
An Evaluation Of Techniques And Tools For Integrating

Knowledge-based And Conventional-computing Systems

By

Andrzej Brzezinski

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

A Thesis

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

@ August,Igg3

g*ffi Ì'*îã!'jo'""
Acquisitions and
Bibliographic Services Branch

395 Wellinqton Street
Ottawa. Ontario
KlA ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellinqton
Ottawa (Ontariõ)
K1A ON4

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her perm¡ssion.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme gue ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
person nes intéressées.

Yout l¡le Votrc télércnce

Out lile Notrc rëlércnce

L'auteur conserve la propriété du
droit d'auteur qu¡ protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

Canadä

rsBN 0-315-85975-X

Nome_
DissertoionAbstractslnternøt.tonãli-'."Gã-E'Eood,gu@osese|ecltheonesubiectwhichmost
neorly describes the content of your disserlotion. Enter the corresponding four-ðigit code in the spoces provideä.

Subiect Cotegories

rË{E HI'ffiANITEES A&TÞ S@€AA& S€EËru€Es
COMINUNICATIOI{S AND IHT ARTS
Arch ilecture 07 29
Art HisÌory 0377
Cinemo 0900
Donce 0378
Fine Arts 0357
f ntormol¡on 5c¡ence 0723
Journolism0391
Librorv Science 0399
Moss Communicotions 0708
Music..........................0¿13
Speech Communicotion 0459
Theoter 04ó5

TDUCAÏION
Generol 05 I 5
Administrotion 05 I 4
Adult ond Conlinuinq05'i ó
Aqriculturol :................. 05 I 7
Añ.....................0273
Bilinouol ond Multiculturol0282
Busrness 0ó88
Communiiv Colleo e 027 5
Curnculum ond Instruction .-..-....0727
torly Childhood 05'ì I
Elenientorv0524
Finonce 0277
Guidonce ond Counselinq 051 9
Heqlth:.......... 0ó80
Hioher -.....................07 45
llrslory oÌ0520
Home' Economics 0278
Industr¡ol0521
Lonouooe ond Literoture 0279
MoiÉem-otics 0280
Music0522
Philosophv of 0998
Physrcol 0523

Psycholooy0525
Reodino 0535
Reliqioüs0527
Sciences,.-071 4
Secondory 0533
Sociol Scíences 0534
Socioloqy of 03¿0
Specio1 0529
I eocher I roininq 0530

?|
I echnoloqy 071 0
Tesls ondÁ4eosurements 0288
Vocotionol0747

TANGUAGt, I.ITERAIURT AND

r.rNGu¡sït(s
Lonouooe

venerol -.. -.. -. -. 0 67 9
Ancient 0289
Linquistics 0290
Moäern -. -........0291

Lileroture
Generol 040 I
Clossicol 029 4
Comporolive-.........-........ 0295
Medievol 0297
Modern ...-.......................... 0298
Àfricon 03 I ó
Americon 0591
Asion-.......-... 0305
Conodron {tnolishl 0352
Conodion (French) 0355
Enqlish 0593
Germonic 03 I I
Lolin Americon 03 I 2
MiddleEostern0315
Romonce 03 I 3
Slwic ond Eost Europeon0314

PHIIOSOPHY, REIIGION AND
THTOTOGY
Ph i losophy 0 A22
KeIOtOn

Generol 03 I 8
Biblicol Studies 032ì
Clerqy 03 I 9
Hisìõrv of 0320
Philosôphv of 0322

Theology . 1... :.................... 0A69

ffi{ffi $€86ru€ËS &Wm æru@BruË&KB&E&
Bl0t0GtcÂL sqtt{(Es
Aqricullure- Generol 0 47 3

Aqronomy 0285
Añimol CLlture ond

Nutrition047 5
Animol Potholoqv 047 6
Food Science oñii

lechnolooy 0359
Forestrv onðWildfie 0478
Plont Cultu¡eOA79
Plont Potholoqy 0¿80
Plont Physioloþy 08'| 7
Ronqe Monooemenl . -. -..... -.. 0777
Woðd Technð|oovO7 A6

Bioloqv
Uenero|...................030ó
Anotomy 0287
Biostotistics 0308
Botony 0309
-ll'Lell 0379
Eco|ooy 0329
tntomo|ooy........................ 0353
Genelics 03ó9
Limnolooy 0793
Microbiõfoqv 04'l 0
Moleculor :......................... 0307
Neuroscience 031 7
Oceonoqroohy.................... 0¿i ó
Phvsioloöv :...:..................... 0433
Rod¡otion 082 I
Veterinory Science............... 0778

^.
2oo1ogy..............................0472

Þropnysrcs
Uenerol 078ó
Medicol 07ó0

EARIH S(ITNCES
Bioqeochemistry.. 0A25
(;êMhêm'clru .0996

[oETBEl {J.M.I
SUBJECT CODE

.............. uJtJ

..............0324

..032ó

..............0327

HTAI.IH AND ENVIRONffi TNTAI.

S(IEÌ{CES
Environmentol Sciences-..07ó8
Heolth Sciences

Uenero1 05óó
Audio|oqv........................... 0300
Chemotheropy 0992
Dentistry 05ó7
hducotion 0350
Hospilol Monoqement.......... 07ó9
Humon Developmenf 0758
lmmunoloqy 0982
Medicine ðhd Surqerv 05ó4
Mentol Heolth:....'............ 0347
Nursinq 05ó9
Nukitio-n -............ 0 57 0
Obsletrics ond Gvnecoloov ..0380
Occupotionol Hei:lth ond'

Theropy0354
Oohtholmoloqv 038 I
Potholoqy 0571
Phormoiô|oqv 04,l 9
Phqrmocy 0 572
Physrcol I heroÞy 0382
Publìc Heolth .:.:................... 0573
Rodioloqy057 4
Recreollon . -. -.. -.. -.. -...... -..... -057 5

......0ól ó

......0617

......081 4

......o452

.......0578

Enoineerino-Generof o53Z
Aerospoce 0538
Agriculturol 0539
Aulomolive 0540
Biomediccl 0541
Chemico10542
Civil O5¿3
Electronics ond Eleckicol 0sy'/
Heot ond Thermodynomics... 0348
Hydroulic :............... 0545
Industriol 054ó
Morine
Moteriols Science ..
Mechonicol
Metollurgy
Mrnrnq.....,......
Nucleãr
Pockoqinq 0549
Pelroleum 07ó5
Sonitory ond Municìpol 0554
System Scrence.................... 0790

Geotéchnoloqy 0428
Operotions Rãseorch 0796
Piostics Techno1oqy O79 5
Textile Technolog-f 099 4

..............0547

..............079A

..............0548

..............07 43

..............055r
...,.,.........-.. uJJl

Even though Artificial trntelligence (AI) technology became cornmercially available in

1980s, it was viewed from the wrong perspective throughout most of the decade. A large portion

of AI research during this period viewed AI systems as the central part of computing

environments. This Al-centric perspective led to many limitations in commercially available tools.

Recently, AI researchers and developers have begun to view their techniques as extensions to

conventional computing environments. This view dictates a need for integration between AI tools

and conventional tools. This thesis examines various techniques and tools that have been

developed to integrate knowledge-based and conventional computing environments. The topics to

be examined include: expert systems and databases, calling external programs from AI tools,

embedding AI tools in conventional systems, and techniques for using client-server architectures

to support knowledge-based systems. Examples using various commercial tools will be used to

illustrate these techniques.

ABSTRACT

.aN EVATUATION OF TECm{IQmS AND TOOLS FOR INTEGRATING

ruOI{LEDGE-BASED AND CONVENTIONA].-GOHPUTING SYSTEHS

A Thesis submitted to the Facultsy of G¡aduaie Studies of the University of Manitoba in pariial
fuIfillment of the require-anents fo¡ the degree of

ANDBZEJ BRZEZINSKT

BY

Pen:rission h¡s been granied b ihe LIBRåRY OF THE IINT\¡ERSFY OF MA\TTOBA io le¡rd or
sell copies of this thesis, to the Ná.TIONAL LIBRá,RY OF C{¿rIADA to miaoñ¡¡n this thesis and

to lend or sell copies of the filu:, and UNñTERSITY MICROEILIÍS to publish an abstract of this
thesis.

The author res€¡ves othe¡ publÍcations rights, a¡¡d neiihe¡ the thesis nor extensive exEacts Êom it
may be prinied o¡ otherwise reproduced ¡yithout the autho/s perrrission-

}IASTER OF SCIENGE

@ 1993

L Intnoductlon to Expert Systems

1.2. Classification of Expert Systems

1.3. Benefits and Limitations of Expert System Technology
1.4. Development of an Expert System Application

1.5. Expert System Shells

1.6. Summary

2. lntegratlon Overview
2.1. lntegrating Expert system Technologywith Database Technology
2.2. Calling external programs/functions from a Knowledge-Based System

2.3. Embedded solutions

2.4. Client - Server Architecture

2.5. ldeal model of integration

2.6. Survey of six commercial expert system tools

1 .1 . History

2.7. Summary

3. lnteErating Expert Systern Technology w¡th Database
Technology - lmplernentatlon
3.1 . Database technology in Level5 Object

3.2. Database technology in Kappa-PC . . .

3.2.1. DBase and Lotus-123 interface in Kappa-pC

3.2.2.Interface with SQL RDBMS in Kappa-PC . .

3.3. KADBASE - a Knowledge-Aided Database System

,ü

1

3

6

I
10

12

3.4. Conclusions

4" Calling External Prograrns/FL¡nctio¡'ls frorn a
Knowledge-Eased Systern - lmplementation
4.1. Calling external programs/functions in Level5 Object

4.2. Calling external programs/functions in Kappa-pC

4.3. Conclusions

5. Ernhedded So!¡¡tio¡ls - lrmple¡mentat¡orn Vø

5.1. Embedding in CLIPS T1

14

14

21

23

24

26

27

38

40

41

47

48

50

50

52

55

57

65

6B

5.2. Embedding in Kappa-PC ..

5.3. Embedding using Object-Oriented Programming Technology
5.4. Conclusions

6. Client-Senver Architecture - !mplernentation
6.1. Client-Server Architecture in LevelS Object

6.2. DDE Examples in Level5 Object

6.3. Dynamic Data Exchange in Kappa-PC

6.4. Summary

7. Knowledge Base Managernent
7.1. Knowledge Management Facilities in LevelS Object
7.1.1. Object Editors and Rule Editors

7.1.2. Object and Rule Browsers

7.1.3. Debugger

7.1.4. Session Trace or History facility

7 .1 .5. Explanation facility

7.1.6. Knowledge Structuring facilities . . .

7 .1 .7 . Knowledge Sharing facilities

7.2. Summary of Knowledge Management Facilities in Level5 Object

8. Gonclus¡ons

Fleferences

72

73

75

77

79

82

93

94

96

96

97

100

100

101

102

103

103

104

,106

1',12

'1. Introduction to Expert Systems
1.1. I{istory

An expert system is a special-purpose computer program capable of solving diff,rcult

problems in a narrow domain and operating in a manner similar to a human expert. Expert

system technology evolved as a result of many years of attempts by Artificial Intelligence (AI)

researchers to create real-world AI applicattons fTurban, 8., 19931- For many years AI research

concentrated on general-purpose problem solving algorithms which worked only for very

limited, simple problems lJackson, P., 19861. Increasing the number of problem states (problem

search space) resulted in a combinatorial explosion of possible paths to a solution and

general-pu{pose, exhaustive search algorithms became inefficient and useless. Heuristic search

techniques that can be applied to simple problems are elusive in real world problems lChnrniack

8., and D. McDermox, 1985f. The solution to this problem involves using knowledge about a

specific problem to guide the search. Knowledge about a specific problem allows excluding a

large number of paths which, according to what is known about the problem, offer a very small

or no chance of finding a solution. Further research in this direction resulted in development of

knowledge representation schemes and reasoning algorithms utilizing that knowledge. As a

result, knowledge-based or expert system technology was born fvan Horn, 19861.

The first commercial expert systems were developed in the early 1980's and they were

the first successful real-world AI applications fTurbafl, E. , and Watkíns, P. , 19831. The first

expert systems v/ere very limited in their capabilities. They could solve problems within a very

1

well defined area. Knowledge representation techniques and inference mechanisms used in the

systems were typically very simple. Often they had to be run on Lisp-machines or other

expensive hardware. Usually they were developed in Lisp, Prolog, or other Al-specif,rc

programming languages. Dedicated hardware together with specialized programming languages

that lacked any interface to the external computing world, resulted in stand-alone systems. In

fact, these early systems required little communication with other hardware or software.

Throughout the 1980's the number of commercial expert system applications grew substantially

lSchorr, Herbert, and Alain Rappapon, 19891. They were becoming more sophisticated in terms

of both their capabilities and knowledge representation schemes. In the middle of the eighties,

the first expert system development tools capable of running on general-pu{pose, inexpensive

hardware appeared in the market placefHarmon, P., R. Mants, andW. Morrissey,1988l. Expert

system technology was becoming cheaper and more affordable. It also resulted in new

applications that were economically justifiable on inexpensive hardware lQuinlan, J. R., 1g$8l.

\Vhen expert system technology became available on most hardware platforms it soon

became clear that this new technology should be able to coexist and cooperate with other

components of conventional computing environments. One of the first conventional technologies

incorporated into expert system technology was database technology f,Jarke, M. and y. Vassiliou,

19841. The advantages were enormous, expert system applications could access large amounts of

data as facts describing characteristics of the problems being solved. They could also store the

results of problem solving sessions in a database which could then be accessed and processed

further by conventional applications. In the late eighties most expert system tools offered some

kind of dat¿base interface. They also offered an interface to external functions that could be

developed in other conventional programming languages. This further increased the flexibility of

expert system applications by giving them access to a rich array of numerical functions found in

most general-purpose programming languages like the C language.

Even though expert system technology in the 1980's made unprecedented progress and

spread to virtually all computing environments, it still remained fairly isolated. First attempts

were made towards closer integration with other elements of computing environments (as

described above) but only recently, in the early nineties, have some expert system tools started to

evolve in the direction of full integration (e.g. client-server architectures, embedded expert

systems) fQuinlan, J. R., 19881.

1.2. Classification of Expert Systems

Expert systems can be classified by the general problem area addressed by the expert

system fTurban, E., 19931. Some expert systems belong to more than one category. The

following is a brief description of each category:

Interpretation systems infer situation descriptions from observations. This category

includes surveillance, speech understanding, image analysis, signal interpretation, and many

kinds of intelligence analysis.

Diagnostíc systems include medical, electronic, mechanical, and software diagnosis.

Diagnostic systems typically relate observed behavioral irregularities to underlying causes.

Pre di cti on sy st ems include weather forecasting, demographic predictions, economic

forecasting, traffic predictions, crop estimates, and military, marketing, or f,rnancial forecasting.

Design systems develop configurations of objects that satisfy the constraints of the design

problem. Such problems include circuit layout, building design, and plant layout. Design

systems construct descriptions of objects in various relationships with one another and verify that

these conf,rgurations conform to stated constraints.

Planning systems specialize in problems of planning like automatic programming. They

also deal with short- and long-term planning in areas such as project management, routing,

communications, product development, military applications, and financial planning.

4

Monitoring systems compare observations of system behavior to expected behavior. An

example is monitoring instrument readings in a nuclear reactor to detect potentially dangerous

and accident conditions.

Debugging systems rely on planning, design, and prediction capabilities to create

specifications or recommendations for correcting a diagnosed problem.

Repair systems develop and execute plans to administer a remedy for some diagnosed

problems. Such systems incorporate debugging, planning, and execution capabilities.

Instructíon systems incorporate diagnosis and debugging subsystems that specifically

address the student as the focus of interest. Typically, these systems begin by constructing a

hypothetical description of the student's knowledge that interprets his or her behavior. They then

diagnose weaknesses in the student's knowledge and identify appropriate remedies to overcome

the deficiencies. Finally, they plan a tutorial interaction intended to deliver remedial knowledge

to the student.

Control systems adaptively govern the overall behavior of a system. To accomplish this,

the conffol system must repeatedly interpret the current situation, predict the future, diagnose the

causes of anticipated problems, formulate a remedial plan, and monitor its execution to ensure

success.

1.3. Benefits and l-imitations of Expert System Technology

Expert System technology can provide some or all of the following benefits fTurban, 8., 19931

Increased Ouþut and Productivity: Expert Systems can work faster than human experts. For
example, XCON has enabled DEC to increase fourfold the throughput of VAX configuration
orders fWaterman, 19861.

Increased Quality: Expert Systems can increase quality by providing consistent advice and
reducing the error rate. For example, XCON reduced the error rate of configuring computer
orders from35% to 2% fWatermnn. 19861.

Reduced Downtime: By using Expert Systems for diagnosing mulfunctions and prescribing
repairs it is possible to reduce downtime of a mulfunctioned system or machinery, thus saving
significant amounts of money.

Capture of Scarce Expertise: Expert Systems can provide expert advice in situations where
there is not enough experts for a task or where an expert is retiring or leaving a job.

Flexibility: Expert Systems can offer flexibility in both services and in manufacturing
industries. For example, XCON helped DEC to better fit the variety of customer requests, which
was becoming increasingly difficult.

Easier Equi¡rment Operation: Expert Systems can üain people to operate complex systems. For
example, STEAMER is an Expert System that trains inexperienced workers to operate ship
engines fWaterman, 19861.

Elimination of the Need for Expensive Equipment: Expert Systems can perform monitoring
and control tasks using less expensive equipment because of their ability to investigate more
thoroughly and quickly the information provided by instruments. DENDRAL is an example of
such an Expert System lWatermnn, 19861.

Operation in [{azardous Environment: Expert Systems can replace humans operating in
hazardous environments, e.g. military tasks during a war.

6

Accessibility to Knowledge: Expert Systems can make the expert knowledge widely accessible
while freeing precious time of human experts for solving difficult problems rather than providing
expertise to others.

R.eliability: Expert Systems are more reliable than human experts. They do not become bored,
tired, or sick.

