
Computational Geometric-Based Visual Shape
Tracker.

by
Pasan Bandara

A thesis
submitted to the Faculty of Graduate Studies,

in Partial Fulfilment of the Requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

© by Pasan Bandara, July 22, 2021

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba R3T 5V6 Canada

Abstract

The main intent of multiple shape tracking is to allocate distinct track
identities for all the salient shapes in a video sequence. The approach used
in this problem is ‘Track by Detection’ scheme, where it needs to first, find
shapes in a frame, map shapes to appropriate tracking tracks, and maintain
the data continuity model throughout the video sequence. This thesis proposes
a process to address shape tracking by maintaining a data continuity model
based on shape relative proximity, shape context descriptor, and spatial color
variation of a shape. Shape intersection is used to calculate the shape proximity.
A spatial color analyzer is used to compare shape’s color variations between
two consecutive frames, and shape similarity comparison is done by using the
shape context descriptor. These values are then used to build and maintain
the data continuity model throughout the video sequence. Besides, this also
introduces a methodology to reestablish tracking identity when the detection is
failed or occluded temporarily between small numbers of frames. The proposed
method can be implemented using both online and offline approaches. To assess
the proposed method’s robustness, we evaluated the online method in both
VOT-ST2020 (Visual Object Tracking Challenge - Short Term) and MOT20
(Multiple Object Tracking) benchmark datasets. It was observed that in both
benchmarks, the proposed approach can deliver state-of-the-art results.

Keywords: Computer vision, shape intersection, shape descriptor, description,
feature vector, shape persistence, object tracking, Delaunay triangulation, sim-
ilarity measure, Kalman estimation, shape analysis, color variation.

ii

Acknowledgements
First of all, I would like to express my sincere gratitude to my advisor, Prof. James
Peters, for allowing me to be part of his research group. I am thankful for his
thorough advice, steady inspiration, insightful feedback, solid encouragement, and
helpful suggestion. Without him, the completion of this thesis would not have been
possible.

I would also like to thank my examination committee members, Prof. Arkady Major,
Prof. Sherif Sherif, and Prof. Ji Hyun Ko, for their additional guidance and support.

I wish to thank all my colleagues and friends in the Computational Intelligence Labo-
ratory for their generous help during my research work. I want to thank all professors
in our department for their exciting and helpful courses. I also wish to acknowl-
edge the kind help and support from the Department of Electrical and Computer
Engineering staff.

Finally, I would like to thank my parent, siblings, and friends for their constant love,
care, and support.

iii

Contents

Abstract iii

Acknowledgements iv

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Thesis Objective . 2
1.2 Organization of the Thesis . 2

2 Background 4
2.1 Shape Tracking Method . 9

3 Shape Region Estimation 11
3.1 Introduction . 11
3.2 Preliminaries . 11

3.2.1 Foreground Shape Detector 11
3.2.2 Edge Detection . 14
3.2.3 Shape Contour . 19
3.2.4 Shape Centroid . 20
3.2.5 Delaunay Triangulation . 22

3.3 Region Estimation Method . 24

4 Shape Context Descriptor and Spatial Color Analyzer 34
4.1 Introduction . 34
4.2 Preliminaries . 34

4.2.1 Pixels . 34
4.2.2 Distance Metrics . 36
4.2.3 Image Histogram . 37
4.2.4 Keypoint Descriptors . 39
4.2.5 Affine Transformation . 42
4.2.6 Color Spaces . 45
4.2.7 Voronoi Regions . 45
4.2.8 Clustering Algorithms . 46

4.3 Shape Context Descriptor . 49
4.4 Spatial Color Analyzer . 55
4.5 Track Assignment . 60

iv

5 Kalman Filter Based Shape Trajectory Estimator 63
5.1 Introduction . 63
5.2 Preliminaries . 63

5.2.1 Kalman Filter . 65
5.3 Shape Trajectory Estimator . 67

6 Results 75
6.1 VOT-ST2020 Challenge: (Visual Object Tracking - Short Term) . . . 75
6.2 MOT20 Challenge: (Multi Object Tracking) 77

7 Conclusion 81
7.1 Recommendations for Future Work 81

References 82

v

List of Tables
1 Proporties of different edge detection algorithms 18
2 Naming convention based on the dimensionality [1] 46
3 Shape A (sh(A)) distances and angles 51
4 Shape B (sh(B)) distances and angles 51
5 Shape A (sh(A)) normalized distances and angles 52
6 Shape B (sh(B)) normalized distances and angles 52
7 Shape similarity measures for region cluster 1 62
8 Shape similarity measures for region cluster 2 62
9 State estimator analysis results . 67
10 VOT-ST2020 results for the proposed online tracker 77
11 VOT-ST2020 results overall comparison 79
12 MOT20 results overall comparison 79

vi

List of Figures
1 Implementation of the online visual tracker 10
2 Implementation of the offline visual tracker 10
3 Different background substraction approaches. (a) input frame from

a static video sequence [2]. (b) result obtained from first frame sub-
straction (native) method (c) results by using the frame difference
algorithm (adaptive background substraction). 12

4 Machine learning vs handcrafted background removal methods. (a)
input frame from a dynamic video sequence [3]. (b) native background
substraction method (c) adaptive background substraction method.
(d) machine learning based ”Detectron2” model result. 13

5 Primary edge types. (a) step edge (b) ramp edge (c) roof edge 14
6 Convolution kernels for Sobel edge detector 15
7 Edge vs ridge detection (at x500 zoom level). (a) input thin line (b)

edge detections (c) ridge detections. 16
8 Convolution kernels for Robert edge detector 16
9 Convolution kernels to calculate the Laplacian 17
10 Different edge detection methods. (a) Sobel, (b) Canny, (c) Robert,

(d) Prewitt, (e) LoG, (f) zero Crossing 19
11 Shape contour approximation demonstration [4]. (a) shape contour

with 734 points , (b) shape contour with 4 points 20
12 Centroid of a binary mask. (a) input frame (b) shape mask with the

centroid (red) . 22
13 Delaunay triangulation steps. (a) input shape mask, (b) delaunay

triangulation with the shape contour points and the shape centroid. . 23
14 Shape closeness. (a) shape A (shA) in frame n, (b) shape B (shB) in

frame n+1 , (c) superimposed frame (shA with shB) 25
15 Evaluation of whether a triangle contains the origin. A,B,C points

are in the Minkowski difference, O is the origin and RAB, RAC , RABC

define regions as shown in the figure. 28
16 Overall region estimation process. (a) input frame n, (b) shape masks

for frame n sh(A), (c,g) Outermost boundary of the triangular mesh,
(d) sh(A) skeleton, (e) input frame n + 1, (f) shape masks for frame
n + 1 sh(B), (h) sh(B) skeleton, (i) superimposed sh(A) mask with
sh(B) mask to a common reference frame, (j) superimposed sh(A)
skeleton with sh(B) skeleton to a common reference frame. 30

17 Pixel value representation. (a) RGB color image [5], (b) grayscale
version, (c) binary version . 34

18 8-bit grayscale image representation. (a) low resolution input im-
age [6], (b) grayscale pixel values overlapped on the input image, (c)
grayscale value matrix representation. 35

19 8-bit RGB color space [7] . 36
20 Distance metrices . 36

vii

21 Color histogram in RGB color space. 8-bit per channel. 38
22 Log Polar histogram [8]. (a) cartesian plane, (b) log-polar plane . . . 39
23 Keypoint matching comparison. (a) SIFT keypoint matching, (b)

SURF keypoint matching, (c) ORB keypoint matching. In each method,
image (1) and image(2) represent two images of the same object but
from different viewpoints. Each red line indicates the matching con-
nection between the different viewpoints. 42

24 Voronoi regions. (a) 2d Voronoi region (b) tetrahedron represents a
3d Voronoi region [9] . 46

25 Results obtained from elbow method 48
26 Vertices from Corner detection . 51
27 Log-polar histogram for vertice A1 53
28 Total Log-polar histogram for sh(A) and sh(B) 53
29 SIFT based keypoint detection . 55
30 Color reduction in RGB color space. (a) input image , (b) resultant

image with only 10 colors. 58
31 RGB color distribution for the input shapes. (a) input shape sh(A) in

frame n, (b) input shape sh(B) in frame n + 1, (c) sh(A) RGB color
vector points in RGB color space, (d) sh(B) RGB color vector points
in RGB color space . 59

32 Output result from k −mean ++ clustering. (a) new color centroids
after applying k − means + + clustering, (b) Spatial color difference
between two consecutive frames. 60

33 Region cluster representation. Sh(i), Sh(i′) (i ∈ {x, y, z, p, q, r} , i′ ∈
{x′, y′, z′, p′, q′, r′}) represent shapes extracted from two consecutive
frames. 62

34 The state estimation process . 65
35 Newton’s motion . 67
36 Two dimensional barcode - with occulussion 71
37 Proposed slave tracks by SIFT keypoint connections. Algorithm chooses

global shape ID 95,96 as slave tracks and 97 as the master track. . . . 72
38 Estimation results from Kalman filter (positions are measured in terms

of pixel distances). (a) SIFT connections between track id i and j (b)
red - actual relative positions for track id i , blue - actual relative
positions for track id j, yellow - Kalman filter based estimations for
occluded frames . 73

39 Two dimensional barcode - after Kalman filtering 74
40 Two dimensional barcode tracking data - Ground truth 74
41 VOT evaluation metric term definitions [10] 76
42 Results are being recorded over a few frames. (a) tracking result from

a random Youtube video sequence, (b) tracking results from VOT-
ST2020 training data, (c) tracking results from MOT20 training data.
At each sequence, unique ids displayed maximum up to four objects.
For more than 60 frames, these identities are tracked individually. . . 80

1 Introduction

The focus of this thesis is on shape tracking in video sequences (defined by a mask

around an object of interest) with attention to shape structure and color. Shape or

object tracking generally involves locating the object and applying a distinct iden-

tity across all of the frames in a video sequence. Shape tracking is a dominant

research area owing to its many use cases such as motion prediction [11], self driv-

ing vehicles [12], advanced video processing systems [13], behavior analysis [14] and

military applications [15].

Typically, in a digital video sequence, the object-of-interest visual appearance may

change over time primarily due to changes in illumination, object rotation and/or

scaling (geometrical orientation), occlusions and color. This is the major obstacle that

any of the object trackers need to overcome. There are two major branches within

object tracking. An initial approach to object tracking is to use the localization

information (shape bounding box coordinates) present in the first frame. A more

advanced approach to object tracking is multiple objects tracking that uses prior

learned information to detect, identify and track frame objects. Nowadays, object

detectors are used by almost all multiple object trackers to locate shapes in each frame

(also known as a “track by detection” [16] framework) and then employ a method

to manage and track objects over time. Another way to categorize object trackers

is based on how they utilize the detection information in a video sequence. Trackers

that use all detection information to map and assign unique identities to detections

in a video sequence are referred to as offline method-based trackers [16] while online

methods rely only on data from shape detection up until to the present frame. In the

domain of practicality, for real-time applications, online-based methods are the best

to track multiple objects in real-time since it only requires detection information up

to the current frame [17]. Since offline methods provide more knowledge about all of

1

the objects in the sequence, they can be more precise than online methods.

1.1 Thesis Objective

This research’s main objective is to elevate the overall performance of multi-object

visual trackers, both online and offline, by providing solutions to some inherent prob-

lems in estimating relative shape locations and feature dissimilarities.

In this research, I propose a novel approach to estimate the region of interest for a

given shape within two consecutive video frames. This approach is a combination of

shape intersection and shapes collision detection algorithms. In addition to that, I

propose a method to combine standard shape context descriptor with SIFT descriptor

to compute shape similarities with a minimum number of computations. Finally, I

introduce a method to re-establish tracking identity when there is a short term detec-

tion failure. For this, I use Scale Invariant Feature Transform (SIFT) [59] descriptor

with a Kalman filter.

In summary, the contributions presented in this thesis are:

• Introduces a shape region estimation method that based on computational ge-

ometric perspective,

• A method to combine SIFT keypoint descriptor to the shape context descriptor,

• A method to address shape occlusion in stable tracks.

1.2 Organization of the Thesis

This thesis is organized as follows: Chapter 2 provides a detailed background, a

literature review of object tracking approaches and the proposed online and offline

shape tracking framework. Chapter 3,4 and 5 discuss the computational geometric-

based region estimator, shape context descriptor with a spatial color analyzer, and

Kalman filter-based shape trajectory estimator, respectively. Chapter 6 discusses

2

the proposed tracker evolutions metrics, results and finally, chapter 7 discusses the

conclusions and future directions of the research work presented in this thesis.

3

2 Background

Multiple Object Tracking (MOT) has become one of the most popular, widely studied

subject areas in recent past years. Some MOT algorithms are for tracking only a

specific object. A great example of this is multiple human tracking [18], [19], [20] .

But some algorithms are general [21], [22] [23]. That means they can be used for any

type of object tracking. Most MOT algorithms are based on a tracking-by-detection

framework. In this approach, shape detection must be handled by an object detector.

Some approaches that use the tracking-by-detection framework make use of all the

detected shapes in the video sequence, while others only use shapes that are detected

up to that frame. The first methods are known as global or offline approach, while

the latter are classified as online approach [16]. Bayesian filtering-based tracking [21],

multiple hypotheses tracking (MHT) [24] , network flow optimization [18] and graph-

based clustering [19] , are among the accepted approaches in offline multiple object

tracking algorithms. Without directly assigning detections to tracks, some global

MOT algorithms [21] first assign detections to tracklets.

