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Abstract

This thesis presents an anlytical solution to the field in an H-plane sec-
toral waveguide partially loaded with a lossy substance. A survey of known
methods of solution to the problem of parallel to sectoral waveguide is

presented.

An application of Stokes’s theorem to the parallel plate - sectoral
waveguide junction allows us to find an analytical solution to join fields of
parallel plate and sectoral waveguides. Inverse scattering of the electromag-
netic wave on a discontinuity created by an imperfect dielectric placed inside
such a sectoral waveguide is solved rigorously. A comparison between this
method and others is outlined. The solution is examined with respect to com-
putability of components involving series. Justification of the various
assumptions and simplifications introduced is made. The solution is con-

verted in the one port scattering parameters of a waveguide.

Possibility of recovering the information about the dielectric constant
and loss tangent of the dielectric medium is discussed. A comparison
between numerical results and experiment is shown, while conclusions and

suggestions for future research are given.
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Index of Symbols

@, a,, @, unit vectors in Cartesian coordinate system,

a,,ay, &, unit vectors in the cylindrical coordinate system,

Ag(to) » A1(T0) , Ag(7g) ... coefficients of Debye’s expansion of Hankel functions,
A,, coefficient of expansion of the straightforward point matching method,

E electric field vector,

H magnetic field vector,

E‘+(r) , H *(r) amplitude functions of monochromatic far field, electric and mag-
netic, respectively,

F, coefficient of expansion of the alternative point matching method,

G (1) kernel of the Fourier transform,

H (kp), HS (kp) Hankel functions of the first and second kinds, respectively,
er,,s fol’ electric and magnetic vector mode functiops, respectively,

J imaginary unit of a complex number,

k free space propagation constant,

A normal unit vector,

R;, Ry, Rj, Ry regions of interest, details in text,

3 vector along a closed path,

S surface normal vector,

S Poynting vector,

T{) , I"{) zero order transmission and reflection coefficients of the parallel plate-

sectoral waveguide junction, respectively,

Tl1 s 1"11 first order transmission and reflection coefficients, respectively, of the

parallel plate-sectoral waveguide junction,




VI

T, , T'; total transmission and reflection coefficients of the parallel plate-sectoral

waveguide junction,

V scalar potential field,

Y ; free space admittance,

o flare angle of a horn antenna or differential parameter,
B parameter depending on the context,

Yn Waveguide propagation constant of the m-th mode,

3, relative error of return loss,
-

tand loss tangent,

€ free space permittivity,

€,, €, o low and high frequency relative dielectric constant, respectively,
{(r) free space phase function of the plane wave,

m) index of refraction,

61, 65, 05 angles of incidence, reflection and refraction, respectively,

A .. waveguide critical wavelength,

.o free space permeability,

v order of Hankel functions,

Po radius enclosing meniscus region R,

p, & polar coordinates,

o conductivity of a dielectric,

T, ¥ general coordinates of a point in complete point matching method,
To» T1, T2, T3, T4 arguments of Debye’s expansion of Hankel functions,

X celectric susceptibility,




w angular frequency.

NOtC: i i ,

time.




CHAPTER 1

Introduction

The use of horn antennas to ascertain dielectric properties of a great number

of natural and industrial materials has found practical applications for a long
period of time [1], although sufficiently rigorous theory of horn antennas with
dielectric discontinuities, both in their internal space and in their near field, does

not exist at present.

The ease in which horn antennas can be used is a motivation for building
measuring equipment based upon different configurations involving one horn

antenna reflection or two horn antenna transmission systems.

There is no doubt axﬁong researchers that horn antennas with dielectric
insertions provide intriguing possibilities such as reduction of beam width and vol-
tage standing wave ratio (VSWR). Additional factors include increase of peak
power of the main lobe and, probably, decrease of unwanted crosspolarization [2],

which plays a crucial role in the design of feeds for reflector anntenas.

The most significant difficulty to overcome in the mathematical aspects of
analysis of a transversly loaded horn is the fact that the front of the internal wave
is complex in general and does not always coincide with the dielectric discon-
tinuity surface . This phenomenon results in the commonly called phase error con-
sidered in respect to the horn aperture. In order to solve rigorously the scattering
of the wave of interest by any discontinuity, the field must be decomposed into E-
and H- polarized waves with respect to a fixed point on a discontinuity surface [3].

Any arbitrary wave function can be represent by its plane integrals [4].

Another critical problem arises with respect to parallel plate and sectoral
waveguides junctions. It is well known that such discontinuities have no exact

solution due to the fact that regions associated with them cannot in most cases be




them cannot in most cases be described in a single cordinate system. Many
researchers have contributed a great deal of work to determine analytically the

scattering by such junctions. Among them the most significant contributors are

Stevenson [5], Solymar [6], Fradin [7], Piefke [8], Hamid [9,13], Bahar [10], Lewin
[11,12], Iskander [13]. In spite of the fact they have based their solutions on
different concepts and theories, this question seems to be still open for an exhaus-
tive treatment. All the above mentioned attempts discuss the éase where in the
internal space of the horn (or sectoral waveguide) only outward propagating

modes exist.

In practice, methods based on the generalized scattering matrix concept [14]
have been widely used by engineers for years. These methods improve
significantly the performance of the design process, although at the expense of
loss of the physical significance of many subtle occurences inside of the waveguide
structure. The gap between practical and sophisticated scientific design appears to

become larger and larger.

The purpose of this work is to establish’ the background necessary to deter-
mine dielectric properties of imperfect dielectrics and any related nonelectrical
quantities (e.g. moisture content) from the back scattering coefficient in the feed
parallel-plate waveguide. In this structure the feed waveguide is terminated by an
H- plane sectoral waveguide, which is part of the sensor. The goal is to be
obtained by solving the problem of scattering at the dielectric discontinuity as
well as the scattering at the waveguide junction discontinuity resulting in the sin-

gle reflection coefficient to be monitored in the feed waveguide.




CHAPTER 2
Survey of Methods Related to Waveguide Junctions

2.1. Point matching method

This method known also as the collocation method consists of choosing a
linear combination of solutions of the Helmholtz equations in a waveguide such
that the sum satisfies the boundary conditions at the discrete number of boundary
points.

Since the parallel plate and sectoral waveguides (or waveguide-horn junction)
have no common boundary (except for points A and C in fig.2.1) the matching pro-

cedure is carried for the meniscus region denoted in fig. 2.1 by ABCDA.

Fig. 2.1 Convex junction waveguide-horn

Lewin suggests the following representation of the waveguide field [11,12]

E for z<hy (2.1)

y

-j ~ ez . 11x 1
=¢ kv 4 S, I‘me’k"’sm = 4=
m=1 a 2




and the horn field

o . 1
E,= > T”,Hg)l (k p)sin|m $+-2— Sfor p=p, 22)
In order to match both fields at the point D , the field given by (2.1) must be

extended into the meniscus region. The problem becomes more difficult if we ask

- to what extent the series (2.2) represents the field of the meniscus region ?

Expanding (2.2) for large values of the index m, the series becomes

1

v 2 a
E=EFm;—Tme * Fp— for ¢ >> 1] 23)

oF
The wall current depends on the value 3 L at b== %—. For p near p it exhi-

bits a singularity given by the sharp edge of the wedge of flare angle n-<.

mw (2T
k Po a 4 4
Since T, is asymptotic to T N where B is some parameter, then
m
dE m
y o .
T at =—— varies as
ad ¢ 2
mw
Poj « _
Eyp=|—] m B+ (2.4)
P
-2
PPy g

which is asymptotic to T (2-B)

as p approaches p,. In order to have
Po

the required form of singularity, the parameter B should be equal to

_1+27
27 +a (23)

Which clearly says that series having m-th component given by (2.4) diverges for
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p<po - This leads to the conclusion that extension of the series in the meniscus
region is invalid, although the numerical results seem satisfactory [12].

A concise review of point matching methods is found in [15]. In general

they can be subdivided into:
(a) straightforward point matching method (SPM);
(b) complete point matching method (CPM);
(c) alternative point matching (APM);
(d) extended point matching method (EPM).

The first three methods are based on an internal Rayleigh hypothesis, which

assumes that an expansion of the form

Vip.d)= 3 AnJn(kple™®

m=—o
is valid everywhere in the region {) _ (fig. 2.2), i. e.
P=po

where p is the radius of convergence of the RHS of (2.6) and p is the radius of

the observation point.

Equation (2.6) is a general solution of the equation

V 2y +k2v =0

with the following boundary condition on C:

V(p,$)=0 for E-modes

d
-a% (p,4)=0 for H-modes

_ Where P € () — (see Fig.22).
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The straightforward point matching method assumes a numerically deter-

mined truncation order M and (2.6) is made to satisfy either boundary condition

(2.8) or (2.9).

Fig. 2.2 Cross-section of a region surrounding

an arbitrary shape waveguide

For Dirichlet boundary condition (2.8) SPM assumes

M im0

S An(kpy)e’™ =0 (2.10)
m=—M
where p”,8, denote coordinates of points on C at which V is chosen to satisfy the
boundary conditions. The truncation order M is estimated from the rate of con-

vergence of either cutoff wave number or wave function.

Since in general SPM gives incorrect results for the wavefunction, the use of
the trapezoidal integration rule to approximate certain exact integrals [16] points
an extension of SPM to what is called the complete point matching method

(CPM). In view of CPM, equation (2.10) has the form

wdm (kPaje” =0 (2.11)




where F, is proportional to the density of certain equivalent surface sources at

chosen points p,,0, on C [16].

Using orthogonality, i.e. multiplying (2.11) by e ~im¥, and then summing over

m from —® to ®© one obtains the formula of the alternative point matching

method (APM), i.e.

jkpycos {\v,,
(4

2M +1 —a 1
S, Fa "=

n=1

Because (2.10) - (2.12) differ in the index over which the summation is made, the
wave functions computed by the SPM, CPM and APM are different in general.
The least error sensitive method is CPM [15]. Since convergence of the point-
matching technique has never been proven, mainly due to the assumed radius of
convergence in the Rayleigh hypothesis not being always valid, Lewin and Bates
proposed their modifications of the point matching formulation. Lewin [11] pro-
posed the following representation of the field in the meniscus region ABCDA (fig.
2.1)
- 1 ||I

Ey=fsin mar i—+3 f (m)er"z +g(m)e—r"z}dm

[

where f (m) and g (m) are coefficient functions to be found.
This equation has to be matched to (2.1) on CDA (i.e. z=hq)and to (2.2) on
ABC (i.e. p=p(). Similar matching is suggested for first derivatives of (2.1), (2.2)

and (2.13). This concept is related to the idea of "Zwischenmedium” or




overlapping regions [17].

Bates [15] in his proposition of an extended point matching method (EPM)
assumes that, in general, it is impossible to find a single series for V, which is
valid throughout Q _ (fig. 2.2). He takes a region A; (C ) in which (2.6) may be

written as

(

le¢}=2quZ,q('r¢) fOl'P € Al (2.14)
q

where the origin of the T, coordinates is a point O;, which may or not lie in A,.

The functional forms of the members of [Z;,] must accommodate any singu-
larities which exist in A;. There must be sufficient regions, say L of them, such

that
Q_CiAayUAU---UAL- (2.15)

Denoting a continuous curve, which lies in A; (M} A, M) @ _ by Cy,,, it is possible
to match the RHS of (2.13) for / =m and its derivative normal to C;,, to the RHS
of (2.13) for [ =n and its derivative normal to C,,. The matching is obtained for
a finite number of points. Independently, for each L values of 1, the RHS of
(2.13) is made to satisfy the appropriate boundary conditions at a finite number of
points on C (1} A;. Similarily, for each M values of m, the RHS of (2.13) is made
to satisfy the boundary conditions on C () A,,. This concept is similar to that of

Lewin, but is formulated in a more sophisticated manner.

The common mark of point matching methods is that they are based on
matching of a linear combination of Helmholtz equation solutions along certain
boundaries. This results in the fundamental drawback of these methods - they
fail >whenever‘§a jump in boundary conditions gives rise to a nonlinear partial

differential equation.




22. Modal matching method

Let us consider an arbitrary waveguide junction as shown in fig. 2.3. An
incident TE, o mode with amplitude coefficient T, strikes the junction as it travels
in the positive z direction. The region on the generator side is denoted by R,
while the region on the load side is denoted by R,.

The field at the junction can be expanded in terms of normal waveguide

modes in the region Ry, i.e.

E .—.{1 +T, }zR st glr,.le,. (2.16)
and
FI=(1—PP]TPﬁRw+2 Tihg (2.17)
i=1

where in both equations i # p and &g ;, ;;in are called vector mode functions in

region R;.

TE, g R,

Fig. 23 An arbitrary waveguide discontinuity
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The field in region R, may be expressed by a series of modes as follows

4

E=3T[2r,i + 2, Sik2rx (2.18)
j=1 k=1 .

\

(

H 2 T, 7'R;j - 2 Sjk 7’R,}c (2.19)
i=t | k=1

where 2p ; and i'Rzi are transverse electric and magnetic vector mode functions in
region Ry. s is the scattering coefficient of the next n +1 junction in the direc-

tion of the load.

The scattering matrix contains information about propagation of the modes
present between n and n +1 junctions and also scattering properties of junction
n +1. This form of modal matching is found in [18]. In this method the solution
of the junction nearest the load must be obtained first. This requires initial
knowledge about termination of the waveguide. Often this knowledge is based
upon assumptions of a perfectly matched or short line termination. This is one of
the drawbacks of the method. This method is related to more general methods of
point matching, i.e. instead of matching in a finite number of points, the latter
method assumes the joining of the vector wave equation solutions in two regions
on the abstract junction between them. In the form of (2.15) - (2.18) this method

contains general knowledge about waveguide modes expressed in linear algebra

terminology. Application of this method is confined to waveguides and transmis-

sion lines.

