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Abstract

An integral equation, satisfied by a singre unknown surface current density is
formulated for the two-dimensional anarysis of the quasistationary time-harmonic
fields in the presence of induced solid conductors.

This is a' a.ltemative to the coupred boundary integrar equations formulated in
lerms of two unknowns. the magnetic vector potentiaì and ils normar derivatir e over
each conductor surface.

The accuracy of the results computed by the proposed solution method is
delnonstrated by comparison witrr resurts from the exact analyical method and those
obtained from the existìng boundary integral equation solutions. Signifìcant
reductions in the computation time are achieved.

A new surface integral formuration for quasistationary erectromagnetic fields in

systems of multiply connected and./or layered solid conductors reads to an equation

satisfied by a single unknown function defirred o'ly over one of the conductor

interfaces. The amount of computation needed for the field sorution is substantialy

smaller than that required by existent coupled boundary integrar techniques wrlere two

unknown functions over all the conductor interfaces are used. For systems of identical

hollow and/o¡ layered conductors, the method is extremely erficient due to the fact that

the reduction algorithm needs to be performed only lor one of the conductor.s.

A single-source surface integral equation for eddy current probrenrs is arso

constructed for axis),rnmetric conductors. Due to the axisl.rnrnetry, tl.re tlirnensionality

of the problem is reduced by one.



Acknowledgments

i wish to express my gratitude to my advisor, Dr. Ioan ciric, for his guidance and

continuous support throughout this research. I wish also to thanl( the members of

my advisory committee Dr. M.R. Raghuveer, D¡. G.E. Bridges from Department of

Electrical and computer Engineering and Dr. H. Soliman from Department of

Mechanical and Manufacturing Engineeri'g, fo¡ their helpful suggestions. ln addition,

I would like to thank Dr. A.G. Kladas fron the National rechnical umversity of

Athens, Greece, for accepting to serve on this cor¡r,ittee as the extemar examiner.



Dedication

This work is dedicated
to my wife
Luminita,

and to my parents
Constanta and Grigore Paul.



Table of Contents

Abstract.... ....... ........................ r

Acknowledgments ..................... ....................... ii

Dedication . . . . . . . . . . . . . . . . . . . . . i i i

Table of Contenls ....................... ..................... rv

List ofFigures,. ........ ........... vll

List of Tables... ................,....., x

Chapter 1 Introduction ..............,. I

1.1 Overview of Methods for Eddy Current A:ralysis and Objective of the

Thesis......,........ ........... l

1.2 A Brief Review of Integral Equation Technrques..........,......................... 3

7.3 History of the Single-source Surface Integral Equation (SSSIE)............ 6

1.4 Thesis Outline,. ......... t 0

Cbapter 2 Alalysis of Wave Scattering by Lossy Dieleclrics ,.................,.........._.. l2

2.1 T¡ansverse Magnetic (TM) Wave p¡oblem............................................ l3

2,1.1 Single-source lntegral Equatiolr Fonnulation .............. i3

2.1.2 Numerical Results .....,....... ......._._....... l8

2.1-3. Conclusions pertaining to TM wave scattering,......... ......._............_.......2?

2.2 Transverse electric (TE) wave problem .......................23

2.2.1 Single source integral equatton formulation....... ..........24

2.2.2 Computed Resu1ts.....,........ .................30

2.2.3 Conclusjons pedaining to TE wave scattering ..............35

1V



Chapter 3 Classical Boundary lntegral Equations for Eddy Cun.ents..................... 36

3.1 Maxwell's Equatìons for Time-harmonic Fields.................................... 36

3.2 The Eddy Current and Skin Effect problem........................................... 40

Chapter 4 SSSIE for Eddy Currents: I¡side Field perspective Approach ..............45

4.1 SSSIE Formulation...................,. ..................................45

4.2 Numerical Results for Current Density Distribution...... ........................ 49

Chapler 5 SSSIE for Eddy Currents: Outside Field perspective Approach............ J9

5.1 SSSIE Formulation..................... ........................,..._..... 59

5.2 Power Losses... .........64

5.3 Numerical Results ............. .................65

chapter 6 Reduced single lntegral Equation for euasistationary Frerds in Sorid

Conductor Systems............. ................73

6.1 l¡troduction ..............73

6.2 Reduction Techrique......... ................. j4

6.3 Reduced lntegral Equa1ion....................... ....................1g

6.4 Illustrative Examples.......... ..............., g0

6.5 Conclusions .............. g6

Chapter 7 Conclusions .............. g7

7,I Recommendation for Future Studies..,........... .............. g9

References ..............91

APPENDIX A

Surface lntegral operators for sSSIE formulation of ¡rvave Scattering problem._...... 100

APPENDIX R



surface Integr al operators for SSSIE fomulation of Eddy current problem............. 103

APPENDIX C

Evaluation of the lntegral Operator íf! .... . ._.. . . . 106

APPENDIX D

SinglelntegralEquationforAxis).'rnmetricProblems ......................,10g

D.l Analytic Formulation. .... 108

D.2 Numerical Implementation. ..........114



List of Figures

Fig. 2- 1. Plane wave incident on a lossy dielectric cyÌinder............

Fig' 2-2. Bistatic RCS of dielectric circular cylinder s with €,=-j4 and various ¿dr,: ....

Fig.2-3. Bistatic RCS ofa dielectric circular cylinder ofradius rp:)al2 lor v arious

complex pemittivities: 
- SSSIE ; x, o, + anal}'tica1. .................... .. 2l

25

26

Fig.2-4. Original problen.r: TE wave scattenng by a lossy dielectnc cyìinder

Frg. 2-5. Equivalent problem outside ,S.

Fig.2-6. Equivalent problem inside,S. ......................26

Fig.2-7. Bistatic RCS of a lossy circular cylinder with /r¿ro:0.31416, /,t =pnand s,= 4

j100" ............. ........32

Fig. 2-8. Bistatic RCS of a lossy circular cylinder with È ¡rs:O.112256, p:tr0 and, €,.=

Fig. 3-1. Cylindrical conductor in a uniform magnetic field.................................,........41

Fig. 4- 1. Nonnalized current density induced in a ci¡cular cylindrical conductor by a

u.iform magnetic lield fo¡ various skin depths: 
- SSSIE ; x exact anallticar

solution. ..-......5z

Fig.4-2. Relative error of the SSSIE solution versus number of segments per contour

......,................ .......... 53

Fig' 4-3. cPU time for the SSSIE versus number of segments per contour relative to

13

20

33



Fig' 4-4. Normalized current density in a circular cyli'drical conductor excited by a

currellt filament placed at rs:l.llrç for various skin depths:_ SSSIE ; x exact

analy'tical solutton.......

Fig. 4-5. Normalized current density of a crrcular cylindrical conductor with ø:0. r x 10?

S/m and p,=100 in a uniform magnetic field :- SSSIE ; x BIE ; o iDFE [1g], r

exact analy'tical solution. ...

Fig. 4-6. Phase a'gle of the normalized induced current density for the conductor

in Fig. 4-3: 
- SSSIE ; x BIE ; -- IDFE [18]; o e¡¿s1 analytical solutìon.... 56

Fig. 4-7. current distribution in a hollow cylindrical conductor along a horizontal radìal

direction: 
-SSSIE; 

x BIE;o IDFE [18] ;-- exact analytical solution............57

Fig a-8. current distribution induced in a system of two conductors carrying

cutrents, for r"1- r,2: r" , 6 /r"=0.2: 
- 

SSSIE ; x BiE solution. .......,............. 5g

Fig. 5-1. Normalized power loss per unit le'gth of a circurar cylindrical conductor with

o- 6x101 S/m and /t.-l tn auniform nragnetic freld :-SSSIE ; x exact

analytical solution.......,..... .......,.......................... 6g

Fig 5-2. Resistance per unit length ofa cylindrical conductor ofsquare cross-section

with o: 5.72x101 S/m and ¡.t,:l andL=4.62 mm as a function of frequency: _

SSSiE ; x Hybnd [91]; - resulrs in [93]............... ..................,.. 69

Fig. 5-3 Resistance per unit length of a system of two circular cylindncal conductors

with r. - 5.84 mm, o -5.84x10i S/m and p,=11 _ SSSIE ; _-BIE; x

experimental data1341............ .............-.-............70

viii



Fig. 5-4 Resistance per unit length of a system of two conductors ofsquare cross

section with L-2mm, d=2mm, o:5.g4x107 S/m and ¡t,:l: _ SSSIE;x

BIE ; o ÇgJg solution[20]...... .......................... 7l

Fig.6-1.Crosssectionofalayeredconductor. ................................75

Fig. 6-2. Current density in hollow conductor systems with one ( I ), two

(2) and three (3) identical conductors of conductivity o=3.6x107 S/m

and depth ofpenetration ò, for d2=3r,2 and d3:3.5r"2 : _ RSIE ; x BIE .... g3

Fig.6-3. Current density in hollow layered conductor systems with one (l), two (2)

and three (3) identical conductors of conductivities oì= 3.6 x107 S/m and or:
5.8x107 S/m, for d.2:316 and d3:3.5r.3:-RSIE;x8I8.........................g4

Fig.6-4. CPU times comparison for the hollo\.v conductor and hollow

composite conductor systems in Fig.6_2 and Fig.6_3, respectively, vs.

the number of identical conductors. ...,...... g5

Fig. D-1. Aris),¡nmet¡ic conductor ín the presence of a current_can ying tum..........10g



List of Tables

Table 2-1 . Forward bistatic RCS of rossy dielectric ci¡curar cyrinders of rerative

permittivity e,- -74 for væ.ious È6r¡. ................

T able 2-2. RCS for rhe lossy cylinder inFig. 2-7 .

Table 2-3. RCS for the lossy cylinder in Fig. 2-g.

Table 5- 1 . Resistance per unit length for the system in Fig. 5-4 versus liequency. .

T able 5-2. Comparison of CPU tine and number of segments N used per cylinder

..19

.. )4

..34

.12

.12



Chapter 1

Intro duc tion

1.1 Overview of Methods for Eddy Current Analysis

and Objective of the Thesis

Electromagnetic heìd analysis of eddy current phenomena has been of interesl in

many practical applications in the power area related to electric motors and generators,

transformers, bus bars and other devices. These currents may lead to ,ndesirable

effects such as higher power losses and heating. It is very important for engineers to be

able to predict these effects in order to design mo¡e efficient power devices. The

phenonrenon whereby the induced currents decrease rapidly from tl.re surface of good

conductors is known as skin effect. The uneven curent distribution in a conductor.

causes its resistance to exceed the dc value, especially at high frequencies and leads to

higher losses.

Before tl.re age of fast computers, analytical methods have been used to niodel eãdy

currents in induced solid conductors. The problenr of an isolated wire was solved by

J.c. Maxwell in 1873 [56] and Lord Raleigh detemrined the skin effect in an infinite

plane conductor ìn 1886 [461. In 1922, Manneback pubhshed a valuable paper, in

which he gave the solution for a skln effect probrenr by means of a vorume integral

equation [a8]. on the basis of his solutìon, Dwìght produced a series of formulas a'd

tables for calculating eddy curre'ts fo¡ various conductor co'figurations [22].



Following this earlier work, many other problems have been and continue to be treated

by anallical models, see e.g. [z], [8], t321,t361, [44], t791, t881.

As personal computers became more popular, various finite difference techr.riques

(FD) were developed for computing eddy currents [44], t681, t381.

since the late sixties, finite element methods (FEM) have emerged as powerful tools

for solving many practical engineering problerns. Exhaustive reviews of such methods

for two-dimensional and three-dimensional eddy-curuent applicalions can be lound in

1411, llll ln finite-difference and finite element techniques, the entire conducting

region is discretized and the respective nodal unknowns have to be deten¡ir.red

throughout the region which requires a large amount of cornputation.

Eddy currents in homogeneous conductors can also be analyzed by using coupled

boundary integral equations (BIE) in which the unknowns are only distributed over the

surface of the conducting bodies. The BIE are formulated in tems of two unknown

functiolis defined over all the conductor interfaces, which can be either the magnetic

vector potential and its normal derivative 16),['7 a] or the conduction current density and

its nomal derivative [91], or the equivalent surface electric and magnetic currents [20].

Thus, the dimension of the problem is reduced and savings in computation times can

be realized.

The objective of this thesis is to construct a bourdary integral equation for eddy

current problems in simply or multiply connected parallel conductors in tems of a

single unknown surface electric current defined over the conductor interfaces, whicl.l

reduces significantly the cPU time compared to the coupled boundary integral

equations-



consequently, for systems of parallel hollow andlor layered solid conductols, the

objective is to develop a reduction procedure from one interface to another, such that

the field is obtained from an integral equâtion for a single unk¡own function over only

one interface of the conductor. ln the case of identical hollow and/or layered conductors

the procedure is performed for only one of the conductors, then applìed to the other

conductors, thus resulting in a substantial reduction of the computational efforl

required.

Furthemrore, a single-source integral equation for axisynmetric conductors in the

presence of quasistationary magnetic fields is also formulated and its numerical

implementation is indicated.

1..2 A Brief Review of Integral Equation Techniques

The application of integral equation methods to boundary value probrems lor

Laplace, Poisson and Helnholtz equations has been developed by several

mathematicíans and physicists since 1903 [24], see e.g. [33], 1471, 1691,l3l.

Various formulations of

magnetostatic field problems

instead of padial differential

methods U3),1281.

In 1974, Fawzi and Burke

analysis of eddy curents in a

and solution to two-dimensional electroslatic and

have been solved using Fredholm integral equatrons

equations as in finite difference and finite elements

developed coupled surface integral equations lor the

cylindrical conductor ìrnmersed in a transverse time-



harmonic magnetic fìeld [23]. Their fonr.rulation was similar to tl.rat loown as Müller_

type formulation used for solving electromagnetic waves problems [69].

