A TRANSLATOR WRITING SYSTEM

FOR SIMPLE PRECEDENCE GRAMMARS

A THESIS
PRESENTED TO
THE FACULTY OF GRADUATE STUDIES AND RESEARCH

THE UNIVERSITY OF MANITOBA

IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE
MASTER OF SCIENCE

IN THE DEPARTMENT OF COMPUTER SCIENCE

by
Bruce Foulkes

March 1971

| © Bruce foulkes 1972

ABSTRACT

A System (consisting of three programs written in PL/1)
is described which serves as an aid in the development of Simple
Precedence grammars,

A program is provided which tests a given grammar to see if it
conforms to the rules of Simple Precedence.

Implementation consists of providing the semantics in the form
of a PL/1 external procedure to run in conjunction with a program of
the System which performs the syntactic analysis.

Any Simple Precedence grammar which meets a few restrictions

imposed by the System can be implemented using this scheme.

ii

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Professor J. Wells
for his guidance and supervision during the preparation of this thesis.,
I would slso like to extend my sincere thanks to Dr. P. King for

his comments and criticism on this thesis,

iii

TABLE OF CONTENTS

ABS TRACT L -] o L] L4 @ L4 L L e ° °

ACKNOWLEDGEMENTS o o o o o o o o

TABLE OF CONTENTS: o ¢ o o o o o

CHAPTER 1
1.1

1.2

CHAPTER II
2.1
2,2

2.3

CHAPTER III
3.1
3.2

363

CHAPTER IV

APPENDIX

A

-~ INTRODUCTION . . .
OBJECTIVES o ¢« o &+ &

THEORY o o o o s o o

haad USER.S G’UIDE e © o
TESTPREC ¢ 6 6 o o o
EXTRACT & ¢ 6 o o o

ANAIJYSE@Q.@&@

=~ PROGRAM DESCRIPTIONS

TESTPREC o ¢ o o o o
EXTRACT o ¢ o o o o

ANALYSE L] L4 o L ° °

- CONCLUSIONSO e © o

LISTING OF TESTPREC,
LISTING OF EXTRACT ,
LISTING OF ANALYSE .

REFERENCES ¢ o o o »

L]

ii
iii

iv

16

18

45
45
51
54

59

60

70

87

iv

CHAPTER 1

INTRODUCTION

The thesis is divided into four chapters. The current chapter
outlines the objectives of the thesis, and presents a description of
Simple Precedence grammars. Chapter 2 can be considered as a
"User's Manual' and describes the details of the System from the
user's point of view. Chapter 3 gives a short explanation of some
of the novel or difficult points in the actual programs of the System.

Finally Chapter 4 presents some conclusions on this approach.
1.1 OBJECTIVES

The motivation behind this approach was the desire to provide a
means by which students could design and implement their own computer
languages, and thereby gain valuable experience with a minimum of time
and effort,

An attempt was made to maximize both efficiency and versatility
80 that it would not be unreasonable to develop compilers using this

system for use in limited applications.
1.2 THEORY

A phrase structure grammar can be defined by ¢ = (V,S,T,%2)

where V is the total vocabulary, whose elements are called symbols and

will be represented by capital letters; S is a set of syntactic rules
of the form A -» b where b £ A, A € V=T, b € V= (where V* is the set of
all strings over V) and A is called the left part and b the right

part of this syntactic rule or production; T is the set of terminal
symbols; Z is a unique symbol appearing only on the left side of the

set of syntactic rules.,

The left-most symbol of b is referred to as a left derivable symbol
of A, and is a member of the set L(A). ILikewise R(A) represents all the
right derivable symbols of A, If the left/right derivable symbol of A
in any production is a nonterminal then all the left/right derivable
symbols of it are also considered 1eft/right derivable symbols of A,

Wirth and Weber (1) define three possible precedence relations
which can occur between symbol pairs. Using A -> xXYy as a sample
production, the relationships can be demonstrated as follows:

1. X =Y

2. X< B if B € L(Y)

3. M>Nif M€ R(X) and (N is Y or N € L(Y)).

If there is at most only one of these precedence relationships
between any two symbols of the syntax, then the grammar is referred to
as a Simple Precedence grammar,

These relationships can be stored in a Precedence Matrix of size
N X N where N is the total number of symbols (both terminal and
nonterminal) which appear in the vocabulary. The relationships between
two symbols can then be found by locating the relationship corresponding
to the row of the first symbol, and the column of the second, A blank

indicates that no precedence relationship exists between the two symbols

in question and therefore the second symbol can never follow the first
according to the grammar,

A method of storing the precedence relations in 2 X N locations
instead of § X N locations as with the precedence matrix was first
suggested by Robert W. Floyd (2) for Operator Precedence grammars.

This was extended to Simple Precedence grammars by Wirth and Weber. The
method consists in defining integer functions F and G as follows:

If A= B then F(4) = G(B)

If A< B then F(4) is less than G(B)

If A» B then F(A) is greater than G(B).

One disadvantage to the F and G functions is that they do not always
exist. In addition, if they do exist they will always show a relationship
between any two symbols while in fact the Precedence Matrix might show

that none existed for some pairs of symbols.
1.2.1 PARSING TECHNIQUE

The canonical parse proceeds from left to right in a sentence written
in a Simple Precedence language, reducing left-most reducible substrings
as it encounters them. The symbol before the leftmost reducible
substring yields precedence to its left-most symbol (i.e., has relation
"), while its right-most symbol has precedence over the symbol
folloving (i.e., has relation "»"), All of the symbols in the
reducible substring are of equal precedence, When the parse encounters
the situation

AC¢S, =82, .25 >3B

then the string So to Sn is the right part of some production and is

Je—j-1

S ,<—LEFTPART(S. ... S.)
J Jj i

i< J

APPLY
INTERPRETATION
RULE

Fige 1l

replaced by the corresponding left psrt and the parse continues until
only the symbol Z, the unique symbol appearing only on the left side
of a production, remains signalling a successful completion of the parse.

If no two right parts of productions in the grammar are identical
then the parse is unique.

The parse fails if it encounters two adjacent symbols with no
pPrecedence relation defined between them, or if it finds a left-most
reducible substring which is not the right part of some production. Unless
some mechanism for error recovery is built into the parse, the parse
mst terminate at this point with an indication that the string is not
a sentence in the grammay,

Fig. 1 is a flow chart of a parsing algorithm proposed by Wirth

and Weber (1). The input string consists of P, . . P . k is the index

1
of the last symbol to be scanned., The left-most reducible substring is
Sj e o Si, The algorithm assumes the symbol | appears before and after
the input string, where for any symbol SEV J < S and S » j. The
function LEFTPART locates the left-most reducible substring among the
right parts of the productions of the language and returns the

corresponding left part.
1.,2,2 SEMANTICS

To add semantics to a parser for a Simple Precedence grammar one
can associate an interpretation rule with every syntax rule or production
in the grammar, Application of these interpretation rules in the order
in which the reductions (replacing the right part of productions by

the corresponding left part) were made while parsing the input results

in a unique meaning of the input string being determined,

Fig. 2a shows an example of a Simple Precedence grammar which
defines a binary number (i.e., a string of 1's and O's), The
interpretation rules shown with the productions will develop the decimal
equivalent of any binary number defined using this grammar if applied
in the correct order. For convenience the symbols BOOL, NUMBER, and
DIGIT are replaced by B, N and D respectively in Figures 2b and 3,

Fig. 2b is the Precedence Matrix for this Simple Precedence grammar,

Fig 3 demonstrates a parse of the input string 1001,

PRODUCTIONS INTERPRETATION RULES
1. BOOL s := NUMBER nmll
2. NUMBER ::= DIGIT Total <= Value
Fe $3= NUMBER DIGIT Total <~ Total X 2 & Value
4, DIGIT 1:= 0 Value <= O
56 =1 Value <= 1
Fig. 2a
B N D O 1 1 0 0 1
B Tamol Yooal | o) | -]
N T< < 2 D
D > D D
0 21> 1> ' !
1 D4 2 0.4 :N y
N
1 1
N
L |
B
Fig, 3

From this it can be seen that the interpretation rules should be
applied in the order 5,2,4,3,4,3,5,3,1s This will result in the correct

answer 9, being produced in Total,

CHAPTER 2

USER'S GUIDE

The System consists of three programs written in PL/1. The first
of these programs, TESTPREC, tests Simple Precedence grammars. The
other two programs, EXTRACT and ANALYSE, are used in the implementation of
newly defined languages, EXTRACT reads the Simple Precedence grammar and
creates a file called TABLES containing information about the langusge
to be implemented., ANALYSE then uses the information in TABLES to perform
a lexical scan and syntactic analysis on a source program written in the
new language. It remains the responsibility of the person implementing
the langusge to provide the semantics., This is accomplished by writing
a PL/l external procedure INTERPRET which is called by ANALYSE, Fig. 4

demonstrates the approach used.

e

SOURCE
PROGRAM

RV~ P I
PRODUCTIONS EXTRACT TABLES ANALYSE
p—— ot
l ~ I RESULTS
PRODUCTIONS INTERPRET

Fig. 4

The three programs of the System are presented in the order
in which they are used, and a sample language is shown at various

stages of development.
2.1 TESTPREC

Purpose of the Program. The program is designed to determine if a

given grammar is a Simple Precedence Phrase Structure grammar.

Input. One production is given on each data card. The symbol on
the left side of the production must start in column 1, The blank is
the delimiter between symbols., (i.e., between the left symbol and the
right-hand side of the production, and between each of the symbols
on the right-hand side of the production.) Any number of blanks nay
be inserted between symbols. If the left~hand side of a production is
the same as that of the previous production, it may be omitted by leaving
column 1 blank, and the previous left part will be assumed. The right
part may then start anywhere from column 2 on., Fig., 5 shows the sample

language input to both TESTPREC and EXTRACT,

Output.
1, A list of the Productions in readable form. (See Fig, 6)

2¢ A list of the NONTERMINAL and TERMINAL symbols used in
the syntax., (See Fig. T)
3, A list of the precedence violations (if any) which

occurred and explanations of these violations.

Optional Output.
1. A printout of the PRECEDENCE MATRIX, The matrix is printed

even if precedence violations occur, but only 1 relationship
is shown. (i.e., violations are not shown in the precedence
matrix) Specify 'MATRIX' in the PARM list on the EXEC card.
(See Fig. 8)

2., A listing of the F and G Functions if they exist. They
will not be produced if a precedence violation is detected,
Specify 'FUNCTIONS' in the PARM list on the EXEC card.

(See- Fig, 9)

Limitations.

1. There must not be more than 180 symbols in the grammar,

2, There must not be more than 6 symbols on the right-hand
side of any production.

If either of these limits is exceeded an error message is

printed and the program terminates gbnormally.

3o A symbol is restricted to 12 characters, Longer symbols are
truncated to 12 and a warning given, but the program

continues normally.

Explanation of the Precedence Matrix. The symbols are in the same
relative positions on both the horizontal and vertical exis, To find
the relationship between two symbols, locate the first symbol in the
listing at the left margin. Locate the second symbol in this listing and
note the number associated with it. Proceed along the row corresponding

to the first symbol to the column corresponding to the second number,

TESTPREC Error Messages., VWhen a relationship is found between

symbols of the syntax, the relationship is inserted into the precedence

PROGRAM START BLOCK FINISH
BLOCK BEGIN BODY END
BODY BODY-

BODY~ STATLIST

STATLIST STATLIST ; STATMNT
STATMNT

STATMENT VAR := CHOICE
GO TO VAR
1/0
BLOCK

STATMNT STATMENT
DECL
LABDEF STATMNT
IF-ELSE STATMNT
IFCLAUSE STATMENT

IFCLAUSE IF RELATION THEN

IF-ELSE IFCLAUSE STATMENT ELSE

EXPR EXPR-

EXPR~ EXPR- + TERM
EXPR= - TERM
+ TERM
- TERM
TERM

CHOICE- EXPR

CHOICE CHOICE=-

RELATION CHOICE
CHOICE == CHOICE
CHOICE <= CHOICE
CHOICE >= CHOICE
CHOICE = CHOICE
CHOICE < CHOICE
CHOICE » CHOICE

TERM TERM-

TERM=~ TERM= = FACTOR
TERM- / FACTOR
FACTOR

FACTOR (EXFR)
ANYSTRING
NUMBER
VAR

VAR VAR_TABLE

NUMBER NUMERO

I/0 WRITE VAR
READ VAR
1/0 , VAR

DECL TYPE VAR
DECL , VAR

TYPE INTEGER
LABEL

LABDEF VAR :

10

oo 2R N lo NRE, BN CUR SN

PROGRAM
BLOCK
30DY
300Y-
STATLIST

STATMENT

STATMNT

IFCLAUSE
IF-ELSE
EXPR
EXPR-

CHOICE-
CHOICE
RELATION

TERM
TERM-

FACTOR

VAR
NUMBER
1/0
DECL
TYPE

LABDEF

@8 S8 44 49 B3 68 B8 B4 au S0 SO ue 4B S0 b 44 6% 6 gu 5 08 €b S0 en 5 66 60 K6 26 38 e 44 40 6 O 45 a8 BB 46 83 80 e85 S5 48 88 ee 66 .4 s b
SR S5 40 se B 04 98 6 04 60 S0 48 a4 OB 45 68 G0 40 4p S5 S8 S0 S0 Sh 86 00 44 B8 00 00 00 AU 44 68 56 44 66 80 43 NC 48 se 8 68 06 44 0 ou o8 A

L L L | T I L L e (| T O O ([(O O T [| I [T T O T R VA TR TR

START
BEGIN
BODY-
STATLIST
STATLIST
STATMNT
VAR

GO

1/0
BLOCK
STATMENT
DECL
LABDEF
IF-ELSE
IFCLAUSE
IF
IFCLAUSE
EXPR-
EXPR~-
EXPR~-

+

TERM
EXPR
CHOICE~
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
TERM-
TERM-
TERM-
FACTOR

{
ANYSTRING
NUMBER
VAR
VAR_TABLE
NUMERO
WRITE
READ

1/0

TYPE
DECL
INTEGER
LABEL
VAR

Figo 6

PRODUCT ICNS
BLOCK
BODY

STATMANT
STATMNT
STATMENT
RELATION
STATMENT

+

TERM
TERM

AV
i nn

4

VA

EXPR

VAR
VAR

'
VAR

FINISH
END

STATMNT

CHOICE
VAR

THEN
ELSE

TERM
TERM

CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE

FACTOR
FACTOR

}

VAR

VAR

12

PROGRAM
STATHMENT
IF-ELSE
CHOICF-

STARY
GO

>
VAR_TABLE
LABEL

BLOCK
VAR
IFCLAUSE
TERM-

FINISH
TO

>=

&
NUMERD

" 'NONTERMINAL SYMBOLS

BODY B80ODY-
CHOICE 1/0
RELATION EXPR
FACTOR NUMBER

TERMINAL SYMBOLS

BEGIN END
IF THEN
/ (
WRITE READ
VIOLATIONS

NO PRECECENCE VIOLATIONS OCCURRED

STATLIST
DECL
EXPR-
TYPE

LSE

. e I [T e

STATMNT
LABDEF
TERM

A+ oo

ANYSTRING
INTEGER

Fig. 7

Nelie RN IRe SRS I R

PROGRAM
START
BLOCK
FINISH
BEGIN
BODY

END
BODY—~
STATLIST

STATMNT
STATMENT
VAR
CHOICE
GO

T0

1/0

DECL
LABDEF
IF~-ELSE
IFCLAUSE
1F
RELATION
THEN
ELSE
EXPR
EXPR~

+

TERM

CHOICE-
>=
<=

—=

ANYSTRING
NUMB ER
VAR_TARLE
NUMEROD
WRITE
READ

?

TYPE
INTEGER
LABEL

.
-

.ooco-.0010.00..-..1....0.--'1.0

|

i} =<

] = > > >

|

| € <= <€ <K< < <LKkkK

I =

] > > > >

] >

] > =

| <« =<< < <<KLKL

] > > .

] > > =

] > > = >> > >
| < = <LLLKL
i > > >>

| =

| =

] > > >

] > >

I << =< € KLLLLKL

I <K< =<< < <KKLkL

| <« =< < <

] < < = <KL
| ’ =

o> > >»> > D>

P> > DO> > DO

- > > >>

i > > >> = =
i -< : =

] > > > > >
] < =

| > > >>

} < = <LK
] < = <KL
| < = <KL
] < = <LK
| < = <LK <<
| < = <LK
| > > > > >
| <

! > > >> > >
| <

] < =<<<<
| > > >> > >
| > > > > >
! > > > > >
] > > > >> > >
] > > > > >
] =

| =

| =

| =

] >

! >

I > > D5 > OOO>>>

n...-o.oo;oo-.oooonloaon.ouna‘oo

Fig. 8

PRECEDENCE MATRIX

...n-a.‘-c-oo-.ool...oo

< <L KL<L
< <L KKK
ODE255> > > > > =
< € < KLLL
<
< KK KKK
< L K<L
< KL
< € € KLLK
> >>
> >> 55>
>555>> =
DO>5>> >
< € € <KL
>S25>>> >
< < < KKLKL
PEO5>>
< € € KLKLKL
< < € KKK
< < € KL<KKL
< € € LLLL
< < € KKLKLK
< <€ < KLKKKL
DOOO5> = = >
= < KLKKL
POXO2> > > >
= £ KLKLKXK
< € € <KL
DEXO5> > > >
O35> > > >
SE555> > > >
DEOX5> > > > > >
2O555> > > >
<
<
<
<
>
>
> 5> >>>

-o.o-o.‘.o;oo.o..‘.‘-o.

13

PRECEDENCE FUNCTIONS

PROGRAM
START
PLCCK
FINISH
BEGIN
BOGDY

END
BODY-
STATLIST

STATMNT
STATMENT
VAR
CHOICE
GO

T0

1/0

DECL
LABDEF
IF-ELSE
IFCLAUSE
IF
RELATION
THEN
ELSE
EXPR
EXPR—-

+

TERM

CHOICE-
>=
<=

ANYSTRING
NUMB ER
VAR_TABLE
NUMERD
WRITE
READ

*

TYPE
INTFGER
LABEL

.

DOXTOCTO OV WVIDODUVMNNNNNNNNUOVUE NP0~ WNNS DO PNOOWWNNNU R N DT

OWWWRA,LIEPONCOPUVOENVNVELEPPLPDIPIPDPUWOCPLPOCOPUWNMHRWWOLOWERA=PNEPWINNNNF U DN~ Q

Fige 9

14

15

matrix, If a different relationship has already been stored in the
matrix for this pair of symbols, then an error message is printed giving
the relationship aslready in the matrix, and the second one which was to
be inserted.

