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Abstract

Krylov subspace methods are among the most important iterative techniques currently
used for solving large sparse linear systems. They are used for solving systems in which
the coefficient matrix A is either symmetric or nonsymmetric. While the methods
used for symmetric systems are well understood, the nonsymmetric methods are more
difficult to analyse theoretically and recently much research has been focused on these
methods. In this thesis, a review of the current methods which are built upon the Krylov
subspace is presented. New mixed methods for nonsymmetric systems are then derived
which are based on either the CGS or BiCGStab algorithms and which allow switching
from these methods to BiCG. While maintaining the fast convergence properties of
CGS and BiCGStab, the motivation for these new methods is to improve upon certain
undesirable properties inherent in either method. In CGS it is often the case that in the
early stages of convergence the residuals become very large, a behaviour which may lead
to irregular convergence and in some cases even divergence of the method. Although
BiCGStab was developed and successful in smoothing this convergence, in certain types
of problems this method may result in stagnation of the residuals. The mixed methods
are developed to try and remedy these problems by switching to the more stable BiCG
method when certain switching criteria are reached. Numerical testing is carried out

and examples given to show the benefits of the new methods.
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Chapter 1

Introduction

1.1 Direct and Iterative Methods

Methods for solving linear systems include both direct and iterative ones. Direct meth-
ods include those that we are familiar with from our first introductions to linear algebra,
namely Gaussian elimination where the solution is obtained through a finite procedure.
Direct methods, such as Gaussian Elimination, cannot efficiently solve many matrices
that arise in practice. Although these methods are theoretically exact, we must also
consider that when we solve these systems on computers, we will never obtain an ’exact’
solution due to the roundoff error during these computations. Iterative methods, on the
other hand, approximate a solution through a series of iterations. The iterations are
terminated when some termination criteria is satisfied for the ’approximated’ solution
vector z,41. If we consider solving a system using either a direct or iterative method,
we may think it would be better to obtain the ’exact’ solution, rather than using an

iterative method, as the error of an iterative solution might be far worse than the extra



work required in computing an exact answer. If we consider the cost of computing the
solution of Az = b with a direct method such as this, the computational flops (floating
point operations) will be O(m?®) (where m is the dimension of the matrix). In the
worst case scenario, an iterative method will cost O(m?), which is usually never the
case, and at best, for a sparse or structured system, may only cost O(m). So, given that
we will expect error in both methods, the decrease in cost of implementing an iterative
scheme is almost always better given a large sparse system. Many of these examples
arise from discretizations of partial differential equations; these resulting matrices have
certain properties that cannot be adequately exploited using the direct methods. Fur-
thermore, they are often sparse, containing very few nonzero entries and when solving
these systems with Gaussian Elimination, it is hard to preserve the sparsity, with many
zero entries filled in during the process of elimination. We can take advantage of these
sparse matrices by solving them using iterative techniques which use matrix-vector mul-
tiplication only. The storage for this operation is just O(m), as there are usually only
a few nonzero entries each row, as opposed to a dense matrix-vector operation, which

would require 2m? operations.

1.2 Development of Krylov Subspace Methods

Most efficient iterative methods currently available, use a projection process which al-
lows us to extract a solution vector of a linear system from a subspace. The most
current and popular iterative techniques use this idea and we extract the approximate

solution from the Krylov subspace. Thus, given an initial guess vector zg, we can create



a subspace K which is built upon an orthogonal basis and perform a projection process
to extract the solution vector z,.

Several different Krylov subspace methods exist. These can be broken down into
two major groups; those for solving linear systems in which the coefficient matrix A
is symmetric and those in which A is nonsymmetric. Below, an overview is given of
the current methods used today, from the historical beginnings to some of the many
variations which exist in the current literature.

Krylov methods have stemmed from early beginnings, although the development of
using them as iterative methods did not truly begin until several decades later. Lanczos
introduced the first projection process for symmetric systems. Shortly after in 1951,
Arnoldi [1] developed his orthogonal projection process for non-Hermitian matrices.
This process was first introduced as a means of reducing a dense matrix into Hessen-
berg form and was also later discovered to be a good technique for approximating the
eigenvalues of large sparse matrices. Unlike the Arnoldi method, the Lanczos algorithm
uses a three-term tecurrence to solve the symmetric system, and so is a more elegant
version. From both methods stemmed several of the current methods used today for
solving linear systems. The most important and popular symmetric Krylov method,
the Conjugate Gradient method was introduced independently by both Lanczos in 1952
[17] and Hestenes and Steifel [15]. Interestingly, the Conjugate Gradient method was
initially developed as a direct solution technique and was found to give poorer results
than current direct methods at the time. In exact arithmetic, this method should con-
verge in n steps, although due to loss of orthogonality upon vector formation during

the algorithm, this method did not always give adequate results and was abandoned for



over two decades. In the early 1970’s, it was found that this loss of orthogonality did
not actually prevent convergence [21] and in a sense, was rediscovered as an iterative
technique. The 1980’s saw many developments in the new class of methods for solving
nonsymmetric systems. In 1986 Saad and Schultz [22] introduced the Generalized Min-
imum Residual Method (GMRES) which was based on the Arnoldi process. Unlike the
Arnoldi method! the GMRES method finds an approximate solution by solving a least
squares problem (see [21] for details).

Several variants were developed from both FOM and GMRES. For variations which
stemmed from both, the reader is referred to Saad’s text on Iterative Methods for
Sparse Linear Systems [21] which gives an overview and derivations of most of these
methods. Further studies investigated block methods based on the methods above, for
cases in which one may want to exploit the fast memory storage with blocks rather than
working with single vectors. As one of the first such methods, Ruhe [20] developed a
block method for the symmetric case, based on the Lanczos algorithm in 1979. More
recent work has focused on nonsymmetric block methods.

The main body of literature which exists for solving nonsymmetric linear systems
with methods based on the Krylov subspace developed much later than those of the early
CG beginnings, and in fact is an area of much current research. The methods are based
again on the Lanczos algorithm, although in this case due to the nonsymmetric nature
of A, the methods are based on the formation of a biorthogonal sequence rather than an

orthogonal one as in the symmetric case. The first of such methods was introduced by

1of which there are several different methods referenced in the literature, in this review we mean the
Full Orthogonalized Method of Arnoldi’s, here within referred to as FOM



Lanczos in 1952 [17] and later, in the present form by Fletcher [10] in 1974. This method
was introduced as the Biconjugate Gradient Method (or BiCG) and is still currently
one of the most reliable methods when dealing with nonsymmetric matrices. Also in
this class of methods is the Quasi-Minimal Residual method (QMR), which differs from
BiCG in that the approximation is obtained by solving a least squares problem (as
GMRES differs from the Arnoldi method). Although both of these methods work quite
well, they both rely upon using the transpose of A to generate biorthogonal bases. This
is sometimes undesirable in practice as in some applications the transpose of A may not
be available if A is not available explicitly (see [7] for further details). Sonneveld [27]
then introduced the Conjugate Gradient Squared Method (CGS), which does not rely
on using the transpose of A as BiCG does and improves the convergence by squaring
the residual polynomial. This method was an important development as it allows us
to consider these methods in terms of orthogonal polynomials rather than in vector or
matrix forms. The CGS method however may have drawbacks when applied to certain
types of problems and sometimes develops large residuals near the beginning; as a result
convergence may be irregular or the method may fail to converge at all (as we shall see by
numerical experiment in later chapters). The Biconjugate Gradient Stabilized Method
developed by Van der Vorst [29] in 1992, aimed at treating this unpredictable behaviour
in CGS by providing a different polynomial in the residual construction, which was
chosen to smooth out the convergence. Rather than squaring the BiCG polynomial,
as was done in CGS, BiCGStab uses the BiCG polynomial together with a ’stabilizing
polynomial’ to smooth the convergence of CGS and also to keep the improved speed of

convergence over BiCG. We will see the derivations for both of these methods in the
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following chapter. Although this method has also proved to be very successful, it may
also suffer from breakdown and the method may stagnate with certain problem types.

All three methods, BiCG, CGS and BiCGStab have benefits depending on the prob-
lem which they are being applied to. It is for this reason that much research has recently
been devoted; we wish to keep the beneficial properties of these methods but hope to in-
crease the numbers of problems which we can apply these methods to. One other aspect
which keeps us from major improvements regarding these methods is that unlike the
symmetric cases, these methods are theoretically more difficult to analyse and as such
have made it more difficult to understand the numerical behaviour. The best tool we
have so far in terms of analysing and thus understanding these methods, is through nu-
merical experimentation. Recent attempts at improving the CGS methods include, for
example, that done by Fokkema et al. [11] and Chan and Ye [6]. In [6], 2 mixed method
was developed which allows switching between the CGS and BiCGStab methods and
thus avoids the potential drawbacks during implementation. Gutknecht [13] attempted
to remedy this stagnation, with his development of BiCGStab2 in 1991. This method
uses a second degree polynomial and was certainly an improvement to the BiCGStab
method although it still suffers from breakdown at times. Sleijpen and Fokkema [23]
furthered this study by developing the BiCGStab(l) method in 1993, which generalized
Gutknecht’s method in a sense, and combined GMRES(/) with BiCG. More recent work
which has focused on BiCGStab and BiCG methods include, for example, [26], [25], and
[24].