In the same year, by using Fredholm integral equations of the second kind, Dufrrn

a'd McMirler fomrulated the two-dimensional eddy cunent problem in terms of a

double layer of equivarent surface sources [21] and fìve years rate¡ Mcwrrirter et ar

generated numerical results for the problem of a conductr'g half space with an a jacent

infìniteìy long wire carrying curent [67]. Their fbmruration employed a Laprace

equation in the region outside rhe conducting rnedia instead of a Helmholtz equalion as

in the formulation previously developed by Fawzi and Burke.

rn 1982, Mayergoyz introduced a new approach for modelling th¡ee-dimensio'ar

eddy currer.rt problenrs [58] based on a BIE method he developed i'early 70's in the

former USSR, which was unknown at the time to the Nofih American electromagnetic

community [60]. The coupled i'tegral equations obtained were satisfied by ficticious

unknown surface currents and magnetic charges and nunrericar res'lts were given in

[59] for skin effect problems. Couple of years later, Mayergoyz came up with a

boundary Galerkin's approacrr to the calculation of eddy cunents in homogeneous

conducto¡s subject to an external magnetic fìeld, obtaini'g two coupled surface integral

equations with respect to the elect.ic field and rhe magretic scalar potential, without

províding numerical results [61]. An H-rp formulation was developed by Badics in l ggg

[2] where point charges located around the non-conducting region and rnagnetic curent

point sources placed around the conducting region were used for 
'iodelling 

3D eddy

current problems by means of coupled boundary integral equations.



In 1982, Ko'rad published a very interesting paper in rvhícb he developed a novel

integro-differential finite element approach to cunenl-carrying conductor problems by

reformulating the time-harmonìc diffusion equation [40]. Rucker and Richter

transformed the non-homogeneous Helmholtz equation resulting from Konrad's

integrodifferential fomulation into a homogeneous Helmholtz equation via an average

magnetic vector potential in order to use a bou'dary integral techrique [74]. The

boundary integral equations were fomulated i' terms of two urùnowns, 1l.re magnetic

vector potential and its nonnal derivatrve over the concluctor surface. Nunrerìcal results

were presented in this paper lor a circular cylindrical conductor canying a sinusoidal

current and the accuracy of the boundary integral technique was evaluated bv

comparison with the analytical exact solution.

A similar fomrulation followed for the analysis of skin and proximity effect

problems in multiconductor systems published by Cao ærd Biringer [6].

ln 1985, Lear.r ha.dled in a different way the time-harmonic diffusion equation by

using dual distributions of simple-layer sources on the interlaces between conducting

and non-conducting media [45]. This teclurique allowed solutions to be decoupled once

the equivalent sou¡ces have been detemrined, since the fields in the interior region or

the exterior region can be expressed in tenns of the coruesponding source layer.

Numerical results were gìven only for the problem of a single conductor carrying

curent and the extensior.r of this technique to multiconductor systems was discussed.

A few months later, Djordjevic et al presen|ed a coupled surlace integral equation

technique for the analysis of systems of cylindrical conducto¡s of large finite

conductivity located in a uniform transverse magnetic held [20]. Tlie skin effect



problem was fonnulated by introducing equivalent surface electric and magnetic

currents on the interfaces between conductors and dielectrics whiclr were determined by

using the boundary conditions satisfied by the tangential electric and n.ragnetic fields.

A hybrid method was developed by Ts,k a'd Kong for the calcuration of the

resistance and inductance of transmission lines [91] . A coupled circuit approach was

used for the low-frequency analysis, while a coupled surface integral eqr:atio. metrrod

was used for the high frequency analysis. The BIE method used was very similar to the

one derived in Qal, [3), the only difference being that the coupled surface integraì

equations were expressed instead in terms of trre conduction curent density and its

nonnal derivative on the surface of tlte conductors. i

Several boundary integral equations formulations have been deveroped for tluee-

dimensional eddy current problems in terms of electric and magnetic surface cu*ent

densities [90], magnetic vector and electric scarar potential [75], and reduced scalar

potential [35].

L.3 History of the Single-Source

Equation (SSSIE)

Surface Integral

The sir.rgle-source surface integral equation was introduced lor the first time by

Maystre and vincent in 1972 162l for the probrem of a transverse mag.etic (TM) wave

scattering by a homogeneous dlerectric cylinder. only a singre unknown current was

employed on the surface ofthe cylinder instead of two u¡I<nown (electric and'ragnetic)

surface cur¡ents as in the classical coupled surface integral equations. The single-source



representation of the scattered field (radiated frofr a single layer of electnc cu[ent) is

constrained through the boundary conditions by the Kirchhoff integral representation of

the field inside the dielectrjc cylinder.

Much of Maystre subsequent wo¡k on this new techlique was in the field of optical

gratings. He applied the sSSIE method to obtain numencal results for the wave

scattering from a Iossy periodic grating [63]. Then, Maystre extended the previous

lormulation to the problem of wave scattering from periodic dlelectric coated gratings,

by means of a single unknown current densrty on the inte¡face between each dielechic

coating [64]. By using a linear relationship between the unl<nown currents on each

layer, the solution was obtained in a recursive way, instead of solving for all the

unknowns simultaneously. A summary of this integral method can be also found in

[6s].

wrrgin obtained another ssSIE for wave scattering by a cyrindrical bourdary o1^

arbitrary shape by using interior and exterior Green functions satislying Neuma*

condition on that boundary [92]. However, these exact Green functions would have to

be determined for an arbitrary surface by solving additional integral equatior.rs which is

computationally very expensive.

Two different single integral equations have been developed by Desanto for rhe

problem of scattering from a rough interface separating two semi-infinite homogeneous

media [l9]. The first integral equation was derived in temrs of a generalized reflection

coefficient, and the second one in tems of a generalized transmission coefflcient.

Marx extended the formulation give'by Maystre and vincent in [62] to tÌuee

dimensional time-harmonic ând transient wave scattering probrems t50], t5 1],[52] I'



[50], a mathematically treatment within the context of the theory of distributions was

developed, while in l52l the derta function and Green fu'ction are used in the

appropriate versions of Green's theorem. In 19g9, Marx presented numerical results

obtained by applying the SSSIE method to the problem of a TE wave scatteri.ng by an

infinite ho'.rogeneous dielectric cyìinder and a perfectly conducting cylinder,

respectively, located at a plane interface behveen two semi-infinite dielectnc media

[53]

Subsequently, numerical results were compured for the problern of wave scatteling

by a cylindrical dielectric wedge in [5a] . The results for the fierds near the edge of the

dielectric wedge were strongly divergent, since the scattered fìeld was modelled in

tems of a srngle electric surface current. Laler, Marx developed a so-caled ,,hyper-

singular integral equation" (HiE) [55], where the scattered fields were modelled this

time in tems of a magnetic surface current which yielded a better convergence clue to

the fact that the electric field is not divergent near the tip of the edge.

Glisson reformulated Marx's SSSIE method for the electromagnetic scattering fron.r

homogeneous dielectric bodies [25] via the equivarence theorem [29] with the hope that

his formulation would be more familiar to Íììany readers in the electromagnetics

research area.

Two other SSSIE techniques were deveroped by Krockaert and DeZutte¡ for

computing the flelds inside a dielectric cylinder illuminated by a TM wave [39],

In 1988, Kleinman and Martin [37] prese'ted four different fomulations of the

SSSIE fo¡ acoustic waves, two of which were new, providing also uniqueness theorems



to clarify the non-uniqueness issues ol the SSSIE at resonant frequencies demonstrated

before by Glisson and Sholy [26].

ln order to constrïct a SSSIE with a unique solution at all Íìequencìes, Mautz used a

combination ol surlace electric and magretic currents, without providing any numerical

results [57].

rn 1996, swatek and ciric fon¡ulated a SSSIE for the TM wave scattering by

nrultiply-connected lossless dielectric cylinders and demoÌrstrated its computational

effrciency by compariso' with rhe electr-ic field integral equation method (EFIE) [gl].

By employing a combination of electrical and magnetic surface currents defined in

terms of a single unknown density suggested in [57] and [49], Swatek and Ciric

implemented numerically for the first time a SSSIE with u.ique solutions at all

frequencies [82] . Novel recursive formulations of the SSSIE for layered, and generaì

heterogeneous and multiply-r.rested cylinders were presented in [g0], [g3], tg4l, tg5l ,

[86], and [87], where the electric and magnetic field componenrs tangent to each

interface are represented in terms of only a single electric surface current density over.

the same interface, such that the resulting integral equation involves only the sirrgle

unknown curlent distributed ove¡ the interface bounding the source region.

rt 1999' Yeung used a SSSIE formulation for the electromagnetic scatterirrg by a

single homogeneous dielectric object to present co,¡putecl results for a dielectric sphere,

showing that the ssslE convergence speed is laster than that of the coupled su.face

integral equations methods [94].

More recently, we have applied for the f,rrst time the SSSIE formulation to the

problem of TM a¡d TE wave scattering by lossy dielectric cylinders obtaining



numerical results in good agreement with the corespor.lding anal),tical solutions Il 4]

[ 15],

Recently, ciric fonnulated reduced su¡face integral equations for Laplacian fìelds

tel

1.4 Thesis Outline

The thesis presents varìous single-source surface integ.al equalion (SSSIE)

formulations for modeling two-dimensional eddy cu.ent and ski' effect problems.

on route to this objective, in chapter 2, the ssslE is derived ñrs1 for the analysis of

transverse magnetic (TM) and transverse electric (TE) wave scattering by rossy

dielect¡ic bodies and computed results are presented for various lossy circular cylinders.

chapter 3 gives a suûmary of tl.re classical coupled boundary integral equatìons lor

eddy current problem that are used throughout the thesis for comparison with the

proposed SSSIE.

In chapters 4 and 5, two novel fo¡mulations ofsingle-source surface integral equation

(sssIE) are derived. ln both formulations, the SSSIE is satisfied by a si.gle un.l¡.lown

current density distributed over the surface of the conducting bodies. The dilference

between the two formulations is dependent upon whether the field whìch is expressed in

terms of a srngle surface currer.rt density, distributed over the conduclor surface, is the

one inside the conducting region or the one in the free-space, while the field in thc other

region is represented by applying the Green theorem.

A reduced surface integral equation method for quasistationary fields in the presence

ofhollow and./or layered parallel conductors carrying current is presented in chapter 6.

10



A reduction procedure is shown for a multiply comected and /or layered conductor

wirich allows one to obtâin the fìeld solution in tenns of a si'gle integral equation

relalive to only one conductor interface. This new method has a very high efficiency

with respect to existent coupled boundary integral equations fomtulations.

A single-source surface integral equation is formulated for axis)¡rnmetric solid

conductors involving a single unk¡lown su¡face electric current defined over the

conductor surlace (see Appendix D). This curuenr has an azimuthal directiou and

depends only on the posil.ion over the generator contour of the body.

1t



Chap ter 2
Analysis of \ùZave Scattering by
Lossy Dielectrics

wave scattering by lossless homogeneous dielectrics has been modeled

quantitatively by using only a single u'k¡own surface curent distribution t62], tg0],

[8 I ], [50], [25]. ln this chapter, formulatio's in tems of a single-source surface

integral equation (sssIE) are presented for the analysis of the transverse magnetic (TM)

and transverse electric (TE) wave scatlering by lossy dielectric cylinders. A single

unl<nown surface current density distributed over the cylinder surface is involved,

instead of the two distributions of electric and magnetic surface currents in the classical

coupled surface integral equatior.rs. The continuity of the tangential componenls of the

electric and magnetic fields intensities is enforced across the interface befween the

dielectric region and the free-space regior.r. The fìelds in a parlicular region are

expressed by means of this single surface cur¡ent density, i. agreement with the

Kirchhoff integral representation of tlre actual fields in adjacent regions. Tl.re resultrng

SSSIE is solved numerically by applyng a point-matching mor¡ent method.



2.'1, Tnnsverse Magnetic (TM) Wave Problem

2.t.1 Single-source Integral Equation Formulation

Consider the TM wave scattering by a homogeneous, lossy dielectric cylinder Z,

surrounded by a free space region v¡. The dielectric material inside the cylinrler is

characterized by a complex permittivity e and a real permeability ¿r

V¡

€0, lto

-)

t)

Fig. 2-1. Plane wave incident on a lossy dielectric cylinder

A time dependence er''is assumed and suppressed throughout this formulation. The

electric field intensity has only a z-component, ð., which satisfìes a homogeneous

Helmholrz equarion in both regions,

I-) .r\lV' rk"- I L-lrl -0- re I-\ u/ -:\-, -- -.0
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(v'+Lr) E,lr\-0. r ev (l 2)

where Èo = r J;r/,+, and Æ = ,,[rp ur" the wave numbers conespor.rding to the

material in the two regions, and r is tl.re position vector of the obseruation point. Tl.re

tangentral components oI the electric and magnetic fìeld intensities are continnous

across the interface between the dielectric region and the free-space region, i.e.

Aã- (r)= 0, r e S

Á11, (r)= 9, ¡65

with 
^ 

denoting the jump of the respectrve quantity

magnetic field intensity can be expressed as

(2 3)

(2 4)

The tangential component of the

It,(r)=(2xú) H(l,)- , re S (2.s)

where â and ñ are the unit vectors oriented along the positive z-axis and the outer

normal to the cylinder surface, r.espectively.

The total field in the region vo outside the cylinder is the sum of the incident field

.El''and the scattered field ð.1', the lalrer satisfying tl.re Sommerfeld radiatron

condition,

t ô8,(r)
I øtt ôn

(2.6)

In order to construct a single source surface integrar equation, we replace the cylir.rder

materiai by free space and define a 1ìeld Eo which is identical to the scattered field ðj.

