
A Java Implemented Design-Pattern-Based System for parallel
Programming

By

Narjit Chadha

A Thesis

Submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

October 2002

@2002 by Narjit Chadha

l*l aonar-iurav lltåilå¡å"
nationare

Acquisitions and Acquisitions et
BibliographicServices servicesbibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A 0N4 Ottau¡a ON KIA 0N4
canada canada

yourñls vo,arérè@æ

Our ñle Note rélétffica

The author has granted a non' L'auteur a accordé une liccnce non
exclusive licence allowing the exclusive permettånt à la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/fiIm" de

reproduction sur papier ou sur format
élecüonique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts from it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent êne imprimés
reproduced without the author's ou autrement reproduits sâns son
permission. autorisation.

0-612-79941-7

Canad'ä

THE UMVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
*{<*tt

COPYRIGHT PERMISSION PAGE

A JAVA IMPLEMENTED DESIGN.PATTERN.BASED
SYSTEM FOR PARALLEL PROGRAMMING

BY

NARIIT CHADHA

A Thesis/?racticum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

NARIIT CHADTIA @ 2OO2

Permission has been granted to the Library of The University of Manitoba to lend or sell

copies of this thesis/practicum, to the Nationat Library of Canada to microfilm this thesis and

to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this

thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive

extracts from it may be printed or otherwise reproduced without the author's written
permission.

Abstract

Parallel computing is slowly becoming more mainstream as the demand for computational

power grows. Recently the focus of parallel computing has shifted away from expensive

multiprocessor supercomputers to distributed clusters of commodity workstations. Widely accepted

programming standards have been developed such as PVM and MPI. ln addition, other tools have

emerged that raise the level of abstraction of parallel programming and simpliff repetitive, error

pronetaSks. This thesis explores existingparallel programming systems and presents apatternbased

tool, MPI Buddy, that aims to decrease parallel program development time and reduce the number

of errors due to parallelization.

MPI Buddy is designed as a design-pattem based, layered open system with a level of

abstraction above MPI. It is constructed using Java and possesses a modular design allowing new

design pattern modules to be added with ease. The intent is to allow MPI Buddy to have a user

friendly interface, openness, moderate extensibility, and portability. In addition, the tool is intended

to generate optimal communication code and be able to test code syntax from within. The design

pattems incorporated were chosen from the most commonly used parallel communication and

decomposition schemes. The uniqueness of this tool is its portability across different computer

platforms, allowing the user to program parallel MPI applications on a PC, Apple, or any other

platform which supports Java. Additionally, an installed version of MPI on the computing platfonn

is necessary to compile the developed code from within MPI Buddy or run the developed

applications.

The applications developed using MPI Buddyperformed as well as the hand coded versions,

but the less time was required in writing parallel programs with the tool. The benefits were more

pronounced for smaller applications that use complex parallel communication. This tool produces

error free MPI code and is also useful for educating novice programmers on parallel techniques and

structures. It was inferred that data-parallel applications can be quickly prototyped in the field of

signal and image processing using MPI Buddy.

Acknowledgments

i would like to thank my advisor, Dr' Aysegul Cuhadar, for accepting me as a Masters

student a1. the University of Manitoba. Your commitment to see this project through to its

compietion despite the geographical distances that separated us lvas incredible. I cannot thank my

co-advisor, Dr. Howard Card, enough for his efforts and support throughout my Masters project' He

guided me throughout this project and supported me in keeping my goals in perspective' I want to

thank Dr. Farimala Thulasiraman for her parallel computing advice during this project' Also, I want

to express my appreciation to Dr. Bob Mcleod for stepping in as a local advisor at the university

of Manitoba when I was feeling disillusioned'

I want to thank Shawn Silverman for answering many questions that I had regarding the Java

programming language and its hidden capabilities. Having you around made the task of

programrning the API go smoothly. Last, but not least, I want to thank my farnily and friends for

their astounding support and advice over the last two years.

iii

Contents

Abstract ii

Acknowledgments.iii

Contents .. . iv

ListofFigures ix

ListofTables xi

List of Equations xii

Chapterl lntroduction.1
1.1 Paraliel Computers2
1.2 Parallel Prograrnrning2

L3DesignPatterns3
l.4Motivationand Objectives3
1.5 Structureof theThesis4

Chapter2 ParallelComputingOverview5
2.1 Introduction.5
2.2RequirementsforParallelism..5

2.2.THardwarelevel5
Z.2.2Operating Systemlevel6
2.23Softwarel-evel6
2.2.4TeclniquesusedtoExploitParallelism1

2.3ParallelComputers....8
2.3.1 ClassificationofParallelComputers8

2.4TypesofParallelMachineArchitectures...9
Z.4.lYectorProcessors9
2.4.2DataflowArchitectures ...10

2.4.3 SvstolicArchitectures 11

1V

2.4.4 Anay Processors

2.4.5 Shared Memory MIMD

2.4.6 Distibuted Memory MIMD (Message Passing Computers) . . '

2.5 Challenges in Parallel Programming . .

2.5.1 Portability of Applications

2.5.2 Compatibility with Existing Computer Architectures14

2.5.3ExpressivenessofParallelism.. ""' 15

2.5.4&aseof Programming 15

2.6solutionstoParallelProgrammingComplexity15
2.6.1 Raising the Level of Abstraction ' ' ' ' 15

2.6.2Providing Tools to Simplify Repetitive Tasks " " " 15

2.6.3 Design Patterns as a Uniffing Idea ' ' ' ' 16

2.TDesignPatternAdvantages ... -"""11
2.7.1 Conectness

2.7 .2 Maintainability and Reusability .

2.1.3 Ease of Use

2.8 Limitations of Design Pattem Approaches . . .

2.8.1 Efficiency

2.8.2 Flexibility

2.9 Summarv

Chapter 3 Parallel Programming Systems

3.1 Overview...

3.2 Attempts to Raise the Level of Abstraction

3.2.1 Message Passing Libraries (MPLs) and Remote Procedure Calls (RPCs)

3.2.2 Abstractions on top of MPLs and RPCs20

3.2.3 Other High Level Programming Approaches . . - . . .20

3.3 Classification of Tools for Parallel Programming by Functionality ...21

l1

t2

13

t4

14

tl
17

t7

n
17

l8

18

t9

t9

t9

t9

3.3.lBasicsystems .. '..22

3.3.2ToolKits .

3.3.3 IntegratedDevelopmentEnvironments (IDEs)23
3.4 Two Distributed Programming Standards - PVM and MPI23

3.4.1 PVM23
3.4.2MP1 ...25

3.5 Existing Design Pattem Based Systems . . .28

3.5.1 CODE28
3.5.2HeNC8...30
3.5.3Tracs ...32

3.5.4Enterprise ...33

3.5.5 DPnDP35

3.6ProposedEnhancements37
3.7 Summary38

Chapter 4 Design and Implementation of a Parallel Programming System (MPI Buddy) . 39

4.llntroduction.39
4.2 FunctionalityDesired39
4.3The JavaProgramminglanguage41
4.4 System Design Layout42

4.4.7Main Executable43
4.4.2Compilation44
4.4.3Help Modules45
4.4.4Pnnting.. ...45

4.4.5 DesignPattems45
4.5 Design Pattems Included46

4.5.1 lD Scatter/Gather46
4.5.2Balanced lDSend/Receive... ...41

4.5.32D ScatteriGather..48
4.5.4Block CyclicSend/Receive..49
4.5.5CvclicSend/Receive.50

v1

4.5.6DynamiclDMaster/Slave...-..51
4.5.1 lD Divide and Conquer . . .52

4.6 ProgrammingModel .. - -...52

4.7 Summarv54

Chapter 5 Programming Experiments and Analysis . . . 56

5.1 Introduction. ...56

5.2MetricsusedtoEvaluatePerformance.... '...56
5.2.1 ObjectiveMetrics...56
5.2.2 SubjectiveMetrics .. -...51

5.3 Computing Platform Used in this V/ork . . . 58

5.42D Discrete V/avelet Transfonn . . . 59

5.4.1 Introduction.-.59
5.4.2 Analysis of theProblem '. .60

5.4.3ParallelDecompositionStrategy61
5.4.4 Approach to Solving Problern using MPI Buddy . - . .63

5.4.5ObjectiveAnalysisoftheTool . .---..64
5.4.6 Subjective Analysis of the Tool . - .66

5.5 Fast Fourier Transform . . - 67

5.5.1 Introduction -'.....61
5.5.2 Analysisof theProblem ... - '..67
5.5.3 ParallelDecompositionStrategy69
5.5.4 Approach to Solving Problem using MPI Buddy . . . - .71

5.5.5 ObjectiveAnalysis of theTool . -- -....12
5.5.6 SubjectiveAnalysisoftheTool . '.....14

5.6 Overall Analvsis of theTool -..14

Chapter 6 Conclusions and Future Work . . .76

6.1 ReviewofthisWork -......76
6.2Future'Work --...18

vll

6.2.2BetterGUI78
6.2.3 Automatically Color Code MPI and C Keywords . . .78

6.2.4IntegrateaPerfoÍnanceVisualizationTool78
6.2.5 Add Support for Other MPI Communication79

6.3Conclusion.19

References....80

Appendix A Software Listing for 2D Discrete'Wavelet Transform 85

Al : Software Listing for Sequential2D DWT Program . . . 86

A2: Software Listing for Parallel Hand Coded 2D DWT Program99

A3: Software Listing for MPI Buddy Coded 2D DWT Program . . 110

Appendix B Software Listing for lD Fast Fourier Transform114

B1: Software Listing for Sequential lD FFT Program 115

.82: Software Listing for Parallel Hand Coded lD FFT Program 119

B3: Software Listing for MPI Buddy Coded lD FFT Program I23

vl11

Figure 2.1

Figtre 2.2.

Figure 2.3

Frgare 2.4

Figure 2.5

Frgore 2.6

Figsre 2.7

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 4.1

Figsre 4.2

Figure 4.3

Figwe 4.4

Figure 4.5

Figure 4.6

Figore 4.1

Figure 4.8

List of Figures

Flynn'sTaxonomy9
Register-memoryvectorcomputer10
Arrayprocessorlayout12
UMA (a) and NUMA (b) shared memory MIMD machine architectures i3

StructureofthelntelParason13
Beowulflayout..14
Relationship between an architectural skeleton, a virrual machine, and the final

programcode.. ...16

Tradeoffbetweenabstractionandflexibility21
Classification of parallel programming systems by functionality23

Message passing between workstations using PVM24

PvMprocessspawning25
MPlexecutionexample(2process system -..27
A screen shot of CODE (version2.Z) [Berg02] . . .29

ScreenShotofHeNCE31
EnterpriseScreenShot.34
Enterprise Assets (Design Patterns) . . .34

Structure of aDPnDP application -36

A layered open system . . .40

Layout of the MPI Buddy System43

Screenshotof MPIBuddy(mainwindow)44
Compilecul44
lDScatter/Gather47
Balanced lDSend/Receive48
2DScatterlGather48
BlockCvclicSend/Receive..50

TX

Figure 4.9

Figure 4.i0

Figure 4.1 I

Figore 4.12

Figure 4.13

Figure 5.1

Figure 5.2"

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.i2

Cyclic Send/Receive 5l

Dynamic lDMaster/Slave51
lDDivideandConquer...52
MPlBuddyprogramlayout53
Programmingapproach...54

PlatformUsed59
One Stage of 2D Discrete Wavelet Transform 60

Communicationapproach(3 processors)61
Selecting 2D Scatter/Gather design pattem parameters 63

Adding user code to the 2D DWT program64

DWT execution time versus machine size (D:6) . . .65

DWT speedup versus machine size (D:6)66

IterativefastFouriertransform(FFT)69
Parallel FFT algorithm (4 processors, 8 data elements)70

Selecting lD.Scatter/Gather design pattern parameters72

Execution time versus machine size for parallel FFT 73

Speedup versus machine size for parallel FFT73

Table 5.1 :

Table 5.2:

List of Tables

Timings (in seconds) for 2D discrete wavelet transform program

(512x5 12 image, filter size 8) . . . ' 66

Timings (in seconds) for FFT applications (N:20, data size 2'o) ' '13

XI

List of Equations

(5.1) Speedup51
(5.2) Efficiency57
(5.3) Cost ...51
(5.4) K-level wavelet discrete wavelet transform communication time . . .62

(5.5) Discretewavelettransformcomputationtirne62
(5.6) Discrete wavelet transform speedup . . .62

(5.1) Discrete Fourier transform equation . . .67

(5.8) SubdividingdiscreteFouriertransform68
(5.9) Odd/evenpointdivisionsofdiscreteFouriertransform68
(5.10) First N/2 point computation of discrete Fourier transform sequence 68

(5.1 1) Second N/2 point computation of discrete Fourier transform sequence 68

(5.12) Communication time for parallel fast Fourier transform . . . 7 |

(5.13) Rootprocessor computation time for fast Fouriertransform71

(5.14) Overall parallel execution time for fast Fourier transfonn irnplementation11

xlt

Chapter 1

Introduction

Scientists and engineers require elevated computational powerto run demanding applications

involving weather prediction, simulation and modeling, DNA mapping, nuclear physics, astronomy,

code breaking, image processing, and computer animation to name a few. One solution to overcome

this limitation is to improve the operating speed ofprocessors and other components so that they can

offer the computational power demanded by certain applications. This solution is currently viable,

but future improvements are likely to be constrained by the speed of light, thermodynamic laws, and

the high costs of processor fabrication [Buyy99]. Another feasible alternative is to use multiple

processors together, coordinating their computation. These are known as parallel computers and

have evolved since the 1950s. The movies Titanic and Shrek both used parallel computers in

rendering complex moving images lComp02, SGIO1l.

The idea behind parallel computing is that if one processor can provide k units of

computational power, then n processors should be able to provide n.k units of computational power.

If these processors can work on a problem simultaneously, the parallel case should only

1/
require /nth the time of the single processor situation [WiAlgg]. Of course, all problems cannot

regularly be divided in such an optimal manner in practice, but significant execution time

improvements can still be achieved.

A maj or barrier to the widespread adoption ofparallel computing is that writing efficient and

portable parallel programs is difficult because parallel programs must express both the sequential

computations and the interactions among the sequential computations which define the parallelism.

There is a need for tools that allow the prograrnmer to bridge the complexity gap between sequential

and parallel programming without extensive retraining. In this thesis, a parallel programming

environment is presented that can assist developers in writing parallel software. The system

customizes and duplicates common parallel programming patterns which can be inserted into a
parallel program.

1.1 Parallel Computers

Traditionally, mostpeople have associatedparallel computers with expensivemultiprocessor

machines such as the Thinking Machines CM-5 or the Cray MTA. These machines are powerful and

strive to fulfill resource requirements lacking in a common personal desktop such as CpU and

memory. Multiprocessor supercomputers have not proliferated extensively due to their prohibitive

costs, large sizes, high power consumption, and the difficulty in interfacing common peripherals

with them lWebb9a]. In addition, these machines quickly lose the status of a "supercomputer" as

the performance of available processors typically increases 50%o annually lZava99l.

Recently, the focus of parallel computing has moved away from individual multiprocessor

machines to distributed clusters of machines. It was found that parallel machines can be built
economically by using cornmodity workstations interconnected by a fast interconnection network

such as ethernet or gigabit ethernet. These virtual "supercomputers" have been found to produce

execution speedups approaching those of fast rnultiprocessor machines, but have further advantages

in that the cost of these workstations computers is low, the latest processors can be incorporated into

the systems as they become available, and peripherals interfacing is easy. Also, the Unix and Linux

operating systems allow for easy high level communication tool development.

1.2 P ar allel Pro grammin g

The growth of clusterbasedparallel computing environments has spawned the development

of various parallel programming tools. These tools employ macros, functions, abstract data types,

and objects to allow the user to deal with the complexity of parallel programming. Two standards,

Parallel Virtual Machine (PVM) and Message Passing Interface (MPI), have been developed and

accepted for programming the socket level communication requirements between distributed

processors. These tools consist of message passing libraries and remote procedure calls that raise

the level of abstraction for the programmer. However, understanding how to build complex parallel

programs can still be quite challenging for the novice parallel programmer. Indeed, software

developers often fear that the time saved by executing parallel versus serial applications may not

justiff the time involved in developing, debugging, and testing these parallel programs. Today,

building software tools to aid in parallel application development is an important research topic in

the field of parallel comPuting.

1.3 Ðesign Patterns

A pattern is a recurring solution to a standard problem [Schm95]. Programming design

patterns are modeled on successful past programming experiences. These patterns, once modeled,

can then be reused in other proglams. Typically, hand coding a program from scratch results in

better execution time performance, but Íìay consume immense amounts of time that cannot be

tolerated.

Design patterns for parallel programming provide a mechanism to address commonly

occurring data decomposition and communication structures. Such structures include master/slave'

workpool, and divide and conquer. These few structures exist in most parallel programs and the

complexity of these structures can be masked through the use of parallel design pattems. The term

design pattern in this thesis refers to a parallel design pattern.

1.4 Motivation and Objectives

parallel design pattern based systems must have the mechanisms to cover most of the

commonly found parallel communication structures, but must also be flexible enough to give the

user flexibility to work on less common problems. In addition, most parallel programming systems

are limited to certain architectures and operating systems'

The objective of this thesis is to demonstrate the creation of an open platform independent

design-pattem based system for distributed parallel programming. The system design criteria

includes the generation of code that can be used over a wide range of cluster architectures, along

with a good degree of performance portability. A secondary objective will be to assess the ease of
use of the tool and the efficiency of the code developed using this system against hand developed

code"

X..5 Structure of the Thesis

This chapterprovides an introduction to parallel computing and parallel programming along

with the motivation and objectives of this thesis. Chapter 2 undertakes to describe parallel

computing in more detail and describes the methods of conquering the programming complexity

which includes the unifoing idea of utilizing design pattems. Chapter 3 describes classifications of
parallel programming systems and then provides examples of existing systems along with observed

limitations and proposed enhancements. In chapter 4, the layout of an open platform independent

parallel prograrnming system, MPI Buddy, is described including the design patterns incorporated

into the system. Chapter 5 illustrates the use of the MPI Buddy system in programming various

parallel applications and makes attempts to qualitatively and quantitatively assess the value of the

tool developed. Finally, chapter 6 draws conclusions from this research and points out future

directions for continuing research.

Chapter 2

Parallel Computing Overview

2.1 Introduction

Before one can properly grasp the problems with parallel programming, an overview of
parallel computing appears helpful This chapter provides an overview of parallel computing.

Requirements for parallelism are discussed before an overview of parallel computers and existing

parallel architectures is given. The challenges inherent with parallel programming and the solutions

to these challenges are described, including the use of design pattems. Finally, the advantages and

disadvantages ofdesign pattem use are inferred.

2"2 Requirements for Parallelism

Parallelisrn is not inherent in any computer system by default. There should be support

available at the hardware, operating system, and software (application) level. If one of these levels

does not provide support for parallelism, then parallel program development may not be possible.

2.2.7Hardware Level

The system hardware should support parallelism at the instruction level for efficient fine

grain parallelism. This requires that the system memory, the systern buses, and CPU must all be

capable of supporting activities in parallel. Multiprocessor workstations are examples of systems

in which the hardware supports instruction-level parallel activities. 'Workstation
clusters do not

support parallelism at the instruction level, but use program parallelism intended for coarse grain

problem decompositions.

2.2.2 Operating System Level

The operating system manages the allocation of resources during the execution of user

programs [ThulO I]. The operating system is also involved with processor scheduling, memory maps,

and interprocessor communication.

In order to run processes in parallel, there needs to be a mechanism to handle process startup,

termination, and allocation. Another desirable feature is process rnigration. Communication and

synchronization among processors is important for the sharing of information between the

processors ISiu96].

Some workstations clusters use different operating systems over different types of

processors. Heterogeneity is a concept that allows as many workstations to cooperate as possible,

without regard to their underlying architectural differences. This improves the utility of the cluster.

However, heterogeneity requires data type and protocol translation, which devours computer

resources as data type and protocol translation is required across the processors ofthe cluster.

Finally, operating systems provide essential security measures for the system. These include

file ownership and permission properlies (i.e. Unix). Adrninistration is another property which many

operating systems provide.

2.2.3 Software Level

The complexity of handling parallel program development falls to parallel program

development tools including parallel programming systems, parallel debuggers, and compilers'

Developers are required to understand the complex patterns of interactions between all

sequential processes and each process in isolation. This has resulted in research into now parallel

programming models and systems to make the job of parallel programming easier. Examples of

parallel programming systems include CODE lBHDM95l, Hence [BDGM94], and Enterprise

IssLPe3].

Parallel program debuggers can let the user trace run-time activities and locate programming

mistakes. The debuggers available mostly provide event interaction related information at a lower

levels, so users mayhave difficulty comprehending the results. Other debuggers are used to evaluate

the execution performance of parallel programs. These include tools such as ParaGraph [HeFi97],

ATEMPT [Kran96, VGKS95], ULTRA [CoGGO0], and PS [AMMV98].

Compilers are necessary to allow the prograrnmer to utilize low level features in the

operating system and hardware which can exploit parallelism. Compilers translate source code into

object code. Additionally, compilers assign variables to registers and memory and reserve functional

units for operators. Following compilation, an assembler translates the compiled object code into

machine code so that it can be recognized by the machine hardware. There are many parallelizing

compilers available todaywhich can automatically detect parallelism in sequential source code and

others which have been specifically developed for parallel code (i.e. MPI compilers)

Othertools available such as Globus allowparallel applications to berun across workstation

clusters on different local area networks (LANs). Globus is a toolkit that provides the basic

infrastructure for communication, authentication, network information, and dala access [GlobO0].

It has support for parallel programming standards such as MPI, and also takes care of the resource

management across different clusters containing different machine architectures.

2"2.4Techniques used to Exploit Parallelism

Parallelism can be exploited at algorithm design time, programming time, compile time and

runtime. If the basic infrastructure for parallelism is available, there must be away for the user to

program parallel applications which will have desired behaviors. One technique is to directly

program socket streams or other interprocessor communication. This technique results in the highest

speedups in the parallelized versions, but comes with a high tirne cost of programming the

application. Other techniques include the use of parallelizing compilers on sequential code, and

programming using higher level tools.

2.3 Parallel Computers

Parallel computers have been considered as early as 1955. The first "parallel" computer built is a

disputed item among scholars. Likely candidates include the IBM STRETCH and Livermore

Automatic Research Computer (LARC), both ofwhich were conceived in 1956 and were produced

by 1959 lWils9al. In 1962, Burroughs introduced the D825, a symmetrical multiple-instruction

multiple-data multiprocessor (MIMD) with I -4 CPUs and 1- 16 memory modules. The vast majority

of earlier parallel computers were single machines with a shared memory and multiple processors.

Starting in the mid 1970s, work started being done on developing distributed memory computers

in which message passing was required to gain access to all memory elements. Since then, there

have been two recognized tracks of parallel computer development : the shared memory track and

the message passing track..

2.3.1 Classification of Parallel Computers

Flynn has organized computers into a taxonomy based upon their functionality [Dunc9O] as shown

in Figure 2.1. The divisions he made are :

Single Instruction over Single Data Stream (SISD) : These arerepresentative of sequential

computers"

Multiple Instruction Single Data (MISD) : The same data stream flows though a linear

array of processors, which execute different instructions. These are also known as systolic

arays.

Single Instruction over Multiple Data Streams (SIMD) : These machines apply a single

instruction or set of instructions to multiple data streams. Instructions from a program are

broadcast to many processors. Each processor executes the same instruction in synchronism,

but uses different data.

Multiple Instruction Multiple Data (MIMD) : Each processor has its own instruction(s)

to execute on its own set of data. Most parallel computers are of this type.

A,B

+
*

A,B

+
A,B
C,D

:
A,B
C,D

MIMD

>A"B

A+B
> A*B

ÞA+B
>C+D

>A+B
>C*D

Figure 2.1 Flynn's Taxonomy

2.4 Types of Parallel Machine Architectures

2.4.1 Vector Processors

Vector processors are representative of most of the earlier supercomputers. These machines

execute single instructions on sequences of data (i.e. vectors orpipelines) instead of on single items;

they are examples of SIMD machines. Using vector instructions results in more efficient memory

access than single instructions as a large amount of work can be done on the input vector before a

new memory access is required . Another advantage of these architectures is that they can be

optimized to solve problems while removing dafahazards. The first vector computer was the CDC

Star-100, introduced in 1972. This machine could execute instructions by taking two input vectors

from memory, compute the result vector, and write it dìrectly to the memory lHiTaT2}

ln 1976, Seytnour Cray founded Cray Research and introduced the Cray-l [Patt02]. The

Cray-l was the first vector computer to have fast scalar and vector performance. The Cray-l

abarrdoned the memory to memory approach of the Star 100 and instead introduced a register

memory architecture. The Cray-l performed almost everything fast for its generation and became

the first commercially successful vector supercomputer. Fig 2.2 shows the architectural layout of

the a register-memory vector computer. Vector computers continue to hold a niche in the

supercomputing industry and include such recent models as the Cray SVI , Cray SV2, Alex

Informatics AVX3, Connection Machines CM-5, Intel iWarp, and many others.

