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Abstract. Considering edge weights during frequent subgraph mining
can help us discover more interesting and useful subgraph patterns when
compared to its unweighted counterparts. Although some recent works
have proposed weight adaptation in frequent subgraph mining from trans-
actional graph databases, the consideration of edge-weights in mining
subgraph patterns from single large graphs is mostly unexplored. How-
ever, such graph structures appear frequently, with instances being found
in social networks, citation and collaboration graphs, chemical and bio-
logical networks, etc. In this paper, we propose WeFreS, an efficient al-
gorithm for mining weighted frequent subgraphs in edge-weighted single
large graphs. WeFreS takes into consideration the weight, or significance
of the interactions between different types of entities, and only outputs
subgraphs whose weighted support is greater than a given user-defined
threshold. The resulting subgraph patterns are both frequent and signif-
icant from the application perspective. Moreover, for efficiency, WeFreS
is also equipped with various pruning techniques and optimizations.

Keywords: Single large graph · Weighted single large graph · Graph
mining · Weighted frequent subgraph mining.

1 Introduction

Identifying frequently appearing patterns in large databases is an important
domain of data mining [16]. In the modern world, graphs are being increasingly
used to model data obtained from various real-life applications [2, 4, 8, 12, 14, 15,
18]. Weighted graphs have even more representational power than unweighted
ones, and allow users to specify the relative significance of various edge-relations
in the graph. Mining frequent subgraph patterns from weighted graph data can
thus enable us to gain useful insights about the features and the nature of the
data around us.

Graph mining approaches have traditionally focused on two different setups:
(i) transactional graph database (which is viewed as a collection of small graphs)



and (ii) single large graph framework (which represents the entire dataset in a
single graph). Although several approaches have been proposed for weighted fre-
quent subgraph mining from transactional graph databases [9, 10], there exists
a scarcity of efficient approaches addressing the same problem in the context of
single large graphs. However, the single large graph representation is inevitable
for many fields such as analyzing molecular fragments, image processing, soft-
ware bug detection, text classification and social network analysis [6, 11]. Thus,
considering edge weights during frequent subgraph mining in single large graphs
can help us mine important subgraph patterns, which can be used in a variety
of different applications [1, 12].

Consider the case of mining patterns of spam dispersion in a social network
[7], in which the number of spammers is relatively low. Unweighted graph mining
approaches will fail to mine patterns involving spammers and spam dispersion,
for not being able to prioritize edge relations that include spammers. A weighted
frequent subgraph mining approach, however, would do so if heavier weights were
assigned to edges involving spammers. Such an approach could thus lead us to
finding frequent patterns of spam dispersion across a community.

Recent literature involving single large graphs use minimum image-based in-
dex (MNI) [3] as the frequency support of a subgraph in a given large graph.
Using the MNI measure, weighted support of a subgraph is defined as the prod-
uct of the average of its edge weights and its MNI value.

In the current paper, we propose an algorithm that takes an edge-weighted
single large graph as input and outputs all subgraphs whose weighted support
satisfies a given user-defined threshold. Here, we consider graphs, where edge-
weights are defined as a function of the labels of the nodes adjacent to an edge.
This is a non-trivial task due to the absence of the Apriori property in weighted
frequent subgraph mining. Traditional weighted pattern mining approaches [20]
avoid extending a pattern if its support multiplied by MaxW (highest weight
value among all items) is less than the given threshold. Theoretically, extending
the current subgraph with infinite edges can make the average weight at most
MaxW. However, this is generally a rather high over-estimation, which leads to
unacceptably high runtimes—especially when working on graphs having highly
varying edge-weights.

