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For centuries rnan has been created openings deep down belorv the ground surface

to exploit potash as a commodity. Most often underground openings are located

based on human instinct and experience. This can frequentiy lead to error, and a

reljable rational, numerical method for locating these openings is required. Since

two of the major problerns in potash mining are time-dependent room closure and

pillar yieiding, this thesis investigates the applicability of elasto-viscoplasticity in

modelling the material and predicting its behaviour.

Aftel reviewing existing literature, a robust computational scheme for anaiyzing

time-dependent problem in potash has been developed. The program is designed to

include four widely used yield criteria, an irnplicit time integration scheme, and an

overlay systern.

Finally, tu'o case studies are undertaken. The first case study is a simulation of

uniaxial creep stlain of Patience Lake (Lanigan) potash under various levels of

applied stress. Tire second case study is a simulation of time-dependent roorn closure

and pillal yielding of five underground potash ca,verns in Saskatchewan.

Displacernent and stress results of the theoretical analysis are compared with field

readings, the numerical model showing promise as a predictor of behaviour of potash

under rnining excavation.
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For centuries, a great number of underground openings have been made to exploit

salt rock as a ra\M material. Potash is a family of salt rock with high KCI content

which makes it a valuable commodity as fertilizer. More recently, because of its low

pelmeability salt rocli has been used as a place to store hazardous wastes such as

nuclear wastes.

Potash is found abunclantl5' in Sasl<atchewan at a depth around one km below the

ground sulface. Although it has been extractecl since 1958, little is known of its

mechanical response to stress, mining, and time. This research is part of an impor-

tant academic effort led by Lajtai [18],[19] to understand the mechanical behaviour

of potash rock. While this thesis is targeting the tirne-dependent modeling and the

mining sequence, other investigations include fracture characterization[21] [22], con-

stitutive behaviour, and experimental creep testing[20]. The summary of the above

research program is presented in reference 124].

3."2 Scope of Study

In generaÌ, the behaviour of engineering materials is very cornplicated. The solution

of a practical problern can oniy be reached through idealization and simplification

of the mathematicai model representing the true material behaviour. In solid and



structural mechanics, piasticity, which can be considered as a generalization of the

theory of elasticity, is still the most sophisticated theory in approaching the be-

haviour of most common engineering materiais.

Many computer programs related to plasticity have been developed with various

railge of applications. There is no single program existing that can handle the

wide range of engineering problems that require resolution. A finite elernent pro-

gram based on elasto-viscoplasticity incorporating various failure criteria and various

tirne integration schemes shows promise as a very useful tool for approaching time

dependent behaviour. This study utilizes elasto-viscoplasticity to investigate the

time-dependent behaviour in potash with multiple underground ca\¡erns.

Throughout this study small displacernents and strains, linear strain hardening, con-

stant temperature as lvell as isotropic material properties are adopted. Although

three dimensional formulation is used as far as possible, only two dimensional anal-

ysis is incorporatecl into the finite element program.

3-.S Objective of Study

This engineering study is conducted in order to reach the following goals:

ø To develop several options to the computer code based on elasto-viscoplasticity

u4rich is taken frorn reference [1], namely:

Several failure criteria that are widely accepted or used, i.e., Tresca,

Mohr-Coulomb, Drucker-Prager are embeded and the code is designed

such that any faiiure criteria can be added without undue difficulty.

The implicit time integration scheme for the above criteria is adopted

so that larger time steps can be applied without violating the stability

requirements.

An overlay model is added to give more flexibility in modelling the com-

piex behaviour of a material.

1.

2.

q
ò.



ø To appl5, the program in the simulation of the following problems:

1. Simulation of a uniaxial creep test of a Lanigan potash rock.

2. Sirnulation of a field test of a rnining excavation consisting of five open-

ings, rvith a particular concern on time-dependent displacement and stress

around the openings.

X-"4 T'hesis tutline
This thesis is organized as follows:

1. The first chapter descril¡es an over\¡ieu'of the scope, goals, and outline of the

engineering study.

2' The second chapter is a literature survey which provides an overview of the

theories related to this engineering study. Three major topics are covered

Ì:riefl5';

ø linear elasticity

ø plasticity including time-dependent effects

ø time integration schernes of the finite element semi-discrete governing

equations.

3. The third chapter presents:

ø finite element formulation of elasto-viscoplasticity for implicit time inte-

gration scheme. This implicit scheme is applied with von Mises, Tresca,

Mohr-Coulomb, and Drucker-Prager yieid criteria

ø development of an interactive numerical process to model mining exca-

vation

@ program organization



4. The fourth chapter contains application of the program to two cases related

to tirne-dependent behaviour in potash mining.

5. The last chapter outlines the conclusion from this research and recommends

.future work that should be undertaken to improve the numerical model.
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2.3, lntroductiore

This chapter reviews several basic concepts related to this study and serves as a the-

oretical backgrouncl. The theory of plasticity involves the relationship of stress and

strain in a deformed bocly after a part or the entire body has yielded. The plastic

belraviour is ciraracterized by an irceuersible straining or inelastic deformationwhicll

can be tirne inclependent elasto-plastic behaaiozr or time dependent uiscoplastic be-

hauiour. Obviousl5', the basic concept of the yielding criteria should be addressed.

However, since most engineering materials indicate Iinearly elastic behaviour before

yielding, the basic concept of linear elasticity is also considered.

The cornposite model so-called overlay system is introduced in order to obtain a

better approximation to the complex behaviour of materials, and numerical siability

and accuracy are essential to efficient program development.

Thus, this chapter particulary reviews basic concepts of the following topics:

1. Linear elasticity

2. Plasticity

Yield criteria

Work or strain hardening



ø Elasto-plastic stress/strain relationship

ø Elasto-viscoplasticity

3. Explicit versus Implicit schemes

4. Overlay Models

2"2 EBasic Concept of S,inean Ðlasticity

The material in a body is defined as being elastic if upon the release of the applied

forces the body recovers its original shape and size. For such materials, the current

state of stress depends only on the current state of deformation; that is, the stress

is a function of strain and it is called a Cauchy elastic material [2]. The constitutive

equations are given by

o;¡ : ?¿¡(e¡,¡) (2.1)

wlrere the F;¡ is the elastic response function. According to this equation the elastic

beiraviour is reuersible as well as 'patlt i,ndependenú. The behaviour is independent

of stress or strain histories.

To ensure that no energy can be generated through load cycles and thermodynamic

Iaws are always satisfied, the above equation is restricted such that

"',--# Q2)

where W is the elastic strain energy and it generally is a function of e¿¡.

The material that satisfies both of the above equations is the so-called hyperelastic

or Green elastic material [3].

The simplest and general form for the li,near constitutive relation of a Cauchy elastic

material which is aiso knolvn as the generalized Hooke's law is given by

o¿¡: C¿¡¡"¿€¡r¡ (2.3)



where

C;j,,t : tensol of rnaterial elastic constants

For isotropic linear hyperelastic materials, the number of independent constants of

an elastic tensor is reduced from 81 to 2 (Lame's constanús) and the constitutive

equation is given by

o¿j:Àe*p6;¡*2¡'t'e¿¡

) and LL are Lame's constants
ó,, is tlre l(ronecker delta

(2.4)

where

The constants ) ancl ¡-r are usually expressecl in other forms of elastic constants

wlrich are determined from erperimental tests of some simple states of stress and

strain, suclt as, hydrostatic compression test, simple tension test, simple shear test,

and uniaxial strain test. The relations among the elastic constants can be found in

many references.

TIre following forms of isotropic linear elastic constitutive equation are used fre-

quently in practice [2];

uE_- c

(1 + z)(7 -2u) "" "
(2.5)

(2.6)

(2.7)

o¡j:2Ge;, + #hr*x6;j

*í-r,f¿iot"'
where;

1

"l - zG"tJ

B : Young's modulus
.Il: Bulk modulus
G: Shear modulus
z : Poisson's ratio
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2.3.1

Basic Cor¡cept of tråaståcrty

The Yield Cniteria

Plasticity theory requires a hypothesis which indicates the beginning of the onset

of plastic flow. In the case of uniaxial loading, the hypothesis is simply the yield

stress of the corresponding material. However, for multiaxial loading, the hypothesis

should include the effect of all stress components. The critical combination of those

stress components at a point of a body which indicates the commencement of plastic

florv is defined as yield criterion or yield condition Lzl, [4].

