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ABSTRACT

This thesis introduces a Knowledge Based approach for High-Voltage power.system
faults detection and identification. Based on the feature of the typical signals
obtained from the Transcan Recolding Systern (TRS), a dual approach is pursued.
Feature extraction is central to this thesis. Various featules ofpower system signals
are extracted to plovide a basis for a decision suppoÉ system for power systern fault
and identification. First, faults that have periodic signals such as phase cunent and 6
pulse signals, and Valve cunents arc analyzed using FFT and auto-correlation to
identiry the type of the waveforr.n of the input signal. Second, for. faults that have
non-periodic signal such as pole line voltage, pole cunent and pole current order, a

new rnethod called Fuzzy Wavelet Analysis is introduced to deteu¡ine the type of the
faults. In addition, there are also some other attributes like the Ratio ofPhase curuent
and current order, ac Phase voltages Erol that are analyzed, using granular cornputing
methods. Finally, we use the above attributes to set up a decision table and then use
Rough Set rule generation tool called Rosetta to generate fault-classification decision
rules. Performance evaluation of detectability and identifiability ar.e defined to assist
in assessing the pelfonrance that is achieved through a leaming mechanism based on
the detectability and identifìability measures.

Keywords: fault detection, fault identification, Fourier analysis, gtanulation, power
systern fault, rough set theory, signal analysis, wavelet analysis.
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1 INTRODUCTION

It is well-known that analysis and classification of power systern disturbances are
helpful in working towards more stability and effrciency in power delivery [4].
Recognition ol a power systern fault (r'esult of some fon¡ of disturbance that causes
an electrical system to have abberant behavior) can be compensated to avert system
failure by switching transmission lines to supply additional cunent (response to
increased load) or switching capacitor banks to balance increased loads. The focus
of this thesis is an introduction to rnethodologies that can be used in classifying
power system faults.

This chapter briefly presents the basic ideas underlying this thesis. The chapter is
organized as follows. In Section I . l, a brief pr.esentation of the basic tenninology
used in this thesis is presented, namely, terminology from power systems, power
systern faults, selected transfonn techniques used in signal analysis (Fourier and
wavelet tlansfon¡s), fuzzy set theory, rough set theory, attribute reduction, decision
rules, discretization, and rough rnernbelship functions. Also included in section l.l
is illustration of how one goes about applying lough set methods in the context of
power system faults. An overview of the thesis is given in Section 1.2. The
developrnent of knowledge-basecl algorithrns for fault detection is br.iefly descr.ibed in
Section 1.3. In the final Section of this chapter., the topical-coverage (scope) of this
thesis is given.

1,1 Basic Terminology

This section briefly plesents the basic tenninology for. this thesis.

1.1,1 Porver Systems

In power electronics, a valve (also called an ideal valve) is a diode, thyr.istor or turn-
off valve val'e. In power systems, valves are sirnply regarcled ai switches [1].
Thyristors were introduced in the late 1950s, and is of interest in this thesis because
they ale used at the Manitoba Hydro Dorsey Station. Basically, a thyristor (also
called a silicon-controlled rectifier) is a four-layer, three-junction device. It has ihree
tenninals: anode, cathode and gate. This device is turned on by applying a short
pulse across gate and cathode. once the gate turns on, the gate loses iis atitity to turn
off the device. The turnoff is achieved by applying a reverse voltage acrois anode
and cathode. There are two types of thyristors: convefter grade and inverler grade.
converter gade thyristors are used in commutation (i.e., phase-contrclled)
applications like high-voltage dc tlansmission. Inverter-grade thyiìstor.s are used in
commutation applications such as dc-ac inverters. Thyristors witir up to 5 KV and 3

ll



KA capacity are available. In power systeln, a pole or a valve group consists of 6
vales. The pole cunent is the summation of each valve curent or we call it phase
current. Phase current is generated by opening the valve in a valve group, a positive
pulse is used to open the valve. Counter.is used to generate the pulse. As shown in
Figure l.l [28]

1.1.2 Porver System Faults

A power systern fault is the lesult ofan electrical disturbance. A number ofpower
system faults are leferenced in this thesis, narnely, Ring Counter Eror, ac Filter
Bank, 5OOkvClose, ac Voltage Disturbance, pole-line Voltage Flashover, pole-line
Voltage Force Reta'd, Valve Asyrnmetrical protection, dc line disturbance, Valve
commutation Failure and valve curent Blip. with a Fault Ring counter Enor, the
six valves are not opened in a specific designed sequence then the phase cunent and
the pole cu*ent will sharply increase or decrease. As a r.esult ofã Fault AC Filter
Bank rest, before the ac power is output for use, the power should be filtered for
noise compression and cutoffthe undesired frequency colnponents. If the filter does
not work well, it will cause the ac voltage energy loss or phase mix up. with a Fault
500 kv Close, the dc line is cornpletely shut down. With a Fault AC Voltage
Disturbance, the ac voltage line will be affected by the different causes such as ãn
object (e.g, falling tree) hits the transnission line, heavy snowfall or severe wind,
and sometimes radiation or rnagnetic field interfelence. with a Fault pole-line

'/ì

L* L¿- 4Lt + l+'t
¡rrr4t-¡¡!¡fl-¡

Figule t.I The Valve Group Diagrarn [28]
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Voltage Flash Over, the pole voltage usually should remain at 450kv. But
sometimes it will oscillate quickly. We call this event pole line voltage flash over.
With a Fault Pole-line Voltage Force Retard, if the energy of a dc line decr.eases, then
the pole line voltage will declease slowly. Sornetimes, the dc power system will
lestarl in a short tirne if the control system responds quickty but usually the dc system
will shut down for a long period. With a Fault Valve Asynmetrical protection, if the
pulse to open the valve alrives in abnonnal sequence, this can cause rnore than two
valves to open at the sarne tirne. Then the circuit control systern will force one ofthe
valves to close. With a DC line disturb Disturbance in the power. system of
Manitoba Dorsay station, the ac voltage is converted from the dc voltage. For the
long distance translnission ofdc voltage is easier and the interference problem can be
decreased a lot. But sometimes, the dc line will be affected such as snow on the
transrnission line or in windy weather'. with a Fault valve comrnutation Failur.e,
sometimes although the pulse to open the valve arrives, the valve still not
comrnunicate correctly. Usually this occurs in all valves in one pole. With a Fault
Valve Current Blip, sornetirnes only one valve in a pole increases sharply for a short
period and then shuts down. This type ofpower systern fault is caused by a short to
glound.

1.1.3 Transform Techniques

Fourier r¡ethods such as the Fou er series and Fourier integlal are used in analyzing
continuous time signals. That is, Fourier rnethods are applicable in systems wherã
thele is a characteristic signal s(t) defined for.all values oft in the interval þoo,co]. A
Fouder transfon¡ decomposes a wavefom into a sum of sinusoids of diffèr.ent
frequencies [3]. The signal s(t) in the tirne dornain is decomposed into the sun of its
sinusoids S(f) in the frequency domain using the fonnula ( I .l ).

s(Ð = j s(t)e i!'n dt
( t.t )

whe'e 7 =ff . In this thesis, the focus is on the application of what is known as the
discrete Fouder tlansfon¡ that is applicable to disclete-time signals. A discrete tirne
signal s[n] is defined for values of n in the interval [-co,oo]. A discrete Fourier
transform (DFT) is used in studying finite collections of sarnpled data {s6, ..., s¡_¡}
relative to the sequence {So, ,.., SN_r}. The DFT is computed using (1.2).

^ !-l ... ,ì" (1.2\
ù =)¡(rk.\' .r=0,1,..,.N-l ' '-'



A "fast" Fouder transfonn (FFT) results fi.orn the application of a parlicular
algorithrn that can compute the DFT rnore rapidly that other available algorithms [3].

Transient signals in a power system are non-stationalJ, tirne-varying voltage and
cunent signals. These signals result from disturbances (faults) on transrnission lines
(e.g., capacitor switching, lightning strikes, short circuits) [4]. Wavelet transfonns
provide efficient, local analysis of non-stationary, fast transient signals. Waveform
data are captured by digital transient recorders such as the Transcan Recording
System used by the Manitoba Hydro Dorsey Station. The wavelet transform of an
integable function f(t) is a decornposition of f(t) into a set ofbasic functions denoted
by h...(Ð called wavelets. The wavelet transfom is given in ( I .3).

tr/, (s,r) = ls()li,ç'¡at (1.3)

where * denotes the complex conjugate, and the wavelet h,,,(t) is conputed using
( 1.4).

4,(,)=+rf3l
Vs \.r,/

(1.4)

Where s is a scale factor, and r is a tr.anslation factor.

1,1,4 Fuzzy Set Theory

Fuzzy set theory is concerned with gr.anulating experimental data (i.e., identiffing
clusterings of data (also called infonnation granules), approxirnate distributions oÌ
data values within each identif,red cluster, detennining the degree-of-membership of
each observation in a distribution). A fuzzy set itself is a pair (¡r, X), where ¡r: X -+
[0,1] (degree-of-member.ship function) and X is a non-empty set r.epresenting domain
knowledge. An infonnation granule is defrned to be a clump of objectJ (points)
drawn together by indistinguishability, sirnilarity, or functionality [5]. in tnii
r eseaÍch, ruzzy ser theory provides a convenient means of organi zing and analyzing
the data from power system fault fìles.

1.1.5 Rough Set Theory

Rough set theory offe.s a systematic approach to set approximation [6], and is part of
an ongoing effort to use rough set rnethods in classifying experirnental data Il4j-[30].
To begin, let S = (4 A) be an infomation systen where U is a non-ernpty, nnìtã sét
of objects and I is a non-empty, finite set of ath.ibutes, where a:[J - > V, for every a
A. For each B c l, there is associated an equivalence relation Ind,¡(B) such that



lnd.,(A) = {(r,r') e U2 lVa e B. a(x) = a(x')} (l.s)

If (x, .r) e IndT(B), we say that objects .r and .r,are indiscernible fiom each other
relative to attributes frorn B. The notation [,r]3 denotes equivalence classes of
Ind,1(B) . Further', parlition U/lnd.1(B) denotes the family of all equivalence classes
of relation Ind;(B) on U. For X c U, the set X can be approximated only from
infon¡ation contained in.B by conshucting a B-lower and B-upper approxirnatíon
denoted by BX and EX respectively, where BX= {., I l."lr c Xì and
BFX ={xlt.rl, aX +Ø\. The notation POSB(X) : ¿X denotes what is known as the
positive region (the collection of objects that can be classifìed with full certainty as
metnbers ofX using the knowledge represented by attributes in B.

1.1.6 Attl'ibute Reduction and Decision Rules

An approach to fìnding a subset of attributes (r.educt) with the sarne classificatory
power as the entile set of attributes in an infonnation system is briefly described in
this section. This leads to a brief discussion about the derivation of decision rules
with minirnal descriptions in theil left-hand sides. In de.iving decision system rules,
the discernibility matrix and discernibility function are essential. Given a decision
tableDT= (U, A u {d}), the n x n matrix (c¡) called rhe discernibility r¡atrix M of S
(denoted M(DT)) is defined in ( 1.6).

c¡¡ = {a e A: a(x¡) a(x¡)}, for i, j : l, ..., n (1.6)

A discernibility function for relative to discernibility trahix M for a decision table
DT is a boolean function ofm boolean var.iables 

'j,...,o., 
conesponding to attributes

âr, ..., âm respectively, and defined in (1.7).

.f- (ai,...,ui,,) =,, A{vu I I < I < i < it, c,, + Ø1, rvheLe ci {a' a e cr} (1.7)

The set of all prirne irnplicants of fs detennines the set of all reducts of S [7]. A
reduct is a minirnal set of attributes B c A that can be used to discem all objects
obtainable by all of the athibutes of an infonnation system [g]. The reducts of an
inf_o!nation system s comespond to the prime implicants of the discemibility function
f5 [9]. That is, Ind5(B) : Inds(A). In effect, a reduct is a subset B of attributes A of
info'nation system s that preselves the partitioning of the universe u. Hence, a
reduct can be used to pelfonn the same classifìcations as the whole ath-ibute set A of
the infon¡ation [7]. The set of all reducts ofS is denoted by RED(S). Let B c A.
The set of all .educts in IS with attribute set B is denoted by REDÌB). A method
used to fìnd a proper subset of attributes of A with the classificatory power as the

l5



entiÍe set A has been tenned attribute reduction l8l. Let .f!, be a decision-relative
discernibility function with respect to discernibility matrix M and decision table DT.
This boolean function can be constructed frorn the discernibility matrix for S¿. The
set of all prime irnplicants of .¡,j defines the set ofall decision-relative reducts ofthe
decision system S¿ [ l0].

In other words, precise conditions for decision rules can be extracted frorn /,f
derived frorr a discernibility matrix M as in [10]. For the decision systern S¿, let
¡a(Vn) denote the power set of Vn, where V" is the value set of a. For.every d eA -
B, a decision function ¿ ,',' : U --> ¡a (V") is defined in ( I .8).

d,l(u):{yeY,t l3r'e U, B c A, (u', u) e 1zd"(8), d(u,):v} ( r.8)

In other words, ai (u) is the set of all elerrents of the decision column of S such that
the coresponding object is a member of the sarne equivalence class as argument u.
The next step is to dete'¡ine a decision lule with a r¡inirnal numbef of descriptors on
the left-hand side. Pails (a, v), where a e A, v e V ar.e called descriptors. A
decision rule over the set of attributes A and values V is an expression of the fon¡
given in ( L9).

(l.e)

where u; e U, v, e Vn, ,v e V¿, j= l,...,r.andr. lAl. The fact that a rule is true is

indicated by writing it in the fonn given in ( I . l0).
(1.10)

For an infonnation system s, the set of decision rules constructed with respect to a
reduct R is denoted OPT(S, R). Then the set of all decision rules derivable fi.om
leducts in RED(S) is the set in (l.l l).

oPr(s) = v{ oPr(s, R) | R e RED(S) }

PosB(D)=UlÊx 1x e rndo(D))

l(r

(l.ll)

Let S¡ be a decision systern with condition and decision attribute A: C \J {d} for a
given set of condition attributes B g C. Then defìne a positive region pOSs(d)
relative to Inda(d) as .