23 Schwartz - Neumann’s method of overlapping regions

This method is an extension of Schwartz’s original method, which allows
solution of a harmonic differential equation in a region, which is the sum of two

regions,
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If it is known how to solve the problem separately in each of these regions, then
the Schwartz - Neumann’s method can be applied to the solution of the Dirichlet
problem in a region, which is the common part ( or intersection in terms of set
theory terminology ) of two other regions overlapping one another. |

Let us consider fig. 2.1 and find the validity of the above methods according
to [19] :

a. Schwartz’s method is applicable for the boundary conditions on L J L,
enclosing the region R;| J R; if solution in Ry with the boundary conditions
on L L, and in R, with the boundary conditions on L, J L, are known,
Schwartz - Neumann’s method is applied to the boundary conditions on
I—,lu —L-z surrounding the region R;(0) R if solution in R with the boun-
dary conditions on L L, and in R, with the boundary conditions on
LU L, are known.

In view of the above interpretation, the meniscus region of interest ( ABCD in
fig.2.1) lies in the intersection of boundaries rather than regions. This can be for-

mulated in terms of set theory

A = LiNL; ' (220.1)
C = LiINL; (2202)
or alternatively

A =1;N L, (221.3)
c =LNL; (2212)

Since points A and C are associated with different coordinate systems in
which known solutions exist, the region of meniscus is created by z = constant in

the Cartesian coordinate system and p= constant, in the polar cordinate system.
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Neumann’s idea consists of representing the sought function, say w (p,$), in the

form of two functions
w (p,d)=u(p,d)+v (p,d) 0

The first of which satisfies Helmholtz equation in R, and the second satisfies the
same equation in Ry.

The method of overlapping regions was succesfully employed by Iskander
and Hamid [13] to solve for the scattering of electromagnetic waves at waveguide-
horn junction. In their approach the junction is subdivided into two subregions;

pamely a semi-infinite parallel plate subregion R; of width @ and the region R, in
fig 2.1 described with respect to origin O by r >0 and +£2L- < o< —-92‘—. These

two regions overlap one another in the shaded isosceles triangular area (fig. 2.1)

Rl I R2= "{Rl Q RzVRz g R1VR1//R2} (2.23)

Iskander and Hamid expressed the total electric fields in regions R; and R; in
terms of Green’s functions and made those fields equal at every point within the
triangular area of the overlapping region, or equivalently at every point on its
boundary. Instead of the mathematically complicated Wiener-Hopf technique,
they employed Schwartz’s alternating method for the solution of the integral
equation arising from comparing both electric fields on the nonelectric boundaries

of overlapping region R3. The iterative procedure starts by assuming the field on

the nonmetalic boundary of region R; to have the value of Eyp |z =h (according
to fig. 2.1) and then using the solution of the electric field equation in Ry to com-
pute the field on the nonmetalic boundary of region R, at $== -(;—. Substituting

these values in the field equation in the region R,, the field on the boundary

z=h, is calculated. Repeating this procedure several times the field on the
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boundary is found with very small error.

Iskander and Hamid reported excellent convergence of the iteration pro-

cedure and high efficiency with regard to computer time needed.

The main drawback of the method seems to be that the transmission
coefficient of the m —th mode T,, must be found from an additional power flow
condition across the waveguide-horn junction. The first time the method of over-
lapping regions was applied to the problem of wave propagation around a corner

was by Poritski and Blewett in [30].

2.4 Ray theory methods

2.4.1 Geometrical optics as limiting case of physical optics

Geometrical optics is ordinarily concerned with electromagnetic waves that
are essentially plane ( or cylindrical, spherical waves with r - ® ) and that are
propagated in uncharged medium. In order to show the above statement we

assume that a formal solution of Maxwell’s equations is

ET=E™*(r)e k0 (2.24.1)
H =H*(r)e %) (224.2)
o _ 2

~ ® usual and {(r) is a function which depends on the medium
c
and reduces to r for free space.

Let us substitute (2.24.1) and (2.24.2) into Maxwell’s equations of the form
V xH '=jweE” (225.1)

V xE'=—joud" (2252)




V (nd =0 (22523)

V (eE£%)=0 (225.4)

Substituting (2.24.1) into the LHS of (2.25.2) and (2.24.2) into the LHS of (2.25.1)
and using (2.25.4) and (2.25.3) respectively and several relevant vector identities

[20], the following equivalent form of Maxwell’s equations is obtained

\ CXFI++€COE+=‘}1k-v xH* (226.1)
\% ng*—MOFIE,ikv xXE* (2262)
J

\% c-}?+=—_1 VA Y+pV A +) (226.3)
)
Jkp

\ g-E+=—,1 fv eET+eV -1‘5” (226.4)
)
Jjke \

If k>> 1, then the right sides of (2.26.1 -2.26.4) becomes negligible. Neglect-
ing the RHS of these equations and eliminating B from the first by using the

second of these equations, we obtain

VX% L yxEt +ecoE T=0 (227)
Ko

Expanding the first term of the above equation, and using the well known triple

product identity [20], we obtain
v g{v CE +}—E+[v ¢V §]+€uc§E+=0

Since the first term is zero from (2.26.4) we obtain from (2.28)

V(Y {=eped =n?




which in the Cartesian coordinate system has the form

2 2 2
Y4 i 14 19

dx dy dz K

 Equations (2.28) and (2.29) show how the direction of a fictitious ray is related to
the index of refraction m at a given point. Both the above equations are the
necessary and sufficient conditions that (223.1) - (2.232) be a solution of

Maxwell’s equations for geometrical optics approximation, i.e. A~ 0.

4.2 Problem of parallel plate and sectoral waveguide junction in the scope of ray

theory

Ray theory in the form known as geometrical theory of diffraction accounts
‘f’for the abrupt discontinuity of a junction by edge diffracted rays emanating from
the upper and lower edges of the junction under consideration (fig 2.1). Analysis
of a junction of interest similar to this was initiated by Kinber [21]. He con-
sidered the interior problem of a horn fed by a parallel plate waveguide using the
ray theory concept. The field in the wave region i.e. kr > v>>0, is represented
fqr each particular mode as the sum of two waves which satisfy condition (2.29) of
ggometrical optics. Kinber introduced a concept of the field as an effect of contri-
bution from Brillouin’s rays by using Debye’s asymptotic expansion of the cylindri-

cal Hankel functions for large arguments (k7 >>v). In his concept each mode

. . v
vector (in [21] -vector potential) rotates around a circle of radius -I-?- with the

ntre at the horn apex (fig.2.4).

Debye’s asymptotic form of H {I(2) with accuracy confined to the first term

s of the form
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: 2|y _¥ LA

* jlk r [k) karccoskr+4
(231)

+Z
Fig. 2.4 The geometry of the interior problem of a sectoral
horn antenna
By writing the phase factor of the form
( ‘__ + jvd

fd)=e (232)

it is found from fig. 2.4 that the phase is proportional to the length difference

0P —0,A—AB for e /%, where

(2.33.1)

0/A =—Z—m=—z—arccos—g;- ' (2332)
v

AB =—k-¢ (2.333)
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gjmilar expressions hold for the radiation point 0,. The points of radiation O
and O, are stationary with respect to an observation point P lying in the interior
of the horn, thus the field of the point P is a sum of successively reflected rays,
always two, the first from a clockwise and the second from a counterclockwise
rotating vector having phase factor e/v® and e /V?, respectively. According to
Fermat’s principle the total length of each ray with respect to the radiation point
O o0r Oy is a minimum subject to the condition that a ray undergoes a finite

sequence of reflections at the horn walls.

The above concept of the electromagnetic field deals with the first order rays.
The second order rays are associated with a formation of fringe waves at the rims
of the horn; the third order with the incidence of the latter upon waveguide-horn

junction. The total vector potential is finally expressed as

E=jw§ 3 @t Y| (2.34)
g=0{m<M,

where Q is the number of groups of terms associated with the same order v and

Mg a number of terms in the ¢ —th group.

The above method extended to eigenvalue analysis was used by Hamid [9] to

find the reflection coefficient at a waveguide-horn junction.

Yee et al in [22] applied the ray theory method to reflection from the open
end of a waveguide. They based their analysis on the previous work of Keller and
Hamid. They considered a parallel plate waveguide propagating several modes.
Similar to [21] the incident mode is decomposed into two plane waves, whose
scattering by the edges at the termination produces the reflected field. The singly
diffracted cylindrical wave, as known from the asymptotic theory of diffraction,
originates at each edge and is represented by means of diffracted rays. Then the

sum of the fields of the multiply reflected rays is converted into modal form. This




- 18 -

yields formulas for the reflection coefficients of the various modes due to single
diffraction. In addition double and multiple diffraction terms are also taken into

account yielding a number of improved formulas for reflection coefficient.

It is worthy to point out that Kinber and Popienchenko in [23] strongly
disagree with the results in [22]. Their disagreement is based on the following

reasoning :

- considering the diffraction at two successive wedges placed in such a way
that the tip of the second wedge is in the neighborhood of the light shadow
boundary of the first, it is necessary for the geometrical theory of diffraction
method to apply that the "following” edge lies in the zone, in which the
cylindrical fringe wave of diffraction at the preceding edge would be
separated out from the half shadow region. Also in the open end of a
waveguide the third and subsequent diffractions occur at the “following”
edges lying on the light shadow line of the preceding diffraction, thus the

edges cannot be considered as sources of a cylindrical wave.

The ray theory method gives accurate results everywhere it is applicable. Its
applicability is confined to problems where k >> 1, which permits us to neglect
the RHS of (2.25.1) - (2.25.4) and allows use of the first term of the complete

Debye’s expansion of the Hankel functions in the wave region, i.e. its asymptotic

form for v>> kr [24].

25 WKB method

Leonard and Yen [25] carried an exhaustive analysis of waveguide horn junc-
tions. They based their work on previous work done by Rice [26] and Stevenson
[5] and extended the WKB method to junctions having a large flare angle for the

sectoral region.
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The WKB method, also known as JWKB (Jeffreys, Wentzel, Kramers, Bril-
louin), is an approximate method of differential equation solution [33]. Let us

have the ordinary differential equation

d’E
- zy —h%y=0 (2.35)
V4

where h=h(z) is a positive imaginary functions of z, twice differentiable and
such that h—~ jc, ¢ being constant, as v- — . We desire the solution of (2.35)
which, together with first derivative, is continuous everywhere and at *

satisfes the conditions
E,=e —jez 4T efez

- with z- — and

The constant I' is a reflection coefficient to be determined.

The exact expression for the reflection coefficient has the form

1 . d |1
[=—— EE (2)—2=|—=1d
i e y(z)dzzlx/;? ?

where £=£ {z} =jcz + [ (h—jc)dz

The integral (2.38) can be solved for small values of the reflection coefficient I’

and large values of the argument z by the substitution

E,(z )=\/lhze -¢
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which is the WKB approximation.

Leonard and Yen [25] used the above method with their own extension of
the vector transverse field components expansion and orthogonality properties and
found that the électrical and magnetic eigenfunctions are identical for the two
waveguides at the junction plane due to their identical cross-section. By matching
the fields at the junction plane they obtained general expressions for zero-order
and higher values of reflection - transmission coefficients. The Leonard and Yen’s
WKB method becomes extremely complicated for the third order coefficients,
thus must be confined to waveguides having flare angles up to 15°—20°, which is

the main drawback of the method.

2.6 Other methods

It is necessary to mention briefly other methods which may be applied to the
problem of interest. In the section. 2.4.2 it was already shown that any wave pro-
pagating in the parallel plate waveguide can be represented by two plane waves.
Then the problem can be solved by considering diffraction of each plane wave by
a wedge. Describing the currents of walls and edges adequately to the character
of the wave in waveguide, an integral equ>ation for current distribution may be
found which may be solved by either the Wiener-Hopf technique [34] or method
of successive approximation and analytic continuation [19].

Other methods which might be employed for analyzing of waveguide discon-

tinuities are:

- Schwartz-Christoffel transformation,

- perturbation method,
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- the method of nets (finite difference method){25],

. variational methods of Ritz and Galerkin,

- the method of moments.




CHAPTER 3
~ Properties of Parallel Plate and Sectoral Waveguide Modes

1 Mathematical properties of parallel plate waveguide modes

The well known derivations presented in this chapter serve as an introduc-
ion to study the fields in the case of a parallel plate and sectoral waveguide junc-

ion. There are two reasons for such a review:
- large variety of designations and symbols in a related problem which there-
fore requires some organization,
- the academic character of the thesis needs review of the basic information.
The TE,,; modes belong to the most commonly used class associated with
;:parallel plate waveguides due to their simplicity in any mathematical treatment
ahd the ease with which they are generated. For such modes, the electric field
1as a y —component only, ie. E, =E, =0.

_ For periodic fields with time factor e/®*, Maxwell’s equations (2.25.1) and

‘(2.25.2) lead to
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where

k=w\egho (35)

subject to the following boundary conditions:

5 =-4
E,=0 at x= > (36.1)

- a
E,=0 at x=2 (3.6.2)

Using the standard method of separation of variables, the formal solution of (3.4)
is
E’y =a, i (e_jy'z-i-rmejy'z)sin mnr i—+~%— 37

m=1

with the amplitude of the z directed incident wave equal to unity. Also I',, is the
reflection coefficient to be determined, while v, denotes the waveguide propaga-

tion constant, i.e.