In this thesis, we have attempted to improve upon both the CGS and BiCGStab

methods, as is the aim of much current research. We first provide an overview and
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algorithms for the most important methods noted above. Two mixed methods, similar
to the mixed method of Chan and Ye [6] but using BiCG in both, are then derived.
The first is a mixed BiCG-CGS algorithm and the second a BiCG-BiCGStab algorithm.
Both use a switching variable which depends upon the iteration number and thus allows
us to switch freely between the two methods when a certain criterion is reached. With
these methods, we attempt to improve the drawbacks that one may encounter in CGS
or BiCGStab, namely the instabilities and stagnation that may occur, by switching to
the more stable BiCG method in such a situation. We also give an overview and results
of numerical testing for a shifted CGS method based on work done by Fokkema et. al
[11]. Although we have implemented this method as they have suggested in their paper,
it could also be implemented as a special case of the mixed BiCGStab-CGS method
as suggested in [6]. As we will see, the shifted CGS and new mixed methods improve
the convergence in most cases and for the cases where this is not the case we offer a

discussion and possibilities for further study.
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Chapter 2

Theoretical Background

2.1 Basic Iterative Methods

Basic iterative methods, including the following familiar methods: Gauss-Seidel method,
Jacobi method, SOR (SSOR) and the Alternating Direction Methods, begin with a
given approximation zg to the solution, and by modifying certain components of the
approximate solution at each iteration, reach convergence. For example, in each Jacobi
iteration, the (n 4+ 1)** component of the next approximation is determined so as to get
rid of the n?* component of the residual vector Tn+1 = b — Az,. In this way, r, is used
as a search vector and z,41 is updated using 7.

Further to these iterative methods are the Krylov Subspace methods, which are
used for solving large linear systems, and extract approximate solutions from the Krylov
subspace K, = span{b, Ab, A%,-.-, A"b}.

We can think of a simple scheme in the following way. Suppose we are given (or

guess) an initial solution vector 2o and we wish to find a good approximate solution.
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We can approximate the solution through a series of iterates, n = 0,1,... using

Tpa1 = T+ M0 - Az,,) (2.1)

where M is a matrix called a preconditioner, usually chosen so that M~1A4 is close to
the identity in some sense, and the residual vector is that defined as r, = b — Az,.
Depending on the chosen form of M we will end up with one of the methods mentioned
above. For M equal to the diagonal of A we have Jacobi iteration, for M equal to
the lower triangle of A we have the Gauss-Seidel method. In general, we can write the

following algorithm

Algorithm 1 Basic Iteration

Given g, compute rg = b — Az
solve z, = M ~1rq
forn=20,1,2,...

Tptl = Tp+ 25
Tn41 = b — AZpyq
Zny1 = M rpy

end

To establish necessary and sufficient conditions for the convergence of this algorithm,

14



we consider the error ¢, = z, — 2 where z = A~1b. It is easy to see that

Engl =Tl — & = Zp—z+ M TA(z - 2,) (2.2)

(I-MAep == (1T - M TA)Fe (2.3)

taking norms on both sides of this equation we obtain

lensall < (I = M~ A)*l[leoll (2.4)

and we can state the following.

Lemma 1 The iteration of Algorithm 1 produces the vector z, which will approach z

and the error will approach zero for every initial z¢ if and only if

p(I-M1A)< 1

where p(B) is the spectral radius of B, ti.e. the largest eigenvalue in absolute value.

From (2.3) we can see that if ||(J — M~1A)|| < 1, then the error will be reduced by

at least this factor at each iteration.

2.2 Projection Methods

Krylov subspace methods extract a solution vector z, from a subspace that is optimal
in some sense, through a projection process.

If we wish to extract the approximation from a subspace K then, in general n con-

15



straints must be imposed in order to extract such an approximation. We will define these
constraints by imposing n orthogonality conditions. More specifically, we will constrain
the residual vector r, = b — Az, to be orthogonal to n linearly independent vectors.
This defines another subspace L, which can be called the subspace of constraints. When
the subspace L is the same as K, we have an orthogonal projection process, otherwise
if L and K are different, we have an oblique projection method.

In general, given an m X m real matrix A and two subspaces L and K of dimension
n, we can define a projection technique such that the approximate solution 2, is found
where 2, — ¢ is in K and the new residual vector is orthogonal to L or, find ,—2¢ € K,

such that the Petrov Galerkin condition holds,

rn=0b-— Az, L L.

Or, we can define 2, in the following way,

zp,=20+6, 6€K

so that we have,

(rn,q)=10, Vge L

In matrix representation we can consider finding the approximate solution as

z=ua9+ Py (2.5)

16



where P = [p1,p2,...,Pn] € R™*™ whose column vectors form a basis of K. In the same
way, let @ = [¢1,¢2,.-.,dn] € R™*™ whose column vectors form a basis of L. Then the
orthogonality conditions give,

QTAPy = Q"ro

where QT AP € ®™*"

2.3 Symmetric Krylov Subspace Methods

As a first overview, the process occurs as follows: consider an initial guess vector zg, if
this is not available to us, we may just choose z¢ = 0 as an initial guess. Thus we may

take the first approximation to the solution:

z1 € span{ro}

or where our initial guess vector o = 0 then we have rg = b — Azy = b. Next, we
compute the matrix-vector product Ab and find the next approximation as some linear
combination of b and Ab:

zg € span{b, Ab}.

This process continues until some convergence criteria is reached and at step n + 1, the

approximation satisfies

Tny1 € span{b, Ab, A%, .., A"b}

17



The following methods are based on projection processes, orthogonal or oblique,

onto a Krylov subspace,

K, € span{b, Ab, A%, ---, A" 1b}

this subspace is spanned by vectors of the form p(A)b where p(A) is a polynomial in
A of degree less than n. We are seeking the solution z, = A~'b and approximate this
solution by p(A)b.

The Lanczos algorithm builds orthogonal bases of the Krylov subspace K, for sym-
metric matrices. Through a three term recurrence, we construct an orthonormal basis

a1,92,q3, -+, g Of Lanczos vectors for

{q1a Aq17 A2q17 Tty An_1q1}

such that the following matrix relations hold,

AQn = QnTn+/3n+1Qn+1ezzj
Qan = I

TAQ, = T,

18



where @, = [¢1,G2,"*,qn] is n X m and the tridiagonal matrix T;, is given by

a; P

B2 a3 B3

:Bn—l Qp—1 /Bn

Br on

if we let g1 = ro/||7o]| (or when zo = 0 then r¢ = bg), and § = ||ro|| and from the matrix

relations above we have

QLo = QL(Bq) = Pey

Where the approximate solution z, is given by,

Ty = To + Qnyn (26)

as in (2.5), or when 2o = 0 as an initial guess

Tn = Qnln

and

Yn = Tn_l(ﬁel)-

In another approach, the Minimal Residual Method, we find the approximate solution

z, as above, but we find y, by solving the least squares problem, ||fe; — Tp41y]| (for

19



an overview of this method see [14]).
We can now write the Lanczos algorithm which generates the column vectors to
form the matrix @, and the coefficients @ and § to form the tridiagonal matrix 7,, so

that we can find the approximate solution to the linear system as in (2.5).

Algorithm 2 the Lanczos Algorithm

Choose an initial vector ¢; such that ||g1]] =1
Set 1 =0;¢0 =0
Forn=1,2,...... until convergence
Pn = Agn — Prgn1
= (Pnr In)
Pn = Pn — Gnln
Brt1 = ||Pall2
Gnt1 = Pr/Brt1

end for

Thus, using the Lanczos algorithm, we can derive Krylov subspace methods for
symmetric matrices. If we wish to find an approximate solution to the linear system
Az = b, we can consider an orthogonal projection process in which, L = K = K, (A, ro).
Such an approximate solution, z, can be found in the affine space of 2o+ K, by imposing
the Galerkin condition®,

b— Az, L K,

This projection process ensures z, is the optimal approximation from K.

lwhen L = K the Petrov-Galerkin conditions are called the Galerkin conditions

20



Theorem 1 Let z, be the approzimate solution obtained from an orthogonal projection
process onto K, and the exact solution to the original problem be denoted by x. The
imposed Galerkin conditions are necessary and sufficient for the following minimization
relation to hold

2 — zlla = minuex,|lv — 2|4 (2.7)

2.3.1 Conjugate Gradient Method

From the Lanczos process we can derive the Conjugate Gradient method, used for
solving symmetric systems. The process developed above leads to the approximate
solution z,41 given as Z,41 = 2o + QrnYn where y, = T;;1(Be1). This requires inverting
T, at each step. Fortunately, z,4; and the corresponding r,4; can be computed by a
recurrence, which is the conjugate gradient method.

In matrix notation, let

where L, and U, are lower and upper banded matrices respectively. We have,

Tnt1 = To + QU L (Ber)

let

Pn :QnUn_l

and

Zp = L;1ﬂ61

21



then

Tpyy = Zo + Pz,

Proposition 1 The Lanczos process produces r, = b — Az, and a search vector p, for
n=20,1,... and,
1. the residual vectors are orthogonal to each other, (r;,7;) =0 for i # j, and

2. the auziliary vectors p; form an A-conjugate set, (Ap;,p;) =0 for i # j.

With the orthogonality and conjugacy conditions we can now derive the Conjugate

Gradient algorithm. The solution vector can be expressed as,

Tntl = Tn + appn

and the residuals satisfy the recurrence relation

T4l = Tn — anApn

and if the residual vectors are orthogonal then

(Trt1,77) =0

(Tn - anApnv Tn) =0

and as a result we have

_ (rny7n)

n = (Apn,Tn)

22



Where the next search vector p,41 is a linear combination of 7,1 and p,, so that we

have the following recurrence relation holds

Pnil = Tnil + BnPn (2‘8)

A first consequence of the above relation is

(Apna"'n) = (Apnapn_:@n—lpn—l)

= (Apn,pn)

because Ap, is orthogonal to p,_1 we can write

- (Tna Tn)
(Apn,Pn) .

In addition, if we write p,41 as in (2.6) which is orthogonal to Ap, we have

_ (Tn+1> Apn)

o = (P, Apn)

where from the recurrence for r,4; we obtain

1
Apn = _'a':(rn+1 - Tn)

and so

ﬂ _ (Tn+1, 7‘n+1)
" (TnsTn)

23



We can now write the Conjugate Gradient Algorithm,

Algorithm 3 Conjugate Gradient

Input 2o

Initialize rqg = pg = b — Axzg

Forn=0,1,2,...... until convergence
Wy = App
pn=1ir,

Op = PgAPn = (pnawn)

Pn
On

Qp =
Tpt1 = Tn + OnPn

T+l = Tp — O-'nApn

ﬂn = Pl
Pn

Prnt1 = Tny1 + Brpn

end for

It is important to note here that the scalars a, and 8, of this algorithm are different
from those of the Lanczos algorithm. We can also see that each iteration of the CG
algorithm will require one matrix vector operation, Ap, and four vectors to be stored:

z,p, Ap and r.