In general, the yield criterion can be expressed as [2], [3], [4], [5], [6];

f (";¡): k(,ç) (2 8)

where /is some function and k is a material parameter to be determined experirneu-

tally. The term k may be a function of a hardening parameter rc or a constant. The

above equation states ihat if / is less than the value of the right hand side, elastic

belraviour is irnplied. For isotropic rnaterials, equation 2.8 can be expressed either

in the form of principal stresses ol in the form of stress invariants, since the yieid

criterion is independent of coordinate axes. Furthermore, experimental evidence [6]

indicates that the effect of rnoderate hydrostatic stress on plastic deformation is neg-

ligible and, therefore, the yield criteria can be also expressed jn term of invariants

of deviatoric stresses.

A yield surface is a geometrical representation of a yield criterion in the principal

stress space. This surface is developed by considering all stress combinations which

can cause yielding. The shape of this surface depends on the particular yield criteria

under consideration. Points within this surface are considered to be elastic, while

points on this su¡face correspond to perfectly plastic behaviour, and points outside

the surface correspond to strain hardening. Since the stress vector at a point can

be decomposed into hydrostatic and deviatoric stress components, the deviatoric

stresses will lie on the octahedral plane, the so called zr plane, and the hydrostatic



stresses will be prependicular to this plane and do not affect the yield criterion.

2.3.1.1 Tþesca Yield Criterion

In 1864, Tresca [5] proposed that yieiding begins when the maximum shear stress

reaclres a certain value. If the principle stresses ale o1, a2¡ oz and assuming o1 2

o2 ) o3 then yielding begins when

ot - o3: k(n) (2 e)

By considering all possible maximum shear stress values, the Tresca yield criterion

is representated either by the surface of an infinitely long heragonal cyli,nder in the

principal stress space or iry a heragonal plane on the zr plane.

The Tresca yield criterion is applicable for metal since it does not depend on the

hyclrostatic stress.

2.3.L.2 von Mises Yield Criterion

In 1913, Von Mises [5] suggested that yielding occurs when the second invariant of

deviatoric stress reaches a critical value, or

,fi:4") (2.10)

u'lter-e Jz is the second deviatoric stress invariant which can be written as

Jz : |oi¡oi¡: 
å l("t - or)' * (or - o")'* (o. - ot)')

This yield criterion is representated by an infinitely Iong circular cylinder in the

principal stress space or by a circle with a radius of JZ k on r plane.

There are two physical interpretations of the von Mises yield criterion. In Ig24,

Hencky [6] mentioned that yielding liegins when the elastic energy of distortion

reaches a critical value. On the otherhand, Nadai (193i) [6] interpreted that yielding

begins when the octahedral shear súress ro"¿ te'àche';s a critical value.

The von Mises yield criterion is the most widely used for metals since this law fits

the experimental data more closely than Tresca's.

10



2.3.1.3 Mohr-Coulomb

This criterion was originally

form of

where
c :cohesion

d :angle of internal friction
r :shearing stress
dn :rlorrlfal stress

According to Mohr (1882) [5], equation 2.77 can be written in the form

(ot - o") : 2ccos Q - (ot* ø3) sin / (2.12)

In the principal stress space) this yield criterion gives a conical yield surface which

norrnal section at any point is an irregular heragon. The conical shape of the yielci

surface. means that a hycirostatic stress does influence yielding, which is also evident

from the last terrn of equation 2.11.

The Mohr'-Coulomb yield criterion is applicable to concrete, rock and soil problems;

however, the predicted tensile strength is overestimated especially when it is applied

to concrete [2].

2.3.L.4 Ðrucker-Frager Yield Criterion

In 1952, Prager [5] presented a modified von Mises yield criterion based on the

Mohr-Coulomb approximation. This criterion can be stated as

Yield Criterion

proposed for soils by

T: c- onlanS

Coulomb in 1773 [5] and has the

(2.1r)

(2.13)

The circle

the values

aJt*r/Jr:¡r'

The slrape of this yield surface in principal stress space is a circular corLe.

wiÌl coincide with the outer apices of the Mohr-Coulomb hexagon when

of a and k'are

2sin S- 
7Ð(3 - 't" d)

(2.14)

11



k': 6ccos þ

Coincidence with the inner apices is provided by

2sin $

,[tlf, - sin/

- ,Ítltt * sin/)

t^t _ 6c cos /
(2.17),,Ítlit * sin /

Again, this yield criterion is applicable to concrete, rock, and soil.

2.3.2 Work or strain hardening

Formulating physical relations which describe the actual behaviour of a material

during plastic flow is a very compiex problem. This is due to nonlinearity, irre-

versibility of deformation processes and to a number of phenomena which occur

after the material has become plastic, such as tirne dependency. Since it was men-

tioned by Olzak et. al [7], it still holds true that the theory of plasticity is developed

from Ìrypotheses and assumptions of a phenomenological character based on certain

observations and experimentai investigations.

Several models had been developed based on the dependency of stress levels at which

further plastic deformation occurs to the current degree of plastification or plastic

straining. Figure 2.1 shows that the yield stress level of a perfectly plastic rnaterial

cloes not depend on the degree of plastification. An isotropic strain hardening ma-

terial is defined when the subsequent yield surfaces are a uniform expansion of the

original yield surface without translation, as shown in Figure 2.2. For a ki,nemati,c

hardening material, the subsequent yield surfaces preserve their shape and orienta-

tion but translate as a rigid body as shown in Figure 2.3. The kinematic hardening

model is raised from the experimentally observed Bauschinger efrect on cyclic load-

ing. If the subsequent yield surfaces contract uniformly as shown in Figure 2.4 then

the material is said to be isotropically strain soften.

(2.15)

(2.16)

72



initial yield

initial yield

Figure 2.1: Pe¡fectly plastic

Figure 2.2: Isotropic strain hardening

Figure 2.3: Kinematic strain hardening

yield surface

current yield surface

loading

loading
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initial yield surface

vield surface

Figure 2.4: Isotropic strain softening

In this study only the isotropic linear strain hardening will be applied. The strain

hardening can be clefined by relating the yield stress È to the plastic cleformation by

means of the hardening parameter rc of equation 2.8 in two ways [7], 16], [g]. The

first hypothesis states that the degree of work hardening can be postulated to be a

function of the total plasti.c workWr, as given lry [6],

n : I'Irp (2.18)

u'here
lU, - [ o¡¡(de;¡),

and (de¿¡), are the increments of

can be related to the total plastic

[6] as

where

plastic strain. Another

deformation in terrns of

hypothesis states that ¡;

effectiue plastic strain e,

¡ù 
- 

có (2.rs)

ëp : I r[t3@,i),(d¿,¡),]

The hypotheses of equation 2.18 and equation 2.19 for the flow theory have been

proved by Hill to be equivalent [8].

2.3"3 Elasto-plastíc stress/strain nelation

After the rvo¡k hardening law has been set, a relation betrveen the plastic deforma-

tion and the stress history has to be established. Essentially, there are trvo different

unloading

t4



types of those relations. The first relation is the basis of the deformcttion theory ancl

the second gave rise to the popular flnu theorg of plasticity.

2.3.3.1 Deformation Theory

Tlre total strain is composed of elastic and plastic parts; that is, e¿i : (e¿j)"* (r¿¡)r.

The elastic strain is expressecl as in equation 2.3. In Ig24Hencky extended the total

strain theory of elasticit)'to plasticity as given b)t [4], [7], [8]

(e¿¡)r: F(J2)o'¿t (dJ2 >< 0) (2.20)

wlrere F(Jr) is a tensor operator made out of scalar quantities. The positive and neg-

ative inequalities indicate loading and unloading respectively. The above equation

means that total plastic strains are propotional to the deviatoric stress components.

For a neutral stress variation d.J2 - 0, that is perfectly plastic condition. equation 2.3

and equati on 2.20 can be wlitten in incremental form [7] as

d(r,¡)" - T;¡mdou

d(ro¡), : F(Jz)do'¿¡

(2.21)

(2.22)

Equation 2.27 and equation 2.22 give two different values of strain increment for a

neutral stress variation.

Thus, the deformation theory is considered unsuitable to describe the complete

plastic behaviour for the following reasons [7], [4], [8]:

ø The relation of strain to stress is unique since the final state of strain is deter-

mined by the final state of stress, which is not true for plastic behaviour [4],

t8l

ø A priori assumptions to ioading and unloading have to be laid in order to get

the solutio" [7].

