An Evaluation Of Techniques And Tools For Integrating

Knowledge-based And Conventional-computing Systems

By

Andrzej Brzezinski

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

(© August, 1993

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario

Bibliotheque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)

K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your file Votre référence

Our file Notre rélérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-85975-X

B8

Canada

Name __
Dissertation Abstracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

wa/s»c&{};fi“ Selemce 31214l UM

SUBJECT TERM SUBJECT CODE
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
COMMUNICATIONS AND THE ARTS Psychologyccccveiniurirenas 0525 PHILOSOPHY, RELIGION AND Ancientooeeeriniiinan, 0579
Architectureccovvvererrinnnns 0729 Reading ~...0535 THEOLOGY i
Art History0377 Religious0527 Philosonk 0422
ginema 8398 gciencgs 82:1351 Reli ior? Y s
ance econdary 0331
Fine Arts0357 Social Sc?énces0534 %ﬁ?er[Sodias T 8:3”2? Asia, Australia and Oceania 0332
Information Science ... 0723 Sociology ol0340 Clerm 185 .. 0319 Canadianc.cocevveieeenn. 0334
Journalism0391 Special0529 Hisrgy o "0320 European0335
Library Science0399 Teacher Training0530 el : Latin American ..0336
Mass Communications0708 Technolo k;\0710 The<f|21|osophy © 83%3 Middle Eastern ..0333
MUSIC oo ..0413 Tests <_Jn<:1S easurements 0288 GY eremrsten United States0337
IS gg;;hr Communication . 82122 Vocationalc.ccovcneniriecinians 0747 SOCIAL SCIENCES ﬁ]i\sl:ory of Science .. - 8ggg
"""""""""" LANGUAGE, LITERATURE AND merican Studies ... 0328 g G
EDUCATION LINGUISTICS Antt&r&[ﬁ]‘gg?;gy 0324 Generdl ... vooreiierninen 0615
Esge_;?sl"ai&; 82}‘51 Ldn%l;age Cultural Intsr?cflonol Law and
“d |; o Contin 0516 eneralcooiveieieinnennnnes Physical bT,m'Oé‘s:“. """" PR 0616
A ;’.C Ci;:" |°n inuing 0817 Ancient Business Administration R Public Administration
A?il uliurat ... “ 0273 Linguistics General ..., 0310 Secyei:{x;n i " 0452
T e . MOGEIN oo Accounhng L0272 ocIa L
Bilingual and Multicultural ..0282 Literature Banking 0770 Sociology
I<3:u5|ness s 83;2 General oo Management 0454 anqroll 0624
C°m."‘”|n"7 %Tg? e 0797 Classical Marketing0338 Criminology and Penology ... 0627
Egﬁr'c&’}:‘;mﬁé‘od nsiruciion 0518 Comparative0295 Canadian Studies 0385 Bimpgmﬁ I{ el 0938
Elergenrcry """""""" 0524 Mejxevql 8%% Ecoresomics | 0501 lndwi(iisgl on%c?cmhuy 08 - 0631
lemeniary ... - odern ... eneralo.coviviiiinn. !
Flngnce ..0277 AFrican ..0316 Agricultural oo .0503 Stud[es 0628
Guidance and Counselin 0519] g Ind | and Lab
Hoalth g "~ 0e80 ﬁn}erlcon . 83815 gommerce-Business . . 8283 n R:IS;?i?:ncsm apor 0629
ealth ..o .. sian nance ..o : lations e
n!g'her S5 8?‘24'8 Canadian (English) ...0352 History0509 PUb!'cl and Social Welfare ... 0630
Home Econariics ~0278 Ganadian {French) 0359 Lebor ... 9219 Beveloons o 0700
: - nglish eo 0511 - Uevelopment........ :
ILndusfrlal ''''' Wy p— - 82%]9 Gegrmanic ..0311 Folklore ry .0358 Theory and Methods <0344
N?nt ucgercln ferature 0580 Latin American0312 Geography0366 Trci)nspodahon s 0709
3si:mo e 0599 Ié/\iddle Eastern ... 83}% S_erontology 0351 \L/J&o.?qr;ﬁ?isﬁﬁézm' P gigg
RN Mt A N OMANCE ..vvveieierinrinineieianens story - VYPTEHESOIIES
;hg;i‘;ﬁ’hydgg;g Slavic and East European0314 G?alnerol 0578
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES Geodesyooriieiieiienrenenan 0370 Speech Pathology 0460 Engineerin
Agriculture Geology0372 Toxicology0383 Generalcccovmrivinirnnnnn. 0537
Generalovveueerceinieiniins 0473 Geophysics ...0373 Home Economics Aerospace ..0538
AGronomyccieeereeennes 0285 l':iX'drology0388 Agricultural0539
Animal Culture and ineralogy0411 PHYSICAL SCIENCES Automotive0540
NUIHON .o 0475 Palecbotany0345 Pure Sci Biomedical0541
Animal Pathology 0476 Palececology0426 C‘I:re' ciences Chemical0542
Food Science and Paleontology0418 68'5")' | VI e 0543
Technologycorvuieunnnes 0359 Paleozoology0985 enerar ... -0485 Electronics and Electrical 0544
Forestry and Wildlife0478 Palynology "........... ...0427 Agricultural -0749 Heat and Thermodynamics ... 0348
Plant Culture0479 Physical %zeogrophy0368 ’éﬁ”ah'“c‘?l - -0486 Hydraulicoovvootenenn 0545
g’anf Eﬁfhpl({)gy 832]39 Physical Oceanography 0415 Ir:gf ;’2?“7 832; Industrial0546
ant Physiology : Marine0547
Range A?\'cnoggement .0777 HEALTH AND ENVIRONMENTAL Nuclear .. -0738 Mutg;izls Science . ..0794
_ Wood Technology 0746 SCIENCES %’gfﬂ;‘écé 813(]) Mechanical0548
Biology Environmental Sciences 0768 Physical 10494 Metallurgy - 0743
General ..o, 0306 Health Sciences Polyrmer 0495 Mining0551
é\ig(:frgﬁngic's' 8382 General ..o 0566 ngiqgior'{ 0754 PN“‘i(!ec'f ggig
oty " 0300 Audiclogy ... 0399 Mathemaics . 0405 Patrolound " 0765
...... . emotherapy N Jsice ¢ .
Gl e S . sos oo il 05
T eatian " 0986 . System Science........ .
gnton;glogy 8323 Hospital Management ... 0769 Agﬁgz:r;y Geotechnology0428
Li;r::) ss 0793 Human Development0758 Astrophysics0606 gpt?tyufl_?nshResIearch - --8736
Mo dlogy 70410 Immunology v 0982 Amospheric S 0608 Teile Technology .. 0593
. edicine cad Suras tormhy o DENEE e MG Texdile Technologyeee.s
mgnlﬁ(c:;;l:?;nce 8%?; Mental Health gry ...0347 El:crt]:g:nics and Elec PSYCHOLOGY
Oceanogroph}. . .0416 ﬁu;’ S-'PQ """" 8298 Eli'megtgry Parficles an Genera 0621
. . . hrifin oy PAREES ARt e General L
Eh)é§|c>f!ogy 83%? Obstetrics and Gynecology ..0380 Fluil qndnglrgzm0759 BT.howorol -0384
adidtion Occunational Health an Molecular 0609 Clinical0622
Veterinary Science 0778 P Developmental 0620
. Zhoollogy oo 0472 O;tte}:gmlél.éé} """""""""" ggg? 8;%[5:“ 89;8 Ex eriﬁenml .0623
iophysics Pathology ..>" 0571 Rediction™” 0756 Industrial0624
ﬁzré?ggll 8;28 Phcrma%logy : 0419 Solid State”” 06T Eﬁrsqnlahty i .0625
"""""""""""""""" Ehcr{na!c{h........... 8%%% SHatisticsoovvvererncririeeninennnnn, 0463 PS)ZSII'!OOE%EQ);: 8338
EARTH SCIENCES Public Healh P - 0573 Applied Sciences Psychometrics .. .0632
Biogeochemisirycoccoeunnne 0425 Radiology 0574 Applied Mechanics 0346 Social ..o, 0451

Geochemistryccvvevnrecviiennnns 0996 ReCrehion w0575 Computer Scienceco....... 0984 @

ABSTRACT

Even though Artificial Intelligence (AI) technology became commercially available in
1980s, 1t was viewed from the wrong perspective throughout most of the decade. A large portion
of Al research during this period viewed Al systems as the central part of computing
environments. This A/-centric perspective led to many limitations in commercially available tools.
Recently, Al researchers and developers have begun to view their techniques as extensions to
conventional computing environments. This view dictates a need for integration between Al tools
and conventional tools. This thesis examines various techniques and tools that have been
developed to integrate knowledge-based and conventional computing environments. The topics to
be examined include: expert systems and databases, calling external programs from Al tools,
embedding Al tools in conventional systems, and techniques for using client-server architectures
to support knowledge-based systems. Examples using various commercial tools will be used to

illustrate these techniques.

AN EVALUATION OF TECHNIQUES AND TOOLS FOR INTEGRATING

KNOWLEDGE-BASED AND CONVENTIONAL-COMPUTING SYSTEMS

BY

ANDRZEJ BRZEZINSKI

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE

@ 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or
sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and
to lend or sell copies of the flm, and UNIVERSITY MICROFILMS to publish an abstract of this

thesis.
The author reserves other publications rights, and neither the thesis nor extensive extracts from it

may be printed or otherwise reproduced without the author’s permission.

- -

1. Introduction to Expert Systemscccoiiiiiiiiiinnnnnns 1

LA HIS OrY o 1
1.2. Classification of Expert Systems 3
1.3. Benefits and Limitations of Expert System Technology 6
1.4. Development of an Expert System Application 8
1.5. Expert System Shells 10
1.6, SUMMANY ..o 12
2. Integration Overview it 14
2.1. Integrating Expert System Technology with Database Technology 14
2.2. Calling external programs/functions from a Knowledge-Based System 21
2.3.Embedded solutions 23
2.4. Client - Server Architecture 24
2.5. ldeal model of integration 26
2.6. Survey of six commercial expert systemtools 27
2.7 . SUMMAETY ..o 38

3. Integrating Expert System Technology with Database
Technology - Implementationccivinnnen.. 40

3.1. Database technology in Level5 Object
3.2. Database technology in Kappa-PC
3.2.1. DBase and Lotus-123 interface in Kappa-PC 48

3.2.2. Interface with SQL RDBMS in Kappa-PC 50
3.3. KADBASE - a Knowledge-Aided Database System 50
3.4. CONCIUSIONS ... 52

4. Calling External Programs/Functions from a
Knowledge-Based System - Implementation 55

4.1. Calling external programs/functions in Level5 Object 57
4.2. Calling external programs/functions in Kappa-PC 65
4.3.CoNClUSIONS ... i 68
5. Embedded Solutions - Implementation 70

5.1.Embedding inCLIPS 71

5.2. Embedding in Kappa-PC 72

5.3. Embedding using Object-Oriented Programming Technology 73
5.4. CONCIUSIONS ... 75
6. Client-Server Architecture - Implementation 77
6.1. Client-Server Architecture in Level5 Object 79
6.2. DDE Examples in Level5 Object 82
6.3. Dynamic Data Exchange in Kappa-PC 93
B.4. SUMMANY 94
7. Knowledge Base Managementccoviiiinnnennn. 96
7.1. Knowledge Management Facilities in Level5 Object 96
7.1.1. Object Editors and Rule Editors 97
7.1.2. Objectand Rule Browsers i 100
7.8, DEbUGOEr .. 100
7.1.4. Session Trace or History facility 101
7.1.5. Explanation facility 102
7.1.6. Knowledge Structuring facilities 103
7.1.7. Knowledge Sharing facilities 103
7.2. Summary of Knowledge Management Facilities in Level5 Object 104
8. CONCIUSIONSciiiiiiiii it et e i rneearanernnns 106

S (] =T o [- 112

1. Introduction to Expert Systems
1.1. History

An expert system is a special-purpose computer program capable of solving difficult
problems in a narrow domain and operating in a manner similar to a human expert. Expert
system technology evolved as a result of many years of attempts by Artificial Intelligence (AI)
researchers to create real-world Al applications [Turban, E., 1993]. For many years Al research
concentrated on general-purpose problem solving algorithms which worked only for very
limited, simple problems [Jackson, P., 1986]. Increasing the number of problem states (problem
search space) resulted in a combinatorial explosion of possible paths to a solution and
general-purpose, exhaustive search algorithms became inefficient and useless. Heuristic search
techniques that can be applied to simple problems are elusive in real world problems [Charniack
E., and D. McDermott, 1985]. The solution to this problem involves using knowledge about a
specific problem to guide the search. Knowledge about a specific problem allows excluding a
large number of paths which, according to what is known about the problem, offer a very small
or no chance of finding a solution. Further research in this direction resulted in development of
knowledge representation schemes and reasoning algorithms utilizing that knowledge. As a

result, knowledge-based or expert system technology was born [Var Horn, 1986].

The first commercial expert systems were developed in the early 1980’s and they were
the first successful real-world Al applications [Turban, E., and Watkins, P., 1988]. The first

expert systems were very limited in their capabilities. They could solve problems within a very

well defined area. Knowledge representation techniques and inference mechanisms used in the
systems were typically very simple. Often they had to be run on Lisp-machines or other
expensive hardware. Usually they were developed in Lisp, Prolog, or other Al-specific
programming languages. Dedicated hardware together with specialized programming languages
that lacked any interface to the external computing world, resulted in stand-alone systems. In
fact, these early systems required little communication with other hardware or software.
Throughout the 1980°s the number of commercial expert system applications grew substantially
[Schorr, Herbert, and Alain Rappaport, 1989]. They were becoming more sophisticated in terms
of both their capabilities and knowledge representation schemes. In the middle of the eighties,
the first expert system development tools capable of running on general-purpose, inexpensive
hardware appeared in the market place [Harmon, P., R. Maus, and W. Morrissey, 1988]. Expert
system technology was becoming cheaper and more affordable. It also resulted in new

applications that were economically justifiable on inexpensive hardware [Quinlan, J. R., 1988].

When expert system technology became available on most hardware platforms it soon
became clear that this new technology should be able to coexist and cooperate with other
components of conventional computing environments. One of the first conventional technologies
incorporated into expert system technology was database technology [Jarke, M. and Y. Vassiliou,
1984]. The advantages were enormous, expert system applications could access large amounts of

data as facts describing characteristics of the problems being solved. They could also store the

results of problem solving sessions in a database which could then be accessed and processed
further by conventional applications. In the late eighties most expert system tools offered some
kind of database interface. They also offered an interface to external functions that could be
developed in other conventional programming languages. This further increased the flexibility of
expert system applications by giving them access to a rich array of numerical functions found in

most general-purpose programming languages like the C language.

Even though expert system technology in the 1980°s made unprecedented progress and
spread to virtually all computing environments, it still remained fairly isolated. First attempts
were made towards closer integration with other elements of computing environments (as
described above) but only recently, in the early nineties, have some expert system tools started to
evolve in the direction of full integration (e.g. client-server architectures, embedded expert

systems) [Quinlan, J. R., 1988].

1.2. Classification of Expert Systems

Expert systems can be classified by the general problem area addressed by the expert
system [Turban, E., 1993]. Some expert systems belong to more than one category. The

following is a brief description of each category:

Interpretation systems infer situation descriptions from observations. This category
includes surveillance, speech understanding, image analysis, signal interpretation, and many

kinds of intelligence analysis.

Diagnostic systems include medical, electronic, mechanical, and software diagnosis.

Diagnostic systems typically relate observed behavioral irregularities to underlying causes.

Prediction systems include weather forecasting, demographic predictions, economic

forecasting, traffic predictions, crop estimates, and military, marketing, or financial forecasting.

Design systems develop configurations of objects that satisfy the constraints of the design
problem. Such problems include circuit layout, building design, and plant layout. Design
systems construct descriptions of objects in various relationships with one another and verify that

these configurations conform to stated constraints.

Planning systems specialize in problems of planning like automatic programming. They
also deal with short- and long-term planning in areas such as project management, routing,

communications, product development, military applications, and financial planning.

Monitoring systems compare observations of system behavior to expected behavior. An
example is monitoring instrument readings in a nuclear reactor to detect potentially dangerous

and accident conditions.

Debugging systems tely on planning, design, and prediction capabilities to create

specifications or recommendations for correcting a diagnosed problem.

Repair systems develop and execute plans to administer a remedy for some diagnosed

problems. Such systems incorporate debugging, planning, and execution capabilities.

Instruction systems incorporate diagnosis and debugging subsystems that specifically
address the student as the focus of interest. Typically, these systems begin by constructing a
hypothetical description of the student’s knowledge that interprets his or her behavior. They then
diagnose weaknesses in the student’s knowledge and identify appropriate remedies to overcome
the deficiencies. Finally, they plan a tutorial interaction intended to deliver remedial knowledge

to the student.

Control systems adaptively govern the overall behavior of a system. To accomplish this,

the control system must repeatedly interpret the current situation, predict the future, diagnose the

causes of anticipated problems, formulate a remedial plan, and monitor its execution to ensure

SuccCess.

1.3. Benefits and Limitations of Expert System Technology

Expert System technology can provide some or all of the following benefits [Turban, E., 1993]:

Increased Output and Productivity: Expert Systems can work faster than human experts. For
example, XCON has enabled DEC to increase fourfold the throughput of VAX configuration
orders [Waterman, 1986].

Increased Quality: Expert Systems can increase quality by providing consistent advice and
reducing the error rate. For example, XCON reduced the error rate of configuring computer
orders from 35% to 2% [Waterman, 1986].

Reduced Downtime: By using Expert Systems for diagnosing mulfunctions and prescribing
repairs it is possible to reduce downtime of a mulfunctioned system or machinery, thus saving
significant amounts of money.

Capture of Scarce Expertise: Expert Systems can provide expert advice in situations where
there is not enough experts for a task or where an expert is retiring or leaving a job.

Flexibility: Expert Systems can offer flexibility in both services and in manufacturing
industries. For example, XCON helped DEC to better fit the variety of customer requests, which
was becoming increasingly difficult.

Easier Equipment Operation: Expert Systems can train people to operate complex systems. For
example, STEAMER is an Expert System that trains inexperienced workers to operate ship
engines [Waterman, 1986].