Figure 2.2. Register-memory vector computer

2 "4.2 D atafl ow Architectu res

Duane Adams of Stanford University defined the term "dataflow" while describing graphical

models of computation for his PhD thesis in 1968. In 197 4, Jack Dennis and David Misunas at MIT

published the first description of a dataflow computer.In 1977 , Al Davis and Burroughs together

built the DDM1, the first operational dataflow computer.

Dataflow computer architectures are intended to allow for data driven computation. This

form of computation differs considerably from the von Neumann machine model. The von Neumann

model involves program driven control ofmachine instructions, whereas in the dataflow model, the

instructions are driven by data availability. These architectures work on the assumption that

Scalar Registers

l0

programs can be represented as directed graphs of data dependencies [ArCu86]. The availability of
data activates matching instructions and computation proceeds. There are two categories of dataflow

architectures: static and dynamic. Static dataflow architectures use primitive functions to represent

nodes. Dynamic dataflow architectures use subgraphs to represent nodes.

2.4.3 Systolic Architectures

H. T. Kung and Charles Leiserson published the first paper describing systolic computation

in 1978. The term "systolic" is used because of the analogy of these systems with the circulatory

system of the human body. In the circulatory system, the heart send and receives a large amount of
blood as a result of the frequent and rhythmic pumping of small amount ofblood though arteries and

veins [Kris89]. In systolic computer systems, the heart would correspond to the global memory as

the source and destination of data. The arterial-venous network would similarly correspond to

processors and communication links. Systolic architectures are extensions of the pipelining concept,

except multidimensional, multidirectional flow is permitted including feedback. Data can be used,

reused and both new data and partial results may move in the system. There are two categories of
systolic architectures: systolic trees, and systolic mesh automata (systolic arrays). The Intel iWarp

is and example of the latter [GrOh98].

2"4.4 Array Processors

These architectures are another example of the SIMD machine model developed by Flynn.

In i 968, IBM delivered the first array processor (the 2938). Array processors are interconnected in

a rectangular mesh or a grid arrangement. Each node has 4 directly connected neighbors, except at

those nodes at the boundaries. These architectures are useful for applications in matrix processing

and image processing where each node can be identif,red with the matrix element or a picture

element þixel) lKrisS9]. The array processor has a control unit which controls the instructions

within processing element in the array. The array processor also has a data level concurrent

hardware module, 2D anay geometry, and synchronized control. An example of an aray processor

layout is shown in Figure 2.3 below.

lt

Figure 2.3 Array processor layout

2.4.5 Shared Memory MIMD

This is a fairly mature parallel computer architecture, with the first machines appearing in

the early l960s.The main feature of this class of machines is that cornmunication and cooperation

between processes may occur using normal memory access instructions. These machines are

constructed with a singly addressed memory shared amongst all the processors in the machine. The

processor elements may be connected to each other and the memory elements in a variety of
configurations including a bus, crossbar, rnultistage network configuration. There are symmetric

multiprocessor configurations (SMP) confìgurations available that allow for a uniforrn memory

access (UMA) time by all the processors. Usually ,these systems involve bus or crossbar connections

and do not scale well. Other shared memory MIMD machines exhibit non-uniform memory access

(NUMA) time which means that some processors can access some memory elements faster than

others. These machines are more scalable than their UMA counterpafis. Examples are of each type

of shared memory MIMD machine are given Figare2.4.

t2

Interconnect¡on Network (Bus, Crossbar)

a) b)
Figure 2.4 UMA (a) and NUMA (b) shared memory MIMD machine architectures.

2.4.6 Distributed Memory MIMD (Message Passing Computers)

These machines make up the message passing track ofparallel computers and include single

computers with more than one processor and distributed memories (rnultiprocessors) and multiple

computers connected by a high bandwidth network (multicomputers). Examples of the former

include the IBM SP-2 and the Intel Paragon. These machines have special direct memory access

(DMA) mechanisms which facilitate data exchange between nodes. The structure of the Intel

Paragon rnultiprocessor is given in Figure 2.5.

One Node
Element

i860 ¡860

Memory Bus

Control

DMA

Memory

Figure 2.5 Structure of the Intel Paragon

Multicomputers (a.k.a. cluster of workstations or network of workstations) are implemented using

workstations (nodes) with point to point connections. Each computer has a private local memory and

communication occurs by message passing primitives through the network. In the evolution of
multicornputers, the Beowulf has been created. Beowulfs are high performance platforms built
entirely out of commodity off-the-shelf cornponents. An example of a Beowulf layout is shown in

l3

Figure 2.6 below.

lnterconnection Network
(Bus, Crossbar, etc)

Figure 2.6 Beowulf layout

Beowulf setups are the dominant focus of parallel computing today due to their scalability and

cost effectiveness.

2.5 Challenges in Parallel Programming

Parallel programrning introduces Íìany unique challenges to the developer. Human thinking

is sequential so theprogramming ofparallel applications takes some thought outside ofconventional

thinking. The challenges evident in parallel program development are described in this section.

2.5.1 Portability of Applications

This is the most challenging attribute to achieve since there are many different types of
parallel computer architectures, each supporting different programrning styles. As well, parallel code

may not perform the same way on different architectures.

2.5.2 Compatibility with Exis tin g Comp uter Architectures

It is important to have programming standards that can be used on existing computers. It is

important to work in parallel programrning environments with architecture independent languages,

compilers, and software tools. This gives the developer flexibility in where he or she wishes to

program and not compromise the finished parallel application.

t4

2.5.3 Expressiveness of Parallelism

It is important for the developer to understand what is being programmed. Programming

tools should exhibit the parallel features of each node and the interactions between nodes. This may

be accomplished through the introduction of visual graphs or other easy to understand approaches.

2.5.4 Ease of Programming

Many parallel prograrnming software methods present great challenges to the developer. If
familiar sequential concepts are employed in a parallel programming tool, the tool is more capable

ofgaining wide acceptance [Simo97]. Few individuals will put more time into program development

than the final application is worth.

2.6 Solutions to Parallel Programming Complexity

2.6.1 Raising the Level of Abstraction

Programmers often feel that working with low level primitives can be quite difficult, even

though thêy are the most flexible among all parallel programming primitives. Raising the level of

abstraction hides the details of parallelism from developers, while making certain parallel

programming tasks easier. The goal is to allow the programmer to solve the problem in a high level

model without worrying about the difficult and unnecessary low level details.

2.6.2Providing Tools to Simplify Repetitive Tasks

A solution to prograrnming common, complex, and error prone tasks is to provide software

tools that automate the implementation of these tasks. An example of a commercial sequential

software tool is the Visual Studio by Microsoft for easily programming complex graphical user

interface (GUD applications for the Windows environment. Application code is generated

automatically with the user only specifying certain parameters and then filling in the specifics for

the program. Other advanced tools are available such as interface builders, advanced compilers,

debugger, visualization tools, profilers, and sirnulators to assist the developer in various phases of

the software development cycle. Similar tools are available forparallel programming. Sorne ofthese

l5

parallel program development tools will be discussed in chapter 3.

2.6.3 Design Pafterns as a Unifying ldea

The idea behind a "pattern" is to describe a recurring structure, and then use this model again

in other similar situations. "Design patterns" are used in everyday life, from fax cover sheets to word

processor style sheets. In each of these cases, there is a template specified containing the same

fields, and the user only needs to fìll the missing information into the fields provided by these

templates |GHJV94]. Expert designers do not feel the need to "reinvent the wheel", but rather prefer

to reuse solutions that have worked well for them in the past.

For parallel programming, there are computation and communication structures that do not

appear in sequential programming. In generating a parallel program through the use of design

patterns, developers instantiate a design pattern to obtain communication skeletons into which they

can insert their own application specific code. An architectural skeleton is a basic communication

pattern devoid of any user code. Upon the insertion of code by the user, a virfual rnachine is

obtained. A virtual machine is an application-specific specializalion of a skeleton [GoSP99]. By

filling a virtual machine with complete application code, the final program code is achieved. Figure

2.7 Illustrates this approach.

Architectural
Skeleton

Extend

Virtual Machine 2 Virtual Machine 1

Figure 2"7 Relationship between an architectural skeleton, a virtual machine, and the final
program code.

r6

2.7 Ðesign Pattern Advantages

Design patterns have been found to have the properties of correctness, rnaintainability and

reusability, and efficiency which have made them favorable to use by programmers.

2.7.1 Correctness

Communication and synchronization can be very complex and error prone. Furthermore,

the code developed can be difficult to debug. Using design pattems, the prograrnlner can use

previously developed strucfures which have been tested repeatedly for correctness. This saves time

involved for development, debugging, and testing. The developer can then concentrate on the actual

specific algorithm for the problem he or she is developing and not worry about specific

communication implementation details.

2.7 .2 Maintainability and Reus ability

Design pattems are able to reproduce frequently used communication and synchronization

structures of parallel programs. Also, design patterns separate computation, communication, and

processor binding specifications of parallel programs, so that each one can be modified

independently (called separation of the specifics). This promotes usability and makes programs

easier to maintain. In addition, the programmer is better able to understand the nature of each of the

parts of the parallel program better.

2.7.3F,ase of Use

Design patterns allow developers to approach complex problems at a higher level of

abstraction. Theparallel part of aprogram is what flusters sequential progïammers. By allowing the

design pattems to take care of the parallel structures found in the program, the programmer can

concentrate on the sequential components of the program.

2.8 Limitations of Design Pattern Approaches

2.8.1 Efficiency

Programs developed in a high level design pattern model are generally less efficient than

T7

those developed using low level primitives. Efficiencyrefers both to the execution time and amount

ofunnecessary code generated for each of the development styles. Using design patterns, there may

be excess code generated to ensure correctness over a broad range of platforms, and a slower

execution time when compared to the low level primitive approach.

2.8.2 Flexibility

Raising the level of abstraction can lower the flexibility. Most design-pattern-based systems

provide a limited number of patterns. A design pattem system is of no added use to the developer

if the communication or data decomposition structures are not available in the system. Most

generated structures cannot be easilymodified. Thus, developers may feel trapped in the high level

model.

2.9 Summary

This chapter has provided an overview of parallel computing today. Support for parallelism

must exist at the hardware level, operating system level, and software level to even contemplate

parallel application development. Providing this support does exist, parallel programming itself

presents challenges with respect to the portability of applications, compatibility with existing

computer architectures, the expressiveness of parallelism ,and the ease of programming. Two

solutions to parallel programming are rasing the level of abstraction while programming and

providing tools that simpliff repetitive tasks. Design patterns are presented as a unifuing idea as they

possess the benefits of correctness, maintainability and reusability, and they are easy to use. Design

patterns might have drawbacks of compromising efficiency and flexibility. The next chapter will

discuss parallel programming systems that exist and their relative merits and shortcomings.

l8

Chapter 3

Farallel Programming Systems

3.1 Overview

Therehavebeen numerous parallel programrning languages and systems developed overthe

past forty years to allow the programmer to work with greater ease and efficiency. By 1989, over

100 languages were already documented for parallel and distributed computing [BaST89]. This

number has grown significantly and widespread programming standards have developed such as

PVM and MPI. This chapter documents attempts that have been made to make the task of parallel

programming sirnpler along with providing exarnples of programrning systems and their benefits

and shortcominss.

3.2 Attempts to Raise the Level of Abstraction

As mentioned in Chapter 2, rasing the level of abstraction is one of the primary methods to

deal with parallel programming complexity. The use of low level primitives for message passing

often frustrates users due to the high complexity of the socket interface. Basic systems, tool kits, and

integrated development environments have all been used to raise the level of abstraction for the

programmer and allow for a more automated programming approach.

3.2.1 Message Passing Libraries (lVIPLs) and Remote Procedure Calls (RPCs)

MPLs raise the level of abstraction of socket level communication by using processes and

communication channels. They allow processes to communicate with each other through message

passing (sending and receiving messages). Examples of MPLs include the PVM and MPI libraries

which have revolutionized multicomputer parallel programming. RPCs also involve message

I9

passing and allow a procedure to be called on a remote machine. MPLs and RPCs have become

accepted as standard models for parallel program development, but this level of abstraction may still

be too low for the development of larger parallel applications.

3.2.2 Abstractions on top of MPLs and RPCs

These are abstractions which hide the details of MPLs or RPCs while using the beneficial

attributes ofthese models underneath. Some examples ofthese systems include OOMPI [Osl02] and

mpC [Mpc02]. OOMPI is an object oriented interface to the MPI-i C** standard. OOMPI keeps

all of the MPI-l functionality, but also offers new object oriented abstractions which promise to

expedite the MPI programming process by allowing programmers to take full advantage of C++

features. The other tool, mpC, was developed and implemented on the top of MPI as a programming

environment facilitating and supporting efficiently portable modular parallel programming. mpC

uses the ANSI C standard as the programrning language. This environment does not compete with

MPI,_but tries to strengthen its advantages (portable modular programining) and to weaken its

disadvantages (a low level ofparallel primitives and difficulties with efficient portability). It has the

properties of efficient portability, meaning that an application.running efficiently on a particular

multiprocessor will run efficiently after porting to other multiprocessors). Users can consider mpC

as a tool facilitating the development of complex and/or efÍiciently portable MPI applications.

3.2.3 Other High Level Programming Approaches

There are many high level programming paradigms that do not fall into the two previous

categories. C/C++-Linda expresses parallelism through a distributed tuple space [CGMS94], a

repository for different kinds of shared data such as database records or requests for computation.

Linda is available across many different architectural platforms and the management of the tuple

space is provided transparently across heterogeneous nodes [Losh94]. Another paradigm, ABC++,

involves allbrary that supports distributed active objects on top of C++. Parallelism is described

through C++ objects that have their own threads. There are other approaches such as Balance, which

is a library of executable commands that allows the user to distribute the parallel workload evenly

to the computers connected in one or more networks [BEST99]. The system can be run as a user

level system or executed by the root to act as a system scheduling tool for microprocessors and

20

interconnected computers.

Enterprise was a breakthrough in high level programming tools. In brief, Enterprise is a

graphical progtamming environment complete with a code generation mechanism, graphic

visualization tools, a compiler, and a debugger. Enterprise allows programmers to express

applications though a set of design patterns. Enterprise uses neither PVM, nor MPI underneath, but

rather low level C augmented by new semantics for procedure calls that allows them to be executed

in parallel [WIMN95]. This project will be discussed in more detail in section 3.5.4.

Raising the level of abstraction makes parallel program development easier, but at the risk

of compromising flexibility. Figure 3.1 shows the relationship between flexibility and the level of

abstraction for various existing parallel programming tools.

Figure 3.1 Tradeoff between abstraction and flexibility (adapted from [Siu96])

3.3 Classification of Tools for Parallel Programming by Functionality

The previous section provided a classification scheme for tools based upon their level

abstraction. Another scheme to classiff parallel programming tools is based on their functionality.

Parallel programrning tools are utilized to enhance the comprehensibility of complex problems and

to improve the correctness ofthe coding approach. Theyprovide functionality such as programming

environments, parallel debuggers, performancemonitors, andprojectmanagementtools. Othertools

such as PVM Simulator (PS), allow users to predict the performance of a parallel application on a

È
'=
o
r

C/C++ Linda

Level ofAbstraction

21

different architecture without actuallyrunning the simulation on that architecture [AMMV98]. This

negates the need of investing money in a computer system that may later prove to be insufficient.

Generally, the more integrated tools a programming system supports, the easier it is to develop

parallel programs. To ensure a higher level of efficiency in programming, the level of abstraction

provided by a tool must complement the base programming model. As an example, consider a GUI

which uses graphs to represent communication between nodes of a distributed network. This

approach works quite well as the graph model coincides well with communication patterns. As a

counterexample, A GUI that expresses the structure of communication in a confusing manner would

not be useful. Parallel programming systems can be divided into basic systems, tool kits, and

integrated development envirorunents based upon their overall functionality. Examples of systems

falling into each category are shown in Figure 3.2. This classification scheme is independent of the

previous classification scheme involving level of abstraction.

I lDEs
I

I

j C Enterprise

Q Balance

I (Ð clc++ Linoa

I

Figure 3.2 Classifìcation of parallel programming systems by functionality

3"3"1 Basic Systems

Basic systems only provide the core functionality for developing parallel programs in a

particular paradigm. These systems are often used by researchers who wish to try out new libraries

and paradigms, but have no need to develop the product into a full system (yet). These systems

provide enhancements over the basic programming paradigm and do not severely limit flexibility.

Some examples include PVM and MPI which have matured into very useful products on their own.

Other systems in this classification include ABC++ and Orca [Siu96].

3.3.2 Tool Kits

These systems are loosely coupled tools developed for a particular parallel programming

paradigm. There are loosely coupled tools available for debugging, performance monitoring, and

allocation of a parallel executable among processors. Commonly, a tool kit is developed once a

Low Level

(Ð Socket

Basic Systems

Ð pvH¡

@ vrpr

Tool Kits

ID MPC

O XMPI
O xpvH¡

22

program paradigm has matured and is widely used. The concem with tool kits is the ability of the

tools to be applicable in the various phases of the application development cycle for the desired

programmingparadigm. XPVM and PADE are examples oftool kits for developing PVM programs.

XPVM is a graphical console and monitor for PVM [Kohl02]. XMPI and mpC are examples of tool

kits for developing MPI programs. XMPI is an)lMotifbased graphical user interface for running,

debugging and visualizing MPI programs ILAMOI].

3.3.3 Integrated Development Environments (IDEs)

An IDE is a complete development environment which integrates all the tools for

developing, debugging, executing, and maintaining a parallel program. These environments are

uncommon as they take a very long time to develop and require a high level of expertise on the part

of the developer. These environments commonly provide higher level abstractions which make the

job of programming easier for the user. Some examples of IDEs include Enterprise and Tracs. These

two systems both have support for designing, developing, and maintaining parallel programs.

3.4 Two Distributed Programming Standards - PVM and MPI

PVM and MPI are two basic rnessage passing libraries which have evolved into widely

accepted programming standards for distributed heterogenous workstation clusters. They are both

discussed in some detail in this section.

3.4.1 PVM

PVM (Parallel Virrual Machine) was the result of the efforts of a single research group

working at Oak Ridge National Laboratories and Emroy University, thereby allowing it to have a

large degree of flexibility in its design and also enabling it to respond incrementally to the

experiences of a large user community lGrLu9T]. The design and implementation teams were the

same so the design and implementation of this tool were completed quickly.

PVM consists of a collection of library routines that the user can employ within C or

FORTRAN programs. Using PVM, the user writes a completely separate and different program for

23

eacb tlpe of computer on the network. This programming style is referred to as the Multiple

Program Multiple Data (MPMD) model. The routing of messages between computers is done with

the PVM daemon, which is installed by PVM on the computers which form the virtual machine

(Figure 3"3). A daemon is a special operating system process that stays resident and performs system

level operations for a user when required or carries out background system tasks. A process (master)

may spawn other processes (slaves) dynarnically during run time (see Figure 3.4).

Workstation

-pv¡vl--a,

daemon ...;-=-À--/\

Ãppllcatio-ñ-] \
Program

I

G¡qçllteÞle) i

'r Workstation

Figure 3.3 Message passing between workstations using PVM

Time

Figure 3.4 PVM process spawning

Application
Program

(executable)

Process 1

pvm_spawn0

1^LA

The execution model which fits PVM the closest is the MIMD model. The user must define a

parallel virfual machine before running PVM, which contains a list of machines which will work

together. Some of the features available in PVM include process control, fault tolerance, dynamic

process groups, communication, and multiprocessor integration fl-oshg4]. PVM performs well over

networked collections of heterogenous hosts [GeKP96].

3.4.2MPI

MPI (Message Passing Interface) was designed by the MPI Forum, a collection of
implementors, library writers, and users. Each group working on the MPI project design did so

without any specific final implementation in mind, but with the hope that the implementation would

be carried out by participating software vendors [GrLu97]. Because MPI was broadly planned and

developed as a standard, it has become the most widely used parallel programrning tool available

today. MPI implementations are available for C, ç++, and Fortran. MPI has advantages over PVM

in that it possesses a richer set of communication functions and higher communication performance

can be expected over a homogenous cluster of machines [GeKP96]. MPI also has the ability to

specifli a logical communication topology.

Using MPI, the programmer writes a single program which executes on all processes.

Usually one process is mapped to each processor. Depending on control statements (i.e. if
process-rank::l), only certain processes will execute certain statements. This programming

methodology is known as the Single Program Multiple Data (SPMD) model. In earlier versions of
MPI, a process could not spawn another process. However MPI 2 allows for dynamic process

creation in a man¡er similar to PVM.

All global variable declarations will be duplicated in each process using MPL Memory space

for dynamic variables (pointer structures) only need to allocated by processes requiring the variable.

MPI uses communicators to send and receive messages. These can be intracommunicators for

communicating withing a group, or intercommunicators for communication between groups. A
group simply defines a collection of processes. MPI has support for blocking, non-blocking, and

collective comrnunication of data.

25

When an MPI program is started, the number ofprocesses, sayp, is supplied to the program

from the invoking environment. The number of processes in use can be determined from within the

MPI program by using the MPl_Comm_size routine. Most MPI implementations developed will
provide some useful error information when an error is encountered during execution, unlike PVM

which simply aborts the program execution. The information provided is dependent on the MPI

implementation and is not defined in the MPI standard.

Figure 3.5 shows an execution example of a typical MPI program. First the global variables

are declared. Each of these variables will be present in all processes. Next, the MPI initialization

statements follow which set up the processes for communication. Following this part, process 0

sends l0 terms of integer type to process l. Finally, the MPI processes are shut down with the

MPI FinalizeQ statement. MPI code will not be valid following this statement.

26

f - - - - - -global variable declarations - - - - - - - - --l
int my_rank; ffor rank of current process */

¡nt p; ffor number of processes */

int *f¡rst;

int tag =1'
MP|_Status starus; /*return staius for MP|_Recv*/

MP|_lnit(&argc,&argv); fstart up In¡tlalize MPI */

MPI_Comm_rank(MPl_COMM_WORLD,&my_rank); /-find out process rank->my_rank*/
MPI_Comm_size((MPl_COMM_WORLD,&p); /-find out number of processes ->p*/
first = malloc(1 0.sizeof(int));
¡f (my_rank==o) {

for (i=0;i<10;i++)
first=i;
MPI_Send(first,'1 0,MPl_lNT, my_rank+1,tag, MPI_COMM_WORLD);

l
else if (my_rank!=0) {

MPI_Recv(first, 1 0, MPI_lNT,0,tag, MPI_COMM_WORLD,&status);

Ì
MPI_Finalize0;

Process O Procoss I

my_rank!=0) t
M Pl_Recv(fi rst, 1 0, MPI_lNT,0,ta g, M Pl_COMM_WORLD,&statu

Figure 3.5 MPI execution example (2 process system)

There are numerous MPI implementation available including MPICH, developed by Argonne

National Laboratory at the University of Chicago[Grlu96], and LAM which was developed by the

Ohio Supercomputer Center at Ohio State University fOhio96]. [n addition, irnplementations ofMPI

such as MPICH-G2 have been developed for use with the Globus grid resource management system

lr;i..t"l
I execut¡on

I

MPLFinalize0;

s);
I

int "f¡rst
(size=O¡

int "first; int *first

(size=0)

int *first

(s¡ze=10)
first =

malloc(1 0"sizeof(int));
int "flrst

(size=10)

Compute
firstl¡=¡

if (my_rank==0) {
for (¡=0;i<10;i++)
first=i;

M Pl_Send(first, 1 0, MPI_lNT

-fìrst

my_rank+'l,tâ g,MPl_COMM_WORLD) ;

)
get *first

resulls from

Droc 0.

els(if (my

27

lGlob00l"

3.5 Existing Design Pattern Based Systems

Largely as a result of the increased popularity of multiprocessor workstations and

multicomputerworkstation clusters, research has accelerated to develop viable designpattembased

programming systems which attempt to provide tools that enable the user to program more

efficiently and complete complex parallel tasks with ease. Many of the approaches discussed in this

section employ separation of the specifics, advanced GUIs, and templates for parallel prograrnming.

3.s.1 CODE

Computationally Oriented Display Environment (CODE) was developed at the University

of Texas at Austin and allows the user to compose sequential programs into a parallel one [BergO2].