Further challenges are caused by the computational difficulty of determin-
ing the exact value of the MNI. To avoid this costly operation, a constraint
satisfaction problem (CSP) model has been applied to determine if the MNI
of a subgraph is at least a given threshold (instead of determining its exact
value) [5, 17]. During the mining process, the user defines a weighted support
threshold value (instead of explicitly defining the required MNI). Our proposed
algorithm, Weighted Frequent Subgraph Miner (WeFreS ), efficiently overcomes
these challenges by introducing the MaxPosW measure, which is a tight upper
bound of the highest weight value a subgraph can attain after being extended
by one or more remaining edges from the given large graph. We also introduce
a redesigned CSP model for the frequency evaluation of a subgraph in an edge-
weighted framework. Key contributions of this paper include the following:
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Fig. 2. A sample subgraph S

– Introduction of an efficient method to counter the absence of the Apriori
property during weighted frequent subgraph mining.

– Proposal of an efficient technique for determining MaxPosW (i.e., maximum
possible weight a subgraph can attain after being extended by one or more
edges from the large graph).

– Reformulation of the CSP model so that it can fit in a weighted framework.
– Development of WeFreS, a weighted frequent subgraph mining algorithm

that works on edge-weighted single large graphs.
– Demonstration of the efficiency of WeFreS in comparison with existing ap-

proaches and baseline algorithms using results obtained from experiments
on several real-world datasets.

The remainder of this paper is organized as follows. The next section gives
the formal problem definition and an overview of some related works. Section 3
presents our proposed method and relevant proofs. Evaluation results and con-
clusions are given in Sections 4 and 5, respectively.

2 Preliminary Concepts and Related Works

Definition 1. For a weighted single large graph described by a five tuple
(V,E, L, l, w), (i) V and E are sets of vertices and edges, respectively, such that
all e ≡ (u, v) ∈ E where u, v ∈ V and e connects nodes u and v; (ii) L is a set
of node labels; (iii) l:V → L is a function that maps each node to a certain label;
and (iv) the weight of each e ∈ E is defined by the function w:(LXL) → R as
w(l(u), l(v)).

Definition 2. For any subgraph S with vertex set VS, let f(v) denote the number
of distinct nodes in an input graph G with a node v ∈ VS that can be mapped to
in order to form at least one valid isomorphism. The minimum image-based
(MNI) index of a subgraph S is ∀v ∈ VS ,min(f(v)).

For example, subgraph S in Fig. 2 has two isomorphisms in graph G in Fig. 1:
(i) {1-2-3} and (ii) {4-2-5}. Here, nodes A and C in S can be mapped to two
distinct nodes each to form valid isomorphisms, but node B can be mapped only
to node 2 in G. Consequently, the MNI support of S in G is min(2, 1, 2) = 1.
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While alternative metrics exist for determining the frequency support of a
subgraph in a single large graph, we use the MNI index as the support metric
due to (i) the relative computational ease of determining its value and (ii) the
mined subgraphs are supersets of those mined by other metrics. MNI is used as
the support metric in several recent literature as well [5, 17].

Definition 3. The weight W (S) of a subgraph S is the average of the
weights of the edges in it. The weighted support WS(S) of S is the product of
W (S) and its MNI support MNI (S), i.e., WS (S) = W (S)×MNI (S).

For example, in Fig. 2, if the weights of edges connecting labels (A-B), (B-C)
and (C-A) in S are 5, 10 and 15 respectively, then W (S) = 5+10+15

3 = 10 and
WS (S) = W (S) × MNI (S) = 10 × 1 = 10. Weighted support is suitable for
finding interesting patterns because it takes into account both the MNI support
and weight (instead of only the MNI value).

Definition 4. Given a weighted single large graph G and a threshold τ as input,
the weighted frequent subgraph mining problem is defined as finding all
subgraphs S such that WS (S) ≥ τ .

In the context of relevant literature, gSpan [19] mines frequent subgraphs
from transactional graph databases. Concepts introduced in gSpan regarding the
canonical ordering of edges and subgraphs have been adopted in previous single
large graph mining approaches [5, 17] and are used in WeFreS to avoid duplicate
subgraph generation. GraMi [5] is a state-of-the-art approach for mining frequent
subgraphs from single large graphs, with a CSP model to determine if the MNI
of a subgraph satisfies a given threshold. GraMi does not take edge-weights into
consideration, and thus risks mining subgraph patterns which are frequent but
ultimately insignificant. It also misses out on mining subgraph patterns that are
relatively less frequent, but nevertheless interesting due to higher weight values.

