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Abstract

This work examines parallel VLS| implementations of nondeterministic algorithms.
it is demonstrated that conventional pseudorandom number generators are unsuitable
for highly parallel applications. For example, while linear feedback shift registers
(LFSR) are adequate for generation of single pseudorandom bit streams, the bit
streams from different cells in the LFSR are highly correlated. Efficient paraliel pseu-
dorandom sequence generation can be accomplished using certain classes of elemen-
tary one-dimensional cellular automata (two binary states per site and only nearest
neighbour connections). The pseudorandom numbers appear in parallel from various
cells in the cellular automaton on each clock cycle. Extensive study of the properties of
these new pseudorandom number generators is made using standard empirical ran-
dom number tests, cycle length tests, and implementation considerations.

Furthermore, it is shown these particular one-dimensional cellular automata can
form the basis of efficient VLSI] architectures for computations involved in the Monte
Carlo simulation of both the percolation and Ising models from statistical mechanics.
The architectures provide a spatially-distributed set of pseudorandom numbers which
are required in the local nondeterministic decisions at the various sites in the array. It
is shown that the time-intensive task of sampling the percolation and Ising
configurations is expedited by the inherent parallelism of this approach. The architec-
tures can be used to report pertinent information such as the magnetisation to a host
computer. It is demonstrated that these architectures can provide speedup of several
orders of magnitude over conventional Monte Carlo simulation. For example, a 1000 x
1000 Ising lattice can be completely updated in less than 1 psec. The correctness of
this approach is verified by computer simulation of the new architectures which derived
the correct critical exponents for both the percolation and [sing models.

Finally, a variation on a Built-In Self-Test technique is presented. It is based
upon a distributed pseudorandom number generator derived from a one-dimensional
cellular automata array. These Cellular Automata-Logic-Block-Observation (CALBO)
circuits improve upon conventional design for testability circuitry such as BILBO as a
direct consequence of reduced cross-correlation between the bit streams which are
used as inputs to the logic unit under test. This approach answers the problems aris-
ing from the correlated bit streams produced by the conventional LFSR. In addition, it
is noted these cellular automata implementations exhibit locality and topological regu-
larity; important attributes for a VLSI implementation. it is shown that much of the
analysis of pseudorandom testing is more directly applicable to CALBO-based pseu-
dorandom testing as compared to LFSR-based schemes, in that statistical assump-
tions regarding the pseudorandom test vector generation are better justified in the
former case. The data compaction properties of CALBO are examined and it is found
that cyclic group rule cellular automata provide comparable signature analysis proper-
ties to the LFSR. An important feature still to be fully investigated is the possibility that
some cellular automata may be able to generate weighted pseudorandom test pat-
terns.
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Chapter 1
Introduction

1.1. MOTIVATION

This thesis is motivated by the potential for massively paraliel VLSI systems to study
large problems. These problems are often best solved by employing algorithms with
nondeterministic components. In this study we restrict ourselves to nondeterministic
algorithms which can be implemented on a parallel system using a single instruction
multiple data, or SIMD, architecture. Many problems, especially important modelling
problems from statistical mechanics, fall into this class.

Solution of large problems using nondeterministic algorithms often involves
tradeoffs. between interesting problem sizes and computationally reasonable solution
times. However, even for small problem sizes many of these nondeterministic prob-
lems stretch computer resources to the limit. The salient features of a nondeterministic
algorithm include generating a random number, comparing it to some probability, and
taking appropriate action, usually some simple operation. Therefore, on most computer
systems we are restricted by the rate at which we can generate pseudorandom
numbers. The most obvious solution to increase computational throughput, other than
technological improvement of the computing hardware, is to attempt to implement por-
tions of the algorithm in parallel. However, this creates the need for efficient paralle!
pseudorandom number generation. In a VLSI implementation all circuits must be both
area and time efficient or precious silicon area and/or computation time will be wasted.
Thus, for parallel VLS! implementations of nondeterministic algorithms we require an
area-time efficient pseudorandom number generator. Therefore, while in this work we
primarily consider the VLS| implementations of nondeterministic algorithms, we must
first concern ourselves with the development of a suitable pseudorandom number gen-
erator for such a parallel computing environment.

A second motivation is to examine the suitability of current pseudorandom test
pattern generators and signature analyzers for built-in self-test (BIST) of VLSI circuits.
In this problem we are again concerned with the generation of pseudorandom
numbers. However, we are not concerned with the generation of these pseudorandom
numbers ‘in péra!lei but rather with generating pseudorandom numbers at high speed
using minimal area. It is known that the most common mechanism for generating
pseudorandom test patterns and performing signature analysis for BIST (the linear
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feedback shift register) suffers from cross-correlation. This is especially problematic in
a BIST environment since some circuit faults cannot be detected using such test pat-
tern generators and signature analyzers. Therefore, we seek to propose improved
pseudorandom test pattern generators and signature analyzers for BIST.

1.2. OBJECTIVES

The objective of this thesis is twofold. First, we seek to study the VLSI implemen-
tation of massively parallel computing systems for the solution of nondeterministic
algorithms. Secondly, we attempt to derive improved BIST circuits for both test pattern
generation and signature analysis. Consequently, we must place a large emphasis on
the requirements of pseudorandom number generation for such systems. In this light
we seek to discover an area-time efficient pseudorandom number generator. The
resuiting pseudorandom number generator's suitability is demonstrated by first study-
ing two highly parallel nondeterministic algorithms. These algorithms arise in statistical
mechanics where massively parallel Monte Carlo simulation of the percolation and
Ising models could result in a speedup by several orders of magnitude over conven-
tional serial Monte Carlo simulation. Secondly, we examine the application of the new
pseudorandom number generator to random testing of digital VLSI circuits. In this work
we must show that the new test pattern generator and signhature analyzer is both small
and fast when compared to conventional techniques. We must also derive measures
by which performance comparisons to other techniques can be made.

