HTRDL STSTEHS

A Thesis

Presented to
Faculty of Graduate Studies and iesearch
of

m

The University of Manitobas

In Partial Fulfillment
of the Reguirements for the Degree

Haster of Science in Electrical fngineering

by

Barry Edward Brookes



iy

he failure of Loeb's Rule in a
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control systaens and ultimately, to the reason
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1

The describing function, supnlemented by Loeb!s Criterion,
is a powerful, simple, and widely used stability analysis for non-
linear feedback control systems. In this technigue, the describing

function locates possible Limit cycles and Loeb's Criterion (or
Loeb's Rule as it is often called) indicates whebher each limit
cycle is stable or unstable. This latter information is essential
because only a stable limit cycle will apoear as a physical oscil-
lation, Thus, Loeb's Criterion vlays a crucial role in the analysis,

Unfortunately, both the describing function method and Loeb's
Criterion are apiroximete and in both cases the error is very diffi-
cult to estimate. Nevertheless, Loeb's Criterion does give correct
results in a large nuwber of vpractical cases. However, for at least

ne control system, Loeb's Criterion gives erroneous results,
1. THE PROBLEM

Urigin of the Problem

The genesis of the problem was the failure of Loeb's Criterion

for the system in Figure 1,

1g, Loeb, "Phénomdénes Héréditaires dans les Servomécanismes; un
Gritér1UﬂAGeneral de Stabilité", Amnales des Tél&comnunications, 6(1/)‘

346-356(1951).,
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1

Nyquist Diagram with the critical locus,

freouency is that of the Nyouist

diagram at the intersection and whose asmplitude (5) may be read from
the scaled critical locus at the intersection. Loeb's Criterion pre-
kel L ]

dicts a stable limit cycle if the vectorial cross product, denoted sym-
i ] i

(E){, is positive at the intersection;

dw Q
5 . . . -~ my -
an uwnstable limit cycle if the product is negative, Iherefore Loeb's

Oriterion predicts that all limit cycles in this system (Figure 1) are

)
t

1 . Ty . . s a2
stable, This is a flagrant contradiction of the tha

only the lowest frenuesncy oscillation (which corresnconds to the first

Wt in Figure 2) is stable,

intersection, counting

4 major onjective of this theslis is to explain why Loeb's Criterion

Tails in the example Just cited. DBut, the genersl discussion on 1imit

Lo resolve this nroblen are each as

which are remuired

the explanation itsell,

ihe feilure of Loeb's Uriterion in the previous exarple casts doubt
upon its validity oreover, by exposing the reas
for this failure, study further undermines confidence in the Criterion

in general and in the vositive vector wroduct in

J, C, Gille, ¥, J, Pelegrin, and P, Decaulne, Teedback Control 3Systenms,

®

il

This was estal
S

hed independently on the analogue computer by two
sumner students at the University oi hanitobay Ter

nple in 1965 and Carson in




b

shows that a reliable alternative anzlysis to the describing function

- Loeb technique exists, at least for a restricted class of systems,

The following definitions are desmed sufficiently precise for

the purposes of this thesis:

Limit Cyeles

4n isolated periodic osciliation in a system will be called a

1isdt cycle. A11 periodic oscillations discussed herein ars isols beds

Stability of Limit Cycles

A system will possess a stable (unstable) limit cycle if the

linear variational equation about the limit cycle is stable {unstable).
‘his definition of a stable limit cycle is similar, though not as mathe-
matically rigorous, as that given by Hayashi for orbital shabi lity of

6

a trajectory,

o o

OF THZ LITERATURE

Loeb first propounded his criterion for testing the stabllity
oo e VAR ) e cr .
of 1liwmit cycles in 1951, Gille et al, formulated this criterion in

o~

terms of the convenient cross product rule stated earlier. In a later
paper, Loeb developed a more comolicated test which in first ap oroxima-~

tion reduced to the vector rule, but even this more complicated rule

DELP"norsky,.kol]lncar b50¢lluu70ns, e 7L

A

°C. Hayashi, Honlinear Uscillations in Fhvsicel Systens, pr. 70~71,
-~

{

Loeb, loc, cit.

S .
Gllle et al., loc. cit.
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9
was not exact.  [Furthermore, by assuming a differential eguation

throughout (see Bguation (7) therein) he excluded time-lag system
(because they require a differential-~difference eguation for their
representation). Grensted, in three interesting papers, developed
10
a stability test for limit cycles using the operational calculus,
His work, however, suifered irom the same snortcomings as Loeb's,
namely it was aporoximate and it excluded time-lag systems, This
thesls surmounts these difficulties, but abt present it is restricted

to ideal reley control systems.

-]

AN CF THE THESIS

p=

l

Z{o‘ P
First of all, by definition a limit cycle is stable or unstable

accordingly as the linear variational eguation about the limit cycle

is stable or unstable, OConsequently, in Chepter II a method is developed
to derive this vardiational equation in a general single loop time-lag
nonlinear feedback control systen. In Chapter III, the specialization
of this equation to the ideal relay system and the subseguent deduction

1

of its stabilily properties brings the thesis objectives close to consum-

mation. Indeed, when this knowledge is coupled with the extended Hamel

Q

7 .. . - . ~ Iy It - —_

J. Loeb, "iecent #dvances in Wonlinear Servo Theory™, (1953) In
Freguency fesponse ed. R. Oldenburger, p:.260-67,

164
P

W. ULQﬂSbed UThe Frequency Response &nalysis of Non-Linear
Systems," Proc, Leiigli., Vole 102, part C, 1955, vo.RL4~55.

P, &, W, Grensted, "Analysis of the Transient R
Control Systems," A,3,l,k, Trens,, Vol. 80, 1958, pn.l

nonse of Non=Linear

Non~Linear

05-139.

P, &, W, Grensted, ”ﬂreouenq; Resoonse Hethods 4

Systems' In Progress in Uontrol Zngineering, Vol. 1, pp°
11 .

By assuming a ré

tively excludeg time_l“g

5
I*J
=
0]
[oh
ot

tional orverator form throughout, Grensted effec-
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Locus the reason for the failure of Loeb's Rule is readily uncovered.
In the fourth and final chapter, the work is summarized; conclusions

are stated, and areas of further research are outlined,




cr

In order to determine the stability of a limit cycle it

P

is necessary to find the linear variation (or equivalently the
first variation) from the limit cvele., This may be found by sub-
stitution of the periodic solution plus a small perturbation (of
unspecified form) in the system equation(s) in the traditional

Way o Afwrthepaﬂmﬁcsdmﬁoniscwmdledamiaﬁ’igmr

order terms in the variation are discarded the linear variational
equation(s) remains (remain). Henceforth this (these) ecuation(s)
will simply be referred to as the variational e equation(s), MNow if

the systen 1s specified by N stabte equations there will be I varia-

tlonal equations also. However, bthe presence of time.lag implies

fand

that the state (and hence the variational) equations are infinite in

1
number, Therefore, a more convenient method for deriving the veria-
tional equation for time-lag systens is formulated in this chapter,

In particular, the explicit form of the variastional equation for a
saturating systen is deduced,
Wext, a comnection between the stabe apnroach and operabional

approach for getting the variational equation is discussed for the zero

1

R. A, Johnson, ''State bpace and Systems Incorporating Delay,™
Electronics Lebters, Vol. 2, Neo. 7, July 1966, »o, 277-78.
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Leness,

althousgh the results zre not used in the remainder of the thesis,

OPERATICONAL

the veristional esuation for the general system shown in

)
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the Ferent sutonomous systen

(Figure
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which, if £(x) hes a Taylor series with respect to x, becomes
L) 2Get) ) 4y &
dx 2% dx”

“hen the 1limit cycle solution,

s

[

(p) {iw e T,

i
y

is cencelled and the higher order terms in the perturbation, u, are dis-

on (3) reduces to

t
{ -
L )iﬂ(}x')}‘i“u —'O G098 06000600600 COH006E00806800080268000 —}-Lo
d

{ u

Since x'(%t) is a periodic

C‘
iU

metion of time it follows that

of(y’) is also periodic and of the same
ax
is a linear differentiel ecustion with (time) pericdic coeffic