(3.8)

Once we obtain the electric field component E,, the remaining magnetic field

components are found by using (3.2) and (3.3).

In most practical cases more than 90 % forward transferred energy
corresponds to the fundamental TE ;; mode. Hence (3.7) may rewritten in the

form [27]

E, =e V¥ gin | i«l——i— +3 T, e Y sin|mw x, 1 (3.9
a
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where the reflection coefficient I',, must be determined from the boundary condi-

tion corresponding to the transverse termination of the waveguide.

4

3.2 Solution of internal fields in an H-plane sectoral waveguide (or horn)

The solution of the fields is found in the coordinate system associated with

the same origin as for the waveguide, (see fig.2.1 or fig.4.1).

The vanishing field components are:
E,=E4=0 , H,=0 (3.10)

The nonvanishing terms in of Maxwell’s equations are:

jwegE =_1...i(p]? )_iiiz_p (3.11)
> pap ¥ p ad

1 GE), . - 312

Py JopH (3.12)

aEy .

G 7 wpofl 4 (3.13)

Repeating the procedure in section 2.1, the following partial differential equation

is obtained:

oE 8%E .
J+-1 2 k2E, =0 (3.14)
pz ad :

which may be split into two ordinary differential equations after applying the

method of separation of variables, i.e.

dzR(p) +i dR(P) +[k2._£i]R(P)=0 (3.15)
dp; p dp p?




- 25.-

with the boundary conditions dependent on the manner of excitation and termina-

tion of a sectoral waveguide ( horn ) and

2
i(—%(;ﬁ +p2®($)=0 (3.16)

with the boundary condition

E,=0 for ¢t% (3.17)

The separation constant p is found from the appropriate boundary condition.

The general solution for the sectoral waveguide fields is expressed in a form

suitable for further considerations, i.e.

[+ <] . 1
Ey=3 Tasin [m | &4 12 () +T a1 D ) (318)
m=1
where
v="" (3.19)
o

and T, is the transmission coefficient from parallel plate to sectoral waveguide,
I',,, is the reflection coefficient at the transverse dielectric interface between
regions R3 and R, in fig. 4.1. HSD ,HY are cylindrical Hankel functions of the
second and first kinds, respectively. The first one represents outgoing waves while
the second represents incoming waves with respect to the apex of the sectoral

waveguide. It should be noted that the magnetic field components are related to

E, by (3.12) and (3.13).

From a comparison of (3.9) and (3.18) it is evident that the transverse fields
of the TE, , mode are similar, except for a certain change in the complex ampli-

tude of each mode due to conversion at the junction. The most important
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similarities are:
- electric field E,, has only one component and is parallel to the y —axis,
- magnetic field components are perpendicular to the y —axis,

-E, and H, in the parallel plate waveguide vary with the coordinate x, since
in the sectoral waveguide Ey and H 4 vary with the coordinate ¢; in both

cases the variation has a sinusoidal character,

- the index m either for parallel plate or sectoral waveguide characterizes the
number of standing halfwaves between the walls, parallel to the electric field
Eg,

The most significant difference is related to points of identical phase which lie in
the plane z =constant with forward variation factor e /¥ and backward factor
¢/ 77 for the parallel plate waveguide (3.9). For the sectoral waveguide they lie
on a cylindrical surface ( p=consant ) with forward and backward phase
coefficients H ,,Szv) (kp) and H ,,Slv) (k p), respectively, by analogy with the parallel
plate waveguide (3.18). Another important difference is lack of existence in the

sectoral waveguide of a critical wavelength X\ . This indicates that for any wave

having an arbitrary index m , propagation may exist.
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CHAPTER 4
Scattering Coefficients of the Parallel Plate-Sectoral Waveguide

Junction

4.1 Formulation of the problem

The configuration of the dielectric loaded waveguide system under considera-
tion is shown in fig. 4.1 . The parallel plate waveguide feeds the H -plane sectoral
waveguide which is assumed to be long and to have an arbitrary flare angle «.
The fields diffracted at the edges do not interact with those existing on the
transversely oriented internal dielectric surface due to the fact that the dielectric

is lossy and the sectoral waveguide is semi-infinite in length.

It is further assumed that the waveguide supports a single H, (TE,( ) mode,
where p= 1,2, 3, ..., in the forward direction,(see fig.4.1). The effect of a discon-
tinuous boundary at the junction causes a diffracted field with an infinite number

of modes travelling in either direction of the junction.

42 Diffraction of a cylindrical wave at a transverse dielectric discontinuity in an

H-plane sectoral waveguide.

Any TFE -wave with arbitrary polarization can always be decomposed into a

linear sum of perpendicular and parallel polarized waves [3] .

Let us consider an E -polarized wave having an arbitrary amplitude distribu-

tion described by the following field components:

E,=f ($)HZ (kp) (4.)
1 OE

" Joro 9 (42)

go=——L 1% (43

P jepgp 34
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Initially, we let the dielectric discontinuity be over a half space oriented as shown
in fig. 42 . The source of of the cylindrical wave is located at the origin (point

0), which also denotes the apex of sectoral horn.

¢ <
62 e1
\
- \
K95€0 2\ Ros€, stand,, o, (0)
] A\
H¢ \\
Ay H

hy

=
4 4

Fig. 42 A cylindrical electromagnetic wave incident

upon half space.

The incident wave at the arbitrary point A is described by magnetic field com-
ponents H ; and H 4 as shown in the figure. Since the electric field component E,
is perpendicular to the pd plane, the incident electric field at the plane z =h,

may be expressed in terms of the single coordinate ¢, i.e.

kh
E,(z=hy )=f G B|— (4.4)

™V cosd

i
:
¢
;
;
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The wave at point A can be replaced by an equivalent plane wave in such a

manner that the direction of propagation of the equivalent plane wave is given by

(4.5)

where § denotes the Poynting vector at point A. The angle of incidence is found
by considering either tangential (H ) or normal (H ;) components of the magnetic

field with respect to the air-dielectric interface at z =h, as shown in fig.4.2, i.e.

H jcos¢—H oSind

sin01= > 5 (46)
VH ;+H §
For point A the well known laws of reflection and refraction hold, i.e.
61=62 (47)
sin6;=msind; (4.8)
where 1 denotes the complex index of refraction such that
Z 0 '

while Z and Y denote the intrinsic impedance and admittance, respectively, for a

propagating plane wave, and

€9
Y= —_, (4.10)
Ko

n=Ve, (1—j tand) , (4.11)

tand=—r— (4.12)
(1)606'.
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for linear, homogeneous and isotropic dielectrics.
The index of refraction completely characterizes dielectric properties of the half

space, z> hy ( fig. 2.2 ). Continuity of the tangential electric field on the boun-

dary requires that

E{+E,=E; (4.13)
Continuity of the magnetic field tangential to the boundary gives

Y o(E {—E 2)cos8;=Y (nE 3c0s0; (4.14)

By using (4.8) the last equation takes the form

E{—E ,=E ;Vn?—sin% (4.15)

which is the classical result [3, p.47].

Bearing in mind that along the surface z =k, the following identity holds

dE, 9E, 9E, dp

dé ad dp dd

(4.16)

oFE oF
and having found Py and Y. from (4.2) - (43) and knowing that at z =k, the
following holds
h,sind
dp _1227% - (4.17)
dé  cos‘d
we easily obtain
24, dE
1_cosd ~oy (4.18)

H cosd—H 4sing=-;
P ¢ jopg hy dé
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By using (4.2), (43) and (4.16) the following identity is found

Bl +Hy Hy=

2
oE, dE, 9E dE

=— 1 > 1 3 —2 oszd)—-——-——z-+cos¢ —
(jopg)® hftan’d || 9 dé ¢ dé

(4.19)

where H p' and H d: denote complex conjugate vectors. Upon substituting (4.18)
and (4.19) into (4.6) the angle of incidence of the equivalent plane wave expressed
in terms of differential parameters of an incident cylindrical wave at the dielectric

discontinuity surface is found to be

dE
singcose—=
sin@ 1= ¢ (4 .20)

3E. |° dE, 9E |aE, Y

Yy 2 Yy 2 ¥y

—i| —2c08°p —— ——— +cos*d | ——
\/ a¢] 436 50 ¢\d¢]

All derivatives in the above equation are with respect to the incident wave given

by (4.4) . Let us express E, as E, =T, ($)H kp). Hence we can express the
y y m mv

derivatives of (4.20), i. e.

4E, _dTw(®)  qf K2 | 2 ]
dé dé coscb Tm (¢) cosd (421)
3E, drT,, () kh,
X2 (2) ="nm (2)
S T OH R o= m[cos ¢] “22)
d d -(2)
Introducing the notation a= Tm1(¢) Té"dfd)) and I3=H’rs 5 ® H';;(d)) after

using (4.21) and (4.22), (4.20) is transformed into the form

. 2 2
sinel=\/w (4.23)

aztanzd) +BZ
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Let us express components of (4.13) and (4.14) in terms of the incident, reflected

and transmitted wave at an arbitrary point, say A, of the dielectric discontinuity,
ie.

@ kh,
Epy1=T m1H 55 cosh (4.24)

h, |
Eyn2=Tpn1() m ($)H “’[ ] (4.25)

cosd

E p3=T m2(d)H @)[ s ] (4.26)

cosd
where T, is an a priori known function. After substituting (4.23) - (4.26) into
(4.13) and (4.14), the following system of equations is obtained

kh
H® 2 Q) = ()] =22
Tm 1(¢) [ cos ¢ ]+Tm1(¢)r (d)) [ Tm2(¢)Hmv [COSd) ]427)

cosd

¢

Tml(d))Hmv COSdJ]

—T 1 (&) ($IH m[

\ cos¢

=T (D) (Z>[ 2 \/ﬂz(aztan2¢+32)+sm2(a+B)2 “29)

cosd | otan?¢ +p2+sinZd(a +8)?

By solving the above system of equations we obtain the following expression for

the unknown reflection and transmission coefficients,
f I 1
kh, ] lﬂ‘\/nz(aztan2¢+ﬁz)+sin2(a +B)2
"lcosd | | otan2p+B2+sindp(a +8)? |
kh, ] 1+‘\/q2(aztan2¢ +Bz)+sin2(o¢ +B)2
(cosd | | o?tan?p+p2+sindp(a +8)? |
2Tm 1(¢)

nz(aztanzd) +Bz) +Sin2(a +B)2 ]
o?tan?d +B2+sin?d (a +B)?
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In the above analysis it was assumed that the phase centre remains
unchanged for the reflected and transmitted waves. In order to prove this, some
additional investigation of the problem is necessary, which is beyond the scope of

this thesis.

Equation (4.29) shows that exact analytical solution for reflection coefficient
of a cylindrical wave is possible with respect to a certain class of discontinuities.
The function T,,1(¢) depends on the condition of elctromagnetic cylindrical wave

generation and must be known in advance.

It is necessary to point out that this approach to the problem is different
from that presented by Fock in [28]. Fock based his analysis on the assumption
that the amplitude of an arbitrary wave is slowly varing function of space coordi-
nates, i.e. all spatial derivatives of the amplitude function approach zero. This
assumption is prohibited in the above analysis and leads to very strong contradic-
tion with physical essence of the problem, namely the magnetic field given by (4.3)
would be equal to zero and the electromagnetic wave would no longer propagate
as a cylindrical wave in the sectoral waveguide fed by the parallel plate
waveguide. This would lead to an assumption that a line source is placed at the

apex of the sectoral portion of the structure.

43 Formulation of the method of solution

Let us consider an arbitrarily chosen rectangle EFGH within the meniscus
region R,, figd.1 . The region R, coincides with the overlapping boundaries of
the parallel plate and sectoral waveguides, (2.19.1) - (2.19.2).

Let the rectangle EFGH be always coherent with the cylindrical coordinate sys-

tem. Applying Stokes’ theorem to the above rectangle we may write

] !GHEy. ds= { S(\7 xE,)dS (4.31)
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using Maxwell’s first equation

v XEy=—jmp.0fI (432)
and substituting (4.32) into (4.31) we obtain

f Ey.ds=-—ju)p.0f fIi-dS (4.33)
EFGH AS

From (4.2) and (4.3) it results that

H; =Hp+1?¢;~ - 1 |13% @ _ 25 a, (434)
jopolp 3 P ap
According to fig. 4.3 we may write
dS=# dS=a ;dS=a ,dpdy (4.35.1)
ds=a,dy onEF (4352)
ds=-a,dy on GH (4.353)
ds=a,dy on FG (435.4)
ds=—a,dy on HE (4.355)

Substituting (4.34) and (435.1 - 435.5) into (4.33) the following equation is
obtained

)

cosd ,¢]£ﬁy&y dy +E, (p ,¢){:aﬁaydp—5y (po,¢)£ajay dy—E, (p,d)){lﬁéﬁydp:

}Of—laEya Oy 4y laydpd 36
o= et 4
,,IEPM"GP“’d’py (439




Fig. 43 Electric vector circulation about the rectangle

EFGH in meniscus region Ry.

a;a,=1 (431.1)

aa,=0 (4372)

4;8,=0 (4313)

48,=1 (4374)
(436) becomes a scalar equation of the form

y‘c ,¢]fdy—E (p0,¢)fdy__f f y(P,d)) dody

cosda
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Applying to the RHS of (4.38) the formula

dE,(p,¢) _dEy(p,9) OE, do

439
dp dp ad dp (439
we obtain
dE, doé
D S\ Y SR
2E, (po:d) 36 dp (Po—p) (4.40)

Next we recall Neumann’s concept [19] that the field in the meniscus region R; is
expressed as a sum of wave equation solutions in each region creating the con-
sidered structure, i.e. (3.9) and (3.18). Expressing both equations in the cylindri-
cal coordinate system and denoting the first solution by E and the second solu-

tion by E,, we obtain

Ey (P ’¢)=Ey1(p s¢)+Ey2(p )d)) (441)

h
By letting p, tend to p= 1¢ i.e. z=hq in (4.40) and using (4.41) the following

COs

equation (which is only valid on the "boundary” associated with the parallel plate

waveguide) we find that
B ayiE (] )=0 442
1 cosd $)HEyal cosd ®)= (4.42)

Repeating the same procedure when p tends to py we obtain

E,1(posd)+E,2(Po,d)=0 (4.43)

Both equations hold for any arbitrary angle -%< o< %.

