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Abstract

Krylov subspace methods are among the most important iterative techniques currently

used for solving large sparse linear systems. They are used for solving systems in which

the coefficient matrix A is either symmetric or nonsymmetric. While the methods

used for symmetric systems are well understood, the nonsymmetric methods are more

difrcult to analyse theoretically and recently much research has been focused on these

methods. In this thesis, a review of the current methods which are built upon the Krylov

subspace is presented. New mixed methods for nonsymmetric systems are then derived

which are based on either the CGS or BiCGStab algorithms and which allow switching

from these methods to BiCG. While maintaining the fast convergence properties of

CGS and BiCGStab, the motivation for these new methods is to improve ì.rpon certain

undesirable properties inherent in either method. In CGS it is often the case that in the

eariy stages of convergence the residuals become very large, a behaviour which may lead

to irregular convergence and in some cases even divergence of the method. Although

BiCGstab was developed and successful in smoothing this convergence, in certain types

of problems this method may result in stagnation of the residuals. The mixed methods

are developed to try and remedy these problems by switching to the more stable BiCG

method when certain switching criteria are reached. Numerical testing is carried out

and examples given to show the benefits of the new methods.
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Chapter 1

Introduction

1-.1- Direct and Iterative Methods

Methods for soiving linear systems include both direct and iterative ones. Direct meth-

ods include those that we are familiar with from our first introductions to linear algebra,

namely Gaussian eümination where the solution is obtained through a flnite procedure.

Direct methods, such as Gaussian Elimination, cannot efrciently solve many matrices

that arise in practice. Although these methods are theoreticaüy exact, we must also

consider that when we solve these systems on computers, we will never obtain an 'exact'

solution due to the roundoff error during these computations. Iterative methods, on the

other hand, approximate a solution through a series of iterations. The iterations are

terminated when some termination criteria is satisfied for the 'approximated' solution

vector rn¡1. If we consider solving a system using either a direct or iterative method,

we may think it would be better to obtain the 'exact' solution, rather than using an

iterative method, as the error of an iterative solution might be far worse than the extra



work required in computing an exact answer. If we consider the cost of computing the

solution of. Ar = ó with a direct method such as this, the computational flops (floating

point operations) wilt be O(*") (where m is the dimension of the matrix). In the

worst case scenario, an iterative method will cost O(*u), which is usually never the

case, and at best, for a sparse or structured system, may oniy cost O(m). So, given that

we will expect error in both methods, the decrease in cost of implementing an iterative

scheme is almost always better given a large sparse system. Many of these examples

arise from discretizations of partial differential equations; these resulting matrices have

certain properties that cannot be adequately exploited using the direct methods. Fur-

thermore, they are often sparse, containing very few nonzero entries and when solving

these systems with Gaussian Elimination, it is hard to preserve the sparsity, with many

zero entries filled in during the process of elimination. We can take advantage of these

sparse matrices by solving them using iterative techniques which use matrix-vector mul-

tiplication only. The storage for this operation is just O(*), as there are usually only

a few nonzero entries each row, as opposed to a dense matrix-vector operation, which

would require 2rn2 operations.

t.2 Development of Krylov Subspace Methods

Most efficient iterative methods currently available, use a projection process which al-

lows us to extract a solution vector of a linear system from a subspace. The most

current and popular iterative techniques use this idea and we extract the approximate

solution from the Krylov subspace. Thus, given an initial guess vector Í6, wê can create



a subspace K which is built upon an orthogonal basis and perform a projection process

to extract the solution vector r,r.

Several different Krylov subspace methods exist. These can be broken down into

two major grollps; those for solving linear systems in which the coefficient matrix A

is symmetric and those in which A is nonsymmetric. Below, an ovetview is given of

the current methods used today, from the historical beginnings to some of the many

variations which exist in the current literature.

Krylov methods have stemmed from early beginnings, although the development of

using them as iterative methods did not truly begin until several decades later. Lanczos

introduced the first projection process for symmetric systems. Shortly after in 1951,

Arnoldi [1] developed his orthogonal projection process for non-Hermitian matrices.

This process was first introduced as a means of reducing a dense matrix into Hessen-

berg form and was also later discovered to be a good technique for approximating the

eigenvalues of large sparse matrices. Unljke the Arnoldi method, the Lanczos algorithm

uses a three-term recuïrence to solve the symmetric system, and so is a more elegant

version. From both methods stemmed several of the current methods used today for

solving ljnear systems. The most important and popular symmetric Krylov method,

the Conjugate Gradient method was introduced independently by both Lanczos in 1952

[17] and Hestenes and Steifel [15]. Interestingly, the Conjugate Gradient method was

initially developed as a direct solution technique and was found to give poorer results

than current direct methods at the time. In exact arithmetic, this method should con-

verge in rz steps, although due to loss of orthogonality upon vector formation during

the algorithm, this method did not always give adequate results and was abandoned for



over two decades. In the early 1970's, it was found that this loss of orthogonalìty did

not actually prevent convergence [Zt] and in a sense, was rediscovered as an iterative

technique. The 1980's saw many developments in the new class of methods for solving

nonsymmetric systems. In 1986 Saad and Schultz [22] introduced the Generalized Min-

imum Residual Method (GMRES) which was based on the Arnoldi process. Unlike the

Arnoldi methodl the GMRES method frnds an approximate solution by solving a least

squares problem (see 121] for details).

Several variants were developed from both FOM and GMRES. For variations which

stemmed from both, the reader is referred to Saad's text on Iterative Methods for

Sparse Linear Systems [21] which gives an overview and derivations of most of these

methods. Further studies investigated block methods based on the methods above, for

cases in which one may want to exploit the fast memory storage with blocks rather than

working with single vectors. As one of the first such methods, Ruhe 120] developed a

block method for the symmetric case, based on the Lanczos algorithm in 1979. More

recent work has focused on nonsymmetric block methods.

The main body of literature which exists for solving nonsymmetric linear systems

with methods based on the Krylov subspace developed much later than those of the early

CG beginnings, and in fact is an area of much current research. The methods are based

again on the Lanczos algorithm, although in this case due to the nonsymmetric nature

of A, the methods are based on the formation of a biorthogonal sequence rather than an

orthogonal one as in the symmetric case. The first of such methods was introduced by

lof which there are several different methods referenced in the literature, in this review we mean the
Full Orthogona.Iized Method of Arnoldi's, here within refer¡ed to as FOM



Lanczos in 1952 [17] and 1ater, in the present form by Fletcher [10] in 1974. This method

was introduced as the Biconjugate Gradient Method (or BiCG) and is stili currently

one of the most reliable methods when dealing with nonsymmetric matrices. AIso in

this class of methods is the Quasi-Minima1 Residual method (QMR), which differs from

BiCG in that the approximation is obtained by solving a least squares problem (as

GMRES difers from the Arnoldi method). Although both of these methods work quite

well, they both rely upon using the transpose of L to generate biorthogonal bases. This

is sometimes undesirabie in practice as in some applications the transpose of A may not

be availableif. A is not available explicitly (see [7] for further detaiis). Sonneveld 127]

then introduced the Conjugate Gradient Squared Method (CGS), which does not rely

on using the transpose of A as BiCG does and improves the convergence by squaring

the residual polynomial. This method was an important development as it allows us

to consider these methods in terms of orthogonal polynomials rather than in vector or

matrix forms. The CGS method however may have drawbacks when appJied to certain

types of problems and sometimes develops large residuals near the beginning; as a result

convergence may be irregular or the method may fail to converge at all (as we shall see by

numerical experiment in later chapters). The Biconjugate Gradient Stabilized Method

developed by Van der Vorst [29] in 1992, aimed at treating this unpredictable behaviour

in CGS by providing a different polynomial in the residual construction, which was

chosen to smooth out the convergence. Rather than squaring the BiCG polynomial,

as was done in CGS, BiCGStab uses the BiCG polynomial together with a'stabilizing

polynomial' to smooth the convergence of CGS and aiso to keep the improved speed of

convergence over BiCG. We will see the derivations for both of these methods in the

10



following chapter. Although this method has also proved to be very successful, it may

also suffer from breakdown and the method may stagnate with certain problem types.

Ail three methods, BiCG, CGS and BiCGStab have beneflts depending on the prob-

lem which they are being applied to. It is for this reason that much research has recently

been devoted; we wish to keep the beneficial properties of these methods but hope to in-

crease the numbers of problems which we can apply these methods to. One other aspect

which keeps us from major improvements regarding these methods is that unlike the

symmetric cases, these methods are theoretically more difficult to analyse and as such

have made it more difficult to understand the numerica,l behaviour. The best tool we

have so far in terms of analysing and thus understanding these methods, is through nu-

merical experimentation. Recent attempts at improving the CGS methods include, for

example, that done by Fokkema et ai. [11] and Chan and Ye [6]. In 16], a mixed method

was developed which allows switching between the CGS and BiCGStab methods and

thus avoids the potential drawbacks during implementation. Gutknecht [13] attempted

to remedy this stagnation, with his development of BiCGStab2 in 1991. This method

uses a second degree polynomial and was certainly an improvement to the BiCGStab

method although it stiil suffers from breakdown at times. Sleijpen and Fokkema 123]

furthered this study by developing the BiCGStab(/) method in 1993, which generalized

Gutknecht's method in a sense, and combined GMRES(/) with BiCG. More recent work

which has focused on BiCGStab and BiCG methods inciude, for example, [26], [25], and

1241.

In this thesis, we have attempted to improve upon

methods, as is the aim of much current research. We

the CGS and BiCGStab

provide an overview and

both

first

11



algorithms for the most important methods noted above. Two mixed methods, similar

to the mixed method of Chan and Ye [6] but using BiCG in both, are then derived.

The first is a mixed BiCG-CGS algorithm and the second a BiCG-BiCGStab algorithm.

Both use a switching variable which depends upon the iteration number and thus allows

us to switch freely between the two methods when a certain criterion is reached. With

these methods, we attempt to improve the drawbacks that one may encounter in CGS

or BiCGStab, namely the instabilities and stagnation that may occnr, by switching to

the more stable BiCG method in such a situation. We also give an overview and results

of numerical testing for a shifted CGS method based on work done by Fokkema et. al

li1]. Although we have implemented this method as they have suggested in their paper,

it could also be implemented as a special case of the mixed BiCGStab-CGS method

as suggested in [6]. As we will see, the shifted CGS and new mixed methods improve

the convergence in most cases and for the cases where this is not the case we offer a

discussion and possibilities for further study.