Thus the nonlinear problem of limit cycle stability has been reduced to

an equivalent {time-variable) linear problem, +‘his is not surprising in

view of the fact that only linear variations from the oeriodic sclution w

Cosgriff then proceeded to deduce ul(t) ! by setting X <t (t+at) ecual
to x' (t)u(t). This, however, is a questionable tactic since x!(t 4 &t)

1.

represents a o

u(t) cannct be to

either u(t) or
equation (“quation (4)).

ional enuation given by Cos-

reral nonlinear systenm wib

i

hynothesi

find

Sy
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in Figure 3 by G{p) e , in which G{p)
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is a rational, stable, and minimum phase function in p and e

represents a »ure time-delay of ¥ secornds, F
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be elther in the

analysis is the same in both cs

i(:‘i') ) + u: C) © 9000 C00VOT0O0OEOE0D0O0GCOED 5

which is the explicit form of the variational esuation for the time-

lag case, This enuation, which is basic for later work, is eculva-

£

clt)

NS
faataled

o R S

3

+

lotes: 1, “he functlon, df (x'), is essentially a2 time vari-
ax
ohle gain factor (it is neriodic in time with the same
En] -

e - \ 2 K ys . . - L. PO
1imit cyecle). Taken as a whole, this representstion is a time-varisble

1

linear feedback control systen

2. The symbols, »(t) and c(t), i is Tigure are not related

to these in the system representatior

pis}
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to b, Therefore f(x'+u) cannot be expanded in a valid Taylor series
at these points. Hence the following direct analysis is employed,

The saturation function is defined analytically by the rela-
tions:

f(X) :_B.‘_b{ “v’hen i}d < b 0000000000000 000600000008 63-
b

and

f(X) :Msg'\(X) when ixl >/b ©000800000000006000000800 6b

which on perturbation become

f(X'Hl) 3_1_{1(X+u) When g-x+U§ < b eoeeoeo;ooooeaeoso 73'
b

and

f(X'Hﬁ) ZMsgn(X*'u) vhen Bx+uf ‘>/ b ecccosccccscescese Do

Since u(t) may be made arbitrarily small initially, Hx+bl will differ
from Bx} by less than any preassigned number for any finite b, Therefore,
the perturbed solution at the saturation output may be written as

fxtu) = £(x') + w_é{u(xv+b) -U(xa.b)} cevereneees 8
in which U(x) is the unit step functioﬂt Now;_%ﬁ(x") is not defined at
x? equal to Tk, However, if the derivative is assigned the value zero
at these points (without loss of generality) then Equation (8) may be
rewritten as

f(X'—}-u) ; f(x') ‘+" ugg(x’) 0000000000600 00006 000060000 9;
ax

a result which produces the standard variational equation given by
Equation (5),
If x'(t) has odd symmetry about its zerc crossings

and Lf {kese ZeroeS AQre unMQrmuj sPaced

T Ue) =1
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theorems which have been established by mathematicians for the state
variational eguations, now, by virtue of the Appendix, aprly to the
operational varistional ecuation as well. Some of these theorems and
thelr shortcomings are now reviewed,
The phase variational eguations are, in general, a set of linear

differential equations with (time) periodic coefficients. Such equations

are difficult to solve though, in principle, they can be transformed
to an equivalent set of linear constant coefficient eguations by a
itheorem of Liapunov, Lhe stability of a limit ¢
by a set of linear constant coefficient egueations which can readily
be solved in a variety of ways.

]

a different approach, Ifloquet gave the form of the genersl

C_.‘

sing

U Q

solution in terns of characteristic exponents with periodic coefficients.

In this formulation the stebilily of the limit cycle depends on the sign
o =)

4

[V e

o
£

[w)
=y
0]
( >

of the real par haracteristic exponent. Hut no general method

was given for finding these exponents and the reduction theorems available

are of little use in determining the characteristic exponents, except in

second order systens,

h the Floguet and Liapmov methods are inconvenient for feed-

back systens because the gystem must first be converted to a stabte form.
rthermore, neither of these methods apsly at all to the time-lag case

because the aporopriate eguations are of the differential-difference

variely.

Pontryagin, L. S. Ordinary Differential Squations. Reading Mass.:
Addison-iesley Publishing Gompeny, Inc., 1962, pp. 146~-1.9.
6 . . : ‘
C. Hayashi., Nonlinear Uscillations in Physical Systems, pp. $2-86,
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However, by the method of Lhapter Iii, it is possible to trans-

form the differential-difference variational eguation of the time-lag

relay control systen to a stability eguivelent linear time~invariant
systen and thereby, to circumvent the shortcomings of the Drevious

(AT

theorems in a restricted class of time-lag systems. <This transforma-

tion resembles Liapunov's in that the stability guestion of a linear
time-varisble system is reduced to a linear time-invariant problen.

There are msny systens, however, for which Liapunov's theorem applies

when the method of Chapter I1IIT does not.

3. QMCUS CASE
he operational method is readily extended to nonautonomous sys-
tems by considering the driving function, r(t), in Figure 3, not iden-

tically zero. The systen differential (~difference) equation then be-

comes
A o 7/ A s -
T(}_)) {f \I""C) 7 “'C\t) - O © 0060008 GOAEO0S6AOODE00CO00COEDSSSCOR lO-
) freq_uencc.es
Iimit cycle 4 are, in general, multioles (superharmoﬂ ics) or sub-multioles
{ subharmonics) of the inout driving function r(t) Sugoose s(t) is

th . . ol , ; .
he n sub {super) harmonic of v(v) at the output then for all t
m
the relation

ck

) (t-{-nTr )= s (t),

m

in vhich n, m sre positive integers and T is the period of r(t) is sabis-
T

[é8]

Fied. Substitubion of s(t)4 u{t) for c(t) in Zovation (10}, and simpli-

fication of the result yields

Combination tones are not considered here.
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L(p) (ug'i(r—S}} —t-_ LI : O O..GGD'..GOOBOG.OBG"H ll
ax

as the veristionsl ecuation for the nonautonomous case. This equation

which is of the same basic form as the autonomous case is a linear dif-

ferential (-difference) eguation with time periodic coefficients.
The neriod of the coefficients is the veriod of df (r-s) which,
dx
in turn, is the periocd of »(t) - s(t). If s(t) is a subharmonic of

»(t) then the neriod of the coefflcients is the period of s(t), the

=

imit cycle. On the other hand, if s(t) is a super-harmonic of r{t)
then the coefficients assume the period of v{t) (which i1s nobt the limit
cvcle period). Thus, the period of the coefficients in the nonavtono-~

mous case need not be the same as the limit cvcle period.



STARILITY OF LIWIT CYCLES IN AUTONQMCUS TIME-—

LAG RELAY CONTROL SYSTENS

n this chapter, the Hamel (and subsequently the Tsypkin)
Locus for a system with an ideal relay is extended to include
time-lag; this enables limit cycles therein to be determined exactly.

The describing functi

&
o
E_J
2
3
%)
O
[
l_.}
Q.
-

have been used for this purpose, but
since it is an aprroximate method an intersection of the Nyguisv Dia-
gram with the critical locus does not guarantee a limit cycle, Thus,

a meaningless situation could have arisen in which the stability of

a situation, however, is precluded with an exact method like the Hamel
B 2> <
Locus.,

The next step is to specielize the variational eguation for the

191

aturating system developed in Chapter II to the case of an ideal relay.

(2

s

This equation is then solved

o

ny

v s

(1

mpled data methods. This solution,

1

together with the extended Hamel Locus, constitutes a complete and

exact limit cycle and limit cycle stebility analysis for the particuler

case of a bime-lag relay control systen., This fechnique 1s then used

to analyse, in detall, the sysbem which initiated the study. With th
o

aid of this sclution, an explenation is offered for the failure of Loeb's

fule,




‘he chapter concludes with a remark on the connection between

Loeb's Criterion and a rule for the Tsypkin Locus, together with a

rigorous derivation of the latter rule to supplant the fallacious exist-

ing one.

though similar to that of Gille eb al., dif-

. . . 1
fers from the latter by the inclusion of a tine-lag.
o gl

investigated for limit cycles

- By )
e(t) = o\ x(t) fm v{t) e _v{t) c{t)
~ -
relay delay linear block

G(s) is stable minimun vhase rationsl function of s,

with simple non-zero pokﬁ

)

If & symuebric periodic solution  of period T, with two switches

ver period, is assumed to exist for x{t) and if the time origin is chosen

1
i

Ul

Gille eb al., op. cit., op. L51-54.

