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Abstract

An integral equation, satisfied by a single unknown surface current density 1s
formulated for the two-dimensional analysis of the quasistationary time-harmonic

fields in the presence of induced solid conductors,

This is an alternative to the coupled boundary integral equations formulated in
terms of two unknowns, the magnetic vector potential and its normal derivative over

each conductor surface.

The accuracy of the results computed by the proposed solution method is
demonstrated by comparison with results from the exact analytical method and those
obtained from the existing boundary integral equation solutions. Significant

reductions in the computation time are achieved.

A new surface integral formulation for quasistationary electromagnetic fields in
systems of multiply connected and/or layered solid conductors leads to an equation
satisfied by a single unknown function defined only over one of the conductor
interfaces. The amount of computation needed for the field solution is substantially
smaller than that required by existent coupled boundary integral techniques where two
unknown functions over all the conductor interfaces are used. For systems of identical
hollow and/or layered conductors, the method is extremely efficient due to the fact that

the reduction algorithm needs to be performed only for one of the conductors.

A single-source surface integral equation for eddy current problems is also
constructed for axisymmetric conductors. Due to the axisymmetry, the dimensionality

of the problem is reduced by one.
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Chapter 1
Introduction

L1 Overview of Methods for Eddy Current Analysis

and Obijective of the Thesis

Electromagnetic field analysis of eddy current phenomena has been of interest in
many practical applications in the power area related to electric motors and generators,
transformers, bus bars and other devices. These currents may lead to undesirable
effects such as higher power losses and heating. It is very important for engineers to be
able to predict these effects in order to design more efficient power devices. The
phenomenon whereby the induced currents decrease rapidly from the surface of good
conductors is known as skin effect. The uneven current distribution in a conductor
causes its resistance to exceed the dc value, especially at high frequencies and leads to

higher losses.

Before the age of fast computers, analytical methods have been used to model eddy
currents in induced solid conductors. The problem of an isolated wire was solved by
J.C. Maxwell in 1873 [56] and Lord Raleigh determined the skin effect in an infinite
plane conductor in 1886 [46]. In 1922, Manneback published a valuable paper, in
which he gave the solution for a skin effect problem by means of a volume integral
equation [48]. On the basis of his solution, Dwight produced a series of formulas and

tables for calculating eddy currents for various conductor configurations [22].



Following this earlier work, many other problems have been and continue to be treated

by analytical models, see e.g. [7], [8], [32],[36], [44], [79], [88].

As personal computers became more popular, various finite difference techniques

(FD) were developed for computing eddy currents [44], [68], [38].

Since the late sixties, finite element methods (FEM) have emerged as powerful tools
for solving many practical engineering problems. Exhaustive reviews of such methods
for two-dimensional and three-dimensional eddy-current applications can be found in
[41} [17]. In finite-difference and finite element techniques, the entire conducting
region 1s discretized and the respective nodal unknowns have to be determined

throughout the region which requires a large amount of computation.

Eddy currents in homogeneous conductors can also be analyzed by using coupled
boundary integral equations (BIE) in which the unknowns are only distributed over the
surface of the conducting bodies. The BIE are fonﬁulated in terms of two unknown
functions defined over all the conductor interfaces, which can be either the magnetic
vector potential and its normal derivative [6],{74] or the conduction current density and
its normal derivative {91], or the equivalent surface electric and magnetic currents [20].
Thus, the dimension of the problem is reduced and savings in computation times can

be realized.

The objective of this thesis is to construct a boundary integral equation for eddy
current problems in simply or multiply connected parallel conductors in terms of a
single unknown surface electric current defined over the conductor interfaces, which
reduces significantly the CPU time compared to the coupled boundary miegral

equations.



Consequently, for systems of parallel hollow and/or layered solid conductors, fhe
objective is to develop a reduction procedure from one interface to another, such that
the field is obtained from an integral equation for a single unknown function over only
one interface of the conductor. In the case of identical hollow and/or layered conductors
the procedure 1s performed for only one of the conductors, then applied to the other
conductors, thus resulting in a substantial reduction of the computational effort

required.

Furthermore, a single-source integral equation for axisymmetric conductors in the
presence of quasistationary magnetic fields is also formulated and its numerical

implementation is indicated.

1.2 A Brief Review of Integral Equation Techniques

The application of integral equation methods to boundary value problems for
Laplace, Poisson and Helmholtz equations has been developed by several

mathematicians and physicists since 1903 [24], see e.g. [33], [47], [69], [3].

Various formulations of and solution to two-dimensional electrostatic and
magnetostatic field problems have been solved using Fredholm integral equations
instead of partial differential equations as in finite difference and finite elements

methods [73], [28].

In 1974, Fawzi and Burke developed coupled surface integral equations for the

analysis of eddy currents in a cylindrical conductor immersed in a transverse time-



harmonic magnetic field {23]. Their formulation was similar to that known as Miiller-

type formulation used for solving electromagnetic waves problems [69].

In the same year, by using Fredholm integral equations of the second kind, Duffin
and McWhirter formulated the two-dimensional eddy current problem in terms of a
double layer of equivalent surface sources [21] and five years later McWhirter et al
generated numerical results for the problem of a conducting half space with an adjacent
infinitely long wire carrying current [67]. Their formulation employed a Laplace
equation in the region outside the conducting media instead of a Helmholtz equation as

in the formulation previously developed by Fawzi and Burke.

In 1982, Mayergoyz introduced a'. new approach for modelling three-dimensional
eddy current problems {58] based on a BIE method he developed in early 70°s in the
former USSR, which was unknown at the time to the North American electromagnetic
community [60]. The coupled integral equations obtained were satisfied by ficticious
unknown surface currents and magnetic charges and numerical results were given in
[59] for skin effect problems. Couple of years later, Mayergoyz came up with a
boundary Galerkin’s approach to the calculation of eddy currents in homogeneous
conductors subject to an external magnetic field, obtaining two coupled surface integral
equations with respect to the electric field and the magnetic scalar potential, without
providing numerical results [61]. An H-¢ formulation was developed by Badics in 1988
[2] where point charges located around the non-conducting region and magnetic current
point sources placed around the conducting region were used for modelling 3D eddy

current problems by means of coupled boundary integral equations.



In 1982, Konrad published a very interesting paper in which he developed a novel
integro-differential finite element approach to current-carrying conductor problems by
reformulating the time-harmonic diffusion equation [40]. Rucker and Richter
transformed the non-homogeneous Helmholtz equation resulting from Konrad’s
integrodifferential formulation into a homogeneous Helmholtz cquation via an average
magnetic vector potential in order to use a boundary integral technique [74]. The
boundary integral equations were formulated in terms of two unknowns, the magnetic
vector potential and its normal derivative over the conductor surface. Numerical results
were presented m this paper for a circular cylindrical conductor carrying a sinusoidal
current and the accuracy of the boundary integral technique was evaluated by

comparison with the analytical exact solution.

A similar formulation followed for the analysis of skin and proximity effect

problems in multiconductor systems published by Cao and Biringer 16].

In 1985, Lean handled in a different way the time-harmonic diffusion equation by
using dual distributions of simple-layer sources on the interfaces between conducting
and non-conducting media [45]. This technique allowed solutions to be decoupled once
the equivalent sources have been determined, since the fields in the interior region or
the exterior region can be expressed in terms of the corresponding source layer.
Numerical results were given only for the problem of a single conductor carrying

current and the extension of this technique to multiconductor systems was discussed.

A few meonths later, Djordjevic et al presented a coupled surface integral equation
technique for the analysis of systems of cylindrical conductors of large finite

conductivity located in a uniform {ransverse magnetic field [20]. The skin effect



problem was formulated by introducing equivalent surface electric and magnetic
currents on the mterfaces between conductors and dielectrics which were determined by

using the boundary conditions satisfied by the tangential electric and magnetic fields.

A hybrid method was developed by Tsuk and Kong for the calculation of the
resistance and inductance of transmission lines [91] . A coupled circuit approach was
used for the low-frequency analysis, while a coupled surface integral equation method
was used for the high frequency analysis. The BIE method used was very similar to the
one derived in [74], 3], the only difference being that the coupled surface integral
equations were expressed instead in terms of the conduction current density and its

normal derivative on the surface of the conductors.

Several boundary integral equations formulations have been developed for three-
dimensional eddy current problems in terms of electric and magnetic surface current
densities [90], magnetic vector and electric scalar potential [75], and reduced scalar

potential [35].
1.3 History of the Single-Source Surface Integral

Equation (SSSIE)

The single-source surface integral equation was introduced for the first time by
Maystre and Vincent in 1972 [62] for the problem of a transverse magnetic (TM) wave
scattering by a homogeneous dielectric cylinder. Only a single unknown current was
employed on the surface of the cylinder instead of two unknown (electric and magnetic)

surface currents as in the classical coupled surface integral equations. The single-source



representation of the scattered field (radiated from a single layer of electric current) is
constrained through the boundary conditions by the Kirchhoff integral representation of

the field inside the dielectric cylinder.

Much of Maystre subsequent work on this new technique was in the ficld of optical
gratings. He applied the SSSIE method to obtain numerical resulis for the wave
scattering from a lossy periodic grating [63]. Then, Maystre extended the previous
formulation to the problem of wave scattering from periodic dielectric coated gratings,
by means of a single unknown current density on the interface between each dielectric
coating [64]. By using a linear relationship between the unknown currents on each
layer, the solution was obtained in a recursive way, instead of solving for all the
unknowns simultaneously. A summary of this integral method'c.an be also found in

[65].

Wirgin obtained another SSSIE for wave scattering by a cylindrical bouﬁdary of
arbitrary shape by using interior and exterior Green functions satisfying Neumann
condition on that boundary [92]. However, these exact Green functions would have to
be determined for an arbitrary surface by solving additional mtegral equations which is

computationally very expensive.

Two different single integral equations have been developed by DeSanto for the
problem of scattering from a rough interface separating two semi-infinite homogeneous
media [19]. The first integral equation was derived in terms of a generalized reflection

coefficient, and the second one in terms of a generalized transmission coefficient.

Marx extended the formulation given by Maystre and Vincent in [62] to three

dimensional time-harmonic and transient wave scattering problems [50}, [51],[52]. In



[50], a mathematically treatment within the coniext of the theory of distributions was
developed, while in [52] the delta function and Green function are used in the
appropriate versions of Green’s theorem. In 1989, Marx presented numerical results
obtained by applying the SSSIE method to the problem of a TE wave scattering by an
infinite homogeneous dielectric cylinder and a perfectly conducting cylinder,
respectively, located at a plane interface between two semi-infinite dielectric media

[53].

Subsequently, numerical results were computed for the problem of wave scattering
by a cylindrical dielectric wedge in [54] . The results for the fields near the edge of the
dielectric wedge were strongly divergent, since the scattered field was modelled in
terms of a single electric surface current. Later, Marx developed a so-called “hyper-
singular integral equation” (HIE) [55], where the scattered fields were modelled this
time in terms of a magnetic surface current which yielded a better convergence due to

the fact that the electric field is not divergent near the tip of the edge.

Glisson reformulated Marx’s SSSIE method for the electromagnetic scattering from
homogeneous dielectric bodies {25] via the equivalence theorem [29] with the hope that
his formulation would be more familiar to many readers in the electromagnetics

research area.

Two other SSSIE techniques were developed by Knockaert and DeZutter for

computing the fields inside a dielectric cylinder illuminated by a TM wave [39].

In 1988, Kleinman and Martin [37] presented four different formulations of the

SSSIE for acoustic waves, two of which were new, providing also uniqueness theorems



to clanfy the non-uniqueness issucs of the SSSIE at resonant {requencies demonstrated

before by Glisson and Shely [26].

In order to construct a SSSIE with a unigue solution at all frequencies, Mautz used a
combination of surface electric and magnetic currents, without providing any numerical

resulis [57].