Most of the global MOT algorithms apply detected shapes to tracklets before di-

rectly assigning them to tracks. (A tracklet is a short track between a few continuous

frames). Later these tracklets are assigned to tracks to identify the prolonged dis-

similarities in candidate shapes. Object appearance and motion are the two most

commonly considered factors when computing the similarity or difference between

object detections in various frames. Conventional methods like the distance between

deeply learned features [18], [19], [24], the separation between Red, Green and Blue

color channel histograms [21] , and machine learning-based person detection and

identification [18] are used for appearance-based distance calculation methods. The

distance between predicted and actual locations [19], [24] , Spatio-temporal distance

between object bounding boxes [18] and point motion matching [21], are used to eval-

4

uate matching costs based on motion. Moreover, fixing errors in tracklets to track

assignments yield highly accurate results. The point change analyzing framework [21]

is used to address this issue. Tracking results can be improved by using multiple de-

tectors. Hence some methods [19] utilize this fact though it increases the processing

time.

Online MOT algorithms are the best suit for real-time applications. Because they

use information not from all frames but up to the current frame. Most of the time,

they match the detections to tracks using some form of pairwise cost calculations.

Offline MOT algorithms are the opposite of this. They use matching costs from

every frame and use a global optimization approach to assign shapes or tracklets to

tracks. However, there is a similarity between the online and global algorithms. Both

types calculate the matching cost using the shape features and location data from

the detection.

The proposed method can be implemented in both ways - as an algorithm based on

online pairwise cost calculation or offline pairwise cost calculation followed by global

optimization. Let’s discuss several similar approaches in detail. Sarthak Sharma et al.

In [25] introduced a new tracking framework based on 2D and 3D localization infor-

mation, object shape, pose, and machine learning-based keypoints analyzing followed

by Hungarian assignment algorithm [26]. Here, detection accuracy is improved using

two object detectors [27] , [28]. In [29] to calculate the dissimilarity measure, RGB

color histogram Chi-Square similarity measure and Spatio-temporal cosine distance

of the shape is used. Sudden changes in the camera may result in false matching when

calculating matching cost. Comparative motion variation between shape masks [23]

can be used in compensation for this global motion. To reduce the false positives

and false negatives, in [23] proposed an event aggregation as a post-processing step.

Reinforcement learning-based closeness computation is used in [30]. Presenting an

online method, Amir et al. [20] introduced a new way to calculate similarity scores

5

based on appearance and motion. This method uses three Recurrent Neural Networks

(RNN) to calculate the similarity score. In [31], pairwise costs are calculated using

a Recurrent Autoregressive Network (RAN) that uses machine learning-based person

detection and identification results and shape location data. Chen et al. [32] proposed

a new approach to minimize the false negatives and calculate the pairwise cost us-

ing the bounding boxes from the object detector and the expected shape localization

data (from each track’s history). Here the machine learning-based person detection

and identification results are taken as the basis of pairwise cost. The non-maximum

suppression method is used to filter out the detections based on detection and track

dependence. Apart from size and motion-based matching, in [33], uses a trained

siamese network to minimize identity switches that generally occur in tracking. This

network does the matching based on historical appearance. In [34] uses two deep net-

works to calculate the pairwise cost. Here, the temporal attention network uses the

spatial attention network’s information to calculate the final pairwise cost between

each track and detection. Here, when comparing track history and detections, the

attention network follows siamese architecture. This Siamese approach can be used

to assign detections to tracks that are not matched by the single shape tracker (a

handcrafted version of [35] using Histogram Of gradients (HoG)).

In [36], for each instance of a person, detection confidence and intersection over union

are used for cost computation, and in addition to that, the authors also dynamically

initiate a subnetwork to estimate the next positioning coordinates. A discriminative

appearance method for individual tracks is used in [37]. Here, detection is used as a

possible hit while using the area around it as a negative hit. Besides, authors in [37]

use Spatio-temporal matching (STM) based on object size and position. Then, in a

multiplicative way, they combine these steps.

Apart from online methods that are based on pairwise cost, filter update-based track-

ing method is also used to design multiple object trackers. In [38], the expected

6

position of a shape is predicted in a Gaussian Mixture Probability Hypothesis Den-

sity filter. Zeyu et al. [39] introduced a similar method using the Monte Carlo PHD

filter. Dictionary matching is used to describe the appearance attribute, which is

defined using color (RGB) histogram and Histogram of Oriented Gradients (HoG)

clustering. In [40], the authors use a Poisson multi-Bernoulli mixture filter. Here,

they have used predictions of object 3D coordinates from a pre-trained network. Au-

thors in [41], use an Extended Kalman Filter version to track object 2D image co-

ordinates, object size, and the 3D coordinates using stereo matching along with an

ego-motion calculation. Authors in [30] suggest an online tracking framework that

uses the Markov Decision Process to change the track’s status (active, inactive, and

lost) for the individual frame using a shape appearance matching. An energy min-

imization approach is proposed in [22]. According to this model, the appearance

model and motion model are used to calculate energy terms. Though most pairwise

methods [20], [25], [29], [30], [37] use the Hungarian assignment [26], some [31] use the

Greedy assignment to assign the perfect match for tracks and detections. The hier-

archical association is used in [32], and it is based on two distinct pairwise matching

costs.

MOT methods [33], [34] based on deep learning are better at giving accurate tracking

results. However, compared to the traditional methods that are based on handcrafted

features, deep learning-based MOT methods consume more time. They require a

fairly large amount of dataset as the training data. Even though some deep learning-

based methods [32] obtain real-time performance with greater accuracy, they still need

specialized hardware with high system requirements to get higher running speed.

Appearance learning-based methods [37] and some filter update methods [38], [39]

are capable of getting higher accuracy at the expense of high computational cost. So

there is a high demand for simpler and efficient methods for real-time applications

and post-processing applications that are better at getting higher accuracy with a

lower computational cost.

7

This research attempts to resolve this problem by proposing a new method that

combines shape feature analyzing methods that are handcrafted, computationally

less expensive to calculate, and easy to implement. Primarily, the proposed method

is based on the likelihood of shape location, shape structure, color, and motion.

Multiple hand-crafted features are used in car tracking methods [25], [29]. In terms of

precision, our method outperforms them in terms of accuracy. To compute appearance

similarity, authors in [25] have used deeply learned feature-based matching [29]. In

our method, shape color matching and shape keypoint matching is defined when

the relative shape location’s likelihood is within the expected range to the previous

location. We demonstrate that the proposed approach is capable of achieving state-

of-the-art results among popular object tracking benchmark datasets.

8

2.1 Shape Tracking Method

This section briefly describes the online and offline methods for the proposed shape

tracker. As for the online method, I use a shape detector to detect and produce

salient (shape(s) of interest) binary shape masks in a video frame and associate these

shapes to tracks based on a data continuity model that is calculated within the

shapes in the current frame against to the previous frames in the memory. This

data continuity model can be represented using three sub-modules. They are the

shape region estimator, keypoints-based shape context descriptor, and the spatial

color analyzer. Shape intersection is the primary decision-making step for the region

estimator. In contrast, the spatial color analyzer uses a cluster-based reduction in

RGB color space followed by an affine transformation to analyze the shape’s color

variation. Finally, the shape context descriptor is based on the concepts borrowed

from well-known keypoint descriptors. For the offline method, in addition to the above

data continuity model, I use a Kalman-based trajectory estimator to address shape

occlusion in any stable tracks. Since the goal of the online approach is to process

as many frames as possible within a certain period, the computational complexity

should stay lower. Because of this reason, the Kalman filter module is only used in

the offline model owing to its relatively high computational cost. Both online and

offline overall tracking processes are presented as flow charts in Figure 1 and Figure.

2 respectively.

9

Figure 1: Implementation of the online visual tracker

Figure 2: Implementation of the offline visual tracker

10

3 Shape Region Estimation

3.1 Introduction

In this module, we introduce the proposed region estimator, which is based on compu-

tational geometric concepts to estimate the position of a shape in consecutive video

frames depending on the shape behavior. For this, we explore methods to isolate

shapes in a video sequence, efficient edge detection algorithms, shape contour ap-

proximation methods, shape centroid, and Delaunay triangulations. This module is

one of the three modules that were used to track shapes in this research. This mod-

ule’s output is the input to the other two modules, which are shape context descriptor

and spatial color analyzer. In this chapter, Section 3.2 briefly outlines the fundamen-

tal concepts of computational topology and geometry, while Section 3.3 provides the

proposed region estimator module for shape tracking.

3.2 Preliminaries

3.2.1 Foreground Shape Detector

There are several methods to isolate foreground shapes from the background in a video

sequence. This section explores the two major categories in the domain of computer

vision. The first one is a frame subtraction-based background removal method to

isolate foreground moving objects, and the second one is to use a pre-trained object

detector to isolate shapes. Frame subtraction-based background removal method

can be further divided into two major subcategories [42]: native or conventional

background subtractor and an adaptive background subtractor (Figure 3). Native

background subtraction methods work well for fixed camera viewpoints that have

minor light changes throughout the entire video sequence. This method takes a

static image representing the background. It then computes the absolute difference

between the current frame in the video sequence and the static background frame to

11

detect any pixel changes. From this, it can be argued that given there are negligible

light differences between those two frames (in a fixed camera viewpoint), these pixel

changes indicate moving objects. The significant advantage of this method is that it

is easier to implement. However, due to the nature of the resultant image from this

process containing a significant amount of pixel noise, the object detections’ accuracy

falls dramatically.

Figure 3: Different background substraction approaches. (a) input frame from a static video
sequence [2]. (b) result obtained from first frame substraction (native) method (c) results by using

the frame difference algorithm (adaptive background substraction).

Unlike conventional background subtraction methods, adaptive background subtrac-

tion methods initialize and maintain a background model throughout the video se-

quence. One of the most efficient (in terms of average execution time, average CPU

usage, and average memory usage) adaptive background subtraction algorithm used

in this research as an object detector was the “Frame Difference” algorithm [43]. In

this method, the background model is maintained by the arithmetic mean of pixels

between previous frames in a video sequence. Hence, given a video sequence with n

number of total grayscale frames defined by V = {Z1, ..., Zn} ,the background model

B can be defined by :

B =
1

n

n∑
t=1

Zt, (1)

This can be used to initialize the model. To maintain the background model the

12

following equation was used.

Bt = (1− α)Bt−1 + αZt (2)

In here, Bt is the background model at time t ∈ {1, n} ⊂ Z and α ∈ {0, 1} ⊂ R is

the learning rate. Even though adaptive background subtraction methods work well

compared to the conventional background subtraction method, this process does not

provide any good results for unfix (shaky handheld camera viewpoint) video sequences

because of the high rate of background pixel change.

Figure 4: Machine learning vs handcrafted background removal methods. (a) input frame from a
dynamic video sequence [3]. (b) native background substraction method (c) adaptive background

substraction method. (d) machine learning based ”Detectron2” model result.

Compared to which, machine learning-based pre-trained object detectors can handle

most of the issues from the methods mentioned above. These object detectors can

be used to detect objects regardless of the camera viewpoint or lighting conditions

because they are trained on large image dataset(s) that represent real-world scenarios

13

such as different lighting conditions, different scales, and different viewpoints. Ma-

chine learning-based object detectors have evolved, and at the time of this research

work, the best and reliable open-source object detector was Detectron2 [44] from

Facebook AI research. Therefore, in this research, the ‘Detectron2’ object detection

model was used to isolate shapes from their background. For the training dataset,

‘Common Objects in Context (COCO)’ dataset [45], which contains 300,000 images

in 80 object categories, was used.

3.2.2 Edge Detection

Edge detection is an important concept when it comes to shape detection in a video

sequence. An edge of an image is a sudden change in intensity. In theory, an edge

represents an orthogonal step transition in a set of connected pixels [46]. However,

in most practical applications, edges are modeled as having a gradient [46] (figure 5).

Thus, rapid changes of luminous intensity can be utilized to detect edges in a digital

image. Shapes subjected to unresolved camera focus or surface light refraction can

result in invalid shape boundaries that have gradual intensity change. [46].

Figure 5: Primary edge types. (a) step edge (b) ramp edge (c) roof edge

The idea behind traditional gradient edge detectors is to match local image segments

with specific edge patterns. This can be achieved by observing the minimum and

maximum in the first derivative of the image. As regarding to image f(x,y), the gra-

dient of point (x, y) is defined as :

∇f(x, y) =

[
∂f

∂x
,
∂f

∂y

]T
= [Gx,Gy]T . (3)

14

The weight of the vector is

∇f = mag(∇f) =
√
(Gx2 +Gy2) (4)

And its direction as:

θ(x, y) = arctan(
Gy

Gx
) (5)

Edge detection operators are represented on a 3x3 grid pattern, making them effective

and straightforward to use. There are six major types of edge detection methods:

Sobel, Canny, Robert, Laplacian of Gaussian, and Zero crossing.

3.2.2.1 Sobel edge detector

The Sobel operator evaluates a 2-D spatial gradient on an image, highlighting the

separation of regions corresponding to edges [47]. On a grayscale image, this will

generally evaluate the gradient magnitude per pixel. This can be achieved by per-

forming a 3x3 convolution kernels with the as shown in Figure 6. On the image, this

is done in both the x and y directions, with one kernel rotated by 90 degrees.

Figure 6: Convolution kernels for Sobel edge detector

3.2.2.2 Canny edge detector

A multi-stage method is used by the Canny operator. For that, firstly, the image

is smoothed by Gaussian convolution [48]. The smoothed image is then applied to

a simple 2-D first derivative operator to highlight regions of the image with strong

first spatial derivatives. In the gradient magnitude image, edges increase ridges (see

15

figure 7). Non-maximal suppression is achieved by making all the pixels to zero that

are not actually on the ridge top.

Figure 7: Edge vs ridge detection (at x500 zoom level). (a) input thin line (b) edge detections (c)
ridge detections.

3.2.2.3 Robert edge detector

On an image, the Robert Cross operator calculates a 2-D spatial gradient in a simple

and fast method. [49]. As an outcome, high spatial frequency regions can be identi-

fied, which also lead to edges. The operator’s input and output are both grayscale

images in its most common usage. The approximate absolute magnitude of the spa-

tial gradient of the input image at that point is expressed by pixel values at each

point in the output. As shown in figure 8, this can be performed by a pair of 2x2

convolution kernels. . One kernel is 90 degrees rotated from the other.