/^
Jrli t:(rl+ iknl"(rl l--s.7.=t¡¡ -,-\âr"''""1

14



ir-r I/¡ , but is rnrestrained rn I/- Ert is assurned to be prod,ced by a corrbined )ayer of

elecuic sulface cu*ent 2aJo a'd r.nagnetic surface culrent (2xit)bJ0 residing on the

dielectric cylinder surface ,S, where ¿ and b are arbitray constants, and J6 is an

unlçlowlt surlace cun ent density. it can be expressed as

noQ)=(ar6+bn:i,)Jo, res (27)

r"t,t=(n,n:o_t(tlr "i)y, lr, ltr,,,.r) 12 8r

where / is the identity operator, and ff,"o , ,f,'ô, are integral operators defined as [g 1 ]

E6r, = - T I r, (,') a ['?) Q,,lr -rl) ar

r; 4 = - f, I 4 (,' 1 *! n[') (r,þ *'!) ar

(2 e)

(2.10)

with øj2)ueing the Hanker function of seconir kind and zero order, r,the posrtion

vector of the source point, and the integral in (2.r0) take' in prìncipar value. The

superscripts of ffi and rj' show the type of trre equivarent source cunent - ¿-electric,

rn-nragnelic - produci'g the respective fiercrs. rt is obvious that ao satisfies the

hornogeneous Helnboltz equation everyr,vhere except for the cyrinder surface s,

(v')+ttl)ao1r1=0, res (2 1I)

The electric field Eo (which is tangential to ,5) and tl.re tangential co.r.rponent ij, of the

associated magnetic field satisfy the boundary conditions

aEo(r)=6¡0, ,.5

15
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mo!)-cÙo, res (2.13)

where È/o is detelmined in tenls of Zo as

Ho(,.)=r!p,,.r (214)
J 0/ta an

and is expressed in the form

u,¡¡=f "lt.t * tr6l' m; I rn.'l- r -.'s' r c t/"

\ \ - ) -tr r--s,r.i {2 15}

with

t{6ro = +lro¡'¡! n[,t l,,V -,\¡ar e]6)+ ,í orl

,r';r,=-à!,t,lftn[,)¡r,01,-,,1)al e 1])

the integral n (2.16) being evaluatecl in princrpal value.

The field inside the dielectric cylinder is deten¡rned by employing a Kirchhoff

representation involving the actual tangential components E- and H, of the electric and

magletic fi elds, respectively,

Ir,þ). r ev,r e

^etr lt'^ ' '-,L-Hr -q. L. =l-É (r). reS
t'
|.0. r e Vo,r Ç

(2 18)



with the integral in (2,20) evaluated in principal value.

Fron.r the continuity of the tanger.rtial components of the actual electric ancl magretic

lields, we ha',,e

"" 
n , - % 

IH, (,') n[,) (r,) r -r,l) cil,

E"' L- =- lJu.t, t ! n;'' 1r,, r-,r, ),tt'-,ç

a,(r)= n!'(r)+/u (r), r -+ S,r evo

n, (r) : ai'" (r)+ /"10 (r), r -+ s,r e'y',

where 11,"'' is the tangential component of the incident rlagletic field.

Substituting these expressions in (2. t 8), i.e. in

on ('rr,r,,)r =o res

lelds the single source surface integral equation

r.
l( '^, .""')( "";-ø(!, -o; ll-""1"[ ] t , rr,l. rr; l-l ,.L\2 il " \2 " tt I ,2 ur ",]

- (t., -u,' Jr:' -E' Hi,,,. r e S\2 ) -

(2.1e)

(2 20)

(2.21)

(2.22)

(2.23)

(2.24)

once the unknown current density J6 is determined from (2.24), the electric fields in

the regions outside and inside the cylinder al.e obtaiued from

E, (r) = E:', + (a,r[ + tr:i,) 16, r e vo (2.25)



E_ (t) - _tr" H | _ f,,,, E-, r e V

(2.15) for r -),t, ,.e Vo , i.e.

(2 26)

Ifo deten.nìned frorl (2.8).

(2.21)

(2.28)

E, (r) = E:, (r).(."U . t(f,r . 
"f'))t,

u , (r) = Hi" (r).(.()t . 
'rt). 

art:)1,

2.1.2 Numerical Results

The single sou¡ce surface iutegral formulation described in section 2.r.1 was

implemented by employing a point-matching 
'nethod 

of 
'r.roments [30]. The cylinder

cross-sectional contour ,s was discretized into a numbe¡ of straight segments, wi1l.ì a

constant single current density -/6 over each segment. The surlace i'tegrar operators

defined in the SSSIE fonnulatior.r become matrices with fhe number of rows and

colunrls equal to the number of segnrents.

The bistatic radal cross section (RC.g) from an incident unifom prane wave was

calculated for scveral lossy dielectric circular cylirders and conpared to the

conespondrr.rg anall'tical solution obtained by using the eigenfunction expansions. The

AC,S is defined as

18



RC5= tim r,,.lu:' (øll'

I r'." I

(2 29)

where þ is the scatterir.rg angle (see Frg. 2-2). The far' field E:' (þ)ß calculated from

(2.25)) using the asyrnptotic expansions of the Hanl<el functions in (2.9) and (2.10).

The current densìty Jo is found from the single source surlace integraì equation,

rranely fron (2.24) with a=1, b=0, a,ra lr)"'j=l.'Ihus, (2.29) yields

(2.30)

wlrere ryo =Jñr,

Numerical results are shown in Table 2-1 for several lossy dielectric circr-rlar

cylindels wjth same complex relatìve permittivity r,. = - j4 and of various electnc radii

k¡r6. The RCS is calculated for a' observation angle þ :0". These lesults are i' goocl

agreement with those obtaìr.red tluough eigenfunction so.lution [5].

Table 2- 1' Forwar d bistatic RCS of lossy clielech'ic circr-rlar cylinrJers of relative
pemittivity e,=-j4 for various /r6rs.

SSSIE Results in f5l

0.2 0.00800 0.00782

0.4 0.07027 0.06921

1 0.7 699s 0.7 6435

RCS = 
k,Fl 

Ir, þ, ) p ir,r ",o,r,,',,,,, n,,1'* ls I

r9



4

aÊ.

\,

2.8

I

1.5

1

0.5

0L
0 30 60 90 120 150

Scattering angle d {degrees}
180

Fig' 2-2. Bistatic RCS of dielectric circular cylinders with t,:-j4 and variou s kd"s:
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rn Ftg. 2-2, the RCS from the SSSIE for lossy circula. dielecrric cylin<lers u,irlr

various /r6i¡ and relative complex pennittívity t, =-j4 , jlhmrinated by an incident TM

plane wave, is plotted along with results from the analytrcal method. The SSSIE method

is apphed by discretizing the cylinder cross-sectional contour into 65 seg¡ents. As

slrown in Fig. 2-2, the curves obtained by using the SSSIE rrethod are graphically

indistinguishable û-om those obtained by the analylical method.

Fig. 2-3 shows the RCS of lossy dielectric cyli'ders of circula. cross section

computed by the SSSIE method ar.rd by the anallical method for differ ent complex

pennittivities. The cylinder radius is 20f2, where d is the free-space wavelength.

2.7.3. Conclusions pertaining to TM wave scattering

A single-source surface integral equation is applied fol' the solution ol tlansver.se

magnetic wave scattering by lossy dielectric cylinders.

The computational accuracy of the SSSIE method has been illustrated by comparison

with the classical eigenfunction rnethod. The RCS is calculated for various cylinder

radii and an observation angle f ranging fron 0'to 190.. Ar excellent agreement is

achieved between the ssslE method and the exact analy,tìcal nlethod. It can also be

seen from Fig.2-2 that the RCS vaiues for e,.=-¡4 and small scatteriÌrg angles I
increases with the cylinder radius.
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one can notice from Fig.2-3 that the oscillations of the RCS decrease as the

dielectric loss inc.eases. For a p,rely rnragina'y permittir'ìty, as seen in Fig. 2-2,

plactically the RCS is decreasing monotonically witÌr tl.ie ir.rcrease of f in the range

considered.

2.2 Transverse electric (TE) wave problem

In this section, a fonrulation in tems of a silgle-source surface integral equation is

applied to the analysis of the transverse electric (TE) wave scattering by a lossy

dielectric cyJinder characterized by a cornplex relative pen.nittivity. on the basis of the

eguivalence theorern, the scattered field in the region outside the lossy cylinder is

expressed by using a single cunent densìty distributed over the surface of the cylinder,

while the fíeld insrde the cylinder is obtained through a Kirchlloff representation

involving the actual tangential components of the electric and magnetic fields. The

computational accuracy of the single source surface lnteg.al equation methocl is

demonstrated by companson with that of the eigenfunction method and of the volnme

integral equalion method-

23



2.2.1 Single source integral equation formulation

conside¡ the TE wave scattering from a homogeneous, lossy dielectric cylinder z of

an arbitrary cross section, immersed i' a Î¡ee space region Z6 (see Fig. 2_4), The

dielectric cylinder has a comprex permittivity e and a rear pemeabirit y ¡t. . The

magnetic field has on.ly a z-componenf FI which satisfies homogeneous Helmholtz

equations in the two regions,

with the tangeltial components of the electric and nragnetìc field intensities continuous

across the interface between the dielectric region and the free-space region, i.e.

(v'?+ft)n,(r)=0, r ev,

(v'1+*)a,U)=0, , e t¡

Á11, (r) = 6, ¡.5

tE,(,)= 0, r e,!

(2 31)

(2.32)

(2.33)

(2 34)

where ð' is the tangential component of the elect¡ic Tield intensitv. E. - J ôH.
an ôn

A time-hamonic dependence ¿/'t is assumed and suppressed. The total rnagretic

field in the region vo outside the cylinder is the sum of the ìncident field l1:,. and the

scattered field .É1j".

Based on the equivalence theorem, we reformulate the fìeld proble'r in v6 and v as

indicated in Fig. 2-5 and Fig. 2-6- A combìned layer of magnctic surface cunent 2ctJo

24



ând electric surface current(2xñ)bJoon s radiate in an unbounded free-space regiolr

(see Fig. 2-5) to produce a field .È1u which is identical to the real scattered held l1j.

outside S, but with the field produced in tr/ let ur.rconslrained.

<_o
H:,

Fig.2-4. Orjginal problem: TE wave scattering by alossy dielectric cylinder

va

Ê0,lJô
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Fig. 2-5. Equivalent problem outside ,S.

H, =0

Fig. 2-6. Equivalent problem inside S.
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The magletic and electric surlace cunent densities are generated fÌom a single

unl<nown surface current of de'sity J6, with n and å being arbitrary complex constants.

The magnetic field intensity llo and the tangential component -Ð6 of the associated

electric field intensity are expressed as

where the integral operatorsÃ$,1{'l' ,E[andEä'are expressed in temrs of tr.re srng)e

source ./6 as follows:

HoO)=(aHii+br[)4, res

,, O) =(,rt . ø('l . n;))1,,

+for r -+ S, r eV

- for r-+5, reV,

u, O>("(')t + nt')+ nn6) t,,

+for r -> S, r eV

- for r->S,reVn

Hä'Jo --otu 
ILolr'¡u'o', lt o¡at,+;

H6ro=i lJo(r'¡ !, tt['t¡ro¡at,îi orl

,r'i' L o = - l^ 
ltrU ) l ator 1t o¡at'r.; on

c6ro = * I, oþ.' I ^*, H¿,r Vo) dt,
4aÊo í dnÒt1'

(r.3s)

(2.36)

(2.31)

(2.3 8)

(2.3e)

(2.40)

(2 41)
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with r' being the position vector of the source point, l1j2)the Hanl<el funclion ofsecond

kind and zero order, and the integ'ars in (2.39) and (2.40) taken in principaÌ varue. The

fìelds /10 and Ão satisfy the boundary conditions

AHo(r) = -6¡0, ¡' .5

aÐo(r)=-s¡r, r.5

(2.42)

(2.43)

ltFig 2-6. an equivalent field probrem is fomurated for the region inside s by using

a Kirchhoff integral representation involving tl.re actual tangential components -È1, and

E, of the magnetic and electric fields, respectively,

(n.U). re v,reSt-'
t{"'E, r r{" H, = ]-l ø- 1'¡ . '. s

l; rev.røs
(2.44)

where fl'and H'are given by (2.38) and (2.39), withro and Æo replaced by e and, k,

respectively. I)ue to continuity conditions in (2.3_l) and (2.34), respectively, H. and E,

are equal to the respective tangential components of the fields in the equivalent problem

for the region tr/e ,

r ø(-l . r;)) a (2 4s)

E,(rt ri".t4 ,("(-! , -o;,).uo;) r, Q 4o¡

where Ei"" is the rangential component of the incident erectric field. with (2.45) and

(2.46), (2.44) becomes

a,(,)- u';,þ)+(,r;,

28



lr"l"t _tt*,t.:,1 ,-"'r l ,t r ,rll
L'' f "[-u I -'La 

)+bE;) ]tl2r-H' )l"tr;' 't¡ t' ''6))lt,

(t=-l-1t*t'" 
1H'-" 

-r{"'E';'", "5 Q.41)

which is the single source surface integral equation in Jn. using the commutative

relationship

H''ç" =i,-@") (248)

equation (2.47) yelds, frnally,

l" (t-, t+r,)r:,*y,l-!t \ ì

Lt(z ) \2'"i))

-',[i['-,;l,- 
){,,; .,,¡*,,(,, - ;,,)

*r'lr;,-ï"ljl ,,=l !t -t,)n:,,-H^e,;, tz4s)\" to ))l " t2

where the hlpersingular operator øf appears now only in the weakly_singular

difference 
"; - !"' , r'being given by (2,a1), with eo and Áu replaced by t and k,

respectively.

