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SUMMARY

The slotted flap is a high 1ift-device used to reduce the take-
off and landing distances of aircraft. The flow around the slotted
flap, which determines the pressure distribution and effectiveness
of the aerofoil system, is affected by the interaction of the wake
of the main aerofoil element and the boundary layer on the flap's
upper surface.

The present project has been undertaken tc develop a viable
calculation method which can predict the above interaction. The
principle of momentum flux balance nhas been effectively used along
with Coles profile to represent the turbulent boundary layer and the
Gaussian profile to represent the wake. In addition the present
method has been improved by taking into account the transverse
pressure gradient.

This method has been tested by comparing the predicted results
with the experimental data of four cases of flow over an aerofoil
system involving the boundary layer and wake interaction. It is
seen that the predicted development of the displacement and momentum
thicknesses of the shear layers and the skin-friction coefficient is
a good estimate of the real one. The predicted development of the

velocity profiles is also consistent with physical evidence.
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PHYSICAL MEANING

Constant appearing in the
equation (2.4), equal to
5.616

Numerical integrals defined
in Appendix - A

Constant appearing in the
equation (2.4), equal to
4.8

Numerical integrals defined
in Appendix -A

Unextended chord of the
aerofoil system

Skin friction coefficient
based on the Tocal maximum
velocity,

- Ur 2

Skin friction coefficient
based on the free stream
velocity, 5

Cfm = 2UT
Numerical integrals defined
in Appendix - A

Static pressure coefficient
defined by equation (3.7)
and formulated as

Cy = f(x)y + g(x)
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i i=11t08
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Coefficients occur-
ring in the functions
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Coefficients defined
in Appendix - A

Polynomial function
occurring in the ex-
pression for Cp

Rate of change of

mass flow of the in-

compressible fluid
below the wake centre,

02
F=d f U dy
dxl
-3

Polynomial function
occurring in the
expression for Cp

Constant used to
terminate the inner
wake

Constant used to
terminate the outer
wake

Shape parameter of
the boundary layer

Pressure integrals
defined in Appendix
- A

Shape parameter of
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vii
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the potential core
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in Appendix - A
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in the equation (2.1)
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in Appendix - A
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the boundary layer
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in Appendix - A
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in the equation (3.22)
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in Appendix - A
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VARIABLE COMPUTER NOTATION PHYSICAL MEANING

u Non-dimensional
form of turbulent
component of velo-
city in the
x~-direction

U Non-dimensional
form of mean velo-
city in the
x~direction

U | : U1 Value of U at the
centre of the wake

U U3 Value of U at the
outer edge of the
boundary layer in
the merged case

Uss UIF Free stream velo-
city
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€ edge of the outer
wake
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velocity
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CHAPTER - 1

INTRODUCTION

High values of 1ift coefficients are required during take-off and
landing of aircraft with suitable 1ift-to-drag ratios so as to allow
the desired rates of climb and descent. This is achieved by changing
the effective shape of the aerofoil temporarily using devices known
as flaps. Flaps fall into two categories which are (a) Powered flaps
and (b) Unpowered flaps. Powered flaps provide higher values of 1ift
coefficient than unpowered flaps because of the positive addition of
energy in the former case.

Powered flaps or jet flaps use jets of air of sufficient energy
to defTéct the main flow past the aerofoil and, in effect, increase
camber. Jets are also used to prevent boundary layer separation on
a flap. These effects of the jet serve to increase the 1ift. Un-
powered flaps or mechanical flaps are those that change the physical
shape of the aerofoil to create a flow pattern to give the desired
1ift. There are many types of mechanical flaps like plain flaps,
split flaps, slotted flaps etc. Plain flaps serve to increase the
1ift, but, because of the early separation that occurs on the upper
surface, not only is the increment in maximum 1ift coefficient limited,
but it cannot be used to provide high 1ift-to-drag ratios over a large
range of angles of deflection of the flap. These disadvantages of the
plain flaps are overcome by the slotted flaps, which allow air to

flow from the high pressure under surface, through the slct, to form
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a jet over the flap upper surface to keep the boundary layer attached.
Typical total head profiles involving the wake shed by the main aero-
foil and the boundary layer on the flap, are shown in Fig. 1.

Many different flow models have been used to predict the 1ift of
multi-component aerofoils. Jacob and Steinbach (1) developed a method
for evaluating the 1ift of a slotted flap aerofoil. The method used
potentital flow techniques to take into account the boundary layer
displacement effect and also the separation of flow on the flap. The
flow separation was simulated by a source distribution on that part of
the flap where there was separation. This method was not abhle to take
into account the separation on the wing nor the wake shed by the wing.

Very soon it was realised that in some cases the wake shed by the wing

influenced the flap boundary Tayer, to an extent, which would result
in early separation of the boundary layer. Thetotal head profiles
shown 1in Fig. 1 provide a good idea of the effect the viscous layers
have on each other. Hence it became necessary to develop a mathema-
tical model to predict the interaction of the wake shed by the main
aerofoil and the boundary layer on the slotted flap.

Irwin (2) developed an integral method forpredicting the above
interaction. In this method the boundary Tayer was represented by
the power law profile and the wake by the Gaussian profile. This
method also took into account the transverse pressure gradient. It
was quite reliable in evaluating the integral parameters of the wake
and boundary layer. Also there was good agreement with the measured

values of skin-friction, over most of the flap. But this method



could not predict the separation of the boundary layer in the presence

of the wake. Also it predicted the merging of the wake and boundary

layer to occur, too far downstream of the station at which it actually -
occurred, The limitations of this method may be because of the follow-
ing reasons.

(1) The power law which was developed from observations of turbulent
flow in pipes and channels is not a very good representation
of the velocity profile in a turbulent boundary layer when the
streamwise pressure gfadient‘is significant, and, more so, when
there is a transverse pressure gradient.

(2)  The relation used for predicting the skin-friction coefficient
had been developed by Ludwieg and Tillmann, from measurements
in thin boundary layers and it'may not be valid for thick boundary
layers with transverse pressure gradients.

(3) In applying the momentum integral equation, the growth of the
boundary layer and wake was neglected in some of the terms.
Kibria (3) made a modification to Irwin's method by using Coles

profile to represent the turbulent boundary layer instead of the power

law. Coles profile is a good representation of the velocity profile
for boundary layers developing in adverse pressure gradients. But

the analysis of the problem was simplified by neglecting the trans-

verse pressure gradient. Kibria's method was not as successful as

Irwin's method in predicting the integral properties of the wake and

boundary layer. It broke down at Targe streamwise distances, in that,

it could not predict the proper qualitative variation of the wake Tength



scales. Also it could neither predict the possibility of separation
nor the flow behaviour in the region of separation. But it could
predict the merging point better than Irwin's method. The shortcomings
of this method may be because of the following reasons.
(m The transverse pressure gradient was not taken into account.
(2) The momentum integral equation was used with the same defects

as in Irwin's method.

The present work has been undertaken to improve Kibria's method.
It is believed that this improved method can be used to provide a
reasonably good estimate of the displacing effect of the viscous layer
which, in turn, can be used in conjunction with potential flow models
to predict the pressure distribution around a slotted flap aerofoil.

The principle of operation of the slotted flap can be understood
with reference to Fig. 2. A potential core is entrained by the bound-
ary layer developing on the flap and the wake shed by the wing. With
the development of the flow over the flap, the potential core dis-
appears and the wake and boundary Tayer merge. This merging may cause
the boundary layer to separate. It may also happen that the wake and
the boundary layer may not merge before the flap trailing edge, in
which case the boundary layer would develop without being affected by
the presence of the wake. It has been confirmed experimentally by
Foster, Irwin and Williams (4) and Ljungstrom (5) that the maximum
1ift is obtained when the viscous layers just interact at the trailing
edge of the flap. Hence an optimum flow development for take-off is

one for which the merging occurs at the trailing edge to give a high



1ift-to-drag ratio. The high 1ift coefficient and high drag required
during landing can be achieved by using larger flap deflections and
hence earlier merging of the wake and boundary layer, with possible
earlier boundary layer separation. The merging of the wake and bound-
ary layer and hence their interaction is influenced by many factors
like ﬁhe slot shape, flap shape and the angle of deflection of the
flap which determine the pressure field to a large extent, the slot
height which determines the thickness of the potential core and the
retative lateral position of the flap and the main aerofoil which
determines the merging point of the wake and the boundary Tlayer.

In the present analysis it has been decided to develop the
equations in such a way that the transverse pressure gradient can be
taken into account. The results given by the present calculation
method will be compared with four cases of flow over an aerofoil
system, involving the interaction of the wake and Boundary layer.

Two of these cases are reported by Foster, Irwin and Williams (4)
and the other two cases are vreported by Bario et al (6) and
Ljungstrom (5).

Presumably, the local Mach numbers in these test cases are low

that the incompressibility assumption made in the present analysis

is valid.



CHAPTER 2
THEORY

(i) Introduction: The typical forms of the velocity profiles that

occur with the development of a wake and a boundary Tayer in conjunc-
tion with each other are shown in Fig. 3. Initially, the wake shed
by an aerofoil element and the boundary layer developing on the ad-
Jacent aerofoil element are separated by a layer of potential flow
(the potential cofe). With the development of the flow, the potential
core is entrained by the boundary layer on one side and the wake on
the other, allowing the merging of the wake and the boundary Tayer;
where the wake and boundary layer are separated by the potential

core is known as the unmerged region; downStream of the merging point
is known as the merged region. The boundary layer and wake velocity
profile representations, their interaction and the simplified flow

model will be considered in the following sections of this Chapter.

(ii) Boundary Layer: The boundary layer concept was introduced by

Prandtl in 1904. For fluids with Tow viscosity, it is the region
where the shearing action predominates. This region can be either
Taminar or turbulent. The present analysis involves turbulent
boundary layers. The prediction of the velocity profile in a tur-
bulent boundary layer and its associated characteristics is diffi-

cult, especially, if the boundary layer is tending towards separa-



tion. The power law velocity profile suggested by Prandtl states

(EJ_CL _ [ Yd L/ (2.1)
Uig ¥

where Uid is the velocity at the edge of the boundary layer and &,

that

is the boundary layer thickness. The subscript 'd’ denotes the di-
mensional form of the variables. ts simplicity was spoilt by the
dependency of the exponent on the Reynolds number. Also it is
valid only for boundary layer flows with small pressure gradient.
It is khown that the boundary layer region can be divided into
three regions.  The innermost region is known as the sub-layer where
the motion is determined by viscosity. The middle layer is a tur-
bulent region where both the viscosity and turbulence have signifi-
cant effects. The outer region is the fully turbulent region where
the motion is similar to the wake flow and is dominated by the eddy
viscosity. On this basis a better representation of the velocity

profile has been given by Coles (7), in the form

y Yo U |

Td

where U4 is the friction velocity and vy is the kinematic viscosity.
Coles profile consists of two universal functions, the law of the

wall and the Taw of the wake. The law of the wall is a representation



of the velocity in the inner part of the layer. It consists of
two regions, a linear region corresponding to the sub layer region
and a logarithmic region corresponding to the middle region., In

the linear region, the law of the wall is of the form

vy, U vy, U
s d Td) _ d Td) (2.3)
Vd Vd
This expression satisfies the no slip condition that the velocity
) _ . . Yq Yrg
is zero at yd = 0. It is valid for values of 5
d

up to about 10. The logarithmic region is valid for values of

Yq Yrdg . _
3 greater than about 50. It is of the form
d
- [ Vd Ve ) A |V Urd . a (2.4)
Vg L Vg

in which A and B are empirical constants and L = In 10.

The law of the wall is dependent on the type of surface but is in-
dependent of outside conditions 1ike the pressure gradient, main-
stream turbulence etc. The Taw of the wake is the representation
of the velocity in the outer part of the layer which is constrained
more by inertia than by viscosity. It is of the form

G(xgoyg) = P“>(gg') o e (2.5)



Jd
where P is known as the profile parameter and w(55> is known as

the wake function. Since the sublayer is thin and the fluid within
it is of Tow velocity, it has little effect on the boundary layer
as a whole. Hence it is usually neglected in the representation of

the boundary layer profile. So equation (2.2) reduces to

Uy yq U y

d A d Vtd d

= ] =~ 1In — | + B+ Pw |+ 2.6
(UTd) L ( Vi ) (Gd) ( )

Coles (7) imposed the following normalising condition on the wake

function. wy
Yy
0 )
Wpay = W = 2 (2.8)

Subject to the above conditions, Coles (7) arrived at a series of
values for w for different values of (%ﬁ-) from an investigation
of several boundary layer flows. Houghton and Boswell (8) have
reported that from a consideration of the above values, the wake

function has been approximated by a sine function as

y y |
W (6“3) = 2 sin? (26—3) (2.9)

and have given the following form of the Coles profile.

U yq Ug Ty
R L e e B R L T _ (2.0)
d - Vd °d
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Using the free-stream velocity and the chord length to non-dimension-
alise the velocities and the distances respectively, equation (2.10)

leads to

yu >
(1}L ) = %—1n <~7§£> + B + 2P sin” (

Mo
C

)W (2.11)

The absence of the subscript 'd' indicates the corresponding va-
riables are in non-dimensional form.

Coles (7) tested the profile given by equation (2.11), not
only for several boundary layers developing in adverse pressure
gradients, but also for some boundary layers developing on aero-
foils. The results compared well with the experimental ones. Also
it is easy to visualize the concept of equilibrium boundary Tayer
flows proposed by Clauser (9), by considering the Coles profile.

It has been known for a long time, that all constant pressure

turbulent boundary layers at all streamwise stations are identical,

when plotted as U
T

by Clauser (9), who presumed that it would be possible to form

""U \
! ) Versus (é) . This fact was recognized

boundary layers developing in positive pressure gradients, in such
a way, that a certain balance exists between the mixing processes.
This would result in the profiles at different streamwise stations,

collapsing on a single curve, when plotted in the coordinates of

U

U; - U
VErsus (%-)“ In fact Clauser (9) managed to create
T
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experimentally, two such equilibrium flows developing in adverse

pressure gradients. The value of Ui is given by
Us U : :
il _A T 5
{-U;-) =7 n ( 5 ) + B + 2P (2.12)

Equations (2.11) and (2.12) can be used to yield the following

equation

Ui -U A
= D N 2 [my —_—
( ) = L1n(s)+2p cos (2@) (2.13)

If P is constant, it is seen that the profiles are independent of
streamwise stations and the condition for equilibrium flows is sa-
tisfied. If the pressure gradient causes a non-equilibrium bound-
ary layer, its effect can be accommodated in the profile parameter
P which is, in general, a function of x.

From the preceding discussions, it can be seen that‘the
Coles profile is very suitable and reliable for representing
the velocity'profi1e in a turbulent boundary layer. Hence it has

been used in the present analysis.

(111) Wakes: Wakes fall into the category of free turbulence where
there is no direct effect of any fixed boundary. Wakes are formed
in all cases of viscous flow past bodies. It is a region deficient

in momentum, caused by viscosity in the flow field over the body
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which sheds the wake. The drag experienced by a body increases

with the size of the wake it sheds. High values of drag are asso-
ciated with thick wakes resulting from the separation of the bound-
ary layers on the body. Bodies that experience 1ift create asymme—
tric wakes. If the wakes are symmetric and the turbulence structure
is uniform, there would be no mass or momentum transfer across the
1ine of minimum velocity in the wake. In the case of asymmetric
wakes, there is bound to be mass transfer across the centre of the
wake, Also the position of the wake centre changes in a transverse
direction with the development of the f?ow'downstream.

Near the body the flow is dependent on viscosity and this re-
gion is known as the near wake. This is the region of adjustment
from the boundary layer Tike flow to the self preserving form of
the flow which occurs later. The length of the near wake region,
after which the wake collapses to a self preserving type of flow,
is a function of the boundary layer characteristics at the trailing
edge of the body. As noted by Townsend (10), for self-preservation
to.occur, the following condition should be satisfied.

Yd

where Umdis the mainstream velocity,
USd is the velocity scale and

LSd is the length scale.
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From the motion of the large eddies Townsend (10) arrived at the
following form for the mean velocity variation.
2.
5% \

Ug = Uy - (Umd —U]d) Exp émﬁﬁr) (2.15)
¥l

In this equation,

Uld = the velocity at the centre of the wake and

L the length scale defined as distance from the centre

sd
of the wake to the point where the velocity is

U g [1-Exp(-0.5)] + Ui g [Exp(-0.5)]

Following Gartshore (11), Irwin (2) adopted a similar but more
suitable form for the wake. The outer half of the wake and the inner
half of the wake, known as the outer and inner wake respectively,
were defined by two different self preserving profiles, as given
below, in non-dimensional form.
Outer Wake:
: 2

U=1U_ - (U -U o L%

= Ug - ( 0" ]) Exp | - —[5~~- (2.16)

in 2, s

i

where K

Ue = velocity in the potential region at the edge of the
outer wake,

62 = the distance from the aerofoil surface to the centre
of the wake and

LO = the length scale defined as the distance from the

centre of the wake to the point where the velocity is

]
Z
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Inner Wake:

-8 2
U= Uy = (Ug-Uy) Exp{mk <X~—-2) } (2.17)
I

L

in the unmerged case where
UO = the velocity in the potential core at the edge of the inner
wake and
= the length scale defined as the distance from the centre

UO+U1)

L
of the wake to the point where the velocity is (w-2-~*

In the merged case,

2
oo xp | k| ol
U= U3 - (U3 —U1)[xp k( 1 ) (2.18)
where U3 = the velocity at the edge of the inner wake.

The same forms have been adopted in the present analysis.

Because of the exponential terms occurring in the profile
representations for the outer and inner wake, these profiles would
extend to infinity. Hence the outer wake has been terminated at
y = 62 +-GOLOand the inner wake at y = 52 - G1 L] where the choice

of the empirical constants GO and G] 1 discussed in the next sec-

tion.

(iv) Interaction of the Wake and The Boundary Layer: In the unmerged

region the thickness of the potential core region decreases with the

development of the flow. The inner wake length L1 and the boundary
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layer thickness, §, increase because of the entrainment of the fluid from the
potential core. Asaresultof thedisplacing effectof the boundary layer
on the potential core the Tength 621ncreasesc The outer wake length, LO, in-
creases at a rate to accommodate the net entrainment of the fiuid fromthe main-
stream and from across the wake centre. Thus the development of the
wake and the boundary Tayer is almost identical to that of the res-
pective free layers. The merging point of the inner wake and the
boundary layer is dependent on the entrainment rates of the shear
layers. These entrainment rates are dependent on the intensity of
turbulence inthe flow field between these shear layers, the inter-
mittency of the flow at the edges of these shear layers, the pres-
sure field and the relative thicknesses of the shear layers.