Using CODE, the parallel program is expressed using a directed graph, where data flows on arcs

connecting the nodes represent the sequential prograrns. The sequential programs may be written

in any language, and CODE will produce parallel programs for a variety of architectures, as its

model is architecture-independent. The CODE system can produce parallel programs for shared

memory and distributed memory architectures, including clusters of workstations.

The developer builds the parallel program in two steps. In the first step, the developer

specifies the contents of each node (i.e. sequential subroutines, input/output ports, internal variables,

and rules goveming how the node is run). The second step involves connecting the different nodes

together using the GUI to show the interaction among them. CODE translates the graph into a

complete parallel program. A screen shot of code is shown in Figure 3.6 below.

28

Jl CODE - dyn ìnteq.code

File Ed¡t Arrange Special Windows Help

!4_JIel 0lËlo s lð I'i-l qlqlEillffilmlffil ,-@*l

Int€gmte a fmclion ¡n parallel,

Figure 3.6 A screen shot of CODE (version2.2) [Berg02]

CODE uses the dataflow model to represent communication and syrchronization in parallel

programs. The data flow model assumes that computation proceeds, depending on the availability

of data. In CODE, the design pattems are the elements in the dataflow gaph such as a sequential

computation node or a comÍton shared variable. High level design pattems such as divide and

conquer are not available in CODE which would describe the structure and behavior of a collection

of elements. CODE does enable the recursive ernbedding of graphs so that a constructed dataflow

graph can be used as a single black box node.

CODE advocates the use of separation of the specifics, which means that parallel aspects of
the application are kept separate from its sequential functionality. The first version of CODE

appeared in the mid 1980s when the visual aspect ofprogramming was the most important part. The

new versions of CODE are designed to run on the Unix operating system and are compatible with

PVM and MPI based networks.

No MPL programming skills are required to build parallel programs using CODE. Users

29

work at the procedural level, stipulating how a computation is done [Beck96]. With CODE, a

transition is made from how something is done to what the developer is trying to do. CODE allows

the user to write a book by writing an outline and then having the tool fill in the rest. The user need

to only build multiple sequential programs, connect them using arcs, and CODE takes care of the

parallel book keeping.

Some limitations are that the CODE environment can only run only over a Unix/Linux

operating system and the full GUI of CODE is available only for Sun workstations. Also, from a

programming perspective, it is believed that the use of dataflow elements and complex firing rules

still involve too low of a level when building large and complex parallel programs [BHDM95].

3.5.2 HeNCE

Heterogenous Network Computing Environment (HeNCE) is an X-window based software

environment designed to assist scientists in developing parallel programs that run across a network

of workstations [Siu96]. HeNCE was developed at the University of Tennessee and is similar to

CODE in its intent to provide a GUI speciôring a directed graph, which shows the interaction among

nodes. HeNCE also uses separation of the specifics in which the developer first specifies the

sequential computation in each node and the communication between nodes using a process gaph.

Design pattems in HeNCE are represented by graphical icons and includes higher level parallel

programming abstractions such as replication, loop, pipeline, etc. Other structures such as

master/slave can easily be constructed with the provided design pattems and basic nodes.

The HeNCE model uses control flow graphs, as opposed to the dataflow oriented graphs of

CODE. HeNCE generates PVM code based on the graphs constructed by the user. PVM, as

discussed, is an accepted parallel programming standard so the code developed is portable. HeNCE

also relies on the PVM system for process initialization and communication. The programmer never

has to write explicit PVM code. During or after execution, HeNCE displays an event-ordered

animation of the application execution, allowing visualization of the relative computational speeds,

processor utilization, and load imbalances [Netl94]. Again, analogous to CODE, the developer can

30

c;asilSi decompose existing C (or FORTRAN) source code into pieces which can be executed in

parallel over an existing network of workstations or supercomputers. In this way, existing progams

may be reused and unused performance can be tapped out of existing machines.

HeNCE is limited to run under a Unix operating system. User feedback on HeNCE indicates

that it is not flexible enough to express more complex parallel algorithms [BHDM95]. HeNCE was

conceived as a research project, rather than a development tool and never gained a high level of

popularity among users. Its development has been discontinued ,but is still used due to its legacy

value as an early automated parallel programming tool [Netl94]. A screen shot of the HeNCE

environment is shown below in Fizure 3.7.

Information
to HeNCE toolversion 2.0

clrrent language is C
graph file slatic_integ.gr loaded

@@@@E

Runcime mesages and '
here-

,F

Figure 3.7 Screen Shot of HeNCE (from [Netl9a])

mode: compose

directory: stat¡c_integ
graph: stat¡c_integ.gr
cost matrix: both.mat
lrace:
language: c

h"rdmmffiA tg;.t¡t_'i1_Þj'_¡-1

Ctid< rn thæe icms m selecc tle cme
cf node co draw.

Click cn whiæ ça.ce
lrft h¡ttondmv/s node.
cntl-left deleres nodÈ
Middle brtto¡rdmws arc.
Right b¡tton opens node program"
Sbift-right cpens node subrouti¡e,

Iigue 3: The hl,ool Windæ

3l

3.5.3 Tracs

Tracs was a result of work carried out at the University di Pisa [BCDP95] with the design

goal of creating an environment that can facilitate the development of distributed applications

involving groups of networked, heterogenous machines. Tracs enforces the use of an appropriate

methodology for distributed application design. The parallel application design is split into two

phases, the f,rrst devoted to finding the basic design patterns components, the second to building an

actual application out of the components. Tracs provides separation of the specifìcs, in a similar

fashion as HeNCE.

The modular approach ofTracs permits code reuse and allows the developer to structure their

applications in an organized manner with well defined interfaces between the components. Tracs

provides many advanced utilities that fit into the overall framework and whose operations are

independent of one another. It provides the ability to automatically create components and to

simplify the defìnition of components in the application itself.

Tracs specifies three components which are the task model, the message model, and the

architecture model. Nodes communicate s¡mchronously or asynchronously by messages though

unidirectional channels. A channel must be associated with a message model which handles the

packing, unpacking, and translation of the data. A developer starts by specifying the sequential

computation in the task model ISiu96]. Following this, the task model is combined with attributes

such as ports, services, logical names, and messaging models. When all the tasks are defined, the

developer connects all the task models and binds them to processor. The final code is generated

based on the models.

The most significant contribution of Tracs is its use of high level design patterns. The

powerful graphical interface can facilitate the addressing of complex design patterns such as task

farm, ring, aÍÍay, grid, and tree. Its architecture model has raised the abstraction of design patterns

from a single process to a collection of processes. Support is provided for C, Ç-l*, and Fortran.

Tracs forces all design patterns to be graphical, which can cause difficulties with the

32

representation of some patterns that cannot be represented conveniently (i.e. divide and conquer).

'T'he graphical interface ofTracs is rich in its strategy, but can limit the expressiveness of the system.

'Fracs also can only run in the Unix envirorunent.

3.5.4 Enterprise

Enterprise was developed at the University of Alberta in Edrnonton [WIMN95, SSLP93].

It is an integrated environment complete with a compiler, a debugger, graphics visualization tools,

and a performance debugger that allows developers to produce distributed applications with ease.

It also uses separation of the specifics. There is a rich graphical interface which the user may utilize

to build parallel applications, with the system automatically inserting the code necessary to handle

the communication and synchronization [Ente02]. The code generated is C code that is

supplemented by new semantics for procedure calls that allow them to be run in parallel.

The developer uses a programming rnodel that resembles a business organization to represent

parallei structures such as pipeline, master/slave, and divide and conquer and does not have to deal

with low prog¡amming details such as marshalling dafa, sending/receiving messages, and

synchronization. The developer specifies the desired design pattern technique at a high level by

manipulating icons using the GUI (see Figure 3.8). All of the communication protocols that are

required are inserted automatically into the user's code. The user is given control of the amount of

parallelism required through Enterprise's high level mechanism.

aa
JJ

Figure 3.8 Enterprise Screen Shot (from [EnteO2])

Programmers draw a diagram ofparallelism inherent in their applications using thebusiness

model or entetprise analogy. Tasks are subdivided into smaller tasks and assets are allocated to

perfbrm the tasks. Parallelism is determined by the number and types of assets used. Graphical icons

representing assets such as an individual, (assembly)line, division, and others are provided (Figure

3.9). A department, for example, can divide the tasks among components that can then perform the

tasks concurrently.

Figure 3.9 Enterprise Assets (Design Pattems) UMMNgsl

t-d=l
EJ
Representnti'æ

[s-il/-MvllHl
Serr¡ice

|.d.fr,#..n1
I f-l,r I

[--------r I

Receptionist

I lr"sllI rl+ lll^Ð-#l

lF::+ |

Ditision

ffi
Enìerprbe..

@-@Eltull-l
DeDsrùnÊff

Indi'¡iduå]

34

The fact that C code is generated greatly enhances the ability of the Enterprise to produce portable

code. in addition, the high level of abstraction gives novice users the ability to program complex

parallel programs.

The Enterprise programming environment itself can only run on the Unix operating system

which is limitation. As well, many programmer have found that Enterprise is too inflexible in the

code it produces. In a monitored programrning experiment, graduate students produced less code

using Enterprise than using PVM, but required more time create optimal code. The lessons learned

from Enterprise are that design patterns can be used to quickly and correctly develop parallel

programs, but these programs do not produce the performance of hand-crafted parallel programs

using MPLs, and that users do not like to lose control and flexibility of low-level primitives within

a higher level model.

3.5.5 DPnDP

Design Patterns and Distributed Processes (DPnDP) [Siu96, SiSi97] was developed at the

University of Waterloo by Stephen Siu and Ajit Singh as a parameterized design-pattern based

system. The programming system was designed with two enhancernents over other existing systerns,

openness and extensibility. Openness is the ability to bypass the high level programming model and

directly access low level primitives for the purpose of optimizing performance and enhancing

flexibility. A system which permits easy access to low level primitives has a high degree of

openness, while a closed system forces the user to stay within the automated coding approach.

Extensibility refers to the ability to add new design patterns to the system, thereby increasing the

system's utility. In a non-extensible systern, if a required pattern is not provided by the system, the

system has no advantage over direct low level coding.

DPnDP is an open system in two ways. First, developers can create any arbitrary process

structure using a combination of single process design patterns (singletons) and multi-process design

patterns. Users are not restricted to only the high-level design pattems. Second, developers can

access low-level message passing primitives if they want to tune the performance or to use

specialized message passing features such as ''groups" in PVM. Therefore, developers can develop

applications, partiallyusing design pattern and partiallyusing low-level message passing primitives.

35

When users decides to use low-level message passing primitives over the high level automated code

generation mechanism, they are responsible for ensuring correctness.

All design pattems in DPnDP share a uniform interface for definition and development.

Other components in DPnDP access them only by using this interface. Therefore, a design pattem

does not have to know the implementations of other design pattems to work with them. This context

insensitivity allows system developers to add new design pattems incrementally into DPnDP

without having to know the implementation of other pattems or the system. Furthermore, existing

design patterns can be used as buildìng blocks to create new design patterns.

The DPnDP parallel programrning model assumes a MIMD machine architecture and an

operating system that supports process creation and message passing among the processes. A

paraliel program is represented by a directed graph when using the GUI. Each node in the graph is

a singleton or a multiprocess design pattem. Node in the graph communicate and synchronize

through message passing, represented by directed affows as shown in Figure 3. 10.

/i--*
i

Figure 3.10 Structure of a DPnDP application lSiSigTl

Each process (represented by a node) in a DPnDP application operates in a loop in that it waits for

incoming messages on any of its ports from other processes. When a message arrives at a port of a

process, the process notifies the appropriate user provided message handler to process the message.

Design patterns are provided that implernent various types of process structures and interactions

found in parallel systems, but the application specific procedures are unspecified allowing the user

to fill in his/her code. When using a design pattern, the user only deals with communication that is

application specific. All other communication needed for process management is taken care by the

36

automatically generated code.

DPnDP has been implemented and run using a network of workstations that run under the

Solaris operating system. Preliminary results from simulations indicate that the performance of code

produced by DPnDP is within l0o/o of hand coded PVM for similar problems. Openness and

Extensibility are improvements over other pattern based systems. However, the programming

system can only be used in Unix/Linux environments.

3.6 Froposed Enhancements

The above systems provide a insight into existing design-pattern based parallel programming

systems. These systems have simplified parallel programming significantly for intermediate users,

but at the same tirne have imposed bounds on the user. Every system discussed has limitations,

ranging from the programming model being too low in the case of CODE to a lack of flexibility in

HeNCE. There is a well defined tradeoff between the ease of use of a system and the systern's

flexibility. Tracs and Enterprise suffer from a lack of expressivity of higher level design pattems.

Enhancements are required to the programming rnodel ofmost of the above systems in order

that the programmer should be able to use mechanisms provided by the system to cover the coÍunon

problerns, but also include mechanisms to cover the remaining types of uncommon problems

[BHDM95]" In addition, the programmer should be able to use the programming environment over

a diverse range of platforms such as a Unix workstation, a Windows PC, an Apple Macintosh, etc.

The programming environment should function irrespective of whether the platform can actually

run the resultant parallel program. The developed program can always be ported to the intended

platform(s).

While systems such as DPnDP have been proposed and developed to tackle the issues of
openness and extensibility [Siu96, SiSi97], there is little to show for programming portability.

Overcoming the portability issue for the programming envirorunent is not an easy task as every OS

and hardware platform has its own rules for handling events and graphics. While MPI and C are

a-JI

standards used in parallel programming today, there is almost no system which can aid the user in

programming MPI code using C on almost any widely used computing system. This thesis project

sets out to demonstrate that by building a parallel programming system through a non-platform

specific language such as Java, aportable system is possible.

3.7 Summary

This chapter has provided a description of existing parallel programming systems. Raising

the level of abstraction can be done by providing the user with rnessage passing libraries(MPls) and

remote procedure calls (RPCs), abstractions on top of MPLs and RPCs, and through other more

unique approaches. Parallel progtamming systems are broadly classified into basic systems, tool

kits, and integrated development environments based on their functionality. PVM and MPI have

evolved as two accepted MPL standards for distributed programrning and design pattern based

systems have emerged such as CODE, HeNCE, Tracs, Enterprise, and DPnDP to assist the

progi'ammer. Most of these systems are closed, not extensible, and generally only function as

programming tools on particular computer architectures or operating systems. lmprovements in

these arcas appear desirable. Chapter 4 discusses the design and implementation of MPI Buddy, an

open and portable design-pattern based system.

38

Chapter 4

Design and implementation of a Parallel Programming System
(MPI Buddy)

4.1 trntroduction

This chapter describes the design and implementation of the MPI Buddy system for parallel

program development using MPI. The uniqueness of the MPI Buddy system is the ability for the

developer to program the application from almost any platform. The functionality desired from the

prograrnming systern is discussed before the actual layout ofthe implementation is presented. Next,

the design patterns included in the system are discussed. The chapter concludes with the

programming model that is intended to be used with this system.

4.2 Functionalifv Desired

1. User Friendly Interface

A user friendly interface is important for allowing the user to conveniently work with the higher

levei automated code generation mechanism and simultaneously providing access to low level

primitives.

2. Openness

Openness is a system attribute that is key to allowing the user to have the flexibility to customize

the automatically generated code from the system. Openness gives the user the ability to mix the

high level model with low level primitives when necessary. Openness can be achieved in the manner

shown in Fisure 4.1.

39

High Level Code

Message Passing Libraray (MPl)

Low-level message passing primitives
(ie. socket level)

Figure 4.1 A layered open system (Adapted from lSiug6l)

One disadvantageof an open system is that correctness is compromised as the system has no control

over the code directly entered by the user. Another disadvantage is reusability of the code becomes

compromised by the user inserting application specific code.

3. Design Fattern Based

As explained in chapter 2, design patterns offer many advantages including correctness,

maintainability and reusability, and ease of use. Therefore, it is irnperative that the system use

parallel design pattems and that they be parametenzed so a single pattern can be adapted to what

the developer specifies by simply filling in the parameters using a GUI.

4. Extensibility

The system should allow new design pattems to be added conveniently by simply adding another

module onto the system and cornpleting the links in the system code. Ideally, it would be beneficial

if new design patterns could be added to the system easily through a common interface, but this

design concept could not be realized in this work due to time constraints.

5. Generation of Optimal Code

The code generated by the system should not only be correct, but it should be optimal in terms of
communication requirements. The developer should be able to use the automatically generated MPI

code wherever possible and expect to get good parallel results. The assumption is that the user's

40

parallel design is efficient in the first place and the target environment is a cluster of single processor

workstations.

6. Ability to Test Code Syntax Correctness

The system should be able to compile the MPI code to determine whether the MPI program is

functioning correctly. This is especially crucial to an open system which allows the user to directly

modiff the generated code. Forcing the user to exit the system to compile the code would delay the

development process.

7. Portabilitv of System

The developer should be able to work different architectural platforms using widely accepted

operating systems. This is possible if the system is developed using the Javaprogramming language

and Java's Swing based components are exploited. The Swing GUI components appear visually the

same regardless of the platfonn being used. The Java programming language is described in more

detail in section 4.3.

4.3 The hva, Programming Language

The Java programming language has revolutionized the world of programming, allowing

developers to easily create rnultimedia-intensive, platform-independent, object-oriented code for

conventional, Intemet, Intranet, and Extranet-based applets and applications [DeDe99].

The Java progtamming language has also been considered for parallel program development

directly. A Java class library jmpi already exists [Dinc98]. Jmpi is a l00o/o Java-based

implementation of the Message Passing lnterface (MPD. jmpi supports all the MPI-l functionality

as well as the thread safety and dynamic process management of MPI-2. jmpi is built upon JPVM,

which implements message passing by communication over TCP sockets. Java has the advantages

of being easy to learn, keeping projects manageable, and simplifying the development and testing

of parallel programs. Java is platform independent and extremely portable. The Java programming

language also has the advantage in that the language was designed for networks (and computer

41

ciusters) ald has built in communication routines.

However, the overhead involved with Java far exceeds that of the C language and can result

in very slow executing programs, especially message passing ones. Java programs run on average

10 times slower than those written in C. This makes no difference in building a programming

system, as the rich graphical support for coding the API in Java gives a graphical richness to the

application, while at the same time the actual application code developed from the Java application

will use the low level, high speed C language with MPI support. This style of interface programming

incorporates the best virtues of both the Java and C languages: ease of graphical development and

effi cient low-level code.

4.4 Systern Design LaYout

This section details the layout of the "MPI Buddy" system that was developed using Java

with the intent ofproviding alevel of abstractìon above MPI. The Swing components of Java 2were

exploited to give the programrning system a consistent appearance across computing platforms. The

system was designed as shown in Figure 4.2'

42

Template Function Help
HelpDialog java

files

MPI Constants
ConstantHelpjava

HTML file

Web Help
Browser.java

Figure 4.2 Layout of the MPI Buddy System

The main rnodule is responsible for the launch of the application and links when the user selects

various menu selections to other classes in the application which perform specific functions. This

approacii was determined to be logical and consistent with the Object Oriented Modular style of

programming" The main features (Figure 4.2) of the MPI Buddy application are described below.

4"4.1 Main Executable

This class produces the main GUI window that displays the user's code (Figure 4.3). The

screen and file VO for the text MPI C code is handled by the main executable. The code in this

module contains links to the otherprogram classes, which can be activated by selecting options from

the pull down menu. In addition, there is another text area produced by this class which returns the

output results of cornpilation attempts on C code by the user. Much of the code of this class is only

executed once action events are instantiated by the user.

Help Modules

lntro-Screen
LoadPartjava

- Provides
information about the

application upon
launch

Main
Executable
TryReadjava

- Main GUI lnterface
- S¡,stem l/O
-Menu Bars

Design
Patterns

- Modules for design
pattern GUI and
lmplementation

-See section 4.4

Gompilation
Compilejava

- Allows G MPI
programs to be

compiled from inside
MPI Buddy

A'+J

Figure 4.3 Screen shot of MPI Buddy (main window)

4"4.2 Compilation

The Compile class allows the user to compile a C MPI program (or basic C program),

providing that the underlying operating system supports the compile command used. The user is

given full control of the compilation command to be used and may modify the command line

statement directly in the text box provided by the GUI (Figure 4.4). This gives added flexibility to

the application and ensures that the compilation command will not be limited only to one compiler

or platform"

Figure 4.4 Compile GUI

^/1IT

4.4.3 Help Modules

It was determined early in the development process that the application would require a

learning curve for the user. Fortunatel¡ the Java language allows for the easy displaying of
information in html files and also provides easy access to the world wide web. These capabilities

were exploited in order to provide the user with support. The help menu accessible in the main

window provides the following support:

Template HeIp: Html files were created during the development process that document the
intricacies of each design pattern type and how to use them. Using a JavaJEditorpane, the
contents of the html fìle are displayed.

MPI Constant Help : A JEditorPane is used to display the infonnation about the various
MPI types (srored in a html file).

Web Help : A simple web browser is provided that sends the user to a main web site for
MPI development upon launch (http://www-unix.mcs.anl.gov/rnpi/www/www3/). The user
rnay click on the hyperlinks or type in a URL to access whatever else is required frorn the
world wide web. This feature requires that the computer the user is working on is connected
to the internet.

4.4.4Printing

It was deemed important that the user should be able to print out his/her document, consistent

with other APIs. The Java Printable interface was implemented and code was written to ensure that

the proper number of pages to print was automaticaily calculated.

4.4.5 Design Patterns

The design patterns were developed independently of one another, but all ìnherit from a

common base class (DesignMaster.class). This base class contains the common variables used to

create the communication code as specified by the user. These include the communicator name, the

process variable declaration, current rank variable for each process, and the default Mpl_Status

designation. The design patterns are described in much more detail in section 4.5 .

r+)

4.5 Design Patterns Included

The design pattems of the MPI Buddy system were chosen from recurring parallel

programming decomposition paradigms such as divide and conquer, lD Master/Slave, 2D

Master/Slave, etc. The design patterns incorporated into the system were found to be among the

most utilized. One pattern, the dl,namic lD Master/Slave was provided mainly to give the

programmer an idea of how to create such an approach. Dynamic workpool approaches are

appropriate for cluster environments when the individual workloads are sufficiently coarse grained

or the individual workstation speeds differ substantially. There are almost an infinite number of
other communication and decomposition schemes available than those provided in the system, but

time did not facilitate their irnplementation.

The GUI interfaces for the design patterns were developed with the goal in mind of
providing choices to the user that will enable custom communication code to be created along with

the generation of all the required variables. There are tool tips provided to the user when entering

the required parameters that will enable him/her to easilyunderstand what is required. Additionally

, help on each design pattern is available in the help menu (he1p->template functions). The code

produced by the various design pattern modules was developed so that design pattems can be reused

within a single program with similar or different input values for the required parameters. The

patterns included in the system are described in this section.

4.5.1 lD Scatter/Gather

The first function of the 1D Scatter/Gather module is to distribute (scatter) an array of data

evenly over thep processes. This setup assumes that the initial array has a number of elements that

is evenly divisible by the number of processes. If the data is not evenly divisible, an error will be

produced in the resultant program. The approach is shown below in Figure 4.5 .

46

0 ¿ 4 o T Root Process

1D Scatter

Figure 4.5 1D Scatter/Gather

The second function of this module is to gather up the datathat was previously scattered. The user

is provided with a choice of the type of gather operation required. More flexibility is available

depending on the type of gather operation specified by the user. The user has the choice of No

Gather (leave the data among the processes), MPI_Gather, MPl_Allgather, and MPI_Reduce. The

pararneters that the user must fill with the GUI include the send and receive buffers. the

communicator, root process rank, and MPI datatype (int,float,double,etc).

4.5.2 Balanced lD Send/Receive

This module is analogous to the lD Scatter/Gather module, except now there is no

requirement for the load (data) size to be evenly divisible by the number of processes. If the data is

everrly divisible by number of processes, using the lD Scatter/Gather module will result in more

efficienf code being produced. The code produced by this module works as follows: The data is sent

out in a manner such that the root process (0) always gets naverag.¿ consecutive terms frorn the

originai send buffer, where naverage is the datasize divided by the number ofprocesses. The next

process will get naverage terms f a leftover term if there are remaining terms (These terms are

always consecutive in the new receive buffer). This continues for the remaining process until all the

rernaining terms (i.e. terms above naverage) are used up. The total data size variabl e is totalCount

upon code generation. The data sent may also be received again into the root process. If the user

selects "Yes" in the Receive drop down menu.