After computing J6 from (2.49), the actual magnetic field is obtained as

u,(,)= u),,, *(,r;' *tn1) J6, r e vo e:o)

u,(,)= r,( ui, .( "( \'.u; l,-rr5lr,l( ( \ 2 ") )



-r'(,,,"' .("rr.ul-),-'rl),,),., (2.s 1)

The bistatrc radar cross section (RC,s) for the TE u'iform plane wave scatlering by

two-dinensional dielectric obstacles is defined as

ÀCS = ìim ,,,1':'U)l'r-ìs. I n':" 
I

where þ is the scatterir.rg angle (see Ftg. 2-1). The scattered far fìeld

calculated from (2.35) (or (2.50)) using the asl.mptotrc expansiolrs of

tunctions in (2.38) and (2.39). WirhlH:,"1=1, (2.52) yretds the foilowing

the bistatic RCS:

RCS =+U,f (/,ø) JoU) 
"it"(tcosø+t"sinø)o,'12

where

f (r,þ) = b(n', cos þ + n'r sin 4) + !

with 7o being the intrinsic impedance of fiee space, and, n,,,

cor¡ponents ofthe unit vector ñ'normal to ,S at the integration point.

(2.s2)

n: (þ) is

the Hankel

fomula fo¡'

(2.53 )

(2.54)

a! the ;r- and y-

)'r) Computed Results

The bistatic RCS has been computed for severar lossy circular cylinders by the SSSIE

method and the results have been compared with those obtained by the volu're integral

equation method and by the exact eigenfunction solution .
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The SSSIE formulalion was implemented in a sin.rpre poinlmatching method of

moürents, The cylinder cross-sectional contour,s was discretrzed into straight segments,

\¡/ith the single curent density ./6 assumed to be constant over each segment. The

surface integral operators defined in the sSSIE fomulation become matrices with the

number of rows and columns equal to the number of segments.

computed values of the RCS of a lossy circular dielectric cylinder of electnc radius

kara-O.31416 and of relative complex permittivitya,. -4- jl00 are presented tnFig.2_7.

Figure 2-8 shows the RCS of a cylinder wirh /ro/¡:0.1 12256 anrl s,. =15_ j3O0. One

can notice that in Figs.2-7 and 2-8, the plotted resurts obtained by appÌying the sSSIE

method are rndistinguishable from those obtained by the analy,tical method. The sSSIE

method was applied in both cases by using r50 segments ror the cross-sectional

contour. Tl.re complex constants a and b are chosen to be a:I and b=0.
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Table 2-2. RCS fo¡ the lossy cylinder in Ftg. 2-7 .

Scattering

angle þ

SSSIE VIE Analyical

0 - 19.5 r -19.67 -19.5785

30 -21 .08 -21.1456

60 ,? 10 21 .35 21.2152

90 -28.50 -28.55 -28.4848

120 -20.42 -20.51 20.4289

I50 17.09 11.19 |t.1092

180 -16.13 16.23 16.1561

Table 2-3. RCS for the lossy cylinder in Fig. 2-8

Scattering

angle ø

SSSM VIE Anal¡ical

0 -36.40 -36.53 -36.4601

30 .37.10 37.84 37.1617

60 -42.51 -42.70 -42.5950

90 -48.91 -48.94 -48.9234

120 -40.08 40.08 -40.0831

150 36.17 -36.19 -36. 1 85 5

t80 35.07 -35.10 -3 5.0906
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As seen in Table 2-2 anrl rable 2-3, trre numericar results ror the two ilrusûatrve

examples are also in good agreement with those obtained from volurne integral

equations (VIE) in [70] .

2.2.3 Conclusions pertâining to TE ryave scattering

A single source surface integral equation has been applied for the solutìon of

transverse electric wave scattering by rossy dierectrìc cyli'ders. By enprolng the

equìvalence theorem, a single unknown surface current distnbuted over the surface of

the cylinder has been used. Numericar results presented for the case of a lossy circular

dielectnc cylinder demonstrate the accuracy of the ssSiE method as compared with the

exact eigenfunction method, as well as with the volume integrar equation method.

In the following chapter, the tradilional coupled bo,ndary integral equatior.r

forrnulatlon is presented for eddy current and skin effect probrems. The numericaÌ

results generated emproyi'g this formuration are used in the next chapters for

comparison purposes.
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Chao ter 3
ClaJsical Boun dary Integral
E quations for E ddy Currents

The coupled boundary integral equations (BlE) derivation presented in this chaprer

follows the classical method which may be found in 16), [] al. The BIE is fornrula[ed rn

terms of tr¡'o unknown functions, the magnetic vector potentìal and its nornral

derivarive. distribufed over the surlace of the conduclor.

This formulation is employed throughout the thesis whenever the proposed SSSIE

solution has to be analyzed in terms of its accuracy and efficiency by comparison with

the BIE solution.

3.1 Maxwell's Equations for Time-harmonic Fields

In 1864, .lames C. MaxwelÌ assembled the laws of Faraday, Ampère, Gauss (for

electric fields and for magnetic fields) into a set of four equatior.rs lcrown as Maxwell's

equations t561, [43], [31]. Maxwell unified, in this way, the elect.omagneric rheory. For

motionless media, these equations are listed below in both integral and differential

forms. The integral forms of the Maxwell's equations are the nost general:

ln n= !,t *. ]# *

lP^
.' Òl{n at =-

C

(3 1)

(3.2)
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,5 s-¿t ' of
s

whe¡e -Ð and -ÉI are the electric and magnetic field intensities.

and magnetic flux densities. "I the conduction current density,

density.

The differential forms (point forms) have the following cxpressions

y*¡¡=¡*ôD
ô1

VrE:-Q
ôt

v D:p,

V.B: O

v J=-9!'
ôî

ôD
The additional term óf in equation (3 5) nas dre dimensions ofa curenr density and is

calJed dìsplacemenr c urrent density.

The law of conservatior.r of charge (or continuity eq,atior.r) in integral fornr is

Çt a,= !". Io"o,.. dt"

while in differential form can be written as

$o.as= lo,a,s".
(3 3)

(3 4)

D and B are the electric

p, the volume charge

(3 5)

(3 6)

(3.7)

(3 8)

(3 9.)
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For regions of discontinuities, interfaces between two physical media, we imposc the

boundary conditions

In a linear, homogeneous and isotropic

permittivityr, magnetic permeability 4 and

aÍe:

medium characterized by the electric

conductivìtyo, the constitutive relations

(3.r)

(3.12)

(3 13)

(3.14)

(3. I 5)

(3,l6)

(3.17)

(3

(3.20)

(3.21)

D=e E

B:pH

J:o E

nrrx(Er-lq,)=0 or 8,, = 8,.

n,rx(Hr- H,):0 or H,, H,.

n,r.(D, - D, ):0 or D,,, = D,,

n,".(8,-t,):0 or 8,,=8,,

Fo¡ lime-hamonic fields, the phasor forms of Maxwell,s equations are

V xH =oE + jatD

y"g:_ jatB

V .D= p,

V,B=0

where 7 = JIl and ø is the angular frequency.

t8)

re)(3
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Bymakinguseof the vector ider.rtity V. (Vx d)= 0 where ¿ is an arbitrary vector, the

lnagnetic flux density vecLor B can be expressed as the curl ofa vector

B =VxA

where I is known as the magnetic vector potential whose divergence is zelo

Y.A=0

Byintroducing (3.22) in (3.19) , one can obtain

(1 ))\

(3.23)

y y¿ =_ ¡ot(v x A) (3.24)

v x(n + ¡ol):o (3.2s)

since the curl of a gradient of a scalar field is identicalry zero, the solution to the

equation (3.25) is

E: .jtoA-VV G.26)

whe¡e Zìs the classical electric scalar potential.

ln the case of solid conductors with high conductivity (o >> oe) the displacement

current can be neglected and equation (3.18) could be simplifìed as

Vx H =oE (3.21)

Al imporlant parameter in describing the electromagnetic field penelration into the

conduclor is the depth ofpenetration, or the skin clepth, defined as

"l
..ln J lo
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Substitution of the constrturive relation (3. i2) in (3.27) yields

YxB=poE.

By combining (3.26) with equation (3.29) we obtain

(3.2e)

vx(vxA)= po( ¡aa-vv) (3.30)

the vector ldentity

This leads to a

vector potential ,4

The Ieft-hand side term of (3.30) can be calculated fror¡

V*(V"z)=V(v.A)-V'1A and using the retation (3.23).

nonhonrogeneous Helmholtz equation satisfierl by the magnetic

inside the solid conductor

(o' (3 31)

with k2 = - jcùp6 .

3.2 T}re Eddy Current and Skin Effect probiem

consider a very long, homogeneous cylindncar conductor of arbitrary cross sectior.r

immersed in a transverse time-harmonic magnetic fleld of flux density B0 . The

conductor ìs parallel to the z-axis and its material is characterized by a conductivity ø

and a permeability p , while the region outside is a free space.

+k'1)A= povv
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Fig. 3 - I . Cy.lìndrical conductor in a unifonn magnetic fìeld

The magnetic vector potential is chosen to have only a component parallel to the

conductor, independent of z. Inside the conducting region D, it satisfies the

nonhomogeneous Helmholtz equarion.

reD (3.32)

where z is the classical electric scalar potential, with ôv lôz =cd¡?.ç1 inside the

conductor, k2 = -jotpo , j = Jj , r¿ is the angular frequency, and r is the posìtion

vector of the observation point. Equation (2.26) can be written in the form

(v2+tr'1)'t'trt=o, reD IJ,JJ'

with l' = A + Co and the constant Co = -Q I a) ôV I ôz fo be deterrnined.

In the free-space region D", the quasistationary magnetic vector potential satisfies

the Laplace equatron

Y'1.a"çr¡ = 6 .

4l

reD (3 31)



The following continuity conditions across the interlace s between the conducting

and the nonconductìng regions are to be irnposed:

A(r) -- A"(r), r e ,S (3 35)

I ôA(r) I ôA-trl
;-- -ï,res (3.36)
/1 On /Lo ôn

wltere A" is the vector poter,tial in D", lto is the pemreability of free ,puce un¿ 4
on

denotes the non na I dcrivativc.

The tangential component of the actual magnetic field intensity on the surface s just

inside the conductor can be wntten in the fon¡

II,(r)---t y=-Lu:" , re s (3.3.,)
FOn F ôn

due to the fact that V'Co = O

By applying Green's theorem. the magnetic vector poter.rtial l. just inside the

conductor is expressed as:

I
-A'=-,E'H,-,A"'A', reC (3.38)

where

A'H, =-+ ln,r,'l¡t[') (m)¿r (3.3e)+¿

,u- A' = - + [,r y' t *,L a['t 1¡¡¡0, (3 40)
t c l)rt
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This yields an integral equation on the conductor boundary

-Å'u,-(t,-u,lo'=0. t' \2 )
€(

By applyirig Green's theorem, the potential A" in The

conductor, can be represented as

(3.41 )

region D", outside the

(3 44)

(3.4s)

(3.42)

where lo is tl'ìe vector potential which conesponds to the extemal field Bo.

Using the continuity conditions (3.35), (3.36) and expressing tl.re tangential

component of magnetic field Íìom (3.37) the actual potential on the surface s just

outside the conductor can be calculated from (3.42) in the fon.r.r

A"(r)= AoQ)+ fir,.(lt. A)u, re,e (3.43)

whe¡e 1is tbe identity operator, and with the operalors,4[ and lfr acting as

A"trt= t1o(r)- t_-l Pn:'r'^t-0,'-' z"ll ôn' R
reD"

A6H, = + Iu,v'lt'r*¿r-" c

,¡tx' ¿ = -t tr nt,¡ ô-( nt \¿t'" 2rl ôn'\ R)

V"etfi(^|,,],

the integral in (3.a5) being evaluated in principal value.

Substituting A' - Co lor A in (3.a3) and imposing the conrinuity condirion in (3.35)

yields
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!n,.tz -iCo- 4-.4H, -,qi A' + Á;'Ca -0

which can be wrilten in the form ofan integral equation along the contour C

/f,H t( -!t + ni:'\,q' *(1- t - u," ). = o."J,,, t t".'u l-' l.>'-4 l.o-^o
,/ \L /

(3.46)

(3.47)

An additional equatio'is obtained by appllng Anrpère's theorem along the contour c

ln,(r)ar =r, (3 48)
C

where/. is the value of the total curent caried by the solid conductor.

In the next chapter, a single-source surface integral equation (ssslE) is constructed

which is satisfied by a single unknown current density distributed over the surface of

the conductir.rg bodies instead of two unl<nowns as in the boundary integral equation

method.
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Chap ter 4
SSSItr for E,ddy Currents: Inside
Field Perspecrive App roach

In this chapter, an inside fierd perspective approach is used, which means that the

magnetic vector potential inside the conductors is expressed in terms of that single

surface electric current density, while the potential outside is obtained from the formula

ofthree potentials for Laplacian fields.

4.1 SSSIE Formulation

consider the problem of a cylindrical co'ductor immersed in a transverse tìme-

harmonic magnetic fleld described in section 3.2.

In order to construct a single-source surface integral equation, we fìrst assume to

have everyrvhere the same conducting material as in the regicn D and thal the actuar A,

ìn D is produced by a si'gle .layer of erectric current paralel to the vector potentiar, of

density J,, distrib'ted over the conductor surface, whire the potenliar in D" is Jeft

undefined, i.e.

A'(r) = n¡,,

where the integral operator Z acts as

r e DU,S (4 t)

1U IAJ,. _.,n 
lJ,(r,)H'o'' (kR)dt,

-c
(4.2)



with C being the conducto¡ cross-sectional contour, H[2) *eganfteì function of second

kind and zero or),er, n =V _ r,l and r, the position veclor of the source point. The

tangential component of the actuar magnetic fìeld intensity on trre surface sjusL inside
the conductor can be written in the forn

It,(r) 1 ôA I=-ian=-t¡,*rr¡", ¡es (43)

where the integral operator '7f is defined from

,rr" =l +r,Ø]u[,,1rn)at, Ø 4)

with the integral taken in principal value.

on the otrrer hand, the potential A" in the region D", outside the conductor, can be

represented by apprying the Green theorem. Assuming thal the vecror potenrial vanishes
at infinity,

A"rrt- ¿o¡,¡ !l ¡\¡,,,|ar,- [,t"r, t](nl)arl.,.r" t4512nl¿ on R 1.. 
.ðn,, lrt 

J

where lo is the vector potential which corresponds to the external fìeld Bo.

