Finite Element Modelling of the Time-dependent
Potash Mining Process

by

Nana Mulyana

A thesis
Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Civil Engineering
University of Manitoba

Winnipeg, Manitoba,

(c) May, 1992




National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothégue nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Ottawa (Ontario)

Your file  Votre rélérence

Our file  Notre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

IGBE 8-315-78684-5




FINITE ELEMENT MODELLING OF THE TIME-DEPENDENT
POTASH MINING PROCESS DEVELOPMENT

BY

NANA MULYANA

A Thesis submitted to the Faculty of Graduate Studies of the
University of Manitoba in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

(c) 1992

Permission has been granted to the LIBRARY OF THE
UNIVERSITY OF MANITOBA to lend or sell copies of this thesis,
to the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or otherwise
reproduced without the author’s permission.



Abstract

For centuries man has been created openings deep down below the ground surface
to exploit potash as a commodity. Most often underground openings are located
based on human instinct and experience. This can frequently lead to error, and a
reliable rational, numerical method for locating these openings is required. Since
two of the major problems in potash mining are time-dependent room closure and
pillar yielding, this thesis investigates the applicability of elasto-viscoplasticity in
modelling the material and predicting its behaviour.

After reviewing existing literature, a robust computational scheme for analyzing
time-dependent problem in potash has been developed. The program is designed to
include four widely used yield criteria, an implicit time integration scheme, and an
overlay system.

Finally, two case studies are undertaken. The first case study is a simulation of
uniaxial creep strain of Patience Lake (Lanigan) potash under various levels of
applied stress. The second case study is a simulation of time-dependent room closure
and pillar yielding of five underground potash caverns in Saskatchewan.
Displacement and stress results of the theoretical analysis are compared with field
readings, the numerical model showing promise as a predictor of behaviour of potash

under mining excavation.
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Chapter 1

Introduction

1.1 Background of Study

For centuries, a great number of underground openings have been made to exploit
salt rock as a raw material. Potash is a family of salt rock with high KCI content
which makes it a valuable commodity as fertilizer. More recently, because of its low
permeability salt rock has been used as a place to store hazardous wastes such as

nuclear wastes.

Potash is found abundantly in Saskatchewan at a depth around one km below the
ground surface. Although it has been extracted since 1958, little is known of its
mechanical response to stress, mining, and time. This research is part of an impor-
tant academic effort led by Lajtai [18],[19] to understand the mechanical behaviour
of potash rock. While this thesis is targeting the time-dependent modeling and the
mining sequence, other investigations include fracture characterization[21] [22], con-
stitutive behaviour, and experimental creep testing[20]. The summary of the above

research program is presented in reference [24].

1.2 Scope of Study

In general, the behaviour of engineering materials is very complicated. The solution
of a practical problem can only be reached through idealization and simplification

of the mathematical model representing the true material behaviour. In solid and



structural mechanics, plasticity, which can be considered as a generalization of the
theory of elasticity, is still the most sophisticated theory in approaching the be-
haviour of most common engineering materials.

Many computer programs related to plasticity have been developed with various
range of applications. There is no single program existing that can handle the
wide range of engineering problems that require resolution. A finite element pro-
gram based on elasto-viscoplasticity incorporating various failure criteria and various
time integration schemes shows promise as a very useful tool for approaching time
dependent behaviour. This study utilizes elasto-viscoplasticity to investigate the
time-dependent behaviour in potash with multiple underground caverns.
Throughout this study small displacements and strains, linear strain hardening, con-
stant temperature as well as isotropic material properties are adopted. Although
three dimensional formulation is used as far as possible, only two dimensional anal-

ysis is incorporated into the finite element program.

1.3 Objective of Study

This engineering study is conducted in order to reach the following goals:

e To develop several options to the computer code based on elasto-viscoplasticity

which is taken from reference [1], namely:

1. Several failure criteria that are widely accepted or used, i.e., Tresca,
Mohr-Coulomb, Drucker-Prager are embeded and the code is designed

such that any failure criteria can be added without undue difficulty.

2. The implicit time integration scheme for the above criteria is adopted
so that larger time steps can be applied without violating the stability

requirements.

3. An overlay model is added to give more flexibility in modelling the com-

plex behaviour of a material.



o To apply the program in the simulation of the following problems:

1. Simulation of a uniaxial creep test of a Lanigan potash rock.

2. Simulation of a field test of a mining excavation consisting of five open-
ings, with a particular concern on time-dependent displacement and stress

around the openings.

1.4 Thesis Outline

This thesis is organized as follows:

1. The first chapter describes an overview of the scope, goals, and outline of the

engineering study.

2. The second chapter is a literature survey which provides an overview of the
theories related to this engineering study. Three major topics are covered
briefly:

e linear elasticity
e plasticity including time-dependent effects

e time integration schemes of the finite element semi-discrete governing

equations.
3. The third chapter presents:

e finite element formulation of elasto-viscoplasticity for implicit time inte-
gration scheme. This implicit scheme is applied with von Mises, Tresca,

Mohr-Coulomb, and Drucker-Prager yield criteria

e development of an interactive numerical process to model mining exca-

vation

e program organization



4. The fourth chapter contains application of the program to two cases related

to time-dependent behaviour in potash mining.

5. The last chapter outlines the conclusion from this research and recommends

future work that should be undertaken to improve the numerical model.



Chapter 2

Basic Concepts and Literature

Survey

2.1 Introduction

This chapter reviews several basic concepts related to this study and serves as a the-
oretical background. The theory of plasticity involves the relationship of stress and
strain in a deformed body after a part or the entire body has yielded. The plastic
behaviour is characterized by an irreversible straining or inelastic deformation which
can be time independent elasto-plastic behaviour or time dependent viscoplastic be-
haviour. Obviouély, the basic concept of the yielding criteria should be addressed.
However, since most engineering materials indicate linearly elastic behaviour before
yielding, the basic concept of linear elasticity is also considered.

The composite model so-called overlay system is introduced in order to obtain a
better approximation to the complex behaviour of materials, and numerical stability
and accuracy are essential to efficient program development.

Thus, this chapter particulary reviews basic concepts of the following topics:
1. Linear elasticity
2. Plasticity

e Yield criteria

e Work or strain hardening



e Elasto-plastic stress/strain relationship

e Elasto-viscoplasticity
3. Explicit versus Implicit schemes

4. Overlay Models

2.2 Basic Concept of Linear Elasticity

The material in a body is defined as being elastic if upon the release of the applied
forces the body recovers its original shape and size. For such materials, the current
state of stress depends only on the current state of deformation; that is, the stress
is a function of strain and it is called a Cauchy elastic material [2]. The constitutive

equations are given by

oij = Fij(ent) (2.1)

where the F;; is the elastic response function. According to this equation the elastic
behaviour is reversible as well as path independent. The behaviour is independent

of stress or strain histories.

To ensure that no energy can be generated through load cycles and thermodynamic

laws are always satisfied, the above equation is restricted such that

oW
N 86ij

035 (22)
where W is the elastic strain energy and it generally is a function of ;.

The material that satisfies both of the above equations is the so-called hyperelastic
or Green elastic material [3].

The simplest and general form for the linear constitutive relation of a Cauchy elastic

material which is also known as the generalized Hooke’s law is given by

Oij = Uijki€kl (23)



where

Cijr = tensor of material elastic constants
For isotropic linear hyperelastic materials, the number of independent constants of
an elastic tensor is reduced from 81 to 2 (Lame’s constants) and the constitutive
equation is given by

Oij = Nekrbi; + 2u€q; ' (2.4)

where
A and g are Lame’s constants
0;; 1s the Kronecker delta

The constants A and g are usually expressed in other forms of elastic constants
which are determined from ezperimental tests of some simple states of stress and
strain, such as, hydrostatic compression test, simple tension test, simple shear test,
and uniaxial strain test. The relations among the elastic constants can be found in
many references.

