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Abstract

This thesis Presents an anl¡ical solution to the freld in an H-plane sec-

toral waveguide partially loaded with a lossy substance' A survey of known

methods of solution to the problem of parallel to sectoral waveguide is

presented.

An application of Stokes's theorem to the parallel plate - sectoral

waveguide junction allows us to 6nd an anal¡ical solution to join fields of

parallel plate and sectoral waveguides. Inverse scattering of the electromag-

netic wave on a discontinuity created by an imperfect dielectric placed inside

such a sectoral waveguide is solved rigorously. A comparison between this

method and others is outtined. The solution is examined with respect to com-

putability of components involving series. Justification of the various

assumptions and simplifications introduced is made. The solution is con-

verted in the one port scattering parÍrmeters of a waveguide.

Possibility of recovering the information about the dielectric constant

and loss tangent of the dielectric medium is discussed. A comparison

between numerical results and experiment is shown, while conclusions and

suggestions for future research are given.
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Index of Symbols

ãr,tÌ, är'unit vectors in Cartesian coordinate system,

ã0,û6, ã, unit vectors in the cylindrical coordinate system,

,{o("0) , Ár("0) ,Az(ro)... coefficients of Debye's expansion of Hankel functions,

A^ coefficient of expansion of the straightforward point matching method,

.É electric field vector,

Ê magnetic field vector,

E*(r) , H*(r) amplitude functions of monochromatic fa¡ ûeld, electric and mag-

netic, respectively,

Fn coefficient of expansion of the alternative point matching method,

G (r) kernel of the Fourier transform,

n Át) (* ù , H ÁzJ (e p) Hankel functions of the first and second kinds, respectively,

2*r,rt** electric and magnetic vector mode functions, respectively,

j imaginary unit of a complex number,

k lree space propagation constant,

ñ normal unit vector,

R1, R2, Rl, Rq regions of interest, details in text,

3 vector along a closed path,

S surface normal vector,

3 eoynting vector,

f ,0 , I10 zero order transmission and reflection coefficients of the parallel plate-

sectoral waveguide ¡,rnctioo, respectively,

f I , If ûrst order transmission and reflection coefficients, respectively, of the

parallel plate-sectoral waveguide junction,iil
,:i

ll
ì
il:

.l:
,a



VI

T, ,1, total transmission and reflection coefficients of the parallel plate-sectoral

waveguide junction,

V scalar potential field,

Y g free space admittance,

c fla¡e angle of a horn antenna or differential parameter,

B parameter depending on the context,

Tñ waveguide propagation constant of the m-th mode,

ôr. relative error of return loss,

tanõ loss tangent,

eg free space permittivity,

€.r, G¡æ low and high frequency relative dielectric constant, respectively,

((r) free space phase function of the plane wave,

r¡ index of refraction,

0y 02,03 angles of incidence, reflection 4!d refraction, respectively,

)r", waveguide critical wavelength,

p9 free space permeability,

v order of Hankel functions,

pg radius enclosing meniscus region R2,

p, 0 pola¡ coordinates,

o conductivity of a dielectric,

t, rf general coordinates of a point in complete point matching method,

'tg, ry T2, f 3, 14 arguments of Debye's expansion of Hankel functions,

X electric susceptibility,
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CHAPTER 1

Introduction

The use of horn antennas to ascertain dielectric properties of a great number

of natural and industrial materials has found practical applications for a long

period of time [1], although sufficiently rigorous theory of horn antennas with

dielectric discontinuities, both in their internal space and in their nea¡ field, does

not exist at Present.

The ease in which horn antennas can be used is a motivation for building

measuring equipment based upon different configurations involving one horn

antenna reflection or two horn antenna transmission systems.

There is no doubt among resea¡chers that horn antennas with dielectric

insertions provide intriguing possibilities such as reduction of beam width and vol-

tage standing wave ratio (VSWR). Additional factors include increase of peak

power of the main lobe and, probably, decrease of unwanted crosspolarization [2],

which plays a crucial role in the design of feeds for reflector anntenas.

The most signiûcant difficulty to overcome ih the mathematical aspects of

analysis of a transversly loaded horn is the fact that the front of the internal wave

is complex in general and does not always coincide with the dielectric discon-

tinuity surface . This phenomenon results in the commonly called phase error con-

sidered in respect to the horn aperture. In order to solve rigorously the scattering

of the wave of interest by 
"oy 

discontinuity, the ûeld must be decomposed into E.

and H- polarized waves with respect to a ûxed point on a discontinuity surface [3].

Any arbitrÍIry wave function can be represent by its plane integrals [4].

Another critical problem a¡ises with respect to parallel plate and sectoral

waveguides junctions. It is well known that such discontinuities have no exact

solution due to the fact that regions associated with them cannot in most cases be
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them cannot in most cases be described in a single cordinate system. Many

resealchers have contributed a great deal of work to determine analytically the

scattering by such junctions. Among them the most significant contributors Are

Stevenson [5], Solymar [6], Fradin [7], Piefke [8], Hamid [9,13], Bahar [10], Lewin

U7,1Zl, Iskander [13]. In spite of the fact they have based their solutions on

different concepts and theories, this question seems to be still open for an exhaus-

tive treatment. All the above mentioned attempts discuss the case where in the

internal space of the horn (or sectoral waveguide) only outwa¡d propagating

modes exist.

In practice, methods based on the generalized scattering matrix concept [14]

have been widely used by engineers for years. These methods' improve

significantly the performance of the design process, although at the expense of

loss of the physical significance of many subtle occurences inside of the waveguide

structure. The gap between practical and sophisticated scientific design appeÍus to

become larger and larger.

The purpose of this work is to establish'the background necessary to deter-

mine dielectric properties of imperfect dielectrics and any related nonelectrical

quantities (e.g. moisture content) from the back scattering coefficient in the feed

parallel-plate waveguide. In this structure the feed waveguide is terminated by an

H- plane sectoral waveguide, which is part of the sensor. The goal is to be

obtained by solving the problem of scattering at the dielectric discontinuity as

well as the scattering at the waveguide junction discontinuity resulting in the sin-

gle reflection coefficient to be monitored in the feed waveguide.
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CHAPTER 2

Survey of Methods Related to Waveguide Junctions

Polnt matchlng mcthod

This method known also as the collocation method consists of choosing a

linear combination of solutions of the Helmholtz equations in a waveguide such

that the sum satisûes the boundary conditions at the discrete number of boundary

points.

Since the parallel plate and sectoral waveguides (or waveguide-horn junction)

have no common boundary (except for points A and C in fig.2.1) the matching pro-

cedure is ca¡ried for the meniscus region denoted in fig. 2.1by ABCDA.

Fig. 2.1 Convex junction waveguide-horn

Lewin suggests the following representation of the waveguide field [11,12]

Ey:"-iÈÉ *\,^"""
n-1

B

for z1h1 (2.1)
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for p>po (2.2)

and the horn field

E"= 2 r^H l?,-m:|;

since r', is asymptotic to [+J*
ôErm . c
ìi- at Q=-ã va¡ies as

r \ arrn

Ey^=tij " m-e+t

(&p)sinþ"[*.+]J

In order to match both Êelds at the point D , the fierd given by (2.r) must be

extended into the meniscus region. The problem becomes more difficult if we ask

- to what extent the series (2.2) rcpresents the field of the meniscus region ?

Expanding (22) ror rarge varues of the index m, the series becomes

,,=å¡þ:),^"þ"i.+)[+]- ror q>> , (2s)

The wall current depends on the value 
* " ö:=;.

bits a singularity given by the sharp edge of the wedge

For p near po

of fla¡e angle

it exhi-

II-;

.lugì
#, where B is some

which is asymptotic to t(t-p)[?Ju" * p approaches p0. rn order

the required form of singularity, the pÍuameter p should be equal to

o_ l*Ztrc_ffi

parameter, then

(2.4\

to have

(2s)

¡;:'

which clearly says that series having m-th component given by e.$diverges for
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p<po. This leads to the conclusion that extension of the series in the meniscus

region is invalid, although the numerical results seem satisfactory [12].

A concise review of point matching methods is found in [15]. In general

they can be suMivided into:

(a) straightforward point matching method (SPM);

(b) complete point matching method (CPM);

(c) alternative point matching (APM);

(d) extended point matching method (EPM).

The first three methods a¡e based on an internal Rayleigh hypothesis, which

assumes that an expansion of the form

v 10,0)=, L*o^, ^(* 
p¡¿ i^a

is valid everywhere in the region O - (fig. 22), i. e.

ps po

where pq is the radius of convergence of the RHS of (2.6) and

the observation point.

Equation (2.6) is a general solution of the equation

v 2v +kzv:o

with the following boundary condition on C:

V (p,ö)=0 f or E-modes

ôV ,^ tr-n
* þ'0):0 for H-modes

where P e O _ (see Fig. 22).

(2.6')

p is the radius of

(2.t)

(2.8)

(2.e)
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matching method assumes a

(2.6) is made to satisfY either

numerically deter-

boundary condition

ñ'
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1--
^,,

,',,-l--

O:O +tJ O_U C

P+

an arbitrary shape waveguide

For Dirichlet bounda¡y condition (2.8) SPM assumes

where pn,0n denote coordinates of points on C at which V is chosen to satisfy the

boundary conditions. The truncation order M is estimated from the rate of con'

vergence of either cutoff wave number or \4'ave function.

Since in general SPM gives incorrect results for the wavefunction, the use of

the trapezoidal integration rule to approximate certain exact integrals [16] points

an extension of SPM to what is called the complete point matching method

(CPM). In view of CPM, equation (2.10) has the form

M

Ë A^(kpn)"i^o':o
m=-M

F nJ ^[o o, )" 
in o' -g

(2.10)

u'{ +ls2
¡=1

Fig.2.2 Cross-section of a region surrounding

(2.11)
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-M< m <M

where Fn is proportional to the density of certain equivalent surface sources at

chosen points pn,0n on C [16].

Using orthogonality, i.e. multiplying (2.17)by e-'i^v, and then summing over

m from -æ to co one obtains the formula of the alternative point matching

method (APM), i.e.

Tt r ,"t*o"to'{v' 
-t')=o

n:l
(2.12)

I = p = (2M+1)

0<V o=2r

Because (2.10) - (2.12) differ in the index over which the summation is made, the

wave functions computed by the SPM, CPM and APM are different in general.

The least error sensitive method is CPM [15]. Since convergence of the point-

matching technique has never been proven, mainly due to the assumed radius of

convergence in the Rayleigh hypothesis not being always valid, Lewin and Bates

proposed their modifications of the point matching formulation. Lewin [11] pro-

posed the following representation of the field in the meniscus region ABCDA (fig.