N

“The nonlinearity is symnetric, so a veriodic solution will be

Uscillations with more than two switches ver perlod are not
considered Jere. Some work in this area has been done for the zero time-
lag case by Juftl using a (state) Yoy See I, H. Mufti, "&
ol : Exact Deberminstion of Periodic iotions in Helay Gontrol

i' JECC 5 Trox




to agree with earlier work then v(t), as shown in Fisure 9, will Jump

e

from -1 to  + M ab the time origin. Consequently, a minus to plus com-

.

mubstion of the relay must heve occurred T secoads earlier, namely at

%)

t egual to =T . By the principle of causality, the outnut, c(t), at t

equal to -T is determined by the excitation, v(t), from t equels ~CQO

.

to t equals -7 . <Lhe explicit form of v(t) in this range depends on the

5 =

lenzth of delay (%) relative to the limit cycle period length (7). In

particuler, e unique positive integer, m, may be defined for each value

-

foXi such that

1=y
e

< ‘Z I}ir" ocoaooeuco.onotuosoaooooeoaeoooe 1.23,
<

pafes

or equivalentl

#5008 060060D¢0C03000EE00CCOSs0600030000C l(_,O

\%
ER0

i3

. L2 APl oA o
18 sartlsiled, \r("u/

m
e
!
H
<7

t ]
i | ]
N GRS
i
H i z L
Co T
! mT
[

AT ITEYSY Y i) "v'l{, i TYTT ’4'\",7
UUPUT OF THE DELAY

The excitetion, v(t), considered as a sequence of delayed step



functions of height I, is given by

{ m
v(t) = 1«:{{—1) Ultrml ) -+ Z\-—l' [u(tv;r) — U{t4 (k- 1)”‘)}1 cessecsares 13

Senis
2> K% peedt

n o,

in which U{%t) is the unit step function. Substitution of the appropristely

delayed unit step response of G(s),

cach delayed unit step function in

e(t) = (1) " bha) +z\~1> D) — q<t+(k_1>;r_s]},,,,,,.,.,,,. 1,
2 2

2 f=ms

for the response at the output of the system,

P

- ~ 7 - . . - . N - N A - o >
How, G(s), being rationel mey be expressed in a partial fraction

SN am T
GKS/\"‘ I\Li © 6 0 000000008 QD00 EEO00O0TLO N0 SE DGO CLEDEOV OSSN ]—5
1=1 $-P
C e .th ey e Y e 3T A e )
in which ps 1s the 17 pole with residue L, and I is the
~“ T ) . x) A\ ° N K o
poles of G(s)., The unit step response of G(s) is determined from

1 T

-p=Lle ) ‘ st

q(t) "‘i {(}(S}}: l G(S>e d~5 ¢ G000 O0L 0000 YO OEGE 000006002 3—6
s 23] s

o o

on inversion yields

\ N N 0.t
s - W 1% oY oarrf s
q(L/ et hind Ki—%—zi\ielju(t) 08 Q@000 TG0 0600QOCEE0O0GSELs0DO0CGCE 17

in terms of the symbols of Hguation (15)., »Substitution of this expres—

sion for g{t)in Zguation (14) zives

_ np )y, L by -pidye kg
o6 = (-0 [ 4 Vs P R 4 S P - TP P l’j
ST AT =T p3 k=

2080009000680 -1-8
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L
the geometric series, reduces to

Y Di(t+m'f‘> N N -0 T m+l Oi(d%—l)‘j

m M ¢ . mn D s i i = ]
e(t) = 1.:;{@1) [.Tzz‘zi.;* i 2 ]+ z;zr:;e‘l"[l ~e FJ(-1) e g

¢}

U8 600000830008 DHEE O ]-/

90060860680 006000006CDCO60 4006060008 20&

-
)

0000000705008 S800600000000G60TSCCCIG 20139

Y i o

9
o
W

The subscrip dependence on m,

In analogy o the a Hemel Function, H_(F) is

defined on the range

o
M1

T
2

e
H (;L:);A{m(—’g’+£)+j>{’<mzl+rlq) 560 ¢S 00000C0D0C06E060CCDE0 900000 G S 21-9
5 n I

Ly m
ﬂr: . N s 2 O:?-}l; >
I'his zeometric series whose comron retio 1s e'~7 converges since
R Lo o s R ~ . 4 . . o LAY
G(p) is a stable function (that is, Healspy¢ is less than zero for all i),
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Note: The subscript notation of the extended Hamel Locus
will be used henceforth in preference to the prime notation of
Chapter 1I, For example, Tm will be used to denote the limit cycle
period rather than Tt,

Asat, b tend to zero the szturation nonlinearity approaches
the ideal relay and gﬁ(x') tends toward a train of impulses each of

dx

welght, A given b
) 5 m: &y

Am:ZIJI lim (& }0'0'.00"00.0"000...0.90“0.'.00' 33
A‘t,bﬁo"&b

which may be evaluated with the aid of

X (-T‘At) - X (—T) —A‘bX (_?‘) 600000 CCc00QOCQOEODCAIARDRODEO 314‘
m e In m

a Taylor approximation which becomes exact in the limit, The first
condition for oscillation (see Equation (24a)) requires that Xh(_T)

be zero, Furthermore, from Figure 6,At is defined by

X (‘T“&t’) ': "‘b 0000 P 6000000000060 C00008C00O0DEROEOSOTCE 35
m
for all b. Insertion of these results in Equation (3.4) produces
b:At..'X (—2‘) ® T 8 OO0 0O D OGS TO B VOO0 EC OO TP 00 OCOOCY OGO OO O 36
m

which, on rearrangement, becomes

L. %‘tﬂ} : -l 0 0 QOO0 0000 OO 000D GOCEODDO OO OO CE OO 37
At)b =olp }ecm(_'{)

in the limit, Substitution of this limit in Zguation (33) yields

Am =24
XUL(-'Z‘) 0 06 0 000 GO OO0 OO0 OO OO0 0D A OD OO VO QO QI OGO COCO6 38

~ 17
a result which is in agreement with Yille et al,

The variable gain function or sampling function, df(x ), writt

7

His approach is gquite different. Gille et al, op, cit.,
pp L 478“80 °
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stability technigues cannot be applied to it without considerable modi-

12
fication, However, under the r-transformation,

Z:r‘—%_l #0000 0000S B0 COOLOOODOEROOOLOESEOSOEOCOECSCOEOOO 51‘-’
r-1
which maps the unit disc of the z-plane into the finite

left-~hand r-plane, Equation (53) becomes

N Py (nmsm. 2

Lér‘!"lg r"l zKi 600060600000 &)'5
r-l %r-+ l%m” 112,
- Lifemyr ¢+ 1+ Pitem

which is amenable to standard stability techniques, The summation in

Equation (55), may be written compactly as

Pi (ol gy 7) - <
ZK - ZK' pocoo0000000000 56
i) IRUF T

@ - Loy, 1 Pilem

in which Klnf rlm are defined by
- 'epi(stmfzj
im i
p.T © 0 000 E00VDOCOOO0BO0 O ODEOOOOLD 5730
1 =6 1% sm
and
s T
r, :epl Sm_%’l 0 00C00 OO OO0 0COADOOCOREDGEOOO000QOOOD 57b°
= T
epi 5M = 7