1.3. PRINCIPAL CONTRIBUTIONS OF THIS THESIS

This thesis concerns itself with the study of area-time efficient hardware pseu-
dorandom number generation, parallel computation of nondeterministic algorithms,
pseudorandom test pattern generation and signature analysis for digital circuit testing.
Contributions arising from this work include:

1. An analysis of conventional pseudorandom number generation with respect to its
implementation in a fine grained parallel processing environment is presented.

2. A new area-time efficient pseudorandom number generator based on simple
one-dimensional cellular automata is demonstrated.

3. A parallel architecture for simulation of the lattice percolation model of statistical
mechanics is described. Correctness of the design was verified by simulations of
the architecture which produced the correct critical exponents associated with
phase transitions in the model system. Speedup over conventional simulation
techniques is shown to be O{N), where N is the number of sites in a lattice.

4. Two architectures for high speed simulation of the Ising model are presented. As
with the percolation model computer, correctness of the design was verified by
simulation.
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5. A novel cellular automata-based pseudorandom test pattern generator is
described which overcomes some of the fault coverage problems in the traditional
linear feedback shift register-based pseudorandom test pattern generator. The
topological regularity of the new generator facilitates easy register width changes
and so therefore is well suited to incorporation in computer-aided design software
tools, as well as being an efficient basis for self-testing hardware.

6. A first study of the signature analysis properties of simple one-dimensional cellu-
lar automata has been made. Results indicate that cellular automata whose rules
display cyclic group properties are well suited for use in signature analysis with
comparable aliasing properties to the linear feedback shift register.

1.4. THESIS ORGANISATION

The thesis is organised into four sections. Chapter 2 deals with the subject of random
number generation with emphasis on applications in parallel processing with fine-
grained processors. A working definition of randomness based on standard random
number tests is derived and several conventional pseudorandom number generators
are tested and examined in the light of parallel processing applications. Finally, a
novel area-efficient pseudorandom number generator based upon cellular automata is
demonstrated and tested. Chapters 3 and 4 explore two potential applications for this
new generator. In Chapter 3 we are concerned with two nondeterministic algorithms
used in statistical mechanics. Parallel architectures are derived which show great
promise for use as special hardware accelerators for the percolation and Ising models.
The correctness of the approach is shown by simulation of the architectures with
respect to generating the correct model parameters, or critical exponents. Chapter 4
considers a different nondeterministic problem, that of built-in testing of VLSI circuits.
Here new built-in self-test circuits based on the cellular automata-based pseudoran-
dom number generators of Chapter 2 are used as a logic block observers. Measures
of the fault detection and signature analysis properties are derived and compared with
linear feedback shift register based circuits. Finally, Chapter 5 presents some conclu-
sions and suggestions for further work.

There are three appendices to this work. Appendix A derives a confidence esti-
. mate of the probability of generating a nonrandom sequence, given that a pseudoran-
dom number generator has passed the random number tests. Complete cycle length
properties of the class 3 cellular automata studied in Chapter 2 are given in Appendix
B. Appendix C presents detailed information on the weight of each output bit for all
possible simple one-dimensional cellular automata in the context of weighted pattern
generation for built-in self-test.

An accompanying volume presents detailed information on the computing system
and programs -used in this work.



Chapter 2
Parallel Pseudorandom Number
Generation in VLSI

2.1. INTRODUCTION

fn this chapter the efficient generation of random numbers by deterministic
methods for use by parallel processors in fine-grained VLS! arrays, such as the two-
dimensional mesh architecture shown in Fig. 2.1, is discussed. By fine-grained it is
implied that the individual processors do not have a great deal of processing power,
but instead, the architecture relies on the large number of these processors to create a
powerful machine. In the execution of algorithms having nondeterministic components,
this means that most processors will consist of a software or hardware based random
number generator (RNG) and some simple processing elements. For example, in a
parallel sampling algorithm, it is possible that the processor will consist solely of a data
selector, possibly from a small memory, and a comparator to compare the selected
value with a random number. In these architectures, which have been used to solve
problems based on the percolation and Ising models of statistical mechanics (see
Chapter 3), it is necessary for the random numbers at each processor to be available
on each clock cycle to achieve maximum throughput at each processing site. This
requires that special hardware be dedicated to random number generation at each
processor. To provide parallel hardware random number generation two methods are
possible. Firstly, one may employ a technique whereby a large global random number
is generated on each clock cycle and a local random number for each processing site
is obtained by selecting only a small number of bits from this global random number.
This method may be employed only if the bits in each local number are uncorrelated
and if there is also no cross-correlation between local random numbers at neighbour-
ing processing sites. Secondly, one could have a RNG at each processing site.

In this chapter the requirements of parallel computer architectures which require
random number generation will be first examined using conventional RNGs. Special
emphasis will be placed on the VLS| implementation of these architectures including
estimates of processor area, A, and computation time, 7.21 It will be shown that con-
ventional RNGs are inefficient in terms of area and time requirements for the fine-
grained parallel processing environment of Fig. 2.1. Novel architectures will then be
proposed, based on a new RNG which uses cellular automata. These architectures
solve many of the problems associated with using conventional techniques of RNG in
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Figure 2.1 : A fine-grained parallel processing two-dimensional mesh architecture.

fine-grained parallel processing machines.

