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Abstract

In this work we study the following problem on constrained approximation.

Problem. Let Ω ⊂ Rn be a bounded domain with piecewise smooth boundary.

What are necessary and sufficient conditions for a continuous mapping f : Ω → Rn

to be uniformly approximable by C1-smooth mappings with nonnegative Jacobian?

When the dimension n = 1 this is just approximation by monotone smooth

functions. Hence, the necessary and sufficient condition is: f is monotone. On the

other hand, for n ≥ 2 the description is not as clear. We give a simple necessary

condition in terms of the topological degree of continuous mapping. We also give

some sufficient conditions for n = 2. It also turns out that if n ≥ 2, then there exist

real-analytic mappings with nonnegative Jacobian that cannot be approximated by

smooth mappings with positive Jacobian.

In our study of the above mentioned question we use topological degree theory,

Schoenflies-type extension theorems, and Stoilow’s topological characterization of

complex analytic functions.
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Chapter 1

Introduction

1.1 Notation

Let us fix the notation that will be used hereafter.

Denote by |x| the Euclidean norm of x ∈ Rn, that is, if x = (x1, x2, . . . , xn),

then |x| =
√
x2

1 + x2
2 + · · ·+ x2

n. For a continuous mapping f : K → Rn, where

K ⊂ Rn is a compact set, define ‖f‖K = maxx∈K |f(x)|. For x ∈ Rn and r > 0

define Br(x) to be an open disk of radius r centred at x. For any A ⊂ Rn define

the open neighbourhood of A by Or(A) =
⋃
x∈ABr(x). For sets F1, F2 ⊂ Rn, by

definition put dist(F1, F2) = infx∈F1,y∈F2 |x−y|. For a set F ⊂ Rn define its diameter

diam(F ) by diam(F ) = supx,y∈F |x− y|.
Let f : Ω→ Rn be a smooth mapping, and x be a point in Ω. Let Df(x) be the

differential of the mapping f at x, i.e, Df(x) is the linear mapping such that

|f(x+ h)− f(x)−Df(x)[h]| = o(|h|), h→ 0.

Denote by Jf (x) the Jacobian of the mapping f at the point x, i.e.

Jf (x) = det


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn

 .
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We say that x ∈ Ω is a critical point of f , if Jf (x) = 0. A point p ∈ Rn is called a

critical value of f , if there exists at least one critical point of f that maps to p. If a

point p ∈ Rn is not a critical value, we call p a regular value.

We identify R2 with C whenever it is convenient. For arbitrary set A ⊂ Rn,

smooth, analytic, and complex analytic (in case of R2) mappings on A are considered

to be defined on some open set U ⊃ A.

In more than one place we are using “bell-shaped” functions with compact sup-

port, therefore it is convenient to define them here.

A standard nonnegative C∞-function supported in B1(0) is given by:

ω(x) =

c exp(− 1
1−|x|2 ), if |x| < 1

0, else,

where c
∫
B1(0)

exp(− 1
1−|x|2 )dx = 1. The scaled version is given by

ωε(x) = ε−nω
(x
ε

)
. (1.1)

Note that each ωε is normalized, that is
∫
Rn ωε(x)dx = 1.

1.2 Introduction

If f : [0, 1] → R is a monotone increasing continuous function, then for each ε > 0

there exists a polynomial p such that p is monotone increasing on [0, 1], and

‖f − p‖[0,1] := max
x∈[0,1]

|f(x)− p(x)| ≤ ε.

The easiest way to see why this is true is to use Bernstein polynomials

Bn,f (x) =
n∑
j=0

f
( j
n

)(n
j

)
xj(1− x)n−j.

It is an exercise to show that Bernstein polynomial of a monotone increasing function

is also monotone increasing, and it is well known that limn→∞ ‖f −Bn,f‖[0,1] = 0.

A possible generalization of one-dimensional monotone approximation to multi-

dimensional case is given in the following problem.
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Problem 1. What are necessary and sufficient conditions for a continuous map-

ping f : [0, 1]2 → R2 to be uniformly approximable by C1-smooth mappings with

nonnegative Jacobian?

It is natural to call such approximation “orientation-preserving”. Here we only

want to approximate f by smooth functions, but as will be shown below, in most cases

when we know that f can be approximated by smooth mappings with nonnegative

Jacobian, f can also be approximated by polynomial mappings with nonnegative

Jacobian.

Another possible generalization of monotone approximation is the problem of

approximating a given homeomorphism f : Bd → Rd of a closed unit ball Bd ⊂ Rd

by C1-diffeomorphisms. For d = 2 this was done by Franklin and Wiener in [5].

For d = 3 the possibility of such approximation follows from a related result about

piecewise linear approximation, see, say, [11, pp. 239-246]. Rather surprisingly, for

d = 4 the answer to this question is negative, i.e., there exists a homeomorphism

f : B4 → R4 that cannot be approximated by diffeomorphisms. This was proved by

Donaldson and Sullivan in [3]. What is interesting, is that they do not construct such

homeomorphism, but deduce its existence from the fact that, in dimension 4, there

are topological manifolds that do not admit the so called quasiconformal structure.

Going back to Problem 1, we consider the following slightly more general version.

Problem 1’. Let Ω ⊂ R2 be a bounded domain with piecewise C1-smooth

boundary. What are necessary and sufficient conditions for a continuous mapping

f : Ω → R2 to be uniformly approximable by C1-smooth mappings with nonnegative

Jacobian?

The requirement that Ω has piecewise C1-smooth boundary means that ∂Ω is

a union of finitely many disjoint piecewise C1-smooth closed Jordan curves. For a

subset F ⊂ R2 we denote its closure by F , and its boundary by ∂F , i.e. ∂F = F \F .

As usual, we say that the mapping f : A→ R2 is Cn-smooth, if there exists an open

set U ⊃ A and a mapping g : U → R2 with continuous partial derivatives of orders

up to n such that f = g|A (n ∈ N or n =∞). For a compact set K ⊂ R2 denote the

uniform norm of a continuous mapping f : K → R2 by ‖f‖K = maxx∈K |f(x)|.
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First we recall that some sufficient condition is known. It follows from the results

by Franklin and Wiener [5] that one-to-one mappings can even be approximated by

polynomial mappings with nonzero Jacobian. Moreover, we show that the same holds

for locally one-to-one mappings f : Ω → R2. We say that a mapping f : Ω → R2 is

locally one-to-one, if for every point p ∈ Ω there exists an open neighbourhood U of

p such that the restriction f |U is one-to-one. We have

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain. If a continuous mapping f :

Ω→ R2 is locally one-to-one, then for each ε > 0 there exists a polynomial mapping

p : Ω→ R2 with nonzero Jacobian such that ‖f − p‖Ω < ε.

Note that the condition given in Theorem 1.1 is not a necessary condition for

Problem 1’. An obvious counterexample is f ≡ const.

Therefore, we have to look for another necessary and sufficient condition for

Problem 1. Say, in the one-dimensional analog of Problem 1 such necessary and

sufficient condition is evidently: “f is a nondecreasing function.”

We will state a necessary condition in terms of the topological degree. Let F be

a closed subset of Rd. The topological degree (sometimes called Brouwer degree) is

a certain integer-valued function on the set of triples (f, U, p), where f : F → Rd

is a continuous mapping, U ⊂ Rd is an open subset such that U ⊂ F , and p is a

point in R2\f(∂U). The topological degree is denoted by deg(f, U, p). More detailed

discussion is contained in Section 2.2. Here we will just explain how to define the

topological degree for d = 1, and what this notion means.

Let f : [0, 1] → R be a continuous mapping, U = (a, b) ⊂ [0, 1] be an open

interval, and p ∈ R be a point different from f(a) and f(b). Then define deg(f, U, p)

as follows

deg(f, U, p) =


1, if f(a) < p < f(b),

−1, if f(b) < p < f(a),

0, otherwise.