ø No continuity between elastic and plastic region is found for neutral change of

stress [7], [8]

15



2.3.3.2 F low T'heory

Considering the plastic state, f : k, for the incremental change of stress do¡¡, the

incrernent of the yielcl surface is [6], [8]

a¡ : !!-ao¿¡ -- #¿t,,' don 
dooi : ffidJ''' (2'23)

where / is the yield criterion in the form of a function of the second invariant of

deviatoric stress.

Then if;
df :0, neutral loading (perfectly plastic behaviour) and the

stress point remains on the yield surface.
df > 0, plastic loading (isotropic strain hardening).
df < 0, elastic unloading (linear elastic behar.iour').

In order to rernove the discontinuity between loading and unloading regions then

the d.(o;¡), shoulcl be zero, oÌ one may u,rite [8]

d(oo¡), -- G¿¡dÍ (2.24)

wlrere G;¡ is a sytnmetric tensor wliich is generally a function of tire stress corrrpo-

nents and previous strain history and should satisfy two conditions [8];

ø G¿¿ should be equal to zero since hydrostatic stresses have no significant effect

on plastic. volume change (incornpressibility).

ø Since the material is isotropic, the principal axes of the plastic strain increment

should coincide wiih the principal stress axes.

It was Melan in 1938 who first used the G¿¡ which can satisfy the above condition,

in the form of [8]

d('¿¡),: ¡Pq (2.25)
11oii

where Q and h are scalar function of the deviatoric stress invariants.
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wlrere dÀ is a proportionality constant called the plastic rnultiplier. Equation 2.26

is known as the flow rule.

Sirice both / and Q are functions of the deviatoric invariants, then the case of Q : f
is considered to be valid. This assumption is called tlte associatedtheory of plasticit¡'

and equation 2.26 becomes

Furthermore, by the assumption that the plasti,c strain increment

the stress gradient of the plastic potential Q, equation 2.25 can be

d('¡¡)r: d^99-
uo;i

dlr¿¡)o: O^#

de¡j #-Vu'jot'**o^#

2 "3 "4 Ðlasto-viscoplast icity

is proportional to

written as [6]

(2.26)

(2.27)

(2.2e)

Tlre term # * a vector directed normal to the yield surface and it is called the

normality co¡¿ditio¡t. If f : Jl, equaîion2.27 is known as the Prandtl-Rezs.s equation

of the forrn [6]

d(';¡)r: dÀo'ti Q'28)

The complete incrernental relationship between stress and strain for elasto-plastic

is given as [6]

Generally, time dependence of inelastic deformation is always present to some de-

gree. Elasto-viscoplasticity allows the modelling of time rate effects in the piastic

deformation process as well as in the elastic deformation process. The latter phe-

nomenon is so-called creep, which is nothing but redistribution of stress and/or

strains with time uncler elastic material response. These two phenomena cannot be

I7



distinguished 
-by 

experimentation and their separation is largely intended for analyt-

ical convenience only. As it rvill l¡e shorvn in the next chapter, elasto-viscoplasticity

can rnodels both effects and elasto-plasticity as well [6], Ii2].

2.3.4.L One dimension rheological model

The concept of elasto-viscoplasity is best introduced by a one-dimensional rheoiog-

ical rnodel, as iliustrated in Figure 2.5. The model consists of a linear spring, a

dashpot, and a friction slider component. The total strain of the model can be

divided into elastic and uiscoplastic cornponents as

e.: €" | €u, (2.30 )

The total stress o is equal to the stress in the spring o" and it is equal to the sum

of stresses jn the dashpot and in the slider as

O:Ae:Od*Op:Ee" (2.31)

where E is elastic modulus of the spring.

The fi-iction slider only becomes active if its stress component o, is equal to or

larger than some limiting stless value Y. The limiting value Y is nothing but the

stress level of which the onset of viscoplasticity begins. This Y can also have the

strain-hardening characteristics of the material ancl is given as

Y:oyIH'eup (2.32)

where oo is uniarial yield stres.s,,Il' is the slope of the strain hardening portion of

the stress-strain curve without the elastic strain component. Thus, the stress in the

friction slider is

op: o if oo <Y
op:Yif or2Y

The stress in the dashpot depends on the viscoplastic strain rate which is expessed

AS
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de.,^
O¿ : U--4

dt
(2.33)

After the onset of the viscopiastic strain,

by using equation 2.30 through equation

differential equation of the form

the stress-strain relationship can

2.33, which leads to a first order

rvlrere ¡r is the uiscosity coefficient.

The stress-strain relationship for the elastic condition is found by using equation 2.30

ancl equation 2.31 with e,, : 0 and od.: 0 rvhich leads to:

o: Ee (2.34)

be founcl

ordinary

l[o - (oo I H'r,r)] (2.35)

Comparing withwlrere 7 is clefined as the fl.uidity parameter and it is equal

equation 2.30, equation 2.35 can be rn'ritten

è: è" * e)p (2.36)

where,

.o
Ic-;-r

r,

tol
lf,

€e

e)p: -,t[o - (oo * H'r"))

Equation 2.38 defines the viscoplastic strain rate in terms of the

from the steady state yield value.

The closed form solution of equation 2.35 for a constant applied

found to be:

for non zero H'

o
-E (2.37)

(2.38)

excess of stress

stresso:oois

. _ oo 
- 

(oo - oa) 
11 _ --H,tt1e:-.- 

Et H, [^ " J
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Figure 2.5: One dimensional elasto-viscoplastic rheoiogical model

Timc. t

Figure 2.6: Strain response of the linear strain hardening materiai

for zero H'
od,:El(o"-oo)lt (2.40)

Graphical representation of the above solutions are shown in Figure 2.6 and Figure
.ta
/,. t ,

2.3.4.2 Multiaxial elasto-viscoplasticity

As in the one dimensional analysis, total strain rate can be composed into the sum

of elastic strain rate and viscoplastic strain rate, as given in equation 2.36, except

that it is written in vector form, which is indicated by a bold character. The stress

é
tt,
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U)

Figure 2.7: Strain response for the perfectly ttii:: material

rate can be calculated using

å:De" (2.11)

where D is the elasticity matrix.

The onset of viscoplasticity is assumed to be a scalar yielcl conclition of tire forrn

F(o.e"r) - F,:0 (2.42)

It'here F(o,e,r) is a scalar function obtained froln one of the equations in section

2.3.5 ivhich indicates the level of stress clue to the appliecl forces. fl is the uniaxial

yield stress which indicates the beginning of the viscoplastic behaviour and its value

is determined experimentally. The viscoplastic flolv occurs when the values of ,F >

f, only.

The viscoplastic strain rate cannot be defined as in the one dimensional cases since

the stress and strain are the vectorial forms. Therefore the specific formulation

defining the viscoplastic strain ¡ate has to be chosen. One of the viscoplastic strain

rate formulations ihat has wide applicability is the one which has been proposed by

Perzyna [9] as

èup:7<Õ(F) ,U
ôa

where

Ç : plastic potential

2r

(2.43)



7 : fluidity paratneter
< O(F) ): a positive monotonic increasing function
0(F) >oifF>0
o(F) :0ifF<0

For the associated plasticity, Q can be assumed to be equal to F and equation 2.43

can be written as

where a is terrned fl,ow uector and its direction is normal to the yield surface. Many

forms of the Õ function have been proposed, some of the most common version being

èup:7 < O(r), T - -t <Õ(F) > a
UT

o(F) : (+:),

O(F) : "iê7!) -1

t Iìt,k
0(F) : (;)

o(F) : (F)¡

in rvlricir i, j, k., ancl / are arbitrary prescribed constants.

2.3.4.3 Strain increment and time integration schemes

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

Since viscoplasticity is a transient phenomenon, it is essential to determine the

viscoplastic strain increment for every time interval throughout the time of interest.

Using tlre general form of incremental quantities over a time interval Lt. - t,,+t -tn,
the viscoplastic strain increment can be defined using a finite difference formula of

the form [6]

Lef,o - At"[(l - O)èi, + Oè:;1)

22
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in wlricir O is the implicitness parameter. The value of O : 0 expresse s the Euler or

erplicit time integratiort scheme rvhere O : 1 refers to a fully imqtlicit scheme and

O : 0.5 refers to an implicit trapezoidal scheme.

For an explicit time integration scherne the process is found to be stable if the values

of. Lt,, are less than some critical value. Cormeau [10] devetoped this criti,cal time

step lengtlz theoretically based on Õ(F) : F for Tresca, Mises, Mohr-Coulomb, and

Drucker-Prager yield criteria.