The following forms of isotropic linear elastic constitutive equation are used fre-

quently in practice [2];

E vE
= 6 ok 0s 2.
7 (1+1/)6J+(1+1/)(1—21/)6M ? (2.5)
3vK
05 = QGEZ‘J' -+ -(-—I——:i_—y)ekklsij (26)
1 v

€5 = E—G-O-ij - méijo'kk (27)
where;

E = Young’s modulus

K = Bulk modulus

G = Shear modulus

v = Poisson’s ratio



2.3 Basic Concept of Plasticity

2.3.1 The Yield Criteria

Plasticity theory requires a hypothesis which indicates the beginning of the onset
of plastic flow. In the case of uniaxial loading, the hypothesis is simply the yield
stress of the corresponding material. However, for multiaxial loading, the hypothesis
should include the effect of all stress components. The critical combination of those
stress components at a point of a body which indicates the commencement of plastic
flow is defined as yield criterion or yield condition [2], [4].

In general, the yield criterion can be expressed as [2], [3], [4], [5], [6];
M(oi5) = k(x) (2.8)

where fis some function and k is a material parameter to be determined experimen-
tally. The term k may be a function of a hardening parameter & or a constant. The
above equation states that if f is less than the value of the right hand side, elastic
behaviour is implied. For isotropic materials, equation 2.8 can be expressed either
in the form of principal stresses or in the form of stress invariants, since the yield
criterion is independent of coordinate axes. Furthermore, experimental evidence [6]
indicates that the effect of moderate hydrostatic stress on plastic deformation is neg-
ligible and, therefore, the yield criteria can be also expressed in term of invariants

of deviatoric stresses.

A yield surface is a geometrical representation of a yield criterion in the principal
stress space. This surface is developed by considering all stress combinations which
can cause yielding. The shape of this surface depends on the particular yield criteria
under consideration. Points within this surface are considered to be elastic, while
points on this surface correspond to perfectly plastic behaviour, and points outside
the surface correspond to strain hardening. Since the stress vector at a point can
be decomposed into hydrostatic and deviatoric stress components, the deviatoric

stresses will lie on the octahedral plane, the so called 7 plane, and the hydrostatic



stresses will be prependicular to this plane and do not affect the yield criterion.

2.3.1.1 Tresca Yield Criterion

In 1864, Tresca [5] proposed that yielding begins when the maximum shear stress
reaches a certain value. If the principle stresses are oy, 03, 03 and assuming oy >
o9 > o3 then yielding begins when

o1 — 03 = k() (2.9)
By considering all possible maximum shear stress values, the Tresca yield criterion
is representated either by the surface of an infinitely long hezagonal cylinder in the
principal stress space or by a hezagonal plane on the 7 plane.

The Tresca yield criterion is applicable for metal since it does not depend on the

hydrostatic stress.

2.3.1.2 von Mises Yield Criterion

In 1913, Von Mises [5] suggested that yielding occurs when the second invariant of

deviatoric stress reaches a critical value, or

Vo = k(x) (2.10)

where J; is the second deviatoric stress invariant which can be written as

! !

[(o7 — 02)2 + (o9 — 03)2 + (o3 — (71)2]

Jy =

D=0 =

Il

This yield criterion is representated by an infinitely long circular cylinder in the
principal stress space or by a circle with a radius of v/2 kon = plane.

There are two physical interpretations of the von Mises yield criterion. In 1924,
Hencky [6] mentioned that yielding begins when the elastic energy of distortion
reaches a critical value. On the otherhand, Nadai (1937) [6] interpreted that yielding
begins when the octahedral shear stress 7, reaches a critical value.

The von Mises yield criterion is the most widely used for metals since this law fits

the experimental data more closely than Tresca’s.

10



2.3.1.3 Mohr-Coulomb Yield Criterion

This criterion was originally proposed for soils by Coulomb in 1773 [5] and has the

form of
T=c—op,tan¢ (2.11)

where
¢ =cohesion
¢ =angle of internal friction
T =shearing stress
0, =normal stress

According to Mohr (1882) [5], equation 2.11 can be written in the form
(01 — 03) = 2ccos ¢ — (01 + 03)sin ¢ (2.12)

In the principal stress space, this yield criterion gives a conical yield surface which
normal section at any point is an irregular hezagon. The conical shape of the yield
surfacg means that a hydrostatic stress does influence yielding, which is also evident
from the last term of equation 2.11.

The Mohr-Coulomb yield criterion is applicable to concrete, rock and soil problems:
however, the predicted tensile strength is overestimated especially when it is applied

to concrete [2].

2.3.1.4 Drucker-Prager Yield Criterion

In 1952, Prager [5] presented a modified von Mises yield criterion based on the

Mohr-Coulomb approximation. This criterion can be stated as

aJy + VI =k _ (2.13)

The shape of this yield surface in principal stress space is a circular cone. The circle
will coincide with the outer apices of the Mohr-Coulomb hexagon when the values

of o and k£’ are
2sin ¢
V/(3)(3 — sin ¢)

11

(2.14)

o =



6ccos ¢

K = (2.15)
\/E3)(3 — sin ¢
Coincidence with the inner apices is provided by
o= 25né (2.16)
V(3)(3 + sin ¢)
Y 6ccos ¢ (2.17)

- V/(3)(3 +sin ¢

Again, this yield criterion is applicable to concrete, rock, and soil.

2.3.2 Work or strain hardening

Formulating physical relations which describe the actual behaviour of a material
during plastic flow is a very complex problem. This is due to nonlinearity, irre-
versibility of deformation processes and to a number of phenomena which occur
after the material has become plastic, such as time dependency. Since it was men-
tioned by Olzak et. al [7], it still holds true that the theory of plasticity is developed
from hypotheses and assumptions of a phenomenological character based on certain
observations and experimental investigations.

Several models had been developed based on the dependency of stress levels at which
further plastic deformation occurs to the current degree of plastification or plastic
straining. Figure 2.1 shows that the yield stress level of a perfectly plastic material
does not depend on the degree of plastification. An isotropic strain hardening ma-
terial is defined when the subsequent yield surfaces are a uniform expansion of the
original yield surface without translation, as shown in Figure 2.2. For a kinematic
hardening material, the subsequent yield surfaces preserve their shape and orienta-
tion but translate as a rigid body as shown in Figure 2.3. The kinematic hardening
model is raised from the experimentally observed Bauschinger effect on cyclic load-
ing. If the subsequent yield surfaces contract uniformly as shown in Figure 2.4 then

the material is said to be isotropically strain soften.

12
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Figure 2.4: Isotropic strain softening

In this study only the isotropic linear strain hardening will be applied. The strain
hardening can be defined by relating the yield stress & to the plastic deformation by
means of the hardening parameter x of equation 2.8 in two ways [7], [6], [8]. The
first hypothesis states that the degree of work hardening can be postulated to be a

function of the total plastic work W,, as given by [6],

k=W, | | (2.18)
where
Wy = [oij(dess)y
and (de;;), are the increments of plastic strain. Another hypothesis states that «
can be related to the total plastic deformation in terms of effective plastic strain €,
[6] as
K =g (2.19)
where
& = [ /3(de};)s(del;),)
The hypotheses of equation 2.18 and equation 2.19 for the flow theory have been

proved by Hill to be equivalent [8].

2.3.3 Elasto-plastic stress/strain relation

After the work hardening law has been set, a relation between the plastic deforma-

tion and the stress history has to be established. Essentially, there are two different

14



types of those relations. The first relation is the basis of the deformation theory and

the second gave rise to the popular flow theory of plasticity.

2.3.3.1 Deformation Theory

The total strain is composed of elastic and plastic parts; that is, €;; = (€ij)e + (€ij)p-
The elastic strain is expressed as in equation 2.3. In 1924 Hencky extended the total

strain theory of elasticity to plasticity as given by [4], [7], [8]
(¢i5)p = F(J2)oi; (dJ2 ><0) (2.20)

where F'(J;) is a tensor operator made out of scalar quantities. The positive and neg-
ative inequalities indicate loading and unloading respectively. The above equation
means that total plastic strains are propotional to the deviatoric stress components.
For a neutral stress variation dJ; = 0, that is perfectly plastic condition, equation 2.3

and equation 2.20 can be written in incremental form [7] as
d(éij)e = f}jkzdakz (2.21)
d(éij)p = F(Jz)dO':J (222)

Equation 2.21 and equation 2.22 give two different values of strain increment for a

neutral stress variation.