If U = ∪iIi is a union of disjoint open intervals and p /∈ f(∂U), then the degree
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is defined as

deg(f, U, p) =
∑
i

deg(f, Ii, p).

This sum is well-defined, because deg(f, Ii, p) 6= 0 only for a finite number of intervals

Ii, as can be easily checked using continuity of f and compactness of [0, 1].

We can express the property of f being a nondecreasing function on [0, 1] in terms

of the topological degree. Namely, f is a nondecreasing function if and only if for

each interval U = (a, b) ⊂ [0, 1] and for each p ∈ R such that p ∈ f(U)\{f(a), f(b)},
the inequality

deg(f, U, p) ≥ 0

holds.

The usefulness of this reformulation comes from the fact that unlike the notion

“f is a nondecreasing function”, the notion of topological degree is well-defined for

mappings f : Rd → Rd.

For the case d = 2 the topological degree is closely related to the notion of the

winding number for closed curves in R2. In particular, if U = {x ∈ R2 : |x| < 1} is

an open disk, the mapping f : U → R2 is continuous, and p ∈ R2 is a point such

that p /∈ f(∂U), then deg(f, U, p) = w(γ, p), where γ : [0, 1] → R2 is defined by

γ(t) = f(cos(2πt), sin(2πt)). Recall that the winding number w(γ, p) of an oriented

closed curve γ around a given point p is the total number of times that the curve γ

travels counterclockwise around the point p.

Our necessary condition for Problem 1’ is given in the next theorem.

Theorem 1.2. If the mapping f : Ω → R2 can be approximated by C1-smooth

mappings with nonnegative Jacobian, then for every open subset U ⊂ Ω and any

p ∈ f(U) \ f(∂U), we have deg(f, U, p) ≥ 0.

Unfortunately, we cannot prove that this necessary condition is also sufficient for

Problem 1’, but we have Theorem 1.3, where, roughly speaking, we prove that the

sufficient condition is

deg(f, U, p) > 0.
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For the formulation of Theorem 1.3 recall that a continuous mapping f : X → Y

is called light if f−1(y) is totally disconnected (connected components in f−1(y) are

one-point sets) for all y ∈ Y .

Theorem 1.3. Let ∆ be a bounded domain and f : ∆ → R2 be a light continuous

mapping. Suppose that for every open set U with U ⊂ ∆ and any p ∈ f(U) \ f(∂U)

we have deg(f, U, p) > 0.

Then for any domain Ω such that Ω ⊂ ∆ and each ε > 0, there exists a C∞-

smooth mapping g : Ω→ R2 with nonnegative Jacobian such that ‖f − g‖Ω < ε.

If additionally ∆ is simply connected, then there exists a polynomial mapping g

with the above properties.

We believe that the additional conditions of Theorem 1.3 are not necessary, there-

fore we formulate a conjecture.

Conjecture 1.1. Let f : Ω → R2 be a continuous mapping such that for any open

set U ⊂ Ω and for any point p ∈ R2 \ f(∂U) the inequality deg(f, U, p) ≥ 0 holds.

Then for each ε > 0 there exists a C∞-smooth mapping g : Ω→ R2 with nonnegative

Jacobian such that ‖f − g‖Ω < ε.

We give counterexamples that show that there is a difference between approxima-

tion by smooth mappings with nonnegative Jacobian, and approximation by smooth

mappings with strictly positive Jacobian. This is in contrast to one-dimensional

case, where a function can be approximated by smooth nondecreasing functions if

and only if it can be approximated by smooth strictly increasing functions.

Theorem 1.4. Define the mapping f : B1(0)→ R2 by the formula

f(x, y) =


(

8(1
2
−
√
x2 + y2)2, 0

)
, if x2 + y2 ≤ 1

4(
x

(
√
x2+y2−1/2)2

x2+y2
, y

(
√
x2+y2−1/2)2

x2+y2

)
, if 1

4
< x2 + y2 ≤ 1.

Then f is C1-smooth, has nonnegative Jacobian, and cannot be approximated by

smooth mappings with positive Jacobian.
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Theorem 1.5. Let the mapping f : B1(0) → C be defined by the formula f(x, y) =

(x2−y2, 2xy). Then for any C1-smooth mapping g : B1(0)→ R2 with strictly positive

Jacobian we have ‖f − g‖B1(0) ≥ 1/4.

The conclusion of both theorems is the same, but the counterexamples illustrate

two different properties that the mappings with positive Jacobian have. The rele-

vant property in Theorem 1.4 is that these mappings satisfy the maximum modulus

principle, and the relevant property in Theorem 1.5 is that they have the local topo-

logical degree ±1 (we do not give the definition here). Mappings with nonnegative

Jacobian do not necessarily possess these properties.

This work is organized as follows. In Chapter 2 we will provide all the necessary

tools and definitions, including the topological degree theory and theorems of Stoilow

and Schoenflies. In Chapter 3 we will prove all the main results. The proof of

Theorem 1.2 is given in Section 3.2. The proofs of Theorem 1.1 and Theorem 1.3 are

given in Section 3.3. Finally, the proofs of Theorem 1.4 and Theorem 1.5 are given

in Section 3.4.

Theorems 1.1 - 1.5 are new results. Theorems 1.1 - 1.3 and 1.5 will appear in

a paper in the journal “Mathematical Notes”, where the corresponding manuscript

has already been accepted for publication.



Chapter 2

Preliminaries

2.1 Topological degree theory

In this section we give a very brief introduction to topological degree theory. We take

the analytic approach to the definition of degree because it directly involves smooth

mappings and their Jacobians. We mainly follow the exposition of [4] and [13]. We

will not touch upon the homological approach to degree theory, see, say, [6].

The degree is defined in three steps. First step is to define the degree of a smooth

mapping at a regular value.

Definition 2.1. Let U ⊂ Rn be open and bounded, a mapping f : U → Rn be

C1-smooth, and p /∈ f(∂U) be a regular value of f . Define

deg(f, U, p) =
∑

x∈f−1(p)

sgnJf (x),

where deg(f, U, p) is considered to be 0 if f−1(p) is empty, and sgn is the signum

function.

Note that the sum on the right hand side is finite, since p /∈ f(∂U) is regular.

Indeed, if f−1(p) has a limit point in U it would contradict regularity, and if it has

a limit point in ∂U , it would contradict p /∈ f(∂U).

The next step is to define the degree of smooth mapping at any point p /∈ f(∂U).

9
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Definition 2.2. Let U ⊂ Rn be open and bounded, a mapping f : U → Rn be

C2-smooth, and p /∈ f(∂U). Define

deg(f, U, p) = deg(f, U, p′),

where p′ is a regular value of f , such that |p− p′| < dist(p, f(∂U)).

Note, that for this definition to make sense one must know that there exists at

least one regular value close to p. This follows from the following special case of

Sard’s theorem (see [10, p.69, Th.1.3]).

Proposition 2.1. Let U ⊂ Rn be open, and a mapping f : U → Rn be C1-smooth.

Then the set of critical values of the mapping f has Lebesgue measure 0.

To prove that the choice of regular value p′ does not change the value of degree

we use the following integral representation that was first observed by Heinz [7].

Proposition 2.2. Let a mapping f : U → Rn be C1-smooth, p /∈ f(∂U) be a regular

value of f , and ωε be defined as in (1.1). Then there exists ε0 = ε0(f, p) > 0 such

that for any ε ∈ (0, ε0) we have

deg(f, U, p) =

∫
U

ωε(f(x)− p)Jf (x)dx.

The proof, which is an application of the Inverse Function Theorem and change

of variables in the integral, can be found in [4, Prop. 1.7] or [13, Prop. 1.2.2]. The

following proposition may give the reader a taste of ideas that are used in this theory.

