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ABSTRACT

It has been suggested that our view of

physical geometry as being Euclidean be changed and the
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implications of assuming a finite physic
héve been discussed by several authors. In this thesis
two-dimensional vector analysis is developed for a
finite geometry and two-dimensional source-free electro-
statics is formulated.

The approach to the vector theory is through
complex analysis. The thesis reviews the formalism by

i £

which ordinary Euclidean vector analysis ig formulated
in complex notation and extends this to finite geometry
by developing the necessary finite complex theory.

The formulation of source-free electrostatics

in the finite geometry follows immediately from the

complex theory. It is then seen that the familiar sourxce-

free fields of ordinary electrostatics appear as the
Pythagorean approximation to certain finite geometry

fields.
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CHAPTER I : o

INTRODUCTICN TO THE THECRY

(A) INTRODUCTION

One possible approach in the attempt to resolve T
gifficulties in modern physics 1s to make & fundament
change in our view of the physical geometry of the world,

Any scheme of physics, of bourse, assumes either expliciltly
or implicitly a particular physiocal geometry., We can seek,
by changing our assumption concerning the physical geometry,
to explain certain phenomena which are puzzling in the old
scheme by seeing them as arising naturally from the new '
world geometry. The example which comes to mind 1is
Einstein's theory of grévitation: the realization that space-
time is curved leads to the explanation of gravitation as &
direct geometricél consequence, The theory under discussion
in this thesis postulates that our physical geometry 1is &
certain mathematically well known structure called a finite
geometry, |

A finite geometry comnsists of a finite numbeyr of points,
Such a structure is obtained by taking space to be co-ordinaa-
tized by a number field of finite order instead of the reals,
That is, if we choose the geometrical co-ordinates of each
point in our gedmetry from a number field of finilte order

instead of from the reals, then the resulting structure is

1




known in mathematics as a finite geometry‘.l’2

The definition of a field and the theory of finite
flelds can be found in most books on modern algebra°3 Ve
can characterize a field as the minimum structure on which
there can be the usual type of arithmetic Involving fthe
four operations of additiom, subtraction, multiplication,

Iy

and division, A finlte field, obviously, is a field with
a finite number of elements, For a finite field we have
the following two fundamental theorems5: Tirstly, that

any finite fleld has order pn where p 1s some prime and

n some Integer and the converse. that for ever: rime and
3

integer n there is a field of order p: and secondly, that

1H,B° Coish discusses at some length the question of
a finite geometry as our physical geometry and gives refer-
ence to the mathematics of finlte geometries in H.B, Coish,
Phys. Rev, 114, No.l, 383 (1959).

2A general reference for finite geometry is B, Segre,
Lectures on lModern Geometry, (Edizioni Cremonese, Rome,1961),

SFor example, R.&A, Dean, Blements of Abstract Algebra,
(John Wiley & Sons, Inc,, New York, 1966),

QShapirodisousses this property and relates it to the
use of number fields in physics on p,.476 of I.S. Shapiro,
Nucl.Phys, 21, 474 (1960),

5Ref° 3, p02230
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any two flelds of the same (fihite) order ecre lsomorphlc,
Thus’'we can consider there to be exactly one fleld of
order pn for every prime p and integer n; this fleld is
called the Galois field of order pn and 1s denoted by
GE(pR). Every finite field is some GF{p™).

A field F is said to be a subfield of snother field
K if, firstly, XK contains F as a subset and, secondly, the
operations which_méke K a field, when restricted to the
subset ¥, make F a field in its own rightgé For a given
prime p, every fleld GF(p™) contains GF(p) as a subfield,
and GF(p) itself has no proper subfie1d°7 Moreover, every
field GF(p®), including GF(p) itself, is of characteristic
p, i.e, px = 0 for every x in GE(pn)ég In this sense GF{p)
is primitive and GF(p™) for n22 is not8; GF(pn) is a com=
plex structure based on the simpler field GF(p) and this
causes px to be zero even in the larger field GF(p™). |

In choosing a fileld to replace the real numbers for
our co~-ordinates in physics, we can see that the primitive
Tield GF(p) is analogous to the reals and that GF(pn} with
nz2 is related to GF(p) in the same way that the complex

numbers are related to the reals. We therefore use the

field GF(p) to co-ordinatize our geometry, A convenient

-

For an explanation of these algebraic concepts see
Section 4.3 of kef.3,

"Ref. 3, p.223,

8shapiro discusses this concept in Ref . 4,




representation of GF(p) is the field of integers mod p
and this 1s used throughout,

We must also consider that if our postulate of &
finite physical geometry is to have any validity 1t must
give the familiar Euclidean geometry &s a good approximation
in the realm of familiar magnitudes, that 1s, those magni-
tudes from the subnudlear to the macroscopic that are‘within
the realm of present experiment., This requirément lmplies
two things, Firstly, the prime p must be so large as tTO
make'the points in the geometry numerous enoughvand dense
enough so that the finite geometry is experimentally indis-
tinguicshable from a continuous geometry, Jarnefelt” has
estimated that this would require the order of magnitude of
p to be roughly 1010810 Secondly, there must be some way
.of approximating an ordering in the fleld GF{p) chosen o
replaée the reals., An ordering on a field is,in general
terms, a relation satisfying the same axioms as "smaller
then or equal to!" in the reals., It is a relation which
allows us té think of positive and negative elements in the