2.1)

(2.13)

where f (^) and g (m ) are coefficient functions to be found.

This equation has to be matched to (2.1) on CDA (i.e. z:hl)and to (2.2) on

ABC (i.e. p=po). Similar matching is suggested for first derivatives of (2.7),(2.2)

and (2.13). This concept is related to the idea of "Zwischenmedium" or

,,:il.-h 
þ " [:.+Jl [, ,^)"'-' +s (^¡"-r"11a^
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overlaPPing regions [17]'

Bates [15] in his proposition of an extended point matching method (EPM)

assumes that, in general, it is impossible to ûnd a single series for V, which is

valíd throughout O - (fig. 2.2). He takes a region Â¡ C O in which (2.6) may be

written as

forP € Âr

where the origin of the r,rþ coordinates is a point O¡ , which may or not lie in f\¡ .

The functional forms of the members o1. [Z¡ol must accommodate any singu-

larities which exist in Ä¡. There must be sufficient regions, say L of them, such

that

o -Cintu ÂzU . . .U Ä¿. (2.1s)

Denoting a continuous curye, whích lies in À¡ O 
^n, 

fì O - by C ¡^, it is possible

to match the RHS of (2.13) for I =m and its derivative normal to C ¡^ to the RHS

of (2.13) for I :n and its derivative normal to C ^r. 
The matching is obtained for

a Ênite number of points. Independently, for each /. values of l, the RHS of

(2.13) is made to satisfy the appropriate boundary conditions at a finite number of

points on C (-'l Â¡ . Similarily, for each M values of m , the RHS of (2.13) is made

to satisfy the boundary conditions on C fì 
^-. 

This concePt is similar to that of

Lewin, but is formulated in a more sophisticated manner.

The common mark of point matching methods is that they are based on

matching of a linea¡ combination of Helmholtz equation solutions along certain

boundaries. This results in the fundamental drawback of these methods - they

fail whenever ta jump in boundary conditions gives rise to a nonlineÍu partial

differential equation.

"[ro) 
=lo,oz,r(r,¡)

q

(2.14)

.. i!
.ì.{l
:s
':Èr

.$Ì
ì:.s:

,r'ìt
Lì:

.È¡,,.s

:ir'
'' 

''-1:.l

I,fi

'r{ìì
..î

,è
äì::;:

:È

ìì-:i

..È
,ìfì
:!-,
..!,.

rì.'
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2.2. Modal mstchlng Bethod

Let us consider an a¡bitrary \Ä/aveguide junction as shown in fig. 2.3. An

incident TEro mode with amplitude coefficient To strikes the junction as it travels

in tbe positive z direction. The region on the generator side is denoted by Rr

while the region on the load side is denoted by Rz.

The freld at the junction can be expanded in terms of normal waveguide

modes in the region R1, i.e.

u =[t+ro)a** +,ir,a*,,

ã : [r-ro ), or* *+ å.t, Í*,,
i:1

(2.16)

and 2¡,¡, ñ¡,¡ "t" 
called

(2.17)

vector mode functions inwhere in both equations i + P

region R1.

TEo o R2

Fig.23 An arbitrary waveguide discontinuity
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The field in region R2ma! be expressed by a series of modes as follows

E

rt

=2r,¡íu*, *i ,ur*u Ij=L ( t=t )

:i^',,[u"'-å',*t*nJ

(2.18)

(2.re)

where 2p¡ andrt¡¡ are transverse electric and magnetic vector mode functions in

region R2. s¡t is the scattering coefficient of the next /t *1 junction in the direc-

tion of the load.

The scattering matrix contains information about propagation of the modes

pres€nt between n and n *1 junctions and also scattering properties of junction

z *1. This form of modal matching is found in [18]. In this method the solution

of the junction nearest the load must be obtained 6rst. This requires initial

knowledge about termination of the waveguide. Often this knowledge is based

upon assumptions of a perfectly matched or short line termination. This is one of

the drawbacks of the method. This method is related to more general methods of

point matching, i.e. instead of matching in a ûnite number of points, the latter

method assumes the joining of the vector n,ave equation solutions in two regions

on the abstract junction between them. In the form of (2.15) - (2.18) this method

contains general knowledge about waveguide modes expressed in linea¡ algebra

terminology. Application of this method is confined to waveguides and transmis-

sion lines-

23 Schwartz - Neumann's method of overlapping regions

This method is an extension of Schwartz's original method, which allows

solution of a harmonic differential equation in a region, which is the sum of two

regions.
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If it is known how to solve the problem separately in each of these regions, then

the schwartz - Neumann's method can be applied to the solution of the Dirichlet

problem in a region, which is the common Part ( or intersection in terms of set

theory terminology ) of two other regions overlapping one another.

Let us consider frg.2.7 and find the validity of the above methods according

to [1e] :

^. 
Schwartz's method is applicable for the boundary conditions on LtU LZ

enclosing the region RrU R2 if solution in R1 with the boundary conditions

on L1! f,1 and in R2 with the boundary conditions on L2[-,f 12 arc known,

b. Schwartz - Neumann's method is apptied to the boundary conditions on

LrU I, surrounding the region Rrf-ì R2 if solution in R1 with the boun-

dary conditions on L1! t1 and in R2 with the boundary conditions on

Lzl) l-2 ar" known.

In view of the above interpretation, the meniscus region of interest ( ABCD in

frg.Z.l) lies in the inte¡section of bounda¡ies rather than regions. This can be for-

mulated in terms of set theorY

A = Linli

C : Lin Li'

or alternatively

A = t;n[;
c : fi'n L;'

(220.1)

(220.2)

(221.1)

(221.2)

Since points A and C are associated with different coordinate systems in

which known solutions exist, the region of meniscus is created by z: constant in

the Cartesian coordinate system and p= constant, in the polar cordinate system.
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Neumann,s idea consists of representing the sought function, say n'(p,Ö), in the

form of two functions

w (p,0)=¿ (P '0)+v 
(P 

'0)
(2.22)

The first of which satisfres Helmholtz equation in R1 and the second satisñes the

saúe equation in R2'

The method of overlapping regions \¡/as succesfully employed by Iskander

ancl Hamid [13] to solve for the scattering of electromagnetic waves at waveguide-

horn junction. In their approach the junction is subdivided into two subregions;

namely a semi-infinite parallel plate subregion R1 of width ¿ and the region R2 in

frglz.ldescribed with respect to origin O by r)0 and *å 
' 0 ' -f ' fn"t"

two regions overlap one another in the shaded isosceles triangular area (ûg' 2'1)

Rr I Rr=-[R, Ç nrvn, ç RVR/Â'] (2.23)

Iskander and Hamid expressed the total electric fields in regions R1 and R2 in

terms of Green's functions and made those fields equal at every point within the

triangular area of the overlaPping region, or equivalently at every point on its

boundary. Instead of the mathematically complicated Wiener-Hopf technique'

they employed Schwartz's alternating method for the solution of the integral

equation arising from comparing both electric fields on the nonelectric boundaries

of overlapping region R3. The iterative procedure starts by assuming the freld on

I

the nonmetalic boundary of region R1 to have the value of Ernrlz:l¡t (according

to fig. 2.1) and then using the solution of the electric Êeld equation in R1 to com-

pute the field on the nonmetalic boundary of region R2 at 0:* f . suurtituting

these values in the field equation in the region R2, the ûeld on the boundary

z=hr is calculated. Repeating this procedure several times the 6eld on the
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boundary is found with very small error.

Iskander and Hamid reported excellent convergence of the iteration pro-

cedure and high efficiency with regard to computer time needed'

The main drawback of the method seems to be that the transmission

coefficient of the m -th mode I, must be found from an additional power flow

condition across the waveguide-horn junction. The 6rst time the method of over-

lapping regions was applied to the problem of wave propagatíon around a corner

was by Poritski and Blewett in [30].

2.4 Ray theory methods

2.4.1Gæmetrlcal optlcs as ümltlng case of physlcal optlcs

Geometrical optics is ordinarily concerned with electromagnetic waves that

are essentially plane ( or cylindrical, spherical waves with I * cn ) and that a¡e

propagated in uncharged medium. In ordef to show the above statement we

assume that a formal solution of Maxwell's equations is

where ¡r:9:2! as usual and ((r) is a function which depends on the medium
cI

and reduces to r for free space.

Let us substitute (2.24.1) and (2.24.2) into Maxwell's equations of the form

Ê'=Ê*(r)"-iÈI(r)

iI':íI * (r)t -iÈ t(r)

V xÈ.:j ioeÊ.

V xE'=- j rpÈ'

(2.24.1)

(2242)

(22s.r)

(22s2)
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Substituting (2.2a.Ð into the LHS of (2.252) nd (224.2) into the LHS oL (2.25.1)

and using (2.25.4) and (2.253) respectively and several relevant vector identities

[20], the following equivalent form of Maxwell's equations is obtained

V (pÉ'):O

V (eE''¡:g

o r[o (.Ë.)-r.þ e-v

Since the first term is zero from

V ('V [=.P"&:rf

v çxÊ*+ecaË 
*:{v x?t*

ExÊ+-¡rc¡i+:!v xÉ*

1.F,.=#[o nu*+pv .Ë,*)

lÊ*=+þ .t*+.v 'E'*)
J&€'

v ( x fro ( rË *ì*ecoÉ +:s
I tr"o )

(22s3)

(22s.4)

(2.26.1)

(2.262)

(2.26s)

(226.4)

(2.27)

using the well known triple

(228)

If & >> 1, then the right sides of (2.26.1 -226.4) becomes negligible. Neglect-

ing the RHS of these equations and eliminating È * fto. the frrst by using the

second of these equations, we obtain

Expanding the ûrst term of the above equation, and

product identity [20], we obtain

l)+.p' (Ê+:o

(226.4) we obtain from (2.28)

(22e)
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which in the Cartesian coordinate system has the form

:Tl2 Qn)

Equations (2.28) and (229) show how the direction of a fictitious ray is related to

the index of refraction r¡ at a given point. Both the above equations are the

necessary and sufficient conditions that (223.7) - (2232) be a solution of

Maxwell's equations for geometrical optics approximation, i.e. ).- 0.