Increased Capabilities of Other Computerized Systems: Integration of Expert Systems with
other computer systems, e.g. databases, makes the other systems more effective: they can work
faster, be easier to use, and produce higher quality results.

Integration of Several Experts' O¡rinions: In some applications, Expert Systems can integrate
knowledge of several experts and thus may increase the quality of advice.

Ability to V/ork with Incomplete or Uncertain Knowledge: In contrast to conventional
systems, Expert Systems can, like human experts, work with incomplete information. The user
can respond with a "don't kno\ry" or "not sure" answer to one or more of the system's questions
during a consultation, and the Expert System will still be able to produce an answer, although it
may not be a certain one.

Ability to Solve Complex Problems: Some Expert Systems are already capable of solving
problems where knowledge required exceeds the scope of any one human expert. In the future, it
may be possible to create Expert Systems able to solve problems whose complexity exceeds
human ability.

Knowledge Transfer to Remote Locations: One of the greatest potential benefits of using
Expert systems is ease of its transfer across international boundaries.

Expert System methodologies available today are not always effective and impose severe

limitations on some applications. Some of the problems with Expert System technology are listed

below fTurban, 8., 19931:

- Knowledge is not always available.
- Expertise is hard to extract from humans.
- The approach of each expert to situation assessment may be different, yet correct.
- It is hard, even for a highly skilled expert, to abstract his or her expertise, especially under

time pressure.

- Users of Expert Systems have natural cognitive limits.
- Expert Systems work well only in a n¿rrrow domain.

- Most human experts have no independent means of verifying their conclusions.
- Help is often required from knowledge engineers who are rare and expensive.
- The end users frequently have no trust in Expert Systems' conclusions.

[.4. Development of an Expert System Application

Development of expert system applications is quite different than development of

conventional computing applications. Because of the complex and often unclear nature of

problems that an expert system is to solve, it is impossible to create a complete set of design

specifications and then implement the system according to them. The only viable approach is

incremental development fTurban, 8., 19931.

Before development of an expert system application can even start, it is important to do a

feasibility study that should answer the following questions:

- What problems should the system be able to solve ?

- rWhat resources are required and what resources are available (most important being an easy
access to the source of expertise e.g. a human expert) ?

- What is the likelihood of a failure of the project ?

- What is the estimated development time ?
- Is there an expert system package available that fits the application or should the application

be developed from the ground up ?

Only after the above questions have been resolved should development begin. The next

step is identification of an initial scope of a prototype. It should not be too wide since developers

could easily get lost in the amount of knowledge needed to solve a wide range of problems.

Also, knowledge would not be deep enough. On the other hand, an initial scope should not be

too narrow because developers would run into problems in the future trying to scale up the

system (scaling problem) fHayes-Roth, F., et aL, I9B3].

After an initial scope of a prototype has been chosen developers can start extracting

knowledge from a source of expertise (which is usually a bottleneck in expert system

development). Based on the extracted knowledge, developers can create a conceptual model of a

system and map it into a knowledge representation and reasoning scheme. Mapping of the

conceptual model into the actual knowledge representation can depend to a large degree on an

expeft system tool selected for the application. At this point it may turn out that the tool is not

appropriate for the application and it should be discarded. It is often very tempting for

developers to try to force a conceptual model into the tool which usually results in serious

problems later in the development cycle when the scope of the prototype is expanded.

Sometimes, especially for large and complex applications the best solution is to build the system

from the ground up including the knowledge representation and reasoning scheme. Fortunately

expeft system tools available in the market place today are becoming more and more flexible and

powerful, satisfying the needs of even very complex applications fTurbal, 8., lgg3l.

After mapping the conceptual model into the knowledge representation and inference

mechanisms developers can start developing the first prototype. The prototype should be

9

thoroughly tested by both developers and the expert to make sure that it can handle all cases

within the initial scope of the application.

When the frst prototype is approved by the expert the scope of the application can be

gradually expanded and the cycle will be repeated. By incrementally increasing the scope of the

application developers should not get lost in the excessive amounts of knowledge and can better

control the development process. Many of the today's expert system tools are very well suited to

incremental development. One of such tools is Level5 Object that offers excellent support for

incremental development. It provides developers with a range of facilities such as user interface

tools, knowledge management tools, database interfaces, and a very user-friendly development

environment þevel5 Obj ea Reference Guide,1990l .

1.5- Expert System Shells

Expert systems are composed of six basic elements: knowledge acquisition subsystems,

inference engine, explanation facility, user interface subsystem, knowledge base management

subsystem, and knowledge base fTurban, 8., 19931. The first five components constitute an

expert system shell. An expert system shell is in general application independent, so, once

constructed it can be reused in many applications. On the other hand, the knowledge base

determines what problems an expert system will be able to solve.

10

By using the shell approach, expert systems can be developed much faster. Furthermore,

the programming skills required are much lower. An expert system shell, can be very useful in

developing an expert system, providing it is well chosen. There are many different types of

expert system shells and each of them has its strengths and limitations. For example, some shells

support only rule-based knowledge representation, and in this category some shells provide only

backward chaining or only forward chaining inferencing mechanisms. Other shells support only

frame-based (object oriented) knowledge representations. Still other, more flexible, shells

support both rule-based and frame-based knowledge representations. An application may require

a hybrid, both rule-based and frame-based, knowledge representation, so choosing a shell that

supports only one of them may create serious problems during development. However, by

selecting an expert system shell carefully, the development of an application can be much easier

and faster. Many expert system shells provide excellent development tools; for example a

debugger, knowledge base editors, user interface tools, and a trace facility that makes the

development process even easier.

Apart from these general-purpose expert system shells, there are also domain-specific

shells designed for a particular type of application, for example a shell for diagnostic systems

fTurban, 8.,19937. Domain-specific tools can greatly reduce the risk of choosing the wrong tool

for an application. Presently, there are only a few domain-specihc expert system shells available

and they cost much more than general-purpose ones.

t1

tr.6. Summary

Even though AI technology appeared on the commercial market around 1980 it was

viewed from the wrong perspective throughout the whole decade lUarl D. Sacerdoti,1989l. AI

commercial tools, including expert system tools, of the eighúes suffered from the same "disease"

as non-commercial AI systems being developed in AI labs. From the very beginning AI

researchers viewed AI systems as the central part of computing environments. This "Al-centric"

perspective was present in the commercial tools of the eighties and was the primary reason for

the limited applicability of those systems. AI researchers failed to realize that AI systems should

be viewed as an extension of conventional computing environments and therefore should

integrate well with them. The majority of tasks in a real-world computing system can be solved

using conventional programming technology. This should be the core of any such system. AI

technology can extend the capabilities of a conventional system in some areas, but only if it can

be integrated with the conventional environment, take advantage of some conventional functions

(e.g. database technology), and satisfy all the rigorous requirements of a convenúonal

environment. In other words an AI system should behave like a conventional program and be

able to communicate with conventional elements of the system. Stand-alone AI systems, on the

other hand, are very limited in their capabilities and do not satisfy the needs of today's complex

systems [Earl D. Sacerdoti,1989].

t2

The purpose of this thesis is to examine techniques and commercial tools that have been

developed to integrate knowledge-based technology with conventional computing environments

and the implications for both developers of knowledge-based applications and the end users.

conventional-computing systems are presented followed by a survey of six commercial expert

system tools. Chapter 3 discusses methods of integrating expert systems with relational database

systems. Chapter 4 examines how external functions, written in conventional programming

languages, can be called from an expert system in order to extend its computational capabilities.

Chapter 5 explores the concept of embedding an expert system in a conventional system in order

to achieve the tightest possible integration of both technologies. In chapter 6 the most flexible

method of integrating expert system technology with conventional technology, a client-server

architecture, is presented. Chapter 7 discusses knowledge management facilities in expert system

shells. Chapter 8 summarizes all methods of integrating both technologies and lists all the

features that an "ideal" expert system shell should have.

In chapter 2 several methods of integrating knowledge-based systems with

l3

2" lntegration Overuiew

Expert systems technology is best suited to solving problems that are very complex in

nature, and generally involve uncertain facts and heuristic knowledge. On the other hand, tasks

involving large amounts of data, complex mathematical calculations, graphical displays, and

graphical user interfaces are better suited to conventional programming technology (e.g. database

technology, C programming language, libraries of graphics functions). Real-world problems

often involve both types of tasks. In order for expert system technology to be useful in solving

problems it must be integrated with conventional programming technology. In recent years this

requirement has been rcalized and various expert system packages have appeared on the market

capable to varying degrees of integrating with conventional programming technology. Some of

the methods used by those tools are discussed below.

2.1- rntegating Expert system Technology with Database Technology

Essential Components of a Knowledge-Based Systern

Record of
Consultations:
trnput,
Conclusionsu
Recommendations

Stored Programs :

Control
Mechanism

Inference

Engine

Figure 2.1

Knowledge
Base

(Stored Facts
and Heuristics)

14

Figure 2.1 shows all essential components of a knowledge-based system. The terms

Knowledge-Based System and Expert System are often used as synonyms. This is not quite true

since an Expert System is a Knowledge-Based System capable of solving very difficult problems

requiring knowledge of a human expert. For the pulpose of this thesis, however, both terms will

be used interchangeably. The fundamental difference between a knowledge-based system and a

conventional system is a separation of knowledge (stored in a knowledge base) and

problem-solving logic (represented by an inference engine and a control strategy). A

knowledge-based system starts processing by examining facts stored in working memory and

matching the facts to the goal (if the goal is specified). Then it applies the knowledge stored in

the knowledge base to the facts, according to a control strategy, which results in new facts being

generated and stored in working memory. This process continues until either the goal is satisfied

(a solution is found) or no new facts are generated lRobert J. Mockler & D.G. Dologite, 1gg2l.

There are two basic methods for representing knowledge: rule-based and frame-based

(object-oriented) representations.

A typical rule-based expert system consists of a knowledge base (represented as a set of

rules) and a working memory which contains a set of facts. A rule-based system may use

forward-chaining, backward-chaining, or a combination of both methods of reasoning (conftol

strategy).

15

In a forward-chaining system (figure 2.2) the knowledge base is scanned for the rules that

can be applied to the initial set of facts stored in working memory. Rules that can be applied to a

given fact (antecedents of which match the fact) are put on an agenda as the rules that can

potentially be "fired". The agenda is a prioritized queue and, depending on the implementation,

developers can manipulate various aspects of the agenda (e.g. priorities of rules, depth-first or

breadth-fnst rule ordering). The inference engine, after scanning the whole knowledge base, tests

rule antecedents in the order of the agenda. If a rule evaluates to true it is "fired" and, as a

result, a new fact concluded by the rule is added to the working memory. After testing all the

rules from the agenda the inference engine repeats the cycle and looks for rules that can be

applied to a newly generated facts. When there are no more rules that can be put on the agenda,

processing is completed and the solution consists of all new facts generated by the "fîred" rules

[Edmund C. Payne & Robert C. McArthur, 1990].

New Fact :

A=x €_

\ IH#.fii"'/

Forward

---+

New Rule:
IFA:x
THENB=y

chaining

Workins
Memorv

Figare 2.2

=> new fact E = y
is added to WM

t6

In a backward-chaining system (figure 2.3) the working memory is examined first. If any

fact satisfies the goal the search for a solution is over. If no facts satisfy the goal the rules that

conclude the goal are examined. If a rule concludes the goal its premise becomes a subgoal. Each

subgoal can be satisfied either by finding a fact in the working memory or by finding a rule that

concludes the subgoal. When all subgoals are satisfied the search for a solution is completed.

The solution consists of all the rules that where successfully applied lEdmund C. payne & Rober-t

C. McArthur, 19901.

Knowledge
Base

goal : A: ¡

rule #1:
Itr'B=yANI}C:z
THENA=x

rule #2:
IFD=aANI)F=v
THENB=y

rule #3:
IFE=b
TIIEN C = z

Working
Memory

f r*- Il'='l
| ;:l Itl

Eackrvard chaining

Backward-chaininq tree :

particular problem that the system is to solve. First-Generation expert systems required the user

to enter initial facts manually. This worked fine for simple systems with a few initial facts but as

expert systems became more complex it did not suffice. Soon it became clear that if expert

systems technology was to be used in solving real-world problems it had to be integrated with

Both methods use initial facts as a way of describing the world's initial state of a

B=y(subgoal#l)

I)=a
(true - fact)

A = x (goal)

F=v
(true - fact)

C¡z(subsoal#2)

I

+
E=b
(true - fact)

Figure 2.3

17

database technology. The first step in this direction was adding the ability to read data from a

database into the working memory thus obtaining a set of initial facts. Typically the rules will

access a database in the premise part and assign values to the facts in the conclusion part. The

next step is storing the results of reasoning and/or intermediate facts in the dat¿base thus

allowing other conventional or expefi systems to do further processing based on the results

obtained (frgrne 2.4).

WORKING MEMORY

(facts)

rntegrat,íon of a rule-based e>rperL system with a database

KNO}TLEDGE BASE

(rules)

Another type of expert system development approach uses object-oriented (frame-based)

techniques to represent knowledge (figure 2.5). Knowledge bases in such systems consists of a

hierarchy of classes (or objects) some of which are derived from others. Subclasses inherit some

properties from their parent classes and add new properties or over-ride some of their parents'

18

DATABASE

(data)

Figure 2.4

properties. Some expefi systems combine both rule-based and object-oriented knowledge

representations. In an object-oriented system, values of attributes are determined either by

inheritance or by using demons (when-needed methods and when-changed methods). These

demons calculate values based on other known values, ask the user for values, or read values

from the database (another implementation of integration of expert system technology with

database technology - figure 2.6).

Class B

slot a (inherited)
slot b (inherited)
slot c
method I (inherited
method 2

Frame-based (obj ect-oriented) system

Class C

slot a (inherited)
slot b (inherited)
slot d
slot e

method 1 (overriden)
method 2

The advantages of integration of expert system technology with database technolo gy are

enormous. The expert system gains access to a huge amount of data describing the state of the

world. It can analyze this data, create results, and store the results in a database so that other

Instance Cl
a=0
b:0
d=1
e:2
method I
method 2

Figure 2.5

Instance C2

a:1
b:2
d:0
e= -2
method I
method 2

I9

systems can process it further. Also, an expert system can take advantage of various feafures

inherent in database technology such as concurrency, security, data consistency, and data query

optimization þeynon-Davíes, P., l99ll. Finally, expert systems can solve real world problems

and can become a part of a larger system.

CLASS dB3 dbedit SINGLE EXTERNALTTdBASEIII dbedit
WITH last_name STRING

SEARCH ORDER CONTEXT

WITH first_name STRING

SEARCII ORDER CONTEXT

CLASS database actions
WITH delete rec SIMPLE
\ilHENCHANGED
BEGIN
action OF dBlf dbedit IS delete record :: TRUE
action OF dB3 dbedit IS pack:: TRUE
copy database to display OF database actions :: TRUE

END

Integration of a f,rarne-based expert system (Level5 Object) with a database.

The main disadvantage of integrating expert system technology with database technology

is that the systems become more complex. Part of the knowledge base must be concerned with

accessing a database, so the actual problem-solving knowledge may become less underst¿ndable

and more difficult to maintain. Also depending on the implementation, the expert system may

become less portable when it is coupled with a pafticular dat¿base system (e.g. DBase for IBM

20

DBase 3 database

DBEDIT.DBFfiIe

record 1:
last_name: trSmithtr

fi¡st_name:rUohn"

record 2:
last_name-rtFoxrt
fi¡st_name:rrPeter"

Figure 2.6

PC computers). Typically such a database interface, implemented by the developer of an expert

system shell, is not complete (e.g. it does not support record locking, indexes, multiple indexes,

etc.). A better approach is to use a generic interface to a third-party database server using SQL.

This can greatly increase an expert system's portability and flexibility lLevelí Object - RdblSeL

Interface Guide, 19921. Further discussion of these methods is presented in chapter 3.

2-2. calling external programs/functions from a Knowledge-Based system

A knowledge-based approach to problem solving is appropriate if the problem to be

solved is not well-defined, the knowledge is incomplete or uncertain, there is no clear

algorithmic solution, or knowledge is heuristic in nature. On the other hand, tasks that have clear

algorithmic solutions, that depend on mathematical calculations, that are connected with the user

interface or graphics are better suited to conventional programming technology. Complex,

real-world problems typically contain both types of tasks. Expert system tools typically are very

limited in math and graphics functions and those functions that they do have are very inefficient

when compared to conventional programming languages (e.g. C language). By allowing the

expert system shell to call an external program or function, many of the above limitations can be

eliminated.

Many second-generation rule-based systems support using external function calls in rule

premises and conclusions (figures2.7 and 2.8). Similarly, frame-based (object-oriented) systems

now support calling external functions from within when-changed and when-needed methods.

21

Parameters to the functions and the results from the functions can be passed either through

memory or ASCII files. Using ASCII files for communication can slow down the procedure

significantly.

KNOWLEDGE BASE

(ruIes)

EXTERNÀL FUNCTION

p arameters/re sult s

calling external functions from a rule-based expert. system.

V{ORT(ING MEMORY

(facts)

Allowing calls to external functions can significantly increase the capabilities and the

performance of an expert system. There are no real disadvantages to this method assuming the

implementation does not make it difficult or cumbersome to use as is the case in some expert

system tools. Further discussion of these integration methods is presented in chapter 4.

Figxe2.1

22

Class A

- slot 1

- value
- when-needed method
- when-changed method

- slot 2

-.T:,hod I

Calling external- function from a frame-based e><pert system.

paramctefs/results

2.3 - Embedded solutions

Embedding an expert system in a conventional system (or a conventional system in an

expert system) is the tightest integration method (figure 2.9).It is not as flexible as client -

server architecture but allows for closer and more efficient integration. Both integrated

components can call each other's internal functions and access each other's data structures

directly. In a typical scenario, an expert system is embedded in a conventional system. The

conventional system provides the user interface, performs numerical calculations, displays the

results, accesses a database, and calls the expert system component when necessary. Calling the

expert system from the point of view of the conventional system is like calling any other function

or procedure. After the expert system has completed processing the conventional system can read

the results directly from the working memory of the expert system.