72



Chapter 2

Theoretical Background

2.t Basic lterative Methods

Basic iterative methods, including the following familiar methods: Gauss-Seidel method,

Jacobi method, SOR (SSOR) and the Alternating Direction Methods, begin with a

given approximation rs to the solution, and by modifying certain components of the

approximate solution at each iteration, reach convergence. For example, in each Jacobi

iteration, the (n + l)tå component of the next approximation is determined so as to get

rid of the nth component of the residual vector rnt:_ : b - Arn. In this wa.y) rn is used

as a search vector and z,ra1 is updated using rr.

Further to these iterative methods are the Krylov Subspace methods, which are

used for solving large linear systems, and extract approximate solutions from the Krylov

subspace I(n - span{b, Ab,A2br...,Ab}.

We can think of a simple scheme in the foilowing way. Suppose we are given (or

guess) an initial solution vector 16 and we wish to find a good approximate solution.

13



We can approximate the solution through a series of iterates, n = 0r1r. . . using

Ín*L = rn + M-|(b - A/'r) (2.1)

where M is a matrix called a preconditioner, usually chosen so that M-TA is close to

the identity in some sense, and the residual vector is that defined às rn = b - Arn.

Depending on the chosen form of M we will end up with one of the methods mentioned

above. For M equal to the diagonal of A we have Jacobi iteration, for M equal to

the lower triangle of A we have the Gauss-Seidel method. In general, we can write the

following algorithm

Algorithm L Basi,c Iteration

solve zo - M-rro

fot n : 0,I,2r...

ln|] = Inl Zn

Tn*!: b - Atn¡1

zn*t: A[-rrn¡1

end

To estabüsh necessary and sufrcient conditions for the convergence of this algorithm,

74



we consider the error €n = tn - ¿ where r = A-rb. It is easy to see that

En*L=rTr+\-T = rn-r+M-rA(r-rn) (2.2)

Q - M-r A)en = '. . = (1 - M-t A)keo (2.3)

taking norms on both sides of this equation we obtain

lle"+rll < ll(/ - M-14)Àllll€oll (2.4)

and we can state the following.

Lemma L The iteration of Algori,thm 1 produces the uector rn which wi,ll approach x

and the ercor wi,il approach zero for euery initial xs if and only if

p(I-M-lA)<7

where p(B) is the spectral radius of B, i.e. the largest e'igenualue in absolute ualue.

From (2.3) we can see that if ll(/- M-tA)ll ( 1 , then the error will be reduced by

at least this factor at each iteration.

2.2 Projection Methods

Krylov subspace methods extract a solution vector r,, from a subspace that is optimal

in some sense, through a projection process.

If we wish to extract the approximation from a subspace ,Il then, in general r¿ con-

15



straints must be imposed in order to extract such an approximation. We will defrne these

constraints by imposing n orthogonality conditions. More specifically, we wilÌ constrain

the residual vector rn = b - Arn to be orthogonal to n linearly independent vectors.

This defines another subspace Z, which can be called the subspace of constraints. When

the subspace ,t is the same as .If , we have an orthogonal projection process, otherwise

if -ü and I( arc different, we have an obìique projection method.

In general, given an rn x nx real matrix A and two subspaces -t and .If of dimension

n, we can define a projection technique such that the approximate solutiorr tn is found

where tn-ro is in If and the new residual vector is orthogonalto L or, find rn-rs €. I(,

such that the Petrov Galerkin condition holds,

rn.=b-ArnLL.

Or, we can define :u,, in the following way,

rn=ro*6¡ 6eI(

so that we have,

In matrix representation we can

(rn,q):0, Vq e L

consider finding the approximate solution as

x:rolPy

i6

(2.5)



where P = þtrpzr. . .,pnl € ûl7,"xn whose column vectors form a basis of 11. In the same

way, Iet Q=lh,ez¡...r8r)€$?r¡¿x',whosecolumnvectorsformabasisof Z. Thenthe

orthogonality conditions give,

Qr¡Py: Qrro

where QT AP € U??ixn

2.3 Symmetric Krylov Subspace Methods

As a first overview, the process occnrs as follows: consider an initial guess vector øs, if

this is not available to us, we may just choose co = 0 as an initiai guess. Thus we may

take the first approximation to the solution:

ul € span{ro}

or where our initial guess vector z0 - 0 then we have ro = b - Ars - b. Next, we

compute the matrix-vector product Ab and frnd the next approximation as some linear

combination of ó and Ab:

rz € sPan{b, Ab}.

This process continues until some convergence criteria is reached and at step n t 1, the

approximation satisfies

rn*r e span{ô, Ab,A2b,...,,A"b}

t7



The following methods are based on projection processes, orthogonal or oblique,

onto a Krylov subspace,

/f,, e span{b, Ab, Azb,' - -, An-tb}

this subspace is spanned by vectors of the form p(,4)ó where p(A) is a polynomial in

A of degree less than n. We are seeking the solution rn = A-|b and approximate this

solution by p(A)b.

The Lanczos algorithm builds orthogonal bases of the Krylov subspace K,, for sym-

metric matrices. Through a three term recurrence, we construct an orthonormal basis

Qt¡ yz,t ez¡. . ' ,8n of Lanczos vectors for

{qr, Ah, A' qr, "', A"-L qt}

such that the following matrix relations hold,

AQn = QnTnl þn+tQn+teî

QTQ" = I

QT,IQ" : T,

18



where Qn = lqt, Q2, . . . ,ynl is n x rn and the tridiagonal matrix 7" is given by

a1 þz

þz a2 þz

þn-t dn-L þ"

ß" Qn

if we let qt = rsf llrsll (or when z0 : 0 then 16 - óo), and B = llr0ll and from the matrix

relations above we have

QTro: QT@qt) = þet

Where the approximate solutiorr frn is given by,

tn=ro*QnAn (2.6)

as in (2.5), or when 2o : 0 as an initial guess

rn = QnAn

y^ = T;r(pe|).

In another approach, the Minima,l Residual Method, we find the approximate solution

Ø¿ as above, but we find Un by solving the least squares problem, llþ", - T"ayll (fot

19



an overview of this method see [14]).

We can now write the Lanczos algorithm which generates the column vectors to

form the matrix Qn, and the coefficients a and B to form the tridiagonal matrix fl" so

that we can find the approximate solution to the linear system as in (2.5).

Algorithm 2 the Lanczos Algorithm

Choose an initial vector Ç1 such that llqlll = i

Set B1 :0; qo :0

For z = I,2,...... until convergence

Pn=Abn-þnhn-t

an = (Pnr8n)

Pn=Pn-Qn4n

P"+t = llp"ll2

Qn*L : Pnl þn+t

end for

Thus, using the Lanczos algorithm, we can derive Krylov subspace methods for

symmetric matrices. If we wish to find an approximate solution to the ljnear system

Ar = b, we can consider an orthogonal projection process in wirich, L : I{ = I{n(A,ro).

Such an approximate solution, rn caÍL be found in the affne space of rs¡Kn by imposing

the Galerkin conditionl,

b-ArnLI(n

This projection process ensures ør, is the optimal approximation from Kr,.

lwhen -t = K the Petrov-Galerkin conditions are ca.lled the Galerkin conditions



Theorem L Let rn be the approrimate solution obtained from an orthogonal projection

process onto I(n and the eract solution to the original problem be denoted by r. The

imposed Galerki,n condi,tions are necessary and sufficient for the followi,ng minimi,zation

relation to hold

ll*" - rll.q: nt'inuçvnll" - *llt.

2.3.L Conjugate Gradient Method

(2.7)

From the Lanczos process we can derive the Conjugate Gradient method, used for

solving symmetric systems. The process developed above leads to the approximate

solution ir,141 given âs o22-,r1 = ro * Qngn whete An = T;t(þ"t). This requires inverting

Tn at each step. Fortunately, u¿11 and the corresponding rn¡1 cz.rL be computed by a

recurrence, which is the conjugate gradient method.

In matrix notation. let

Tn = L'Un

where Ln andUn are lower and upper banded matrices respectively. We have,

rn*7 : xo * QrUrt l';t(p"t)

Pn: QnUnl

zn : Lir þet

let

and

27



then

tn*!=rglPrz,

Proposition 1- The Lanczos process produces rn = b - Axn and a search uector pn Tor

n: 0r7r.,. and,

1. the residual uectors are orthogonal to each other, (r¿rr¡) :0 lor i I j, and

2. the o,uriliary uectors p¿ form an A-conjugate set, (Ap¿,p¡) = 0 for i + j.

With the orthogonaüty and conjugacy conditions \¡/e can now derive the Conjugate

Gradient algorithm. The soiution vector can be expressed as,

In*I=In*AnPn

and the residuais satisfy the recurrence relation

Tn*\=Tn-anApn

and if the residual vectors are orthogonal then

(rn+t,rn) = o

(rn-anApn,rn)=0

and as a result we have

(r,"' rn)
u" - (A?nrrn)

22



Where the next search vector prrlr is a linear combination of r,r11 and pn, so that we

have the foliowing recurrence relation holds

Pnl¡r=rn+tIþnPn (2.8)

A flrst consequence of the above relation is

(Apn,rn) : (Apn,p,- þn-tp,-t)

: (AP",P")

because Apn is orthogonal to pn-t we can write

o*=ffi.

In addition, if we write p,,-,.1 as in (2.6) which is orthogonalto Ap, we have

3 - -(rn+t, 
APn)

,r¿ - (P, AP*) '

where from the recurrence for rrr..1 we obtain

Apn: -|?,+, - r*)

o ('n+tr'n+t)
pn-

\Tnrrn)

and so

23



We can now write the Conjugate Gradient Algorithm,

Algorithm 3 Conjugate Gradi,ent

Input ze

Initialize ro : Po = b - Aro

For n = 0,L,2,...... until convergence

wn: APn

pn: rT.rn

on: PIAP,: (Pn,wn)

Pn
Qn: 

-on

- _- IIn*I=IntQnPn

TnlI=Tn-AnApn

n Pn*7
Pn--

Pn

Pn*7=rn+tiþnPn

end for

It is important to note here that the scalars a?? and B, of this algorithm are different

from those of the Lanczos algorithm. We can also see that each iteration of the CG

algorithm will require one matrix vector operation, Apn and four vectors to be stored:

r,p, Ap and r.