2.4 Nonsymmetric Krylov Subspace Methods

The first Krylov subspace methods introduced to solve nonsymmetric linear systems

were based on the normal equations [21], ATAz = ATb. Although these methods are
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quite robust, in most examples arising from the discretization of partial differential equa-
tions, the convergence is too slow, and when the problem is somewhat ill-conditioned
these methods will fail to converge within a reasonable number of iterations unless a
good preconditioner is used [14]. A more direct Krylov method for solving nonsymmetric
problems uses a biorthogonalization process due to Lanczos [17].

Given a nonsymmetric coefficient matrix A, it constructs a pair of biorthogonal

bases, ¢1,42,43,""*,q, and pi,pe,p3,---,p, for

K.(A,p) € span{p, Ap1, A%p1, -+, A" p;}

and

I(n(AT’ (Z) € SP&H{Q1>AT¢117 (AT)2(117 Tt (AT)n_1Q1}

so that the following orthogonality condition holds

(Qj’pi) = 5’£ja fO’/’ 1 < Z,] < m.

Similar to the symmetric case, the following matrix relations hold,

APn = PT,+ ﬁn+le£
ATQn - QnTg + Qn+1eg

Where we have replaced the product 8p4+1pn41 With Pny1 and Bpy1¢nt1 with Guiq.
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Where the tridiagonal matrix 7, is given by

ay ﬂ2

0y o

B3

571—«1

Cp1

on

Bn

Qn

and @), and P, are n X n matrices formed by the column vectors, ¢; and p; for: = 1,...n.

Thus the Lanczos algorithm for the nonsymmetric case? generates the vectors p,11 and

gn+1 using T, where @, is given by the inner product of p, and ¢, and the scalars

and § are chosen such that they satisfy the relation

6n+1ﬂn+1 = (ﬁn+17 ‘jn-{-l)-

We can write the algorithm as follows

Algorithm 4 the Lanczos Algorithm (for nonsymmetric matrices)

Choose two initial vectors py, ¢; such that (p1,¢1) =1

Set 51 =61 =0;g0=po =0

Forn=1,2,... until convergence

an = (Apn,qn)

Prnt1 = APn — @nPn — Brpr-1

2here after referred to as simply the Lanczos algorithm.
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Qn+1 = ATQn - Qnfn — 677,%7.—1

6n+1 = l(ﬁn+1>‘_?n+1)|1/2

- (ﬁn-{-—l,‘jn—{-l)
ﬂn+1 - T

671-}-1

(jn+1
Gni1 =

,Bn+1

Prt1
Pny1 = =

6n+1

end for

As in the symmetric case, if we wish to apply the algorithm to a linear system to

generate the approximate solution z, where

Tp =20+ Qnyn

and

Yn = Tn_l(ﬁel)

where 8 = ||ro||, we first generate the Lanczos vectors ¢1,4¢2,-..,qn, P1,P2,--.,Pn and

the tridiagonal matrix T}, to find the approximate solution.

2.4.1 Biconjugate Gradient Method (BiCG)

The Biconjugate Gradient Method was introduced by Lanczos [17] and can be derived
from the Lanczos biorthogonalization process in the same way that the Conjugate Gra-
dient method was derived for the symmetric case. The algorithm solves the original
system, Az = b, with an approximation z, while also solving a dual linear system,

ATz = b with AT. In most cases we ignore the formation of this dual system, however
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the transpose of A must still be formed.

If 7, and p, are defined from P, and 7T, in a similar way as in 2.3.1, and 7, and
Pn are defined from @, and T, then they satisfy the biorthogonality and conjugacy
conditions given as

(TnyTm) =0 for n#m

(Apn,pm) =0 for n#m

where 7, and p, are in the same direction as p,4+1 and ¢; = 7o/||70||, and 7, and p, are
in the direction of ¢,,+1, we write the BiCG recurrence in the same way as the Conjugate

Gradient algorithm, although here we must include 7, and 5,.

Algorithm 5 Biconjugate Gradient

Input z¢
Initialize 7 = pg = b — Axg

Choose 7o such that fg ro # 0, Po = To.

po = Faro
Forn=20,1,2,..... until convergence
Wy = Apy
Pn = 7';2; Tn

Op = ﬁz:Apn = (ﬁna wn)

Pn
On

Gp =
Tpnt1 = T + app,

Tn41 = Ty — anApn
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fn+1 = fn - anATﬁn

Pn+1
B = 2221
n P

Pnt+l = Tyl + ﬂnpn
ﬁn+1 = 'Fn—}—l + ﬂnﬁn

end for

Here we see that we will require 2 matrix vector operations for each iteration namely
Ap, and ATp,. Thus we will require an extra vector to be stored over the CG method
in the symmetric case.

Here, it is easier to begin using the theory of orthogonal polynomials to describe
the following Lanczos-type algorithms and infact is how Lanczos had introduced his
iterative scheme in the 1950’s [17]. We can see that the approximations obtained from
a Krylov subspace method are of the form A~'b ~ 2,41 = ¢ + hn(A)rg where h, is a
polynomial of degree n. In the simplest case where g = 0 the solution is approximated
by hn(A)b or,

A™1b & hy(A)D.

Then r, = b — Az, = 1o — Ahp_1(A)rg = P,(A)rg. We call P, the nth BiCG

polynomial corresponding to r,. Similarly

Pn = Tn(A)TO

for some polynomial T,,. Note that P, and T, are of degree n. Then, from the BiCG
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TECUTTENCE Tpt1 = Tp — O ADyn, We have
Poia(t) = Po(t) — antTy(2), (2.9)
and from Pus1 = a1 + Brs1Pn, We have

Tny1(t) = Prga(t) + Bar1Tn(t), (2.10)

The biorthogonality of r,, #,, and the biconjugacy property of p,, D, lead to the following

orthogonality properties
(p(AT)Fo, Po(A)ro) =0 and (p(AT)o, ATn(A)ro) = 0 (2.11)

where p is any polynomial of degree less than n, we can deduce from the formulas for

a, and B, that

_ (Po(AT)o, Pa(A)ro) and G :(Pn+1(AT)fo,Pn+1(A)7’0)
(Tn(AT)7g, AT (A)ro) ntl (Po(AT)fo, Po(A)ro)

Qn

The methods that follow are developed using polynomial representation which we
have introduced here for BiCG. The recurrence formulations are also based on the BiCG

recurrences of equations (2.9) and (2.10).
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2.4.2 Conjugate Gradient Squared Method (CGS)

To improve BiCG, Sonneveld developed the Conjugate Gradient Squared algorithm in
1989 [27]. The improved algorithm avoids using the transpose of A and accelerates the
convergence® by squaring the BiCG polynomials.

CGS constructs an approximation z,, such that the residual is given by,

T = b— Az, = P2(A)ro.

We can derive the recurrence relations by squaring those from BiCG to obtain

P2, = P2 —20,tP,T, + o2t*T?

TZ,1 = P2y + 2841 Pop1 Ty + B2, T2

We can see that we will require extra products namely, P,T, and P,;7T,. However
P, T, can be expressed as P2+ 3,P,T,_; and so does not need to be defined explicitly.

Thus we define the recurrence relations in terms of the following polynomials,

rn = Pﬁ(A)ro
Pn = Tr%(A)TO

Pn+1 (A)Tn(A)TO

Sn

®Reasons for developing transpose free methods are discussed in Chan et al. [7]. In many cases
it may be difficult and expensive to explicitly store AT in order to compute AT and it may also be
difficult to compute A7, depending on whether or not A is computed explicitly.
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And in finding the BiCG parameters from the orthogonality conditions, we have

pr = (Pa(AT)fo, Pa(A)ro) = (Fo, P2(A)ro) = (Fo, )

and similarly we can show this for o, and thus we will be able to obtain «a;, and S,41

for CGS. We can now form the CGS algorithm with the desired properties.

Algorithm 6 Conjugate Gradient Squared

Input zo
Initialize rq = pg = b ~ Azg

Choose 7, such that Fg ro# 0

po = 7m0
Forn=0,1,2,...... until convergence
Wy, = Apn
Pn = rz 70
Op = ﬁgAPo
an =22
On

Sp = 1Ip — anApn

Tny1 = Tp — anA(tn + Sn)

ﬁn = Pl
Pr

tn+1 = T4l + ,ann
Prt1 = tng1 + Bn(Sn + Bny1Pn)

ZTpt1 = Ty + an(tn + Sn)
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end for

We note that in deriving the recurrence relations we must construct an auxiliary vector,
given in our algorithm as t, = r, + Br-18n.

We see that there are no matrix-vector products with the transpose of A, as in
BiCG, and that we do not have to explicitly form 7,41 or fp41. Instead, two matrix
vector products with the matrix A are performed, to produce a reduction with P2, i.e.,
T, = P2(A)ro, and we should expect that the new algorithm will converge twice as
fast as BiCG as we are replacing the matrix-vector products of AT with more useful
work. This method works quite well in most cases, however because the polynomials
are squared rounding errors may become quite large. Van Der Vorst introduced the Bi-
conjugate Gradient Stabilized method in 1992 [29], to remedy the irregular convergence
associated with CGS. Instead of squaring the BiCG polynomial this method uses the
BiCG polynomial with a different ’stabilizing’ polynomial which helps to smooth the

convergence.