Elimination of the Need for Expensive Equipment: Expert Systems can perform monitoring
and control tasks using less expensive equipment because of their ability to investigate more
thoroughly and quickly the information provided by instruments. DENDRAL is an example of
such an Expert System [Warerman, 1986].

Operation in Hazardous Environment: Expert Systems can replace humans operating in
hazardous environments, e.g. military tasks during a war.

Accessibility to Knowledge: Expert Systems can make the expert knowledge widely accessible
while freeing precious time of human experts for solving difficult problems rather than providing
expertise to others.

Reliability: Expert Systems are more reliable than human experts. They do not become bored,
tired, or sick.

Increased Capabilities of Other Computerized Systems: Integration of Expert Systems with
other computer systems, e.g. databases, makes the other systems more effective: they can work
faster, be easier to use, and produce higher quality results.

Integration of Several Experts” Opinions: In some applications, Expert Systems can integrate
knowledge of several experts and thus may increase the quality of advice.

Ability to Work with Incomplete or Uncertain Knowledge: In contrast to conventional
systems, Expert Systems can, like human experts, work with incomplete information. The user
can respond with a "don’t know" or "not sure" answer to one or more of the system’s questions
during a consultation, and the Expert System will still be able to produce an answer, although it
may not be a certain one.

Ability to Solve Complex Problems: Some Expert Systems are already capable of solving
problems where knowledge required exceeds the scope of any one human expert. In the future, it
may be possible to create Expert Systems able to solve problems whose complexity exceeds
human ability.

Knowledge Transfer to Remote Locations: One of the greatest potential benefits of using
Expert Systems is ease of its transfer across international boundaries.

Expert System methodologies available today are not always effective and impose severe
limitations on some applications. Some of the problems with Expert System technology are listed

below [Turban, E., 1993]:

- Knowledge is not always available.

- Expertise is hard to extract from humans.

- The approach of each expert to situation assessment may be different, yet correct.

- It is hard, even for a highly skilled expert, to abstract his or her expertise, especially under
time pressure.

- Users of Expert Systems have natural cognitive limits.

- Expert Systems work well only in a narrow domain.

- Most human experts have no independent means of verifying their conclusions.
- Help is often required from knowledge engineers who are rare and expensive.
- The end users frequently have no trust in Expert Systems’ conclusions.

1.4. Development of an Expert System Application

Development of expert system applications is quite different than development of
conventional computing applications. Because of the complex and often unclear nature of
problems that an expert system is to solve, it is impossible to create a complete set of design
specifications and then implement the system according to them. The only viable approach is

incremental development [Turban, E., 1993].

Before development of an expert system application can even start, it is important to do a

feasibility study that should answer the following questions:

- What problems should the system be able to solve ?

- What resources are required and what resources are available (most important being an easy
access to the source of expertise e.g. a human expert) ?

- What is the likelihood of a failure of the project ?

- What is the estimated development time ?

- Is there an expert system package available that fits the application or should the application
be developed from the ground up ?

Only after the above questions have been resolved should development begin. The next
step is identification of an initial scope of a prototype. It should not be too wide since developers
could easily get lost in the amount of knowledge needed to solve a wide range of problems.

Also, knowledge would not be deep enough. On the other hand, an initial scope should not be

too narrow because developers would run into problems in the future trying to scale up the

system (scaling problem) [Hayes-Roth, F., et al., 1983].

After an initial scope of a prototype has been chosen developers can start extracting
knowledge from a source of expertise (which is usually a bottleneck in expert system
development). Based on the extracted knowledge, developers can create a conceptual model of a
system and map it into a knowledge representation and reasoning scheme. Mapping of the
conceptual model into the actual knowledge representation can depend to a large degree on an
expert system tool selected for the application. At this point it may turn out that the tool is not
appropriate for the application and it should be discarded. It is often very tempting for
developers to try to force a conceptual model into the tool which usually results in serious
problems later in the development cycle when the scope of the prototype is expanded.
Sometimes, especially for large and complex applications the best solution is to build the system
from the ground up including the knowledge representation and reasoning scheme. Fortunately
expert system tools available in the market place today are becoming more and more flexible and

powerful, satisfying the needs of even very complex applications [Turban, E., 1993].

After mapping the conceptual model into the knowledge representation and inference

mechanisms developers can start developing the first prototype. The prototype should be

thoroughly tested by both developers and the expert to make sure that it can handle all cases

within the initial scope of the application.

When the first prototype is approved by the expert the scope of the application can be
gradually expanded and the cycle will be repeated. By incrementally increasing the scope of the
application developers should not get lost in the excessive amounts of knowledge and can better
control the development process. Many of the today’s expert system tools are very well suited to
incremental development. One of such tools is Level5 Object that offers excellent support for
incremental development. It provides developers with a range of facilities such as user interface
tools, knowledge management tools, database interfaces, and a very user-friendly development

environment [Level5 Object Reference Guide,1990].

1.5. Expert System Shells

Expert systems are composed of six basic elements: knowledge acquisition subsystems,
inference engine, explanation facility, user interface subsystem, knowledge base management
subsystem, and knowledge base [Turban, E., 1993]. The first five components constitute an
expert system shell. An expert system shell is in general application independent, so, once
constructed it can be reused in many applications. On the other hand, the knowledge base

determines what problems an expert system will be able to solve.

10

By using the shell approach, expert systems can be developed much faster. Furthermore,
the programming skills required are much lower. An expert system shell, can be very useful in
developing an expert system, providing it is well chosen. There are many different types of
expert system shells and each of them has its strengths and limitations. For example, some shells
support only rule-based knowledge representation, and in this category some shells provide only
backward chaining or only forward chaining inferencing mechanisms. Other shells support only
frame-based (object oriented) knowledge representations. Still other, more flexible, shells
support both rule-based and frame-based knowledge representations. An application may require
a hybrid, both rule-based and frame-based, knowledge representation, so choosing a shell that
supports only one of them may create serious problems during development. However, by
selecting an expert system shell carefully, the development of an application can be much easier
and faster. Many expert system shells provide excellent development tools; for example a
debugger, knowledge base editors, user interface tools, and a trace facility that makes the

development process even easier.

Apart from these general-purpose expert system shells, there are also domain-specific
shells designed for a particular type of application, for example a shell for diagnostic systems
[Turban, E.,1993]. Domain-specific tools can greatly reduce the risk of choosing the wrong tool
for an application. Presently, there are only a few domain-specific expert system shells available

and they cost much more than general-purpose ones.

11

1.6. Summary

Even though AI technology appeared on the commercial market around 1980 it was
viewed from the wrong perspective throughout the whole decade [Earl D. Sacerdoti, 1989]. Al
commercial tools, including expert system tools, of the eighties suffered from the same "disease”
as non-commercial Al systems being developed in Al labs. From the very beginning Al
researchers viewed Al systems as the central part of computing environments. This "Al-centric"
perspective was present in the commercial tools of the eighties and was the primary reason for
the limited applicability of those systems. Al researchers failed to realize that Al systems should
be viewed as an extension of conventional computing environments and therefore should
integrate well with them. The majority of tasks in a real-world computing system can be solved
using conventional programming technology. This should be the core of any such system. Al
technology can extend the capabilities of a conventional system in some areas, but only if it can
be integrated with the conventional environment, take advantage of some conventional functions
(e.g. database technology), and satisfy all the rigorous requirements of a conventional
environment. In other words an Al system should behave like a conventional program and be
able to communicate with conventional elements of the system. Stand-alone Al systems, on the
other hand, are very limited in their capabilities and do not satisfy the needs of today’s complex

systems [Earl D. Sacerdoti, 1989].

12

The purpose of this thesis is to examine techniques and commercial tools that have been
developed to integrate knowledge-based technology with conventional computing environments

and the implications for both developers of knowledge-based applications and the end users.

In chapter 2 several methods of integrating knowledge-based systems with
conventional-computing systems are presented followed by a survey of six commercial expert
system tools. Chapter 3 discusses methods of integrating expert systems with relational database
systems. Chapter 4 examines how external functions, written in conventional programming
languages, can be called from an expert system in order to extend its computational capabilities.
Chapter 5 explores the concept of embedding an expert system in a conventional system in order
to achieve the tightest possible integration of both technologies. In chapter 6 the most flexible
method of integrating expert system technology with conventional technology, a client-server
architecture, is presented. Chapter 7 discusses knowledge management facilities in expert system
shells. Chapter 8 summarizes all methods of integrating both technologies and lists all the

features that an "ideal" expert system shell should have.

13

2. Integration Overview

Expert systems technology is best suited to solving problems that are very complex in
nature, and generally involve uncertain facts and heuristic knowledge. On the other hand, tasks
involving large amounts of data, complex mathematical calculations, graphical displays, and
graphical user interfaces are better suited to conventional programming technology (e.g. database
technology, C programming language, libraries of graphics functions). Real-world problems
often involve both types of tasks. In order for expert system technology to be useful in solving
problems it must be integrated with conventional programming technology. In recent years this
requirement has been realized and various expert system packages have appeared on the market
capable to varying degrees of integrating with conventional programming technology. Some of

the methods used by those tools are discussed below.

2.1. Integrating Expert System Technology with Database Technology

4 ; 7

Knowledge Explanation
Acquisition [€= Facility
Source

I Computer Hardware
e =

Stored Programs : Disk
User Interface | Control Knowledge
Disk/ > Mechanism Base
Working Memory (Stored Facts
Inference and Heuristics)
Record of Engine
Consultations :
Input,
Conclusions,
Recommendations

Essential Components of a Knowledge-Based System

Figure 2.1

14

Figure 2.1 shows all essential components of a knowledge-based system. The terms
Knowledge-Based System and Expert System are often used as synonyms. This is not quite true
since an Expert System is a Knowledge-Based System capable of solving very difficult problems
requiring knowledge of a human expert. For the purpose of this thesis, however, both terms will
be used interchangeably. The fundamental difference between a knowledge-based system and a
conventional system is a separation of knowledge (stored in a knowledge base) and
problem-solving logic (represented by an inference engine and a control strategy). A
knowledge-based system starts processing by examining facts stored in working memory and
matching the facts to the goal (if the goal is specified). Then it applies the knowledge stored in
the knowledge base to the facts, according to a control strategy, which results in new facts being
generated and stored in working memory. This process continues until either the goal is satisfied
(a solution is found) or no new facts are generated [Robert J. Mockler & D.G. Dologite, 1992].
There are two basic methods for representing knowledge: rule-based and frame-based

(object-oriented) representations.

A typical rule-based expert system consists of a knowledge base (represented as a set of
rules) and a working memory which contains a set of facts. A rule-based system may use
forward-chaining, backward-chaining, or a combination of both methods of reasoning (control

strategy).

15

In a forward-chaining system (figure 2.2) the knowledge base is scanned for the rules that
can be applied to the initial set of facts stored in working memory. Rules that can be applied to a
given fact (antecedents of which match the fact) are put on an agenda as the rules that can
potentially be "fired". The agenda is a prioritized queue and, depending on the implementation,
developers can manipulate various aspects of the agenda (e.g. priorities of rules, depth-first or
breadth-first rule ordering). The inference engine, after scanning the whole knowledge base, tests
rule antecedents in the order of the agenda. If a rule evaluates to true it is "fired" and, as a
result, a new fact concluded by the rule is added to the working memory. After testing all the
rules from the agenda the inference engine repeats the cycle and looks for rules that can be
applied to a newly generated facts. When there are no more rules that can be put on the agenda,
processing is completed and the solution consists of all new facts generated by the "fired" rules

[Edmund C. Payne & Robert C. McArthur, 1990].

/

New Fact : New Rule :
A=x — —_—pp IFA=x
\ Fact Matches THEN B =y Workin
Antecedent / Acenda Memory
Inference Fire rule D A=x
. Fire rule M D=z
Engine
| . B=y
Fire rule A rale A
is TRUE
=>newfact B=y
is added to WM

Forward chaining

Figure 2.2

16

In a backward-chaining system (figure 2.3) the working memory is examined first. If any
fact satisfies the goal the search for a solution is over. If no facts satisfy the goal the rules that
conclude the goal are examined. If a rule concludes the goal its premise becomes a subgoal. Each
subgoal can be satisfied either by finding a fact in the working memory or by finding a rule that
concludes the subgoal. When all subgoals are satisfied the search for a solution is completed.

The solution consists of all the rules that where successfully applied [Edmund C. Payne & Robert

C. McArthur, 1990].

Knowledge Working Backward-chaining tree :
Base Memery
A =x (goal)
goal : A=x Facts :
rule #1: F - B =y (subgoal #1) C =z (subgoal #2)
IFB=yANDC(C=z E=b
THENA=x D=a
rule #2:
IFDP=aANDF=v D=a F=v E=b
THENB =y (true - fact) (true - fact) (true - fact)
rule #3:
IFE=Db
THENC =12
Backward chaining

Figure 2.3

Both methods use initial facts as a way of describing the world’s initial state of a
particular problem that the system is to solve. First-Generation expert systems required the user
to enter initial facts manually. This worked fine for simple systems with a few initial facts but as
expert systems became more complex it did not suffice. Soon it became clear that if expert

systems technology was to be used in solving real-world problems it had to be integrated with

17

database technology. The first step in this direction was adding the ability to read data from a
database into the working memory thus obtaining a set of initial facts. Typically the rules will
access a database in the premise part and assign values to the facts in the conclusion part. The
next step is storing the results of reasoning and/or intermediate facts in the database thus
allowing other conventional or expert systems to do further processing based on the results

obtained (figure 2.4).

-~

WORKING MEMORY
(facts)

Integration of a rule-based expert system with a database

Figure 2.4
Another type of expert system development approach uses object-oriented (frame-based)

techniques to represent knowledge (figure 2.5). Knowledge bases in such systems consists of a

hierarchy of classes (or objects) some of which are derived from others. Subclasses inherit some

properties from their parent classes and add new properties or over-ride some of their parents’

18

properties. Some expert systems combine both rule-based and object-oriented knowledge
representations. In an object-oriented system, values of attributes are determined either by
inheritance or by using demons (when-needed methods and when-changed methods). These
demons calculate values based on other known values, ask the user for values, or read values
from the database (another implementation of integration of expert system technology with

database technology - figure 2.6).

/

Class A
slot a
slot b
method 1

Instance A1l
a=0
b=0

method 1

parent link

Class B Class C Instance C1
ot e o b iberited) b=
slot b (inherited) dot d d=1
slot ¢ slot e e=2
method | (nherited) method 1 (overriden) metheod 1
method 2 method 2 method 2

Frame-based (object-oriented) system

Instance C2

a=1
b=2
d=0
e=-2
method 1
method 2

Figure 2.5
The advantages of integration of expert system technology with database technology are

enormous. The expert system gains access to a huge amount of data describing the state of the

world. It can analyze this data, create results, and store the results in a database so that other

19

systems can process it further. Also, an expert system can take advantage of various features
inherent in database technology such as concurrency, security, data consistency, and data query
optimization [Beynon-Davies, P., 1991]. Finally, expert systems can solve real world problems

and can become a part of a larger system.

/

()

LevelS Object rDBase 3 database

CLASS dB3 dbedit SINGLE EXTERNAL "dBASEIII dbedit. DBF"
WITH last_name STRING data DBEDIT.DBF file
SEARCH ORDER CONTEXT le-
WITH first_name STRING record 1:
- last_name= "Smith"
SEARCH ORDER CONTEXT first name="John"
record 2:
Iast_name="Fox"
CLASS database actions first name=""Peter"
WITH delete rec SIMPLE -
WHEN CHANGED
BEGIN data
action OF dB3 dbedit IS delete record := TRUE & |
action OF dB3 dbedit IS pack := TRUE
copy database to display OF database actions := TRUE
END

_) U J

Integration of a frame-based expert system (Level5 Object) with a database.

Figure 2.6

The main disadvantage of integrating expert system technology with database technology
is that the systems become more complex. Part of the knowledge base must be concerned with
accessing a database, so the actual problem-solving knowledge may become less understandable
and more difficult to maintain. Also depending on the implementation, the expert system may

become less portable when it is coupled with a particular database system (e.g. DBase for IBM

20

PC computers). Typically such a database interface, implemented by the developer of an expert
system shell, is not complete (e.g. it does not support record locking, indexes, multiple indexes,
etc.). A better approach is to use a generic interface to a third-party database server using SQL.
This can greatly increase an expert system’s portability and flexibility [Level5 Object - Rdb/SQL

Interface Guide, 1992]. Further discussion of these methods is presented in chapter 3.

2.2. Calling external programs/functions from a Knowledge-Based System

A knowledge-based approach to problem solving is appropriate if the problem to be
solved is not well-defined, the knowledge is incomplete or uncertain, there is no clear
algorithmic solution, or knowledge is heuristic in nature. On the other hand, tasks that have clear
algorithmic solutions, that depend on mathematical calculations, that are connected with the user
interface or graphics are better suited to conventional programming technology. Complex,
real-world problems typically contain both types of tasks. Expert system tools typically are very
limited in math and graphics functions and those functions that they do have are very inefficient
when compared to conventional programming languages (e.g. C language). By allowing the
expert system shell to call an external program or function, many of the above limitations can be

eliminated.

Many second-generation rule-based systems support using external function calls in rule
premises and conclusions (figures 2.7 and 2.8). Similarly, frame-based (object-oriented) systems

now support calling external functions from within when-changed and when-needed methods.

21

Parameters to the functions and the results from the functions can be passed either through
memory or ASCII files. Using ASCII files for communication can slow down the procedure

significantly.

KNOWLEDGE BASE WORKING MEMORY
(rules) (facts)
parameters/results

EXTERNATL FUNCTION

Calling external functions from a rule-based expert system.

‘F@me27:
Allowing calls to external functions can significantly increase the capabilities and the

performance of an expert system. There are no real disadvantages to this method assuming the

implementation does not make it difficult or cumbersome to use as is the case in some expert

system tools. Further discussion of these integration methods is presented in chapter 4.

22

(Class A \
EXTERNAL FUNCTIONS

- slot 1

- value

- when-needed method < pmmmrs/resumﬂ function 1

- when-changed method< function 2
- slot 2

parametecrs/results

- method 1 € 4@ction 3 J

Calling external function from a frame-based expert system.