Thus, the deformation theory is considered unsuitable to describe the complete

plastic behaviour for the following reasons [7], [4], [8]:

e The relation of strain to stress is unique since the final state of strain is deter-

mined by the final state of stress, which is not true for plastic behaviour [4],
[8].

e A priori assumptions to loading and unloading have to be laid in order to get

the solution [7].

e No continuity between elastic and plastic region is found for neutral change of

stress [7], [8].

15



2.3.3.2 Flow Theory

Considering the plastic state, f = k, for the incremental change of stress do;;, the

increment of the yield surface is [6], [§]

df af dcrij = -gjf;djz, . (223)

(90'1']'

where fis the yield criterion in the form of a function of the second invariant of

deviatoric stress.

Then if;
df = 0, neutral loading (perfectly plastic behaviour) and the
stress point remains on the yield surface.
df > 0, plastic loading (isotropic strain hardening).
df <0, elastic unloading (linear elastic behaviour).

In order to remove the discontinuity between loading and unloading regions then

the d(o;;), should be zero, or one may write [8]

d(O‘ij)p = Gijdf (224)

where G; is a symmetric tensor which is generally a function of the stress compo-

nents and previous strain history and should satisfy two conditions [8];

e Gj; should be equal to zero since hydrostatic stresses have no significant effect

on plastic volume change (incompressibility).

e Since the material is isotropic, the principal axes of the plastic strain increment

should coincide with the principal stress axes.

It was Melan in 1938 who first used the G;; which can satisfy the above condition,

in the form of [g]

d(eij)p = haafu df (2.25)

where Q and h are scalar function of the deviatoric stress invariants.

16



Furthermore, by the assumption that the plastic strain increment is proportional to

the stress gradient of the plastic potential Q, equation 2.25 can be written as [6]

de), = 229 (2.26)

ﬁaij

where d)\ is a proportionality constant called the plastic multiplier. Equation 2.26
is known as the flow rule.

Since both f and @ are functions of the deviatoric invariants, then the case of Q) = f
is considered to be valid. This assumption is called the associated theory of plasticity

and equation 2.26 becomes

d(éij)p = dA af (227)

80’@'

The term 3%1. is a vector directed normal to the yield surface and it is called the

normality condition. If f = Jj, equation 2.27 is known as the Prandtl-Reuss equation
of the form [6]
d(éij)p = d)\O'z{j (228)

The complete incremental relationship between stress and strain for elasto-plastic
is given as [6]

o' (1—20)
2G E

of

80'1']'

6ij0'kk + dA (229)

2.3.4 Elasto-viscoplasticity

Generally, time dependence of inelastic deformation is always present to some de-
gree. Elasto-viscoplasticity allows the modelling of time rate effects in the plastic
deformation process as well as in the elastic deformation process. The latter phe-
nomenon is so-called creep, which is nothing but redistribution of stress and/or

strains with time under elastic material response. These two phenomena cannot be

17



distinguished by experimentation and their separation is largely intended for analyt-
ical convenience only. As it will be shown in the next chapter, elasto-viscoplasticity

can models both effects and elasto-plasticity as well [6], [12].

2.3.4.1 One dimension rheological model

The concept of elasto-viscoplasity is best introduced by a one-dimensional rheolog-
ical model, as illustrated in Figure 2.5. The model consists of a linear spring, a
dashpot, and a friction slider component. The total strain of the model can be

divided into elastic and viscoplastic components as

€ = €. + €, 2.30
p (

The total stress o is equal to the stress in the spring o. and it is equal to the sum

of stresses in the dashpot and in the slider as

o=0.=04+0,= Fe, (2.31)

where E is elastic modulus of the spring.

The friction slider only becomes active if its stress component o, is equal to or
larger than some limiting stress value Y. The limiting value Y is nothing but the
stress level of which the onset of viscoplasticity begins. This Y can also have the

strain-hardening characteristics of the material and is given as

Y=0,+Hey (2.32)

where oy is uniazial yield stress, H' is the slope of the strain hardening portion of
the stress-strain curve without the elastic strain component. Thus, the stress in the
friction slider is

op=cifo, <Y
op=Yifo,2Y

The stress in the dashpot depends on the viscoplastic strain rate which is expessed

as
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(2.33)

where p is the wviscosity coefficient.
The stress-strain relationship for the elastic condition is found by using equation 2.30

and equation 2.31 with ¢,, = 0 and o4 = 0 which leads to:

o= Fe (2.34)

After the onset of the viscoplastic strain, the stress-strain relationship can be found
by using equation 2.30 through equation 2.33, which leads to a first order ordinary

differential equation of the form

e= 7 4ol — (o, + Hey) (2.35)

where v is defined as the fluidity parameter and it is equal to —1‘; Comparing with

equation 2.30, equation 2.35 can be written

€= €+ €y (2.36)
where,
. o
€e = E (237)
i =1l = (0, + H'esp) (2.38)

Equation 2.38 defines the viscoplastic strain rate in terms of the excess of stress
from the steady state yield value.
The closed form solution of equation 2.35 for a constant applied stress o = o, is

found to be:

for non zero H'

Ja (0 = o) _ _—H'yt
i + g 1—e ] (2.39)
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}

Strain, ¢

miQ

Time, t
Figure 2.6: Strain response of the linear strain hardening material

for zero H'

+ (04 — oy)ylt (2.40)

€ =

E
Graphical representation of the above solutions are shown in Figure 2.6 and Figure

2.7.

2.3.4.2 DMultiaxial elasto-viscoplasticity

As in the one dimensional analysis, total strain rate can be composed into the sum
of elastic strain rate and viscoplastic strain rate, as given in equation 2.36, except

that it is written in vector form, which is indicated by a bold character. The stress
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Strain, ¢

I Slope = (gg = 0y)Y

Time. t
Figure 2.7: Strain response for the perfectly plastic material

rate can be calculated using

& = Déo (2.41)

where D is the elasticity matrix.

The onset of viscoplasticity is assumed to be a scalar yield condition of the form

Flo,ey)— F, =0 (2.42)

where F(o,€,,) is a scalar function obtained from one of the equations in section
2.3.5 which indicates the level of stress due to the applied forces. F, is the uniaxial
yield stress which indicates the beginning of the viscoplastic behaviour and its value
is determined experimentally. The viscoplastic flow occurs when the values of F >
F, only.

The viscoplastic strain rate cannot be defined as in the one dimensional cases since
the stress and strain are the vectorial forms. Therefore the specific formulation
defining the viscoplastic strain rate has to be chosen. One of the viscoplastic strain
rate formulations that has wide applicability is the one which has been proposed by
Perzyna [9] as

9Q

b =7 < F) > 2= (2.43)

where
@ = plastic potential
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~ = fluidity parameter

< ®(F) >= a positive monotonic increasing function
O(F)>0if F>0

O(F)=0if F <0

For the associated plasticity, Q can be assumed to be equal to F' and equation 2.43

can be written as

€ =7 < O(F)> g—i =y< ®(F)>a (2.44)

where a is termed flow vector and its direction is normal to the yield surface. Many

forms of the ® function have been proposed, some of the most common version being

O(F) = (F;F> (2.45)
O(F) =T 1 | (2.46)

in which ¢, j, k, and { are arbitrary prescribed constants.

2.3.4.3 Strain increment and time integration schemes

Since viscoplasticity is a transient phenomenon, it is essential to determine the
viscoplastic strain increment for every time interval throughout the time of interest.
Using the general form of incremental quantities over a time interval A¢,, = tps1 —tn,
the viscoplastic strain increment can be defined using a finite difference formula of

the form [6]

Aey, = At,[(1 — ©)éy, + O] (2.49)

vp
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in which © is the implicitness parameter. The value of © = 0 expresses the Euler or
ezplicit time integration scheme where © = 1 refers to a fully implicit scheme and
© = 0.5 refers to an implicit trapezoidal scheme.