\
\

m
Proc. 3

\
I

m
Proc.2

l
It

ffi
Proc. 1

/
/f

m
Proc. 0

0 4 o 7 8 Root Process

Figure 4.6 Balanced lD Send/Receive

4.5.3 2D Scatter/Gather

This module implements a 2 dimensional scatter/gather approach. The module has the

function similar to the I D Scatter/Gather module, except now the data is scattered using equal sized

blocks. The code created by this module works by first setting up the required variables. They are

the totalsiz¿ for the total data size, hsize for the block size, loc_hsize for the amount from each block

to go io every process, and finally vsize for the number of blocks. Following this, the clata is

scattered blockwise so that each process gets loc hsize tenns after each scatter. This approach is

illustrated below in Fizure 4.7.

Send Buffer
(Root Processor)

/
/
I

m
Proc. 0

rlanced lD Send/Rece¡ve

/\\
/ \\t\\

FT{;t m m
Proc. 1 Proc.2 Proc. 3

FH
i_l_l-

roc_hs¡ze"wize

fT-n

Figure 4.7 2D Scatter/Gather

48

Using this approach there are two constraints; First, the data size must have a number of
blocks to cover the entire data size (i.e. the Send Buffer). Second, each block size must be evenly

divisible by the number of processes. If either of these conditions is not met, an error will result. If
the first condition is met, but not the second, the developer can use the Block/Cyclic Send/Receive

Approach instead.

There is also the choice to receive the databack into the root process following the initial 2D scatter.

If this option is chosen, the data will be received into the final receive buffer in a blockwise gather

fashion (so the elements will be in order).

4.5.4 Block Cyclic Send/Receive

This module implernents a block cyclic send/receive data decomposition scherne. The

approach distributes data cyclically from blocks of data. The code created by this module works by

first setting up the required variables: They are datasize for the total data Send Buffer size, hsize for

the block size, vsize for number of blocks, naverage for the integer average in each process, and

nremain for the total number of leftover terms above naverage. The communication proceeds in

rounds with the root process always being 0. The total number of points after each round (for each

process) are in mypoinîs. The variable mytotalpoínts contains all the points after the cornpletion of
the block cyclic send/receive. Following this, the data is scattered blockwise so that each process

gets loc_hsize terms after each scatter. This approach is illustrated below in Figure 4.8.

49

Send Buffer
(Root Processor)

Block Cyclic
Send

El [-"1 t,-r---] f¡¡1-1 l.uo","ot-| lt I l

| " I I fT-rTr llfrn llrrn I

I frn I I fr-m l I fT-ft | | fr_]_. l

I rrn | | mn I I rT-n l l n-n It-ttllltl
lprocess0 | lprocesst | |

processzl
I

processsl

m)4otalpo¡nts

Figure 4.8 Block Cyclic Send/Receive

4.5.5 Cyclic Send/Receive

The function of this module is to distribute an array of data in a cyclic fashion. In other

words, each element of the array will be distributed to a process determined by the equation i%op,

where i is the position of the element in the anay and p is the total number of processes. Figure 4.9

illustrates this communication setup. There are no constraints on using this module.

To save communication time, the total data to be sent to the processes is calculated by the

root process (process 0) and simultaneously the slave processes calculate how many terms they will
require. The total data sizefor the Send Buffer is given by the variable datasize. For all processes,

mypoints gives the total number of points in each process, and the receive buffer specified by the

user gives the data in each process.

50

0 1 ¿ 4 o 7 Root Process

Cyclic Send/Receive

4 Process Case

Figure 4.9 Cyclic Send/Receive

4.5.6 Dvnamic lD Master/Slave

'fhe function of the Dynamic lD Master/Slave (worþool) module is to allocate processor

resources based upon the availability of data. A process working in parallel to solve the job is

allocated a certain amount of work. Upon finishing the work, the idle process checks if more work

is availabie. If more work is available, the process is assigned new work. When the total work is

ooinpleted, the dynamic I D Master/Slave function exits. Figure 4. i 0 shows the approach ernployed

Ihis approach is useful for heterogeneous clusters where individual job cornpletion tirnes are

unpredictable"

.......processor N-1

Figure 4.10 Dynamic lD Master/Slave

The root process (process 0) keeps track of what task (block of data) is in which process and takes

care of the task communication to the other slave processes. The slave processes receive the tasks

and manipulate the data received, before sending the results back to the root process. When a result

is returned to the root process, it is inserted into a final receive buffer and the root process sends out

the next iask until all tasks are completed. This rnodule produces a function which the user can name

using the module GUI. This function is designed to be manipulated to perfonn the work desired in

\
\

m
Proc. 3

\
I

ffi
Proc.2

I
I
r

m
Proc. 1

/
/

Í

m
Proc. 0

Workpool of Tasks
/ñr^^ôêê^r n\

Return Results/

51

each task.

4.5.7 lD Divide and Conquer

The function of the lD Divide and Conquer module is to distribute a lD array of data using

the divide and conquer approach. This approach uses a balanced tree to distribute the data to the

processes. The lD Divide and Conquer approach is illustrated in Figure 4.1 I for a 8 process system.

t¡¡_l

nig.,r" l.f t lD Divide and Conquer (from [WiAl99], p.l la)

The type of distribution for the Send Buffer data rnay be chosen by the user using the pull down

rnenu. The user also has the option of collecting the results up the tree again to the root process

(process 0) if requested in another pull down menu. This rnodule will produce one procedure that

depends on the type of distribution selected by the user (i.e. regular, keep even/send odd, keep

odd/send even). Another procedure is produced if the user selects "yes" froûl the Receive pull down

menu which allows the user to speciff computation that can be performed on the way up the tree to

a single array.

4.íProgramming Model

TheprogrammingmodelforMPlbuddyuses aJavaSwingbasedGUlwhichtheuserutilizes

to write his or her code with. The user must go through several small steps in order to produce

efficient application code with minimal programrning time.

Original list

52

1. Defïne a New MPI File

The developer selects Design Patterns->New MPI File from the main menu. This opens a window

which requests parameters such as the default message tag, the default communicator, the name to

denote the variable containing the number of processes, and other essential parameters in an MPI

program. The user fills in the requested information and selects the DONE button. The main text

screen will be cleared of any existing program code and replaced with new code containing the MPI

header/ender.

Library Include Statemenis
Varlable declarations

MPI Statements (ie. MPI_lnit)

MPI_FinalizeQ
Return Statement for Main Program

' Figure 4.12 MPI Buddy prograln layout

The MPI header/ender contains all the necessary information for starting up and shutting down an

MPI program. In addition, there are include statements in the C code for the commonly used C

libraries (stdlib.h,stdio.h) along with the mpi library (mpi.h). The user may stop at this point and use

only the header/ender to develop the MPI program further if he or she chooses. This code by itself

is correct and will compile and execute with no work perfonned. However, the rnany design patterns

provided by the tool make programming many parallel problems easier by following the remaining

steps.

2. Utilize the Required Design Pattern(s)

This involves the user first clicking the left mouse button in the code at the place in the program

where the data decompositior/ communication structure is to be inserted. This will require that the

userhas a good knowledge of C programming to understand what is intended to be constructed. The

design pattern to be inserted can be found from the menu : Desígn Patterns->(type of pattern)-

>(pattern). Parameters will be requested of the user and upon filling these out and clicking DONE,

the code skeleton will be inserted automaticallv. The user mav modifu and add to the code as

User MPI Code
(developed in step 2)

53

deemed necessary. The model for this approach is shown in Figure 4.13.

Design Pattern

User Enters Parameters

Communication Code

Application Specific
Code

Figure 4.L3 Prograrnming approach

3. Save" Check. and Compile Final Code

The user must save the MPI C file that was developed if the aspiration is use it on a Linux/Unix

clustei. T'he file will be saved in the standard ASCII text fonnat for portability. Following this, if

the underlying architecture supports MPI program execution, the prograrn maybe compiled and the

results will appear in the lower text area of the GUI. Alternatively, at this stage one may opt to work

with the standard MPI compile statements directly in a Unix/Linux environment'

4.7 Summary

This chapter has discussed the design intentions and layout of the MPI Buddy system. It was

considered important that the tool be portable, design pattern based, contain a user friendly user

interfâce, produce optimal code, and have the ability to test the code for correct syntax. The ability

to extend the number of design patterns was deemed to be a very good trait as well and was partially

accomplished through a modular system design. The system was developed with the use of the Java

programming language since this language has built in portability properties. The design patterns

included in the system were discussed in detail and even though the design patterns included are

among the most comrnonlyused, they are only a small subset of the total number ofparallel patterns

in existence"

54

The programming model of MPI Buddy starts by having the user declare a new MPI file.

Following this, the user selects the design patterns necessary for the application being developed.

Filling in the generated code skeleton with application specific computation code completes the

coding process. The programming examples and analysis of the utility of the MPI Buddy tool is

discussed in the next chapter.

55

Chapter 5

Programming Experiments and Analysis

5.1 Introduction

This chapter describes how various parallel programming problems can be tackled using MPI

Buddy. Examples are provided involving problems such as the 2D discrete wavelet transform and

the iterative fast Fourier transform. Each of these problems is approached using the design patterns

provided in the MPI Buddy programming systern. Observations and difficulties experienced using

MPI Buddy are documented. Finally an analysis of the prograrnming system rnodel is made.

5.2 Metrics used to Evaluate Performance

Parallel and distributed programmers use various metrics to gauge the performance of a

parallel implementation. Metrics such as run time, speedup, efficiency, and cost reveal information

regarding the benefits of parallelism over a sequential version of the algorithm. Other softer metrics

are required to assess the benefits of a parallel prograrnming system. These include the time spent

developing the code and the ease of programmability. The ability to port the applications and the

fact MPI Buddy can run on different computing platfonns are benefits inherit in the design of the

system.

5.2.1 Objective Metrics

Run Time

This is the most primitive hard metric to gauge the performance of a parallel application. It is

basically araw comparison of the best sequential algorithm run time /" to the parallel run time /r.

56

Spccdup

Speedup is a metric that captures the relative benefit of solving the problem in parallel over using

a single processor system. Speedup is defined as :

, Execution tíme on 1 processor l -
u\p)-

-

- \J.r./ExecuÍionlimewifh pprocessors to \ /

The best sequential algorithm is employed for /" in the above equation.

Efficíency

Efficìency, E is a measure of the fraction of time for which the processor is usefully employed

with work (computation) and not idling.

U _ Execution time with I processor
^S(

p)
- - E*ecution time with a multiproces,sor x n r*bu, oJ p-u*= ;

(5'2)

An ideal efficiency approaches l, representing the rare case when all the parallel processors are

employed on the computation at all times. In this case the speedup S(p) would be p.

Cost

Cost is an index which indicates whether the parallel execution time is proportional to the sequential

executiorr time. Cost is defined as :

Cost = Parallel Execution tÌmex total number of processors used = #= + (5.3)

5.2.2 Subjective Metrics

Time spent developing code and ease of programmability are crucial to recognizing how the MPI

Buddy system benefìts the developer. Understanding that MPI Buddy is geared at distributed

clusters of workstations, since it uses MPI undemeath, it is necessary that the code generated be

correct and perform well against hand coded MPI applications.

57

In evaluating a progamming system, the time spent developing code and ease of
programmability are the most important measures to assess, yet they are the most difficult to

quantify-. One must be able to realize whether the tool is worth using. Every programmer will react

differently to a programming system, depending on his/her programming knowledge and personal

preferences. Still, it is believed that generalizations can be drawn from using representative

problems and conferring with a small group of individuals that are familiar with MPI.

Sections 5.4-5.5 illustrate the use of the MPI Buddy system for parallel programming. The

objective metrics of run time and speedup are used to gauge the performance of the hand coded

implementation. A cornparison is made between the MPI Buddy and the hand coded versions to

understand if MPI Buddy does generate efficient code. A brief explanation of the time spent

developing the code using the hand coded and MPI Buddy scenarios and a description of the ease

of programming the application is also provided for both situations.

5.3 Computing Platform Used in this Work

The computing platform used for running the developed parallel applications was a dedicated

Beowulf Clusterwith eight nodes, located in the Department of Computer Science at the University

of Vianitoba. Each compute node is a Dual Pentium III workstation operating at 550 MHz with 512

MB RAM. 'Ihe setup of the platform is shown in Figure 5.1.

58

The conçrute noilæ æ:
Dual P enlium- I Ii/5 5 0 with
5l2ltß F¿U, 6+8GB dßk,
ftinning Nf6.2, Ìcernel 2.2. 11

The inbnomecii are;

2. Giganet CLAN- L25Gbps
3. lll'jnel - I.2îcbps
4. S\titched Ethemet - l1|Mbps

ÐØl ÐI¿ÌlÈÐE,s.l00E Jrûlq* åIlJ
.A+r¡¿x .¡d¡ Jt \+?s sr¡lr.hcJ

ÊfiÊ E
I--, (J LJ

{t.Élù¿}.d.MùÌtoþë¿a
P.EN'OO, 3MMì,44G8
PJr 6.2, l¿æ12.2.14,

Figure 5.1 Platform Used

The experiments were run using a 100 Mbps Fast Ethernet network. The Fast Ethernet connection

has a high communication latency. Therefore communication differences between the hand coded

and MPI Buddy coded version of the application will be obvious. The Myrinet and Gigabit

connections for the cluster were not operational at the tirne of this work.

5"4 2D Discrete Wavelet Transform

5.4.1 Introduction

Wavelet transforms have been successfully used for the multiresolution representation of
one-dimensional and multi-dimensional signals. The most common application ofthis representation

is data compression. The new image compression standards such as JPEG 2000 |MGBBO0] use the

wavelet transfonn prior to the encoding step. Data compression is not the only application of the

1
À6d rìJîJ.SÐù¿r

¿ lo tÌr,tuw 6a EO f n 24.229)

59

wavelet transforms. They have been used in many different areas, such as data analysis, numerical

analysis, signal processing and image processing. In such applications, the problem size is typically

iarge and the computation of the wavelet transform can be prohibitively costly, even though its

complexity is linear in the number of input samples, with a constant factor that depends on the

length of the filter. However, the algorithm is well suited for parallel processing because of the

repetitive nature of the computations and the regularity of the

input data [ChCC02].

5.4.2 Analysis of the Problem

The orlhogonal wavelet decomposition of a 2D signal x[n,rn] can be computed by

convolving with a filter in one dimension (rows), retaining every other column, followed by

convolution of the resulting signal by another filter in the other dimension (columns) and retaining

every other row |KHTG9S]. With a pyramid algorithm, further stages of the 2D-wavelet transform

can be computed by recursively applying the procedure to the approximation coefficients of thê

previous stage (LL subband). The 2D DWT algorithm will produce four subbands at every stage,

each one is I /4 the size of the input data size to that stage. These four subbands are denoted HH, HL,

LH, and Lt. with the first letter denoting the filter used horizontally and the second letter the filter

used vertically (H:High pass, L:Low Pass). One stage of the 2D DWT is shown below in Figure

HH 8ênd

HL B6nd

LH Bênd

LL Band (¿pproxmebon
coeffcents lo ner slage)

Figure 5.2 One Stage of 2D Discrete Wavelet Transform

The image is assumed to be periodic in nature along both rows and columns when performing the

2D DWT. This infers that should the convolution need terms beyond the edge of the image, those

60

Perlom 1D DWf Verllcally

terms are supplied from the other side of the image. For the 2D DWT discussion, the images are

assumed to be of size NxN and the number of processors is p.

5.4.3 P ar allel Decomposition Strategy

The design strategy for the parallelization of the wavelet transform algorithm should be

capable of meeting the requirements for execution speedup by minimizing the inter-processor

communications. While developing the parallel algorithm, we must consider the fact that the

computational complexity decreases exponentially at each stage. The crucial point in the

implementation of the algorithm is to choose the optimal distribution of the initial two-dimensional

data and the intermediate subband coefficients on the processors.

The approach is to distribute the data columnwise such that each processor contains N/P

columns of data and then perform the convolution in the x-direction to obtain the approximation

and detail coefficients for the local data on each processor. Only the border data is to be

communicated between neighboring processors as the infonnation about a particular position is

mapped to a particular processor. Now all the necessary data to perfonn the convolutions in the y

direction exists locally. A detailed analysis of this strategy is given in [PaJa96]. This strategy

requires a communication step with an amount of data proportional to the length of the filter.

Exactly D-2 tenns must be communicated frorn each row, where D is the size ofthe fìlter [NiHe00].
The wavelet transformation occurs locally at each processor. Consequently each processor will have

a local LL,LH, HL, and HH subband. The communication approach is given in Figure 5.3 for the

algorithm using 3 processors (P:3).

Transmit D-2

Processor 1 pro

Figure 5.3 Communication approach (3 processors)

D-2

Pad Space

Processor 0

61

The totai communication time required to perform a K-level wavelet transform will be

Tror,r, = Lro-rz', * ffP *'',,

= 2Kt, + (4D- 8Xt - *r*,-

gN2
7,o,,,,*a(D+l) , t"

(s.4)

in which /, is the startup time for the message, /,, is the time required to transfer a double precision

number through the communication link, and N is the size of the message. In each stage of the

algor-ithm, the approximation coefficients of the previous stage are used for computation of new

subband coefficients. The amount of computation decreases by a factor of 4 ateach stage. Assuming

that addition and multiplication operations require a time of /" then the tirne for computation can

be estimated as

.)

,in." N- elements will be mapped onto each processor, each requiring D+t multiplications and
P

D+1 additions at each stage of the wavelet decornposition. The sequential implementation has the

compiexity O (¡/t) and the above parallel implementation will have a processor-time product

O(¡/t). Hence, the parallel irnplementation will be cost-optirnal. The speedup for this

implementation can be estimated as

S(À/x,À/, P) r

(s.s)

(s.6)
8(4D - 8)/,,

3(D+r)Nt,

\When N is increased, a nearly linear speedup should theoretically be observed with this

implementation. If the systern allows for overlapping computation and communication steps, better

speedup results can be obtained.

1
-r

P

62

5"4.4 Appnoach to Solving Problem using MPI Buddy

This problem was solved using the same algorithm as the hand coded parallel version. The

steps in coding using MPI Buddy are as follows:

1. Create the MPI Header/Ender by selecting Design Pattems->New MPI File from the menu bar.

The default settings are selected and a functional MPI C code file is created.

2" Save the file as a C file so that updates can be made. Select : File->Save As. From the menu bar

and enter the file name desired. The file may now be save whenever deemed necessary by selecting

: File ->Save "

3" Use the algorithm to select the desired communication structure. From Figure 5.3, it is obvious

that the data needs to be divided columnwise, with N/P columns existing on each processor.

Therefore 2D Scatter/Gather is selected from Design Patterns->Static Master Slave-> 2D

Scatter/Gather. The appropriate parameters are then filled (Figure 5.4).

ReÊa¡!/ei.,-,' ,: .
:

se|lü ÐHffel f.lðtlo {Root Frûcess}. :

Ð¿ta ìyl-)e 10 lJlslril;l¡te
.. ::. ::.:. ::. i ; ,. :

8'-eceilE,Etffer Naure {âlt FrocessåsJ

Root Frocess

:S¡¿ê dfhe.sÊrd iSÈatteri Eüîfer : :

8fûck Si?e1o ïvorß oú Ëach Scatter

çenerate Require(l Strttclutes
ì' ,.':i :;1":r ,.r::, :. ' : t: ': : : .: " :::.

.':1.

l.fPl çornl¡ruilicõ1or
,rt.:,.i,,11,,,i'.,. .,,,': l,,, :,' ::: :

F¡rìalRdreive Bulîer

Figure 5.4 Selecting 2D Scatter/Gather design pattern parameters

4" Add in necessary application specific code for the program and define user parameters and

variables to be used as shown in Figure 5.5. This also involves the use of other .h files that may need

to be ¡rsed" The "mpi.h", "stdlib.h", and "stdio.h" header files were included in the step I

automatically.

lZ cenerae Required

63

Figure 5.5 Adding user code to the 2D DWT program

The use of other design patterns is valid, but not necessary in this case. For the MPI_Bcast 's

required, the user may insert these by hand or use the Design Patterns->Basic Functions-

>MPI Bcast selection from the menu bar.

5. Final code is obtained. The code may be compiled from within MPI Buddy if the underlying

operating system is installed with a working version of MPI.

The code for sequential, hand coded parallel, and MPI Buddy coded versions of the application are

given in Appendix A.

5.4.5 Objective Analysis of the Tool

The code from the hand coded version and the MPI Buddy coded version appear to be

similar in structure with the hand coded version. It is expected that the two version will perform

equally well. Past experiments have shown that a linear speedup is observed for both the MPI Buddy

enddâca=ùÂlloc tcoEâlsize'sizeof (doùle)) ;
hsize=Sl2;

vstz e=Slz'Sl2 /hsize ;

if (Ey_!d==o) (

/'User *ould de f lne ¡adùage->daÈÀ he!ê'l

Èâinhage. (ùâge')EâlIoc (sizeo f (iÞase)),
inpucf iIe=EâIloc tal),
oucpuEllle=Dalloc(8f); T
inpuÈ fi le= "brrbora. pS" ;l
oucpuc fiIe. 'ouE fiIe. pS" ,
s¿eps=3; /rnde! of sceps in Èbe È!ssfo!b-,/
gechesder (Dsinlbsge. inpuÈ fi I e) ;
scarÈdÂea=EsinIDÂge->dale;

)

rhe f llcer=e*edaù (rÀLSB, da$ecoef f s, 8.O) ;
vallduâvef, eE=inlEuaveleÈ (Ehe f llÞer),

Carelposlion:1952 CurrentUneNumþer:65, : TolalLiDesofCodqlBz

64

coded version and the hand coded version [ChCCO2] . Figure 5.6 gives plots of execution time versus

machine size using a filter size of 6 for 3 stages of the 2D DWT algorithm.

! O.4
!
iI o¡
a
,2 0.2

I
^.

l¡l u

î10
c8
I
I

t^

H^
I¡J U

M ach¡ne S¡ze (P)

¡!ì ôô ìùupi t'tetwuk ---rs- f'¡ yrinet Neu;il
t......-. .. _ l

45

M ach¡ne S¡ze (P)

i+l00MbpsNetwork ì-..Mtmet N"trcrt I

a) Sl2x1lZImage b'¡ 2048x2048 hnage

Figure 5.6 DWT Execution time versus machine size (D:6) [ChCC02]

From these plots, it can be seen that as the irnage size becomes larger, the execution time of the

implementation reduces almost linearly with an increasing number ofprocessors. There is a steeper

drop offin execution tirne for the Myrinet interconnection with an increase in machine size than for

the 100 Mbps fast ethernet connection. This is the result of the properties of the Mlrinet connection

that allow it to function with greater data transmission speed and lower latency. For the largest

image size used (2048x2048), the 100 Mbps fast ethernet connection performed almost as well as

the Myrinet interconnection as computation dominated greatly over comrtunication.

Plots of speedup versus machine size are given in Figure 5.7 using a filter size of 6 for both

the Fast Ethernet and Myrinet interconnects for 3 stages of the algorithm. The results from running

the simulations using the Fast Ethemet connection reveals that the speedups are compromised by

excessive cornmunication time, except for the larger image sizes. Using the Myrinet network, almost

linear speedups were obtained for all the image sizes.

65

è10t

Vr-

46
I

ûl 3

45
M achine S¡ze (P)

I -.-, 5 û;, 5 6 lr, a- ---a- s t l*s t z lnaçr _+- t oiã c x1 oV q

M achine S¡ze (P)

I-I)-soxzsormage+-vz'siuméã:i-loi+Áo"l'"s"1t___-ñr"" 1-_ l

a) 100 MbPs Fast Ethernet b)Myrinet Interconnection

Figure5.TDwTSpeedupversusmachinesize(D:6)[ChCC02]

The above discussion peúains to the hand coded version nrn over the same cluster with functional

Myrinet and fast ethernet connections. During this work, the M¡'rinet connection was not functional'

Also, much of the parallel communication occurs before and after the 2D DWT itself in ordel to

have all the results on a single processor. The analysis employed to measure the ability of MPI

Buddy to produce efficient communication code is to include ail communication including the initial

scatter and f,rnal gather for both the hand coded and Mpr Buddy coded versions. These result appear

inTablel.Foramachinesizeofs,thereisaslowdownusingthel00Mbpsnetworkas

communication dominates the execution time. The results show the MpI Buddy coded version

perfonns as well as the hand coded version'

Table 5.1: Timings (in seconds) for 2D discrete wavelet transform program

(5I2x512 image, filter size 8)

5.4.6 Subjective Analysis of the Tool

The 2D discrete wavelet transform is a problem which can be decomposed easily in parallel'

The tool provides the 2D Scatter/Gather functionality which is the key aspect in decomposing the

problem. Data type support is provided for all the basic MPI types and user defined types so the

2 Processors

0.448913
Hand Coded

0.441617

66

wavelet program could be constructed efficiently. In addition, the basic generation of the header

saves programming time and allows the developer to concentrate on the problem at hand.