These architectures have applications in the efficient implementation of parallel
nondeterministic algorithms such as modelling schemes based upon statistical
mechanics, hardware accelerators for simulated annealing, and other parallel Monte
Carlo simulations. Another important application of the results presented in this
chapter lies in the area of built-in self-test circuits (BIST) for VLSI where an improved
pseudorandom number generator (PRNG) as compared to the traditional linear feed-
back shift register (LFSR) is demonstrated. These applications are explored in
Chapters 3 (Parallel Architectures for Statistical Mechanics) and 4 {Applications to
Built-In Self-Test).

2.2. DEFINITION OF RANDOMNESS

It is very difficult to discuss the idea of randomness without being drawn into
some sort of philosophical discussion about what random means. An interesting and
thoughtful discussion on this topic can be found in [Knuth1981]. It is inappropriate to
consider an individual number to be random; instead, a sequence of numbers must be
considered. Here we are concerned with the generation of random number sequences

2'1. This allows us to make comParisons on the relative performance of each
architecture using the methods of [Thompson1980]. The area and time esti-
mates will be based on a 3 micron single metal twin tub CMOS process tech-
nology so that it will be possible to insert the constants required to make exact
comparisons and not just asymptotic ones. All implementations consist of static
circuits and an 8 bit word size. Relative comparisons are expected to be rea-
sonably technology independent.
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by deterministic methods. The resulting sequences cannot be completely random since
they are generated deterministically, but are rather, referred to as pseudorandom
sequences. The definition of a pseudorandom sequence to be used here will consider
a sequence to be pseudorandom if it satisfies several standard empirical random
number tests as described below.22 For these tests a general form for a pseudoran-
dom sequence is assumed to be

<Zf> = Zo, 21, Za, ot (21)

where each Z; is a real number between zero and one. This work is concerned with
the hardware generation of pseudorandom sequences which are most conveniently
expressed in terms of integers; an integer valued sequence of the form

<‘xi> = XO! X1, X2s tee (22)
where each

X=|dz J (2.3)

will be employed rather than the real-valued sequence of Eqn. 2.1. The sequence of
integers_will have values between 0 and d -1 giving an integer word size of

log, d| bits.

Many of the following tests perform some operation using the sequence, usually
in the nature of a counting operation, and the results are then compared to a given
distribution for a particular test. The question that naturally arises is how can it be
determined if the results of the test are the same as what is desired, or expected, of a
pseudorandom sequence? Obviously we do not expect the results to be exactly the
same since it is highly unlikely that a truly random sequence would exhibit ideal pro-
perties. On the other hand, deviation too far from the ideal is also unsatisfactory.
Therefore, the comparison must be made for a range of acceptable behaviour. The
comparison technique used here is the well known chi-square test (x2 test). In this test
each possible event is assigned a probability, p,; then the number of occurrences of
that event are counted, Y. After all the events have been counted each Y, is com-
pared to the expected number of occurrences, npg, where n is the number of ele-
ments in the test. If we sum the squares of the difference between Y, and np, for
each possible event we determine a measure of the difference between the expected
and actual results. This quantity, usually labelled as V, can be expressed

22 Tests 1 through 9i are primarily adapted from Knuth [Knuth1981] with
some, minor changes and additions. Other references detailing similar test pro-
cedures for sequences of pseudorandom numbers are available in [Ken-
dal1938], [Lewis1969], [MacLaren1965], [Marsa ha1968}, and [Payne1971].
Test 9ii is newly proposed in this work, although the problem of independence
between bits within a random number has been previously considered by oth-
ers gee for example [Tootili1973]). Other tests specific to a given type of
PRNG have been proposed [Marsaglia1984]. It is not expected that other tests
will affect the results of this work since thé tests of Knuth are generaily con-
sidered to be adequate for most applications requiring pseudorandom se-
quences.
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mathematically as

Y, —np? (Y, - np,)? Ye — npe)?
yo = mp”  Vo-mpo)” o (YE — npe) 2.4
np 4 NP2 ' npe
for a test with £ events. Equation 2.4 can be more conveniently expressed as
1 E Y32
V=— Y19—(-n. (2.5)
n 5=1 pS

The quantity V is then compared to tables which show the probability of obtaining a
value less than, or equal to, V for a given number of events, or degrees of freedom.
Therefore, the x2 test returns a probabilistic result as to the randomness of the
sequence; i.e. there is no yes-no answer.

Knuth [Knuth1981] suggests a method of determining if V is a reasonable value
by assigning probabilities to various values of V corresponding to the probability that a
random sequence would produce a value less than, or equal to, a given value of V.
These results are usually presented in table form for convenience. [f the value of V is
greater than the 99% table entry or less than the 1% table entry then the xz test has
been failed. If the value of V falls in the 1% to 5% or 95% to 99% range then the
value of V is suspect and in the range 5% to 10% or 90% to 95% V is considered
possibly acceptable. Only in the range 10% to 90% is V definitely considered to be a
value that might be produced by a pseudorandom sequence. The problem with
Knuth’'s pass-fail method is that it is a soft measure since it has four different
categories, or results (failed, almost failed, almost passed, and passed).

