
A Study of Particle Swarm

Optimization Trajectories for

Real-Time Scheduling

by

Dario Schor

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Canada

Copyright © 2013 Dario Schor

Study of PSO for Real-Time Scheduling

Abstract

Scheduling of aperiodic and independent tasks in hard real-time symmetric multipro-

cessing systems is an NP-complete problem that is often solved using heuristics like particle

swarm optimization (PSO). The performance of these class of heuristics, known as evolu-

tionary algorithms, are often evaluated based on the number of iterations it takes to find a

solution. Such metrics provide limited information on how the algorithm reaches a solution

and how the process could be accelerated.

This thesis presents a methodology to analyze the trajectory formed by candidate so-

lutions in order to analyze them in both the time and frequency domains at a single scale.

The analysis entails (i) the impact of different parameters for the PSO algorithm, and (ii)

the evolutionary processes in the swarm. The work reveals that particles have a directed

movement towards a solution during a transient phase, and then enter a steady state where

they perform an unguided local search.

The scheduling algorithm presented in this thesis uses a variation of the minimum total

tardiness with cumulative penalties cost function, that can be extended to suit different

system needs. The experimental results show that the scheduler is able to distribute tasks

to meet the real-time deadlines over 1, 2, and 4 processors and up to 30 tasks with overall

system loads of up to 50% in fewer than 1,000 iterations. When scheduling greater loads,

the scheduler reaches local solutions with 1 to 2 missed deadlines, while larger tasks sets

take longer to converge. The trajectories of the particles during the scheduling algorithm

are examined as a means to emphasize the impact of the behaviour on the application per-

formance and give insight into ways to improve the algorithm for both space and terrestrial

applications.

Dario Schor
dario schor@umanitoba.ca

- ii of xxiv - v042/00-abstract.tex
June 12, 2013

Study of PSO for Real-Time Scheduling

Visual Abstract

50 100 150 200 250
−2

0

2

Particle Position [S
x,23

(n)]

Iteration

P
o

s
it
io

n

S

x,23,1
(n))

S
x,23,2

(n))

50 100 150 200 250

−2

0

2

Particle Velocity [S
v,23

(n)]

Iteration

V
e

lo
c
it
y

S

v,23,1
(n))

S
v,23,2

(n))

50 100 150 200 250

200

400

600

800

Particle Fitness [G
schedule

(S
x,23

(n)]

Iteration

F
it
n

e
s
s

G

schedule
(S

x,23
(n))

G
schedule

(S
p,23

(n))

Dario Schor
dario schor@umanitoba.ca

- iii of xxiv - v042/00-acknowledgements.tex
June 12, 2013

Study of PSO for Real-Time Scheduling

Acknowledgements

There were many people who supported and encouraged me throughout this degree

without whom I would not have completed this work.

I would like to thank my advisor Dr. Witold Kinsner for challenging me on a daily basis

and always raising expectations. Furthermore, thank you for encouraging me to do more

than just the thesis. This experience would not have been the same without UMSATS,

UMARS, IEEE, and many other activities.

There are many people within the Electrical and Computer Engineering Department

that helped me throughout this process. In particular I’d like to single out Dr. Ken Ferens

and Dr. Bob McLeod for their encouragement throughout. Ken Biegun, Mount-first Ng,

and Amy Dario for all their help not just in the thesis, but in all the random projects I

found myself working in.

Special thanks to Prof. Ron Britton, Mr. Malcolm Symonds, Mr. Allan McKay, Mr.

Alan Thoren, and Mr. Gord Klimenko with whom I shared many conversations throughout

the years that spanned research, engineering, and life in general. These discussions served

as motivation throughout the thesis and other activities alike.

Special thanks to members of the Delta Research Group: Michael Potter, Lily Woo,

David Terrazas, Greg Linton, Mohamed Nasri, and Kathryn Marcynuk with whom I learned,

discussed, and shared ideas on a regular basis.

Thank you to current and former members of Magellan Aerospace Winnipeg that sup-

ported and collaborated in various parts of this thesis: Neil Gadhok, Doug Cornelsen, Peter

Wtorek, Darrin Gates, Diane Kotelko, Philip Ferguson, and Walter Czyrnyj. Furthermore,

thank you to Joel Sherrill from RTEMS and Gedare Bloom for their input in the design of

the scheduler algorithm.

Dario Schor
dario schor@umanitoba.ca

- iv of xxiv - v042/00-acknowledgements.tex
June 12, 2013

Study of PSO for Real-Time Scheduling

I would like to thank my family and friends for their support throughout the years.

Thank you to my parents Ana and Carlos for always encouraging me to pursue my passions.

Special thank you to my sister Maia for challenging everything I say, do, and think.

Finally, but certainly not last, thank you to my friends for their motivation and words of

encouragement. In particular, special thanks to Matial Wengiel, Ariel Brawerman, Sari Levi,

Matthew Leibl, Paula Sturrey, Tyler Loewen, Sam Kovnats, Steve Woodrow, Jane Polak

Scowcroft, Mark Roy, Travis Friesen, Matthew Sebastian, Kane Anderson, Troy Denton,

Ahmad Byagowi, Matthew Woelk, and Brady Russell.

This work was funded in part by Mitacs Accelerate through Magellan Aerospace Win-

nipeg and through the University of Manitoba Graduate Students Association Award.

Dario Schor
dario schor@umanitoba.ca

- v of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling CONTENTS

Contents

Abstract . ii

Visual Abstract . iii

Acknowledgements . iv

List of Figures . xi

List of Tables . xv

List of Algorithms . xvi

List of Acronyms . xx

List of Symbols . xxiv

1 Introduction 1

1.1 Problem Statement . 2

1.1.1 Motivation . 2

1.1.2 Problem Definition . 3

1.1.3 Proposed Solution . 5

1.2 Thesis Formulation . 6

1.2.1 Thesis Statement . 6

1.2.2 Thesis Objectives . 7

1.2.3 Research Questions . 7

1.3 Thesis Organization . 10

2 Literature Review of Scheduling Algorithms 12

2.1 Scheduling Real Time Systems . 12

2.1.1 Scheduling Complexity and Optimal Schedulers 14

2.1.2 Scheduling Problem Definitions & Classifications 15

2.1.3 Visualizing Schedules . 22

2.1.4 Schedulability Analysis . 24

Dario Schor
dario schor@umanitoba.ca

- vi of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling CONTENTS

2.1.5 Review of Scheduling Methodologies for Real-Time Systems 27

2.2 Evolutionary Optimization Algorithms . 31

2.2.1 Simulated Annealing . 34

2.2.2 Genetic Algorithms . 36

2.2.3 Ant Colony Optimization . 37

2.2.4 Particle Swarm Optimization . 39

2.2.5 Other evolutionary algorithms . 39

2.3 Summary . 40

3 Theoretical Background on PSO 41

3.1 The Original Algorithm . 41

3.1.1 Mathematical Realization . 43

3.1.2 The PSO Algorithm . 44

3.1.3 PSO Algorithmic Complexity . 49

3.1.4 Visualization . 53

3.2 Variations and Comparisons . 55

3.2.1 Population Size . 56

3.2.2 Limiting Step Size . 57

3.2.3 Social Influences . 61

3.2.4 Neighbourhood Topologies . 63

3.2.5 Stopping Criterion . 68

3.2.6 Other Variations . 69

3.3 Summary . 69

4 Scheduler System Design 70

4.1 Optimization Algorithm . 70

4.1.1 Requirements for Optimization Algorithms in Real-Time Systems . . 70

4.1.2 Selection of Evolutionary Algorithm 76

4.1.3 Selection of Test Functions . 77

4.1.4 Analysis of Particle Trajectories . 80

4.1.5 Single Particle Analysis . 89

4.2 Design of Scheduling Algorithm . 98

4.2.1 Assumptions and Constraints for the Scheduler 98

4.2.2 Design of Encoding Mechanism . 100

4.2.3 Design of Fitness Function . 103

4.2.4 Design of Cost Function Algorithm 106

Dario Schor
dario schor@umanitoba.ca

- vii of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling CONTENTS

4.2.5 Example Cost Function Evaluations 107

4.3 Summary . 111

5 System Implementation and Verification 112

5.1 Generic PSO Algorithm Implementation . 112

5.1.1 Customizable PSO Parameters . 113

5.1.2 Saving Trajectories for Analysis . 114

5.2 Time Series Analysis . 115

5.3 Implementation of Scheduling Algorithm . 117

5.4 Schedule Simulations . 118

5.5 Summary . 120

6 Experiments and Discussion of Results 121

6.1 Experimental Setup . 121

6.2 Benchmark Experiment . 122

6.3 Load Experiments . 128

6.4 Scalability Experiment . 140

6.5 Summary . 142

7 Conclusions 143

7.1 Overview . 143

7.2 Thesis Conclusions . 144

7.3 Contributions . 146

7.4 Limitations and Potential Solutions . 147

References 149

Appendix A Particle Trajectory Analysis A1

A.1 Verification of Analysis Functions . A2

A.1.1 WSS Analysis Functions . A2

A.1.2 Auto-correlation Analysis Functions A3

A.1.3 Power Spectrum Analysis Functions A4

A.2 Sphere Function . A5

A.2.1 Ensemble Analysis . A5

A.2.2 Typical Particle Trajectory . A6

A.2.3 Time Series Extraction . A7

A.2.4 Time Domain Analysis - Moments A8

Dario Schor
dario schor@umanitoba.ca

- viii of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling CONTENTS

A.2.5 Time Domain Analysis - Auto-correlation A9

A.2.6 Frequency Domain Analysis . A10

A.3 Rosenbrock Function . A11

A.3.1 Ensemble Analysis . A11

A.3.2 Typical Particle Trajectory . A12

A.3.3 Time Series Extraction . A13

A.3.4 Time Domain Analysis - Moments A14

A.3.5 Time Domain Analysis - Auto-correlation A15

A.3.6 Frequency Domain Analysis . A16

A.4 Rastrigin Function . A17

A.4.1 Ensemble Analysis . A17

A.4.2 Typical Particle Trajectory . A18

A.4.3 Time Series Extraction . A19

A.4.4 Time Domain Analysis - Moments A20

A.4.5 Time Domain Analysis - Auto-correlation A21

A.4.6 Frequency Domain Analysis . A22

A.5 Griewank Function . A23

A.5.1 Ensemble Analysis . A23

A.5.2 Typical Particle Trajectory . A24

A.5.3 Time Series Extraction . A25

A.5.4 Time Domain Analysis - Moments A26

A.5.5 Time Domain Analysis - Auto-correlation A27

A.5.6 Frequency Domain Analysis . A28

Appendix B Software B1

B.1 Running PSO Algorithm on Test Functions B1

B.2 Running Scheduling Algorithm . B2

Appendix C Sample Output C1

C.1 Sample Configuration File . C1

C.2 Sample Particle Trajectory Recorded . C2

C.3 Sample Particle Schedule Recorded . C3

Appendix D Experiment Task Sets D1

D.1 Load Experiment . D2

D.1.1 Experiment: CN = 1, Load 10% . D2

Dario Schor
dario schor@umanitoba.ca

- ix of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling CONTENTS

D.1.2 Experiment: CN = 1, Load 50% . D3

D.1.3 Experiment: CN = 1, Load 80% . D4

D.1.4 Experiment: CN = 2, Load 10% . D5

D.1.5 Experiment: CN = 2, Load 50% . D6

D.1.6 Experiment: CN = 2, Load 80% . D7

D.1.7 Experiment: CN = 4, Load 10% . D8

D.1.8 Experiment: CN = 4, Load 50% . D9

D.1.9 Experiment: CN = 4, Load 80% . D10

D.2 Scalability Experiment . D11

D.2.1 Experiment: CN = 4, Load 50%, TN = 20 D11

D.2.2 Experiment: CN = 4, Load 50%, TN = 30 D12

D.2.3 Experiment: CN = 4, Load 50%, TN = 40 D13

D.2.4 Experiment: CN = 4, Load 50%, TN = 50 D14

Appendix E DVD Contents E1

E.1 Disc 1 Contents . E1

E.2 Disc 2 Contents . E4

E.3 Disc 3 Contents . E4

E.4 Disc 4 Contents . E4

Appendix F Colophon F1

Dario Schor
dario schor@umanitoba.ca

- x of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF FIGURES

List of Figures

2.1 Timing diagram showing task T1 = {TS , TC , Td} = {2, 3, 5}. 16

2.2 Timing diagram showing (a) task definitions, (b) a valid schedule, and (c) an

invalid schedule . 23

2.3 Scheduling game board . 25

2.4 Structure of a typical evolutionary optimization algorithm. 34

3.1 Fitness plot for Sk = 7 in PSO on Sphere function. 53

3.2 Fitness plot for Sk = 7 in PSO on Rastrigin function. 54

3.3 3D and contour map visualizations for a single particle’s trajectory in PSO

on the Sphere function. 55

3.4 3D and contour map visualizations for a single particle’s trajectory in PSO

on the Rastrigin function. 56

3.5 Graphical representation of gBest topology in PSO. 64

3.6 Graphical representation of ring, star, torus, and hierarchical-clusters `Best

topologies in PSO. 65

4.1 Test functions selected to verify the implementation of PSO. 78

4.2 Ensemble histogram for particle trajectory on the Sphere function. 83

4.3 Ensemble histogram for particle trajectory on the Rosenbrock function. . . 83

4.4 Ensemble histogram for particle trajectory on the Rastrigin function. 84

4.5 Ensemble histogram for particle trajectory on the Griewank function. . . . 84

4.6 Identifying typical particle behaviours on Sphere function. 86

4.7 Identifying typical particle behaviours on Rastrigin function. 87

4.8 Identifying typical particle behaviours on Sphere function. 88

4.9 Identifying typical particle behaviours on Rastrigin function. 88

4.10 Extracted time series for particle on Sphere function. 90

Dario Schor
dario schor@umanitoba.ca

- xi of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF FIGURES

4.11 Extracted time series for particle on Rastrigin function. 91

4.12 First and second moment of particle trajectory on G1(x). 93

4.13 First and second moment of particle trajectory on G3(x). 94

4.14 Auto-correlation of trajectory on G1(x). 95

4.15 Auto-correlation of trajectory on G3(x). 96

4.16 Power spectrum of trajectory on G1(x). 97

4.17 Power spectrum of trajectory on G3(x). 97

4.18 Modes of operation for triple pico-satellite (TSat) nanosatellite. 99

4.19 RK encoding of tasks on uniprocessor. 102

4.20 RK encoding of tasks on multiprocessor. 104

4.21 Examples of scheduler cost function evaluations. 109

5.1 Structure of trajectory file for the Sk particle. 115

5.2 Visualization of task set surplus resources. 120

6.1 Benchmark experiment task definitions. 124

6.2 Results of benchmark experiment. 125

6.3 Sample schedules generated for benchmark experiment for CN = 2. 126

6.4 Sample trajectories from benchmark experiment. 127

6.5 Results of load experiment. 131

6.6 Task definition for CN = 2 with 10% system load. 133

6.7 Task definition for CN = 2 with 50% system load. 134

6.8 Task definition for CN = 2 with 80% system load. 135

6.9 Sample schedules for CN = 2 load experiment. 137

6.10 Sample trajectories from CN = 2 with 80% system load experiment. 138

6.11 First and second moment for schedule run using CN = 2 with an 80% system

load. 138

6.12 Auto-correlation for schedule run using CN = 2 with an 80% system load. . 139

6.13 Power spectrum of trajectory for schedule run using CN = 2 with an 80%

system load. 139

6.14 Results of scalability experiment. 140

6.15 Sample trajectories from CN = 4 with 50% scalability experiment with 50

tasks. 141

A.1 Verification of WSS analysis function. A2

A.2 Verification of auto-correlation analysis function. A3

Dario Schor
dario schor@umanitoba.ca

- xii of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF FIGURES

A.3 Verification of power spectrum analysis function. A4

A.4 Ensemble of particle behaviours on Sphere function. A5

A.5 Identifying typical particle behaviours on Sphere function. A6

A.6 Extracted time series for particle on Sphere function. A7

A.7 First and second moment of particle trajectory on G1(x). A8

A.8 Auto-correlation of trajectory on G1(x). A9

A.9 Power spectrum of trajectory on G1(x). A10

A.10 Ensemble of particle behaviours on Rosenbrock function. A11

A.11 Identifying typical particle behaviours on Rosenbrock function. A12

A.12 Extracted time series for particle on Rosenbrock function. A13

A.13 First and second moment of particle trajectory on G2(x). A14

A.14 Auto-correlation of trajectory on G2(x). A15

A.15 Power spectrum of trajectory on G2(x). A16

A.16 Ensemble of particle behaviours on Rastrigin function. A17

A.17 Identifying typical particle behaviours on Rastrigin function. A18

A.18 Extracted time series for particle on Rastrigin function. A19

A.19 First and second moment of particle trajectory on G3(x). A20

A.20 Auto-correlation of trajectory on G3(x). A21

A.21 Power spectrum of trajectory on G3(x). A22

A.22 Ensemble of particle behaviours on Griewank function. A23

A.23 Identifying typical particle behaviours on Griewank function. A24

A.24 Extracted time series for particle on Griewank function. A25

A.25 First and second moment of particle trajectory on G4(x). A26

A.26 Auto-correlation of trajectory on G4(x). A27

A.27 Power spectrum of trajectory on G4(x). A28

D.1 Task definition for CN = 1 with 10% system load. D2

D.2 Task definition for CN = 1 with 50% system load. D3

D.3 Task definition for CN = 1 with 80% system load. D4

D.4 Task definition for CN = 2 with 10% system load. D5

D.5 Task definition for CN = 2 with 50% system load. D6

D.6 Task definition for CN = 2 with 80% system load. D7

D.7 Task definition for CN = 4 with 10% system load. D8

D.8 Task definition for CN = 4 with 50% system load. D9

D.9 Task definition for CN = 4 with 80% system load. D10

Dario Schor
dario schor@umanitoba.ca

- xiii of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF FIGURES

D.10 Task definition for CN = 4 with 50% system load, and 20 tasks. D11

D.11 Task definition for CN = 4 with 50% system load, and 30 tasks. D12

D.12 Task definition for CN = 4 with 50% system load, and 40 tasks. D13

D.13 Task definition for CN = 4 with 50% system load, and 50 tasks. D14

Dario Schor
dario schor@umanitoba.ca

- xiv of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF TABLES

List of Tables

3.1 Algorithmic complexity of PSO . 50

3.2 Algorithmic complexity of PSO with cached parameters 52

6.1 Parameters for scheduler benchmark experiment. 123

6.2 Parameters for scheduler benchmark experiment. 125

6.3 Random task generator parameters for load experiment. 129

6.4 Parameters for scheduler benchmark experiment. 132

6.5 Parameters for scheduler benchmark experiment. 141

Dario Schor
dario schor@umanitoba.ca

- xv of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF ALGORITHMS

List of Algorithms

3.1 PSO Initialization . 45

3.2 PSO Algorithm . 47

4.3 Scheduler Cost Function, Gscheduler(Sx,k, Tα, CN) 108

Dario Schor
dario schor@umanitoba.ca

- xvi of xxiv - v042/thesis.acr
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF ACRONYMS

List of Acronyms

Notation: Scalars are denoted by plain text, italics. Vectors are denoted by bold text.

`Best local best 63–67, 113, 140

gBest global best 63, 64, 67, 113,

123, 140

AAC asymptotic algorithm complexity 14, 15

ACO ant colony optimization 37

ADC attitude determination and control 2, 5

AMP asymmetric multiprocessing 17–20, 28, 110

CASSIOPE CAscade, SmallSat and IOnospheric Polar Explorer 4

CDH command and data handling 2–5

CSA Canadian Space Agency 4

DM deadline-monotonic 29

DMA direct memory access 17

EA evolutionary algorithms 3, 7–9, 33, 54,

70–73, 75, 76,

79, 80, 98, 100,

105, 144–146

EDF early deadline first 29–31

FIFO first-in-first-out 28

Dario Schor
dario schor@umanitoba.ca

- xvii of xxiv - v042/thesis.acr
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF ACRONYMS

FPGA field programmable gate array 2, 5

FSW flight software 4

GA genetic algorithm 36–39, 54, 72,

76

GCD greatest common divisor 27

IO input/output 17, 18

LEO low-earth-orbit 3, 4, 10

LLF least-laxity first 29

LLREF largest local remaining execution time first 14

LRETL local remaining execution time and local execution

time

14

MAW Magellan Aerospace Winnipeg 2–5, 7, 128, 129

MSE mean square error 85, 88, 144,

A12

MTT minimum-total-tardiness 103, 105, 110,

145, 147

NFL no-free-lunch 75, 80

NPC NP-complete 12, 14

ORBITALS Outer Radiation Belt Injection Transport and Loss

Satellite

4

PCB printed-circuit board 2

pdf probability density function 38

pmf probability mass function 38

Dario Schor
dario schor@umanitoba.ca

- xviii of xxiv - v042/thesis.acr
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF ACRONYMS

PSO particle swarm optimization 1, 5–11, 34, 39–

47, 49, 51, 53–

56, 58, 61, 63–

65, 68, 69, 72,

74, 76–78, 80,

82, 85, 89, 98,

100, 103, 106,

111–117, 120–

122, 130, 140,

142–148, B1

RAM random access memory 74

RCM Radarsat Constellation Mission 4, 128–130

RK random-keys 100–104, 107,

118, 122, 124,

140, 145, 146,

148, B2

RM rate-monotonic 29, 98

RTOS real-time operating system 2–5

SA simulated annealing 34–39, 47, 58,

69, 72, 76, 100,

118

SMP symmetric multiprocessing 5–7, 10, 11, 17,

18, 20, 22, 26,

28, 70, 76, 98,

110, 111, 126,

143, 145, 146

SSS strict-sense stationary 89

SW small-world 66

TSat triple pico-satellite xii, 98, 99

UMSATS University of Manitoba Space Applications and Tech-

nology Society

98

Dario Schor
dario schor@umanitoba.ca

- xix of xxiv - v042/thesis.acr
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF ACRONYMS

VFDT variance fractal dimension trajectory 147

WSS wide-sense stationary 89, 92, 115,

116, 136, A2

Dario Schor
dario schor@umanitoba.ca

- xx of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF SYMBOLS

List of Symbols

Notation: Scalars are denoted by plain text, italics. Vectors are denoted by bold text.

µx,k,d(n) Mean position of a particle ensemble during the nth

iteration. sort

85, 86, 88, A18

p index Index of the processor where a task is assigned. sort 105, 107

Cj Refers to jth processor in a multiprocessor system. 15, 17, 22

CN Number of processors in the system. 101, 106, 123

D Number of dimensions in a cost function. 39, 43, 45, 123

d Index of current dimension in a cost function. 48

∆D Distance between the current and the candidate so-

lution in SA

35

d index Index of the dimension/task being allocated in the

scheduling algorithm.

105

G(•) Cost function used in optimization algorithm. 47

G1(x) Sphere function given by Eq. 4.1 xii, xiii, 77, 83,

86, 88, 89, 93,

95, 97, A5

G2(x) Rosenbrock function given by Eq. 4.2 xiii, 77, 83,

A12

G3(x) Rastrigin function given by Eq. 4.3 xii, xiii, 77, 84,

87, 88, 94, 96,

97, A21

Dario Schor
dario schor@umanitoba.ca

- xxi of xxiv - v042/thesis.gls
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF SYMBOLS

G4(x) Griewank function given by Eq. 4.4 xiii, 77, 84,

A28

n Current iteration in an evolutionary algorithm (nth

iteration).

101

Nmax Maximum number of iterations in an evolutionary al-

gorithm.

49, 51, 73, 113,

117, 123, 124

Nruns Number of runs of an optimization algorithm. 82, 86

Qα Convergence rate metric for an EA. 71, 72

Qβ Degree of exploration metric for an EA. 71, 72

Qγ Storage and system size metric for an EA. 71, 73

Qδ Adaptability metric for an EA. 71, 74

Qε Multi-scale capabilities metric for an EA. 71, 75

RA(t) Schedulability test for aperiodic, single-instance

tasks. Also serves as a measure of surplus comput-

ing power.

26, 119, 129,

130, 147

RP3 Schedulability test for periodic tasks. 27

Sχ Constriction coefficient in PSO algorithm. 59, 60

Sfp Cached fitness of particle’s best position in PSO. 48

Sfx Cached fitness of particle’s current position in PSO. 48

Sg Index of the best particle in the neighbourhood for a

given particle.

43, 49, 51, 58,

63, 67, 113

Sgnext Index of the best particle in the neighbourhood for a

given particle to be used in the next iteration.

51

SK Number of particles in PSO 39, 46, 47, 51,

56, 57, 64, 113,

123

Sk Particle index count in PSO xii, 64, 101,

113, 115

Sn Size of particle’s neighbourhood. 49, 63, 66, 67,

113

Sp Past position for one particle in PSO. 43, 45–48

Dario Schor
dario schor@umanitoba.ca

- xxii of xxiv - v042/thesis.gls
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF SYMBOLS

Sϕ1 Personal influence weight in PSO. 43, 44, 61, 62,

81, 93, 112, 123

Sϕ2 Social influence weight in PSO. 43, 44, 58, 61,

62, 81, 93, 112,

123

Sv Velocity for one particle in PSO. 43, 45, 88

SV max Maximum velocity in PSO algorithm. 58–61, 75, 114,

123, 128

SV min Minimum velocity in PSO algorithm. 58, 123

Sω Inertia weight in PSO algorithm. 58–60, 62, 112,

114, 123

Sω,eph Duration of gradient Sω in PSO. 59, 114

Sω,max Maximum value use for Sω in PSO. 114

Sω,min Minimum value use for Sω in PSO. 114

Sx Position for one particle in PSO. 43, 45, 47, 48,

88, 101, 106

SXmax Maximum position in the initialization of the PSO

algorithm.

45, 107, 114,

123

SXmin Minimum position in the initialization of the PSO

algorithm.

45, 107, 114,

123

t Time representation in iterative algorithms. 26

TC Computation time for a task/job to be scheduled. 16, 17, 21, 22,

118, 129

TD Absolute deadline for a task/job to be scheduled. 107

Td Relative deadline for a task/job to be schedule from

the .

16, 22, 99, 118,

129

Ti Task/job to be scheduled. 15, 22

TL Laxity or slack available for a task/job to be sched-

uled.

16, 22

TN Number of tasks to be scheduled. 123, 140

Tp Period for a task/job to be scheduled. 26

Tpenalty Penalty instilled on the schedule for missing a dead-

line.

105, 106

Dario Schor
dario schor@umanitoba.ca

- xxiii of xxiv - v042/thesis.gls
June 12, 2013

Study of PSO for Real-Time Scheduling LIST OF SYMBOLS

tp index Time within the defined schedule for the p indexth

processor.

105, 107

TS Start time for a task/job to be scheduled. 16, 21, 22, 99,

105, 107, 110,

118, 129, 130

TSA Temperature in degrees Kelvin used in SA. 35, 58

Tset Set of tasks to be scheduled. Tset = {T1, T2, . . . , TN}. 106

Ttardiness Tardiness for a given task. 105, 106

x Vector to be optimized. 32

Dario Schor
dario schor@umanitoba.ca

- xxiv of xxiv - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1. Introduction

Chapter 1

Introduction

The Engineering method can be defined as “the strategy

for causing the best change in a poorly understood or

uncertain situation within the available resources”

– Billy Vaughn Koen [Koen85].

Engineering problems often require optimal solutions that aim to maximize the out-

comes, while minimizing the use of available resources. In some applications, the problems

can be simplified into well defined models with distinct properties that can be solved analyti-

cally; however, most nonlinear problems require heuristics in order to find suitable solutions.

This thesis presents a study of a family of particle swarm optimization (PSO) algorithms

designed to address problems in emergent and incompletely defined environments [Forr91]

like the performance of satellites in orbit [HaLo05]. The objective is to characterize the be-

haviour of the algorithm to improve the search for solutions in symmetric multiprocessing

scheduling for space applications.

Dario Schor
dario schor@umanitoba.ca

- 1 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.1 Problem Statement

1.1 Problem Statement

There are many approaches to solve an optimization problem depending on the con-

text to which it is applied. This section provides an overview of the classification of the

environments for the problems, the modelled objective functions, and the specifics of the

spacecraft systems addressed in this thesis.

1.1.1 Motivation

In 2009, Magellan Aerospace Winnipeg (MAW) commenced work on a generic satellite

bus command and data handling (CDH) unit on a printed-circuit board (PCB), featuring

up to four symmetric soft-core multiprocessors in a field programmable gate array (FPGA)

[Nell11]. The reconfigurability of the FPGA increases the flexibility of the design and makes

it possible to reuse for multiple missions through soft reconfigurations. This design reduces

the cost and improves the operational response time for future satellites that utilized the

generic satellite bus, MAC-200 [PaHa06]. The additional computational power can be used

for many tasks including (i) automating the attitude determination and control (ADC)

functions of the spacecraft in order to reduce the number of reference parameters uploaded

daily for orienting the spacecraft, (ii) compressing payload data to optimize the use of

the throughput budget, and for (iii) pre-processing sensor and payload data. Thus, the

main benefit of such operation would be to get a greater return-on-investment from the

payloads. The hardware improvements are complemented through the use of customized

real-time software that is able to respond to external and internal events faster than the

time constraints established for the system [ScKM11]. Since there is no tolerance for missed

deadlines, the system is considered to operate in hard real-time, while other applications can

perform in soft real-time and thus accept some delays in the execution. In the spacecraft,

the parallel software is executed in a real-time operating system (RTOS) [Chen02], capable

Dario Schor
dario schor@umanitoba.ca

- 2 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.1 Problem Statement

of working in any of the unit’s configurations by scheduling tasks that maximize the use of

available resources.

Typically, RTOS scheduling algorithms use either predetermined sequences of tasks or

strict rules for predicable behaviours that aim to reduce the number of missed deadlines in

the system. Since the new MAW reconfigurable platform can adapt to different system con-

figurations when components or subsystems degrade over time, an evolutionary algorithms

(EA)-based scheduler can be used to adjust the schedule to match the hardware needs.

This adaptation to emerging system configurations is needed in uncertain environments

like low-earth-orbit (LEO), where space debris, radiation, variability of the Earth magnetic

field, and other unexpected conditions can affect a spacecraft’s subsystems, causing it to

operate differently than anticipated. As a result, the CDH unit, responsible for controlling

the operations of the satellite, must adapt to the new states in order to keep the mission

alive.

The EA-based scheduler requires a cost function to evaluate and compare the fitness of

candidate solutions over time. The cost function design exploits behaviours of the evolu-

tionary processes in order to minimize the computations, improve the rate of convergence,

and therefore reduce the number of iterations required to find a solution. This is possible

through novel characterization methods developed in this thesis that help visualize the ef-

fect of various parameters and their impact on the performance of the algorithm. These

results aim to demonstrate the adaptability of the algorithm to different situations and

demonstrate the feasibility of a RTOS scheduling algorithm based on EAs.

1.1.2 Problem Definition

Scientific and technology demonstration satellite missions aim to perform experiments

in orbit, collect data, and transmit the data to the ground for analysis. However, for many

Dario Schor
dario schor@umanitoba.ca

- 3 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.1 Problem Statement

missions, the design of the satellite bus that carries and supports the science payload(s) can

become a primary focus for development, delaying the launch, and increasing the cost of

the overall mission [PrZe09]. The responsiveness (how long it takes to produce a satellite

from the time the need is identified) is even more critical for commercial and military

applications where the services provided by the payload(s) have a direct impact in the day-

to-day lives of many people. Therefore, in an effort to accelerate the spacecraft development

process organizations began investing in the design of generic satellite bus for use in multiple

missions [SpYo89], [DePW04], [PrZe09].

In an effort to accelerate the process, organizations like the Canadian Space Agency

(CSA) began working on the development of a generic small satellite bus for use in multiple

missions over a period of ten years [PeBr04], [DePW04]. Small-satellites refers to the

class of spacecrafts that are 500 kg or less [SSNK09]. In Canada, MAW was selected as

the primary contractor and developed the MAC-200 satellite bus for use in future LEO

Canadian missions [DePW04], [PaHa06], [HaKo10].

Magellan’s MAC-200 features an expandable CDH composed of different cards used to

control different components in the satellite [DePW04], [PaHa06]. The controller card on

the CDH hosts a PowerPC processor running the VxWorks RTOS where the flight software

(FSW) is executed [DePW04]. The FSW exhibits a multi-layered architecture that sep-

arates lower-level hardware interfaces and protocols from high-level tasks running on the

RTOS. Since its inception, the MAC-200 has been used for the CAscade, SmallSat and IOno-

spheric Polar Explorer (CASSIOPE) mission [PaHa06], and is currently being employed for

the Outer Radiation Belt Injection Transport and Loss Satellite (ORBITALS) [WeBe06],

Radarsat Constellation Mission (RCM) [BeCa06], and Chinook missions [HaMB06]. How-

ever, as the end of the ten year expected life-span of the satellite bus approaches, MAW is

exploring ways to improve the MAC-200 in order to continue to provide a high performance,

scalable, reliable, and cost effective computing system for future satellite missions.

Dario Schor
dario schor@umanitoba.ca

- 4 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.1 Problem Statement

For the next generation of the MAC-200, MAW is switching to a FPGA that can

be reconfigured dynamically to accommodate the requirements for future missions and

reduce the development cost and verification time required for new printed circuit boards.

To expand the processing capabilities, the FPGA is designed to host up to four LEON3

processors running a single shared instance of the symmetric multiprocessing (SMP) version

of the open-source operating system RTEMS [Nell11]. The extra processing capabilities

enables future spacecrafts to perform more on-board computations such as automated ADC

algorithms, autonomous controls, and data pre-processing to optimize the use of downlink

channels.

The added flexibility in the CDH poses many challenges for the scheduling algorithm

in the RTOS [Dvor09]. During the design phase, the scheduling can be customized for

a particular application; however, once in orbit, a satellite must be able to adapt to the

changes in the environment, such as faults in a subsystem or processor failures. Furthermore,

given two or more processors, there is no known deterministic algorithm for scheduling a

set of independent and aperiodic tasks. Therefore, evolutionary optimization algorithms

are proposed as a means of scheduling tasks in a generic satellite bus while also adapting

to new on-orbit conditions that were not anticipated during the design phase.

1.1.3 Proposed Solution

The proposed solution is to characterize the trajectories of particles in PSO for schedul-

ing tasks in a RTOS on a SMP architecture. The novel extraction and characterization of

the trajectories in the time and frequency domain help select parameters for the algorithm

to help increase the speed of convergence [ScKi11a]. Furthermore, this approach helps to vi-

sualize the evolution of the solutions and the behaviour of the particles when using different

parameters in PSO.

Dario Schor
dario schor@umanitoba.ca

- 5 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.2 Thesis Formulation

In order to characterize the behaviour of PSO, the trajectories of the particles are ex-

tracted and examined. Since there are many different particles traveling along multiple

dimensions, and the patterns are different for each run of the algorithm, an ensemble of

particle trajectories is generated to provide statistical significance for the characterization.

The trajectories are tested for stationarity and then long-term behaviours are investigated

in both the time domain using correlations and in the frequency domain using power spec-

trums. These tests expand the qualitative work by Kennedy that identified two different

types of behaviours in particles [Kenn97]. This technique helps to visualize the sensitivity

of key parameters in the algorithm and their effects on finding the optimal solution. This

characterization extends the known metrics to evaluate PSO.

A custom scheduling algorithm based on PSO is evaluated. The particle trajectories are

extracted and analyzed to identify the effects of different parameters and how they can be

used to improve the algorithm. The scheduler uses a mapping technique that separates the

task allocation from the continuous trajectories of particles, thus not altering the principles

behind PSO. Furthermore, the implementation provides a framework to add additional

task properties such as precedences, processor affinities, and priorities to use the schedule

for different applications. In addition, similar extensions can be created to add features

like load shedding into the scheduler. This implementation is tested in our simulator that

enables the results to be analyzed numerically and visually.

1.2 Thesis Formulation

1.2.1 Thesis Statement

This thesis aims to develop a scheduling algorithm for aperiodic and independent tasks

in SMP for hard real-time applications, like small satellites, using PSO through an analysis

Dario Schor
dario schor@umanitoba.ca

- 6 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.2 Thesis Formulation

of particle trajectories in both the time and frequency domain that aid in the design of the

scheduler.

1.2.2 Thesis Objectives

The thesis has two main objectives:

1. Identify implementation independent measures for the performance of EAs, including:

(a) Implement the PSO algorithm;

(b) Extract implementation independent measures for PSO; and

(c) Experiment with different classes of functions to establish the performance of the

metrics for different problems.

2. Design a scheduling algorithm based on PSO for real-time SMP running aperiodic and

independent tasks, including:

(a) Optimize the algorithm to reduce the total length of the schedule produced while

meeting all the hard real-time requirements;

(b) Provide a framework for extending the algorithm to incorporate other features like

load shedding (not included in this study because it cannot be verified/tested in

the simulator); and

(c) Test the algorithm performance using numbers of tasks and system loads that are

representative of existing satellite missions from MAW.

1.2.3 Research Questions

The thesis presents a number of research questions on evolutionary algorithms and

their applications to real-time systems. The following list of questions highlights some of

Dario Schor
dario schor@umanitoba.ca

- 7 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.2 Thesis Formulation

the major topics and describes which ones are addressed in this thesis.

1. What characterizes the performance of EAs?

(a) What measures should be used to characterize the behaviour of a swarm?

(b) What are the topologies for inter-particle communication in a swarm?

Comment: EAs rely on complex interactions that make up the evolutionary pro-

cesses. Understanding these interactions and their impact can help improve

the performance of these algorithms. This thesis attempts to address the ques-

tion for PSO by observing the trajectory of individual particles in a swarm

to observe the impact from different topologies. This enables further research

to identify the significance of the extracted trajectories in order to establish

methods to optimize parameters in the algorithm for a particular application.

2. How can one characterize the quality of behaviour in a swarm?

(a) What are the differences in the behaviour of continuous versus discrete swarms?

Comment: PSO guides particles towards a solution. The movement is intuitively

characterized by a convergence of all the particles around a particular area

surrounding the solution. To expedite the algorithm, one needs to understand

the macrocosms of behaviours exhibited by the swarm in order to distinguish

good behaviours in the swarm that can indicate the quality of the solution and

whether the parameters need to be modified at runtime in order to obtain a

solution. These questions are not addressed in this thesis, however insights are

provided based on the observed behaviours at the microcosm level of individual

particle trajectories.

3. What are the implementation independent measures to evaluate EAs?

Dario Schor
dario schor@umanitoba.ca

- 8 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.2 Thesis Formulation

(a) What are the metrics for PSO?

(b) Can we measure/capture the behaviour of the entire swarm in order to compare

different implementations?

(c) What is the optimal granularity of partitions to use when looking at the convergence

of an ensemble of particles over time?

Comment: Typically, EA implementations are compared based on the number of

iterations to solve textbook examples up to a predetermined precision. The

iteration count depends on the specific implementation and fails to account

for the complexity of the algorithm, length of each iteration, and evolutionary

processes that aid in the search of solutions in real applications. Therefore, it is

important to investigate metrics that are implementation independent and pro-

vide an insight into the behaviour of the algorithm, thus serving as a method

for comparison for different implementations and the selection of the associ-

ated parameters. This thesis addresses the problem through a novel trajectory

analysis that show the emergent behaviour, exploration of the parameter space,

and convergence towards a solution.

4. What is the sensitivity of the parameters in PSO?

(a) What is the relative importance of the parameters?

(b) What is the range of values each parameter can take to guarantee convergence?

(c) What are the interdependencies between parameters?

(d) What type of erratic behaviour from a particle can affect the convergence?

(e) How many particles need to behave erratically in order to affect convergence?

Comment: The PSO algorithm uses many parameters that affect the movement of

Dario Schor
dario schor@umanitoba.ca

- 9 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.3 Thesis Organization

particles towards the solution. Many researchers have studied the parameters

both analytically and experimentally to establish constraints and heuristics to

help in the selection process based on convergence analysis. However, there

exists very little information on the coupling effects of the parameters, the

effects on the behaviour of individual particles, and the overall effect on the

behaviour of the swarm. This thesis provides a framework for analyzing the

interdependencies of the parameters in PSO through the particle trajectories.

Insights into the effect of the different parameters is provided, however in depth

research is required to fully comprehend the sensitivity of the parameters.

5. Can evolutionary optimization algorithms be used for scheduling applications in multi-

core real-time systems?

(a) What is the scalability of the algorithm?

(b) How could the algorithm handle sporadic tasks, aperiodic tasks, or interrupts?

Comment: The core motivation of the thesis is to apply evolutionary algorithms

to schedule hard real-time applications in multi-core real-time systems in or-

der to generate schedules in emergent environments like satellite in LEO. This

thesis addresses the question through the design, implementation, and testing

of a PSO-based scheduling algorithm. In particular, the thesis focuses on inde-

pendent and aperiodic tasks. Sporadic tasks with low frequency of occurrence

and interrupts are not addressed in this study.