Taking into account (3.35), (3.36) and (4.3), theactual potenrial on rhe surface sjust
outside the conductor is obtained fi_om (4.5) in the form

A"(r) =.aoe)+,2[n, *( !t * 4,)t, re r
\l )

whe¡e 1is tlre identity operator and with the operators lj and A6, acting as
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(4.7)

(4 8)4)'À= ' Jn,,tu (u,t\0,
2, I 'ðir'[ R)

-/ r \
ll - ^:J,+t{J,ldt= r,
i\ ¿ )

the inlegral in (4.8) being evaluated in principal value.

lmposing in (4.6) the conti'uity condirion in (3.35) and substìtuting.É1, rrom (4.3)

and, A = A' - Cn from (4.1) yields a single-source surface integral equation in _/. ,

l,t(-:'.,).?i'. u,)ol,,, *,, = -a, r e,e (4 e)

To specify the valuel"of the totar current carried by the sorid conductor, we appry

Ampère's theorem alo'g the contour c which yields an additio'ar equation, i.e. (with

(4.3)

(4.I 0)

It should be noted that, in the form given above, the expressions in (4 6) and (4 9)

have been derived for observation points on the conducto¡ boundarv where its curvature

is finite.

once the unk¡own curent density ./, and the constant co are detemined Íìom (4,9)

and (a.10), the magnetic vector potential in D and D" is obtained, respectively, from

(4.1) and (4.6) , i.e.

A(r)= 1¡,-ço
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I =-jao(A+Co), i.e. J =-jaonJ, (4.13)

For a system of n parallel homogeneous coïìductors of arbitrarv cross_sections the

integral equation (4.9) has the same fom, but wrth the integrals in the operators lj and

,ai Gee (4.7) and (4.8)) performed over rhe union C = CIJ C, Il...rJ C., of rhe

contours of tl.re conductors; when the integration points inlj and ,4[ are on the

contour Ci of the cylinder l, of conductivity o, and. permeability l¡, the operators I

and J{ tn (4.2) and (4.4) are taken with the integrals performed over Ç , wtth ¡t = p

and ,t2 = ¡2 = -¡ap,o,. For each r e C,cC , the unl<nown constant Co has a specific

valueco,. The give' cu¡rents in the ¡r conductors are fixed tluough ir a<lditional

equations obtained from (4.10) written fo¡ each contour Ç with the correspondrng

current 1. .

The elect¡ic and magnetic fie1d intensities inside the conductors are calculated fronr

(4.13) and (4 11) as

E=_ja.AJ,, re l) (4.14)

(4. 15)

A,trl= 4, [o(- 
lrr *r]*[ i,. ^ þ]t

The current density inside the conductor is calculated fron.l

¡7 -- Lt 
¡L ,ç,'t uå' '(/rÂ) t r4 

dt, , r e D4l" R

(4.12)
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where a, is the unit vector along tl.re positive direclion of the z-axls. For the region

outside the conductors ,/y' is calculated by takrng the curl ln (4.12). we l-en¡ark that the

fieJds I H and E in (4.14) are all exp.essed in tems of the single surlace cu'e'l

-/, distributed over the conductor boundar.y.

4.2 Numerical Results for Current Densitv Distribution

The single-source surface integral equation has been inrplemented numericaìly lor

various structures of cylìndrrcal conductors by emplolng a point-matching method of

rnoments.

The first example considered is that of a circular cylinder of conductivity

o = 5.8 x 10? S/m (copper) a'd permeability 7r - ¡ro , in.unersed in a unilom mag,etic

field of flux density Bo with a time hamonic vanation. ln Fig. 4-1 the magnitude of

the indnced cunent density J nonnalized to Bol(por,) is plotted versus the ratio rlr,.

for various depths of penetration â, wheLe r" the cylinder r.adius and ¡ is the distance

f¡orl the cylinder center along the direction perpendicular to the direction of tl.re

extemal field. The results were cornpared with the analytical solutiolr as tl.ìe contoür

discletization was increased in steps of 10 segments per contour stading wjtlr 40

seg'nents (see Fig. 4-2 and Fig.4-3). The solution converged 1o a 0.6g% relalive effor

for a number of 60 segments on the conducto¡ contour.

In a second example we considel a cylindrical conductor of condrctivity

o = 5.8 x 107 s/m, excited by a parallel wire carrying a cuÌTent I¡ and located ve'y close

to the conductor surface in order to produce a highly nonunifonn field, as shown in Fig.
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4-4 The cunent de'sity is conputed at points along a radial direction from the

conductor center to the cun'er]t wire. There is a good agreerrent between the results

obtained fron the SSSIE and the analytical results eveu rvhen the skin effecl is

pronounced- As in the irrst exar.nple, the cyünder cross-sectional contour was

discretized into a number orl about 60 segnents, with a constant surface cunent densiry

J, over each segment.

The numerical experiment in the first exa'rple has also been perlbnned, as shown in

Fig. 4-5 and Fig. 4-6, for a nagretic materiar conductor and a smal depth of

penetration, for which results generated by a hybrid integr.o-differ ential finite element

(IDFE) technique are also available Ir 8]. on a pc Inrel pentium 2.6 GHz, the SSSIE

results converge to a 0.5o/o average relative enor in a cpu time of 96s using 150

contour segments, while for the sane accuracy the BIE requìres 229s using 242 contow

seglrents. This decrease in cPU time by a factor of more than 2 is mainly achieved due

to tlle reduction in the required contou' discretization wben employing the SSSIE

method.

In Fig 4-7 we present conputed results for the cunent distribution in a nonmasr.ìetic

hollow cylinder of conductlvity o=3.6x107s/m in rhe presence of a unifo.n

magnetic field of flux density Bo . A number of 1 50 segrnents rvas nsed on the in¡er and

on tl.ìe o'ter contours in order to achieve a maximum relati'e er¡or of 0.g% in the

ssSIE, while the BIE melhod required 300 segments on each contour for the same

acclìracy. The SSSIE method yields approximately a 5.4 rimes reduction in cpu time as

compared to the BiE method.
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Results fol' a system of two parallel circular cyJirdr.ìcal concluctors of radii 5á .

conductivity ø=5.8x107S/m and pen.r.reabili ty p = lrt), irnrnersecl jn a unifornr

magretic field offlux densityBo are given in Fig. 4-g. The cpu time necessary to solve

the matrix equatiolr by Gauss elimination is proporlional to the cube of nulnber of

segments taken on tlle conductor contours. Since it.r the BIE fon.nulation the uumber of

unknowns is twice as that jn SSSIE, the time needed to solve the malrix equation in the

latter method is 8 tin.res smaller. However, the SSSIE fon¡ulation requires intermediate

operations (for instance, mat¡ix-matrix multiplications). Thns, when one empìoys the

same surface discretization, e.g. a nulber of 40 segrr]er]ts on each contour, the cpu

tinre required in the SSSIE procedure is o'ly about half of thai required in the BlE. o'
the other hand, for same accuracy, the number of segments r.equired for the sSSIE

solution (40 segments per cylinder) is only harf of trrat requirecr in the BIE solution. The

cPU time when using the ssslE method (23.5s) is more than 7 times srnaller thar.r that

corresporrding to the BIE method (170s), The BIE method requires more segments due

to the fact that the presence of the nornal derivative of the vector- potential int¡oduces

supplemetary enors in the computatio', whire the SSSIE involves onry one singre

cuffent ol.r the surface of the conductlng bodres. These supple'.rentary e'ors increase

substantially when the observation points are located neal the boundary, thus a higher

number of segnrents on each contour is required lor tire BIE nethod in order to obtain

the same accuracy as ln tl.re SSSIE method.

L.r next chapter, a different fomrulation of the ssslE is cousidered where the potential

in the region outside the conductor is expressed in tem.ìs of a single surface cllnent

distributed over the conductor surfaces.
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- SSSIE ; x BIE solution.
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Chapter 5

SSItr for Eddy Currents: Outside
Field Perspective App roach

5.1 SSSIE Formulation

Quasistationary flelds in the presence of solid conductors can be analyzed by using

coupled boundary integral equatiolts (BIE) which are fo¡mulated in te¡rs of two

unknown quantities over each conductor surface. These unklowns can be either the

magnetic vector potential and its normal derivative [6], or the conduction cun-ent

densily and its nomal derivative [91], or the equivalent surface electric and magretic

currents [20]. ln Chapter 4, based on an inside field perspective approach, a sìr.rgle-

source su¡face integral equation (SSSTE) was satisfied by a srngle unl<nown current

density distdbrìted over the surface of the conducting bodies, thus reducing by half the

number of unknowns and decreasing signifìcantly thc cPU tû.ne. The vector potential

inside the conductors was expressed in temrs of a single surface electric cunent density,

while the potential outside was obtained from the fomrula of three potentials for

Laplacian fields.

In this chapter, an outside field perspective approacl.r is consideted, where the vectot

poteltial in the Íiee space region is exptessed in terms of a single surface currelìt

density distdbuted over the conductor surfaces, while the n.ragnetic vector potentiâl

inside the conducting regions is represented by applyhg the Green theo¡em. The

extrinsic field approach is lnore advantageous when the field is to be computed mainl¡,



in the region outside the conductors, as ir.r the analysis of electromagnetic compatibility

and irterference. The accuracy of 1l.re results and the computatio'al efficle'cy of thìs

novel sSSIE is denlonstrated successfully by comparison with various BIE fomÌrlatlons

and with other numerical and experin.rental methods I93l,t34l,tlg] for various

conductor confi gurations.

To construct the proposed SSSIE, we consider an inñnitely long cylindrical conductor

of arbìtrary cross-sectio' locatecì rn a transverse time-han.nonic magretic field ol flux

density,Bo. The conducting materiaÌ regìon D has a conductìvity o and a pe'.'reability

p, while the region Q su'ounding the conductor is a fì'ee space of permeab ity

po The magnetrc vector poten[iar has onry a z-component paraler to the conductor.

l'side the conducting regior.r, tl.re vector potential satisfies a nonìomogeneous

Helmholtz equation,

(v')+t'))ttrl= japoCo, reD (5 I )

rvlrere Co = Ola)6¡tf ôz is â co stânt to be dete'rrined, with Z treing the classical

scalar potential, ¡2 =,¡øpo, -/=fi, ø is the angular frequency, ar.rd r is the

position vector of the field point. Denoting A' = A + ca and substituting in (5. I ) yields

a homogeneous Helmholtz equation satisfìed by 1.,

(v']+t']);'rr)=o reD (5 t)

In the region Q , the total magnetic vector potenti al A" can be writlen as

A"(r)= l'1''¡* ¿01'r, r e D" (5

where l' is the rnagnetic vector potential due to the induced curents and satisfies

3)

lhe
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Laplace equation, and lo is the vector potential corresponding to tlre external field of

flux densityBo. The continuity conditions for the n.ragnetic vector potential ar.rc1 its

nomral derivative across the interface S betweelt the conducting region and the free

space region are

The Lapìacran potential l' is assumed to be produced by a longrtudinal single-layer

of electdc cur¡ent of densityJ, located over the conductor surface,

A'(r)=fi¡,, reD"U,S

where the integral operator,{ is defined as

(s 6)

'4i J t = 
l̂7T

(s.1)

where ¡'is the position vector of the sourcÊ poiilt, n =)r - r'1, and C js ihe cross-

sectional contour. The tangential componel.ìt of the nagnetic fìeld intensity 11,' just

outside the surface ,S can now be expressed in terms of J. as

A(r)=4"(r), re ,9

1òA(r)_l òA"trl
i.-J.

Lt Òn Fo òn

\òA',(t -lH, ---:-^' -l=l+t{[lJ'' rcS
¡t0 Õr1 \l l

!\ ith thc intcgal operalor ,{ acting as

rtõr, = -+ IL.v¡! l r-llr,,ZzrI " ôn\ R)

ard the integral taken in prilcipal value.

It¡,'¡n!arc"

(s.4)

(s 5)

(s 8)

6l

(s e)



Tlre poientiaÌ A" )n tegtort D is expressed by employing the Green theoren as

^ =-t^l I+i H'02'rkRtdt'- [,t' ,,,, 
ô,.,øjr'rrnr,1r,l. 

r t D {s ]0)ol¿ Òn ¿ òn'

where 11j2) is the Hankel function of second kind and zero order. The tanger.rtial

component of the magnetic field just inside D is given by

., lAA 1òA',a,=- _ _ =-- . (5.11)
/J on p Õn

Replacing A" by A+co and taking into account therelatio'(5.11), the actual vector

potential on the surface ,9 (in the case of a smooth bounclary) iust inside D ca' be

expressed from (5.10) in operator notation as

A(r)=-n'¡1,.(!, r)o (!,*o^)r0,,., (5.r2)\2 ) \2 )

where 1is the identity operator and the integral operators Á'and ,q'" are de{ìned by

A'H,=-JLIH,(r,)Ir[2ttk?\dt, (s 13)
c

A^A=-!+Av';!uf ¡msal, (s 14)4l ôti

with the integral in (5.14) taken in principal value.

Enforcing in (5.12) the continuity of H, , i.e. (see (5.5) and (5.11))

H,(r) = H,'1'¡* ¡70,, r e 'S

and, then, imposing the continuity of ,4 , i.e. (see (5.4))
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A(r'):A'(r)+4, reS (5.16)

with14'and l' from (5.8) and (5.6), respectively, yields a singre-sour-ce surface integrar

equation in J,,

l r"f 
t^,, r{¿,l,[ t t,,q' ],q:11.,I ) t,,q',' Icl' t2'rt2-' r')' tz"' )'^

(s. 1 7)

=1i.o')^ 7"H0,. rec
'/

wlrere 110, is the tanger.rtial component of the tr ansverse timehanlonic 
'rag'eric 

fieÌd

tnteflsity Bo f po .