In 1996, Swatek and Ciric formulated a SSSIE for the TM wave scattering by
multiply-connected lossless dielectric cylinders and demonstrated its computational
efficiency by comparison with the electric field integral equation method (EFIE) [81].
By employing a combination of electrical and magnetic surface currents defined in
terms of a single unknown density suggested in [57] and [49], Swatek and Ciric
implemented numerically for the first time a SSSIE with unique solutions at all
frequencies [82] . Novel recursive formulations of the SSSIE for layered, and general
heterogeneous and multiply-nested cylinders were presented in [80], [83], [84], [85] ,
[86], and [87], where the electric and magnetic field components tangent to each
interface are represented in terms of only a single electric surface current density over
the same interface, such that the resulting integral equation involves only the single

unknown current distributed over the interface bounding the source region.

In 1999, Yeung used a SSSIE formulation for the electromagnetic scattering by a
single homogeneous dielectric object to present computed results for a dielectric sphere,
showing that the SSSIE convergence speed is faster than that of the coupled surface

integral equations methods [94].

More recently, we have applied for the first time the SSSIE formulation to the

problem of TM and TE wave scattering by lossy dielectric cylinders obtaining



numerical results in good agreement with the corresponding analytical solutions {14],

[15].

Recently, Ciric formulated reduced surface integral equations for Laplacian fields

[91.

1.4 Thesis Outline

The thesis presents various single-source surface integral equation (SSSIE)
formulations for modeling two-dimensional eddy current and skin effect problems.

On route to this objective, in Chapter 2, the SSSIE is derived first for the analysis of
transverse magnetic (TM) and transverse electric (TE) wave scattering by lossy
dielectnic bodies and computed results are presented for various lossy circular cylinders.

Chapter 3 gives a summary of the classical coupled boundary integral equations for
eddy current problem that are used throughout the thesis for comparison with the
proposed SSSIE.

In Chapters 4 and 5, two novel formulations of single-source surface integral equation
(SSSIE) are derived. In both formulations, the SSSIE is satisfied by a single unknown
current density distributed over the surface of the conducting bodies. The difference
between the two formulations is dependent upon whether the field which is expressed in
terms of a single surface current density, distributed over the conductor surface, is the
one inside the conducting region or the one in the free-space, while the field in the other
region is represented by applying the Green theorem.

A reduced surface integral equation method for quasistationary fields in the presence

of hollow and/or layered parallel conductors carrying current is presented in Chapter 6.

10



A reduction procedure is shown for a multiply connected and /or layered conductor
which allows one to obtain the field solution in terms of a single integral equation
relative to only one conductor interface. This new method has a very high efficiency

with respect to existent coupled boundary integral equations formulations.

A single-source surface integral equation is formulated for axisymmetric solid
conductors involving a single unknown surface electric current defined over the
conductor surface (see Appendix D). This current has an azimuthal direction and

depends only on the position over the generator contour of the body.

11



Chapter 2
Analysis of Wave Scattering by
Lossy Dielectrics

Wave scattering by lossless homogeneous dielectrics has been modeled
quantitatively by using only a single unknown surface current distribution [62], {80],
(811, [50], [25]. In this chapter, formulations in terms of a single-source surface
integral equation (SSSIE) are presented for the analysis of the transverse magnetic (TM)
and transverse electric (TE) wave scattering by lossy dielectric cylinders. A single
unknown surface current density distributed over the cylinder surface is involved,
instead of the two distributions of electric and magnetic surface currents in the classical
coupled surface integral equations. The continuity of the tangential components of the
electric and magnetic fields intensities is enforced across the interface between the
dielectric region and the free-space region. The fields in a particular region are
expressed by means of this single surface current density, in agreement with the
Kirchhoff integral representation of the actual fields in adjacent regions. The resulting

SSSIE is solved numerically by applying a point-matching moment method.

12



2.1 Transverse Magnetic (TM) Wave Problem

2.1.1 Single-source Integral Equation Formulation

Consider the TM wave scattering by a homogeneous, lossy dielectric cylinder 7,
surrounded by a free space region ;. The dielectric material inside the cylinder is

characterized by a complex permittivity gand a real permeability 1

n
E/

Vo
£p, Mo

E;m:

X

Fig. 2-1. Plane wave incident on a lossy dielectric cylinder

Jot

A time dependence e’*is assumed and suppressed throughout this formulation. The

electric field intensity has only a z-component, £,, which satisfies a homogeneous

Helmholtz equation in both regions,

(V?+13)  E(r)=0, re, | @2.1)

13



(VI+i?)  E(r)=0.reV (2.2)

where iy =w./eou, and k=w\eu are the wave numbers corresponding to the

material in the two regions, and r is the position vector of the observation point. The
tangential components of the electric and magnetic field intensities are continuous

across the interface between the dielectric region and the free-space region, i.e.
AE. (r)=0, rel (2.3}
AH (r}=0, res (2.9)
with A denoting the jump of the respective quantity. The tangential component of the

magnetic field intensity can be expressed as

oF.
H, (r)z(ixﬁ)-H(:‘)tJ—_i;ﬁ-a‘-n(—rl, res 2.5)

where Zand fi are the unit vectors oriented along the positive z-axis and the outer

normal to the cylinder surface, respectively.
The tota] field in the region ¥, outside the cylinder is the sum of the incident field

E™and the scattered field E}°, the latter satisfying the Sommerfeld radiation

condition,

-

\/7‘(-;- EX(r)+ jhoEX (r)J =0, r=lr| 5w (2.6)

In order to construct a single source surface integral equation, we replace the cylinder

material by free space and define a field £, which is identical to the scattered field £

14



in ¥y , but is unrestrained in V. Ey 1s assumed to be produced by a combined layer of

electric surface current ZaJyand magnetic surface current (zxﬁ)bJO residing on the

dielectric cylinder surface S, where a and b are arbitrary constants, and J, is an

unknown surface current density. It can be expressed as
Ey(r)=(a®s +bE5' ) Jy, re s (2.7)

. i r> S, rel,
Ey(r)=| a®; +b| = ]+ﬁ€ Jos (2.8)
2 ~if r->S, relV

where /1s the identity operator, and Ej, %} are integral operators defined as [81]

g3 == 2 [1,(0) 1 O 29
= o) S 219

with Héz)being the Hankel function of second kind and zero order, r'the position
vector of the source point, and the integral in (2.10) taken in principal value. The
superscripts of E; and ;' show the type of the equivalent source current — e- electric,
m-magnetic — producing the respective fields. It is obvious that E, satisfies the
homogeneous Helmholtz equation everywhere except for the cylinder surface S,

(V2443 )Eo(r)=0, res (2.11)

The electric field Ej(which is tangential to §) and the tangential component /7, of the

assoclated magnetic field satisfy the boundary conditions

AEy(r)=bJy, res (2.12)

15



AH,(r)=aly, res
where £, is determined in terms of £ as

1 wan(r) ref§

Hy(r)=
0(’) Jjou,  On

and 1s expressed in the form

+Hf r—= 8, reV,
Hy(r})=|a ilf-#?{g +OHY | T, If 0
2 —-if r—>S,reV

with

e ] ! a ! r
}[OJOZZT‘*S‘J'JO(I‘ )E;H({)z)(kolr*r”dl
m 1 ' 82 (2) ' '
= - ) — H -} dl
Hy J, don S_{JO (i )611(311’ o (.’co Ir 13 l)

the integral in (2.16) being evaluated in principal value.

(2.14)

(2.15)

(2.16)

(2.17)

The field inside the dielectric cylinder is determined by employing a Kirchhoff

representation involving the actual tangential components E, and #, of the electric and

magnetic fields, respectively,

E(r), reV,reSs
rH, -85, = L (), res
0, reVy,,res

where
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£ 279%:_1 (21,7 EHP (k] 7 =r]) ar (2.19)

Ky

m l ! a ! !
E"E, :“ig{E" (r)é;;H(()z)(kl rerl) al (2.20)

with the integral in (2.20) evalualed in principal value.

From the continuity of the tangential components of the actual electric and magnetic

fields, we have

E (r)=E"(r)+E)(r), r =S, re¥, (2.21)
CH (r)=H"(r)+Hy(r), r > S, re (2.22)

where H," is the tangential component of the incident magnetic field.

Substituting these expressions in (2.18), i.e. in
~E°H, —(%]+£’”)EE =0, res (2.23)

yields the single source surface integral equation

o el
(2.24)

1 . .
— ["é’f‘f‘f’w]Ez{”C —EGH:”CJ Fe S

Once the unknown current density J; is determined from (2.24), the electric fields in

the regions outside and inside the cylinder are obtained from

E,(r)=E +(afs+b5y ) Jo, reV, (2.25)

17



E:(r):—flfeH, ~E"E  reV (2.26)

with £ and 7, calculated from (2.21), (2.22), and Ey. Hy determined from (2.8),

(215 forr—> S, rel,,ie.

E, (r)=E (r)+(a£§ +b[~;~]+£(’;’DJO (2.27)
H, (r)mH,f”C(;—)+(a[%fwfg}w}rg’JJO (2.28)
2.1.2 Numerical Results

The single source surface integral formulation described in section 2.1.1 was
implemented by employing a point-matching method of moments [30]. The cylinder
cross-sectional contour S was discretized into a number of straight segments, with a
constant single current density J; over each segment. The surface mtegral operators
defined in the SSSIE formulation become matrices with the number of rows and

columns equal to the number of segments.

The bistatic radar cross section (RCS) from an incident uniform plane wave was
calculated for several lossy dielectric circular cylinders and compared to the
corresponding analytical solution obtained by using the e genfunction expansions. The

RCS is defined as

18



EX (o)

Einc

RCS = lim 277

P00

(2.29)

where ¢ 1s the scattering angle (see Fig. 2-2). The far field £ (¢)is calculated from

(2.25)) using the asymptotic expansions of the Hankel functions in (2.9) and (2.10.
The current density J;is found from the single source surface integral eguation,

namely from (2.24) with a=1, =0, and ]Ei“f

=1. Thus, (2.29) yields

2
k ; ko(x' cos g+ y sn
RCS =72 [, (1) eebiemsdnrsnd) g (2.30)

S

where 7, =14/, -

Numerical results are shown in Table 2-1 for several lossy dielectric circular

cylinders with same complex relative permittivity &, =—j4 and of various electric radii

koro. The RCS is calculated for an observation angle ¢ =0°. These results are in good

agreement with those obtained through eigenfunction solution [5].

Table 2-1. Forward bistatic RCS of lossy dielectric circular cylinders of relative
permittivity &.=—4 for various kgrg.

koro SSSIE Results 1n [3]
0.2 0.00800 0.00782
0.4 0.07027 0.06921

1 0.76995 0.76435
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Fig. 2-2. Bistatic RCS of dielectric circular cylinders with &=—j4 and various kyry:

— SSSIE ; x, 0, + analytical.
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Fig. 2-3. Bistatic RCS of a dielectric circular cylinder of radius rp=24/2 for various

complex permittivities: SSSIE ; x, 0, + analytical.
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In Fig. 2-2, the RCS from the SSSIE for lossy circular dieleciric cylinders with
various kor and relative complex permittivity e, =—;4 , illuminated by an incident TM
plane wave, is plotted along with results from the analytical method. The SSSIE method
15 applied by discretizing the cylinder cross-sectional contour into 65 segments. As
shown in Fig. 2-2, the curves obtained by using the SSSIE method are graphically

indistinguishable from those obtained by the analytical method.

Fig. 2-3 shows the RCS of lossy dielectric cylinders of circular cross section
computed by the SSSIE method and by the analytical method for different complex

permittivities. The cylinder radius is 1,/2, where 2, is the free-space wavelength .

2.1.3.  Conclusions pertaining to TM wave scattering

A single-source surface integral equation is applied for the solution of transverse

magnetic wave scattering by lossy dielectric cylinders.