2.4.3 Biconjugate Gradient Stabilized Method (BiCGStab)

Similar to CGS, we should be able to construct other iteration methods which generate

Zn+1 SO that we can form a residual as a product of two polynomials

Tp = Qn(A)P‘n(A)"'O

33



In BiCGStab, we take @, (A) in the form

Qn(t) = (1 - wlt)(l - OJQt) oo (1 bt wnt)

where we select w,, such that in the mth step of iteration r,, is minimized with respect
to wy, for residuals that can be written as 7, = P,(A)@n(A)ro. So we define the

recurrence relations in terms of the polynomials,

T = Po(A)Qn(A)ro

DPn = Tn(A)Qn(A)TO

and derive the recurrences from step n to n+ 1 based on the BiCG recurrence relations.
We then write the recurrences for r,4+1 and p,41 in vector form, generating the following

algorithm.
Algorithm 7 Biconjugate Gradient Stabilized

Input z¢
Initialize ro = po = b — Azg

Choose 7 such that fg ro # 0

po = g 7o
Forn=20,1,2,...... until convergence
Pn = 7';{ o
On = ]31111 ApO
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= Pn

On

Qy
Sp = Tp — anApn

w= As,

_ (w, 8n)

" (w,w)

Tppl = Ty + CnPn + Wy Sy

T4l = Sp — WpAS,

pn+l
ﬁn =
Pn

Pn+1 = Tn41 + ﬁn(pn + wnApn)

end for

Again, a, and f, are found using the BiCG coefficients and ensuring the following

orthogonality conditions,

(p(AT)7o, Po(A)ro) =0 and (p(AT)7o, ATH(A)rg) = 0 (2.12)

where p is a polynomial of degree less than n and w,, is found by minimizing the 2-norm
of the residual vector 7,41 = 8, — wpAsy so that

_ (Asp,80)
"7 (Asn, Asy)’

W,

We will also need an extra vector to express the recurrence for the residual vector
namely, s, = r, — oy Ap,. In this method, we observe that the number of matrix
vector operations is the same as in CGS and so expect it will be comparable in terms

of convergence speed.
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Although BiCGStab was developed to remedy the inherent problems associated with
CGS by choosing a polynomial which would avoid large intermediate residuals, the com-
puted w may be zero or close to zero which may result in the breakdown or stagnation
of this method [23]. To remedy the problem of stagnation associated with BiCGStab,
Gutknecht [13] introduced BiCGStab2 which uses second degree polynomials to better
handle this type of situation. Although improved, the methods still stagnates in some
cases. Sleijpen and Fokkema [23] introduced a generalized method for this problem,
namely BiCGStab(l) which forms an /** degree polynomial after every [ steps. Thus
for I = 1 we have BiCGStab algorithm which is just a special case of the BiCGStab(/)

method.

2.4.4 Mixed BiCGStab-CGS Method

This mixed method, developed more recently by Chan and Ye [6], uses both the standard
CGS and BiCGStab methods and is derived in such a way that switching can occur
between the two methods at each iteration. In a CGS based implementation, it aims
at avoiding the increase in residual norm in CGS by switching to BiCGStab in order to
improve overall stability.

The method constructs an approximation ., such that its residual has the form

T =b— Az, = S,(A)P,(A)ro,

where

Sn(t) = Qr(?) Pro—k(t) and Qk(t) = (1 — wit) -+ (1 ~ wyt)
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and k is an integer parameter that determines what kind of residual reduction is used.
So when constructing 7,41 = Sp41(A)Pry1(A)rg from 7,, a choice is made between
taking either a BiCGStab step or a CGS step and one can choose either S,41(t) =
Qr(t)Pry1-1(t) o Spt1(t) = Qrt1(t) Pr—k(t) where the former is called a CGS step and
the latter a BiCGStab step. Thus, in the first n iterations, k steps of BiCGStab are
taken and n — k steps of CGS.

The derivation is similar to those of the mixed methods in Chapter 3, and we derive
the recurrences for each case; k(n + 1) = k (a CGS step) and for k(n+1) =k +1 (a
BiCGStab step) using the BiCG recurrence relations in equations (2.9) and (2.10). a,
and B3, are found in a way similar to those in sections 2.4.2 and 2.4.3 and again w, is
found by minimizing the 2-norm of the residual vector where the residual is written as

Tn+1 = v — wAv. This gives us the following algorithm

Algorithm 8 Mized BiCGStab-CGS

Input an initial approximation zg and an auxiliary vector 7y ;
Initialize 7o = o = v9 = po = b — Azo; k=05 pg = fgro.
For n =0,1,2, - until convergence
Determine whether & < & (CGS step) or k£ — k + 1 (BICGSTAB step);
If (CGS), then
n = pn/7E Apn
Gn = Vn — anApn
Tntl = Tn — A(Qntin + 0n—kgn)

Tprl = Ty + Qi + QpkGn
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_ =T .
Pn+1 = Tg Tn+1;

_ OnPnyl _ T3 Agn
Bry1 = ——— (or = —

Uk P ngpn

)

Un+1 = Tn41 + ,Bn+1(un - an—kApn)
VUn41 = Tn4l + ﬁn-{—l—kqn

Pri1 = Ung1 + Brut1-k(qn + Pri1pn)

End if

If (BICGSTAB), then

Qn = pn /T8 Aup,

v =71, — a,Au,

w = vT Av/(Av)T Av;
Tnt1 = U — WAD

Tpil = Ty + Qptly + WO

— 5T .
Prn4+1 = T Tn+1;

On P+l (or = ngv )

Brt1 = =—=
nt WpPn 7T Au,

Unt+1 = Tpt+1 + ,Bn+1(un - WAun)
Vnt1 = (I — wA) (v, — anApy)

P41 = Unt1 + Bny1(Pn — wAD,)

End if

End for

In this method we can see that several auxiliary vectors are needed to express the

update of the residual vector. We also note that the number of matrix vector operations



for each iteration if a BiCGStab is four, which is double that of the standard method.
If a CGS step is taken however, we have two as in the standard method.

Since this method is a CGS based implementation and we only expect to take a
BiCGStab step every so often, we expect this method to provide a competitive alterna-
tive for problems in which both CGS and BiCGStab diverge, or where the standard CGS
is already competitive. It has also motivated further investigations in mixed methods

with this thesis.

2.4.5 Shifted CGS method

Here we include a shifted CGS algorithm introduced by Fokkema et al. [11] to try
and improve convergence properties of the CGS method, particularly to improve upon
the irregular convergence. Below we outline the method as suggested in [11], although
this method could also be implemented as a special case of the mixed BiCGStab-CGS
method of Chan and Ye [6] of Section 2.4.4.

Suppose we consider, as in CGS and BiCGStab, forming the residual as a product

of two polynomials, where in this case, we will use a ’shifted’ polynomial as follows

o = b— Az, = PB(A)Py(A)ro,

where

Pa(t) = (1= pt) Paca(2)
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Using the following BiCG recurrences,

Pop1(t) = Pa(t) — antTo(t),

Tn(t) = Pn(t) + ﬁnTn—l(t)a

(similarly defined for lsn_;_l and Tn) we construct the recurrence for 7,41 and p, from

stepnton+1

Poi1(A)Pop1(A) = Py(A)Pu(A) — an AP (A)TH(A) — @n AT (A)Pry1(A)

and

Tn(A)Tn(A) = Tn(A)Pn(A) + ﬁn(ﬁn(A)Tn—l(A) + ﬁnTn—l (A)Tn-1(4))

We can see that we will require two extra products to express each recurrence above.

For 7,41 we need to formulate the following vectors,

Vp, = Pn(A)Tn(A)rg

and

Sp = Tn(A)Pn+1(A)T0.

40



And for p, we will need

and

(where the polynomial Tn_l(A)Tn_l(A) is found using pp—1).

tn = Th(A)P(A)ro

U = Po(A)Tp_1(A)7o.

form and obtain the following algorithm

Algorithm 9 Shifted CGS

Input z¢

Initialize r¢ = po = 7o = fp = 8o = Ug = b — Axg

~T
po = g 1o
Bo=0, ag=p
Forn=1,2,..... until convergence
T~
Pn =Ty Ty
ﬂ Qp-1 Pn
=
Qp—2 Pn—1

In = Tn ~ Bpn-15n-1
Pn=1n+ ﬂn(un + ﬂn—lpn—l)
c= Apy

Opn = (p~n> wn) = ﬁgApn
Pn

On

Qp =

Omitting the derivations (see [11] for details), we can write the recurrences in vector
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Sp = 1p — QpC

Up = Up — Qp1C

Pn41 = Tp — A(an'vn - an—lsn)
Znt1 = Tn + QpUn + Op_15y

end for

where o, and (3, are found in a way similar to those in sections 2.4.2 and 2.4.3.
In this implementation we also need to make the following modification for the first

step (n = 1): Bi=0=0 and @ =ag= i so that the recurrence

r, =b— Az, = Pn(A)Pn(A)TO’

where

Pu(t) = (1 - ) Pacs (2)

holds. p is chosen to be the inverse of an approximation of the largest eigenvalue of A.

It is easy to see that this implementation could be modified by choosing u = wy,
where w; is the BiCGStab coefficient from minimizing the residual in the first step.
This gives us a special case of the mixed BiCGStab-CGS of Chan and Ye [6] where the
number of CGS and BiCGStab steps are fixed from the beginning with the first step
taken as BiCGStab and all remaining steps are taken as CGS. We also note that we will
need to perform two matrix vector operations in the shifted CGS method, which is the

same as in the standard method.
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2.4.6 Numerical testing of the shifted CGS algorithm

Although the shifted method has been tested in [11] it has only been tested for symmetric
problems. Here we validate the improvements of this method for the nonsymmetric
cases through our testing below. The method has been tested where the algorithm uses

a shifted CGS polynomial where the residual is written as

Tn = b— Az, = Py(A)Py(A)ro,

where

Pn(t) = (1 - /“t)Pn-—l (t)

as suggested in Section 2.4.5 where we take for the first step, n = 1 we take ; = 0 and
0 = p where p, is chosen to be the inverse of an approximation to the largest eigenvalue
of A* As mentioned, we could also substitute g = w; where w; is the BiCGStab
coeflicient obtained from minimizing the 2-norm of the residual in the first step. This
gives us a special case of the mixed BiCGStab-CGS of Chan and Ye [6] from the previous
section. We would expect this implementation to give similar convergence histories® and
it is somewhat less expensive than using u as a the inverse to an approximation for the
largest eigenvalue of A.

Next, we show a convergence history for one numerical example. This example

will be used in subsequent numerical testing sections and is referred to as Example

*The largest magnitude eigenvalue was found using the eigs function in Matlab with a specified
convergence tolerance of lel. This lack of accuracy did not seem to affect the convergence history of
the observed tests and was far less expensive than finding a more accurate eigenvalue.