EXTERNAL FUNCTIONS

parametcrs/results

function
function

function 3

Figure 2.8

¿J

Advantages of an embedded solution are efficiency and very close integration. On the

other hand this method is not very flexible - both components must be compiled together and no

other external programs can be integrated with the system at runtime. Also the integration

procedure may be quite complicated, it may require code modifications of some modules of both

, components. Further discussion of embedded solutions is presented in chapter 5.

user interface

numeric processing

graphical display

CON\ZENTIONAT SYSTEM

database system

Ð(PERT SYSTEM

2-4- Client - Server Architecture

Another method of integrating expert system technology with conventional programming

technology is through the use of client-server architecture (figure 2.10). This method can only be

used in multitasking environments such as Microsoft Windows 3.x on IBM PC compatible

Embedded solution.

Figare 2.9

24

computers. The client-server architecture is based on at least two programs running

simultaneously. One of the programs is the expefi system and the other is a conventional

program (or another expert system). Both programs can communicate with each other. They can

exchange data and they can request the other progtam to perform certain functions. Typically the

program that initiates the conversation becomes a client (or a master) and the program

responding to the request assumes the role of a server (or a slave). The roles can change

dynamically over time. Also in a more complex scenario there can be more programs running

simultaneously and carrying out conversations. Each program can be involved in multiple

conversations at the same time and may assume the role of a client in some and a server in the

others.

Client - server architectures are the most flexible method of integrating different

technologies. The only requirement for the programs taking part in such a system is that they

must all provide a common communication protocol. In the Microsoft Windows environment

such a protocol called Dynamic Data Exchange (DDE) is already defined by the operating

system. Most Windows-based applications support the DDE protocol. DDE allows both dat¿

exchange and sending commands. The only disadvantage of using client - server architecture is

the overhead of establishing links between the programs and of the communication protocol

itself. Also the programs must agree on what dat¿ and commands they want to exchange. Further

discussion of client-server architectures is presented in chapter 6.

25

EXPER.T SYSTEM

DATABSE SYSTEM

MATH LItsR,ARY

2.5 trdeal model of integration

USER INTERFACE

expert-system tool should have the following characteristics:

- be callable from C, COBOL, FORTRAN, and assembler;
- be able to call C, COBOL, FORTRAN, and assembler;
- be able to read from and write to relational databases via SeL;
- support well-documented conventions for communication with external applications;
- be conf,rgurable by developers;
- be compact enough to fit within a fraction of the directly addressable space of the chosen

hardware;

- create reentrant executable versions of the system once the development features have been
stripped out;

- be available on a wide range of systems.

According to some researchers (Earl D. Sacerdoti, 1989) an ideally integrated

Client - Server Architecture-

GRAPHICS LIBR.ARY

Figure 2.10

26

The four methods of integration discussed above come very close to this ideal. There is no expert

system tool currently on the market that would satisfy all the above requirements but some tools

are evolving in that direction.

2.6 Survey of six commercial expert system tools

Implementation of the methods of integrating expert system technology with conventional

technology described above is different in various tools currently available in the market. Levels

Object from Information Builders Inc. will be the primary tool used for illustrating the issues

involved in integration of expert system technology with conventional technology. Various other

expert system tools will be briefly examined to show alternative approaches.

Six expert system tools - ART-IM, cl-lps, KES, Level 5, vAX ops5, and Kappa-pc -

will be introduced in the next section. Their functionality, performance, advantages, and

disadvantages will be briefly described [based on William Mettrey, l99l]. Each of these systems

will be used in subsequent chapters to illustrate various ways of providing integrated expert

system f¿cilities.

2.6-1.. C Language Integrated Froduction System (CI-IPS)

CLIPS was developed by NASA at the Lyndon B. Johnson Space Center. It was designed

to overcome a number of difficulties NASA had experienced using Lisp-based tools, including

low availability of Lisp on conventional computers, high cost of Lisp-based tools and hardware,

27

and poor integration of Lisp with other languages lWilliam Mettey, l99ll. CLPS is written in

C to support the goals of high portability, low cost, and ease of integration with external

systems. CLPS was designed as a rule-based system based on the architecture of ART - NASA's

Lisp-based tool. According to NASA, CLIPS has been delivered to more than 2,500 users, and

is available on all hardware platforms.

CLIPS uses rules as its primary knowledge representation approach. It uses a Lisp-like

rule svntax:

(defrule Rule-Name

CLIPS supports a rich pattern-matching language for specifying rule conditions which operates

on both single fields and multifield sequences composed of strings, symbols, and numbers.

CLIPS also supports templates as a means of speciffing rule conditions. In addition, CLIPS

provides procedural programming constructs (if...then...else, while) on the right-hand side of

rules. The above features enable CLIPS to express in a single rule, knowledge that requires

several rules in other expert system tools. In version 5.0 CLIPS Object Oriented Language

(COOL) was introduced. It extends CLIPS's capabilities by supporting object-oriented

programming lTom Brooke, 19921.

"Optional Documentation String"
(condition-1) ; The left-hand side is composed of
(condition-2) ; zero or more conditions
(condition-n) ; each enclosed in parentheses

:> (action-l) ;The right-hand side is composed of
(action-2) ; zero ot more actions
(action-n))

28

CLIPS inference mechanism is based on a forward-chaining control strategy that

implements the classic recognize - act cycle. Conditions of rules are matched with facts in the

knowledge base. Rules with all conditions satisfied are instantiated (activated) and placed on an

agenda (or in a conflict set). CLIPS selects the rules with the highest salience þriority), which

can vary from -10,000 to + 10,000 (the default is 0), to fire. Firing a rule consists of performing

the rule's actions (specified on the right-hand side). Forward chaining is implemented using an

efficient Rete matching algorithm. The Rete algorithm uses a network representation of rules

dependencies and its major advantage is a very fast evaluation of rules premises [C. Forgy,

19821. CLIPS does not support backward chaining [wiiliam Mettrey, lgBT].

CLIPS is offered on a wide range of hardware platforms. Its strengths include strong

support of forward chaining, ease of integration with external systems, portability, fast

execution, and low price. Its main weakness is its lack of support for backward chaining.

Templates provide the structuring capabilities of a frame system, but do not support inheritance

or procedural attachments. This has been corrected in version 5.0 by introducing COOL (CLIPS

Object Oriented Language) which allows object-oriented programming, although COOL has not

been completely integrated with CLIPS as yet lTom Brooke, 19921.

29

2.6.2. Automated Reasoning Tool for Information Management (ART-IM)

ART was introduced in 1985 by Inference Corporation as a Lisp-based expert system tool

targeted to Lisp-machines and high-end workstations. ART-IM was developed using NASA's

CLIPS as a base and adding several enhancements, most important of which was a schema

(frame) system and an object-oriented programming capability.

From the knowledge representation perspective, the main difference between ART-IM

and CLIPS is the frame system. ART-IM refers to frames as schemata. which can be used on the

left-hand side of rules. A schema consists of a schema name and one or more slots. The slots

represent either attributes of a schema or its relationship with other schemata. A schema can be

defined either statically using the defschemd statement or dynamically at run-time. ART-IM

supports single inheritance - values and functions are inherited via ís-a and instance-o;f relations

between schemata e.g.:

The inference mechanisms of ART-IM and CLIpS are very similar, with forward

chaining being the primary mechanism. In addition, ART-IM provides object-oriented

programming capabilities. An ART-IM object is represented by a schema whose slots contain

(defschema machine-l
(instance-of machine)
(machine-status idle)
(current-part P9)
(current-operation OP-3))

30

values for the object's attributes and functions to carry out the object's actions. Functions can be

written in C or using ART-IM commands.

ART-IM has all the advantages of CLIPS. Its frame system and object-oriented

programming capability make ART-IM even more powerful and flexible, increasing the range of

possible applications. ART-IM is an expensive tool targeted at the high-end market. It offers a

very comprehensive debugging and development environment including a windowed user

interface. Numerous applications have been developed using ART-IM and it is capable of

handling very large knowledge bases fWilliam Mettrey, 199U. Some of the weaknesses of

ART-IM are lack of support of backward chaining, multiple inheritance, and user-defined

inheritance.

2.6-3. Knowledge Engineering System (KES)

KES was introduced by Software Architecture & Engineering in 1982. The early versions

of KES were implemented in Lisp but it was ported to C in version 2.1. KES historically

consisted of three subsystems: KES Bayes, KES HT, and KES PS. KES Bayes is a statistical

pattern classification subsystem for applications that have a large body of data expressed as

probabilities. This subsystem is no longer supported. KES HT is a hypothesis-and-test subsystem

that is useful for specialized diagnostic applications. KES PS, the production system module, is

the most frequently used of KES's subsystems. KES PS will be further referred to as KES.

3l

KES provides forward-chaining rules (demons), backward-chaining rules, and a class

(frame) system for knowledge representation. The KES equivalents of facts are called attributes.

KES has a rigid typing system - each attribute must be declared and given a type which specifies

the kind of values it can assume and the operations that can be performed on it. KES can also

handle uncertain knowledge by using certainty factorsl. The KES equivalent of a frame is a class.

Classes can be used to specify atfibutes tested by rule conditions. Classes support single

inheritance but do not allow procedural attachments. Intrinsic and user-defined functions.

however, can be called from both rules and demons. The general form of a KES

forward-chaining rule is the following:

rule name:
variable declarations

when
condition(s)

then

action(s)
endtvhen.

The general form of a KES backward-chaining rule is the following:

\Optional variable declarations
V(eyword when signalsthe start of the left-hand side
\One or more LHS conditions
V(eyword then signals the start ofthe right-hand side
\One or more RHS actions
V(eyvord endwhen terminates the mle

iî
antecedent(s)

then
consequent(s)

erzdif.

' Certainty Factors (CFs) are numeric values (tlpically in the range from 0 to 1) that represent a degree of certainty
(or uncertainty) of facts and/or rules in a knowledge-based system. Special rules have been defined to allow
combining two or more CFs, for example if a rule uses, in its premise, fact A with CF=0.5 and fact B with CF:0.5
then the conclusion of this rule will have a CF:0.25.

32

V(eJword y'signals the start of the left-hand side
\One or more antecedents
V(e1r,vord then signals the sta¡t of the right-hand side
\One or more consequents
V(eyword endifterminates the rule

KES's primary inference mechanism is backward chaining. Forward-chaining rules

(demons) cannot interfere with backward-chaining rules - a demon cannot contribute a value to

an attribute that is being pursued by a backward-chaining inference. KES does not use the Rete

algorithm in forward chaining so its forward chaining processing is not very efficient. Also, KES

performs a depth-flrst evaluation of the forward-chaining rule conditions that can lead to firings

of unwanted rules or multiple frings of the same rule [wiltiam Mettrey, 1991].

KES supports all major knowledge representation mechanisms. KES execures on a

number of hardware platforms, including IBM mainframes, IBM PC's, DEC VAXs, and other

workstations. An application developed in KES can be embedded in external user code that is

written in C. The weak element of KES is its forward chaining mechanism - caution has to be

exercised to avoid undesirable rule firings.

2.6-4- VAX Official Production System Version 5 (VAX OpS5)

VAX OPS5 is a descendant of several production system languages developed at Carnegie

Mellon University. It is written in Bliss (DEC's system implementation language) and executes

only on DEC hardware.

Knowledge is represented in VAX OPS5 by rules which have a Lisp-like syntax (similar

to that of CLIPS and ART-IM). The left-hand side conditions are composed of attribute-value

JJ

pairs. Values can be either symbols or numbers; strings are not supported. Pattern-matching

functionality is not as rich as that in CLIPS or ART-IM. VAX OPS5 also does not support

procedural programming constructs. The general form of a VAX OPS5 rule is the following:

(PRule-Name

(condition-1) ;The left-hand side is composed of
(condition-2) ;one or more conditions
(condition-n)

(action-l) ; The right-hand side is composed of
(action-2) ;one or more actions
(action-n))

VAX OPS5's only inference mechanism is forward chaining. It is based on an eff,rcient

Rete algorithm. VAX OPS5 provides two conflict resolution strategies, Lexicographic Sort (Lex)

and Means-Ends Analysis (MEA), for selecting rules to fire.

VAX OPS5 strengths are rapid execution times, integration with other DEC software,

and the proven ability to support the development and delivery of large expeft systems (Xcon,

Xsel). Among the weaknesses of VAX OPS5 are lack of support for backward chaining, and

frames, and non-portability to other hardware platforms lWilliam Mettrey, 19911.

34

2.6.5. Kappa-PC

Kappa-PC is a Microsoft Windows-based expert system shell developed by IntelliCorp,

company known for its Lisp machine-based expert system tool - KEE. Kappa-PC's knowledge

representation and inference mechanisms are directly related to those of KEE.

representation. Classes and instances are used to represent objects. Classes can contain both s/ors

and methods. Inheritance is supported by the means of subclasses. A subclass can inherit both

slots and methods from its anceslor. Methods are written in KAL (Kappa-PC's Application

Language) which provides a rich set of built-in functions, operators, knowledge representation

and manipulation constructs, and procedural-programming structures (e.g. For, ForAll, White).

Also users can write their own functions in KAL. Kappa-PC provides a special type of methods

called monitors. Monitors are methods that are linked to slots and are triggered either by changes

in the slot value or by a request for a slot value that is not known. There are four types of

monítors: If Needed, Wen Accessed, Beþre Change, and Afier Chnnge. Both c/ass¿s and

instances can be declared statically or created dynamically at run-time, for example:

Kappa-PC supports both frame-based (object-oriented) and rule-based knowledge

For counter [1 10 0.51
I(

Makelnstance(Obj# l0xcounter, Root) ;
MakeSlot(Obj# I 0+counrer, Size);
SetValue(Obj# 1 O*counter, Size, counter);

35

Beside an object-oriented system, Kappa-PC supports a rule-based knowledge

representation. Both forward and backward chaining inference mechanisms are supported.

Kappa-PC allows the developer to select one of the four Conflict Resolution Strategtes during

forward chaining: Selective (follows only one successful path), Depffirst (exhaustive search,

new facts added to the top of the Agenda), Breadffirst (exhaustive search, new facts added to

the end of the Agenda), Besffirst (exhaustive search, rules are selected in their Priority order).

Both forward and backward chaining rules use the same syntax e.g.:

Kappa-PC is a very powerful expert system tool targeted for the high-end PC user

market. In addition to rich knowledge representation and flexible inference mechanism,

Kappa-PC provides a wide set of development-suppoft tools, including a debugger, user interface

functionality, interfaces to external functions, databases and DDE (Dynamic Data Exchange).

Despite some minor deficiencies (e.g. poorly designed explanation facility) Kappa-PC is one of

the most powerful expert system tools currently on the market lKappa-PC (Jser's Guide, 19921.

SluggishTurnover:

[car:Autos]
IF car:IgnitionKey #: ON And

car:ElectricalSystem #: Bad;
TIIEN car:EngineTurnover : Sluggish;

2-6-6- tr-evel5 Object

Level5 Object evaluated below (and in the remaining chapters) is a Microsoft

V/indows-based expert system shell which allows both rule-based and frame-based

(object-oriented) knowledge representation.

36

The knowledge base in Level5 Object is built around classes which consist of attributes.

Classes can inherit attributes from other classes. Each attribute of a class can have when-needed

and when-changed methods attached (similar to monitors in Kappa-PC). Classes are instantiated

by objects. One class can be instantiated by many objects. Atüibutes of objects can be assigned

values that can be later accessed in when-needed and when-changed methods as well as in rules.

Part of knowledge in Level5 Object can be represented in rules. There are two types of rules:

demons (forward-chaining rules) and rules (backward-chaining rules). Rules can use attributes of

objects both in premises and in conclusions, for example:

In addition to knowledge representation and processing mechanisms described above,

Level5 Object is equipped in a variety of tools allowing to quickly create very attractive and

flexible user interface. It also contains several means of integration with conventional systems

(these will be discussed in detail in the following chapters): access mechanisms to external

databases, mechanism for calling external programs and support for Dynamic Data Exchange.

Level5 Object can also handle uncertain knowledge using certainty factors lLevetí Object (Jser's

Guíde, 19901.

IF lasf name OF employee = "Smith"
AllD fïrst name of employee = "John"
THEN delete OF actions: TRUE

Level5 Object is a very good prototyping tool. Its extensive support for user interface

allows quick development of attractive prototype systems. Its support for all three major

JI

knowledge representation schemes (forward and backward chaining rules, classes) makes Levelj

Object applicable to a wide range of problems. Its English-like rule syntax is easy to learn and

understand, although its pattern-matching functionality is poor when compared to other tools.

Level5 Object is also available on the IBM mainframe and Unix hardware platforms.

2.7. Summary

technology, as well as other AI technologies, with convenúonal-computing environments. Many

commercial expert system shells now support various methods of this integration but none

provides full integration. As discussed earlier, there are four major methods of integrating expert

system technology with conventional-computing systems: 1) an interface to external databases; 2)

an interface to external functions written in conventional-programming languages; 3) embedding

expert systems in conventional systems; and 4) client-server architectures. All commercial tools

described in chapter 2 use one or more of these methods but their implementations usually

impose various limitations and are not complete. For example, Level5 Object supports a

client-server architecture (described in detail in chapter 6) through the DDE protocol, but the

implementation is only partial - Level5 Object cannot act as a server. Despite such limitations

most tools evolve in the right direction and in the near future we can expect the arrival of expert

system tools able to fully integrate with conventional-computing environments.

AI researchers have finally realized the importance of integrating expert system

38

The following chapters discuss methods of integrating expeft system technology with

conventional technology. For the purpose of this thesis conventional technology means computer

hardware and software technology developed outside of Artificial Intelligence. Conventional

hardware means general-purpose computer architectures, like mainframe computers, Unix-based

workstations, and microcomputers, as opposed to Lisp-machines and neural network circuits.

Conventional software includes database systems and other applications that can solve only very

specifrc problems and work according to a pre-designed algorithms. Conventional applications

are usually developed using procedural programming languages like Pascal, the C language,

PILI" or Fortran.