Proposition 2.3 ([4], Prop. 1.8). Let a mapping f : U → Rn be C2-smooth, Ω be a

connected component of Rn \ f(∂U), and p1, p2 ∈ Ω be regular values of f . Then

deg(f, U, p1) = deg(f, U, p2).

Proof. By previous proposition there exists ε0 > 0, such that for any ε ∈ (0, ε0)

deg(f, U, pi) =

∫
U

ωε(f(x)− p)Jf (x)dx.
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Fix ε1 ∈ (0, ε0) and suppose that there exists a smooth function v : Ω → Rn with

compact support such that

div(v(x)) = ωε1(x− p1)− ωε1(x− p2),

where div denotes the divergence of a vector field. Let A(x) be the gradient matrix

of f(x), and B(x) be the adjoint matrix of A(x), so that B(x)A(x) = A(x)B(x) =

det(A(x)) · In = Jf (x)In. Put u(x) = B(x)v(f(x)), then

div(u(x)) = divv(f(x))Jf (x) =
(
ωε1(f(x)− p1)− ωε1(f(x)− p2)

)
Jf (x).

Indeed,

div(u(x)) =
∑
i,j

∂bij
∂xi

vj(f(x)) +
∑
i,j,k

bij
∂vj
∂xk

(f(x))
∂fk
∂xi

=
∑
j

vj(f(x))

(∑
i

∂bij
∂xi

)
+
∑
j,k

∂vj
∂xk

(f(x))δj,kJf (x)

=
∑
j

vj(f(x))

(∑
i

∂bij
∂xi

)
+ divv(f(x))Jf (x),

therefore we only need to show that∑
i

∂bij
∂xi

= 0.

If we denote ψ = (f1, . . . , f̂j, . . . , fn)T , whereˆmeans omission, we get

(−1)j
∂bij
∂xi

= (−1)i

(∑
k<i

(−1)k+1 det(
∂2ψ

∂xi∂xk
,
∂ψ

∂x1

, . . . ,
∂̂ψ

∂xk
, . . . ,

∂̂ψ

∂xi
, . . . ,

∂ψ

∂xn
)

+
∑
k>i

(−1)k det(
∂2ψ

∂xi∂xk
,
∂ψ

∂x1

, . . . ,
∂̂ψ

∂xi
, . . . ,

∂̂ψ

∂xk
, . . . ,

∂ψ

∂xn
)

)
,

and when we take sum over all i, notice that every term appears twice with opposite

signs, hence they cancel out, and therefore
∑

i
∂bij
∂xi

= 0.

Since v(x) has support in interior of Ω, u(x) has support in interior of U (otherwise

there exists a point of f(∂U) in support of v, which contradicts the definition of Ω).
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Then, using Green’s formula we conclude that

deg(f, U, p1)− deg(f, U, p2) =

∫
U

(
ωε1(f(x)− p1)− ωε1(f(x)− p2)

)
Jf (x)dx

=

∫
U

divv(f(x))Jf (x)dx

=

∫
U

div(u(x))dx

= 0.

Let us outline the proof of existence of the vector field v. As Ω is open and

connected, it is path connected, so let γ : [0, 1] → Ω be a continuous path such

that γ(0) = p1, γ(1) = p2. We choose ε1 small enough, so that Bε1(γ(t)) ⊂ Ω for

all t ∈ [0, 1]. Now, Oε1(γ([0, 1])) is a connected open set, so there exists a piecewise

linear curve γ̃ that connects γ(0) to γ(1) and lies in Oε1(γ([0, 1])). Since div(v1+v2) =

div(v1) + div(v2), this reduces the problem to the case when γ̃(t) = x0 + t(x1 − x0).

By shifting, we may assume that x0 = 0. Then take F (x) =
∫ 1

0
ωε1(x− θx1)dθ, and

v(x) = F (x) · x1. It is then easy to check that v(x) satisfies

div(v(x)) = ωε1(x− x0)− ωε1(x− x1).

For general continuous functions f the topological degree is defined as below.

Definition 2.3. Let U ⊂ Rn be open and bounded, the mapping f : U → Rn be

continuous, and p /∈ f(∂U). Define

deg(f, U, p) = deg(g, U, p),

where g is C2-smooth, and ‖f − g‖U < dist(p, f(∂U)).

Once again, this notion is well-defined, see, e.g., [4, Ch. 1.2]. For the sake of

convenience, we collect the main properties of topological degree in the following

proposition.

Proposition 2.4. Topological degree deg(f, U, p) has the following properties.
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(P1) Homotopy invariance. If h : [0, 1]× U → Rn is a continuous mapping, and

if p /∈ h([0, 1]× ∂U), then if we denote ft(x) = h(t, x), we have

deg(f0, U, p) = deg(f1, U, p).

(P2) Dependence on boundary values only. If f |∂U = g|∂U , and p /∈ f(∂U) =

g(∂U), then

deg(f, U, p) = deg(g, U, p).

(P3) Decomposition of domain. If U =
⋃m
i=1 Ui, with Ui open, pairwise disjoint,

and ∂Ui ⊂ ∂U , then for p /∈ f(∂U) we have

deg(f, U, p) =
m∑
i=1

deg(f, Ui, p).

(P4) Continuity in f . Given f and p /∈ f(∂U) there exists ε > 0 such that for any

continuous g : U → Rn with ‖f − g‖U < ε we have p /∈ g(∂U) and

deg(f, U, p) = deg(g, U, p).

(P5) Continuity in p. Given f , the degree deg(f, U, p) as function of p is constant

on any connected component of Rn \ f(∂U).

(P6) Solvability. If deg(f, U, p) 6= 0, then f(x) = p has a solution in U .

(P7) Excision. If K ⊂ U is a compact set such that p /∈ f(K), then

deg(f, U, p) = deg(f, U \K, p).

(P8) Normality. If we denote by idU the identity mapping of U , then deg(idU , U, p) =

1 if p ∈ U , and deg(idU , U, p) = 0 otherwise.

Proofs of these statements can be found in [4, Th 2.1, 2.3, 2.4, 2.6 and 2.7] and

[13, Prop. 1.2.6].

The abundance of nice properties makes topological degree a very convenient tool

to work with. Moreover, in modern treatments the degree is usually introduced ax-

iomatically, similarly to the way homology theory is treated with MacLane-Eilenberg
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axioms. Namely, there exists a unique integer valued function deg(f, U, p) that sat-

isfies the above properties.

Degree theory can be used to prove a number of important results in topological

analysis, which are usually proved using techniques of algebraic topology: invariance

of domain, Brouwer fixed point theorem, Borsuk theorem, Jordan curve theorem,

etc.

2.2 Piecewise linear topology

Recall some definitions from piecewise linear topology (see [11, pp. 2-5]).

Definition 2.4. A simplicial complex K is a set of simplices (in Rn) that satisfies

the following conditions:

(i) Any face of a simplex in K is also in K.

(ii) The intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2.

Unless stated otherwise, we always assume that simplicial complex is finite.

The dimension of a simplex given as a convex hull of n+1 points in Rm is defined

to be equal to n. We say that a simplicial complex K is a simplicial k-complex,

if k is the maximal dimension of simplices in K. We say that simplicial k-complex

is homogenous, if every simplex in K of dimension less than k is a face of some

simplex in K. The n-skeleton of a simplicial complex K is the subset of all simplices

of K of dimension at most n, it is denoted by Kn.

For a simplicial complex K denote by |K| the union of its simplices, we refer to this

set as the underlying space of K. A simplicial complex L is called a subdivision

of a simplicial complex K if every simplex of L is contained in some simplex of K
and |K| = |L|.