Applying Ampère's theorem along the cross-sectional contour C gives

-/t \

llrt,+u[t,lar -r",
¿\t t

(5 18)

which is added to (5.17) in order to specify the known value of tbe current /. carried by

the conducto¡.

After solving (5.17) anc (5.r8) fcr the unknowns J. -d cn, the total n-ragrieiic

vector potential in the free space and the conducting regrons is detennined, respectiveìy,

ÍÌom (5.3), (s.6) and from (5.10) (with (s.8), (s.ts)) in the form

A"(r)= ,aoQ) + 1$ J ,, r e I)" (s, I 9)

,tt,t=-l.n'[!t,16\,,.,oälr" o'r, A^h-lt,A,)c,,. re=D (s]0)L ir "t l
The ssslE can be extended to a system of n paralleì homogeneous conductors of

arbiTrary cross-sections; now, the surface integral equation (5.17) has the samc forun,

but with the integrals in the operato rs ,41 and ffj performed over the union
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C:CtU q U U Ç, of the contous of the conductors; when the integr ation points

in,q[ and Ifi are on the contou]- Ç of the cyhndcr r , of co'ductivity o, and

permeabilrty pr, the operators Å' and A* in (5.13) and (5.r4) are taken with rhe

ir.rtegrals performed over Ç, with p- p. and k2 = lcl = - j at¡1,o, . For each r,eC,cC,

the unl<nown constant co has a specifìc valueco,. The given cunents in trre r?

conductors a¡e fixed by n additional equatious obtained Í:om (5.1g) written for each

contorr c, u,itl.r the correspondir.rg cru-rent 1. ,

5.2 Power Losses

Once Co, 's are krown, we can calculate the total power loss per unit length for a

complete system of carrying currerìt conductors without integlâting poy.rting vector

over each cross-sectional contour Ç . Due to the fact that both the elect¡ic field

intensity and magnetic vector potential do not depeld on z, the electric scalar poteltiaì

varies lìnearly inside the conductor, i.". { = rorrrr. As a consequence, the total Joule
òz

power per unit lengtl.r car.r be directly calculated from:

PJ = IRe( . jaCol,.' t= løìrntCo /",'r (5 2i)

where the asterisk indicates the complex conjugate
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5.3 Numerical Results

A few examples are considered and the same procecrure rs appried as in Section 4.2

regardi'g the selection ofthe'u'nber ofsegrrents in the SSSIE and BIE methods.

The first exar,ple considered Ìs that of a solid circurar cyÌinder with a conductivity

o = 6 x 10i S/m and a relative pemteability l, = I , located in a uniform transverse time_

harmonic magnetic field of flux densityBo.

Fig 5-l shows the power ross per unit rength p nonnarìzed to gnBl /(o.402 ) versr-rs

(r, I 6)2 where r. is the radius of the cylinder. A numbe¡ of g0 straight eler¡ents were

used on the conductor contour. It can be seen that the results obtai ed ftorn the ssslE

agree well witl.r those obtaìned from the analytical solution. They also match those

obtained by using the hybrid integ o-differential hnite element techmque in Ilg].

The accuracy of the SSSIE method is also illustrated by considering a cyrindrical

conductor of square cross-section of conductivity . o=5]2xr01 s/m, rerative

permeability /t,. =r and. side L:4.62 nrr.r. one can notice from Fig. 5-2 that the SSSIE

results are in very good ageement witir those from the hybrid technlque in [91] over the

whole range of frequencies. As we , it can be seen trlat at hrgher frequency the r¡ethod

in [93] becomes less accurare.

The resistance for a system of two paraller circurar cylindrical conductors of radii of

5.84 mm, conductivity o = 5.84x107S/m and rerative pe..eability /1. = r, is plotted

in Fig. 5-3 versus fi'equency. Numerical resurts are presented for two cases, where the

distance between the axes of the conductors is 12 mm and 19.l mm, respectively. In the
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first case, the results obtained from the SSSIE method by using 60 straight elements per

cylindrical contour present a maxinun relative error of 0.7o/" for the whole range of

frequencies when compared to experimental data available in [34]. For the same

number of elements, the BIE method gives a maximum relative error of 2.9o/" with a

maximunr acaxacy of 2.1602 at frequencies less than 300 Hz. By increasing the number

of elements, the BIE solution does not improve significantly. In the second case, the

BIE gives inaccurate results at frequencies less than 1 kHz, while SSSIE converges with

a maximum enor of 1.5%. Indeed, at lower frequencies, the non¡al denvative of the

magnetic vector potential has very small values and causes the presence of increased

numerical errors in the hnal BIE solution. In [91] tlie authors used a hybrid solution,

that is a circuit model method for low frequencies combined with a classical coupled

surface integral equation method for high frequencies, in order to avoid this difficulty.

For fiequencies gfeater than 1 kHz, in order to achieve the same accuracy, the SSSIE

method requires 80 straight elements per cylinder, which is almost half compared to that

required by the BIE method. The CPU time when employing the SSSIE method (459s)

is about 7 times smaller than that corresponding to the BIE method (3200s), n.rostly due

to the reduction in the surface discretization.

The last example consists of a system of two parallel conductors of square cross

section with the configuration shown in Fig. 5-4. In Table 5-1, the results obtained fìom

the SSSIE method are compared with results generated by the BIE method, with results

obtained in [91] from a hybrid method and with results in [20] obtained using coupled

surface integral equations (CSIE) formulated in terms of equivalent electric and

magnetic surface cur¡ents distributed over the cross-sectional contours of the
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conductors. It can be seen fro'' Table 5-l and rable 5-2 that lor frequencies of 102. 10r

and 104 Hz, the results fi-orn rhe SSSIE and BIE nlethods conver.ge to three significant

digits and are in good agreement with the solutions obtained from the other two

methods. Although both methods require the same number of segments per conductor,

the cPU time for the SSSIE is reduced by a factor of 1.3 compared to that required by

the BIE. By pe'forming the sanre experiment for a t'equency of 105 Hz, we observe that

in order to achieve the same accuracy, the SSSIE results converge ó.2 tin.res laster as

compared to those fì'om the BIE. Finally, consìdering an ever hrgher freqr-rency (f=10ó

Hz), we obtained a sigrificant reducrion in the amount of conìpulation, the cpu time

required by the results f¡om the SSSIE to converge to three srglificant digits when

compared to the hybrid solution being 20 times smaller than that correspondir.rg to the

BIE to achieve two significant digits.

It is noticed from Table 5-1 that the cslE solution degrades as tl.re fr-equency

increases. This is due to simplified assumptiors nade by the authors of [20] where a

non-ph]'sical distribution of current i s empl oyed.

ln the following cìrapter, a reduced surface integral equation is fomulated for the

problem regarding the hollow and/or layered parallel conductors canying cunent. For

this type of problems, such a reduced integral equation is much more effìcient than the

classical BIE method and even than the SSSIE method.
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Table 5-1- Resistance per unit length for the systen in Fig. 5-4 versus fì.equency

computed by using four surface integral methods.

f lHz SSSIE BIE Hybrid [911 CSIE I2O
0 8.76 8.79 8.929 ô./ò
0' 8.86 8.87 8.78
0- 11.16 11.11 11.15 11.02
0' 31.15 31.19 30.80
0" 98.80 98.05 98.84 86.00

T able 5-2. comparison of cPU time and number of segme'ìts N used per cylinder

conesponding to the results in Table 5_1.

f [Hz]
SSSIE BIE

CPU [s] N/per
cond.

CPU [s] N/per
cond.

o' 109 320 143 320
0' 23 160 30 160

0" r60 30 160
0' 23 160 143 320
0" 19.9 152 386.s 480



Chap ter 6
Reduced Single Integral E quation
for Quasisrati onanJr Fietds in Solid
Conductor Svstems

6.1 Introduction

Quasistationary electromagnetic fields in the presence of long, parallel homogeneous

solid conductors are usualry anaryzed using coupled boundary integral equatio's

formulated in tems of two unk¡own functions defined over a the conductor interfaces,

wlrich can be elther the magretic vector potentiar and its normal derivative 16l,[] a] or

the conduction current density and its normal de¡ivative [91], or the equivalent surface

electric and magnetic currents [20]. previously, in chapte*4 and 5, novel boundary

integral equations were constructed for eddy-cunent probrems in simply or murtrply

con¡ecled parallel conductors involvrng a singre unknown surlace electric current

defined over all the conductor interfaces, which reduces significantly the computatior.r

time with respect to various coupled integral equation techliques.

In this chapter. it is shown that for a holow and/or layered sorid conductor, a

reductlon procedure from one interface to the next is possible, such tl.rat the field

solution can be obtained Íiom an integral equation for a single unl<nown lunction over

only one interface of the conductor. Then this is extended to the ana.lysis of systems of
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identical hollow and/or layered conduclors in the presence of quasistationary fìelds.

Reduction tecluriques were previously developed for simpler problems, fìrst in the two-

dimensional theory of optical gratings [65], and then in the two-dimensional scattering

of electromagnetic waves by heterogeneous dielectrics [83].

6.2 Reduction Technique

consider, for illustration, a long layered cylindncal conductor of arbitrary cross

section, as shown in Fig. 6-1 .

The conductor is parallel to the z axis and the cu¡rent density is o¡iented along the

conducto¡. The extemal magnetic field is in a transverse plane and the region D6 outside

the conductor is unbounded, nonconductive, of permeability 7ro . lnside each

homogenous conductìve layer i, of permeability 72, and conductivitydi, the

longitudinal vector potential l¡ , i = l, 2,

nonl-ronogeneous Helmholtz equation

,n, satisfìes a two-dimensionaÌ

1v2 + k2) A.( r) = u .o
I I ' 'I I

reD, (6 r)

where tr/ is the associated electric scalar potential , wjtlt ôv I ôz = coÌ?sl inside the

,')
conductor, kl = - ¡ot¡tro,, j = Ji and ø is the angular frequency.

ôV

ôz
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Fig.6-1. Cross section ofa layered conductor

75



Denoting

we have

Al=A+C- C:-J un

aÕz
(6.2)

(6 3)

(6.4)

(6 s)

(6.6)

(V'1 + ki ) Ai þ) = 0 in each cor.rductive region

v' l;1r¡ = 0 in each nonconducrìve region

with the boundary conditions (see Fig. l)

AiQ)= Ai.,Q)

L ôA;(Ò _ t ðAir,\rJ, re f,,,, i =0.1....,n_l
¡t, òn F;,t òn - ' ¡r I

Il.rstead of the classical Green representation, we use

A) \, ) = u,,l.K,r r' rO,O,' * /,, 
r!,,1U 

;,,n, " reD. (6.7)

where K,i' and K!.,are the densities of a single layer and of a double layer of electr-ic

curent, respectively,

*x1.,¡,'¡!lar',
Ònl

(6 8)

K, is the density of a sìngle layer of electric current over the outer contour f, of l),,

and Ç is the Green function
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(6 e)

with À = ir - r'l and ^vjt)the Hankel function of second kincl and zero order. Th,s, the

potential on smooth contours f,n, is expressed as

A:o) = 
t'lT;K¡ + ül,z)K)., * p,(! t o i:,,ai \x1,,, r € f,*, (6 10)\z )

where 1is the identity operator and the following contour operator notation is used :

[Aix=o !x!)G,(r,r')dt', reto (6.u)
f¡l

ia!'= [a,'1Úß4dt', rer" rc..tz)
'., ôn' P

ù,ith the integral in (6.12) taken in principal value.

Assume now that the surface operators 4 and r, exist such that

A,(rt=,a,K,. :+=ff,K.. rer, (6ll)

Then, with (6.8), the interface cor.rditions (6.6) and (6.5) are rewritten as

t;
| -! H:"tk Rt lor o ¡ o
t4

G,(r.r'¡=l
llll_tn_ I-oro. = 02zR

K:,t - It,,t K,-t, K!-, = 
1- 

À,., K,.,
þ¡

and, rhus, (6.5), (6. 10), (6. 13) and (6. 1a) yietd the recursion

(6.t 4)

Ktu = {,nK, (6.15)



where

* : _l ,., ,,*-',-'-li+14,"t'l (6.16)

on the other hand, sr.rbstituting in (6.13) the potential and its normal derivative frorn

(6.7), with (6.8), (ó.13) and (6.15), lelds the recursion relations for rhe operarors I,

and '{, , i.e.

,s, - iA; +lu:A:rr*, + ,,iltl A,,,)K,u (6.11)

(6 18)H,=-l t+:1{,'-lt.;1{:r, ,- ,.,,t1 ,a,,,fK,.,

with the operators lt{i and [t{! d,eñnedby

*( -L, *\2

lrt,'x= !*v'tÚl!!)¿¡" rcf 
o;, Õn

D^.¡j I r , ô'ìG,(r,r'\
irt)'r:--.. J'1r'r _;a:-dl'. rel',

li i" anÕn

(6 1e)

(6.20)

The evaluation of the integral operator ;iti in (6.20) is given in Appendix C. The

singularity of the second derivative of the Hankel function does not apply in this case

since the observation poìntp never coincides with the source point q.