10 The fact that the reals do have an ordering is

field,
very baslc to Euclidean geometry and our conception of space

in the Kuclidean sense., . Now it is imposgsible to define an

%G, Jarnefelt, Ann. Acad, Sci, Fennicae, Ser.f.l.,

§o°96 (1951).

l0ror a clear introduction to order, see Sec.3.,2, 3.3,
and 3.4 of Ref.3,




5

ordering on GF(p), but to make finite geometry approximate

Euclidean geometry in the required way, there must exist
a subset of the fileld on which an ordering can be introduced;
it could then be postulated that measurements of familliar

magnitudes fall into this ordered subset and it would follow

11

from these measurements alone that the space looks Buclidean,
The ordering can be introduced ags follows: Ve motice
that in GF(p), half the non-zero elements are squares and
half are non-squares; furthermore, the product of two squares
or two non-squares is a square, and the product of a square
by a non-square .ig a non~square°12 This wmotivates us to
efine an element as belng "positlve" if 1t 1s a square and
"negative" 1f it ig a non-square° If we choosé D so0 that
-1 is & non-square (by taking p of the form p = 4n-1),
then minus a positive element l1ls a negative element,
This definition does not lead to an ordering of GI'(p)
because the set of positives 1s not cloged under addition
(i.e, the ordering is not transitive), However, 1if the

11

I -
prime. p is of the form 8X'W£11 -1 where x is an odd

integer and in1<1i is the product of the first k odd pfjmeb

1lgee p.384 of Ref,l for a more detalled discussion
of these matters with references to the literature,

121, E, Dickson, Linear Groups (Dover Publications, Inc
New York, 1958), ee, 6L, p.hb,

13p, Kustaanhelimo, Aunn, &cad, Sci, Fennicae Ser. 4.1,
No.129 (1952),




then the first N elements of GF(p) are squares, with N~d; ~

in p Thus for an enormou 10100
2 Do s p, p~10

, N lg also
enormous, N ~ 10100,

This set consisting of the first N elements of GF(p)
is the ordered subset mentioned earlier; it is called the
Pythagorean region,  Only elements from the Pythagorezn
region can be recognized as observable measurements from
the point of view of a Euclidean geometry,

When we formulate any physical theory in our finite
geometry, we must also discuss the special casge of the tneory,
called the Pythagoréan approximation, under the assgumptlion
that all measurementé fall into the Pythagorean region, and
we must relate this to our view of the same phenomenon
when a Euclidean space 1s éssumede

This thesis is an attempt to formulate electrostatics
in a two-dimensional finite geometry, After a review of
some basip mathematical properties of finite fields in the
latter half of this introductory chapter, the mathematics
required for electrostatics is developed in Chepter 20' The

electrostatics is discussed in Chapter 3,

(B) FINITE FIELD ANALYSIS

We give here several basic properties and identitles

of finite field elements all of which will be used later,




1, We have Fermat's CL”"neorem:lLP
0
For x e GF(p?), xP =x
. s .
or wP-1 4 1 x# 0 (1.1)
{0 x =0 Vhedd
Thus. any polynomial over GF(p™) can be reduced to an

equivalent form with degree smaller than p*,
2. The multiplicative group of nonzero elements in
- n . 15 1 - " PR P o A AT f LY
GF{p ) is cyclic, This means that there exists in GF(p*)
a generator or primitive element € such that every nonzerc

element of GF(pn) is some power of ¢ smaller than p~,

e, GR(PP) - {0} = {e¥|k=1,2..., P17 (1.2)
3. Using 2, we can evaluate a sum of the form

5'\;'.-‘:.

xeGF(p™)

: X # 0
E xT ‘ pi-1 ptel
.; ' k. > k

XeQF (p?) = > (") =2 (e

X # 0 k =1 k=1

If b+ 1, i,e, if r # m (p~1) for any integer m,
Then we have a geometric progression which can be evaluated

by the standard formula valid in any field,

n o

e RS & < el S
y = = C =

A (e") cf -1

kK = 1 -

1L}Refn 3, p.86,

1oger, 3, p.224,




T ' \ .
If ¢'= 1, 1,e, if r = m(p”-1) for some Integer m,

then we have,

n
p_—~1 _ '
S 1 =pt-l = -1
=1 :
Thus < - . ;
o n n -
= [-14f T =0, p=1, 2(p"~1),... (1.3)
x e G (p™)
X # | O otherwise
v
4, We have in GF(p) Wilson's theorem16
4
(p-1)t = -1 | (1.b)
and 1its generalization17 »
_ | (o1l
(p..l._k) o= Mk}; . ‘ (:-.»5) :
5. The binomial expansion is valid in any field. That
is, we can expand'the expression (x+y)* as
r . r r-x _k r 1
{x+y) = 2 C . x vy~ where CJ is the binomial (1,6)
k=0 ‘
coefficient (an integer)
r . r?
Cy = (r-k) it
6, In the field GF(p"),
. D _
(x + )P = 5 2 P kyk
k=0 <
rer,3, .87,
170btained by writing {(p~1)! = (p-1)(p-2)...(p-k)(p-1-k)}
which becomes ~1 = (~1)K 1e2¢ ..ok (p-1l-k)!}
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b
7 D _ °
Now C{ = Y1 KL

k  (p-
GP(p?) is of characteristic p.(i.e° px = 0 for all
xeGF(p?) ) and so the only non-zero terms in the binomial
expansion are those for kX = 0 and K = Do
Hence, |
(x + )P = %2 + y© in GF(P7) (1;7)
7. &ny single-valued function from GF(p®) into GF(p™)
can be representéd uniquely as a polynonial over GF(p?) of
degree smaller than p", This is done as follows, Suppose
the function f is given by 1ts value f(x7) at every x' in
GF(p™) .
Now (x-x')pn"l = ijl for all x # X!