2.4.2 Problem of parallel plate and sectoral wavegulde junctlon in the scope of ray

theory

Ray theory in the form known as geometrical theory of diffraction accounts

for the abrupt discontinuity of a junction by edge diffracted rays emanating from

the upper and lower edges of the junction under consideration (fig 2.1). Analysis

of a junction of interest similar to this was initiated by Kinber [21]. He con-

sidered the interior problem of a horn fed by a parallel plate waveguide using the

ray theory concept. The field in the wave region i.e. kr ) y)) 0, is represented

for each particular mode as the sum of two waves which satisfy condition (229) of

geometrical optics. Kinber introduced a concept of the field as an effect of contri-

bution from Brillouin's rays by using Debye's asymptotic expansion of the cylindri-

cal Hankel functions for large arguments (,tr >> v). In his concept each mode

[#J'.[#J'.[*)'

vector (in [21] -vector potential) rotates

centre at the horn apex (frg.Z.Ð.

around a circle of radius " *i,h ,h"
k

Debye's asymptotic form of y (l),(2) with accuracy confined to the ñrst term
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vv,¡j¡-;arccosl;+ï

.-__// ,,/'
.ivö t/

horn antenna

By writing the phase factor of the form

/ þ) 
--¿* iv$

it is found from fig. 2.4 thar¡ the phase is proportional

O f -O 1A-AB f.or e*i"ö,where

(231)

(232)

to the length difference

(2.33.1)

(233.2)

(2.333)

mÍ
, v:-

H GÐ (kr):

otP=

.2-- ¿-iv6

Oz

v
k

I

l

¡

o ¡A=f,,i=f,ut""otf

*:"0ö

Fig.2.4 The geometry of the interior problem of a sectoral
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similar expressions hold for the radiation point 02. The points of radiation O1

a,'d O2a¡e stationary with respect to an observation point P lying in the interior

of tbe horn, thus the ûeld of the point P is a sum of successively reflected rays,

always two, the first from a clockwise and the second from a counterclockwise

rotating vector having phase factor ¿i'ó and ¿-ivö, respectively. According to

Fermar's principle the total length of each ray with resPect to the radiation point

O¡ or 02 is a minimum subject to the condition that a ray undergoes a finite

sequence of reflections at the horn walls.

The above concept of the electromagnetic field deals with the ñrst order rays.

The second order rays are associated with a formation of fringe \r/aves at the rims

of the horn; the third order with the incidence of the latter upon \\'aveguide-horn

junction. The total vector Potential is finally expressed as

(234)

where Q is the number of groups of terms associated with the same order v and

Mq 
^ 

number of terms in the q-tb grouP.

The above method extended to eigenvalue analysis \¡/as used by Hamid [9] to

find the reflection coefficient at a n'aveguide-horn junction.

Yee et al in l22l applied the ray theory method to reflection from the open

end of a waveguide. They based their analysis on the previous work of Keller and

Hamid. They considered a parallel plate waveguide propagating several modes.

Similar to [21] the incident mode is decomposed into two plane waves, whose

scattering by the edges at the termination produces the reflected field. The singly

diffracted cylindrical v¡rave, as known from the asymptotic theory of diffraction,

originates at each edge and is represented by means of diffracted rays. Then the

sum of the ûelds of the multiply reflected rays is converted into modal form- This

Ã:i^É[> qí'2)"*t*-ì ,

q:otla<Mr )
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yields formulas for the reflection coefficients of the various modes due to single

diffraction. In addition double and multiple diffraction terms a¡e also taken into

account yielding a number of improved formulas for reflection coefficient.

It is worthy to point out that Kínber and popienchenko in

disagree with the results ia [zz). Their disagreement is based on

reasoning :

[23] strongly

the following

- considering the diffraction at t\ro successive wedges placed in such a rvay

that the tip of the second wedge is in the neighborhood of the tight shadow

boundary of the first, it is necessary for the geometrical theory of diffraction
method to apply that the "following' edge lies in the zone, in which the
cylindrical fringe wave of diffraction at the preceding edge would be

separated out from the half shadow region. Also in the open end of a

waveguide the third and subsequent diffractions occur at the ,following"

edges lying on the light shadow line of the preceding diffracrion, thus rhe

edges cannot be considered as sources of a cyrindrical wave.

The ray theory method gives accurate results everywhere it is applicable. Its
applicability is confined to problems where & >> 1, which permits us to neglect

the RHS of (2-25.1) ' (2.25.4) and allows use of the first term of the complete
Debye's expansion of the Hankel functions in the wave region, i.e. its asymptotic
form for v>> kr [24].

25 IVKB method

Leona¡d and Yen [25] carried an exhaustive analysis of waveguide horn junc-
tions' They based their work on previous work done by Rice [26] and stevenson

[5] and extended the wKB method to junctions having a large flare angle for the
sectoral region.

a

,i

ì.1:'

I



- 19-

The WKB method, also known as JWKB (Jeffreys, Wentzel, Kramers, Bril-

louin), is an approximate method of differential equation solution [33]. Let us

have the ordinary differential equation

dzE-.+-h1:o
dz'

wt¡ere h=h(z) is a positive imaginary

such that h- jc, c being constant, as

which, together with first derivative,

satisf;es the conditions

Ey="-icz ¡¡ticz

with z- -æ and

where

The constant f is a reflection coefficient to be determined.

The exact expression for the reflection coefficient has the form

,:#!-"*u,Ø#[#J.,

(23s)

functions of z , twice differentiable and

v * -æ . We desire the solution of (235)

is continuous eveÐnvhere and at t æ

(236)

(2s7)

(2s8)

+.V.+#J',:o

Ë:E [') -icz * i g-¡"¡o,

The integral (238) can be solved

and large values of the argument z

ur{r)=\rff"-,

for small values of the reflection coefficient f

by the substitution

(2se)
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which is the WKB aPProximation.

Leona¡d and Yen [25] used the above method with their own extension of

the vector transverse field components expansion and orthogonality properties and

found that the electrical and magnetic eigenfunctions are identical for the two

waveguides at the junction plane due to their identical cross-section. By matching

the fields at the junction plane they obtained general expressions for zero-order

and higher values of reflection - transmission coefficients. The Leona¡d and yen's

\ryKB method becomes extremely complicated for the third order coefficients,

thus must be conûned to waveguides having flare angles up to lf -20o, which is

the main drawback of the method.

2.6 Other methods

It is necessary to mention briefly other methods which may be applied to the

problem of interest. In the section 2.42 it was already shown that any wave pro-

pagating in the parallel plate waveguide can be represented by two plane rvaves.

Then the problem can be solved by considerihg diffraction of each plane wave by

a wedge. Describing the currents of walls and edges adequately to the cha¡acter

of the wave in waveguide, an integral equation for current distribution may be

found which may be solved by either the Wiener-Hopf technique [34] or method

of successive approximation and anal¡ic continuation [19].

Other methods which might be employed for analyzing of waveguide discon-

tinuities a¡e:

- Schwa¡tz-Christoff el transformation,

- perturbation method,
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- the method of nets (ûnite difference method)[25],

- variational methods of Ritz and Galerkin,

- the method of moments.

lr::ì'i;
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CHAPTER 3

properties of Parallel Plate and Sectoral Waveguide Modes

i,, *tra¡ematlcal propertles of parattel plate waveguide modes

The well known derivations presented in this chapter serve as an introduc-

tion to study the ûelds in the case of a parallel plate and sectoral waveguide junc-

tion. There are two reasons for such a review:

- large variety of designations and symbols in a related problem which there-

: fore requires some organization,

, The TE^o modes belong to the most commonly used class associated v/ith

parallel plate waveguides due to their simplicity in any mathematical treatment

and the ease with which they are generated. For such modes, the electric 6eld

has ay -component only, i.e. Er:Er:0.

For periodic ûelds with time factor ei't , Maxwell's equations (2.25.1) and

(2.25.2) lead to

:.l::

, iì':,ì

,::i:
t';:ì,i

::ll:

By differentiating (3.2) and (3.3) and substituting the results into (3.1) we obtain

the wave equation for Ë,

+-+*kzÊ,:oôxt ð2"

(3.1)

(3.2)

(33)

(3.4)
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where

&:r\Æpo-

subject to the following boundary conditions:

Êr=o at ' =-l

Êr=0 at ,:l

Using the standa¡d method of separation of variables,

is

(35)

(3.6.1)

(3.6.2)

the formal solution of (3.a)

(3:l',)

with the amplitude of the z directed incident wave equal to unity. Also I, is the

reflection coefficient to be determined, while 1,, denotes the waveguide propaga-

tion constant, i.e.

"l 
^:

(3.8)

Once we obtain the electric field componert E, the remaining magnetic field

components are found by using (3.2) and (3.3).

In most practical cases more than 90 Vo forwa¡d transferred energy

corresponds to the fundamental TE 19 mode. Hence (3.7) may rewritten in the

form [27]

'r:o, årþ-''" 
*l 

^¿i't")"" þ " [:.+Jl

tìtiì

E"=" -itr",¡n 
þ [:.*J] 

*å,r.,i't",i" 
þ " [:.+J]

(3.e)
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where the reflection coefficient In, must be determined from the boundary coqdi-

tion corresponding to the transverse termination of the waveguide.

3.2 solutlon of lntemal flelds ln an H-ptane sectorsl wavegulde (or horn)

The solution of the ûelds is found in the coordinate system associated with

rhe same origin as for the waveguide, (see frg.Z.l or fig.4.1).

The vanishing field components are:

E r:E 6:0 , Êr=0

The nonvanishing terms in of Maxwell's equations ¿ue:

. å I ð , --- , 7 ai.
J @eúy:; 

,O þa O)- O a6

I ôÊy __,
; ,0 =-iuþúrP

aÊ..

Ë=i 
topÉó

i*-t'*l .þ++kzÊv--o

which may be split into two ordinary differential

method of separation of variables, i.e.

#.i#.F'-#)R(p):o

Repeating the procedure in section 2.7, the following partial differential equation

is obtained:

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

equations after applying the

(3.1s)
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with the boundary conditions dependent on the manner of excitation and termina-

tion of a sectoral waveguide ( horn ) and

(3.16)

with the boundary condition

Er:o for (3.17)

The separation constant p is found from the appropriate boundary condition.

The general solution for the sectoral waveguide fields is expressed in a form

suitable for further considerations, i.e.

r,, sin 
þ " [*.+Jl V n (k p)+t 

^zHJ? c el]

ó* l!-,2

#+p2o16¡:s

Er: i
m:l

where

(3.18)

(3.1e)
îry:-
ct

and Tn, is the transmission coefficient from parallel plate to sectoral waveguide,

I,n2 is the reflection coefficient at the transverse dielectric interface between

regions R3 and Ra in fig.4.1. HÁ'J ,HlL) are cylindrical gankel functions of the

second and first kinds, respectively. The first one represents outgoing waves while

the second represents incoming waves with respect to the apex of the sectoral

waveguide. It should be noted that the magnetic field components are related to

E, by (3.12) and (3.13).