The positive region POS3(D) contains all objects in the universe U that can be
classified into distinct decision classes defined by Indq(D). The notation
Xr, (a) = {,r e 4X I d(x): d(u)} denotes a decision class for any u e U.

1,1.7 Discretization

Suppose that we need to obtain approxirnate knowledge of a continuurn (e.g.,
behavior of a sensor signal over an interual of time) by considering parts of the
continuurn. Discretization of a continuurn entails partition a particular interval into
subinterwals of leals. For exarnple, consider. the interval of reals Vn : [v", wn] for
values of an attribute a e A in a consistent decision systern S¿: (U, A u {d}).
Discretization of Vn entails searching for a partition Po of Vn (i.e., discover.ing a
partition of the value sets of conditional attributes into intervals). In r.ough set
theory, discretization leads to partitions of value sets so that if the narne of the
interval containing an arbit'ary object is substituted for any object instead of its
original value in Sd, a consistent decision system is also obtained.

1,1,8 Rough Member.ship Function

In this section, the traditional rough membership function introduced in Ill]. A
rough membership function (nn function) makes it possible to measure the degree
that any specified object with given attrìbute values belongs to a given set X. This
function ¡rjl is defined relative to a set of attributes B _c r in infonnation systern s :
(U, A) and a given set ofobjects X. The equivalence class [x]s induces a partition of
the universe. Lel B c: A , and let X be a set of observations of interest. The degree
of overlap between X and [x]s containing x can be quantified with the rough
tnembership function in (1.12).

(1.r2)

1,1,9 Example: Discretized Rules

In a high voltage direct current (dc) transmission system, a dc line is connected
between two alternating current (ac) systems as shown in Fig. L Such a system has
two ac convefters. converters (combinations of transformers and mercury-arc
valves) are at both ends of the transmission system in Fig. l. In the case where the
flow ofpower is from the ac side to the dc side as in Fig. l, then a convefter acts as a
rectifier in changing ac to dc. The inverter in Fig. I converts dc to ac. The Dorsey
station in the Manitoba Hydro system, for example, acts an inveÍer in converting dc
to ac, which is distributed throughout the Midwest.

\'1

t! :U ->t0,1) definetl b¡, rri,, = 

{#



lL--l '-5 dc itrv¡¡t¿r 
E---_--.''

llq'"*',---]|Tl_+tol 
-'..il 

-+I-l +","' 
IJ.rf. = Figure 1.2 dc Link Between ac Systems Ë

Power systern faults ale recorded in files. ln the Manitoba Hydr.o Dorsay Station, a
Transcan Recording systern will automatically record all the status of those 27 signal
into a data file whenever. a fault occurs. We call this data file *.x01 fìle. For
exarnple, Fig.2 shows 27 signals in a fault file which has recorded a valve ring
counter enor. Those 27 signals can be classified into two types: global signals which
controls all signals in a valve and valve signals.

F¡om left to right in the above graph, the fìrst 9 signals are global signals, and the
remaining l8 signals are valve signals:

global signals = {AC phase A, B, and C gr.oup I l, 12, 13 value signals = {6
voltages, pole current older, pole Alpha pulse voltage, Alpha response, valve
order, pole I {2) cur rent, pole I {2) cunent (A {8, C} phase), start pulse}
voltage)

For sirnplicity, we illustrate the classification of the wavefoms of transmission
system faults relative to valve comlnutation failure (i.e., failule to transfer of cunent
from one circuit to anothel correctly). Sometimes when the pulse to open a valve
anives, the valve fails to comnunicate cuüent conectly and á comrnutátion failure
occurs. A decision (d) to classify a wa1;fonn for a power transmission fault as a

Figure 1.3 rhe 27 Signals in Fault a Valve Ring Counter Error



commutation failure depends on an assessment of phase cunent (pc), cuffent setting
(cs), maximum phase cunent (rnax pc), ac voltage en.or (acve), pole line voltage
(plvw) and phase cunent (pcw) wavefonns. A sample cotnmutation failur.e decision
table is given next. In Table l.l, d: I {0} indicates a fault representing {not
representing) a cornrnutation failure.

Table I .l Comrnutation Failure Decision Table

Þc/cs plvw pcw cs max Dc (ì

tet u.059 0.0697 0 0.01875 (.) 0 0
rirc2 0.059 o.0697 0 u.u I ¡t /5 0.1661 0 0
file3 0.059 u.u69 / u.0Ìð75 0. t667 0.0856
llle4 u.(J59 u.0691 0.5 0.01¡t75 0.054 0.08s6
lrle5 0.059 0 0 0 U 0 0
tile6 0,059 0 u.5 {J 0 0 0
Itle'l u.059 u.069 t 0.5 0.0t875 0.054 0.08s6 0
tile6 0.059 o.r)697 0.0187s u. tóó7 0.0956

Signal data needed to conshuct the condition granules in Table I come fiom files
specified in colurnn I of the table. Rosetta is a public domain toolset that rnakes it
possible to derive a reduced set ofdecision rules based reducts and discretization (see
http://www.idi.ntnu. no/-aleks/r'osetta/). The notation max-pc[*, 0.043], for example,
specifies that the maxirnum phase cunent in containecl in the interval (-co, 0.043), i.e.,
-co < max-pc < 0.043. Sample discretized rules derived fror¡ Table I using Rosetta
are given in (1.13).

plvrv([x, 0.750)) AND cs([O. ] I l, *)) AND rnax-pc([*, 0.043)) => ¿1no, 
( I I 3)

plvl([0.750, +)) AND cs(10. I I l, *)) AND rì1ax-pc([0.043, *)) => d(yes)

Let PLF denote a pole line fault in a high voltage power.system. The set F: {x I

PLF(x) = yes) consists of pole line fault readings which ar.e juclged to be
commutation failures. Notice that there is some uncertainty concel.ning the
wavefonn represented by file4 and file7 (yes/no decision values in Table l). Let A
be the set of attributes represented in Table t. Then fror¡ Table l, we obtain
approxirnation regions 4F =ll/ìte3, liteljj,7r =1¡tes, ¡tn4,.liteBl,and boundary
region BF,,1r¡= \.fiteai, The classification PLF represented by the decision colurnn
labeled d in Table I is rough, since the boundary region is not empty. Next, we relax
the requirement that a nn function be defined for equivalence classes relative to IND,
and consider approximation regions such as AF and Ãr . Assume that I f ]a :
{equivalence class consisting of files with the same outputs of attribute B in the
universal fault file space) = {fi1e4, fi1e7, fi1e9, filel0}, which includes files not
considered in Table l. Then consider', for example, the degree of overlap between
Vr anð,lfl¡ (see Fig. 3).
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Figure 1.4 The Degr:ee of Overlap

1.2 Overvierv

Manitoba Hydlo Dorsey Station currently uses the Transcan Recording System (TRS)
as a tool to record and rnonitor. the HVDC Converter Station and related power
system. This system has the ability to perfonn fairly intelligent signal processing
and can be configured to operate at either Auto-call mode or Auto-poll mode to
recold the data. The Auto-call mode enables a recorder subsystem, i.e., a remote
Iecorder is enabled to call the master automatically whenever a fault occurs. The
Auto-poll rnode enables the rnaster. to poll the subsystem according to the
requirements of the user to check if there is any fault during a certain period of time.
This thesis introduces possible algorithrns that can be er¡bedded in the TRS to give
the system the capability to classify the type of the faults that occur. and also to give
preliminary assessment ofthe possible cause ofcertain types offaults.

Fault diagnosis, or equally fault detection and identification (FDi), is a r¡ature field
with contributions ranging frorn rnodel-based techniques to data-driven
configurations that capitalize upon soft cornputer and other "intelligent" technologies
il]t21. Recently some strategic issues and approaches about fault detection ãnd
identification have been addressed by several investigators ll2, 19,23,27,2g).

In this ploject, a fault rnodel was set up as a database to store the rules of different
types of faults. These features a.e obtained through digital signal processing (DSp)
and feature extraction methods on the data frorn the TRS. In many pìactical situation,
uncertainty about the natule of a detected fault can hamper decision-[raking of a plant
enginee'ing and as a r.esult, perhaps, affect the perfonnance of the system
significantly. This realization provides the motivation ior a possible application of a
number of classical as well new technologies (fuzzy Iogic, iough set tireory) in the
analysis of faults identified by the TRS. The new fault classifìcãtion system has the
ability to directly describe the potential faults. In this new system, thà fast Fourier
transform (FFT) low-pass filters conshuct and one type of wavelets are combined
with degree-of-rnembership functions fiom fuzzy set ìheory [3] in decision tables
fi'orn rough set theory [insert ref.] that are used in classifying thà type of the fault. A

20



major innovation in the proposed work relates to the utility of wavelets, in a fuzzy
logic rule base setting, for fault-classification purposes.

1.3 The Development of Knorvledge based algorithms for fault Detection

Fault detection and identification (FDI) is of interest in a wide variety of applications
such as power system, contrcl system, irnage analysis, analysis of radar.signals, smaft
sensors, textute analysis, rnedicine, and industry. Typically, an FDI system entails the
following cornponents:

o Monitoring and reporting the presence of faults or failures. A power system
fault is associated with sorne fon¡ of electrical disturbance (e.g., sudden
increase in load or sudden increase in reactance of a circuit) that affects the
stability of a power systern [see Kirnbar.k, 5]. If not interupted quickly, fault
cunent can severly damage conductors and equipment [see Broadwater, I167].
In case of abnon¡alities in the systern under obseruation, possible faults are not
only reported but also verified by additional processing.

o Classifying faults. The FDI algor.ithm decides upon the type of the faults
including no fault condition.

¡ Identifying the origin ofa detected fault. This includes differentiating between a
systern failure and a functional failure. A system failure is a degradation of
perfonnance of the hardrvare ofthe systern while a functional failure refers to a
condition of the system state variable resulting in an unwanted operating mode
such as instability, and so on. Many functional faults can eventually lead to
system failure.

With the availability of powerful corrputing platforms, feature processing in
classification theory has become an impoftant part of rnany applications. Intellþent
processing tools like fuzzy \ogic, neural networks and optirnization techniques airn at
accommodating large grain unceftainty while utilizing all available infonnation in
classi$ring observed behavior patterns (wavefonns) of an electrical system. Due to
the wide range of time constants, sorne of the wavefonns belong to the sarne type but
because of the analysis only in tirne or frequency domain alone is not suffìóient to
capture features (e.g, when two wavefonns actually belong to the same type of
wavefonn, but they have a phase shift in time domain). It turns out that the disiórtion
is still not zelo and sometimes the distoftions are even bigger than comparing with
two different wavefom. That leads to the mistaken classification of the fault type. so
that is why we translate data into the f.equency dornain to calculate the conelaiion.

1.4 Scope of this Thesis



In this thesis, the acronyms WTl, WT2 denote the wavelet tl.anslat e and fuzzy
courputing output ofthe 2 pole line voltage. The acronym FFT denotes fast Fourier
transfonn. Briefly, a FFT is used to clecompose a wavefonn into a sum of sinusoids
of different frequencies [3]. The signal in the tirne domain is decornposed into the
sum of its sinusoids in the frequency domain using the formula (l). FFT6p denotes
the FFT for the 6 pulse voltages (3 poles FFT6P 1,FFT6P2,FFT6P3) The acronym
Enor denotes the ac voltage phase distur.bance; it is calculated by phase shifting and
error calculation This research also en.rploys wavelets. Briefly, a wavelet is a farnily
of signals, where signals are scaled by a single function called Mother wavelet.
Wavelets are useful in power system fault classification because for most of the
signals in power system like current and voltage, the frequency is usually 60 HZ, and
for the constant signals they only have sharp oscillations when there is fault
happened. Wavelet transfonnation and coefficient analysis are used in this study.
The tenn wavelet transforrnation rneans decompose the signals into a sum of wavelet
farnily with different scales and translation factors. (see details in Chapter 4. I . I )
In sum, this thesis treats the following topics as part of a study of power system

faults.

. Data Discovery and Preprocessing on the data from TRS (real{irne signals,
unreadble)

o Wavelet Analysis on Pole-line Voltages (WTl,WT2)
¡ FFT and IFFT, Low-pass filter for 6 Pulse Voltages(FFT6p l,FFT6p2,FFT6p3)
. Ratio ofPhase Cunent and Current Order(Ratio)
r Distortion of AC Phase Voltages (Emor)

The algorithms used to get the above attr.ibutes are:
o wavelet Transfonnation and it's coefficient Analysis to get the feature of the

wavelet
¡ FFT, IFFT and Low-pass filter
. Fuzzy set theory and granular computing
r Error detection
. Rough Set theory and its application in classifuing power systern faults.



2 PREPROCESSING

Before we do the fulther processing on the data of the signals we have to do some
preprocessing and also find out the characteristics for. the different signals. In
preprocessing, we first recovery the data frorn binary to ASCII (Arnerican Standard
code for Infonnation Interchange) fo¡nat, and then separate the signals into different
group based on the physical type of thern (Cunent, Voltage, Cunent Order). After
that we have to do some leduction on the data to get the part that is really useful for
feature extraction. In section 2.2 we will inttoduce some characteristics of the
signals, based on the characteristics we select different processes to get the features.

2.1 Preprocessing

In this section we will introduce the 3 steps for signals preprocessing, Data recovery,
Signal separation and Infonnation deduction.

2.1.1 Data Recovery

When we get the data from the TRS, they ar.e binary format and compressed as *.x01
files. Those files ale unreadable to us. That means, from the original data we can not
figure out the inforrnation it is carrying. But together with the.x0l files TRS also
provide us the *.scf files. The *.scf file give us the infonnation about how to
recovery the data. Selected sarnple lines from such a file are given next

It tells us how many channels have been scanned. For instance, the recovered file
has 48 analog and 4 digital channels. The *.scf file also indicates that the scanning
ordel and the physical name ofeach channel. In the .x0l fìle, the fu.st 52 binaries arã
used for the file name and date. The following 8 binaries ar.e used for sarnpled data
and the last 4 bits ale used to indicate the channel number.