5as when computing only a rough approximation of the largest eigenvalue, as long as p is within a
certain range we would expect similar convergence histories if we only implement it for the first step.
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1. Additional test problems are introduced in Section 3.2 and all methods have been
tested with these. Convergence histories for the remaining examples for the shifted CGS
method are given in Appendix A.

Example 1: The matrix is a finite-difference discretization on a 40 x 40 grids of

the following convection diffusion equation

- Au+7(xum+yuy)+ﬂ“ = f(x,y) on (071)23

with the homogeneous Dirichlet boundary condition. f is a constant. This example
was suggested by Freund [12] in his paper on a Transpose-Free Quasi-Minimal Residual
algorithm and also used by Chan and Ye [6] to test their mixed BiCGStab-CGS method.

Figure 2.1 is the convergence history of the computed residuals for the set of param-
eters: 3 = 100, vy = —100 for Example 1. This is a good example where CGS stagnates.
Here we see that shifted CGS for a nonsymmetric problem, not only improves the large

residuals of CGS but also eventually converges in just over 600 matrix-vector operations.
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Figure 2.1: Convergence History for Example 1 8 = 100,y = —100
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Chapter 3

Mixed-Product Methods

In this chapter, we will develop two mixed product methods. The first is based on CGS
and switches to BiCG to remedy the problem of large residuals that may result CGS.
The second method based on BiCGStab also switches to BiCG, in this case to remedy
the problem of breakdown or stagnation that may result when the computed w is zero
or close to zero.

Since the difficulties encountered in BiCG, CGS and BiCGStab are of different type
and usually occur only at a small subset of the iteration steps, it might be advanta-
geous to consider a combination of them that can choose either of the two kinds of
construction at each iteration and avoid using the one for which difficulties arise. In
[6], a general concept of switching product Krylov subspace methods from one type
to another through appropriately defining the sequence of polynomials has been intro-
duced, and a mixed method that is based on the CGS and BiCGStab iterations has
been derived. In this work, we consider mixed methods based on BiCG and BiCGStab

as well as on BiCG and CGS, which is not unlike the generalized BiCG introduced in
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the previous chapter. We shall derive algorithms that allow switching between the two

types of methods and use it to improve the stability of the algorithms.

3.1 Mixed BiCG-CGS method

In this formulation, we wish to construct an approximate solution z, at step n, such
that

rn = Pr(A)P,(A)ro

and

Tn = Pn—k(AT)TO

where k = k(n) is a parameter depending on n that determines whether a CGS or BiCG
step is taken. Namely, we take k steps of CGS and n — k steps of BiCG. Proceeding
from step n to n 4 1, we first choose k(n + 1) as either k(n) = kor k(n)+ 1=k +1 (so

either a BiCG step or CGS step respectively) and then construct

Tnt1 = Pr(n1)(4) Prs1(A)ro

using the BiCG recurrence relations,

Por1(t) = Po(t) — cntTa(t),

Trt1(t) = Pota(t) + Brtr Tn(2).
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In order to construct r,y;, we define the following auxiliary polynomials and corre-

sponding vectors (writing k = k(n))

dn(t) = Pp(t)Pp(t), and 7, = ¢p(A)ro = Pr(A)P,(A)r;

€n(t) = Ti(t)Tn(t), and pn = €u(A)ro = To(A)Tu(A)ro;
Tn(t) = Pooi(t), and #p = n,(AT)ro = Pop(AT )rg;
6n(t) = Tup(t), and fn = Yu(AT)ro = Tu k(A )ro;

Ca(t) = Te(t)Pa(t), and vy = (u(A)ro = Te(A)Po(A)ro;

Yu(t) = Pe(t)Tn(t), and s, = yn(A)rg = Pe(A)T(A)ro

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Suppose the above polynomials have been obtained, we construct the corresponding

polynomial for n + 1. We first generate 1,(¢) by

Pn(t) = Tp(t)Prsr(t)
= Tu(t)(Pa(t) — antTa(t))
= Tu(t)Pa(t) — antTe(t)Ta(t))

= Cn(t) - antén(t)

We proceed the construction by considering two cases.
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Case 1: k(n+1) = k(n) + 1 (a CGS step).

$nt1(t) = Pepr(t)Prya(?)
= (Ps(t) — aptTr(t)) Pt (1)
= Pp(t)Poyr(t) — antTy(t) Poya(t)
= Pp()(Fu(t) — antTn(?)) — antTr(t) Prya (1)
= u(t) — antyn(t) — oxten(t),
Tt1(t) = Prpiok-1 = 7,
bng1(t) = Tati-(e+1)(t) = 6a(2),
Cat1(t) = Trga(t)Prya(t)
= (Prg1(t) + Bra1Te(t)) Prta (2)
= Peg1(t)Pra(t) + Br1 Te(t) Pasa (2)
= Pn1(t) + Bryr¥n(?),
Tot1(t) = Prya(t)Tnya(?)
= Prp1(Payar(t) + Bntr Tn(?))
= Prp1(t)Pra(t) + Brar (Pe(t) — 0t Ti(2))Tn(t)
= Gnt1 + Bntr(7n(t) — oxtén(t)),
bnt1(t) = Trpa(H)Tn4a(t)
= (Pet1(t) + Ber1Te(t)) Tt (2)
= Peya(t)Tng1(8) + Brar Te(8) T (2)

= ’yn+1(t) + ﬂk.}.l(%bn(t) + ﬁn+1§n(t))‘
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Case 2. k(n + 1) = k(n) (a BICG step).

¢n+1

Nn+1

6n+1

Cn+1

7n+1

€n+1

In vector form we first generate ¢, = ¥,(A)ro = v, — ., Ap,, and the remaining

Pp(t)Prya (1)

Pr(t)(Pn(t) — antTy(1))

Pn(t) — ant1a(t),

Poiiok = Pa_i(t) — cneitToi(t)
T = Cn—kt0n (1),

Tns1-k = Prp1-k(t) + Brt1-1Tn-i(?)
Tnt1 + Bnt1-k6n(2),

Ti(t) Prya(t) = n(t),
Pp(t)Tnya (1)

Pi(t) Pay1 (t) + Bros1 Pr(t)Tn(?)
Gr+1(t) + Brir7a(t),

Te(t)Tnya(2)

Ti(t) Pryr(t) + Brar Tu() Tn(t)

Cn—l—l(t) + /Bn+1 fn(t)

vector recurrences can be expressed as follows.

Case 1: k(n+ 1) = k(n)+ 1 (a CGS step)

Tn+l = Tn— anAsn - akAqn =Tp — A(ansn - aan)v
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f’n.+1 = fn,

Pnt1 = Pn,

Snt1 = Tnt1 + Bnt1(Sn — akApn),
Vpt1 = Tntl + Brti1Gn,

Pnt1r = Snt1 + Brr1(qn + Bry1pn)-

Case 2. k(n + 1) = k(n) (a BICG step)

Tn4i = Tn — CnASy,,

77n+1 = Tp— an—kATﬁna
ﬁn+1 = ;n-i-l + ,Bn-—k-}-lﬁn’
Snt1 = Tntl + Boti1Sn,
Vn+1l = Gn,

Pnt1 = Unti t Bria1Pa-

We next recover the BiCG coefficients a,, = pn /0oy, and Bri1 = pnt1/pn. Note that
Op—k+1, Bn—k+1 etc. have been computed in the earlier steps and can be stored.

From BiCG we have p, = (P,(AT)#g, P.(A)ro). By construction,P,(A)ro is or-
thogonal to all vectors p(AT)#y, where p is an arbitrary polynomial of degree less than
n. Thus, we only need consider the highest order term of Pn(AT) when computing

Pn, Namely, Pn(AT) = (-1)*ag, a1, ~an_1(AT)” + (lower degree terms). Using the
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biconjugacy property, we have

pn = (Pu(AT)Fo, Pa(A)ro)

= (-1)"ag,01... an_l((AT)n'FO, Po(A)ro)

Define

Pn = (fm Tn)

and we compute,

pr. = (Paci(AT)Fo, Po(A)Po(A)ro)

= (Pk(AT)Pn_k(AT)'FO, Pn(A)TO)

where the highest order term is given by P,_r(AT)Py(AT) = (-1)aq,...Qn_p_1 -

ag, ... ap—1(AT)* + (lower degree terms). We obtain,

Prn= (=10, ..., 0n_p1 - 0y, 01 ((AT)*Fo, Po(A)ro).

Thus

ooy
Pn = n
P

In a similar way, we can find o,

0n = (To(AT)fo, ATH(A)ro)
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where, using the biconjugacy property, the highest order term is,

To(AT) = (-1)"ag. .. an_1(AT)* + ...

and we have,

on = (=1)"ag . ..an_1((AT)"7o, AT, (A)ro)

where 6, as defined by &, = (Pn, Apy), is found in the same manner, using the highest

order term, we have

&n (Bry APy) = (Tn—k(AT )0, ATR(A)T,(A)ro)

(Te( ATYT (AT )Fo, AT, (A)ro)

(—1)”a0 v Q1 Q... Otn_k_l((AT)nfo, ATn(A)TO)

Il

Thus,
Cp—1...0 _
Op = On
Ayt «» . OQ
So
Q, = pn/an = ﬁn/&n
and

Prtl _ Qk(nt1) -+ On 00" Op_k(n)—1 Pnt1

:Bn+1 = o
Pn Qg .- Opi1—k(nt+1)~1 Qk(n) """ OAn—1 Pn
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Z2PUEL i k(n+1) = k(n) + 1, L. a CGS step,

— { QP
2P i k(n +1) = K(n), iee., a BICG step

~ 9

CpkPn

Summarising the above derivation and writing in the vector recurrence form, we have

the following algorithm:
Algorithm 10 BiCG-CGS

Input z;
Initialize 7o = po = vo = so = b — Azg; 7o = Po and pg = fgro; kE=kyew =0.
Forn=0,1,2,...... until convergence
k = kpew; Determine ke, = k or k + 1;
Wy, = App