The implicit time integration schemes yield unconditionally stable solution pro-

cesses. However, these schemes require the determination of the unknown quantity

Lèilt beforehancl. This quantity can be estimated by using a hmited Taylor series

expansion and one may write

è:l' : èio + kr" a'o' (2.50)

where,

H": (ôi"\'
' òt'

(2.5 1 )

(2.52)

(2.53)

(stress increment) and is

(2.54)

the displacement in-

Equation 2.49 is now rn'ritten as

Lu'|, : èie\t,, I C" A,o"

rvhere,

C'" : OA¿,,F{'

2.3.4.4 Stress increments

The Aa is the stress change occuring in the time interval

given as

Aø:Ðel:D(Ae"-Lrio)

The total strain increment Ae' can be expressed in terms of

crement. Therefore, equation 2.54 has the form
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Aon' : Ð'1EAd" - èie\t.*) (2.55)

with,

Ó":(Ð-t+c')-t

2.3.4.5 Equilibrium equation and displacement increment

(2.56)

The equilibrium of forces at any instant of time, 1", should be satisfied according to

the following equation

V'": 
lnFrc-^d,ef f':0 (2.57)

where f" is the consistent loacl vector due to applied forces. This equilibrium con-

dition should lte satisfied also during a time increment according to the incremental

fornr of equation 2.57 as

AV" : lrn, n,-,,d,Q +af' : 0 (2.58)

In order to meet the above condition, the displacement incrernent during any tirne

inten'al, Aú,,, should be calculated as

Ad': [Kä]-lAV" (2.59)

where AV' is called as 'incremental pseudo-load [6] of the form

AV', : I nrn";ir\t,d,çl+.af,,
Jn

Ki is known as the tangentiøI stifrness matrfu and it is defined as

Kî: lnwrn"øan

(2.60)
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2.3.4.6 Ðquilibrium correction

The calculatecl stress incretnent in equation 2.55 is based on a iinearised form of

the incremental equilibrium of equation 2.58. Therefore, the total stress an*7 :
o" l. A,o" at the end of a time increment is not exactly correct. Consequently, the

equilibrium condition of equation 2.57 which is based on the total stress will not

be satisfied. The correction to tliis equilibrium condition should be applied in order

to miniinize the error. TÌrere are several methods available [11], one of the simplest

metlrod being cailed the residual force method. In this method the out-of-balance

forces V'*1 are calculated using equation 2.57 and this force is then added to the

incremental pseudo loads for use in the next time step. Alternatively, an iterative

process must be applied to retain the out-of-balance force to within an allowable

tolerance.

2.3.4.7 Convergence criteria

Tire convergence to a steacl)¡ state condition is deterrnined based on the effective

viscoplastic str-ain which occurs at the end of the time increment. The solution is

saicl to be near a steady state condition if the effective viscoplastic strain ratio at

the end of any time to first tìme step is less or equal to some prescribed value. The

ratio is calculated for ali Gauss integration points. The above criteria can be written

as [6]

^ , 
-:Z*1l\tn*t L €uo 

1________________;_ r00 ( ?

^üÐ¿;P

tolerance factor and Ë,o is

(2.62)

the effective viscoplastic strainin which 7 is a prescribed

rate defined as

2..
5\e 

;i)"nle;i),n
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2.3.4.8 Computational procedures

At the beginning of the process or at time f : 0) the static elastic analysis is

performed by using the value of Aúe : 0 and the resuiting quantities d0, F0, ê0, to,

and e!, : 0 are k¡own.

The main steps in the solution process of the elasto-viscoplastic model can be sum-

marized as follows

Stage 1.

At an arlritrary time t : tn

€T,r, Fn, and Aúr, are known.

time step:

tlre equilibrium condition is reached and dtt, tn, Én,

These quantities are assembled at the beginning of the

ø FI" as in equation 2.51

ø D" as in equation 2.56

* Ki as in equation 2.61

èi, as in equation 2.44

Ad" as in equation 2.59

ø A.on as in equation 2.55

Stage 2.

These quantities are assembled at the end of the time step:

@ d"+1 : d" * Ad" or total displacements

ø tn*7 : an * Lon or total stresses

èifr as in equation 2.44

ü'*1 as in equation 2.57
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@ V",+l : Vn * ü"+l or incremental pseudo ioads

Stage 3.

Apply the convergence criteria according to equation 2.62. If the criteria are satisfied

the analysis is terminated. Otherwise, return to Stage 1.

2"4 Ðxptricit versT-ns lnaplicåt sck¡.en're

The visco-plasticity analyses require iterative or tirne integration algorithrns for

obtaining the solutions. N{any researchers have addressed minimizing the computa-

tional cost by maximizing the time step [13]. Cormeau [tO] obtained the theoretical

upper bounds on the time step for explicit/ Euler -type algorithms. In 1978 Hughes

and Taylor [1a] cleveloped an unconditionally stable implicit algorithm. Later, in

1984, Marques and Owen [15] developed an implicit-explicit time marching scheme.

In order to cornpare both scltetnes, consider the numerical properties of equation

lr 3l;

dy_:-\a
d.L

(2.64)

The explicit numerical approximation for the above equation rnay be expressed by

antT:(I_ Lt,rt)y" (2.65)

or, by the irnplicit schernes as

n*1 An
1t' (1 * Lt"r1)

(2.66)

From equation 2.65 and equation 2.66, it is evident that the impticit time integration

scheme is unconditionally stable for any value of Äf,,. However, the lack of accuracy

become prominent for large tirne steps.

In equation 2.65, the explicit scheme is stable for llTt 1 Ltn < 21ry.
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As Al,, approaches Lt",;1;.o¡ : 2lq, the solution leads to oscillatory stable

convergence.

ø As Al,. approaches A,t^o,¿,,unL : If r¡, the solution leads to ¡on-oscillatory

stable convergence.

The A,t",¡1¿.o¡ is usually used since the steady-state solution is of prime concern. How-

ever, some problems the intermediate solution is as important as the steady-state

solution. Thus, the numerical stability and accuracy of the explicit time integration

sclreme is very sensitive to the choice of Lt.. Furthermore, smaller time steps leacl

to higher computer costs.

2.5 Overnay rnodels

The sirnple rheological elasto-viscoplastic model as described previously often fails

in approximating the cornplex behaviour of materials. ht 7974, Owen et at 116]

proposecl the ouerlay systems in elasto-plastic finite element analysis and in 1975

Pancle et al [17] extended it into elasto-viscoplastic modeling.

The basic concept of overlay systems is that a continuum may consist of several layers

called ouerlays which undergo tlie sarne deformation. In other words, the overlay

systern consists of several simple models connected in parallel. In finjte elerne¡t

appiications, this condition can be representated by assembling several layers with

the same shapes, coordinates, and boundary conditions one on top of the others.

The thickness and material properties of each layer rnay be different, resulting in a

different stress field in each layer. The total stress field is calculated by the sum of

the contribution of each layer according to the layer thickness as

o :io,t,
i=l
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where n is the total number of overlays and should satisfy;

n

\-1. - i
,u=r"'

The equilibriurn equation 2.57 which should be satisfied becomes

(2.68)

Br oit;dQ * fl : 0 (2.6e)

The element stiffness matrix of equation 2.61 become

Ki n"oinacr (2.70)

The physical interpretation of the overlay rnodel in the two-dimensional situation

can best be introduced by composite materials. However, the overlay model is

nothing ]:ut the u'eighting parameter for combining the contribution of the individual

overlays. Thus this concept can further be adopted into three dimensional situations

[6] , [16] , [1 7].

The application of an overlay systern into finite element analysis makes it more

powerful. Standard Maxweli viscoelastic, standard Kelvin viscoelastic, and other

complex parallel rnodels can l¡e created by the elasto-viscoplastic moclel along with

the overlav systern.

Ð1.

:ä1,
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3"1- lrraplicit scherne f,onm.utration

Ill orcler to incorporate tire iniplic.it time integration algorithni into the program, its

forrnulation shoulcl be derivecl. Firstly. the evaluation of matrix FI', of equation 2.44

will be perforrned itt a generalized form. Sinc.e it involves the florv vectol which

clepends on the yield criterion being consideled, the alternative forrns of the yield

criteria as a function of stress invariants will also be reviewed. Finally, ail the

neccessary constants wili be listed.

3.1-.1- Evaluation of matrix F{"

The implicit tirne integration scherne requires the evaluation of matrix H', as ex-

pressed in equation 2.51. rI" should be determinedfor any assurned yield criterion.