That this summation (Eguation (56)) possesses the properties of a partial
fraction expansion of a stable rational (though not necessarily minimum

phase) function is established by the following arguments

12
The symbol, r, used here is not related to r(t), the symbol for the
driving function.

'3 Deleted
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Since G(s) is a rational stable function (by assumption) its
poles appear as negative real numbers and/or in complex conjugate pairs
with negative real parts, Moreover, if the pole, p;, is real then the
corresponding residue, Ki’ is real and if the poles, Py and pj, appear
as a complex conjugate pair then the corresponding residues, Ki and Kj
do also. From this, it follows that the poles and residues, T and Kim’
conform to the same pattern and, indeed, in exact correspondence with
those of G(s). Specifically, if p, and Ki are real then r, —and Kim

are real algo. Similarly, if p , pj and K., K, are corresponding complex
i

J
Jm
Furthermore, from Equation (57b), each pole, r

conjugate pairs then so are r, , r

im T ym and K,y K

ips Of the summation

has a real part given by

{ 1 T 3
Reirim}:Re{epl Sm+l} 9000 OCO0OODDO0OOOEENHCCOCHeHOO0H0CSSODSOO 58

T
epl sm _ 4

which reduces to

T I{e .
Re%r. } - 82 Sm[ <p1)}
2

“lO‘QG.QO00000..000000.'0.G.UO".O‘ 59

PiTey

after a few manipulations., Since Re(pi) is negative for all i (because G(s)
is stable) it follows from Equation (59) that Re(rim) is also, Therefore,
the summation (Equation (56)), is the partial fraction expansion of a stable
rational function, Hence it can be expressed as the ratio of two polynomials,

that is, by
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in which the order of Dm(r) exceeds that of Nm(r). Insertion of this

expression for the summation in Equation (55), gives

m
L(I‘-{»l):(r-l) N .(r 600000080 000600060000000000 61.
fr-1}  (r+ 1)0-1 Dm%r%

On the other hand, the successive application of the 2z and r-

transformations to Equation (42), produces

H r+l :1+AL (Ii-l) P00 00QGCQEPOOEODOETOOGAOSCIGOOECSTE 62

r-1 mmep.])
which on substitution for Lm(gi;)from Equation (61) yields
(r=-1)
m
H )y 1 - l’i“A‘u(I‘ “'_J_;) Nm(l") 0O P0OCCOOOO0COO0CCODE0CDE 63
) (r +1)" "D (r)

from which the stability equivalent system is constructed in Figure 12,

|~
\

u .
A %r-l; 1 Np(r)
1 " D)

FIGIRE 12

THE STABILITY EQUIVALENT SYSTEM




th
The m limit cycle is stable if and only if the stability equivalent

system (Figure 12) is stable.

The mappings required to cbtain this stability equivalent sys-

tem are conveniently summerized in Figure 13,

= N

T o
Pom

FIGURE 13
TRANSFORMATION APPLIED TO THE VARIATIONAL SYSTEM

(FIGURE 11)

5, ANALYSIS OF THE STABILITY EQUIVALENT SYSTEM

Since only a simple yes or no suffices to answer the question of
limit cycle stability, the Routh Test is, perhaps, the most appropriate

of the standard analysis techniques.

The Routh Test

From Equation (63), the ordinary Routhian Polynomial, P (r), is
m
given by

_ m-1 m
Pm(r) - (r+1) Dm(r) +Am(r hnd l) Nm(r) oevo000000008 61}-
which when evaluated at the origin gives

P_(0) = D_(0)+ Ay(-1)™W (0) seurrrrenriuuniurnnnanns 65,

However, Equation (38), gives A, as

37



A =2
m ®
x (=7)
m
or equivalently by
A :“'213'{ OO0 P50 000D OO0 COACOSO0O006SO0S 66
' =
c (~%)
m

which, from Equations (22b and 23b), evaluated at the limit cycle

period, Tmf becomes

Am--?,M . ) 000 PO0QCCOIOOOO00006600CEQ 670
N (mT -7
2u(-1)" Tk, LT
i=l 53T
1+etnm
2
Substitution of T_ for Im in Equation (67) gives
2
%l:-—l P C OO0 00000V VOCE ®OCE I OO 68
N (L c=T)
p3(m
LD Ik
1+ e 17sm

after simplification,
On the other hand, when Equation (55) and Equation (61) are

evaluated at the origin and the common term eliminated one obtains

nN  pi(mT_-7)
(-l) .Z Iiie s = ('1)Hl1\lm(o) 0000006000000 0000G0C ¢ 69
e
1+ ePilsm D_(0)

from which

38
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N
§::Kiepi(mrsmfzj
i: @ 0 0 & ¢ 0 O OO G e e 066 B Q000 O 70

14 Pilsm

¥ (0) = D_(0)

is produced. Substitution of A from Equation (68) and Nm(O)
m

from Equation (70) in Equation (65), yields
P(O) :O e 0000 OO OO S DO OY O QOO0 B OGO OO OO O OO0 C S OO0 I OO0 71’
m

Therefore, the reduced polynomial, P;(r), defined by

P(r) = (r+ 1>m’le(r) FA (2 = DN () eeneenns 72

r
is the aporopriate polynomial to investigate for right-half
plane zeroes by the Routh Test.

Though the Routh Test is simple and adequate it suffers
from two major disadvantages. First, because of the itime-lag
there will always be a nested infinity of 1limit cycles occurring

c
at small periods, Besides the obvious impract#g;lity of testing
an infinity of possibilities, each successive one (as Tsm tends
to zero) has a larger m, so that the expansion of the binomials
and the subsequent collection of terms required to manipulate
Equation (72) into the proper Routhian form (which displays the
coefficients explicitly) becomes quite tedious. Second, the
Routh Test gives no indication of the degree of stability of the
limit cycle,

Stability of the limiting case. The first aforementioned

difficulty with the Routh Test is somewhat alleviated by the follow-

ing discussion of the limiting form (as m increases ) of the



denominator of the closed loop transfer function of the stability
equivalent system (Figure 12).
Substitution of Equation (68) and Equation (55) in

Equation (62) gives this function as

. Pi(stm - 1)
(_1)m(r_l)m z Kie
= Pi em PiT m
41 (l-e Jr+1+4+e S
Hm(r—l) =1+
p.(mT_ - 1)
1§ ke W
(r+1) )
i=1 piTsm
l1+e
However, it will be more convenient to work with Hé(%é%) given by
v ePi(stm - T)
H' (Eil) = (r+l)m“1 ) = +
mir-1 i=1 Py Tsm
1l 4+e
N pi(stm -0
K,e
(_1)m+l (r—l)m z i .
i=1 . wpiTsm piTsm
{1 =¢€ Jr+ 1+ e
a function which has the same zeros as H(f%%ﬁ . Introduce dm,
defined by
m Tsm -1
dm =g Ceeecasarnes
sm
which from Figure 9 satisfies
0<d <1 st ssaensenn

m

for all m, From the above two equations it is evident that as

m increases Tsm tends to zero, such that mfsm remains finite.

40

23

74

75

76
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Insertion of Equation (75) in Equation (74) gives

PiTsmdm
N K.e
w (E) - )™t ] et
m \r-1 121 piTsm
l1+4+e
+1 N K pi smdm
D™ =" ) e ... 77
i=1 piTsm piTsm
(1 -e Jr+ 1+ e
which reduces to
N K N K
1 _Ei'_:_L_)= m-1 i - m+l _qym i
BO(ED) - ™ ] e (DTN gy e 78
i=1 i=1 i“sm

for large m{(small Tsm). If G(s) falls off more quickly than 'é

N
for large s then z Ki vanishes as shown by the following
i=1
Lemma : If G(s) asymptotically approaches EE- for large
'S
s, where K 1is a constant and n is a positive integer greater

N

than unity, then z Kipi vanishes for k wequal to 1, 2, 3...n~1.
i=1

Proof: From Equation (17) the step respomse of G(s), q(t),

is given by pit
§ Ky N K e
q(t) =~ ) == +
i=1 P+ 4=1 Pi

from which the kthﬂ derivative is given by

k N k-1 p,t

d

——k,q(t) =) K,p; e o 79
dt i-1

which when evaluated at the origin produces
dk k-1

N
S— q(0) = ) K.p eee.. 80,
atk j=3 1
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On the other hand, the initial value theorem yields

d—-Eq(0)=1ims{ék ﬂi}—} feeeeee.. 81
S
dt g0

provided all the lower order derivatives are zero at the origin
(zero initial conditions). Because of the asymptotic behaviour of

