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ABSTRACT

The specific volumes and pressures in the saturated states
of the pure liquids acetone, benzene, chloroform, and carbon tetra-
chloride, and the saturation pressure of 7 mixtures of the binary
system acetone-benzene were determined from a temperature of 100°%
and a pressure of about 2 atmosphere up to the highest temperature
and pressure at which liquid and vapor coexist. The vapor-liquid
equilibria of the binary mixtures were independently measured by a
static method up to the critical region. The critical temperatures
of the pure compounds as well as those of mixtures were determined
byvthe disappearance-of~the-meniscus method. Critical densities of
the pure compounds were obtained by the application of the law of
rectilinear diameter, and the critical pressures by extrapolation of
the log P vs 1/T line to the critical temperature.

P-T-x relations at the liquid-vapor phase boundaries of the
binary system, as obtained by the determination of the bubble-point-
pressure vs temperature curves of a series of mixtures of known com-—
position, did not indicate any existence of an azeotrope in the range
of temperature and pressure studied in this research. The binary data
obtained were treated thermodynamically to yield the liquid phase
activity coefficients. The partial molal volumes in the liquid mixture
required for the Poynting correction (effect of pressure on liquid phase
properties) for liquid-phase activity coefficients were also obtained.
The fugacity coefficient of a component in the vapor mixture was obtained

by a modified Redlich-Kwong equation as suggested by Chueh and Prausnitz

iv



(Ind. Eng. Chem. Vol. 60, No. 3, pp. 34-52 (1968)). Following their
modification of the van Laar equation, several binary liquid phase
parameters such as binary interaction constant, Henry's constant and
dilation constant, as required for the solution model for excess Gibbs
energy, were calculated with the aid of an IBM 360/65 electronic

computer.
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GLOSSARY OF SYMBOLS

constants in vapor pressure equations, liquid density
equation, also binary parameters defined in equations
58, 65, 66,

constants in van der Waals' equation (1) and Redlich-

Kwong equation (25).

specific heat at constant volume and constant pressure,

fugacity of component i.

reference fugacity of component i.
excess Gibbs free energy.

enthalpy in Table ITI.

Henry's constant for solute 2 in solvent 1 as defined
in equation 43,

isothermal compressibility.

characteristic constant for i~j interaction.

number of moles of component i.

number of components.

total pressure.

critical pressure.

constant reference pressure.

saturation vapor pressure.

constant reference pressure of zero pressure.
effective molal volume defined by equations 60 and 61.
gas constant.

entropy.

temperature.

critical temperature.

pseudocritical temperature of a mixture.

corrected pseudocritical temperature of a mixture.
true experimental critical temperature of a mixture.
temperature of disappearance of meniscus.

reduced temperature.
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T* - characteristic constant of a binary system, used in
correlating dilation constants.

v - molal volume of the liquid phase or vapor phase.
c ~ critical volume.

VoM - pseudocritical volume of a mixture.

VéM ~ corrected pseudocritical volume of a mixture.

Vor — true critical volume of a mixture.

Vp -~ reduced volume.

;% - partial molal volume of component i in the liquid mixture.

VQ’Vg — orthobaric volumes.

Y ~ total volume.

X - mole fraction in the liquid-phase.

y ~ mole fraction in the vapor phase.

Z -~ compressibility factor.

Zc - critical compressibility factor.

Subscripts.

c - critical.

g - gas.,

i -~ component i.

ii (3) - i-1 interaction in the environment of j.

ij - i-j interaction.

L ~ liquid.

M ~ mixture.

R - reduced property.

Superscripts.

E —~ excess property.

id - ideal property.

L -~ liquid phase.

(PO) — at constant reference pressure of zero.

®H - at constant reference pressure.

s — at saturation.

o ~ reference state,.

et -~ infinite dilutiom.

vii



Greek Letters.

o, Ba Y $
o

12

%22(1)

v, .
1]

ey

Sa, §

critical exponents defined in Table I.

interaction constant of molecules 1 and 2.

- self-interaction constant of molecules 2 in the

environment of molecules 1.

activity coefficient of component i.

- dilation constant of solute 2 in solvent 1.

characteristic constant of a solute, used in correlating

dilation constants.

surface fraction defined by equation 88.

correlating parameter for critical volume in equation 90.

density.

correlating parameter for critical temperature in

equation 89.
fugacity coefficient of component i in vapor phase

defined by equation 21.

volume fraction defined in equation 55.
acentric factor as defined in page 46.

dimensionless constants in Redlich-Kwong equation (25).
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CHAPTER T.

GENERAL INTRODUCTION

During the last two decades many theoretical, computational,
and experimental developments have been made in the study of the
properties of gases and liquids. It is unfortunate that both theory
and practice in the study of liquid mixtures have been separated
from the study of pure liquids.

The basic problem in the thermodynamics of liquid mixtures
has been to relate the properties of a mixture to those of its
components with a minimum amount of experimental information on the
mixture itself. The final goal is to predict the properties of the
mixture using only pure-component data. While this goal has not
been reached even for the simplest mixtures, much progress has been
made in recent years, and for a few types of mixtures it is now
possible to make good estimates of mixture properties using approx-
imate theories of solutions.

The dependence on the theory of pure fluids has been a feature
of most theories of mixtures in the last decade. The practical
demands of these theories can only be met by a very detailed knowledge
of the equilibrium properties of the pure liquids.

The usefulness of experimental data on the thermodynamic
properties of binary systems to test theories or to formulate
theories which attempt to predict binary mixture properties from
pure-component data is obvious. Another obvious use is the evalua-
tion of parameters characterizing interactions between unlike species,

useful not only in the correlation of data for binary mixtures but



also in the prediction of properties for multicomponent systems.
Phase~equilibrium data at high pressures, specially in the

critical region, are of considerable interest. Such data are in-

variably sparse, mainly because of the difficulty of taking into

account vapor-phase non-idealities. Present experimental knowledge

of equilibrium properties of the critical region is in a rapidly

moving state, and the same is true of approximate statistical mechanical

theories of the critical region. Any attempt to settle the shape of

the coexistence curve experimentally is beset by severe experimental

problems and will be commented on in almost all sections of this work.

A simplified theory of critical behavior in the liquid-gas transition

may be obtained from the van der Waals equation of state. The gas~

liquid critical point is the most familiar, but a variety of others

exist. A feature of this field is that both experimental data and

theoretical insight indicate that critical phenomena in systems as

apparently unrelated as gases, binary alloys, and ferromagnets can

all be studied from the same point of view. Thus, the disparate

fields of physical chemistry, solid-state physics, chemical engineering,

and low-temperature physics converge when dealing with critical

anomalies.

THEORETICAL INTRODUCTION

I. CRITICAL PHENOMENA

I(a). The Critical Point

The critical phenomenon was first discovered by de la Tour (1)



in 1822 when he observed that upon heating a liquid in a stationary
sealed tube, at a certain temperature the meniscus between the liquid
and vapor phases disappeared without ebullition, yielding what
appeared by ordinary light to be one homogeneous phase. Upon cooling
the tube, the meniscus again appeared but the temperature of re-
appearance did not coincide exactly with the temperature of digs-—
appearance,

Kgnig (2) stated that Schmidt (3) in 1823 predicted the
critical point on the basis that the latent heat of vaporization
would become zero.

The disappearance of the meniscus was used by Andrews (4 to 7)
as the criterion for the critical temperature. Prior to this time,
many investigators had tried unsuccessfully to liquefy gases by the
application of pressure and had come to the erroneous conclusion that
there existed certain "permanent’ gases which could not be liquefied.

From Andrews' studies on the gaseous and liquid states of
carbon dioxide under various conditions of temperature and pressure,
he concluded that each gas has a temperature above which it cannot
be liquefied regardless of the applied pressure: but below this
temperature, the vapor is condensable by pressure.

Thus, in terms of Andrews' classical experiments, the critical
temperature may be defined as the temperature at which the meniscus
disappears, or as the minimum temperature above which a gas cannot,
as evidenced by the appearance of a meniscus, be liquefied. The
pressure (vapor pressuré) required to liquefy a gas at this critical

temperature is called the critical pressure. The volume of a unit



mass of the substance at the critical temperature and pressure is
called the critical volume.

In 1873, van der Waals (8) made an important contribution
to the knowledge of liquids and vapors, particularly near the critical
point. He was able to give, on grounds at least partly theoretical,
the first moderately satisfactory equation which gave a comprehensive
description of the behavior of liquids and vapors under varying
pressures and temperatures. On the basis of this equation it follows
that there is but one temperature at which the pressure and the
volume of the gas equal those of the liquid. Successful and widely
accepted, the van der Waals® equation has been the starting point for
most subsequent studies dealing with equations of state.

On the basis of Andrews' work and van der Waals' equation,
it was, therefore, thought that the critical state was a unique point
at which the meniscus dividing the vapor and liquid disappeared and
the two phases became a single, homogeneous phase. Their work seemed
not only to establish the identity of phases at the critical point but
to yield the additional fact that liquid could not exist above the
critical temperature. These two facts may be said to represent what

has come to be known as the classical theory of the critical state.

I(b). The Critical Region

The classical theory requires a unique critical point
associated with the disappearance of the meniscus and the formation
of a completely homogeneous phase. Evidence which conflicted with

the van der Waals continuity theory was obtained, however, about



the turn of the century by several investigators.

The concept of a critical region in contrast to a critical
point has often been discussed, especially in order to explain various
anomalous critical phenomena which apparently were in conflict with
the van der Waals equation. Kuenen (9) has reviewed the older
literature, especially the effects of gravity and of impurities on
the critical phenomena. Objections to, and the limitations of, the
van der Waals-Andrews theory have been summarized by Bruhat (10),
Clark (11), Traube (12) and Brescia (13).

The only attempt to deduce a critical region from the ideas
of van der Waals is by Bakker (14). He pointed out there may be a

range in temperature where the thickness of the capillary layer is
1/3 1/3
- v

o
o

of the same order as v In this region one would not
see a meniscus, although the two phases are still present. This has
also been suggested by Mayer and Harrison (15). A review of Mayer's
arguments, which are partially formal and partially physical, and are
based on the fugacity and virial expansions, is given in a monograph
by Mayer and Mayer (16). Mayer's conclusion is that there may be a
temperature Tm <: TC where the meniscus would disappear, although
there are still horizontal parts in the isotherms for temperatures
between Ty and T.. T, is the true critical temperature according to
him. In the temperature range T, to T., the isotherms enter the two-
phase region with a horizontal tangent. Because of the resulting

shape of the coexistence curve near the critical point, this region

is often referred to as Mayer's derby hat (Figure 1).



FIGURE 1. Plot of Pressure against Volume at Different Temperatures

near the Critical Temperature (Mayer's 'Derby' Hat).
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Maass and coworkers (17,18,19,20) found viscosity and density
hysteresis effects in the region of the critical temperature. It has
also been postulated by these investigators that the coexistence curve
has a finite horizontal flat segment at T and that a "steam-dome"
region is superimposed on the coexistence curve above this flat segment.

In the very careful study of Weinberger and Schneider (21),
using very pure Xenon, they extended the density measurements down
to temperatures differing from Tc by only 1 part in 30,000 (i.e. ,
ZlT/TC = 0.003%) and down to corresponding density differences of
(p - pc)/Zpc = 0.04. (The temperature was controlled to within
iO.OOlOC.) They established the shape of the coexistence curve in
bombs of two different lengths, 19 cm. and 1.2 cm. It was found that
gravitational effects could account for a large part of the flat-~
topped segment of the coexistence curve. Experiments near the critical
region are very difficult to perform; a long time is needed to
establish equilibrium and hysteresis phenomena are difficult to avoid:
the system is very susceptible to minute amounts of impurities and,
due to the large compressibility, highly sensitive to gravitational
fields. Indeed as shown by Weinberger and Schmeider (21) it is
important to take special precautions to reduce the effects of gravity
if the true shape of the coexistence curve is to be measured close to Tc'

From the experimental point of view the existence of a critical
region is still controversial. In recent years, considerable attention
has been drawn to the phenomena which occur very near critical points.
Several recent conferences (22?23) have presented a wealth of new

experimental data and theoretical ideas in this area. These conferences



have established the fact that there are quite marked similarities
between apparently very different phase transitions.

At the present time, most (though not all) workers in the
field believe that the coexistence curve is rounded. In what follows,
the present knowledge of what is actually observed in the neighborhood
of the critical temperature is described. Rowlinson (24) has given a
very thorough discussion of the classical thermodynamics of the co-
existence curve and the critical region, and has also appraised much
of the better data on equilibrium properties (of liquids and liquid
mixtures). Rice (25,26) has several times reviewed the field of

critical phenomena.

I(c). Classical Liquid-Vapor Transitions

Various early attempts were made to understénd the occurrence
of phase transitions and the anomalies in the vicinity of critical
points. 1In 1873, van der Waals (8) observed that the Boyle-Charles
law relating pressure P, volume V, and temperature T of a gas by
PV = RT is correct only when the volume of, and the interaction
between, molecules can be neglected. In the liquid state, however,
the volume occupied by the molecules is of the order of the macroscopic
volume and the heat released during condensation is evidence of the
attractive energy between particles. Van der Waals' equation of state
is given by

(P + a/V%® (Vv -b) = RT (1)

Van der Waals' law gives a qualitative description of the thermodynamic

behavior of gases in the critical region, and notably of the large



FIGURE 2. The Orthobaric Densities of a Typical Pure Substance.



Densgity {3m/mn

Lo R ioel
%‘Q)\

oA

ok o)n

20;-

elio}

Temperotues °C



compressibilities observed near the critical point. In particular,
this approach implies that:

(a) at the critical temperature, the density minus the
critical demsity is given by

1/3
o = op @ -2 (2)

where P ~ PC is the deviation of the pressure from its critical
value.

(b) on the coexistence curve (Figure 2), the densities of
gas and liquid are given by

1
- _ o _ %
Plig.” P = (pgas o) (T, -1 (3)

(¢) when T > TC and p = 0o the isothermal compressibility

KT diverges as

~-1 1

Kp = 0 (30 /3R) ~ (T - T) *)

(d) there is a similar divergence for T < TC where

Kp =~ (T_ - )™ (5>
on the coexistence curve.

The quadratic coexistence curve, the third degree critical
isotherm, and the linearly diverging compressibility are not just
consequences of the pérticular form of van der Waals equation. It

can be shown that this behavior is a consequence of a very general

assumption-~that the free energy behaves analytically around the

10

critical point. This means that the free energy is assumed to have a

Taylor series expansion in density and temperature. All classical

theories of critical phase transitions have this property as do most

of the equations of state in the chemical and engineering literature.



11.

This concept of analyticity plays a decisive role in the theory of
critical phenomena.

It is now known that van der Waals' theory cannot be expected
to hold in the vicinity of the critical point. The assumption that
the potential energy is proportional to the density is a good one,
if the interactions between molecules vary slowly with distance and
are long-range (i.e., interactions are between molecules whose distances
are much larger than those between nearest neighbors, cf. page 13), since
in that case each molecule feels the influence of all others in the same
way. Kac, Uhlenbeck and Hemmer (27) recently showed that van der Waals'
equation holds rigorously in the limit of long-range forces in a one-
dimensional gas. The nature of the critical transition, moreover, is
independent of the dimensionality of the system for a van der Waals
gas, because each molecule is in the range of all others.

With more or less the same reasonings and assumptions as van
der Waals, Weiss, and Bragg and Williams formulated their inner field
theories on phase transitions of ferromagnets and order-disorder
transitions of binary alloys. Since both physical concepts and mathe-
matical structure of the inner field theories of van der Waals, Weiss,
and Bragg and Williams are so closely similar, it is not surprising that
their predictions for critical behavior are strictly analogous. In
emphasizing the great similarity of the three classical theories it
must be remembered that they are all based on the assumption that the
attractive forces between the molecules which produce the cooperative

effects have a very long range, although the derivations are often

quite different. All inner-field theories predict a quadratic co-
existence curve,a jump discontinuity in Cv’ a third degree critical

isotherm, and a linearly diverging compressibility, or susceptibility.
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The prediction of the classical theories turns out to be incorrect for
most experimental systems, but the concept of analogy is retained.

For theoretical discussions and in the analysis of experimental
data it is useful to describe the behavior of properties close to the
critical point in terms of power laws. The definitions of the most

important critical point exponents for gases may be given as follows:

TABLE 1I.
Properties Liquid-gas transition
. - B
Coexistence curve. ]p ~ 0. wv,ll - TC
Specific @eat along critical R T ’ a
isochore. v

Compressibility along critical
isochore. T

Critical isotherm. ip . p P
! c
i

The critical behavior of each property is thus characterized by a
value of the corresponding exponent. The various exponents, however,
are not independent. On the basis of thermodynamic considerations one
can conclude that they should satisfy certain inequalities. The best

known inequalities given by Fisher (28) are:
@+ 2B + vy > 2 (6)
o+ B (L+8) » 2 (7)

Both in classical theories and in modern theories, these inequalities

are satisfied as equalities (with = replacing ).
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I(d). Recent Developments in Critical Phenomena

A problem of central interest in the study of critical phenomena,
bothexperimentally and theoretically, is the determination of the
asymptotic laws governing the approach to a critical point. Some of
tﬂese, notably the "one-third" power law for the vanishing of the
density discontinuity P T Pg between coexisting liquid and gas as
a function of TC -~ T have a fairly long history; others, such as the
logarithmic divergence of the Specifié heat CD of helium at the lambda
point and the near-logarithmic divergence of Cv for argon at its critical
point, are more recent discoveries. Theories competent to make
significant predictions about critical-point behavior have, however,
developed mainly in the past decade or two.

The inadequacies of the classical theories are now evident,
particularly by comparison with the exact results for plane Ising
models (lattice gas). The summaries of the results of the Ising model
theories as well as the theoretical and experimental values of the
critical point exponents are given in recent reviews by Fisher (28,29),
Heller (30), Kadanoff(31), Sengers and Levelt-Sengers (32), and in the
recent analysis by Green, Vicentini-Missoni and Levelt-Sengers (33).

In the absence of detailed knowledge about the intermolecular forces,
it was generally believed that the attractive forces in classical
theories had a very long range. But the later development showed more
and more clearly that the cooperative forces were not of a very long
range, that each atom was influenced by at best a few shells of
neighboring atoms. This was realized in the late twenties as a result

of the quantum mechanical revolution, when London elucidated the nature
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of the van der Waals attractive forces and Heisenberg of the Weiss
inner field. 1In 1925, Ising proposed a simple model. He assumed the
magnetic spins to be localized on the lattice sites of a regular
array and capable of only two orientations in opposite directions.

If located on adjacent sites, parallel spins attracted each other

and antiparallel spins repelled each other. All interactions beyond
those between nearest neighbors were neglected. The intuitive and
approximate approach of the inner field theories was, furthermore,
replaced by the methods of statistical mechanics, in which averages
were taken over all possible microscopic arrangements.

The concept of analogy among different critical transitions
was conserved in an elegant way in the Ising model. When upward-
pointing spins, for instance, were replaced by molecules and downward-
pointing spins by "holes' or empty sites, the ferromagnetic Ising
model was transformed into a model for the gas;liquid transition, the
so-called lattice gas. Although this may sound somewhat artificial,
the procedure is very fruitful.

Solving the Ising problem without using the inner field concept
is a very difficult task, since for any given total energy all possible
arrangements of the spins on the lattice must be enumerated. The recent
change of view about the nature of the critical point is due to the
impact of the solution to the two-dimensional Ising problem by Onsager (34).
His finding has dominated the subject for the last 25 years. The most
striking result of Onsager is that there is a critical point and that
the specific heat is logarithmically diverging there in contrast to the

classical result. Fisher and his coworkers (35) have developed
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approximation methods for the three-dimensional model and for the two-
dimensional model in the presence of a field. Fisher's model shows the
nonanalftic behavio; at the critical point.

A survey of the experimental situation, as it stands today, in
regard to fluids serves to establish the definitions of the various
critical exponments a, B, vy ....., and leads to the phenomenological
development of the close analogies between different physical systems.
These analogies find a firm theoretical foundation in the equivalence
of classical-latticegases and Ising-model ferromagnets and of quantal-
lattice gases and anisotropic Heisenberg-Ising ferromagnets. Series
expansions have been used to obtain numerical information about critical
points when exact theories have not been known. A general theoretical
understanding of critical phenomena is obtained from relations and
"laws' derived from the "droplet” picture of the critical point and from
various 'homogeneity' and 'scaling' hypotheses. It is worthwhile to
assess a number of recently developed theoretical ideas which aim at
throwing light on the values of the critical singularities. Some of
the suggested approaches have tried to establish that only two independent
critical exponents are required by a physical system, one for the
temperature variation and one for the field (or pressure, etc.)
variation. In the light of present knowledge, none of the various
theories is fully convincing but it is hoped that they point the way
forward to a deeper understanding of the numerical results so far found
experimentally and theoretically. Fierz (36) and de Boer (37) have
presented ideas to describe a theory of the critical region tased on the

droplet {(or physical-cluster) picture of condensation for the fluid



16

case (L & V). Fisher and coworkers (38,39) have pointed out that they
can be extended to describe the critical point of liquids. Rice(25)
had earlier considered the process of condensation of a vapor from the
point of view of associating molecules (clusters).

The basic idea of the "droplet” picture is that in a gas of
particles interacting with repulsive cores and short-range attractive
forces, the typical configuration at low densifies and temperatures
will consist of essentially isolated clusters of one, two, three or
more particles. A sufficiently large cluster is just a small droplet
of the liquid phase at the same temperature. These droplets will be in
dynamic equilibrium and the relative proportions of differently sized
droplets will change with temperature and pressure. Condensation in
this picture corresponds to the growth of a macroscopic droplet of the
liquid. Fisher (29) has formulated these ideas mathematically and has
also translated the arguments for the fluid case into magnetic terms
(28). He has discussed a microscopic picture of the critical point
which, perhaps, gives some insight into the magnitudes and inter-
relations of the critical exponents (29). A more phenomenological
macroscopic approach may be followed to show the exponent relations
given by equations (6) and (7).

Recently, Widom (40), Kadanoff (31,41) and Griffiths (42)
have put forward ideas about the nature of the equation of state in the
critical region. It is known that the equilibrium thermodynamic properties
of a pure single-component fluid are completely determined by a knowledge
of the Helmholtz free energy per unit volume as a function of density

and temperature (42). For fluids, Widom (40) has introduced a function
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of two variables, one a measure of the density of the system and the
other a measure of the temperature. The classical theory is characterized
by this function being a constant. By contrast, a real fluid of finite
dimensionality is characterized by this function being a homogeneous
function of its variables, with a positive degree of homogeneity. Tt
is just this assumption of Widom which leads to the nonclassical com-
pressibility and specific heat. Experimental work of increasing
precision--including, but not limited to, heat-capacity measurements--
suggests that anomalies near the critical point not present in the
classical treatment may be the rule rather than the exception in pure
materials.

This so-called scaling-law equation of state exhibits non-
classical critical anomalies with proper choice of the suggested
function. Green et al (33) have shown that a scaling~law equation
of state is also valid in the critical region of gases above and
below Tc’ and have proposed a new way of deriving critical exponents
from experimental data. Thus, it is evident that the scaling-law
can describe the PVT behavior of a variety of gases in a large region
around the critical point.

Great emphasis must be given to the experimental situation in
order to understand the nature of critical phenomena as it is known
today. One can be confident that the deviations now observed between
theory and experiment are consequences of over-simplifications of the
models (rather than deficiencies of calculation). The widespread
appreciation of the difficulties inherent in making truly reliable

measurements in the critical region has really been quite recent. New
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techniques such as the dielectric constant and refractive index methods
have already yielded some remarkable results concerning the behavior of
the equation of state of fluids.

Some of the general difficulties inherent in the measurements
near the critical point have already been discussed. In some of the

experiments involving the critical points in fluids, the data do not seem

_ (T-T¢)

to settle down to their asymptotic critical behavior until ¢ T
c

gets smaller than 1072, A temperature control system must be able to
maintain and reproduce temperatures to perhaps one part in lO4 of T, in
order to provide meaningful data over a two-decade range in ¢ within
this critical region. Since this control is most easily achieved near
room temperature, the most complete data are obtained for the classical
gases Xe and CO2 (To = 289.6°K and 304.0°K respectively).

Given a good temperature control system, the extremely large
compressibilities must be contended with when critical conditions are
approached. Due to the weight of the fluid, critical pressure is
realized only over a very narrow vertical height range in a sample
bomb (in theory, of course, only at a single horizontal plane), and
what is measured in a PVT measurement is the average condition of the
fluid. This may be quite different from the critical condition unless
special precautions are taken, and can lead to a flat top in the co-
existence curve (43) (liquid-gas density difference as a function of
temperature). One of the most elegant methods of dealing with this was
devised by Lorentzen (44) as explained below. The remarkable sharpness
of the critical point was also demonstrated by the results of a par-

ticularly careful series of measurements due to him (43,44). A glass
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tube filled with very pure CO2 was placed in a thermostat capable of
holding the temperature constant to within a fraction of a millidegree
for several days. The tube and its contents formed a cylindrical lens,
the focal length of which depended on the fluid density. This lens was
used to form an image of a pair of vertical slits. The separation
between the two slit images provided a measure of the fluid density as
a function of height in the tube. By calculating the variation of
pressure with height due to gravity, the shape of the (P,p) isotherms
could be obtained. All critical exponents except o (the specific

heat exponent) can be determined directly from an experiment of this
type.

A further complication arises from the large heat capacity of
a fluid near critical conditions (45,46,47). Equilibration times
become very long near the critical point as a result of this . and other reasons,
necessitating waits of perhaps days before it is reasonably certain
equilibrium conditions have been attained. Wentorf (48) has asserted
that pressure equilibration in the critical region is achieved within
30 min., but that constancy of fluid structure as judged from photographs
may require as much as 5 hours.

The most accurately determined parameter for the classical gases
is exponent B of the coexistence curve. By the early 1900's it was
known that gas-liquid coexistence curves were roughly of thevthird
degree, in contrast to the parabola predicted by van der Waals' equation.
All later experiments have essentially confirmed this. The best value
of the exponent B is 0.35 for a large variety of gases including even

SHe and “He (21,22,43).
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In binary liquid mixtures (L &L ), the precise measurements
1 2
of Rice and his coworkers (49) indicate B is close to 0.33. Recently
there have been some speculations, based on theoretical considerations

by Fisher (39), that the density should be linear to (Tc - T)5/16

1/3. Rice (49) has tried replotting his results

rather than (TC - T)
on this basis, but, it appears, these functional forms are so closely
similar that, even with the degree of precision he has obtained
(temperature control was #0.00005°C), it is impossible to distinguish
between them.

It now seems quite well established experimentally that for
simple fluids, such as the noble gases, the coexistence curve does not
have a significantly "'flat top”. Rice (50) and Zimm (51) suggested
this in 1950 at a symposium on critical phenomena. Rice and his
coworkers (52,53,54) in later publications reiterated his even earlier
claim (25) of the existence of a flat top without realizing that the
temperature control in these measurements was not accurate enough to
decide the question. His more recent work with Thompson (49) was
undertaken té clarify the behavior of a system first investigated by
Zimm (51) who did not find any evidence of a flat top. 1In this careful
study Rice (49) concluded that there was no flat portion of the co-
existence curve unless it was within 0.0001° of TC, Thus, there is
no limit to the accuracy of temperature control to which the measurements
should be made.

Critical opalescence of certain systems has been studied by
Chu (22,55) by means of visible light scattering. His recent results

have been discussed in terms of Debye theory of critical opalescence (56)
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and the solubility parameter theory of Hildebrand and Scatchard. The
findings substantiate the proposal of Scott (57) on the breakdown of
the geometric mean law for fluorocarbon-hydrocarbon systems.

In many respects the behavior of binary fluid mixtures
(L; & L1,) such as those investigated by Rice and others which undergo
phase separation is closely analogous to the condensation of simple
fluids (L & V) and most of the preceding remarks about the nature of
the coexistence curve can be translated directly into such terms (24,26).
While it is always possible that measurements taken much closer still
to the critical point might yet yield a different value of B (exponent
of the coexistence curve) it seems reasonable to conclude that the
classical theory does not correspond to reality. The fact that
measurements of the phase boundaries of binary fluid mixtures near
both their upper and lower critical points are also fitted well by
the same cube-root law that applies to simple gases suggests that the
behavior close to a critical point is insensitive to the detailed

nature of the intermolecular forces.

I(e). Thermodynamics of the Critical Point

The classical theory of fluids does not account for the approach
of logarithmic heat capacity to infinity along the critical isochore (58)
as T approaches Tcn Further,classical theory leads to the prediction
.that the liquid-vapor coexistence curve is quadratic when pressure is
expanded about the critical point in a Taylor series in density and
temperature. This conflict with the known experimental evidence suggests

that a Taylor expansion as usually carried out is not valid.
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In order to account for a cubic coexistence curve Rice (26),
Widom and Rice (59), and Davis and Rice (60) recognized the singular
nature of the critical point and suggested that C%S%)C=O and that
3P ) .
ggq )c is discontinuous. Dunlap and Furrow (61) have also suggested
this. Widom (40) has given special consideration to the region very
close to the critical point and has proposed a theory consistent with
the singular behavior of Cv along the critical isochore. Davis and
Rice (60) have assumed that ordinary Taylor expansions maybe carried
out provided they are made at some increment away from a singular point
or point of discontinuity. They have given thermodynamic derivations
for a cubic coexistence curve in liquid-vapor systems. They found two
separate Taylor series in pressure are necessary to describe the
behavior in the gas and liquid single-phase regions of a one-component
fluid. Two expressions for the saturation vapor pressure at a certain
temperature (up to some arbitrarily small increment away from the
coexistence curve) are provided in their thermodynamic treatment, after
specifying the densities to be those at the coexistence curve, i.e.,
the saturation densities. They avoided the data or observations very
near the critical point (since it is difficult to obtain reliable data)
and discussed methods based on thermodynamics to obtain critical

constants o, T and PC. An extensive survey is also given by

c

Rowlinson (24).
In 1873, van der Waals (8) first defined the term "reduced

condition'” and presented the "theorem of corresponding states'that all

pure gases manifest the same compressibility factors when measured at

the same reduced conditions of pressure and temperature. This concept
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was extended to liquids by Young (62) in 1899. Since then many
generalized methods for estimating thermodynamic properties of pure
fluids based upon the theorem of corresponding states have been
presented. By reason of their very generality, encompassing as they

do all substances, the generalized charts cannot begin to be as

precise as the measurement of the properties of individual substances.
Since a very detailed knowledge of the equilibrium properties of the
pure liquids is demanded by most theories of mixtures, wherever possible
such experimental measurements should be made instead of depending on
the generalized charts.

There is a scarcity of data for vapor pressures above the normal
boiling points of substances which are liquids at room temperature, and
the exact coufse of the vapor pressure curve between the boiling and
critical points is not usually well known.

Although several papers by Young (63,64,65) dealt with measurements
of orthobaric volumes of liquids, the amount of work on this subject
published since then has been disappointingly small. The measurement
of the gas and liquid densities may be made by finding the volume of a
'known mass of gas at its bubble-point (the orthobaric liquid-density)
and dew-point (the orthobaric gas—density). These measurements are
difficult near the critical point, and therefore, most workers have
preferred to measure the relative proportions of gas and liquid at two
overall~densities lying between those of the coexisting phases. The
orthobaric densities can then be found by solving a pair of simultaneous
equations. Details have been presented in the experimental section of

this thesis.
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It is customary to express the PVT properties of fluids by
empirical equations designed to fit the experimental data. The complexity
of such equations and the number of empirical constants required are
dependent on the accuracy of experimental measurements, thg precision
required, and the experimental range of variables.

Such equations represent a convenient condensation of
experimental data and are valuable not only for calculating values
of pressure, temperature, volume, and density but also for deriving

thermodynamic properties therefrom.

II. THERMODYNAMIC PROPERTIES FROM P-V-T DATA

For the determiniation of the thermodynamic properties of pure
fluids, both liquid and gaseous, the most common experimental measure-
ments are of P-V-T data for the single phases and of vapor pressures
to relate the properties of vapor and liquid phases in equilibrium.

The properties of pure homogeneous fluids may be considered
functions of temperature and pressure only. The influence of tempera-
ture on thermodynamic properties is not usually considered, for this
cannot be determined from compressibility data alone. However, P-V-T
data are used to determine the influence of pressure only, so the
property changes with pressure of a pure material can be studied along
an isotherm.

The thermodynamic properties calculated from PVT data are
obtained in the form of deviations of these properties from ideal
behavior (ideal gas law). The thermodynamic properties of a substance

in the ideal gas state may be calculated from heat capacity data using
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the methods of statistical mechanics. The deviations from ideal
behavior of the thermodynamic properties are determined in dimension-
less form as shown in the following table:

Table TI

Dimensionless Form of Thermodynamic Functions

Function Dimensionless Form
Volume P(V ~Vid)/RT
Internal Energy (E ~ Eid)/RT
Enthalpy (H - Hid)/RT
Entropy (s - Sid)/R
Gibbs free energy G - Gid)/RT
Helmholtz free energy (A - Aid)/RT

The general equations relating thermodynamic functions in
‘Table II to pressure by use of compressibility factors (defined by the
equation Z = PV/RT) can easily be written. For gases at constant
temperature, the fugacity coefficient (defined by ¢ = %; equation (21)
in "Vapor-liquid equilibria’ Section) may be obtained from the experimental
compressibility data after integrating the following equation (66)

dlncp:Z;ldP (8)

Integration at constant T from the zero-pressure state to a state at

finite pressure P gives »

1n¢—1n¢>%=§ﬁ—l}l—)dP (9)

o

The asterisk indicates the limiting value as P approaches zero, where
ota

all gases are assumed to obey the ideal-gas law. Therefore, ¢=§* = 1, and

P

n ¢ = J Z -1 4 (10)

P
o

Values of Z as a function of P at a given temperature T can be calculated

from PVT data. To determine the values of the integral, the isothermal



values of (Z - 1)/P are first calculated. These values are fitted to
a polynomial in P, using a least squares procedure, and the resulting
N . , Pz - 1)
expression is integrated analytically to provide values of ‘r —~—§—-dP
at various pressures. °
The enthalpy deviation, i.e. Hid - H is the difference between
the enthalpy of an ideal-gas and the enthalpy of the actual gas and is
related to the compressibility factor, pressure and temperature (66)
by

H~-H
RT

o P
_ (32/3T)p
T O‘ T dp (11)

To evaluate the integral, compressibility factors are plotted vs.
pressure on a large scale graph. Next a cross plot of the compressi-
bility factors vs. temperature for constant values of pressure is made.
These compressibility isobars are then fitted as polynomials in T using

a least squares procedure, and the resulting expressions are differentia-

9Z

T at various pressures. For each

ted analytically to give values of
isotherm, the values of (3Z/3T),/P are fitted to polynomials in P by

a least squares procedure, and the resulting expression is integrated

P (BZ/ST)P ap
P

analytically to provide values of “r at various pressures.
o

, . id - .
Having obtained the values of In ¢ and (H -~ H) as functions of
pressure at various constant temperatures, the other functions can be

calculated from well-known thermodynamic relationships.
Since by definition G = H -TS, then also G1d = Hld - TSld,

By difference one gets for a given temperature and pressure

¢t og-ptd g (s

or cd-¢

- 9) ' (12)

AH - TAS (13)



27

Where AS is the entropy deviation, defined in a fashion analogous to
the enthalpy deviation. Integration of dG = RT d 1ln f at constant

temperature from the real-gas state to the ideal-gas state gives

G - G = RT ln-% = =RT 1n ¢
Therefore, equation (13) becomes
-RT In ¢ = AH ~ TAS (14)
or AS = %?— + R 1n ¢ (15)

By equation (15) it is now possible to calculate values of the entropy
deviation as a function of pressure for various temperatures from the

previously determined values of 1ln ¢ and AH.