ReSuM [17] takes edge-weights into consideration and can mine weighted
frequent subgraphs when the weights are within the interval [0,1]. ReSuM uses
GraMi to identify all frequent subgraphs, and then filters out subgraphs from
the output whose weighted support do not satisfy the given threshold. Since the
weight of each subgraph is imposed to be within [0, 1], the weighted support
is bounded by the MNI support, thus ensuring a complete search. Experiments
in Section 4 show this approach to be inefficient compared to WeFreS. Further-
more, imposing weights to be within [0, 1] limits the representational power of
the graph. As exemplified by the case of spam dispersion in Section 1, many
applications require the weighted support of certain patterns to be scaled up
from their MNI support, and that is not possible if edge-weights are restricted
to being less than 1.

3 Our Proposed WeFreS Algorithm

Mining weighted single large graphs imposes several challenges. First, how do
we determine if there is a possibility of an extension of a given subgraph to be
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weighted frequent? Even though the MNI index of a subgraph maintains the
Apriori property, the weight of the extensions of a subgraph may exceed its own
weight. This paper introduces a novel approach for determining the Maximum
Possible Weight (i.e., MaxPosW -measure) whether a subgraph can attain after
being extended by one or more edges. Once the MaxPosW for a subgraph S is
determined, we define reqExt = dτ/MaxPosWe as the minimum MNI value that
S must have in order for an extension of S to be weighted frequent. Let (i) W (S)
the weight of the weighted frequent subgraph S, we define reqFreq = dτ/We as
the minimum required MNI value.

We begin extending subgraphs after deleting nodes and edges having ‘infer-
tile’ labels from the large graph. Thus, the steps that are needed to be defined
to fully express the mining process are as follows:

– Defining a method to determine MaxPosW for a subgraph S.
– Defining a method to determine if the MNI support of a subgraph S is at

least reqExt.
– Defining a method to determine if the MNI support of a subgraph S is at

least reqFreq.
– Defining a method to determine if a node or an edge is infertile.

Detailed descriptions of all these methods along with necessary mathematical
proofs and illustrations are provided in the remainder of this section.

3.1 Calculation of MaxPosW

WeFreS works by (i) initiating a subgraph for each undeleted edge in the input
graph and (ii) evaluating its weighted support to determine if it is weighted
frequent itself and if it is extendable. Each extendable graph is then recursively
extended by adding a single-edge to it, to form all canonical 1-edge extensions
of the current subgraph, whose weighted supports are subsequently evaluated.
Thus, the entire search space of WeFreS can be viewed as a collection of DFS
code trees, each node of which represents a subgraph whose weighted support
was evaluated. WeFreS functions by executing a depth first traversal of the tree.

During this traversal, each time we extend a subgraph with an edge, the
weight calculations are effected. If there are |G| edges in the entire graph and
|g| edges in the subgraph g, we can extend subgraph g by at most rem(g) =
|G| − |g| edges. The maximum possible weight an existing subgraph can attain
after being extended by exactly i -edges is equal to the weight attained after
being extended by the i -edges with the highest edge weights in rem(g) and can
be calculated as:

hi(g) =
cur sum(g) + sumi(g)

|g|+ i
(1)

where (i) cur sum gives the summation of edge weights of g and (ii) sumi returns
weight summation of remaining i highest weighted edges in rem(g). MaxPosW(g)
can be calculated by taking the maximum of all hi(g) measures:

MaxPosW (g) = max{hi(g) : 1 ≤ i ≤ rem(g)} (2)
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Fig. 3. A sample single large graph G, a subgraph g1 of G, and its hi distribution