1.3 Thesis Organization

This thesis presents a scheduling algorithm for SMP real-time systems using PSO. The

performance of the scheduler is evaluated by studying the trajectories of individual particles

Dario Schor
dario schor@umanitoba.ca

- 10 of 157 - v042/01-introduction.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 1.3 Thesis Organization

as they move through the scheduler cost function looking for a solution. Chapter 2 provides

an overview of scheduling algorithms and evolutionary algorithms aimed at identifying key

characteristics and terminology used throughout the thesis to compare and analyze the

work done. Chapter 3 provides an in-depth review of the original PSO algorithm and the

significant improvements that aid in the understanding of the trajectories. Chapter 4 high-

lights a methodology for extracting trajectories from the particle optimization algorithm,

verifies the PSO performance against benchmark examples, and describes the cost function

used for scheduling real-time tasks in SMP. Chapter 5 focuses on the implementation and

testing environment of the scheduling algorithm based on PSO. The results of the work are

described in Ch. 6 and main conclusions are stated in Ch. 7.

Dario Schor
dario schor@umanitoba.ca

- 11 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2. Literature Review of Scheduling Algorithms

Chapter 2

Literature Review of Scheduling

Algorithms

Scheduling in real-time systems is the process of deciding when to execute each task

on the system and, in the case of multiprocessor systems, which processor to assign a

task to. Unfortunately, most problems are classified as NP-complete (NPC), with only a

few special cases with polynomial-bounded scheduling algorithms available for dealing with

aperiodic and independent tasks . One approach to address large class of problems is to

use evolutionary algorithms that produce a set of possible schedules and iteratively improve

them to find a solution. This chapter discusses the main classes of scheduling algorithms and

evolutionary algorithms that serve as the foundation for comparison in this thesis.

2.1 Scheduling Real Time Systems

Real-time systems must respond to external and internal events faster than the time

constraints imposed on the system [Kins12]. A distinction can be made for hard real-time

Dario Schor
dario schor@umanitoba.ca

- 12 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

where there is no tolerance for missed deadlines, and soft real-time where some delays are

acceptable. Thus, real-time systems are evaluated not only on the result of a computation,

but also the time at which the result is provided [RaSt94]. The timeliness of results is

addressed through proper scheduling algorithms that decide the order in which to execute

tasks and, in the case of multiprocessor systems, which processor to assign the task to.

The study of scheduling algorithms covers a wide range of fields, and the definition of

the tasks to be scheduled, procedures, and constraints are very different for each applica-

tion. For example, in operations research, scheduling often refers to arranging tasks in a

manufacturing process such as assembly lines [CoMM67]. In this context, each product be-

ing assemble in a flow-shop is identified as a task, and has a number of operations that must

be performed in a particular sequence, on specific machines, in order to obtain a finished

product. The objective of such operations is to improve the throughput to maximize the

profit from the operation and is often illustrated in the form of PERT charts showing the

interdependencies between tasks that help identify the critical path [WeLa99].

In contrast, in logistical operations such as military activities, scheduling refers to the

supply chain management of crisis situations including the transportation means and distri-

bution of resources [KZHZ11]. The objective of such operations is to deliver the necessary

supplies to the target areas as quickly as possible to minimize civilian casualties, with the

severity of delays varying for each problem. In these cases, synchronization, knowledge

sharing, and cooperation are the primary objectives.

Although there are many similarities in scheduling across different fields, the process of

scheduling real-time systems is unique in the severe consequences of missed hard deadlines.

The following sections expand the scheduling problem for real-time systems.

Dario Schor
dario schor@umanitoba.ca

- 13 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

2.1.1 Scheduling Complexity and Optimal Schedulers

Intuitively, scheduling is an increasingly difficult problem as more tasks and constraints

are introduced. The general problem is classified as NPC [RaSt94]. In general, given

sufficient time and resources, these problems can be solved by polynomial-depth backtrack

search algorithms that recursively test different solutions and cut branches where constraints

would always be violated [Chen02]. Since the problem is very common and has many day-

to-day applications, there is a need to find heuristics and develop algorithms that can

produce good solutions, if not optimal, in relatively short periods of time. This can be

accomplished by narrowing down the scope of the general scheduling problem by defining

parameters and constraints (as those outlined in Sec. 2.1.2) in order to find algorithms

for specific types of applications. For example, the largest local remaining execution time

first (LLREF) scheduling algorithm is designed to work with periodic tasks whose deadline

is the beginning of the next period has an execution time of O(N2), while the extension

to the local remaining execution time and local execution time (LRETL) improves the run

time to O(log TN) [ChRJ06] [FuNa10]. Furthermore, the book by Richard Conway, William

Maxwell, and Louis Miller contains many tables identifying key parameters and constraints

for specific instances of the scheduling problem with references to the algorithms developed

to solve those problems in polynomial time [CoMM67], with more recent works described

by Peter Brucker in [Bruc95].

In this context of application specific schedulers, one can define an optimal scheduler as

one that “may fail to meet a deadline of a task only if no other scheduler can” [CoMM67],

[Chen02]. From this definition, there can be more than one optimal scheduling algorithm for

a particular problem, and therefore the asymptotic algorithm complexity (AAC) (sometimes

referred to as big-O notation) can serve to identify the better candidate for a given problem.

As such, the tables listed in [Bruc95] provide the computational complexity of each of the

Dario Schor
dario schor@umanitoba.ca

- 14 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

algorithms described to provide a reference point to users on both the implementation and

performance of the algorithm.

The AAC estimates are based on the set of rules used to generate the schedule and

often include searching for tasks with key properties to be executed next. These types of

algorithms work well in deterministic environments and are fully reproducible. However,

the AAC estimates become more difficult to estimate when incorporating evolutionary al-

gorithms because of the stochastic elements in the algorithms. Therefore, many authors do

not provide algorithmic complexity measures for evolutionary schedules and, instead, uses

other metrics, such as the number of iterations to convergence, to establish the relative

merits for the different algorithm implementations.

2.1.2 Scheduling Problem Definitions & Classifications

The generic scheduling problem is often described in terms of four parameters: (i) the

tasks to be processed, Ti (i = 1, . . . , TN), (ii) the number and type of machines executing

the tasks, Cj (j = 1, . . . , CN), (iii) the restrictions on task assignments and (iv) the criteria

used to evaluate the schedule [CoMM67], [LeRB77].

2.1.2.1 Tasks

Tasks are classified based on their behaviour. Single-instance tasks execute only once

and are common of initialization routines or termination routines that setup hardware for

particular applications [Chen02]. Periodic tasks have many instances separated by a fixed

time between successive instances, while aperiodic tasks do not have a fixed separation

time [Chen02]. Periodic tasks are commonly used for sampling information about the

environment such as to provide temperature profiles. Finally, sporadic tasks have zero

or more occurrences with a minimum separation between consecutive releases [Chen02].

Dario Schor
dario schor@umanitoba.ca

- 15 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

These are regularly used for handling anomalies in systems such as emergency maneuvers

in aircraft.

The task is described in terms of three parameters Ti = {TS , TC , Td} denoting the start-

time or arrival-time, TS , the (maximum) number of computational units, TC , and a relative

deadline from the start-time, Td. Figure 2.1 shows a sample task, T1 to be scheduled. A

rectangle along the horizontal axis shows the execution parameters of a task, including

the start time, TS , the worst-case computation time, TC , and its relative deadline, Td. The

rectangle width goes from t = TS to t = TS+TC representing the start time and computation

time respectively. A downward pointing arrow is placed at t = TS + Td to denote the

corresponding relative deadline [DeMo89]. The gap between the task completion time and

the relative deadline is known as the laxity or slack, TL, and is defined as TL = Td − TC

[Chen02].

Time [units]

Ta
sk

Processor Tasks

T1

0 1 2 3 4 5 6 7 8

TS TC

Td

TL

Fig. 2.1: Timing diagram showing task T1 = {TS , TC , Td} = {2, 3, 5}.

Furthermore, in some applications extra parameters are added to tasks such as priority,

period, and predecessors [LeRB77]. The priority is used to bias the scheduling process to en-

sure critical tasks with hard deadlines are processed first before addressing some background

processes. The period is exploited in scheduling periodic tasks by reserving resources for cer-

tain tasks by shifting the surrounding aperiodic tasks accordingly. Finally, the predecessors

help dictate the order in which tasks must execute for a particular application.

Dario Schor
dario schor@umanitoba.ca

- 16 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

2.1.2.2 Computer Architecture Configurations

The computer architecture has significant effects on the design of scheduling algorithms.

The number and type of processors plays a major role in the design, while other factors are

derived from the memory configurations, shared resources, and peripherals.

The single processor (or uniprocessor) architecture consists of one processor, memory,

and the necessary peripherals. In this configuration, all processing and data handling passes

through the same microprocessor. The memory access time has the potential to delay some

key operations, therefore worst case estimates are often included in the computational unit

measures, TC , for each task [Liu00] [Chen02] [CoFe13]. If direct memory access (DMA) is

used, the access time can often be reduced, but special attention must be paid to preemptive

schedules (as defined in Sec. 2.1.2.3) to ensure the integrity of the data is maintained.

This is often done through semaphores to protect key pieces of code containing large data

transfers that are accessed by multiple tasks on the system. Peripherals are configured

as either memory mapped or input/output (IO)-mapped [Kins12]. The memory mapped

systems share the bus architecture with the processor and use reserved addresses to access

the internal registers in the devices, while IO-mapped devices use dedicated processor lines

(either parallel or serial) for communication. The schedule must pay special attention to

peripherals that generate interrupts in order to accommodate the functions within the real-

time constraints. Models of the worst-case occurrences of interrupts are incorporated into

the schedule to ensure that if the processor is servicing external devices it can still complete

the regular tasks to maintain the real-time requirements of the system [Chen02].

In multiprocessor architectures, tasks not only need to be scheduled, but also assigned to

a particular processor. Thus, the increased number of processors, Cj , provides more choices

where tasks can be assigned and therefore, increase the possible schedules produced. The

processors can be homogeneous to produce a SMP or heterogeneous for asymmetric multi-

Dario Schor
dario schor@umanitoba.ca

- 17 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

processing (AMP). In SMP, there is no advantage as to where each task is assigned, making

it a redundant architecture. In contrast, AMP focuses on exploiting specific features of each

processor to speed up the overall system or perform specialized tasks utilizing features of

different processors. In both configurations, the memory and other shared resources can be

either connected to an individual core or the whole system. Shared memory architectures

must deal with special cases to ensure the same addresses are not used by more than one

processor at a time, while independent memories pose other challenges by introducing pro-

cessor affinity requirements (as defined in Sec. 2.1.2.3) onto the system. Similarly, external

devices can be connected to individual cores or to the whole system in order to handle

IO connections as well as incoming interrupt calls. If connected to individual cores, the

interrupts are managed within the associated processor, however in other cases, additional

logic is required to determine which processor can handle the interrupt without causing

deadlines to be missed.

2.1.2.3 Scheduling Constraints and Heuristics

There are many constraints imposed on scheduling algorithms depending on the partic-

ular application. Furthermore, there are many heuristics used to optimize the performance

of the system given a priori knowledge of the tasks and architecture used. The following

list defines some of the major constraints and heuristics with their associated benefits for

particular scheduling applications.

Static, Hybrid, and Dynamic Schedules

Static schedules are computed a priori and are fixed for a particular application.

The scheduler runs through a sequence of tasks in a predefined order that is de-

signed to satisfy the real-time requirements of the system. Interrupts are commonly

implemented as short functions that setup flags for the schedule to handle request

Dario Schor
dario schor@umanitoba.ca

- 18 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

when the appropriate function is executed. In contrast, dynamic schedules are cal-

culated at runtime based on the properties of the tasks available. This process

requires more processing resources allocated to the scheduler in order to determine

the operations to perform. The hybrid schedules are calculated whenever the sys-

tem changes state, but are considered static otherwise. This combination retains

the flexibility of dynamic schedules while reducing the computational resources

required. Examples of different schedules are provided in Sec. 2.1.5.

Processor Affinity

In multiprocessor architectures tasks can have an affinity with a particular pro-

cessor to either interface with its associated external devices or take advantage of

special features of a processor in AMP. This is easy to achieve in static or hybrid

schedules as the constraints can be pre-computed to ensure the system requirements

are met. However, when working with dynamic schedulers, the task’s properties

need to be considered to help make probabilistic decisions on whether or not to re-

serve the processor in question or whether the task has enough slack to run another

operation on that processor.

Preemption

Preemption or time-shared refers to the process of stopping the currently running

task, switching the context of the machine, and finally, starting another task with

higher priority or a more immediate deadline. Dynamic schedules with preemption

can interrupt current tasks based on new arrivals to achieve the best results, while

those without preemption can only change the schedule upon completing the current

operation. The cost of preemption is the time and memory required for context

switching, and thus some applications may limit the levels of preemptive tasks

to reduce overhead operations. Finally, in multiprocessor systems, preemption

algorithms must also assess which of the processors to interrupt for a particular

Dario Schor
dario schor@umanitoba.ca

- 19 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

application.

Migration

In a multiprocessor system with preemption, tasks without affinities to a specific

processor can start in one core, pause, and migrate to another core to continue

executing. Migration is difficult to achieve in AMP because the internal state

of the task saved in memory may not be able to run on a different processor.

However, task migration can exploit the redundancy in SMP that can move tasks

off a malfunctioning processor, or to a processor which has more free resources.

Task Precedence

In applications where the task operations follow a predefined sequence (i.e., data

processing), the scheduler must take into account the order of operations to ensure

that task precedence requirements are properly met. Multiprocessor systems must

use special messages between processors to ensure that the sequence of tasks is

maintained when distributing parallel operations through multiple cores.

Task Priority

Scheduling algorithms must take into account the priority of tasks to ensure that all

critical operations are completed first. The priorities can be either static or dynamic

depending on the application. In multiprocessor systems, priority handling takes

into account the number of processors in order to select, and if needed preempt,

tasks such that the global priorities are maintained.

2.1.2.4 Criteria for Evaluating Schedules

The primary criterion for real-time systems is that all tasks meet the deadlines. For

that to be possible, the sum of utilization of all tasks must be less than or equal to the

processor resources. Furthermore, a schedule is valid if the following conditions are satisfied

Dario Schor
dario schor@umanitoba.ca

- 20 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

[Liu00]:

1. Every processor is assigned to work on at most one task at a time.

2. Every instance of a task is assigned to at most one processor at a time, except for

redundancy voting architectures where tasks are computed more than once to compare

the results and overcome both hardware and software failures.

3. No task is scheduled before its start or release time, TS .

4. The total amount of processor time allocated to every task must be at least equal to

the computation time, TC , for the task.

5. Task precedence, processor affinity, and priority constraints are satisfied.

Even with all these conditions, a scheduling algorithm may produce two or more dif-

ferent schedules for the same application with the same set of tasks. In static schedules

it is sufficient for a schedule to meet all deadlines and constraints for the system. In con-

trast, in dynamic systems with some a priori knowledge of the tasks, there can be multiple

schedules that meet the deadlines. In such situations, secondary metrics may be employed

to determine which schedule to use. Examples include: (i) minimize schedule-length, and

(ii) minimize average tardiness. In these terms, tardy refers to small delays that use the

slack time for a task and still meet the deadline, while late indicates the task has missed its

deadline. In both tardy and late tasks, the effective start time refers to the actual time when

the task begins executing. Note that techniques such as measuring fairness of the resource

distribution to prevent task starvation is not suitable for hard real-time systems because

this information is embedded in the requirement that every task meets its deadline.

When generating schedules with evolutionary algorithms, the criteria is particularly

important as it serves as the means for optimization of the algorithm. As solutions are

generated, they are evaluated based on the criteria defined with additional parameters to

Dario Schor
dario schor@umanitoba.ca

- 21 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

account for deadlines met or missed.

2.1.3 Visualizing Schedules

In developing scheduling algorithms, it is helpful to visualize the schedule in order to

gain an intuitive understanding of the algorithm performance. The most common represen-

tation for schedules is in the form of a timing diagram that shows time elapsed along the

x-axis and represents each processor on a separate row as shown in Fig. 2.2(b). Each task,

Ti, is represented by a rectangle that begins at the effective start time for the given task and

lasts TC time units on the corresponding processor row, Cj . Each row contains the tasks

executed by the processor in the order in which they are serviced for a given schedule. If

preemption is allowed, the rectangles may be broken down into smaller pieces whose width

would total an execution time of TC time units.

This timing diagram can provide an instantaneous representation of the schedule which

is easy to describe, but it fails to provide information about the real-time nature of the

system. More specifically, it does not show the start time, TS and the relative deadline, Td.

The basic timing diagram shows a schedule but does not indicate whether it is valid or not.

To show validity, colours can be added to highlight tasks with missed deadlines as shown

through the red tasks in Fig. 2.2(c).

Dertouzos and Mok developed an alternative representation of schedules known as the

scheduling game board to show a dynamic representation of the status of the tasks at each

instance in time [DeMo89]. The model is specifically suited for SMP and can verify that

all tasks complete their execution by their respective deadline. The scheduling game board

shows the laxity, TL, plotted on the x-axis and the remaining computation time, TC , on the

y-axis. Each task is represented by a circular token on the TL-TC plane. At each time step,

each of the Cj processors executes one task and moves it downward one unit corresponding to

Dario Schor
dario schor@umanitoba.ca

- 22 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

Time [units]

T
a
s
k

Processor Tasks

T
3

T
2

T
1

0 1 2 3 4 5 6 7 8

(a) Timing diagram of three tasks to be scheduled.

(b) Valid schedule for tasks that meets all real-time deadlines.

(c) Invalid schedule where task T1 misses its deadline.

Fig. 2.2: Sample timing diagrams with possible schedules selected to show the differences
between valid and invalid schedules. (a) The three tasks to schedule defined as T1 =
{TS , TC , Td} = {0, 2, 4}, T2 = {1, 3, 4}, and T3 = {0, 5, 6}. (b) A valid schedule for
CN = 2 processors. In this schedule, T1 terminates at t = 2 ≤ T1,d = 4, T2 ends at
t = 5 ≤ T2,d = 5, and T3 completes at t = 5 ≤ T3,d = 6. Thus, all three tasks meet their
corresponding deadlines. (c) An invalid schedule where task T1 missed its deadline because
in this schedule it is executed after T2.

Dario Schor
dario schor@umanitoba.ca

- 23 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

a reduction in the remaining computational time. The remaining tasks are moved leftward

one unit as their laxity decreases making the execution of the task more urgent. Tasks

reaching the horizontal axis can be removed from the game as they have completed their

execution. However, any tasks crossing the vertical axis before reaching the horizontal axis

fail to meet their deadline. For a given configuration, one can select which tasks to execute

based on a scheduling algorithm and therefore influence the performance of the system. In

this context, the game is won if no deadlines are missed. Figure 2.3 shows the same set of

tasks from Fig. 2.2(a) depicted with the scheduling board game the instance before each

time step begins (i.e., t = 0− is initial representation before the tasks are executed at t = 0).

The tasks are executed according to the invalid schedule from Fig. 2.2(c) to demonstrate

inactive tasks, missed deadlines, and tasks completed.

2.1.4 Schedulability Analysis

As highlighted by the scheduling board game, it is important to analyze whether there

is a solution to the problem that will meet the deadlines for a particular system. In some

cases this can lead to changes in the constraints for the scheduling algorithm, the task

implementation, and even the system as a whole. This analysis, or schedulability test,

serves as a necessary and sufficient condition for a feasible schedule given a set of tasks, the

number of processors, and some of the constraints [Chen02]. In general, a schedulability

test attempts to define an inequality to evaluate whether the available processing resources

are sufficient for the given set of tasks. If the inequality is satisfied, there exists a feasible

schedule, but it is up to a scheduling algorithm to identify that solution.

There are many examples of schedulability tests depending on the constraints for the

system and tasks properties. For uniprocessors, tasks are often modelled as both preempt-

able and independent (i.e., it does not have any precedence relations or constraints from

Dario Schor
dario schor@umanitoba.ca

- 24 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

(a) t = 0− (b) t = 1− (c) t = 2−

(d) t = 3− (e) t = 4− (f) t = 5−

Fig. 2.3: Scheduling game board using the tasks from Fig. 2.2(a) and the same failed
schedule from Fig. 2.2(c) for the case of CN = 2. (a) Initial placement of the tasks at
t = 0−. (b) Task T1 is ready but does not execute, so its laxity decreases by 1 unit, task T2
does not move because its start time is greater than t = 1−, and task T3 completes 1 unit
of computations. (c) Tasks move based on game rules. T1 reaches a critical point where if
it is not executed it will miss its deadline. (d) T1 misses its deadline. (e) T2 completes its
computation. (f) T3 completes its computation.

shared resources) in order to estimate whether the available processing resources can com-

plete all the tasks before their deadline. Details on these uniprocessor tests can be found in

[Chen02] and [Liu00]. In multiprocessors, there are two major tests to evaluate conflict-free

tasks using both single instance and periodic tasks. These are described next.

This tests divide the scheduling board game into three regions defined by Eq. 2.1 to

Dario Schor
dario schor@umanitoba.ca

- 25 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

separate tasks that require immediate attention (R1(t)), tasks that must be serviced within

the next t units (R2(t)), and tasks not considered immediate (R3(t)).

R1(t) = {Ti : Ti,D ≤ t} (2.1a)

R2(t) = {Ti : Ti,L ≤ t ∧ Ti,D > t} (2.1b)

R3(t) = {Ti : Ti,L > t} (2.1c)

Given these definitions, a surplus computing power function, RA(t), is defined for t

units into the future, as shown in Eq. 2.2. The first term of this equation estimates the

total computational units available assuming a SMP architecture over t time units. The

estimates for the computational units from R1(t) and R2(t) tasks are subtracted to identify

the surplus power available. Note that the R3(t) tasks are not included as they do not

need to be executed within the future t units for the system to meet its hard real-time

deadlines.

RA(t) = tCN −
∑

Ti∈R1(t)

Ti,C −
∑

Ti∈R2(t)

(t− Ti,L) (2.2)

Then, the necessary condition for scheduling real-time tasks is that for all t > 0, RA(t) ≥

0, thus guaranteeing that the existing resources are sufficient.

The second test deals with scheduling periodic, preemptable, and independent tasks in

a multiprocessor system. It first computes the total utilization of the processors and ensures

that there are no conflicts with the periods, Tp, that would make the system run out of

resources when executing a particular task in the future [Chen02]. This is demonstrated by

first ensuring that all the tasks can be computed within the available resources as shown in

Eq. 2.3.

RP1 =

TN∑
i=1

Ti,C
Ti,p
≤ CN (2.3)

Dario Schor
dario schor@umanitoba.ca

- 26 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

Then, estimates whether the period of all the tasks can be scheduled without conflicts

by ensuring that RP3 is an integer to guarantee that even if there are enough resources, the

periods do not conflict as evaluated using the greatest common divisor (GCD) in Eq. 2.4. In

essence, this equation attempts to schedule each task for RP2
Ti,C
Ti,p

time units (thus executing

a full Ti,C per task period).

RP2 = GCD(T1,p, T2,p, . . . , TN,p) (2.4a)

RP3 = GCD

(
RP2, RP2

(
T1,C

T1,p

)
, RP2

(
T2,C

T2,p

)
, . . . , RP2

(
TN,C
TN,p

))
(2.4b)

Both of these tests assume some a priori knowledge of the problem space that can be

modelled with worst-case scenarios to assess the performance of the system and ensure a

valid schedule is feasible. Even if a schedule is found to be feasible through these or other

similar tests, the processor load should not run at 100% capacity as that fails to account

for anomalies, some extreme behaviours, and system changes due to code maintenance. As

such, some organizations employ heuristics for resource margins in processor load and how

to manage interrupt handling in real-time systems [GOLD09].

2.1.5 Review of Scheduling Methodologies for Real-Time Systems

There are many approaches to develop algorithms for scheduling real-time systems in-

cluding (i) clock-driven [Liu00], (ii) round-robin [Liu00], (iii) priority-driven [Liu00] [Chen02],

(iv) queuing theory [Leho96], (v) Markov chain and hidden Markov chain [TBLW11], and

(vi) evolutionary schedules [LiWJ07] [Cook10]. This section provides an overview of these

types of schedules.

Dario Schor
dario schor@umanitoba.ca

- 27 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

2.1.5.1 Clock-Driven Schedules

A clock-driven schedule makes decisions for executing tasks at predefined time intervals

in a uniprocessor system [Liu00]. The scheduler is driven by an external periodic interrupt or

external timer that triggers when the next task should start. If a task finishes its operations

sooner than expected, the processor enters an idle mode until the next interrupt triggers

the start of the execution for another task. The schedules are non-preemptive and static

to minimize the overhead, thus making these schedules ideal for applications where precise

sampling of the environment is required.

2.1.5.2 Round-Robin Schedules

Round-robin schedules are often used for time-shared applications to ensure fair and

starvation-free dynamic schedules in uniprocessor systems without task precedence [Liu00].

In this setup, each task is entered into a first-in-first-out (FIFO) when it becomes ready for

execution. At each time-slice (typically on the order of 10 msec), the top task in the queue

is executed. If the task fails to complete its operations in the allocated time, it is placed at

the end of the queue to wait for the next turn. This configuration cannot guarantee that

all the real-time deadlines for the system are met, so a worst case analysis on the tasks is

required to perform a schedulability test and determine the feasibility of the design. For

multiprocessor systems, the schedule is augmented to a weighted round-robin that allocates

time slices that are proportional to the task length [Liu00]. Furthermore, weighted round-

robin implementations have also been used to separate tasks based on which processor

should execute them in order to reduce the overall schedule length. This is accomplished

by streamlining pipelined applications with tasks precedence and also manage task affinity

requirements for both AMP and SMP [Liu00].

In both clock-driven and round-robin algorithms, a task can terminate before the end

Dario Schor
dario schor@umanitoba.ca

- 28 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

of the time slice thus intentionally leaving the processor idle until the next time slot begins.

In contrast, priority-driven or event-driven schedules make decisions when new tasks are

released and when tasks finish executing. The decisions are based on priority schemes

that maximize the use of available resources and, by definition, never leave a resource idle

intentionally [Liu00]. This greedy methodology always executes the task with the highest

priority and can therefore lead to suboptimal choices for the overall system performance

(i.e., longer overall schedule). Thus, although the priority-driven schedules are very easy

to implement and do not require much information in advance, they are not often used for

safety-critical real-time systems because it is difficult to validate whether all the tasks can

meet their deadlines [Liu00].

2.1.5.3 Priority-Driven Schedules

In priority-driven systems, the tasks can use fixed priorities, as in rate-monotonic (RM)

and deadline-monotonic (DM), or dynamic, as in early deadline first (EDF) and least-laxity

first (LLF) [Liu00]. In RM, the rate of releases (inverse of the period) is used as the pri-

ority for scheduling decisions [Chen02]. The shorter the period of a task, the higher the

priority within the system. Similarly, the DM also deals with periodic tasks and assigns

priorities based on the relative deadlines, so that shorter relative deadlines become more

urgent within the system. These algorithms can be expanded to multiprocessor applications

by conducting the analysis off-line to guarantee the tasks can complete the operations to

produce valid schedules. In contrast, EDF and LLF are designed for non-periodic tasks

and assign priorities based on the relative deadlines or laxity of the tasks respectively. The

priorities are recalculated dynamically every time a new task is generated or completed

[Chen02]. One major difference between these two algorithms is that the EDF does not

require the computational time for each task, and thus it is easier to implement in many

systems. There have been many attempts to expand EDF and LLF algorithms to multipro-

Dario Schor
dario schor@umanitoba.ca

- 29 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.1 Scheduling Real Time Systems

cessor systems, however the processor allocation heuristics remain an open research topic

for the purpose of a generic algorithm.

2.1.5.4 Queuing Schedules

The scheduling methodologies discussed so far are designed to meet the real-time con-

straints and fail to evaluate the overall performance of the system. Therefore, rather than

simply looking at the current state of the system and the top of the task queue, queuing

theory examines the overall response time and throughput of the system with the objective

of minimizing the mean waiting time for tasks and number of tasks waiting [Leho96]. The

statistical analysis assigns probability distributions to the arrival time and execution time

of the tasks instead of always assuming the worst-case scenarios like in priority-driven meth-

ods. Using this theory, [Leho96] expands the EDF algorithm to incorporate stochastic task

properties for a uniprocessor system in order to show that the overall use of resources can

be minimized for real-time systems at the expense of some additional overhead. Expansions

of this model to multiprocessor systems are limited by the same problems encountered in

priority-driven methods where the processor assignment adds an extra level of complexity

that makes the problem intractable.

2.1.5.5 Markov Schedules

Similar to queuing theory, Markov processes attempt to look at the overall problem

but make the decisions dynamically by estimating the reward or advantage associated with

selecting each task [TBLW11]. This generates a graph showing the reward associated with

each possible subsequent task. The graph is updated as tasks are completed, miss deadlines,

or new tasks are generated. This is an extension to the priority-driven algorithm that can

simulate multiple steps into the future to estimate what sequence of tasks offers the highest

Dario Schor
dario schor@umanitoba.ca

- 30 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

reward. The reward helps to quantify the advantages gained by some scheduling policies

given a set of tasks. The reward calculations and estimates into the future use different

techniques such as (i) sequencing exhaustively for benchmarking, (ii) greedy heuristics that

only consider the immediate effects like EDF, (iii) deadline heuristics that expand EDF for

some iterations into the future to determine if the choices are indeed optimal [TBLW11].

Despite its benefits, Markov processes are computationally intensive and seldom used in

hard real-time systems.

2.1.5.6 Evolutionary Schedules

Evolutionary schedules are iterative processes that start with a random solution, make

perturbations to the solution, and have some mechanisms to accept or reject the changes in

order to guide the search towards a solution. These algorithms are very suitable for large

problem sets where testing every combination of schedules is not feasible. Each solution

generated has a cost associated to it that represents how good a solution is with respect to

another candidate solution. For scheduling, the cost function evaluates missed deadlines and

often use additional secondary constraints to help guide the search. [LiWJ07], [Cook10].

Like queuing theory, this method takes time to evaluate as it must test various options

in order to find a suitable schedule. For this reason, it is used for many soft real-time

applications with limited utilization to find optimal schedules in static environments for

real-time systems.

2.2 Evolutionary Optimization Algorithms

This thesis uses evolutionary algorithms to find solutions for scheduling problems. The

search for the best solution is accomplished through optimization algorithms capable of de-

Dario Schor
dario schor@umanitoba.ca

- 31 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

termining the course of action amongst many different alternatives available [Boyd04].

minimize fobjective(x)

subject to fconstraint(x) ≤ 0
(2.5)

Optimization problems aim to find values for the vector of parameters x ∈ RD that min-

imize the objective function, fobjective(x) subject to the constraints defined by fconstraints(x)

as shown in Eq. 2.5 [Boyd04]. The set of all possible values for x makes up the parameter

space for the problem.

Solving the generalized problem described in Eq. 2.5 without an exhaustive search

requires knowledge of the parameter space, and a cost function that provides a figure of

merit between two candidate solutions [KeEb01]. These two pieces of information help

select the appropriate approaches to accelerate an iterative search for optimal solutions by

pruning portions of the parameter space. More specifically, using the a priori knowledge

of the parameter space and cost function helps identify the class of problem and the key

properties needed to select the appropriate technique to solve the problem.

Using the properties of the parameter space and the cost function, one can select the

appropriate technique to solve a problem. For example, one can check if an objective

function is linear [Boyd04]. Given vectors y1,y2 ∈ RD and constants α1, α2 ∈ R, a function

is said to be linear if it satisfies Eq. 2.6.

fobjective(α1y1 + α2y2) = α1fobjective(y1) + α2fobjective(y2) (2.6)

These types of linear problems can be solved using Least Squares or Linear Program-

ming [Boyd04]. The more generalized case occurs when the equality of Eq.2.6 is replaced

by an inequality that leads to convex optimization problems useful for solving unimodal

Dario Schor
dario schor@umanitoba.ca

- 32 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

problems. Convex problems can be solved using gradient based methods and simple heuris-

tics for steepest descent. For nonlinear multimodal problems, gradients can lead to local

solutions that are far from optimal.

Even though there are some specialized techniques that work under strict conditions,

there are no standard approaches for nonlinear multimodal problems [Boyd04], so heuristics

are often employed to reduce the parameter space and guide the search towards an opti-

mal solution [EbSh07]. One class of heuristics is evolutionary algorithms that start with a

random solution and iteratively improve the solution through evolutionary means modelled

from nature (i.e., mutation, crossover, and social interactions) as shown in Fig. 2.4 [Holl75]

[KeEb01]. The improvements are achieved through a selection process that bias the surviv-

ability of many good solutions while allowing a small portion of poor solutions to survive

for the purpose of exploring the parameter space [EbSh07]. The balance between good and

poor solutions is randomized to ensure there is a diverse population that can avoid or escape

many local solutions while converging towards a goal [FlMa08]. Therefore, evolutionary op-

timization algorithms are well suited for ill-defined problems where new states can emerge

within the application in which the algorithm is deployed.

The behaviour of an EA relates to the methodology for selecting new solutions to eval-

uate and guide the search towards the solution. For example, non-evolutionary approaches

such as a random search would not have any correlation between the various steps, while

evolutionary processes expect long-term correlations that indicate the system is slowly mov-

ing towards an objective. The long-term correlation does not imply a steepest-descent, but

rather on average, the solutions move in a certain direction while maintaining some level

of randomness to explore the parameter space. Furthermore, the correlation is not fixed in

time, but rather it can change over time as new information becomes available and produces

emergent behaviours in the algorithm.

Dario Schor
dario schor@umanitoba.ca

- 33 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

Fig. 2.4: Structure of a typical evolutionary optimization algorithm [ScKi11a].

The following sections provide a brief description of PSO and some related algorithms.

Comments on the merits of different algorithms are presented as they relate to the core

application of this thesis. Some general observations on the behaviour of each algorithm

are also provided for the purpose of selecting the appropriate algorithm for this thesis.

2.2.1 Simulated Annealing

Simulated annealing (SA) is modelled by the annealing process from material sciences,

in which the malleability of metals decreases with temperature [Kirk83]. The algorithm

commences with a random solution at a high synthetic temperature. A new candidate

solution is generated at each iteration by perturbing the current solution. This candidate

Dario Schor
dario schor@umanitoba.ca

- 34 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

solution is accepted if it is better than the current solution. However, if the candidate is

worst than the current option, then it is accepted based on the Boltzman criterion shown

in Eq. 2.7, thus allowing some exploration of the parameter space [Kirk83]. Then, like in

the annealing process, the temperature is slowly lowered to harden the metal, thus reducing

the number of bad candidate solutions that are accepted. This reduces the exploration of

the parameter space as the algorithm converges towards a solution.

e−∆D/TSA > random(0, 1) (2.7)

where, ∆D is the distance between the current and candidate solutions, TSA the tempera-

ture, and random(0, 1) a uniformly selected random number between 0 and 1 to accept or

reject candidate solutions.

The algorithm does not define either the encoding method or perturbation method,

therefore making SA suitable for both discrete and continuous problems without any ma-

jor modifications. This property is not common of all evolutionary algorithms and thus

many methods for transforming solutions are often employed to make naturally continuous

algorithms work with discrete or combinatorial problems and vice-versa.

The balance between exploration and convergence in SA is governed by the temperature

for TSA. Steep gradients are susceptible to getting trapped in local solutions and can often

behave like greedy algorithms where only better solutions are accepted. On the other

hand, very slow gradients can explore large areas of the parameter space, take longer to

converge, and still not guarantee an optimal solution. Therefore, the temperature gradient

is often tuned to the problem through the use of linear parameters or nonlinear parameters

like logarithmic curves. Further improvements to the algorithm include the use of chaotic

trajectories for candidate solutions to avoid repeating the same sequence and therefore

accelerating the convergence [ShKi96].

Dario Schor
dario schor@umanitoba.ca

- 35 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

The behaviour of SA can be extracted from the sequence of solutions generated and

evaluated. The solution evaluated creates a trajectory as it moves through the parame-

ter space. The domain for generating solutions diminishes over time as does the rate of

accepting large perturbations to explore the parameter space. The process does not pro-

vide feedback to help generate new solutions that would improve on the current iteration

results.

2.2.2 Genetic Algorithms

Genetic algorithm (GA) is analogous to the evolution of organisms where the genetic

codes can improve over many generations [Holl75]. In this class of algorithms, a candi-

date solution is known as a chromosome and consists of genes representing the different

parameters being optimized. A population of chromosomes evolve in the search for a solu-

tion by modifying the genetic codes via crossover and mutation [Fogo97]. A portion of the

population (usually half) advances to the next generation based on a random selection in

which the probability of an individual being selected is proportional to its fitness [EbSh07].

The surviving chromosomes serve as parents for a new generation of candidate solutions.

Crossover produces the new solutions, known as children, by combining elements of the ge-

netic code from two parent chromosomes. A stochastic process is used to select a very small

percentage of genes to randomly modify through mutation to stimulate the population and

prevent it from getting trapped in local minima.

The encoding process in GA is commonly performed by concatenating all the genes into

a single string like schemata theory [Holl75] [EbSh07]. This method may produce invalid

solutions that fall outside the predefined range of values for a given solution, thus special

consideration must be paid to the crossover and mutation processes.

There are many extensions or variations to the classical GA that can speed convergence.

Dario Schor
dario schor@umanitoba.ca

- 36 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

For example, elitist strategies are often used to ensure that a small percentage of the highest

ranked chromosomes are advanced to the next generation in order to remove the stochastic

nature of the roulette that can on occasion remove a good candidate solution from the

population. Furthermore, there are many different types of crossover mechanisms, like:

one-point crossover, where a single point is pre-selected; thus, the child receives the front

half of the genes from one parent and the bottom half from the other [EbSh07] or uniform

crossover where the point for the one-point crossover is randomly selected for each set of

parents.

Some variations of crossover perturbations in a GA can retain elements of previous

solutions that reveal some correlations over successive iterations. The challenge is that

at each iteration, half the population ceases and new children emerge, thus generating a

tree where half the branches at each level fail to recreate. Furthermore, a correlation can

be established for some crossover/encoding pairs where the procedure helps narrow down

the search for multiple parameters at the same time (i.e., the crossover does not improve

one parameter at the expense of another). This is an improvement over SA because the

crossover and new generations provides the necessary feedback (through memory retention)

to improve solutions.

2.2.3 Ant Colony Optimization

The ant colony optimization (ACO) is modelled after the behaviour of ants search-

ing for food by communicating with their peers through the use of scent chemicals called

pheromones [DoMC96]. The use of chemical messengers to preserve good solutions serves to

guide the search over time similar to the retention of high fitness genetic codes in GAs. In

the algorithm, the ants are provided with a finite set of possible paths that connect them to

the food source, and their objective is to find the shortest path. During the first iteration,

Dario Schor
dario schor@umanitoba.ca

- 37 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

of the algorithm the ants travel through the graph and find the food source while depositing

pheromones along the way. In subsequent iterations, the ants repeat the process and use

the previously available information to select routes whenever they reach a vertex. The

selection is based on the probability mass function (pmf) given by each route’s pheromone

concentration and desirability, where the desirability is generally inversly proportional to

the length of the edge in the ants path. Over time, the pheromones evaporate, thus reducing

the chances that ants travel through non-optimal paths that lead to local solutions. After

many iterations, the majority of the ants travel through the optimal paths and thus trigger

the termination criterion for the algorithm.

Because of the underlying graph metaphor in the algorithm, it is ideally suited to solve

problems like the traveling salesman or similar combinatorial challenges because of the pre-

defined and finite paths available [Soch08] [SoDo08] [Math00]. To extend the problem to

the continuous domain, one can expand the pmf developed from pheromone concentrations

in predefined paths to a probability density function (pdf) defining the volumetric element

in which the scent from the chemical can be detected [Soch08]. The ants then move towards

the food source by selecting steps from a pdf that take into account the overall structure of

the pheromone distribution. From an implementation perspective, the number of possible

solutions stored (i.e., pheromone pdf definitions) can grow very quickly, so the evaporation

process keeps a table with the last few generations worth of solutions, thus reducing the

memory requirements for the algorithm [Soch08].

At the end of each iteration, the trajectory of the ants forms one possible solution

that is evolved over time. Tracing the possible solution serves to define the behaviour of

the algorithm. Like in SA, there is a single trajectory of solutions, but with a feedback

behaviour that can expose more long-term correlations. Unlike GA, the paths of individual

ants are not important, but rather the path found by the colony form the trajectory that

define the behaviour.

Dario Schor
dario schor@umanitoba.ca

- 38 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.2 Evolutionary Optimization Algorithms

2.2.4 Particle Swarm Optimization

The PSO algorithm was developed by Kennedy and Eberhart based on the interactions

of organisms as seen in flocks of birds and schools of fish [KeEb95]. In this model, organisms

are represented by SK massless particles that traverse a D-dimensional parameter space

looking for a solution. At each iteration, the particles select their next position based on

a weighted sum combining the best solution found by the particle and the neighbourhood.

Details on PSO are provided in Ch. 3.

The behaviour of the algorithm may be characterized by the trajectory of the particles

as they converge on a solution. A single particle moves in ways similar to the temporary

solutions in SA, however, it is greedy about storing its previous best position instead of

using a probability to accept solutions. Both GAs and PSO produce multiple solutions at

each iteration. The difference is that in GAs a portion of the solutions are replaced at each

iteration by new offspring, while in PSO the same set of particles is used for the entire

duration of the algorithm run. In the original implementation, all the particles collaborate

together from start-to-finish; thus, their trajectories towards a solution can be compared to

establish trends that help guide particles towards the solution [ScKi11a]. More details on

characterizing the behaviour of PSO are provided in Ch. 3 and Ch. 4.