A C++ pro$atn was designed by Liting Han to recover the binary fonnat data (.x01)
into ASCII fonnat data which is readable (*.dat) [23]. This prograrn has been
optimized for to complete the work for this thesis. one .x0l file can be recovered
into 48 *.dat files. Arnong these files, 27 are used to repl'esent the 27 signals in the
power systeln. From the 27 signals, we can figure out the characteristics of different
types of faults and determine tlte possible cause of that.

2.1,2 Signal Separation based on the type ofthe signal

In order to set up the fault rnodel for the system, we used 56 x.xOl files as the raw
data and do the processing on thern to find the rules, and then use 25 another *.x01



files to do the training and testing. The training and testing part is used to modify the
system and also detect rvhether the whole systern is reliable. After we recovery the
data into readable fonnat, they are separated into different groups according to the
physical properties of the signals. We can distinguish the signals fi.om their number.
in narnes. For exarnple, usually the file with the name dpl I 2* l0l .dat is phase
cunent signal, dpl22x51.dat represent the 6 pulse voltage. After the separation ofthe
data, fur1her opelation can be done on the different type ofdata.

2.1,3 Information Deduction

In each of the files, there are a lot ofdata to descr.ibe the signal. For example, for each
signal of phase current thele are over. 7000 data. This can lead excessively
processing on all the data. What interested us Ínost is the part of the signal data
where faults happened. Hence, we need to monitor the signal and find out the
location where a fault stalts and also the location of the end of the fault, then we can
just process on the fault palt. This approach will reduce the operation time a lot.

2,2 Characteristics of the signals

Arnong the 27 recovered signals, we need to identifi normal conditions, i.e. when no
fault occurs. Sorne of thern are constant signals and sorne of them are periodic.
When we detect or identify the faults, first we have to know the properties of these
signals in nonnal conditions. This section is used to introduce the nonnal pr.operties.

2,2.1 Constant signals

In the 26 signals recovered from each .x0l file, there are some constant signals like
pole-cument order, alpha order, pole cunent, pole-line voltage. Undei normal
conditions, these have the values given in Table 2:

Table 2.1 Constant signals in the recovered 27 signals

pole cufr'enl ofdef alpha older pole cunent pole line voltages

+1400 amps 150 degrees +1400 amps r45Okv

The first row is the name ofthe constant signals in the 27 files and the second row in
Table 2 contains constant signal values in the nonnal conditions.

2,2,2 Periodic Signals



In the 27 signals there are also some periodic signals. For Periodic Signals like AC
Phase Voltage, Phase Cunent and 6 pulse Voltage, their wavefon¡ and values are
shown in the Table 3.

Table 2.2 periodic signals in the 27 recoveled signals

The fir'st row in Table 3 gives the names of the periodic signals and the second row
gives the values of those signals in nomal conditions. The third r.ow gives the
typical waveforrns for periodic signals.

AC I'hase Voltage Phase Curuent ó Pulse Voltage

Arnplitude(peak to peak) 27 KV l400amps 2-tKV

Wavefonn ['i r'l

Il; ll ri

25



FAULT DETECTION

The 26 signals contains AC Voltage, Pole Curr.ent Order, Alpha order, pole cunent,
pole line voltage, 6 pulse voltage, Valve cunents, start pulse. Arnong these signals,
AC voltage, pole cun'ent and voltages are sinusoidal signals, pole curent and
voltages al'e constant when no faults happened. For the phase current, it is still
periodic but not sinusoidal as they are determined by the position of the start pulse.
The signal modeling for AC phase voltages, pole cuments and voltages is easier to
realize than that of the phase curr.ent, since the AC phase voltages are typical
sinusoidal signals, and both of the pole cunents and voltages should remain constant
as well when the power system operates nomrally. The phase cunents, however, are
a little cornplicated, as they will be determined by the position of the start pulse as
shown in Figurel frorn Il l.

According to the [1], we can get the reference signal for the phase current. Before the
commutation, its fon¡ula is shown in (3.1), during the commutation is shown in (3.2)
and aftel the commutation is shown in (3.3).

ir =0

i* = ^l2U @osa +cos v) /(u,. Io )

Where, rio : the phase cunent

U : the n¡s value of the phase-to-phase voltage

a : the delay of the start pulse

v : the phase of the phase current signal

1,, : the stable curuent after current commutation

ik:0 -+I d; while v: ø + lr (p is the interval for commutation)

(31)

(3.2)

(3.3)



Figure 3.1 The Wavefonn of Phase Current

Figure 3.1 shows how the position of the start pulse detennines the shape ofphase
cunents.

3.1 Abnormal Signal Detection

As we said above, different signals have clifferent leatures when a fault occurs. For
those constant signals, such as pole cun.ent or.der, alpha order, pole cunent and
voltages, it is easy to detect the fault because those signals have fixed value when
they are norrnal. If a fault occurs, we can compare the abnonnal value to the normal
one to get the error signal based on Tabre 2.1. Also when we read the data in each
file, we find out that even in normal conditions the constant signals are not exactly
"constant", i.e., they have some srnall differences not easy to detect in the wavefon¡s.
so we have to define some threshold for the fault detection, i.e. only when the value
of the signal disturbance ovel this threshold, we can say that a fault has occumed,
otherwise we ignore them.







In Figure 6, it can be seen that for different types of faults the distorlions of phase
curent signal are diffetent. For Pole-line Flash Over fault, there are two peaks, for
Comrnutation fault there is one peak and for AC Disturbance, the fault signals exist
almost all the tirne.

Table 3.1 Some property values of the eror signal

In Table 3.I, the first column is the types of the faults, colur¡n 2 counter denotes the
number of the peaks in the erlor and the distance is used to denote the how rnany
points between the two peaks. Average in column 4 in Table 4 is the average error.
value of the 3 phase signals.

3.3 System for Fault Detection and Classilìcation

In this project we set up a system for fault detection and identification (FDI). The FDI
systern is based on the analysis of the data from Transcan Recording System (TRS).
This system has the ability to detect and classify the faults. It gives the indication of
the type of the faults and also generates the rules for the fault classification. The
following is the flowchart for this system.

Fault type uountel' dlstance average
Pole Line flashover' 2 1273 oo, I Jz
Pole Line retard I 0 500.231
AC Disturbance 0 60.524
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Next signal

Inside the Figur e 3. we have sone nurnbered blocks. Each block as a particular some
function in the detection and identification ofpower system faults. Block I is the
TRS, where we get the original data. Her.e the data are is unreadable to us, as we
have introduced in 2. I . I . Block 2 is used for recovering data, a C++ pro$.am is set
up to recover the data into *.dat ASCII format, as r¡entioned in 2.1 . I . Block 3 and 4
are for error detection. Before we do some process on the signals we have to detect
the error signals to see whether a fault happened, if ',no,'that rneans no fault
happened, we can go back to the TRS to detect the next signal, otherwise, we do the
further plocessing. as mentioned in3.l. Block 6 is Feature Extraction, it is the key
part of the whole system. It is used to get the features of the signals based on the
characteristic analysis in 2.2. For pole-line voltages we use the wavelet tra¡rsfonn and
the fuzzy cornputing algorithrn to get the îuzziñed decision of the signals. For 6 pulse
voltages, we use FFT, a low-pass filter and fuzzy cornputing to get the results. For
phase current, we took the signals ofphase A as the example, and we also use FFT,
low-pass filter and fuzzy cornputing to do the analysis. For ac voltages, fir.st we use
the equation (4.16) to calculate the enor ofthe 3 phase signals and then use the
granule algorithm to make the decision. Also we calculate the ratio ofphase cunent
and current order, and use the granule algorithm to separate the faults. After the
feature extraction, we got I I attributes and the value based on each ofthe attributes
of different faults. Then set up an infonnation table for the next paft. Block 7 is the
irnplernenting ofrough set analysis, in this part we take the infonnation table which is
obtained fiom part 6 as the input table ofrough set. Then use the rough set algorithrns
on the infonnation table, which is irrplernented by the tool ROSETTA to genèrate a
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collection ofclassification decision rules. Block 8 is the performance evaluation, we
recovery another 55 *.x01 f,rles to do the training of the system. This also provides a
feedback to the feature extraction and Rough Set Analysis block, and helps us to
optirnize the FDI system.



4 FEATUREEXTRACTION

In this chapter we will introduce the key parl of the FDI system: Feature Extraction.
A fault featule is also called the signature of the fault, which is a distinct pattern of
data (signal) that is associated with a particular fault. Ifa fault signature is detected
in the input data, the presence ofthe parlicular defect is very likely. In a big system
sornetimes we often need quite a few attributes to describe the fautts. In this section
first we use a two-prong approach for analysis of the signals Figure 4.. The approach is
based on the characteristic of the perìodic signals and constant signals. For periodic
signals we use the FFT and fuzzy contputing algorithm, while for the constant signals
we use wavelet transfonn and also fuzzy computing to get the featul.e output. In
section 4.2 we introduce the algorithm of calculating the ac voltage-phase enor and
implernent granule theory to get the definition. In section 4.3 a new attribute is
introduced as the ratio of the phase current and cun.ent order.

For each of the attributes in this fault detection and identification system, we use
the following structure to detennine the kind of fault (see Figure 4.1). The ñtzzy
diagnostic system takes features as inputs and then outputs any indications that fauit
mode may have occurred in the plant.

Figure 4.1 Fuzzy Diagnostic Systern

The above figure is to show The fuzzy diagnostic system that is used for feature
extl'action in the systern. Part I is used to get the feature of the signal such as wr or
FFT6P or Ratio, ERROR. Part 2 is the fault ternplates that include the rule of the
typical faults based on this feature i. we got the rules from a study ofdifferent types
signals. Part 4 is Inference Engine that compares the feature with the templates stored
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in part 3. Finally, Part 5 is the output of the luzzy cornputing, it is the fuzzified outpul
of the feature. The following figure suggests the basic idea of fuzzy computing.

I
Fuzzy Rulebase

2

Fuzzification ]ï ou,,r,,'u.*n""
-__){ 

4

-J Detuzzifica¡iol

Figur.e 4.2 The Fuzzy Logic Diagnostic System

The luzzy diagnostic system takes features as input and then outputs any indications
that a fault mode may liave occured in the plant. The fiizzy logic systern structure is
composed of four blocks: fi.tzzification (block 2), the fuzzy inference engine (block
3), fhe fuzzy rule base (block l) and the defuzzi{tcation (block 4) as shown in Figure
4.2.The fuzziftcation block convefis features to degr.ee of mernbership in a linguistic
label set such as low, high, etc., and the fuzzy rule base is constructed from
symptorns that indicate a potential fault mode. The ñtzzy rule base can be developed
directly frorn user experience, sirnulated rnodels, ot experimental data. Fuzzy outputs
are aggregated (maxirnurn ntethod) through the fuzzy inference engine to detennine a
degree of fulfillment for each rule corresponding to each fault rnode. Finally, in the
last step, the system defuzzifies the resulting output (this is not used in this project).

4.1 A Trvo-prong Approach for the Periodic Signals and Constant Signals

Based on tlie characteristics of the signals rve have mentioned in chapter 2, we use a two-
prong approach to get the feature of the signals. In this section we introduce wavelet theory
(4.1.1) and also tlie give a brief introduction to the typical wavelets. In 4.1.3, we implemerit
the wavelet tlansfomr on the pole-line voltages. sectio' 4.1.4, we is to give the fuzzified
decision of each type of tlìe faults based on the selected feature. section 4.I .5 presents the
FFT for the 6 pulse signals, rvhere a co-lelation calculation is also introduced Seciion 4.1.6 is
the FFT fol plrase cunent. The typical 9 types wavefom ofthe phase cunent will be shorvn
and we also iniplement fuzzy computing. Till norv rve have identified g attdbutes of the
information system.

The following is the idea ofthe two-prong approach for feature extl.action
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F¡gure 4.3 The Two-pr:ong Appr.oach for. Signals

In Figure 4., we show that for.per.iodic signals like the phase current, 6 pulse voltages ,

etc, we use the Fast Fourier Transform (FFT) and Irrverse Fast Fourier Transform
(IFFT) analysis approach, while for. the non-periodic signals we use the wavelet
analysis on them.

For the peliodic signals we use the FFT together with a harnming window low-pass
filter [33] following by a 64 points inver.se FFT and a Hanrming window filter. irr
(4.1).

tr i nd orr(i )= 0.54 + 0.46 cos (+j) (4.1)

For the constant signals we use the wavelet transforln, Wavelets are scaled
waveforms that measule signal var.iations. By tr.aveling tluough scales, zooming
plocedules provide powerful character.izations of signal stlucture such ai
singularities. Time varying ha'monics are detected from the position and the scale of
high amplitude wavelet coeffi cients.

4.1.1 Wavelet Theory

A wavelet Ø is a function of zer.o average (see (4.2)2).
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hnposing lløll = I it"ptier tt'ut llø..rll = I . A wavetet y..u has an energy in tirne that is

centered at d over a domain proportional to á.

Let.r(t) e ¿'](R) be the input signal to be analyzed. A family of signals is chosen,

called wavelets {t//,, b} e L'1 (R), for different values of a and b, given by (4.3).

, ,I r-h
V.r = lctl 'z 

v/(-) y a.b e R

c, =zn[ffaco<*

(4.3)

ry 
".u 

is a real wavelet. å can be thought of as translation factor and a is the scaling

factor (dilation or compression; a notion of frequency).q(¡) is called the mother
wavelet and should satisfl, (4.4).

(4.4)

where q(a;)is the Fourier Transfomr of ry(t). Equation (4.4) is called the
admissibility condition for the rnother wavelet.

The following Figure 4. is about the wavelet farnily of symrnelets at various scales
and locations.



Some S8 Symmlels at Various Scales and Locations
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The following figure is to show the wavelet and its Fourier tr.ansfonn.