Fronr equation 2.44 and dropping superscript n and symbol () for simplification,

matrix II" can be expressed as;

(3.1 )

Since the terrn ,a@ it u scalar quantity, therefore, essentiall5r, the evaluation of ma-
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trix H" needs explicit detertnination of ffi a;nd aaT. Matrix a is the flow vector

ac.corcling to the vielcl cl'iterion considered.

The yielcl criterion can be written in the generalized forrn

F(Jr, J;tl', Jr,o) : oo(k) (3 2)

Differeritiating fl with respect to o, rve obtain

.r ðF ôF ðJ1 ôF ðJ,,/, ôF ôJ^ AF AO
+J 

- 

-

G -At-Ahòt-1, * -Ah\otATAT l.Ó'rJ

where,

ancl d is definecl as

oT:{or, oE, azt Tar, T"r, rry} (3 4)

4.rz _J 
^/J Js

sin 3É : -::- (3 5)13 2 ¡,zlz 
'

Differentiatìng equation 3.5

$t.,,,:Jo):-+*(þ)
we obtain

3cos3á (#): ;#l(*l r,-",-"Ú#)l

: ;#[(*l r'-"'-'"441r') (#l
3 cos 3d (#) : ;# [(*l r,-"/' - r"(-B)e;'\/2)-4 (#l
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OI

(3 6)

(3 7)

(#) -- ** (í- n'¡ (#) - #, (þ) þ (#)

/ arl -,/i: l;il : # (t,-' ") (#) . (W) W)

, 2 (r," ro" - o'0r,") ,

B¡' using equation 3.5;

b"

Equation 3.3 can be ivritten in the alternative fonn

'r AF
a- -;-: cl

OC
ul+r,ul+r,u!

n'here,

"l

"l

and

(3 8)

(3 e)

.#) ,("""t-¿,**) ,

).t )- )- I-'!J: ) "'E: ) "'rA J

a$

2 (rr" Tra - o'"rrr) 2 (ro, rr, - o'"rr) j (3.10)

(3.1 1)

(3.12)

ôF
ðJt

ðF
ak'Þ

AF
ðk-

C1

C2
tan 3á ( AF\t_t
J;'/' \ae )

*r,t_zrzt(#) (3. i 3)

.)r)
òL
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\rector b c.an be expressecl in terns of a1 and a2;

t, _ - Ji (.t,.-n/r) 
", _ (W) ",2 cos 3d \-'

Utilizing equa,tion :1.7, # is founcl to be;

ðar 0"T ô"T 0"T ,0r, ,ôrz ,0c=ò, : ,' òi ¡ ,, Ao * r"6i ¡ "íi, ¡ "äÉ ¡ "á#
ôaT ðaT ðaT

cr .ra I c2-=-t- -l- cs--Oa C)o do

^" [ðc1 i)J1 ,_ ôr, U;',' , ôct ð01+ai ln**a¡, a-,-* **)

" [ ðc2 òJ1 ,_ ôr, ôLttz - ðr, Agf*aj l--+' "' 
lòJ'' ðo ' aJ';Þ At - * *)

, ^, I ðca i),)1 , 0r, ôJr1/z , Ìcs 00f-^tluJ,òo-aJy ð, - **)

: ,r{+rrj{+.r$
Ot c)o Ot

*å"I l#"t +#^T*#o'l (s14)

It can be seen clearly that $ : O.

Differentiating equation 3.10 we get

#:#y,-+*z (3rs)

.1.)



u,here

ancl

2 -7 -1 ^á , Ë000
,1á + 000

ô-
á 000

200

M2:

By clifferentiating equation 3.10, # is founcl to be

ðaT
;l:M3:Oo

M1 :

syrnm. 2 0

2

o': "roL o'"a'" 2o'"ro. 2o'rr"" 2o'rr*

o'r' o'oo', Zo'oro, 2o,ur", 2o,orro

o'l 2o'rTs, 2o'rT", 2o,"rro

¡-2 A-+T;- ATy:T:r 4TyrTry

symrn. 4r3, 4r"rT",

4rla

tno" - 3oo - 3o" to, - f,oo + fo" *o" + âo, - 3o, 1ro, 3r,= 3r,o

*o, + åoo - âo, f,o, -'Êoo - 3o= 3ro, !u= 3r,o

*o, - loo + $o" 3ro, 3r", âr,o

.t^l q- .t-
-LU^ Ltî1' Lt__¿ -9

-2"1 2r.s"

-2o'.

syrnrn.

q,t
dlt



Tlre telm a¡{ for i:1,3 and j : 1,3 can be expressed as

araf : M5 -

000

000

000

000

000

000

AD AE AF

BD BE BF

CD CE CF

D2 DE DF

E2 EF

F2

a,af : M4 -

111

111

111

000

000

000

a2a! : firv,

A2 AB AC

B2 BC

C2

syllllll.

whele,

A: as(I) :

B : as(Z):

C : as(3) :

("tr"-,1"* +)

('r'.-':"*+)

("t"t-':,*+)
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D : o,z(4) :2

E : aa(5) :2

F : as(6) :2

(T, T"y - o'rro")

(r"= rE, - oLr,,)

(ry, Tr" - o'rrro)

ara! : -f nn.
2l tí 2^n

"'"4

OLA

o'"A

2r,,.4

2rrrA

2r-.,4

"'rB "'rC

"iB "iC
o|B o'rc

2rr"B 2ro"C

2r", B 2r"rC

2r-.,8 2r-.,C

o'"D "'"8 "'"F

";D "LE "LF

o|D oiU o|F

2ro,D 2ro"E 2ro"F

2r", D 2r,, E 2r", F

2r"rD 2r,oE 2r"oF

o'" o'o o',

o', o', o'"

o'^ ol. o'-

000

F

F

F

DE

DE

E

B

B

B

A

A

A D

0

0

2rs" 2rr, )rca

2r"," 2r=- 2r-",¿9

a1a! :-!nn, - -L--' -'t ,tlL,r''-' zr7,

2r.,- 2¡--g-

00

00

00

t-
"tr!

0

0

0

araï -

C

C

C

0

0

0

Ms:
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a.-¡aT : -Ln¿rzrl¡; t

a3af : ¡4$

1-
a3a.j : 

-Má2J ¡r

baf: #*iwï+W*,

ba!: -#*ivrl+ ffi*,

baf : 
#,.r"soÀns* ffi*,

Tlre telrn # "t equation 3.14 nou, can written in terrl of the stresses as

ôaT c')

- : -i=M' -+^Mz*ceMsdo ztlll 4J't'

*,frM+ + 'f'=,Mî + ÍrauTzrlti

*fnrf', 
2^nM, 

* ñ*, + fubaT
-v "'¿

*.fzMs + --.+Mu + /nb.î (3.i6)
2l ¡i

òt



in rvhich f;, i:1,9 are the derivatives of cj, j :1,S with respect to J1, J)r12, a¡d

á respectively.

The other telm of E{", that is aa?, gives;

aa? : c?raral r c?ra2al t c?"asa!

i c1c2a1al +,r...ra{ * c1c2a2a

* c2caa2a{ * clcaa3af * c2caa3al, (3.17)

tlsing the other tenns of a;{ as described previously, equation 3.17 can be expressecl

d¡

aa? : ,?Mo + '?' M,
4,1 J.!,

+ clM, + 3+(u, + n¿l)
2rl4

* clca(M5 + M3') + 2+(Mo + Ml) (3.18)
2t/¡i

The terms that cleperld on the assurned yield function are the constant c; a¡cl its

clerivatives .f¡ since rnatlices M do not depend on the yield function. The follou,i¡g

sections will evaluate the constants c¿ ar-td f ¡.

3"L.2 Alternative form of the yietd criteria

In order to have the yield criterion independent of axes rotation, it should be in a
function of the stress invariants.