In this work computer based testing will be used to verify the randomness of gen-
erated sequences. Hence a method which provides strict pass and fail ranges is more
desirable. One such method which quickly determines if V is an acceptable value is
that V must lie in the range d + 2¥d [Sedgewick1983]. This gives an approximate
pass range of 7.5% to 92.5% with the fail range consisting of 0.0% to 7.5% and 92.5%
to 100%. This method will be used here because of its ease of use in computer
based random number testing.23 it should be noted that the ¥ test is valid if, and only
if, the data, in this case event counts in the test categories, are independent and the
value of n is large. The larger the value of n the more accurate the test, however, if n
is too large then locally nonrandom behaviour will be indistinguishable since it will be
washed out by the global properties of the sequence. A general rule of thumb for n is
that n 2 10E [Sedgewick1983].

23 That a particular sequence yields an unsatisfactorily low or high value of
V' does not automatically indicate the generator as being nonpseudorandom
but rather that a particular sequence from that generator failed. n.fact, it is ex-
Pected that some random sequences will, on,occasion, fail the % test. There-
ore, only if sequences consistently fail the (y§ test, can the generator of those
sequences be said to be producing nonpseudorandom sequences.
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2.2.1. Random Number Tests

1)

4)

Equidistribution test (Frequency test). The sequence must consist of numbers
which are uniformly distributed between zero and d -1 (ie. p; = 1/d and
E =d).

Serlal test. Successive pairs of numbers in the sequence should be uniformly
distributed and independent, i.e. successive pairs (X5}, sz) should be equidis-
tributed between (0, 0) and (d — 1, d — 1) (here p; = 1/d? and E = d?). This
test can be extended to triples (X3;, X3j,1, Xg; +2) (ps =1/d%and E = d% and
quadruples (X4, Xajs1, Xajio, Xajsa) ( Ps = 1/d* and E = d*). However, tests
using sets greater than quadruples have such a large number of categories
(= d®) that it may not be possible, or convenient, to properly test the equidistribu-
tion of the categories. The value of d, or the modulus, also affects the extent of
the test. For example, even a small modulus, d, will generate a large number of
categories; e.g. d =5 yields 625 categories for the quadruple serial test. This
means that n should be > 6250 for a good % test. For larger moduli very long
sequences must be tested because of the correspondingly large number of
categories. Thus, serial tests, especially those of higher order, are best used with
small moduli.

Gap test. The length of the gaps between occurrences of numbers in the
sequence that lie within a certain range is tabulated and the collection of lengths
should then lie within a binomial distribution. Consider two values « and B, the
lengths of consecutive numbers X;, X;.4, - -, Xj,, in which o < Xj,, < B, but
each X, <o or X;; >, i <r, are considered. If we use gap lengths 0, 1,
, 1, and 2 t we have probabilities py = p, py = p(1-p), po = p{1-p)3,
<, pr = p{(1-p)!, where p =% and E =t + 1.
Poker test (Partition test). The number of k-tuples of r different values over
groups of k successive numbers is counted; these should follow a predstermined
distribution [Knuth1981]. Here £ = d/k and

—1)(d=2) - - - (dre1) K
p, = d(d-1)(d 2;k (d r+1){r} 26)

K
where {r} is a Stirling number of the second kind.

Coupon collector’s test. The length of sequence required to obtain a complete
collection of numbers in the range 0 to d - 1 is considered; this set of numbers
must have a distribution of a particular form [Knuth1981]. Here we apply the x2
test to the set {Cy, Cyrq, -+ -, Cyyt}, Wwhere C,, d <r <t is the number of
tlmes r successive numbers were required to obtain a compiete collection. The
2 test uses £ =t and

dl s r-1 d1 ) t-1
przy{d_d},dsrét pt—1—_c~‘lt_1{d . (2.7)
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6)

7)-

8)

As in the serial test the value of d directly affects the length of sequence required
for a good test. For example, if d =100 and t =20 then we must have a
sequence length long enough to perform at least 200 tests (i.e. 20,000 numbers)
for a good x2 test. Therefore, the coupon collector’s test is best suited to small
moduli.

Permutation test. The sequence is divided into successive blocks of length g.
Each of the q! possible orderings should occur with equal frequency (i.e.
ps =1/q!and E = q!). It should be noted that small moduli will invalidate higher
order permutation tests (i.e. larger values of q). If the modulus for a sequence is
small, there will be a tendency to have two or more equal values in a block
thereby enhancing the probability of certain orderings over others. Experimentally
it has been observed that the probability of two or more values in a block being
equal should be less than 0.2 for a permutation test on size g blocks to behave
as expected.

Run tests.

I} Run up: The lengths of blocks in the sequence which are monotonically

increasing .are counted; these must correspond to a given distribution

[Knuth1981]. Each run is separated by one number (i.e. if Xj > Xj+1 then start

next run with Xj+2) for independence, here E =1t + 1 for runs of length 1, 2,
- ,t and>t and

1 1

Pr=—-—

t
Ty 1SSt Pri=1-3p . (2.8)

r=1

As for the permutation test, if small moduli are used, there is a tendency to have
equal values within a block which will shorten the length of monotonically increas-
ing blocks. This will increase the probability of short runs causing unexpected
test results. Experimentally it has been observed that the run test requires the
same probability of having two or more values equal in a given block as the per-
mutation test to behave as expected (i.e. the probability of two or more values
being equal in a block of length t should be less than 0.2).

Ii} Run down: The run up test is repeated for monotonically decreasing block
lengths.

Maximum of ¢ test. The sequence is broken up into successive blocks of
length t; the maximum value of each block must lie in a power distribution (i.e. let

Vi=max(Xy, Xijets o v Xpjggah 1=0,1, <+ -, —? —~ 1 then the sequence of
values <V> must be distributed with
t t
- | st |s '
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9)

and £ =d.