According to the definitions of Simple Precedence grammars, there are
four possible situations which give rise to precedence relations: one
each for = and < and two for >, If WWW, XXX, YYY and ZZ2% are symbols
used in the syntax of the language, then the following examples of
erroy messages demonstrate the four possible cases,

XXX 2> YYY NOTE: = BECAUSE XXX ADJACENT TO YYY IN #4#
NOTE: > BECAUSE XXX IS RDS OF WWW & WWW = YYY IN @@e

This says that XXX has equal precedence with, and precedence over
YYY. They are equal in precedence because XXX occurs adjacent to YYY in
production number ###. XXX has precedence over YYY because XXX is a
Right Derivable Symbol of WWW and WWW occurs adjacent to YYY in
production number @€g,
XXX <> YYYI NOTE: < BECAUSE YYY IS LDS OF WWW & XXX = WWW IN 299
NOTE: > BECAUSE XXX IS RDS OF 2ZZ & YYY IS LDS OF WwW
& 227 = Wi IN 444 ‘
This says that XXX yields precedence to, and has precedence over
YYY, XXX yields precedence to YYY becaﬁse YYY is a Left Derivable
Symbol of WWW and XXX occurs adjacent to WWW in production number 2779,
XXX has precedence over YIY because XXX is a Right Derivable Symbol
of ZZZ and YYY is a Left Derivable Symbol of WWW and ZZZ occurs adjacent
to WWW in production number 444,
If the use of the equal sign in the explanations of the precedence
violations is confusing, substitute "occurs to the left of, and adjacent

tO" °

16

2.2 EXTRACT

Purpose of the Program. The program is designed to create a file
called TABLES and store in it all of the pertinent information about
the grammar, TABLES is declared in EXTRACT with the attributes
FILE STREAM OUTPUT, The JCL supplied by the user for this file must be
consistent with these attributes. Once this file has been created, it can
be read in by ANALYSE at run time, and a syntactic analysis can then be

prerformed upon an input stream according to the rules of this grammar.

Input. Exactly the same input is used here as for TESTPREC, The
grammar should be tested by TESTPREC first to check for precedence

violations,

Output.
1. The file TABLES is created on the device specified in the JCL.

2, A list of the production of the grammar and a statement
saying whether TABLES was loaded successfully or not are
printed on the SYSPRINT data set. See Fig. 10 for the

output using the sample language,

Error Messages. The error messages, except those for precedence

violations, are the same as given by TESTPREC. If a precedence violation
is found an error message is given to this effect, but the violation is

not listed and the program immediately terminates.

Limitations. The limitations on the input grammar are the same as
for TESTPREC, If a grammar runs successfully using TESTPREC then TABLES

should be loaded successfully using EXTRACT,

3

O 00~ D WN -

PRIOGR AM
BLOCK
335DY
30DY~
STATLIST

STATMENT

STATMNT

IFCLAUSE
IF-ELSE
EXPR
EXPR-

CHCICE-
-AQICE
RELATION

TERM
TERM-

FACTOR

VAR
NUMBER
1/0
JECL
TYPE

LABDEF

TABLES LOADED SUCCESSFULLY

S8 60 64 S8) 80 S0 98 S5 ae se 00 B8 48 68 B 4% BF 49 AR 5 6V g6 40 S0 4¢ 56 B0 A4 ¢ ou 65 S0 25 U6 4s 8D S8 ap B0 U5 B8 o8 S0 se 45 4% ss ¥ e

06 08 46 48 98 S8 we $9 %6 40 e S6 €6 43 U BE G0 RO 26 40 40 45 au S8 65 S 8 €0 4a PO ab be 0 45 O ae 44 3 40 B4 S8 S G0 6 e €% 48 4 A% se

L L L | (| | (O | | [| { T L O | O O (¢ O (O (I | S VO T T T | AT (|

START
REGIN
BODY-
STATLIST
STATLIST
STATMNT
VAR
60
1/0
BLOCK
STATMENT
DECL
LABDEF
IF-ELSE
IFCLAUSE
IF
IFCLAUSE
EXPR-
EXPR-
EXPR-
+
TERM
EXPR
CHOICE-
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
CHOICE
TERM-
TERM-
TERM-
FACTOR
(
ANYSTRING
NUMBER
VAR
VAR_TABLE
NUMERO
WRITE
READ
1/0
TYPE
DECL
INTEGER
LABEL
VAR

Fig. 10

PRODUCT TONS
BLOCK
BODY

STATMNT
STATMNT
STATMENT
RELATION
STATMENT

+

TERM
TERM

a4
[]

d

VAN

EXPR

VAR
VAR

Y
VAR

FINISH
END

STATMNT

CHOICE
VAR

THEN
ELSE

TERM
TERM

CHJICE
CHOICE
CHOICE
CHOICE
CHDICE
CHOICE

FACTOR
FACTOR.

)

VAR

VAR

17

18

2.3 ANALYSE

The program ANALYSE is a fremework for a one-pass compiler for
Simple Precedence grammars., It is general because the details about
the language are read in at run time. Once TABLES has been read in
ANALYSE behaves as if it has been specially written for this language
described by the tables.

The reading of all the pertinent information at run time is of course,
an overhead which would not be tolerated in a production compiler. At
the same time a production compiler is designed to handle only one
language, Tolerating this limited increase in cost on every run results
in a powerful tool for experimentation in language design plus a not
unreasonable tool for the implementation of languages on a somewhat
smaller scale than production compilers,

ANALYSE represents only part of the implementation of a compiler.
It performs the canonical parse but it is the user written PL/1
external procedure INTERPRET which provides semantics.,

Whenever ANALYSE finds a left-most reducible substring, it calls
INTERPRET o apply some meaning to what it has found. The necessary
information is made available to INTERPRET through the use of a
parameter list, When control is returned to ANALYSE a reduction is
made and the parse continues,

ANALYSE can logically be divided into two parts; the Scan and

the Parse,

The Scan. The purpose of the Scan is to read in the Source

program written in the user's language and perform a lexical analysis

13

of it and provide this information to the Parse. Any source program consists
entirely of terminal symbols as defined by the grammar. The Scan must
search the input and pick out these terminal symbols,

In order to keep the scan general, but at the same time to keep its
operation as efficient as possible, some basic rules were laid down
(and hence some restrictions were imposed) as to what the scan would
be required to recognise.

When the scan succeeds in isolating and recognising a symbol in
the input stream, the symbol is replaced by & number which thereafter
represents it. These symbol numbers are the ones gssigned by TESTPREC,
Examination of the print—out of the precedence matrix gives the number
used to represent each of the symbols.

The first distinction ANALYSE mskes upon encountering a non-blank
character is between operators (i.e., special symbols = any character
which is not a letter of the alphabet or a digit) and all others, If
the character is an operator, the scan checks to see if the next position
in the input also contains an operator. If it does, the Scan checks
its 1list of all the double operators (i.e., such things as := and >=) which
were used in the syntax, If this search is not successful, the first symbol
is checked against the list of all single operators. A failure on this
search indicates that an undefined symbol has been found.

If the character found is not an operator, a second distinction
is made between letters of the alphabet and digits, If it is a letter of
the alphabet it is assumed to be the start of a key-word (i.e., a

terminal symbol used in the syntax starting with a letter of the

alphabet - such as BEGIN or IF) or an identifier, Both key=words
and identifiers are assumed by ANALYSE to start with a letter, followed
by a sequence of letters or digits. The scan therefore searches until
it finds a blank or operator and thus isolates the key=word or identifier.
If the isolated string is less than or equal to 12 characters in length,
the list of all the key-words used in the syntax is searched. If
it is found then the corresponding number is sent to the Parse. If the
string is longer than 12 characters, or if it was not found to be a
key-word, then it is assumed to be an identifier.

If the character found is a digit then it is assumed that a number has
been encountered. The user has the option of either defining the numbers

used in the syntax explicitly for example:

NUMBER s:= DIGIT
s:= NUMBER DIGIT
DIGIT ::=0
se=)
etc.

or by using a "reserved word" (see Numbers in 2.3.1) and letting
ANALYSE pick out an integer number of any length on one input card.
(i.e., a string of digits not including any special characters), If an
explicit definition was made then the list of key-words is searched to
find the internal number corresponding to that digit. The flow chart

in Fig, 11 shows the basic operation of the Scan.,

The Parse., The Parse operates in the manner described in (l), with
a push-down Stack. When a left-most reducible substring is isolasted at
the top of the STACK the external procedure INTERPRET is called and

the production number and pointers to the left-most and right-most symbols

get one
character
from source

program

single
operator

search for

closing
quote

y

put string |

digit T

?

v

pick out
sequence of
letters and
digits

it a
key-word

put
characters
in |
STRING

Y

k]

he digit-.

pick out
sequence

digits

a

"1 identifier

in STRING

e 11

a key-word .
e
T

:

22

are passed. When control is returned to ANALYSE this substring is
replaced by the corresponding left-part of the production and the Parse
continues by comparing this with the next incoming symbol, This
process continues until the Scan runs out of symbols to provide the

Parse or the procedure INTERPRET terminates execution.
2.3.1 SCANNER CONVENTIONS

Identifiers. The user is not free to define his own syntax for
identifiers, They must start with a letter which may be followed by
any number of letiers or digits, with the restriction that the name
may not be split over the end of a card. To use this definition the
user must use one of two possible reserved words in his syntax, This
reserved word is then assighed an internsl symbol number, and it is this
number which the Scan substitutes for the variable name. The procedure
INTERFRET must of course know which variable occurred and not just that
a variable was found., This information is provided to INTERPRET in one
of two ways and hence the two reserved words. These words are "VAR_STRING"

and "VAR TABLE", Descriptions of their use follows,

VAR_STRING

The Scan isolates a variable as defined above. It passes the
internal symbol number assigned to it to the Parse., It then inserts
the character string corresponding to the identifier into the INTERPRET
parameter STRING, STRING is a character string with the varying
attribﬁte. INTERFRET can then use STRING and take the appropriate

action.

23

VAR _TABLE

As with VAR STRING the Scan isolates the identifier and sends
the internal symbol number to the Parse, ANALYSE sets up an array
called VARIABLE which can accomodate a maximum of 250 identifiers,
When an identifier is found the array VARIABLE is searched to see if
it had been entered previously, It it has then a number which
corresponds to that subscript of VARIABLE is passed to INTERPRET. If
it is a new identifier then a new entry is made and the new number
is passed. This number is assigned to the INTERPRET parameter INFO,
The array VARIABLE is also a parameter of INTERPRET and INTERPRET can
use the number in INFO as the subscript in VARIABLE to get the character
string for the idéﬁfifier. The array VARIABLE only stores 12 characters
of the name, Longer names are truncated to 12 significant characters.
In the event that the user wants to use VAR TABLE to build up a table
of the identifiers instead of doing it himself through VAR _STRING but
still wants to be able to access a complete name which is longer than
12 characters, the character string corresponding to the name is
inserted in the parameter STRING the same as with VAR _STRING, Although
the number INFO is passed to INTERPRET, it is still up to INTERPRET
to take care of such things as local and global variables of the

same name, etc,

Numbers. As previously stated, the user has the option of defining
numbers in his syntax, or letting ANALYSE pick out integer numbers,
The reserved word in this case is "NUMERO", If this is used in the
syntax then ANALYSE processes integer numbers, i.e., a sequence of digits

on one card, and puts this sequence as a character string in the parameter

24

STRING, INTERPRET may then decode this string of characters, The

symbol number corresponding to NUMERC is passed to the Parse, and the
corresponding character string is passed to INTERPRET when an integer
is isolated as a left-most reducible substring. Other conventions of

the Scan follow.

Comments., If it finds the word "COMMENT" used in the input stream,
the Scan will skip symbols until it finds a semi-colon, Thus comments
may be inserted between any pair of symbois in the input stream. Scan
always sees COMMENT as a key-word. The next symbol may éppear
immediately after the semi-colon marking the end of the comment. Any
symbols may be used between the word COMMENT and its closing semi-=-colon.
This entire string does not exist as far as the Parse is concerned

because it is ignored by the Scan.

Character Strings., A method is provided for handling character

strings. This allows the user to incorporate them in the language he

is designing. If the user includes the reserved word "ANYSTRING" in his
syntax then ANALYSE will process strings delimited by quotes. The
maximum length of string is 256 characters, Strings longer then this
are truncated on the right without a warning being given. Any character
may appear between the qﬁotes but the quote. An example is ‘any kind of
string's The symbol number for ANYSTRING is sent to the Parse and the
character string between the quotes is passed to INTERPRET in the

parameter STRING,

25

203.2 INTERPRET PARAMETERS

The parameter list and declarations required in the user
written external procedure INTERPRET are as follows:
INTERPRET;
PROCED?RE (PROD,LEFT ,RIGHT , STACK, VARIABLE, SYMBOL, STRING, INFO,
STATUS) 3
DCL (PROD,LEFT,RIGHT,STACK(x),STATUS,INFO) FIXED BIN(15),
SYMBOL(=) CHAR(12), VARIABLE(=) CHAR(12) VAR,
STRING CHAR(256) VAR;

A description of the parameters and their use is given in the

order of their appearance.

EFROD. This is the current production number, When ANALYSE finds
a left-most reducible subsiring it searches the list of Right Parts
for a match and assigns that production number to PROD. The numbers
used here are the same as those listed with the productions in the
printout of both TESTPREC and EXTRACT, If ANALYSE isolates a string
of symbols which does not match the right part of any production, then

PROD is assigned the value O,

LEFT, RIGHT, These are pointers in the parameter STACK, They
point respectively to the left-most and right-most symbols of the
left-most reducible substring isolated by ANALYSE, As the STACK is numbered
from the bottom up, RIGHT is greater than or equal to LEFT, Using these
two pointers the user can access any or ail of the symbols in this

isolated Right Part.,

STACK. This is the symbol stack used by ANALYSE during the Parse,

The parameter RIGHT indiéates the number of symbols in the STACK.

26

The sequence from LEFT to RIGHT is the Right Part of the production
PROD, The STACK values are the internal numbers used to represent the
symbols in ANALYSE. Although the user has access to the entire STACK,
only a small part of it should be used at any call of INTERPRET,

INTERPRET should never modify the STACK,

VARIABLE., This parameter is only of use when VAR _TABLE appears
in the syntax of the language. This array contains the character strings
(of maximum length 12) representing identifiers in the Source program,
The actual character strings used are of little importance internally
because everything can be represented by numbers or addresses. This
array then is provided in casse the implementor wishes to write out
error messages such as: THE VARIABLE ______ WAS NOT DECLARED. See

the explanation of INFO,

SYMBOL. This array contains the character strings (of maximum
length 12) representing all of the symbols (both Terminal and Nonterminal)
used in the syntax of the language. These are the same symbols as those
printed down the left side of the precedence matrix by the program TESTPREC,
By using the internal symbol numbers substituted by ANALYSE as the

subscripts to this array, the original symbols may be obtained,

STRING. This is a varying length character string with a maximum
size of 256, It is used in three cases:

1. To pass characters of an integer number when NUMERO is used,

2. To pass a string of characters when ANYSTRING is used.

3. To pass the characters representing an identifier when VAR _TABLE

or VAR STRING is used.

27

INFO. Its sole purpose is to pass a subscript for the array

VARIABLE when identifiers are handled by using VAR _TABLE,

STATUS. This allows INTERPRET to pass information to ANALYSE
concerning the status of the present analysis. It has an initial
value of O set by ANALYSE. There are three values which INTERPRET
may assign to it:

1 - means to continue the lexical scan but no longer parse or

call INTERPRET,

2 = means to continue both the Scan and Parse but no longer

call INTERPRET,

3 - means to terminate execution immediately.

If STATUS is set to 1 or 2, a message telling what action is
being taken is printed by ANALYSE enabling the user to see the point
at which this occurred in the Source listing.

The following declaration may also be included in INTERPRET:

DCL SCAN_ERR BIT(1) EXTERNAL;
By testing to see if this is true, INTERPRET can determine if an error
has been detected by the Scan in ANALYSE, and take some appropriate

action.,
2.3.3 IMPLEMENTATION AIDS

Value Stack. As the syntactic analysis proceeds it will usually

be necessary for the user to retain information about the symbols in
the STACK. This information may be memory addresses of identifiers,
or parameters of loops etc. A convenient way of retaining this information

is by constructing one or more VALUE stacks of the same size as the

STACK used during the Parse, In ANALYSE this is a one dimensional

array of size 50, By putting the information in the Value stacks

in the same corresponding positions as the symbols appear in the

STACK, the user is able to extract this information later by using

the parameters LEFT and RIGHT. All data areas which are to be

retained from one call of INTERPRET to the next should be declared

with the attribute STATIC.

Parameters Pagsed to ANALYSE through JCL. Some parameters may

be passed to ANALYSE by means of the PARM list on the EXEC card. This

enables the user to specify some options to ANALYSE in the JCL,

The allowed parameters are:

1.

20

3.

4.

COUNT(@) —~ In this case @ specifies some special character such

OPT=1

OPT=2

TRACE

as a statement delimiter which the user wants counted
and listed as the statement number in the source listing.
This indicates that only a léxical scan is to be made

on the input string. (i.e., the string is not to be
parsed and INTERPRET is not to be called)

This indicates that ANALYSE is to perform a lexical
scan and a syntactic analysis on the input string

but INTERPRET is not to be called.

This indicates that a trace of the parse is to be
printed down the right<hand side of the source listing.
Each time the symbol at the top of the stack is compared
with the symbol coming in from the scan the following
message 1s printed:

XX 1Y e

28

XXX is the symbol at the top of the STACK, YYY is the
incoming symbol from the Scan, and @ is the precedence
relation between these two symbols,

If either OPT=l or OPT=2 is specified a null external procedure
called INTERPRET must still be provided, It may consist of something
like this:

INTERPRET;

PROCEDURE

RETURN;

END;

Using this facility one can test one's language design by having ANALYSE

perform a syntactic analysis on a source program written in the new

language without providing semantic routines.

2.3.4 ANALYSE ERROR MESSAGES

ANALYSE detects errors in the Source program during both the Scan
and the Parse.

Errors found during the Scan can be divided into two groups.
In both of these cases the error is usually caused by the Scan isolating
a symbol in the Source program which it is not equipped to handle,
In the first case, an error message is printed and the offending
symbol is deleted from the source, The Scan then isolates the next
incoming symbol and presents this to the Parse, When the Scan recovers
from an error in this way SCAN ERR is set to true, informing INTERPRET
that an error has occurred., In the second case ANALYSE finds itself in
a situation from which it can not recover and therefore prints an
error message and then terminates, A list of the error messages printed

by ANALYSE is given for each case,

29

30

Warnings.
=xnsz THE OPERATOR _ WAS USED BUT DOES NOT APPEAR IN THE PRODUCTIONS - DELETED

zxzxz THE SYMBOL _ WAS FOUND BUT NEITHER THIS SYMBOL NOR NUMERO OCCURS IN THE SYNTAX

Terminal Errors.

mmmwn - A VARIABLE WAS FOUND BUT NEITHER VAR _STRING NOR VAR TABLE
APPEARS IN THE SYNTAX

#mEms - THE ANALYSER LIMIT ON THE NUMBER OF VARIABLES ALLOWED HAS BEEN EXCEEDED
EITHER REDUCE THE # OF VARIABLE NAMES USED OR REPLACE VAR TABLE BY VAR STRING
AND HANDLE THE VARIABLES IN INTERPRET

When the Parse isolates a left-most reducible substring which does

not match the right-part of any production in the language, the

following error message is printed:

zxEEs - INVALID STACK SEQUENCE- XXX YYY YAHA

In this example the three symbols XXX, YYY and ZZZ appear in this

reducible substring. The number of symbols in this subsiring may

be one or more, INTERPRET is then called with PROD set to O,

The error message

Zxnzmx - END OF FILE

is printed when the Scan tries to read another symbol after the end of

the input string. Execution then terminates at this point.

The error message

seEgx - PARSE TERMINATED BY SYNTAX ANALYSER. SCAN CONTINUING

is printed when the parse finds the relationship -» bétween the symbol at

the topbof the STACK and the incoming symbol, but the relationship ¢

does not occur between any of the symbols in the STACK,

Syntax Errors. A syntax error message as given by ANALYSE is of

the following form:
=xExeSNTAX=susns &
This means that the symbol with the $ printed under it in the Source
listing has no precedence relationship with the symbol ANALYSE is
comparing it to. This offending symbol is thendeleted and the next
incoming symbol compared. In this case SCAN_ERR is set to true.

