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ABSTRACT

This thesis introduces a Knowledge Based approach for High-Voltage power system
faults detection and identification.  Based on the feature of the typical signals
obtained from the Transcan Recording System (TRS), a dual approach is pursued.
Feature extraction is central to this thesis. Various features of power system signals
are extracted to provide a basis for a decision support system for power system fault
and identification. First, faults that have periodic signals such as phase current and 6
pulse signals, and Valve currents are analyzed using FFT and auto-correlation to
identify the type of the waveform of the input signal. Second, for faults that have
non-periodic signal such as pole line voltage, pole current and pole current order, a
new method called Fuzzy Wavelet Analysis is introduced to determine the type of the
faults. In addition, there are also some other attributes like the Ratio of Phase current
and current order, ac Phase voltages Error that are analyzed using granular computing
methods. Finally, we use the above attributes to set up a decision table and then use
Rough Set rule generation tool called Rosetta to generate fault-classification decision
rules. Performance evaluation of detectability and identifiability are defined to assist
in assessing the performance that is achieved through a learning mechanism based on
the detectability and identifiability measures.

Keywords: fault detection, fault identification, Fourier analysis, granulation, power
system fault, rough set theory, signal analysis, wavelet analysis.
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Nomenclature

Notation Explanation Section
BX lower approximation of set X relative to attributes in | [.1.5
set B
BXY upper approximation of set X relative to attributes in | 1.1.5
set B
#B (x) rough membership function evaluated at x € X LL1.8
XV relative to the set of attributes B.
z continuous Fourier transform 1.1.3
S() = [ stye " dr
Ind (B) Foreach B ¢ A, it is associated an equivalence I.1.5
relation
c.. n x n matrix (c;;) called the discernibility matrix M of | 1.1.6
! S (denoted M(DT))
OPT(B) For an information system S, the set of decision rules | 1.1.6

constructed with respect to a reduct R is denoted
OPT(S, R)




1 INTRODUCTION

It is well-known that analysis and classification of power system disturbances are
helpful in working towards more stability and efficiency in power delivery [4].
Recognition of a power system fault (result of some form of disturbance that causes
an electrical system to have abberant behavior) can be compensated to avert system
failure by switching transmission lines to supply additional current (response to
increased load) or switching capacitor banks to balance increased loads. The focus
of this thesis is an introduction to methodologies that can be used in classifying
power system faults,

This chapter briefly presents the basic ideas underlying this thesis. The chapter is
organized as follows. In Section 1.1, a brief presentation of the basic terminology
used in this thesis is presented, namely, terminology from power systems, power
system faults, selected transform techniques used in signal analysis (Fourier and
wavelet transforms), fuzzy set theory, rough set theory, attribute reduction, decision
rules, discretization, and rough membership functions. Also included in Section 1.1
is illustration of how one goes about applying rough set methods in the context of
power system faults.  An overview of the thesis is given in Section 1.2.  The
development of knowledge-based algorithms for fault detection is briefly described in
Section 1.3.  In the final Section of this chapter, the topical-coverage (scope) of this
thesis is given.

1.1  Basic Terminology

This section briefly presents the basic terminology for this thesis.
1.1.1 Power Systems

In power electronics, a valve (also called an ideal valve) is a diode, thyristor or turn-
off valve value. In power systems, valves are simply regarded as switches [1].
Thyristors were introduced in the late 1950s, and is of interest in this thesis because
they are used at the Manitoba Hydro Dorsey Station. Basically, a thyristor (also
called a silicon-controlled rectifier) is a four-layer, three-junction device. It has three
terminals: anode, cathode and gate. This device is turned on by applying a short
pulse across gate and cathode. Once the gate turns on, the gate loses its ability to turn
off the device. The turnoff is achieved by applying a reverse voltage across anode
and cathode. There are two types of thyristors: converter grade and inverter grade.
Converter grade thyristors are used in commutation (i.e., phase-controlled)
applications like high-voltage dc transmission. Inverter-grade thyristors are used in
commutation applications such as dc-ac inverters. Thyristors with up to 5 KV and 3
11



KA capacity are available. In power system, a pole or a valve group consists of 6
vales. The pole current is the summation of each valve current or we call it phase
current. Phase current is generated by opening the valve in a valve group, a positive
pulse is used to open the valve. Counter is used to generate the pulse. As shown in
Figure 1.1 [28]
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Figure 1.1 The Valve Group Diagram [28]
1.1.2 Power System Faults

A power system fault is the result of an electrical disturbance. A number of power
system faults are referenced in this thesis, namely, Ring Counter Error, ac Filter
Bank, 500kvClose, ac Voltage Disturbance, Pole-line Voltage Flashover, Pole-line
Voltage Force Retard, Valve Asymmetrical Protection, dc line disturbance, Valve
Commutation Failure and Valve Current Blip. With a Fault Ring Counter Error, the
six valves are not opened in a specific designed sequence then the phase current and
the pole current will sharply increase or decrease. As a result of a Fault AC Filter
Bank Test, before the ac power is output for use, the power should be filtered for
noise compression and cutoff the undesired frequency components. If the filter does
not work well, it will cause the ac voltage energy loss or phase mix up. With a Fault
500 kv Close, the dc line is completely shut down. With a Fault AC Voltage
Disturbance, the ac voltage line will be affected by the different causes such as an
object (e.g., falling tree) hits the transmission line, heavy snowfall or severe wind,
and sometimes radiation or magnetic field interference.  With a Fault Pole-line
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Voltage Flash Over, the pole voltage usually should remain at 450kv. But
sometimes it will oscillate quickly. We call this event pole line voltage flash over.
With a Fault Pole-line Voltage Force Retard, if the energy of a dc line decreases, then
the pole line voltage will decrease slowly. Sometimes, the dc power system will
restart in a short time if the control system responds quickly but usually the dc system
will shut down for a long period. With a Fault Valve Asymmetrical Protection, if the
pulse to open the valve arrives in abnormal sequence, this can cause more than two
valves to open at the same time. Then the circuit control system will force one of the
valves to close.  With a DC line disturb Disturbance in the power system of
Manitoba Dorsay station, the ac voltage is converted from the dc voltage. For the
long distance transmission of dc voltage is easier and the interference problem can be
decreased a lot. But sometimes, the dc line will be affected such as snow on the
transmission line or in windy weather. With a Fault Valve Commutation Failure,
sometimes although the pulse to open the valve arrives, the valve still not
communicate correctly. Usually this occurs in all valves in one pole. With a Fault
Valve Current Blip, sometimes only one valve in a pole increases sharply for a short
period and then shuts down. This type of power system fault is caused by a short to
ground.

1.1.3 Transform Techniques

Fourier methods such as the Fourier series and Fourier integral are used in analyzing
continuous time signals.  That is, Fourier methods are applicable in systems where
there is a characteristic signal s(t) defined for all values of t in the interval [~o0,0]. A
Fourier transform decomposes a waveform into a sum of sinusoids of different
frequencies [3]. The signal s(t) in the time domain is decomposed into the sum of its
sinusoids S(f) in the frequency domain using the formula (1.1).

. _ 1.1
S(N= j s(Oye > ds ( )

—x

where j=+-1. In this thesis, the focus is on the application of what is known as the
discrete Fourier transform that is applicable to discrete-time signals. A discrete time
signal s[n] is defined for values of n in the interval [-w0,0]. A discrete Fourier
transform (DFT) is used in studying finite collections of sampled data {805 vy Sne1}
relative to the sequence {Sy, ..., Sx.i}. The DFT is computed using (1.2).

Nl

. (1.2)

a
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A “fast” Fourier transform (FFT) results from the application of a particular
algorithm that can compute the DFT more rapidly that other available algorithms [3].

Transient signals in a power system are non-stationary, time-varying voltage and
current signals. These signals result from disturbances (faults) on transmission lines
(e.g., capacitor switching, lightning strikes, short circuits) [4]. Wavelet transforms
provide efficient, local analysis of non-stationary, fast transient signals. Waveform
data are captured by digital transient recorders such as the Transcan Recording
System used by the Manitoba Hydro Dorsey Station. The wavelet transform of an
integrable function f{t) is a decomposition of f{t} into a set of basic functions denoted
by hs(t) called wavelets. The wavelet transform is given in (1.3).

W, (s.7) = [ sl (el (1.3)

where * denotes the complex conjugate, and the wavelet h,(t) is computed using

(1.4).

h ()= L./;(EI—TJ (1.4

Where s is a scale factor, and t is a translation factor.
1.1.4 Fuzzy Set Theory

Fuzzy set theory is concerned with granulating experimental data (i.e., identifying
clusterings of data (also called information granules), approximate distributions of
data values within each identified cluster, determining the degree-of-membership of
each observation in a distribution). A fuzzy set itself is a pair (u1, X), where pe X —
[0,1] (degree-of-membership function) and X is a non-empty set representing domain
knowledge. An information granule is defined to be a clump of objects (points)
drawn together by indistinguishability, similarity, or functionality [5].  In this
research, fuzzy set theory provides a convenient means of organizing and analyzing
the data from power system fault files.

1.1.5 Rough Set Theory

Rough set theory offers a systematic approach to set approximation [6], and is part of
an ongoing effort to use rough set methods in classifying experimental data [14]-[30].
To begin, let § = (U, A) be an information system where U is a non-empty, finite set

of objects and A4 is a non-empty, finite set of attributes, where a:U —» V. foreverya
4. Foreach B ¢ 4, there is associated an equivalence relation Ind,(3) such that
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Ind ,(B)={(x,x) e s | Va € B.a(x) =a(x’ )} (1.5)

If (x, x7} e Ind4(B), we say that objects x and x’ are indiscernible from each other
relative to attributes from B.  The notation [x]; denotes equivalence classes of
Ind«(B) . Further, partition U/Ind(B) denotes the family of all equivalence classes
of relation Ind4(B) on U. For X ¢ U, the set X can be approximated only from
information contained in B by constructing a B-lower and B-upper approximation
denoted by Bx and BX respectively, where BX={x ! [x] s X} and
BX ={x|[x]l,nX 2@}.  The notation POSp(X) = BX denotes what is known as the
positive region (the collection of objects that can be classified with full certainty as
meimbers of X using the knowledge represented by attributes in B.

1.1.6 Attribute Reduction and Decision Rules

An approach to finding a subset of attributes (reduct) with the same classificatory
power as the entire set of attributes in an information system is briefly described in
this section. This leads to a brief discussion about the derivation of decision rules
with minimal descriptions in their left-hand sides. In deriving decision system rules,
the discernibility matrix and discernibility function are essential. Given a decision
table DT = (U, A U {d}), the n x n matrix (c;) called the discernibility matrix M of S
(denoted M(DT)} is defined in (1.6).

cj={ae Ara(xy) a(x)},fori,j=1,..,n. (1.6)

A discernibility function fpr relative to discernibility matrix M for a decision table
DT is a boolean function of m boolean variables o ..., corresponding to attributes
aj, ..., &y respectively, and defined in (1.7).

Sor (af,...,a; ) = /\{V; [1<j<i<n ¢ = @}, where ¢ {(f |a ec,.j} (1.7)

The set of all prime implicants of fs determines the set of all reducts of S [71. A
reduct is a minimal set of attributes B — A that can be used to discern all objects
obtainable by all of the attributes of an information system [8]. The reducts of an
information system S correspond to the prime implicants of the discernibility function
fs [9]. Thatis, Inds(B) = Inds(A). In effect, a reduct is a subset B of attributes A of
information system S that preserves the partitioning of the universe U. Hence, a
reduct can be used to perform the same classifications as the whole attribute set A of
the information [7]. The set of all reducts of S is denoted by RED(S). LetB c A.
The set of all reducts in IS with attribute set B is denoted by RED(B). A method
used to find a proper subset of attributes of A with the classificatory power as the

15



entire set A has been termed attribute reduction [8].  Let £ be a decision-relative
discernibility function with respect to discernibility matrix M and decision table DT.
This boolean function can be constructed from the discernibility matrix for Sq. The
set of all prime implicants of f; defines the set of all decision-relative reducts of the
decision system Sy [10].

In other words, precise conditions for decision rules can be extracted from f
derived from a discernibility matrix M as in [10].  For the decision system Sg, let
§2(Va) denote the power set of V,, where V, is the value set of a. For every d €A -
B, a decision function «; : U — @(V,) is defined in (1.8).

di{u)={veV,|u'eU, B c A, (u,u) e Indy(B), d(u')=v} (1.8)

In other words, ¢! (u) is the set of all elements of the decision column of S such that
the corresponding object is a member of the same equivalence class as argument u.
The next step is to determine a decision rule with a minimal number of descriptors on
the left-hand side. Pairs (a, v), where a € A, v € V are called descriptors. A
decision rule over the set of attributes A and values V is an expression of the form
given in (1.9).

Hfl (lli) = V'.i /\...A(Il-j (“i) = \'r-j A A“ir("l') = rr-r ? d(rr,—) =¥ (1 9)

where u; e U, v. € VH{_ ,veVygj=l,..,randr |A|. The fact that a rule is true is

indicated by writing it in the form given in (1.10).
la, =v)rinla, =v.) = (a, = V) (1 10)

For an information system S, the set of decision rules constructed with respect to a
reduct R is denoted OPT(S, R). Then the set of all decision rules derivable from
reducts in RED(S) is the set in (1.11).

OPT(S) = U{ OPT(S, R)| R € RED(S) } (1.11)

Let Sq be a decision system with condition and decision attribute A = C U {d} for a

given set of condition attributes B < C.  Then define a positive region POSg(d)
relative to Indg(d) as . ‘

POS,(D)=U{BX | X e Ind,(D)}

16



The positive region POSg(D) contains all objects in the universe U that can be
classified into distinct decision classes defined by Indg(D). The notation

X, (1) ={x e BX | d(x) =d(u)} denotes a decision class for any u € U.
1.1.7 Discretization

Suppose that we need to obtain approximate knowledge of a continuum (e.g.,
behavior of a sensor signal over an interval of time) by considering parts of the
continuum.  Discretization of a continuum entails partition a particular interval into
subintervals of reals.  For example, consider the interval of reals V, = [Va, Wa) for
values of an attribute a € A in a consistent decision system Sq = (U, A U {d}).
Discretization of V, entails scarching for a partition P, of V, (i.e., discovering a
partition of the value sets of conditional attributes into intervals). In rough set
theory, discretization leads to partitions of value sets so that if the name of the
interval containing an arbitrary object is substituted for any object instead of its
original value in Sd, a consistent decision system is also obtained.

