A Java Implemented Design-Pattern-Based System for Parallel
Programming

By

Narjit Chadha

A Thesis

Submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

October 2002

©2002 by Narjit Chadha

hd

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fila Votre référence

Cur file Notre référence

L’aunteur a accord€ une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-79941-7

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

HHOREK K

COPYRIGHT PERMISSION PAGE

A JAVA IMPLEMENTED DESIGN-PATTERN-BASED
SYSTEM FOR PARALLEL PROGRAMMING

BY

NARJIT CHADHA

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

Master of Science

NARJIT CHADHA © 2002

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

Abstract

Parallel computing is slowly becoming more mainstream as the demand for computational
power grows. Recently the focus of parallel computing has shifted away from expensive
multiprocessor supercomputers to distributed clusters of commodity workstations. Widely accepted
programming standards have been developed such as PVM and MPI. In addition, other tools have
emerged that raise the level of abstraction of parallel programming and simplify repetitive, error
prone taské. This thesis explores existing parallel programming systems and presents a pattern based
tool, MPI Buddy, that aims to decrease parallel program development time and reduce the number

of errors due to parallelization.

MPI Buddy is designed as a design-pattern based, layered open system with a level of
abstraction above MPL. It is constructed using Java and possesses a modular design allowing new
design pattern modules to be added with ease. The intent is to allow MPI Buddy to have a user
friendly interface, openness, moderate extensibility, and portability. In addition, the tool is intended
to generate optimal communication code and be able to test code syntax from within. The design
patterns incorporated were chosen from the most commonly used parallel communication and
decomposition schemes. The uniqueness of this tool is its portability across different computer
platforms, allowing the user to program parallel MPI applications on a PC, Apple, or any other
platform which supports Java. Additionally, an installed version of MPI on the computing platform
is necessary to compile the developed code from within MPI Buddy or run the developed

applications.

The applications developed using MPI Buddy performed as well as the hand coded versions,
but the less time was required in writing parallel programs with the tool. The benefits were more
pronounced for smaller applications that use complex parallel communication. This tool produces
error free MPI code and is also useful for educating novice programmers on parallel techniques and
structures. It was inferred that data-parallel applications can be quickly prototyped in the field of
signal and image processing using MPI Buddy.

1

Acknowledgments

I would like to thank my advisor, Dr. Aysegul Cuhadar, for accepting me as a Masters
student at the University of Manitoba. Your commitment to see this project through to its
completion despite the geographical distances that separated us was incredible. I cannot thank my
co-advisor, Dr. Howard Card, enough for his efforts and support throughout my Masters project. He
guided me throughout this project and supported me in keeping my goals in perspective. I want to
thank Dr. Parimala Thulasiraman for her parallel computing advice during this project. Also, [want
to express my appreciation to Dr. Bob McLeod for stepping in as a local advisor at the University

of Manitoba when I was feeling disillusioned.

I want to thank Shawn Silverman for answering many questions that I had regarding the Java
programming language and its hidden capabilities. Having you around made the task of
‘_pngra.mming the API go smoothly. Last, but not least, I want to thank my family and friends for

their astounding support and advice over the last two years.

iii

Contents

ADS I ACT e e e it
Acknowledgments. e iii
@1 11 1) 11 £ v
List of Fagures e 1X
Listof Tables e e e Xi
Listof Equations i i i xii
Chapter 1 Introduction i i 1
1.1 Parallel CoMpPutersottt et e et 2

1.2 Parallel Programmingttt 2

1.3 Design Patternsottt e 3

1.4 Motivation and ObJeCtiVESt vttt e e e 3

1.5 Structure of the Thesist e e et 4
Chapter 2 Parallel Computing Overview 5
2.1 Introduction e 5

2.2 Requirements for Parallelism 5

221 Hardware Level 5

2.2.2 Operating System Level i 6

2.23 Software Level e 6

2.2.4 Techniques used to Exploit Parallelism 7

2.3 Parallel COmPULETS . . . ot v v ittt ettt e e et 8

2.3.1 Classification of Parallel Computers 8

2.4 Types of Parallel Machine Architectures o n.. 9

2.4.1 Vector PrOCESSOTS ..o vvv vttt et e e 9

2.4.2 Dataflow Architecturesc.ouiiniiiiiniiininnenennn. 10

2.4.3 Systolic Architecturescotini it 11

iv

2.4.4 ATTAY PTOCESSOTS . . v v vttt iie it ee e ia e iie s 11

2.4.5Shared Memory MIMD i 12

2.4.6 Distributed Memory MIMD (Message Passing Computers) 13

2.5 Challenges in Parallel Programmingcooviiiiiiiiiiaaannn. 14
2.5.1 Portability of Applications ..o 14

2.5.2 Compatibility with Existing Computer Architectures 14

2.5.3 Expressiveness of Parallelismo 15

2.5.4 Base of Programmingc.oueerieeenneennnnnneeonnens 15

2.6 Solutions to Parallel Programming Complexity, 15
2.6.1 Raising the Level of Abstraction, 15

2.6.2 Providing Tools to Simplify Repetitive Tasks 15

2.6.3 Design Patterns asa UnifyingIdea oot 16

2.7 Design Pattern Advantagesoouniinniiiiiiiiiii 17
2.7.1 COTTECIIESS .« i vttt ettt ettt e ettt et 17

2.7.2 Maintainability and Reusabilityo il 17

273 FBase 0fUSE ..ot it s 17

2.8 Limitations of Design Pattern Approachesc.. i, 17
2.8 1 BffICIENCY .\ ittt e 17
2.82Flexibilityt 18

2.9 SUMIMATY .« vt vv ettt ettt e et ie e e 18
Chapter 3 Parallel Programming Systems oo 19
3.1 Overview PP 19
3.2 Attempts to Raise the Level of Abstractioncooiiiiii.n. 19

3.2.1 Message Passing Libraries (MPLs) and Remote Procedure Calls (RPCs)

... 19

3.2.2 Abstractions on top of MPLsand RPCscoointt. 20

3.2.3 Other High Level Programming Approaches 20

3.3 Classification of Tools for Parallel Programming by Functionality A
3.3.1 BasiC SYSIEIMS . vt vvte ettt 22

3.3, 2 T00l KatS « vt e e e e e e e e e

3.3.3 Integrated Development Environments (IDEs) 23
3.4 Two Distributed Programming Standards - PVMand MPI 23
B34 PV M e 23
342 ML e 25
3.5 Existing Design Pattern Based Systemso i i i 28
35,1 CODE .. 28
3.5.2HENCE ..ot e 30
T 6 T I 7 32
3 5 A BN eIPIISE o .ottt e e e 33
3.5 5 DD e 35
3.6 Proposed Enhancementsouiuiiiiininiii i 37
3.7 SUMIMAIY vt et e e et e e et e e e e e ettt ettt 38

Chapter 4 Design and Implementation of a Parallel Programming System (MPI Buddy) . 39

4.1 Introduction e 39
4.2 Functionality Desired e 39
4.3 The Java Programming Languageottt anenen... 41
4.4 System Design Layout 42
441 MainExecutablec e 43
4.42 Compilation e 44
443 HelpModules e 45
4A4APHNING - oottt e e 45
445Design Patternso e 45
4.5 Design Patterns Included 46
4.5.1 1D Scatter/Gather i e 46
4.5.2 Balanced 1D Send/Receivet 47
4.53 2D Scatter/Gathert e 48
4.5.4 Block Cyclic Send/Receiveottt 49
4.55Cyclic Send/ReceiVe . ..ottt it i e e e 50

vi

4.5.6 Dynamic 1D Master/Slaveo 51

4.5.7 1D Divide and CONQUET vvvitin it eiaie s 52

4.6 Programming Model 52
47 SUIMIMATY « v o e et ettt e ettt et et te e e e et 54
Chapter 5 Programming Experiments and Analysis 56
5.1 INrodUCHON . .oi ittt e e 56
5.2 Metrics used to Evaluate Performancet 56
5.2.1 Objective MEtriCs ... vvu ittt 56

5.2.2 Subjective MEtTiCS ...ttt 57

5.3 Computing Platform Used inthis Worko 58
5.4 2D Discrete Wavelet Transform 59
5.4.1Introduction . ..o vt e 59

5.4.2 Analysis of the Problem i 60

5.4.3 Parallel Decomposition Strategyt 61

5.4.4 Approach to Solving Problem using MPIBuddy 63

5.4.5 Objective Analysis of the Tool, 64

5.4.6 Subjective Analysis ofthe Tool il 66

5.5 Fast Fourier Transformoo vttt e it 67
S5.5. 1 IntrodUCHON .« o ottt e 67

5.5.2 Analysisof the Problem o i 67

5.5.3 Parallel Decomposition Strategycoviiriiiii i 69

5.5.4 Approach to Solving Problem using MPIBuddy 71

5.5.5 Objective Analysisofthe Tool ot 72

5.5.6 Subjective Analysisofthe Tool i, 74

5.6 Overall Analysis of the Tool i 74
Chapter 6 Conclusions and Future Work oo 76
6.1 Review of this Worko e e 76
6.2 Future WorK . . oot i e e 78

vii

622 Better GUIL e 78

6.2.3 Automatically Color Code MPIand C Keywords 78

6.2.4 Integrate a Performance Visualization Tool 78

6.2.5 Add Support for Other MPI Communication 79

6.3 CONCIUSION . . ottt et e e e e e e e 79
References e 80
Appendix A Software Listing for 2D Discrete Wavelet Transform 85
Al: Software Listing for Sequential 2D DWT Program 86

A2: Software Listing for Parallel Hand Coded 2D DWT Program 99

A3: Software Listing for MPI Buddy Coded 2D DWT Program 110
Appendix B Software Listing for 1D Fast Fourier Transform 114
B1: Software Listing for Sequential 1D FFT Program 115

.B2: Software Listing for Parallel Hand Coded 1D FFT Program 119

B3: Software Listing for MPI Buddy Coded 1D FFT Program 123

viil

Figure 2.1
Figure 2.2.
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

List of Figures

Flynn’s TaXOnomyottt it et e et et e e 9
Register-memory vector COMPULET . . .« .ottt i e eeeenenen 10
Array processor 1ayout e 12
UMA (a) and NUMA (b) shared memory MIMD machine architectures 13
Structure of the Intel Paragon 13
Beowulflayout e 14
Relationship between an architectural skeleton, a virtual machine, and the final

Program COAE. . . .ottt e 16
Tradeoff between abstraction and flexibility 21
Classification of parallel programming systems by functionality 23
Message passing between workstations using PVM 24
PVM Process SPAWNING . .o\t vvt v et e ettt ee e e e et eeaeenennn 25
MPI execution example (2 process systemco it 27
A screen shot of CODE (version 2.2) [Berg02], 29
Screen Shot of HENCE o i 31
Enterprise Screen Shot 34
Enterprise Assets (Design Patterns) il 34
Structure of a DPnDP application i iininenn.. 36
Alayered open System i e 40
Layout of the MPI Buddy System i, 43
Screen shot of MPI Buddy (main window) von.n.. 44
Compile GUI e e e e e e 44
ID Scatter/Gathero e 47
Balanced 1D Send/Receiveot 48
2D Scatter/Gather e 48
Block Cyclic Send/Receivettt iiieieannn 50

Figure 4.9 Cyclic Send/Receivet et e 51

Figure 4.10 Dynamic 1D Master/Slave i 51
Figure 4.11 1D Divide and Conqueruiintintntiit et ie e 52
Figure 4.12 MPIBuddy program layout i, 53
Figure 4.13 Programmingapproach i 54
Figure 5.1 Platform Usedt i e 59
Figure 5.2 One Stage of 2D Discrete Wavelet Transform 60
Figure 5.3 Communication approach (3 processors)vvvt v i en i enanenanan.. 61
Figure 5.4 Selecting 2D Scatter/Gather design pattern parameters 63
Figure 5.5 Adding user code tothe 2D DWToprogram, 64
Figure 5.6 DWT execution time versus machinesize (D=6) 65
Figure 5.7 DWT speedup versus machinesize (D=6)o, 66
Figure 5.8 Iterative fast Fourier transform (FFT) ..., 69
Figure 5.9 Parallel FFT algorithm (4 processors, 8 data elements) 70
Figure 5.10 Selecting 1D Scatter/Gather design pattern parameters 72
Figure 5.11 Execution time versus machine size for parallel FFT 73
Figure 5.12 Speedup versus machine size for parallel FFT 73

Table 5.1:

Table 5.2 :

List of Tables

Timings (in seconds) for 2D discrete wavelet transform program

(512x512 image, filtersize 8)l

Timings (in seconds) for FFT applications (N=20, data size 220)

pel

...........

List of Equations

(5.1) Speedup . ..o e e e 57
(5.2) EHiCIenCY . . oo e e e 57
(5.3) C0St ottt e e e e 57
(5.4) K-level wavelet discrete wavelet transform communicationtime 62
(5.5) Discrete wavelet transform computationtime, 62
. (5.6) Discrete wavelet transform speedup 62
(5.7) Discrete Fourier transform equation i, 67
(5.8) Subdividing discrete Fourier transform, 68
(5.9) Odd/even point divisions of discrete Fourier transform 68
(5.10) First N/2 point computation of discrete Fourier transform sequence 68
{5.11} Second N/2 point computation of discrete Fourier transform sequence 68
{5.12) Communication time for parallel fast Fourier transform 71
(5.13) Root processor computation time for fast Fourier transform 71
(5.14) Overall paralle] execution time for fast Fourier transform implementation 71

xii

Chapter 1

Introduction

Scientists and engineers require elevated computational power to run demanding applications
involving weather prediction, simulation and modeling, DNA mapping, nuclear physics, astronomy,
code breaking, image processing, and computer animation to name a few. One solution to overcome
this limitation is to improve the operating speed of processors and other components so that they can
offer the computational power demanded by certain applications. This solution is currently viable,
but future improvements are likely to be constrained by the speed of light, thermodynamic laws, and
the high costs of processor fabrication [Buyy99]. Another feasible alternative is to use multiple
processors together, coordinating their computation. These are known as parallel computers and
have evolved since the 1950s. The movies Titanic and Shrek both used parallel computers in

rendering complex moving images [Comp02, SGIO1].

The idea behind parallel computing is that if one processor can provide k units of
computational power, then n processors should be able to provide n.k units of computational power.

If these processors can work on a problem simultaneously, the parallel case should only

require % th the time of the single processor situation [Wi1A199]. Of course, all problems cannot

regularly be divided in such an optimal manner in practice, but significant execution time

improvements can still be achieved.

A major barrier to the widespread adoption of parallel computing is that writing efficient and
portable parallel programs is difficult because parallel programs must express both the sequential
computations and the interactions among the sequential computations which define the parallelism.

There is a need for tools that allow the programmer to bridge the complexity gap between sequential

1

and parallel programming without extensive retraining. In this thesis, a parallel programming
environment is presented that can assist developers in writing parallel software. The system
customizes and duplicates common parallel programming patterns which can be inserted into a

parallel program.

1.1 Parallel Computers

Traditionally, most people have associated parallel computers with expensive multiprocessor
machines such as the Thinking Machines CM-5 or the Cray MTA. These machines are powerful and
strive to fulfill resource requirements lacking in a common personal desktop such as CPU and
memory. Multiprocessor supercomputers have not proliferated extensively due to their prohibitive
costs, large sizes, high power consumption, and the difficulty in interfacing common peripherals
with them [Webb94]. In addition, these machines quickly lose the status of a “supercomputer” as

the performance of available processors typically increases 50% annually [Zava99].

Recently, the focus of parallel computing has moved away from individual multiprocessor
machines to distributed clusters of machines. It was found that parallel machines can be built
economically by using commodity workstations interconnected by a fast interconnection network
such as ethernet or gigabit ethernet. These virtual “supercomputers” have been found to produce
execution speedups approaching those of fast multiprocessor machines, but have further advantages
in that the cost of these workstations computers is low, the latest processors can be incorporated into
the systems as they become available, and peripherals interfacing is easy. Also, the Unix and Linux

operating systems allow for easy high level communication tool development.

1.2 Parallel Programming

The growth of cluster based parallel computing environments has spawned the development
of various parallel programming tools. These tools employ macros, functions, abstract data types,
and objects to allow the user to deal with the complexity of parallel programming. Two standards,
Parallel Virtual Machine (PVM) and Message Passing Interface (MPI), have been developed and

accepted for programming the socket level communication requirements between distributed

2

processors. These tools consist of message passing libraries and remote procedure calls that raise
the level of abstraction for the programmer. However, understanding how to build complex parallel
programs can still be quite challenging for the novice parallel programmer. Indeed, software
developers often fear that the time saved by executing parallel versus serial applications may not
justify the time involved in developing, debugging, and testing these parallel programs. Today,
building software tools to aid in parallel application development is an important research topic in

the field of parallel computing.

1.3 Design Patterns

A pattern is a recurring solution to a standard problem [Schm95]. Programming design
patterns are modeled on successtul past programming experiences. These patterns, once modeled,
can then be reused in other programs. Typically, hand coding a program from scratch results in
better execution time performance, but may consume immense amounts of time that cannot be

tolerated.

Design patterns for parallel programming provide a mechanism to adciress commonly
occurring data decomposition and communication structures. Such structures iﬁclude master/slave,
workpool, and divide and conquer. These few structures exist in most parallel programs and the
complexity of fhese structures can be masked through the use of parallel design patterns. The term

design pattern in this thesis refers to a parallel design pattern.

1.4 Motivation and Objectives

Parallel design pattern based systems must have the mechanisms to cover most of the
commonly found parallel communication structures, but must also be flexible enough to give the
user flexibility to work on less common problems. In addition, most parallel programming systems

are limited to certain architectures and operating systems.

The objective of this thesis is to demonstrate the creation of an open platform independent

design-pattern based system for distributed parallel programming. The system design criteria

3

includes the generation of code that can be used over a wide range of cluster architectures, along
with a good degree of performance portability. A secondary objective will be to assess the ease of
use of the tool and the efficiency of the code developed using this system against hand developed

code.

1.5 Structure of the Thesis

This chapter provides an introduction to parallel computing and parallel programming along
with the motivation and objectives of this thesis. Chapter 2 undertakes to describe parallel
computing in more detail and describes the methods of conquering the programming complexity
which includes the unifying idea of utilizing design patterns. Chapter 3 describes classifications of
parallel programming systems and then provides examples of existing systems along with observed
limitations and proposed enhancements. In chapter 4, the layout of an open platform independent
parallel programming system, MPI Buddy, is described including the design patterns incorporated
into the system. Chapter 5 illustrates the use of the MPI Buddy system in programming various
parallel applications and makes attempts to qualitatively and quantitatively assess the value of the
tool developed. Finally, chapter 6 draws conclusions from this research and points out ﬁmre

directions for continuing research.

Chapter 2

Parallel Computing Overview

2.1 Introduction

Before one can properly grasp the problems with parallel programming, an overview of
parallel computing appears helpful This chapter provides an overview of parallel computing.
Requirements for parallelism are discussed before an overview of parallel computers and existing
parallel architectures is given. The challenges inherent with parallel programming and the solutions
to these challenges are described, including the use of design patterns. Finally, the advantages and

disadvantages of design pattern use are inferred.

2.2 Requirements for Parallelism

Parallelism is not inherent in any computer system by default. There should be support
available at the hardware, operating system, and software (application) level. If one of these levels

does not provide support for parallelism, then parallel program development may not be possible.

2.2.1 Hardware Level

The system hardware should support parallelism at the instruction level for efficient fine
grain parallelism. This requires that the system memory, the system buses, and CPU must all be
capable of supporting activities in parallel. Multiprocessor workstations are examples of systems
in which the hardware supports instruction-level parallel activities. Workstation clusters do not
support parallelism at the instruction level, but use program parallelism intended for coarse grain

problem decompositions.

2.2.2 Operating System Level

The operating system manages the allocation of resources during the execution of user
programs [Thul01]. The operating system is also involved with processor scheduling, memory maps,

and interprocessor communication.

In order to run processes in parallel, there needs to be a mechanism to handle process startup,
termination, and allocation. Another desirable feature is process migration. Communication and
synchronization among processors is important for the sharing of information between the

processors [Siu96].

Some workstations clusters use different operating systems over different types of
processors. Heterogeneity is a concept that allows as many workstations to cooperate as possible,
without regard to their underlying architectural differences. This improves the utility of the cluster.
However, heterogeneity requires data type and protocol translation, which devours computer

resources as data type and protocol translation is required across the processors of the cluster.

Finally, operating systems provide essential security measures for the system. These include
file ownership and permission properties (i.e. Unix). Administration is another property which many

operating systems provide.

2.2.3 Software Level

The complexity of handling parallel program development falls to parallel program

development tools including parallel programming systems, parallel debuggers, and compilers.

Developers are required to understand the complex patterns of interactions between all
sequential processes and each process in isolation. This has resulted in research into now parallel
programming models and systems to make the job of parallel programming easier. Examples of
parallel programming systems include CODE [BHDM95], Hence [BDGM94], and Enterprise
[SSLP93].

Parallel program debuggers can let the user trace run-time activities and locate programming
mistakes. The debuggers available mostly provide event interaction related information at a lower
levels, so users may have difficulty comprehending the results. Other debuggers are used to evaluate
the execution performance of parallel programs. These include tools such as ParaGraph [HeFi97],

ATEMPT [Kran96, VGKS95], ULTRA [CoGGO00], and PS [AMMV98].

Compilers are necessary to allow the programmer to utilize low level features in the
operating system and hardware which can exploit parallelism. Compilers translate source code into
object code. Additionally, compilers assign variables to registers and memory and reserve functional
units for operators. Following compilation, an assembler translates the compiled object code into
machine code so that it can be recognized by the machine hardware. There are many parallelizing
compilers available today which can automatically detect parallelism in sequential source code and

others which have been specifically developed for parallel code (i.e. MPI compilers)

Other tools available such as Globus allow parallel applications to be run across workstation
clusters on different local area networks (LANSs). Globus is a toolkit that provides the basic
infrastructure for communication, authentication, network information, and data access [Glob00].
It has support for parallel programming standards such as MPI, and also takes care of the resource

management across different clusters containing different machine architectures.

2.2.4 Techniques used to Exploit Parallelism

Parallelism can be exploited at algorithm design time, programming time, compile time and
runtime. If the basic infrastructure for parallelism is available, there must be a way for the user to
program parallel applications which will have desired behaviors. One technique is to directly
program socket streams or other interprocessor communication. This technique results in the highest
speedups in the parallelized versions, but comes with a high time cost of programming the
application. Other techniques include the use of parallelizing compilers on sequential code, and

programming using higher level tools.

2.3 Parallel Computers

Parallel computers have been considered as early as 1955. The first “parallel” computer built is a
disputed item among scholars. Likely candidates include the IBM STRETCH and Livermore
Automatic Research Computer (LARC), both of which were conceived in 1956 and were produced
by 1959 [Wils94]. In 1962, Burroughs introduced the D825, a symmetrical multiple-instruction
multiple-data multiprocessor (MIMD) with 1-4 CPUs and 1-16 memory modules. The vast majority
of earlier parallel computers were single machines with a shared memory and multiple processors.
Starting in the mid 1970s, work started being done on developing distributed memory computers
in which message passing was required to gain access to all memory elements. Since then, there
have been two recognized tracks of parallel computer development : the shared memory track and

the message passing track..

2.3.1 Classification of Parallel Computers

Flynn has organized computers into a taxonomy based upon their functionality [Dunc90] as shown

in Figure 2.1. The divisions he made are :

° Single Instruction over Single Data Stream (SISD) : These are representative of sequential
computers.
. Multiple Instruction Single Data (MISD) : The same data stream flows though a linear

array of processors, which execute different instructions. These are also known as systolic

arrays.

. Single Instruction over Multiple Data Streams (SIMD) : These machines apply a single
instruction or set of instructions to multiple data streams. Instructions from a program are
broadcast to many processors. Each processor executes the same instruction in synchronism,

but uses different data.