Figure 2.8

2.3. Embedded solutions

Embedding an expert system in a conventional system (or a conventional system in an
expert system) is the tightest integration method (figure 2.9). It is not as flexible as client -
server architecture but allows for closer and more efficient integration. Both integrated
components can call each other’s internal functions and access each other’s data structures
directly. In a typical scenario, an expert system is embedded in a conventional system. The
conventional system provides the user interface, performs numerical calculations, displays the
results, accesses a database, and calls the expert system component when necessary. Calling the
expert system from the point of view of the conventional system is like calling any other function
or procedure. After the expert system has completed processing the conventional system can read

the results directly from the working memory of the expert system.

23

Advantages of an embedded solution are efficiency and very close integration. On the
other hand this method is not very flexible - both components must be compiled together and no
other external programs can be integrated with the system at runtime. Also the integration
procedure may be quite complicated, it may require code modifications of some modules of both

components. Further discussion of embedded solutions is presented in chapter 5.

/

r CONVENTIONAL SYSTEM \\

user interface database system
pumeric processing
graphical display

EXPERT SYSTEM

_ _

Embedded solution.

Figure 2.9

2.4. Client - Server Architecture

Another method of integrating expert system technology with conventional programming
technology is through the use of client-server architecture (figure 2.10). This method can only be

used in multitasking environments such as Microsoft Windows 3.x on IBM PC compatible

24

computers. The client-server architecture is based on at least two programs running
simultaneously. One of the programs is the expert system and the other is a conventional
program (or another expert system). Both programs can communicate with each other. They can
exchange data and they can request the other program to perform certain functions. Typically the
program that initiates the conversation becomes a client (or a master) and the program
responding to the request assumes the role of a server (or a slave). The roles can change
dynamically over time. Also in a more complex scenario there can be more programs running
simultaneously and carrying out conversations. Each program can be involved in multiple
conversations at the same time and may assume the role of a client in some and a server in the

others.

Client - server architectures are the most flexible method of integrating different
technologies. The only requirement for the programs taking part in such a system is that they
must all provide a common communication protocol. In the Microsoft Windows environment
such a protocol called Dynamic Data Exchange (DDE) is already defined by the operating
system. Most Windows-based applications support the DDE protocol. DDE allows both data
exchange and sending commands. The only disadvantage of using client - server architecture is
the overhead of establishing links between the programs and of the communication protocol
itself. Also the programs must agree on what data and commands they want to exchange. Further

discussion of client-server architectures is presented in chapter 6.

25

clieat server-clien
»CEXPERT SYSTEI\B‘ t DEJSER INTERFACQ

client

client

sgerver server

EATABSE SYSTEI\D ERAPHICS LIBRARQ

server

MATH LIBRARYJ

Client - Server Architecture.

Figure 2.10

2.5 Ideal model of integration

According to some researchers (Earl D. Sacerdoti, 1989) an ideally integrated

expert-system tool should have the following characteristics:

- be callable from C, COBOL, FORTRAN, and assembler;

- be able to call C, COBOL, FORTRAN, and assembler;

- be able to read from and write to relational databases via SQL;

- support well-documented conventions for communication with external applications;

- be configurable by developers;

- be compact enough to fit within a fraction of the directly addressable space of the chosen
hardware;

- create reentrant executable versions of the system once the development features have been
stripped out;

- be available on a wide range of systems.

26

The four methods of integration discussed above come very close to this ideal. There is no expert
system tool currently on the market that would satisfy all the above requirements but some tools

are evolving in that direction.

2.6 Survey of six commercial expert system tools

Implementation of the methods of integrating expert system technology with conventional
technology described above is different in various tools currently available in the market. Level5
Object from Information Builders Inc. will be the primary tool used for illustrating the issues
involved in integration of expert system technology with conventional technology. Various other

expert system tools will be briefly examined to show alternative approaches.

Six expert system tools - ART-IM, CLIPS, KES, Level 5, VAX OPS35, and Kappa-PC -
will be introduced in the next section. Their functionality, performance, advantages, and
disadvantages will be briefly described [based on William Mettrey, 1991]. Each of these systems
will be used in subsequent chapters to illustrate various ways of providing integrated expert

system facilities.

2.6.1. C Language Integrated Production System (CLIPS)
CLIPS was developed by NASA at the Lyndon B. Johnson Space Center. It was designed
to overcome a number of difficulties NASA had experienced using Lisp-based tools, including

low availability of Lisp on conventional computers, high cost of Lisp-based tools and hardware,

27

and poor integration of Lisp with other languages [William Mettrey, 1991]. CLIPS is written in
C to support the goals of high portability, low cost, and ease of integration with external
systems. CLIPS was designed as a rule-based system based on the architecture of ART - NASA’s
Lisp-based tool. According to NASA, CLIPS has been delivered to more than 2,500 users, and

is available on all hardware platforms.

CLIPS uses rules as its primary knowledge representation approach. It uses a Lisp-like

rule syntax:

4 (defrule Rule-Name)
"Optional Documentation String"
(condition-1) ; The left-hand side is composed of
(condition-2) ; zero or more conditions
(condition-n) ; each enclosed in parentheses

=> (action-1) ;The right-hand side is composed of

(action-2) ; ZETO Or more actions
(action-n)))

CLIPS supports a rich pattern-matching language for specifying rule conditions which operates
on both single fields and multifield sequences composed of strings, symbols, and numbers.
CLIPS also supports templates as a means of specifying rule conditions. In addition, CLIPS
provides procedural programming constructs (if...then...else, while) on the right-hand side of
rules. The above features enable CLIPS to express in a single rule, knowledge that requires
several rules in other expert system tools. In version 5.0 CLIPS Object Oriented Language
(COOL) was introduced. It extends CLIPS’s capabilities by supporting object-oriented

programming [Tom Brooke, 1992].

28

CLIPS inference mechanism is based on a forward-chaining control strategy that
implements the classic recognize - act cycle. Conditions of rules are matched with facts in the
knowledge base. Rules with all conditions satisfied are instantiated (activated) and placed on an
agenda (or in a conflict set). CLIPS selects the rules with the highest salience (priority), which
can vary from -10,000 to + 10,000 (the default is 0), to fire. Firing a rule consists of performing
the rule’s actions (specified on the right-hand side). Forward chaining is implemented using an
efficient Rete matching algorithm. The Rete algorithm uses a network representation of rules
dependencies and its major advantage is a very fast evaluation of rules premises [C. Forgy,

1982]. CLIPS does not support backward chaining [William Mettrey, 1987].

CLIPS is offered on a wide range of hardware platforms. Its strengths include strong
support of forward chaining, ease of integration with external systems, portability, fast
execution, and low price. Its main weakness is its lack of support for backward chaining.
Templates provide the structuring capabilities of a frame system, but do not support inheritance
or procedural attachments. This has been corrected in version 5.0 by introducing COOL (CLIPS
Object Oriented Language) which allows object-oriented programming, although COOL has not

been completely integrated with CLIPS as yet [Tom Brooke, 1992].

29

2.6.2. Automated Reasoning Tool for Information Management (ART-IM)

ART was introduced in 1985 by Inference Corporation as a Lisp-based expert system tool
targeted to Lisp-machines and high-end workstations. ART-IM was developed using NASA’s
CLIPS as a base and adding several enhancements, most important of which was a schema

(frame) system and an object-oriented programming capability .

From the knowledge representation perspective, the main difference between ART-IM
and CLIPS is the frame system. ART-IM refers to frames as schemata, which can be used on the
left-hand side of rules. A schema consists of a schema name and one or more slots. The slots
represent either attributes of a schema or its relationship with other schemata. A schema can be
defined either statically using the defschema statement or dynamically at run-time. ART-IM
supports single inheritance - values and functions are inherited via is-a and instance-of relations

between schemata e.g.:

(defschema machine-1
(instance-of machine)
(machine-status idle)
(current-part P9
(current-operation OP-3))

The inference mechanisms of ART-IM and CLIPS are very similar, with forward
chaining being the primary mechanism. In addition, ART-IM provides object-oriented

programming capabilities. An ART-IM object is represented by a schema whose slots contain

30

values for the object’s attributes and functions to carry out the object’s actions. Functions can be

written in C or using ART-IM commands.

ART-IM has all the advantages of CLIPS. Its frame system and object-oriented
programming capability make ART-IM even more powerful and flexible, increasing the range of
possible applications. ART-IM is an expensive tool targeted at the high-end market. It offers a
very comprehensive debugging and development environment including a windowed user
interface. Numerous applications have been developed using ART-IM and it is capable of
handling very large knowledge bases [William Mettrey, 1991]. Some of the weaknesses of
ART-IM are lack of support of backward chaining, multiple inheritance, and user-defined

inheritance.

2.6.3. Knowledge Engineering System (KES)

KES was introduced by Software Architecture & Engineering in 1982. The early versions
of KES were implemented in Lisp but it was ported to C in version 2.1. KES historically
consisted of three subsystems: KES Bayes, KES HT, and KES PS. KES Bayes is a statistical
pattern classification subsystem for applications that have a large body of data expressed as
probabilities. This subsystem is no longer supported. KES HT is a hypothesis-and-test subsystem
that is useful for specialized diagnostic applications. KES PS, the production system module, is

the most frequently used of KES’s subsystems. KES PS will be further referred to as KES.

31

KES provides forward-chaining rules (demons), backward-chaining rules, and a class
(frame) system for knowledge representation. The KES equivalents of facts are called attributes.
KES has a rigid typing system - each attribute must be declared and given a type which specifies
the kind of values it can assume and the operations that can be performed on it. KES can also
handle uncertain knowledge by using certainty factors'. The KES equivalent of a frame is a class.
Classes can be used to specify attributes tested by rule conditions. Classes support single
inheritance but do not allow procedural attachments. Intrinsic and user-defined functions,
however, can be called from both rules and demons. The general form of a KES

forward-chaining rule is the following:

~
rule name:
variable declarations \Optional variable declarations
when \Keyword when signals the start of the left-hand side
condition(s) \One or more LHS conditions
then \Keyword then signals the start of the right-hand side
action(s) \One or more RHS actions
endwhen. \Keyword endwhen terminates the rule
- /

The general form of a KES backward-chaining rule is the following:

if \Keyword if signals the start of the left-hand side
antecedent(s) \One or more antecedents

then \Keyword then signals the start of the right-hand side
consequent(s) \One or more consequents

endif. \Keyword endif terminates the rule

' Certainty Factors (CFs) are numeric values (typically in the range from 0 to 1) that represent a degree of certainty

(or uncertainty) of facts and/or rules in a knowledge-based system. Special rules have been defined to allow
combining two or more CFs, for example if a rule uses, in its premise, fact A with CF=0.5 and fact B with CF=0.5
then the conclusion of this rule will have a CF=0.25.

32

KES’s primary inference mechanism is backward chaining. Forward-chaining rules
(demons) cannot interfere with backward-chaining rules - a demon cannot contribute a value to
an attribute that is being pursued by a backward-chaining inference. KES does not use the Rete
algorithm in forward chaining so its forward chaining processing is not very efficient. Also, KES
performs a depth-first evaluation of the forward-chaining rule conditions that can lead to firings

of unwanted rules or multiple firings of the same rule [William Mettrey, 1991].

KES supports all major knowledge representation mechanisms. KES executes on a
number of hardware platforms, including IBM mainframes, IBM PC’s, DEC VAXs, and other
workstations. An application developed in KES can be embedded in external user code that is
written in C. The weak element of KES is its forward chaining mechanism - caution has to be

exercised to avoid undesirable rule firings.

2.6.4. VAX Official Production System Version 5 (VAX OPS5)
VAX OPSS5 is a descendant of several production system languages developed at Carnegie
Mellon University. It is written in Bliss (DEC’s system implementation language) and executes

only on DEC hardware.

Knowledge is represented in VAX OPS5 by rules which have a Lisp-like syntax (similar

to that of CLIPS and ART-IM). The left-hand side conditions are composed of attribute-value

33

pairs. Values can be either symbols or numbers; strings are not supported. Pattern-matching
functionality is not as rich as that in CLIPS or ART-IM. VAX OPSS5 also does not support

procedural programming constructs. The general form of a VAX OPSS5 rule is the following:

4 ™
(PRule-Name

(condition-1) ; The left-hand side is composed of
(condition-2) ;one or more conditions
(condition-n)

==>
(action-1) ; The right-hand side is composed of
(action-2) ;ONE Or more actions
{(action-n))

N\ /

VAX OPS5’s only inference mechanism is forward chaining. It is based on an efficient
Rete algorithm. VAX OPSS5 provides two conflict resolution strategies, Lexicographic Sort (Lex)

and Means-Ends Analysis (MEA), for selecting rules to fire.

VAX OPSS5 strengths are rapid execution times, integration with other DEC software,
and the proven ability to support the development and delivery of large expert systems (Xcon,
Xsel). Among the weaknesses of VAX OPSS are lack of support for backward chaining, and

frames, and non-portability to other hardware platforms [William Mertrey, 1991].

34

2.6.5. Kappa-PC
Kappa-PC is a Microsoft Windows-based expert system shell developed by IntelliCorp, a
company known for its Lisp machine-based expert system tool - KEE. Kappa-PC’s knowledge

representation and inference mechanisms are directly related to those of KEE.

Kappa-PC supports both frame-based (object-oriented) and rule-based knowledge
representation. Classes and instances are used to represent objects. Classes can contain both slozs
and merhods. Inheritance is supported by the means of subclasses. A subclass can inherit both
slots and methods from its ancestor. Methods are written in KAL (Kappa-PC’s Application
Language) which provides a rich set of built-in functions, operators, knowledge representation
and manipulation constructs, and procedural-programming structures (e.g. For, ForAll, While).
Also users can write their own functions in KAL. Kappa-PC provides a special type of methods
called monitors. Monitors are methods that are linked to slots and are triggered either by changes
in the slot value or by a request for a slot value that is not known. There are four types of
monitors: If Needed, When Accessed, Before Change, and After Change. Both classes and

instances can be declared statically or created dynamically at run-time, for example:

e ™
For counter [1 10 0.5]

{
Makelnstance(Obj#10*counter, Root);
MakeSlot(Obj#10*counter, Size);
SetValue(Obj#10*counter, Size, counter);

I8

N J

35

Beside an object-oriented system, Kappa-PC supports a rule-based knowledge
representation. Both forward and backward chaining inference mechanisms are supported.
Kappa-PC allows the developer to select one of the four Conflict Resolution Strategies during
forward chaining: Selective (follows only one successful path), Depthfirst (exhaustive search,
new facts added to the top of the Agenda), Breadthfirst (exhaustive search, new facts added to
the end of the Agenda), Besifirst (exhaustive search, rules are selected in their Priority order).

Both forward and backward chaining rules use the same syntax e.g.:

SluggishTurnover:

[car: Autos]

IF car:IgnitionKey #= ON And
car:ElectricalSystem #= Bad,

THEN car:EngineTurnover = Sluggish;

Kappa-PC is a very powerful expert system tool targeted for the high-end PC user
market. In addition to rich knowledge representation and flexible inference mechanism,
Kappa-PC provides a wide set of development-support tools, including a debugger, user interface
functionality, interfaces to external functions, databases and DDE (Dynamic Data Exchange).
Despite some minor deficiencies (e.g. poorly designed explanation facility) Kappa-PC is one of

the most powerful expert system tools currently on the market [Kappa-PC User’s Guide, 1992].

2.6.6. Level5 Object
Level5 Object evaluated below (and in the remaining chapters) is a Microsoft
Windows-based expert system shell which allows both rule-based and frame-based

(object-oriented) knowledge representation.

36

The knowledge base in Level5 Object is built around classes which consist of attributes.
Classes can inherit attributes from other classes. Each attribute of a class can have when-needed
and when-changed methods attached (similar to monitors in Kappa-PC). Classes are instantiated
by objects. One class can be instantiated by many objects. Attributes of objects can be assigned
values that can be later accessed in when-needed and when-changed methods as well as in rules.
Part of knowledge in Level5 Object can be represented in rules. There are two types of rules:
demons (forward-chaining rules) and rules (backward-chaining rules). Rules can use attributes of

objects both in premises and in conclusions, for example:

IF last_name OF employee = " Smith"
AND first_name of employee = "John"
THEN delete OF actions = TRUE

In addition to knowledge representation and processing mechanisms described above,
Level5 Object is equipped in a variety of tools allowing to quickly create very attractive and
flexible user interface. It also contains several means of integration with conventional systems
(these will be discussed in detail in the following chapters): access mechanisms to external
databases, mechanism for calling external programs and support for Dynamic Data Exchange.
Level5 Object can also handle uncertain knowledge using certainty factors [Level5 Object User’s

Guide, 1990].

Level5 Object is a very good prototyping tool. Its extensive support for user interface

allows quick development of attractive prototype systems. Its support for all three major

37

knowledge representation schemes (forward and backward chaining rules, classes) makes Level5
Object applicable to a wide range of problems. Its English-like rule syntax is easy to learn and
understand, although its pattern-matching functionality is poor when compared to other tools.

Level5 Object is also available on the IBM mainframe and Unix hardware platforms.

2.7. Summary

Al researchers have finally realized the importance of integrating expert system
technology, as well as other Al technologies, with conventional-computing environments. Many
commercial expert system shells now support various methods of this integration but none
provides full integration. As discussed earlier, there are four major methods of integrating expert
system technology with conventional-computing systems: 1) an interface to external databases; 2)
an interface to external functions written in conventional-programming languages; 3) embedding
expert systems in conventional systems; and 4) client-server architectures. All commercial tools
described in chapter 2 use one or more of these methods but their implementations usually
impose various limitations and are not complete. For example, Level5 Object supports a
client-server architecture (described in detail in chapter 6) through the DDE protocol, but the
implementation is only partial - Level5 Object cannot act as a server. Despite such limitations
most tools evolve in the right direction and in the near future we can expect the arrival of expert

system tools able to fully integrate with conventional-computing environments.

38

The following chapters discuss methods of integrating expert system technology with
conventional technology. For the purpose of this thesis conventional technology means computer
hardware and software technology developed outside of Artificial Intelligence. Conventional
hardware means general-purpose computer architectures, like mainframe computers, Unix-based
workstations, and microcomputers, as opposed to Lisp-machines and neural network circuits.
Conventional software includes database systems and other applications that can solve only very
specific problems and work according to a pre-designed algorithms. Conventional applications
are usually developed using procedural programming languages like Pascal, the C language,

P/L1, or Fortran.