From a comparison of (3.9) and (3.18) it is evident that the transverse fields

of the TE^o mode are similar, except for a certain change in the complex ampli-

tude of each mode due to conversion at the junction. The most important
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similarities are:

- electric fietd E, has only one component and is parallel to the y -axis,

- magnetic field components are perpendicular to the y -axis'

- E, and Ë1, in the parallel plate waveguide vary with the coordinate r, since

in the sectoral waveguide E, and H 6 vaty with the coordinate 0; in both

cases the variation has a sinusoidal chatacter,

- the index rn either for parallel plate or sectoral waveguide characterizes the

number of standing halfwaves between the walls, parallel to the electric field

8,,

The most signifrcant difference is related to points of identical phase which lie in

the plane z :constant with forward va¡iation factor ¿-i"lrt and backward factor

,j"t.z for the parallel plate $,aveguide (3.9). For the sectoral waveguide they lie

onacylindricalsurface(p:consant)withforwardandbackwardphase

coefficientt HÁ')(kp) and nÅtJQrp), respectively, by analogy with the parallel

plate waveguide (3.18). Another important difference is lack of existence in the

sectoral waveguide of a critical wavelength )\"r. This indicates that for any wave

having an arbitrary index m , Plopagation may exist'
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CHAPTER 4

Scattering Coefficients of the Parallel Plate-Sectoral WaveguÍde

Junction

4.7 Formulatlon of the Problem

The configuration of the dielectric loaded waveguide system under considera-

tion is shown in fig.4.1 . The parallel plate waveguide feeds the H -plane sectoral

waveguide which is assumed to be long and to have an arbitrary flare angle cr.

The fields diffracted at the edges do not interact with those existing on the

transversely oriented internal dielectric surface due to the fact that the dielectric

is lossy and the sectoral waveguide is semi-infinite in length.

It is further assumed that the waveguide supports a single Ho (TEeo ) mode,

where p:1,2,3,..., in the forward direction,(see fig.4.1). The effect of a discon-

tinuous boundary at the junction causes a diffracted field with an infinite number

of modes travelling in either direction of the junction.

42 Dlffr¡ctlon oi a cyllndrlcal wave at e transverse dlelectrlc dlscontinuity ln au

H-plane sectoral wavegulde.

Any TE -wave with a¡bitrary polarization can always be decomposed into a

linear sum of perpendicula¡ and parallel polarized waves [3] .

Let us consider an E -polarized wave having an a¡bitra¡y amplitude distribu-

tion described by the following ûeld components:

Er:l to)aJrJ (r p)

tr- 1 %-r¡ ô- .' Jtol¡o dp

(4.1)

(42)

| ðEy
Ho: jr¿po p ð0

(43)
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Initially, we let the dielectric discontinuity be over a half space oriented as shown

io, frg. 4.2 . The source of of the cylindrical wave is located at the origin (point

O), which also denotes the apex of sectoral horn'

l¿o'€o \
Èi\

Por€r ,tanô,, ,o¡- (o )

¡ã'J

A
HP

Fig.42 A cytindrical electromagtetic wave incident

upon half space.

The incident wave at the arbitrary point A is described by magnetic Êeld com-

ponentsf/o and FI6 as shown in the figure. Since the electric freld componentEy

is perpendicula¡ to the p$ plane, the incident electric field at the plane z:hz

may be expressed in terms of the single coordinate Ö, i.e.

Er(z:hz):/ (o)¡/Jr[*) (4.4)
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where S d"oot"s the Poynting vector at point A. The angle of incidence is found

by considering either tangential (Êr) or normal (ãr) components of the magnetic

ûeld with respect to the air-dielectric interface at z:h2 as shown in ñg.4-2, i.e.

-30-

The wave at point A can be replaced by

manner that the direction of propagation of

ÊnxÊ,o'=lJ-

1

)=Y:f orl¿

while Z and I denote the intrinsic impedance

propagating plane wave, and

,o:\F^,

tanô:-9
{d€g€,'

ot:oz

sin01:r¡sin03

where r¡ denotes the complex index of refraction such that

an equivalent plane wave in such a

the equivalent plane wave is given by

(45)

(4.6)

(4.7)

(4.8)

(4.e)

and admittance, respectively, for a

(4.10)

(4.11)

(4.12)

É/ ocos$-Fl 6sin$
SLfl O 1: 

-

__--l \m
For point A the well known laws of reflection and refraction hold, i'e'



-31 -

for linear, homogeneous and isotropic dielectrics'

The index of refraction completely characterizes dietectric proPerties of the half

space, z) h2 ( frg. 22 ). Continuity of the tangential electric field on the boun-

dary requires that

E 1*E 2=E 3

Continuity of the magnetic field tangential to the boundary gives

Y o(E L-E 2)cos01=f sr¡E 3cos03

By using (4.8) the last equation takes the form

ErEr:ørffi

(4.13)

(4.1s)

which is the classical result 13,p.471.

Bearing in mind that along the surface z=hZthe following identity holds

(4.14)

(4.16)dE, _a!, _ô8, _dp+:+
d0 a0 ðP d0

and having found

following holds

gO- åzsinÖ

dö cos26

we easily obtain

Ë/ocosg-f/6sin6:l-+*

aE..
and ? from (42) - (43) and knowing that at z:h2the

ôp

(4.17)

(4.18)
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By using (42), (43) and (4.16) the following identity is found

Ê;È , +Ê o. Ft ã=

sin0t=

(4.le)

where ão' and ^ã61 denote complex conjugate vectors. Upon substituting (a.18)

and (4.19) into (4.6) the angle of incidence of the equivalent plane wave expressed

in terms of differential parameters of an incident cylindrical wave at the dielectric

discontinuity surface is found to be

d¿'.,
sinôcosÖ;f

+ :ry, #[kl *.. (o)å 
þ*, [*l]

ä = å F 
^ 

@)H Ázlt¿ p )t: %Q"*, [# )

Introducing the notation .,=.,,b# *o p:ffiff *,",

using (421) and (422), (420') is transformed into the form

(42O')

All derivatives in the above equation are with respect to the incident wave given

by (a.a) . Let us express E, as E),=T^(0)¡/J'zJ(¿p). Hence we can express the

derivatives of (4.20), i. e.

(421)

(422)

o.2tan24 +p2
sin0t= (423)



,f ( oztan2,6 + g ) +sin t(o + P)'
o2tan2q +82 +sin24 (" +F)2

l:_:t. f

., : .:lti
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Let us express components of (4'13) and (4'14)

and transmitted wave at an arbitrary point, say

i.e.

E^yt:r^t"*r[#l

Ey^z=r 
^r(ô)r,, 

(o)HJ1) t#)
Eyn3:rnz(Ö)HJ'zJt*l

where Tr1 is an a príorí known function. After substituting Ø.23) - (4.26) into

(a.13) and (4.14), the following system of equations is obtained

r 
^ t@)H S)t# 

I 
+r,,, 

1 
(0)r- (0)"J? [# :r 

^ 
z(ö)HJ? [# þ -)

r 
^{ö)H A, [#) r,, r(o)r,, (o)¡/J? [#J 

:

in terms of the incident, reflected

A, of the dielectric discontinuity,

(424)

(42s)

(426)

(4.æ)

By solving the above system of equations we obtain the following expression for

the unknown reflection and transmission coefficients,

nz ( oztanz ö+ F 
2) +sin2(" + F )2

o2tan26 +82 +sin26 (o +P¡2

n2(o2t"n26 +ß2) +sin2(o. +9)2

o2tan24 +p2+sinzö (o. +g)2

(42e)

T'z(ö)=,- 
2T 

^t(ö)
l,-a z l

['' V *2tan26+pz+sinzo(*+g)2 I

(430)
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In the above analysis it was assumed that the phase centre remains

unchanged for the reflected and transmitted waves. In order to Prove this, some

additional investigation of the problem is necessary, which is beyond the scope of

this thesis.

Equation (4.29) shows that exact anal¡ical solution for reflection coefficient

of a cylindrical wave is possible with respect to a certain class of discontinuities.

The function Tn,1($) depends on the condition of elctromagnetic cylindrical wave

generation and must be known in advance.

It is necessÍuy to point out that this approach to the problem is different

from that presented by Fock in [28]. Fock based his analysis on the assumption

that the amplitude of an arbitrary wave is slowly varing function of space coordi-

nates, i.e. all spatial derivatives of the amplitude function approach zero. This

assumption is prohibited in the above analysis and leads to very strong contradic-

tion with physical essence of the problem, namely the magoetic field given by (43)

would be equal to zeto and the electromaguetic wave would no longer Propagate

as a cylindrical \A¡ave in the sectoral waveguide fed by the parallel plate

waveguide. This would lead to an assumption that a line source is placed at the

apex of the sectoral portion of the structure.

43 Formulatlon of the method of solution

Let us consider an arbitrarily chosen rectangle EFGH within the meniscus

region R2, fig.4.1 . The region R2 coincides with the overlaPPing boundaries of

the parallel plate and sectoral waveguides, (2.19.1)'(2.19.2)-

Let the rectangle EFGH be always coherent with the cylindrical coordinate sys-

tem. Applying Stokes' theorem to the above rectangle \r'e may write

f É;ß:_[ 1v xËr)oS
EFGH . ÂS

(431)
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using Maxwell's first equation

Y xÉr:-i øp&

and substituting (432) into (431) we obtain

I Euds:-¡'pof Ê;aS
EFGH ÂS

From (4.2) and (4.3) it results that

r (, ð8.
Ê ¡ =Êo *Ë,:-_,.,*0. [i Ët,

According to fig.4.3 we may write

d3=Ê dS:ãédS:ä6dpdy

dS:ã, dy on EF

ds:-Zlrdy on GH

dS:äody on FG

ds:-äody on HE

-?")