39

3. lntegrating Ëxpent System TechnoloEy with Database
Technology - lmplernentation

Integration of expert system technology with database technology makes expert systems

much more powerful and useful. It gives them access to enormous amounts of data that can be

used by expert systems in their reasoning as a source of facts representing the state of the real

world. It also enables expert systems to store the results of their analysis in a database that can be

processed further by other applications. As a mature technology, with integrity control and

concumency mechanisms, database technology also improves the quality and reliability of expert

systems parke, M. and Y. Vassiliou, 19841-

The need for access to external data in expert system tools was realized quite early in

their development. The first step addressing this need was the ability of expert system tools to

read from and to write to ASCII files. This was a solution for very simple systems only. The

second step in integration of commercial expert system tools with conventional technology was a

database interface.

Various commercial expert system tools implement integration with database technology

differently, but at least the following features should be present regardless of the implementation:

- ability to both read and write database records;
- ability to use indexes to access records;
- ability to append and delete records:
- ability to process records both sequåntially and randomly;
- ability to search for a particular record;
- ability to detect the end-oÊfile condition.

40

Most expert system tools available in the market suppotr at least one database system

(e.g. DBase on IBM PC platform). Some tools support more than one database system (e.g.

DBase and Focus are supported by Level5 Object). The most recent trend however is using a

database gateway in which an interface, typically in the form of SQL', to a third-party database

system is used. This approach allows a developer of an expert system tool to concentrate on

knowledge-related aspects of the tool and it makes a database interface more generic, more

flexible, more reliable, and more portable þevelï Object RdblSOL Interface Guide, 19921.

3.1- Database technology in Level5 Object

The latest version of Level5 Object supports two database systems: DBase III and Focus

[Levelï Object User's Guide, 1990]. It also offers a more generic database interface through

SQL and third-parry subsystems (DEC Pathworks for DOS, and VAX-based Rdb database

system). Still another, more flexible, database interface provided by Level5 Object utilizes DDE

(Dynamic Data Exchange - described in detail in chapter 6) to transfer SQL statements to a

third-party relational database.

3.1.1. Dtsase interface in X-evel5 Object

Level5 Object implements its DBase interface using an object-oriented approach. The

foundation of this system is the dB3 system class' which has the following structure:

' Structured Query Language (SQL) is a standard interface to relational database systems.2 System classes in Level5 Object are built-in object classes u'ith associated functionality. System classes cannot be
modified but a user can create his own classes that inherit properlies from the system classes.

4l

CLASS'dB3
WITH access COMPOUND'?

read,
write,
read shared,
write shared

WITH action GOMPOUND
advance,
previous,
toP'
bottom,
append record,
insert record,
delete record,
recall record,
close,
open,
pack

WITH eof SIMPLE3
WITH record NUMERIC
WITH size NUMERIC
WITH index file STRING
WITH filename STRING
WITH active SIMPLE

The access attribute of the dB3 class defines the database access privilege. It can be one of four.

-read
-write
-read shared
-write shared

The action attribute allows performing various actions on a database file. The action can assume
the followins values:

read-only exclusive access;
both read and write exclusive access (default setting);
read-only shared access;
both read and write shared access.

- open
- close
- advance
- previous
- top
- bottom

a database file is opened;
a database file is closed;
a current record pointer is moved to the next record;
a current record pointer is moved to the previous record,
a cuffent record pointer is moved to the first record;
a current record pointer is moved to the last record;

A CLASS in Level5 is very similar to a class in the Cl-f programming language - it consists of attributes, which
in turn can have methods (procedures) attached to them.
COMPOUND attribute tlpe is like Enumerated tlpe in Pascal, for example the access attribute can only assume
one of the following values: read, write, read shared, and write shared.
SIMPLE attribute type corresponds to Boolean in Pascal.

A|,

- append record a new record is appended to the end offile;
- insert record a new record is inserted at the current record position;
- delete record a current record is marked as deleted:
- pack
- necall record a record marked as deleted becomes undeleted

The remaining attributes allow testing and controlling various aspects of a database:

- active if TRUE a current record is active;
- record it contains a current record number;
- size it contains the number of all records in a database file;
- eof if TRUE the end of file has been reached;
- file name it contains the disk file name (must be specified before a file can be opened);
- index file if specified the index file with this name will be used in the following

operations. top, bottom, previous, advance, and FIND.

all records marked as deleted are removed from a file:

In order to use a database f,rle, a class corresponding to that file must be created. All

attributes of that class, both attribute names and types, must correspond to the fields of the

DBase file. Level5 Object can create a class corresponding to a given DBase file automatically.

The class will inherit all attributes of the dB3 system class described above. Lets consider an

example EMPLOYEE dat¿base file with the following f,relds:

-NO
- NAME Character: employee name
- BORN Date: employee's date of birth
- MALE Logical: if TRIIE then male if FALSE then female
- SALARY Numeric: employee's salary

Numeric: employee number

A dB3Employee class corresponding to the above DBase file would inherit all attributes of the

dB3 system class plus it would have the following attributes:

-no
- name
- born
- male
- salary

NUMEzuC
STRING
TIME
SIMPLE
NUMERIC

43

The attributes of the dB3-derived classes can be used both in rules and in methods within

Level5 Object. The following examples use rules but the syntax is the same for methods

(when-needed and when-changed) :

RULE for opening a database file
lF fileOpen = TRUE
THEN open OF dB3Employee:= TRUE

RULE for closíng a database file
lF fileGlose = TRUE
THEN close OF dB3Employee := TRUE

RULE for advancing to the next record
lF nextRecord = TRUE
THEN action OF dB3Employee lS advance

RULE for searching for a particular record and updating it if found
lF name OF dB3Employee <) "Brian Fox"
AND eof OF dB3Employee = FALSE
THEN action OF dB3Employee lS advance
AND LOOP
ELSE salary OF dB3Employee := 30000

RULE for adding a new record
lF appendRecord = TRUE
THEN action OF dB3Employee lS append record
AND no OF dB3Employee := LastNo + 1

AND name OF dB3Employee := "Marry Jones"

RULE for deleting and removing a record from a file
lF deleteRecord = TRUE
THEN action OF dB3Employee lS delete record
AND action OF dB3Employee lS pack

RULE for searching for a partícular record (fast if index fíle ls used)
FIND dB3Employee WHERE name OF dBsEmployee = "John Black"
LIMIT 1

WHEN FOUND
recFound := TRUE
WHEN NONE FOUND
recFound := FALSE
FII\ID END
THEN searchedForName := TRUE

44

The attributes used in the above rules can be linked to buttons of the display as shown on

Fig. 3.0. For example, the attribute nextRecord can be linked to the Ne¡r button and the attribute

deleteRecord can be linked to the Delete button. Clicking with a mouse on a button will set the

corresponding attribute value to TRUE.

File

turrent Hecürd
Employee id :

Employee nama:

Date of birth :

1

Salary:

Record fr:

John Smith

:Fï;Ti

03lr zfr s6CI

32rt0
I

Append

Previous

Employee id :

Next

Delete

Last

Find

Fig. 3.0

+J

3-l-2- SQL Interface to a Remote Database in Level5 Object

Level5 Object provides an SQL interface to remote Rdb databases running on a VAX

fLevelí Object RdblSOL Interface Guide, 19921. Figure 3.1 shows the remote database query

process:

Level5 Object | | DEC Fathworks
for Microsoft I LSRDB.DLL I for DOS
Windows

Level5 Object provides the L5RDB.DLL library which processes SQL queries and sends them to

DEC Pathworks - a third-parfy software package. DEC Pathworks handles further

communication with a remote VAX Rdb server that controls access to VAx-based Rdb

databases. Responses to SQL queries are sent back the same \r/ay to Level5 Object. Level5

Object provides a new EXEC S?Z command which triggers the processing described above, for

example:

--.->
cotltmunlcatlons
network

{-

Figure 3.1

VAxRdb I Rdb
Server I database

The above when-changed method could be attached to an attribute that is linked to a Japan Cars

button for example. Clicking on the Japan Cars button would trigger the when-changed method

that would send an SQL query to a VAX-based database. The query would select records,

containing model and make columns (attributes), from the car table (database file). Only records

lryHEN CHANGEI)
BEGIN

EXEC SQL select model, make, MSRP from car
where country = t'Japantt

END SQL INTO selected cars
ENI)

46

with country : "Japan" would be selected. The resulting table would be sent back to Level5

Object. Level5 Object would then create an instance of selected cars class for each row (record)

of the result table and set the corresponding attributes to the values of make and model.

Level5 Object supports the following SQL commands:

- SELECT: specifies the data to be retrieved from a database and creates a result table:
- INSERT: inserts values as nerv records in a table;
- UPDATE: modifies rows in a table;
- DELETE: deletes rows from a table;
- CREATE: creates a new table,
- ALTER: changes an existing table;
- DROP: deletes specified SQL elements such as INDEX, SCI{EMA, TABLE;
- DECLARE SCIIEMA: specifies the name ald source of the schema definitions to be accessed;
- DECLARE TRANSACTION: specifies a transaction;
- SET TRANSACTION: begins a transaction,
- COMMIT: makes permanent any changes made during a transaction;
- ROLLBACK: undoes any changes made during a transaction;
- GRANT: creates privileges to the access control list;
- REVOKE: removes privileges to the access control list;
- COMMENT ON: modifies or adds a comment about a table.

When SQL EXEC is used as a function rather than as a command it returns an error code,
for example:

SqlError can have a when-changed method that displays an error message to a user, for example:

"No Records Found. " or " Connection to the database broken. ".

DEMON to select employees from database
Itr' get matching employee
THEN SqlError:= EXEC SQL select * from personnel

rvhere last_name := name END SQL INTO Employees

3-2- Database technology in Kappa-FC

lKappa-PC User's Guide, 19921. Kappa-PC supports reading from and writing to ASCII files. Ir

Kappa-PC offers similar dat¿base facilities to those provided by Level5 Object

/l'I

also provides a set of functions for accessing DBase and Lotus-123 files. Similar to Level5

Object, Kappa-PC provides an interface to an SQL DBMS through a third-party database server

(Sequelink from TechGnosis). The final database facility present in Kappa-PC is exchange of

data through the Dynamic Data Exchange (DDE) - it is described in more detail in chapter 6.

3-2-l- DBase and Lotus-123 tnterlace in Kappa-PC

Kappa-PC provides a set of functions for accessing DBase and Lotus-123 files. Before

any data can be accessed a file must be opened with the built-in DB0penFlle(FíleName)

function. For Lotus-123, FíleName must have a .wks, .wkL, or .wrl extension. For DBase files,

FileName must have a .dbf extension. Many files can be open simultaneously but only one file

can be selected. A file opened with DB0penFileQ becomes the currently selected file. To select

another open file, the DtsSelectFile(FileName) function is used. An open file can be closed with

DBCloseFlle(FileName). For DBase files, Kappa-PC also provides functions for using indexes:

DB0penlndexFile(Fi leName), DBSelectlndexFile(Fi leName), and,

DBCloselndexF'ile(Fi leName) .

Both Lotus-I23 and DBase files can be accessed using the same functions. The

DBR.eadCell(Row#, CoIf) function returns a value stored in the Row# row (record in DBase)

and the Col# column (field in DBase). The functions DBGetNumberofRowsQ and

DBGetNumberOfFields0 return the number of rows and columns in a spreadsheet or database,

respectively. The DBReadField(column) function reads data from the column name or column

48

number of the current row, while the DBGetRowPosition0 function returns the number of the

currently active row. The DBSetRowPosition(Rowf) function sets the currently active row. The

DBWriteCell(Row#, Col#, Value) function writes data Value to the row Row# and to the

column Col# of a selected file. Both DBase and Lotus-123 files can be searched for rows

(records) satisfying a filter expression - DBFindR ecord(FilterExpr), for example:

A more powerful set of functions provided by Kappa-PC supports mapping a row of data

from a DBase or Lotus-123 file di¡ectly into slots of an object instance in a Kappa-PC

application. In order to do this, the following sequence of function calls must be executed to

prepare parameters for mapping:

DBOpenF ile(" employce") ;
DBFindRecord("last_name = 'Smith' .A¡lD. first_name = 'peter"')i

Now a new instance Employeel can be created from the class Employees using

Makelnstance(Employeel, Employees). Finally the function DBMapR.owTolnstance0 can be

used to supply slot values for this instance from the currently active row in the dat¿ file:

DBMapR.owTolnstance(Employeel). The opposite mapping of slot values into a row of the

data file is also possible. The sequence of function calls is identical to the one used in mapping

of a row into slot values except for the last function call. This time the function

DBMaplnstanceToRow0 must be used : DBMaplnstanceToR ow (Emptoy ee I) .

SetVafue(G/o b al: SlotN qmes, FirstName, Las.tNøme);
SetValue(G/abal: FìeIdN ames, FIRSTNAME, IllS TNAME);
IlBSetMapParameters(G/o b al: SlotNames, Glob øl : FieldN ømes);

49

3.2.2- Interface with SQL RDBMS in Kappa-PC

Kappa-PC provides an interface to the SQL relational database using a third-party

software package called Sequelink from TechGnosis. Sequelink allows Kappa-PC to connect to

a variety of RDBMS, including Ingtes, Sybase, Informix, OS/2 EE, Rdb, and DB2 running on a

variety of hardware platforms. Kappa-PC's SQL support is based on a client-server architecture

where the PC running Kappa-PC is the client and the machine running the SQL DBMS on the

network is the server. The use of SQL interface in Kappa-PC is very straight-forward:

l. A database file is opened using IlBOpenFileQ;
2 An SQL SELECT command is issued using DBExecute function;
3. Various operations can be performed on the table, generated by the SELECT command, using the functions:

DBSetRowPositionQ, DBGetRowPositionQ, DBSetMapParametersQ, DBMapRowTolnstanceQ,
DBReadCellQ, and DBWriteCellQ;

4. Steps 2.and3. canberepeated;
5. The database is closed using the firnction DBCloseFileQ.

The Kappa-PC's SQL interface is very powerful and flexible and at the same time easy to

use. By relying on a third-party software package, Kappa-PC gains a uniform and reliable SQL

interface to a variety of database systems supported by Sequelink.

3.3- KÁ.DBASE - a Knowledge-Aided Database System

KADBASE', a knowledge-aided database system prototype, is a very flexible interface in

which multiple knowledge-based systems and multiple databases can communicate with each

other within a distributed engineering computer system IH.C. Iloward & D.R. Rehnk,1989l.

The engineering environment for which the prototype has been developed imposes special

' KADBASE is not a commercially available product like Level5 Object and Kappa-PC. It is currently a research
prototype that has been included in this section to illustrate the next generation of KBS/DBS integration.

50

requirements on knowledge based systems. The most important requirement is that knowledge

based systems must be capable of accessing very large, shared databases. Also the interface must

support multiple and heterogeneous knowledge based systems.

Knorvledge
based system

i

Knowledge

based system

J

KBSI

An overview of the KADBASE architecture.

Figure 3.2 shows the following basic components of the KADBASE prototype:

- The Xmowledge-based-systern interface (KBSI), part of every knowledge-based system,
formulates queries and updates sent to the network data access manager and processes replies
from the network data access manager. The KBSI possesses knowledge about the
knowledge-based-system context (data space) schema, and uses that knowledge to perform
semantic and syntactic translations for queries, updates, and replies.

- The knowledge-based-database interface (KBDBI), which acts as an intelligent front end for
a basic DBMS, accepts queries and updates from the network data access manager and returns
appropriate replies. The KBDBI possesses knowledge about the local database schema and the
local language for data manipulation requests. It uses that knowledge to perform semantic and
syntactic translations for queries, updates, and replies.

- The network data access manâger (NIDAM), providing the actual interface, receives requests
(queries and updates) from knowledge-based systems (through their KBSIs) expressed in terms
of the global schema. Using information associated with the global schema, the NDAM locates
sources for data referenced in a request and decomposes each request into subqueries or

51

Knowledge based

database interface

a

Database

Knowledge based

database interface

D

Database

Figure 3.2

Knowledge based

database interface

c

Database

updates to individualtarget databases. The subrequests are sent to appropriate KBDBIs for
processing. Replies from KBDBIs are combined to form a single reply to the original request
and sent to the requesting application through its KBSI.

The KADBASE architecture is very powerful and flexible and it is very well suited for

large distributed computing environments e.g. CAD and CAM systems. On the other hand it is

too large and too complex for an average personal computer and stand-alone workst¿tion

systems.KADBASE uses leading-edge technology and it will take some time before it finds its

way from the research lab to real-computing environments.

3-4. Conclusions

Level5 Object offers three different methods of integrating with database technology: an

interface to DBase (and to Focus databases), an interface to DEC-based Rdb database via SQL,

and a DDE-based interface to a third-party database via SQL.

The Level5 Object's implementation of a DBase interface is quite complete and is both

easy to understand and use. Its object-oriented approach integrates well with the rest of the

system. Most functions needed for efficient database processing (e.g. index files) are supported

but there are some severe limitations in the DBase interface. The most serious one is the fact that

it requires the use of one particular database system - DBase. Another limitation is that only 10

files can be open simultaneously and when index files are used only six files can be open. Also

no relations between files can be established so more programming is required for related files

52

which makes the knowledge base less legible. FIND statements cannot be nested which makes

searching two or more related files even more cumbersome. Record locking is also not

supported. In summary, the DBase interface in Level5 Object is sufficient for developing

non-portable (for IBM PC and DBase only) expert systems with limited (not complex) database

processing.

A more flexible database interface offered by Level5 Object is its SQl-based link to a

VAX-based Rdb database. The use of a third-party, well-established, database system makes the

interface very reliable and complete. The use of SQL further increases the interface flexibility

and portability. On the other hand, the interface works only with a VAX-based Rdb database - a

major limitation. Interface to other third-parly database systems using this method would be

desirable.

The most flexible database interface supported by Level5 Object is through the Dynamic

Data Exchange (DDE). It also uses SQL and a third-party database system but it is more generic

than the previous method in that it can work with any database system supporting both SQL and

DDE. On the other hand it is limited to an IBM PC hardware platform and Microsoft Windows

environment. This method is described in detail in chapter 6.