Correlation tests. Two correlation tests are used to test for auto and cross-
correlation in the sequence numbers:

I} Serial correlation: In this test the following autocorrelation statistic is calcu-
lated for autocorrelation amongst the numbers in the sequence

n(X0X1+X1X2+ e +Xn_2Xn_1+Xn_1X0) -
(XgHXq+ - - +X,_1)2
NXE+XE+ - +X2) = (Xo+ Xy 4+ +X,_4)2

If we have two sequences <X;> and <Y;> both of length n we can compute a
cross-correlation statistic between the numbers in the two sequences as

Cy = (2.10)

n-1 (n‘i n-
3 (xv] - 5% Sy,
i=0 L i=0 i=0
Ce = o~ s (2.11)
\/{HZXF—(ZX;F nEY -(ZY }
: i=0 i=0 ) i=0

Both the C4 and Cg correlation statistics lie in the range —1 to +1, with small
values indicating independence between values in the sequence. Therefore, it is
desirable to have both C4 and Cg close to zero. A good value for C4 will lie in
the range 1, * 26, [Knuth1981], where

~1 1 n(n-3)

S @12

i) Bit sequence correlation: Each number in the sequence <X;> can be
represented using m bit binary notation (assuming an m bit word size). If we
consider bit / in each sequence number's binary notation we can form a binary

.sequence, <x;>. Correlation tests are then performed on the resulting m binary

sequences. Here we compute the autocorrelation of a binary sequence to be

"i{ ) = 1] [xthst) — ] }

k=0
t
BC, = > (2.13)
O
where
1 -1 1 - 2
F= Y X — 2.14
| Wi = ”kzo j p § (2.14)
BCjL =  autocorrelation of binary sequence <Xp>
with time displacement ¢;
xi(k) = K’thbit in the sequence <x;>;
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10)

L = mean of sequence <x;>;

o = variance of sequence <x;>;

and the cross-correlation of two binary sequences <x;> and <Xj,j> as

"_1{ 06 = 7] [xjtkst) }

_ k=0

2.15
- (2.15)

where

BC(’;I, =  cross-correlation of binary sequences <x;>
and <Xx;, ;> with time displacement ¢.

As for the serial correlation test the values of BC} and BC(’;I. lie in the range —1

to +1 and should be close to zero for independence. Note that the correlation of
<X;> with itself (i.e. BCA’) must equal +1. For this work only the magnitude of the
binary sequence correlation values will be considered. Hence the actual range of
values will be from 0 to +1.

Visual test. The human visual process has an uncanny ability to detect patterns
governed by long range correlations. In this test a graphical representation of the
numbers in the sequence is plotted on a computer screen and emergent patterns,
if any, are observed. There are two graphical representations used in this work.
Firstly, each number in the sequence is considered as a binary word with each
number corresponding to a unique horizontal line on the screen. Each line is then
considered to consist of the same number of pixef divisions as the word size of
the number. These divisions are then turned on or off depending on the value of
the corresponding bit in the pseudorandom number. An example of this represen-
tation is given in Fig. 2.15.

The second form of representation is a raster scan of a binary sequence.
Here each horizontal pixel corresponds to one bit in the binary sequence and is
correspondingly turned on or off. An example is given in Fig. 2.2 where two
binary sequences are plotted using the raster scan representation. Note that
Fig. 2.2(a) has a discernible pattern and therefore must be considered a
nonpseudorandom sequence while Fig. 2.2(b) does not appear to exhibit any pat-
tern. The other tests, 1 to 9 described above, confirm that the sequence of
Fig. 2.2(a) is not a pseudorandom sequence. Surprisingly, the sequence of
Fig. 2.2(b) also turns out not to be a pseudorandom sequence, since it does not
adequately pass all of the above tests. This shows that visual inspection may
serve as a preprocessing filter in eliminating many nonpseudorandom sequences.
However, the sequences which are visually acceptable must still be subjected to
further tests.

The opposite situation can also arise in which sequences pass all the other
random number tests but fail the visual test. The eye is able to detect patterns
which are invisible to the.tests 1 to 9 above. This case arises later in the chapter.
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Chapter 2

A visually unacceptable (i.e. nonpseudorandom) sequence.

Flgure 2.2 (a)

Note that this test differs from the unreliable test of examining the numbers for

patterns [Knuth1981] since for the visual patterns to be detected, some observ-
able quantity must be repeating over a large block of numbers in the sequence.

However, in examining the numbers one can only observe very local phenomena

and not the more i

a

mportant global behaviour

The tests 1 to 9 above must be applied to the pseudorandom sequence in such a

f

in a sequence ©
000 numbers it is possible that a small collection of numbers could be decidedly

way that local and global randomness can be tested. For example

100

000 numbers as a block then these few numbers
the sequence is much larger than the small anomaly. This

by testing the sequence in large and small blocks to check for local pro-

If one examines all 100,

nonrandom

nce

could be overlooked si

.

IS8 overcome

000 number sequence would first be tested as a whole to check for

global properties, then it would be decomposed into 10 sequences of 10,000 numbers

The 100

perties.

sequences would then be reduced to 10 sequences of 1000 numbers and each of
these 1000 number sequences would be tested. This continues as smaller and smalter

and each of these sequences would be tested. Each of the 10,000 number
block lengths are used.

esented here
10E for lesser

2
is that some pseudorandom number tests are not

test requirements of n

The terminating block size used for the results pr
2

is 1000 since many of the tests fail the ¥

values of n. Another point to note

valid for certain moduli (i.e. the value of d). Therefore, it is best to use at least two
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Figure 2.2 (b): A visually acceptable pseudorandom sequence.

different moduli, one large and the other small, in order to properly utilise the different
random number tests.