F¡g l2 (a) Mex¡cârÌ hat \lavclct Fig l2 (b) Fourier tr¿Dsfì]t]¡ of(a)

Figure 4.5 Mexican hat rvavelet for a = I and its Fourier transfonn

The coefficients fo' the wr for sorne a and b are defìned as the inner pr.oduct in
L'z(R) of x(t) and ty 

".0() 
as in (4.5).

et at

c..t = (f ,V..t) = !.t1t¡ry " uç¡at
(4.s)



Since the input signal is nonnally available in the form of sampled data, the discrete
version of the above ideation is given as in (4.6).

N is the nurnber of sarnples for which pr., is non-zero. Since most of the features
produce a signatule in a wide range of frequencies that is spread over a range of time

(space), m>0 nurnber of coefficients c¿i al'e stol.ed. To increase the usefulness of
these coefficients, we apply a transfonnation I to get a trend of the feature signature
in (.7)

c"r, =\x(v)ry,,o(v)
r=0

c jt = Zk"i,b j) i =1,...,..n

(4.6)

(4.7)

where n is the number of the wavelet scale used. The transfonnation 7 varies from
application to application. It can be envelope extraction, magnitude of a complex
value, etc. The coefficients cj.i are stacked in a matrix anangement which we refer.to
as the InfutnaÍion MqÍrix A, represented as follows in (4.8).

(4.8)

The matrix A with elernents cjr has the following characteristics:

. For a fixed, j:u, the c,,,'s give the fi.equency response of the input signal at a

palticular time instant.
! For a fìxed 1:¿ the cj,.'s give the relative level of a particular frequency over. a

period of time(or space).
. Each column of the matlix A is referred to as l,(i = 1,....r) and is comparable to a

bandpassed version ofthe signal.

A is nonnalized colurnn-wise so that c;¡ e [0,1]. The values of the scales a, are
calculated by an optimization process which is a part of off-line learning algor.ithm.

''' c', 
I

.,";;l



4,1.2 Four specific Mother Wavelets

There are several types of wavelets that have been used in different problem areas:
Haar, D4, S8, Coiflet C3 Dubuc-Deslauriers Wavelets, Average-lnterpolating
Wavelets, Meyer Wavelets. In this section, four kinds of popular wavelet families
are introduced as shown in Figur.e l. They are Haar wavelet, D4 wavelet, Coiflet C3
wavelet, S8 Syrnrnlets wavelet. In the upper left-hand col.ner. is a squal.e-wave
wavelet. It is the first wavelet. In the upper right-hand corner is Daubechies D4
wavelet, it is the filst continuous cornpactly supported orthononnal wavelet family.
They are rninirnal phase filters that generate wavelets have a lninimal support for a
given number of vanishing moments. Then the lower leíì-hand of the figur.e is
another orthonon¡al wavelts systern rvher.e both father and mother have special
vanishing mornents properties. The last on in the lower right-hand comer is the
Synrnlet wavelet, which are also wavelets within a minimur¡ size support for a given
number of vanishing moments, but they are as symmetrical as possible, as opposed to
Daubechies filters which are highly asyrnrnetrical (see Figure 4.).
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4.1,3 Wavelet Analysis on Poleline Voltages

In this section we intloduce the procedure of extracting the feature of Pole-line
voltages using wavelets and also show the lesult of the typical types of the signals.
Then we create a fuzzy Tenplate based on the typical type of the wavelets and give
the fuzzified result of the fuzzy cornputing.

For different type of faults, the rvavelet coefficients of the pole-line voltages are
different. Figure 7 shows how to get the feature using diflerent wavelet. Here we
use the third type of the wavelet, Coiflet C3. First we extract the signals to make
them have the length n:4096 points that are dyadic (i.e. n:2^J). And then we
generate an Orthononnal quadrature minor filter for wavelet transform usage. Then
we can rnake the wavelet transfonn of the input signals. Here we tried to use the
four typical types for the rnother wavelet, but frorn experimental results we decided to
use the Coiflet, since it is bettel for separating the faults. The others rnay also be
useful in this area, but the Coiflet has ah'eady worked well in my case.

The following is the system for wavelet feature extraction on the pole-line voltage.

fic;:i.r.t;:* Élt:iiira. li!.,i': i'.:i ;t,¡¡l¡,:-lirlr:r "i-rii¡ii¿(.) l.if,i;it{r. 1r./tì\;(: lt),l.

Decision

l
l,
l

t

Wavelet

function

Figuì'e 4.7 Feature extraction using diffèrent wavelets
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experience, heuristics or any other sources. p".* e B represent the tr-ends for scale

a, (frequency) for the frth feature(k= I .. ...M), where M is the total number ol the

anticipated features. We will use '-' to repl'esent a luzzy set. Let ,r c R,,,. A
fi.nzy aset Ae X isset ofordeled pairs.

The entity p. (r) is the mernbership function, the value of which is the grade of
,1

rnernbership of x in ì. Consider', for example, the mernbership function (4,11).

P . (x) = sint(A, x)
I

(4.1 r)

where I e X is a crisp vector' .whose value is decided a priori. Based on the
definition in Equation (26), the grade of mernbership of the vectot Ai in each 8.., is

calculated by the rnernbership function4r. 
.,(A,) 

and used for inferencing via a set of

if-then rules. For example, in this project we set up a knowledge base for pole-line
voltages. Flom the experimental we got l0 typical types wavelet transform outputs
and store thern as the rules inside the base. These rules al.e some if-then foms. If
we want to decide the coming signal's wavelet transfonn type we do the fuzzy
computing with the rules in the knowledge base and give the decision of the type.

After we do this on sorne of the learning signals we get the following table:

Table 4.I the fuzzified output of the feature of the different signals

fi¡ename typel type2 type3 type4 types type6 typeT type8 typeg typel0 Determ¡ne
dp121fl962 1.000 0.000 0.000 0.000 0.000 0.000 0.000 O.0OO 0.000 O.OOO tjl
dpt21fl992 0.000 0.000 1.000 0.000 0,000 0.000 0.000 0.000 O,OO0 0.000 t31
dpl21Ía62 1.000 0.026 0.060 0.008 0.012 0.01S 0.009 0.019 0.010 0.044 tll
dpl21f7a92 0.173 0.051 1,000 0.024 0.038 0.035 0.023 0.048 0.031 0.129 I3ldpl2'tÍb62 1.000 0.042 0.104 0.014 0.020 0.02s 0.013 0.031 0.017 0.078 11l
dpt21flb92 0,211 0.061 1.000 0.029 0.045 0.041 0.027 0.056 0.036 o.145 t31
dpl21 c62 1.000 0.083 0.204 0.027 0.039 O.O5O o.O2s 0.059 0.033 0..151 t11dpt21flc92 0.169 0.056 1.000 0.028 0.044 0.038 0.026 0.0b4 o.OgS 0.197 I3l
dp121f9662 1.000 0.083 0.232 0.028 0.042 O.Oso 0.027 0.062 0.035 0.170 t1l
dp121f9692 0.163 0.052 1.000 0.02s 0.040 O.O3s 0.024 0.046 0.032 0.139 I31
dpl21¡9562 1.000 0.101 0.286 0.03b 0.0S2 0.061 0.033 0.075 0.043 0.202 t11
dp12fi9592 0.154 0.050 1.000 0.02s 0.040 0.035 0.024 0.049 0.032 0.123 I31dpl218a62 1.000 0.069 0.157 0.022 0.032 0.041 0.021 0.049 0.027 0.121 t1l
dpl21f9a92 0.000 0.000 0.000 1.000 0.000 0.000 O.OOO O.OOO 0.OOO 0.000 t4l

Ftom the above table we can decide on kind of wavelet tlansfonn output of the input
signal. We should notice that the value ofthe type is not a real one. Rather, it is a



kind of degree of matchness of input signal and those stored in the fwzy rule base.
For example, "1" here does not mean the two signal is exactly the same. prather, it
means they have the biggest degree of matchness.

4.1,5 FFT for 6 Pulse Voltages

Six pulse voltages form is a sinusoidal signal. To determine the waveform ofa new
incoming 6 pulse signal, we take the FFT ofthe signal and use a low-pass fîlter to get
rid of the high fiequency elements. Here we use 4096 points FFT and 64-points
IFFT on the signals. From the experimental result we also set up a rule base fãr the
typical waveforms. Then use calculate the correlation of the new coming signal and
ones in the rule base by this relation:

ø=#¡,1:[t]cxfi+nl (4.12)

We do this in the fiequency domain in case a phase shift happened in the time
domain So here both .- and x are in the frequency domain.

Also we set up a rule base for the typical 7 types of waveform fo¡ the 6 pulse signals.
This is got from the experimental result (see nigure ).

Figure 4.10 types of typical FFT transform of6 pulse voltage



From the Figure 10 we can see that the 7 types typical signals have different shapes in
frequency domain. Then we do the inr.erse FFT and a low-pass filter on the FFT
ouþut shown above, and we can see the waveform of the signals in the time domain
as follow'ing:

Figure 4.11 the inverse FFT for the 7 types typical 6 pulse signals

So in Figure 4.11 we can find out ihat if iie signals have dramaiic difference in the
frequency domaiq their waveform in the time domain will also have big difference.
That is why we can translbrm data into the fiequency domain to do the identitìcation.
While it is also true that if the signals have close FFT ouþut in the frequency domain,
their waveform in the time domain should be simila¡ to each other. For example, the
following 4 signal's FFT have something in common: the maximum valves and
minimum values of these signals in the frequency domain have the same location.
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Figure 4.12 (b) the inverse output ofthe 4 FFT output above

Based on the experimental result we find out the common properties of those similar
signals. They are also some other signals similar to each other and have some other
properties. We store the properties in if-then form in the rule base for future signal
classification. One of the rules property (for example, fo¡ the above 4 signals in
Figure 4.12), we create a table about the max and min value location ofthe 4 signals
shown in Figurc 4.12:
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Table 4.1 the locations of the maximum and minimum FFT ouÞut value for the 4 signals in Figure 4,

file hle I tlle 2 file 3 Fl/'e 4
maxLocation 2 z z 2
mrnLocatlon I

In Table 4.r the first row is the 4 signal files and the second row give the location of
the maximum FFT output, the third row is the location of the minimum FFT output in
the frequency domain.

Continuing in this rnanner, \¡r'e can set up the rule base for the 6 pulse voltage signals
and compare the other learning signals of six pulse voltage with the rule base and
then we can get the result as shown inTable 4.2.

Table 4,2 Waveform detetmination of 6 pulse voltages

filename
dp121flg11 1.dat
dpl21í9112.dat
dpl21f795l.dat
dpl21fla111.dat
dpl21fl a112.dal
dpl21fla51.dat
dpl21íb1 1 'l .dal
dpl21t7 b1 '12.dat

dpl21flb51.dat
dpl21fl c1 1 'l .dat
dpl21flc112.dat
dpl21f7c51.dat
dpl21f961 11.dat
dpl21f96112.dat
dpl21f9651.dat
dp121f95l1 1.dat
dpl21f95112.dat
dpl21f9551.dât
dpl2lfgal l 1.dat
dpl21fgal 12.dal
dp121fgas1.dat

dpl21f8b11 1 .dat
dpl21fBb112.dat

dpl21fBb51.dat

typeS typeg
0.000 0.000
0.000 0.000

0.0030 0.0072
0.0000 0.0000
0.0000 0.0000
0.0031 0.0075
0.0000 0.0000
0.0000 0.0000
0.0068 0.0162
0.0000 0.0000
0.0000 0.0000
0.0041 0.0099
0.0000 0.0000
0.0000 0.0000
0.0025 0.006't
0.0000 0.0000
0.1269 0.2668
0.0025 0.0061

0.0057 0.0137
0.0000 0.0000
0.0027 0.0066
0,0000 0.0000
0.0000 0.0000
0.002ô 0.0063

typel tlpe2 type3 type4 types type6 typeT
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.0166 0.0032 0.0044 0.0086 0.0033
0.000 0.0000 0.0000 0.0000 0.0000 0.0000
0.000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0173 0.0034 0.0046 0.0090 0.0034
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0,0000 0.0000 0.0000 0.0000

0.0000 0.0371 0.0073 0.0099 0.0193 0,0075
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0230 0.0044 0.0059 0.01 19 0.0045

0.0000 0.0000 0.0000 0.0000 0.0000 0,0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0141 0.0027 0.0037 0.0073 0.0028
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.4357 0j240 0.1778 0.3162 0.1386
0.0000 0,0141 0.0027 0.0037 0.0073 0.0028
0.0000 0.0314 0.0062 0.0084 0.0163 0.0063
0.0000 0.0000 0.0000 0.0000 0.oooo 0.oo0o
0.0000 0.0152 0.0029 0.0040 0.0079 0.oo3o
0.0000 0.0000 0.0000 0.0000 0.0000 o.o00o
0.0000 0.0000 0.0000 0.0000 0.0000 o.0o0o
0.0000 0.0145 0.0028 0.0038 0.0075 0.0029
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We know that in Table 4.2 most of the signals are Ring Counter fault except the last 6
signals. Frorn the table we can see for the Ring Counter fault, most of the FFT output
for polel and pole2 are typel and pole3 is type 2. This observation makes it possible
to separate this kind offault from others.

4.1,6 FFT for Phase Current

In this section we use FFT and low-pass filter on the phase cunent signals. First we
give a brief introduction of FFT theory. FFT(X) is the discrete Fourier. transform
(DFT) ofvector X. If the length ofX is a power of two, a fast radix-2 fast-Fourier
transfonn algorithm is used. If the length ofX is not a power of two, a slower non-
power'-of-two algorithrn is employed. For matrices, the FFT operation is applied to
each column. For N-D anays, the FFT operation operates on the fir.st non-singleton
dimension (also see 1,1.3 for more information), for length N input vector x, the DFT
is a length N vector X, with elements N as in (4.1 3).

(4.13)

The inverse DFT (computed by IFFT) is given in (4.14).

X$) =lxful.et-i2ît^-t)t t) N) n=l

(4.14)

The relationship between the DFT and the Fourier. coefficients ¿ and å is shown in
(4.1s).