2.4 Nonsymmetric Krylov Subspace Methods

The first Krylov subspace methods introduced to solve nonsymmetric linear systems

were based on the normal equations l2t], AT Ax = ATb. Although these methods are
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quite robust, in most examples arising from the discretization of partial differential equa-

tions, the convergence is too slow, and when the problem is somewhat ill-conditioned

these methods will fail to converge within a reasonable number of iterations unless a

good preconditioner is used [14]. A more direct Krylov method for soiving nonsymmetric

problems uses a biorthogonalization process due to Lanczos [17].

Given a nonsymmetric coefrcient matrix A, it constructs a pair of biorthogonal

bases, SttQz,t4z¡.'. rqn and Pt,,PzrPZr- -. rpn fot

K,(A, p) € span{p1, Apr, A'pr,. . ., A"-r pr}

I( n(Ar,q) € span{q t, Ar gt, (A' )' q.,., . . ., (A' )-t qr}

so that the following orthogonality condition holds

(q¡,P¿) = 6¿¡, for 7 { i,j < m.

Similar to the symmetric case, the following matrix relations hold,

APn : PnTn*þ^+ßî

A'en = e"rl*Q^+teT

QT¡P" = Tn

Where we have replaced the product 6n+tpn+t with prr..1 ar'd Bn¡1qn11 with ri,r41.
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Where the tridiagonal matrix fl, is given by

a7 þz

6z a2 As

6n-t Qn-7 P^

6n dn

arLdQnandPnarenxn matricesformedbythecolumnvectors, q¿andp¿fori:L,...n.

Thus the Lanczos algorithm for the nonsymmetric case2 generates the vectors prr+i and

qn+1 using ?, where a,, is given by the inner product of pn and qn and the scalars B

and 6 are chosen such that they satisfy the relation

6n+r þn+t : (Pn+t, Q"+t).

We can write the aigorithm as follows

Algorithm 4 the Lanczos Algorithm (for nonsymmetric matrices)

Choose two initial vectors p1, Ç1 such that (p1,Çr): 1

SetBl-ór:0;qo=po:0

For n = Ir2r...... until convergence

an = (APnrQn)

þntt: APn- Qn?n- þnPn-t

2here after referred to as simply the Lanczos aJgorithm.
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Qn+r : A' qn - QnSn - 6nQn-t

6n+t = l(Pn+r,Qn+ùlt/z

" (P"+t,Qn+t)
Pn+.t :. 6n+l

Qn+tqn+I = -h
Pn*7

þn+t
PnlI = ,0n*I

end for

As in the symmetric case, if we wish to apply the algorithm to a linear system to

generate the approximate solution rn where

rn: to I QnUn

and

y, = T;1(PeL)

where þ : llroll, we first generate theLanczos vectors Qt,gz,...,gn, pt,pz,...,p,L and

the tridiagonal matrix ft to find the approximate solution.

2.4.L Biconjugate Gradient Method (BiCG)

The Biconjugate Gradient Method was introduced by Lanczos [17] and can be derived

from the Lanczos biorthogonalization process in the same way that the Conjugate Gra-

dient method was derived for the symmetric case. The algorithm solves the original

system, Ar : ó, with an approximation æ,,, while also solving a dual linear system,

AT n = ó with AT . In most cases we ignore the formation of this dual system, however
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the transpose of A must still be formed.

If r,, and pn are defrned from P,, and ?l, in a similar \May as in 2.3.1, and ñr, and

þn ate defined ftom Qn and Tn, then they satisfy the biorthogonality and conjugacy

conditions given as

(rn,ñ^)-0 for nfm

(AP^,ø*):o for nlrn

where rn and pn are in the same direction as p¿*r and qt: rolllroll, and ñ, and þn are

in the direction of qn+t, we write the BiCG recurrence in the same way as the Conjugate

Gradient algorithm, although here we must include ñn and þn.

Algorithm 5 Bi,conjugate Gradient

Input 16

Initialize ro : po : b - Axo

Choose ñ6 such that ñf,r¡ # 0, þo: io.

po - ñlro

For n = 0,1,2r...... until convergence

un = APn

Pn: rîñn

o*: þlAPn: (Fn,w,")

Pn
Qn: 

-on

tn*L: tn * anPn

Tn*7=rn-anAPn



Fn+r:ñn-anArþn

n Pnll
Pn-

Pn

Pntl:rz,+ttþnPn

FnIt:Fn+tlþnÚn

end for

Here we see that we will require 2 matrix vector operations for each iteration namely

Apn and A'pn. Thus we will require an extra vector to be stored over the CG method

in the symmetric case.

Here, it is easier to begin using the theory of orthogonal polynomia^ls to describe

the following Lanczos-type algorithms and infact is how Lanczos had introduced his

iterative scheme in the 1950's [17]. We can see that the approximations obtained from

a Krylov subspace method are of the form A-rb x rn*r : rs I hr(A)rs where hn is a

polynomial of degree n. In the simpiest case where uo : 0 the solution is approximated

by h"(A)b or,

A-lb x h"(A)b.

Then r,, - b - Arn - 16 - Ah,-1(A)ro = P"(A)rs. We call P, the nth BiCG

polynomial corresponding to r,". Similarly

P" = Tn(A)ro.

for some polynomial ?,r. Note that Pn and Tn are of degree z. Then, from the BiCG
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IeCUIIenCe Tn*t = rn - AnApn, We have

P"+r(t) = P"(t) - a.ntTn(t), (2.s)

and from Pn*7 = rn*r I þn+rPn, we have

T^+t(t): Pn+r(t) * þ"+tT"(t), (2.10)

The biorthogonality of rn,ñn and the biconjugacy property of pn,ñn lead to the following

orthogonality properties

@(Ar)ro, P*(A)rs) : g and (p(Ar)ro, AT,(A)rs) : g (2.rt)

where p is

an and Bn

polynomial of degree less than ??, we can deduce from the formulas for

(P,(Ar)ío, P,(A)r6) and þn+r:
(P,+{A\ñ0, P,+r(A)ro)

Qn:
(7"(A1')ío, AT"(A)rs) (P"(Ar)ño, P"(A)rs)

The methods that follow are developed using polynomial representation which we

have introduced here for BiCG. The recurrence formulations are a-lso based on the BiCG

recurrences of equations (2.9) and (2.10).

any

that
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2.4.2 Conjugate Gradient Squared Method (CGS)

To improve BiCG, Sonneveld developed the Conjugate Gradient Squared algorithm in

1989 [27]. The improved algorithm avoids using the transpose of -4 and accelerates the

convergence3 by squaring the BiCG polynomials.

CGS constructs an approximation r, such that the residual is given by,

rn:b-Axn=P:(A)ro.

We can derive the recurrence relations by squaring those from BiCG to obtain

PT+t : Pl - 2antPnr, ¡ a?*t2rl

T|+t = P3+, IZBn¡1Pn¡1Tn + þ'"+rfl.

We can see that we will require extra products namely, PrTn and Pn¡1Tn However

P,Tn can be expressed as Pl i þnPnTn-1 and so does not need to be defined explicitly.

Thus we deflne the recurrence relations in terms of the foilowing polynomials,

rn = e]Ç+)r6

Pn = r]çt)rs

sn = P"¡1(A)T"(A)r6

tReusons for developing transpose free methods are discussed in Chan et al. [7]. In many c.rses
it may be difficult and expensive to explicitly store á1 in order to compute Alo and it may also be
difficult to compute ,4", depending on whether or not ,4 is computed explicitly.
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And in finding the BiCG parameters from the orthogonality conditions, we have

p* = (P*(Ar¡ro,e*çn¡rs) = (ñs, e]Ç+)ro): (ño,rn)

and similarly we can show this for on and thus we will be able to obtain an and. Bn¡1

for CGS. We can now form the CGS algorithm with the desired properties.

Algorithm 6 Conjugate Gradient Squared

Input z6

Initialize ro = po = b - Aro

Choose i,, such that ñ[rsl0

Po = iTro

For z = 0,1,2r...... until convergence

w, = APn

Pn = rTño

on = þ[Ap6

Pn
Qn= 

-on

En=tn-anAPn

TnIT:rn-anA(tn+sr-)

n Pn*I
Pn-

Pn

tntt=rn+t*þnsn

Pn*7 : tn+t * /n(sn * þn+fln)

rn*r:rn¡an(t,"¡sn)

32



end for

We note that in deriving the recurrence relations we must construct an auxiliary vector,

given in our algorithm as ú,, = rn * þn-tsn.

We see that there are no matrix-vector products with the transpose of A, as in

BiCG, and that we do not have to explicitly form ñ,r41 or frr.'1. Instead, two matrix

vector products with the matrix A are performed, to produce a reduction with P,2, i.e.,

r* = P:(A)re, and we should expect that the new algorithm will converge twice as

fast as BiCG as we are replacing the matrix-vector products of AT with more useful

work. This method works quite well in most cases, however because the polynomials

are squared rounding errors may become quite large. Van Der Vorst introduced the Bi

conjugate Gradient Stabilized method in 1992 [29], to remedy the irregular convergence

associated with CGS. Instead of squaring the BiCG polynomial this method uses the

BiCG polynomial with a different 'stabilizing' polynomial which helps to smooth the

convergence.

2.4.3 Biconjugate Gradient Stabilized Method (BiCGstab)

Similar to CGS, we should be able to construct other iteration methods which generate

Í2.r-1 so that we can form a residual as a product of two polynomials

r" - Q"(A)P"(A)rs

.1.1



In BiCGStab, we take Q"(A) in the form

Q"(t) = (i - cu1ú)(1 - uzt) ...(1. - a"t)

where we select u;- such that in the nzth step of iteration r- is minimized with respect

to u).nz for residuals that can be written âs r,,, = P"(A)Q"(A)rs. So we deflne the

recurrence relations in terms of the polynomials,

rn = Pn(A)Q"(A)ro

P" = T"(A)Q"Ç+)ro

and derive the recurrences from step n to nl1 based on the BiCG recurrence relations.