Other powerful random number tests such as the spectral test [Coveyou1967],
which considers the joint distribution of consecutive elements in a full-period pseu-
dorandom sequence by measuring the distance between the most widely separated
set of adjacent parallel hyperplanes in n-space; and the /attice test [Marsaglia1972],
which considers the filling of an n-dimensional lattice by finding the most nearly
orthogonal vectors for the lattice structure, the ratio of the longest basis vector to the
shortest is used as the measure of acceptability. These tests have been used mainly
. with linear congruential generators, since they are amenable to the analysis required
to formulate describing equations. The analysis of other generators, such as the cellu-
tar automata PRNGs described later in this chapter, by the spectral or lattice tests is
left as an open problem.

Although the above tests will certainly analyse a sequence to detect deviations
from pseudorandomness it would be preferable to develop a general theoretical basis
which could predict in advance how the sequence produced by a particular class of
generator will- perform on these tests. However, with most of the pseudorandom
sequence generators presented here this theoretical basis is not available. Wolfram
[Wolfram1985b] suggests a more general criterion for randomness based upon compu-
tational irreducibility, but it appears that further work is required to formalise this Iatter
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approach. His measure of randomness is that generated patterns must not be recov-
erable by any algorithm which is polynomial in time, thereby placing the computation of
the sequences into the class of NP-complete problems [Garey1979]. Therefore, since
no general mathematical techniques are available for the analysis of some of the fol-
lowing PRNGs one must rely on empirical tests, such as those given above, to judge
the suitability of a particular PRNG.

2.2.2, Pseudorandom Sequence Testing

The criterion used here for judging whether or not a pseudorandom number gen-
erator produces pseudorandom sequences will be based on the performance of a
number of different generated sequences on the random number tests described
above. The results will be presented in tabular form. The tests are made on 30 bit
integer sequences consisting of either 1000 or 10000 numbers. Each test is made
using two moduli to exercise some tests which are not valid for all values of d. The
results given in the random number test tables were obtained by running 100 different
sequences through the random number tests and then tabulating the percentage of
pass/fail results. It is expected that different pseudorandom sequences will not pass all
the tests every time since occasionally it is expected that a truly random sequence will
not pass a given test; i.e. we know that a pseudorandom sequence will occasionally
generate a value of V outside the range d + 2Vd . The percentage of times that a
given test is passed by sequences generated by a certain PRNG determines the
pass/fail result. The percentage required to designate whether a generator passes or
fails a given random number test is not a firm number since we are forming statistics
from statistics. Knuth [Knuth1981] suggests that three sequences from a generator be
tested and if a majority (i.e. at least two out of three) of these sequences pass a given
test then the generator is said to pass that particular test. In this work we have used
many more sequences per generator to increase our confidence in the randomness of
the new generators proposed in this chapter. Therefore, if Knuth's two out of three cri-
terion is used, a 66% pass rate would be sufficient for a PRNG to pass a particular
test. To make the pass/fail criterion more rigorous, the percentage should be
increased. However, it cannot be made too high since we expect some pseudorandom
sequences to fail some tests. The random number test tables presented in this chapter
consider a PRNG to pass a particular test if it possesses a 75% pass rate.

Another metric which indicates the quality of randomness in a pseudorandom
sequence is the number of tests failed by a particular sequence. We expect that some
pseudorandom sequences will fail a given test, hence what is of more importance is
how many tests a particular sequence fails. If a sequence passes all tests but one
then this sequence must be considered pseudorandom but containing values which fail
a particular test. If several tests are failed by the same sequence then it is probable
that the sequence is not pseudorandom. Therefore, one should examine the worst
case performance of all the sequences to see if a particular PRNG will produce a
sequence which performs badly on many tests. This is also not the best metric to use
since with pseudorandom sequences it is possible that a particular pseudorandom
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sequence will fail a number of tests. To overcome this problem, a weighted average of
the number of tests failed is proposed using the following metric

N T
> XAy
AL 2.16)
N Y A;
i=1
where

T = number of random number tests .

N = number of sequences tested .

A; = weighting for test i .

0 if test i passed by sequence .
% = 11 if test i failed by sequence j . (2.17)

This metric will describe the resuit of the average performance of sequences produced
by a PRNG on all tests. The weighting allows some tests to have an increased impor-
tance. For example, if it were crucial that a pseudorandom sequence have equidistri-
bution then the weighting for the equidistribution test could be made large so that it will
aftect the weighted average much more than other tests. Here we do not intend to
apply the sequences to any given algorithm so, we will consider all A; to be equal (i.e.
all tests are evenly weighted).

The ditferent tests are referred to by number and can be referenced against the
key in Table 2.1. It should be realised that the 100 sequences used for these results
is actually only a small sample of all the possible sequences. This is true for two rea-
sons: firstly, the computer time to generate just one table of results for a 10000
number sequence takes approximately 40 hours on a SUNS3-160; secondly, the
number of possible sequences is very large. Here sequences consisting of 30 bit
integers were tested. We know that each starting value in a deterministic sequence wil
generate a unique sequence, so we have 2%° possible sequences. Therefore, if all 100
tested sequences pass most of the random number tests then we can say with 75%
confidence that less than 10% of the sequences could be nonrandom. A more com-
plete analysis of this confidence using material adapted from [Papoulis1965] is given in
Appendix A.