In recognition to the suggestion given by Lewin [11] the problem can be

solved in any coordinate system, but an appropriate system is the cylindrical one
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hown in the next section. Equations (4.42) and (4.43) can be used as a basis
gr"the field matching solution of the considered junction. It should also be
~§§§ted out that Rud‘ [29] solved the problem of wave diffraction at a T-junction
‘fy ;-ectangular waveguides in the H —plane using a technique similar to the above

nd based on Green’s second equation.

4 Behavior of the electromagnetic field in the transition region

'f _Considering that the parallel plate waveguide feeds the horn-like waveguide
nd ‘that continuity of electric field across “boundaries” is given by (4.42) and
4'43), the unknown total reflection coefficient I',, of (3.9) may be found by sub-
stituting (3.9) into the wave equation, (3.14) of the sectoral waveguide. First let us

assume the following form of (3.9)

Ey

={e—”’p°°s¢+r(p,¢)} sin{pw -wi%-l-% (4.44)

where the index p denotes an arbitrary single wave number. In order to substi-

"u‘tye (4.44) into (3.14) the partial derivatives of (4.44) must be found, i.e.

3E _ :
—>=|-jvy,cosde ”P°°“"+‘3—£— sin[pwr |20 L L1,
a

ap 2

+sin¢B—5Lcos o Pi"‘—¢-+—21; {e“”"”“%r} (4.45)
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sin2cos|p M+-§- PR
a

L

2,2 sin 1 Y
2T sin%sin |pw P‘—IaiJr'z- =J
a

1] a2r
el 4.46
2 || a2 (4 .46)

2, 2 .

w . psind

— kzcoszd)—L—a cos2¢ fsin fp | +
2

Qsincb +l e —jY,pcosd
2

2,2
— = kzsin2¢+P—12£—code>+j'yppcos¢ sin |p v
a

a

+——sin

2 3 : .
9T L|esing 1w o cosly | @S 111, —ivppcoss
ad? a 2 a a 2

. : 2.2 2 -
— msind)cos pr E—Sl—ni%;— +p—-1—%p—cosz¢sin T M+-§- r
a a a a

+22TL ospeos|p psing 118l
a a 21]]0d

. 2.,p (. .
+j2 singcosdpwpy? N - psind +_%_ o i 1ppCOsd (4.47)
a a

ar | : 2.2 2
2y 2p wsind +_1_ T I P r+_£_a T + 2pw cosd oI’ -0
ap atan¥ p ) dp a? p? a¢p? aptan¥ ad

(4.48)

Y=p E____Slaﬂ¢ w1 (4.48.1)
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hy
which is valid for p= and —Z<d<Z. It is clear that this equation is
cosd 2

2
nonlinear and not amenable to analytical solution by standard methods.
Let us assume that the electric field component is expressed in the form of

the series (3.9),i.e. the m —th component in polar coordinate system equals

E,,=sin|pw

b

[esind) +_l] e—j-y,pcos¢+r ej-y,,,(pcoséb—hx)sin mw[.&in_dl_*.l]
a 2 m a 2

(4.49)

Repeating the same procedure we get, after routine but lengthy calculations,

9T i aT 9’ sing | 9T
m | musing +j'y,,,cosd>+—1- m 19%m | mm coscb—jvm $ |1y
p

ap? atan¥ 3¢ p? 9¢? aptan¥ p ap

msind
2 i dhauininiin oS
aptan'¥

1 e"jpcos‘b(YF +7-)+j7uhl
tan¥

13
a

(4.50)

hl (84 a
f > _—1' and ——<é< —, where ¥ is given by (4.48.1).
or p= > ¢ 2 is given by ( )

By comparing (4.48) and (4.50) we see the nonlinearity of the latter is with respect
to both p and ¢ . The coefficients depend on the wave number m. Morever
(4.50) is inhomogeneous.

Derivations of this section prove the nonlinear character of the reflection
coefficient T',, and, related to it, the transmission coefficient T,,. In the scope of

the above results the following can be stated:
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- the reflection process in the junction is a nonlinear process and originates
somewhere in the internal space of the junction due to interaction between

incident and outgoing waves in the transitional region,

- for surfaces defined by a constant value of radius p or by a known function
of ¢ the process reduces to a nonlinear ordinary differential equation with
respect to the angle ¢,

- Lewin’s postulate [11] on the limits of orthogonal field expansion validity
along certain boundaries has been proven by (4.50), although it is based on

different reasoning than that of Lewin,

- in order to overcome all difficulties related to the problem it is necessary to
treat this in one more dimension, i.e. solve the nonlinear partial differential

equation (4.50) for each mode m,

- in the region of sectoral waveguide, there is no unique plane or surface on

which reflection occurs.
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45 Zero order reflection and transmission coefficients of the parallel plate-sectoral
waveguide junction.

In the preceding section it is proven that the process of the electromagnetic
field passage has nonlinear properties. Let us consider solution of (4.50) along
surface p=f($). Along such a surface the reflection coefficient is a function of
the angle ¢ for summation index m =constant. Instead of solving (4.48) or (4.50)
it is suggested here to use a method of field matching at planes defined by ¢=
constant, such that the required coefficients will be found in terms of the variable
angle .

In order to match the fields of the two considered waveguides a certain equa-
tion, to be shown in this section, must be fulfilled along boundaries, where the
electric vector is continous [11].

Zero order reflection and transmision coefficients are defined as those of the

junction between parallel plate and infinite sectoral waveguides.

From the continuity equations (4.42) and (4.43) we are allowed to match elec-
tric fields expressed by the solution of the wave equation associated with regions
of interest. Using (3.7) to express the electric field in the parallel plate waveguide
and (3.18) in the sectoral waveguide, and transforming the first into the polar
coordinate system (since the problem is reduced to two dimensions) and substitut-
ing into (4.42) and (4.43), we find a system of equations for the unknown

reflection and transmission coefficients.

. Instead of an orthogonal series expansion in the *Zwischenmedium” region
[17] containing meniscus region R,, let as assume that the solutions are
represented by their first harmonics and nonlinear reflection and transmission

coefficients, T'(¢) and T (&), respectively. T'(¢) and T () are continuous func-

. . . . . . o « .
tions having continuous derivatives in the interval [——2-,—5] Both assumptions

mathematically mean that the series corresponding to I'(¢) and T (d) are their
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appropriate series representations. According to the above, equation (3.7) is

expressed in the meniscus region R, by

1

Ey°=[e AT +1“°(¢)ej7’z]sin plIl _tﬁlﬁ_ + 5 (4.51)
o
t —
)
and equation (3.18) by
. 1
Ey0=T O($)sin [p I % +?2—HHP(‘2’) (kp) (452)

where p denotes the number of forward propagating single modes supported by
the parallel plate waveguide. In further analysis it is assumed that p =1 according
to (3.9).

Since the preceding section shows that in the meniscus region R, there is no
unique plane on which reflection occurs, let us arbitrarily assume that it is located
at z=h,. In order to have a solution suitable for experimental verification at this
stage, a location of reference plane at the parallel plate region R; must be

assumed. Let us denote this plane by z =h such that hg<h, (fig. 4.1).

Applying the above assumptions, the considered system of equation has the

form:

sin a _Eiﬂq)__*_l eisz(ho—hOr{)(¢)+

2 | tan ™

2

& 1|y @] £ |7oeg)=
a " 2]]H‘€2)[cos¢ ]T°(¢)—-

+sin ['n'

_ ko [T | tand (4.53)

a
tan—
2
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h
which is valid along z =h; or p=::gsl$ by virtue of  (4.42), and

_gin || tand 1] ek Op 04y
[¢3

tan—
2

tsin | i+% H @ (k p)T °(6)=
a

=g ~iMpocosd—ho)i | T sing_ +1 (4.54)
. a
sin—
2
valid along z =pocos$ or p=py by (4.43), where I')($) denotes the zero order
transmission coefficient of the junction under consideration, T %) denotes the

zero order transmission coefficient from parallel plate to sectoral waveguide and
hiz=hy=0.
Solving the above system of equations which have parametric coefficients

with respect to the angle ¢, the coefficients of interest are obtained:

g " Yi(pocosd=h ‘)fl(d))fz(d))—l ej'Yx(hl_hO)

rI$)=—
1($) £(3)+1
(4.55)
and
sinl = MH
[¢ 8
e‘j11(90005¢—h1)f2(¢)+1 tan 2

ei‘n(hr‘ho) (4.56)

TO ¢ —-—
O @kl _ [ (6,1

2la 2




- 45 -

where

@ kh 4
£ () = 457)
S H @ (ko)
sin| = Sind_ +1W
2] . «
51n—2-_
fo(d)=—7 ‘t 3 (4.58)
sin i -ﬂ—d)—ﬂ
2 tang-
2 /
and
y="" (4.59)
o

Substituting (4.55) and (4.56) into (4.51) and (4.52) respectively, we obtain two
equivalent field representations in meniscus region R,, which match the fields:

given by (39) at z=h;=h( and by (3.18) at p=p,. The first of them is that of

parallel plate region R; and is given by

E=sin|m x,1 [1+r°(x)] , (4.60)
a 2
where
pdcos>
=i 2 —h,
x%p&cos’%

f1(x)(x)—1

O(x )=—— , (4.61)
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is the uncorrected reflection coefficient at point x .

Functions fy(x) and f(x) may be obtained from (4.57) and (4.58) by replacing

functions of ¢ by
. x
sin($p)= (4.62)
x2+p&coszg—
a
poCOS_Z"
cos(d)= (4.63)
220022
+pjcos®—
X Po 2 : I
x
tan()= (4.64)
cos—
PoCOS

The second field representation is that of the sectoral region Rj and is given by

£ (6)=T%@)sin| T[22 41| P K po) (465)

tan—
2

where T%(®) is given by

e —jvi{pocosb—h x)fz(d)) +1
H® (kpo)[1+f1(d)]

T$)=— (4.66)
Equations (4.60) and (4.61) clearly show that the amplitude of the reflected
wave is nonuniform with respect to the transverse coordinate of the parallel plate
waveguide x. A distortion of the amplitude of reflected wave depends on the
parameters of sectoral waveguide (or junction) i.e. the flare angle a and, strictly

connected with it, location of the apex of the sectoral part, k; and pg.




-47 -

The transmitted wave has modified amplitude factor in (4.65) which depends

on the character of the sectoral feed region.
If the reference plane does not coincide with z=h; the phase correction
cocfficients are necessary, ie. e’ Yihi=ha) for reflection coefficient (4.55) and

e’ Y1780} ¢4r transmission coefficient (4.56).

There are two possibilities:

- to convert the obtained expressions for the electric field, (4.61) in region
R, and (4.66) in region R, into classical form of Fourier series expansion, or
in general orthogonal expansion, and find total zero order reflection and
transmission coefficients in the form of series, or

- to use the form of solution given by (451) and (4.52) (ie. nonlinear
coefficient and first term of expansion) to find total reflection and transmis-
sion coefficients by integration over the required interval.

Both methods are alternative. However for further consideration the second
method is chosen due to the ease of finding the zero order reflection coefficient
T'J(4) on the dielectric boundary and first order coefficients due to multiple

scattering in presence of dielectrics.
4.6 Inverse scattering at the dielectric boundary

The zero order reflection coefficient 1‘3(4)) is to be determined using the
method of section 4.2 . Equation (4.39) expresses the reflection coefficient in
terms of parameters a and B of the incident wave. By substituting (4.66) into

(4.65) the electric field of an empty infinite sectoral waveguide is obtained as

o —iMibeeosb g (03e (1)1
(D)1 N | tand Ny @) (4.67)
a

E®° S
®) H O (kpo)lf1(d)+1] 2 tan—-




for z=h{=hg,

where

o £
v | cosd

N S SV 4.68
H 52) (k po) ( )

f1(d)=

Knowing that the phase factor of such a wave at the dielectric interface is equal

kh,

¢] the unknown differential coefficients, a and B, may be found.
cos

to H,SZ)[

The coefficient « is equal to

¢ /Mooty o singssin[($)}+——-cosbeos[¥1($)]
25in7

¢ I Y1Po0sE RO 1 ()] +sin[W5(d)]

a(d)=

v

S cos[¥(¢)] n [H (2)[ khy ”

o 2
2tanzcos¢ dé

o ) Yi(pocosb—h Osin[w1(¢)]+sin[‘l’z(¢)l )

cosd

kh ’
HO® (kpg)+H O] —
v ( pO) v COSd)

(4.70.1)

(4.702)
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The functions f1(¢) and f,($) are given by (4.57) and (4.58), respectively. Using a

reccurence formula given by [31] the derivative of (4.70) is equal to:

d khl khl khl Tt khl
—|H® = —H® L = )
dé {H" [cosd) ]] tand’[coscb "= cosd | « 2 cosd (“471)

The coefficient B equals

(4.72)

B(d)):tan(b [ ] _;— ’

where

-—-l—'n'< —-9‘—< ¢ < —(-!—< -er

2 2 2 2

Having found the coefficients o and B, the zero order reflection coefficient
due to the dielectric discontinuity I'3(d), is given by

1

2
kh 3 n°+f3()
H 52)[ : ] =V 1)

0 cosd
I7(4)= h - T (4.73)
H v(l)[ 2 ] 1 [oZ+E,()
cosd | ————_1+f3(¢) |
where
(Chi)i (4.73.1)

f3(¢)= 2 2
Sk
cosd sind
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with o and B given by (4.70) and (4.72), respectively.