. Multiple Instruction Multiple Data (MIMD) : Each processor has its own instruction(s)

to execute on its own set of data. Most parallel computers are of this type.

) ISD A"
ag | o® ~AB
+
* MISD > A+B
AB "™ A*B
+
AB — >A+B
A3 | smp ~oih
* o - A+B
MIMD ;
AB — »=CD
C,D

Figure 2.1 Flynn’s Taxonomy

2.4 Types of Parallel Machine Architectures
2.4.1 Vector Processors

Vector processors are representative of most of the earlier supercomputers. These machines
execute single instructions on sequences of data (i.e. vectors or pipelines) instead of on single items;
they are examples of SIMD machines. Using vector instructions results in more efficient memory
access than single instructions as a large amount of work can be done on the input vector before a
new memory access is required . Another advantage of these architectures is that they can be
optimized to solve problems while removing data hazards. The first vector computer was the CDC
Star-100, introduced in 1972. This machine could execute instructions by taking two input vectors

from memory, compute the result vector, and write it directly to the memory [HiTa72].

In 1976, Seymour Cray founded Cray Research and introduced the Cray-1 [Patt02]. The

Cray-1 was the first vector computer to have fast scalar and vector performance. The Cray-1
abandoned the memory to memory approach of the Star 100 and instead introduced a register
memory architecture. The Cray-1 performed almost everything fast for its generation and became
the first commercially successful vector supercomputer. Fig 2.2 shows the architectural layout of
the a register-memory vector computer. Vector computers continue to hold a niche in the
supercomputing industry and include such recent models as the Cray SV1, Cray SV2, Alex
Informatics AVX3, Connection Machines CM-5, Intel iWarp, and many others.

—)l FP Unit |-—>
Memory

—)l Integer l—»
;

Load/Store |,

AA 4

vy

A

v |

A A

Vector Registers

Scalar Registers

Figure 2.2. Register-memory vector computer
2.4.2 Dataflow Architectures

Duane Adams of Stanford University defined the term "dataflow" while describing graphical
models of computation for his PhD thesis in 1968. In 1974, Jack Dennis and David Misunas at MIT
published the first description of a dataflow computer. In 1977, Al Davis and Burroughs together
built the DDM1, the first operational dataflow computer.

Dataflow computer architectures are intended to allow for data driven computation. This
form of computation differs considerably from the von Neumann machine model. The von Neumann
model involves program driven control of machine instructions, whereas in the dataflow model, the

instructions are driven by data availability. These architectures work on the assumption that

10

programs can be represented as directed graphs of data dependencies [ArCu86]. The availability of
data activates matching instructions and computation proceeds. There are two categories of dataflow
architectures: static and dynamic. Static dataflow architectures use primitive functions to represent

nodes. Dynamic dataflow architectures use subgraphs to represent nodes.

2.4.3 Systolic Architectures

H. T. Kung and Charles Leiserson published the first paper describing systolic computation
in 1978. The term “systolic” is used because of the analogy of these systems with the circulatory
system of the human body. In the circulatory system, the heart send and receives a large amount of
blood as aresult of the frequent and rhythmic pumping of small amount of blood though arteries and
veins [Kris89]. In systolic computer systems, the heart would correspond to the global memory as
the source and destination of data. The arterial-venous network would similarly correspond to
processors and communication links. Systolic architectures are extensions of the pipelining concept,
except multidimensional, multidirectional flow is permitted including feedback. Data can be used,
reused and both new data and partial results may move in the system. There are two categories of
systolic architectures: systolic trees, and systolic mesh automata (systolic arrays). The Intel iWarp

is and example of the latter [GrOh98].

2.4.4 Array Processors

These architectures are another example of the SIMD machine model developed by Flynn.
In 1968, IBM delivered the first array processor (the 2938). Array processors are interconnected in
arectangular mesh or a grid arrangement. Each node has 4 directly connected neighbors, except at
those nodes at the boundaries. These architectures are useful for applications in matrix processing
and image processing where each node can be identified with the matrix element or a picture
element (pixel) [Kris89]. The array processor has a control unit which controls the instructions
within processing element in the array. The array processor also has a data level concurrent
hardware module, 2D array geometry, and synchronized control. An example of an array processor

layout is shown in Figure 2.3 below.

11

Control
Processor

PE pe | | pe | | PE } | PE | | PE
0o [| ©1n 0.2 0,3 (0,4) 0.5)

I | | 1] i
PE PE pE | | PE | | PE | | PE
Ao i 1 an T 1 a2 1.3 (1,4) (1.5)

|] I I | I
PE | | PE pe | | P | | PE | | PE
(2,0) e 1 @2 23) (2.4 (2.5

| I] | I]
pe | | e || P | | PE | | PE | | PE
(3,0 (X)) (3.2 3,3) (3,4) (3.5)

Figure 2.3 Array processor layout

2.4.5 Shared Memory MIMD

This is a fairly mature parallel computer architecture, with the first machines appearing in
the early 1960s.The main feature of this class of machines is that communication and cooperation
between processes may occur using normal memory access instructions. These machines are
constructed with a singly addressed memory shared amongst all the processors in the machine. The
processor elements may be connected to each other and the memory elements in a variety of
configurations including a bus, crossbar, multistage network configuration. There are symmetric
multiprocessor configurations (SMP) configurations available that allow for a uniform memory
access (UMA) time by all the processors. Usually ,these systems involve bus or crossbar connections
and do not scale well. Other shared memory MIMD machines exhibit non-uniform memory access
(NUMA) time which means that some processors can access some memory elements faster than
others. These machines are more scalable than their UMA counterparts. Examples are of each type

of shared memory MIMD machine are given Figure 2.4.

12

999 @ B _E

lnterconnectlon Network (Bus Crossbar)

Mem Switch Mem Switch

IIO Memory 1 Memory 2
l I l v l l v I Scalable Interconection Network

a) b)
Figure 2.4 UMA (a) and NUMA (b) shared memory MIMD machine architectures.

2.4.6 Distributed Memory MIMD (Message Passing Computers)

These machines make up the message passing track of parallel computers and include single
computers with more than one processor and distributed memories (multiprocessors) and multiple
computers connected by a high bandwidth network (multicomputers). Examples of the former
include the IBM SP-2 and the Intel Paragon. These machines have special direct memory access
(DMA) mechanisms which facilitate data exchange between nodes. The structure of the Intel

* Paragon multiprocessor is given in Figure 2.5.

One Node
Element
Mesh 3D
i860 i860 Interconnection
of Nodes

| | A4

| Memory Bus j
I
Control | I
I DMA

A
Y

Memory

Figure 2.5 Structure of the Intel Paragon

Multicomputers (a.k.a. cluster of workstations or network of workstations) are implemented using
workstations (nodes) with point to point connections. Each computer has a private local memory and
communication occurs by message passing primitives through the network. In the evolution of
multicomputers, the Beowulf has been created. Beowulfs are high performance platforms built

entirely out of commodity off-the-shelf components. An example of a Beowulf layout is shown in

13

Figure 2.6 below.

Computer Computer Computer Computer Computer Computer

Interconnection Network
(Bus, Crossbar, etc)

Figure 2.6 Beowulf layout

Beowulf setups are the dominant focus of parallel computing today due to their scalability and

cost effectiveness.

2.5 Challenges in Parallel Programming

Parallel programming introduces many unique challenges to the developer. Human thinking
is sequential so the programming of parallel applications takes some thought outside of conventional

thinking. The challenges evident in parallel program development are described in this section.

2.5.1 Portability of Applications

This is the most challenging attribute to achieve since there are many different types of
parallel computer architectures, each supporting different programming styles. As well, parallel code

may not perform the same way on different architectures.

2.5.2 Compatibility with Existing Computer Architectures

It is important to have programming standards that can be used on existing computers. It is
important to work in parallel programming environments with architecture independent languages,
compilers, and software tools. This gives the developer flexibility in where he or she wishes to

program and not compromise the finished parallel application.

14

2.5.3 Expressiveness of Parallelism

It is important for the developer to understand what is being programmed. Programming
tools should exhibit the parallel features of each node and the interactions between nodes. This may

be accomplished through the introduction of visual graphs or other easy to understand approaches.

2.5.4 Ease of Programming

Many parallel programming software methods present great challenges to the developer. If
familiar sequential concepts are employed in a parallel programming tool, the tool is more capable
of gaining wide acceptance [Simo97]. Few individuals will put more time into program development

than the final application is worth.

2.6 Solutions to Parallel Programming Complexity
2.6.1 Raising the Level of Abstraction

Programmers often feel that working with low level primitives can be quite difficult, even
though they are the most flexible among all parallel programming primitives. Raising the level of
abstraction hides the details of parallelism from developers, while making certain parallel
programming tasks easier. The goal is to allow the programmer to solve the problem in a high level

model without worrying about the difficult and unnecessary low level details.

2.6.2 Providing Tools to Simplify Repetitive Tasks

A solution to programming common, complex, and error prone tasks is to provide software
tools that automate the implementation of these tasks. An example of a commercial sequential
software tool is the Visual Studio by Microsoft for easily programming complex graphical user
interface (GUI) applications for the Windows environment. Application code is generated
automatically with the user only specifying certain parameters and then filling in the specifics for
the program. Other advanced tools are available such as interface builders, advanced compilers,
debugger, visualization tools, profilers, and simulators to assist the developer in various phases of

the software development cycle. Similar tools are available for parallel programming. Some of these

15

parallel program development tools will be discussed in chapter 3.

2.6.3 Design Patterns as a Unifying Idea

The idea behind a “pattern”is to describe a recurring structure, and then use this model again
in other similar situations. “Design patterns” are used in everyday life, from fax cover sheets to word
processor style sheets. In each of these cases, there is a template specified containing the same
fields, and the user only needs to fill the missing information into the fields provided by these
templates [GHIV94]. Expert designers do not feel the need to “reinvent the wheel”, but rather prefer

to reuse solutions that have worked well for them in the past.

For parallel programming, there are computation and communication structures that do not
appear in sequential programming. In generating a parallel program through the use of design
patterns, developers instantiate a design pattern to obtain communication skeletons into which they
can insert their own application specific code. An architectural skeleton is a basic communication
pattern devoid of any user code. Upon the insertion of code by the user, a virtual machine is
obtained. A virtual machine is an application-specific specialization of a skeleton [GoSP99]. By
filling a virtual machine with complete application code, the final program code is achieved. Figure

2.7 Iustrates this approach.

Architectural
Skeleton

Extend Extend

Virtual Machine 2 Virtual Machine 1

Final Final

Code 2 Code 1

Figure 2.7 Relationship between an architectural skeleton, a virtual machine, and the final
program code.

16

2.7 Design Pattern Advantages

Design patterns have been found to have the properties of correctness, maintainability and

reusability, and efficiency which have made them favorable to use by programmers.

2.7.1 Correctness

Communication and synchronization can be very complex and error prone. Furthermore,
the code developed can be difficult to debug. Using design patterns, the programmer can use
previously developed structures which have been tested repeatedly for correctness. This saves time
involved for development, debugging, and testing. The developer can then concentrate on the actual
specific algorithm for the problem he or she is developing and not worry about specific

communication implementation details.

2.7.2 Maintainability and Reusability

Design patterns are able to reproduce frequently used communication and synchronization
structures of parallel programs. Also, design patterns separate computation, communication, and
processor binding specifications of parallel programs, so that each one can be modified
independently (called separation of the specifics). This promotes usability and makes programs
easier to maintain. In addition, the programmer is better able to understand the nature of each of the

parts of the parallel program better.

2.7.3 Ease of Use

Design patterns allow developers to approach complex problems at a higher level of
abstraction. The parallel part of a program is what flusters sequential programmers. By allowihg the
design patterns to take care of the parallel structures found in the program, the programmer can

concentrate on the sequential components of the program.

2.8 Limitations of Design Pattern Approaches
2.8.1 Efficiency
Programs developed in a high level design pattern model are generally less efficient than

17

those developed using low level primitives. Efficiency refers both to the execution time and amount
of unnecessary code generated for each of the development styles. Using design patterns, there may
be excess code generated to ensure correctness over a broad range of platforms, and a slower

execution time when compared to the low level primitive approach.

2.8.2 Flexibility

Raising the level of abstraction can lower the flexibility. Most design-pattern-based systems
provide a limited number of patterns. A design pattern system is of no added use to the developer
if the communication or data decomposition structures are not available in the system. Most
generated structures cannot be easily modified. Thus, developers may feel trapped in the high level

model.

2.9 Summary

This chapter has provided an overview of parallel computing today. Support for parallelism
must exist at the hardware level, operating system level, and software level to even contemplate
parallel application development. Providing this support does exist, parallel programming itself
presents challenges with respect to the portability of applications, compatibility with existing
computer architectures, the expressiveness of parallelism ,and the ease of programming. Two
solutions to parallel programming are rasing the level of abstraction while programming and
providing tools that simplify repetitive tasks. Design patterns are presented as a unifying idea as they
possess the benefits of correctness, maintainability and reusability, and they are easy to use. Design
patterns might have drawbacks of compromising efficiency and flexibility. The next chapter will

discuss parallel programming systems that exist and their relative merits and shortcomings.

18

Chapter 3

Parallel Programming Systems

3.1 Overview

:There have been numerous parallel programming languages and systems developed over the
past forty years to allow the programmer to work with greater ease and efficiency. By 1989, over
100 languages were already documented for parallel and distributed computing [BaST89]. This
number has grown significantly and widespread programming standards have developed such as
PVM and MPL. This chapter documents attempts that have been made to make the task of parallel
programming simpler along with providing examples of programming systems and their benefits

and shortcomings.

3.2 Attempts to Raise the Level of Abstraction

As mentioned in Chapter 2, rasing the level of abstraction is one of the primary methods to
deal with parallel programming complexity. The use of low level primitives for message passing
often frustrates users due to the high complexity of the socket interface. Basic systems, tool kits, and
integrated development environments have all been used to raise the level of abstraction for the

programmer and allow for a more automated programming approach.

3.2.1 Message Passing Libraries (MPLs) and Remote Procedure Calls (RPCs)

MPLs raise the level of abstraction of socket level communication by using processes and
communication channels. They allow processes to communicate with each other through message
passing (sending and receiving messages). Examples of MPLs include the PVM and MPI libraries

which have revolutionized multicomputer parallel programming. RPCs also involve message

19

passing and allow a procedure to be called on a remote machine. MPLs and RPCs have become
accepted as standard models for parallel program development, but this level of abstraction may still

be too low for the development of larger parallel applications.

3.2.2 Abstractions on top of MPLs and RPCs

These are abstractions which hide the details of MPLs or RPCs while using the beneficial
attributes of these models underneath. Some examples of these systems include OOMPI [Os102] and
mpC [Mpc02]. OOMPI is an object oriented interface to the MPI-1 C++ standard. OOMPI keeps
all of the MPI-1 functionality, but also offers new object oriented abstractions which promise to
expedite the MPI programming process by allowing programmers to take full advantage of C++
features. The other tool, mpC, was developed and implemented on the top of MPI as a programming
environment facilitating and supporting efficiently portable modular parallel programming. mpC
uses the ANSI C standard as the programming language. This environment does not compete with
MPI, but tries to strengthen its advantages (portable modular programming) and to weaken its
disad:/“ar-ltages (alow level of parallel primitives and difficulties with efficient portability). It has the
properties of efficient portability, meaning that an application running efficiently on a particular
multiprocessor will run efficiently after porting to other multiprocessors). Users can consider mpC

as a tool facilitating the development of complex and/or efficiently portable MPI applications.

3.2.3 Other High Level Programming Approaches

There are many high level programming paradigms that do not fall into the two previous
categories. C/C++-Linda expresses parallelism through a distributed tuple space [CGMS94], a
repository for different kinds of shared data such as database records or requests for computation.
Linda is available across many different architectural platforms and the management of the tuple
space is provided transparently across heterogeneous nodes [Losh94]. Another paradigm, ABC++,
involves a library that supports distributed active objects on top of C++. Parallelism is described
through C++ objects that have their own threads. There are other approaches such as Balance, which
is a library of executable commands that allows the user to distribute the parallel workload evenly
to the computers connected in one or more networks [BEST99]. The system can be run as a user

level system or executed by the root to act as a system scheduling tool for microprocessors and

20

interconnected computers.

Enterprise was a breakthrough in high level programming tools. In brief, Enterprise is a
graphical programming environment complete with a code generation mechanism, graphic
visualization tools, a compiler, and a debugger. Enterprise allows programmers to express
applications though a set of design patterns. Enterprise uses neither PVM, nor MPI underneath, but
rather low level C augmented by new semantics for procedure calls that allows them to be executed

in parallel [WIMNO5]. This project will be discussed in more detail in section 3.5.4.

Raising the level of abstraction makes parallel program development easier, but at the risk
of compromising flexibility. Figure 3.1 shows the relationship between flexibility and the level of

abstraction for various existing parallel programming tools.

® Socket

@ PVM
MPI

L mpC

Flexibility

® C/C++Linda

@ Enterprise
@ Balance

Level of Abstraction

Figure 3.1 Tradeoff between abstraction and flexibility (adapted from [Siu96])

3.3 Classification of Tools for Parallel Programming by Functionality

The previous section provided a classification scheme for tools based upon their level
abstraction. Another scheme to classify parallel programming tools is based on their functionality.
Parallel programming tools are utilized to enhance the comprehensibility of complex problems and
to improve the correctness of the coding approach. They provide functionality such as programming
environments, parallel debuggers, performance monitors, and project management tools. Other tools

such as PVM Simulator (PS), allow users to predict the performance of a parallel application on a

21

different architecture without actually running the simulation on that architecture [AMMYV98]. This
negates the need of investing money in a computer system that may later prove to be insufficient.
Generally, the more integrated tools a programming system supports, the easier it is to develop
parallel programs. To ensure a higher level of efficiency in programming, the level of abstraction
provided by a tool must complement the base programming model. As an example, consider a GUI
which uses graphs to represent communication between nodes of a distributed network. This
approach works quite well as the graph model coincides well with communication patterns. As a
counterexample, A GUI that expresses the structure of communication in a confusing manner would
not be useful. Parallel programming systems can be divided into basic systems, tool kits, and
integrated development environments based upon their overall functionality. Examples of systems
falling into each category are shown in Figure 3.2. This classification scheme is independent of the

previous classification scheme involving level of abstraction.

Low Level Basic Systems Tool Kits | IDEs
® PuM
@ Socket ® VP @ mpC | @ Enterprise
® XMPI 9 Balance

i

|
® xPuM | @c/C++Linda i
| l

Figure 3.2 Classification of parallel programming systems by functionality
3.3.1 Basic Systems

Basic systems only provide the core functionality for developing parallel programs in a
particular paradigm. These systems are often used by researchers who wish to try out new libraries
and paradigms, but have no need to develop the product into a full system (yet). These systems
provide enhancements over the basic programming paradigm and do not severely limit flexibility.
Some examples include PVM and MPI which have matured into very useful products on their own.

Other systems in this classification include ABC++ and Orca [Siu96].

3.3.2 Tool Kits

These systems are loosely coupled tools developed for a particular parallel programming
paradigm. There are loosely coupled tools available for debugging, performance monitoring, and

allocation of a parallel executable among processors. Commonly, a tool kit is developed once a

22

program paradigm has matured and is widely used. The concern with tool kits is the ability of the
tools to be applicable in the various phases of the application development cycle for the desired
programming paradigm. XPVM and PADE are examples of tool kits for developing PVM programs.
XPVM is a graphical console and monitor for PVM [Kohl02]. XMPI and mpC are examples of tool
kits for developing MPI programs. XMPI is an X/Motif based graphical user interface for running,
debugging and visualizing MPI programs [LAMO1].

3.3.3 Integrated Development Environments (IDEs)

An IDE is a complete development environment which integrates all the tools for
developing, debugging, executing, and maintaining a parallel program. These environments are
uncommon as they take a very long time to develop and require a high level of expertise on the part
of the developer. These environments commonly provide higher level abstractions which make the
job of programming easier for the user. Some examples of IDEs include Enterprise and Tracs. These

two systems both have support for designing, developing, and maintaining parallel programs.

3.4 Two Distributed Programming Standards - PVM and MPI

PVM and MPI are two basic message passing libraries which have evolved into widely
accepted programming standards for distributed heterogenous workstation clusters. They are both

discussed in some detail in this section.

3.4.1 PYM

PVM (Parallel Virtual Machine) was the result of the efforts of a single research group
working at Oak Ridge National Laboratories and Emroy University, thereby allowing it to have a
large degree of flexibility in its design and also enabling it to respond incrementally to the
experiences of a large user community [GrLu97]. The design and implementation teams were the

same so the design and implementation of this tool were completed quickly.

PVM consists of a collection of library routines that the user can employ within C or

FORTRAN programs. Using PVM, the user writes a completely separate and different program for

23

each type of computer on the network. This programming style is referred to as the Multiple
Program Multiple Data (MPMD) model. The routing of messages between computers is done with
the PVM daemon, which is installed by PVM on the computers which form the virtual machine
(Figure 3.3). A daemon is a special operating system process that stays resident and performs system
level operations for a user when required or carries out background system tasks. A process (master)

may spawn other processes (slaves) dynamically during run time (see Figure 3.4).

Workstation

T
PVM
daemon /
/ \“—”/i
/ ¥ \
Application
Program

/ (executable) | [\

~—
e

/ \
/ A
/ \

Workstation / \ Workstation
ZTPUM N, _TRYM Y
¢ =
gaemon_/ T gaemon
| 'y
Y
Application | [Application
Program ‘ Program
(executable) | (executable)

Figure 3.3 Message passing between workstations using PVM

Process 1

Process 2

Time

\

Figure 3.4 PVM process spawning

24

The execution model which fits PVM the closest is the MIMD model. The user must define a
parallel virtual machine before running PVM, which contains a list of machines which will work
together. Some of the features available in PVM include process control, fault tolerance, dynamic
process groups, communication, and multiprocessor integration [Losh94]. PVM performs well over

networked collections of heterogenous hosts [GeKP96].

3.4.2 MPI

MPI (Message Passing Interface) was designed by the MPI Forum, a collection of
“implementors, library writers, and users. Each group working on the MPI project design did so
without any specific final implementation in mind, but with the hope that the implementation would
be carried out by participating software vendors [GrLu97]. Because MPI was broadly planned and
developed as a standard, it has become the most widely used parallel programming tool available
today. MPI implementations are available for C, C++, and Fortran. MPI has advantages over PVM
in that it possesses aricher set of communication functions and higher communication performance
can be expected over a homogenous cluster of machines [GeKP96]. MPI also has the ability to

specify a logical communication topology.

Using MPI, the programmer writes a single program which executes on all processes.
Usually one process is mapped to each processor. Depending on control statements (i.e. if
process_rank==1), only certain processes will execute certain statements. This programming
methodology is known as the Single Program Multiple Data (SPMD) model. In earlier versions of
MPI, a process could not spawn another process. However MPI 2 allows for dynamic process

creation in a manner similar to PVM.

All global variable declarations will be duplicated in each process using MPI. Memory space
for dynamic variables (pointer structures) only need to allocated by processes requiring the variable.
MPT uses communicators to send and receive messages. These can be intracommunicators for
communicating withing a group, or intercommunicators for communication between groups. A
group simply defines a collection of processes. MPI has support for blocking, non-blocking, and

collective communication of data.

25

When an MPI program is started, the number of processes, say p, is supplied to the program
from the invoking environment. The number of processes in use can be determined from within the
MPI program by using the MPI_Comm_size routine. Most MPI implementations developed will
provide some useful error information when an error is encountered during execution, unlike PVM
which simply aborts the program execution. The information provided is dependent on the MPI

implementation and is not defined in the MPI standard.