39

3. Integrating Expert System Technology with Database
Technology - Implementation

Integration of expert system technology with database technology makes expert systems
much more powerful and useful. It gives them access to enormous amounts of data that can be
used by expert systems in their reasoning as a source of facts representing the state of the real
world. It also enables expert systems to store the results of their analysis in a database that can be
processed further by other applications. As a mature technology, with integrity control and
concurrency mechanisms, database technology also improves the quality and reliability of expert

systems [Jarke, M. and Y. Vassiliou, 1984].

The need for access to external data in expert system tools was realized quite early in
their development. The first step addressing this need was the ability of expert system tools to
read from and to write to ASCII files. This was a solution for very simple systems only. The
second step in integration of commercial expert system tools with conventional technology was a

database interface.

Various commercial expert system tools implement integration with database technology

differently, but at least the following features should be present regardless of the implementation:

- ability to both read and write database records;

- ability to use indexes to access records;

- ability to append and delete records;

- ability to process records both sequentially and randomly;
- ability to search for a particular record;

- ability to detect the end-of-file condition.

40

Most expert system tools available in the market support at least one database system
(e.g. DBase on IBM PC platform). Some tools support more than one database system (e.g.
DBase and Focus are supported by Level5 Object). The most recent trend however is using a
database gateway in which an interface, typically in the form of SQL', to a third-party database
system is used. This approach allows a developer of an expert system tool to concentrate on
knowledge-related aspects of the tool and it makes a database interface more generic, more

flexible, more reliable, and more portable [Level5 Object Rdb/SQL Interface Guide, 1992].

3.1. Database technology in Level5 Object

The latest version of Level5 Object supports two database systems: DBase IIT and Focus
[Level5 Object User’s Guide, 1990]. It also offers a more generic database interface through
SQL and third-party subsystems (DEC Pathworks for DOS, and VAX-based Rdb database
system). Still another, more flexible, database interface provided by Level5 Object utilizes DDE
(Dynamic Data Exchange - described in detail in chapter 6) to transfer SQL statements to a

third-party relational database.

3.1.1. DBase interface in Level5 Object
Level5 Object implements its DBase interface using an object-oriented approach. The

foundation of this system is the dB3 system class” which has the following structure:

' Structured Query Language (SQL) is a standard interface to relational database systems.

System classes in Level5 Object are built-in object classes with associated functionality. System classes cannot be
modified but a user can create his own classes that inherit properties from the system classes.

2

41

4 CLASS' dB3)
WITH access COMPOUND?
read,
write,

read shared,

write shared
WITH action COMPOUND

advance,

previous,

top,

bottom,

append record,

insert record,

delete record,

recall record,

close,

open,

pack
WITH eof SIMPLE?®
WITH record NUMERIC
WITH size NUMERIC
WITH index file STRING
WITH filename STRING

_WITH active SIMPLE J

The access attribute of the dB3 class defines the database access privilege. It can be one of four:

-read read-only exclusive access;

-write both read and write exclusive access (default setting);
-read shared read-only shared access;

-write shared both read and write shared access.

The action attribute allows performing various actions on a database file. The action can assume
the following values:

- open a database file is opened,

- close a database file is closed;

- advance a current record pointer is moved to the next record;

- previous a current record pointer is moved to the previous record,;
- top a current record pointer is moved to the first record;

- bottom a current record pointer is moved to the last record;

A CLASS in LevelS is very similar to a class in the C++ programming language - it consists of attributes, which

in turn can have methods (procedures) attached to them.

? COMPOUND attribute type is like Enumerated type in Pascal, for example the access attribute can only assume
one of the following values: read, write, read shared, and write shared.

* SIMPLE attribute type corresponds to Boolean in Pascal.

42

- append record a new record is appended to the end of file;

- insert record a new record is inserted at the current record position;
- delete record a current record is marked as deleted;
- pack all records marked as deleted are removed from a file;

- recall record a record marked as deleted becomes undeleted.

The remaining attributes allow testing and controlling various aspects of a database:

- active

- record

- size

- eof

- file name
- index file

if TRUE a current record is active;

it contains a current record number;

it contains the number of all records in a database file;

if TRUE the end of file has been reached;

it contains the disk file name (must be specified before a file can be opened);
if specified the index file with this name will be used in the following
operations: top, bottom, previous, advance, and FIND.

In order to use a database file, a class corresponding to that file must be created. All

attributes of that class, both attribute names and types, must correspond to the fields of the

DBase file. Level5 Object can create a class corresponding to a given DBase file automatically.

The class will inherit all attributes of the dB3 system class described above. Lets consider an

example EMPLOYEE database file with the following fields:

-NO

- NAME

- BORN
-MALE

- SALARY

Numeric: employee number

Character: employee name

Date: employee's date of birth

Logical: if TRUE then male if FALSE then female
Numeric: employee's salary

A dB3Employee class corresponding to the above DBase file would inherit all attributes of the

dB3 system class plus it would have the following attributes:

- 1o
- name
-born
- male
- salary

NUMERIC
STRING
TIME
SIMPLE
NUMERIC

43

The attributes of the dB3-derived classes can be used both in rules and in methods within
Level5 Object. The following examples use rules but the syntax is the same for methods

(when-needed and when-changed):

/R’ULE for opening a database file \

IF fileOpen = TRUE
THEN open OF dB3Empioyee := TRUE

RULE for closing a database file
IF fileClose = TRUE
THEN close OF dB3Employee := TRUE

RULE for advancing to the next record
IF nextRecord = TRUE
THEN action OF dB3Employee IS advance

RULE for searching for a particular record and updating it if found
IF name OF dB3Employee <> "Brian Fox"

AND eof OF dB3Employee = FALSE

THEN action OF dB3Employee IS advance

AND LOOP

ELSE salary OF dB3Employee := 30000

RULE for adding a new record

IF appendRecord = TRUE

THEN action OF dB3Employee IS append record
AND no OF dB3Employee := LastNo + 1

AND name OF dB3Employee := "Marry Jones"

RULE for deleting and removing a record from a file
IF deleteRecord = TRUE

THEN action OF dB3Employee IS delete record
AND action OF dB3Employee IS pack

RULE for searching for a particular record (fast if index file is used)
FIND dB3Employee WHERE name OF dB3Employee = "John Black"
LIMIT 1

WHEN FOUND

recFound := TRUE

WHEN NONE FOUND

recFound := FALSE

FIND END

QEN searchedForName := TRUE /

44

The attributes used in the above rules can be linked to buttons of the display as shown on
Fig. 3.0. For example, the attribute nextRecord can be linked to the Next button and the attribute
deleteRecord can be linked to the Delete button. Clicking with a mouse on a button will set the

corresponding attribute value to TRUE.

ﬂ . : Database Demo ' ™ -

File

Employee Database

Current Hecord
Employee id : |1

Employee name : | John Smith

Date of hirth : j03412H1 960
Salary : | 32000

Record # . |1

First Previous Mext l Last

Append I Delete

Employee id :

Find

Fig. 3.0

45

3.1.2. SQL Interface to a Remote Database in Level5 Object
LevelS Object provides an SQL interface to remote Rdb databases running on a VAX
[Level5 Object Rdb/SQL Interface Guide, 1992]. Figure 3.1 shows the remote database query

Process:

Level5 Object DEC Pathworks { ———F 3 Rdb

for Microsoft | LSRDB.DLL | for DOS communications database

D ——

Windows

Figure 3.1
Level5 Object provides the LSRDB.DLL library which processes SQL queries and sends them to

DEC Pathworks - a third-party software package. DEC Pathworks handles further
communication with a remote VAX Rdb server that controls access to VAX-based Rdb
databases. Responses to SQL queries are sent back the same way to Level5 Object. Level5
Object provides a new EXEC SQL command which triggers the processing described above, for

example:

r IR
WHEN CHANGED
BEGIN
EXEC SQL select model, make, MSRP from car
where country = "Japan"
END SQL INTO selected cars

END
o /

The above when-changed method could be attached to an attribute that is linked to a Japan Cars
button for example. Clicking on the Japan Cars button would trigger the when-changed method
that would send an SQL query to a VAX-based database. The query would select records,

containing model and make columns (attributes), from the car table (database file). Only records

46

with country = "Japan" would be selected. The resulting table would be sent back to Level5
Object. Level5 Object would then create an instance of selected cars class for each row (record)
of the result table and set the corresponding attributes to the values of make and model.

Level5 Object supports the following SQL commands:

- SELECT: specifies the data to be retrieved from a database and creates a result table;
- INSERT: inserts values as new records in a table;

- UPDATE: modifies rows in a table;

- DELETE: deletes rows from a table;

- CREATE: creates a new table;

- ALTER: changes an existing table;

- DROP: deletes specified SQL elements such as INDEX, SCHEMA, TABLE;

- DECLARE SCHEMA: specifies the name and source of the schema definitions to be accessed;
- DECLARE TRANSACTION: specifies a transaction;

- SET TRANSACTION: begins a transaction;

- COMMIT: makes permanent any changes made during a transaction;

- ROLLBACK: undoes any changes made during a transaction;

- GRANT: creates privileges to the access control list;

- REVOKE: removes privileges to the access control list;

- COMMENT ON: modifies or adds a comment about a table.

When SQL EXEC is used as a function rather than as a command it returns an error code,
for example:

DEMON to select employees from database
IF get matching employee
THEN SqlError := EXEC SQL select * from personnel
where last_name := name END SQL INTO Employees

SqlError can have a when-changed method that displays an error message to a user, for example:

“No Records Found. " or "Connection to the database broken. ".

3.2. Database technology in Kappa-PC

Kappa-PC offers similar database facilities to those provided by Level5 Object

[Kappa-PC User’s Guide, 1992]. Kappa-PC supports reading from and writing to ASCII files. It

47

also provides a set of functions for accessing DBase and Lotus-123 files. Similar to Level5
Object, Kappa-PC provides an interface to an SQL DBMS through a third-party database server
(SequeLink from TechGnosis). The final database facility present in Kappa-PC is exchange of

data through the Dynamic Data Exchange (DDE) - it is described in more detail in chapter 6.

3.2.1. DBase and Lotus-123 interface in Kappa-PC

Kappa-PC provides a set of functions for accessing DBase and Lotus-123 files. Before
any data can be accessed a file must be opened with the built-in DBOpenFile(FileName)
function. For Lotus-123, FileName must have a .wks, .wkl, or .wrl extension. For DBase files,
FileName must have a .dbf extension. Many files can be open simultaneously but only one file
can be selected. A file opened with DBOpenFile() becomes the currently selected file. To select
another open file, the DBSelectFile(FileName) function is used. An open file can be closed with
DBCloseFile(FileName). For DBase files, Kappa-PC also provides functions for using indexes:
DBOpenlndexFile(FileName), DBSelectindexFile(FileName), and

DBCloselndexFile(FileName).

Both Lotus-123 and DBase files can be accessed using the same functions. The
DBReadCell(Row#, Col#) function returns a value stored in the Row# row (record in DBase)
and the Col# column (field in DBase). The functions DBGetNumberOfRows() and
DBGetNumberOfFields() return the number of rows and columns in a spreadsheet or database,

respectively. The DBReadField(column) function reads data from the column name or column

48

number of the current row, while the DBGetRowPosition() function returns the number of the
currently active row. The DBSetRowPosition(Row#) function sets the currently active row. The
DBWriteCell(Row#, Col#, Value) function writes data Value to the row Row# and to the
column Col# of a selected file. Both DBase and Lotus-123 files can be searched for rows

(records) satistying a filter expression - DBFindRecord(FilterExpr), for example:

DBOpenFile("employee");
DBFindRecord("last_name = 'Smith' .AND. first_name = 'Peter');

A more powerful set of functions provided by Kappa-PC supports mapping a row of data
from a DBase or Lotus-123 file directly into slots of an object instance in a Kappa-PC
application. In order to do this, the following sequence of function calls must be executed to

prepare parameters for mapping:

SetValue(Global:SlotNames, FirstName, LastName);
SetValue(Global:FieldNames, FIRSTNAME, LASTNAME);
DBSetMapParameters(Global:SlotNames, Global:FieldNames);

Now a new instance Employeel can be created from the class Employees using
Makelnstance(Employeel, Employees). Finally the function DBMapRowTolnstance() can be
used to supply slot values for this instance from the currently active row in the data file:
DBMapRowTolnstance(Employeel). The opposite mapping of slot values into a row of the
data file is also possible. The sequence of function calls is identical to the one used in mapping
of a row into slot values except for the last function call. This time the function

DBMaplnstanceToRow() must be used: DBMaplnstanceToRow(Employeel).

49

3.2.2. Interface with SQL RDBMS in Kappa-PC

Kappa-PC provides an interface to the SQL relational database using a third-party
software package called SequeLink from TechGnosis. SequeLink allows Kappa-PC to connect to
a variety of RDBMS, including Ingres, Sybase, Informix, OS/2 EE, Rdb, and DB2 running on a
variety of hardware platforms. Kappa-PC’s SQL support is based on a client-server architecture
where the PC running Kappa-PC is the client and the machine running the SQL DBMS on the

network is the server. The use of SQL interface in Kappa-PC is very straight-forward:

1. A database file is opened using DBOpenFile();

2. An SQL SELECT command is issued using DBExecute function;

3. Various operations can be performed on the table, generated by the SELECT command, using the functions:
DBSetRowPosition(), DBGetRowPosition(), DBSetMapParameters(), DBMapRowTolnstance(),
DBReadCell(), and DBWriteCell();

4. Steps 2. and 3. can be repeated;

5. The database is closed using the function DBCloseFile().

The Kappa-PC’s SQL interface is very powerful and flexible and at the same time easy to
use. By relying on a third-party software package, Kappa-PC gains a uniform and reliable SQL

interface to a variety of database systems supported by SequeLink.

3.3. KADBASE - a Knowledge-Aided Database System

KADBASE', a knowledge-aided database system prototype, is a very flexible interface in
which multiple knowledge-based systems and multiple databases can communicate with each
other within a distributed engineering computer system [H.C. Howard & D.R. Rehak, 1989].

The engineering environment for which the prototype has been developed imposes special

1

KADBASE is not a commercially available product like Level5 Object and Kappa-PC. It is currently a research
prototype that has been included in this section to illustrate the next generation of KBS/DBS integration.

50

requirements on knowledge based systems. The most important requirement is that knowledge

based systems must be capable of accessing very large, shared databases. Also the interface must

support multiple and heterogeneous knowledge based systems.

-

Knowledge

based system
i

KBSI

Knowledge based
database interface
a

Database

Network data
access manager

Knowledge

Knowledge based
database interface
b

Database

based system

J
KBSI

Knowledge based
database interface

c

Database

An overview of the KADBASE architecture.

Figure 3.2

Figure 3.2 shows the following basic components of the KADBASE prototype:

- The knowledge-based-system interface (KBSI), part of every knowledge-based system,

formulates queries and updates sent to the network data access manager and processes replies
from the network data access manager. The KBSI possesses knowledge about the
knowledge-based-system context (data space) schema, and uses that knowledge to perform

semantic and syntactic translations for queries, updates, and replies.

- The knowledge-based-database interface (KBDBI), which acts as an intelligent front end for
a basic DBMS, accepts queries and updates from the network data access manager and returns
appropriate replies. The KBDBI possesses knowledge about the local database schema and the
local language for data manipulation requests. It uses that knowledge to perform semantic and

syntactic translations for queries, updates, and replies.

- The network data access manager (NDAM), providing the actual interface, receives requests
(queries and updates) from knowledge-based systems (through their KBSISs) expressed in terms
of the global schema. Using information associated with the global schema, the NDAM locates

sources for data referenced in a request and decomposes each request into subqueries or

51

updates to individual target databases. The subrequests are sent to appropriate KBDBIs for
processing. Replies from KBDBIs are combined to form a single reply to the original request
and sent to the requesting application through its KBSI.

The KADBASE architecture is very powerful and flexible and it is very well suited for
large distributed computing environments e.g. CAD and CAM systems. On the other hand it is
too large and too complex for an average personal computer and stand-alone workstation
systems.KADBASE uses leading-edge technology and it will take some time before it finds its

way from the research lab to real-computing environments.

3.4. Conclusions

Level5 Object offers three different methods of integrating with database technology: an
interface to DBase (and to Focus databases), an interface to DEC-based Rdb database via SQL,

and a DDE-based interface to a third-party database via SQL.

The Level5 Object’s implementation of a DBase interface is quite complete and is both
easy to understand and use. Its object-oriented approach integrates well with the rest of the
system. Most functions needed for efficient database processing (e.g. index files) are supported
but there are some severe limitations in the DBase interface. The most serious one is the fact that
it requires the use of one particular database system - DBase. Another limitation is that only 10
files can be open simultaneously and when index files are used only six files can be open. Also

no relations between files can be established so more programming is required for related files

52

which makes the knowledge base less legible. FIND statements cannot be nested which makes
searching two or more related files even more cumbersome. Record locking is also not
supported. In summary, the DBase interface in Level5 Object is sufficient for developing
non-portable (for IBM PC and DBase only) expert systems with limited (not complex) database

processing.

A more flexible database interface offered by Level5 Object is its SQL-based link to a
VAX-based Rdb database. The use of a third-party, well-established, database system makes the
interface very reliable and complete. The use of SQL further increases the interface flexibility
and portability. On the other hand, the interface works only with a VAX-based Rdb database - a
major limitation. Interface to other third-party database systems using this method would be

desirable.

The most flexible database interface supported by Level5 Object is through the Dynamic
Data Exchange (DDE). It also uses SQL and a third-party database system but it is more generic
than the previous method in that it can work with any database system supporting both SQL and
DDE. On the other hand it is limited to an IBM PC hardware platform and Microsoft Windows

environment. This method is described in detail in chapter 6.

53

Kappa-PC offers a very similar set of database integration facilities to those of Level5
Object. It directly supports both DBase III and Lotus 1-2-3 file formats, including DBase
indexes, and provides a set of built-in functions that give access to them. Similar to Level5
Object, Kappa-PC offers an SQL interface to a variety of database systems through a third-party
software package - SequeLink. SequeLink provides access to many popular database systems as
opposed to the Level5 Object’s SQL interface that supports only VAX-based Rdb databases.
Kappa-PC also provides a DDE protocol which is more complete than that of Level5 Object

(both DDE client and DDE server are implemented).