The thermodynamic properties of a substance in the ideal-gas
state may be calculated from heat capacity data using the methods of

d) and (S -~ Sid) can then

statistical mechanics. Values of (H - Hz

be tabulated or plotted as functions of T and P. The selection of a
. id id .

numerical value for HO and for So is arbitrary. Once selected,

these values are constant, and do not affect property changes of the

material.

All the thermodynamic functions in Table II can now be
evaluated. The following table shows the various functions with

the integrals to be evaluated for their calculation:
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Table III

Summary of Thermodvynamic Functions

Volume z -1
i»]
P (3z/3T)p
Internal Energy -T r
) 7 dP - (Z-1)
°p
" (sz/91)
Enthalpy =T R
’ P
o
P P
r -
Entropy -T f (02/3T)p 4p —J =D 4p
o F d P
P
fu
Gibbs free energy % (Z;l) dp
!
o%
R
4
Helmholtz free energy \ (Z;l)dP - (z-1)
J F
) FP
Fugacity Coefficient exp. j (Z;l) dp

The methods described are used for gases from the zero-
pressure state up to the pressure at which condensation begins, i.e.,
the dew point. For a pure vapor the dew point occurs at the vapor
pressure. When this pressure is reached along an isotherm, the property
being represented generally changes abruptly from that observed for
the vapor phase to that observed for the liquid phase after condensation
at constant temperature and pressure. For example, the specific volume
of saturated liquid Vy is very different from that for saturated vapor

(gas) Vg; there is a discrete enthalpy change from Hy to H and a

g9

discrete entropy change from Sy to Sg. The exception is the Gibbs
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function. It is always given by G = g(T,P) for systems at equilibrium,

and it is known from experience that when a pure material evaporates

or condenses at constant temperature, the pressure also remains éonstant°

Thus for such a process dG = 0, as theory requires for any equilibrium.
The enthalpy of vaporization of a pure material may be

calculated from the well-known Clapeyron equation, which can be written

@ _ P

dT =~ TAvVvVap

(16)

where dP/dT is the slope of the vapor pressure curve at the particular

temperature being considered,

vap

AH H - Hy, (17)

g

the latent heat of vaporization, and

A PR I3 (18)

the volume change of vaporization.

Although all one component systems having vapor in equilibrium
with liquid obey this equation exactly, the rigorous exact differential
form is difficult to apply unless PVT data and the rate of change of wvapor
pressure with respect to temperature are available. Other latent heat
prediction methods are based on the theory of corresponding states,
Trouton's rule, molal volumes, critical properties, equations of state,
and comparisons with a reference compound.

Since P and T are constant during the vaporization process,
equation (13) becomes pRVEP = TAsvap. Hence the entropy of

vaporization is given by
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VEP - puVEPy7 (19)

Thus once the vapor-pressure curve is established and saturated liquid
and vapor volumes are measured for a pure material, the enthalpy and
entropy values of liquid and vapor are connected by equations (16) and
(19).

For the liquid phase equations (10), (11), and (15) are still
valid and could be applied to the calculation of liquid properties,
but they are not commonly used. This procedure would make the
Clapeyron equation for pure materials unnecessary.

Knowing the enthalpies, entropies, volumes and fugacity coefficients of
a pure compound in the gas phase, those of the saturated vapor may be
obtained by extrapolating each isotherm to the corresponding vapor
pressure. The quantities for the saturated liquid are obtained by
subtracting the latent heat of vaporization or the entropy of vaporiz-
ation from the enthalpy or entropy of the saturated vapor.

Thus, these general equations allow calculation of the thermo-
dynamic properties of pure fluids in the gaseous and liquid regions
from PVT data, vapor pressure data, and certain equations of statistical
mechanics using ideal-gas heat capacities and spectroscopic data. Other
methods of calculation from the same data are certainly possible, but
none is more direct. From such calculations, tables of thermodynamic
data are readily constructed, although other measurements are sometimes

used to test the accuracy of results.

III. VAPOR -LIQUID EQUILIBRIA

It has been customary for many years to subject vapor-liquid
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equilibrium data at low pressures to thermodynamic analysis but this
custom has rarely been extended to vapor-liquid data at high pressures.
Although the chemical literature is fairly rich in experimental studies
of the phase behavior of binary mixtures at high pressures, very little
attention has been given to the problem of how the experimental results
may be meaningfully treated with the aid of suitable thermodynamic
‘functions. That a start has been made in this direction is clear from
several publications by Prausnitz et al. quoted in the course of this
discussion. Thermodynamic analysis for reduction of high-pressure
vapor-liquid equilibrium data is essential to enable one to predict
phase~behavior under conditions different from those at which the data
were obtained. It also provides empirical techniques for estimating
high-pressure vapor-liquid equilibria in multi~component mixtures from
a minimum of experimental data (using only the results of binary data

reduction).

ITI A. General Equilibrium Equation

All the equilibrium properties of each species in multicomponent
phase equilibria are described by the chemical potential which was
introduced by J. W. Gibbs (67). For the equilibrium of a particular
species between any two phases at a given temperature the chemical
potential of that species must be the same in both phases, A more
meaningful quantity called the fugacity is often convenient to use.
it was introduced by G. N. Lewis (68), and can be thought of as a
thermodynamic pressure, since in a real mixture it is considered as

the partial pressure which has been corrected for imperfection. The
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fugacity of a pure substance in any condensed phase is defined as
being equal to the fugacity in the gas phase with which it is in
equilibrium. Evidently when two condensed phases are in equilibrium
with each other the fugacities of an arbitrary ith component must be

equal in the two phases:
£V = b (20)

where the superscripts V and L stand for vapor and liquid.

In order to be able to express the fugacities in terms of
experimentally observable quantities two auxiliary functions are
introduced. The first of these, the fugacity coefficient ¢, relates

3 \Y .
the vapor-phase fugacity fi to the vapor-~phase mole-fraction v
and to the total pressure P. Thus

v
£

o5 = (21)

yiP

The activity coefficient y relates the liquid-phase fugacity fg

to the liquid-phase mole fraction X, and to a standard-state fugacity
ng Thus

vi - = (22)
i*4

. g v L .
Since for phase equilibrium fi = fi , from equations (21) and (22),

the combined equation for the calculation of vapor-liquid equilibria

is obtained as

oL
D =
¢iyi“ Yixifi

(23)

The usual phase-equilibrium problem is to calculate the
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composition of a vapor phase in equilibrium with a liquid phase of
given composition or vice versa. Compositions were introduced into
equation (20) by the use of the fugacity coefficient of a constituent
in solution. This is entirely appropriate, in principle, for high-
pressure equilibria, since no assumptions have been made to limit

the pressure to which these relationships apply. However, the method
is impractical for the liquid phase and will remain so until a satis—
factory equation of state is developed for liquid solutions. The
concept of activity coefficient was therefore introduced for the

liquid phase. The advantage of the activity coefficient is that it
relates the fuéacity of a constituent in solution to the fugacity of
the same constituent in another state (the standard or reference State)
for which fugacity values may be more readily determined. 1In fact, for
vapor-liquid equilibria at low pressures, the activity coefficient
rather than the fugacity coefficient is used generally in the treat-
ment of both phases. Although it is difficult to relax the restrictions
applicable at low pressures, the use of activity coefficients is
certainly not inherently limited to these pressures alone.

The direct effect of pressure on liquid properties is usually
neglected at normal pressures and the truncated virial equation is
usually employed for the vapor phase. At high pressures these simpli-
fying assumptions are not valid to describe the properties of the phases.
Even the use of the virial expansion in densities truncated to the third
term may not be adequate. Even if it is, the third virial coefficients
for solutions are rarely known, and methods of estimation are very crude.

One must also have data on the volumetric properties of liquids in order
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to take into account correctly the effect of pressure on liquid-
phase properties. Thus volumetric data, either directly measured or
as given by an adequate equation of state, must be available for both
the vapor and liquid phases in addition to phase-equilibrium data
themselves if one is to reduce the equilibrium data at high pressures
to thermodynamic variables.

A difficult problem comes from the definition of activity
coefficient as given by equation (22). The activity coefficient is
not completely defined unless the standard-state fugacity sz is
clearly specified. The selection of the standard state represented
by sz is quite arbitrary and it is up to the individual to choose it
according to his convenience. At low pressures the standard state for
constitutent i is taken to be pure i at the same temperature as that
of the solution, at some fixed composition, and at some specified
pressure, usually the pressure of the solution. At high pressures,
for both the iiquid phase and the vapor phase this normally requires
the standard state for one or the other of the constituents to be
fictitious or hypothetical. The more volatile constituent exists only
as a vapor at the solution temperature and pressure, and the less
volatile, only as a liquid. For azeotropic systems both constituents
may exist only as vapors or only as liquids. In any event, fictitious
states must be employed, and properties in such states can be obtained
only by extrapolation. At low pressures, the extrapolation is short,
and when the simplest expression of the virial equation is used this

is automatic and is always achieved in a consistent fashion. It is

seldom possible to fulfill these conditions at high pressures, and
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the choice of the variables used in the definition of standard state
(namely some fixed composition and some specified pressure) becomes
arbitrary. It is strictly for convenience that certain conventions
have been adopted in the choice of a standard-state fugacity. These
conventions, din turn, result from two important considerations:

(i) the necessity for an unambiguous thermodynamic treatment of non-~
condensable components in liquid solutions, and (ii) the relation
between activity coefficients given by the Gibbs-Duhem equation.

A serious situation is encountered from the first of these
considerations, that is, when the solution temperature is above the
critical temperature of one of the constituents. One then must
postulate a liquid state for that constituent in a region where the
pure liquid cannot exist, no matter what the pressure is. Therefore,
the normalization of activity coefficients for such noncondensable
components must be different from that used for condensable (sub-
critical) components. The second consideration given above makes it necessary
to derive methods to take account of the effect of pressure and
composition on activity coefficients and to use adjusted activity
coefficients, which are independent of pressure.

On the basis of these two considerations, the key equation for
characterizatiqn of vapor-liquid equilibrium (equation 23) at high
pressures was obtained, by using fugacity coefficients (rather than
activity coefficients) only for the vapor phase, and activity co-
efficients and as-yet-unsettled standard states for the liquid phase.
As a consequence of restricting activity coefficients to liquids, the

variation of the partial molal free energy with pressure is small, but
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in general this is taken into account by an easily computed correction
term (Poynting correction). In the vicinity of the critical state,
however, and also for dissolved gases, the pressure influence is

large and not easily estimated.

For gases, the fugacity coefficient represents the deviation
from the perfect gas as well as the deviation of a mixture from the
perfect solution. As has been pointed out, the fugacity coefficient
is, by definition, dependent on the pressure and the vapor composition
(and of course on the temperature). Its values are practically always
derived from an equation of state.

Thus in high-pressure systems both phases, vapor and liquid,
exhibit large deviations from ideal behavior. Attention is next turned
to separate discussions of the individual functions, which describe

these non-idealities.

IITI B. The Representation of Vapor-Phase Fugacity Coefficients

III B. (I) FEquation of State.

If it cannot be assumed that the vapor is a perfect gaseous
mixture, the fugacity coefficients have to be derived from a suitable
equation of state. The very fact that more than a hundred equations
of state have been proposed suggests caution. It is necessary to
consider only those requirements, which are necessary practically using
molecular theory as a helpful guide.

An algebraic formulation appears to be indispensable.
Compressibility factors, of course, can never be better represented

by an equation with two individual parameters than by the usual
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generalized charts. Similarly, an equation with three parameters cannot
give better values of Z than the tables of Pitzer and his coworkers (69)
or of Riedel (70). The practical interest in an equation of state
however, does not lie in the compressibility factors but in the fugacity
coefficients. Here the algebraic equation has the advantage of retaining
its definiteness in the necessary steps of integration and differenti-
ation, which lead to loss of accuracy in numerical operations. Since
individual fugacity coefficients in mixtures are the real objective,

a definite combination rule for the parameters, independent of specific
data for the mixtures, is desirable.

An equation of state, or at least its main term, must imply an
equation of the third degree in Z. This conclusion can be drawn from
Wegscheider's discussion (71) of the equation of Wohl (72).

Good performance at high pressures is closely connected with
the approach of the experimentally well established limiting condition

for the reduced volume Vr

lim V. = 0.26 (24)
P:OO

For mixtures, Neusser's rarely quoted condition (73) of additivity
of the volumes at high pressure should be satisfied. The obvious
interpretation of this condition is the additivity of the proper
volume of the molecule. The condition is important, particularly
since the volume in general is far from being additive at moderate
pressures.

Approach of the perfect gas equation at low pressure and high
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temperature is also an obvious condition.

An excellent discussion of the relative merits of dozens of
equations has been recently published by Martin (74). The merits and
limitations of fourteen of the most common equations of state have
been thoroughly discussed by Shéh and Thodos (75), for the subcritical,
critical and hypercritical regions.

An equation proposed nearly 20 years ago by Redlich and Kwong
(76) satisfies the conditions outlined above. It is very similar to
van der Waals® equation but represents the compressibility factor of
gases much better. Except for the vicinity of the critical point, it
gives results fairly close to the data of the generalized charts.
However, since it contains only two individual parameters, one cannot
expect too much of it, in view of the well-known invalidity of the
theorem of corresponding states.

One would hesitate, of course, to compare a two-parameter
equation such as Redlich-Kwong's with the eight-parameter equation
of Benedict, Webb and Rubin (77) or with the nine-parameter Martin-
Hou (78) equation. It goes without saying that the latter equations
are much superior in the representation of data in a limited range.
Van der Waals and others who followed him, such as Clausius, Dietereci,
Berthelot, Wohl, as well as Redlich and Kwong, endeavored to find
equations covering the whole range of density from infinitely attenuated
gas to compressed liquid, but were willing to accept fairly large
deviations from the experimental results. It is interesting to note,
however, that Redlich in later papers with other collaborators (79,80)

focused attention on higher precision representation and increased the
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number of arbitrary constants in his equation from 2 to 44. Independent
investigations on pure substances and mixtures, by several workers
(81,82,83,84,85,86), during the last few years have led to the con-
clusion that the crude two-parameter Redlich-Kwong equation is not
inferior to the eight-parameter B-W-R equation, and it is generally
regarded as the best two-parameter equation now available (75). The
remarkable success of the tables of Pitzer (69) or Riedel (70) for
compressibility factors prompted Redlich et al. (80) to include Pitzer's
"acentric factor" as a third parameter, in addition to the critical
temperature and pressure, in their improved equation. Even further
development suggested by Redlich and coworkers (79) failed to yield

good results for mixtures. The failure of the equation to give con-
sistently good results for mixtures is probably due to the inflexible
combination rules for the composition dependenceof the equation-of-
state constants. Chueh and Prausnitz (87) proposed a modified mixing
rule for the constant a; this modification incorporated one characteristic
binary constant. A somewhat similar treatment, restricted to light
hydrocarbon-carbon dioxide mixtures, has been suggested by Joffe and
Zudkevitch (88). Other modifications of the Redlich-Kwong equation
have been reported by several authors (83,84,85,86).

As has been mentioned earlier only the virial equation has a
sound theoretical foundation for representing the properties of pure and
mixed gases. When truncated after the third term, the virial equation
is useful up to a density nearly corresponding to the critical density.
A method for estimating the third virial coefficient of mixtures has

been given by Prausnitz and coworkers (89,90,91). For application at
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higher densities, an empirical equation of state such as the Redlich-
Kwong equation (76) is more reliable. For vapor-phase fugacity co-
efficients the Redlich-Kwong equation is useful throughout the entire
range of density.

The Redlich-Kwong equation is

p--_ _ & (25)

v-b 70.5 v(v +b)

where
QO R2T 2.5
a= 12" "ci (26)
Pci
e 27)
ci

The dimensionless constants Q, and @ are, respectively, 0.4278 and.
0.0867 if the first and second isothermal derivatives of pressure, with
respect to volume, are set equal to zero at the critical point. In
vapor—~liquid equilibria, however, one is interested in the volumetric
behavior of saturated vapors over a relatively wide range of temper-—
ature, rather than in the critical region only. Therefore, g and Qp
should be evaluated for each pure component by fitting equation (25)
to the volumetric data of the saturated vapor. The temperature range
to be used is that from the normal boiling point to the critical
temperature. A list of Qg4 and @ for the saturated vapors of some
pure substances has been given by Chueh and Prausnitz (87).

In order to attain the real objective of an equation of state,

combination rules for the parameters have to be established. 1In



general, linear combination is used for the coefficients a and b
in equations (26) and (27) but, a combination of the attraction
coefficients 8; may also be provided by means of arbitrary inter-—
action coefficients aij, which, in general, is chosen by trial so
that available data for mixtures are best represented. Chueh and

Prausnitz (87) have proposed:

N
i=1
where
Q.. RT ..
bi ci
b, = —— (29)
L Pci
and
N N
a= 3y D vy (aig# faggagy) (30)
i=1 =1
where
2 2.5
QaiR Tci
aj; ¥ —m— (31)
Pei
2 2.5
B (Qai + Qaj) R Tcij
aij = (32)
ZPcij
ZaqisRT 5
Pcij N (33)
Vcij
L3 o W3 JM3 (38)
cij ci cj
_ _ Wi+ wy
zCij 0.291 - 0.08 (___§“~_)‘ (35)

41
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Teiy = S Teis Teyy (T Kyy) (36)

The binary constant kij represents the deviation from the geometric
mean for Tcij“ It is a constant characteristic of the i - j inter-
action; to a good approximation kij is independent of the temperature,
density, and composition. In general, kij must be obtained from some
experimental information aboﬁt the binary interaction. Good sources of
this information are provided by second virial cross coefficients (92)
or by saturated liquid volumes of binary systems (90). Best estimates
of kij have been reported for some binary systems by Chueh and Prausnitz
(87).

The mixing rule proposed by Chueh and Prausnitz (87) for 3y 5
differs from Redlich's original mixing rule in two respects: (1) intro-
duction of a binary constant kij’ and (2) combination of critical
volumes and compressibility factors to obtain aj 4 according to equation
(32) through (35).As a result of (2), the mixing rule proposed by
Chueh and Prausnitz does not reduce to Redlich's original rule even
when kij = 0, except when Vci/vcj is close to unity; in general Redlich's
original rule gives a value for aj j slightly smaller than that given by
Chueh and Prausnitz's proposed rule with kij = 0.

McGlashan and Potter (93) have used the Lorentz combination
(equation 34) for pseudo-critical volumes and the geometric mean rule
for pseudo-critical temperatures to obtain remarkable agreement with
their experimental interaction virial coefficients. It has long been

recognized that for mixtures of substances with widely different molecu-

lar sizes the pseudo-critical temperature predicted by the geometric
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mean is too large. Several modifications of this combination rule have
been proposed. Hudson and McCoubrey (94) have derived an equation which
includes first ionization potentials. Fender and Halsey (95) suggested
a harmonic mean combination. More recently Dantzler, Knobler and
Windsor (96) used these combination rules and obtained too weak an
interaction, whereas the geometric mean rule provided results which
showed too strong an interaction. Therefore, Chueh and Prausnitz'’s
correlation seems to be the best, since it takes account of the

deviation from the geometric mean rule.

III B, (II) Fugacity Coefficient

The fugacity of a component i in a gas mixture is related to
the total pressure P and its mole fraction Vi through the fugacity
coefficient ¢4 as shown in equatioﬁ (21).

The fugacity coefficient is a function of pressure, temperature,
and gas composition; it is related to the volumetric properties of the

gas mixture by either of the two exact relations (97,98):

P
3V RT |
RT In 45 = | = P K (37)
(@)
T [ap ) ]
RT 1n ¢; = l 33%& - XMl w-orriz (38)
Bn Vo
M T,V ng (541) !
v - —

where V is the total molal volume of the gas mixture, and Z is the

compressibility factor of the gas mixture at T and P. Since most
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equations of state are explicit in pressure, equation (38) is more
convenient to use.
For a mixture of ideal gases ¢; = 1 for all values of i.

For a gas mixture that follows Amagat's assumption vy = v ure 1
P

at the same T and P for the entire pressure range from zero to P),

equation (37) gives the Lewis fugacity rule (99) which says

¢, = ¢ (at same T and P) (39)

i pure 1

This simplifying assumption, however, may lead to large error,
especially for components present in small concentrations. The Lewis
fugacity rule becomes exact (at any pressure) only in the limit y; > L.

The fugacity coefficient of component i in a gas mixture can
be calculated from equations (37) and (38) if sufficient volumetric
data are available for the gas mixture. Since such data are not
usually available, especially for multicomponent systems, fugacity
coefficients are most often calculated by an extension of the theorem
of corresponding states or with an equation of state.

The formulation of the corresponding states theorem was done
by van der Waals (8) in 1873. This principle was extended by Pitzer
(100) in terms of molecular interactions. Longuet-Higging (101),
Scott (102), Brown (103), Prigogine et al. (104), and Wojtowicz et
al. (105) have applied the molecular corresponding states equations to
ideal fluid mixtures. An alternate corresponding states procedure has
recently been presented by Flory and others (106). A review of the
extensions of the theorem of corresponding states is provided by Stiel

(107). The method of calculating the fugacity coefficients based on
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corresponding states has been discussed by Joffe (108) and Leland et
al. (109,110).

It is often more accurate to calculate the fugacity coefficients
from an equation of state rather than by using the method based on the

corresponding states theorem.

TIT B. (III) TFugacity Coefficients from Revised Redlich-Kwong Equation.

To obtain numerical results, it is necessary to substitute a
particular equation of state into equation (38). By substituting
equation (25) and the mixing rﬁles9 (equations (28) through (36)),

into (38), the fugacity coefficient of component k in the mixture

becomes: N
b Zgg;xyiaik
In ¢ = 1n v " k _ i=1 1 Y + b
k v -~ b v — b RT3/2b v
ab . T
k v + b b Pv
-+ ——— 1n - i — In — (40)
RT3/2b2 v v + bi RT

The molal volume, v, is that of the gas mixture: it is obtained by
solving equation 25 (which is cubic in v) and taking the largest real
root for v.

The good agreement between experimental and calculated fugacity
coefficients at high pressures, as obtained by Chueh and Prausnitz (87),
suggests that the revised Redlich-Kwong equation can be successfully
applied to mixtures containing nonpolar or slightly polar gases.

Sometimes, while calculating the fugacity coefficient of a polar
molecule from correlations based on the extended corresponding states

theory, the value of the acentric factor (111) of the polar component
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is takem as that of its homomorph (112). The acentric factor is defined

as w = - log P - 1.000, that is the value of P_ at T. = 0.7
R g = 0.7 RoR

is used to define this term. A homomorph of a polar molecule is a
nonpolar molecule having approximately the same size and shape as those

of the polar molecule. For example, the homomorph of acetone is isobutane.
Since the corresponding states theory has not been used in this work,

no use of such a concept has been made in the calculations of fugacity

coefficients of mixtures.

TITI C. Liquid-Phase Activity Coefficients.

IIT C. (I) Reference States.

The activity coefficients of the constituents of a liquid
solution are functions of composition, temperature, and pressure of the
liquid solution and also depend upon the reference state chosen. The
choice of reference state determines the normalization of the activity
coefficient; when the pressure, temperature and composition which
determine f% in equation (22) are the same as those of the reference
state, y; must attain a fixed value. When the normalization of
activity coefficients is spoken ofja specification of the state wherein
the activity coefficient is unity is meant. For condensable components
(subcritical), i.e., for components whose critical temperatures are
above the temperature of the solution, it is customary to norﬁalize the
activity coefficient so that

Yy > 1 as X, -+ 1 (41)

For such components, then, the fugacity becomes equal to the

mole fraction times the standard-state fugacity as the composition of
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the solution approaches that of the pure liquid. Thus, in this case

the standard-state fugacity for component i is the fugacity of pure
liquid i. TIn many common cases all the components in a liquid mixture
are subcritical and equation (41) is therefore used for all components:
since all components are, in this case, treated alike, the normalization
of activity coefficients is said to follow the symmetric convention.

If, however, the liquid solution contains a noncondensable
(supercritical) component, the normalization shown in equation (41)
cannot be applied to that component since a pure, supercritical liquid
is a physical impossibility. Of course, it is possible to introduce the
concept of a pure, hypothetical supercritical liquid and to evaluate its
properties by extrapolation and, provided that the componenet in
question is not excessively above its critical temperature, this
concept is quite useful. These hypothetical liquids are referred to
as condensable components whenever they follow the comvention of
equation (41). However, for a highly supercritical component the
concept of a hypothetical liquid is of little use since the extra-
polation of pure liquid properties in this case is so excessive as to
lose all its physical significance.

For a noncondensable component i (the temperature T of the
solution is near or above the critical temperature T.i), therefore, it
is convenient to use a normalization different from that given by

equation (41): in its place equation (42) is used
Y. - 1 as =x, - 0 (42)

The purpose of the asterisk is to call attention to the difference in

normalization and is a reminder that the unsymmetric convention has been
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used for normalization of activity coefficients.

According to equation (42) the fugacity of component i
becomes equal to the mole fraction times the standard-state fugacity
of 1 when component i is infinitely dilute. The concentration region
where the activity coefficient of a dilute component is (essentially)
equal to unity is called the ideal dilute solution or Henry's law
region. The characteristic constant for the ideal dilute solution is

Henry's constant H which is defined by

;
H = limit —
x5+ 0 X, (43)

The use of Henry's constant for a standard-state fugacity means
that the standard-state fugacity for a noncondensable component depends
not only on the temperature but also on the nature of the solvent. It
is this feature of the unsymmetric convention, equations (42) and (43),
which is its greatest disadvantage and it is as a result of this dis—
advantage that special care must be exercised in the use of the un-
symmetric convention for multicomponent solutions. Since H depends on
the solvent, the most convenient procedure in the case of a mixed
solvent is to define the standard-state fugacity of a noncondensable
component as Henry's constant for that component in a pure (reference)

solvent which is a constituent of the solvent mixture.

IIT €. (II) Gibbs-Duhem Equation

The activity coefficients of all the components in a multi-
component solution are not independent but are related by the Gibbs-

Duhem equation which at constant temperature and pressure has the form



49

% x; d 1n vy = 0 (44)

i
Now, for a binary two-phase system the phase rule states that at
constant temperature it is impossible to vary the composition without
also varying the pressure. In thermodynamic analysis of low-pressure
vapor-liquid equilibria the small effect of pressure on the activity
coefficients is often neglected entirely or it is taken into account
approximately. At high pressures, the effect of pressure on the activity
coefficient is large and thus, if the Gibbs-Duhem equation at constant
temperature and pressure is to be used, all isothermal activity co-
efficients must be corrected to the same pressure. If the standard
state is defined at a fixed pressure, this correction is given by the

equation

= o= (45)

where 5%’ is the partial molal volume of component i in the liquid
phase at composition x and at temperature T.

In order to satisfy equation (44) it is necessary to adjust the
activity coefficient through equation (45) in such a way that it is a
function only of composition, for if this is done two advantages are
obtained. Firstly, the Gibbs-Duhem equation and its various integrated
solutions (the van Laar equation or the Margules equation) may be applied
to these pressure-independent activity coefficients, thus enabling one
to subject them to a test for thermodynamic consistency and to express

them analytically by simple mathematical functions. Secondly, by
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separating from each other the effects of composition and pressure

on the activity coefficient, interpretation and correlation of the
equilibrium data are very much facilitated. Therefore, it is useful
to define the adjusted (pressure-independent) activity coefficients as

given in the next section.

IIT C. (III) Effect of Composition

For the heavy (condensable or subcritical) component the

adjusted activity coefficient is
T
£ NG
(R 1 V1

¥
X

1 "1 pure
?

In equation (46) all quantities are evaluated at the temperature
T of the solution which is well below the critical temperature Tcl°

The fugacity fl is for component 1 at the composition %, and at the

1
(PT)

1 pure is the fugacity of pure liquid component

total pressure P, but f
1 at the (arbitrary) reference pressure PY and ;f’ is the partial molal
volume of component 1 at the composition X The adjusted activity
coefficient yl(Pr) is independent of the total pressure of the solution
for any isotherm; it depends only on the composition and always refers
to the reference pressure PY, which is most conveniently set equal to
zero (see subsection IIT C. (IV)).

From equation (46) it follows that regardless of the choice of

pt
T
yl(P ) - 1 as x, =+ 1 (47)

For the light (non-condensable or supercritical) component the

definition of the adjusted, pressure-independent, activity coefficient is
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pr =L
% (PY) £ exp Z dp (48)
Yz = T oD RT
x.H P
272
(1)

In equation (48) all quantities are evaluated at the temperature

T of the solution which is near or above the critical temperature Tc2°

The fugacity f2 is for component 2 at the composition X, and at the

total pressure P while H is the standard state fugacity (Henry's

2(1)
law constant) evaluated at the reference pressure p".  The partial molal

volume of component 2 is evaluated at the composition x The asterisk

5
indicates that the activity coefficient for component 2, unlike that for
component 1, does not approach unity as the mole fraction of component 2

. (PY
approaches one. The adjusted activity coefficient Y; &)

is also
independent of the total pressure; for any isotherm it depends only on

. T
the composition and always refers to the reference pressure P .

From equation (48) it again follows that

* (Pr)
v, - 1 as X, > 1 (xz > 0) (49)

regardless of the choice of pt.

The normalization relations given by equations (47) and (49)
are desirable boundary conditions for integration of the Gibbs-Duhem
equation. Tor a binary system, the isothermal, isobaric Gibbs-Duhem

equation}following equation (44), is given by

.. T
+ xyd 1ny£(P ) - 9 (50)

(PT)
de lnyl

The composition dependence of the activity coefficients defined by

equations (46) and (48) can be represented by an integrated form of
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equation (50) with the boundary conditions given by equations (47)
and (48). These normalization relations (equations 47 and 49) suggest
that both activity coefficients approach unity as the liquid solution
becomes infinitely dilute with respect to the light component. Through
the exponential factors in equations (46) and (48) (the Poynting correction),
the effect of pressure is separated from the effect of composition. Sub-
section ITI €. (VI) deals with the effect of pressure on the activity
coefficients and a technique for calculating partial molal volumes
and Gé‘g required in equations (46) and (48), is presented therein.
In equation (48), any ambiguity (see sub-section III C. () -
Reference States) in the standard state fugacity of the supercritical

gas has been avoided by the use of the experimentally accessible Henry's

constant T

S >

¥

g, B ooy @) 2 ap (51)

2(1) 2(1) RT

Py
(P?)
where H2 I is evaluated by extrapolating to X, = 0 a plot of
(1)

1n f2/x2 vs. X In equation (51), Pi is the saturation (vapor) pressure

o
of solvent 1 and ;; is the liquid partial molal volume of component 2

infinitely dilute in solvent 1.

ITT C. (IV} Choice of Reference Pressure

. r .
In equations (46) and (48), the reference pressure P~ is
completely arbitrary: this arbitrariness, however, in no way influences
the fact that the adjusted activity coefficients defined above must

satisfy equation (50).
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The partial molal volumes in the integrals of equations (46)
and (48) are for the liquid phase and thus, for physically meaningful
results, the reference pressure P’ should be such that the liquid phase
can exist over the entire pressure range P - Pr; this means that P'
must be equal to or larger than the highest observed pressure along
the isotherm under consideration,

For practical applications in vapor-liquid equilibria, however,
this requirement is not very useful:; in performing typical calculations
it is easiest to choose as the reference pressure the‘system pressure
when X, = 0, i.e., the saturation (vapor) pressure Pi of the heavier
component. This reference pressure is convenient because it is the
one at which the Henry's law constant is evaluated:; it is a pressure
which depends only on the properties of the solvent and not on those
of the solute. Unfortunately, however, Pi is the minimum rather than
the maximum pressure along a given isotherm and thus the integration
path from P to Pi is in a hypothetical region, since the liquid phase
of a given composition cannot exist at any pressure less than the total
pressure of the two-phase system. For computation purposes in engineering
work this is not a serious deficiency since the partial molal volume
is almost never known as a function of pressure and thus, as a matter
of necessity, the partial molal volumes in the integrals must be con-—
sidered as functions of composition and temperature only.

If, however, comparisons are to be made between observed activity
coefficients and those predicted by theories of solution, hypothetical
regions must be avoided. For convenience, therefore, P has been

chosen as zero pressure in this work. Thus, the activity coefficients
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can be expressed by simple analytical functions which are solutions
of the Gibbs-Duhem differential equation (equation 50) subject to the
(arbitrary) boundary conditions which determine the normalizations of

the various activity coefficients.

IIT C. (V) Analytical Representation of Activity Coefficients

A general technique for obtaining analytical expressions for
activity coefficients of liquid mixtures has been given by Wohl (113):
the main idea of this technique is to define an excess free energy and
then to expand this excess free energy in a series of algebraic functions
of the mole fractions. The same technique can be used for solutions of
gases in liquids but the physical meaning of the excess free energy is
now quite different since the standard state for the light component
refers to the infinitely dilute solution rather than to the pure liquid
as in Wohl's case. As a result, the nature of the algebraic expansion
for gas-liquid solutions is also different from that for liquid-liquid

solutions.