2.3. CONVENTIONAL TECHNIQUES

The following is a brief description of several techniques of pseudorandom
number generation which have found widespread use in computer generation of pseu-
dorandom sequences.

There are two main categories of pseudorandom sequence generators in general
use: those which employ software algorithms and those which employ hardware
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Test # | Test name

1 Equidistribution
2 Serial Doubles

3 Serial Triples

4 Serial Quads

5 Gap

6 Poker, k=3

7 Poker, k=4

8 Poker, k=5

9 Poker, k=6

10 Poker, k=7

11 Poker, k=8

i2 Coupon

13 Permutation, g=2
14 Permutation, g=3
15 Permutation, g=4
16 Permutation, g=5
17 Permutation, g=6

18 Run up

19 Run down

20 Max of t

21 Serial correlation

22 Bit sequence correlation
23 Visual

24 Worst case fall
25 Evenly weighted average

Table 2.1: Key to the random number test tables. The resulls for tests 1 to 21 are
recorded as the percentage of sequences passing the test. If a test is in-
valid for the given moduli skip is recorded. The value given for test 22 is
the value of the autocorrelation statistic Cu. If the cross-correlation
between adjacent bit sequences is < 10% then test 23 records Pass.
However, if the cross-correlation is > 10% then Fall is recorded. Finally,
tests 24 and 25 give the largest number of tests failed by a sequence
and the weighted average number of tests failed by all sequences.

techniques. Here we are concerned with high speed generation of pseudorandom
numbers in VLSI, so the latter category is of primary interest. However, the algorithm
based generators can be mapped to hardware and analysed using the traditional
hardware measures of area and time as described in the first subsection below. This
allows some techniques from the former category to be compared with the traditional
hardware based generators for use in the fine-grained parallel processing architectures
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under consideration.
2.3.1. Hardware Conversions of Algorithmic Techniques

2.3.1.1. Box-Muller Transformation

Many PRNGs operate on real numbers producing a sequence such as in
Egn. 2.1. An example of such a technique is the Box-Muller transformation [Box1958]
which is sometimes referred to as the polar method. Here one starts with two indepen-
dent random variables ¢ and v which are both uniformly distributed on [0,1]. If the
transformations

x =V-2 log u cos(2nv) (2.18)
and
y =V-2log u sin(2rv) (2.19)

are employed then x and y are independent pseudorandom numbers normally distri-
buted on [-1,+1] [Smith1985]. A real number sequence from zero to one can be
created by placing the absolute values of x and y into a sequence. The next two
sequence values are made by setting & = x and y = v and applying the transforma-
tions given above to get new values for x and y. Note that if V-2 log v > 1.0 then x
and y may be greater than 1. This can be overcome by repeatedly dividing the value
of =2 log u by 2 until it is less than 1.0. This technique is intended for applications
which require deriving two normally distributed variables from two uniformly distributed
variables. lterative application of this technique, as described here, will then form a
sequence which more closely resembles a normally distributed rather than a uniformly
distributed pseudorandom number sequence. The performance of this generator on
the random number tests is given in Table 2.2. Note that, despite the non-uniform dis-
tribution of the resulting sequences, the equidistribution test is still passed. This is
because the acceptance range for reasonable values of V using the d + 2Vd metric
is large enough to pass sequences whose distribution lies between uniform and nor-
mal. The results indicate that, on average, a generated sequence fails only 1.2 tests
with a worst case performance of about 4. This indicates that the generated
sequences would perform very satisfactorily as pseudorandom sequences with a cau-
tion on the uniform distribution of numbers.

The major problem with this technique is in the computational cost of determining
the square roots, logarithms, sinusoidal functions, and the fix to ensure that x and y
are in the range [-1,+1]. Even in a system with floating point hardware the time
expended in generating a pseudorandom sequence can be considerable. It should be
noted that the computational complexity of the Box-Muller method is comparable to
other real number PRNG techniques. Therefore, for applications in which an abun-
dance of spatially distributed pseudorandom numbers are needed, this method is com-
putationally prohibitive. In the area of interest (parallel hardware pseudorandom
number generation in a fine-grained processor network) this approach to PRNG is
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dismissed since it is well known that floating point hardware requires considerable sili-
con area and time compared to the integer methods which follow.

2.3.1.2. Linear Congruential Generator

Another well known technique for generating pseudorandom sequences in
software which is much less computationally demanding employs linear congruential
generators [Knuth1981]. Here a linear congruential sequence <X;> is generated using
the transformation

Xppy=(aX,+c)mod m,n>0 (2.20)
where
m = the modulus; m > 0.
a = the multiplier; OC<sa<m.
¢ = the increment; 0<ec<m.
Xo = the starting value; 0 < Xy< m.

The values selected for m, a, and ¢ determine the quality of the pseudorandom
numbers generated. For implementation in hardware we require a multiplier and
adder both modulo m. A consideration of the area and time requirements of this gen-
erator is given in the analysis of the multiplicative congruential pseudorandom number
generator described below.

2.3.1.3. Multiplicative Congruential Generator

Often the value of ¢ in the linear congruential generator is set to 0 which reduces
Egn. 2.20 to

X1 =a X, mod m. (2.21)

This is the standard generator available on most computer systems and is called a
multiplicative congruential generator. Typical values of @ and m are a = 1664525
and m = 2%2 which is convenient for 32 bit CPU systems or a = 3141592653 and
m = 235 for a 35 bit CPU [Knuth1981]. The cycle length can be increased by using a
larger modulus with the appropriate muitiplier. Both the linear congruential and multipli-
_ cative congruential generators have been extensively studied and analysed
[Knuth1981] for values of a, m, and c, yielding maximal-length sequences of high
quality pseudorandom numbers [Fishman1982]. In Table 2.2 the random number tests
as applied to a multiplicative congruential generator implemented as

X,.1 = 1664525 X, mod 232 (2.22)

are presented and indicate its high quality.