1.1.8 Rough Membership Function

In this section, the traditional rough membership function introduced in [11]. A
rough membership function (rm function) makes it possible to measure the degree
that any specified object with given attribute values belongs to a given set X. This

function 4 is defined relative to a set of attributes B < 4 in information system S =
(U, A) and a given set of objects X. The cquivalence class [x]g induces a partition of
the universe. Let Bc 4, and let X be a set of observations of interest. The degree
of overlap between X and [x]g containing x can be quantified with the rough
membership function in (1.12).

(1.12)

B

ty U =[01] defined by yf;(x):

1.1.9 Example: Discretized Rules

In a high voltage direct current (dc) transmission system, a dc line is connected
between two alternating current (ac) systems as shown in Fig. 1. Such a system has
two ac converters.  Converters (combinations of transformers and mercury-arc
valves) are at both ends of the transmission system in Fig. 1. In the case where the
flow of power is from the ac side to the dc side as in Fig. 1, then a converter acts as a
rectifier in changing ac to de.  The inverter in Fig. 1 converts dc to ac. The Dorsey
Station in the Manitoba Hydro system, for example, acts an inverter in converting dc
to ac, which is distributed throughout the Midwest.

17
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Power system faults are recorded in files. In the Manitoba Hydro Dorsay Station, a
Transcan Recording system will automatically record all the status of those 27 signal
into a data file whencver a fault occurs.  We call this data file *.x01 file. For
example, Fig. 2 shows 27 signals in a fault file which has recorded a valve ring
counter error. Those 27 signals can be classified into two types: global signals which
controls all signals in a valve and valve signals.

E‘

=  Figure 1.2 dc Link Between ac Systems
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rlguae 1.3 The 27 Signals in Fault File for a Valve Ring Counter Error

From left to right in the above graph, the first 9 signals are global signals, and the
remaining 18 signals are valve signals:

global signals = {AC phase A, B, and C group 11, 12, 13 value signals = {6

voltages, pole current order, pole Alpha pulse voltage, Alpha response, valve
order, pole 1 {2) current, pole 1{2) current (A {B, C} phase), start pulse}
voltage}

For simplicity, we illustrate the classification of the waveforms of transmission
system faults relative to valve commutation failure (i.e., failure to transfer of current
from one circuit to another correctly). Sometimes When the pulse to open a valve
arrives, the valve fails to communicate current correctly and a commutation failure

occurs. A decision (d) to classify a waveform for a power transmission fault as a
18




commutation failure depends on an assessment of phase current (pc), current setting
(cs), maximum phase current (max pc), ac voltage error (acve), pole line voltage
(plvw) and phase current (pcw) waveforms. A sample commutation failure decision
table is given next.  In Table 1.1, d = I {0} indicates a fault representing {not
representing} a commutation failure.

Table 1.1 Commutation Failure Decision Table

Acve pcies | plvw pew cs max pc d
filel 0.059 | 0.0697 0 0.01875 0 0 0
file2 0.059 | 0.0697 0 0.01875 | 0.1667 0 0
file3 | 0.059 : 0.0697 | 0.01875 | 0.1667 0.0856 1
filed | 0.059 | 0.0697 | 0.5 | 0.01875 | 0.054 0.0856 l
file5 | 0.059 0 0 0 0 0 0
file6 | 0.059 0 0.5 0 0 0 0
file7 | 0.059 | 0.0697 { 0.5 | 0.01875 | 0.054 0.0856 0
file§ | 0.059 | 0.0697 l 0.01875 | 0.1667 0.0956 1

Signal data needed to construct the condition granules in Table | come from files
specified in column 1 of the table. Rosetta is a public domain toolset that makes it
possible to derive a reduced set of decision rules based reducts and discretization (see
http://www.idi.ntnu.no/~aleks/rosetta/}. The notation max-pe[*, 0.043], for example,
specifies that the maximum phase current in contained in the interval (-0, 0.043), i.e.,
-0 < max-pc < 0.043.  Sample discretized rules derived from Table 1 using Rosetta
are given in (1.13).

1.13
plvw([*, 0.750)) AND ¢s{[0.111, *)) AND max-pc([*, 0.043)) => d(no) ( )

plvw([0.750, *)) AND ¢s{[0.111, *)) AND max-pc([0.043, *)) => d(yes)

Let PLF denote a pole line fault in a high voltage power system. The set F = {x |
PLF(x) = yes} consists of pole line fault readings which are judged to be
commutation failures. Notice that there is some uncertainty concerning the
waveform represented by file4 and file7 (yes/no decision values in Table 1). LetA
be the set of attributes represented in Table 1. Then from Table 1, we obtain

approximation regions  AF = {{ file3, file8}}, AF = { file3, filed, file8}, and boundary
region BF,(F)={file4}, The classification PLF represented by the decision column
labeled d in Table 1 is rough, since the boundary region is not empty. Next, we relax
the requirement that a rm function be defined for equivalence classes relative to IND,
and consider approximation regions such as 4Fand 4F. Assume that [ f]a =
{equivalence class consisting of files with the same outputs of atiribute B in the
universal fault file space} = {file4, file7, file9, filel0}, which includes files not
considered in Table 1. Then consider, for example, the degree of overlap between
AF and [ f]4 (see Fig. 3).
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Figure 1.4 The Degree of Overlap

1.2  Overview

Manitoba Hydro Dorsey Station currently uses the Transcan Recording System (TRS)
as a tool to record and monitor the HVDC Converter Station and related power
system. This system has the ability to perform fairly intelligent signal processing
and can be configured to operate at either Auto-call mode or Auto-poll mode to
record the data. The Auto-call mode enables a recorder subsystem, i.e., a remote
recorder is enabled to call the master automatically whenever a fault occurs. The
Auto-poll mode enables the master to poll the subsystem according to the
requirements of the user to check if there is any fault during a certain period of time.
This thesis introduces possible algorithms that can be embedded in the TRS to give
the system the capability to classify the type of the faults that occur and also to give
preliminary assessment of the possible cause of certain types of faults.

Fault diagnosis, or equally fault detection and identification (FDI), is a mature field
with  contributions ranging from model-based techniques to data-driven
configurations that capitalize upon soft computer and other "intelligent" technologies
[1][2]. Recently some strategic issues and approaches about fault detection and
identification have been addressed by several investigators [12, 19, 23, 27, 28].

In this project, a fault model was set up as a database to store the rules of different
types of faults. These features are obtained through digital signal processing (DSP)
and feature extraction methods on the data from the TRS. In many practical situation,
uncertainty about the nature of a detected fault can hamper decision-making of a plant
engineering and as a result, perhaps, affect the performance of the system
significantly. This realization provides the motivation for a possible application of a
number of classical as well new technologies (fuzzy logic, rough set theory) in the
analysis of faults identified by the TRS. The new fault classification system has the
ability to directly describe the potential faults. In this new system, the fast Fourier
transform (FFT) low-pass filters construct and one type of wavelets are combined
with degree-of-membership functions from fuzzy set theory [3] in decision tables
from rough set theory [insert ref.] that are used in classifying the type of the fault. A
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major innovation in the proposed work relates to the utility of wavelets, in a fuzzy
logic rule base setting, for fault-classification purposes.

1.3 The Development of Knowledge based algorithms for fault Detection

Fault detection and identification (FDI) is of interest in a wide variety of applications
such as power system, control system, image analysis, analysis of radar signals, smart
sensors, texture analysis, medicine, and industry. Typically, an FDI system entails the
following components:

* Monitoring and reporting the presence of faults or failures. A power system
fault is associated with some form of electrical disturbance (e.g., sudden
increase in load or sudden increase in reactance of a circuit) that affects the
stability of a power system [see Kimbark, 5]. If not interrupted quickly, fault
current can severly damage conductors and equipment [see Broadwater, 1167].
In case of abnormalities in the system under observation, possible faults are not
only reported but also verified by additional processing. '

» Classifying faults. The FDI algorithm decides upon the type of the faults
including no fault condition.

¢ Identifying the origin of a detected fault. This includes differentiating between a
system failure and a functional failure. A system failure is a degradation of
performance of the hardware of the system while a functional failure refers to a
condition of the system state variable resulting in an unwanted operating mode
such as instability, and so on. Many functional faults can eventually lead to
system failure.

With the availability of powerful computing platforms, feature processing in
classification theory has become an important part of many applications. Intelligent
processing tools like fuzzy logic, neural networks and optimization techniques aim at
accommodating large grain uncertainty while utilizing all available information in
classifying observed behavior patterns (waveforms) of an electrical system. Due to
the wide range of time constants, some of the waveforms belong to the same type but
because of the analysis only in time or frequency domain alone is not sufficient to
capture features (e.g, when two waveforms actually belong to the same type of
waveform, but they have a phase shift in time domain). It turns out that the distortion
is still not zero and sometimes the distortions are even bigger than comparing with
two different waveform. That leads to the mistaken classification of the fault type. So
that is why we translate data into the frequency domain to calculate the correlation.

1.4 Scope of this Thesis
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In this thesis, the acronyms WTI, WT2 denote the wavelet translate and fuzzy
computing output of the 2 pole line voltage. The acronym FFT denotes fast Fourier
transform. Briefly, a FFT is used to decompose a waveform into a sum of sinusoids
of different frequencies [3]. The signal in the time domain is decomposed into the
sum of its sinusoids in the frequency domain using the formula (1). FET6P denotes
the FFT for the 6 pulse voltages (3 poles FFT6P1,FFT6P2,FFT6P3)  The acronym
Error denotes the ac voltage phase disturbance; it is calculated by phase shifting and
error calculation This research also employs wavelets. Briefly, a wavelet is a family
of signals, where signals are scaled by a single function called Mother wavelet.
Wavelets are useful in power system fault classification because for most of the
signals in power system like current and voltage, the frequency is usually 60 HZ, and
for the constant signals they only have sharp oscillations when there is fault
happened. Wavelet transformation and coefficient analysis are used in this study.
The term wavelet transformation means decompose the signals into a sum of wavelet
family with different scales and translation factors. (see details in Chapter 4.1.1)

In sum, this thesis treats the following topics as part of a study of power system

faults.

* Data Discovery and Preprocessing on the data from TRS (real-time signals,
unreadble)

Wavelet Analysis on Pole-line Voltages (WT1,WT?2)

FFT and IFFT, Low-pass filter for 6 Pulse Voltages(FFT6p|,FFT6p2,FFT6p3)
Ratio of Phase Current and Current Order(Ratio)

Distortion of AC Phase Voltages (Error)

The algorithms used to get the above attributes are:

Wavelet Transformation and it's Coefficient Analysis to get the feature of the
wavelet

FFT, IFFT and Low-pass filter

Fuzzy set theory and granular computing

Error detection

Rough Set theory and its application in classifying power system faults.

L ] e o @ @

e & » @
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2 PREPROCESSING

Before we do the further processing on the data of the signals we have to do some
preprocessing and also find out the characteristics for the different signals. In
preprocessing, we first recovery the data from binary to ASCII (American Standard
Code for Information Interchange) format, and then separate the signals into different
group based on the physical type of them (Current, Voltage, Current Order). After
that we have to do some reduction on the data to get the part that is really useful for
feature extraction. In section 2.2 we will introduce some characteristics of the
signals, based on the characteristics we select different processes to get the features.

2.1 Preprocessing

In this section we will introduce the 3 steps for signals preprocessing, Data recovery,
Signal separation and Information deduction.

2.1.1 Data Recovery

When we get the data from the TRS, they are binary format and compressed as *.x01
files. Those files are unreadable to us. That means, from the original data we can not
figure out the information it is carrying, But together with the .x01 files TRS also
provide us the *.scf files. The *.scf file give us the information about how to
recovery the data. Selected sample lines from such a file are given next

It tells us how many channels have been scanned. For instance, the recovered file
has 48 analog and 4 digital channels. The *.scf file also indicates that the scanning
order and the physical name of each channel. In the .x01 file, the first 52 binaries are
used for the file name and date. The following 8 binaries are used for sampled data
and the last 4 bits are used to indicate the channel number.

A C++ program was designed by Liting Han to recover the binary format data (.:x01)
into ASCIl format data which is readable (*.dat) [23]. This program has been
optimized for to complete the work for this thesis. One .x01 file can be recovered
into 48 *.dat files. Among these files, 27 are used to represent the 27 signals in the
power system. From the 27 signals, we can figure out the characteristics of different
types of faults and determine the possible cause of that.

2.1.2  Signal Separation based on the type of the signal

In order to set up the fault model for the system, we used 56 *.x01 files as the raw
data and do the processing on them to find the rules, and then use 25 another *.x01
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files to do the training and testing. The training and testing part is used to modify the
system and also detect whether the whole system is reliable.  After we recovery the
data into readable format, they are separated into different groups according to the
physical properties of the signals. We can distinguish the signals from their number
in names.  For example, usually the file with the name dpl12*101.dat is phase
current signal, dpl22#51.dat represent the 6 pulse voltage. After the separation of the
data, further operation can be done on the different type of data.

2.1.3 Information Deduction

In each of the files, there are a lot of data to describe the signal. For example, for each
signal of phase current there are over 7000 data.  This can lead excessively
processing on all the data, What interested us most is the part of the signal data
where faults happened. Hence, we need to monitor the signal and find out the
location where a fault starts and also the location of the end of the fault, then we can
just process on the fault part. This approach will reduce the operation time a lot.

2.2 Characteristics of the signals

Among the 27 recovered signals, we need to identify normal conditions, i.e. when no
fault occurs.  Some of them are constant signals and some of them are periodic.
When we detect or identify the faults, first we have to know the properties of these
signals in normal conditions. This section is used to introduce the normal properties.

2.2.1 Constant signals
In the 26 signals recovered from each .x01 file, there are some constant signals like

pole-current order, alpha order, pole current, pole-line voltage. Under normal
conditions, these have the values given in Table 2:

Table 2.1 Constant signals in the recovered 27 signals

pole current order | alpha order pole current pole line voltages

+1400 amps 150 degrees 1400 amps +450kV

The first row is the name of the constant signals in the 27 files and the second row in
Table 2 contains constant signal values in the normal conditions.

2.2.2 Periodic Signals
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In the 27 signals there are also some periodic signals. For Periodic Signals like AC
Phase Voltage, Phase Current and 6 pulse Voltage, their waveform and values are

shown in the Table 3.