ITIT C. (V) (a) Excess Gibbs Energy

The variation of activity coefficients with composition is
E
best expressed through the auxiliary function G, the molar excess
Gibbs energy, defined by

GE*

r 5 Y
T ey, L5 (PT) (52)

+ leny2

In view of the unsymmetric normalization, GE" vanishes at infinite
dilution with respect to component 2 but not with respect to component

1; that is
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but } (53

As defined here, the ideal solution (GE* = 0) is one where, at
constant temperature and pressure, the fugacity of the light component
is given by Henry's law (with suitable pressure correction) and that of
the heavy component by Rauolt's law. In molecular terms this means that
G * is zefo whenever the concentration of component 2 in the liquid phase
is sufficiently small to prevent molecules of component 2 from inter-
acting with one another.

Following Wohl (113), the excess Gibbs energy can be represented

by summing interactions of molecules in a power series:

BEXx
G 2 .
= —q ?“ - higher terms (54)
RT (qul + x2q2) 22(1) 2
where ® is the effective volume fraction
)

o = ————— (55)

2 X191 T %9,

is

where a4 is the effective size of the molecule i and where a22< ) i
1

the self-interaction constant of molecules 2 in the environment of
molecules 1. In equation (54) only two-body interactions are considered:
higher terms are neglected to keep the number of adjustable parameters
to a minimum .,

The activity coefficients can be found from equation (54) by

using the familiar relations
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EX

NG r
1 T _ @)
AT o = lnYl (56)
1 T,P,n,
E* T
w (P
RT

bn, /T,P,n,

where nq is the number of moles of component 1 and 0 is the total

number of moles.

IIT C. (V) (b) A Dilated Van Laar Model for Binary Liquid Mixtures

In view of the definition of ideality given earlier, deviations
from ideal behavior are due not to interactions between molecules of
component 1 and molecules of component 2 with each other: the ideal
solution is the infinitely dilute mixture where molecules of component
2 are completely surrounded by molecules of component 1. As the mole
fraction of the solute increases, molecules of solute begin to interact
with each other and it is this interaction which is primarily responsible
for non-ideality. Since interaction coefficients higher than those
between two molecules are set equal to zero in equation (54), sub-
stitution of equations (55) and (56) yields for component 1 the

familiar van Laar equation (for unsymmetric normalization)

r
lnyl(P ) _ A _ (58)
L} + (A/B)(Xl/XZZJ 2
with
A =
%221y 11

For component 2, the activity coefficient takes the considerably

less familiar form
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X p¥
lny2<P ) - 3 L “1 (59)

[T+ ®B/8) (xp/x1) 7]

(If it is assumed that dq = 4y then A = B and equations (58) and (59)
become the two-suffix Margules equatioms).

Prausnitz (114) has shown that equations (58) and (59), con-
taining two adjustable parameters, are satisfactory for fitting adjusted
activity coefficients for the butane-carbon dioxide system but, they
have been shown to be unsatisfactory for describing the properties of
some systems which are at a temperature much above the critical tempera-
ture of the light component or near the critical temperature of the
heavy component (115). In addition, Prausnitz et al. found that the
three-suffix Margules equations were also unsatisfactory (115).

The probable reason for the failure of the classical van
Laar treatment is due to van Laar's assumption that a4 and q, are
constants independent of composition, which is another way of saying
that the structure of the solution does not change much with mole
fraction. The q's are parameters which reflect the cross sections, or
sizes, or spheres of influence, of the molecules: ar conditions remote
from critical, where the liquid molal volumes are close to a linear
function of the mole fraction, it is reasonable to assume that the
q's are composition independent, but for a liquid mixture of a non-
condensable component 2 with a subcritical liquid 1, the molal volume
of the mixture is a highly nonlinear function of the mole fraction,
especially in the vicinity of the critical composition. The liquid
solution dilates as X rises, and van Laar's model must be modified

to take this effect into account.
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For practical reasons (since experimental data are usually not
plentiful), it is desirable to derive equations for the adjusted
(constant~pressure) activity coefficients which contain no more than
two parameters. Because of this limitation, it is also desirable to
assume that whereas a and q, depend on composition, their ratio does
not. Since the van Laar treatment is a two-body (quadratic) theory,
it is assumed that qq and q, are given by a quadratic function of the

effective volume {raction:

’ 2
q, = Vv 1+ n o] (60)
1 cl 2(1) 2

| 2]
94y = Vo 1+ Ny \@2 (61)
{1’ ]

From equations (60) and (61), it follows that the volume fraction @i

is given by

i ei (62)

Prausnitz et al. (115) have arbitrarily used the pure-component
critical volumes in equations (60) and (61) as the measure of the
molecular cross sections at infinite dilution, when &, = 0. Some
other constant (for example, van der Waal's b or Lennard-Jones' o3)
could just as easily be used. The dilation constant nz(l) is a
measure of how effectively the light component dilates (swells) the
liquid solution.

When equations (60) and (61) are substituted into rhe truncated

equation (54), the adjusted (pressure-independent) activity coefficients

are
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where

A = o v
22
(L

cl (65)

o
L

v

(1)

B = 3n (66)

2 22 cl

Equations (63) and (64) are the desired two-parameter equations. These
equations provide accurate representation of the constant-pressura
activity coefficients of nonpolar binary mixtures from the dilute

region up to the critical composition.

IIT C. (V) (c) Mixtures of Condensable Components

At temperatures sufficiently.lower than the critical temperature
of the light component (component 2), the dilation constant n obtained
from data reduction becomes so small that it can be effectively equated
to zero. Under these conditions, the constant-pressure activity co-
efficients of both components can be correlated with only one parameter,
a. It has been empirically found that this occurs for TRZ less than
0.93. Therefore, components with a reduced temperature smaller than
0.93 are treated as heavy components (solvent), and those with TR larger
than 0.93 are treated as light components (solute). Systems for which
both TRl and TRZ, are smaller than 0.93 are correlated with n = 0 and

only one parameter, a. Systems for which the critical temperatures of

‘the two components are very similar are also analyzed with only one
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parameter, o, even though T

p, 1S larger than 0.93; the terms "heavy'
=2

and "1ight" component lose their conventional meaning for such systems.

In fact, it sometimes happens that the component with the higher critical
temperature (“heavy’) may actually have a higher vapor pressure and
critical pressure than the component with the lower critical temperature
("iight'').

For those systems where both components can exist in the pure
liquid state, it is not necessary to use the unsymmetric convention for
normalization of activity coefficients. Instead, such a system can be
analyzed with a one-parameter, symmetric-convention expression for the

excess Gibbs energy:

~E
(%2
= g, .0 (67)
127172
RT(xval + XZVC2)
From equations (56) and (57) it follows that
(P%) 2
In v, = Vel 9g, 0 (68)
er 2
1n Yo = Vo O, @l (69)
r T
where yl(P ) is given by equation (46) and YZ(P )by
PT -1,
(PT) £2 2
Yo = exp — 4P (70)
@ RT
pure 2 P

It has been shown (116) that for the case when both components are
subcritical and the excess Gibbs energy is represented by equation (67),

or by equation (54) with qq= - i,e., n =0 ——— there

Verr 92 T Va2
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exist rigorous relationships between the constants in the two con-
ventions, viz.:

Cyy = @ (71)
(1)

(PT) ()

= +
2(1) fpureZ T V2%

In H (72)

III C. (VI) Effect of Pressure

When discussing the Gibbs-Duhem equation it was indicated that
a useful thermodynamic analysis of high~pressure vapor-liquid equili-
bria requires information on the effect of pressure on liquid-phase
fugacities; this information is given by partial molal volumes in the
liquid mixture.

At low or moderate pressures, liquid-phase activity coefficients
are only weakly dependent on pressure and, as a result, it has been
customary to assume that, for all practical purposes, activity coeffi-
cients depend only on temperature and composition. In many cases this
is a good assumption but for phase equilibria at high pressures,
especially for those near critical conditions, it can lead to serious
error.

When the standard-state fugacity is defined at a constant
pressure, for any component i, the pressure dependence of the activity
coefficient \f is given by equation(45). At‘high pressures in the
critical region, Gi is usually a marked function of composition,
especially for heavy components where ;;‘frequently changes sign as
well as magnitude. For convenience, the superscript L on the activity

coefficient has been dropped in subsequent discussion.
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Experimental data for partial molal volumes are rare for
binary systems and for multicomponent systems there are essentially
none. Since thermodynamic analysis or prediction of multi-component
high-pressure phase eqﬁilibria requires partial molal volumes, a
reliable method for calculating partial molal volumes from a minimum

of experimental information is required.

ITT C. (VI) (a) Partial Molal Volume from an Equation of State.

The partial molal volume of component k in a mixture of N components

is defined by

;k - (‘g%") (73)
k P,T,n, (i # k)

The partial molal volume can be evaluated from a suitable
equation of state for the liquid mixture. Since most equations of
state are explicit in pressure rather than in volume, it is convenient

to rewyrite equation (73):
Y= VR T 0niE R = (.., T,v) (74)

l
( )I . ll 1
3 l(a ')

With an equation of state, equation(74) gives Gk as a function of the

composition, temperature, and molal volume v of the liquid mixture.
Pressure does not appear explicitiy in equation (74) but is implicit
in the volume, which depends on the pressure.

It is required to know partial molal volumes at saturation
for practical applications to vapor-liquid equilibria: therefore,

the saturated molal volume of the liquid mixture in equation (74) is
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needed. The saturated molal volume of a liquid mixture can be
calculated by extending to mixtures the corresponding-states
correlation of Lyckman et al. (117) who slightly revised Pitzer's
tables (111) for the saturated liquid volume of pure substances, for
the reduced temperature region 0.56 - 1.00. Before discussing equation
(74) in more detail, the method for calculating the molal volume of a

saturated liquid mixture is discussed here.

IIT C. (VI) (b) Saturated Molal Volume of Liquid Mixtures up to

a Reduced Temperature of 0.93,

Given only the temperature and composition, it is possible,
in principle, to calculate the saturated volume of a liquid mixture
from an  equation of state. Such a calculation, however, requires an
equation of state capable of describing accurately both vapor and
liquid phases of multicomponent systems. For most mixtures, no such
equation of state is known. 1In fact, the entire problem of phase
equilibria at any pressure could be completely solved if such an
equation of state were available. A more realistic and fruitful
approach is provided by a corresponding-states correlation specifically,
developed for saturated liquids by Lyckman et al. (117) from Pitzer's
tables (111). 1In this correlation, the reduced saturated volume is

given by 0) L . 2 (@
Vp = Vp + Wy + N (75)

(O), v (l), and v (2) are

where w is the acentric factor (111) and v R R

R

functions of reduced temperature which have been tabulated for reduced

temperatures from 0.560 to 0.990 (117). To facilitate calculations



with an electronic computer Chueh and Prausnitz (90) have fitted the

tabulated values with the following relation:

v (1) a(j) + b(j)TR + c(j)TR2 + d(j)TR3 + e(j)/TR + f<j>ln(l~TR)
(76)
(3 3) (o) (1)

v and v (2)'

R > Vg R : these

where a to £ are coefficients for v
coefficients are given in their publication (90).

The reducing parameters for the reduced volume and the reduced
temperature are the critical volume and the critical temperature,
respectively. For pure components, equations (75) and (76) may be
used for reduced temperatures from O.S60vto 0.995. For reduced
temperatures above 0.995, the reduced volume may be obtained by first
calculating the reduced volumes at TR of 0.990 and 0.995, and then
interpolating to T

= 1.0; by definition v, = 1.0 at T = 1.0.

R R R

Equations (75) and (76) were obtained from pure component data.
For applications to mixtures, mixing rules for the pseudocritical
volume and temperature are necessary. Such rules have been proposed
by several authors (90,92,109,118,119, 120). Because of the small
separation between molecules, molecular size is a more important factor
in the liquid phase than in the vapor phase. Therefore, use of volume
fractions (equation 62) rather than mole fractions (or combinations of
mole fractions and volume fractions) is desirable for pseudocritical
rules. For pseudoreduced temperatures up to 0.93 the following rules
proposed by Chueh et al. (90) seem better, in so far as the volume
fraction has been used rather than mole fractions which were used by

other authors:
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VcM = E X,V (77)

1
oM 21; ? 595 1 (78)

“u T 2 9194 (79)

i

H
Il

where @i and Tcij are given by equations (62) and (36) respectively.

The constant kij has an absolute value much less than unity:
it represents the deviation from the geometric-mean rule for the
characteristic temperature of the i - j pair. To a good approximation,
kij is a constant independent of temperature, composition and density.

The binary constant kij must be evaluated from some binary data (92,121),
which give information on the nature of i - j interactions. Prauznitz

et al. listed some values of kij obtained from liquid phase measure-
ments (90) and from second virial coefficients (92), which are in good
agreement with those reported by Pitzer (121) from compressibility factors
near the critical region.

The saturated liquid volume of a multicomponent mixture may be
calculated with equations (75) and (76) and equations (77) through (79).
Equations (77) and (78) are good pseudocritical rules for predictions
up to TRSlO.93. For larger TR (critical region) a modification of the
pseudocritical rules is required in order that they may converge to the
true critical constants of the mixture at the critical point. To this
end, correlations for true critical temperatures and volumes of mixtures

as well as an equation-of-state method for calculating the true critical

pressures of mixtures, have been developed (89,122) as indicated later.
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With a reliable method for calculating the volumes of saturated
liquid mixtures, partial molal volumes can now be calculated with

equation (74) which requires an equation of state for liquid mixtures.

ITIT C. (VI) (c¢) Equation of State for Liquid Mixtures

For nonpolar liquids, an equation of the van der Waals type
provides a reasonable description of volumetric properties. Since the
Redlich~Kwong equation represents a useful modification of the van der
Waals equation, this can be used for liquid mixtures with certain
alterations. The Redlich-Kwong equation of state is given by equation
(25), and, for any pure fluid, the two constants a and b can be related
to the critical properties of that fluid by equations (26) and (27). As
noted in Section III B. (I), if the conditions at the critical point are
imposed, the dimensionless constants Qa and Qb become 0.4278 and 0.0867
respectively for all fluids. Adoption of these values is equivalent to
fitting the equation of state to derivatives in the critical region
which, although the most sensitive, does not provide the best fit over
a wide range of conditions. This is particularly true when the equation
is applied to the liquid phase. If the universal values for Qa and Qb
are accepted it is, in effect, equivalent to subscribing to a two-
parameter theorem of corresponding states. Pitzer and others. (69,70,
123,124), however, have shown that the theorem of corresponding states
requires a third parameter, in order to be applicable to a wide class

of substances. Therefore, to evaluate the best Qa and Q. for each pure

b

component, the Redlich-Kwong equation is fitted to the P-V-T data of

the saturated liquid. Fortunately, such data are readily available:
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results are given by Chueh et al. (90) for some common liquids. They
differ slightly from the universal values and show a trend with respect
to an acentric factor.

For application of equation (25) to mixtures, the same mixing
rules as given by equations (28) through (36) are used, except that
the cube-root average for vcij’ equation (34), is replaced by the
arithmetic mean of Vs and ch; this is done to weight the larger

molecule slightly more heavily in the liquid phase.

IIT C. (VI) (d) Partial Molal Volumes

The partial molal volume can be obtained from equation (25)
and the mixing rules, [%quations (27) and (292] , after performing the
partial differentiation indicated in equation (74):

ab

N k
R b\ 2Exay) -
1+ - i v
v b v—b L
- v({v + b) T?
v, = (80)
RT a 2v + b
e S o
v -5 7% | vZ(v + b)?

Using v, the saturated liquid molal volume of the mixture, calculated
from a corresponding states correlation, the partial molal volume of
each component in a multicomponent liquid mixture can readily be
calculated from equation (80).

With partial molal volumes, the effect of pressure on liquid-
phase activity coefficients can be taken into account. By separating
the effect of pressure from that of composition, experimental liquid-

phase activity coefficients can be subjected to rigorous thermodynamic
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analysis. Such analysis permits meaningful intérpretation and correla-
tion of binary, high-pressure, vapor-liquid equilibrium data.

The simple approximation of using partial molal volumes at
infinite dilution usually leads to large error near the critical
region. As noted before, for mixtures, the pseudocritical rules must

be modified in the critical region (TR > 0.93).

ITI C. (VI) (e) Critical Region.

In applying previously mentioned pseudocritical rules to the
critical region, it has often been found necessary to introduce an
empirical exponent which depends on the proximity to critical con-
ditions (92,109). Chueh and Prausnitz (89) have used a general
proximity function which corrects the pseudocritical rules of equations
(77) and (78) in the critical region.

By definition, TR = 1.0 and Ve = 1.0 at the critical point when
the true critical constants of the mixture are used as the reducing
parameters. Therefore, if the true critical constants of a mixture can
be calculated, the mixing rules, equations (77) and (78), can be

modified so that they will always converge to T. = 1.0 and v = 1.0 at

R

the critical point. In the following, primes have been used to indicate

corrected pseudocritical constants. Chueh wrote

V4
TCM = TcM + (TCT - TCM) f (TR) (81)
and
v/=v + (v - v _ ) £ (T)) (82)
cM cM cT cM R

where TCT and Voo referred to the true critical temperature and true

critical volume of the mixture, respectively. The second terms on the
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right-hand sides of equations (81) and (82) correspond to the
corrections added to the simple mixing rules, equations (77) and (78).
The function £(T_,) represents the proximity of the system to its

critical point; it must satisfy the two boundary conditions

f(TR) > 0 for TR < 0.93 (83)

£(T,) = 1 at T, =1.0 (84)

The first boundary condition ensures that equations (81) and (82)
reduce to the simple mixing rules, equations (77) and (78), for TR<‘O'93°

The second boundary condition ensures that they converge to Té& = TcT

and vé& = Vor at the critical point. Chueh et al. then suggested the

following empirical function which satisfied the above boundary conditions:

_ _ 2, 1.74127
£(T,) = exp [:(TR - 1) (2901.01 - 5738.92T, + 2849.85T; + l.Ol—TR) (85)

Equation (85) was found to be sufficiently general for all systems

investigated by them. The reducing parameter for TR in equation (85)

/

rather than the true
cM

is the corrected pseudocritical temperature T
_ critical temperature which is adequate at the critical point only. As

7
a result Tc

y @ppears on both sides of equation (8l) and iteration is

Ve
required to solve for Tc This is best done by rewriting equation (81):

M

(/7 ) [Trim

TR - (T/TCT) )

1 f(TR) =0 (86)

Equation (86) has only one unique solution for T, < 1.0 which can readily

R

be found by a numerical technique (for example, Reguli-falsi iteration
with variable pivoting points). The method usually converges in a

few iterations. From equation (82), v can then be obtained by direct

7
cM
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substitution.

Equations (81) and {82) may be considered as more general
pseudocritical rules apﬁlicable over the whole temperature range up
to the critical point. With the corrected pseudocritical constants,
the saturated molal volumes of liquid mixtures can be calculated from
equations (75) and (76) in the manner discussed before.

The true critical temperature and volume of mixtures, needed
for equations (81) and (82), can be calculated from a.correlation
discussed in detail by Chueh et al. (122). Several other.authors
(82,125 to 136) have reported correlations of the critical temperature
or critical pressure of mixtures.but these, by and large, have been
confined to a particular chemical class of substances, viz. the
paraffins. Very little work has been reported on the correlation of
critical volumes of mixtures (134). Chueh et al. (122) concentrated
their attention on normal fluids (as defined by Pitzer (111)); that is,
on molecules which have zero (or small) dipole moments, no tendency to
associate by hydrogen bonding or similar chemical forces, and which have
sufficiently large mass to permit neglect of quantum corrections.

Rowlinson (24) has shown that for a binary mixture of components
1 and 2, the critical temperature of the mixture is, to a good approxi-
mation, a simple quadratic function of the mole fraction, provided
components 1 and 2 consist of simple, spherically symmetric molecules

of nearly the same size. Rowlinson writes

T, =x.T + X2Tc2 + 2xlx2AT12 (87)

where AT is a known function of TC’ v

12 s Tc2’ and Voo and a parameter

cl
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which depends on the two exponents used in the potential function for
describing the intermolecular forces. For mixtures differing appreci-
ably in molecular size, Rowlinson's treatment is not useful, and for
such mixtures, the thermodynamic properties are quadratic functions
of the mole fraction only at moderate densities (second virial coe-
fficients); at liquid-like densities, it has been common practice to
express the thermodynamic properties of such mixtures in terms of
volume fractions. The critical density is intermediate between that
of liquids and that where the second virial coefficient gives a
sufficiently good approximation. Therefore, the true critical
constants can be related to the composition by expressions using the

surface fraction 6 defined by
2/3

*iVed
T Ve (88)
:E: i ci

For a binary mixture, Chueh et al. (122) write

T = 0,T + 6,T + 26,6 (89)

eT 1 cl 2%¢c2 172 T12

et = 1V Vep T 20185V, (90)

<
I
@
<
+
@
<

The correlating parameters Tio and vq, are measures of the (small)
deviations of the mixture critical constants as given by a linear
dependence on the 0 fraction; they are characteristic of the 1-2 inter-
action. Extensive compilations of these parameters for some systems
are given by Chueh et al. (122) in their publication. The parameters
are given in the reduced form as determined from experimental data of

these systems.
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In the critical region the calculations are strongly dependent
on the accuracy of the calculated true critical temperature. Chueh et
al. (90) quote an error of more than 5% in the calculated volume caused
by an error of 0.5% in the calculated true critical temperature. This
is obvious, since the reduced volume is a very sensitive function of
reduced temperature-in the critical region; for a simple fluid (w = 0),
the reduced volume at T, = 0.99 is 0.7327, whereas at TR = 1.00,

R

vp = 1.0 by definition. Thus, near the critical point, a 1% change in
reduced temperature causes a change in reduced volume of about 30%.
This extreme sensitivity of volumetric properties to small changes in
temperature or composition is inherent in the nature of the critical
state and .cannot easily be eliminated, either by experiment or by
calculation.

Having correlated critical temperatures and critical volumes
with quadratic functions of the surface fraction, one is tempted to try
a similar correlation for the critical pressure. Attempts at such a
correlation have not been fruitful. Several investigators (135) have
noted that the dependence of the critical pressure on compositon is much
more strongly nonlinear than that of the critical temperature and the
critical volume; in many systems a plot of critical pressure vs. mole
fraction shows a sharp maximum and a point of inflection. The more
complicated behavior of the critical pressure follows from its non-—
fundamental nature; subject to well-defined assumptions, both critical
temperatures and critical volumes can be related directly to the inter-
molecular potential, but the critical pressure can be related to the

intermolecular potential only indirectly through the critical temperature

and critical volume.
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To express the critical pressure as a function of composition,
the correlations for critical temperature and critical volume can be

used coupled with an equation of state, e.g., the Redlich-Kwong

equation (equation 25). Thus, the experimental results can be com-

pared with such correlations.
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CHAPTER 1I.
NATURE OF THE PROBLEM AND REVIEW OF THE LITERATURE

Information on the temperature, pressure and volume at the
critical point is required for the use of a number of important
approximation methods for predicting pressure-volume-temperature
relations for liquids and gases, heats of vaporization and other
physical and thermodynamic properties. Analytical equations of state,
with constants related to the composition and pure-component critical
properties are used for estimating the P-V-T properties of mixtures.
Experimental P-V-T data for gas mixtures are not common. To predict
the properties of mixtures the critical constants of pure components
are therefore required.

At the present time, no general methods are available which
allow more than an approximatg estimation of the density of a pure
liquid under critical conditions. Values of the liquid density are
available at room temperature for almost all known compounds. Although
the corresponding state methods allow extrapolation with temperature
and pressure when at least one liquid density datum point is available,
it is desirable to measure the density directly.

The determination of the vapor-pressure of pure substances is
also essential for many important practical and theoretical applications.
Because only fragmentary or inconsistent experimental data are available
for most substances over the complete range up to the critical region,
this property is generally calculated from general relationships such

as generalized charts. Therefore, investigations should continue to
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obtain very precise physical property data, experimentally.

Much investigation in the field of thermodymnamics of liquid
solutions has been undertaken in connection with vapor-liquid equili-
brium phenomena. The experimental data, specifically the measured
relationship between liquid and vapor compositions, and temperature
in an isobaric system or pressure in an isothermal system, as well
as vapor pressures of the pure substances, are tested for thermodynamic
consistency.by means of the Gibbs-Duhem relationship. Such investigations
are referred to as correlations.

It is often desirable to predict the vapor-liquid equilibria
from a limited amount of experimental data. The more modest attempts
have been aimed at predicting the most essential data, vapor composition
as a function of liquid composition, from other more easily obtained
experimental data. An example 1s the calculation of these data from
experimental determinations of vapor pressures of pure components, and
the boiling temperatures of mixtures at constant pressure.

The more ambitious attempts at prediction involve calculation
of complete equilibria from the properties of the pure substances and
a measure, independent of experimental vapor-liquid equilibrium deter-
minations, of their behavior in mixtures. The simple example of such
a method is a common Raoult's law prediction in which the vapor
pressures are used and it is assumed that the behavior upon mixing is
ideal. Where this assumption cannot‘be made, the prediction, essentially
a matter of determining the liquid nonidealities, becomes much more
difficult.

Several methods are presented in the literature for the
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prediction of vapor-liquid equilibrium constants of mixtures from
thermodynamic relationships. For many years, several different
approaches, such as the convergence pressure concept, equations of
state, the application of the principle of corresponding states,

etc., have been tried for the correlation of such data. Although these
methods are valuable, only a few can be used for the determination of
vapor-liquid equilibrium constants for elevated pressure conditions.
Significant deviations are found between calculated and experimental
values at elevated pressures, particularly for conditions near the
critical point.

The method of correlating vapor~liquid equilibrium data in
this work is therefore based on the separate description of the
deviations occurring in the vapor phase and liquid phase; these
deviations are then correlated with thermodynamically consistent
expressions. In this method, the vapor phase nonideality is calculated
from the modified Redlich-Kwong equation of state (83,90); the liquid
nonideality is calculated with reference to the pure liquid components
and the deviations from ideal solution laws.

I chose four pure materials and one mixture for study of the
physical and thermodynamic properties. The pure materials chosen for
examination have different molecular sizes and shapes, and divergent
properties. These materials and their extreme characterigtics are.
as follows:

1. Acetone, a polar material having no association constant

(an oxygenated solvent).

2. Chloroform, a polar material and a representative
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associating compound (a halogenated hydrocarbon).

3. Benzene, a quasi-spherical polyatomic molecule, essentially
non-polar (an aromatic hydrocarbon).

4. Carbon Tetrachloride, a seemingly “symmetrical' and freely
rotating nearly spherical molecule, characterized by the
absence of pronounced polarity.

The ternary system consisting of the first three compounds

has previously been investigated in this laboratory by the author (137)
in regard to its thermodynamic and physical properties. The constituent
binary systems have also been investigated for vapor pressures, excess
volumes on mixing, the vapor-compositions and the excess enthalpies and
excess viscosities of mixing at 25°C (137). From the data obtained
excess Gibbs free energies and excess entropies have been calculated
(138). The pertinent review of the literature up to 1965 for the
binary system investigated in this work, i.e., the acetone-benzene
system is given elsewhere (137) by the author. The only work after

that date is by Abbott (139) who obtained second virial coefficients

OC,

from measurements made on a vapor density balance at 450C, 6OOC, 75
and 90°C.

In view of the interest in critical phenomena of partially
miscible binary liquid systems (Ll;ELZ) which has existed in this
laboratory for several years I decided to extend the investigation
to one-component gas-liquid critical points. The system acetic acid-
chloroform-water is one of the classical examples of partial miscibility

in a ternary system, investigated in this laboratory for the equilibrium

relations at 25°C (140,141,142) and for the critical phenomena
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1° LZ’ Ll - V and LZ - V) by Campbell and Kartzmark (143). Since

the systems consisting of acetone, benzene, and chloroform have been

(L

dealt with from the thermodynamic point of view in a previous paper (138),
I undertook the study of critical phenomena (L®V) in the constituent
pure components in this work.

In many critical transitions, the quantitative behavior of
some thermodynamic properties and of most transport properties is
unknown; further experiments are required. In recent publicatiomns
from this laboratory Campbéll et al. (144,145) have discussed this
aspect in some detail. A rather coherent picture is now emerging as
a result of a rapid increase of interest in this field. Work such as
that reported by Campbell et al. (144) is of value in elucidating the
nature of the irregularities in the thermodynamic functions at a
liquid-1liquid critical point.

Rowlinson (24) has pointed out that the critical temperature
of a simple mixture (I,=ﬁ V) is one of the most direct sources of
information on the energy of interaction of two unlike molecules.

I have therefore obtained the critical temperature versus liquid mole
fraction curve for the binary system acetone-benzene in this study

over the whole range of composition.
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CHAPTER III.
EXPERIMENTAL PROCEDURE AND APPARATUS

I. PURIFICATION OF THE MATERIALS.

Acetone, chloroform, benzene, and carbon tetrachloride,
respectively, were used as the four pure liquids. Objection might be
made to the choice of chloroform since it decomposes very readily in
the neighborhood of the critical point. A slight yellow color was
always observable in the chloroform, after an experiment. In view of
the well-known effect of traces of impurity (50,146) on the critical
properties, this is a serious matter but it cannot be avoided. Any
determination of the critical constants of chloroform, however carefully
made, must be subject to this criticism.  Errors in the measurement in
the critical region due to the decomposition of chloroform are therefore

larger than those in other substances.

I(a). Acetone

Spectranalyzed Acetone (A.C.S.) from the Fisher Scientific
Company was dried over calcium chloride and then subjected to dis-
tillation, after adding potassium permanganate to remove any non-
aqueous impurities. The distillate collected was again dried by
means of calcium chloride and re-distilled. Care was taken to avoid
exposure to air and the freshly distilled fraction (the distillation
temperature was constant at 56.10 to 56.15°C at a pressure of 746 mm.
Hg) was transferred to the deéerating apparatus. The pure liquid was

contained in a flask with ground-joint and was connected to a high-
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vacuum line for deaeration by distilling it back and forth from one
cold trap to another. The physical properties (density and refractive
index) observed for purified acetone agreed very well with the litera-

ture values.

I(b). Chloroform

Chloroform (A.C.S.) from the Fisher Scientific Company was
purified to remove ethanol by repeated extraction with concentrated
sulfuric acid and final washing with distilled water. Chloroform
was dried over anhydrous calcium chloride and then finally distilled
from anhydrous phosphorus pentoxide, twice. The purified
reagent was stored in the dark. The sample purified in this manner
could not be kept for more than 3 days. The fraction collected
between 61.05 to 61.10°C at 748 mm. Hg was transferred to the vacuum-

line for degassing and loading the experimental tube.

I(c). Benzene

Thiophene—-free Benzene (A.C.S.) from the Fisher Scientific
Company was frequently shaken with concentrated sulfuric acid until
the yellow color in the acid layer disappeared. It was then washed
twice with distilled water and then with a solution of sodium bi-
carbonate. After washing it again with distilled water, the product
was dried with anhydrous sodium sulfate and then with sodium. The
sample was cooled slowly until a certain fraction solidified, the
supernatant liquid being discarded; the procedure was then repeated

to ensure removal of impurities such as cyclohexane. Finally the
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sample was dried over sodium wire and then fractionated twice from
sodium. The constant-boiling fraction at 80.1000 (752mm. Hg) was
transferred to the vacuum line. The physical properties of the

purified material agreed very well with the literature values.

I(d). Carbon Tetrachloride

Carbon Tetrachloride (A.C.S5.) from the Fisher Scientific
Company was distilled through a vacuum-jacketed column with glass
helix packing. The temperature was found to be constant throughout
the distillation (76.600 at 750mm. Hg). The middle third-fraction
was examined for purity by gas chromatography. A column of 6 ft.
length with dimethylformamide in chromosorb-P as the supporting material
for the liquid stationary phase was used. Helium was used as a
carrier gas and only one main peak was observed suggesting that the
sample was pure. The sample was transferred to the vacuum line for
degassing, etc. Before transferring the liquids to the manifold of
the vacuum line for excluding the noncondensable gases, in each case,
the liquids were kept in a dry chamber. Care was taken during ordinary
distillation to see that all vents communicating with atmosphere did
so through drying tubes containing phosphorus pentoxide suspended on
glass wool thereby excluding atmospheric moisture.

The critical temperature, critical pressure, equilibrium
pressures (vapor pressures) at temperatures below the critical
temperature, and orthobaric volumes of pure liquids have been determined.
The literature data, even of well known liquids, such as those investi-
gated in this research, are surprisingly limited. Table IV gives a

resume of the most recent data.
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Year tC(OC) Pc(atm) dc(g/cc) Investigators
A. Acetone
1902 233.7 46.78 —— Kuenan and Robson (147)
1923 235.6 —— 0.252 Herz and Neukirch (148)
1943 235.8 —_— —_— Fischer and Reichel (149)
1951 235.5 46.6 0.273 Rosenbaum (150)
1955 236.3 47.2 — Kobe et al. (151)
B. Chloroform
1902 262.9 53.8 —— Kuenan and Robson (147)
1923 262.5 e 0.496 Herz and Neukirch (148)
1934 263.4 — — Harand (152)
1943 263.5 - —_—— Fischer and Reichel (149)
C. Benzene
1910 288.5 47.9 0.3045 Young (63)
1934 290.8 —_— —— Harand (152)
1941 289.45 48.9 —_— Esso Laboratories quoted
in ref. 153.
1943 291.2 — —— Fischer and Reichel (149)
1947 289.5 48.7 0.297 Gornowski, Amick and
Hixson (153)
1952 288.94 48.34 0.308 Bender, Furukawa and
Hyndman (154)
1962 288.84 48,28 - Connolly and Kandalic (155)
1964 289.00 48.32 0.304 Skaates and Kay (156)
1967 288.94 48.98 — Ambrose, Broderick, and
Townsend (157)
D. Carbon Tetrachloride
1910 283.15 44,97 0.5576 Young (63)
1935 282.60 ——— — Harand (152)
1943 283.2 ——— R Fischer and Reichel (149)
1964 283.15 44,97 — Quoted by Miller (158)




83

IT. METHOD OF ANALYSIS

Vapor-liquid equilibrium data were determined from measurements
of refractive index. Analysis by gas chromatography was attempted since
this requires a very small amount of sample. Problems such as tailing,
etc. coupled with relatively poor reproducibility for known samples
caused me to abandon the method. Refractive index measurements required
at the most 0.5 ml. of sample which was almost invariably obtained in
each determination at the temperatures and pressures of study.