Definition 2.5. A mapping f : |K| → Rn is called linear (with respect to K) if for

any simplex σ ∈ K the restriction f |σ is a linear function. A mapping f : |K| → Rn

is called piecewise linear if there exists a subdivision L of K such that f is linear

with respect to L.
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Piecewise linear (abbr. PL) mappings have several properties similar to those of

smooth mappings, and we use them as an intermediate class in our approximation

problem.

2.3 Stoilow theorem

Recall the following definitions.

Definition 2.6. A mapping f : X → Y between topological spaces is called open, if

for every open set U in X the image f(U) is open in Y .

Definition 2.7. A topological space C is called totally disconnected, if every con-

nected component of C is a one-point set.

Some typical examples of totally disconnected spaces are: discrete spaces, the

Cantor set, the set of rational numbers Q with topology induced from R.

Definition 2.8. A mapping f : X → Y between topological spaces is called light,

if for every point y ∈ f(U) the set f−1(p) with topology induced from X is a totally

disconnected space.

The following theorem, proved by Stoilow, gives a topological characterisation of

holomorphic mappings up to topological equivalence (see [12, p.121], [14, p.103]).

Proposition 2.5. Let Ω ⊂ R2 be an open domain, and f : Ω → R2 be an open,

light continuous mapping. Then there exists a holomorphic mapping h : U1 → U2,

and a pair of homeomorphisms s1 : Ω → U1 and s2 : U2 → s2(U2) ⊂ R2 such that

f = s2hs1.

2.4 Extension theorems

In the proof of the main result we use several extension theorems, here we only state

the most important known results, and two technical lemmas which will be proved

in Chapter 3. First theorem we need is Schoenflies Theorem, which is a significant

sharpening of the Jordan curve theorem.
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Proposition 2.6 (Schoenflies Theorem, see [11], p.65). Let S1 = {z ∈ R2 : |z| = 1},
and let Γ : S1 → R2 be some closed Jordan curve. Then there exists a homeomor-

phism f : R2 → R2 such that f |S1 = Γ.

A proof of this theorem can be found in [11, pp. 65-71].

This theorem is only valid in two dimensions, the most simple counterexample in

dimension 3 being the Alexander’s horned sphere. Note, however, that the following

piecewise linear analogue of this theorem holds (see [11, Ch. 3, Ch. 17]).

Proposition 2.7 (PL Schoenflies Theorem). Let n ∈ {2, 3}, ∆ be a nondegenerate

simplex in Rn, and f : ∂∆→ Rn be a piecewise linear (PL) homeomorphism. Then

there exists a PL homeomorphism h : ∆→ Rn such that h|∂∆ = f .

A proof of this theorem can also be found in [11].

Here are two extension results of a more technical nature.

Lemma 2.1 (Annulus extension). Let R > ρ > 0, and denote S = {x ∈ R2 :

|x| = R}. Let a mapping ψ : Oρ(S) → R2 be a Ck-diffeomorphism such that 0 /∈
ψ(Oρ(S)) and suppose that in polar coordinates (r, ϕ), where ψ is written as ψ(r, ϕ) =

(ψr(r, ϕ), ψϕ(r, ϕ)), the inequalities ∂ψr/∂r > 0 and ∂ψϕ/∂ϕ > 0 hold. Then for

some ε ∈ (0, ρ) there exists a Ck-diffeomorphism Ψ : BR(0) ∪Oε(S)→ R2 such that

Ψ|Oε(S) = ψ|Oε(S).

Lemma 2.2 (Locally univalent extension). Let Ω be a bounded domain with Jordan

piecewise smooth boundary and a continuous mapping f : Ω → R2 be locally one-

to-one. Then there exists an open set U ⊃ Ω and a locally one-to-one continuous

mapping g : U → R2 such that g|Ω = f .



Chapter 3

Main Part

3.1 Auxiliary results

3.1.1 Piecewise linear approximation

We first prove a piecewise linear approximation result for locally univalent mappings.

The result is similar to the PL homeomorphism approximation theorem [11, pp. 46-

51], and the proof relies on PL Schoenflies Theorem.

Before stating the result, we need some definitions. The combinatorial distance

between vertices of a simplicial 1-complex is the minimal number of edges in any path

connecting these vertices. Denote by cdist(vi, vj) the combinatorial distance between

vi and vj. For sets of vertices U, V define cdist(U, V ) := maxu∈U,v∈V cdist(u, v).

Combinatorial diameter of U is then given by cdist(U,U).

Lemma 3.1. Let K1 be a (homogeneous) simplicial 1-complex, and let d ≥ 2 be an

integer. Suppose that a continuous mapping f : |K1| → R2 is one-to-one on every

subcomplex of K1 of combinatorial diameter ≤ d. Then for each ε > 0 there exists a

piecewise linear mapping g : |K1| → R2 such that g is one-to-one on every subcomplex

of K1 with combinatorial diameter ≤ d, g satisfies ‖f − g‖|K1| < ε, and f(v) = g(v)

for each vertex v of K1.

Proof. For any two points v, w, define vw to be the edge with endpoints v and w.

Take a subdivision L1 of K1 such that diam(f(vivj)) < ε/3 for any edge vivj of L1.

17
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Let vi be vertices of L1, wi = f(vi), and Aij = f(vivj). Then diam(Aij) < ε/3, and

hence for all x, y ∈ Oε/3(Aij) the inequality dist(x, y) < ε holds. Extend the function

cdist = cdistK1 to the vertices of L1 in the following way. Let v and w be some vertices

of L1. If v and w are vertices of K1, then define cdistL1(v, w) = cdistK1(v, w). If v

belongs to the edge v1v2 of K1, and w belongs to the edge w1w2 of K1, we define

cdistL1(v, w) = maxi,j cdistK1(vi, wi). In similar fashion the distance is defined in two

other cases. This extended distance satisfies an important property: if a subcomplex

of K1 has combinatorial diameter d, then the corresponding subcomplex of L1 also

has combinatorial diameter d (with respect to the new distance).

Define Ni = Bεi(wi), where εi are small enough, so that:

(i) Ni ∩Nj = ∅ whenever cdist(vi, vj) ≤ d;

(ii) εi < ε/3;

(iii) For any three vertices vi, vk, vj such that cdist(vi, vj) ≤ d, cdist(vi, vk) ≤ d

and vjvk is an edge, we have that Ni ∩ Akj 6= ∅ exactly when vk = vi or vj = vi.

Let xij be the last point of Aij (in the order from wi) that lies in Ni. Let x′ij

be the first point of Aij that follows xij and belongs to Nj. Let A′ij be the arc from

xij to x′ij in Aij. Then arcs A′ij and A′kl are disjoint whenever cdist(vivj, vkvl) ≤ d.

Next, take δ-neighbourhoods of A′ij with δ < ε/3, so that they are disjoint whenever

corresponding A′ij are disjoint. Then for each edge vivj there exists a broken line

Bij in Oδ(A
′
ij) that joins xij and x′ij (cf. [11, Th.6.1]). Therefore, Bij and Bkl are

disjoint whenever cdist({vi, vj}, {vk, vl}) ≤ d.

Let yij be the last point of Bij that lies in Ni, and y′ij be the first point of Bij

that follows yij and belongs to Nj. Now define B′ij to be a part of broken line

Bij from yij to y′ij. Finally, let B′′ij = wiyij ∪ B′ij ∪ y′ijwj. The broken line B′′ij

connects wi to wj. The edges vivj and vkvl can only intersect at endpoints when

cdist({vi, vj}, {vk, vl}) ≤ d. Therefore, the broken lines B′′ij also have this property.

We also have that B′′ij ⊂ Oε/3(Aij).