Many commercial expert system tools available today provide a rich set of database
integration facilities but none is complete and perfect for all applications. A user should consider
requirements of the actual application when choosing the right tool. Expert system tools are
evolving rapidly in recent years and we can expect new methods of integrating knowledge-based
systems with database technology. Client-server architectures are becoming more and more
popular as well as powerful and we can expect the future expert system tools to evolve in this
direction. An example of this is the CADBASE prototype discussed in this chapter that uses a
very complex client-server architecture in a network environment. With growing popularity and
advances in object-oriented technologies, including object-oriented databases, the next generation
of expert system tools will develop object-oriented interfaces to databases that will hide the

implementation details and support easier extensibility.

54

4. Calling External Programs/Functions from a
Knowledge-Based System - Implementation

Conventional programming technology can be used for solving well-defined problems for
which precise algorithms can be found. Development of a conventional application typically is
based on a classic design-implement-test cycle. Every aspect of the application must be defined
in terms of a precise algorithm. Conventional programs are very fast, they can be optimized for
speed, and give accurate results. Conventional programs are typically implemented in
procedural, general-purpose, languages like C, C+ +, Pascal, Fortran, Basic, PL/1, or
Assembler. In contrast to conventional programming technology, knowledge-based technology
can deal with uncertain and complex problems. Development of a knowledge-based system does
not start with a complete design, instead incremental development and rapid prototyping
techniques are used. As opposed to a conventional system, knowledge is explicitly separated
from the problem solving part of a knowledge-based system. This enables easier modification
and maintenance of knowledge. However, these benefits of knowledge-based technology are
achieved at a price of decreased efficiency. Also, knowledge-based systems do not have a rich

set of math functions that conventional languages have.

The ability to call an external program or function from within a knowledge-based system
can extend the system’s capabilities and can reduce development time and costs significantly. It
is useful for complex math calculations, for a complex graphics display, for printing a report,

etc. Two levels of implementation are possible:

55

¢ calling an external program/function without further communication;
¢ calling an external program/function with the parameters and results passing.

The first method is very easy to use and does not require any special support from a caller other
than the ability to start an external program. It can be used, for example, to perform some
background tasks like printing. The second method is much more flexible and useful but also
much more difficult to implement, especially when the parameters and results are passed through
memory as opposed to disk files. Typically it requires some support on the part of a caller in

order to pass parameters and receive results.

The following discussion of external program/function calling methods will pertain to MS
Windows and MS DOS environments. The most flexible and tool-independent method of calling
external functions in Microsoft Windows environment is through the use of Dynamic Link
Libraries (DLLs). In Microsoft Windows, a DLL is a library of object code in the form of
functions available for external access, together with a function access table. The functions
within a library can be dynamically accessed from another program at runtime without having
previously linked the library with the program. This feature allows high level programs (e.g.
expert system shells), which usually do not need compilation, to access functions supplied by
DLLs. Another nice feature of DLLs is that they are independent of the programming language -

they can be written in C, C+ +, Pascal, Basic, or any other language that supports DLLs.

56

4.1. Calling external programs/functions in Level5 Object

Level5 Object provides two commands for calling external programs [Level5 Object User’s

Guide,1990]:

- ACTIVATE: used when an external program is to be called only once;
- ESTABLISH: used when an external program will be called more than once
(it will stay in memory after the first call).

Two types of programs can be called from Level5 Object: EXTERN and SERVER.
EXTERN program is an external program that is called with optional command-line parameters
and no further communication exists between the external program and Level5 Object. It can be
any MS DOS or MS Windows application. SERVER is an external program that can receive
parameters from Level5 Object and can pass back the results upon termination (parameters and
results are passed through memory). SERVER programs must be written in Microsoft C

language and must conform to special rules imposed by Level5 Object.

4.1.1. Calling an EXTERN program

An EXTERN program does not have to be written specifically to communicate with Level5
Object. It can be any MS DOS or MS Windows application. Command line parameters can be
sent to the program but no further communication exists. The following is an example of a call

to an EXTERN program:

ACTIVATE "IPU, EXTERN, NOTEPAD.EXE"
COMMAND filename'
where filename is a STRING attribute containing the name of a text file.

' This PRL code can be used in a rule, in a demon, or in a when-changed or when-needed method.

57

This command, when executed by the Level5 Object’s inference engine, will start the MS
Windows program Notepad and pass the filename parameter as a command-line argument.
Notepad, a simple text editor, will open a file, the name of which was passed on the
command-line, for editing. Level5 Object will continue its processing but the user can switch to

the running Notepad to edit the file and after that switch back to Level5 Object.

EXTERNZ.KNB

This application demonstrates calling external EXTERN functions from Level5 Object
using ACTWATE command. Data is passed through a text file.

- The string you enter will be converted to upper
case letters when you click on the button.

Enter your string here >> | aaaaaaaaaa

...

....................................

The resulting string >>

Figure 4.1
EXTERN2.KNB application (figure 4.1) demonstrates another example of how to call an
external function using this method. After a user enters a string and clicks on the Convert String

button, Level5 Object calls an external program passing the string to it through a text file. The

external program reads the string from the file, converts it to upper case, and passes the

58

converted string back to Level5 Object through the same file. The string is then displayed in the

main window.

Level5 Object accomplishes the above using the following code:

/WHEN CHANGED

BEGIN
action OF file 1 IS open new := TRUE
write line OF file 1 := str1
action OF file 1 IS close := TRUE
ACTIVATE "IPU,EXTERN,C:\PRG\L50\SERVER\TOUPPER2.EXE"
action OF file 1 IS open old := TRUE
read line OF file 1 := TRUE
str2 := current line OF file 1
action OF file 1 IS close := TRUE

\END)

Level5 Object creates an ASCII file by setting the action OF file 1 attribute to open new.
Then it writes the szr/ string to the file and closes the file by setting the action OF file 1 attribute
to close. Next, Level5 Object calls the external program using ACTIVATE statement (the external
program becomes the active task in the MS Windows environment). After the external program
terminates (or yields control to MS Windows) MS Windows returns control back to Level
Object. Level5 Object then opens the file by setting the action OF file 1 attribute to open old,

reads the line from the file to the result string 5772, and closes the file.

The external program used in this example is an MS Windows application written in
Microsoft C but it could be any Windows or DOS program not necessarily written in C. The

code is shown below:

59

/* FILE : TOUPPER2.C
DESCRIPTION : Converts all characters from a string to upper case.

*/

#define fName "extern2.dat"
#include <windows.h>
#include <ctype.h>

#include <stdio.h>

int PASCAL WinMain(HANDLE,HANDLE,LPSTRint);
void read_string(char *s)
{ FILE *inp;
if ((inp = fopen(fName,"rt")) != NULL)
fgets(s,255,inp);
fclose(inp);
3

void write_string(char *s)
{ FILE *out;
if ((out = fopen(fName,"wt")) t= NULL)
fputs(s,out);
fclose(out);

3

int PASCAL WinMain(hInstance, hPrevinstance, IpszCmdLine, cmdShow)
HANDLE hinstance, hPrevinstance; LPSTR IpszCmdLine; int cmdShow;
{ char sInput[255];

char sOutput[255];

int status;

char *psinput,*psOutput;

/* read a string from a predefined file*/

read_string(sInput);

psInput = sInput;

psOutput = sOutput;

while (*psinput)

{
*psOutput = *psinput;
*psOutput = toupper(*psOutput);
psinput++;
psOutput++;

}

*psOutput = "0,

/* return a string to the caller®/
write_string(sOutput);

Qturn TRUE,;
¥

External program called by LEVELS5 OBJECT EXTERN2 KNB.
String is passed through the EXTERN2.DAT text file.

/

This program will work with any other program not just a Level5 Object application.

60

4.1.2. Calling a SERVER program

A SERVER program is written specifically to communicate with Level5 Object. It calls functions
that read the values of attributes in SEND statements (parameters passed from Level5 Object)
and that write values to RECEIVE statements (results passed back to Level5 Object). A
SERVER program must be an MS Windows program. The following is an example of a call to a

SERVER program from Level5 Object:

ACTIVATE "IPU, SERVER, C:\LEVELS5\PROG.EXE""
SEND name OF Employee

SEND employee.sex IS male

RECEIVE salary OF empioyee

The ACTIVATE command starts the server program PROG.EXE and establishes communication
between the server and Level5 Object. Next, Level5 Object sends two parameters to the server
using SEND commands which should have the corresponding /5 read statements. After the last
SEND command Level5 Object yields control to the server. After finishing the processing, the
server returns the result to Level5 Object using one of [5_write statements. Level5 Object reads
the result using the RECEIVE command. At this point the server terminates and the control is
returned to Level5 Object. If a Level5 Object application does not use the RECEIVE command
(it does not expect a result from a server) the server should use I5 guiz statement to inform

Level5 Object that it can continue processing.

' This PRL code can be used in a rule, in a demon, or in a when-changed or when-needed method.

61

Writing a SERVER program involves following the rules described below. A library of
functions, called LSSERVER.LIB, is supplied with Level5 Object to allow a SERVER program
to communicate with Level5 Object. A header file, LSSERVER.H, contains the function
prototypes that should be included in the program. Level5 Object requires that the SERVER
program be written in Microsoft C 5.0 or higher. Also, the MS Windows SDK is needed. In

writing a SERVER program the following steps should be followed:

¢ Establishing a communication path with Level5 Object:
- I5_access(programName) function should be called at the beginning of the server
program where programName is the name of the server e.g. PROG.EXE;
¢ Reading attribute values sent by Level5 Object:
- read calls must match the SEND statements of a Level5 Object application (ef means
a Certainty Factor);
- I5_read_num(cf,num) function reads a NUMERIC attribute;
- 15_read_logical(cf) function reads a SIMPLE, COMPOUND, and
MULTICOMPOUND attributes;
- 15_read_string(cf,string,length) function reads a STRING attribute;
¢ Writing attribute values to Level5 Object (passing back results):
- write calls must match RECEIVE statements of a Level5 Object application (cf means
a Certainty Factor),
- IS_write_num(cf,num) function passes a NUMERIC value to Level5 Object;
- IS_write_logical(cf) function passes a SIMPLE, COMPOUND, and
MULTICOMPOUND attributes to Level5 Object;
- IS_write_string(cf,string,length) function passes a STRING attribute to Level5 Object;
¢ Synchronizing with Level5 Object:
- it is only needed when no SEND and RECEIVE statements are used in an
ACTIVATE (or ESTABLISH) command,
- 15_quit() function should be used to inform Level5 Object that it can continue processing.

The EXTERN.KNB application demonstrates how to use a SERVER program in Level35
Object. It accomplishes the same task as EXTERN2.KNB - converting a string to upper case, but
instead of passing the string through a file it passes it through memory using the ACTIVATE

command. The following code is used:

62

-

WHEN CHANGED
BEGIN
ACTIVATE "IPU,SERVER,C:\PRG\L5O\SERVER\TOUPPER.EXE"
SEND sir1
RECEIVE str2
END

/

The TOUPPER.C program is written in Microsoft C - no other compiler can be used. It must

also be linked with LSSERVER.LIB library. The string is passed through memory which is

much more efficient than passing it through a file. The code is shown below:

/*FILE : TOUPPER.C
DESCRIPTION : Convert all characters from a string to upper case.

External program called by LEVEL5 OBJECT's EXTERN.KNB,

*/

#include <windows.h>
#include <ctype.h>
#inclade "15server.h"

int PASCAL WinMain(HANDLE,HANDLE,LPSTR,int);

int PASCAL WinMain(hInstance, hPrevInstance, IpszCmdLine, cmdShow)
HANDLE hinstance, hPrevInstance; LPSTR IpszCmdLine; int cmdShow;
{ char sInput[L5SERVER_MAX STRING LENGTH];

char sOutput[L5SERVER MAX STRING LENGTH];

int status;

char *psInput,*psOutput;

char cf;

/* establish the communication link with LEVELS OBJECT */
if ((status = 15_access("TOUPPER . EXE")) < 0) !
return FALSE;

/* read a string from a LEVEL5 OBJECT's SEND statement */
15_read_string(&cf, sInput, LSSERVER_MAX _STRING LENGTH);

psInput = sInput;
psOutput = sOutput;
while (*pslaput)

{

*psOutput = *psinput;
\\ *psOutput = toupper(*psOutput);

pslnput++;

~

/

1

I5_access, IS_read_string, and IS_write_string are supplied in the LSSERVER LIB library.

63

: I
psOutput++;

¥
*psOutput = 0",

/* return a string to the LEVELS OBJECT's RECEIVE statement */
15_write_string(cf, sOutput);
return TRUE;

The EXTERN1.KNB application is almost identical to EXTERN.KNB but instead of
using Level5 Object’s ACTIVATE command it uses the ESTABLISH command. This is a more
efficient method when a server program is called more than once. The first call will load the
server program into memory and it will stay there, so all subsequent calls will not require
reloading it. This method requires that a server be written in a specific way - it must stay in a

loop until it cannot communicate with Level5 Object. This is shown below:

ﬂ FILE : TOUPPER1.C \

DESCRIPTION : Convert all characters from a string to upper case.
External program called by LEVELS OBJECT's EXTERN1.KNB.

*/

#include <windows.h>
#include <ctype.h>
#include "15server.h"

int PASCAL WinMain(HANDLE,HANDLE LPSTR,int);

int PASCAL WinMain(hInstance, hPrevnstance, IpszCmdLine, cmdShow)
HANDLE hinstance, hPrevinstance; LPSTR IpszCmdLine; int cmdShow;
{ char sInput[L5SERVER_MAX STRING LENGTH];

char sOutput[LSSERVER_MAX STRING LENGTH];

int status;

char *psInput,*psOutput;

char cf:

/* establish the communication link with LEVELS5 OBJECT */
if ((status = 15_access("TOUPPER1.EXE")) < 0)

\ return FALSE; /

64

/* Continue the loop until 15_read string() or 15_write_string fails() */ \
while (status >= 0)
{

/* read a string from a LEVELS5 OBJECT's SEND statement */

status = 15_read_string(&cf, sInput, LSSERVER_MAX_ STRING LENGTH);

psInput = sInput;

psOutput = sOutput;

while (*psinput)

{
*psOutput = *psInput;
*psOutput = toupper(*psOutput);
psinput++;
psOutput+-+;

}

*psOutput = \0";

/* return a string to the LEVELS OBJECT's RECEIVE statement */
if (status >= 0)
status = 15_write_string(cf, sOutput);
3
return TRUE;

\ J

4.2. Calling external programs/functions in Kappa-PC

Kappa-PC provides several methods of calling external functions. The simplest method
allows executing an external MS DOS or MS Windows program from within a Kappa-PC

application. This is accomplished by the Execute() function, for example:

Execute(" c:\windows\write.exe", "myfile.txt");

This function call will start the MS Windows Write program which will open mytext.txt file for

editing. Up to three arguments can be used with Execute() function.

65

The second method is Kappa-PC’s ability to generate a C code for the Kappa-PC-based
application using the KAL' compiler. Once the C code is generated it can be extended by any C
functions that are needed. Next, the C code must be compiled and linked into an MS Windows
DLL using a standard C compiler and linker able to produce DLLs. Once the DLL is created it
can be run by Kappa-PC, for example: win kappa myapp.dil. Kappa-PC is still needed to run a
compiled application but it will work much faster than a KAL-based application. The whole
procedure of generating a C code from a KAL code is not simple. First, a kalmake. cfg file must
be created (its contents depends on the compiler and linker used). Next, the KAL compiler can
be used to generate the C code. This can result in a number of error messages because some
KAL functions cannot be compiled. The user must modify the KAL code (by substituting those
forbidden functions with others) until no errors are signaled. Once the KAL code is converted to
the C code, the user-defined C functions can be added (certain guide lines must be followed).

Finally, the C code can be compiled and linked into a DLL.

The next two methods of calling external functions are very similar to each other and
both involve using DLLs. Kappa-PC provides a set of KAL (Kappa Application Language)
functions to directly access functions from Dynamic Link Libraries (DLLs). The user only has to
know the name of a function, the types of parameters passed to the function, and the type of a
return value. In order to make a DLL function available to the KAL application the function has

to be registered by calling the DeclareDLL function: DeclareDLL(KalName, DLLName,

' KAL stands for Kappa-PC Application Language.

66

LibName, ReturnType, ArgType,...). Once the DLL function has been registered it can be

used as if it were a built-in KAL function. Other DLL related functions provided by Kappa-PC

arc.

- DeleteDLL(KalName): deletes a previously registered function;

- SetPointerData(pointer, offset, type, value): sets the memory value at the address of

pointer +offset to value;

- GetPointerData(pointer, offset, type): gets the data value at the memory address of

pointer-+offset;

- SizeOf(type): returns the size of the specified data type in bytes.

By using the above functions it is possible to call functions from both off-the-shelf DLLs (e.g.

those that are part of Microsoft Windows) and user-written DLLs. The following example shows

how to register and use several DLL functions from the Microsoft Windows’ Kernel DLL. It

also demonstrates how to use the GetPointerData function in order to retrieve the result of a

previously called DLL function [Kappa-PC Advanced Topics, 1992].

/ Example:

DeclareDLL(Lock, GlobalLock, kernel, POINTER, HANDLE);
DeclareDLL(Unlock, GlobalUnlock, kernel, INT, HANDLE);
DeclareDLL(Free, GlobalFree, kernel, HANDLE, HANDLE);

Global:Handle = Alloc(2, 256);
Global:Pointer = Lock(Global:Handle);
GetWinDir(Global:Pointer, 256);
GetPointerData(Global:Pointer, 0, STRING);
Unlock(Global:Handle);
Free(Global:Pointer);
DeleteDLL(Alloc);
DeleteDLL(Lock);
DeleteDLL(Unlock);
DeleteDLL(Free),
\DeleteDLL(GetWinDir);

DeclareDLL(Alloc, GlobalAlloc, kernel, HANDLE, INT, DWORD);

~

DeclareDLL(GetWinDir, GetWindowsDirectory, kernel, INT, POINTER, INT);

67

The first five calls to the DeclareDLL() function register with Kappa-PC five functions from
MS Windows kernel DLL. These functions are: GlobalAlloc(), GlobalLock(),
GlobalUnlock(), GlobalFree(), and GetWindowsDirectory(). After registration these
functions are used as if they were built-in KAL functions. At the end all functions are deleted

using DeleteDLL() function calls - they are no longer available to the KAL application.