Generally, the analyses of the compositions of the liquid
mixtures are made from physical properties. The data for refractive
indices as a function of concentration were used as a calibration chart
for determining the concentrations of unknown mixtures collected in
the vapor-liquid equilibrium bomb.

The refractive index measurements were made using an Abbe
Refractometer with the prism thermostated at 25.00°C * 0.05°C and
the monochromatic light of a sodium lamp (5893 A)). The accuracy of
this instrument made by Officine Galileo of Italy, is #0.0001 unit
of refractive index. An uncertainty of *0.0001 in refractive index

means an uncertainty of 0.001 in the values of mole-fraction.

ITI. DETERMINATION OF CRITICAL PROPERTIES

ITI(a). Development of Experimental Technique

The critical temperature is the easiest of the three critical
constants (TC, Pc and Vc) to measure and has been measured for more
substances than the other constants. Kobe and Lynn (159), in an

extensive review of critical properties in 1953, reported that it had
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been measured for 220 substances, excluding mixtures. Most of these
measurements were made by observing the temperature at which the
meniscus vanished in a system maintained at an over-all density
approximately equal to the critical. If a sealed tube containing
liquid and vapor is heated uniformly then one of three things may
happen. If the over-all density is less than the critical then the
meniscus falls as the liquid evaporates. The second possibility is
that the density is greater than the critical and the meniscus rises
on heating until no vapor remains, i.e., the whole tube is full of
liquid. 1If, however, the density is close to the critical then the
meniscus rises slowly until it is near the center of the tube where it
remains until the critical point is reached and then suddenly the flat
and faint meniscus disappears, characterized by fluctuating striae.
This principle has been extensively used in this work for determination
of critical constants.

If the tube is not sealed but is open at its lower end to a
reservoir of mercury, then the density may be altered at will and the
pressure measured at the same time. This was the apparatus used in
the original work of Andrews (5) and later by Young (63). The critical
pressure may be measured with little more trouble than the temperature,
as 1t is equally insensitive to small changes of density at this point.
The principle of Young's apparatus has not been significantly altered
since.

The measurement of the critical constants by observing the

point of inflection of the critical isotherm is much more difficult

and attempts to make such measurements have led to some notable
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disagreements (24,160). A survey of the critical constant data
measured in different ways shows not only a wide variation in the
values reported by different investigators for a single liquid, but
also very frequently a considerable variation inthe data given by a
single investigator. The chief reasons for these deviations are slow
attainment of equilibrium in the critical region, large compressibility
of the liquid, large spontaneous fluctuations of the density over
macroscopic distances leading to the scattering of light (the critical
opalescence), etc. The present experimental position is given by
Heller (30) in a review article. Much of the older work is of little
value now and is reviewed in great detail by Rowlinson (24). Although
some of the older methods are crude, the methods are readily adaptable

to refinements so that accurate determinations may be carried out.

ITII(b). Orthobaric Densities

The orthobaric densities (density of vapor and liquid coexisting
at the 'same temperature) may be determined in several ways. The method
of Maass and coworkers (17,18,19,20), which utilizes the float and
quartz spiral spring, is adaptable, as is the method of Traube (12),
which makes use of a number of balls of different known densities.

Maass determined the densities of the liquid and vapor phases by a

float suspended from a quartz spiral. The volume and weight of the
float and the spring constant of the quartz spiral were accurately

determined; thus, the density of the fluid was calculated from the

buoyancy effect.

The most used method for the determination of orthobaric
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densities is that of Young (63), mainly because of the maximum return
in useful data that it gives from a minimum investment in experimental
effort. The method of determining the orthobaric densities in this
research is based on Young's principle. The volumes of the liquid,

v., and of the vapor, v.,, were determined for two different amounts of

L G

the substance, w' and w', at the same temperature. The densities, dL
and dG’ are then obtained by a simultaneous solution of the two equations
(Total weight of compound = volume of liquid x density of liquid +

volume of gas x density of gas):
w' = v."d + v, 2'd L

wo= v."d o+ v.," d (92)

ITI(b). I. Loading the Experimental Tube with a Sample

The glass apparatus for deaerating and degassing the pure
liquids and for transferring a degassed sample to the experimental
tube is shown in Figure 3. A mercury diffusion pump B backed by a
mechanical oil pump A was used to produce a vacuum with a residual
noncondensable gas pressure of less than 10-5 mm. of mercury, as
measured by a McLeod gauge. Air and other non-condensable gases were
removed from the liquid samples by a series of operations which involved
freezing with liquid nitrogen and pumping off the residual gas over the
frozen liquid, followed by melting and distillation at low pressure.

About thirty ml. of pure liquid were contained in flask b which
was then attached to the vacuum line by means of a ground joint. Upon

the attainment of a fairly good vacuum, stopcock 6, connecting flask b



FIGURE 3. Apparatus fdr Degassing and Preparing Mixtures of Liquid

Samples.
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to the vacuum line was opened, momentarily, in order to remove most
of the air-rich vapor over the liquid, before freezing the sample.
As soon as the sample was frozen, the stopcock connecting flask b
was opened and the space over the frozen liquid evacuated until the
pressure was less than lO-—5 mm. Hg. For freezing the liquid, a
mixture of dry ice and acetone was used at first. The stopcock
connecting flask b was then closed and the sample allowed to melt,
after which the stopcock was opened, cautiously, and vapor pumped
off again. This procedure was repeated several times. A check showed
about six times was sufficient to remove all gases. For the final few
times the coolant was liquid nitrogen.

Next, the cooling flask was brought up around flask a, and
cocks 4,9,10,11,12,13 and 14 were closed, cocks 5 and 6 opened, and
the liquid in b was distilled and collected in flask a, except for a
small residue which was pumped off into the cold trap C. After evacuating
the space over the solid, cock 5 was closed, the solid melted and a small
fraction of the vapor pumped off. Cocks 9 and 11 were then closed, 6
opened and the sample was distilled and collected in b, except for a
small residue which was discarded as before. The distillation, back
and forth between a and b, was repeated four times. The pure degassed
sample was then stored in flask b in the solid state until ready to use.

The experimental tubes of heavy walled annealed glass, 15 cm. in
length and 2 mm. internal diameter with ground joints were used. Two
tubes were required for determination at each temperature. The capillary
used in the experimental tube varied in its internal diameter from 2.05 -

2.10 mm. in different regions of its length. The volumes of each tube



89

were determined in the following way using pure re-distilled mercury
as calibrating liquid.

Before the experimental tube was blown to its final shape, the
capillary was sealed to a pyrex bulb of 10 ml. capacity. The capillary
had several fine circular marks etched at about 5 mm. distance apart.
These marks were made on the stem by hydrofluoric acid to facilitate
accurate measurement of the liquid level inside the capillary.

The capillary with the bulb was cleaned with hot chromic acid,
thoroughly rinsed with distilled water, dried and weighed. Mercury
was then introduced by means of a long drawn-out capillary tube
extending to the bottom of the bulb, taking care to avoid the entrap-
ment of air bubbles. The capillary was fixed in position inside the
thermostat at 25.000 +0.005°C with its top protruding above the water
level in the bath. The meniscus level of the mercury column inside
the capillary was adjusted to coincide with one of the several marks
on the stem, by using a long hypodermic needle and a syringe. The
capillary with the bulb was removed from the thermostat, its outside
cleaned thoroughly, dried and weighed. Using the density of mercury
as given in Lange's handbook (13.5340), the volume corresponding to one
of the several marks on the stem was calculated. .This procedure was
repeated for each of the marks and the volume per unit length in each
region at 25°C was calculated. Thus, the non-uniformity of the capillary
bore, if any, was taken into account. Next, the bulb was detached and
the capillary sealed at the bottom. Then the volume between the sealed
end and the first mark from the bottom of the tube was determined in a

similar way.
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The ground joint was next fused to the top of the capillary
tube. The region between the top mark and the point where the
experimental tube is finally sealed after transferring the experimental
liquid, was not calibrated till the end of the experiment.

In the drying procedure, the first few distillations to and
from b were made using solid carbon dioxide-acetone mixture, and
liquid nitrogen, respectively, and care was taken never to leave the
sample present as a liquid. This was necessary because high-vacuum
silicone grease was used for ground joint and stop-cock lubrication,
and to prevent absorption of the sample the vapor pressure must be
kept as low as possible. The final distillation was made with flask
b immersed in a dry ice-acetone mixture, and the system pumped out
for 2 min.; the aim of this last operation was to remove carbon
dioxide or gases of similar volatility from the liquids, and it was
repeatedly observed that the vapor density was irreprodﬁcible unless
this was domne.

Before transferring the sample stored in b to the experimental
tube attached to 7, the tube was flushed several times with a small
amount of sample which was then discarded to trap C. By chilling the
tip of the experimental tube and by manipulation of the appropriate
stopcocks the liquid was distilled into d, the experimental tube.

The sample was then allowed to melt and fill the end of the tube, after
which it was frozen again. The process of freezing and thawing was
continued to make sure that any trace of residual gas in the tube was
displaced by pumping. The tube was sealed off from the line just

below the female half of the ground joint in the experimental tube.
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The experimental tube with the female ground joint was weighed before
attaching to the vacuum line i.e., before transferring the liquid.
The weight of the pieces of the experimental tube after sealing off

gave the total weight of substance, by difference.

III1(b). II. Thermostat

The thermostat was a glass~tank of 5 liters capacity lagged
with vermiculite contained in a sheet metal rectangular cover except
for a plate-glass window 3 in. wide and 9 in. high as shown in Figure
4. The thermostat was illuminated from behind by a light bulb placed
in the vermiculite insulator. Up to 250°C, the thermostat liquid used
was Dow-Corning Silicone fluid 550. Above 250°, the eutectic mixture
of potassium, sodium, and lithium nitrates was used. This fused salt
bath functioned perfectly, when the glass-bath was changed every few
weeks, since the glass eventually became corroded by the salt. The
thermostat liquid was stirred by a paddle rotated by a powerful motor,
and the temperature control was obtained by a solid state proportional
temperature controller manufactured by Athena Controls.Inc., Pennsylvania.
The éontroller provided smooth modulation of electric power in response
to thermistor temperature. The continuous power supplied to the load
from the power module eliminated the large fluctuations inherent in
on~off or time proportioning control. A four leg null balance bridge,
high gain amplifier and a feedback stabilizing network for line voltage
and temperature fluctuations, gave a high degree of accuracy and stability
to the controller. A power output meter showed the voltage across the

load and was used to set the proportional band and also to serve as a



FIGURE 4. The Thermostat.
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null indicator for bridge balance. The temperature sensor was a
thermistor sheathed in stainless steel to prevent corrosion by the
fused salt bath. The heating element was encased in non-corrosive
""Nickel-Chrome-Iron" alloy for the same reason. Temperature measure-
ments in this work were made with multiple-junction copper-constantan
thermocouple in conjunction with a Tinsley vernier potentiometer
(Type 4363A) measuring to a microvolt, for the e.m.f. measurements.
The thermocouple was calibrated using the standard temperatures of
the ice point, steam point, melting points of tin, bismuth, and
cadmium, with the cold junction in a bath of melting ice. This cali-
bration was compared with a certified platinum resistance thermometer
supplied by National Research Council of Canada. Resistance measure-
ments were made using a Brown recorder and a Mueller bridge. The

two calibrations were identical within the experimental error of
measurement. The temperature control was better than #0.03 °C up

to ZSOOC, and *0.03°C above that. The correspondence of the two

calibrations was within +0.01°C.

III(b). III. Experimental Method

Two experimeﬂtal tubes were used for each temperature. In
the density determination a different quantity of the pure liquids
was distilled into each tube. Sample weight was determined by weighing
the tubes before and after sealing, as discussed before. The tubes
were then placed in the thermostat at the desired temperatures and the
difference in height from the meniscus to the nearest calibration mark

measured with a cathetometer reading to 0.05mm. The equilibrium vapor
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and liquid volumes thus became known; correction was applied for the
thermal expansion of the glasé. The experimental tubes were constructed
from Pyrex capillary, and the coefficient of expansion given by the
manufacturer was used. The two equations obtained from the above data
allowed the densities of liquid and saturated vapor to be calculated
algebraically. From the orthobaric densities, the orthobaric volumes
were obtained.

Because vapor densities determined in this manner are subject
to error due to the small weight of the compound in the gas phase,
particularly at temperatureswell below the critical temperature, great
care was taken in the height measurements and in degassing the samples.
After the experiment was over, each tube was cut off exactly at the
point where it was sealed off from the line, and the region between the
top etched mark and this point calibrated using the technique previously
described. The weight of mercury needed to fill this volume completed
the calibration required to know the volumes of different regions of
the tube as well as the total volume of the tube. The volume of any tube
could not be expressed analytically in terms of the distance from the
sealed end at the bottom, since precision bore capillary was not used.

The method of determining the orthobaric densities by solving
simultaneous equations (91) and (92), was not applicable in the immediate
neighborhood of the critical temperature because slight fluctuations of
temperature caused too great fluctuations in the level. Therefore, over
a temperature range of 2° below the critical temperature, I made use of
the method of '"total exhaustion'. For this method, tubes of known

total volume were charged with known weights of liquid and the
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temperatures noted at which the meniscus disappeared "by exhaustion',
i.e., when the meniscus either rose just to the upper extremity of the
tube, when the tube was entirely filled with liquid, or sank to the
bottom of the tube, when it was entirely filled with vapor. Congruent
densities were therefore notobtained directly, in this region, but
each determination gave a point on one side or the other of the ortho-
baric curve. Experience taught me how to choose the fillings so that

all temperatures were within the desired narrow region of temperature.

III(c). Critical Temperature

The classical apparatus used by Andrews (5) consisted of
capillaries calibrated for capacity, and the pressure in the system
was determined by the temperature-volume relatioms of air. Thus,
the apparatus was suited for the determination of the critical
constants by P-V-T relations, but Andrews noted that the disappearance
of the meniscus occurred at the critical temperature, and he adopted
this phenomenon as the criterion of the critical temperature; this led
other investigators to use the disappearance of the meniscus as the
sole criterion of the critical temperature. Young (63), for example,
took the criterion as the point where the meniscus had vanished but
would reappear when the volume was increased suddenly by a small amount
(adiabatic cooling).

The critical temperature in this research was determined in
the classical manner, using the usual sealed tube technique with
different fillings. The sample purification was done as described

earlier. The experimental tubes were of 2 mm. internal diameter and
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15 cm. length. No calibration was necessary. Their internal volume
was 0.7 ~ 0.8 ml. The method of loading the experimental tube with

a pure air-free sample of liquid was as before.

ITI(c). I. DPreparation of Mixtures

In the preparation of a mixture of known composition, the
second liquid component was treated in a manner exactly similar to
that described earlier for the first component. Thus, the two compo-
nents were stored in the solid state in bulbs a and b, respectively,
until ready to use.

The experimental tube was attached to the vacuum line at 8.
A small precision bore capillary (1.0 mm internal diameter) whose
volume per unit length had been previously determined, was then attached
to the vacuum line at 7. A quantity of liquid 1 was then transferred
by distillation from the storage flask to this calibrated capillary.
From the length of the tube occupied by the sample at room temperature
(measured with a cathetometer reading to 0.05 mm) and the density of
the liquid at this temperature, the weight of the sample was calculated.
A correction was made for the weight of the vapor over the liquid, using
the perfect gas law and a knowledge of the vapor pressure and the total
volume of the calibrated capillary up to stopcock 7.

The measured sample was transferred to the experimental tube
as usual by chilling the tip of this tube. Similarly, a measured
quantity of the second liquid was transferred to the tube. The sample
was allowed to melt and then frozen again. The tube was sealed off from

the line under continuous suction. The weighing before and after sealing



was an independent check that a quantitative transfer of liquids from

the calibrated tube to the experimental tube was obtained.

ITII(c). II. Experimental Method

For pure liquids, different fillings of a sealed tube were
used. In case of binary mixtures, the densities in the tubes were
chosen to be within 5% of the estimated critical densities. Critical
densities of the mixtures were estimated by linear interpolation of the
pure component data.

Care was taken when handling tubes at high temperatures;
explosions invariably occurred when they were subjected to shock.

The critical temperatures were observed by allowing the tubes to warm
slowly in an environment of measured uniform temperature. This
environment was provided by the accurately controlled high temperature
bath as described earlier. For the final few degrees rate of increase
of temperature was very slow. Each tube was placed in turn in the
thermostat, and was observed through the glass plate window by means of
a telescope located at some distance from the set-up. As the temperature
was raised, the surface tension between the two phases approached zero,
the dividing meniscus became faint and hazy, and the measurement of the
exact temperature of its disappearance was to some extent subjective.
Nevertheless, the phenomenon was clearly distinguished as "critical"
since the meniscus disappeared in the body of the tube and not "by
exhaustion" at the top or bottom. No great care was needed to load

the tube to exactly the critical density of the pure liquids for

measurements of the precision (0.05°C) claimed in this research,
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for a slight error in loading only caused the meniscus to vanish a
little above or below the center of the tube, at a height at which

the local density was equal to the critical. The tubes were not
stirred in this determination. The resistance of the compounds to
decomposition on prolonged heating was examined, and on the trial

runs, the heating was carried out for three hours. Pure acetone,
benzene and carbon tetrachloride apparently did not show any change,
whereas chloroform became yellowish., The mixture of acetone and
benzene also became yellowish if left in the tube for very long time

at high temperature. The infra-red spectra of the decomposed chloro-
form samples could not identify the decomposition products, but a faint
smell of HCl was always observed. This was confirmed by the production
of white fumes in presence of ammonia. For this reason the tubes con-
taining the chloroform samples were heated rapidly to within a few
degrees of the desired temperature. In that way the disappearance of
the meniscus was observed within 20 minutes after the tubes had been
placed in the thermostat. The temperature was measured by the copper-
constantan multiple junction thermocouple as mentioned earlier. The
reproducibility of the observations of the critical points was 0.03°C.
for pure substances and 0.05° - 0.10°C for mixtures. It must be con-
fessed, however, that the determination of critical temperature (tempera-
ture of the disappearance of the meniscus) by this method is the least

satisfactory of the critical determinations.

IV. MEASUREMENT OF VAPOR-LIQUID EQUILIBRIA

The vapor—liquid equilibrium data for a given binary system

over the range of .temperatures and pressures of practical interest are
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generally measured in two ways. The necessary P-x-y data are measured
at a series of temperatures or the required T-x-y data at a series of
pressures. The most obvious procedure is to equilibrate the phases in
a closed bomb by vigorous shaking or stirring. The apparatus is
immersed in a constant-temperature bath, the equilibrium pressure is
measured, and the phases are sampled for analysis. Although this method
appears to be of primitive simplicity, it is rarely used at low pressures.
The primary difficulty is that the vapor phase must be sampled so
extensively to obtain a sufficient sample for analysis that the equili-
brium state is disturbed. This problem arises because analysis of a
sample in the vapor state has always proved difficult, hence vapor
samples have always been condensed for analysis, and this requires the
withdrawal of a considerable amount of vapor. An additional disadvantage
is that each datum point requires a separate experiment.

Because of the disadvantages of the static method just described,
the dynamic equilibrium still is usually employed at low pressures.
An excellent review article by Sage and Reamer (161) describes the
experimental methods of measuring vapor-liquid equilibria and presents
a thorough discussion of the thermodynamic data necessary to calculate
vapor-liquid equilibrium compositions. Another review of the experimental
techniques and their development has been given by Everett (162). Despite
the disadvantages of the static method at low pressures, it is attractive
for equilibration of phases at high pressures.

The measurement and maintenance of constant pressures are of
fundamental importance in all methods of determining vapor pressures.

High mercury columns, which in principle in no way differ from normal
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manometric U-tubes, are used as an absolute standard for measuring
pressures from 20 to 30 atmospheres. For routine measurements this
method is of course unsuitable; the columns are very high, their
construction is difficult and the reading is inconvenient. Despite
this, the advantage of the mercury column is that the height of the
column gives directly the absolute value of the pressure. Kamerlingh-
Onnes (163) constructed a somewhat different type of mercury pressure
gauge. Essentially it is a series of manometric U-tubes with compressed
air in the connecting tubes, and the value of the pressure acting on
one end is given by the sum of the differences of mercury levels across
the entire series.

The closed mercury pressure gauge or the mercury—air manometer was
used in this research. The functioning of this pressure gauge was based
on the compression of a known volume of air to a measured final volume
whose size was a measure of the pressure being determined.

Different kinds of pressure gauges, such as the dead-weight
piston gauge and the Bourdon pressure gauge, have been used by many
investigators for pressure measurements. The simplicity of the closed

mercury pressure gauge as used in this research is unsurpassable.

IV(a). Vapor Pressure Measurements

Vapor pressures were determined in the apparatus of Figure 5,
which is essentially a closed manometer containing air. The closed
manometer was calibrated for volume as a function of length. The
volume of the tube from each division to the sealed end was determined

by the method of calibration described earlier. The region between the



FIGURE 5. Transfer of Sample to the Mercury-Air Manometer.
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last etched mark and the sealed end was calibrated after the end of

the experiment, as was done in case of density determinations. The
total volume of the glass bulb B was approximately 1 - 1.5 ml. This

was not calibrated, since the ratio of the cross—section of the tube

to the volume of the bulb was chosen in such a way that the desired
pressure range always remained on the exposed scale. It is best to

fill the manometer with dry hydrogen whose behavior under compression
deviates the least from Boyle's law. Since this was not done, the
pressure was calculated, from the equilibrium volume of compressed air,
using van der Waals' equation. Othef equations of state gave variations
within the experimental error. The manometer was filled with mercury

in such a way that the bulb B and part of C was full, and was then
attached tothe vacuum line as shown in Figure 5. The calibrated tube

of mercury-air manometer was connected by means of a ground joint to

an adapter or side-arm coming out of a cold trap, T, which was connected
to the vacuum line, as shown in the diagram. The other end of the mano-
meter was also attached to the vacuum line, through a spiral tube which
had ground joint and acted as a spring providing manoeuverability. The
trap, T, was cooled by liquid nitrogen. This cold trap was included in
the system, in addition to the one already provided as shown in Figure 3.
The occluded air was boiled out from the manometer by heating gently

and cautiously with a moving flame throughout the length of mercury

and applying vacuum simultaneously at both A and C of the manometer.
This removed any air trapped between the mercury and wall of the mano-
metric tube. After sufficiently long pumping and tapping of the wall
from outside, and when the mercury came to room temperature, the

required amount of degassed liquid was distilled into the bulb A from
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the calibrated precision bore capillary where it was temporarily
stored. This was achieved by chilling bulb A, the U-bend of the
manometer, and the bulb B with solid carbon dioxide-acetone mixture.
The size of the apparatus was such that all these parts could be chilled
by the freezing mixture contained in a single Dewar flask. When
preparing mixtures, a measured quantity of the second liquid was

also transferred to the tube in a similar manner. The method of
calculating the composition has already been described under deter-
mination of critical temperatures. The process of freezing, pumping,
and thawing was continued until any residual gas was expelled from the
system. Great caution was exercised in the case of binary mixtures,
and liquid nitrogen was used to freeze the solution. Because of the
unequal volatilities of the different components, the composition is
liable to change, if vacuum is applied while the sample is still liquid.
The end A of the manometer, which was open to the vacuum line, was then
sealed off, keeping the liquid frozen. This was difficult, since the
whole manometer, along with the Dewar flask containing liquid nitrogen,
had to be lowered from the vacuum line, and C disconnected from the
adapter at the same time after closing stop-cock 3. Mercury and the
liquid were still kept frozen till the sealed end of A cooled off. The
liquid was then allowed to melt and air having entered C pushed the
liquid, followed by mercury, to the end of A. The open end of C was
then sealed off, under atmospheric pressure, after enclosing C in a
glass mantle, through which water at 25° was circulated. Atmospheric
pressure was recorded at the moment of sealing. The volume of air in

. 0
C, under atmospheric pressure and at a temperature of 25 C, was then
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obtained by means of a cathetometer reading.

Bulbs A and B were then immersed in a thermostat at the
desired high temperature, that is, at a temperature at which the vapor
pressure of the liquid was greater than 1 atm. Vapor formed in bulb A
and the vapor pressure was automatically ‘established. A time-pressure
study was made with pure liquid, which showed equilibrium was achieved in
20 min. During measurement, the pressure in the liquid system drove the
mercury into tube C and compressed the air. The achievement of equili-
brium was evident when the mercury level in tube C came to rest. The
volume of the compressed air was read off with a cathetometer reading to
0.05 mm. From the equilibrium volume of air in C, the pressure was
calculated, using van der Waals' equation, the following correction being
applied. The hydrostatic pressure of the mercury column was added to the
calculated pressure. Taking the length of the air column in the closed
1limb C to be Zl, when the mercury is at the same height in both tubes,

and £, when the mercury column has risen (thereby diminishing the air

2
column) in the closed limb C, the difference in height of the mercury
columns in the two limbs is 2(21— 22). The experimental pressure which
caused the mercury to rise is obviously equal to the pressure calculated
from van der Waals' equation, plus that of a column of mercury of length

2(5&l - %2,.). Thus the pressure was corrected for the difference in level

2
of the mercury in the experimental tube and manometric tube. The other
recommended corrections are: 1) for the pressure of the column of un-

vaporized liquid, 2) for the expansion of the heated column.of mercury,

and 3) for capillarity of the manometric tube. The height of the unvaporized

liquid column was so small that this was not necessary to take into account.
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The mercury column was jacketed by thermostated liquid at ZSOC, and
as such this could also be neglected. Although the correction for
capillarity is desirable, this was not dome in this research since
it was thought insignificant. No correction for the vapor-pressure
of mercury was applied, because evaporation through a long column of
liquid is an exceedingly slow process.

For the reason previously given, namely that, in the neigh-
borhood of the critical temperature, slight fluctuations of temperature
caused great fluctuations in level, it was not found possible to make
pressure measurements by this method to temperatures higher than about
3° below the critical temperature. In this static method of pressure
measurement it was necessary to keep the vapor space as small as
possible so that the whole system could be kept at a uniform temperature,
and so that the volume and the composition of the liquid were not changed
appreciably 5y evaporation as the temperature was raised. Vapor space
was always a tiny bubble compared to the liquid volume, which was con-
tained in bulb A. Therefore it was reasonable to believe that the
liquid composition hardly changed at high temperatures. The phase rule
specifies the minimum number of independent intensive variables required
to define an equilibrium system. For example, in a binary solution of
acetone and benzene, if the liquid is in equilibrium with the wvapor, there
are two phases, and therefore the number of degrees of freedom = 2.
Specifying either the temperature and pressure or temperature and one
liquid composition, or any other two intensive variables, will completely

define the system.
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IV(b). Experimental Determination of Vapor-Liquid Equilibrium

The direct experimental determination of vapor-liquid equilibrium
means the separation of samples of the liquid and vapor which are in true
equilibrium and determination of the concentrations of both phases
analytically. The methods for the direct determination of equilibrium
data are classified as: 1) Distillation method, 2) Circulation method,
3) Static method, 4) Dew and Bubble point method, and 5) Flow method.
The static method was used in this research, because the pressures were
high enough and the temperature was in the vicinity of the critical points.
A survey of the literature shows this method gives more precise results
than all the other methods except the dew and bubble point method (164,
165, 166,167) at high pressures. Verschoyle (168) used a high pressure
bomb in studying the equilibrium in the system Hy - N2 - CO at pressures
up to 225 atmospheres. This bomb was made of bronze and had a volume of
9 ml. The high~pressure bomb used inmy research was made of glass, contained
in a metal cylinder which was placed in a thermostat. Everything else
remained the same as described earlier; the capacity of the thermostat
in this case was 10 liters.

The apparatus used is shown in Figure 6. The high~pressure bomb
was fabricated from 70 mm pyrex standard wall tubing and was divided into
two compartments by a ring seal, such that the upper chamber was two-
thirds the whole volume. The total volume of the bomb was approximately
450 ml. The liquid mixture could be charged through a 7 mm filling tube
sealed to the center of the ring. Around the central tube were four
vapor—escape tubes communicating with both the compartﬁents and extending

4 mm above the ring seal. These vents were bent downwards towards the



FIGURE 6. C(Cross-sectional View of the Glass and Metal Bombs for

Vapor-Liquid Equilibrium Determination.
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central tube thereby preventing their catching the condensed vapor.
The central part of the ring was lower than where the ring seal was
fused to the outer wall of the bomb, in order to facilitate sampling of
the condensed vapor at relatively low temperatures, since at these
temperatures the volume of the collected sample was not too large.
The cell could be evacuated through a pumping stem attached at the
top, after freezing the charged liquid in the bottom compartment. This
also served as an outlet for sampling of the equilibrium phases with
a hypodermic syringe at the end of the experiment. The glass bomb was
carefully annealed at 580°C for approximately eight hours to make
certain that no strains were left in the body of the glass.

A sample of 75 ml. of mixture made up by weighing was charged
in the lower compartment taking care not to spill any on the upper. The
liquid was frozen and the system evacuated. After pumping for about half-
an-hour the pumping stem was sealed off from the vacuum line. After the
liquid came to room temperature the bomb was put inside a metal cylinder
which also contained a liquid mixture of same composition. The metal
cylinder had a screw—cap which fitted tightly on the cylinder. To make
it perfectly pressure tight a copper O-ring was used between the screw-
cap and the collar of the cylinder. After screwing the cap, the Allen-
head bolts on the cap were tightened down so that the O-ring sat tightly
on the groove made on the collar of the cylinder, making the system
pressure-tight. The cylinder was then placed inside the thermostat and
was supported from a strong horizontal metal rod attached to two retort
stands on either side of the thermostat. The long metal extension of

the cylinder protruding upwards helped to keep it in position inside the
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thermostat and was an accessory for the shaking device. The cylinder
with its contents was shaken until equilibrium was established between
the liquid and its vapor. For shaking, a powerful motor was mounted in
a horizontal position on the supporting rod over the thermostat as
shown in Figure 7. On the shaft of the motor was mounted an eccentric
cam A, which in turn was mounted on another eccentric annular disk B
and thus served to change circular motion into a thrusting motion.
This latter disk consisted of a thrust bearing C mounted inside an
aluminum collar which had an annular aluminum cover D resting on the
thrust bearing and overhanging the outside of the collar. The metal
extension E of the cylinder protruding upwards was screwed on to an
aluminum disk F which fitted and rested on the annular aluminum disk B
of the shaker. By this arrangement, when the motor was started, the
cylinder was shaken while being kept completely immersed in the bath.
After equilibration for 24 hours the cylinder was cooled
rapidly by immersing in ice-water mixture, and after undoing the Allen-
head bolts of the screw cap, the glass bomb was also chilled quickly by
running cold water. The sealed stem of the bomb was opened, and the
liquid and vapor samples were withdrawn for analysis from the lower and
upper compartments respectively. The sampling was very simple since the
vapor phase condensed on chilling, along the wall of the glass bomb and
collected over the ring seal, and never got an opportunity to mix with
the liquid phase. Vapor compositions of the sysfems at high pressures
could thus be determined using a glass apparatus, without explosions,
because the pressure inside the glass apparatus was the same as outside,

due to the presence of a mixture of same composition in the metal



110

cylinder. Determinations could not be made without the glass bomb
since the organic compounds used reacted with the metal at high

temperature and pressure.



FIGURE 7. The Metal Bomb in the High-Temperature Bath with the

Shaking Mechanism.
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CHAPTER 1V.

EXPERIMENTAL RESULTS
T. ORTHOBARIC DENSITIES

I(a). Acetone

Thirty determinations of the orthobaric densities were made
and the results are shown in Table V. The temperature and corres-—
ponding volumes of the saturated phases were measured while visual
observation of the substance showed that both liquid and vapor were
present in the tube. The experimentally measured volumes were
expressed as densities in grams per cubic cm. Above 230,200, i.e.,
within five degrees of the critical temperature, only the values of the
densities of either the liquid or the vapor are expressed, without the
corresponding values of the densities of the equilibrium phase. These
were obtained by observing the meniscus disappearing at the top or
bottom of the tube respectively. The values of the total densities
at which the disappearance of the meniscus (critical phenomenon) was
observed within the tube, at a constant temperature of 235.OOC, are
given at the end of the table. These are calculated from the total
volume of the tubes and the different fillings for which critical
phenomena were observed. The precision of the measurements was of
the order of 0.0010 gm. per cubic cm. for the liquid and 0.0002 gm. per
cubic cm. for the vapor, up to within a few degrees of the critical
temperature. Saturated densities are plotted against temperature to

give the coexistence curves of acetone in Figure 8.
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TABLE V

Orthobaric Densities of Acetone (tc = 235.OOC)

Experimental  #*Calculated Experimental
Density of Density of Density of

C. 1liquid,gm/cc. 1liquid,gm/cc. vapor,gm/cc. (to - t)l/3

Sample Tempoo

1 101.50 0.690399 0.688542 0.0081

2 107.40 0.681599 0.680900 0.0086

3 115.10 0.670999 0.670699 0.0092

4 117.50 0.667799 0.667462 0.0098

5 124.10 0.658299 0.658400 0.0110

6 127.40 0.653599 0.653774 0.0118

7 132.50 0.645999 0.646486 0.0124

8 135.40 0.641899 0.642261 0.0131

9 140.10 0.634299 0.635275 0.0160
10 145.80 0.625000 0.626551 0.0172
il 149.90 0.618199 0.620084 0.0186

12 151.20 0.616799 0.617997 0.0191
13 155.90 0.609499 0.610290 0.0209
14 159.90 0.603199 0.603514 0.0236

15 164,30 0.596199 0.595802 0.0261
16 171.20 0.583999 0.583078 0.0314
17 180.10 0.567899 0.565268 0.0393 3.800
18 187.20 0.550799 0.549616 0.0488 3.629
19 189.70 0.542099 0.543729 0.0496 3.565
20 198.30 0.521199 0.521594 0.0632 3.323
21 202.60 0.510799 0.509179 0.0704 3.188
22 207.50 0.495199 0.493621 0.0794 3.018
23 211.70 0.480199 0.478808 0.0885 2.856
24 216.40 0.460799 0.460192 0.1002 2.651
25 219.80 0.443600 0.445045 0.1097 2.477
26 223.80 0.423799 0.424938 0.1248 2.238
27 225.30 0.413399 0.416631 0.1290 2.133
28 228.70 0.395899 0.395908 0.1450 1.847
29 230.20 0.387999 0.385793 0.1521 1.687
30 231.20 0.3627 —— - 1.563
31 232.10 0.3542 — 0.1723 1.426
32 232.50 ——— ———— 0.1820 1.357
33 233.50 0.3356 e - 1.145
34 233.70 —— ——— 0.2024 1.091
35 233.90 0.3273 — - 1.032
36 235.00 - - - -

* Values were calculated from equation (100)and the following constants

A=0.840081, B= -0.961206 x 10“3, C= -9.04112. The statistical analysis
and the significance tests in multiple regression are reported in Table XVII.