Figure 3.5 shows an execution example of a typical MPI program. First the global variables
are declared. Each of these variables will be present in all processes. Next, the MPI initialization
statements follow which set up the processes for communication. Following this part, process 0
sends 10 terms of integer type to process 1. Finally, the MPI processes are shut down with the

MPI_Finalize() statement. MPI code will not be valid following this statement.

26

e e - global variable declarations ----~«--- *
int my_rank; /*for rank of current process */

int p; M*for number of processes */

int *first;

int tag =1;

MPI_Status starus; /*return status for MPI_Recv*/

/* ____________ */

MPI_Init(&argc,&argv); /*start up Initialize MP1 */
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank); /*find out process rank->my_rank*/
MPi_Comm_size((MPI_COMM_WORLD,&p); /*find out number of processes ->p*/
first = malloc(10*sizeof(int));
if (my_rank==0) {

for (i=0;i<10;i++)

first=i;

MPI_Send(first,10,MPI_INT, my_rank+1,tag,MP|_COMM_WORLD);
¥
else if (my_rank!=0) {

MP!_Recv(first,10,MPI_INT,0,tag, MPI_COMM_WORLD,&status);

}
MPI_Finalize();

Process 0 Process 1
int *first : int *first
int *first; N
(size=0) (size=0)
Y A
int *first first = int *first
(size=10) malloc(10*sizeof(int)); (size=10)
\i

Compute if (my_rank==0) {

firstfi=i for (i=0;i<10;i++)
first=i;
v MPL_Send(first,10,MPI_INT, \
my_rank+1,tag,MPl_COMM_WORLD); | get *first
N 3} .| results from
first "1 procO.
\%e if (my_rank!=0) {
MPI_Recv(first,10,MPI_INT,0,tag, MPI_COMM_WORLD,&statu
Terminate s);
Execution }
MPI_Finalize();

Figure 3.5 MPI execution example (2 process system)

There are numerous MPI implementation available including MPICH, developed by Argonne
National Laboratory at the University of Chicago[GrLu96], and LAM which was developed by the
Ohio Supercomputer Center at Ohio State University [Ohio96]. In addition, implementations of MPI

such as MPICH-G2 have been developed for use with the Globus grid resource management system

27

[Glob00].

3.5 Existing Design Pattern Based Systems

Largely as a result of the increased popularity of multiprocessor workstations and
multicomputer workstation clusters, research has accelerated to develop viable design pattern based
programming systems which attempt to provide tools that enable the user to program more
efficiently and complete complex parallel tasks with ease. Many of the approaches discussed in this

section employ separation of the specifics, advanced GUTs, and templates for parallel programming.

3.5.1 CODE

Computationally Oriented Display Environment (CODE) was developed at the University
of Texas at Austin and allows the user to compose sequential programs into a parallel one [Berg02].
Using CODE, the parallel program is expressed using a directed graph, where data flows on arcs
connecting the nodes represent the sequential programs. The sequential programs may be written
in any language, and CODE will produce parallel programs for a variety of architectures, as its
model is architecture-independent. The CODE system can produce parallel programs for shared

memory and distributed memory architectures, including clusters of workstations.

The developer builds the parallel program in two steps. In the first step, the developer
specifies the contents of each node (i.e. sequential subroutines, input/output ports, internal variables,
and rules governing how the node is run). The second step involves connecting the different nodes
together using the GUI to show the interaction among them. CODE translates the graph into a

complete parallel program. A screen shot of code is shown in Figure 3.6 below.

28

| CODE - dyn_integ.code [/]

File Edit Arrange Special Windows Help

Integrate a function in parallel.

Readinputs
-Dfilp.D
COUNT=p.COUNT Integrate
[.Sg>.8
Gather
.SUM
PrintAns

Figure 3.6 A screen shot of CODE (version 2.2) [Berg02]

CODE uses the dataflow model to represent communication and synchronization in parallel
programs. The data flow model assumes that computation proceeds, depending on the availability
of data. In CODE, the design patterns are the elements in the dataflow graph such as a sequential
computation node or a common shared variable. High level design patterns such as divide and
conquer are not available in CODE which would describe the structure and behavior of a collection
of elements. CODE does enable the recursive embedding of graphs so that a constructed dataflow

graph can be used as a single black box node.

CODE advocates the use of separation of the specifics, which means that parallel aspects of
the application are kept separate from its sequential functionality. The first version of CODE
appeared in the mid 1980s when the visual aspect of programming was the most important part. The
new versions of CODE are designed to run on the Unix operating system and are compatible with

PVM and MPI based networks.

No MPL programming skills are required to build parallel programs using CODE. Users

29

work at the procedural level, stipulating how a computation is done [Beck96]. With CODE, a
transition is made from how something is done to what the developer is trying to do. CODE allows
the user to write a book by writing an outline and then having the tool fill in the rest. The user need
to only build multiple sequential programs, connect them using arcs, and CODE takes care of the

parallel book keeping.

Some limitations are that the CODE environment can only run only over a Unix/Linux
operating system and the full GUI of CODE is available only for Sun workstations. Also, from a
programming perspective, it is believed that the use of dataflow elements and complex firing rules

still involve too low of a level when building large and complex parallel programs [BHDMO95].

3.5.2 HeNCE

Heterogenous Network Computing Environment (HeNCE) is an X-window based software
environment designed to assist scientists in developing parallel programs that run across a network
of workstations [Siu96]. HeNCE was developed at the University of Tennessee and is similar to
CODE in its intent to provide a GUI specifying a directed graph, which shows the interaction among
nodes. HeNCE also uses separation of the specifics in which the developer first specifies the
sequential computation in each node and the communication between nodes using a process graph.
Design patterns in HeNCE are represented by graphical icons and includes higher level parallel
programming abstractions such as replication, loop, pipeline, etc. Other structures such as

master/slave can easily be constructed with the provided design patterns and basic nodes.

The HeNCE model uses control flow graphs, as opposed to the dataflow oriented graphs of
CODE. HeNCE generates PVM code based on the graphs constructed by the user. PVM, as
discussed, is an accepted parallel programming standard so the code developed is portable. HeNCE
also relies on the PVM system for process initialization and communication. The programmer never
has to write explicit PVM code. During or after execution, HeNCE displays an event-ordered
animation of the application execution, allowing visualization of the relative computational speeds,

processor utilization, and load imbalances [Netl94]. Again, analogous to CODE, the developer can

30

easily decompose existing C (or FORTRAN) source code into pieces which can be executed in
parallel over an existing network of workstations or supercomputers. In this way, existing programs

may be reused and unused performance can be tapped out of existing machines.

HeNCE is limited to run under a Unix operating system. User feedback on HeNCE indicates
that it is not flexible enough to express more complex parallel algorithms [BHDM95]. HeNCE was
conceived as a research project, rather than a development tool and never gained a high level of
popularity among users. Its development has been discontinued ,but is still used due to its legacy
value as an early automated parallel programming tool [Netl94]. A screen shot of the HeNCE

environment is shown below in Figure 3.7.

Menu butvon to quit or change lang. Information

- i|Welcome 1o HeNCE tool version 2.0
current language is C
graph file static_integ.gr loaded.

"both.mat™: new cost matrix /
“@——— Error messages appear here.

mode: compose
directory: static_integ
graph: static_integ.gr
cost matrix: both.mat

trace:

language: ¢

HeNCE graph

| PV

Setinput:

l
ll-lelpl! Edit ”Tracel
AN 7

Graph menn Trace replay concrol
buttons. buttons.

betty
wilma

hostsu

Click on these icons to select the type
of node to draw.

Runtime messages and
here.

Click on. white spaces
Left button draws node.
Cntl-left deletes node.
Middle button draws arc.
Right button opens node program,
Shift-right opens node subroutine.

“&

RN O

00:08

L I - e

Figure 3: The hicol Window

Figure 3.7 Screen Shot of HeNCE (from [Netl947])

31

3.5.3 Tracs

Tracs was a result of work carried out at the University di Pisa [BCDP95] with the design
goal of creating an environment that can facilitate the development of distributed applications
involving groups of networked, heterogenous machines. Tracs enforces the use of an appropriate
methodology for distributed application design. The parallel application design is split into two
phases, the first devoted to finding the basic design patterns components, the second to building an
actual application out of the components. Tracs provides separation of the specifics, in a similar

fashion as HeNCE.

The modular approach of Tracs permits code reuse and allows the developer to structure their
applications in an organized manner with well defined interfaces between the components. Tracs
provides many advanced utilities that fit into the overall framework and whose operations are
“independent of one another. It provides the ability to automatically create components and to

simplify the definition of components in the application itself.

Tracs specifies three components which are the task model, the message model, and the
architecture model. Nodes communicate synchronously or asynchronously by messages though
unidirectional channels. A channel must be associated with a message model which handles the
packing, unpacking, and translation of the data. A developer starts by specifying the sequential
computation in the task model [Siu96]. Following this, the task model is combined with attributes
such as ports, services, logical names, and messaging models. When all the tasks are defined, the
developer connects all the task models and binds them to processor. The final code is generated

based on the models.

The most significant contribution of Tracs is its use of high level design patterns. The
powerful graphical interface can facilitate the addressing of complex design patterns such as task
farm, ring, array, grid, and tree. Its architecture model has raised the abstraction of design patterns

from a single process to a collection of processes. Support is provided for C, C++, and Fortran.

Tracs forces all design patterns to be graphical, which can cause difficulties with the

32

representation of some patterns that cannot be represented conveniently (i.e. divide and conquer).
The graphical interface of Tracs is rich in its strategy, but can limit the expressiveness of the system.

Tracs also can only run in the Unix environment.

3.5.4 Enterprise

Enterprise was developed at the University of Alberta in Edmonton [WIMNO95, SSLP93].
It is an integrated environment complete with a compiler, a debugger, graphics visualization tools,
and a performance debugger that allows developers to produce distributed applications with ease.
It also uses separation of the specifics. There is a rich graphical interface which the user may utilize
to build parallel applications, with the system automatically inserting the code necessary to handle
the communication and synchronization [Ente02]. The code generated is C code that is

supplemented by new semantics for procedure calls that allow them to be run in parallel.

The developer uses a programming model that resembles a business organization to represent
parallel structures such as pipeline, master/slave, and divide and conquer and does not have to deal
with low programming details such as marshalling data, sending/receiving messages, and
synchronization. The developer specifies the desired design pattern technique at a high level by
manipulating icons using the GUI (see Figure 3.8). All of the communication protocols that are
required are inserted automatically into the user’s code. The user is given control of the amount of

parallelism required through Enterprise’s high level mechanism.

33

Shutdown PYM

Ausifsundancel/oradnansentel
) CubeSquare finlsh

tinclude <{(stdio.h)>
include <memory.h>

define MYLOOPSIZE 10

epartment(int arge, char =sargv)

int i. k. sq. cu:
int al MYLOOPSIZE 1. bl MYLOOPSIZE 1:

for(i = 0: i < MYLOOPSIZE: f++) (
al 1 1 = Square{ i):
bl 1] = Cube(i):

3

sq = cu =0
for(i = 0: i < MYLOOPSIZE: i++) (
sq += al i J:
cu += bl i 1:
)
printf("sum of squares %d\n", sq):
printf(“sum of cubes Z%d\n", cu):

Figure 3.8 Enterprise Screen Shot (from [Ente02])

Programmers draw a diagram of parallelism inherent in their applications using the business
model or enterprise analogy. Tasks are subdivided into smaller tasks and assets are allocated to
perform the tasks. Parallelism is determined by the number and types of assets used. Graphical icons
representing assets such as an individual, (assembly)line, division, and others are provided (Figure
3.9). A department, for example, can divide the tasks among components that can then perform the

tasks concurrently.

%

Receptionist Representative

=

Department Line Divigion

Enterprize .

Pecpedy
&

Figure 3.9 Enterprise Assets (Design Patterns) [IMMNO5]

34

The fact that C code is generated greatly enhances the ability of the Enterprise to produce portable
code. In addition, the high level of abstraction gives novice users the ability to program complex

parallel programs.

The Enterprise programming environment itself can only run on the Unix operating system
which is limitation. As well, many programmer have found that Enterprise is too inflexible in the
code it produces. In a monitored programming experiment, graduate students produced less code
using Enterprise than using PVM, but required more time create optimal code. The lessons learned
from Enterprise are that design patterns can be used to quickly and correctly develop parallel
programs, but these programs do not produce the performance of hand-crafted parallel programs
using MPLs, and that users do not like to lose control and flexibility of low-level primitives within

a higher level model.

3.5.5 DPnDP

Design Patterns and Distributed Processes (DPnDP) [Siu96, SiSi97] was developed at the
University of Waterloo by Stephen Siu and Ajit Singh as a parameterized design-pattern based
system. The programming system was designed with two enhancements over other existing systems,
openness and extensibility. Openness is the ability to bypass the high level programming model and
directly access low level primitives for the purpose of optimizing performance and enhancing
flexibility. A system which permits easy access to low level primitives has a high degree of
openness, while a closed system forces the user to stay within the automated coding approach.
Extensibility refers to the ability to add new design patterns to the system, thereby increasing the
system’s utility. In a non-extensible system, if a required pattern is not provided by the system, the

system has no advantage over direct low level coding.

DPnDP is an open system in two ways. First, developers can create any arbitrary process
structure using a combination of single process design patterns (singletons) and multi-process design
patterns. Users are not restricted to only the high-level design patterns. Second, developers can
access low-level message passing primitives if they want to tune the performance or to use
specialized message passing features such as “"groups" in PVM. Therefore, developers can develop

applications, partially using design pattern and partially using low-level message passing primitives.

35

When users decides to use low-level message passing primitives over the high level automated code

generation mechanism, they are responsible for ensuring correctness.

All design patterns in DPnDP share a uniform interface for definition and development.
Other components in DPnDP access them only by using this interface. Therefore, a design pattern
does not have to know the implementations of other design patterns to work with them. This context
insensitivity allows system developers to add new design patterns incrementally into DPnDP
without having to know the implementation of other patterns or the system. Furthermore, existing

design patterns can be used as building blocks to create new design patterns.

The DPnDP parallel programming model assumes a MIMD machine architecture and an
operating system that supports process creation and message passing among the processes. A
parallel program is represented by a directed graph when using the GUIL Each node in the graph is
a singleton or a multiprocess design pattern. Node in the graph communicate and synchronize

through message passing, represented by directed arrows as shown in Figure 3.10.

.........
------------ -~
#
-
/
Design rd
Pattern :'I
De5|gn H
i
i
'
H

Panem

Figure 3.10 Structure of a DPnDP application [SiSi97]

Each process (represented by a node) in a DPnDP application operates in a loop in that it waits for
incoming messages on any of its ports from other processes. When a message arrives at a port of a
process, the process notifies the appropriate user provided message handler to process the message.
Design patterns are provided that implement various types of process structures and interactions
found in parallel systems, but the application specific procedures are unspecified allowing the user
to fill in his/her code. When using a design pattern, the user only deals with communication that is

application specific. All other communication needed for process management is taken care by the

36

automatically generated code.

DPnDP has been implemented and run using a network of workstations that run under the
Solaris operating system. Preliminary results from simulations indicate that the performance of code
produced by DPnDP is within 10% of hand coded PVM for similar problems. Openness and
Extensibility are improvements over other pattern based systems. However, the programming

system can only be used in Unix/Linux environments.

3.6 Proposed Enhancements

The above systems provide a insight into existing design-pattern based parallel programming
systems. These systems have simplified parallel programming significantly for intermediate users,
but at the same time have imposed bounds on the user. Every system discussed has limitations,
ranging from the programming model being too low in the case of CODE to a lack of flexibility in
HeNCE. There is a well defined tradeoff between the ease of use of a system and the system’s

flexibility. Tracs and Enterprise suffer from a lack of expressivity of higher level design patterns.

Enhancements are required to the programming model of most of the above systems in order
that the programmer should be able to use mechanisms provided by the system to cover the common
problems, but also include mechanisms to cover the remaining types of uncommon problems
[BHDMO5]. In addition, the programmer should be able to use the programming environment over
a diverse range of platforms such as a Unix workstation, a Windows PC, an Apple Macintosh, etc.
The programming environment should function irrespective of whether the platform can actually
run the resultant parallel program. The developed program can always be ported to the intended

platform(s).

While systems such as DPnDP have been proposed and developed to tackle the issues of
openness and extensibility [Siu96, SiSi97], there is little to show for programming portability.
Overcoming the portability issue for the programming environment is not an easy task as every OS

and hardware platform has its own rules for handling events and graphics. While MPI and C are

37

standards used in parallel programming today, there is almost no system which can aid the user in
programming MPI code using C on almost any widely used computing system. This thesis project
sets out to demonstrate that by building a parallel programming system through a non-platform

specific language such as Java, a portable system is possible.

3.7 Summary

This chapter has provided a description of existing parallel programming systems. Raising
the level of abstraction can be done by providing the user with message passing libraries(MPLs) and
remote procedure calls (RPCs), abstractions on top of MPLs and RPCs, and through other more
unique approaches. Parallel programming systems are broadly classified into basic systems, tool
kits, and integrated development environments based on their functionality. PVM and MPI have
evolved as two accepted MPL standards for distributed programming and design pattern based
systems have emerged such as CODE, HeNCE, Tracs, Enterprise, and DPnDP to assist the
programmer. Most of these systems are closed, not extensible, and generally only function as
programming tools on particular computer architectures or operating systems. Improvements in
these areas appear desirable. Chapter 4 discusses the design and implementation of MPI Buddy, an

open and portable design-pattern based system.

38

Chapter 4

Design and implementation of a Parallel Programming System
(MPI Buddy)

4.1 Introduction

This chapter describes the design and implementation of the MPI Buddy system for parallel
program development using MPI. The uniqueness of the MPI Buddy system is the ability for the
developer to program the application from almost any platform. The functionality desired from the
programming system is discussed before the actual layout of the implemerﬁ:ation 1s presented. Next,
the design patterns included in the system are discussed. The chapter concludes with the

programming model that is intended to be used with this system.

4.2 Functionality Desired

1. User Friendly Interface

A user friendly interface is important for allowing the user to conveniently work with the higher
level automated code generation mechanism and simultaneously providing access to low level

primitives.

2. Openness

Openness is a system attribute that is key to allowing the user to have the flexibility to customize
the automatically generated code from the system. Openness gives the user the ability to mix the
high level model with low level primitives when necessary. Openness can be achieved in the manner

shown in Figure 4.1.

39

High Level Code Application
Generation Specific Codei

v

Message Passing Libraray (MPI)

Low-level message passing primitives
(ie. socket level)

Figure 4.1 A layered open system (Adapted from [Siu96])

One disadvantage of an open system is that correctness is compromised as the system has no control
over the code directly entered by the user. Another disadvantage is reusability of the code becomes

compromised by the user inserting application specific code.

3. Design Pattern Based

As explained in chapter 2, design patterns offer many advantages including correctness,
maintainability and reusability, and ease of use. Therefore, it is imperative that the system use
parallel design patterns and that they be parameterized so a single pattern can be adapted to what

the developer specifies by simply filling in the parameters using a GUI.

4, Extensibility

The system should allow new design patterns to be added conveniently by simply adding another
module onto the system and completing the links in the system code. Ideally, it would be beneficial
if new design patterns could be added to the system easily through a common interface, but this

design concept could not be realized in this work due to time constraints.

5. Generation of Optimal Code

The code generated by the system should not only be correct, but it should be optimal in terms of
communication requirements. The developer should be able to use the automatically generated MPI

code wherever possible and expect to get good parallel results. The assumption is that the user’s

40

parallel design is efficient in the first place and the target environment is a cluster of single processor

workstations.

6. Ability to Test Code Syntax Correctness

The system should be able to compile the MPI code to determine whether the MPI program is
functioning correctly. This is especially crucial to an open system which allows the user to directly
modify the generated code. Forcing the user to exit the system to compile the code would delay the

development process.

7. Portability of System

The developer should be able to work different architectural platforms using widely accepted
operating systems. This is possible if the system is developed using the Java programming language
and Java’s Swing based components are exploited. The Swing GUI components appear visually the
same regardless of the platform being used. The Java programming language is described in more

detail in section 4.3.

4.3 The Java Programming Language

The Java programming language has revolutionized the world of programming, allowing
developers to easily create multimedia-intensive, platform-independent, object-oriented code for

conventional, Internet, Intranet, and Extranet-based applets and applications [DeDe99].

The Java programming language has also been considered for parallel program development
directly. A Java class library jmpi already exists [Dinc98]. Jmpi is a 100% Java-based
implementation of the Message Passing Interface (MPI). jmpi supports all the MPI-1 functionality
as well as the thread safety and dynamic process management of MPI-2. jmpi is built upon JPVM,
which implements message passing by communication over TCP sockets. Java has the advantages
of being easy to learn, keeping projects manageable, and simplifying the development and testing
of parallel programs. Java is platform independent and extremely portable. The Java programming

language also has the advantage in that the language was designed for networks (and computer

41

clusters) and has built in communication routines.

However, the overhead involved with Java far exceeds that of the C language and can result
in very slow executing programs, especially message passing ones. Java programs run on average
10 times slower than those written in C. This makes no difference in building a programming
system, as the rich graphical support for coding the API in Java gives a graphical richness to the
application, while at the same time the actual application code developed from the Java application
will use the low level, high speed C language with MPI support. This style of interface pro gramming
incorporates the best virtues of both the Java and C languages: ease of graphical development and

efficient low-level code.

4.4 System Design Layout

This section details the layout of the “MPI Buddy” system that was developed using Java
with the intent of providing a level of abstraction above MP1. The Swing components of Java 2 were
exploited to give the programming system a consistent appearance across computing platforms. The

system was designed as shown in Figure 4.2.

42

MP| Constants

ConstantHelp.java

Template Function Help
HelpDialog.java
HTML files

<@¢—— Help Modules

HTML file

Design Main

Patterns Executable

TryRead java B
- Modules for design <

pattern GUl and - Main GUI Interface
Implementation - System /O
-See section 4.4 -Menu Bars

Web Help

Browser.java

/

Printing
Print2.java

Intro-Screen
L.oadPart.java

- Provides

information about the

application upon
launch

N\

Compilation
Compile.java

- Allows C MPI
programs to be
compiled from inside
MPI Buddy

Figure 4.2 Layout of the MPI Buddy System

4.4.1 Main Executable

43

executed once action events are instantiated by the user.

The main module is responsible for the launch of the application and links when the user selects
various menu selections to other classes in the application which perform specific functions. This
approach was determined to be logical and consistent with the Object Oriented Modular style of

programming. The main features (Figure 4.2) of the MPI Buddy application are described below.

This class produces the main GUI window that displays the user’s code (Figure 4.3). The
screen and file /O for the text MPI C code is handled by the main executable. The code in this
module contains links to the other program classes, which can be activated by selecting options from
the pull down menu. In addition, there is another text area produced by this class which returns the

output results of compilation attempts on C code by the user. Much of the code of this class is only

Caret Status

Figure 4.3 Screen shot of MPI Buddy (main window)
4.4.2 Compilation

The Compile class allows the user to compile a C MPI program (or basic C program),
providing that the underlying operating system supports the compile command used. The user is
given full control of the compilation command to be used and may modify the command line
statement directly in the text box provided by the GUI (Figure 4.4). This gives added flexibility to
the application and ensures that the compilation command will not be limited only to one compiler

or platform.

e

mpice -c Cllncompletetboba.c

‘Command Line for Compile |

Figure 4.4 Compile GUI

44

4.4.3 Help Modules

It was determined early in the development process that the application would require a
learning curve for the user. Fortunately, the Java language allows for the easy displaying of
information in html files and also provides easy access to the world wide web. These capabilities
were exploited in order to provide the user with support. The help menu accessible in the main

window provides the following support:

. Template Help: Html files were created during the development process that document the
intricacies of each design pattern type and how to use them. Using a Java JEditorPane, the
contents of the html file are displayed.

. MPI Constant Help : A JEditorPane is used to display the information about the various
MPT types (stored in a html file).