Op = (ﬁn,wn) = ﬁgApn

Pn
On

Q, =

Gn = Vp — O Wy,

If kpew = k+ 1 (CGS step), then
Tnt1 = Tn — A0Sy + Qkgn)
Tpt1l = Tn + Qndn + QrGn
Tag1 = Tp
Pnt1 = P

Prt1 = FyiTril

n Prt1

Bry1 =
n Q. Pn

Spg1 = Tl + ﬂn+1(3n - akwn)
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Vn4l = Tntl + Bkt1Gn

Pr+1 = Sn+1 + Brt1(gn + Brt1Pn)
End if
If kpew = k (BiCG step), then

Tnil = Tn — 0 Asy

Tng1l = Tn + AnSy

Frg1l = n — Qn-p AL Pp

ﬁn-{-l = fn-i—l + ﬂn+1—kﬁn

— =T
Prt+1 = Tpg1Tnd1

Cn  Pntl

Brt1 =
s Cn—k Pn

Sp+1 = Tnt+1 + Bnt15n
Un+41 = QGn
Pntl = Unt1 + BntiPn

End if

end for

In the CGS step above, the algorithm implements

Tp41 =Ty — A(ansn + akq'n.)

correspondingly,

Tyl = Tp — QpSy + Gy

In this algorithm we observe that there are two matrix vector operations carried out
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for each iteration regardless of which method is used. For each CGS step, two matrix
vector operations with the matrix A are performed and for each BiCG step there is
one maftrix vector operation with A and another with the transpose of A. In general,
one would expect this algorithm to converge at least as fast as the standard BiCG
method since we are still performing one matrix vector operation with the transpose of
A, although in this case, we will have only a few iterations where this operation will be

carried out.

3.2 Numerical testing for mixed BiCG-CGS

In the Numerical testing sections that follow, we present numerical examples to demon-
strate improvements made by the new methods. We also include testing of Example 1
which has been introduced in Section 2.4.6. All testing that follows, was carried out
using Matlab with double precision on a SUN workstation. Throughout our Numerical
Testing, the following Examples (2 through 4) as well as Example 1, are used and will
be referred to throughout the remainder of the Chapter. We have attempted to use
these examples with each method both as a means of comparison between the various
methods herewithin and as comparison with various methods in the literature, as these
examples have been extensively used. Where a certain Example has not been shown
with a particular method, it is because it has provided no additional information to
us and as such is an uninteresting case. In almost all cases, we have used a standard

stopping criterion [26] with the iteration terminating when

Irnall/lirall < 1077
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In certain examples round-off error created instabilities at this level of accuracy and so
we have used a termination threshold of 10~ in those cases.
Example 2: The matrix is a finite-difference discretization (centre difference) on a

40 x 40 grid of the following convection diffusion equation

—Au4 Bu, + YUy = f(may) on (031)23

with the homogeneous Dirichlet boundary condition. f is constant.

Example 3: The matrix is Shermanl from the Sherman set in the Harwell-Boeing
collection [9] of sparse test matrices. This set includes five nonsymmetric test matrices
which result from oil resevoir modeling. Shermanl in particular is found from a black
oil simulation with shale barriers. The order of the matrix is 1000 by 1000 and it has
3750 nonzero entries. The right-hand side b is chosen to be the vector of ones.

Example 4: The matrix is a finite-difference discretization on a 40 x 40 grids of

the following convection diffusion equation

= Au+vy(a(z,¥)ue + b(z,¥)u,) =0 on  (0,1)%

where a(z,y) = z(z — 1)(1 — 2y), b(z,y) = y(1 — y)(1 — 2z), with the homogeneous
Dirichlet boundary condition. This example was used by Sleijpen and Fokkema [23] to
test their BiCGStab(/) method.

Throughout all test examples that follow for the BiCG-CGS method, the Tolerance

is chosen to be 10? where the criteria for a switch from CGS to BiCG is an increase of

57



the local residual namely,

Irnsall/lIroll < Tol. (3.7)

Figure 3.1 shows the convergence history for Example 1 for the set of parameters:
B = 100, v = —100. Here we see that the mixed method converges more smoothly and

in fewer steps than the standard CGS method with two switches occurring in this run.

Figure 3.1: Convergence History for Example 1 § = —110,y = 110

10 T T T T
- cgsmix ||
“—- €gs
— — bicg ¥
£
S
T
& 4
K]
po]
e
w -
o
o]
o}
N
© -
E
[=]
o
V\ T
!
A \
\ jl /\\ -
N
’\/ \
N \
10'12 ) ! I ! I
0 20 40 60 80 100 120

iteration number

Figure 3.2 gives the convergence history of the computed residuals for Example 2
with the set of parameters: § = —100, vy = 100. We can see although the mixed
method converges in about the same number of iterations, it is an improvement over
the standard CGS method in that it smoothes the large residuals with only one switch

between methods.
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Figure 3.2: Convergence History for Example 2 § = —~100,y = 100
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Both Examples problems 3 and 4 have been tested for this method, but were not
found to have any benefits over the standard CGS or BiCG methods and so have not
been included here.

The mixed BiCG-CGS initially experienced instabilities due to the formulation of
the coefficient . This sensitivity is common in many iterative methods depending
on such parameters and so it is an easy candidate to look at when numerical insta-
bilities arise [21]. Formulations for the coefficient 8 have proved to give extremely
varying results when tests were run with these code in Matlab. Since the coefficients
are derived directly from computing the inner products, o, = (Th(AT)Fg, ATH(A)ro),

pn = (Po(AT)#o, P(A)ro), any computational error in either inner product will thus
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lead to similar relative perturbation error in both coefficients.! In the mixed BiCG-CGS
[ has been coded as

Brt1 = Prt1/Pn (3.8)

2 although another formulation is found from

By = Ont1 Prt1
L=
nt 0, o,

as in [11] where, for BiCG, 6,41 and 6, are the nontrivial leading coefficients of the
polynomials P,11(A) and P,(A) respectively. The leading coefficient of P,11(4) is

(-1)™a, - - - g we therefore obtain

Onir _ 1
bn an
and
_ L pny1
:Bn+1 - Qn On

where the negative has been incorporated into the BiCG recurrence,

Try1(t) = Prya(t) + Bns1 Tu(t),

This formulation for 8, was found to be numerically unstable when implemented and

tested in Matlab. For all methods that have been tested, this formulation made the

'see [26] and [25] for more discussion concerning error bounds when computing inner products and
also choosing suitable polynomials for computing & which do not degrade the convergence.

2this formulation for § is also used for both the BiCG-BiCGStab mixed method as well as the shifted
CGS method, tested in the sections that follow.
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method diverge. Since the formulation of coefficients can often give unstable results for
a given method, we tested the formulation given in (3.8) immediately after and obtained
improved convergence. Thus we have used this formulation for all methods that follow.

The second potential problem which we have encountered is instabilities due to
the derivation of the recurrence formulations in the algorithm. In deriving the new
formulations it is important to keep in mind that at most we would like two matrix-
vector multiplications per iteration to keep the method competitive. Although we would
like to try and beat the convergence in both the BiCG and CGS and if not, at the least
we would like to be able to improve the convergence in certain well-defined cases. In
general, we would expect that by using BiCG we would have a more stable method, as
BiCG seems to be inherently more stable than CGS. However, we have not found this
to be the case in the two formulations which we have tried. Although the recurrence
which we have used from Section 3.1 is quite simple, we have found that for a tolerance
of 1le2, certain examples were unstable. Although they may have been stable for other
tolerance levels, it is still necessary to do tests to find a stable tolerance and so we do
not include these here.

Although we may expect some instabilities from the mixed methods, we hope that
regardless of input tolerance we would at least get convergence from the mixed method
when both the standard CGS and BiCG methods are converging. Although this stability
was not observed all the time, there were several examples where, for an input tolerance
of 1e2, the method gave improved convergence. We initially experienced instabilities for
all examples and tried to remedy this problem first by making certain that the coefficient

formulations (for 8 in particular) were not causing any numerical instabilities and then
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next, by deriving a second formulation for the method. The formulation of Algorithm 6
was found to be the most stable among several possible formulations tested and we show
this through our tests of the finite termination properties on a few 10 x 10 matrices.
Here we include one such test (seen in Figure 3.4) to demonstrate that our code is
correct. When implemented, we forced a switch to occur in each test to make sure that

the mixing of the derived methods worked together.

Figure 3.3: Finite Termination Test for a 10 x 10 Matrix
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3.3 Mixed BiCG-BiCGStab method

In this formulation, we wish to construct an approximation z, at step n, such that

Tn = Qk(A)Pn(4)ro
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and

i = Paoi(AT )70

where k = k(n) is a parameter depending on n that determines whether a BiCGStab
or BiCG step is taken. Namely, we take k steps of BiCGStab and n — k steps of BiCG.
Proceeding from step n to n + 1, we first choose k(n + 1) as either k(n) or k(n) + 1 (so
either a BiCG step or BiCGStab step respectively) and then construct r,,41.

Using the BiCG recurrence relations,

Por1(t) = Po(t) — antTo(t),

Tn-i—l(t) = Pn+1(t) + ﬂn+1Tn(t)a

In order to construct r,41, we define the following auxiliary polynomials and corre-

sponding vectors

n(t) = Qr(t)Pr(t), and 7, = ¢u(A)ro = Qr(A)Pu(A)re; (3.9)
é-n(t) = Qk(t)Tn(t)a and p, = fn(A)TO = Qk(A)Tn(A)To, (310)
M(t) = Pooi(t), and 7, = n,(A)rg = Pr_p(A)ro; (3.11)
'@bn(t) = Tn-—k(t), and ﬁn = 1/)n(A)7‘0 = Tn—k(A)TO; (312)

Suppose the above polynomials have been obtained, we construct the corresponding

polynomial for n + 1.
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Case 1: k(n + 1) = k(n) + 1 (a BiCGStab step).