For an explicit time integration scheme the process is found to be stable if the values
of At, are less than some critical value. Cormeau [10] developed this critical time
step length theoretically based on ®(F) = F for Tresca, Mises, Mohr-Coulomb, and
Drucker-Prager yield criteria.

The implicit time integration schemes yield unconditionally stable solution pro-
cesses. However, these schemes require the determination of the unknown quantity
AéZ;l beforehand. This quantity can be estimated by using a limited Taylor series

expansion and one may write

el — ¢ L H'Ag™ - (2.50)
where,
Oe
Hn — VP \n 5
&g (251)

Equation 2.49 is now written as
Ae,, = €, At, + C"Ac™ (2.52)

where,

C" = OAt,H" | (2.53)

2.3.4.4 Stress increments

The Ao is the stress change occuring in the time interval (stress increment) and is

given as

Ao =De; = D(Ae” — Ae}) (2.54)

The total strain increment Ae™ can be expressed in terms of the displacement in-

crement. Therefore, equation 2.54 has the form
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Ac™ =D*(BAd" — & At,) (2.55)
with,
D" = (D! + C™)~! | (2.56)

2.3.4.5 Equilibrium equation and displacement increment

The equilibrium of forces at any instant of time, ¢,, should be satisfied according to

the following equation

U = /ﬂ BTomd) + " = 0 (2.57)

where f" is the consistent load vector due to applied forces. This equilibrium con-
dition should be satisfied also during a time increment according to the incremental

form of equation 2.57 as

AY" = /Q BT Ac™d) + A" = 0 (2.58)

In order to meet the above condition, the displacement increment during any time

interval, At,, should be calculated as

Ad” = [K3]IAV™ (2.59)

where AV™ is called as incremental pseudo-load [6] of the form

AV™ = / BTD"E" At,dQ) + Af® (2.60)
Q

K7 is known as the tangential stiffness matriz and it is defined as

n o__ T\
T-—/QB D Bd0 (2.61)
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2.3.4.6 Equilibrium correction

The calculated stress increment in equation 2.55 is based on a linearised form of
the incremental equilibrium of equation 2.58. Therefore, the total stress ™! =
o™ + Ao™ at the end of a time increment is not exactly correct. Consequently, the
equilibrium condition of equation 2.57 which is based on the total stress will not
be satisfied. The correction to this equilibrium condition should be applied in order
to minimize the error. There are several methods available [11], one of the simplest
method being called the residual force method. In this method the out-of-balance
forces U™ are calculated using equation 2.57 and this force is then added to the
incremental pseudo loads for use in the next time step. Alternatively, an iterative
process must be applied to retain the out-of-balance force to within an allowable

tolerance.

2.3.4.7 Convergence criteria

The convergence to a steady state condition is determined based on the effective
viscoplastic strain which occurs at the end of the time increment. The solution is
said to be near a steady state condition if the effective viscoplastic strain ratio at
the end of any time to first time step is less or equal to some prescribed value. The
ratio is calculated for all Gauss integration points. The above criteria can be written
as [6]

Aty Dt

e 100 < T (2.62)

Atl Z €up

in which T is a prescribed tolerance factor and &,, is the effective viscoplastic strain

rate defined as

- 2. )
€vp = g(éij)vp(ﬁij)up (2.63)
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2.3.4.8 Computational procedures

At the beginning of the process or at time ¢t = 0, the static elastic analysis is

performed by using the value of Aty = 0 and the resulting quantities d°, F°, €°, o0,

and €), = 0 are known.
The main steps in the solution process of the elasto-viscoplastic model can be sum-

marized as follows
Stage 1.

At an arbitrary time ¢ = ¢, the equilibrium condition is reached and d®, &%, €”,

er , I and At, are known. These quantities are assembled at the beginning of the

vp?

time step:

e H" as in equation 2.51

A

D™ as in equation 2.56

(]

K% as in equation 2.61

e €,, as in equation 2.44

e Ad" as in equation 2.59
e Ao™ as in equation 2.55

Stage 2.

These quantities are assembled at the end of the time step:
o d"™! =d" + Ad" or total displacements

e o™t = o™ + Ac™ or total stresses

® éﬁ;’l as in equation 2.44

e U™ a5 in equation 2.57
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o V™! = V" + U™ or incremental pseudo loads

Stage 3.
Apply the convergence criteria according to equation 2.62. If the criteria are satisfied

the analysis is terminated. Otherwise, return to Stage 1.

2.4 Explicit versus Implicit scheme

The visco-plasticity analyses require iterative or time integration algorithms for
obtaining the solutions. Many researchers have addressed minimizing the computa-
tional cost by maximizing the time step [13]. Cormeau [10] obtained the theoretical
upper bounds on the time step for explicit/ Euler -type algorithms. In 1978 Hughes
and Taylor [14] developed an unconditionally stable implicit algorithm. Later, in
1984, Marques and Owen [15] developed an implicit-explicit time marching scheme.
In order to compare both schemes, consider the numerical properties of equation
[13];

% = —ny (2.64)

The explicit numerical approximation for the above equation may be expressed by

y" T = (1 — Atn)y” (2.65)
or, by the implicit schemes as
n+1 yn
= 2.66
VS T At (2:69)

From equation 2.65 and equation 2.66, it is evident that the implicit time integration
scheme is unconditionally stable for any value of At,. However, the lack of accuracy
become prominent for large time steps.

In equation 2.65, the explicit scheme is stable for 1/5 < At, < 2/7.
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o As At, approaches Atc.iicat = 2/n, the solution leads to oscillatory stable

convergence.

e As At, approaches At,arimum = 1/7, the solution leads to non-oscillatory

stable convergence.

The At riticar 1 usually used since the steady-state solution is of prime concern. How-
ever, some problems the intermediate solution is as important as the steady-state
solution. Thus, the numerical stability and accuracy of the explicit time integration
scheme is very sensitive to the choice of At,. Furthermore, smaller time steps lead

to higher computer costs.

2.5 Overlay models

The simple rheological elasto-viscoplastic model as described previously often fails
in approximating the complex behaviour of materials. In 1974, Owen et al [16]
proposed the overlay systems in elasto-plasfic finite element analysis and in 1975
Pande et al [17] extended it into elasto-viscoplastic modeling.

The basic concept of overlay systemsis that a continuum may consist of several layers
called overlays which undergo the same deformation. In other words, the overlay
system consists of several simple models connected in parallel. In finite element
applications, this condition can be representated by assembling several layers with
the same shapes, coordinates, and boundary conditions one on top of the others.
The thickness and material properties of each layer may be different, resulting in a
different stress field in each layer. The total stress field is calculated by the sum of

the contribution of each layer according to the layer thickness as

o = Zaiti (267)

i=1
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where n is the total number of overlays and should satisfy;
doti=1 (2.68)
=1
The equilibrium equation 2.57 which should be satisfied becomes
2 /Q Bloftd)+1 =0 (2.69)
i=1
The element stiffness matrix of equation 2.61 become
n=3" / BTDBA() (2.70)
i=1 /0

The physical interpretation of the overlay model in the two-dimensional situation
can best be introduced by composite materials. However, the overlay model is
nothing but the Wéighting parameter for combining the contribution of the individual
overlays. Thus this concept can further be adopted into three dimensional situations
[6],[16],[17].

The application of an overlay system into finite element analysis makes it more
powerful. Standard Maxwell viscoelastic, standard Kelvin viscoelastic, and other
complex parallel models can be created by the elasto-viscoplastic model along with

the overlay system.
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Chapter 3

Topics on Finite Element
Modelling of
Elasto-viscoplasticity

3.1 Implicit scheme formulation

In order to incorporate the implicit time integration algorithm into the program, its
formulation should be derived. Firstly, the evaluation of matrix H” of equation 2.44
will be performed in a generalized form. Since it involves the flow vector which
depends on the yield criterion being considered, the alternative forms of the yield
criteria. as a function of stress invariants will also be reviewed. Finally, all the

neccessary constants will be listed.