For ø1 > 02 > d3, we have:

ø Tresca

ot - us: r(k)
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@ \/on-N4ises

{t; : k(k)

\'
)"+

lo

2-

ø Mohr-Coulomìr

T : c-crrtan$

Expressing r ancl ø,, in ter-rns of o1 , ø2 and d3 , w€ obtain

(o

,21.l

at t t I l,J.2: oij oij : 
6 lloi - øz

lt,^ '^: 
'lo"*oo'

+

os)2+("r- "r)'l

oot

'rE | 'Ez | 'rz

l. /otios ot-oz. \
-1@t-o3)cosó: .-(ï sinö)tars(t

(or-ot) : 2ccosö-(orf a3)sinp

ø Dluckel'-Pragel'

u'here

d Jt * (JÐtl' : k'

2 sinþ
G.:

\Æ(3 - sin d)

1t 6ccos$" 
,/3(3 - sin /)

Noticing that

39



I":"

-,Æ
v0

{:,ji;, }.-{l}
pressecl in ternrs of the stressbe exthe above I'ield surfaces can

ø Tresca

invaliants as follows:

,Æ
-V3 l"' (, - ?) -.in (o-r T)] : '(fr)

2 Q;)'t'cos d : r(k) : 
"r(k)

ø von-N{ises

ø N4ohr-Cioulomìr

e Drucker-Prager

3.1.3 Constants c¿

In the various yield criteria, constants

follorving values:

'h {Jl : o,(k)

l-,, ,,,, ö + {Jr(."r, - #si,r 
d sin 4,) : ccos (t

a Jt t (4)'t' : k'

of equation 3.11 , 3.I2, and 3.13 have the
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ø Tresca

ø von-Mises

ø N4ohr-Coulornlr

nU] U

c2 : 2 cos0(1 ¡ tan 0 Lan30)

^/3 sin d

" J; cos 3á

c1 :0

-/;c2 : V.J

c3:0

c1 : lri,,d

c2 : ."ro 
ftl 

rtan 0 tan3á)+fft,u,r3á-tand)]

c3 : [uÆ.iná+cosdsin/] ffi
ø Drucker-Pragel

c1 :d

c2 : 1.0

c3 : 0.0

3.L.4 Constants fj
Tire constants /r, j :1,9 are obtained by differentiating c¿, i:1,3 which rnay be

a function of stress invariants aud/or the direction of principal stresses.
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ø Tlesca

lt : .fz: -f¡ : fn : fu : lz : 0

fu : -2sin 0(t +rar árar B0) +'zJy+ + 6tir*
' / cos I cosz 30

" 2",ß sin á

" 
o (JÐt/'cos 3d

, Ji (coslcos3á*3sinásin3d\
It-t' Ji \ cos23d /

ø r'on-Mises

.h: lz: .fs: ls: fs: fe : f.,: f": .fs : 0

ø N{ohr-Coulo¡rlr

.ft : -fz:.f: : lo : lt : l¡ : 0

rt: fz: fz -_ f¿: Ís: fe : rr: fr: .fs : 0

tu : ..,, lffi + e++_' # (#" - ;")]
- sin d 

[f 
, * r-, 0 tan30)+ 

ä 
(tan Bd - t.,' á)]

{_/Js:\J;)-'/'(ry)
'\Lan30 r -fn : ffiff (u6.o.d - sin 0sing + \Æsiná+ cosdsin/)

ø Drucker-Prager
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&.2 Ðevelopraaent of excavatiom process

The exc.avation is simulated by assigning very small values to the modulus of elastic-

ity, stress, straiu, and load for the elernent/s to be removed. Consider the equilibrium

ecluation at tirne station l¿11 of the fonn

ü"+r-Fijt-F3,*,t

where ü"*1 is the out-of-baìance force vectot, Fijt is the internal force vector and

Fi;jl is the exteural force vector'. The internal and external force vector fo¡ the

rvliole dolnain can l¡e written as;

r"ri.rm.nri.g

Flii' :

F:,x'

n-l- I rn6Ar

N"qrJl

t,,'
:1,

Vector q is the traction force, and other forces can be included in the external force

vector without diffi culty.

In the excavation process, the out-of-balance vector ú'*1 results frorn the subtrac-

tion of the following c.ontribution of the eliminated element/s from the respective

gìoìral folcc vector':

FreÍcau _^ ltzt

Âer cauf, rr¿

BT on+ld.fj

/ N'qacr

17^

\-/Zr ,-
i_l 't S¿

:É
i=7

lvhere n is the number of elirninated elements.

The overlay models are created b¡' placing several layers having exactly the same in-

plane geometrical properties one on top of the other. This means that an element

of an overla5' rnodel has the same shape, coordinates, boundary conditions, and
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elemeirt numbering sequence on e\¡ery layers. Holever, its material properties ancl

its thickness may be different. Due to this features, element removal in the oyerlav

model is possible, the main step being as follows:

Consider ?21 numller of layers having n" number of elements.

ø The number of element on each layer is

-l 
ne

lLe

TLI

e The element numbers to be removed are

i":if,*it_ I it:I,ÌL¡

where il is tlie selected elernent number to l¡e removecl on the first layer ancl

i¿ is the layer nurnber.

o Assign nerv matelial property numbers to the removed eiements to diferentiate

frorn the unremovecl elements

ø Set very low values of Young's rnoduli to the removecl elements

e For the removecl elernents assigu zero values to the follorving quantities;

- elernent loacls on each nocle

- element stresses on each Gauss point

- element strain and strain rate on each Gauss point

ø AssernJ¡ly the global stiffness rnatrix

ø Assernbly the global load vector

ø Solve the Kd : f equation
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S"3 Fnogna.rr¡. featT.;.res and orgaraizatior¿

Tlte finite elertent capabilities of the program are self explanator5,, the interactive

ancl graphics features of the program being as follows:

ø The analysis can be paused any tirne step during the process.

ø The finite element discretization is displayecl on the screen.

ø A maximum of 50 elements can be eliminated at any arbitrary time station

ancl the new rnesh is autornatically displayed.

ø The loading including its numerical value can be displayed.

ø The elemeut nurnbet, node number, rnaterial number, and boundary condi-

tions can be displayed.

ø Zoon capability is provided.

ø Defornrecl rlesh ou top of ulldeformecl rnesh is automatically clispla)'sd.

ø The coordinates ancl clisplacements of a selected node can be displayed one at

a time.

ø Yielded Gauss points can be displayed.

ø Stresses, including the extrenes and direction, and viscoplastic strain is dis-

played with two different colors for tension and compression.

e The value of A¿ can be modified at any time station.

ø History of stresses, viscoplastic strains, displacements, and room closures can

be displayed using cuvre plot or contour line or colored shades.

The prograrn is composed of 88 subroutines and it is written in Fortran. The rnain

progratr and subroutines that perform finite element analysis are organized as shou'n

on the follorving flow chart.
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NPOINT
Sets the size of dynamic memory allocation

INPUTDAT
-Inputs data defining geometry. boundary conditions, material properties,

loadings, type of analysis, output parameters, etc.

-Calls NODEXY to check connectivity and miclside nodes.

-Calls FORCEX4 to converts the applied loads into element ìoads.

Ii\CREM
Increments the appliecl loacls rvith respect to prescribed ioad factors.

STIFVP

Calculates the element stiffness.

-Calls SFR2 to calcuiates shape functions.

-Calls GAUSSQ to set up the rveighting factors.

-Calls JACOB2 to evaluate Jacobian matrix and shape function derivatives.

-For implicit scheme, calls TANGVP, FUNCT, MISES

or TRESCA or MOHR or DRUCKER to calculates D'.

SKY2

Calculaies displacements and reactions

-Calìs ASSEMBLY to generate global stiffness.

-Calls COLSOL to soive the equations using LÐU decomposition.
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VISNON

Calculates stresses. strains, pseudo-load vectors.

-Calls YLDCRT to evaiuate effective stress level.

-Calls TANGVP and FUNCT.
-Calls SFR2.

-Calls JACOB2.
-Calls STRESS to evaiuate st¡esses and slrains.

-Ca1ls VECTOR and FUNCT to calculate florv vector a.

-Calls FLowvP ancl FUNCT to calculate viscoplastic strain rate.

STEADY

Evaluates steacly state condition.

OUTVISC
alculates average value of stresses, direction, viscoplastic strain and displacement.
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ChapÉen 4

Cæ.se S6aadåes

4,L lntroduction

This chapter has three components. The firsi section validates the numerous ca-

pabilities of the prograrrì with reference to a semi-analytical solution of the simple

uniaxial case. This validation is necessary as it not only a11ows us to tackle the

modelling process with a certain degree of confidence, but also it gives us a feeling

about the accuracy, stability of the numerical solution, and sensibility of the pa-

rameters involved. Section 4.3 stuclies the numerical simulation of the experimental

creep tests conducted in reference [19]. After this stage field modelling is ready to

commence. Section 4.4 presents a numerical simulation of the potash mining process

and a comparison of the results with a collection of field measurement data.