The computational accuracy of the SSSIE method has been illustrated by comparison
with the classical eigenfunction method. The RCS is calculated for various cylinder
radii and an observation angle ¢ ranging from 0° to 180°. An excellent agreement 1s
achieved between the SSSIE method and the exact analytical method. It can also be
seen from Fig. 2-2 that the RCS values for g=—4 and small scattering angles ¢

mcreases with the cylinder radius.
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One can notice from Fig.2-3 that the oscillations of the RCS decrease as the
- dielectric loss increases. For a purely imaginary permittivity, as seen in Fig. 2-2,
practically the RCS is decreasing monotonically with the increase of ¢ n the range

considered.

2.2 Transverse electric (TE) wave problem

In this section, a formulation in terms of a single-source surface integral equation is
applied to the analysis of the transverse electric (TE) wave scattering by a lossy
dielectric cylinder characterized by a complex relative permittivi ty. On the basis of the
cquivalence theorem, the scattered field in the region outside the lossy cylinder is
expressed by using a single current density distributed over the surface of the cylinder,
while the field inside the cylinder is obtained through a Kirchhoff representation
involving the actual tangential components of the electric and magnetic fields. The
computational accuracy of the single source surface integral equation method is
demonstrated by comparison with that of the eigenfunction method and of the volume

integral equation method.
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2.2.1 Single source integral equation formulation

Constder the TE wave scattering from a homogenecous, lossy dielectric cylinder ¥ of
an arbitrary cross section, immersed in a free space region Vg (see Fig. 2-4). The
dielectric cylinder has a complex permittivity £ and a real permeability .. The

magnetic field has only a z-component H, which satisfies homogeneous Helmholtz

equations in the two regions,
(V24 )1, (r)=0, rev, 231)
(V242 )1,(r)=0, rev (2.32)

with the tangential components of the electric and magnetic field intensities continuous

across the interface between the dielectric region and the free-space region, i.e.

AH (r)=0, res§ (2.33)
AE(r)=0, res§ (2.34)
J 6H,

where E| is the tangential component of the ¢lectric field intensity, £, = - Fv
wg On

A time-harmonic dependence ¢/*is assumed and suppressed. The total magnetic

field in the region ¥, outside the cylinder is the sum of the incident field H™ and the
scattered field H°.

Based on the equivalence theorem, we reformulate the field problem in ¥y and V as

mdicated in Fig. 2-5 and Fig. 2-6. A combined layer of magnetic surface current ZaJ,

24



and electric surface current(Zxn)dJ;on S radiate in an unbounded free-space region

(see Fig. 2-5) to produce a field H, which is identical to the real scattered field H*

outside S, but with the field produced in V let unconstrained.

H.S'C

@/ .11

e Y

A E—O

inc
Hz

Fig. 2-4. Original problem: TE wave scattering by a lossy dielectric cylinder
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Fig. 2-5. Equivalent problem outside S,

Fig. 2-6. Equivalent problem inside S.
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The magnetic and electric surface curreni densities are generated from a single
unknown surface current of density Jy, with @ and b being arbitrary complex constants.
The magnetic field intensity Hy and the tangential component £y of the associated

electric field intensity are expressed as

Hy(r)={asty +b3;) 1y, re s (2.35)

H, (r) x(aj{én +b(ié~]+?{6’BJo,

+for r—> S, relV

(2.36)
- Jor ¥ =8, rel,
1 m é
+jor r->S, relV
(237

- for r— S, reV,

where the integral operators 3¢, 7', ¢ and £ are expressed in terms of the single

source Jo as follows:

a’go jJ r) a8 (ky )ar (2.38)
e ' a i
WGJO=i{JD( )E;H( Ny )l (2.39)
s
I ' r a ¥ -
T, = _Zji 1o (r )7}1’52) ()l (2.40)
] ‘
-1 & e
BTy = Ty (! HP (ky)ar 2.41
00 4(050! o2 )anan' o (%) (2.41)

27



with ' being the position vector of the source point, Héz) the Hankel function of second
kind and zero order, and the integrals in (2.39) and (2.40) taken in principal value. The

fields H and K, satisfy the boundary conditions
AHy(r)=—~bJy, re S (2.42)
AE (r)=-aly, res§ (2.43)
In Fig. 2-6, an equivalent field problem is formulated for the region inside §' by using
a Kirchhoff integral representation involving the actual tangential components //_and

E, of the magnetic and electric fields, respectively,

H_,(r) , relresS
H"E, +HH,=<=H,(r), reS (2.44)
0., rel res

where #™and 7/ are given by (2.38) and (2.39), withey and k; replaced by £ and &,

respectively. Due to continuity conditions in (2.33) and (2.34), respectively, H, and E,
are equal to the respective tangential components of the fields in the equivalent problem

for the region V5 ,

H, (r):H;”C(r)+(a}{gz+b[-%]+5‘{5}] Jy (2.45)

E (r)= B (r)+[a[~%[+£6”)+bf§j Js (2.46)

where E“is the tangential component of the incident electric field. With (2.45) and

(2.46), (2.44) becomes
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1
[9‘{’" (a[—%]+ng’J+b£§}+[——;—f+3{fj(a7{g’ +b(~—2—1+j{5)ﬂ Jy

= _(Hl I+ y{fjH;’"C ~H"E™, re§ (2.47)
2
which 1s the single source surface integral equation in Jy. Using the commutative

relationship
woa-e 1 e
HE —E]—n(?{) (2.48)
equation (2.47) yields, finally,

I
l:a [(—%I+9‘{”J?{g’ + " (—51%&6’7}]

+b(l(1+£~)[—l(9{5’+}{*)+j{” (f{g—f_?{eJ
4 2

+H™" [fg g DJ Jy = {lf - )H;’”‘“ ~ A" E"E (2.49)
£ 2

where the hypersingular operator E, appears now only in the weakly-smgular

difference %] ~—i£e, E"being given by (2.41), with &, and ky replaced by ¢ and £,
&g

respectively.

After computing J; from (2.49), the actual magnetic field 1s obtained as

H,(r)=HI +{ast] +b35) Jy, e, (2.50)
H,(r)=H" (E, +[a[*%]+£5’]+b£§]JOJ
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+}[E(]{;‘nc+(a3{6”+b(—%f+}fgj] JC,J , rel (2.5])

The bistatic radar cross section (RCS) for the TE uniform plane wave scattering by

two-dimensional dielectric obstacles is defined as

RCS=1lm 2zr—2->"1

F—»00

(2.52)

where ¢ is the scaftering angle (see Fig. 2-7). The scattered far field HI(4) is
calculated from (2.35) (or (2.50)) using the asymptotic expansions of the Hankel

functions in (2.38) and (2.39). With‘H;’“ =1, (2.52) yields the following formula for

the bistatic RCS:
kO ] : Jhe{x'cosg+ysing} :
RCS==2 [ F(r.8) Jo(r) e dzl (2.53)
where
f(r’,;é):b(n; cosg+n, singﬁ)+—a— (2.54)
Ty

with 7, being the intrinsic impedance of free space, and n;, », the x- and y-

components of the unit vector A’ normal to § at the integration point.

2.2.2 Computed Results

The bistatic RCS has been computed for several lossy circular cylinders by the SSSIE
method and the results have been compared with those obtained by the volume integral

equation method and by the exact eigenfunction solution .

30



The SSSIE formulation was implemented in a simple point-matching method of
moments. The cylinder cross-sectional contour S was discretized into straight segments,
with the single current density J; assumed to be constant over each segment. The
surface integral operators defined in the SSSIE formulation become matrices with the
number of rows and columns equal to the number of segments.

Computed values of the RCS of a lossy circular dielectric cyhinder of electric radius

korg=0.31416 and of relative complex permittivity £, =4— j100 are presented in Fig.2-7.
Figure 2-8 shows the RCS of a cylinder with korg=0.112256 and g, =175=7300. One

can notice that in Figs.2-7 and 2-8, the plotted results obtained by applying the SSSIE
method are indistinguishable from those obtained by the analytical method. The SSSIE
method was applied in both cases by using 150 segments for the cross-sectional

contour. The complex constants a and & are chosen to be a=1 and »=0,
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Fig. 2-7. Bistatic RCS of a lossy circular cylinder with kgrp=0.3141 6, t=pgand
& =4 — j100.
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75 - j300
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Table 2-2. RCS for the lossy cylinder in Fig. 2-7.

Scattering
SSSIE | VIE Analytical

angle ¢

0 -19.51 -19.67 | -19.5785
30 2108 ]-21.23 -21.1456
60 -27.18 | -27.35 (1 -27.2752
90 -28.50 | -28.55 | -28.4848
120 -20.42 | -20.51 -20.4289
150 -17.09  1-17.19 -17.1092
180 -16.13 | -16.23 | -16.1567

Table 2-3. RCS for the lossy cylinder in Fig. 2-8.

Scattering
SSSIE | VIE Analytical

angle ¢

0 -36.40 | -36.53 | -36.4607
30 -37.70 | -37.84 | -37.7617
60 -42.51 [ -42.70 | -42.5950
90 -48.91 | -48.94 | -48.9234
120 -40.08 | -40.08 . | -40.0831
150 -36.17 | -36.19 | -36.1855
180 -35.07 | -3510 | -35.0906
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As seen in Table 2-2 and Table 2-3, the numerical results for the two illustrative
examples are also in good agreement with those obtained from volume integral

equations (VIE) in {70] .

2.2.3  Conclusions pertaining to TE wave scattering

A single source surface integral equation has been applied for the solution of
transverse electric wave scattering by lossy dielectric cylinders. By employing the
equivalence theorem, a single unknown surface current distributed over the surface of
the cylinder has been used. Numerical results presented for the case of a lossy circular
dielectric cylinder demonstrate the accuracy of the SSSIE method as compared with the
exact eigenfunction method, as well as with the volume integral equation method.

In the following chapter, the traditional coupled boundary integral equation
formulation is presented for eddy current and skin effect problems. The numerical
results generated employing this formulation are used in the next chapters for

COMPArison purposes.
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Chapter 3
Classical Boundary Integral

Equations for Eddy Currents

The coupled boundary integral equations (BIE) derivation presented in this chapter
follows the classical method which may be found in [6], [74]. The BIE is formulated in
terms of two unknown functions, the magnetic vector potential and its normal
derivative, distributed over the surface of the co-nductor.

This formulation is employed throughout the thesis whenever the proposed SSSIE
solution has to be analyzed in terms of its accuracy and efficiency by comparison with

the BIE solution.

3.1 Maxwell’s Equations for Time-harmonic Fields

In 1864, James C. Maxwell assembled the laws of Faraday, Ampére, Gauss (for
electric fields and for magnetic fields) into a set of four equations known as Maxwell’s
equations [56], [43], [31]. Maxwell unified, in this way, the electromagnetic theory. For
motionless media, these equations are listed below in both integral and differential

forms. The integral forms of the Maxwell’s equations are the most general:

aD .
?H-dt:by-ds:b;-ds (3.1)

oB .
jE-dl:-S{—&' ds . (3.2)



$D-ds= [pyv (3.3)
S

Vs

$B ds =0 (3.4)
N

where £ and H are the electric and magnetic field intensities, D and B are the electric
and magnetic flux densities, J the conduction current density, o, the volume charge
density.

The differential forms (point forms) have the following expressions:

D

VxH=J+%2 (3.5)
o1
vxE=-2B (3.6)
ot
V-D=p, (3.7)
V-B=0 (3.8)

oD
The additional term o in equation (3-3) has the dimensions of a current density and is

called displacement current density.