3.1.1 Evaluation of matrix H"

The implicit time integration scheme requires the evaluation of matrix H" as ex-
pressed in equation 2.51. H" should be determined for any assumed yield criterion.
From equation 2.44 and dropping superscript n and symbol <> for simplification,

‘matrix H" can be expressed as;

(3.1)

Since the term % 1s a scalar quantity, therefore, essentially, the evaluation of ma-
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trix H™ needs explicit determination of %%_— and aal. Matrix a is the flow vector

according to the yield criterion considered.

The yield criterion can be written in the generalized form
F(Jy, M2 J5,60) = o, (k) (3.2)
Differentiating F' with respect to &, we obtain

r OF 9F8J,  OF 8J,° 08FdJ, OF 86

Y T e T dJ, do + oJ? Oo dJs 0o + 99 do (3:3)
where,
ol ={os, 0yy 02y Tyry Tew, Toy} (3-4)
and 6§ is defined as
sin 36 = _45 = i—\/gi (3.5)

3 9 J2'3/2 :

Differentiating equation 3.5

9 (nzgy = 530 (o
9o " T T T G \ B
we obtain
- 1-3/2
80 o ——3\/§ 8J3 ~3/2 a(‘]Z ’ )
_ V[ (0 e 2 (a2
o 2J8 do ) °* 5 T/ do
86 _ *‘3\/:3 [ 8«]3 /__3/2 11/2 —4 8J;1/2
3 cos 39 (0—0_> = —532,—3- <5g> J2 - J3("‘3)(J2 ) 80'
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or

6\ =3 ( _9/2) 05\  3V3 [ s 1 [0J}?
do ) 2cos30 Oo 2c0830 \ g} ) 72\ Oo

By using equation 3.5;

oL, — \/— _ aJ. tan 36 oJM?
T_ (90 9/2 3 2 :
b= (80) 2 cos 30 (J ) (60) * < J)? ) < do (3.6)

Equation 3.3 can be written in the alternative form

F
aTza—:cl al +cyal +¢3al (3.7)

Jo

where,

=y
5|
S~

a

and
o = % (3.11)
o = 5 e () @12
“ = 55 rew " (%) 513
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Vector b can be expressed in terms of a; and ay;

bT — \/_ (J —9/2) ol + <tan 36) T

2 cos 30

da’l

Utilizing equation 3.7, 9% is found to be;

8_a_T_ _ 8a1+08a2+ 8T+ T@cl+ r0cs
bo T e T, TG, TG, TAG,
_dal N dal dal
T 90 T s e o
Lar |2900 | da 90 de 06
N EYACE 3J;1/2 oo 00 0o
Lar [0200 0 87" dc 06
210, Oo ajél/z do 00 do
L |00 00, Bea 9" ey 9]
19, do oL} Oo 08 do

c")ar{+ dal ‘e dal
g ' oo T “oa

+Za 862 T aci aT+

djl 8,]211/2 2

T
It can be seen clearly that Z—;L =0.

Differentiating equation 3.10 we get

da] 1 1

- T 17 T3/
do  2./J 4J"?
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where

-2 -1 -1 -
3 3 5 000
2 —1
5 = 0 0 0
2000
M1 -
2 0 0
symm. 2 0
I 2]
and
r /2 rt I ' / P
Oy 0,0, 0,0, 20.Ty. 20T, 20,7y
2 ! / (. !
o 0,0 QUyTyZ 2%/;«3,» 20y7’xy
2 2" P 92!
o O, Tyz: 200Tzy O. Toy
M2 ==
472 ATy T 4TyeToy
symin. 47223: AT 00 Tay
L 472 ]

T
By differentiating equation 3.10, %%“.— 1s found to be

AT
~§UI — %ay — S0, -”9—2% %ay + 50 _—9_2% + gay — ;2;02
0z + 50, — 20, f0.— 2o, — Lo,
‘_@2% — %ay -+ —3—03
symm.
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The term aga;"r for7=1,3 and j = 1,3 can be expressed as

ajal = M, =

1
T _
3282 4,]5

(A2  AB AC
B? BC
C‘Z
agag = M5 =
Symimn.

where,

AD

BD

cD

D2

AE
BE
CE
DE

E2

AF

BF

CF

DF

EF

F2



E - a3(5) = 2 (Tx" Ty: O';TZTZ)
F = a3(6) =2 (Tyz Trz U;Tﬂ?y)
[0, A  o.B o.C oD
o, A o,B o, C oD
1 ) 1 ol A o.B  olC ol D
aQag - /1\/1:6 - < !
24/ J3 24/ J3 27y:A 27,.B 27,,C 27,.D
27,2 A 27,.B 271,,.C 21,.D
L 270y A 275y B 27,,C  27,,D
[0, o, 0. 27y, 27
o, 0, 0. 2T, 27,
! ! ' 27, 21
1 1 Iz Ty O vz =
a a;r = ,M7 = ;
2/ J; 2210 0 0o 0o 0
0 0 0 0 0
0 0 0 0 0
'A B C D E F]
A B C D E F
A B C D FE F
ajal = Mg =
0 0 0 0 0 O
0O 0 0 0 0 O
0 0 0 0 0 0]
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1
agaf‘zr = Mg
24/ J5

T V3 r  tan3f. o

ba; = ——gn——M; + ——M;
2J,"" cos 36 2J,
bal — V3 ¢ tan 39M
> 4JPcos30° 470" g

bal — V3 tan 30

’ 2J.;9/2 cos30 27, °

a7l . . .
The term 4% of equation 3.14 now can written in term of the stresses as

oaT ) Co
e ?Z_-J_éMl - 4—%5/7M2 + c3sM;
f2 T T
+ fiMy + M; + fsba;
2,/ 73
TNy I3 M, + febal
2./ J} 4J;
M+ Mg+ fobag (3.16)
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in which f;, © = 1,9 are the derivatives of ¢;, J = 1,3 with respect to Ji, J;lﬁ, and
8 respectively.

The other term of H", that is aa’, gives;

T 2 T 2 T 2 T
aa = caja; + caza; + czaza;

T T T
+ acaza; +ciezaza; + Cc1caza;

T T T -
—+ CaC38928, + ¢ C383a; -+ C2C38348, (31 /)

Using the other terms of az-af as described previously, equation 3.17 can be expressed

as

2
Cy

AT

aal = ch4+ M,

+ M + 22 (M + MT)

+ eres(Ms + MT) + 22 (M + M7T) (3.18)

The terms that depend on the assumed yield function are the constant ¢; and its
derivatives f; since matrices M do not depend on the yield function. The following

sections will evaluate the constants ¢; and f;.

3.1.2 Alternative form of the yield criteria

In order to have the yield criterion independent of axes rotation, it should be in a

function of the stress invariants.