In the merged region the boundary layer thickness continues to
increase because of the entrainment of the fluid from above it.
The inner wake length L] varies, depending on the pressure field and
the mass flow across the wake centre. The length 62 still continues
to increase because of the displacing effect of the boundary layer.
The outer wake length LO increases, subject to the same constraints
mentioned earlier,

From the above discussions, it is seen that there are ndt many
constraints in the selection of the constant GO for terminating
the outer wake. Irwin (2) chose a value of Gy such that at
y = 62 + GO LO’ the velocity defect is 0.5% of the maxinmum velocity

defect. This condition gives a value of GO = 2.77 on using the
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equation (2.16).. The same value of GO has been adopted in the pre-
sent analysis.

On the other hand, there are many constraints in the selection
of the constant G] for terminating the inner wake. It plays a part
in the disappearance of the potential region and is influenced by
the entrainment rates of the boundary Tlayer and the inner wake.
Irwin (2) carried out calculations for different values of 61 and
found that a value of G] = 2.5 gave the best results when compared
with the experimental variation of the momentum thickness. This

value of G] will be used in the present analysis.

(v) Simplified Flow Model: The interaction of the wake and the

boundary Tlayer is so complex that it is necessary to use a simplified

model to get an idea of the type of results that would be obtained

by varying different parameters, before more exact and complex mo-

dels can be used. The simplified model is illustrated in Fig. 4.

The following assumptions have been made to arrive at the simplified

form of the real flow model.

(1) The flap will be represented by a flat plate so that a carte-
sian coordinate system can be used,

(2) The flow is treated as incompressible and two-dimensional.

(3) The boundary layer is assumed to have developed into a fully
turbulent flow right from the start of the calculation pfocess.

(4) Each half of the wake is assumed to have a self preserving

profile with the minimum velocity layer having no shear stress
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and no mass transported across it.

Only the mean velocity field has been considered in the deri-
vation of the system of equations required to solve the flow
model, the turbulent velocity components having been taken
into account only in the representation of the shear stresses.
Also the intermittency of the flow has been neglected every-
where except in the use of the eddy-viscosity concept in the
boundary layer.

The turbulence Tevel in the potential core and main stream is

taken as being negligible.



CHAPTER 3
CALCULATIONS

(1) Introduction: In order to predict the interaction of the wake

and the boundary layer, a relevant and physically consistent system
of equations needs to be developed. These equations should involve
all the variables occurring in the expressions for the velocity pro-
files of the wake and the boundary layer. To achieve this, the

momentum integral equation has been used as a valuable tool.

(i1) Momentum Integral Equation: The simplified Prandtl's momentum
equations for a boundary Tayer along a flat surface, placed in line

with the free stream and the continuity equation are

U ol Ly ATy
Vaax, " Vaay, T, T Ty, (3.1)
d Vg P g Py
ap
] d _
() 57, 0 (3.2)
sU. 8V
’é“’(‘j*Jf'é*g = O (3 3)
Xg Yy

where pdis the static pressure and
Ty is the shear stress given by
Wy |
14 = olvy Wy Udvd)

These equations can be expressed in non-dimensional form as,

U, U 1% e

U oX Ty 3y 2 93X ¥ y (3.4)
5C

P -y (3.5)

3y



19

%+%:o (3.6)
(pd - pmd)
where C (3.7)

Goldstein (12) has shown that the same approximations for the
flow along a curved surface of small curvature lead to the following

set of boundary layer equations 1in non-dimensional form.

U yau_ 1y ’p, 3t
U X " 2y ( 2) 59X * 3y (3.8)
tIn
s R
5y kU (3.9)
sl oV
and >y -0 (3.10)

where xis the radius of curvature of the surface and x, y are the
coordinates measured along the wall and at right angles to it. The
above set of equations was adopted by Irwin (2) in order to take
into account the transverse pressure gradient., The same set of
equations will be used in the present analysis with x, y being
cartesian coordinates.

The transverse static pressure gradient is manifested in the
term (g;E?1n the equation (3.8). Hence equation (3.9) can be dis-
regarded. So the set of equations (3.8) and (3.10)will be used in
the present analysis. By substituting for V from the equation (3.10)

into the equation (3.8), the following equation is obtained.

2 aC '
JUT LW 1 TTp oyt (3.11)
X Ay 2 23X 3y
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Integrating between arbitrary limits ¥y and Yoo the general momentum

integral equation is obtained

Y2 Y2 y1
2
aU 3y aU
J (F5dy - Uy2 (55 0dy + Uy] (550 dy
¥, 0 0
.y
SR
Ly Py - ; -
¥ ] () (5 dy (Tyz Ty]) 0 (3.12)

I

with the boundary ‘condition that Vy: =0

When the Navier-Stokes equation are applied to the wake region and

similar simplifying assumptions are made, the set of equations (3.8)
to (3.10) are obtained. Hence the general momentum integral equation
(3.12) %surns out to be the same for both the boundary layer and the
wake region. In order to use the momentum integral equation effect-
ively, the shear stresses in the equation will have to be evaluated.

This problem is considered in the next section.

(i11) Shear Stresses: Boussinesq introduced the eddy viscosity con-

cept to account for the transverse turbulent momentum exchange which,

in effect, acts as a shear stress. It is given by

T = vy (%g) (3.13)
where Ty = the turbulent shear stress
and

vp = the kinematic eddy viscosity

The Taminar shear stress is given by

i
T] = v(ay) (3.14)
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where Ty= the laminar shear stress
and

v= the kinematic viscosity

Typically in a turbulent region the total shear stress = is given by

aU
T) o (3.15)

i

(v+v
But, at large distances from the wall, the turbulence is well esta-
blished and the contribution of the laminar shear stress to the total
shear stress is small. Hence it is neglected. So, except near the
wall, the shear stress at a point is given by

- y
TTVT (ay)

(3.176)
The expression for the eddy viscosity is a complicated and an
important one. In a boundary layer where the flow is affected by
viscosity this expression is different from that in a wake where
the flow is determined only by inertia effects. Within a boundary
layer itself the expression is determined by the extent to which the
viscosity affects the region. In the sub-layer region it is defined
by a modified form of Prandtl's mixing length theory. In the oﬁter
region it is dependent on the boundary layer thickness. The con~-
straint used in defining the extent of these regions is the continuity

of the eddy viccosity. Smith and Cebeci (13) have used the following



22

expression suggested by Clauser

- (0.0168)(6;)(U.) (3.17)

YT i
This has been further modified by the intermittency factor. An
zpproximate form of the intermittency factor has been reported to

be given by Klebanoff as

-1

6 (3.18)

<
8]

[1-+5.5(%)

so that

1

(0.0]68)(y)(6§)(U-) (3.19)

\)T i
Though as stated by Clauser this expression is valid only for
equilibrium flows, it has been tested in several non-equilibrium
boundary layer flows and has yielded good results. So it has been

used to compute the eddy viscosity in the outer part of the boundary

layer region with the result that

vy = (0.0168)(v) (55)(U;) (3.20)
in the unmerged region and
vy = (0.0168)(v)(¢5) (U,) (3.21)

in the merged region.

For the wake region, the approach of Townsend (10) hés been

adopted. The large eddies present in each half of a wake flow deter-
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mine the self-preservation of the flow. The self-preserving type
of flow is established when the two sets of eddies in each half of
the flow are in a state of equilibrium with respect to their energy.
Townsend (10) has suggested the following expression for the eddy

viscosity assuming that it is constant across the flow region

= (2-2) (3.22)

This approximation is in error only near the edges of the flow where
the flow is intermittent. Based on the equilibrium condition of the

eddies, Townsend (10) arrived at a value of R, lying in the range

W
14 to 21. Since in the present case the wakes are asymmetric and
not self-preserving, a value of RTN = 40 suggested by Irwin (2)
has been used.

Thus the expression for the eddy viscosity is given by

L

- 0
v = (Ug ~U1)(§;Q) : (3.23)

for the outer wake region,
The shear stresses are determined by using the appropriate
expressions for the eddy viscosity and the velocity gradient in

equation (3.16).

(iv) Pressure Field: As has been reported in Appendix -A, in the

general case where the pressure field is two-dimensional, Cp has been

represented by the equation

C, = f(x)y + g(x) (3.24)
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where f (x) and g (x) are third order polynomials of x. In the
test cases where the transverse pressure gradient is absent, the

function g (x) has been assumed to be a linear function so that,

in effect, Cp has been represented by a straight 1ine. Thus the

oC .
integral involving the pressure gradient(ng)is determined in
equation (3.12). Further discussion about the comparison of the for-

mulated pressure distributions with the experimental ones will be

found in Chapter 4.

(v) System of Equations:

(a) Unmerged Case: 1In this case the eight variables involved are

UT, ¢ and P occurring in equation (2.11), U] & and L _ occurring in

0
equation (2.16)L] occurring in equation (2.17) and L2 the thickness
of the potential core region. Hence a system consisting of eight
equations has to be developed. These are the equations obtained by
applying the momentum integral equation to five different layers of
the entire shear region, the expression for the rate of mass flow

du.

across the wake centre, the relation for (8;10 and the geometrical

relation L, = (6

2

2~G]L]),

The details involved in these equations and the coefficients
of these equations are given in Appendix -A and the equations them-
selves are given below.

Quter Wake Region: The relations obtained by applying the momentum

integral equation (3.12) to this region are
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s, v, L, dL,
M)+ MG+ MalG) + My ()
du
T dp ds, _
+ MS<HT) + M6(H§) + M7(a°>z> = N1 (3.25)
-5 i = 8
for Y1 5 and y, ’ + GOLO
s, du, L, di
Mola ) * Molg) + Mola ) * My (g
du
y T QE .QQ = 2
M) M) Mg (gl = N (3.26)

for y} = 82 and Y2 = (62 + H)).

Amongst the shear stresses T(62‘+GOLO)’ T(62+LO) and 162 which occur in

the coefficients N1 and N23T(62'*G0L0)and r6? are assumed to

be zero. The shear stress T(62+L evaluated using the viscosity expression,

q)
equation (3.23), is given by
Vs

k
o, tly) T (E;w)(ue -Uy) (3.27)

Inner Wake Region: The relation obtained by applying the momentum

integral equation to this region is

s, au, d, au_
Mgl ) Mgla) * Mo la) + Mglg)
dp ds, _
+ MT9(82) + MZO(E§> N3 (3.28)
for Yy = (62 -G]L]) and Yo = 8

L) occurring 1in the coefficient N3 is taken

The shear stress (s, -G
2 1t
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as zero.

Boundary Layer Region:  The relations obtained by using equation

(3.12) forthis region are

_T dp dsy .
Mop () + Mop(G) * Mas(gd) = Ny (3.29)
for Yy = L3 and Yo = § and
du
T dp g (dsy -
Maa (g * Mg () * Myplg) = Ng (3.30)
for ¥y = (8/2) and Yo =8
du

In evaluating the coefficients of (ail)’ (g;) and (%g)

in the equations
(3.25), 3.26), (3.28), (3.29) and (3.30) the contribution of a small

region near the surface has been neglected; the boundary layer pro-

file has been integrated fromy = L3. The reasons for this, are

given in Appendix -A. The shear stress Ts is taken as zero and the

shear stress at T(s/2) is evaluated using equation (3.20) and is

given by

To/2) (0001547)(uf)(%~+p)(%§ + TP (3.31)

The shear stress at y = L3 is given by

L= T o= 2 (3.32)

These shear stresses occur in the coefficients N and NB'

4



Change of Mass Flow Across the Wake Centre: The rate of change of

flow across the wake centre, F, given by the equation

U dy (3.33)

[aREaR
=

Ly

is taken as zero. Hence the following equation is obtained.

d62 dU] dL] dUT
Mog (g * Moglg) * Mool Mgo<§>
dpP dé, _
Moy () + M) = N (3.34)

du.
Relation For(a;ldz By differentiating the relation for Ui’ equation

(2.12) with respect to x,the following equation is obtained.

ds

dp
)+ Mg

au,
)+ My (g

Mas Gy

# g (55 =, (3.35)

Referring to Fig. 3(a) it is seen that the thickness of the
potential core is given by

L, = (6, - G

2 p m Gy L

L - 8) (3.36)

which gives the final equation.

Thus the set of equations (3.25) (3.26), (3.22), (3.29), (3.30),
(3.34), (3.35) and (3.36) form the system of equations required to
solve the flow problem in the unmerged case. It is seen that the
derivatives of a]l‘the unknowns, except L2 which appears only in the

Tast equation, are coupled. Thus all the equations except the last

27
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one are solved simultaneously for the x-derivatives of the variables.
The step-by-step computation technique is described in the following
section. The thickness of the potential core is evaluated using
equation (3.36).

The choice of the five layers, in applying the momentum integral
equation (3.72), requires discussion. The presence of the shear
stresses in the equation requires the use of empirical relations for
the eddy viscosity. This introduces further approximations into the
equation. Hence, the layers have been chosen whenever possible,
such that the shear stresses at their boundaries are already known
(zero or Tm)‘ In this analysis, these layers are the whole regions
of the outer wake, inner wake and the boundary layer. The other
two equations have been obtained by applying equation (3.12) to
parts of two out of the three shear layers.

In the merged case, the development of the outer wake is sub-
Jject to the same constraints as in the unmerged case, but the inter-
mittency component of the inner wake turbulence structure changes
and could have‘a lTarge effect on the inner wake shear stresses. This
would involve the use of a different eddy Viscosity expressien. Hence
in the system of equations for the merged case, equation (3.12) has
been applied to part regions of the outer wake and the boundary layer.
These part regions are the half velocity and half thickness layers
of the outer wake and boundarv layer respectively which are

sufficiently thick. The outer half of the boundary layer has been



29

chosen instead of the inner half as it requires only the knowledge
of the shear stress at y = 6/2 unlike the inner half which requires
the shear stress at y = 0, namely Ui, and which may introduce some errors
in the system of equations.
In the unmerged case, the develdpment of the outer wake, inner
wake and the boundary layer is similar to that of the respective
free layers as indicated in section (iv) of Chapter 2. Hence the
eddy viscosity expressions suggested earlier would be more or less
consistent with the turbulence structure present in the three layers
and any pair would serve equally well. So the same two regions were

used for the unmerged case.

(b) Merged Case: In this case the variables involved are the same
aslin the unmerged case but for L2 which disappears. A new unknown
variable U3, the velocity at the edge of the boundary Tayer,is intro-
duced because of the disappearance of the potential core; it

can no longer be calculated from the pressure field. Hence a
slightly different system of equations needs to be developed. The
details involved in these equations and the coefficients are given

in Appendix -A and the equations are listed below.

Outer Wake Region  The equations obtained by applying the momentum

integral equation (3.12) to this region are

ds, av, i i,
Ry (%) + Rolg) + Rylg) * Ryl
du ds du
. dap . 3 duz
+ Relg) * Relg) + Ry(g) + Relg) = Ty (3.37)



d62 dU] dLO dL]
Rolax ) * Riola ) * Rypla) * Ralg)
du dé dy
T dP 3 3
T ar 2y 4 2 =T
FR3(G)  Rg (G RslE) T Ryela) = T (3.38)
for y; =6, and y, = (62 + LO)
Amongst the shear stresses 1 > Tle o and
(85 +Golg) » {8yt L) 85
involved in the coefficients T, and T,, = and T, are
1 2 (62 + GOLO) 8y
taken as zero and the shear stress T(6-+L ) is evaluated as in
2 0

the unmerged case.

Inner Wake Region: The equation obtained by applying the momentum

integral eguation (3.12) to the inner wake region is

s, au, L, au_
Ry7(q) * Riglar) * Ryglgy) *+ Ropla)
ds du
dp 3 3, _
Ry (q) * Roplgr) * Roslg™) = Ts (3.39)

for ¥y = (62-G]L]) and Yo = 8,

The shear stress T(éz_'G]L]) occurring in T3 is again taken as

Zero.

Boundary Layer Region: The equations obtained by applying the

equation (3.12) to this region are

30

du, dp dé ‘
Rog (g )+ Roslaq) * Roglg) = Ty (3.40)
for Yy = L3 and Yo = 63 and
du ds
T dPy . _ 3y -
Roz (@) * Roglag) * Roglad™ = Ts (3.41)

%3
for y, = (é—) and y, = 8,
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The contribution of a thin region near the boundary is ne-

glected as before. The shear stresses T, and T appearing in
3 3

the coefficients T4 and T5 are taken as zero and U% respectively.

The shear stress T(6,0) is obtained by using the eddy viscosity

3/2
expression, equation (3.21).

Change of Mass Flow Across The Make Centre: The relation obtained by

assuming a zero mass flow across the wake centre is

dU] 'dL] dUT dap
R0l 1 Rl Raalac ) Raslad)
3 3y -
PR3 () T Ryslg ) = T (3.42).
where T¢ = F=0.
du

Relation For <a§§>1 The expression for the velocity at the edge of

the boundary Tayer is given by

= (T 3T |
U3 (=) Tn( 5 ) + BbT + 2PUT (3.43)

Differentiating the above equation with respect to x , the following

equation is obtained:

du ds du
o dp 3y 4 3y -
Ra6 (@) * Raplax) * Ragla) * Raolg) = O (3.44)
Referring to Fig. 3 (b) it is seen that
8,y = G]L] t 8y _ (3.45)
and on differentiation, the following equation is obtained.
d62 dL] d63
Raola ) = Ranlgg) * Ryplg) = O (3.46)

The set of equations (3.37), (3.33), (3.39), (3.40), (3.41),

(3.42), (3.44) and (3.46) forms the system of equations for the
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merged case. Unlike the unmerged case, the x-derivatives of all the
variables are coupled by all the equations in this case. Hence it is
necessary to solve the system of equations simultaneously.

(vi) Computation Technique: A computer program has been developed

to perform the calculations. The flow chart for the program is given
in Appendix -C for easy understanding of the program. The program
itself is given in Appendix -DB. Function subprograms have been used
to evaluate the numerical integrals C7, C8, 015 and C16’ the pressure
integrals and the potential flow velocities. The Simpson's method
with 400 intervals has been used in the subprograms to evaluate the
numerical integrals. The numerical technique used in the step by step
computation process is the finite difference method and the computer
Tanguage used is the FORTRAN (WATFIV) language. Double precision is
used in the computations to improve the accuracy of the calculations.
The system of equations in both cases is solved in matrix form,

QX =S, where Q, X and S are matrices of the appropriate order.

X is the column matrix containing the unknowns, namely the x-derivatives

-1 is the inverse

of the variables. It is given by X = Q“]S, where Q
of the matrix Q. The subroutine used to evaluate this is the IMSL
subroutine LEQT2F. This is a powerful subroutine used in solving
systems of linear equations. It can be set to provide warnings as to
whether the matrix is singular or the system of equations is

i11-conditioned.