¡tl) = lIXt/r). etizltI-t)(t-t) \t k:l

x(n) = ao\a(k) . cos(2ttkt(n) / Ndt) + b(k) . sin(arkt(n) / Ndt) (4. 15)

Where x is a length N discrete signal sarnpled at times t with spacing dt. After we do
the FFT of the phase cument signals we use a hamming window low-pass fìlter on the
FFT output. We also set up a rule base for the phase cunent signals. These rules come
from the 56 learning signals. In the experirnent we take the current of phase A for
example. There are a total of 9 types of typical FFT output which are shown in
Fig.19.











In Figure 4.1 the first part is the original 3 phases voltage. The signal in red represents
the A-phase, the signal in blue is the B-phase and the signal in green is the C-phase.'We 

can see clearly that there are phases between the A-B-C phase. Then the second
part is the shifted output, they are tíll in the sarne color as in paú one. We can fìnd out
that the 3-phase signal is almost the same, except in sotne areas where a fault or
disturbance has occured. The last part in the figure is the enor calculation output
using formula (4.16). Now we get the result of the ac error for each of the 3-phase
voltage lealning signals as shown in Table 6.1

Table 4,4 ac enor calculation for different type of faults.

AC Error
137,2993
134.6926
137.2309
144.8651
134.3129
137.6172
'139.6347

139.1256
223.6835
197 .9716
141.6358
177.8086
173.8517
406,2066
358.9058
583.374
341.6262
408.805
254.8043
261.1932
255.7666
257.3749
258.5361
184.3592
243.3629
239.9993
233.4423
115,8183
185.428
189.891

't65.2361

229.2396
226.0509
132.7284
224.9378
224.5581
225.4212
147.2432
149.4044

144.7698
139.S2S4

Fault type
RingCounter
RingCounter
RingCounter
RingCounter

FilterBank
FilterBank
FilterBank
FilterBânk
ValveCAB
ValveCAB
ValveCAB

500kv Close
500kv Close
AC Disturb
AC Disturb
AC D¡sturb

AC D¡sturb
AC D¡sturb

PoleFlashOver
PoleFlashOver

PoleFlashOver
PoleFlashOver

PoleFlâshOver
PoleRetard
PoleRetard
PoleRetârd
PoleRetard
Aysm Pro
Aysm Pro
Aysm Pro
Aysm Pro
DC Disturb
DC Disturb
DC Disturb

Commutation
Commutation
Commutation
CurrentBlip
CurrentBlip
CurrentBlip
CurrentBlip



ln the above table, the first column is the ac enor values and the second column is
the types of the faults in the 56 leaming signals. When we do the analysis on the
error values we notice that for the salne type of fault generally the value falls into an
interval that can be separated from the other type of fault. So we use the granule
algoritlln to gtoup the values. This will be introduced in the following section.

4.2.2 Granule algorithm for Error definition

After we got this feature (ac phase Disturbance), we found out for the same kind of
faults the values of the enors are close to each other. So we can estimate the
dynamic range of the emors and separate them into different interuals. A granule is a
kind of grouping where the elements of the gr.ouping are in sorne way sirnilar. We
use Radial Basis Functions to detennine the distance between the input vector and a
prototype vector.

Radial basis function methods have their origins in techniques for perfonning exact
interpolation ofa set of data points in a multi-dirnensional or one-dimensional space.
The exact interpolation ploblern requires every input vector to be rnapped exactly
onto the conesponding target vector and fonns a convenient starting point for our
discussion of radial basis functions.

The radial basis function approach introduces a set of N basis .functio¡¡s, one for
each data point, which take the forr /(lr - r'll) where ø(.) is some nonlinear

function and the nth such function depends on the distancellx - x,'ll, usually taken ro

be Euclidean between .randx". The output of the rnapping is then taken to be a
linear cornbination ofthe basis function (4,17):

Both theoretical and empirical studies show that, in the context of the extract
interpolation problern, many properties of the interpolating function are r.elatively
insensitive to the precise fonn of the non-linear function /(r). Several fonns of
basis function have been considered. In this pr.oject, we use the Gaussian in (4.18):

/l(xl=)li,dtllr-t"lll (4.17)

(4. 18)

Ratio of the Phase Curent and

vector detennining the center of

llr - ,.ll'
d;(.r) = exn(-L;iL)

ZG¡

where x is the input vector(AC Voltages
Cunent Order ) with elements x., and p,
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basis function /r. The basis function parameters should be chosen to fonn a

representation of the probability density of the input data. This leads to an
unsupervised procedure for optimizing the basis function parameters which depends
only on the input data from the training set and ignores any target information
(decision). The basis function centres /j can then be regarded as proto1,pes of the

input vectors. There are several ways for selecting the basis function centres/j.
One is to set them equal to a random subset of the input vectors from the training set.
But this is not an optimal plocedure so fal as density estimation is concemed, and
may also lead to the use of an unnecessarily large number of basis functions in order
to achieve adequate perforrnance on the training data. Another approach is to staft
with all data points as basis functions centers and then selectively remove centers in
such a way as to have minimum disruption on the performance of the system.

There are also solne other procedures to choose the width parameters dj. One

heurjstic approach is to choose all the o, to be equal and to be given by some
rnultiple of the average distance between the basis function centers. This ensures
that the basis functions overlap to sorne degree and hence give a relatively smooth
representation of the disfiibution of training data. The optirnal width rnay be
different for basis functions in differ.ent regions of input data. For instance, the
widths may be detennined frorn the average distance of each basis function to its Z
nearest neighbors where Z is typically srnall. Based on the granule theory and the
training infonnation table we got for the ac Phase Err.or, and I did some experiments
using this approach to set up the basis function for this system as in (4.19)

ErrorVerytL ow - el-kltot -137 oo)2 t72oo\

ETTOTLOW - el-kt¡o, -t6o.o0)! / 200.001

ErrorHigh = e( let rcr-24s }otr ¡6050 00)

(4.19 a)

(4.1e b)

(4. l9 c)

For each of the error value we got by the file granule.rø (in Appendix) we calculate
the output of ErrorVerylow(eror), Enorlow(error-) and ErrorHigh. The biggest
output for a celtain input data rneans the range that the input data falls in, It is shown
as in Figure 4.t7
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Figure 4.17 Granule Output for AC Voltage Phase Error

The basis function in red is the ErrorVeryLour, in gr.een is the basis function for
ErrorLow, while the blue one is the basis function lor Error4igh. Based on the
above figure, we can calculate the gtanule output of a new coming signal. For
example, after we do the 3-phase enor calculation on a new ac voltage we get the
enor value, it is 170.00, then we calculate the ErrorVetyLole use (4.19 a), Er.rorLow
use (4.19 b), ErrorHígh use the fonnula (4.19 c). The result is 0.0269 for
ErrorVery[,6yt, 0.6065 for EruorLov, and 0.3947 for Error4igh. So that rneans the
biggest possibility of this ercor value is ErrorLou'.

We use this algorithm on all the ac voltages phase error and then we can get the
infon¡ation table as Table 4.

Table 4.5 the error output and granule

f¡lename
dpl21fl/g'1 13.dat
dpl2\fla113.dal
dpl21f7b113.dat
dpl21f95'1 13.dat
dpl21f8a'1 '13.dat

dpl21f8c113.dat
dpl21f8d113.dat
dpl2lf8e113.dat
dpl2200b1 13.dat
dpl227 ce113.dat
dpl226e8'1 13.dat
dpl21l2a113.dat

ac phase Enor Granule Fault type
137.299 VL RingCounter
134.693 VL RingCounter
137.231 VL RingCounter
144,865 VL RingCounter
134.313 VL FitterBank
137.617 VL FilterBank
139.635 VL FilterBank
139.126 VL Fi¡terBank
223.684 H ValveCAB
157 .972 H VatveCAB
141 .636 VL ValveCAB
177.809 L 500kv Ctose
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dpl21f2b113.dat
dpll 2e3363.dat
dpl224a5113.dal
dp1224d0113.dat
dpl12cbe63.dat
dpl12e3d63.dat
dpll 2afc63.dat
dpl l2dfe63.dat
dpl12dfb63.dat
dpl12e4463.dat
dpl2344e1 13,dat
dp1225c4113.dal
dpl12af263.dat
dpl12dd263.dat
dpl12de263.dat
dpl2240563.dat
dpl224d9'1 13.dat
dp1226971 13.dal
dpl2288b1 13.dat
dpl12dba63,dat
dpl12e2a63.dat
dpl2249c113.dal
dpl1305463.dat
dpl l306263.dat
dpl1307163.dat
dpl226cc113.dat
dpl226d51 13.dat
dpl226e51 13.dat
dpl226e71 13.dat

173.852
406.207
358.906
583.374
341.626
408.805
254.804
261 .193
255.767
257.375
258.536
'184.359

243.363
239.999
233.442
1 15.818
185.428
'189.891

165.236
229.24

226.051
132.728
224.938
224.558
225.42'l
147.243
149.404
144.77

139.929

500kv Close
AC Disturb
AC Disturb
AC Disturb
AC Disturb
AC Disturb
PoleFlash
PoleFlash
PoleFIash
PoleFlash
PoleFlash

PoleRetard
PoleRetard
PoleRetard
PoleRetard
Aysm Pro
Aysm Pro
Aysm Pro
Aysm Pro
DC Disturb
DC Disturb
DC Disturb

Commutation
Commutation
Commutation
CurrentBlip
CurrentBlip
CurrentBlip
CurrentBlip

L
VH
VH
VH
VH
VH
H

H

H

H

H

H

H

H

H

VL
L
L
L
H

H

VL
H

H

H

VL

In Table 4. the first column is the names of the phase A ac voltage signals, column 2
is the ac phase emor fr orn (4.18), the third column is the granule output of all the ac
phase en'or and finally in column 4 is the types of the faults.

4.3 Ratio for Phase-current and Current-order

When we working on the data from the TRS we try to find out rnore attr.ibutes that
can decide the type of the faults which rneans for different kind of faults the attribute
has different description. The more "useful" attributes we have the more accurate for
the decision. That is why the ratio ofphase curent and current order have been used.
The displays in Fig. 23 show the results ofthe analysis of the phase cument signal in
different faults. we calculated the ratio and found out that for most of the valvi Ring
Counter fault, Valve CAB fault and AC Filter Bank Testing the ratio is bigger than i
in a cartain period of the fault duration. And the ratio is close to I in thãpole-line
Flashover fault, Pole-line Voltage Force Retard fault and 50Okv Close fault.

58







RatioHigh = et (Rat¡o-t2)! t36) (4.20 c)

And the comesponding result of this grouping output for all the ratios is shown in
Figure 4,.

l
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12

Figure 4.20 Ratio Granule Ouçut for all the leaming signals

In Fígure 4., the basis function in red is the RatioNormal, and green is the basis
function for RatioMediate, while the blue plot is for the basis function for RatioHigh.
Based on the above figure, we can calculate the granule output of a training signal's
ratio ofphase cunent and current order. For example, after we do the 3-phase error
calculation on a new ratio we is 2.3, then we calculate the RatioNonnal use (4.20 a)
RatioMediate use (4.I9 b), RatioHigh use the formula (4,19 c). The result is 0.1845
for RatíoNonna, 0.7 490 for RatìoMediate and 0.0733 for RatioHigh. So that means
the biggest possibility of this effor value is RatioMediate.

Now we use this granule algorithm on all the ratios we got fi"om the learning
signals, we can get the result table as Tabte 4.:

Table 4.6 the ratio ofcuüent and cuüent order, and granule ratio result

Ha9h

String
21f7I
21ffa
21f7b
21f7 c
21r96
21f95
21fga
21f8b

Float
12.24
1 1.6
7 .71

10.47
0.056
0.079
5.94
12.54

String
H

H

H

H

VL

H

H

String
RingCounter
RingCounter
RingCounter
RingCounter
RingCounter
RingCounter

FilterBank
FilterBank



21fgc
21fge
21fgd
2200b
227ce
226e8
21f2a
21r'2b
12e33
224a5
224d0
12cbe
12da'l
l2dbb
12e3d
12dbc
12dbd
2344e
22355
l2afc
12dfe
1zdfb
12e44
22424
225c4
12af2
12dd2
12c65
12cd7
12dfb
1zdfe
12e0e
22405
224d9
22657
22880
22884
2288b
12dba
12e2a
13054
13062
13071
226cc
226db
226e0
226e5
226e7

11.17

9.93
to.zo
0.057
0.174

| .z+
'1.31

2.077
2.059

2.1
2.15
1 .85
'1 .65
1 ,73
1 .73
1 .57
1.84
1.42
1.15

L'13s
1.19

1 .'t 16
1.159
0,039
1.1411
1 .2141

1'11
1.1

1.19
1.135
1.15
I.CIJ
1.49

1.689
1,77
1 .77
2.67
1.177

't.2

1.75
1.92

1 .548
7.747
8.165
8.48

1 1.651
0.175

H

H

H

H

VL

M
M
t\4

M
M
M
M
M
M
M

VL

VL
VL

M
M
t\4

M
M
M

VL
M
M
M

H
H

H

H
H

FilterBank
FilterBank
F¡lterBank
ValveCAB
ValveCAB
ValveCAB

500kvClose
S00kvClose
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb
ACDisturb

PoleLineFlashover
PoleLineFlashover
PoleL¡neFlâshover
PoleLineFlashover
PoleLineFlashover
PoleL ineFlash over
PoleLineFlashover

PoleLineRetard
PoleLineRetard
PoleLineRetard

PoleL¡neFlashover
PoleLineFlashover
PoleLineFlashover
PoieL ineFlash over
PoleLineFlashover

Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
DCDisturb
DCDisturb

Commutation
Commutation
Commutatlon

ValveBl¡p
ValveBlip
ValveBlip
ValveBlip
ValveBIip



In the table, the first column is the fault learning signals and the second column is
the ratio of the phase curent and current order in each of the fault signals. The third
column is the result obtained using the granule algorithm to group the ratios, and the
last column is about the types of the signals.