If ANALYSE is performing both a Secan and a Parse of the input
string (i.e., STATUS has a value of zero or two) then a syntax

error means that this specified symbol has no precedence relationship

with the symbol at the top of the STACK, Many syntax errors may be given:

in this case with each offending symbol being deleted until a symbol
is found which has a relationship with the symbol at the top of the
STACK, At this point the Parse continues.

If ANALYSE is only performing a lexical scan on the input
(i.es, STATUS has a value of 6ne, or OPT=1) then a syntax error means
that the symbol cannot logically follow the one preceeding it in the
source listing according to the syntax of the language., Again in this
case offending symbols are deletéd and the next incoming symbol is

compared to the last valid symbol.
23,5 ERROR RECOVERY

As mentioned previously, when ANALYSE finds a Left-most Reducible
substring which does not match the Right-part of any production,

YROD is assigned a value of zero and then INTERPRET is called,

When INTERPRET returns control, ANALYSE is unable to make the reduction

31

in the normal way. If error recovery is not provided, the following error

message is printeds
zxn=z - NO ERROR RECOVERY PROVIDED - ONLY SCAN CONTINUING
If this occurs then the rest of the Source is not parsed. Although
the Scan may find additional errors in the rest of the text, some
errors may be missed on this run,
In order to allow ANALYSE to perform a more complete error
check of the Source program a method of error recovery is provided,
It would be more correct tc call it Parse recovery than error
recovery because it operates by deleting sections of the text in
order to get the Parse started again. The normal seguence would
probably be for the user to provide this error recovery and then set
STATUS equal to 2 if PROD is passed to it with a value of zero,.
After this ANALYSE will recover if it can and will continue to parse
the input but will no longer call INTERFRET, If STATUS is left alone,
then INTERPRET is called again in the normal way after recovery is made,
As the user may not always want to provide error recovery, this
facility is provided through the use of the EXTERNAL attribute.
The following declaration is necessary:

pCL (FIX_UP(50,3) FIXED BIN(15),FIX_BIT(50,3) BIT(1),DEL BIT(1))
EXTERNAL;

By setting DEL to true the user informs ANALYSE that error

recovery has been provided. This is accomplished by loading the two

arrays FIX UP and FIX BIT, Using this information ANALYSE may delete part

of the STACK and skip symbols using the Scan. The principle is that by
deleting a section of code, the Parse is able to recover,
The array FIX UP indicates the symbols ANALYSE is to look for

in the STACK and in the incoming stream. The array FIX BIT tells

32

whether these symbols are to be kept or deleted when found. Fig, 12

shows the data loaded into FIX UP and FIX BIT to provide error

33

recovery for the sample language. Fig. 13 shows the symbols corresponding

to the intermal symbol numbers in Fig, 12,

These arrays have 50 rows each with 3 columns, For any row I
FIX UP(I,1) indicates the symbol to be found in the STACK, If it is
found then ANALYSE looks ahead in the incoming stream for the symbol
FI&_UP(I,z). It is possible to list many symbols to look for in the
incoming stream for a single symbol found in the STACK, This is
accomplished by setting column 1 to zero for each row after row I until
another STACK symbol is entered, Depending on the symbol found in
the incoming stream, the user may decide he wants to delete deeper
in the STACK, This is done by specifying the new symbol he wants to
look for in the STACK in column 3 of the same row as the symbol which
was found in the incoming stream. It is not necessary for the user to
load this entire array. As there is always a non-zero number incolumn
2 for any valid row, ANALYSE looks for a zero in this column to indicate
the end of the valid data. The numbers entered in this array are the
internal symbol numbers which ANALYSE uses throughout. The user can get
these from the printout of TESTPREC, Column 3 of FIX UP must be set
to zero for all valid rows of information where the user does not want
ANALYSE to look deeper in the STACK, Information entered in the array
FIX BIT pertains to the same relative positions in FIX UP, This must
be loaded for every valid row of FIX UP. Once ANALYSE has found the
required symbols in the STACK and the incoming stream, it looks to

FIX_BIT to see whether these symbols are to be kept or deleted, A true

34

FIX_BIT

FIX TP

10

10

10

10
26
51

10
29
31

42

10

10

21

51

14

10
11

12

13

14

Figo, 12

ot

;m -

ELSE

o

o

1%

13

Fig e 13

35

value (i.e., '"1'B) means that the symbol is to be deleted, and a false
value (i.e., '0O'B) that the symbol is to be kept. If these arrays are
carefully loaded then the Parse should be able to recover most of the
time,

If the situation occurs where both the symbol in the STACK and
the symbol in the incoming stream are to be deleted when found, then
ANALYSE assumes that there is something special about this pair.
This is useful in the case of something like Algol blocks, BEGIN and END
c¢ould be listed as a "delete-delete" pair., When pairs like this occur,
ANALYSE will never stop the search of the input string upon finding a
symbol it is looking for, if more occurrences of the first of this
pair than the second have been encountered during this searéh of
the incoming stream. By including a pair like this in FIX UP the user
can prevent ANALYSE trying to start the Parse after deleting the BEGIN
and then failing again when it discovers the END,

When ANALYSE starts the search of the STACK it begins with the
symbol immediately before position LEFT, and works down from there.
If none of the symbols it is looking for are found in the STACK then the
following error message is printed:
E=sgEE - DRROR RECOVERY FAILED - ONLY SCAN CONTINUING
ANALYSE shows the section of the input stream which was deleted during
error recovery through the use of the following messages:

SCAN DELETED FROM HERE= >
<{==TO HERE

These messages may occur on the same line in the source listing or
many lines apart depending on the amount of text Wwhich was deleted, The

arrovw heads mark this portion exactly.

36

Although this text which is skipped is not parsed, it is still given
a thorough check by the Scan. Any error message which the Scan normally
gives will be given in this case. This includes the SYNTAX error.
In this case the symbols are not compared with the top of the STACK but
with the most recent valid symbol before it in the incoming stream.

See Fig. 15 for an example of the operation of error recovery.
2.3.6 WARNINGS

If the user incorporates any of the four reserved words (NUMERO,
VAR_STRING, VAR TABLE or ANYSTRING) in his language, it would be
advantageous to have these symbols appear alone on the Right-side of
productions., As the INTERPRET parameter STRING can only hold one item
at a time, the user must make sure that his language does not allow
any of these symbols or nonterminals directly reduced from them to
occur adjacent to each other,

The parameter STRING is loaded by the Scan, so at any time the
information in STRING may refer to the next incoming symbol rather
than to a symbol in the STACK,

Even if the Scan deletes an incoming symbol because of some error,
the parameter STRING may have already been changed, In this case
the parse may continue normally after the symbol is deleted, but the
information in STRING may be for the symbol deleted rather than a
symbol in the STACK, The user should check SCAN_ERR in INTERPRET,
and if it is true, should assume that STRING is in error. The same
holds true of the parameter INFO,

ANALYSE inserts the relation (- before the first symbol in the

source program and > after the last to allow the program to parse to

37

completion, The user must make sure that the first symbol in the program
and therefore the first symbol in the STACK is not included in a
reduction before the program parses to completion as there will then
be no relation between the symbol introduced because of this reduction
and the bottom of the STACK, Vioclating this will result in the Parse
being terminated by ANALYSE,

Fig. 14 shows a procedure INTERPRET for the sample language. It
does not provide semantics but serves to provide error recovery as
shown in Fig. 13.to demonstirate this facility. A sample program written
in this language is shown in Fig. 15. Fig., 16 shows the output of
EXTRACT for a second sample language. Fig. 17 gives the procedure
INTERPRET which is really an interpreter because it executes the
instructions immediately instead of generating object code. Fig., 18

shows a sample program written in this language.

INTERPRET:

INTERPRIT:
PROZEDURE {PRODGLEFT,RIGHT,,STACK,VARIABLE,SYM3OL ,STRING,INFO,
STATUS);
DCL (PRODZLEFT RIGHT,STACK{*),STATUS, INFO) FIXED BIN{15),
SYMBML (%} CHAR(12),VARTABLE(*) CHAR(12) VAR,
STRING CHAR(256) VAR3
DCL (FIX_UP{50+3) FIXED BIN(15),FIX_BIT(50,3) BIT(1),DEL BIT(1l))}
EXTERNAL,ERR BIT(1) STATIC INITIAL (*0°'B};
DCL SYSINL FILE STREAM INPUT;S

/% THE FJILLCWING SECTION OF CODE IS ONLY EXECUTED ON THE FIRST
CALL OJF *ANALYSE! '
IF ER THEN GO TO S23

/% YSYSIN1' IS A CARD FILE WITH ERROR RECOVERY INFORMATION
ON ENDFILE(SYSIN1) GO TO S13
OPEN FILE(SYSIN1};
DO I=1 TO 50;
GET FILE(SYSINL) EDIT ((FIX_UP(I,J) DO J=1 T0O 3))
(X{2)+F(340) s X{L}4F(3,0),X{1}),F(3,0));
GET FILE(SYSIN1) EDIT ({(FIX_BIT(I,J) DO J=1 TQ 3))
{X{2)yB(1) 4 X(1)+8(1)sX{(1),B(1));
END;

S1: CLOSE FILE{SYSIN1)s
ERRyJEZL=11"'8;
S2: IF PROD = 1 THEN DO3
PUT EDIT (*THE PROGRAM PARSED TO COMPLETION') (A) SKIP;
STATUS=37¢
CND3
RETURN3
END INTERPRET;

W

Fig. 15

39

ISH SOURCE LISTING
1 START
1 COMMENT THIS PROGRAM IS DESIGNED TO DEMONSTRATE ERROR RECOVERY AND
1 T0 SHOW SOME OF THE ERROR MESSAGES GIVEN BY *ANALYSE?';
1 BEGIN
1 INTEGER NyA4ByCyDyF4XsY,TOT4AVG;
.2 LABEL ST,STR;
3 COMMENT THERE ARE 2 ERRORS IN THE FOLLOWING LINE:
3 1. MISSING SEMI-COLON BEFORE A
3 2. MISSING : AFTER D3
© 3 Y= As=03 :=0; C:=03 D =03 F:=0; TOT:2=03
HEAGYNTAX kkk %k $
xR GYNTAX &k ks $
KEGYNTAX Sk kK $
kdxkk — INVALID STACK SEQUENCE- STATLIST H FACTOR
SCAN DELETED FROM HERE-->
<—TQO HERE
tx%%k — DELETED FRIM STACK-
9 READ N3
10 TOT:=TOT+X;
11 ST: READ X;
12 IF X > 75 THEN
12 BEGIN
12 t=A+]13
13 GO TO STR
13 END ;
13 ELSE
i3 COMMENTY THE UNMATCHED ®i*® CAUSED THE FOLLOWING ERRIRS
13 IF X > 66) THEN
Pk%% — [NVALID STACK SEQUENCE- EXPR)
SCAN DELETED FROM HERE-->
13 BEGIN
13 3:=B+13
14 50 TO STR
14 END
14 ELSE
’ <-=T0 HERE
¥k — DELETED FROM STACK- IF CHOICE >
14 IF X > 59 THEN
14 C:=C+1
14 ELSE
14 IF X > 49 THEN
14 D:=D+1;
15 C GMMENT THE SYNTAX ERROR WAS CAUSED BY THE SEMI-COLON
15 BEFORE *ELSE';
15 ELSE
s RS YNT AX %% %k L3
15 t=F+13
16 STR: vi=Y+1;
17 IF Y <N THEN GO TO ST;
13 WRITE N3
19 WRITE A;B4CyD,yF;3
20
20
20 COMMENT THE PARSE HANGS AND RECOVERS TWICE IN THE FOLLOWING

STATEMENT

40

20 B) TOTAL:= (A+B—C)%{SUM/RESTI+TERM}=33%14/{AVG-66;

wxxx — INVALID STACK SEQUENCE- EXPR)
SCAN DELETED FROM HERE-->
) <-~T0 HERE
k%t — DELETED FROM STACK-
kxxk - INVALID STACK SEQUENCE- { EXPR
SCAN DELETED FROM HERE=-=-)>
<~-TO HERE

*%%%% — DFELETED FRIOM STACK- H VAR := TERM~ /

21 AVG:=TOT/Ny
. 22 WRITE AVG;

- 23 COMMENT THE FOLLJOWING TWO STATEMENTS HAVE AN '=' INSTEAT OF

23 ALPHABET="ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Exx%xs - INVALID STACK SEQUENCE- STATLIST H FACTOR
SCAMN DELETED FROM H4ERE-->
<-—-T0 HERE

*%%%% — DELETED FROM STACK~-

24 COMMZINT sANALYSE' COULD NOT RECOVER AGAIN BECAUSE NONE OF THE SYMBOLS

24 IN THE FIRST COLUMN OF *FIX_UP' REMAINED IN THE "STACK?';

24 DIGITS=1'0123456789¢%
*%x&k%x — INVALID STACK SEQUENCE- BEGIN FACTOR

SCAN DELETED FROM HERE=-->

%%%% — ERROR RECQVERY FAILED - ONLY SCAN CONTINUING

25 X = A ? Bj;
*¥3k% THE OPERATOR ? WAS USED 3UT DOES NOT APPEAR IN THE PRODUCYIONS. - DELETED
HRHASYNTAX Sx&kk $

rn
£

26 AVG:=21GITS3
27 WRITE AVG
27 END

27 FINISH

k& xxk ~ END OF FILE

Fig., 15 cont'd

41

PRODLCTIONS .
1 PGRAM : START BCLY FINISH
2 BODY $e= STATLIST
3 STATLIST i : ~STATLIST H STATMENT
4 : STATMENT
5 STATHENT : VAR o= EXPR
& : WRITE VAR
7 EXPR ti= EXPR-
8 EXPR- 1= EXPR- + TERM
[1= EXPR~- - TERM
10 H + TERM
11 H - TERM
1z : TERM
15 TERM H TERNM-
14 TERM~ : TERM=- * FACTOR
[: TERM= / FACTOR
1o : FACTCR
17 FACTCR : { EXPR)
13 t:= INTECGER
19 $i= REAL
20 = VAR
21 VAR : VAR_TABLE
22 INTEGER $:= AUMERC
23 FRACTICN : . NUMERC
24 REAL H INTEGER FRACTION
25 1= FRACTICN

ABLES LOADED SUCCESSFULLY

Fig, 16

INTERPRET:

1 INTERPRET:
PRICEIIRE (PRODYLEFTyRIGHT STACK,VARTABLE,SYMBCL,ySTRING,y INFO,
STATUS); '
/% DECLARATION OF 'INTERPRETY PARAMETERS
2 DCL (PR7D, LFFTyRIGHT,STACK(*},STATUS,I%F3) FIXED BIN{15),
SYMROL(*) CHAP({12),VARIABLE(*) CHAR(12) VAR,
STRING CHAR{256) VAR
/% TINTERPRET' DATA AREAS
MEMNORY - STIRES THE CUKRENT VALUE OF ALL IDENTIFIERS
~ POSITIONS CARRESPOND TS 'VARIABLE!
VALUE - HOLDPS CURREMT VALUES 0OF IDENTIFIERS AND NUMBERS
— POSITIONS CORRESPOND TO 1STACK® ’
VALJE_1 — HPLDS 'INFN' FOR IDENTIFIERS
~ POSITIONS CRRRESPOMD TG *STACK!
L AREL ~ GIVES LAREL T JUMP TO FOR EACH VALUE OF $pPR3D?
NRR - CHAPACTER REPRESEMTATION TOF ALL DIGITS
3 DCL ({MEMCRY[250),VALUE(50),K) BIN FLOAT(31},
{VALUF_1(50) ,L6TH,J, 1) BIN FIXED(15)) STATIC,Y CHAR({1)3
4 DCL LABELLO:25) LABEL INITIALILO,L1,L_END,L_ENDyL_ENDsLSy
Lo _EMDsL3yL 9y L10+ L1l L _EMNDyL_END,ZL14,0L154L_ENDsL174L_END,
L_EMDL_END,L21,L22+L23,0L24,L_END);
5 . DCL FMBR{0:9) STATIC CHAR(L) INITIAL{10?,'1%,%2%,930,04¢, 950,
160'171’l8|7190);
6 G0 TO LAREL{PRON)S
7 1L0: /% LEFT—-MOST REDUCIBLE SUBSTRING DOES NOT MATCH ANY PROD.
5TATUS=3; '
8 RETURN;
9 L1 /% PGRAM " 131= START RODY FINISH
STATUS=33;
10 PUT EDIT (*THE PROGRAM PARSED TC CCOMPLETION') (A) SKIP;
11 RETURN;
12 L5 /% STATMENT 1t= VAR = EXPR
MEMORY(VALUE_I{LEFT))=VALUE(RIGHT); .
13 RETURN3S
14 L6% /% STATMENT 21= WRITE VAR
PUT EOIT ('ANSWER *,VALUE(RIGHT)) (A,F(12,5)) SKIP;
15 RETURN;
16 L8: /% EXPR~— EXPR~ + TERM
VALUE(LEFT)=VALUE{LEFT)+VALUE(RIGHT);
17 RETURN; ’ .
18 L9: /% EXPR-— t:= EXPR— - TERM
VALUE{LEFT)=VALUE(LEFT)~VALUE(RIGHT);
19 RETURN:
20 L10: /% EXPR— 1=+ TERM
VALUE{LEFT)=VALUE(RIGHT);
21 RETURNS

*/

*/

%/

*/

*/

*/

*/

*/

22

23.

44

45
46
47
48
49
51
52
53
54
55

57

53

INTERPRET:

L11t /% EXPR— R TERM
VALUE(LEFT)=—VALUE{RIGHT)
RETURN:

Ll14: /7% TERM- stz TERM- *

VALUE(LEFT)=VALUE(LEFT)*VALUE{RIGHT);
RETURN

L15¢ /% TERM-— $t= TERM~ /
VALUE(LEFT)=VALUE(LEFT) /VALUE(RIGHT}3
RETURMN S

L17: /% FACTMAR 1:1= { EXPR
VALUE{LEFTY=VALUE(LEFT+1)3
RETURM;3

L21: /% VAR t:= VAR_TABLE

VALUE_T(LEFT)=TMFD3
VALUELLEFT)=MFMDRY (INFO}3
RETURMS

L22: /% INTEGER ti= MUMERC
VALYE(LEST)=03
LGTH=LENGTH{STRING) 3
DN I=1 17 LGTH:

Y=SUBSTR{STRINGsIy1}3
Do J=0 YO 93
IF y=NBR({J) THEN G3 TO C33

END3
C3: VALUE(LEFT)=VALUE(LEFT)#10+J3
END 3
RETURNS
L23: /% FRAGTION ::= . NUMERD

VALUF{LEFT)=03

A GTH=LENGTH{STRING) 3

DO I=1 TO LGTH;
Y=SUBSTRISTRING,LGTH+1-1,1)3
D0 J=0 T7 93

IF Y=NBR{J) THEN GO T3 C43
ENDs
C4: VALUE{LEFT)=VALUE(LEFT)*.,14J3

END S

VALE(LEFT)=VALUE(LEFT)*.13

RETURN;

L24: * REAL :
VALUE{LEFT)=VALUE(LEFT)+VALUE(RIGHT)

L_END: /% MULL INTERPRETATION RULE

RETURNS
END INTERPRET;

Fig. 17 cont'd

$= INTEGER FRACTION

FACTDR

FACTOR

43

*/

*/

*/

*/

*/

*/

*/

*/

*/

w
-

ML W T~ OV U W I e e e e
e}

ol

w
e

b g 3
wro M

]
e

15
SWER
15
17
17
SHER

2403.61979

480.72396

1.19900

1.00200

0.32035

256470000

START
COMMENT
THE PROCEDURE "
Al = 434.,3523%
A2 = 963.617%
A3 = 1000.9613
A4 = 1.54369;
A5 = 3.14€13
SHA=AL+A2+A3+A4+A53

WRITE SuM;-
AVERAGE = SUM/53
WRITE AVERAGE:

TEST=1.1:
WRITE TEST:S

TEST1=0001.0023
WARYTE TESTLS

FRACTICN=,000353
WRITE FRACTIGNMS

SOURCE LISTING

THIS IS A VERY SIMPLE PROGRAM TN DEMONSTRATE THAT

CINTERPRET' DJIES WORK;S -

SIXTEENSQUARED=(4+3+9)%{20-6+2)%(31-15}/(3%5+1);

WRITE SIXTELNSQUARED
FINISH

E PROGRAYM PARSED T7D COMPLETION .