In each of the test cases, the most upstream station at which
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accurate data is available 1is used as the initial station. The pro-
gram is fed with the values at the initial station. The system of
equations for the unmerged case is solved. The variables are cal-

culated using the finite difference formula

4 |
Pie Toq T gy X (3.47)

where 9 stands for a variable,

o

Ix for the x-derivative of the variable,

¢, for the value of the variable at a station and

¢1 i tor the value of the variable at the next station.

The value of the variable L2 is calcuiated at the end of each step.
When once it becomes zero or negative, the program proceeds with
the prediction of the flow in the merged case.

The program is set to perform as long as the following condi-
tions are satisfied.

(i) X = aerofoil length and

(i1) Cep > 0 (indicating attached flow)
The flow is considered as the development of a wake and a boundary
layer as long as the value of (U3 - U]) is greater than 0.0025.
The results of the program downstream of the station at which this
condition is not satisfied are disregarded. Then the flow is

treated as the development of an equivalent boundary layer, which is
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discussed in the last section of this Chapter.
The step distance A&x in equation (3.47) has been chosen to be
equal to 0.007T. This resulted in a program requiring a time of about

114 seconds for a flap distance of x = 0.286.

(vii) Integral Parameters: The usual integral parameters used for

testing the reliability of a calculation method are the displacement
thickness & and the momentum thickness 6 and the shape

parameter H, given by H = (6*/8). The calculation method can

be judged from a comparison of the predicted values of these parameters
with the experimental ones. They are also representative of the
quantitative effect of the shear flows on the hypothetical potential
flow so that these parameters can be used to simulate the effect of

the shear flows. Thus they can be used with potential flow models

to predict the behaviour of the real flow model.

The usual definitions of the displacement and momentum thickf
-nesses do not take into account the transverse pressure gradient.
Myring (14) has arrived at the definitions of the displacement thick-
ness taking into account the transverse pressure gradient and theb
momentum thickness compatible with the displacement surface. It
has been shown that by neglecting the fact that (2950 0
these thicknesses are those automatically defined along isobars.

But in the present analysis no attempt has been made to use the
corrected definitions, as it was necessary to compare the predicted
values of the integral parameters with the experimental results ob-

tained from the usual definitions. These definitions are given in

Appendix -B.
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(viii) Far Downstream Solution: As the boundary layer and the wake

develop adjacent to each other in the merged region, a particular
situation may arise when the inner wake loses its identity. The
velocity gradients and hence the shear stresses in the wake become
negligibly small and a profile similar to the one shown in Fig. 4
is attained. This region is termed as the far region. A technique
similar to the one employed by Kibria (3) has been used in analys-
ing the far region. When the velocity defect (U3-U1) becomes less
than (0.0025) the whole shear region has been replaced by an equi-
valent boundary layer having
(i) the same total displacement thickness and momentum thickness,
(i1) the same main stream velocity U, and
(1i1) the same friction velocity UT
Treating the whole shear region as one single layer, ‘the total displacement

and momentum thicknesses denoted by S*T and 6y are given‘by the

following equations.

(52+GOLO)
s = | (] —H—~)dy (3.48)
T e

0

8, +Golg)

U U

or = | () (0 -g)dy (3.49)
I Ue Ue .



36

The equations for G*T and GT are given in Appendix -B. The dis~
placement thickness and momentum thickness of the equivalent boundary

layer are also given by the relations

cST UT A

(g}) = (U—)([‘+PT) (3.50)
e

6. &* U, 2 2

(D = (D) - 9 11.5p2+3.08 2 A (3.51)

T T e L

where GT and PT are the boundary layer thickness and the profile
parameter of the equivalent boundary layer respectively. Thus the
parameters 5T and PT are calculated. These equations have been
obtained from the usual definitions of the displacement and momentum
thicknesses for the boundary layer and are identical to equations
89
Uerespectively. Once the parameters of the equivalent boundary

{B-§) and (B-}) with §* GB’ P, & and Ui replaced by 6?, 6> PT’ &T and

lTayer at the start of the far region have been evaluated, the rest
of the flow is treated as the growth of the equivalent boundary
Tayer and calculated using the equations and techniques for the

boundary layer region.
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CHAPTER 4
RESULTS AND DISCUSSIONS

The results obtained by using the present calculation method

are compared with the experimental results of four cases of flow
over multi-element aerofoil systems. The geometries of the aero-
foil configurations used in the test cases are shown in Fig. 5. Two
¢f these cases are the experimental investigations of flow around

a slotted flap reported by Foster, Irwin and Williams (4) and,

for which a theoretical analysis has been developed by Irwin (2).
Kibria (3) developed an alternative theoretical model for one of
these cases, the results of which are also available for comparison.
In these cases, the full two-dimensional pressure field over the flap
has been measured. The other two cases are the experimental measure-
ments of Bario et al (6) and Ljungstrom (5) where only the surface

pressure has been measured,

Test Case 1: The geometry of the two—e]ementAsystem used in this

case is shown in Fig. 5. The flap deflection was 309, the slot height
was 0.025c and the angle of attack was 8°. The experiment was con-
ducted in a Tow speed wind tunnel at a free stream velocity of 61
m/sec. The aerofoil system had an unexten&ed chord of 0.915 m. The
chord of the flap was 40% of the unextended chord. It has been re-

ported by Foster, Irwin and Williams (4) that the above flap deflec-
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tion corresponds approximately to the landing configuration. The
pressure data for this case has been given by Irwin (2) and are
reproduced in Fig. 6. For reasons given in section (i) of Appendix - A
the static pressure coefficient Cp has been represented as
Cp = f(x) y + g(x). While evaluating the coefficients occurring in
the functions, the function g (x) has been fitted at y=o; the func-
tion f{x) has been fitted at suitable y values. In fitting the
function g (x), the value of Cp at y =0 has been taken as being

equal to that measured by the surface pressure tap and not as being
equal to that determined from the measurements of the static pres-
sure probe. This has been done because it is known that as a re-
sult of the sharp obstruction of the flow when the static pressure probe fis
used near the surface, the measurements are not as accurate as that of the
static pressure tap.

The present method predicts merging at about x = 0.25. The

variations of U], U3 and (U3—U1) are shown in Fig. 7. It is seen

that U1 decreases with distance, unlike in an ordinary wake where
one would expect that it would increase. This is because of the pre-
sence of an adverse pressure gradient. Kibria's calculation method
also predicts similar results except for increasing values in the
vicinity of the flap trailing edge which may be because of the use

of the momentum integral equation in its inexact form. The trend

in the variation of U3 is similar in both methods. It is seen that

(U3-U]) decreases with distance, reaches a minimum in the vicinity
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of the flap trailing edge and then increases.
The variations of Ly, LO and P are shown in Fig. 8 in comparison
with that obtained by Irwin's and Kibria's methods. It is seen that

the trend in the qualitative variations of L] and L. as obtained by

0
this method and Irwin's method is the same all along the flow deve-
Topment and different from Kibria's method which predicts decreasing
values near thetrailing edge. Again, this is because of using the
momentum integral equation in its inexact form. The values of L1
and lg predicted by this method are Tower than that predicted by
Kibria's method. This may because of the fact that the transverse
pressure gradient has been taken into account. The Tength scale
LO of the outer wake as predicted by the present method continues to
increase until the trailing edge which is consistent with physical
evidence. The same observations are noted in the case of L1.
The trend in the variations of the profile parameter P is seen to
be similar in the present method as in Kibria's method, the difference
being in the maximum value of P attained. The reason for this is
partly related to the fact that the initial value of P deduced from
the data given by Irwin (2) is different in both methods.

The curves of Hp, 8, Hyy and 6;,, @re shown in Fig. 9 in com-
parison with the experimental values and with the calculated values
of Irwin (2) and Kibria (3). The values of Hg and 9, predicted by
the present method are closer to the experimental values than the

other two methods. The reason for the improvement over the Irwin's
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method may be because Coles profile has been used, instead of the
power law. Coles profile is a better representation for bbundary
Tayers developing in adverse pressure gradients. In the case of
HIW and ezw’
experimental values than Kibria's calculations. Since the same

the present calculations are significantly closer to the

boundary Tayer and wake profiles have been used in both cases, the
reason for this may be the exact form of the momentum integral equa-
tion used. The present method does not predict decreasing values

of op and or, near the trailing edge Tike Kibria's method. The
reasons for this are the same as that quoted in connection with

L] and L. The values of HIN and By @S predicted by the present
method also show a sTight improvement over that predicted by Irwin's
method. The curves of HOW 9

, OW
provements are noted in the prediction of HOw and GOW over the two

and Cfabare shown in Fig. 10. Im-

methods. In the case of qu), the curve reaches a minimum at

about x = 0.36 and then increases. This is related to the fact
that a short distance upstream of this point, the value of P starts
decreasing. The initial value of Cf«; used in the present method
has been obtained from the data given by Irwin (2). In the case of
Kibria's method it has been evaluated using the wel]—knowh Ludwieg
and Tillmann's empirical relation. Thus the initial values are dif-
ferent in the two methods. Hence it is not surprising that the

values of Cf as predicted by Kibria's method are closer to the

‘oo

experimental values than those predicted by the present method. It
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has been reported in (2) that flow separation occurs at about x=0.3.
The velocity profiles are compared in Fig. 11. The profiles
at the two downstream stations after the initial station as pre-
dicted by the pesent method are closer to the experimental ones than
the other two methods only in some regions of the wake and the bound-
ary 1ayer; But as seen earlier there is better agreement of the
integral parameters HB’ 6> HIW’ 01y HON and 0 with the experi-
mental ones. Hence the complete ve]ocity profiles are a good re-
presentation of the experimental ones. At the last station the
flow has undergone separation and none of the predicted profiles
are close to the experimental ones. The positions of the maximum
and minimum in the velocity profiles at all the downstream stations
except the Tast one are quite close to the experimental ones. This
implies that the growths of the wake and the boundary layer dis-
cussed earlier in terms of Ll’ L0 and P have been predicted well over
most of the flap. In particular there has been a significant improve-
ment over Kibria's prediction of the velocity profiles. The reason
for this may again be the presence of the transverse pressure gra-
dient and the exact form of the momentum integral equation.
Test Case 2: In this case, the two-element aerofoil configuration
is almost the same as that reported in Case 1, except that a smaller
slot height of 0.020c has been used. The‘experimenta1 pressure
distribution has been compared with the formulated distribution in

Fig. 12. Again there are noticeable differences in the values of

The Univ
of Mani
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Cp at y = 0, the reasons for which are the same as that reported in
Case 1.

The present method predicts merging at about x = 0.2. Since
there has been early merging, the interaction between the wake and
the boundary layer has been strong which affects the relative growths
of the boundary layer and the wake. The curves of U1 U3 and

Ed

(U3—U]) are shown in Fig. 13. The values of U] and U3 decrease with
x as noted in Case 1. The value of (U3—U]) increases with x up to

the merging point and then decreases up to the flap trailing edge.

The variations of L] and LO are shown in Fig. 14. The Tength scales

L.i and LO increase with distance as noted in Case 1. The curves of

HBS Ops HIw and b1y are shown in Fig. 15. There has been an improve-
ment over Irwin's prediction of these values as seen from the ex-
perimental points. The values of Oy S predicted by Irwin's method
approach a constant value near the trailing edge. This is consistent
with the behaviour of L] near the trailing edge as predicted by the same
method, which is shown in Fig. 14. The curves of HOH’ 90w and wa are
presented in Fig. 16. There appears to be noticeable improvements

in the predictions of HOw and g The present methqd predicts low
values of Cfoo near the trailing edge indicating imminent separation

of the flow, The initial value of Cfm used in Irwin's method,

probably obtained from the empirical relation of Ludwieg and Till-

mann, is lower than that used in the present method. This is the

reason that the values of Cfa> as predicted by Irwin's method are
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c]osef to the experimental values than that predicted by the present
method. The velocity profiles as predicted by the two methods are
shown in Fig. 17 1in comparison with‘the experimental ones. Be-
cause of the better prediction of HB’ SB’ HIW’ UL “OH’ and GOW’ it
can be inferred that the velocity profiles are a good representation
of the experimental profiles.

Test Case 3: This is the case for which experimental measurements
have been reported by Bario et al (6). As shown in Fig. 5, in this
case two symmetrical aerofoils were used. The tests were conducted
ih a low speed variable pressure gradient wind tunnel to create the
flow pattern involving a wake and a boundary layer. The chord of
the second aerofoil was 0.6m. The tests were conducted at a free
stream velocity of about 18 m/sec. The formulated pressure distri-
bution is compared with the experimental distribution in Fig. 18.
The pressures were presented on a small scale in (6). This could
be a source of error in the formulated distribution which has been
represented by two straight Tines upstream and downstream of

x = 0.4.

The present method predicts merging at x = 0.65. The actual
merging has been stated to occur at about x=0.5. It is possible
that merging might have occurred as early as this because it was
reported that the boundary layer was not fully turbulent in charac-
ter and was undergoing transition in the region of the initial de~

velopment of the flow. Since the boundary layer was not fully
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turbulent it implies that the values of wa would be low. The
prediction of ¢kin friction coefficient Cf has been compared with the
experimental results in Fig. 19. It is seen that there is good agree-
ment up to the merging point after which the measured values of Cf
decrease rapidly with separation occurring at x = 0.88. The present
method predicts imminent separation near x = 0.98. It is understandable
that separation cannot be predicted by Coles profile because of the
presence of the logarithmic term. The predicted velocity profiles are
compared with the experimental ones in Fig. 20. It is seen from the

U

velocity profile at the initial station that the value of (Ul) is
e

different from the experimental value. This indicates that some
errors have been introduced in deducing the initial values from the
figures given in (6) which were plotted to a small scale. There is
good agreement of the velocity profiles with the experimental ones at
all stations except the last one. The reason for this might be the
fact that the real flow was close to separation.

Test Case 4: The last case is the experimental work undertaken

by Liungstrom (5) in order to study the effect of different viscous
Tayers on the optimization of a multi-element aerofoil system. The
geometry of the three-element system used is shown in Fig. 5. The
tests were conducted in a Tow speed wind tunnel. It has been deduced
from the data and the figures given in (5) that the unextended chord

of the system was ¢ = 1.1 m. Since sufficient information was not
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available to infer the free stream velocity U_ at which the tests
were conducted, it has been assumed that the test was conducted at
a free stream Reynolds number of about R = 1.8 X 106. This yields
a free-stream velocity of U, = 25m/sec. These values of ¢ and Uoo
have been used in nondimensionalising the Tength and velocity va-
riables as in the other test cases. The formulated pressure dis-
tribution has been compared with the experimental distrubution in
Fig. 21. Again, fn this case, the experimental pressure distribution
Cp was presented to a small scale in (5). This could be a source
of error in the formulated pressure distrubution which has been
represented by three straight lines as shown in Fig. 27.

In this case the pressure field was given as a function of the
distance on the main aerofoil surface. Hence in the calculations
for this case x is equal to the distance measured along the aero-
011 upper surface. The total displacement thickness of the flow as
predicted by the present method is compared with the experimental
results in Fig. 22. It is seen that there is good agreement beyond
the merging point up to a distance as far downstream as x = 0.73.
After x =0.73, the va1ué of (U3—U]) as calculated by the present
method became less than 0.0025. This indicated that within a short
distance downstream the inner wake would disappear. Hence as sug-
gested in section (viii) of Chapter 3, the whole shear Tayer has
been vrepresented by an equivalent turbulent boundary layer having
the same characteristics. When the above concept is used, it is seen

that there is not good agreement with the experimental results.
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This may be because the equivalent boundary layer thickness increases
rapidly with imminent separation being predicted at x=0.88 whereas
the actual shear Tayer does not exhibit separation even at the
trailing edge of the main aerofoil.

The predicted velocity profiles are compared in Fig. 23.
There is fair agreement at all stations except the last one where
the shear layer has been represented by an equivalent turbulent
boundary layer. Ljungstrom defines the merging as the station at
which the inner wake disappears. This is said to occur between
x=0.41 and x=0.59 as compared with the currently predicted value of
x=0.73. But from the illustration given in (5) it is seen that the
disappearance of the inner wake must have occurred 1atef than

x=0.59.
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CHAPTER 5

CONCLUSIONS

integral calculation method developed by Irwin (2) and

by Kibria (3) has been improved by taking into account the

transverse pressure gradient and using the momentum integral equa-

tion without making any approximations. The results indicate the

features which are given below:

(i) The

development of the integral parameters, the displacement

and momentum thicknesses and the velocity profiles, predicted by

this method, are quite satisfactory when compared with the experi-

mental ones except near separation.

(i1) The

prediction of skin friction coefficient is also satisfac-

tory with quite lTow values obtained in the separation region.

(i11) The

predicted growth of the wake and the boundary layer is con-

sistent with physical evidence unlike Kibria's method.

The

present method can be improved if the following factors

are taken into account

(i) The
(i1) The
(i11) The
accurate
(iv) The

the flow

boundary Tlayer profile should be able to predict separation.
flap should be represented by a curved surface.

wake mean velocity profiles should be represented by more
asymmetric profiles than Townsend's universal law.

eddy viscosity expressions should be more compatible with

modeT.
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APPENDIX - A _
(1) Typical Relations Occurring In The Systems of Equations of Chapter 3:

Unmerged Case:

Momentum Integral Equations:

The exact form of the simplified momentum integral equation obtained

. by using the notion of the order of magnitudes is

y y y
2 .2 2 1
aU 3U aU
j (gi“JdY - Uy2 _[ (gg)dy + Uy] j- W
Y3 0 0
Ny
aC
1 Py T T = (A-1)
+ =~ - - = ———
| @Dy )
.

As an example, the application of the momentum integral equation 1is

given in detail for the pair of Tlimits yy = 62 and Yy = (6, + G.L.).