4,4 Fault type classification based on Rough Set

In this section, fìrst we set up a infonnation table based on all the attributes we
have got in Chapter 4, so far we have l0 attributes: WTI,WT2, FFT6PI, FFT6P2,
FFT6P3, FFTTI, FFTT2, FFTT3, RATIO, ERROR,

4.4.1 The information Table

Based on the fault signal pre-processing and feature extraction, rve got sonle attributes that
are useful for classifuing the types of the faults. We cân set up an information table for the
system, and this infonnation table includes all the attributes we have obtained and also the
decision (type ofthe fault). We use rough set theory to analyze the table (e.g., upper and
lower approxirnations) and use Rosetta to dedve fault classiflrcation rules. Finally, we can
get the rule for each fault. In the itrfonnation table 11, we have l0 attributes and one
decision.

Table 4.7 the infon¡ation table of all the attributes

files
String
21f19
2Lf7a
21f7b
2lf7 c

2Ú96
2rf95
21f8a
2rf8b
2l f8c
2l f8e

2l f8d
2200b
227 ce

226e8
2l,na
2tf2b
12e33

224a5
224d0
l2che
l2dal
l2dbb

WTI WT2 FFT6PI FFT6P2 FFT6P3 FFTTI
Integer Integer Integer Integer Integer lnteger

FFTI2 FFTT3 ERROR RATIO DECISION
Integer Inleger Str¡ng String Str¡ng

? '7 VL H Ringcounter
'T5VLHRingCounter.
'T4VLHRingCounter
TTVLHRingCounter.
7 5 VL VL Ringcounter
7 7 VL VL RingCounter
7 '7 VL H FilrerBank
TTVLHFilterBank
'TTVLHFilterBank
'l 7 VL H FilterBank
TTVLHFilterBank
4'THHValveCAB
TTHVLValveCAB
7 7 VL VL ValveCAB
'l 2 L VL 500kvClose
22LVL500kvClose
22VHLACDisturb
44VHLACDistuLb
44VHLAcD¡sturb
I ll VH L AcD¡sturb
22VHLACDisrurb
44VHLACDisturb

t2
l2
I

2

2

2

I

2



l2e3d
l2dbc
l2dbd
2344e
223ss
l2afc
I2dfe
l2dfb
1.2e44

22424
225c4
I2af2
t2dd2
l2cb5
l2cd'7

t2dtb
l2dfe
l2e0e
2240s
224d9
2269't
22880

22884
2288b
l2dba
12e2a

13054

t3062
13071

226cc

226db
226e0
226es

226e'7

9

9

9

2

7
,]

'1

8

7

l0
9

9

9

4

5

4
'7

t0
I

3
'7

3

I

7

VH L ACDistuLb
VH L ACDisturb
VH L ACDistulb
H L PolelineFlashover
H VL PolelineFlashor,er
H VL PolelineFlashover
H VL PolelineFlashover
H VL PolelineFlashover
H VL PolelineFlashover
H VL PolelineFlashover
H VL PolelineRetard
H H PolelineRetard
H VL PolelineRetard
H VH PolelineFlashover
H L PolelineFlashover
H H PolelineFlashover'
H H PolelineFlashove¡'
H H PolelineFlashover
L H Aysm.Prot
L H Aysm.Prot
L H Aysm.Prot
L H Aysnì.Prot
L H Aysm.Prot
L H Aysm.Prot
H VH DCDisturb
H H DCDistuLb
H H Commutation
H VH Co¡nmutat¡on
H VH Commutation
VL VH ValveBlip
VL VH ValveBlip
VL VH ValveBlip
VL H ValveBlip
VL H ValveBlip

2

2

2

2

l0
IO

l0
l0
l0
l0

IO

8

8

ll
I

l0
8

8

5

I2
8

4

4

I2
t2
t2
3

3

3

3

IO

ll
8

8

8

I

l0
2

2

4

4

4

2

4

3

4

l3
'l

3

3

3

3

3

l0

8

8

8

I
ll
2

2

2

2

7

2

t2
3

3

3

3

3

3

3

3

In Table 4,7,we give all the values of each of the attributes and we will use the rough
set theoly lo analyze the attrjbute values. So the second row of the table gives the
type of the value, and it means the output value is a string or integer or float. This is
one of the formats of infonnation table for the rough set tool ROSSETA explained in
Chapter 5,



5 Rough Set Analysis

In the Chapter, first we will give a blief introduction to the rough set theoly and
then make further analysis on the information table (Table 4.7) to generate the
decision partitions and the lower (upper) approxirnations for this table 5.1.2. We
also introduce the nernbership function of the rough set and use it on the l0 athìbutes
(5.1.3). In section 5.2 we irnplement the algorithrns in the rough set tool ROSSETA
to analyze the information and finally get the rules of the systern.

5.1 Introduction of Rough Set theory

A rapid growth of interest in rough set theory and its applications has been seen
lately. Let IS: (U, A) be an information system where U is set of objects (universe)
and A is a set of attributes (e.g., let FFT e A denote a fast Fourier transform). Recall
that each attribute a e A is a mapping of the form a: U+ Va. Rough set
nethodology is based on concept (set) approximations constructed from available
background knowledge represented in information system. Each set of attr.ibutes B
c A (called a feature set) that is selected leflects our background knowledge (features
of experimental data that we know about). In an infonnation system IS, a
parameterized family of concept approximations is built. Then by tuning of the
rough set rnodel undellying the approximation spaces, improvements in the concept
approxirnations can be obtained. Rough set theory was proposed by Zdzislaw
Pawlak as a new approach to knowledge discovery from incornplete data [6]. Its
approach to processing of incornplete data is based on the lower and the upper
approximation of a set. The rough set is defined as the pair of two crisp sets
conesponding to these approximations. If both approximations ofa given subset of
the universe are exactly the same, then one can say an approximated set is cornpletely
definable with respect to available information,

5.1.1 InformationSystems

A data set is represented as a table. In such a table, each row represents a case, an
event, or sirnply an object. In the information table we got from the FDI system, the
objects are the fìles fror¡ the TRS. Every column tepresents an attribute (a variable,
an observation, a ploperty, etc.) that can be measured for each object. In our case they
are the charactedstics we got from the feature extraction such as the like wavelet type
of all the objects and waveform of all the objects. This table is called an htformatiàn
S;,slen¡ (which we have created above). In gener.al, an information system is a pair
4 = (U, l), where U is a non-empty finite set of objects called the tniverse and I is a
non-empty finite set of attributes such that a:(/ -+ V.for every a e A.
Z" is called the value set of ø .
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In our information table, we have l0 attributes, namely, wavelet form of Pole-line
Voltages (2 poles), FFT transfonn of 6 pulse voltages (3 poles), FFT transform of
phase current of 1. and also the AC Phase error, Ratio ofphase cunent and cunent
order. So in this research, the set of attributes A:{WTl, WT2, FFT6Pl, FFT6P2,
FFT6P3, FFTI, FFT2, FFT3, ERROR, RATIO). We have 58 objects that are
recovered fronr the original .x01 file to be detected, U: {21f79, 2lf7 a, 2lf7b,etc.} .

Inthe decísion sofalwehave ll type of faults r(d)=Il,wherermeanstherankof
the decision. The decision ¿/ defines a partition:

{ x t, x 2, x r.........x,,} of u

Where
X | = {21.f 7 9,2t f 7 a,2l f 7 b,2l f 7 c,2l f 9 5,21 f 96}, /Æault I

X, = {2 | f 8 a,2 I f I b,2l f 8 c,2 I f 8 d,2l.f 8 e} r n alJtz

X3 = {2200b,227ce,226e8} //Fau\t3

Xo = {2lf2a,2lf2b} //Fa,rtt4

X, = {12e33,224a5,224d 0,12c b e,l2dal,l2dbb,l2e3d,l2db c,l2db d} / ß autts

X u = {23440e,22355,12afc,12dfe,12e33,22424,121cb5,12cd7 ,l2dfb,I2dfe,12e0e} /l Fautt6
X, = {225c4,12af2,12dd2} /l FaultT

X B -- {2240 5,224 d 9,2269 7,2288 0,2288 4,2288 b} l / F a u l t S

Xn = {l2dba,l2e2a} ll Fault9

Xro = {13054,1 3062,1307 l\ / I Faultl\
X,, = {226cc,226d b,226e0,226e5,226e7} / ßauttr I

5.1,2 Lower and Upper Approximations Based on the Information System

So for each type of fault we calculate the lower and upper approximation based on
each of the attributes we have. Generally speaking rough set is set up based on a
long- tenn data collection infonnation system. Now we just assume that the
infomation system we have got above has already covered all kinds of fault events
and all kinds of outputs of those ath'ibutes in different type of faults. ln fact that is
not the fact because there are solne lnore kinds of faults have occurred, and in this
thesis we just give the idea of this algorithm and point out that the approach is also
useful for the other signals. In this section we will take one example to discuss how
to construct lower and upper approxitnation of the rough set. Let us consider the
wavelet type of the Pole-line voltage as the exarnple attribute and decision of fault
Pole-line Flashover. The construction of lower and upper approxirnation will take
the following 3 steps:



stepl: set up a universal set for each type offault for B(Attributel): Wavelet

BDX !:!::"k, = {xlx=v, of faultl basedonattributeB:wavelet}={I3,I3,I3,I3,I3,I3}
+ equivilence set{ l3}

= equivilence class : {21 f/9,21 f7 a,2lf|b,2lf7 c,2lf95,21f96}
BDX f:ll"þ, ={xlx= v. of fault2 based on attdbute B: rvavelet}={14,15,15,13,15}

= equivilence set { 13,14,15 }
> equivilence class : {21 f8a,2l f8b,2l fBc,2l f8d,2 t f8e}

BDX !.::::"þ, = {xlx: v, of fault3 based on attribute B:wavelet}:167,67,27)
> equivilence set{67 ,27 }
> equivilence class : {2200b,227 ce,226e8}

BDX !:!::",", = {xlx: v" of fault4 based on athibute B: wavelet}= { I l, I I }
+ equivilence set{ I I }
+ equivilence class: {21 f2a,2 I f2b}

BDX r;:!::"t", = {xlx= v¿ of fau lt5 bascd on auribure B: wâveletl= { 8S,8S,88,88,82,82,88,82,88 }

+ equivilence set {88,82}
:+ equivilence class :{ I 2e33,

224a5,224d0,l2cbe, l 2da I, l 2dbb, l 2e3d, l 2dbc, l 2dbd)

BDX {::::"k, = {xlx= y¡? ol'fau¡t6 bas(d o athibule B:waveler}= { ¡7,e 6,s2,s2,s2,22,i2,72,t02,g2,g2,92\

=> equivilence set{17,96,92,72 102}
,--t equ¡vltence ctí¡ss

- l2344e,22355,l2afc,l2dfe,l2dfb,l2e44,22424,l2cd5,l2cd'1,t2¡lfb,l2dt'e,l 2e0e)

BDX {ii:1"k, = {xlx: v" of faultT based on attribute B: wavelet}: {77 ,77 ,82}
+ equivilence set{77 ,82}
+ equivilence ç1sç = {225c4,12af2,12dd2}

BDX li"::!::"t* ={xlx= v¿ of ràuttSbasedonauributcB:rvavclet}={610,2t0,6t0,210,210,6t0}

= equivilence set {2 I 0,61 0}
+ equivilence class : {22405,224d9,22697,22990,22984,2299b}

BDX !::!:"r", = {xlx: v, of faultg based on artribute B: wavelet}= {22,22}

= equivilence set {22 }
+ equivilence class :{ l2dba,t2e2ai

B DX !::::]:b, = { x lx: v, of fault l 0 based on attribure B : w av elet} : {25,27,27 1

= equivilence set [x]={25,27}
=+ equivilence class = { 13054, 1 3 062,130j 1}

BDX !,::!:It", = {xlx= v. of faultl I based on anribute B: wavetet}= {25, 67,6't ,27,61}
Ð equivilence setfxl: {25,27,67 }
+ equivilence class= {226cc,226db,226e0,226e5,226e7 }

step 2: Lower and Upper approxirnation construction in equivalent set measure:
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We take the decision of fault 5 and the attribute B: wavelet as the example
Lower approximation in tlrc equal set measure:

ll
B trx *,::,::",", = trl"il"ü!å, _ \l,l,i,!,ili!i", at*1";;illi,l!,",)

i=¡
i=5

= {88} u {82} - {82}
{88}// only overlap is in fault 7

Upper approxÌntation in the equal set nteasure;

BDX i,,{i,::;, = B px î,(::,:!;, Ji<tx tiii:;!!},, 
^r.xt";,:::;(!,",)

i:!
= {82} u {88}

lt
),es/no set in equat meanu.e: lUxlri;!üi!!i", olxlri,!,ü!i,",)

: {82}

Step3 Recovel the lower and upper approximation by using all elerrents

Iower approximalion:

B¿.xt;::!::",", = l88j
Upper approximation:

s D x f ,::::Î.,., = {8 8,s2)

Using the 3 steps above, we set up the lower and upper approximation for all the files.
This is very helpful for the decision-rnaking, since we can see the lower
øpproximation is the character that only this kind of fault has. So if a signal's
attribute value belongs to this approximation we can give the fault classification
decision right away, otherwise we have to check the other athibutes.

5.1.3 The Membership function of Rough Set

In classical set theory, either an elernent belongs to a set or it does not. The
conesponding rnembership function is the chalacteristic function for the set, and this
function takes values I and O,respectively. In the case of rough sets, the degree of
relative overlap between the set X and the equivalence [.r]s class to which x belongs
is cornputed using a rough membership function defined in (5.1). t4l.

p.r:u -+[o,l] and lti6)=ltxl' 
nxl

It.'l,l
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For example, here we calculate the membership of attlibute B: wavelet and the

output is 88 in the rough set of BDX !':,i',i::;",

Stepl find out all elements that are represented by equivalence classes

[x:82] s.¡"¿us¡¿1 , here the elenent refers to the fault file whose output ofattribute B is
82

{all elernents in [x=82]e.u,uer"t] = {xlB(x) :82}: {82,82)
+ {fault_l 2da l.fault_l 2dd2 }

Step2 calculate the membership of rough set: the upper approxirnation of rough set

BDX !:,!::"þ, : aox i'!,:,!"i", = {s8,82}

For the output of B(x) with value of 82, its rnernbership with r.espect to the rough set

BDX {,:!::"t", is given in (5.2).