For o7 > 09 > 03, we have:
e Tresca
oy — o3 = 7(k)
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e von-Mises

Y
<
] =
£}
—_
I
Q
[\
+
~~
Q
[\
I
Q
Nl
-+
)
w
!
2

[NR

e Mohr-Coulomb

T = c¢—o0, tan¢

Expressing 7 and o, in terms of oy , 0y and 03 , we obtain

1 -
—=(01 —o03)cos¢p = c— (Ul 1o 10 sinqﬁ) tan ¢
2 2 2
or
(01 —03) = 2ccos¢g— (oy+ 03)sin¢

e Drucker-Prager

adi+ (I = K

where

N 2 sin ¢
~ VB3(3—sing)
1 6 ¢ cos ¢

V/3(3 — sin ¢)

Noticing that
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o1 sin(0 + &) 1

24/ J; . A

oy p = sin 8 4 -1
V3 3

03 sin(f + %) 1

the above yield surfaces can be expressed in terms of the stress invariants as follows:

e Tresca
2+/J,
\\/[; [sin (9 + 2%) — sin (0 + %>] = 7(k)
or

2 (J.‘;_)l/2 cos 8 = (k) = o (k)
e von-Mises
V3 Jy = oy(k)

e Mohr-Coulomb

1 ’ 1
ng sin ¢ + \/JZ (cos@ — %sin@sin </)> = ccos ¢

e Drucker-Prager

ai+ ()P = K

3.1.3 Constants ¢;

In the various yield criteria, constants ¢; of equation 3.11, 3.12, and 3.13 have the

following values:
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e Tresca

e von-Mises

1 =0

cg = 2 cosf(l+tanf tan36)

V3 sinf

e Mohr-Coulomb

(&]

C2

C3

© = Ji cos 30
cy = 0
Cy = \/g
Cz = 0
= %sind)

sin ¢

V3
V3

= cosf {(1 + tan 6 tan36) + (tan 36 — tan 6)

e Drucker-Prager

= [\/g sin @ + cos # sin gzﬁ} —
24/ J; cos 36
cl = «
Cy = 1.0
C3 = 0.0

3.1.4 Constants f;

The constants f;, j = 1,9 are obtained by differentiating ¢;, 7 = 1,3 which may be

a function of stress invariants and/or the direction of principal stresses.
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e Tresca

h=h=fG=fi=fs=f=0

2 tan 36 | 6sin f
cos 8 cos? 36

fo = —2sinf(1 + tanftan36) +

o= 24/3 siné
8 J2)3/2 cos 30
2

fo = _\_/_§ cos 8 cos 36 + 3 sin §sin 36
T J; cos? 36

e von-Mises
h=lh=fi=fi=fi=fe=fi=fs=/fs=0

e Mohr-Coulomb

5 cos 0 3tan(9+ta1]39+singb< 3 1 )
= cos -
¢ cos?30  cos?l V3 \cos?36  cos?f

{

sin ¢

V3

— sin [(1 + tan § tan 360) + (tan 360 — tan 9)}

_ 1\=3/2 V/3sin 6 + cos fsin ¢
Js (72) < cos 36
Jtan 30
fo = an (\/§ cos  — sin fsin ¢ + v/3sin 0 + cos fsin ¢>
cos 30

e Drucker-Prager

hi=fhh=fi=fu=fi=fs=fi=fs=fo=0
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3.2 Development of mining excavation process

The excavation is simulated by assigning very small values to the modulus of elastic-
ity, stress, strain, and load for the element/s to be removed. Consider the equilibrium

equation at time station ?¢,,1 of the form

\Ifn+l — F7-7'+1 _ Fn+l

wnt exrt

where U™ is the out-of-balance force vector, F%! is the internal force vector and

F™'! is the external force vector. The internal and external force vector for the
ext
whole domain can be written as;

Fiit = [ BTomar
r

wnt

Fn—H — / NquF
r

ert

Vector q is the traction force, and other forces can be included in the external force
vector without difficulty.

In the excavation process, the out-of-balance vector U™+! results from the subtrac-
tion of the following contribution of the eliminated element/s from the respective

global force vector:

wnt

Fgrcav — ZL BTa_n-{-ldQ
i=1

P =Y [ N'qdq
1=1

where n is the number of eliminated elements.

The overlay models are created by placing several layers having exactly the same in-
plane geometrical properties one on top of the other. This means that an element

of an overlay model has the same shape, coordinates, boundary conditions, and
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element numbering sequence on every layers. However, its material properties and
its thickness may be different. Due to this features, element removal in the overlay
model is possible, the main step being as follows:

Consider n; number of layers having n. number of elements.

e The number of element on each layer is

e The element numbers to be removed are
. .1 . .
te=1,+1 —1 = 1,ny

where ¢} is the selected element number to be removed on the first layer and

2; 1s the layer number.

e Assign new material property numbers to the removed elements to differentiate

from the unremoved elements

e Set very low values of Young’s moduli to the removed elements
e For the removed elements assign zero values to the following quantities;

— element loads on each node

— element stresses on each Gauss point

— element strain and strain rate on each Gauss point
e Assembly the global stiffness matrix
e Assembly the global load vector

e Solve the Kd = f equation
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3.3 Program features and organization

The finite element capabilities of the program are self explanatory, the interactive

and graphics features of the program being as follows:
e The analysis can be paused any time step during the process.
e The finite element discretization is displayed on the screen.

e A maximum of 50 elements can be eliminated at any arbitrary time station

and the new mesh is automatically displayed.
e The loading including its numerical value can be displayed.

e The element number, node number, material number, and boundary condi-

tions can be displayed.
e Zoom capability is provided.
e Deformed mesh on top of undeformed mesh is automatically displayed.

e The coordinates and displacements of a selected node can be displayed one at

a time.

e Yielded Gauss points can be displayed.

e Stresses, including the extremes and direction, and viscoplastic strain is dis-

played with two different colors for tension and compression.
e The value of At can be modified at any time station.

e History of stresses, viscoplastic strains, displacements, and room closures can

be displayed using cuvre plot or contour line or colored shades.

The program is composed of 88 subroutines and it is written in Fortran. The main
program and subroutines that perform finite element analysis are organized as shown

on the following flow chart.



NPOINT

Sets the size of dynamic memory allocation

INPUTDAT

-Inputs data defining geometry, boundary conditions, material properties,
loadings, type of analysis, output parameters, etc.
-Calls NODEXY to check connectivity and midside nodes.
-Calls FORCEM to converts the applied loads into element loads.

>

INCREM

Increments the applied loads with respect to prescribed load factors.

\——J

STIFVP
Calculates the element stiffness.

-Calls SFR2 to calculates shape functions.
-Calls GAUSSQ to set up the weighting factors.
-Calls JACOB2 to evaluate Jacobian matrix and shape function derivatives.
-For implicit scheme, calls TANGVP, FUNCT, MISES
or TRESCA or MOHR or DRUCKER to calculates D".

& SKY?2 o

S 2

QL Calculates displacements and reactions gé
D \

Jé -Calls ASSEMBLY to generate global stiffness. "é

=

-Calls COLSOL to solve the equations using LDU decomposition. @

3

46



VISNON

Calculates stresses, strains, pseudo-load vectors.

-Calls YLDCRT to evaluate effective stress level.
-Calls TANGVP and FUNCT.
-Calls SFR2.
-Calls JACOB2.
-Calls STRESS to evaluate stresses and strains.
-Calls VECTOR and FUNCT to calculate flow vector a.
-Calls FLOWVP and FUNCT to calculate viscoplastic strain rate.

STEADY

Evaluates steady state condition.

OUTVISC

Calculates average value of stresses, direction, viscoplastic strain and displacement.
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Chapter 4

Case Studies

4.1 Introduction

This chapter has three components. The first section validates the numerous ca-
pabilities of the program with reference to a semi-analytical solution of the simple
uniaxial case. This validation is necessary as it not only allows us to tackle the
modelling process with a certain degree of confidence, but also it gives us a feeling
about the accuracy, stability of the numerical solution, and sensibility of the pa-
rameters involved. Section 4.3 studies the numerical simulation of the experimental
creep tests conducted in reference [19]. After this stage field modelling is ready to
commence. Section 4.4 presents a numerical simulation of the potash mining process

and a comparison of the results with a collection of field measurement data.

4.2 Program verification

Before being applied to complex case studies, a finite element program should be
validated for the correctness of the result with refernce to a semi-analytical solution

based on finite difference. This is normally accomplished through comparison with
| a simpler, predictable example. For this program a short column fixed in the x and
y directions at one end and subjected to uniaxial uniform load on the other end was

chosen as the test-problem with the model characteristics assumed to be:

e Model size 1 unit width, 2 unit height, and 1 unit cross section area
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e Plane stress analysis
e Four linear element on each layer

e Modulus of elasticity £ = 30000

@v Poisson’s ratio v = 0.30
e Cohesion ¢ = 5.0

e Hardening parameter H' = 5000
e Angle of internal friction ¢ =0
e Fluidity parameter v = 0.0001

e Time increment At = 0.1

e Flow function FI_,F"
o

e Uniform distributed load w = 15

The semi-analytical solution is obtained by setting up the one-dimensional governing
equations for the cases of Mohr-Coulomb and Drucker-Prager yield functions. The
non-linear differential equations are solved using the Euler forward finite difference

scheme.