From (4.73) it follows that the reflection coefficient at a point on the dielec-

tric interface depends on three complex functions:
. index of refraction,n, which in general is function of frequency, w,

. ratio of two Hankel functions being function of the distance h, at which

the interface is located,

- function f3(¢) being dependent on the angle of incidence ¢ of the cylindri-

cal wave.

In further analysis we will consider the problem of finding an appropriate
model of dielectric properties of the medium. Let us consider first a dipolar
model. The well known Debye’s formula [32] for such dielectrics has the form

P

wm
tand=tand, — 3 ° (4.74)

1+|—
wm

where w,, is the angular frequency at which maximum loss angle tand, occurs.

The high frequency dielectric constant €, =€, in many practical cases is constant
[32, p. 101]. After substituting (4.74) into (4.11) we obtain the following equation

for the complex index of refraction.

[STES

tand,,

@
Wy
n={e, |1— - ——
r 1+[_9_
@y

(4.75)
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In order to obtain the general solution for the reflection coefficient, given by
(4.55), the problem of inverse scattering at the dielectric discontinuity, z =h,,
must be solved first. Therefore the appropriate common order of equations used
for computation of the total reflection and transmission coefficients is as follows:
(4.59), (4.62), (4.63), (4.64), (4.70.1), (4.70.2), (4.70), (4.72), (4.75), and (4.73) keep-
ing in mind that equation (4.55) is issued for the reflection coefficient and (4.56)

for the transmission coefficient.

The total reflection coefficient of the parallel plate waveguide is given in the

next section.

47 The total reflection and transmission coefficients in the presence of transverse

dielectric loading in the near field.

The near field is understood to be the sectoral region where kp<8. The

total electric field in the sectoral region is given
E, =T, ($)sin¥H {7 (k p)+T2($)sin¥ 2 W (kp), (4.76)
where ¥, is given by (4.75).
The total transmission coefficient at the junction is equal to

I, ($)=T@)+T )+ 3, T" @) @77
n=2

where
T 9 is transmission coefficient of an infinite sectoral waveguide,

T is the first order inverse transmission coefficient at the junction for backward

travelling wave in sectoral region, R;.
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Similarily, the total electric field in the parallel plate region Ry is given by

. X 1 I' - 1Z j 1Z
E,=sin 12'— =+l 14T, (4.78)
where
Ty, (&)=TY$)+T(d)+ 3, T1(d) - (4.79)
m=2

Both (4.77) and (4.79) are a result of multiple scattering occuring in the closed
region Rj. It is well known fact that, for a number of practical purposes, the
resultant reflection coefficient is just that obtained by taking only first order
reflection into account [3,pp.224-233] since all higher order terms of (4.79) are
dependent on the inverse transmission coefficient T 1(¢), which is small. There-
fore we are allowed to neglect second and higher order components in (4.77) and
(479).

In order to find the first order reflection and transmission coefficients we are
allowed to apply once again Neumann’s concept to region R, with overlapping
boundaries. This time the first order inverse transmission coefficient T(¢) and
first order reflection coefficient I'{($) of the junction are caused by reflection of
the round interface p=p, associated with the polar coordinate system and
transmission through the meniscus region of the back travelling wave. Therefore
we may write the folowing system of equations for both sides of meniscus region

Rz!
T1(d)sin¥ e 7 VOO LTUG)sinW ,H P (k po)=
=-T($)sin¥,H (I (kpo) (4.80)

at p=pg and
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I {(¢)sin¥,—T Y()sin¥,H P (kpg)=

kh
=—Fé’(¢)sin%ﬂ§"[cos; ] , (4.81)

hq

cosd

atp=
From the above, the reflection coefficient Fll(d)) is found, i.e.

4 o £
v | cos

+H D (kpo)

I'}($)=-T3($) (4.82)

e —jvi{pecosd—h 1)f2(¢) +1

as well as the inverse transmission coefficient 7 ()

kh,

Hp)[ ]—va ko)) _
T1(¢)=I‘°(¢) cosd (kpo) e Jvi{pecosd hofz(¢)_1 s

2 kh e —jyi(pccosd—h 1)f2(¢) +1 )
H® +H P (k po)

COos

According to the preceding analysis the total reflection coefficient of the

waveguide region R, is given by

', (6)=T($)+T () (4.84)

and the total transmission coefficient is given by

T, ($)=T°($)+T{ () , (4.85)

where

I')(¢) and T'}() are given by (4.56) and (4.82) while T%4) and T (o) are

given by (4.55) and (4.83), respectively.

The analysis of components involving Hankel functions is given in the next

chapter in order to ascertain the most efficient form for computation.

L
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CHAPTER 5§
Analysis of the Solution

51 The total reflection coefficient

Further consideration will be confined to the reflection coefficients Ty(x)

and I'5(x) to achieve the purpose of the thesis stated in introduction (chapter 1).

The complex reflection coefficient I'(x) given by (4.61) at a point depends on

other complex functions such as f,(d), T'z($) and f4(4) given by (4.57), (4.73) and

(4.73.), respectively.

Since the reflection coefficient is nonuniform with respect to the transverse coor-

dinate x in waveguide region R;, the equivalent uniform coefficient of interest

must be found in order to compare with classical results and experiment.

The uniform reflection coefficient may be defined by

2
=, | T®)3 6y

2

in the region R, at z=hq or

2
f I'(x)dx (52)

2

hlr—a

everywhere in the waveguide region Ry at z < hy.

Because of the complexity of the integrand functions in (5.1) and (5.2), integration
may be carried out using an adequate numerical procedure. The integrand must

be free of singularities, i.e. analytical in the interval of integration.
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The integral given by (5.1) or (5.2) may be evaluated by using the well known

inequality [36]

[T(e)de| = [Ir()lde =ITl, , (53)
(o C

where [I'l . is the upper bound of the modulus. After substituting (53) into (5.1)

the uniform reflection coefficient is given by

2
r, = % [ Ir(#)ldd -521;‘”"- (54)

2

The dependence of the total reflection coefficient on the transverse coordinate is
given by (4.81) and shows that the result may be considered as a correction factor

to the traditional cosine multiplier.
5.2 Analysis of components involving Hankel functions

Before applying numerical treatment of the results, some additional investi-
gation is necessary in order to determine both convergence and the most suitable
form of the solution for numerical treatment. Since the Hankel functions are

defined by series, involving them components determine convergence of solution.
Let us consider all components of the solution involving Hankel functions.

Function f,(¢) given by (4.57) is a function of ratio of Hankel functions. The
component of a(d), (4.70), containing Hankel functions, may be denoted by
a13(4), and may be expressed in a form dependent on the ratio of Hankel

\
functions,i.e.




khy
khq cosd T

cosd o
e kh

v

H®,

cosd

é)=tand = .
i) H @ (kpo)

khy

cosd

(55)

o

H®

v

From (4.72), (4.73), and (55) it is clearly seen that all equations depend on the

ratio of two Hankel functions. Hence properties of these ratios must be exam-

ined.
By applying Cauchy’s residue theorem to Sommerfeld integral representation
of Hankel functions, Debye [24] obtained the following series representations
—j(2n+1)>-
y=N e AT(n +-l-)
H‘Sl) (kp)=_1__efkp(5in‘ro"’70¢°5'fo)x 2 A, (v0) 12
L n=0 k (n +‘2')
=P sint,
2
(5.6)
and

j@n+)-
-N e 4 I'(n +—1-
@) _ 1 —jkp(sintg—7ocosto) S 2

Hv (kp)—_e X 2 An (TO) 1 ’

w n=0 _ILQ_ (n+ E)

sint

2 0
57
where
(581)

AO(TO)=1 ’




-57-

1,5 1

==t 8.

A(ro)=g 1oy tanre (582)
3,7 1 385 1 |
Ay(r)=—=+ 5.83
2(70)=158 " 576 tan?r, 3456 tan‘r, (583)
|

for

cOsS Tg =zl');‘=-(—xl,:—p'<1 (5.9) , ’ ‘

Using equations (5.6), (5.7), (5.8.1) and (5.82) the ratios of Hankel functions of

interest are to be replaced by

H® khy kh
v cosé _, j[ cos:b (sinv;—7icost)—k po(sinT;—T,C0872) y f(z)("r 1)

, (5.10
H (kpo) t@(r) 10
in (4.57),
kh
HW|— kb : )
cosd chosd, (sinT—rcosT)—k pg(SlﬂTz_TZCOSTz)]X f ('r 1) (5.11)
————————————————— ."'_"e IreE— .
H M (kpo) f(75)
and by
H ‘Sl) (kpo) =pl Po(ﬁmz'fzcosz)xf_(i(l.zl (5.12)
H ® (kpo) £2(xy)
in (4.82), where
mcosd
cosT| =——— 13
T1 akhl (5 1 )
cOSTy = , (5.14)

akpg
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and
3m
(—,+)jl'4— 1 e(-,+)lTr 3
¢ ') (1,5 1 2
(02 )= T 718 724 tan? 3
khy 3|3 M gy 2
2cos sint 1} ‘ 2e0sd sinT 1]
5o
(—’+)-_—'
e a I‘l—%]
I e
tan T tan T1 khlsin'fl E
2cosd
3w
-4i7 1 =i 13
e TG (s 1) 2
f12(r )= — |t .
IR I CRET \2
posinTy |2 k pgsinTy |2
S5
(—’+)j—_'
e 4 I‘[—S-]
3 7 1 385 1 2
1728 7576 tan?e, 3456 tan 7 T
tan T2 tan Ty [kposin'rz ]—5—
2

(5.15)

(5.16)

where T’ denotes the gamma function and the adequate ratios of Hankel functions

in (5.5) are equal to

g o | o
vl cosd -j cos:b [(sim';—‘rgcosn)—(sinn—'r1cos-rl)] f(z)('r3)

= X
H @) kh 1 f(Z) (1- 1)
v {cosd
where
cosTy =AT % cosd

(thl

, (5.17)

(5.18)




-59.

and f)(15) is obtained by replacing in (5.16) 71 by T3,i.e.

H 52) (k po) =ej Ckol;; {(sin'rl-—'r 1COS‘l’1)—‘k pg(SiﬂTz"TzCOSTz)] f(z)('r 2) (5 19)
H ?) khl f(z)(T 1)
v | cosd
The appropriate ratio of Hankel functions of (4.73) has the form
kh
@[ —2
H v [ COSd) ] —j khz (SiﬂTq—T4COS1’4) f(z)(T 4)
— T T, Tcosd TV (5:20)
H (1) khz f (74)
v | cosd
where
COST,4 =-":—:731%— , (5:21)
while the function f)(7,) is given by
.M ]211— 3
Tapd ‘r|=
e 1) 1,5 1 ) 2
£@(r,)= +=+= +
.1; 8 24 tanz'r é_
khz . 4 khz . 2
2cosd ST 2cosd ST
Z (s
€ 4 r [‘E
3 7 1 385 1
. + . 52
[128 576 tan’r, ' 3456 tan‘s ] 3 ©22)
4 4} | khosinTy |2
2cosd
and the function f((t,) is given by
w "']'2"— 3
Iy | 4 ri2
e ‘TR (1 s 1\~ ' [ 2
f(r,)= i rREYow ] T+
khy |2 ) ( kn, )2
2cosd ST 2cosd ST
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5t
7 1 e—VTF[%]
’ 1;’8—*-576 tant +:’>?:18556 tanl“.r ] 5 oo (5:23)
4 4 kthinT4 2
[ 2cosd ]

All series given by (5.15), (5.16), (522) and (523) were proven by Debye [24]
to be nondivergent (or semiconvergent). In a similar manner Isao [35] investigated

properties of Hankel functions ratios. Debye’s representation of the above form is

w

valid for 1y<1 and 0< cos Iry< >

The limit of validity of the above representation of Hankel functions results

from (5.21)

meosd <1, (5.24)
(!khl max

which leads to the inequalities:

a a
an2 )\oa (5:25)
or
o c
tan—— < 0, 526
an2 2)\‘)0: (526)
or
a Jfo
tan—— < 0, 527
an 2 2. o (5.27)

where
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0.40
8.2 GHz
0.30 -
0.20 -
0.10
10.0 GHz
0.00 T T T T 1
0.4 0.80 60 2.40 3.20 4.00
lare gle a Horn [RAD]

-0.10

-0.20 -

—-0.30 -

Fig.5.1 Solution of inequalities
given by (5.25)-(5.27)




- a denotes distance between plates of parallel plate waveguide,
- A, and X, denote free space and cutoff wavelengths, respectively,
- f and f, - frequency and critical frequency, respectively.

The above inequalities have an easy graphical solution shown on fig. 5.1 .
From fig.5.1 it is seen that for frequencies approaching the cutoff frequency f . of
the waveguide the applicability of the representation of Hankel functions as con-
sidered in this section is limited to lower values of flare angle. For the frequency

of 8.2 GHz this value it is less than 100°. and for 10.0 GHz - less than 110°.