0 for x = x°

. n
e o 1- (x—x‘)p -1 =0 for x # x?
11 for x = x?

Tnerefore we can write,

f(x) = Z 1 ){1-(X-X‘)pn—l] £(x?) (1.8)

X'eGF (p?
which can be explicitly expanded to a polynomial of degree
ﬁn—l or less using paragraph 5 above,
8. It is possible to define in GF(p) the analogues of
both differentiation and integration,
First we consider the derivative, Let [ be a function

from GF(p) into GF(p). We define.
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§§§§l as - ZE £ (xrh) = £{x)
g h # 0 h (1.9)
heGE(p) '

To show that this expression indeed has the properties of
a derivative we apply it to the general polynomial

o

o k
é a, X .
=
»-1 - p-1 = .3 E’\:‘l X
LS e o 2Tl J e ke 0t 2
k=0 w0 k=0 00 K=0

Rzl k
+Z w7 ayX
h#0 k=0
= ot k k k~-m ZE m-1
- :?.akcm :
k=0 =0 n#0

> n -
* ..Z akx 4
k=0 h#0
Now 2 w1t = (-1 m=1
B0 5
L 0 otherwise
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Thus p-1 r~-1 o
< a ¥ = . ka P since Co= k 10)
ax k =7k ’ ce Uy > (1.

exactly as expected of a derivative,
Finally, we define a definite integral for the func-
tion f that satisfies the restriction that it be of degree

p-2 Or less:

X xn~t ‘
S f dx = = Z Z ht (thn) (1.11)
0 h#+0  t=1 ,

Again, we examine the properties of the expression by

- _2 \
applying it to the polynomial %Z’ a %X
| o £

k=0 k n#0 t=l k=0
-1

- Xh
p-* < L k+1 X

2 = Z

k=0 h#0 t=Y

3L -1 . k+1
_ iiy__l___ + lower powers of (Xa 7).
t = k+1

Now Z
t=1

18. .
H,T, Davis, The Summation of Series (The Pr
Press of Trinity University, oan Antonio, Texas, 19
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It can be seen that for the lower powers of h"l, once
k+1

they are multiplied by h , the summation over h will
" gilve zero, Only the first term, ] will lead to
+

a non-vanishing sum; 1t is given by

- 2;? o K+
4 S , and because
k=0 n=0 k+1 ,
p=-2 JETL
N
1 = =1, this becomes ;Ez &y “EET (1.12)

joy

This 1ls exaotly the result expected of a definite integral.
Note that our derivative and definite integral are

the inverse Operations of each other in the expected way,
4
l.e. 3% S; f =7¢
0

Note also that in our definitions of both the

derivative and integral, the operation ":Ei-
: h#0

plays the part in GF(p) of ii?o in ordinary analysis, The
analogue of the limit process at a point in the finlte field
is thus a global operation, involving a sum over all values
in the field and depending on the value of the function
everywhere, This means, of course, that we can take a

limit and therefore a derivative and definlte integral only

for functions defined everywhere in the fileld.




CHAPTER 2

FINITE COMPLEX ANALYSIS AND TWO-DIMENSIONAL
VECTOR ANALYSIS

It is apparent that for the formulatlion of any {two-
dimensional vector theory, complex number notation and
complex function theory can be very useful, This is true
in ordinary analysis where one represents the two~-dimensional
Buclidean space by the coumplex number system; vector opera-
tlons then correspond in a convenient way to operations with
complex quantities°l9 An analogous situation exists when
one 1ls dealing with a finite field GF(p) instead of the
reals, An analogous extension of GF(p) can be considered as
the "finite complex field" snd finite complex analysis can
be developed, Then, under the hypothnesis of finite geometry,
one represents a plane in space by this complex field,

In this chaptér, complex number theory and compleXx
analysis are developed for finite géometry and in SectionCE)‘
vector analysis for finite geometry is formulated in these

terms,

(A) THE COMPLEX FINITE FIELD

By the complex finite field we mean the fileld GF(pz)s

which can be considered as the Cartesian product of the field

19see Section(E)of this Chapter for a summary of this
theory, . .

13
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GF(p) witn itself, or, very loosely, as the "plane" whose
abscissa and ordinate are the "lines" GF(p). If the prime p is -
of the form 4n-1 (n an integer)?C®, then the element -1 is not
a square in GF(p). In this case, and we take this to ke the
case hereafter, we can consider the complex
be the "real" fileld GF(p) with i = -1 adjoined, just as in
ordinary oomple;c.,analysis,21 The usgual complex notation

can be used here,.ige; the element zeGF(pz) can be written
as z = X + ly with x and y in GF(p).