G(s) Equation (81) reduces to

dk
— q(0) = K lim niseeense 82
dtk g " k
and in particular
dk
- q(0) =0  seeeeeeen 83
dt
for all k 1less than n. When the right-hand side of Equation (80)
is set equal to zero in accordance with Equation (83),
N k-1
ileipi =0 ee. 84
obtains for all k'less than n. This is the desired result.
Thus if G(s) falls off more quickly than é‘ for large s
N
then z Ki = 0 and Equation (78) reduces to
i=1
+1 +1 n Yy, D 85
v (T — (o) _1y™ oy e .
Y (r—l (-1) (-1 ] Xy .H_ (2 piTsmr)
j=1 © ifg
N
.ﬂ 2 - piTémr)
i=1

in which the summation is rewyritten as the ratio of two polynomials.

and
The coefficients of the highest,second highest powers in r in the

Routhian Polynomial (which is the numerator of Equation (85) are
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of opposite sign for sufficiently large m; therefore the
associated limit cycles (for large m) are unstable. This result
is established for the case in which all p; are negative real
as follows:

The highest power of r in the numerator of Equation (85)

rm+N_l. The coefficient of this term, A, is given by
N N
A=T"1 VR T (-p)) eeeree.. 86
sm J . i
j=l = i#]
and the coefficient of rm+N—2, B, is given by
gey ¥ N : N N-1
B = 2T ) Kj[ T (=p)+ T (-pp) + ... T (-p)]-
j=1 i#3,2 i#3,3 i#],N
N N
-
mszl E K. I (-pi) ses s e s e 87
=1 7 i

which for sufficiently large m reduces ﬁo

ne1 ¥ N
B=-mT_ "] K. T (-p,) R 13
j=1 7 it

Since A and B given by Equation (86) and Equation (88) respectively
are opposite in sign the assertion is established. Hence for all m
larger than some critical value all limit cycles are unstable. The
main weakness in this result is that the critical m is poorly
delineated.

It is expected that a similar result may be obtained for the
case in which complex p, are allowed although no proof is attempted

here.

Equations (89) to (94) inclusive and page 44 have been deleted,
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ter a few manipulations are performed. Again, the first two

coefjcients are of opposite sign (see Inequality (&1B)), hence

every 1iwit cycle with period smaller than Tc is unstable. The
weakness inthis result is that the critical period, T,, is
poorly delimite

Nevertheless, a necessary condition that

the Taylor Expansiox be valid requires that

be satisfied for all i and m\ This becomes

IC<<—1;‘“ &9 900 00 C.GOOO'G.G.O.GQ.OG..OQO.'QGQ 9LL
4

for all i in terms of the critical halX period. From this, a

rough idea of TC may be obtained,

Gomment: The existence of a critical pexiod has been estab-

1

lished for all systems (under consideration here) Which behave

asymptotically as 1 or‘;?, that is, for n equal to ondor two.

S s™

It may be possible (perhaps by mathematical induction) togstab-

lish this for all n, though such a procf is not attempted her

The Nyguist Methods

#ither the Nyguist or the dual NyquiséE%Ethod when applied

to the open loop function, AmLmér+l s is free from the manipula-
r-1
tive difficulties inherent in the Routh Test. On the other hand,

each Nyquist Diagram intersgfts its respective critical point because
r-1)m
lBThe factor, 'r+l§ -, along the Bromwich Contour behaves
exactly the s&me as a tlme~delay factor so that the dual Nyquist Method
does &pply. for a discussion of the dual Nyquist Diagram see:

P, Jones, Stabiliity of Feedback System Using Dual Nyguist
Diagrams, I.R.E, Transactions, vol, CT-1, #l p. 35, 1954,

M, Satche, Journal of #pplied Mechanics, December, 1949,

pp o #l 9"'20
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the Nouthian Polynomial has a zero at the origin, This means
that no estimate of the degree of stability of the limit cycle
can be obtained from either the Nyquist or the dual Nyquist
lMethod, However, such an estimate is provided by the Nyquist
Diagram for the reduced function, H'(r), defined by

m

Hi(r) = 1441 (sl
n 5 LI’—-l 0@ ©° 90000000060 06000800960000 950

r

Unfortunately, the dual Nyouist Diagram for H'(r) is complicated

by the 1 factor and the method loses much of its efficacy.
T

Caveat: It must be emphasized that whatever method is em-
ployed, each limit cycle is tested individually, not collectively.
ThHus, for each limit cycle, either a new Routhian Polynomial
must be computed or a new Nyquist Diagram constructed,

i'}hou;.g,h both the Routh and Nyguist lMethods are intrinsically
cumbersome, it is possible, with any of the Nyguist Methods for
a definite trend to emerge after constructing only a few diagrams,
Because of this, the Nyquist Methods appeared to be superior to

the Routh Test from a system point of view.
6, AN EXAPLE

The example that initieted the study (Fizure 1) is now analyzed
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by the methods developed in this chapter. A"I‘he values of the system
constants are given by

MZ1, T2, pp = -1, K =1, p, =0, K, =1

which when inserted in Equations (25a, b) produce:

T
Re{H (T)}- (-1)™(-2 4 2el-m~T+(2m - 1)? teseccsessecssscccss 902
1+e?2
and
Im{Hm(_g)} 2(-1)"a e m—%) eneeteserieeneerniressnesaaees 96D

1+ e%?

th

for the m” Hamel Function on the range,

1 °
m N < <m—l

The first four Hamel Functions are plotted in tandem in Figure 13.

4 Im{H(T)}
JHL('-E)
ﬂ"‘\m(?,f\
Re{H(D)]
b

commutation line — 1;3 = Tos = 0.49sec.

15 - - ¢

25 - T5s20.248 SEC‘QZ/{L =T, = 375 H(;)

weT / !
-

FIGURE 13

HAMEL LOCUS FOR EXAMPLE
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The form of the Hamel Locus strongly suggests that this
system has iInfinitely many limit cycles. This refutes the claim
of Gille et al. that such a system has only one limit cycle.,

It is true, however, that this system has only one stable and
therefore one physical 1limit cycle. Indeed, that the limit
cycle with half period of 3.75 seconds is stable is readily
established by the Routh Test as follows:

From Equation (60) and Equaﬁion (56) it is evident that
Nm§9may be expressed by

") N pi(ulen-1)

Np(r) = > Kie
Dm(r) i:l -7 . ¢eco020000¢060000 97
(1 - epl Sm)r-%—l-%—eplTsm

which when evaluated at the first limit cycle (half period 3.75
seconds) produces

Nl(r) = 0.5(r +0.917)

@0 P 00000000030 CE6EO0OGIOCEEO 98

Dl(r) r +1,048

after simplification. Substitution of this expression in Eguation

(72}, produces

1
Pl(f’) - I‘—-%—l,OLpS’-ﬁ—-Al(r L l)(O.S)(I‘—%—O,(Ql?) eso0ec0o00c0e0 993

r
the reduced fouthian Polynomial for the first limit cycle, The gain
constant, Al, is readily computed by evaluating the numeratgr of

the above expression at the origin and by setting the result equal .

to zer-of"5 When this eguation is solved for Al, the result is
14
Gille et al., op. cit., pp L440-1,
15

For a proof that the numerator of the right~hand side of
Equation (99) vanishes at the origin see pp,37-9.
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2
_(=1) (1.048)
1 (0.5)(0.917)

A = 2.28 cheeesaeses 100

which when reinserted in Equation (99) gives

Pi = 1,14r + 0.905 creaaessess 101
after simplification. Since this reduced Routhian Polynomial is
obviously stable, the first limit cycle is also stable.

When a similar analysis is applied to the adjacent limit
cycle (half period 0.49 seconds) the reduced Routhian Polynomial
simplifies to

PI(r) = 4.43r° - 8.14x7 + 6.96r + 17.38  ....eeooe... 102
which is obviously unstable; therefore, the associated limit cycle
is unstable.

Furthermore, G(s) satisfies the conditions set forth in
"Stability of the limiting case'; hence for sufficiently large m
all limit cycles are unstable. In deducing this result the approx-
imations

i sm

1+ e caessessseses 103a

-1
o

and

i Ceveeseescesss 103b
¢ 1 sm

—
1
o
it
gl

were assumed to hold for all i. Since Py is zero these equations
are satisfied exactly for i equal to 2. For i equal to 1 the

left-hand sides are

p,T - .
o 183 _ e( 1) (0.248)

p,T _
o 1783 _ gy of 1) (0.248) =1

1+ 1 =1.78 and 1 -
assuming a critical m of 3. If 10% error may be tolerated in
Equation (103a,b) then all limit cycles with m greater than 1 are

unstable. This conclusion is in agreement with the experimental facts.

