 1588 940 632 625

3500

3000

! zsoo
o
- 2000

È lsoo

Ë 1000

500

0

12J68
The nunùer of processes

Figure 6.5: Retrieval time vs. processes

The Number of Insertion Insertion Time(msc)

1000 1500 2000 2500 4000

62 CHeprpR 6. ExppRrrr¡pNrar, Rpsur,rs

Table 6.6: Insertion time of PST

Figure 6.6: Insertion time of PST

6.7 Update Cost

6.7.L Insertion Cost

Table 6.6 presents the test results for insertion cost which is plotted as graph in

Figure 6.6. As can be seen, the insertion cost increases as the signature file increases.

When insertion causes a partition to be oversized, a new partition should be gen-

erated to accommodate new signatures. The worst case for scheme 1 in chapter 3

is when new signature is about to be inserted into a partition that is at its maxi-

Signature file 10000 416 453 489 609 1754

Signature file 20000 1008 1040 1101 1226 1792

Signature file 40000 t622 1679 L7t0 2706 r'rÐ ¿7.)
Lò1.)

Signature file 60000 2267 2264 2400 2770 2925

Signature file 80000 2705 2917 3248 3438 3623

,
-,--.--./ -è

3!0 0

300 0

I 2S00
a

= 200 0

EË rs00

- 10c0

s0 0

0

+Signåîure flË 100C0

+ S¡gnature flÈ 20C00

-* SignaiurË fle 30C00

-8- Signôture tìe 6CC00

+ Si0nature ile 80C00

1000 1500 2004 2500 .1000

The ll umber of l¡ odes

6.7. Upoere Cosr

Table 6.7: Usage of partitions

The Number of Insertion Deletion Time(msc)

1000 1500 2000 2500 4000

Signature file 10000 410 424 446 448 45r

Signature file 20000 NDÐ
I t)L) 1038 1059 1088 T074

Signature frle 40000 1588 1645 i688 7717 t774

Signature file 60000 2144 2239 2244 2144 2340

Signature file 80000 2704 .\r7 É. cL I t)t) 2880 2885 2912

Table 6.8: Deletion time of PST

mum size, an internal node is generated to identify the different bit between the new

inserted signature and one existing signature with the partition. The splitting parti-

tion occurred on this internal node. Its left and right children should go to two new

partitions. The usage of two partitions is rather low being one child signature per

partition. The usage of this partition is rather low l/partition size. This situation

will never occur with the scheme 2 because it splits partitions from the root and

Table 6.7 gives the comparison.

6.7.2 Deletion Cost

63

Partition size Partition Efficiency

Scheme 1 Scheme 2

256 0.004 0.45

572 0.002 0.47

7024 0.001 0.48

Table 6.8 gives the test results for the deletion cost which is plotted in Figure 6.7.

64 CueprBn 6. ExpsRr\4pi{rei- RBsulirs

3500

30û c

250 0

F 20o o

=o

€ r5oo
o

t000

500

0

+Signature flÈ 10c00

+ Siqnature ñle 20000

-¡_ SignâturË llÈ 400C0

+ SignaiurÈ ile ê0c00
+ SicnaturÈ úle ô0C0C

1000 1500 2000 2500 ¡000

The llumber of l¡odes

Figure 6.7: Deletion time

As can be seen, the deletion cost increases as the signature file increases. Com-

pared with the insertion cost, the deletion cost is much lower. This is because gener-

ating the new internal nodes using the weight method costs more time.

Chapter 7

Discussion and Conclusions

This chapter presents a summary of in this thesis, and provides suggestions for future

work in this area.

7.L Summary of Contributions

in this research, we presented an image indexing algorithm for large image databases.

This indexing algorithm uses the signature file technique that eliminates unnecessary

searches to improve retrieval speed. The motivation for this algorithm is to overcome

the limitation of the current research on image signature fiie methods that suffer some

serious problems, such as not utilizing the flltering feature of signature file, lacking of

experimental results or neglecting some import image features. We analyzed the per-

formance of the major components of this algorithm and evaluated it by experiments.