Define the mapping g : |K1| → R2 on each edge vivj to be a piecewise linear

homeomorphism that sends vivj to B′′ij, vi to wi, and vj to wj. If K′ is any subcomplex

of K1 of combinatorial diameter d, then the distance between any two vertices of L1
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is at most d. Therefore, the corresponding broken lines B′′ij can only intersect at

the endpoints. This implies that g is univalent on each subcomplex of combinatorial

diameter ≤ d. The mapping g also interpolates f at the vertices of L1. To show

that g is an ε-approximation for f , notice that for x ∈ vivj both f(x) and g(x) lie in

Oε/3(Aij), so that |f(x)− g(x)| < ε.

Using this result, we can prove the next lemma.

Lemma 3.2. Let K be a simplicial complex in R2 and f : |K| → R2 be a locally one-

to-one continuous mapping. Then for each ε > 0 there exists a locally one-to-one

piecewise linear mapping g : |K| → R2 such that ‖f − g‖|K| < ε.

Proof. First, for every point x ∈ |K| consider a neighbourhood Bε(x) such that

f |Bε(x) is one-to-one. The family of these neighbourhoods covers |K|, therefore by

compactness there exists a finite subcover. Let δ be the Lebesgue number of this

cover. Let L be a subdivision of K such that for every triangle σ ∈ L we have

diam(σ) < δ/3 and diam(f(σ)) < ε/3. For a triangle σ ∈ L let D(σ) be the set of

vertices of L at combinatorial distance not more than 3 from σ excluding the vertices

of σ. Let θσ = 1
3

min {ε, dist(f(σ), f(D(σ)))}. Finally, define δ1 = minσ θσ.

Consider g1 : |L1| → R2 to be a δ1-approximation to f as given by Lemma 3.1

with d = 3. Using PL Schoenflies theorem, extend this function to g : |L| → R2 in

such a way that it is one-to-one on each triangle. It remains to prove that g satisfies

the required properties.

We first prove that g is an ε-approximation for f . For every triangle σ in L it

is true that diam(f(σ)) < ε/3. Since δ1 < ε/3, we have g(∂σ) ⊂ Oε/3(f(σ)). The

restriction g|σ is a homeomorphism, therefore g(σ) ⊂ Oε/3(f(σ)). Thus, for any

x ∈ σ, f(x) and g(x) both lie in Oε/3(f(σ)), hence |f(x)− g(x)| < ε.

Next, we prove that g is locally univalent. Let σ1 and σ2 be two different triangles

of L that have a non-empty intersection. If σ1 = σ2, then there is nothing to

prove, since the restriction of g to σ1 is a homeomorphism. If σ1 6= σ2 then the

combinatorial diameter of σ1∪σ2 is equal to 2, therefore g is one-to-one on ∂σ1∪∂σ2.

Thus, g(∂σ1) ∩ g(∂σ2) = g(∂σ1 ∩ ∂σ2). This implies that either g(σ1) ⊂ g(σ2) or
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g(σ1) ∩ g(σ2) = g(σ1 ∩ σ2). In the latter case, g is a homeomorphism of σ1 ∪ σ2.

Suppose that g(σ1) ⊂ g(σ2). Let x be one of the vertices of σ1 that is not a vertex

of σ2. Then g(x) ∈ g(σ1) ⊂ g(σ2) ⊂ Oδ1(f(σ2)), and therefore

dist(f(D(σ2)), f(σ2)) ≤ dist(f(x), f(σ2)) < dist(g(x), f(σ2)) + δ1 < 2δ1.

This contradicts the choice of δ1, hence g(σ1 ∩ σ2) = g(σ1) ∩ g(σ2), and g is locally

univalent.

3.1.2 Extension lemmas

Now we shall prove the extension lemmas from Chapter 2.

Lemma 2.1 (Annulus extension). Let R > ρ > 0, and denote S = {x ∈ R2 :

|x| = R}. Let a mapping ψ : Oρ(S) → R2 be a Ck-diffeomorphism such that 0 /∈
ψ(Oρ(S)) and suppose that in polar coordinates (r, ϕ), where ψ is written as ψ(r, ϕ) =

(ψr(r, ϕ), ψϕ(r, ϕ)), the inequalities ∂ψr/∂r > 0 and ∂ψϕ/∂ϕ > 0 hold. Then for

some ε ∈ (0, ρ) there exists a Ck-diffeomorphism Ψ : BR(0) ∪Oε(S)→ R2 such that

Ψ|Oε(S) = ψ|Oε(S).

Proof. What follows is a rather technical proof, but the idea is simple. The mapping

ψ behaves nicely on circles {z : |z| = r}, and on rays {z : Arg(z) = φ}, so we start

“untwisting” this mapping, first on circles, and then on rays, until we get to the

identity mapping of a smaller annulus. Since the identity mapping of annulus can be

extended (trivially) to the identity mapping of a disk, we get the desired extension.

Without loss of generality assume that R = 1, and ρ < 1/10. Put Ψ1(r, ϕ) =

(ψr(r, ϕ)ω1(r), ψϕ(r, ϕ)) and Ψ2(r, ϕ) = Ψ1(ω2(r), ϕ), where ωi(t) are C∞-smooth

functions such that the following holds:

ω1(1− ρ) = 0; ω′1(t) > 0 for t ∈ (1− ρ, 1− ρ/2); ω1(t) = 1 for t > 1− ρ/2;

ω′2(t) > 0 for t > 0; ω2(t) = t for t > 1− ρ/2; ω2(0) = 1− ρ. Then

JΨ1(r, ϕ) = ω1(r)Jψ(r, ϕ) + ω′1(r)ψr
∂ψϕ

∂ϕ
> 0,

and

JΨ2(r, ϕ) = JΨ1(ω2(r), ϕ)ω′2(r) > 0.
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We first show that Ψ1 is one-to-one on the ring {(r, ϕ) : 1−ρ < r < 1}. Indeed, let

α ∈ R, then by virtue of ∂ψϕ/∂ϕ > 0 we have that for any r ∈ (1−ρ, 1) there exists a

unique number f(r) (mod 2π) such that ψϕ(r, f(r)) = α. Since ψ is a diffeomorphism,

f must also be continuous. Moreover, ψr(r, f(r)) is continuous and injective, there-

fore it is strictly increasing in r (it is not decreasing, since otherwise ψ would map

outer boundary onto inner, and this contradicts ∂ψr/∂r > 0). If for some r1, ϕ1 and

r2, ϕ2 we have Ψ1(r1, ϕ1) = Ψ1(r2, ϕ2), then ψϕ(r1, ϕ1) = ψϕ(r2, ϕ2) = α, therefore

ϕ1 = f(r1), ϕ2 = f(r2). This implies that ψr(r1, f(r1))ω1(r1) = ψr(r2, f(r2))ω2(r2),

hence r1 = r2, since ψr(r, f(r))ω1(r) is monotone. All this implies that Ψ2 is a Ck-

diffeomorphism of some punctured neighbourhood of 0, and it extends ψ, and also

satisfies inequalities ∂Ψr
2/∂r > 0 and ∂Ψϕ

2 /∂ϕ > 0. Moreover, Ψ2 is a homeomor-

phism on B1(0) and Ψ2(0) = 0.

Next, let d < 1/10 be such that Bd(0)∩ψ(Oρ(C)) = ∅. Define α(r, ϕ) by equality

Ψr
2(α(r, ϕ), ϕ) = r, r < d. There is a unique solution, because ∂Ψ2/∂r > 0. Moreover,

an application of the implicit function theorem to F (α, r, ϕ) = Ψr
2(α(r, ϕ), ϕ) − r

shows that the mapping α is Ck-smooth and increases in r. Consider

β(r, ϕ) =

∫ r

0

(∂α
∂r

(s, ϕ)ω3(s) + c(ϕ)(1− ω3(s)) + (1− c(ϕ))ω4(s)
)
ds,

where ω3(t) = 1 for t < d/2, ω3(t) = 0 for t > d, ω4(t) = 1 for t > 1 − ρ/2,

ω4(t) = 0 for t < 1 − ρ, and c(ϕ) is chosen in such a way that β(1, ϕ) ≡ 1. Since

we also have that α(d, ϕ) < 1− ρ, it is easily verified that c(ϕ) > 0 and ∂β/∂r > 0.