2.2.5 Other evolutionary algorithms

In addition to the aforementioned evolutionary algorithms, there are others like taboo

search, bees algorithm, and memetic algorithms that can also produce good results in many

applications. Taboo search is specifically designed to improve the performance of discrete

local searches by preventing the algorithm from getting stuck in local solutions, recently

visited solutions, or plateaus in the parameter space where many solutions have the same

fitness [Glov89] [Glov90]. The algorithm keeps a fixed sized circular list of recently visited

Dario Schor
dario schor@umanitoba.ca

- 39 of 157 - v042/02-literary-review.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 2.3 Summary

solutions that are considered “taboo” for the next set of iterations until those conditions

expire. The bees algorithm mimics the foraging behaviour of honey bees to find a solution.

In this approach, the algorithm keeps track of the best patches found by the colony of

bees and assigns bees to the sites for local searches. The assignments are based on the

fitness of each patch and the best fitness found is entered into the new patch list. To

prevent getting stuck in local solutions based on the initial random assignments, a subset

of bees is always used to randomly explore the parameter space looking for new patches.

Finally, memetic algorithms are based on Richard Dawkins’ idea of meme that extended the

evolutionary notions with culture [FlMa08]. This is often reproduced as a hybrid algorithm

that combines elements of evolution (i.e., genetic algorithms) with local search refinements

based on individual learning procedures.

2.3 Summary

This chapter highlighted some of the fundamental principles behind scheduling in real-

time systems and evolutionary algorithms. The brief descriptions that characterize the

behaviour of evolutionary algorithms show vibrant research areas that can be exploited to

improve the performance of these algorithms for specific applications such as scheduling.

Chapter 3 focuses on the PSO algorithm in order to develop an intuitive understanding of

the parameters that can be used in an in-depth analysis of the behaviour such that it can

solve difficult problems as the one proposed in Ch. 4.

Dario Schor
dario schor@umanitoba.ca

- 40 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3. Theoretical Background on PSO

Chapter 3

Theoretical Background on

Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was introduced by James Kennedy

and Russell Eberhart in 1995 after extensive work simulating the behaviour of groups of

organisms [EbKe95]. The algorithm combines elements of artificial intelligence and evolu-

tionary programming to solve continuous, nonlinear, unconstrained optimization problems

[KeEb01]. Since its inception, there have been many proposed improvements to the algo-

rithm. This chapter provides an overview of the original PSO algorithm and some of the

significant improvements commonly employed.

3.1 The Original Algorithm

The concept of PSO originated from an attempt to model the behaviour of flocks of

birds, school of fish, and swarming theory, particularly focusing on the movements of large

groups and the collaboration through information sharing that helps the organisms work

Dario Schor
dario schor@umanitoba.ca

- 41 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

together towards some common goal [KeEb95]. Early attempts to model the behaviour of

swarms focused on the local processes within each organism that determined the behaviour.

For example, the relative position of other members of the group that would maintain the

optimum distance between neighbours [KeEb01]. These studies were later augmented to

incorporate information sharing between organisms as suggested by evolutionary theory

[KeEb01]. By sharing information, new global processes emerged and the dynamics of the

swarm began to replicate those of living organisms [John01].

The general idea behind PSO is a search by a colony of particles moving through a

parameter space representing elements of the real world. The movements of the volume-less

particles are derived from their previous position and a weighted sum of the best states for

the particle and the collective knowledge of the particle’s neighbourhood as stated in Eq.

3.1.

next state = curr state+ personal influence+ social influence (3.1)

The state of a particle is given by its position and velocity during one discrete time

iteration. The iterations are equally spaced time intervals. Thus, the next state refers to

the new state of the particle, while curr state is the state during the previous iteration.

The personal influence is the memory of the particle’s previous best potion. While the

social influence refers to the memory of the best state found by the particle’s neighbour-

hood.

In essence, the actions of each particle are guided by a combination of the current

state, their own beliefs, and those of the neighbourhood. Just like in the case of humans,

the balance between the personal and social beliefs varies over time allowing particles to

explore the parameter space while also following best trends accepted by the community in

order to evolve towards a solution to the problem [KeEb01].

Dario Schor
dario schor@umanitoba.ca

- 42 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

3.1.1 Mathematical Realization

A more detailed version of Eq. 3.1 is shown in Eq. 3.2 [KeEb95]. Using bold notation

for vectors and regular font for scalars, the state for each particle, curr state and prev state,

shown in Eq. 3.1 are defined by the position, Sx, and velocity, Sv, respectively. The vectors

represent the D-dimensions in the parameter space where the particles are moving. Sx,k(n)

refers to the position of the kth particle at iteration n. The personal influence is calculated

as the difference between the current position and the previous best position, Sp, for that

particle and multiplied by a weight, Sϕ1, and a uniformly distributed random number

between 0 and 1. Similarly, the social influence is calculated as the difference between

the current position and the previous best position for the neighbourhood (represented by

the gth particle) of the particle and then multiplied by a weight, Sϕ2, and a uniformly

distributed random number between 0 and 1. The equations for Sp and Sg are defined

in Sec. 3.1.2.2. The original PSO defined the neighbourhood as the set of all particles,

thus guiding the particle’s movements based on their own personal experience and the best

solutions from the global community. The independent Sϕ1 and Sϕ2 can either amplify or

reduce the weighted sum influences in different ways, and can impact the convergence of

the algorithm (see Sec. 3.2.3) [KeEb01].

Sv,k (n) = Sv,k (n− 1) +

Sϕ1 × random(0, 1)× (Sp,k − Sx,k (n− 1)) +

Sϕ2 × random(0, 1)× (Sp,g − Sx,k (n− 1))

(3.2a)

Sx,k (n) = Sx,k (n− 1) + Sv,k (n) (3.2b)

The perturbations or new positions of a particle in its trajectory may be determined

by iterating Eq. 3.2. The addition of the previous state provides a positive feedback that

Dario Schor
dario schor@umanitoba.ca

- 43 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

serves to increase the speed of particles traveling in the same direction for multiple iterations.

This behaviour is commonly observed in the early stages of the algorithm when the random

initialization places a particle far away from a possible good solution causing particles to

continue moving in the current direction in large steps, and converging to a solution faster

than if the previous state was not included. As a side consequence of this type of accelerated

movement, a particle may overshoot the target, and continue doing so, in an oscillatory

manner [Kenn97]. These movements depend on the shape of the parameter space around

the solution.

Furthermore, depending on the parameter space, the accelerated movement may lead

to some particles becoming unstable and leaving the region of the parameter space under

consideration and escaping the predefined area for the parameter space. The randomization

of Sϕ1 and Sϕ2 helps to reduce the possibility of overshoots by placing more/less importance

on the personal or social influences at each iteration. More insight into the behaviour of

the particles when they overshoot the target is provided in Sec. 3.1.4 through different

visualizations of the algorithm.

Solving these equations iteratively for all particles determines the movement of the

particles towards a solution in the parameter space. As particles converge on a solution, it

is possible that they may overlap the same location. This is acceptable and in some cases

a good indicator of convergence as described in Sec. 3.2.5.

3.1.2 The PSO Algorithm

The PSO algorithm is divided into the initialization and the main algorithm as described

by Algorithms 3.1 and 3.2 respectively.

Dario Schor
dario schor@umanitoba.ca

- 44 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

3.1.2.1 Algorithm Initialization

In the initialization stage, the position and velocity of each particle are generated ran-

domly for each dimension of the problem, as shown in Algorithm 3.1. The initialization is

carried out for each of the D-dimensions of the position, Sx, velocity, Sv, and previous best,

Sp vectors. The best position for each particle is initialized to the particle’s position, thus

the first iteration the algorithm will use social influences only.

Algorithm 3.1 PSO Initialization

1: for Sk = 1 to SK do
2: for d = 1 to D do
3: Sx,k,d(n)← random(SXmin, SXmax)
4: Sv,k,d(n)← random(SV min, SV max)
5: Sp,k,d(n)← Sx,k,d(n)
6: end for
7: end for

The position is selected from a uniform distribution ranging from SXmin to SXmax.

The uniformity ensures that the locations of the particles are evenly distributed in the

parameter space. In constrained applications, the position extrema are determined from

physical constraints in the problem, thus preventing some invalid solutions from being

selected during the initialization. If there are no constraints, the parameters are estimated

from simulations such that the initial distribution of particles covers a wide range of solutions

to reduce the likelihood of premature convergence. This can be narrowed down with a priori

knowledge of the likely range of values for the solution, thus reducing the length of the search

for the particles [WoMa97].

The early implementations of the PSO algorithm defined the initialization position

extrema as given by Eq. 3.3, thus defining a symmetric range of values. However, as noted by

Dario Schor
dario schor@umanitoba.ca

- 45 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

[FoBe95], this decision can bias the movement of the particles for some test functions.

SXmin = −SXmax (3.3)

In contrast, the velocity extrema play a significant role in the original PSO and, there-

fore, must be selected to large enough to escape local solutions in the parameter space

while also limiting the step size to prevent particles from escaping the predefined area of

the parameter space. A maximum step size of 1
2(SXmax − SXmin) is typically selected to

force particles to traverse and explore when moving across the parameter space [KeEb01].

Larger ranges are discouraged even though they can speed up convergence because skipping

through large areas can lead to premature local solutions. Limiting the step size signifi-

cantly, as shown in [KeEb01] and [ScKi11a], slows down the algorithm while retaining the

same behaviour. Since small step sizes can get stuck in local solutions more easily, this is

only performed in benchmark scenarios where the maximum velocity is known to be large

enough to overcome local solutions.

Finally, the best position for each particle, Sp, is set to the particle’s position, thus

making the first step the result of neighbourhood influences only. Although randomly

selecting the values this vector do not hurt the performance of the algorithm, most authors

opt to let the particles explore their own paths to match the behaviour of the swarms being

modelled (i.e., [KeEb01]).

3.1.2.2 Main Algorithm Loop

The main loop for the PSO algorithm is shown in Algorithm 3.2. At each iteration,

the algorithm updates the state of all SK particles. The update consists of three steps;

to update the personal memory (Lines 3–5); find the best particle in the neighbourhood

Dario Schor
dario schor@umanitoba.ca

- 46 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

(Line 6); and then update the position/velocity vectors (Lines 8–10).

Algorithm 3.2 PSO Algorithm

1: repeat
2: for Sk = 1 to SK do
3: if G(Sx,k) < G(Sp,k) then
4: Sp,k ← Sx,k
5: end if
6: Sg ← index of best neighbour for Sthk particle
7: for d = 1 to D do
8: Sv,k,d(n)← Result of Eq. 3.2a
9: Sv,k,d(n) ∈ (SV min,+SV max)

10: Sx,k,d(n)← Result of Eq. 3.2b
11: end for
12: end for
13: until termination criteria is met
14: return pbest

The memory update consists of evaluating the cost function, G(•) for both the current

position, Sx, and the best position found, Sp. If the current position yields a better fitness

rating, then it becomes the current best position and the memory is updated. Thus, the

particle’s previous best position is determined through a greedy decision that is based only

on the past best solutions, and no other global information is considered. While such greedy

approach was not acceptable in SA, a Boltzman-like criterion is not needed in PSO because

there are SK solutions being stored in the swarm (one in each particle). This collection of

previous solutions form the social influences overcomes the local minima traps that limit a

non-social algorithm like SA.

Line 6 uses a linear search through all the particles in the neighbourhood to find the

index with the best fitness that can guide the social component of Eq. 3.2. In the original

PSO the neighbourhood was defined as the entire set, but other topologies are often used

as outlined in Sec. 3.2.4. The linear search is a computationally expensive operation that

evaluates the cost function for each particle in the neighbourhood. To avoid duplicating the

calculations, some authors choose to cache the results by maintaining two additional vectors

Dario Schor
dario schor@umanitoba.ca

- 47 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

for the fitness of each particle’s current position, Sfx, and the fitness of each particle’s best

position. Sfp. The vectors are only updated when Sx or Sp are updated. The fitness

vector would be initialized in Algorithm 3.1 after iterating through every dimension for a

given particle. The vector is updated when a new position is committed for a particle after

computing Eq. 3.2. Thus, all the comparisons of the particle’s information are reduced to

very simple operations. This implementation is shown along its algorithm complexity in

Table 3.2.

The perturbations to the current position that lead to the evolutionary processes of the

algorithm are defined in Lines 8–10. For each dimension, d, the parameters are updated to

obtain a velocity vector that corresponds to the step size for the particle. As outlined in

Sec. 3.2.2, the velocity extrema are used to prevent the step size from growing too large as

this can cause particles to become unstable.

The update equation are often implemented as an atomic commit to allow all the

changes to take effect in a single operation after the loop betweens Lines 2–12 completes.

This maintains the fidelity of the swarm behaviour being simulated because all particles

would move at the same time and have the same information available to them for that

iteration. Failing to do this, the implementation can bias the movement of some particles

based on their index into the population data structure. Practically, this is accomplished by

storing the new positions in Line 10 in a temporary position vector and then copying those

values before the next iteration of the algorithm. Note, that when using a global topology

(as described in Sec. 3.2.4), it is possible to move that operation outside of the particle loop

after the atomic commit. This removes any duplicated computations, however it does not

allow different topologies to be tested.

The termination criteria for the algorithm is met if either a maximum number of itera-

tions is reached or a special condition is met [ZiPL05]. The maximum number of iterations

Dario Schor
dario schor@umanitoba.ca

- 48 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

is often selected in real-time applications as it helps enforce the timing requirements for the

system. The special conditions are application dependant.

3.1.3 PSO Algorithmic Complexity

The algorithm complexity is seldom discussed in evolutionary algorithms because many

of the parameters are dependant on the problem being evaluated. The value of identifying

some general bounds for the algorithm are important to gauge the applicability to specific

problems, such as real-time scheduling.

The algorithmic complexity of the original PSO without any special implementation

optimizations is O(NmaxS
2
KD

2) as shown in Table 3.1. For this estimate, the three key

assumptions were (i) the use of a global topology for a particle’s neighbourhood, (ii) that

the cost function requires traversing through the entire position vector to compute the

fitness, and (iii) the termination criterion is a fixed maximum number of iterations, Nmax.

One of the most costly operations in this case is the computation of every particle’s fitness

in a global topology each time the new best index in the neighbourhood, Sg, is computed

in Line 13. This seemingly simple operation requires computing the fitness and comparing

the Sthk particle to each other particle in the set to identify the neighbourhood best, Sg. In

contrast, changing to a local neighbourhood configuration with Sn neighbours can reduce the

complexity to O(NmaxSKD
2Sn), where Sn < SK and the associated fitness computations

are fewer than the D2 perceived from the complexity measure.

The complexity can be reduced to O(NmaxSKD) through a smart implementation that

addresses the key computationally expensive portions of the algorithm. The main changes

are shown in Table 3.2. In essence, this implementation removes any duplicate calcula-

tions through dynamic programming that caches (i) the fitness of each particle, (ii) the

fitness of each particle’s best position, and (iii) and the index of the best particle in the

Dario Schor
dario schor@umanitoba.ca

- 49 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

Table 3.1: Algorithmic complexity of PSO

Line of program Comment Complexity

1: for Sk = 1 to SK do Initialization
2: for d = 1 to D do SK
3: Sx,k,d(n)← random(SXmin, SXmax) SKD
4: Sv,k,d(n)← random(SV min, SV max) SKD
5: Sp,k,d(n)← Sx,k,d(n) SKD
6: end for
7: end for

8: for n = 1 to Nmax do Main loop
9: for Sk = 1 to SK do Initialization Nmax

10: if G(Sx,k) < G(Sp,k) then NmaxSK
11: Sp,k ← Sx,k Copy vector NmaxSKD
12: end if
13: Sg ← index of best neighbour Global topology NmaxS

2
K2D2

14: for d = 1 to D do Update particles
15: Sv,k,d(n)← Result of Eq. 3.2a NmaxSKD
16: Sv,k,d(n) ∈ (SV min,+SV max) NmaxSKD
17: Sx,k,d(n)← Result of Eq. 3.2b NmaxSKD
18: end for
19: end for
20: end for
21: return Sp,best SK2D2

Dario Schor
dario schor@umanitoba.ca

- 50 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

neighbourhood. Furthermore, this implementation introduces a new variable Sgnext that

pre-computes what Sg should be in the next iteration when a global topology is assumed.

Although it is possible to incorporate the cost function directly into the algorithm and re-

duce a few loops (i.e., pre-compute line 9 within the loop in Lines 4–8), it is common to

leave the cost function separately to be able to adjust it for a particular application.

Having optimized the implementation to accelerate PSO performance, theO(NmaxSKD)

is dependant on three key parameters. The number of iterations, Nmax, is often set as a

worst-case scenario for the runtime of the algorithm in case a primary termination criterion

fails to find a solution. This acts like a watchdog timer that timeouts after a predetermined

length of time to prevent the algorithm from an endless search. This can then trigger the

algorithm to be re-initialized or the use of the best solution available at that time. The

number of particles, SK , is discussed in Sec. 3.2.1 as it not only affects the computational

complexity of PSO, but also the exploration of the parameter space that leads to finding

good solutions. Finally, the dimensionality of the problem is often characterized by the

number of independent variables in the problem.

Dario Schor
dario schor@umanitoba.ca

- 51 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

Table 3.2: Algorithmic complexity of PSO with an array of cached fitness computations
and pre-computed best index in neighbourhoods.

Line of program Comment Complexity

1: Sg ← 1 Initialize Sg
2: Sgnext ← 1
3: for Sk = 1 to SK do Initialization
4: for d = 1 to D do SK
5: Sx,k,d(n)← random(SXmin, SXmax) SKD
6: Sx,k,d(n)← random(SV min, SV max) SKD
7: Sp,k,d(n)← Sx,k,d(n) SKD
8: end for
9: Sfx,k ← G(Sx,k) Cache fitness SKD
10: Sfp,k ← Sfx,k SK
11: if Sfp,k < Sfg,k then SK
12: Sgnext ← k Cache Sg SK
13: end if SK
14: end for

15: for n = 1 to Nmax do Main loop
16: g ← gnext Nmax

17: for Sk = 1 to SK do Initialization
18: if Sfx,k < Sfp,k then Cached fitness NmaxSK
19: Sp,k ← Sx,k Copy vector NmaxSKD
20: Sfp,k ← Sfx,k NmaxSK
21: end if
22: for d = 1 to D do Update particles
23: Sv,k,d(n)← Result of Eq. 3.2a NmaxSKD
24: Sv,k,d(n) ∈ (SV min,+SV max) NmaxSKD
25: Sxtemp,k,d(n)← Result of Eq. 3.2b Temporary state NmaxSKD
26: end for
27: end for
28: for Sk = 1 to SK do
29: Sx,k ← Sxtemp,k Copy vector NmaxSKD
30: Sfx,k ← G(Sx,k) Cache new fitness NmaxSKD
31: if Sfp,k < Sgnext,k then NmaxSK
32: Sgnext ← k Cache Sg NmaxSK
33: end if NmaxSK
34: end for
35: return Sp,gnext 1

Dario Schor
dario schor@umanitoba.ca

- 52 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

3.1.4 Visualization

One of the most powerful techniques for studying the PSO algorithm is through vi-

sualizing the movement of particles through the parameter space, their interactions, and

how they move towards a solution [Kenn97]. The most common technique is common to

all evolutionary algorithms and consists of plotting the fitness of the best solution found

versus the algorithm iteration as shown for an arbitrary particle (Sk = 7) in Fig. 3.1 and

Fig. 3.2.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

Iteration [n]

F
it
n

e
s
s
 [

G
1
(S

x
,7

)]

Particle Fitness

G

1
(S

x,7
)

G
1
(S

p,7
)

Fig. 3.1: The fitness for the current and best solutions found by the particle are almost
identical at every iteration. This is a unique feature that happens in smooth, concave,
unimodal functions like the Sphere.

The fitness plot shows the rate at which the algorithm approaches a solution and can

provide some guidance for selecting parameters based on the convergence rate of the solu-

tion. The main limitation with these plots is that they fail to provide a full understanding

of the behaviour of PSO. As such, it is not always clear what the effect is from different pa-

rameters and what behaviours are simply a result of the stochastic nature of the algorithm.

For example, Fig. 3.2 shows a plateau for the best solution found by the particle around

iterations 12-50 which can be a result of many things such as getting temporarily stuck in

a local solution or simply failing to find a better solution.

To overcome the limitations of fitness plots, there are unique visualization techniques for

Dario Schor
dario schor@umanitoba.ca

- 53 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.1 The Original Algorithm

0 50 100 150 200 250 300 350 400 450 500
0

15

30

45

60

Iteration [n]

F
it
n
e
s
s
 [
G

3
(S

x
,7

)]

Particle Fitness

G

3
(S

x,7
)

G
3
(S

p,7
)

Fig. 3.2: Fitness plot for Sk = 7 in PSO on Rastrigin function. The fitness of the current
position varies greatly at each iteration and may continue for many iterations. In contrast,
the fitness of the best solution found by the particle is a non-increasing curve with plateaus
while the particle explores the parameter space.

some EAs. For example, in GAs, many authors choose to represent each chromosome as a

row in a table with different colours used for each gene. The result shows how predominant

patterns emerge in the population for strong evolutionary traits, like playing the game

Mastermind to find a sequence that breaks the code [KaCa03]. In the case of PSO, there are

two techniques commonly used to study the behaviour of the algorithm for low dimensional

problems where D ≤ 2: using a 3D plot or a contour map, as shown in Fig. 3.3 and Fig. 3.4,

for the Sphere and Rastrigin functions respectively. The same work can be extended to live

updating computer graphics or videos to help visualize the full swarm without congestion

from the entire trajectory. These representations show two dimensions along the x-axis and

y-axis and use the z-axis (or projected contour map lines) to depict the different fitness

values. Plotting the particles’ movement reveals overshoots in trajectories that cause the

particle to oscillate and circle towards the solution. This behaviour instilled the need for

damping factors that prevent oscillations and accelerate convergence [Kenn97].

Dario Schor
dario schor@umanitoba.ca

- 54 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

(a) 3D representation on G1(Sx,7) [ScKi11a].

Particle Trajectory in Sphere Function

2000

4000

6000

8000

d
1

d
2

−100 −50 0 50 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

(b) Contour projection on G1(Sx,7).

Fig. 3.3: 3D and contour representations for a single particle (Sk = 7) trajectory in PSO
on Sphere function. (a) Shows the 3D representation with the Sphere function providing
a reference point for the trajectory. (b) The contour map projection that makes it easier
to identify the trajectory of the particle. The particle starts at Sx,7 = {−22.5, 57.5} and
initially travels in a diagonal to optimize one dimension before oscillating towards the global
optimum. The size of the oscillations decreases over time showing the particle is slowly
converging.

As informative as these plots are, they are limited to two dimensions and require a

fully defined parameter space (e.g., Sphere or Griewank functions) that defeats the overall

purpose of the algorithms. Therefore, these techniques are reserved for educational purposes

and verifying algorithm implementations. A novel particle trajectory representation that

overcomes these limitations is presented in Sec. 4.1.4.

3.2 Variations and Comparisons

There are many modifications, improvements, and variations to the original PSO algo-

rithm. In recent years, researchers have attempted to define a standard for PSO based on

Dario Schor
dario schor@umanitoba.ca

- 55 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

(a) 3D representation on G3(Sx,7) [ScKi11a].

d
1

Particle Trajectory in Rastrigin Function

10

40
20

50

d
2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(b) Contour projection on G3(Sx,7)

Fig. 3.4: 3D and contour representations for a single particle (Sk = 7) trajectory in
PSO on Rastrigin function. (a) Shows the 3D representation with the Rastrigin function
providing a reference point for the trajectory. (b) The contour map projection that makes
it easier to identify the trajectory of the particle. The particle starts at Sx,7 = {−1.1, 2.9}
and initially travels in a diagonal to optimize one dimension before oscillating towards the
global optimum. Note that the particle appears to explore the parameter space around {0,
1} thus matching the increased fitness shown in Fig. 3.2.

important contributions described in the literature [BrKe07]. In practice, many researchers

choose to work with the original algorithm and known parameters in order to verify their

implementations against existing literature, before applying it to their specific problem.

This section describes some significant contributions, parameters selected, and comparisons

to the original algorithm.

3.2.1 Population Size

The number of particles, SK , has a great influence on the efficiency of PSO as this

parameter directly affects the computational complexity and memory requirements as the

Dario Schor
dario schor@umanitoba.ca

- 56 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

algorithm must evaluate the position of each particle at each iteration, as described in

Sec. 3.1.3. Intuitively, one can assume that more particles implies a greater exploration

of the parameter space that can make the algorithm more robust against local minima.

Unfortunately, that is not always the case, as some topologies (see Sec. 3.2.4) can help in

the exploration without increasing SK [BrKe07].

In the original algorithm, Kennedy and Eberhart suggest that anywhere from 15 to 30

particles are sufficient to solve classical test functions for evolutionary problems as defined in

Sec. 4.1.3 [KeEb95]; in contrast many authors prefer to use larger populations in unknown

parameter spaces to explore more candidate solutions. To evaluate the sensitivity to SK ,

Trelea [Trel03] and Angeline [Ange98] performed independent tests using SK = {15, 30, 60}

and SK = {125} particles respectively with fixed weights and monitored the number of

iterations until the different swarms reached a similar quality of solutions. These show that

increasing SK speeds the performance of the algorithm over some test functions. In essence,

the empirical results do not provide a definitive value for the swarm size that is optimal

across all problems, so some tuning of parameters is required for specific applications. In

general, swarm sizes between SK = {20 to 100} particles work on most problems [KeEb01]

[BrKe07].

3.2.2 Limiting Step Size

The movement of the particles as per Eq. 3.2 uses a weighted difference between the

particle’s best and neighbourhood best, which can cause, under some situations, undesirable

trajectories for some particles. For example, a system of SK−1 particles are initialized to be

within a small distance from the optimal solution, while one particle is randomly initialized

very far away from the rest of the swarm. In that case, the step size calculated for that

the particle is very large and further increased through inertia weights, thus iteratively

Dario Schor
dario schor@umanitoba.ca

- 57 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

overshooting the target and possibly leading into uncontrolled trajectories. There are a few

different techniques to prevent these scenarios by dampening the oscillations through (i)

maximum step sizes, (ii) inertia weights, and (iii) constriction coefficients as described in

the following subsections.

The simplest method to control the velocity is to set hard limits, SV min and SV max, as

shown in Line 9 of Algorithm 3.2. If the velocity (positive or negative) ever grows beyond

these boundaries, the step size is cutoff to prevent an explosion in the particle trajectory

[EbSh00]. This ensures that if a particle is far away from the neighbourhood best, Sg, and

a high social coefficient, Sϕ2 is present, the steps do not grow larger in each step. Since

there is no rule for selecting the value of SV max, some authors use a value less than or

equal to half the initial domain space as shown in Eq. 3.4 [KeEb01] [Berg01]. This allows

the particle to traverse a large portion of the area in one iteration, while the overshoot is

handled by the next iteration bringing the particle back towards the neighbourhood best.

Using very small step sizes reduces the overshoots, but prolongs the algorithm as evaluated

by [KeEb01]. The velocity is studied in Sec. 4.1.4 to analyze the trajectory of the algorithm

for the purpose of characterizing the behaviour of PSO.

SV max ≤
SXmax − SXmin

2
(3.4a)

SV min = −SV max (3.4b)

Another approach to limit the step size is to use an inertia weight, Sω that produces

a similar effect to the SA temperature gradient, TSA, that reduces the step size over time

[ShEb98]. This enables a global search during the initial phases of the algorithm and then

decreases the step size to search locally around a solution. In practice, this is incorporated

into the main algorithm by modifying the key equations for the movement of the algorithm

Dario Schor
dario schor@umanitoba.ca

- 58 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

from Eq. 3.2 to those shown in Eq. 3.5, where the inertial movement carried over from the

previous iteration is reduced over time. Extensive studies performed by Shi, Eberhart, and

Kennedy [ShEb99] [KeEb01] revealed that it is sufficient to vary Sω = Sω,max → Sω,min =

0.9→ 0.4 over the duration of Sω,eph iterations of the algorithm to decrease the speed of the

particles. The decrements for Sω can be either linear or nonlinear [Cook10]. The duration

is problem dependant and often selected to a value greater than the expected average for

the algorithm in order to allow the particles to escape local solutions. In general 1,500

iterations seemed acceptable for problems that normally converge in under 1,000 iterations

(i.e., Sphere, Griewank) as shown by [ShEb98], [ShEb99], and [Berg01], while some authors

extend this much more to 10,000 iterations to be able to handle more complex problems

[Ange98]. Note that although using Sω is considered a better approach for finding a solution,

it is advisable to include a limiting SV max as it is computationally inexpensive and helps

prevent single particles diverging from the set.

Sv,k (n) = SωSv,k (n− 1) +

Sϕ1 × random(0, 1)× (Sp,k − Sx,k (n− 1)) +

Sϕ2 × random(0, 1)× (Sp,g − Sx,k (n− 1))

(3.5a)

Sx,k (n) = Sx,k (n− 1) + Sv,k (n) (3.5b)

The main limitation with the inertia weight is that it only compresses as the search

converges, thus if along the way a better solution is found, the algorithm cannot adjust

to expand the search and adapt to the terrain. To overcome this, Clerc and Kennedy

simplified the model to analyze the convergence and introduced a set of five constriction

coefficients that control the swarm’s convergence tendencies for specific types of problems

[ClKe02]. The most important of constriction coefficient is Sχ that is used to dampen

Dario Schor
dario schor@umanitoba.ca

- 59 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

the oscillations by controlling the step size by replacing Eq. 3.2 with Eq. 3.6, where Sχ is

given by Eq. 3.7 [ClKe02]. This parameter is derived by extracting the eigenvectors for the

particle movement and finding the region for which the eigenvalues are real and negative

to guarantee convergence. In this form, the condition (Sϕ1 + Sϕ2) > 4 must be satisfied to

guarantee convergence and prevent particles from traveling in a spiral around the solution

[BrKe07]. Section 3.2.3 describes the personal and social weights in more depth and their

effect of the behaviour of the particles and convergence of the algorithm.

Sv,k (n) = Sχ
(
Sv,k (n− 1) +

Sϕ1 × random(0, 1)× (Sp,k − Sx,k (n− 1)) +

Sϕ2 × random(0, 1)× (Sp,g − Sx,k (n− 1))
)

(3.6a)

Sx,k (n) = Sx,k (n− 1) + Sv,k (n) (3.6b)

Sχ =
2∣∣∣∣2− (Sϕ1 + Sϕ2)−

√
(Sϕ1 + Sϕ2)2 − 4 (Sϕ1 + Sϕ2)

∣∣∣∣ (3.7)

In order to compare these approaches, Eberhart and Shi tested the algorithm using

Sω and Sχ; they watched the particles fly through the projected parameter space through

hundreds of runs searching for the optimum solution in six functions [EbSh00]. The analysis

tested Sω with the use of SV max and compared it to the Sχ with a very high (and somewhat

meaningless) SV max and concluded that the constriction coefficient alone was not sufficient

to bound the search causing the algorithm to take longer to converge to a solution. However,

when comparing Sω and Sχ both with SV max as defined by the maximum value allowed

in Eq. 3.4, the results showed that the performance of the constriction coefficient with a

maximum step size improved significantly. Furthermore, Clerc’s constriction method can

be shown to be equivalent to the inertia weights when Sω = 0.729 and Sϕ1 = Sϕ2 = 1.49445

Dario Schor
dario schor@umanitoba.ca

- 60 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

[EbSh00] [KeEb01] [Kenn07].

3.2.3 Social Influences

Conceptually, the random weights that balance the personal, Sϕ1, and social, Sϕ2, com-

ponents in Eq. 3.2 should not be needed in optimization problems as the difference between

the best and current positions should become increasingly positive or negative pulling the

particle back in the corresponding direction [KeEb01]. These terms were initially added

to help mimic the behaviours of real swarms where the particles have unique behaviours

and do not always align perfectly at each step. Thus, in the original PSO implementation,

the weights are multiplied by a uniformly distributed random number to vary the amount

of exploration performed by the individual particle and how much it conforms to the be-

haviour of the swarm. In the original algorithm, these are set to Sϕ1 = Sϕ2 = 2 such that

it would have a mean of 1 so that particles would overshoot the target about half the time

and undershoot the target half the time [KeEb95]. Although it is not part of this thesis,

other distributions for random numbers can produce good results. For example, normal

distributions would encourage particles to take lots of small steps.

Practically, these weights play an important role into the behaviour of the swarm.

To understand this effect, it is important to consider some extreme cases using simple

functions, like the Sphere, as a benchmark with only SV max to limit the step size. If

Sϕ1 = Sϕ2 = 0, the trajectory of the particles increases linearly based on the initial velocity

as Sv,k (n) = Sv,k (n− 1) + 0. As the weights are increased between 0 < Sϕ1, Sϕ2 ≤ 1, the

trajectories for the particles begin to oscillate around a point with increasing frequency and

reduced amplitude. Increasing the range Sϕ1, Sϕ2 > 1 first shows the desired stochastic

oscillations around the optimum and then begins to saturate when the multiplier is such

that any small value maximizes the velocities at SV max [OzMo99] [KeEb01].

Dario Schor
dario schor@umanitoba.ca

- 61 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

For comparison, van den Bergh rewrote the problem as a recurrence relation with the

inertia weight as shown in Eq. 3.8 [Berg01] [BeEn06]. Solving for the eigenvalues of the

equation Eq. 3.9, revealed that the system would converge as long as max{Sλ1, Sλ2} < 1.

This occurs for a large range of combinations of Sω, Sϕ1, and Sϕ2 [BeEn06]. Testing different

combinations and plotting 0 < Sω ≤ 1 on the y-axis and 0 < Sϕ1 + Sϕ2 ≤ 4 on the x-axis

showed that the system would converge for a large set of values within a slanted parabolic

shape that included the set of parameters selected by Clerc described in Sec. 3.2.2.

Sx,k (n+ 1) = (1 + Sω + Sϕ1 × random (0, 1) + Sϕ2 × random (0, 1))× Sx,k (n)−

Sω × Sx,k (n− 1) + Sϕ1 × Sp,k (n) + Sϕ2 × Sp,g (n)

(3.8)

Sλ1 =
Sω − Sϕ1 − Sϕ2 +

√
(Sω − Sϕ1 − Sϕ2)2 − 4ω

2
(3.9a)

Sλ2 =
Sω − Sϕ1 − Sϕ2 −

√
(Sω − Sϕ1 − Sϕ2)2 − 4ω

2
(3.9b)

where the discriminant cannot be negative to avoid oscillatory behaviours,

(Sω − Sϕ1 − Sϕ2)2 ≥ 4ω (3.10)

The conditions identified in [BeEn06] serve as a general guideline when implementing

an inertia weight, while the range of values is very different when including the constriction

coefficient as the latter affects the weights as well [KeEb01]. In practice many different com-

binations are commonly used with the original values (Sϕ1 = Sϕ2 = 2) and those proposed

by Clerc (Sω = 0.729 and Sϕ1 = Sϕ2 = 1.49445) being the most popular [SeMa09].

Dario Schor
dario schor@umanitoba.ca

- 62 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

3.2.4 Neighbourhood Topologies

The performance of the PSO algorithm depends on the interconnections between parti-

cles [Kenn99a] [Kenn07]. The connections are generally known as the neighbourhood topology

of the algorithm and form the basis for particle-to-particle communication that guides the

search processes in PSO. There are two major classes of topologies known as the global

topology, global best (gBest), where all the particles are interconnected (see Fig. 3.5), and

the local topology, local best (`Best), where particles are only connected to a subset of the

swarm known as the particle’s neighbourhood. The size of the neighbourhood is denoted

by Sn and refers to the Sn − 1 connections plus the particle itself [Mend04]. In order to

analyze these various topological configurations, it is often convenient to describe them in

terms of connected, simple, unweighted, undirected graphs where each vertex corresponds

to a particle and each edge represents a connection between two particles in the same neigh-

bourhood [Mend04]. In this form, one can describe the various configurations and utilize

knowledge from other fields (i.e., networks [WaSt99]) to gain insight into the behaviour of

the swarm.

3.2.4.1 Global Topology (gBest)

A gBest topology is often represented as a fully connected graph as shown in Fig. 3.5.

At each iteration of the algorithm, Sg in Line 6 of Algorithm 3.2 is calculated and used

to calculate the new position of the particles in the set using Eq. 3.2. In this case, Sg

contains the best position in the entire set, thus accelerating convergence as all particles

agree on where the current best solution is found. However, in doing so, the swarm risks

premature convergence because the particles do not get to explore as much of the parameter

space.

Dario Schor
dario schor@umanitoba.ca

- 63 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

Fig. 3.5: Graphical representation of gBest topology in PSO.

3.2.4.2 Local Topologies (`Best)

In contrast, `Best topologies can be represented in many different ways that are either

static for the duration of the algorithm, or that change over time based on the positions of

the particles in the set [KeEb01]. For example, a dynamic `Best configuration can defined

a neighbourhood of particles that are located within a certain distance from each other as

defined by Eq. 3.11. In this case, the second norm measurement indicates the distance or the

relative potential energy of the particles on each other. Although this topology appears to

follow natural biologically-inspired behaviours, it is rarely implemented in practice because

it requires that the distance from each particle to all other particles in the set be calculated

[KeEb01]. To simplify the problem, `Best topologies are often fixed for particular algorithms

with the most common configurations being ring, stars, torus, and hierarchical-clusters

[Kenn99a] [KeMe02] [ScKi10].

distance < || Sx,k(n) || (3.11)

In the ring arrangement, the SK particles are arranged in a ring-like formation with

each particle, Sk, communicating with the adjacent bSn−1
2 c neighbours on either side as

Dario Schor
dario schor@umanitoba.ca

- 64 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

(a) Ring `Best topology. (b) Star `Best topology.

(c) Torus `Best topology. (d) Hierarchical-cluster `Best topol-
ogy.

Fig. 3.6: Graphical representation of ring, star, torus, and hierarchical `Best topologies in
PSO. (a) Ring representation where each particle is connected to the adjacent neighbours.
(b) Star where a root particle connects to all others, while individual particles only connect
to the root. (c) Torus representation shown as a grid with wrap-around connections. (d)
Hierarchical-cluster representation showing clusters connected to a root node.

shown in Fig. 3.6(a). For example, if SK = 30 and Sn = 5, the neighbours of particle

Sk = 29 are particles S′k = {27, 28, 30, 1}. The advantage of this system is that each

set of neighbours explores the parameter space based on different neighbourhood criteria.

But, as a consequence, the convergence is much slower because information about good

solutions can take many iterations to propagate through the network [KeEb01]. The star

configuration selects one particle as the root that contains global knowledge and uses that

Dario Schor
dario schor@umanitoba.ca

- 65 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

particle’s information to update the rest of the set as depicted by Fig. 3.6(b) [KeEb01]. The

“root” can act as a filter of information for the remaining particles and is often selected

at random at the beginning of each run to avoid biasing results [Kenn99a]. Finally, the

torus appears like a grid configuration with edges wrapped around to form a doughnut-

like mesh as displayed in Fig. 3.6(c). This structure allows for local knowledge to be

shared, while the overall global information can be propagated to the entire system within

only a few iterations [KeMe02]. The hierarchical-clusters topology is a modified tree that

creates a combination of small clusters that can explore the parameter space and then share

information globally through the connected network as shown in Fig. 3.6(d) [ScKi10]. At the

extremes, the root node only communicates with its children and any leaf only talks to its

siblings. This topology draws on the benefits of the star topology where all the information

is filtered through a root node, but at the same time benefits from small clusters that share

information. Thus, the number of iterations until a good solution is propagated through

the entire tree can be approximated to d2 logSn
(SK)−1e (obtained from traversing the tree

from a leaf node to the root and back to another leaf node) [ScKi10]. Note that in star and

hierarchical configurations, Sn is different for the root and children nodes.

In addition to the many variations of fixed `Best topologies, there are also various stud-

ies in which random topologies are used. The random topologies use a substrate connected

graph (like a ring) and then add or switch a small random set of edges [Kenn99a], [KeMe02].

These types of graphs follow the small-world (SW) graphs that can delay information about

good solutions for a few iterations in order to allow for exploration of the parameter space

by other particles, while also providing multiple paths through the clusters for information

flow [WaSt99]. This structure also creates small clusters that share a great deal of informa-

tion. The one restriction that is key in generating these graphs is that they must remain

connected; otherwise not all the particles can converge to the same point [Kenn99a].

Dario Schor
dario schor@umanitoba.ca

- 66 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

3.2.4.3 Understanding the Impact of Topologies

The merits of each topology can be evaluated in terms of (i) the computational needs,

(ii) the behaviour of the swarm, and (iii) the impact on the optimization algorithm. As

with most such problems, there are tradeoffs between these alternatives that are worth

considering to determine what topology to implement.

The computational complexity of gBest is described in Sec. 3.1.3 with some proposed

improvements that exploit the topology and precompute both Sg and the fitness of each

particle. When it comes to local topologies, the problem increases in that every particle has

a unique Sg based on the particular neighbourhood. Therefore, the number of neighbours,

Sn, affects the calculations that are approximated as O(NmaxSKSnD
2), where Sn < SK .