=0,22
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An interesting sidelight is that this system may be rep-
resented in a "phasé plane" in which the limit cycles do not
alternate in stability in accord with Poincare's Rule. This
apparent contradiction, however, 1is easily explained. The pre-
sence of btime-lag means that the state space has infinitely
many state variables, Conseguently, the "phase plane' repre-
sentation is, in fact, only a phase sub-plane of the entire
system, Poincare's Hule, however, applies only to true state

16

or phase planes,
7, THE FAILURE OF LOEB'S RULE

In the derivation of his criterion, Loeb effectively assumed
that the solution to the variational eouation was a damped sinusoid
at the limit cycle frequency.l7 It will be established in this
section, however, that this assumption is invalid for each of the
1limit cycles in the previous example, except the lowest frequency
one. This is why the rule works for the lowest freguency limit
cycle, yet, fails for all others.

The above statements may be deduced from the transient
response of the associated variational system (Figure 11). How-
ever, the autonomous solution for ﬁm(t) presents some difficulty
as the z—transform method for finding the time respdnse of the out-

put cannot be aprlied directly in the autonomous case,

16
This apnarent contradiction together with its explanation
was first observed by Professor R, A, Johnson,

17
J. Loeb, op. cit., 1951,
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On the other hand, the z-transform is applicable to
this system with zero initial oonditions,l8 and with the
non-zero driving function, a unit delta function at the time
origin, Furthermore, this driven system is autonomous except
at the tiwe origin., Therefore, for all positive time, the
characteristic modes of ﬁ*(t) of the driven system are the same
as those of the autonomous system, Indeed, the following solu-
tion to this driven system is sufficient to establish the invalid-
ity of the Loeb assumption,

Since the z-transform of the unit delta function is
wnity, the z-transform of the output, c (t), for the ! yaria-
tional system is given by

Cn(2) = Aglp(z) N [
14+ ALp(z)

in which Aj and Lp(z) are given by Equation (68), and Equation (53),

respectively., Substitution of the appropriate values in Equation

(104) for the first limit cycle in the previous example gives

¢ (z) = (2.29)(0.936Z 4= 0.0LOL) voevososcsocssssas 1052
(z+ 1D (z + 0,116)

after simplification or

Cl(Z) :2532 —03177 @O0 QO 00QO0CE00O000D0CCOEC 105b
z+1 z+4 0,116

in a partial fraction expansion., The output at a sampling instant

19

is determined from

19
Kuo, op, cit,, pp. 66-8,
18
For the sake of simplicity it has been assumed that there
is no memory storage in the delay unit from the time origin to T
seconds later,
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- -1
C (nT ) - léc (Z)Zn dz ..QQO.D"GQ‘.OU.OQ.'U0.000 106
N
Jar
where I' encloses all the singularities of the

integrand and n is a non-negative integer, The evaluation of this
inversion integral yields

C‘l(o) : O B C 0O O LO0DOOOEPEOCIBOCECOSO0S0CEHDOO0 1078-

for n egual to zero and
1

¢1(3.75n) = 2,32(-1)n—l - (0,177)(-0.116)n— ceseessons 107D
for positive n. From a physical standpoint, Hquation (107a) is ob-
vious because the time-delay in the forward path delays the effect
of the delta function at the output by T seconds.
Since the systen is autonomous for positive time, the error
signal is the negative of Equation (107b) which is

uy(3.75,) = -2.32(-1)"7"

+ (0.177)(-0.136)". . ..., 108
for positive n, This is the solution to the variationsl eaquation at
the sampling instants for a particular set of initial conditions,

By itself, Bquation (108) does not specify a unigue time function
for the unsampled error signal, ul(t). However, elther the modified
s-transform or submultiple sampling may be used to approximate ul(t)
to any desired degree of precision, though such refinement will not
be required for what follows.

From a lemma in Yhapter II it is known that Kil(K is a con-
stant) is always a solution to the variational system, By identifi-
cation, KX, is represented by the first term of Touation (108). Loeb,
in his analysis, completely ignored this steady state part of the

solution and, although this was conceptually incorrect, it did not

lead to false conclusions because the stability of the variational
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systen (and hence the limit cycle) does not depend on this
steady state solution.
To approximate the unsampled error signal, ul(t), from
the sampled error signal, ul(3.75n), the first term in Equati on
(108), is replaced by
(2.32)x3(t)
21 (3.75)
with gzero error since K was chosen so that K%i was equal to the first
term of Eguation (108) at the first sampling instant, The second
term is aproximated by a damped sinusoid at the limit cycle frecuency

of AT  or 0.839 rads./sec., This procedure gives

3.5

. . 2,15 _0.575%
up (8) = (2.32)% (6) - 0,177 2700

008(00839t) ©c 00600000 109

& 20
which is ideﬁ@égkfﬁga E~uation (108) at the sampling instants. Be-

cause of this it follows that Eguation (109) is at least a rough ap-
proximation to Eguation (108). Thus, Loeb's assumption justified for
the first limit cycle,

Insertion of the appropriate constants in Equation (th), for
the next limit cycie (half period 0.L9 seconds) yields

03(2) = 8.9(0,375 + 0,012) cesossessllOa
(z 4+ 1)(z +0.0309)(z° - 2,6,5% + 3,22)

which when expressed as a partial fraction expansion becomes

e

_ ~i0g 3° 528,
C4(2) = QuL79 . 0.009 ~ 0,508 3783 4_.0.508e3 3
241" 2z 40,0309 v —jlt305° J, 13,5
7 - 1.82e % - 1.82e9%°

doo0aco00 llob

20
To prove this, replace t by 3.75, in the second term of Equa-
tion (109). Since the first term is exact the result follows immed—
iately.
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which on inversion by the negative of Equation (106) yields

- n-1
u3(0.11,9n) = —0.479(-1)" l+ 0.009(~0.0309)

+ 1.016(1.82)n—lsin(0.759n - 71.8%) ... 111
the first term of which represents the steady state solution as be~
fore, However, the remaining terms cannot be aprroximated by a
single danped sinusoid at the limit cycle freguency because the
last and dominant term (the amplitude of which grows with time) does
not change sign at the sampling frecuency.

Unlike the intuitive discussion Jjustifying Loeb's assumption
for the first limit cycle, the above argument constitutes a proof
that Loeb's assumption is false for the second limit cycle. Fur-
thermore, it is ressonable to assume (though no proof is attempted)
that the rule lails for the same reason for the remaining limit
cycles,

However, if the intuitive analysis used for the first limit
cycle is pursued for this second limit cycle, further insight is
zained into the failure of Loeb's Rule., Thus, the continuous error

signal, uB(t), is now approximated by

. . 48 =7.11t
ug(6) 5 ~(0.479)%,(8) - 0.009¢ e T M os(6. 1)
z (0,
EB( L9)
-0.6 1.22t
-+ 1,016e 0 e 5in(Le556 = 71.8) veveovssaes 112

which (as before) is identical to Eouation (111) at the sampling in-

stants., It is to be noted that this soclution differs materially from




the previous one in that the last term is not at the limit cycle
frequency of 6,L1 rads/second. This fact explains why the rule
fails, If only the first and second tewms were present in Equation
(112), then the limit cycle would be stable as predicted by the
rule. The rule, however, takes no account of the third term which
is not at the limit cycle frequency but which actually makes the
limit cycle unstable.