The operators ,a,, and r,,for f,, are determined as

,s, = :.q:,. n,, = -)r - ;;tr:,

since for region D, (6.7) contains only K, and
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(6.22)

Thus, (,r, , A,and f ,, i =n-7,n-2,.,.,1, are obtained recursively from ,4, and ht,,by

using (6.16), (6.17) and (6.18), respectiv ely. ,Z,and,7f, are needed to determine K,

liom the integral equation in the next Section, K,, i - 2,3, ..., are deten¡ined

recursively with (6 15) and rhe potential A: ,i:1,2,3,...,is computed lrom (6.7) with

(6.14)

6.3 Reduced Integral Equation

The vector potential in the outer region Do is represented as

Ao(r\ , Ao.trt-'i I it9" '^-+,,,,![r" f)1.r,. ,.a (ó.2])¿7T;, 1 òti n ' ðn'\ Rll

where ,40, is the potential due to the given sources in Do. Imposi'g the conditions

(6.5) and (6,6) on l, and using (14) yields the reduced integral equation in K, over f,

A:,(rt= :.s,:,K,,. ;ry, =?:'. ;r:,)x,., e r,,

lt 
ar,.(-;, . : o:)o,fo, ¡ Ç = -\,(r), r et, (6 24)

The total cu''ent 4 inside f, is specified by enforcing Ampère's theorem arong f,

(see (6.13))



Irr, K, dt = I,
fr

(6.2s )

In the case of a system of parallel conductors, the ¡eductior.r procedure is applied to each

conductor and the reduced integral equatìon only involves the surface current densities

Kn, over the outer contours f", of the conductors a, a =7,2,...,and tl.re corresponding

constants c . For the special case of a system of ru identlcal layered conductors, the

reduction procedure is performed only for one of the conductors to deten¡ine the

operatoìs /qt and :l{t, and the reduced integral equation becolnes

fl;:an, .(-:u",t.;:A),,]x^ + C" = -A",(r) , r e1.,, a =1,2,...,m (6.26)

(6_21)

4 for homogeneous

where á,, is the Kronecker symboì, with the conductor cunents specifìed by

I f, X., at = I^, a -1,2,...,m .

J_nl

The single integral equations derived previously in Chapter

conductors are obtained as a special case from (6.2\ and (6.26).

6.4 Illustrative Examples

Two series ofnumedcal experiments are presented in o¡der to show the efficiency of

the reduced surface integral equation (RSIE) method as compared to that of the usual

coupled boundary integal equations (BIE) method [6].
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The conductor cross-section contours were discretized employi'g equal length line

segments. A simple poinlmatching techrique has been implemented, where the

operafors in (6.11), (6.12) and (6.19), (6.20) are converted into matrices wirh a number

of rows and columns equal to the number of segments on the contours f, and fo.

respectively.

To detemrine the accuracy oî the RSIE method, a single holìow circular cylindr.rcal

conductor, shown in Fìg. 6-2, was used and the numerical results generated for the

curent density have been compared with those from the exact analuical solution.

A number of 80 segments per contour is necessary to achieve a maximum error of

0.560/o for the data generated. The same number of segments fo¡ the contour of each

interface has been used for all the conductor systems in Fig. 6-2 and Fig. 6-3 to obtain

results of about same accurâcy. For systems with mo¡e than one co'ductor the accuracy

has been determined by increasing progressively the number of segments per contour.

As seen in sections 6.2 anð, 6.3, in the RSIE method only multiplications of NxN

matrices, where N is the number of segments per contour, one jnversion and sone

matrix-matrix additions and matrix-vector multiplications are required for each

interface, with the reduction procedure performed for onry o'e body, as well as a final

(mN)x(mN) matrix inversion. The amount of computation r.reeded is substantialry

smaller than that in rhe BIE, where a (mnN) x(mnN) matrix .inversio'is needed.

In orde¡ to illustrate quantitatively the efficiency of the RSIE method with respect to

that of the BIE method, systems with one, hvo and th¡ee identical conductors, having,

respectively, the configurations (1), (2) and (3) shown in Fig. 6-2 and Fig. 6_3, were
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considered. The point-matching method of moments code was written in Matlab and a

Pentium 4 - 2.5 GHz, personal computer has been employed. The computation time

required for the reduction procedure along with tlle constructjon and solutìon of the

reduced matrix equation, i.e. the difference between the total cpu time and the time

taken to generate the entries in the matrices corresponding to the operators in (6.11),

(6 -12) and, (6.19), (6.20) in the RSIE metrrod, has been compared wirh rhe computarion

time required to solve the sparse matrix equation in the BIE method. For the systems

with one, two and three hollow conductors shown in Fìg.6-2, tlre above computation

time in the proposed method is, respectively, 2.2, 9.7 and, 15 ti'-res smaller than that

required in the BIE method. For the systems with one, two and th¡ee hollow composite

conductors shown in Fig. 6-3, this computation time is, respectively, 3.1, r6.9 and 3g.5

times smaller in the RSIE method presented than in the BIE method (see Fig. 6_4).

It should be ¡emarked that by using the same discretization as in the RSIE method,

i.e. 80 segments per contour, the BIE metliod yields an accuracy ofonly 1.16% instead

oî 0.56% specified above for the fonner method. To achieve the same accuracy, the

number of segments per contour should be increased to l3g in the BIE method, which

yields a substantially increased computation time and shows that, in fact, the efficiency

of the method presented he¡e is even higher than what was mentioned above.
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6.5 Conclusions

A reduced surface integral equatior.r formulation for quasistationary electromagretic

frelds in the presence of hollow and/or layered parallel conductors carrying curent

located in a given inducing transverse magnetic field has been presented and rts high

efficrency wi tli respect to existent coupled boundary integral equations fomulations has

been dernonstrated.

The high efhciency of the proposed method rs due to the fact that the RSIE requires

the determination of only one unknown function defined or.r olly one interface of the

conductor, while in the coupled integral equations method two unl<nown functions

defined ovel all the conductor interfaces have to be determined. Moreover, for the same

accuracy, the latter method requires a denser discretization than the former. For systems

of identical hollow and,/or layered conductors the reduction procedure needs to be

performed only once, for one of the conductors, which explair.rs the extremely high

efficiency cf thc method presented. As weli, tl.re calculation of the field quantities at

various observation points requires less effort in the reduced integral equation modeJ

since the representation in (6.7) is simpler than the classical Green representation used

in the usual coupled integral equations models.
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Chapter 7
Conclusions

ln chapter 2, a srngle-source surface integral equation has been applied for the

solution of transverse magnetic (TM) and transverse electric (TE) wave scattering by

lossy dielectric bodies, respectively. The accuracy of the ssslE method has been

demonstrated by conrparison with the exact anall4ical method and volume integral

equation technique for a lossy dielectric cylinder for both rM and rE wave scatterins

problems.

ln chapter 4, a' inside field perspective approacl'r of the single-source surface

integral equation method has been developed lor the analysis of eddy cur¡ents in

cylindrical conductors, all the field quantities of interest being determined in terms of

only one surface current distnbuted over each conductor boundary. Its accuracy was

tested for various conductor confìgurations for which exact analytical solutions are

available. A large range of frequencies was considered, including the case ofstrong skin

effect. The computational efficiency with respect to existent coupled surface integal

equation formulations has also been demonstrated, substantral reductions in cpu time

being achieved, especially for multi-conductor systems.

A new formulation of a single-source surface integral equation 
'rethod, 

based on an

outside field perspective approach, has been also constructed to model quasistationary

fields in multi-conductor systems rn chapter 5, which is more efficient to be used for

calculating the fields in the region outside the conductors. This technique provide



accurate results over a large range of frequencies, with a significant cpu time reduction

when compared to the coupled boundary integral equations method and othe¡ numerical

and experimental methods avallable in the literature.

ln chapter 6, it was arso demonstrated thal for a lio ow and,/or layered solid

conductor a reduction procedure from one interface to the next is possible, such that the

field solution can be obtained from an integral equatior.r for a single unj<nown ñlnction

over only one interface of the conductor. The number of arithmetic operations involved

ìn the matrix-n.ratrìx multiplications and the matrix inversions increases Iinear.ly with

the number of interfaces, while lhat for the solution of the matrìx equation ir.r the

coupled boundary integral equation formulation is proporlional to the cube of the

number of interfaces.

Moreover, such reduced surface integral equation formulation has been extended for

systems of multiple hollow and/or layered parallel conductors carying current located

in a given inducing transverse mag'etic field and analysed with respect to the existent

coupled boundary integral equations formulations in ten¡s of efficiency. The method is

extremely effrcient, the reduction procedure being required only for one of the

conductors and then duplicated for the others. For systems of identical layered

conductors, the reduction in the computational effort is spectacular. For instance, in the

case of three identical conductors with 1wo layers of material each, the cpu time lor the

RSIE method was 3 8.5 times smaller than that required in the coupled BIE method.

A mathematlcal formulation for the single-source surlace integral equation has been

developed for solid conductors of revolution in the presence of quasistationary

axis)'rnmetric fields (see Appendix D). The sSSIE has a similar form as the one
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developed in the previous fonnulation in chapter 4; however it involves dilferent t)?e

of integrals specific to thrs type of problem, the uÍ .nown being the srrface cun ent

density distributed along the generator contour ofthe axisynmetric conductor.

7.1 Recommendation for Future Studies

The RSIE method could be applied to determine eddy currents in induction machìnes

having a multilayer rolor stlucture (with 
'o wûrdings in the rotor as in conventional

induction machines). This type of machine has concentric sold layers of hrgh electric

conductrvity and high magnetic permeability, therefore are ûlore robust than the

classical squirrel-cage machine and are well qualified for use in a harsh envirom¡ent or

in high speed applications.

one other application is the inductive heating of cylindrical machine paÍs sucll as

rotors and rotor retaining rings which can be modeled as cylindrical shells. To find the

solution of eddy currents in this type of problem, either the single-source surface

integral equation method (SSSIE) or the ¡educed single integral equations (RSIE) could

be used.

The reduction technique presented in this thesis may be applied also to anaryze the

magnetic field distribution and power losses for EHV class GIS single phase and three

phase bus bar design. lt is very important to predict the temperature rise in the current

carrying conductor and in the tank of the GIS bus ba¡ caused by the induced eddy

curents.
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The SSSIE was formulated for the solution of wave scattering by tluee-di'rensionaJ

single dielectric objects first time by Marx [52] and computed results fo¡ a dielectric

sphere were generated by Yeung [94]. The SSSIE formulation could be extended for the

solution to general three-dimensional eddy current problems for single or multrply-

Iayered conductors of arbirrary tseometries.
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APPENDIX A

surface Integral operators for SSSIE formulation of wave scattering
Problem

The sSSIE fomrulatio, for TM wave scattering problem is rmpJemented by using a

point-nratching method of moments [30] ìn 2.1. The cylinder c¡oss,sectional contour .!

is discr etized into a nu'be' of straight segments Ial], or length Â/ , with a cor.ìstâr.Ìt

surface current density over. each segment.

By usi.g a pulse-expansion method of moments approach, tl.re surface i'tegral

operalors arc approx jmated as

a:,=I[c:] L.lI L)L_u )i t.- Jt

r'x = Ile"l t'lt)l l; L l¡

n"'x =\l ç'l ¡,1¿)L I, r t¡

øÍ"=flrril I'lw z)L uJiL it

the coefficients l,a:l lç."1L ul¡-L- l¡'

(A 1)

(A 2)

(A 3)

(A 4)

lr"'l an¿ I yî1 u,"L -.1¡ L " -.lt

The fomulae for calculating

given below [80]



r - I t:, Iu[2'(t,otr r,1rat'.

L"u l' = 

L -*,li',', u . ¡o zsttz+) - ¡or 5e r s4e4 rìr (¿^/)),

r "r I + ¡u'0"(ttlr r't¡ar'.

'"' 
= 

L - i^';riì: o r,., o zst ozt) - ¡ o t5e I s4e4 rn (À^/))

" 
- lo,l, 

I

r e [ar], ]

" 
- to,],1

'. [u], ]

(4.5)

(A 6)

t _,,,j I + ! ni',rtr-r'ltk(ù' R)(t,. ,.o[ul 
I

Lo l, =l -tn,t ] r,r.rr

Lo, ,e[arl 
]

f¡l
r-..1 l-t^ I ,1,,V,t,_,,¡t(,, h)at,. ,ø[nr] 

|

Lrro _1, ' l l^/i (4.8)

I o, ,. [ar], ]

where ¡ and r' are the position vector of the observation poinl and source point,

respectively; ku - r'tffi and k - a$i are the wave numbers corresponding to the

free-space and lossy dielectric, respectively; e the complex pennittivity and /1á2) the

Hanl<el function of the second kind and order zero; fr:(r,t"')l), -r,f , and ã{') i, the

Hankel function of the second kind and order one. The regular-patch contributions (i.e.

, e[lt],) are obtained through the numelical evaluation of the regular integrals (A.1) to

(A.a). The self-patch cont¡ibution (i.e. re[l/] ) foL (A.r) is obtai'ed by analytical

integration of the small angle approximation of the Hankel nctiolt,

u[,\ ç,n¡=t-a,Qtn)2 - t(i^(i*)(t-a,(kq,)+ p, + ø,gn),) (A e)

l0l



with ar = 0.24999997, Å=0.36746691 and pr= 0.06728818 [l].



APPENDIX B

Surface Integral Operators for SSSIE formulation ofEddy Current
Problem

The SSSIE formulation for eddy current problem is implemented by using a point_

matching rnetl.rod of nloûlents. The cylinder cross-sectional contour c is discretized

into a nur.nber of straight se$nents Ia/]- of length a/, with a conslant surface cLr¡renl

density over each segment.

By using a pulse-expansion method of noments approach, the surface integral

operators are approximated as

ax=lfal[x]

rr=\frl[xl
i

.uå.=Il.u;l,v),

,4''->1.4'1,þ1,

whe¡e the coefficients, [,s],,1t{1,, [ø], -o lA'l *" calcutared as

(B 1)

(B 2)

(B 3)

(8 4)

r_, l-+¡u[')1rn¡ar,, rølm)
lÅ1,=l [^/],

l- t ttt ((o.zs + i 0.281 e24) - j o. I 5e 1 54e4 h (È^ r)), r efttl
(8,5)
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where 1? : lr - r'l with r anð. r' being the position vector of the observation point and

source point, respectively; k=J-lopo, j =Jj, a.r the angular frequency, a ancl

p are the conductivity and permeability of the conducting rraterìal, respecti'ely; /?j2)

the Hankel function of the second kind a'd order zero and ãì('?) is the Har*el function

of the second kind and order one. The regular-patch contnbutions (í.e. r æ[U]- ) aLe

obtained tluough the numerical evaluation of the regular i'tegrals (A.1) to (A-4). The

self-patch contribution (i,e. / € [A/]r ) for (8.5) is obtainetl by analytical ir.rtegrarion of

the small angle approxirnation of the Hankel functio', same as i'Appendix A. The self-

patch contribution (i.e. re [al].; ror (8.7) is calculated by considering the distance

(B 7)

(B 8)



I=Ja" r;)'-(y-y,,f fi'om the nid-pornt (x,,,,y,,,)of tt'ìe segrnenr [al]- to an

arbitrary point (x,y) and integrate by using the formLrla ltnlr4at = tnH ¡le]

I,q)=h,- !tn,trar-*l,,"Jlll 
o' '.=? \/

-., lotl 2rl. e 1l rr z 2r^l 
h=2n (B 9)



APPENDIX C

Evaluation of the Integral Operator pott!