2 070
Since U(62 +GOLO) = Ue and U62 =_U], the momentum integral equation
(A-1) becomes
(62 +GOLO) ) (62 +GOLO) 8,
av? J R [ v
[ @hw-u, ) By ) B
2 8. +G.L.)
( 2 j-O 0 -
1 p _ -
! (P (5B dy - 7 t1g =0 (A2)
62 27 Vox ( 5 +GOLO) 62

The first term in the equation (A-2) has to be integrated only over
the outer wake region. The other terms in equation (A-2) require the
velocity profiles and their x-derivatives over more Timited ranges of the
layer. These relations are given below. In the outer wake region U is ‘
given by |

y -6

U=, - (U, -U;) Exp[—k.(Ta—z—)Z] (a3

Since Ue is, in effect, a function of x only, its partial deriva-
oU du
tive (7550 and the total derivative (H;EO are the same.



o4 . .
Hence (52) is given by, |
du y-6&, 2 dU
Uy _ ey - - 2 e,
(50 = G - BRI G
U -U; y-3§ y-6, 2 ds,
2 ) .
-2k (D) Bk () ()
0 0 0
U ~-U; y~8, 72 y-6, 2 dL
e 1 2 - 2 0
- Zk( LO )( LO ) EXPL’k( LO ) ](dX )
) ,y'62 2 dU]
+ Expl "k(*L—O“*) W(a_g(‘") (A-—4)
Squaring (A-~3) leads to,
y-8, 2
2 _ 2 : 2 ’ 2
U = Ug + (Ug-Up)© ExpL-2K( . ) ]
ya692
- 20U - Uy) ExpL-k (——=)] (A-5)
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Differentiating (A-5) with respect to x , the following equation is obtained.

_ -5, 2
ggf_: [2U, +2(Ug - Up) Exp §~2k(¥16§3) ;
S_ y -8, 22 ) ) ) y-4, 22 du
- 2U, Exp l k( s ) f 2(U - Uy) Exp ( k( I ) f(dx )
(U -U)% y-s y-6,2)
+ [4k Eo U 0 %) Exp 3“2k( L ) }
U,-U; y-¢ y-s 2) ds
- 4kt ﬁo Ly( I 2) Exp {-k< L, 2) f l(a;g)
(U -U )2 y -8, 2 ‘~?k Y-8, 2

U -Uy y-6,2 [ y-3 4 dL
1 2 ) 2 0
- aku, (——)( ) Exp ) -k( ) (1)
e Lo Lo l Ly I dx
y-6,2 y -8, 2 dy
+ EZUeExp S—k( [ 2) -2(U —U]) Exp g~2k(—tw;a) Ij(a;l)
0 [
(A-6)
In the inner wake region U 1is given by
y —622
U= UO - (UO-U]) Expl-k( L] )] (A-7)
Uy se o
and (51) 's given by
du Y-8, 2 1 du
U _ 0 2y U0
o dx lEXp[ ‘T ) Js (&)

U.-U, y-6 y-3§&,2 dé¢

0 "1 2 2 ?

- 2k( ) ) Expl-k( ) U577)
L1 L] L] dx
(Uy-U) y-8,2 y-8, 2 dL

0 1 2 2 ]

- 2k ) Expi-k(—) 1 {5~

y-5,2 du
b Expl -k () () (A-8)
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In the boundary layer region U 1is given by

AUT yU,E 2y
U= (~Iw0 Tn( . ) o+ BUT + 2PUT sin (ﬁg) (A-9)
U
and o is given by
/U dy
s AL AL T 2 Yyt
. [L T Tn( - ) + B + 2P sin (26>](dx )
2 1y, dP
+[2U_ sin <26)](dx)
ZPUTTT N TYy-,ds
. : L (Y TYyq08% -
[ 62 y s1n(26) COS(Zé)](dx) (A-10)

For clarity, each of the terms in equation (A-2) are derived

separately. The coefficients Ai , Bi T Ho s Mi s Noos R;

and Ti that appear in the equations to follow are given in section (1)

of this appendix.

Using equation (A-6) to evaluate the first term in equation (A-2)

Teads to

(62 + GOLO)

?
h}ﬂ(ég}» dy = (2U Goly * 2(U, - Up DL ghg
S,
au,
- 2glgh, - 2(Ug - VLA ()

ds
2)

+(20)(Ug - Uy )CEXD(~KGG) = 17 (32

e 0

ds
)2 2)

(U - U o

e 1

[Exp(—ZkGS) Y

du

- 2(U - 1
[2UgLghy = 2(Ug = Up)LpAsd(5)

-+

dLO
Ay - aku (U - Uy )A 1 (5) (A-11)

+

2
[4k(Ue— U, )

] 1 27 dx
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The second term in the equation (A-2) has to be integrated over the whole

shear region. It can be written as

5
3U ) Uy
Ue,.[oa (ax) dy = Uej(; ( fa—
(6 -»G L )
8
¥ Uej j’ (A-12)
5y

(8, -6GyLy)

The conventional Coles profile used does not properly represent the
velocity profile in the sub-layer. It gives values of U » - as
y -~ 0. A fuller representation of the velocity profile should be made in

two parts, 0 <y s , §_ <y £ 8 where 68 is the sub-Tayer thickness.

% S

This complicates the profile representation because 65 varies with the
development of the flow. Since the sub-layer is thin, the Tow-velocity
fluid in the sub-layer contributes a very small amount to the mass flux
and momentum flux. Hence a very small error is introduced by assuming
U=0 for 0 <y« L3 , where L3 is chosen such that it is close to
the surface but would not yield a negative value for the velocity.
Negative values occur when (yUt/v) <1 so a suitable value of L3 )

LU
well within the sublayer, is taken such that ( 3 L) = 2. So equation

(A-12) can be written as,

(6, +6Gglg) 5 (¢ 25‘61'-1)
Uy . 3U 5U
U, Jf Q) gy = u, [ @ dy +uf G gy
0 L
3
(8, +6glg)
)
3 3 (A-13)
* Uej(g';) dy + g jf(’ax) o
w2~%Lﬁ 85
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In the potential region between & <y < (8§ 2-—G]L]) , the continuity

equation is used to eliminate (%g) so the second term in equation (A-13)

is transformed as

(62 - G4Ly)
Uejg'(—gg) dy = U (V. - V) (A-14)

Hence equation (A-13) can be written as

(62+ GOLO) s
(U N }f ey ;
Uejb(ax) dy = Ug . L(ax) dy + Ue(vﬁ VO)

s
+ Uej'z ) gy f (A-15)
(52—G:1L1)

It will be seen shortly that the normal component of velocity, V , in
the potential region is neglected, because it is small. (Vi-VO) being

the difference of two small positive:quantities is still smaller. Hence

it is alse neglected.
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Using equations (A-4), (A-8) and (A-10) to substitute for (=) in

fe2g

X

the boundary layer, inner wake and the outer wake regions,_equation

(A-15) reduces to

(62+GOLO)
a du,
0 du,,
+ (UG Ly - By Ly ) ()
2 ds,
+ (Ug) (Ug = U LEXP(-KEG) - 13(5%)
_ 2, ds,
* (U (Ug - Uy - Exp(-K6Y) I(-5)
du,
P (Ue) (Lghy + 148 (G5 7)
_dly
- (U )2k (U, = U )A, I ()
- (Ug)L2k(Ug = Uy)B ol ()
A AC, du_
+ U-e[(t)(@—l.3) et 8(6—1_3) + ZPC63(HX_)
2PU =C
- ap Tt b, dé
P U (20, C6) () - (Ue>L‘"E?f‘_J(H§) (A-16)
The third term in equation (A-2) is given by
U
O RO Y
1 1y tex 1
§
# Uy f (2 ay (A-17)
(85~ GyLy)

Neglecting the sub-layer and the change in the normal component of

velocity in the potential region as before, the above equation reduces to



du

3 ) 0
0 J G @y = 0L - Bl ()
n
, 5 d62 .
+ U1(UO-—U])[] - Exp(—kG]')](a;—)
dU] dL1
+ (U]B4 -ﬁ(&“—) - [Zku](UO—U])BZJ(&—)
. A AC du
)][f (6—L3) et B(@-Lg) + 2PC. ](dx )
2U,PU =C
dP 1 5,,dé
+ (ZU]U C6)(dx) - (—“Eé"“““)(a;> (A-18)
By substituting the equations (A-11), (A-16) and (A-18) for the

corresponding terms in (A-2)

‘he momentum integral equation becomes

2

(U (U, - Up)CExp(-kG3) =13 = (U, - U))? {Exp(-2kg) - 1)
2 2y 202
= Ug(Ug = U T1-Exp(-kBT) 3 + Up (Ug - Up) Ll - Exp(-k€3) 11 (g™
du
+ LU LAy = 2(Ug = Up)Lghs - U HB4+Uﬂ184]%XU
, 2 i
FTAR(U, - Up)© Ay = 2KU (U = Up)A ()
| dL,
+ L2k (Ug - Uy)B, - 2kU, (Ug = Uy)B, 1 (g )
N A, au_
+ LUy = U (8- Lg) +——+B(¢ - Ly) +2PC I
b T{U - U)2U Gl [(Ue-u1><2PZ;ﬂE§>J<%§
du
+ [U Gl + 2(Ug - U1)LOA3-UeL0A4-2(Ue-U])LOA4J(dXe)
U,
+ EUeL]B4-UeGlL1-+U]G]L]-U]L]B4](EBZ“)
(8, +6gkg) T T8, " (A-19)
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dUe dy de
The derivatives (HYW) , (a§~) and (a;—) are evaluated from the

knowledge of the static pressure coefficient Cp in the potential
regions, Outside the shear layers, the ratio of the normal velocity to
the longitudinal velocity is equal to the slope of the streamlines. The
streamlines are determined by the displacement thicknesses which grow
slowly except near separation. Therefore it is fair to assume that

V << U 1in the potential flow region. Hence the velocity U in the

potential region has been approximated by the equation

u= V1-¢ (A-20)

In the general case, the pressure field contains a transverse pressure
gradient. he experimental investigationsconducted by Foster, Irwin and
Williams (4) and reported by Irwin (2) which are used as test cases have
constant transverse pressure gradients. Hence it was decided to formulate

Cp by the following equation.

Cp = f(x)y + g(x) (A-21)

In order to be accurate in the representation of the experimental pressure
distribution the functions f(x) and g(x) were assumed to be third

order polynomials so that

3 2
D1x + D2x + D

—

——
>

~—
H

Xt D4 (A-22)

3 2
D5x + D6x + Dox + Dy (A-23)

o]
—

x
—

H

The coefficients Di were evaluated from the data given by Irwin (2). A
comparison of the formulated pressure distribution with the experimental

ones are given in Figures 6 and 12 for the two test cases. Hence U, » U,
n

- (¥
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and Ui have been approximatéd by the foliowing equations.

u, = J1 - E, (6, +Goly) - Ey (A-24)
Up = V1 - (6, -61L;) - £ . (A-25)
u; = VT - Ey6 - By (A-26)

where the coefficients E] and E3 are the values of the functions
f(x) and g(x) respectively at specific values of x.
Differentiating the above equations with respect to «x, the following

' dUe dUO de
equations for ax ° dx and ax are obtained.

du, R ds,, dL
ix - (jU;Q[E](a§—1‘+GO ax )t (8,7 6gLg)E, + Ey) (A-27)
du ds dL

0_ -1, 2~ N :
dx ( U()J«-E'](dx "C]W) + (62‘61[--] >E2 + E4] (A"28)
du

io oo o g_g ’ -
- GulE g T ok, T E] (A-29)

Substituting the equations (A-27), (A-28) and (A-29) for
du dUO dUi
a;g s I 0 and I respectively in equation (A-19) the equation

obtained by using the momentum integral equation for the pair of limits
¥y 7 8 and Yo = 85 F GOLO is

d62 dU] dLO dL
Mlg) M) + My (g) + My ()

du

M_T_).{.M

( dp
5dx

(4P ds
6 dx

) + M, = =N

7 dx 1 (A-30)

+ M

Rate of Mass Flow Across the Wake Centre:

The equation for the rate of change of the mass flow below the

minimum velocity in the wake is given by
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8

2
vfﬂU dyl = F (A-31)
0

Again, as before, the sub-layer region has been neglected and the above

oo
>

equation has been integrated from y = L, and equation (A-31) can be
3

written as
Giky)
_ a-:/ﬂ Udy + -~EJ{QU dy 1+ ——-EMIQUdy ] = (A-32)
-G L )
Again each of the terms are derived separately for clarity.
| V) y $ AUT yU §
— [ Udyl = = T (~"~0{1n( )yl + = J/° Ydy]
dx dx L d
L L : L
3 3
8
d 2y
t gy [ (2PU ) {sin®(55) 1dy]
L3
‘AU_E SUT
= L 1n(~v—) tBU_+ PU
ﬂL3
sin{—=) wl PU L
é 3 T 3y4,d8
——HPU_) - {cos (=) H—) ()
sy AL LU
+ [A-(S«l (—T) + B8+ Ps - L3 {In( \3) YY)
Tl
sin( 63) du_
- Bly - PLy H——7—3(P8)1(5;)
sin(—") dp
LU s - LU+ { - —}(UTG)J(R) (A-33)



(6,-G L])

ID.
<
[y
Q.
<
[—
H

dx

nNo

Udy 1

»GjL])

dx

—_,
O
~No

- B,L

By substituting the equations (A-33),

jeRfeN
pasd

Q.0
>

[(

<+

4
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6, = Gyly)

1/2
{;Q 1-E Y E dy]

(3—*{){] - E-I( 2-G1L]) - EB} + <3—E’]‘){] —E]é— E3} ]
U0 U1
£l Gyky) + B - (£ (B0 Ey)
2F ds
2.3 3 2
(21U~ U3+ Ul
3E
dL
1 ds
- 6yl - U (5907 (A-34)
6{2 65 e
; _
HX'E; UO dy] " X J{ pr{ k( 2) Ty
(5, - 6L, (s, H
d d
ax Wbqly) - g g = UpdLyBy
au, L, L,
L6,y (g) * 6qUg(g) - By (Ug = Up) ()
du du

_0 b
@)+ By ()

(A-34) and (A-35) for -the

corresponding terms in equation (A-32) the following equation is obtained.
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by - gy - U

2 1
) By gy

471

su : AL LU

+ [%§-1n (") + Bs + P§ - ~E§»1n (3T
ml,

sin (—=2) du

- PL, + { (PG)](HQIJ

- BL3 3

sin(

¥
, i&i)
{3 (u 6)1()

+ U 6 -
vUTé UTL3

AU sU
+ [—= 1n (—;1) *BU_+PU_ - U

L
Tl

sin(—2) iy PUL

+{ -

# (8L - Byl ) = P (5 (07 - 0)

) (Ep6+E,) - (EQOEEZ(ﬁz-G1L]) v gy (A-36)

1l 1y
Equation (A-28) is used to eliminate (azg) in equation (A-36) to give

—ts

+

|

™

ds, du, L du, dp ds (A-37)
. R s A I \ el = = -
Mg () * Mag () + Moo () + Magla) * Mgy (50 Mapl) = N
du; |
Relation For o
X
The velocity Ui at the edge of the boundary layer is given by
AUT GUT ‘
= e P { -
Us r In( ’ )+ BU_ + 2PU_ (A-38)
Differentiating (A-38) with respect to x , the following equation
is obtained.
du. u. du AU .
oAy T dp 1y 48 -
Eral R Tl L (A-39)
du

By eliminating (HQQJ between equations (A-29) and (A-39), the

following equation is obtained.
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du
T+ My, (35 4w

ds,
Maa () Myl + Maslg) = N (A-40)

7

Merged Case:

The equations obtained by using the momentum integral equation
between specific pairs of Timits are similar to those obtained for the
corresponding pairs of Timits in the unmerged case. Hence only the
equation for the rate of change of mgas flowacross the minimum velocity

in the wake and the equation for (HQE) , which differ from the unmerged

case, are given here in detail.

Rate of Change of Mass Flow Across the Wake Centre:

The equation for the rate of change of flow below the minimum velocity

in the wake 1is

8y %2
d & of yayr-v :
o LJ{ U dyl + i [.6 U dy] F , (A 4])
0 3
S. S.
3
d - L4
4 L}§ Uay1 = & [L3U dy?
$
; Sau. WU
= a [ . T 1n(T)dy3
3
84 84
+ gi'[ BU_ dyl + %—-( ZPU,{swnz(ﬁlﬁ}dYJ
X T 26
L3 L3
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i HLS
sint ) U
T
P REV{ TSt
k.
sin (‘6‘3“)
. 3 dpP
+ [UT63'“L3UT+‘v——““‘;““}(UT63)](a;)

. TrL3 PUTL
W»-}(PUT) - {cos(63 )3 5y

3)

ala
=
[
kmuﬁ
s
o
<
o
I
Q_!CJ_
!
—_
Kmmw
[awy
o
B
-

dU3 dU]
) By () (A-43)

by substituting equations (A-42) and (A-43) for the corresponding terms
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in equation (A-41) the equation for the rate of change of mass flow is

obtained.

dU ds dU
dp
320G+ Ryzlgg) * R o) * R

du, dL

1
solge) * R

3
31 (Gx )

sslae ) =T

R ) + R

34(dx

dU3
Relation For (H;—):

The velocity at y = 63 is given by

AUT 63UT
Ug = — Tn=5

)+ BUT + 2PUT (A-44)

Differentiating (A-44) with respect to x the following equation 1is
obtained

du dpy . ds du

T 3
36l * Rer (g

3) 4 Ryg(2) = 0 (A-45)

R selax 39 ax
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(ii) Integrals and Coefficients Appearing in Section (i)
The integrals Aj, Bs, Cj and Hy the coefficients Di, Ei, Mj, Ni, Ry
and T4 are given below.

G
0 2 2
A, = J’ (n")LExp (-2«n") ldn

&g

A, = f (n%)[Exp (-kn)Jdn

<

%)

0 (Exp (-2kn“)Jdn = 0.7527

Ay = j [Exp (-kn®)Tdn = 1.0633
0

1
Ay = ‘f (nz)[EXD (-2kn®) Jdn
0

(n%)[Exp (-kn®) Jdn

]
(@)
il
C;\\—_’

ot

A = (Exp (-2kn®)Jdn = 0.6805.

—
[

[xp (~kn%)1dn = 0.8101

-3
oo
1
o L

B, = (nz)[Exp (—2kn2)]dn



i

1

[ (D)Ex (i )1an

( [Exp (-2kn Yldr = 0.7526

_G]

[ TExp(-kn %) 1dn = 1.061

[ o) sin® () cos (B)Tey

L,

¢ 4

[ [sin ()] dy

28

L,

o

[y Tsin () cos (2Y)]dy
i 28 28
3

S

.2

[ sin® G d
L,

S yU 2

YU _ny

L[ [ (175) sin® (5197 dy

67
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12

13

14

15

16

17

fi
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S
[ wsin ED s G o (e)Tay
L3.
6§
[ Om @)yay
§/2
8
[ Dn (2o 7y
§/2
S
[ 5 sin® ) s 1y
6/2
6 p
[ et G
§/2 )
S

[og]

[ ) tsin (mfh cos (0] dy

23

$

[ Do () sin® () Tdy
) 26

8/2

S
[ W lsin ) cos GED
§/2
S/2
[ D Zr)1dy

=
Lo

(L) ] dy

<
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§/2
= .C' il [
Clig ] W lsintrgh) cos (5L ) T ay
L
3
§/2
_ .2
C]9 = fn [sin (ng)]dy
L3
(For the merged case, & is replaced by 63 in the integrals C] to 619)
. 6 . |
(6, + GoLy) oy oCD) d
e 7 Y
S,
(6, + Ly) O 3,
Hy = 2 _Bx“)dv
87
8
2 aC
_ Ly op
H = [ ()—2) dy
(62 - G]L])
: 1 @Cp
= =)
Hy () ( 5 dy
L3
s oC
- Iy p
8/2

(For the merged case & is replaced by 63 in the integrals H4 and H5)
D], DZ’ D3 and D4 - coefficients that appear in the function f(x)
that occurs in the expression for Cp

- coefficients that appear in the function g(x)
that occurs in the expression for Cp.