Critical phenomena were observed, at a constant temperature of 235.0°C, at
the following total densities: 0.2160, 0.2362, 0.2372, 0.2536, 0.2693, 0.3067.



FIGURE 8. Orthobaric Densities of Acetone.



ens:*y [ y=

-

070

OFS2

OA)

[o716)

030

Q20

oK

Temperature °C

Orthobaric Densities of Acetone

"€TT



114.

I(b). Benzene

The data for the saturated densities of benzene are presented
in Table VI. These data are plotted against temperature in Figure 9.
Critical phenomena were observed, at a constant temperature of 288.95°C
at the following total densities: 0.3257, 0.3109, 0.2914, 0.2900.

These were calculated by the method indicated for acetone,

I(c). Chloroform

In Table VII, the densities of the saturated liquid and vapor
of chloroform are reported over the whole range of measurements from
about 100°C to the critical temperature. These values are plotted in
Figure 10 to give the coexistence curves of chloroform. Critical
phenomena were observed, at a constant temperature of 262.90C, at
the following total densities: 0.4279, 0.4697, 0.4872, 0.5120,
0.5381, 0.5610. These densities were calculated from the measured

volumes of the sample, as was done for acetone and benzene.

I(d). Carbon Tetrachloride

Table VIII gives the saturated densities of carbon tetrachloride
at approximately 40 temperatures ranging from near the standard boiling
point to the critical point. The experimental measurements permitted the
construction of the saturation density envelope as shown in Figure 11.
This is a plot of coexistence curves against temperature. Critical
phenomena were observed, at a constant temperature of 283.150C, at the
following total densities: 0.4953, 0.5095, 0.5424, 0.5578, 0.5829,
0.6047. These were derived by the method given for acetone. The

precision of the measurements was the same as that for acetone.
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TABLE VI

Orthobaric Densities of Benzene (tc = 288,950C)

Experimental *Calculated Experimental
Density of Density of Density of 1/3
Sample Temp.©°C. liquid,gm/cc. 1liquid,gm/cc. vapor,gm/cc. (tc— t)

1 106.25 0.7858 0.7860 0.0060
2 109.40 0.7831 0.7822 0.0057
3 113.75 0.7764 0.7769 0.0072
4 117.05 0.7726 0.7729 0.0079
5 120.85 0.7679 0.7682 0.0080
6 122.80 0.7657 0.7658 0.0083
7 125.80 0.7618 0.7620 0.0088
8 131.80 0.7550 0.7546 0.0106
9 138.15 0.7464 0.7465 0.0110
10 139.85 0.7441 0.7443 0.0118
11 146.25 0.7371 0.7361 0.0121
12 147.60 0.7350 0.7343 0.0123
13 152.25 0.7290 0.7282 0.0140
14 154.90 0.7248 0.7247 0.0144
15 160.35 0.7181 0.7174 0.0163
16 163.60 0.7136 0.7130 0.0179
- 17 170.45 0.7041 0.7036 0.0203
18 171.50 0.7020 0.7021 0.0208
19 177.55 0.6932 0.6936 0.0237
20 178.50 0.6919 0.6922 0.0240
21 183.20 0.6850 0.6854 0.0261
22 185.70 0.6812 0.6818 0.0278
23 190.00 0.6746 0.6753 0.0300
24 194.50 0.6670 0.6685 0.0326
25 196.40 0.6647 0.6655 0.0338
26 204,15 0.6571 0.6532 0.0372 4,393
27 210.95 0.6408 0.6419 0.0438 4.273
28 219.95 0.6257 0.6260 0.0508 4,101
29 228.05 0.6100 0.6106 0.0581 3.934
30 232.25 0.5960 0.5959 0.0658 3.773
31 242.65 0.5790 0.5793 0.0739 3.591
32 252.85 0.5521 0.5535 0.0900 3.306
33 262.25 0.5244 0.5250 0.1101 2,989
34 267.75 0.5070 0.5055 0.1239 2.768
35 272.80 0.4868 0.4848 0.1400 2.528
36 277.20 0.4660 0.4639 0.1556 2.273
37 280.00 0.4508 0.4489 0.1661 2.077
38 284.05 0.4199 0.4241 -~ 1.698
39 286.30 - —— 0.2144 -
40 286.65 0.3844 - - 1.320
41 287.15 0.3737 - - 1.216
42 288.40 0.3360 -= - -
43 288.50 0.2625 - . —

*Values were calculated from equation (100) using the constants given in
Table XVII. '



FIGURE 9. Orthobaric Densities of Benzene.
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TABLE VII

Orthobaric Densities of Chloroform (tC = 262.9°C)

Experimental  *Calculated Experimental
Density of Density of Density of 1/3
Sample Temp.0C. liquid,gm/cc. liquid,gm/cc. vapor,gm/cc. (tc— t)

1 101.40 1.4884 1.4855 0.0136

2 111.70 1.4510 1.4485 0.0182

3 119.20 1.4230 1.4213 0.0224

4 127.50 1.3914 1.3909 0.0278

5 135.70 1.3612 1.3605 0.0320

6 144.70 1.3259 1.3267 0.0389

7 151.30 1.3000 1.3015 0.0440

8 160.00 1.2652 1.2678 0.0512

9 167.60 1.2346 1.2377 0.0578
10 173.20 1.2127 1.2151 0.0621

11 180.50 1.1832 1.1850 0.0684

12 187.10 1.1552 1.1571 0.0756

13 196.30 1.1149 1.1168 0.0871
14 207.40 1.0628 1.0653 0.1038 3.814
15 213.70 1.0336 1.0342 0.1132 3.664
16 219.60 1.0044 1.0036 0.1236 3.512
17 225.30 0.9740 0.9722 0.1360 3.350
18 231.20 0.9410 0.9373 0.1504 3.164
19 237.50 0.9024 0.8966 0.1690 2.940
20 244,90 0.8482 0.8425 0.1998 2.523
21 252.70 0.7788 0.7747 0.2446 2,169
22 258.30 0.7052 0.7154 0.3008 1.663
23 260.20 0.6699 - 0.3301 1.393
24 261.50 0.6314 - 0.3642 1.119
25 262.50 0.5786 - 0.4138 0.737
26 262.80 - -~ 0.4201 0.464
27 262.80 0.5662 e - 0.464

*Values were calculated from equation (100) using the constants given

in Table XVII.



FIGURE 10. Orthobaric Densities of Chloroform.
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TABLE VIIT

Orthobaric Densities of Carbon Tetrachloride (tc=283,15)

119.

Experimental  *Calculated Experimental
Density of Density of Density of 1/3

Sample Temp.®C. liquid,gm/cc. liquid,gm/cc. vapor,gm/cc. (to - t)

1 101.50 1.4315 1.4332 0.0118

2 109.85 1.4131 1.4145 0.0141

3 116.35 1.3984 1.3998 0.0162

4 120.85 1.3880 1.3895 0.0179

5 124.10 1.3808 1.3820 0.0190

6 128.35 1.3716 1.3721 0.0202

7 132.55 1.3621 1.3623 0.0220

8 138.15 1.3486 1.3491 0.0239

9 142.50 1.3390 1.3388 0.0259

10 145.80 1.3311 1.3308 0.0276

11 147.65 1.3263 1.3264 0.0284

12 152,35 1.3151 1.3149 0.0316

13 159.90 1.2973 1.2962 0.0362

14 163.60 1.2880 1.2869 0.0389

15 170.85 1.2700 1.2682 0.0447

16 174.90 1.2597 1.2576 0.0481

17 180.15 1.2458 1.2437 0.0529

18 185.70 1.2312 1.2285 0.0579

19 190.55 1.2181 1.2150 0.0626

20 196.40 1.2009 1.1982 0.0694

21 202.60 1.1808 1.1798 0.0778 4.316
22 208.75 1.1598 1.1607 0.0862 4.206
23 214,40 1.1412 1.1425 0.0952 4.097
24 219.95 1.1337 1.1238 0.1042 3.983
25 225.30 1.1028 1.1048 0.1143 3.867
26 231.05 1.0810 1.0832 0.1253 3.734
27 235.25 1.0640 1.0665 0.1340 3.632
28 . 240.00 1.0441 1.0464 0.1462 3.507
29 243.10 1.0269 1.0325 0.1566 3.422
30 247.55 1.0110 1.0114 0.1670 3.291
31 251.45 0.9910 0.9915 0.1797 3.164
32 256.05 0.9641 0.9659 0.1960 3.004
33 259.60 0.9419 0.9444 0.2122 2.866
34 264 .15 0.9120 0.9139 0.2351 2.668
35 267.75 0.8838 0.8869 0.2568 2.488
36 271.35 0.8560 0.8567 0.2792 2.277
37 274.80 0.8261 0.8241 0.3076 2.029
38 276.95 0.8059 0.8015 0.3258 1.837
39 278.10 0.7910 0.7886 0.3386 1.716
40 280.10 0.7612 - —— 1.450
41 281.20 -~ — 0.3788 1.249
42 281.55 0.7284 - -~ 1.169

*Values were

calculated using equation (100) and the
in Table XVII. ’

constants given



FIGURE 11. Orthobaric Densities of Carbon Tetrachloride.
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IT. VAPOR PRESSURE

II(a). Acetone

The vapor pressures of acetone determined at 5-10° intervals
from 100°C to the critical point are reported in Table IX. The variation
in pressure in separate determinations on the same sample amounted to
0.02 atm., on the average. This was arrived at from the results of a
series of vapor pressure measurements at a few trial temperatures.

The standard deviation for an individual measurement, ¢ was calculated
from o = [:22: (p - P2/ (n - li] %, where P is the mean value at each
temperature, p the experimental value at the same temperature, and

n the no. of vapor pressure measurements at that temperature. The
standard error of the mean, o, = o/n% was 0.01. The ¢ values are
consistent with the estimated experimental uncertainty arising in the
measurements of temperature and pressure, which increase from *0.02 atm.
at 100°C to *0.03 atm. near the critical point, During the trial
measurements the quantity of liquid in the manometer was varied so

that these data actually represented conditions of dew-point, bubble-
point, and a variety of liquid levels in the tube. It was observed
that the pressure at large values of the vapor-liquid ratio (volume

of vapor to the volume of liquid) more nearly represented the true
vapor pressure. Vapor pressure versus temperature has been plotted in
Figure 12.

II(b). Benzene

The results of vapor pressure measurements over a temperature
o} Py .
range from 100°C to the critical temperature are set out in Table X.

The last measured point is 0.45°C below the critical temperature of
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TABLE IX

Vapor Pressure of Acetone

Pressure (Cm *Calculated Delta P atm =
Sample Temp.(°K) of Hg at 0°C Pressure(atm) Pressure(atm) (Pobs— Pcalc )
1 374,65 284.2 3.739 3.755 ~0.016
2 380.55 331.8 4.366 4.374 -0.008
3 388.25 403.5 5,309 5.299 +0.010
4 390.65 428.0 5.632 5.615 +0.017
5 397.25 500.2 6.582 6.557 +0.025
6 400.55 532.4 7.005 7.060 -0.055
7 405.65 604.3 7.951 7.921 +0.030
8 408.55 646.7 8.509 8.442 +0.067
9 413.25 712.3 9.372 9.328 +0.044
10 418.95 805.6 10.60 10.51 +0.09
11 423.05 8723 11.48 11.41 +0.07
12 424,35 896.7 11.80 11.71 +0.09
13 429.05 939.5 12.36 12.76 ~-0.40
14 433,05 1052.1 13.84 13.85 -0.01
15 437 .45 1140.9 15.01 15.04 -0.03
16 444,35 1292.3 17.00 17.06 ~0.06
17 453,25 1518.6 19.97 19.98 -0.01
18 460.35 1716.0 22.58 22.56 +0.02
19 462.85 1799.3 23.67 23.56 +0.11
20 471.45 2051.1 26.99 27.05 -0.06
21 475.75 2201.6 28.97 28.98 -0.01
22 480.65 2392.5 31.49 31.36 +0.13
23 484 .85 2541.0 33.43 33.41 +0.02
24 489.55 2738.8 36.04 35.92 +0.12
25 492.95 2877.1 37.86 37.79 +0.07
26 496.95 3053.3 40.17 40.11 +0.06
27 498.45 3118.7 41.03 40.99 +0.04
28 501.85 3271.1 43,04 43,04 0.0
29 503.35 3330.8 43,82 43,92 -0.10
30 505.25 3432.1 45,16 45,20 -0.04

Standard Deviation = 0.039 atm.

*Values were calculated from equation (105) using the constants given in

Table XVIII,



FIGURE 12. Vapor Pressure of Acetone from1l00°C to Tc'
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Vapor Pressure of Benzene

TABLE X

Pressure (Cm

*#Calculated
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Delta P atm =

o o
Sample Temp.("K) of Hg at 0°C) Pressure(atm) Pressure(atm) (Pobs_ Pcalc.)
1 379.40 173.7 2.286 2.263 +0.023
2 382.55 189.5 2.493 2.443 +0.050
3 386.90 206.7 2.720 2.705 +0.015
4 390.20 222.5 2.928 2.920 +0.008
5 394,00 241.2 3.174 3.181 -0.007
6 395.95 255.5 3.362 3.326 +0.036
7 398.95 270.5 3.559 3.552 +0.007
8 404.95 298.7 3.930 4.033 ~-0.103
9 411.30 343.6 4,521 4.608 ~0.087
10 413.00 354.6 4.666 4,771 -0.105
11 419.40 410.8 5.405 5.433 -0.028
12 420.75 421.7 5.549 5.580 -0.031
13 425,40 461.6 6.074 6.108 -0.034
14 428.05 487.8 6.418 6.429 ~-0.011
15 433.50 537.7 7.075 7.119 -0.044
16 436.75 573.8 7.550 7.562 -0.012
17 443,60 651.7 8.595 8.564 +0.031
18 444,65 662.6 8.718 8.720 -0.002
19 450.70 739.1 9.725 9.699 +0.026
20 451.65 748.0 9.842 9.852 -0.010
21 456.35 810.1 10.66 10.67 -0.01
22 458.85 844.3 11.11 11.13 -0.02
23 463.15 909.9 11.97 11.96 +0.01
24 467.65 987.2 12.99 12.89 +0.10
25 469.55 1015.8 13.37 13.29 +0.08
26 477.30 1151.5 15.16 15.03 +0.13
27 484 .10 1279.9 16.84 16.70 +0.14
28 493,10 1472.8 19.38 19.15 +0.23
29 501.20 1652.3 21.74 21.54 +0.20
30 508.40 1829.6 24,08 23.89 +0.19
31 515.80 2021.4 26.59 26.47 +0.12
32 526.00 2320.5 30.54 30.45 ¢ +0.09
33 535.40 2624.7 34.54 34.52 +0.02
34 540.90 2827.6 37.21 37.16 +0.05
35 545,95 3006.8 39.57 39.63 -0.06
36 550.35 3175.5 41.79 41.94 -0.15
37 553.15 3282.4 43.18 43,43 -0.25
38 558.45 3521.5 46, 34 46.56 -0.22
39 561.65 3636.7 47.86 48.35 -0.49

Standard Deviation = 0.061 atm.

*Values calculated from equation (105)

Table XVIII.

using the constants given in



FIGURE 13. Vapor Pressure of Benzene from 100°C to T..
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o . , .
benzene (288.95°C). The data have been plotted in Figure 13 which
shows the variation of saturation vapor pressure of benzene with
temperature. The uncertainty of the measurements is as indicated

for acetone.

II(c). Chloroform

The vapor pressures of chloroform measured at approximately
25 temperatures from 100°C to within a few degrees of the critical
temperature are presented in Table XI. These are plotted as a function

of temperature in Figure 14.

IT1(d). Carbon Tetrachloride

The vapor pressure measurements of carbon tetrachloride were
made at 40 different temperatures ranging from 100°C to within a few
degrees of the critical temperature and are shown in Table XII. The

data have been plotted in Figure 15.
IIT. CRITICAL TEMPERATURE

ITTI(a). Pure Liquids

The critical points of the pure liquids were observed visually
and this gave critical temperatures of 235.0°C for acetone, 288.95°C
for benzene, 262.9°C for chloroform and 283.15°C for carbon tetra-
chloride.

ITI(b). The System Acetone-Benzene

The gas-liquid critical temperatures have been measured for
this binary mixture over the whole concentration range. The data are

represented in Table XIII. The concentrations are given in mole-
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TABLE XI

Vapor Pressure of Chloroform

Pressure (Cm *Calculated Delta P atm =
Sample Temp.(oK) of Hg at 0°C) Pressure(atm) Pressure(atm)(Pobs— Pcalc.)
1 374.55 245.7 3.233 3.180 +0.053
2 384.85 313.2 4.121 4,113 +0.008
3 392.35 371.4 4,887 4.912 -0.025
4 400.65 450.8 5.932 5.933 -0.001
5 408.85 537.6 7.074 7.086 -0.012
6 417.85 642.5 8.454 8.529 -0.075
7 424,45 739.8 9.734 9.734 0.0
8 433,15 865.4 11.39 11.72 -0.33
9 440.75 989.6 13.02 13.18 -0.16
10 446,35 1093.5 14,39 14.56 -0.17
11 453.65 1250.1 16.45 16.54 -0.09
12 460.25 1401.3 18.44 18.49 -0.05
13 469.45 1628.6 21.43 21.46 -0.03
14 480.55 1963.2 25.83 25.60 +0.23
15 486.85 2177.3 28.65 28.20 +0.45
16 492.75 2388.5 31.43 30.82 +0.61
17 498,45 2592.7 34.11 33.47 +0.64
18 504.35 2815.1 37.04 36.39 +0.65
19 510.65 3040.3 40.00 39.58 +0.42
20 518.05 3313.6 43,60 43.53 +0.07
21 525.85 3609.7 47.50 47.94 ~0.44
22 531.45 3818.9 50.25 51.21 -0.96
23 533.35 3890.8 51.19 52.32 -1.13

Standard Deviation = 0.064 atm.

*Values were calculated from equation (105) using the constants given

in Table XVIII.



FIGURE 14. Vapor Pressure of Chloroform from 100°C to Tc’
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TABLE XII

Vapor Pressure of Carbon Tetrachloride

Pressure (Cm

*#Calculated

129,

Delta P atm =

Sample Temp.(°K) of Hg at OOC) Pressure(atm) Pressure(atm) (Pobs— Pcalc.)
1 374.65 153.1 2.014 2.008 +0.006
2 383.00 187.3 2.464 2.473 ~0.009
3 389.50 219.8 2.892 2.891 +0.001
4 394.00 244.5 3.217 3.210 +0.007
5 397.25 262.4 3.453 3.457 -0.004
6 401.50 287.9 3.788 3.801 -0.013
7 405.70 316.7 4.167 4,167 0.0
8 411.30 357.3 4,701 4.695 +0.006
9 415.65 382.8 5.037 5.129 -0.092

10 418.95 417.4 5.492 5.493 -0.001
11 420.80 438.6 5.771 5.707 +0.064
12 425.50 475.2 6.253 6.253 0.0
13 433.05 554.1 7.291 7.233 +0.058
14 436,75 587.2 7.726 7.739 -0.013
15 444,00 668.8 8.800 8.824 -0.024
16 448,05 719.8 9.471 9.482 -0.011
17 453.30 792.5 10.43 10.40 +0.03
18 458.85 869.9 11.45 11.41 +0.04
19 463.70 941.2 12.38 12.36 +0.02
20 469.55 1034.4 13.61 13.58 +0.03
21 475.75 1136.5 14.95 14.98 -0.03
22 481.90 1248.4 16.43 16.45 -0.02
23 487.55 1357.7 17.86 17.91 -0.05
24 493.10 1473.4 19.39 19.43 -0.04
25 498.45 1597.5 21.02 21.01 +0.01
26 504.20 1735.6 22.84 22.80 +0.04
27 508.40 1837.5 24.18 24.16 +0.02
28 513.15 1962.3 25.82 25.79 +0.03
29 516.25 2047.1 26.94 26.90 +0.04
30 520.70 2174.8 28.62 28.56 +0.06
31 524.60 2284.3 30.06 30.04 +0.02
32 529.20 2428.0 31.95 31.92 +0.03
33 532.75 2544.7 33.48 33.42 +0.06
34 537.30 2684.3 35.32 35.37 -0.05
35 540.90 2815.5 37.05 37.05 0.0
36 544.50 2943.0 38.72 38.75 -0.03
37 547.95 3071.2 40.41 40.43 -0.02
38 550.10 3155.4 41.52 41.54 -0.02
39 553.25 3283.7 43,21 43.19 +0.02
40 554.70 3348.2 4 .06 43.99 . +0.07

Standard Deviation 0.038 atm.

*Values were calculated from equation (105) using the constants given

in Table XVIII.



FIGURE 15. Vapor Pressure of Carbon Tetrachloride from 100°C to Tc'
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TABLE XIII

Gas—-liquid Critical Temperatures of the System Acetone-Benzene

Composition of the Mixture

27

Mole Fraction Surface Fraction Experimental 12
No Acetone Acetone Critical Temp.(°C) .TZIf¥_TZ;
1 0.0925 0.0997 283.95 -0.004
2 0.1580 0.1690 279.70 ~0.011
3 0.2160 0.2300 276.75 ~0.009
4 0.3290 0.3480 | 270,20 -0.010
5 0.4410 0.4620 264.00 -0.010
6 0.5440 0.5640 258.90 -0.009
7 0.6530 0.6720 252.95 -0.009
8 0.7640 0.7790 247.35 -0.008
9 0.8250 0.8366 244,10 -0.008
10 0.8690 0.8781 241,55 -0.010
i1 0.9370 0.9410 238.20 -0.009
Value of the correlating parameter T19 selected = ~0.0096.

See Appendix.



FIGURE 16. Gas-Liquid Critical Temperatures of the Benzene-Acetone

System as a Function of Mole Fraction and Surface Fraction.
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fraction as well as surface-fraction (equation 88). These data are
plotted in Figure 16, which depicts the variation of the critical
point with mole-fraction, and surface-fraction of the mixture. The

. ' o
uncertainty of the measurements was *0.1°C.

1v. VAPOR—LIQUID EQUILIBRIUM

The experimental data obtained for saturation vapor pressure
measurements of seven mixtures of the system acetone-benzene covering
the whole range of composition from a temperature of 100°C and a
pressure of about 2 atmospheres to the highest temperature and pressure
at which liquid and vapor coexist are summarized in Table XIV. Figure
17 shows the constant composition plots of the relation between pressure
and temperature at the bubble-points of the acetone-benzene system.

From a large-scale plot of this nature the isothermal experimental data
required for the correlation and thermodynamic treatment were read as
indicated in a later chapter.

The results obtained in the static method of determination of
vapor-phase compositions in equilibrium with liquid-phase are presented
in Table XV. The isothermal liquid-vapor equilibrium data are plotted
in Figure 18. The calibration curve of refractive index vs. composition
of acetone-benzene system was plotted in a large-scale graph from the
data listed in Table XVI. This plot was not far from a straight line

when the composition was expressed as weight fraction.



TABLE XIV
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Experimental Saturation Pressure of the System Acetone-Benzene

Saturated Saturated Saturated
Temp.OC Pressure,atm. Temp.OC Pressure,atm. Temp.°C Pressure,atm.
Composition of the 233.85 28.49 132.65 5.886
mixture 0.093 mole 241.90 31.76 140.10 6.823
fraction acetone. 248.45 34.54 149.90 8.250
255.60 37.78 157.55 9.621
99,85 2.083 259.55 39.69 165.40 11.22
110.05 2,808 265.30 42.39 173.95 13.08
117.45 3.243 268.35 43.81 178.50 14.19
127.35 3.983 270.10 44.79 187.05 16.26
134.60 4,610 . 193.60 18.14
143.35 5.427 Composition of the 144 75 20.11
152.70 6.634 mlxtur§ = 0.332 mole 207.35 29 .74
161.55 7.842 » fraction acetone. 216.00 25.99
173.30 9.780 100.05 2,481 222.95 28.90
185.75 12.30 108.55 3.170 230.50 32.18
194.05 14.18 114.60 3.625 238.55 35.88
207.30 17.36 123.50 4,395 244,70 38.67
216.65 20.08 132.35 5.390 249.85 41.18
223.50 22.39 140.65 6.402 257.60 44,71
231.65 25.18 149.85 7.635 260.10 45.95
243.30 29.70 157.65 8.946 Composition of the
251.55 33.08 168.50 10.98 mixture = 0.657 mole
258.10 35.92 175.95 12.44 Fraction acetone.
263.15 38.19 183.50 14.18
269.25 40.92 190.45 15.92 99.85 2.996
271.50 41.89 196.70 17.80 107.50 3.605
.. 204.50 20.24 115.30 4,421
Composition of the — ,yq 55 22.48 122.55 5.220
mixture = 0.209 mole  ,q3 g9 25.17 127.65 5.923
fraction acetone. 224 .75 97 .43 134 .70 6.907
99.95 2,275 231.55 30.34 143.15 8.285
108.50 2.846 238.30 33.19 149.60 9.496
116.25 3.368 246.65 36.89 157.55 11.19
125.30 4,052 254,85 40.70 165.85 12.96
135.55 5.246 259.05 42 .64 174.80 15.20
145.50 6.368 261.40 43.78 179.50 16.41
154, 7.645 L. 186.30 18.44
161,82 8.683 Composition of the 4, 79 21.39
170.50 10.42 mixture = 0.438 mole ;49 45 23.16
182.35 12.79 fraction acetone. 207.50 26.37
192.55 15.26 99.90 2.645 214,05 29.13
203.70 18.04 105.60 3.096 221.35 32.47
210.50 20.26 112.45 3.763 227.50 35.31
217.65 22.60 119.85 4,398 235.95 39.26
225.50 25.28 125.60 4.947 242 .35 42.24



TABLE XIV(Cont'd)
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Experimental Saturation Pressure of the System Acetone-Benzene

Saturated
Temp,OC Pressure, atm.
247.60 44,76
250.05 45.99
Composition of the
mixture 0.761 mole
fraction acetone.
99.95 3.166
109.55 4,089
117.35 4.888
124.60 5.820
132.50 6.995
139.95 8.226
147.50 9.689
156.70 11.62
164.85 13.63
172.55 15.59
179.90 17.50
188.65 20.39
196.30 23.20
202.55 25.80
210.10 29.08
216.80 32.16
222.55 35.01
224 .65 36.02
225.40 36.32
232,50 39.83
Composition of the
mixture 0.872 mole
fraction acetone.
99.85 3.340
107.70 4.163
116.40 5.196
123.85 6.193
129.90 7.089
139.65 8.786
144 .35 9.608
149.95 10.69
157.85 12.57
164.05 14.12
174.80 17.09
181.95 19.39

Saturated
Temp . °C Pressure,atm.
189.50 22.06
198.95 25.62
208.40 29.96
215.35 33.39
221.45 36.50
225.15 38.49

Composition of the

mixture 0.151 mole
fraction acetone.
261.70 39.11
263.35 39.84
265.80 40.88
267.65 41.77
269,30 42.50
270.80 43.29
271.55 43.63



FIGURE 17. Lines of Constant Composition on a Pressure-Temperature

Diagram.
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TABLE XV 137.
EXPERIMENTAL VAPOR~LIQUID EQUILIBRIA OF THE SYSTEM
ACETONE-BENZENE AT DIFFERENT ISOTHERMS

Compositions Compositions Compositions Compositions
Mole Fraction Mole Fraction Mole Fraction Mole Fraction

Acetone in Liquid Acetone in Vapor Acetone in Liquid Acetone in Vapor

T = 100°C 0.842 0.885
0.085 0.207 0.885 0.913
0.149 0.285 T = 200°C
0.177 0.325 0.105 0.154
0.222 0.387 0.236 0.312
0.284 0.421 0.348 0.445
0.371 0.543 0.413 0.507
0.378 0.558 0.540 0.635
0.439 0.609 0.638 0.723
0.510 0.667 0.735 0.802
0.548 0.699 0.796 0.848
0.611 0.742 0.892 0.918
0.635 0.764 T = 2259
0.758 0.843 0.116 0.155
0.784 0.865 0.208 0.308
0.862 0.913 0.260 0.360
T = 125°C 0.320 0.403
0.100 0.186 0.432 0.513
0.168 0.293 0.576 0.661
0.247 0.393 0.700 0.764
0.364 0.518 0.822 0.860
0.456 0.611 0.899 0.920
0.575 0.707 T = 250°C
0.704 0.799 0.096 0.113
0.816 0.875 0.194 0.225
0.880 0.917 0.280 0.328
T = 150°C 0.400 0.451
0.070 0.126 0.499 0.539
0.127 0.221 0.597 0.622
0.188 0.301 0.656 0.669
0.237 0.356 T = 260°% V
0.321 0.450 0.066 0.073
0.429 0.559 0.162 0.184
0.534 0.655 0.261 0.289
0.622 0.729 0.360 0.385
0.732 0.810 0.427 0.442
0.789 0.850 T = 270°C
0.860 . 0.903 0.101 0.108
T = 175°C 0.141 0.149
0.086 0.144 0.186 0.196
0.146 0.220 0.226 0.233
0.218 0.311
0.305 0.411
0.401 0.517
0.510 0.621
0.625 0.720
0.741 0.812



FIGURE 18. Liquid-Vapor Composition Equilibrium Curves for the
System Benzene-Acetone at 100°, 125°, 150°, 175°, 200°,
225°, 250°, 260°, and 270°%C.
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TABLE XVI

DENSITY AND REFRACTIVE INDEX DATA FOR THE

Mole Fraction

SYSTEM ACETONE-BENZENE

Sample Acetone
1 0.0000
2 0.0920
3 0.1895
4 0.2364
5 0.2986
6 0.3321
7 0.4076
8 0.4692
9 0.4900

10 0.5552
11 0.5608
12 0.6629
13 0.7262
14 0.7691
15 0.8080
16 0.8946
17 1.0000

Density, dzs

Refractive Index n§5

O.
.8663
.8592
. 8557
. 8506
. 8481
. 8417
.8365
. 8346
. 8288
.8283
. 8188
.8127
. 8084
. 8046
. 7956
. 7842

S O O O O O O O O O o o o o o o

8734

el T e T R T S S R R R e T e e

.4979
.4879
4764
L4704
L4624
L4584
L4484
L4397
L4364
L4279
L4264
. 4105
L4014
. 3954
.3883
L3745
.3563

139.
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CHAPTER V

DISCUSSION
I. CORRELATION OF DATA

I(a). Critical Constants

Several empirical methods for estimating the critical constants
of a pure compound have been suggested in the literature. In a thorough
study of the literature Reid and Sherwood (169,170) have recommended
certain methods on the basis of the degree of agreement between the
calculated and the experimental values. Kobe and Lynn (159) have also
reviewed many of the estimation methods. Later, Moritz (171) suggested
an empirical equation to calculate the logarithmic values of critical
temperatures of different types of compounds. He wrote

log TC =b log (n+ ¢c) +4d (93)
where b, ¢ and d are constants characteristic of each homologous series.
Thodos (172) has developed a method for the calculation of critical
constants through the use of group contributions specific to various
types of carbon atoms. These group contributions are added to produce
the van der Waals' constants, from a consideration of the molecular
structure of the hydrocarbons only, including the aliphatic, naphthenic,
and aromatic types, and this in turn permits the calculation of the
critical temperature, pressure, and volume. For a pure substance the
critical temperature and pressure are related to the van der Waals'

constants a and b by the relationships

8a Jp—
To= Zrp 2P = 592

(94)
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conversely, equation (94) permits the calculation of the van der Waals'
constants from available critical temperatures and pressures:

4z 27R%T.? ip - Rlc
64p. TP T Bp_ (95)

By means of equation (95) Thodos evaluated both van der Waals' constants
(a and b) from the literature data on seventy-five saturated and un-
saturated aliphatic, naphthenic, and aromatic hydrocarbons and

tabulated them (172). I have calculated the critical temperature and
pressure of acetone by the method suggested by Thodos, and compared them

with the results obtained in this study. The structure of acetone

H3C - C —-CH3

0
shows that it contains two type-1 (methyl group) carbons (Table I in
both reference 172(e) and 172(f)), and one carbonyl ( —g— ) functional

group. The number of functional atoms is 4. From the group contri-

butions presented in Thodos' articles, a2/3 and b3/4 are calculated as
follows:
2 carbon atoms (type - 1) 2(15,035) 2(11.435)
1 carbonyl group 32,400 11.35
a2/3 = 62,470 b3/4 = 34.26

These values yield the following calculated van der Waals' constants:

15.614 x lO6 (cc./gm. - mole)2 atm.

a

b 111.26 cc./gm. - mole

Equation (94), then yields

_ 8(15.614 x 10°)
27(82.055) (111.26)

= 506.8°K

T
c
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6
~15.614 x 10 B
Fe T 27(111.26)2 = 46.7 atm.

The values calculated by Thodos' method for acetone agreed well with
the critical temperature (508.15°K) and critical pressure (46.96 atm.)
obtained experimentally in this research. WNevertheless, it should be
emphasized that Thodos' method is only empirical and equations (94)

and (95) are valid to the extent van der WaaisY development is correct.
It has long been recognized (74) that the selection of any particular
pair of independent quantities from PC, Vc’ and TC permits different

expressions for a and b by elimination of the dependent quantity through

PeVe
Y
C

= 0.375, which is based on van der Waals'development. Martin
(74) further says that this inconsistency is partially resolved if a and

b are computed simultaneously from the same pair of independent quantities.
Thodos et al. (75) have indicated that the gaseous state behavior‘based

on van der Waals' treatment is acceptable for subcritical temperatures.