. Web Help : A simple web browser is provided that sends the user to a main web site for
MPIdevelopment upon launch (http://www-unix.mcs.anl.gov/mpi/www/www3/)- The user
may click on the hyperlinks or type in a URL to access whatever else is required from the
world wide web. This feature requires that the computer the user is working on is connected
to the internet.

4.4.4 Printing

It was deemed important that the user should be able to print out his/her document, consistent
with other APIs. The Java Printable interface was implemented and code was written to ensure that

the proper number of pages to print was automatically calculated.

4.4.5 Design Patterns

The design patterns were developed independently of one another, but all inherit from a
common base class (DesignMaster.class). This base class contains the common variables used to
create the communication code as specified by the user. These include the communicator name, the
process variable declaration, current rank variable for each process, and the default MPI_Status

designation. The design patterns are described in much more detail in section 4.5 .

45

4.5 Design Patterns Included

The design patterns of the MPI Buddy system were chosen from recurring parallel
programming decomposition paradigms such as divide and conquer, 1D Master/Slave, 2D
Master/Slave, etc. The design patterns incorporated into the system were found to be among the
most utilized. One pattern, the dynamic 1D Master/Slave was provided mainly to give the
programmer an idea of how to create such an approach. Dynamic workpool approaches are
appropriate for cluster environments when the individual workloads are sufficiently coarse grained
or the individual workstation speeds differ substantially. There are almost an infinite number of
other communication and decomposition schemes available than those provided in the system, but

time did not facilitate their implementation.

The GUI interfaces for the design patterns were developed with the goal in mind of
providing choices to the user that will enable custom communication code to be created along with
the generation of all the required variables. There are tool tips provided to the user when entering
the required parameters that will enable him/her to easily understand what is required. Additionally
, help on each design pattern is available in the help menu (help->template functions). The code
produced by the various design pattern modules was developed so that design patterns can be reused
within a single program with similar or different input values for the required parameters. The

patterns included in the system are described in this section.

4.5.1 1D Scatter/Gather

The first function of the 1D Scatter/Gather module is to distribute (scatter) an array of data
evenly over the p processes. This setup assumes that the initial array has a number of elements that
is evenly divisible by the number of processes. If the data is not evenly divisible, an error will be

produced in the resultant program. The approach is shown below in Figure 4.5 .

46

0j1]1213]4]5]6] 7| RootProcess

1D Scatter

01 213 415 617

Proc. 0 Proc. 1 Proc. 2 Proc. 3

Figure 4.5 1D Scatter/Gather

The second function of this module is to gather up the data that was previously scattered. The user
is provided with a choice of the type of gather operation required. More flexibility is available
depending on the type of gather operation specified by the user. The user has the choice of No
Gather (leave the data among the processes), MP1 Gather, MPI_Allgather, and MPI Reduce. The
parametiers that the user must fill with the GUI include the send and receive buffers, the

communicator, root process rank, and MPI datatype (int,float,double,etc).

4.5.2 Balanced 1D Send/Receive

This module is analogous to the 1D Scatter/Gather module, except now there is no
requiremnent for the load (data) size to be evenly divisible by the number of processes. If the data is
evenly divisible by number of processes, using the 1D Scatter/Gather module will result in more
efficient code being produced. The code produced by this module works as follows: The data is sent
out in a manner such that the root process (0) always gets naverage consecutive terms from the
original send buffer, where naverage is the data size divided by the number of processes. The next
process will get naverage terms + a leftover term if there are remaining terms (These terms are
always consecutive in the new receive buffer). This continues for the remaining process until all the
remaining terms (i.e. terms above naverage) are used up. The total data size variable is totalCount
upon code generation. The data sent may also be received again into the root process. If the user

selects “Yes” in the Receive drop down menu.

47

l0|1|2|3|4|5|6|718|RootProcess

Balanced 1D Send/Receive

/1NN

Lll [efede] [sle] [7]e]

Proc. 0 Proc. 1 Proc. 2 Proc. 3

Figure 4.6 Balanced 1D Send/Receive
4.5.3 2D Scatter/Gather

This module implements a 2 dimensional scatter/gather approach. The module has the
function similar to the 1D Scatter/Gather module, except now the data is scattered using equal sized
blocks. The code created by this module works by first setting up the required variables. They are
the fotalsize for the total data size, hsize for the block size, loc_hsize for the amount from each block
to go to every process, and finally vsize for the number of blocks. Following this, the data is
scattered blockwise so that each process gets loc_hsize terms after each scatter. This approach is

illustrated below in Figure 4.7.

Send Buffer

totalsize
{Root Processor)

Scattering
Blockwise

[T | | 000 | | OTT0 | | CTI eesse
o | oo | oo || oo
OO || IO || O3 | | T
ool ool oo | | oo

Process 0 Process 1 Process 2 Process 3

toc_hsize™vsize

Figure 4.7 2D Scatter/Gather

48

Using this approach there are two constraints; First, the data size must have a number of
blocks to cover the entire data size (i.e. the Send Buffer). Second, each block size must be evenly
divisible by the number of processes. If either of these conditions is not met, an error will result. If
the first condition is met, but not the second, the developer can use the Block/Cyclic Send/Receive

Approach instead.

There is also the choice to receive the data back into the root process following the initial 2D scatter.
If this option is chosen, the data will be received into the final receive buffer in a blockwise gather

fashion (so the elements will be in order).

4.5.4 Block Cyclic Send/Receive

This module implements a block cyclic send/receive data decomposition scheme. The
approach distributes data cyclically from blocks of data. The code created by this module works by
first setting up the required variables: They are dataSize for the total data Send Buffer size, Asize for
the block size, vsize for number of blocks, naverage for the integer average in each process, and
nremain for the total number of leftover terms above naverage. The communication proceeds in
rounds with the root process always being 0. The total number of points after each round (for each
process) are in mypoints. The variable mytotalpoints contains all the points after the completion of
the block cyclic send/receive. Following this, the data is scattered blockwise so that each process

gets loc_hsize terms after each scatter. This approach is illustrated below in Figure 4.8.

49

k terms

Send Buffer
{Root Processor)

Block Cyclic
Send
LIT] LITT] LT [T L] |mwpoins
LT LITT] LT L]
LT LT T] LT HEN
LT LITT] LT] [TT1]
Process 0 Process 1 Process 2 Process 3

l

Figure 4.8 Block Cyclic Send/Receive

4.5.5 Cyclic Send/Receive

The function of this module is to distribute an array of data in a cyclic fashion. In other
words, each element of the array will be distributed to a process determined by the equation: i%p,
where i is the position of the element in the array and p is the total number of processes. Figure 4.9

illustrates this communication setup. There are no constraints on using this module.

To save communication time, the total data to be sent to the processes is calculated by the
root process (process 0) and simultaneously the slave processes calculate how many terms they will
require. The total data size for the Send Buffer is given by the variable dataSize. For all processes,

mypoints gives the total number of points in each process, and the receive buffer specified by the

user gives the data in each process.

50

0|l1}12]3|4]]5]|61] 7] RootProcess

Cyclic Send/Receive

0| 4 115 216 317 1] 4Process Case

Proc. 0 Proc. 1 Proc. 2 Proc. 3

Figure 4.9 Cyclic Send/Receive
4.5.6 Dynamic 1D Master/Slave

The function of the Dynamic 1D Master/Slave (workpool) module is to allocate processor
resources based upon the availability of data. A process working in parallel to solve the job is
allocated a certain amount of work. Upon finishing the work, the idle process checks if more work
is availabie. If more work is available, the process is assigned new work. When the total work is
completed, the dynamic 1D Master/Slave function exits. Figure 4.10 shows the approach employed
This approach is useful for heterogeneous clusters where individual job completion times are

unpredictable.

Workpool of Tasks

{processor 0)

Return Resuits/
Reuest New Task

PTrOCESSOT 1.ttt processor N-1

Figure 4.10 Dynamic 1D Master/Slave

The root process (process 0) keeps track of what task (block of data) is in which process and takes
care of the task communication to the other slave processes. The slave processes receive the tasks
and manipulate the data received, before sending the results back to the root process. When a result
is returned to the root process, it is inserted into a final receive buffer and the root process sends out
the next task until all tasks are completed. This module produces a function which the user can name

using the module GUI. This function is designed to be manipulated to perform the work desired in

51

each task.

4.5.7 1D Divide and Conquer

The function of the 1D Divide and Conquer module is to distribute a 1D array of data using
the divide and conquer approach. This approach uses a balanced tree to distribute the data to the

processes. The 1D Divide and Conquer approach is illustrated in Figure 4.11 for a 8 process system.

Original list

4 \gg @ @

Figure 4.11 1D Divide and Conquer (from [WiAl99], p.114)

The type of distribution for the Send Buffer data may be chosen by the user using the pull down
menu. The user also has the option of collecting the results up the tree again to the root process
(process 0) if requested in another pull down menu. This module will produce one procedure that
depends on the type of distribution selected by the user (i.e. regular, keep even/send odd, keep
odd/send even). Another procedure is produced if the user selects "yes" from the Receive pull down
menu which allows the user to specify computation that can be performed on the way up the tree to

a single array.

4.6 Programming Model

The programming model for MPI buddy uses a Java Swing based GUI which the user utilizes
to write his or her code with. The user must go through several small steps in order to produce

efficient application code with minimal programming time.

52

1. Define a New MPI File

The developer selects Design Patterns->New MPI File from the main menu. This opens a window
which requests parameters such as the default message tag, the default communicator, the name to
denote the variable containing the number of processes, and other essential parameters in an MPI
program. The user fills in the requested information and selects the DONE button. The main text
screen will be cleared of any existing program code and replaced with new code containing the MPI

header/ender.

Library Include Statements

MPI Header E— Variable declarations
MPI Statements (ie. MPI_Init)

User MPI Code
(developed in step 2)

MPI_Finalize()
g Return Statement for Main Program

MPI Ender

Figure 4.12 MPI Buddy program layout

The MPI header/ender contains all the necessary information for starting up and shutting down an
MPI prograrﬁ. In addition, there are include statements in the C code for the commonly used C
libraries (stdlib.h,stdio.h) along with the mpi library (mpi.h). The user may stop at this point and use
only the header/ender to develop the MPI program further if he or she chooses. This code by itself
is correct and will compile and execute with no work performed. However, the many design patterns
provided by the tool make programming many parallel problems easier by following the remaining

steps.

2. Utilize the Required Design Pattern(s)

This involves the user first clicking the left mouse button in the code at the place in the program
where the data decomposition/ communication structure is to be inserted. This will require that the
user has a good knowledge of C programming to understand what is intended to be constructed. The
design pattern to be inserted can be found from the menu : Design Patterns->(type of pattern)-
>(pattern). Parameters will be requested of the user and upon filling these out and clicking DONE,

the code skeleton will be inserted automatically. The user may modify and add to the code as

33

deemed necessary. The model for this approach is shown in Figure 4.13.

Design Pattern

using GUI
for Design User Enters Parameters
Pattern
Communication Code
skeleton User fills in computation
Code details

Final Code

Application Specific
Code

Figure 4.13 Programming approach

3. Save, Check, and Compile Final Code

The user must save the MPI C file that was developed if the aspiration is use it on a Linux/Unix
cluster. The file will be saved in the standard ASCII text format for portability. Following this, if
the underlying architecfure supports MPI program execution, the program may be compiled and the
results will appear in the lower text area of the GUL Alternatively, at this stage one may opt to work

with the standard MPI compile statements directly in a Unix/Linux environment.

4.7 Summary

This chapter has discussed the design intentions and layout of the MPI Buddy system. It was
considered important that the tool be portable, design pattern based, contain a user friendly user
interface, produce optimal code, and have the ability to test the code for correct syntax. The ability
to extend the number of design patterns was deemed to be a very good trait as well and was partially
accomplished through a modular system design. The system was developed with the use of the Java
programming language since this language has built in portability properties. The design patterns
included in the system were discussed in detail and even though the design patterns included are
among the most commonly used, they are only a small subset of the total number of parallel patterns

in existence.

54

The programming model of MPI Buddy starts by having the user declare a new MPI file.
Following this, the user selects the design patterns necessary for the application being developed.
Filling in the generated code skeleton with application specific computation code completes the
coding process. The programming examples and analysis of the utility of the MPI Buddy tool is

discussed in the next chapter.

55

Chapter 5

Programming Experiments and Analysis

5.1 Introduction

This chapter describes how various parallel programming problems can be tackled using MPI
Buddy. Examples are provided involving problems such as the 2D discrete wavelet transform and
the iterative fast Fourier transform. Each of these problems is approached using the design patterns
provided in the MPI Buddy programming system. Observations and difficulties experienced using

MPI Buddy are documented. Finally an analysis of the programming system model is made.

5.2 Metrics used to Evaluate Performance

Parallel and distributed programmers use various metrics to gauge the performance of a
parallel implementation. Metrics such as run time, speedup, efficiency, and cost reveal information
regarding the benefits of parallelism over a sequential version of the algorithm. Other softer metrics
are required to assess the benefits of a parallel programming system. These include the time spent
developing the code and the ease of programmability. The ability to port the applications and the
fact MPI Buddy can run on different computing platforms are benefits inherit in the design of the

system.

5.2.1 Objective Metrics
Run Time

This is the most primitive hard metric to gauge the performance of a parallel application. It is

basically a raw comparison of the best sequential algorithm run time 7 to the parallel run time ¢,,.

56

Speedup

Speedup is a metric that captures the relative benefit of solving the problem in parallel over using

a single processor system. Speedup is defined as :

Execution time on 1 processor

4
S(p) = == 5.1
2 Execution time with p processors i, -1

The best sequential algorithm is employed for #_in the above equation.

Efficiency

Efficiency, E is a measure of the fraction of time for which the processor is usefully employed

with work (computation) and not idling.

Execution time with 1 processor : S(p)

= = 5.2
Execution time with a multiprocessor x number of processors p (52)

An ideal efficiency approaches 1, representing the rare case when all the parallel processors are

employed on the computation at all times. In this case the speedup S(p) would be p.

Cost

Cost is an index which indicates whether the parallel execution time is proportional to the sequential

execution time. Cost is defined as :

t.. t
Cost = Parallel Execution time x total number of processors used = P L (5.3)
p

5.2.2 Subjective Metrics

Time spent developing code and ease of programmability are crucial to recognizing how the MPI
Buddy system benefits the developer. Understanding that MPI Buddy is geared at distributed
clusters of workstations, since it uses MPI underneath, it is necessary that the code generated be

correct and perform well against hand coded MPI applications.

57

In evaluating a programming system, the time spent developing code and ease of
programmability are the most important measures to assess, yet they are the most difficult to
quantify. One must be able to realize whether the tool is worth using. Every programmer will react
differently to a programming system, depending on his/her programming knowledge and personal
preferences. Still, it is believed that generalizations can be drawn from using representative

problems and conferring with a small group of individuals that are familiar with MPL.

Sections 5.4-5.5 illustrate the use of the MPI Buddy system for parallel programming. The
objective metrics of run time and speedup are used to gauge the performance of the hand coded
implementation. A comparison is made between the MPI Buddy and the hand coded versions to
understand if MPI Buddy does generate efficient code. A brief explanation of the time spent
developing the code using the hand coded and MPI Buddy scenarios and a description of the ease

of programming the application is also provided for both situations.

5.3 Computing Platform Used in this Work

The computing platform used for running the developed pareﬂlel applications was a dedicated
Beowulf Cluster with eight nodes, located in the Department of Computer Science at the University
of Manitoba. Each compute node is a Dual Pentium III workstation operating at 550 MHz with 512
MB RAM. The setup of the platform is shown in Figure 5.1.

58

= ch IUofM Computer Science Research Cluster

[Sr=

11 WM 11

4 Swirch
=
L8701 Gigarr CLaNV Sritch |

I| |I;

L=) ——1 = ';|L— I']l-ﬁ;ll i IJL— | ol I I |

= = 3 = = = = =
m0 P e I oSl) el B e

T'U8oT L6l
T 89T L6l]
£'1'891'T6
¥1691°T61 |
5 U891 T6L
9'T'691°E6T
LTB9T TR |
8189161

The compute nodes are:
Dual Pentium-IIH350 with RN Dual D Link DS 008 J00ASps Aull
SI2MB RAM, 6+8GR disk, . Oootr e Dugilexs Fost Srhernet Switches

Running RHG6.2, kernel 2.2.14

- A &v wine} cs.omortodaca
The iniexconnecis are: P-IH500 SEIME, 9GS,

Ej_@_@ 3 RHA2 hemef 2204,
2. Giganet CLAN- 1.25Gbps NIScd NFS Sevvices

3. Myrinet - 1 2 3Gbps To the Faerner (via 330, 178.24.229)
4. Switched Ethernet - 100Mbps

Figure 5.1 Platform Used

The experiments were run using a 100 Mbps Fast Ethernet network. The Fast Ethernet connection
has a high communication latency. Therefore communication differences between the hand coded
and MPI Buddy coded version of the application will be obvious. The Myrinet and Gigabit

connections for the cluster were not operational at the time of this work.

5.4 2D Discrete Wavelet Transform
5.4.1 Introduction

Wavelet transforms have been successfully used for the multiresolution representation of
one-dimensional and multi-dimensional signals. The most common application of this representation
is data compression. The new image compression standards such as JPEG 2000 [MGBB00] use the

wavelet transform prior to the encoding step. Data compression is not the only application of the

59

wavelet transforms. They have been used in many different areas, such as data analysis, numerical
analysis, signal processing and image processing. In such applications, the problem size is typically
large and the computation of the wavelet transform can be prohibitively costly, even though its
complexity is linear in the number of input samples, with a constant factor that depends on the
length of the filter. However, the algorithm is well suited for parallel processing because of the
repetitive nature of the computations and the regularity of the

input data [ChCCO02].

5.4.2 Analysis of the Problem

The orthogonal wavelet decomposition of a 2D signal x[n,m] can be computed by
convolving with a filter in one dimension (rows), retaining every other column, followed by
convolution of the resulting signal by another filter in the other dimension (columns) and retaining
every other row [KHTG98]. With a pyramid algorithm, further stages of the 2D-wavelet transform
can be computed by recursively applying the procedure to the approximation coefficients of the
previous stage (LL subband). The 2D DWT algorithm will produce four subbands at every stage,
each one is 1/4 the size of the input data size to that stage. These four subbands are denoted HH, HL,
LH, and LL with the first letter denoting the filter used horizontally and the second letter the filter
used vertically (H=High pass, L=Low Pass). One stage of the 2D DWT is shown below in Figure
5.2.

Perform 10 DWT Verlcally
Perform 1D DWT Horizonally

High Pass Fifter ——s Gf2) HH Band

o _.@L”

Input . ——1 H@)
Signat x[n,m] Down sampling

HL Band

HEz) Pl

e G2} LH Band

Low Pess Filter

LL Band (approximation

Hz) coefficents to next stage)

799

Figure 5.2 One Stage of 2D Discrete Wavelet Transform

The image is assumed to be periodic in nature along both rows and columns when performing the

2D DWT. This infers that should the convolution need terms beyond the edge of the image, those

60

terms are supplied from the other side of the image. For the 2D DWT discussion, the images are

assumed to be of size NxN and the number of processors is P.
5.4.3 Parallel Decomposition Strategy

The design strategy for the parallelization of the wavelet transform algorithm should be
capable of meeting the requirements for execution speedup by minimizing the inter-processor
communications. While developing the parallel algorithm, we must consider the fact that the
computational complexity decreases exponentially at each stage. The crucial point in the
implementation of the algorithm is to choose the optimal distribution of the initial two-dimensional

data and the intermediate subband coefficients on the processors.

The approach is to distribute the data columnwise such that each processor contains N/P
columns of data and then perform the convolution in the x-direction to obtain the approximation
and detail coefficients for the local data on each processor. Only the border data is to be
communicated between neighboring processors as the information about a particular position is
mapped to a particular processor. Now all the necessary data to perform the convolutions in the y
direction exists locally. A detailed analysis of this strategy is given in [PaJa96]. This strategy-
requires a communication step with an amount of data proportional to the length of the filter.
Exactly D-2 terms must be communicated from each row, where D is the size of the filter [NiHe00].
The wavelet transformation occurs locally at each processor. Consequently each processor will have
alocal LL, LH, HL, and HH subband. The communication approach is given in Figure 5.3 for the
algorithm using 3 processors (P=3).

Transmit D-2

Elements
Transmit D-2 TranI\\
Elements Elements

Pad Space Pad Space

Pad Space
Processor0 Processor 1 Processor2

Figure 5.3 Communication approach (3 processors)

61

The total communication time required to perform a K-level wavelet transform will be

K 2D-4)
:Tcomm = Z k=]2tx + k=1 Ntw
- (5.4)

1
= 2Kt +(4D-8)(1- EF)N[W
in which 7 is the startup time for the message, ¢, is the time required to transfer a double precision

number through the communication link, and N is the size of the message. In each stage of the
algorithm, the approximation coefficients of the previous stage are used for computation of new

subband coefficients. The amount of computation decreases by a factor of 4 at each stage. Assuming

that addition and multiplication operations require a time of 7, then the time for computation can

be estimated as

2

8
ﬂomp R §(D+ 1)——P f, (5.5)
. N2 . . e
since —___elements will be mapped onto each processor, each requiring D+1 multiplications and
P

D+1 additions at each stage of the wavelet decomposition. The sequential implementation has the

complexity © (N 2) and the above parallel implementation will have a processor-time product

(N 7) Hence, the parallel implementation will be cost-optimal. The speedup for this

implementation can be estimated as

S(NxN, P) =

8@4D-8), Y

1
— + ——
P 3D+ 1N,

When N is increased, a nearly linear speedup should theoretically be observed with this
implementation. If the system allows for overlapping computation and communication steps, better

speedup results can be obtained.

62

5.4.4 Approach to Solving Problem using MPI Buddy

This problem was solved using the same algorithm as the hand coded parallel version. The

steps in coding using MPI Buddy are as follows:

1. Create the MPI Header/Ender by selecting Design Patterns->New MPI File from the menu bar.
The default settings are selected and a functional MPI C code file is created.

2. Save the file as a C file so that updates can be made. Select : File->Save As. From the menu bar
and enter the file name desired. The file may now be save whenever deemed necessary by selecting

: File ->Save .

3. Use the algorithm to select the desired communication structure. From Figure 5.3, it is obvious
that the data needs to be divided columnwise, with N/P columns existing on each processor.
Therefore 2D Scatter/Gather is selected from Design Patterns->Static Master Slave-> 2D

Scatter/Gather. The appropriate parameters are then filled (Figure 5.4).

| ¥es

Haméﬁfﬂaot Process) ~ ¢ |staridata

 |mPipoumE

othDistribge: L

érﬂamé {ali Processes). - lenddata

- 512512
512

Generate Required
MPI_COMM_WORLD

Figure 5.4 Selecting 2D Scatter/Gather design pattern parameters

4. Add in necessary application specific code for the program and define user parameters and
variables to be used as shown in Figure 5.5. This also involves the use of other .h files that may need
to be used. The “mpih”, “stdlib.h”, and “stdio.h” header files were included in the step 1

automatically.

63

[E3 C:\incomplete\way
Filé DesignPatterns Compile Edft Help. 0
locdata=malloc{totalsize/p*sizecf(double));
enddata=malloc{totalsize*sizeof{double));
hsize=512;

loc_hsize=hsize/p;

vsize=512*512/hsizes

if (my_rank==0) {
/*User Should define mainImage->data here*/

mainInage={image*imalloc(sizeof(image))
inputfile=malloc{8l};

output file=malloc{8l}); I

input file="barbara.pgn";
outputfile="ourfile.pgm";

steps=3; /*number of steps in the transform*/
getheader (mainImage, inputfile);
startdata=nainInage->data;

}

thefilter=makedaub (FALSE, daub8coeffs,8,0)

validwvavelet=inivwavelet (thefilter) &

Compilation Results

‘Caret position :1952 " Current Line Nigmber: 65 Total Lines of Code: 187

Figure 5.5 Adding user code to the 2D DWT program

The use of other design patterns is valid, but not necessary in this case. For the MPI Bcast ‘s
required, the user may insert these by hand or use the Design Patterns->Basic Functions-

>MPI_Bcast selection from the menu bar.