¡t(:U -+[0,t] 6'2)

.. B t -.¡ carct (l[x = 82] u ,,",",,1 r-t BDX î,,!::::":,:,) currt(IB2l)t.\t''-@=;**t^=u''

Based on the analysis above, we can take faultl as an example, and Table l2 gives
the membership of fault I with respect to all the attributes:

Table 5.1 merrbership of faultl with respect to all the attributes

Mernbelship ofFault I Based on The Differe¡rt Attributes
WTI WT2 FFT6P I FFT6P2 FFT6P3 FFTTI FFTT2 FFTT3 ERROR RATIO decision

Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 0.0476 0.0434 0.0588 0.0434 I
Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 0.0476 0.33 0,0588 0.0434 I
Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 0.0476 0.ll 0.0588 0.0434 I
Faultl 0.0714 0.4128 0.02 0.0625 0.0454 0.t 0.0476 0.0434 0.0588 0.0434 I
Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.1 0.04'16 0.33 0.0588 0.099 I
Faultl 0.0714 0.4128 0.01 0.0625 0.0454 0.066 0.0476 0.0434 0.0588 o.ogg I
Faultl 0.0714 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0 0 0 0.0454 o 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0 0 0 0.0454 0 0.0476 0.0434 0.0588 0.0434 0
Faultl 0.0714 0.4128 0 0.0625 0.0454 0.066 0.0476 0.0434 0.0588 0.0434 0
Faultt 0.07t4 0 0 0 0 0 0.0476 0.0434 0.0588 0.0434 0Faultl 0 0 0 0 0 0.1 0 0.0434 0 0.0434 0Faultl 0 0 0 0 0.0454 0.1 0.0476 0.0434 0.0588 0 0
Faultl 0.0714 0 0 0 0 0 0.0476 0.0434 0 0 0
Faultl 0.0714 0 0 0 0 0 0.0476 0 0 0 0



Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0.0714 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faultl 0 0
Faulrl 0 0

0.01 0 0 0 0 0 0 0 0
0 0.0625 0 0.1 0 0.ll 0 0 0
0 0.0625 0 0.t 0 0.ll 0 0 0
00.062s00.06600000

0.01 0 0 0.066 0 0 0 0 0
0.02 0.0625 0 0 0 0. 0 0 0
0 0.0625 0 0 0 0.ll 0 0 0
00.06250000.33000

0.02 0 0.0454 0.1 0 0.ll 0 0 0
0 0 0 0.1 0 0.0434 0 0 0
000000000

0.01 0 0 0 0 0 0 0 0
0000.06600000
0 0 0.1 0.0476 0.0434 0 0 0
0000.06600000
0 0 0 0 0.04'16 0 0 0 0
0 0 0.0454 0 0.0476 0.0434 0 0 0
0 0 0 0.t 0 0 0 0 0
0 0 0 0.1 0 0.11 0 0 0
0000.06600000
0000.06600000
0 0 0 0.066 0 0.ll 0 0.0434 0
00000000.04340
0000.0660000.04340
0 0.062s 0 0.t 0 0.11 0 0.0434 0
0 0.0625 0 0.066 0 0 0.0434 0
000000.043400.04340
0000.066000.04340
000000.043400.04340
0 0 0 0.1 0 0 0 0.0434 0

0.02000.06600000
0.0200.04s40.0660000.04340
0 0 0.0454 0.I 0.04'76 0.0434 0 0.0434 0
000.04540.06600000
0 0 0.0454 0, t 0.0476 0.0434 0 0 0
0 0 0.0454 0.066 0 0.0434 0.0588 0 00 0 0.0454 0 0.0476 0.0434 0.0588 0 0
0 0 0.0454 0 0 0.0434 0.0588 0 0
0 0 0.0454 0 0.04'76 0.0434 0.0s88 0,0434 00 0 0.0454 0 0.0476 0.0434 0.0588 0.0434 0

In Table 5.I we use (5.2) to get the membership of faultl for all the ath.ibutes. We can
notice that only when all the rrembership are not zero, the decision
means true.

For each of the fault which we have detected in the system we set up this kind of
rough set and calculate the membership based on all the attributes and at the same
tirne give the decisions. That means so far we have computed l1*10 rough sets for
the DFI system desc¡ibed in this thesis,



5,2 The Model Process of Rough Set

Using rough set methods, approximation descriptions of concepts can be constructed
fi'om sorne prirnitive concepts. It is furtlìemore well-known that talget concept (e.g.
decision classes) descriptions defined directly by Boolean combinations of
descriptors ofthe form a = v (when a is an attribute and a eV") are often not ofgood
approxirnations quality.

In this section we introduce the algorithms in the rough set tool ROSSETA. These
algorithms are used on the infonnation table. First we introduce the idea of
discletization. It detemines how coarsely we want to view the whole information
table (5.2.1). After the discretization, we use attribute reduction to get the rninimum
number of useful attributes that are helpful in rnaking decisions. Finally we use
ROSSETA to generate the rules for the whole system.

5,2.1 Information table Discretization

The discletization step detennines how coarsely we want to view the whole
information table. For each of the attribute which is usually rneasured in real
numbers, this attribute can be discretized into two, three or more, but finitely rnany,
intervals. We can easily see that the selection of appropriate intervals and
partitioníng of attribute value sets is a complex problem and its complexity can grow
exponentially in the nurnber ofattributes to be discretized [6] [7].

A number of successful approaches to the problem of finding effective heur.istics
for real value attributes quantization (discretization) has been focused on
discretization and syrrbolic attribute value grouping. What we used in this project is
the Boolean Reasoning method on the infonnation table. Discretization problems
and syrnbolic value partition problerns are ofhigh computational cornplexity. So we
have to design efficient heuristics. We will concentrate on the basic discretization
methods based on the rough set and Boolean Reasoning approaches. In discretization
of decision table (Table 13) A= (U,Avld\) wherc V"=[v.,a.) is an interval of
reals, we search for a partition P"of V. for any a e A . Any partition of Ø. is defined

by sequence of so-called cutsvr < rz 1r....<v* from Vo, Hence, any family of
partitions {{}..o can be identified with a set of cuts. In the discretization process we
search for a set ofcuts satis$ing the conditions. This is shown in Table 5.2.



Table 5.2 (a) the original decision system

a(u) =
å(u) =
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Tâble 5.2 (b) P-discÌetization ofA

where P: {(a,0.9),(a, t.s),(b,0.7s),(b, I.s)}

In Table 5.2 (a) the first column is the objectand the second and third columns are the
attributes' values. The last column is the decision based on the values of the attributes.
In Table 5.2 (b) the first column is the same as that in (a), the second and third
columns are the p-discretization ofA, and the last column is the decision.

The set ofpossible values of a and å are defines by:

V" --10,2); Vu =[0,4)

The set ofpossible values ofa and å on objects fonn Uis given by:

We will describe a discretization process that retulrrs a pattition of the value sets of
conditional attributes into intervals. The partition is done in such a way that if the
name of the interval containing an arbitrary object is substituted for any object
instead of its original value in A, a consistent decision system is also obtained. In this



way the size of value attribute sets in a decision systern is reduced. In the above
example, the following intervals for condition athibutes are obtained:

[0.8,1); [,1.3); [.3,1.a); |.4,t.6)for a

[0.s,1); [,2); 12,3) for b

The intervals are defined by the objects in decision systern. Cuts are pairs (a, c)
where c eV.. We will restrict our considerations for cuts defined by the middle
points ofthe intervals defined above. The following cuts are obtained:

(a, 0.9); (a,l. 1 s);(a,t.3 5);(a, l .5)
(b,0.7 s); (b,t .s);(b,2.s).

Any cut defines a new conditional attribute with binary values. We use the Johnson
strategy. Using this sttategy one can look for a cut discerning the rnaximal nurnber
of object pairs (with different decisions), and next one can elirninate all already
discerned object pairs and repeat the procedure until all object pairs are discerned.
The Boolean reasoning algorithm discretizes the numerical attributes in A according
to the discernibility-based rnultivariate procedure. This produces a set of interval
boundaries Cuts as a side-effect.

Cuts, = {(a, c)l c is a cut for attribute a computed by e}

The following Table 5.3 is the discretized infon¡ation table:

Table 5.3 Discretized Infon¡ation Table using Rosetta

flles WT1 WT2 FFT6P1 FFT6P2 FFT6P3 FFTTI FFTT2 FFTT3
21f7e 1.,2) r,4) r,5) 2 3 1.,2) 7 7
21ía 1',2) f,4) f,5) 2 3 f,2) 7 s
21f7b 1.,2) r,4) r,5) 2 3 12,8) 7 4
21flc l-,2, f,4) f,5) 2 3 [2,s) 7 z
21te6 Í',2\ r,4) r,5) 2 3 Í.,2\ 7 5
2't'te5 l.,2) r, 4) r, 5) 2 3 12, 8) 7 7
21fsa 1.,2) t4,.) f,5) 5 3 12,8) 7 7
21t8b l-,2) t4,.) t5,.) 7 3 t2, B) 7 7
21f8c 1.,21 t4, I f,5) I 3 [2,8) 7 7
21Í8e L-,21 f,4) t5,.) 2 3 t2,8) t 7
2'tf8d l-,21 I4,) t5, ) I 3 [2,8) 7 7
2200b 14,.) t4, 1 r,5) 4 I r,2) 4 7
227ce 14, ) I4,.) f,5) 3 I f,2) 7 7
226e8 12,4) t4,.) f,5) 3 3 tB,.) 7 7
21f2a l',2) f,4) f,5) 3 12 [2,8) 7 2
21t2b 1.,2t r,4) r,5) 3 12 I2,8) 2 2
12e33 Í4,.) t4, l f,5) 1 1 [2,8) 2 2
224a5 14,-) I4,-) f,5) 2 2 12, B) 4 4
224do 14,) t4,.) r,5) 2 2 t2,8) 4 4
12cbe 14,-) t4,.) f,5) 2 2 t2, s) 1 11
12da1 [4,-l f,4) f,5) 1 1 l2,Bl 2 2

ERROR RATIO

{VL} H

{VL} H

{VL} H

{VL} H

TVL} VL
{VL} VL
{VL} H

iVL) H

{VL} H

TVL} H

{VL} H

{H} H

{H} VL

{vL) vL
{1, VH} VL
{1, VH} VL
{1, vH} L

{1, vH} L

{1, VH} L

{1, VH} L

{1, VH} L

decision
RingCounter
RingCounter
RingCounter
RingCounter
RingCounter
RìngCounter
FilterBank
FilterBank
FilterBank
FilterBank
FilterBank
ValveCAB
ValveCAB
ValveCAB

S00kvClose
S00kvClose
ACD¡sturb
ACD¡sturb
ACDisturb
ACDisturb
ACD¡sturb
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12dbb 14,.1 1",4\
12e3d [4,.) [4, 

-)

12dbc [4,.) [.,4)
12dbd [4,-) 14,.\
naae I.,2) Í4,.l
22355 14,-) 14,.)
12arc 14, 

-) l.,a)
12dte V,) 1.,4)
12dfb [4,.) r,4)
12e44 12, 4) l-,4\
22424 Í4,.) 1.,41
225ú 14,\ r,4)
12a12 14,.) 1.,4)
12dd2 14, 

-) I-,4)
12cbs la,.\ I-,4)
12cd7 14,.l 1.,4\
l2dfb 14,.1 14,)
l2dfe [4, ) [a, 

-)
l2eoe Í4,.) 1.,4)
22405 14,\ 14,.\
224de 12,4t 14,.)
226e7 14,.l 14,-)
22880 12, 4) 14, 

-)
22884 12, 4\ 14,.\
2288b 14,) Í4,.)
12dba 12, al 1.,4)
12e2a Í2,4t 1.,4)
13054 [2,4) 14,\
13062 12, 4) 14,\
'13071 12,4) 14,.1
226cc 12,41 14,.)
226db 14,.\ 14,-)
226eo 14,'l 14, 

-)
226e5 Í2, a) 14, 

-)
226e7 14,.\ la,.\

ACDisturb
ACDisturb
ACDisturb
ACDisturb

PoleL¡neF¡ashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlâshover
PoleLineFlashover
PoleLineFlashover
PoleL¡neFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlashover
PoleLineFlâshover

PoleLineRetard
PoleLineRetard
PoleLineRetard

Aysm,Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
Aysm.Prot
DCDisturb
DCDisturb

Commutation
Commutat¡on
Commutat¡on

ValveBl¡p
ValveBlip
ValveBlip
ValveBlip
ValveBl¡p

{1, vH}
{1, VH}
{1, VH}

{1, vH}
{H}
tH)
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}
{H}

{1, vH}
{1, vH}
{1, vH}
{1, VH}

{1, vH}
{1, vH}

{H}
{H}
{Hi
{H}
{H}

{VL}
{VL}
{VL}
{VL}
{VL}

4
4

4
7
t0
'l

7
3
1

2
2
4
2
2
7
1

4
4
2

2
2
2
4
2
7
4
4
1

2
I
2
I
1

2
3
7
2
7
I
7
3
7
7

r,5) 2 2 12,8)
r,5) 2 2 t2,8)r,5) 2 2 [2,8)r,5) 4 3 12,81
t5,) I I [",2\
t5,.) I I [2,8)
r,5) 1 1 12,8)
t5, ) I I [2,8)
t5, ) 8 I [2,8)
15,-) I I I2,8)
t5,.) I I t2,8)
t5,.) B I [2,8)
t5,') I I 12,8)
ts,T I I 12,8)
r,5) 1 1 [2,8)
15, ) 10 11 12,8)
r,5) 3 3 [2,8)
t5,) 10 10 I.,2\
15, 

-) 11 11 1.,21
15,.) 2 2 1.,2\
t5,.) 2 2 I2,8)
15, ) 4 2 12,8)
t5,) 4 2 Í2,8)
15,.) 4 7 12,81
I5,.) 2 2 I-,21
r,5) 4 12 12,8)
r,5) 3 3 [2,8)
t5,) 4 3 t2,8)
t5,) 13 3 [2,8)
t5,.) 7 3 [2,8)
r,5) 3 3 [2,8)
r,5) 3 3 12,8)
r,5) 3 3 12,8\
r,5) 3 3 12,8)
r,5) 3 3 12,8\

VH
L
H

H

H

H

H

H

H
H
H

H

VH
H

H
VH
VH
VH
VH
VH
H

H

In Table s.3 there are 4 attributes be discretized, they are WTl, WT2, FFT6Pl FFTTI.
Note that discletization only used on the integer and float, but not on the strings. The
ROSSETA Johnson algolithrn generate the intervals for the 4 athibutes as follows:

wr I {l*,2),12,4),14, *)}
wr2 {[*,4), [4, *)]
FFT6PI {[x, s), [s, *)]
FFrrl {[*, 2), t2,8), [8, *)]

At the same time we can notice that the Johnson algorithm also does the reduction on
the information table. There are only 5 attributes being used for the decision-making
and the others have been ignored. That means those attributes have no help in
decisions. Now we use the Reduction algorithm to get the table as we get the reduced
information like the following sarnple:



Table 5.4 Rosetta Reduction Algorittmr to get the Reducted Attributes

Reduct Support Length
{wTl,wT2,FFT6P I,FFTT I,ERRORì 100 5

The first parameter "Reduct" in Tabte s.4 gives the list of the attributes after the
reduction and the second parameter "support" indicates how many decisions have
been made conectly based on the attributes in "Reduct", and 100% means we can
lnake the complete decision using these attúbutes. And the last parameter indicates
how rnany attributes being used.