Another method of using DLL-based functions in a KAL application is very similar to the
previous method. The only difference is that instead of using the DeclareDLL() function to
register external functions with Kappa-PC the external functions are automatically registered
when Kappa-PC starts up. This makes the external functions become the part of KAL just as
built-in functions are. In order for Kappa-PC to automatically register external DLL functions a
special procedure must be followed. First, the new functions must be registered in the udllinit.c
file provided by Kappa-PC. The template.def file, also provided with Kappa-PC, must then be
customized - it should declare all new functions and export them. Next, the DLL containing new
functions should be created (using the provided template.mak make file). Finally, the kappa.ini

file must be edited - it should register all new functions with Kappa-PC kernel.

4_3. Conclusions

All the functionality necessary to call external programs is provided by Level5 Object.
Calling EXTERN program is much easier and does not impose any special requirements on the

external program. Parameters can be passed on the command-line, through ASCII files, or

68

through DBase files. If passing parameters through the files is not efficient enough then
SERVER program must be used. Writing a SERVER program imposes special requirements on
the program and can be cumbersome but it allows passing parameters and results efficiently
through memory. Also a SERVER program must be written in Microsoft C. Level5 Object

should support other most popular C compilers such as Borland C+ +.

Kappa-PC provides a more generic mechanism of calling external functions than Level5
Object. The use of DLLs is more convenient than the use of conventional libraries because no
linking is necessary for the application to use DLL-defined functions. DLLs also can be created
in any programming language that supports DLLs (e.g. C, C+ +, Pascal). The interface to
DLLs consists of a few easy-to-use functions built into Kappa-PC. The only step required, before
an external DLL function can be called, is registering the function. All expert system tools

running in the Microsoft Windows environment should support DLLs.

The ability to call external code, written in a conventional programming language, greatly
enhances the power and flexibility of a knowledge-based system. It allows a knowledge-based
application to efficiently perform tasks, such as complex numerical functions or graphics display,
better suited to conventional-computing technology. Methods discussed in this chapters illustrate
how a knowledge-based application can call external code. Next we will look at how an external

(conventional) code can call knowledge-based tools.

69

5. Embedded Solutions - Implementation

Embedding a knowledge-based application in a conventional system can extend the
capabilities of an existing conventional application in a way that is transparent to a user. For
example, an existing database system can be extended by a knowledge-based front-end. As a
result the system will become easier to use but the user will not even notice the existance of the
knowledge-based component. This method of integration can be used as a transition vehicle from
an entirely conventional application to a more knowledge-based oriented application without

causing a shock to end-users.

Embedding an expert system in a conventional application means that the conventional
application has access to the expert systems knowledge base functions and working memory. The

conventional program must be able to do all of the following:

- insert initial facts into the expert system’s working memory;

- call the inference engine to start reasoning;

- select a control strategy (forward chaining, backward chaining);

- access and/or modify the goals on the agenda;

- display all the output messages, prompts, and explanations generated by the expert system;
- pass the user’s input to the expert system (e.g. responses to the prompts);

- interrupt the reasoning process of the expert system;

- access the results of the reasoning;

- examine the state of the reasoning process of the expert system.

There are two basic methods of embedding an expert system in a conventional application, a
tight embedding where the expert system’s object code is linked into the conventional

application, and a loose embedding where a conventional application communicates with an

70

expert system either using some form of application interface (e.g. using Microsoft Windows
DLLs) or using some form of client-server architecture where the expert system component acts

as a server (the client-server architecture approach is described in the next chapter).

5.1. Embedding in CLIPS

Tight embedding of an expert system in a conventional program (e.g. written in the C
language) allows for the closest and most efficient, in terms of program execution, integration of
both technologies. The implementation of this approach is typically quite difficult. Both systems
must be linked together to form one executable module. Knowledge of the internal structures of
both systems and code modifications are necessary. The major benefit is a very tight integration.
The expert system can call functions directly from the conventional system, and the conventional
system can call the expert system’s inference engine directly and can access the working memory
of the expert system component directly. Also a programmer, having access to the expert
system’s source code, can modify the expert system’s internal functions to customize its
operation (this can be very difficult and tricky even for experienced programmers). This

approach to embedding is offered by CLIPS [William Mertrey February 1991].

In order to create an embedded CLIPS application it is necessary to compile the
knowledge-base to C source code using the rules-rfo-c option supplied by CLIPS. Next, the C
source code generated from the knowledge-base can be recompiled and linked with CLIPS

run-time libraries as well as with other conventional C code. The result is an executable code.

71

Also, CLIPS comes with the C source code that can be customized by the developer and

recompiled resulting in a customized version of CLIPS.

5.2. Embedding in Kappa-PC

A different method of embedding is used in Kappa-PC. The Kappa-PC kernel, containing

all the essential elements of the tool, is structured into several DLLs:

- the foundation layer DLLs provide memory allocation and management, error and
exception management and recovery, list management, and a string table, together with some
general utilities;

- the object layer DLLs provide for the management of objects, slots, methods, functions,
rules, and goals; it contains all the inheritance management as well as Kappa-PC Application
Language interpretation modules;

- the KAL library layer DLL provides a set of functions that are registered to be accessed
from the KAL language;

- the rule system layer DLLs contain the rule network management, as well as the forward
and backward engines;

- the active images management layer DLL contains the functionality to manage session
windows, images, and menus;

- the database interface layer DLLs provides interface to various database systems, such as
Lotus 1-2-3, dBase III, and through SQL to relational databases using TechGnosis product;

- the zools layer DLLs contain functions for managing development tools, such as the KAL
interpreter window and the KAL View Debugger.

This structured DLL system allows for relatively easy access to the Kappa-PC functionality from
other Microsoft Windows-based conventional applications. The only requirement imposed on a

conventional program is that it must follow the Microsoft Windows rules of using DLLs.

72

Kappa-PC currently can support only one application at a time - no more than one application
can access Kappa-PC’s kernel DLLs [Kappa-PC Advanced Topics, 1992]. In order to link the
Kappa-PC kernel libraries a developer must use the appropriate "include files" (supplied by
Kappa-PC) and link the application with the Kappa-PC-supplied libraries (LIB files). An
alternative method is to load the Kappa-PC libraries dynamically, using the MS Windows
LoadLibrary() function, and then call Kappa-PC kernel functions using the GetProcAddress()

function.

Another advanced feature of Kappa-PC is its ability to compile KAL applications into C
code which in turn maybe integrated with other C code, compiled and linked into a robust
executable code (in the form of a DLL). The process of generating C code from a KAL-based
application is described in detail in chapter 4. Despite Kappa-PC’s ability to create classes and
instances dynamically e.g. MakeClass(), Makelnstance(), pointers to objects are not supported

which constitutes a major limitation.

5.3. Embedding using Object-Oriented Programming Technology

The CAD Inference Engine (CADIE) implements a rule-based inference engine designed
to be easily embedded in other applications, specifically CAD tools developed in C+ +[David
W. Franke, Dec. 1990]. CADIE uses features of object-oriented programming to achieve
integration. CADIE’s unique feature lies in its integration of application data structures with

rules and assertions. This is accomplished by using an object-oriented system for both its

73

knowledge representation (rule-based) and inference engine. This is shown by the following class

hierarchy (figure 5.1):

4 e
DatyB_Object Uniﬁcaﬁon_Obj\ Goal

Rule Object

Invecation_Object / T V\
Tool_Object Assertion Predicate Constant Variable
Rule_Invocation Assertion Invecation Tool_Invocation_Object

The CADIE class hierarchy.

| gure.l
This hierarchical organization of CADIE (figure 5.1), which relies on such features of
object-oriented programming like inheritance and polymorphism (the ability of different objects
to respond to the same interface), enables an easy integration of CADIE into other applications
written in C+ +. Two special classes Tool_Object and Tool _Invocation Object are provided as
an interface to an application. These classes define member functions required by the inference
engine of CADIE, providing transparent access to application-defined objects. An application
developer has to derive application-specific objects (classes), that will be accessed by the
inference engine, from the class Tool_Object. He also has to create, for every
application-specific object derived from the Tool Object class, a new class derived from the

class Tool_Invocation_Object. This new class has to redefine three member functions:

74

virtual char **cadie_One_Place_Predicate_Names();
virtual char **cadie_Two_Place_Predicate Names();
virtual int cadie_Unify_Two_Place_Predicate(cadie_Object *, cadie_Substitution *, int);

The approach to embedding expert system capabilities in conventional systems used in
CADIE enables tight, easy-to-use and efficient integration of both technologies. CADIE itself is
not as powerful and flexible as other well-established expert system tools so it could not be used
for large-scale expert system development. On the other hand, CADIE demonstrates the potential
benefits of object-oriented programming for expert system tools. If any of the leading expert
system tools currently on the market could be ported to C+ + it could use the approach of
CADIE to embedding. Other interfaces (e.g. database interface) of such a tool could benefit in a

similar way from object-oriented programming.

5.4. Conclusions

The approach to embedding used in Kappa-PC seems to be superior to the one used in

Clips (tight embedding). It is far easier to use since it does not require understanding the source
code of an expert system tool. The efficiency of functions called through DLLs is almost equal to
the functions linked directly into the application. The DLL approach to embedding should satisfy
the needs of even the most sophisticated applications providing the functions accessible through
DLLs cover all aspects of the expert system tool. The most elegant and the easiest-to-use method
of embedding is used in CADIE. Its power comes from object-oriented programming,
specifically from inheritance and polymorphism. Future expert system tools should be ported to

object-oriented languages and fully utilize the object-oriented programming mechanisms.

75

¥

One very important feature of object-oriented programming is the ability to create objects
dynamically and to access those objects by pointers. Pointers to objects can be stored in simple
variables or in more complex structures like arrays of pointers or linked lists. Some objects could
be related to other objects by having a pointer to an object as an attribute. Such features would
significantly increase an expert system’s flexibility and efficiency. Neither Level5 Object nor

Kappa-PC supports pointers to objects.

76

6. Client-Server Architecture - Implementation

A Client-Server architecture is such a computing environment in which two or more
applications communicate with each other using a common communication protocol. This
requires a multitasking environment (e.g. MS Windows). The communication protocol must be
designed in such a way that in any conversation one application assumes a role of a client (or
master) and another application assumes a role of a client (or a slave). Typically a client
application is responsible for initialization and termination of a conversation. MS Windows,
which provides a multitasking environment, has a built-in communication protocol called DDE

(Dynamic Data Exchange) that can be used as a basis for the Client-Server architecture.

A Client-Server architecture is the most flexible method of integrating expert system
technology with conventional programming technology. On the other hand this method imposes

the highest requirements on the operating system of all the methods discussed previously:

- the operating system must provide multitasking capability in order to allow at least two
applications to execute simultaneously (a client and a server);

- the operating system must support inter-process communication to allow exchanging data and
commands between a client and a server;

Microsoft Windows fulfills the above requirements. It is a multitasking system and provides a
Dynamic Data Exchange (DDE) protocol which allows two or more applications to exchange
both data and commands through memory. Further discussion of a client-server techniques will

be based on Microsoft Windows and the DDE protocol.

77

All applications used in the DDE conversation must have been written according to
Microsoft specifications for the DDE protocol. Each DDE conversation involves two
applications. The application which starts the conversation assumes a role of a client and the
responding application becomes a server. The client initiating the conversation must specify an
application that will become a server, a topic (e.g. a file name), and an item (e.g. a column in

a spreadsheet). The client must also specify one of three types of links for the selected topic and

item:
cold link: the server sends data only on the client’s request;
warm link: the server informs the client about any change in data and then the client
can request the server to send it;
hot link: the server sends data to the client every time when data changes.

The cold link is useful when the client will need data from the server only at some
predictable points in time and when the client should not be interrupted (even when new data is
available) because it performs some important tasks. It can also be used when data in the server
application does not change very often and when the client does not need to react quickly to the
changes in data. The warm link is useful when the client wants to be informed about data
changes immediately but it does not want to be interrupted when performing important functions.
The client can request data from the server when it is convenient for it. The hot link is useful

when the client wants to receive data immediately after the data changes take place.

78

The client can also send commands to the server requesting the server to perform some
actions. Finally the client is responsible for terminating the conversation. One application can be

involved in several DDE conversations simultaneously and assume both client and server roles.

6.1. Client-Server Architecture in Level5 Object

Level5 Object supports the DDE protocol through the DDE system class which has the

following structure:

ALASS DDE \

WITH app STRING
WITH topic STRING
WITH item STRING
WITH active SIMPLE"
WITH attachment REF?
WITH data ready SIMPLE
WITH action COMPOUND?
poke,
request,
execute
WITH link COMPOQUND
hot,
warm,
cold
WITH append SIMPLE
WITH autostart SIMPLE
WITH time out INTERVAL*
WITH show error SIMPLE
WITH default error handling SIMPLE
WITH error NUMERIC
WITH error message STRING /

Level5 Object 2.5 only supports half of the protocol with Level5 Object being a client. In

Level5 Object, a DDE conversation with another application is represented as an instance of the

! SIMPLE attribute type corresponds to Boolean in Pascal.

> REF attribute type is a pointer to an attribute or to a class instance.

> COMPOUND attribute type is like Enumerated type in Pascal, for example the action attribute can only assume
one of the following values: poke, request, or execute.

INTERVAL attribute type represents a duration of time in days, hours, minutes, seconds, and miliseconds.

79

DDE system class. This class insulates the user from the complexities of DDE protocols and
reduces the chance of errors when establishing a DDE conversation. The attributes of the DDE
class that are required to initiate a conversation are app, which is the server application name;
topic, which is an agreed upon topic of a conversation; and item, which can be any number of
topic-specific items. For example, a request to Microsoft Excel for a range of spreadsheet cell

values would have the following conversation attributes:

app = "Excel";
topic = "Stock.xIs";
item = "R1C1:R5C20" (range of cells).

When a knowledge base is run, Level5 Object examines each instance of the DDE system class.
If the app and topic attributes have values, and the active attribute has a value of TRUE, then
Level5 Object attempts to establish a conversation. Further, if the item and action attributes
have values, then data is exchanged. At any time during a session, active OF DDE may be set
to TRUE to initiate a conversation. Setting active to FALSE terminates a conversation. The
attributes of instances of the DDE class can be given values either at edit time (after the

knowledge base has been created) or at run-time through rules, demons, and methods.

Level5 Object supports all types of DDE links: hot, warm, and cold. In a cold link, a
client receives data from a server only upon request by the client. In a hot link, whenever data
changes in the server, the server automatically sends the new values to the client. In a warm

link, the client notifies the server whenever the specified data item changes. In Level5 Object, a

80

warm link is set by initiating a conversation, entering a value for the item attribute that is to be
monitored, and then setting the compound item link OF DDE IS warm to TRUE. Whenever the
data item in the server changes, the server informs Level5 Object by setting the attribute data
ready to TRUE. The data ready attribute can then be used as a trigger for a demon in order to

obtain the data, e.g.:

item OF DDE_to_Excel := "R1C1"
link OF DDE_to_Excel IS warm

DEMON get data

IF data ready OF DDE_to_Excel

THEN action OF DDE_to_Excel IS request
J

\-

In this example, one instance of the DDE system class, DDE_to_Excel, is used. First, link OF
DDE _to_Excel sets the warm link, then whenever the data in R1C1 of the Excel spreadsheet
changes, the data ready attribute for that instance is set to TRUE. When this happens, the

demon’ fires, and the spreadsheet values are requested from the server.

The data that Level5 Object receives and transmits through the DDE protocol is instance

data’. The attachment OF DDE attribute determines what data is sent or received. There can be

four attachment types:

1) The attachment can be an attribute of an instance.
When the attachment is an attribute of a specific instance, a single value is being exchanged,
such as one cell in a spreadsheet, one block of text in a document, etc.

' Demons in Level5 Object are rules that are applied using a data-directed (forward chaining) algorithm.

* Level5 Objects sends and receives values of class instances.

81

2) The attachment can be an attribute of a class.

When the attachment is an attribute of a class, Level5 Object makes a new instance of the
class for each value received. In a spreadsheet, these new instances create a column of data
consisting of all of the instance values of that attribute.

3) The attachment can be an instance.

When the attachment is an instance, each attribute of this instance will exchange its value. It
is analogous to a row in a table. No new instances are created. The data received is matched
to the subsequent attributes in the instance.

4) The attachment can be a class.
When the attachment is a class, a whole table of data is exchanged. The instances of the class

represent rows, and the attributes represent columns. Instances are created for each row
received.

6.2. DDE Examples in Level5 Object

Two Level5 Object example applications will be described in order to illustrate some of
the capabilities of Dynamic Data Exchange. The first example application, CONFIG.KNB,
comes with Level5 Object. The second application, DDE.KNB, has been created for the

purposes of this thesis.

6.2.1. CONFIG.KNB Application

CONFIG.KNB is an example application that comes with Level5 Object (figure 6.1). On
startup it launches, using the DDE autostart attribute, two other programs: Microsoft Excel - a
spreadsheet, and Q + E - a relational database. Using two separate DDE system class instances,
Level5 Object asks Microsoft Excel to open the CONFIG.XLS spreadsheet and the

CONFIG1.XLC chart.