Table 2.2 periodic signals in the 27 recovered signals

AC Phase Voltage | Phase Current | 6 Pulse Voltage
Amplitude(peak to peak) 1400amps 27KV
’ v N\ ~
Waveform / \\ // \ ”‘ :‘I l’ L N
\/ RERRE F
NEESER oo/

The first row in Table 3 gives the names of the periodic signals and the second row

gives the values of those signals in normal conditions.

typical waveforms for periodic signals.
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3 FAULT DETECTION

The 26 signals contains AC Voltage, Pole Current Order, Alpha order, pole current,
pole line voltage, 6 pulse voltage, Valve currents, start pulse. Among these signals,
AC voltage, pole current and voltages are sinusoidal signals, pole current and
voltages are constant when no faults happened. For the phase current, it is still
periodic but not sinusoidal as they are determined by the position of the start pulse.
The signal modeling for AC phase voltages, pole currents and voltages is easier to
realize than that of the phase current, since the AC phase voltages are typical
sinusoidal signals, and both of the pole currents and voltages should remain constant
as well when the power system operates normally. The phase currents, however, are
a little complicated, as they will be determined by the position of the start pulse as
shown in Figurel from [1].

According to the [1], we can get the reference signal for the phase current. Before the
commutation, its formula is shown in (3.1), during the commutation is shown in (3.2)
and after the commutation is shown in (3.3).

i, =0 G.1)
i, =\2U(cosa +cosv) Aw-L,) (3.2)
=1, (3.3)

Where, i, : the phase current
U : the rms value of the phase-to-phase voltage
a : the delay of the start pulse

v the phase of the phase current signal

1, . the stable current after current commutation

iy 101, while v:ier — g (u is the interval for commutation)
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Figure 3.1 The Waveform of Phase Current

Figure 3.1 shows how the position of the start pulse determines the shape of phase
currents.

3.1 Abnormal Signal Detection

As we said above, different signals have different features when a fault occurs. For
those constant signals, such as pole current order, alpha order, pole current and
voltages, it is easy to detect the fault because those signals have fixed value when
they are normal. If a fault occurs, we can compare the abnormal value to the normal
one to get the error signal based on Table 2.1.  Also when we read the data in each
file, we find out that even in normal conditions the constant signals are not exactly
"constant", i.e., they have some small differences not easy to detect in the waveforms.
So we have to define some threshold for the fault detection, i.e. only when the value

of the signal disturbance over this threshold, we can say that a fault has occurred,
otherwise we ignore them.
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3.2 Error Detective Filter

In this section, we take the phase current signal as the example. We can see that for
different types of faults the phase current distortions are different. InF ig. 5, the error
signal of the some phase current is shown. For the three ac Phase signals, there are
120° phase differences between the A-phase and B-phase, B-phase and C-phase, A-
phase and C-phase. From the data file we can find out that every 96 samples
Tepresent one period of the phase current. So we shift the B-phase by 32 samples and
C-phase for 64 samples. If no error has occurred, these signals should be exactly the
same shapes. Otherwise, they have some error output.

Figure 3.2(a) Pole-line Flash Over
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Figure 3.2 (¢) AC Disturbance
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In Figure 6, it can be seen that for different types of faults the distortions of phase
current signal are different. For Pole-line Flash Over fault, there are two peaks, for
Commutation fault there is one peak and for AC Disturbance, the fault signals exist
almost all the time.

Table 3.1 Some property values of the error signal

Fault type Counter distance average
Pole Line flashover 2 1273 66.732
Pole Line retard l 0 500.231
AC Disturbance 1 0 60.524

In Table 3.1, the first column is the types of the faults, column 2 counter denotes the
number of the peaks in the error and the distance is used to denote the how many
points between the two peaks. Average in column 4 in Table 4 is the average error
value of the 3 phase signals.

3.3 System for Fault Detection and Classification

In this project we set up a system for fault detection and identification (FDI). The FDI
system is based on the analysis of the data from Transcan Recording System (TRS).
This system has the ability to detect and classify the faults. It gives the indication of
the type of the faults and also generates the rules for the fault classification. The
following is the flowchart for this system.
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Figure 3.3 Fault Detection and Identification System

Inside the Figure 3. we have some numbered blocks. Each block as a particular some
function in the detection and identification of power system faults. Block 1 is the
TRS, where we get the original data. Here the data are is unreadable to us, as we
have introduced in 2.1.1. Block 2 is used for recovering data, a C++ program is set
up to recover the data into *.dat ASCII format, as mentioned in 2.1.1. Block 3 and 4
are for error detection. Before we do some process on the signals we have to detect
the error signals to see whether a fault happened, if "no" that means no fault
happened, we can go back to the TRS to detect the next signal, otherwise, we do the
further processing. as mentioned in3.1. Block 6 is Feature Extraction, it is the key
part of the whole system. It is used to get the features of the signals based on the
characteristic analysis in 2.2. For pole-line voltages we use the wavelet transform and
the fuzzy computing algorithm to get the fuzzified decision of the signals. For 6 pulse
voltages, we use FFT, a low-pass filter and fuzzy computing to get the results. For
phase current, we took the signals of phase A as the example, and we also use FFT,
low-pass filter and fuzzy computing to do the analysis. For ac voltages, first we use
the equation (4.16) to calculate the error of the 3 phase signals and then use the
granule algorithm to make the decision. Also we calculate the ratio of phase current
and current order, and use the granule algorithm to separate the faults. After the
feature extraction, we got 11 attributes and the value based on each of the attributes
of different faults. Then set up an information table for the next part. Block 7 is the
implementing of rough set analysis, in this part we take the information table which is
obtained from part 6 as the input table of rough set. Then use the rough set algorithms
on the information table, which is implemented by the tool ROSETTA to generate a
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collection of classification decision rules. Block 8 is the performance evaluation, we
recovery another 55 *.x01 files to do the training of the system. This also provides a
feedback to the feature extraction and Rough Set Analysis block, and helps us to
optimize the FDI system.
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4 FEATURE EXTRACTION

In this chapter we will introduce the key part of the FDI system: Feature Extraction.
A fault feature is also called the signature of the fault, which is a distinct pattern of
data (signal) that is associated with a particular fault. If a fault signature is detected
in the input data, the presence of the particular defect is very likely. In a big system
sometimes we often need quite a few attributes to describe the faults. In this section
first we use a two-prong approach for analysis of the signals Figure 4.. The approach is
based on the characteristic of the periodic signals and constant signals. For periodic
signals we use the FFT and fuzzy computing algorithm, while for the constant signals
we use wavelet transform and also fuzzy computing to get the feature output. In
section 4.2 we introduce the algorithm of calculating the ac voltage-phase error and
implement granule theory to get the definition.  In section 4.3 a new attribute is
introduced as the ratio of the phase current and current order.

For each of the attributes in this fault detection and identification system, we use
the following structure to determine the kind of fault (see Figure 4.1). The fuzzy
diagnostic system takes features as inputs and then outputs any indications that fault
mode may have occurred in the plant.

|
cature |———
cature 1 1 3
. i piFuzzified output
Intercnce Engine o f feature i

2
Fault Tenplates

*

Fuzzy Rule Base
(1) Ifsymptom A is high & symptom B
is low then fault mode is F1

3

Figure 4.1 Fuzzy Diagnostic System

The above figure is to show the fuzzy diagnostic system that is used for feature

extraction in the system. Part | is used to get the feature of the signal such as WT or

FFT6P or Ratio, ERROR. Part 2 is the fault templates that include the rule of the

typical faults based on this feature i. We got the rules from a study of different types

signals. Part 4 is Inference Engine that compares the feature with the templates stored
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in part 3. Finally, Part 5 is the output of the fuzzy computing, it is the fuzzified output
of the feature. The following figure suggests the basic idea of fuzzy computing,

l
Fuzzy Rulebase

'

—p 2 —» 3 Eaa— 4 >

Fuzzification ~ ——— Furzy Inference —— ) Defuzzification

Figure 4.2 The Fuzzy Logic Diagnostic System

The fuzzy diagnostic system takes features as input and then outputs any indications
that a fault mode may have occurred in the plant. The fuzzy logic system structure is
composed of four blocks: fuzzification (block 2), the fuzzy inference engine (block
3), the fuzzy rule base (block 1) and the defuzzification (block 4) as shown in Figure
4.2. The fuzzification block converts features to degree of membership in a linguistic
label set such as low, high, etc., and the fuzzy rule base is constructed from
symptoms that indicate a potential fault mode. The fuzzy rule base can be developed
directly from user experience, simulated models, or experimental data. Fuzzy outputs
are aggregated (maximum method) through the fuzzy inference engine to determine a
degree of fulfillment for each rule corresponding to each fault mode. Finally, in the
last step, the system defuzzifies the resulting output (this is not used in this project).

4.1 A Two-prong Approach for the Periodic Signals and Constant Signals

Based on the characteristics of the signals we have mentioned in chapter 2, we use a two-
prong approach to get the feature of the signals. In this section we introduce wavelet theory
(4.1.1) and also the give a brief introduction to the typical wavelets. In 4.1.3, we implement
the wavelet transform on the pole-line voltages. Section 4.1.4, we is to give the fuzzified
decision of each type of the faults based on the selected feature. Section 4.1.5 presents the
FFT for the 6 pulse signals, where a co-relation calculation is also introduced Section 4.1.6 is
the FFT for phase current. ~ The typical 9 types waveform of the phase current will be shown
and we also implement fuzzy computing.  Till now we have identified 8 attributes of the
information system.

The following is the idea of the two-prong approach for feature extraction
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Figure 4.3 The Two-prong Approach for Signals

In Figure 4., we show that for periodic signals like the phase current, 6 pulse voltages ,
etc, we use the Iast Fourier Transform (FFT) and Inverse Fast Fourier Transform
(IFFT) analysis approach, while for the non-periodic signals we use the wavelet
analysis on them.

For the periodic signals we use the FFT together with a hamming window low-pass
filter [33] following by a 64 points inverse FFT and a Hamming window filter in
“.1).

window(i) = 0.54 + 0.46 cos 2r(i—1) (4.1)
2048

For the constant signals we use the wavelet transform. Wavelets are scaled
waveforms that measure signal variations. By traveling through scales, Zooiming
procedures provide powerful characterizations of signal structure such as
singularities. Time varying harmonics are detected from the position and the scale of
high amplitude wavelet coefficients.

4.1.1 Wavelet Theory

A wavelet ¥ is a function of zero average (see (4.2)2).

o= @2
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Imposing || = 1implies that "';V(.,b“ =1. A wavelet i, has an energy in time that is
centered at @ over a domain proportional to b.

Letx(t) € L*(R) be the input signal to be analyzed. A family of signals is chosen,

called wavelets {y,,} € L*(R), for different values of a and b, given by (4.3).

) E 4.3)
V/a.b=|a’ 2y/( a )V(:J)ER

W, 18 a real wavelet. b can be thought of as translation factor and « is the scaling

factor (dilation or compression; a notion of frequency).w(s)is called the mother
wavelet and should satisfy (4.4).
(4.4)

C, = 272’j Wl(al)) do <o
@

where y}(a)) is the Fourier Transform of w(f). Equation (4.4) is called the
admissibility condition for the mother wavelet.

The following Figure 4. is about the wavelet family of Symmelets at various scales
and locations,
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Figure 4.4 Symmlets Wavelet at Various Scales a and Locations &

The following figure is to show the wavelet and its Fourier transform.

05 f

05

Fig.12 (a) Mexican hat wavelet Ffig. 12 (b) Fourier ransform of (a)

Figure 4.5 Mexican hat wavelet for & = 1and its Fourier transform

The coefficients for the WT for some @ and b are defined as the inner product in
L*(R) of x(t) and w,, (1) as in (4.5).

= (4.5)
Cas =S Was) =[x, (0)dr

—m
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Since the input signal is normally available in the form of sampled data, the discrete
version of the above ideation is given as in (4.6).

. X (4.6)
Cap =Y XV, , ()

N is the number of samples for which _, is non-zero. Since most of the features
produce a signature in a wide range of frequencies that is spread over a range of time

(space), m>0 number of coefficients c. are stored. To increase the usefulness of
these coefficients, we apply a transformation y to get a trend of the feature signature
in (4.7)

' 4.7)
Cji = X(Cm.,bj) IZI

where n is the number of the wavelet scale used. The transformation y varies from
application to application. It can be envelope extraction, magnitude of a complex

value, etc. The coefficients ¢, are stacked in a matrix arrangement which we refer to
as the Information Matrix A, represented as follows in (4.8).

Cy € e €y, (4.8)
4= Ca Cm e Cay
{(Timeb )|,
c c %

a1l nl o nn

The matrix A with elements ¢ ; has the following characteristics:

* For a fixed j=u, the ¢,'s give the frequency response of the input signal at a
particular time instant.

* For a fixed /=v, the ¢, 's give the relative level of a particular frequency over a
period of time(or space).

* Each column of the matrix A is referred to as A, (i =1,....7) and is comparable to a
bandpassed version of the signal.

A is normalized column-wise so that ¢, €[0,1]. The values of the scales a, are
calculated by an optimization process which is a part of off-line learning algorithm.
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4.1.2 Four specific Mother Wavelets

There are several types of wavelets that have been used in different problem areas:
Haar, D4, S8, Coiflet C3 Dubuc-Deslauriers Wavelets, Average-Interpolating
Wavelets, Meyer Wavelets. In this section, four kinds of popular wavelet families
are introduced as shown in Figure 4. They are Haar wavelet, D4 wavelet, Coiflet C3
wavelet, S§ Symmlets wavelet. In the upper left-hand corner is a square-wave
wavelet. It is the first wavelet. In the upper right-hand corner is Daubechies D4
wavelet, it is the first continuous compactly supported orthonormal wavelet family.
They are minimal phase filters that generate wavelets have a minimal support for a
given number of vanishing moments. ~ Then the lower left-hand of the figure is
another orthonormal wavelts system where both father and mother have special
vanishing moments properties.  The last on in the lower right-hand corner is the
Symmlet wavelet, which are also wavelets within a minimum size support for a given
number of vanishing moments, but they are as symmetrical as possible, as opposed to
Daubechies filters which are highly asymmetrical (see Figure 4.).

Haar Wavelet D4 Wavelet
0.2 0.2
0.1 0.1¢
01
0 ]
-0.1
-0.1 0.2
0.2 -0.3
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
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Figure 4.6 Four type of Mother Wavelet
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4.1.3 Wavelet Analysis on Pole-line Voltages

In this section we introduce the procedure of extracting the feature of Pole-line
voltages using wavelets and also show the result of the typical types of the signals.
Then we create a fuzzy template based on the typical type of the wavelets and give
the fuzzified result of the fuzzy computing.