¢n+1

§n+1

77n+1

¢n+1

Qr41(t) Pria (2)

(1 = wrp1t)Qr(t)(Pa(t) — ntTn(t))
(1 — wr412)(Bn(t) — anta(?))
Qr+1(1) Ty (1)

Q41 () Prt1 () + Brs1 Qr1()Tn(t)
Prt1(2) + Bryr (1 — wip1t)éal(t)
Prti-k-1=1n

Tn+1-—(k+1)(t) = Pu(?)

Case 2. k(n + 1) = k(n) (a BICG step).

¢n+1

£n+1

77'n.+1

Qk(t) Pry1(t)

Qr(t)(Pn(t) — antTn(t))

Pn(t) — ontén(t)

Qr(t)Tnta(2)

Qr(1) Prysr () + Brr1 Qi (1) Tn(t)
Pnt1(t) + Bryrbal(t)

Poyiok = Po_i(t) — an_stTpn(t)
M — Cn—ktPn(t)
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Yot1 = Tnpi-k = Poy1-k(8) + Bry1-xT, k()

= i1 + Bat1-x¥n(2)

To simplify the equations, we first define v, as v, = r, — onAp,. and we express
the recurrences in vector form as follows.

Case 1: k(n+ 1) = k(n) + 1 (a BiCGStab step)

Tntl =  Up — Wiy Avy,

fn-i—l = Tn,

Prt1 = Pn,

Prt1 = Tpg1 + Boy1(l + wpp14)py.

Case 2. k(n + 1) = k(n) (a BICG step)

Tn4l = Tp— QnApn,

Frngl = Fn— ek AT Py,
ﬁn+1 = Fn+1 + ﬂn—}-l—kﬁna
Prtl = Tnt1 + BngiPn.

We next recover the BiCG coefficients a,, = prn/0n and Bpy1 = pni1/pn. Note that
Qp—ki1, Pro—k+1 etc. have been computed in the earlier steps and can be stored.

Noting that T5,(¢) = (=1)"ap—1---aot™ + - - - and using the bi-conjugacy property,
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we have

Op = (Tn(AT)fo, ATn(A)To) = (—l)nan_l c -ao((AT)nfo, ATn(A)To)

Similarly, from Lo k(1)Qr(t) = (=D "ap_jpq - - “Qowyg + -+ cwit™ + -+ -, it follows

Op = (ﬁn’Apn)
= (Tn_k(AT)fo,AQk(A)Tn(A)ro)
= (Qk(AT)Tn_k(AT)fO,ATn(A)ro)

= (=D en—po1 - cowy - -y (A7), AT, (A)ro)

Thus,

Qp—1 " Qpf
Op = ————""75,.
W "y

Also p,, = (Pn(AT)fo,Pn(A)ro) =(-1)"ap_ - -ao((AT)“Fo,Pn(A)ro) and

ﬁn = (Fna rn) = (Pn—k(AT)fm Qk(A)Pn(A)TO)

(Qr(AT) Por(AT)Fo, Bo(A)ro)

= (-1)"ap—pq1 - agwy - - -wl((AT)“fo, P(A)ro).

Thus
Apl " Qp_f
p _—
n wk . -wl pn
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So

Gy = Pn/o'n = ﬁn/a'n

and

Brp1 = Prtl _ OnOQnii_k(nd1)  @k(n) " "W1  Pryi
n = = —.
Pn Wk(nt1) " W1 On—1* " Qp_k(n) Pn

ZoPrAL it k(n 4 1) = k(n), ie. a BIiCG step,

— { Cp—kPn

M'*'—l, if k(n +1) = k(n)+ 1, i.e., a BiCGStab step

We41Pn

where & = k(n).
Summarising the above derivation and writing in the vector recurrence form, we

have the following algorithm:
Algorithm 11 BiCG-BiCGStab

Input zq;
Initialize 7o = po = b — Azg; 7o = P and pg = fgro; k= kpew = 0.
Forn=0,1,2,..... until convergence
k = kpew; Determine ke, = k o1 k + 1;
w= Ap,

Op = (ﬁnaw) = ﬁgApn

_ Pn
0-71

If kpew = k + 1 (BiCGStab step), then

Qp

V= Ty — apw

r= Av
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wknew = (7', ’U)/(T, T);
Tp4l =T =0V — Wk, T
Tptl = Tn + QnPp + Wiy, ¥

7’:n+1 =Tn

— =T .
Pr+1 = Trp1Tndls

anﬁn+1

ﬂn+1 = =
wknewp’n

Prt1 = Tng1 T Bnt1(Pn — Whpeo W)
Dnt1 = Pn

End if

If kpew = k& (BiCG step), then
Tptl = Tp — QW
Tntl = Tn + QpPp

fn+1 = fn - an—kATﬁn

_ =T .
Pnt+1 = Trp1Tnt1)

anﬁn+1

Brt1 = -
" Cn—kPn

Pntl = Tngl + BrtiPn
Prt1 = Tni1 + Br—k+1Pn
End if

end for

In the BiICGSTAB step above, the algorithm implements

Tnil = Tn — QpADn — Wi, ., AUn.
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correspondingly,

Tntl = Ty — QpPn — Wkpew Un:

In this algorithm we observe that there are two matrix vector operations carried
out for each iteration regardless of which method is used as in the mixed BiCG-CGS
implementation. For each BiCGStab step, two matrix vector operations with the matrix
A are performed and for each BiCG step there is one matrix vector operation with 4
and another with the transpose of A. As in the mixed BiCG-CGS, we would expect this
algorithm to converge at least as fast as the standard BiCG method since we are still
performing one matrix vector operation with the transpose of A, although in this case,
we will have only a few iterations where this more expensive operation will be carried

out.

3.4 Numerical testing of mixed BiCG-BiCGStab

In this mixed method we have tried to remedy the problem inherent in BiCGStab,
namely that it is prone to stagnation in certain types of problems. Example problem 1
was a particularily good candidate, as for many different input parameters we find that
there is stagnation in the standard BiCGStab method. Often the stagnation occurs
mid-way through convergence, but often it occurs near the beginning and in almost all
cases, the new mixed BiCG-BiCGStab has fixed this stagnation and converged. We
have also hoped that our new method might beat both BiCGStab and BiCG in cases
where both converged as the mixed method of Chan and Ye [6] and although it did not

happen in all cases, we have included a couple problems where this is the case.
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3.4.1 Switching Criterion

Beginning with a BiCGStab step, we switch to a BiCG step when some switching
threshold is reached. There have been no theoretical results up until now to show us
exactly when BiCGStab fails and thus when we should switch to BiCG. Only with
numerical testing can we better understand these difficulties and hence the switching
criterion with the mixed methods. For this method, we have tried to switch to BiCG
when we find w to be below a certain prescribed tolerance. We have tried several other
implementations, these include switching when § has exceeded this tolerance and also
when some combination of w with the s and v vectors has been reached. In all these
other attempts, the mixed method has a very large range of activity. By range we mean
that in changing the tolerance level (where small tol = le — 7) it follows BiCGStab®
and a large tolerance (& lel) it follows BiCG. Within this range the method does not
seem to have the positive effects that it did using only w as switching criterion and the
residuals often diverge which suggests that with these alternate switching criterion, this
method becomes unstable.

The tests were carried out by starting with BiCGStab at the first step and taking
a BiCG step when w was smaller than the input tolerance. For every iteration this
switching test was carried out and so the number of switchings varied depending on
the example and the tolerance that was used for each. We have also found that the
prescribed level of tolerance often had a significant effect in the performance of the

mixed method. For all tests we have used a prescribed tolerance level of Tol = 5e — 3

3this is seen in Figure B.6
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unless otherwise noted.

As is seen in the convergence histories for Examples 1 and 2 (Figures 3.4 and 3.5
respectively) the mixed method shows improved convergence over the standard methods.
In Example 1 this is particularly apparent as the standard BiCGStab stagnates and the
mixed method converges in fewer iterations than even BiCG. In Example problems 3
and 4, there were no noticeable improvements over the BiCGStab (the standard method
converged quite quickly over BiCG and thus there was no benefit in using the mixed
method in these cases) although we include the results from Example 4 in Figure 3.6.
This example has converged due to the fact that we have input a large input tolerance
and allowed many BiCG switchings to occur.

In a couple of tests, we found that a tolerance of 5¢ — 3 gave somewhat unstable
convergence and by adjusting this to 3e — 3, the mixed method converged quite well.
These examples have been left for the Appendix and are shown in Figures B.1 and B.2.
Since this method experienced some unstable behaviour when different tolerance levels
were used, it is possible that some other switching criterion could be used which may
not be so sensitive and thus could be used for all the problems. Although a few other
criteria were tested (as mentioned previously) none was found to give such improved
test results. We have also tried this method (as in the generalized BiCG method) to
begin with BiCG and switch to BiCGStab when a large w was reached. Although this
is beneficial when using CGS, as the local residuals often become quite large in the
beginning, we have found no benefit with this approach with BiCG-BiCGStab. We feel
that this method has its maximum benefit as it has been presented although further

study should be done into switching criterion in order to make this method more user
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friendly.

The number of switchings was quite consistent for each Example as the chosen
tolerance level for w was generally the same for each. To summarise the number of
switchings, Example 1 problems all had fewer than 5 switchings. The convergence
history in Figure 3.5 for example had only one switching which occurred at iteration
142. We can see that at this point BiCGStab begins it’s stagnation, and is beginning to
bounce back and forth. For the Example 2 problems, all had more than 10 switchings
and with these examples we have used a very large input Tol = le—2. It is clear in these
cases that many more BiCG steps are taken, and although BiCGStab also converges
in this problem, we have included it as an interesting case as this mixed method beats
both BiCG and BiCGStab in terms of convergence.

The convergence histories in this method, as with the mixed BiCG-CGS method, are
plotted with iteration number rather than number of matrix-vector multiplications. As
we have mentioned in the previous section, two matrix vector operations are performed
at each iteration for either step (BiCG or BiCGStab), and so the number of matrix vector
operations for the mixed method is comparable to those of the standard BiCGStab and
BiCG methods.