The algebra of finite oomplex numbers ls in many ways
similar to that of ordinary complex numbers., There are,
however, several new features introdﬁoed as a result of the
finiteness of the field, and some of these are given below,
1, 1P =gkl o (ifmy el
(+1) ()
=~

32

- = 1 (2.1)

D

2, If z = x + 1y, then z° = (x + iy)p

=xP+(1y)® by Par.6. of Chap,2(B)

=xP + 1PyP = x-iy = 2z~ (2.2)

2OSee Ref .13,

21Note, however, the following import
ween finite and ordinary complex amalysi 52
field GF{p2) is not algebraically closed:!

ifference bet-
nite conmpl lex
s 1no Funda-

I
<
QJ

.,-.

iy
}_.

o) (u ::
f‘J YoM

there i
mental Lheorem of Algebra wnloh would Saj tl T every polynomial
over GF{p<?) has a zero in GF(p2). Thus there exist algebraic
extensions of GF(p<?),obtained by adjownlho to GF{p2)the roots
of irreducible polynomials over GF(p2). In Tact, GF(p®) exists

for every n.
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‘ B
Thus taking the p“h power of a finite complex number

is equivalent to taking its complex conjugate,

3. for any z = x + 1y,
L7 \l — l":(‘f = 'w2 2 ' -~y
2P Z % =+ y (2.3)
Thus zp+l is the analogue of the modulus-squared of

the complex number z, Note, however, that uslng the term

Ny

"modulus" can be migleading in view of the next paragrapn,

L, In GF(p), there are p+l solutions to %2 4 yz = 1

2 4 y2 = -1

and p+1 solutlons to x
This is & striking feature of finite fleld analysls:

Besgldes what we may consider ususl direction32303=>\+ yl wilith
A2+‘p2 = 1, there are "strange" types of direotionsi8=<x+i§
with &? +€ = -1,
5. The w'!s and ¥'s defined above can be used as the basls
of a polar form for complex numbers, £~ny element z of
GF(pz) can be represented as one of

| Z = T

or zZ = ¥ {(2.4)

with reGF(p) and r positivé or zeré and¢up+1=1 €p+1 1

The set of all wis and ¥¥s give all possible directions of

22Ref .12, Sec,6l, p.4b, '

23When vector analysls ig formulated in complex
notation, a complex number of unit modulus represents
vector or direction, See Section (E) of this Chapter,
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complex numbers and can be consldered as forming the "unlt
clrcle", In thils sense 1t is analagous to the set of 919 g
for all angles ¢ in the ordinary complex plane, Wote, however,
that the $- directions have no strict analogues in that

9 = ~-1l; they do, though, represent half the possible direc-
tions in GF(pZ) and must be Included in the unit circle,

6, The w's form a group under multipliéation240 Horeover
the group is cyclicz5: there is a generator Y
each w is some power, smaller than p + 1, of G,

such that

LN

ioeé ‘&wj’ f_(&f‘ ’ n=0,ly000, P F¥ {2.5)
| The product of two ©'s is an & and the product of a
by an W is 8 *¥ . Thus if &, 1s a generator of the W-
group and ‘@O is any ¥, then the set of all s cah be
written as

Sw7_ S oo, | :
b .§="9 \gowo i n=0,1,000,P § : (2°6)

unit circle, including both the w's and the ¥'s, we shall.
3 15 9

use the symbol §F ,

7o We can use the above to evaluate sums . of the Tornm
% n '?ffcr
W and 8
83 5

The argument is similar to that in paragraph {(3) of

Chapter 1(B).

2%7ne axioms of a group can all be verified:the product
of two w¥'s 1is also an ; the complex numbey zZ=l 1s an w and 1s
the unit of the group; every element (b has an inverse, Dbecause
Gjlp“l~l and so &~l =& P

2 . . ~ - i ] N
”5The set of wis 1s & subgroup of CF(pé)w-ng which is
& cyelic group., By Theorem 14, P,52 of kef.3, the set of

s is also cyclic,




17

b b
W =
£ 7 ( wyk)
w =0
= n k
_(Uﬁ ) which is a geometric progressicn if
k=0 and only if n # Osp+192(p+1%°g°
] prl =1 ifn = 0, p+1,2{p+1),c00
= , . (2.7)
0 otherwise
< n D
; 1
and éi.b = o Ky 1
3 £ (36 “h)
K=0
o 2 n k
=3 O (w
k=0
(41 15 n = 0,2(p+1) ,4{p+l),...
-l if no= (p+1),3(p+L), 000 (2.8)

0 othervise -

We can use these 0 evaluate sumeg of the form

'j>‘mn'
3

5
Z?}?ﬂ ==Z§€Mn + *js-ﬁn
= = %
=‘(é ifn=0, 2(p+1) ;000
{O otherwise (2.9)
E. Of course we have for the field GF(pZ) any result

mentioned in Chapter 1 for the genersl finite field GF(p™),




-
Qs

These include:
(a) zP7 = z

(b) multiplicative group of GF(pz) ig cyclic
(¢) single-valued functions from GrF(p2) into GF{p?)
can be written as polynomials with degree less

than p2°

(B) ANALYTIC FUNCTIONS IN GF(DZ),

We consider now a fundtién f defined on éhe complex
plane and with valués in the complex planeo‘