For different type of faults, the wavelet coefficients of the pole-line voltages are
different. Figure 7 shows how to get the feature using different wavelet. Here we
use the third type of the wavelet, Coiflet C3.  First we extract the signals to make
them have the length n=4096 points that are dyadic (i.e. n=2"J). And then we
generate an Orthonormal quadrature mirror filter for wavelet transform usage. Then
we can make the wavelet transform of the input signals. Here we tried to use the
four typical types for the mother wavelet, but from experimental results we decided to
use the Coiflet, since it is better for separating the faults.  The others may also be
useful in this area, but the Coiflet has already worked well in my case.

The following is the system for wavelet feature extraction on the pole-line voltage.

4
Fuzzy
: S infere- | Decision
1 signal ,|2 preprocessing ncing

T Defect
o presence

type

AN\/\/\N ete,

3

Wavelet
function

Figure 4.7 Feature extraction using different wavelets
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In Fig4.7, first we get the signals after recovery and detection and then do
preprocessing on the data which we have already mentioned in Chapter 2. After that
the wavelet functions are used on the signals. Finally we use the fuzzy inferencing to
compare the feature with the rules in the fuzzy template and calculate the fuzzy
output.

In this project we use this system on the pole-line voltage signals. First, we use it
on the 56 learning signals to extract the typical 10 wavelets output as the rules and
store them in the fuzzy template. In Fig. 8, the 10 typical wavelets output form of
the pole-line voltages are shown.

x 10

12

10}

Figure 4.8 (a) first 5 typical types wavelet output of pole-line voltage
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Figure 4.8 (b) Another 5 typical types wavelet output of pole-line voltage

In Figure 4.8 give the output of the 10 typical wavelet transform of the pole-line
voltage fault signals.

o Next we give the inverse wavelet transform of the 10 typical wavelet transform
‘ output above. It is shown in Fig. 15.
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Figure 4.9 (2) the inverse wavelet transform of the first 5 types typical signals
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Figure 4.9 (b) the inverse wavelet transform of another 5 types typical signals

As we have mentioned above, we set up the 10 types of the typical wavelet as the
fuzzy rule base, and use it to fuzzify the incoming new signals.

Although several measures of similarity and distance are available for fuzzy set [1], a
new measure is defined as it provides additional control for adaptive noise
suppression.

Let X.,Y €[0.1] be two sets with elements x;and y,, then a measure of similarity is
defined by (4.9) and (4.10).

A= {(x . () xe X} (49)

. 1-|x, -y, (4.10)
sim(X,Y)= 217}47—‘}%

where a > —1 is a predetermined constant. In this project we set o =1.
4.1.4 Intelligent Decision Making
Decision making is performed by comparing the fuzzified features with the templates

stored in the Knowledge-base. The Knowledge base B < R” exploits the information
already available about the system and its features through mathematical models,
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experience, heuristics or any other sources. [, , € B represent the trends for scale
a;(frequency) for the ith feature(k=1....M), where M is the total number of the

anticipated features. We will use '~' to represent a fuzzy set. Let xc R™. A

fuzzy a set Ae X is set of ordered pairs.
The entity . (x) is the membership function, the value of which is the grade of
A

membership of X in A Consider, for example, the membership function (4.11).

He (x) = sim(4, x) (4.11)

where 4e X is a crisp vector whose value is decided a priori. Based on the
definition in Equation (26), the grade of membership of the vector4, ineach § is

calculated by the membership function y s, (4;) and used for inferencing via a set of

if-then rules. For example, in this project we set up a knowledge base for pole-line
voltages. From the experimental we got 10 typical types wavelet transform outputs
and store them as the rules inside the base. These rules are some if-then forms. If
we want to decide the coming signal's wavelet transform type we do the fuzzy

computing with the rules in the knowledge base and give the decision of the type.

After we do this on some of the learning signals we get the following table:
Table 4.1 the fuzzified output of the feature of the different signals

filename typel type2 type3 type4 typeS type6 type7 type8 type9 type10 Determine
dpl21f7962 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 [1]
dpl21f7992 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 [3]
dpl21f7a62 1.000 0.026 0080 0.008 0012 0.015 0.008 0.019 0.010 0.044 1
dpl21f7a92 0.173 0.051 1.000 0024 0.038 0.035 0.023 0.048 0.031 0.123 [3]
dpl21f7b62 1.000 0.042 0.104 0.014 0.020 0.025 0.013 0.031 0.017 0.078 [1
dpl21f7b92  0.211 0.061 1.000 0.029 0.045 0.041 0.027 0.056 0.036 0.145 [3]
dpl21§7c62 1.000 0.083 0.204 0.027 0.032 0.050 0.025 0.059 0.033 0.151 1
dpl21f7¢92 0.169 0.056 1.000 0.028 0.044 0.038 0.026 0.054 0.035 0.137 [3}
dpl21f9662 1.000 0.083 0.232 0.028 0.042 0.050 0.027 0.062 0.035 0.170 [1]
dpl21f9692  0.163 0.052 1.000 0.025 0.040 0.035 0.024 0.046 0.032 0.138 [3]
dpl21f9562 1.000 .10t 0.286 0.035 0.052 0.061 0033 0.075 0043 0.202 i1l
dpl2119592 0.154 0.050 1.000 0.025 0.040 0.035 0.024 0049 0.032 0.123 [3]
dpl218a62 1.000 0.069 0.157 0.022 0.032 0.041 0.021 0.049 0.027 0.121 [1]
dpl21f8a82  0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 4]

From the above table we can decide on kind of wavelet transform output of the input
signal. We should notice that the value of the type is not a real one. Rather, it is a

44



kind of degree of matchness of input signal and those stored in the fuzzy rule base.
For example, "1" here does not mean the two signal is exactly the same. Rather, it
means they have the biggest degree of matchness.

4.1.5 FFT for 6 Pulse Voltages

Six pulse voltages form is a sinusoidal signal. To determine the waveform of a new
incoming 6 pulse signal, we take the FFT of the signal and use a low-pass filter to get
rid of the high frequency elements. Here we use 4096 points FFT and 64-points
IFFT on the signals. From the experimental result we also set up a rule base for the
typical waveforms. Then use calculate the correlation of the new coming signal and
ones in the rule base by this relation:

1 u (4.12)
Anl= 1 l;:[ll X/ +n]

We do this in the frequency domain in case a phase shift happened in the time
domain. So here both » and x are in the frequency domain.

Also we set up a rule base for the typical 7 types of waveform for the 6 pulse signals.
This is got from the experimental result (see Figure ).
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Figure 4.10 types of typical FFT transform of 6 pulse voltage
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From the Figure 10 we can see that the 7 types typical signals have different shapes in
frequency domain. Then we do the inverse FFT and a low-pass filter on the FFT
output shown above, and we can see the waveform of the signals in the time domain
as following:

x 1¢"

120

Figure 4.11 the inverse FFT for the 7 types typical 6 pulse signals

So in Figure 4,11 we can find out that if the signals have dramatic difference in the
frequency domain, their waveform in the time domain will also have big difference.
That 1s why we can transform data into the frequency domain to do the identification.
While it is also true that if the signals have close FFT output in the frequency domain,
their waveform in the time domain should be similar to each other. For example, the
following 4 signal's FFT have something in common: the maximum valves and
minimum values of these signals in the frequency domain have the same location.
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Figure 4.12 (a) 4 pulse voltage signals have similar FFT output
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Figure 4.12 (b) the inverse output of the 4 FFT output above

Based on the experimental result we find out the common properties of those similar
signals. They are also some other signals similar to each other and have some other
properties.  We store the properties in if-then form in the rule base for future signal
classification. One of the rules property (for example, for the above 4 signals in
Figure 4.12), we create a table about the max and min value location of the 4 signals
shown in Figurc 4.12:

47



Table 4.1 the locations of the maximum and minimum FFT output value for the 4 signals in Figure 4.

file file | file 2 file 3 file 4
maxLocation 2 2 2 2
minlocation 1 | 1 i

In Table 4.1 the first row is the 4 signal files and the second row give the location of
the maximum FFT output, the third row is the location of the minimum FFT output in
the frequency domain.

Continuing in this manner, we can set up the rule base for the 6 pulse voltage signals

and compare the other learning signals of six pulse voltage with the rule base and
then we can get the result as shown in Table 4.2.

Table 4.2 Waveform determination of 6 pulse voltages

filename typel type2 type3 typed type5 type6 type7 type8  lype9
dpl21f79111.dat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
dpl21f79112.dat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
dpl21f7951.dat 0.000 0.0166 0.0032 0.0044 0.0086 0.0033 0.0030 0.0072
dpl21f7atit.dat 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f7att2.dat 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f7a51.dat 0.0000 0.0173 0.0034 0.0046 0.0090 0.0034 0.0031 0.0075
dpl21f7b111.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f7b112.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f7b51.dat 0.0000 : 0.0371 0.0073 0.0099 0.0193 0.0075 0.0068 0.0162
dpl21f7¢c111.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f7c112.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21§7¢c51.dat 0.0000 0.0230 0.0044 0.0059 0.0119 0.0045 0.0041 0.0099
dpi21f96111.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f96112.dat 0.0000 0.0000 0.0000 0©.0000 0.0000 0.0000 0.0000 0.0000
dpl21f9651.dat 0.0000 0.0141 0.0027 0.0037 0.0073 0.0028 0.0025 0.0061
dpl21f95111.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f95112.dat 0.0000 0.4357 0.1240 0.1778 0.3162 0.1386 0.1269 0.2668
dpl21f9551.dat 0.0000 0.0141 0.0027 0.0037 0.0073 0.0028 0.0025 0.0061
dpl21f8at11.dat 0.0000 0.0314 0.0062 0.0084 0.0163 0.0063 0.0057 0.0137
dpl21f8a112.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f8a51.dat 0.0000 0.0152 0.0028 0.0040 0.0079 0.0030 0.0027 0.0066
dpl21§8b111.dat 0.0000 0.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21i8b112.dat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
dpl21f8b51.dat 0.0000 . 0.0145 0.0028 0.0038 0.0075 0.0029 0.0026 0.0063
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We know that in Table 4.2 most of the signals are Ring Counter fault except the last 6
signals. From the table we can see for the Ring Counter fault, most of the FET output
for polel and pole2 are typel and pole3 is type 2. This observation makes it possible
to separate this kind of fault from others.

4.1.6 FFT for Phase Current

In this section we use FFT and low-pass filter on the phase current signals. First we
give a brief introduction of FFT theory. FFT(X) is the discrete Fourier transform
(DFT) of vector X.  If the length of X is a power of two, a fast radix-2 fast-Fourier
transform algorithm is used. If the length of X is not a power of two, a slower non-
power-of-two algorithm is employed. For matrices, the FFT operation is applied to
each column. For N-D arrays, the FFT operation operates on the first non-singleton
dimension (also see 1.1.3 for more information), for length N input vector x, the DFT
is a length N vector X, with elements N as in (4.13).

N ‘ N 4.13
X(E)= Y ()TN0 @1

k=1

The inverse DFT (computed by IFFT) is given in (4.14).

N _ . 4.14
x(n) = Ti/_ZX(k) AL | *19

u=1

The relationship between the DFT and the Fourier coefficients a and & is shown in
(4.15).

x(n) = ay Y a(k}-cos(2rkt(n) ! Ndt) + b(k) - sin(arke(n)/ Ndf) ~ (4.15)

Where x is a length N discrete signal sampled at times t with spacing dt. After we do
the FFT of the phase current signals we use a hamming window low-pass filter on the
FFT output. We also set up a rule base for the phase current signals. These rules come
from the 56 learning signals. In the experiment we take the current of phase A for
example. There are a total of 9 types of typical FFT output which are shown in
Fig.19.
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Figure 4.13 (a) the first 5 types of typical FFT for A phase current
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Figure 4.13 (b) another 4 types typical FFT of A phase current

The above Figure 4.13 is the 9 types of typical FFT output of the phase current. We
display them in different colors. From it we can see that the FFT output is different

for the 9 signals.
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Now we use the low-pass filter on the result in Figure 4.1 and also do inverse FFT to
get the waveforms of the 9 signals in the time domain as shown in Fig. 20.
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Figure 4.14 (a) inverse FFT of the first 5 A-phase current signals
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Figure 4.14 (b) another 4 types of the typical inverse FFT for the A phase current

From the above analysis on the signals in Figure 4., we can find out that if the
waveforms are different in the time-domain the output also not the same in the
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frequency domain. So we do the correlation calculation in the frequency domain can
deduct the influence of phase shift at the same time make the size of the data smaller.
The following is the result of the analysis on the A phase current of all the learning
signals. We can get the fuzzified decision of all the signals as shown in Table 4.3.