We then write the recurrences for r,,¡1 and p,,41in vector form, generating the following

algorithm.

Algorithm 7 Biconjugate Grad,ient Stabilized

Input zs

Initialize ro : po = b - Axo

Choose is such that í[ rs I 0

Po: ñTro

For z = 0,1,2,...... until convergence

Pn: rlño

on: þf,Aps
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Pn

on

Sn: Tn - anAPn

w=Asn

('' 
"n)wn.- /(r,r)

Tn*7=In*anPnlansn

Tn*\:sn-QnAsn

n PnIT
Pn--

Pn

Pn*t: rn+t I þ"(P"+ unAqn)

end for

Again, o¿n arrd Bn are found using the BiCG coefficients and ensuring the following

orthogonality conditions,

(p(Ar)ro,P,(A)r6) : g and (p(Ar)ro,AT,(A)16):g (2.12)

where p is a polynomial of degree less than n and ø,, is found by minimizing the 2-norm

of the residual vector rn+¡t : sn - tÐnAsn so that

_ (Asn, s,-)
-" - (A"n, Asn)

We will also need an extra vector to express the recurrence for the residual vector

namely, sn = rn - anApr. In this method, we observe that the number of matrix

vector operations is the same as in CGS and so expect it will be comparable in terms

of convergence speed.



Although BiCGStab was developed to remedy the inherent problems associated with

CGS by choosing a polynomial which would avoid large intermediate residuals, the com-

puted a may be zero or close to zero which may result in the breakdown or stagnation

of this method [23]. To remedy the problem of stagnation associated with BiCGStab,

Gutknecht [13] introduced BiCGStab2 which uses second degree polynomials to better

handle this type of situation. Although improved, the methods still stagnates in some

cases. Sleijpen and Fokkema 123] introduced a generalized method for this problem,

namely BiCGStab(/) which forms an lth degree polynomial after every / steps. Thus

for I :1 we have BiCGStab algorithm which is just a special case of the BiCGStab(/)

method.

2.4.4 Mixed BiCGStab-CGS Method

This mixed method, developed more recently by Chan and Ye [6], uses both the standard

CGS and BiCGStab methods and is derived in such a way that switching can occnr

between the two methods at each iteration. In a CGS based implementation, it aims

at avoiding the increase in residual norm in CGS by switching to BiCGStab in order to

improve overall stability.

The metirod constructs an approximation ø, such that its residual has the form

rn = b - Arn : S"(A)P"(A)ro,

S"(t): Q*(t)P"-¡(ú) and Q*(t): (t -ufi)...(1- cr¡t)

where
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aîd k is an integer parameter that determines what kind of residual reduction is used.

So when constructinE rn+t : S"+t(A)P"a(A)r6 from rn, a choice is made between

taking either a BiCGStab step or a CGS step and one can choose either ^9"-.1(z) =

Qx(t)P"+t-¡(t) or S"+t(t) = Qk+r(t)P"-*(ú) where the former is called a CGS step and

the latter a BiCGStab step. Thus, in the first n iterations, k steps of BiCGStab are

taken and n - k steps of CGS.

The derivation is similar to those of the mixed methods in Chapter 3, and we derive

the recurrences for each case; k(n t 1) = k (a CGS step) and fot k(n+ 1) : k * 1 (a

BiCGStab step) using the BiCG recurrence relations in equations (2.9) and (2.10). a"

anð. Bn are found in a way similar to those in sections 2.4.2 and 2.4.3 and again cu," is

found by minimizing the 2-norm of the residual vector where the residual is written as

rn*l: u - uAu. This gives us the following algorithm

Algorithm 8 Mi,xed BiCGStab-CGS

Input an initial approximation rs and an auxilìary vector is ;

Initialize ro:'u,o -?0 = Po=b-Aro', k:0; po-i|ro.

For n = 0, 1,2,.'. until convergence

Determine whether k *- lc (CGS step) or È *- e + 1 (BiCGSTAB step);

If (CGS), then

an - p,f ñ[ Ap*

8n:'t)n - anAPn

Tn*L: r, - A(anun * dn-t 8,")

rn*L = rn+ o¿n'trn* dn-k%n



PnIL: ñTr,,+t;

n enpn*L , ñî Aq, ,
Pn*7 = 

""_kp" 
lor = -79 * )

un*r = rn+r * þn+t(un - an-kApn)

Dn]{=rn+tl þn+t-kÇn

Pn*L : un+t I þn+t-n(Qn * þn+fln)

End if

If (BiCGSTAB), then

an : pnf i{ Aun

'ù:Tn-AnAUn

, = ,r Arl(Aa)r Aa;

Tn*I: u - aAu

rnII:unlanunlau

Pntr = ñlr,"+t;

n - 
anPn*7 /^^ - 

f[Au \þnr7= 
"p^ 

(or--EAu")

1trn*r = rn+7 * Þnq(un - aAun)

anrr:Q-uA)(un-anApn)

Pn1l_ : an1¡T I þn+t(Pn - QAP^)

End if

End for

In this method we can see that several auúliary vectors are needed to express the

update of the residual vector. We also note that the number of matrix vector operations
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for each iteration if a BiCGStab is four, which is double that of the standard method.

If a CGS step is taken however, we have two as in the standard method.

Since this method is a CGS based implementation and we only expect to take a

BiCGStab step every so often, we expect this method to provide a competitive alterna-

tive for problems in which both CGS and BiCGStab diverge, or where the standard CGS

is already competitive. It has also motivated further investigations in mixed methods

with this thesis.

2.4.5 Shifted CGS method

Here we include a shifted CGS algorithm introduced by Fokkema et aI. [11] to try

and improve convergence properties of the CGS method, particularly to improve upon

the irregular convergence. Below we outline the method as suggested in [11], although

this method could also be implemented as a special case of the mixed BiCGStab-CGS

method of Chan and Ye [6] of Section 2.4.4.

Suppose we consider, as in CGS and BiCGStab, forming the residual as a product

of two polynomials, where in this case, we will use a 'shifted' polynomial as follows

rn = b - Arn = F,(A)P*(A)ro,

where

P"(t) = (1- p,t)P"-1(t)
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Using the following BiCG recurrences,

P"+t(t) = P"(t) - antTn(t),

Tn(t) = P"(t) + þ"T"-t(t),

(similarly defined for Þn4 and i*) we construct the recurrence for r,r-.1 and p," from

stepntonfl

P"+\(A)P"+I(A) = P"(A)P"(A) - a"AP"(A)7"(A) - a"AT"(A)P"+r(A)

and

i'*ç.+¡r*ça¡ = i"1n1e"ç.+) + p"(i,"(t)T"_t(A) -r þ*i,_rØ)r"_{A))

We can see that we wiII require two extra products to express each recurrence above.

For rrr..,.1 we need to formulate the following vectors,

,n = Pn(A)T,(A)rs

t^: in(A)Pn¡1(A)r6.

and
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And for pn wê will need

t* = T,(A)P^(A)rs

and

un = Þn(A)T,a(A)rs.

(where the polynomial i,i(A)T*-t(A) is found using p,,-1).

Omitting the derivations (see [11] for details),'ù¿e can write the recurrences in vector

form and obtain the following algorithm

Algorithm I Shifted CGS

Input rs

Initialize ro = Po - ño :úo = s0 -'t;o : b - Axs

Po: ñlro

þo:0, oo = þ

For r¿ :112r...... until convergence

Pn: rTñn

n - 
Qn-7 PnYn---an-2 Pn-I

Un=Tn-þnun-t

tn:Tn-l3n-tsn-t

Pr=tniþ"(u"*þ"-fl"-t)

c= Apn

on=(Fn,wn)=p|,qp"

PnQn=-
on
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Sn:tn-QnC

ün=Dn-dn-LC

rn*r = rn - A(anan - o.n-tsn)

rn*t -- In + Qn't)n I an-Isn

end for

where o?z and Bn are found in a way similar to those in sections 2.4.2 and2.4.3.

In this implementation we also need to make the following modification for the first

step (z : 1-): þt : þo : 0 and õr = ao : /.ú so that the recurrence

rn : b - Ax, = P,(A)P,(A)ro,

where

F*çt¡ = (r- pt)p"_1(t)

holds. p is chosen to be the inverse of an approximation of the largest eigenvalue of A.

It is easy to see that this implementation could be modifled by choosing þ : er,

where e1 is the BiCGStab coefficient from minimizing the residual in the first step.

This gives us a special case of the mixed BiCGStab-CGS of Chan and Ye [6] where the

number of CGS and BiCGStab steps are flxed from the beginning with the first step

taken as BiCGStab and alI remaining steps are taken as CGS. We also note that we will

need to perform two matrix vector operations in the shifted CGS method, which is the

same as in the standard method.
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2.4.6 Numerical testing of the shifted CGS algorithm

Although the shifted method has been tested in 111] it has only been tested for symmetric

problems. Here we validate the improvements of this method for the nonsymmetric

cases through our testing below. The method has been tested where the algorithm uses

a shifted CGS polynomial where the residuai is written as

rn = b - Arn = P"(A)P"(Á)ro,

where

F,çt¡ = (I - ¡-tt)P"-1(t)

as suggested in Section 2.4.5 where we takefor the first step, n: I we take Ér = 0 and

ãt = þ where ¡-r,, is chosen to be the inverse of an approximation to the iargest eigenvalue

of A.a As mentioned, we could also substitute p : e! where c.r1 is the BiCGStab

coefficient obtained from minimizing the 2-norm of the residual in the first step. This

gives us a special case of the mixed BiCGStab-CGS of Chan and Ye [6] from the previous

section. We would expect this implementation to give similar convergence historiess and

it is somewhat less expensive than using LL as a the inverse to an approximation for the

largest eigenvalue of ,4.