We can conclude from the definition of MaxPosW that for any extension
of the current subgraph to be frequent, the product of MaxPosW and MNI
of the current subgraph must be at least the weighted support threshold τ , i.e.,
MaxPosW×MNI ≥ τ . So, for a subgraph g, the minimum required MNI for be-
ing frequent (i.e., reqFreq) and the minimum required MNI for being extendable
(i.e., reqExt) can be determined by the following:

reqFreq(g) = dτ/weight(g)e (3)

reqExt(g) = dτ/MaxPosW (g)e (4)

For example, in the single-large graph of Fig. 3, where edge-weights are de-
fined in the given table, weight of subgraph g1 is 15+5

2 = 10. It contains one edge
connecting the label pair (0, 0), and another connecting the label pair (1, 0).
Thus, the list of remaining edges contains two (1, 1)-edges of weight 20 each,
two 15-weighted (0, 0)-edges, five 10-weighted (0, 1)-edges, and four 5-weighted
(1, 0)-edges. As such, the maximum possible weight after extending by one edge,
h1(g1) = 15+5+20

2+1 = 13.33. The other values of hi(g1) are plotted in Fig. 3. Ob-
served from the bar chart, the maximum weight attainable by g1 after extension
is maxPosW (g1) = 15. If the threshold is 30 and the weight of the subgraph
is 10, then the subgraph must have a MNI value of at least 3 to be weighted
frequent. Again, since MaxPosW=15, the subgraph will be extendable if it has
a MNI value of at least 2. Now, the valid isomorphisms of g1 are (C, D, G),
(A, B, I) and (C, B, I). Thus, each node of the subgraph can be mapped with
two distinct nodes of the main graph to form valid isomorphisms, and thus the
MNI of the subgraph is 2. Hence, although g1 is not weighted frequent, it is
extendable.

Theorem 1. Maximum possible weight a subgraph can attain after being ex-
tended by i edges, denoted as (hi), follows a unimodal distribution.

Proof. We first prove the following statement is sufficient for unimodality:

∀i ∈ 1 ≤ i ≤ rem, hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 (5)
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Let i be the least value, for which hi ≥ hi+1. Thus, ∀1 ≤ j < i, hj < hj+1. This
indicates that the portion of the distribution before the decreasing part starts
shall be increasing. Now, we prove that, if the aforementioned statement is true,
the rest of the distribution shall stay non-increasing once the non-increasing part
appears.

Induction base: For k = i+ 1, as hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 and hi ≥ hi+1

are true, hi+1 ≥ hi+2 is true by modus ponens. This implies that the non-
increasing part continues at least upto i+ 2.

Induction step: Suppose the non-increasing portion continues upto k, i.e.,
hi ≥ hi+1 =⇒ hi+1 ≥ hi+2 =⇒ . . . =⇒ hk−1 ≥ hk. Again, (hk−1 ≥ hk =⇒
hk ≥ hk+1) ∧ (hk−1 ≥ hk) =⇒ (hk ≥ hk+1). Thus, if the non-increasing part
extends upto k, it shall extend upto k+ 1 as well. By principle of mathematical
induction, we can conclude that, if the statement in Eq. (5) is proved, it stays
non-increasing once the non-increasing part of the distribution of hi starts. In
simple terms, if statement in Eq. (5) is true, we can say that upto a certain value
of i, hi increases and stays non-increasing afterwards.

Now, we prove the statement in Eq. (5), given that wi ≥ wi+1 ≥ wi+2, hi
can be calculated using Eq. (1). Here, wk denotes the weight of the k-th edge,
when the edges are sorted in decreasing order of edge weights. From Eq. (1), hi
= cur sum+sumi

k+i = (cur sum+sumi)(k+i+1)
(k+i)(k+i+1) = (cur sum+sumi)(k+i)+(cur sum+sumi)

(k+i)(k+i+1)

= cur sum+sumi

k+i+1 + cur sum+sumi

(k+i)(k+i+1) =
cur sum+sumi+

cur sum+sumi
k+i

k+i+1 .