82

/prices for spreadsheet

CONFIG.KNB SQL Query
Level’ Object
— (DDE Client) I‘
pie
chart records
retrieved
from
. 4 database @
CONFIG.XLS Q +E
Microsoft Excel Relational Database
(DDE Server) (DDE Server)
data
o e 3
CONFIG.KNB Application

Figure 6.1

Both DDE instances are shown below:

mNSTANCE open chart file ISA DDE \
WITH app := "EXCEL"

WITH topic := "SYSTEM"

WITH item := "[OPEN(\"CONFIG1.XLC\")]"
WITH active := FALSE

WITH action IS execute

WITH link IS cold

WITH append := TRUE

WITH autostart := TRUE

WITH time out := 0 00:00:10.000

WITH default error handling := FALSE

INSTANCE open spreadsheet file ISA DDE
WITH app := "EXCEL"
WITH topic := "SYSTEM"
WITH item := "[OPEN(\"CONFIG.XLS\")]"
WITH active := FALSE
WITH action IS execute
WITH link IS cold
WITH append := TRUE
WITH autostart := TRUE
WITH time out := 0 00:00:10.000
KWITH default error handling := FALSE /

83

LEVEL5 OBJECT DDE Demo - Configuration

File
Click on a piCture to Selected Hems
select a component _ i
Description Price
monitor h Samsung 12 inch monochrome monitor 79.00
- printer Magnawvox Max Pro 286 cpu 888.00
5 Conner CP3204 hard drive hard drive £399.00
i Epson ES-300C scanner 1499.00
keyboard Focus FK-5001 keyboard 69.00
i Star NX2420 Rainbow printer 299.00
hard Cardinal MB2296SR madern 99.95
Logitech Mouseman mouse 134.50

Sub total 3767.45
Tax 226.04

) Total $3993.49

Exﬁlain

Figure 6.2

The application displays a graphic of a personal computer system consisting of several
components (figure 6.2): a monitor, a CPU, a keyboard, etc. When a user clicks with the mouse

on one of the components Level5 Object sends an SQL query to Q + E, for example:

SELECT item,features,pricc FROM invntry.dbf WHERE type = "monitor" ORDER BY price

Based on that query, Q + E retrieves several records from a database which is in DBase format.
Retrieved records contain a description of the selected computer component, its features and a
price. Q + E sends the retrieved records via DDE to Level5 Object. Level5 Object in turn

displays the received records in a table asking the user to select one record (see figure 6.3). The

34

selected item is placed in a Selected Items table displayed in the main window. The above

sequence of events is accomplished by the following DDE system class instance:

- N

INSTANCE select components ISA DDE
WITH app :="QE"
WITH item := "All"
WITH active := FALSE
WITH attachment := resuit table
WITH action IS request
WITH link IS cold
WITH append := FALSE
WITH autostart ;= TRUE
WITH time out := 0 00:01:30.000
WITH default error handling := FALSE

/ LEYELS OBJECT DDE Demo - Selection

Click on a printer in the list and click the "Select’ button.

Description Features Price

Star NX2420 Rainbow 250 cps, 80 col, 24 pin $299.0

Okidata Laser 400 b year warranty on printhead, 4ppm, 300dpi $639.95

Panasonic KXP4420 laser 8 ppm. 300x300 dpi. 25 page cassette $786.00
Select Cancel

Figure 6.3

The following When-Changed Method' is invoked when the user clicks on a component. This

method creates and sends the actual SQL query to Q + E:

WHEN CHANGED
BEGIN
topic OF select components := CONCAT("SELECT item,features,price FROM
invntry.dbf WHERE type = "', CONCAT(name OF
component type, "' ORDER BY price"))
active OF select components := TRUE
... END

! When-Changed Methods are user-defined methods (procedures) called by Level5 whenever a value of an attribute

changes. :

85

Level5 Object then sends the prices of all items from the Selected Items table to Microsoft Excel

using the following DDE system class instance:

4 N

INSTANCE send prices ISA DDE
WITH app := "EXCEL"
WITH topic := "CONFIG.XLS"
WITH item := "prices"”
WITH active := TRUE
WITH attachment := current item price OF component type
WITH action IS poke
WITH link IS cold
WITH append := TRUE
WITH autostart := TRUE
WITH time out := 0 00:01:00.000
\ WITH default error handling := FALSE /

Level5 Object then requests a pie chart from Microsoft Excel showing the percentage of each

component’s price in the total system price (see figure 6.2). This is accomplished by:

\
4 INSTANCE get chart ISA DDE

WITH app := "EXCEL"

WITH topic := "CONFIG1.XL.C"

WITH item := "chart"

WITH active := TRUE

WITH attachment := picture OF chart picture
WITH link IS cold

WITH append := TRUE

WITH autostart := TRUE

WITH time out := 0 00:01:30.000

WITH default error handling := FALSE

- /

The pie chart received from Microsoft Excel is displayed in the main window (see figure 6.2).
All DDE links in this application are Cold Links meaning the active attribute of the DDE

instance must be set each time to invoke a data or command exchange.

The above example shows several important capabilities of Level5 Object’s DDE

implementation. First, Level5 Object can conduct a DDE dialog with several applications

86

simultaneously. Secondly, Level5 Object can transfer data in both text and graphic format. It
also shows that data from a database can be accessed using DDE provided there is a server
database application supporting DDE. Actually, DDE provides a flexible enough mechanism to
make up for the lack of both a built-in database interface and the ability to call external

functions.

6.2.2. DDE.KNB Application

/ component prices DDE.CPP component prices
Borland C++
— (DDE Server) —
component price
prices prercentage
! 9
CONFIG.XLS DDE . KNB
Microsoft Excel Level5 Object
(DDE Server) (DDE Client)

DDE.KNB Application

Figure 6.4

One of the limitations of Level5 Object’s DDE capabilities is lack of support for DDE
Server services. This means that Level5 Object applications can only take the role of a client in
DDE conversations. In many cases we may want to develop a main application using a

conventional programming language and have a Level5 Object application be a server to our

87

main program. The main program would provide the user interface and other "conventional"
functionality and it would ask the Level5 Object-based application (knowledge base) to do some

processing whenever appropriate.

This example (figure 6.4) shows how to create a system in which a Level5 Object-based
application DDE.KNB, even though a DDE client, acts as if it were a server with respect to a

DDE.CPP program developed in Borland’s C+ +.

The main program starts by opening a main window and launching two applications:
Microsoft Excel and Level5 Object. After starting Microsoft Excel, DDE.CPP initiates a DDE
conversation with Excel where DDE.CPP becomes a DDE client and Excel becomes a DDE
server. The topic of the DDE conversation is System and then DDE.CPP sends a DDE
command asking Microsoft Excel to load a spreadsheet called COMPUTER.XLS. After that
DDE.CPP terminates the DDE conversation with Excel and starts a new one with a topic now
being the spreadsheet name. This establishes a hot link between Excel and DDE.CPP. The

following C+ + code accomplishes this task:

~
if (WinExec(msgbuf, SW_SHOWMINIMIZED) <= 32)
{
ok=0;
MessageBox(HWindow,"Could not start Excel.","Error",
MB_ICONEXCLAMATION | MB_OK);
H
if (ok)
- J

88

{
InitiateDDE("EXCEL", "System”);
SendCommand("[OPEN(\"computer.xis\")]");
TerminateDDE();
InitiateDDE("EXCEL", "computer.xIs”);
InitHotLinks();

}

N /

DDE.CPP starts Level5 Object with the following command:
WinExec("c:\I5025\I5.exe c:\\prg\I50\\dde\\dde.knb /r", SW_SHOWMINIMIZED);

This command starts Level5 Object which automatically loads and starts running the DDE.KNB

knowledge base. DDE.KNB immediately initiates two DDE conversations with DDE.CPP using

the following DDE system class instances:

G\ISTANCE dde1 ISA DDE \
WITH app := "DDE"

WITH topic := "LEVELS5"

WITH item := "DATA"

WITH active := FALSE

WITH attachment := DataReceived
WITH data ready := FALSE

WITH link IS hot

WITH append := FALSE

WITH autostart := FALSE

WITH time out := 0 00:00:10.000
WITH default error handling := TRUE

INSTANCE dde2 ISA DDE
WITH app := "DDE"
WITH topic := "LEVEL5"
WITH item := "CONTROL"
WITH active := FALSE
WITH attachment := str OF ControlStr1
WITH data ready := FALSE
WITH link IS warm
WITH append := FALSE
WITH autostart := FALSE
WITH time out := 0 00:00:10.000
kWITH default error handling := TRUE /

89

The ddel instance initiates a hot DATA link and the dde2 instance initiates a warm CONTROL
link. DATA link is used to exchange data in both directions while CONTROL link is used by
DDE.CPP to send commands to DDE.KNB. The CONTROL link then enables a DDE server to

send commands to a DDE client so it appears as if their roles have been reversed.

After starting both Excel and Level5 Object, DDE.CPP waits for the user to select an
action. The main window (C+ + DDE DEMO) contains two child windows (see figure 6.5), the
upper one is responsible for the DDE dialog with Excel while the lower one controls the DDE
dialog with the Level5 Object DDE.KNB knowledge base. When the user clicks on the Get Data
button in the Microsoft Excel DDE window, DDE.CPP sends a DDE request for data to
Microsoft Excel. Microsoft Excel responds by retrieving the requested data from the previously
open spreadsheet and sending it back to DDE.CPP. DDE.CPP, after receiving data from Excel,
displays the data in the window. The user can modify that data and send it back to Excel. The
spreadsheet can be modified by clicking on the Send Data button. Data received from Excel can

be sent to DDE.KNB by clicking on the Send Data button in the Level5 Object DDE window.

90

=] C++ DDE Demo ME = -

Command File
Microsoft Excel DDE : :
Monitor 655 B Data Received via DDE
CPU 1200 - Name Cost
Hard Disk 450 Monitor G55
Keyboard 55
Mouse a0 cpu 1200
Modem 95 Hard Disk 450
Keybhoard 55
Mouse 40
n Modem 95
Get Data HSend Data
Levels Object DDE
: +
E‘SS“N ig?a : I Clear Table Process
Hard Disk 18.04 l Get Data Send Results
evhoard 2.2
ouse 1.6
odem 3.81
n

Process Send Data

Figure 6.5 DDE.CPP and DDE.KNB running simultaneously (Excel in the background)

DDE.KNB receives data from DDE.CPP via the hot DATA link which is represented by ddel
instance of the DDE system class. Immediately after data is received a table in the main window
is updated. Clicking on the Process button in the DDE.KNB window will trigger processing
which in this case calculates the percentage of a total computer price for each item. The results
of the processing are sent back to DDE.CPP via the same DATA link by pressing on the Send

Results button.

91

This is accomplished by the following Level5 Object’s code:

\
ATTRIBUTE SendData SIMPLE
WHEN CHANGED
BEGIN

active OF dde1 := FALSE

attachment OF dde1 := Result

action OF dde1 IS poke := TRUE

active OF dde1 := TRUE

attachment OF dde1 := DataReceived
9 END)

In this case DDE.KNB simply uses the capabilities of a DDE client. The same result can be
achieved by clicking on the Process button of DDE.CPP. Here all actions are triggered by
DDE.CPP even though it is a DDE server. This is achieved via the CONTROL warm link.
DDE.CPP sends a command "GO" in the string format to DDE.KNB. Since this is a warm link

data ready OF dde2 becomes TRUE which triggers the attached demon:

DEMON 2

IF data ready OF dde2

THEN getControlStr := TRUE

AND FORGET data ready OF dde2

This in turn causes the following When-Changed method to be invoked:

\

/WHEN CHANGED
BEGIN
str OF ControlStri :=""
action OF dde2 IS request := TRUE
action OF dde2 IS request := FALSE
IF str OF ControiStr1 = "go™ THEN
BEGIN
DoProcess := TRUE
SendData := TRUE
str OF ControlStr{ :=""
ASK display3
END
END

92

As a result DDE.KNB performs the processing and sends the results to DDE.CPP using the
DATA DDE link. Using the same mechanism other commands could be sent to DDE. KNB
requesting other services. Consequently, the Level5 Object application acts as a server to
DDE.CPP even though it is actually a client in the DDE protocol. The main advantage of having
a Level5 Object application act as a server to a conventional application is that the expert system
can be hidden from the user. The expert system will be virtually embedded in the conventional
system. The user will perceive the new system as the improved conventional application so he or

she will fill comfortable using it.

6.3. Dynamic Data Exchange in Kappa-PC

Kappa-PC provides full support of DDE services including both client and server
functionality [Kappa-PC User’s Guide, 1992]. As a client Kappa-PC can send DDE messages to
other applications requesting data, modifying data, or executing commands remotely. This
functionality is implemented by four KAL (Kappa-PC Application Language) functions:
RemoteCheckStatus, RemoteExecute, RemoteGet, and RemoteSet. As a server Kappa-PC
responds to DDE messages from other applications. For example, the following DDE command
sent to Kappa-PC from any application will cause Kappa-PC to open a window with the "Hello"

message: ExecuteRemote "PostMessage (""Hello"");" application Kappa.

By default, the KAL commands are synchronous, but they can be made asynchronous by

specifying the optional argument NOWAIT with the DDE commands. Synchronous DDE

93

functions do not time out. They wait until the server application responds. While waiting, they
release control to other applications, thus allowing input from those applications. On the other
hand, asynchronous DDE functions achieve executions in series [Kappa-PC User’s Guide,1992].

The four DDE KAL functions are also supported through the C library interface:
- BOOL KpcCheckStatus(int iDDEJobId)

- int KpcRemoteExecute(BOOL bWait, LPSTR sCommand, LPSTR sApp, LPSTR sTopic)

- int KpcRemoteGet(BOOL bWait, LPSTR sCommand, LPSTR sApp, LPSTR sTopic, OBJECTID idObj,
ATOMID idSlet)

- int KpcRemoteSet(BOOL bWait, LPSTR sCommand, LPSTR SApp, LPSTR sTopic, LPSTR sValue,
LPSTR sTopic)

The functionality of the commands is identical to the KAL version. The arguments are not the
same, however. bWait and sTopic arguments, unlike in the KAL version, are required.
Implementation of the DDE protocol in Kappa PC is flexible enough to satisfy the needs of most
applications. It is also easy to use, since Kappa PC hides some lower-level details, for example

the process of DDE initialization and the DDE link types.

6.4. Summary

The DDE implementation in Level5 Object is quite complete except that Level5 Object
can only assume a role of a client and cannot be a server. This may be a serious limitation if we
want to have a main program written in conventional programming language and Level5 Object
to be called only to process a knowledge base and return the results. As shown in the second
example there is a way around this limitation - Level5 Object being a DDE client acts as if it

were a server, nevertheless a DDE server support by Level5 Object would be a valuable

94

improvement'.

Support for a client-server architecture, implemented as a DDE protocol, offers the most
powerful and most flexible method of integrating an expert system technology with conventional
technology. It can provide the functionality of all other discussed methods: database interface,
external function calls, and embedding in a conventional application. Despite its power and

flexibility DDE is relatively easy to use which makes the learning curve very short.

' Server support is planned for version 3.0 of Level5 Object to be released in the fall of 1993.

95

7. Knowledge Base Management

Knowledge base management facilities become increasingly important when a knowledge
base becomes larger and more complex. They are absolutely crucial for successful
implementation of a real-world expert system containing hundreds of objects and thousands of
rules. Most commercial expert system tools provide some of those utilities but none provides all

of them. Most important knowledge base management facilities are described below:

- Object Editors and Rule Editors: easy-to-use editors that allow a developer to view, modify,
and delete classes and objects, rules, and methods attached to those rules and objects;

- Object and Rule Browsers: allow a developer to display a hierarchy of objects showing their
relationships, inheritance, attributes, and attached methods, as well as relationships among rules (or
a knowledge tree); it should be possible to invoke editors directly from the object or rule browser
just by clicking with a mouse on a desired element;

- Debugger: allows stepping through rules and methods, setting break-points, and monitor values of
object attributes and variables;

- Session Trace or History facility: records in a text file all activities (activated rules, changes in
values of attributes, methods called, etc.) of an expert system during a session,

- Explanation facility: allows both a developer and the end-user to find out how a system reached
a conclusion or why it did not reach it;

- Knowledge Structuring facilities: ability to structure knowledge into small, independent
knowledge bases (or rule groups) that can perform independent tasks (e.g. solve subproblems); it
should be possible to switch the processing between those knowledge bases (both chaining and
calling); meta-knowledge might be necessary to control switching between knowledge bases;

- Knowledge Sharing facilities: ability to store pieces of knowledge, both objects with attached
methods and rules, in disk files and import them to other knowledge-based applications.

7.1. Knowledge Management Facilities in Level5 Object

Following is a discussion of knowledge management facilities found in LevelS Object [LevelS

Object User’s Guide, 1990].

96

7.1.1. Object Editors and Rule Editors

Level5 Object provides easy-to-use and well-designed editors for the following elements of a
knowledge base: rules (fig. 7.3), objects and attributes(fig. 7.2), agenda (fig. 7.4), methods (fig.
7.5), screen forms (fig. 7.6). All editors are well integrated and easily accessed from menus, the
icon bar (fig. 7.1), or other parts of the system. For example, by double-clicking on a rule
displayed in a knowledge tree it is possible to display that rule in a rule editor in order to view or

modify it.

-

File BuleTalk Reasoning Help

=0 e [EFR]

Figure 7.1 Icon Bar (Tool Bar)

. e

Class Attribute |nstance Facets View
New | Classes CLASS domain
7 display * St sql select

¥ domain v {Str) selection text

W file L1l St percentage text

N7 hyperregion | [Pid] legend picture

N7 invoice s show delete button

7 invoice item 8] button on display

N listhox N temp num

N7 message i [S] show help

, — {5) hide help

ﬁ o Instances ' (S) handle send prices error
'St sql select[l] TRUE S | 5] handle get chart error
(st selection text[1] TRUE G [g] halldl-e tselect components error
{Str) percentage text TRUE H {S; gg tz :jnd::utor
(Pic) legend picture TRUE
[S) show delete button FALSE
8] button on display FALSE —

([1 [+] Bel] I*/

Figure 7.2 Objects/Attributes Editor

97

P ‘Me‘thudszu{e_s.fDemons‘;
Demons Edit Select Lists View
4 4| b |All Demons
N7 add on BNl ™ add item to invoice +
< application ||~ dde error on get chart -
=7 checkhox 7 dde error on q&e L]
S checkbox group hd
7 column Save | New |4 [P |add item to invoice
\ component iype| ||DEMON add item to inveice i
IF double clicked OF table 2 |
N7 display r THEN add item OF invoice
instances
¥ send prices
N/ get chart
7 select components
7 open chart file
7 open spreadsheet
B
[+

Figure 7.3 Rules/Demons Editor

Agenda Editor

Goals V¥iew

primary valve —

Instances

4 the domain
{5} power supplied UNDET]
[5tr] instruction prompis]1] TRUE H
(Pic} equipment pictures{i] UNDET!