In ordinary complex analysis we can consider [ to be
a function of the two real variables x and y, with z = x + 1y,
We can also consider the domaln of f to be extended so that
x and y take on all complex as well as real values (by writ-

ing f explicitly as a function of z = x + iy and formally taking

[0e;

x and y as complex), Under this condition we can consider

the equations

to be a change from one set of independent complex variables

x and v to another, z and z¥, The chaln rule gives us
2

Of _ 1 (df _ 3 F BF L (2f L 1 af
o>z 2 (ax ay) and szt T 3 ‘3% &y) (2,10)

£
Now it can be seenzo that the Cauchy-Riemanun equations on f

3

M

201V, ihfors, Complex Analysis, (McGraw-Hill,Inc,,1966

Py

.27,




the condition that f be analytic, are exactly equivalent

to the conditdion

of
é“z“%zo
or that [ mot be an explicit function of z¥* but only of z,
- . . . 214 . "
If £ is analytic the total derivative %E exists and 1is
: of
equal to g; o

We can use this idea to extend to Tinite geonetry the

concept of an analytic function, We have in GF(p p2) that

N b . .. : .
zw =z, Now f can be written as & polynomial in z of

2 y ' .
deocee p7-1 or swaller, It is apparent that the analogue of

C‘

the condition gg; = 0 in ordinary analysis is the condition
in GF(p2) that f be a polynomial of degree smaller than p;

in this case £ would contain pOVefS of z only and unot of

g% = ZP, Accordingly we define the analytic functions in'

GF(pZ) tO0 be the polynomials in z of degree p-1 or'smallera27
It will be seen in what follows that our definition of

analyticity fits into the complex finite theory as it suoald

{C) THE DERIVATIVE IN GF(p%)

2

N

It 1s possible to introduce z derivative. inm GF(p

)

much the sane wa ay as wasg done f()l" Gix(p) in Cﬂapter 1@ T

27”ae reader will note when he reads kef.28 that our
definition of analyticity is based on a comple tely QllACf 1T
argument from that of Kustaanhelwo, who first introduced the
concept in FP(D ) in Ref, 28, Ku taaﬁﬂelmO‘C argument i '
on what he considers the aaulowue in u:(n ; of the éir
derivative Dyf{z)., His direcsional delivaulve however
not have the property that Dgf(z) and Dgf(z) be the c¢o
of oL él for non-analytic f, and for this important rea

do notZintroduce the idea ot all,
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2 3 LY ! - N
was first introduced by Austaanheimozca He used an argu-—
ment from ordinary complex snalysis to motivative his
definition of Df(z) as the average of the quotients

£lzth) = £(2) ¢6p 411 non-zero values of b in GF(pZ)g

n-
1 > £{z+h) - £(z)
P h 0
/// f{z+h) - £{z)
= - e n (2,11)

As in Chapter 1, we can see that this quantity 1z indeed

the analogue of a derivative by applying it to the general

polynomial
| pZ-1 .
/ akz-
k=0
We get
2 2 - k il
Q{;l . .E::; (z+n) 5 |
b o8 = Z e | w
k=0 h+#0 k=0
2 - 17
— R =4 - K k-m me-l
=~ 7 7 2 =z
h:;:.o k=G m=0
Efrl k -1
- - akz n
h#C k=0

28p . xustasnhemo and B, GQuist, Ann. Acad, Scient.
Femnicae Ser, A.I,, No.137.




-Now we can see from Paragraph 3 of Chapter 1{(B) that

Z“h-l _ 3}f‘-l m= 1 )

-1
and E n = 0
h# 0
Thus, _
p2.1 poe1
> kK o~z K k-l
D akz = »,, al«:Cl Z
k=0 k=0
pz""l :
= =z k=1 |
- kakz (2.12)
k=0

For an analytic functlion this certainly corresponds to the

a
total derivative iz in ordinary snalysis, Moreover,

we can show that for a non-analytic function (which has no

total derivative in ordinary anelysis) this derivative DIf(z)
4 .—.—b : K 2, . | F

corresponds to the partial Sz With constant z¥ discussed in

the last section, Counslder aany non-analytic term apz in

: : ap4il .
the polynomial, It can be written as akzk = akzr“*‘ ¥ for
- ay ,k k-l 1{"“
gsome m > 0 and some Q<‘pa Now D(akz ) = ka2 = | a2 L

since mp + = Jin GF(p?) .

But the analogue of the partial derivative 5% would be

“~
9 _(a zk 2 {a ZQ zmp\ & I roxy 1
i = e - = o a, Z Z
az(k), Sz K g 57 et EF )
0 -1 gl ) J=l+mp
= & Lz L = Lay .z
Q" k-1
= 84,2
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- . , k
and this is equal to D {ayz ).

Thus for a non-enalytic function £ Kustaanhelmo's

Fal

2F

derivative Df(z) corresponds to Pl It 1s to be kKept in
‘ ) s T
mind that in order to properly think of xy @10 =7 as

partlal derivatives, the functlon f{x+iy) nmusgt be thought of as

=

being extended to depend on two gomplex variables x and Y.