Fig, 18

45

CHAPTER 3

PROGRAM DESCRIPTIONS

A brief description is given of each of the three programs
of the System, These discussions are not intended to be complete
descriptions of the workings of the programs. Only those points
which were considered to be of vital importance or difficult to
understand are covered, Complete program listings can be found in

the appendices.
3.1 TESTFREC

This program reads in the data cards (i.e., the productions
of the grammar) one at a time, into the string TEST and then a
blank is concatenated onto the right. Column 1 is checked to see if
a new left{-part is being defined and then all symbols delimited by
blanks are picked out of this string, As these symbols are found
they are loaded into the array INPUT, with INPUT(1) being the
left-part. All symbols are checked in the array SYMBOL to see if
they have already been encountered, and if not are entered. The
array TERM is used to note the symbols which occurred on the left-side
of productions.

The 1limit of 180 syﬁbols in the syntax which is imposed by

TESTFREC is necessary because of a PL/1 restriction on the size

46

of BIT STRINGS, It was found to be much more efficient for TESTPREC

to use bit strings to store certain information, and do its own

addressing than to use arrays with the attribute BIT(1), The

three bit strings used by TESTPREC are LEFT, RIGHT and EQUAL, The

numbers used to represent symbols in accessing locations in these

strings and later in the precedence matrix, are the symbol locations in

the array SYMBOL. These strings are of size 32400 which is 180 X 180,

For two symbol numbers I and J the expression used to access’ the

corresponding bit is 180=(I-1)+J., A true value has the following

significance in the different strings:

LEFT <« means that symbol J is the left-most symbol on the right-hand
side of a production in which symbol I is the left-part.

RIGHT ~ means that symbol J is the right-most symbol on the right-hand
side of a production in which symbol I is the left-part.

EQUAL - means that symbol J occurs to the right of and adjacent to
symbol I on the right-hand side of a production.

The pertinent entries are made in these strings for each
production as it is encountered. This process continues until
the entire ‘grammar: has been read in,

The precedence matrix is declared to be a CHARACTER STRING of
size N X N where N is the total number of symbols in the syntax,
Addressing is the same as for bit strings. The arrays NONT and
TERMINAL are declared and then loaded with the Nonterminal and
Terminal symbols respectively. These are then printed out under
the corresponding headings.,

To be useful in establishing the precedence relationships

between symbols, the strings LEFT and RIGHT have to be changed to

47

show all of the left-most and right-most symbols derivable respectively,
Warshall's algorithm (3) was used to perform this transformation on the
strings LEFT and RIGHT,

It was considered best to use a character string (PREC) for the
precedence matrix because it could then be printed out once it
had been loaded without any conversion. This string is first
initialized to blanks. Loading the precedence matrix consists of
inserting the characters =, ¢ and > in the correct places in this string,

The string EQUAL is searched with J having values from 1 to N
for all I from 1 to N, Vhenever a true bit is found, the symbol "._"
is inserted in the corresponding position in PREC, If J is a
nonterminal then the symbol "¢" is éntered in PREC between symbol I
and every left derivable symbol J (as determined from LEFT)e
Next I is tested to see if it is a nonterminal. If it is, then
the symbol "s" is entered in PREC between every right derivable symbol
of I (as determined from RIGHT) and the symbol J. Finally if both I
and J are nonterminals then entries of "»" are made between every right
derivable symbol of I and left derivable symbol of J.

As can be seen PREC was loaded by working through the definitions
of the precedence relations as given by Wirth and Weber (1) If a
relation was to be entered in PREC and another relation was already
present in that location then a precedence violation exists.

To make the definitions more meaningful, the precedence violations
- are explained in the error messages in terms of the definitions. The
error messages consist of a printout of the two symbols between which there

is the violation, and the two relations which were found (the one already

in PREC followed by the one which was to be inserted). Explanations
are then printed to show how the relations were derived according to
the definitions,

It is an easy matter to explain the current relation to be
inserted because all of the pertinent information is still available.
To give an explanation of the relation which was already in the
precedence matrix is more involved. If this relation was "=" then it is
easy to give a description because the symbols obviously occur adjacent
to each other on the right side of some production. If the relation

was "¢" or "»" then the procedure LESS or GREAT respectively is called.

LESS. The input to this procedure consists of the two symbol
numbers (called X and Y) giving the location in PREC of the relation
"<"o LESS begins a search in the string LEFT to find the symbols for which
Y is a left derivable symbol. When it finds one it checks in the string
EQUAL to see if symbol X has equal precedence with this symbol. If
this is the case then an error message is printed describing how this

relationship was derived,

GREAT, The inputs for this procedure are the same as those for
LESS, As there are two possibilities for the derivation of the
relation "»" the first case is checked completely first, GREAT
begins a search in the string RIGHT to find the symbols for which X
is a right derivable symbol., When it finds one it checks in the string
EQUAL to see if this symbol has equal precedence with Y. If this is
the case then an error message is printed. If this search is

unsuccessful in finding the cause of this relation then a second search

49

is begun, Once again the string RIGHT is searched to find the symbols
for which X is a right derivable symbol., When one is found, a

search is made of LEFT to find the symbols for which Y is a left
derivable symbol. When one is found here, the string EQUAL is checked
to see if these two symbols which have been found are of equal
precedence, If this is the case then the error message is printed.
The procedures LESS and GREAT are always successful in their searches
because if a relation is entered in the precedence matrix, its cause
will be found by working through the definitions.

When an error message states that ome symbol has equal precedence
with another, it also states the production in which they appear
adjacent to each other. This information is stored in the array
LINE as the productions are being read in at the beginning of the
program. The array LINE is of size 400 X 2, (i.e., LINE(400,2))
Whenever an entry is made in the string EQUAL an entry is also made
in LINE, LINE(I,1) vhere I is any number from 1 to 400, is loaded
with the address of the current relation being inserted in EQUAL,

(for example: 180=(L-1)+K where L and K are symbol numbers) LINE(I,2)
is then loaded with the current production line number,

It is the job of the procedure LINE NO to return the line number
when given the address in the precedence matrix of the relation "=",
LINE _NO searches LINE(I,I) for all I until it finds one that matches the
address given. It then returns LINE NO(I,2) for that I, thus giving
the production in which the two symbols occurred adjacent to each other.

The method used to calculate the F and G functions is one described

by Wirth (4). This was found to be reasonably fast and not expensive

50

of core storage. One of its strong points is that it can recognize
quickly if F and G Functions do not exist.

The standard output of this program is a list of the productions,
the terminal and nonterminal symbols and any error messages which were
generated. The precedence matrix and F and G Functions are printed
if MATRIX and FUNCTIONS respectively are specified in the PARM list on
the EXEC card, This PARM list is a PL/1 facility which allows a
varying length character string (PARM) of maximum length 100 to be
prassed to the progrem at run time.

The final version of TESTPREC is the result of much experimentation
with different techniques. A method using Boolean Matrices to determine
precedence relations as developed by Martin (5) was tried, but it was
found to be very expensive in core storage and to be very slow. In
this test two-dimensional arrays with the attribute BIT(1) were used.

If bit strings were used instead the execution time would probably show
some improvement, but the storage needed would still remain high. The
method developed by Floyd (2) for finding F and G Functions was tried.
Its greatest fault is the time it takes to determine that no F and G
Functions exist for a particular grammar, A method developed by Bell (6)
for finding F and G Functions was tried but it requires much more core
storage than Wirth's method which was finally used. In addition it

was not considered very useful to give an "almost F" and an "almost G"
instead of saying that no precedence functions exist.

A free form of input was provided for TESTPREC in order to make
it easier to use through a typewriter terminsl or CRT,

The program was considerably lengthened by the inclusion of the

51

detailed error messages., These error messages do not cause an

increase in execution time for a correct grammar. In the case of a
grammar which is not syntactically correct it was considered worth
the extra computer time for the saving in human time to track down

the errors. The program listing is given in Appendix A,
%.2 EXTRACT

The purpose of this program is to read in the productions of a
simple precedence grammar =nd to create a file called TABLES with
the attribute FILL STREAM OUTPUT into which is put all the pertinent
information about the grammar which ANALYSE needs to perform a lexical
Scan and syntactic analysis on a source program written in this language
It would have been possible to make TESTPREC perform this task as
well as its present task, but this would have made it much longer and
would have put a heavy overhead on every run which was not successful.
On the assumption that TESTPREC may have to be run many times during
language development and TABLES only has %0 be loaded once after a
successful run, it was decided to have a separate program for this purpose.
Because of the similarity in purpose of these two programs, code
was taken directly from TESTPREC wherever possible in the development of
EXTRACT, This includes reading in the productions in free format and
building up the array SYMBOL and strings LEFT, RIGHT and EQUAL; the
conversion of LEFT and RIGHT using Warshall's theorem, and the building
up of the precedence matrix PREC, The detailed error messages given by
TESTPREC were not included in this program, because the grammsr is supposed

to be syntactically correct before it is run using EXTRACT, For this reason

the program terminates immediately if it finds a precedence violation.

All of the identifiers, arrays etc. which are loaded into TABLES

by EXTRACT and later read in by ANALYSE have the same names in both

programs.

A description is given of all the information put into

TABLES in the order in which it is loaded: (all dimensions given are

those declared in ANALYSE)

N

LoC

SYMBOL

PROD

- This is the total number of different symbols occurring in

the grammar,

52

This is the total number of symbols (counting all occurrences)

appearing on the right-hand sides of all the productions.

This is the total number of productions in the grammar.

This is a one-dimensional array of size N with the attribute

CHAR(12) containing all of the symbols in the syntax in
the order of their occurrence,

This is a one-dimensional array of size LOC containing
internal symbol numbers for all symbols occurring on the
right-hand side of productions.

This is a two-dimensional array declared PROD(M,3).

There is one row in PROD for each production in the
gremmar, For any I less than M, PROD(I,1) points to the
next row in PROD which refers to a production of the same
length, (i.e., the same number of symbols on the right-
hand side) Prod(I,2) points to the location in the array

NUMB where the right-hand side of production I is listed,

PROD(I,3) is the internal symbol number of the symbol on the

left side of production I,

53

LGTH_POINTER - This is a one-dimensional array of size 6. For I
from 1 to 6, LGTH_POINTER(I) points to the first row in
array PROD referring to a production of length I.

ANYSTRING, VAR STRING, VAR TABLE, NUMERO - These are all reserved words
in the syntax, They are initially set to zero but if they
appear in the syntax then they have the value of their
own internal symbol numbers,

Il - This is the total number of terminal symbols which
begin with a letter followed by a sequence of letters
or digits,

12 - This is the total number of terminal symbols which consist
of a single special character.

iD - This is the total number of terminal symbols which consist
of two special characters,

KEY WORD =~ This is a one-dimensional array of size Il with the
attribute CHAR(IZ). It contains the character strings
for all terminal symbols which begin with a letter followed
by a sequence of letters or digits. These are loaded in
order from shortest to longest,

KEK_HORq;NO = This is a one-dimensional array of size Il. It contains
the internal symbol numbers for all of the entries in KEY_WORD,

POINTER ~ This is a one-dimensional array of size 13. For any I from
1 to 12, POINTER(I) gives the location in KEY_WORD of the
first entry of length I.

OPERATOR = This is a one-dimensional array of size I2 with the
attribute CHAR(1), It contains the character representations

of all the single special characters.,

OPERATOR_NO - This is a one-dimensional array of size I2, It contains
the internal symbol numbers for all of the entries in
OPBRATOR,

DOUBLE OP - This is a one-dimensional array of size ID with the

attribute CHAR(2). It contains the character representations

of all the terminal symbols consisting of two special
characters,

DOUBLE_OP_NO - This is a one-dimensional array of size ID. It contains
the internal symbol numbers for all of the entries in
DOUBLE_OP,

PREC - This is a character string of size N X N, In it is stored
the entire precedence matrix,

If for some reason the tables are not loaded successfully on some
run of EXTRACT, the user must mszke sure that the file TABLES is deleted
before the next run. Failure to do this will result in EXTRACT trying
to create a file which already exists and will cause a JCL error. The

program listing is given in Appendix B,

303 ANALYSE

This program is designed to read in the file TABLES which was
created by EXTRACT and contains information about a particular simple
precedence grammar, and then perform a lexical scan and a syntactic

analysis on a source progrem written in this language. The user written

semantic routine INTERPRET is called each time a reduction is to be made,

The program begins execution by reading in the information in TABLES

54

and creating and initializing data areas. A description of the information

25

contained in TABLES is given in the write-up of EXTRACT.

The source program is read in one card at a time into the string
‘IN from the SYSIN data set., The card image is put in columns 1 to 80
with column 81 being set to a blank. The blank acts as a delimiter
between symbols and allows various portions of the scan to search for
the end of a terminal symbol without having to check continuously if
they have run over the end of the string IN. Although this mechanism
saves much time during the scan it prevents the user from splitting
terminal symbols over the end of cards in the source programs,

A short description of the logic of the Secan accompanied by a
flow chart is given in the User's Hanual., (Chapter 2)

The program listing is in Appendix C,

The array VARIABLE is used to store the identifiers as they are
encountered in the source program when VAR TABLE is specified in the
syntax. When an identifier is found this array is searched to see if
the identifier has already been entered and if not, a new entry is made,
Each time a search is made, only those entries which are the same length
(from 1 to 12 characters) are compared, Using the length (less than or
equal to 12) of the new identifier as the subscript of array VAR PT 1
gives the location in VARIABLE of the first entry of that length, If
a match is not found here, then using the current subscript of
VARIABLE as the subscript of VARIABLE 1 gives the next position in
VARIABLE with an identifier this length. A value of zero returned by
VAR PT 1 or VARIABLE 1 indicates that the search has failed., The array
VAR PT_2 is used to indicate the positions in VARIABLE of the last
entries of each length, This enables the updating of VARIABLE 1 when

new identifiers are chained on o the end. ,

56

As the symbols at the top of the STACK are compared with the
incoming symbols from the Scen during parsing, all occurrences of
the relation '"¢" are stored in the array SAVE, When the relation S
is found, a check is made of the last entry in SAVE to find the
corresponding relation "¢" and the left-most reducible subsfring is
then isolated.

Once this substring has been found it is necessary to determine
which production it represents, First the number of symbols in this
substring is used as the subscript in the array LGTH_POINTER. This
indicates the first row in the array PROD referring to productions of
this length. If the value returned by LGTH POINTER is I where I has a
value from 1 to M (the number of productions) then PROD(I,2) gives
the location in the array NUMB where the internsal symbol numbers for
the right-hand side of production I are stored. Knowing the number
of symbols in the substring isolated by the rarse enables a comparison
to be made between the entries in NUMB and the symbols in this substring.
If the comparison does not show that all of %hese symbols are the same,
which would indicate that I is the correct production, then PROD(I,1) gives
the next row in PROD which refers to & production of that same length,
If these comparisons indicate that the substring found by the parse is
the right side of some production I then I is passed to INTERPRET as the
production number, If there are more than 6 symbols in the substring
found by the parse, or either LGTH_POINTER or PROD(I,1) gives a value of
zero, then the substiring does not match any of the productions of the
language and a production number of zero is sent to INTERPRET,

When control is returned to ANALYSE by INTERPRET the substring

in the STACK is replaced by PROD(I,3) which is the left-side of
production I,

When control is returned after passing a production number of
zero, DEL is checked to see if error recovery has been provided, If
DEL is false then ANALYSE only scans the remaining portion of the'
source program, When DEL is true and error recovery is being attempted
for the first time, a special section of coding is executed to gather
information from the arrays FIX UP and FIX BIT which helps to speed
up the error recovery on this and all succeeding attempts,

A detailed description of error recovery and the arrays FIX_UP
and FIX BIT from the user's point of view was given in Chapter 2,

Two arrays are loaded by this special section. The first
NO_POINTER contains pointers to the array FIX UP indicating the rows
in which the first column is not zero, When fully loaded, NO_POINTER
indicates all of the rows in FIX UP with non-zero first columns and
thus all of the symbols which ANALYSE is to look for in the STACK.
All occurrences of "delete-delete" pairs (i.e., cases where both the
symbol in the STACK and the one in the incoming stream are to be
deleted when found) are stored in the array DEL PRS with DEL PRS(I,1)
being the STACK symbol and DEL PRS(I,2) being the incoming symbol for
the I'th "delete-delete" pair. Once these arrays are loaded an attempt
is made at error recovery,

Each symbol in the STACK starting with the symbol immediately
before the left-most reducible substring which ANALYSE last isolated,
is compared with all of the symbols indicated by NO_POINTER in FIX UP,
Once a match has been found symbols are flushed from the Scan until a

match is found with one of the symbols given in column two of FIX UP from

the row given by NQiPOINTER(I) (where I is the entry for the symbol found
in the STACK) to NQ_?OINTER(I*l)«le While these symbols are being
flushed all occurrences of any of the symbols in the "delete~delete" pairs
are noted. When a correct symbol is found a check is made to see if
there have been more occurrences of the first symbol of any of the
"delete-delete" pairs than the second. If this is the case, then

symbols are flushed from the Scan until another match is found., Once

a match is made and the "delete-delete" pair requirement is met,

column 3 of the same row of FIX UP is checked to see if there is a
non-zero entry. If there is then this indicates that additional

symbols are to be deleted from the STACK until this symbol is found.

Once the desired symbols in both the STACK and the Scan have been found,
FIX BIT is checked to see whether these symbols are to be kept or deleted.
4 true value indicates delete and false keep., Once this is done the

parse continues,

59

CHAPTER 4

CONCLUSIONS

The System described in this paper has been used by several
groups of graduate students at the University of Manitoba over g
period of a few months in the design of a language and implementation
of a compiler for it as a term project.

During this trial period no insurmountable problems were
encountered and no program bugs were found,

It would be possible to extend the idea of a System for language
development to include a larger set of langusges than the present
oystem allows, and this would greatly add to the versatility of the
idea,

The present System, although restricted in that it can only
handle Simple Precedence Languages, is a very useful tool and

demonstrates some of the advantages to be gained by this approach to

language development.