(4s2)

(433)

(4s4)

(4.3s.1)

(43s.2)

(4.3s3)

(4ss.4)

(4.3s5)

Substituting (43) and (435.1 - 435.5) into (4.33) the following equation is

obtained

,ly..liuu G H E

, 
1 cos* -' /Ë, vd) +ø, (0,Ö)-[ apãvdp-E] (p0'Ö) [o'lurdv -Ev(p'Ö),f aoãvdp:

:l i[i*',-?orlo.ooo,
."rô

(436)



where

H

dp

d3

E

Fig.43

Since

ãnù'=t

û ;oã'=o

ä 6Û6:o

à 
¿,û 6:l

(436) becomes a scalar equation of the form
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p sPo

Po-P

I
E

v

Electric vector circulation about the rectangle

EFGH in meniscus region R2'

hr

cos$

(437.1)

(437 2)

(437 3)

(4s7.4)

o [#,-Ji., -Ev (po,o)io, =-
PoFtr
l¡E

cosó

*l4ooo,

(438)
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Applying to the RHS of (4.38) the formula

¿sr(p,0) _ ¿rr(P'0) _ ðEy dö
dp dP ð0 dP

we obtain

ð8.. á,r,
2E) (p0,0)=;ifr(oo-o)

By letting ps tend to p=;fr-

equation (which is onlY valid on

waveguide) we ûnd that

(43e)

(4.40)

i.e. z:h1 in (4.a0) and using (4.41) the following

the nboundar/ associated with the parallel plate

(4.42)

Next we recall Neumann's concept [19] that the ûeld in the meniscus region R2 is

expressed as a sum of wave equation solutions in each region creating the con-

sidered structure, i.e. (3.9) and (3.18). Expressing both equations in the cylindri-

cal coordinate system and denoting the first solution by Err and the second solu-

tion by Er2we obtain

E, (0,0):Ey r(p,0) +ry z(P'0) (4.41)

Err(#,6¡*urr{ft,0):o

Repeating the same procedure when p tends to pg we obtain

r, r(o o,ô) +8, z(P 0,0) :o

Both equations hold for any arbitrary anele -|' O'å.

In recognition to the suggestion given by Lewin [11]

solved in any coordinate system, but an appropriate system

(4.43)

the problem can be

is the cylindrical one
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;..lil*,rho*o in the next section. Equations (4.42) and (4.43) can be used as a basis

;il

$ø based on Green's second equation'

-¿ Behavlor of the electromsgnettc fietd in the transitlon region
's

Considering that the parallel plate waveguide feeds the horn-like waveguide

,,¡nd that continuity of electric ûeld across 'boundaries' is given by (4.42) and

furr), the unknown total reflection coefficient I- of (3.9) may be found by sub-

i.$tituting (3.9) into the wave equation, (3.14) of the sectoral waveguide. First let us

.làssume the following form of (3'9)

(4.44)

!ì*O"t* 
the index p denotes an arbitra¡y single wave number. In order to substi-

i*ute (4.44) into (3.14) the partial derivatives of (.a$ must be found, i.e.

u, =b-jrepcosô +r(p,0)) rin 
þ " [+- .+J]

.]n,.

+: [-r 
r, cosge -irrcos'*¿I- 

J,t' þ " [*P.ål].
::,.ì:,.

it +singä"",þ"[*p.+l]("-i,,'.*o+r) (4.4s)
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., 4,,n26 
sin 

þ " ["P 
.å 

) ] 
-, Y,in2g cos 

þ " [+t 
. 

å ì ], 
-j 

" 
P c's6

rÌ;',:Ëì:...,:., 4
l:i:,.ìl',.:
i.lf:iiìt: .::l . .

-þ,"o,,0 -+*,zoJ,i'þ"[+-.åJ]# (446)
i
i

1Ì
i'

$i -try,i,,+"o,þ" [#.å)] *ry"os2*sinþ" [+t.å)]]'

¡2Æp_ cosgcos 
þ " [** . 

å 
J ] +

1i11,,'-.

*1 .,, *ir@ery*Î"",þ"[*P.åJl,-jï,pcosg s.47)

li\:..:
:::,Up"" substituting (4.45) - (4.47) in to (3.14) we obtain in effect the followíng par'

ii.l'..t¡at Oifterential equation for the unknown reflection coefficient f

(4.48)

¡¡xþere

v:prIP'ino *r,|
i:ìilì,i,

g' # = - 
þ,,,n, 

ö * + "os2g 
+i ro o "o,o),," þ, [-* . 

+ )]" 
-i ï, pcosg

azt. t f psin6, tìl prp^:^^^^-[--[psinö*1ìl--iï,pcosg
$i.i.,,,, 

+-;s,n 
r " [^i" 

.ål] - P u-sin*"., 
þ " [# .å)]" -' " '

(4.48.1)
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which is varid for p=# ana -f.0.å. It is clear that this equarion is

nonlinear and not amenable to anal¡ical solution by standard methods'

Let us assume that the electric field component is expressed in the form of

the series (3.9),i.e. the rn -th component in polar coordinate System equals

Er, =sin 
þ " [**.+)]' 

-it'Pcosó +r' ¿iï-(pcos.-Ir1)"" 
þ' [-*.+)]

(4.4e)

Repeating the same procedure we get, after routine but lengthy calculations'

., [ffi# -1,' cosz4Jr, : 
þ" 

t -, rysin2g [t 
- # 

J ]" 
-" *"(t' +1' )+j 1' å'

(450)

hr
for o' coso

*o -å. ö. i, where V is given bv (a'a8'1)'

By comparing (a.a8) and (4.50) \#e see the nonlinearity of the latter is with resPect

to both p and 0 . The coefficients depend on the wave number m' Morever

(450) is inhomogeneous.

Derivations of this section prove the nonlinear cha¡acter of the reflection

coefficient In, and, related to it, the transmission coefficientT^' In the scope of

the above results the following can be stated:
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- the reflection process in the junction is a nonlinear Process and originates

somewhere in the internal space of the junction due to interaction between

incident and outgoing waves in the transitional region,

- for surfaces defrned by a constant value of radius p or by a known function

of $ the process reduces to a nonlinear ordinary differential equation with

respect to the angle $,

- Lewin's postulate [11] on the limits of orthogonal freld expansion validity

aiong certain bounda¡ies has been proven by (4.50)' although it is based on

different reasoning than that of Lewin,

- in order to overcome all difficulties related to the problem it is necessary to

treat this in one more dimension, i.e. solve the nonlinear Partial differential

equation (4.50) for each mode rn,

- in the region of sectoral waveguide, there is no unique plane or surface on

which refl ection occurs.
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45 Zero o¡¡ler reflectlon and transmlsslon coefficlents of the parallel plate'sectoral

wavegulde Junctlon.

In the preceding section it is proven that the process of the electromagnetic

field passage has nonlinear properties. Let us consider solution of (a50) along

surface p=f(0). Along such a surface the reflection coefficient is a function of

the angte S for summation index ,n:constant. Instead of solving (4'48) or (450)

it is suggested here to use a method of freld matching at planes defined by 0:

constant, such that the required coefficients witl be found in terms of the va¡iable

angle $.

In order to match the fields of the two considered waveguides a certain equa-

tion, to be shown in this section, must be fulûlled along boundaries, where the

electric vector is continous [11].

Zero otder reflection and transmision coefficients are deûned as those of the

junction between parallel plate and infinite sectoral waveguides.

From the continuity equations (4.42) and (a.a3) we are allowed to match elec-

tric fields expressed by the solution of the wave equation associated with regions

of interest. Using (3.7) to express the electric field in the parallet plate waveguide

and (3.18) in the sectoral waveguide, and transforming the ñrst into the polar

coordinate system (since the problem is reduced to two dimensions) and substitut-

ing into (4.42) and (a.a3), we find a system of equations for the unknown

reflection and transmission coefficients.

Instead of an orthogonal series expansion in the "Zwischenmedium" region

t17l containing meniscus region R2, let as assume that the solutions a¡.e

represented by their Êrst harmonics and nonlinear reflection and transmission

coefficienß, r(0) and T ($), respectively. I($) and r (0) are continuous func-

tions having continuous derivatives in the interval l-i,il Both assumptions

marhematically mean that the series corresponding to I($) and T ($) are their
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appropriate series rePresentations. According to the above, equation (3'7) is

expressed in the meniscus region Rz by

E 
r0 =le-irrz a¡01 þ)¿ 

i t,'lri" 
[o " [+ .å llt l'*'T JJ

and equation (3.18) bY

E,o:r016¡sin þ'[*.åJ]",,, u o,

where p denotes the number of forward propagating single modes supported by

the parallel plate waveguide. In further analysis it is assumed that P =1 according

to (3.e).

Since the preceding section shows that in the meniscus region R2 there is no

unique plane on which reflection occurs, let us arbitrarily assume that it is located

at z=h1. In order to have a solution suitable for experimental verification at this

stage, a location of reference plane at the parallel plate region Rf must be

assumed. Let us denote this plane by z:hs such that hsl hþ (fig' a'1)'

Applying the above assumptions, the considered system of equation has the

form:

*"" 
[' [* 

.+)]" *' [#Jr 
o(o)=

- -,- i t,(nr-,,0),in 

[t [Ë 
.tJ]

(451)

(4s2)

"" [î tæ 
.'J]"''.''-' ùrr(o)+

(453)
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which is valid along z:hLor p=# by virtue of (4'42)' and

-"" 
[î tæ 

*'l]"''"rro-rr ù¡'016¡

*,,^ 
[' [*.+ J]" 

(z) 
1t po¡r oqo¡=

_ _ 
"-i'',bæ..ô-à.)sin 

[t [Ë 
.,J]

valid along z=pgcos$ or p=po by (4.43), where ftotOl denotes the zero order

transmission coefficient of the junction under consideration, r0($) denotes the

zero order transmission coefficient from paraltel plate to sectoral waveguide and

tr1>rto>0.

Sotving the above system of equations which have partmetric coefficients

with respect to the angle $, the coefficients of interest are obtained:

, -j r rb æosó -' Jtr (ö )tr(Ö ) - 1 
- 
j ï,(¡, r-¡¡ o)

f1(0)+1

(454)

(45s)

rto(o)=

and

, -i r r(pæosô -¡ r)fr(Ö) +1

n [2) lrcps)[1+f1($)]
ro(o)= "itt(hrhù 

(456)



-45-

where

,r,-r=ffi

(4s7)

(458)

and

(45e)

Substituting (a5$ and (a56) into (451) and (a52) respectivelY, \Ã/o obtain two

equivalent field representations in meniscus region R2, which match the fields:

given by (3.9) at z:h1:ås and by (3.18) at P=Po. The first of them is that of

parallel plate region R1 and is given by

(4.60)

where

1Ív:-
ct

E,o:,i,, 
þ [:.+J][r*ro1'¡) 

,

ro1: ¡= ft(x)+1
(4.61)
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istheuncorrectedreflectioncoefficientatpoint-r

Functions f1(x) and f2(x) may be obtained from (457)

functions of $ bY

sin($)=

cos($)=

tan($)=-¿ -ps"otf

The second field representation is that of the sectoral region R3 and is given by

and (458) bY rePlacing

(4.62)

(4.63)

(4.64)

(4.6s)
E (o)=r 016¡sin 

tr tæ 
.'Jf ,(z) (k ps)

where f o(0) is given bY

" 
-j r r(o æosô -t ')fr(6) * t (4.66)

r0(ö)=-
a [z) lrcpe)[1+f1($)]

Equations(4.60)and(4.61)ctearlyshowthattheamplitudeofthereflected

wave is nonuniform with respect to the transverse coordinate of the parallel plate

waveguide .r. A distortion of the amplitude of reflected wave depends on the

parameters of sectoral waveguide (or junction) i.e. the flare angle ct and' strictly

connected with it, location of the apex of the sectoral part, å1and pq.