53

Kappa-PC offers a very similar set of database integration facilities to those of Level5

Object. It directly supports both DBase III and Lotus l-2-3 file formats, including DBase

indexes, and provides a set of built-in functions that give access to them. Similar to Level5

Object, Kappa-PC offers an SQL interface to a variety of database systems through a third-party

software package - Sequelink. Sequelink provides access to many popular database systems as

opposed to the Level5 Object's SQL interface that supports only VAX-based Rdb dat¿bases.

Kappa-PC also provides a DDE protocol which is more complete than that of Levelj Object

(both DDE client and DDE seryer are implemented).

Many commercial expert system tools available today provide a rich set of dat¿base

integration facilities but none is complete and perfect for all applications. A user should consider

requirements of the actual application when choosing the right tool. Expert system tools are

evolving rapidly in recent years and we can expect new methods of integrating knowledge-based

systems with database technology. Client-server architectures are becoming more and more

popular as well as powerful and we can expect the future expert system tools to evolve in this

direction. An example of this is the CADBASE prototype discussed in this chapter that uses a

very complex client-server architecture in a network environment. With growing popularity and

advances in object-oriented technologies, including object-oriented databases, the next generation

of expert system tools will develop object-oriented interfaces to databases that will hide the

implementation details and support easier extensibility .

54

4. Galling External Pnograms/Functions frorn a
Knowledge-Based Systern - lmplernentatio¡r

Conventional programming technology can be used for solving well-defined problems for

which precise algorithms can be found. Development of a conventional application typically is

based on a classic design-implement-test cycle. Every aspect of the application must be defined

in terms of a precise algorithm. Conventional programs are very fast, they can be optimized for

speed, and give accurate results. Conventional programs are typically implemented in

procedural, general-pu¡pose, languages like c, C++, Pascal, Fortran, Basic, pLll, or

Assembler. In contrast to conventional programming technology, knowledge-based technology

can deal with uncertain and complex problems. Development of a knowledge-based system does

not start with a complete design, instead incremental development and rapid prototyping

techniques are used. As opposed to a conventional system, knowledge is explicitly separated

from the problem solving part of a knowledge-based system. This enables easier modification

and maintenance of knowledge. However, these benefits of knowledge-based technology are

achieved at a price of decreased efficiency. Also, knowledge-based systems do not have a rich

set of math functions that conventional languages have.

The ability to call an external program or function from within a knowledge-based system

can extend the system's capabilities and can reduce development time and costs significantly. It

is useful for complex math calculations, for a complex graphics display, for printing a report,

etc. Two levels of implementation are possible:

55

o calling an external program/function without further communication;
o calling an external program/function with the parameters and results passing

The f,rst method is very easy to use and does not require any special support from a caller other

than the ability to start an external program. It can be used, for example, to perform some

background tasks like printing. The second method is much more flexible and useful but also

much more difficult to implement, especially when the parameters and results are passed through

memory as opposed to disk files. Typically it requires some support on the part of a caller in

order to pass parameters and receive results.

The following discussion of external program/function calling methods will pertain to MS

Windows and MS DOS environments. The most flexible and tool-independent method of calling

external functions in Microsoft Windows environment is through the use of Dynamic Link

Libraries (DLLs). In Microsoft \Vindows, a DLL is a library of object code in the form of

functions available for external access, together with a function access table. The functions

within a library can be dynamically accessed from another program at runtime without having

previously linked the library with the program. This feature allows high level programs (e.g.

expert system shells), which usually do not need compilation, to access functions supplied by

DLLs. Another nice feature of DLLs is that they are independent of the programming language -

they can be written in C, C+ *, Pascal, Basic, or any other language that supports DLLs.

56

4-1. Calling external programs/functions in Level5 Object

Level5 Object provides two commands for calling external programs [Levetí Object (Jser's

Guíde,19901:

- ACTMTE: used when an external program is to be called only once;
- ESTABLISE: used when an external program will be called more than once

(it will stay in memory after the first call).

Two types of programs can be called from Level5 Object: EXTERN and SERVER.

EXTERN program is an external program that is called with optional command-line parameters

and no further communication exists between the external program and Level5 Object. It can be

any MS DOS or MS V/indows application. SERVER is an external progtam that can receive

parameters from Level5 Object and can pass back the results upon termination (parameters and

results are passed through memory). SERVER programs must be written in Microsoft C

language and must conform to special rules imposed by Level5 object.

4.1.1. Calling an EXTERN program

An EXTERN program does not have to be written specif,rcally to communicate with Level5

Object. It can be any MS DOS or MS Windows application. Command line parameters can be

sent to the program but no further communication exists. The following is an example of a call

to an EXTERN program:

' This PRL code cal be used in a rule, in a demon, or in a rvhen-changed or when-needed method.

ACTIVATE''IPU, EXTERN, NOTEPAD.EXE"
COMMAND filenamel
where filename is a STRING attribute containing the name of a text file.

57

This command, when executed by the Level5 Object's inference engine, will start the MS

V/indows program Notepad and pass the filename parameter as a command-line argument.

Notepad, a simple text editor, will open a file, the name of which was passed on the

command-line, for editing. Level5 Object will continue its processing but the user can switch to

the running Notepad to edit the file and after that switch back to Level5 Object.

File

Enler your string here))

The resulting str¡ng >>

EXTERN2.KNB application (figure 4.1) demonsfates another example of how to call an

external function using this method. After a user enters a string and clicks on the Convert String

button, Level5 Object calls an external program passing the string to it through a text file. The

external program reads the string from the file, converts it to upper case, and passes the

aaaaaaaaaa

AÁÊAÁËqAÁÁ

i-Ç_o-n-yp_ß."-s-!rirs j

Figure 4. I

58

converted string back to Level5 Object through the same file. The string is then displayed in the

main window.

Level5 Object accomplishes the above using the following code:

WHEN CHANGED
BEGIN
act¡on OF file I lS open new := TRUE
write line OF file 1 := strl
action OF file I lS close := TRUE
ACTIVATE "IPU,EXTERN,G:\PRG\L5O\SERVER\TOUppER2.EXE,,
action OF file I lS open old := TRUE
read line OF file I := TRUE
str2 := current line OF file 1

action OF file I lS close := TRUE
END

Level5 Object creates an ASCII file by setting the action OF fite / attribute to open new.

Then it writes the sffl string to the file and closes the file by setting the action OF fite 1 attribute

to close. Next, Level5 Object calls the external program using ACTIUATE statement (the external

program becomes the active task in the MS Windows environment). After the external program

terminates (or yields control to MS Windows) MS ÏVindows returns conüol back to Levels

Object. Level5 Object then opens the file by setting the actíon OF file 1 attribute to open old,

reads the line from the file to the result string str2, and. closes the file.

The external program used in this example is an MS Windows application written in

Microsoft C but it could be any Windows or DOS program not necessarily written in C. The

code is shown below:

59

/* FILE :TOUPPER2.C
DESCRIPTION : Converts all characters from a string to upper case.

External program called by LEVEL5 OBJECT EXTERN2.KNB
String is passed through the EXTERN2.DAT text file.

#define fName "ex1ern2. dat"
#include <windows.h>
#include <ctype.h>
#include <stdio.h>

int PASCAL WinMain(HANDLE,HANDLE,LPSTR,inI);
void read_string(char xs)

{ FILE *inp;
if ((inp: fopen(fName,"rt")) !: NULL)

fgets(s,255,inp);
fclose(inp);

void write_string(char *s)

{ FILE xout;

if ((out: fopen(fName,"wt")) !: NULL)
Þuts(s,out);

fclose(out);

int PASCAL WinMain(hlnstance, hPrevlnstance, lpszCmdline, cmdShow)
HANDLE h-Instance, hPrevlnstance; LPSTR lpszCmdline; int cmdshowl
{ char slnput[255];

char sOutput[255];
int status:

char xpslnput,*psOutput;

/* read a string from a predefined file*/
read_string(slnput);
pslnput: slnput;
psOuþut: sOuþut;
while (*pslnput)

{
*psOutput: xpslnput;
*psOutpnt : toupper(*psOuþut);
pslnput++;
psOutput++;

Ì
*psOuþut:'\0';

/* return a string to the caller*/
rvrite_string(sOutput) ;

return TRUET

This program will work with any other program not just a Level5 Object application.

60

4.1-2. Calling a SERVER program

A SERVER program is written specifically to communicate with Level5 Object. It calls functions

that read the values of attributes in SEND statements (rarameters passed from Level5 Object)

and that write values to RECEIVE statements (results passed back to Level5 Object). A

SERVER pro$am must be an MS Windows program. The following is an example of a call to a

SERVER program from Level5 Object:

ACTIVATE "lPU, SERVER, C:\LEVELS\PROG.EXE"I
SEND name OF Employee
SEND employee.sex lS male
RECEIVE salary OF employee

The ACTIVATE command starts the server program PROG.EXE and establishes communication

between the server and Level5 Object. Next, Level5 Object sends two parameters to the server

using SEND commands which should have the corresponding lï_read statements. After the last

SEND command Level5 Object yields control to the server. After finishing the processing, the

server returns the result to Level5 Object using one of lï_write statements. Level5 Object reads

the result using the RECEIVE command. At this point the server terminates and the confrol is

returned to Level5 Object. If a Level5 Object application does not use the RECEIVE command

(it does not expect a result from a server) the server should use l_quit statement to inform

Level5 Object that it can continue processing.

I This PRL code can be used in a rule, in a demon, or in a when-changed or when-needed method

61

Writing a SERVER program involves following the rules described below. A library of

functions, called LSSERVER.LIB, is supplied with Level5 Object to allow a SERVER program

to communicate with Level5 Object. A header file, LSSERVER.H, contains the function

prototypes that should be included in the program. Level5 Object requires that the SERVER

program be written in Microsoft C 5.0 or higher. Also, the MS ÏVindows SDK is needed. In

writing a SERVER program the following steps should be followed:

o Establishing a communication path with Level5 Object:
- l5-access(programName) function should be called at the beginning of the server

program where programName is the name of the server e.g. pROG E)G;
o Reading attribute values sent by Level5 Object:

- read calls must match the SEND statements of a Level5 Object application (cf means
a Certainty Factor);

- tr5_read_num(cf,num) function reads a NUMERIC attribute;
- l5_read_logical(cf) function reads a SIMPLE, COMPOIIND, and
MULTICOMPOTIND attributes;

- l5_read_string(cf,stning,length) function reads a STRING atrribute;
e Writing attribute values to Level5 Object (passing back results):

- write calls must match RECEIVE statements of a Level5 Object application (cf means
a Certainty Factor);

- l5-write_num(cfonum) function passes a NUMERIC value to Level5 Object;
- lS_write logical(cl) function passes a SIMPLE, COMPOIIND, and
MULTICOMPOLIND attributes to Level5 Object;

- l5_write_string(cf,string,length) function passes a STRING attribute to Level5 Object;
o Synchronizing with Level5 Object:

- it is only needed when no SEND and RECEIVE statements are used in an
ACTIVATE (or ESTABLISH) command;

- l5-quitQ function should be used to inform Level5 Object that it can continue processing.

The EXTERN.KNB application demonstrates how to use a SERVER program in Level5

Object. It accomplishes the same task as EXTERN2.KNB - converting a string to upper case, but

instead of passing the sfing through a file it passes it through memory using the ACTIVATE

command. The following code is used:

62

WHEN CHANGED
BEG¡N
ACTIVATE "IPU,SERVER,C:\PRG\LSO\SERVER\TOUppER.EXE..
SEND strl
REGEIVE str2

END

The TOUPPER.C program is written in Microsoft C - no other compiler can be used. It must

also be linked with L5SERVER.LIB library. The string is passed through memory which is

much more efficient than passing it through a file. The code is shown below:

/x FILE : TOUPPER.C
DESCRIPTION : Convert all characters from a string to upper case.

External pro$am called by LEVEL5 OBJECT's EXTERN.KNB.
*t

#include <windows.h>
#include <ct)æe.h>

#include "l5server.h"

int PASCAL WinMain(HANDLE,HANDLE,LPSTR,inI) ;

int PASCAL WinMain(hlnstance, hPrevlnstance, lpszCmdline, cmdShow)
HANDLE hlnstance, hPrevlnstance; LPSTR lpszCmdline; int cmdshow;
{ char sInpuI[L5SERVER_MAX_STRING_LENGTIII;

char sOuIputp5SERVER_MAX_STRING_LENGTHI ,
int status;

char *pslnput,+psOutput;

cha¡ cf;

/x establish the communication linlc with LEVEL5 OBJECT */
if ((status = l5_access("TOUPPER.EXE")) < 0) '

return FALSE;

/* read a string from a LEVEL5 OBJECT's SEND statement x/
l5_read_string(&c{ slnput, L5SERVER_MAX_STRING_LENGTH);

pslnput: slnput;
psOutput: soutput;
rvhile (*pslnput)

{
xpsOutput: *pslnput;

lS-access, l5-read-string, ald lS_write_string are supplied in the L5SERVER.LIB library

*psOutput : toupper(*psOuþut);
pslnput++;

63

psOuÞut+;
Ì
*psOuçut: '\0';

/* return a string to the LEVEL5 OBJECT's RECEIVE statement */
l5_write_string(cf, sOuþut) ;

return TRUE;

The EXTERN1.KNB application is almost identical to EXTERN.KNB but instead of

using Level5 Object's ACTIVATE command it uses the ESTABLISH command. This is a more

efficient method when a server program is called more than once. The first call will load the

server program into memory and it will stay there, so all subsequent calls will not require

reloading it. This method requires that a server be written in a specific way - it must stay in a

loop until it cannot communicate with Level5 object. This is shown below:

/* FILE : TOIIPPERI.C
DESCRIPTION : Convert all characters from a string to upper case.

External program called by LEVEL5 OBJECT's EXTERNI.KNB.

#include <$.indou/s. h>
#include <ct1pe.h>
#include "lSserver.h"

int PASCAL WinMain(HANDLE,HANDLE,LPSTR,int);

int PASCAL WinMain(hlnstance, hPrevlnstance, lpszCmdline. cmdShow)
IIANDLE lùnstance, hPrevlnstance; LPSTR lpszCmdline; int cmdShow;
{ char sInpuIþ5SERVER_MAX_STRING_LENGTHI;

char sOuþut[L5 SERVER_MAX_STRING_LENGTFIJ ;
int status;
char *pslnput.*psOuþut;

char cf;

/* esrablish the communication link rvith LEVELs OBJECT */
if ((status: l5_access("TOUPPERl.E)G")) < 0)

return FALSEI

64

/* Continue the loop until lS_read_string0 or l5_write_string fails0 */
while (status >= 0;

{
/* read a string from a LEVEL5 OBJECT's SEND statement */
status : l5_read_string(&cfl slnput, L5SERVER_MAX STRING LENGTÐ;

pslnput: slnput;
psOutput: sOuþut;
while (*pslnput)
I
ì.

*psOuþut: *pslnput;
*psOuþut : toupper(*psOutput);
pslnput++;

PSOutPut++;
Ì
*psOutput:'\0';

/t return a string to the LEVEL5 OBJECT's RECEIVE statement */
if (status >: 0)

status : l5_vrite_string(cf, sOutput);
Ì
return TRUE;

4-2- Calling external programs/functions in Kappa-FC

Kappa-PC provides several methods of calling external functions. The simplest method

allows executing an external MS DOS or MS Windows program from within a Kappa-PC

application. This is accomplished by the Execute0 function, for example:

This function call will start the MS Windows Write program which will open ftrytext.txt file for

editing. Up to three arguments can be used with Execute0 function.

Execute(" c:\windows\write. exe " r " myfile.txt'1) ;

65

The second method is Kappa-PC's ability to generate a C code for the Kappa-PC-based

application using the KALI compiler. Once the C code is generated it can be extended by any C

functions that are needed. Next, the C code must be compiled and linked into an MS Windows

DLL using a standard C compiler and linker able to produce DLLs. Once the DLL is created it

can be run by Kappa-PC, for example: wín kappa nryapp.dll. Kappa-PC is still needed to run a

compiled application but it will work much faster than a KAl-based application. The whole

procedure of generating a C code from a KAL code is not simple. First, a katmake.cfg file must

be created (its contents depends on the compiler and linker used). Next, the KAL compiler can

be used to generate the C code. This can result in a number of error messages because some

KAL functions cannot be compiled. The user must modify the KAL code (by substituting those

forbidden functions with others) until no effors are signaled. Once the KAL code is converted to

the C code, the user-defined C functions can be added (certain guide lines must be followed).

Finally, the C code can be compiled and linked into a DLL.

The next two methods of calling external functions are very similar to each other and

both involve using DLLs. Kappa-PC provides a set of KAL (Kappa Application Language)

functions to directly access functions from Dynamic Link Libraries (DLLs). The user only has to

know the name of a function, the types of parameters passed to the function, and the type of a

return value. In order to make aDLL function available to the KdL application the function has

to be registered by calling the DeclareDll- function: DeclareÐLl-(KalName, DLLName,

' KAL staxds for Kappa-PC Application Langtage.

66

[-ibName, R.eturnType, ArgType,...). Once the DLL function has been registered it can be

used as if it were a built-in KAL function. Other DLL related functions provided by Kappa-PC

are:

- DeleteDll(KalName): deletes a previously registered function;
- SetPointerData(pointer, offset, type, value): sets the memory value at the address of
pointer * offs et to value ;

- GetPointerData(¡lointer, offset, Bpe): gets the data value at the memory address of
pointer*offset;

- SizeOf(type): returns the size of the specified data rype in bytes.

By using the above functions it is possible to call functions from both off-the-shelf DLLs (e.g.

those that are part of Microsoft Windows) and user-written DLLs. The following example shows

how to register and use several DLL functions from the Microsoft Windows' Kernel DLL. It

also demonstrates how to use the GetPointerData function in order to retrieve the result of a

previously called DLL functionlKappa-PC Advanced Topics, 19921.