The time spent programming the main code of the 2D DWT was approximately t hour using

the MPI Buddy system and considerably longer coding by hand. This metric is difficult to measure

as likely the time to program an application will depend on the user's familiarity with the

application, MPI Buddy, and MPI. There are advantages though for the parallel decomposition of

the problem using MPI Buddy such as it is less elror prone than hand coding.

5.5 Fast Fourier Transform

5.5.1 Introduction

The fast Fourier transform (FFT) is basically a fast discrete Fourier transfonn (DFT). These

functions operate on a discrete set of data transforming the time domain to the frequency domain,

where further processing often follows. If there is a periodic sequence x(n) with period N, then the

Fourier series representation output will consist of N harmonically related exponential functions.

Fourier transforms can represent naturally occurring signals well, but perform more poorly than

'wavelets in disceming singularities and edges. The FFT is designed to work on data sizes with the

number of points being a power of 2. [Walk96 , PrMa96]. Fourier transforms find applications in

signal processing, and financial forecasting among others.

5.5.2 Analysis of the Problem

The FFT algorithm is derived by starting with the discrete Fourier transform:

V1\k - ,ratr where lü= s-2tti/¡¡ and N = input data size
r N-l't
N?"

(s.7)

The capital letter X denotes frequency domain signal and the lower case x, the time domain signal.

The summation may be divided into two parts, even and odd:

6l

x t, = * ll ',!lo*' xz jw * I llJ"-' *,,*,r,".rrl

x,, = tlã-lï;"-' ,,,*', + wk
ã6L',*-:ou-'*,,.,,',0)

x, = +lã^r:li"-' ,, "-"'(#) r *o #r:li"-' xz¡*,e

(5.8)

,,,(+r")f

Each summation point is a N/2 DFT operating on N/2 even points and N/2 odd points

respectively. Therefore, the complete sequence can be divided inTo 2 parts:

1r
x * = il* ",,,, + wo x *of (5.9)

L

The complete sequence k:0,1, ...N can be calculated by dividing it into 2 parts as shown by

equations l0 and I 1.

xt =)1r",.,,,r*

x o* *,, = :l* ",,",,

r xoool
(s'to)

+ wr* ''' x o*l = ;1x ",,,,,
- t4,r x oool ts. r r l

This approach works as -k+N/2 = -wk where 0< k < lV /2" Xk andXr*r,, can be

computed using two N/2 point transforms. When performing the iterative FFT, each of the N/2 point

transforms can be decomposed into two N/4 point transforms and the decomposition should continue

until only single points are to be transfonned. A one point transform is simply the value of the point.

The twiddle factors w are found by recognizing that as the number of terms reduces by a factor of

2,the powers of w increase by a factor of 2 (i.e. w = e-2î¡/N).

The algorithm is shown in Figure 5.8a for a 8 point FFT. The terms are to be arranged in

reverse bit order when first performing the lD DFT. This requirement ensures that the end result

will be in the correct order. At every level there is a butterfly cornputation (shown in Figure 5.8b).

68

Stage 1 Stage 3

2 nilí

-ú

_Y,

.YI

xs

x6

.Y?

>-<"bW
yr.nl

a) I Point lterative Fast Fourier Transform b) Butterfly Computation

Figure 5.8 Iterative fast Fourier transfonn (FFT)

Each butterfly computation involves one complex multiplication and two complex additions. For

a dafa size of lV = 2', there are N/2 butterflies per stage of the cornputation process and
log, i/ stages. For the sequential case, the complexity will be of O(N log, l/) as there are a

total of (N / 2) log, i/ complex multiplications and,À/ log, N cornplex additions.

5.5.3 Parallel Decomposition Strategy

This algorithm can be readily decomposed easily in parallel. The data is scattered so that

processor 0 will receive the f,rrst N/P elements, processor 1 will get the next N/P elements, etc,

where N denotes the number of terms in the initial array. Following this part, every processor will

effectively perform a FFT simultaneously on the data it has received. Upon the completion of the

local FFTs, the results are gathered into processor 0. Now the remainder of the FFT proceeds until

completion. The parallel algorithm is illustrated in Figure 5.9.

69

PO

For larger data
sizes, all prior
operations w¡ll

involve only local
processors

X,

.rl

x1

-1" 5

.r6

x1

"l

".1

Figure 5.9 Parallel FFT algorittun (4 processors, 8 data elements)

The algoritlun described performs well because it greatly reduces the amount of non-local

computation. There are a total of log(N) stages for this algorithrn, and only the last log(P) stages will

proceed using the root processor alone. For instance if there are 4 processors and Ztu dataelement,

then 2ta FFT iterations will proceed locally and only 2 iterations will proceed using the root

processor alone. The fact that the processor numbers are lirnited allows for the bulk of the program

to proceed in parallel. Indeed, for large data sizes, this parallel algorithm performs significantly

better than its serial counterpart.

The analysis of the parallel decornposition strategy can be understood by first assuming that

there are P processors available that are able to work in parallel. The time required to execute the

first FFT iterations in parallel it #log(N / P) , given that there are log(N/P) stages involving all

processors and the there are two complex additions and one complex multiplication per butterfly

stage. Only one parallel communication is required that sends the data from all the slave processes

to the master. Assuming only one processor can send data through the comrnunication link at a time,

the communication time can be approximated by:

70

T,ou,n=(p- l).¡, * lr.ffr. 6.12)

where /" is the startup tirne to send a complex number and t
"is

the time required to transfer a

complex number through the communication link. For the last log(P) stages, only the root processor

oomputes the butterfly computations. The computation for this part is simply :

T,oo,= i/log, P - +rlg, P
The overall time requirement for the parallel version is therefore :

tP- 1) 3¡/ 3¡/
Tparailet = (P- l).r, + Nt p:t,+¡ro\r(N I P)+ 7log, P

(s.13)

(s.14)

This is a significant improvernent over the sequential version of the FFT, particularly for larger

data. sizes.

5.5.4 Approach to Solving Problem using MPI Buddy

This problem was solved using the same algorithm as the hand coded parallel version. The

steps in coding using MPI Buddy are as follows:

i " Create the MPI Header/Ender by selecting Design Patterns->New MPI File frorn the menu bar.

'Ihe Cefault settings are selected and a functional MPI C code file is created.

2. Save the file as a C file so that updates can be made. Select : File->Save As. From the menu bar

and enter the file name desired. The file may now be save whenever deerned necessaryby selecting

: File ->Save .

3. Use the algorithm to select the desired communication structure. From Figure 5.9, it is evident

thai thc data needs to be 1D scattered, with N/P consecutive elements going to each processor. One

can assume this data will already be in a bit reversed order so long as this is hand programmed later

into the program. 1D Scatter/Gather is selected from Design Pattems->Static Master Slave-> 1D

71

Scatter/Gather. The

Compiex is <lefined

appropriate parameters are then filled in (Figure 5.10).

in complex.h so the data type is "Other/User Defined".

The data structure

Flnx! fr**eiæ Elsffer

Figure 5.10 Selecting 1D Scatter/Gather design pattern parameters

4. Add in necessary application specific code for the program and define user parameters and

variables to be used. This also involves the use of other .h files that may need to be used. Most of
this pro¡parrr relies on the user knowledge of the algorithrn, thus a great deal of hand coding is

necessary.

5. Final Code is obtained. The code may be compiled from within MPI Buddy if the underlying

operating system is installed with a working version of MPI.

The code for the sequential, parallel ,and MPI Buddy versions of the FFT are provided in Appendix

B.

5.5.5 Objective Analysis of the Tool

Again, the MPI Buddy coded version of the application appears to run as fast as the hand

coded version, likely due to the fact the two programs were constructed using the same algorithm.

'71

The timing results for running the hand coded FFT implementation on different machine sizes using

a data size of 2'0 are provided in Figure 5.1 I . The corresponding speedup graph is illustrated in

Figure 5.12.

12345678
Machine Size (P)

l* zzO oat" s¡t" * ¡zo o"t" s¡ãl

Figure 5.11 Execution Time versus machine size for parallel FFT

1 2 t
r"l,n"roir"l

6 7 I

ta??gletriEel
Figure 5.12 Speedup versus machine size for parallel FFT

Using the timings for the entire program and not just the FFT core, a comparison of the

performance between the hand coded and MPI Buddy coded versions can be made. Using the full

programs was necessitated bythe fact the code from thehand tailored version differed frorn the MPI

Buddy coded version in where communication structures and other program parts were placed. The

averagetiming results of running the entire 1D FFT program for a data size of 220 are shown in

Table2.

Table 5.2 : Timings (in seconds) for FFT applications (N:20, data size 2 20)

I
øð
o7

F-
cc
.=r

?,2
ul 1

0

3

a 2.5

a¿q
Ø rq

6;
É. w.J

0

I Processor 2 Processors 4 Processors 8 Processors

Itrand Coded 10.06795 7.514335 6.442555 6.163328

MPX Buddv 9.989772 7.540516 6.382316 6j23404

-aIJ

It is evident, that the two programs perform equally well. The 100 Mbps interconnection used results

in progressive speedups for increases in machine size, but there are diminishing returns as

communication begins to dominate for larger machine sizes when using a fixed problem size.

5.5.6 Subjective Analysis of the Tool

The FFT can be highly parallelized, but the actual process of doing so is fairly complex.

Again, MpI Buddy provides the necessary design pattern that makes the task easier. Support for user

defined data types gives one the flexibility to use specific C structure types and MPI Buddy takes

care of scattering the structure automatically. The code for the 1D scatter/gather is easily generated'

Again ,the benefits discussed for the 2D DWT implementation also apply.

The main observed benefit in programming this application using MPI Buddy was the

automatic generation of the header/ender and the autornatic generation of the MPI communication

code. However, the time benefit was minimal, if any, over the use of more coÍllnon C programming

environments for the experienced MPI user.

5.6 Overall Analysis of the Tool

The analysis ofthe tool which can be inferred from the experiments conducted is that the tool

performs well in coding small parallel applications. This is expected to be especially true in

generating automatic MPI code for the beginner user. The benefits become more pronounced when

coding difficult corrmunication structures such as the 2D scatterlgather, as opposed to simpler

structures (i.e. iD scatter/gather). For all communication structures, efficient communication code

is generated. MpI Buddy is advantageous in that it gives the user the ability to program MPI

applications from almost any platform, a change from the programming systems discussed in

chapter 3. This tool can useful for the rapid prototyping of data-parallel signal/image processing

applications.

14

Drawbacks experienced were that the high level programming model may confuse the user

when parameters are entered into the design pattern GUI. As well, the user is expected to enter

application specific code himselflherself into the skeleton code which is generated. This is fine for

those who have worked with MPI, but it may prove difficult for the beginner user. Also, there was

not much support for inserting MPI design patterns into procedures other than the main0 procedure.

This was a limitation inherit in the design of the MPI Buddy system which automatically generates

needed variables, but only in the mainQ program procedure. The lack of a color coded API for data

types, automatic indentations, and other features found in such APIs as Visual Ci* made sequential

additions uncomfortable. The lack of an advanced GUI that allows the user to program more

nafurally appears to be the limiting factor with respect to ease of use for the user. It is well

documented that providing the user with graph models for programming facilitates ease of use

[Siu96], but tirne constraints did not facilitate this implementation.

75

Chapter 6

Conclusions and Future Work

6.L Review of this Work
parallelism is not inherent on any computer system by default. Support should be available

at the hardware, operating system, and developmental levels. Provided that support does exist,

parallelism can be exploited while programrning the application, at compile time, and during

execution. Various parallel conputer architectures have been developed, most of these taking the

form of expensive supercomputers which utilize rnultiple processors sirnultaneously. The dernand

for increased cornputational power at reasonable cost has led to the concept of distributed clusters'

These ,,machines,, often take the form of a network of conventional workstations interconnected

through high speed networks. The use of these computing environments is widespread in certain

scientific and engineering domains, but have not proliferated further because of the lack of

appropriate programming tools to aid the novice parallel programmer.

Approaches to overcoming the complexity of parallel programrning are to raise the level of

abstraction and provide tools that simpliff repetitive tasks. Rasing the level of abstraction can be

done by providing the user with message passing libraries, abstractions on top of message passing

libraries, and other unique methods. Two message passing libraries, MPI and PVM, have emerged

as standards for parallel programming. In addition, complex programming systems have been

developed to generate parallel code easily. Some of these systems use PVM or MPI underneath,

while others directly socket program processor communication using C. A shortcoming observed

with all the systems studies is that they are platform dependent. The vast majority of these systems

were also closed in their design, indicating that inserting user code was difficult to impossible. MPI

Buddy, a open platfonn non-specific MPI progtamming tool was proposed as a solution'

76

MPI Buddy was designed as a design pattern based, layered open system with a level of

abstraction above MPI. It was constructed using Java and possesses a modular design allowing new

design pattem modules to be added with ease. The intent was allow MPI Buddy to possess a user

friendly interface, openness, moderate extensibility, and portability. In addition, the tool was

intended to generate optimal communication code and be able to test code syntax from within. The

design pattems incorporated were chosen from the most cotnmonly used parallel communication

and decomposition schemes. They include the lD Scatter/Gather, Balanced 1D Send/Receive, 2D

Scatter/Gather, Block Cyclic Send/Receive, Cyclic Send/Receive, and 1D Divide and Conquer

approaches. Another design pattern, Dynamic lD Master/Slave, was included for use on

heterogeneous clusters when the individual job completion times are unpredictable.

The prograrnrning model for MPI Buddy is user friendly. The user starts out by indicating

from the menu bar that a new MPI fìle is to be created. Following this, the desired design pattern

is selected from the design pattern lnenu and automatically inserted into the C code. The user may

modify the code as desired. Finally,the developer saves the code. Providing the operating system

environment has MPI installed, cornpilation can also be completed, with the results piped to the MPI

Buddy window.

Code was produced using MPI Buddy for applications involving the 2D discrete wavelet

transfonn and the lD fast Fourier transform. The MPI Buddy coded applications and hand coded

applications were compared for performance differences on a dedicated 100 Mbps fast ethernet

connected cluster. There were no significant differences in the run times of the applications which

lends evidence to the notion that MPI Buddy performs as well as hand coded versions of the same

application. With respect to subjective measures, it was determined that the tool is a time saver for

small applications, particularly when the user is a beginner MPI developer possessing C

progtamming knowledge. Consequently, the tool can be useful for educating novice programmers

on parallel programming techniques.

77

6"2 Future Work

The experience of using the tool has allowed

improved on. These have been identifies as :

6.2.2Better GUI

for the identification of shortcominss which can be

Though the user interface is sufficient to program the majority of the parallel problems faced

in computer engineering, the menu driven GUI is not as natural as auser controlled graphmodel that

allows the user to naturally represent communication by extending lines between blocks

(representing processes).

6.2.3 Automatically Color Code MPI and C Keywords

With MPI Buddy, keywords and data types are simply incorporated as regular code. Those

who have worked with Windows 98 know that usingNotepad forprogramming canbeverydifficult,

while ttre use of Visual C*r makes programming easier. If the code produced can automatically

highlight C types and MPI types in different colors, programming will be easier. Sirnilarly, allowing

the code to automatically indent itself if one is workingin a loop will make proSramming easier.

6.2.4 Integrate a Performance Visu aliz ati on Tool

The developer should be able to evaluate the performance of the code produced using MPI

Buddy easily from within the tool. This is a standard element of more integrated progtamming

environments. If this integration is made, then the user can modiff the code as necessary to easily

achieve the desired application functionality and omit parallel bottlenecks.

6.2.5 Include Additional Parallel Design Patterns

Support for the most common parallel design patterns was included in the MPI Buddy system, but

by no means is this a complete pattem catalogue. There are many other complex patterns which

could be included in the system such as a2D dynamic master/slave approach.

78

6.2.6 Add Support for Other MPI Communication

The communication code produced by MPI Buddy is close to optimal, providing the target

is a cluster of one processor machines. However, there are some clusters that use multiprocessor

computers. In these configurations, often one processor communicates while the others compute.

For these cases, providing coding support for non-blocking communication would result in betters

speedups

6.3 Conclusion

This thesis has reviewed the popular tools used in reducing the difficulties associated with

parallel programming. A Java Lnplemented open design-pattem based system, MPI Buddy was

developecl and tested. This tool was determined to be useful for prototyping data parallel

applications in the field of signal and irnage processing. The main benefit of the tool was portability

across different computer platforms. The tool perfonned as expected, with the benefits more

pt'unouticed for small parallel applications involving complicated communication. Intended

improvements of the systern have been listed as future works.

19

References

[AMMV98] Rocco Aversa, Antonio Mazzeo, Nicola Mazzocca, Umberto Villano,
"Heterogenous System Performance Prediction and Analysis Using PS", IEEE Concurrency,
pp.20-29, July-September I 998.

[ArCu86] Arvind and D. E. Culler, "Dataflow Architectures," Annual Reviews in Computer
Science, Annual Reviews Inc., Palo Alto, CA ,pp.225-253, 1986.

[BaST89] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, "Programrning Languages for
Distributed Computer Systems", ACM Cornputing Surveys, September 1989.

[BCDP95] A. Bartoli, P. Corsini, G. Dini, C.A. Prete, "Graphical Design of Distributed
Applications through Reusable Components", IEEE Parallel and Distributed Techonology, vol.
3, no. I , pp. 37 -57, Spring 1995.

[BDGM94] A. Beguelin, J. Dougarra, G.A. Geist, R. Mancheck, and V. Sunderam, HeNCE: A
User's Gttide. Carnegie Mellon University and Oak Ridge National Laboratory, June 1994.

[Beck96] Alan Beck, "Visual Programming May Come of Age with CODE", HPCwire, viewed
on http://www.cs.utexas.edu/users/code/CODE-HPCwire-article.html , August 23, 7996.

[BergO2] Emery Berger, "The CODE Visual Programming Systern", University of Texas Austin,
http://www.cs.utexas.edu/users/code/, current as of April 23, 2002.

[BEST99] The BEST Group, "The Balance System v|.0.2",
http :i/balance. c)¡ber.ust.hk/intro.html, August I 99 9.

[BHDM95] J.C. Browne, S. Hyder, J. Dongarra, K. Moore, and P. Newton, "Visual
Programming and Debugging for Parallel Computing",LEEE Parallel and Distributed
Technology, vol 3, no. l, pp.75-83, 1995.

[Buyy99] Rajkumar Buyyam, High Perforrnance Cluster Computing: Architectures and Systems

, vol. l, Prentice Hall PTR, NJ, USA, 1999, 881pp.

[ChCCO2] Narjit Chadha, Aysegul Cuhadar, and Howard Card, "A Parallel Implernentation of
the2D Discrete'Wavelet Transform", Proc. 20'h IASTED International Multi-Conference on
Appl ied Informatics, Innsbruck, Austria, February | 8-21, 2002.

[CGMS94] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman, "The Linda Alternative to
Message-Passing Systerns", Parallel Comptúing, vol. 20, no.4, pp. 633-655, 1994.

ICoGGOO] W.E. Cohen, W.D. Garrett, and R.K. Gaede, "Parallel Program Traces for Accurate

80

Prediction of Proposed Cluster Performance", Proceedings of the Second Workshop on

Cluster-B ased Computing, http : //lwwv. crhc.uiuc. edr.¡/-steve/wcbc00/, May 2 000.

[Comp02] Compaq Computer Corporation, "Titanic Sets Sail with Alpha",
http://www.compaq.comlhpc/film/titanic.html, current as of February27,2002.

[DeDe99] H.M. Deitel and P.J. Deitel, Java, How to Program.(3rd ed.). Upper Saddle River, NJ:
Prentice Hall, 1999,1355 pp.

[Dinc98] Kivanc Dincer, 'Tmpi and a Perforrnance Instrumentation Analysis and Visualization
Tool for jmpi", Europar-98, Southampton, UK, 1998.

[Dunc9O] Ralph Duncan, "A Suwey of Parallel Computer Architectures", IEEE Comptúer, pp.
5-16, February 1990.

[Ente02] The Enterprise Group, "The Enterprise Prograrnming Environment", Software Systems

Research Group, Departrnent of Cornputer Science, University of Alberta,
http://www.cs.ualberta.cal-systems/enterprise-overview.html, current as of May 2,2002.

[GeI(P96] G.A. Geist, J.A. Kohl, and P.M. Papadopoulos, "PVM and MPI: a Comparison of
Features", Calculateurs Paralleles, Vol. 8 No. 2, 1996.

[GHJV94] E. Garnma, R. Helm, R. Johnson, and J. Vlissides, Design Paîtents: Elements of
Reusable Obj ect-Oriented Software. Addison-Wesley, I 994.

[Glob00] The Globus Project, "The Globus Quick Start Guide v1.1.3",
http://www.globus.org/toolkildocumentation/OuickSta¡t.pdf , September 2000, 38 pp.

IGoSPOl] Dhrubajyoti Goswami, Ajit Singh, and Bruno Richard Preiss, "Building Parallel
Applications using Design Pattems", A chapter in the upcoming book: "Advances in Software
Engineering: Topics in Comprehension, Evolution and Evaluation", Springer-Verlag, New York,
2001,24 pages.

lGoSPggl Dhrubajyoti Goswami, Ajit Singh and Bruno R. Preiss, "Architectural Skeletons: The
Re-Usable Building-Blocks for Parallel Applications". In proceedíngs of the 1999 International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'99),
pp" 1250-1256, Las Vegas, June 1999.

[GrLu96] William Gropp and Ewing Losk, Users Guidefor tnpiclt, a Portable Implementatíon of
MPI - Version 1.2.1. Argonne National Laboratory, University of Chicago,1996,68 pp.

[GrLu97] Williarn Gropp and Ewing Losk, "Why are PVM and MPI so Different", Proceedings
of the 4th European PVM/MPI Users' Group Meeting, Novernber 1997.

81

[GrOh98] Thomas Gross and David R. O'Hallaron, iWarp -Anatomy of a Parallel Computer.
MIT Press, 1998, 530pp.

[HeFi97] Michael Heath and Jennifer Finger, "ParaGraph: A Tool for Visualizing Performance
of Parallel Programs", National Center for Supercomputing Applications,
http://www.ncsa.uiuc.edu/Apps/lt4CSlParaGraph/manuaVmanual.html ,lli4ay 1997 .

lHlTaT2) R.G. Hintz and D.P. Tate. "Control Data STAR-100 Processor Design", Proc.
Compcon 72',IEEE Computer Society Conference, New York, pp. l-4,1972.

UMMN95I Paul Iglinkski, Steve MacDonald, Chris Monow, Diego Noviillo, Ian Parsons,
Jonathan Shaeffer, Duane Szafron, and David Woloschuk, Enterprise User's Manual - Version
2.4. Department of Computer Science, University of Alberta. 1995, 65pp.

[KHTG98] A. Khokhar, G. Heber, P. Thulasiraman, and G.R. Gao, "Load Adaptive Algorithms
and Implmentations for the 2D Discrete Wavelet Transform on Fine-Grain Multithreaded
Architectures", Proceedíngs of the l3th International Parallel Processing Syntposiun and I}th
Symposimn on Parallel and Distributed Processing, Session 14,IEEE, 1998.

[KoGe95] J.A. Kohl and G.A. Geist, XPVM 1.0 Users Guide. Computer Science and
Mathematics Division. Oak Ridge National Laboratory, April 1995.

[KohlO2] Jim Kohl, "XPVM: A Graphical Console and Monitor for PVM",
http //www. netlib. org/utk/icVxpvm/xpvm. html, current as o f Apri I 2002 .

[Kran96] Dieter K¡anzhnuller, "Debugging Massively Parallel Programs with ATEMPT",
www. gup. uni-linz. ac. at: I 00 I /papers/abstracts/Kran9 6c.html, July I 996.

[Kris89] E.V. K¡ishnamurthy, Parallel Processing - Principles and Practice. Addison-Wesley,
Singapore, 1989, 332 pp.

tLAM0ll LAM / MPI Parallel Computing, "XMPI -- A Run/Debug GUI for MPI",
http ://www. lam-mpi. or g/softwa¡e/xmpi/, D ecemb er 200 | .

[Losh94] David Loshin, High Perforrnance Computing Demystified, AP Professional,
Cambridge lid{, 1994, 261 pp.

[MGBBO0] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, "An Overview of JPEG-
2000", Proc. Data Compression Conference, J.A. Storer and M. Cohn, eds., Snowbird, Utah,
pp.523 -541, Mar.28-Mar.3 0, 2000.

[Mpc02] rnpC Tearn, "The rnpC Parallel Programming Envirorunent", Institute for System
Programming, Russian Academy of Sciences, http://www'.ispras.ru/-mpc/ , current as of March
28.2002.