Next, we show a convergence history for one numerical exampie. This example

will be used in subsequent numerical testing sections and is referred to as Example

aThe largest magnitude eigenvalue was found using the eigs function in Matlab with a specified
convergence tolerance of 1e1. This lack of accuracy did not seem to afect the convergence history of
the observed tests and was far less expensive than finding a more accurate eigenvalue.

5as when computing only a rough approximation of the largest eigenvalue, as long as p is within a
certain range we would expect similar convergence histories if we only implement it for the first step.
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1. Additional test problems are introduced in Section 3.2 and a,ll methods have been

tested with these. Convergence histories for the remaining examples for the shifted CGS

method are given in Appendix A.

Example 1: The matrix is a finite-difference discretization on a 40 x 40 grids of

the following convection diffusion equation

- Lu i 1(xu, + yuò + pu = Í(*,y) on (0, r)';

with the homogeneous Dirichlet boundary condition. / is a constant. This example

was suggested by Fbeund [12] in his paper on a Transpose-F]ee Quasi-Minimal Residual

algorithm and also used by Chan and Ye [6] to test their mixed BiCGStab-CGS method.

Figure 2.1is the convergence history of the computed residuals for the set of param-

eters: B - 100,7 : -100 for Example 1. This is a good example where CGS stagnates.

Here we see that shifted CGS for a nonsymmetric probiem, not only improves the large

residuals of CGS but also eventuaüy converges in just over 600 matrix-vector operations.
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Figure 2.1: Convergence History for Example I B - 100,7 = -100
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Chapter 3

Mixed-Product Methods

In this chapter, we will develop two mixed product methods. The flrst is based on CGS

and switches to BiCG to remedy the problem of large residuals that may result CGS.

The second method based on BiCGStab also switches to BiCG, in this case to remedy

the problem of breakdown or stagnation that may result when the computed c¿ is zero

or close to zero.

Since the difÊculties encountered in BiCG, CGS and BiCGStab are of different type

and usually occur only at a small subset of the iteration steps, it might be advanta-

geous to consider a combination of them that can choose either of the two kinds of

construction at each iteration and avoid using the one for which difficulties arise. In

[6], a general concept of switching product Krylov subspace methods from one type

to another through appropriately deflning the sequence of polynomials has been intro-

duced, and a mixed method that is based on the CGS and BiCGStab iterations has

been derived. In this work, we consider mixed methods based on BiCG and BiCGStab

as well as on BiCG and CGS, which is not unlike the generalized BiCG introduced in
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the previous chapter. We sha,li derive algorithms that allow switching between the two

types of methods and use it to improve the stability of the algorithms.

3.1 Mixed BiCG-CGS method

In this formulation, we wish to construct an approximate solution ø, at step n, such

that

r" = Pn(A)P"(A)rs

in = Pn-¡(A')ro

where k : k(n) is a parameter depending on z that determines whether a CGS or BiCG

step is taken. Namely, we take k steps of CGS and n - k steps of BiCG. Proceeding

from step n to nf 1, we first choose k(n+ l) as either k(n) = k or k(n)* 1 : k 1 1 (so

either a BiCG step or CGS step respectively) and then construct

r ntL = P¡6¡¡(A) P"+r (Á)ro

using the BiCG recurrence relations,

P"+t(t) = P"(t) - antTn(t),

T"+{t): Pn+t(t) t Þ"aT"(t).
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In order to construct rn+r, we define the following auxiliary polynomials and corre-

sponding vectors (writing k : k(n))

ó"(t¡ : P¡'(t)P"(t), and r* = S,(A)ro : P*(A)P"(A)rs; (3.i)

€"(t) = T¡(t)T"(t), and p": €"(A)ro: Tr(A)7"(A)rs; (3.2)

rt,(t) = Pn-t (t), and in = r¡n(Ar)ro : Pn-n(A')ro; (3.3)

6^(t) : T^-*(t), and ñ,: ,þ*(A')ro = T*-¡,(Ar)rs; (3.4)

e"(t1 : Tk(t)P"(t), and u, = (,(A)ro: Tn(A)P"(A)r6; (3.5)

'Y"(t) = P¡(t)T"(t), and sn : yn(A)ro: Pn(A)T"(A)rs (3.6)

Suppose the above polynomials have been obtained, we construct the corresponding

poiynomial for n * 1. We f.rst generate þ"(t) by

,þ"(t) : Tk(t)P"+t(t)

= rk(t)(P"(t) - a"tT"(t))

: Tk(t)P"(t) - a"tTk(t)7"(t))

= ("(t) - a"t{"(t)

We proceed the construction by considering two cases.
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Case l-: k(n * I) = k(n) f 1 (a CGS step).

Ó"+t(t) : P¡'a1(t)P"a(t)

= (Pn(t) - a¡,tT¡"(t))P"+t(t)

= P¡(t)P"a(t) - a"tT¡(t)P"+{t)

= Pk(t)(P"(t) - a^tT"(t)) - a"tT¡(t)P"¡1(t)

= ó"(t) - a"fin(t) - a¡ttþ"(t),

rt"+t(t) = PnIt-k-;- : rln¡

6"+r(ú) = Tn+t-(k+Ð(t) : 6"(t),

Ç+t(t) : Tk+1(t)P"+r(t)

: (Pr+r(¿) * þ*+{n(t))P"+t(¿)

= P¡,¡1(t)P"¡r(¿) + B¡,¡{¡,(t)p"a1(t)

= ó"+t(t) * þn+ttþ"(t),

1"+t(t) = P¡a1(t)7"¡1(t)

: Pr+r(P"+r(t) + Þ"¡{"(t))

= P¡¡1(t)P"at(¿) f þ"+{Pn(t) - a¡tT¡(t))T"(t)

= ón+t * þ"+t(1"(t) - a¡t{"(t)),

€"+r(¿) : Tk+{t)Tn+t(t)

: (P*+r(ú) I þn+[n(t))""+t(¿)

= P¡¡1(t)T"ar(ú) + B¡,¡1T¡,(t)T"a(t)

= 'y"+r(t) t þn+t(rþ"(t) + þ"+t€"(t)).
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Case 2. k(n -f I) : k(n) (a BICG step).

ón+t = Pk(t)P"+r(t)

= Pk(t)(P"(t) - a"tT"(t))

= ó"(t) - antln(t),

Tn*L : Pn+r-k = P"-n(t) - an-¡tTn-¡(t)

= Tn - 0n_kt6"(t),

6n+r : Tn+7-k = Pn+L-k(t)i þ^+t-xT"-x(t)

: Tn+ * þ"+t-n6"(t),

(n+t : T¡(t)P"a1(t) : rþ"(t),

7n*7

: P¡,(t)P"¡1(t) I B"¡rPn(t)r"(t)

= Ó"+t(t) * þn+tln(t),

€n+r = T¡(t)7"¡1(t)

: T¡(t)P"¡1(t) I Þ"¡tTn(t)T"(t)

= ("+r(¿) Í þ"+t€"(t).

In vector form we first generatu qn - ,þ"(A)ro - 1)n anApn, and the remaining

vector recurrences can be expressed as follows.

Case 1: k(n t l) = k(n) * i (a CGS step)

rnIL : rn - e,Asn - anAgn - rn A(ansn - akgn),
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ín+L = ñn,

Fn+t = þn,

sn*1 = rz+r * Þn¡t(sn - xkApn),

't)n*L = rn+t*þ*+thn,

Pn*r = sn+r * þn+{q" * þ"+tP").

Case 2. k(n * I) : k(n) (a BICG step)

TnIl = Tn-Q.nAstu,,

ín+t = ñn - an-¡AT Bn,

þn+t : ñn+t*þn-k+tþn,

snIT : rn+rlþn+tSn,

DnIl : 8n,

PnIt = anlt*þnltPn.

We next recover the BiCG coeffi.cients an: pnlon and þn+t: pn+tlpn. Note that

an-k+t¡ þn-k+L etc. have been computed in the earlier steps and can be stored.

From BiCG we have p*: (P,(Ar)fo,f*(A¡ro). By construclion,Pn(A)r¡ is or-

thogonal to ali vectors p(AT)io, where p is an arbitrary polynomial of degree less than

n. Thus, we only need consider the highest order term of P*(AT) when computing

pn) :namely, P,(Ar) = (-1)'a6,d!,...d*1(AT)" + (lower degree terms). Using the
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biconjugacy property, we have

pn : (p^(Ar)io,p,(A)r6)

= (-1)"o0, o1 . . . o*-r.((Ar)"i6, P,(A)rs)

Define

þn = (ñn,rn)

and we compute,

þn = (p^-k(Ar)ñs,pt (A)p,(A)ro)

= (Pk(Ar)P,_r(Ar¡ro, P*(A)rs)

where the highest order term is given by P*-¡(A')prçq') = (-1)"a¡¡...en-tc-r.

rro¡. ..o*-t(AT)" * (iower degree terms). We obtain,

þ, = (-I)û0;. . . ¡en-¡-\ . o,ot...,a*-t((AT)'ñs, Pr(A)rs).

Thus

Pn=

In a similar way, we can fi.nd orr,

on = (T^(Ar¡ro, Ar*çA¡ro¡

Pn'Qo' ' 'On-k-l
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where, using the biconjugacy property, the highest order term is,

T,(Ar) - (-t)'oo ...on-r(Ar)" +...

and we have,

on = (-I)"o6 . . . o,-r((Ar)'ñs, AT,(A)rs)

where õn,as defrned by õn = (ñn,Apr), is found in the same manner, using the highest

order term, we have

õn = (þ,, Ap,) = (T._¡,(Ar)ño, ATk(A)7,(A)rs)

= (Tk(A\7,_n(Ar ¡ro, AT*(A)rg)

= (-1)"oo ...ak-t. û6... an-k-r((Ar)fo, AT,(A)16)

Thus,

an-7 " . alc
wn - 

-Un.

tn-k-L .' ,ao

So

an = pn/on: þnlõn

and

R - 
Pn*l 

- 
aflnar¡"'Qn o6"'an-k(n)-tþn+7

I- ILTL

Pn 0¡... an¡t-k(n!1.)-L ak@)...Qn-r þn
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=ry, 
if k(n+ 1) = k(n) + 1, i.e. a CGS siep,

= { oo!"