For a uniaxial loading, the stress invariants and yield functions are first evaluated

and the governing equation is subsequently established.

e stress invariants

J]ZO' J{:O
JQ—O é=%0’2
J3=0 Jé=-2-2,—70’3

e yield function

1. Mohr-Coulomb: F =130 and 0, = ¢
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2. Drucker-Prager: F' = —é-\/ga and o, = %C\/g

e strain and displacement
€=¢ + €y

- aF
E=¢é+7<O(F)> 5

s 6,1 3V3—(oy+H'cup)
6—-—'E+§\/§’7[ U'y+;1'€up p:l

A constant o = o, gives ¢ = 0 and the differential equation is found to be

1 H’
é(oy + H'eyy) + Héc+yH'e = v {aa(gx/g—l—-E—) — oy (4.1)

Using the forward finite difference scheme of the form

€nt1 = €n + €n At

or
6‘ — Cnil_cn
n At

the differential equation can be written in the form
Aé, + H'é e, + vH'e, = B, and
the time-marching of the solution is performed via:

. B+en(C—yH')
- C

€nt1
where,
A=o,+ H'%
B =~ [Ua(%\/?_’+ %) - Jy]
C — A+flfn
4
Finally, the displacement is calculated by multiplying strain by the length of
the model.

The time incremént used in calculation is 0.1 unit.

The following investigations were conducted and compared to the semi-analytical

solution:

o test-case 1
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1. One overlay of elasto-viscoplastic plane stress model
2. Mohr-Coulomb yield criterion
3. Solution strategies are:

— Explicit-Initial Stiffness

— Explicit-Tangential Stiffness

— Implicit-Initial Stiffness

— Implicit-Tangential Stiffness

® test-case 2

The same configuration as test-case 1 except the Drucker-Prager yield criterion

was used.

e test-case 3

Comparison of test-casel and test-case2.

e test-case 4

A two-overlay model with thicknesses of 0.7 and 0.3 was used. The individual
configurations of each layer are the same as those of test-case 1. This test

problem is designed to validate the overlay model.

The displacements of the top-center of column from test-case 1, test-case 2, test-case
3, and test-case 4 are shown in Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4
respectively. ‘

It can be concluded that both the implicit and explicit time integration algorithms
yield the same result as the theoretical solution and the multilayer algorithm result
reproduce the single layer model. Thus, the program is considered to be ready for

further application.
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Figure 4.1: Test-case 1: displacement vs time
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4.3 Case study 1 - Simulation of uniaxial creep

test of Lanigan potash

4.3.1 Introduction

A series of creep tests of Esterhazy (Rocanville) and the Patience Lake (Lanigan)
types of potash salt rock was conducted in order to investigated its time-dependent
behaviour under various constant uniaxial compressive loads [19], [20]. The speci-
mens were cored from Rocanville and Lanigan mines which operate at the approxi-
mate depth of 1000 m.

In this study, simulation is conducted only on four Patience Lake (Lanigan) potash
specimens. Both axial and lateral strain creep were recorded over a two month
period to six month period. The uniaxial compressive loads are 7 MPa, 9MPa, 11
MPa, and 13 MPa. Cylindrical specimens with the average sizes of 53.50 mm in

diameter and 110.00 mm in height were used for the analysis.

4.3.2 Objective

The objective of the study is to design a model which correlates both the axial
and lateral creep strain of Lanigan potash which are obtained experimentally and

reported in reference [19] and [20].

4.3.3 Developement of the model

The selected rheological model and its properties used in this simulation were ob-
tained by trial. Since the specimens are symmetric in both geometry and loading
with respect to all axes, axisymmetric analyses were used. The model is discretized
into two overlays with two quadratic elements on each overlay. The discretization
and rheological arrangement of the model are shown in Figure 4.5. The tangential
stiffness method and implicit time integration scheme as well as Mohr -Coulomb

yield criterion were used during the analyses. Material properties of the model were
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as foﬂow:

e Overlay 1

. Overlay thickness ¢ = 0.5

Modulus of elasticity £ = 4.7 GPa

Poisson’s ratio v = 0.20

Cohesion ¢ = 0.1 M Pa

. Hardening parameter H' = 6000

Angle of internal friction ¢ = 60 degree
Fluidity parameter v = 1.021073°

Time increment At = 1.0 day

Flow function 107° (%)5'9

e Overlay 2

Overlay thickness t = 0.5
Modulus of elasticity £ = 5.0 GPa

Poisson’s ratio v = .20
Cohesion ¢ = 0 M Pa

Hardening parameter H' = 0
Angle of internal friction ¢ = 58 degree
Fluidity parameter v = 1.0210~*

Time increment At = 1.0 day

Flow function 10~° (Fﬁo)s.o
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4.3.4 Results

The computed axial and lateral strains at the top-center of the model are indi-
cated in Figure 4.6 and Figure 4.7 respectively, which also show the experimental
creep curves. In Figure 4.6, curves a7 through al3 represent the axial microstrains
computed analytically, while curves o7 through 013 represent the experimental coun-
terpart for the loadings of 7, 9, 11, and 13 MPa respectively. Similar observation is

made for the lateral strains in Figure 4.7.
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4.3.5 Discussion of results

Despite the deviation of 11 MPa and 13 MPa overall computed lateral creep strain,
the response of the model can be considered to be in good agreement with the
observed response. This deviation is mainly caused by assosiated micro-cracking
[19], [20] which is not incorporated in the model.

The material properties used in the model are reasonable, however, the modulus
of elasticity is not in agreement with the experimental results. The modulus of
elasticity of 4.85 GPa used in the model is out of the range of 15.0 GPa to 30.0
GPa found experimentally in reference [20]. However, it is close to the value of 4.29
GPa given by Potash Corporation of Saskatchewan Inc. [25]. At this stage, it is
important to notice the difference between the instantneous modulus of elasticity and
the long term modulus of elasticity. The low value of E is inevitable in correlating
the analytical solution with the experimental results.

After six months of continuously controled creep testing, the steady state response
is not achieved, and the subsequent tertiary response is not reported. A complete
response which traces the primary, steady state, and tertiary state can be achieved
" with a piece-wise linear hardening and softening of the yield surface. In the absence

of experimental evidence which reaches the steady state and tertiary stages the

following investigation will be limited to modelling linear hardening.

4.4 Case study 2 - Simulation of potash mining
process

4.4.1 Introduction

This study was carried out based on the work that had been done in reference [26].
The main scope of that work was the collection and evaluation of field data around
potash excavations located about 1100 m below ground surface. There are five

openings, four of which are 5.5 m wide by 3.35 m high rooms and one 7.0 m wide
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by 3.35 m high room. The rooms are excavated in a certain sequence and these
rooms are separated by nominal 6.7 m pillars. The opening or room number and
the excavation completion dates are shown in Figure 4.8.

Data was collected in rooms 2103, 2104, and 2105 and covers the following major

aspects:

e Vertical and horizontal closure histories, which were obtained by drum

recorders.

e Strain history of floor and pillar, obtained by borehole extensometers.

e Stress history corresponding to extensometer location, obtained by hydraulic

pressure gauges.

Unfortunately, mechanical properties and geological cross-sections of the rock are

not available for this report.

4.4.2 Objective

A great number of questions can be raised with respect to this mining process.
This study attempts to simulate the displacement or closure behaviour of rooms
and vertical stress history of pillars and wall in correlation with the mining process.
Explicitly, this study tries to simulate two aspects which can be implied from the

field observation; these are

1. The closing or possible failure sequence of the rooms begins from the outer

room to the inner room.