82

[NeBr92] P. Newton and J.C. Browne, "The CODE 2.0 Graphical Parallel Programming
Language", Proc. ACM Int. Conf. on Supercomputing, July,1992.

[Netl94.] Netlibrary, "HeNCE (Heterogeneous Network Computing Environment)",
http://www.netlib.orgy'hence/, June 199 4.

[NiHeOO] O.M. Nielson amd M. Hegland, "Parallel Performance of Fast Wavelet Transforms",
International Journal of High Performance Computing, vol. 11, no. 1,p.55-74,2000.

[Ohio96] Ohio Supercomputer Center, MPI Printer/ Developíng wíth LAM. The Ohio State
University, 1996, 86 pp.

lPala96l J. N. Patel and L. H. Jameison, Scalability of 2-D Wavelet Transform Algorithms:
Analytical and Experimental Results on Coarse Grained Parallel Computers,In Proceedings of
rhe 1996 IEEE Workshop on VLSI Sígnal Processing, San Franciso, USA, pp.376-385, 1996.

[Patt02] Jason Patterson, "The History Of Computers During My Lifetime - The 1970s",
http://www.pattosoft.com.auljason/Articles/HistoryOfComputers/1970s.html , current as of
March 16,2002.

lPrMa96l John Proakis and Dirnitris G. Manolakis, Digital Signal Processing, third ed., Upper
Saddle River, NJ: Prentice Hall, 1996,968pp.

[Schm95] Douglas Schmidt, "Using Design Patterns to Develop Reusable Object-Oriented
Communication Software", CACAM, 38, I 0, October 1995.

[SGI01] SGI Inc, "PDVDreamWorks Uses SGI Firepower to Visualize the Adventures of
Shrek", http://rvl'vw.sgi.com/features/2001/aug/shrek/index.html ,2001.

[Simo97] Mauricio De Simone, "Active Expressions : A Language-Based Model for Expressing
Concurrent Patterns", Masters Thesis. Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, 1997,100 pp.

[SiSi97] Stephen Siu and Ajit Singh, "Design Patterns for Parallel Computing Using a Network
of Processors",proceeding of the 6't' International Symposium on High Perforntance Dístributed
Computing (HPDC'97), pp. 293-304, 1997 .

ISiu96] Stephen Siu, "Openness in Design-Pattern-Based Parallel Programming Systems",
Masters Thesis, Department of Electrical and Computer Engineering, University of 'Waterloo,

Waterloo, Ontario, 1996, 102 pp.

[SSLP93] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons, "The Enterpriser Model for
developing Distributed Applications",IEEE Parallel and Distríbuted Technology, vol 1, no. 3,
pp. 85-96, 1993.

83

[Thul01] Parirnala Thulasiraman, Advances in Parallel Computing. C5785 Class Notes;
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba,200l.

lVGKS95l Jens Volkert, Siegfried Grabner, Dieter Kranzlmuller, and Richard Schall,
"ATEMPT - A Tool for Event ManiPulaTion", www.gup.uni-
linz.ac.at:800 I /research/debugging/atempt/ , September I 995.

fWalk96] James S. Walker, Fast Fourier Transþt"ms,2nd ed. Boca Raton, FL: CRC Press,

1996" 464 pp.

[Webb9a] Jon A. Webb, "High Performance Computing in lmage Processing and Computer
Vision", ICRP, Jerusalem, Oct 9-13, 1994.

lwiAlggl Barry Wilkinson and Michael Allen, Parallel Prograrnming, Prentice Hall, Upper
Saddle River, New Jersey, 1999,431 pp.

tv/ils99l G. Wilson, "The History of the Development of Parallel Computing",
http ://ei. cs.ø. edu/-history/Parallel.html, 7 99 4.

[WIMN95] D. Woloschuk, P. Iglinski, S. MacDonald, D. Novillo, I. Parsons, J. Schaeffer and D.
Szafrcn, "Perfonnance Debugging in the Enterprise Parallel Prograrnrning System", CASCON'?5
Conference CDRom Proceedings, Toronto, November 1995.

lZava99l Andrea Zavanella, "Skeletons and BSP: Performance Portability for Parallel
Programming", PH.D. Thesis, Dipartimento di Infonnatica Dottorato di Ricerca in Informatica,
trJniversita Degli Sfudi di Pisa, December 1999, 198 pp.

84

Appendix A:

Software Listing for 2D Discrete Wavelet Transfotm
A1: Sequential Case

A2 Parallel Hand Coded Case

A3: MPI Buddv Coded Case

85

A1: Software Listing for Sequential2D DWT Program

/*starþroj.c/
/xA wavelet transform program - developed by Narjit Chadha x/

/* Summer 2001 *l

#include <stdarg.h>

#include "image.h"
#include "frlter.h"
#include "mpi.h" /*use for timings*/

double *wavetrans(wavelet usewavelet,image *theirnage,int steps);

int main (int argc, char *argv[])

{
/xplace coefficient variables that may have to be used */

double daub4coeffs [) : { 0.4829 629 13 | 4 4 53 4 l, 0. 83 65 | 63031 37 801 7,

0.224 | 438 680420 13 4. -0.r 29 409 s225 5 12603 j ;

double daub6coeffs[] : { 0.3326105529500825, 0. 80689 1 5093 | I 0924,

0.45981 1 5021 | 849 | 4. -0. I 3 50 1 102001025 46,
.0.08544 127 38820261 . 0.03522629 18857095 }' ;

double daubScoeffs[] : | 0.2303778 I 3308 8964, 0.7 1484657 05 529 | 5 4,

0.63088076793985 87, -0.021 983'7 69 4 | 68s99,
-0. 1870348 I 1719093 l, 0.030841381 83ss607,
0.03288301 16668852, -0.0105974017850690);

/*start the program*/
char *inputfi le,*ouþutfi le;

int steps,p;
filterset *thefilter;

wavelet validwaveletl
double *transformed; /*contains the transformed data*/

image *mainimage:(image*) malloc(sizeof(image)); /*the image to be used in this project x/

double starttime,endtime; /*use for timings*/
MPI_Ini t(&argc,&argv) ;

MPI-C omm-size(MPI-COMM-V/ORLD,&p) ;

inputfile:malloc(81); /xassume the input file name will not exceed 80 charsx/

ouþutfile:malloc(81);
printf("\nEnter the name of the pgm image file to be used: ");
gets(inputhle);
printf("\nEnter the name of the ouþut raw file :");
gets(outputfile);
printf("\nEnter the number of steps in the wavelet transform");

scanf("%od",&steps);
getheader(mainima ge,inPutfi le) ;

/xfor daub4 filtersetx/
l* thefilter:makedaub(FAlSE,daub4coeffs,4,0);x/
/* thefilter:makedaub(FAlSE,HaIrCoeffs,2'0);*/
l* thefilter:makedaub(FAlSE,daub6coeffs,6,0);*/

thefi lter : rnakedaub(FALSE,daub8coeffs,8,0);

86

/*now enter the wavelet tranform -error below herex/
valid waveleFininvavelet(thefi lter) ;

MP 1_B arrier(MPI_COMM_V/ORLD) ;

starttime:MPl_Wtime0 ;

/"compression beginsx/
frans formed:wavetrans(validwavelet,mainimage,steps) ;

/*find end time*/
MPT_R arrier(MPl_C OMM_WORLD) ;

endtime:MPI_Wtime0;

/*now write to the ouþut pgm file so that 2d discrete wavelet tranformed */

/ximage can be displayedx/
writeouþut(transformed,ouþutfi le,mainimage->hsize,mainimage->vsize) ;

printf("\nThe elapsed time is o/oe \n", endtime-starftime);
MPI_Finalize0;
return 0;

Ì

double xwavetrans(wavelet usewavelet,image *theimage,int steps)

t
int i;
int lowsizeH:theimage->hsize,
int lowsizeV:theimage->vsize;
int highsizeH,highsizeV ;

int s;i¡rnmetric:usewavelet. slnnmetric;
int npad:usewavelet.npad;
int hsize:lowsizeH;
int vsize:lowsizeV;
doubie *tempin,xtempout;

double *tempdata;

tempdata:(double*)malloc(hsize*vsizexsizeof(double)) ;

tempin:(double x)malloc((2 *npad+max2 (hsize,vsize)) xsizeof(double))
;

fempouF(doublex)malloc((2 xnpad+max2(hsize,v size)) *sizeof(double))
;

l*irutialize the tranfonn first*/

copy(theimage->data,tempdata,hsizexvsize); lxcopy image to a temp locationx/
while (steps--)
{

if ((lowsizeH<:2 ll lowsizeV <:2) &&symmetric:: I) {
warning("reduce the number of ûansform seþs of increase the signal size");
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");

Ì
/*now do a convolution with the low pass part ofeach row */
for (i:0;iclowsizeV;i++) {

copy(tempdata+(i *hsize),tempin-ì-npad,lowsizeH)
;

/*convolve with low and high pass filters*/
trans form(usewavel et,tempin,temp out, lowsi zeH,symmetric) ;

/xnow copy back to the imagex/
copy(tempout+npad,tempdata+(i*hsize),lowsizeH) ;

i
/*now covolve on the low pass portion of each column*/
for (i:0;iclowsizeH;i++) {

87

/*copy each column i into the data anay*l
copy2(tempdata*i,hsize,tempin+npad,lowsizeV) ;

/*now convove with low and high pass filters*/
trans form(usewavelet,tempin, tempout,lowsizeV,syrnmetric) ;
copy3 (tempout+npad,tempdata+i,hsize,lowsizeV) ;

Ì
/*stay in while loop - do row and column convolutions until steps*/
/*have all been completedx/
hi ghsizeH:1o w sizeH/ 2 ;

lowsizeH:(lowsizeH+ I)/2 ;

hi ghsizeV:(l ow sizeY) I 2 ;

lowsizeV:(lo w sizeY + 1) / 2 ;

) /xend of whilex/
/*
free(tempout);
free(tempin);x/
/xerror above here ??? whyxl
/xtempdata contains the data required -definitely correctx/
return tempdata; /*contains the modified imagex/

Ì
/*make a four variable copv functionx/

/globals.h/
l*-------------- -------------*l
/x Baseline Wavelet Transform Coder Construction Kit

GeoffDavis
gdavis@cs. darhnouth.edu
http ://www.cs.dartmouth. edr:/-gdavis
Copyright 1996 Geoff Davis 9lll196
Permission is granted to use this
software for research purposes as

long as this notice stays attached to this software.*/
/*globals.h -file contains all the globals necessary for my DWT programx/
/*modified by Narjit Chadha - Summer 2001 xl

/x-------------- -------------* I
#include <math.h>
#include <stdarg.h>

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

/*-------------- ---------------*/
/*define type PGM*/
#define PGM
/x-------------- -------------xl
/* standard #definesx/
/*-------------- -------------*l
#defineTRuE I
#define FALSE 0

#define BACKSPACE 8

#define BS 8

#define ESC 27
/*-------------- -------------* I

88

/xuseful constants*/
l*-------------- -------------*l

#defrne P I 3. | 4 | 592653 5891 9
#dehne TwoPi 2.0xPi
#define Sqrt2 sqrt(2.O)
#define Log2 log(2.0)

lx-------------- -------------*/
/xhelpful inline functions -comment out if defined on compilerx/
l*-------------- -------------*/
#defrne min2(x,y) (((x)<(v))?(x): (y))
#define max2(x,y) (((x)>(v))?(x):(v))
l* -------------- -------------* /
void error (char xformat, ...);
void warning (char *format, ...);

#include "globals.h"
/*globals.cxl
/x-------------- ----------*l
#ifdef DEBUG
static FILE xdebug_fi le;
static int debug_file_open: FALSE;
#endif
l*-------------- ----------'kl

void error (char *format, ...)

t
va_list list;

va_start (list, format);

printf("Error: ");
lprintf (format, list);
va_end (list);
printf("\n");

#ifclef DEBUG
if(debug_frle_open) {

þrintf (debug_file, "Error: ");
vfprintf (debug_fi le, format, list) ;
fprintf (debug_file, "\n") ;

fflush (debug_file);

Ì
#endif

assert(0);

)

void warning (char xformat, ...)

{

89

va_list list;

va_start (list, format);

#ifdef DEBUG
if(debug_file_open) {
fprintf (debug_file, "Warning: ");
vfprintf (debug_fi le, format, list) ;
fprintf (debug_fi le, "\n") ;

fflush (debug_file);

I
#endif

printf ("Warning: ");
vprintf (format, list);
va_end (list);
printf ("\n");

l

l*-------------- ---------------{</
l*image.hxl
/*the header file for all of the image routines x/

/x Narjit Chadha Summer 2001 *l

#include <stdio.h>
#include <stdlib.h>
#include'<math.h>
#include "globals.h"

[pedef struct

{
int hsize,vsize,maxg;
long size;

double* data; l*data for the imagex/

) image;

void loaddata(image *animage,FllE *infile);

void getheader(image xtheimage,char *afile);

void sizeimage(image xtheimage,int xsize,int ysize);

void skipcomments(FllE *infile, unsigned char* ch);

unsigned int geþgmval(FllE *infile);

void copy (double *datal, double xdata2,int size);
void copy2(double *datal,int stridel,double xdata2,int length);
void copy3 (double xdata I, double * data2jnt stride2, int len gth) ;
void writeouþut(double xtranformed,char *ouþutname,int xsize,int ysize);

void mklocimage(imagex locimage,double *locdata,int loc-hsize,int loc-vsize);

l*image.cxl
/*this file will take care of reading in a pgm image and outputting the final

90

image to a file */
/* De.¡elopecl bv Narjit Chadha , Summer 2001*/

#irrclu<le "image.h"

void getheader(image xtheimage,char *afile)

{
FILE *infile;
unsigned char ch:' '' /xuse the unsigned type for images*/
char filetype;
int xsize,ysize,maxg;
infile: fop en(afì 1e, " rb ") ;

if (infrle::NUl-I-) {
error("Unable to open the file %s\n",afile);

Ì
theimage->hsize:0;
theimage->vsize:0;
theima ge->data:NLILL;
/*assume file is a pgm file-->i.e. the default supported rypex/
whi le((ch!:'P')&&(ch!:'#')) {ch=fgetc(infi le) ; }
skipcornments(infi le,&ch) ;

filetype:getc(infi1e); /xshould be 5 or 6xl
/*now get the relevant information about the file including hsize,vsize *l
xsize:(int) geþ gmval(infi le) ;

ysize:(int) geþgmval(infile) ;

maxg:(int) getpgmval(infi le) ;
/tjust make sure that the program can execute*/
if ((theimage->hsize<:0)&&(theimage->vsize<:0)) {

sizeimage(theimage,xsize,ysize) ;

i f (theima ge->data::NUll)
emor("Trouble allocating memory for image with dimensiions o/od by o/od\n",xsize,ysize);

if ((xsize!:theimage->hsize)ll(ysize!:theimage->vsize)) {
error("File dimensions and image settings are in Conflict!\n");

i
t
if (filetlPe::'5') {

theima ge->rnax g:max g;

printf("File o/os , of rype PGM is %dby %d with max gray level o/od\n",

afile,theimage->hsize,theimage->vsize,theimage->maxg);
loaddata(theimage,infile); /xwrite a routine to load the image data)*/

Ì
fblose(infile);

i

void loaddata(image *animage,FllE *infile)

{
long i;
unsigned char *tmp;

long fp;
tmp:(unsigned charx)malloc(animage->size*sizeof(unsigned char)) ;

fu: -lxanimage->size;

,

else; {

91

ßeek(infi le, fp,S EEK_END) ;

if (fread(tmp,animage->size,sizeof(unsigned char),infile) !: I)
error("problem with input file");

for (i:0;i<animage->size;i++) {
animage->data[i]:(double)tmp Ii] ;

j
free(tmp);

j

void sizeimage(image xtheimage,int xsize,int ysize)

t
int ij;
long imagesize;
double xtmpvalue;

imagesize:xs ize* y size;

tmpvalue:(double *)malloc(imagesize*sizeof(double))
;

for (i:0;icimagesize;i++) {
tmpvalueIi]:0;

)
for 6:6¡.-tn2(theimage->vsize,ysize); i++) {

for (i:0; icmin2(theirnage->hsize,xsize);i++) {
printf("Vmothing should print");
tmpvalueI xxsize+i]:theimage->data[*theimage->hs ize+ 1];

ì
)
theima ge->hs ize:xsize ;
thcima ge->vs ize:y size
if (theimage->data !:NUIL)

free(theimage->data);
theimage->data:tmpvalue; /*allocated space for the image*/
theimage->si ze:imagesize;

void skipcomments(FllE *infile, unsigned char* ch)

{
while((*ch::'#')) {

while (xch!:'\n') {
xch:getc(infile); }

while (*ch<") {*ch:getc(infile);}
1 /xi.e. bypass all the commments in the pgm file*/

)

unsigned int geþ gmval(FILE *infile)

{
unsigned int tmp;
unsigned char ch;
do {ch:getc(infile); } while ((ch<:")&&(ch!:'#')),
skipcomments(infi le,&ch) ;

ungetc(ch,infile);
if (fscanf(infìle," o/ou",&tmp) !: 1) {

printf("o%s\n", "Error parsing the file.");
exit(l);

ì

92

return(tmp);

]

void copy (double *datal, double xdata2,int size)

{
int temp:size;
while (temp--) {

xd¿1¿/++:*datal++;

)
j

void copy2(double *datal,int stridel,double *data2,int length)

t
int temp:length;
while (temp--) {

*data2++:*datal;
data l+:stride | ;)

i

void copy3 (double xdata l,double * data2,int stride2,int length)

{
int temp:length;
while (ternp--) {

*data2:*datal++;
data2+:stride2;)

Ì

void writeouçut(double *transformed,char xouþutname,int xsize,int ysize)

{
unsigned char xbuffer;

int i;
double rnax,min,scale,hold,
FILE *outfile;

buffer:(unsi gned char*)malloc(xsize*ysize*sizeof(unsigned char)) ;

outfi le:fopen(ouþutname, " wb*") l
if (outfile::NIILL) {

error("unable to open the file o/osVt", outputname);
j
fprintf(outfi le, "P5\n#%os\n%d %d\n25 5\n",ouþutname,xsize,ysize) ;

/* have a function called for image scaling*/
max:0.0;
min:O.0;
for (i:0;icxsi ze*ysize;i++) |

if (trans formed [i] >max)
max:transformedIi];

if (transformed [i] <min)
min:transformedIi];

i
/xnow scale all the values in the array to write to the file - values from 0-255x/
scale:max-min;
I * (25 5 I sc a\e)+minx (2 5 5/sc ale) ;* I
for (i:0;i<xsizexysize;i++) {

hold:(25 5/scale) *transformed Ii]+min*(25 5/scale) ;

93

buffer[i]:(unsigned char)(hold) ;

J

flvrite(buffer,xs ize xys ize, l,outfile) ;

fclose(outhle);
l* free(buff); */

Ì

void mklocimage(imagex locimage,double xlocdata,int loc_hsize,int loc_vsize)

{
locimage->data:locdata,
locimage->hsize:loc_hsize;
locimage->vsize:loc_vsize;
locimage->size:(loc_hsizexloc_vsize) ;

ìt

/*filter.hx/
#include "globals.h"

/* a header file for the filters and various hlter functions */

typedef struct {
int size, fi rstindex,center;
double *coeff;

) filter;

typeciefstruct {
int syrnmetric;
filter *analysislow, xanalysishigh, xsynthesislow, xSynthesishigh;

) filterset;

typedef struct {
fi lter xanalysislow, *analysishigh;

fi lter *sl.nthesislow, xsynthesishi gh;
int s¡.'rnmetric;
int npad;

) wavelet;

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst);
fi lter xmakefi lter2(filter xusefi lter);
fi lter *makefilter I (int fi ltersize,int fi rstindex,double xcoeff)

;

wavelet initwavelet(fìlterset xafi lterset);
void transform(wavelet awavelet,double *input,double *ouþut,int size,int syrnt),
void symmetric_ext (double xoutput, int size, int left_ext, int right ext, int npad, int symmetry);
void periodic_ext (double xouþut, int size, int npad);

/*the set of files for the wavelet filter functions */
l*filter.c*/
/xdesigned by Narjit Chadha - Summer 2001*l

#include "filter.h"
#include "slobals.h"

94

filterset *makedaub(int slirnmetric,double *anlow, int anlowsize, int anlowfirst)

{
int i,sign;
filterset *tempß;

tempß:(frltersetx)malloc(sizeof(fi lterset)) ;
tempfb->analysislow:makefi lter I (anlowsize,anlowfi rst,anlow) ;

/xassume the wavelets are orthogonalx/
tempfs->s1'nthesislow:makefi lter2 (tempfs->analys islow) ;

tempfs->analysishigh:makefilterl (tempfs->analysislow->size,2-tempfs->analysislow->size-tempfs->analys
islow->fi rstindex,NULL);

tempfs->symmetric:symrnetric; /*must copy the sl.mmetrìes*/
if (tempfs->analysislow->fìrstindex%2) {

sign: l;
)
else sign:- 1 ;

for(i:O;ictempfs->analysislow->size;i++) {

iempß->anaÌysishigh->coeff[I -i-ternpß->analysislow->firstindex-tempfs->analysishigh->firstindex]:
si gn*tempfs->analysislow->coeff[i] ;

assert(l-i-tempfs->analysislorv->firstindex-tempß->analysishigh->firstindex>:0);

assert((I -i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex)<(tempß->analysishigh->size)),
signx:-1'

ì_

l*'"opy the high pass analysis filter to the syrthesis filter */
tempfs->synthesishigh:makefi I ter2(tempß->analysishi gh) ;
return tempfs;

I

fi lter *makefi lter2(f,rlter *usefi lter)

{
int i;
filter *tmpfilter;

tmpfi lter:(fi Iter*)malloc(sizeof(fi lter)) ;

tmpfilter->coefÈNULL;
impfi lter->size:usefi lter->size ;

tmpfilter->firstindex:usefi lter->firstindex ;

tmpfìlter->center:-(us efi I ter->fi rstindex) ;

tmpfi lter->coeft(doublex)malloc(usefi lter->size*sizeof(double));
i f(usefi lter->coeff'! :NULL) {

for (i:0;i<tmpfi lter->size;i++)
tmpfi lter->coeff[i1:ut"¡1a"r->coeff[i] ;

for (i:0;i<tmpfi lter->size;i++)
tmp fi I ter->coeffli]:0 ;

)
retum tmpfilter;

I

fi lter *makefi lterl (int fi ltersize,int firstindex,double xcoeff)

i
int i;

J

else {

95

filter *afilter;

afi lter:(fi lter*)malloc(sizeof(fi lter)) ;

afi lter-> s i ze: fi I ters i z e ;

afi lter->fi rstindex:fi rstindex ;

afi lter->center:-fi rstindex;
afilter->coefÈ(double*)malloc(afi lter->sizexsizeof(double)) ;

i(coeffl:NULL){
for (i:0 ;icafi lter->size;i++)

afi lter->coeff[i]:coeff[i] ;

for (i:0 ;icafi lter->size,i++)
afilter->coeff[i]:0;

Ì
return afilter;

)

wavelet inirwavelet(fi lterset xafi lterset)

{
wavelet tempw;
tempw. analysislow:afilterset->analysislow;
tempw. analysishi gh:afi lterset->analysishigh;
tempw. symthesislow:afi lterset->synthesìslow;
tempw. slnthesishigh:afi lterset->synthesishigh;
tempw. slrnme tric:afì I terset->sl,mmetric ;

tempw.npad:max2 (tempw. analysislow-)size,tempw. analysishi gh->size) ,

renrrn tempw;

)

void transform(wavelet awavelet,double *input,double *ouþut,int size,int slnnt)

{
int i,j;
int lowsize:(size+ l)l 2;
int leftext,rightext;
if (awavelet.analysislorv->sizeVo2) |

/xi.e.an odd filter lengthx/
leftexFl;
rightexel;

)else i
leftext:2;
rightexF2;

)

if (symt)

{
synmetric_ext(input,size,left ext,rightext,awavelet.npad, I) ;

)
else {

periodic_ext(input,size,awavelet.npad);
/xi.e. add the necessary extensions to make the wavelet transform work*/
/*the detail will become xxxxxxxx->HHHHGGGG x/

Ì
/xfirst use low pass filter*/

Ì
else {

96

for (i:0;i<lowsize;i++) 1

ouþutIawavelet.npad+i]:0. 0;
for (:0 j<awavelet.analysislow->size j++) {

ouþutIawavelet.npad+i]+:inputIawavelet.npad+2*i+awavelet.analysislow->firstindex+j]
*(awavelet. analysislow->coefflil) ;

Ì
l

/*now use high pass filterx/
for (i:lowsize;i<size;i++) {

ouþutIawavelet.npad+i]:0.0 ;

for (¡:g¡.u*avelet. analysishi gh->size j++) {

ouþutIawavelet.npad+i]+:inputIawavelet.npad+2x(i-lowsize)+awavelet.analysishigh->firstindex+j]*(awavelet.anal
ysishigh->coefflil);

l
)

)

l* -------------- -------------x I
/* Do symmetric extension of data using prescribed symmetries*/
/* Original values are in ouþutfnpad] through outputlnpad+size-l1*l
/* New values will be placed in outputf0] through output[npad] and in*/
l* outputlnpad+size] through ouþutf2*npad+size-1] (note: end values may*/
l* not be filled in) x/

/* left_ext: I -> extension at left bdry is ...3 2 1 l0 | 2 3 ...*l
/x left_ext:2 -> extension at left bdry is ...3 21010 | 23 ...'*l
i * right_ext : 7 or 2 has similar effects at the right boundary*/

/* symmetry: I -> extend syrnmetricallyx/
/* synnmetry: -l -> extend antisymmetricallyx/

void symmetric_ext (double *ouçut, int size, int left_ext, int right_ext, int npad, int symmetry)

{
int i,ori ginalfirst,ori ginallast,originalsize,period;
int fìrst : npad, last : npad + size- I ;
int nextend;

if (symmetry:: -l) {
if (left-ext:: 1)

ouþutf-first]:0;
if(right ext- l)

outputl++last] : 0'
l
originalfirst: first;
originallast: last;
originalsize : originallast-originalfirst+1 ;

period : 2 * (last - first + l) - (left_ext :: l) - (right_ext :: l);

if (left-ext:: 2)
ouþutþ-first] : symmetryxoutputIoriginalfìrst] ;

if (right_ext:: 2)

9l

output[++last] : symmetry*ouþutfori ginallast] ;

/x extend left endx/
nextend : min2 (originalsize-2, first);
for (i: 0; i < nextend; i++; 1

ouþut[--flust] : symmetryxouþutforiginalfrrst+ I +i] ;

Ì

/* should have full period now -- extend periodically*/
while (first > 0) {

fust--;
outputlfi rst] : ouþutffi rst+period] ;

,

/*extend right endx/
nextend : mtn2 (originalsize-2, 2xnpad*size- I - last);
for (i: 0; i < nextend; i++; 1

outputl++last] : synmetry*ouþutforiginallast- l-i];
)

/*should have full period now -- extend periodically*/
while (last < 2*npad+size-l) {

last++;
ouþutf lastl : ouþutIast-period] ;

II
)

l*-------------- -------------¿' I
/* Do periodic extension of data using prescribed symmetries */

/x Original values are in output[npad] through ouþut[npad+size-ll*l
/* New values will be placed in outputf0] through ouþutfnpad] and in */

l* outputlnpad+size] tluough output[2xnpad+size-l] (note: end values may x/

lx not be frlled in) x/

void periodic_ext (double *ouþut, int size, int npad)

t
int first: npad, last : npad + size-l;

/* extend left periodically*/
while (first > 0) {

first--;
ouþutIfirst] : ouþutIfìrst+size] ;

Ì

/* extend right periodicallyx/
while (last < 2xnpad+size-l) {

last++l
outputflastl : output[last-size] ;

)
j

98

A2: Software Listing for Parallel Hand Coded 2D DWT Program

*Code is the same as Al, except for startproj.c, and filther.c, and fiIter.h (shown below

modified).