It is possible to design a dynamic programming solution for each local topology, but the

amount of memory required to cache all the parameters increases significantly.

The behaviour of the swarm was studied by Kennedy based on the work of Watts

and Strogatz to determine the interactions between agents in a network-like environment

[WaSt99] [Kenn99a]. That study finds that the length and clustering coefficient are two

measures of a network configuration that give some insight into the flow of information

for a given topology [WaSt99]. The length measures the minimum number of edges that

connect any two particles to each other, while the clustering coefficient is an indicator of

the degree of cliquishness and is defined as the ratio of the number of edges connected to a

given particle over the total number of links, assuming a gBest topology.

To test the flow of information based on the length indicator, Mendes and Kennedy

[MeKN04] generated random graphs with different lengths and also compared many of the

`Best topologies described in Sec. 3.2.4.2. They found that the flow of information in the

torus works best as the information takes a few iterations to spread throughout the network

while also providing a high degree of connections and links with multiple paths that enable

Dario Schor
dario schor@umanitoba.ca

- 67 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.2 Variations and Comparisons

particles to escape local solutions. This was verified and compared to the hierarchical-

clusters topology to demonstrate the trajectories of particles as they explore more of the

parameter space while good solutions get propagated through the network [ScKi10].

Finally, in terms of the optimization, Kennedy and Eberhart [KeEb01] propose the

general rule that local knowledge leads to greater exploration of the parameter space with

slower convergence due to particles being influenced by different neighbourhoods. Global

knowledge, on the other hand, can lead to local optimum because all the particles follow

the best solution at each time step.

3.2.5 Stopping Criterion

In all unconstrained non-linear problems, it is hard to determine when the algorithm

should stop, and be either satisfied with the solution found or give up. The most popular

techniques found in literature regarding PSO set an upper limit for the number of iterations

and compare the results to a known optimal solution. The first technique mentioned is very

useful in real-time applications where it is generally desired to find a solution within a

particular amount of time [ZiPL05]. The notion of comparing the results against a known

solution is adequate for benchmarking implementations of an algorithm, but this technique

is not applicable to real problems where a solution is not known [ZiPL05].

If the optimum is not known, one way to determine when to stop is to study the changes

in the evaluated fitness function over time. If the result do not change by more than a

given convergence error, ε, over a pre-defined number of iterations, then the algorithm has

converged to a value [ZiPL05]. Other alternatives include measuring the distribution of the

particles in the parameter space or terminating when the step size for all particles is smaller

than a predetermined value [ZiPL05].

Dario Schor
dario schor@umanitoba.ca

- 68 of 157 - v042/03-background-on-swarm.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 3.3 Summary

3.2.6 Other Variations

In addition to the aforementioned variations presented in this section, there are many

other variations that aim to improve PSO for specific applications. Some of these include

using chaos in the parameter exploration to prevent repeating the path taken by particles

similar to the improvements to SA [ShKi96] [LiuW05]. In an effort to prevent prema-

ture convergence, the Attractive Repulsive PSO alternates between attractive and repulsive

phases of different durations by subtracting terms in Eq. 3.2, thus being able to escape

some local solutions [RiVe02]. The Binary PSO provides a discrete alternative to the con-

tinuous optimization method [KeEb97]. More options are described in the survey paper by

Sedighizadeh and Masehian [SeMa09].

3.3 Summary

This section provided a thorough review of the existing PSO algorithm, its variations,

and behaviour. In Ch. 4, the understanding of the behaviour of PSO is further refined

through a novel trajectory analysis that allows us to compare the effect of different param-

eters, implementations, and variations beyond simply using the number of iterations until

the algorithm converges. Furthermore, these concepts are used to select parameters for a

real-time scheduling algorithm based on PSO.

Dario Schor
dario schor@umanitoba.ca

- 69 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4. Scheduler System Design

Chapter 4

Scheduler System Design

The design of a symmetric multiprocessing (SMP) real-time scheduler based on evolu-

tionary algorithms (EA) is divided into two main parts: (i) the EA and (ii) the scheduler.

In the context of the optimization algorithm, one must first define some general constraints

that help select an algorithm as well as the specific parameters to be used. Then, the al-

gorithm is selected, implemented, and verified using various parameters to suit the needs

of the problem, as described in Sec. 4.1. Finally, to incorporate this into a scheduler, one

needs to define a means of encoding the scheduling problem into the context of the algo-

rithm and devise a cost function to guide the search for an optimal solution, as discussed

in Sec. 4.2.

4.1 Optimization Algorithm

4.1.1 Requirements for Optimization Algorithms in Real-Time Systems

There are many trade-offs involved in the design of an algorithm that relate to speed,

memory, and other parameters. Identifying some of the high level desirable features for

Dario Schor
dario schor@umanitoba.ca

- 70 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

an optimization algorithm used for scheduling tasks in real-time systems is of paramount

importance to help select the algorithm, adjust parameters to desired behaviours, and

ultimately obtain results that satisfy the real-time constraints of the problem. One can

identify five major areas to study: (i) convergence rate, Qα, (ii) degree of exploration,

Qβ, (iii) storage and system size, Qγ , (iv) adaptability, Qδ, and (v) multi-scale features,

Qε [Kins04] [Kins05b]. Note that the goal is to identify the requirements for real-time

scheduling in space systems. The following sections describe some elements of each of these

five key areas of interest.

4.1.1.1 Convergence Rate

A fast convergence rate, Qα, is the most common requirement and means of comparing

optimization algorithms. It is expressed as the number of iterations until a termination

criterion is reached [ShKi96] [KeEb01] [Boyd04] [FlMa08]. This measure implicitly requires

that all iterations last approximately the same amount of time such that the number of

iterations can be compared using a linear scale. The convergence rate is negligible in static

schedules that can be computed a priori, while any system that must adjust the schedule

at run-time must do so quickly to avoid missing deadlines.

Many authors use Qα as the primary metric for comparing different evolutionary op-

timization algorithms [KeEb01] [FlMa08]. Unfortunately, this does not provide enough

information to judge an algorithm effectively over a large set of problems because EAs de-

pend on interactions, feedback, and stochastic processes that vary drastically for different

approaches [ScKi11a]. Furthermore, the algorithm convergence might not yield an accept-

able solution, and, therefore convergence rate along should not be used for comparison

purposes. Instead, one must use a variety of metrics (including those described in this

thesis) to get a more complete picture. The Qα is sufficient when testing small variations

Dario Schor
dario schor@umanitoba.ca

- 71 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

to a subset of parameters in the algorithm that do not change the overall nature of the

algorithm [ScKi11a]. For example, testing the same GAs with different mutation rates can

be efficiently compared as the effect does not vary the overall performance of the algorithm.

Furthermore, even when comparing single parameter changes one must consider trade-offs

that affect other elements of the implementation. An example of that is the increased

memory required when using more particles in PSO to speed up convergence.

4.1.1.2 Degree of Exploration

The degree of exploration, Qβ, gauges how much of the parameter space is explored by

an optimization algorithm in the search for a solution. The degree of exploration is useful for

comparing algorithms that take approximately the same number of iterations to converge

[ScKi11a]. An argument could be made that if two algorithms have the same Qα, then

they both explore the same number of solutions, and thus, the Qβ of the parameter space

is the same. The problem with this argument is that it assumes that the parameter space

is uniformly distributed such that the optimal solution is equally likely to be found at any

point. However, from looking at sample parameter spaces like those described in Sec. 4.1.3,

it is possible to have valleys of local solutions where the algorithms can be trapped (i.e.,

see Fig. 3.4).

The population-based EAs are inherently more likely to explore more of the parameter

space if the initial solutions are randomly distributed [Ange98]. For example, as highlighted

in Sec. 3.2.4, local topologies in PSO can lead to higher degrees of exploration because it

takes time for all the neighbourhoods to learn about a good solution found by an individual

particle in the swarm [ScKA10]. In the case of memetic algorithms, the degree of exploration

is very high during the global search portion and then decreases for a local search to refine

the solution [FlMa08]. In contrast, SA explores a single solution at a time; therefore,

Dario Schor
dario schor@umanitoba.ca

- 72 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

issues of repeated paths are of high concern leading to significant improvements like chaotic

trajectories [ShKi96].

In real-time systems, EAs are often implemented with a maximum number of itera-

tions, Nmax, to ensure that the worst-case execution time is well defined for the purpose

of scheduling tasks. Therefore, it is better to implement algorithms that explore more of

the parameter space in the same amount of time in order to improve the capabilities of the

search within the same number of iterations.

Despite its importance, the literature review did not identify metrics capable of quanti-

fying the degree of exploration achieved by an EA because every function optimized would

pose different constraints on the problem [WoMa97]. Therefore, new techniques are required

to move towards better representations of the behaviour of EAs that would lead towards

appropriate choices for algorithms and their respective parameters that would meet the

exploration requirements of the problem at hand [ScKi11a].

4.1.1.3 Storage and System Size

The amount of resources used refers to the storage and system size, Qγ , used by an

optimization algorithm during the search process [ScKi11a]. The resources consist of a

combination of both memory used to store the state of the algorithm at each iteration and

the computational complexity of the algorithm. These two ideas are inherently linked such

that one is often making trade offs between improving the performance by caching more

information through dynamic programming techniques or recomputing many values to save

space. Either way, it is a critical area that must be assessed for a particular application

based on the parameters of the problem at hand.

In the case of memory storage, the main concerns lies in the realm of population-based

EAs, where many solutions are stored with their associated parameters. For example,

Dario Schor
dario schor@umanitoba.ca

- 73 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

solving a 2-dimensional problem in PSO with SK = 20 using floating point arithmetic

requires approximately 480 bytes just to store the particles (estimated as 20 particles ×

2 dimensions× [1 position+1 velocity+1 memory]×4 bytes). This grows to 720 bytes for

SK = 30 highlighting the trade off between memory and exploring more of the parameter

space. This difference is more pronounced for high-dimensional problems. In real-time

systems, this amount of random access memory (RAM) for a problem is very significant

and can take away resources from other tasks on the system. This is worse if one tries to

optimize the computational performance of the algorithm by storing more information as

described in Sec. 3.1.3.

Each application dictates how the trade off should be performed and which of the two

components should be given a higher priority. For real-time systems, one wants to minimize

both parameters and thus must examine the specifics of the algorithm to select the best

option for the particular application.

4.1.1.4 Adaptability

The adaptability, Qδ, of an optimization algorithm refers to the ability to adapt to the

variations in the parameter space to ensure good solutions are found for most scenarios

[ScKi11a]. This problem is further described in terms of: (i) the large problem spaces with

many candidate solutions to evaluate, (ii) asymmetrical high-dimensional problems where

it is difficult to determine which variables, and which combinations of variables, to modify,

(iii) complex nonlinear fitness functions with many local optima and/or discontinuities, and

(iv) the changes experienced by the parameter space over time (even when assuming the

changes do not affect a single optimization run) [EbSh07]. Consequently, one must find

a tangible way to optimize functions in real-time systems when not all the information is

available in advance and there are unknowns about the details of the parameter space.

Dario Schor
dario schor@umanitoba.ca

- 74 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

Intuitively, one can use a large number of test functions, like those selected in Sec. 4.1.3,

to ensure the algorithm can perform under different scenarios. But, doing so leads to

another problem described by Wolpert and Macready as the no-free-lunch (NFL) theorem

[WoMa97]. The NFL theorem states that even if one shows than an algorithm works

well on one class of problems, another class of problems that was not fully considered

offsets its performance for the algorithm in question. This means that one cannot define

an overall general optimizer that works on any application. Therefore, rather than solving

general cases, it is important to incorporate problem-specific (parameter space) knowledge

into the behaviour of the algorithm to improve its performance (convergence and speed)

[WoMa97].

This thesis utilizes a dual approach that first tests the implementation of the algorithm

on four well-known functions to verify and validate the implementation as described in

Sec. 4.1.3 – 4.1.4. Then, specific parameters are selected for the scheduling problem being

solved as described in Sec. 4.2. However, this is limited to test cases for the tasks being

scheduled, and thus sets with different characteristics (i.e., different number of tasks or dis-

tribution of tasks) may require additional off-line testing to adjust parameters, like SV max,

so that the particles can escape local solutions for the given parameter space.

4.1.1.5 Multi-scale Capabilities

One desirable characteristic for all EAs is to show that the solutions being generated

are actually evolving and improving over time. Although it appears obvious, this implies

that one needs smart perturbations for candidate solutions to generate solutions that might

improve the current best solution found. This type of behaviour is apparent through multi-

scale analysis, Qε, that extracts long-term correlations in the trajectories of candidate solu-

tions [ScKi11a]. In-depth reviews of multi-scale metrics are provided in [Kins04] [Kins05].

Dario Schor
dario schor@umanitoba.ca

- 75 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

Algorithms displaying these characteristics can be exploited to improve the performance of

the algorithm by means of predicting future better states and fast-tracking the algorithm

as was done in cellular automata populations in [GrKi98].

In the context of real-time scheduling presented in this thesis, long-term correlations

in the trajectories are clear indicators that the candidate solutions are not random but are

rather approaching a valid schedule that meets all the real-time requirements of the system.

This is specially important in SMP scheduling as the number of possible schedules makes

the problem intractable.

4.1.2 Selection of Evolutionary Algorithm

There are many algorithms that meet some of the constraints outlined in Sec. 4.1.1. The

reason for selecting PSO is that the perturbations are generated primarily from information

collected by the swarm in previous iterations multiplied by small stochastic weights to

provide some randomness to explore the parameter space. Such behaviours are not available

in other EAs considered. For example, the SA perturbations are accepted based on the

Boltzman criterion, while the GAs use crossovers and a selection process to accept candidate

solutions. The reason for selecting an algorithm that guides the perturbations is because

this can lead to further improving the convergence rate by identifying long-term correlations

to skip through many iterations.

The analysis presented in Sec. 4.1.4 shows that the perturbations that generate the

step size exhibit directed movements towards a solution. Rudimentary experiments of that

nature for SA and GAs do not exhibit the same properties and, instead, show small or

no correlation between solutions. This empirical study indicates that there may be some

advantages in terms of the adaptability and multi-scale capabilities for PSO that make it

suitable for real-time systems.

Dario Schor
dario schor@umanitoba.ca

- 76 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

Other criteria are not addressed in this thesis explicitly (e.g., convergence rate and

system size), as those constraints are addressed by other authors [KeEb01] [BrKe07]. These

constraints are very much coupled to the parameter space being optimized, and therefore

more complex environments may require more resources to find optimal solutions [ScKi11a].

The degree of exploration is shown in the time series analysis in Fig. 4.10, and is described

in more detail in [ScKA10]. This study compared different parameters for the algorithm

and demonstrated how some conditions can take the same number of iterations to converge

while exploring more of the parameter space through the use of local topologies with small

clusters of particles (i.e., hierarchical-clusters topology).

4.1.3 Selection of Test Functions

The PSO algorithm is verified by comparing the results to those available in the lit-

erature for well known problems in non-linear, unconstrained optimization problems. The

functions selected are the Sphere (G1(x)), Rosenbrock (G2(x)), Rastrigin (G3(x)), and

Griewank (G4(x)) as shown in Fig. 4.1 and used in [Jong75] [ShEb99] [KeEb01] [Trel03]

[BeEn06]. These functions have special properties as described below that make them

suitable for validating and experimenting with the PSO algorithm.

The Sphere function is given by Eq. 4.1. It is a perfect convex function where all

points are monotonically decreasing towards the optimum value as shown in Fig. 4.1(a)

for D = 2. The results from optimizing this function serve as a benchmark for more

complicated examples. The global minimum is G1(x) = 0 and is located at x = {0, 0, . . . , 0}.

The initial domain for the function is commonly set to [−100, 100]D along every axis (i.e.,

SXmax = 100).

G1(x) =

D∑
d=1

x2
d (4.1)

Dario Schor
dario schor@umanitoba.ca

- 77 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

(a) Sphere function, G1(x). (b) Rosenbrock function, G2(x).

(c) Rastrigin function, G3(x). (d) Griewank function, G3(x).

Fig. 4.1: Test functions selected to verify the implementation of PSO. (a) Sphere function
defined by Eq. 4.1. (b) Rosenbrock function defined by Eq. 4.2. (c) Rastrigin function
defined by Eq. 4.3. (d) Griewank function defined by Eq. 4.4. Note the Griewank function
is only plotted for a fraction of the defined domain in order to visualize the local peaks.
The overall envelope for the function continues in the same convex manner.

Dario Schor
dario schor@umanitoba.ca

- 78 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

The Rosenbrock function is given by Eq. 4.2. It is also a unimodal function that features

steep edges along one dimension and very gentle slopes along the other dimension as shown

in Fig. 4.1(b). This leads to one dimension being optimized very quickly, while the other can

take time and sometimes trap EA implementations that use improvements in fitness as a

terminating condition. The global minimum is G2(x) = 0 and is located at x = {1, 1, . . . , 1}.

The initial domain for the function is commonly set to [−30, 30]D along every axis.

G2(x) =
D∑
d=1

(
100

(
xd+1 − x2

d

)2
+ (xd − 1)2

)
(4.2)

The Rastrigin function is given by Eq. 4.3. Figure 4.1(c) shows an envelop function that

resembles a gentle convex function that guides the global search through the very rough

local searches. This function has many local solutions that can trap an algorithm. The

optimum value is G3(x) = −180 and is located at the origin. The initial domain for the

function is commonly set to [−5.12, 5.12]D along every axis. The smaller domain implies

that small step sizes are required to get out of the local solutions.

G3(x) =
D∑
d=1

(
x2
d − 10 cos (2πxd) + 10

)
(4.3)

Equation 4.4 for the Griewank function is the most complicated function in the set. It

has similar features to the Rastrigin function in a general convex shape with many local

peaks with relatively smaller variations in the cost compared to the Rastrigin function make

it harder for algorithms to detect changes as they converge on a solution. The optimum

value is G4(x) = 0 and is located at the origin. The initial domain for the function is

commonly set to [−600, 600]D along every axis.

G4(x) =
1

4000

D∑
d=1

(
x2
d

)
−

D∏
d=1

(
cos

(
xd√
d

))
+ 1 (4.4)

Dario Schor
dario schor@umanitoba.ca

- 79 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

Symmetric domains were selected for all functions in order to compare the results to

those from the literature for similar implementations. However, as noted in [FoBe95], this

can bias the results towards faster convergence rates than asymmetric domains.

There are many other functions that could have been considered including Ackey, Schaf-

fer’s f6, and others that feature very flat surfaces except around the solution and, therefore,

could also prove valuable. Although adding more functions would show the resilience of the

algorithm to certain types of features, it would not guarantee a general purpose optimiza-

tion algorithm as per the NFL theorem. For the purpose of validating the implementation,

the set of test functions provided confirmation through many publications and included

many features that would be applicable in testing a cost function for a real-time scheduler

as described in Sec. 4.2.3.

4.1.4 Analysis of Particle Trajectories

As mentioned in Sec. 4.1.1.1, evaluating EAs through the convergence rate alone is

insufficient as there are many other desirable features that can give insight into the perfor-

mance of the algorithm when exposed to other more complicated cost functions. Therefore,

one needs to study the behaviour of the algorithm through the trajectory of the candidate

solutions evaluated to observe the patterns that emerge in the search for a global optimum.

In population-based EAs like PSO, there are many candidate solutions at each iteration

that are coupled together through the update equations. Therefore, as a tangible first step,

one can study the trajectory of a single particle to learn about its characteristics as they

relate to the behaviour of the entire swarm.

Dario Schor
dario schor@umanitoba.ca

- 80 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

4.1.4.1 Selecting a Representative Particle to Study

For a trajectory analysis to be meaningful, the particle’s behaviour must be representa-

tive of the set. Figures 3.3 and 3.4 show the trajectory of a particle through the parameter

space in the Sphere and Rastrigin functions respectively. The obvious question is then,

are these behaviours typical for the particles? This is a rather difficult question to answer

because of the stochastic nature of the algorithm embedded through the random initializa-

tion, varying weights (Sϕ1 and Sϕ2) multiplied by random numbers, and the effect of social

interactions.

In [KeEb01], [Berg01] and [Trel03], the trajectories of particles were selected to show

convergent and divergent behaviours under different parameters. To show this, each dimen-

sion can be plotted independently as the update equations only couple dimensions through

the cost function [Trel03]. This is further exploited for symmetric (i.e., Sphere and Rast-

rigin) functions where a single dimension may provide insight into the problem. However,

when working with asymmetrical problems like the Rosenbrock function, the trajectories

along each dimension must be analyzed separately to obtain the full behaviour.

In terms of reducing the number of unknowns to establish typical trajectories, one can

remove the stochastic parameters for Sϕ1 and Sϕ2. The simplest case consists of setting

both the random number generators to the mean expected value of 0.5 so that there would

be an even distribution of personal and social influences [Trel03]. This reduces Eq. 3.2 to

a deterministic system, and although easy to process, it removes much of the exploration

performed of individual particles. Learning about the deterministic behaviours, one can then

re-introduce the random number generator to evaluate over different particles as shown in

[Berg01]. This approach suggested in the literature does not address the question of whether

the particle studied is representative of the swarm.

Dario Schor
dario schor@umanitoba.ca

- 81 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

4.1.4.2 Extended Time Series Analysis

This thesis proposes a novel method to select candidate trajectories to study consisting

of fixing the initial conditions for PSO (i.e., the position and velocity) and running the al-

gorithm Nruns times to produce an ensemble. This is accomplished by seeding the random

number generator, initializing the particles and storing the results. Then, re-seeding the

random number generator and running the algorithm with stochastic weights. The objec-

tive is that although the amount of exploration by individual particles might vary in each

iteration, the emergent behaviour of the swarm should persist through the different runs

[Forr91].

Before extracting individual trajectories, it is important to understand how the same

initialization performs for different runs of the algorithm. Figures 4.2-4.5 show histograms

over time for the set of test functions along each dimension. These images are generated

by performing Nruns = 200 runs where the particles are initiated to the same position and

velocity vectors before changing the seed for the random number generator that drives the

social and personal weights. For these runs, the algorithm was purposely slowed down using

SV max = 0.2 as proposed by [KeEb01] as a means of prolonging the trajectories available to

study. Note that all the runs on all four functions returned the global optimal solution with

varying decimals of precision that matched the expected values from [KeEb01], [ShEb99],

[Ange98]. The figures confirm that fixing the initial conditions, the random weights can

allow for some individual behaviours, but the overall behaviour of the particle is primarily

dictated by the interactions with the neighbours. Note that for these diagrams, Sx,7 was

used as all particles in the set showed similar behaviours when taking into account the

different conditions after initialization.

More specifically, the histograms confirm the expected behaviours described in Sec. 4.1.3

for particles travelling along each function. The behaviour in the Sphere function shows

Dario Schor
dario schor@umanitoba.ca

- 82 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

(a) Position Sx,7,1 evaluated for G1(x). (b) Position Sx,7,2 evaluated for G1(x).

Fig. 4.2: Histogram showing the trajectory of an ensemble of Nruns = 200 particles ini-
tialized to the same conditions in the Sphere function. (a) Position along d = 1 dimension,
Sx,7,1. (b) Position along d = 2 dimension, Sx,7,2.

(a) Position Sx,7,1 evaluated for G2(x). (b) Position Sx,7,2 evaluated for G2(x).

Fig. 4.3: Histogram showing the trajectory of an ensemble of Nruns = 200 particles
initialized to the same conditions in the Rosenbrock function. (a) Position along d = 1
dimension, Sx,7,1. (b) Position along d = 2 dimension, Sx,7,2.

the d = 2 axis being optimized without many oscillations in Fig. 4.2(b), while the d = 1

oscillates towards the solution as shown in Fig. 4.2(a). Figure 4.3 supports the notion

that the asymmetric Rosenbrock function experiences very rapid convergence with small

Dario Schor
dario schor@umanitoba.ca

- 83 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

(a) Position Sx,7,1 evaluated for G3(x). (b) Position Sx,7,2 evaluated for G3(x).

Fig. 4.4: Histogram showing the trajectory of an ensemble of Nruns = 200 particles
initialized to the same conditions in the Rastrigin function. (a) Position along d = 1
dimension, Sx,7,1. (b) Position along d = 2 dimension, Sx,7,2.

(a) Position Sx,7,1 evaluated for G4(x). (b) Position Sx,7,2 evaluated for G4(x).

Fig. 4.5: Histogram showing the trajectory of an ensemble of Nruns = 200 particles
initialized to the same conditions in the Griewank function. (a) Position along d = 1
dimension, Sx,7,1. (b) Position along d = 2 dimension, Sx,7,2.

variance along d = 1 compared to d = 2 where changes are less noticeable because of the

gentle slope in the parameter space. The multimodal functions show a lot more variations

in the histogram of the Rastrigin function, Fig. 4.4, compared to the Griewank function,

Dario Schor
dario schor@umanitoba.ca

- 84 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

Fig. 4.5 because the local solutions have a greater area for the particle to get stuck in.

The global patterns that emerge in each histogram confirm that fixing the initial con-

ditions can help select candidate particles to perform a data-driven trajectory study to

understand the behaviour of PSO. Given the histogram, a particle is selected from the set of

Nruns = 200 runs to use in the trajectory analysis. As evident from the histograms, there is

still some variation in the trajectories, so it is important to select a particle within the set

of runs that exhibits the typical behaviour representative of the set. To do this, the trajec-

tories along each dimension are plotted on a graph along with the mean, µx,k,d(n) with its

95% confidence interval for each iteration. The results are shown in Figures 4.6-4.9 with ad-

ditional images for other functions and zoomed in versions presented in Appendix A.

The trajectory in Fig. 4.6(a) shows a transient phase that has direct movement to-

wards the solution, followed by a steady-state phase that attempts to perform a local search

[ScKi11a]. Similar behaviours are shown for the Rastrigin function in Fig. 4.7(a). The mean

and confidence intervals are calculated on the position along one dimension in Nruns = 200

runs of the algorithm for each iteration. Note that direct regression methods for the trajec-

tories cannot be implemented because of the heteroskedastic properties of the trajectories

that show an increased variance as the iteration increases [Gree11]. Therefore, the confi-

dence interval is only used as a general guideline and is computed under the assumption

that the trajectories are normally distributed.

The typical particles selected from the 200 runs of the algorithm are those that have the

smallest mean square error (MSE) using µx,k,d(n) as the prediction of a nominal trajectory.

That is, the typical particle performs very close to the average trajectory and, therefore is

representative of the full set. For comparison, those with the worst MSE are also extracted

as an atypical trajectory for a misbehaving particle. Figure 4.8 show the typical and worst

behaving particle for the Sphere function. In this case, run 91 produced the closest looking

Dario Schor
dario schor@umanitoba.ca

- 85 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,1 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. 4.6(a)

Fig. 4.6: Identifying typical particle behaviours on Sphere function. (a) Position, Sx,7,1

plotted against fitness for 200 runs. The mean and 95% confidence interval are shown. (b)
Zoomed in representation of Fig. 4.6(a).

trajectory to that of µx,k,d(n) so it is selected for study. As a general comparison, the worst

behaving particle oscillated with a greater amplitude and appeared not to be synchronized

with the other Nruns runs of the algorithm. This can be due to some early exploration

as a result of transitioning to the steady state portion of the trajectory either faster or

slower than the average particle. In contrast, the Rastrigin function shows 4 as the run that

most resembled the average trajectory. It too remain very close to the average trajectory,

however the worst run had a much greater variation. In this case, the variation of around

1 unit along d = 2 reveals that the particle is trapped in a local solution very close to the

global optimum. Note that although this particle is stuck at a local solution, the algorithm

Dario Schor
dario schor@umanitoba.ca

- 86 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 100 200 300 400 500
−1

−0.5
0

0.5
1

1.5
2

2.5
3

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,2 for G3(x).

200 210 220 230 240 250
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. 4.7(a)

Fig. 4.7: Identifying typical particle behaviours on Rastrigin function. (a) Position, Sx,7,2

plotted against fitness for 200 runs. The mean and 95% confidence interval are shown. (b)
Zoomed in representation of Fig. 4.7(a).

returned the global optimum because the majority of the particles had reach that point

successfully. Similar results were obtained for the Rosenbrock and Griewank functions with

the graphs shown in Appendix A. The only outstanding results obtained in the Rosenstock

function were that the average particle was slowly approaching the global optimum along

the gentle slope of d = 2, while the particle identified as the worst behaving particle reached

the area surrounding the solution much faster for some of the particles studied. This was

not consistent for all particles as it depended on their initial position on the parameter

space.

Dario Schor
dario schor@umanitoba.ca

- 87 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 91)

Worst (run 6)

(a) Typical and worst particles Sx,7,1 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on typical and worst behaviour

Iteration

P
o

s
it
io

n

95% CI

Typical (run 91)

Worst (run 6)

(b) Zoomed representation of Fig. 4.8(a)

Fig. 4.8: Identifying typical particle behaviours on Sphere function based on minimum
MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. 4.8(a).

0 100 200 300 400 500
−0.5

0
0.5

1
1.5

2
2.5

3

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o

s
it
io

n

95% CI

Typical (run 4)

Worst (run 67)

(a) Typical and worst particles Sx,7,2 for G3(x).

200 210 220 230 240 250
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on typical and worst behaviour

Iteration

P
o

s
it
io

n

95% CI

Typical (run 4)

Worst (run 67)

(b) Zoomed representation of Fig. A.17(c)

Fig. 4.9: Identifying typical particle behaviours on Rastrigin function based on minimum
MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. 4.9(a).

4.1.4.3 Extracting Particle Behaviours from Trajectories

Having selected a particle to study, the behaviour analysis consists of extracting the time

series showing the position, Sx, velocity (relative change in position), Sv, and fitness over

time. Figures 4.10 and 4.11 show the time series of interest for the particles traveling through

the Sphere and Rastrigin function along the d = 1 and d = 2. In these figures, the top

plot shows the particle position over time. The best positions found by the particles along

each dimension are not shown but can be described as smooth curves that monotonically

decrease towards the optimum point, while the position plots show the exploration of the

particle over time. The middle plot shows the velocity of the particle over time. This plot

highlights the bounds of the trajectory set to SV max = 0.2 as a means of controlling the

Dario Schor
dario schor@umanitoba.ca

- 88 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

convergence rate for the algorithm analysis. The last plot shows the fitness of the particle

and the best position found by the particle over time. In the case of the Sphere function

(shown in Fig. 4.10, the fitness shows little variation because of the simplicity of the G1(x)

function being optimized. In contrast, more complex functions show how the fitness of the

current position varies drastically as particles explore the parameter space.

The trajectories shown in Fig. 4.10 and 4.11 confirm the breakdown between the tran-

sient and steady state portion of the trajectories. The separation is important because the

properties during the transient are completely different from those of the remaining of the

time series [KaSc04]. The transient is defined as the time from the initial state until the

time when the position of all the particles along all the dimensions reaches a threshold.

In this case, the threshold is set to 300 iterations to match the point where the particle

switches from a global to a local search. Note that the velocity slows down during certain

portions of the trajectory (i.e., iterations 400-600 in Fig. 4.10) depending on the position

of the global best. If the global best is very close, then the social influences are very small

causing the velocity to decrease.

4.1.5 Single Particle Analysis

4.1.5.1 Time Domain Analysis

The first analysis performed on the time domain is to determine whether the time

series extracted is stationary. If a stochastic process has constant first moment (mean) and

second moment (variance or covariance, if necessary), then the process is called wide-sense

stationary (WSS) or weakly-stationary. And, if all the moments of a stochastic process are

unchanging, then the process is called strict-sense stationary (SSS) or strongly-stationary

[KaSc04]. In PSO it is hard to determine whether the signal is SSS from a single time series

as that requires an analytical solution. Instead, one can determine whether the signal is

Dario Schor
dario schor@umanitoba.ca

- 89 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

100 200 300 400 500 600 700 800 900 1000

−20

0

20

40

60

Particle Position [S
x,7

(n)]

Iteration

P
o
s
it
io

n

S

x,7,1
(n))

S
x,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,7

(n)]

Iteration

V
e
lo

c
it
y

S

v,7,1
(n))

S
v,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

Particle Fitness [G
1
(S

x,7
(n)]

Iteration

F
it
n
e
s
s

G

1
(S

x,7
(n))

G
1
(S

p,7
(n))

Fig. 4.10: Time series showing the particles position, velocity, and fitness over time in
the Sphere function. (a) The particles position over time along the 2 dimensions being
optimized. (b) The velocity of the particle over time along the 2 dimensions being optimized.
(c) The fitness of the particle as it converges to the global optimum when the fitness equals
zero. This plot highlights the monotonically decreasing fitness of the best position and
contrasts the variation in the current positions fitness as the particle explores many of the
local solution spaces.

Dario Schor
dario schor@umanitoba.ca

- 90 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

100 200 300 400 500 600 700 800 900 1000

−1

0

1

2

3

Particle Position [S
x,7

(n)]

Iteration

P
o
s
it
io

n

S

x,7,1
(n))

S
x,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,7

(n)]

Iteration

V
e
lo

c
it
y

S

v,7,1
(n))

S
v,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

0

10

20

30

Particle Fitness [G
3
(S

x,7
(n)]

Iteration

F
it
n
e
s
s

G

3
(S

x,7
(n))

G
3
(S

p,7
(n))

Fig. 4.11: Time series showing the particles position, velocity, and fitness over time in
the Rastrigin function. (a) The particles position over time along the 2 dimensions being
optimized. (b) The velocity of the particle over time along the 2 dimensions being optimized.
(c) The fitness of the particle as it converges to the global optimum when the fitness equals
zero. This plot highlights the monotonically decreasing fitness of the best position and
contrasts the variation in the current positions fitness as the particle explores many of the
local solution spaces.

Dario Schor
dario schor@umanitoba.ca

- 91 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

WSS by looking at a sliding window of the data to observe whether the mean and variance

are constant over time [Kins09] [ScKi11a].

Figures 4.12-4.13 show the first two moments of the velocity time series extracted in

the previous section for the Sphere and Rastrigin function respectively. These are broken

down into the transient and steady state portions of each of the trajectories studied. The

circles indicate the moment calculated over a window of 32 and 128 elements respectively

and the line is added to help visualize the trends in the moments. The sliding window size

is selected such that it has a minimum of 30 elements needed for statistical significance

and the size of the main features seen in the envelope of the velocity plots. During the

transient, the figures show a WSS signal following an initial increase to maximum speed. In

contrast, the steady state portion of the trajectory shows a constant mean but the variance

expands over time. This confirms the visual inspection findings of Sec. 4.1.4.1 that the

steady state portion is a heteroskedastic signal. Such behaviour can indicate the particles

have converged so there are no social influences and are now exploring the parameter space

based on the stochastic weights.

Also in the time domain, the auto-correlation of a signal is important to evolution-

ary algorithms as it reveals the long-term dependancies that depict the evolving processes

[ScKi11a]. These features verify the search is not random and that the particles are indeed

moving towards an optimum solution.

Figures 4.14(a) and 4.15(a) show the correlation for the particles trajectory along one

dimension for the transient for the Sphere and Rastrigin functions. The remaining plots

are found in Appendix A. The graphs show a strong correlation for the first few iterations

consistent with the portion of the time series that maximizes the velocity as expected from

[KeEb01]. However, the graphs do not show a very noticeable long term correlation. In

the case of the Rastrigin function, the long term correlation is even less noticeable once

Dario Schor
dario schor@umanitoba.ca

- 92 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 50 100 150 200 250

−0.2

0

0.2

Time Series (window=32, range=[2 300])

Sample

V
e

lo
c
it
y

50 100 150 200 250
−0.5

0

0.5
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

50 100 150 200 250
0

0.02

0.04
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(a) Transient first and second moment for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Time Series (window=128, range=[300 4000])

Sample

V
e
lo

c
it
y

500 1000 1500 2000 2500 3000 3500
−0.01

0

0.01
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

500 1000 1500 2000 2500 3000 3500
0

0.02

0.04
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(b) Steady state first and second moment for G1(x).

Fig. 4.12: First and second moment of particle trajectory on the Sphere function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

the particle reaches the vicinity of the solution and is trapped within one of the cones that

make up the parameter space. At this point, the correlation decreases as the particle is

forced to switch directions many times. Figures 4.14(b) and 4.15(b) show the correlation

for the steady state portion of the time series. As evident from observing the envelope for

the velocities shown, there is a correlation that drives the trajectories of the particles is

stronger for short term changes in position, and then weakens for longer term relationships.

Overall, the correlation is lower than that found in the transient because the particle has

converged on a solution and is now exploring the parameter space instead of traveling

towards a destination.

For comparison, fixing the weights Sϕ1 and Sϕ2 as suggested in some tests in [EbSh00]

and [Trel03], the graphs might show a very high autocorrelation. In this case, rather than

exploring the parameter state, the particles can enter a quasi-periodic state that does not

Dario Schor
dario schor@umanitoba.ca

- 93 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 5 10 15 20 25 30 35 40 45

−0.2

0

0.2

Time Series (window=32, range=[2 50])

Sample

V
e

lo
c
it
y

5 10 15 20 25 30
−2

0

2
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

5 10 15 20 25 30
−2

0

2
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(a) Transient first and second moment for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Time Series (window=128, range=[50 4000])

Sample

V
e
lo

c
it
y

500 1000 1500 2000 2500 3000 3500
−0.01

0

0.01
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

500 1000 1500 2000 2500 3000 3500
0

0.01

0.02
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(b) Steady state first and second moment for G3(x).

Fig. 4.13: First and second moment of particle trajectory on the Rastrigin function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

help in finding the solution [ClKe02].

4.1.5.2 Frequency Domain Analysis

The power spectrum of the time series for the transient and steady state portions

are computed to confirm the correlation analysis from the time domain and also gauge

the amount of exploration in the signals of interest. The power spectrum for the tran-

sient and steady states for the same particle used throughout this paper are plotted in

Figs. 4.16 and 4.17 for both the transient and steady state. A sampling or reference fre-

quency of fs = 1000 Hz is used throughout. The spectrums for the steady state show a

peak at 500 Hz that is a side effect of the sampling frequency selected.

Intuitively, the plots agree with the observations from previous sections. During the

Dario Schor
dario schor@umanitoba.ca

- 94 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 50 100 150 200 250

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 300])

Sample

V
e

lo
c
it
y

0 50 100 150 200 250
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(a) Auto-correlation of trajectory for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[300 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1
Auto−Correlation

Sample
M

a
g

n
it
u

d
e

(b) Auto-correlation of trajectory for G1(x).

Fig. 4.14: Auto-correlation of trajectory on the Sphere function. (a) Auto-correlation for
transient portion of the trajectory. (b) Auto-correlation for the steady state portion of the
trajectory.

transient, the overall shape of the spectrum appears to have a negative slope with some vari-

ation around certain frequencies that correspond to the amplitude modulation of the overall

signal. The steepness of the slope is determined with the path taken by the particles. When

a particle is the best in the neighbourhood in the Rastrigin function, the particle begins

exploring the parameter space locally and when some particles are optimizing the Rastrigin

function and get trapped in a local solution during the transient, then the steepness of the

slopes is reduced. In the first case this is because the particle is exploring the parameter

space and without an external force telling it in which general direction to travel. The latter

case exhibits a higher slope because the particle requires more energy to escape these local

solutions. That is, the weights during some iterations may not be sufficient to escape the

local minimum and therefore, small steps are taken to escape that space.

Dario Schor
dario schor@umanitoba.ca

- 95 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 5 10 15 20 25 30 35 40 45
−0.05

0

0.05

0.1

0.15

0.2

Time Series (fs=1000, range=[2 50])

Sample

V
e
lo

c
it
y

0 5 10 15 20 25 30 35 40 45
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a
g
n
it
u
d
e

(a) Auto-correlation of trajectory for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[50 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1
Auto−Correlation

Sample
M

a
g

n
it
u

d
e

(b) Auto-correlation of trajectory for G3(x).

Fig. 4.15: Auto-correlation of trajectory on the Rastrigin function. (a) Auto-correlation
for transient portion of the trajectory. (b) Auto-correlation for the steady state portion of
the trajectory.

The negative slope shown in Figs. 4.16(b) and 4.17(b) are characteristic of self-affinity

and long-term dependences. These show that the personal best solutions stored by each

particle act as a memory for the system that enables particles to constantly move towards

a better solution. For comparison, if the optimization algorithm selected new random

solutions at each iteration with no influence from the past, then the slope would be equal

to zero showing that there is no correlation from one iteration to the next (as seen in white

noise in Fig. A.3(e)). At the other extreme, a very steep slope is indicative of very long-

term correlated trajectories typical of a steepest decent algorithm with added randomness to

explore the path on a way towards a solution (as seen in brown noise like Fig. A.3(f) or more

pronounced in deep black noise). Thus, the balanced mixture of random behaviour with long

memory is the specific behaviour that makes PSO suitable for cognitive machines.

Dario Schor
dario schor@umanitoba.ca

- 96 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.1 Optimization Algorithm

0 50 100 150 200 250

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 300])

Sample

V
e
lo

c
it
y

10
1

10
2

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[300 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G1(x).

Fig. 4.16: Power spectrum of trajectory on the Sphere function. (a) Power spectrum for
transient portion of the trajectory. (b) Power spectrum for the steady state portion of the
trajectory.