Table 4.3 the waveform decision of Phase Current (phase A)

dpl12dbc102.dat  0.200 0.098 0.237 0.111 1.000 0.175 0.304 0.285 0.108
dpl12dbc121.dat  0.677 0.337 0.796 0.393 0.584 0.621 1.000 0.871 0.366

filename typel type2 type3 type4 type5 type6 type7 type8 type9 Decision
dpl12af2102.dat 0.257 0.539 0.965 0.594 0.463 0.660 0.819 0.339 1
dpl12af2121.dat 0.255 0.536 0.952 0.593 0.461 0.656 0.815 0.339 1
dpl12af271.dat 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4
dpl12afc102.dat 0.107 0.154 0.072 0.129 0.132 0.144 0.125 0.095 2
dpl12afc121.dat 0.100 0.141 0.068 0.120 0.124 0.134 0.117 0.089 2
dpl12afc71.dat 0.116 0.164 0.080 0.143 0.146 0.161 0.138 0.104 2
dpl12cb5102.dat  0.251 0.366 0.165 0.308 0.324 0.366 0.307 0.211 2
dpl12cb5121.dat  0.217 0.312 0.144 0.264 0.279 0.312 0.264 0.184 2
dpl12cb571.dat 0.231 0.332 0.154 0.283 0.295 0.338 0.283 0.196 2
dpl12cbe102.dat  0.386 0.612 0.239 0.435 0.499 0.591 0.484 0.302 2
dpl12cbe121.dat  0.345 0.563 0.213 0.420 0.463 0.528 0.428 0.272 2
dpl12cbe71.dat 0.450 0.676 0.282 0.543 0.566 0.668 0.568 0.358 2
dpl12cd7102.dat  0.141 0.195 0.097 0.171 0.180 0.193 0.168 0.125 2
dpl12cd7121.dat  0.142 0.195 0.098 0.171 0.180 0.192 0.168 0.127 2
dpl12cd771.dat 0.141 0.193 0.099 0.174 0.177 0.195 0.169 0.126 2
dpl12cd782.dat 0.271 0.100 0.180 0.188 0.159 0.199 0.226 0.130 4
dpl12dat1102.dat  0.446 0.656 0.284 0.529 0.539 0.596 0.516 0.373 2
dpl12dat1121.dat  0.343 0.484 0.231 0438 0425 0.481 0412 0.297 2
dpl12da171.dat 0.305 0.464 0.195 0.396 0.377 0.449 0.372 0.250 2
dpl12dba102.dat  0.335 0.525 0.211 0.419 0.426 0.528 0.426 0.267 2
dpl12dba121.dat  0.302 0.468 0.192 0.377 0.383 0.470 0.382 0.243 2
dpl12dba71.dat 0.346 0.524 0.223 0.444 0435 0.551 0.443 0.279 2
dpl12dbb102.dat  0.292 0.106 0.189 0.203 0.168 0.206 0.241 0.142 4
dpl12dbb121.dat  0.198 0.070 0.126 0.134 0.114 0.139 0.162 0.093 4
dpl12dbb71.dat 0.437 0.162 0.290 0.294 0.250 0.307 0.349 0.212 4
5
7
dpl12dbc71.dat 0.430 0.178 0.300 0.368 0.274 0.327 0.365 0.235 4
dpl12dbd102.dat  0.611 0.243 0.424 0.452 0.387 0.447 0.514 0.317 4
dpl12dbd121.dat  0.208 0.071 0.129 0.133 0.118 0.143 0.168 0.093 4
dpl12dbd71.dat 0.603 0.226 0.410 0.377 0.361 0.418 0.485 0.298 4
dpl12dd2102.dat  0.362 0.136 0.238 0.242 0.221 0.257 0.297 0.177 4
dpl12dd2121.dat  0.350 0.129 0.228 0.232 0.211 0.246 0.285 0.167 4
dpl12dd271.dat 0.092 0.275 0.172 0.210 0.189 0.292 0.457 0.114 1
dpl12de2102.dat  0.969 0.220 0.472 0.436 0.395 0.525 0.673 0.284 4
dpl12de2121.dat 0.220 0.477 0.954 0.439 0.398 0.531 0.684 0.285 1
dpl12de271.dat 0.265 0.115 0.103 0.250 0.249 0.795 0.452 0.107 3
dpl12dfb102.dat 0.446 0.193 0.571 0.230 0.548 0.386 0.853 0.209 7
dpl12dfb121.dat  0.413 0.187 0.559 0.217 0.506 0.375 0.766  0.197 7
dpl12dfb71.dat 06115 0,181 0:353 0.386 0.305 0.410 0.495 0.240 4
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4.2 ac Disturbance

In this section we first introduce the formula of calculating the ac voltage phase error
and then use the granule algorithm for the error definition.

4.2.1 ac voltage phase error calculation

We know that 3 phase voltages, the A-phase, B-phase and C-phase have fixed phase

difference between each other. That is, 120°, it is 1/3 of 360°. From the data files
we can find out that one period of ac voltage is represented by 96 point of data. So if
we shift B-phase by 1/3 of one period which means 32 points and shift C-phase by 64
points then there should be no phase difference among the 3 phases. If no fault has
occurred, the error of the 3 phase should be very small, otherwise it will be large.
From the experimental results we obtained, we found that for different types of fault
the values of the disturbance are in different intervals, so we take this as another
attribute to decide the type of faults. The disturbance of the 3-phase signals is
calculated by the following formula (4.16):

|\Phase , — Phase,|+|Phase, — Phase,|+|Phase, — Phase,| (4.16)
3

error =

Now we take one file as the example, and the analysis results are shown below:
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Figure 4.16 Analysis of AC 3-phase voltages by phase shifting method
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In Figure 4.1 the first part is the original 3 phases voltage. The signal in red represents
the A-phase, the signal in blue is the B-phase and the signal in green is the C-phase.
We can see clearly that there are phases between the A-B-C phase. Then the second
part is the shifted output, they are till in the same color as in part one. We can find out
that the 3-phase signal is almost the same, except in some areas where a fault or
disturbance has occurred. The last part in the figure is the error calculation output
using formula (4.16). Now we get the result of the ac error for each of the 3-phase
voltage learning signals as shown in Table 6.1

Table 4.4 ac error calculation for different type of faults.

AC Error Fauit type
137.2993 RingCounter
134.6926 RingCounter
137.2309 RingCounter
144.8651 RingCounter
134.3129 FilterBank
137.6172 FilterBank
139.6347 FitterBank
139.1256 FilterBank
223.6835 ValveCAB
197.9716 ValveCAB
141.6358 ValveCAB
177.8086 500kv Close
173.8517 500kv Close
406.2066 AC Disturb
358.9058 AC Disturb
583.374 AC Disturb
341.6262 AC Disturb
408.805 AC Disturb
254.8043 PoleFlashOver
261.1932 PoleFlashOver
255.7666 PoleFlashOver
257.3749 PoleFlashOver
258.5361 PoleFlashOver
184.3592 PoleRetard
243.3629 PoleRetard
239.9993 PoleRetard
233.4423 PoleRetard
115.8183 Aysm Pro
185.428 Aysm Pro
189.891 Aysm Pro
165.2361 Aysm Pro
2293.2396 DC Disturb
226.0509 DC Disturb
132.7284 DC Disturb
224.9378 Commutation
224.5581 Commutation
225.4212 Commutation
147.2432 CurrentBlip
149.4044 CurreniBlip
144.7698 CurrentBlip
139.9254 CurrentBlip
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In the above table, the first column is the ac error values and the second column is
the types of the faults in the 56 learning signals. When we do the analysis on the
error values we notice that for the same type of fault generally the value falls into an
interval that can be separated from the other type of fault. So we use the granule
algorithm to group the values. This will be introduced in the following section.

4.2.2 Granule algorithm for Error definition

After we got this feature (ac phase Disturbance), we found out for the same kind of
faults the values of the errors are close to each other. So we can estimate the
dynamic range of the errors and separate them into different intervals. A granule is a
kind of grouping where the elements of the grouping are in some way similar. We
use Radial Basis Functions to determine the distance between the input vector and a
prototype vector.

Radial basis function methods have their origins in techniques for performing exact
interpolation of a set of data points in a multi-dimensional or one-dimensional space.
The exact interpolation problem requires every input vector to be mapped exactly
onto the corresponding target vector and forms a convenient starting point for our
discussion of radial basis functions.

The radial basis function approach introduces a set of N basis finctions, one for

each data point, which take the form ;zi("x—x”") where ¢(e) is some non-linear

function and the nth such function depends on the distance"x - x" ", usually taken to

be Euclidean between xandx”. The output of the mapping is then taken to be a
linear combination of the basis function (4.17):
hix)= Z w"gé(“x —x" “) (4.17)

Both theoretical and empirical studies show that, in the context of the extract
interpolation problem, many properties of the interpolating function are relatively
insensitive to the precise form of the non-linear function ¢(s). Several forms of
basis function have been considered. In this project, we use the Gaussian in (4.18):

(4.18)

¢ (x) = exp(— b *#’”

where x is the input vector(AC Voltages Error, Ratio of the Phase Current and
Current Order } with elements x ; and g, is the vector determining the center of
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basis function ¢,. The basis function parameters should be chosen to form a

representation of the probability density of the input data.  This leads to an
unsupervised procedure for optimizing the basis function parameters which depends
only on the input data from the training set and ignores any target information

(decision). The basis function centres #¢; can then be regarded as profotypes of the

input vectors. There are several ways for selecting the basis function centresu i

One is to set them equal to a random subset of the input vectors from the training set.
But this is not an optimal procedure so far as density estimation is concerned, and
may also lead to the use of an unnecessarily large number of basis functions in order
to achieve adequate performance on the training data. Another approach is to start
with all data points as basis functions centers and then selectively remove centers in
such a way as to have minimum disruption on the performance of the system.

There are also some other procedures to choose the width parameters o ;- One

heuristic approach is to choose all the o ; to be equal and to be given by some

multiple of the average distance between the basis function centers. This ensures
that the basis functions overlap to some degree and hence give a relatively smooth
representation of the distribution of training data.  The optimal width may be
different for basis functions in different regions of input data. For instance, the
widths may be determined from the average distance of each basis function to its L
nearest neighbors where L is typically small. Based on the granule theory and the
training information table we got for the ac Phase Error, and I did some experiments
using this approach to set up the basis function for this system as in (4.19)

ErrorVeryLow = e(—(en'm‘—ﬂ?.{)())z/72.00) (4.19 a)
ErrorLow = e(-(en'or~E60,00)21200.00) (4.19b)
{—(errar-245.00)% / 6050.00) (4.19 ¢)

ErrorHigh = e

For each of the error value we got by the file granule.m (in Appendix) we calculate
the output of ErrorVeryLow(error), ErrorLow(error) and ErrorHigh. The biggest
output for a certain input data means the range that the input data falls in. It is shown
as in Figure 4.17
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Figure 4.17 Granule Output for AC Voltage Phase Error

The basis function in red is the ErrorVeryLow, in green is the basis function for
ErrorLow, while the blue one is the basis function for ErrorHigh. Based on the
above figure, we can calculate the granule output of a new coming signal.  For
example, after we do the 3-phase error calculation on a new ac voltage we get the
error value, it is 170.00, then we calculate the ErrorVeryLow use (4.19 a), ErrorLow
use (4.19 b), ErrorHigh use the formula (4.19 c). The result is 0.0269 for
ErrorVeryLow, 0.6065 for ErrorLow and 0.3947 for ErrorHigh. So that means the
biggest possibility of this error value is ErrorLow.

We use this algorithm on all the ac voltages phase error and then we can get the
information table as Table 4.

Table 4.5 the error output and granule

filename ac phase Error  Granule Fault type
dpl21f79113.dat 137.299 V0L RingCounter
dpl21f7a113.dat 134.693 VL RingCounter
dpl21f7b113.dat 137.231 VL RingCounter
dpl21f95113.dat 144 .865 V0L RingCounter
dpl21f8a113.dat 134.313 VL FilterBank
dpl21f8c113.dat 137.617 VL FilterBank
dpl21f8d113.dat 139.635 VL FilterBank
dpl21f8et13.dat 139.126 VL FilterBank
dpl2200b113.dat 223.684 H ValveCAB
dpl227ce113.dat 197.972 H ValveCAB
dpl226e8113.dat 141.636 VL ValveCAB
dpl2if2a113.dat 177.809 L 500kv Close
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dpi21f2b113.dat 173.852 L 500kv Close

dpl12e3363.dat 406.207 VH AC Disturb
dpl224a5113.dat 358.906 VH AC Disturb
dpl224d0113.dat 583.374 VH AC Disturb
dpl12cbe63.dat 341.626 VH AC Disturb
dpl12e3d63.dat 408.805 VH AC Disturb
dpl12afc63.dat 254.804 H PoleFiash
dpl12dfe63.dat 261.193 H PoleFlash
dpl12dfb63.dat 255.767 H PoleFfash
dpl12e4463.dat 257.375 H PoleFlash
dpi2344e113.dat 258.536 H PoleFlash
dpl225c4113.dat 184.359 H PoleRetard
dpl12af263.dat 243.363 H PoleRetard
dpl12dd263.dat 239.999 H PoleRetard
dpl12de263.dat 233.442 H PoleRetard
dpl2240563.dat 115.818 V0L Aysm Pro
dpl224d9113.dat 185.428 L Aysm Pro
dpl22697113.dat 189.891 L Aysm Pro
dpl2288h113.dat 165.236 L Aysm Pro
dp!12dba63.dat 229.24 H DC Disturb
dpl12e2a63.dat 226.051 H DC Disturb
dpl2249c113.dat 132.728 VL DC Disturb
dpt1305463.dat 224938 H Commutation
dpl1306263.dat 224.558 H Commutation
dpl1307163.dat 225.421 H Commutation
dpl226cc113.dat 147.243 VL CurrentBlip
dpl226d5113.dat 149.404 VL CurrentBlip
dpl226e5113.dat 144.77 VL CurrentBlip
dpl226e7113.dat 139.929 VL CurrentBlip

In Table 4. the first column is the names of the phase A ac voltage signals, column 2
is the ac phase error from (4.18), the third column is the granule output of all the ac
phase error and finally in column 4 is the types of the faults.

4.3 Ratio for Phase-current and Current-order

When we working on the data from the TRS we try to find out more attributes that
can decide the type of the faults which means for different kind of faults the attribute
has different description. The more "useful" attributes we have the more accurate for
the decision. That is why the ratio of phase current and current order have been used.
The displays in Fig. 23 show the results of the analysis of the phase current signal in
different faults. We calculated the ratio and found out that for most of the Valve Ring
Counter fault, Valve CAB fault and AC Filter Bank Testing the ratio is bigger than 1
in a certain period of the fault duration. And the ratio is close to 1 in the Pole-line
Flashover fault, Pole-line Voltage Force Retard fault and 500kv Close fault.
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Figure 4.18 Ratio in the Valve Ring Counter, Valve CAB and AC Filter Bank Faults

In Fig.4.18, the signals in yellow is the Ring Counter fault, in red is the Filter Bank

Testing fault and that in blue is the Valve CAB fault.

The first part of the figure

shows the current order signal in the 3 faults and the second part is the current order
signals. The third part is the ratio of the current order and the current in the 3 faults

respectively.
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Figure 4.19 Ratio in Pole-line Flash Over, Pole-une Retard and 500kv Close faults

In Figure 4.119 the signals in blue is the pole-line flash over fault, in green is the
pole-line Retard fault and that in red is the 500KV close fault. The first part of the
figure is showing the current order signal in the 3 faults and the second part is the

current order signals. The third part is the ratio of the current order and the current in
the 3 faults respectively.

Here we also use the granule algorithm for the Ratios. From the Ratio value of all
the phase current and current order in the learning signals, we find out that the
maximum ratio is in the fault of Valve CAB, which is 16.26. We set up the
following formulae to classify the ratios into three ranges: Normal, Mediate and

High. The selection of the parameters like 77 and#/ are based on the basis function
theory (4.18) and to modify these formulae to be adaptive to the experimental need of
our data, it is shown as follows in (5.1).

RatioNormal = ¢~ (Rate-0"/1) (4.20 a)

RatioMedate = ¢~ Raio~4"110) (4.20 b)
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RatioHigh = e!"(Ratio=12)"136) (4.20¢c)

And the corresponding result of this grouping output for all the ratios is shown in
Figure 4..