Then the mapping Ψ3 defined by Ψ3(r, ϕ) = Ψ2(β(r, ϕ), ϕ) is a Ck-diffeomorphism

of punctured neighbourhood of 0, which extends ψ and satisfies Ψr
3(r, ϕ) = r for

r < d/2.

Define γ(r, ϕ) by the equation Ψϕ
3 (r, γ(r, ϕ)) = ϕ for r < d/3 (it is only defined

modulo 2π, but we can choose some continuous branch). Extend this mapping to all

real ϕ by γ(r, ϕ + 2lπ) = γ(r, ϕ) + 2lπ. Consider δ(r, ϕ) = γ(r, 0) + ω5(r)(γ(r, ϕ)−
γ(r, 0)) + (1−ω5(r))ϕ, where ω5(t) is a C∞-smooth function such that ω5(t) ∈ [0, 1],

ω5(t) = 0 for t ∈ [0, d/5] and ω5(t) = 1 for t ≥ d/4. Next, define ∆ by ∆(r, ϕ) =

γ(r, 0)ω6(r) +ϕ, for r < d/6 and ∆(r, ϕ) = δ(r, ϕ), r ≥ d/6, where ω6(t) = 0, t < d/8

and ω6(t) = 1, t > d/7. Then the mapping Ψ defined by Ψ(r, ϕ) = Ψ3(r,∆(r, ϕ)) is
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a Ck-diffeomorphism of B1(0) ∪Oρ(C) \ 0 and is identity for r < d/8, therefore it is

a Ck-diffeomorphism of B1(0) ∪Oρ(C), and Ψ extends ψ.

Lemma 2.2 (Locally univalent extension). Let Ω be a bounded domain with Jordan

piecewise smooth boundary and a continuous mapping f : Ω → R2 be locally one-

to-one. Then there exists an open set U ⊃ Ω and a locally one-to-one continuous

mapping g : U → R2 such that g|Ω = f .

Proof. It is clear that we only need to construct extension through each component

of the boundary. Therefore, by the virtue of Schoenflies Theorem, we may assume

that the mapping is defined on Ω = {z : 1− ε ≤ |z| ≤ 1}, and we need to extend the

mapping to the set {z : 1− ε ≤ |z| ≤ 1 + δ}.
By decreasing ε if necessary, we may assume that for some big enough N ∈ N,

the mapping f is univalent on each sector Sk∩Ω, where Sk = {z ∈ C\{0} : arg(z) ∈
[2πk/(3N), 2π(k + 3)/(3N)]}.

K1

|z| = 1− ε

|z| = 1 + δ

K2

|z| = 1− ε

|z| = 1 + δ

Figure 1. The sets K1 and K2 for N = 20.

Let K1 = Ω ∪ {z : |z| ∈ [1, 1 + δ], 3N arg(z)/2π ∈ Z} and extend f so that it is

still one-to-one on the new sectors {z ∈ K1 : arg(z) ∈ [2πk/(3N), 2π(k + 3)/(3N)]}.
For this, put Ck = {z ∈ C \ {0} : arg(z) ∈ [2π(k − 1)/(3N), 2π(k + 1)/(3N)]} and

zk = f(e2πik/(3N)), k = 0, . . . , 3N − 1 and define Jordan curves γk : [0, 1] → R2 in
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such a way that γk(0) = zk and γk([0, 1]) ∩ f(Ck ∩ Ω) = {zk}. Let ε1 > 0 be such

that sets γk([0, ε1]) do not intersect, whenever the corresponding zk do not coincide.

Then we take the extension given by f((1 + t)e2πik/(3N)) = γk(tε1/δ).

Next, we denote K2 = K1 ∪ {z : |z| = 1 + δ} and extend f to K2, in such

a way that f is one-to-one on Ck ∩ K2. We construct the extension on the set

Fk = {z ∈ C : |z| = 1, arg(z) ∈ [2πk/(3N), 2π(k + 1)/(3N)]} by induction on

k = 1, . . . , 3N . Denote tk = f((1 + δ)e2πik/(3N)). On the set F1 we construct the

extension, requiring it to be one-to-one on S0 ∩ K2 and for the set f(C1 ∩ K2) to

lie in the unbounded component of R2 \ f(C1 ∩K2 ∩ {|z| ≥ 1}). Suppose that the

extension is constructed for F1, . . . , Fl, l < 3N−1. The set R2\f(Cl+1) has two linear

components (see, for example, Th. 1.2.14 in [13]), and the point tl+1 belongs to the

unbounded component, therefore there exists a path connecting it to the point tl, such

that f(Cl ∩K2) belongs to the unbounded component of R2 \ f(Cl ∩K2 ∩ {|z| ≥ 1})
— this is our extension on Fl+1. On the second last part we must also require that

extension is one-to-one on S−1. On the last part, we connect t0 with t1, requiring that

extension is one-to-one on S−1, which is possible, since the mapping was one-to-one

on S−1.

Finally, extend the mapping to the whole {z : 1 − ε ≤ |z| ≤ 1 + δ} by apply-

ing the Schoenflies Theorem to each sector {z ∈ K2 : |z| ∈ [1, 1 + δ], arg(z) ∈
[2πk/(3N), 2π(k + 1)/(3N)]}. The resulting mapping is one-to-one. Indeed, in

all new points, in which 3N arg(z)/2π /∈ Z, it is locally one-to-one by Schoenflies

Theorem. For all the other points, that is for points on the common boundary

of two neighboring sectors it is locally one-to-one, since the interiors of the curves

f({z ∈ K2 : |z| ∈ [1, 1 + δ], arg(z) ∈ [2πk/(3N), 2π(k + 1)/(3N)]}) do not inter-

sect.

3.2 Necessary condition

We now prove Theorem 1.2. The result is more general, as the proof works in any

dimension n.
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Theorem 1.2. If the mapping f : Ω → R2 can be approximated by C1-smooth

mappings with nonnegative Jacobian, then for every open subset U ⊂ Ω and any

p ∈ f(U) \ f(∂U), we have deg(f, U, p) ≥ 0.

Proof. For a set U ⊂ Ω and any p ∈ f(U) \ f(∂U) put ε = dist(p, f(∂U))/2. Let

g : Ω→ Rn be a smooth mapping with nonnegative Jacobian such that ‖f−g‖Ω < ε.

Then by property (P4) we have deg(f, U, p) = deg(g, U, p). Since the set of regular

values of a smooth mapping is dense, there exists a regular value p′ in the same

component of Rn \ g(∂U) as p, therefore by (P5) we have deg(g, U, p) = deg(g, U, p′).

Finally, it follows from the definition of topological degree of a smooth mapping that

deg(g, U, p′) ≥ 0.

3.3 Sufficient condition

Before we can prove Theorem 1.1, we need some auxiliary results.

Lemma 3.3. Let A,B : R2 → R2 be linear maps. Suppose that det(A) > 0, det(B) >

0, and there exists a nonzero vector x such that Ax = Bx. Then for any α > 0,

β > 0 we have det(αA+ βB) > 0 .

Proof: The proof is straightforward.

Lemma 3.4. Let K be a simplicial complex in R2, f : |K| → R2 be a locally one-to-

one piecewise linear mapping. Then for each ε > 0 there exists a C1-smooth mapping

g : |K| → R2 with nonzero Jacobian such that ‖f − g‖|K| < ε.