0 10 20 30 40

0

0.1

0.2

Time Series (fs=1000, range=[2 50])

Sample

V
e
lo

c
it
y

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[50 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G3(x).

Fig. 4.17: Power spectrum of trajectory on the Rastrigin function. (a) Power spectrum
for transient portion of the trajectory. (b) Power spectrum for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- 97 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

4.2 Design of Scheduling Algorithm

Before designing the scheduler algorithm it is important to define the key constraints

and assumptions used in the study. Then, the PSO-based scheduler can be designed through

an encoding methodology and a cost function that links the tasks definitions to the opti-

mization algorithm.

4.2.1 Assumptions and Constraints for the Scheduler

Given the use of EAs for the scheduler, then a hybrid configuration is selected. This

is the most suitable option for spacecrafts as it minimizes the amount of resources used for

the scheduler and allows the system to only evaluate new schedules if the system changes

state. For example, in the University of Manitoba Space Applications and Technology Society

(UMSATS) TSat nanosatellite, the states for the spacecraft are defined as shown in Fig. 4.18

and described in [KSFC12]. In this project, the spacecraft was designed to be in a mode for

prolonged periods of time and switch upon commands or extreme anomalies. These type of

state changes can be set to trigger a new schedule to be computed.

Furthermore, for a scheduler algorithm to be useful, it must be easily adaptable to

various types of spacecrafts. Therefore, to facilitate this, the cost function is based on

simple principles with cumulative penalties for violating different types of constraints. As

such, the baseline algorithm is defined based on the following assumptions:

1. No processor affinity – This feature can be added in the cost function by incorpo-

rating penalties for violating processor affinity constraints.

2. No preemption – The use of preemption makes for more possibilities in SMP sched-

ulers and thus makes it more difficult for EAs to find a solution. Schedules implementing

preemption often define set rules for selecting tasks like RM. Furthermore, to keep over-

Dario Schor
dario schor@umanitoba.ca

- 98 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

Tardigrade
Phases #1-6

GND cmdMajor
alarm

Power Save
Mode #1

GND
cmd

Separation
Switch

GND
cmd

GND
cmd

Major
alarm

Start of
eclipse

End of
eclipse

GND
cmd

Spectroscopy
(Sun)

Power Save
Mode #2

Holding
Mode

GND
cmd

Major
alarm

Major
alarm

GND
cmd

GND
cmd

µP
reset

* All states *

End-of-Life

Unrecoverable
PWR state

Unanticipated
PWR recovery

Safe Mode

Spectroscopy
(Eclipse)

LEOP

GND
cmd

Fig. 4.18: Modes of operation for TSat nanosatellite. Each state requires a uniquely defined
schedule to operate the various subsystems and tasks running at that time. This requires
adaptive schedules for emergency modes to avoid getting stuck trying to execute non-
operational subsystems. The states highlighted with dotted borders are those corresponding
to payload operations [KSFC12].

head to a minimum, it is better to assign tasks to cores that can execute the task to

completion.

3. No migration – This follows from the previous point that overcomplicates the design

of a scheduler if one adds additional options to migrate tasks to other processors in a

real-time system.

4. No task precedence – Predefined orders for tasks can be incorporated through careful

definition of task properties (i.e., set TS and Td for tasks to enforce certain precedence

requirements using very tight bounds) or by incorporating additional penalties in the

Dario Schor
dario schor@umanitoba.ca

- 99 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

cost function for the scheduler whenever the precedence is not observed.

5. No task priority – Again, this can be incorporated through penalties on the scheduler.

6. Tasks are aperiodic – Tasks are treated as aperiodic during testing. Periodicity can

be simulated through careful definition of tasks (i.e., define multiple instances at the

required intervals).

7. Task computation time – The worst case computation time for all tasks is known a

priori and includes the setup times necessary to activate the task.

4.2.2 Design of Encoding Mechanism

Preserving the evolutionary nature of PSO in the continuous domain requires the prob-

lem to be encoded to match discrete states in scheduling of tasks (order and processor

selection) to the continuous position of tasks. There are many different methodologies for

encoding tasks in EA-based schedulers. For example, [Cook10] randomly selects a task and

moves the tasks in one direction (up, down, left, right) relative to the position of the task

with respect to the task timing diagram. This method creates small perturbations that

allow algorithms to search the local parameter space, however, the random perturbation,

although well suited for SA, removes the emerging nature found in population-based EAs

like PSO.

The encoding methodology selected for this thesis is based on the random-keys (RK)

proposed by James Bean [Bean94] and tested for single machine scheduling problems in

[CaEC07]. This encoding mechanism was originally designed to produce valid solutions

to permutation problems using genetic algorithms without the need for problem specific

representations of solutions to manage the crossover operators [Bean94]. The general idea

of RK is that the EA would search a continuous parameter space that acts as a surrogate

Dario Schor
dario schor@umanitoba.ca

- 100 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

for the problem space (in this case the task allocation space).

In the context of scheduling for uniprocessor systems, the RK encoding maps each

dimension to a task, such that each particle contains a full candidate solution. The map-

ping procedure is based on the dimension for each element in the Sx vector (d = 1 →

T1, d = 2 → T2, . . .). The sequence of tasks for a solution are obtained by sorting the

position vector in ascending order thus giving the new order for the tasks [Bean94]. Since

this relies on very close particle initializations such that they can exchange positions to

produce the permutations, Bean suggests setting SXmin = 0 and SXmax = 1 for sin-

gle processors. For example, given a set of 5 tasks shown in Fig. 4.19(a), a particle Sk

is position at Sx,k(n) = {0.1, 0.5, 0.3, 0.2, 0.4} at time n corresponding to the schedule

shown in Eq. 4.5a and visualized in Fig. 4.19(b). One iteration later, the particle moves

to Sx,k(n + 1) = {0.2, 0.5, 0.1, 0.4, 0.3} and finds an optimal schedule described through

Eq. 4.5b and Fig. 4.19(c).

Sx,k(n) =
{

0.1︸︷︷︸
T1

, 0.5︸︷︷︸
T2

, 0.3︸︷︷︸
T3

0.2︸︷︷︸
T4

0.4︸︷︷︸
T5

}
Produces schedule−−−−−−−−−−−→
See Fig. 4.19(b)

{
T1, T4, T3, T5, T2

}
(4.5a)

Sx,k(n+ 1) =
{

0.2︸︷︷︸
T1

, 0.5︸︷︷︸
T2

, 0.1︸︷︷︸
T3

0.4︸︷︷︸
T4

0.3︸︷︷︸
T5

}
Produces schedule−−−−−−−−−−−→
See Fig. 4.19(c)

{
T3, T1, T5, T4, T2

}
(4.5b)

Extending RK to a CN processors is accomplished by increasing the domain at initial-

ization to SXmin = 0 and SXmax = CN . Then, the mapping process first sorts the tasks and

interprets the integer portion as the processor assignment and with the fractional portion

as the task order [Bean94]. For example, given a set of 5 tasks shown in Fig. 4.20(a). A

particle Sk is position at Sx,k(n) = {0.1, 0.5, 0.3, 0.2, 0.4} at time n corresponding to the

schedule shown in Eq. 4.6a and visualized in Fig. 4.20(b). One iteration later, the parti-

cle moves to Sx,k(n + 1) = {0.2, 0.5, 0.1, 0.4, 0.3} and finds an optimal schedule described

Dario Schor
dario schor@umanitoba.ca

- 101 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

Time [units]

T
a

s
k

Processor Tasks

T
5

T
4

T
3

T
2

T
1

0 2 4 6 8 10 12 14 16 18 20 22

(a) Sample tasks to demonstrate RK encoding used in PSO.

(b) Mapping particle Sx,k(n) = {0.1, 0.5, 0.3, 0.2, 0.4} to a schedule
which shows missed deadlines for 3 tasks (T3, T5, and T2).

(c) Mapping particle Sx,k(n+ 1) = {0.2, 0.5, 0.1, 0.4, 0.3} to a sched-
ule.

Fig. 4.19: RK encoding to map particle positions to a candidate schedule. (a) Shows 5
sample tasks used to demonstrate the encoding. (b) Shows the schedule produced by a
particle at position Sx,k(n) = {0.1, 0.5, 0.3, 0.2, 0.4}. This shows 3 missed deadlines. Note
that for candidate schedules to be valid, they cannot violate the start time of the tasks,
so there are 4 units of idle time between T1 and T4. (c) Schedule produced by a particle
one iteration later when it moves to Sx,k(n + 1) = {0.2, 0.5, 0.1, 0.4, 0.3}. This time, the
schedule produced is valid for the given set of tasks and does not have any missed deadlines.

Dario Schor
dario schor@umanitoba.ca

- 102 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

through Eq. 4.6b and Fig. 4.20(c).

Sx,k(n) =
{

1.1︸︷︷︸
T1

, 1.3︸︷︷︸
T2

, 0.3︸︷︷︸
T3

0.2︸︷︷︸
T4

0.2︸︷︷︸
T5

}
Produces schedule−−−−−−−−−−−→
See Fig. 4.20(b)

{
T1, T2

T4, T5, T3

}
(4.6a)

Sx,k(n+ 1) =
{

1.2︸︷︷︸
T1

, 1.3︸︷︷︸
T2

, 1.1︸︷︷︸
T3

0.1︸︷︷︸
T4

0.2︸︷︷︸
T5

}
Produces schedule−−−−−−−−−−−→
See Fig. 4.20(c)

{
T3, T1, T2

T4, T5

}
(4.6b)

The RK encoding enables the continuous PSO to be use for discrete problems. In doing

so, it suffers from a major problem that many different solutions produce the same encoding

of tasks [CaEC07]. Suggestions on how to overcome this are presented in Sec. 5.3 as they

relate to the specifics of the cost function implemented in this thesis.

4.2.3 Design of Fitness Function

As described in Sec. 4.2.1, the objective is to design a generic cost function for scheduling

where priorities, processor affinities, and other constraints could be incorporated easily. This

provides the most flexibility in the design and use of the algorithm beyond spacecrafts. To

accomplish this, the cost function starts with a modified minimum-total-tardiness (MTT)

baseline and then cumulatively adds penalties for other constraints not met by the candidate

solution.

The MTT measures how late a task completes its execution with respect to its start

time. This measure has been used in non real-time systems where the deadlines are an

objective rather than a constrained. Normally, the tardiness is zero if the task completes

before its deadline [Liu00]. In this thesis, this measure is augmented so that the tardiness is

zero if a task starts executing at t = TS , but it increments linearly for every unit of time that

passes between the start time and the effective start time. In the context of hard real-time

Dario Schor
dario schor@umanitoba.ca

- 103 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

Time [units]

T
a
s
k

Processor Tasks

T
5

T
4

T
3

T
2

T
1

0 1 2 3 4 5 6 7 8 9 10

(a) Sample tasks to demonstrate RK encoding used in PSO.

(b) Mapping particle Sx,k(n) = {1.1, 1.3, 0.3, 0.2, 0.2} to a schedule
which shows missed deadlines for 1 tasks (T3).

(c) Mapping particle Sx,k(n+ 1) = {1.2, 1.3, 1.1, 0.1, 0.2} to a sched-
ule.

Fig. 4.20: RK encoding to map particle positions to a candidate schedule. (a) Shows
5 sample tasks used to demonstrate the encoding. (b) Shows the schedule produced by
a particle at position Sx,k(n) = {1.1, 1.3, 0.3, 0.2, 0.2}. This shows 1 missed deadlines.
(c) Schedule produced by a particle one iteration later when it moves to Sx,k(n + 1) =
{1.2, 1.3, 1.1, 0.1, 0.2}. This time, the schedule produced is valid for the given set of tasks
and does not have any missed deadlines.

Dario Schor
dario schor@umanitoba.ca

- 104 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

evolutionary schedules, MTT is used as a guide for the search. The costs associated with

the tardiness is small to provide a small (gentle) slope with respect to zero (when produced

by the unmodified MTT), that guides the search towards a possible solution. Although for

some task distributions minimizing the tardiness can lead the search away from an optimal

schedule, the cost difference for a tardy task is small such that the particles can escape that

portion of the parameter space and explore alternative possibilities.

This fosters an overall faster response time for the entire system, while removing some

of the plateau regions in the cost function that can hinder the execution of an EA. The

modified MTT for a single task is defined by Eq. 4.7 and produces a number, Ttardiness,

that indicates how late the task (mapped as d index) started executing with respect to the

current time unit, tp index of the processor p index where the task is assigned. The maximum

operator ensures that a tasks will not execute until its designated start time, TS . If the

current processor time, tp index, is less than the start time, TS , then the processor will sit

idle until such time the task can begin execution. The sum of the tardiness computed using

Eq. 4.7 for each task adds up to the total cost associated with the schedule tardiness.

Ttardiness = max {0, tp index − Td index,S} (4.7)

In this thesis, the only penalties come from missed deadlines. A task missing a deadline

is considered late, while tardy tasks start executing after their start time, but still meet

their deadline. The initial design assigned a constant value for each penalty. A problem

with a constant penalty was that it did not help the particles determine in which direction

to move to improve a solution. A linear slope is used such that the penalty becomes more

severe the further away the given task (decoded as Td index) was from meeting the deadline.

This is very similar to the effect from the MTT, but is only employed on missed deadlines

based on the current time and the computational time of the task. The penalty, Tpenalty, is

Dario Schor
dario schor@umanitoba.ca

- 105 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

defined as follows

Tpenalty = |Td index,D − tp index − Td index,C | (4.8)

Equation 4.9 shows the combined Ttardiness and Tpenalty that make up the fitness for

the scheduler. More penalties can be added by implementing additional constraints on the

algorithm. For example, task affinities can be evaluated during the encoding evaluation

and assigned a value for tasks executed in a processor other than the desired core. This

would further increase the fitness value of those candidate solutions, such that the ideal

scheduler may produce the smallest fitness value. The final cost calculated, Gcost, gives a

value greater than or equal to zero for all schedules.

Gcost = Ttardiness + Tpenalty (4.9)

4.2.4 Design of Cost Function Algorithm

Combining the encoding from Sec. 4.2.2 and the parameters for the fitness function

from Sec. 4.2.3, it is possible to define a single function to evaluate the cost of a candidate

solution produced by the PSO based scheduler (as shown in Algorithm 4.3). The input

parameters for the scheduler cost function are a set of tasks, Tset, the position of a given

particle, Sx, and the number of processors in the system, CN . This computes the fitness of

the given candidate solution produced by PSO. In doing so, the algorithm recreates a full

schedule allocation and computes the tardiness and penalties associated. The cost function

can be divided into two portions (i) setting up the necessary variables (Lines 1-18) and (ii)

computing the associated costs for each task (Lines 19-26).

The setup portion of the cost function defined by Algorithm 4.3 defines a number of

local variables used to help decode the particle position into a schedule and allocate it to the

appropriate processor. The current time for a given processor in the reconstructed schedule

Dario Schor
dario schor@umanitoba.ca

- 106 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

is saved in tp index. This variable allows each processor to update its time based on the

queue of tasks assigned to it and also helps to ensure that no tasks are executed before their

designated start time. Lines 10-15 extract the task index from the RK encoding as described

in Sec. 4.2.2, by finding the index of the smallest dimension on the position vector. Using

that information, the processor index, p index, is identified in Lines 16-17. This also maps

particles that escape the SXmin-SXmax range by mapping anything smaller than SXmin

to C1 and everything above SXmax to CN . This unconstrained approach is preferred to

constraining the position of the particles because it allows the swarm to explore the space

and naturally steer particles back towards the designated domain. Line 18 removes the

allocated dimension by setting it to a very large value (practically selected as the maximum

value for the decimal representation selected). Alternative methods of removing the particle

from the list can improve the computational complexity of the cost function, but require

more complicated data structures with dynamic memory allocation that can have similar

performance effects to the simpler solution utilized.

To compute the cost, the function first establishes the effective start time for the task by

evaluating the designated start time, TS , versus the current time in the processor, tp index.

As previously described, this enforces the constraint for the start time of each task. Then,

the penalty is calculated as the difference between the absolute deadline for the task, TD

and the time the task would end executing. This penalty is only added if the task misses a

deadline. Finally, the tardiness is calculated as per Eq. 4.7. Before adding the cumulative

cost for that task, the time in the processor is increased for the next iteration.

4.2.5 Example Cost Function Evaluations

Figure 4.21 shows a sample set of tasks with different schedules showing their associated

costs. This example uses the tasks defined in Fig. 4.21(a) as the basis for demonstrating

Dario Schor
dario schor@umanitoba.ca

- 107 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

Algorithm 4.3 Scheduler Cost Function, Gscheduler(Sx,k, Tα, CN)

Ensure: Sx,k, Tα and CN are provided.
1: for p index = 1 to CN do
2: tp index ← 0
3: end for
4: Gcost ← 0
5: Ttardiness ← 0
6: Tpenalty ← 0
7: p index← 0
8: d index← 0
9: for d = 1 to D do

10: d index← 1
11: for d′ = 1 to D do
12: if Sx,k,d′ < Sx,k,d index then
13: d index← d′

14: end if
15: end for
16: p index← dSx,k,d indexe
17: p index ∈ (1, CN)
18: Sx,k,d index ←∞
19: tp index ← max(Td index,S , tp index)
20: Tpenalty ← 0
21: if tp index + Td index,C > Td index,D then
22: Tpenalty ← |Td index,D − tp index − Td index,C |
23: end if
24: Ttardiness ← max(0, tp index − Td index,S)
25: tp index ← tp index + Td index,C
26: Gcost = Gcost + Ttardiness + Tpenalty
27: end for
28: return Gcost

Dario Schor
dario schor@umanitoba.ca

- 108 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

Time [units]

T
a
s
k

Processor Tasks

T
4

T
3

T
2

T
1

0 1 2 3 4 5 6 7 8 9 10

(a) Task definitions for example. (b) Schedule #2 (Cost=2)

(c) Schedule #1 (Cost=3) (d) Schedule #6 (Cost=5)

(e) Schedule #3 (Cost=10) (f) Schedule #4 (Cost=10)

(g) Schedule #5 (Cost=20) (h) Schedule #7 (Cost=33)

Fig. 4.21: Examples of cost function evaluations. (a) Set of sample tasks. (b) Optimal
schedule given the set of tasks. (c) Valid, but not optimal, schedule for the given tasks.
(d) Schedule showing one task missing a deadline. (e) Schedule showing that the start
time for tasks is enforced. (f) Same as in (e), but with different processors to show the
cost remains the same. (g) All tasks assigned to a single core. (h) Very bad schedule that
missed three deadlines and has a high cost.

Dario Schor
dario schor@umanitoba.ca

- 109 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.2 Design of Scheduling Algorithm

the increasing costs associated with worse schedule configurations.

To start, Fig. 4.21(b) and 4.21(c) both show valid schedules. The cost difference occurs

because if T1 is first, then T2 starts executing further away from its TS time than if the

orders are reversed. This highlights the effect of the MTT portion of the cost function that

rewards solutions that execute tasks closer to their start time. Note that when executing

the full scheduler (as described in Sec. 5.3), if a valid solution is found, the optimization

algorithm terminates even if that is not the optimal solution. If however, that termination

criterion was not there, the optimization processes would continue searching for better

solutions. In Fig. 4.21(d), T3 starts executing 2 time units after its start time and also

receives a 1 unit penalty for missing its deadline. This adds up to the majority of the cost

so the 2 units associated with T4 starting later become less important in rescheduling tasks.

Figures 4.21(e) and 4.21(f) show that the cost is the same for a given task sequence regardless

of which processor it is assigned to. This behaviour is required for an SMP scheduler as

it provides more possible solutions. Note that in AMP with task affinities, such behaviour

would require distinct costs to penalize any constraint violations. Figures 4.21(e), 4.21(f),

and 4.21(h) show how the scheduler enforces the start time of a task even if it leaves idle

units before. This is penalized by increasing the cost of the tasks that miss a deadline as a

result of such operation. Finally, Fig. 4.21(g) and 4.21(h) show some worst case conditions

to highlight the rapid increase in cost that is required in a cost function to accelerate the

search. If the variations are very gentle (i.e., like in the Rosenbrock function), then the

particles in the optimization algorithm may struggle to determine which direction to move

in order to improve the solution. In general, the costs associated with the schedules may

increase as more tasks are added to the system as both the tardiness and penalties grow

with the problem size.

Dario Schor
dario schor@umanitoba.ca

- 110 of 157 - v042/04-system-design.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 4.3 Summary

4.3 Summary

This chapter explored the characteristics of PSO through a novel data driven trajectory

analysis that give insight into the behaviour of the algorithm. In addition, this chapter

described the design of an encoding of solutions and cost functions to implement a PSO-

based real-time scheduling algorithm for SMP systems. The next chapter describes the

implementation and verification of the PSO algorithm and scheduler.

Dario Schor
dario schor@umanitoba.ca

- 111 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5. System Implementation and Verification

Chapter 5

System Implementation and

Verification

The incremental implementation and verification consists of (i) the PSO algorithm,

(ii) implementing the necessary analysis tools, (iii) the cost function and encoding for the

scheduler, and finally, (iv) the scheduler simulator. Each portion is implemented and ver-

ified independently before proceeding to ensure that the dependancies are functioning as

designed. This chapter describes the development environment and details of the software

implementation.

5.1 Generic PSO Algorithm Implementation

Matlab was used throughout the thesis to implement the standard PSO algorithm (Al-

gorithm 3.2) with many configurable parameters to enable testing different alternatives. The

variations include the use of the inertia weight (Sω), customizable topologies, and varying

personal and social weights (Sϕ1 and Sϕ2). This enables different PSO configurations to be

Dario Schor
dario schor@umanitoba.ca

- 112 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.1 Generic PSO Algorithm Implementation

tested that include the ones in this thesis as well as those described in [ScKA10], [ScKi11a],

and [ScKi11b]. All this additional flexibility through customization extends the runtime of

the algorithm. This is deemed acceptable as the run-time of the algorithm time is an imple-

mentation (both hardware and software) dependant measure which would render different

results on a computer simulation from a real-time embedded processor. Furthermore, the

metrics of interest are to be implementation independent as described in Sec. 4.1.1.

5.1.1 Customizable PSO Parameters

In order to control which version of the PSO algorithm is executed, the program loads a

set of parameters from a configuration file in the form of a text document. The parameters

with respect to the PSO implementation are divided into PSO parameters and cost function

parameters. A full configuration example file is provided in Appendix C.1.

The PSO parameters define the particular variation of the algorithm executed. The

number of particles, SK , is flexible to be able to test for the minimum number of particles

that provide good solutions for a given application, as that would reduce the computation

complexity of the algorithm. The maximum number of iterations, Nmax, is set to ensure

the algorithm terminates even if no solutions were found. The neighbourhood topology is

selected through a Matlab handle that allows the function to be called indirectly as if it

was using an abstract function pointer with a predefined header (name, parameters, and

return type). This handle takes in the set of particles, the current index Sk, and an optional

parameter Sn defining the size of the neighbourhood. The function returns the index Sg

of the best particle within the topology defined in the function. In the case of a gBest

topology all the particles are evaluated, while for `Best topologies only the neighbourhood

with respect to Sk is tested, as described in [ScKA10]. In a similar fashion, the personal

and social weights are also computed in an external function that incorporates the uniform

Dario Schor
dario schor@umanitoba.ca

- 113 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.1 Generic PSO Algorithm Implementation

random number generators from Eq. 3.2 and return a modified S′ϕ1 and S′ϕ2 that already

incorporates the stochastic processes. This enables users to execute the algorithm with both

fixed and stochastic weights. Finally, the inertia weight Sω is defined through the Sω,max,

Sω,min, and Sω,eph parameters that can cause a linear decrease over the desired number of

iterations. If a fixed Sω is needed, the parameters can be defined as Sω,max = Sω,min = C

with Sω,eph = 1, where C is the desired constant inertia. Combining the Sω with the

corresponding definitions of the personal and social weights one can recreate the special

cases of the constriction coefficient described in Sec. 3.2.2. The full constriction coefficient

implementation is not used because there is less raw data available about the trajectories to

reliably extrapolate the observations from the particle trajectories presented in the thesis

to other PSO implementations.

The cost function is also defined using a Matlab handle to be able to utilize the same

algorithm for many optimization problems. The initial implementation received a vector of

position elements to compute the fitness. As the scheduler was developed, extra optional

parameters for application specific information (i.e., the tasks and number of processors

in the scheduling case) were incorporated. Three additional parameters directly linked

to the parameter space described by the cost function are also included: SXmin, SXmax,

and SV max. These are used during the particle initialization and then in limiting the step

size.

5.1.2 Saving Trajectories for Analysis

In addition to performing the optimization, the PSO algorithm has added features to

save the trajectories of all the particles for analysis. This feature can be enabled through the

configuration file in order to remove the unnecessary delays associated with constant writing

to files. Each particle is stored in a separate file formatted as described by Fig. 5.1 through

Dario Schor
dario schor@umanitoba.ca

- 114 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.2 Time Series Analysis

a diagram representation. In essence, each line represents one iteration and consists of the

position, velocity, and best position along each dimension, followed by the position fitness,

best position fitness, and the index of the neighbourhood best. Note that the same results

could be obtained by recomputing some parameters from the position and best position

only. Since the information is available at runtime, it is easier to store all the parameters

without a significanct expense in memory usage. Each variable is stored with six digits of

decimal precision that provides high resolution for both comparing to the literature as well

as for the analysis. This makes the trajectory of a particle when D = 2 and Nmax = 4000

be approximately 344 KB, thus totalling 6.9 MB for a SK = 20 particle set.

Sx,k,1 Sv,k,1 Sp,k,1 . . . Sx,k,D Sv,k,D Sp,k,D G(Sx,k) G(Sp,k) Sg

Fig. 5.1: Structure of trajectory file for the Sk particle.

5.2 Time Series Analysis

The WSS, auto-correlation, and power spectrum analyses described in Sec. 4.1.5.1 are

each implemented as a separate function that take in a time series and some additional

parameters to produce the plots analyzed in this thesis. Before testing the functions on real

data collected from running the PSO algorithm, each function implementation was validated

against a known set of waveforms consisting of (i) a single sinusoidal, (ii) a composite signal

with two sinusoidal terms, (iii) a square wave - generated using the square function, (iv)

a triangle wave - generated using the sawtooth function, (v) white noise - drawn from

a random normal distribution using randn, and (vi) brown noise - generated using the

synthesis fractional Brownian motion algorithm available through wfbm (in this case with

the Hurst exponent set to 0.5). The results of the verification procedures are presented in

Apprendix A.1.

Dario Schor
dario schor@umanitoba.ca

- 115 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.2 Time Series Analysis

The WSS analysis computed the first two moments of a given time series using a sliding

window size provided as an input argument. The moments are computed using the Matlab

built-in moment function. The plots for the the verification showed that the periodic signals

are WSS for window sizes of 256, while the brownian motion is non-stationary as expected.

The results of these verification tests are provided in Appendix A.1.1.

The auto-correlation of the time series are evaluated using the xcorr function in Matlab.

As expected, this shows that the periodic signals have a long correlation, while white noise

is not correlated at all. Finally, the brownian motion reveals the anticipated short term

correlations compared to the periodic signals. The plots showing the auto-correlation of

these test functions are included in Appendix A.1.2.

Finally, the power spectrum is computed by squaring the result of the Fast Fourier

Transform built into Matlab, fft and plotting the magnitude versus the frequency. In this

case, a sample frequency is required as a reference and it is fixed at fs = 2000 Hz during the

verification. The results show peaks at the corresponding frequencies for the sinusoidal and

composite signals. The square and triangle waves shows broadband spectra with peaks cor-

responding to the main coefficients evaluated. The time series containing white noise shows

a flat wide band spectrum, while the brownian motion shows a negative slope indicating

the data is correlated as expected. These figures are included in Appendix A.1.3.

The trajectory analysis from Sec. 4.1.4 requires many runs of the algorithm using the

same initial conditions. This process is automated through Matlab scripts that set the seed

for the pseudorandom number generator at the beginning of each iteration to initialize the

particles and then again changes it again based on the current run of the algorithm so that it

would render different stochastic results for the PSO runs. It is important to note that the

algorithm is limited to running approximately 100 runs before having to clear the Matlab

cached variables. The reason for this was determined to be related to the maximum number

Dario Schor
dario schor@umanitoba.ca

- 116 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.3 Implementation of Scheduling Algorithm

of file pointers that can Matlab retains until the memory is clear. If the number of particles

increases from 20, then the maximum number of runs may decrease accordingly. This does

not limit the analysis, but rather requires additional precautions to either segment the work

or explicitly close and clear many file pointers.

5.3 Implementation of Scheduling Algorithm

The implementation of the scheduling algorithm includes adapting the Matlab PSO

algorithm and implementing the cost function from Algorithm 4.3 in Matlab. The PSO

algorithm implementation consists of an augmented version of the one used for the time

series analysis that incorporates a new terminating condition, an additional perturbation

that is directed to tasks stuck in local solutions, and a slight modifications to record the

schedule at each iteration as a record that can be used during analysis.

The new termination criteria for the algorithm consists of either a valid schedule that

meets all the requirements of the system or the maximum number of iterations being

reached, Nmax. That is, a schedule with no missed deadlines terminates the algorithm

regardless of whether there is a slightly better solution. The difficulty is that as shown in

Sec. 4.2.5, it is not possible to obtain enough information from the cost function to deter-

mine whether a valid schedule is indeed the optimal schedule for that set of tasks. Since

the cost function already finds all the missed deadlines, this extension consists of merely

returning that information to the PSO algorithm and adding a couple of extra lines to

terminate if a valid schedule is found.

Furthermore, taking advantage of already available computed schedules, one can add a

few lines of code to Algorithm 4.3 after Line 17 to add the current task to a queue to produce

the schedule associated with that particle being evaluated. This information is further

returned to PSO algorithm such that when recording each trajectory as per Sec. 5.1.2, one

Dario Schor
dario schor@umanitoba.ca

- 117 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.4 Schedule Simulations

can also store the associated task allocation in order to be able to examine the performance

of the algorithm by visual inspection of the trajectory files for each particle.

Finally, as suggested by [CaEC07], using RK can generate for multiple solutions leading

to the same schedule. Therefore, borrowing from SA, a mutation is implemented with a

linearly decaying probability that can affect the dimension of a task that is missing a

deadline. This directed approach improves on the work of [CaEC07] by directly focusing

on critical tasks as opposed to randomly teleporting a particle as suggested in [BSDK13].

Although the mutation affects a single dimension, depending on the newly assigned value,

that can cause the entire schedule to be recomputed. However, since the best position of

the particle remains the same, solutions resulting from mutations that destroy the entire

schedule instead of simply escaping local solutions vanish after a few iterations as the particle

approaches its previous region of the parameter space. The effect of adding the mutation

parameter helps to improve the overall performance of the algorithm for higher system loads

as visible in Sec. 6.3 where the large variance in the iteration count (compared to where the

median is) indicate that particles are successfully escaping local solutions.

5.4 Schedule Simulations

A simulation of the scheduler was built to help verify its operation and test the per-

formance of the algorithm. The software has the option of reading in a user defined task

set or generating a random one with certain properties. Then, the simulator schedule the

given set of tasks a repeated number of times, logging its progress for analysis.

User defined tasks sets are used for testing the performance of the algorithm against

some rudimentary conditions like those outlined in Sec. 4.2.1. To generate random tasks

sets, the user defines six parameters that provide ample flexibility for testing different

conditions. The user provides a range (minimum and maximum values) for TS , TC , and Td

Dario Schor
dario schor@umanitoba.ca

- 118 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.4 Schedule Simulations

so that random values can be given limits that are representative of a particular application.

Similarly to the topology selector, the distribution is customized via a Matlab handle to

facilitate applying the same scheduler to different scenarios. This thesis uses a uniform

random distribution, since this does not bias the tasks in any way. The implementation

allows the use of other configurations, such as simulating arrival times based on a Poisson

distribution. To ensure the task sets generated are scheduleable, Eq. 2.2 is computed for

the tasks generated. Furthermore, the user defines a range in which the mean surplus

processing power must reside. This metric ensures that the task are schedulable with an

average surplus representative of the particular application being modelled.

In the process of generating random tasks, it is useful to visualize areas that can be

troublesome for the algorithm based on the surplus resources at each iteration. To facilitate

this, the task sets generated are plotted with a gradient background that indicates whether

there are lots of available resources in blue and critical sections using a red background.

This novel use of the schedulability test is demonstrated in Fig. 5.2(a). In this figure, there

are three tasks with TS = 0 for a CN = 2 system, but all of the tasks have some slack

between their completion time and the deadline. For example, this allows moving T3’s start

time and still abide by all the real-time deadlines. As such, the background from 1 < t ≤ 3

is blue showing that although there are lots of tasks, they can be shifted somewhere. While,

for 4 < t ≤ 5, the background is red because anything moved to this area would not have

anywhere else to go. This is reflected in the actual values for RA(t) shown in the graph

where there the surplus resources diminish to zero as there are no free resources.

In contrast, Fig. 5.2(b) shows a schedule where only T3 has some slack and therefore,

the number of available resources is negative. This is reflected by the white background on

the tasks showing that they cannot be completed. Note that this metric is only defined for

t > 1 as per Eq. 2.2. More complicated examples are provided in Sec. 6.3 and highlight

cases where the surplus resources increase and diminish over time as would occur in many

Dario Schor
dario schor@umanitoba.ca

- 119 of 157 - v042/05-system-implementation.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 5.5 Summary

applications.

(a) Sample task definition showing available re-
sources through the blue-to-red gradient.

(b) Sample task definition showing negative re-
sources through a white background.

Fig. 5.2: Visualization of task set surplus resources assuming CN = 2. (a) Sample task
definitions showing that there are some surplus resources for t < 3, then the resources
diminish because the only way to schedule the tasks is to shift one of the tasks with TS = 0
in time. (b) Sample tasks that cannot be scheduled due to the lack of available resources.

5.5 Summary

This chapter described the implementation of the PSO algorithm, the scheduler, and

the simulator used to test the algorithm. This implementation is used in the next chapter

to run three experiments designed to test the performance of the scheduler under different

conditions.

Dario Schor
dario schor@umanitoba.ca

- 120 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6. Experiments and Discussion of Results

Chapter 6

Experiments and

Discussion of Results

The following experiments are designed to measure the performance and limitations of

the scheduler cost function designed for the PSO algorithm. The experiments are orga-

nized for 1, 2, and 4 symmetric processors to show the limitations of the algorithm in each

configuration. For each number of processors, there are three key experiments conducted:

(i) benchmark – testing performance under extreme known conditions, (ii) load experi-

ments – testing the scheduling algorithm performance under different system loads, and (v)

scalability experiments – testing the algorithm with increasing number of tasks.

6.1 Experimental Setup

The software was developed and tested on Matlab version R2010b running on Mac

OS X version 10.6.8 using 2 × 2.4 GHz Quad-Core Intel Xeon processors with 12 GB of

1066 MHz DDR3 memory. In addition, to expedite the testing process, multiple simula-

Dario Schor
dario schor@umanitoba.ca

- 121 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

tions were performed simultaneously on four Mac Pro workstations running Matlab version

R2012b under Mac OS X version 10.7.5 using 2×2.4 GHz Quad-Core Intel Xeon processors

with 32 GB of 1066 MHz DDR3 memory. Regardless of the processing environment, the

bottleneck for the simulations was saving the trajectories for analysis and the memory write

speeds of the computers. These accounted for over 24 GB of data that is included in the

DVDs accompanying this thesis and described in Appendix E.

6.2 Benchmark Experiment

The benchmark example uses a set of tasks that maximize the system load, no surplus

resources, and test the performance of the algorithm for small task sets. This is an unusual

case that is not representative of real systems, but serves as a point of comparison that

also tests the limitations of the system. The key parameters for the test are summarized

in Table 6.1. Only TN = 12 tasks are used to get a general reference point of how the

system performs under extreme conditions. The number of particles is increased from

20 in the trajectory study in Sec. 4.1.4 to 30 to account for the increased dimensionality

of the problem (increasing from D = 2 to D = TN = 12). This number of particles

is consistent with the suggested ranges as described in Sec. 3.2.1. The initial conditions

for the particle positions are selected so that they would be uniformly distributed in the

domain associated with each of the processors being used as per the RK encoding. Once

running, the particles move between processors and can even escape the parameter space

without affecting the performance. Similarly, the velocity is limited to allow particles to

move from one processor to another and possibly outside the initial parameter space. The

global topology is selected as it is widely used in most PSO implementations. The weights

and inertia coefficient are selected to match the suggested values from Shi and Eberhart’s

study of particle convergence [EbSh00]. Finally, a linearly reducing mutation probability is

Dario Schor
dario schor@umanitoba.ca

- 122 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

used to relocate some of the tasks missing deadlines at each iteration to help the algorithm

escape some local solutions.

Table 6.1: Parameters for scheduler benchmark experiment.

Parameter Exp. #1a Exp. #1b Exp. #1c

Number of processors, CN 1 2 4

Number of tasks, TN 12

Number of dimensions, D 12

Number of particles, SK 30

Position limits, SXmin and SXmax [0, 1] [0, 2] [0, 4]

Velocity limits, SV min and SV max [-1, 1] [-2, 2] [-4, 4]

Max. number of iterations, Nmax 5,000

Neighbourhood topology gBest

Personal weight, Sϕ1 1.49445 [EbSh00]

Social weight, Sϕ2 1.49445 [EbSh00]

Inertia weight, Sω Constant at 0.729 [EbSh00]

Mutation probability Linearly reduce [0.4, 0.1]

The task sets for the benchmark experiments are evenly distributed through the pro-

cessors used (12 tasks in one processor, 6 in each of the two processors, and 3 in each of the

4 processors). The computation time for all tasks is set to TC = 1 with immediate deadlines

of Td = 0. The start times, TS are arranged to maximize the system utilization. Fig. 6.1

shows the task definitions for each configuration tested. The uniprocessor configuration

has a single global optimum, while for CN ≥ 2 there are many more options as there are

multiple tasks with the same properties that can be scheduled in any of the processors.

Alternative options for uniquely defined schedules that would produce unique solutions for

multiprocessors were considered, but this approached the scenarios of task precedence that

were not part of the objectives for this research.

Dario Schor
dario schor@umanitoba.ca

- 123 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

Time [units]

T
a

s
k

Processor Tasks

T
12

T
11

T
10

T
9

T
8

T
7

T
6

T
5

T
4

T
3

T
2

T
1

0 2 4 6 8 10 12

(a) Definitions for CN = 1 bench-
mark experiment.

Time [units]

T
a

s
k

Processor Tasks

T
12

T
11

T
10

T
9

T
8

T
7

T
6

T
5

T
4

T
3

T
2

T
1

0 1 2 3 4 5 6 7

(b) Definitions for CN = 2 bench-
mark experiment.

Time [units]

Processor Tasks

T
12

T
11

T
10

T
9

T
8

T
7

T
6

T
5

T
4

T
3

T
2

T
1

0 1 2 3 4

(c) Definitions for CN = 4 bench-
mark experiment.

Fig. 6.1: Benchmark experiment tasks definitions. The deadlines for each task occur
immediately at TD = TS + TC , thus reducing the laxity to zero for all cases. For CN ≥ 2
multiple tasks are defined for each time slot as shown in the subfigures. (a) CN = 1, (b)
CN = 2, and (c) CN = 4.

Overall, this configuration is designed to produce a minimum value of zero in the cost

function, that helps test the algorithm, while also producing results that are intuitively

perceived as valid or invalid. Conceptually, the sets of tasks described in Fig. 6.1 create

a parameter space with many peaks when using the RK encoding. In the single processor

case, a single global minimum exists and any task placed out of sequence would cause at

least 1 missed deadline depending if it is placed at the end or whether it shifts all other

tasks causing a chain of missed deadlines. In the multiprocessor setting, the peaks and

valleys become more significant as there are now multiple solutions, so the parameter space

approaches that of the Rastrigin function.

Each of the three scenarios is executed 50 times with random initial conditions for the

particles each time. The performance is measured in terms of (i) whether a schedule is

found, (ii) number of iterations until a solution is found, (iii) number of missed deadlines

when the algorithm terminates (in case it reaches Nmax), and (iv) the cost to provide a

reference. The results of these scenarios are presented through a box plot in Fig. 6.2 and

the results Table 6.2.

At first, it may appear counter-intuitive that the performance of the scheduler decreases

Dario Schor
dario schor@umanitoba.ca

- 124 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

Procs=1 Procs=2 Procs=4
0

1000

2000

3000

4000

5000
Benchmark Results

It
e

ra
ti
o

n
s
 (

M
a

x
 5

0
0

0
)

Procs=1 Procs=2 Procs=4
0

10

20

30

40

50

V
a

lid
 S

c
h

e
d

u
le

s
 F

o
u

n
d

Fig. 6.2: Results of benchmark experiment. The box plot shows that the majority of the
runs find a solution in under 1,000 iterations and have a long tail demonstrating the cases
where the algorithm gets stuck in local solutions.

Table 6.2: Parameters for scheduler benchmark experiment.