/xA Parallel wavelet transform program - developed by Narjit Chadha */

/xThis is an MPi implementation of 2D DWT that can operate on images and filters

of various sizes. Right now the only restriction is that the filters must be

asymmetric. i.e. size 2,4,6,8,10,eTc. This will mean periodic extensions will
need to be added when performing the wavelet transfomx/
/xThis program functions by reading in an image, producing a wavelet filter,
distributing N/p columns of the image to each processor, conducting a local

DWT on each part of the image, and f,rnally gathering the local results and outputting

the final result to afile*l

/* Developed - Summer 2001 *l

#include <stdarg.h>

#include "image.h"
#include "filter.h"
#include "mpi.h" /*for the mPi communication/data structures*/

double xwavetrans(wavelet usewavelet,image xtheimage,int steps,int my-rank,int p,MPI-Status status);

void main (int argc,char* argv[])
I

l*place coefficient variables that may have to be used - need only reside on root processor*/

double Hancoeffs[] : {0.'701106181, 0.707 106781 I ;

double daub4coeffs [] -- I 0.4829 629 13 I 44 53 4 l, 0' 8 3 65 I 63 037 31 807 1,

0.224 I 438 680 420 13 4, -0. r29 409 522 5 5 12603 | ;

double daub6coefß [] -- { 0.33261 05 5 295 00 8 25, 0' 8 068 9 I 5 093 | 1 0924,
0.4 5981 1 5021 1849 | 4, -0. 1 350 I 10200 I 025 46,
-0.08544t2138820261, 0.03 522629 t8857095) ;

double daubScoeffs [] : { 0.23031 7 I I 3 3 08 8 964, 0.7 1 484 65'7 0 5 529 | 5 4,

0.63088076793985 87, -0.027 9831 6941 68 s99,
-0. I 870348 1 17 19093r, 0.03084 I 38 I 8355607,

0.0328830 I 16668852, -0.0 I 059740 I 7850690) ;

/xstart the programx/
char xinputfile,*ouþutfi le;
double *locdata, *fi nalarraY;

int steps; /*keep loc-v size the same*/
int loc_hsize,loc-vsize;
long position;
filterset *thefilter;

wavelet validwavelet;
double xtransformed; /xcontains the hansformed datax/

int my_rank,i;

99

int p; /*number ofprocessesx/
int root=O; /xrank of the root processorx/
int ta50; l*tag for the messagex/

image xmainimage, xloc_image;

double starttime,endtime;
MPI_Status stahrs;

MPl_Init(&argc,&argv);
MPI_Comm_size(MPI*COMM_WORLD,&p); /xfind out number of processors*/
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank); /*hnd out the rank of each processorx/
if (my_ranle:O) {
mainimage:(image*) malloc(sizeof(image)); ; /*the image to be used in this project x/

inputfile:malloc(81); /*assume the input file name will not exceed 80 chars*/
ouþutfile:malloc(81);

l* printf("\n-Enter the name of the pgm image file to be used: ");
gets(inputfile); x/

inputfi le:"barbara.pgm" ;

/*printf("\nEnter the name of the output raw file :");
gets(outputfile);*/
ouþutfile:"barbLpgm";

i*printf("\nEnter the number of steps in the wavelet transfonn"),
scanf(" o/od",&steps)

;
*/

steps:3;

getheader(mainimage,inputfi 1e) ;

loc_hsi ze:(mainimage->hsize)/p ;

loc_vsize:mainimage->vsize; /xthis stays the samex/
finalarra5(double*)malloc(mainimage->hsize*mainimage->vsize*sizeof(double));

) i*end of if my_ranle:O*/
/xfor daub4 filterset*/

l* thefilter:makedaub(FAlSE,Harrcoeffs,2,0);*/
l* thefilter:makedaub(FAlSE,daub4coeffs,4,0);*/
/* thefilter:makedaub(FAlSE,daub6coeffs,6,0);x/

' thefilter: makedaub(FAlSE,daub8coeffs,8,0);

/*now enter the wavelet tranform -error below herex/
validwaveleFinit'wavelet(thefi lter) ;

/xcan do on all processors -faster!x/
/*compression begins -do on multiple processors!x/

/*scatter the image so that each processor has N/p columns of data -this is how
the communication efficient DWT is supposed to function*/
MPI Bcast(&steps, I,MPI_INT,0,MPT_COMM_WORLD) ;

MPI_Bcast(&loc_hsize, l,MPT_INT,0,MPI_COMM_V/ORLD);
MPI_Rcast(&loc_vsize, I,MPI_INT,0,MPI_COMM_WORLD);
/xdivide up the image*/

1oc_image:(imagex)malloc(sizeo(image)); /xlocal array of elements*/
locdata:(double*)malloc(loc_hsizexloc_vsizexsizeof(double));

MPI_B arri er(MPI_COMM_WORLD) ;

starttimrMPl_Wtime0;

100

for (i:0;icloc_vsize;i++) {
position:ixmainimage->hsize;

MPT_scatter(mainimage->data+position,loc_hsize,MPI_DOUBLE,locdata+i*1oc_hsize,loc_hsize,MPI-DOUBLE,0,
MPr_COMM_WORLD);

]
/xmake a simple function to covert the new data into new images -eliminate ft.n call to save timex/

/x mklocimage(loc_image,locdata,loc_hsize,loc_vsize); */

loc_image->data:locdata;
loc_image->hsize:loc_hsize;
loc_image->vsize:loc_vsize;
loc_image->size:(loc_hsizexloc_vsize) ;

/*revamp transformed to allow for parallel computation*/

transformed:wavetrans(validwavelet,loc-image,steps,my-rank,p,status);

for (i:0;i<loc_vsize ;i++) {
position:i*1oc_image->hsize;

MPi_Gather(transformed+position,loc_hsize,MPI_DOUBLE,finalarray+(i*mainimage->hsize),1oc_hsize,MPi-DOU
BLE,0,MPr_COMM_V/ORLD) ;

Ì
MPI_B anier(MPI_COMM_WORLD) ;

endtimæMPl_Wtime0;

/xnow write to the output pgrn file so that 2d discrete wavelet tranfolmed x/

/*image can be displayedx/
if (my_ranle:O) {
writeoutput(finalarray,ouþutfi le,mainilnage->hsize,mainima ge->vsize) ;

printf("\nelapsed time is o/oe \n",endtime-starttime);

l
MPI_Finalize0;
retum;

j

double *wavetrans(wavelet usewavelet,image *theimage,int steps,int my-rank,int p,MPl-51¿¡s status)

1

/*thie routine has been modified to allow for parallel comutationsx/
int i;
int lowsizeH:theima ge->hsize;
int lowsizeV:theimage->vsize;
int highsizeH,highsizeV;
int synmetric:usewavelet. symmetric ;

int npad:usewavelet.npad;
int nonlocal:npad-2; /xnumber of coefficients that must be transmitted nonlocallyx/
int hsizrlowsizeH;
int vsize:lowsizeV;
double *tempin, *tempout, xhold;

double xternpdata;

long position:hsize;
double *holdpad;

tempdata:(double*)malloc(hsize*vsizexsizeof(double));
tempin:(doublex)malloc((2*npad+max2(hsize,vsize))xsizeof(double)); /*i.e. padding on both sides*/
tempouF (doublex)malloc ((2 *np ad+ma x2 (hsize,v size)) * si zeof(double)) ;

101

holdpad:(doublex)malloc(nonlocalxlowsizeV*sizeof(double)), /*hold values for sends/receives*/
hold:(double*)malloc(nonlocal*lowsizeV*sizeof(double)) ;

/*inttialize the tranform first*/

copy(theimage->data,tempdata,hsize*vsíze); /*copy image to a temp locationx/

while (steps-)
{

if ((lowsizeH<:2 ll lowsizeV <:2) &&symmetric- I) {
warning("reduce the number of transform seçs of increase the signal size");
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");

)
/*now do a convolution with the low pass part of each row */
/*make an array of data that needs to be communicated*/
for (i:0;i<lowsizeV;i++)

1

,
.oOt(tempdata+i*hsize,holdpad+i*nonlocal,nonlocal);

/xonly communicate terms once per roundx/
if ((my_rank%2)::0) {

/xi.e. do the even ranks first*/

MPI_Send(holdpad,nonlocal*lowsizeV,MPI_DOUBLE,(my_rank+p-l)7op,0,MPI_COMM_WORLD);

MPI_Recv(hold,nonlocal*lowsizeV,MPI_DOUBLE,(my_rank+p+l)%p,0,MPI_COMM_WORLD,&status);

else if ((my_rank%2):--l) {
/xnow do the odd procesor ranks*/

MPI_Recv(hold,nonlocalxlowsizeV,MPl_DOtIBLE,(my_rank+p+l)%p,0,MPi_COMM_WORLD,&starus);

MPI Send(holdpad,nonlocal*lowsizeV,MPI_DOUBLE,(my_rank+p-l)%p,0,MPI COMM WORLD);

for (i:0;iclowsizeV;i++) {
copy(tempdata+(i *hsize),tempin+npad,lowsizeH)

;

copy(hold+i*nonlocal,tempin+(npad+lowsizeH),nonlocal), /*ie the new padded values */
/xconvolve with low and high pass fìltersx/
/xfirst complete sends and receives in this routine for horizontalx/

transform2 (usewavelet, temp in,tempout,lowsi zeH,s¡.nnmetric) ;

/*now copy back to the image*/
copy(tempout+npad,tempd¿¡¿+(i*hsize),lowsizeH) ;

i
/tnow covolve on the low pass portion of each columnx/
/*each processor contains all necessary information for padding here*/

for (i:0;i<lowsizeH;i++) {
/*copy each column i into the data a;ray*l
copy2 (tempdata*i,hsize,tempin+npad,lowsizeV) ;

/xnow convove with low and high pass filtersx/
transform(usewavelet,tempin,tempout,lowsizeV,symmetric) ;

copy3 (tempout*npad,tempdata+i,hsize,lowsizeV);
ì

102

/*stay in while loop - do row and column convolutions until stepsx/

/*have all been comPletedx/
highsizeH:lowsizeW2;
lowsizeH:(lowsi2e!{+ 1)/2 ;

hi ghsizeV= (l ow sizeY) I 2 ;

lowsizeV:(lowsizeV+ I)/2;
) /xend of while*/
l*
free(tempout);
free(tempin);x/
/*error above here ??? whYxl

/xtempdata contains the data required -definitely correctx/

return tempdata; /*contains the modified imagex/

Ì
/*make a four variable copy functionx/

/xfilter.hx/
#include "globals.h"

/* a header file for the filters and various filter functions t/

typedef struct {
int size,fi rstindex,center;
double *coeff;

Ì filter;

tlpedef struct t
int s¡rmmetric;
filter *analysislow, xanalysishigh, *synthesislow, xsynthesishigh;

) filterset;

typedef struct {
fi lter *analysislow, xanalysishigh;

filter xslmthesislow, *synthesishigh;

int syrnmetric;
int npad;

) wavelet;

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst);

fi lter xmakefilter2(fìlter xusefi lter) ;

filter *makefi lterl (int filtersize,int firstindex,double *coeff);

wavelet inirwavelet(filterset *afi lterset) ;

void transform(wavelet awavelet,double xinput,double *ouþut,int size,int symt);

void symmetrìc ext (doubte xouþut, int size, int left-ext, int right-ext, int npad, int symmetry);

void periodic-ext (double *ouçut, int size, int npad);

void iransform2(wavelet awavelet,double *input,double *output,int size,int synt);

/xthe set of files for the wavelet f,rlter functions */

/*designed by Narjit Chadha - Summer 2001*/
/xfilter.cx/

103

#include "filter.h"
#ínclude "globals.h"

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowFrrst)

{
int i,sign;
filterset xtempfs;

tempfs:(fi lterset*)malloc(sizeof(fi lterset)) ;

tempfs->analysislow=makefi lterl (anlowsize,anlowfi rst,anlow) ;

/*assume the wavelets are orthogonalx/
tempfs->synthesislow:makefi lter2 (tempfs->analysislow) ;

tempfs->analysishigh:makefilterl (tempß->analysislow->size,2-tempfs->analysislow->size-tempß->analys
is low->fi rstindex,NULL) ;

tempfs->symmetric:symmetric; /*must copy the syrnmetriesx/
if (tempfs->analysislow->fi rstindex%2) {

sign:l;
Ì
else sign:- I ;
for(i:O;i<tempfs->analysislow->size;i++) {

tempfs*>analysishigh->coeff[I -i-tempfs->analysislow->fìrstindex-tempß->analysishigh->hrstindex]:
si gn*tempfs->analysislow->coeff[i] ;

asserl(I -i-ternpß->analysislow->firstindex-tempfs->analysishigh->f,rrstindex>:0);

assen((I -i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex)<(tempfs->analysishigh->size));
signx:- I

'
Ì
/*copy the high pass analysis filter to the slrnthesis filter xi

tempfs->synthesishi gh:rnakefi lter2(tempß->analysishigh) ;

return tempfs;

i

fi lter *makefi lter2 (filter *usefi lter)

{
int i;
filter *tmpfilter;

tmpfi lter:(fi lter*)malloc(sizeof(fi lter)) ;

tmp fi I ter->c o efÈ-NULL;
tmpfi lter->size:usefi lter->size;
tmpfi lter->fìrstindex:usefi lter->fi rstindex;
tmpfil ter->center:-(usefi lter->fi rs tindex) ;

tmpfi lter->coeft(double*)malloc(usefi lter->size*sizeof(double)) ,

if(usefìlter->coeffl :NULL) {
for (i:0;i<tmpf,rlter->size;i++)

tmpfi I ter->coeff[i]:usefìlter->coeff[i] ;

Ì
else {

for (i:0;ictmpfi lter->size;i++)
tmpfilter->coefflil:0;

Ì
return tmpfilter;

r04

filter xmakefìlter I (int fi ltersize,int firstindex,double xcoeff)

{
int i;
filter xafilter;

afi lter:(fi lter*)malloc(sizeof(fi lter)) ;

af,rlter->si ze:fi lters i ze ;

afìlter->fi rstindex: hrstindex ;

a{ìlter->center-fi rstindex;
afi lter->coefË(double*)malloc(afi lter->size*sizeof(double)) ;

if(coeff'!:NULL) {
for (i:0 ;i<afi Iter->size;i++)

a fi lter->coeff[i] :co eff[i] ;

i
else i

for (i:0 ;i<afi lter->size;i++)
afilter->coeff[i]:0;

l
return afilter;

l

wavelet initwavelet(fi lterset xafi lterset)

{
r¡¡a r¡clcf lêrnñrr/'

'"^"Y " t

tempw. analysislow:ahlterset->analysislow;
tempw. analysishigh:afi lterset->analysishi gh;

tempw. slmthesislow:afilterset->synthesislow;
tempw. synthesishi gh:afi lterset->synthesishi gh;

tempw. symmetri c:afi I terset->sy,rnmetric ;

tempw.npad:max2 (tempw. analysislow->size,tempw. analysishi gh->size) ;

return tempw;
ì
J

void transform(wavelet awavelet,double *input,double xouþut,int size,int slnnt)

{
int ij;
int iowsize:(size+ 1) 12;

int leftext,rightext;
if (awavelet.analysislow-> sizeVo2) |

/*i.e.an odd filter lengthx/
leftexrl;
rightexel;

)else {
leftexF2;
rightexr2;

Ì

if (slrnt)
t

s1.r:unetric_ext(input,size,leftext,rightext,awavelet.npad, I);

periodic_ext(input,size,awavelet.npad);
l*i.e. add the necessary extensions to make the wavelet transform workx/

Ì
else {

105

/*the detail will become xxxxxxxx-)HHHHGGGG +/

Ì
/*first use low pass filter*/
for (i:0;i<lowsize;i++) {

ouþutIawavelet.npad+i]:0.0;
for 1¡:g¡.u*avelet. analysislow->size j++) {

ouþutIawavelet.npad+i]+:inputIawavelet.npad+2xi+awavelet.analysislow->firstindex+j]x(awavelet.analysislow->c
oeffljl);

Ì
)

/*now use high pass filter*/
for (i:lowsize;icsize;i++) {

ouþutIawavelet.npad+i]:0.0 ;

for (:0j<awavelet.analysishigh->sizej++) {

ouþutIawavelet.npad+i]+:inputIawavelet.npad+2*(i-lowsize)+awavelet.analysishigh->firstindex+j]*(awavelet.anal
ysishigh->coeffljl);

Ì
Ì

Ì

l*-------------- -------------+/
/* Do symmetric extension of data using prescribed synmetries*/
/* Original values are in ouþutfnpad] through ouþut[npad+size-1]*/
i* New values will be placed in ouçut[0] through ouþut[npad] and in*/
l* ouþut[npad+size] through ouþutf2*npad+size-l] (note: end values may*/
l* not be filled in) x/

l* left_ext: I -> extension at leftbdryis ...32110I23 ...*l
/x left_ext : 2 -> extension at left bdry is ... 3 2 | 0 | 0 1 2 3 ...*l
/x right_ext : 1 or 2 has similar effects at the right boundaryx/

/* symmetry: I -> extend symmetricallyx/
l* symmetry: -l -> extend antisl'mrnetrically*l

void syrnmetric_ext (double *ouþut, int size, int left_ext, int rìght_ext, int npad, int symmetry)
{
int i,originalfi rst,ori ginallast,ori ginalsize,period;
int first: npad, last : npad + size-l;
int nextend;

if (symmetry:: -1) {
if (left_ext: l)
ouþut[--fust] : 0;

if (right_ext :: I)
ouþut[++last] :0;

)
originalf,rrst: first;
originallast: last;
originalsize : originallast-originalfirst+ I ;

period: 2 x (last - first + l) - (left_ext :: l) - (right_ext:: l);

106

if (left_ext: 2)
ouþut[--frst] : symmetryxouçut[originalfirst] ;

if (right_ext :: 2)
ouþut[++last] : symmetryxouçut[originallast] ;

/* extend left endx/
nextend : min2 (originalsize-2, first);
for (i: 0; i < nextend; i++; 1

ouþutf--first] : symmetryxouþut[original fi rst+ I +i] ;

Ì

/x should have full period now -- extend periodically*/
while (first > 0) {
first--;
ouþut[f,rrst] : ouþut[first+period] ;

T

/*extend right endx/
nextend : min2 (originalsize-2,2*npad+size-l - last);
for (i: 0; i < nextend; i++) {

output[-l-r- last] : symmetry*ouput[originallast- I -i] ;

l

/*should have full period now -- extend periodically*/
while (last < 2xnpad+size-l) {

last-l-l-;
ouþut[iast] : outputlast-perìodl ;

i
,

/x Do periodic extension of data using prescribed slnnmetries x/

/* Original values are in ouþutfnpad] through ouþutfnpad+size-l] */
/* New values will be placed in ouþut[0] through outputlnpad] and in x/

l* ouþutfnpad+size] through ouþut[2*npad+size-l] (note: end values may x/

l* not be filled in) */

void periodic_ext (double *ouþut, int size, int npad)

{
int first : npad, last : npad + size- I ;

/* extend left periodicallyx/
while (first > 0) {
frst-;
ouþutffirst] : output[first+size] ;

Ì

/* extend right periodically*/
while (last < 2xnpad+size-l) {

last++l
ouþutfiast] : ouþutflast-size];

i
i

107

void transforrn2(wavelet awavelet,double *input,double xouþut,int size,int symt)

{
/*a transform routine for the horizonal part of the wavelet transform. This tranform
part functions by having each processor send and receive D elements from it's neighbour.
This approach seems to work x/

int ij;
int first,last;
int lowsize:(size+ l) /2;
int leftext,rightext;
if (awavelet.analysislow->size%o2) {

l*i.e.an odd filter lengthx/
leftexFl;
rightexFl;

)else {
leftexF2;
rightexF2;

I

if (symt)

{
symmetric_ext(input,size,left ext,ri ghtext, awavelet.npad, I) ;

J

else {
first: awavelet.npad;
last: awavelet.npad + size-l;

/* extend left periodically*/
while (first > 0) {

first--;
input[first] : input[first+size];

/*i.e. add the necessary extensions to make the wavelet transfonn work*/
/xthe detail will become xxxxxxxx->HHHHGGGG x/

)

/*first use low pass filterx/
for (i:0;i<lowsize;i++) {

ouþutIawavelet.npad+i]:0. 0;

for (j:6 ¡.u*avelet. analysislow->size j ++) {
ouþutfawavelet.npad+i]+:inputIawavelet.npad+2xi+awavelet.analysislow->fìrstindex+j]

x(awavelet. analysislow->coeffli l);
Ì

)

/xnowuse high pass filterx/
for (i:lowsize;icsize;i++) {

ouþutIawavelet.npad+i]:0. 0;

for 1¡:g¡.u*avelet. analysishi gh->size j++) {
ouþutIawavelet.npad+i]+:inputIawavelet.npad+2*(i-lowsize)+awavelet.analysishigh->fi

108

rstindex+j'ì x(awavelet. analysishigh->coefflil) ;

I
j

)

109

A3: Software Listing for MPI Buddy 2D DWT Program

*Except for the main program file, startproj.c, all other files are the same as the regular parallel
case.