The primary contributions of this research are summarized as below. First, this thesis

introduced an image model that specifies the image features by extending the ASS

model. Previous image signature algorithms only considered image objects and their

spatial relationships. This model improves on this by providing image storage path

information, image pixeì size as well as image format. With this model, an image is

transformed into a textual record with a special structure, which can be efficiently

65

bf) Cs¡.prpR 7. DrscussroN AND CoNcr,usroNs

handled using signature files and signature trees. Secondly, this thesis presented the

Image Signature Tree algorithm that filters images level by level. Some previous re-

search on image signature algorithm suffered from either lacks of filtering ability or

did not use advanced signature file technique. This approach is based on a balanced

signature tree algorithm that exhibits high performance. An image retrieval system

is developed to demonstrate the feasibility of 1,S? algorithm. Thirdly, a new parti-

tion scheme is proposed to divide the balanced signature tree into partitions where

each partition holds the same key. The motivation for this scheme is to separate the

signature tree into smaller ones in the case of large number of signatures. Different

from other partitioning schemes, this scheme uses a signature tree structure as the

key. This saves search space and mitigates the false drop probability significantly.

It also supports the paraìlel programming. The significant feature of this scheme is

that it is able to provide a good workload balance and partition usage. Finally, this

research provides an in-depth analysis for signature reduction ratio for the balanced

signature tree. Experiments show that simulation results are close to the theoretical

estimation.

7.2 F\rture Work

The following describes the possible extensions to this thesis:

7.2. FuruRB Wonx ot

1. We would like to implement more signature algorithms. Through comparing

the performance with various algorithms, we can better understand the advan-

tages and weakness of the signature tree algorithm, the balanced signature tree

algorithm as well as the partitioned signature tree algorithm.

2. This thesis presented a prototype system with lST method. However, the lack

of a large amount of test data for 1^9? algorithm is the weakness of this research.

Also, this thesis has not provided a sufficient analysis for the folder tree, which

should be conducted to prove the efficiency of IST method.

3. The image model we designed has not captured all image features. More image

attributes, such as color, shape, etc, can be added to the image model to provide

more accurate description of images. If so, more query condition can be def,ned

when performing image searches. As query criteria increase, the accuracy of

expected image will increase.

4. This research assumes image objects can be identified within images. In real-

ity, extracting image objects from images is rather challenging. In the future,

automatically abstracting objects from an image will be a significant research

topic in image retrieval.

68 CHapren 7. DlscussroN AND CoNcr.usroNs

Appendix A

An Example for Analyzing a

Balanced Signature Tree

Figure 4.1 illustrates a balanced signature tree generated from 16 signatures. The

signature file contains the equal number of "0" bits and "1" bits. That is, there are

32 "0" bits and 32 "I" bits in the file. The balanced signature tree consists of 15

internal nodes and 16 leaves which stand for 16 signatures.

When a query signature comes) the search is performed and the results can be

classified into five categories according to its weight:

Case 1 ('un : 4): the query signature is "1111". Starting from the root of the bal-

anced signature tree, the first bit is checked. After that, it goes to the right subtree

>-(r)
/\, ,,4 >

) (.) (s)r.)(x
Q')Q'rQ'rQ')t9

Figure 4.1: A Balanced Signature T[ee

TOApppivorx A. Aw ExevpLE FoR ANalvzrNc ¡ BaLexcpo SIcruetuRB TeBB

Query Signature
1111

Figure 4.2: Case 1: Query Signature Weight is 4

to check the second bit. The highlighted edges in figure 4.2 show the search path.

The resulting signature is the shadowed leaf node (,516) in figure 4.2.

Case2 (.n :3): the query signature has four possible cases, which are 0111,1011,1101,1110.

The search processes are shown in figure 4.3(a),(å),(c) and (d) respectively. No mat-

ter what case is, each of them has two signature drops.

Case 3 (rl.,n : 2): the query signature has six possible combinations, which are

0011,0101,0110,1001,1010,1100. Figure A. (a),(b),(c),(d),(e) and (/) illustrate the

search path for each case respectively. All of the cases share one common feature,

that is, every case results four signature drops.

Case 4 (.0 : 1): the query signature has four possible cases, which are 0001,0010,0100,1000,

as shown in figure 4.5. All of the cases have eight signature drops.

Case 5 (rn :0): the query signature is 0000, and the result contains sixteen signature

drops, as shown in figure 4.6.