,z+plcos2|

^ . rCLL*p$cos'V
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The transmitted wave has modified amplitude factor in (4.65) which depends

on the character of the sectoral feed region'

If the reference plane does not coincide with z:h\ the phase correction

coefficients are necessary, i.e. ,itr(hrhù for reflection coefficient (455) and

,-i tt(hrho) fo,,r"or.ission coefficient (456)'

There are two Possibilities:

- to convert the obtained expressions for the electric ûetd, (4'61) in region

R1 and (4.66) in region R3, into classical form of Fourier series expansion, or

in general ofthogonal expansion, and ûnd total zero order reflection and

transmission coefficients in the form of series, or

- to use the form of solution given by (451) and (4.52) (i.e. noàtinear

coefficient and first term of expansion) to ûnd total reflection and transmis-

sion coefficients by integration over the required interval'

Both methods are alternative. However for further consideration the second

method is chosen due to the ease of finding the zero order reflection coefficient

It(Ö) on the dielectric boundary and first order coefficients due to multiple

scattering in presence of dielectrics'

4.6 Inverse scatterlng at the dlelectrlc boundary

The zero order reflection coefficient It(Ö) is to be determined using the

method of section 4.2 Equation (4.39) exPresses the reflection coefficient in

terms of parameters cr and B of the incident wave. By substituting (4'66) into

(4.65) the electric field of an empty infinite sectoral waveguide is obtained as

E o(0)=
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r.or z=ht=ho

where

" 
-r t,(e æosô-åùsin[ipr(g)]+sin[,f z(0)]

+

It cos[ilr2($)]
2tanlcos2ö å["'[*l]

:'
n !2)çrcpo)+äJ',[;#,|

where

, -r "r'(pocosó -å ùsin [V r(g )] +sin[rf z(0 )]

.P,(ö):î[î].tì

["nt )

(4.6e)

(4.70.1)

Knowing that the Phase factor

to HQ)t#l the unknown

The coefficient a is equal to

o(0):

, -i'r rb ocoso -¡')j 
1 1p ssinS sin [if 1(g ) ] + f; "osg 

cos [V 1 
($ )]l

zsnv

of such a \tave at the dielectric interface is equal

differential coefficients, a and F, may be found'

(4.68)

and

(4.70.2)
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Thefunctionsfl($)andf2($)aregivenby(a57)and(458),respectively.

reccurence formula given by [31] the derivative of (a.70) is equal to:

å t" *,[;J]*"n* [#",*[#J - 
L¡vt [*J]

The coefficient P equals

Using a

(4il)

(4:t2)

(4.73)

-*,".-å. * .

Having found the coefficients ct and P, the zero order reflection coefficient

due to the dielectric discontinuity It($), is given by

where

F(0)=tanÖ

,'*,rïdÌ

khz H-2,t*l 
rÍ

"""0;I*il-;

rL< 1",
22

t'-

['-

tr,*r:ffi
where

(4.73.1)
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with c( and p given by (a'70) and (4i72)' respectively'

From(4:13)itfollowsthatthereflectioncoefficientatapointonthedielec.

tric interface depends on three complex functions:

-indexofrefraction,r¡,whichingeneralisfunctionoffrequency'c)'

.ratiooftwoHankelfunctionsbeingfunctionofthedistanceh2atwhich

the interface is located'

-functionf¡(0)beingdependentontheangleofincidence$ofthecylindri.

cal wave.

Infurtheranalysiswewillconsidertheprobtemoffrndinganappropriate

modelofdielectricpropertiesofthemedium.Letusconsiderûrstadipolar

model.TbewellknownDebye,sformula[32]forsuchdielectricshastheform

^ (¡)
L-

otm

tanò=tanõ ^-Tr(r¡rv_iur¡v. 

,*[* 
ì, 

,

t*J

(4:t4)

(4.7s)

whereor'istheangularfrequencyatwhichmaximumlossangletanõ.occurs.

The high frequency dielectric constant €t=€* in many practical cases is constant

[32, p. 101]. After substitutin g (aia) into (4'11) we obtain the following equation

for the complex index of refraction'

1

z

Tl=
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In order to obtain the general solution for the reflection coefficient' given by

(455),theproblemofinversescatteringatthedielectricdiscontinuity,z=h2,

must þ solved fi¡st. Therefore the appropriate common order of equations used

for computation of the total reflection and transmission coefficients is as follows:

(459), (4.62),(4.63), (4'64), (4'70'1)' (4'70'2)' (4'70)' (4'72)' (4'75)' and (4'73) keep-

ing in mind that equation (4.55) is issued for the reflection coefficient and (45)

for the transmission coefficient'

Thetotalreflectioncoefficientoftheparallelplatewaveguideisgiveninthe

next section.

4.7 The total reflection and transmisslon coefficients in the presence of transverse

dletectric toadlng tn the near fleld'

The near Êeld is understood to be the sectoral region where kp<8' The

total electric freld in the sectoral region is given

E y =T,($)sinir2H J2) (k p ) +f f 14 ¡sinV ra,(t) (k p )'

where V2 is given bY (a'75)'

The totat transmission coefficient at the junction is equal to

r, (0)=ro(0)+rt(O)*å¡' (O),

where

T0 is transmission coefficient of an infrnite sectoral waveguide'

T 1 is the first order inverse transmission coefficient at the junction for backward

travelling wave in sectoral region, R3'

(4.76)

(4.77)
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Similarily, the total electric ñeld in the parallel plate region R1 is given by

E, =sin Þ [:.å]l þ-i,o+r,,,i''" l, (4.78)

(4:7e)

where

rr, (0):rf(6)+rl(0)+ > rf(ö)
m:2

Both (4.77) and (4.7g) ale 
^ 

result of multiple scattering occuring in the closed

region R3. It is well known fact that, for a number of practical purposes, the

resultant reflection coefficient is just that obtained by taking only Êrst order

reflection into accou nt l3,pp.22d.2331since all higher order terms of (4'79) are

dependent on the inverse transmission coefficient r 1(6), which is small' There-

fore we are allowed to neglect second and higher order components in (4'77) and

(4.7e).

In order to find the ûrst order reflection and transmission coefficients \ile are

allowed to apply once again Neumann's concept to region R2 with overlapping

boundaries. This time the first order inverse transmission coefficient f 1(6) ana

first order reflection coefficient f l(0) of the junction are caused by reflection of

the round interface P =PO associated with the polar coordinate system and

transmission through the meniscus region of the back travelling wave' Therefore

we may write the folowing system of equations for both sides of meniscus region

Rz:

t1116)sinvre -lt'(oæosó-åJ+T 11q¡sinvrø it) (t po)=

at p:pg and

=-rl(o)sin.q^2H,(t) (& po) ,
(4.80)
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r1116¡sinvr-r l1q¡sin'vrn 
[z) (& po):

:-rf(o)riniÍy'i ;t, [+l',' v 
Icos$J

hr
at p=

cosQ

From the

(4.81)

(4.82)

(4.83)

(4.84)

above, the reflection

ri(o):-rt(o)

coefficient Ii($) is found, i.e.

, 5,,[ 
o!,, 

ì*r, ¡,, (k po)' [cos$ ) "

@
as well as the inverse transmission coefficient f 1(0)

r1(0):rt(Ö)
t J" [#J -t't" ro o'l 

-, 
-ir(eæosó-¡'ùrr(0)-1

"*'[#J.rr5" 
(e po) ' 

-jtr(oæost-'rt'(*)*r

According to the preceding analysis the total reflection coefficient of the

waveguide region R1 is given by

rr, (ö)=rro(ö)+Il(0)

and the total transmission coefficient is given by

r, (0)=ro(ö)+rl (0) , (4.8s)

where

ft0(0) ana Ir1($) are given by (456) and (a.82) while f 0(Ö) and T1($) are

given by (a55) and (4.83), respectively.

The analysis of components involving Hankel functions is given in the next

chapter in order to ascertain the most efficient form for computation.
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CHAPTER 5

Analysis of the Solution

5.7 The totat reflectlon coefficlent

Furtherconsiderationwillbeconûnedtothereflectioncoefficientsll(.r)

andf2(x)toachievethepurPoseofthethesisstatedinintroduction(chapterl).

The complex reflection coefficient r(x) given by (a.61) at a point depends on

other complex functions such as fr(Ö)' rz(0) and f3($) given by (457)' (4'73) and

(4.7 3.1), resPectivelY'

Since the reflection coefficient is nonuniform with respect to the transverse coor-

dinate x in waveguide region R1, the equivalent uniform coefficient of interest

mustbefoundinordertocomPafewithclassicalresultsandexperiment.

Theuniformreflectioncoefficientmaybedefrnedby

r(0)d0
(s.1)

in the region R2 at z=hlot

f (x )dx
(s2)

everywhere in the waveguide region R1 at zlhr'

Because of the complexity of the integfand functions in (5'1) and (52)' integration

maybecarriedoutusinganadequatenumericalprocedure.Theintegrandmust

befreeofsingularities,i.e.analyticalintheintervalofintegration.

(l

2

r.=1 It d -o

-1

a

z

r.=1 f' a-o
-2
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by (5.1) or (52) may be evaluated by using the well known

F(Ö)ìdö s Lrl,, ,
(s3)

After substituting (53) into (5'1)

I
c

where Lf ln' it the upper bound of the modulus'

the uniform reflection coefficient is given by

(l

z
lr
; r.

-1
tr(o)l¿o .= 1Fl' (s.4)r,

The dependence of the total reflection coefficient on the transverse coordinate is

given by (4.81) and shows that the result may be considered as a correction factor

to the traditional cosine multiplier'

5.2 Analysis of components involvlng Hankel functions

Before applying numerical treatment of the results, some additional investi-

gation is necessary in order to determine both convergence and the most suitable

form of the solution for numerical treatment' Since the Hankel functions ÍIfe

defined by series, involving them components determine convergence of solution'

Let us consider alt components of the solution involving Hankel functions'

Function fr(Ö) given by (a57) is a function of ratio of Hankel functions' The

component of c($), (4.?0), containing Hankel functions, may be denoted by

or¡(Ö), and may be expressed in a form dependent on the ratio of Hankel

f unctions,i.e'



---l-.-i$l

56-

cr13($):tan$
(s5)

From(4.72),(4.73),and(55)itisclearlyseenthatallequationsdependonthe

ratio of two Hankel functions. Hence proPerties of these ratios must be exam-

ined.