#include <stdlib.h>
#include <stdio.h>
#include "mpi.h"
/xuser may insert other include statements belorv this line */

#include "image.h"
#include "filter.h"

double *dotransform(wavelet usewavelet,double xtheimage,int steps,int my_rank,int p,MPI_Status status,int hsize,

int vsize);
/xuser must define using his/her own non-standard data structure types */

void main(int argc, charx argv[])
I

/*--Automatic Code Generation of MPI Header / Ender --xl
int i;
int vsize;
int hsize;
ínt loc_hsize;
int position;
int totalsize;
double *startdata;

double xlocdata;

double xenddata;

int my_rank; /*rank # ofcurrent processes*/
int p; /*variable for number ofprocesses*/
int tag- 0' /*default tag for send/recv*/
MPT*Status status; /xreturn Status for MPI_Recvx/
/*user may put other user defìned variable declarations below this line x/

wavelet validwavelet;
imagex mainlmage;
filterset *thefilter;

char *inputfile;

char *ouþutfile;
int steps;
double starttime.endtime:

double daub 8coeffs[] : \ 0.23031 1 I 1330889 64, 0.7 | 484 651 0 5 529 I 5 4,
0.6308801 619398587 , -0.0279831 694168599,

-0. I 870348 I 17 190931, 0.03084138 18355607,
0.03288301 16668852, -0.0105974017850690) ;

/*----Start Up MPI-----x7
MPi_Init(&argc,&argv) ;

/*Find out Process Rankx/
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank) ;

/*Find out the number ofprocessesx/

110

MPI Comm-size(MPI-COMM-WORLD,&p) ;

/*User may insert Application Specific Code Below*/

totalsize:Sl2*572 /xthe total datasize to distributex/

startdata:malloc(totalsize*sizeof(double));
locdata:malloc(totalsize/p*sizeof(double)) ;

enddata:malloc(totalsizexsizeof(double)) ;

hstze:S12
loc_hsize:hsize/p;
vsize:S12*512lhsize,

if (my-ranle:O) {
/*User Should define mainlmage->data herex/

mainlmage:(image*)malloc(sizeof(image)) ;

inputfìle:malloc(8 I);
ouþutfile:malloc(81);
inputfi le:"barbara.p gm" ;

ouþutfi le:" outfi le.P gm" ;

steps:3, /xnulnber of steps in the transform*/
getheader(mainlmage,inPutfi le) ;

startdata:mainlmage->data;

thefi lter:makedaub(FALSE,daub 8 coeffs, 8,0) ;

validwaveleFinitwavelet(thefi lter) ;

MPI Bcast(&steps, I,MPI' INT,0,MPI-COMM-WORLD) ;

MPI-B arrier(MP I-COMM-WORLD) ;

staftime:MPI-Wtime0;

for (i:0;i<vsize; i++) {
position:i*hsize;

Mpi_scarter(startilata+position,loc-hsize,MPI-DOUBLE,locdata+(i*loc-hsize),loc-hsize,MPI-DOUBLE,0,MPI-C
OMM_WORLD);

i;

l*Every process has local data in locdata */

/xuser may insert own information herex/

locdata:dotransform(validwavelet,locdata,steps,my-rank,p,status,loc-hsize,vsize);

for (i:0;icvsize;i++) 1

position:ixloc-hsize;

MpI_Gather(16çd¿t¿+position,loc-hsize,MPI-DOUBLE,enddata+ixhsize,loc-hsize,MPI-DOUBLE,0,MPI-COMM-
wORLD);

Ì

MPI_B arrier(MPI-COMM-WORLD) ;

endtime:MPl_Wtime0;

111

/* process 0 has result in enddata x/

if (my_ranle:O) {
writeouþut(enddata,ouþutfi le,mainlmage->hsize,mainlmage->vsize) ;

printf(" \nel aps ed time is o%e \n",endtime-s tarftime) ;

)

/*End of Application Specific Codex/
MPI_Finalize0;
return;

I

double xdotransform(wavelet usewavelet,double xtheimage,int steps,int my_rank,int p,MPT_$1¿¡s status,int hsize,
int vsize)

{
/*thie routine has been modified to allow for oarallel comutationsx/
int i;
int lowsizeH:hsizel
int lowsizeV:vsize;
int highsizeH,highsizeV;
int syirnmetric:usewavelet. symmetric;
int npad:usewavelet.npad;
int nonlocal:npad-2; /*number of coefficients that must be transmitted nonlocally*/
double xtempin, *tempout, *hold;

double *tempdata;

long position:hsize;
double xholdpad;

hsize:lowsizeH;
vsize:lowsizeV;
tempdata:(double*)malloc(hsize*vsize*sizeof(double));
tempin:(double*)malloc((2*npadfmax2(hsize,vsize))*sizeof(double)); /xi.e. padding on both sidesx/
tempouF(double*)malloc((2 xnpad+max2(hsize,vsize)) *sizeof(double))

;

holdpad:(doublex)malloc(nonlocalxlowsizeV*sizeof(double)); /xhold values for sends/receives*/
¡61d:(doublex)malloc(nonlocal*lowsizeV*sizeof(double));
l*initialize the tranform firstx/

copy(theimage,tempdata,hsize*vsize); /*copy image to a temp locationx/

while (steps--)

{
if ((lowsizeH<:2 ll lowsizeV<:2) &&symmetric-1) {

warning("reduce the number of transform seþs of increase the signal size");
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");

Ì
/*now do a convolution with the low pass part ofeach row x/

/xmake aî array of data that needs to be communicated*/
for (i:0;i<lowsizev;i++) {

copy(tempdata+ixhsize,holdpad+ixnonlocal,nonlocal) ;

ì
/*only communicate terms once per roundx/
if ((my_rank%2)::0) {

/*i.e. do the even ranks firstx/

r12

MPI Send(holdpad,nonlocalxlowsizeV,MPI_DO{IBLE,(my_rank+p-l)%p,0,MPI-COMM-WORLD);

MI,I_Recv(hold,nonlocalxlowsizeV,MPl_DOUBLE,(my_rank+p+l)%op,0,MPI_COMM_WORLD,&status);
)
else if ((my_rark%2):--1) {

/xnow do the odd procesor ranks*/

MPl_Recv(hold,nonlocal*lowsizeV,MPI_DOUBLE,(my_rank+p+l)%op,0,MPI_COMM_WORLD,&status);

MPI_Send(holdpad,nonlocalxlowsizeV,MPl_DOUBLE,(my rank+p-l)%op,0,MPI COMM_WORLD);

for (i:0;iclowsizeV;i++) {
copy(tempdata+(i xhsize),tempin+npad,lowsizeH);

copy(hold+i*nonlocal,tempin+(npad+lowsizeH),nonlocal); /xie the new padded values */

/*convolve with low and high pass filters*/
/*first complete sends and receives in this routine for horizontal*/

trans form2 (usewavelet,tempin,tempout,l owsizeH,symmetric) ;

/xnow copy back to the imagex/
copy(tempout+npad,tempdata+(i*hsize),lowsizeH) ;

i
/*norv covolve on the low pass portion of each columnx/
l*each processor contains all necessary information for padding herex/

for (i:0;i<lowsizeH;i++) 1

/*copy each column i into the dala anay¿'l

copy2(tempdata*i,hsize,tempin+npad,lowsizeV) ;

/*now convove with low and high þass fìltersx/
transform(usewavelet,tempin,tempout, lowsi zeV,slnnmetric) ;

copy3 (tempout+npad,tempdata*i,hsize,lowsizeV);

'/xstay in while loop - do row and column convolutions until stepsx/

/*have all been completed*/
hi ghs i zeH: I o w sizeH I 2 ;

lowsizeH:(lo w sizeH+ l) I 2;

hi ghsi zeV:(l ow sizeY) I 2 ;

lowsizeV:(lo wsizeY + I) I 2;

) /*end of while*/

refurn tempdata; l*contains the modified irnagex/

t13

Appendix B

Software Listing for lD Fast Fourier Transform
Bl: Sequential Case

B2: Parallel Hand Coded Case
B3: MPI Buddv Coded Case

r14

B1: Software Listing for Sequential lD FFT Program

##include "corrplex.h"
#include "nipi.h"
/+ this will be the benchmark timing prograrn to compare against+/
/*make this into a suitable MPI program for comparison*/
/*modified byNadit Chadha, March 13,2001x/

void main(int argc, char* argv[])

{
ulrsígned int N;
unsigned long length,ltalf length;

unsigned Ìong i;
double starl,finish;

double interval = 2.0 * M_PI;
double factor;
double max = 0.0;
Complex+ data;

/*****+**+**+***************x**+****************+++ /
MPI_tnit(&argc,&algv);

data = (Complex *) rnalloc(length+sizeof(Cornplex));
/* now staIl the pro-ø'arn +/

printf("\nEnter the power of2 for tlìe data : ");
scanf("%d",&N);
iength:l<<N;
M PI_Bar: ier(lvl PI_COlvl M_WORLD);
starFM Pl_'Wtirne 0;

half_iengh=length>> | :

factor: 1.0/(double) lenglh;
data= (Cornplex *) rnalloc(length*sizeof(Complex));
ior (i=0; i<lenglh; ir-f) {

dataIi].re:(double)i ;

dataI i]. irn:(double)i;

i
for (i = 0; i < length; i+t-) {

dataIi].r'e : (double)i;
dataIi].im : (double)i;

i
J

flì- l(data, N, -l);

MPl_Barrier(MPI_COMM_WORLD);
iìnish,=lvl P l_Wti rne() ;

print("\nthe elapsed tirne is %oe: ", fìnish-start);

ÍÌee(data);

rehrTl;

,/+ complex.h - header file for complex.c +/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define M_Pl 3. I 4 I 59265358919323846

struct acomplex {
double re;

I 15

double im;

J;

tlpedef struct acornplex Complex;

void copy(Complex* z, Complex a);
void polar(Complex+ c, double r, double t);
void cmult(Complex* c, Complex a, Complex b);
void cexp(Complex* c, Complex a);

void scale(Corrplex* c, double x, Complex a);

int bit reversal(unsigned int N, unsigrred long l);
void fft_l (Complex* data, unsigned int N, int isigrr);

#include "cornplex.h"

/**+*+++**+**+*+*+********+***x********x*x*****************************x*******/
/*cornplex.c contains mathir¡atical routines for complex analysis*/
/++**+++*++x*********x++******************++*+*++*+++*****+*x**********xxxxxx*x/

void
copy(Cornplex+ z, Complex a)

t
z->re = a.re;

z->im = a.irn;

)

/**++**+***+i:**+**+***x*++**++*+********x*****+******+*******************X*****/

void
polar(Complex* c, double r, double t)

{
c->re=r+cos(t);
c->ir¡:r+sin(t);

)

/+****+***+***********+++************+*+++******+********+****++****+*++++*+++*/

void
cmult(Complex* c, Cornplex a, Complex b)

{
c->re = a.re*b.re - a.iln*b.i¡n;
c->im: a.rexb.im + a.im+b.re;

Ì

/* * * + ** * + * + * * * * x ** * * * * * * * * x * + x * +***** ** * * * * * ** ** *** ** *** * * * * * * * * * ** ** ** * ** * * * * */

void
cexp(Cornplex* c, Complex a)

t
polar(c, exp(a.re), a.irn);

Ì

/******+**+x*+************++*+x*x**************x**r+***x+******+************x**/

void
scale(Cornplex* c, double x, Complex a)

{
c->re=x*a.re;
c->im=xxa.im;

ì

/+ + *+ *** ** * * ** ***** * * * * *+ *+*** * **** ** ** * **+ * *+ ** **+ **** *** * * * * ** * ** * * *xxx x ** x t¡ */

li6

int bit_ reversal(unsigned int N, unsigned long I)

{
int i, result = 0;
unsigned long pow;

for (i = 0; i < abs(N); ++i) {
pow = l<<u
if (l & pow)

result += I <<(N-i- I);
]
retum result;

)

void
fft_l (Complexi' data, unsigred int N, int isign)

{
unsigned long length = I << N;
unsigned long half' length = Iength >> l;

unsigred long i, m, pow, t, tlow;

Cornplext w;
Complex* tmp;
Compler- zl,22, phase;

zl.re = 0.0;
zl.ir¡ = 0.0;
zZ.re = 0.0;
z2.im:0.0;

phase.re.. 0.0.
phase.irn -.M_PI * ((double) isign) / (double) half lenEh;

/8**+++*+++X*+******+***+*++*+*****+*+******x*****x/

rv - (Complex*) malloc(half Iengthxsizeof(Cornpìex));

w[0].re = 1.0;

w[0].irn = 0.0;
cexp(w]-l , phase)'

for (i = 2; i < half ìength; ++i) {
scalc(&zl, ((double) i), phase);
cexP(w'l-i, zl);
/* crrult(vr+i, w[i-l], w[]); */

]

/+ * *+ x * + ** + *+ * ** *** +* ** * * ** * ++ * * * * ** +* + * + * * **++ *** * /

trnp = (Cornplex x) rnalloc(length*sizeof(Cornplex));
for (i = 0; i < length; ++i)

copy(tmp+bi1_¡sversal(N, i), dataIi]);

/**+****+****x*******************************x**+++/

for(m = 0; m < N; ++rr) {
Pow: I << m;

for (t = 0; t < length; +t) {
if (!(t & pow)) {

tjow = (t*(halllength/pow)) % halllength;
copy(&zl, trnp[t]);
crnult(&22, w[t_pow], tmp[t+porv]);
trnp[t].re = zl re + z2.re;
trnp[t].irn = zl.im+ z2.it¡;
trnp[t+pow].re = zl ¡e - z2.re;

t17

tmp[t+pow].im = zl.im - 22.ím;

Ì

/***********+******x+x+**+*x*****x*****+++*+*+* *+ ** f

for (i = 0; i < length; ++i)
copy(data+i, tmp[i]),

/*+****{.*1,*+*****x*+*+************x*x***+*+**X*X*X*/

free(tmp);
fiee(rv);

ì
J

/* * * x* * * * * * * ** * * ** * ***** ** * *** ** ++ * + * * *+ * * * * * * * * ** * * * * * *x x + *+* * * * ** * * x** x x** * **/

118

82: Software Listing for Parallel Hand Coded lD FFT Program

xcomplex.h and complex.c remain the same as for the sequential case given in 81.

#include <stdio.h>
#include <stdlib.h>
#include "complex.h"
#include "mpi.h"
#define M_PI 3. l4 I 5926535891 9323846

/xthis is the mpi code for a parallel itertive fast fourier tranformx/
/*made byNarjit Chadha, March 1,2001*l

void main (int argc,char* argv[])
1

int my_rank; /*rank ofthe processx/
int p; /*the number ofprocesses*/
int rooF0; /*rank of the root processor:0*/
double start, finish;
unsigned int N;
unsigned long length,halLlength,loc_size,count,loc_N;
unsi gned long startmark,endmark;
unsigned long j,i,s,m,k;
double factor;
double max:O.0;
double interval:2.0*M PI,
int direction;

Complex* data;
Complex w;
Complex wm;
Complexx A;
Complex* tmp; /* to hold data only for processor I x/

Complex u,t,phase;
double one:1;

MPI_lnit(&argc,&argv);
MPI_Comm_size(MPI_C OMM_WORLD, &p) ;

MPI_Comm_rank(MP I_C OMM_WORLD, &rny_rank) ;

/x now start the program using MPI*/
MPI_B arrier(MPI_COMM_WORLD) ;

starFMPl_Wtime0;

if (my_ranle:0) {
/*
printf("\nEnter the power of 2 to determine the data : ");
scanf("o/od",&N);
*l
N:20;
length:1<<N;
factor: 1 . 0/(double)length;

) /* if my_ranle:O*/

119

if (my_ranle:O){
factor 1.O/(double) length;
data: (Complexx) malloc(lengthxsizeof(Complex));
for (i:0; i<length; i++) {
dataIi].re:(double)i;
dataIi]. im:(double)i;
) /*processor 0 has the data*/

/*now do bit reversal to reorder terms for algorithm*/
tmp : (Complex*) malloc(length*sizeof(Complex));
for (i = 0; i < length; ++i) {
copy(tmp+þit reversal(N, i), datali]);
I(

I

/xnow broadcast these parts -packing is a waste of computaional power*/
MPI B cast(&N, I,MPI_UNSIGNED,0,MPI_COMM_WORLD) ;

MPI_Rcast(&factor, l,MPI_DOUBLE,0,MPI_COMM_WORLD);

length:1<<N;
half_length:length>> I ;
loc_size:length/p; /*number of elements in each local array*/
/*now distribute the tmp to processors in blockwise fashion*/
A : (Complex*) malloc(loc_size*sizeof(Complex)); /*keep as a global*/

MPtr_Scatter(tmp,loc_size*sizeof(Complex),MPI_CHAR,A,loc_size*sizeof(Complex),MPI_CHAR,0,MPI_
coMM_woruD);

/*A ofsize loc_size*/
/*every processor has an array ofsize loc_size - must perform local operations
and communications ooerations x/

u.re:O.0;
u.im:0.0;
i.re:0.0;
t.im:0.0;
phase.re:O.0; /xthis initializaion is still necessaryx/
counFloc_size;
loc_N:0;
while (count>l)

{
counFcount/2;
loc-N++;

)
/*loc_N:N/p; number of iterations to perform locally- assume N is divisible by p*/
/xdo local computations first-assume balanced anayx/
for (s:l; s<(loc_N+l);s++) {

m:l<<s;
w.re:1.0; /*w:l to start offx/
w.im:0.0;
phase.re:0.0;
phase.im:-interval/m;
cexp(&wm,phase); /xw(I).re:exp(phase.re)xcos(t),w(I).impexpþhase.re)xsin(t)*/

120

for fi:0; j<rnl2;j++¡

for (k:j; k<loc_size;lek+m) {

copy(&u,A[k]); I x zl--u* I
cmult(&t, w, A[k+m/2]); l*22:txl
A[k].re: u.re + t.re;
A[k].im:u.im+ t.im;
A[k+m/2].re: u.re - t.re;
A[k+m/2].im: u.im - t.im;

)
cmult(&w,w,wm);

ì

MPI_Gather(A,loc_sizexsizeof(Complex),MPI_CHAR,tmp,1oc_size*sizeof(Complex),MPI_CHAR,0,MPI_
coMM_woruD);

/xGather everything into processor 0 tmp before proceeding further*/
if (my_rank-0) {

for (s:loc_N+1; s<N+l; s++) {
m:l<<s;
w.re:1.0; /xw:l to start offx/
w.im:0.0;
phase.re:0.0;
phase. irn:-interval/m;
cexp(&wm,phase);

/xw(I).re:exp(phase.re)*cos(t),w(I).img:exp(phase.re)*sin(t) */
for (j:0; i<mlZ;¡++1 1

for (lcj; k<length;l=k+m) {

copy(&u,tmplkl); I *zl:u* I
cmult(&t, w, tmp[k+m/2)); l*22:t*l
tmp[k].re:u.re+t.re,
tmp[k].im: u.im + t.im;
tmp[k+m/2].re: u.re - t.re;
tmP[k+m/2].im: u.im - t.im;

i
cmult(&w,w,wm);

j
j
for (i: 0; i < length; ++i)

copy(data+i, tmpIi]);
free(tmp);

) /*my_rank::0*/

MPI_B arrier(M PI_COMM_WORLD) ;

finish:MPl_Wtime0;

if(my_ranl:0) {
print("\nthe elapsed time is Voe'. ", finish-start);
/xnow print out the dafa xl

l* for(i:(length-I0);i<(length);i++)
{

t21

printf("\ndata at %od is %oIf +j*yolf', i,data[i].re,data[i].im);

|*t
) /*if my_ranle:O*/

ftee(A);
free(data);
MPI_Iinalize0;
return;

122

B3: Software Listing for MPI Buddy Coded lD FFT Program

*complex.h and complex.c remain the same as for the sequential case given in Bl.

#include <stdlib.h>
#include <stdio.h>
#include "mpi.h"
/*user may insert other include statements below this line x/

#include "complex.h"
#define M_PI 3. I 4 I 5926535897 9323846
/xuser must define using his/her own non-standard data structure types */

void main(int argc, char* argv[])

{
/*--Automatic Code Generation of MPI Header lEnder -*l
int totalCount; /*the total size of data to distribute*/
int sendCount;
Complex xtmp;

Complex *A;

Complex *fìnBuffer;

int my_rank, /*rank # ofcurrent processesx/
int p; /xvariable for number ofprocessesx/
int tag: 0; /xdefault tag for send/recv*/
MPI_Starus status; /*return Status for MPI_Recvx/
/xuser may put other user defined variable declarations below this line x/

unsigned int N;
unsigned long length, halllength, loc_size,count,loc_N;
double start,finish;
unsigned long j,i,s,m,k;
double factor;
double max:0.0;
double interval:2.0*M PI;
int direction;

Complex *data;

Complex w;
Complex wm;
Complex u,t,phase;
double one: l;

/*----Start Up MPI-----x7
MPI_Ini(&argc,&argv) ;

/*Find out Process Rankx/
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank) ;

/*Find out the number ofprocessesx/
MPI_Comm_size(MPI_COMM_WORLD,&p) ;

/*User may insert Application Specific Code Belowx/
MPI_B anier(MPI_COMM_WORLD);
starFMPI_Wtime0;
if (my_ranle:0) {

123

/xprintf("\nEnter the power of 2 to determine the data : ");
scanf("o/od", &N);*/
N:20;
length:l<<N;
factor: I . 0/(double)length;

I

MPI_Bcast(&N, I,MPI_UNSIGNED,0,MPI_COMM_WORLD) ;

MPl_Bcast(&facror, 1,MPI_DOUBLE,0,MPI_COMM_V/ORLD) ;

length:l<<N;
halllength:length>> I ;
loc_size:length/p;

totalCounF(length)xsizeof(Complex); /xthe total data size to sendx/
sendCounFtotalCount/p;
tmp:malloc(totalCount) ;

A:malloc(sendCount);
fi nBu ffer:malloc(totalCount) ;

if (my_rank::0) {
/xUser Should define tmp herex/
data:(Complexx)malloc(lengthxsizeof(Complex)) ;

for (i:0;iclength;i++) {
dataIi].re:(double)i ;

dataIi].im:(double)i ;

,
.opt(tmp+bit reversal(N,i),data[i]);

MPl_Scatter(tmp,sendCount, MPI_CHAR, A, sendCount, MPT_CHAR, 0, MPI_COMM_WORLD);

/*scattered data in all processes in A */
/x------Enter Program Specific Code Here------x/
u.re:O.0;
u.im:0.0;
t.rr0.0;
t.im:0.0;
phase.re:0.0;
count:loc_size;
loc_N:0;
while (count>l)

t
count:coun12;
loc_N++;

\

for (s:l; s<(loc_N+l); s++¡ 1

m:l<<s,
w.re:1.0; /*w:l to start offx/
w.im:0.0;
phase.re:0.0;

r24

phase.im:-intervaVm;
cexp(&wm,phase);

for (j:0; j<rnl2;j++¡

for (lej; k<loc_size;1ek+m) {

copy(&u,A[k]); l*21:u*l
cmult(&t, w, A[k+m/2]); l*22:t*l
A[k].re: u.re + t.re;
A[k].irn: u.im + t.im;
A[k+m/2].re: u.re - t.re;
A[k+m/2].im: u.im - t.im;

)
cmult(&w,w,t',.m);

i

MPI_Gather(A, sendCount, MPI_CHAR, fìnBuffer, sendCount, MPI_CHAR,0, MPI_COMM_WORLD);
/xresult in process 0 array hnBuffer */

if (my_rank::O) {
tmp:finBuffer;
for (s:loc_N+l;scN+1, s++) {

m:l<<s;
w.re:l.0;
w.im:0.0;
phase.re:0.0;
phase.im:-intervaVm,
cexp(&wm,phase);
for fi:O; j<rnl2;j++¡

1

for (k--j ; kclength;Fk+m) {

copy(&u,tmp[k]); l* zl:u* /
cmult(&t, rv, tmp[k+m/2]); /*22:t* I
tmpfk].re: u.re * t.re;
tmpfk].im: u.im + t.im;
tmp[k+m/2].re: u.re - t.re;
tmp[k+m/2].im: u.im - t.im;

ìI
cmult(&w,w;wm);

j
for (i: 0; i < length; ++i)

copy(data+i, tmp[i]);
ûee(tmp);

) /*my_ranJe:0x/

MPI_B arrier(MPI_COMM_WORLD) ;

finish:MPl_Wtime0;

if (my_ranl=:0) {
printf("\nthe elapsed time is %oe i ", finish-start);

l* for (i:(length-10); i<(length); i++1

t25

t
printf("\ndata at %d is o/olf +j*yolf', i,data[i].re,data[i].im);

Ìx/
) /*if my_ranlc:O*/

/xEnd of Application Specific Codex/
MPI_Finalize0;
return;

t26