The law of conservation of charge (or continuity equation) in integral form is

d

(jﬁj-ds:~5; Jpv dv (3.9)
s v

while in differential form can be written as

v.g=_% (3.10)
a
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In a linear, homogeneous and isotropic medium characterized by the electric

permittivity £, magnetic permeability 4 and conductivityo, the constitutive relations

are:;

D=¢E (3.11)
B=uH (3.12)
J=cE (3.13)

For regions of discontinuities, interfaces between two physical media, we impose the

boundary conditions

myx(Ey—E)=0 or E =E, (3.14)
myx(H,-H,)=0 or H, =H, (3.15)
1112-(D2—D])=O or D, =D, (3.16)
m,- (B, —B)=0 or B, =B, (3.17)

For time-harmonic fields, the phasor forms of Maxwell’s equations are:

VxH=cE+ job (3.18)
VxE=-joB (3.19)
V-D=p, (3.20)
V.-B=0 (3.21)

where j=+/~1 and @ is the angular frequency.
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By making use of the vector identity V- (an) =0 where a is an arbitrary vector, the

magnetic flux density vector B can be expressed as the curl of a vector
B=VxA (3.22)
where A is known as the magnetic vector potential whose divergence is zero
V-A=0 (3.23)
By introducing (3.22) in (3.19) , one can obtain
VxE=~jo{VxA) (3.24)
or
Vx(E+ jod)=0 (3.25)
Since the curl of a gradient of a scalar field is identically zero, the solution to the
equation (3.25) is
E=—joA-VV (3.26)
where ¥ is the classical electric scalar potential.

In the case of solid conductors with high conductivity (o >> we) the displacement

current can be neglected and equation (3.18) could be simplified as

VxH=cE (3.27)
An important parameter in describing the electromagnetic field penetration into the
conductor is the depth of penetration, or the skin depth, defined as

s= | (3.28)

NS o
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where [ = ch)w
T

Substitution of the constitutive relation (3.12) in (3.27) yrelds

VxB=uckE . (3.29)
By combining (3.26) with equation (3.29) we obtain

Vx(VxA)= po (- jod-VV). (3.30)
The left-hand side term of (3.30) can be calculated from the vector identity

Vx(VxA)=V(V-A)—V2A and using the relation (3.23). This leads 1o a

nonhomogeneous Helmholtz equation satisfied by the magnetic vector potential A

inside the solid conductor
(v2+k2)A=WVV (3.31)

with k%= ~ Jouo .

3.2 The Eddy Current and Skin Effect Problem

Consider a very long, homogeneous cylindrical conductor of arbitrary cross section

immersed in a transverse time-harmonic magnetic field of flux density B,. The

conductor is parallel to the z-axis and its material is characterized by a conductivity ¢

and a permeability ¢ , while the region outside is a free space.
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Fig. 3-1. Cylindrical conductor in a uniform magnetic field.

The magnetic vector potential is chosen to have only a component parallel to the
conductor, independent of z Inside the conducting region D, it satisfies the

nonhomogeneous Helmholtz equation,

(V2+k2)A(r):yo%Z—, reD (3.32)

where V' is the classical electric scalar potential, with &V /0z = const inside the

conductor, k% =—jwua, J=~-1, w 1s the angular frequency, and r is the position

vector of the observation point. Equation (2.26) can be written in the form

L
[Wh ]
(W)
R

(V2+k2)Ac(r)=O, reD Q.

with 4° = 4+ C; and the constant Cy = —(j/w)dV /32 to be determined.

In the free-space region D,, the quasistationary magnetic vector potential satisfies

the Laplace equation

V4 (r)=0, reD, (3.34)
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The following continuity conditions across the interface S between the conducting

and the nonconducting regions are to be imposed:

A(r) = A4,(r), res§ (3.35)

L 2d(r) 1 04,(r)

, ref§ (3.36)
M On Hy  On

where 4, is the vector potential in D,, p, is the permeability of free space and =
/]

denotes the normal derivative.

The tangential component of the actual magnetic field intensity on the surface § just

inside the conductor can be written in the form

Hl(r):—iééz——l—aA res (3.37)

M On i o

due to the fact that V2C, =0

By applying Green’s theorem, the magnetic vector potential A° just inside the

conductor 1s expressed as:

%Aczmﬁ“H,—ﬂ"’Ac, reC (3.38)
where
A, =_if_ [#,00E{ (iR)ar (3.39)
C
m 4 J cpm © (2) '
A" A ==L [4ee) 2 O (kR 3.40
4! ()57 Ho” (R) (3.40)
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This yields an integral equation on the conductor boundary
—ﬁ“h’,+(%fwﬂ’”JA‘:O, reC (3.41)

By applying Green’s theorem, the potential A, in the region [J,, outside the

conductor, can be represented as

a4 ("
Ae(r):%(r)_%[f%m%d[f_JAe(r')%[ln%sz} reD, (3.42)
C

c
where 4 is the vector potential which corresponds to the external field By.

Using the continuity conditions (3.35), (3.36) and expressing the tangential
component of magnetic field from (3.37) the actual potential on the surface S just

outside the conductor can be calculated from (3.42) in the form
1
Ae(r):AO(r)+ﬂ§HI+[w2—I+ﬂ5’JA, reS (3.43)
where 7 is the identity operator, and with the operators Ag and A acting as

AH, :’2”—0 jH,(r')m“l_dz' (3.44)
T R

1 a( 1
mge Laoy Sl L ar 3.45
o 2;7(}( (r)ﬁn'[ RJ (3:43)

the integral in (3.45) being evaluated in principal value.

Substituting A° ~C, for 4 in (3.43) and imposing the continuity condition in (3.35)

yields
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%A”—%Cﬂ—AﬂmﬂgH,—/’lé”Ac+ﬁg'C =0 (3.46)

which can be written in the form of an integral equation along the contour C
1
/?lgH,+[—%]+ﬁ5")AC+(EI—ﬂ{)”]CO = A4, (3.47)

An additional equation is obtained by applying Ampére’s theorem along the contour C

[#,(ryai=1, (3.48)
C

where /. is the value of the total current carried by the solid conductor.

In the next chapter, a single-source surface integral equation (SSSIE) is constructed
which is satisfied by a single unknown current density distributed over the surface of
the conducting bodies instead of two unknowns as in the boundary imfegral equation

method.

44



Chapter 4
SSSIE for Eddy Currents: Inside

Field Perspective Approach

In this chapter, an inside field perspective approach is used, which means that the
magnetic vector potential inside the conductors is expressed in terms of that single
surface electric current density, while the potential outside is obtained from the formula

of three potentials for Laplacian fields.

4.1 SSSIE Formulation

Consider the problem of a cylindrical conductor immersed in a transverse time-

harmonic magnetic field described in section 3.2.

In order to construct a single-source surface integral equation, we first assume to

have everywhere the same conducting material as in the regien D and that the actual A€

in D is produced by a single layer of electric current parallel to the vector potential, of

density J_, distributed over the conductor surface, while the potential in D, 1s left

undefined, i.e.
A(ry=AJ,, re DUS (4.1)

where the integral operator 4 acts as

AJ, = _if [J.HEP GR)Yar (4.2)
C
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with C being the conductor cross-sectional contour, #* the Hankel function of second

kind and zero order, R =[rwr'l and r' the position vector of the source point. The

tangential component of the actual magnetic field intensity on the surface S just inside

the conductor can be written in the form

1
]{t(f-)=_—l~%=—sz+?{JS, res§ (4.3)
L On 2
where the integral operator # is defined from
#wJ, = ][Jj(r)—q}{éz}(kR)dl' (4.4)
4 on

with the integral taken in principal vahe.

On the other hand, the potential 4, in the region D, , outside the conductor, can be

represented by applying the Green theorem. Assuming that the vector potential vanishes

at mfinity,

L edd,(ry 1 d 1
A,ry= 40— e —In—dl' - A4 ) = gy , rebD 4.5
e()A“()zﬂLf S Cje()an,( R} J . (45)
where 4, is the vector potential which corresponds to the external field B.

Taking into account (3.35), (3.36) and (4.3), the actual potential on the surface S just

outside the conductor is obtained from (4.5) in the form

Ae(r)=A0(r)+ﬂgH,+GJ+;13’JA, res (4.6)

where 7 is the identity operator and with the operators 2 and Ay acting as
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e luO 1 r
H =22 {H (rn--di 4.7
Ay H, Q’ch (¥) 7 (4.7)

1 o 1
yA=—1AFY—| In— |dI' 4.8

o 272';',: ()871'( R) (3:8)
the integral in (4.8) being evaluated in principal value.

Imposing in (4.6) the continuity condition in (3.35) and substituting #, from (4.3)

and 4 = A° - C; from (4.1) yields a single-source surface mmtegral equation in J; |

[ﬂj(—%]+%]+(—%]+ﬂ3’}ﬂ}]§+CO:—Aﬂ, res (4.9)

To specify the value 7, of the total current carried by the solid conductor, we apply

Ampere’s theorem along the contour € which yields an additional equation, i.e. (with

(4.3))

j(wijs +5‘{J5Jdl =1 (4.10)
2

It should be noted that, in the form given above, the expressions in (4.6) and (4.9)
have been derived for observation points on the conductor boundary where its curvature

15 finite.

Once the unknown current density J; and the constant C, are determined from (4.9)
and (4.10), the magnetic vector potential in D and D, 1s obtained, respectively, from

(4.1) and (4.6) , 1.e.

A(r)=AJ,~Cy (4.11)
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Ae(r)=A0+[ﬂ§(—%]+?f]+(—%f+ﬁé”}ﬁl}]s (4.12)

The current density inside the conductor is calculated from
J=—joc(4+C,), ie J=—jocAl,. (4.13)

For a system of n parallel homogeneous conductors of arbitrary cross-sections the
mtegral equation (4.9) has the same form, but with the integrals in the operators 4 and
Ay (see (4.7) and (4.8)) performed over the union C=CUC,U..UC, of the
contours of the conductors; when the integration points in 4, and Ay are on the
contour C; of the cylinder 7, of conductivity ¢, and permeability i;, the operators 4
and 9/ in (4.2) and (4.4) are taken with the integrals performed over Ci, with p = g,
and k' = k' = —Jjouo;. For each r e C;c C, the unknown constant C,, has a specific
value C;, . The given currents in the n conductors are fixed through » additional
equations obtained from (4.10) written for each contour C; with the corresponding
current /. .

The electric and magnetic field intensities inside the conductors are calculated from
(4.13) and (4.11) as

E=-joAJ_, rebD (4.14)

a xR

', reD (4.15)
R

H-= % j J (Y HP (kR)
C
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where @, is the unit vector along the positive direction of the z-axis. For the region

outside the conductors H is calculated by taking the curl in (4.12). We remark that the

fields J, H and E n (4.14) are al] expressed in terms of the single surface current

J, distributed over the conductor boundary.
4.2 Numerical Results for Current Density Distribution

The single-source surface integral cquation has been implemented numerically for
various structures of cylindrical conductors by employing a point-matching method of
moments.

The first example considered is that of a circular cylinder of conductivity
o=58x10"S/m (copper) and permeability u = y,, immersed in a uniform magnetic
field of flux density B, with a time-harmonic variation. In Fig. 4-1 the magnitude of
the induced current density J normalized to By /{ugr,) is plotted versus the ratio /7,
for various depths of penetration &, where 7. the cylinder radius and r is the distance

from the cylinder center along the direction perpendicular to the direction of the
external field. The results were compared with the analytical solution as the contour
discretization was increased in steps of 10 segments per contour starting with 40
segments (see Fig. 4-2 and Fig.4-3). The soltion converged to a 0.68% relative error

for a number of 60 segments on the conductor contour.

In a second example we consider a cylindrical conductor of conductivity
o =5.8x10" S/m , excited by a parallel wire carrying a current Iy and located very close

to the conductor surface in order to produce a highly nonuniform field, as shown in Fig.
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4-4. The current density is computed at points along a radial direction from the
conductor center to the current wire. There is a good agreement between the results
obtained from the SSSIE and the analytical results even when the skin effect is
pronounced. As in the first example, the cylinder cross-sectional contour was

discretized into a number of about 60 segments, with a constant surface current density

J, over each segment.