The critical temperature of a substance is a reproducible and
directly observable property, and so is the critical pressure. However,
because of the difficulties discussed by Campbell and Chatterjee (173),
the critical pressures in this research were obtained by an extension of
the log p versus 1/T line to critical temperature: the agreement with the
latest figures is good as is evident from a comparison of Table IV (p.82) with
the following experimental values obtained in this study

46.96 atm.

Acetone, PC

Benzene, PC 48.22 atm.
Chloroform, Pc = 52.59 atm.

Carbon Tetrachloride, PC = 44,98 atm,
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On the other hand, the critical density can only be obtained by
extrapolation from results obtained at lower temperatures and this

is the most difficult of the three constants to measure accurately.

The method which is probably the best, and is certainly the most commonly
used, is to extrapolate the mean of the orthobaric liquid and vapor
densities up to the critical temperature. It can be shown (24) that

the classical description of the critical region requires that the
critical density should be equal to the arithmetic mean of the orthobaric
densities at temperatures just below the critical.

In a very interesting paper Mathias (174) discussed the law of
rectilinear diameters, discovered in 1886, by Cailletet and himself (175),
and the law of the corresponding states of matter. The law of Cailletet
and Mathias may be stated simply in this way ~- "The means of the densities
of liquid and saturated vapor for any stable substance are a rectilinear
function of the temperature". This was shown to be experimentally true
by Cailletet and Mathias (175) for a considerable number of substances,
though it was not strictly applicable in all cases. It was pointed out
by Guye (176) that the law did not, as a rule, apply at all for substances
the molecules of which differed in complexity in the gaseous and liquid
states. For example, acetic acid vapor is known to dimerize and therefore
this law does not apply for such associating molecules. This is under-
standable, since the thermodynamic properties of associating vapors do not
follow the general trend of normal vapors as was shown by Campbell,
Kartzmark and Gieskes (141). Cailletet and Mathias thought at first that
the mean density line was parallel to the temperature axis but it is

now known that it has a slight negative slope and a very small but usually
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negligible curvature as was first shown by Young (65). This line
may be represented, by

5 (pg +p,) =a~-bt (96)

This line intersects the coexistence curve at the critical point.
Therefore,

5 (pg o) =po +tDb (t - t) (97)

The parameters a and b are positive. This empirical equation holds
over the whole liquid range, but is most commonly used to fit measure-
ments of py and o, from about 50° to 3°C below TC, so as to obtain

e by extrapolation. If, however, the critical density be calculated
from the mean densities at low temperatures (say below the boiling-
point) only, the error may be considerable. The critical densities for
the following substances were therefore obtained by application of the
law of rectilinear diameters to the data in the temperature range of

50°C below the critical temperature:

Acetone, 0. = 0.269 gm/cc.
Benzene, P. = 0.306 gm/cc.
Chloroform,pc = 0.491 gm/cc.

Carbon Tetrachloride, o, = 0.557 gm/cc.
It was thought for a time that the critical volume could be directly
determined by causing the disappearance of the meniscus to take place
just at the top of the tube. It was, however, pointed out by Gouy (177)
that, owing to the extreme compressibility of a substance at its critical
point, the density of the column of fluid varies very considerably at

different levels. The small hydrostatic pressure of the fluid above a
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given level is quite sufficient to cause a considerable compression of
the fluid below that level. The true critical density is the demnsity
of the fluid at the level where the meniscus has disappeared. Above
that level the density is lower; below, it is higher. The mean density
is equal to the true critical density when the meniscus disappears at
about the centre of the column. This is a subjective observation. The
matter is further complicated by the occurrence of opalescence phenomena
in the neighborhood of the critical point. The method of the rectilinear
diameter, whatever may be its theoretical basis, or lack'of it, does in
fact work rather well, if the true values of the orthobaric densities
are known. Guggenheim (178) has shown that the coefficient b in equations
(96) and (97) is close to (3p,/4T.) for the inert gases, neon, argon,
krypton and xenon. The numerical factor is smaller than 3/4 for hydrogen
and helium and a little larger for other gases.

According to the classical theory the co-existence curve has
a rounded top which is quadratic in volume (24). The order of the curve
depends on the order of the first non-vanishing derivative of P with
respect to volume. The conditions which characterize the liquid-vapor

critical point on the P-V~T surface for a pure substance are:

2 n
(2%' =0, (8 P) =0, ceivniansn s CQ“B) < 0. If the critical

2 n
oV TC oV TC

isotherm is to be a continuously differentiable function, thermodynamic
stability requires m to be an odd integer in the first nonzero derivative
(24) . TFor a classical or van der Waals' fluid, the familiar value of

n is 3. The thermodynamic similarities of single- and two-component
systems have been discussed by Rice (25). The corresponding conditions

for a critical-solution point in a two-component system may be expressed
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as derivatives of the chemical potential with respect to mole-fraction.

There have been several experimental and theoretical investi-
gations to find the order of the first nonvanishing derivative (25,51, 58,
59,61,179.to 187) which has been used as the criterion for determining
the shape of the coexistence curve. From their measurements of the
compressibility of xenon in the critical region, Habgood and Schneider
(180) found the critical isotherm considerably flatter than that

2
corresponding to a van der Waals' fluid. The function QEQE)

V2 T
c
density has aninflection at or very near the critical density indicating

versus

3kP,
that (——H) must vanish if the isotherm is continuous. The third
VH
c

derivative was shown to be small, and they suggested that it may also
vanish. Zimm (51,179) from an analysis of his light-scattering data

in the critical-solution region of the system perfluoromethylcyclo-
hexane-carbon tetrachloride, found evidence that the third derivative of
the chemical potential tends toward zero. When Edwards and Woodbury (182)
first published and treated their data on the coexistent curves of helium
near its critical temperature, they used the variables of reduced volume
and reduced temperature. Recently Tisza and Chase {186) have re—examined
the data of Edwards and Woodbury, using the variables of reduced density
and reduced temperature. Tisza and Chase show that the use of the reduced
density and reduced temperature leads to functions that are more linear
and more coincident than when the reduced volume and reduced temperature
variables are used. The same is true for a van der Waals' gas. From an
analysis of their data Edwards and Woodbury found it necessary to modify

slightly and extend the Landau-Lifshitz theory (181) of the properties of
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a substance "near" the critical point to force agreement with their
experimental data. This modified theory gave excellent agreement with
their experimental values of the molar volumes of saturated helium-4

within about 0.001 degree of the critical temperature. This agreement

. . 33p
is taken as evidence that 3 is negative at the critical point
c
~- in clear contradiction of theories which suggest that this derivative

is zero at TC° According to Landau and Lifshitz (181) the conditions

2P
oV’ T

3%p

3% s .
( = 0, (aVZ = 0 and (3V3)T < 0 hold at the critical point. The

fact that the third derivative is negative has never been shown experi-
mentally except for Edwards and Woodbury's work which might be a parti-
cular quéntum effect. Rowlinson (22) has suggested that the second
derivatives (§§%> and C%g%) should both vanish at the critical~solution
point. Scott (188) quotes calorimetric measurements on the system

n - C6Hl4 + n - C6F14 to support this conclusion. Dunlap and Furrow (61)
report that their data show this tendency but the condition is not firmly
resolved. They further say that the third derivatives, however, clearly
vanish. By analogy with the vanishing of the third derivatives for the
Vélume and enthalpy of mixing at or near the critical-solution point,

53
they conclude that ¢ Vg) for a single component system.also vanishes.

3 To

Therefore, it cannot be definitely concluded whether the first four
derivatives of pressure with respect to volume (at constant temperature)
vanish at the critical point or not, but it seems reasonable to assume
that the first two derivatives actually do vanish whereas the vanishing
of the third and fourth is probable. The measurement of the critical

constants by finding the point of zero slope and of inflection on the
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critical isotherm is therefore difficult, as was discussed in detail
in Chapter I.

It has been shown repeatedly (21,145,178 and 189 to 192) that
the variations of both orthobaric densities with temperature are re-

1
1/3, not (TC - T)7,

presented by a leading term proportional to (TC - T)
A coexistence curve of this type was first proposed by Goldhammer (189)

in 1910 and has more recently been used to good advantage by others
(21,145,178,192). Experimentally it has been found by these investigators
that the difference (pv - pz) varies as the cube-root of (TC -~ T) in

the neighborhood of the critical point, so that neither the square nor

the fourth-root corresponds to the facts. In order to show that the

principle of corresponding states applied to two-phase equilibrium

between liquid and vapor, Guggenheim (193) plotted the reduced

temperature versus the ratio %n. of the density p of either coexisting
c
phase to the critical density, p The curve drawn had the remarkably
c
simple formula
1/3
o 3 T 7 T
— = 4 = - + L =
et 1t A-p) g @) (98)

where the plus sign referred to the liquid and the minus sign to the vapor.
A large amount of experimental evidence has shown that, for binary liquid
mixtures close to the critical solution region, the coexistence curves
are cubic, i.e.,

(' - x" =k (@ - D3 (99)
where (x' - x") is a measure of the difference between coexisting phases.
Campbell and Kartzmark (145) carried out investigation of several systems

across the complete range of composition and obtained two straight lines,
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presumably intersecting at (TC - T) = 0 and at the critical composition.
Work on some systems (53), for example, suggests that this relation does
not hold at temperatures very close to the critical solution temperature,
‘and in this region, the coexistence curve has a flat top. For some other
systems Kreglewski (194) found a fractional power other than 1/3 as the
temperature approached the critical solution temperature. He suggests
that the coexistence curve will always appear to be very flat, but
whether it is truly horizontal is doubtful. The outstanding experimental
work of Thompson and Rice (49) referred to in Chapter I, demonstrates
that the coexistence curve follows a cubic relation to within 0.0001°C

of the critical solution temperature with no evidence of an apparent

flat region. This means that the nose of the curve representing, say,
congruent concentrations in Ll;ﬁth critical phenomenon, or orthobaric
densities in L=V equilibrium, is probably rounded but appears flat

due to the limitation of experimental conditions and the question reduces
to whether or not the curve is flatter than the cubic relation requires
(173). Recent work of Campbell and Kartzmark (1453) might be taken to
demonstrate that some systems yield two straight lines intersecting at
the critical solution temperature, while others, which also present two
straight lines, show a gap at the critical solution temperature, when

. 1
the two congruent concentrations are plotted against (TC - T) /3, On

1/3 plot should

this basis, the systems showing a gap on the (TC - T)
represent those systems having a horizontal nose on the usual composition
versus temperature plot. I share their suspicion and quote from their

publication, "We are doubtful, however, whether this conclusion is

justified".
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- T)l/3 law to within 0.014°C

Lorentzen (44) confirmed the (TC
of the critical temperature of carbon dioxide in a vertical tube, that
is, under conditions where Schneider (21) found a flatter, but still
rounded, curve. To be exact, he used an exponent of 0.357 and notl/3,
as this was the value suggested earlier by Michels et al. (195) for
carbon dioxide. The difference between these exponents would be within
experimental error, at a temperature so close to the critical point. The
straight lines obtained in the cube-root plot for acetone, benzene,
chloroform and carbon tetrachloride are shown in Figures 19 to 22 with
the corresponding data reported in Tables V toVIII. One would expect these
straight lines to intersect at the critical volume, at the critical
temperature. Work by Campbell and Kartzmark (145) on the analogous
critical phenomenon, Ll;:3L2, indicates that this is not always the

1/3 relation is obeyed, the slope

case. When, however, the (TC - T)
of the P versus V curve, in the neighborhood of TC, will be very slight.
The crux of the problem therefore is: is the slope of the curve, near

T)l/3 relation? If it is,

Tc’ less than that predicted by the (Tc -
the existence of a horizontal might be conceded. To settle the point
experimentally, materials of the highest purity must be used and the
temperature controlled with great accuracy, say to +0.001°. My
temperature control was only good to *0.03° and therefore my conclusions
are only valid to this extent. Thus, for example, while I am in a
position to say that, although at a temperature of (TC - 0.030) two
different phases of distinctly different orthobaric volumes are detect-

o .. . . g
able, at a temperature 0.03" higher no meniscus is detectable in an

ordinary telescope: an interferometer technique might, and probably
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FIGURE 19. Plot of dz and dv versus (TC for Acetone.
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FIGURE 20. Plot of dg and dv versus (TC
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FIGURE 21. Plot of d2 and dV versus (TC for Chloroform.
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would, reveal differences in refractive index with diffefences in
height which however will not prove anything. 1In the case of the

$V critical point, certain characteristic phenomena, such as the
occurrence of fluctuating striae, are usually considered peculiar to
the critical volume. This has never been proved, however, and even
if it is found that such phenomena can be observed over a range of
volume, their occurrence proves nothing. The point in which I am
interested is whether or not a horizontal really exists at the tempera-
ature of disappearance of the meniscus. It would mean experimentally
that, at the temperature of disappearance of the meniscus, there is a
demonstrable difference in orthobaric volumes of liquid and vapor. It
has been pointed out in Chapter I that Rice (25) arrived at the con-
clusion that the area of heterogeneity is bounded at the top by a
horizontal straight line at TC (identified by him with Tm), i.e. there
is no such thing as a critical volume but discrete orthobaric volumes
of liquid and vapor exist, even at the critical temperature. This
means that critical phenomena (fluctuating striae, sharp disappearance
of the meniscus, etc.) will be observed over a range of total volume
of the system. It is notorious among workers (20,50,173,196,197) in
this field that this is so, although this does not necessarily establish
Rice's point of view of associating molecules in the process of condensa-
tion of vapor to liquid. Though I have observed critical phenomena over
a finite density range for all the pure substances I have investigated,
it cannot be concluded that the top of the observable coexistence curve
is horizontal over a finite density range. I believe that if hydrostatic

and gravitational effects are taken into account, the classical van der
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Waals isotherm can account for a large portion of the flat-top co-
existence curves observed in this work (vertical sealed-tube technique).
In any case, at the present time it is not possible to resolve the
problem since, even if the temperature is controlled to the extent that
Thompson and Rice (49) did for their measurements, it can always be
argued that a better temperature control will yield better "roundness'
of the curve. This problem cannot be solved unambiguously by direct
experimental study since in practice it is impossible to distinguish
between a straight line and a curve of high degree or even a parabola
with a high parameter.

No attempt has been made in this work to recheck the power 1/3.
The validity of the cubical relation has frequently been confirmed (21,
145,178,189 to 192), despite the lack of rigidity in its deduction.
Others have proposed a power other than 1/3 on the basis of theoretical
and sometimes experimental considerations, for example, Fisher (39) has
suggested a power of 5/16 (or 0.31250). I have found no need in this
work for such a relationship since the difference between these exponents
would be within my experimental error, and in any case my arguments do
not depend to any extent on the validity of the cube-root law.

It is intevesting to note that in an attempt to deduce the
exponent of the critical isotherm, § in Table I, Scott (page 25,
reference 22) plotted data on mixtures of CF4 + C2H6’ at about 0.5°
above the critical solution temperature and obtained a very flat vapor
pressure curve consistent with an exponent 8§ = 4. He further suggested
that it would not be difficult to make the data consistent with the

exponent § = 5.
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The different values of the critical exponents which fit well
the measurements of the phase boundaries suggest that the behavior
close to a critical point is insensitive to the detailed nature of the
intermolecular forces. It may however be observed that any value of
the exponent 8 between % and % is inconsistent with the assumption that
the critical point is a nomsingular point of the free energy in the
sense discussed in the introduction (Chapter I).

Be that as it may, the observed fact remains that, at the critical
temperature, the meniscus disappears sharply in the body of the liquid,
with accompanying phenomena usually described as "critical”, over a
rather extensive range of total demsity (or volume) for all the four
pure compounds. It is an old observation, however, which has recently
been reaffirmed by Lorentzen (44) that the disappearance of the meniscus
in the body of the tube (and not by "moving out', as Lorentzen calls it)
is not confined to the critical volume. Therefore, in conclusion, it
may be said that this observation does not necessarily prove that the
nose of the curve of orthobaric densities versus temperature is hori-
zontal, as explained earlier.

A point which needs further clarification is the way in which I
obtained critical demsities for the pure substances in a recent publica-
tion (173). The critical density was obtained by extrapolation of plots
of o and 0y against the cube root of (TC - T), with the result that
my values are much lower for the three compounds I have reported, than
those reported by other workers (Table IV). The methods of obtaining
critical densities by extrapolation are empirical, so that it could be

argued that other methods than those currently in use are equally valid.
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The cube-root plot of the orthobaric densities should identically
converge at the critical volﬁme, at the critical temperature. That
this is not generally true is evident from the difference in values of
critical densities obtained by application of rectilinear diameter.
Benson and Copeland (198) have reported that a virial expansion of the
equation of state around the critical point could be used to derive an
equation of the form °v 4 _S_& - 2=% (1-%). A less detailed
c c c .

derivation has been shown (181,199) to lead to a similar relation with
k = 0. Interestingly enough, if the sums of the experimentally observed
specific volumes of coexistent liquid and vapor are plotted against
temperature, the points fall on an excellent straight line for data
within about 15-30°C of the critical temperature. Below a reduced
temperature of 0.95, this sum of coexistent volumes begins to show
deviations from the straight line relation. The law of rectilinear
densities, which seems to be obeyed experimentally over a much greater
range of temperatures, is of course inconsistent with the law of
rectilinear volumes presented in their publication. The two laws
appear to coincide within the accuracy of the data only if the tempera-
ture coefficient k is zero or very small.

A much more disturbing feature of the two laws however is that
if the coexistent volumes are extrapolated to the critical temperature,
the reciprocal of the intercept is not the same as that obtained from
the intercept given by the law of rectilinear densities. It has been
observed that the density predicted by the law of rectilinear densities
is about four percent higher for most substances than that given by the

law of rectilinear volumes. This is beyond the experimental errors
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in the determinations. There are no convincing theoretical or experi-
mental arguments available by which this anomaly can be resolved in
favor of one or the other extrapolation methods. There is a possibility
that one or both of these extrapolation methods is incorrect. The
method used by Campbell and myself (173) has never been attempted by

any other investigator. However, since I have chosen a different
method of extrapolation in the publication (173), T think I should

make it clear that it is the method, and not the values on which it is
based, that leads to an answer different from those to be found in the
literature (Table IV). In any case, I have now revised the values of
critical densities for those three pure compounds by applying the law

of rectilinear densities as tabulated earlier. The revised values agree
very well with the literature values. My orthobaric volume data for
benzene have been processed by Ambrose (200) and I quote from his
letter, " We have processed your values for benzene by our standard
programme to obtain the critical demsity from the law of rectilinear
diameters, and to fit equations for the variation in (pz -+ pv) and

1/3

(pz - pv) as power series in (TC - T) and (Tc - T) respectively.
From this we find your results give us a critical volume of 0.306 g./cc,
in very close agreement with the values of Young and of Bender, Furukawa
and Hyndman. In fact, the agreement throughout the whole range of your
experiemnts with those of Young is very good'.

Recently, Davis and Rice (60) have proposed a method to determine
the critical constants P TC and PC based on a set of assumptions which

are subject to further verification. They suggest that two different

Taylor series for pressure are required to account for a cubic~coexistence
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curve and for behavior in the "Vapor" and '"Liquid" single-phase regions
(see Page 22, Chapter I, this thesis). In spite of the apparent agree-
ment of their treatment with the experimental facts, it is still entirely
possible that no ordinary Taylor series is valid anywhere near the critical
point. They have suggested a method of determining the critical density

by means of saturation densities alone, avoiding the data or observations
of the critical temperature made by watching the meniscus disappear in

the critical region. They found that plots of (pl + pv) versus (p2 - q)3
were straight lines over a substantial range and the intercept of such

a straight line was taken as twice the critical density. This method

was first dealt with by Goldhammer (189) in 1910, bqt it seems to have
escaped the attention of the modern investigators. It has the advantage

of allowing computation of the critical density without regard to a
temperature scale or the choice of a critical temperatu?e. Once critical
densities are obtained in this way, critical temperatures can be ascertained
by the law of rectilinear diameters. Since the method used by Rice and
Davis is not based on exact relationships, the critical constants derived
from them cannot be expected to be exact, even if the experimental error

in orthobaric densities were vanishingly small. In view of this argument,

I have not attempted plotting my data by their method.

I(b). Density

Density curves of coexisting liquid and vapor phases of pure
substances are generally of the form shown in Figures 8 to 11. To
increase the accuracy of the rectilinear diameters, quadratic equations
have been used by Young (65). The relation serves to detect discrepancies

in observed data. The curvatures of the density curves increase rapidly



161.

in the region approaching the critical temperature. Francis (201,

202), in a comprehensive study of the density-temperature relationship
of a pure compound, showed that the saturated density of the liquid
phase, (pl i.e. under its own vapor pressure), as a function of tempera-
ture in degrees centrigrade, t, can be expressed by the four-constant

empirical equation

QQ=A+Bt+EEt

(100)
In this equation A is a constant, generally about 0.06 higher than the
density at ZOOC; B is the slope coefficient, a little lower than the
expansion coefficient at ordinary temperature; C is an integer, generally
from 6 to 10; and E is a number generally 34°C above the critical tempera-
ture. In a test of its applicability to hydrocarbons, Francis (201) and
Kay (203) found a reasonably good fit of the experimental data.

There are two distinct and not necessarily compatible reasons
for fitting an equation to data. One is simply to reduce the space
required for presenting the information; in this case the best fit
possible with the equation is desired. The other reason is to permit
extrapolation from the data. In this case a best fit to the experimental
data does not necessarily yield the best coefficients unless all the
data are of equally excellent quality and the equation is an accurate
model of the phenomenon. In correlating the demnsity data I have omitted
the observations which are within 5°C of the critical temperature. The
four constants in the equation were evaluated for all four pure compounds
with the aid of an IBM 360/65 electronic computer, using a multiple

regression method of analysis. The values of the constants and of

the calculated densities are given in Tables V through VIII and XVII.
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It will be noted that in most instances the calculated liquid densities
are within 0.0010 gm/cc of the experimental values listed in the tables,
which correspond with the experimental uncertainty of the data. According
to Francis, the constant C is an integer but it will be noted that my
values of constant C are not necessarily integral. Kay's analysis (203)
of liquid densities of the isomeric heptanes and isomeric octanes yielded
real values for C consistent with the results obtained in this work.

The statistical analysis of the liquid density correlation is
given in the following table (Table XVII). The coefficients were
determined by the matrix inversion method of least squaring. The low
values of standard deviations for the coefficients suggest that the
coefficients are highly significant (204). The multiple correlation
coefficient in each case is overwhelmingly significant. All the datum

points were given equal weight of 1.

TABLE XVII

STATISTICAL ANALYSIS OF EQUATION (100)

Acetone
COEFFICIENTS STANDARD DEVIATION
A = 0.840081 0.0
B = -0.961206 x 1075 0.186739 x 1074
C = -9.04112 0.124244
E = 269.0 0.0

Multiple Correlation Coefficient = 0.999894
Standard Error of Estimate = 0.141144 x 10~2
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TABLE XVII (Cont'd.)

STATISTICAL ANALYSIS OF EQUATION (100)

COEFFICIENTS
A = 0.934348
B = -0.102571 x 1072
C = -8.52229

= 323.0

Multiple Correlation

Standard Error of Es

COEFFICIENTS
A = 1.87908

B = -0.324651 x 1072
C = -0.125809 x 102
E = 297.0

Multiple Correlation Coefficient

Standard Error of Es

Benzene

STANDARD DEVIATION
0.0
0.958163 x 107>
0.914741 x 1071
0.0
Coefficient 0.999920
0.132441 x 10™2

timate

Chloroform

STANDARD DEVIATION
0.0
0.406807 x 1074
0.337744
0.0

0.999875
0.374888 x 10~2

timate

Carbon Tetrachloride

COEFFICIENTS
1.69534
-0.191825 x 10~
-0.145197 x 10°
317.0

2

4 O W P

Multiple Correlation Coefficient

Standard Error of Es

STANDARD DEVIATION
0.0
0.189715 x 1074
0.169265
0.0

0.999907
0.267937 x 1072

timate
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I(c). Vapor Pressure

The purpose of fitting vapor pressure data to an analyticai
equation over the complete range between boiling and critical points
is obvious. The thermodynamically exact Clapeyron equation (equation
16, Chapter I) yields with certain assumptions the simplest thecoretical
relation

log P = A - = (101)
where A and B are empirical constants. This is the Clausius-Clapeyron
equation which predicts that a plot of log P versus %—is a straight-
line. It is well-known that this is not so because (i)AH is not in-
dependent of T, (ii) liquid volume cannot be neglected, and (iii)the
vapor is not an ideal gas, at conditions even slightly removed from
ordinary temperatures.

In a extensive survey of experimental vapor pressure data for
the saturated hydrocarbons, Thodos (205) has pointed out that the plot
of log P versuS'% is not quite linear but really S shaped with a reversal
of curvature at an inflection point which for most substances occurs at
a reduced temperature of about 0.80 or 0.85. The effective reversal of
the logarithmic vapor pressure curves becomes conspicuous when a graphical
residual method is applied. The deviation of the logarithm of the
experimental vapor pressure from‘the calculated value, at a given
temperature, is defined as the graphical residual. The calculated
value may be obtained from a simple vapor pressure equation such as that

represented in equation (101) and a straight line may be drawn between

two reference points such as the boiling and critical points. This
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serves the purpose of checking the self-consistency of the results.
Although the vapor pressure relationship is well defined by this method
near the critical point, it fails considerably in accuracy at lower
vapor pressures. I have, therefore, not attempted any representation
of my data by this method. Waring (206) has suggested a criterion for
a qualitative test for the suitability of variqus vapor pressure
equations. From the Clapeyron equation he has derived a thermodynami-
cally exact equation

AR R d in?
AZ T d(1/T)

(102)
where Z, the compressibility factor is defined as usual by §¥u Then
the reproducibility of the curvature of log P versus 1/T is provided
by the form of the curve for AH/AZ as a function of temperature. In
the region below a reduced temperature of 0.80 or 0.85 (which is the
temperature of minimum AH/AZ), the first temperéture derivative of AB/AZ
must be negative and the second derivative positive. Equations which do
not lead to this should in general not be used for extrapolation, although
they may be used satisfactorily for interpolation of experimental data.
At temperatures above Ty = 0.85, the first and second derivatives must both
be positive. Approaching the critical point AH/AZ remains finite although
AH and AZ separately tend to go to zero. In view of this analysis by
Waring, vapor pressure equations should be very carefully selected to fit
the experimental data. Recently Ambrose et al. (207) have chosen the
following equations for their study

Cox (208), logyy P = A [} - (Tb/Ti] (103)

where loglo A= loglO A, + E(1 - TR)(O°85 - TR)

2

Cragoe (209), 1og10 P=A+B/T+CT + DT (104)



166.
Frost-Kalkwarf (210), log 10 P=A+B/T+C loglOT + DP/T2 (105)

In the above equations A, B, C, D, and E are constants, T is the

temperature in (°K), T. the reduced temperature, T, the temperature of

R b

the normal boiling point, and A, the value of A at the critical point
for equation (103). 1In addition to these three four-constant equations
Ambrose et al. (207) have also used a seven-constant equation for
representing their vapor pressure data. For very few substances

are data of sufficient precision available over a wide enough pressure
range to require more than four parameters. This is confirmed from
their conclusion that their seven-constant equation was only slightly
better than the Frost-Kalkwarf equation over the whole temperature

range, except for the range T, 0.95 - 1.00, where the seven-constant
EA

R
equation gave a markedly better fit than equation (105). I have
preferred to fit my data for four pure compounds to the Frost-

Kalkwarf equation which is a semi-theoretical equation. This vapor
pressure equation has received considerable attention because of its
ability to account for the vapor pressure between the boiling point

and the critical point, the range in which T am interested in this
work. In this semi-theoretical equation, the slight reverse curvature
in the plot of log P versus %’is explained on the basis of the nonideal
behavior of the vapor, together with the change in heat of vaporization
with temperature. If it is assumed that AH is linear with T and that
the van der Waals a/V2 term is a first approximation to the deviation

from the ideality, equation (105) is obtained by integration of the

Clapeyron equation (equation 16, Chapter I). In equation (105), A, B,
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and C are empirical constants, B and C being negative, and D is

related to van der Waals a by

a

D= 5 303R2

(106)

Thodos has shown that the van der Waals constant "a" is given by

equation (95). Thus, for the general case applicable to equation (105),
2
27 T

c 2
= —— — _— = 3 T The i
D eh % 2.303 X B, 0.18318 _C/PC . The evaluation of constants

A, B, and C has been carried out by multiple regression analysis. The
statistical analysis of the coefficients is given in Table XVIII, which
lists the values of the coefficients, the standard deviations in their
estimation, and the values of the multiple correlation coefficient, etc.
The regression coefficients are highly significant and the correlation
coefficient in each case is overwhelmingly significant. The calculated
values of the vapor pressure for each substance from equation (105),

and using constants given in Table XVIII, are tabulated along with the
experimentally observed values in Tables IX through XII. The agreement
with the observed values is fairly good for benzene, acetone and carbon
tetrachloride. Chloroform data seem to scatter, specially at high
temperatures, as evidenced by the large values of AP = P(obs.) -~ P(calc.),
which are tabulated in the sixth column of these tables. This is
probably due to the decomposition of this compound near the critical
temperature (see p. 79, Chapter III). For this reason, no attempt was
made to fit the vapor pressure data ofhchloroform to either Cox or

Cragoe equations. The analysis of data for benzene and carbon tetra-
chloride with Cox and Cragoe equations has beendone by Dr. J. F. Counsell
(211) of the National Physical Laboratory, England with the aid of a

digital computer (KDF9). The results are shown in Tables XIX and XX.



168.

In columns 5 and 7 of these tables are tabulated the values of AP.

TABLE XVIII

STATISTICAL ANALYSIS OF THE COEFFICIENTS OF EQUATION (105)

Acetone
COEFFICIENTS STANDARD DEVIATION
A = 0.261062 x 102 0.0
B = -0.269100 x 10% 0.948664 x 107
C = -7.14004 0.497585
D = 1007.0 0.0

Multiple Correlation Coefficient = 0.999897
Standard Error of Estimate = 0.427330 x 10-2

Benzene
COEFFICIENTS STANDARD DEVIATION
A = 0.131489 x 10° 0.0
B = -0.195618 x 10% 0.494399 x 102
C = -2.96899 0.248025
D = 1200.0 0.0

Multiple Correlation Coefficient = 0.999933
Standard Error of Estimate = 0.416288 x 10—2

Chloroform
COEFFICIENTS STANDARD DEVIATION
A = 0.220199 x 102 0.0
B = -0.24567 x 10% 0.137857 x 10°
C = -5.82143 0.706142 x 1071
D = 1001.0 0.0

Multiple Correlation Coefficient = 0.999997
Standard Error of Estimate = 0.756441 x 1073
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TABLE XVIII (Cont'd)

STATISTICAL ANALYSIS OF THE COEFFICIENTS OF EQUATION (105)

Carbon Tetrachloride

COEFFICIENTS STANDARD DEVIATION
A = 0.182145 x 102 0.0

B = -0.226846 x 10% 0.794815 x 102

C = -4.61431 . 0.397608

D = 1260.0 0.0

Multiple Correlation Coefficient = (0.999842
Standard Error of Estimate = 0.646184 x lO—2

The sum of residuals squared is also given at the end of Tables XIX
and XX. The values of the standard error of estimate, are reported

at the end of Tables IX through XII, which is defined in the usual way:

N
L _! 1 2
Standard deviation = o1 E <Pobs. - Pcalc.)]
1

1
%

where N is the number of measurements. The units of pressure and
temperature are given at the top of the individual column (1 atm. =

760 mm. Hg and (°K) = (°C) x 273.15). As has been discussed in

Chapter III, the observed pressure in the static method was calculated
from the equilibrium volume of air in the manometer by using van der
Waals' equation. Other equations of state gave variations within the
experimental error. Thus, using the Beattie-Bridgman equation, at
288.50°, i.e. 0.45° below the critical temperature of benzene, the
pressure calculated by van der Waals was 3636.7 cm Hg, by Beattie-
Bridgman 3651.2 ecm Hg, while the experimental figure of Bender, Furukawa,

and Hyndman (much the best figure) is 3641.0. The maximum error of
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TABLE XIX

TREATMENT OF VAPOR PRESSURE DATA FOR BENZENE BY
COX AND CRAGOE EQUATIONS

Constants for the Cox Equation‘thS) Céﬁstaﬁﬁs:for the Cragoe Equation (104)

log A, = 0.6408 A = 4+2.217305y +0
E =-0.2445 B = ~7.03573419 +2
Th = 346.10 C = +1.005633 -2
T, = 657.60 D = -6.508827y -6

T 0BS P OBS (mm
Sample (°k) Hg at 0°C) P COX  DELTA P P CRAGOE DELTA P
1 379.400  1737.00  1739.75  -2.75  1743.16  -6.16

2 382.550 1895.00 1870.68  4+24.32 1873.54  +21.46
3 386.900 2067.00 2064.73 +2.27 2066.81 +0.19
4 390.200 2225.00 2222.72 +2.28 2224.20 +0.80
5 394,000 2412.00 2416.79 4,79 2417.59 -5.59
6 395.950 2555.00 2521.64  +33,36 2522.09  +32.91
7 398.950 2705.00 2690.18 414,82 2690.11  +14.89
8 404,950 2987.00 3054.89 -67.89 3053.82 -66.82
9 411.300 3436.00 3483.71 -47.71 3481.68  -45.68

10 413,000 3546.00 3606.43 -60.43 3604.17  -58.17
11 419.400 4108.00 4100.23 +7.77 4097.20  +10.80
12 420.750 4217.00 4211.05 +5.95 4207.88 +9.12
13 425,400 4616.00 4611.37 +4.63 4607.80 +8.20
14 428.050 4878.00 4852.85  +25.15 4849,11  +28.89
15 433,500 5377.00 5381.32 4,32 5377.39 -0.39
16 436.750 5738.00 5717.73  +20.27 5713.77  +24.23
17 443,600 6517.00 6481.61  +35.39 6477.89  +39.11
18 444,650 6626.00 6605.53  +20.47 6601.88 +24.12
19 450.700 7391.00 7356.52  +34.48 7353.45  +37.55
20 451.650 7480.00 7480.32 ~-0.32 7477.37 +2.63
21 456.350 8101.00 8117.08 -16.08 8114.85 -13.85
22 458.850 8443.00 8472.67 =29.67 8470.89 -27.89
23 463.150 9099.00 9112.63 -13.63 9111.76 -12.76
24 467.650 9872.00 9822.00  +50.00 9822.24  +49.76
25 469.550 10158.00  10134.04  +23.96  10134.81 +23.19
26 477.300 11515.00  11486.85 +28.15 11489.99 +25.01
27 484.100 12799.00  12784.11  +14.89  12789.60 +9.40
28 493.100 14728.00  14668.56  +59.44  14677.32  +50.68
29 501.200 16523.00 16536.27 -13.27 16547.85 -24.85
30 508.400 18296.00  18339.64 -43.64  18353.30 -57.30
31 515.400 20214.00  20227.25 -13.25 20242.21 -28.21
32 526.000 23205.00  23347.54 -142.53 23362.26 -157.26
33 535.400 26247.00  26387.99 -140.99  26399.09 -152.09
34 540.900 28276.00  28289.48 -13.48 28296.39 —20.39
35 545.950  30068.00  30116.42  -48.42  30117.79 -49.79
36 550.350 31755.00 31772.08 -17.08 31767.08 -12.08
37 553.150 32824.00  32856.87 -32.87  32846.97 -22.97
38 558.450 35215.00  34976.94 +238.05  34955.76 +259.24
39 561.650 36367.00  36299.40 +67.60 36269.99 +97.01
Sum of residuals Sum of residuals
squared = squared =

+1.3307903 +5 +1.57163015 +5
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TREATMENT OF VAPOR PRESSURE DATA FOR CARBON TETRACHLORIDE
BY COX AND CRAGOE EQUATIONS

Constants for the Cox Equation (103) Constants for the Cragoe Equation (104)

log A. = 0.6475 A = +1.062382,, +1
E = 0.1719 B = -2.033738  +3
T = 349.71 C = -7.418258 ) -3
Te = 547.28 D = +5.463349 -6
T OBS P 0BS
Sample (°K) (mm Hg) P COX DELTA P P CRAGOE DELTA P

1 374.650 1531.00 1522.61 +8.39 1524.27 +6.73
2 383.000 1873.00 1878.29 -5.29 1879.45 -6.45
3 389.500 2198.00 2196.42 +1.58 2197.14 +0.86
4 394.000 2445.00 2439.50 +5.50 2439.91 +5.09
5 397.250 2624.00 2627.32 -3.32 2627.51 -3.51
6 401.500 2879.00 2889.15 -10.15 2889.05 -10.05
7 405.700 3167.00 3166.74 +0.26 3166.35 +0.65
3 411.300 3573.00 3567.43 +5.57 3566.69 +6.31
9 415.650 3828.00 3903.99  -75.99 3902.99  -74.99

i0 418.950 4174.00 4174.72 -0.72 4173.54 +0.46
11 420.800 4386.00 4332.49 453,51 4331.22 454,78
12 425.500 4752.00 4753.30 -1.30 4751.83 +0.17
13 433,050 5541.00 5492.02  +48.98 5490.31  +50.69
14 436.750 5872.00 5883.67 -11.67 5881.90 -9.90

15 444,000 6688.00 6710.77  -22.77 6708.99  -20.99
16 448.050 7198.00 7208.74  -10.74 7207.01  -9.01

17 453,300 7925.00 7894.41  +30.59 7892.83  +32.17
18 458.850 8699.00 8670.66  +28.34 8669.33  +29.67
19 463.700 9412.00 9394.17 +17.83 9393.14 +18.86
20 469.550  10344.00  10325.42 +18.58  10324.85 +19.15
21 475.750  11365.00 11385.58 -20.58  11385.59 -20.59
22 481.900  12484.00 12515.30 -31.30 12515.99 -31.99
23 487.550  13577.00  13625.12 -48.12  13626.48 -49.48
24 493.100  14734.00  14785.54 -51.54  14787.57 -53.57

25 498.450  15975.00 15973.01 +1.99 15975.68 ~0.68
26 504.200  17356.00 17328.06  +27.94  17331.36  +24.64
27 508.400 18375.00 18371.59 +3.41  18375.26 -0.26

28 513.150  19623.00 19608.65 +14.35 19612.63  +10.37
29 516.250  20471.00 20449.62  +21.38 20453.71 +17.29
30 520.700  21748.00 21704.84  +43.16 21708.93  +39.07
31 524,600 22843.00 22852.94 -9.94  22856.83 -13.83
32 529.200  24280.00  24266.84  +13.16 24270.21 +9.79
33 532.750  25447.00  25403.71  +43.29 25406.42  +40.58
34 537.300 26843.00 26921.14 -78.14  26922.60 -79.60
35 540.900 28155.00 28171.36 ~16.36 28171.47  -16.47
36 544,500 29430.00 29466.90 -36.90 29465.27  -35.27
37 547.950 30712.00 30752.30 -40.30 30748.59  -36.59
38 550.100 31554.00 31575.62  -21.62  31570.40 -16.40
39 553.250  32837.00 32813.58 +23.42 32805.77  +31.23
40 554.700  33482.00 33396.34  +85.66 33387.20 +94.80

Sum of residuals Sum of residuals
squared = squared =
+4.4042871) +4 +4.538068y, +4
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0.3% is about that of my experimental work.