ByapplyingCauchy,sresiduetheoremtoSommerfeldintegralrepresentation

of Hankel functions, Debye [24] obtained the following series representations

r+

"-i(u*t)ir(n 
*å)

a j1) 1t ù=+r'rp(sints-r0co'"0)*nfoo ("0

[+,,'"1t"*å)

and

ei,"+Ði rg *f,1

(5.6)

(sr)

n !z) çtcp):L"
. ¿=ÀI

-jt p(sints-tscosrs) X t a, (t0)
¡:0

[+,,'"1t"*å)

kh,"lr,[ft) ,-;..0ffi-;

where

^Á s(rs):1 ,
(s.8.1)
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e,1"0¡={+f

,t_¡_3 -7 | _r385 1

¡tz\t U- ng ' 576 tanzr' 
' 

3456 tan4r6

'-= t <1coS 16 = k, .'kl

Using equations (5.6), (5'7), (5'8'1) and (5'8'2) the ratios

interest are to be rePlaced bY

4I=",[#oint¡_r¡costj_lpg(sinr2-t,.o,",)]
a,(2) (t po)

in (457),

I tft tso' 1-t ¡cost f -t ps(sinr2-t 2cost2)l
(s.11)

tan2"g '
(s.8.2)

(s.83)

(s.e)

of Hankel functions of

(s.10)

for

¡(r)(r)
",ftl,"r,

and by

a ,(1) (t po) 
=rjlpq(sinr2-r2co.a * lllli"zl

tt yl lrpo) 
" ¡(z)(t2)

in (4.82), where

lrrcosó
COST 1 ,sknl

(s.12)

(s.13)

akPo '

¡(z)(r) '

COST2,
(s.14)
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and

,r-,*rtÏ , (Lr)

1(1,2)1r r¡=
5+-

24

,,-,.,r+r[å)

'[;J
, \3
lkp6sinr2 lzl, )

+

( tn, lå
It;u6 

t'""t,¡

, \3
I *nr, lz

[ã;;6 "n"',¡

tanZt

,,-,-,r*r[å)
( t 7 1--385.tlñ*RÃ"ñ , \5

I tltsinrt lzll

[ 2cos,6 )

tan4r

ç,Ð¡T

"r-,*r,i 
r(T)

¡(1,2)1t r¡=
5+-

24
+

, a1
I k p6sint2 lz
[rJ

(z 7 1 385
_'---:- L-

' I tza ' 576 tanzr2 3r'56
(

"u,t#J

,,-,.rr+r[;J
- '---- ,Z

lkp6sinr2 lsl, )

+..., (5'16)

, (5.17)

tan2r

tan4r

where I denotes the gamma function

in (55) are equal to

and the adequate ratios of Hankel functions

=" 
-r# ['in"'-"tto'"3)-(siut¡-"'cost1)] x

"*'[#J
where

- (tr -a)cosÖr.trSTe =' okhl
(s.18)
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.n¿ ¡(z)(r3) is obtained by replacing in (5.16) tr by r2,i.e.

n Íz) G po) _.i#[{rio",-","ot,ù-tps(sint2-r,.or"r¡] x

,, Q\l l'\ I

" ' 'Icos6 
I

The appropriate ratio of Hankel functions of. $.73) has the form

f(2)lr")
_ ts.19)

¡(z)(r j

"*'[#J
"o{#J 

="
-;Jl:- 1so"a-racosta)coso

¡(z)(ta)x 
f,%.)

(520)

(s.21)

where

rrcosôCOSr4 ,
uKlt2

while the functioo ¡(z)(ra) is given by

¡(z)qr o¡:

and the function ¡(t)(ta) is given by

,-'irt*)

"tÏrr.]:, .[å.*å)
, tl
I khz lz
It"*6 

t'n".,¡

, t3
I khz lz
Ir"*6 "n"o¡

,,+r[åJ
+

,'*t[;J(s 7 1 38s t ì*t*'R r*t". -& 
"rI.,|

, t5
I kh2sinr a lzt- I

[ 2cos6 )

¡(t)qro¡: , ttI khz lz
It*u6 

tt"'01

-rr-s r ) '-'*t[ål
'[a ' 24 ¡anzrt) [ khz ìå

Ir"ou6 
tt""o,¡
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"_,*r[;) (s.23)

tan4r

All series given by (5'15), (5'16), (5'22) and (523) were proven by Debyep{l

to be nondivergent (or semiconvergent)' In a similar manner Isao [35] investigated

properties of Hankel functions ratios. Debye's rePresentation of the above form is

valid for rs( 1 and 0< 
"o'-1"e< f '

The timit of validity of the above rePresentation of Hankel functions results

from (5.21)

(z 7 1 385.[ræ*R *"h.-ß

['"o.0 I
I ceår Jr",

which leads to the inequalities:

c. )\t
tan|-ñc

ct f otan| -1:s

+

or

(s.24)

(s.2s)

(s26)

(s27)

where
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8.2 GHz

U)
F
J
C.|.'{

o
a)
F{

ñ
0.00

10.0 GHz

2.40 3.20

a Horn [nAn]
0.

Fis.5.1 Solution
given bY

of inequalities
(5.25)-\5.27 )



- ø denotes distance between plates of parallel plate waveguide,

- )ro and I" denote free space and cutoff wavelengths, respectively'

- f and /" - frequency and critical frequency, respectively'

The above inequalities have an easy graphical solution shown on fig' 5'1 '

From fig.5.1 it is seen that for frequencies approaching the cutoff frequency f " 
of

the waveguide the applicability of the representation of Hankel functions as con-

sidered in this section is limited to lower values of flare angle. For the frequency

of 82 GtIz this value it is less than 100o. and for 10.0 GHz - less than 110o'

Above these values of flare angles a different representation of Hankel func-

tionsisrequired,i.e.forro=|andrg}0.SuchrePresentationsmaybefoundin

the Debye's paper l24l as for rg( 0 but, due to the little practical importance of

sectoral waveguides and horns of large flare angles, these are not considered in

this thesis.

5.3 Problem of an approprlate model of dielectrlc properties

The simplest type of dielectric loss described by Debye's model, i.e' (4.74)' is

based on the assumption that, in the constant ûeld, the polarization of a medium

approaches its equilibrium value exponentially with time'

The restriction of the validity of Debye's model to frequences below a cer-

tain limit to¿ underlies all possible models. Therefore the initially considered

model is valid in a certain interval of frequency where no fesonance occurs'

Frölich [35] in the appendix of his book derives K¡amers-Kröning relations

valid for a great number of dielectrics:

e,(or)-e, -:+I.;(')# (s28)
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and

(s.2e)

Both these relations follow from from fundamental physical property of causal

connection between the polarization and the dielectric field, i.e.

.;'(,):-*f [.;-.,-l;ffi

D q* ,t ):E (r J)+l G(r)ei,'dr
Ø

0
(s30)

whe¡e the kernel G(r) is the Fourier transform of ¡=e(<o)-1 and may be used to
express the dielectric constant

@

e(o)=1+J G(r)ei '"dr (s31)
0

The simplest model including a single resonance for square of the index of refrac-

tion 12(t,l)=e(o) and which satisfies K¡amers-K¡öning relations [3g] has the form:

2
pú)

tt2(r):1+
,fi-rz-¡ rg (ss2)

where

{dg is the resonant frequency, B is damping constant and <oo is the plasma

frequency of the medium.

The singularity structure of rl(<,r) may be determined by the location of the

poles and zeros of r¡2(o) in the complex o plane. The zeros or rlz(co) are given by

.ßr,Jo:@l-lT

and

(5.33.1)
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\¡/hefe

.Bt,¿t=-@t-Jî,

,î=r&-*

(s33.2)

(5.333)

(s34.1)

(ss42)

,12:ro2+r î-+,
and the poles of r¡2(or) are located at

@":@z-J .Ê_
.,

and

@¿ =-@z- j .g_
,,

where

(s343)

In effect by using the above equations the complex index of refraction may be

written as

q(t,t):
(r-roXr-r¡)
(r-r"Xr-r¿) (s3s)

In general the complex parameters of (535) are unknown for any dielectric

material commercially available for microwave use. Therefore they must be deter-

mined experimentally.

The considered structure may allow such an identiûcation. Having found the

total complex reflection coefficient I¡, the first order reflection coefficient I20

may be computed from (4.83) and (4.91). From (4.73) and (535) a simulraneous

system of equations may be obtained for each measured frequency in the range of
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interest. In order to obtain an accurate solution the minimal norm should be

searched for, i.e. method of least squares must be applied-

This way we arrive at the problem of synthesis of an appropriate model of

dielectric properties of an insertion. By finding the model in certain constant con'

ditions the behavior of the dielectrics in different conditions may be predicted.

Equation (4.74) shows that both the field properties, depending on the waveguide

parameters, and the dielectric properties determine the value of reflection

coefficient. At certain values of these parameters the structural transparency for

the electric fietd may appear, thus the line becomes perfectly matched. This does

not mean the medium is transparent for the electromagnetic freld due to the fact

that this process is expected to happen close to the resonance region where the

pafameters of a dielectric change very rapidly, i.e. the real part of the dielectric

constant decreases and the imaginary part, called also the loss factor, increases

causing much higher dissipation of energy than in the equitibrium state.

The identiÊcation problem lies beyond the scope of the thesis.

5.4 Numerlcal solution

The anal¡ical solution given in the chapter 4 was programmed for the

University of Manitoba Amdahl 5850 main computer. Depending on the desired

input and output data, a number of interconnected programs were written (see

sample program in Appendix). There is assumed that the dielectric properties are

described by Debye's model in the equilibrium range' i.e. tanõ given by (4'74) and

high frequency dielectric constant €r:€@ '

From the great number of data obtained, only those which allow us to give a

brief clear picture of the investigated process were selected. Complex values were

converted into measureable modulus and amplitude of reflection coefficient and
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electric fi eld, respectively.

The frequency dependence of the reflection coefficient of the junction under

consideration is shown in ûg.5.2 for infinite sectoral waveguides having different

flare angles. The results were obtained using (4-55).

The reflection coefficients of a sectoral waveguide having ûxed flare angle of

24o ate plotted against frequency in fig53. for different dielectric materials.

Figure 5.4 shows the frequency response of the reflection coefficient for sec-

toral waveguides characterized by different flare angles loaded with the same

dielectric substance at the same distance from the apex.

Figures 5.5 and 5.6 show the angular distribution of the reflection coefficient

and the electric field amplitude,respectively,at dielectric interface hz= 12g5 mm

for three different values of flare angle of the sectoral part of the considered

structure

The distribution of the reflected electric field between plates in the parallel

plate region shown in ûgures 5.5 and 5.6 is presented in frg.5.7.