The numerical experiment in the first example has also been performed, as shown in
Fig. 4-5 and Fig. 4-6, for a magnetic material conductor and a small depth of
penetration, for which results generated by a hybrid integro-differential finite element
(IDFE) technique are also available [18]. On a PC Intel Pentium 2.6 GHz, the SSSIE
results converge to a 0.5% average relative error in a CPU time of 96s using 150
contour segments, while for the same accuracy the BIE requires 229s using 242 contour
segments. This decrease in CPU time by a factor of more than 2 is mainly achieved due
to the reduction in the required contour discretization when employing the SSSIE

method.

In Fig. 4-7 we present computed results for the current distribution in a nonmagnetic
hollow cylinder of conductivity ¢ =3.6x10"S/m in the presence of a uniform
magnetic field of flux density B;. A number of 150 segments was used on the inner and

on the outer conlours in order to achieve a maximum relative error of 0.8% in the
SSSIE, while the BIE method required 300 segments on each contour for the same
accuracy. The SSSTE method yields approximately a 5.4 times reduction in CPU time as

compared to the BIE method.
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Results for a system of two parallel circular cylindrical conductors of radii 50,
conductivity o =58x10"S$/m and permeability # = p,, immersed in a uniform
magnetic field of flux density B, are given in Fig. 4-8. The CPU time necessary to solve

the matrix equation by Gauss elimination is proportional to the cube of number of
segments taken on the conductor contours. Since in the BIE formulation the number of
unknowns is twice as that in SSSIE, the time needed to solve the matrix equation in the
latter method is 8 times smaller. However, the SSSIE formulation requires intermediate
operations (for instance, matrix-matrix multiplications). Thus, when one employs the
same surface discretization, e.g. a number of 40 segments on each contour, the CPU
time required in the SSSIE procedure is only about half of that required in the BIE. On
the other hand, for same accuracy, the number of segments required for the SSSIE
solution (40 segments per cylinder) is only half of that required in the BIE solution. The
CPU time when using the SSSIE method (23.3s) is more than 7 times smaller than that
corresponding to the BIE method (170s). The BIE method requires more segments due
to the fact that the presence of the normal derivative of the vector potential introduces
supplemetary errors in the computation, while the SSSIE involves only one single
current on the surface of the conducting bodies. These supplementary errors increase
substantially when the observation points are located near the bounda;y, thus a higher
number of segments -on each contour is required for the BIE method in order to obtain

the same accuracy as in the SSSIE method.

In next chapter, a different formulation of the SSSIE is considered where the potential
n the region outside the conductor is expressed in terms of a single surface current

distributed over the conductor surfaces.
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Fig. 4-1. Normalized current density induced in a circular cylindrical conductor by a
uniform magnetic field for various skin depths; — SSSIE ; % exact analytical solution.
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Fig. 4-5. Normalized current density of a circular cylindrical conductor with o=0.1x10’
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analytical solution.
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Iig. 4-6. Phase angle of the normalized induced current density for the conductor
in Fig. 4-5: — SSSIE ; x BIE; -- IDFE [18]; ® exact analytical solution.
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Chapter 5
SSIE for Eddy Currents: Outside
Field Perspective Approach

5.1 SSSIE Formulation

Quasistationary fields in the presence of solid conductors can be analyzed by usig
coupled boundary integral equations (BIE) which are formulated in terms of two
unknown quantities over each conductor surface. These unknowns can be either the
magnetic vector potential and its normal derivative [6], or the conduction current
density and 1ts normal derivative [91}, or the equivalent surface electric and magnetic
currents [20]. In Chapter 4, based on an inside field perspective approach, a single-
source surface integral equation (SSSIE) was satisfied by a single unknown current
density distributed over the surface of the conducting bodies, thus reducing by half the
number of unknowns and decreasing significantly the CPU time. The vector potential
inside the conductors was expressed in terms of a single surface electric current density,
while the potential outside was obtained from the formmla of three potentials for
Laplacian fields.

In this chapter, an outside field perspective approach is considered, where the vector
potential in the free space region is expressed in terms of a single surface current
| density distributed over the conductor surfaces, while the magnetic vector potential
mside the conducting regions is represented by applying the Green theorem. The

extrinsic field approach is more advantageous when the field is to be computed mainly
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n the region outside the conductors, as in the analysis of electromagnetic compatibility
and iterference. The accuracy of the results and the computational efficiency of this
novel SSSIE is demonstrated success{ully by comparison with various BIE formulations
and with other numerical and experimental methods [93],[34],[18] for wvarious

conductor configurations.
To construct the proposed SSSIE, we consider an infinitely long cylindrical conductor

of arbitrary cross-section located in a transverse time-harmonic magnetic field of flux

density By . The conducting material region D has a conductivity ¢ and a permeability
4, while the region D, surrounding the conductor is a free space of permeability
Ho - The magnetic vector potential has only a z-component parallel to the conductor.

Inside the conducting region, the vector potential satisfies a nonhomogeneous

Helmbholtz equation,

(v2 +k2)A(r) = joucC,, reD (5.1)
where Cy =—(j/®)0V /3 is a constant to be determined, with V being the classical
scalar potential, k° =-jouc, j=~N-1, e is the angular frequency, and r is the
position vector of the field point. Denoting A° = 4+ C, and substituting in (5.1) vields

a homogeneous Helmholtz equation satisfied by 4,
(v2+k2),4‘(r)=o, rebl. (5.2)

In the region D, , the total magnetic vector potential A, can be written as
A (r)= A(r)+ Ay(r), reb, (5.3)

where A’ is the magnetic vector potential due to the induced currents and satisfies the
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Laplace equation, and 4, is the vector potential corresponding to the external field of

flax density B;. The continuity conditions for the magnetic vector potential and its

normal derivative across the interface § between the conducting region and the free
space region are
A(r)y= A,(r), red (5.4)

184(r) _ 1 84,(r)

res§. (5.5)
Mo On My On

The Laplacian potential 4’ is assumed to be produced by a longitudinal single-layer

of electric current of density J, located over the conductor surface,
A(r)=A5J,,  reDUS - (5.6)

where the integral operator 4; is defined as
AT =22 7, Lar (5.7)
27 R

where 7" 1s the position vector of the source point, R = ]r - r’| , and C is the cross-
sectional contour. The tangential component of the magnetic field intensity Hf' just

outside the surface § can now be expressed in terms of J, as

H’:_i@iz(%pﬂ{g}g, resS (5.8)

Ho On

with the integral operator # acting as

1 0 I
Hod === +J (F)=—| In— |dI". 3.9
3, Zﬂgfman( R] (5.9)

and the integral taken in principal value.
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The potential A4%in region D is expressed by employing the Green theorem as

A=t jM HO Ryl - jAf(r’)ﬁHg—’)(fcR)dz', reD  (510)
412 on' - on'

where HéQ)is the Hankel function of second kind and zero order. The tangential

component of the magnetic field just inside D is given by

} 'C
g o= 1o4__ 104

’ uon M On

(5.11)

Replacing 4° by 4+, and taking into account the relation (5.11), the actual vector

potential on the surface § (in the case of a smooth boundary) just inside D can be

expressed from (5.10) in operator notation as
i
A(r)t—ﬁ"H,+(%I—ﬂ"I)AA(51+ﬁ”'JCO, res (5.12)

where 7 is the identity operator and the integral operators *and 4™ are defined by

AH, = mnff [,y P eRyar (5.13)
C
A" A = mi](A(r’)iHéz)(kR) dr (5.14)
4 - on'

with the integral in (5.14) taken in principal value.

Enforcing in (5.12) the continuity of H,, ie. (see (5.5) and (5.11))

Hf(r)=H,’(r)+H,, res (5.15)

and, then, imposing the continuity of 4, i.e. (see (5.4))
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A{r)y=A(r)+ 4,, resS (5.16)
with H,’ and A" from (5.8) and (5.6), respectively, yields a single-source surface integral

equation in J_,

[erisrrepoftror)

(5.17)
=_(%I+ﬂ’”}4ﬂ —j{eHor, reC

where H 0 1s the tangential component of the transverse time-harmonic magnetic field

intensity B, / 44, .

Applying Ampére’s theorem along the cross-sectional contour ¢ gives

Ly voees -1 (5.18)
3 s 0vs c
c

which is added to (5.17) in order to specify the known value of the current / . carried by

the conductor.
After solving (5.17) and (5.18) for the unknowns J, and C,, the total magnetic

vector potential in the free space and the conducting regions is determined, respectively,

from (5.3), (5.6) and from (5.10) (with (5.8), (5.15)) in the form

A, (r)= Ay (r)+ A5 J reD, (5.19)
A(r)= —[ﬁ" Gnﬂfé’}ﬂ"’ﬂg}g ~AH, —ﬂ'“AO—(IJrﬁ’")CO, reD (5.20)

The SSSIE can be extended to a system of n parallel homogeneous conductors of

arbitrary cross-sections; now, the surface integral equation (5.17) has the same form,

but with the integrals in the operators 4; and % performed over the union
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C=QUCGC, U..UC, of the contours of the conductors; when the mtegration points
na; and X are on the contour C; of the cylinder i , of conductivity o, and
permeability 4, the operators 2° and 4™in (5.13) and (5.14) are taken with the
integrals performed over C,, with ¢ =y, and k* = k! =-jouc,. For each reC cC,
the unknown constant C, has a specific value Cy, - The given currents in the

conductors are fixed by » additional equations obtained from (5.18) written for each

contour €, with the corresponding current 7, .

5.2 Power Losses

Once C ’s are known, we can calculate the total power loss per unit length for a
complete system of carrying current conductors without mtegrating Poynting vector
over each cross-sectional contour C,. Due to the fact that both the electric field

intensity and magnetic vector potential do not depend on z, the electric scalar potential

. . . OV
varies hnearly inside the conductor, i.c. Fn = const . As a consequence, the total Joule
7

power per unit length can be directly calculated from:

P, =ZR€(*J'0JCO‘1Q*):thn(colfq*) (5.21)
i=1

i=1

where the asterisk indicates the complex conjugate.
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5.3 Numerical Results

A few examples are considered and the same procedure 1s applied as in Section 4.2
regarding the selection of the number of segments in the SSSIE and BIE methods.

The first example considered is that of a solid circular cylinder with a conductivity
o =6x10"S/m and a relative permeability g, =1, located in a uniform transverse time-

harmonic magnetic field of flux density B,.
Fig. 5-1 shows the power loss per unit length P nomalized to 87B; /(o ) versus

(r./8)" where . 18 the radius of the cylinder. A number of 80 straight elements were
used on the conductor contour. It can be seen that the results obtained from the SSSIE
agree well with those obtained from the analytical solution. They also match those
obtained by using the hybrid integro-differential finite element technique in [18].

The accuracy of the SSSIE method is also illustrated by considering a cylindrical
conductor of square cross-section of conductivity - ¢ =5.72x10"S/m, relative
permeability g, =1 and side L=4.62 mm. One can notice from Fig. 5-2 that the SSSIE
results are in very good agreement with those from the hybrid technique in [91] over the
whole range of frequencies. As well, it can be seen that at higher frequency the method

in [93] becomes less accurate.

The resistance for a system of two parallel circular cylindrical conductors of radii of

5.84 mm, conductivity & =5.84x10"S8/m and relative permeability 4, =1, is plotted

in Fig. 5-3 versus frequency. Numerical results are presented for two cases, where the

distance between the axes of the conductors is 12 mm and 19.7 mm, respectively. In the
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first case, the results obtained from the SSSIE method by using 60 straight clements per
cylindrical contour present a maximun relative error of 0.7% for the whole range of
frequencies when compared to experimental data available in [34]. For the same
number of elements, the BIE method gives a maximum relative error of 2.9% with a
maximum accuracy of 2.16% at frequencies less than 300 Hz. By increasing the number
of elements, the BIE solution does not improve significantly. In the second case, the
BIE gives inaccurate results at frequencies less than 1 kHz, while SSSIE converges with
a maximum error of 1.5%. Indeed, at lower frequencies, the normal derivative of the
magnetic vector potential has very small values and causes the presence of increased
numerical errors in the final BIE solution. In [91] the authors used a hybrid solution,
that 1s a circuit model method for low frequencies combined with a classical coupled
surface integral equation method for high frequencies, in order to avoid this difficulty.