Test Schedule Runs Iterations (Mdn) Missed Cost

CN = 1
Valid 45/50 128.9± 250.3 (40.0) 0.0± 0.0 0.0± 0.0

Invalid 05/50 5, 000.0± 0.0 (5, 000.0) 1.0± 0.0 20.0± 5.5

CN = 2
Valid 36/50 592.1± 743.1 (246.5) 0.0± 0.0 0.0± 0.0

Invalid 14/50 5, 000.0± 0.0 (5, 000.0) 1.7± 0.7 8.4± 4.6

CN = 4
Valid 50/50 431.3± 739.9 (241.5) 0.0± 0.0 0.0± 0.0

Invalid 00/50 N/A N/A N/A

for fewer processors. However, one must keep in mind that, for the task sets utilized,

there are more valid combinations as the number of processor increase. Furthermore, the

ramifications of a single task changing position are more significant for the single processor

case because a single task can create a chain of events that raise the overall cost than

in the multiprocessor through the cumulative penalties. For example, if task T3 starts

Dario Schor
dario schor@umanitoba.ca

- 125 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

at the end of the queue for a single processor and moves to the spot for T9, the cost

appears to increase because of all the penalties accumulated. As such, the scheduler has a

difficult time moving the task incrementally towards the desired location. However, in the

multiprocessor scenario, these variations are less significant because the number of tasks

decreases per processor (hence the motivation for the system load experiment in Sec. 6.3).

As an example, Fig. 6.3(a) and 6.3(b) show a valid and invalid schedule with their associated

costs.

(a) Valid schedule with cost = 0.

(b) Invalid schedule with cost = 2.

Fig. 6.3: Sample schedules generated for benchmark experiments for CN = 2. (a)
Valid schedule generated (test05-p2-t12-benchmark/008/). (b) Invalid schedule generated
(test05-p2-t12-benchmark/005/). Note that in SMP there is no preference for tasks to be
executed in a particular processor, so T5 and T11 have different results in each run that are
both valid.

The mean number of iterations for the 50 runs are significantly higher than the median

calculated.This is because the algorithm has a fast transient towards the solution and then

slows down for a local search. This is consistent with the number of missed tasks and

associated fitness of the solutions produced. Furthermore, one can confirm the behaviour

Dario Schor
dario schor@umanitoba.ca

- 126 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.2 Benchmark Experiment

through the trajectory of a particle, such as Fig. 6.4 obtained from a successful run for

CN = 2 versus an unsuccessful run for the same number of processors. In Fig. 6.4(a), one

can see that the position tested various values for d = 12 corresponds to the task that

should be towards the end of the schedule, so whenever the position decreases significantly,

the associated cumulative cost spikes to force the particle to switch directions. This is

reflected in the big envelope formed around the position that sees immediate spikes (usually

cost through exploration or mutation) followed by an attenuated signal towards the optimal

position.

50 100 150 200

−2

0

2

4

Particle Position [S
x,9

(n)]

Iteration

P
o

s
it
io

n

S

x,9,1
(n))

S
x,9,12

(n))

50 100 150 200

−2

0

2

Particle Velocity [S
v,9

(n)]

Iteration

V
e

lo
c
it
y

S

v,9,1
(n))

S
v,9,12

(n))

50 100 150 200
0

50

100

Particle Fitness [G
schedule

(S
x,9

(n)]

Iteration

F
it
n

e
s
s

G

schedule
(S

x,9
(n))

G
schedule

(S
p,9

(n))

(a) Trajectory for Sk = 9.

100 200 300 400 500 600 700 800 900 1000

2

4

6

Particle Position [S
x,1

(n)]

Iteration

P
o
s
it
io

n

S

x,1,1
(n))

S
x,1,12

(n))

100 200 300 400 500 600 700 800 900 1000

−2

0

2

Particle Velocity [S
v,1

(n)]

Iteration

V
e
lo

c
it
y

S

v,1,1
(n))

S
v,1,12

(n))

100 200 300 400 500 600 700 800 900 1000

20
40
60
80

100
120

Particle Fitness [G
schedule

(S
x,1

(n)]

Iteration

F
it
n
e
s
s

G

schedule
(S

x,1
(n))

G
schedule

(S
p,1

(n))

(b) Trajectory for Sk = 1.

Fig. 6.4: Sample trajectories from benchmark experiment. Both graphs show the d = 1
and d = 12 corresponding to tasks that should be scheduled at the beginning and end of
the schedule respectively. (a) Results for successful run of the algorithm (test05-p2-t12-
benchmark/008/p9.txt). (b) Results from unsuccessful run of the algorithm (test05-p2-
t12-benchmark/004/p1.txt).

The full trajectory analysis is not performed as these are too short to perform the

proposed techniques. Those become more valuable in subsequent experiments where both

the transient and steady state behaviours are longer. In this case, Fig. 6.4(b) shows a very

Dario Schor
dario schor@umanitoba.ca

- 127 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

rapid transient of less than 100 iterations before the local search. Note that slowing down

the algorithm through a smaller SV max as proposed in Sec. 4.1.4.2 would compromise the

performance of the scheduling algorithm and in many cases produce worse results because

the maximum step size would not allow particles to move from one processor to another

very freely and thus would give many repeated task sequences as candidate solutions.

6.3 Load Experiments

In the load experiment, a random set of tasks is defined such that the overall system load

approaches 10%, 50%, and 80%. Since there are no specific hardware processors associated

with these tasks, the time is measured in units. Therefore, the system load is defined as the

number of computational units over the number of time units from the beginning (t = 0)

to the completion of the last task. As such, a 10% load indicates that the processors would

be busy for 10% of the time and idle for the remaining time. Furthermore, the estimates

are for overall system load, not for the individual processors. Therefore, as the number

of processors grows, the system can take more tasks while retaining the same load. This

approach was selected over a load shedding analysis because for distributing loads one must

have increased flexibility with the tasks start times in order to not just move them to another

processor, but to also reduce the overall completion time. Since in these experiments the

task start time is well defined, the distribution of tasks is selected by the algorithm to meet

the requirements and not to balance the system. Such constraints can be incorporated as

an additional penalty before line 28 in Algorithm 4.3 by evaluating the computational time

of each of the processor queues.

The selected values for the loads are modelled after analysis conducted at MAW and

NASA. The MAW estimates are used with permission from the company. The 10% load

is selected as it is roughly the estimated nominal load for the RCM spacecraft being de-

Dario Schor
dario schor@umanitoba.ca

- 128 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

signed by MAW running 18 tasks in a single processor [MAW09]. Similarly, the 80% load

constitutes the worst-case (and unrealistic) load for the RCM satellites rounded up to the

nearest tenth [MAW09]. This extreme scenario happens when every task is executing even

if it violates operational needs (i.e., concurrent payloads). The middle marker of 50% load

is taken as the suggested value from the NASA Gold Standards for the estimated load at

the preliminary design stage for a satellite [GOLD09]. Note that maximum 30% loads are

recommended for the delivery phase of a satellite, however this is not tested as 10-50-80

experiments cover that range and give insight into the performance of the algorithm over a

wider spectrum.

Table 6.3: Random task generator parameters for load experiment.

Experiment Run TS Range RA(t) Range Calc. Sys. Load

CN = 1, Load= 10% [0, 400] [175, 200] 12.75%

CN = 1, Load= 50% [0, 100] [30, 100] 55.96%

CN = 1, Load= 80% [0, 50] [10, 100] 78.69%

CN = 2, Load= 10% [0, 500] [250, 280] 10.04%

CN = 2, Load= 50% [0, 110] [20, 35] 50.96%

CN = 2, Load= 80% [0, 22] [10, 50] 78.13%

CN = 4, Load= 10% [0, 400] [200, 250] 9.88%

CN = 4, Load= 50% [0, 20] [10, 50] 50.00%

CN = 4, Load= 80% [0, 8] [1, 50] 77.00%

The tasks are generated randomly using the procedure described in Sec. 5.4. For this

purpose, TC is randomly selected from a uniform distribution between [1, 4] and Td is taken

from a distribution between [7, 14]. This range of deadlines allows some tasks to have

small variations in their position, while others can interchange positions without missing

deadlines (thus creating more local solutions). In contrast with the benchmark experiment,

the objective here is to see many local solutions with small variations in the cost to evaluate

Dario Schor
dario schor@umanitoba.ca

- 129 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

how the algorithm performs to gentle slopes in the parameter space. The TS and RA(t) vary

for each test to adjust the overall system loads to the desired values as shown in Table 6.3.

The ranges for each were established through trial and error to generate tasks sets with

loads approximating the desired values. The RA(t) constraint ensures that valid schedules

are produced and helps to distribute tasks such that for example, an 80% load does not

contain an unschedulable cluster of tasks with similar start times and deadlines. The sample

tasks sets for the three different loads using a two processor in Fig. 6.6-6.8. The remaining

tasks sets are included in Appendix D.1.

The PSO parameters described in Table 6.1 for the benchmark experiment are main-

tained for this analysis. The only differences are that TN = D = 20 and that for loads of

80% the maximum number of iterations is increased to Nmax = 10, 000. The increase is

empirically derived to help gauge whether more iterations can help find the solution. The

number of tasks is roughly the number of tasks utilized in the RCM mission [MAW09].

The results from 50 runs of each case are averaged in Fig. 6.5 and Table 6.4. The

algorithm performs very well for all loads with different number of processors. Once again,

there is a significant difference between the median and mean number of iterations required

to find a solution. The mutations are helping some particles escape the local solutions and

cause the large variances calculated, however, for the most part there are some areas of

the parameter space where particles are trapped for long periods of time. Based on the

large discrepency in mean and median, it is almost better to restart the algorithm after an

empirically defined number of iterations with a different initial conditions to accelerate the

search rather than attempt to escape a local solution.

One unexpected result was that for CN = 2 with 80% loads, the performance dropped

significantly with most particles producing schedules with a single deadline missed. This

correlates with the RA(t) plot from Fig. 6.7 around time units 24-28 that show a deep drop

Dario Schor
dario schor@umanitoba.ca

- 130 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

Procs=1 Procs=2 Procs=4
0

1000

2000

3000

4000

5000
Load 10% Results

It
e

ra
ti
o

n
s
 (

M
a

x
 5

0
0

0
)

Procs=1 Procs=2 Procs=4
0

10

20

30

40

50

V
a

lid
 S

c
h

e
d
u

le
s
 F

o
u

n
d

(a) Results for 10% load.

Procs=1 Procs=2 Procs=4
0

1000

2000

3000

4000

5000
Load 50% Results

It
e

ra
ti
o

n
s
 (

M
a

x
 5

0
0

0
)

Procs=1 Procs=2 Procs=4
0

10

20

30

40

50

V
a

lid
 S

c
h

e
d
u

le
s
 F

o
u

n
d

(b) Results for 50% load.

Procs=1 Procs=2 Procs=4
0

2000

4000

6000

8000

10000
Load 80% Results

It
e
ra

ti
o
n
s
 (

M
a
x
 1

0
0
0
0
)

Procs=1 Procs=2 Procs=4
0

10

20

30

40

50

V
a
lid

 S
c
h
e
d
u
le

s
 F

o
u
n
d

(c) Results for 80% load.

Fig. 6.5: Results of load experiment. (a) The box plot shows the majority of the runs find
solutions in under 500 iterations using a 10% system load. The long tails represent the cases
where algorithm converges to a local solution and takes time until valid schedule is found.
(b) The box plot shows the results converge in under 500 iterations for 50% system loads.
(c) The algorithm takes closer to 1,000 solutions to converge for 80% loads. The number of
successful runs for 2 processors at 80% load is a result of the task set randomly generated
and shows a weakness of the algorithm that relates to the large number of deadlines around
33 ≤ t ≤ 39 from Fig. 6.8.

of surplus resources. In such cases, adjusting the start time or deadline for one of T4. T6,

T7, T9, T18 or T19 would alleviate the problem and make it easier to allocate the tasks. For

comparison, the tasks defined in Fig. 6.8 for the CN = 4 with load 80% case did not have

Dario Schor
dario schor@umanitoba.ca

- 131 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

Table 6.4: Parameters for scheduler benchmark experiment.

CN Load Schedule Runs Iterations (Mdn) Missed Cost

1

10%
Valid 50/50 234.5± 178.8 (172.5) 0.0± 0.0 0.0± 0.0

Invalid 00/50 N/A N/A N/A

50%
Valid 48/50 234.1± 298.1 (136.0) 0.0± 0.0 47.3± 4.7

Invalid 02/50 5, 000.0± 0.0 (5, 000.0) 1.0± 0.0 65.0± 35.3

80%
Valid 50/50 110.5± 104.8 (85.0) 0.0± 0.0 53.3± 5.7

Invalid 00/50 N/A N/A N/A

2

10%
Valid 50/50 390.6± 382.5 (267.5) 0.0± 0.0 10.6± 5.7

Invalid 00/50 N/A N/A N/A

50%
Valid 50/50 143.1± 112.1 (122.0) 0.0± 0.0 36.3± 7.7

Invalid 00/50 N/A N/A N/A

80%
Valid 23/50 1434.4± 2375.9 (409.0) 0.0± 0.0 55.3± 3.9

Invalid 27/50 10, 000.0± 0.0 (10, 000.0) 1.0± 0.2 56.5± 9.2

4

10%
Valid 50/50 324.7± 252.7 (248.0) 0.0± 0.0 13.2± 7.5

Invalid 00/50 N/A N/A N/A

50%
Valid 50/50 242.7± 325.8 (138.5) 0.0± 0.0 43.1± 11.4

Invalid 00/50 N/A N/A N/A

80%
Valid 47/50 1256.0± 1163.0 (833.0) 0.0± 0.0 66.0± 6.9

Invalid 03/50 10, 000.0± 0.0 (10, 000.0) 1.0± 0.0 52.6± 1.5

Dario Schor
dario schor@umanitoba.ca

- 132 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

Fig. 6.6: Task definition for CN = 2 with 10% system load (/test06-p2-t20-load10). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- 133 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

Fig. 6.7: Task definition for CN = 2 with 50% system load (/test07-p2-t20-load50). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- 134 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

Fig. 6.8: Task definition for CN = 2 with 80% system load (/test08-p2-t20-load80). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- 135 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

those features and thus produced much better results. Figures 6.9 show sample schedules

generated for CN = 2 under different loads. The difficulties in missed deadlines happen

around the expected range of t ' 24.

Continuing to exploit the CN = 2 case with 80% load, one can plot the time series

for a successful versus an unsuccessful run as shown in Fig. 6.10. For the unsuccessful test

(run 008), one can identify an approximate threshold between the transient and the steady

state portions of the trajectory at n = 300. Using this information, the same analysis from

Sec. 4.1.5 can be performed to learn about these components of the trajectory as they define

the behaviour for the particle. The moments shown in Fig. 6.11(a) show a WSS signal for

the transient and several peaks in the variance for the steady state that could be classified

heteroskedastic as there are significant peaks of increasing magnitude for the variance of

the signal. This is consistent with the expected behaviours from the test functions used in

the thesis. Finally, as shown by the auto-correlation and power spectrum in Fig. 6.12 and

6.13 respectively, the schedule does not show any long term dependance in the trajectories

of the steady state portion of the trajectory. This means that once entering that mode, the

algorithm begins a random search for better solutions to help escape the trap that is causing

some tasks to miss their deadlines. Furthermore, the correlation during the transient is very

subtle for this dimension, however depending on the initial location of the tasks relative to

its optimal position in the schedule, the correlation can show more significant trends.

Dario Schor
dario schor@umanitoba.ca

- 136 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

(a) Valid schedule for CN = 2 with 10% load (test06-p2-t20-
load10/007/p1.txt).

(b) Valid schedule for CN = 2 with 50% load (test07-p2-t20-
load50/017/p18.txt).

(c) Valid schedule for CN = 2 with 80% load (test08-p2-t20-
load80/005/p23.txt).

(d) Invalid schedule for CN = 2 with 80% load (test08-p2-t20-
load80/008/p23.txt).

Fig. 6.9: Sample schedules for CN = 2 load experiment. (a) Valid schedule for load of
10%. (b) Valid schedule for load of 50%. (c) Valid schedule for load of 80%. (d) Invalid
schedule for load of 80%. Tasks not labeled for legibility.

Dario Schor
dario schor@umanitoba.ca

- 137 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

50 100 150 200 250
−2

0

2

Particle Position [S
x,23

(n)]

Iteration

P
o
s
it
io

n

S

x,23,1
(n))

S
x,23,2

(n))

50 100 150 200 250

−2

0

2

Particle Velocity [S
v,23

(n)]

Iteration

V
e
lo

c
it
y

S

v,23,1
(n))

S
v,23,2

(n))

50 100 150 200 250

200

400

600

800

Particle Fitness [G
schedule

(S
x,23

(n)]

Iteration

F
it
n
e
s
s

G

schedule
(S

x,23
(n))

G
schedule

(S
p,23

(n))

(a) Trajectory for Sk = 23.

100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

Particle Position [S
x,23

(n)]

Iteration

P
o

s
it
io

n

S

x,23,1
(n))

S
x,23,2

(n))

100 200 300 400 500 600 700 800 900 1000

−2

−1

0

1

Particle Velocity [S
v,23

(n)]

Iteration

V
e

lo
c
it
y

S

v,23,1
(n))

S
v,23,2

(n))

100 200 300 400 500 600 700 800 900 1000

200

400

600

Particle Fitness [G
schedule

(S
x,23

(n)]

Iteration

F
it
n

e
s
s

G

schedule
(S

x,23
(n))

G
schedule

(S
p,23

(n))

(b) Trajectory for Sk = 23.

Fig. 6.10: Sample trajectories from CN = 2 with 80% system load experiment. Both
graphs show the d = 1 and d = 2 selected arbitrarily. (a) Results for successful run of the
algorithm (test08-p2-t20-load80/005/p23.txt). (b) Results from unsuccessful run of the
algorithm (test08-p2-t20-load80/008/p23.txt).

0 50 100 150 200 250
−2

0

2

Time Series (window=32, range=[2 300])

Sample

M
a
g
n
it
u
d
e

50 100 150 200 250
−0.1

0

0.1
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

50 100 150 200 250
0

0.5

1
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(a) Transient for trajectory.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−2

0

2

Time Series (window=150, range=[300 10000])

Sample

M
a

g
n

it
u

d
e

1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.01

0

0.01
First Moment (Window Size = 150)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.2

0.4
Second Moment (Window Size = 150)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(b) Steady state for trajectory.

Fig. 6.11: First and second moment of particle trajectory for schedule run using CN = 2
with an 80% system load. (a) Moments calculated for transient portion of the trajectory.
(b) Moments calculated for the steady state portion of the trajectory. (test08-p2-t20-
load80/008/p23.txt)

Dario Schor
dario schor@umanitoba.ca

- 138 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.3 Load Experiments

0 0.05 0.1 0.15 0.2 0.25

−2

−1

0

1

2

Time Series (fs=1000, range=[2 300])

Sample

M
a

g
n

it
u

d
e

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(a) Transient for trajectory.

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

Time Series (fs=1000, range=[300 10000])

Sample

M
a

g
n

it
u

d
e

0 2000 4000 6000 8000 10000
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(b) Steady state for trajectory.

Fig. 6.12: Auto-correlation of particle trajectory for schedule run using CN = 2 with an
80% system load. (a) Auto-correlation calculated for transient portion of the trajectory.
(b) Auto-correlation calculated for the steady state portion of the trajectory. (test08-p2-
t20-load80/008/p23.txt)

0 0.05 0.1 0.15 0.2 0.25

−2

−1

0

1

2

Time Series (fs=1000, range=[2 300])

Sample

M
a
g

n
it
u
d

e

1 2
−8

−6

−4

−2
Power Spectrum

Frequency

|X
(f

)|
2

(a) Transient for trajectory.

0 1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

Time Series (fs=1000, range=[300 10000])

Sample

M
a
g
n
it
u
d
e

−1 0 1 2
−15

−10

−5

0
Power Spectrum

Frequency

|X
(f

)|
2

(b) Steady state for trajectory.

Fig. 6.13: Power spectrum of trajectory for schedule run using CN = 2 with an 80% system
load. (a) Power spectrum of trajectory calculated for transient portion of the trajectory.
(b) Power spectrum of trajectory calculated for the steady state portion of the trajectory.
(test08-p2-t20-load80/008/p23.txt)

Dario Schor
dario schor@umanitoba.ca

- 139 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.4 Scalability Experiment

6.4 Scalability Experiment

The final experiment explores the performance as the number of tasks, TN increases

keeping all other parameters constant and using CN = 4 processors in the load experiment.

The objective is to see the effect of the increased dimensionality resulting from the RK

encoding that associates each task to a dimension in the scheduling problem.

The results for the scalability experiment are summarized in Fig. 6.14 and Table 6.5.

As expected, the performance deteriorates as the number of tasks increases. The number of

iterations for 40 and 50 tasks is similar to the results obtained for a hybrid PSO provided in

[CaEC07] with both gBest and `Best topologies. Although the performance decreases, the

transient portion is still very quick for the 50 task example as shown in Fig. 6.15. Therefore,

future improvements to the algorithm must focus on the performance in the steady state

portion of the trajectory.

20 Tasks 30 Tasks 40 Tasks 50 Tasks
0

1000

2000

3000

4000

5000
Scalability Results

It
e

ra
ti
o

n
s
 (

M
a

x
 5

0
0

0
)

20 Tasks 30 Tasks 40 Tasks 50 Tasks
0

10

20

30

40

50

V
a

lid
 S

c
h

e
d

u
le

s
 F

o
u

n
d

Fig. 6.14: Results of scalability experiment. The box plot shows how the algorithm takes
longer to find solutions as the number of tasks increases, while the number of valid schedules
found in the maximum 5,000 iterations decreases as the problem size increases.

Dario Schor
dario schor@umanitoba.ca

- 140 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.4 Scalability Experiment

Table 6.5: Parameters for scheduler benchmark experiment.

TN Schedule Runs Iterations (Mdn) Missed Cost

20
Valid 50/50 242.7± 325.8 (138.5) 0.0± 0.0 43.1± 11.4

Invalid 00/50 N/A N/A N/A

30
Valid 44/50 2136.5± 1170.3 (1864.0) 0.0± 0.0 48.5± 15.0

Invalid 06/50 5, 000.0± 0.0 (5, 000.0) 1.0± 0.0 32.0± 6.3

40
Valid 17/50 3872.4± 597.5 (3849.0) 0.0± 0.0 60.2± 13.3

Invalid 33/50 5, 000.0± 0.0 (5, 000.0) 1.3± 0.6 65.0± 20.1

50
Valid 04/50 4508.2± 394.0 (4587.0) 0.0± 0.0 83.0± 14.4

Invalid 46/50 5, 000.0± 0.0 (5, 000.0) 3.2± 1.7 109.2± 35.3

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

Particle Position [S
x,15

(n)]

Iteration

P
o

s
it
io

n

S

x,15,1
(n))

S
x,15,2

(n))

100 200 300 400 500 600 700 800 900 1000

−4

−2

0

2

4

Particle Velocity [S
v,15

(n)]

Iteration

V
e

lo
c
it
y

S

v,15,1
(n))

S
v,15,2

(n))

100 200 300 400 500 600 700 800 900 1000

1000

2000

3000

Particle Fitness [G
schedule

(S
x,15

(n)]

Iteration

F
it
n

e
s
s

G

schedule
(S

x,15
(n))

G
schedule

(S
p,15

(n))

Fig. 6.15: Sample trajectories from CN = 4 with 50% scalability experiment with 50
tasks. Both graphs show the d = 1 and d = 2 selected arbitrarily. (test08-p2-t20-
load80/005/p23.txt).

Dario Schor
dario schor@umanitoba.ca

- 141 of 157 - v042/06-results-and-discussion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 6.5 Summary

6.5 Summary

This chapter described the three experiments used to test the performance of the sched-

uler for extreme examples, different system loads, and varying numbers of tasks. The tra-

jectory of the particles in the scheduler presented (i) confirm the behaviours extracted in

Sec. 4.1.4 still apply, (ii) demonstrate the effectiveness of PSO during the transient phase,

and (iii) show the weaknesses of the algorithm when performing local searches during the

steady-state phase. The following chapter summarizes the results and contributions from

this study as they pertain to both scheduling and the study of PSO trajectories.

Dario Schor
dario schor@umanitoba.ca

- 142 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7. Conclusions

Chapter 7

Conclusions

7.1 Overview

This thesis presents a scheduler algorithm for symmetric multiprocessors (SMP) for

real-time applications, such as small satellites. The scheduler uses the particle swarm opti-

mization (PSO) algorithm to find valid solutions that meet the requirements for the system

as described in Ch. 4. This is supported through a data-driven study of the particle trajec-

tories that aid in the selection of parameters and evaluation of both the optimization and

scheduler algorithm performance. In Ch. 6, three main experiments are used to demonstrate

the capabilities of the scheduler. The experiments include (i) a benchmark set of problems

with zero slack in all tasks, (ii) using different system loads, and (iii) finally testing on

different problem sizes. The results indicate the algorithm can find solutions for small task

sets (TN ≤ 30). The data driven analysis of trajectories for the schedule reveals that the

algorithm can find partial solutions in very few iterations proportional to the problem size,

but fails to escape these local minima to produce a valid schedule. This is consistent with

the behaviour observed for other test functions where the directed movement of the particles

Dario Schor
dario schor@umanitoba.ca

- 143 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7.2 Thesis Conclusions

fades upon reaching a local solution.

7.2 Thesis Conclusions

This thesis attempted to answer many interesting research questions about evolutionary

algorithms (EAs), PSO, and scheduling algorithms, as outlined in Sec. 1.2.3. This section

links back the results and observations to the research questions to provide insight into the

answers and potential future research.

The long-term dependencies in the behaviour of particles serve as a significant indicator

of the performance of EAs, as these indicate whether the system is evolving towards a

solution, or whether it has reached its limitations and is proceeding with small random

perturbations. This is reinforced through the power spectrum analysis that evaluates the

transient and steady state portions of particle trajectories independently. The negative

slope in the spectrum of the transient shows the explicit directed movement of individual

particlesThe particle ensemble analysis indicates that the topology has a larger influence on

the trajectories than the personal and social weights. This was reinforced by fixing the initial

conditions for particles and showing the weights gave rise to heteroskedastic behaviours in

the trajectories, but did not affect the overall trajectory of the particles.

For this thesis, a typical particle in the swarm is selected for analysis based on the

mean square error (MSE) of individual trajectories with respect to an ensemble mean.

The ensemble constructed from repeated runs with fixed initial conditions. The typical

particle showed a transient and steady state phases, with corresponding properties, that

were consistent across different cost functions. Although the typical particle reveals many

interesting behaviours and characteristics of the movement of the swarm, further research

into some other cases, such as the worst behaving particle with greatest MSE, are required

to fully comprehend the behaviour of the swarm.

Dario Schor
dario schor@umanitoba.ca

- 144 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7.2 Thesis Conclusions

In an effort to produce results that could be evaluated against previously published

material, the convergence rate was used as an indicator into the performance of the PSO

algorithm. Although this is effective, as shown in Tables 6.4 and 6.5, the mean behaviours

may be misleading indicators of the performance of the algorithm that do not tell the

full story. The distribution of solutions shows what may be described as outliers from

particle trajectories that spent many iterations testing semi-random solutions during the

steady-state portion of the trajectory. This is more pronounced in the thesis because there

is a very well defined termination criterion in terms of missed deadlines. However, in

continuous problems (i.e., not sequencing in scheduling), such criteria are difficult to define

because the small variations can appear to always improve the fitness much more so than

in the discretized set of sequences obtained through the RK encoding for scheduling. For

more implementation independent measures, it is necessary to find a more clear means of

identifying the transition between the transient and steady state portions of the algorithm,

as that iteration number would be more indicative of the performance than using the final

count.

The framework described in Sec. 4.1.4 can be used to determine the impact of different

PSO parameters, such as topologies and weights, on the trajectories of the particles. This

gives insight into the different levels of exploration that can be achieved through changes in

topologies as shown in [ScKA10], since the analysis is implementation independent, thus it

can be used to complement the convergence rate metrics commonly used for comparing EAs.

A full sensitivity analysis is not provided as part of the thesis. The techniques presented

can lead to a better understanding for particular problems.

Finally, the scheduler implemented demonstrates that EAs can be used for scheduling in

SMP. A cost function based on minimum total tardiness (MTT) with cumulative penalties

is presented in Sec. 4.2.3 and tested extensively in Sec. 4.2.5. The results indicate the

algorithm can find solutions consistently for up to 30 tasks under different system loads,

Dario Schor
dario schor@umanitoba.ca

- 145 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7.3 Contributions

however, it does not scale very well because of the random keys (RK) encoding used. The

proposed scheduler is designed around cumulative penalties such that it can be adjusted for

different scenarios including task precedence, priorities, and processor affinity.

7.3 Contributions

This thesis contributes to new knowledge to the performance and behaviour of PSO

as well as novel implementations for scheduling in SMP systems. These contributions are

outlined below.

(a) A novel data-driven analysis of PSO particle trajectories is presented and consists of

looking at the step size (or velocity) of the particles along single dimensions to extract

characteristics in the behaviour. In particular, the analysis revealed a clear distinction

in the directed movement of the particles during the transient phase, which showed

the long-term trends in the behaviour, as compared to the steady-state portions, where

perturbations appear to be more random as the particle explores the local space. The

data-driven analysis revealed the importance of the swarm topology compared to the

stochastic processes in the personal and social weights. For a fixed set of initial condi-

tions and a given topology, the particles’ movement is well defined with minor variations

at the tail end of the trajectories. This is a very important finding that can also be

used to evaluate and compare different topologies to understand how the behaviour of

the individual particles (microcosm) and the swarm (macrocosm) work under different

conditions.

(b) A complexity estimate for PSO is provided with some insights into improvements to

the algorithm that were implemented and tested as part of this thesis. Such metrics

are often left out in the study of EAs, but are needed in order to estimate and verify

whether such algorithms can be used in embedded applications.

Dario Schor
dario schor@umanitoba.ca

- 146 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7.4 Limitations and Potential Solutions

(c) A novel cost function for scheduling aperiodic and independent real-time tasks based

on MTT and cumulative penalties is presented in this thesis. The algorithm performs

well under small problem sets, TN ≤ 30, and shows a very fast transient towards

good solutions. This demonstrates the evolutionary processes behind the scheduler are

working as designed. Since valid schedules are not produced 100% of the time, it is

recommended that this be used either for non-critical applications.

(d) Finally, a task generator and simulator are described such that the system load and the

amount of surplus resources are both taken into account. This is a novel combination

of a schedulability test with task generation and can be used in other applications to

model different kinds of behaviours. In this thesis, uniform distributions of tasks were

needed, while by changing the trend in the RA(t) curve, one can generate tasks sets

that match those observed in different applications.

7.4 Limitations and Potential Solutions

The limitations in the work presented are divided into two categories: (i) swarm anal-

ysis, and (ii) scheduling.

The analysis of PSO demonstrated that there is a clear distinction in the trajectory of

the particles as they transition from the transient to the steady-state mode. It is difficult

to identify the key point where the transition takes place. In this thesis, the value was

selected by inspecting the plots and selecting a value in the appropriate range. Identifying

such point is very important because spending extra time searching can be shown to have

little to no impact on finding the solution and therefore is detrimental to the process.

Therefore, to help identify that range, multi-scale techniques that extract the long-term

relationship are needed. One suggestion would be to use the variance fractal dimension

trajectory (VFDT) as it serves in classification of signals and can detect changes in the

Dario Schor
dario schor@umanitoba.ca

- 147 of 157 - v042/07-conclusion.tex
June 12, 2013

Study of PSO for Real-Time Scheduling 7.4 Limitations and Potential Solutions

correlation of steps through a sliding window and is not susceptible to possible outliers in

the trajectory [Kins09]. Using that information, the search then needs to be modified to

expedite the process for the particular application.

In the scheduling algorithm, the main limitations came from the characteristics of the

parameter space defined through the RK encoding. In essence, trying to map discrete

permutations of the schedule to a continuous space for particles to move through causes

many flat areas where particles can get stuck. These plateau regions do not have a slope in

either direction and thus make it difficult for particles to determine which direction to move

in order to improve the search. In the early stages of the algorithm, this is not a serious

issue because the forces from the other particles in the neighbourhood are sufficient to make

the particle move large distances and avoid these flat surfaces. However, as the particles

converge in one area, the problem becomes more difficult to solve. The approach taken in

the thesis used a directed mutation for the dimension associated with a task that missed a

deadline. Although this helps the algorithm in some cases and produces some of the high

iteration count solutions, the method is not entirely effective. Another approach would

involve using an alternative encoding mechanism that retains the benefits of a continuous

PSO while smoothing out the parameter space.

Finally, the dimensionality of the scheduler is again limited by the RK encoding. By

mapping each task to a unique dimension, the problem becomes very difficult to solve. To

overcome this, new encoding techniques are needed that can group information through

hash-like functions and provide unique identifiers in a continuous domain.

Dario Schor
dario schor@umanitoba.ca

- 148 of 157 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

References

[Ange98] Peter Angeline, “Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences,” Evolutionary Programming VII, vol.
1447, pp. 601–610, 1998.

[BSDK13] Kuran Budhraja, Ashutosh Singh, Gaurav Dubey, and Arun Khosla, “Explo-
ration Enhanced Particle Swarm Optimization using Guided Re-Initialization,”
in Proceedings of Seventh International Conference on Bio-Inspired Comput-
ing: Theories and Applications, BIC-TA 2012 (Gwalior, India; December 14-16,
2012) in Jagdish Bansal, Pramod Singh, Kasum Deep, Millie Pant, and Atulya
Nagar, editors, Advances in Intelligent Systems and Computing, pp. 403–416,
Spinger Berlin Heidelberg, 2012. {ISBN 978-81-322-1037-5}

[BeCa06] S. Beaudette, J. de Carufel, D. McCabe, W. Whitehead, R. Buckingham, C.
Pye, P. Tremblay, D. Kefallinos, and A. Thompson, “RADARSAT Constellation
Mission Phase A Spacecraft Bus Development – Work to Date,” in Proc. of
the 13th CASI Aeronautics Conference, ASTRO 2006, (Montreal, QC, Canada;
April 2006), pp. 1–11, 2006.

[BeEn06] Frans van den Bergh and Andries Engelbrecht, “A study of particle swarm
optimization particle trajectories,” Information Sciences, vol. 176, no. 8, pp.
937–971, 2006.

[Bean94] James C. Bean, “Genetics and random keys for sequencing and optimization,”
ORSA Journal on Computing, vol. 6, no. 2, pp. 154–160, 1994.

[Berg01] Frans van den Bergh, An Analysis of Particle Swarm Optimizers, Ph.D. thesis,
University of Pretoria, Pretoria, South Africa, 300 pp., 2001.

[Boyd04] Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, New York, NY, USA, 2004, 727 pp. {ISBN 978-0521833783}

[BrKe07] Daniel Bratton and James Kennedy, “Defining a Standard for Particle Swarm
Optimization,” in Swarm Intelligence Symposium, 2007, SIS 2007, (Honolulu,
Hawaii, USA; April 1-5, 2007), pp. 120–127, 2007.

Dario Schor
dario schor@umanitoba.ca

- 149 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[Bruc95] Peter Brucker, Scheduling Algorithms, Springer-Verlag, Secacus, NJ, USA, 1995,
326 pp. {ISBN 978-3540600879}

[CaEC07] Leticia Cagnina, Susana Esquivel, and Carlos Coello, “Hybrid Particle Swarm
Optimizers in the Single Machine Scheduling Problem: An Experimental Study,”
in Keshav Dahal, Kay Chen Tan, and Peter Cowling, editors, Evolution-
ary Scheduling, vol. 49 of Studies in Computational Intelligence, pp. 143–164,
Springer Berlin Heidelberg, 2007. {ISBN 978-3-540-48582-7}

[Chen02] Albert Cheng, Real-Time Systems Scheduling, Analysis and Verification, John
Wiley & Sons, Inc., New York, NY, USA, 2002, 552 pp. {ISBN 978-0471184065}

[ChRJ06] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen, “An Optimal Real-
Time Scheduling Algorithm for Multiprocessors”, in Proc. of the 27th IEEE
International Real-Time Systems Symposium, RTSS06, (Rio de Janeiro, Brazil;
December 5-8, 2006), pp. 101–110, 2006.

[ClKe02] Maurice Clerc and James Kennedy, “The particle swarm - explosion, stabil-
ity, and convergence in a multidimensional complex space,” IEEE Trans. on
Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[CoMM67] Richard Conway, William Maxwell, and Louis Miller, Theory of Scheduling,
Addison-Wesley Publishing Company, 1967, 294 pp. {ISBN 978-0486428178}

[Cook10] Darcy Cook, A Multiprocessing System-on-Chip Framework Targeting Stream-
Oriented Applications, Master’s thesis, University of Manitoba, Winnipeg,
Canada, 189pp. 2010.

[CoFe13] Darcy Cook and Ken Ferens, “Performance Analysis of a Reconfigurable Shared
Memory Multiprocessor System for Embedded Applications,” Journal of ICT
Research and Applications, February 2013.

[DeMo89] Michael Dertouzos and Aloysius Ka-Lau Mok, “Multiprocessor On-Line
Scheduling of Hard-Real-Time Tasks,” IEEE Transactions on Software Engi-
neering, vol. 15, no. 12, pp. 1497–1506, 1989.

[DePW04] A. Denis, S. Page, and I. Walkty, “The Evolution of a SCISAT-1 Spacecraft to
Provide a Generic Small Satellite Bus for the Canadian Space Agency,” in Proc.
of the 55th Int. Astronautical Congress, IAC 2004, (Vancouver, BC, Canada;
October 4-8, 2004), vol. 5, pp. 3362–3370, 2004.

[DoMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, “Ant System: Opti-
mization by a Colony of Cooperating Agents,” IEEE Transactions on System,
Man, and Cybernetics – Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[Dvor09] Daniel Dvorak, “NASA Study on Flight Software Complexity,” Tech. rep., Sys-
tems and Software Division, Jet Propulsions Laboratory, NASA, 2009.

Dario Schor
dario schor@umanitoba.ca

- 150 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[EbKe95] Russell Eberhart and James Kennedy, “A new optimizer using particle swarm
theory,” in Proc. of the Sixth International Symposium on Micro Machine and
Human Science, MHS 1995, (Nagoya, Japan; October 4-6, 1995), pp. 39–43,
1995.

[EbSh00] Russell Eberhart and Yuhui Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. of the 2000 Congress on Evolu-
tionary Computation, CEC 2000, (La Jolla, California, USA; July 16-19, 2000),
vol.1, pp. 84–88, 2000.

[EbSh07] Russell Eberhart and Yuhui Shi, Computational Intelligence Concepts to Im-
plementations, Morgan Kaufmann Publishers, Burlington, MA, USA, 2007, 467
pp. {ISBN 978-1558607590}

[FlMa08] Dario Floreano and Claudio Mattiussi, Bio-Inspired Artificial Intelligence, MIT
Press, Cambridge, MA, USA, 2008, 659pp. {ISBN 978-0-262-06271-8}

[FoBe95] David Fogel and Hans-Georg Beyer, “A note on the empirical evaluation of
intermediate recombination,” Evolutionary Computing, vol. 3, no. 4, pp. 491–
495, 1995.

[Fogo97] David Fogel, “The Advantages of Evolutionary Computation,” in Proc. of Bio-
computing and Emergent Computation, BCEC1997, (Skvde, Sweden; September
1-2, 1997), 11 pp., 1997.

[Forr91] Stephanie Forrest, Emergent Computation, MIT Press, Cambridge, MA, USA,
1991, 452pp. {0-262-56057-7}

[FuNa10] Shelby Funk and Vijaykant Nadadur, “LRE-TL: An Optimal Multiprocessor
Scheduling Algorithm for Sporadic Task Sets”, ACM Journal of Real-Time Sys-
tems, vol. 46, no. 3, pp. 332–359, 2010.

[GOLD09] –, “Rules for the Design, Development, Verification, and Operation of Flight
Systems,” Goddard Technical Standard GSFC-STD-1000E, NASA, Goddard
Space Flight Center, Greenbelt, MD 20771, 2009.

[Glov89] Fred Glover, “Tabu Search - Part 1,” ORSA Journal on Computing, vol. 1, no. 3,
pp. 190–206, 1989.

[Glov90] Fred Glover, “Tabu Search - Part 2,” ORSA Journal on Computing, vol. 2, no. 1,
pp. 4–32, 1990.

[GrKi98] J. Greenberg and W. Kinsner, “Characterizing behaviour of birth/death pro-
cesses using fractal measures,” in Proc. of the IEEE Canadian Conference on
Electrical and Computer Engineering, CCECE 1998, (Waterloo, ON, Canada;
May 24-28, 1998) pp. 373–376, 1998.

Dario Schor
dario schor@umanitoba.ca

- 151 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[Gree11] William Greene, Econometric Analysis, Prentice Hall, 7th edn., 2011, 1232 pp.
{ISBN 978-0131395381}.

[HaKo10] Raymond Harris, Diane Kotelko, Ian Walkty, Walter Czyrnyj, Paul Harrison,
and Dave McCabe, “Small Satellite Bus Evolution at Magellan Aerospace,” in
Proc. of the 15th CASI Aeronautics Conference, ASTRO 2010, (Montreal, QC,
Canada; May 4-6, 2010), pp. 1–14, 2010.