Above these values of flare angles a different representation of Hankel func-
tions is required, ie. for 7¢=1and 7¢>0. Such representations may be found in
the Debye’s paper [24] as for 7(<<0 but, due to the little practical importance of
sectoral waveguides and horns of large flare angles, these are not considered in

this thesis.

5.3 Problem of an appropriate model of dielectric properties

The simplest type of dielectric loss described by Debye’s model, i.e. (4.74), is
based on the assumption that, in the constant field, the polarization of a medium

approaches its equilibrium value exponentially with time.

The restriction of the validity of Debye’s model to frequences below a cer-

tain limit @, underlies all possible models. Therefore the initially considered
model is valid in a certain interval of frequency where no resonance occurs.
Frolich [35] in the appendix of his book derives Kramers-Kroning relations
valid for a great number of dielectrics:
w'dw’

) 2 .
€, (w)—eroo =_; €, (w)_;__—(;




; 2 5 p do’
€ (w)=—;f [er—_erw]w_(f)z—(:—z' (5.29)
0 -

Both these relations follow from from fundamental physical property of causal

connection between the polarization and the dielectric field, i.e.
D (%,t)=E (% ,1)+[ G(r)e/*dr (530)
0

where the kernel G(1) is the Fourier transform of x=e(w)~1 and may be used to

express the dielectric constant
€(w)=1+f G(r)e/*7dr (531)
0

The simplest model including a single resonance for square of the index of refrac-
tion n*(w)=€(w) and which satisfies Kramers-Kroning relations [38] has the form:

2

'qz(w)=1+ Cp (532)
woz—wz—-j wf

where

W is the resonant frequency, B is damping constant and w, is the plasma

frequency of the medium.

The singularity structure of m(w) may be determined by the location of the

poles and zeros of m%(w) in the complex w plane. The zeros of 1%(w) are given by

w, =0~ jg— { (5.33.1)
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where

2
12=woz+w,3—%, | (5.333)

and the poles of n%(w) are located at

w, =w2—j% (534.1)
and
Wy ==y~ ] X (5342)
where
B
w22=wg—v e (534.3)

In effect by using the above equations the complex index of refraction may be

written as

W—w, )(w —wb)

. (w_wc )(w —wd)

n(w)= (535)
In general the complex parameters of (535) are unknown for any dielectric
material commercially available for microwave use. Therefore they must be deter-

mined experimentally.
The considered structure may allow such an identification. Having found the
total complex reflection coefficient I'y,, the first order reflection coefficient ry

may be computed from (4.83) and (4.81). From (4.73) and (5.35) a simultaneous

system of equations may be obtained for each measured frequency in the range of
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interest. In order to obtain an accurate solution the minimal norm should be

searched for, i.e. method of least squares must be applied.

This way we arrive at the problem of synthesis of an appropriate model of
dielectric properties of an insertion. By finding the model in certain constant con-
ditions the behavior of the dielectrics in different conditions may be predicted.
Equation (4.74) shows that both the field properties, depending on the waveguide
parameters, and the dielectric properties determine the value of reflection
coefficient. At certain values of these parameters the structural transparency for
the electric field may appear, thus the line becomes perfectly matched. This does
not mean the medium is transparent for the electromagnetic field due to the fact
that this process is expected to happen close to the resonance region where the
parameters of a dielectric change very rapidly, i.e. the real part of the dielectric
constant decreases and the imaginary part, called also the loss factor, increases

causing much higher dissipation of energy than in the equilibrium state.

Thé identification problem lies beyond the scope of the thesis.
5.4 Numerical solution

The analytical solution given in the chapter 4 was programmed for the
University of Manitoba Amdahl 5850 main computer. Depending on the desired
input and output data, a number of interconnected programs were written (see
sample program in Appendix). There is assumed that the dielectric properties are
described by Debye’s model in the equilibrium range, i.e. tand given by (4.74) and

high frequency dielectric constant €, =€ .

From the great number of data obtained, only those which allow us to give a
brief clear picture of the investigated process were selected. Complex values were

converted into measureable modulus and amplitude of reflection coefficient and




electric field, respectively.

The frequency dependence of the reflection coefficient of the junction under
consideration is shown in fig.5.2 for infinite sectoral waveguides having different

flare angles. The results were obtained using (4.55).

The reflection coefficients of a sectoral waveguide having fixed flare angle of

24° are plotted against frequency in fig.53. for different dielectric materials.

Figure 5.4 shows the frequency response of the reflection coefficient for sec-
toral waveguides characterized by different flare angles loaded with the same

dielectric substance at the same distance from the apex.

Figures 5.5 and 5.6 show the angular distribution of the reflection coefficient
and the electric field amplitude,respectively,at dielectric interface hy= 1285 mm
for three different values of flare angle of the sectoral part of the considered

structure.

The distribution of the reflected electric field between plates in the parallel

plate region shown in figures 5.5 and 5.6 is presented in fig.5.7.

The dependence of the total axial reflection coefficient value on the location
of dielectric dicontinuity measured from the apex is shown in fig.5.8 for the same
flare angle and three different frequencies. These results are discussed together

with experimental results in chapter 7.
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Fig.5.5 Angular distribution of reflection
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of different flare angle
at dielectric interface located
at h,~128.5 mm. Dielectrics is represented
by Debye modelE,=4.0,fm:10.0, tan 5,70.089
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of different flare angle
for the case from fig.(5.6)




-73-

a = 2286 mm_N
I
0.40
8.2 GHz

. 0.38 -
=S
et
3
< ;
4 0.37
8 ',
5 9.1 GHz
o
9 0.35 - 10.0 GHz
-
3]
2L
Gt
)
B 0.34 -

0.32 T T Y T T —

60.00 75.00 90.00 105.00 120.00 135.00 150.00

distance [mm]

Fig.5.8 Dependence of axial reflection coefficient value
: of garallel plate waveguide on location
of dielectric interface from the apex
of sectoral waveguide for flare angle 30 [deg]
Dielectrics is charactarized
by Debye mode1€,=4.0,fm=10.0, tan8m=0.089




G

-74 -

CHAPTER 6

Experimental Procedure and Results

6.1 Description of the experimental setup

As a model of the parellel plate waveguide was used an x-band rectangular
waveguide operating in the TE,, field was employed since the behavior in this
case does not depend on the narrow dimension of the waveguide.

In order to verify the effect of dielectric loading of the sectoral waveguide, a
long sectoral horn antenna, having a flare angle of 24°, was connected to the rec-
tangular waveguide, of the standard dimensions 22.86 x 10.10 mm (see fig. 6.4).
The horn had one of two walls screwed on to allow insertion of the dielectric
which was superpolyamide and which was described by standard parameters. Dur-
ing the experiment the horn was imbedded into a container filled with absorbing

substance "Eccosorb I.§26" (fig. 6.50).

SHORTING
SWMTCH
[, 10d8 | 1048 $
bﬁ*l y 1 - <
TEST Fﬁl
WAVEGUIDE 2043 TO NXTWORK
INPUT [ —% QuTPUT :
ANALYZER
20dB ?
,. : % : ‘%
[ 10d8 1048
SLIDING
SHORT

Fig. 6.1 Schematic diagram of the power splitter
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The reflection coefficient measurements were performed using a substitution
method based on an individually built power splitter of directional couplers, con-
nected to a network analyzer and schematically shown in fig.6.1. The power
splitter furnished isolation between the reference and test channels and fed them
with two equal signals. The reference channel was terminated in a sliding short
while the reference was terminated in a shorting switch connected to the dielec-

tric loaded sectoral waveguide.

During the calibration procedure, the shorting switch in the test channel was
on and the electrical length of the reference channel was adjusted by a sliding
short so as to equalize the electric lengths of both channels, i.e. the reflection
coefficient was equal to unity in both channels with constant phase response

against frequency in the range of interest.

XY
NETWORK  _|
OSCILLATOR recorder ANALYZER
USING POLAR
DISPLAY — HP B414A—F—
sliding
shorf

[ — ] [ I
g-_c‘_n_ = p— 4
COAX-WAVEGUIDE
ADAPTER

o

J

waveguide  shorting
under switch
test

Fig 6.2 The experimental setup for reflection coefficient measurements




NOTICE/AVIS

-3 , /
- — EST/SONT

PLEASE WRITE TO THE AUTHOR FOR INFORMATION, OR CONSULT
THE ARCHIVAL COPY HELD IN THE DEPARTMENT OF ARCHIVES
AND SPECIALVCOLLECTIONS, ELIZABETH DAFOE LIBRARY,
UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA,

R3T 2N2.

VEUILLEZ ECRIRE A L'AUTEUR POUR LES RENSEIGNEMENTS OU
VEUILLEZ CONSULTER L'EXEMPLAIRE DONT POSSEDE LE DEPARTE-
MENT DES ARCHIVES ET DES COLLECTIONS SPECIALES,
BIBLIOTHEQUE ELIZABETH DAFOE, UNIVERSITE DU MANITOBA,
WINNIPEG, MANITOBA, CANADA, R3T 2N2.

g oer  Die Tl

0




-76 -

During the measurement the shorting switch in the test channel was off and
the reflection coefficient was recorded by an HP 7035 X-Y analog recorder and
read on a display unit. The plane at which the shorting switch was placed, z =h,,
did not coincide with the plane z =h, (fig. 4.1) thus the corrected formula (4.55)
for reflection coefficient had to be employed. The schematic diagram of the

experimental setup is shown in fig. 6.2.
The complete setup was composed of the following equipment:
- Reflection-Transmission unit, individually built, as shown in ﬁg. 6.1,
- Harmonic Frequency Converter HP 8411A,
- Sweep Oscilator HP 8690A/RT, 8.2 - 12.2 GHz,
- Phase-Magnitude Display HP 8412A,
- Polar Display HP 8414A,
- Digital Counter - M37 I - Source Locking Microwave Counter,

- X-Y Recorder HP-2035B.

4

T

Fig.6.3 General layout of the experimental setup
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Fig.6.4 (above) Sectoral horn and shorting switch used for

experiments in the test channel

Fig.6.5 (below ) The absorbing container of the setdp
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6.2 Experimental results

Experimental results were needed both to verify the proposed method (due
to lack of relavant data in the literature) and to exhibit further complexity of the
investigated problem. Since the considered model of dielectric properties is
confined to the equilibrium state of a dielectric, an agreement between theory and
experiment can only be expected for that state. The superpolyamide used for the
experiment was characterized by standard parameters i.c. €, =4.00, tan5=0.089 at
f=10.00 MHz. It was arbitrarily assumed that this data represents the constant
parameters of Debye’s model for dipolar solids. The reflection coefficient was
measured in the frequency range of 82 - 10.0 GHz using the method described in
section 6.1. The frequency range had to be upper bounded due to limited avail-
able power of the sweep oscilator to drive the frequency converter of the network

analyzer.

Figures 6.6, 6.8, 6.10 and 6.11 present the amplitude of the measured
reflection coefficient expressed in dB for different loading of parallel plate
waveguide, ie. k,=933 mm, 128.5 mm, 1455 mm and 1612 mm, respectively.
Such a representation of reflection coefficient is called return loss of the

waveguide and is defined by the relation

rm =20loglr'] (6.1)

Figures 6.7 and 6.9 show Smith charts for h,=933mm, and 128.5 mm. Each
of these simultaneously allows one to read both amplitude and phase, thus giving
the complete set of data to carry out the identification process mentioned in sec-

tion 5.3.

Data for the case of the unloaded sectoral waveguide are compared with

those given in [37] in figure 6.12.
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Figure 6.13 exhibits experimental data for the sectoral waveguide being short

circuited at the plane h;= 1843 mm.

The agreement between theory and experiment is satisfactory within the

entire frequency range where the dielectric is in the equilibrium state.
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6.3 Discussion and analysis of accuracy

The discrepancy between theoretical and experimental results is primarily
caused by inadequacy of the structure employed in the experiment and the

theoretically considered model. The main reasons are:

- the length of dielectric insertion (along z-coordinate, fig.4.1) is finite, thus
the total reflection coefficient is the sum of reflection occuring at the con-

sidered discontinuity at z =h, and the neglected dicontinuity at z = h3 > h,,

- the length of the sectoral waveguide is finite, hence scattering on its edges
contributes additionally to the reflection coefficient if the medium has low

loss tangent,

- the dipolar model of dielectric properties of the load only approximately

describes its behavior.

The power splitter converts the network analyzer to essentially a ratiometer
by measuring the power ratio between the reference and test channels. Both
reference and test channels are initially and during calibration process at the same

power level, i.e.

re=p-=1, (62)
r

where
P, denotes reflected power in the reference channel,
P, denotes reflected power in the test channel.