For frequencies greater than 1 kHz, in order to achieve the same accuracy, the SSSIE
method requires 80 straight elements per cylinder, which is almost half compared to that
required by the BIE method. The CPU time when employing the SSSIE method (459s)
is about 7 times smaller than that corresponding to the BIE method (3200s), mostly due
to the reduction in the surface discretization.

The last example consists of a system of two parallel conductors of square cross
section with the configuration shown in Fig. 5-4. In Table 5-1, the results obtained from
the SSSIE method are compared with results generated by the BIE method, with results
obtained in [91] from a hybrid method and with results in [20] obtained using coupled
surface integral equations (CSIE) formulated in ferms of equivalent electric and

magnetic surface currents distributed over the cross-sectional contours of the
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conductors. It can be seen from Table 5-1 and Table 5-2 that for frequencies of 107, 10°
and 10* Hz, the results from the SSSIE and BIE methods converge fo three significant
digits and are in good agreement with the solutions obtained from the other two
methods. Although both methods require the same number of segments per conductor,
the CPU time for the SSSIE is reduced by a factor of 1.3 compared to that required by
the BIE. By performing the same experiment for a frequency of 10° Hz, we observe that
in order to achieve the same accuracy, the SSSIFE results converge 6.2 times faster as
compared to those from the BIE. Finally, considering an even higher frequency (f =10°
Hz), we obtained a significant reduction in the amount of computation, the CPU time
required by the results from the SSSIE to converge to three significant digits when
compared to the hybrid solution being 20 times smaller than that corresponding to the
BIE to achieve two significant digits.

It 1s noticed from Table 5-1 that the CSIE solution degrades as the frequency
mcreases. This is due to simplified assumptions made by the authors of {20] where a
non-physical distribution of current is employed.

In the following chapter, a reduced surface integral equation is formulated for the
problem regarding the hollow and/or layered parallel conductors carrying current. For
this type of problems, such a reduced integral equation is much more efficient than the

classical BIE method and even than the SSSIE method.
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Fig. 5-1. Normalized power loss per unit length of a circular cylindrical conductor with
o= 6x10" $/m and =1 1n a uniform magnetic field : — SSSIE : ; X exact analytical
solution.
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Table 5-1. Resistance per unit length for the system in Fig. 5-4 versus frequency

computed by using four surface integral methods.

f[Hz] SSSIE BIE | Hybrid [91] | CSIE[20]
10° 8.76 8.79 8.929 8.78
10° 8.86 8.87 - 8.78
10" 11.16 11.17 11.15 11.02
10° 31.75 31.79 - 30.80
10° 98.80 98.05 98.84 86.00

Table 5-2. Comparison of CPU time and number of segments N used per cylinder

corresponding to the results in Table 5-1.

SSSIE BIE

f[Hz] | CPU[s} | N/per | CPU[s] | Niper
cond. cond.

107 109 320 143 320
10° 23 160 30 160
10° 23 160 30 160
10° 23 160 143 320
10° 19.9 152 186.5 480
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Chapter 6
Reduced Single Integral Equation

for Quasistationary Fields in Solid
Conductor Systems

6.1 Introduction

Quasistationary electromagnetic fields in the presence of long, parallel homogeneous
solid conductors are usually analyzed using coupled boundary integral equations
formulated in terms of two unknown functions defined over all the conductor interfaces,
which can be either the magnetic vector potential and its normal derivative [6],[74] or
the conduction current density and its normal derivative [91], or the equivalent surface
electric and magnetic currents [20]. Previously, in Chapters4 and 5, novel boundary
integral equations were constructed for eddy-current problems in simply or multiply
connected parallel conductors involving a single unknown surface eleciric current
defined over all the conductor interfaces, which reduces significantly the computation

time with respect to various coupled integral equation techniques.

In this chapter, it is shown that for a hollow and/or layered solid conductor, a
reduction procedure from one interface to the next is possible, such that the field
solution can be obtained from an integral equation for a single unknown function over

only one interface of the conductor. Then this is extended to the analysis of systems of
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identical hollow and/or layered conductors in the presence of quasistationary fields.
Reduction techniques were previously developed for simpler problems, first in the two-
dimensional theory of optical gratings [65], and then in the two-dimensional scattering

of electromagnetic waves by heterogeneous dielectrics [83].

6.2 Reduction Technique

Consider, for illustration, a long layered cylindrical conductor of arbitrary cross

section, as shown in Fig, 6-1.

The conductor is parallel to the z — axis and the current density is oriented along the
conductor. The external magnetic field is in a transverse plane and the region Dy outside

the conductor is unbounded, nonconductive, of permeability 4,. Inside each
homogenous conductive layer i, of permeability g and conductivityo,, the

longitudinal vector potential 4; , ¢ = 1, 2, ...n, satisfies a two-dimensional

nonhomogeneous Helmholtz equation

2,2 _ or
(V +k1. )AI.(r)—pI_JI. P relb. (6.1)

where V' is the associated electric scalar potential, with 8V /dz = const inside the

conductor, kz_z =— ja;,ul.crz., j=+-1 and wis the angular frequency.
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Fig. 6-1. Cross section of a layered conductor.
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Denoting

A =A4+C, zwigz
® Oz

we have
(VP +k})AT(r)=0  in each conductive region
VEA(r) =0 in each nonconductive region
with the boundary conditions (see Fig. 1)
A (r)y= A (r)

141

1 84°(r) 1 845, (1)
/u{ a” J‘ui+1 an

,rel ., i=01,..,51n-1

i+1?
Instead of the classical Green representation, we use

AL(r) = [K, (DGl +
Ty

1-_Hl

where X7 and x4

f+1 i+]

current, respectively,

K (r)= _104(r)

. KL =LA, reT,
u, on :

i+]

1

J [Kfil(r’) G; "‘K;ix(rr)aa_Gri]dl” reb
i

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

are the densities of a single layer and of a double layer of electric

(6.8)

K. is the density of a single layer of electric current over the outer contour I'; of D,

and G, 1s the Green function
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~LHOER) foro, %0

G.(r,r') = (6.9)

—l—lnl fore, =0

with R =|r—r'| and H{”the Hankel function of second kind and zero order. Thus, the

potential on smooth contours I', , is expressed as
: : 1 )
APy ="K+ AR | ~T+ 72t |Ke rel (6.10)
i (g B [ R Batat B xur 2 +175 i+] i+]

where 7 is the identity operator and the following contour operator notation is used -

PAx=p, J.x(r')Gj(r,r’) di’, rel, (6.11)
r

7

;’ﬂl.dxz {x(r’)—(ﬁgmldl’, rel, (6.12)
-

with the integral in (6.12) taken in principal value.

Assume now that the surface operators z,and #. exist such that

184 (r)

A(ry=AK,,
() v M, On

=H, K, reT, (6.13)

Then, with (6.8), the interface conditions (6.6) and (6.5) are rewritten as

—a K (6.14)

T+] i+
;

and, thus, (6.5), (6.10), (6.13) and (6.14) yield the recursion

‘KH—} :QMK;' (6.15)
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where
1 -1
Rm = _!: fi:liﬁisj{m + [_ E I+ ;:rllﬂf Jﬁm :J H:ﬁis (6- 1 6)

On the other hand, substituting in (6.13) the potential and its normal derivative from

(6.7), with (6.8), (6.13) and (6.15), yields the recursion relations for the operators 4,

and | i.e.

A= A A A+ AR (6.17)

i1

1 . . ‘
‘7{[ = 5I+ ilj{if +[ :‘?[is}lr}'+l + £+]}‘T{idﬂf+l ]RHI (6 1 8)

with the operators /#(; and 7#(; defined by

0GR
é’?ﬂ’xaw:fx(r )——‘a(—n—)‘dl, rel’, (6.19)
T

i

1 *G.(r, 1) .
PH Ty —— [x(r)—2 g pel . 6.20
P . r{ X ondn’ d (6.20)

I

The evaluation of the integral operator JH, Y in (6.20) is given in Appendix C. The

t

singularity of the second derivative of the Hankel function does not apply in this case

since the observation point p never coincides with the source point g.

The operators 4, and ¢, for T, are determined as

1
ﬁn = :-ﬂlji.? j{‘rr = _—2—]+ :_‘]-[: (621)

since for region D, (6.7) contains only K, and
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B L@A: (r) _

AJT(F) = :ﬁl‘:Kll’
H, On

(6.22)

"

(—%—]%— :%:JK", rel .

Thus, ®.,,, Aand #,, i=n~1,n-2,..,1, are obtained recursively from A, and # by

i+ 2 [

using (6.16), (6.17) and (6.18), respectively. Aand 7 are needed to determine K,
from the integral equation in the next Section, K., i = 2, 3, ..., are determined
recursively with (6.15) and the potential A°,i=1,2,3, ..., is computed from (6.7) with

(6.14).

6.3 Reduced Integral Equation

The vector potential in the outer region D, is represented as

4= A= - | [%Qm 1

g 1
—— V—|In— |idl, D 6.23
Ty on' R Ar) on' ( RH re (6.23)

where A4, is the potential due to the given sources in D,. Imposing the conditions

(6.5) and (6.6) on I', and using (14) yields the reduced integral equation in X, over I,

[llﬂ;?{,Jr[—w-;—]_p;ﬁgJﬁl:lKl+C=—Am(r), rel. (6.24)

The total current /; inside I, is specified by enforcing Ampére’s theorem along I,

(see (6.13))
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[#,K dl=1, (6.25)
T

In the case of a system of parallel conductors, the reduction procedure is applied to each
conductor and the reduced integral equation only involves the surface current densities
K, over the outer contours I" . ©of the conductors a, a=1,2,..., and the corresponding

constants ;. For the special case of a system of m identical layered conductors, the

reduction procedure is performed only for one of the conductors to determine the

operators A, and 7, and the reduced integral equation becomes

m

Z{jﬁ/’l‘jﬂl+(—m21-§ab]+;‘fﬁ§)ﬂi}f(b,+€a:—AOS(r), rel, a=12,.,m (6.26)

b=1

where &, is the Kronecker symbol, with the conductor currents specified by

fot K, di=1,, a=12,.,m. (6.27)

_r:l

1

The single integral equations derived previously in Chapter 4 for homogeneous

conductors are obtained as a special case from {6.24) and (6.26).

6.4 Illustrative Examples

Two scries of numerical experiments are presented in order to show the efficiency of
the reduced surface integral equation (RSIE) method as compared to that of the usual

coupled boundary integral equations (BIE) method [6].
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The conductor cross-section contours were discretized employing equal length line
segments. A simple point-matching technique has been implemented, where the
operators in (6.11), (6.12) and (6.19), (6.20) are converted into matrices with a number

of rows and columns equal to the number of segments on the contours T pand T,
respectively.

To determine the accuracy of the RSIE method, a single hollow circular cylindrical
conductor, shown in Fig. 6-2, was used and the numerical results generated for the

current density have been compared with those from the exact analytical solution.

A number of 80 segments per contour is necessary to achieve a maximum error of
0.56% for the data generated. The same number of segments for the contour of each
interface has been used for all the conductor systems in Fig. 6-2 and Fig. 6-3 to obtain
results of about same accuracy. For systems with more than one conductor the accuracy

has been determined by increasing progressively the number of segments per contour.