) . . . Norm al
0.9 / . Mediate
: . ; ) High

Figure 4.20 Ratio Granule Output for all the learning signals

In Figure 4., the basis function in red is the RatioNormal, and green is the basis
function for RatioMediate, while the blue plot is for the basis function for RatioHigh.
Based on the above figure, we can calculate the granule output of a training signal's
ratio of phase current and current order. For example, after we do the 3-phase error
calculation on a new ratio we is 2.3, then we calculate the RatioNormal use (4.20 a)
RatioMediate use (4.19 b), RatioHigh use the formula (4.19 ¢).  The result is 0.1845
for RatioNorma, 0.7490 for RatioMediate and 0.0733 for RatioHigh. So that means
the biggest possibility of this error value is RatioMediate.

Now we use this granule algorithm on all the ratios we got from the learning
signals, we can get the result table as Table 4.:

Table 4.6 the ratio of current and current order, and granule ratio result

String Float String String
21179 12.24 H RingCounter
21f7a 11.6 H RingCounter
21f7b 7.71 H RingCounter
21f7c 10.47 H RingCounter
21196 0.056 VL RingCounter
21195 0.079 V0L RingCounter
21f8a 5.94 H FilterBank
21f8b 12.54 H FilterBank

61



21f8¢
21i8e
21f8d
2200b
227ce
226e8
21f2a
2112b
12e33
224a5
224d0
12cbhe
12dai
12dbb
12e3d
12dbe
12dbd
2344e
22355
12afc
12dfe
12dfb
12e44
22424
225¢4
12af2
12dd2
12¢ch5
12cd7
12dfb
12dfe
12e0e
22405
224d9
22697
22880
22884
2288b
12dba
12e2a
13054
13062
13071
226¢cc
226db
226e0
226e5
226e7

11.17
11.23
9.93
16.26
0.057
0.174
1.24
1.31
2.077
2.059
21
215
1.85
1.65
1.73
1.73
1.57
1.84
1.42
1.15
1.135
1.19
1.116
1.159
0.039
1.1411
1.2141
1.1
11
1.19
1.135
1.15
1.513
1.49
1.689
177
1.77
2.67
1.177
1.2
1.75
1.92
1.548
7.747
8.165
8.48
11.651
0.175
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FilterBank
FilterBank
FilterBank
ValveCAB
ValveCAB
ValveCAB
500kvClose
500kvClose
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
PoleLineFlashover
PolelLineFlashover
PoleLineFiashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PolelLineFiashover
PoleLineRetard
PoleLineRetard
PoleLineRetard
PolelLineFlashover
PoleLineFlashover
PoleLineFlashover
PolelLineFlashover
PolelLineFlashover
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
DCDisturb
DCDisturb
Commutation
Commutation
Commutation
ValveBlip
ValveBlip
ValveBlip
ValveBlip
ValveBlip



In the table, the first column is the fault learning signals and the second column is
the ratio of the phase current and current order in each of the fault signals. The third
column is the result obtained using the granule algorithm to group the ratios, and the
last column is about the types of the signals.

4.4 Fault type classification based on Rough Set

In this section, first we set up a information table based on all the attributes we
have got in Chapter 4, so far we have 10 attributes: WT1,WT2, FFTG6P1, FFT6P2,
FET6P3, FFTTI, FFTT2, FFTT3, RATIO, ERROR.

4.4.1 The information Table

Based on the fault signal pre-processing and feature extraction, we got some attributes that
are useful for classifying the types of the faults. We can set up an information table for the
system, and this information table includes all the attributes we have obtained and also the
decision (type of the fault). We use rough set theory to analyze the table (e.g., upper and
lower approximations) and use Rosetta to derive fault classification rules. Finally, we can
get the rule for each fault.  In the information table 11, we have 10 attributes and one
decision.

Table 4.7 the information table of all the attributes

files WTI WT2 FFT6P1 FFT6P2 FFT6P3 FFTTI FFTT2 FFTT3 ERROR RATIO DECISION
String Integer Integer Integer Integer Integer Integer Integer Integer String  String  String

21£79 1 3 1 2 3 1 7 7 VL H  RingCounter
21f7a 1 3 I 2 3 1 7 5 VL H  RingCounter
21f7b 1 3 l 2 3 4 7 4 VL H  RingCounter
2if7e 1 3 4 2 3 4 7 7 VL H  RingCounter
2196 1 3 1 2 3 1 7 5 VL VL  RingCounter
21195 1 3 ] 2 3 2 7 7 VL VL  RingCounter
2118a 1 4 3 5 3 7 7 7 VL H  FilterBank
2118b 1 5 6 7 3 7 7 7 VL H  FilterBank
2118¢c 1 5 2 g 3 7 7 7 VL H  FilterBank
2118e 1 3 9 2 3 7 7 7 VL H  FilterBank
21f8d I 5 9 8 3 2 7 7 VL H  FilterBank
2200b 6 7 3 4 8 i 4 7 H H  ValveCAB
227ce 6 7 3 3 8 1 7 7 H VL  ValveCAB
226e8 2 7 3 3 3 8 7 7 VL VL  ValveCAB
21f2a 1 l 3 3 12 7 7 2 L VL 500kvClose
2112b 1 1 3 3 12 7 2 2 L VL  500kvClose
12e33 8 8 1 1 1 7 2 2 VH L ACDisturb
224a5 8 8 2 2 2 4 4 4 VH L ACDisturb
224d0 8 8 2 2 2 4 4 4 VH L ACDistwb
12¢be 8 g 3 2 2 2 l 11 VH L  ACDisturb
12dal 8 2 I 1 ] 2 2 2 VH L ACDisturb
12dbb 8 2 4 2 2 4 4 4 VH L ACDisturb
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ACDisturb
ACDisturb
ACDisturb
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLincFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
Polel.ineRetard
PoleLineRetard
PoleLineRetard
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
DCDisturb
DCbBisturb
Commutation
Commutation
Commutation
ValveBlip
ValveBlip
ValveBlip
ValveBlip
ValveBlip

In Table 4.7, we give all the values of each of the attributes and we will use the rough
set theory to analyze the attribute values.
type of the value, and it means the output value is a string or integer or float. This is
one of the formats of information table for the rough set tool ROSSETA explained in
Chapter 5.
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S5 Rough Set Analysis

In the Chapter, first we will give a brief introduction to the rough set theory and
then make further analysis on the information table (Table 4.7) to generate the
decision partitions and the lower (upper) approximations for this table 5.1.2. We
also introduce the membership function of the rough set and use it on the 10 attributes
(5.1.3). In section 5.2 we implement the algorithms in the rough set tool ROSSETA
to analyze the information and finally get the rules of the system.

5.1 Introduction of Rough Set theory

A rapid growth of interest in rough set theory and its applications has been seen
lately. Let IS = (U, A) be an information system where U is set of objects (universe)
and A is a set of attributes (e.g., let FFT € A denote a fast Fourier transform). Recall
that each attribute @ € A is a mapping of the form a: U— Va. Rough set
methodology is based on concept (set) approximations constructed from available
background knowledge represented in information system. Each set of attributes B
C A (called a feature set) that is selected reflects our background knowledge (features
of experimental data that we know about). In an information system IS, a
parameterized family of concept approximations is built. Then by tuning of the
rough set model underlying the approximation spaces, improvements in the concept
approximations can be obtained. Rough set theory was proposed by Zdzislaw
Pawlak as a new approach to knowledge discovery from incomplete data [6].  Its
approach to processing of incomplete data is based on the lower and the upper
approximation of a set. The rough set is defined as the pair of two crisp sets
corresponding to these approximations. If both approximations of a given subset of
the universe are exactly the same, then one can say an approximated set is completely
definable with respect to available information.

5.1.1 Information Systems

A data set is represented as a table. In such a table, each row represents a case, an
event, or simply an object. In the information table we got from the FDI system, the
objects are the files from the TRS.  Every column represents an attribute (a variable,
an observation, a property, etc.) that can be measured for each object. In our case they
are the characteristics we got from the feature extraction such as the like wavelet type
of all the objects and waveform of all the objects. This table is called an Information
System (which we have created above). In general, an information system is a pair

A = (U, 4), where U is a non-empty finite set of objects called the universe and 4 is a
non-empty finite set of attributes such that a:U — ¥V, for every ae 4.  The set
V. is called the value set of a.
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In our information table, we have 10 attributes, namely, wavelet form of Pole-line
Voltages (2 poles), FFT transform of 6 pulse voltages (3 poles), FFT transform of

phase current of /, and also the AC Phase error, Ratio of phase current and current

order. So in this research, the set of attributes A={WT1, WT2, FFT6P1, FFT6P2,
FFT6P3, FFTI1, FFT2, FFT3, ERROR, RATIO}. We have 58 objects that are
recovered from the original .x01 file to be detected, U={21f79, 21f7a, 21{7b,etc.}.

In the decision so far we have 11 type of faults r(d) =11, where r means the rank of
the decision. The decision d defines a partition:

(X Xy, Xy Xy} of U

Where

X, ={217921f7a,21f7b,21f7¢,21 /95,21 {96}, /iFaultl

X, ={21/8a,21f8b,21f8c,2118d,21 8¢} //Fault2

X, ={22005,227ce,226¢8} // Fault3

X, =1{2112a,2112b} /Faultd

X ={12e33,224a5,224d0,1 2cbe,1 2dal,12dbb,1 2¢3d 1 2dbe,1 2dbd } //Faults
X ={23440¢,22355,12afc,12dfe,12e33,22424,121¢b5,12¢d 7,1 2dfb,1 2dfe,1 2e0¢} // Fault6
X, ={225c4,12af 2,12dd 2} // Fault7

Xy ={22405,224d9,22697,22880,22884,2288b} // Fault8

Xy ={12dba,12e2a} /] Fault9

X\, = {13054,13062,13071} // Faulf10

X, =1{226¢¢,226db,2260,22625,226¢7} //Faultl |

5.1.2  Lower and Upper Approximations Based on the Information System

So for each type of fault we calculate the lower and upper approximation based on
each of the attributes we have. ~ Generally speaking rough set is set up based on a
long- term data collection information system. Now we just assume that the
information system we have got above has already covered all kinds of fault events
and all kinds of outputs of those attributes in different type of faults. In fact that is
not the fact because there are some more kinds of faults have occurred, and in this
thesis we just give the idea of this algorithm and point out that the approach is also
useful for the other signals. In this section we will take one example to discuss how
to construct lower and upper approximation of the rough set.  Let us consider the
wavelet type of the Pole-line voltage as the example attribute and decision of fault
Pole-line Flashover.  The construction of lower and upper approximation will take
the following 3 steps:
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stepl: set up a universal set for each type of fault for B(Attributel): Wavelet

BDX j = {x|x=v, of fault] based on attribute B:wavelet}={13,13,13,13,13,13}
=>equivilence set{13}
=> equivilence class ={21179,2117a,21f7b,2117¢,21195,2 1196}
BDX J"? = {x|x= v, of fault2 based on attribute B: wavelet}={14,15,15, 13,15}
=>equivilence set{13,14,15}
= equivilence class ={21{8a,21{8b,21f8¢,2118d,2118e}
BDX 3 = {x|x= v, of fault3 based on attribute B: wavelet}={67,67,27}
=>equivilence set{67,27}
= equivilence class ={2200b,227ce,226¢8}
BDX jutt = {x|x= v, of fault4 based on attribute B: wavelet}={11,11}
= equivilence set{11}
= equivilence class={212a,21f2b}
BDX ju = Ixlx= v, of fault5 based on attribute B: wavelet}={88,38,88,88,82,82,88,82,88)
=>equivilence set{88,82}

= equivilence class ={12e33,
224a5,224d0,12cbe,12dal,12dbb,12¢3d,12dbc,12dbd}

anlté
BDX jore = {xx= V,, of faulté based on atiribute  Brwavelet)—{17.96,92.92.92,22,72,72,102,92,92,92}

= equivilence set{17,96,92,72 102}

= equivilence class
={2344e,22355,12afc,12dfe, 1 2dfb, 1 2¢44,22424,1 2¢d5,12¢d7, | 2dfb, | 2dfe, 1 2e0e}

BDX 7 = {x[x= v, of fault7 based on attribute B: wavelet}={77,77,82}
= equivilence set{77,82}
= equivilence class ={225¢4,12af2,12dd2}
BDX % = Ixlx= v, of fault8 based on attribute B: wavelet}—{610,210,610,210,210,610}
=>equivilence set{210,610}
= equivilence class ={22405,224d9,22697,22880,22884,2288b}
BDX " = {x|x= v, of fault9 based on attribute B: wavelet}={22,22}
=> equivilence set{22}
= equivilence class ={12dba,12e2a}
BDX Ji'0e = {x|x= v, of fault10 based on attribute B: wavelet}={25,27,27}
= equivilence set [x]={25,27}
= equivilence class ={13054,13062,13071}
BDX J. = {x|x= v, of fault]] based on attribute B: wavelet}={25,67,67,27,67}
= equivilence set[x]={25,27,67}
= equivilence class={226c¢c,226db,226€0,226€5,226e7}

step 2: Lower and Upper approximation construction in equivalent set measure:
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We take the decision of fault 5 and the attribute B: wavelet as the example
Lower approximation in the equal set measure:

1
BDX 5 = (X povovees = 2 (X gormneas DXkt

P

= {88} U {82} — {82}

={88}// only overlap is in fault 7

Upper approximation in the equai set measure:
B_ﬁ Y D:faults @ X D: fault5 U i ([ X]D:_,fhm'rﬁ ﬁ[ X}D:ﬁmhi )

i=|

Bowavelet Bowavelet B:wavelet Buweavelet

i=5

={82} L {88}
i o
yes/no set in equal measure = Z ([X]omts [ X]RSm y
s
={82}

Step3 Recover the lower and upper approximation by using all elements

lower approximation:
B_D.X 1};::":\'50.’91 = {88}

Upper approximation:
BDX Jms  — 188 82}

Bowavelet

Using the 3 steps above, we set up the lower and upper approximation for all the files.
This is very helpful for the decision-making, since we can see the Jlower
approximation is the character that only this kind of fault has. So if a signal's
attribute value belongs to this approximation we can give the fault classification
decision right away, otherwise we have to check the other attributes.