4.2 Prognanm verification

Before being applied to complex case studies, a finite element program should be

validated for the correctness of the result with refernce to a semi-analytical solution

based on finite difference. This is normally accomplished through comparison with

a simpler, predictable example. For this program a short column fixed in the x and

y directions at one end and subjected to uniaxial uniform load on the other end was

chosen as the test-problem with the model characteristics assumed to be:

ø Model size 7 unit width, 2 unit height, and 1 unit cross section area
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e Plane stress analysis

ø Four linear element on each layer

ø Modulus of elasticitv E :30000

ø Poisson's ratio z : 0.30

ø Cohesionc:5.0

ø Hardening parameter H' : 5000

e Angie of internal friction rþ : 0

o Fluidity parameter ? : 0.000i

ø Time increment Al : 0.1

e Flow function f

ø tlniforrn distributed load u : 15

The serni-analytical solution is obtained by setting up the one-dimensional governing

equations for the cases of Mohr-Coulomb and Drucker-Prager yield functions. Tire

non-linear differential equations are solved using the Euler forward finite difference

scheme.

For a uniaxial loading, the stress invariants and yield functions are first evaiuated

and the governing equation is subsequently established.

ø stress invariants

T _-¿7-u
Jz:0
Js:0

e yield function

1. Mohr-Coulomb: P : lJSo and oo : ¿

4:0
Ji: !o2J!: fio3
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2. Drucker-Prager: P : !J3o and oo : SrJt

ø strain and displacement

r_-t_ofE.,h vP

è:ë"*t< a@)> 
u"E

f t¡Js-1oo+H' ,"r¡lè:**It/3tlr- L 
--;;+trT;- l

A constant 6 : oa gives ó : 0 and the differential equation is found to be

Using the forr¿'ard finite difference scheme of the form

€n*7:tt. lèn\,t

OI

) 
- 

lnll -(ncn - --*A¿

the differential equation can be written in the form

Aè" + H'ène, I 1H'en: B, and

the time-marching of the solution is performed via:

- B+e^(C-tH'\
"ztr C

rvhere,

A:oa+H'?

B :1l""GJs + #l - ""1

r: _ A*Htcn

^r
Finally, the displacement is calculated by multiplying strain by the length of

the model.

The time increment used in calculation is 0.1 unit.

The following investigations were conducted and compared to the semi-analytical

solution:

e test-case 1

è(on * H'e.,,) * H'èe t 1H'e:.rl""t!,tl * #) - ",] (4.1)
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1. One overlay of elasto-viscoplastic plane stress model

2. Mohr-Coulomb yield criterion

3. Solution strategies are:

- Explicit-Initial Stiffness

- Explicit-Tangential Stiffness

- Implicit-lnitial Stiffness

- Implicit-Tangential Stiffness

ø test-case 2

The same configuration as test-case 1 except the Drucker-Prager yield criterion

was used.

ø test-case 3

Comparison of test-case1 and test-case2.

ø test-case 4

A two-overiay model with thicknesses of 0.7 and 0.3 was used. The individual

configurations of each layer are the same as those of test-case 1. This test

problern is clesigned to validate the overlay model.

The displacements of the top-center of column from test-case 1, test-case 2, test-case

3, and test-case 4 are shown in Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4

respectively.

It can be concluded that both the implicit and explicit time integration algorithms

yield the same result as the theoretical solution and the multilayer algorithm result

reproduce the single layer model. Thus, the program is considered to be ready for

further application.
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4"&

4.3.L

Case study 3- - SismtåÏatios? of, ur¡iaxåaÏ creep

test of ï,anigam potash

lntroduction

A series of creep tests of Esterhazy (Rocanville) and the Patience Lake (Lanigan)

types of potash salt rock was conducted in order to investigated its time-dependent

behaviour under various constant uniaxial compressive loads [19], [20]. The speci-

mens were cored from Rocanville and Lanigan mines which operate at the approxi-

mate depth of 1000 m.

In tliis study, simulation is conducted only on four Patience Lake (Lanigan) potash

specimens. Both axial and lateral strain creep \l¡ere recorded over a two month

periocl to six month period. The uniaxial compressive loads are 7 MPa, 9MPa, 11

I\4Pa. and 13 MPa. C;,'lindrical specimens with the average sizes of 53.50 mm in

diameter and 1i0.00 mm in heiglit rvere used for the analysis.

4.3.2 Objective

The objective of tlie stud¡,' is to design a model which correlates both the axial

and lateral creep strain of Lanigan potash which are obtained experimentally and

reported in reference [19] ancì [20].

4.3.3 Ðevelopement of the rnodel

The selected rheological model and its properties used in this simulation were ob-

tained by trial. Since the specimens are symmetric in both geometry and loading

with respect to ail axes, axisS,mmetric analyses were used. The model is discretized

into two overlays with tu'o quadratic elements on each overlay. The discretization

and rheological arrangement of the model are shown in Figure 4.5. The tangential

stiffness method and irnplicit time integration scheme as well as Mohr -Coulomb

I'ield crite¡ion were used during the analyses. Material properties of the model were
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as follow:

ø Ovellay 1

1. Overlay thickness I - 0.q

2. Modulus of elasticiíy E:4.7 GPa

3. Poisson's ratio u :0.20

4. Cohesion c: 0.I MPa

5. Harclening parameter H' : 6000

6. Angle of internal friction ó : 60 degree

7. Fluidity pararneter 1 : 7.0210-5

8. Tirne increment Aú : 1 .0 day

9. Flow function 10-' (å)"

ø Overlay 2

1. Overlay thickness I : 0.5

2. tr4odulus of elasticity E :5.0 GPa

3. Poisson's ratio u :0.20

4. Cohesion c:0 MPa

5. Hardening parameter ly'' : 0

6. Angle of internal friction d : 58 degree

7. Fluidity parameter 1 : I.0r70-a

8. Time increment Aú : 1 .0 day

9. Flow function 10-u (å)t'
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4"3.4 R.esults

The computecl axial and lateral strains at the top-center of the model are indi-

c.ated in Figure 4.6 and Figure 4.7 respectively, which also show the experimental

creep curves. In Figure 4.6, curves a7 through a13 represent the axial microstrains

computed analyticalll', while curves o7 through ol3 represent the experimental coun-

terpart for the loadings of 7, 9, 11, and 13 MPa respectively. Similar observation is

made for the lateral strains in Figure 4.7.
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Figure 4.5: tfodel characteristics of the specimen
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4"3"5 Ðiscussion of nesults

Despite the deviation of 11 MPa and 13 MPa overall computed lateral creep straiu,

the response of the model can be considered to be in good agreement with the

observed response. This deviation is mainly caused by assosiated micro-cracking

[19], [20] which is not incorporated in the model.

The material properties used in the model are reasonable, however, the modulus

of elasticity is not in agreement u'ith the experimental results. The modulus of

elasticity of 4.85 GPa used in tire rnodel is out of the range of 15.0 GPa to 30,0

GPa found experimentally in reference [20]. However, it is close to the value of 4.29

GPa given by Potash Corporation of Saskatchewan Inc. 1251. At this stage, it is

important to notic.e the difference betrveen the instantneous modulus of elasticity and

tire long term modulus of elasticity. The low value of E is inevitable in correlating

the analyticai solution with the experimental results.

After six months of continuously controled creep testing, the steady state response

is not achieved. and the subsequent tertiary response is not reported. A complete

ïesponse which traces the primary, steady state, and tertiary state can be achieved

with a piece-wise linear hardening and softening of the yield surface. in the absence

of experimental evidence which reaches the steady state and tertiary stages the

following investigation will be lirnited to modelling linear hardening.

4,4

4"4"L

Case study 2 - Sinlulation of, potash srlini*g
process

Introduction

This study was carried out based on the work that had been done in reference [26].

The main scope of that work rvas the collection and evaluation of field data around

potash excavations located about 1100 m below ground surface. There are five

openings, four of which are 5.5 m wide by 3.35 m high rooms and one 7.0 m wide
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bi, 3.35 m high rooù1. The roorns are excavated in a certain sequence and these

rooms are separated b¡' nominal 6.7 m pillars. The opening or room number and

the excavation cornpletion dates are shown in Figure 4.8.

Data was collected in rooms 2103, 2104, and 2105 and covers the following major

aspects:

ø Vertical and horizontal closure histories, which were obtained by drum

reco¡ders.

ø Strain history of floor and pillar, obtained by borehole extensometers.

ø Stress histor¡' corresponding to extensometer location, obtained by hydraulic

pressure gauges.

l.Tllfortunatelr'. mechanical properties and geological cross-sections of the rock are

not available for this report.