57

A

In what follows we shall often write -

= for Kustaanneno's

I

derivative and the preceding remark applies in each case,
Note that in the definition of the derivative, the
sunm T
heGR(p?)
h#0

plays the pvart of lim in the ordinary complex plane, Thls
n-=0 '

is exactly the sanme analogy as for the real derivative,
mentioned ian Chapter 1,

Note alsc that we have assumed that the function
p2—1 or less, In what follows we always take

is of degree

arguments of derivatives to be reduced to this form,

. - . R &, . , .
As Kustaanhemo points out, = is linear, as in ordlnary
3 Az s

analysis. However, the product rule and chaln rule 4o not

hold in general, We have

2 (rg) =1L+ g L
. g) = 1 ol I A g
>z BZ Oz
and =~ N
e ~ . L
D (fo &) = f‘\( r‘; &) ) :'Q:
oz 38 oz
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only when the degree of the combined exorC°"ion fg end
T0g are respectively less than p?
It will Dbe useful to write the derivative in polar

form, By definition

- ) ’ ’ -
Ao - P Heh o py S owl

0 h:£0

We have that the second term is zero, so
-~

of = ? nls{z+n)
z

This can be written as

o

of o L P(ry) " flztrg) (2.13)
A% 2 ___L,. , “eno
l"=§=0 =

where ;’ is a sum over thne whole unit circle and the factor
; 5

‘s takes account of the fact that every point is summed twice
in r#0 =

»

We will now snow that if [ is analytic, the derivatlve

Q% can be written as a sum over Jjust the elements in a single
¢ _

circle about z instead of a sum over the whole plane,

We will show that if f 1s analytic, we can write

——
o)

©
!_.J
-

N

of = L <) ()t for any B # 0O
oy ZZf(m—Rb)(ﬂb) y B #

Write £ as p-1 W
k=0
-], 1
=1 e V{
- Lo e B R ) ey | 5 :
Taen Z/7f(z+RE )(RE) ~ = 52 R~ S F e (z+EE )
3 T k=0
Ty 14
- _3,_ = 3-”:“"" <= ‘f{_‘l ak-"'-} a Chzk-’-mﬁm i
T2 L " ¥ km &
g k=0 =0
= %‘ Q’;‘l 'uii Cl{ gt - -1 =< w\__rﬂ-“hf
- < Bktm > 3




D
r—
R

y p-1 p-1
k k-l K1
Z :j; akcl 4 . = Z;f ka,
k=0 k=0

This 1s an important property of an analytic function and
will be related in the next section to the Cauchy represgen-

tation formula for derivatives,

(D) INTEGRATION IN GF{p?)

No attenpt is made here to develop a general line
integral in GF{p2)9 because we are not so much interested 1n
developing a general couplex analysis &s we are 1n naving

»

just enough_theory to make possible & preliminérj formula-
tion of eleotrbstaticso For this purpcse it is neceésary
only to find a line integral around a very speclsasl elosed
contour-~ a circle - and it would remain“another proplem

to put this in the framework of a more general complex analy-
8ls.

‘We can find the anmalogue of a closed circle integration

quite easily., In ordinary anslysis we have in polar form

10 . . - , ; 10 4
z = r,&lc and for & circular contour, dz= 1r_L*©o®

£ : ) .
So Gfdz = xf ir o=V AQ
4 § b

@ O
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We have that in GF(pZ), the g's (the s plus the $'s)
form the unit circle and hence are the analogue OF g ¥,
Now the integration with respect to b is really a sum over

a5}

all directions, the number of directions being ag

b} _:_L____ ~ yAil i a
Thus o% 'gx dz = ¥ fir9.® 5%

0

becomes in finite geometry, when we sum Iinstead of integrat-—

ing over all directions,

;% 1
f irg

number of directions
= 4

The number of directions is 2(p+l) = 2 in G’F(pz)°

Thus
the analogue of

%r E% fdz is iZix*s f{(z+r<s ) in finite geometry (2.15)
N . .

K
where the circle has centre z and radius r. Note that we have

been able to find the analogue of %r times the integral and
not the integral itself,

The above argument, of course, can be consldered at
best a. motivation for the definition of our contour integral,
The validity of the defihition depends not on arguments of
formal analbgy, but on whether our expression acts like a
contour integral and fits into our complex analysils as
a contour integral, This indeed seems to be the case,

Firstly, let us apply the closed - circle integration

to an snalytic function

p-1
ZE: akzk
k=0 -




We get
- p»—_—-“l k - p=1 k - ,
z i (?i Z+T > =~ R N R RO
i ; r ak .{é-w-‘f) = 1 / / “kc’mz r ‘i‘ml

0

Hj

and ;zi=§m+l= 0 for all m in the summation, by Peragraph 7
of Chapter 2{(A), Thus the line integral of an analytic
function around any closed circle is zero, as required if
our definitions are to have any meaning, The analytic

,
e

o

functions actually satisfy a stronger condition, IT

W

summnation f is broken up into the two summations E -
: = S P

it can be seen that for an analytic function both summatlons

Z and E vanlsh by themselves,
w » 3 ) f{z+%) '
Secondly, let us integrate the fumctiom — g ,with

f amalytic, about a closed circle with centre at z, Ve gev
p-1 k
- < o
i j f“;: i 81 gz" - ,\2
5 =0 rg
p-l K kK Kwem m _ m
~ l’b o

Il
N
N
i
é&
N
J}'j

m 1,
Here 235 vanishes except for w = 0 when its value 1s 2,

R4

Thus we have

=tk ok £
21 a C.z =21 2 a.z
g 0 =

I
™o
;.J»
h
P
N
N

Pann

n

-3

}_!