The dependence of the total axial reflection coefficient value on the location

of dielectric dicontinuity measured from the apex is shown in ûg.5.8 for the same

flare angle and three different frequencies. These results are discussed together

with experimental results in chapter 7.
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CHAPTER 6
Experimental procedure and Results

6.1 Descrlpfion of the experlmental setup

As a moder of the pareiler prate waveguide was used an x_band rectangurar
waveguide operating in the TE^o fierd was emproyed since the behavior in this
case does not depend on the n:uroì,v dimension of the waveguide.
In order to verify the effect of dielect¡ic loading of the sectorar waveguide, a

long sectoral horn antenna, having a fla¡e angle of 240, was connected to the rec_
tangular waveguide, of the standard dimensions 22.g6 x 10.10 mm (see fig. 6.4).
The horn had one of two walls sc¡ewed on to ailow insertion of the dierectric
which was superporyamide and which was described by standard params[s¡5. Dur-
ing the experiment the horn was imbedded into a container ûlled with absorbing
substance ,Eccosorb 

LSZ6, (fig. 650).

10 dB 10 dB
TES T

WAVEGUIDF

INPU T

SL IDING

20 dB

OUTPUT
20dB

10dB

I0 l.Ji: TWOiTK

ANALYZI--R

SHOR T

Fig.6.1 Schematic diagram of the po\yer splitter



-75-

The reflection coefficient measurements were performed using a substitution

method based on an individually built power splitter of directional couplers, con-

nected to a net\+,ork analyzer and schematically shown in fig.6.1. The power

splitter furnished isolation between the reference and test channels and fed them

with two equal signals. The reference channel was terminated in a sliding short

while the reference was terminated in a shorting switch connected to the dielec-

tric loaded sectoral waveguide.

During the calibration procedure, the shorting switch in the test channel was

on and the electrical length of the reference cha¡nel was adjusted by a sliding

short so as to equalize the electric len$hs of both channels, i.e. the reflection

coefficient was equal to unity in both channels with constant phase response

against frequency in the range of interest.

woveguide shorting
under switch
test

strdi

Fig 6.2 The experimental setup for reflection coefficient measurements
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During the measurement the shorting switch in the test channel was off and

the reflection coefficient was recorded by an HP 7035 X-Y analog recorder and

read on a display unit. The plane at which the shorting switch was placed , z =hg,

did not coincide wíth the plane z=ht (ûS. a.1) thus the corrected formula (455)

for reflection coefficient had to be employed. The schematic diagram of the

experimental setup is shown in ñg, 6.2.

The complete setup was composed of the following equipment:

- Reflection-Transmission unit, individually built, as shown in fig. 6.1,

- Harmonic Frequency Converter HP 84114,

- Sweep Oscilator HP 86904/RT, 8.2 - 12.2 GIfz,

- Phase-Magnitude Disptay HP 84124,

- Polar Display HP 84144,

- Digital Counter - M37 I - Source Locking Microwave Counter,

- X-Y Recorder HP-20358.

Fig.6.3 General layout of the experimental setup
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Fig.6.4 (above) Sectoral horn and shorting switch used for

experiments ín the test channel

Fíg.6.5 (below ) The absorbing container of the setup
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6.2 Experlmental results

Experimental results were needed both to verify the proposed method (due

to lack of relavant data in the literature) and to exhibit further complexity of the

investigated problem' Since the considered model of dielectric properties is

confined to the equilibrium state of a dielectric, an agreement between theory and

experiment can only be expected for that state. The superpolyamide used for the

experiment was characterized by standa¡d parameters i.e. er:4.00, tanô:0.0g9 at

f=10.00 MHa. It was arbitrarily assumed that this data represents the constant

Parameters of Debye's model for dipolar solids. The reflection coefficient was

measured in the frequency range o182 - 10.0 GHz using the method described in

section 6'1' The frequency range had to be upper bounded due to limited avail-

able power of the sweeP oscilator to drive the frequency converter of the network

analyzer.

Figures 6.6, 6.8, 6.10 and 6.11 present the amplitude

reflection coefficient expressed in dB for different loading

waveguide, i.e. hz=93.3 mm, 128.5 mm, 1455 mm and 1612

of the measured

of parallel plate

mm, respectively.

Such a representation of reflection coefficient is called return loss of the

waveguide and is defined by the relation

r,,:20log[.fl (6.1)
I

*

$
*

ff
$

ffi

N
ffi

ffi

ffi

ffi
N

ffi
N

ffi

Figures 6.7 and 6.9 show Smith charrs for hr:!33mm, and 12g.5 mm. Each

of these simultaneously allows one to read both amplitude and phase, thus giving

the complete set of data to carry out the identification process mentioned in sec-

tion 53.

Data for the case of the unloaded sectoral waveguide Íìre compÍüed with

those given in [37] in figure 6.12.
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Figure 6'13 exhibits experimental data for the sectorar waveguide being short
circuited at the plane h2= lg43 mm.

The agreement between theory and experiment is satisfactory within the
entire frequency rangewhere the dierectric is in the equilibrium state.
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Fig 6.9 Smith Cha¡t of reflection coefficient

for the case from ûg. 6.g
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63 Dlscusslon and analysls of accuracy

The discrepancy between theoretical and experimental results is
caused by inadequacy of the structure emproyed in the experiment
theoretically considered model. The main reasons are:

- the rength of dielectric insertion (arong z-coordinate, fig.4.1) is finite, thus
the total reflection coefficient is the sum of reflection occuring at the con-
sidered discontinu ity at z =h2 and the negrected dicontinuity at z = h3 ) h2,
- the length of the sectoral waveguide is finite, hence scattering on its edges
contributes additionally to the reflection coefficient if the medium has low
loss tangent,

- the dipora¡ model of dierectric properties of the road only approximatery
describes its behavior.

The power splitter converts the network analyzer to essentially a ratiometer
by measuring the power ratio between the reference and test channels. Both
reference and test channels a¡e initially and during calibration process at the same
power level, i.e.

primarily

and the

P.t":;i:1 ,tr

where

P, denotes reflected power in the reference channel,

P, denotes reflected power in the test channel.

while the measuring procedure is carried out, the reflected po\rer
remains constant in the reference channel and that of the test channer is equal

P,^=lrl2r,

(62)

(63)

Pr

to

In effect the return ross of signar measured by the network anaryzer is given by
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rn[dB]=I0log h l2=20logh I
(6.4)

If the poìver ratio of feed signals in both channels remains constant within the
measuring frequency range' it may be shown that the rerative error of return ross
measurement is dependent both on the absolute error of the reflection coefficient
and on the reflection coefficient itserf according to the forowing reration:

õr^lvoÞfuxtoo=iffiJ

Since the absolute errof of return ross, arr¿¡, for the measuring equipment used
is -¡ 0'10 [ dB ] the relative error of return ross measurement is found to be

õr^fvol=t- 

"#,

(65)

(6.6)

The dependence of relative error of return ross coefficieût on the reflection
coefficient is shown in fig'6'6' Accuracy of the measured reflection coefficient
below 0'8 or rerurn ross coefficient berow -0.2 [ dB ] is within the range of. _\ 5 vo.
The dynamic error of the x-y recorder additionally contributes to the total error,
but its detailed anarysis is beyond the scope of the thesis. The accuracy of the
reflection coefficient measurement using the network analyzer cannot be higher
than ! 0.17 Vo due to the high values of the signal-noise ratio for reflection
coefficients ress than 0.001 0r return ross coefficients ress than -60 dB.
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CHAPTER 7

concrusions and suggestion for Future Research

A significant step has been taken towards determination of the complete per-
formance of dielectrically filled sectoral waveguide or horn. The background for
future research has been estabrished- By applying the proposed methods of soru-
tion' both for the parallel plate - sectoral waveguide junction and for inverse
scattering at the transverse dielect¡ic discontinuity in sectoral waveguide, the
determination of dielectric properties of a dierectric inse¡t may be accuratery
solved for using a rarge crass of dierectric constant moders.

Numerical results allow us to predict both the reflected wave amplitude and
its phase at an arbitrary point in terms of location of the dielectric discontinuity
and properties of dielectrics for an inûnite sample in the sectoral part with the
restriction that the dierectric is homogeneous, isotropic and rinear.

The experimental results proved to be in satisfactory agreement with the
presented theory for the frequency range where Debye,s model of the dielectric
constant and all the restrictions related to the structure under investigation are
valid' The accuracy for that region is within the range + 5vo with respect to the
measured quantity.

The axial value of the reflection coefficient depends only on properties of the
dielectric insert (figs55 and 5.6')- The reflected erectric fierd ampritude has its
maximum shifted with respect to the axis. Both the amplitude and shift of the
maximum depend on the flare angre of the sectorar waveguide for the same dierec_
tric inserts (fig.5.6).

Practical application

be considered to have an

of the method is limited to dielect¡ic media which may

infinite length with respect ro the wavelength. Since a
great number of industrial products have such properties, this condition is easily
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satisfied.

Any model

determined with

made.

of dielectric properties, including the resonance region, can be
accuracy limited by the equipment used and the assumptions

The interdependence between the structural properties of the junction,
dielectric and electric field is established in a unique manner. The answer to the
question of recovering the information about dielectric properties is positive.
However the ease with which the sectorar waveguide or horn may be used as a
sensor is at the expense of additional computational effort. such a computer pro-
gram was created and favorably tested, and can be implemented using aoy stan-
dard computer.

Since the research in this a¡ea is fa¡ from complete due to interaction
between microscopic and macroscopic behavior of electromagnetic ûeld, there still
remain the following problems to be solved:

- the multiple scattering in the cavity created between junction and dielectric
for highly reflective marerials, i.e. l-f 

'l> 
0-5,

- power transmission across the junction and dierectric,

- reflection and transmission of the erectromagnetic ûerd by a sampre of finite
length,

- optimization of a multilayer transverse dielectric insert depending on the
application and function desired.

- determination of the total impedance represented by the insert considered.
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Appendix

4.1 Program description

The main program calls four soubroutines. It declares many of the variables
used throughout the program. The pÍuameters of the dielectric and its location in
the sectoral waveguide are read and then the total reflection coefficient of the
structure is evaluated' output data is stored in a three-dimensional matrix and,
depending on need, printed or transferred for plotting. The standard calcomp
subroutines are used for plotting. The progfam listing is enclosed followed by an
example of the printed output.
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An erample of the printed output

Reflection coefficient as a function of frequency (rows) and x coordi-

nate of a parallel plate waveguide (columns) for: e, =254, f ^=g.40 GI{', tanõ,,
:0'005' flare angle of a sectoral waveguide, cr=30o,and a distance from the âpex,
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