Proof: It is easily proved that we can extend the map f to some simplicial complex

K′ ⊃ K, so that |K| is contained in the interior of |K′| and the extension of f is locally

one-to-one. Let a > 0 be such that for every x ∈ |K| the ball Ba(x) is contained in

the interior of |K′| (this number exists due to the compactness of |K|).
Recall from Chapter 2 the standard nonnegative C∞-function with compact sup-

port given by:
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ω(x) =

c exp(− 1
1−|x|2 ), if |x| < 1,

0, otherwise,

and

ωδ(x) = δ−2ω
(x
δ

)
.

For any 0 < δ < a, the convolution f ∗ ωδ, defined by

f ∗ ωδ(x) =

∫
Bδ(x)

f(y)ωδ(x− y)dy,

is a C∞-smooth mapping that uniformly converges to f , as δ → 0. As∫
R2

xω(x, y)dxdy =

∫
R2

yω(x, y)dxdy = 0,

we see that if f is linear on Bδ(x), then f ∗ ωδ(x) = f(x). Note that if Bδ(x)

only intersects two triangles of K, then D(f ∗ ωδ)(x) is a convex combination of two

linear maps, and it is easy to see that these maps satisfy conditions of Lemma 3.3.

Therefore, in this case Jf∗ωδ(x) > 0.

Let δ1 > 0 be such that for every vertex vi of K we have diam(f(Bδ1(vi))) < ε,

Bδ1(vi) are pairwise disjoint, and Bδ1(vi) intersects K1 (the set of edges of all triangles

in K) only at edges that have vi as an endpoint. Let δ be such that |f(x)−f(y)| < ε

whenever |x− y| < δ. Let δ2 < δ be such that for x ∈ K \
⋃
vi∈K0 Bδ1/2(vi) we have

that Bδ2(x) intersects K at not more than two triangles.

Let us show now that for an arbitrary vertex v ∈ K0 the function g = f ∗ ωδ2
satisfies conditions of Lemma 2.1 on the annulus Bδ1(v) \ Bδ1/2(v). For simplicity,

assume that v = f(v) = 0. First, we show that g is one-to-one on U = Bδ1(v) \
Bδ1/2(v). Indeed, suppose that g(x) = g(y). Then either Bδ2(x) or Bδ2(y) must

intersect some edge of K1, because otherwise we would have f(x) = g(x) = g(y) =

f(y), which contradicts the fact that f is one-to-one on each triangle. By relabelling x

and y we may assume that Bδ2(x) intersects some edge. By decreasing the value of δ2

if necessary, we may also assume that g(σ∩U)∩g(σ′∩U) = ∅ for any pair of triangles

σ, σ′ with σ∩σ′ = {0}. Therefore, it suffices to consider the case when x and y lie in

the union of two neighboring triangles σ1 and σ2 with a common vertex at 0. Once
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again, we decrease the value of δ2 to meet the condition g(Oδ2(e)∩U)∩ g(σ∩U) = ∅
for each pair of an edge e and a triangle σ satisfying σ∩e = {0}. Let e be the common

edge of the triangles σ1 and σ2, and e′ be the common edge of the triangles f(σ1)

and f(σ2). Introduce Cartesian coordinate systems (u,w) and (u′, w′) such that the

direction of u coincides with the direction of e and direction of u′ coincides with the

direction of e′, and write g(u, v) = (gu
′
(u, v), gv

′
(u, v)). Simple calculation shows that

gv
′

depends only on v, and is monotone with respect to v, hence the v-coordinates of

x and y coincide. Moreover, for a fixed v, the function gu
′

is monotone with respect

to u, so the u-coordinates of x and y also coincide. In a similar fashion one also

checks that the inequalities ∂gr/∂r > 0 and ∂gϕ/∂ϕ > 0 hold on the corresponding

annulus.

Therefore, using Lemma 2.1 for each vertex v we can extend g = f ∗ ωδ2 from

Bδ1(v) \ Bδ1/2(v) to Bδ1(v). Since the Jacobian of an orientation-preserving diffeo-

morphism is positive, we get Jg(x) > 0 for all x. Moreover, by definition of δ, for

x ∈ |K| \
⋃
Bδ1/2(vi) we have the inequality |f(x) − g(x)| = |f(x) − f ∗ ωδ(x)| < ε.

For a point x ∈ Bδ1(vi) the extension property gives g(x), f(x) ∈ f(Bδ1(vi)), and

using diam(f(Bδ1(vi))) < ε, we get |f(x) − g(x)| < ε, hence g gives the necessary

approximation.

Now we prove Theorem 1.1 and Theorem 1.3.

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain. If a continuous mapping f :

Ω→ R2 is locally one-to-one, then for each ε > 0 there exists a polynomial mapping

p : Ω→ R2 with nonzero Jacobian such that ‖f − p‖Ω < ε.

Proof. First, consider the case when Ω is equal to |K| for some simplicial com-

plex K. From Lemma 3.2 and Lemma 3.4 we see that there exists a C1-smooth

mapping g : Ω → R2 with nonzero Jacobian such that ‖f − g‖Ω < ε/2. Since

Ω is a compact set, there exists δ > 0 such that |Jg(x)| > δ for all x ∈ Ω. De-

fine M = max{‖ ∂gi
∂xj
‖Ω : 1 ≤ i, j ≤ 2}. Since Ω = |K| satisfies the conditions of

Th.2 of [1], there exists a polynomial map p : Ω → R2 such that ‖g − p‖ < ε/2

and ‖ ∂gi
∂xj
− ∂pi

∂xj
‖Ω < max(2M, δ

8M
). Then it is easy to see that ‖f − p‖Ω < ε and
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|Jp(x)| > 0.

Now we turn to the general case. By Lemma 2.2 there exists an open set U ⊃ Ω

and a locally one-to-one mapping f ′ : U → R2 such that f ′|Ω = f . Then we can

build a simplicial complex K such that U ⊃ |K| ⊃ Ω and by applying the result of

the previous paragraph to f ′ and |K| we get the desired approximation.

Theorem 1.3. Let ∆ be a bounded domain and f : ∆ → R2 be a light continuous

mapping. Suppose that for every open set U with U ⊂ ∆ and any p ∈ f(U) \ f(∂U)

we have deg(f, U, p) > 0.

Then for any domain Ω such that Ω ⊂ ∆ and each ε > 0, there exists a C∞-

smooth mapping g : Ω→ R2 with nonnegative Jacobian such that ‖f − g‖Ω < ε.

If additionally ∆ is simply connected, then there exists a polynomial mapping g

with the above properties.

Proof. Recall that a mapping F : X → R2 is called quasi-open (see [14, p.110]) if for

any y ∈ F (X) and any open set V containing a compact component of F−1(y), y is

interior to F (V ). Note that our mapping f is quasi-open. Indeed, for every x ∈ ∆

and V containing a compact component of f−1(f(x)), there is some open subset

V0 ⊂ V such that ∂V0 ∩ f−1(f(x)) = ∅. Then we have that deg(f, V0, f(x)) > 0.

Therefore, by properties (P5) and (P6) of the topological degree we have that f(V0)

contains some neighbourhood of f(x). Hence, f is quasi-open. Since f is also light,

we have (see [14, pp.110-113]) that f is open.

Since f is open and light, by Stoilow theorem, f is topologically equivalent to a

complex analytic mapping h : U1 → U2 ⊂ R2. This means that there exists a pair

of homeomorphisms s1 : ∆ → U1 and s2 : U2 → s2(U2) ⊂ R2 such that f = s2hs1.

By Theorem 1.1 there are polynomial mappings p1, p2 with nonzero Jacobian such

that ‖s2hs1 − s2hp1‖Ω < ε/2 and ‖s2 − p2‖h(p1(Ω)) < ε/2 (note that we only need

the “simplicial” case of Theorem 1.1). Then ‖f − p2hp1‖Ω < ε. Since f preserves

orientation, p1 and p2 must have Jacobians of the same sign. Therefore, p2hp1 is a

C∞-smooth mapping with nonnegative Jacobian.