∴ hi =
cur sum+ sumi + hi

k + i+ 1
(6)

Eq. (1) also implies that maximum possible weight after extending the sub-
graph in consideration by (i+ 1)-edges can at most be hi+1 = cur sum+sumi+1

k+(i+1) =
cur sum+sumi+wi+1

k+i+1 . As hi ≥ hi+1, using Eq. (6), we have cur sum+sumi+hi

k+i+1 ≥
cur sum+sumi+wi+1

k+i+1 =⇒ hi ≥ wi+1. Then, hi+1 = cur sum+sumi+wi+1

k+i+1 =
(cur sum+sumi)

k+i (k+i)+wi+1

k+i+1 = hi(k+i)+wi+1

k+i+1 . As hi ≥ wi+1, we have

hi+1 ≥ wi+1(k+i)+wi+1

k+i+1 = wi+1(k+i+1)
k+i+1 . Therefore, hi+1 ≥ wi+1. Again, from

Eq. (6) and using relations, hi+1 ≥ wi+1 and wi+1 ≥ wi+2, we get hi+1 =
cur sum+sumi+1+hi+1

k+(i+1)+1 ≥ cur sum+sumi+1+wi+1

k+i+2 . Thus, hi+1 ≥ cur sum+sumi+1+wi+2

k+i+2

because sumi+1+wi+2 = sumi+2, cur sum+sumi+1+wi+2

k+i+2 = cur sum+sumi+2

k+i+2 There-

fore, using Eq. (1), it immediately follows that cur sum+sumi+2

k+i+2 = hi+2 and
hi+1 ≥ hi+2, which completes proving Eq. (5). Thus, distribution of hi is uni-
modal. ut

We proved Theorem 1 that distribution of highest possible weight on re-
maining edges (hi) is unimodal. The classical technique of ternary search can
be used to find the maximum of a unimodal function in O(log2(rem))—instead
of naively applying a linear search that works in O(rem)—where rem is the
number of remaining edges for a current subgraph. Thus, we take advantage of
the unimodal property and efficiently calculate MaxPosW using ternary search.
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To calculate sumi in Eq. (1) efficiently, we need to maintain a sorted list of
remaining edges. While recursively searching for larger subgraphs, we add an
edge to the current subgraph and remove that edge from the sorted list and
do the opposite during backtracking. Thus, we need a data structure capable
of supporting fast insertion, deletion and answering queries regarding the sum
of the first i values in a list. Using a segment tree, all these operations can be
achieved in logarithmic time. To reduce the size of the segment tree, we group
edges with equal weights together, and keep count of how many edges map to
each distinct weight. Each node of the segment tree shall contain the sum of the
weights and the number of ‘unremoved’ edges present in the interval it represents.
Thus, the value of sumi in Eq. (1) can be determined in O(log2(D)) where D is
the number of distinct edge weights. Thus, MaxPosW calculation is achieved in
O(log2(rem)× log2(D)) time, making it feasible to calculate it in large graphs.

3.2 Our Proposed CSP Model

As described previously, for each subgraph in the search space, WeFreS deter-
mines if the MNI of the subgraph is at least equal to reqFreq and reqExt. Let
maxτ=max(reqFreq, reqExt) and minτ=min(reqFreq, reqExt). In effect, instead
of taking the time-consuming route of determining the exact MNI of a subgraph,
it suffices to determine if the MNI is at least equal to maxτ , and failing that, if
it satisfies minτ .

The problem of determining a lower bound of the MNI of a subgraph can
be modelled as a constraint satisfaction problem (CSP). The subgraph pattern
itself represents the constraint graph, with its nodes representing the variables
and its edges and labels symbolizing the constraints. The values in the domain
of each node in a subgraph are initially all nodes in the input graph having the
same labels as it. A valid solution to the CSP is a valid subgraph isomorphism
and must satisfy the following constraints.

1. No two different nodes in the subgraph can be assigned to the same node in
the large graph.

2. The label of each node in the subgraph must match the label of the node in
the large graph it is assigned to.

3. For each edge (u1, u2) in the subgraph, if v1 is the large graph node mapped
to u1 and v2 is mapped to u2, there must exist an edge (v1, v2) in the large
graph.