While the measuring procedure is carried out, the reflected power P,

remains constant in the reference channel and that of the test channel is equal to
P, =ITI%P, (63)

In effect the return loss of signal measured by the network analyzer is given by
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"m [dB ]=10l0g T [2=2010g|T| . (6.4)

If the power ratio of feed signals in both channels remains constant within the
measuring frequency range, it may be shown that the relative error of return loss
measurement is dependent both on the absolute error of the reflection coefficient

and on the reflection coefficient itself according to the following relation:

A
Tm o 100=-4343AIT]

Orm [%]=—- log [T ]

Since the absolute error of return loss, Ar,, 5, for the measuring equipment used
is £0.10 [ dB ] the relative error of return loss measurement is found to be

1

=4 —_——
O [%]= 2log|r]

(6.6)

The dependence of relative error of return loss coefficient on the reflection
coefficient is shown in fig.6.6. Accuracy of the measured reflection coefficient
below 0.8 or return loss coefficient below -0.2 [ dB ] is within the range of £5 9.
The dynamic error of the X-y recorder additionally contributes to the total error,
but its detailed analysis is beyond the scope of the thesis. The accuracy of the
reflection coefficient measurement using the network analyzer cannot be higher
than *+0.17 % due to the high values of the signal-noise ratio for reflection

coefficients less than 0.001 or return loss coefficients less than -60 dB.
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Fig.6.6 Dependence of relative return loss
error on the reflection coefficient
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CHAPTER 7

Conclusions and Suggestion for Future Research

A significant step has been taken towards determination of the complete per-
formance of dielectrically filled sectoral waveguide or horn. The background for
future research has been established. By applying the proposed methods of solu-
tion, both for the parallel plate - sectoral waveguide junction and for inverse
scattering at the transverse dielectric discontinuity in sectoral waveguide, the
determination of dielectric properties of a dielectric insert may be accurately

solved for using a large class of dielectric constant models.

Numerical results allow us to predict both the reflected wave amplitude and
its phase at an arbitrary point in terms of location of the dielectric discontinuity
and properties of dielectrics for an infinite sample in the sectoral part with the

restriction that the dielectric is homogeneous, isotropic and linear.

The experimental results proved to be in satisfactory agreement with the
presented theory for the frequency range where Debye’s model of the dielectrié
constant and all the restrictions related to the structure under investigation are
valid. The accuracy for that region is within the range * 5% with respect to the

measured quantity,

The axial value of the reflection coefficient depends only on properties of the
dlelectrxc insert (figs.5.5 and 5.6.). The reflected electric field amplitude has its
maximum shifted with respect to the axis. Both the amplitude and shift of the
maximum depend on the flare angle of the sectoral waveguide for the same dielec-

tric inserts (fig.5.6).

Practical application of the method is limited to dielectric media which may
be considered to have an infinite length with respect to the wavelength. Since a

great number of industrial products have such properties, this condition is easily
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satisfied.

Any model of dielectric properties, including the resonance region, can be

determined with accuracy limited by the equipment used and the assumptions

made.

dielectric and electric field is established in a unique manner. The answer to the
question of recovering the information about dielectric properties is positive.,
However the ease with which the sectoral waveguide or horn may be used as a
sensor is at the expense of additional computational effort. Such a computer pro-

gram was created and favorably tested, and can be implemented using any stan-

dard computer.

Since the research in this area is far from complete due to interaction
between microscopic and macroscopic behavior of electromagnetic field, there still

remain the following problems to be solved:

- the multiple scattering in the cavity created between junction and dielectric

for highly reflective materials, ie. [T']> 0.5,
- Power transmission across the junction and dielectric,

- reflection and transmission of the electromagnetic field by a sample of finite

length,

- optimization of a multilayer transverse dielectric insert depending on the

application and function desired.

- determination of the total impedance represented by the insert considered.
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Appendix
A.l Program description

The main program calls four soubroutines. It declares many of the variables
used throughout the program. The parameters of the dielectric and its location in
the sectoral waveguide are read and then the total reflection coefficient of the
structure is evaluated. Output data is stored in a three-dimensional matrix and,
depending on need, printed or transferred for plotting. The standard Calcomp
subroutines are used for plotting. The program listing is enclosed followed by an

example of the printed output.
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sJoB 40.
DIMENSION MOD(37.ll,S).F(J7),X(11),EPSR(S),YANDEM(S).FREOAM(S) 0.
DIMENHSION M002(37,\!).MTRI!J7.|\),MODI(37,ll).Hz(S),PHl(II) s0.
DIMENSION PHIT(11} 70.

c s80.
REAL X,FMlN,FMAK.PHAHIN,MODZ,MOD,EPSR,TANDEM,FREOAM 90.
RELL PHAMAY ,AMIN,AMAX A, RHOO, MO0 100.
REAL HO,H1,H2,PHI PS11,PSI2,SCAMI TAU1, TAU2 110,
REAL TAU3,TAU&, TAUS, TAUG,6 FLARE 120
REAL K,OMEGA R1,R2,EWY,LARG,OMR 130
REAL N1,MT_ KH,ND, X1, EF2 140
REAL P,S , MTR1 150

[4 180
INTEGER A1/°GAMz"‘/ 170
INTECER A2/°L0Gr"*/ 180,
INTEGER A3/°GA2¢°/ 190
INTEGER G1/°GAMM‘/,G2/*A*/,GC3/°L0GC ©/.G&/*INV.*/, G5/ GA2°/ 200.

c 210.
COMPLEX ETA,BETA,ALFA12,ALFA13,ALFA 220.
COMPLEX EF1,EF3 EWY!1 GAMMA,R ,E2 230.
COMPLEX EP3,EPA4,GAMMAL, GAMMA2 240.
COMPLEX EP!,EF2,PHAT2,PHA1I,PHA RHANT, RHAN2 280.
COMPLEX FHAN1,FHAN2, TRt 6 GAMO, GAMY 2%80.
00 30 Le1,S 270.
READ,EPSR{L),FREQAMIL) TANDEM(L]) H2(L) 280.

e A R R R R A i da it cereccsccrmccaceec=200.

CeexssSEY ANGULAR FREQUENCY OMEGA 300.

c 310.
po 20 I1:t,37 320.
PIt3.141569268358397 330.
FMIN:S .2 340.
FMAX:10.0 380.
F{I}tFMIN ¢ (I-1) = (FMAX - FMIN}/36 380.
OMEGAs2sPIsF(1)*1 .E § 370.

Cecemeamemensensuamsesssssomrococesrmmmancor s no oo onSnnTToTnoonT «s-=380.

CeexssSET PARAMETERS OF WAVEGUIDES, A AND ALPHA 380.

c 400.
00 10 Jri, 1t 410.
FLARE*30 420.
ALFArFLAREsP1/180 430.
PHAMIN:-ALFA/2 440.
PHAMAXCALFA/2 480.
A0.02284 480,
HY = A / (2sTAN(PHAMAX]) 470.
X(Jd) - a/2+{y-t1)sa/10 480.
RHOO:A/2/SIN(PHAMAX] 480.
PHI{J)SARSIN(X(J))/SORY ( X(J)=s=2 ¢ ({RHOO*COS{PHAMAX) }®22) $00.
CALL TRYFUN (PHI(J),PHAMAX,PS11,PS12) s§10.
EF2: (SIN(PSIT)) / (SIN(PSIZ2)) 520.

c-----------»-----------------------------------------------------------s:o.

CexsesxCALCULATE GUIDE PROPAGATION CONSTANTY 540,

c $50.
Cz2.9979ES8 580,
KtOMEGA/C 670.
SCAM! ®*SORT (Ksx2 - (PI1/A)es2] 580.

c-------------------------------------------------—----------------~----sno.

CessesCALCULATE ALPHA12,EQU.(4.70) - FIRSY Two COMPONENTS 600.

c c10.
EWYs-SGAMI® (RKOOSCOS(PHI[J)) - H1) €20.
AzO §30.
EWY1sCMPLX(A, L EWY) 640
EWY1sCEXP(EWY ) 650.
R1cPLI*COS{PHI(J))=COS(PSI1])/2/SIN{PHAMAX] 660
R2:SCAMISRHOOSSIN{PHI(L))=SIRNI(PSTt] 670.
kl-kl+Plvcos(rslz)/2/YAN|PHAMAxl/lcoslPHl(J)))'tz 630
ReCMPLX{R?! R2) $80.
PHAI12sR/(EWY1=sSIN(PST1) +SIN(PSI2)) 700,

4 710,

CersssCALCULATE ALPHA13, EQUS. (s.6),(8.18),(5.20) 720.

c 730.
TAU3:[(PI-ALFA)SCOSIPHI[J)]})}/{ALFAs K & H1} 740,
TAUISPI=COS{PHI(J}]}/(ALFA ¢ K =+ A1) 7%0.
ARGs KsH1/COS(PHI(J)) 760.
CALL MAN2{P,S,TAUJ,LARG) 770.
EPZECMPLX{P,S) 78¢C.
EP3CEP2 79%0.
caLlL MAK2{P,S,TAU1,AaRG]} 800.
EP2sCMPLX(P,S]) 810,
EP3SEP3I/EP2 820.

c 830,

CrssseCALCULATE EON.(5.18) 840,

c 850

: zu-ARG'((Slﬂ(TAU:)'TAUJUCOS(TAUS))'(SlN(TAUl)-TAUIOCDS(TAU‘))) 880,
ARO 370.
E23CMPLX{A,2) 880.
EP&sCEXP{E2)SEPD 890,
TAU2:PI/{RHOO=KZALFA) 800,
ARGEsK*RHOO s10.

EP3IcEP2

$20.
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c
Crsaga CALCULATE EQU. (5. 20)
c
c
CALL HaN2 lP,S,TAUZ,ARG)
EP?KCMPLX(P,SI
EP3sEP2/EP3
Zthnl/COS(PNI(J)ll(SlNlTAUl)*TAU!'CDS(TAUI))
ZIZ-ARC‘(SIN(TAUZ)'TAUIlCOS(TAUZ)’
E2:sCcMPLX (A, 2)
EPJICEXPIEZ)'EPJ
[
Cesexae CAatcurare ALPHA1Z, EON.(S.g)
c
PNAIJ'TAN(FHI(J,)‘lK'NI'EP‘/COS(PHl(J))'PI/ALFA)/(‘OEPJ)
c .
Cesnes CALcuLaTe ALPNA,EOU.(‘.70,
c

PKASPHAlZ‘FNAlJ

c ........ ...-----~-----..---.-..... ..... .- e e maaaa
CxwxzxscaLcuLaTE BETA(PHI), EQN. (4.72)
c
Tauax((Pl-ALFn)tCDS(FNl(J)))/(&LFA * K s H2{L})}
TAU):P)'COS(PNI(J)l/(ALFA K oy K2(L)
ARG x-nz(L)/cos(Pnl(J))
CALL HAN2(P, S, TAU3, ARG )
EP2:CMPLX(P,s)
EPI:EP2
cact HAR2(P,s,TAU1, ARG)
EP2«CMPLX(P,s)
EP3:EPI/EP2

Zl-ARGl((SIN(TAUJ)'TAUJ‘CDS(TAUJ))’(SlNlTAUl)-TAU!'COS(TAUI)))

E2:CMPLX(A,Z)
EP&sCEXP(E2)sEpPa
B!TA!TAN(PHI(J))t(K'H2(L)'EF‘/COS(PHl(J))-PI/ALFA)

c.-....-.-.....-.--.-....-....-...---...-.--..--

Ct---tCALCULATE F3(PH1), EON.((.7S.I)
c

!FJI(PNAOBETA)l'Zl((PHA/COS(PHI(J)])‘tZ*(BETA/COS(PHl(Jl))"2)

C~--~--------~---~-°-----°"-"'- ......
CexxxscatcuLare ETa, EON.(4.75)
c

OMR'F(I)".EG/FREOAH(L)

St-(TAND!M(L)‘OMR'Z)/('OOMRtiz)
P:EPSR(L)

E2:sCMPLX(P,s )

ETA:CSORT(EZ)
C""""""'"""*""""'""""""'
Cssxsecarcurare CAMMA2, EON.(4.73)

[

TAUllPltcos(PNl(J))/(ALFA'K:HZ(L))

Auc-xcnth)/cos(rnx(J))

CALL HAN2(P S5, TAU4, aRG)

EP2:CMPLX(P,S5)

CALL HAN1(P s, TAU4, aRG)

EP1sCMPLX(P,S)

z--z:x-nz(L)-(sxu(rnu4)~1Au4scos(TAun))/cos(Pux(J))

E2sCMPLX (A, 2)

EP3I:CEXP(EZ2)

EPIsEPIsEP2/EpP

zz:cscnr((:rA:czozr:)/(1¢zr:))

GAMNAZ'EPJ'(I’EZ)/(!*EZ)
C""""""“"“""""""“ ----- e e e e maaaea.
CzexsscaLCuULATE EFt, EON(S.3)

c
CssssacALCULATE EON. (5.9}
[

TAUtsrlccus(Pnl(dl)/(ALFA-Ktul)
TAuzrrll(ALrA-x-nNoo)
ARGlKlHl/COS(PHI(Jl) .
catL NAN:(P.S,TAut,ARG:

EP2:cMPLX (P, s}

EPtagEpP2

ARG:K=RHOO

catLL HAN!(P.S,TAUZ,ARG)

EP2sCMPLX({P,5)

EP3IcEPI/EP2
ZI-K'Nl/COS(PHl(J))'(SXN(TAUI)-TAU“COS(TAU!))
z-zox-kHOOt(sxu(rauz)-TAuzncos(TAuz))
E2:CMPLX(A,2)

EF1sCEXP(E2)nppy

$30.
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Crsss2CALCULATE GAMMA ¢t
[

OF A LONG HORN,

EQON(4.61)

chMAt-~(:wvn:zrt-:r:-l)/(:rvol)

Cereccnncnan b AL B B TR

Cxs=zescaLcuLAaTE GAMMA I (GCAMI) OoF THE FIRST ORDER EoQU
c

ARc-x-Nl/cos(PNl(J))

catt HANT1(P,S, TAU1, aRG)

EP1sCMPLX(P,s)
IaKsH1/COS({PHI
E2:CMPLX (A, 2)
FHANIT:E2sEpP |
ARG*K=RHKHOO
CALL HANT(P,S,TAU2,aRG)
EPI1ECMPLX(P, S}
z-xcnuoo-(sxu(TAu21~
E2eCMPLX(A, 2)
RHANIECEXP(E2)eppy
GAMII-CAHMAzt('HANl0RNARI)/(EWYI‘EF201)

(J))-(SXN(TAUI)-TAUI-COSIYAUI))

TAU2sCOS({TaU2)}

c--.----------o-------~-~-----.--.--.-------

CrxszsCALCULATE ToTAL REFLECTION COEFFICIENT GaMMA1
c

CAMMAIGAHMA|OGAM1
c.------.------..-.o-------.---.-.--.--' -----------
c
CrxssscatcutaTe THE FIRST ORDER INVERSE TRANS., COEF
c

ARG:K2*RHOO
CALL HAN2(P.,s,Tau2, ARG}
EP2:CMPLX(P,S ]
Z:-KSRHOO® (SIN(TAUZ)}-
E2sCMPLX(A, 2}
RHANZ2:EP2sCEXP(EZ)
ARSEK«H1/COS{PHI{J])
CaLL HAN2({P, S, TAU1, aRG)
EP2:CMPLX(P,$)
Zs-KsRHOO®[SIN
E2rCMPLX (A, 2)
FHAN2sCEXP(E2)sEp2
TRISGAMMAZY { (FHANT -

C-------.----.-......--..