APPENDIX A

LISTING OF TESTPREC

60

61

TESTPREC:

TESTPREZ:

SN

o~ W

29
30

33

34

36
37

38

39
40
42
43

PRUOCEDURE (PARM) OPTIONS{MAIN);

DCL PARM CHAR{100) VAR;

DCL (INPUT{15),SYMBOL{180),X) CHAR(12),COMMA CHAR(L);

DCL (LEFTLRIGHT,EQUAL) BIT(32400),TERM{180) BIT(1),

(A33) CHARIL) »{I4JyKyly NeMaNONeNUMIEQ+Z Y+ LINE(40042)4LGTH,LGTHL}
FIXED BIN(15) s {ERRyERRL,PREC_MAT,FIND_F_G) BIT (1);

DCL TYEST CHAR{81) VAR,ELEMENT CHAR(80) VAR, L2 FIXED BIN(15);

DCL LINE_NO ENTRY {(FIXED BIN{15),FIXED BIN(15));

OPEN FILE(SYSPRINT) PRINT LINESIZE(132) PAGESIZE(61);

ON ENDFILE (SYSIN) GO TO MATRIX;

/* MAJOR DATA AREAS
SYMBOL - STORES THE SYMBOLS USED IN THE SYNTAX
EQUAL — NOTES SYMBOLS WHICH OCCUR ADJACENT TO EACH OTHER ON
THE RIGHT-HAND SIDE OF PRODUCTIONS
LEFT — MNOTES LEFT-M3ST SYMBOLS ON THE

RIGHT-HAND SINDE OF PRODUCT IONS
RIGHT =~ NDTES RIGHT-MOST SYMBOLS ON THE
RIGHT-HAND SIDE OF PRODUCTIONS
TERM ~ NOTES WHICH SYMBOLS ARE NONTERMINAL %/
coMMA=1, 13
EQ=0;
FIND_F_G,PREC_MAT="1"8;
ERR,ERR1=10'B;
NUM=1803;
NON=0;

'B=! l;

INPUT{7)=B;
LEFT,RIGHT,EQUAL=%0"B;

TERM=11p;

M=0;

N=03

7% CHECK "PARM' LIST TO SEE IF OPTIONAL QUTPUT REQUESTED %/
LGTH=LENGTH(PARM) ;

If L3TH=0 THEN GO TO START;

IF INDEX(PARM,'FUNCTIONS') > 0 THEN FIND_F_G=%0B;

IF INDEX{PARM,*MATRIX') > 0 THEN PREC_MAT='0%B;

/% READ IN PRODUCTIONS IN FREE FORMAT -AND
LOAD MAJOR DATA AREAS */

START:

PUT EDIT (*PRODUCTIONS') (X(54),A);3

GET EDIT {(TEST) (A(BO));

IF SUBSTR{TEST,1,1)=8 THEN DO;
PUT EDIT ('#&x&xxERROR*#x%xx~THE FIRST PRODUCTION IN THE SYNTAX v,
'OJES NOT HAVE A LEFTPART!') {A,A) SKIP(2);
GJ TC TERMINATE; .

END;

GO T3 FIRST;

CARD:

FIRST:

GET EDIT (TEST) (A(80)};

TEST=TEST| |83

L1=23

IF SURSTR(TEST,1,1)=3 THEN INPUT(1)=B8;
ELSE DO

LI=INDEX({TEST,B);

e e i e S e i e St St e St S b A St o S, S o S S S i . e e ot e i B e B ot e 2% e = |

59

61
62
63
64
66

67

68
69

TN

LR

71

" TESTPREC:

IF L1 > 13 THEN PUT EDRIT {v#xxx=yARNING — THE SYMBOL

SURSTR(TEST,1,L1-
(A, AsA) SKIP(2);
INPUT(1)=SUBSTR(T

END;

L2=13

ELEMENT=t1;

D3 J=L1 TO 81 BY 13
A=SUBSTR(TEST,J,1

Yy

62

1),* HAS BEEN TRUNCATED TO 12 CHARACTERS')

ESTy1l,L1-1)3

)3

IF A~=B THEN ELEMENT=FELEMENT}]]A;

ELSE

IF ELEMENT»='% TH
L2=0L2+13
IFf LENGTH{ELEM
PUT EDIT ('%%=x

EN DO;

ENT)} > 12 THEN

**WARNING — THE SYMBOL

* HAS REEN TRUNCATED TO 12 CHARACTERS')

(AyAqsA) SKIP{2

)

INPUT(L2)=ELEMENT;

ELEMENT='";
END;
END;
M=M+1;
IF L2 > 7 THEN DO;
PJUT EDIT (!##ssk

' SYMBOLS ON THE RHS OF THE PRODUCTION.

(A,F(3,0),A,F(2,0

IN LINE *, M,

)sA) SKIP(2)3;

* » ELEMENT,

THERE ARE ',12-1,

ERR1=*118;

L2=73
END;
PUT EDIT {M,INPUTILY, "=, {INPUT(Y) DO 4=2 TO L2
{X{5)sF{340)+X{10)sA012),X{4),A03),(6){X{2),A(12)
IF INPUT(1)=B THEN GO TO LAB2:
/* PROCESS LEFT-SIDE OF PRODUCTION */

X=INPUT(1);

DO I=1 TO N; /% COMPARE WITH PREVIOUS SYMBOLS #/
IF X=SYMBOL(I) THEN GO TO LAB1;

END;

I,N=N+1; /% ADD NEW

IF N > 180 THEN ERR
PUT EDIT ('sssik
*THE SYNTAX HAS B
53 TO TERMINATE;

SYMBOL */

_MSG: DO
AN IMPOSED LIMIT OF 180 UNIQUE SYMBOLS IN

EEN EXCEEDED')

(A, A) SKIP(2)3

END;
SYMBOLI{T)=X;
LABL:
IF TERA(I) THEN NON=NIN+1;
TERM(I}=10'3;
LAB2:
/% PROCESS RIGHT~SIDE OF PRODUCTIGN ®/

D3 J=2 TO L2
X=INPUT(J);
DO K=1 TO N;

TF X=SYMBOL(K) THEN GC TO LAB3;

END;

KyN=N+13 /% ADD
IF N > 180 THEN
SYMBOL(N)=X3

NEW SYMBOL =#x/

GO TO ERR_MSG;

3
}) SKIP

THE LIMIT IS 6.%)

?

S e M St S i S, WO tnt e s S s BASH i A S St ot S s, VS SO bl S i, i S iy Gois W s Sttt VI s, VD i arie. UMD Gt D T ot S S g, S S s o T sy WD s

98
" S9
100
100
101
102
103
104
165
106
107
108
109
110

111

112

113
114
115

118

119
120

121

121
122
123
124
125
126
127
128
129
130

131
133

134

135
136

137

63

TESTPREC:
LA33: :
IF J=2 THEN SUEBSTR{LEFT,NUM*({I-1)}+K,1)=*1"B;
ELSE
DO;j
EQ=EQ+13

Y=NUM*(L-1)+K;
SUBSTR{EQUAL,Y,1)='1"'8;
LINE(EQ,1)=Y; /% STORES LINE #'S FOR ALL PAIRS #/
LINE(EQ,2)=M; /* OF EQUAL PRECEDENCE */
END;
L=K3
END3
SUBSTRIRIGHT yNUM*(I—-11+K,1)=*1'B3
GO T3 CARD;

MATRIX:
BEGIN; ,
DCL X CHAR(1)yPREC CHAR{N#%N), (NONT(NON) Kk,
TERMINAL{N-NON}} FIXED BIN(15);

/* STORAGE AREAS :

NONT — STORES ALL NONTERMINAL SYMBOLS

TERMINAL - STORES ALL TERMINAL SYMBOLS

PREC — PRECEDENCE MATRIX *®/
J9K=33 '
PREC=' '3

DO I=1 TO N3
IF TERM(I) THEN DO;
J=Jd+13
TERMINAL({J)=TY
END;
ELSE
D3J;
K=K+17%
NONT{K)=TI3;
END3
END;
PUT EDIT (*NINTERMINAL SYMBOLS') (X{(50),A) PAGE;
PUT EDIT (({SYMBOL(NONT(I)}) DO I=1 TO K}) ((NI{A(12},X{10)))SKIP(2)3}
PUT EDIT ('TERMINAL SYMBOLS') (X(52},A) SKIP(4);
L=N-<3
PUT EDIT ((SYMBOL(TERMINAL(I)) DO I=1 TO J)}
{{L) (A(L2)},X{10))) SKIP(2}3
IF ERR1 THEN DO3s
PUT EDIT (*#*%%% SHCRTEN THE PRODUCTIONS WHICH ARE TOO LONG *,
*AND RUN AGAIN') (A,A) SKIP{4);
GJ3 TO TERMINATE;
END3
PUT EDIT (*VIDLATICNS') (X{55),A) SKIP(4);

/% THE STRINGS 'LEFT' AND *RIGHT® ARE CHANGED TO INCLUDE ALL THE
LEFT-HOST DERIVABLE SYMBOLS AND RIGHT—MOST DERIVABLE SYMBOLS
RESPECTIVELY. THIS IS ACCOMPLISHED THROUGH THE USE OF
WARSHALL'S ALGORITHM.

WARSHALL,S. A THEORFM ON BOOLEAN MATRICES.
J.ACM 9 (JAN.1962),11~12. /
LARSHALL:
D3 I=1 TO Nj

- — — o> W gy Ay s i o RS Gt ks T i Bt W i A S o S ST et e S (e G S e S B gy B WY Gt S et gy D it it N e fmcs A Gt T S e, A S s

e e i " o o S i o i ot s e, o i o S o i e e it s S s S e S A e S e o St |

138
139
141
142
143
144
146
147
148
149

151

152
153

155
156
157
158
159

160

162
162

3 “3

164 .

165
166
167
168

169
171
172
174
174
176

177
179
180

131
182
182
183

TESTPREC S

NG J=1 TO N;
IF SUBSTRILEFT,NUM®{J-1}+I,1) THEN DO K=1 TO N;

IF SUBSTRULEFT,NUM*{I-1)+K,1} THEN
SUBSTR{LEFTNUM*{J—1)+K,1)=*1%8B;

END;3
IF SUBSTR(RIGHT ,NUM*(J-1)+I,1)} THEN DO K=1 TO 'H

IF SUBSTR(RIGHT,NUMx{I-1)+K,1} THEN
SUBSTRIRIGHT ,NUM*(J-1J+K,1)="1'83

END;

END AARSHALL;

/%

WIRTH:

JEVELOPMENT OF THE PRECEDENCE MATRIX USING THE PRECEDENCE
DEFINITIONS DEFINED IN:

WIRTH,N. AND WEBER,M. EULER: A GENERALIZATION OF ALGOL,
AND ITS FORMAL DEFINITION; PART I. COMM. ACM 9 (JAN.1966)

DD I=1 TO N3

DO J=1 TO N;
IF SUBSTR{EQUAL,NUMX{I-1)+J,1) THEN DO;

/% DEVELOP THE RELATIONSHIP = %/
X=SUBSTR{PREC N*{I-1)+J,1);
IF X=B THEN
SUBSTRIPREC,N®(I=1)+J,1)=0=13;
ELSE DO; /% ERROR MESSAGES #/
PUT EDIT (SYMBOL(T)sX,?'=%,SYMBOL{J))
(A(L12)yX(2) 3As A X(2)Y,A(12)) SKIP(2);
IF X=t'<' THEN CALL LESS(I,J};

ELSE

CALL GREAT{I,J);

CALL LINE _NOINUMELT-—3)+1.7);

PUT EDIT {(*NOTE: = BECAUSE',SYMBOL(I),'ADJACENT TO*,

SYMBOL(J) 4" IN? ,Z)

{X{33}yAyX[1},A012)4X{1),AsX{L),A(12),X{1)yA,F(4,0))

SKIP;
ERR='1'8;
END3
IF TERM{J)='0'8B THEN
/% DEVELOP THE RELATIONSHIP < %/
DO K=1 TO N;
IF SUBSTR(LEFT,NUM*{J-1)+K,1) THEN DO;
X=SUBSTR{PREC/N*{I-1)+Ks1);
IF X=B THEN SUBSTR(PREC,N*{I-1)}+X,1)="<"3}
ELSE
IF X=-=%<' THEN D35 /% ERROR MESSAGES */
PUT FILE(SYSPRINT)} EDIT (SYMBOL{I1),
Xy?<?,SYMBOL{KY})
(A(12),X{2) A5 A4 X({2),A012)) SKIP(2)3
IF X='=% THEN DO;
CALL LINE_NO{NUMX{I~-1)+K,Z};
PUT EDIT {('N)TE: = BECAUSE',SYMBOLI{I},
TADJACENT TO! ,SYMBOL(K)*INt,2Z)

64

*/

(XE3) A XULY o ALL2) o XUL) 9A X 1) 2A{12)4X(1)4A,

F{4,0));
END3
ELSE
CALL GREAT(I,K);
CALL LINE_NO(INUMX(I-1)+J,2)3

——— . W—— M o T maay S T i St EA it St gy et NS mma SO it et S e aimnm S G Al S v S G AL G b aa MO et ot St S Smam MM e S MM G S M haam S . S o f—
——— . S —— Ay Wt s e M ooby T s M S Eeae SN L D e S (s S0 G e T met S S fmins B S mn A Gnan A S e S M g S e G R ST g, S e e S iy M e

65

T TESTPREC:
184 .) PUT EDIT {*NOTE: < BECAUSE',SYMBOLI(K),
$1S LDS OF*,SYMBOL(J)y &'y SYMBOL(I), =",
SYMBOL{J), "IN, 2Z)
(X{33)5A9X{1)2AL12) s X{L)pAsX{L)sALL2Y 4 X(L),A,X(1)
rAC12) o X{ LY Ae XCD)A{12) 4 X(1) sA4F(440)) SKIP;
185 ERR="1'B;
186 END3;
187 END S
189 IF TERM(I)='0'B THEN DO;
191 ’ Sl: /% DEVELDP THE RELATIONSHIP > %/
) DO K=1 TO N3
192 IF SUBSTR(RIGHT ¢NUM%(I~-1)+K,1) THEN DO}
194 X=SUBSTR{PREC yN*{K=1)+J,1)};
195 IF X=B THEN SUBSTR{PREC,N¥{K-1)+J,1)=8>1;
197 ELSE
197 IF X== '>% THEN DO; /% ERROR MESSAGES %/
199 PUT FILE(SYSPRINT) EDIT {SYMBOL{K),
Xe?21,SYMBOL{J))
(A{L2),X(2)5A5,A,X(2),A(12)) SKIP(2);
200 IF X=¢*=* THEN DO;
202 : CALL LINE_NOUINUME{K-=1}+J,7);
203 PUT EDIT (*NOTE: = BECAUSE',SYMBOL(K},
YADJACENT TO',SYMBOL{J),*IN',Z)
(X{3) 9ApX(1)9ALL2) 4 X{1) s AsX{1)sA(12),
X{1)sAyFl440));
204 END;
205 ELSE
205 CALL LESSI{K,4d);
206 CALL LINE_NO(NUMR{I-L)+J,Z);
207 BUT EDTIT (*NITE: > BECAUSE! ,SYMBOL LK),
"IS RDS OF*,SYMBOL{E),'&7,SYMBOL{I},
P=0 ,SYMBOL{J) st INY4Z)
{XU33)sApXEL1Y AL 12) 4 X(1} oA,
XELYsAQLI2) o XU) o Ag X (LYo ATL2) 4 X (1Y 4ApX{1),
: AC12)43X{1)9AsF({4,0)) SKIP;
208 ERR=11'8B3;
209 END;
210 END S13
212 IF TERM(J)Y='0*'R THEN
213 S2: /% DEVELOP THE RELATIONSHIP > %/
DO K=1 T3 N3
214 ., IF SUBSTR(RIGHT NUM%(I-1)+K,1) THEN DD L=1 TO N;
216 IF SUBSTRILEFT,NUMX{J-1)+L,1) THEN DO;
218 X=SURSTR(PREC N {K~1)+L,1);
219 IF X=B THEN SUBSTR{PREC N*(K-1)+L,1)=1>%3;
221 ELSE
221 IF X -= *>" THEN DO; /* ERROR MESSAGES #*/
223 PUT FILE(SYSPRINT) EDIT (SYMBOL{K),"
Xy?>',SYMBOL(L))
(A(L12) 4 X(2) A5 A3 X{2),A1112)) SKIP(2)3
224 IF X= '=% THEN DO;
226 CALL LINE_NO(NUME(K—-1)+L,Z})3
227 ’ PUT EDIT (*NOTE: = BECAUSE?',SYMBOL(K},

*ABJACENT TO'SYMBOL{L),*IN*,2)
(XE3) A, X01) A012) o X{1) 4 A, XL1)4A(12),
. X{1)yAsF(4,0))3
228 END;

S e S M. e B SO g B Lt o S it S Ay PO i i O ok St M iy St S ks O R B Gttt B s s i e Sl S B, S i ot S gamat BT S St G s s S s o S gt B S
S i o TS ey, S St e T e Mt S s S S sy S My S W20 B et S sy A W g, O TSR ke e B s VA D it Wl ot s S ey i S oy, WA s WA s BAtts St S oo e, W souim amn WS

229
229
230
231

232

233
234
235
238
239
242

244

246
247
249
251
252

252

253
255

~ =

£330

257 .

258
259
260
261

262
263
264
265
266
267
268

269

270
271
272
273
274
275
276
277
278

TESTPREC:

66

ELSE
CALL LESS(K,L};
CALL LINE_NOINUMR(I-11+J,2);
PUT EDIT (*NOTE: > BECAUSE',SYMBOL (K},
'IS RDS OF 'y SYMBOL(I),*6',SYMBOL{L),
'IS LDS OF',SYMBOL{J)) (X(33)1,A,X{1)sA(12),
XELY g AaX{1 2 ALL2)4X{1) oA X{1)4AL{L2),X(1),
AsX{1),A(12))SKIP;
PUT EDIT (*'&*,SYMBOL(I),*=',SYMBOL{J),"INTY,
Z) (X033} 4AsX{1) sALL2) s X (1) yA9X{1)0AL12)},’
X(1)sAyFl4,0)) SKIP3
ERR=11'8B;
END 3
END S23
END3;

END WIRTH;

IF ~ERR THEN PUT EDIT (*NO PRECECENCE VIOLATIONS OCCURRED')

{X{44),A) SKIP(2};

IF PREC_MAT THEN GO TO CHECK;

/% PRINT THE PRECEDENCE MATRIX x/
PUT EDIT (*PRECEDENCE MATRIX') (X(52),A) PAGE;
IF N<=100 THEN DO;

K=N/10; K1=N3
END;
ELSE
D33
K=103 K1=1003%
END;
PUT EDIT {{'{* DO =1 TO Kij (X(i8),iKI{Xi{31sA}i SKIP{2};
PUT EDIT ((*.* DD J=1 TO K1)} (X{18),(K1JA(1)) SKIP(O);
J=1-N;
DD I=1 TO N;
J=J+N;

PUT EDIT {I,SYMBOL(I),*]*,SUBSTR(PREC,sJ,K1))
(F{3,0),X(L},A012),X(1)4AL1)4A) SKIP;
IF N>100 THEN
PUT EDIT (']t ,SUBSTR{PREC,J+1004N=-KL}} (X(LT7),A(L),A) SKIP;
END3
PUT EDIT ((*}* DO J=1 TO KJ)) {X{18),(K)(X{9)4A)) SKIP;
PUT EDIT ({'.?® DO J=1 TO K1)) (X(18),(K1)A(L}) SKIP(O)3;

CHECK :

1F ERR | FIND_F_G THEN GO TO TERMINATE;

* CALCULATION CF F & G FUNCTIONS USING ALGORITHM 265 OF
COLLECTEC ALGORITHMS FROM CACM BY NICLAUS WIRTH x/

FUNCTIOMS 2

BEGIN;

DCL {F(N)},GIN),FMIN,GMIN) FIXED BIN{15),(LSsEQ,GR) CHAR{1);
DCL FIXROW ENTRY {FIXED BIN(15),FIXED BIN(15),FIXED BIN(15)
DCL FIXCOL ENTRY (FIXED BIN(15),FIXED BIN(15),FIXED BIN(15)
LS="<;

EQ:I =!;

GR=1>43

K1=03;

FsG=03-

D3 K=1 BY 1 TO Nj;

|
)3

T S o il L s B s iy Tt S s s Y st ot e G, S S S, (i Mt St St Gt ot O o e A i St ot ey Vo MM g, WD S o i mame Smms Bepan Men eeua S B Mt S sraes rumn S oo S s
T D ot S B i U Gt e S S s St S o, it B s St . W Wl i, s S St Sy Sttt SO St e VD N g, e s syt D S iy SV s s D it i WD Pt oo s e e St s e

T |

279
280
281
282
284
284
286
287
288
289
290
292
292
284
295
296
297
298
299
301
301
303
304
305
306
307
309
309
311
312

313 .