Classes Goals
7 circuit breaker #|| 1. machine jammed
N7 compressor - 1.1. limit switch problem
7 compressor moter 2. power supplied
™ domain - 2.1. live OF compressor motar
7 junction box
=7 machine
~“ main panel
~

(8] machine jammed UNDET|
[5] limit switch problem UNDET]
[5tr] conclusions and advice[l TRUE Y
!I | [+ B« |
Figure 7.4 Agenda Editor

98

: Methods/Rules/Demons - |-
Methods Edit Select Lists View
4 | b |All When Changed Methods
add on W add item. OF inveice ‘ :
application 7 calculate OF invoice .
checkbox =7 cancel OF invoice N
checkbox group Ehd
column Save | New |4]|P[add item OF invoice
component type WHEN CHANGED t
DDI BEGIN |
display IF CONFfselected OF table 2] = -1 THEN
ASK no selection message
Instances ELSE
W send prices BEGIN
7 get chart visible OF selection window := FALSE
<7 select components FIND invoice item
<~ open chart file LIMIT 1 T
< WHERE type OF inveice item = name OF component type
open spreadsheet WHEN NONE FOUND
MAKE invoice item
WITH type := name OF component type r

%I T el | +

Figure 7.5 Methods Editor

Displays Options Tools

Display Editor - main display
Character Attributes

100|
| B

200| SOOI | 400' SOOI GOOI
TEFITEE W WSV S SRS RPN NS S S RGN ST ST AP A

demonstrates how easy itis to [N b
Bl creale animation sequences with [N 7
il LEVELS5 OBJECT. The sequence i

Z

stroke gasoline engine. EEEEEEIEEEE
HOW WAS IT CREATED? I

The pictures were drawn with a =~ [SN
MS Windows paint program and [ERENENSNE 7

100
20_6 shows the mechanism of a four-
309

pasted into an array of pictures

in LEVELS OBJECT. The three
1L huttuns 'ANIMATE,' 'STEP,"
10 "[OP‘ are eat.h altat,hed to .1

ANIMATFE

A simple example of animation using LEVEL5 OBIECT

The ANIMATE knowledge base TN

ANIMATE

Figure 7.6 Display Editor

99

7.1.2. Object and Rule Browsers

Level5 Object provides the Knowledge Tree (fig. 7.7) facility which shows the relationships
among rules and demons. The tree can be displayed in several formats (e.g. collapsed, expanded,
partially expanded), it can show all rules, only backward-chaining rules, or only demons. It can
also show which rules where invoked during a session. Although the Knowledge Tree can be
useful in some situations, it is difficult to follow in the case of large knowledge bases. There is

no object browser that would show relationships between objects.

c i ' - Knowledge Tree

Tree View
TITLE DISPLAY: configuration display bl
B{No Demons _—
description |
i 4
name |
h 4
B variahle text PENo 'W’herghanged |
BD{No Demons |
show delete button IPES[WHEN CHANGED show dele'te button |
lype |
4
¢ = [P BESNo WH

(1o Def

& button on display |
. A4

button on display »E}l Mo Wh
I Ql No Del T.

Figure 7.7 Knowledge Tree

7.1.3. Debugger

Level5 Object is equipped with a debugger (fig. 7.8). It allows setting break points on rules or

attributes and it supports stepping through a knowledge base. The debugger always steps into a

100

method, it does not allow to go through a method in one step like most traditional debuggers do.
It also does not show which instruction or line inside a method is being executed. When in the

stepping mode the debugger allows to examine values of attributes through a Value List utility.

~

| Step or Continue : ' e -
Options —

Current Rule i

*|RULE 09 machine jammed
IF NOT bearings OK OF machin
OR NOT cylinders OK OF machi|-
)) THEN machine jammed
Fail Demon : conclusion 09 ELSE NOT machine jammed

Step Continue

| _ [T
= ' /

Figure 7.8 Debugger

7.1.4. Session Trace or History facility

‘Level5 Object provides a history facility (fig. 7.9). It allows a user to store a history of a session
to a text file in a readable format. The history shows all actions performed by Level5 Object’s
inference engine. Also, if a user is not interested in recording all the actions, he or she can set
filters that filter out unwanted information. The history facility is a very useful debugging and

testing tool.

101

‘History - FACTORY HST

File Filters! Stop!

Assignment : picture OF pointer

Context : arrow text[9] (Check bearings CF 100)

Assignment : text OF pointer text := Check bearings CF 100

Context : arrow text location[9] [L[100], T{64), R[208), B[82] CF 100)
Assignment : location OF pointer text := L{100], T[64). R[208], Bj82] CF 100
Context : arrow location[3] [L[184), T{82], R[192]. B[99) CF 100)
Assignment : location OF pointer ;= L{184], T{B2]. R[192), B[99] CF 100
Context : true labels]9] [Bearings FREE CF 100])

Assignment : true label OF answer box := Bearings FREE CF 100

Context : false labels[9] {(Bearings SEIZED CF 100)

Assignment : false label OF answer hox := Bearings SEIZED CF 100
Assignment ! attachment OF answer box := bearings OK OF machine CF 100
Assignment : output OF main window := test display CF 100

Display : test display

State : exiting FACTORY.KNB

Qu

Figure 7.9 History Facility

7.1.5. Explanation facility

.

Select a display for EXPAND information:
Current Selection:

configuration display
selection display
help display

L] No Selection

0K

Cancel

Figure 7.10 Expand Facility

102

Level5 Object offers explanation facility through the Expand facet that can be attached to
attributes (fig. 7.10). The Expand facet associates an attribute with a display window that can
contain both textual and graphical explanation of this attribute, for example it can explain why
the system is trying to determine a value of the attribute. The ability to use graphics as part of an

explanation significantly improves the quality of the information presented to the end user.

7.1.6. Knowledge Structuring facilities

Level5 Object allows chaining from one knowledge base to another. Attribute values can be
passed to the next (in chain) knowledge base through the Share attribute facet. Although the
concept of chaining is useful, the implementation makes it virtually useless because of a very
long execution time. Also, it would be useful to be able to call a knowledge base, and then to
return back to the previous knowledge base. Knowledge base context would have to be preserved
and restored automatically by Level5 Object.

Example of chaining:

WHEN CHANGED
BEGIN
IF go=TRUE THEN
CHAIN "myapp.knb"
END

7.1.7. Knowledge Sharing facilities

Level5 Object allows exporting a knowledge base to a text file. The knowledge base is stored in
a readable text format - it is translated to Level5 Object’s PRL (Production Rule Language). It is

also possible to import a previously exported knowledge base. This allows developers to port

103

Level5 Object-based applications to other hardware platforms. However, export and import
facilities work only with entire knowledge bases only. It would be useful to be able to
export/import parts of a knowledge base, for example a rule or an object. An example PRL code

is shown below:

@ERSIOst \

$LOCATIONS ARE PIXELS

ATTRIBUTE strl STRING
ATTRIBUTE str2 STRING
ATTRIBUTE convert SIMPLE
WHEN CHANGED
BEGIN
ACTIVATE "IPU,SERVER,C:\PRG\L5O\SERVER\TOUPPER EXE"
SEND strl
RECEIVE str2
END

INSTANCE the application ISA application
WITH unknowns fail := TRUE
WITH threshold = 50
WITH title display := display 1
WITH ignore breakpoints ;= FALSE
WITH reasoning on ;= FALSE

@H numeric precision ;= § /

7.2. Summary of Knowledge Management Facilities in Level5 Object

Level5 Object offers a very high-quality development tools when compared with other
expert system packages, for example Kappa-PC. It provides a wide range of tools which should
satisfy most developers. Level5 Object lacks however some important features and some tools
could be improved. One of the most useful tools lacking in Level5 Object is an Object Browser
that would graphically show dependencies (inheritance relations) between objects. The

Knowledge Tree tool should be improved mainly in the area of the display formats. The

104

Debugger should point to individual statements inside methods. It should be possible to
export/import objects like it is done in Kappa-PC. Chaining to other knowledge bases should be
more efficient and it should be possible to call other knowledge bases in the same way as
procedures can be called in conventional programming languages. It should be possible to put
comments into all methods, rules and attributes. A very useful tool would be a knowledge base
compiler that could generate C code like it is done in Kappa-PC. This would allow a developer
to create very efficient delivery version of a knowledge based system after development is

completed.

105

8. Conclusions

Expert Systems of the early eighties were mostly stand-alone and isolated from the rest of
computing environment. This was a direct result of an Al-centric view represented by most
researchers in Artificial Intelligence [Earl D. Sacerdoti, 1989]. Despite a great success of those
early expert systems it quickly became clear that isolated expert systems could not satisfy the
needs of complex computing systems. The majority of tasks in a real-world computing
environment can be solved by conventional-computing technologies. Therefore, if Al systems are
to become a real part of computing environments they must integrate well with them. An ideal

knowledge-based tool should have the following features:

- should have access to all major database systems via SQL using a client-server architecture;
- should be able to call external programs/functions (regardless of the programming language
they are written in) using the DLL mechanism and/or other methods provided by the

operating system,;

- should be able to exchange data and commands with other applications using the DDE
protocol or other client/server communication mechanism provided by the operating system;

- should be embeddable in conventional programs using object-oriented programming
technology and/or client/server architecture;

- should fully utilize object-oriented technology in all aspects of integration;

- should be able to run in distributed network environments and integrate with remote
applications (running on other network nodes).

Many today’s knowledge-based tools developers recognize the importance of integration

with conventional-computing technologies and benefits that this integration can bring to

106

knowledge-based systems. Most commercial knowledge-based tools, despite some limitations,
evolve quickly in the direction of full integration. This process is also accelerated by a great
progress in operating systems. New tools such as Dynamic Link Libraries, Dynamic Data
Exchange, Object Linking and Embedding are now parts of MS Windows and OS/2. These tools
make the integration much easier and more powerful. A relatively new SQL standard database
interface makes it possible to develop knowledge-based tools with a generic database interface. It
gives knowledge-based tools more power and flexibility and at the same time relieves the
developers of knowledge-based tools from a difficult task of building their own database

interfaces.

With new, object-oriented, operating systems such as Pink' on the horizon we can expect
even better integration of knowledge-based systems with other components of a computing
environment [Thompson, T., 1993]. A new hardware platform, PowerPC?, promises to create a
new personal computer standard by unifying all major operating systems: Unix, Mac’s Operating
System, DOS, MS Windows, and OS/2. If this feat is accomplished we can expect

knowledge-based systems integrating with other applications across different operating systems.

In the most recent years researchers started combining knowledge-based systems with

new emerging software technologies such as neural networks, multimedia and virtual reality,

' Pink is a new, object-oriented, operating system being jointly developed by IBM and Apple. It is scheduled for

release in 1995.
PowerPC is a new, RISC-based, personal computer architecture being jointly developed by IBM, Apple, and
Motorola. First PowerPC computers will be available at the end of 1993,

107

case based reasoning, and genetic algorithms. Although the hybrid systems are largely
experimental, preliminary results indicate that such coupling can enhance problem-solving

capabilities of knowledge-based systems [Hedberg, S., New Knowledge Tools, 1993].

Multimedia is a technology that allows combining graphic images, video movies, and
sounds in software applications. Virtual reality is a technology which allows creating virtual
models of various 3-D environments in a computer. A user of such a system can control objects
in the 3-D space in such a way that he has the impression of this being real. Multimedia and
virtual reality are exciting technologies by themselves, but by combining them with
knowledge-based systems researchers are creating some new fascinating possibilities. A
knowledge-based system coupled with multimedia and virtual reality will greatly improve the
quality and power of a user interface. We can expect the systems guiding the users through the
maze of menus and application features. Those new systems will be capable of intelligent
storage, indexing, retrieval, and distribution of text, graphics, video clips, and sounds. An
example of coupling virtual reality with knowledge-based technology would be an electronic
shopping mall. A user could "walk" through the stores in 3-D space using a mouse or joystick.
Intelligent agents would advice the user on, for instance, buying something or finding particular

items [Hedberg, S., See, Hear, Learn, 1993].

108

Neural networks consist of parallel networks, or groups, of simple, highly interconnected
processing units. They are well suited for pattern recognition, foreign language translation,
process control, 3-D vision, and parallel implementations of routine processing tasks [Liebowitz,
J., 1993]. Neural networks offer great potential benefits to knowledge-based systems.
Combining the two technologies will result in a new generation of self-adaptive, capable of
learning, systems. One company, called Gensym (Cambridge, MA), introduced a new product
called NeurOnLine. It layers neural-network technology onto G2 Real-Time Expert System
(Gensym’s general-purpose KBS/process-control tool). NeurOnLine’s algorithms allow it to learn
while it is monitoring a process. The result is a self-learning system that adapts to a changing
process [Hedberg, S., New Knowledge Tools, 1993]. Combining neural networks and
knowledge-based systems provides system improvements in many areas, including graceful
system degradation, generalization, explicit and implicit reasoning, incremental learning,
reliability, and flexibility. On the other hand, such hybrid systems are more complex, difficult to

develop and maintain.

Case Based Reasoning (CBR) technology enables systems to store past experiences or
situations as cases, analyze and process the data, and suggest ways of solving a problem based on
those cases [Liebowitz, J., 1993]. A CBR system has two primary components: a case base and a
problem solver. A case base contains descriptions of previously solved and unsolved problems.

A problem solver consists of a case retriever and a case reasoner. The case retriever identifies

109

data in the case base that most closely fits the situation. The case reasoner examines the cases
and, with the aid of domain knowledge, performs adaptation, synthesis, or prediction. CBR and
rule-based systems complement one another. Rules handle large areas of problem domains well,
but they are less useful and cost effective in boundary areas where subtle contexts tend to exist.
Cases, on the other hand, can model entire domains if there is enough cases to cover all the
problems. It is too expensive to cover an entire domain with cases and CBR systems tend to
perform rather shallow reasoning. Therefore, the best solution is to model a domain with rules as

far as possible, and then apply CBR technology to boundary regions.

Another emerging Al technology is genetic algorithms - adaptive, general-purpose search
techniques based on the principles of population genetics [Liebowirz, J., 1993]. A genetic
algorithm maintains a list of possible solutions to a problem. Based on whether or not the
previous solutions were successful, the fittest solutions not only survive but also exchange
information with other candidates to form new solutions. Genetic algorithms are useful for
inductive learning, conflict resolution, and classification. Some applications of genetics
algorithms are scheduling systems and systems training neural networks. Genetics algorithms

integrated with rule-based systems enable developing systems that can generate new rules.

All those new hybrid systems promise a new generation of applications but there are still

many obstacles ahead researchers. One of the greatest challenges arising when integrating

110

knowledge-based systems with other technologies, including conventional-computing
technologies, are software integration problems. One solution is using common communication
protocols such as DDE. This results in loosely integrated systems. Another approach is using
object-oriented programming to glue different technologies what results in a tightly integrated
systems. This approach was used in CADIE (see chapter 5). However, even using
object-oriented techniques to blend different technologies does not resolve all the integration
problems, because standards are just beginning to emerge in the object-oriented world

[Liebowitz, J., 1993].

On one hand, all those new tools and techniques will result in more powerful and easier
to use applications to the benefit of end users. On the other hand, more skills and knowledge will
be required from application developers. In the end, however, an application should dictate tools
and techniques that should be used. It means that for simple applications there is no need of
using those new tools and techniques, traditional techniques will work just as well or better. It
also means that developers of complex applications will have in their arsenal a new set of tools

and techniques to choose from.

111

References

Agarwal, R., et al., Knowledge Base Maintenance, Expert Systems. Planning, Implementation,
Integration, (Summer 1991).

Beynon-Davies, P., Expert Database Systems, A Gentle Introduction, McGraw-Hill Book
Company Ltd., England, 1991.

Tom Brooke, The Art of Production Systems,Al Expert, January 1992.

C. Forgy, Rete: A Fast Algorithm for the Many-Pattern/Many-Object-Pattern Match Problem,
Artificial Intelligence, Vol. 19, No. 1, Sep. 1982, pp. 17-37.

David W. Franke, Imbedding Rule Inferencing in Applications, IEEE Expert, Dec. 1990.

Gardarin, G. and E. Gellenbe, New applications of Database Systems, Academic Press, London,
1984.

Harmon, P., R. Maus, and W. Morrissey, Expert Systems Tools And Applications,John Wiley
and Sons, New York ,1988.

Harmon, P., and B. Sawyer, Creating Expert Systems, John Wiley & Sons, New York, 1990.
Hayes-Roth, F., et al., Building Expert Systems, Addison-Wesley, Reading, MA, 1983.
Hedberg, S., New Knowledge Tools, Byte Magazine, July 1993, p. 106-111.

Hedberg, S., See, Hear, Learn, Byte Magazine, July 1993, p. 119-128.

Van Horn, M. Understanding Expert Systems, Bantam Books, Toronto 1986.

H.C. Howard & D.R. Rehak, KADBASE, Interfacing Expert Systems with Databases,
IEEE Expert, Fall 1989.

Jarke, M. and Y. Vassiliou, Databases and expert systems. opportunities and architectures for
integration, In Gardarin and Gellenbe, 1984.

Kappa-PC Advanced Topics, Intellicorp, June 1992,

Kappa-PC User’s Guide, Intellicorp, June 1992.

112

Level5 Object User’s Guide, Information Builders, Inc., 1990
Level5 Object Reference Guide, Information Builders, Inc., 1990

Liebowitz, J., Roll Your Own Hybrids, Byte Magazine, July 1993, p. 113-115.

William Mettrey, 4 Comparative Evaluation of Expert System Tools,Computer, February 1991.

William Mettrey, An Assessment of Tools for Building Large Knowledge-Based Systems,
Al Magazine, Vol.8, No. 4, Winter 1987, pp. 81-89.

Robert J. Mockler & D.G. Dologite, An Introduction to Expert Systems,Macmillan Publishing
Company, New York, 1992.

Edmund C. Payne & Robert C. McArthur, Developing Expert Systems, John Wiley & Sons,
Inc., U.S.A., 1990.

Prerau, D. S., Developing and Managing Expert Systems, Addison-Wesley, Reading, MA,
1990.

Quinlan, J. R., Applications of Expert Systems (Vol. 1), Addison-Wesley, Sydney, 1988.

Earl D. Sacerdoti, The Copernican View of Artificial Intelligence,Sun Technology, Winter 1989.

Schorr, Herbert, and Alain Rappaport, Innovative Applications of Artificial Intelligence, AAAI
Press, Menlo Park, CA, 1989.

Thompson, T., PowerPC Performs for Less, Byte Magazine, August 1993, p. 56-74.

Efraim Turban, Decision Support And Expert Systems: Management Support Systems,
Macmillan Publishing Company, New York 1993.

E. Turban and P. Watkins, Applied Expert Systems, Amsterdam, 1988.

Waterman, D. A., A Guide to Expert Systems, Addison-Wesley, MA, 1986.

113