Example:

DeclareDll(Alloc, GlobalAlloc, kernel, HANDLE, INT, DWORD) ;

DeclareDll(Lock, GlobalT .ock, kernel, POfNTER, IIANDLE) ;

DeclareDll(Unlock, GlobalUnlock, kernel, INT, HANDLE);
DeclareDll(Free, GlobalFree, kernel, HANDLE, HANDLE);
DeclareDll(GetWinDir, GetWindowsDirectory, kernel, INT, POINTER, INT);

Global :Handl e : Alloc(2, 256);
Global:Pointer : Lock(Global:Handle);
GetWinDir(Global :Pointer, 256);
GetPointerData(Global:Pointer, 0, STRING);
Unlock(Global : Handle) ;

Free(Global : Pointer) ;

DeleteDll(Alloc);
DeleteDl.I,(Lock);
DeleteDLL(Unlock);
DeleteDl.I.(Free);
DeleteDLL(GetWinDir) :

67

The first five calls to the DeclareDllQ function register with Kappa-PC five functions from

MS windows kernel DLL. These functions are: GlobalAlloc0, Globallock0,

GlobalUnlock0, GlobalFreeQ, and GetWindowsDirectory0. After regisüation these

functions are used as if they were built-in KAL functions. At the end all functions are deleted

using DeleteDLL0 function calls - they are no longer available to the KAL application.

Another method of using Dl-I--based functions in a KAL application is very similar to the

previous method. The only difference is that instead of using the DeclareDLLfl function to

register external functions with Kappa-PC the external functions are automatically registered

when Kappa-PC starts up. This makes the external functions become the part of KAL just as

built-in functions are. In order for Kappa-PC to automaticatly register external DLL functions a

special procedure must be followed. First, the new functions must be registered in the udttinit.c

file provided by Kappa-PC. The template.def file, also provided with Kappa-PC, must then be

customized - it should declare all new functions and export them. Next, the DLL containing new

functions should be created (using the provided template.mnk make file). Finally, the kappa.íni

f,rle must be edited - it should register all new functions with Kappa-pC kernel.

4-3- Conclusions

All the functionality necessary to call external programs is provided by Level5 Object.

Calling EXTERN program is much easier and does not impose any special requirements on the

external program. Parameters can be passed on the command-line, through ASCII files, or

68

through DBase f,rles. If passing parameters through the files is not efficient enough then

SERVER program must be used. Writing a SERVER program imposes special requirements on

the program and can be cumbersome but it allows passing parameters and results efficiently

through memory. Also a SERVER program must be written in Microsoft C. Level5 Object

should support other most popular C compilers such as Borland C+ +.

Kappa-PC provides a more generic mechanism of calling external functions than Level5

Object. The use of DLLs is more convenient than the use of conventional libraries because no

linking is necessary for the application to use Dll-defined functions. DLLs also can be created

in any programming language that supports DLLs (e.g. C, C+ +, Pascal). The interface to

DLLs consists of a few easy-to-use functions built into Kappa-PC. The only step required, before

an external DLL function can be called, is registering the function. All expert system tools

running in the Microsoft'windows environment should support DLLs.

The ability to call external code, written in a conventional programming language, greatly

enhances the power and flexibility of a knowledge-based system. It allows a knowledge-based

application to efficiently perform tasks, such as complex numerical functions or graphics display,

better suited to conventional-computing technology. Methods discussed in this chapters illustrate

how a knowledge-based application can call external code. Next we will look at how an external

(conventional) code can call knowledge-based tools.

69

5. Embedded Solutions - lrnplementation
Embedding a knowledge-based application in a conventional system can extend the

capabilities of an existing conventional application in a way that is transparent to a user. For

example, an existing dat¿base system can be extended by a knowledge-based front-end. As a

result the system will become easier to use but the user will not even notice the existance of the

knowledge-based component. This method of integration can be used as a transition vehicle from

an entirely conventional application to a more knowledge-based oriented application without

causing a shock to end-users.

Embedding an expert system in a conventional application means that the conventional

applicaúon has access to the expert systems knowledge base functions and working memory. The

conventional program must be able to do all of the following:

- insert initial facts into the expert system's working memory;
- call the inference engine to stfft reasoning;
- select a control strategy (forward chaining, backward chaining);
- access and/or modify the goals on the agenda;
- display all the ouþut messages, prompts, and explanations generated by the expert system;
- pass the user's input to the expert system (e.g. responses to the prompts);
- intemrpt the reasoning process of the expert system;
- access the results of the reasoning;
- examine the state of the reasoning process of the expert system.

There are two basic methods of embedding an expert system in a conventional application, a

tight embedding where the expert system's object code is linked into the conventional

application, and a loose embedding where a conventional application communicates with an

70

expert system either using some form of application interface (e.g. using Microsoft windows

DLLs) ot' using some folm of client-server alchitectule where the expelt system component acts

as a server (the client-server architecture apploach is describecl in the next chapter.).

5.1. Embedding in CLIpS

Tight embedding of an expert system in a conventional program (e.g. written in the c

language) allows for the closest and most efficient, in terms of program execution, integration of

both technologies. The implementation of this approach is typically quite difficult. Both systems

must be linked together to form one executable module. Knowledge of the internal structures of

both systems and code modifications ale necessary. The major benefit is a very tight integration.

The expeft system can call functions directly from the conventional system, and the conventional

system can call the expert system's inference engine directly and can access the working memory

of the experl system component directly. Also a programmer, having access to the expert

system's source code, can modi$.' the expert system,s internal functions to customize its

operation (this can be very difficult and tlicþ even for experienced programmers). This

approach to embedding is offered by CLIpS [Wiiliam Mettrey,February 1991].

In order to create an embedded cl-lps application it is necessary to compile the

knowledge-base to c source code using the rules-to-c option supplied by cLIpS. Next, the c

source code generated from the knowledge-base can be recompiled and linked with cLIpS

run-time libraries as well as with other conventional C code. The result is an executable code.

71

Also, CLIPS comes with the C source code that can be customized by the developer and

recompiled resulting in a customized version of CLIPS.

5-2. Embedding in Kappa-PC

A different method of embedding is used in Kappa-PC. The Kappa-PC kernel, containing

all the essential elements of the tool, is structured into several DLLs:

- thefoundation løyer DLLs provide memory allocation and management, error and
exception management and recovery, list management, and a string table, together with some
general utilities;

- the obiect luyer DLLs provide for the management of objects, slots, methods, functions,
rules, and goals; it contains all the inherit¿nce management as well as Kappa-PC Application
Langtage interpretation modules ;

- the KAL library løyer DLL provides a set of functions that are registered to be accessed
from the KAL language;

- the rule system layer DLLs contain the rule network management, as well as the forward
and backward engines;

- the active images management loyer ÐLtr- contains the functionality to manage session
windows, images, and menus;

- the datøbase interføce løyer ÐLI"s provides interface to various database systems, such as
Lotus l-2-3, dBase III, and through SQL to relational databases using TechGnosis product;

- the tools løyer DI-I's contain functions for managing development tools, such as the KAL
interpreter window and the KALView Debugger.

This structured DLL system allows for relatively easy access to the Kappa-FC functionality from

other Microsoft lVindows-based conventional applications. The only requirement imposed on a

conventional program is that it must follow the Microsoft Windows rules of using DLLs.

72

Kappa-PC currently can support only one application at a time - no more than one application

can access Kappa-PC's kernel DLLs lKappa-PC Advanced Topics, 19921. In order to link the

Kappa-PC kernel libraries a developer must use the appropriate "include files" (supplied by

Kappa-PC) and link the application with the Kappa-PC-supplied libraries (LIB files). An

alternative method is to load the Kappa-PC libraries dynamically, using the MS Windows

LoadlibraryQ function, and then call Kappa-FC kernel functions using the GetProcAddressQ

function.

Another advanced feature of Kappa-PC is its ability to compile KAL applications into C

code which in turn maybe integrated with other C code, compiled and linked into a robust

executable code (in the form of a DLL). The process of generating C code from a KAl-based

application is described in detail in chapter 4. Despite Kappa-PC's ability to create classes and

instances dynamically e.g. MakeClassQ, Makelnstance0, pointers to objects are not supported

which constitutes a major limitation.

5.3. Embedding using Object-Oriented Programming Technology

The CAD Inference Engine (CADIE) implements a rule-based inference engine designed

to be easily embedded in other applications, specifically CAD tools developed in C+ + lDavid

W. Franke, Dec. 19901. CADIE uses features of object-oriented programming to achieve

integration. CADIE's unique feature lies in its integration of application data structures with

rules and assertions. This is accomplished by using an object-oriented system for both its

naIJ

knowledge representation (rule-based) and inference engine. This is shown by the following class

hierarchy (figure 5. 1):

RuIe fnvocation Assertion Invocation

The C,A,DIE class hierarchv.

This hierarchical organizatron of CADIE (figure 5.1), which relies on such features of

object-oriented programming like inheritance and polymorphism (the ability of different objects

to respond to the same interface), enables an easy integration of CADIE into other applications

written in C+ *. Two special classes Tool_Object and Tool_Invocation_Object are provided as

an interface to an application. These classes defîne member functions required by the inference

engine of CADIE, providing transparent access to application-defined objects. An application

developer has to derive application-specific objects (classes), that will be accessed by the

inference engine, from the class Tool_object. He also has to create, for every

application-specific object derived from the Tool_Object class, a new class derived from the

class Tool_Invocation_Object. This new class has to redefine three member functions:

Figure 5.1

74

virtual char * *cad ie_One_Place_Predicate_Names0 ;
virtuat char * *cadie_Two_Place_Fredic ate_NamesQ ;
virtual int cadie-Unify_Two_Place_Predicate(cadie_Object *, cadie_Substitution *, int);

The approach to embedding expert system capabilities in conventional systems used in

CADIE enables tight, easy-to-use and efficient integration of both technologies. CADIE itself is

not as powerful and flexible as other well-established expert system tools so it could not be used

for large-scale expert system development. On the other hand, CADIE demonstrates the potential

benefits of object-oriented programming for expert system tools. If any of the leading expert

system tools currently on the market could be ported to C* * it could use the approach of

CADIE to embedding. Other interfaces (e.g. database interface) of such a tool could benef,rt in a

similar way from object-oriented programming.

5-4- Conclusions

The approach to embedding used in Kappa-PC seems to be superior to the one used in

Clips (tight embedding). It is far easier to use since it does not require understanding the source

code of an expert system tool. The efficiency of functions called through DLLs is almost equal to

the functions linked directly into the application. The DLL approach to embedding should satisff

the needs of even the most sophisticated applications providing the functions accessible through

DLLs cover all aspects of the expert system tool. The most elegant and the easiest-to-use method

of embedding is used in CADIE. Its power comes from object-oriented programming,

specif,tcally from inheritance and polymorphism. Future expert system tools should be ported to

object-oriented languages and fully utilize the object-oriented programming mechanisms.

75

One very important feature of object-oriented programming is the ability to create objects

dynamically and to access those objects by pointers. Pointers to objects can be stored in simple

variables or in more complex structures like arrays of pointers or linked lists. Some objects could

be related to other objects by having a pointer to an object as an attribute. Such features would

significantly increase an expert system's flexibility and efficiency. Neither Level5 Object nor

Kappa-PC suppotts pointers to objects.

76

6. Client-Server Architect¡.¡re - lm plementation

A Client-Server architecture is such a computing environment in which two or more

applications communicate with each other using a common communication protocol. This

requires a multitasking environment (e.g. MS Windows). The communication protocol must be

designed in such a way that in any conversation one application assumes a role of a client (or

master) and another application assumes a role of a client (or a slave). Typically a client

application is responsible for initialization and termination of a conversation. MS Windows.

which provides a multitasking environment, has a built-in communication protocol called DDE

(Dynamic Data Exchange) that can be used as a basis for the Client-Server architecture.

A Client-Server architecture is the most flexible method of integrating expert system

technology with conventional programming technology. On the other hand this method imposes

the highest requirements on the operating system of all the methods discussed previously:

- the operating system must provide multitasking capability in order to allow at least two
applications to execute simultaneously (a client and a server);

- the operating system must support inter-process communication to allow exchanging data and
commands between a client and a server;

Microsoft Windows fulfills the above requirements. It is a multitasking system and provides a

Dynamic Data Exchange (DDE) protocol which allows two or more applications to exchange

both data and commands through memory. Further discussion of a client-server techniques will

be based on Microsoft Windows and the DDE protocol.

All applications used in the DDE conversation must have been written according to

Microsoft specifications for the DDE protocol. Each DDE conversation involves two

applications. The application which starts the conversation assumes a role of a client and the

responding application becomes a server. The client initiating the conversation must specify an

application that will become a server, a topic (e.g. a file name), and an item (e.g. a column in

a spreadsheet). The client must also specify one of three types of links for the selected topic and

item:

cold link:
warm link:

hot link:

The cold link is useful when the client will need data from the server onlv at some

predictable points in time and when the client should not be intemrpted (even when new data is

available) because it performs some important tasks. It can also be used when data in the server

application does not change very often and when the client does not need to react quickly to the

changes in data. The warm link is useful when the client wants to be informed about data

the server sends data only on the client's request;
the server informs the client about any change in dat¿ and then the client
can request the server to send it;
the server sends data to the client every time when data changes.

changes immediately but it does not want to be intemrpted when performing important functions.

The client can request data from the server when it is convenient for it. The hot link is useful

when the client wants to receive data immediately after the data changes take place.

78

The client can also send commands to the server requesting the server to perform some

actions. Finally the client is responsible for terminating the conversation. One application can be

involved in several DDE conversations simult¿neously and assume both client and server roles.

6.1. Client-Server Architecture in Level5 Object

Level5 Object supports the DDE protocol through the DDE system class which has the

following structure:

CLASS DDE
WITH app STRING
WITH topic STRING
WITH item STRING
WITH active SIMPLEI
WITH attachment REF'z
WITH data ready SIMPLE
WITH action GOMPOUND3

poke,
request,
execute

WITH linK COMPOUND
hot,
warm,
cold

WITH append SIMPLE
WITH autostart SIMPLE
WITH time out INTERVALa
WITH show error SIMPLE
WITH default error handling STMPLE
WITH error NUMERTC

Level5 Object 2.5 only suppofts half of the protocol with Level5 Object being a client. In

Level5 Object, a DDE conversation with another application is represented as an instance of the

' StrMPLE attribute tlpe corresponds to Boolean in pascal.
2 REF attribute type is a pointer to an attribute or to a class instance.t COÌVÍPOUND attribute type is like Enumerated type in Pascal, for example the action attribute can only assume

one ofthe following values: poke, request, or execute.- trNTERVAL attribute type represents a duration of time in days, hours, minutes, seconds, and miliseconds.

79

WITH error STRING

DDE system class. This class insulates the user from the complexities of DDE protocols and

reduces the chance of errors when establishing a DDE conversation. The attributes of the DDE

class that are required to initiate a conversation are app, which is the server application name;

topic, which is an agreed upon topic of a conversation; and item, which can be any number of

topic-specific items. For example, a request to Microsoft Excel for a range of spreadsheet cell

values would have the following conversation attributes:

When a knowledge base is run, Level5 Object examines each instance of the DDE system class.

If the app and topic attibutes have values, and the active attribute has a value of TRUE, then

Level5 Object attempts to establish a conversation. Further, if the item and action attributes

have values, then data is exchanged. At any time during a session, active OF DDE may be set

to TRUE to initiate a conversation. Setting active to FALSE terminates a conversation. The

attributes of instances of the DDE class can be given values either at edit time (after the

knowledge base has been created) or at run-time through rules, demons, and methods.

aPP : "Excel";
topic : "Stock.xls";
item: "RlC1:R5C20" (range of cells).

Level5 Object supports all types of DDE links: hot, warm, and cold. In a cold link, a

client receives data from a server only upon request by the client. In a hot link, whenever data

changes in the server, the server automatically sends the new values to the client. In a warm

link, the client notifies the server whenever the specified data item changes. In Level5 Object, a

80

warm link is set by initiating a conversation, entering a value for the item attribute that is to be

monitored, and then setting the compound item link OF DDE trS warm to TRUE. Whenever the

data item in the server changes, the server informs Level5 Object by setting the attribute data

ready to TRUE. The data ready atffibute can then be used as a trigger for a demon in order to

obtain the data, e.g.:

In this example, one instance of the DDE system class, DDE_to_Excel, is used. First, link OF

DDE_to_Excel sets the warm link, then whenever the data in R1C1 of the Excel spreadsheet

changes, the data ready attribute for that instance is set to TRUE. When this happens, the

demont f,rres, and the spreadsheet values are requested from the server.

item OF DDE_to_Excel := "R1Cl"
link OF DDE_to_Excel IS warm

DEMON get data
lF data ready OF DDE_to_Excel
THEN action OF DDE_to_Excel lS request

The data that Level5 Object receives and transmits through the DDE protocol is instance

data'z. The attachment OF' DDE attribute determines what data is sent or received. There can be

four attachment types:

1) The attachment can be an attribute of an instance-
When the attachment is an attribute of a specific instance, a single value is being exchanged,
such as one cell in a spreadsheet, one block of text in a document, etc.

' Demons in Level5 Object are rules that are applied using a data-directed (forward chaining) algorithm.2 Level5 Objects sends and receives values ofclass instances.

81

2) The attachrnent can be an attribute of a class.
rü/hen the attachment is an attribute of a class, Level5 Object makes a new instance of the
class for each value received. In a spreadsheet, these new instances create a column of data
consisting of all of the instance values of that attribute.

3) The attachment can be an instance-
When the attachment is an instance, each attribute of this instance will exchange its value. It
is analogous to a row in a table. No new instances are created. The data received is matched
to the subsequent attributes in the instance.

4) The attachment can be a class-
When the attachment is a class, a whole table of data is exchanged. The inst¿nces of the class
represent rows, and the attributes represent columns. Instances are created for each row
received.