?lo+, if k(n+ 1): k(n),i.e.,a BiCG step
an-kPn

Summarising the above derivation and writing in the vector recurrence form, we have

the following algorithm:

Algorithm to B¿CG-CGS

Input z6;

Initialize ro = po -'t)o :so : ö - Aroi ño = þoand p6 = í[16; Ic = kn"* = 0.

For n = 0, 1,2r...... until convergence

k : kn"-lDetermine lin"- : k ot k + 7;

un: APn

on: (ñn,u,-) : pTAp"

PnQn= 
-on

gn: 'un - Qnun

If lçn.- - k + 1 (CGS step), then

rn*r=rn-A(ansn+c-kqn)

InlL:rnlQ.nsn*afq"

tn*l- tn

ñn+t = ñn

Pn+L = ñT.+{n+t

ò
Pn,¡T = 

an Pn*r
ak Pn

sz*1 = rn-+t * þn+t(sn - anwn)
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DnIr: rn+t t þn+tgn

Pn+l : sntl f þx+t(q" I þn+tqn)

End if

Il kn". = k (BiCG step), then

Tn*\ :Tn-Q'nAsn

ln*l=fn+ansn

ñn+!=ñn-an-¡ATþn

ñn+7=fn+tiþn+t-kín

Pn+l: ñT+{n+t

P̂n,i7 = 
an Pntl

Qn-k Pn

Sn*1 = rn+tl þn*ISn

an+l: 8n

P'+7=Dn+t*þn+'Pn

End if

end for

In the CGS step above, the algorithm implements

rn*t=rn-A(ansn+ykqn)

correspondingly,

ln*I=fn-Q.nsnlanq".

In this algorithm 'ü/e observe that there are two matrix vector operations carried out
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for each iteration regardless of which method is used. For each CGS step, two matrix

vector operations with the matrix A are performed and for each BiCG step there is

one matrix vector operation with ,4 and another with the transpose of A. In general,

one would expect this algorithm to converge at least as fast as the standard BiCG

method since we are still performing one matrix vector operation with the transpose of

,4, although in this case, we will have only a few iterations where this operation will be

carried out.

3.2 Numerical testing for mixed BiCG-CGS

In the Numerical testing sections that follow, we present numerical examples to demon-

strate improvements made by the new methods. We aiso include testing of Example 1

which has been introduced in Section 2.4.6. All, testing that follows, was carried out

using Matlab with double precision on a SUN workstation. Throughout our Numerical

Testing, the folowing Bxamples (2 through 4) as well as Example 1, are used and will

be referred to throughout the remainder of the Chapter. We have attempted to use

these examples with each method both as a means of comparison between the various

methods herewithin and as comparison with various methods in the Jiterature, as these

examples have been extensively used. Where a certain Example has not been shown

with a particular method, it is because it has provided no additional information to

us and as such is an uninteresting case. In almost all cases, we have used a standard

stopping criterion [26] with the iteration terminating when

llr,"+lllllr"ll < 10-'u
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In certain examples round-of ettor created instabilities at this level of accuracy and so

we have used a termination threshold of 10-10 in those cases.

Example 2: The matrix is a finite-difference discretization (centre difference) on a

40 x 40 grid of the following convection diffusion equation

- Lul þu, *'yua : f@,A) on (0,1)';

with the homogeneous Dirichlet boundary condition. / is constant.

Example 3: The matrix is Shermanl from the Sherman set in the Harwell-Boeing

collection 19] of sparse test matrices. This set includes five nonsymmetric test matrices

which result from oii resevoir modeling. Shermanl in particular is found from a black

oil simulation with shale barriers. The order of the matrix is 1000 by 1000 and it has

3750 nonzero entries. The right-hand side ó is chosen to be the vector of ones.

Example 4: The matrix is a finite-difference discretization on a 40 x 40 grids of

the following convection diffusion equation

- Au*1@@,s)u,*b(r,y)u)=g on (O,r)';

where a(x,y) = r(r - 1Xl - 2U), b(*,U) = U(L - y)(I - 2*), with the homogeneous

Dirichlet boundary condition. This example was used by Sleijpen and Fokkema [23] to

test their BiCGStab(/) method.

Throughout all test examples that follow for the BiCG-CGS method, the Tolerance

is chosen to be 102 where the criteria for a switch from CGS to BiCG is an increase of
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the local residua,l namely,

llr"+tlllllroll !rot. (3.7)

Figure 3.1 shows the convergence history for Example 1 for the set of parameters:

þ:100,7: -100. Here we see that the mixed method converges more smoothly and

in fewer steps than the standard CGS method with two switches occurring in this run.

Convergence History for Example L B - -110,7 = 110
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Figure 3.2 gives the convergence history of the computed residuals for Example 2

with the set of parameters: þ : -100, 7 = 100. We can see although the mixed

method converges in about the same number of iterations, it is an improvement over

the standard CGS method in that it smoothes the large residuals with only one switch

between methods.
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Figure 3.2: Convergence History for Example 2 B - -100,1 : 100
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Both Examples problems 3 and 4 have been tested for this method, but were not

found to have any benefits over the standard CGS or BiCG methods and so have not

been included here.

The mixed BiCG-CGS initially experienced instabilities due to the formulation of

the coefficient B. This sensitivity is common in many iterative methods depending

on such parameters and so it is an easy candidate to look at when numerical insta-

biljties arise [21]. Formulations for the coefficient B have proved to give extremely

varying results when tests were run with these code in Matlab. Since the coefrcients

are derived directly from computing the inner products, on: (Tr(Ar)ñs,AT,(A)rs),

pn: (Pn(AT)ño,Pr(A)rs), any computational error in either inner product will thus
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lead to similar relative perturbation error in both coefrcients.l In the mixed BiCG-CGS

B has been coded as

þn+L = P,+tf Pn

2 although another formulation is found from

(3.8)

o în+L pn+t
Pn*7 = o" ""

as in f11] where, for BiCG, 0n¡1 and 0n are the nontriviai leading coefficients of the

polynomials P^¡1(A) and P^(A) respectively. The ieading coefficient of P,,¡1(A) is

(-I)"o". . .0s wê therefore obtain

în+t 
- -I

0n Qn

and

a -rP,"+tPn*7 - 
"". ""

where the negative has been incorporated into the BiCG recurrence)

T"+t(t) = Pn*r(t) I þ"+tT"(t),

This formulation for B, was found to be numerically unstable when implemented and

tested in Matlab. For a,ll methods that have been tested, this formulation made the

lsee 
[26] and 125] for more discussion concerning e¡¡o¡ bounds when computing inner products and

also choosing suitable polynomials for computing a which do not degrade the convergence.
2this formulation for B is aJso used fo¡ both the BiCG-BiCGStab mixed method as well as the shifted

CGS method, tested in the sections that follow.

60



method diverge. Since the formulation of coefrcients can often give unstable results for

a given method, we tested the formulation given in (3.8) immediately after and obtained

improved convergence. Thus we have used this formulation for all methods that follow.

The second potential problem which we have encountered is instabilities due to

the derivation of the recurrence formulations in the algorithm. In deriving the new

formulations it is important to keep in mind that at most we would like two matrix-

vector multiplications per iteration to keep the method competitive. Although we would

like to try and beat the convergence in both the BiCG and CGS and if not, at the least

we would like to be able to improve the convergence in certain well-defined cases. In

general, we would expect that by using BiCG we wouid have a more stable method, as

BiCG seems to be inherently more stable than CGS. However, we have not found this

to be the case in the two formulations which we have tried. Although the recurrence

which we have used from Section 3.1 is quite simple, we have found that for a tolerance

of Ie2,, certain examples were unstabie. Although they may have been stable for other

tolerance levels, it is stiil necessary to do tests to find a stable tolerance and so we do

not include these here.

Although we may expect some instabilities from the mixed methods, we hope that

regardless of input tolerance we would at least get convergence from the mixed method

when both the standard CGS and BiCG methods are converging. Although this stability

was not observed all the time, there were several examples where, for an input tolerance

of Ie2, the method gave improved convergence. We initially experienced instabilities for

all examples and tried to remedy this problem first by making certain that the coefficient

formulations (for B in particular) were not causing any numerical instabilities and then
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next, by deriving a second formulation for the method. The formulation of Algorithm 6

was found to be the most stable among several possible formulations tested and we show

this through our tests of the finite termination properties on a few 10 x 10 matrices.

Here we include one such test (seen in Figure 3.4) to demonstrate that our code is

correct. When implemented, we forced a switch to occur in each test to make sure that

the mixing of the derived methods worked together.

Figure 3.3: Finite Termination Test for a 10 x 10 Matrix

1 2 3 4 5 6 7 I I 10
iteration number

3.3 Mixed BiCG-BiCGStab method

In this formulation, we wish to construct an approximation r' at step z, such that

r": Q¡(A)P"(A)rs
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ñn = Pn-*(A')ro

where k : k(n) is a parameter depending on n that determines whether a BiCGStab

or BiCG step is taken. Namely, we take k steps of BiCGStab and n - k steps of BiCG.

Proceeding from step nto n f 1, we frrst choose k(n* 1) as either k(n) or k(n) + 1 (so

either a BiCG step or BiCGStab step respectively) and then construct r,"..,u1.

Using the BiCG recurrence relations,

P"+t(t) : P"(t) - antTn(t),

T"+{t) : Pn+t(t) * þ,+tT,(t),

In order to construct rn+1, we define the following auxiüary poiynomials and corre-

sponding vectors

ó"(t¡ : Q¡(t)P"(t), and r,: $,(A)rs: Qr"(A)P"(A)rs; (3.e )

€"(t¡ = Qk(t)T"(t), and p" = t"(A)rs = Q k(A)T"(A)rs; (3.i0)

(3.i1)

(3.12)

corresponding

nn(t) : P"-n(t), and in = q*(A)ro: Pn-n(A)ro;

tÞ"(t¡ : T"-r(t), and p": ,þ"(A)rs = Tn-r,(A)r6;

Suppose the above polynomials have been obtained, we construct the

polynomialforn*1.
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Case 1: k(" + 1) : k(n) * 1 (a BiCGStab srep).