(62
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This gives the exact analogue of the Cauchy -integral

formula in ordinary complex analysis,29

e} = 2m§__g_z_+.u s

f{z+t)
Finally, if we integrate the function g2 about
a closed circle with centre at z we get
zzi f(z+r b :Ei _jzzzzs;L
rg 2 =
ar . .
=12 3, 1iff 1s analytic (2.17)

This has the form of Cauchy's representation form for the

derivativeQBO

(B) TWO-DIMENSIONAL VECTOR ANALYSIS

We shall first review some notation from ordinary
vector analysis and afterwards extend these concepts to a
finite geometry using the complex analysils discussed earlier,

(1) As mentioned earlier, two-dimensional vector
analysis can be represented very conveniehtly in complex
notation,

A vector (or vector function) Y = VX_E + Vy_& is

represented by the complex number (or complex function)

29%ef .26, p.119,
30gef,26, p.120,




V= Vg + iVy, In what follows we shall slways use this
notatlion; underlined letters stand for vectors and the same

etters without underlining stand for the corresponding

$t

complex quantities,

)

{

.S

(2) The complex path integral | V¥dz can be written

<
jo3]
N
il
—
<

Ix=1Vy ) (dx + idy)

Q
Q

= Ql_"_'..z.: + 1 (k. x V) dr (2.18)
L
C

(3) It is well known that the divergence and curl

can be defined by

lim i?
" o= ! j T Daa
d;V.ﬁ ) :jSh'e nas
i
lim 0 A .
and curi I = S 4 x B)as
\

T ) '2Y - 3 5 < by o ae S
= 3
where V is the volume enclosed by the surface




To reduce these expressions for the case of & two-
dimensional vector E, comsider & to be the cylinder {(the
right-cylinder) of unit height generated by the contour C,
- which 1i‘es in two-dimensions and encloses areza A, Then

it can easily be ghown that

) (&
E. nas =R (kK x B)- dr
3 :30
and o
 ke(f x B)AS = & Eedr
S C

The first gilves for the divergence

N

(T{ X ';?)odr‘

3\ E - Suet

Aiv E = tim Je (2,19)
= A=> 0 .

and the second gives, for the only non-vanishing component
of the curl, 1 g; sear
Lim Vo, = —
(curl RB)ek = , .~ M5 . (2.,20)
== £—0 N

In what follows we shall write curl E to meaun {curl I)-X.

s (4) Using (2) and 8) we get
E* dz
Lo §-——-—~—-—G —— = (curl E) + 1 (div k) o (2,21)
A-=0 -

. s s . &
(5) We nave for the partial derivative g

2..9.. — __?’..- i-_z.’:.
oz - vX Sy
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When this is applied to a function E = EX+iEy it can

easily be seen that it results in

55 = 5 div E + 5 curl E (2.22)

The preceeding baragraphs have been a review of
certain concepfs from ordinaryvcomplex analysis. The next
step is to extend the formalism in a consistent mannexr to
the finite complex plane. We wish to obtain, firstly,
expressions for curl E and div E in finite geometry and,
secondly, to show that these expressions fit into a formalism
in analogy with the ordinary case above.

Now, the extension to finite geometry of curl E
and div E seems obvious: we .can use the identity (2.21)
from ordinary analysis, with a circle for contour C and
putting in the finite geometry analogue of limit and closed-

circle integration. This gives

. E* g2 '
&NW\' Eé dz Quww W !l

il

A—>0 S Bl
A N> O 0
{9
- L C
T— — —— ‘\’ '—-7\\
>0 T‘:L(Tf :)GE ’&’%>

which becomes in finite geometry

Y ’ﬁ,‘zzh‘% E¥(z+ns)

RF*G <




However, a simple consideration shows that
this is not exactly the natural analogue desired here.
As we saw in paragraph (2) above we can write in oxdinary

analysis
— % C =y
E Az = E-dx +i(RxE)-&x

Both E-dr and (k *xE)-dr are invariants under linear
transformations, and therefore E%dz too is a scalar.
However, in the extension to finite geometry considered
above, the analogous quantity rfﬁﬁz +nyg) is not an
invariar: because of the existence of "strange" directions;
it reverses sign under a transformation z’= 3}

wherefiis a "strange” direction. A simple invariant

extension is rgﬂyg E*(%+m2);
-E ‘Pi-%( _ | 9( NS 'g =)
- -1 yre=T

It can then be easily seen that rg&’:??gE*(zwwg)
is indeed a scalar.

This motivates us to definein finite geometry

C o . IR Bley ok
curl E + i div E = 'LZ oy 2 e * g £ (2rn%)
RES =
*-1 — K
= ~£Z Z R_-ng':"i" < E7 (2en3)
A% S
We have an independent expression for the

oFf

derivative = in GF(p?) and we can check the consistency

of the above procedure using paragraph (5) above. -




= -~ ’—-:-% LU

We have (curl E) + i(div E) = -{ ZZ ;z}ﬁﬂ‘% = T B (erny)
rro S

We take the complex conjugate of both sides and nultiply

through by 1 to get:

- l":.:! x‘—':;_ =
(div E) + i(curlE) = i{LZT;Zﬁ,'i T g :(v+m,>J
1

£ % P Rto S BE=v Y
since T T is real. Now % =5s'=<"¢Vand T© * § =
S QU Y . . SIS .
Hence © = © = 5 and (divE) + i(curlE) =-2 Z""‘;"E(%H‘L‘%)
AH¥O §

Now this is exactly twice the polar form for Kustaanheimo's
derivative, and our vector analysis in GF(pz) is consistent

with paragraph (5).