As seen In Sections 6.2 and 6.3, in the RSTE method only multiplications of NxN
matrices, where N is the number of segments per contour, one inversion and some
matrix-matrix additions and matrix-vector multiplications are required for each
interface, with the reduction procedure performed for only one body, as well as a final
(mN)>(mN)} matrix inversion. The amount of computation needed is substantially

smaller than that in the BIE, where a (mnN) x(mnN) matrix inversion is needed.

‘In order to illustrate quantitatively the efficiency of the RSIE method with respect to
that of the BIE method, systems with one, two and three identical conductors, having,

respectively, the configurations (1), (2) and (3) shown in Fig. 6-2 and Fig. 6-3, were
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considered. The point-matching method of moments code was written in Matlab and a
Pentium 4 - 2.5 GHz personal computer has been employed. The computation time
required for the reduction procedure along with the construction and solution of the
reduced matrix equation, i.e. the difference between the total CPU time and the time
taken to generate the entries in the matrices corresponding to the operators in (6.11),
(6.12) and (6.19), (6.20) in the RSIE method, has been compared with the computation
time required to solve the sparse matrix equation in the BIE method. For the systems
with one, two and three hollow conductors shown in Fig. 6-2, the above computation
time in the proposed method is, respectively, 2.2, 9.7 and 15 times smaller than that
required in the BIE method. For the systems with one, two and three hollow composite
conductors shown in Fig, 6-3, this computation time is, respectively, 3.1, 16.9 and 38.5

times smaller in the RSIE method presented than in the BIE method (see Fig. 6-4).

It should be remarked that by using the same discretization as in the RSIE method,
1.e. 80 segments per contour, the BIE method yields an accuracy of only 1.16% instead
of 0.56% specified above for the former method. To achieve the same accuracy, the
number of segments per contour should be increased to 138 in the BIE method, which
vields a substantially increased computation time and shows that, in fact, the efficiency

of the method presented here is even higher than what was mentioned above.
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Fig. 6-2. Current density in hollow conductor systems with one (1), two
(2) and three (3) identical conductors of conductivity ¢ =3.6x10" S/m and
depth of penetration 4, for d»=3r,; and d3=3.5r; : - RSIE ; x BIE .
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Fig. 6-3. Current density in hollow layered conductor systems with one (1),
two (2) and three (3) identical conductors of conductivities 6,= 3.6 %10’
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Fig. 6-4. CPU times comparison for the hollow conductor and hollow
composite conductor systems in Fig. 6-2 and Fig. 6-3, respectively, vs. the
number of identical conductors.
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6.5 Conclusions

A reduced surface integral equation formulation for quasistationary electromagnetic
fields in the presence of hollow and/or layered parallel conductors carrying current
located in a given inducing transverse magnetic field has been presented and its high
efficiency with respect to existent coupled boundary integral equations formulations has

been demonsirated.

The high efficiency of the proposed method is due to the fact that the RSIE requires
the determination of only one unknown function defined on only one interface of the
conductor, while in the coupled integral equations method two unknown functions
defined over all the conductor interfaces have to be determined. Moreover, for the same
accuracy, the latter method requires a denser discretization than the former. For systems
of identical hollow and/or layered conductors the reduction procedure needs to be
performed only once, for one of the conductors, which explains the extremely high
efficiency of the method presented. As well, the calculation of the field quantities at
various observation points requires less effort in the reduced integral equation mode]
since the representation in (6.7) is simpler than the classical Green representation used

in the usual coupled integral equations models.
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Chapter 7

Conclusions

In Chapter 2, a single-source surface integral equation has been applied for the
solution of transverse magnetic (TM) and transverse electric (TE) wave scatiering by
lossy dielectric bodies, respectively. The accuracy of the SSSIE method has been
demonstrated by comparison with the exact analytical method and volume integral
equation technique for a lossy dielectric cylinder for both TM and TE wave scattering

problems.

In Chapter 4, an inside field perspective approach of the single-source surface
integral equation method has been developed for the analysis of eddy currents in
cylindrical conductors, all the field quantities of interest being determined in terms of
only one surface cusrent distributed over each conductor boundary. Its accuracy was
tested for various conductor configurations for which exact analytical solutions are
available. A large range of frequencies was considered, including the case of strong skin
effect. The computational efficiency with respect to existent coupled surface integral
equation formulations has also been demonstrated, substantial reductions in CPU time

being achieved, especially for multi-conductor systems.

A new formulation of a single-source surface integral equation method, based on an
outside field perspective approach, has been also constructed to model quasistationary
fields in multi-conductor systems in Chapter 5, which is more efficient to be used for

calculating the fields in the region outside the conductors. This technique provide
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accurate results over a large range of frequencies, with a significant CPU time reduction
when compared to the coupled boundary integral equations method and other numerical
and experimental methods available in the literature.

In Chapter 6, it was also demonstrated that for a hollow and/or layered solid
conductor a reduction procedure from one interface to the next is possible, such that the
field solution can be obtained from an integral equation for a single unknown function
over only one interface of the conductor. The number of arithmetic operations invelved
in the matrix-matrix multiplications and the matrix inversions increases linearly with
the number of interfaces, while that for the solution of the matrix equation In the
coupled boundary integral equation formulation is proportional to the cube of the

mumber of interfaces.

Moreover, such reduced surface integral equation formulation has been extended for
systems of muliiple hollow and/or layered parallel conductors carrying current located
in a given inducing transverse magnetic field and analysed with respect to the existent
coupled boundary integral equations formulations in terms of efficiency. The method is
exiremely efficient, the reduction procedure being required only for one of the
conductors and then duplicated for the others. For systems of identical layered
conductors, the reduction in the computational effort is spectacular. For instance, in the
case of three identical conductors with two layers of material each, the CPU time for the

RSIE method was 38.5 times smaller than that required in the coupled BIE method.

A mathematical formulation for the single-source surface integral equation has been
developed for solid conductors of revolution in the presence of quasistationary

axisymmetric fields (see Appendix D). The SSSIE has a similar form as the one
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developed in the previous formulation in Chapter 4; however it involves different type
of integrals specific to this type of problem, the unknown being the surface current

density distributed along the generator contour of the axisymmeltric conductor.

7.1 Recommendation for Future Studies

The RSIE method could be applied to determine eddy currents in induction machines
having a multilayer rotor structure (with no windings in the rotor as in conventional
mduction machines). This type of machine has concentric solid layers of high electric
conductivity and high magnetic permeability, therefore are more robust than the
classical squirrel-cage machine and are well qualified for use in a harsh environment or

in high speed applications.

One other application is the inductive heating of cylindrical machine parts such as
rotors and rotor retaining rings which can be modeled as cylindrical shells. To find the
solution of eddy currents in this type of problem, either the single-source surface
integral equation method (SSSIE) or the reduced single integral equations (RSIE) could

be used.

The reduction technique presented in this thesis may be applied also to analyze the
magnetic field distribution and power losses for EHV class GIS single phase and three
phase bus bar design. It is very important to predict the temperature rise in the current
carrying conductor and in the tank of the GIS bus bar caused by the induced eddy

currents.
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The SSSIE was formulated for the solution of wave scattering by three-dimensional
single dielectric objects first time by Marx [52] and computed results for a dielectric
sphere were generated by Yeung [94]. The SSSIE formulation could be extended for the
solution to general three-dimensional eddy current problems for single or multiply-

layered conductors of arbitrary geometries.
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APPENDIX A

Surface Integral Operators for SSSIE formulation of Wave Scattering
Problem

The SSSIE formulation for TM wave scattering problem is implemented by using a

point-matching method of moments [30] in 2.1. The cylinder cross-sectional contour S
1s discretized into a number of straight segments [Al], of length AZ, with a constant
surface current density over each segment.

By using a pulse-expansion method of moments approach, the surface integral

operators are approximated as

Egx = Z ng:l

i

(], (A1)

Fx = Z Eel [x]l, (A2)

" | [x] (A.3)

Hox= [ #5 | [¥], (A4)

~ The formulae for calculating the coefficients [@51, [Eel, [CE’”l and [?{ gl_ are

given below [80]
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2 N
—wfﬂ [ 7 (ko lr=r))ar, relal]

ki l. = [81] (A.5)
~opeA((0.25+ /0.287924) - j0.159154941n (kAl)),  re[al]

3

“%u_ J.Héz)(klrﬂ"f)dl’, reé[AZl.

=)= [47] (A.6)
~ouAl{(0.25+ j0.287924) - j0.15915494 n (kAl)),  refAl]

I

oy [P (e k(i R)ar, refal]
[95 ]i_ (4] (A.7)
0, re[é\l].

1

~L [ 5 (kylr k(i R)ar, re[al],
) (A.8)
0, re [Ai]

i

where r and r' are the position vector of the observation point and source point,
respectively; &y = a\fegu, and k=w.fe u are the wave numbers corresponding to the
free-space and lossy dielectric, respectively; ¢ the complex permittivity and H((}z) the

Hanke] function of the second kind and order zero; R = (r=+")/lr ¢, and Hl(z) is the

Hankel function of the second kind and order one. The regular-patch contributions (i.e.

Fé [A[ ]1,) are obtamed through the numerical evaluation of the regular integrals (A.1) to

(A.4). The self-patch contribution (i.e. re[Al]I_) for (A.1) 1s obtained by analytical

integration of the small angle approximation of the Hankel function,

H (kR) ~1-a, (kR)” -J[Eln(%fm)(l - (kR)' |+ B+ 5, (kR)zJ (A.9)

7
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with ¢ = 0.24999997, 4 =0.36746691 and S, =0.06728818 [1].
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APPENDIX B

Surface Integral Operators for SSSIE formulation of Eddy Current

Problem

The SSSIE formulation for eddy current problem is implemented by using a point-

matching method of moments. The cylinder cross-sectional contour € is discretized

into a number of straight segments [Al ] of length A/, with a constant surface current

i

density over each segment,

By using a pulsé-expansion method of moments approach, the surface integral

operators are approximated as

where the coefficients, [ 1] , [#], [/’lgl and [ﬂéﬂ

JH (2) .
—== 0 Hy  (kR)dI,
(4] =] ¢ [le

—jHAI{(0.25+ j0.287924) - j0.15915494 n (kAl)), re[Al]
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~are calculated as

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)



[o6], = # 1. & " (B.6)
0, I‘E[Af]f
o Ly Al
o [ger el
Ei z (B.7)
-’fﬁAlin(é—) re[Al]
2 2e
L f’—'f-df', re|Al]
A ] =] 27 e R (B8)
0, refal]

where R = ’r —r’i with r and r' being the position vector of the observation point and
source point, respectively; k =\~jouc, j =1 ., @ the angular frequency, ¢ and
u are the conductivity and permeability of the conducting material, respectively; Héz)
the Hankel function of the second kind and order zero and Hl(z) is the Hankel function

of the second kind and order one. The regular-patch contributions (le. reg [Al]{_) are

obtained through the numerical evaluation of the regular integrals (A.1) to (A.4). The

self-patch contribution (i.e. r e [Al]l_) for (B.5) is obtained by analytical integration of

the small angle approximation of the Hankel function, same as in Appendix A. The self-

patch contribution (1e. r e[A[]},) for (B.7) is calculated by considering the distance
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l:\/(x—xm)2+(y-—ym)2 from the mid-point (x_,y, )of the segment [A!] to an

7

a
arbitrary point (x, y) and integrate by using the formula J‘In la|dl =11n G [76]
e

Alf2
SN (B.9)
-Al2 2 2e

(] <o _ |t
[;fzol__Z;Mijllnmdf_zi[zm J
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APPENDIX C

Evaluation of the Integral Operator s

The Green function corresponding to the conducting region (&, # 0) is

G =-

1

2

L2 01

withR =lr—r| and H{¥the Hankel function of second kind and zero order.