Initially, we seek to find if the MNI of the subgraph satisfies maxτ . Thus, we
iterate over each variable, and try to find maxτ values in its domain from which
a valid subgraph isomorphism can be found. If for any variable, such maxτ val-
ues do not exist, the searched MNI value is changed to minτ . Thus, for the
current variable, and every variable onwards, we seek to find minτ values lead-
ing to valid isomorphisms. Again, if we can ascertain that minτ values do not
exist for a certain variable, then neither maxτ nor minτ shall be satisfied. The
MNI LOWER BOUND procedure terminates immediately and returns 0. To
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keep track of the required MNI value to be satisfied, we propose using a sta-
tusFlag . Initially, the status flag is set to 2, indicating the value in question is
maxτ . When searching for minτ , the statusFlag is updated to 1. After iterat-
ing through all the variables for statusFlag values 2 and 1, maxτ and minτ are
returned respectively. The procedure is described in Algorithm 1.

Algorithm 1 MNI LOWER BOUND

Input Subgraph S, weighted graph G, min MNI req. minτ , & a max MNI req. maxτ
Output Lower bound of the MNI of S in G

1: statusFlag ← 2
2: if (min size of domain for nodes in S) <maxτ then
3: statusFlag ← 1

4: if (min size of domain for nodes in S) <minτ then
5: return 0
6: for each node v ∈ S do
7: satisfiedValues ← 0
8: for each value x ∈ domain(v) do
9: if a valid isomorphism is found by assigning x to v then

10: satisfiedValues ← satisfiedValues +1
11: else
12: if statusF lag=2 & (satisfiedValues+(#remaining values)) <maxτ then
13: statusF lag ← 1

14: if statusF lag=1 & (satisfiedValues+(#remaining values)) <minτ then
15: return 0
16: if statusFlag = 1 then
17: return minτ
18: return maxτ

If the number of nodes in the subgraph is VS , the number of nodes in the
large graph is VG, the probabilities of the MNI of a subgraph satisfying maxτ
and minτ are p1 and p2 respectively and the probability of an assignment of a
value to a variable leading to a valid subgraph isomorphism is p, the complexity
of Algorithm 1 (for the MNI lower bound) is O(VS · (p1(maxτp ) + (1− p1)minτp ) ·
V VS−1
G ). However, various pruning and optimization measures defined in existing

literature for unweighted single large graph mining are preserved here, making
the actual runtime much shorter in practice than what is suggested by the time
complexity. Use of the statusFlag allows for parallel checking for satisfaction of
reqFreq and reqExt, further increasing the efficiency of the model.

3.3 Subgraph Extension

As discussed earlier, WeFreS functions through a depth first traversal of some
DFS code trees. The traversal occurs according to the recursive procedure out-
lined in Algorithm 2 (for subgraph extension). Before starting the extension
process, WeFreS takes some pre-pruning measures to reduce the search space.
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WeFreS defines a node label or a label pair as ‘infertile’ when it is mathemat-
ically impossible for any subgraph with that node label or the label pair to be
weighted frequent and they are deleted from the node label and label pair list
before starting the extension process. The mechanism for detection of infertility
of a label pair is similar to determining if a subgraph containing a single edge
with that label pair should be extended or not. Node labels not belonging to any
‘fertile’ label pair are deleted. The remaining labels are then sorted in decreasing
order of the sum of the weights of the edges adjacent to nodes of each label, since
such labels are more likely to output a higher number of weighted frequent sub-
graphs. Also, edge relations containing these labels are hence removed earlier,
thus reducing the number of edges with high weight values earlier, and this in
turn helps reduce the maximum possible weight estimation for subsequent sub-
graphs. Afterwards, the recursive SUBGRAPH EXTENSION procedure shown
in Algorithm 2 is called after initiating a single-edge subgraph with each of
the remaining distinct edges. This function returns a list of weighted frequent
subgraphs derived after extending the subgraph S.