CHAPTER 3
ELECTROSTATICS

In this chapter we discuss source-free electrostaticé
in the two-dimensional finite geométry employing the vector
analysis developed in the last chapter., The Tirst problem,
of course, is to formulate electrostatics and the second
is to examine the fields, indicating ' their mnature in the
Pythagorean approximation,

R, A, BéthBl has shown that, in ordinary space,
Maxwell's equations on the fields E and H are exactly equi-
valent to the condition of snalyticity (the Cauchy-Riemann-
equations) for two certain functions constructed from the

32

components of E and H, For a charge free region these are

3 _ : 3
E° = Ey + iEXA and H® = Hy + 1Hy, (3.1)
Now EY = iE* and H' = 1E¥, so Naxwell's equations in a
source free region are equivalent to the condition that E¥

and H* be analytilc,

31r, 4, Beth, J. Appl. Phys. 37, 2568 (1966).

320te that our notation differs slightly from that
used by Beth, Beth uses the symbol E for the function
Ey + 1E., but we have already established the convention
that E = Ex + 1Ey, : ’

33
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The same situation holds in finite geowmetry,. The
conditions that

div E = 0 and curl E = 0 33
are equivalent to the condition that

2E _
>z 0 ’

which, when we také the compléx conjugate of both sides,

becomes OE* 0

jreaiatsy

dz*
This is exactly the condition that E* be an analytic function
in z, Thus we can éay that the filelds fgr source~free space.
in finite geometry are the complex conjugates of the analytic

functions, or the functipns of the form

p-1 .
D
E by 2 (3.2)

k=0

Of course, the above is also true\for source-free magnetic
fields.-

Finally, we consider these fields in the
Pythagorean approximation. We give not a rigorous and
complete treatment but an outline of the investigation.

We will attempt to see the fields of ordiﬁary electro-

statics as certain finite geometry fields in the

Pythagorean approximation.

337ne definition of div E and curl E in GF(p?) is given
in Chapter 2{(E).
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This can be accomplished very simply as follows:
any source-free field in ordinary geometry can be approxi-
mated by a polynom1al function of form

Zﬁr%
By taking K large’enough (immensely large if necessary but
finite) we can represent any source-free field in this way:
to within any experimental error. We give K an appropriately
large value and consider it constant. The experimentally
observed values of z and E range from the very small to the
very large but are finite in both directions. We choose
units for z and E so ﬁhat all experimental values are very
large and experimentally ‘indistinguishable from integers
(conmplex integers).

We now postulate a finite geometry with basic
number field GF(p). In the integer representation of
GF(p) the first N 1ntegers (N~1np) form a Pythagorean
subset, and we take N large enough so that all the (integral)
experlmental values for z and E are smaller than N. We can
then consider the 1ntegral values of z and E as representing
elements of the Pythagorean subset of GF(pZ). Further,
the coefflc1ents bk w1ll be, experlmentally, rational
numbers and can also be considered to represent finite

field numbers, not necessarily Pythagorean.




36

We now consiger the equation
E™ =  23§2%$a

as an eguation in the fzgite number field. According
£o our formulation of electrostatics, E is a source-Ifree
field in the finite geometry. Moreover, to an observer
who assumed a Euclidean geometry and therefore could
perceive only Pythagorean elements, this field would éppear
as a usual source-free electrostatics field of ordinary |
geometry, according to our discussion above. We can'thus
say that every source-free field of ordinary Euclidean
electrostatics would arise as the Pythagorean approximation
to some source — free finite geometry field.

There will, of course, be many other source-
free fields in the finite geometry which would not be
recognized as ordinary source-free fields in the Pythagorean
approximation. The existence of thesg fields would predict
new effects within tﬁe framework of electrostatics; their

study is a further problem and not part of this thesis.




CONCLUSION

We have given a formulation of source-free electro-
statics‘for a finite geometry, the Pythagorean approximation
to this theory, and the complex analysis required for the
electrostatics., |

The work could be continued on several fronts. Qune
could develop further the complex analysis in'GF(pZ); this
wouléd involve defining the line integral for a general type
of curve, not necessarily closed, as well as for closed
contours more general than the circle, The first problem
here, of course, is to establish the meaning of the geometri-
cal terms in a finite geometry. The possibility of functions
analytic in only é region or containing singularities might
be considered, This seems necessary for a theory of electro-
statics that is to include sources,

Electrostatics, of course, could be extended in other
ways than the inclusion of sources. The uniqueness of the
solutionsg under various conditlons ﬁust be considered;
this would involve the analogue of the Dirichlet problem

/

and 1ts Pythagoreén approximation,

Finally, there remains the investigation of the
source-free finite geometry fields which in the Pythagorean
approximation would not be recognized as source-free fields
at all. These would be seen in the observable region as
new effects hitherto not considered part of source-free

electrostatics.
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