Ón*, : Q4t(t)P"ar1t¡

= (I - a¡,a1t)eh(t)(p"(t) - a,tT*(t))

= (1 - c,r¡11ú)(ó"(t) - a"t{"(t))

€n+t : Q¡,a(t)T"a(t)

= Q*¡t(t)P"*r(¿) + þ,+tQ n+t(t)T"(t)

= Ó"+t(t) I þ"+t(I - u¡a1t)(,(t)

Tn*I = Pn1l-h-7=\n

Iþn+t = ?"+r-(¡+r)(t) = 1þ"(t)

Case 2. k(n i I) : k(") (a BICG step).

Ón+t = Qk(t)P"+L(t)

: Qk(t)(P"(t) - a^tT"(t))

= ó"(t) - a"t("(t)

(n+r : Q k(t)T"+r(t)

: Qn(t)e"*tçt) + Þ"+tQk(t)T"(t)

: ó"+t(t) * þ"+t€"(t)

Tn*t = Pn+t-k = P"-n(t)- ar-¡rtTr-¡r(t)

= r¡" - a"-¡ttþ"(t)
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1þn+t = Tn+t-k : Pn+7-k(t)* þ"+t-nT,-x(t)

: Tn+t I þ"+t-*þ"(t)

To simplify the equations) we flrst define 1)n as Dn - rn anApn. and we express

the recurrences in vector form as follows.

Case 1: k(n * L) = k(n) * 1 (a BiCGStab step)

Tn+I : An-A¡¡1A1tn,

ñn+L : ñn,

Fn+t : Fn,

Pn*l = rn+t * þ"+t(7 t ar+tA)pn.

Case 2. k(n t 1) = k(") (a BICG step)

Tn*7 = rn- AnApr,

ñn+l = ñ, - an-¡rAT pn,

Fn+t = ñr+t*þn+t-kQn¡

PIIT = rn*ttþn+tPn.

we next recover the BicG coeffi.cients an = pn/on and. Bnp: pn+tf pn. Note that

an-k+t, þn-n+t etc. have been computed in the earlier steps and can be stored.

Noting that T"(t) - (-L)o,_t...aotn * ... and using the bi_conjugacy property,
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we have

on = (Tn(Ar¡ro, AT,çA)ro) = (-r)"on-, . . .oo((Ar),ís, AT,(A)rs)

similarly, ftom Tn-¡(t)Qt (t) - (-r)"on-Å-l .. . dou)k'.-att, + ..., it forows

õn = (þ", Ap,)

= (7"-k(A\ñs, Ae ¡(A)7,(á)ro)

: (Qn(Ar)r*-n(Ar)ro, AT,(A)rs)

= (-r)on-r-7.. . aoak. . .u,t((Ar)ñs, AT,(A)rs)

Thus,

_ Qn_l'.'an_k _wn _ _ì;::õl_on.

-LIso p, = (P"(Ar)is, P*(A)rs; = (-1)na n_t . . .as((Ar),fr, p^(A)rs) and

þ" : (f ,,rn) : (P,-¡(Ar)ro,en(¿)p*(A)rs)

= (Q n(Ar ¡e,-*(Ar¡ro, p,(A)rs)

= (-r)o,-t -t . . .aoak . . .rr((AT)ís, p.(A)rs).

Thus

^ - 
Qn-| "'Qn-k -Fn_---'l-prq'L¿k...et
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So

an: pnlon= þnlõn

and

lq . . PnIt 
- þ' ' 'an*L-k(n*L) a¡(")' ' 'at þn+rPN+L

Pn ak(n+t) . . .úst Qn-7 . . ,an_k(n) þn

d.- õ^-,
#, if k(n + 1) = k(n),i.e. a BiCG step,

= 1 an-kPn

=ry, 
if k(n + 1) = k(n) + 1, i.e., a BiCGStab srepak+tPn

where n = k@).

Summarising the above derivation and writing in the vector recurïence form, we

have the foilowing algorithm:

Algorithm LL BiCG-BiCGStab

Input re;

Initialize ro = po - b - Ars; í6 - Bs and po - rT ro; k : lcn"- = 0.

For r¿ = 0, 1,2r...... until convergence

k = lin".iDetermine kn.- = k or k I I;

w: Apn

on=(þn,w)=þ[Ap,

þn
vÌa 

- on

If 1c,". - k + 1 (BiCGStab step), then

'ù:Tn-dnU

r: Aa
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akn.- = (r,u)lQ,r);

TnIL=f:D-Qkn"_T

f n*7 : rn * dnPn l tJkn.-D

tn*'l- tn

Pn*7 = ñT.+{n+t;

n anþn+l
Pn*L =

Pn*7 = rn+t i þn+t(Pn - akn"-1l)

þn+t = þn

End if

If. Iín"-: k (B1CG step), then

TnI!: fn - Q.nU

In*l=rnlAnPn

ñn+l =ñn-an-¡rArþn

Pn*t = fT.+{n+ti

(7 - 
anþn+t

Pnrr - 
""-kþ"

Pn*L=rn+t*þn+rPn

Fn+t: ñn+t I þn-k+t1n

End if

end for

In the BiCGSTAB step above, the algorithm implements

Tn*L = Tn - a*Apn - t)¡nu-Aun.
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correspondingly,

fn*l = fn - dnPn - Qkru-Un,

In this algorithm we observe that there are two matrix vector operations caïried

out for each iteration regardless of which method is used as in the mixed BiCG-CGS

implementation. For each BiCGStab step, two matrix vector operations with the matrix

A are performed and for each BiCG step there is one matrix vector operation with ,4

and another with the transpose of A. As in the mixed BiCG-CGS, we would expect this

algorithm to converge at least as fast as the standard BiCG method since we are still

performing one matrix vector operation with the transpose of ,4, although in this case,

we will have only a few iterations where this more expensive operation wili be carried

out.

3.4 Numerical testing of mixed BiCG-BiCGStab

In this mixed method we have tried to remedy the problem inherent in BiCGStab,

namely that it is prone to stagnation in certain types of problems. Example problem 1

v/as a particularily good candidate, as for many different input parameters we find that

there is stagnation in the standard BiCGStab method. Often the stagnation occurs

mid-way through convergence, but often it occurs near the beginning and in almost all

cases, the new mixed BiCG-BiCGStab has fixed this stagnation and converged. We

have also hoped that our new method might beat both BiCGStab and BiCG in cases

where both converged as the mixed method of Chan and Ye [6] and although it did not

happen in all cases, we have included a coupie problems where this is the case.
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3.4.L Switching Criterion

Beginning with a BiCGStab step, we switch to a BiCG step when some switching

threshold is reached. There have been no theoretical results up untii now to show us

exactly when BiCGStab fails and thus when we should switch to BiCG. Only with

numerical testing can we better understand these difficulties and hence the switching

criterion with the mixed methods. For this method, we have tried to switch to BiCG

when we find c¿ to be below a certain prescribed tolerance. We have tried several other

implementations, these include switching when B has exceeded this tolerance and also

when some combination of c,.¡ with the s and o vectors has been reached. In all these

other attempts, the mixed method has a very large range of activity. By range we mean

that in changing the tolerance level (where small tol x le - 7) it follows BiCGStab3

and a large tolerance (= 1e1) it follows BiCG. Within this range the method does not

seem to have the positive effects that it did using only c.r as switching criterion and the

residuals often diverge which suggests that with these alternate switching criterion, this

method becomes unstable.

The tests were catried out by starting with BiCGStab at the first step and taking

a BiCG step when ú, was smaller than the input tolerance. For every iteration this

switching test was carried out and so the number of switchings varied depending on

the example and the tolerance that was used for each. We have also found that the

prescribed level of tolerance often had a significant effect in the performance of the

mixed method. For all tests we have used a prescribed tolerance ievel of Tol : 5e - 3

3this is seen in Figure 8.6
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unless otherwise noted.

As is seen in the convergence histories for Examples 1 and 2 (Figures 3.4 and 3.5

respectively) the mixed method shows improved convergence over the standard methods.

In Exampie 1 this is particularly apparent as the standard BiCGStab stagnates and the

mixed method converges in fewer iterations than even BiCG. In Example problems 3

and 4, there were no noticeabie improvements over the BiCGStab (the standard method

converged quite quickly over BiCG and thus there was no beneflt in using the mixed

method in these cases) aJthough we include the results from Example 4 in Figure 3.6.

This exampie has converged due to the fact that we have input a large input tolerance

and aliowed many BiCG switchings to occur.

In a couple of tests, we found that a tolerance of 5e - 3 gave somewhat unstable

convergence and by adjusting this to 3e - 3, the mixed method converged quite well.

These examples have been left for the Appendix and are shown in Figures 8.1 and 8.2.

Since this method experienced some unstable behaviour when different tolerance levels

were used, it is possible that some other switching criterion could be used which may

not be so sensitive and thus could be used for all the problems. Although a few other

criteria were tested (as mentioned previously) none was found to give such improved

test results. We have also tried this method (as in the generalized BiCG method) to

begin with BiCG and switch to BiCGStab when a large t.l \ilas reached. Although this

is benefrcial when using CGS, as the local residuals often become quite large in the

beginning, we have found no benefit with this approach with BiCG-BiCGStab. We feel

that this method has its maximum benefit as it has been presented although further

study should be done into switching criterion in order to make this method more user
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friendly.

The number of switchings was quite consistent for each Exampie as the chosen

tolerance level for ø was generally the same for each. To summarise the number of

switchings, Example 1 problems all had fewer than 5 switchings. The convergence

history in Figure 3.5 for example had only one switching which occurred at iteration

142.We can see that at this point BiCGStab begins it's stagnation, andis beginning to

bounce back and forth. For the Example 2 problems, all had more than 10 switchings

and with these examples we have used a very large input Tol : le-2. It is clear in these

cases that many more BiCG steps are taken, and although BiCGStab also conveïges

in this problem, we have included it as an interesting case as this mixed method beats

both BiCG and BiCGStab in terms of convergence.

The convergence histories in this method, as with the mixed BiCG-CGS method, are

plotted with iteration number rather than number of matrix-vector multiplications. As

we have mentioned in the previous section, two matrix vector operations are performed

at each iteration for either step (BiCG or BiCGStab), and so the number of matrix vector

operations for the mixed method is comparable to those of the standard BiCGStab and

BiCG methods.