314
315

316
317
318
319
320
322
323
325
325
327
328
329
330
332
332
334
335
336
337
3383
339
341

" TESTPREC:

FMIN=1;
DO J=1 BY 1 TO K13
X=SUBSTR{PREC yN*{K-1)+J,1);
IF X= GR & FMIN <= G(J) THEN FMIN=G(J}+1;
ELSE
IF X = EQ & FMIN < G(J) THEN FMIN=G(J);
END;
F(K}=FMIN;
DO 4=K1 BY -1 TO 13
X=SUBSTR(PRECN*{K-1)+J,1)3

IF X = LS & FMIN>= G(J) THEN CALL FIXCOL(K,J,1)3

ELSE

IF X = EQ & FMIN > G(J} THEN CALL FIXCOL{K,J,0)3;

END3
{1=K1+13;
GMIN=13
D] I=1 BY 1 TO K;
X=SUBSTR{PRECN*(I-1)+K,1);
IF X = LS & F(I) >= GMIN THEN GMIN=F{[)+1s
ELSE
IF X = EQ & F{I) > GMIN THEN GMIN=F({I};:
END;
G{K)=GMIN;
D3 I=K BY -1 TO 1;
X=SUBSTR(PREC 4N*{I-1)+K,1)3

IF X = GR & F(I) <= GMIN THEN CALL FIXROQ(I,K,[);

ELSE
IF X = EQ & FII) < GMIN THEN CALL FIXROW{(I,K.0)3;
END3
ENDS

PUT FILE(SYSPRINT) EDIT ('PRECEDENCE FUNCTIONS',*F?,1G?)

(A X{6)4A,X{5)4A) PAGE;
DO I=1 TO N;
PJT FILE(SYSPRINT) EDIT (I,SYMBOL{I),F{I}),G(I}}
(F(3+0)sX{4)sA(12)9X{5),F{3,0),X(3)4F(3,0)) SKIP;
END3
FIXROW: PROCEDURE (I,L,T) RECURSIVE;
DCL (J,I,L,T) FIXED BIN(15});
FLIY=G(L)+T;
IF K=K1 THEN DO;
X=SUBSTR(PREC,N®{I-1)+K,1);
IF X = LS & F(I) >= G(K) THEN GO TO NO_F_G3
ELSE
IF X = EQ & F{I)} -»= G(K)} THEN GO TD NO_F_G3
END;
DO J=K1 BY -1 TO 13
X=SUBSTR{PREC N*(I-1)+J,1);
I= X = LS & F{I}) >=G(J) THEN CALL FIXCOL(I.J,1);
ELSE
IF X = EQ & F{I) ~= G(J) THEN CALL FIXCOL{I,J,0};
END; .
END FIXROW;
FIXCOL: PROCEDURE (LyJ,T) RFCURSIVE;
DIL (JyI,4LyT) FIXED BIN{15);
GlJI)=F{L}+T;
IF ¥ ~= K1 THEN DO}
X=SUBSTR{PREC 4N (K-1)+J,1};

67

s o o || o o s B i o e i i e e e |

B ot i WS s B St s SR S (i Bl G s A i ot s WO s M iy B it Sty P i i, Mot o e T G s O o s SO o . P i, WOl v, e S paa ks WS darm A S S en i o S
N v S g i S i, P o g T Uit S i st S Gl ks G ittt T Gt Gnert S G, St 0 i, Wl GO . Bl s Bt v, $S s il U ity il s S TS ot S T G, b WA minmn, o e A S
ks et S gy S TSty B s, s S s G W Wl s Vol e it S it e s Writie VO et G D A et S sy e Wl et s O gy s SO drm, DMl St O S s Aimgn S i, Tt i s S oo o S

342
344
344
346
347
348
349
351
351
353
354
355
356
357

358
359

360
361
362

363

365.

367
368

369
370
373

374

375
376
377

378
380
382
383

334
335
338

389

TESTPREC:
IF X =GR & F(K) <= G{J) THEN GO TO NO_F_G3
ELSE
IF X = EQ & F(K)} ~= G{(J) THEN GO TO NO_F_G3
END3S

DI I=K BY -1 TO 13
X=SUBSTR{PRECyN%:(I~1)+Jy1)3
IF X = GR & F{I)} <= G(J) THEN CALL FIXROW(I.Jds1)}
ELSE
IF X = EQ & F{I) ~= G(J) THEN CALL FIXROW (I,4,0);
END3
END FIXCOL3
END FUNCTIONS;
G3 T3 TERMINATE;
NO_F_G:
PUT EDIT (*NO F AND G FUNCTIONS EXIST') (X(48),A) SKIP;
GC TO TERMINATE;
END MATRIX;

/* PROCEDURE 'LESS' IS USED TO GIVE ERROR MESSAGES FOR PRECEDENCE
VIOLATIGONS. ’
IT DETERMINES THE ORIGIN OF THE RELATIONSHIP < IN *PREC?® x/
LESS: PRJICEDURE (X,Y)3
DCL (XsYy1) FIXED BIN{15});
L1z
DO I=1 TO N3
IF SUBSTRILEFT,NUM*{I-1)+Y,1) THEN DO;:
IF SUBSTR{EQUAL NUM*(X-1}+I,1) THEN DO;
CALL LINE_NJ(NUMX{X-1)+1[,2)3
PUT EDIT (*NOTE: < BECAUSET',SYMBOL(Y),*IS LDS OF"',
SYMROL (1), A0, SYMROL{X)«*=* . SYMBOL(I),*IN?,2)
{X{3)sAaX{L) g ALI2) 3 X{LY g AsX{L) g ALL2) 3 X(1) ApXTL)sA(12),
X{1) A X{1)»A{12) 4 X(1)sAsF{440))7%
GO TO L23
END L1
L2:
RETURN;
END LESSs

/% THE PROCEDURE 'GREAT?' IS USED TO GIVE ERROR MESSAGES FOR
PRECEDENCE VIOJOLATIONS.
IT DETERMINES THE ORIGIN OF THE RELATIONSHIP > IN *'PREC? */
GREAT: PROCEDURE (X,Y)y
DCL (XeYyIyJd) FIXED BIN(15)3
L3z
D3 I=1 TO N3
IF SUBSTR{RIGHT,NUM*{I-1)+X,1) THEN DO;
IF SUBSTR{EQUAL,NUMx({I-1}+Y,1) THEN DO;
CALL LINF_NOINUME{I-1)+Y,27); :
PUT EDIT (*NOTE: > BECAUSE',SYMBOL(X) IS RDS QOF*,
SYMBOL(T) s 267, SYMBOL(T)y'=*,SYMBOL(Y),'IN*,Z)
(X{3) 3 A X{1)sAL12) o X(1) A X{L) s A{12) s X{1) A X({1)sA(12),
X{1) e AgX({L),ALL2) 4 X{1)4A4F{4,0))3
GO TO L5;
END L33
La:
DO I=1 7O Ny
IF SUBSTR(RIGHT,NUM*{I-1)}+X,1) THEN DO J=1 TO N3

' —— B —n S Ba WD M e S
| e o i et e 2 e s e e

| e e et s s mm e e 1 e s e | | o e e e e o ot e e e S i . e e
R gy A i G P RS gy D A S L VLD s KD gy M T gy, WO S ey S S ey TS W e Y G i S Gm— THED S R R SRNE e ST ey Gt S oy SRAR G v Ve et Guns SN wye; S b G O S—

—— e St sttt e ot st o i s e e i S}

391
393
395
396

397

398
399
403

404

405
406
407

408
410
411
412
414

415

416

69

" TESTPREC:

IF SUBSTRILEFT,NUM={J-1)+Y,1} THEN DO;
IF SUBSTRUEQUAL,NUM*{I-1)+J,1} THEN DO;

CALL LINE_NO(NUMR(I-1}+J,2);
PUT EDIT (*NOTE: > BECAUSE',SYMBOL(X),'IS RDS OF*,
SYMBOLCI), '8, SYMBOLIY), IS LDS OF*,SYMBOL(J)}
(X(B),A.X(l)yA(lZ),X(l)yA.X(1)1A(12).X(1),A1X(1)1
ALL2) 9 XU A X(1)4AC12)) 5
PUT EDIT (*&*,SYMBIL(I),*=7,SYMBOLI{J),*IN?,Z)
(X(33)1Aix(l)yA(lZ,1X(l)1A1X‘1)1A(12)1X(1)1A1F(490))
SKIP;
GO 70 L5;

END L4

L5:
RETURN;
END GREAT:;

/% PROCEDURE 'LINE_NO' GIVES THE LINE IN THE PRODUCTIONS IN
d4ICH THE RELATION = WAS DEVELOPED */
LINE_NG: PROCEDURE(X,Y):
DCL (X,Y,1I) FIXED BIN(15);
L7:
DO I=1 TO EQ;
IF LINE(L,1)=X THEN DO;
Y=LINE(I,42);
GO TO L8;s
END L7
L8:
RETURN;
END LINE_ND;
TERMINATE:
END TESTPREC;

N

| oo e s o e e e o s]
B N S

APPENDIX B

LISTING OF EXTRACT

70

w N

~N o wu b

71

EXTRACT:

EXTRACT:
PRUCEDURE OPTIONS (MAINIDS
DCL (INPUT(15}),SYMBUL{180),A) CHAR(12) VAR,ERR1 BIT(1};
DCL (LEFTZRIGHT,EQUAL) BIT(32400),TERM(180) BIT(1),
{Xs3LANK) CHAR(L) (I 3Js Kyl g Ny Mg NUM,NGN,LOC) FIXED BIN(15);
DCL TEST CHAR(81) VARLELEMENT CHAR(80} VAR, L2 FIXED BINI(15);
DCL TABLES FILF STREAM OUTPUT; /% INFORMATION FDR 'ANALYSE® %7/
OPEN FILE(SYSPRINT) PRINT LINESIZE(132) PAGESIZE(61);
DPEN FILE(TABLES) LINESIZE(100);

/% MAJCR DATA AREAS
SYMBOL - STORES THE SYMBOLS USED IN THE SYNTAX
EQUAL - NOTES SYMBOLS WHICH OCCUR ADJACENT TO EACH OTHER ON
THE RIGHT-HAND SIDE QOF PRODUCTIOINS
LEFT -~ NOTES LEFT-MOST SYMBOLS ON THE
RIGHT-HAND SIDE OF PRODUCTIONS
RIGHT — NOTES RIGHT-MOST SYMBOLS ON THE
RIGHT-HAND SIDE OF PRODUCTIONS
TERM — NOTES WHICH SYMBOLS ARE NDONTERMINAL x/
NUM=1803;
NON,LOC=03
BLANK=? ¥*;

LEFT,RIGHT,EQUAL="0'8;
TERM=t1'8;

M=03

N=03

ERR1='0"B;

START1L:
BEGIN;
OCL (NUMB{500) 4PRODIS00 935+ LGTH_POINTER_L{6i+LGTH_POINTER_2{5)}
FIXED BIN(15)3;
LGTH_POINTER_1,LGTH_POINTER_2=03

/* DATA AREAS
' NUMB — STORES INTERNAL SYMBOL NUMBERS FOR ALL SYMBOLS
OCCURRING ON THE RHS OF PRODUCTIONS
PROD - FOR I FROM 1 TO M:

PROD(I,1) — POINTS TO THE NEXT ROW IN 'PROD* FOR
A PRODUCTION JF THE SAME LENGTH
PROD(I,2) — POINTS TO THE LOCATION IN 'NUMB' WHERE THE
RIGHT SIDE OF PRODUCTION I IS STORED
PROD(T4+3) = INTERNAL SYMBOL NUMBER FDOR LEFT SIDE
. OF PRODUCTION 1. */
ON ENDFILE (SYSIN) GJI TO WRITE;
PUT EDIT ('PRODUCTIONS') (X(54),A);
/% READ IN PRODUCTIONS IN FREE FORMAT AND LOAD MAJOR DATA AREAS %/
GET EDIT (TEST) (A(80));
[F SUBSTR{TEST,1,1)=BLANK THEN DO;
PJT EDIT (¥#%=x+fRROR*F**x¥—-THE FIRST PRODUCTION IN THE SYNTAX ',
*DORS KOT HAVE A LEFTPART') (A,A) SKIP(2);
GJ TO THE_END;
END3
2 TO FIRSTS

CARD:

GET EDIT (TEST) (A(BO));
FIRST:

TEST=TEST] IBLANKS

s e Y . s T e iy WV i G it it S T s i A i, St S s TS U it S ity S S G, SO Gl s, G S s, T WS e, WS o et S s, WA T i, S B s W o, s Wins |

e S i s e o e i ot S 2 ot i S o i S S . it e |

51

53
54
55
56
58

73

T4
75
76
77

79
80

81
82

EXTRACT:

712

L1=2}
IF SURSTRI(TESTs1,13=3LANK THEN INPUT({1)=BLANK3S
ELSE DO;
L1=INDEX({(TEST,BLANK) ;
IF Ll > 13 THEN PJT EDIT {"*%*x%x*WARNING — THE SYMBOL ¢,
SUSSTR{TEST,1,L1-1},? HAS BEEN TRUNCATED TO 12 CHARACTERS*)
{AyAyA) SKIP;S :
INPUT{1)=SUBSTR(TEST,1,L1-1)3
END3
L2=13
ELEMENT=1t %3
po J=L1 70O 81 BY 13
X=SUBSTRITESTsJy1)3
IF X~=BLANK THEN ELEMENT=ELEMENT}IX;
ELSE
IF ELEMENT=-=®' THEN DO}
L2=12+1;
IF LENGTH{ELEMENT) > 12 THEN
PUT EDIT {'#*%xx&WARNING — THE SYMBOL ¢,ELEMENT,
t HAS BEEN TRUNCATED TO 12 CHARACTERS®)
{AsAyAY SKIP{2)3
INPUT(L2)=ELEMENT;
ELEMENT=**;
END;
END;
M=M+13
IF L2 > 7 THEN DO;
PUT EDIT (t&¥*xkx IN LINE 'sM,' THERE ARE ',L2-1,
* SYMBOLS ON THE RHS OF THE PRODUCTION. THE LIMIT IS 6.%') -
{AF{3;0)sA.F12,0),A) SKIP(2):
ERR1='178;
L2=73s
END3
PUT EDIT (M INPUT(1),'2:=%, {INPUT(J) DO J4=2 TO L2})
{X(5)sF(3+0)94X{10)sAL12)4X(4)A{3),(63(X{2),A(122})) SKIP;3
IF INPUT{1)=BLANK THEN GO TO LEFT_BLANK3:
/% PRJCESS LEFT-SIDE OF PRODUCTION
A=INPUT(1);
DG I=1 TO Ny /% COMPARE WITH PREVIOUS SYMBOLS %/
IF A=SYMBOL{I) THEN GO TO OLD_SYMBOL_ 1%
END3
T ,N=N+13;
IF N > 180 THEN

ERR_MSG:

DO}
PJT EDIT ('#%2%% AN IMPOSED LIMIT OF 180 UNIQUE SYMBOLS IN t,
'THE SYNTAX HAS BEFN EXCEEDED'} {(A,A) SKIP{2)};
50 TO THE_END;

FND3 ,

SYMROL (1)=A3

OLD_SYMBOL_1:

IF TERM(I) THEN NON=NIN+1;
TERM(TI)I="0"'83

FEFT_DLANKS

LGTH=L2-13
IF LGTH_POINTER_1{LGVYH)=0 THEN
LGTH_POINTER_1(LGTH) LGTH_POINTER_2(LGTH)=M3

*/

o - o A S e S Y g S e e S s M i B WD P sotns S Ml i SO St (ot e S (O s s SO o S U i T S i, WS oot s S Sty G T g S i S e o S

—— — At ot ooma o S s S S g S S it TP i S W S WD S i S S S S AP i Y S SR D i W S g T S SR S oy SO v Vo SO ey SN SRS i S i S S s v (52

105

109
110

PP RV

112
113
114
115

116
117
118

119
121

122

123
124
125
126
127
128

129

EXTRACT:

ELSE
PROD(LGTH_POINTER_2{LGTH) 4y 1) yLGTH_POINTER_2(LGTH)
PROD(My2)=L0OC+13
PROD(M,3)=1;
/% PRICESS RIGHT-SIDE OF PRODUCTION .
DO J=2 YO L2; /% COMPARE WITH PREVIOUS SYMBOLS #*/
A=INPUT(J);
DO k=1 TO N3
IF A=SYMBOL(K) THEN GO TO OLD_SYMBOL_2;
END;
K1N=N+1;
IF N > 180 THEN GO TO ERR_MSG;
SYMBOL(N)=A3
OLD_SYMBOL_23
LOC=L0C+1;
NUMB(LOC)=K;
IF J=2 THEN SUBSTR(LEFT,NUMX{I—1)+K,1)="1"'83
ELSE
SUBSTR{EQUAL,NUM*{L~1)+K,1)=21783
L=K3
END
SUBSTR{RIGHT yNUM*{I-1}+K,1)=*118;
GO TO CARD;

WRITE:

IF ERR1 THEN GO TO END_START1:;
DO LGTH=1 TO 6;
IF LGTH_POINTER_2(LGTH)~=0 THEN
PRODILGTH_POINTER_2(LGTH)$1)=03
END3
/% ARITE INFORMATION IN 'TABLESS?
PUT FILE(TABLES) EDIT (N,LOC,M)
(FU3,0) s XULYF(3,00),X(1),F(3,0)};
PUT FILE(TABLES) EDIT ((SYMBOL(I) DO I=1 TO N})
PUT FILE(TABLES) EDIT ({NUMB(I) DO 1=1 TO LOC)) {
D) I=1 TO M3

3

=M3

({N)AL12))
(LOCIF(3,0));

PUT FILE(TABLES) EDIT (PROD{(I,1),PROD(I,2),PROD{(I,3})

(FU3,0)4X(2),F(3,0)4X{2)¢F(3,0))3
END;
PUT FILE(TABLES) EDIT {((LGTH_POINTER_1(I) DO I=1
{{6Y{F(3,0)4X(2)))3

END_STARTIL:

END STARTL;
IF ER1 THEN GO TO THE_END;

~ START2:

BEGIN;3

OCL <EY_WORDU{N-NON) CHAR{12),0PERATOR{(N-NIN} CHAR
(IDyI1412KEY_WORD_NO{N=NON),OPERATOR_NO(N~NDN1)
DCL DOURLE_OP{N—NON) CHAR(2)4DOUBLE_OP_NGC(N-NON)
DCL (ANYSTRING+VAR_TABLE s VAR_STRING,NUMERO) FIXED
LCL TEMP(18Q) FIXED BIN{15},POINTER(L13)} FIXED BIN
11,12,1ID=03

ANYSTRING) VAR_TABLE, VAR_STRING, NUMERQ=03

TEMP=D;

L3AD:

DO I=1 TO N3~

T0 6)})

(1),

FIXED BIN(15);

FIXED BIN(15)3
BIN(15);
(15);

®/

®/

1 oo ot ey e s s S it e B s O s (ot it (o T et iy i ot s, SUAD St e W P s TS gt et WD Mot WS S G S S g i S

S . B . Tt B, S S S ikt B WS sreth) A s, WA B i T e G WD e VD O G B B Gt T U il WAL T i WS il S O ST it SO s S WY B o TS g s SRR s S e

— " s o s St .t s |

130
132
133
135
135
136
138
139
140
141
142
142
143
144
145
146

148
149
150

152

153
154
155
157
158

159

160
162
164
166
168

171,

172

173
174

175
176

177
178

179
180
181

182
183

184

TEXTRACT:

74

IF TERM{I) THEN DQj3
A=SYMBOL({I1};
IF A>= A" THEN TEMP(I)}=LENGTH(A);
ELSE
DO; /% DETERMINE ALL SINGLS AND DOUBLE OPERATORS */
IF LENGTH(A)=1 THEN DO;
[2=12+17¢
OPERATOR{12)=A3
CPERATOR_NO(I2)=13
END;
ELSE
DO;
ID=10+17%
DOUBLE_CP{ID)=A3
DOURLE_OP_NO(ID}=I3
IF LENGTH(A) > 2 THEN PUT EDIT
(Vk=kax —~ THE SYMBOL '4A,' HAS BEEN TRUNCATED TO *,
t2 CHARACTERS') (AyA,A,A) SKIP(2);
END3
ENDj3
END L3AD;

/% ST3IRE ALL THE KEY WORDS IN ORDER FROM SHORTEST TO LONGEST /-
IN_ORDER:

DO J=1 7O 123
POINTER{J)=11+13
DO I=1 TO Nj
IF TEMP{I)=J THEN DOj;
I11=11+413
KEY_WORD{I11)=SYMBOL{I)3 -
KEY_WORND_NO(1)=]2
/% DETERMINE THE RESERVED WORDS USED IN THE SYNTAX */
IF SYMBOL(I)=*VAR_TABLE®* THEN VAR_TABLE=I};
IF SYMBOL(L)='NUMERQO* THEN NUMERO=I;
IF SYMBOL{I)=vANYSTRING* THEN ANYSTRING=13;
IF SYMBOL{I)='VAR_STRING' THEN VAR_STRING=I;
END IN_ORDER;
POINTER{13)=I1+13
* WRRITE INFORMATION IN 'TABLES' */
PUT FILE(TABLES) EDIT {ANYSTRING,VAR_STRING,VAR_TABLE,NUMERD,
IL412,ID) ((73(F(3,0)));
DO I=1 TO I1;:
PJUT FILE(TABLES) EDIT (KEY_WORD(I}KEY_WORD_NCO(I))
{A(12) 4+X({2)4F(3,0)});
END3
PUT FILE(TABLES) EDIT {((POINTER(I) DO I=1 TO 13))
({L13)Y(F(340)14X{2)131)3
nn I1=1 10 123
PJT FILE(TARLES) EDIT {OPERATOR(I},0PERATOR_ND(I))
{A{L) 4 X{2),4F(3,0));
END3
DO I=1 TO ID;
PUT FILE(TABLES) EDIT {DOUBLE_OP(I),DOUBLE_OP_NG(I))
(A(2),X(2),F{3,01))3
END;
END STARTZ2:;

MATRI X2

] v OO s A gy NS NS s St - W S S G S s g, S s RS GG masie v NS Sunin s GV s WA BULL i SOND AO Gamiy SASS vt AN i M SR s S O A gy St St St ST ey

—— A fo — i T A D qg W SO M S S Mrasks ST o i S s et T gy SN D SIS VI gy Ve eSS S Gt WA G S S G U s B g S S M i S S mapge, P S, Sl s

185
186

187

188
189
191
192
193
194
196
197
198
199

201

202

203
205
206
207
207
208
209

210
212
213
215
215
217
219
221

222
224
225
227
227
229
231
233
235
237

EXTRACT:

5

BEGIN:
DCL PREC CHAR(N%=N); /% PRECEDENCE MATRIX #/
PREC=' '3

/% THE STRINGS 'LEFT' AND *RIGHT® ARE CHANGED TO INCLUDE ALL THE
LEFT-M0OST DERIVABLE SYMBOLS AND RIGHT-MOST DERIVABLE SYMBOLS
RESPECTIVELY., THIS IS ACCOMPLISHED THROUGH THE USE OF
WARSHALL'S ALGORITHM.

WARSHALL,S. A THEQREM ON BOOLEAN MATRICES.
J.ACM 9 [JAN.1962),11~12.
WARSHALL:
DO I=1 TO N3
DO J=1 T3 N3

IFf SUBSTR{LEFT,NUM={J~-1)+1,1) THEN DO K=1 TO N3
IF SUBSTRI{LEFT,NUM*{I-1)+K,1)} THEN
SUBSTR(LEFTyNUM=(J-1)+K,1)="1"B;

END3

IF SURSTR(RIGHT ,NUM*(J-1)+I,1) THEN DO K=1 TO N3
IF SUBSTR({RIGHT,NUM*{I-1)1+K,1} THEN :
SUBSTR{RIGHT ;NUM*{J=1)+K,1)="1'83

END3

END WARSHALL;S

/% DEVELOPMENT OF THE PRECEDENCE MATRIX USING THE PRECEDENCE
DEFINITIONS DEFINED IN:
WIRTHsN. AND WEBER,M. EULER: A GENERALIZATION OF ALGOL,
_AND ITS FORMAL DEFINITION; PART I. COMM. ACM 9 (JAN.1966)
WIRTH:
DO I=1 TO N3y
DO J=1 TO N3
IF SUBSTR{EQUAL NUM*({I-1)+J,1) THEN DO3
IF SUBSTR{PREC,N*{I-1)+4,1)=" * THEN
SUBSTR(PRECN:(I=1}+J,1)="=";
ELSE
GO TO ERROR;
IF TERM(J)='0'B THEN

DO K=1 TO N3
IF SUBSTR{LEFT,NUM®{J-1)+K,1) THEN DO;
X=SUBSTR{PREC,N*{I-1)+K,1);
IF X=BLANK THEN SUBSTR(PREC,N¥(I-1)+K,1)=°<"3

ELSE .

IF X—==1'<' THEN GO TO ERROR;J
END S3
IF TERM(I)='0'B THEN DG;
Si:

DO K=1 TO N;
17 SUBSTR{RIGHT NUM¥*{I-1)+K,1) THEN DO3
X=SUBSTR{PREC,N*(K-1)+Jy1)3
IF X=BLANK THEN SURBSTR(PREC N*#{K~1)+#J,1)=">"3
ELSE
IF X-= '>' THEN GO TO ERRORjS
END S13
IF TERM{J)='0'R THEN S2: DO K=1 TO N3
IF SUBSTRIRIGHT yNUMX{I~1)+K,1) THEN DO L=1 YO N3
IF SUBSTRILEFT,NUME{J-1}+L,1) THEN DO3
X=SUBSTR{PREC,N*{K-1)+Ls1};

*/

x/

— e e ot St it S i o 2 B S0 o Ao A e S S . i o o B St o (e e B e i e S A S G i S e i S i S U i S W e S it S S s S|
— o A o 08 A yovp S D A M G (it — s i S - oy D i S D o S e s S s S T fasin W TS Mt G T bl (D g SO S e S S B A Gty W I i S S v

238
249
240
242
245
246

249
250
251
252
253
254
255
256

257
258

259
260

261
262

" EXTRACT:

76

IF X=8LANK THEN SUBSTR(PREC N*{K-1)}+L,1)=">"3

ELSFE
IF X -»= *>' THEN GO TO ERROR;
END S23
END
END AIRTH3
/% WRITE THE PRECEDENCE MATRIX IN 'TABLES® */

J=1-N; |
DO I=1 TO N;
J=J+N;

PJT FILE(TABLES) EDIT (SUBSTR{PREC,J,N)}) (A(N}I;
END;3
PUT EDIT ('TABLES LOADED SUCCESSFULLY') {A) SKIP(4);
GO T2 FINISH;3

ERRGR:

PUT EDIT ('A PRECEDENCE VIOLATION OCCURRED') (A} SKIP{4);
ERR1=11'83

FINISH:

END MATRIX;

THE_END:

IF ERR1 THEN

PUT EDIT ('USE THE PGM T E S T P R E C TO TEST YOUR LANGUAGE *.
YBEFIE ATTEMPTING TO LOAD THE TABLES') (A,A)} SKIP(4);

CLOSE FILE(TABLES);

END EXTRACT;S

| o o e S ot s e 0 o i s B S B it

| e e o o e e e o o o e i o e . P o S o S o e o

APPENDIX C

LISTING OF ANALYSE

7

VW -

-~ O

10
11
12
13

14
16

19
21
21
22
23
24
25
27

28
29
30
31
32

34
35

37

38
39

40,

41

43

44

8

ANALYSE @
PROCEDURE (PARM) GPTIONS(MAIN) S
OCL PARM CHAR(100) VAR;
DCL {N,LyLOC My I 4JyKyPT4PT1,LGTH,LINE) FIXED BIN(15)3
DCL COUNT CHAR{1l) VAR;
"pCL {ERR1,FRR24FERR3yERR4,ERRS,ERR6y ERRT,TRACE) BITI(1),
{DEL,SCAN_ERR) BIT(1l) EXTERNALS
DCL (FIX_UP(50,3) FIXED BIN{15),FIX_BIT(50,3) BIT(1)) EXTERNAL;
DCL (DEL_PRS_CT{20)4DEL_PRS{20,2)sNO_POINTER(20),
DEL_2T«NO_PT,NO} FIXED BIN(15};
DCL TABLES FILE STREAM INPUT3
NOyNJI_PT,DEL_PT=03
DEL_PRS_CT=03:"
DEL,ERRI,FRRZ,ERRB,ERR4,FRRS.ERRb,ERR?,TRACE SCAN_ERR=03

OPEN FILE(TABLES); /% INFORMATION ABOUT LANGUAGE FROM *EXTRACT® */

LINE=13

/% CHECK 'PARM' FOR PARAMETERS BEING PASSED TO 'ANALYSE? */

IF LENGTH(PARM) = 0 THEN GO TO START1;
I=INDEX{PARM,'0OPT=")3;
IF I > 0 THEN DO3
IF SUBSTR{PARM,I+4,1)='1' THEN ERR1=%1'8;
ELSE
ERR2=11'83
END3
IF INDEX{PARM,*COUNT(') > O THEN
COUNT=SUBSTR{PARM, INDEX{PARM,*COUNT(*)+6,1)3
IF INDEX{PARM,*TRACE')>0 THEN TRACE='1'B;
GET FILE(TABLES) EDIT {(N,LOC,M)
(F{3,0) 4X{1),F{3,+0)4X(1},F(3,0))3
/% FOR A DESCRIPTICN OF ALL THE INFORMATION IN *TABLES?

SEE CHAPTER 3, SECTION 2 */

STARTI1:
BEGIN;

DCL SYMROL{N) CHAR(12),{NUMBILOC)sPROD(Ms3),VAR_STRING,VAR_TABLE,

NUMED, ANYSTRING,SI1ZE,11,12,ID,LGTH_POINTER(6})) FIXED BIN{15)3;
DO I=1 TO N3
GET FILE(TABLES) EDIT (SYMBOL(I)) (A(12));
END;
DO I=1 TO LOC;
SET FILE(TABLES) EDIT (NUMB(I)) (F(3,0));
END3
0O I=1 TO M3
32T FILE(TABLES) EDIT {(PROD{(I,1),PROD(I,21,PROD(I,+3})
{(F13,0)4X(2)4F(340)4X{2},F(3,0));
END;
GET FILF(TABLES) EDLT ({LGTH_POINTER(I) DO I=1 TO 6})
({61 {F{3,0),X(2)));
GET FILE(TABLES) EDIT (ANYSTRINGsVAR_STRING,VAR_TABLE, NUMERDv
I11,12,10) ((7)(F(3,0)));

IF VAR_TABLE > O THEN SIZE=2503
ELSE
SIZE=13;

START2:
BREGING
DCL KTY_WORND(I1) CHAR{12),0PERATOR(I2) CHAR(L),

— A o— - oy U DT footm W SO s St T s st WD It s VO s A U fogy § e VD G BN A Gy SIS M it D D W T g S S G, T S Gt (i s s WO i TS 28 e

—— o St s et S g ol B P fmad R Gums A MR cun Rl Gy SIS de e e G

-}

46
47

49
50

51
52

53
54

55
56

57

59

82.

33
84
86
87
38
30
92

ANALYSE:

79

{KEY_WORD_NO(I1),0PERATOR_NO(I2},POINTER(L3}} FIXED BIN(15)3
DIL OBUBLE_OP(ID) CHAR({Z2),DDUBLE_GP_NOI(ID) FIXED BIN{15);

DCL PREC CHAR{MN=*N}; .

DCL (VARIABLE_1{SIZE},VAR_PT_1(12),VAR_PT_2(12},PGRAM,
PT3,STACK(50),SAVE(301,13,14,TOTL) FIXED BIN(15),
VARTABLE(SIZE) CHAR(12) VAR;S

DCL IN CHAR(81) VAR, STRING CHAR(256) VAR, ERROR CHAR({80),

X CHAR(-12) VAR,{Y,W,QUOTE,BLANK) CHAR(L) ,(COMMENT,STR) BIT(1);
DCL {(INFO,STATUS) FIXED BIN(15),Z CHAR(2);

D3 I=1 TO I1;
GEY FILE(TABLES) EBIT (KEY_WORD(I)},KEY_WORD_NO(I})
(A0L12) 4 X(2)4F(3,0));

END;

GET FILE(TABLES) EDIT ((POINTER(I) DO I=1 TQ 13))

(LI3){F(3,0),X(2)));

DO I=1 TO 123
GET FILE(TABLES) EDIT {OPERATOR(I),0PERATOR_NO(I)})
(ALL) 9 X{2)4F(340))3

END;

DO I=1 T0 1D;
GET FILE(TABLES) EDIT (DOUBLE_OP(I),DOUBLE_OP_NO(I))
{A{2),X{2),F(3,0));

END;

J=1-N3
D3I I=1 TO Ny
J=J+N3
GET FILE(TABLES) EDIT (SUBSTR(PREC,JsN)) (A(N)); i
ENDy
CLOSE FILE{TABLES);
OPEN FILE(SYSPRINT) PRINT LINESIZE(132);
ON ENDFILE(SYSIN) GO TO EOF;
PUT EDIT {*ISN','SOURCE LISTING') (X{2),A,X{48),A) SKIP:
PUT SKIP{(2);
STATUS,INF0O=0;
VARTABLE_1=03
VAR_PT_1=0;
STR,COMMENT=*0'83
QINTE=vvr g
TOT1=03%
BLANK="' 3
ERRNOI=BLANK;

PT3,PTl=13
SAVE(1)=03
/% LVERYTHING UP TO THIS POINT IS INITIALIZATION FOR THE RUN.
FROM HERE ON THE SOQOURCE PROGRAM IS BEING PROCESSED =/

CYCLE:

GET EDIT (IN) (A(80)): /% CARD OF SOURCE PROGRAM =*x/

PUT EDIT (IN) (X(25),A(80)) SKIP;

IF COUNT-= 't THEN PJT EDIT (LINE) (X{2),F(3,0)) SKIP{O);
IN=IN] | BLANK;

PT=0; -

If COMMENT THEN GO TO FLUSH_COMMENT:

IF ST THEN GN TO CHAR_STRINGS:

SCAN:

PT=PT+1;

T Bt S S s W e s B0t ML) g Bt St Gt D At P T it Gt WA B Wi, O o TR G Wi Gy Pt s Bt S S Wt (yreay Mot B e ot ot g S T G S St N S G Wbt S quanna
P S i ke N G b B i B A ey O e . ot (i s W S W S . i W st Wb ST Gay O M S . B Gt A i) S Vit Y S e Sl s ot s N g, WA St s, S G e S g,

A O e S ety S e s S, TS S v v S e T i S T Yttt SO Sy, D 0 s S s WA, S} O e A sy e St s i, S gy St S, A Sl W g s B i W i, S S iy

80

ANALYSE:
93 IF PT>80 THEM GO TO CYCLE; /% READ ANOTHER CARD %/
55 : Y=SUBSTR{IN,PT,1);
S6 IF Y=BLANK THEN 50 TO SCAN; /% REPEAT UNTIL NIN-BLANK SYMBOL */
98 IF ¥Y>= *AY THEN GO TO LETTERS; /% EITHER LETTER OR DIGIT #*/
100 IFf Y=CDUNT THEN LINE=LINE+1l; /% INCREMENTING ISN */
102 W=SUBSTR{IN,PT+1,1);
103 IF W < %A & W -=BLANK THEN DO; /* CHECK ALL DOUBLE OPERATORS */
105 Z=SUBSTR{IN,PT,2);
106 D3 I=1 TO 103
107 IF DOUBLE_OP({IL) = Z THEN DO;
109 PGRAM=DOUBLE_QOP_NOI(I);
110 13=P7;
111 : PT=PT+1;
112 GO TO PARSE;
113 END3
114 END;
115 END;
/% CHECK ALL SINGLE OPERATORS #*/
116 DO I=1 TO I2;
117 IF OPERATOR(I)=Y THEN DO3
119 PGRAM=0PERATOR_NO{I);
120 13=PT;
121 GO TO PARSE;
122 END;
123 END;
124 IF Y-=QUOTE THEN GO TO ERR_MSG;
126 STRING=*"1;
/% PRICESS STRINGS WITHIN QUOTES. — YANYSTRING' USED IN SYNTAX #*/
127 CHAR_STRINGS: -
128 TF ANYSTRING=0 THEN GO TO ERR_MSG;
129 13=PT;
130 PT=PT+1;
131 1=INDEX{SUBSTR{IN,PT),QUOTE};
132 IF 1=0 THEN DO
134 STRING=STRING! | SUBSTRIIN,PT,81-PT);
135 STR=%v1'8;
136 : GO TO CYCLE;
137 END;
138 STRING=STRING}|SUBSTR{IN,PT,I-1};
139 PT=1+PT-13
140 STR='0'8;
141 PGRAM=ANYSTRINGS
142 G) TD PARSE;
/% INVALID OPERATOR */
143 ERR_Y4SG:
PUT EDIT {1t x%%%x THE OPERATOR?',Y,
V{AS USED BUT DOES NOT APPEAR IN THE PRODUCTIONS. — DELETED?)
. (AZX{L}4ALL)yX(1),A) SKIPS
144 SCAN_ERR='11B;
145 GO T2 SCAN;
- 146 LETTERS:
147 IF v>= '0' THEN GO TO DIGITS;
148 13=PT;
/% KEY_WORD OR IDENTIFIER */
149 NEXT_LETTER:
PT=PT+1;