Often, interpolations of vapor pressure data are necessary,
for example, in the calculation of derived thermodynamic properties.
It is best to relate log P and T by polynomial expressions which can
then be differentiated to give heat of vaporization, if the volumetric
data are also available. Chebyshev (212) discussed polynomials of an
orthogonal system to solve the problem of the best approximation of
continuous functions. Thus, T log lOP (mm) can be fitted to an
orthogonal series in T and the constants rearranged so that T lOglOP
is expressed as a Chebyshev series. It is then possible to write
T loglOP as

T loglo? = 1{2 a, + alcl (X) + 8.2C2(X) + e (107>

(o]

where a,, @y, a, .... are constants and Cq(x), C2(x), .... are
Chebyshev polynomials. Truncation may occur wherever desired by the
size of residuals and smoothness of fit, and x is defined by

2T - <Tmax + Tmin)
% = 7 S (108)
max min

Again, Dr. Counsell (Zli) has carried out the fits for me for the four
compounds. The program used by him gave fittings for each order of

1 to 6, and the values of residuals in T loglOP° From the lowest values
of residuals and smoothness of fit the orders of polynomials were
selected and these are tabulated in Tables XXT through XXIV. The

values of residuals squared are also given in these tables. The
constants of the fit are tabulated at the end. Dr. Counsell has

indicated the method of summation of the Chebyshev series by the
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TABLE XXI

POLYNOMIAL EXPRESSIONS FOR VAPOR PRESSURE OF ACETONE

Temp. %k T lOglo_P (mm) Residuals
+3e474650000004 02 +14293897499%s 03 +2046687504270 00
+3.8055000000s 02 +1e33985666499% 03 +1e460112333545 003
+3,8825000000, 02 +1e3999657700s 03 +4.07204404475-023
+3906499999%, 02 +14136204900x G2 ~3e2421448826w-01:
+369725000000, 02 +10469481464999y 03 ~8:588515546%1w~-01;
+4,0054999999, 02 +1e4925414569%9n 03 +1e20015892255 00
+4.0565000000, 02  +1e5338613499s 03 ~1e25441779%44 00
+4,0855000000, 02 +1e55685933995 03 -2.1517508439, 00:
+4,1325000000p 02 +1e59210957000 03 ~1.5844350400, 0032
+441895000000, 02 +1063646526000 03 -2.5019355279, 003
+4,2305000000, 02 +1e66709514000 03 1658867660425, 003
+4.2434999999, 02 1667730224990 02 241869001354, 003
+442905000000, 02 +1e704546773C0p 03 +6036510663]10, 003
+4,3304999999, 02 +1e74174808000 03 3032265252565 -013
+4437450000005 02 +1e77483917C0p 03 +1¢07914377000-013
+4,443499999%y 02 +108268804099 03 +664928046451055~013
+4,5325000000, 02 +108952351799, 03 +1019655035690-013
+4,6034999999, 02 +129493553300, 03 +1606224910765-013
+4.6284999999, 02 +1e9604704900% 03 9565126220801
+4,7145000000, 02 +2e032881856%9, 03 +1617051227365 003
+4,7575000000, 02 +2¢0660534000x 03 +7e681711241645-013
+4,8065000000y 02 +2:104690695%% 03 ~502743435745,5-013
+4,8484999999, 02 +201357619600p 03 +4.0837951004,-013
+40,8954999999, 02 +2¢172403C199% 03 ~401518472880-G1;
+4,9294993999%9, 02 +2e¢19802716000 C3 - 13879587501 s-01¢
+4.9695000000, 02 +2022870144005 03 ~3e2010075449,-013
+4:9845000000, 02 +2e24001623699% 03 ~2e03915081015-01;
+5,0184999999, 02 +2e26560426990 03 +2e87137627605-022
+5,0334999999, 02 +2e27641996000 03 +703413542754,-01;
+5.0525000000, 02 +202915667699, 03 +406T426106233,-023

Order 1 .
Sum .Squares +7.9152629856 x 10
Delta Squared +1.3082342868 x 1073 .
Max Residuals -2.5019355379 at +4.1895000000 x 102 -
and  +6.3651066310 at +4.2905000000 x 102
+5.8532248003 x 107 +1.1637344964 x 10 +6.3120667981 x 10~ 1

2 Order 1

+5.0599 x 10 ,
. ,
+3.7400 x 102 +3.5887599620 x 10

min +5.0296908943 x 102

Acetone T
: max

T

n
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Sum Squares

Delta Squared

Max residuals
and

Benzene TMax

min

+5.5317995956
~-3.5662922487
-2.2311459183

+3.9540284276

-1.6562435425

= +5.6199 x 102
= +3.7899 x 102

W

at +3.9594999999
at +4.0495000000
+1.5411689155

Order 3.5 7830759949

+6.6954583090
+3.6668404642
~1.0746671087

X
X
X

X
X

102
102
10

103
102

TABLE XXII
« POLYNOMTAI, EXPRESSIONS FOR VAPOR PRESSURE OF BENZENE
Temp . °K T loggy P (mm) Residuals
379400000008 02 +152291774299 03 +3e772050999105-01:
+3e8254%09099, 02 +1e223 57300w Q3 -200502552017% 00
3¢5670LC0C5C0 02 +1.282 5000w C3 -16144420242375-012 -
36S02Z0U0C0C0GC0y 02 C+1le3CC 2899y 03 ~1e62040%960738,-01:
+3eQ40020C0000 02z +1e332; £82090p 03 +3e76129962500-01
+369594990099 0z +1e249 54999 Q03 -2e23114591233 00
+2.2894992599 o2 +15369 2100w O ~%63324264511,9=-01
+4 0495000000 G2z +1-24027 5000 O3 +3.9540254276w100;
+4,11229¢%999 0z +le454 56000 03 +204513068348: 00
+4813L0fﬁftu” 0z +)led446 9700 02 +3205162221156w 00
+4¢ 194000000 Cz +1eS15 27008 03 -3e679083473%91~-013
+ﬂa2r75Lquubm 0z +1e525 00%9%9% 03 ~2e82483334019-012
+4 3 224000G0G00 2z +1e558 33008 03 -2013422060015-01:
2249255969, (02 +1»57374:5399w Q3 ~%e9075964093w-01;
233500 (luulJU{ g2z +1eb1 71(3505990 03 +10-199046336110—01;
e3H67T5L00G00N, 02 +1e64163517000 03 ~7e033352146509-01¢
s4356000GC0C0 Gz +1.869190795600s 03 -1e385070770&5w 00
e 4400350, 02 +15991158299, 03 -6e290825754445-01:
3506979999, (2 +1,7436203199¢ 03 -9¢4567741081u-01:
e21645C05C9, (32 +174%246439300¢ 03 ~2018815485738-023
+4 56350000006y 02 +1e78345779299: 023 +36427793494,-01¢
+4.588499599G, 02 +108016692100: 03 +67103318870,5-01:
+4 631502000300, 02 +16e533234040099r 03 +227452931180p-01;
+4,67¢52006030, G2 +12.58679795399 03 -1:056314C995y, 00
+466F55LCGC000, 02 +1e8213927799y% C3 ~5:05269608374w-01;
+4e 77302000000 02 +1:93343715009 03 -5:2905823662x-013;
£:84100C0000, 02 +1:9382796799%9% 03 -2e¢5423193886,-01
+4.9309%9952%, 02 _+LeJ;T?U7?109o 03 ~B8e8306331634~-013
+5. 01200005060, 02 +2¢11410165000 03 +1e5986546128p-01:
+5CESUTNGo00, 02 +2+ 14669772500y 03 +5,1205921806w-01¢
t56 1540000000, 22 +2<213912584500» 03 +1e3583793491x~-01
+562579595Y999, Q2 +22%62910100% 23 +1e3925106003n 00
+5.35400000020, 02 +2 s 9730209%yw 03 +1624519120150 00
+5.4059999999, 02 +Z o4 5349%y (03 +1eltld42466660-01:
"'%045"}4?9’79‘7935 22 +Z26444815%9569, 03 +3.90937812620.-0112
55034594920 02 +2e47 02000 03 +164347746968,-013
+5=5314°??9,?; Gz +Z = 5010GGCs 03 +2e59337261312~-01:
+5:584499%¢05 ., 52 +Z e L5699 03 -1¢5175137460C» 00:
+S 61 20000, 02 +2 s 569000yx 03 ~}vk01916u~3om~ 01
Order 3 V

+2.4568716904 x 107+
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TABLE XXTITI

POLYNOMIAL EXPRESSIONS FOR VAPOR PRESSURE OF CHLOROFORM

Temp. °K T logyy P (mm) Residuals
+3.7455000000w 02 +126987355005 03 +2e2332765273» 00
+3.84864999999%9y 02 +163453641300x C3 +6039759458460x~-013
+3.9234999999, 02 +1:4006244799 03 ~569240270406p-02
+4,0065000000, 02 +104639655299s 03 ~-203773883088» 00:
+4.088499G999, 02 +1e5251950200u 03 ~2e7499739602w 00
+4¢173499%99%, 02 +1¢5911163?99m 03 -10338755331%9x 00:
+4,2445000000, 02 +12642242079%9, 03 -2.7991120554, 003
+4.33155¢80000, 02 +1e705401856000 03 -2¢1097020059:5-01:
+4.4075060000, 02 +167609951000% 03 +1e¢81025506180 003
+46463499999%y 02 +1080272291%%9s 03 +25960381105% 00
+4¢53650200000, 02 +1.858575029%9% 03 +201857759989y 00
+406G24999999, 02 +1090842368799% 03 +204200554378n 003
+40,694499%9¢9, 02 +1e9772320699s 03 +3.3133153915,% 00:
+448055000000, 02 +2e0629797199» 03 +102521270439y 00:
+4 8684995099, 02 +201119116099 03 ~4:5653948932x~-013
+4,92750000060, 02 +2:15731646199pn 03 ~1.8663609847n 00
+4,9845000000, 02 - +22200030129%p 03 ~-203192573487% 003
"+5.0434999G699, 02 +222440974299n 03 -2069296935498w 003
+51065000000,; 02 +2e2891964000w 03 -1.9867293164» 00
+5,1805000000, 02 +203417364699% 03 ~-9e78964693845-01:
+5,2584999999, 02 +2039654108005 03 ~3e76366972925-023
+5,3144699999, 02 +264350711000» Q3 +9:697020872440~01;
+503324999999, 02 +2e4480972500w 03 +12596112489% 003
+5¢3605000000, 02 +2¢4667595899y 03 +104307063817» 00

Order 3 O

. Sum Squares  +8.8617601567 x 10 4
Pelta Squared +2.3512013137 x 10~

Max residuals —2.9296935498 at +5.0434999999 x 102
and  +3.3133153915 at +4.6944999999 x 10
~4.3381140910 x 10 +1.1318947831 x 10 -9.0055969547 x 10~ 2
Chloroform T_ = +5.3650 x 102 ©  Order 3 ;
' _ 2 +3.7426681407 x 10
Tugn = *3-7400 x 10 | +6.0539318674 x 10°

-1.5758486165
~3.8326124969
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POLYNOMIAL EXPRESSIONS FOR VAPOR PRESSURE OF CARBON TETRACHLORIDE
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Carbon Tetrachloride T _ = +5.5500 x 102
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¢z +]1+888022960% (03
02 +1e9294330499y 03
0z +1:0740266699 03
02 +2:01404420099, 03
02 +2e05529454000 03
02 +2,095200464008 03
G2 +2,13752595000 03
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02 +2e2028275700s 03
02 +2022562080000 03
02 +2e25846943000 03
02 +2.2865970200% (3
0z +2e¢220663566000 03
02 +2,24700789000 03
02 +2.3796053500, 03
oz +2:40675946000 03
02 +2e43325111000 03
0z +2:458815229%5 03
oz +2:4740245599, 03
02 +2:40847277000 03
G2 +2,50990753000 03

.7219313277 x 10

0769518845 x 1072

2660235539 at +4.2079999999

.5305519215 at +4.1564999999
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+1.6701761089
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iterative relationship:

br =2x br+l - br+2 + a_ , b =b = {

(109)

T log P = %(bo - b2)

Van Ness (213) has recently advocated the use of orthogonal polynomials
for representing thermodynamic excess functions and in view of this
work, I thoughtit may be worthwhile to represent vapor pressure data

as suggested by Dr. Counsell, since this is a property of pure liquids

which is very often used to give other thermodynamic functions.

IT. THERMODYNAMIC ANALYSIS

II(a). Vapor-liquid Equilibrium Data

In order to understand and interpret the phase behavior of
mixtures the experimental data are usually subjected to thermodynamic
analysis. The equilibrium properties of fluids are related to inter-—
molecular forces. The statistical description of fluids is as yet
incomplete and therefore until a satisfactory theoretical model of
general validity is devised to relate the properties of solutions to
theoretically derived properties of the pure components, experimental
data will continue to be represented by well-behaved mathematical
functions arbitrarily chosen by the individual investigator. In this
work T have chosen the method suggested by Chueh and Prausnitz (116)
as described in detail in Chapter I. Vapor-phase non-idealities are
expressed as fugacity coefficients (equation 21) and the liquid-
phase nonidealities are given by activity coefficients. The composition
dependence of the activity coefficients is represented by the van Laar

equation, which is an integrated form of isothermal, isobaric Gibbs-
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Duhem equation. The parameters required for this representation are:

(20)

¥
the Henry's constant, HZ(l)

, the binary interaction constant %99 (1)

(or a and the dilation constant ”2(1)“ Since these parameters

12)’
depend only on temperature, isothermal experimental data are required
for thermodynamic analysis. Therefore, for each isotherm, P - x - y
data were read from large-scale plots of vapor-liquid equilibrium
compositions (Table XV) and of lines of constant composition on the
pressure—temperature diagram (Table XIV). Calculations were done with
IBM 360/65 electronic computer using the programs written by Chueh and
Prausnitz (116).

The analysis of binary mixtures of condensable components
(both TRl and TR2 < 0,93) is performed using the symmetric convention
of normalization for activity coefficients. For such mixtures a one-
parameter model for the excess Gibbs energy with n2(l) = 0 is used.
On the other hand, for the binary mixtures at a reduced temperature
TR2 > 0.93, a two-parameter model for the excess Gibbs energy and the
unsymmetric convention for normalization of activity coefficients are

used.

II(a).(I) Analysis of the Binary System where TRl and TRZ < 0,93

As explained in Chapter I (Section III. C. (V). (c), page 59),
the constant-pressure activity coefficients for binary systems for which
both TRl and TRZ fall below 0.93 are analyzed with a one-parameter model
(n2(l) = 0). The expressions for activity coefficients are given by
equations (68) and (69). Data reduction is performed by a computer

program which contains a main program, SYMFIT, and three subroutines,
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VOLPAR, PHIMIX and CUBEQN. The subroutine VOLPAR, calculates partial
molal volume of each component in the liquid mixture, using the method
de;cribed in Chapter I (see equation (80)). This quantity is required
in the Poynting correction of the liquid-phase activity coefficient.
The subroutine PHIMIX calculates the vapor-phase fugacity coefficient
s s using the revised Redlich-Kwong equation discussed in Chapter I
(see equations (25) and (40)). Since the calculation of ¢i from
.equation (40) requires a knowledge of the molal volume, v, of the
mixture, and since I have not obtained the volumetric properties of
the mixture in the gaseous phase experimentally, I calculated this
quantity (molal volume) from equation (25). The subroutine CUBEQN

was used for this purpose which solved the cubic equation in v (the
Redlich-Kwong equation).

The input data for the program, SYMFIT are the following:
l v v L

L
(1) the pure-component data Tc, Pc’ Vo W Qa’ Qb, Qa’ Qb, molecular

. (PO) Cs .
weight, fpure , (2) vapor-phase and critical binary constants (k129
Tygs vlz), and (3) the experimental data -- temperature T, total

pressure P, liquid-phase composition x, and vapor-phase composition y
(see appendix). The binary system is actually overspecified when all
these experimental data are supplied:; theoretically, it suffices to
specify T, P, and x for data reduction of a binary, two-phase system.
Fitting to T, P, and x data alone, however, requires a lengthy iterative
procedure of trial and error. Use of experimental y facilitates calcu~
lation of activity coefficients and provides direct and analytical
fitting to the solution model by the method of least squares. Moreover,

utilizing v data in the fitting program in addition to T, P, x data also



180.
gives information on the consistency of the experimental data.
For each datum point, Poynting corrections are calculated for
both components and the constant-pressure activity coefficients are
then calculated by equations (46) and (70), assuming the liquid partial
molal volumes to be incompressible. The logarithms of activity coeffi-
cients are fitted by a least-squares technique to equations-(68) and (69)

to evaluate the binary interaction constant, o Both Yy and Y, are

12°
weighted equally in the first round of fitting; but zero weight is given
to those Yq where either X, ory, falls below a specified minimum value

(0.005 was chosen as the minimum value). Using o calculated y's are

12°
then produced and percent deviations of y's are computed for each datum
point (AYi = yi(PO) experim. - Y§P0>calco). The average percent devi-

ations of Yy and Y, are then calculated respectively. These average
percent deviations in Yy and Yo ére used in the second round of fitting
to test the thermodynamic consistency of the experimental data. If the
data are thermodynamically consistent, both Y1 and Y, are utilized in

the second round of fitting. If the data are thermodynamically incon-
sistent, the less reliable set of y is discarded in the second round of
fitting. In any case, the percent deviation of y for each component and
for each individual point is used to screen out bad datum points (see the
following section on thermodynamic consistency test).

Thus, for each round of fitting, the following information is
obtained as shown in Table XXV: the parameter Gy the number of
experimental points used for Yq and Yoo the calculated and experimental
activity coefficients for each point, and the average percent deviation

in Yy and Yor The standard state fugacities, liquid-phase partial molal

volumes, the Poynting corrections and vapor-phase fugacity coefficients



TABLE XXV

THERMODYNAMIC ANALYSIS OF THE SYSTEM BENZENE (1) - ACETONE (2) UP TO TR2 = 0.93

[eNeNeReNolNolNo]

Correction to Geometric-mean Tclz = 0.01, 2T12/(TC1 + Tcz) = ~-0.0096, 2\)12/(vCl + vcz) = -0,0165
Temperature = 100°C, Reference Fugacity (1) = 1.685 atm., Reference Fugacity (2) = 3.492 atm.
Poynting Poynting
‘ =L =L Correction Correction (PO) (P0O)

x, Y, ¢, P,atm. Vl,cc/mole V2,cc/mole for vy for Yy Y1 Yoo ¢1 ¢y

.093 0.181 0.0786 2.085 99.34 96.49 1.0068 1.0066 1.0571 1.1148 0.9527 0.9658

.209 0.368 0.1802 2.277 98.38 94,41 1.0073 1.0070 1.0170 1.0952 0.9490 0.9608

.332 0.500 0.2925 2.475 97.63 92.52 1.0079 1.0075 1.0311 1.0130 0.9454 0.9563

.438 0.607 0.3933 2,648 97.19 91.14 1.0084 1.0079 1.0271 0.9931 0.9425 0.9525

.657 0.783 0.6144 3,001 96.85 88.90 1.0095 1.0088 1.0457 0.9596 0.9371 0.9452

.761  0.847 0.7259 3.169 96.94 88.12 1.0101 1.0092 1.1138 0.9427 0.9346 0.9420

.872 0.921 0.8500 3.346 97.19 87.47 1.0107 1.0096  1.1302 0.9407 0.9322 0.9386
a12’ interaction constant of molecules (1) and (2) = 0.00054 mole/cc.

Calc. # ' Calc. # Calc. # Calc. #
(P0O) (PO) (P0) (P0O) (P0) (P0) (PO) (PO) (PO) (PO)

Xo In Y1 In Yq A 1n Yy .ln Y2 In Y2 A 1n Y2‘ Yq A Yl Yo A vy
0.093 0.0555 0.0009 0.0547 . 0.1087 0.0990 0.0096 1.0009 0.0562 1.1041 0.0107
0.209 0.0168 0.0046 0.0123 0.0909 0.0784 0.0125 1.0046 0.0124 1.0816 0.0136
0.332  0.0306 0.0120 0.0186 0.0129 0.0584 ~0.0455 1.0121 0.0190 1.0601 -0.0472
0.438 0.0268 0.0217 0.0051  -0.0069 0.0429 ~0.0498 1.0219 0.0052 1.0439 -0.0508
0.657 0.0447 0.0529 -0.0082  -0.0413 0.0173 -0.0586 1.0544 -0.0086 1.0175 ~0.0579
0.761 0.1078 0.0739 0.0338  -0.0591 0.0088 -0.0678 1.0767 0.0371 1.0088 -0.0661
0.872 0.1224 0.1013 0.0211 -0.0612 0.0026 -0.0638 1.1067 0.0236 1.0026 -0.0620
Average deviation in YiPO) = (0.02316 Average deviation in Y§PO) = 0.04404
Average deviation in 1n Y£PO) = 0.02197 Average deviation imn 1n YgPO) = 0.04397

No. of Yq data = 7.0 No. of Yy data = 7.0

“18T



TABLE XXV (Cont'd)

125°C, Reference fugacity (1) = 3.062 atm, Reference fugacity (2) = 6.025 atm. -

coocoo0coo

No. of Yl data

1

7.0

No.

of Yz data = 7.0

2

Temperature =
Poynting Poynting
=L =L Correction Correction . (PO) (PO)

%, Y, @2 P,atm. Vl,cc/mole Vz,cc/mole for 11 for Yy Y1 Yo o1 b9

093 0.176 0.0786 3.657  103.33  102.45  1.0116 1.0115 0.9978 1.0789 0.9304 0.9501

.209 0.348 0.1802 4.045 102.27 100.03 1.0127 1.0125 0.9933 1.0403 0.9240 0.9422

.332 0.493 0.2925 4,459 101.47 97.84 1.0139 1.0134 1.06000 1.0131 0.9176 0.9344

438 0.600 0.3933 4.817 101.05 96.23 1.0150 1.0143 1.0064 1.0019 0.9124 0.9279

.657 0.762 0.6144 5.554 100.94 93.69 1.0173 1.0161 1.1160 0.9633 0.9022 0.9155

.761 0.833 0.7259 5.905 101.23 92.83 1.0185 1.0169 1.1876 0.9597 0.8977 0.9098

.872 0.919 0.8500 6.279 101.79 92.17 1.0198 1.0179 1.1370 0.9751 0.8936 0.9037

05 interaction censtant of molecules (1) and (2) = 0.00056 mole/cc.
Calc. Calc. # Calc. # Calc. #

x, . In YiPO) In YfPO) A In yiPO) In YéPO). In YéPO) A 1n YﬁPO) y{FO) YiPo) YéPO) o 5O
0.093 -0.0022 0.0009 -0.0031 0.075% 0.1021 -0.0261 1.0009 -0.0031 1.1075 -0.0286
0.209 -0.0067 0.0047 -0.0114 0.039%5 0.0808 -0.0414 1.0047 -0.0114 1.0842 -0.0439
0.332 -0.,0000 0.0124 ~0.0124 0.0130 0.0602 -0.0472 1.0124 ~0.0125 1.0620 -0.0490
0.438 0.0064 0.0224 -0.0160 0.0019 0.0443 -0.0423 1.0226 ~-0.0162 1.0453 ~0.0433
0.657 0.1098 0.0546 0.0552 ~-0.0374 0.0179 -0.0552 1.0561 0.0599 0.0180 -0.0547
0.761 0.1719 0.0762 0.0957 -0.0411 0.0090 -0.0501 1.0792 0.1084 1.0091 -0.0493
0.872 0.1284 0.1044 0.0240 -0.0252 0.0027 -0.0279 1.1101 0.0269 1.0027 -0.0276
Average deviation in YiPO) = 0.03407 Average deviation in YéPO) = 0.04234
Average deviation in In Y(PO) = 0.03112 Average deviation In Y\PO) = 0.04147

A



TABLE XXV (Cont'd)

QOO OOOO

Temperature = 150°C, Reference Fugacity (1) = 5.062 atm., Reference Fugacity (2) = 9.472 atm.
' Poynting Poynting
=L =1, Correction Correction (PO) (PO)
. Yq
X, Y, 9, P?atm Vl,cc/mole V2,cc/mole for V1 for Yy Yo by b0
.093 0.170 0.0786 6.284  107.98  109.82 1.0197 1.0201  1.0014 1.1035 0.8989 0
.209 0.320 0.1802 6.944 106.76 106.95 -1.0216 1.0216 1.0268 1.0077 0.88%4 0.9172
.332 0.458 0.2925 7.649 105.89 104.35 1.0236 1.0233 1.0542 0.,9863 0.8800 0.9060
.438 0.572 0.3933 8.255 105.48 102.46 1.0254 1.0247 1.0571 0.9958 0.8727 0.8965
.657 0.754 0.6144 .9.507 105.65 99.52 1.0294 1.0276 1.1235 0.9846 0.8585 0.8783
.761 0.836 -0.7259 10.10 106.24 98.58 1.0314 1.0291 1.1319 0.9905 0.8525 0.8700
.872 0.918 0.8500 10.74 1067.25 97,91 1.0337 1.0307 1.1130 0.9973 0.8466 0.8614
Ggs interaction constant of molecules (1) and (2) = 0.00049 mole/cc.
Calc. ~ Ccalec. 4 Calc. # Calc. #
i (P0) (P0) (P0) (PO) (PO) (P0) (PO) (PO) (P0) (PO)
Xy In vy Y1 In vy A In Y1 in Y2 In Y2 A ln.Y,2 Y1 A Yl Yo A Yy
0.093 0.0014 0.0008 0.0006 0.0985 0.0902' ¢.0083 1.0008 0.0006 1.0944 0.0091
0.209 0.0264 0.0041 0.0223 0.0077 0.0714 ~0.0637 1.0042 0.0226 1.0740 ~0.0663
0.332 0.0528 0.0109 0.0418 ~-0.0138 0.0532 -0.0670 '1.0110  0.0432 1.0546 -0.0684
0.438 0.0555 0.0198 0.0358 ~-0.0042 0.0391 -0.0433 1.0200 0.0372 1.0399 -0.0441
0.657 - 0.1164 0.0482 0.0682 -0.0156 0.0158 -0.0314 1.0494 0.0741 1.0159 -0.0314
0.761 0.1239  0.0673 0.0566 -0.0095 0.0080 -0.0175 1.0697 0.0623 1.0080 © -0.0175
0.872 0.1070 0.0923 0.0147 -0.0027 0.0024 ~0.0051 1.0967 0.0162 1.0024 -0.0051
Average deviation in YEPO) = 0. 03660 v Average deviation in‘Yépo) 0.03455
Average deviation in In Y(PO) = 0.03429 Avérage deviation in In Y(PO) = 0.03376

No. of Y., data

1

7.0

No. Qf Y, data =

2

7.0

2

9283

TE€81



TABLE XXV (Cont'd)

= 7.745 atm., Reference fugacity (2) = 13.80

OO O0OOOO OO

Average deviation in In YiPO) = 0,04145

No. of Yl

data

7.0

1

2

Average deviation in In YgPO) = 0.02232

No. of

Y2 data =

7.0

Temperature = 175°C, Reference Fugacity (1) atm.
' Poynting Poynting
' =L =L Correction Correction (PO) (PO)
X ¢ P . Y
2 Yo 2 V ,atm vVl,cc/mole V2,cc/mole " for 1q for V5 Yo b1 » b
.093 0.154 0.0786 10.18  113.41  119.10 '1.0319  1.0335  1.0221 1.0665 0.8603 0
.209 0.300 0.1802 11.21 111.97 115.65 .1.0347 1.0359 1.0493 0.9990 0.8477 0.8878
.332 0.442 0.2925 12.31 110.99 112.54 1.0379 1.0384 1.0688 0.9977 0.8353 0.8724
.438 0,556 0.3933 13.26 ° 110.58 110.28 1.0407 1.0406 1.0730 1.0075 0.8255 0.8597
657 0.750 0.6144 15.22 111.15 106.86 1.0471 1.0452 1.1040 1.0056 0.8071 0.8350
.761 0.834 0.7259 16.15 112.16 105.84 1.0505 1.0476 1.1021 1.0085 0.7993 0.8239
.872 0.916 0.8500 17.15 113.85 105.22 1.0545 1.0503 1.0905 1.0092 0.7916 0.8124
G195 interaction constant of molecules (1) and (2) = 0.00040 mole/cc.
‘ Calc. Calc. # Calc. # Calc. #H
x, In Yiﬁo) in YiPO) A 1n Y§PO) 1n Yépo) in Yépo) A 1o Y§Po) | Y{PO) A YiPO) YéPO) A YéPO)

V 0.093 0.0218 0.0006 0.0212 0.0644 0.0740 -0.0096 1.0006 0.0214 1.0768 -0.0103
0.209 0.0482 '0.0034 0.0447 -0.0010 0.0586 -0.0596 1.0034 0.0459 1.0603 ~0.0613
0.332 0.0665 0.0090 0.0575 -0.0023 0.0436 ~0.0459 1.0090 0.0598 1.0446 -0.0469
0.438 0.0705 0.0162 0.0543 0.0075 0.0321 -0.0246 1.0163 0.0567 1.0326 -0.0251
0.657 0.0990 0.0396 0.0594 0.0056 0.0130 -0.0073 1.0403 0.0637 1.0130 ~0.0074
0.761 0.0972 0.0552 0.0420 0.0085 0.0065 - 0.0020 1.0568 0.0454 1.0066 0.0020
0.872 0.0867 0.0757 0.0109 0.0092 0.0020 0.0072 1.0787 = 0.0119 1.0020 0.0073
Average deviation in Y(PO) = 0.,04353 Average deviation in Y(PO) = 0,02289 .