It is significant that the failure of Loeb's fule in this
example is not due to any error in the describing function approxi-
mation. Indeed, a sample caleulation by the describing function
method gave 7.4,7 seconds for the period of the first 1limit cycle

(worst case) as compared to 7.50 seconds from the Hamel Locus,

¢
Pl

Since this is an error of less than 0,5%, it is obvious that the

describing function approximation is valid for this example.
g, LOEB'S RULE AND THE TSYPKIN LCCUS RULE

In the previous example, the fact that the first limit cycle

is stable and the others unstable does not contradict the following
0 . » 21

rule derived by Gille et al. for the Tsypkin Locus, It states
that an intersection from above the commutation line, for increas-
ing frequency, always represents an unstable limit cycle whereas
one from below may represent either a stable or an unsbtable limit
cycle; further investigation is always recuired to decide this lat-

ter case,

21
Gille et al., op. cit., pp. 481-83,




Therefore, in all relay systems for which the describing

D

function method closely approximates the Tsypkin analysis, a posi-

tive vector product (which corresponds to an intersection from

below by the Tsypkin Locus) does not guarantee a stable limit

cycle as asserted by Loeb., Indeed, in the absence of further in-
formation, a positive vector product gives no stability information
whatsoever, This certainly agrees with the results of the previous

example in which every limit cycle has a positive vector nroduct

associated with it; yet, one limit cycle is stable and the others
are unstable, This rule for the Tsypkin Locus thus exposes a
major failing in Loeb's Criterion in relay systems and thereby
casts the shadow of doubt upon the positive vector product in all
sy stems,

Unfortunately, Gille et al. employed specious reasoning to
derive this rule. For examle, in the symbolism of this thesis, it
is suggested therein that the zero at s equal to jwﬁf where Wﬁ is

the limit cycle frequency, be removed from l—F‘&ﬁD%(jw) to create the

new function, Sm(jw), given by
1)

) T 14 A 1#( 3
Sm(JV\T> li AmLm(J"\r) D0 209 00080 ODEC OO OO0 000000000 113

s - jw
J m
which is to be examined for right-half plane zeroes by the Nyguist
Test. This latter function, namely Sm(jw), is not a sampled function

because it is not periodic in its argument, Thus, in applying the

Nyguist Test, the. entire right-half plane must be encompassed, not simply
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the primary strip of the right-half plane (which is sufficient for
s sampled function). But if the entire imaginary axis must be
traversed, it is an empty strategy to remove the single zero at s
egual to jﬁﬁ since 14 AmL;(s), by virtue of its periodicity, has
infinitely many zeroes on the imaginary axis positioned at s egual
to & W, i—jBx«?m, +j5w_* . Hence, the derivation is invalid. This
does not mean that the rule is invalid; in fact, the following argu-
ment lends ceonsiderable suprort to the rule.

Perhaps, the simplest way to attack this problem is to apuly
the Nyquist Test to the sampled function, 1+ AmL?E(s), for which the
appropriate s-plane contour (denoted by C) is shown in Figure 1.

‘he detours at g

2 Inis)
Je c
v /

4 Jw v
m

t
i
1
- jv‘rm _!\__ ~~~~~~~~~~~~~~~~~ J

are always needed to prevent the contour from pvassing through the zeroes

21
of 1+ Aﬁ%ﬁ(s) situated at these points, Additional detours are reguired

21
In the Nyquist Test, the s-plane contour must not pass through

any voles or zeroes of the function being tested,
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if L(s) has any poles on the imaginary axis,  The limit cycle will
be gtable, if as s traces out C, L¥ (s) does not encircle the critical
point, =1 it will be unstable otherwise, Some general properties of
Am
the sampled locus are now deduced,
In the neighborhood of the critical point, the sampled locus
may be approximated by the two term Taylor Expansion at s equal to
1wm, given by
jey L ‘ je ;
L‘X“ e 4 “ - IJ—X. Juwr i L eovc00csv000 00060060
“(Jugrre”) = TECw ) +re” di( du,) 114
ds
54 - .
in which reJ is defined in Iigure 14, Straightforward differentiation

nd substitution in Equation (23a) and Equation (50)establishes

—-L]II\I(JW ) - v"1"’]_ d‘ (ne{Hm<Tm)}> GO B ECE S D OO0CENCR00300 115

ds ;;dw i 2

which, since Wy is a positive real number, proves that g&*(jﬁm) is a

real nupber whose sign is the same as %_(ReHm('m))e The sign of the
W -
2

latter derivative is easily read from the Hamel Locus. Furthermore, the
real part of the Hamel Locus is egual to the iraginery part of the
Tsypkin Locus. Therefore, the previous esuation may be rewritten in

terms of the Tsypkin Locus as

(J‘W )'::7 (-‘Lm{—/\—kw )}) L N A N N R EEEE R 116
ds "“dw
284
The sign of‘g_(lmﬁm(wmi}) is positive if the Tsypkin Locus aporoaches
the commutation line from below for increasing w and negative inm the

other case, a fact which is apparent for any particular limit cycle by

22
inspection of the Tsypkin Locus, From Equation (114), the behaviour

of the sampled locus in the neighborhood of the critical point is sum-

22
In the Hamel rebreoentatloq, the derivative is positive if t
locus cubs the comrutation line from the right for increasing Ty it 1s
negative in the opposite case,

-
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marized graphically in Figure 15,

Another general fact about the sampled locus (which is
easily proved by sebting s egual to zero in Bsuation (50)) is
that L@(O) is a real number, This means that the sampled locus
intersects the real axis at s egual to zero. Now, if (1) this
intersection lies to the right of the critical point and (2) the
sampled locus does not cut the real axis for any other values of

s as C is traced out then the mth limit cycle is stable for

dL;(ij) positive (Figure 152) and unstable for dLﬁ(jwm) negative

(Figure 15b). This is the sssence of the rule derived by Gille et al,

with two sufficiency assumptions appended,

Iml(s) _
- m VAN ].II!L'E\;I( S)
i
: 2
-1 L Relot(s) fl'l ReLé(s)
Bl o v 12 \‘\ [P §11
.
m f x \c ritical
point | point
a) g&g(jwm)>0 b) g&ﬁ(jWﬁ)<O
ds ds
Note: The Tsypkin Loeus,.A(w), Note: The Tsypkin Locus,.a(w),
cuts the commutation line from cuts the commutation line from
below (not showm), sbove (not shown).

FIGURE 15

BEHAVICOUR COF L;(s) EAR THE CRITICAL POINT



There is (at least) one general case for which the first

assumption is 1ot required. Supvose G(s) (refer to Figure 8)

contains a single integration then if p is taken as zero (without
N

loss of generality) the corresponding residue, KN’ will be a posi-~

tive real number. To prove this, observe that since G(s) is
assumed to be a rational, stable, and minimum vhase function it mnay
be expressed as

N-2 .

G(s) = Zizaisl

l‘“o @O 80000000000 000000000¢000006000060600c0 117
S S

N-2 .

SEZ:b_sJ

30

in which as, b are positive real numbers for all i and j. The K,
J
residue is given by

I/\;I\I : lim{SGkS)} ooooooeeo‘oooocoaooooocoooooooooooa 118
S=w0

R

which by virtue of Zguation (117) becomes

-,
I\ a 'aaoooeoocoo93001000310000091000oaoceeoo 119
-8
bO

in the limit, Since a, and b, are both positive real numbers, KN is
also, On the other hand, substituticn of Py equal to zero in Equation
(50), vields

-0z T _. . -nT 8

l Ui +"“‘ l $000c00000006000 120
1 - e"lsm(S*Pi) 1. e*TsmS

for the sampled function when G(s) contains a single integration. Ais

s tends to zero in Zguation (120), 'g(@) tends to4-gosince KN is a posi-

tive real number. Hence, in this case, L;(O) is always to the right of



the critical point (which is a negative ﬁeal number) ; therefore,
the first assumption is nct reguired, It should be noted that
this remark applies to the previous exanple (since it has one
integration in G(s)).