Algorithm 2 SUBGRAPH EXTENSION

Input A subgraph S, a weighted graph G, the minimum weighted threshold τ
Output All subgraphs of G extending from S w/ product of avg weight & MNI ≥ τ
1: if DFSCode(S) 6= min(DFSCode(S)) then
2: return
3: reqFreq ← dτ/current weight of subgraphe
4: reqExt ← dτ/maxPosW (S)e
5: minτ ← min(reqFreq, reqExt)
6: maxτ ← max(reqFreq, reqExt)
7: mniLowerBound ← MNI LOWER BOUND(S,G,minτ,maxτ)
8: result← ∅
9: if mniLowerBound ≥ reqFreq then

10: result ← S
11: if mniLowerBound ≥ reqExt then
12: for each edge e ∈ Edges and node u of S do
13: if e can be used to extend u then
14: Let ext be the extension of S with e
15: Decrement the count of e in SegmentTree
16: result ← result ∪ SUBGRAPH EXTENSION(ext, G, τ)
17: Increment the count of e in SegmentTree

18: return result

The procedure initially checks if the subgraph in question is lexicographically
minimal. The concepts of minimum DFS code and lexicographical ordering of
subgraphs are introduced in gSpan and are used here to counter duplicate sub-
graph generation. Afterwards, the values of reqFreq and reqExt are determined
from the current weight and maxPosW of S respectively. If reqFreq is satisfied,
S is added to the list of weighted frequent subgraphs. If reqExt is satisfied, S is
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Table 1. Datasets

Dataset #nodes #edges #labels Directed Distribution MinW MaxW Normalized
MiCo 100k 108,029 29 No negExp (λ=1.0) 25.75 70.0 No

Amazon 163k 296k 1,856 Yes normal (µ=10, σ=1) 0.00 1.0 Yes
negExp (λ=1)

FreeAssoc 10,617 72,176 10 Yes normal (µ=25, σ=1) 22.99 27.5 No

recursively extended, making necessary updates on the list of remaining edges,
which is maintained using a segment tree.

With the time complexity involved with the determination of maxPosW be-
ing negligible in comparison, the time complexity of WeFreS is proportional to
the product of the search space and the time complexity of determining the
lower bound of the MNI of each subgraph. With the search space being (2VG)2

in the worst case, the worst case complexity of the algorithm is bounded by
O((2VG)2 · VS · (p1( τ1p ) + (1− p1) τ2p ) · V VS−1

G ) where τ1 and τ2 are maximums of
all values of maxτ and minτ encountered, respectively, in the search space. How-
ever, the maxPosW pruning technique makes the search space much smaller for
reasonable thresholds, making WeFreS feasible for use in real life applications,
as demonstrated by experimental analysis presented in Section 4.

4 Evaluation Results

Experiments were conducted on the following three real-world graph datasets to
evaluate the performance of our proposed approach in comparison with other
existing approaches and baseline algorithms w.r.t. runtime and memory usage:

1. MiCo, a co-authorship and collaboration graph representing data from aca-
demic.research.microsoft.com;

2. Amazon [13], a co-purchase network consisting of electronic items found in
the Amazon website; and

3. FreeAssoc [14], a dataset representing a word association network based on
the English language.

Since none of these datasets had pre-specified edge-weights, we generated the
weights using normal and exponential distributions. To test the performance of
WeFreS in graphs containing high values of edge-weights, both the MiCo and
FreeAssoc datasets were assigned weights using exponential and normal distribu-
tions respectively. For comparison with ReSuM [17], which requires edge-weights
to be within the range [0, 1], the Amazon dataset was assigned normalized edge
weights using both statistical distributions. Finally, to show that WeFreS can
perform sufficiently well even in unweighted graphs, we compare WeFreS to
GraMi [5] by assigning weight equal to 1 in all edges of all three datasets. Ta-
ble 1 shows the quantitative specifications of each dataset.