Figure 8: Convolution kernels for Robert edge detector

3.2.2.4 Laplacian of Gaussian

The Laplacian is a 2-D isotropic measure of an image’s second spatial derivative [50].

The Laplacian of an image is also used for edge detection as it detects rapid intensity

change. The Laplacian is frequently applied to an image that has been smoothed

using a Gaussian smoothing filter to reduce sensitivity to noise. In most cases, input

and output to this operation take a grayscale image. The Laplacian L(x,y) of an

16

image with pixel intensity values I(x,y) is given by:

∇2L(x, y) =
∂2I

∂x2
+

∂2I

∂y2
(6)

A convolution filter can be used to calculate this. Two commonly used kernels are

shown in figure 9. The Laplacian can be calculated using standard convolution meth-

ods using one of these kernels. These kernels are susceptible to noise since they

approximate a second derivative measurement on the image. To reduce the noise,

the image first needs to smooth with a Gaussian before applying the Laplacian filter.

This will help to reduce the noise component before to the differentiation step.

Figure 9: Convolution kernels to calculate the Laplacian

3.2.2.5 Zero crossing

The zero-crossing detector checks for positions in the Laplacian of an image where the

Laplacian value crosses zero [51]. Points where the image’s intensity varies rapidly, but

they can also happen in positions that are not readily associated with edges. Closed

contours often have zero crossings. A zero-crossing detector generates a binary image

with single-pixel thickness lines and can be used to locate zero-crossing points. The

size of the Gaussian used for this operator’s smoothing stage has a significant impact

on the zero crossings that follow. Zero-crossing contours are inversely proportional to

smoothing. Therefore, when the smoothing is increased, the remaining zero-crossing

contours only vaguely correlate to large-scale features in the image.

The analysis result of edge detectors [52] are illustrated in table 1.

17

Table 1: Proporties of different edge detection algorithms

Operator
Complexity

Noise Sensitivity False Edges
Time Space

Sobel Lower high Less sensitivity More

Canny High High Least sensitivity Least

Robert High High Sensitivity More

Prewitt Low lower Least sensitivity More

Laplacian of Gaussian Low Least Least sensitivity More

Zero crossing Low Less Least sensitivity More

The following major conclusions can be drawn from the above comparison. Canny

method outperforms all the other methods even though its computational complexity

is higher. Canny can be used for the detection and extraction of even shapes with

weak edges. With any form of edge detection, the computational complexity rises

as the spatial resolution increases. Therefore the Canny edge detection method was

selected as the preferred edge detection method for this research. Since the selected

method has a higher time complexity, it is essential to reduce the spatial resolution

to overcome this barrier. Hence, in this research, the previous object detector was

used to provide a low noise individual binary mask for each shape to detect edges.

Major advantages of Canny edge detection algorithm can be summarized as followings

[46]:

• Low error rate.

• The difference between the actual edges and the edge pixels is at minimum.

• Response to a single edge.

Canny edge detection runs in five separate steps:

1. A convolution of the image with a blur kernel,

18

2. Four convolutions of the image with edge detector kernels,

3. Computation of the gradient direction,

4. Non-maximum suppression, and,

5. Thresholding with hysteresis,

Figure 10: Different edge detection methods. (a) Sobel, (b) Canny, (c) Robert, (d) Prewitt, (e)
LoG, (f) zero Crossing

3.2.3 Shape Contour

The contours are a valuable approach for object detection and recognition as well as

shape analysis. Contours are essentially a curve that connects all shape boundary

continuous points with the same color or intensity. The vertices are abstract elements

in discrete mathematics, and the edges are pairs of these elements. Each contour

point can be represented as an array of (x,y) positioning coordinates. To find shape

contours in a more accurate manner, the following processes were performed.

• Used only binary shape masks to find the shape contour.

19

• Make sure that the object represents white(255 for 8 bit channel image) and the

background should be in black (0).

3.2.3.1 Contour Approximation Method

As mentioned in the previous step, the boundary of a shape with similar intensity

values can be represented by a set of (x,y) coordinate points. However, it is not re-

quired to store all of the coordinate points in order to emphasize the shape contour in

general. Therefore, it is necessary to have a technique to remove the redundant point

and compresses the contour to save the memory. In this research, as for the con-

tour approximation method, OpenCV’s build in ‘cv.CHAIN _APPROX _SIMPLE’

method was used to save the memory Figure 11 demonstrates the effect of memory

consumption with and without the contour approximation method. In this figure,

the first image shows points that returned with ‘cv.CHAIN _APPROX _NON’ (734

points – without any approximation method) and ‘cv.CHAIN _APPROX _SIMPLE’

(4 points – with approximation method) is seen in the second image.

Figure 11: Shape contour approximation demonstration [4]. (a) shape contour with 734 points ,
(b) shape contour with 4 points

3.2.4 Shape Centroid

In two-dimensional space, a centroid is a point on the shape that corresponds to

the mean location of all the points on the shape. As opposed to random shapes,

finding the center locations of simple shapes are fairly easy. However, in practice,

almost all of the shapes that needed to be tracked can be considered arbitrary shapes.

Therefore a reliable method to find the centroids of irregular shapes is essential. In

20

comparison to the real world, computer vision systems view all images as pixels rather

than atoms. A blob is a set of related pixels that share a common property (such as

grayscale value). In this research, the previously mentioned object detector returns

the detected shapes as binary masks; each mask can be considered as blobs. According

to the definition of a 2d shape, the centroid of a shape consists of n distinct points

{x1, ..., xn} can be calculated as:

C =
1

n

n∑
i=1

xi (7)

Each shape is made up of pixels in computer vision systems, and the centroid is

essentially the weighted average of all the pixels in shape. In OpenCV, the easiest

way to find the center of a blog is by using moments. The moment is the distribution

of matter about a point (image pixel intensities weighted average). The moments

can be grouped into two classes. They are spatial moments and central moments.

The problem with spatial or regular moments is that they are sensitive to the X

and Y position. Therefore central moments are introduced to calculate moments

independent of where the shape is in a video frame. The spatial and central moments

can be defined as:

Mij =
∑
x

∑
y

xiyjI(x, y) − Spatial moments (8)

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) − Central moments (9)

Where, x̄ =
M10

M00

ȳ =
M01

M00

It can be shown that this only counts points where the image is non-zero. If it is a

binary image, then I(x,y) becomes one or zero, and if it is a grayscale image, then we

are weighting the point by essentially how heavy it is. In addition to that, if i and j

are zero, this would just be counting up the number of non-zeros pixels, which means

21

that {M00} is the area of the shape. From this, the position of the centroid can be

calculated as:

Cx =
M10

M00

Cy =
M01

M00

(10)

Figure 12: Centroid of a binary mask. (a) input frame (b) shape mask with the centroid (red)

{Cx} is the x coordinate, and {Cy} is the y coordinate of the centroid, and M denotes

the Moment. Hence, throughout this research work, we have used the OpenCV

moments method for all centroid calculations, which requires a Raster image (single-

channel, 8-bit) as the input image.

3.2.5 Delaunay Triangulation

Delaunay triangulation is an important computational topological concept used in

this research to estimate the shape regions within a given video frame, and it has the

following properties.

1. In Delaunay triangulation, there are no points inside the each of the triangle’s

circumscribed circle.

2. The three closest points generate a triangle if each line segment does not inter-

sect.

3. Regardless of the starting point, the final result is steady.

22

4. Only the adjacent triangle can be affected by adding, removing, or moving a

vertex.

5. The triangular mesh’s outermost boundary forms a convex polygon shell.

Figure 13: Delaunay triangulation steps. (a) input shape mask, (b) delaunay triangulation with
the shape contour points and the shape centroid.

Algorithm 1 introduces an approach to construct Delaunay triangulation for a video

frame. In this research, the set of seed points can be considered as the combination

of edge vertices, frame corners, and the shape’s centroid. Delaunay triangle was

23

constructed between those vertices.
Algorithm 1: Construction of Delaunay triangles [53]

1 Select a set of seed points S on a given finite, bounded, planer region of a

visual scene;

2 Select a seed point p in S;

3 Select 2 seed points q,r that are nearest seed point p;

4 Draw edge p̂q opposite seed point r;

5 Select closed half plane πpq with edge p̂q so that r ∈ πpq;

6 Repeat the edge step for edge p̂r;

7 Repeat the half plane step for edge πpr;

8 Repeat the edge step for edge q̂r;

9 Repeat the half plane step for edge πqr;

Result: Delaunay triangle △(pqr) equals the intersection of the half planes

πpq,πpr,πqr

10 Repeat the construction for a new Delaunay triangle, starting with the seed

point step for each seed point p in S;

3.3 Region Estimation Method

This section describes the fundamental concepts, theories, and proposed region esti-

mation algorithms used in this research. The deciding intuition to this approach is the

shape closeness. If two shapes are close to each other between two consecutive frames,

there is a possibility that the first shape in the first frame may represent the same

shape in the second frame. More intuitively, given a high frame rate video sequence,

the relative shape location difference between two consecutive frames is small or zero

if they are close to each other. To express this in another way, if we superimposed

two shapes extracted from two consecutive frames into a 2D coordinate plane, these

two shapes may intersect if they are close to each other and may not intersect if they

are far between these frames. Here, it is assumed that the relative camera viewpoint

24

change is negligible, and the high frame rate is relative to the content in that video

sequence (figure 14).

Figure 14: Shape closeness. (a) shape A (shA) in frame n, (b) shape B (shB) in frame n+1 , (c)
superimposed frame (shA with shB)

Then the problem can be represented as given two shapes; how to find whether two

shapes intersect with each other? This problem is challenging because this method

needs to handle all sorts of shapes, sizes, and orientations. One popular algorithm

for testing shape intersection is the Gilbert Johnson Keerthi (GJK) algorithm [54].

With that, it is possible to detect the intersection between any two convex polygons.

There are other ways to solve this problem that takes perhaps a more straightforward

approach but what’s particularly satisfying about the GJK algorithm is it solves this

problem the most efficient way, with many implementations used for a variety of

applications in computer graphics.

All shapes can be split into two distinct classes—convex and concave shapes. Convex

shapes have the property for any two points on the shape, the line between them will

always be inside that shape, and concave shapes do not guarantee. Convex shapes

are significantly more straightforward to work with than concave shapes. Therefore,

when there are concave shapes, it is possible to split them into multiple convex shapes.

Every concave shape can be broken down into convex shapes. If it can be solved with

convex shapes, it is possible to solve it for all shapes. This transforms the original

problem into a problem of convex shape intersection. Another less computational

25

expensive operation is to find one point in common between these two shapes, there

is an intersection, or similarly, if there are two points whose difference ends up being

the origin, there is an intersection.

Minkowski sum is a method where it takes every possible point in one shape and adds

it to every possible point in the other shape, and the resulting shape is referred to

as Minkowski sum. Mathematically, this is treating every point on each shape as a

vector from the origin and then adding every pair of vectors to get a new set of points.

A few of these vector sums will define the boundary of the new shape. However, the

GJK algorithm uses the Minkowski difference, which is just a Minkowski sum that

negates all the points of one shape. For the GJK algorithm’s purpose, there are only

two properties of the Minkowski difference that need to be explored. The first is that

the resultant of the Minkowski difference of two convex shapes will form a convex

shape. The second key property is if the two shapes intersect, then the Minkowski

difference must contain the origin.

• sh(A) and sh(B) convex → sh(A)⊖ sh(B) convex

• sh(A) and sh(B) intersect → (0, 0) ∈ sh(A)⊖ sh(B)

As defined, calculating the full Minkowski difference is not a solid solution in terms

of computational performance. A simplex is a shape containing n+1 vertices, where

n is the number of dimensions. This is the most basic shape that can be used to

pick a region in space. In 2D, for example, the easiest shape that can select an area

containing a unique point is a triangle. Therefore, if there is a triangle made up of

points on the Minkowski difference surrounding the origin, there is an intersection by

definition of convexity.

For every point on the convex shape, there is a direction where it is the furthest

point. A function that maps a direction vector to the point furthest on the shape is

26

called a support function, and the corresponding point is called the support point.

For Minkowski differences, all that need to do is to select a direction, find the support

point in that direction for the first shape, then take the opposite direction for the

second shape and subtract two points.

SC(d⃗) = SA(d⃗)− SB(−⃗d) (11)

A support function SB takes a direction −⃗d and returns a point v on the boundary

of shape B “furthest” in direction −⃗d. Mathematically, this is defined as the point

on the shape that maximizes the dot product with direction d.

SB(d⃗) = v = argmax
v∈sh(B)

vT d⃗ (12)

To implement this algorithm, start with a random direction and find the support

point in that direction. This gives the first point of in the simplex (triangle in two-

dimensional space). Since the goal is to surround the origin, the next direction that

makes the most sense to select is towards the origin.

Using the support function, get the second point. Now it is required to do a sanity

check to verify if this point passes the origin. If the furthest point in this direction

does not pass the origin, there is no way the Minkowski difference can contain the

origin, and this implies there is no shape intersection. To determine, if a point passes

the origin, this implementation uses vector dot product. Treating point A as a vector

from the origin if the dot product with the direction vector d⃗ is less than zero implies

that this point A does not pass the origin.

AT d⃗ < 0 (13)

Now the next step is to select the next direction. The direction that GJK selects is the

27

normal vector to the current line segment facing the origin. This can be achieved by

using the vector triple product. The triple product is a nice way to find normal vectors

with a specific orientation. This completes the third point. Now again, perform the

sanity check. If it passes the origin, this gives the first triangle to check if this contains

the origin.

Figure 15: Evaluation of whether a triangle contains the origin. A,B,C points are in the
Minkowski difference, O is the origin and RAB , RAC , RABC define regions as shown in the figure.

Given a triangle, adding perpendicular lines to each side defines a set of regions for

space. These regions are known as Voronoi regions, and the origin will be in one of

these regions (figure 15). First, check region AB with the dot product. If the origin

is not there, similarly check region AC, and if the origin is not in that region, then

the origin must be contained within the triangle.