Dc, Dg, Do and Dy

N 3 2
E] = D]x + sz + D3x + D4
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2
3D1x + 2D2x + D3

3 2
D5x + D6x + D7x + D8

2
3D5x + 2D6X + D7

(u,) (U, - Uy [Exp (-kGS) - 1] - (v, - U 12 TExp (~2kG§) - 1]

]

) 2 _ - "l 2
- (U) (Uy - Uy [0 - Exp (k€)1 + Uy (U u) 0 Eép (-kG7)]
]
- [UeGOLO + 2(ue - u]) LoPy = gLy - z(ue - U]) LOA4](2U8)
F
) 1
[UeL]B4 - UGyl + U6yl - U]L]B4](§UB)
(UeLOA4) - 2(ue - U])LOA3 - (UeL]B4) + (U]L]B4)
, 2 ,
[4L(Ue - u]) A1] - [ZLUe(Ue - U])AZJ
6qE,
- [UeGOLO + z(ue - U])LOAg - UgLgh, - 2(Ue - U])LOA4] (é—;—)
[2kue<uo - U])BZ] - [2kU](UO - U])BZ]
6.5,
+ [ueL1B44- UG,Ly + UGl - U]L]BqJ (EUB—)
A AC, ; :
(U] - Ue) E[ (6 - L3) S B(S - L3) + 2PC,
(U - u,) fevs ¢
2PU_wC
1.,
2
(20g) (U, = Uy) [Exp(-k) - 17 - (U - U© [Exp(-2k) - 1]

- Uy) [Exp(-k) - 1]

@)U + U - U0 - B (-ked))e U (Ug - U - Exp(-k6?)

—[ZUeLO + 2(U, - U]) L A, - 2UeL A, - Z(Ue - U]) LA

07 08 08

- (U, + U3 (1 - Ay

E
_ ]
) 6, * UGl - U]L]B4](z$5)
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10

MH

12

13

14

15

M6

17

[k

[l

Il

H

' 0
= (2UeLOA8) - [2(Ue - U])LOA7] - (Ue +Uy) (~?) (A8)
L
- Ly, + U])(m%-)84] + (UyLB,)

; 2 , _ _
4K(Ue - U]) A5 - 4kUe (Ue | UT)AK + k(Ue + U]) (U U])A

- [2ueLO + 2(ue - U1)LOA7 - 2u, Lohg |
Lo Gk
[k(u -+ U]) (UO - U]) B,J - [ZKU](UO - U]) 82]
L L,
+ LU+ U])(-«é-)B4 - (U U])(~§)G] +Ug6yLy - UgL By (
(1-)(u -U) [A-(a - L)+ éEl»+ B(6 - L.,) + 2PC, ]
? 1 el ML 3 L -3 6

(U, - u )y, ¢

]

(U, - u) (gn?:)[PUT .

(20y) (U, - ) D1 - Exp(k6%)T - (U - U)® (1 - Exp(-2KG
- (U]) (UO - U]) [1 - Exp(—kG?)]

- [zuoe L, + 2(U. - U,)L

b o - Up)LyBs - 2UglyBy

071
£

1

1
- 2(Ug = UL By - UgGyLy U]L]B4](7Ua)
(ZUOL]B4) - Lz(uo - U])L]BBJ - (U]L]B4)
2
1 - - - ¢ -
[4“(UO u,) 31] [4kuo<u0 U])sz + [ZkU](UO U])Bz]
+ [2UOG]L] + 2(UO - U])L]B3 - 2UgL By
G1E1)
- 2(Uy = Up)LyBy - Uy6qL, + UL B,] (—§U5
A . ACy
(uO - u]) LE‘ (6 - L3) e B(S - L3) + 2Pc6]
[2(uy - uy) Ug c6]
- .
[2(uy - Ug) () (Pug )]

/1

G

2U

1

)]

1E

)
0

)
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22

23

24

25

26

27

= L8PUTC1 + 4BUSC

= [-8(=

52

+ LD cg]

[-U (ﬁoc ]+ [z<~53 + 4
L LZ

Mpu T (C

-, 2 !
+ [&UTP 612] 4 [SBUTP + 4(L

¢ L8P, o) 1+ [-au,pe ] + LU, ,)

+ L2 )PC]QJ

U6/2

+ LB, 6+ (Mpus -0 - L

L T i

—ir

3
(U DG - L) = B(G - Ly)]
2

| =

2
v

+ 4 C

2 ™14 15

- U Cp 2(U6/2)UT.C19]

2.2
62)P U

v [-4(0)(%

1Cyqd + L4 6?)BPU Cq54

Dypulc, 7+ [2( SIULPU, G ]

2" "TT16

+ L-2(Ug 2)(S%JPUT C1g]

270+ ey - )

+ [2(%3—)UT c,] + [8u, Pc,]

+ [8BU, P+ 4P U P - 2UPD(C)

+ [8(H DPU; €]

+ [28%0, (5 - Ly) + 2(%—)BUT (6 - Ly) - Ui(é)(é -
= (8PUZC4) + (4805 - 2U.U. ) (C ) [4(é)U267]
= [-8(-%) PPufc,] + [2(5) UPUr - 4(S%JBPU§] (¢

14)

A

- U18(6 - L

L

3)

3)

]

72

- UsB(6 - LS)]
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= [ByL,]
GEy
= [(—ziE?(G]L1 - B4L]) - 84(UO - UT)]
(A 60U A L3UT
M[(T)@ 1n(—\)~-—) + BS + PS§ - (L—>L3 ”](T)
L Ps
- BLy - PLT #lsin (—57)1(=7)
Tl U..S
- U, 6 - Uy L) +lsin( D10
SU.
- [, () TR s P - U
i 71‘L3 PUT TTLB I__3
+Isin(==) =) - Leos(— )1 (PUr)
U,
iy A
- [UT + L]
= [2u.]
AU E
_ T 1
[T(62-+GOLO) ) Téz - Hyl
B - UG §
+ (U LyBy = UByly + UgGly - U1L184]f( 6L )E, F E J(2U4
+ [UeGOLO + 2(Ue - U1)LOA3 - UeLOA4 - 2(Ue-b]) LOA4][(62 + GOLO)E2
1
+ E, M=)
4-"20,
= "[ ’[‘ ' .
0
+ [zueLO 2(U UW)LOA7 - 2U LOA8 - 2(Ue - U])LOA8
- (U_+Uq) 1AJE + Goly +z—_'}(—l——) + {(u +U)(E¥L)B
e 1 2 & 2Ue - e 1732 774
L
] ]
=Lty - Ts, —a L) - H,]
2 72 3
. ; o - - U4G,L
+ [zuOG.IL1 +2(Uy =~ Ug)LyBy - 20l B, 2(Uy - UpLyB, = U120
! 5 . o
1 U1L184ﬁ][( , Gyl JE, + Ey J( )
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2F U
(F) + (=) (U - U5) + (DI6E, + E,]
1 1
UO

+ (6L, - B,L) [(6, - 61L.)E, + E,] (Q%Bo

- U) [Exp(-k623- 17 - (U - U;)? [Exp(-2k65) - 1]
- U_(U_ - U)) TExp(-kGG)- 13-, (U, - UL - Exp(-k65) ]

* U](US - UT) 1 - Exp(—kG%)]

F
1
- LU Goly + 2(U, = UpILAy = U LA, - 2(U, - Up)LA, ] (”U;J
[UeLOA4 - 2(Ue - U1)LOA3 - UeL]B4 + U1L]B4]
[4<(ue u]) A]] [zwe(ue U])Azj
: GoEy
- LueGOLO + z(ue - u])LOA3 - U LA, - z(ue - U])LOA4] (”?U;J
[2kue(u3 - U1)BZ - 2kU1(U3 - U1)BZJ
A A,
(U] - Ue)[(IJ (65- L3) + B(83- Lg) + =+ 2Pc6]

[2(u, - U Uy Ce ]
[2(u, - u])(g%J PUL C ]

r i i .
L(U] Ue)(G1L1 B4L])J
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Ry = (200U, - Uy) [Exp(-k) -17 - (U - u])2 [Exp(-2k) - 1]

9 e
() (U + U (U, - Ug) TExp(-k) - 1]
- (%& (U, + u1)<u3 - U - Exp(-ke$>]+ Uy (Ug - u) [ - Exp(_keﬁﬂ |
- [2UeL0 + 2(Ue - U1)LOA7 - 2U LoAg - 2(Ue - U])LOA8
Lo 2
- (U + U501 - A8)J(§—;)

- 1
Ryg = (U LoRg) = [2(U, = U LA L - D50 U, + U (LA + LBy )]+ (UgLyBy)

R.. = [4k(Ue - U )2A5] - [4kUe(Ue - UW)A6] + [k(Ue + ui)(ue - U‘)A6]

11 1
—[2UeLO +2(u, - UW)LOA7 - LAy - 2(Uy - U1)LOA8
Ly, 6oE+
- (ue + UT)(—§J(1 - A8)](~§U;)
Ryp = [k(ue + U7)(U3 - Uy)B, - 2kU, (Ug - U])Bg]
Ryg = (%Q(Uj ; Ue)[(€9(63« Ly) + B(85- Ly) + (é—)cql " 2PC6]
Ryg = LUy - U) Ur ]
Ry = [(Ue - U1)(¥%)(PUT 65)]
83
1
Ryg = (U464L,) - (UL,B,) - [(?)(Ue + UG Ly - L1B4)]

Ryz = (2U3)(Ug - U) 1 - EXP(~kG§)] - (Ug - u1)2 [ - Exp(-Zkeﬁ)]

—(U])(U3 - U]) L1 - Exp(—kG?)]

R, = (2U,L.B,) - [2(U3 . U])L]BSJ - (U LTB4)

18 = (2U3l48q 1
Ryg = [ak(Uy - U8y T - LakU Uy - U)B,D + L2k, (U, - U,)B;]
Rog = (Ug = VL8, - Ly) + (leg + B(8, - L) + 2pc ]

Ry = [2(Uy - U)U; C ]
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= [2U 6L, + 2(Uy - UJILyBg - UL B,

1

- 1

- 2(U3 - U])L1B4 + U]LlB4 U]G]L]J
2 : A2 ;
T (eq) + L2t )]

| x=

2 Ay -
+ [8U¢ P C4] + [8BU P + 4(E) UgP - ab3P](C6)

+ I8 Pe,]

x>

2 A
+ [2BUr (85 - L) ?

+ (4BUZC

+ 2(M)BUr (8, - L) - U

5 - Lg) = U8y = Lg) - U3B(S,

Ay, 2
(8pUZC,) o) - (200r ) + [a(PUF ¢
T V52,2 T 2
[-8(5)PUg €] - [4(=5)Bpup C;]

83 63

+[2(5)U,PU, €D - La(®y(Zypu? ¢,

3

W
w ro

v [ou, Pec 0+ [eppuy + 4(Pu ] (C

+ [8(DPUI(C) + [- (DU, ¢

+

-+

82U, &, + (18U 6, - UL (R)(6, — Ly) - U,B(8, - L))

@
T
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i
e
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e
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™
w
e
I

(89U% Cy,) + (48U Cyp) + [A(DIUG C
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15]

- (2uuL C
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3
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S
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L 2 2
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T
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+[sfn<—55-3~>]<—7—§->
L L
- (cos(js“i)] (5—3-) (PUr)

w

+ [UG.L. + 2(U - U
e e

oko JLAA U LA

177073~ Te 074

]
A - F



il

1l

It

2

LT s - 1. - H)]
(Sp 7 Lp) 8 2
+ [2UeLO + 2(Ue - U])LOA7 -2 Lhg - 2(ue -
L
- (U D (- AT LS, + GyLo)E
1. - 7 = H.]
5, <62 - 6,L,) 3
[169_ Ty - H4]
s, - ‘6/2 g
(F)

U

+ B J)
e

1

)L

OA8

78



APPENDIX - B

Derivation of the Integral Parameters:

(1) Integral Parameters of the Separate Shear Layers

Boundary Layer

79

The displacement thickness and the momentum thickness in this region

are given by the following equations

§
* U
68 —fO(T ”’U?)d‘y
§
U
o, = (—)(1-)d
. j;w( 54

The velocity U s given by

AU yu
- T g3 L2 my
U (—E—) In( . ) + BU_ + ZPUT sin (§§>

Using the trignometric relation,

—I..

|

sinz(%é—) = ()11 - cos ()]

(B

equation (B-1) can be evaluated as

. AUy BU PU_ P i
S 0 - ) (e e

i i j ;
AU yU RU
: : 7 § 8
- y1S - (OyIn(=5) - vlg - (GO
1 i
PU © Py
AP S T NPT A AT,
Uj LyJO +U1 L(ﬂ) S1n(6 )JO

yu

(B-5)

Since [y]n(—;l)] tends to zero as y tends to zero, equation (B-5)

Teads to
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=

csg = (s )(U—fn +P] (B-6)

A sTightly different approach has been adopted in evaluating the

momentum thickness. The momentum thickness eB be written as

=j;t<1-3f> I RIT B SR

i i i
§
Jo-u)
=) (1-) dy + 26, - 6
0 Ui B B
1 ’ 5 .
-5 f (1-09" an v 205 - o (8-7)
0 i

The relation for the velocity at the outer edge of the boundary layer is
given by

; A sU

() = ¢ In(=57) + B+ 2P (B-8)

Using equations (B-3)‘and (B-8), the following relation is

obtained
Uy, - U :
1 . _A . 2y
( 0 ) = = ¢ In(y/s) + 2Pl - sin"(5%)]
= [- %~]nn + 2P cosz(%ﬂjj (B-9)
So,
U AUT 2 PUI 2,mn
(1 *[ﬁﬁ = [~([U;J Tnn + (ﬂ;—Jcos ()7 (B-10)

Thus the first term in equation (B-7) can be evaluated as
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AU 2 PU 2 U 2
sy (1 —9—0 dn = &f [ () 1n2n-F4( ) cosq(ﬂﬂ) 4AP( )1nn cosz(~3)]dn
U. LU U. ? L U 2
0 1 0 1 i i
AU 2o 1
= G(W:l‘) InInn - 2nlnp + Zn]'o
PU 2 | )
+ } [1+cos™nn+2cosmnldn

-4 %P— fﬂmﬁ - sin? dn

i
o)
—

|
S
—
—
o
G,
+
P
N
1
(e
o~
—
S
+
3]
N
Lo

U 2
- IR 2 AP A _
GB—GB—G(U].)U 5P7+3.18~ +2L2] (B-11)
The shape parameter Hy is given by
2 2 .
ULT1.5P%+ (3.18)(AP/L) + 2(A"/,2)]
1 . T L 1
=1 - (B-12)
B Uiﬁf+P)
Inner Wake

(he displacement thickness and momentum thickness in this region are

given by the following equations.
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2

5y f (1—%a)dy (B-13)
(GZ—G]L])
¥

o =) (G0 - e (8-14)
(62--G1L]) ’

‘The velocity U is given by,

U, -u y=-6,2
%—-= 1 (1) Expl-k(—2) 1 (B-15)

0 Yo

Hence é;w can be evaluated as

%2 Uy U y-o,2
* (g Exel-k(—") 1dy
6T = U ]
URURRILE 1
2™ 6h
Y -y
4 [ D Btk
6 o
!
= (1 "[i%) LB, (B-16)

where B4 is the integral given in section (11),Appendix - A.

The momentum thickness GIW can be evaluated as ,

(52—6181) Y

A2 JUSSTAY: Y-8, 2
o (=) ExpL-2k(: = =) 1dy
(6?—6 Ly) 0
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_ . 0 7] 0
o = L) by v, ) 1483
Y Uy
= (1--)LB, - (1 -7-)LyB,]
U0 174 UO 173
where 83 is the integral given in section (i1) of Appendix A. The

shape parameter HIw is given by

i 1 -
Hyy = . (B-17)

1 - <1-—U%>(g§>]

In the merged case § 1is replaced by 63 and Ui R UO by U3 in the

above equations.

OQuter Wake

The displacement thickness and momentum thickness in this region are

given by
. (87 6glg) . |
S oM =J{“ (1 -[r»dy (B-18)
S e
2
(6, +6gly)
0o =] () (1 -E)dy (B-19)
OW U U
5, e e
The velocity U s given by
u -u y-6, 2
U e 1 2
B= 1 - (B=") ExpL-k (=) ] (B-20)
Ue Ue LO
Hence SSNA can be evaluated as
(6, +Galn)
2 070
* - Ue - U.I ‘y - 62 2
Sou ji (") Exp-k(—=) 1y

2 e



U -u
- e 1 2
S = LOJfD (—g—) Exp(-kn")dn

it
—
—
1
Cl
~
—
=

| (8-21)
o 04
vhere A4 is the integral given in section (i1) of Appendix-A. The

momentum thickness 6oy can be evaluated as

(85 *+Gglg)
U
°c32 e e
(8, +G,L
.2 00 -u, y-6,2
62 ’ e 0
ot L& 5
- 070 o - U y—-622
. ( i —Expl- 2k( T ) Idy
62 e 0
T U .U, 2
el _e- 1
= U, lLohe = o) Lo
Y Y
= (1= LAy - (1= o)Lghy] (B-22)
e e

where A3 is the integral given in section (ii) of Appendix-A.

The
shape parameter HOw is given by
Hoo o= 1 (B-23)
oW U] A
(1 - (1 -U*?( )]

e 4
Considering the whole layer as one single shear Tlayer, the total

displacement thickness is defined by

84
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$
3 62 (62+GOLO)
iﬁr ) dy *—jr 7oy f, (U—)dy
0 e 63 e 2 e

s,
j’; (=g = 0 -3.2—)53 + <§§>6;
The second term is given by
T8y S,
j;gu e J(,: _(231%%)@
27 M1
= (0 "%i)G1L1 i (gg)ﬁiw

The third term is the same as equation (B-21).