4.4.2 Objective

A great number of questions can be raised u'ith respect to this mining process.

This study attempts to simulate the displacement or closure behaviour of roorrs

and vertic.al stress history of piilars and wall in correlation with the mining process.

Explicitly, this studl' tries to simulate trvo aspects which can be implied from the

field observation; these are

1. The closing or possible faiiure sequence of the rooms begins from the outer

room to the inner room.

2. Reloading effect is produced while cutting the adjacent room.

4"4.3 Developernent of the rnodetr

The size of the model is 68.35 m high by 115.80 m wide and it is divided into 600

four-noded eìements. The model is supported by rollers on the vertical sides and

by hinges on the bottom. The model is assumed to have a geological cross-section
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as in Figure 4.9 having a,n average unit rveigirt of 0.0022 kgf cmz, as taken from

reference [25]. W]rile Dau'son Bay and the Red Beds formations are assumed to

behave elasticalll', halite and potash are considered elasto-viscoplastic having the

same material properties, Clay seam above the potash layer is neglected. The finite

element mesh is shou'n in Figure 4.10. Plane strain conditions, Mohr-Coulomb yield

function, and one layer of elasto-viscoplastic model are adopted with the following

characteristics:

1. Dawson Bay Formation

ø N{odulus of elasticity E - 340,000 kglcm2

ø Cohesion c : 40 kg f cnzz

ø Angle of internal friction ö : 70 d,egree

2. Red Bed Formation

ø N{odulus of elasticitl\, E :250, 000 kg f cmz

ø Cohesion c : 40 kg f cnt2

ø Angle of internal friction cit : 60 degree

3. F{alite and Potash

o Modulus of elasticity E :230,000 kgf cmz

ø Unit weight F:0.0022 kgf cm2

ø Poisson's ratio u :0.20

e Cohesion c : 2.5 kg f cmz

ø Angle of internal friction ó : \degree

ø Hardening parameter H': 3000

ø Fluidit5' parameter ? : 5.0r10-5

ø Initial time increment Lto: 5 days

64



ø Flow function

N4ining depth h: 7045 m

uniform verticai distributed load : ¡th -- 230 k,g f cm2

Tþe model is first allorved to deform elastically in order to simulate the state of

uirgin. stresses. Since field measurements are conducted after the completion of the

excavation, the rooms are then assumed to be excavated instantenously according

to the follou'ing sequence:

1. Room 2105 is excavated at daY 0.

2. Room 2101 is excavated at dav 25.

3. Room 210.1 is excavated at day 95.

4. Room 2102 is excavated at day i05.

5. Room 2103 is excavated at day 120.

4.4.4 F,esults

The sir¡ulated uirgin stresses are 230 kgf cmz vertical stress and 60 kgf crnz horizon-

tal stress on average. Since no measured virgin stresses are available, the simulated

stresses cannot be compared to the actual field stresses.

The analysis is terminated at da5' 140 since the closure rate is considered to be

constant. The output for vertìcal closure and horizontal closure histories are shown

in Figure 4.1i and Figure 4.12 respectively. The vertical stress history of wall and

pillars is shown in Figure 4.13. The computed closures at the middle of the ïooms are

then compared with the field measurement, as indicated in Figure 4.14, Figure 4.15,

Figure 4.16, and Figure 4.I7 for vertical closures, horizontal closure of room 2105,

horizontal closure of room 2104, and horizontal closure of room 2103 respectively.

The comparison of vertical stress histories are shown in Figure 4.18, Figure 4.19,

and Figure 4.20.

Dît -t o
FO
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4.4.5 Ðiscr.lssion of results

Overall. the simulated closure of the rooms demonstrates a behaviour similar to the

measured behaviour. for the following reasons:

The simulated closing or possible failure of the rooms has the same sequence

as the actual observation.

ø Reloading effect while cutting the adjacent room is also produced by the sim-

ulated model.

The vertical stress history of pillars and wall are relatively close to the field readings.

The discrepancies occurring at the early age of excavations might be caused by initial

interaction between gauging equipment and the sorrounding rock.

However, the actual values of horizontal room closures are less than the actual ob-

servation. The differences arise due to the follorving aspects which are not provided

b1' the rnodel:

1. It is reported in reference [23] that numerous fractures along the maximum

principal stress trajectorl' ( about vertical ) are observed in the laboratorl'

model and in the actual yield pillar. These cracks are initiated by tensile

stress. The crack length inc¡eases exponentially with increasing stress and the

crack grorvth is time-dependent. Fractures a few meters in length and several

centimeters in u'idth were observed in the field. For these reasons, the field

readings for horizontal room closures are higher than the analytical results.

2. As calculated in this study, the vertical stress in the pillars and wall increased

from 230 kg f cm2 to around 350 kg lcm2. Since the ultimate strength of potash

rock is of the range of 250 kg f cmz to 300 kg f cmz, the pillar will be in the

post peak or strain softening stage. In this stage, the strain is increasing

exponentially.
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3. The t5'pe of model used in this simulation is categorized as the continuous

model 127). In this model, the continuum is assumed to be free from an¡,

defect or, in other words, the rock is assumed to be intact. This assumption

is, for the most part, far from.the real condition. For example, the slip surface

among the rock la1'ers can increase horizontal movement of the pillars and

walls. The othe¡ type of the models are the discontinous modeland the pseudo-

continous model [27], which represent a jointed rock continuum and a highiy

fractured/weathe¡ed rock continuum. The last two models take into account

the discontinuities in their constitutive equations, which are beyond this study.
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Figure 4.8: Room configuration and completion dates
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Figure 4.9: The assumed stratigraphy.
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5.3- Concltlsíons

The findings of chapter four confirmed that elasto-viscoplasticity theory is a most

powerful tool to model the mining excavation processes. The main drawback of this

approach consists of the difficuity of choosing the proper parameters which govern

the time-dependent behaviour of potash in the mining field.

Through this engineering study, the following conclusions can be drawn;

1. Comparatively, the model gives a good approximation of vertical room closures

and stresses in potash rnining processes.

2. Elasto-viscoplasticity is a unified solution approach to a wide range of rnater-

ally non-linear and time-dependent problems.

3. The overlay system gives more flexibility in approaching complex material

behaviour.

The following section proposes several enhancements which wili lead to a systematic

approach in modelling the mining excavation process.

5,2 F\lture researaþl

This thesis focused on the modelling of the time-dependent behaviour of potash.

As previously mentioned, the experimental evidence provided to the author were
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carried out over a period of six months in the laboratorium. These tests results

need to be extended to a period of roughly two years, in order to achieve the steady

state response and subsequently attain the ultimate tertiary creep regime. The

required information must be extrapolated to the mining field via proper correlation

procedures. This can be achieved by setting a testing program involving different

specimen sizes where the size-effect issue can systematically investigated.

In order to properly trace the room-closure histories., several key components have

to be modeled with a certain degree of reliabiiity. These component are:

1. Modelling of the clay seams

The clay seams must be accounted for using proper numerical tools. The use

of small finite elements does not provide accurate stresses due to the "bad"

aspect ratio of these elements. However, special interface elements equiped

with a proper material law has to be incorporated in the model to capture the

slip responsible of an important part of the overall global response.

2. Modelling of the tertiary creep stage

Based on Figure 5.1, the viscoplastic model proposed in chapter three is capa-

ble of predicting the three creep stages. This fact can be illustrated by working

out a sirnple trilinear model. Investigation of the stresses in the yield pillars

shows that such modelling is necessary.

Capabilities to account for linear strain hardening and softening have been

successfully implemented in a version of the program. However, no validation

is provided by experimental testing available. As such, it is recommended to

pursue the eforts of Lajtai and co-worker [19] to bring the full response hisiory

to modelling.

3. Fþacture characterization

The underestimated horizontal closure is primarily due to the lack of account-

ing for cracking. Thepillars undergo strain reversals due to cracking [18], [22],
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[23]. This was not targeted in the current investigation. A realistic approach

to correct for this would be to introduce discrete cracking. Time-dependent

fracture characterization will be required for modelling purposes, such as ratio

of crack extension, direction of crack propagation etc.

4. Xnfinite elements, Initial stress, and Generalized plane strain condi-

tion

Infinite elements would be an elegant way of representing the true situation in

the mine. This will require the use of "initial stress" type of load to maintain

the required and di¡ection of the confining pressure.

The generalized plane strain condition where the out-of-plane stress level is

maintained, would bring further information to the global behaviour of the

mine structure.
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