⃗AB⊥ · A⃗B < 0 → O /∈ RAB (14)

⃗AC⊥ · A⃗O < 0 → O /∈ RAC (15)

28

This implies O ∈ RABC .

However, if it does not contain, this algorithm iteratively searches a triangle until it

covers all the Minkowski difference points. To find the next triangle, the direction

GJK selects is the perpendicular vector to the side of the triangle that is closest to

the origin. From this, it is necessary to select the vector facing the origin, increasing

the chances of getting a new point that will eventually enclose the origin. After that,

get a new point that passes the sanity check and now update the triangle. If this

triangle now contains the origin, so the two shapes must intersect. In general, this is

updating directions and adding points to the simplex until this encloses the origin or

determines that it is not possible.

The implementation of the complete region estimator as follows. The GJK function

will take two shapes and return true if the shapes intersect. Here, the first step is

to pick an initial direction. It is possible to pick a random initial direction, but a

common starting direction is a vector between the two centers of the shapes, and

also, as a note, all vectors will be normalized. In addition, in this context, a shape

is referred to the outermost boundary of the triangular mesh (which results from

the Delaunay triangulation) that forms a convex polygon shell, and the Delaunay

triangulation is performed on a set of edge vertices that result from the Canny edge

operation with the input shape mask for each detected shape. Moreover, the two

shapes need to find the intersection extracted from two consecutive frames (figure

16). Here it is assumed that depending on the application, the video sequence’s

frame rate is comparatively high, the origin of the 2D video frame does not change

throughout the video sequence, and the relative viewpoint between two consecutive

frames is fixed. Finally, depending on the GJK computation results, these shape

masks are then assigned to shape region clusters. In the next sections, these shape

region clusters that contain shapes will further compare to each other in terms of

shape structure, spatial color, and build/maintain the data continuity model for this

29

shape tracking.

Figure 16: Overall region estimation process. (a) input frame n, (b) shape masks for frame n
sh(A), (c,g) Outermost boundary of the triangular mesh, (d) sh(A) skeleton, (e) input frame

n+ 1, (f) shape masks for frame n+ 1 sh(B), (h) sh(B) skeleton, (i) superimposed sh(A) mask
with sh(B) mask to a common reference frame, (j) superimposed sh(A) skeleton with sh(B)

skeleton to a common reference frame.

30

Algorithm 2 introduces the full region estimation method used in this research. In

Algorithm 2, it is assumed that all the detected shapes in both consecutive frames

are assigned to numbers for shape addressing purposes.

31

Algorithm 2: 2D region estimator
Input: NOS1 = Number of shapes in the first frame, NOS2 = Number of

shapes in the second frame, O = Reference frame origin point.
Output: Assign shapes to group based on their relative location.

(groupShapeCluster)
1 Function supportPoint(shA,shB,d):
2 return (shA.furthestPoint(d) – shB.furthestPoint(−d));
3

4 Function checkSimplexIntersection(simplex,d):
5 switch length(simplex) do
6 case 2 do
7 return lineCase(simplex,d);
8 end
9 case 3 do

10 return triangleCase(simplex,d);
11 end
12 end
13

14 Function lineCase(simplex,d,O):
15 B,A = simplex;
16 AB,AO = B-A , O-A;
17 ABPerpendicular = tripleProduct(AB,AO,AB);
18 d.set(ABPerpendicular);
19 return false;
20

21 Function triangleCase(simplex,d,O):
22 C,B,A = simplex;
23 AB,AC,AO = B-A, C-A, O-A;
24 ABPerpendicular = tripleProduct(AC,AB,AB);
25 ACPerpendicular = tripleProduct(AB,AC,AC);
26 if dotProduct(ABPerpendicular,AO) > 0 then
27 Simplex.remove(C);
28 d.set(ABPerpendicular);
29 return false;
30 end
31 else if dotProduct(ACPerpendicular,AO) > 0 then
32 Simplex.remove(B);
33 d.set(ACPerpendicular);
34 return false;
35 end
36 return true;
37

32

38 Function GJK(shA, shB,O):
39 D = normalize(shA.centroidPosition – shB.centroidPosition);
40 Simplex = [supportPoint(shA,shB,d)];
41 D = O – simplex[0];
42 while True do
43 A = supportPoint(shA,shB,d);
44 if dotProduct(A,d) < 0 then
45 return false;
46 end
47 Simplex.append(A);
48 if checkSimplexIntersection(simplex,d) then
49 return true;
50 end
51 end
52

53 Function Main(NOS1,NOS2,O):
54 if NOS1 > NOS2 then
55 while NOS1 > 0 do
56 shA = getShapeFromFirstFrameWithID(NOS1) ;
57 while NOS2 > 0 do
58 shB = getShapeFromSecondFrameWithID(NOS2) ;
59 bool intersect = GJK(shA,shB,O) ;
60 if intersect then
61 groupShapeClusters(shA,shB) ;
62 end
63 NOS2 = NOS2− 1;
64 end
65 NOS1 = NOS1− 1;
66 end
67 end
68 else
69 while NOS2 > 0 do
70 shB = getShapeFromSecondFrameWithID(NOS2) ;
71 while NOS1 > 0 do
72 shA = getShapeFromFirstFrameWithID(NOS1) ;
73 bool intersect = GJK(shA,shB,O) ;
74 if intersect then
75 groupShapeClusters(shA,shB) ;
76 end
77 NOS1 = NOS1− 1;
78 end
79 NOS2 = NOS2− 1;
80 end
81 end

33

4 Shape Context Descriptor and Spatial Color Analyzer

4.1 Introduction

This section explores the efficient shape matching technique based on shape key points

and the shape color variation. For this, we explore concepts of pixels, distance metrics,

image histogram, keypoint descriptors, affine transformation, color spaces, Voronoi

regions, and clustering algorithms.

In this chapter, Section 4.2 briefly outlines the fundamental shape analysis techniques.

In contrast, Section 4.3 provides the structure and working principle of shape context

descriptor, and finally, Section 4.4 illustrates the spatial color analyzer module.

4.2 Preliminaries

4.2.1 Pixels

In a digital image, a pixel may contains a value(s) that determines the color or

brightness of that pixel (Figure 17).

Figure 17: Pixel value representation. (a) RGB color image [5], (b) grayscale version, (c) binary
version

34

The pixel value in a grayscale image reflects its pixel brightness. The most common

pixel format is the byte image; here, each pixel value is stored as an 8-bit integer with

a value range from 0 to 255. In general, 0 is assigned to black, and 255 is white. The

remaining values generate the variations of gray (Figure 18).

Figure 18: 8-bit grayscale image representation. (a) low resolution input image [6], (b) grayscale
pixel values overlapped on the input image, (c) grayscale value matrix representation.

Separate Red, Green, and Blue components are maintained for each pixel in RGB

color space (Figure 19). In this color space, an individual pixel value can be repre-

sented in a three-number vector. When displaying or processing the image, the three

RGB components have to be recombined. Apart from the RGB images, multi-spectral

images have more than three components per pixel that need to be stored similarly.

It is also likely that each pixel’s grayscale or color component intensities are not stored

explicitly. It is possible to store them as an index into a colormap which then can be

used to extract intensity or colors.

35

Figure 19: 8-bit RGB color space [7]

4.2.2 Distance Metrics

There are four primary distance metrics in digital image processing: Euclidean, City

Block, Chessboard, and Quasi-Euclidean [55]. These metrics are used to estimate the

distance of points in an image.

Figure 20: Distance metrices

Figure 20 illustrates the differences between these metrices. All notations are shown

according to the figure 20 and D(p, q) ≥ 0 and D(p, q) = D(q, p), hence,

• Straight line distance between two pixels is referred to as the Euclidean distance.

36

• The city block distance metric is based on a four-connected neighbourhood and

calculates the path between those pixels.

• The chessboard distance metric uses an eight connected neighbourhood instead of

four to measure the path between pixels.

• The total Euclidean distance along a set of horizontal, vertical, and diagonal line

segments is used in the Quasi-Euclidean metric. Since this is a path-based

metric, one use case of this is to retrieve the shortest path between two vertices

(or pixels in image processing context) on a two dimensional plane.

Euclidean D1(p, q) =
√

(x− s)2 + (y − t)2 (16)

City block D2(p, q) = |x− s|+ |y − t| (17)

Chess board D3(p, q) = max(|x− s|, |y − t|) (18)

Quasi Euclidean D(p,q) =

|x− s|+ (
√
2− 1)|y − t| ; |x− s| > |y − t|

(
√
2− 1)|x− s|+ |y − t| ; otherwise

 (19)

4.2.3 Image Histogram

In image processing, an image’s histogram typically refers to a histogram of pixel

intensity values. This histogram displays the number of pixels in an image at each

of the image’s different intensity values. There are 256 different intensities for an

8-bit grayscale image. Therefore, a histogram can be used to represent these differ-

ent possible intensity values graphically. Color images can also be represented as

histograms, either as discrete red, green, and blue channel histograms or as a 3-D

histogram. The red, blue, and green channels’ brightness is represented by the three

axes, with each point representing the pixel count.

37

Figure 21: Color histogram in RGB color space. 8-bit per channel.

In digital image processing, histograms are used to identify and modify the following

properties. [56].

• Dynamic Range.

• Brightness.

• Contrast.

• Under and over exposure.

In addition to that, a spatially variant image representation in which pixel separation

increases linearly with distance from a central point is known as log-polar sampling

[57]. This helps to focus on particular areas of interest while holding low-resolution

data from a broader perspective. This type of foveal image representation is most

effective in active vision systems, where the densely sampled central area can be

focused on collecting the most salient information. In general, as shown in Figure 22,

38

conformal projection from points in the cartesian plane (x,y) to points in the log-polar

plane is the log-polar transformation (ξ, η):

Where,

ξ = log
√
x2 + y2 (20)

η = a tan(
y

x
) (21)

Figure 22: Log Polar histogram [8]. (a) cartesian plane, (b) log-polar plane

4.2.4 Keypoint Descriptors

Keypoint descriptors are primarily used to detect interest-points (feature-points or

key-points [58]) in an image. In the context of digital image processing, primary

features can be described as corners, edges, and blobs. Based on the unique patterns

of their adjacent pixels, the observed features are then interpreted in logically differ-

ing ways. This approach is known as feature description since it assigns a specific

identity to each feature, allowing for efficient matching [58]. Most feature detectors

have their own system for explaining features. In most cases, feature detectors may

have a combination of different relevant feature descriptors. Scale Invariant Feature

Transformation (SIFT) [59], Speeded Up Robust Features (SURF) [60], and Oriented

39

FAST and Rotated BRIEF (ORB) [61] have their own feature-descriptors and use

scale, rotation and affine invariant feature detectors. Figure 23 illustrates the com-

parison between SIFT, SURF, BRIEF and ORB.

In terms of distance metrics for feature matching, SIFT, SURF (string-based descrip-

tors) use L1 and L2 norm while ORB (binary descriptors) uses Hamming distance.

Threshold-based matching, nearest neighbor, and nearest neighbor distance ratio

matching are the primarily used methods when matching features [62]. However,

incorrect matches (or outliers) cannot be completely eliminated during the feature-

matching period.

4.2.4.1 SIFT

An approximation of Laplacian of Gaussian operator, which is the Difference of Gaus-

sian, is used in SIFT detector. Feature points are calculated using local maxima of

Difference of Gaussian at different scales of the input image. Typically, this can be

achieved by extracting a 16x16 pixel patch around each detected feature and further

segmenting the region into sub-regions. This method is invariant to image rotation,

small affine variations, and scale-invariant; nevertheless, the higher computational

cost is the key drawback. Equation 22 shows the convolution of difference of two

Gaussians (computed at different scales) with image “I(x,y)”.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (22)

In this equation, “G” represents the Gaussian function.

4.2.4.2 SURF

In this method, to increase the feature detection speed, the integral images are used,

and SURF is primarily based on the determinant of Hessian [?] matrix. Similar to

SIFT, SURF features are also invariant to rotation and scale. ALow computational

40

cost of SURF compared to SIFT is the main advantage of this method. Equation 23

represents the Hessian Matrix in point “x = (x,y)” at scale σ.

H(x, σ) =

Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (23)

Where Lxx(x, σ) is the convolution of Gaussian second order derivative with the image

“I” in point “x”, and similarly for “Lxy(x, σ)” and “Lyy(x, σ)”.

4.2.4.3 ORB

ORB algorithm is a combination of modified FAST (Features from Accelerated Seg-

ment Test) [63] detection and direction-normalized BRIEF (Binary Robust Indepen-

dent Elementary Features) [64] description methods. FAST detection is used to detect

image corners for each layer in the image pyramid, and then Harris corner detection

algorithm is used to evaluate the best corners for each layer. An updated version of

the BRIEF descriptor was used since the BRIEF is volatile with rotation [65]. ORB

features are invariant to scale, rotation, and slight affine changes.

41

Figure 23: Keypoint matching comparison. (a) SIFT keypoint matching, (b) SURF keypoint
matching, (c) ORB keypoint matching. In each method, image (1) and image(2) represent two
images of the same object but from different viewpoints. Each red line indicates the matching

connection between the different viewpoints.

4.2.5 Affine Transformation

4.2.5.1 Collinear

If three or more points X1, X2, X3,..., lie on a single straight line L, they are

considered to be collinear [66] . Since two points define a line, they are trivially

collinear [66]. Three points Xi = (xi, yi, zi) for i = 1, 2, 3 are collinear iif the ratios of

distances satisfy [66],

x2 − x1 : y2 − y1 : z2 − z1 = x3 − x1 : y3 − y1 : z3 − z1 (24)

42

Furthermore, the area of a triangle defined by three points would be zero if they are

collinear [67] , [68], [69], e.g.,
x1 y1 1

x2 y2 1

x3 y3 1

 (25)

or, in expanded form,

x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) = 0 (26)

This can also be expressed as a vector:

Tr(X × Y) = 0 (27)

where Tr(A) is the sum of components, X = (x1, x2, x3) and Y = (y1, y2, y3)

4.2.5.2 Affine Transformation

Any transformation that preserves collinearity (‘All points lying on a line initially

still lie on a line after transformation’ [70]) and ratios of distances (e.g., after trans-

formation, the midpoint of a line segment remains as the midpoint. [70]) is called

an affine transformation [71] [72] [73]. The phrase affine refers to a type of projective

transformation in which no objects are moved from affine space R3 to the plane at

infinity or vice versa.