CrexseCALCULATE MODULUS

c

TAU2«COS(Tauz))

(Tnuz)-rnuz-cos(tauz)l

RHANI)/lFNANZ‘RNANZ)-(EWVI

ARGeREAL (GAMMA )
MODI(1,J)eCABS (GaMMA )
Mrnl(x,J)-caaschuMAz)
uoo(x.J.L)-zonALoclo(Mouttx
Mooz(x,J)xzo-ALocto(Mootlx,
PHIV(J)ePHI(J)c180/p;

10 CONTINUE

20 coNTINUE
FR!OAM(L)!FREQAM(L)/!.E!
PRINT 285,61,622
PRINT &,rLARE

S FORMAT (rox,rFa.1)

FORMAT (36X,488,44])

PRINT 258

PRINT K2(L)

PRINY 1§ +EPSR(L),FREOCAM{L )

FORMAT (6X,2r5.2,F7 4}

CALL PRTS (X.F,MODI,J7,|1,AI,37)

PRINT 28

PRINY 2§ ,G1,G2,c3

PRINT 8,FLARE

PRINT 3§

FORMAT (34x,344)

PRINY 15 ,EPSR(L)

PRINT H2(L)

CALL PRTS (X,F,M0D2,37, 1,

PRINT 28§

PRINT 25 ,Gca,Cs

PRINT §,FLARE

PRINT 258

PRINT 15 _EPSR(L)),

PRINT H2(L)

CALL PRTS (rux:,r,nrn:,:v,x

CONTINUE

stoep

END

J))
Jl}

«TAKDEM(L)

38
,FREOAM(L),TANDEM(L)

«A2,37;

'REOAH(L),TANDEH(L)

1,43,37)
3o

M L

'Erz-l)/lewvncerzot))

.....--..---.....2]50_

EON.(a.82)

1740,
1Vs0.,
t780.
1770.

*-e---1780.

1780.
1800,
1810,
1820,
1830.
1840,
1850
1860,

se----1880,
1990,
2000.
2010,

2020.
2030 .
2040,
20850,
2060.
2070,
2080.
2080,
2100.
2110,
2120,
2130.
2130,

2160

2170,
2180,
2190,
2200.
2210.
2220.
2230,
2210,
i280.
2280,
2270,
2280
2290,
2300,
2310,
2320.
2330,
2340,
2350.
23180,
2350,
23¢t0.
23s%0.
2400,
2410,
2420.
2430,
24840
2450,
2480,
2470,
2480
24390,
28G0.
451¢.
<820
2830.




186
187
188
189
180
181

182

183
194
195
186
197
188
188
200
20%
202
203
204
208
206
207
202
209
210
211
212

213
214
215
216
217
218
218
220
221
222
223
224
228
226
227
228
228
230
231
232
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CreverSUBROUTINE TRYFUN,
c

SUBROUTINE TRYFUN
PIlx3. 1418926535897
PSIIIPI-(SIN(PNIl/SXN(PMANAX) *
PslzlPl'(TAN(PHl)/TAN(PHAMAX)*I)/!
RETURN

END

Cr e ettt et ittt tecnnannas

A

(PKI,PHAMAX,PS!I,PSIZ )

11/2

Cexs22COMPUTE SERIES OF HANKEL "‘FUNCTIONK OF THE FIRST KIND

SUBROUTINE hAN‘(P,S,TAUS,AQC)

COMPLEX E2,SUM,.EP1
Plel. 1415926535887

aso

Zs-P1/4

E2:CMPLX(A,Y)

EP1s( 1y, T245:CEXP(E2))/SORT(ARGeSIN
2r-3xp1 /2

E2:CMPLX(A,2)
SUMxo.BBSZB-CEXP(Ez)t(3/06$/24/(TAN

(vaus)/2)

(TAUS ) Jxx2)

suu-suu/so&r(nnc-sxu(rnus)/zlllAchst(rnus)/2)

EPISEPI+SUM
2:-5=Pl /&

E2:CMPLX(A,Z)
sun::.:zn:-cexr(szls(:/lzaozcs/:asc
sun-sun/soaf(nnctsxu(rnus)/z)/(Auct
EPI1:EPI+SUM

PzREAL(EP)

SrAIMAG(EPT)

RETURN

C..--------.---o-.-----------

CesxsxCOMPUTE SERIES OF HANKEL FUNCTION o

SUBROUTINE HAN2(P,S,YAUG,ARG)

c
COMPLEX E2,SUM,EP2
Ple3 1415826536887
Zepl/a
AzO
E2:CMPLX (A, 2)
EP!!(!.712!8‘C!XP(!2)I/SORT(ARG¢SIN
Ze3spi/a
EQsCMPLX(A, 2}
sun-o.aasz:aczxr(ez)t(:/aos/z4/(tau
SUMtSUM/SORT(ARG'SIN(?AUB)/ZI/(ARG‘
EP2*EP2+SUM
2:6=2p1 /8
E2:CMPLX(A,Z)
sunnv.:ze:tczxr(sz)-(:/tzao:cs/:us&
SUM-SUM/soRT(ARGtSlN(TAUS)/:)/(ARct
EP2sEP2+¢SUM
PIREAL(EPZ)
S*AIMAG(EP2)

RETURN

/(TAN{TAUS )}eea)
SIN(TAUS)/2)ss2

T 2870

F SECOND KIND

(Tavus)/2)

(TAUG) )x22)
SIN(TAUS)/2)

/(TAN(TAUB) )xx4)
SIN(TAUGB)}/2) 22

~e-~--2540.
2550,
2560,

2$70

2880,
2580
2600.
2610.
2620.
28630.
2640,

2650,
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234 SUBROUTINE PRYS (X,F,v,N,M,KH,NOD) It30.
¢ 3140,
C PRINT A MATRIX IN 11-COLUMN PARTITIONS 3150,
C YsARRAY TO BE OUTPUT . . ) 180,
C N=HUMBER OF ROWS OF Y TO BE PRINTED I1%0.
C McNUMBER OF COLUMNS OF v Tp gk PRINTED 31s0.
C KHINAME OF ARRAY FOR OUTPUT HEADING 3190,
€ 1.2 OR 3 CONSTANTS IK THE caLy STATEMENT FOR HEADING 31200,
C NDENUMBER OF ROWS (OR ELEMENTS) DIMENSIONED FOR Y IN THE caLlLing 3210,
€ PROGRAM 3220,
23 DIMENSION Y(ND,M),F(ND),x(M) 3230.
236 GoTo 20 3240,
237 B FORMAT (/A7,6x,11110) 3280,
238 15  FORMAT (1&X,11F10.4) 3260,
23¢ 20 DO 25 Kei,M, 1% 3270,
240 PRINT 15§ 3280.
241 LEMINC(K+10,M) 1230,
242 PRINT 5,KH,(uJ,Jsk,t) 3300,
243 PRINT 15 3310,
244 PRINT 15, (x(J),dxK,L) 3320,
246 PRINT 15§ 3330.
246 DO 25 1s1,N 3340,
247 25  PRINT 30,L,FII),(Y(1,0),usk,0) 3380,
248 30 FoRMATY (/16,2K,F6.2,2X, 11F16.4) 3360,
249 PRINT 15 3370.
250 RETURN 3380,
281 END 3390,
c---------------------~-"~------~--~------------------~----------~---- 3400,
c

3410,
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An example of the printed output

Reflection coefficient [T 1| as a function of frequency (rows) and x coordi-

nate of a parallel plate waveguide (columns) for: € =254, f =840 GHz, tanj,,
= 0.005, flare angle of a sectoral waveguide, «=30° and a distance from the apex,

h2=933 mm.

30.0

©.0833000
2.54 g.a0 ©.0050

GAM:= 1 2 3 4 s 6 7 8 9 10 1
~0.0114 ~0.0091 -0.0069 ~0.00458 ~=0.0023 -0.0000 ©.0023 ©.0048 0.00€9 ©.00391 Q.0114
1 8.20 o 177y ©.2288 ©.2732 ©.3050 ©.3215 0.2854 0.3271 ©.3073 ©.2743 ©.2300 0. 1771
2 8.25 C.1757 ©.2286 ©.2724 ©.30484 ©.3210 ©.23848 0.3265 0.3068 ©.273% ©0.2289 C.1757
3 8.30 0.1744 ©.2276 0.2717 ©.3038 ©0.3204 ©.23843 0.3260 0.30862 ©.2728 0.2279 ©.1744
4 8.3% 0.17132 ©.22868 0.2708 ©.3032 ©.3199 0.283s 0.325s ©.3057 ©.2720 ©.2289 o. 1731
©.3027 0.3194 ©.2833 0.3251 0.3057 0.2713 ©.2259 ©.1719
©.3021 0.3189 ©.2828 0.3248 ©.3048 0.2706 0.2250 ©.1708
©.30186 ©.31858 ©.2823 0.3241 ©.3041 ©.2889 ©.22a30 0.1694
©.3011 0.3180 0.2819 ©.3237 ©.303s6 ©.2692 ©.2231 ©.1682
©.3008 0.3176 ©.2812 0.3231 ©.3031 0.2686 ©.2222 ©.1871
©.3001% e.3171 0.23t0 ©.3228 ©.3028 ©.2679 0.2213 ©.1658
0.29387 ©.3167 0.280¢ ©.3224 ©.3022 ©.2873 0.2204 C.1648
©.2992 ©.31863 ©.2802 0.3220 ©.3017 ©.2867 ©.2196 ©0.1837
©.2988 ©.3160 ©.27388 0.3217 ©.3013 ©.2661 ©.2187 O.1826
0.23984 ©.3156 ©.2785s 0.3213 ©.3008 0.26586 ©0.2179 0.1815
©.2980 0.3182 ©.2781 ©.3210 0.3008 0.2650 .217 0.186048
©.2978 ©.3148 ©.2788 ©.32086 0.3001 0.2848 ©.21648 0.1588
©.2973 ©.3145 ©.2785 ©.3203 0.2398 ©.2839 0.2158¢ 0.1584
0.2969 ©.3143 C.2782 ©.3200 0.2894 0.28634 ©.2149 0.1574
©.236¢6 0.3140 ©.2779 ©.3187 ©.258% 0.262¢ .21 ©.1564
©.2983 0.3137 ©.2778 ©.3134 0.2588 ©.2624 ©.2134 0.1555
©.2959 ©.3135 ©.277a ©.3192 ©.23584 ©.2820 0.2127 0.18545
©.2957 0.3132 °.27711 0.3189 ©.2982 0.2618 0.2t120 0.1536
©.2954 0.3130 ©.2769 ©.3187 ©.2979 ©.2811 0.21t18 ©.1527
©.2951 0.3{28 ©.2767 C.3185% 0.297¢ 0.2607 ©.2107 0.1518
-2949 ©.3128 ©.2765 ©.3183 0.2874 ©.28603 ©.2101 ©.150¢
.284s¢ ©.3124 ©.2763 0.3181 0.2971 ©.259s8 0.203858 ©.15071
2844 ©.3122 ©.2762 ©.31738 ©.2969 ©.259s ©.2089 O.1492
2842 0.3121 ©.2760 0.3177 ©.29867 ©.2592 ©.2083 ©.148a
-2840 ©.3119 ©.27s% 0.3176 0.2965 ©.28588 ©.2077 0.1478
2838 ©.3118 0.2758 ©.3174 ©.2963 ©.25a5 ©.2072 O.1468
-2837 c.3117 ©.2757 ©.3173 ;‘2961 ©.2582 ©.2066 O.1460
.283% 0.3116 ©.27s5¢ ©0.3172 0.2960 ©.257¢ 0.2081 0.1452
.2934 0.3118 ©.275% 0.3171 00,2958 ©.2578 ©.205¢ ©.1445
.2833 ©0.3114 ©.2754 0.3170 0.2957 ©.2573 0.2057 ©.143137
2832 ©.3114 ©.2754 ©.3170 ©.295¢ ©.2570 0.20a¢ ©.1430
2931 0.3113 ©.27s3 ©.3168 ©.2855 . ©.2568 ©.2041 ¢©.1623

.2930 0.31112 ©.2753 0.31869 0.2954 0.2565 ©.20137 C.141¢
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