This leads to the expression

a"“G,. ] 8° H(z)(

kR )

ondn’ - Z onon'

!

and by replacing (C.1) in (6.20) one obtains

J

d
(fj‘[iXx—

f()

4u r Ondn'

o2 H M (kR)

r

where the second derivative of the Hankel function can be expressed as

52
onon'

d

oA
= 5}51{0 (&R)

(R

m{ (1R = VK&;H@ (fc,.R)](fe-ﬁ')J ¥

-ﬁ)(}}-ﬁ’)+(;§}f§

By using the Bessel functions properties
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kR

I

)

on

(]}-ﬁ’)

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)



one obtamns:

*H (kR 5 KRES (JRY - 5 (7R
————;Rz( ):—kéEH,(Z)(kR)=—k o 23 (%) (C.6)
-wa—(R-fi’) from {C.4) could be calculated as
an
. an-(n-RUA R
—a—(vaz'): ( _ A ) _ (C.7)
on R

By replacing (C.5), (C.6) and (C.7) in (C.2) we obtain

~

G (kR) | KRH (kR)~ 11 (kR) - (i R)(# R)

onon’ R

(ﬁ-}%)(ﬁ-:&')ukHi(z) (kR)

fz-ﬁ'-Z(frﬁ)(ﬁ'-R)
R

=kH1(2)(kR){ J—kzﬂéz)(kR)(:‘z-ﬁ)(ﬁ’-ﬁ’) (C.8)
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APPENDIX D

Single Integral Equation for Axisymmetric Problems

D.1 Analytic Formulation
A Z

Fig. D-1. Axisymmetric conductor in the presence of a current-carrying turn.
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Consider an axisymmetric conductor of arbitrary shape in the presence of

quasistationary magnetic field produced by a coaxial turn carrying a sinusoidal (AC)

current /. The magnetic vector polential 4 has only a ¢ component,

A= q;’vA¢ = @A as well as the electrical field intensity, £ = 1;3E¢ =pL.

By writing the expression (3.26) in cylindrical coordinates, the electric field

components are obtained

=—ja)A—VV:ﬁja)A—la—V (1)
p op
Ep::—%K:O (D.2)
0
E, :MQI_/_:() , (D.3)
0z

From (D.2) and (ID.3), it can be seen that the electric scalar potential ¥ could only

depend on ¢ inside the conductor. Due to the fact that both £ and 4 are not dependent
of ¢, ¥V has a linear dependence of ¢ inside the conductor, as shown in [89]:
V = _f?_ V{2z)-V (0
(#)=7(0)+5 [V (27)-7(0)] (D.4)

For the problem considered here, ¥ (27 )=V (0), therefore the potential is constant and

VI =0 (D.5)
Referring to the derivation in Chapter 3 and using the relation (D.5), expression (3.30)

can be written for the axisymmetric case as

VX(VXA):,uU(-ja)A). (D.6)
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The left-hand side term of (D.6) can be calculated from the vector identily
Vx(VxA)=V(V-A)-V’4 and using the relation (3.23). This leads to a

homogeneous Helmholiz equation inside the conductor satisfied by the magnetic vector

potential A4

(V2+k2)A(r):0, reD (D.7)

where &* = - jouc .
Outside the conductor, in the free-space region D,, the vector potential A4, satisfies

Laplace’s equation

V4, (r)=0, rebD, (D.8)
The continuity conditions for the vector potential and its normal derivative on the
interface §' between the conducting region and the free-space region are

A(ry=4,(r), res (D.9)

I@A(r)_ 1 aAe(r)
M On _#o on

(D.10)

We first assume to have everywhere the same conducting material as in 2. The actual

A m D is produced by a single layer of electric current of density J¢, having an

azimuthal ¢ direction same as the vector potential
oA - kR

Ar)=L2 15 () s = 2 [ 05 ()
5

e

ds', re DUS (D.11)

or
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~JkR
a’A:f;JS(r’)eR gds'

where R =|r — | and r’ is the position vector of the source point.

(D.12)

By taking the scalar product with unit vector ¢ in both terms of the relation (D.12), we

obtain
p o IR
fdd =L
¢ a7 " (I ) R
and
= % j cOSs (¢ ¢ )
s

For convenience, we choose ¢ =0 and (D.14) becomes

kR
eJ'

A(r)= Tl jJS (.'")Tcosgzﬁ’ds' .

Subsequently, the vector potential A is expressed as
A(r)=aJg

by means of the integral operator 4 acting as

ATs = p [Jg (r') o di'
<

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

with the integral taken now along the generator contour C and containing the M integral

m¢' defined as

2z kR
COSt‘ﬁ,{)Jdlﬁl ,
R
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The magnetic field intensity, in the conducting region 22, could be written as follows

1 1 N 1 oA
H=—(VxA)= " {VxAgp|=—(VA)x D19
(V) #( 4) L (va)<d (D.19)

The goal 15 to find the expression of the tangential component of H on the surface S
just inside the conductor in terms of the normal derivative of the vector potential. In

order to do this, relation (D.19) requires some simple manipulations
1. P P
H,(r)=—1| Vx|~ —va-(pxi) (D.20)
H

where ¢ is the unit vector tangential to the generator curve C of the conductor. Since

~

gxt=np and VA -ji= gﬁ , (D.20) could be written as
11

H, = —;JS +H T (D.21)

where the integral operator # acts as

H = jJS Yar'dr (D.22)

with the integral taken in principal value and %', the integral in ¢, defined as

2r

a (o e
W = Z%&(LQR Jcosgﬁ'p’dgs'. (D.23)
#'=0

By using the Green theorem, the potential 4, in the free space region D, can be

written

Fi% e

A ()= Aun - i { jaAe(r') Cos¢ jA ) cos g’ M(%]dS’}, (D.24)
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where r € D, , the potential vanishes at infinity, and 4, is the potential produced by

the current carrying tumn in free space having an azimuthal ¢ direction which has the
expression

el 7 acosg'dg’

e (D.25)
[ 4 \/p2+a2—2pacos¢’+(2~z)2

A

By using (D.9), (D.10) and (D.21), the potential 4, on the surface S, just outside the

conductor, 1s obtained from (D.24) as

A, (r)= Ay, (r)+ AH, +(—;—]+ﬂg'}/{, res (D.26)

i

where / is the 1dentity operator and the operators 4; , A4 acting as

ASH, =g [H, (7" )My dr’ (D.27)
C

Al A= jA(r')médz' (D.28)

C
with

27 P '

My = J‘M (D.29)
. 4R
#'=0
2r [N '

M = J‘i(i}% . (D.30)
=0 on'\ R 47

Substituting /, from (D.21) and enforcing in (D.26) the boundary condition (D.9)

yields a single-source surface integral equation satisfied by J s

[ﬂg(%f+?{)+(—%]+ﬂg'jﬁ}’5=—Amm, reC (D.31)
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The magnetic vector potential inside the conductor is simply calculated from: (D.16)

and the current density is determined as

J=-joo A (D.32)

D.2 Numerical Implementation

The generator curve C of the axisymmetric body is discretized into a sufficient
number of straight segments with a constant surface current density Js over each
segment. The surface integral operators A, 7, Ay, A; become matrices where the
number of rows and the number of colﬁmns are given by the number of segments of the
contour C. The contribution at a point on the generator curve is given by all the other
source points, each of them being concentrated at the center of the corresponding
segment, except where the source point coincides with the observation point, in which

case the integrals are taken in principal value.

Analytical solutions are obtained for the solutions of integrals M, and M, in terms

of complete elliptic integrals of first and second kind. But, there are no analytic
solutions for the integrals™ and M', therefore they have to be calculated numerically.
Following the approaches found in [72], for low and high dimensionless frequencies,
power expansions in terms of elliptic integrals and asymptotic series in terms of

modified Bessel functions are used, respectively.

114



The surface integral operator

2x

M, = | CoSPP 1 (D.33)

5 4R

could be evaluated by using some mathematical manipulations as in [71]

szr~r’f (D.34)

P = peosgx + psingp + 2z (D.35)

r'=pleosg’x + p'sing'y+ 23 (D.36)

R ={ pcosg— p'cosg’) X+ psing - p'sing’) §+(z - z')Z (D.37)

For convenience, by taking ¢ =0 one obtains

R= \/pzcoszgﬁ + p'lcos’y’ - 2 pp'cosgeosg’ + pisinid+ p'lsing + (z- z’)2

(D.38)
= \/pz +p”* —2pp'cosd’ + plsin?g + (z - z’)2
By denoting
’ 4 '
A= oe _Aee (D.39)
(prp) +(z-2) d
and making the change of variable
¢'=m-26
dg'=-26 (D.40)

cos@'dp’ = 2cos26

the inlegral operator %, can be expressed as
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{ 2 JT,"Z
M= N2 (1—@} J P sin0do (D.41)
d o o

— sm 29

and subsequently

xf2 72
/) [u—J j J.\/l—ﬂzsinzé?dé
ﬂ\/; 1~/12 sin’ 5

= ﬁﬁg Hlm%z}[((/l)—E(&):!

where K(2) and E(A) are complete elliptic integrals of first and second kind,

(D.42)

respectively.

The integral operator M is expressed as

2 -/ ] 1] 1/2 .
m_fe”mcosgﬁpdgﬁ_ A 17 2sin?o-1 _K,fl_;gs,-nzgde (D.43)

= = — | ———————p

; AR Jpp' 27 @j J1=2%sin’ @

2k~ op’
1

where x = and cannot be evaluated analytically. Its numerical evaluation

follows the method derived by Priede and Gerbeth [72] .

For low frequencies lx| <1, the exponential function in (D.12) may be expanded in

power series of x and this yields

M=

4
I D.44
,/pp ,‘??6 n! [" n+l1 ”) ( )

where
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2 i 17 =20 +1

I= [(1-A’sin’0) 2do =" . 1=0,1,2,... (D.45)
5 17 n=21
dl +1

. (D.46)
di’

For odd n, by using the theory of elliptical integrals [42], the following recursion is

obtained:

12, = fj:j(z—ﬂf)fgz %(1 -2 (D.47)

with 7§ =7/2 and I} =(2- 4% )=/4.

For even indices one obtains

G2 2y ow

with /j = K(A) and If = £(2). By performing the summation of the series (D. 13) until

IK‘” / n!<107° is satisfied, a relative error less than 107 is obtained.
At high frequencies, when !f(i >1, (D.44) is evaluated asymptotically by

employing the Laplace method [72]. Substitution of cos@ =1 in (D.44) yields

2p 1 exp(—s\/1+ﬁzt2 ) (1_212)
_\/Eo \/1+ﬁ2t2 \/l-—!z

where s =xV1-4% and ﬁzﬂ../\jl—/lz .

dt (D.49)
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The expression 1/\/1——[2 = Z I”(m+1/’2)/(\/;m!)zz”‘ can be expanded and by shifting

m=0

the upper limit of integration to infinity, we obtain

) | , . ] ) . 2m
:\/2‘7*Jexp(**Sccsilx)[lmz(Sln;x] ]X:g r(\};;azz)[smz?]A} @

~—

(D.50)
2 & Iim+1/2 2
= ) Z ( : /2,,,) (]m _“‘2"-[,,,+1}
A2 \,/;m!ﬁ yéi
by using an additional substitution ¢ = sinh x/ 5 .
The integrals from (D.50)
7 T ( h ) .nh2m A I—‘(nf'l‘l/z)(zjmK ( ) (DSI)
= lexp(—scoshx)si xdx = ————2~ = s )
n ; p \/; 5

expressed 1n terms of the modified Bessel function of the second kind of order m,

K, (5}, (1], can be calculated for m>1 by the recursive relation

Ly =(2m+1)(2ml,, +(2m~1)1,.,)/s? (D.52)
There is no significant difference in the calculation of the gradient of (D.44). 1t
can be determined in a similar way by using the relation d/, /ds =—sl, . /(2m+1)

derived from Bessel functions properties [1], [72].
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