In case when ∆ is simply connected, U1 is also simply connected, and hence

by Runge’s theorem (see [2, p.198]) there exists a polynomial p3(z) of one complex
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variable that approximates h on Ω. Since p3(z) as a mapping from R2 to R2 has non-

negative Jacobian, we get a polynomial mapping p2p3p1 with a nonnegative Jacobian

that approximates the continuous mapping f .

3.4 Counterexamples

Here we prove two negative results that show the difference between approxima-

tion by mappings with nonnegative Jacobian and approximation by mappings with

strictly positive Jacobian.

The first result relies on the fact that mappings with positive Jacobian are open,

and hence satisfy the maximum modulus principle.

Lemma 3.5. Let fn : Ω → R2 be a sequence of mappings with positive Jacobians

that converges uniformly to a continuous mapping f : Ω→ R2. Then f satisfies the

maximum modulus principle, i.e. for any nonempty open set U ⊂ Ω we have

max
x∈U
|f(x)| = max

x∈∂U
|f(x)|.

Proof. Let U ⊂ Ω be an open set. By the above remark each fn satisfies the max-

imum modulus principle. Let ε > 0 be a positive number, and let n0 be such that

‖fn0 − f‖Ω ≤ ε. Then we have

max
x∈U
|f(x)| ≤ max

x∈U
|fn0(x)|+ ε = max

x∈∂U
|fn0(x)|+ ε ≤ max

x∈∂U
|f(x)|+ 2ε, (3.1)

and since ε was arbitrary, by taking limits we get

max
x∈U
|f(x)| ≤ max

x∈∂U
|f(x)|,

and since the inverse inequality is obviously true, we have

max
x∈U
|f(x)| = max

x∈∂U
|f(x)|.

The next theorem provides an example of a C1-smooth mapping with nonnegative

Jacobian that does not satisfy the maximum modulus principle, and hence cannot

be approximated by mappings with positive Jacobian.
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Theorem 1.4. Define the mapping f : B1(0)→ R2 by the formula

f(x, y) =


(

8(1
2
−
√
x2 + y2)2, 0

)
, if x2 + y2 ≤ 1

4(
x

(
√
x2+y2−1/2)2

x2+y2
, y

(
√
x2+y2−1/2)2

x2+y2

)
, if 1

4
< x2 + y2 ≤ 1.

Then f is C1-smooth, has nonnegative Jacobian, and cannot be approximated by

smooth mappings with positive Jacobian.

Proof. The mapping is differentiable outside S = {(x, y) : x2 + y2 = 1/4}, and

partial derivatives go to 0, as x2 + y2 goes to 1/4, so it is sufficient to prove that f

is differentiable on S and the derivative is equal to 0.

Let v = (x, y) be a point of S, and let w be a point of S+ = {(x, y) : x2+y2 > 1/4}.
Then f(v) = 0 and f(w) = w (|w|−1/2)2

|w|2 . Then

|f(w)− f(v)| = (|w| − 1/2)2

|w|
≤ 2|w − v|2 = o(|w − v|).

Similarly, if w is a point of S− = {(x, y) : x2 + y2 < 1/4}, then f(w) = (8(|w| −
1/2)2, 0). We have

|f(w)− f(v)| = 8(|w| − 1/2)2 ≤ 8|w − v|2 = o(|w − v|),

therefore the derivative of f at v is 0. The Jacobian of f on S ∪ S− is equal to 0.

If v ∈ S+, then Jf (v) = (|v| − 1/2)2(1 + 2|v|) > 0. Finally, |f(0)| = 2, while for

every v with |v| = 1 we have |f(v)| = 1/4, therefore f does not satisfy the maximum

modulus principle, and hence cannot be approximated by C1-smooth mappings with

positive Jacobians.

Note that the above example can be made C∞-smooth, if we take the auxiliary

function to be exp(−1/(|w| − 1/2)2) instead of (|w| − 1/2)2.

The second negative result shows that there are open mappings (hence they satisfy

the maximum modulus principle automatically) that cannot be approximated by

mappings with positive Jacobian. The proof requires one simple fact from covering

space theory (see [6, Ch. 1.3]).
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Definition 3.1. Let B be a topological space. A covering space of B is a pair (E, π)

of a topological space E, and a continuous surjective mapping π : E → B with the

following property. For every b ∈ B there exists an open neighbourhood U of b,

discrete space I, and a homeomorphism f : U × I → π−1(U), such that π ◦ f = πU ,

where πU : U × I → U is the natural projection.

The cardinality of the corresponding I is independent of b ∈ B. Any open set

U that satisfies the above property is called evenly-covered . If B itself is evenly-

covered, the covering space (E, π) is called trivial, in this case E is homeomorphic

to B × I, and π is the projection onto B.

Lemma 3.6. If Ω is a simply connected domain in Rn, then every covering space of

Ω is trivial.

Proof. This result follows from the classification of covering spaces (see [6, Th. 1.38]).

Theorem 1.5. Let the mapping f : B1(0) → C be defined by the formula f(x, y) =

(x2−y2, 2xy). Then for any C1-smooth mapping g : B1(0)→ R2 with strictly positive

Jacobian we have ‖f − g‖B1(0) ≥ 1/4.

Proof. Suppose that there exists a mapping g such that ‖f − g‖B1(0) < 1/4. Consider

the homotopy Ht(x) : [0, 1] × B1/2(0) → R2 given by Ht(x) = (1 − t)f(x) + tg(x).

For x ∈ ∂B1(0) we have

|Ht(x)| = |f(x)− t(f(x)− g(x))| ≥ |f(x)| − |f(x)− g(x)| = 1− |f(x)− g(x)| > 1/2.

Since H0 = f , and H1 = g, using the homotopy invariance (P1) of the topo-

logical degree, we get that for every x ∈ B1/2(0) the degrees deg(g,B1(0), x) and

deg(f,B1(0), x) are equal. Since for all x ∈ B1/2(0) the degree deg(f,B1(0), x) = 2,

it follows that deg(g,B1(0), x) = 2 for same values of x. The mapping g has a pos-

itive Jacobian, therefore there are exactly two different solutions y1, y2 to g(y) = x,

for x in B1/2(0).

Consider the set U = g−1(B1/2(0)). We see that g : U → B1/2(0) is a covering

map and U is a double cover of B1/2(0). Since B1/2(0) is simply connected, we get by
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Lemma 3.6 that U is a disjoint union of two homeomorphic copies of B1/2(0). Then

U = U1 ∪ U2 and g maps Ui homeomorphically onto B1/2(0), so we can define two

inverse maps y1, y2 from B1/2(0) to U .

From ‖f − g‖B1(0) < 1/4 we have |y2
i (z) − z| < 1/4. Consider the map γ(φ) =

eiφ/(2 + ε), where ε < 1/10. Then the points yi(γ(φ)) are contained in a disjoint

union of disks B1/2(eiφ/2/
√

2 + ε)) and B1/2(ei(φ/2+π)/
√

2 + ε)). It is easy to verify

that each disk contains exactly one of the points y1(γ(φ)), y2(γ(φ)). Then, as we

continuously change φ from 0 to 2π, y1(γ(φ)) ends up in a different disk, so we must

have y1(γ(0)) = y1(γ(2π)) = y2(γ(0)). This contradiction concludes the proof.

The mapping f is just the complex analytic function h(z) = z2 written as a

mapping from R2 to R2, so it provides an example of a polynomial mapping with

nonnegative Jacobian that cannot be approximated by C1-smooth mappings with

positive Jacobian. This example is easily generalized to mappings of Rn by taking

f(x1, x2, x3, . . . , xn) = (x2
1 − x2

2, 2x1x2, x3, . . . , xn).
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[12] S. Stoilow, Leçons sur les principles topologique de la théorie des fonctions
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