Hence the total displacement thickness is given by

. U, Uy
§o = (1-52)6, + (57)8
T Ue 3 Ue B
+ U3G +U3 *+1U]LA
(1 ‘Iﬁ;) 14 (IE;)SIW ( 'Iﬂ;) otg

Similarly the total momentum thickness is zefined by

(8, +Gglp)

(B-24)

(B-25)

(B-26)

(B-27)

85
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f o (6-28)
J

3
U U U, U U, 2
[ Uy o (3 3 3y 23y F (3
() (T -m)dy = () (1 -77)8, - (T-52) (57)6, + () 6 (B-29)
7 Uy U U, U,%3 0.0 % "\ e
The second term is given by
%
U, U U, U
U U - _3y(3 A R L YA ANy
[ () (- gy = (=g )y 6Ly - (- (g)eny
(8, - 6yLy)
Uy 2
) oy (8-30)

The third term is the same as equation (B-22). Hence the total

momentum thickness is given by,

U U U, U U, 2
3 3y 3\ * 3
op = ()-8 - (- (e + (D) o
T Ue Ue 3 Ue o B Ue B
U U, 2
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APPENDIX - D

CALCULATIONS FOR THE SLOTTED FLAP MEASUREMENTS REPORTED BY IRWIN
FLAP DEFLECTION = 30 DEG ; SLOT HEIGHT = 0.020C ANGLE OF ATTACK = 8 DG
VARIABLE DIRECTORY
NU - DIMENSIONAL KINEMATIC VISCOSITY
DLOG,DSIN,DCOS - BUILT-IN FUNCTIONS
LMT1,LMT2 - LOWER AND UPPER LIMIT OF INTEGRALS
DCPDX,CP - FUNCTION SUBPROGRAMS USED TO EVALUATE PRESSURE INTEGRALS
AND POTENTIAL FLOW VELOCITIES.
B11,B22 - FUNCTION SUBPROGRAMS USED TO EVALUATE NUMERICAL INTEGRALS
c7, 68 C15 AND C16
lT1 LT2 - VARIABLES CORRESPONDING TO LMT1,LMT2 USED IN THE SUBPROGRA
-MS
DYi - LENGTH OF THE INTERVAL USED IN THE EVALUATION OF THE NUMERICAL
INTEGRALS BY SIMPSON'S METHOD
DY - STEP DISTANCE USED IN THE EVALUATION OF EACH INTERVAL
D,F,G - ABSCISSAE USED IN THE EVALUATION OF EACH INTERVAL
N - NUMBER OF INTERVALS
MTRX,COL ,ROW, IA MTRXIN,K IDGT,WKAREA,IER,SQ,R0O, IAT,SQIN - PARAMETERS O
-F THE BUILT-IN SUBROUTINE LEQTZF USED IN SOLVING THE SYSTEM OF EQUATI
-ONS
DOUBLE PRECISION X,Y,G0,G1,LO,L1,L2,US2,U1,UE,U0,U3,UI,P,S,52,53,C
«F1F,UT,THETB, S18B, HB THETIW S1IW HIW THETDW SIOW HOW F
DOUBLE PRECISION A, B C,E,K,L,D1,D2, D3 D4, DS DG, D7 D8 E1,E2,E3,E4,P
*1,UIF
DOUBLE PRECISION A1,A2,A3,A4,A5,A6,A7,A8,B1,B2,B3,B84,C1,C2,C3,C4,C
*5,£6,C7,C8,€9,C10, C11 C12 C13 C14 C15 C16 C17 C18 C19 H1 H? H3 H4
*H5
DOUBLE PRECISION M1,M2,M3,M4, M5, M6, M7, M8, M3 M10, M11,M12,M13,M14,M1
*5,M16,M17 ,M18,M19, M2O M21 M22 M23 M24 M25 M26 M27 M28 M29 M3O M31
*M32 M33 M34 N35 N1 N2 ,N3, N4 Nb N8, N7, R1 R2 R3,R4, R5 R6 R7.R8, R9 R
*0, R11 R12 R13 Rid R1a R16 R17 R18 R19 R20 R21 R22 R23 R24 R25, R26
*R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 T
*, 72,13, T4 T5 16
DOUBLE PRECISION LT1,LT2,LMT1,LMT2,B11,B22,DCPDX,CP
-DOUBLE PRECISION DLOG DSIN DCOS
DOUBLE PRECISION NU, NUND RTW
DOUBLE PRECISION TOUW TOUS TOU2,TOUS2, TOUGL1, TOULO, TOUGLO, TOUS3
gOUBLE PRECISION DS2DX DUTDX DLODX DL1DX DUTDX DPDX DSDX, DSBDX DU3
*DX, DX
REAL MTRX(7,7) ,MTRXIN(7,1) WKAREA({200),5Q(8,8},5QIN(&, 1)
INTEGER COL, ROW IA,IDGT, IER RO, IAt

COL = 1

ROW = 7

X = 0.114

C = 0.915

UIF = 61.0
F=0.0

IDGT = 4

IA = 7

RO = 8

IA1 = 8

E = 2.718289
DX = 0.001

NU = 0,0000155
NUND = (NU/(C*UIF))
RTW = 40.0

A = 5.618

B = 4.8

L = 2.3026

K = 0.6931472
D1 = -51.7

D2 = 66.1

D3 = -44. 1

D4 = 08.80
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D5 = -06.2

D6 = -00.77

D7 = 06.61

D8 = -01.98
CFIF = 0.00644
GO = 2.77

Gt = 2.5

PI = 3.141583
LO = 0.0088272
L1 = 0.0075283
$2 = 0.025

S1B = 0.0005444
THETB = 0.0003478
HB = 1.5652174

UT = 0.0567644

P = 3.1873793

Ut = 1.0447774
UE = 1.4220698
Ul = 1.4887411
Ul = 1.4851318
U3z = Ul

THETIW = 0.0018478
HIW = 1,2608636
THETOW = 0.0020652
HOW = 1.2391304

S1IW = 0.0023298

S10W = 0.0025591

S = 0.00265

E1 = ((D1*X*X*X)+(D2*X*X)+(D3*X)+ 4)

E3 = ((DB*X*X+X)+{DB*X*X)+(DT7*X)+D8)

E2 = ((3.0*%D1*XxX)+(2.0%D2%X)+D3)

E4 = ({3,0%D5*X*X}+(2.0xD6xX)+D7)

L2 = S2-(G1*L1)-5S

LMT1 = 0.0

LMT2 = GO

At = ({Ex*( (-2, 0)*#K*LMT1#LMT 1) )*LMT1/(4.0%K)) - ((E#x{(-2.0)*K*LMT
*2%LMT2) ) *LMT2/(4.0%K) )} + (0.7527/(4.0%K))

A2 = ((Ex*({~K)=LMT1#LMT1))=LMT1/{2.0%K)) - ((Ex*{(-K)*LMT2=LMT2))
**x | MT2/(2.0%K)) + (1.0633/(2.0%K))

A3 = 0.7527

A4 = 11,0633

LMT2 = 1.0

AS = ({E**( (-2 0)*«K*LMT1*LMT1))*LMT1/(4.0%K)) ~ ((Exx{(-2.0)=K*LMT
*2%LMT2) ) *LMT2/(4.0%K)) + (0.6805/(4.0%K))

AB = ((E**((—K)*LMT1*LMT1))*LMT1/(2.0*K)) = ((E#*x((~-K)*LMT2*LMT2))
*x[MT2/(2.0%K)} + (0.8101/(2.0%K))

A7 = 0.6805

A8 = 0.8101

LMT1 = -G

LMT2 = 0.0

Bl = ({Ex*x((-2.0)«K*LMT1=LMT1))*LMT1/(4.0%K)) - ((E*x((-2.0)%K*LMT
#2% | MT2) )= LMT2/(4.0%K)) + (0.7526/(4.0%K))

B2 = ((Ew*((~K)*LMT1#LMT1))%LMT1/(2.0%K)) - ((Ex*{(~-K)*LMT2%LMT2))
=6 MT2/(2.0%K)) + (1.0610/(2.0%K))

B3 = 0.7526

B4 = 1.0610

TOUS = TOUGL1 = TOUGLO = TOUS2 = TOUS3 = 0.0

PRINT 200

PRINT 210

PRINT 220,X,S,P,S1B, THETB,HB,S1IW, THETIW,HIW, S10W, THETOW, HOW, UE-U1
PRINT 240

PRINT 250,L1,L0,U1,UE,U0,U1,U3,L2,52,UT,U3-U1,CFIF

PRINT 230

WHILE { X .LE. 0.4 LAND. CFIF .GT. 0.0 ) DO



LMT1 = S2

LMT2 = (S2+(GO*L0))

H1 = (0.5*{DCPDX(X,LMT1,LMT2,D1,D02,D3,D5,D06,D7)))

LMT2 = (S2+L0)

H2 = (0.5=(DCPDX(X,LMT1,LMT2,D1,D02,D3,D05,06,D7)))

LMT1 = (S2-(G1=L1))

LMT2 = S2

H3 = (0.5«(DCPDX(X,LMT1,LMT2,D1,D2,D3,05,06,D7)))

LMT1 = (2.0%NUND/UT)

LMT2 = S

H4 = (0.5+{DCPDX(X,LMT1,L.MT2,D1,D2,D3,D5,D06,D7)))

LMT1 = /2 0

H5 = (0.5=(DCPDX(X,LMT1,LMT2,D1,D2,D3,D5,D06,D7)1})

CLMTT = (2.0%NUND/UT)

LMT2 = S

Ct = ((DLOG(LMT2*UT/NUND))*LMT2} - ((DLOG(LMT1*UT/NUND))*LMT1)

Ci = C1 - (LMT2-LMT1)

€2 = (((DLOG(LMT2*UT/NUND))*#*2)%LMT2) - (((DLOG(LMT1%UT/NUND)

# )2 ) MT1) - (2.0#LMT2+(DLOG(LMT2*UT/NUND} )} + (2.0*LMT1*(DLOG
*LMT 1xUT/NUND) ) ) + (2.0*(LMT2-LMT1))

C3 = (((DSIN(PI*LMT2/(2.0%S)) ) **4)*Sx[MT2/(2.0%P1)) - ({(DSIN
#{PI*LMT1/(2.0%S) ] )*=4)=S*LMT1/(2,0%PI)) - (S*LMT2/(8.0*P1})) + (S
## MT1/(8.0%P1)) - (S*LMT2/(16.0*PI1)) + (S=LMT1/(16.0%=PI1)) - ((DSIN
(2, 0%PI*LMT2/S))*S*S/(32.0%PI*P1)) + ((DSIN(2. O*PI*LMT1/S))*5%5/(3
#*2,0%PI*PL)) + ((DSIN(PI®LMT2/S))*S*S/(4.0* I*PI)) - ((DSIN(PI*LMT1
*/S) ) =SS/ (4, 0xP1=P1))

C4 = ((LMT2-LMT1)/4.0) + ((LMT2-LMT1)/8.0) + ((DSIN(2.0%PI*LMT2
*/5))%S/(16.0%P1)] - ((DSIN{2,0%PI*LMT1/S)}*S/(16.0%PI))

C4 = CA4 - ((DSIN(PI*LMT2/S))*S/(2.0%P1)) + ((DSIN(PI*LMT1/S))*S
#/{2,0%P1))

C5 = ((DCOS(PI=LMT1/S))*LMT1%S/(2.0+P1)) ~ ((DCOS(PI*LMT2/S))=*L
*MT2+S/{2.0%P1)) + ((DSIN(PI*LMT2/S))*S*S/(2.0%PI=P1})) -~ ((DSIN({PI=
®LMT1/5) )*S*5/(2.0%P1=P1))

C6 = ((LMT2-LMT1)/2.0) - ((DSIN(PI=LMT2/S))=*S/{(2.0%P1)) + ({DSI
*N(PI*LMT1/5))=S/(2.0=P1))

C7 = B11(UT,NUND,LMT1,LMT2,S)

C8 = B22(UT,NUND,LMT1,LMT2,5)

LMT1 = 0.5%S

C9 = ((DLOG{LMT2#UT/NUND))*LMT2} - ((DLOG(LMT1«UT/NUND)}=LMT1)

€9 = €8 - (LMT2-LWMT1)

C10 = (((DLOG(LMT2%UT/NUND) )**2 )= MT2} - ({{DLOG(LMT1*UT/NUND)
*)akQ )L MT1) - (2,0%LMT2%(DLOG(LMT2=UT/NUND))) + {2.0%LMT1+{DLOG(
*LMTI*UT/NUND)) ) + (2.0%(LMT2-LMT1))

Ct1 = (((DSIN(PI*LMT2/(2.0%S)})*=4)*S=xMT2/{2.0*P1}) - (({DSIN
*(PI*LMT1/(2.0%S)} ) =4 )#S%LMT1/(2.0%PI)) - (S«xLMT2/(8.0%P1)} + (5§
#+LMT1/(8.0%P1)) {S*LMT2/(16.0%P1} ) + (S*LMT1/(16 0xP1)) - ((DSIN

*(2.0%PI*LMT2/5) )#5*5/(32.0%PI*P1)) + ((DSIN(2.0%PI*LMT1/S))*S%S/(3
#2.0%PI*P1)) + ((DSIN(PI*LMT2/S))*S*S/(4,0%PI«PI)) - ((DSIN(PI*LMT1
*/5))*S*S/ (4, 0+PI=P1))

C12 = ((LMT2-LMT1)/4.0) + ((LMT2-LMT1)/8.0) + ((DSIN(2.0%PI*LMT
#2/$))*S5/(16.0%«P1)) - ({DSIN(2.0%PI*LMT1/S))*S/ (16, O*P ))

Ci2 = Ci2 ((DSIN(PI*LMT2/S))*S/(2.0%P1)) + ((DSIN(PI«LMT1/S))
#x5/(2.0%P1))

C13 = ((DCOS(PI*LMT1/5))*=LMT1=S/{2.0%P1)} - ((DCOS(PI*LMT2/S))=
#*LMT2+S/(2.0%P1)) + ((DSIN(PI*LMT2/S})=S%S/(2.0%P1#P1)) - {(DSIN(PI
#x MT1/S) ) #S*5/(2.0%PI*PI))

C14 = ((LMT2-LMT1)/2.0) - ((DSIN(PI*LMT2/S5))%S/{2.0%P1}) + ((DS
*IN{PI*LMT1/S))=S/(2.0%PI))

C15 = B11{(UT ,NUND,LMT1,LMT2,5)

C16 = B22(UT,NUND,LMT1,LMT2,S)

LMT1 = (2.0%NUND/UT)

LMT2 = 0.5%S

C17 = ((DLOG(LMT2*UT/NUND))=*LMT2)} - ({DLOG(LMT1+UT/NUND))=*LMT1)

C17 = C17 - (LMT2-LMT1)
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C18 = ((DCOS{PI*LMT1/S))*LMT1%S/(2.0%P1}) - ((DCOS(PI*LMT2/S)])*
A MT2%S5/(2.0%P1)) + ((DSIN(PI*LMT2/S))=5*S/(2.0%P1*PI)) - ((DSIN(PI
#xx|MT1/S) ) #S*S/ (2. 0%PI*P]))
C18 = ((LMT2-LMT1)/2.0) - ((DSIN(PI%=LMT2/S))*5/(2.0%P1)) + ({DS
#IN(PI*LMT1/S))=S/{2.0%PI})
US2 = {((DLOG(S*UT/(2.0«NUND})) }*A=UT/L) + (B*UT) + (P=*UT)
TOUW = UT=UT
TOU2 = (0. 01547)*S*UT*((A/I) + P)
TOU2 = TOU2=((2.0%A%UT/(L*S))+(PI*PxUT/S))
TOULO = (2.0%K*(UE-UT)* (UE-UT)* (E%x(-K))/RTW)
M21 = (2.0%A*A=UT=C1/{L=L)) + (4.0%AxB=UT*C1/L)
M21 = M21 - (UI=A*Ci/L) + (2.0%A=A=UT*C2/(L*L))
M21 = M21 + (B.O*P=PxUT=C4) + (8.0*B*UT*P*CB)
M21 = M21 + (4.0%A=UT*P*C6/L) - (2.0%UI=P*CB)
M21 = M21 + (8,0%A*P*UT*C7/L) + (2,0%B*B*UT*(S-LMT1))
M21 = M21 + (2.0%A*B*xUT*(S-LMT1)/L) - (UI*A*{S-LMT1)/L)
M21 = M2t - (UIxB=*(S-LMT1})
M22 = (8.,0%P=UT*UT%C4) + (4.0*B*UT*UT*C6) - (2.0%xUI*UT*CB)
M22 = M22 + (4,0%A*UT*UT*C7/L)
M23 = (2,0%PIxUI*pP*UT*C5/(S*S}) - (4.0%PI*B*P*UT*UT*C5/(S*S))
M23 = M23 - (8.0*PI%PxPxUT*UT*C3/(S*S))
M23 = M23 - (4.0%A%PI=P*UT*UT#C8/(L*5*S))
M24 = (2,0%A*A*UT*CO/(LxL)) + (4,0%A*B*UT*CG/L) - (UI*A*C1/L)
M24 = M24 + {2.0%AxA*UTxC10/(Lx*L)) + {8.0%P*P*xUT*C12)
M24 = M24 + {8.0%B*UT=P*C14) + (4, 0=AxUT*P*C14/L)
M24 = M24 + (8.0*AxP*UT=C15/L) - (2.0%UI*P*CB)} + (US2*A*C17/L)
M24 = M24 + (2.0%US2%P*C18) + (B*B*UT*S) + (A*B*UT*S/L)
M24 = M24 - (UI*A*(S LMT1)/L) - (UI*B={S-LMT1))
M24 = M24 + ((A%((S/2.0)-LMT1)/L)+(B*((S/2.0)-LMT1))}*US2
M25 = (8.0%PxUT#UT*C12) + (4,0*B*UT*UT*C14)
M25 = M25 + (4.0*A=UT*UT*C15/L) - (2.0%UI*UT*CH)
M25 = M25 + (2.0%USR2*UT=C19)
M26 = (2.0%PI#UT*P*UI%C5/(S*S)) - (2.0%US2#P1=P*UT*C18/(5*S))
M26 = M26 - {8.0xPI*PxPxUTxUT*C11/(S*S))
M26 = M26 - (4.0%P1*=B*PxUT*#UT=C13/(5*S))
MOB = M26 - (4.0%A*PI*PxUT*UT*C16/(L*S*S))
IF { L2 .G6T. 0.0 ) THEN DO
M1 = (UE*(UE-Ut)*({(E®x((-K)*GO*G0O))-1.0))
M1 = M1 + ((UT-UE)*{UE-U1)*{(E**((-2.0)*K*GO*GO))~1.0))
M1 = M1 - (UE={UO-U1)*(1.0-(Exx((-K)*G1%G1))))
M1 = M1 + (Ut=(UD-UT)#(1.0-(E*=*{(-K}*G1%G1))))
M1 = M1 - ((UE=GO#LO)+(2.0%(UE-U1)*L0*A3)-{UE*xLO*A4)-(2.0%(U
*E-U1)=L0*A4) )= (E1/(2.0%UE))
M1 = M1 - ((UE*L1*B4)-(UE*G1=L1)+(U1xG1*L1)-(Ut*L1%B4))*(E1/
*(2.0%U0))
M2 = (UE=LO=*A4)} - (2.0%(UE-U1)=*LO*A3)
M2 = M2 - (UE=L1=xB4) + (U1=L1*B4)
M3 = (4,0%KxA1=(UE-U1)*(UE-U1)} - (2,0=K=A2*UE=(UE-U1})
M3 = M3 - ({UE*GO*L0O)+(2,0%(UE-U1}%L0*A3)~ (UE*LO*A4)-{2.0%(
*JE - U1)*LD*AA))*(E1*GO/(2.0*UE)) ‘
M4 = (2.0%K*UE=(UD-U1)#B2) - (2.0=K*U1*{UD-U1)=*B2)
M4 = M4 + ((UE*L1#B4) - (UE=GIxL 1)+ (U1*G1*L1)-(U1*L1%B4) )*(G1x*
*£1/(2.0+UD))
M5 = ((A#(S-LMT1)/L)+{A%C1/L)+(B*(S-LMT1)}+(2.0%P%CB))
M5 = (ME*(U1-UE))
MB = ((U1-UE)=*2.0%UT*C6)
M7 = ((UE~U1)*2.0*P*xUT*PI*C5/(5*S})
M8 = (2.0%UEx(UE-U1)*((Exx(-K))-1.0))
M8 = M8 + ({U1-UE)*(UE-U1)*( (E**((-2.0)%K))-1.0))
M8 = M8 - {((UE+U1)/2.0)*{UE-U1)*((E*x*(-K)})-1.0))
M8 = M8 - {((UE+U1)/2. 0)*(u0 Ut)*(1.0- (Es*((-K)*G1+G1))))
M8 = M8 + (U1={UD-U1)=(1. Exx( (-K)*G1%G1))))
M8 = MB - ((2. O*UE*LD)+(2 0*(UE-U1)*LD*A7)-(2 O*UE*LD*A8) - (2
%, 0% (UE-U1)*L0*AB) - ( (UE+U1)*(L0/2.0)*(1.0-A8) ) )*(E1/(2.0%UE))