150 IF SUBSTR{IN,PT,1)>= *A* THEN GO TO NEXT_LETTER;

S it i T o et W g, W o aes TN ks mis SN s wmas VAES Wme e WA Gae G T pm NS M N Wi W W SIS mam S W G VIID S Gt S ST et SN s SO AR ey BN TS g (e et B DS v
" — - oy " T oy TS Gt iy T D s P s, SO (il i Wl S, S G (i, Bl MD ool Sl AR WAL SV oy et S AN P bt Gt S Gram S B g, S WSS G St N gy Wt Gtk W W s, S

8l

ANALYSZ:
152 X=SJBSTR{IN, 13,PT-13);
153 LGTH=LENGTHI(X)
154 IF L3TH > 12 THEN GO TO VAR;
/% CHECK KEY_WORDS */
156 IF POINTER(LGTH)=POINTER{(LGTH+1) THEN GO TO NONE_THAT_LENGTH;
158 D3 I= POINTER(LGTH) TO POINTER{(LGTH+l1)-1;
159 IF KEY_WORD(I)=X THEN DO}
151 PGRAM=KEY_WORD_NO(I1}3
162 PT=PT-13
163 GO TO PARSE;
164 END;
165 END3
166 NONE _THAT_LENGTH:
/% PROCESS COMMENTS */
167 IF X== 'COMMENT®' THEN GO TO VAR
168 COMMENT=¢11B3;
169 PT=PT-13
170 FLUSH_CIMMENT:
PT=PT+13s v
i71 IF INDEX(SUBSTR{IN,PT}),*3;*)=0 THEN GO TO CYCLE;
173 PT=INDEX(SUBSTR{IN,PT), "3")+PT-13
174 COMMENT='0'B3
175 GO T3 SCAN;
/% PROCESS IDENTIFIERS */
176 VAR:
STRING=SUBSTRUIN,I3,PT~13}3
177 PT=PT-1;
178 IF VAR_STRING > O THEN DO; /* 'VAR_STRING USED IN SYNTAX %/
180 PGRAM=VAR_STRING ¥ :
181 G2 TO PARSE;
182 END3
183 IF VAR_TABLE=0 THEN DO
185 PUT EDIT (*#x%%% — A VARIABLE ',STRING, ' WAS FOUND 1,
'*3UT NEITHER VAR_STRING NOR VAR_TABLE APPEARS IN THE SYNTAX')
(Ay Ay A A} SKIP(4);
186 , GO TO THE_END;
187 END;
/% "WAR_TABLE' USED IN THE SYNTAX %/
188 PGRAM=VAR_TABLE;
189 I=VAR_PT_1(LGTH);
190 GO T3 TEST_VAR;
/% CHAECK WITH IDENTIFIERS ALREADY FOUND %/
191 NEXT_VAR:
I=VARIABLE_1(1);
192 TEST_VAR:
193 If I=0 THEN GO TO VAR_NCT_FQOUND;
194 1F VARTABLE(I)}=X THEN GO TO VAR_FOUND;
196. G T3 MEXT_VAR;
) /* ADD NEW IDENTIFIER TO *VARIABLE' %/
197 VAR_MNOT_FOUND:
I,TOT1=TATLl+1; :
198 IF TIT1 > SIZE THEN DO;
200 PUT EDIT (**¥x%% - THE ANALYSER LIMIT ON THE NUMBER OF @,
PVARTARLES ALLOWED, HAS BEEN EXCEEDED') (A,A) SKIP(4):
291 PJT EDIT (*EITHER REDUCE THE # OF VARIABLE NAMES USED DR t,

PREPLACE VAR_TABLE BY VAR_STRING IN THE SYNTAX AND HANDLE Yy
'THE VARIABLES IN INTERPRET*®*) (A,A,A) SKIP(2);

S M s b s v S e o O ot Bt S Gannd s Ut ST ot G U i B it gt T W o SN Sttt DS Nouts B s U fen Smaats B gamin s WA gy WS A Gama S P e L SN e Gt oo ot S s S8
W R i i e e e G G St e e S SO i o Woth MU carnte VD gy i A g W GO ity O s o M i SO SOV rarm Sl B caigs WA B i, G WS B S P das S S rtt e e e S gmamy e
S e Sl S iy VT e b Mo G i, . et B S S D A G W g O S gy W G g T s B Pl s it MR s (i S S T S i, o, S apmn Bt M ich RS G st B iy et S e

202
203
204
205
2017
207
208
209

210
211

S 212

214
215
216
218
219
221
222
223
224
225

236

239
240
241
242
243
244

245
246
247
248

249

T ANALYSE:

82

G2 TO THE_ENDS
END;
VARTABLE(TOT1)=X3
IF VAR_PT_1(LGTH)=0 THEN VAR_PT_1(LGTH}=TOT1;
ELSE
VARIABLE_1{VAR_PT_2{LGTR})=TOTL;
VAR_PT_2(LGTH)=T0OT13
VAR_FOUND:.
INF3=13
GO TO PARSE;
DIGITS:
13=PT;
IF NUMERO=0 THEN DO; /% CHECK DIGITS AGAINST KEY_WORDS */
X=SUBSTR{IN,PT,1)3
LGTH=13
IF POINTER(LGTH)=POINTER(LGTH+1) THEN GO TO ERR_MSG_13;
D) I=POINTER(LGTH) TO POINTER{LGTH+1)}-13; :
IF KEY_WORD({I)=X THEN DO;
PGRAM=KEY_WORD_NC{I)3;
GO TO PARSE;
END3
END;
ERR_MSG_1:
PUT EDIT (t###%% THE SYMBOL *,X,*WAS FOUND BUTY NEITHER THIS ',
Y SYMBOL NOR NUMERD OCCURS IN THE SYNTAX') (A,A{1),A,A) SKIP;
SCAN_ERR='1"'B3 .
GO TO SCAN3
END;
/% 'NUMERO' USED - PICKS OUT ENTIRE INTEGER %/
NEXT_DIGIT:
PT=PT+1;
IF SJUBSTR{IN,PT,1}>= *0!' THEN GO TO NEXT_DIGIT;
STRING=SUBSTR{IN, 13,PT-13);
PGRAM=NUMERO; '
PT=PT-13
GO TO PARSE;

EOF:
IF ERR3|ERRL]ERR6 THEN DO;
PJUT EDIT ('#®xx%%x — END OF FILE') (A) SKIP(2)3;
G3 TO THE_END;

END;

ERR3='1'83

GO TO JuMP;
PARSE:

IF ER4 THEN GO TO RELATION:

/% LIAD FIRST SYMBOL INTO 'STACK?® =/

ERR&4='14R3

STACK{1)=PGRAM;

GO T3 SCAN;3

/% FIND RELATIONSHIP BETWEEN TOP OF 'STACK' AND INCOMING SYMBOL */
RELATION:

I=N®{STACK(PT1)-1) +PGRAM;

Y=SJ3STR(PRECI,11)3

/% 1F REQUESTED THEN PRINT TRACE OF PARSE */

IF TRACE THEN PUT ERIT (SYMBOL{STACK(PT1)),SYMBOL{PGRAM]},Y)

{X{105) yA(12) ¢ X{1)yAL12)4X{1)A01)} SKIPS

252
254
255
256
257
258
260
261
262
264
265
266
267
269
270

271
272
274
2715
276

217
278
279

280
281
282
283
285

286

287

289
291

292
294
296
298
299
300
301

302

302

303
304

305
306
3097

83

IF Y=RLANK THEN DC; /% KO RELATIONSHIP — SYNTAX ERROR %/
SUASTRIERROR,I3,1)=161;
PUT EDIT (*®t#skSYNTAX**%%%? ,ERROR) {A,X(9),A(80))SKIP;
SUBSTRUERROR,13,1)=BLANK;
SCAN_ERP='1"83;
IF ERR6 THEN GO TO SET;
G3 TO SCAN;

END;

IF EX21 THEN DO; /% ONLY SCAN CONTINUING %/
STACK{PT1)=PGRAM;
G0 TO SCAN;

END3 :

IF ER6 THEN GO TD DUMP_SCAN; /% ERROR RECOVERY IN PROGRESS %/

1F Y=1>t THEN

JUMP:

D03 /% LEFT-MOST REDUCIBLE SUBSTRING HAS BEEN ISGLATED %/
L53TH=PT1~SAVE(PT3)};
IF LGTH > & THEN DO; /% LONGER THAN ANY PRODUCTION %/

1=03;
GO TO FAIL;
END3

/% DETERMINE WHICH PRODUCTION HAS BEEN FOUND */
I=LGTH_POINTER{LGTH)
53 TO TESTS
NEXT:
1=PROD{I,1);
TEST:
IF [=0 THEN GO TO FAIL;:
DO J=1 TO LGTH;

IF NUMB(PRUOD{I[,2}+J-1)~= STACK(SAVE(PT3j+J) THEN GO TU NEXT;

END3
/% DOES NOT MATCH ANY PRODUCTION GF THE LANGUAGE */
FATIL:
J=SAVE(PT3)+1;
IF I=0 THEN PUT EDIT (**%%%% — [NVALID STACK SEQUENCE-"Y,
{SYMBOL(STACK(K})) DO K=J TOQ PT1}))
{AgX(5) 1 {PTL1-UJ+1)(A{2L2),X(1))) SKIP(2}3
IF ERR2 THEN GO TO BY_PASS; /% DON'T CALL * INTERPRET® %/
CALL INTERPRET{IJ+PT1,STACKsVARIABLE,SYMBOL,STRING,INFO,
STATUS) ;
I STATUS > O THEN DOQO; /% YINTERPRET' HAS ALTERED *STATUS' %/
IF STATUS=3 THEN GO TO THE_END; /* TERMINATE */
IF STATUS=1 THEN DO; /#% CONTINUE SCAN ONLY %/
ERR1=1'1'B;
PUT EDIT (*#=%%*k*x -~ ONLY SCAN CONTINUING') (A) SKIP{2};
GO TO SCAN;
END;
ELSE
DOs
/% SCAN AND PARSE BUT DON'T CALL YINTERPRETY %/
ERR2=1'1'B;
PUT EDIT ('*%xx¥k — PARSE CONTINUING BUT INTERPREY NO ¢,
PLOMNGER CALLEDY) (AsA) SKIP({2);
END;
END3
BY_PASS:
PTl=J3s

- S sy U B s S S b T Lt At Wt g e S it B SiFS ay ASS o, G W oo Seh Bt et it S e Wt O ey St A dpin b VA o a s G Sl U Gt ol S ey WS s Ui vt i WPett

e S o —— . S g s it T namm ot S i G e Gt S S R WSS b . WS it Maat S e P OO e v S et el Gk e S G ey S S Gy M Gum o B e a
s A WSS mmmh S SRS e S St U ot B O nam wAER A g S T pass T G G G gy Sl NS e G W G B S A S T i G MRS gy NS G giatt P NI i s W gy S Ut Sl g St Woven

308
310
311
312
314
315
317

318
319
320
321

- 322

324
326

327
328

. 329

330
332
333
335
336
337

338

339
341
343

344
345
347
348
349
350
350
351
352

353
355
356

358

359
361

362
354
366
367
369
371

T UANALYSE:

IF I > 0 THEN BO; /% MAKF THE REDUCTION */
STACK({J)=PROD(I ,3);
I=N*®={STACK{J=-1)-1)+STACK(J);

IF SUBSTR(PREC,Ls1) = *<* THEN GO TO RELATION;
PT3=PT3-13
IF PT3 > 0 THEN GO TO RELATION;

PUT EDIT (t#%%&x —~ PARSE TERMINATED BY SYNTAX ANALYSER.

*'SCAN CONTINUING') {(A,A) SKIP(2);
ERR1=7i¢%83
STACK{PT1)=PGRAM;
GO TO SCAN;
ENDS
IF -~DEL THEN GO TO NO_REC3; /* NO ERRODR RECOVERY */

84

IF =ERR5 THEN GO TO LGOAD_TAB; /* FIRST ATTEMPT AT ERROR REC.

ERR_RECOVERY:

EIR6='1'B;
PUT EDIT (*SCAN DELETED FROM HERE-->') (X{I3-1),A) SKIP;
K=PT13;
DECREASE: /% SEARCH FOR SYMBOLS IN THE *STACK' */
K=K-13

IF K<=0 THEN GO TD ERR_MSG_2:
D3 I4=1 TO NO_PT3

IF STACK(K)=FIX_UP(NO_POINTER{I4),1) THEN GO TO DUMP_SCAN;

END;
G3 TO DECREASE;
SET:
ERR7=*1'8B3;
DUMP_SCAN:
/* KEEP TRACK OF OELETE-DELEYE PAIRS %/
DD M=1 TO ﬂFI_PT;

IF DEL_PRS{M,1)=PGRAM THEN DEL_PRS_CT(M)}=DEL_PRS_CT{M)+1;
IF DEL_PRS(My2)=PGRAM THEN DEL_PRS_CT{(M)=DEL_PRS_CT(M)-13;

END3
/* CHECK SYMBOLS FROM SCAN %/
33 L=NO_POINTER{I4) TO NO_POINTER(I4+1)-13;
IF PGRAM=FIX_UP(L,2) THEN GO YO FOUND;
END;
L1:
IF ERR7 THEN ERR7='0'B;
ELSE
STACK{PT1)=PGRAM;
GO TO SCAN;
FOUND: /% CHECK THAT DELETE-DELETE PAIRS ARE MATCHED */
DO M=1 TO DEL_PTjy
IF DEL_PRS_CT{M) > O THEN GO TO L1
END
IF FIX_BIT(L,2) THEN I3=PT+13
PUT EDIT ('<—-TO HERE') (X(24+13),A) SKIP;
IF FIX_UP(Ls3)~=0 THEN DO; /* DELETE DEEPER IN 'YSTACK?
L2:
K=K-13
IT K<=0 THEN G3 TO ERR_MSG_2;
IF STACK(K)==FIX_UP(L,3) THEN GO TO L23
END3
IF FIX_BIT(L,3}IFIX_BIT{Ls1) THEN K=K-13;
IF K<=0 THEN GO TO ERR_MSG_23
PUT EDIT {**%%%% - DELETED FROM STACK~*,

*/

*/

i ——— — " G Mt TS Dt Gt WS Gy o G e B Wotmd gt TS e W WDt gy St O e O S gy SR SV Gy T g s SO G Pt R gy S e gy Tt SUD Wt S it St DA e, St M Bows PRS m
- pn A i T, B v - M qoatt it MmN et gy S St iy DM s B P o W S Ganp SN UM G G it s MRS D mean S et A SHS g SR A gy Gaah TR W S g Sems SIS gy S e mame S04 pupan
- s T s — O —— — — - TS o S M gy S) et T St N "y S WO Gy Sl DUl . DN . s SR Pt Gt T g s S gy, VS s gy, P Mts Gt WD ey s WA Gy S v A S s

85

AMALYSE:
{SYMBOLISTACK(I4)) DO M=k+1 TO PT1-1))
{AsX{5),(PT1+K+1)(A{12),X(1))) SKIP;

372 ERR6=10'R;
373 PT1=K;
, /% ADJUST $SAVE® AFTER DELETIONS FROM 'STACK® #/
374 DI I=1 TO PT3;
375 IF SAVE(I)>=PTl THEN DO;
377 . PT3=I-1;
378 IF PT3<=0 THEN GO TO ERR_MSG_2;
380 GO TO L3;
381 END;
382 END;
383 L3: '
DEL_PRS_CT=03
384 IF FIX_BIT(L,2) THEN GO TO SCAN;
386 63 TO RELATION;
/% LOAD THE ARRAYS *NO_POINTER' AND 'DEL_PRS' WHEN ERROR
RECOVERY IS ATTEMPTED FOR THE FIRST TIME x/
387 LDAD_TAB:
NO=NO+13
388 IF FIX_UP(ND,2)=0 THEN DO;
390 NO_POINTER(NC_PT+1)=NO3
391 ERR5='118;
392 GO TO ERR_RECOVERY;
393 END;
394 IF FIX_UP(NO,1)-= 0 THEN DO;
396 NO_PT=NO_PT+1}
397 NO_POINTER{NO_PT)=NO;
398 END; -
399 1F FIX_RITINM,2) THEN NO;
401 IF FIX_BIT(NO,1)|FIX_BITING,3) THEN DO;
403 DEL_PT=DEL_PT+1;
404 DEL_PRS(DEL_PT42)=FIX_UP(ND,2);
405 IF FIX_BITINDO, 1) THEN '
406 DEL_PRS(DEL_PT,1)=FIX_UP(NO_POINTERINO_PT),1)3
407 ELSE
407 ' ‘ DEL_PRS(DEL_PT,1}=FIX_UP(NO,3);
408 END;
409 END;
410 . G0 TO LOAD_TAB;
411 ERR_MSG_2: /% COULD NOT FIND REQUIRED SYMBOL IN 'STACK® %/
PUT* EDIT ('#%kk%x - ERPOR RECOVERY FAILED - ONLY ',
" SCAN CONTINUING') (A,A) SKIP(2);
412 ERR1='1'B;
413 ERR6=10"8;
414 STACK{PTL) =PGRAMY
415 G3 TO SCAN;
416, ND_REC: /% USER DID NOT PROVIDE ERROR RECOVERY %/
EIAL='1"8;
417 PUT EDIT (%% - NO ERROR RECOVERY PROVIDED - ONLY ',
*SCAN CONTINJING') (A,A) SKIP(2);
418 STACK(PT1)=PGRAM;
419 G TO SCAN;
420 END;
421 IF Y='<' THEN DO; /% THE RELATIONSHIP IS < %/
423 PT3=PT3+1; :

424 SAVE(PT3)=PT1;

Ve i et B sy S B s S gy Vi U B P B Qs s arnes VS A Uy s NN ik s U i, U WS il WS gagh VO T i wrns U s WaNL S G VOV ODN G TS WD G TEOD mect N TRUE s S S o P S
e R e S s o T o, Bt Tt Qi St Mt Gty Wt s St SO Gt Wit e samins vt D g, A0S D Gt it gy Ve SN Ghm S AR e Mth V pm SHNS Ss, TS S A P i . M o RS SN oo WA mers
—— S . s BV s T S oy T Gu e U B o AR it W TS Mg W T s Yy U gy G AR G oy, s S oy iy T . S — gy U s ey S D Sy POt ot P o A T P S Gy

425
426
427
428
429

U ANALYSE:

ENDS

PT1=PT1+1;

STACK{PT1)=PGRAM;

GO TJ SCAN;
THE_END:

END ANALYSE;

-

86 .

— — a—— — —
et s o
S e s S anut

1

2,

5
4,

e

a7

APPENDIX D

REFERENCES

Wirth, N., and Weber, H, EULER A Generalization of ALGOL,
and its Formal Definition: Pt. I. ACM 9 (Jan. 1966), 13=23, 25

Floyd, R. W, Syntactic Analysis and Operator Precedence.
J. ACM 10,3 (July 1963), 316-333

Warshall, S. A Theorem on Boolean Matrices. J. ACM, 9,1 (Jan, 1962), 11-12

Wirth, N, Algorithm 265: Finding Precedence Functions. Comm, ACM 8,10
(Oct. 1965) 604-605

Martin, Ds F. Boolean Matrix Methods for the Detection of Simple
Precedence Grammars, Comm, ACM 11,10 (Oct, 1968) 685-687

Bell, J. R. A New Method for Determining Linear Precedence Functions
for Precedence Grammars, Comm, ACM 12,10 (Oct. 1969) 567-569