[HaLo05] David Harland and Ralph Lorenz, Space Systems Failures - Disasters and Res-
cues of Satellites, Rockets, and Space Probes, Springer Praxis Books, 2005, 368
pp. {ISBN 978-0387215198}

[HaMB06] P. Harrison, D. McCabe, S. Beaudette, P. Gregory, and A. Scott, “Accommodat-
ing the Chinook Mission Pointing Requirements with the Magellan MAC-200
SmallSAT Bus,” in Proc. of the 13th CASI Aeronautics Conference, ASTRO
2006, (Montreal, QC, Canada; April 2006), pp. 1–15, 2006.

[Holl75] John H. Holland, Adaptation in Natural and Artificial Systems - An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence,
University of Michigan Press, 1975, 183 pp. {ISBN 978-0472084609}

[John01] Steven Johnson, Emergence: The Connected Lives of Ants, Brains, Cities, and
Software, Scribner, 2001, 288 pp. {ISBN 978-0684868769}

[Jong75] Kenneth Alan De Jong, An analysis of the behavior of a class of genetic adaptive
systems., Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA, 268pp.,
1975.

[KSFC12] Witold Kinsner, Dario Schor, Mohammadreza Fazel-Darbandi, Brendan Cade,
Kane Anderson, Cody Friesen, Diane Kotelko, and Philip Ferguson, “The T-
Sat1 Nanosatellite Team of Teams,” in Proc. of the 11th IEEE Intermational
Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2012,
(Kyoto, Japan; August 22-24, 2012), pp. 1–11, 2012.

[KZHZ11] Ayda Kaddoussi, Nesrine Zoghlami, Slim Hammadi, and Hayfa Zgaya, “An
Agent-based distributed scheduling for military logistics,” in Proceedings of the
11th International Conference on Intelligent Systems Design and Applications
(ISDA), pp. 134 –140, 2011.

[KaCa03] Tom Kalisker and Doug Camens, “Solving Mastermind Using Genetic Algo-
rithms,” in Proc. of the Genetic and Evolutionary Computation Conference,
(Chicago, IL, USA; July 12-16, 2003), pp. 1590–1591, 2003.

[KaSc04] Holger Kantz and Thomas Schreiber, Nonlinear Time Series Analysis, Cam-
bridge University Press, 2nd edn., 2004, 388pp. {ISBN 978-0521529020}

[KeEb01] James Kennedy and Russell Eberhart, Swarm Intelligence, Morgan Kaufmann,
2001, 512pp. {ISBN 978-1558605954}

Dario Schor
dario schor@umanitoba.ca

- 152 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[KeEb95] James Kennedy and Russell Eberhart, “Particle swarm optimization,” in Proc.
of the IEEE International Conference on Neural Networks, 1995, (Perth, WA,
USA; November 27-December 1, 1995), vol. 4, pp. 1942–1948, 1995.

[KeEb97] James Kennedy and Russell Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, (Orlando, FL, USA; October 12-15, 1997), vol. 5, pp.
4104–4108, 1997.

[KeMe02] James Kennedy and Rui Mendes, “Population structure and particle swarm
performance,” in Proc. of the 2002 Congress on Evolutionary Computing, CEC
2002, (Honolulu, Hawaii, USA; May 12-17, 2002), pp. 1671–1676, 2002.

[Kenn07] James Kennedy, “Some Issues and Practices for Particle Swarms,” in IEEE
Swarm Intelligence Symposium, SIS 2007, (Honolulu, Hawaii, USA; April 1-5,
2007), pp. 162–169, 2007.

[Kenn97] James Kennedy, “The particle swarm: social adaptation of knowledge,” in Proc.
of the IEEE International Conference on Evolutionary Computation, CEC 1997,
(Indianapolis, IN, USA; April 13-16, 1997), pp. 303–308, 1997.

[Kenn99a] James Kennedy, “Small worlds and mega-minds: effects of neighborhood topol-
ogy on particle swarm performance,” in Proc. of the 1999 Congress on Evolu-
tionary Computation, CEC 1999, (Washington, DC, USA; July 6-9, 1999), pp.
1931–1938, 1999.

[Kins04] Witold Kinsner, “Is entropy suitable to characterize data and signals for cog-
nitive informatics?” in Proc. of the Third IEEE International Conference on
Cognitive Informatics, ICCI 2004, (Victoria, BC, Canada; August 16-17, 2004),
pp. 6–21, 2004.

[Kins05] Witold Kinsner, “Some advances in cognitive informatics,” in Proc. of the
Fourth IEEE International Conference on Cognitive Informatics, ICCI 2005,
(Irvine, CA, USA; August 8-10, 2005), pp. 6–7, 2005.

[Kins05b] Witold Kinsner, “A unified approach to fractal dimensions,” in Proc. of the
Fourth IEEE International Conference on Cognitive Informatics, ICCI 2005,
(Irvine, CA, USA; August 8-10, 2005), pp. 58–72, 2005.

[Kins09] Witold Kinsner, “Fractal and Chaos Engineering,” Course Notes; Winnipeg MB;
University of Manitoba, 2009, 900pp.

[Kins12] Witold Kinsner, “Microprocessing Interfacing for Real-Time Systems Course
Notes,” Tech. rep., Winnipeg, MB: Department of Electrical and Computer
Engineering, University of Manitoba, 2012.

[Kirk83] S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi, “Optimization by Simulated
Annealing”, Science, vol. 220, no. 4598, pp. 671-680, 1983.

Dario Schor
dario schor@umanitoba.ca

- 153 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[Koen85] Billy Vaughn Koen, Definiition of the Engineering Method, American Society
for Engineering, 1985, 74 pp. {ISBN 978-0878231010}

[LeRB77] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of Machine
Scheduling Problems,” Annals of Discrete Mathematics, vol. 1, pp. 343–362,
1977.

[Leho96] J. Lehoczky, “Real-time queueing theory,” in Proc. of the IEEE Real-Time
Systems Symposium, (Los Alamitos, CA, USA; December 4-6, 1996), pp. 186–
195, 1996.

[LiWJ07] Bo Liu, Ling Wang, and Yi-Hui Jin, “An Effective PSO-Based Memetic Algo-
rithm for Flow Shop Scheduling,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 37, no. 1, pp. 18–27, 2007.

[Liu00] Jane W. S. Liu, Real-time systems, Prentice Hall, New Jersey, USA, 2000, 592
pp. {ISBN 978-0130996510}

[LiuW05] Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, and De-Xian Huang, “Improved
particle swarm optimization combined with chaos,” Chaos, Solitons & Fractals,
vol. 25, no. 5, pp. 1261–1271, 2005.

[MAW09] Neil Gadhok, Dario Schor, Diane Kotelko, Ian Walkty, and Walter Czyrnyj,
“ER103105A RCM Communications and Data Processing Analysis (SDRL
EN43-B).” Tech. rep., Magellan Aerospace Winnipeg, 2009.

[Math00] Mohit Mathur, Sachin Karale, Sidhartha Priye, V. K. Jayaraman, and B. D.
Kulkarni, “Ant Colony Approach to Continuous Function Optimization,” Indus-
trial & Engineering Chemistry Research, vol. 39, no. 10, pp. 3814–3822, 2000.

[MeKN04] Rui Mendes, James Kennedy, and Jose Neves, “The fully informed particle
swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Comput-
ing, vol. 8, no. 3, pp. 204–210, 2004.

[Mend04] Rui Mendes, Population Topologies and Their Infuence in Particle Swarm Per-
formance, Ph.D. thesis, Escola de Engenharia, Universidade do Minho, Braga,
Portugal, 184pp., 2004.

[Nell11] Peter Nell, “Reconfigurable Processing Platform - FPGA Based, Multi-core, Dy-
namically Reconfigurable Processing Platform,” in Proceedings of the Canadian
Space Agency Workshop on the Utilization of Field Programmable Gate Arrays
(FPGA’s) in Canadian Space Missions, p. 14, Magellan Aerospace, 2011.

[OzMo99] Ender Ozcan and Chilukuri Mohan, “Particle swarm optimization: surfing the
waves,” in Proc. of the 1999 Congress on Evolutionary Computation, CEC 1999,
(Washington, DC, USA; July 6-9, 1999), vol. 3, pp. 1939–1944, 1999.

Dario Schor
dario schor@umanitoba.ca

- 154 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[PaHa06] Steve Page, Raymon Harris, Ian Walkty, Dave Beattie, and Harold Dahl, “The
Development of the MAC-200 Small Satellite Bus The Development of the MAC-
200 Small Satellite Bus for the Canadian Space Agency,” in Proc. of the 13th
CASI Aeronautics Conference, ASTRO 2006, (Montreal, QC, Canada; April
2006), pp. 1–12, 2006.

[PeBr04] Walter Peruzzini and Gilles Brassard, “Canadian Multi-Mission Small and Micro
Satellite Buses,” in Proc. of the 55th Int. Astronautical Congress, IAC 2004,
(Vancouver, BC, Canada; October 4-8, 2004), vol. 6, pp. 3632–3635, 2004.

[PrZe09] Freddy Pranajaya and Robert Zee, “The Generic Nanosatellite Bus: From Space
Astronomy to Formation Flying Demo to Responsive Space,” in Proc. of the
First International Conference on Advances in Satellite and Space Communi-
cations, SPACOMM 2009, (Colmar, France; July 20-25, 2009), pp. 134 –140,
2009.

[RaSt94] Krithi Ramamritham and John Stankovic, “Scheduling algorithms and operat-
ing systems support for real-time systems,” Proceedings of the IEEE, vol. 82,
no. 1, pp. 55–67, 1994.

[RiVe02] Jacques Riget and Jakob Vesterstoem, “A diversity-guided particle swarms opti-
mizer - the ARPSO,” Tech. Rep. 2002-02, Dept. of Computer Science, University
of Aarhus, Denmark, 13 pp., 2002.

[SSNK09] Dario Schor, Jane Polak Scowcroft, Christopher Nichols, and Witold Kinsner,
“A command and data handling unit for pico-satellite missions,” in Proc. of the
IEEE Canadian Conference on Electrical and Computer Engineering, CCECE
2009, (St. John’s, NL, Canada; May 3–6, 2009), pp. 868–873, 2009..

[ScKA10] Dario Schor, Witold Kinsner, and John Anderson, “A Study of Optimal Topolo-
gies in Swarm Intelligence,” in IEEE Canadian Conference on Electrical and
Computer Engineering, CCECE 2010, (Calgary, AB; May 2–5, 2010), pp. 1–8,
2010.

[ScKM11] Dario Schor, Witold Kinsner, and Kathryn Marcynuk, “Reinforcing the design
foundation of asynchronous serial data communications using logic and protocol
analyzers,” in Proc. of the Canadian Engineering Education Association Con-
ference, CEEA 2011, (St. John’s, NL, Canada; June 6–8, 2011), pp. 1–6, 2011.

[ScKi10] Dario Schor and Witold Kinsner, “A Study of Particle Swarm Optimization for
Cognitive Machines,” in Proc. of the 9th IEEE Intermational Conference on
Cognitive Informatics, ICCI 2010, (Beijin, China; July 7–9, 2010), pp. 26–33,
2010.

[ScKi11a] Dario Schor and Witold Kinsner, “Time and Frequency Analysis of Particle
Swarm Trajectories for Cognitive Machines,” International Journal of Cognitive
Informatics and Natural Intelligence, vol. 5, no. 1, pp. 18–41, 2011.

Dario Schor
dario schor@umanitoba.ca

- 155 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[ScKi11b] Dario Schor and Witold Kinsner, “Towards Agent Swarm Optimization,” in
Proc. of the 10th IEEE Intermational Conference on Cognitive Informatics
and Cognitive Computing, ICCI*CC 2011, (Banff, AB, Canada; August 18–20,
2011), pp. 227–234, 2011.

[SeMa09] Davoud Sedighizadeh and Ellips Masehian, “Particle Swarm Optimization:
Methods, Taxonomy, and Applications,” International Journal of Computer
Theory and Engineering, vol. 1, no. 5, pp. 486–502, 2009.

[ShEb98] Yuhui Shi and Russell Eberhart, “A modified particle swarm optimizer,” in
Proc. of the IEEE International Conference on Evolutionary Computation, (An-
chorage, AK, USA; May 4-9, 1998), pp. 69–73, 1998.

[ShEb99] Yuhui Shi and Russell Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Proc. of the 1999 Congress on Evolutionary Computation, CEC 1999,
(Washington, DC, USA; July 6-9, 1999), vol. 3, pp. 1945–1950, 1999.

[ShKi96] D. Shaw and Witold Kinsner, “Chaotic simulated annealing in multilayer feed-
forward networks,” in Proc. of the IEEE Canadian Conference on Electrical
and Computer Engineering, CCECE 1996, (Calgary, AB, Canada; May 26-29,
1996), vol. 1, pp. 265 –269, 1996.

[SoDo08] Krzysztof Socha and Marco Dorigo, “Ant colony optimization for continuous
domains,” European Journal of Operational Research, vol. 185, pp. 1155–1173,
2008.

[Soch08] Krzysztof Socha, Ant Colony Optimization for Continuous and Mixed-Variable
Domains, Ph.D. thesis, IRIDIA, CoDE, University Libre de Bruxelles, Brussels,
Belgium, 193 pp., 2008.

[SpYo89] Timothy Spinney and Hassan Yousef, “Standard satellite data bus initiative,”
in Proc. of the IEEE Aerospace Applications Conference, (Breckenridge, CO,
USA; February 12-17, 1989), pp. 10, 1989.

[TBLW11] Terry Tidwell, Carter Bass, Eli Lasker, Micah Wylde, Christopher Gill, and
William Smart, “Scalable Utility Aware Scheduling Heuristics for Real-time
Tasks with Stochastic Non-preemptive Execution Intervals,” in Proc. of the 23rd
Euromicro Conference on Real-Time Systems, ECRTS 2011, (Porto, Portugal;
July 5-8, 2011), pp. 238–247, 2011.

[Trel03] Ioan Cristian Trelea, “The particle swarm optimization algorithm: convergence
analysis and parameter selection,” Information Processing Letters, vol. 85, no.
6, pp. 317–325, 2003.

[WaSt99] Duncan Watts and Steven Strogatz, “Collective dynamics of “small-world” net-
works,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

Dario Schor
dario schor@umanitoba.ca

- 156 of 157 - v042/thesis.bbl
June 12, 2013

Study of PSO for Real-Time Scheduling REFERENCES

[WeBe06] V. A. Wehrle, S. Beaudette, D. McCabe, P. Harrison, and I. R. Mann, “OR-
BITALS SmallSAT Mission Overview and Spacecraft Concept,” Proc. of the 13th
CASI Aeronautics Conference, ASTRO 2006, (Montreal, QC, Canada; April
2006), pp. 1–13, 2006.

[WeLa99] James Wertz and Wiley Larson, Space Mission Analysis and Design, Microcosm
Press, 3rd edn., 1999. 976 pp. {ISBN 978-1881883104}

[WoMa97] David Wolpert and William Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82,
1997.

[ZiPL05] Karin Zielinski, Dagmar Peters, and Rainer Laur, “Stopping Criteria for Single-
Objective Optimization,” in Proc. of the Third Int. Conference on Computa-
tional Intelligence, Robotics and Autonomous Systems, CIRAS 2005, (Singa-
pore; December 14-16, 2005), 6 pp., 2005.

There are 92 references included in this thesis. They range from 1967 through 2013, with
the majority from the early 2000s.

Dario Schor
dario schor@umanitoba.ca

- 157 of 157 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A. Particle Trajectory Analysis

Appendix A

Particle Trajectory Analysis

This appendix contains a collection of the graphs studied as part of the trajectory

study described in Sec. 4.1.4. Section A.1 contains the results of the verification tests for

moments, correlation, and power spectrum tests. Following that, Sec. A.2-A.5 contain the

plots analyzed for the Sphere, Rosenbrock, Rastrigin, and Griewank functions respectively.

Some of the more significant results appeared in the main body of the text and are repeated

here as a means of providing a complete and compact set.

The data used to generate these plots is available in the accompanied CD under the

output folder as described in Appendix E.

Dario Schor
dario schor@umanitoba.ca

- A1 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.1 Verification of Analysis Functions

A.1 Verification of Analysis Functions

A.1.1 WSS Analysis Functions

0 200 400 600 800 1000
−1

0

1

Time Series

Sample

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
−0.05

0

0.05
First Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
0.48

0.5

0.52
Second Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

sin(2 π 60 t)

(a) Sinusoidal waveform verification.

0 200 400 600 800 1000
−2

0

2

Time Series

Sample

M
a
g
n
it
u
d
e

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1
First Moment (Window Size = 256)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

100 200 300 400 500 600 700 800 900 1000
0.72

0.74

0.76
Second Moment (Window Size = 256)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

0.7*sin(2 π 50 t) + sin(2 π 120 t)

(b) Composite sinusoidal waveform verifica-
tion.

0 200 400 600 800 1000
−1

0

1

Time Series

Sample

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1
First Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
0.995

1
Second Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

square(2 π 30 t)

(c) Square waveform verification.

0 200 400 600 800 1000
−1

0

1

Time Series

Sample

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
−0.05

0

0.05
First Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
0.32

0.34

0.36
Second Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

triangle(2 π 30 t)

(d) Triangle waveform verification.

0 200 400 600 800 1000
0

0.5

1

Time Series

Sample

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6
First Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900 1000
0.05

0.1
Second Moment (Window Size = 256)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

White Noise

(e) White noise verification.

0 200 400 600 800 1000
−10

0
10
20

Time Series

Sample

M
a
g

n
it
u

d
e

100 200 300 400 500 600 700 800 900 1000
−10

0

10
First Moment (Window Size = 64)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

100 200 300 400 500 600 700 800 900 1000
0

5
Second Moment (Window Size = 64)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

Brown Noise

(f) Brown noise verification.

Fig. A.1: Verification of WSS analysis function using six test cases: (a) sinusoidal wave-
form, (b) composite sinusoidal waveform, (c) square wave, (d) triangle wave, (e) white
noise, and (f) brown noise.

Dario Schor
dario schor@umanitoba.ca

- A2 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.1 Verification of Analysis Functions

A.1.2 Auto-correlation Analysis Functions

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

sin(2 π 60 t)

(a) Sinusoidal waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−2

−1

0

1

2

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

0.7*sin(2 π 50 t) + sin(2 π 120 t)

(b) Composite sinusoidal waveform verifica-
tion.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

square(2 π 30 t)

(c) Square waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

triangle(2 π 30 t)

(d) Triangle waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

White Noise

(e) White noise verification.

0 0.1 0.2 0.3 0.4 0.5
−5

0

5

10

15

20

Time Series (fs=2000)

Sample

M
a

g
n

it
u

d
e

0 200 400 600 800 1000 1200
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

Brown Noise

(f) Brown noise verification.

Fig. A.2: Verification of auto-correlation analysis function using six test cases: (a) sinu-
soidal waveform, (b) composite sinusoidal waveform, (c) square wave, (d) triangle wave,
(e) white noise, and (f) brown noise.

Dario Schor
dario schor@umanitoba.ca

- A3 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.1 Verification of Analysis Functions

A.1.3 Power Spectrum Analysis Functions

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5
0

0.5
1

Time Series (f
s
=2000)

Sample

M
a

g
n

it
u

d
e

0 1 2 3
−10

−5

0
Power Spectrum

Frequency

|X
(f

)|
2

sin(2 π 60 t)

(a) Sinusoidal waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−2
−1

0
1
2

Time Series (f
s
=2000)

Sample

M
a

g
n

it
u

d
e

0 1 2 3
−15

−10

−5

0
Power Spectrum

Frequency

|X
(f

)|
2

0.7*sin(2 π 50 t) + sin(2 π 120 t)

(b) Composite sinusoidal waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5
0

0.5
1

Time Series (f
s
=2000)

Sample

M
a

g
n

it
u

d
e

0 1 2 3
−10

−5

0
Power Spectrum

Frequency

|X
(f

)|
2

square(2 π 30 t)

(c) Square waveform verification.

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5
0

0.5
1

Time Series (f
s
=2000)

Sample
M

a
g

n
it
u

d
e

0 1 2 3
−10

−5

0
Power Spectrum

Frequency

|X
(f

)|
2

triangle(2 π 30 t)

(d) Triangle waveform verification.

0 0.1 0.2 0.3 0.4 0.5
0

0.2
0.4
0.6
0.8

1

Time Series (f
s
=2000)

Sample

M
a
g
n
it
u
d
e

1 2 3
−8

−6

−4

−2
Power Spectrum

Frequency

|X
(f

)|
2

White Noise

(e) White noise verification.

0 1 2 3 4 5 6 7 8
−40
−20

0
20
40

Time Series (f
s
=2000)

Sample

M
a

g
n

it
u

d
e

0 1 2 3
−10

−5

0

5
Power Spectrum

Frequency

|X
(f

)|
2

Brown Noise

(f) Brown noise verification.

Fig. A.3: Verification of power spectrum analysis function using six test cases: (a) sinu-
soidal waveform, (b) composite sinusoidal waveform, (c) square wave, (d) triangle wave,
(e) white noise, and (f) brown noise.

Dario Schor
dario schor@umanitoba.ca

- A4 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2 Sphere Function

A.2.1 Ensemble Analysis

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,1 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. A.4(a)

0 100 200 300 400 500
−10

0
10
20
30
40
50
60

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(c) Ensemble of Sx,7,2 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(d) Zoomed representation of Fig. A.4(c)

Fig. A.4: Ensemble of particle behaviours on Sphere function plotted against fitness for
200 runs. The mean and 95% confidence interval are shown. (a) Position, Sx,7,1, along
d = 1 dimension. (b) Zoomed in representation of Fig. A.4(a). (c) Position, Sx,7,2, along
d = 2 dimension. (d) Zoomed in representation of Fig. A.4(d).

Dario Schor
dario schor@umanitoba.ca

- A5 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2.2 Typical Particle Trajectory

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 91)

Worst (run 6)

(a) Typical and worst particles Sx,7,1 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on typical and worst behaviour

Iteration

P
o

s
it
io

n

95% CI

Typical (run 91)

Worst (run 6)

(b) Zoomed representation of Fig. A.5(a)

0 100 200 300 400 500
−10

0
10
20
30
40
50
60

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 24)

Worst (run 116)

(c) Typical and worst particles Sx,7,2 for G1(x).

410 420 430 440 450 460 470
−1.5

−1

−0.5

0

0.5

1

1.5
Zoomed in on typical and worst behaviour

Iteration
P

o
s
it
io

n

95% CI

Typical (run 24)

Worst (run 116)

(d) Zoomed representation of Fig. A.5(c)

Fig. A.5: Identifying typical particle behaviours on Sphere function based on minimum
MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. A.5(a). (c) Position, Sx,7,2, along d = 2
dimension. (d) Zoomed in representation of Fig. A.5(c).

Dario Schor
dario schor@umanitoba.ca

- A6 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2.3 Time Series Extraction

100 200 300 400 500 600 700 800 900 1000

−20

0

20

40

60

Particle Position [S
x,7

(n)]

Iteration

P
o
s
it
io

n

S

x,7,1
(n))

S
x,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,7

(n)]

Iteration

V
e
lo

c
it
y

S

v,7,1
(n))

S
v,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

Particle Fitness [G
1
(S

x,7
(n)]

Iteration

F
it
n
e
s
s

G

1
(S

x,7
(n))

G
1
(S

p,7
(n))

Fig. A.6: Extracted time series for particle on Sphere function.

Dario Schor
dario schor@umanitoba.ca

- A7 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2.4 Time Domain Analysis - Moments

0 50 100 150 200 250

−0.2

0

0.2

Time Series (window=32, range=[2 300])

Sample

V
e

lo
c
it
y

50 100 150 200 250
−0.5

0

0.5
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

50 100 150 200 250
0

0.02

0.04
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(a) Transient first and second moment for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Time Series (window=128, range=[300 4000])

Sample

V
e
lo

c
it
y

500 1000 1500 2000 2500 3000 3500
−0.01

0

0.01
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

500 1000 1500 2000 2500 3000 3500
0

0.02

0.04
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(b) Steady state first and second moment for G1(x).

Fig. A.7: First and second moment of particle trajectory on the Sphere function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A8 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2.5 Time Domain Analysis - Auto-correlation

0 50 100 150 200 250

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 300])

Sample

V
e

lo
c
it
y

0 50 100 150 200 250
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(a) Auto-correlation of trajectory for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[300 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(b) Auto-correlation of trajectory for G1(x).

Fig. A.8: Auto-correlation of trajectory on the Sphere function. (a) Auto-correlation for
transient portion of the trajectory. (b) Auto-correlation for the steady state portion of the
trajectory.

Dario Schor
dario schor@umanitoba.ca

- A9 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.2 Sphere Function

A.2.6 Frequency Domain Analysis

0 50 100 150 200 250

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 300])

Sample

V
e
lo

c
it
y

10
1

10
2

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G1(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[300 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G1(x).

Fig. A.9: Power spectrum of trajectory on the Sphere function. (a) Power spectrum for
transient portion of the trajectory. (b) Power spectrum for the steady state portion of the
trajectory.

Dario Schor
dario schor@umanitoba.ca

- A10 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3 Rosenbrock Function

A.3.1 Ensemble Analysis

0 100 200 300 400 500
−7
−6
−5
−4
−3
−2
−1

0
1
2

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,1 for G2(x).

410 420 430 440 450 460 470
−4

−3

−2

−1

0

1

2
Zoomed in on trajectories

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. A.10(a)

0 100 200 300 400 500
0
2
4
6
8

10
12
14
16
18

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(c) Ensemble of Sx,7,2 for G2(x).

200 210 220 230 240 250
0
1
2
3
4
5
6
7
8
9

10
Zoomed in on trajectories

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(d) Zoomed representation of Fig. A.10(c)

Fig. A.10: Ensemble of particle behaviours on Rosenbrock function plotted against fitness
for 200 runs. The mean and 95% confidence interval are shown. (a) Position, Sx,7,1, along
d = 1 dimension. (b) Zoomed in representation of Fig. A.10(a). (c) Position, Sx,7,2, along
d = 2 dimension. (d) Zoomed in representation of Fig. A.10(d).

Dario Schor
dario schor@umanitoba.ca

- A11 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3.2 Typical Particle Trajectory

0 100 200 300 400 500
−7
−6
−5
−4
−3
−2
−1

0
1
2

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 24)

Worst (run 139)

(a) Typical and worst particles Sx,7,1 for G2(x).

410 420 430 440 450 460 470
−4

−3

−2

−1

0

1

2
Zoomed in on typical and worst behaviour

Iteration

P
o
s
it
io

n

95% CI

Typical (run 24)

Worst (run 139)

(b) Zoomed representation of Fig. A.11(a)

0 100 200 300 400 500
0
2
4
6
8

10
12
14
16
18

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 111)

Worst (run 197)

(c) Typical and worst particles Sx,7,2 for G2(x).

200 210 220 230 240 250
0
1
2
3
4
5
6
7
8
9

10
Zoomed in on typical and worst behaviour

Iteration
P

o
s
it
io

n

95% CI

Typical (run 111)

Worst (run 197)

(d) Zoomed representation of Fig. A.11(c)

Fig. A.11: Identifying typical particle behaviours on Rosenbrock function based on mini-
mum MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. A.11(a). (c) Position, Sx,7,2, along d = 2
dimension. (d) Zoomed in representation of Fig. A.11(c).

Dario Schor
dario schor@umanitoba.ca

- A12 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3.3 Time Series Extraction

100 200 300 400 500 600 700 800 900 1000

−10

0

10

20

Particle Position [S
x,7

(n)]

Iteration

P
o
s
it
io

n

S

x,7,1
(n))

S
x,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,7

(n)]

Iteration

V
e
lo

c
it
y

S

v,7,1
(n))

S
v,7,2

(n))

100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

Particle Fitness [G
3
(S

x,7
(n)]

Iteration

F
it
n
e
s
s

G

3
(S

x,7
(n))

G
3
(S

p,7
(n))

Fig. A.12: Extracted time series for particle on Rosenbrock function.

Dario Schor
dario schor@umanitoba.ca

- A13 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3.4 Time Domain Analysis - Moments

0 20 40 60 80 100 120 140

−0.2

0

0.2

Time Series (window=32, range=[2 150])

Sample

V
e
lo

c
it
y

20 40 60 80 100 120
−0.2

0

0.2
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

20 40 60 80 100 120
0.01

0.015

0.02
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(a) Transient first and second moment for G2(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Time Series (window=128, range=[150 4000])

Sample

V
e
lo

c
it
y

500 1000 1500 2000 2500 3000 3500
−0.02

0

0.02
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

500 1000 1500 2000 2500 3000 3500
0

0.02

0.04
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(b) Steady state first and second moment for G2(x).

Fig. A.13: First and second moment of particle trajectory on the Rosenbrock function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A14 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3.5 Time Domain Analysis - Auto-correlation

0 20 40 60 80 100 120 140

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 150])

Sample

V
e

lo
c
it
y

0 20 40 60 80 100 120 140
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(a) Auto-correlation of trajectory for G2(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[150 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(b) Auto-correlation of trajectory for G2(x).

Fig. A.14: Auto-correlation of trajectory on the Rosenbrock function. (a) Auto-correlation
for transient portion of the trajectory. (b) Auto-correlation for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A15 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.3 Rosenbrock Function

A.3.6 Frequency Domain Analysis

0 20 40 60 80 100 120 140

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[2 150])

Sample

V
e
lo

c
it
y

10
1

10
2

10
−8

10
−6

10
−4

10
−2

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G2(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[150 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G2(x).

Fig. A.15: Power spectrum of trajectory on the Rosenbrock function. (a) Power spectrum
for transient portion of the trajectory. (b) Power spectrum for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A16 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4 Rastrigin Function

A.4.1 Ensemble Analysis

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,1 for G3(x).

410 420 430 440 450 460 470
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. A.16(a)

0 100 200 300 400 500
−1

−0.5
0

0.5
1

1.5
2

2.5
3

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(c) Ensemble of Sx,7,2 for G3(x).

200 210 220 230 240 250
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(d) Zoomed representation of Fig. A.16(c)

Fig. A.16: Ensemble of particle behaviours on Rastrigin function plotted against fitness
for 200 runs. The mean and 95% confidence interval are shown. (a) Position, Sx,7,1, along
d = 1 dimension. (b) Zoomed in representation of Fig. A.16(a). (c) Position, Sx,7,2, along
d = 2 dimension. (d) Zoomed in representation of Fig. A.16(d).

Dario Schor
dario schor@umanitoba.ca

- A17 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4.2 Typical Particle Trajectory

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o

s
it
io

n

95% CI

Typical (run 63)

Worst (run 115)

(a) Typical and worst particles Sx,7,1 for G3(x).

410 420 430 440 450 460 470
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on typical and worst behaviour

Iteration

P
o

s
it
io

n

95% CI

Typical (run 63)

Worst (run 115)

(b) Zoomed representation of Fig. A.17(a)

0 100 200 300 400 500
−0.5

0
0.5

1
1.5

2
2.5

3

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o

s
it
io

n

95% CI

Typical (run 4)

Worst (run 67)

(c) Typical and worst particles Sx,7,2 for G3(x).

200 210 220 230 240 250
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on typical and worst behaviour

Iteration
P

o
s
it
io

n

95% CI

Typical (run 4)

Worst (run 67)

(d) Zoomed representation of Fig. A.17(c)

Fig. A.17: Identifying typical particle behaviours on Rastrigin function based on minimum
MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. A.17(a). (c) Position, Sx,7,2, along d = 2
dimension. (d) Zoomed in representation of Fig. A.17(c).

Dario Schor
dario schor@umanitoba.ca

- A18 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4.3 Time Series Extraction

100 200 300 400 500 600 700 800 900 1000

−1

0

1

2

3

Particle Position [S
x,7

(n)]

Iteration

P
o
s
it
io

n

S

x,7,1
(n))

S
x,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,7

(n)]

Iteration

V
e
lo

c
it
y

S

v,7,1
(n))

S
v,7,2

(n))

100 200 300 400 500 600 700 800 900 1000

0

10

20

30

Particle Fitness [G
3
(S

x,7
(n)]

Iteration

F
it
n
e
s
s

G

3
(S

x,7
(n))

G
3
(S

p,7
(n))

Fig. A.18: Time series showing the particles position, velocity, and fitness over time in
the Rastrigin function. (a) The particles position over time along the 2 dimensions being
optimized. (b) The velocity of the particle over time along the 2 dimensions being optimized.
(c) The fitness of the particle as it converges to the global optimum when the fitness equals
zero. This plot highlights the monotonically decreasing fitness of the best position and
contrasts the variation in the current positions fitness as the particle explores many of the
local solution spaces.

Dario Schor
dario schor@umanitoba.ca

- A19 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4.4 Time Domain Analysis - Moments

0 5 10 15 20 25 30 35 40 45

−0.2

0

0.2

Time Series (window=32, range=[2 50])

Sample

V
e

lo
c
it
y

5 10 15 20 25 30
−2

0

2
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

5 10 15 20 25 30
−2

0

2
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(a) Transient first and second moment for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

0

0.2

Time Series (window=128, range=[50 4000])

Sample

V
e
lo

c
it
y

500 1000 1500 2000 2500 3000 3500
−0.01

0

0.01
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

500 1000 1500 2000 2500 3000 3500
0

0.01

0.02
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a
g
n
it
u
d
e

(b) Steady state first and second moment for G3(x).

Fig. A.19: First and second moment of particle trajectory on the Rastrigin function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A20 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4.5 Time Domain Analysis - Auto-correlation

0 5 10 15 20 25 30 35 40 45
−0.05

0

0.05

0.1

0.15

0.2

Time Series (fs=1000, range=[2 50])

Sample

V
e
lo

c
it
y

0 5 10 15 20 25 30 35 40 45
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a
g
n
it
u
d
e

(a) Auto-correlation of trajectory for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[50 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(b) Auto-correlation of trajectory for G3(x).

Fig. A.20: Auto-correlation of trajectory on the Rastrigin function. (a) Auto-correlation
for transient portion of the trajectory. (b) Auto-correlation for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A21 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.4 Rastrigin Function

A.4.6 Frequency Domain Analysis

0 10 20 30 40

0

0.1

0.2

Time Series (fs=1000, range=[2 50])

Sample

V
e
lo

c
it
y

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G3(x).

0 500 1000 1500 2000 2500 3000 3500

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[50 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G3(x).

Fig. A.21: Power spectrum of trajectory on the Rastrigin function. (a) Power spectrum
for transient portion of the trajectory. (b) Power spectrum for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A22 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5 Griewank Function

A.5.1 Ensemble Analysis

0 200 400 600 800 1000
150

200

250

300

350

400

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(a) Ensemble of Sx,7,1 for G4(x).

900 920 940 960 980
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(b) Zoomed representation of Fig. A.22(a)

0 200 400 600 800 1000
−20

0
20
40
60
80

100
120
140

Position trajectory for S
k
=7 of 200 runs on G

1
(x) function

Iteration

P
o
s
it
io

n

Trajectories

Mean

95% CI

(c) Ensemble of Sx,7,2 for G4(x).

900 920 940 960 980
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on trajectories

Iteration

P
o

s
it
io

n

Trajectories

Mean

95% CI

(d) Zoomed representation of Fig. A.22(c)

Fig. A.22: Ensemble of particle behaviours on Griewank function plotted against fitness
for 200 runs. The mean and 95% confidence interval are shown. (a) Position, Sx,7,1, along
d = 1 dimension. (b) Zoomed in representation of Fig. A.22(a). (c) Position, Sx,7,2, along
d = 2 dimension. (d) Zoomed in representation of Fig. A.22(d).

Dario Schor
dario schor@umanitoba.ca

- A23 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5.2 Typical Particle Trajectory

0 200 400 600 800 1000
150

200

250

300

350

400

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 161)

Worst (run 95)

(a) Typical and worst particles Sx,7,1 for G4(x).

900 920 940 960 980
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on typical and worst behaviour

Iteration

P
o

s
it
io

n

95% CI

Typical (run 161)

Worst (run 95)

(b) Zoomed representation of Fig. A.23(a)

0 200 400 600 800 1000
−20

0
20
40
60
80

100
120
140

Typical and worst behaving particles in G
1
(x) function

Iteration

P
o
s
it
io

n

95% CI

Typical (run 171)

Worst (run 6)

(c) Typical and worst particles Sx,7,2 for G4(x).

900 920 940 960 980
−1

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1
Zoomed in on typical and worst behaviour

Iteration
P

o
s
it
io

n

95% CI

Typical (run 171)

Worst (run 6)

(d) Zoomed representation of Fig. A.23(c)

Fig. A.23: Identifying typical particle behaviours on Griewank function based on minimum
MSE from the calculated trajectory mean, µx,k,d(n). (a) Position, Sx,7,1, along d = 1
dimension. (b) Zoomed in representation of Fig. A.23(a). (c) Position, Sx,7,2, along d = 2
dimension. (d) Zoomed in representation of Fig. A.23(c).

Dario Schor
dario schor@umanitoba.ca

- A24 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5.3 Time Series Extraction

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

Particle Position [S
x,5

(n)]

Iteration

P
o
s
it
io

n

S

x,5,1
(n))

S
x,5,2

(n))

100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

Particle Velocity [S
v,5

(n)]

Iteration

V
e
lo

c
it
y

S

v,5,1
(n))

S
v,5,2

(n))

100 200 300 400 500 600 700 800 900 1000

20

40

Particle Fitness [G
4
(S

x,5
(n)]

Iteration

F
it
n
e
s
s

G

4
(S

x,5
(n))

G
4
(S

p,5
(n))

Fig. A.24: Extracted time series for particle on Griewank function.

Dario Schor
dario schor@umanitoba.ca

- A25 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5.4 Time Domain Analysis - Moments

0 100 200 300 400 500 600 700 800 900

−0.2

−0.1

0
Time Series (window=32, range=[2 1000])

Sample

V
e

lo
c
it
y

100 200 300 400 500 600 700 800 900
−0.205

−0.2

−0.195
First Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

100 200 300 400 500 600 700 800 900
0

5
Second Moment (Window Size = 32)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(a) Transient first and second moment for G4(x).

0 500 1000 1500 2000 2500 3000

−0.2

0

0.2

Time Series (window=128, range=[1000 4000])

Sample

V
e

lo
c
it
y

500 1000 1500 2000 2500
−0.2

0

0.2
First Moment (Window Size = 128)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

500 1000 1500 2000 2500
0

0.02

0.04
Second Moment (Window Size = 128)

Moment Calculated Over Window

M
a

g
n

it
u

d
e

(b) Steady state first and second moment for G4(x).

Fig. A.25: First and second moment of particle trajectory on the Griewank function. (a)
Moments calculated for transient portion of the trajectory. (b) Moments calculated for the
steady state portion of the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A26 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5.5 Time Domain Analysis - Auto-correlation

0 100 200 300 400 500 600 700 800 900

−0.2

−0.15

−0.1

−0.05

0
Time Series (fs=1000, range=[2 1000])

Sample

V
e
lo

c
it
y

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1
Auto−Correlation

Sample

M
a
g
n
it
u
d
e

(a) Auto-correlation of trajectory for G4(x).

0 500 1000 1500 2000 2500 3000

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[1000 4000])

Sample

V
e

lo
c
it
y

0 500 1000 1500 2000 2500 3000
−0.5

0

0.5

1
Auto−Correlation

Sample

M
a

g
n

it
u

d
e

(b) Auto-correlation of trajectory for G4(x).

Fig. A.26: Auto-correlation of trajectory on the Griewank function. (a) Auto-correlation
for transient portion of the trajectory. (b) Auto-correlation for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A27 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling A.5 Griewank Function

A.5.6 Frequency Domain Analysis

0 200 400 600 800

−0.2

−0.15

−0.1

−0.05

0
Time Series (fs=1000, range=[2 1000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(a) Power spectrum of trajectory for G4(x).

0 500 1000 1500 2000 2500 3000

−0.2

−0.1

0

0.1

0.2

Time Series (fs=1000, range=[1000 4000])

Sample

V
e
lo

c
it
y

10
0

10
1

10
2

10
−10

10
−5

10
0

Power Spectrum

Frequency

|X
(f

)|
2

(b) Power spectrum of trajectory for G4(x).

Fig. A.27: Power spectrum of trajectory on the Griewank function. (a) Power spectrum
for transient portion of the trajectory. (b) Power spectrum for the steady state portion of
the trajectory.

Dario Schor
dario schor@umanitoba.ca

- A28 of A28 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling B. Software

Appendix B

Software

This chapter outlines the basic instructions to run the optimization algorithm and the

scheduler described in Sec. 4.1 and 4.2 respectively. The source code described in this

appendix is included in the DVD accompanied this thesis labeled Disc 1. Matlab 2010b

or later is recommended for these applications. Note that in 2012b or later versions there

will be warnings about the random number generation as those functions are going to be

deprecated as of version 2013b.

B.1 Running PSO Algorithm on Test Functions

1. Create a configuration file like the one shown in Appendix C.1. For convinience, a

sample file is provided in sims folder with the source code. For this purpose, ignore all

the scheduler-specific parameters in the configuration file as they will not be processed

by the software.

2. Select the appropriate parameters to use for PSO. Pay special attention to the follow-

ing:

(a) The rootFolder should point to the directory where the config file is saved.

(b) Set topo evaluate to the desired topology from those available in the folder

sims/pso/topologies.

(c) Set phi evaluate to the desired personal and social weights file from the folder

sims/pso/weights.