The Green function coresponding to the conducting region ( o, * 0 ) is

c, = -l u['t ¡4n1

with ,R = lr - r'] and ^ÈIj'?) the Hankel function of second kjnd and zero order.

This leads to the expression

.2^ ^)
*l:L = _+ *_9 n[,\ 6,n¡

and by reptacing ,c., s r,', 6.ro.Ï¡o o". "r,l,"rt"

i,,i- = fr J"r(,)qIt 
\9dt'

where the secot.rd derivative of the Hankel function can be expressed as

(c l)

(c.2)

(c 3)

# r[', Ø,^)= "l[*", 1r,n;)1ra ;,;] ;

=(#rr(i.,R))(rÊ,o¡1,a r).(*r;&,R))!(n ñ')''o'

By using the Bessel functions propedies

! nlt t ml = -H,2 (kR\k
AR

(c 5)



oüe obtait.ts:

t!L't,.o) . , ò ut.tt tn,t _ t. kRH;)'1t,n¡ ttl 'lttn¡ .t- -.

-ôR, 

n 
òRnt lKt( )---t( (( Ó)

!,¡A ,¡ fì'om (c.4) could be calculated as

ð , . . , í, ,i -(í, n\(;i n¡

ô,,1R 
i,) rc.7r

By replacing (C.5), (C.6) and (C.7) in (C.2) we obtair

atu'o')(t,Lll __kkRHto'))&R\- u!2trknt,. í, t¡'-l¡ i¿\( n'.n\
ônòti nr1¡ t,)(R fi') *ul''1m¡--.;-'

, I ¡ ,i'-z[; Âlr,¡' nll
=w|(*nt' __ \_r' -l_n,u[,,1rnt(,; n)(;,n) rc.arLnl"



APPENDIX D

Single Integral Equation for Axisyrnmetric Problems

D.1 Änalytic Formulation

I
Fig. D- I . Axisymmetric conductor in the presence of a cur¡ent-carrying turn.

f'lr

H/



Consider an axis)mmetric conductor of arbitrary shape in the presence of

quasistationary magretic fìeld produced by a coaxial tun canying a sinLrsordal (AC)

cunent 1. The n.ragnetic vector potential ,4 has only u þ cor'tlponent.

A=ôAø: âA u"well as lhe elecrrìcal field intensitl,, n =$nr: ôe

By writing the expressiou (3.26) rn cyhndrical coordinates, the electrjc field

conlponents are obtained

. | ò1./E-- jaA-Vlt jaA-- paþ

àvE^- - =0'òp

^ôv]: =--=ll

(D 1)

(D 2)

(D.3)

Fron (D.2) and (D.3), it can be seen that the electric scalar potenlial Z could only

depend on I inside the conductor. Due to the fact that both E and A aïe no' dependent

of þ, V has a linear dependence of I inside the conductor., as shown in [89]:

rr (p) = v 1o¡ + Llv Q"¡ - v 1o)) (D 4)

For the problem considered here, V (2r) - Z (0) , therefoLe the potential is constant and

YV =0 (D 5)

Referring to tl.re derivation in Chapter 3 and using the relation (D.5), expression (3.30)

can be rvritlen for the axlslmmetric case as

Y x(Vx A)= po(-¡r.e)
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The left-hand side temt of (D.6) can be calculated fi-orr tire vector identity

Vx(VxZ)- V(V A) V'1A and using the relarion (3.23). This leads to a

homogeneous Helmholtz equation inside the conductor satisfiecl by the magletic vector

þolential A

(v'1+t'),t1,¡=0. r e D (D.7)

where /r2 _ _ io/,t(, .

Outside the colductor, in the free-space regton Q. tlte veclot-potenlial ,4" salisfìes

Laplace's equation

v'1,t"(r)=0, reD" (D.8)

The continuity conditions for the vector potential and lts nomal derivative on the

interface,S between the conducting regiorr ar.rd the fiee-space re.qion are

'We 
fírst assume to have everyr¡vhere the same conducting r¡aterial as in D_ The actr¡al

A in D is produced by a single layer of electric current of density,Ir, havir.rg an

azimuthal f direction sarle as the vector potential

A(r)=A"(r), reS

!ôA(r) _ 1 aA"(r)

lt õn lro ôn

u(,) = # lt,(r¡#^, = fi I,t,{,')ô f*, r eDU,s

(D e)

(D.r0)

(D.11)

il0



oo= L .¡"y¡!'ll,¡,,t,, (D 12)4¡r "' ' R

wlrere R =V - r'l and r'isthepositionvectoroftlresourcepoint.

By talring the scalar product wr th tLnit vector þ in both terms of the relation (D. 1 2), we

obtain

' ikt ^ ^

þ,tA= :' Js(r'): ^ þ þ'rts+/f K

and

(D.13)

,t(r\=l[1r1,'¡''i!,r ror6'a, . (D.]5)
4., ,

Subsequently, the vector potential I is expressed as

t(r)= tJ, (D.16)

by means ofthe integral operator A acting as

uØ-#lt,(\e î cos(þ-þ,las,. (D.14)

For convenience, we choose þ=0 and (D.14) becomes

with tl.re integral taken now along the generator contour c ar.rd containing the:il/ integlal

in I' defined as

.Ars = þlLr(r')wat
C

n -'i,ffi,",ø,o,aø,

(D. t 7)
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The magnetic fìeld intensity, in the conducting regionD, coulcl be -'itten as Íollorvs

(D.l9)

The goal is to find the expression of the tangential compo'ent of rlon rhe surlace S

just inside the conductor in tenns of the nomral derivative of the vector potential. Ll

order to do this, relation (D.19) requires some sir.nple manipulations

, = ),,,, 
^,= )lv 

- ,tø) lrtv,t t ø

H, (,) = f,; lva " ô]= !v,t (ô " 
;)

H,-!Jr',tfJ,

where tlre integral operatot !{ acts as

i{rs = IJsþ,)u,al
C

with the ir.rtegral taken in principal value and ft', the integral in l, , defìned as

where i is the unit vector tangential to the generator curve c of the conductor. Since

ø. ¡ = ;, and VA fi: y'' 
. D.2O) could be writte. as'ãt

(D.20)

(D.2 r)

(D.22)

*,='T ++(z!!)*,6o,oø, (Dz3)
,t-oan ðnl R )

By using the Green theorem, the potential ,4" in the fi-ee space region e can be

written

A" (ò = 4",, (4 - +ll+.0, ø, f as, - J.a" {,,).", ø, $ [ ] ) 
or,l
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where r € De , the potetitial vanishes at infinity, and 1,,,,.,, is tl.re potential producecl by

the current caffying tum in ùee space having an azimuthal / direction whjch has the

expression

(D 2s)

By using (D.9), (D.10) and (D.21), the porential.{ on the surface .!, just outsicle the

conductor, is obtained fr orr (D.24) as

.2¡r, ttal 'i a cos þ'd þ'
o' ã rlo' ra) -zpacosþ'+(z-z)2

A"(,) = .t,-(r)+ nil,.( ! t. 4,)o, r e,s
\l )

where 1is the identity operator and the operators ,5" , ,S;' acting as

A|H, = t'o ln,(r')ttoat'
C

Åä'A= IA(l)n4itil
C

I COSA D Õ¡1)

" ..J. 4¡r R

M:= I ll !)cosøPttø
" ..r^ ôr' \ -R / 4n

@=u

(D.26)

(D.21)

(D.28)

(D.2e)

(D 30)

Substituting 11, frorr (D.21) and enforcing in (D.26) rhe boundary condirion (D.9)

yields a single-source surface integral equation satisfied by _/,

lu(),.,).(-i'.u')"1/s =-4"',, rec (D31)
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The rragnetic vector potential inside the conductor is simply calculated from (D.ló)

and the cunent density is detemtined as

J - -jooAJs (D 32)

D.2 Numerical Implementation

The generator curve C of the axislmn.retric body is discretized into a sulficient

number of straight segrnents with a constant surface current density J5 over each

segment. The surface integ al operators ,5, l{, h' , Å; become matrices where the

number of rows and the number of columns are given by the number.of segments of tl.re

contour C The contribution at a point oìl the generator cuwe is given by all the other

source points, each of them being concentrated at the center of the correspondrng

segment, except where the source point corncides with the obsetvation point, in which

case the integrals are taken ir.r principal value.

Araly,tical solutìons are oblained for the solutions of integr-als g4a and qlo' in tems

of complete elliptic integrals of first and second kind. But, there are no analy.tic

solutions for the integraìs gl and 94' , therefore they have Lo be calculated nun.rerically.

Following the approaches found in 1721, for low and high dimensionless frequencies,

power expansions in terms of elliptic integals and asylptotic series in 1emls of

r¡odified Besseì functions are used, respectively.

114



The surlace integr al operator

21t
t COSO D

'i,,1 = | _Ld (/)'!anR

could be evaluated by using some mathematical manipulations as in [71 I

(D 33)

(D 34)

(D 35)

(D 36)

(D.37)

(D.3e)

(D.40)

R=lr -r,l

r = pcosþi+ psinþ jt + zî

¡'- p'cosþ'î+ p'sinþ' jt + zi

p = (pcos d - p'cosl') i + (psin þ - p'sinþ') jt + (z - z' ) i

For convenience, by taking I = 0 one obtains

By denotrrig

n' =, ,!fd, .., =@'
\P+P)+\z-z) a

and making the change of va¡iable

þ'=r-20
dþ' = -20
cosþ'dþ'=2cos20

the integral operator fufo canbe expressed as

p2 cos2 4 + p'2cos2þ'-2pp'cosþcosþ'+ p2sinzþ + p''sitt2p'+(z-r,)2



t
n4,= ,'E-l',-o4l'i' *qpp' nll ,t, )n nt.to1. ' o

and subsequently

.M úl(, ¡'1'l ¿e -,,.,t|l\'2IIlt-r,,"+
- .filf ,_ "\ I
= 

'ìEll'- 
'' 

)o1t't-rt't'tl

_l

| ..lt - l,' sin2 oae 
!.;l - 1D.42)

!f{,,.u,,] (D 4r)

where K(,1) and E(2) are complete elliptic integrals of firsr and second kind,

respectively.

The integral opelator Ø is expressed as

)1 ''!¡n "'dó' À l'l 2sir2 o

''4 [e'"cosøP '

! +"n Jpp z" L[=,,n 'u-Jr

^', -,where r = 
tJt(!^pp 

and cannot be evaluated analytically. Its nu¡nerical evaluation
).

follows the method derived by Priede and Gerbeth [72] .

Fo¡ low frequencies lnl << t, ttre exponential functiolr in (D.12) may be expanded in

power series of ¡r and this yields

, 4oo' .-L j¿ sn'u

, =-:!:çU\( , --!,t,)
JPP'?o "t \" tI+

(D 44)



' 'lr',. ., ^ 'd lt: tt=)l-rlt,, l11 -) siir2A) : 't0=),'' '' '. t 0. 1.t.. . rD45l
o ' lt; . n-)t

,, - 
cll nn,r,,- i (D.46t

For odd n, by using the theory ofelüpticaÌ integrals 142], the following recursion is

obtained:

ri,, =ijt, - ^,)ti,, #(, - 
^,) 

t;

with 1ó = nf 2 and t; =(z- t"'z),¡t

For even indices one obtains

(D.47)

(D.48)

with II = K(2) and If = E(7). By performing the summarion of rhe se¡ies (D.13) until

l"l" f"t <tOt is satisf,red, a relative error less than I 0-5 is obtained.

At high û-equencies, when lrl >> t, (D.44) is evaluated asynnptotìcally by

employing the Laplace method [72]. Substitution of cosd = ¡ in (D.44) yielcls

,0,""'p(-rr[t * p,i 
) { r -2,, )

= ' | ' ' ' .!'
J,| ¿ ,l; n ,1J,, "'

(D 4e)

where s = *[ - À' and p = ).1 'lt J'
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The exp'essìon tf Jt-t) = lf (nz+tiz) f (G*t)r,^ can be expanded and by shifti'g

the upper liÌnit of integrati"r," -0",", we obtain

2 'r ,f,_ r¡ sin¡x 1' ], ç r(rn +r t)lsinJr.i 12"' ,.
u7J""p( 

scoshr)[r_., p ) ¡1"_^ç;lî) 
dr

- r +1:il!( , 2, l

J¡,:,.G,,,' 8" ¡"" P'1 
t'À 

)

by usrng an addjtional substitution t=stnhxl þ.

The integrals from (D.50)

1,,, = 1."p1-".osh; )sìnJr2"' *rr='(n'! ')1i l"'r,,, (r) (D.5r)
o {7t \s/

expressed in tems of the modified Bessel function of the second kind of order rz,

,(,,, (r) , tl ], can be calculate d for tn>I by the recursive relation

t,,,t, = (zm +t)(zntt,, +(znt -t) t,,,,,)f s, (D.s2)

There is no signifìca't difference in the carcuration of the gadient of (D.44). lt

can be detemined in a similar way by using rhe relation dl.f cls =_sl.uf em+t)

derived from Bessel functrons properties l1l,1721.

(D 50)
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