The above illustration shows that the average number of signature drops depends

on the weight of query signature, rather than the position of "1"s in the query signa-

ture. It occurs in the space of events [1] with certain discipline. Table 4.1 shows the

relationships between signature weight, the number of drops and drops occurrence

probability.

According to the table 4.1, let X be the random variable of signature drops. The

71

Query Signature
101 1

Query Signature
011 1

(a)

Query Signature
1 101

(b)

Query Signature
1110

Figure 4.3: Case 2: Query Signature Weight is 3

Table 4.1: Signature Drops against Weight

Weight

i

Signature Drops

X : 0.5t * sarnple space(2*)

Numbers of Signature

with Same Weights (])

Occurrence

Probabilitv(i) tz*
i:4 76 * (tl2)a :1 1 Ll16

:_o
l-r) 76*(712)3:Z 4 4116

í:2 76+(712)2:4 t) 6116

i:1 16x(1/2)1:a 4 4l16

i:0 16*(712)o:t6 1 rl16

T2AppBNorx A. AN Exetr¡plp FoR AitalvzlNc ¡ Bar-aNcpo SrcNeruRp Tnee

Query Signature
001 1

(a)

Query Signature
01 10

(c)

Query Signature
1010

Query Signature
0101

(b)

Query Signãture
1001

Query Signature
1 1û0

Query Signature Weight is 2

/ð

Query Signature
0001

Query Signature
0010

(b)

Query Signature
1000

(a)

Query Signature
0100

Figure 4.5: Case 4: Query Signature Weight is 1

Query Signature
0000

Figure 4.6: Case 5: Query Signature Weight is 0

T4Appexorx A. AN ExevpLE FoR ANar,vzrxc a Balexcpo SrcNaruRB TRBB

average number of signature drops (ASD), is calculated as foilows:

4

ASD:ÐXnn:5.0625 (4.1)
i:0

Compared to the sequential signature file, the signature drops are reduced from 16

to 5.0625.

tsibliography

[1] A. O. Allen. Probabili,tg, Sto,tisti,cs and Queuing Theory wi,th Computer Science

Applicati,ons. Academic Press, New York, USA, 1990.

[2] J. L. Bently. Multidimensional binary search in database applications. IEEE

trans act'ions on s oftw are eng,ineering, 4(5) :333*340, 1 g7g.

[3] A. Bertrand. should I store images in the database or the file

system. hftp: I ldatabases.aspfaq.com/database/should-i-store-images-in-the-

database-or-the-filesystem.html, 2006.

[4] Y. Chen. Signature files and signature trees. Informat'ion Process,ing Letters,

82(a):2I3-221, 2002.

[5] Y. Chen. On the signature trees and balanced signature trees. In Proceedings of

the 21st Internati,onal Conference on Data Engi,neeri,nq, pages 742-TSB, Tokyo,

Japan, April 2005.

[6] T. M. connolly and c. E. Begg. Database sgstems. Addison wesley, New york,

usA, 2002.

[7] Microsoft corporation. store images in a database.

http I loffice.microsoft.com/en-us/assistance lHP0528022b1033.aspx, 2006.

[8] J. P. Eakins. Retrieval of still images by content. In Lectures on i,nforrnat¿on

retrieual, pages 111-138, New York, USA, September 2001.

17t
fd

76

[9] E. A. El-Kwae and M. R. Kabuka.

image databases. ACM Transact,ions

2000.

BleLlocRepuy

Efficient content-based indexing of large

on Informatzon Systems, IB(2):IT7-2I0,

[10] R. Elmasri and S. B. Navathe. Fund,amentals of Database Systems. Addision-

Wesley, California, USA, 1994.

[11] C. Faloutsos and S. Christodoulakis.

signature file methods for office filino

Sy stems, 5(3) :237-257, I}BT .

Description and performance analysis of

ACM Transact,ions on Office Information

[12] T. Gevers and A. w. M. smeurders. Image search engines an overview.

http: I I statr science. uva. nl/ gevers/pub/overview. p df , 2008.

[13] F' Grandi, P. Tiberio, and P. Zenila. Frame-sliced partitioned parallel signature

frles. In Proceedzngs of the 15th Annual Internati,onal ACM SIGIR Conference

on Research and Deuelopment ,in Inform,ation Retrieual, pages 286-29T, copen_

hagen,Denmark, June 1gg2.