5.1.3 The Membership function of Rough Set

In classical set theory, either an element belongs to a set or it does not. The
corresponding membership function is the characteristic function for the set, and this
function takes values 1 and O,respectively. In the case of rough sets, the degree of
relative overlap between the set X and the equivalence [x]g class to which x belongs
is computed using a rough membership function defined in (5.1). [4].

[x1, 0 X] (5.1)

e U —[01) and 8 (x)=
1]
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For example, here we calculate the membership of attribute B: wavelet and the
output is 88 in the rough set of BDX /w5

B:wavelet
Stepl find out all elements that are represented by equivalence classes
[x=82]B.wavelet , here the element refers to the fault file whose output of attribute B is

82

{all elements in [x=82]p.yavelet }= {X|B(x) =82}={82,82}
= {fault 12dal.fault 12dd2}

Step2 calculate the membership of rough set: the upper approximation of rough set

BDX_.f'aMHS . EX D: faults = {88,82}

Bwavelet * Bwavelet

For the output of B(x) with value of 82, its membership with respect to the rough set
BDX [ g given in (5.2).

Buwvavelet

wf U =01 (5.2)

_card({[x =821, ) VBDX WY card({82))

Buavavelet

card({[x=82],_ 1) T card(82.82))

w7 (x)

Based on the analysis above, we can take fault! as an example, and Table 12 gives
the membership of fault 1 with respect to all the attributes:

Table 5.1 membership of fault]l with respect to all the attributes

Membership of Fault | Based on The Diiferent Attributes
WT1  WT2 FFT6P1 FFT6P2 FFT6P3 FFTT! FFTT2 FFTT3 ERROR RATIO decision

Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 0.0476 0.0434 0.0588 0.0434 i
Faultl 0.0714 04128 0.01 0.0625 0.0454 0.1 0.0476 033 0.0588 0.0434 1
Faultl 0.0714 04128 0.01 0.0625 0.0454 0.1 0.0476 0.11 0.0588 0.0434 1
Fault]l 0.0714 0.4128 0.02 0.0625 0.0454 0.1 00476 0.0434 0.0588 0.0434 1
Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 00476 033 0.0588 0.099 1
Faultl 0.0714 0.4128 0.0l 0.0625 0.0454 0.066 0.0476 0.0434 0.0588  0.099 1
Faultl 0.0714 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0 0 0 0.0454 0 0.0476¢ 0.0434 0.0588 0.0434 0
Faultl 0.0714 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0.4128 0 0.0625 0.0454 0.066 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0 0 0 0 0 0.0476 0.0434 0.0588 0.0434 0
Faultl 0 0 0 0 H 0.1 0 0.0434 0 0.0434 0
Fault! 0 0 0 0 0.0454 0.1 0.0476 0.0434 0.0588 0 0
TFaultl 0.0714 0 0 0 0 0 0.0476 0.0434 0 0 0
Faultl 0.0714 0 0 0 0 0 0.0476 0 0 0 0

69



Faultl 0 0 0.01 0 0 0 0 0 0 0
Faultl 0 0 0 0.0625 0 0.1 0 0.11 0 0
Faultl 0 0 0 0.0625 0 0.1 0 0.11 0 0
Faultl 0 0 0 0.0025 0 0.066 0 0 0 0
Faultl 0 0 0.01 0 0 0.066 0 0 0 0
Faultl 0 0 0.02  0.0625 0 0 0 0.11 0 0
Faultl 0O 0 0 0.0625 0 0 0 0.11 0 0
Faultl 0 0 0 0.0625 0 0 0 0.33 0 0
Faultl 0 0 0.02 0 00454 0.1 0 0.11 0 0
Faultl 0.0714 0 0 0 0 0.1 0 0.0434 0 0
Faultl 0 0 0 0 0 0 0 0 0 0
Faultl O 0 0.01 0 0 0 0 0 0 0
Faultl 0 0 0 0 0 0.066 0 0 0 0
Faultl 0 0 0 0 0.1  0.0476 0.0434 0 0
Faultl 0 0 0 0 0 0.066 0 0 0 0
Faultl 0 0 0 0 0 0 0.0476 0 0 0
Faultl 0 0 0 0 0.0454 0 0.0476 0.0434 0 0
Fault! 0 6 0 0 0 0.1 0 0 0 0
Faultl 0 0 0 0 0 0.1 0 0.11 0 0
Faultl 0 0 0 0 0 0.066 0 0 0 0
Fault! O 0 0 0 0 0.066 0 0 0 0
Faultl O 0 0 0 0 0.066 0 0.11 0 0.0434
Faultl O 0 0 0 0 0 0 0 0 0.0434
Faultl 0 0 0 0 0 0.066 0 0 0 0.0434
Faultl 0 0 0 0.0625 0 0.1 0 0.11 0 0.0434
Fauitl 0 0 0 0.0625 0 0.066 0 0 0.0434
Faultl 0 0 0 0 0 0 0 0.0434 0 0.0434
Faultl 0 0 0 0 0 0.066 0 0 0.0434
Faulti 0 0 0 0 0 0 0 0.0434 0 0.0434
Faultl 0O 0 0 0 0 0.1 0 0 0 0.0434
Faulti 0 0 0.02 0 0 0.066 0 0 0 0
Fault] ¢ 0 0.02 0 0.0454  0.066 0 0 0 0.0434
Faultl 0 0 0 0 0.0454 0.I  0.0476 0.0434 0 0.0434
Faultl 0 0 0 0 0.0454  0.066 0 0 0 0
Faultl 0 0 0 0 0.0454 0.1 0.0476 0.0434 0 0
Faultl 0 0 0 0 0.0454  0.066 0 0.0434 0.0588 0
Faultl O 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0
Faultl 0O 0 0 0 0.0454 0 0 0.0434 0.0588 0
Faultl 0 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434
Faultl 0 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434

In Table 5.1 we use (5.2) to get the membership of fault! for all the attributes. We can
notice that only when all the membership are not zero, the decision is "1", here "1"
means true.

For each of the fault which we have detected in the system we set up this kind of
rough set and calculate the membership based on all the attributes and at the same
time give the decisions. That means so far we have computed 11¥10 rough sets for
the DFI system described in this thesis.
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5.2 The Model Process of Rough Set

Using rough set methods, approximation descriptions of concepts can be constructed
from some primitive concepts. It is furthermore well-known that target concept (e.g.
decision classes) descriptions defined directly by Boolean combinations of

descriptors of the form a = v(when ¢ is an attribute and a € V', ) are often not of good
approximations quality.

In this section we introduce the algorithms in the rough set tool ROSSETA. These
algorithms are used on the information table.  First we introduce the idea of
discretization. It determines how coarsely we want to view the whole information
table (5.2.1).  After the discretization, we use attribute reduction to get the minimum
number of useful attributes that are helpful in making decisions. Finally we use
ROSSETA to generate the rules for the whole system.

5.2.1 Information table Discretization

The discretization step determines how coarsely we want to view the whole
information table. For each of the attribute which is usually measured in real
numbers, this attribute can be discretized into two, three or more, but finitely many,
intervals. We can easily see that the selection of appropriate intervals and
partitioning of attribute value sets is a complex problem and its complexity can grow
exponentially in the number of attributes to be discretized [6] [7].

A number of successful approaches to the problem of finding effective heuristics
for real value attributes quantization (discretization) has been focused on
discretization and symbolic attribute value grouping. What we used in this project is
the Boolean Reasoning method on the information table.  Discretization problems
and symbolic value partition problems are of high computational complexity. So we
have to design efficient heuristics. ~ We will concentrate on the basic discretization
methods based on the rough set and Boolean Reasoning approaches. In discretization
of decision table (Table 13) A =(U,A4U{d}) where V, =[v_,@,) is an interval of
reals, we search for a partition P, of V, for any a € A. Any partition of ¥, is defined
by sequence of so-called cutsv; <v, <v...<v, from V,. Hence, any family of

partitions {F,} . can be identified with a set of cuts. In the discretization process we
search for a set of cuts satisfying the conditions. This is shown in Table 5.2.
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Table 5.2 (a) the original decision system

wt os 2 1
w2 : 1 05 0
u3 .13 3 o
w14 1 o
U5 1.4 2 o
0% 16 3 1
a7 13 1 1
Table 5.2 (b) P-discretization of A
Ap ‘ap bp d o
o ‘A 0 2 1
2 10 0
3 12 0
u4 1 1 i}
s 1 2 0o
us 23 1
ur 1 i Bl

Where P= {(a,0.9),(a,1.5),(b,0.75),(b,1.5)}

In Table 5.2 (a) the first column is the objectand the second and third columns are the
attributes’ values. The last column is the decision based on the values of the attributes.
In Table 5.2 (b) the first column is the same as that in (a), the second and third
columns are the p-discretization of A, and the last column is the decision.

The set of possible values of ¢ and b are defines by:
V. =10,2); ¥, =[0,4)
The set of possible values of @ and b on objects form U is given by:

a(U)y={0.8,1,1.3, 1.4, 1.6};
b(U) = {0.5, 1, 2,3},

respectively.

We will describe a discretization process that returns a partition of the value sets of
conditional attributes into intervals. The partition is done in such a way that if the
name of the interval containing an arbitrary object is substituted for any object

instead of its original value in A, a consistent decision system is also obtained. In this
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way the size of value attribute sets in a decision system is reduced. In the above
example, the following intervals for condition attributes are obtained:

[0.8,1); [1,1.3);[1.3,1.4); [1.4,1.6) fora
[0.5,1); [1,2); [2,3) for b

The intervals are defined by the objects in decision system. Cuts are pairs (@, ¢)
where ceV,. We will restrict our considerations for cuts defined by the middle
points of the intervals defined above. The following cuts are obtained:

(a, 0.9); (a,1.15);(a,1.35)y(a, 1.5)
(6,0.75); (b,1.5);(b,2.5).

Any cut defines a new conditional attribute with binary values. We use the Johnson
strategy. Using this strategy one can look for a cut discerning the maximal number
of object pairs (with different decisions), and next one can eliminate all already
discerned object pairs and repeat the procedure until all object pairs are discerned.
The Boolean reasoning algorithm discretizes the numerical attributes in A according
to the discernibility-based multivariate procedure. This produces a set of interval
boundaries Cuts as a side-effect.

Cuts; = {(a, c)| cis a cut for attribute @ computed by Dj}

The following Table 5.3 is the discretized information table:

Table 5.3 Discretized Information Table using Rosetta

files WT1 WT2 FFT6P1 FFT6P2 FFT6P3 FFTT1 FFTT2 FFTT3 ERROR RATIO decision

2179 [5,2) 4 %5 2 3 [*, 2) 7 7 {VL} H RingCounter
21ffa [%,2) [, 4) ' 5) 2 3 [*, 2) 7 5 {VL} H RingCounter
217b [%,2) [, 4) [ 5) 2 3 [2,8) 7 4 {vVL} H RingCounter
21f7c % 2) [7,4) [*5) 2 3 [2, 8) 7 7 {vL} H RingCounter
21196 [%,2) [F4) [%5) 2 3 [* 2} 7 5 {vL} AR RingCounter
21195 [5,2) [, 4) [%5) 2 3 [2.8) 7 7 {vL} VL RingCounter
21f8a [, 2) [4,%) [ 5) 5 3 [2,8) 7 7 {VL} H FilterBank
2118b [*,2) 4, [5%) 7 3 2, 8) 7 7 {vL} H FilterBank
218c [%2) 4. %) {5) 8 3 [2, 8) 7 7 {vL} H FilterBank
21f8e [%,2) [, 4) [5,%) 2 3 [2, 8} 7 7 {vL} H FilterBank
21f8d [%,2) [4.%) 6, 8 3 f2, 8} 7 7 {VL} H FilterBank
2200b [4,%} (4,") [ 5) 4 8 [* 2} 4 7 {H} H ValveCAB
227ce [4,%) [4.%) [ 5) 3 8 [*2) 7 7 {H} VL ValveCAB
226e8 [2,4) 4,”) [ 5) 3 3 8,9 7 7 {vL} VL ValveCAB
2¥H2a [, 2) [*,4) [*5) 3 12 [2, 8) 7 2 {L, VH} VL6 500kvClose
212b [, 2) [*,4) [%5) 3 12 [2. 8) 2 2 {L, VH} VL 500kvClose
12e33 [4.%) [4.%) [%5) 1 1 [2, 8) 2 2 {L, VH} L ACDisturb
224a5 [4,*) [4,%) [*5) 2 2 [2, 8) 4 4 {L, VH} L ACDisturb
224d0 [4,%) 4,%) [%5) 2 2 {2, 8) 4 4 {L, vH} L ACDisturb
12cbe [4,%) [4,*} [~ 5) 2 2 [2, 8) 1 1 {L, VH} L ACDisturb
12dal [4,%) [*.4) [%5) 1 1 [2, 8) 2 2 {L, VH} L ACDisturb



12dbb
12e3d
12dbc
12dbd
2344e
22355
12afc
12dfe
12dfb
12e44
22424
225c4
12af2
12dd2
12¢cb5
12cd?
12dfb
12dfe
12e0e
22405
224d9
22697
22880
22884
2288b
12dba
12e2a
13054
13062
13071
226¢cc
226db
226e0
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N )
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Y 47
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i2,
[4,
4} 4.7)
[2,
V) 4
[2,
2,
2,
2,
{2,

0 4
4
4) [4,%)
)} 147

4) [4,7)

a4
49 I 4)
4) [4.7)
4) [4.%)
4) [4.7)

4) [4.7)
[4.
4,

147
)14

226e5 [2,4) [4,%)

226e7

(4,
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2 2,8 4 4 {L, VH)
2 [2,8 4 4 {L VH}
2 [2,8 4 5 L, VH}
3 2.8 4 4 L, VH)
8 M2y 1 7 {H}
8 [2.8) 4 10 H}
1 [28 3 1 {H}
8 (2,8 3 3 {H)
8 [2,8 7 7 H)
8 [2.8 3 3 {H)
8 2,8 7 1 {Hy
8 [28 2 2 {H)
8 [2.8) 2 2 {H)
8 [28 2 4 {H}
1 2,8 4 2 {H)
1 [2,8 2 2 {H}
3 28 7 7 {H}
10 [2) 4 1 {H}
11 [A2) 4 4 {H}
2 2 1 4 L VH}
2 2.8 2 2 L, VH
2 [2.8 8 7 L vH)
2 2,8 2 2 L VH)
7 2.8 8 7 {L VH)
2 52y 1 1 {L,VH)
12 2,8 2 2 {H}
3 28 3 3 {H}
3 2,8 7 7 {H}
3 2,8 2 2 {H}
3 [2.8 7 7 {H}
3 2.8 8 7 VL)
3 2,8 7 7 VL)
3 (2,8 3 7 VL
3 [2.8 7 7 (VL)
3 28 7 7 VL

ACDisturb
ACDisturb
ACDisturb
ACDisturb
PoleLineFlashover
PolelineFlashover
PoleLlineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
Polel.ineFlashover
PolelineFlashover
PolelineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineRetard
PoleLineRetard
PolelLineRetard
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
DCDisturb
DCDisturb
Commutation
Commutation
Commutation
ValveBlip
ValveBiip
ValveBlip
ValveBlip
ValveBlip

In Table 5.3 there are 4 attributes be discretized, they are WT1, WT2, FFT6P1 FFTTI.
Note that discretization only used on the integer and float, but not on the strings. The
ROSSETA Johnson algorithm generate the intervals for the 4 attributes as follows:

WTL{[* 2), [2,4), [4, %)}
WT2  {[*4), [4, %)}
FFT6P1 {[*, 5), [5, *)}
FFTT1{[*, 2), [2,8), [8, *)}

At the same time we can notice that the Johnson algorithm also does the reduction on
the information table. There are only 5 attributes being used for the decision-making

and the others have been ignored.