Affinity is another name for an affine transformation [70]. Translation, dilation, sim-

ilarity transformations, reflection, expansion, rotation, shear, spiral similarities, and

geometric contraction are all affine transformations, as are their combinations [70].

An affine transformation is made up of translations, rotations, shears, and dilations

in general [70]. While an affine transformation conserves proportions on lines, angles

and lengths are not always preserved [70]. The rotation-enlargement transformation

43

is an example of combining rotation and expansion.

x′

y′

 = s

 cosα sinα

− sinα cosα

x− x0

y − y0

 (28)

= s

 cosα(x− x0) + sinα(y − y0))

− sinα(x− x0) + cosα(y − y0))

 (29)

separating the equations,

x′ = (s cosα)x+ (s sinα)y − s(x0 cosα + y0 sinα) (30)

y′ = (−s sinα)x+ (s cosα)y + s(x0 sinα− y0 cosα) (31)

This can also be written:

x′ = ax− by + c (32)

y′ = bx+ ay + d, (33)

where,

a = s cosα (34)

and

b = −s sinα (35)

The scale factor s is then defined by :

s =
√
a2 + b2 (36)

and the rotation angle by:

α = tanh−1(− b

a
) (37)

44

4.2.6 Color Spaces

Color spaces are various color modes used for various uses of computer vision and signals and

systems applications. The following are some of the most common color spaces:

• RGB - Red, Green, Blue

• CMYK - Cyan, Magenta, Yellow, Black

• YCbCr - Y is the luma component and CB and CR are the blue-difference and

red-difference chroma components [74].

• HSV -Hue, Saturation, Value,

The most commonly used color space is RGB. According to the RGB model, each

color image is made up of three separate images. A grayscale image is characterized

by a single matrix, while a color image is defined by three matrices. R (red), G

(green), and B (blue) values on each axis of a three-dimensional coordinate plane can

be used to represent the possibilities for combining the three primary colors. This

three-dimensional plane illustrates the RGB color space. In this color space, if all

the color vector is at position (0,0,0) the resulting color is black while if the position

is (255,255,255 - for 8-bit color depth per channel) the color is white. All the other

color values are within these limits. This type of color mixing is also called “additive

color mixing”:

4.2.7 Voronoi Regions

The separation of a plane with n points into convex polygons, with each polygon

containing exactly one generating point and each point in a given polygon being

closer to its generating point than any other [1].

Definition: Let,

45

• Set S of point sites.

• Distance function: d(p,s) = Euclidean distance

partition of space into regions V R(s) such that for all p in V R(s), d(p, s) < d(p, t) for

all t ̸= s. The naming conventions can be different depending on the dimension as

described in this Table 2.

Table 2: Naming convention based on the dimensionality [1]

2-Dimensional 3-Dimensional

Voronoi polygons Voronoi regions polytopes (convex polyhedron)

Voronoi edges equidistant to 2 sites intersections of faces

Voronoi vertices equidistant to 3 sites

Voronoi faces bisectors, bound polytopes

Figure 24: Voronoi regions. (a) 2d Voronoi region (b) tetrahedron represents a 3d Voronoi
region [9]

4.2.8 Clustering Algorithms

Clustering is a technique for grouping data points that are similar. A clustering

algorithm can be used to assign each data point to a specific category. After clustering

is performed, each group should contain data points that have identical features or

46

properties. Clustering is an unsupervised learning approach that is widely used in

many areas for statistical data analysis.

k − means is a recursive algorithm that tries to group given data points into non-

overlapping clusters, and each data point is guaranteed to assign to only one group.

This method tries to reduce the sum of squared distance between the points of the

cluster centroid at minimum. The k−means clustering is described in Algorithm 3 :

Algorithm 3: k −means Clustering

1 Initialize cluster centroids µ1, µ2, ..., µk ∈ Rn randomly.;

2 while until convergence do

3 For every i,set c(i) := arg min
j

∥∥x(i) − µj

∥∥2;

4 For each j, set µj :=
∑m

i=1 1(c
(i)=j)x(i)∑m

i=1 1(c
(i)=j)

;

5 end

The approach k−means follows to solve the problem is called Expectation-Maximization.

The E-step is assigning the data points to the nearest cluster. The M-step is com-

puting the centroid of each cluster. However, the following can be identified as the

disadvantages of this method.

To start, it is necessary to determine how many groups/classes there will be. Since

k−means does not have a method to calculate that from the input data, it has to be

given as an input parameter to the algorithm. Often domain awareness and intuition

come in handy, but that is not always the case to determine the number of clusters.

One of the popular approaches to use an Elbow method for this problem. The Elbow

approach suggests a reasonable k number of clusters. At the point where the sum of

squared distance begins to flatten out and form an elbow, that is the reasonable k

to pick when deciding the number of clusters. To illustrate this approach, using the

geyser dataset [75], we will measure the sum of squared distance for various k values

to see where the curve could form an elbow and flatten out.

47

Figure 25: Results obtained from elbow method

Figure 25 demonstrates for this particular data set, k = 2 is a reasonable number

of clusters. However, the initialization of the centroids points affects this algorithm.

As a result, If an initial centroid point is set a greater distance to the data points or

a couple of centroid points initialized too close to each other, the clustering would

be weak. To overcome this issue, we have used the k −means + + algorithm. This

addition to the existing k−means algorithm ensures a more logical initialization of the

centroids and increases the clustering accuracy. The rest of the algorithm is identical

to the existing k−means algorithm, except the initialization section. k−means++

combines the standard k −means algorithm with a smarter centroids initialization.

Following this initialization protocol, it is possible to initialize centroids that are far

apart. This raises the probability of getting centroids in various clusters initially.

Step(1) From the given data points, randomly adopt points as for the initial centroid

points.

Step(2) Calculate the distance between each data point and the closest, previously

selected centroid.

Step(3) Select the next centroid from the data points such that the probability of

48

choosing a point as centroid is directly proportional to its distance from the

nearest, previously chosen centroid (i.e., the point having maximum distance

from the nearest centroid is most likely to be selected next as a centroid)

Step(4) Repeat steps 2 and 3 until k centroids have been sampled.

In addition, Different runs of the algorithm will yield different clustering results since

k − means + + starts with a random collection of cluster centers. As a result, the

findings could not be repeatable or consistent.

In conclusion, when compared to all other major clustering algorithms such as expectation-

maximization (EM) clustering using Gaussian mixture models (GMM), mean-shift

clustering, Agglomerative hierarchical clustering, and density-based spatial cluster-

ing of applications with noise [76], k − means + + has the benefit of being fairly

fast [76]. Even though k −means + + algorithm has several drawbacks when com-

pared to other clustering methods, in this research work, this is the selected algorithm

for the spatial color analyzer module.

4.3 Shape Context Descriptor

The shape context descriptor compares shapes between two consecutive frames and

produces a similarity value that can be used when assigning shapes to tracks. If the

measurement value (similarity cost value) is zero or minimum, that can be interpreted

as the compared two shapes are identical or similar in terms of shape outline (contour).

The algorithm to obtain shape context descriptor [77] between two consecutive frames

49

are given in the Algorithm 4.
Algorithm 4: Shape context descriptor
Input: Shape A in first frame and Shape B in next the frame

Output: Shape similarity cost value.

1 Let sh(A), sh(B) are shapes that are extracted from two consecutive frames

in a video and their binary masks are available. Let number of vertices in

sh(A) = sh(B) = n;

2 In Sh(A), start with the 1st vertex. Compute the distance and angle between

the 1st vertex and the rest of n− 1 vertices;

3 Normalized the distance based on the median of the distribution.;

4 Construct a log-polar histogram for the 1st vertex of sh(A) based on the

distance and angle;

5 Similarly, create log—polar histogram for the rest of the n− 1 vertices in

Sh(A) and also repeat the process for the n vertices in sh(B);

6 With both n log-polar histograms generated for sh(A) and sh(B), compute

the cost (eqn.38) between the two sets of log-polar histograms (Here, K =

Number of bins in the histogram and k = specific position of data bin

within the histogram);

7 Find the matched pair of vertices between sh(A) and sh(B) whose having the

minimum cost value;

8 Select at least 3 vertices from sh(B) that are not collinear with each other;

9 Perform affine transformation for sh(B) with the above selected vertices and

project two shapes onto the same coordinate system;

10 Compute the nearest vertices distances between projected sh(B) and sh(A).

11 Similarity cost value = sum of the nearest distances.

The following example demonstrates the above algorithm in action. Firstly, it is

necessary to identify the vertices in shape. The vertices are usually the intersection

points of the edges. Let sh(A) = sh(B) = 24 vertices and their named as sh(A)

50

vertices = A1,A2,...,A24 and similarly, sh(B) vertices = B1,B2,...B24 (figure 26).

Start with the first vertex (A1), compute the euclidean distance and angle to the

second vertex(A2), and then repeat the process with the rest of the vertices in sh(A).

Likewise, compute the euclidean distance and angle for the sh(B) as well and construct

the table 3 and 4.

Figure 26: Vertices from Corner detection

Table 3: Shape A (sh(A)) distances and angles

Vertices Distance Angle

A1-A2 48 302

A1-A3 82 302

A1-A4 114 322

...

A1-A24 115 333

Table 4: Shape B (sh(B)) distances and angles

Vertices Distance Angle

B1-B2 283 270

B1-B3 250 265

B1-B4 219 258

...

B1-B24 211 237

51

Since the two shapes may be in different scales, we usually normalize the distance

based on the median value ,and therefore above tables becomes,

Table 5: Shape A (sh(A)) normalized distances and angles

Vertices Distance Angle

A1-A2 0.58 302

A1-A3 1.00 302

A1-A4 1.39 322

...

A1-A24 0.91 333

Table 6: Shape B (sh(B)) normalized distances and angles

Vertices Distance Angle

B1-B2 1.67 270

B1-B3 1.47 265

B1-B4 1.29 258

...

B1-B24 1.24 237

We need to transform the above-normalized tables into log-polar histograms. Let the

bin size of a histogram is 12 x 5. Then, the first log-polar histogram for the vertice

A1 can be constructed as follows:

52

Figure 27: Log-polar histogram for vertice A1

Likewise, we generate log-polar histograms for the remaining vertices in sh(A) and

sh(B). According to this example, in total, there are 48 log-polar histograms for sh(A)

and sh(B).

Figure 28: Total Log-polar histogram for sh(A) and sh(B)

Compute the cost matrix of A1 with respect to B1 to B24.

Cost matrix equation:

C =
1

2

K∑
k=1

(A(k)− B(k))2

A(k) + B(k)
(38)

53

Here, K is the total number of data bins (12 * 5 = 60) in the histogram, k refers to

the data bin’s specific position within the histogram. Finally, A and B refer to the

log-polar histogram of Shapes A and B.

The next step is to pair up the A1 in sh(A) with any vertice in sh(B) so that C is

minimum among all of the combinations. Let A1 and B2 pair have the minimum C

value among all combinations; therefore, we can pair up A1 and B2. Similarly, pair

up all the other vertices in sh(A) to vertices in sh(B). Note:- All vertices in sh(A)

should be matched with a corresponding vertex in sh(B)

Assuming we successfully pair up the vertices, we perform an affine transformation

based on the paired up vertices. After that, sh(A) and sh(B) are projected into

the same coordinate system. We compute the nearest vertices euclidean distances

between the two shapes. The sum of the nearest distance should be zero or very

small if the two shapes are identical or similar.

Another improved version for this shape context descriptor is that extracting feature

vertices from SIFT algorithm. Throughout this research, instead of selecting vertices

from corner detection, we have used SIFT to detect distinct feature connections be-

tween two shapes that need to compare (see Figure 29). Since SIFT is invariance

to image scale and rotation, it will eliminate the issues that can arise from shape

evolution with respect to time. SIFT algorithm extract key points and compute their

descriptors. The main four steps involved in the SIFT algorithm are (a) Keypoint lo-

calization (b) Scale-space extrema detection (c) Orientation assignment (d) Keypoint

matching, and (e) Keypoint descriptor [78].

54

Figure 29: SIFT based keypoint detection

The improved algorithm can be given in Algorithm 5.
Algorithm 5: Shape context descriptor (modified)
Input: Shape A (sh(A)) in frame n and Shape B (sh(B)) in frame n+ 1

Output: Normalized sum of nearest distance.

1 Apply SIFT keypoint descriptor to sh(A) and sh(B).;

2 Perform an affine transformation for all the vertices in sh(B) (translation

along x and y axis);

3 Compute the nearest Euclidean vertices distance between the two shapes. ;

4 Normalize the sum of nearest distances for each region cluster.;

4.4 Spatial Color Analyzer

The main objective of the spatial color module is to compute and compare shape

color variation between two consecutive frames. A typical RGB image can consist of

approximately 16.7 million color variations if the bit depth per channel is 8 bit. One

way to represent this is as a volume-defined region where we divide each axis into

equally spaced M divisions. It will generate M3 possible boxes like cubes in total, and

each cube represents a color. So any pixel in an RGB image can be represented using

a vector in RGB color space. The problem with this type of representation is that

there are millions of possible color combinations that need to be taken into account

when constructing the feature vector. Secondly, many of these cubes will be empty

in most practical cases, so there are many wasted features. To overcome this issue,

55

our algorithm places K bins (centroids) using k − means + + clustering. This will

allow it to go and find K different bin centers per image. So essentially, these center

points will form 3D Voronoi K such regions. This way, it is always guaranteed to

have at least some colors in the bins resulting in a fully utilized feature vector. So, in

the end, the color space for that image can be represented as a K dimensional vector.