All experiments were conducted on a device with 8GB RAM, an intel core
i5 7th gen processor, with 2500 MHz clock speed and an Ubuntu 17.10 oper-
ating system. All approaches were implemented in Java by modifying a public
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Fig. 4. Runtime comparisons with baseline algorithms

Table 2. Memory usage comparisons

Dataset Threshold Memory Usage (MaxW-FSM) (MB) Memory Usage (WeFreS) (MB)
850,000 914.97 899.54

Mico 650,000 1,111 907.36
300,000 – 998.80
89,000 200.73 118.23

FreeAssoc 88,500 5,231 118.23
15,650 – 2153

implementation of GraMi [5]. Since there is no existing approach for mining
weighted frequent subgraphs from single large graphs where edge-weights can
have any numeric value, we defined two baseline algorithms for comparison:
(i) MaxW-DoubleCSP (which applies the CSP model used in GraMi and issues
two successive calls to determine if the MNI of a given subgraph satisfies reqFreq
and reqExt) and (ii) MaxW-FSM (which applies the CSP model described in
Section 3.2 and thus issues a single CSP call only). Both approaches differ from
WeFreS in that, instead of using MaxPosW to determine the value of reqExt,
they use the MaxW measure (which is applied in traditional weighted pattern
mining approaches [20]). The value of MaxW is equal to the highest edge-weight
present in the input graph.

Being a much tighter upper bound than MaxW, the MaxPosW estimate helps
prune out many subgraphs and their extensions from the DFS code tree that
is traversed, which were otherwise visited by algorithms adopting the MaxW
measure. Thus, WeFreS has less search space than MaxW-FSM and MaxW-
DoubleCSP. Furthermore, the reduced pruning tendency of these baseline al-
gorithms mean that they traverse further down the DFS code tree, meaning
that they need to evaluate the MNI of subgraphs containing a higher number of
nodes, thus requiring longer runtime and more memory. Notably, the segment
tree used in WeFreS introduces very little memory overhead, which is compen-
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Fig. 5. Runtime comparison with ReSuM in the Amazon dataset
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Fig. 6. Memory usage comparison with ReSuM in the Amazon dataset

sated by the benefits of reduced search space as shown in Fig. 4 and Table 2.
For low threshold values, the baseline algorithms failed to produce results even
after being run for hours, with such entries being marked X in Table 2.

Comparisons with ReSuM are done in the Amazon dataset, using both nor-
mal and exponential distributions for weight assignments. With MaxW = 1,
MaxW-DoubleCSP behaves identical to ReSuM (while mining for subgraphs
with high weighted support) in that it first finds frequent subgraphs and then
filters out the weighted infrequent ones. Figures 5 and 6 show that WeFreS
outperforms ReSuM in terms of runtime and memory.

Although designed for use in weighted graphs, Fig. 7 shows the runtimes
of WeFreS are similar to that of GraMi in unweighted graph datasets. The
additional pre-pruning measure of deleting node labels that are not part of any
fertile label pair causes WeFreS to be more memory efficient. See Fig. 8.

5 Conclusions

In this paper, we explored an innovative direction of considering edge-weights
in mining subgraph patterns from single large graphs. Our novel algorithm—
namely, weighted frequent subgraph miner (WeFreS)—considers both the weight
and significance of the interactions between different types of entities and only
outputs weighted frequent subgraphs. Experimental results show the feasibility
of using WeFreS in large graphs (where edge weights can have any real values)
and its excellent performance over an existing state-of-the-art approaches (which
require edge-weights to have values within the range of [0, 1]). Moreover, WeFreS
is also feasible for use in unweighted frameworks, making it a truly general solu-
tion to the problem of frequent subgraph mining from single large graphs. The
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Fig. 8. Memory usage comparison with GraMi in unweighted datasets

subgraphs mined by WeFreS are both frequent and significant, and can be used
in a variety of applications. In addition, we also introduced novel approaches for
determining MaxPosW and proposed the constraint satisfaction problem (CSP)
model. As ongoing and future work, we are extending our WeFreS algorithm,
optimizing our determination of MaxPosW, and enhancing our CSP model.
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