5. Final code is obtained. The code may be compiled from within MPI Buddy if the underlying

operating system is installed with a working version of MP1.

The code for sequential, hand coded parallel, and MPI Buddy coded versions of the application are
given in Appendix A.
5.4.5 Objective Analysis of the Tool

The code from the hand coded version and the MPI Buddy coded version appear to be
similar in structure with the hand coded version. It is expected that the two version will perform

equally well. Past experiments have shown that a linear speedup is observed for both the MPI Buddy

64

coded version and the hand coded version [ChCCO02]. Figure 5.6 gives plots of execution time versus

machine size using a filter size of 6 for 3 stages of the 2D DWT algorithm.

ol
2

=
=)

o

Execation Time (5]
o o
w o
Execatioa Time (5]

02 !ﬁ\

0.1 &\ \g
o 7
0 - - -)
1 2 3 4 5 [7 8 1 2 3 4 5 6 7 8

M achine Size (P) M achine Size (P)
i—o——100 Mbps Network —g— Myrinet Network 5—0—10() Mbps Network —g— Myrinet Network 1
a) 512x512 Image b) 2048x2048 Image

Figure 5.6 DWT Execution time versus machine size (D=6) [ChCC02]

From these plots, it can be seen that as the image size becomes larger, the execution time of the
implementation reduces almost linearly with an increasing number of processors. There is a steeper
drop off in execution time for the Myrinet interconnection with an increase in machine size than for
the 100 Mbps fast ethernet connection. This is the result of the properties of the Myrinet connection
that allow it to function with greater data transmission speed and lower latency. For the largest
image size used (2048x2048), the 100 Mbps fast ethernet connection performed almost as well as

the Myrinet interconnection as computation dominated greatly over communication.

Plots of speedup versus machine size are given in Figure 5.7 using a filter size of 6 for both
the Fast Ethernet and Myrinet interconnects for 3 stages of the algorithm. The results from running
the simulations using the Fast Ethernet connection reveals that the speedups are compromised by
excessive communication time, except for the larger image sizes. Using the Myrinet network, almost

linear speedups were obtained for all the image sizes.

65

a6
5 | ¢ l
-5
2 A T 3]
4 8
24 (R 1
(Al 6
2 R
o
2] _—~* + £ "
AR RN " 2 w
01? T
&€ ol g 04— - - }
1 8

2 3 4 5 6 7 8 1 2 3 4 5 6 7
M achine Size (P)

3563056 Image —m—512x512 Image —a&— 1024x1024 IEE@

[e 556%256 Image —o— 512x512 Image —a— T1024x1024 Image |

a) 100 Mbps Fast Ethernet b)Myrinet Interconnection

Figure 5.7 DWT Speedup versus machine size (D=6) [ChCC02]

The above discussion pertains to the hand coded version run over the same cluster with functional
Myrinet and fast ethernet connections. During this work, the Myrinet connection was not functional.
Also, much of the parallel communication occurs before and after the 2D DWT itself in order to
have all the results on a single processor. The analysis employed to measure the ability of MPI
Buddy to produce efficient communication code s to include all communication including the initial
scatter and final gather for both the hand coded and MPI Buddy coded versions. These result appear
in Table 1. For a machine size of 8, there is a slowdown using the 100 Mbps network as
communication dominates the execution time. The results show the MPI Buddy Coded version

performs as well as the hand coded version.

1 Processor

2 Processors

4 Processors

8 Processors

Hand Coded

0.580198

0.447595

0.448913

0.769215

0.576976

0.44694

0.441617

0.76683

MPI Buddy

Table 5.1: Timings (in seconds) for 2D discrete wavelet transform program
(512x512 image, filter size 8)

5.4.6 Subjective Analysis of the Tool

The 2D discrete wavelet transform is a problem which can be decomposed easily in parallel.
The tool provides the 2D Scatter/Gather functionality which is the key aspect in decomposing the

problem. Data type support is provided for all the basic MPI types and user defined types so the

66

wavelet program could be constructed efficiently. In addition, the basic generation of the header

saves programming time and allows the developer to concentrate on the problem at hand.

The time spent programming the main code of the 2D DWT was approximately 1 hour using
the MPI Buddy system and considerably longer coding by hand. This metric is difficult to measure
as likely the time to program an application will depend on the user’s familiarity with the
application, MPI Buddy, and MPI. There are advantages though for the parallel decomposition of
the problem using MPI Buddy such as it is less error prone than hand coding.

5.5 Fast Fourier Transform
5.5.1 Introduction

The fast Fourier transform (FFT) is basically a fast discrete Fourier transform (DFT). These
functions operate on a discrete set of data transforming the time domain to the frequency domain,
where further processing often follows. If there is a periodic sequence x(n) with period N, then the
Fourier series representation output will consist of N harmonically related exponential functions.
Fourier transforms can represent naturally occurring signals well, but perform more poorly than
wavelets in discerning singularities and edges. The FFT is designed to work on data sizes with the
number of points being a power of 2. [Walk96 , PrMa96]. Fourier transforms find applications in

signal processing, and financial forecasting among others.
5.5.2 Analysis of the Problem

The FFT algorithm is derived by starting with the discrete Fourier transform:

N
X, = _]172 #* where w= e ™" and N = input data size (5.7)

The capital letter X denotes frequency domain signal and the lower case x, the time domain signal.

The summation may be divided into two parts, even and odd:

67

1 (N/2-1) " (N/2)-1 A
Xk = W[Z j=0 x2jwzjk + Zj—o x2j+lw(zj l)k]
_ 1l 1 (N/2)-1 2k . 1 (N/2)-1 2k
Xk_ 2_(N/2)Zj=0 x2jw tw (N/Z)ZFO x2j+lw (5-8)
1 | 1 (N/2)-1 —2ﬂi[NL;2) ' 1 (N/2)-1 —2”!'(]\J,l/cz)

Each summation point is a N/2 DFT operating on N/2 even points and N/2 odd points

respectively. Therefore, the complete sequence can be divided into 2 parts:

X, = l[X

: WX, (5.9)

even

The complete sequence k=0,1, ..N can be calculated by dividing it into 2 parts as shown by

equations 10 and 11.

1 . (5.10)
Xk ZE[Xeven-i-w Xada’]
1 : 1 ,
Xk+N/2 = E[Xeven + WIHLN/ZXodd] = E[Xeven - M;A Xoa'd] (511)
This approach works as w**""? = —w" where 0< k< N/2. X, and X, ,,, can be

computed using two N/2 point transforms. When performing the iterative FFT, each of the N/2 point
transforms can be decomposed into two N/4 point transforms and the decomposition should continue
until only single points are to be trénsformed. A one point transform is simply the value of the point.
The twiddle factors w are found by recognizing that as the number of terms reduces by a factor of

2, the powers of w increase by a factor of 2 (i.e. 1, = =27/V).

The algorithm is shown in Figure 5.8a for a 8 point FFT. The terms are to be arranged in
reverse bit order when first performing the 1D DFT. This requirement ensures that the end result

will be in the correct order. At every level there is a butterfly computation (shown in Figure 5.8b).

68

Stage 1 Stage 2 Stage 3

0
Wg

X, X,
X, Xj_
X X, a atbw
X, X 1 b :>-i: a-bw
2k
k N
X X Wy =ée
Xy Xé
X, X,
a) 8 Point Iterative Fast Fourier Transform b) Butterfly Computation

Figure 5.8 [Iterative fast Fourier transform (FFT)

Each butterfly computation involves one complex multiplication and two complex additions. For

a data size of N = 2%, there are N/2 butterflies per stage of the computation process and
log, N stages. For the sequential case, the complexity will be of O(N log, N) as there are a

total of (N /2)log, N complex multiplications and N log, N complex additions.

5.5.3 Parallel Decomposition Strategy

This algorithm can be readily decomposed easily in parallel. The data is scattered so that
processor 0 will receive the first N/P elements, processor 1 will get the next N/P elements, etc,
where N denotes the number of terms in the initial array. Following this part, every processor will
effectively perform a FFT simultaneously on the data it has received. Upon the completion of the
local FFTs, the results are gathered into processor 0. Now the remainder of the FFT proceeds until

completion. The parallel algorithm is illustrated in Figure 5.9.

69

Stage 1 Stage 2 Stage 3

X wg X 0

PO
x, X,
X, X,

For larger data P1
sizes, all prior X X,

operations will PO

involve only local . %
processors P2 o i
.‘CS ‘\.5
X, X,

P3
X, Xy

Figure 5.9 Parallel FFT algorithm (4 processors, 8 data elements)
The algorithm described performs well because it greatly reduces the amount of non-local
computation. There are a total of log(N) stages for this algorithm, and only the last log(P) stages will

proéeed using the root processor alone. For instance if there are 4 processors and 2 ' data element,

then 2'* FFT iterations will proceed locally and only 2 iterations will proceed using the root
processor alone. The fact that the processor numbers are limited allows for the bulk of the program
to proceed in parallel. Indeed, for large data sizes, this parallel algorithm performs significantly

better than its serial counterpart.

The analysis of the parallel decomposition strategy can be understood by first assuming that

there are P processors available that are able to work in parallel. The time required to execute the

3N
first FFT iterations in parallel is P log(N / P), given that there are log(N/P) stages involving all
processors and the there are two complex additions and one complex multiplication per butterfly
stage. Only one parallel communication is required that sends the data from all the slave processes

to the master. Assuming only one processor can send data through the communication link at a time,

the communication time can be approximated by:

70

(P-1
P

T =(P-1).+N. ¢ (5.12)

[4

where 7 is the startup time to send a complex number and £, is the time required to transfer a

complex number through the communication link. For the last log(P) stages, only the root processor

computes the butterfly computations. The computation for this part is simply :

N
T, =Nlog, P+ 710g2 P (5.13)
The overall time requirement for the parallel version is therefore :
(P-1) 3N 3N
I;Jamllel = (P— l)ts + N P tc + 2P logZ(N/P)+ TIOgZ P (514)

This is a significant improvement over the sequential version of the FFT, particularly for larger

data sizes.

5.5.4 Approach to Solving Problem using MPI Buddy

This problem was solved using the same algorithm as the hand coded parallel version. The

steps in coding using MPI Buddy are as follows:

1. Create the MPI Header/Ender by selecting Design Patterns->New MPI File from the menu bar.

The defauli settings are selected and a functional MPI C code file is created.

2. Save the file as a C file so that updates can be made. Select : File->Save As. From the menu bar
and enter the file name desired. The file may now be save whenever deemed necessary by selecting

: File ->Save .

3. Use the algorithm to select the desired communication structure. From Figure 5.9, it is evident
that the data needs to be 1D scattered, with N/P consecutive elements going to each processor. One
can assume this data will already be in a bit reversed order so long as this is hand programmed later

into the program. 1D Scatter/Gather is selected from Design Patterns->Static Master Slave-> 1D

71

Scatter/Gather. The appropriate parameters are then filled in (Figure 5.10). The data structure
Complex is defined in complex.h so the data type is “Other/User Defined”.

nNIRLE

: ,l,

 Enter the User Defined
- |compleq |

Final Receive Buffer

Figure 5.10 Selecting 1D Scatter/Gather design pattern parameters

4. Add in necessary application specific code for the program and define user parameters and
variables to be used. This also involves the use of other .h files that may need to be used. Most of
this program relies on the user knowledge of the algorithm, thus a great deal of hand coding is

necessary.

5. Final Code is obtained. The code may be compiled from within MPI Buddy if the underlying

operating system is installed with a working version of MPI.

The code for the sequential, parallel ,and MPI Buddy versions of the FFT are provided in Appendix
B.

5.5.5 Objective Analysis of the Tool

Again, the MPI Buddy coded version of the application appears to run as fast as the hand

coded version, likely due to the fact the two programs were constructed using the same algorithm.

72

The timing results for running the hand coded FFT implementation on different machine sizes using

a data size of 2% are provided in Figure 5.11. The corresponding speedup graph is illustrated in

Figure 5.12.

.\-

Execution Time (s)
O =2 NWLOO OO

3 4 5 6 7 8
Machine Size (P)

-
o A

| ~—2%20 Data Size —=— 2"20 Data Size |

Figure 5.11 Execution Time versus machine size for parallel FFT

N N
- N W
\\

Relative Speedup

o
3

Figure 5.12 Speedup versus machine size for parallel FFT

Using the timings for the entire program and not just the FFT core, a comparison of the
performance between the hand coded and MPI Buddy coded versions can be made. Using the full
programs was necessitated by the fact the code from the hand tailored version differed from the MPI

Buddy coded version in where communication structures and other program parts were placed. The

average timing results of running the entire 1D FFT program for a data size of 2% are shown in

Table 2.
1 Processor 2 Processors 4 Processors 8 Processors
Hand Coded 10.06795 7.514335 6.442555 6.163328
MPI Buddy 9.989772 7.540516 6.382316 6.123404

Table 5.2 : Timings (in seconds) for FFT applications (N=20, data size 2"20)

73

Itis evident, that the two programs perform equally well. The 100 Mbps interconnection used results
in progressive speedups for increases in machine size, but there are diminishing returns as

communication begins to dominate for larger machine sizes when using a fixed problem size.

5.5.6 Subjective Analysis of the Tool

The FFT can be highly parallelized, but the actual process of doing so is fairly complex.
Again, MPI Buddy provides the necessary design pattern that makes the task easier. Support for user
defined data types gives one the flexibility to use specific C structure types and MPI Buddy takes
care of scattering the structure automatically. The code for the 1D scatter/gather is easily generated.

Again ,the benefits discussed for the 2D DWT implementation also apply.

The main observed benefit in programming this application using MPI Buddy was the
automatic generation of the header/ender and the automatic generation of the MPI communication
code. However, the time benefit was minimal, if any, over the use of more common C programming

environments for the experienced MPI user.

5.6 Overall Analysis of the Tool

The analysis of the tool which can be inferred from the experiments conducted is that the tool
performs well in coding small parallel applications. This is expected to be especially true in
generating automatic MPI code for the beginner user. The benefits become more pronounced when
coding difficult communication structures such as the 2D scatter/gather, as opposed to simpler
structures (i.e. 1D scatter/gather). For all communication structures, efficient communication code
is generated. MPI Buddy is advantageous in that it gives the user the ability to program MPI
applications from almost any platform, a change from the programming systems discussed in
chapter 3. This tool can useful for the rapid prototyping of data-parallel signal/image processing

applications.

74

Drawbacks experienced were that the high level programming model may confuse the user
when parameters are entered into the design pattern GUIL. As well, the user is expected to enter
application specific code himself/herself into the skeleton code which is generated. This is fine for
those who have worked with MPI, but it may prove difficult for the beginner user. Also, there was
not much support for inserting MPI design patterns into procedures other than the main() procedure.
This was a limitation inherit in the design of the MPI Buddy system which automatically generates
needed variables, but only in the main() program procedure. The lack of a color coded API for data

types, automatic indentations, and other features found in such APIs as Visual C++ made sequential
| additions uncomfortable. The lack of an advanced GUI that allows the user to program more
naturally appears to be the limiting factor with respect to ease of use for the user. It is well
documented that providing the user with graph models for programming facilitates ease of use

[Siu96], but time constraints did not facilitate this implementation.

75

Chapter 6

Conclusions and Future Work

6.1 Review of this Work

Parallelism is not inherent on any computer system by default. Support should be available
at the hardware, operating system, and developmental levels. Provided that support does exist,
parallelism can be exploited while programming the application, at compile time, and during
execution. Various parallel computer architectures have been developed, most of these taking the
form of expensive supercomputers which utilize multiple processofs simultaneously. The demand
for increased computational power at reasonable cost has led to the concept of distributed clusters.
These “machines” often take the form of a network of conventional workstations interconnected
through high speed networks. The use of these computing environments is widespread in certain
scientific and engineering domains, but have not proliferated further because of the lack of

appropriate programming tools to aid the novice parallel programmer.

Approaches to overcoming the complexity of parallel programming are to raise the level of
abstraction and provide tools that simplify repetitive tasks. Rasing the level of abstraction can be
done by providing the user with message passing libraries, abstractions on top of message passing
libraries, and other unique methods. Two message passing libraries, MPI and PVM, have emerged
as standards for parallel programming. In addition, complex programming systems have been
developed to generate parallel code easily. Some of these systems use PVM or MPI underneath,
while others directly socket program processor communication using C. A shortcoming observed
with all the systems studies is that they are platform dependent. The vast majority of these systems
were also closed in their design, indicating that inserting user code was difficult to impossible. MPI

Buddy, a open platform non-specific MP1 programming tool was proposed as a solution.

76

MPI Buddy was designed as a design pattern based, layered open system with a level of
abstraction above MPI. It was constructed using Java and possesses a modular design allowing new
design pattern modules to be added with ease. The intent was allow MPI Buddy to possess a user
friendly interface, openness, moderate extensibility, and portability. In addition, the tool was
intended to generate optimal communication code and be able to test code syntax from within. The
design patterns incorporated were chosen from the most commonly used parallel communication
and decomposition schemes. They include the 1D Scatter/Gather, Balanced 1D Send/Receive, 2D
Scatter/Gather, Block Cyclic Send/Receive, Cyclic Send/Receive, and 1D Divide and Conquer
approaches. Another design pattern, Dynamic 1D Master/Slave, was included for use on

heterogeneous clusters when the individual job completion times are unpredictable.

The programming model for MPI Buddy is user friendly. The user starts out by indicating
from the menu bar that a new MPI file is to be created. Following this, the desired design pattern
is selected from the design pattern menu and automatically inserted into the C code. The user may
modify the code as desired. Finally ,the developer saves the code. Providing the operating system
environment has MPI installed, compilation can also be completed, with the results piped to the MPI

Buddy window.

Code was produced using MPI Buddy for applications involving the 2D discrete wavelet
transform and the 1D fast Fourier transform. The MPI Buddy coded applications and hand coded
applications were compared for performance differences on a dedicated 100 Mbps fast ethernet
connected cluster. There were no significant differences in the run times of the applications which
lends evidence to the notion that MPI Buddy performs as well as hand coded versions of the same
application. With respect to subjective measures, it was determined that the tool is a time saver for
small applications, particularly when the user is a beginner MPI developer possessing C
programming knowledge. Consequently, the tool can be useful for educating novice programmers

on parallel programming techniques.

77

6.2 Future Work

The experience of using the tool has allowed for the identification of shortcomings which can be

improved on. These have been identifies as :

6.2.2 Better GUI

Though the user interface is sufficient to program the majority of the parallel problems faced
in computer engineering, the menu driven GUI is not as natural as a user controlled graph model that
allows the user to naturally represent communication by extending lines between blocks

(representing processes).

6.2.3 Automatically Color Code MPI and C Keywords

With MPI Buddy, keywords and data types are simply incorporated as regular code. Those
who have worked with Windows 98 know that using Notepad for programming can be very difficult,
while the use of Visual C++ makes programming easier. If the code produced can automatically
highlight C types and MPI types in different colors, programming will be easier. Similarly, allowing

the code to automatically indent itself if one is working in a loop will make programming easier.

6.2.4 Integrate a Performance Visualization Tool

The developer should be able to evaluate the performance of the code produced using MP1
Buddy easily from within the tool. This is a standard element of more integrated programming
environments. If this integration is made, then the user can modify the code as necessary to easily

achieve the desired application functionality and omit parallel bottlenecks.

6.2.5 Include Additional Parallel Design Patterns

Support for the most common parallel design patterns was included in the MPI Buddy system, but
by no means is this a complete pattern catalogue. There are many other complex patterns which

could be included in the system such as a 2D dynamic master/slave approach.

78

6.2.6 Add Support for Other MPI Communication

The communication code produced by MPI Buddy is close to optimal, providing the target
is a cluster of one processor machines. However, there are some clusters that use multiprocessor
computers. In these configurations, often one processor communicates while the others compute.
For these cases, providing coding support for non-blocking communication would result in betters

speedups

6.3 Conclusion

This thesis has reviewed the popular tools used in reducing the difficulties associated with
parallel programming. A Java Implemented open design-pattern based system, MPI Buddy was
developed and tested. This tool was determined to be useful for prototyping data parallel
applications in the field of signal and image processing. The main benefit of the tool was portability
across different computer platforms. The tool performed as expected, with the benefits more
pronounced for small parallel applications involving complicated communication. Intended

improvements of the system have been listed as future works.

79

References

[AMMYV98] Rocco Aversa, Antonio Mazzeo, Nicola Mazzocca, Umberto Villano,
“Heterogenous System Performance Prediction and Analysis Using PS”, IEEE Concurrency,
pp-20-29, July-September 1998.

[ArCu86] Arvind and D. E. Culler, "Dataflow Architectures," Annual Reviews in Computer
Science, Annual Reviews Inc., Palo Alto, CA ,pp. 225-253, 1986.

[BaST89] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, “Programming Languages for
Distributed Computer Systems”, ACM Computing Surveys, September 1989.

[BCDP9Y5] A. Bartoli, P. Corsini, G. Dini, C.A. Prete, “Graphical Design of Distributed
Applications through Reusable Components”, IEEE Parallel and Distributed Techonology, vol.
3,mno. 1, pp. 37-51, Spring 1995.

[BDGMY94] A. Beguelin, J. Dougarra, G.A. Geist, R. Mancheck, and V. Sunderarn, HeNCE: A4
User’s Guide. Carnegie Mellon University and Oak Ridge National Laboratory, June 1994,

[Beck96] Alan Beck, “Visual Programming May Come of Age with CODE”, HPCwire, viewed
on http://www.cs.utexas.edu/users/code/CODE-HPCwire-article.html , August 23, 1996.

[Berg02] Emery Berger, “The CODE Visual Programming System”, University of Texas Austin,
http://www.cs.utexas.edu/users/code/ , current as of April 23, 2002.

[BEST99] The BEST Group, “The Balance System v1.0.2",
http://balance.cyber.ust.hk/intro.html , August 1999.

[BHDM95] J.C. Browne, S. Hyder, J. Dongarra, K. Moore, and P. Newton, “Visual
Programming and Debugging for Parallel Computing”, IEEE Parallel and Distributed
Technology, vol 3, no. 1, pp. 75-83, 1995.

[Buyy99] Rajkumar Buyyam, High Performance Cluster Computing: Architectures and Systems
, vol. 1, Prentice Hall PTR, NJ, USA, 1999, 881pp.

[ChCCO02] Narjit Chadha, Aysegul Cuhadar, and Howard Card, “A Parallel Implementation of
the 2D Discrete Wavelet Transform”, Proc. 20" IASTED International Multi-Conference on
Applied Informatics, Innsbruck, Austria, February 18-21, 2002.

[CGMS94] N. Carriero, D. Gelernter, T. Mattson, and A. Sherman, “The Linda Alternative to
Message-Passing Systems”, Parallel Computing, vol. 20, no.4, pp. 633-655, 1994.

[CoGGOO0] W.E. Cohen, W.D. Garrett, and R.K. Gaede, “Parallel Program Traces for Accurate

80

Prediction of Proposed Cluster Performance”, Proceedings of the Second Workshop on
Cluster-Based Computing, http://www.crhc.uiuc.edu/~steve/webe00/ , May 2000.

[Comp02] Compaq Computer Corporation, “Titanic Sets Sail with Alpha”,
http://www.compag.com/hpe/film/titanic.html , current as of February 27, 2002.

[DeDe99] H.M. Deitel and P.J. Deitel, Java, How to Program.(3rd ed.). Upper Saddle River, NJ:
Prentice Hall, 1999,1355 pp.

[Dinc98] Kivanc Dincer, “jmpi and a Performance Instrumentation Analysis and Visualization
Tool for jmpi”, Europar-98, Southampton, UK, 1998.