Dario Schor
dario schor@umanitoba.ca

- B1 of B3 - v042/B-software.tex
June 12, 2013

Study of PSO for Real-Time Scheduling B.2 Running Scheduling Algorithm

(d) Set cf evaluate to the desired function to evaluate. The four functions selected

in the thesis as well as the scheduler function are included in sims/pso/function

3. Open the file main_test.m in Matlab.

4. Select the appropriate configuration file on Line 9 of the file.

5. Run the script.

6. The results will be displayed on the console and saved to files in the root folder

previously defined.

B.2 Running Scheduling Algorithm

1. If a custom set of tasks is to be evaluated, create a file with four columns for task

number, start time, computation time, and relative deadline and define as many tasks

as needed. A sample is provided in the folder sims. Alternatively, if this file is not

defined, the software will generate random sets of tasks.

2. Create a configuration file like the one shown in Appendix C.1. For convinience, a

sample file is provided in sims folder with the source code.

3. Select the appropriate parameters to use for PSO. Pay special attention to the follow-

ing:

(a) The rootFolder should point to the directory where the config file is saved.

(b) Set topo evaluate to the desired topology from those available in the folder

sims/pso/topologies.

(c) Set phi evaluate to the desired personal and social weights file from the folder

sims/pso/weights.

(d) Set cf evaluate to the @minTotalTardinessN

(e) Set the number of tasks to match the number of dimensions to satisfy the RK

encoding used in the scheduler.

4. Open the file main_sched.m in Matlab.

5. Select the appropriate configuration file on Line 9 of the file.

Dario Schor
dario schor@umanitoba.ca

- B2 of B3 - v042/B-software.tex
June 12, 2013

Study of PSO for Real-Time Scheduling B.2 Running Scheduling Algorithm

6. Run the script.

7. The results will be displayed on the console and saved to files in the root folder

previously defined.

Dario Schor
dario schor@umanitoba.ca

- B3 of B3 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C. Sample Output

Appendix C

Sample Output

C.1 Sample Configuration File

###

Scheduler Configuration

###

rootFolder /control-p1-t10-130512/

nProcessors 1

nTasks 20

seed 20

saveTraj 1

saveMap 1

printProgress 1

###

Test Number

###

nRun 10

iRun 1

###

Particple Swarm Optimization

###

pso filename folder

pso nParticles 30

pso nDim 20

pso nIter 1000

###

Mutation

###

Dario Schor
dario schor@umanitoba.ca

- C1 of C6 - v042/C-sample.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C.2 Sample Particle Trajectory Recorded

mutation enabled 1

mutation min 0.1

mutation max 0.4

###

PSO Neighborhood Topology

###

topo name gBest

topo evaluate @gBest

topo size 5

###

PSO Weights

###

phi name phiShEb99

phi evaluate @phiShEb99

###

Cost Function

###

cf name minTotalTardinessN

cf evaluate @minTotalTardinessN

cf xMax 1

cf xMin 0

cf vMax 1

cf wMin 0.729

cf wMax 0.729

cf wEph 1

###

Task Properties

###

taskProp filename tasks.txt

taskProp SRange [0,25]

taskProp CRange [1,5]

taskProp dRange [10,15]

taskProp randDist @uniform

taskProp Rmin 1

taskProp Rmax 1

C.2 Sample Particle Trajectory Recorded

-4.014363 -0.104207 -6.267440 +0.001778 -0.001223 -0.003677 +1.646735 +0000.009948 5

-3.905206 +0.109157 -6.267440 +0.000344 -0.001434 -0.003677 +1.726154 +0000.009948 5

-3.705206 +0.200000 -6.267440 -0.001248 -0.001592 -0.003677 +1.848762 +0000.009948 5

-3.505206 +0.200000 -6.267440 -0.002934 -0.001687 -0.003677 +1.937687 +0000.009948 5

Dario Schor
dario schor@umanitoba.ca

- C2 of C6 - v042/C-sample.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C.3 Sample Particle Schedule Recorded

-3.305206 +0.200000 -6.267440 -0.004485 -0.001551 -0.003677 +1.989371 +0000.009948 5

-3.145616 +0.159590 -6.267440 -0.005922 -0.001437 -0.003677 +2.002457 +0000.009948 5

-2.945616 +0.200000 -6.267440 -0.006637 -0.000716 -0.003677 +1.983016 +0000.009948 5

-2.841239 +0.104377 -6.267440 -0.007089 -0.000452 -0.003677 +1.957238 +0000.009948 5

-2.641239 +0.200000 -6.267440 -0.006848 +0.000241 -0.003677 +1.879147 +0000.009948 5

-2.511685 +0.129554 -6.267440 -0.006049 +0.000799 -0.003677 +1.809652 +0000.009948 5

-2.659421 -0.147736 -6.267440 -0.005036 +0.001013 -0.003677 +1.887753 +0000.009948 5

-2.859421 -0.200000 -6.267440 -0.003526 +0.001511 -0.003677 +1.962494 +0000.009948 5

-3.059421 -0.200000 -6.267440 -0.001755 +0.001770 -0.003677 +1.998965 +0000.009948 5

-3.259421 -0.200000 -6.267440 +0.000005 +0.001761 -0.003677 +1.995722 +0000.009948 5

-3.459421 -0.200000 -6.267440 +0.001678 +0.001673 -0.003677 +1.952907 +0000.009948 5

C.3 Sample Particle Schedule Recorded

1 2 3 5 4 6 8 7 11 10 14 13 18 15 9 12 17 16 19 20 -1.711947 +0.018196 -1.730142 -1.403264 -0.004159

-1.399105 -1.132604 +0.014244 -1.146848 -0.935814 -0.090527 -0.845286 -1.010882 -0.252769 -0.758113

-0.669972 +0.067833 -0.737805 -0.511194 +0.034281 -0.545475 -0.560023 -0.024575 -0.535448 +1.000000

+0.936448 -0.196329 +0.087901 -0.034603 +0.122504 +0.057896 -0.125689 +0.183586 +1.014673 +0.379973

+0.634700 +0.573443 +0.035106 +0.538337 +0.507801 -0.099345 +0.607146 +0.838776 -0.010777 +0.849553

+1.127876 +0.070212 +1.057664 +1.024255 +0.087409 +0.936847 +0.591890 -0.305303 +0.897193 +1.160588

+0.017327 +1.143261 +1.857586 +0.029484 +1.828102 +340.000000 +258.000000 1 1 2 3 5 4 6 7 8 9 10 11

13 18 14 12 15 17 16 19 20 -1.722269 -0.010322 -1.730142 -1.398802 +0.004461 -1.399105 -1.128910

+0.003693 -1.146848 -0.908924 +0.026890 -0.845286 -1.054502 -0.043620 -0.758113 -0.700786 -0.030814

-0.737805 -0.559193 -0.047999 -0.545475 -0.514931 +0.045093 -0.535448 +0.000000 -1.000000 -0.196329

+0.138441 +0.050540 +0.122504 +0.292757 +0.234861 +0.183586 +0.793380 -0.221294 +0.634700 +0.486236

-0.087207 +0.538337 +0.547710 +0.039910 +0.607146 +0.837157 -0.001619 +0.849553 +1.056757 -0.071119

+1.057664 +1.055576 +0.031321 +0.936847 +0.537353 -0.054537 +0.897193 +1.147278 -0.013310 +1.143261

+2.068019 +0.210434 +1.828102 +328.000000 +258.000000 1 1 2 3 9 4 5 6 7 8 12 10 13 11 14 15 18 16 17

19 20 -1.686303 +0.035966 -1.730142 -1.395483 +0.003319 -1.399105 -1.137330 -0.008420 -1.146848

-0.878531 +0.030392 -0.845286 -0.809273 +0.245229 -0.758113 -0.751047 -0.050261 -0.737805 -0.587303

-0.028111 -0.545475 -0.503220 +0.011710 -0.535448 -1.000000 -1.000000 -0.196329 +0.138560 +0.000119

+0.122504 +0.421028 +0.128270 +0.183586 -0.029351 -0.822731 +0.634700 +0.411782 -0.074454 +0.538337

+0.654555 +0.106844 +0.607146 +0.876586 +0.039429 +0.849553 +0.940080 -0.116676 +1.057664 +1.058346

+0.002770 +0.936847 +0.924653 +0.387300 +0.897193 +1.129001 -0.018277 +1.143261 +2.105953 +0.037934

+1.828102 +400.000000 +258.000000 1 1 2 3 9 4 6 7 8 12 11 10 13 14 15 16 5 17 19 18 20 -1.677092

+0.009210 -1.730142 -1.399695 -0.004212 -1.399105 -1.140290 -0.002960 -1.146848 -1.048658 -0.170127

-0.845286 +1.000000 -0.967752 -0.758113 -0.742168 +0.008879 -0.737805 -0.578712 +0.008591 -0.545475

-0.516460 -0.013240 -0.535448 -1.056820 -0.056820 -0.196329 +0.105871 -0.032689 +0.122504 +0.069315

-0.351713 +0.183586 -0.033633 -0.004282 +0.634700 +0.433191 +0.021409 +0.538337 +0.622393 -0.032161

+0.607146 +0.888731 +0.012145 +0.849553 +0.959525 +0.019444 +1.057664 +1.090431 +0.032085 +0.936847

+1.210973 +0.286320 +0.897193 +1.137500 +0.008499 +1.143261 +1.977460 -0.128493 +1.828102

+400.000000 +258.000000 1 1 2 3 4 6 7 8 9 5 11 10 13 14 15 18 17 12 16 19 20 -1.682313 -0.005220

-1.730142 -1.400169 -0.000474 -1.399105 -1.149109 -0.008819 -1.146848 -0.976705 +0.071953 -0.845286

+0.016025 -0.983975 -0.758113 -0.676736 +0.065432 -0.737805 -0.586741 -0.008029 -0.545475 -0.508109

+0.008351 -0.535448 -0.056820 +1.000000 -0.196329 +0.091038 -0.014833 +0.122504 +0.089395 +0.020080

+0.183586 +0.966367 +1.000000 +0.634700 +0.430313 -0.002878 +0.538337 +0.568149 -0.054245 +0.607146

+0.862726 -0.026005 +0.849553 +1.056633 +0.097109 +1.057664 +0.952601 -0.137830 +0.936847 +0.943928

Dario Schor
dario schor@umanitoba.ca

- C3 of C6 - v042/C-sample.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C.3 Sample Particle Schedule Recorded

-0.267045 +0.897193 +1.145785 +0.008285 +1.143261 +1.694181 -0.283279 +1.828102 +286.000000

+258.000000 1 1 2 3 5 4 6 7 8 10 11 9 13 14 18 15 17 12 16 19 20 -1.734668 -0.052355 -1.730142

-1.396902 +0.003267 -1.399105 -1.143459 +0.005650 -1.146848 -0.927169 +0.049536 -0.845286 -0.983975

-1.000000 -0.758113 -0.657318 +0.019418 -0.737805 -0.567754 +0.018987 -0.545475 -0.520283 -0.012175

-0.535448 +0.210498 +0.267318 -0.196329 +0.115279 +0.024241 +0.122504 +0.156900 +0.067505 +0.183586

+1.087284 +0.120917 +0.634700 +0.424847 -0.005466 +0.538337 +0.575678 +0.007530 +0.607146 +0.833404

-0.029322 +0.849553 +1.096835 +0.040201 +1.057664 +0.971008 +0.018407 +0.936847 +0.724085 -0.219843

+0.897193 +1.145702 -0.000083 +1.143261 +2.059815 +0.365633 +1.828102 +306.000000 +258.000000 1 1 5

2 3 4 6 7 8 9 12 10 11 13 14 15 18 16 17 19 20 -1.725297 +0.009371 -1.730142 -1.397830 -0.000928

-1.399105 -1.128430 +0.015029 -1.146848 -0.843748 +0.083422 -0.845286 -1.521923 -0.537949 -0.758113

-0.649022 +0.008296 -0.737805 -0.561269 +0.006486 -0.545475 -0.527155 -0.006872 -0.535448 -0.379427

-0.589925 -0.196329 +0.140005 +0.024726 +0.122504 +0.364153 +0.207253 +0.183586 +0.087284 -1.000000

+0.634700 +0.476079 +0.051232 +0.538337 +0.636290 +0.060611 +0.607146 +0.862315 +0.028911 +0.849553

+1.033211 -0.063624 +1.057664 +1.077144 +0.106136 +0.936847 +1.000000 -0.879198 +0.897193 +1.139292

-0.006410 +1.143261 +2.103488 +0.043674 +1.828102 +344.000000 +258.000000 1 1 2 3 4 5 6 9 7 8 10 12

18 11 13 14 15 16 19 17 20 -1.681993 +0.043305 -1.730142 -1.398684 -0.000854 -1.399105 -1.138636

-0.010206 -1.146848 -0.975206 -0.131459 -0.845286 -0.866027 +0.655896 -0.758113 -0.737511 -0.088489

-0.737805 -0.572698 -0.011430 -0.545475 -0.515603 +0.011552 -0.535448 -0.577730 -0.198302 -0.196329

+0.129699 -0.010305 +0.122504 +0.377807 +0.013654 +0.183586 +0.180395 +0.093112 +0.634700 +0.417487

-0.058592 +0.538337 +0.611155 -0.025135 +0.607146 +0.879095 +0.016780 +0.849553 +0.987460 -0.045751

+1.057664 +1.181326 +0.104182 +0.936847 +0.350229 -0.649771 +0.897193 +1.140177 +0.000885 +1.143261

+1.719644 -0.383845 +1.828102 +358.000000 +258.000000 1 1 2 3 4 6 7 8 9 5 10 11 13 14 18 15 17 12 16

19 20 -1.729006 -0.047013 -1.730142 -1.398261 +0.000423 -1.399105 -1.153103 -0.014468 -1.146848

-1.107175 -0.131968 -0.845286 -0.355767 +0.510260 -0.758113 -0.796078 -0.058567 -0.737805 -0.599741

-0.027042 -0.545475 -0.521596 -0.005992 -0.535448 -0.431856 +0.145874 -0.196329 +0.101816 -0.027883

+0.122504 +0.278289 -0.099518 +0.183586 +0.860081 +0.679686 +0.634700 +0.486449 +0.068962 +0.538337

+0.578870 -0.032285 +0.607146 +0.831094 -0.048001 +0.849553 +1.060995 +0.073535 +1.057664 +0.842302

-0.339024 +0.936847 +0.687111 +0.336882 +0.897193 +1.147023 +0.006846 +1.143261 +1.636307 -0.083337

+1.828102 +304.000000 +258.000000 1 1 2 5 3 4 6 7 8 9 11 10 12 13 14 17 15 16 19 18 20 -1.741033

-0.012028 -1.730142 -1.397537 +0.000724 -1.399105 -1.148234 +0.004869 -1.146848 -1.118189 -0.011014

-0.845286 -1.355767 -1.000000 -0.758113 -0.730198 +0.065880 -0.737805 -0.550424 +0.049317 -0.545475

-0.524758 -0.003162 -0.535448 -0.081399 +0.350456 -0.196329 +0.108294 +0.006478 +0.122504 +0.065625

-0.212663 +0.183586 +0.518505 -0.341576 +0.634700 +0.605618 +0.119169 +0.538337 +0.620174 +0.041303

+0.607146 +0.824751 -0.006343 +0.849553 +1.034894 -0.026101 +1.057664 +0.819665 -0.022636 +0.936847

+1.508042 +0.820931 +0.897193 +1.145682 -0.001341 +1.143261 +1.826967 +0.190660 +1.828102

+302.000000 +258.000000 1 1 2 5 3 4 6 7 8 9 11 10 12 13 14 15 16 19 17 18 20 -1.674210 +0.066823

-1.730142 -1.397764 -0.000226 -1.399105 -1.118061 +0.030173 -1.146848 -1.054044 +0.064145 -0.845286

-1.311551 +0.044216 -0.758113 -0.647232 +0.082966 -0.737805 -0.584850 -0.034426 -0.545475 -0.498660

+0.026098 -0.535448 -0.047448 +0.033951 -0.196329 +0.138477 +0.030184 +0.122504 +0.094753 +0.029127

+0.183586 +0.265279 -0.253226 +0.634700 +0.610180 +0.004561 +0.538337 +0.635423 +0.015249 +0.607146

+0.834878 +0.010128 +0.849553 +1.035417 +0.000523 +1.057664 +1.255422 +0.435757 +0.936847 +1.432702

-0.075340 +0.897193 +1.141872 -0.003810 +1.143261 +1.987916 +0.160949 +1.828102 +302.000000

+258.000000 1 1 2 3 4 6 7 8 9 5 10 11 12 13 14 15 18 16 17 19 20 -1.670272 +0.003938 -1.730142

-1.398175 -0.000412 -1.399105 -1.134687 -0.016626 -1.146848 -1.018875 +0.035169 -0.845286 -0.311551

+1.000000 -0.758113 -0.659437 -0.012206 -0.737805 -0.602811 -0.017961 -0.545475 -0.527191 -0.028532

-0.535448 -0.493471 -0.446022 -0.196329 +0.125848 -0.012630 +0.122504 +0.379254 +0.284502 +0.183586

+0.456398 +0.191120 +0.634700 +0.517220 -0.092959 +0.538337 +0.609403 -0.026020 +0.607146 +0.865752

+0.030873 +0.849553 +1.001148 -0.034268 +1.057664 +1.020529 -0.234893 +0.936847 +0.950665 -0.482038

+0.897193 +1.140826 -0.001046 +1.143261 +2.070503 +0.082586 +1.828102 +272.000000 +258.000000 1 1 2

3 4 6 9 5 7 8 10 13 11 12 14 18 17 15 16 19 20 -1.765263 -0.094991 -1.730142 -1.398810 -0.000635

Dario Schor
dario schor@umanitoba.ca

- C4 of C6 - v042/C-sample.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C.3 Sample Particle Schedule Recorded

-1.399105 -1.154452 -0.019765 -1.146848 -0.948260 +0.070615 -0.845286 -0.653286 -0.341735 -0.758113

-0.758483 -0.099046 -0.737805 -0.576729 +0.026082 -0.545475 -0.545309 -0.018117 -0.535448 -0.715008

-0.221537 -0.196329 +0.104546 -0.021302 +0.122504 +0.381197 +0.001943 +0.183586 +0.569630 +0.113232

+0.634700 +0.269820 -0.247400 +0.538337 +0.576565 -0.032838 +0.607146 +0.869696 +0.003945 +0.849553

+0.987605 -0.013544 +1.057664 +0.835017 -0.185512 +0.936847 +0.658326 -0.292339 +0.897193 +1.142577

+0.001750 +1.143261 +2.079209 +0.008707 +1.828102 +322.000000 +258.000000 1 1 2 5 3 4 6 7 8 9 11 10

13 12 14 15 17 18 16 19 20 -1.714510 +0.050752 -1.730142 -1.397682 +0.001128 -1.399105 -1.157918

-0.003466 -1.146848 -0.892069 +0.056190 -0.845286 -1.169339 -0.516053 -0.758113 -0.758146 +0.000337

-0.737805 -0.553743 +0.022986 -0.545475 -0.491803 +0.053506 -0.535448 -0.373501 +0.341507 -0.196329

+0.111998 +0.007452 +0.122504 +0.083330 -0.297867 +0.183586 +0.437196 -0.132434 +0.634700 +0.402998

+0.133178 +0.538337 +0.591160 +0.014595 +0.607146 +0.839854 -0.029842 +0.849553 +1.068460 +0.080856

+1.057664 +0.873573 +0.038556 +0.936847 +1.000152 +0.341826 +0.897193 +1.144764 +0.002187 +1.143261

+1.863074 -0.216135 +1.828102 +302.000000 +258.000000 1 1 2 3 4 5 6 7 8 11 9 12 10 13 14 15 16 19 18

17 20 -1.650246 +0.064265 -1.730142 -1.397376 +0.000306 -1.399105 -1.117832 +0.040086 -1.146848

-0.932163 -0.040093 -0.845286 -0.754135 +0.415204 -0.758113 -0.685045 +0.073102 -0.737805 -0.595466

-0.041723 -0.545475 -0.491104 +0.000698 -0.535448 -0.027594 +0.345907 -0.196329 +0.132521 +0.020523

+0.122504 -0.059945 -0.143276 +0.183586 +0.129617 -0.307580 +0.634700 +0.528656 +0.125658 +0.538337

+0.628031 +0.036871 +0.607146 +0.842760 +0.002906 +0.849553 +1.050853 -0.017607 +1.057664 +1.269995

+0.396422 +0.936847 +1.191260 +0.191108 +0.897193 +1.142835 -0.001928 +1.143261 +1.747849 -0.115225

+1.828102 +278.000000 +258.000000 1 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 19 16 18 17 20 -1.756130

-0.105885 -1.730142 -1.397946 -0.000570 -1.399105 -1.132315 -0.014483 -1.146848 -1.066229 -0.134067

-0.845286 -0.713203 +0.040932 -0.758113 -0.662261 +0.022784 -0.737805 -0.591179 +0.004287 -0.545475

-0.561377 -0.070273 -0.535448 -0.226702 -0.199108 -0.196329 +0.125411 -0.007110 +0.122504 +0.108434

+0.168379 +0.183586 +0.306265 +0.176648 +0.634700 +0.524708 -0.003949 +0.538337 +0.623058 -0.004972

+0.607146 +0.859993 +0.017233 +0.849553 +1.028080 -0.022773 +1.057664 +1.261055 -0.008940 +0.936847

+1.060325 -0.130936 +0.897193 +1.000000 -0.083840 +1.143261 +2.075321 +0.327472 +1.828102

+272.000000 +258.000000 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 16 19 20 -1.821176 -0.065046

-1.730142 -1.399674 -0.001728 -1.399105 -1.150848 -0.018533 -1.146848 -0.974914 +0.091315 -0.845286

-0.812999 -0.099795 -0.758113 -0.688640 -0.026379 -0.737805 -0.539415 +0.051764 -0.545475 -0.510408

+0.050969 -0.535448 -0.402091 -0.175389 -0.196329 +0.119627 -0.005784 +0.122504 +0.315959 +0.207525

+0.183586 +0.451767 +0.145503 +0.634700 +0.513384 -0.011323 +0.538337 +0.576473 -0.046585 +0.607146

+0.855716 -0.004277 +0.849553 +1.046667 +0.018587 +1.057664 +0.875164 -0.385890 +0.936847 +0.917132

-0.143193 +0.897193 +1.230747 +0.230747 +1.143261 +1.989392 -0.085929 +1.828102 +240.000000

+258.000000 1 1 2 3 5 4 6 7 9 8 10 13 12 11 14 17 15 18 16 19 20 -1.839620 -0.018444 -1.821176

-1.399554 +0.000120 -1.399674 -1.147411 +0.003437 -1.150848 -0.929147 +0.045767 -0.974914 -1.038503

-0.225504 -0.812999 -0.686714 +0.001925 -0.688640 -0.526619 +0.012795 -0.539415 -0.468819 +0.041589

-0.510408 -0.525361 -0.123270 -0.402091 +0.106415 -0.013212 +0.119627 +0.446018 +0.130058 +0.315959

+0.340789 -0.110978 +0.451767 +0.319901 -0.193484 +0.513384 +0.554515 -0.021958 +0.576473 +0.852635

-0.003081 +0.855716 +1.002243 -0.044425 +1.046667 +0.687538 -0.187626 +0.875164 +0.958850 +0.041718

+0.917132 +1.283180 +0.052433 +1.230747 +1.956853 -0.032539 +1.989392 +284.000000 +240.000000 1 1 2

3 4 5 6 7 8 9 10 12 13 11 14 17 15 16 18 19 20 -1.610671 +0.228949 -1.821176 -1.398181 +0.001373

-1.399674 -1.129495 +0.017916 -1.150848 -0.965397 -0.036249 -0.974914 -0.965271 +0.073232 -0.812999

-0.664133 +0.022581 -0.688640 -0.586668 -0.060049 -0.539415 -0.494832 -0.026013 -0.510408 -0.338385

+0.186976 -0.402091 +0.114876 +0.008461 +0.119627 +0.334005 -0.112012 +0.315959 +0.328117 -0.012672

+0.451767 +0.333989 +0.014088 +0.513384 +0.622928 +0.068413 +0.576473 +0.854857 +0.002222 +0.855716

+0.980118 -0.022125 +1.046667 +0.723815 +0.036277 +0.875164 +1.013213 +0.054363 +0.917132 +1.056736

-0.226444 +1.230747 +1.981214 +0.024361 +1.989392 +262.000000 +240.000000 1 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 -1.698265 -0.087595 -1.821176 -1.397663 +0.000519 -1.399674 -1.143139

-0.013644 -1.150848 -1.029168 -0.063772 -0.974914 -0.791770 +0.173501 -0.812999 -0.655317 +0.008816

-0.688640 -0.610774 -0.024106 -0.539415 -0.523429 -0.028597 -0.510408 -0.325858 +0.012527 -0.402091

Dario Schor
dario schor@umanitoba.ca

- C5 of C6 - v042/C-sample.tex
June 12, 2013

Study of PSO for Real-Time Scheduling C.3 Sample Particle Schedule Recorded

+0.119564 +0.004688 +0.119627 +0.213655 -0.120351 +0.315959 +0.329930 +0.001814 +0.451767 +0.529900

+0.195911 +0.513384 +0.645808 +0.022879 +0.576473 +0.857603 +0.002746 +0.855716 +1.002584 +0.022467

+1.046667 +1.008310 +0.284494 +0.875164 +1.057324 +0.044111 +0.917132 +1.123406 +0.066669 +1.230747

+2.008291 +0.027077 +1.989392 +230.000000 +240.000000 1

Dario Schor
dario schor@umanitoba.ca

- C6 of C6 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D. Experiment Task Sets

Appendix D

Experiment Task Sets

This appendix contains a collection of the tasks sets used throughout the load (Sec. 6.3)

and scalability (Sec. 6.4) test. The data used to generate these plots is available in the

accompanied CD under the output folder as described in Appendix E.

Dario Schor
dario schor@umanitoba.ca

- D1 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1 Load Experiment

D.1.1 Experiment: CN = 1, Load 10%

Fig. D.1: Task definition for CN = 1 with 10% system load (/test02-p1-t20-load10). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D2 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.2 Experiment: CN = 1, Load 50%

Fig. D.2: Task definition for CN = 1 with 50% system load (/test03-p1-t20-load50). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D3 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.3 Experiment: CN = 1, Load 80%

Fig. D.3: Task definition for CN = 1 with 80% system load (/test04-p1-t20-load80). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D4 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.4 Experiment: CN = 2, Load 10%

Fig. D.4: Task definition for CN = 2 with 10% system load (/test06-p2-t20-load10). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D5 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.5 Experiment: CN = 2, Load 50%

Fig. D.5: Task definition for CN = 2 with 50% system load (/test07-p2-t20-load50). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D6 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.6 Experiment: CN = 2, Load 80%

Fig. D.6: Task definition for CN = 2 with 80% system load (/test08-p2-t20-load80). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D7 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.7 Experiment: CN = 4, Load 10%

Fig. D.7: Task definition for CN = 4 with 10% system load (/test10-p4-t20-load10). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D8 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.8 Experiment: CN = 4, Load 50%

Fig. D.8: Task definition for CN = 4 with 50% system load (/test11-p4-t20-load50). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D9 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.1 Load Experiment

D.1.9 Experiment: CN = 4, Load 80%

Fig. D.9: Task definition for CN = 4 with 80% system load (/test12-p4-t20-load80). The
processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D10 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.2 Scalability Experiment

D.2 Scalability Experiment

D.2.1 Experiment: CN = 4, Load 50%, TN = 20

Fig. D.10: Task definition for CN = 4 with 50% system load, and 20 tasks (/test11-p4-
t20-load50). The processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D11 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.2 Scalability Experiment

D.2.2 Experiment: CN = 4, Load 50%, TN = 30

Fig. D.11: Task definition for CN = 4 with 50% system load, and 30 tasks (/test13-p4-
t30-load50). The processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D12 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.2 Scalability Experiment

D.2.3 Experiment: CN = 4, Load 50%, TN = 40

Fig. D.12: Task definition for CN = 4 with 50% system load, and 40 tasks (/test14-p4-
t40-load50). The processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D13 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling D.2 Scalability Experiment

D.2.4 Experiment: CN = 4, Load 50%, TN = 50

Fig. D.13: Task definition for CN = 4 with 50% system load, and 50 tasks (/test15-p4-
t50-load50). The processor load estimate assumes a single core.

Dario Schor
dario schor@umanitoba.ca

- D14 of D14 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling E. DVD Contents

Appendix E

DVD Contents

There are 4 DVDs accompanying this thesis. The source code is contained in Disc

1 under the simulator folder. The remaining zip files contain the full results of all the

experiments described in Ch. 6.

E.1 Disc 1 Contents

+-- [287M] griewank_vMax_0.2.zip

+-- [359M] rastrigin_vMax_0.2.zip

+-- [365M] rosenbrock_vMax_0.2.zip

+-- [714] simulator

| +-- [340] TimeSeriesAnalysis

| | +-- [204] Correlation

| | | +-- [589] ts_correlation.m

| | | +-- [1.7K] ts_correlation_tb.m

| | +-- [204] CorrelationTrajectory

| | | +-- [1023] ts_corr_trajectory.m

| | | +-- [943] ts_corr_trajectory_tb.m

| | +-- [170] Distribution

| | | +-- [441] ts_distribution.m

| | | +-- [681] ts_distribution_tb.m

| | +-- [170] EnvelopeDetector

| | | +-- [938] sample1.m

| | +-- [204] FFT

| | | +-- [1.5K] ts_powerspectrum.m

| | | +-- [1.7K] ts_powerspectrum_tb.m

| | +-- [204] Moments

| | +-- [2.4K] ts_moments.m

| | +-- [1.7K] ts_moments_tb.m

Dario Schor
dario schor@umanitoba.ca

- E1 of E4 - v042/E-cd-contents.tex
June 12, 2013

Study of PSO for Real-Time Scheduling E.1 Disc 1 Contents

| +-- [340] etc

| | +-- [3.4K] applyhatch.m

| | +-- [6.6K] drawaxis.m

| | +-- [30K] exportfig.m

| | +-- [1.5K] license.txt

| | +-- [943] makehatch.m

| | +-- [562] print_same_line.m

| | +-- [1.6K] print_time_left.m

| | +-- [872] progress_bar.m

| +-- [69] initializeTest.m

| +-- [4.8K] main_sched.m

| +-- [3.7K] main_test.m

| +-- [578] pso

| | +-- [408] functions

| | | +-- [30K] exportfig.m

| | | +-- [290] griewank.m

| | | +-- [1.7K] initializeFunction.m

| | | +-- [1007] main.m

| | | +-- [214] rastrigin.m

| | | +-- [233] rosenbrock.m

| | | +-- [191] sphere.m

| | | +-- [671] test_function.m

| | +-- [1.4K] initializePlot.m

| | +-- [789] main2.m

| | +-- [7.6K] pso.m

| | +-- [4.6K] psoND2.m

| | +-- [7.2K] psoreg.m

| | +-- [2.1K] rate1.m

| | +-- [478] readEntries.m

| | +-- [777] readEntries2.m

| | +-- [559] readEntries3.m

| | +-- [374] topologies

| | | +-- [367] gBest.m

| | | +-- [1.5K] initializeTopology.m

| | | +-- [1.5K] lBestGov.m

| | | +-- [828] lBestGrid.m

| | | +-- [755] lBestRing.m

| | | +-- [444] lBestStar.m

| | | +-- [1.2K] lBestTree.m

| | +-- [1.3K] trajectory3D.m

| | +-- [1.2K] updatePlot.m

| | +-- [238] weights

| | +-- [330] initializeSocialWeights.m

| | +-- [568] phiRandom.m

| | +-- [89] phiShEb99.m

| | +-- [81] phiTrel02.m

| +-- [1.2K] read_struct.m

| +-- [1.9K] save_struct.m

| +-- [612] sched

| | +-- [2.4K] colorGradient.m

Dario Schor
dario schor@umanitoba.ca

- E2 of E4 - v042/E-cd-contents.tex
June 12, 2013

Study of PSO for Real-Time Scheduling E.1 Disc 1 Contents

| | +-- [339] create_task.m

| | +-- [204] distribution

| | | +-- [104] normal.m

| | | +-- [88] poisson.m

| | | +-- [650] test_distribution.m

| | | +-- [126] uniform.m

| | +-- [1.6K] gen_tasks.m

| | +-- [1.6K] gen_tasks2.m

| | +-- [803] is_schedulable.m

| | +-- [910] minTotalTardiness.m

| | +-- [1.8K] minTotalTardinessN.m

| | +-- [1.8K] minTotalTardinessNplot.m

| | +-- [279] plot_deadline.m

| | +-- [1.4K] plot_game.m

| | +-- [1.9K] plot_sched.m

| | +-- [3.4K] plot_task_timing.m

| | +-- [351] read_tasks.m

| | +-- [339] save_tasks.m

| +-- [136] sims

| | +-- [170] sample

| | +-- [1.1K] config.txt

| | +-- [338] tasks.txt

| +-- [1.4K] test_cost_function.m

| +-- [775] test_plot.m

| +-- [713] test_save.txt

| +-- [845] test_sched.m

| +-- [557] test_sched_cost.m

| +-- [264] testw.m

| +-- [850] thesis-figure

| | +-- [777] f02_s01_taskdef.m

| | +-- [1.7K] f02_s02_gantt.m

| | +-- [2.7K] f02_s03_game.m

| | +-- [2.7K] f02_s04_game.m

| | +-- [1.8K] f04_s12_encoding.m

| | +-- [1.8K] f04_s13_encoding.m

| | +-- [3.2K] f04_s14_cosftfunction.m

| | +-- [2.2K] f05_s01_taskdef.m

| | +-- [1.7K] f06_s01_benchmark.m

| | +-- [1.9K] f06_s02_timeseries.m

| | +-- [1.6K] f06_s03_taskdef.m

| | +-- [1.6K] f06_s03_taskdef.m~

| | +-- [1.8K] f06_s04_sched_clean.m

| | +-- [1.9K] f06_s05_timeseries.m

| | +-- [1.5K] f06_s06_correlation.m

| | +-- [1.5K] f06_s06_moments.m

| | +-- [1.5K] f06_s06_spectrum.m

| | +-- [2.8K] plot_cost_function.m

| | +-- [1.8K] plot_cost_function2.m

| | +-- [2.4K] plot_timeseries.m

| | +-- [272] tasks.txt

Dario Schor
dario schor@umanitoba.ca

- E3 of E4 - v042/E-cd-contents.tex
June 12, 2013

Study of PSO for Real-Time Scheduling E.2 Disc 2 Contents

| | +-- [336] tasks2.txt

| +-- [1013] untitled.m

+-- [341M] sphere_vMax_0.2.zip

+-- [100M] test01-p1-t12-benchmark.zip

+-- [71M] test02-p1-t20-load10.zip

+-- [121M] test03-p1-t20-load50.zip

+-- [36M] test04-p1-t20-load80.zip

+-- [316M] test05-p2-t12-benchmark.zip

+-- [121M] test06-p2-t20-load10.zip

+-- [48M] test07-p2-t20-load50.zip

E.2 Disc 2 Contents

+-- [1.6G] test08-p2-t20-load80.zip

+-- [86M] test09-p4-t12-benchmark.zip

+-- [109M] test10-p4-t20-load10.zip

+-- [83M] test11-p4-t20-load50.zip

+-- [555M] test12-p4-t20-load80.zip

+-- [1.1G] test13-p4-t30-load50.zip

E.3 Disc 3 Contents

+-- [2.8G] test14-p4-t40-load50.zip

E.4 Disc 4 Contents

+-- [3.7G] test15-p4-t50-load50.zip

Dario Schor
dario schor@umanitoba.ca

- E4 of E4 - v042/thesis.tex
June 12, 2013

Study of PSO for Real-Time Scheduling F. Colophon

Appendix F

Colophon

This thesis is typeset in LATEX using a custom template under TeXShop Version 3.11

that utilizes the TeXLive-2012 engine. The references are managed using BIBTEX version

0.99d. The body is written in 11 point Times New Roman with figure captions displayed

in 10 point Arial.

Figures 2.4 and 4.18 are created in Microsoft Visio 2010 Professional. All other figures

are generated using Matlab version 2010b and saved as Encapsulated PostScripts (eps) files

using the exportfig script written by Ben Hinkle and available online at the Matlab FileEx-

change Central (http://www.mathworks.com/matlabcentral/fileexchange/727-exportfig).

The majority of the work was performed using a Mac OS X version 10.6.8 and Windows

7 Professional running as dual boots in a 2×2.4 GHz Quad-Core Intel Xeon processors with

12 GB of 1066 MHz DDR3 memory. Some writing and editing was completed on Mac OS

X version 10.8.3 running on a 3.6 GHz Intel Core i5 with 4 GB of 1333 MHz RAM.

The source code and LATEX files are managed using a secure Subversion repository

hosted at http://www.darioschor.com.

Dario Schor
dario schor@umanitoba.ca

- F1 of F1 - v042/thesis.tex
June 12, 2013

http://www.mathworks.com/matlabcentral/fileexchange/727-exportfig
http://www.darioschor.com

	Abstract
	Visual Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Symbols
	Introduction
	Problem Statement
	Motivation
	Problem Definition
	Proposed Solution

	Thesis Formulation
	Thesis Statement
	Thesis Objectives
	Research Questions

	Thesis Organization

	Literature Review of Scheduling Algorithms
	Scheduling Real Time Systems
	Scheduling Complexity and Optimal Schedulers
	Scheduling Problem Definitions & Classifications
	Visualizing Schedules
	Schedulability Analysis
	Review of Scheduling Methodologies for Real-Time Systems

	Evolutionary Optimization Algorithms
	Simulated Annealing
	Genetic Algorithms
	Ant Colony Optimization
	Particle Swarm Optimization
	Other evolutionary algorithms

	Summary

	Theoretical Background on PSO
	The Original Algorithm
	Mathematical Realization
	The PSO Algorithm
	PSO Algorithmic Complexity
	Visualization

	Variations and Comparisons
	Population Size
	Limiting Step Size
	Social Influences
	Neighbourhood Topologies
	Stopping Criterion
	Other Variations

	Summary

	Scheduler System Design
	Optimization Algorithm
	Requirements for Optimization Algorithms in Real-Time Systems
	Selection of Evolutionary Algorithm
	Selection of Test Functions
	Analysis of Particle Trajectories
	Single Particle Analysis

	Design of Scheduling Algorithm
	Assumptions and Constraints for the Scheduler
	Design of Encoding Mechanism
	Design of Fitness Function
	Design of Cost Function Algorithm
	Example Cost Function Evaluations

	Summary

	System Implementation and Verification
	Generic PSO Algorithm Implementation
	Customizable PSO Parameters
	Saving Trajectories for Analysis

	Time Series Analysis
	Implementation of Scheduling Algorithm
	Schedule Simulations
	Summary

	Experiments and Discussion of Results
	Experimental Setup
	Benchmark Experiment
	Load Experiments
	Scalability Experiment
	Summary

	Conclusions
	Overview
	Thesis Conclusions
	Contributions
	Limitations and Potential Solutions

	References
	Appendix Particle Trajectory Analysis
	Verification of Analysis Functions
	WSS Analysis Functions
	Auto-correlation Analysis Functions
	Power Spectrum Analysis Functions

	Sphere Function
	Ensemble Analysis
	Typical Particle Trajectory
	Time Series Extraction
	Time Domain Analysis - Moments
	Time Domain Analysis - Auto-correlation
	Frequency Domain Analysis

	Rosenbrock Function
	Ensemble Analysis
	Typical Particle Trajectory
	Time Series Extraction
	Time Domain Analysis - Moments
	Time Domain Analysis - Auto-correlation
	Frequency Domain Analysis

	Rastrigin Function
	Ensemble Analysis
	Typical Particle Trajectory
	Time Series Extraction
	Time Domain Analysis - Moments
	Time Domain Analysis - Auto-correlation
	Frequency Domain Analysis

	Griewank Function
	Ensemble Analysis
	Typical Particle Trajectory
	Time Series Extraction
	Time Domain Analysis - Moments
	Time Domain Analysis - Auto-correlation
	Frequency Domain Analysis

	Appendix Software
	Running PSO Algorithm on Test Functions
	Running Scheduling Algorithm

	Appendix Sample Output
	Sample Configuration File
	Sample Particle Trajectory Recorded
	Sample Particle Schedule Recorded

	Appendix Experiment Task Sets
	Load Experiment
	Experiment: CN=1, Load 10%
	Experiment: CN=1, Load 50%
	Experiment: CN=1, Load 80%
	Experiment: CN=2, Load 10%
	Experiment: CN=2, Load 50%
	Experiment: CN=2, Load 80%
	Experiment: CN=4, Load 10%
	Experiment: CN=4, Load 50%
	Experiment: CN=4, Load 80%

	Scalability Experiment
	Experiment: CN=4, Load 50%, TN=20
	Experiment: CN=4, Load 50%, TN=30
	Experiment: CN=4, Load 50%, TN=40
	Experiment: CN=4, Load 50%, TN=50

	Appendix DVD Contents
	Disc 1 Contents
	Disc 2 Contents
	Disc 3 Contents
	Disc 4 Contents

	Appendix Colophon