Hence it can be mapped back to the original image pixel by pixel resulting in a 2D

one-channel matrix whose pixel values are ranging from 1 to K. This is essentially a

color variation reduction from 16.7 million (assuming 8bit per channel) to K. Then,

it is necessary to bring the two shapes in the first frame and the next frame into the

same coordinate system. This can be achieved by performing an affine transformation

to the second shape.

Finally, the resultant matrix can be calculated as the absolute elementwise differ-

ence between the clustered pixel value matrix for sh(A) and sh(B). Any non-zero

pixel values in the resultant matrix represent a significant color change between

the compared shapes. Therefore, if the count is zero or low value in the resultant

matrix, it is safe to assume that shapes are identical or similar in terms of color

variation. The algorithm to obtain spatial color variation is given in Algorithm 6.

56

Algorithm 6: Spatial color analyzer
Input: Affined transformed shapes from shape context

descriptor.(sh(A),sh(B))

Output: Normalized non-zero pixel count.

1 Load RGB sh(A) (WxHx3 containing N pixels).;

2 Load RGB sh(B) (WxHx3 containing N pixels).;

3 Plot all RGB color vectors in sh(A) and sh(B).;

4 Run k −means++ clustering to find K centroids.;

5 Reconstruct sh(A) and sh(B) colors using only these K RGB color vectors.;

6 Substract sh(A) new RGB color matrix with sh(B) new RGB color matrix.;

7 Count color vectors that have non-zero magnitude. If the two shapes are

somehow identical in spatial color variation, the pixel count value should be

zero or minimal.;

8 Normalized the non-zero pixel count for each region cluster.

To demonstrate this, let’s take two consecutive frames extracted from a color video

sequence. For this example, the selected video sequence is in full HD (1080p) and has

8 bit per channel color depth. Hence, each frame has a resolution of 1920x1080x3.

Here, the red, green, and blue pixel values for each pixel position will be defined

by three 8-bit integers. The first step is to reduce the number of colors to K (let

K=10) and recreate the frame using only those ten colors. Applying a k−means++

algorithm on the image shows that it is possible to represent the same image with only

K colors. Furthermore, this procedure will significantly decrease the video frame’s

data size.

57

Figure 30: Color reduction in RGB color space. (a) input image , (b) resultant image with only 10
colors.

The compressed image resembles the actual image while retaining the primary image

characteristics (figure 30).

Since k−means++ begins with a random selection of cluster centers from among the

available data points, different algorithm runs can induce different clustering results.

As a consequence, the results could not be repeatable. To address this non-repeatable

issue, we first map two shapes (sh(A) and sh(B)) into a single 3-dimensional color

space, and then we run the k −means + + algorithm on those data points. This is

guaranteed to have consistent centroid clusters (bin centers) for at least the selected

sh(A) and sh(B). Figures 31 and 32 demonstrate the way to obtain resultant matrix

in spatial color analyzer module.

58

Figure 31: RGB color distribution for the input shapes. (a) input shape sh(A) in frame n, (b)
input shape sh(B) in frame n+1, (c) sh(A) RGB color vector points in RGB color space, (d) sh(B)

RGB color vector points in RGB color space

59

Figure 32: Output result from k −mean++ clustering. (a) new color centroids after applying
k −means++ clustering, (b) Spatial color difference between two consecutive frames.

4.5 Track Assignment

The main objective of this module is to assign shapes to tracks to minimize the overall

cost. Here, the overall cost can be defined as:

Overall cost between shape A and B (OCA,B) = wa ∗ C1 + wb ∗ C2 (39)

Where, wa, wb = 0.5 , C1 is the normalized similarity cost value in the shape context

60

descriptor and C2 is the normalized pixel count in the resultant matrix in spatial color

analyzer module.

The following example describes the track assignment in brief. The figure 33 repre-

sents proposed region clusters whose are outputted from region estimation module.

Here, region estimation module proposes two region clusters namely cluster 1 and

cluster 2. In the first cluster, there are two shapes (sh(x), sh(y)) in the nth frame

that need to assigned to the shapes (sh(x′), sh(y′)) in n + 1th frame. To find the

respective shape in the next frame and build the data continuity model, spatial color

variation property and shape context measurement have been computed for all the

shapes in both frames (sh(x), sh(y), sh(x′), sh(y′)) and the normalized results for re-

gion cluster 1 and 2 can be seen in table 7 and 8 respectively. Using equation 39 ,

tracks are assign in a way that minimize the overall cost. In this example, in region

cluster 1, the minium overall cost value for shape x is 0.125 which maps frame n’s

sh(x) to frame n+1’s sh(x′). Likewise sh(y)maps to sh(y′). Similarly, for region clus-

ter 2, based on the overall cost value for each shape, sh(p) maps to sh(p′) and sh(q)

maps to sh(q′). This process will continue until the last video frame is computed.

Depending on the architecture (online or offline), the shape tracked information will

be produced as the final result.

61

Figure 33: Region cluster representation. Sh(i), Sh(i′) (i ∈ {x, y, z, p, q, r} , i′ ∈ {x′, y′, z′, p′, q′, r′})
represent shapes extracted from two consecutive frames.

Table 7: Shape similarity measures for region cluster 1

C1 C2 OC

xx ̀ 0.1 0.15 0.125

xy ̀ 0.5 0.8 0.65

yy ̀ 0.1 0.12 0.11

Table 8: Shape similarity measures for region cluster 2

C1 C2 OC

pp ̀ 0.1 0.15 0.125

pq ̀ 0.5 0.8 0.65

qq ̀ 0.1 0.12 0.11

62

5 Kalman Filter Based Shape Trajectory Estimator

5.1 Introduction

Visual trackers are often subjected to different challenges when extracting features

from a given video frame. Shape appearance deformation over time, illumination

changes, background clutter, motion blur, occlusion, in-plane rotation, scale change,

out-of-the-plane, and out-of-view are the main challenges that have been faced by

visual trackers while extracting features. However, the proposed combination of a

shape region estimator, a spatial color analyzer, and a shape context descriptor can

tackle most of the above challenges. Nevertheless, shape tracking is still a challenging

task due to the shape occlusion and/or the object detector’s failure that changes the

unique track id of the shape that has been tracked. Therefore, embedding a module

that can handle shape occlusion and/or detection failure is necessary. The method

that has been utilized here is estimating the relative shape trajectory concerning the

camera viewpoint for occluded or misdetected shapes. The relative shape trajectory

estimation is calculated using a Kalman filter (KF) based trajectory estimation al-

gorithm that uses average acceleration magnitude components before occlusion or a

shape’s misdetection.

In this chapter, section 5.2 briefly outlines the KF based methods and particle filters

that have been used to predict the trajectory of a shape/object. In contrast, section

5.3 explains the KF based trajectory estimation algorithm in detail.

5.2 Preliminaries

Linear models are used to represent the majority of physical systems because of their

versatility and the availability of rich analytical techniques. Differential equations

or difference equations, several equivalent means, the Laplace or z transform, and

state-space representation can all be used to describe a linear dynamical system. The

63

state-space representation alone has several benefits: providing an internal represen-

tation of the system, insight into the system’s performance, and a straightforward

way to create controllers for multiple-input multiple-output (MIMO) systems in gen-

eral [79]. Therefore, state-space methods play a vital role in system analysis and

control problems.

The state of a system at any given time is described in the state-space approach

is the minimal information required to describe the system’s response to an applied

input. One or more variables defined as state variables have been used to describe

the state of a system. The state equations (system dynamic model) are a series of

equations that connect the current state variables to previous state variables and

the most recent input. The output equations (system measurement model) are the

equations that connect the output variables to the state variables and inputs. A

linear dynamical system’s state-space representation is a series of state equations and

output equations [79] [80].

The state’s estimate at a given time from measurements is an important problem in

analyzing and monitoring a system based on a state-space model. State estimation

(SE) is usually a two-step method that is repeated at each time step. The current

inputs are compared with the previously estimated state to obtain a predicted value

for the current state variables in the prediction phase. The available output measure-

ments are then used to correct the predicted in the correction step. Figure 34 depicts

this concept in a visual format.

64

Figure 34: The state estimation process

Owing to noise, the inputs to a physical system and the measurements made by the

system usually have a degree of uncertainty. As a result, any system’s actual state

is a challenge of minimizing or maximizing a cost function depending on specific

parameters to find the best value.

5.2.1 Kalman Filter

Kalman filtering [81] is a technique for estimating uncertain variables based on ob-

servations collected over time. Kalman filters have shown to be useful in various

systems and are simple in design, and require less computational power. Prediction

and update are the main two steps of this algorithm. Kalman filters are also used to

predict states in a state-space format based on linear dynamical systems.

The process model defines the evolution of the state from time k−1 to time k as:

xxxkpredicted = FFFxxxk−1estimated
+BBBuuuk +wwwk, (40)

65

where F is the state transition matrix applied to the previous state vector xk1 , B

is the control-input matrix applied to the control vector uk , and wk is the process

noise vector that is assumed to be zero-mean Gaussian with the covariance Q , i.e.,

wk ∼ N (0, Q) .

The process model is used in conjunction with the measurement model, which defines

the relationship between the state and the measurement at time step k as follows:

zzzk =HHHxxxkpredicted + vvvk, (41)

where zk is the measurement vector, H is the measurement matrix, and k is the mea-

surement noise vector that is assumed to be zero-mean Gaussian with the covariance

R , i.e., vk ∼ N (0, R) .It is worth noting that the word ”measurement” is often

referred to as ”observation” in different texts.

It is worth noting that Kalman filters are based on the assumption that the process

and measurement models are both linear. As a result, a Kalman filter can only have

an optimal estimate if the assumption holds.

The other apparent filters to address this trajectory estimation problem are Extended

Kalman filter [82], Unscented Kalman filter [83], and particle filter [84] where each

is having its own merits and demerits. The summary of these filters can be listed in

table 9.

66

Table 9: State estimator analysis results

State Estimator Model Assumed distribution Computational Cost

Kalman filter Linear Gaussian Low

Extended Kalman filter Locally linear Gaussian

Medium

(if the Jacobians

can be computed

numerically)

Unscented Kalman filter Nonlinear Gaussian Medium

Particle filter Nonlinear Non-Gaussian High

Even though the Kalman filter has several drawbacks compared to other non-linear

filters, the method used in this research to estimate the shapes’ trajectory was the

Kalman filter due to its low computational cost and fairly accurate estimations.

5.3 Shape Trajectory Estimator

This section describes the technique that has been used to minimize the issue of

shape trajectory estimation that arises from shape occlusion and/or detection failure.

Owing to the lower computational time complexity and simplicity in implementation,

the shape trajectory estimation has been carried out by the KF algorithm.

Figure 35: Newton’s motion

67

Assuming that the tracking shape behaves according to equations of Newton’s mo-

tion [85] during the occlusion period, (42) and (43) have been used to describe the

trajectory of the shape in two-dimension space.

s = ut+
1

2
at2, (42)

v = u+ at, (43)

Where s is the displacement, u is the initial velocity, v is the final velocity, t is the

time for displacement, and a is the constant acceleration.

To apply the KF algorithm to estimate the shape’s trajectory, it is assumed that

the shape behaves according to a linear system model, and the measurement noise is

assumed to be Gaussian.

Now we can write the shape trajectory state-space model as follows.

xxxkpredicted = AAAxxxk−1estimated
+BBBuuuk +wwwk, (44)

yyyk =HHHxxxkpredicted + zzzk, (45)

where k is the time index, xxxkpredicted ∈ R4 is the predicted current state, AAA ∈ R4×4

is the state transition matrix, BBB ∈ R4×2 is the control input matrix, uuuk ∈ R2 is the

control vector , yyyk ∈ R2 is the measurement vector, H ∈ R2×4 is the observation

matrix and wwwk ∈ R4 and zzzk ∈ R2 are random disturbance vectors.

Assuming random vector wwwk = 0, we can write (44) as follows.

xxxkpredicted = AAAxxxk−1estimated
+BBBuuuk. (46)

Using (46) and (45), for the purpose of shape trajectory estimation, the state equation

can be written as follows,

68

xxxkpredicted =

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

u

v

u̇

v̇

+

∆t2

2
0

0 ∆t2

2

∆t 0

0 ∆t

au
av

 , (47)

yyyk =HHHxxxkpredicted + zzzk, (48)

where ∆t = 1
fps

, u and v are the coordinate axes in a selected two dimensional space,

u̇ and v̇ are the velocity components in u and v directions accordingly, and au and av

are the acceleration components in the u and v directions.

Assuming the initial state of the system is known (xxx0estimated
,PPP 0estimated

) and the mea-

surement covariance matrix RRR ∈ R2×2, we can use Kalman filter to estimate the state

of the system at time k that is compatible with observations upto time instance k,

the system model, and the assumptions made.

Given xxxk−1estimated
and PPP k−1estimated

, the predicted state and the predicted covariance

matrix (PPP kpredicted) at time step k can be calculated using (47).

PPP kpredicted = AAAPPP k−1AAA
T . (49)

As and when the measurements are available at the time step k, the predicted state

can be corrected. Assuming that xxxkestimated
= xxxkpredicted +KKKkδδδk. By minimizing the

sum of variances in PPP kpredicted with respect to KKKk and taking δδδk = yyyk −HHHxxxkpredicted we

obtain (50).

KKKk =
PPP kpredictedHHH

T

HHHPPP kpredictedHHH
T +RRR

. (50)

Therefore the estimated state values are

69

xxxkestimated
= xxxkpredicted +KKKk(yyyk −HHHxxxkpredicted), (51)

PPP k = (III −KKKkHHH)PPP kpredicted , (52)

where I is the identity matrix.

The Algorithm 7 is used to obtain the Kalman filter estimates.