As the discussion is not intended to be an exhaustive
study of this rule for the Tsypkin Locus, no further proofs
will be attempted here. The purpose of this discussion is only
to expose certain fallacies in the existing derivation and to lay
a firm foundation for further research. To this end, two possible
"theorems" are proposed for further study:

"Theorem 1": If G(s) has one integration then an inter-
section from above the commutation line for increasing w by the
Tsypkin Locus always implies an unstable limit cycle at the fre-
guency of the intersection. (This theorem would eliminate the

second assumption for intersections from above,)

"Theorem 2%: If G(s) has one integration then the lowest
freguency intersection of the Tsypkin Locus with the commuta-
tion line represents a stable or .unstable limit cycle accordingly
as the intersection occurs from below or above the commutation line
for increasing w, (This theorem would eliminate the second assump-
tion for the first or lowest frecuency intersection,)

No proofs are offered for these "theorems", nor is it claimed that
they are, in fact, true. Nevertheless, they could provide a con-
venient starting point for further work., In this connection, Gille
et al, cite a Russisn reference which might be useful, though it

was not reviewed by the author of this thesis.,

23
G, Nejmark, O periodicheskikh rezhimakh 1 ustojchivasti
relejnykh sistem, Automatika i Telemekhanika, 1/,(5): 556~569 (1953).
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DISCUSSION OF RESULT S

1. SUIZZARY

The failure of Loeb's Hule in the simple control system
described in Chapter I vprovided the mein justification for this
thesis, Chapter II was devoted to a general discussion on limit
cycle stability and served as a base for Chapter III wherein an
exact analysis was developed for 1limit cycles and limit cycle
stability for autonomous time-lag ideal relsy control systems.
This analysis was then used to solve the original problem of
Chapter I; the resulting solution provided considerable insight
into why the rule failed, Last of all, a constructive criticism
of a rule for the Tsypkin Locus was offered and some implications

of this rule were discussed,

2, CONCLUSIONS

The first conclusion is that Loeb's Rule failed in the
exaple cited in Chapter I because of unjustified assumption in
the derivation of the rule, In particular, it was proved that

the solution to the variational equation was not always a damped
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sinusoid at the limit cycle freguency as Loeb had assumed in
his derivation., Therefore, neither the slight error in the
describing function spproximation nor the presence of time
lag contributed in any essential way to this failure., The
second important result was the development, in Chapter III,
of an exact limit cycle analysis for time=lag ideal relay con-
trol systems to replace the aprroximate describing function -
Loeb method, Finally, a rule for the Tsypkin Locus suggested
that a positive vector product per se in the describing func-
tion - Loeb method was an inconclusive stability test for
ideal relay control systems and therefore, by implication,

for other systems as well,
3, FURTHER STUDY

Some topics for further research aré:

1. the extension of the method of Chavter III to other
on-of £ elements and ultimately, with the aid of Mohanmed's
work, to the general nonlinear element containing saturation,

1

dead zone, and hysteresis,

2, a detailed study into possible alternatives to Loeb's
Rule for nonlinearities other than those in (1) above, using the
results of Chapter IIL as a starting voint,

3. an investigation into the behaviour of the limiting

form of the Routhian olynomial for the stability equivalent

1

AJichammed, op, cit..



system for systems in which G(s) falls off more quickly than

1 (see Chapter III) and
>
52

L. a complete examination of the rule for the Tsypkin

Locus starting with the '"theorems" indicated in Chapter III,

6L,
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APCENDIX

Theorem: The variational enuation obtained by the opera-
tional approach is equivalent to those obtained by the state ap-

preach for a nonlinear feedback control system without time-lag

(Figure 16),

v c(t)
£(x) G(p)

FIGURE 16
CONTROL SYSTEM WITHCUT THE~LAG

Definition: G(p) is a stable, raticnal, minimum phase func-
tion of order N,

Proof: The system eqguation in operator form is given by
Iq(p){i‘{x?}+D<p>{X‘%:O G 0 60 00 00 O O 00 SO0 GO Q00O OO LS D 12]—
&
in which N(p), D(p) are polynomials satisfying

G(p)“_k; 2 6 0 0000 Q¢ DO OGO GO L OISO SO OEeLOCLI OO0 1226
D(p
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The order of D(p) exceeds that of N(p) and p denotes the operator

4 . The phase equations are given by
dt

Xl X
X =Xy
.}.(a;XB ® OO0 &2 CO D0 OO0 OO S OO QO 00D OO0 OGS 123“
. o N
Ty T X
N )
dat

Let the function, ¥, be defined by

4 . o o ?\E—l
N(p)%f(}i)} :F(X, X, x, oo e d.l X) 9800600060000 0CCE OO 1-2[&
‘ H-1
dt

wiich becomes

(.0 Nl =
N(p>‘§‘f(x)z ld()‘:-lj >C2, e o0 XN) 60 ene0ccL000000000080 0D 125

in terms of the phase variables (Equation (123)). In vector matrix
notation, Equation (125) is written as

/ b
N(p){f(xﬂj = F(E) @0 0O0C00COO00GO60080600000O00606G600000680 126

in which

I

X2 © 0 0e¢ 800000606000 0000060 G00G0CEC060O0 OO 1279

Now D(p) may be expressed as a polynomial with re2l coefficients, ap,

that is by
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Nl k
D(p) E:akp —*— @00 00000 OCABSGNLERO00000O00EDPEOO0ED 128
k=o
in which 2y is taken as unity without loss of generality., By vir-
tue of FEquation (126) and Equation (128) the phase eguations can now
] q ! !
be expressed compactly as

%. = 12Ga

.
}\.-“’Xi_l_l © 06000 0C06080CCOO0Q0 00003000 0D0OGCOD00 0O

for i equal to 1, 2, 3, ... M-l and

N~1

x = -(F 9
K\I (}\.>+Zayk+l @ 6 0 0 50 O8O O OO OO SO O & OO OO 12/b

for i equal to N,
Suppose x' is a (vector) periodic solution to the phase egua-
tions, then the replacement of X, by xg -+ uy, where u; is the varia-

tion in Aquation (129a,b) produces

oy . -
Xi+ui‘xt +u OV O 0 00O VEO L0 OO OV O SO O00LR 000 13084
irl ivl

for i egual to 1, 2, 3, ... N-1 and
Nl

tL g ® (x4 S o
T uN (-}S#E)ﬂ-f{'_‘:_;ak(xk’bl§~U1<_¥~l>>nneaoaeaooeao lBOb

for i egual to N. These reduce to

{l’:u @ @ 0 2 0 0 0 Q¢ 009 0 F O OO HOE L OO G IO ENQC OGO OGSO
i 341 131ia
for i equal to 1,2,3, ... N=1 and
. N I\'-l
uI\I:ﬁ.(.Z:uJ‘a}i <-‘{')'} ~_ kuk‘%'l) s00000cco0b00 6 lBlb
J"‘ K= O

y
o)
=
I._J

equal to N, when the limit cycle solution is cancelled and the



higher order terms in the variations uj, u2, Ugs oo Uy are neglected,
Equations (131la,b) comprise the (linear) variational ecuations obtained
by a state approach. These phase variatlonal ewuations are reduced to
the single operational variational esuation as follows:

From Zouation (126), one obtains

1
P(X'TU) - y(X!) = 1\J(p)<él(;L-L—{~ l> - N(p %’f(x )?aocooooeve 132

which, from Taylor's Theorem, becoues
5 o 3

N
DSuAF (x') -+ heo.t. in u, U, ... U = N(p){ulg‘g( ) +h.o.t.
=1 J%XJ 12 i L Tdx 1
) b
in U, Vg, eee Uppoeees 133
whence

N

: = w(o) ) :
;Eggigi (xt) = N<p>iul%§?(xi>} cecvoacosscsacacacseacacssce L3

1s obtaired by ecuating linear terms in g, u2 ess U

N°

Insertion of the right-hand side of Eguation (134) in Equation (131b)

produces
. f* ) 1 I«\l:;l-{
uy = ~(N(p){ulg£(Xi>g -+ ;lJakuk+l)
Codx & k=0
or

N1

O+ > au  —+H(p)

J
u-@‘i:( ')? :O 00 08B0 02O 0O E OO O OO ECOE 135
W K kel ==

T g

which, from Equation (128) reduces to

D(p)({ul,— h(p)g%df(}(') 00 ¢ 09 0026000050040 008000CGE 1366
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Since x' is defined as x]'_ and u as u_, Hquation (136) may be recast

as

oy

7 3 7
N(p) iu_@__f(X‘ )} D(p)juy
dx s Lo

_——
iy

"O 9909 000009000088 CEO0009 €S0 137

P
B

which 1s ‘Tdentical to the variational ecuation obtained by the opera-

tional apuroach; therefore the theorem is proved.