6-2- DDE Examples in Level5 Object

Two Level5 Object example applications will be described in order to illustrate some of

the capabilities of Dynamic Data Exchange. The first example application, CONFIG.KNB,

comes with Level5 Object. The second application, DDE.KNB, has been created for the

purposes of this thesis.

6 -2.I. CONFIG.KNB Application

CONFIG.KNB is an example application that comes with Level5 Object (figure 6.1). On

startup it launches, using the DDE autostart attribute, two other programs: Microsoft Excel - a

spreadsheet, and Q + E - a relational database. Using two separate DDE system class instances,

Level5 Object asks Microsoft Excel to open the CONFIG.XLS spreadsheet and the

CONFIG1.XLC chart.

82

prices for spreadsheet

CONFIG.XLS
Microsoft Excel
(DDE Server)

CONFIG. KNB
Level5 Object
(DDE Cl-ient)

CONFIG. KNB Application

Both DDE instances are shown below:

SQL Query

records
retri
from
rlat,abase

Q+ERelational Database
(DDE Server)

INSTANCE open chart file ISA DDE
WITH app := "EXCEL"
WITH topic := "SYSTEM"
WITH item ¡= "[OPEN(\"CONFIGl.XLC\,,)I,,
WITH active := FALSE
WITH action lS execute
WITH link lS cold
WITH append := TRUE
WITH autostart := TRUE
WITH time out := 0 00:00:10.000
WITH default error handling := FALSE

INSTANCE open spreadsheet file ISA DDE
WITH app := "EXGEL"
WITH topic := "SYSTEM"
WITH item ¡= "[OPEN(\"CONFIG.XLS\")]"
WITH active := FALSE
WITH action lS execute
WITH link lS cold
WITH append := TRUE
WITH autostart:= TRUE
WITH time out := 0 00:00:10.000
WITH default error handling := FALSE

Figure 6.1

DBase Fil-es

83

Click on a picture to
selecl a compûnent

--opu |trlffiìiiïï:tläïËFr!\ fr
ær Eämouse t tËtkeyboardffi,- \#ä

Hli @ modem ffiW
scðnner

Fetænlage spent on ead¡ iem

G@HH

Samsung 12 inch mnnochrome moniior

Magnavox Ma;< Pro ZBE cpu

Conner CP3204 herd drive hard drive

Epson ES-300C scanner

Focus FK-5ût1 keyboard
Star NXZ420 Rainbow printer

Cardinal MB22g65R modem

Logitech Mcuseman mruse

Selecled ltems

The application displays a graphic of a personal computer system consisting of several

components (figure 6.2): a monitor, a CPU, a keyboard, etc. When a user clicks with the mouse

on one of the components Level5 object sends an SQL query to e + E, for example:

SELECT item,features,price FROM invntry.dbf IVHERE qçrc: "monitor" oR.rlER By price

Based on that query, Q + E retrieves several records from a database which is in DBase format.

Retrieved records contain a description of the selected computer component, its features and a

price. Q + E sends the retrieved records via DDE to Level5 Object. Level5 Object in turn

displays the received records in a table asking the user to select one record (see figure 6.3). The

79.0t

888.00

699.0u

1499.00

69.0t

299.00

99.95

1 34.50

Figure 6.2

Sub total 3i6i.45

Tax 226.04

Total $3993.4S

84

Level5 Object then sends the prices of all items from the Selected Items table to Microsoft Excel

using the following DDE system class instance:

INSTANCE send prices ISA DDE
WITH app := "EXCEL"
WITH topic := "CONFIG.XLS"
WITH item ;= "priceS"
WITH active := TRUE
WITH attachment := current item price OF component type
WITH action lS poke
WITH link lS cold
WITH append := TRUE
WITH autostart := TRUE
WITH time out := 0 00:01:00.000
WITH default error handling := FALSE

Level5 Object then requests a pie chart from Microsoft Excel showing the percentage of each

component's price in the total system price (see figure 6.2). This is accomplished by:

INSTANCE get chart ISA DDE
WITH app := "EXCEL"
WITH topic := "CONFIGI.XLC"
WITH item := "chart"
WITH active := TRUE
WITH attachment ¡= picture OF chart p¡cture
WITH link lS cold
WITH append := TRUE
WITH autostart := TRUE
WITH time out := 0 00:01:30.000
WITH default error handling := FALSE

The pie chart received from Microsoft Excel is displayed in the main window (see figure 6.2).

All DDE links in this application are Cold Links meaning the active attribute of the DDE

instance must be set each time to invoke a data or command exchange.

The above example shows several important capabilities of Level5 Object's DDE

implementation. First, Level5 Object can conduct a DDE dialog with several applications

86

simultaneously. Secondly, Level5 Object can transfer data in both text and graphic format. It

also shows that dat¿ from a dat¿base can be accessed using DDE provided there is a server

database application supporting DDE. Actually, DDE provides a flexible enough mechanism to

make up for the lack of both a built-in database interface and the abilitv to call external

functions.

6 -2.2. DDE-KNB Application

component prl_ces

CONFTG. XLS
Mícrosoft Excel
(DDE Sen¡er)

componenE
prices

DDE " CPP
Borland C++

(DDE Server)

DDE.KNB Application

One of the limitations of Level5 Object's DDE capabilities is lack of support for DDE

Server services. This means that Level5 Object applications can only take the role of a client in

DDE conversations. In many cases we may want to develop a main application using a

conventional programming language and have a Level5 Object application be a server to our

componenE,

(-l
I

prrce
percenEage

pr].ces

DDE. KNB
I-'evel5 Obj ect
(DDE Client)

Figure 6.4

87

main program. The main program would provide the user interface and other "conventional"

functionality and it would ask the Level5 Object-based application (knowledge base) to do some

processing whenever appropriate.

This example (figure 6.4) shows how to create a system in which a Level5 Object-based

application DDE.KNB, even though a DDE client, acts as if it were a server with respect to a

DDE.CPP program developed in Borland's C+ +.

The main program starts by opening a main window and launching two applications:

Microsoft Excel and Level5 Object. After starting Microsoft Excel, DDE.CPP initiates a DDE

conversation with Excel where DDE.CPP becomes a DDE client and Excel becomes a DDE

server. The topic of the DDE conversation is System and then DDE.CPP sends a DDE

command asking Microsoft Excel to load a spreadsheet called COMPUTER.XLS. After that

DDE.CPP terminates the DDE conversation with Excel and starts a new one with a topic now

being the spreadsheet name. This establishes a hot link between Excel and DDE.CPP. The

following C+ + code accomplishes this task:

if (WinExec(msgbuf, SW_SHOWMINIMIZED) <= 32)
t

ok=0;
MessageBox(HWindow,"Could not start Excet.","Error",

MB_TCONEXCLAMATTON I MB_OK);
)

if (ok)

88

InitiateDDE("EXCEL", "System");
SendGommand("[OPEN(\"computer.xls\")1"];
TerminateDDE0;
InitiateDDE("EXCEL", "computer.xls");
lnitHotlinks0;

DDE.CPP starts Level5 Object with the following command:

WinExec("c:\\15o25\\l5.exe c:\\prg\\l5o\\dde\\dde.knb /r,,, SW_SHOWMINIMIZED);

This command stafts Level5 Object which automatically loads and starts running the DDE.KNB

knowledge base. DDE.KNB immediately initiates two DDE conversations with DDE.CPP using

the following DDE system class instances:

INSTANCE ddel ISA DDE
WITH app := "DDE"
WITH topic := "LEVEL5"
WITH item := "DATA"
WITH active := FALSE
WITH attachment := DataReceived
WITH data ready:= FALSE
WITH link lS hot
WITH append := FALSE
WITH autostart := FALSE
WITH time out := 0 00:00:10.000
WITH default error handling := TRUE

INSTANCE ddeZISA DDE
WITH app := "DDE"
WITH topic := "LEVEL5"
WITH item := "CONTROL"
WITH active := FALSE
WITH attachment := str OF Gontrolstrl
WITH data ready := FALSE
WITH link lS warm
WITH append := FALSE
WITH autostart := FALSE
WITH time out := 0 00:00:10.000
WITH default error handling := TRUE

89

The ddel instance initiates a hot DATA link and the dde2 instance initiates a warm CONTROL

link. DATA link is used to exchange data in both directions while CONTROL link is used by

DDE.CPP to send commands to DDE.KNB. The CONTROL link then enables a DDE server to

send commands to a DDE client so it appears as if their roles have been reversed.

After starting both Excel and Level5 Object, DDE.CPP waits for the user to select an

action. The main window (C+ + DDE DEMO) contains two child windows (see figure 6.5), the

upper one is responsible for the DDE dialog with Excel while the lower one conúols the DDE

dialog with the Level5 Object DDE.KNB knowledge base. When the user clicks on the Get Dat¿

button in the Microsoft Excel DDE window, DDE.CPP sends a DDE request for data to

Microsoft Excel. Microsoft Excel responds by retrieving the requested data from the previously

open spreadsheet and sending it back to DDE.CPP. DDE.CPP, after receiving data from Excel,

displays the data in the window. The user can modiff that data and send it back to Excel. The

spreadsheet can be modified by clicking on the Send Data button. Data received from Excel can

be sent to DDE.KNB by clicking on the Send Dat¿ button in the Level5 Object DDE window.

90

lrlonilor 655
cFU lzftt¡
Hard Disk 450
Keyboard 55
Mouse 40
Msdem 95

C++ DDE Demo

Microsoft Excel DDE

ard Disk I t.04
eyboard 2.2
tuse 1.6
odem 3.fi1

DDE.KNB receives data from DDE.CPP via the hot DATA link which is represented by ddel

instance of the DDE system class. Immediately after dat¿ is received a t¿ble in the main window

is updated. Clicking on the Process button in the DDE.KNB window will trigger processing

which in this case calculates the percentage of a total computer price for each item. The results

of the processing are sent back to DDE.CPP via the same DATA link by pressing on the Send

Results button.

Figure 6.5 DDE.CPP and DDE.KNB running simultaneously @xcel in the background)

91

This is accomplished by the following Level5 Object's code:

ATTRIBUTE SENdDAtA SIMPLE
WHEN CHANGED

BEGIN
active OF ddel := FALSE
attachment OF ddel := Result
action OF ddel lS poke := TRUE
active OF ddel := TRUE
atlachment OF ddel := DataReceived

END

In this case DDE.KNB simply uses the capabilities of a DDE client. The same result can be

achieved by clicking on the Process button of DDE.CPP. Here all actions are triggered by

DDE.CPP even though it is a DDE server. This is achieved via the CONTROL warm link.

DDE.CPP sends a command "GOu in the string format to DDE.KNB. Since this is a warm link

data ready OF dde2 becomes TRUE which triggers the attached demon:

This in turn causes the following When-Changed method to be invoked:

DEMON 2
lF data ready OF dde2
THEN getControlStr := TRUE
AND FORGET data ready OF dde2

WHEN CHANGED
BEGIN
str OF ControlStrl := ""
action OF dde2 lS request := TRUE
action OF dde2 lS request := FALSE
lF str OF ControlStrl = "9o" THEN

BEGIN
DoProcess := TRUE
SendData := TRUE
str OF ControlStr'l := ""
ASK display3

END
END

92

As a result DDE.KNB performs the processing and sends the results to DDE.CPP using the

DATA DDE link. Using the same mechanism other commands could be sent to DDE.KNB

requesting other services. Consequently, the Level5 Object application acts as a server to

DDE.CPP even though it is actually a client in the DDE protocol. The main advantage of having

a Level5 Object application act as a server to a conventional application is that the expert system

can be hidden from the user. The expert system will be virtually embedded in the conventional

system. The user will perceive the new system as the improved conventional application so he or

she will fill comfort¿ble using it.

6.3. Dynamic Data Exchange in Kappa-FC

functionality [Kappa-PC User's Guide, 19921. As a client Kappa-PC can send DDE messages to

other applications requesting data, modifying data, or executing commands remotely. This

functionality is implemented by four KAL (Kappa-PC Application Language) functions:

RemoteCheckStatus, RemoteExecute, RemoteGet, and R.emoteSet. As a server Kappa-pC

responds to DDE messages from other applications. For example, the following DDE command

sent to Kappa-PC from any application will cause Kappa-PC to open a window with the "Hello"

message : ExecuteR.emote " PostMessage (" "Hello " ") ; " application Kappa.

Kappa-PC provides full support of DDE services including both client and server

By default, the KAL commands are synchronous, but they can be made asynchronous by

specifying the optional argument NOWAIT with the DDE commands. Synchronous DDE

93

functions do not time out. They wait until the server application responds. \\¡hile waiting, they

release control to other applications, thus allowing input from those applications. On the other

hand, asynchronous DDE functions achieve executions in series [Kappa-pC (Jser's Guide,Igg2l.

The four DDE KAL functions are also supported through the C library interface:

- BOOL KpcCheckStatus(int iDDEJobId)

- int KpcRemoteExecute@ool bwait, LpsrR scommand, LpsTR sApp, LpSTR sTopic)

- int KpcRcmoteGet(BOOL bWait, LPSTR sCommando LPSTR sApp, LPSTR sTopic, OBJECTID id6bj,
ATOMID idSlot)

- int KpcRemoteSet@O0l b\ryait, LPSTR sCommand, LPSTR sApp, LPSTR sTopic, LpSTR sValue,
LPSTR sTopic)

The functionality of the commands is identical to the KAL version. The arguments are not the

same, however. bWait and sTopic arguments, unlike in the KAL version, are required.

Implementation of the DDE protocol in Kappa PC is flexible enough to satisff the needs of most

applications. It is also easy to use, since Kappa PC hides some lower-level details, for example

the process of DDE initialization and the DDE link types.

6-4- Summary

The DDE implementation in Level5 Object is quite complete except that Level5 Object

can only assume a role of a client and cannot be a server. This may be a serious limitation if we

want to have a main program written in conventional programming language and Level5 Object

to be called only to process a knowledge base and return the results. As shown in the second

example there is a way around this limitation - Level5 Object being a DDE client acts as if it

were a server, nevertheless a DDE server support by Level5 Object would be a valuable

94

improvementt.

Support for a client-server architecture, implemented as a DDE protocol, offers the most

powerful and most flexible method of integrating an expert system technology with conventional

technology. It can provide the functionality of all other discussed methods: database interface,

external function calls, and embedding in a conventional application. Despite its power and

flexibility DDE is relatively easy to use which makes the learning curve very short.

' Seryer support is planned for version 3.0 ofLevel5 Object to be released in the fall of 1993.

95

7. Knowledge Base Management

Knowledge base management facilities become increasingly important when a knowledge

base becomes larger and more complex. They are absolutely crucial for successful

implementation of a real-world expert system containing hundreds of objects and thousands of

rules. Most commercial expert system tools provide some of those utilities but none provides all

of them. Most important knowledge base management facilities are described below:

- Object Editors and trlule Editors: easy-to-use editors that allow a developer to view, modi$r,
and delete classes and objects, rules, and methods attached to those rules and objects;

- Object and Rule Browsers: allow a developer to display a hierarchy of objects showing their
relationships, inheritance, attributes, and attached methods, as well as relationships among rules (or
a knowledge tree); it should be possible to invoke editors directly from the object or rule browser
just by clicking with a mouse on a desired element;

- Ðebugger: allows stepping through rules and methods, setting break-points, and monitor values of
object attributes and variables;

- Session Trace or History facilify: records in a text file all activities (activated rules, changes in
values of attributes, methods called, etc.) of an expert system during a session;

- Explanation facility: allows both a developer and the end-user to find out how a system reached
a conclusion or why it did not reach it;

- Knowledge Structuring facÍlities: ability to structure knowledge into small, independent
knowledge bases (or rule groups) that can perform independent tasks (e.g. solve subproblems), it
should be possible to switch the processing between those knowledge bases (both chaining and
calling); meta-knowledge might be necessary to control switching between knowledge bases;

- Knowledge Sharing facilities: ability to store pieces of knowledge, both objects with attached
methods and rules, in disk files and import them to other knowledge-based applications.

7- 1- Knowledge Managerrent Facilities in l-evel5 Object

Following is a discussion of knowledge management facilities found in Level5 Object [Level7

Object User's Guide, 19901.

96

7 -l-L. Object Editors and Rule Editors

Level5 Object provides easy-to-use and well-designed editors for the following elements of a

knowledge base: rules (frg. 7 .3), objects and attributes(fig. 7 .2), agenda (fig. 7 .4), methods (fig.

7.5), screen forms (fig. 7.6). All editors are well integrated and easily accessed from menus, the

icon bar Gtg.7.1), or other parts of the system. For example, by double-clicking on a rule

displayed in a knowledge tree it is possible to display that rule in a rule editor in order to view or

modifu it.