Algorithm 7: Two dimensional Kalman filter based trajectory estimator
1 xxxkpredicted = AAAxxxk−1estimated

+BBBuuuk.;
2 yyyk =HHHxxxkpredicted + zzzk;
3 PPP kpredicted = AAAPPP k−1AAA

T ;
4 KKKk =

PPPkpredicted
HHHT

HHHPPPkpredicted
HHHT+RRR

;
5 xxxkestimated

= xxxkpredicted +KKKk(yyyk −HHHxxxkpredicted);
6 PPP k = (III −KKKkHHH)PPP kpredicted ;

The figure 36 represents two dimensional tracking data with occlusion. The discontin-

uation in the x-axis represents losses of data continuity of the tracking shape due to

its occlusion or a detection failure. This Kalman filter trajectory estimation module

aims to find and build the relationships between these data discontinuations. For this,

we start from the end of the barcode graph. We select the last global shape ID as the

master track and, depending on the availability, select up to 5 tracks (from the end

of the barcode graph) as slave tracks that are not overlapped with the master track

and show a relative closeness to the master track in terms of the last frame number

of each slave tracks. Then we apply SIFT keypoint descriptor to find connections

between each of the slave tracks to the master tracks. From that, we select up to

two slave tracks that have maximum SIFT keypoint connections to the master track.

After that, we extract each of the centroid positions in the proposed two slave tracks

and calculate each of the average relative x and y components of the acceleration

magnitude denoted as ax and ay in equation 47. and we selected ∆t = 1
fps

, where fps

= frames per seconds in the selected video sequence. After that, we use small values

70

(in this case = 0.5) for each element in the initial process covariance matrix Pk−1 and

the noise covariance matrix R. We initiate the Kalman filter estimation from the

available data from the slave tracks and continue the iterations until it reaches the

frame number of the master track. Then, we compare the results (expected centroid

position) from the Kalman filter estimation to the master track’s shape actual cen-

troid position. Finally, we assign the slave track to the master track, which shows

a minimum expected centroid position error. Figure 37 represents SIFT based slave

track proposals, figure 38 demonstrates Kalman filter based estimation results, figure

39 depicts the two dimensional tracking data after applying the Kalman filter and

figure 40 represents the ground truth tracking data. From this, it can conclude that

the shape trajectory estimation module helps to overcome data continuation issues

arising from shape occlusion.

Frame Number
0 200 400 600 800 1000 1200 1400 1600

G
l
o
b
a
l

S
h
a
p
e

I
D

0

10

20

30

40

50

60

70

80

90

100

Figure 36: Two dimensional barcode - with occulussion

71

Frame Number
1530 1540 1550 1560 1570 1580 1590 1600

G
lo

ba
l S

ha
pe

 ID

94

95

96

97

98

99

100

Figure 37: Proposed slave tracks by SIFT keypoint connections. Algorithm chooses global shape
ID 95,96 as slave tracks and 97 as the master track.

72

Figure 38: Estimation results from Kalman filter (positions are measured in terms of pixel
distances). (a) SIFT connections between track id i and j (b) red - actual relative positions for

track id i , blue - actual relative positions for track id j, yellow - Kalman filter based estimations
for occluded frames

73

Frame Number
0 200 400 600 800 1000 1200 1400 1600

G
l
o
b
a
l

S
h
a
p
e

I
D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 39: Two dimensional barcode - after Kalman filtering

Frame Number
0 200 400 600 800 1000 1200 1400 1600

G
l
o
b
a
l

S
h
a
p
e

I
D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 40: Two dimensional barcode tracking data - Ground truth

74

6 Results

Python and Matlab are used to implement the proposed tracking method. This sec-

tion contains all of the test cases that are done on a laptop with Intel(R) Core(TM)

CPU I7-6700HQ with 2.60 GHz 8 processors. The code is not designed for paral-

lel processing, despite the fact that there are eight processors. VOT-ST2020 [86]

and MOT20 [87] are the popular benchmarks for visual object tracking performance

evolution. Both datasets were used to validate the proposed tracking method.

VOT-ST2020 public dataset includes 60 challenging sequences, and all frames are

manually segmented (only ground truth segmentation masks are available). Apart

from that, each frame is annotated by six attributes (illumination change, occlusion,

object size change, unassingment, and object motion camera motion)

On the other hand, MOT20 dataset consists of 4 training sequences and 4 test se-

quences. MOT20 training set has a total of 8,931 frames, and the test set contains

a total of 4,479 frames. We used both testing and training datasets as testbeds in

our experiments because the proposed tracking system does not need to train on

training data.

6.1 VOT-ST2020 Challenge: (Visual Object Tracking - Short Term)

The VOT challenge contest offers a collection of Octave/Matlab scripts to evaluate

the accuracy of trackers written in Python, Matlab, or C++. This toolkit helps to

compare the results of various trackers using metrics.

VOT-ST2020 evaluation metrics:

75

Figure 41: VOT evaluation metric term definitions [10]

Accuracy : On a subsequence starting from an anchor a of the sequence s, the accuracy

As,a is defined as the average overlap between the target predictions1 and the ground

truth2 calculated from the frames before the tracker fails on that subsequence [10].

As,a =
1

NF
s,a

∑
i=1:NF

s,a

Ωs,a(i) (53)

Where NF
s,a is the number of frames before the tracker failed in the subsequence

starting at anchor a in the sequence s and Ωs,a(i) is the overlap between the prediction

and the ground truth at frame i.

Robustness: Robustness measure Rs, a is defined as the extent of the sub-sequence

before the tracking failure.

Rs,a =
NF

s,a

Ns,a

(54)

where Ns,a is the number of frames of the subsequence.

Expected average overlap (EAO): The value of the EAO curve Φ̂i at sequence length

i is thus defined as:

Φ̂i =
1

|S(i)|
∑

s,a∈S(i)

Φs,a(i) (55)

Where Φs,a(i) is the average overlap calculated between the first and i-th frame of

the extended sub-sequence starting at anchor a of the sequence s, S(i) is the set of
1Proposed tracking model output results
2Human evaluation for each frame in a sequence and annotates objects’ location manually.

76

the extended subsequences with length greater or equal to i and |S(i)| is the number

of these sub-sequences.

The EAO measure is then calculated by averaging the EAO curve from Nlo to Nhi,

EAO =
1

Nhi −Nlo

∑
i=Nlo:Nhi

Φ̂i (56)

The authors of the VOT [86] dataset has defined the interval bounds : [Nlo, Nhi] =

[115, 755].

In addition to that, for all of the calculations, anchors have placed 50 frames apart.

At each anchor, the tracker is initialized. θϕ = 0.1 and θN = 10 frames.

Table 10 depicts the results obtained from the VOT-ST2020 toolkit for the proposed

offline tracking architecture.

Table 10: VOT-ST2020 results for the proposed online tracker

Accuracy Robustness EAO

0.750 0.798 0.480

6.2 MOT20 Challenge: (Multi Object Tracking)

The MOT challenge [87] also provides a toolkit to evaluate the performance of track-

ers. This toolkit helps to compare the results of various trackers using metrics.

Multiple Object Tracking Accuracy (MOTA):

MOTA = 1−
∑

t(fnt + fpt + IDSt)∑
t gt

(57)

Multiple Object Tracking Precision (MOTP):

MOTP =

∑
i,t d

i
t∑

t ct
(58)

77

where t is the frame t, g is ground truth detections, fp is false positives, fn is false

negatives, ct is correct matches found at frame t and dit is the distance between ground

truth detection and predicted detection for each correct detection which is taken as

the intersection of union between the two bounding boxes.

Other MOT evaluation metrices [87]:

• Mostly Lost (ML: percentage of ground truth trajectories which are covered by

tracker output for less than 20% in length)

• Mostly Tracked (MT: percentage of ground truth trajectories which are covered by

tracker output for more than 80% in length)

• Identity Switches (IDS: The total of number of times that a tracked trajectory

changes its matched ground truth identity)

The proposed tracking method is compared to other state-of-the-art online/offline

trackers that are published in the two benchmarks.Table 11 and 12 show a summary

of the findings of the selected trackers. In the comparison, the proposed method is

evaluated against best trackers that are published in MOT20 [87] and VOT-ST2020

[86] benchmarks.

In the VOT-ST2020 benchmark for published online tracking methods, our method is

ranked fourth (in terms of EAO). However, it should be noted that RPT [88], Ocean-

Plus [89], and AlphaRef [90] are based on trainable machine learning architectures,

whereas our method can be classified as zero-shot learning. In addition to that, our

offline method is ranked first (in terms of Robustness), achieving 0.870 score. Since it

is not fair to compare offline results with online results, we did not include that in the

table 11. The proposed tracker is ranked fourth in MOT20, out of all the published

online and offline tracking methods (in terms of MOTA). Nevertheless, it showed the

second-best IDS for the proposed offline tracking method.

78

Table 11: VOT-ST2020 results overall comparison

EAO A R

VOT-ST2020

RPT [2] 0.530 0.700 0.869

OceanPlus[3] 0.491 0.685 0.842

AlphaRef 3] 0.482 0.754 0.777

AFOD [25] 0.472 0.713 0.795

LWTL [31] 0.463 0.719 0.798

fastOcean[29] 0.461 0.693 0.803

Ours - online 0.480 0.750 0.798

Table 12: MOT20 results overall comparison

MOTA MOTP MT ML IDS

MOT20

MPNTrack[2] 57.6 79.0 474 279 1,210

TrTest[3] 57.0 79.7 499 243 5,271

center_reid[3] 56.6 77.0 668 141 4,643

ALBOD[25] 56.5 79.4 506 228 3,727

LPC_MOT [31] 56.3 79.7 424 313 1,562

FGRNetIV[29] 55.4 79.4 508 221 2,159

Ours - Offline 56.5 77.2 410 220 1,280

Ours - Online 56.5 77.2 410 220 2,159

Hyperparameters: To obtain the results shown in table 12, the following parameters

were chosen for the following modules. In spatial color analyzer module, we use K=10

for the kmeans++ algorithm. For track assignment weights in equation 39, we use

wa = wb = 0.5 giving same attention to both results obtained from spatial color

79

Figure 42: Results are being recorded over a few frames. (a) tracking result from a random
Youtube video sequence, (b) tracking results from VOT-ST2020 training data, (c) tracking results
from MOT20 training data. At each sequence, unique ids displayed maximum up to four objects.

For more than 60 frames, these identities are tracked individually.

analyzer module and the shape context descriptor.

Python and C++ were used to implement the proposed tracking method, and it

achieved reasonable results, making it suitable to be used in online/offline video

processing applications. The tracking results on a couple of random frames are shown

in the figure 42, where the track ID is stable across the frames.

In a track-by-detection framework, shape tracking performance depends on the de-

tection accuracy of the shape detector. For this experiment, I used Detectron2 [44]

(a Mask R-CNN model) along with pre-trained weights from the COCO dataset [45].

If it is a different detector, the above results may change.

80

7 Conclusion

In this research, I have introduced a shape tracker based on computational geometric

concepts that can achieve state-of-the-art tracking performance for both VOT-ST2020

and MOT20 benchmark datasets. The running time increases with the scene’s com-

plexity (e.g., on the number of shapes present in the frame). The proposed shape

tracker is based on a combination of region estimator, shape context descriptor, and

spatial color variation modules. Furthermore, In this work, I propose a method for

reestablishing tracking identity when detection fails for a short period of time between

frames. The selection of a shape detector is critical for any trackers that are based

on a track-by-detection framework as the tracking accuracy may also depend on the

detection performance. Therefore, with the selection of Detectron (pre-trained Mask

R-CNN model) as the shape detector, this method shows a competitive performance

when there are fewer false positives in shape detection.

7.1 Recommendations for Future Work

The shape tracking approach used in this thesis could be expanded in the following

ways. Instead of using a linear filter, a particle filter-based approach with a parallel

processing platform can be a potential research direction to address the shape occlu-

sion problem in any stable tracks. In addition, replacing the object detector with an

offline trained machine learning model inspired by a Siamese network [91] will open

new potential research areas in the domain of visual shape tracking. Finally, there

is a possible research extension about weighting similarity values produced by the

spatial color analyzer module and the shape context descriptor module and measure

how it affects the tracker performance.

81

References
[1] E. W. Weisstein, “Voronoi diagram,” https://mathworld.wolfram.com/VoronoiDiagram.html.

[2] B. Rezaei, A. Farnoosh, and S. Ostadabbas, “G-lbm: Generative low-dimensional back-
ground model estimation from video sequences,” in European Conference on Computer
Vision. Springer, 2020, pp. 293–310.

[3] NASA. Space shuttle atlantis sts-129 hd landing, november 27, 2009, runway 33,
kennedy space center. NASA. [Online]. Available: https://www.youtube.com/watch?
v=5Qj3on0VTSs

[4] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[5] Thermos, Abduction of a Sabine Woman, Mar 2007. [Online]. Available:
https://commons.wikimedia.org/wiki/File:Giambologna_sabine.jpg

[6] G. Levin and B. Dorsey, image processing and computer vision. openframeworks.
[Online]. Available: http://openframeworks.kr/ofBook/chapters/image_processing_
computer_vision.html

[7] Barnetts, rgb color space. cleanpng. [Online]. Available: https://www.cleanpng.com/
png-rgb-color-space-rgb-color-model-light-4170880/

[8] I. S. Técnico, Log-Polar Mapping. Instituto Superior Técnico. [Online]. Available:
http://users.isr.ist.utl.pt/~alex/Projects/TemplateTracking/logpolar.htm

[9] M. Teichmann. mit. [Online]. Available: http://groups.csail.mit.edu/graphics/
classes/6.838/S98/meetings/m25/m25.html

[10] A. Bartoli and A. Fusiello, Computer Vision-ECCV 2020 Workshops: Glasgow, UK,
August 23-28, 2020, Proceedings, Part VI. Springer Nature, 2020, vol. 12540.

[11] Y. Wu, R. Gao, J. Park, and Q. Chen, “Future video synthesis with object motion
prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 5539–5548.

[12] R. Sarcinelli, R. Guidolini, V. B. Cardoso, T. M. Paixão, R. F. Berriel, P. Azevedo,
A. F. De Souza, C. Badue, and T. Oliveira-Santos, “Handling pedestrians in self-
driving cars using image tracking and alternative path generation with frenét frames,”
Computers & Graphics, vol. 84, pp. 173–184, 2019.