;9027»N s

"¥8T



TABLE XXV (Cont'd)

Temperature = 200°C, Reference fugacity (1)

.09

No. of Yl data

7.0

No. of Y, data =

2

7.0

= 11.12 atm., Reference fugacity (2) = 12 atm.
Poynting Poynting
A =L Y =L Correction Correction (PO) (PO)
X, Y, ¢, P,atm. Vl,cc/mOLe Vz,cc/mole for 11 for Yy Yq Yo ¢1 o
10.093 0.140 0.0786 15.49  119.88  131.29 1.0490 1.0538  1.0288 1.0252 0.8176 0.8757
0.209 0.279 0.1802 17.06 118.15 127.11 -1..0533 1.0575 1.0628 0.9759 0.8008 0.8563
0.332 0.425 0.2925 18.75 116.99 123.37 1.0581 1.0614 1.0753 0.9999 0.7844 0.8357
0.438 0.535 0.3933 20.19- 116.58 120.69 1.0625 1.0648 1.0903 1.0040 0.7713 0.8189
0.657 0.743 0.6144 23.19 117.74 116.81 1.0728 1.0723 '1.0880 1.0171 0.7474 0.7860
0.761 0.835 0.7259 24.61  :119.43 115.82 1.0786 1.0762 1.0444 1.0237 0.7377 0.7711
0.872 0.917 0.8500 26.12 122,29 115.46 1.0858 1.0808 1.0202 1.0166 0.7274 0.7558
Qg9 interaction constant of»molecules (1) and (2) = 0.00019 mole/cc.
, v0) Cal?éo) 20) Calc. 4 Calc. # Calc. | #
in v ' (PO (PO) (PO) (PO) (P0O) (
X in 1 (p0O) PO PO
'2 Y1 n Yy A 1n Y1 In Y2 in YZ A 1n Y2 Y1 A Yl Yé ) A Yéy )
:0.093 0.0284  0.0003 0.0281 0.0249 0.0341 -0.0092  1.0003 0.0285 1.0347 -0.0094
0.209  0.0609 0.0016 0.0593 -0.0244 - 0.0270 -0.0513  1.0016 0.0612 1.0273 -0.0514
0.332 0.0726 0.0041 0.0685 -0.0001 0.0201 -0.0202 1.0041 0.0712 1.0203 -0.0204
0.438 0.0865 0.0075 0.0790 0.0040 0.0148 -0.0108 1.0075 0.0828 1.0149 -0.0109
0.657 0.0844 0.0182 0.0662 0.0170 0.0060 0.0110 1.0184  0.0697 1.0060 0.0111
0.761 0.0435 0.0254 ©0.0180 0.0234 . '0.0030 0.0204 1.0257 . 0.0187 1.0030 0.0207
0.872 0.0200 0.0349 -0.0149 0.0165. 0.0009 0.0156  1.0355 -0.0153 1.0009 6.0157
Average deviation in YiPO) = 0.04963 Average deviation ianéPO) = 0,01995
Average deviation in In YiPO) = 0.04772 Average deviation in ln YEPO) = 0.01978

# 40 In Y
(PO) _
H oY =

(PO)
i

Yi (experimental) -~ Yi (calculated) (i

= 1n Yi (experimental) - In Yi (Calculated)

1,2)

(i

=1,2)

TG8T
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for each point are also obtained.

It will be observed from Table XXV that the first round of
least~squares fitting gave U1y = 0.00054 mole/cc at 100°C. The
specified minimum mole fraction for x and y was 0.005, and since all
the mole-fractions are larger than this wvalue, all seven datum points
in Yy and Y, are utilized in the first fitting. The percentage

deviation in In yl(PO)
(P0)

s, which is also approximately the percentage

(P0) is 4-3

deviation in Y1 , is about 2+1 percent and that in Yy
percent. The data are thermodynamically consistent gince the differ-
ence in the average deviation of Yy and Yy is less than 37 (this is

the criterion chosen, see the following section).

IT(a). (II) Thermodynamic Consistency Test and Screening of Data

It is absolutely necessary to test the consistency of phase
equilibrium data in terms of the rules of thermodynamics or in terms
of the less rigorous yet well-established interproperty relations. The
internal consistency of vapor-liquid equilibrium data are usually tested
by the method proposed by Tao(214). The awkward data plotting procedure
is replaced by a regression analysis. This also sets the error bound
more precisely than any graphical procedure. The Redlich-Kister con-
sistency criteria (215) have been extensively used in the literature.
Therefore, it is necessary to make sure that the vapor-liquid equili-
brium data satisfy the Gibbs-Duhem equation (see equation 44), which
is the basis for most consistency tests. The high-pressure vapor-
liquid equilibria present many difficulties, and many assumptions have

to be made to simplify the requirements, for example, an equation of
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state is used to calculate vapor-phase fugacity coefficients in the
absence of volumetric data for vapor mixtures. Adler et al. (216)
have proposed a method of testing the consistency when one of the
components is above its critical temperature, They used Lewis'
fugacity rule to calculate vapor-phase fugacities and since this
introduces a large error Prausnitz et al. (115) have extended Redlich-
Kister (215) and Herington's methods (217) to test the isothermal
high-pressure data.

The average deviations of Yq and Y, are computed respectively
at the end of the first round of fitting. If the experimental data are
thermodynamically consistent, the average deviations of Yy and Y, are
nearly equal in magnitude and generally small. If the data are in-
consistent, the average deviation of y for one component is generally
much larger than that for the other; this happens because the less
accurate set of data, say Y, scatters much more than the Yo data, and
the least-squares fitting, finding it impossible to fit the Yq data any
better, automatically fits better to the more accurate data for Yoo If
the average deviations of Yy and Y, data differ by more than 3%, the
noise bound allowed in the computer program, the data may be considered
as inconsistent. In such cases, the less reliable data are discarded,
and the more reliable data are refitted after removing these individual
points which have a percentage deviation larger than four times the
average deviation of the more reliable data. In Table XXV, the second
round of fitting would have removed any point in the Y1 T Y, data,
if such a point had a deviation greater than 4 x 0.021 (in Table XXV,

0.021 is the smaller of the two average deviations in 1n y). Since
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the consistency test is satisfied and none of the Y1 and Yo datum
points has this deviation, all the points are retained in the second
round of fitting and same results are obtained. This second round of
fitting is not included in Table XXV since for every isotherm the same
results were obtained as in the first round of least squares fitting.
Second round of fitting has been included only when some datum points

have been screened (see Table XXVI).

II(a). (III) Analysis of the Binary System where TR2 » 0.93.

Isotherms for which the reduced temperature of the lighter
component exceeds 0.93, i.e. in the acetone (2) - benzene (1) system
isotherms above 218.550C, can be analyzed with the two-parameter dilated
van Laar model using the unsymmetric convention for normalization (see
page 56, Chapter I). The standard-state fugacity for component 2
(acetone) is Henry's constant of 2 in 1, Hz(l§PO) (see equation 43).
This must be determined before the fitting can be carried out. Henry's
constant is found with a program which contains a main program HENRYS
and subroutines VOLPAR, PHIMIX and CUBEQN. The program calculates

fz(P)/x2 for each point. Henry's constant is determined by plotting

1n £, )y

2 versus X

and extrapolating to X, = 0, as shown in Figure 23.

2 2

Correction of Henry's constant to zero pressure is performed in the
fitting program. Figure 23 illustrates how Henry's constants are
obtained from experimental data for several isotherms. In performing

the extrapolation it is important to note that a plot of Henry's constant
versus temperature is a smooth curve. Therefore, all the isotherms for
the binary system benzene-acetone have been plotted on the same figure.

The HENRYS program gives the following output: Xy Yo P, v;, vg, ¢l



TABLE XXVL

THERMODYNAMIC ANALYSIS OF THE SYSTEM BENZENE (1) - ACETONE (2) ABOVE TR2 = 0,93

Temperature = 225.00C, Reference Fugacity (1) = 15.164 atm., Saturation Pressure (1) = 20.921 atm.

Liquid Partial Molal Volume (1) at infinite dilution = 130.28 ce/mole, V,* = 153.38 cc/mole

2

Molal volume

- (Total P - of saturated VL VL Corrected

:—'tm Sat.Press. X liquid mix. o o 1 , 2? Tp of liq.
TOC xza ' of l)atm. 2 ¥ P,atm. ce/mole 1 2 cc/mole ce/mole mixture
225.0 27.393 1.873 0.0930 0.1320 22.794 129.90 0.76792 0.84672 127.96 148.76 0.8942
225.0 30.500 4.186 0.2090 0.3100 25.107 129.53 0.74728 (0.81901 125.76 143.80 0.9046
225.0 27.098 6.658 0.3320 0.4100 27.579 129.35 0.72489 0.79563 124.31 139.49 0.9159
225.0 27.548 8.785 0.4380 0.5250 29.706 129.42 0.70805 0.77368 123.85 136.56 0.9258
225.0 27.622 9.178 0.6570 0.7280 34.099 130.58 0.67599 0.73104 125.83 133.06 0.9468
225.0 27.852 15.265 0.7610 0.8235 36.186 131.91 0.66275 0.71128 128.71 132.91 0.9570
225.0 27.926  17.491 0.8720 0.9180 38.412 134.33 0.64891 0.69059 134.11 134.36 0.9678

Henry's constant at the saturation pressure of solvent determined graphically from above data = 25.517 atm.

Poynting Poynting
Correction Correction (PO) (PO)
X, 0, for vq for Yo Y1 Y9
0.0930 0.0786 1.0740 1.0865 1.0286 1.0687
0.2090 0.1802 1.0803 | 1.0924 0.9991 1.1836
0.3320 0.2925 1.0875 1.0987 1.0707 1.0455
0.4380 0.3933 1.0942 1.1043 1.0715 1.0575
0.6570 0.6144 1.1107 1.1174 1.0853 1.0478
0.7610 0.7259 1.1207 1.1249 1.0421 1.0496
0.8720 0.8500 1.1343 1.1346 0.9283 1.0434
“22(1)’ self-interaction constant of molecules 2 in the environment of molecules 1 = -0.00038 mole/cc.

nz(l),'dilation constant of solute 2 in solvent 1 = -0.41834,

*68T



TABLE XXVI (Cont'd)

(PO) Cale. # Calc. # Calc. L H Calc. #
Y (P0) (PO) (PO) (PO) (PO) (pP0O) (P0O) ,(PO) (PO)

X, in 1 in Yl A ln Yg InY ’ ln'Y2 A In Y2 Yl A Yl \2 A YZ
0.093  0.0282 -0.0006 0.0288 0.0665 0.0124 0.0541 0.9994  0.0292 1.0125 0.0563
0.209 -0.0009 -0.0031 0.0022 0.1685 0.0263 0.1422 0.9969 0.0022 1.0267 0.1569
0.332 0.0684  -0.0076 ,0.0759 0.0444 0.0385 0.0060 0.9925 0.0783 1.0392 0.0062
0.438 0.0690 -0.0124 0.0814 0.0559 0.0462 0.0097 0.9877 0.0838 1.0473 0.0102
0.657 0.0819 -0.0197 0.1016 - 0.0467 . 0.0529 -0.0062 0.9805 0.1048 1.0544 -0.0066
0.761 0.0412 -0.0177 0.0589 0.0484 0.0522 -0.0038 0.9825 0.0596 1.0536 -0.0040
0.872 0.0744 -0.0067 -0.0677 0.0425 0.0499 -0.0074 0.9933 -0.0650. 1.0511 -0.0078
Average deviation in YiPO) = 0.06041 Average deviation in YéPO) = 0,03541
Average deviation in In YiPO) = 0.05949 Average deviation in 1n YéPO) = 0.03277
no. of Yl data = 7.0 no. of Yy data = 7.0
Second Round of Fitting
a22(1) =—(),00022 mole/cc. nZ(l) = -0.20765

Calc. # Calc. # "Calc. # Calc. #

x, 1In yipo) 1 vFO y1n yiPO) A R S (PO (FO) (PO POy (PO
0.093 0.0282 -0.0004 © 0.0285 0.0665 10.0072 0.0593 0.9996 0.0289 1.0072 0.0615
0.209 -0.0009 -~0.0018 0.0009 0.1685 0.0155 0.1531 0.9982  0.0009 1.0156  0.1680
0.332 0.0684 -0.0047 0.0730 0.0444 0.0231 0.0213 0.9954 0.0754 1.0234  0.0221
0.438 0.0690° ~0.0080 0.0771 0.0559 0.0285 0.0274 0.9920 0.0795 1.0289  0.0285
0.657 0.0819 -0.0166 0.0985 0.0467 0.0357 0.0110 0.9835 0.1018 1.0364 0.0114
0.761 0.0412 -0.0203 0.0616 0.0484 0.0373 0.0111 0.9799 0.0622 1.0380 0.0116
0.872 -0.0744 -0,0228 -0.0515 0.0425 0.0379 0.0046 Oz%%§4 -0.0491 1.0386 0.0048
Average deviation in YiPO) = 0.05683 Average deviation in Y2 = 0.02332
Average deviation in 1ln YiPO) = (0.05587 Average .deviation in 1n YéPO) = 0,02244
No. of Yy data = 7,0. No. of Yz data = 6.0. QQXZ = -0.14546537, QQXY = 1.06316471, QQXX = 3.19300270

06T



TABLE XXVI (Cont'd)

Temperatﬁre = 250°C, Reference fuagacity (1) = 19.796 atm., Saturation pressure (1) = 29,470 atm.

Liquid partial molal volume (1) at infinite dilution = 142,27 cc/mole, V. = 184.34 cc/mole.

2

‘Molal volume .

£ (Total P - - of saturated : VL VL Corrected

2 Sat.Press. o liquid mizx. ' 0 1’ 2 Tp of liq.
TOC E;atm' of 1)atm. % Y9 P,atm, cc/mole ¢l 2 ‘ce/mole cc/mole  mixture
250.0° 30.81 3.052 0.0930 0.1070 32.52 142,84 0.71103 0.82339 139.09 179.48 0.9391
250.0 32.25 5.880 0.2090 0.2400 35.35 144.09 0.68694 0.79446 135.92 175.01 0.9500
250.0 33.27 -8.990 0.3320 0.3760 38.46 146.41 0.66228 0.76381 133.406 172.57 0.9619
250.0 33.68 11.73 0.4380 0.4850 41.20 149.86 0.64156 0.73820 131.58 173.31 0.9724
250.0 32.61 16.51 0.6570 0.6710 45.98 173.92 0.60808 0.69440 98.43 213,33 0.9946

Henry's constant at the.saturation pressure of solvent determined garphically from above data = 30.756 atm.

Poynting Poynting

Correction: Correction (PO) (PO)
x, o, for vq for Yo Y1 Yo
0.0930 | 0.0786 1.1111 . 1.1457 1.0350 0.9923
0.2090 0.1802 1.1184 1.1550 1.0537 1.0303
0.3320 0.2925 1.1270 1.1672 1.0665 1.0517
'0.4380 0.3933 1.1346 1.1810 1.0784 1.0522
-0.6570 0.6144 1.1112 1.2567 1.2192 0.9574
~ Henry's constant at zero pressure = 27.10 atm, . :
u2é(l)’ selffinteraction constant of molecules 2 in the environment of molecules 1 = -0.00084 mole/cc.

An2(l)’ dilation constant of solute 2 in solvent 1 = -2.66938.

“T6T



TABLE XXVI (Cont'd)

. No. of data

\{l

Temperature = 260°C, Reference fugacity (1) = 21.794 atm., Saturation Pressure (1)

Liquid partial molal volume (1) at infinite dilution = 149.01 cc/mole, v,” = 206.01 cc/mole,

= 5.0. N

otai P -

1

o. of Y. data

2

= 5.0.

QQXZ = 0.06979483.

Molal volume

QQXY = 0.19190246.

2

QQXX = 1.21501255

= 33.683 atm.

Corrected

Henry's constant at the saturation pressure of the solvent determined graphically from above data

P (T of saturated VL VL
2 Sat.Press. liquid mix. b o 1 2> Tp of liq.
TOC Xzatm. of 1)atm. %2 k) P,atm. cc/mole 1 2 "cc/mole cc/mole  mixture
260.0 34.05 3.138 0.0930 0.1050 36.82 150.57 0.68940 0.81900 145.24 202.53 0.9571
260.0 35.08 6.207 0.2090 0.2330 39.89 153.67 0.66375 0.78886 141.00 201.65 0.9682
250.0 35.14 9.518 0.3320 0.3560 43.20 159.80 - 0.63710 0.75869 135.53 ., 208.63 0.9804
260.0 - 34.43 12.24 0.4380 0.4465 45.92 171.85 0.61514 0.73559 119.78 238.64 0.9912
= 31.845 atm.

) Cal?éo) 50) Calc. o Calc. # Calc. #

- T ( {PO (PO) (PO) - PO PO PO

xz— in Y1 in Yy A 1n Yy in Y2 In Y2 A 1ln Yé ) Y£ ) A YS ) YéPO) A Y%PO)

0.093  0.0344 -0.0013  0.0357  =-0.0077 . 0.0264  -0.0341  0.9987 0.0363 1.0267 =-0.0344

0.209 0.0523 ~-0.0052 0.0575 0.0299 0.0494 -0.0195 0.9948 0.0589 1.0506 -0.0203
0.332 0.0644 ~0.0058 0.0703 0.0505 0.0525 -0.0020 0.9942 0.0724 1.0539 ~0.0021
0.438 0.0755 0.0080 0.0675 0.0509 0.0314  0.0195 1.0080 0.0704 - 1.0319 0.0204
0.657 0.1982 0.1656 0.0326 -0.0435 ~0.0873 0.0438 1.1801 . 0.0391 0.9164 0.0410
Average deviation in YiPO) = 0.05540 ’ Average deviation in YéPO) = 0.02364
Average deviation in 1n Y(PO) = 0.05270 Average deviation in In YéPO) = 0.02379

‘Z6T



Mo(1)*

(P
Xy in Y1

0.093
0.209.
0.332
0.438

Average deviation

Average deviation

TABLE XXVI (Cont'd)

Poynting Poynting
X, Yo ®2 Correction Correction (P0) Y<PO)
for Y1 for Yo 1 2
0.0930 0.1050 0.0786 “1.1300 1.1859 1.0170 . 1.0565
0.2090 0.2330 0.1802 1.1372 1.2019 1.0358 1.0742
0.3320 0.3560 0.2925 1.1432 1.2288 1.0650 1.0525
0.4380  0.4465 0.3933" 1.1340 1.2847 1.1256 0.9863
a22(1)’ self-interaction constant of molecules 2 in the environment of molecules 1 = -0.0017 mole/cc.
dilation constant of solute 2 in solvent 1 = -4.47296.
Henry's constant at zero pressure = 27.174 atm.
Calc. Calc. # Calc. # Calc. #
0) (r0) (PO} (?0) (P0) (P0) (P0) (P0) (P0O) (PO)
1n Yy A ln Yq 1in Y2 1n YZ A 1n Y2 Y1 A Yl Yo A Yo
0.0169 -0.0025 0.0194 0.0550 0.0524 0.0026 0.9975 0.0195 1.0538 0.0627
0.0352 -0.0081 0.0432 0.0715 0.0871 -0.0156 0.9920 = 0.0438 1.0910 ~0.0168
0.0629 0.0056 0.0574 0.0512 0.0550 ~-0.0039 1.0056 0.0594 1.0566 -0.0041
0.1183 0.0734 0.0449 -0.0137 -0.0497 0.0360 1.0761 0.0494  0.9515 0.0348
inY(PO) = 0,04304 4 Average deviation in Y(PO) = 0.01461
L (e )
in 1n Yl = 0.04122 Average deviation in 1n Y2 = 0.01449
4,0 No. of Y, data = 4.0

No. of Yl datg

QQXZ =

-0.01552030.

QQXY = 0.03994685.

2

QQXX = 0.57122391.

‘E6T



TABLE XXVI (Cont'd)

Temperature = 270°C, Reference fugacity (1) = 23.865 atm., Saturation Pressure (1) = 37.921 atm.

Liquid partial molal volume (1) at infinite dilution = 158.31 cc/mole, Gg = 243.40 cc/mole.
k Molal volume

p (Total P - of saturated VL VL Corrected

;g‘t Sat.Press. liquid mix. 5 o 1 2? Tg of liq.
TOC xza M of 1)atm. ) ) P,atm. cc/mole 1 2 cc/mole cc/mole mixture
270.0° 35.16 3.378 0.0930 0.0960 41.30 162.10 0.66823 0.82476 153.30 247.88 0.9750
270.0 36.60 5.201 0.1510 0.1580 43,12 165.65 0.65201 0.81121 149.55 256.23 0.9807
270.0 37.19 6.759 0.2090 0.2190 44.68 171.00 0.63923 0.79426 143.68 274.38 0.9865

Henry's Constant at the saturation pressure of solvent determined graphically from above data = 33.615 atm.

Poynting Poynting
Correction Correction
Y (PO) (P0)
X, Y, @2 ‘ for 1 for Yy Yl Y2
0.0930 0.0960 0.0786 1.1527 1.2583 0.9999 1.0227
0.1510 0.1580 0.1289 1.1557 1.2814 1.0110 1.0453
0.2090 0.2190 0.1802 1.1550 1.3167 1.0231 1.0336
Henry's constant at zero pressure = 27.325 atm.
a22(l),~self—interaction constant of molecules 2 in the envirommentiof molecules 1 = ~0.0011 mole/cc.

”2(1)’ dilation constant of solute 2 in solvent 1 = -10.10114.

76T



TABLE XXVI (Cont'd)

Calc. 4 Calc. # Calc.) #( ) Ca%gé) #(Po)
; PO PO (P0O) (PO PO
X9 1n YiPO) In YiPO) A 1In YiPO) 1n Yé ) in Yé ) A In Y2 Yq A Yl Yo A Yo
0.093 -0.0001 5—0.0014 0.0013 0.0224 0.0315 -0.0091 0.9986 0.0013 1.0320 -0.0093
0.1510 0.0109 -0.0024 0.0133 0.0443 0.0388 0.0056 0.9976  0.0133 1.0395 0.0058
0.2090 0.0228 -0.0002 0.0229 0.0331 0.0294 0.0037 0.9998 0.0232 1.0298 0.0038
Average deviation in YiPO) = 0.01262 Average deviation in YéPO) = 0.00631
~ Average deviation in ln YiPo) = 0,01251 Average deviation in In Y2 = 0.00611
No. of Yl data = 3.0 : No. of YZ data = 3.0
s

QQXZ = ~0.01980372 QQXY = 0.00206222

QQXX = 0.13172585

(20)
i

# YiPO) = Yi (experimental) - Yi {calculated) (i = 1,2)

# A ln Y = 1n Yiv(experimentai) - 1ln Yi (calculated) (i =1,2)

"S6T



FIGURE 23.

@)
Plot of Henry's Constant H

2(1)
at 225°%, 250°, 260°, and 270°C.
L®)
(In 1b./sq. in. abs. is plotted against x, to

2
2 (PS)
evaluate Henry's constant, HZ(%)’ by extrapolation to

X, = 0. It may be observed that the absolute %rgisure
P

has not been converted to atmospheres, since g <l)
2(1;

must be in p.s.i.a. for the FITTING program.)

for Acetone (2) in Benzene (1)
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and ¢2, the saturation pressure of component 1, liquid partial molal
volumes of both components at infinite dilution, reference fugacity
of component 1 at zero pressure, molal volumes of the saturated liquid
mixture for each concentration and the corrected reduced temperatures
of the liquid mixture for each concentration. These can then be used
in the FITTING program to evaluate the self-interaction constant, a22(l),
and the dilation constant n2(l) in the dilated van Laar model. This
fitting program has, like the SYMFIT program, a provision for testing
thermodynamic consistency of experimental data and for screening of
data.

In any two-parameter model, the two "best" parameters, as
found by the computer are often not unique; considering experimental
uncertainties, there are several sets of two parameters which may
equally well represent the experimental data. Prausnitz et al. (116)
have observed that a22(1) is more important and less uncertain than
”2(1) in the dilated van Laar model. The magnitude of the dilation
constant shows a consistent and meaningful variation with respect to
the temperature and the properties of the constitutent components. As
seen from Table XXVI, the dilation constants are larger for the isotherms
approaching the critical temperature of benzene (the heavy component)
i.e. they are larger at temperatures where the light component acetone
is supercritical. This behavior of dilation constants is in agreement
with their physical significance in the dilated van Laar model —— i.e.,
the liquid phase is dilated most when the subcritical heavy component
itself is near its critical temperature, or when the light component is

far above its critical temperature. Under these conditions the liquid
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molal volume increases sharply with dissolved gas. The molal volume

of the saturated liquid mixture at a temperature of 225°C and composition
0.093 mole fraction acetone is 129.9 cc/mole, which increases to 162.1
cc/mole at a temperature of 27OOC, i.e. 35° above the critical tempera-
ture of acetone and about 19° below the critical temperature of benzene.
Chueh et al. (116) have generalized 1n (n/n*)l/2 in terms of T*/T into a
single reduced plot where n* is a constant characteristic of the light
component and T* is a constant characteristic of the binary system. At

a low temperature hZ(l) is small and because of lack of uniqueness,

”2(1) as determined from a least-squares fit may be a negative number.
However, Chueh et al. (116) argue that a negative n2(l) is not permitted
by the solution model, and therefore a small positive n and a correspond-
ing adjustment in o will probably fit the experimental data equally well,
within the experimental uncertainty. In any case, this was not found
possible to do with my data. First of all negative values of n were

1/2

not small in my case, and also the values of (n*)™ for acetone could

1
2 values for various

not be obtained. Chueh et al. have listed (n%)
lighter gases in their publication (Figure 5, Reference 116) and I

presume these values are selected on the basis of some available experi-
mental data of the lighter components when dissolved in various solvents,

The value for methane has been set equal to one for convenience and

value for the quantum gases as zero. On this basis alone I have not

1
2 value for acetone which T could use to

been able to obtain any (n%)
get a positive value of ”2(1) for the binary system benzene-—acetone.

Chueh et al. (116) then give the following relation to obtain the

a22(l) value, once nZ(l) is forced to become positive from the
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generalized curve

1. 00X7
aZZ(l) =3 (110)

vl QQXX +‘3h2tl)QQXY
where QQXZ, QQXX and QOXY are intermediate quantities in the least-
squares program which are produced in the computer output of the
FITTING program. Interestingly enough, the values for u22(l) are

also negative, as obtained from my experimental data. The dilated

van Laar model of Chueh and Prausnitz is based on the assumption that
the nonideality of liquid mixtures is due to the interaction of solute
molecules with each other in the enviromment of the solvent molecules
and not because of interactions between the solute and solvent molecules
(see page 56, this thesis). It is not quite clear whether such a model
can be applied to benzene-acetone mixtures with advantage, especially
in view of the fact that satisfactory results have not been obtained
above the critical temperature of the lighter component (acetone).
Acetone is definitely polar and the corresponding states theory of
Scott (102), which is probably the most useful general theory for
mixtures of simple non-polar liquids cannot be applied either. Scott
has expressed the free energy of a liquid as a universal function of
the reduced temperature and reduced pressure. The reducing parameters
used by him are the characteristic intermolecular energy and molecular
size. The free energy of a liquid mixture is then given by the same
universal function using reducing parameters which are functions of
composition. Thus, the excess free energy relative to an ideal gas

at the same temperature and pressure, and the activity coefficients of

the liquid mixture are easily found. Scott has proposed three different
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ways by which the characteristic molecular parameters vary with the
composition: (1) the liquid mixture consists of uniform cells all

of the same size (the "single liquid solution™), (2) the liquid
mixture consists of two kinds of cells, one for molecules of component
1 and one for molecules of component 2 (the "two liquid solution'),
and (3) the liquid mixture has interactions of three kinds, the

1-1, 1-2, and 2-2 interactions (the "three liquid solution'). It

is known‘that there is a close agreement of experimental results
obtained at or near boiling points of mixtures with those predicted
by Scott's "two liquid solution’ theory. The "three liquid solution'
theory does not apply to liquid mixtures very well and is valid for
dilute gas mixtures only. Therefore, the activity coefficients of a
liquid mixture at high pressures where one component is above its
critical temperature should probably be best described by a theory
which would be between "two liquid solution" and "three liquid
solution” relationships. I presume the "two liquid solution" relation
will give too high excess free energy and the ""three liquid solution"
will give too low value at conditions above the critical temperature
of one of the components. Since at present there is no solution
theory which will predict the correct activity coefficients under
conditions considered here I hope this research will at least con-
tribute to the experimental evidence needed to test possible future

theories.
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SUMMARY AND CONCLUSIONS

This thesis deals with the following physical and thermo-
dynamic properties of the pure liquids acétone, benzene, chloroform
and carbon tetrachloride and of mixtures of the binary system acetone-
benzene in the whole concentration range and over the temperature range
of 100°C to the respective critical points:- viz., orthobaric volumes, vapor
pressure, critical constants, vapor-liquid equilibrium compositions.
The orthobaric volumes were obtained by means of a sealed tube
technique and the critical phenomena were observed over a range of
total volume which didnot necessarily prove that the nose of the curve
of orthobaric densities versus temperature was horizontal. The vapor
pressure was measured by a closed air-manometer and the pressure was
calculated frdm the equilibrium volume of compressed air, using van
der Waals' equation. Other equations of state did not give markedly
better results and variations were within the experimental error.
The critical temperatures of the pure compounds as well as tﬁose of
mixtures were determined by the disappearance-of-the méniscus method.
Critical densities of the pure compounds were obtained by the applica-
tion of the law of rectilinear diameter, and the critical pressures by
extrapolation of the log P versus 1/T line t; the critical temperature.

In an effort to calculate the non-ideal behavior in each of the
two phases in the vapor-liquid equilibria, an equation of state
suggested by Redlich and Kwong was used for vapor-phase properties, and
a modified van Laar equation for liquid-phase properties. The equation
of Redlich and Kwong has been found to provide a simple method for

calculation of fugacity coefficients. The dimensionless constants
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Qa,and Qb have been re-evaluated from the saturated volumetric properties
of each pure component as suggested by Chueh and Prausnitz. Redlich-
Kwong equation, as modified by Chueh and Prausnitz, also has a binary
interaction constant which significantly increases its accuracy for
mixtures. Following the solution model of these‘authors, I attempted
to account for the effect of composition on liquid-phase properties by
a modified van Laar equation. There was little success above the
critical temperature of acetone: but, the one-parameter model, when
both components are below a reduced temperature of 0.93, was fairly
successful. For showing the effect of pressure on liquid-phase
properties, the partial molal liquid volumes were calculated using a
liquid-phase equation of state coupled with an extension to mixtures

of the corresponding-states correlation of Lyckman et al. The pressure
correction (Poynting correction) to the activity coefficient in the
liquid phase was then calculated from the partial molal volumes. The
calculations are sensitive to the characteristic energy between two
dissimilar molecules. These energies are known for a number of binary
systems from either the second virial cross coefficients or the binary
saturated liquid volumes. Since these are not known for acetone-
benzene system, and generally for any mixture containing a polar
compound, it cannot be definitely concluded as to what happens at
high temperatures and pressures to such mixtures. Work is in progress
in this laboratory to determine the saturated liquid volumes of certain
binary systems containing polar components. Recently in a critical
review of the phase behavior of mixtures Kay (218) has reiterated the

importance of the interaction energies. While discussing the shape of
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the critical locus curve of a mixture he says, "The shape of the
critical locus curve is ultimately the result of the sum total of the
potential energies of interaction between the molecules. However, we
do not have sufficient knowledge of how molecules interact to evaluate
these potentials, and hence we choose size, shape, and chemical nature
of the molecules as practical parameters to distinguish between the
different types of phase behavior exhibited by mixtures in the vapor

and liquid states'.



204,

APPENDIX

The programs used in vapor-liquid equilibrium are given in
"Appendix D' of the monograph by Prausnitz and Chueh (116). The title
of the programs that I have used are given in Chapter V of this thesis
—— they are the same as written by Chueh and Prausnitz.

The information for input data used in these programs was
obtained as follows:

1) Pure component data -

Tc’ PCs VC for acetone and benzene were taken from the results
obtained in this work. Acentric factors for these compounds were
calculated from the vapor pressure data of the pure components using
the equation given on page 46 (w for benzene = 0,211 and w for acetone
0.309). The dimensionless constants in the Redlich-Kwong equation
of state were evaluated for each pure component by fitting equation (25)

to the volumetric data of the saturated vapor and saturated liquid.

They are slightly different from the universal values.

Liquid Phase Vapor Phase
14 §ip Qg §ip
Acetone 0.3900 0.0745 0.4600 0.0940
Benzene 0.4100 0.0787 0.4450 0.0904
The universal values are Qa = 0.4278 and Qb = 0.0867. The coefficients

for the reduced reference liquid fugacity of the two components at

zero pressure which fitted the following equation

f(PO) 5
1n pure
= CO + Cl/TR + C2/TR + C

PC

3 A
/T~ + €, /T, (11D




205,

were evaluated from the generalized table of Lyckman et al. (117).

In this table Lyckman et al. have tabulated the values of

¢ (PO (0) £ PO\ (1)
log _Egzs_ and \log _E§£E~ for different values of TR'
c c

These values were fitted to equation (111) for each component by a

polynomial regression analysis and the following coefficients obtained

Acetone Benzene
Cy = -1.98432 0.69309
¢, = 10.13478 2.68502
C2 = -11.89554 -4.62806
C3 = 3.64036 0.70543
C4 = -0.45048 0.0

2) Vapor-phase and critical binary constants

The second virial coefficients of pure benzene and pure acetone
are available in the literature up to 335° and 150° respectively (219).
The cross coefficients have not been determined for this system beyond
90°C (139) and no experimental information is available about the
saturated liquid volumes of this binary system. Therefore, the binary
constant k12 which represents the deviation from the geometric mean

for T (see equation 36) was estimated (kl2 = 0.01) from interpolation.

€12

The critical binary constant 2T12/(TCl + TCZ) was obtained from
the experimental data of the critical temperatures of the binary mix-
ture shown in Table XIII. Since the experimental volumetric data in
the critical region were not available for the binary mixture, the

correlating parameter for critical volumes Zvlz/(vC + ch) was

1



estimated from the generalized chart (p.41l, ref. 116) given in the

monograph. Parameters T and vy, are required only if T/TCM is

close to or larger than 0.93.
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