[Dunc90] Ralph Duncan, "A Survey of Parallel Computer Architectures", IEEE Computer, pp.
5-16, February 1990.

[Ente02] The Enterprise Group, “The Enterprise Programming Environment”, Software Systems
Research Group, Department of Computer Science, University of Alberta,
http://www.cs.ualberta.ca/~systems/enterprise-overview.html , current as of May 2, 2002.

[GeKP96] G.A. Geist, J.A. Kohl, and P.M. Papadopoulos, “PVM and MPI: a Comparison of
Features”, Calculateurs Paralleles , Vol. 8 No. 2, 1996.

[GHIJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Glob00] The Globus Project, “The Globus Quick Start Guide v1.1.3”,
http://www.globus.org/toolkit/documentation/QuickStart.pdf , September 2000, 38 pp.

[GoSP01] Dhrubajyoti Goswami, Ajit Singh, and Bruno Richard Preiss, "Building Parallel
Applications using Design Patterns", A chapter in the upcoming book: "Advances in Software
Engineering: Topics in Comprehension, Evolution and Evaluation”, Springer-Verlag, New York,
2001, 24 pages.

[GoSP99] Dhrubajyoti Goswami, Ajit Singh and Bruno R. Preiss, "Architectural Skeletons: The
Re-Usable Building-Blocks for Parallel Applications". In proceedings of the 1999 International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'99),
pp. 1250-1256, Las Vegas, June 1999.

[GrLu96] William Gropp and Ewing Losk, Users Guide for mpich, a Portable Implementation of
MPI - Version 1.2.1. Argonne National Laboratory, University of Chicago, 1996, 68 pp.

[GrLu97] William Gropp and Ewing Losk, “Why are PVM and MPI so Different”, Proceedings
of the 4th European PVM/MPI Users' Group Meeting, November 1997.

81

[GrOh98] Thomas Gross and David R. O'Hallaron, iWarp -Anatomy of a Parallel Computer.
MIT Press, 1998, 530pp.

[HeFi97] Michael Heath and Jennifer Finger, “ParaGraph: A Tool for Visualizing Performance
of Parallel Programs”, National Center for Supercomputing Applications,

http://www.ncsa.uiuc.edw/Apps/MCS/ParaGraph/manual/manual.html , May 1997.

[HiTa72] R.G. Hintz and D.P. Tate. “Control Data STAR-100 Processor Design”, Proc.
Compcon 72', IEEE Computer Society Conference, New York, pp. 1-4, 1972.

[IMMNO95] Paul Iglinkski, Steve MacDonald, Chris Morrow, Diego Noviillo, Ian Parsons,
Jonathan Shaeffer, Duane Szafron, and David Woloschuk, Enterprise User’s Manual - Version
2.4. Department of Computer Science, University of Alberta. 1995, 65pp.

[KHTGY8] A. Khokhar, G. Heber, P. Thulasiraman, and G.R. Gao, “Load Adaptive Algorithms
and Implmentations for the 2D Discrete Wavelet Transform on Fine-Grain Multithreaded
Architectures”, Proceedings of the 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing, Session 14, IEEE, 1998.

[KoGe95] J.A. Kohl and G.A. Geist, XPVM 1.0 Users Guide. Computer Science and
Mathematics Division. Oak Ridge National Laboratory, April 1995.

[Kohl02] Jim Kohl, “XPVM: A Graphical Console and Monitor for PVM”,
http://www.netlib.org/utk/icl/xpvm/xpvm.html , current as of April 2002.

[Kran96] Dieter Kranzlmuller, “Debugging Massively Parallel Programs with ATEMPT”,
www.gup.uni-linz.ac.at:8001/papers/abstracts/Kran96c.html , July 1996.

[Kris89] E.V. Krishnamurthy, Parallel Processing - Principles and Practice. Addison-Wesley,
Singapore, 1989, 332 pp.

[LAMO1] LAM / MPI Parallel Computing, “XMPI -- A Run/Debug GUI for MPI”,
http://www.lam-mpi.org/software/xmpi/ , December 2001.

[Losh94] David Loshin, High Performance Computing Demystified, AP Professional,
Cambridge MA, 1994, 261 pp.

[MGBB00] M. Marcellin, M. Gormish, A. Bilgin, and M. Boliek, “An Overview of JPEG-
2000", Proc. Data Compression Conference, J.A. Storer and M. Cohn, eds., Snowbird, Utah,
pp-523-541, Mar.28-Mar.30, 2000.

[Mpc02] mpC Team, “The mpC Parallel Programming Environment”, Institute for System
Programming, Russian Academy of Sciences, http://www.ispras.ru/~mpc/ , current as of March
28, 2002.

82

[NeBr92] P. Newton and J.C. Browne, "The CODE 2.0 Graphical Parallel Programming
Language", Proc. ACM Int. Conf. on Supercomputing, July, 1992.

[Netl94] Netlibrary, “HeNCE (Heterogeneous Network Computing Environment)”,
http://www.netlib.org/hence/ , June 1994.

[NiHe00] O.M. Nielson amd M. Hegland, “Parallel Performance of Fast Wavelet Transforms”,
International Journal of High Performance Computing, vol. 11, no. 1, p.55-74, 2000.

[Ohi096] Ohio Supercomputer Center, MPI Primer/ Developing with LAM. The Ohio State
University, 1996, 86 pp.

[PaJa96] J. N. Patel and L. H. Jameison, Scalability of 2-D Wavelet Transform Algorithms:
Analytical and Experimental Results on Coarse Grained Parallel Computers, In Proceedings of
the 1996 IEEE Workshop on VLSI Signal Processing, San Franciso, USA, pp. 376-385, 1996.

[Patt02] Jason Patterson, “The History Of Computers During My Lifetime - The 1970s”,
http://www .pattosoft.com.au/jason/Articles/HistoryOfComputers/1970s.html , current as of
March 16, 2002.

[PrMa96] John Proakis and Dimitris G. Manolakis, Digital Signal Processing, third ed., Upper
Saddle River, NJ: Prentice Hall, 1996, 968pp.

[Schm95] Douglas Schmidt, “Using Design Patterns to Develop Reusable Object-Oriented
Communication Software”, CACAM, 38, 10, October 1995.

[SGIO1] SGI Inc, “PDI/DreamWorks Uses SGI Firepower to Visualize the Adventures of
Shrek”, http://www.sgi.com/features/2001/aug/shrek/index.html , 2001.

[Sim097] Mauricio De Simone, “Active Expressions : A Language-Based Model for Expressing
Concurrent Patterns”, Masters Thesis. Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, 1997, 100 pp.

[SiS197] Stephen Siu and Ajit Singh, “Design Patterns for Parallel Computing Using a Network
of Processors”, proceeding of the 6" International Symposium on High Performance Distributed
Computing (HPDC’97), pp. 293-304, 1997.

[S1u96] Stephen Siu, “Openness in Design-Pattern-Based Parallel Programming Systems”,
Masters Thesis, Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Ontario, 1996, 102 pp.

[SSLP93] J. Schaeffer, D. Szafron, G. Lobe, and 1. Parsons, “The Enterpriser Model for

developing Distributed Applications”, IEEE Parallel and Distributed Technology, vol 1, no. 3,
pp. 85-96, 1993,

83

[Thul01] Parimala Thulasiraman, Advances in Parallel Computing. CS785 Class Notes;
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, 2001.

[VGKS95] Jens Volkert, Siegfried Grabner, Dieter Kranzlmuller, and Richard Schall,
“ATEMPT - A Tool for Event ManiPulaTion”, www.gup.uni-

linz.ac.at:8001/research/debugging/atempt/ , September 1995.

[Walk96] James S. Walker, Fast Fourier Transforms, 2nd ed. Boca Raton, FL: CRC Press,
1996. 464 pp.

[Webb94] Jon A. Webb, “High Performance Computing in Image Processing and Computer
Vision”, ICRP, Jerusalem, Oct 9-13, 1994.

[WiAl99] Barry Wilkinson and Michael Allen, Parallel Programming, Prentice Hall, Upper
Saddle River, New Jersey, 1999, 431 pp.

[Wils99] G. Wilson, “The History of the Development of Parallel Computing”,
http://ei.cs.vt.edu/~history/Parallel.html , 1994.

[WIMNO95] D. Woloschuk, P. Iglinski, S. MacDonald, D. Novillo, 1. Parsons, J. Schaeffer and D.
Szafron, "Performance Debugging in the Enterprise Parallel Programming System", CASCON'95
Conference CDRom Proceedings, Toronto, November 1995.

[Zava99] Andrea Zavanella, “Skeletons and BSP: Performance Portability for Parallel

Programming”, PH.D. Thesis, Dipartimento di Informatica Dottorato di Ricerca in Informatica,
Universita Degli Studi di Pisa, December 1999, 198 pp.

84

Appendix A:

Software Listing for 2D Discrete Wavelet Transform
Al: Sequential Case
A2: Parallel Hand Coded Case
A3: MPI Buddy Coded Case

85

Al: Software Listing for Sequential 2D DWT Program

[*startproj.c/
/*A wavelet transform program - developed by Narjit Chadha */
/* Summer 2001 */

#include <stdarg.h>

#include "image.h"

#include "filter.h"

#include "mpi.h" /*use for timings*/

double *wavetrans(wavelet usewavelet,image *theimage,int steps);

int main (int arge, char *argv[])

{
/*place coefficient variables that may have to be used */
double daub4coeffs[] = { 0.4829629131445341, 0.8365163037378077,
0.2241438680420134, -0.1294095225512603 };
double daub6coeffs[] = { 0.3326705529500825, 0.8068915093110924,
0.4598775021184914, -0.1350110200102546,
-0.0854412738820267, 0.0352262918857095 };
double daub8coeffs[] = { 0.2303778133088964, 0.7148465705529154,
0.6308807679398587, -0.0279837694168599,
-0.1870348117190931, 0.0308413818355607,
0.0328830116668852, -0.0105974017850690 },
[*start the program*/
char *inputfile, *outputfile;
int steps,p;
filterset *thefilter;
wavelet validwavelet;
double *transformed; /*contains the transformed data*/
image *mainimage=(image*) malloc(sizeof(image)); /*the image to be used in this project */
double starttime,endtime; /*use for timings*/
MPI_Init(&arge,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
inputfile=malloc(81); /*assume the input file name will not exceed 80 chars*/
outputfile=malloc(81);
printf("\nEnter the name of the pgm image file to be used: ");
gets(inputfile);
printf("\nEnter the name of the output raw file :");
gets(outputfile);
printf("\nEnter the number of steps in the wavelet transform");
scanf("%d",&steps);
getheader(mainimage,inputfile);
/*for daub4 filterset®/
/* thefilter = makedaub(FALSE,daub4coeffs,4,0); */
/* thefilter = makedaub(FALSE HarrCoeffs,2,0); */
/* thefilter = makedaub(FALSE,daub6coeffs,6,0); */

thefilter = makedaub(FALSE,daub8coeffs,8,0);

86

3
s

/*now enter the wavelet tranform -error below here*/
validwavelet=initwavelet(thefilter);

MPi Barrier(MPI_ COMM_WORLD);
starttime=MPI Wtime();

/*compression begins*/
transformed=wavetrans(validwavelet,mainimage,steps);
/*find end time*/

MP1_BarrierMPI_ COMM_WORLD);

endtime=MPI Wtime();

/*now write to the output pgm file so that 2d discrete wavelet tranformed */
/*image can be displayed*/
writeoutput(transformed,outputfile,mainimage->hsize,mainimage->vsize);
printf("\nThe elapsed time is %e \n", endtime-starttime);

MPI_Finalize();

return 0;

double *wavetrans(wavelet usewavelet,image *theimage,int steps)

{

int i;

int lowsizeH=theimage->hsize;

int lowsizeV=theimage->vsize;

mt highsizeH highsizeV;

int symmetric=usewavelet.symmetric;

int npad=usewavelet.npad;

int hsize=lowsizeH;

int vsize=lowsizeV;

double *tempin,*tempout;

double *tempdata;
tempdata=(double*)malloc(hsize*vsize*sizeof(double));
tempin=(double*)malloc((2*npad+max2 (hsize,vsize))*sizeof(double});
tempout=(double*)malloc((2 *npad+max2(hsize,vsize))*sizeof(double));
/*initialize the tranform first*/

copy(theimage->data,tempdata,hsize*vsize); /*copy image to a temp location*/
while (steps--)

if (lowsizeH<=2 || lowsizeV<=2) &&symmetric==1) {
warning("reduce the number of transform setps of increase the signal size");
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");

)

s

/*now do a convolution with the low pass part of each row */

for (i=0;i<lowsizeV;i++) {
copy(tempdata+(i*hsize),tempintnpad,lowsizeH);
/*convolve with low and high pass filters*/
transform(usewavelet,tempin,tempout,lowsizeH,symmetric);
/*now copy back to the image*/
copy(tempout+npad,tempdata+(i*hsize),lowsizeH);

}

/*now covolve on the low pass portion of each column*/

for (i=0;i<lowsizeH;i++) {

87

/*copy each column i into the data array*/
copy2(tempdata+i,hsize,tempin+npad,lowsizeV);
/*now convove with low and high pass filters*/
transform(usewavelet,tempin,tempout,lowsizeV,symmetric);
copy3(tempout+npad,tempdata+i, hsize lowsizeV);
}
/*stay in while loop - do row and column convolutions until steps*/
/*have all been completed*/
highsizeH=lowsizeH/2;
lowsizeH=(lowsizeH+1)/2;
highsizeV=(lowsizeV)/2;
lowsizeV=(lowsizeV+1)/2;
} /*end of while*/
/*
free(tempout);
free(tempin); */
[*error above here 7?7 why*/
/*tempdata contains the data required -definitely correct®/
return tempdata; /*contains the modified image*/
1

5
/*make a four variable copy function*/

/globals.h/
/* */
/* Baseline Wavelet Transform Coder Construction Kit
Geoff Davis

gdavis@cs.dartmouth.edu

http://www.cs.dartmouth.edu/~gdavis

Copyright 1996 Geoff Davis 9/11/96

Permission is granted to use this

software for research purposes as

long as this notice stays attached to this software.*/
/*globals.h -file contains all the globals necessary for my DWT program*/
/*modified by Narjit Chadha - Summer 2001 */
/* */
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
/* */
/*define type PGM*/
#define PGM
/* */
/* standard #defines*/
/* */
#define TRUE 1
#define FALSE 0

#define BACKSPACE 8

#define BS 8

#define ESC 27

/¥ */

88

Eves

/*useful constants*/
/ *

#define P13.14159265358979
#define TwoPi 2.0*Pi

#define Sqrt2 sqrt(2.0)
#define Log2 log(2.0)

/¥

*/

*/

/*helpful inline functions -comment out if defined on compiler*/

/¥
#define min2(x,y) ((x)<())?(x):(y))

;Teﬁne max2(x,y) (()>(y)2(x):(y))

void error (char *format, ...);
void warning (char *format, ...);

*/

*/

#include "globals.h"

/*globals.c*/

/* */
#ifdef DEBUG

static FILE *debug_file;

static int debug_file open = FALSE;
#endif

/* */

void error (char *format, ...)

{

va_list list;
va_start (list, format);

printf ("Error: ");
vprintf (format, list);
va_end (list);

printf ("Mn");

#ifdef DEBUG
if (debug file open) {
fprintf (debug_file, "Error: ");
viprintf (debug_file, format, list);
fprintf (debug_file, "\n");
fflush (debug_file);

}
#endif

assert(0);

}

void warning (char *format, ...)

{

&9

va_list list;
va_start (list, format);

#ifdef DEBUG
if (debug_file _open) {
fprintf (debug_file, "Warming: ");
viprintf (debug_file, format, list);
fprintf (debug_file, "\n");
fflush (debug_file);

}
#endif

printf ("Warning: ");
vprintf (format, list);
va_end (list);
printf ("Mn");

* */
/*image.h */

/*the header file for all of the image routines */

/* Narjit Chadha Summer 2001 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "globals.h"

typedef struct
{
int hsize,vsize,maxg;
long size;
double* data; /*data for the image*/
} image;

void loaddata(image *animage,FILE *infile);

void getheader(image *theimage,char *afile);

void sizeimage(image *theimage,int xsize,int ysize);

void skipcomments(FILE *infile, unsigned char* ch);

unsigned int getpgmval(FILE *infile);

void copy (double *datal, double *data2,int size);

void copy2(double *datal,int stridel,double *data2,int length);

void copy3(double *datal,double *data2,int stride2,int length);

void writeoutput(double *tranformed,char *outputname,int xsize,int ysize);
void mklocimage(image* locimage,double *locdata,int loc_hsize,int loc_vsize),

/*image .c ¥/
/*this file will take care of reading in a pgm image and outputting the final

90

image to a file ¥/
/* Developed by Narjit Chadha , Summer 2001%/

#inchide "image.h"

void getheader(image *theimage,char *afile)

{

FILE *infile;
unsigned char ch =''; /*use the unsigned type for images*/
char filetype;
int xsize,ysize,maxg;
infile=fopen(afile,"rb");
if (infile==NULL) {
error("Unable to open the file %s\n",afile);
}

theimage->hsize=0;
theimage->vsize=0;
theimage->data=NULL;
/*assume file is a pgm file-->i.e. the default supported type*/
while((ch!="P)&&(ch!="#")) {ch=fgetc(infile);}
skipcomments(infile,&ch);
filetype=getc(infile); /*should be 5 or 6%/
/*now get the relevant information about the file including hsize,vsize */
xsize=(int)getpgmval(infile);
ysize=(int)getpgmval(infile);
maxg=(int)getpgmval(infile);
/*just make sure that the program can execute™®/
if ((theimage->hsize<=0)&&(theimage->vsize<=0)){
sizeimage(theimage,xsize,ysize);
if (theimage->data=—NULL)
error("Trouble allocating memory for image with dimensiions %d by %d\n",xsize,ysize);
y
else §
if ((xsize!=theimage->hsize)||(ysize!=theimage->vsize)) {
error("File dimensions and image settings are in Conflicth\n");
}
}
if (filetype=="5") {
theimage->maxg=maxg;
printf{("File %s , of type PGM is %d by %d with max gray level %d\n",

afile,theimage->hsize,theimage->vsize,theimage->maxg);

}

loaddata(theimage,infile); /*write a routine to load the image data)*/

3
fclose(infile);

void loaddata(image *animage,FILE *infile)

{

long i;
unsigned char *tmp;

long fp;
tmp=(unsigned char*)malloc(animage->size*sizeof(unsigned char));
fp = -1*animage->size;

91

}

3

3
5

fseek(infile,fp,SEEK_END);

if (fread(tmp,animage->size,sizeof(unsigned char),infile)!=1)
error("problem with input file");

for (i=0;i<animage->size;i++) {
animage->data[i]=(double)tmpl[i];

}

free(tmp);

void sizeimage(image *theimage,int xsize,int ysize)

int 1,j;

long imagesize;

double *tmpvalue;
imagesize=xsize*ysize;

tmpvalue=(double*)malloc(imagesize*sizeof(double));
for (=0;i<imagesize;i++) {

tmpvalue[i]=0;
}

for (j=0;j<min2(theimage->vsize,ysize); j++) {
for (i=0; i<min2(theimage->hsize, xsize);i++) {
printf("\nnothing should print");
tmpvalue[j*xsize+i]=theimage->data[j*theimage->hsize+i};
}
}

theimage->hsize=xsize;
theimage->vsize=ysize;
if (theimage->data!=NULL)
free(theimage->data);
theimage->data=tmpvalue; /*allocated space for the image*/
theimage->size=imagesize;

void skipcomments(FILE *infile, unsigned char* ch)

{
T

while((*ch=="#") {
while (*ch!="\n") {*ch=getc(infile);}
while (¥ch<'") {*ch=getc(infile);}

} /*i.e. bypass all the commments in the pgm file¥*/

unsigned int getpgmval(FILE *infile)

{

unsigned int tmp;

unsigned char ch;

do {ch=getc(infile);} while ((ch<='"&&(ch!='#");

skipcomments(infile,&ch);

ungetc(ch,infile);

if (fscanf(infile,"%u", &tmp)!=1) {
printf("%s\n", "Error parsing the file.");
exit(1);

N

92

3
f

return(tmp);

void copy (double *datal, double *data2,int size)

]
s

int temp=size;

while (temp--) {
*data2++=*datal-++;

}

void copy2(double *datal,int stride1,double *data2,int length)

}

int temp=length;

while (temp--) {
*data2++=*datal;
datal+=stridel;}

void copy3(double *datal,double *data2,int stride2,int length)

{

;

int temp=Ilength;

while (temp--) {
*data2=*datal++;
data2+=stride2;}

void writeoutput(double *transformed,char *outputname,int xsize,int ysize)

{

unsigned char *buffer;

it i;

double max,min,scale,hold;

FILE *outfile;

buffer=(unsigned char*)malloc(xsize*ysize*sizeof(unsigned char));

outfile=fopen(outputname, "wb+");
if (outfile==NULL) {

error("'unable to open the file %s\n", outputname);
)

fprintf(outfile, "P5\n#%s\n%d %d\n255\n" ,outputname,xsize,ysize);
/* have a function called for image scaling®/
max=0.0;
min=0.0;
for (i=0;i<xsize*ysize;it++) {
if (transformed[i]>max)
max=transformed[i];
if (transformed[i]<min)
min=transformed[i];
}
/*now scale all the values in the array to write to the file - values from 0-255%/
scale=max-min;
/*(255/scale)+min*(255/scale); */
for (i=0;i<xsize*ysize;i-++) {
hold=(255/scale)*transformed[i]+min*(255/scale);

93

buffer[ij=(unsigned char)(hold);

|
s

fwrite(buffer,xsize*ysize, 1 ,outfile);
fclose(outfile);
/* free(buff); */

)]
5

void mklocimage(image* locimage,double *locdata,int loc_hsize,int loc_vsize)
locimage->data=locdata;
locimage->hsize=loc_hsize;
locimage->vsize=loc_vsize;
locimage->size=(loc_hsize*loc_vsize);

——

[*ilter.h*/
#include "globals.h"

/* a header file for the filters and various filter functions */

typedef struct {
int size, firstindex,center;
double *coeff;

} filter;

typedef struct {

int symmetric;

filter *analysislow, *analysishigh, *synthesislow, *synthesishigh;
} filterset;

typedef struct {
filter *analysislow, *analysishigh;
filter *synthesislow, *synthesishigh;
int symmetric;
int npad;

} wavelet;

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst);

filter *makefilter2(filter *usefilter);

filter *makefilter](int filtersize,int firstindex,double *coeft);

wavelet initwavelet(filterset *afilterset);

void transform(wavelet awavelet,double *input,double *output,int size,int symt);

void symmetric_ext (double *output, int size, int left_ext, int right_ext, int npad, int symmetry);
void periodic_ext (double *output, int size, int npad);

/*the set of files for the wavelet filter functions */
[*filter.c*/
/*designed by Narjit Chadha - Summer 2001%/

#include "filter.h"
#include "globals.h"

94

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst)
{ . . .

nt 1,81gn;

filterset *tempfs;

tempfs=(filterset*)malloc(sizeof(filterset));

tempfs->analysislow=makefilter1 (anlowsize,anlowfirst,anlow);

/*assume the wavelets are orthogonal*/

tempfs->synthesislow=makefilter2(tempfs->analysislow);

tempfs->analysishigh=makefilter1(tempfs->analysislow->size,2-tempfs->analysislow->size-tempfs->analys
islow->firstindex, NULL);

tempfs->symmetric=symmetric; /*must copy the symmetries*/

if (tempfs->analysislow->firstindex%2) {

sign=1;

]
s

else sign=-1;
for(i=0;i<tempfs->analysislow->size;i++) {

tempfs->analysishigh->coeff] 1-i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindexJ=
sign*tempfs->analysislow->coeff[i];
assert(1-i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex>=0};

assert((1-i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex)<(tempfs->analysishigh->size));
sign*=-1;
3
I
/*copy the high pass analysis filter to the synthesis filter */
tempfs->synthesishigh=makefilter2(tempfs->analysishigh);
return tempfs;

filter *makefilter2(filter *usefilter)

{ . .
nt 1;
filter *tmpfilter;
impfilter=(filter*)malloc(sizeof{filter));
tmpfilter->coeff=NULL;
tmpfilter->size=usefilter->size;
tmpfilter->firstindex=usefilter->firstindex;
tmpfilter->center=-(usefilter->firstindex);
tmpfilter->coeff=(double*)malloc(usefilter->size *sizeof(double));
if(usefilter->coeffl=NULL){

for (i=0;i<tmpfilter->size;i++)
tmpfilter->coeffi}=usefilter->coeff[i];

3
5

else {
for (i=0;i<tmpfilter->size;i++)
tmpfilter->coeff[i}=0;
}

return tmpfilter;

}

filter *makefilter1(int filtersize,int firstindex,double *coeff)

{

int 1;

95

}

filter *afilter;
afilter=(filter*)malloc(sizeof(filter));
afilter->size=filtersize;
afilter->firstindex=firstindex;
afilter->center=-firstindex;
afilter->coeff=(double*)malloc(afilter->size *sizeof(double));
if(coeffl=NULL){
for (i=0;i<afilter->size;i++)
afilter->coeff]i]=coeff[i];

}
else {
for (1=0;i<afilter->size;i++)
afilter->coeff[i]=0;
}

return afilter;

wavelet initwavelet(filterset *afilterset)

{

Nt

wavelet tempw;

tempw.analysislow=afilterset->analysislow;
tempw.analysishigh=afilterset->analysishigh;
tempw.synthesislow=afilterset->synthesislow;
tempw.synthesishigh=afilterset->synthesishigh;
tempw.symmetric=afilterset->symmetric;
tempw.npad=max2(tempw.analysislow->size,tempw.analysishigh->size);
return tempw;

void transform(wavelet awavelet,double *input,double *output,int size,int symt)

{

int i,j;

int lowsize=(size+1)/2;

int leftext,rightext;

if (awavelet.analysislow->size%?2) {
/*i.e.an odd filter length*/
leftext=1;
rightext=1;

telse {
leftext=2;
rightext=2;

}
if (symt)

symmetric_ext(input,size,leftext,rightext,awavelet.npad,1);
}
else {
periodic_ext(input,size,awavelet.npad);
/*1.e. add the necessary extensions to make the wavelet transform work*/
/*the detail will become xxxxxxxx->HHHHGGGG */
)

!
/*first use low pass filter*/

96

for (i=0;i<lowsize;it+) {
outputfawavelet.npad+i]=0.0;
for (j=0;j<awavelet.analysislow->size;j++) {
output[awavelet.npad+il+=input[awavelet.npad+2*i+awavelet.analysislow->firstindex-+j]
*(awavelet.analysislow->coeff]j]);
!