We shouid also note that in this mixed method we have not included tests to show

the finite termination property as it was obvious that this method works quite well when

implemented.
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Convergence History for Example L lJ = -200¡l :200

300 400
iteration number

3.5 Numerical fnstabilities

The motivation of these new methods are to eliminate the negative effects of the indi-

vidual methods themselves by beginning with one method and then switching to the

second method when a certain switching criterion is reached. In remedying problems

in CGS, we try to improve upon the method by eliminating the large residuals and the

instability that this method sometimes encounters. With BiCGStab, this means e[mi-

nating the problem of stagnation that is encountered in some examples, and hopefully

improving the convergence.

Although these mixed algorithms can be derived in several different ways, of which

all are mathematically equivalent, among the different derivations of the recurrence
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Figure 3.5: Convergence History for Example 2 þ = -\22,.'l: 190
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for the residual vectot r?2 or search vector pn, they do not give the same numerical

results. This problem rr¡/as particularly apparent in the mixed BiCG-CGS algorithm

which we discuss in Section 3.2. Other problems associated with numerical instabilities

that have been found in this study are the result of differences in the formulation of the

coefficients, namely a and B. This has aJso been cited by [26] as a source for error and

as is further pointed out, the polynomial coefficients which have been found from the

use of a particular choice of polynomial at the beginning of the scheme do not seem to

affect the sensitivity of the computations in this respect. Since we are concerned more

with choosing a polynomial with which to achieve a significant reduction in the residual

in each iteration, and which converges faster than BiCG itself, we are more concerned

with choosing or formulating the polynomial in such a way that it does not lead to the

200
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Convergence History for Example 4 þ : -122,^l= 190
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deterioration of the BiCG part of the scheme, through numerical instabilities. So we

may choose a polynomial which leads to a less than optimal reduction at a given step,

but which improves the numerical stability of the BiCG coefficients.

Formulations for the coeffi.cient B have proved to give extremely varying results when

tests were run with these code in Matlab, as we have discussed in the Numerical testing

section for the mixed BiCG-CGS method. Throughout the numerical testing, in all

methods tested, B has been coded as

þn+t: Pn+tl Pn

Other formulations from the literature were tested (as noted in Section 3.2) and this
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formulation was used as it was found to give the most stable results.

3.6 Discussion and Conclusrons

In this thesis, we have introduced Krylov subspace methods for symmetric and nonsym-

metric matrices A. The methods used for solving the nonsymmetric case which we have

discussed include well known methods; the Biconjugate Gradient Method, the Conju-

gate Gradient Squared Method and the Biconjugate Gradient Stabilized Method. The

latter method was developed to remedy the irregular convergence in CGS which was in

turn developed to try and improve the convergence of BiCG and avoid using the trans-

pose of A. To further these improvements, we have developed two new mixed methods

based on either CGS or BiCGStab and have furthered the study done by Fokkema et

al. [11] to include nonsymmetric test probiems with the shifted CGS method with great

success.

In all examples, shifted CGS tested on nonsymmetric matrices, has improved effects

over the standard method. The convergence was improved by way of smaller residual

spikes. This is an advantage as in the standard method these large spikes may cause

instabilities or divergence near the beginning of the method. This adds to the body

of work carried out in [11] and confi.rms what they have found in the symmetric test

cases. In Appendix A, for different parameters B and 7, we see that in most cases the

shifted CGS method is an improvement over the standard method. One case out of all

the exampies fails in this respect; in figure A..3 we see that shifted CGS fails to converge

when CGS does. As with ail iterative methods, this reinforces the fact that at present
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no one method is the winner in all cases, although for the majority of our tests, the

shifted CGS algorithm is an improvement over the standard CGS method.

In the mixed BiCG-CGS we have attempted to further this study by ailowing the

switching to BiCG to occut whenever a large local residual in CGS is reached. It was

hoped that this new method would have a nice stabilizing effect over the standard CGS

method. Aithough this method did not greatly improve convergence performance in ali

cases, it did smooth the residuals of the standard CGS method and so was beneficial

in some sense. This method was found to give unstable results for some problems,

and uniike the BiCG-BiCGStab mixed method, here we did not flnd that we could

'fi.ne tune' the tolerance level to give improved results. Because it is difficult to show

these instabilities theoretically, we rely upon good results in numerical testing to show

whether or not a method is a good choice and in this case we have shown that the

mixing of the methods is working through testing of the finite termination property.

It is possible that a reformulation of the algorithm may give improved results, but at

present we have no additional insight into how this should be done. In Chan and Ye [6]

it was suggested that perhaps an increased number of switchings may become too large

to compensate any gain in stability with CGS. Although this study does not directly

gain insight into this issue, it is possible that any number of switchings in this case

has lead to the unstable nature of the mixed method. At present we do not have any

theoretical results to confirm the precise cause for instabilities in CGS and perhaps it

is here that we need to look, and then make improvements on the CGS-based mixed

methods.

Promising results were found in the second mixed method, that based on BiCGStab
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and switching to BiCG when ø was found to be too small. In the majority of our test

problems we found that the mixed method improved the convergence over the standard

methods and in many cases where BiCGStab was found to stagnate, the mixed method

converged, sometimes even beating the convergence in the standard BiCG method.

Although the majority of tests were carried out with a prescribed tolerance of 5e - 3,

we sometimes had to fine tune it to improve conveïgence.a It is possible however, that

some other switching criterion could be used which may not be so sensitive and thus

could be used for a,ll the problems.

We have shown through numerical experiment the benefrts (and problems) of each

method. The Mixed BiCG-BiCGStab method offers an improvement to the class of

problems in which BiCGStab stagnates and both the shifted CGS method and mixed

BiCG-CGS method could be used in place of CGS to improve upon the convergence

qualities of the standard method, particularly to smooth the large residuals. The shifted

method is also a competitive method for nonsymmetric problems where the standard

CGS fails to converge. Many more interesting cases could be looked at to further this

study, and more theoretical insight is certainly needed to add to the body of knowledge

we have of Krylov subspace iterative methods.

aIn particular, in two problems where BiCGStab was stagnating, the prescribed tolerance had to be
fine tuned to 3e - 3 so that the mixed method converged.
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Appendix A

Selected Convergence Histories

for the mixed BiCG-CGS method

Additional convergence histories for Example problems 1 through 4 follow. Two tests are

presented from the mixed BiCG-CGS method in Figures 4.1 and ,{.2. The remaining

figures in Appendix A are convergence histories for the shifted CGS method presented in

Section 2.4.5 and 2.4.6. We can see that in almost a,ll cases tested this method conveïges

faster and with fewer large residual spikes than the standard CGS although cases where

this method have not improved the standard methods have also been inciuded, which

shows that no method is best for every problem.

Figures 4.3 through 4.5 give additional convergence histories for Example 1. Figures

,{.6 through 4.8 follow for Example 2. We can see that shifted CGS has improved the

convergence in a.lmost all cases and that it a.lso 'dampens' the large residuals found in

the standard method.
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Results from Example 3 are given in Figure 4.9 and we include this example only to

show the improvement of the smaller residuals over the spiky residuals in the standard

method. The least improved is seen in this Shermanl example, although here one

improvement is made by way of the smaller residual spikes. This is an advantage as in

the standard method these large spikes may cause instabilities or divergence near the

beginning of the method. It is perhaps this problem which leads to the stagnation of

CGS in both Exampies 1 and 4 and which shifted CGS has nicely remedied.

Convergence histories for Exampie 4 are shown in Figures 4.10 through 4.13. This

example again emphasizes the overall benefits of the shifted algorithm and we can see

that even when the standard method fails to converge the shifted method improves this

in all cases and converges. In all examples presented for the shifted method it is clear

that this new method is better than the standard CGS method for all nonsymmetric

test problems given here and improves upon both the convergence subduing the large

residual spikes that are encountered in a,ll the examples (here it improves in ali tests).

Overall, as with the mixed BiCG-CGS method, this method does not improve the

convergence dramaticaJly, but does improve it by smoothing the large residuais in the

standard CGS method. We also see that it is capable of turning a divergent CGS into a

convergent one, which rtre see in two separate test problems - a much improved history!
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Figure 4.1: Convergence History for Example L B - 200,1 : -200
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Figure 4.2: Convergence History for Example 2 B - 200,7 = -200
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Figure 4.3: Convergence History for Example 1- þ : -250,,y = 100
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Figure 4.4: Convergence History for Example 1- þ : I00,.y = -360
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Figure 4.5: Convergence History for Example 1 þ : -220,7 = 220
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Figure 4.6: Convergence History for Example 2 B - 123,1 : -22
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Figure 4.7: Convergence History for Example 2 B :200 .y : -200
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Figure 4.10: Convergence History for Example 4 B - -200,1= 200
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Figure 4.11: Convergence History for Example   B - -t22,1: 190
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Figure A..12: Convergence History for Example 4 B - -190,7 : 100
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Figure 4.13: Convergence History for Example 4 B - -200,1: 100
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Appendix B

Selected Convergence Histories

for Mixed BiCG-BiCGStab

Method

Additiona,I convergence histories for Example problems 1 and 2 follow. In all the Exam-

ple 1 problems we see that the mixed method converges while BiCGStab is stagnating.

We also see the method beating the convergence of both BiCG and BiCGStab in Ex-

ample 2. Although this characteristic is not indicative of the overall performance of the

method, we have included it here as an interesting case. Figure 8.6 is included to show

the effects of the range of input Tol for ø. Here we see that the method is essentially

BiCGStab when a very small input is used and hence no switchings occur.
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Figure 8.1: Convergence History for Example 1- þ = -220,,.,1 - 220
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Figure 8.3: Convergence History for Example 1 0 = -250,j: 100

104

102

100

Eoc
I

I 
'o-'fp

ø
E

E ro-o
õ
Eo

1 0-'

10 "

0 100 200 3¡?i,"t¡on nrrf.o.'o 500 600 700

Figure 8.4: Convergence History for Example 1- þ : -300,^l: 300
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Figure 8.5: Convergence History for Example 2 þ = -220,.y = 220
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Figure 8.6: Convergence History for Example 4 B - 100,7 : -100
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