[14] C' J. Guarin. Access by content of d.ocuments in an office information system. In

SIGIR '88: Proceedi'ngs of the 1lth annual,internationat ACM SIGIR conference

on Research and deuelopment'in inforrnati,on retrieual, pages 62g_.644,New york,

USA, May 1988.

[15] A' Guttman. R-trees: a dynamic index structure for spatial searching. In pro-

ceedi,ngs of the SIGMoD conference, pages 47*57, Boston, usA, June 1gg4.

[16] i. Horton. Beginning Jaua 2. Wrox press Ltd, Birmingham, rJK,2002.

[17] N. Katayama and s. satoh. The sR-tree: An index structure for high_

dimensional nearest neighbor queries. In 1997 ACM SIGMOD Internati,onal

conference on Managernent of Data, pages 13-15, New york, usA, June 1g97.

BreLrocRapHy

[18] M. L. Kherfi, D. Ziot, and A. Bernardi. Image retrieval

web: Issues, techniques, and systems. ACM Computi,ng

2004.

77

from the world wide

Suraeys, 36(1):35*67,

[21]

l22l

[19] J. K. Kim and J. W. Chang. A new parallel signature file method for efficient

information retrieval. In CIKM '95, Proceedings of the fourth International Con-

ference on Information and Knowledge Managemenú, pages 66_TJ, Baltimore,

USA, November 1995.

[20] C. H. Lee and P. W. Huang. Image indexing and similarity retrieval based on

key objects. In ICME, pages 8Ig-822, Taipei, Taiwan, June 2004.

D. L. Lee, Y. M. Kim, and G. Patel. Efficient signature file methods for text

retrieval. IEEE Transact'ions on Knowledge and Data Engi,neering, T(J):42J_485,

1995.

D. L. Lee and C. W. Leng. Partitioned signature files: Design issues and perfor-

mance evaluation. ACM Transaction on Informati,on Systems, z:1bg-1g0, 1ggg.

123) Z- Lin and C. Faloutsos. Frame-sliced signature files. IEEE Transactions on

Knowledge and D ata Eng,ineering, 4(J):2BI_289, Igg2.

l24l M. A. Nascimento and V. Chitkara. Color-based image retrieval using bi¡ary

signatures. ln Proceedi,ngs of the 200p ACM Symposi,um on Appli,ed, Computing,

pages 687-692, Madrid, Spain, March 2002.

[25] C. S. Roberts. Partial match retrieval via the method of the superimposed codes.

Proc. IEEE, 67 (12):7624-1642, IgTg .

[26] R. sacks-Davis, Member, IEEE, A. Kent, K. Ramamohanarao, J. Thom, and

J. ZobeL Atlas: A nested relational database system for text applications. IEEE

Transactions on Knowledge and data engi,neeri,ng, T(J):454_.470, rgg5.

78 BreLrocRapHv

l27l J. R. Shin, C. B. Son, J. S. Yoo, and B. M. Im. A dynamic signature file

declustering method based on the signature difference. International Journal of

Informati,on Technology, 8(1) :5, 2002.

[28] B. Vicario. Image Descripti,on and Retrieuøl. Plenum Publishing Corporation,

New York, USA, 1998.

[29] A. M. Zaremski and J. M. Wing. Signature matching: A tool for using soft-

ware libraries. ACM Transactions on Softuare Eng'ineering and. Method,ology,

a(2):La6-U0, 1995.

[30] P. Zezula. Linear hashing for signature files. In the IFIP TC6 and TC9 Interna-

ti,onal Symposi,urn on Networlc Informati,on Processzng Sgstems, pages 192-796,

Sofia, Bulgaria, May 1998.

[31] P. Zezttla, P. Ciaccia, and P. Tiberio. Hamming filters: A dynamic signature file

organization for parallel stores. In 19tl¿ Internat'ional Conference on Very Large

Data Bases, pages 314-327, Dublin, Ireland, August 1993.

[32] P. Zezula, P. Ciaccia, and P. Tiberio. Key-based partitioned bit-sliced signature

frle. SIGIR Forum, 29(2):20-3a, 1995.

[33] P. Zezula and F. Rabitti. Dynamic partitioning of signature files. ACM Trans-

actions on Infomnati,on Systerns, 9(4):336-369, 1991.