§
}

/*now use high pass filter*/
for (i=lowsize;i<size;i++) {

output[awavelet.npad+1]=0.0;
for (j=0;j<awavelet.analysishigh->size;j++) {

output[awavelet.npad+i]+=inputfawavelet.npad+2*(i-lowsize)+awavelet.analysishigh->firstindex+j] *(awavelet.anal
ysishigh->coeff]j]);
H
}
}
* */
/* Do symmetric extension of data using prescribed symmetries*/
/* Original values are in output[npad] through output[npad+size-1]*%
/¥ New values will be placed in output[0] through output[npad] and in*/
/* output{npad+size] through output[2*npad+size-1] (note: end values may*/
/* not be filled in) */
/* left ext=1 ->extension at left bdryis ...321]0123..%

/* left ext=2 ->extensionat leftbdryis...3210]0123 ..%
/* right ext=1 or 2 has similar effects at the right boundary*/

/* symmetry = 1 -> extend symmetrically*/
/¥ symmetry = -1 > extend antisymmetrically*/

void symmetric_ext (double *output, int size, int left_ext, int right ext, int npad, int symmetry)

{
1

int 1,originalfirst,originallast,originalsize,period;
int first = npad, last = npad + size-1;
int nextend;

if (symmetry == -1) {
if (left_ext==1)
output[--first] = 0;
if (right ext==1)
output[++last] = 0;

Y
s

originalfirst = first;
originallast = last;
originalsize = originallast-originalfirst+1;

period =2 * (last - first + 1) - (left ext==1) - (right_ext==1);
if (left_ext==2)

output[--first] = symmetry*outputforiginalfirst];
if (right_ext==2)

97

output[++last] = symmetry*output[originallast];

/* extend left end*/
nextend = min2 (originalsize-2, first);
for (1= 0; 1 < nextend; i++) {
output[--first] = symmetry*output[originalfirst+1+i];
}

/* should have full period now -- extend periodically*/
while (first > 0) {

first--;

output{first] = output[first+period];
}
[*extend right end*/

nextend = min2 (originalsize-2, 2*npad+size-1 - last);
for (i = 0; 1 < nextend; i++) {
output[++last] = symmetry*output[originallast-1-i];

}

/*should have full period now -- extend periodically*/
while (last < 2*npad+size-1) {
last++;
output[last] = output{last-period];
1
5

b
s

/* */
/* Do periodic extension of data using prescribed symmetries */

/* Original values are in output{npad] through output[npad+size-1] */

/¥ New values will be placed in output[0] through output[npad] and in */

/* output[npad+size] through output{2*npad+size-1] (note: end values may */
/¥ not be filled in) */

void periodic_ext (double *output, int size, int npad)

{

int first = npad, last = npad + size-1;

/* extend left periodically*/
while (first > 0) {
first--;
output[first] = output[first+size];

}

/* extend right periodically*/
while (last < 2*npad+size-1) {
last++;
outputflast] = outputflast-size];
}

)
s

/* %/

98

A2: Software Listing for Parallel Hand Coded 2D DWT Program

*Code is the same as A1, except for startproj.c, and filther.c, and filter.h (shown below
modified).

/%A Parallel wavelet transform program - developed by Narjit Chadha */

/*This is an MPI implementation of 2D DWT that can operate on images and filters
of various sizes. Right now the only restriction is that the filters must be

asymmetric. i.e. size 2,4,6,8,10,etc. This will mean periodic extensions will

need to be added when performing the wavelet transform™*/

/*This program functions by reading in an image, producing a wavelet filter,
distributing N/p columns of the image to each processor, conducting a local

DWT on each part of the image, and finally gathering the local results and outputting
the final result to a file®/

/* Developed - Summer 2001 */

#include <stdarg.h>

#include "image.h"

#include "filter.h"

#include "mpi.h" /*for the mpi communication/data structures®*/

double *wavetrans(wavelet usewavelet,image *theimage,int steps,int my_rank,int p,MPI_Status status);

void main (int argc,char® argv{])
{

/*place coefficient variables that may have to be used - need only reside on root processor®/
double Harrcoeffs[] = {0.707106781, 0.707106781};

double daubdcoeffs[] = { 0.4829629131445341, 0.8365163037378077,
0.2241438680420134, -0.1294095225512603 };

double daub6coeffs[] = { 0.3326705529500825, 0.8068915093110924,
0.4598775021184914, -0.1350110200102546,
-0.0854412738820267, 0.0352262918857095 };

double daub8coeffs[] = { 0.2303778133088964, 0.7148465705529154,
0.6308807679398587, -0.0279837694168599,
-0.1870348117190931, 0.0308413818355607,
0.0328830116668852, -0.0105974017850690 };

/*start the program*/
char *inputfile, *outputfile;
double *locdata,*finalarray;
int steps; /*keep loc_v size the same™/
int loc_hsize,loc_vsize;
long position;
filterset *thefilter;
wavelet validwavelet;
double *transformed; /*contains the transformed data*/
int my rank,i;

99

/¥

/*
/%
/*

int p; /*number of processes*/

int root=0; /*rank of the root processor*/
int tag=0; /*tag for the message*/

image *mainimage,*loc_image;

double starttime,endtime;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI Comm size(MPI_COMM_WORLD,&p); /*find out number of processors*/

MPI Comm rank(MPI COMM_WORLD,&my rank); /*find out the rank of each processor*/
if (my_rank==0) {

mainimage=(image*) malloc(sizeof(image)); ; /*the image to be used in this project */
inputfile=malloc(81); /*assume the input file name will not exceed 80 chars*/
outputfile=malloc(81);

printf("\nEnter the name of the pgm image file to be used: ");

gets(inputfile); */

inputfile="barbara.pgm";

*printf{"\nEnter the name of the output raw file :");
gets(outputfile); */
outputfile="barbl.pgm";

Fprintf("\nEnter the number of steps in the wavelet transform");
scanf("%d",&steps); ¥/
steps=3;

getheader(mainimage,inputfile);

loc_hsize=(mainimage->hsize)/p;

loc_vsize=mainimage->vsize; /*this stays the same*/
finalarray=(double*)malloc(mainimage->hsize*mainimage->vsize*sizeof(double));
} /*end of if my_rank==0%/

/*for daub4 filterset*/

thefilter = makedaub(FALSE, Harrcoeffs,2,0); */

thefilter = makedaub(FALSE,daub4coeffs,4,0); */

thefilter = makedaub(FALSE,daub6coeffs,6,0); */

thefilter = makedaub(FALSE,daub8coeffs,8,0);

/*now enter the wavelet tranform -error below here®/
validwavelet=initwavelet(thefilter);

/*can do on all processors -faster!*/

/*compression begins -do on multiple processors!*/

/*scatter the image so that each processor has N/p columns of data -this is how
the communication efficient DWT is supposed to function®/

MPI Bcast(&steps,1,MPI_INT,0,MPI_COMM_WORLD);

MPI Bcast(&loc_hsize,1, MPI_INT,0,MPI_COMM_WORLD);

MPI Bcast(&loc_vsize,1,MPI INT,0,MPI COMM WORLD);

/*divide up the image*/

loc_image=(image*)malloc(sizeof(image)); /*local array of elements*/
locdata=(double*)malloc(loc_hsize*loc_vsize*sizeof(double});

MPI_Barrier(MPI COMM _ WORLD);
starttime=MPI Wtime();

100

for (i=0;i<loc_vsize;i++) {
position=i*mainimage->hsize;

MPI_Scatter(mainimage->data+position,loc_hsize,MPI_DOUBLElocdata+i*loc_hsize,loc_hsize, MPI DOUBLE,0,
MPI_ COMM_WORLD);
}
/*make a simple function to covert the new data into new images -eliminate fxn call to save time™/
/* mklocimage(loc_image,locdata,loc_hsize,loc_vsize); */
loc_image->data=locdata;
loc_image->hsize=loc_hsize;
loc_image->vsize=loc_vsize;
loc_image->size=(loc_hsize*loc_vsize);
/*revamp transformed to allow for parallel computation*/

transformed=wavetrans(validwavelet,loc_image,steps,my_rank,p,status);

for (i=0;i<loc_vsize ;i++){
position=i*loc_image->hsize;

MPI_Gather(transformed-+position,loc_hsize, MPI_DOUBLE,finalarray+(i*mainimage->hsize),loc_hsize, MPI_DOU
BLE,0,MPI COMM_WORLD);

3

§

MPI_Barrier(MPI COMM_WORLD);

endtime=MPI Wtime();

/*now write to the output pgm file so that 2d discrete wavelet tranformed */
/*image can be displayed*/

if (my rank==0) {
writeoutput(finalarray,outputfile,mainimage->hsize,mainimage->vsize);
printf("\nelapsed time is %e \n",endtime-starttime);

1

s
MPI Finalize();
return;
}

double *wavetrans(wavelet usewavelet,image *theimage,int steps,int my_rank,int p,MPI_Status status)
{

/*thie routine has been modified to allow for parallel comutations*/

int i;

int lowsizeH=theimage->hsize;

int lowsizeV=theimage->vsize;

int highsizeH highsizeV;

int symmetric=usewavelet.symmetric;

int npad=usewavelet.npad;

int nonlocal=npad-2; /*number of coefficients that must be transmitted nonlocally*/

int hsize=lowsizeH,

int vsize=lowsizeV;

double *tempin,*tempout,*hold;

double *tempdata;

long position=hsize;

double *holdpad;

tempdata=(double*)malloc(hsize*vsize*sizeof(double));

tempin=(double*)malloc((2*npad+max2(hsize,vsize))*sizeof(double)); /*i.e. padding on both sides*/

tempout=(double*)malloc((2*npad+max2(hsize,vsize))*sizeof(double));

101

holdpad=(double*)malloc(nonlocal*lowsizeV*sizeof(double)); /*hold values for sends/receives*/
hold=(double*)malloc(nonlocal*lowsizeV*sizeof(double));
/*initialize the tranform first*/

copy(theimage->data,tempdata,hsize*vsize); /*copy image to a temp location®/

while (steps--)

{

if ((lowsizeH<=2 || lowsizeV<=2) &&symmetric==1) {

}

warning("reduce the number of transform setps of increase the signal size");
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");

/*now do a convolution with the low pass part of each row */
/*make an array of data that needs to be communicated®/
for (=0;i<lowsizeV;i++) {

2]

copy(tempdata-+i*hsize,holdpad+i*nonlocal,nonlocal);

5
/*only communicate terms once per round*/
if ((my_rank%2)==0) {

/*i.e. do the even ranks first*/

MPI Send(holdpad,nonlocal*lowsizeV,MPI DOUBLE,(my_rank+p-1)%p,0,MPI COMM WORLD);

MPI Recv(hold,nonlocal*lowsizeV,MPI DOUBLE,(my rank+p+1)%p,0,MPI COMM_ WORLD,&status);
)

§
else if ((my_rank%2)==1) {
/*now do the odd procesor ranks*/

MPI_Recv(hold,nonlocal*lowsizeV,MPI DOUBLE,(my rank+p+1)%p,0,MPI_COMM_WORLD,&status);

MPI1 Send(holdpad,nonlocal*lowsizeV,MPI DOUBLE, (my_rank+p-1)%p,0,MPI COMM_ WORLD);
Y

b

for (1=0;i<lowsizeV;it++) {

]

copy(tempdata+(i*hsize),tempintnpad,lowsizeH);

copy(hold+i*nonlocal, tempint+(npad+lowsizeH),nonlocal); /*ie the new padded values */
/*convolve with low and high pass filters*/

/*first complete sends and receives in this routine for horizontal*/

transform2(usewavelet,tempin,tempout,lowsizeH,symmetric);
/*now copy back to the image*/
copy(tempout+npad,tempdata+(i*hsize),lowsizeH);

5
/*now covolve on the low pass portion of each column*/
/*each processor contains all necessary information for padding here*/

for (i=0;i<lowsizeH;i++) {

N~

/*copy each column 1 into the data array*/
copy2(tempdata+i,hsize, tempin+npad,lowsizeV);

/*now convove with low and high pass filters*/
transform(usewavelet,tempin,tempout,lowsizeV,symmetric);
copy3(tempout+npad,tempdata+ti,hsize lowsizeV);

102

/*stay in while loop - do row and column convolutions until steps*/
/*have all been completed*/
highsizeH=lowsizeH/2;
lowsizeH=(lowsizeH+1)/2;
highsizeV=(lowsizeV)/2;
lowsizeV=(lowsizeV+1)/2;

! /*end of while*/

/*

free(tempout);

free(tempin);*/

[*error above here 77?7 why*/

/*tempdata contains the data required -definitely correct™/

return tempdata; /*contains the modified image*/

/*make a four variable copy function*/

[*filter.h*/
#include "globals.h"

/* a header file for the filters and various filter functions */

typedef struct {
int size,firstindex,center;
double *coeff;

} filter;

typedef struct {

int symmetric;

filter *analysislow, *analysishigh, *synthesislow, *synthesishigh;
} filterset;

typedef struct {
filter *analysislow, *analysishigh;
filter *synthesislow, *synthesishigh;
int symmetric;
int npad;

} wavelet;

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst);

filter *makefilter2(filter *usefilter);

filter *makefilter](int filtersize,int firstindex,double *coeff);

wavelet initwavelet(filterset *afilterset);

void transform(wavelet awavelet,double *input,double *output,int size,int symt);

void symmetric_ext (double *output, int size, int left_ext, int right_ext, int npad, int symmetry);
void periodic_ext (double *output, int size, int npad);

void transform2(wavelet awavelet,double *input,double *output,int size,int symt);

/*the set of files for the wavelet filter functions */
/*designed by Narjit Chadha - Summer 2001%/
[*filter.c*/

103

#include "filter.h"
#mclude "globals.h"

filterset *makedaub(int symmetric,double *anlow, int anlowsize, int anlowfirst)
{

int 1,5ign;

filterset *tempfs;

tempfs=(filterset*)malloc(sizeof{ filterset));

tempfs->analysislow=makefilter! (anlowsize,anlowfirst,anlow);

/*assume the wavelets are orthogonal*/

tempfs->synthesislow=makefilter2 (tempfs->analysislow);

tempfs->analysishigh=makefilter 1 (tempfs->analysislow->size,2-tempfs->analysislow->size-tempfs->analys
islow->firstindex, NULL);

tempfs->symmetric=symmetric; /*must copy the symmetries*/

if (tempfs->analysislow->firstindex%2){

sign=1;

]
s

else sign=-1;
for(i=0;i<tempfs->analysislow->size;i++) {

tempfs->analysishigh->coeff] | -i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex]=
sign*tempfs->analysislow->coeff]i];
assert(1-i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex>=0);

assert((1-i-tempfs->analysislow->firstindex-tempfs->analysishigh->firstindex)<(tempfs->analysishigh->size));
sign¥*=-1;
3
5
/*copy the high pass analysis filter to the synthesis filter */
tempfs->synthesishigh=makefilter2(tempfs->analysishigh);
return tempfs;

[

filter *makefilter2(filter *usefilter)
{ . .
nt 1;
filter *tmpfilter;
tmpfilter=(filter*)malloc(sizeof(filter));
tmpfilter->coeff=NULL;
tmpfilter->size=usefilter->size;
tmpfilter->firstindex=usefilter->firstindex;
tmpfilter->center=-(usefilter->firstindex);
tmpfilter->coeff=(double*)malloc(usefilter->size*sizeof(double));
if(usefilter->coeffl=NULL){
for (i=0;i<tmpfilter->size;i++)
tmpfilter->coefi[i}j=usefilter->coeff]i];
}
else {
for (i=0;i<tmpfilter->size;i++)
tmpfilter->coeft]i}=0;

3
5

return tmpfilter;

104

filter *makefilter1(int filtersize,int firstindex,double *coef¥)
{ . .
int i;
filter *afilter;
aflter=(filter*)malloc(sizeof(filter));
afilter->size=filtersize;
afilter->firstindex=firstindex;
afilter->center=-firstindex;
afilter->coeff=(double*)malloc(afilter->size*sizeof(double));
if(coeffl=NULL){
for (=0;i<afilter->size;i++)
afilter->coefi[i]=coeffi];
5
else {
for (i=0;i<afilter->size;i++)
afilter->coeff[i]=0;
}

return afilter;

}

wavelet initwavelet(filterset *afilterset)

{
wavelet tempw;
tempw.analysislow=afilterset->analysislow;
tempw.analysishigh=afilterset->analysishigh;
tempw.synthesislow=afilterset->synthesislow;
tempw.synthesishigh=afilterset->synthesishigh;
tempw.symmetric=afilterset->symmetric;
tempw.npad=max2(tempw.analysislow->size,tempw.analysishigh->size);
return tempw;

N~

void iransform(wavelet awavelet,double *input,double *output,int size,int symt)
{ - ..
nt 1,5;
int lowsize=(size+1)/2;
int leftext,rightext;
if (awavelet.analysislow->size%2) {
/*i.e.an odd filter length*/

leftext=1;
rightext=1;
telse {
leftext=2;
rightext=2;
}
if (symt)
{
symmetric_ext(input,size,leftext,rightext,awavelet.npad,1);
H
else {

periodic_ext(input,size,awavelet.npad);
/*i.e. add the necessary extensions to make the wavelet transform work*/

105

/*the detail will become xxxxxxxx->HHHHGGGG */
}
[*first use low pass filter*/
for (1=0;i<lowsize;i++) {
output[awavelet.npad+i}=0.0;
for (j=0;j<awavelet.analysislow->size;j++) {

output[awavelet.npad+il+=input[awavelet.npad+2*i+awavelet.analysislow->firstindex+j]*(awavelet.analysislow->c
oeffljl);

1

s

}

/*now use high pass filter*/

for (i=lowsize;i<size;it++) {
output[awavelet.npad+i]=0.0;
for (j=0;j<awavelet.analysishigh->size;j++) {

output[awavelet.npad-+i]+=input[awavelet.npad+2*(i-lowsize)}+awavelet.analysishigh->firstindex+j]*(awavelet.anal

ysishigh->coeff]j]);
}
3
}
/* */

/* Do symmetric extension of data using prescribed symmetries®/

/* Original values are in output[npad] through output{npad-+size-1]*/

/* New values will be placed in output{0] through output[npad] and in*/

/¥ output[npad+size] through output[2*npad+size-1] (note: end values may*/
/¥ notbe filled in) */

/* left ext=1->extension at left bdryis ..321{0123 ..%

/* left_ ext=2 -> extension at left bdryis..3210[0123..%

/* right_ext=1 or 2 has similar effects at the right boundary™®/

/* sgymmetry =1 -> extend symmetrically*/
/* symmetry = -1 -> extend antisymmetrically*/

void symmetric_ext (double *output, int size, int left ext, int right_ext, int npad, int symmetry)
{

int i,originalfirst,originallast,originalsize,period;

int first = npad, last = npad + size-1;

int nextend;

if (symmetry == -1) {
if (left ext=1)
output{--first] = 0;
if (right_ext==1)
output[++last] = 0;
3
originalfirst = first;
originallast = last;
originalsize = originallast-originalfirst+1;

period =2 * (last - first + 1) - (left_ext==1) - (right_ext==1);

106

if (left_ext=—=2)

output]--first] = symmetry*output[originalfirst];
if (right ext==2)

output[++last] = symmetry*output{originallast];

/* extend left end*/
nextend = min2 (originalsize-2, first),
for (i = 0; 1 < nextend; i++) {
output[--first] = symmetry*output[originalfirst-+1-+i];

k)
5

/* should have full period now -- extend periodically*/
while (first > 0) {

first--;

output{first] = output[first+period];

}

/*extend right end*/
nextend = min2 (originalsize-2, 2*npad+size-1 - last);
for (i = 0; 1 < nextend; i++) {

output[-++last] = symmetry*output[originallast-1-i];
}

/*should have full period now -- extend periodically*/
while (last < 2*npad+size-1) {

lasti—+;

outputflast] = output[last-period];

}

Y

/* */

/* Do periodic extension of data using prescribed symmetries */

/* Original values are in output[npad] through output[npad+size-1] ¥/

/* New values will be placed in output{0] through output[npad] and in */

/* output[npad+tsize] through output[2*npad+size-1] (note: end values may */
/* not be filled in) */

void periodic_ext (double *output, int size, int npad)

{

int first = npad, last = npad + size-1;

/* extend left periodically™/
while (first > 0) {
first--;
output[first] = output[first+size];

}

/* extend right periodically*®/
while (last < 2*npad+size-1) {
last++;
outputflast] = output[last-size];
}
}

107

7 %/

void transform2(wavelet awavelet,double *input,double *output,int size,int symt)

{
/*a transform routine for the horizonal part of the wavelet transform. This tranform
part functions by having each processor send and receive D elements from it's neighbour.
This approach seems to work */

int 1,j;

int first,last;

int lowsize=(size+1)/2;

int leftext,rightext;

if (awavelet.analysislow->size%2) {
/*i.e.an odd filter length*/
leftext=1;
rightext=1;

telse {
leftext=2;
rightext=2;

—~—

if (symt)
4
symmetric_ext(input,size leftextrightext,awavelet.npad,1);
Y
s

else {
first = awavelet.npad;
last = awavelet.npad + size-1;

/* extend left periodically*/
while (first > 0) {
first--;
input[first] = input[first+sizel;
Y

s
/*i.e. add the necessary extensions to make the wavelet transform work*/
/*the detail will become xxxxxxxx->HHHHGGGG */

}

[*first use low pass filter*/
for (i=0;i<lowsize;i++) {
output[awavelet.npad+i]=0.0;
for (j=0;j<awavelet.analysislow->size;j++) {
output[awavelet.npad-+il+=input[awavelet.npad+2*i+awavelet.analysislow->firstindex+j]
*(awavelet.analysislow->coeff][j]);

}

/*now use high pass filter®/
for (i=lowsize;i<size;it++) {
output[awavelet.npad+i]=0.0;
for (j=0;j<awavelet.analysishigh->size;j++) {
output[awavelet.npad+i]+=input[awavelet.npad-+2*(i-lowsize)+awavelet.analysishigh->fi

108

rstindex+j}*(awavelet.analysishigh->coeft]j]);
)

}

5

109

A3: Software Listing for MPI Buddy 2D DWT Program

*Except for the main program file, startproj.c, all other files are the same as the regular parallel
case.