That means those attributes have no help in

decisions. Now we use the Reduction algorithm to get the table as we get the reduced
information like the following sample:
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Table 5.4 Rosetta Reduction Algorithm to get the Reducted Attributes

Reduct
{WTLWT2FFT6P1,FFTT1,ERROR!}

Support
100

Length
5

The first parameter "Reduct” in Table 5.4 gives the list of the attributes after the
reduction and the second parameter "support" indicates how many decisions have
been made correctly based on the attributes in "Reduct”, and 100% means we can
make the complete decision using these attributes. And the last parameter indicates
how many attributes being used.

5.2.2 Ruile Generation use Rosetta

After we do the discritization and reduction on the original information table, we can
use the rough set tool Rosetta [6] [17] [18] for the rule generating.

In table Table 5.6 it generates the rules for the fault identification. For example, we
do the feature extraction on an incoming signal to decide the type of the faults. Now

we get the values of the 5 attributes like this Table 5.5:

Table 5.5 example attributes values for a signal

WTH1

1

WT2
3

FFT6P1 F

4

FTT1
1

ERROR
V0L

When we use the rules to decide the type of fault of this signal, we find out that its

attribute values fall into the rulel, so the fault is Ring Counter.

for the whole system for fault identification.

Table 5.6 the FDI decision table (Rosetta)

WTI({*, 2)) AND WT2([*
WTI([*, 2)) AND WT2([*
WTI([#, 2)) AND WT2([4
WTH([*, 2)) AND WT2{[4

WTI([*, 2)) AND WT2([*,
WTH[4, )y AND WT2([4,
WTH[2, 4)) AND WT2([4,
WTL([*, 2)) AND WT2([*,
WTL([4, ¥}) AND WT2([4,
WTI([4, *}) AND WT2{[*,
WTI([*, 2)) AND WT2([4,
WTIH{4, *)) AND WT2([4,
WTI{{4, *)) AND WT2({*,

WTI{[4, *)) AND WT2([*

,4)) AND FFT6P1([*,
4)) AND FFT6P1(]*,
%)} AND FFT6P 1{f*,
3} AND FET6P1([5,
4)} AND FFT6PI{[3,
*)) AND FFT6P1([*,
*)) AND FFT6PI([*,
4)) AND FFT6PH{[*,
*]) AND FFT6PL([*,
4)) AND FFT6PL([*,
#)) AND FFT6PI([5,
%)) AND FET6PI([5,

1
]

4)) AND FFTOPI{f*
.4} AND FFT6PI([5

5)) AND FFTTI([*
5)) AND FFTTI([2
5)) AND FFTTI([2

¥ AND FFTTI([2
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*)) AND FFTTI([2,
¥)) AND FFTTI([2,
5)) AND FETTI([*,
5)) AND FFTTI(]8,
5)) AND FFTTI(]2,
53) AND FFTTI([2,
5)) AND FFTTI([2,
#)) AND FFTTI([*,
%)) AND FFTTI([2,
L S) AND FETTI([2,

We store the rules

. 2)} AND ERROR({VL}) => DECISION(RingCounter)

. 8) AND ERROR({VL}) => DECISION{RingCounter)

. 8)) AND ERROR({VL})=> DECISION(FilterBank)

85 AND ERROR({VL}) => DECISION(FilterBank)

8)) AND ERROR({VL}) => DECISION(FilterBank)

2)) AND ERROR({H})=> DECISION(ValveCAB)

*)) AND ERROR({VL}) => DECISION(ValveCAB)

8)) AND ERROR({L, VH}) => DECISION{500kvClose)
8)) AND ERROR({L, YH})=> DECISION{ACDisturb)
8)} AND ERROR({L, VH})=> DECISION{ACDisturb}
2)} AND ERROR({H}} => DECISION(PoleLineFlashover)
8)) AND ERROR({H}) => DECISION(PoleLineFlashover)
8)) AND ERROR({H}) => DECISION(PoleLineFlashover)
»8}) AND ERROR({H})=> DECISION{PoleLineFlashover)



WTI([2, 4)) AND WT2([*, 4)) AND FFT6PL{[5, *)) AND FFTTI([2, 8)) AND ERROR({H}) => DECISION{PoleLineFlashover)
WTI{[4, *}) AND WT2([4, *}) AND FFT6PI([*, 5)) AND FFTTH([2, 8)) AND ERROR({H}) => DECISION(PolcLincRetard)
WTI([4, *)) AND WT2([4, *)) AND FFT6PI([5, *)) AND FFTT1{[*, 2})) AND ERROR({{H}) => DECISION(PoleLineRetard)
WTI{[4, *)) AND WT2([*, 4)) AND FFT6PI([S. *)) AND FFTTI([*, 2}) AND ERROR({H}) => DECISION(PoleLineRetard)
WTI([4, *)) AND WT2([4, *)) AND FFT6PI({3, *)} AND FFTTI([*, 2)) AND ERROR({L, VH}) => DECISION({Aysm.Prot)
WTI([2, 4)) AND WT2({4, *)) AND FFT6PI{{5, *)} AND FFTTI([2, 8)) AND ERROR({L, VH}) => DECISION{Aysm.Prot)
WTH([4, *)) AND WT2{f4, *)) AND FFT6P1{[5, *)) AND FFTTI([2, 8)) AND ERROR({L, VH}) => DECISION(Aysm.Prot}
WTI(([2, 4)) AND WT2([*, 4)) AND FFT6P1([*, 5)) AND FFTT1({2, 8}) AND ERROR({H}) => DECISION{DCDisturb)
WTI([2,4)} AND WTX([4, )} AND FFTOPI([S, *}) AND FFTTI{{2, 8)) AND ERROR{{H}) => DECISION(Commutation}
WTI([2, 4)) AND WT2([4, ¥}) AND FFTOPK([*, 5)) AND FFTTI{[2, 8)) AND ERROR({{VL}) => DECISION(ValveBlip)
WTH{{4, *)) AND WT2([4, *)) AND FFT6P1([*, 5)) AND FFTTE([2, 8)) AND ERROR{{VL}) => DECISION(ValveBlip}

So far we have generated the rules for the fault detection and identification system.

Those rules are generated from the 56 learning signals that we have recovered from
the TRS of Manitoba Hydro Dorsey Station,
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6 PERFORMANCE EVALUATION

Performance evaluation is carried out by measuring the detectability and
identifiability of the FDI scheme. It aims at minimizing the error of the system. A
C++ program is generated based on the rules. When we do the performance
evaluation, first we get the raw data from the TRS and use the FDI system Figure 3. to
do the type detection. The more signals we use for training, the better result we can
get.  If the accuracy (identifiability) of one type of fault identification is less than
50%~60%, we have to go back to modify the attributes or try to get more attributes
for fault identification.

Performance Evaluation can enhance the knowledge-based system and is helpful in
the detection and identification process. The identifiability /x of a particular fault k&
depends on how clearly it relates to the rule base and how different it is from other
faults. We recovered another 55 faults from the TRS and use them as the training

signals.  First use the FDI system to get the value of every attributes v_ and then usce
the rule got from the ROSETTA to make the decision.

Table 6.1 Performance evaluation of 60 training signals

fault type # of correct #of accuracy(ly)
mcorrect

Ring counter 5 1 0.83
Filter Bank 4 1 0.8
Valve CAB 4 2 0.67
500kv close 3 1 0.75
AC Disturbance 5 I 0.83
Pole-line Flashover 6 1 0.85
Pole-line Retard 2 1 0.66
Aysm.Prot 4 2 0.67
DC Disturbance 2 1 0.66
Commutation 3 | 0.75
Valve Blip 4 1 0.80

From the above Table 6.1 we can find out that if we use more signals for learning
generally, we can get better results, For example, in the learning step (generating the
rules) we use a greater number of signals for the Ring Counter, Filter Bank, ac
Disturbance, Pole-line Flash Over, Valve Blip faults compared with the number of
signals used for the other types of faults. So the result is better. That tells us that
when we generate the rules, we should recover as many signals as possible for

learning to optimize the system. The results obtained so far are summarized in Fig.
26.
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The Figure 6.1 is the accuracy output for the system.

FDI1 rules accuracy
1 : ‘ )
Ring Filter ac poleline
Counter Bank distur fiagf}qver

0.8

Valve

500kv Blip
; . Commutation

Valye Close poleline  Aysm 4.

CAB Gl retard Prot distur

ac 0.6

cur ;

ac
y 04

0.2.

1 2 3 4 5 3] 7 8 9 10 11

11 types of faults
Figure 6.1 FDI system accuracy (training use 60 signals.)
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7 USER INTERFACE

For the convenience of the user to use the FDI system, we set up an user interface to
implement the system. The interface has the ability to get the data from the TRS of
Manitoba Hydro Dorsey Station and then recover the data from binary format into
ASSCH format. It also can do the preprocessing on the recovered data. The key part
is that it can recall the feature extraction algorithm and finally use the rough set rules
to give the decision of which type of fault for a new signal.

Table 7.1 manual for implement the interface

Feature Explanation Visual
open Read raw data from selected directory
open

change recovery the data from binary change

format(*.x01) to ASSCII format

(*.dat)
check whether there is fault happened check
Feature recall the algorithms to extract the Feature
Extraction features of the signal
View view the rules in the system view
Decision give the decision of the fault type and Decision

the FDI system accuracy for this type

of fault

When we use the interface, we should get the data first and then recovery them. After
that we do the checking of the faults. We integrate the preprocessing procedure inside
the Feature Extraction Part.  Click on the Feature Extraction button we can get the
output value for each of the attribute according to the properties of the signals like
(phase current, pole-line voltage, current order and so on). This button will recall
another interface for the features, which we will show later. After we get the
features of the signal we can click on the View button, this one is used to recall the
rules that have already been stored in the system. The rules are those we got using
the rough set tool Rosetta as shown in Table 5.6. This one helps the user to check the
decisions. The Decision button in the interface is used to give the decision of the
fault type. At the same time we give the FDI accuracy for this type of fault. The
interface is
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Figuré 7.1 FDI VUsér Interfacé; ‘

Now we click on the Open button a list box will show up for the user to choose the
file for analysis. Figure 7.2

Figure 7.2 Directory list for the data
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Then the user selects the file from the directories. Double-click is used to open the
file. But in our case, usually we select the *x01 file for analysis, since it is
unreadable to the user. Then click on the Change button, and it will recall the
function to recover the data from binary format into ASCII format. For each of the
file it will need almost 15 minutes for recovery . After we do the data recovery, the
*.dat files will be generated in the same directory with the * x01 file. Then we check
whether there is a fault in this signal using the Check button. If there is a fault, "1"
will be returned in the text area, otherwise return "0". If the "0" appears, the user can
go back to the directory to select another file to do the detection and identification. If
"1" appears, we will go to the feature extraction part of the DFI system. Click on the
Feature Extraction button and a new screen will show up as Figure 7.3:

[ etvestedfes .
| [ Tiehee

“ Update Listbows> 1

 Reference.

Figure 7.3 Feature Extraction Screen

Here is the manual for the feature extraction screen

Table 7.2 manual for Feature extraction screen

Feature Explanation Visual
extracted list of the files that have been Change
files recovered by the Change function

update list every time when the file been change

recovered this one is used to update
the list box

Reference: this tells the user how to choose the Popup
functions of different signals
Plotting do the feature extraction and at the
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Function same time plot the related output
FFT6P FFT for 6 pulse voltages. This plot FFT6P
gives the typical types of FFT in the
rule base and also plots the FFT output
for the signal you have selected.
Return the type.

Wavelet Wavelet transform for the signal. This
will return WT1 and WT2

FFTP FFT for phase current a-phase signal. FFTP
This will plot the typical types of FFT
in the rule base and also the FFT for
the phase current signal in this file.
Return the type in the text area

Ratio calculate the ratio of phase current and
current order for this file and return the
ratio (granule output)

ac error calculate the ac voltage phase error of ACError
the file and return the error (granule
output)

Wavelet

Ratio

]

After we get all the features we need for the file, we will go back to the main
interface Figure 7.1. Now click on the View button to check the rules generated by
Rosetta, and then click on the Decision button. It will show the decision of the type of
the fault and also the accuracy of the FDI system on this type of fault.
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8 CONCLUSION

In this thesis, first we present the way to analyze and recover the binary format data
of the TRS of Manitoba Hydro Dorsey Station. After an explanation of recovery of
the data, we introduced some algorithm for the detection and identification of the
faults such as wavelet transform algorithm for the pole-line voltages signals, FFT and
low-pass filters used to get the feature of the 6 pulse voltages and the phase current
signal. We call this a two-prong approach because we use the wavelet transform on
the constant signals while we use the FFT and low-pass filter on the periodic signals.
Fuzzy computing is also used in decision-making associated with the wavelet
transform and FFT output types. We also calculate the ratio of phase current and
current order as well as the ac voltage phase error. Then a granulation algorithm is
used for grouping the output values of the ratio and ac error. We “granulate”
(group) the data in setting up an information table in what we call a Fault Detection
and Identification (FDI) system.  Rough set theory has been used to analyze the
information table. We also use the rough set tool called Rosetta to generate the rules
for the FDI system. ~ We use 60 fault files to do the performance evaluation and
determine the accuracy of the system. Finally, a user interface was created for user
to implement the system. We have also discovered that the more fault files we use
for training the FDI, the greater the accuracy of the classification system.
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