M8 = M8 - (((UE+U1)}={L1/2.0)%B4)-({UE+UT)*=(L1/2.0)*G1}+{U1*G
w 1% 1)-(U1=L1%B4) )= {E1/(2.0*UD))

MO = (2.0%*UE*LO*A8) - (2.0%(UE-U1)*L0*A7)

MO = M9 - (((UE+U1)/2.0)*L0*A8) - (((UE+U1)/2.0)*L1%B4)

M3 = MS + (U1xL1%B4)

MI0 = (4.0*%K*(UE-Ut)*(UE-U1)*A5) - (4.0*K=UE={UE~-U1}*AB)

M10 = M10 + {(2.0=K*{(UE+U1)/2.0)*{UE-U1)*AB)

M10 = M10 - ((2.0%=UE*LD)+(2.0%(UE-U1)*L0*A7)-(2, 0*UE*L0O*A8)~
#(2. 0% (UE-U1)=L0*A8) - ((UE+U1)=*(L0O/2. 0)*(1 0-A8) ) )* (GO*E1/(2.0%UE))

M11 = (2.0#K=({(UE+U1)/2.0)=(U0-U1}*B2) - (2.0%K=U1*={UQ-U1}=*B
*2) + (((UE+U1)*{L1/2.0)*B4) - ( (UE+U1)= (L1/2.0)*G1)+(U1*G1*L1)~(U1*L
*1%B4) )= (G1=xE1/(2,0%U0D))

Mi2 = ({A*{S-LMT1)/L)+{A=C1/L)}+(Bx{S-LMT1)}+(2.0=P=*C6))

M12 = (M12x((U1-UE)/2.0})

M13 = ((U1-UE)*UT*CB)

M14 = ((UE-U1)*P*UT=PI*C5/{5*S))

MI5 = (2,0%UD*{UD-Ut)*{1,0-(Ex*{{-K)*G1xG1))))

M15 = M15 + {(U1-U0)*(UD-U1)*(1.0-{E**((-2.0)*K*G1xG1))))

M15 = M15 - (UT*(UD-U1)*(1,0- (Ex*{(-K)*G1*G1))))

M15 = M15 - ((2.0%U0*G1*L1})+{2.0%(UD-U1)*L1*B3)-(2.0*U0*L 1%B
x4)-{2,0%(UD-U1)=L1%B4) - (U1*G1=L 1)+ (U1=L1%B4) )*(E1/(2.0%UD})

M16 = (2.0%UD*L1%B4) - (2.0*%(UD-U1)*L1%xB3} - (U1xL1%B4)

Mi7 = (4,0%K*(UO-U1)*(UD-U1)*B1) - (4.0%K#UD={UD-U1)*B2)

M17 = M17 + (2.0%K*U1x{UD-U1)}=*B2)

M17 = M17 + ((2.0%UD*G1*L1)+(2.0%(UD-U1)}*L1*B3)-(2.0*U0*L 1%B
%4)-(2,0%(UD-U1)*L1*B4) - (U1*G1*L1)+(Uf*L1%B4) }*(G1=E1/(2.0%U0})

MI8 = ({A*(S-LMT1)/L)+(A*C1/L)+(B*(S-LMT1))+(2.0%P=C6))

M18 = (M18%(UD-U1))

Mi9 = ({UD-U1)%2,0%UT=C8)

M20 = ((U1-UD)*2.,0%PxUT*PI*C5/(5*S))

M27 = {UO-(((G1*L1)-(B4=L1))=(E1/(2.0%=U0)))})

M28 = (B4=L1)

M29 = ({{(G1*L1)-(B4*L1))*(G1*E1/(2.0%UD)))-(B4=(UD-U1)))

M30 = ({((DLOG(S®=UT/NUND))*A=xS/L )+ {B*S)+{P*S)~-{LMT1+A*(DLOG(L
*MT1«<UT/NUND) ) /L) - {B*LMT1) - {P*LMT1)+( (P*S/PI)*(DSIN(PI*LMT1/S)}))

M31 = (UT*S)-(LMTi*=UT)}+({UT*S/PI)*(DSIN(PI*LMT1/S)})

M32 = (((DLOG(S*UT/NUND))*A*UT/L)+(B*UT )+ (P*UT)-(Ul)+((P*UT/
*P1 )% (DSIN{PI*LMT1/S)))-((P*xUT*LMT1/S)}*(DCOS(PI*LMT1/S)))})

M33 = ({(UI/UT)+(A/L))

M34 = (2.0=UT)

M35 = ((A=UT/(L*S))+(E1/(2.0%U1)})

Ni = TOUGLO - TOUS2 - H1 + ((UE*L1%B4)-(UE*G1=L1)+{Ui1*G1*L1
#) - (UL 1%B4) )% ( (S2-(G1*L 1) )*E2+E4)*(1.0/(2.0%UD)) + ((UExGO=*LO)+(2
%, 0% (UE-U1)*L0*A3) - (UE*LO*A4)-{2,0%(UE-U1)*L0*A4) ) *{ (S2+(G0*L0) ) *E2
*+E4)=(1,0/(2.0%UE))

N2 = TOULD - TOUS2 - H2 + ((2,0%UE*LO)+(2.0%(UE-U1)*LO*A7)~ (
*2 , 0xUE*LO*AB) - {2, 0% (UE-U1)*LO*A8) - ( (UE+U1)}*(L0/2.0)*(1,0-A8)))=((S
#2+ (GO*L0) )*E2+E4}=(1,0/(2.0%UE) )+ ( ({UE+U1)}=(L1/2.0)*B4)-( (UE+U1)*G
*1*5%1/2.0))+(U1*G1*L1)-(U1*L1*B4))*((SQ—(G1*L1))*E2+E4)*(1 0/(2.0%
*0

N3 = TOUS2 - TOUGL1Y - H3 + {((2.0*UD*G1=L1}+(2.0%(UD-UT)*L1=B
#«3)-(2.0%U0*L1%B4)-{2,0%{UD-U1)*L1%B4) - (U1*G1*L1)+(Ut=L1%B4))=((52-
*{G1xL1))*E2+E4)%(1.0/(2.0%U0))

N4 = TOUS - TOUW - H4

N5 = TOUS - TOU2 - H5

N6 = F + (2.0%E2/{(3.0*E{1*E1))*{(UI*UI*UI)~(UO*UD*U0)) + (UI/
w#E1)x( (S*E2)+E4) - (UO/E1)*((S2-(Gi*L1))*E2+E4) + (Gi1#L1-B4=L1)*((S
#2-(G1*xL 1) )*E2+E4)}*(1.0/(2.0*UD))

N7 = (S*E2+E4)*{(-1.0)/(2.0%UI})

MTRX(1,1) = M1

MTRX(1,2) = M2

MTRX(1,3) = M3

MTRX(1,4) = M4

MTRX(1,5) = M5
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MIRX(1,8) = MB

MTRX(1,7) = M7

MTRX(2,1) = M8

MTRX(2,2) = M8

MTRX(2,3) = M10

MTRX{2,4) = M11

MTRX(2,5) = M12

MTRX(2,6) = M13

MTRX(2,7) = M14

MIRX(3,1) = M15

MTRX(3,2) = M16

MTRX(3,3) = 0.0

MTRX(3,4) = W17

MTRX(3,5) = M18

MTRX(3,8) = M19

MTRX(3,7) = M20 :
MTRX(4,1) = MTRX(4,2) = MTRX{4,3) = MTRX(4,4) = 0.0
MTRX{4,5) = M21

MTRX(4,6) = M22

MTRX(4,7) = M23

MTRX(5,1) = MTRX(5,2) = MTRX(5,3) = MTRX(5,4} = 0.0
MTRX(5,5) = M24

MTRX(5,8) = M25

MTRX(5,7) = M26

MTRX(6,1) = M27

MTRX(6,2) = W28

MTRX(6,3) = 0.0

MTRX(6,4) = M29

MTRX(6,5) = M30

MTRX(6,6) = M31

MTRX(6,7) = M32

MTRX(7,1) = MTRX(7,2) = MTRX(7,3) = MTRX(7,4) = 0.0
MTRX(7,5) = M33

MIRX(7,6) = M34

MTRX(7,7) = M35

MIRXIN(1,1) = NI

MTRXIN(2,1) = N2

MTRXIN(3,1) = N3

MIRXIN(4,1) = N4

MTRXIN(5,1) = N5

MTRXIN(B, 1) = N6

MTRXIN(7,1} = N7

CALL LEQT2F(MTRX,COL,ROW, 1A, MTRXIN, IDGT,WKAREA, IER)
DS2DX = MTRXIN{1,1)

DUIDX = MTRXIN(2,1)

DLODX = MTRXIN{3,1)

DLIDX = MTRXIN(4,1)

DUTDX = MTRXIN(5,1)

DPDX = MTRXIN(E,1)

DSDX = MTRXIN(7,1)

S2 = S2 + (DS2DXxDX)

Ut = Ut + (DUIDX*DX)

LO = LO + (DLODX=DX)

L1 = L1 + (DL1DX=*DX)

UT = UT + (DUTDX*DX)

P = P + (DPDX#DX)

§ = 83 = & + (DSDX*DX)

CFIF = (2.0=UT=UT)

L2 = ($2-(G1*L1)-5)

X = X + DX

Y = (S2+(GD*LD))

UrF = CP(X,Y,D1,D2,D3,D4,D5,D6,D7,D8)
Y = (82-(Gi=L1))

U0 = CP{X,Y,D1,D2,D3,D4,D5,D6,D7,D8)
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Y = §

Ul = CP(X,Y,D1,D2,D3,D4,D5,D6,D7,D8)

U3 = Ul

ELSE DO :

R1 = {UE*{UE-U1)*=((E#*((-K)*G0*G0))-1.0))

R1 = R1 + ({UE-U1)*(U1-UE}*((E*=((~2.0)*K*G0*G0))-1.0))

RT = R1 - (UEx(U3-Ut)*{1,0-(Ex*{(-K)*G1%G1)}))

R1 = RT + (Ut#{U3-U1)=(1.0-{Ex*{(-K)*G1%xG1))))

R1 = Ri - ((UE*GO*LO)+(2.0*(UE-U1)*L0*A3)-{UE*LO*A4)-(2.0*(U
*E-U1)xL0xA4) ) x(E1/(2.0%UE))

R2 = (UE*LO*A4) - (2.0%(UE-U1)*L0*A3) + (U1*L1*B4)

R2 = R2 - (UE*L1=B4)

R3 = {(4.0%K#={UE-U1)*{UE-U1)=*A1) - (2.0*K*UE*(UE-U1)=*A2)

R3 = R3 - {(UE*GO*LO)+{2.0%(UE-U1)*L0O*A3) - (UE*LD*A4])-(2.0*(U
#E-U1)*L0*A4) )= (GO*E1/(2.0%UE))

R4 = (2.0%K(UE-U1)*(U3-U1)*B2)

RS = ((A%(S3-LMT1)/L)+(B*(S3-LMT1})+{A*C1/L)+(2.0%P*C6))

RS = (R5*{U1-UE))

R6 = {2.0%(U1-UE)*UT=*CB)

R7 = {(UE-U1)*2,0#P*=UT*P1+C5/(53%53))

R8 = ((U1-UE)=(Gi*L1-B4xL1))

R9 = (2.0%UE*{UE-U1)=*{(E*x{-K))-1.0))

RO = RO - ((UE-U1)*(UE-U1)*((Ex*((-2.0)%K))-1.0))

RS = R9 - (((UE+U1)/2.0)*(UE-Ut)*{{E**{-K))-1.0})

R9 = R9 - (((UE+U1)/2. O)*(U3 Ut)*(1.0- (Ex*((-K)*G1%G1))))

RS = RG + (Utx(U3-U1)*(1.0- (Ex*((-K)*G1%G1))))

R = RS - ((2. O*UE*LO)+(2 O (UE-U1)*L0*A7)-(2,0+%UE*LO*A8) - {
«UE+U1)*(L0/2.0)*(1.0-AB))-(2.0%(UE~-U1)*L0O*AB) )= (E1/(2.0%UE))

R10 = (2.0%UExLO*A8) - (2,0%(UE-UT)*LO*AT7)

R10 = R10 - ({(UE+U1)/2.0)*(LO*A8+L1%B4)) + (U1*L1*B4)

R11 = (4.0xK*AB*(UE-U1)*(UE-U1))} - (4.0%K*UE*(UE-U1)*AB)

R11 = R11 + (((UE+U1)/2.0)%2,0%K*(UE-U1)*AB)

R11 = R11 - ({2.0%UE*L0)+(2.0%{UE-U1)*L0*A7)-(2.0*UE*LO*A8)-
# (2 0% (UE-U1)=*L0*A8) - ((UE+U1)*=({L0/2.0)*(1.0-A8)))*(GO*E1/(2.0%UE))

R12 = (K= (UE+U1)*{U3-U1)*B2) - (2.0%K*U1*(U3-U1)*B2)

R13 = {(A*{S3-LMT1)/L)+{B*(S3-LMT1))+{A*C1/L)+(2.0*P*C6))

R13 = R13*{(U1-UE)/2.0)

R14 = ((U1-UE)*UT=CB)

R15 = ((UE-U1)=*PI*P*UT=C5/(53%53))

| R16 = (U1*G1=L1) - (Ui=L1%B4) - (((UE+U1)/2.0)*{(G1*L1-B4x*L1)

s

R17 = (2.,0%U3%{U3-U1)*(1,0-(Exx((-K)*G1=xG1))))

R17 = R17 - ({U3-UT)*(U3-U1)*(1.0-(Exx((-2.0)#K*G1%G1))))

R17 = R17 - (U1%(U3-U1)*(1,0-(Ex*((-K)*G1*G1))))

R18 = {2.0%U3%L1#B4) - {2.0%(U3-U1)*L1*B3) - (Ui*L1%B4)

R19 = (4.0%=K*B1*(U3-U1)*(U3-U1)) - (4.0*K*U3*(U3-U1)*B2)

R18 = R19 + (2.0%K=U1*{U3-U{)=*B2)

R20 = ({U3-U1T)}*{(A=(S3-LMT1)/L)+(A*C1/L)+{B*{S3-LMT1))+(2.0%*
“P*xC6) ) )

R21 = ({U3-U1)=*2,0%UT*CB)

R22 = ({U1-UB3)*2,0%PxUT*«PIxC5/(53%S3))

R23 = (2.0%U3=Gi*L1) + (2.0%(U3-U1)}=%L1%B3) - (2.0%U3xL1%B4)

R23 = R23 - {2.0%(U3-U1)=L1%B4) + (U1xL1=xB4) - {U1*GixL1)

R24 = M21

R25 = M22

R26 = M23

R27 = M24

R28 = M25

R28 = M26

R30 = {B4=L1)

R31 = ((G1%U3)-(B4=(U3-U1)))

R32 = (A%53%(DLOG(S3=UT/NUND))/L) + (B*83) + (P%53)

R32 = R32 - (A*LMT1=(DLOG(LMT1#UT/NUND))/L) - (BxLMT1)

R32 = R32 - (P=LMT1) + ((P=S3/PI)*(DSIN(PI*LMT1/53)})



R33 = (UT=S3) - (LMT1i*=UT) + ((UT=S3/PI)*(DSIN{PI*IMT1/S3}})
R34 = (((DLOG(S3*UT/NUND))*A#UT/L)+(B*UT)+(P*UT))
R34 = R34 + ((P=UT/P1)=(DSIN{PI=LMT1/83)))

R34 = R34 - ((DCOS(PI*LMT1/S3)}*P*UT*LMT1/53)

R35 = ({G1=L1)-(B4=*L1))

R36 = ({U3/UT)+(A/L))

R37 = (2,0%UT)

R38 = (A*UT/(L=*S3))

R38 = -1.0

R40 = 1.0

R41 = -G

R42 = -1.0

(UE=GO*LO)+(2.0*(UE-U1)*LO*A3) -
2+(GO*L0D) )*E2+E4)*(1.0/(2.0%UE))
2.0%UE*LD)+{2.0%(UE-U1)*=L0O*A7) - {
((UE+U1)={L0/2.0)=(1.0-A8)))=*((S