#include <stdlib.h>

#include <stdio.h>

#include "mpi.h"

/*user may insert other include statements below this line */
#include "image.h"

#include "filter.h"

double *dotransform(wavelet usewavelet,double *theimage,int steps,int my_rank,int p,MPI_Status status,int hsize,
int vsize);
/*user must define using his/her own non-standard data structure types */

void main(int arge, char* argv{])
{
/*--Automatic Code Generation of MPI Header / Ender --*/
int 1;
int vsize;
int hsize;
int loc_hsize;
int position;
int totalsize;
double *startdata;
double *locdata;
double *enddata;
int my_rank; /*rank # of current processes*/
intp, /*variable for number of processes*/
int tag= 0; [*default tag for send/recv*/
MP1 _Status status; [*return Status for MPI Recv*/
[*user may put other user defined variable declarations below this line */
wavelet validwavelet;
image* mainlmage;
filterset *thefilter;
char *inputfile;
char *outputfile;
int steps;
double starttime,endtime;

double daub8coeffs[] = { 0.2303778133088964, 0.7148465705529154,
0.6308807679398587, -0.0279837694168599,
-0.1870348117190931, 0.0308413818355607,
0.0328830116668852, -0.0105974017850690 };

/*-----Start Up MPI-----*/
MPI Init(&arge,&argv);

/*Find out Process Rank™*/

MPI_Comm _rank(MPI_COMM_WORLD,&my_rank);
/¥Find out the number of processes™/

110

MPI Comm_size(MPI_COMM_WORLD,&p);
/*¥User may insert Application Specific Code Below*/

totalsize=512%512; /*the total data size to distribute™/
startdata=malloc(totalsize*sizeof(double));
locdata=malloc(totalsize/p*sizeof(double));
enddata=malloc(totalsize*sizeof(double));

hsize=512;

loc_hsize=hsize/p;

vsize=512%512/hsize;

if (my_rank==0) {
/¥User Should define mainlmage->data here*/

mainImage=(image*)malloc(sizeof(image));
inputfile=malloc(81);

outputfile=malloc(81);
inputfile="barbara.pgm";
outputfile="outfile.pgm";

steps=3; /*number of steps in the transform*/
getheader(mainlmage,inputfile);
startdata=mainlmage->data;,

}
thefilter=makedaub(FALSE,daub8coefts,8,0);
validwavelet=initwavelet(thefilter);

MP!_Becast(&steps,1,MPTINT,0,MPI_COMM_WORLD);

MPI Barrier{MPI_COMM_WORLD),
starttime=MPI Wtime();

for (i=0;i<vsize; i++) {
position=i*hsize;

MPI_Scatter(startdata+position,loc_hsize,MPI_DOUBLE,locdata+(i*loc_hsize),loc_hsize,MPI_DOUBLE,O,MPI_C
OMM_WORLDY;

1
S

/*Every process has local data in locdata */
/*user may insert own information here*/
locdata=dotransform(validwavelet,1ocdata,steps,my_rank,p,status,loc_hsize,vsize);

for (i=0;i<vsize;i++) {
position=i*loc_hsize;

MPI_Gather(locdata+position,loc_hsize,MPI_DOUBLE,enddata+i*hsize,loc_hsize,MPI_DOUBLE,O,MPI_COMM_
WORLD);
}

MPI_Barrier(MPI_COMM_WORLD);
endtime=MP]_ Wtime();

111

/* process 0 has result in enddata */

if (my_rank==0) {
writeoutput(enddata,outputfile,mainlmage->hsize,mainlmage->vsize);
printf("nelapsed time is %e \n",endtime-starttime);

/*End of Application Specific Code*/
MPI Finalize();
return;

}

double *dotransform(wavelet usewavelet,double *theimage,int steps,int my rank,int p,MPI_Status status,int hsize,
nt vsize)
{
[*thie routine has been modified to allow for parallel comutations®/
int i;
int lowsizeH=hsize;
int lowsizeV=vsize;
int highsizeH,highsizeV;
int symmetric=usewavelet.symmetric;
int npad=usewavelet.npad;
int nonlocal=npad-2; /*number of coefficients that must be transmitted nonlocally*/
double *tempin,*tempout,*hold;
double *tempdata;
long position=hsize;
double *holdpad;
hsize=lowsizeH;
vsize=lowsizeV;
tempdata=(double*)malloc(hsize*vsize*sizeof(double));
tempin=(double*)malloc((2*npad+max2(hsize,vsize))*sizeof(double)); /*i.e. padding on both sides*/
tempout=(double*)malloc((2*npad+max2(hsize,vsize))*sizeof(double));
holdpad=(double*)malloc(nonlocal*lowsizeV*sizeof(double)); /*hold values for sends/receives*/
hold=(double*)malloc(nonlocal*lowsizeV*sizeof(double));
/*initialize the tranform first*/

copy(theimage,tempdata,hsize*vsize); /*copy image to a temp location*/

while (steps--)
{
if ((lowsizeH<=2 || lowsizeV<=2) &&symmetric=1) {
warning("reduce the number of transform setps of increase the signal size™);
warning("or switch to a periodic extension wavlet set");
error("low pass subband is too small");
1
s
/*now do a convolution with the low pass part of each row */
/*make an array of data that needs to be communicated*/
for (i=0;i<lowsizeV;it++) {
copy(tempdata+i*hsize,holdpad+i*nonlocal,nonlocal);
}

/*only communicate terms once per round*/

if (my_rank%2)==0) {
/*i.e. do the even ranks first*/

112

MPI Send(holdpad,nonlocal*lowsizeV,MPI DOUBLE,(my_rank+p-1)%p,0,MPI_COMM_WORLD);

MPI_Recv(hold,nonlocal*lowsizeV,MPI_DOUBLE, (my_rank+p+1)%p,0,MPI_COMM _ WORLD,&status);

}
else if ((my_rank%2)==1) {
/*now do the odd procesor ranks*/

MPI_Recv(hold,nonlocal*lowsizeV,MPI_DOUBLE,(my_rank+p+1)%p,0,MPI_COMM_WORLD,&status);

MPI_Send(holdpad,nonlocal*lowsizeV,MP]_DOUBLE,(my_rank+p-1)%p,0,MPI_COMM_WORLD);
1

S

for (i=0;i<lowsizeV;it++) {

]

copy(tempdata+(i*hsize),tempin+npad,lowsizeH);
copy(hold+i*nonlocal,tempin+(npad+lowsizeH),nonlocal); /*ie the new padded values */
[*convolve with low and high pass filters*/

/*first complete sends and receives in this routine for horizontal*/

transform2(usewavelet,tempin,tempout,lowsizeH,symmetric);
/*now copy back to the image*/
copy(tempout+npad,tempdata+(i*hsize),lowsizeH);

)
/*now covolve on the low pass portion of each column*/
/*each processor contains all necessary information for.padding here*/

for (i=0;i<lowsizeH;i++) {

}

/*copy each column i into the data array*/
copy2(tempdata+i,hsize,tempin+npad,lowsizeV);

/*now convove with low and high pass filters*/
transform(usewavelet,tempin,tempout,lowsizeV,symmetric);
copy3(tempout+npad,tempdata+i hsize lowsizeV);

5
/*stay in while loop - do row and column convolutions until steps*/
/*have all been completed™/
highsizeH=lowsizeH/2;
lowsizeH=(lowsizeH+1)/2;
highsizeV=(lowsizeV)/2;
lowsizeV=(lowsizeV+1)/2;

} /*end of while*/

return tempdata; /*contains the modified image*/

113

Appendix B

Software Listing for 1D Fast Fourier Transform
B1: Sequential Case
B2: Parallel Hand Coded Case
B3: MPI Buddy Coded Case

114

B1: Software Listing for Sequential 1D FFT Program

#include "complex.h"

#include "mpi.h"

/#* this will be the benchmark timing program to compare against*/
/*make this into a suitable MPI program for comparison*/
/*modified by Narjit Chadha, March 13, 2001%/

void main(int arge, char* argv[])

{
unsigned int N;

unsigned Jong length,half_length;
unsigned long i;

double start,finish;
double interval =2.0 * M_PL;
double factor;
double max =0.0;
Complex* data;

/**/

MP1_Init(&arge,&argv);

data = (Complex*) malloc(length*sizeof(Complex));
/* now start the program */
printf("\nEnter the power of 2 for the data :);
scanf{"%d",&N);
length=1<<N;
MPI_Barrier(MPI_COMM_WORLD);
start=MPI_Wtime();

half _length=length>>1;
factor= 1.0/(double) length;
data= (Complex*) malloc(length*sizeof(Complex));
for (i=0; i<length; i++) {
data[i].re=(double)i;
data[i].im=(double)i;
H
for {1 = 0; i < length; i++) {
data[i].re = (double)t;
data[i].im = (double)i;

[

fit 1(data, N, -1);

MPI_Barrier(MPI_COMM_WORLD);
finish=MP1_Wtime();

printf{"\nthe elapsed time is %e : ", finish-start);
free(data);

return;

/* complex.h - header file for complex.c ¥/
#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define M_P13.14159265358979323846

struct acomplex §{
double re;

115

double im;

IH

typedef struct acomplex Complex;

void copy(Complex* z, Complex a);

void polar(Complex* ¢, double r, double t);

void cmult(Complex* ¢, Complex a, Complex b);
void cexp{Complex* ¢, Complex a);

void scale(Complex* ¢, double x, Complex a);

int bit_reversal(unsigned int N, unsigned long 1);
void fft_I(Complex* data, unsigned int N, int isign);

#include “complex.h"

/*complex.c contains mathimatical routines for complex analysis*/
/**/

void
copy(Complex* z, Complex a)

Z->T€ = Q.T¢;

z->im = a.im;

/**/

void
polar(Complex* ¢, double r, double t)

c->re =r1 * cos(t);
c->im =r * sin(t);

S

/**/

void

cmult(Complex* ¢, Complex a, Complex b)
c->re = are*b.re - a.im*b.im;
¢->im = a.re¥b.im + a.im*b.re;

/**/

void
cexp(Complex* ¢, Complex a)
{

polar(c, exp(a.re), a.im);

/**/

void

scale(Complex* ¢, double x, Complex a)
c->re=x *are;
c>im=x ¥ a.im;

—n

/**/

116

int bit_reversal(unsigned int N, unsigned long I)

{

}

void

int i, result =0;
unsigned long pow;

for (i=0; i < abs(N); ++i) {
pow = 1<<i;
if (1 & pow)
result += 1<<(N-i-1);
}

return result;

ffi_1(Complex* data, unsigned int N, int isign)

unsigned long length=1 <<N;
unsigned long half_length = length >> 1;

unsigned long 1, m, pow, t, t_pow;

Complex* W;
Complex* tmp;
Complex z1, 22, phase;

zl.re=00,
z1.im = 0.0;
z2.re =0.0;
z2.im = 0.0;

phase.re = 0.0,
phase.im = M_PI * ((double) isign) / (double) half_length,

[R o sk ok ok ok gk ok ok ok ook Rk Ak ok ool sk ook ok Rk okok ook /

w = (Complex*) malloc(half_length*sizeof(Complex));

w[0].re = 1.0;
w[0].im = 0.0;
cexp(w+1, phase);

for (i =2; 1 < half_length; ++i) {
scale(&zl, ((double) i), phase);
cexp(w+i, z1);
/% cmull(wi, wii-1], w[1]); */

3

SRERERRR R R R Rk Rk R kR R R Rk R R Rk ok bk kR R kR R ok ok

tmp = (Complex*) malloc(length*sizeof(Complex));
for (i = 0; 1 < length; ++i)
copy(tmp+bit_reversal(N, 1), data[il);

JRFF ARk Sk kR Rk Rk Rk Rk Rk Rk kR ok Rk R kR Rk kR ok

for (m = 0; m < N; ++m) {
pow =1 <<

for (t=0; t < length; ++t) {
if (1(t & pow)) {

t_pow = (t*(half_length/pow)) % half_length;
copy(&z1, tmp[t]);
cmult(&z2, wlt_pow], tmp[t+pow]);
tmp|t].re = zl.re + z2.re;
tmp[t].im = zl.im + z2.im;
tmp[t+pow].re = zl.re - z2.re;

117

tmp[t+pow].im = z1.im - z2.im;

/**/

for (i = 0; i < length; ++i)
copy(data+i, tmpfi]);

[EERE LK **/

free(tmp);
free(w);

et

/**/

118

B2: Software Listing for Parallel Hand Coded 1D FFT Program

*complex.h and complex.c remain the same as for the sequential case given in B1.

#include <stdio.h>

#include <stdlib.h>

#include "complex.h"

#include "mpi.h"

#define M_PI13.14159265358979323846

[*this is the mpi code for a parallel itertive fast fourier tranform*/
/*made by Narjit Chadha, March 1, 2001%/

void main (int arge,char* argvl])

{

int my rank; /*rank of the process*/

intp; /*the number of processes*/

int root=0; /*rank of the root processor=0%/
double start, finish;

unsigned int N;

unsigned long length,half length loc size,countloc N;
unsigned long startmark,endmark;

unsigned long j,i,s,m,k;

double factor;

double max=0.0;

double interval=2.0*M_PI;

int direction;

Complex* data;

Complex w;

Complex wm;

Complex* A;

Complex* tmp; /* to hold data only for processor 1¥/
Complex u,t,phase;

double one=1;

MPI_Init(&arge,&argv);
MPI Comm_size(MPI_COMM_WORLD,&p);
MPI Comm rank(MPI COMM WORLD,&my rank);

/* now start the program using MPI*/
MPI Barrier(MPI_COMM_WORLD);
start=MPI Wtime();

if (my_rank==0) {
/*
printf("\nEnter the power of 2 to determine the data : ");
scanf("%d",&N);
*/
N=20;
length=1<<N;
factor=1.0/(double)length;
} *if my rank==0%/

119

if (my_rank==0){

factor= 1.0/(double) length;

data= (Complex*) malloc(length*sizeof(Complex));
for (i=0; i<length; i++) {

data[i].re=(double)i;

data[i].im=(double)i;

} /*processor 0 has the data*/

/*now do bit reversal to reorder terms for algorithm*/
tmp = (Complex*) malloc(length*sizeof(Complex));
for (1= 0; 1 < length; ++i) {
copy(tmp+bit_reversal(N, 1), data[i]);

1
5

N

/*now broadcast these parts -packing is a waste of computaional power*/
MPI_Bcast(&N,1,MPI UNSIGNED,0,MPI COMM_WORLD);
MPI Bcast(&factor,|, MPI DOUBLE,0,MPI COMM_WORLD);

length=1<<N;

half length=length>>1;

loc_size=length/p; /*number of elements in each local array*/

/*now distribute the tmp to processors in blockwise fashion*/

A = (Complex*) malloc(loc_size*sizeof(Complex)); /*keep as a global*/

MPI_Scatter(tmp,loc_size*sizeof(Complex),MPI_CHAR,A loc_size*sizeof(Complex),MPI CHAR,0,MPI
COMM_WORLD);

/*A of size loc_size*/

/*every processor has an array of size loc_size - must perform local operations

and communications operations*/

u.re=0.0;
u.im=0.0;
tre=0.0;
t.im=0.0;
phase.re=0.0; /*this initializaion is still necessary*/
count=loc_size;
loc N=0;
while (count>1)
{
count=count/2;
loc_ N+-+;
}
/*¥loc_N=N/p; number of iterations to perform locally- assume N is divisible by p*/
/*do local computations first-assume balanced array*/
for (s=1; s<(loc_N+1); s++) {

m=1<<s;

w.re=1.0; /*w=1 to start off*/
w.im=0.0;

phase.re=0.0;

phase.im=-interval/m;
cexp(&wm,phase); /*w(l).re=exp(phase.re)*cos(t),w(l).img=exp(phase.re)*sin(t)*/

120

for (j=0; j<m/2;j++)
for (k=j; k<loc_size;k=k+m) {

copy(&wA[K]); /*zl=u*/
cmult(&t, w, Afk+m/2]); /*z2=t*/
Alk].re = u.re + t.re;
Alk].im = u.im + t.im;
Alk+m/2].re = u.re - t.re;
Alk+m/2].im = w.im - t.im;

}

cmult(&w,w,wm);

——

}

MPI_Gather(A,loc_size*sizeof{ Complex),MPI_CHAR,tmp,loc_size*sizeof(Complex),MPI_CHAR,0,MPI
COMM_WORLD);

/*Gather everything into processor 0 tmp before proceeding further*/

if (my_rank==0) {

for (s=loc_N+1; s<N+1; s++) {

m=]<<s;

w.re=1.0; /*w=1 to start off*/

w.im=0.0;

phase.re=0.0;

phase.im=-interval/m;

cexp(&wm,phase);
/*w(1).re=exp(phase.re)*cos(t),w(1).img=exp(phase.re)*sin(t)*/

for (j=0; j<my/2;j++) {

for (k=j; k<length;k=k+m) {

copy(&u,tmp[k]); /*zl=u*/
cmult(&et, w, tmp[k+m/2]); /*z2=t*/
tmp[k].re = u.re + t.re;

tmpfk].im = w.im + t.im;
tmp[k+m/2].re = w.re - t.re;
tmp[k+m/2].im = u.im - t.im;

1
5

cmult(&w,w,wm);
H
1

)
for (= 0; i < length; ++i)
copy(data+i, tmpli]);
free(tmp);
} Fmy rank==0%/

MPI_Barrier(MPI COMM_WORLD);
finish=MPI Wtime();

if (my_rank==0) {
printf{("\nthe elapsed time is %e : ", finish-start);
/*now print out the data */

/* for (i=(length-10); i<(length); i++)
{

121

[

printf("\ndata at %d is %lf +j*%lf", i,datafi].re,data[i].im);
} ¥
} Aifmy rank==0%/

free(A);
free(data);
MPI_Finalize();
return;

122

B3: Software Listing for MPI Buddy Coded 1D FFT Program

*complex.h and complex.c remain the same as for the sequential case given in B1.

#include <stdlib.h>

#include <stdio.h>

#include "mpi.h"

/*user may insert other include statements below this line */

#include "complex.h"

#define M_PI 3.14159265358979323846

/*user must define using his/her own non-standard data structure types */

void main(int arge, char® argv{])
{
/*--Automatic Code Generation of MPI Header / Ender --*/
int totalCount; /*the total size of data to distribute*/
int sendCount;
Complex *tmp;
Complex *A;
Complex *finBuffer;
int my_rank; /*rank # of current processes*/
intp; /*variable for number of processes*/
int tag= 0; /*default tag for send/recv®/
MPI _Status status; /*return Status for MPI Recv*/
/*user may put other user defined variable declarations below this line */
unsigned int N;
unsigned long length, half length, loc_size,count,loc_N;
double start, finish;
unsigned long j,i,5,mk;
double factor;
double max=0.0;
double interval=2.0*M_PI;
int direction;

Complex *data;
Complex w;
Complex wm;
Complex u,t,phase;
double one=1;

MPI Init(&arge,&argv);

/*Find out Process Rank*/
MPI_Comm_rank(MPI_COMM_WORLD,&my rank);
/*Find out the number of processes*/
MPI_Comm_size(MPI COMM_WORLD,&p);

/*User may insert Application Specific Code Below*/
MPI_Barrier(MPI_COMM WORLDY);

start=MPI Wtime();

if (my rank==0) {

123

/Fprintf("nEnter the power of 2 to determine the data : ");
scanf("%d", &N);*/

N=20;

length=1<<N;

factor=1.0/(double)length;

[

MPI_Bcast(&N,1,MPI_UNSIGNED,0,MPI COMM_WORLD);
MPI_Bcast(&factor,], MPI_DOUBLE,0,MPI COMM_WORLD);
length=1<<N;

half length=length>>1;

loc_size=length/p;

totalCount=(length)*sizeof(Complex); /*the total data size to send*/
sendCount=totalCount/p;

tmp=malloc(totalCount);

A=malloc(sendCount);

finBuffer=malloc(totalCount);

if (my_rank==0) {
/*User Should define tmp here*/
data=(Complex*)malloc(length*sizeof(Complex));
for (i=0;i<length;i++) {
data[i].re=(double)i;
data[i].im=(double)i;
copy(tmp+bit_reversal(N,1),data[i]);

——

MP1_Scatter(tmp,sendCount, MPI_CHAR, A, sendCount, MPI CHAR, 0, MPI COMM_WORLD);
/*scattered data in all processes in A */

u.re=0.0;
u.im=0.0;
t.re=0.0;
t.im=0.0;
phase.re=0.0;
count=loc_size;
loc N=0;
while (count>1)
{
count=count/2;
loc N++;
k)
5

for (s=1; s<(loc_N+1); s++) {
m=1<<s;
w.re=1.0; /*w=1 to start off*/
w.im=0.0;
phase.re=0.0;

124

phase.im=-interval/m;
cexp(&wm,phase);

for (j=0; j<m/2;j++)
for (k=j; k<loc_size;k=k+m) {

copy(&u,A[k]); /*zl=u®/
crult(&t, w, Alk+tm/2]); /*z2=t*¥/
Alk].re =u.re + t.re;

Alk].im = u.im + t.im;
Alk+n/2].re = u.re - t.re;
Alk+m/2].1m = u.im - t.im;

cmult(&w,w,wm);

-
——

MPI Gather(A, sendCount, MPI CHAR, finBuffer, sendCount, MPI CHAR, 0, MPI_COMM_WORLD);
/*result in process 0 array finBuffer */
if (my_rank==0) {
tmp=finBuffer;
for (s=loc_ N+1; s<N+1; s++) {
m=1<<s;
w.re=1.0;
w.im=0.0;
phase.re=0.0;
phase.im=-interval/m;
cexp(&wm,phase);
for (5=0; j<m/2;j++) {
for (k=j; k<length;k=k+m) {

copy(&u,tmp[k]); /*zl=u*/
cmult(&t, w, tmp[k+m/2]); /*z2=t*/
tmp[k].re = u.re + tre;
tmp[k].im = w.im + t.im;
tmp[k+m/2].re = u.re - t.re;
tmp[k+m/2].im = w.im - t.im;
1
s
cmult(&w,w,wm);
}
}
for (1 = 0; 1 < length; ++i)
copy(data+i, tmp[i]);
free(tmp);
} /*my rank==0%/

MPI_Barrier(MPI_ COMM_ WORLD);
finish=MPI Wtime();

if (my_rank==0) {

printf("\nthe elapsed time is %e : ", finish-start);
/* for (i=(length-10); i<(length); i++)

125

{

b
} Fif my_rank==0%/

printf("\ndata at %d is %lf +j*%If", i,data[i].re,data[i].im);

/*End of Application Specific Code*/
MPI Finalize();
return;

126