[13] C. Bregler, K. Bhat, J. Saltzman, and B. Allen, “Ilm’s multitrack: a new visual tracking
framework for high-end vfx production,” in SIGGRAPH 2009: Talks, 2009, pp. 1–1.

[14] C.-C. Hsieh and S.-S. Hsu, “A simple and fast surveillance system for human tracking
and behavior analysis,” in 2007 Third International IEEE Conference on Signal-Image
Technologies and Internet-Based System. IEEE, 2007, pp. 812–818.

[15] A. Berg, J. Ahlberg, and M. Felsberg, “A thermal object tracking benchmark,” in 2015
12th IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS). IEEE, 2015, pp. 1–6.

82

https://www.youtube.com/watch?v=5Qj3on0VTSs
https://www.youtube.com/watch?v=5Qj3on0VTSs
https://commons.wikimedia.org/wiki/File:Giambologna_sabine.jpg
http://openframeworks.kr/ofBook/chapters/image_processing_computer_vision.html
http://openframeworks.kr/ofBook/chapters/image_processing_computer_vision.html
https://www.cleanpng.com/png-rgb-color-space-rgb-color-model-light-4170880/
https://www.cleanpng.com/png-rgb-color-space-rgb-color-model-light-4170880/
http://users.isr.ist.utl.pt/~alex/Projects/TemplateTracking/logpolar.htm
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m25/m25.html
http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m25/m25.html

[16] H. Karunasekera, H. Wang, and H. Zhang, “Multiple object tracking with attention
to appearance, structure, motion and size,” IEEE Access, vol. 7, pp. 104 423–104 434,
2019.

[17] H. Wu, W. Han, C. Wen, X. Li, and C. Wang, “3d multi-object tracking in point
clouds based on prediction confidence-guided data association,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 2021.

[18] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Multiple people tracking by lifted
multicut and person re-identification,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017, pp. 3539–3548.

[19] R. Henschel, L. Leal-Taixé, D. Cremers, and B. Rosenhahn, “Fusion of head and full-
body detectors for multi-object tracking,” in Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, 2018, pp. 1428–1437.

[20] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learning to track
multiple cues with long-term dependencies,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 300–311.

[21] B. Lee, E. Erdenee, S. Jin, M. Y. Nam, Y. G. Jung, and P. K. Rhee, “Multi-class multi-
object tracking using changing point detection,” in European Conference on Computer
Vision. Springer, 2016, pp. 68–83.

[22] W. Choi, “Near-online multi-target tracking with aggregated local flow descriptor,”
in Proceedings of the IEEE international conference on computer vision, 2015, pp.
3029–3037.

[23] J. H. Yoon, C.-R. Lee, M.-H. Yang, and K.-J. Yoon, “Online multi-object tracking via
structural constraint event aggregation,” in Proceedings of the IEEE Conference on
computer vision and pattern recognition, 2016, pp. 1392–1400.

[24] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking revisited,”
in Proceedings of the IEEE international conference on computer vision, 2015, pp.
4696–4704.

[25] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna, “Beyond pixels: Leveraging
geometry and shape cues for online multi-object tracking,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 3508–3515.

[26] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[27] J. Ren, X. Chen, J. Liu, W. Sun, J. Pang, Q. Yan, Y.-W. Tai, and L. Xu, “Accurate
single stage detector using recurrent rolling convolution,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 5420–5428.

[28] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory-aware convolutional neu-
ral networks for object proposals and detection,” in 2017 IEEE winter conference on
applications of computer vision (WACV). IEEE, 2017, pp. 924–933.

83

[29] G. Gündüz and T. Acarman, “A lightweight online multiple object vehicle tracking
method,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 427–
432.

[30] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-object tracking
by decision making,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 4705–4713.

[31] K. Fang, Y. Xiang, X. Li, and S. Savarese, “Recurrent autoregressive networks for
online multi-object tracking,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV). IEEE, 2018, pp. 466–475.

[32] L. Chen, H. Ai, Z. Zhuang, and C. Shang, “Real-time multiple people tracking with
deeply learned candidate selection and person re-identification,” in 2018 IEEE Inter-
national Conference on Multimedia and Expo (ICME). IEEE, 2018, pp. 1–6.

[33] Y.-c. Yoon, A. Boragule, Y.-m. Song, K. Yoon, and M. Jeon, “Online multi-object
tracking with historical appearance matching and scene adaptive detection filtering,”
in 2018 15th IEEE International conference on advanced video and signal based surveil-
lance (AVSS). IEEE, 2018, pp. 1–6.

[34] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang, “Online multi-object
tracking with dual matching attention networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 366–382.

[35] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “Eco: Efficient convolution
operators for tracking,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 6638–6646.

[36] H. Wu, Y. Hu, K. Wang, H. Li, L. Nie, and H. Cheng, “Instance-aware representation
learning and association for online multi-person tracking,” Pattern Recognition, vol. 94,
pp. 25–34, 2019.

[37] S.-H. Lee, M.-Y. Kim, and S.-H. Bae, “Learning discriminative appearance models for
online multi-object tracking with appearance discriminability measures,” IEEE Access,
vol. 6, pp. 67 316–67 328, 2018.

[38] Z. Fu, F. Angelini, J. Chambers, and S. M. Naqvi, “Multi-level cooperative fusion of
gm-phd filters for online multiple human tracking,” IEEE Transactions on Multimedia,
vol. 21, no. 9, pp. 2277–2291, 2019.

[39] Z. Fu, P. Feng, F. Angelini, J. Chambers, and S. M. Naqvi, “Particle phd filter based
multiple human tracking using online group-structured dictionary learning,” IEEE ac-
cess, vol. 6, pp. 14 764–14 778, 2018.

[40] S. Scheidegger, J. Benjaminsson, E. Rosenberg, A. Krishnan, and K. Granström,
“Mono-camera 3d multi-object tracking using deep learning detections and pmbm fil-
tering,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 433–440.

[41] A. Osep, W. Mehner, M. Mathias, and B. Leibe, “Combined image-and world-space
tracking in traffic scenes,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1988–1995.

84

[42] A. Sobral and A. Vacavant, “A comprehensive review of background subtraction algo-
rithms evaluated with synthetic and real videos,” Computer Vision and Image Under-
standing, vol. 122, pp. 4–21, 2014.

[43] A. H. Lai and N. H. Yung, “A fast and accurate scoreboard algorithm for estimating
stationary backgrounds in an image sequence,” in 1998 IEEE international symposium
on circuits and systems (ISCAS), vol. 4. IEEE, 1998, pp. 241–244.

[44] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” https://
github.com/facebookresearch/detectron2, 2019.

[45] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[46] S. R. Joshi and R. Koju, “Study and comparison of edge detection algorithms,” in 2012
Third Asian Himalayas international conference on internet. IEEE, 2012, pp. 1–5.

[47] R. Gonzalez and R. Woods, “Digital image processing,” 1992.

[48] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pat-
tern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[49] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D. dissertation,
Massachusetts Institute of Technology, 1963.

[50] R. Haralick and L. Shapiro, “Computer and robot vision,” 1992.

[51] R. Gonzalez and R. Woods, “Digital image processing,” 1992.

[52] S. K. Katiyar and P. Arun, “Comparative analysis of common edge detection techniques
in context of object extraction,” arXiv preprint arXiv:1405.6132, 2014.

[53] F. P. James, Computational Geometry, Topology and Physics of Digital Images with
Application: Shape... Complexes, Optical Vortex Nerves and Proximities. Springer
Nature, 2019.

[54] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,” IEEE Journal on
Robotics and Automation, vol. 4, no. 2, pp. 193–203, 1988.

[55] “Distance transform of a binary image, year = 2015a note = The MathWorks, Natick,
MA, USA.”

[56] E. Agu, “Digital image processing,” 2015a.

[57] C. F. Weiman and G. Chaikin, “Logarithmic spiral grids for image processing and
display,” Computer Graphics and Image Processing, vol. 11, no. 3, pp. 197–226, 1979.

[58] M. Hassaballah, A. A. Abdelmgeid, and H. A. Alshazly, “Image features detection,
description and matching,” in Image Feature Detectors and Descriptors. Springer,
2016, pp. 11–45.

85

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

[59] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[60] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Computer vision and image understanding, vol. 110, no. 3, pp. 346–359, 2008.

[61] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
to sift or surf,” in 2011 International conference on computer vision. Ieee, 2011, pp.
2564–2571.

[62] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE
transactions on pattern analysis and machine intelligence, vol. 27, no. 10, pp. 1615–
1630, 2005.

[63] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in
European conference on computer vision. Springer, 2006, pp. 430–443.

[64] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent
elementary features,” in European conference on computer vision. Springer, 2010, pp.
778–792.

[65] S. A. K. Tareen and Z. Saleem, “A comparative analysis of sift, surf, kaze, akaze,
orb, and brisk,” in 2018 International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET), 2018, pp. 1–10.

[66] Weisstein, Eric W., “Collinear,” https://mathworld.wolfram.com/Collinear.html.

[67] H. S. M. Coxeter and S. L. Greitzer, “Collinearity and concurrence,” in Ch. 3 in
Geometry Revisited. Washington, DC: Math. Assoc. Amer, 1967, pp. 51–79.

[68] R. Honsberger, “Episodes in nineteenth and twentieth century euclidean geometry,” in
Washington, DC: Math. Assoc. Amerr, 1995, pp. 153–154.

[69] C. Kimberling, “Triangle centers and central triangles,” in Congr. Numer. 129, 1998,
pp. 1–295.

[70] E. W. Weisstein, “Affine transformation,” https://mathworld. wolfram. com/, 2004.

[71] D. Zwillinger, CRC standard mathematical tables and formulas. CRC press, 2018.

[72] A. Gray, E. Abbena, S. Salamon et al., “Modern differential geometry of curves and
surfaces with mathematica,” 2006.

[73] H. T. Croft, K. Falconer, and R. K. Guy, Unsolved problems in geometry: unsolved
problems in intuitive mathematics. Springer Science & Business Media, 2012, vol. 2.

[74] X. Jin, S. Yin, X. Li, G. Zhao, Z. Tian, N. Sun, and S. Zhu, “Color image encryption
in ycbcr space,” in 2016 8th International Conference on Wireless Communications
Signal Processing (WCSP), 2016, pp. 1–5.

[75] GeyserTimes, “Eruptions of Old Faithful Geyser, May 2014 [online database] ,” https:
//geysertimes.org, 2017.

86

 https://mathworld.wolfram.com/Collinear.html
 https://geysertimes.org
 https://geysertimes.org

[76] S. Firdaus and M. A. Uddin, “A survey on clustering algorithms and complexity anal-
ysis,” International Journal of Computer Science Issues (IJCSI), vol. 12, no. 2, p. 62,
2015.

[77] S. Belongie, J. Malik, and J. Puzicha, “Shape context: A new descriptor for shape
matching and object recognition,” Advances in neural information processing systems,
vol. 13, pp. 831–837, 2000.

[78] Y. Gan, P. Premaratne, K. Han, and D.-S. Huang, Bio-Inspired Computing and Ap-
plications. Springer, 2012.

[79] H. P. Hsu, Schaum’s outlines of theory and problems of signals and systems. McGraw
Hill, 1995.

[80] W. Miller and J. Lewis, “Dynamic state estimation in power systems,” IEEE Transac-
tions on automatic control, vol. 16, no. 6, pp. 841–846, 1971.

[81] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[82] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear
systems,” in Signal processing, sensor fusion, and target recognition VI, vol. 3068.
International Society for Optics and Photonics, 1997, pp. 182–193.

[83] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear es-
timation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat. No. 00EX373). Ieee, 2000, pp. 153–
158.

[84] S. Godsill, “Particle filtering: the first 25 years and beyond,” in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 7760–7764.

[85] B. Bytes. [Online]. Available: http://www.mathsmutt.co.uk/files/newt.htm

[86] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay,
F. Porikli, and L. Čehovin, “A novel performance evaluation methodology for single-
target trackers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 11, pp. 2137–2155, Nov 2016.

[87] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking
in crowded scenes,” arXiv:2003.09003[cs], Mar. 2020, arXiv: 2003.09003. [Online].
Available: http://arxiv.org/abs/1906.04567

[88] Z. Ma, L. Wang, H. Zhang, W. Lu, and J. Yin, “Rpt: Learning point set representation
for siamese visual tracking,” arXiv preprint arXiv:2008.03467, 2020.

[89] Z. Zhang and H. Peng, “Ocean: Object-aware anchor-free tracking,” arXiv preprint
arXiv:2006.10721, 2020.

[90] B. Yan, X. Zhang, D. Wang, H. Lu, and X. Yang, “Alpha-refine: Boosting tracking
performance by precise bounding box estimation,” arXiv preprint arXiv:2012.06815,
2020.

87

http://www.mathsmutt.co.uk/files/newt.htm
http://arxiv.org/abs/1906.04567

[91] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual tracking with
siamese region proposal network,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8971–8980.

88

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Thesis Objective
	Organization of the Thesis

	Background
	Shape Tracking Method

	Shape Region Estimation
	Introduction
	Preliminaries
	Foreground Shape Detector
	Edge Detection
	Shape Contour
	Shape Centroid
	Delaunay Triangulation

	Region Estimation Method

	Shape Context Descriptor and Spatial Color Analyzer
	Introduction
	Preliminaries
	Pixels
	Distance Metrics
	Image Histogram
	Keypoint Descriptors
	Affine Transformation
	Color Spaces
	Voronoi Regions
	Clustering Algorithms

	Shape Context Descriptor
	Spatial Color Analyzer
	Track Assignment

	Kalman Filter Based Shape Trajectory Estimator
	Introduction
	Preliminaries
	Kalman Filter

	Shape Trajectory Estimator

	Results
	VOT-ST2020 Challenge: (Visual Object Tracking - Short Term)
	MOT20 Challenge: (Multi Object Tracking)

	Conclusion
	Recommendations for Future Work

	References