5,2,2 Rule Generation use Rosetta

After we do the discritization and reduction on the original infonnation table, we can
use the rough set tool Rosetta t6l t17ì t18l for the rule generating.

In table Table 5.6 it generates the rules fol the fault identification. For example, we
do the feature extraction on an incoming signal to decide the type of the faults. Now
we get the values of the 5 attributes like this Tabte 5.5:

Table 5.5 example attributes values for a signal

WT1 WT2 FFT6P1 FFTTI ERROR
1341V1

When we use the rules to decide the type of fault of this signal, we find out that its
attdbute values fall into the rulel, so the fault is Ring Counter. We store the rules
for the whole systern for fault identifìcation.

Table 5.6 the FDI decision table (Rosetta)

lVTl([*, 2)) AND wT2(f,4)) AND FFT6PI([*, 5)) AND FFI-It([*,2)) AND ERROR({VL}) => DECTSION(Ringcounter)

WTI([*, 2)) AND wT2(*,4)) AND FFI6P t([*, 5)) AND FFT ([2. 8)) AND ERROR({VL}) => DECISION(Ringcounrer)
WTI(['r,2)) AND WT2(t4, *)) AND FFr6Pl([*,5)) AND FFTTI{[2,8))AND ERROR({vL})=> DECISTON(FitterBank)
WTI([+,2)) AND wT2{[4. *)) AND FFTóPl([s, *)) AND Fn- ([2, E)) AND ERROR({VL}) => DECIStON(FilterBank)
WTI([*,2)) AND WT2([*, 4)) AND FFT6PI([5, *)) AND FF]-It(12, 8)) AND ERROR({VL}) => DECTStON(FitterBank)
wTl([4, 'r)) AND WT2([4, *) AND FFT6PI([*, 5)) AND FF-r (f, 2)) AND ERROR({H}) => DECISTON(ValveCAB)

WTI([2,4)) AND WT2({4, *)) AND FFT6P l(l+, 5)) AND FF]-rl (18, *) AND ERROR({vL}) => DECISTON(valveCAB)
WTI([*, 2) AND WT2([*,4)) AND FFr6P l(f. 5)) AND FFl-IT{f2, 8)) AND ERROR({L. VH}) => DECISION(500kvctos€)
WTI([4, *)) AND wT2([4, *)) AND FFTóPl([*, s)) AND FFTII([2, E)) AND ERROR( {L, VH} )=> DECISTON(ACDisrurb)
wTl([4, *)) AND wT2([*, 4)) AND FF-I6Pl([*. s)) AND FF-r (t2, 6)) AND ERROR({L, vH}) => DECISTON(ACDisturb)
wrl ([*' 2)) AND wr2([4, *)) AND FFT6PI([s, *)) AND FF]-fl (r, 2)) AND ERRoR({H}) => DEclstoN(potelineFlashover)
WTI([4, +)) AND vr'T2([4. *))AND FFTóPt(ls, *)) AND FFTTT(2,8) AND ERROR({H}) => þECIStON(potelineFlashover)
WTI(t4, *)) AND wT2([*,4)) AND FFT6P t([*. 5)) AND FF]- (t2, 8)) AND ERROR({H}) => DECTSION(poleLineFtasholer)
WTI([4, 1) AND WT2(f,4)) AND FFT6PI([s, *)) AND FFTII(2, 8)) AND ERROR({H}) => DECIS]ON(polel-jneFlashover)



WTI ([2,4)) AND wT2(f*,4)) AND FFT6PI([5, +)) AND FF-rrl ([2, 8)) AND ERROR( lH]) => DECISION(PoleLineF¡ashover)

wTl([4, *)) AND WT2([4, *)) AND FFT6P I ([*, 5)) AND FFTTI([2,8)) AND ERROR({H}) => DECISION(pot€LineRerârd)

wTl([4, *)) AND WT2([4,'r')) AND FFT6PI([5. *)) AND FF]-rl(l*.2)) AND ERROR({H}) => DECISION(poteljneRerard)

WTI([4, +)) AND WT2([*,4)) AND FFT6P¡([5, *)) AND FFTII([*,2)) AND ERROR({H}) => þECISION(Potelin€Relad)

WTI([4, *)) AND vr¡T2([4, *)) AND FFT6P l([5, *)) AND FF"rrl([*, 2)) AND ERROR({L, vH} )=> DECISTON(Aysrn.prot)

wTl([2,4) AND WT2([4, *) AND FFT6PI([5. *)) AND FFI'Il([2. 8)) AND ERROR({1, VH}) => DECISION(Aysm.pror)

WTI([4, *)) AND wT2([4, *)) AND FFT6PI([5, *) AND FFTTI([2, 8)) AND ERROR( {L, VH}) => DECTSION(Aysrn.prcr)

WTI([2,4)) AND WT2(l*.4)) AND FFT6PI(f.5)) AND Fn' ({2.8)) AND ERROR({H})=> DECTSTON(DcDisrurb)

WTI([2,4)) AND WT2([4. *)) AND FFI6P l([5, *)) AND FFI-II(t2, 8)) AND ERROR({H}) => DECISTON(Connnulation)

WTI([2,4) AND wT2([4, *)) AND FFr6P l{[*,5)) AND FF-[rt([2. 8)) AND ERROR( {VL}) => DECISTON(VatveBIiÐ

WTI(14, *)) AND rvT2(t4, +))AND FFT6P l([*. 5)) AND FF]-rl([2,8))AND ERROR({VL}) => DECTSION(VatveBIip)

So far we have generated the rules for the fault detection and identification system.
Those rules are generated from the 56 learning signals that we have recovered from
the TRS of Manitoba Hydro Dorsey Station.



6 PERFORMANCEEVALUATION

Performance evaluation is carried out by measuring the detectability and
identifiability of the FDI scheme. It aims at minimizing the error of the system. A
C++ plogram is genelated based on the rules. When we do the performance
evaluation, first we get the raw data from the TRS and use the FDI system Figure 3. to
do the type detection. The rnore signals we use for training, the better result we can
get. If the accuracy (identifiability) of one type of fault identification is less than
50%-60%, we have to go back to modify the attributes or tl.y to get rnore attributes
for fault identifi cation.

Performance Evaluation can enhance the knowledge-based system and is helpful in
the detection and identification process. The identifiability Ix of a parlicular fault /r
depends on how clearly it lelates to the rule base and how different it is ÍÌom other
faults. We recovered another 55 faults from the TRS and use them as the training
signals. First use the FDI system to get the value of evety athjbutes v. and then use
the rule got f¡om the ROSET.IA to make the decision.

Table 6.1 Performance evaluation of 60 training signals

fault type

Ring counter
Filter Bank
Valve CAB
500kv close

AC Disturbance
Pole-li¡re Flashover

Pole-line Retard
Aysm.PIot

DC Disturbance
Commutation

Valve Blip

# ofcouect # of accuracy(I¡)
incorrect

5

4

4

3

5

6

2

4
2

3

4

0.83

0.8
0.67
0.7 5

0.83
0.85
0.66

0.67
0.66
0.7 5

0.80

From the above Tabte 6.1 we can {ind out that if we use mor.e signals for. learning
generally, we can get better results. For example, in the leaming step (generating the
rules) we use a gïeater number of signals for the Ring Counter, Filter Bank, ac
Disturbance, Pole-line Flash Over, Valve Blip faults compared with the number of
signals used for the othel types of faults. So the result is better. That tells us that
when we generate the rules, we should recover as many signals as possible for
leaming to optimize the system. The results obtained .o iu, ur" summaiized in Fig.
26.
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The Figure 6.1 is the accuracy output for the system.
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Figure 6,1 FDI system accuracy (training use 60 signals.)



7 USERINTERFACE

For the convenience ofthe user to use the FDI system, we set up an user interface to
irnplement the system. The interface has the ability to get the data from the TRS of
Manitoba Hydro Dorsey Station and then recover the data frorn binary format into
ASSCII fonnat. it also can do the preprocessing on the recovered data. The key pafi
is that it can recall the feature extraction algorithm and finally use the rough set rules
to give the decision of which type of fault for a new signal.

Tâble 7.1 manual for implenrent the interface

Feature Explanatron Visual
open Read raw data from selected directory

oPen

change recovel'y the data fiom binary
fonnat(*.x01) to ASSCII format
(*.dat)

change

check whether there is fault happened
check

¡earure
Extraction

recall the algorithms to extract the
features of the signal

Feature

View vrew the rules in the system

Decision give the decision of the fault type and
the FDI systern accuracy for this type
of fault

Decision

When we use the interface, we should get the data first and then recovery them. After
that we do the checking of the faults. We integrate the preprocessing procedure inside
the Featule Extraction Pafi. Click on the Feature Exttaction button we can get the
output value for each of the attribute according to the properties of the signals like
(phase cunent, pole-line voltage, cument or.der and so on). This button will recall
another interface for the features, which we will show later. After we get the
features of the signal we can click on the View button, this one is used to recall the
rules that have already been stored in the system. The rules are those we got using
the rough set tool Rosetta as shown in table 5.6. This one helps the user.to check the
decisions. The Decision button in the interface is used to give the decision of the
fault type. At the sarne time we give the FDI accuracy for this type of fault. The
interface is
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Now we click on the Open button a list box will show up for the user to choose the
file for analysis. Figur.e 7.2
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Faul!l.liq
Faultl.m
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Figure 7.2 Directory list for the data



Then the user selects the frle frorn the directories. Double-click is used to open the
file. But in our case, usually we select the x.xOl file for analysis, since it is
unreadable to the user. Then click on the Change button, and it will recall the
function to recover the data from binary format into ASCII format. For each of the
file it will need almost l5 minutes for lecovery . After we do the data recovery, the
*.dat fi1es will be generated in the sarre directory with the *.x01 file. Then we check
whether there is a fault in this signal using the Check button. If there is a fault, "1"
will be retumed in the text alea, otherwise retum "0". If the"0" appears, the user can
go back to the directory to select another file to do the detection and identification. If
"1" appears, we will go to the feature extraction part of the DFI system. Click on the
Feature Extlaction button and a new scleen will show up as Figure 7.3:

Here is the manual for the feature extraction screen

Table 7.2 manual fo¡ Feature extraction screen

extrscted liles
Plolting Fuhctions

Rutio | [-, !lp-a+ll'tuqt; l

, Refe¡ence 
t:

i_-_..-:.---"+
lPopup Menu :j

l eature Explanation Visual
exracted
fìles

list ofthe fìles that have been
recovered by the Change function

Change

update list every time when the file been
recovel'ed this one is used to update
the list box

change

Kelerence: thls tells the user how to choose the
functions of different signals

Popup

rlottlng do the featul'e extraction and at the
8l



gives the typical types of FFT in the
rule base and also plots the FFT output
for the signal you have selected.
Return the

the signal. This
will return WTI and WT2
FFT for phase cunent a-Þhase
This will plot the typical types of FFT
in the rule base and also the FFT for
the phase curent signal in this file.
Retum the type in the text area

ate the l'atlo o
cunent order for this file and retum the
ratio (glanule output)

the ac voltage phase elror o
the file and retum the emor (glanule

After we get all the features we need for the file, we will go back to the main
interface Figure 7.1. Now click on the View button to check the rules generated by
Rosetta, and then click on the Decision button. It will show the decision of the type of
the fault and also the accuracy ofthe FDI system on this type offault.



8 CONCLUSION

In this thesis, flrst we present the way to analyze and recover the binary for.mat data
of the TRS of Manitoba Hydro Dorsey Station. After an explanation of recovery of
the data, we introduced some algorithm for the detection and identification of the
faults such as wavelet transform algorithm for the pole-line voltages signals, FFT and
low-pass filters used to get the feature of the 6 pulse voltages and the phase cunent
signal. We call this a two-prong approach because we use the wavelet transform on
the constant signals while we use the FFT and low-pass fìlter on the periodic signals.
Fuzzy computing is also used in decision-making associated with the wavelet
transform and FFT output types. We also calculate the ratio of phase cument and
current order as well as the ac voltage phase enor.. Then a granulation algorithm is
used for grouping the output values of the ratio and ac error. We ,,granulate',

(group) the data in setting up an infonnation table in what we call a Fault Detection
and Identification (FDI) systern. Rough set theory has been used to analyze the
information table. We also use the r.ough set tool called Rosetta to generate the rules
for the FDI system. We use 60 fault files to do the performance evaluation and
determine the accuracy of the system. Finally, a user interface was created for user
to implement the system. We have also discovered that the more fault files we use
for training the FDI, the greater the accuracy ofthe classification system.
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