2. Reloading effect is produced while cutting the adjacent room.

'4.4.3 Developement of the model

The size of the model is 68.35 m high by 115.80 m wide and it is divided into 600
four-noded elements. The model is supported by rollers on the vertical sides and

by hinges on the bottom. The model is assumed to have a geological cross-section
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as in Figure 4.9 having an average unit weight of 0.0022 kg/cm?, as taken from
reference [25]. While Dawson Bay and the Red Beds formations are assumed to
behave elastically, halite and potash are considered elasto-viscoplastic having the
same material properties. Clay seam above the potash layer is neglected. The finite
element mesh is shown in Figure 4.10. Plane strain conditions, Mohr-Coulomb yield
function, and one layer of elasto-viscoplastic model are adopted with the following

characteristics:

1. Dawson Bay Formation

e Modulus of elasticity £ = 340,000 kg/cm?
e Cohesion ¢ = 40 kg/cm?

® 'Angle of internal friction ¢ = 70 degree

2. Red Bed Formation

e Modulus of elasticity £ = 250,000 kg/cm?
e Cohesion ¢ =40 kg/cm?

e Angle of internal friction ¢ = 60 degree

3. Halite and Potash

e Modulus of elasticity £ = 230,000 kg/cm?
e Unit weight ¢ = 0.0022 kg/cm?

e Poisson’s ratio v = 0.20

e Cohesion ¢ = 2.5 kg/cm?

e Angle of internal friction ¢ = Odegree

e Hardening parameter H' = 3000

e Fluidity parameter v = 5.02107°

e Initial time increment At, = 5 days
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e Flow function E—}‘;;EQ
e Mining depth h = 1045 m

e uniform vertical distributed load = ph = 230 kg/cm?

The model is first allowed to deform elastically in order to simulate the state of
virgin stresses. Since field measurements are conducted after the completion of the
excavation, the rooms are then assumed to be excavated instantenously according

to the following sequence:

1. Room 2105 is excavated at day 0.
2. Room 2101 is excavated at day 25.
3. Room 2104 is excavated at day 95.
4. Room 2102 is excavated at day 105.

5. Room 2103 is excavated at day 120.

4.4.4 Results

The simulated virgin stresses are 230 kg/cm? vertical stress and 60 kg/cm? horizon-
tal stress on average. Since no measured virgin stresses are available, the simulated
stresses cannot be compared to the actual field stresses.

The analysis is terminated at day 140 since the closure rate is considered to be
constant. The output for vertical closure and horizontal closure histories are shown
in Figure 4.11 and Figure 4.12 respectively. The vertical stress history of wall and
pillars is shown in Figure 4.13. The computed closures at the middle of the rooms are
then compared with the field measurement, as indicated in Figure 4.14, Figure 4.15,
Figure 4.16, and Figure 4.17 for vertical closures, horizontal closure of room 2105,
horizontal closure of room 2104, and horizontal closure of room 2103 respectively.
The comparison of vertical stress histories are shown in Figure 4.18, Figure 4.19,

and Figure 4.20.
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4.4.5 Discussion of results

Overall, the simulated closure of the rooms demonstrates a behaviour similar to the

measured behaviour, for the following reasons:

e The simulated closing or possible failure of the rooms has the same sequence

as the actual observation.

e Reloading effect while cutting the adjacent room is also produced by the sim-

ulated model.

The vertical stress history of pillars and wall are relatively close to the field readings.
The discrepancies occurring at the early age of excavations might be caused by initial
interaction between gauging equipment and the sorrounding rock.

However, fhe actual values of horizontal room closures are less than the actual ob-
servation. The differences arise due to the following aspects which are not provided

by the model:

1. It is reported in reference [23] that numerous fractures along the maximum
principal stress trajectory ( about vertical ) are observed in the laboratory
model and in the actual yield pillar. These cracks are initiated by tensile
stress. The crack length increases exponentially with increasing stress and the
crack growth is time-dependent. Fractures a few meters in length and several
centimeters in width were observed in the field. For these reAa,sons, the field

readings for horizontal room closures are higher than the analytical results.

2. As calculated in this study, the vertical stress in the pillars and wall increased
from 230 kg/em? to around 350 kg/cmm®. Since the ultimate strength of potash
rock is of the range of 250 kg/cm? to 300 kg/cm?, the pillar will be in the
post peak or strain softening stage. In this stage, the strain is increasing

exponentially.
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3. The type of model used in this simulation is categorized as the continuous
model [27]. In this model, the continuum is assumed to be free from any
defect or, in other words, the rock is assumed to be intact. This assumption
is, for the most part, far from the real condition. For example, the slip surface
among the rock layers can increase horizontal movement of the pillars and
walls. The other type of the models are the discontinous model and the pseudo-
continous model [27], which represent a jointed rock continuum and a highly
fractured /weathered rock continuum. The last two models take into account

the discontinuities in their constitutive equations, which are beyond this study.
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Figure 4.8: Room configuration and completion dates
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Figure 4.9: The assumed stratigraphy.
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Chapter 5

Conclusions and

5.1 Conclusions

The findings of chapter four confirmed that elasto-viscoplasticity theory is a most
powerful tool to model the mining excavation processes. The main drawback of this
approach consists of the difficulty of choosing the proper parameters which govern
the time-dependent behaviour of potash in the mining field.

Through this engineering study, the following conclusions can be drawn;

1. Comparatively, the model gives a good approximation of vertical room closures

and stresses in potash mining processes.

2. Elasto-viscoplasticity is a unified solution approach to a wide range of mater-

ally non-linear and time-dependent problems.

- 3. The overlay system gives more flexibility in approaching complex material

behaviour.

The following section proposes several enhancements which will lead to a systematic

approach in modelling the mining excavation process.

5.2 Future research

This thesis focused on the modelling of the time-dependent behaviour of potash.

As previously mentioned, the experimental evidence provided to the author were
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carried out over a period of six months in the laboratorium. These tests results
need to be extended to a period of roughly two years, in order to achieve the steady
state response and subsequently attain the ultimate tertiary creep regime. The
required information must be extrapolated to the mining field via proper correlation
procedures. This can be achieved ioy setting a testing program involving different
specimen sizes where the size-effect issue cén systematically investigated.

In order to properly trace the room-closure histories, several key components have

to be modeled with a certain degree of reliability. These component are:

1. Modelling of the clay seams
The clay seams must be accounted for using proper numerical tools. The use
of small finite elements does not provide accurate stresses due to the "bad”
aspect ratio of these elements. However, special interface elements equiped
with a proper material law has to be incorporated in the model to capture the

slip responsible of an important part of the overall global response.

2. Modelling of the tertiary creep stage

Based on Figure 5.1, the viscoplastic model proposed in chapter three is capa-
ble of predicting the three creep stages. This fact can be illustrated by working
out a simple trilinear model. Investigation of the stresses in the yield pillars
shows that such modelling is necessary.

Capabilities to account for linear strain hardening and softening have been
successfully implemented in a version of the program. However, no validation
is provided by experimental testing available. As such, it is recommended to
pursue the efforts of Lajtai and co-worker [19] to bring the full response history

to modelling.

3. Fracture characterization

The underestimated horizontal closure is primarily due to the lack of account-

ing for cracking. The pillars undergo strain reversals due to cracking [18], [22],
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Figure 5.1: Stress-strain and creep curves.

[23]. This was not targeted in the current investigation. A realistic approach
to correct for this would be to introduce discrete cracking. Time-dependent
fracture characterization will be required for modelling purposes, such as ratio

of crack extension, direction of crack propagation etc.

. Infinite elements, Initial stress, and Generalized plane strain condi-
tion
Infinite elements would be an elegant way of representing the true situation in

the mine. This will require the use of "initial stress” type of load to maintain

the required and direction of the confining pressure.
The generalized plane strain condition where the out-of-plane stress level is

maintained, would bring further information to the global behaviour of the

mine structure.
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