We should also note that in this mixed method we have not included tests to show
the finite termination property as it was obvious that this method works quite well when

implemented.
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Figure 3.4: Convergence History for Example 1 = —200,y = 200
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3.5 Numerical Instabilities

The motivation of these new methods are to eliminate the negative effects of the indi-
vidual methods themselves by beginning with one method and then switching to the
second method when a certain switching criterion is reached. In remedying problems
in CGS, we try to improve upon the method by eliminating the large residuals and the
instability that this method sometimes encounters. With BiCGStab, this means elimi-
nating the problem of stagnation that is encountered in some examples, and hopefully
improving the convergence.

Although these mixed algorithms can be derived in several different ways, of which

all are mathematically equivalent, among the different derivations of the recurrence
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Figure 3.5: Convergence History for Example 2 = ~122,y =190
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for the residual vector r,, or search vector p,, they do not give the same numerical
results. This problem was particularly apparent in the mixed BiCG-CGS algorithm
which we discuss in Section 3.2. Other problems associated with numerical instabilities
that have been found in this study are the result of differences in the formulation of the
coefficients, namely o and $. This has also been cited by [26] as a source for error and
as is further pointed out, the polynomial coefficients which have been found from the
use of a particular choice of polynomial at the beginning of the scheme do not seem to
affect the sensitivity of the computations in this respect. Since we are concerned more
with choosing a polynomial with which to achieve a significant reduction in the residual
in each iteration, and which converges faster than BiCG itself, we are more concerned

with choosing or formulating the polynomial in such a way that it does not lead to the
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Figure 3.6: Convergence History for Example 4 3 = —122,y = 190
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deterioration of the BiCG part of the scheme, through numerical instabilities. So we
may choose a polynomial which leads to a less than optimal reduction at a given step,
but which improves the numerical stability of the BiCG coefficients.

Formulations for the coefficient 3 have proved to give extremely varying results when
tests were run with these code in Matlab, as we have discussed in the Numerical testing
section for the mixed BiCG-CGS method. Throughout the numerical testing, in all

methods tested, 8 has been coded as

ﬁn+1 = pn+1/Pn

Other formulations from the literature were tested (as noted in Section 3.2) and this
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formulation was used as it was found to give the most stable results.

3.6 Discussion and Conclusions

In this thesis, we have introduced Krylov subspace methods for symmetric and nonsym-
metric matrices A. The methods used for solving the nonsymmetric case which we have
discussed include well known methods; the Biconjugate Gradient Method, the Conju-
gate Gradient Squared Method and the Biconjugate Gradient Stabilized Method. The
latter method was developed to remedy the irregular convergence in CGS which was in
turn developed to try and improve the convergence of BiCG and avoid using the trans-
pose of A. To further these improvements, we have developed two new mixed methods
based on either CGS or BiCGStab and have furthered the study done by Fokkema et
al. [11] to include nonsymmetric test problems with the shifted CGS method with great
success.

In all examples, shifted CGS tested on nonsymmetric matrices, has improved effects
over the standard method. The convergence was improved by way of smaller residual
spikes. This is an advantage as in the standard method these large spikes may cause
instabilities or divergence near the beginning of the method. This adds to the body
of work carried out in [11] and confirms what they have found in the symmetric test
cases. In Appendix A, for different parameters § and «, we see that in most cases the
shifted CGS method is an improvement over the standard method. One case out of all
the examples fails in this respect; in figure A.3 we see that shifted CGS fails to converge

when CGS does. As with all iterative methods, this reinforces the fact that at present
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no one method is the winner in all cases, although for the majority of our tests, the
shifted CGS algorithm is an improvement over the standard CGS method.

In the mixed BiCG-CGS we have attempted to further this study by allowing the
switching to BiCG to occur whenever a large local residual in CGS is reached. It was
hoped that this new method would have a nice stabilizing effect over the standard CGS
method. Although this method did not greatly improve convergence performance in all
cases, it did smooth the residuals of the standard CGS method and so was beneficial
in some sense. This method was found to give unstable results for some problems,
and unlike the BiCG-BiCGStab mixed method, here we did not find that we could
fine tune’ the tolerance level to give improved results. Because it is difficult to show
these instabilities theoretically, we rely upon good results in numerical testing to show
whether or not a method is a good choice and in this case we have shown that the
mixing of the methods is working through testing of the finite termination property.
It is possible that a reformulation of the algorithm may give improved results, but at
present we have no additional insight into how this should be done. In Chan and Ye [6]
it was suggested that perhaps an increased number of switchings may become too large
to compensate any gain in stability with CGS. Although this study does not directly
gain insight into this issue, it is possible that any number of switchings in this case
has lead to the unstable nature of the mixed method. At present we do not have any
theoretical results to confirm the precise cause for instabilities in CGS and perhaps it
is here that we need to look, and then make improvements on the CGS-based mixed
methods.

Promising results were found in the second mixed method, that based on BiCGStab
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and switching to BiCG when w was found to be too small. In the majority of our test
problems we found that the mixed method improved the convergence over the standard
methods and in many cases where BiCGStab was found to stagnate, the mixed method
converged, sometimes even beating the convergence in the standard BiCG method.
Although the majority of tests were carried out with a prescribed tolerance of 5e — 3,
we sometimes had to fine tune it to improve convergence.* It is possible however, that
some other switching criterion could be used which may not be so sensitive and thus
could be used for all the problems.

We have shown through numerical experiment the benefits (and problems) of each
method. The Mixed BiCG-BiCGStab method offers an improvement to the class of
problems in which BiCGStab stagnates and both the shifted CGS method and mixed
BiCG-CGS method could be used in place of CGS to improve upon the convergence
qualities of the standard method, particularly to smooth the large residuals. The shifted
method is also a competitive method for nonsymmetric problems where the standard
CGS fails to converge. Many more interesting cases could be looked at to further this
study, and more theoretical insight is certainly needed to add to the body of knowledge

we have of Krylov subspace iterative methods.

*In particular, in two problems where BiCGStab was stagnating, the prescribed tolerance had to be
fine tuned to 3e — 3 so that the mixed method converged.
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Appendix A

Selected Convergence Histories

for the mixed BiCG-CGS method

Additional convergence histories for Example problems 1 through 4 follow. Two tests are
presented from the mixed BiCG-CGS method in Figures A.1 and A.2. The remaining
figures in Appendix A are convergence histories for the shifted CGS method presented in
Section 2.4.5 and 2.4.6. We can see that in almost all cases tested this method converges
faster and with fewer large residual spikes than the standard CGS although cases where
this method have not improved the standard methods have also been included, which
shows that no method is best for every problem.

Figures A.3 through A.5 give additional convergence histories for Example 1. Figures
A.6 through A.8 follow for Example 2. We can see that shifted CGS has improved the
convergence in almost all cases and that it also ’dampens’ the large residuals found in

the standard method.
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Results from Example 3 are given in Figure A.9 and we include this example only to
show the improvement of the smaller residuals over the spiky residuals in the standard
method. The least improved is seen in this Shermanl example, although here one
improvement is made by way of the smaller residual spikes. This is an advantage as in
the standard method these large spikes may cause instabilities or divergence near the
beginning of the method. It is perhaps this problem which leads to the stagnation of
CGS in both Examples 1 and 4 and which shifted CGS has nicely remedied.

Convergence histories for Example 4 are shown in Figures A.10 through A.13. This
example again emphasizes the overall benefits of the shifted algorithm and we can see
that even when the standard method fails to converge the shifted method improves this
in all cases and converges. In all examples presented for the shifted method it is clear
that this new method is better than the standard CGS method for all nonsymmetric
test problems given here and improves upon both the convergence subduing the large
residual spikes that are encountered in all the examples (here it improves in all tests).
Overall, as with the mixed BiCG-CGS method, this method does not improve the
convergence dramatically, but does improve it by smoothing the large residuals in the
standard CGS method. We also see that it is capable of turning a divergent CGS into a

convergent one, which we see in two separate test problems - a much improved history!
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Figure A.1: Convergence History for Example 1 § = 200,y = —200
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Figure A.2: Convergence History for Example 2 § = 200,y = —200
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Figure A.3: Convergence History for Example 1 § = —250,7 = 100
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Figure A.4: Convergence History for Example 1 § = 100,y = —360
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Figure A.5: Convergence History for Example 1 8 = —220,y = 220

1015 T T T T T 1
I —— shifted cgs
-—- Ccgs
£ i
[o]
i
o
]
=3
p=]
[77] -
e
°
Q
N .
E i
5 i i
/.I'kr,,“.
1 \ e vl i
\ \ /'\!. v
AT
10"‘5- I 1 1 ! ) ) ]
0 20 40 60 80 100 120 140

iteration number

Figure A.6: Convergence History for Example 2 § = 123,y = —22
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Figure A.7: Convergence History for Example 2 § = 200 v = —200
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Figure A.8: Convergence History for Example 2 § = -120,y = 190
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Figure A.10: Convergence History for Example 4 8 = —200,y = 200
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Figure A.11: Convergence History for Example 4 (= -122,y = 190

10-10 -
10-15

WIoU--Z [ENPISS1 PaZI[eurou

Figure A.12: Convergence History for Example 4 = —190,y = 100
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Figure A.13: Convergence History for Example 4 3 = —200,y = 100
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Appendix B

Selected Convergence Histories
for Mixed BiCG-BiCGStab

Method

Additional convergence histories for Example problems 1 and 2 follow. In all the Exam-
ple 1 problems we see that the mixed method converges while BiCGStab is stagnating.
We also see the method beating the convergence of both BiCG and BiCGStab in Ex-
ample 2. Although this characteristic is not indicative of the overall performance of the
method, we have included it here as an interesting case. Figure B.6 is included to show
the effects of the range of input Tol for w. Here we see that the method is essentially

BiCGStab when a very small input is used and hence no switchings occur.
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Figure B.1: Convergence History for Example 1 § = —220,y = 220
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Figure B.2: Convergence History for Example 1 = —190,y = 100
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Figure B.3: Convergence History for Example 1 5 = —250,7 = 100
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Figure B.4: Convergence History for Example 1 £ = —300,y = 300
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Figure B.5: Convergence History for Example 2 § = —220,y = 220
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Figure B.6: Convergence History for Example 4 5 = 100,y = —100
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