File RuleTalk Reasoning Help
FE
¿-t:
?E

Class dttribute Instance Facets liew

file
hyperregion
invoice
invoice item
listhox
messåge

Figure 7.1 Icon Bar (Tool Bar)

+

lstrl sqlselectfl TRUE

l$trl selection text[l] TRUE

l$trl percentage text TRUE

[Picf legend picture TRUE

tsl shor+ delete button FALSE

t$l button on display FALSE

D+
H+{

=i=lHltu

CTASS domain
lStrl sql select

[Strl selection text
[Str] percentage text
[Picl legend picture

tSI shor,¡ delete butlnn

tSl button on display
tNl tËmp num

tsl shour help

ISI hide help

tSl handle send prices error
tSl handle get chart error
t$l handle select components errnr
t$l go to intro

t$l go to ddetutor

Figure 7.2 ObiectsiAttributes Editor

97

Demons Ed¡t Seleet Lists Vieu¡

add on
application
checkhox
checkbnx grriup

V column
V csmponent type

v display

All Demons

V get chart

dde error on get chart
dde errar on q&e

DEMON add itern to invoice
lF double clicked OF table Z
THEltl add item OF invoice

open chart file
rpen spreadsheet

add item tu invoice

Goals Viev¡

r,' circuit breaker
V compressor
V compressor motor

V junetion hox
V machine
v main panel
V primaryvalve

Figure 7.3 Rulcs/Demons Editor

Classes

t$l pourer supplied UNDEI

fst4 insrrucrion promprs[l] TRUE I

[PicJ equipment picturesfll UNDE]

tS¡ machine jammed UNDEI

t$l |imit switch prohlem UNDET

[St4 conclusions and advice[1 TRUE

3

+l

1, machine jammed
1.1. limit su¡itch problem

2. poT¡ef supplie

Goals

+

d

+

l+
+

Figurc 7.4 Agenda Editor

+l t+

98

Methods Ed¡t Selest tists View

V add on
application
checkbox
checkbox group

v column
component type

calculate OF invoice
cancel OF invoice

WHEH CHAHGED
EEGIN
lF C0NF[selecÍed OF table 2l = -l THEN

ASK no selecl¡on message
ELSE

BEGIN
visible OF selection winduu¡ := FÀLSE
FIHD invoice item

LIMIT 1

WHERE type OF invoice item = name OF compûnenttype
WHEN NONE FOUND

iIAKE invoice item
WITH fype := name OF component type

open chart file
open spreadsheet

-¡
Displays Options Tools lharacter gttributes

-_-

0(

lq'r , .,,..2.0.0r , , 3.001 ..., .4001 , sû01 ,6õq

A simple Êxample

Figure 7.5 Methods Editor

0(

ÅNIÃüTE
of animatian using

0t

ol

T-EVE[-s OBJECT

Figurc 7.6 Display Editor

-ÍAHIùIATE
-/l
SÏEP

t
STT]P

ffitg
Inbro

l+
+

99

7 -l-2- Object and Rule Browsers

Level5 Object provides the Knowledge Tree (fig. 7 .7) facility which shows the relationships

among rules and demons. The tree can be displayed in several formats (e.g. collapsed, expanded,

partially expanded), it can show all rules, only backward-chaining rules, or only demons. It can

also show which rules where invoked during a session. Although the Knowledge Tree can be

useful in some situations, it is difficult to follow in the case of large knowledge bases. There is

no object browser that would show relationships between objects.

Tree View

TITLE DISPLûY: configuration display

7.1.3- Debugger

Level5 Object is equipped with a debugger (fig. 7.8). It allows setting break points on rules or

attributes and it supports stepping through a knowledge base. The debugger always steps into a

Figure 7.7 Knowledge Tree

100

method, it does not allow to go through a method in one step like most traditional debuggers do.

It also does not show which insffuction or line inside a method is being executed. When in the

stepping mode the debugger allows to examine values of attributes through a Value List utility.

Etep

Fail Drmon : conclusion 09

Continue

7 -l-4- Session Trace or I{istory facility

Level5 Object provides a history facility €rg.7.9).It allows a user to store a history of a session

to a text file in a readable format. The history shows all actions performed by Level5 Object's

inference engine. Also, if a user is not interested in recording all the actions, he or she can set

filters that filter out unwanted information. The history facility is a very useful debugging and

testing tool.

RULE ü9 machine jammed
lF FltT bearings OK OF ma

Current Rule

OR HtT rylinders OK tF
THEH machine jammed
ELSE ltltT machine jamrned

F'igure 7.8 Debugger

101

File Filters! $top!
.È,ssignment
Context
fr,ssignment
Context
Assignment
Context
Assignrnent
Context
.åssignment
Context
Âssignment
Assignment
Assignment
Display
State

picture ûF pointer
nrro+r text[9] [Check bearings CF l00l
text OF pointer text := Check bearings üF I0ll
arrow text location[lll [L[1001, T[64], R[2081, El82l CF 100J
location OF pointer text t= Lfl ttl T164l, R[Zlltl, EItZI CF l llfl
arrow location[9] [Lfl84l, Tl8Ul, Rll g2l, Elggl CF t ttl
location OF pointer := LII t4l, Tl8Zl, Rll gZl, Bl$gl CF l0t
true labelsf9] [Eearings FREE tF I0tlJ
true label OF answer box := Bearings FREE CF 100
false labels[$] lEearings SEIZED CF l ttl
false label OF ansu¡er hox := Bearings SEIZED CF 100
attachment OF ansr+er bsx := hearings OK OF rnachine CF 1fl0
output OF main winduw := tËst display CF 1fl0
test display
exiting FACTORY.KhIE

.t

7 -1-5- Explanation facility

Select a display fur EXPAND inüormation:

Current Selection:

selection display
help display

Figure 7.9 History Facility

Ê

t E'--l f *l Fãl
Ll No Selection

l+
+

Figure 7.10 Expand Facility

102

Level5 Object offers explanation facility through the Expand facet that can be attached to

attributes (frg.7.10). The Expand facet associates an attribute with a display window that can

contain both textual and graphical explanation of this attribute, for example it can explain why

the system is trying to determine a value of the attribute. The ability to use graphics as part of an

explanation signif,rcantly improves the quality of the information presented to the end user.

7 -l-6- Knowledge Structuring facilities

Level5 Object allows chaining from one knowledge base to another. Attribute values can be

passed to the next (in chain) knowledge base through the Share attribute facet. Although the

concept of chaining is useful, the implementation makes it virtually useless because of a very

long execution time. Also, it would be useful to be able to call a knowledge base, and then to

return back to the previous knowledge base. Knowledge base context would have to be preserved

and restored automatically by Level5 Object.

Example of chaining:

Level5 Object allows exporting a knowledge base to a text f,rle. The knowledge base is stored in

a readable text format - it is translated to Level5 Object's PRL (Production Rule Language). It is

also possible to import a previously exported knowledge base. This allows developers to port

WHEN CHANGED
BEGIN
IF go: TRIIE TT{EN
CHAIN "myapp.knb"

END

103

Level5 Object-based applications to other hardware platforms. However, export and import

facilities work only with entire knowledge bases only. It would be useful to be able to

export/import parts of a knowledge base, for example a rule or an object. An example PRL code

is shown below:

$VERSION25
$LOCATIONS ARE PDGLS

ATTRIBUTE strl STRING
ATTRIBUTE str2 STRING
ATTRIBUTE convert SIMPLE
WHEN CHANGED
BEGIN

ACTIVATE''IPU,SERVER,C:\PRG\L5O\SERVER\TOUPPER.EXE''
SEND strl
RECEIVE stT2

END

INSTANCE the application ISA application
WITH unknowns fail := TRUE
WITH threshold :: 50
WITH title display :: display I
WITH ignore breakpoints :: FALSE
WITH reasoning on :: FALSE
WITH numeric precision :: 8

7.2. Sunnrnary of Knowledge h4anagement Facilities in l-evel5 Object

Level5 Object offers a very high-quality development tools when compared with other

expert system packages, for example Kappa-PC. It provides a wide range of tools which should

satisfy most developers. Level5 Object lacks however some important features and some tools

could be improved. One of the most useful tools lacking in Level5 Object is an Object Browser

that would graphically show dependencies (inheritance relations) between objects. The

Knowledge Tree tool should be improved mainly in the area of the display formats. The

t04

Debugger should point to individual statements inside methods. It should be possible to

export/import objects like it is done in Kappa-PC. Chaining to other knowledge bases should be

more efficient and it should be possible to call other knowledge bases in the same way as

procedures can be called in conventional programming languages. It should be possible to put

comments into all methods, rules and attributes. A, very useful tool would be a knowledge base

compiler that could generate C code like it is done in Kappa-PC. This would allow a developer

to create very efficient delivery version of a knowledge based system after development is

completed.

105

8. Conclusions
Expert Systems of the early eighties were mostly stand-alone and isolated from the rest of

computing environment. This was a direct result of an Al-centric view represented by most

researchers in Artificial Intelligence fØarl D. Sacerdoti, 19891- Despite a great success of those

early expert systems it quickly became clear that isolated expert systems could not satisfy the

needs of complex computing systems. The majority of tasks in a real-world computing

environment can be solved by conventional-computing technologies. Therefore, if AI systems are

to become a real part of computing environments they must integrate well with them. An ideal

knowledge-based tool should have the following features:

- should have access to all major database systems via SQL using a client-server architecture;

- should be able to call external programs/functions (regardless of the programming language

they are written in) using the DLL mechanism and/or other methods provided by the
operating system;

- should be able to exchange data and commands with other applications using the DDE
protocol or other client/server communication mechanism provided by the operating system;

- should be embeddable in conventional programs using object-oriented programming
technology and/or client/server architecture;

- should fully utilize object-oriented technology in all aspects of integration;

- should be able to run in distributed network environments and integrate with remote
applications (running on other network nodes).

Many today's knowledge-based tools developers recognize the importance of integration

with conventional-computing technologies and benefits that this integration can bring to

106

knowledge-based systems. Most commercial knowledge-based tools, despite some limitations,

evolve quickly in the direction of full integration. This process is also accelerated by a great

progress in operating systems. New tools such as Dynamic Link Libraries, Dynamic Data

Exchange, Object Linking and Embedding are now parts of MS Windows and OS/2. These tools

make the integration much easier and more powerful. A relatively new SQL standard database

interface makes it possible to develop knowledge-based tools with a generic database interface. It

gives knowledge-based tools more power and flexibility and at the same time relieves the

developers of knowledge-based tools from a difficult t¿sk of building their own database

interfaces.

With new, object-oriented, operating systems such as Pinkl on the horizon we can expect

even better integration of knowledge-based systems with other components of a computing

environmentlThompson, 7., 19931. A new hardware platform, PowerPC2, promises to create a

new personal computer standard by unifying all major operating systems: Unix, Mac's Operating

System, DOS, MS V/indows, and OSl2.If this feat is accomplished we can expect

knowledge-based systems integrating with other applications across different operating systems.

In the most recent years researchers started combining knowledge-based systems with

new emerging software technologies such as neural networks, multimedia and virnral reality,

' Finh is a nerv, object-oriented, operating system beingjointly developed by IBM and Apple. It is scheduled for
release in 1995.2 ForverPC is a new, RISC-based, personal computer architecture being jointly developed by IBM, Apple, and
Motorola. First PowerPC computers will be available at the end of 1993.

107

case based reasoning, and genetic algorithms. Although the hybrid systems are largely

experimental, preliminary results indicate that such coupling can enhance problem-solving

capabilities of knowledge-based systems [Hedberg, S., New Knowledge Tools, 19931.

Multimedia is a technology that allows combining graphic images, video movies, and

sounds in software applications. Virtual reality is a technology which allows creating virtual

models of various 3-D environments in a computer. A user of such a system can control objects

in the 3-D space in such a way that he has the impression of this being real. Multimedia and

virtr¡al reality are exciting technologies by themselves, but by combining them with

knowledge-based systems researchers are creating some new fascinating possibilities. A

knowledge-based system coupled with multimedia and virtual reality will greatly improve the

quality and power of a user interface. 'We
can expect the systems guiding the users through the

maze of menus and application features. Those new systems will be capable of intelligent

storage, indexing, retrieval, and dishibution of text, graphics, video clips, and sounds. An

example of coupling virtual reality with knowledge-based technology would be an electronic

shopping mall. A user could "walk" through the stores in 3-D space using a mouse or joystick.

Intelligent agents would advice the user on, for instance, buying something or finding particular

items [F{edberg, S. , See, Hear, Learn, 1993].

108

Neural networks consist of parallel networks, or groups, of simple, highly interconnected

processing units. They are well suited for pattern recognition, foreign language translation,

process control, 3-D vision, and parallel implementations of routine processing tasks lLiebowitz,

J., 1993). Neural networks offer great potential benef,rts to knowledge-based systems.

Combining the two technologies will result in a new generation of self-adaptive, capable of

learning, systems. One company, called Gensym (Cambridge, MA), introduced a new product

called NeurOnline. It layers neural-network technology onto G2 Real-Time Expert System

(Gensym's general-purpose KBS/process-control tool). NeurOnline's algorithms allow it to learn

while it is monitoring a process. The result is a self-learning system that adapts to a changing

process [Hedberg, 5., New Knowledge Tools, 1993]. Combining neural networks and

knowledge-based systems provides system improvements in many areas, including graceful

system degradation, generalization, explicit and implicit reasoning, incremental learning,

reliability, and flexibility. On the other hand, such hybrid systems are more complex, difficult to

develop and maintain.

Case Based Reasoning (CBR) technology enables systems to store past experiences or

situations as cases, analyze and process the data, and suggest ways of solving a problem based on

those cases fLiebowttz, J., 19931. A CBR system has two primary components: a case base and a

problem solver. A case base contains descriptions of previously solved and unsolved problems.

A problem solver consists of a case retriever and a case reasoner. The case retriever identifies

109

data in the case base that most closely fits the situation. The case reasoner examines the cases

and, with the aid of domain knowledge, performs adaptation, synthesis, or prediction. CBR and

rule-based systems complement one another. Rules handle large areas of problem domains well,

but they are less useful and cost effective in boundary areas where subtle contexts tend to exist.

Cases, on the other hand, can model entire domains if there is enough cases to cover all the

problems. It is too expensive to cover an entire domain with cases and CBR systems tend to

perform rather shallow reasoning. Therefore, the best solution is to model a domain with rules as

far as possible, and then apply CBR technology to boundary regions.

Another emerging AI technology is genetic algorithms - adaptive, general-pu{pose search

techniques based on the principles of population genetics lLiebowitz, J., 19931. A genetic

algorithm maintains a list of possible solutions to a problem. Based on whether or not the

previous solutions were successful, the fittest solutions not only survive but also exchange

information with other candidates to form new solutions. Genetic algorithms are useful for

inductive learning, conflict resolution, and classification. Some applications of genetics

algorithms are scheduling systems and systems training neural networks. Genetics algorithms

integrated with rule-based systems enable developing systems that can generate new rules.

All those new hybrid systems promise a new generation of applications but there are still

many obstacles ahead researchers. One of the greatest challenges arising when integrating

110

knowledge-based systems with other technologies, including conventional-computing

technologies, are software integration problems. One solution is using common communication

protocols such as DDE. This results in loosely integrated systems. Another approach is using

object-oriented programming to glue different technologies what results in a tightly integrated

systems. This approach was used in CADIE (see chapter 5). However, even using

object-oriented techniques to blend different technologies does not resolve all the integration

problems, because standards are just beginning to emerge in the object-oriented world

fLiebowitz, J.,19931.

On one hand, all those new tools and techniques will result in more powerful and easier

to use applications to the benefit of end users. On the other hand, more skills and knowledge will

be required from application developers. In the end, however, an application should dictate tools

and techniques that should be used. It means that for simple applications there is no need of

using those new tools and techniques, traditional techniques will work just as well or better. It

also means that developers of complex applications will have in their arsenal a new set of tools

and techniques to choose from.

111

Agarwal, R., et al., Knowledge Base Maintenance, Expert $tstems: Planning, Implementation,
Integration. (Summer 1991).

Beynon-Davies, P., Expert Database Systems, A Gentle Introduction, McGraw-tlill Book
Company Ltd., England, 1991.

Tom Brooke, The Art of Production System^r,Al Expert, January 1992.

C. Forgy, Rete: A Fast Algoríthmfor the Many-PanernlMany-Object-Pattern Match Problem,
Artificial Intelligence, Vol. 19, No. 1, Sep. 1982,pp. 17-37.

David W. Franke, Imbedding Rule Inferencíng ín Applicatíons,IF,EE Expert, Dec. 1990.

References

Gardarin, G. and E. Gellenbe, New applications of Database $tstem^s, Academic Press, London,
1984.

Harmon, P., R. Maus, and W. Morrissey, Expert S)stems Tools And Applicatíons,Jobn Wiley
and Sons, New York ,1988.

Harmon, P., and B. Sawyer, Creating Expert S\stems, John V/iley & Sons, New York,1990.

Hayes-Roth, F., et al., Building Expert Systems, Addison-Wesley, R.eading, MA, 1983.

Hedberg, S.,.ðy'ew Knowledge Tools, Byte Magazine, July 1993, p. 106-111.

Hedberg, S., ,See, Hear, Learn, Byte Magazine, July 1993,p. ll9-128.

Van Horn, M- Understandíng Expert S)stems, Bantam Books, Toronto 1986.

H.C. Howard & D.R. Rehak, KADBASE, Interfacing Expert Systems with Databases,
IEEE Expeft, Fall 1989.

Jarke, M. and Y. Vassiliou, Databases and expert systems: oppomtnities and architectures for
integration, In Gardarin and Gellenbe, 1984.

Kappa-PC Advanced Topics, Intellicorp, Iune 1992.

Kappa-PC User's Guide, Intellicorp, June 1992.

r12

Levelï Object User's Guíde,Information Builders, Inc., 1990

Level1 Object Reference Guide,Information Builders, Inc., 1990

Liebowitz, J ., RolI Your Own Hybrids, Byte Magazine, July lgg3, p. 113-115.

William Metffey, A Comparatíve Evaluatíon of Expert System Tools,Computer, February l99l-

William Mettrey, An Assessment of Tools for tsuildíng Large Knowledge-Based Systems,
AI Magazine, Vol.8, No. 4, Winter 1987, pp. 81-89.

Robert J. Mockler & D.G. Dologite, An Introduction to Expert S\stems,Macmillan Publishing
Company, New York, 1992.

Edmund C. Payne & Robert C. McArthur, Developing Expert S\stems, John Wiley & Sons,
Inc.. U.S.A.. 1990.

Prerau, D. S., Developing and Managing Exper-t Systems, Addison-Wesley, Reading, MA,
1990.

Quinlan, J.R., Applications of Exper-t systems (vol. I), Addison-wesley, sydney, 198g.

Earl D. Sacerdoti, The Copernican View of Artificial Intelligenc¿,Sun Technology, Winter 1989.

Schorr, Herbert, and Alain Rappaport, Innovative Applications of Aníficiat Inteltigence, AA,AI
Press, Menlo Park, CA, 1989.

Thompson, T., PowerPC Performs for Less, Byte Magazine, August 1993, p. 56-74.

Efraim Turban, Decisíon Support And Expen Systems: Management Support S\stems,
Macmillan Publishing Company, New york lggj.

E. Turban and P.'Watkins, Applted Expen SJtstems, Amsterdam, 1988.

Waterman, D. 4., A Guide to Exper-t Slstems, Addison-Wesley, MA, 1986.

113