T1 = TOUGLO - TOUSZ - H1
*UE*LO*A4) - (2.0 (UE-U1)*L0*A4) ) *

T2 = TOULO - TOUS2 - H2 +
*2, 0*UE*LO*AB) - (2,0%(UE-U1)*L0*A
#*2+(GO*L0) ) *E2+E4)*(1.0/(2.0*UE)

T3 = TOUS2 - TOUGL1 - H3

T4 = TOUS3 - TOUW - H4

T5 = TOUS3 - TOU2 - HS
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SQ(7,8) = R39
SQ{8,2) .= SQ(8,3) = SQ{8B,5) = 5Q(8,6) = SQ(8,8) = 0.0
SO(8,1) = R4D
SQ(8,4) = R41
SQ{8,7) = R42
SQIN(1,1) = Tt
SQIN(2,1) = T2
SQIN{3,1) = T3
SQIN(4,1) = T4
SQIN(5,1) = 15
SQIN(6,1) = T6
SQIN(7,1) = SQIN(8,1) = 0.0
CALL LEQT2F(SQ,COL,RO,IA1,SQIN,IDGT,WKAREA,IER)
DS2DX = SQIN(1,1)
DUIDX = SQIN(2,1)
DLODX = SQIN{3,1)
DL1IDX = SQIN(4, 1)
DUTDX = SQIN(5,1)
DPDX = SQIN(6,1)
DS3DX = SQIN(7,1)
DU3DX = SQIN(8,1)
S2 = S2 + (DS2DX*DX)
Ut = Ut + (DUIDX*DX)
LO = LO + (DLODX*DX)
L1 = L1 + (DL1DX*DX)
UT = UT + (DUTDX=*DX)
P = P + (DPDX*DX)
S = S3 = 5§53 + (DS3DX=*DX)
U3 = U3 + (DU3DX*DX)
CFIF = {2,0%xUT=UT)
L2 = (S2-(G1*L1)-S3)
Uo = Ul = U3
X = X + DX
Y = (52+(G0*L0))
UE = CP(X,Y,D1,D2,D03,D4,D5,06,D7,D8)
END IF
E1 = ((D1sX*X*X)+(D2*X*X)+(D3*X)+D4)
E3 = ((DB*X*X*X)+(D B*X*X) (D7%X)+D8)
E2 = ((3.0%D1*X=X)+(2.0%D2%X)+D3)}
E4 = ((3.0%D5*X*X)+(2.0%D6*X)+D7)
SIB = S=(UT/UL)=((A/L)+P)
THETB = ((2.0%{A/L)*(A/L))+{3.18%A%P/L)+(1.5%P*P) )*S=(UT/UI)
THETB = (THETB)*(UT/UI) :
THETB = S1B - THETB
MB = S1B/THETB
S1IW = {(1.0-(U1/00))={L1}*{1.0610)
HIW = (1.0/(1.0-((0.7526/1.0610}*(1.0-(U1/U0))}))
THETIW = STIW/HIW
S10W = {1.0-(U1/UE))*L0O*1.0633
HOW = (1.0/(1.0-((0.7527/1.0833)*(1.0-(U1/UE)))))
THETOW = S10W/HOW
PRINT 210
PRINT 220,X,S5,P,S1B,THETB,HB,S1IW, THETIW,HIW,S10W, THETOW, HOW, UE
* -1
PRINT 240
PRINT 250,L1,L0,Uf,UE,U0,UI,U3,L2,52,UT,U3-U1,CFIF
PRINT 260
END WHILE
STOP :
FORMAT (’1’,'*******************************m*********************

e 3 o ok e e o o ok o 3 ok ok o sk e o b i ok ke ok ok ok ke ok o ok 3k ok o o oK o ke 3 o 3 oK o ok 3k 8 ke a8 ok 8 oK o R s K o K K oK 3K 3 e K HOF

¥ ok e ofe ke e e e ke ok ok ok ok /

7 sk o v e ok e o ok s ok 3K sk 3 ok a3k sk ok 3K 3 2k ok 3 ok 3k 3k ok Ol ok e 3k ok ke ol o 3K e KOk K

'/’/ I,

e s 2 2k vk koK ok dk sk sk sk koK 3ok sk sk koK 3k L ax 3 e ok ke e a8k ok 3k sk ol ol 3K 3K sk ik e 3k i R 3 o 3K ok 3k e ok o ok ok o ol 3k ok sk ok KOk Sk

e s e e e ae Mok o ok ok ok Sk sk ok sk ok

/7 BBX, STARTING  VALUES')
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230

210

240
220
250
260

10

FORMAT (’0’,’*****************************************************
s ok o ok 3 ok ok o sk ok ok ok ok sk kol sk o s 2k ok ok ok ok ok ok 3 ok ks ke 3 ok ok ok ok oK ok Kk sk oK 3 e o 3 S sk e o ok oK ok oK o oK K oK K K
**************’,/,’ ’”********************************************
s 3k ok ok ok ok ok K ok ok 3k ok ok sk sk ok ok ok ok 3 %ok 3 ok ok B oK sk K ok ok ok oK 3K sk K 3k K ok ok 3K oK 3K 3 ok M sk K N oK o RO o A % ok ok %K oK o K
+ ek sk ok ok ok ok ok ok o ko ok Rk ok ok ok | )

FORMAT (' 0’ ,'FLAPDIS' ,3X,"SOFBL’ ,3X,' POFBL’ ,2X,’ S*0OFBL" ,3X,’ THTOFB
=0 2X, HOFBL' ,3X,'S* OF Iw ,5X,'THT OF IW' ,4X,’H OF IW' ,4X,’S*x OF
=0W' ,4X,"  THT OF OW’ ,4X,’H OF OW' ,3X," (UE-U1)")

FORMAT (70" ,3X," L1 ,8X,’L0D",9X,"U1’,8X,"UE",98X,"U0" ,9X,"Ul" ,8X," U3
* 10K, L2, 10X, 82 11X, UT/ ,BX," {U3-U1)’ ,4X, CFIF')

FORMAT (0’ ,1X,F5.3,3X,F7.5,1X,F7.3,1X,F8.5,1X,F8.5,1X,F6.3,3X,F9
*,7,3X,F10.7,3X,F6.3,5X,F9,7,3X,F10.7,4X,F6.3,4X,F7.5)

F?RMAT {0’ ,F8.6,6(3X,F8.6),3X,F9.6,3X,F9.7,3X,F8.6,3X,F8.5,3X,F8.
%6

FORMAT (' ’"**$**************************************************
s 35 ok ok ok 3 S 3k ok 3K K ok ok oK ok ok ok sk 3 ok ok 3 ok 3K 3 ok 3K 3% 3 o ok ok 3 3 3 3K o 3K 3k 3K 3K ok 3k 3K 3K 3 ok ok ok 3K o ok o ok o i ok ok ook ok ok
ek kokok ok ok ok ok ok k)

END

o 3k 3k 3 ok ok ok ok ok ok ok 3k Sk 3k 3 ok 3k ok K 3k 3 ok ok K oK ik ok oK ke oK 3k 3 ok 3K o o 3K ok ok 3k ik 3K ok 3k ok 2k 3 o ok o o ok ok oK sk oK o OR K

o ke s ok o oK ok 2k i e ok ok A Tk S oK oK ok ok 3k e ok ko ok 3k ok oK a3k ok b sk ok o ok ok K 3K 3k ok 3k ok 3k ok ok ok 3Kk ak ok ok ok oK ok 3 o ok oK ok R K XK

DOUBLE PRECISION FUNCTION B11(UT,NUND,LMT1,LMT2,S)

DOUBLE PRECISION UT,NUND,LTH1,LT2,DY,PI,DLOG,DSIN,S,D,F,G,LMT1, LMT2
*,DY1

INTEGER N
LT1 = LMT1
LT2 = LMT2

PI = 3.141593

DYT = ((LT2-LT1)}/400.0)
DY = (DY1/2.0)
B11 = 0.0
DO 10 N = 1,400
B)? (DSIN(PI*LT1/(2.0%S)})*(DSIN(PI*LT1/{2.0%5)))*=(DLOG(LT1=UT/
«NUN
F o= (DSIN(PI*(LT1+DY1)/(2.0%S) ) )*(DSIN{PI*(LT1+DY1)/(2.0%S)})=*{
*DLOG( (LT1+DY1)*UT/NUND) )
G = (DSIN(PI*{{LT1+LT1+DY1)/2.0)/(2.0%S)) ) *(DSIN{PI*({LT1+LT1+D
*Y1)/2.0)/(2.0%S) ) )= (DLOG(((LTI+LT1+DY1)/2,0)*UT/NUND})
Bi1 = Bi1 + ((DY/3.0)#{(D+{4.0*G)+F))
LTY = LT1 + DY
CONTINUE
RETURN
END

4 3 ok S oo oK K R S o K o o 3 3 o 6 3 ok ok ook K 3 o S8 K o ok ok 8 3 o o K f o K o o 3 ook 6 o 36 o K 8 o o 3K ok e ok Sk K K SR oK
sk o s o sk ok sk K ok KK ok o o o oK R R o K S oK R R ok Kk 3 o o R oK ok K o e K S oK Rk S ok K o o K o ok s o o oK 8 o o oK O
DOUBLE PRECISION FUNCTION B22(UT,NUND,LMT1,LMT2,S)
DOH?EEDPRECISION UT,NUND,LT1,LT2,P1,DY,DLOG,DSIN,DCOS,S,D,F,G,LMT1

*, | ,DY1

INTEGER N
LT1 = LMT1
LT2 = LMT2

PI = 3.141583

DY?! = ((LT2-LT1)/400.0)
DY = (DY1/2.0)

B22 = 0.0

DO 10 N = 1,400

D = (LT1)*(DSIN(PI*LT1/(2.0%S}})*(DCOS(PI*LT1/(2.0%S}))*(DLOG{L
*T1xUT/NUND) )

F o= (LT1+DY1)*(DSIN(PI*(LT1+DY1)/(2.0%S)) ) =(DCOS(PI={LT1+DY1)/(
#*2.0%S) ) )*(DLOG((LT1+DY1)*UT/NUND))

G = ((LTI1+LT1+DY1)/2.0)%(DSIN{PI*{(LT1+LT1+DY1)/2.0)/(2.0%S)))*
#*{DCOS(PI*({LT1+LT1+DY1)/2.0)/(2.0%S) ) }*{DLOG{((LT1+LT1+DY1)/2.0)=U
#*T/NUND )

B22 = B22 + ((DY/3.0)*(D+{4,0%G)+F))

LTY = LTt + DY

97



10

" CONTINUE

RETURN

END

sk s o o e ok o o e ok o ok ok ok K o o s ok ok ok s e o o o ok oK o o oK o oSk o oK 76 R oK oK o X6 o ok e o o ook ok o e e o o ok ok ok o
¥ ok ok e 3 ok 3k o o o s Kk o o ok e ok e K o o S o o S oK oK 3k oK ok 0 o Sk K o o K o o K ok o S o o o o o ok ok oo ok o o ok ook K
DOUBLE PRECISION FUNCTION DCPDX(X,LMTt,LMT2,D1,D2,03,05,D6,D7)
DOUBLE PRECISION X,LT1,LT2,D%1,D2,D3,D5,D6,D7,LMT1,LMT2

LT1 = LMTH

LT2 = LMT2

DCPDX = ({(3.0#D1#X*X)+(2.0%D2*X)+(D3))*=((LT2%LT2/2.0)-(LT1%LT1/2.0

*) )

C
C
$ENTRY

DCPDX = DCPDX + ((3.0*D5*X#X)+(2,0%D6%X)+(D7))*(LT2-LT1)

RETURN

END

st ok ok o 0 o e b ok o s o e sk K e e e o s o Sk R e S K oS K o 3 B ok 6 o ok 3 3 o S o o o 3K oK o koK o oK o ok ok ok ok o ko ok
sk sk sk ok e o 3 ok o ot o ook s o ke o R e ol S R o o K 3K K 3 o 5 o o ok K o o o 6 o oK o o o K ok oK o ok ok ok K o ke ok o 2 ok oK o
DOUBLE PRECISION FUNCTION CP{X,Y,D1,D2,D3,D4,05,D6,D7,D8)

DOUBLE PRECISION X,Y,D1,D2,D3,D4,D5,D6,D7,D8

CP = ((D1xX#X*X)+{D2x%X*xX)+{D3*X)+(D4))=Y
CP = CP + ({D5*X*XxX)+(DB*X*X)+(D7%X)+(D8))
CP = ({1.0-CP)=*%0.5)

RETURN

END

3k % ok % 3K 3K K X K ok 3k ok i ol s ok sk ok ok e ok sk o o ok sk Sk sk R 3k 3 3k ol ok e sk ok 3 3 ok ok 3K 3K 3K 3K 3 3K K 3k Ok 3l X ok v ok e ok ok ok ok ok koK
Sk A o e 3k K vk ok ok ok ol X sk sk 3K ok e 3 ok 3k ok e ok ke s Sk ok ok e ok ok sk Rk ok sk o ke 3 ok ok ok e s sk 3k sl 3k ak ok ak sk K Kk ek e o o ok ok oK ok

98



Fig. | Typical Measured Total Head Profiles on a slotted Flap.
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A Slat B Main Aerofoil

|,2 Boundary layers on slat

3 Separated region of slat
4 Near woke region of siat
5 Potential core
6,7 Boundary layers on main aerofoil
8 Shear layer on main gerofoil
9 Separated region of main aerofoil
10 Near woke region of main aerofoil

{1 Potentiol core

2,13 Boundary layers on flap
i4 Shear layer on flgp
15 Separcted region of flap
|6 Near wake region of flap

Fig. 2 Typical Flow Development on Three Element Aerofoil
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o =~

Test Case |.: Foster , Irwin and Williams (4) Slot Gap 0.025C

Test Case 2.: Foster, Irwin and Williams (4) Slot Gap 0.020C

Test Case 3 .: Bario Et Al (6)

Test Case 4 . Ljungstrom (5)

Fig. 5. Aerofoil Configurations used for the Test Cases.
(Interaction over the hatched element has been analyzed)
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© Surface Pressure Tap Gi by Trwin (2)
iven rwin
—————— Siatic Pressure Probe € y frvl
Cp = flx)y + qlx) X =0.376
0.1
f(x) = 1234x> - 810x% + i '
132x - 1.74 X =0.281
g(x) = - 69% + 41.8x° - 1.96x ~ 1.47

0.08
X =0.204

0.06

004

-110.02

-04 . 0 0.2

Cp

Fig.6 Pressure Field over the Flap.
Test Case | : Experimental Measurements reported by
Foster , Irwin and Williams.
Flap Deflections 30° , Slot Gap 0.025C, a = 8°
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Fig. 7 Development of U;, Uz and { Uz - U, ) along the Fiap. (Test Case 1)
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—————————— Irwin's Caiculation

T
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Fig. 8 Development of L, , Ly and P along the Flap. ( Test Case I.)
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© Experimental Values given by Irwin
008
——————— Irwin's Calculation
—— -—— Kibria's Calculation
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— —— Present Calcuiation =2
@
2r 0.004+
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-  IF 0.002¢
C i 1 i ) 0
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Fig.9 Development of Hg, 8, Hiw and 8y along the Flap. {Test Case I.)
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o} Experimental Values given by irwin

-——-=--— Irwin's Calculations

2~ ——-——  Kibria's Calculations
TN
= ;/——"” ————  Present Calculations
Z . G B
x I 7.0
0 ' : ' ' 6.0
0 0.1 0.2 0.3 0.4
X
0.10r 5.0
0.08F 4.0F
/ %
x
= 8
0.06 w 30
s ©
0.04+ 2.0
o\
0.02r 1.0 \ J
(8] § 1 i i 0 [l ] i 1
0 0.1 0.2 03 0.4 0 0.1 0.2 v 03 0.4
X

Fig. 10 Development of H 8

ow+ Sow and C, dlong the Flap. (Test Case |. )
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0 Experimental Values given by Irvin
------- irvin's Calculation
——-—— Kibria's Calculation

Present Calcuiation

601

012~ X = 0.1i4 012~ X = 0.204 O.i2+~ X = 0.281 012
0.0+ 0.10+ 0.0k 0.10
0.08F 0.08} 0.08 0.08
y y y

0.06F 0.06+ 0.06} 0.086
0.04+ 0.04+ 0.04} 0.04
0.02F 0.02- 0.02+ 0.02!
: 3 B - q

0 i foe RO P ; 1 PN e s 1 J [aToW- WO b, i . 1 2 1 L 1

0O 0204 0608 1.0 0O 02 04 08 08 0 0O 02 04 06 08 1.0 0O 02 04 06 08 1.0

U/ Ug U/ Ug U/ Ug U/Ug

Fig. 1l Development of the Velocity Profiles along the Flap. ( Test Case |.)
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o Surface Pressure Tap

} Given by Irwin(2)
——— - = Static Pressure Probe

— Cp = f{x)y + g(x) -10.10
3 2 X=0.376
fix)= -8.7x"+66.1x"~ |
44 1x +8 .80 X = 0.281 |
gix)=-62x3 —0.77x°+ :
66x — 1.98 |
: 0.08
|
I
|
|
|
X =0.114 { 40.06

Fig. 12 Pressure Field over the Flap.

Test Case 2 @ Experimental Measurements reported by
, Foster, Irwin and Williams.
Flap Deflection 30°, Slot Gap 0.020C, a = 8°
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Fig.13 Development of U,, Uz and (Uz - U; ) along the Flap. { Test Case 2.)
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© Experimental Values given by lrwin
———-=-- Irwin's Calculations
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Fig.15 Development of Hg , &g, Hyy and 8y, along the Flap. { Test Case 2.)
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] Experimental Values given by Irwin
-------- Irwin's Calculation

Present Calculation

0.12¢ — — -
X = Q.14 X = 0.204 X = 0.281
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Fig.17 Development of the Velocity Profiles along the Flap. ( Test Case 2.)
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———————— Experimental Distribution
Formulated Distribution
3.0
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O 4# H i ! 1 i ] I l 3]
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Fig. 18 Pressure Field over the Aerofoil
Test Case 3: Experimental Measurements reported by B@no Et Al
Aerofoil Deflection 7°
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5.0 - =-==----—-—-—~ [Experimental Variation
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Fig. 19 Development of C¢ along the Aerofoil (Test Case 3.)
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Fig. 20 Development of the Velocity Profiles along the Aerofoil . { Test Case 3.)
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Pressure Field over the Main Aerofoil
Test Case 4 : Experimental Measurements reported by Ljungstrom
Slat Deflection 25°, Slat Gap 0.0085C
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Fig.22 Development of Sﬁ along the main Aerofoil. (Test Case 4.)
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