While these techniques are certainly an improvement over the Box-Muller method
in terms of computation, the computational expense is still considerable. Consider a
generator corresponding to Eqn. 2.22. The equation must be solved for each pseu-
dorandom number. In the case of parallel architectures one must generate a
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Sequencs length = 1,000

Box Multiplicative Additive
Test Muller Congruentlal Feedback
mod 10 100 10 100 10 100
1 93 97 91 96 93 91
2 89 89 93 94 94 86
3 89 skip 93 skip 94 skip
4 86 skip 90 skip 88 skip
5 95 jele) 97 93 93 85
6 96 93 94 96 94 95
7 93 97 93 96 95 98
8 96 98 85 100 9 96
9 94 98 94 97 99 96

10 93 97 94 93 97 96
11 97 99 98 96 95 99
12 92  skip 92 skip | 93  skip
13 98 99 98 a9 98 97
14 95 94 94 92 97 96
15 skip 89 skip 92 skip 90
16 skip 88 skip 90 skip 93
17 skip 91 skip 81 skip 98
18 skip 94 skip 94 | skip 91
i9 skip 94 skip 91 skip N
20 94 89 89 93 88 81
21 75 66 78 65 70 70

22 0.08 0.09 0.12
23 Pass Pass Pass

Sequencs length = 10,000

Box Multiplicative Additive
Test Muller Congruential Feedback
mod 10 100 10 i00 10 100
1 96 93 96 85 90 91
2 97 85 88 93 93 95
3 94 skip 92 skip | 90 skip
4 9N skip 97 skip 89 skip
5 96 93 97 a3 93 94
6

7

8

9

95 97 96 97 96 96
91 99 28 98 91 98
93 96 98 97 g2 92
91 96 96 98 a3 100
10 99 92 93 95 95 97
11 91 98 96 98 97 a8
12 93 skip 90 skip 96 skip
13 99 24 28 99 93 95
14 95 95 96 95 91 93
15 skip 87 skip 86 skip 91
16 skip 90 skip 90 skip 95
17 skip 87 skip 88 skip 88
18 skip 89 skip 88 skip 89
19 skip 88 skip 92 skip 88
20 94 89 93 o1 92 88
21 67 74 67 €6 63 68

22 0.03 0.03 0.03
23 Pass Pass Pass

Table 2.2: Three algorithmic pseudorandom number generators and their test
results. The moduli 10 and 100 were used for the random number tests.
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Figure 23 : A hardware implementation of (a) a linear congruential generator and
(b) a multiplicative congruential generator.

pseudorandom sequence at each separate processor site, both rapidly and economi-
cally in terms of area. The required hardware consists of a modulo m multiplier and
some registers, as shown in Fig. 2.3, both for the linear congruential generator
(Fig. 2.3(a)) and the multiplicative congruential generator (Fig. 2.3(b)). The two
methods use very similar hardware since the only difference is the addition of an incre-
ment value in. the linear congruential generator. For analysis only the multiplicative
generator will be considered. One would presumably set the value of m equal to the
word size of the processors (we would not expect the word size of processing ele-
ments in a fine-grained parallel processing architecture to be 32 bits) but care must be
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taken since the value of m affects the cycle length of the pseudorandom sequence
and the value of the multipler, a. Nevertheless, the PRNG will require at least the area
of an integer multiplier at each processing site. The area used by a hardware 8 bit
multiplicative congruential generator is 6.0 x 10% pm?2.

The other option is to use only one PRNG for all the processors. One then
experiences a degraded time performance in the generation of the pseudorandom
numbers, since for n processors it will require at least n clock cycles to generate a
new pseudorandom number for each processor. This is especially evident in computa-
tions where many pseudorandom numbers are required, such as in Monte Carlo simu-
lations. The area-time, or AT, metric in both cases is the same, but again a more
efficient technique of generating the pseudorandom numbers is desired.

A final technique which may be used, is to generate a large global pseudorandom
number using a single generator and then supply each processor with its own local
pseudorandom number by using selected bits from the global pseudorandom number.
While this method will provide pseudorandom numbers to each processor in one time
step, there are a number of problems associated with this technigue. The primary
problem is that each processor requires a pseudorandom number which is not corre-
lated with pseudorandom numbers at other processors. Therefore, the global pseu-
dorandom number must have a word size equal to the number of processors times the
local word size. This leads to an extremely large word size thereby making its use
prohibitive since the area and time measures of the multiplier both scale with the
square of the word size. A lesser problem is the routing of the local pseudorandom
numbers to their respective processors which may use considerable additional area to
that of the PRNG.

2.3.1.4. Additive Feedback Generators

A considerably more efficient technique, in terms of the silicon area requirements,
is based on an additive feedback PRNG [Tausworthe1965], [Golomb1982]. A general
pseudorandom sequence generator combines past numbers in the sequence to pro-
duce a new number. Consider the sequence

Xp=(a1 Xy +aX, ot - +aX,_x) mod m (2.23)

where each X; is an ordered element of the sequence, a; is a multiplier for past ele-
ments of the sequence, and m is the modulus of the sequence (usually the word size
of the computer). The value of k determines how many past sequence values must be
stored. If m is prime and

) 4

is an irreducible polynomial over GF{m) then the sequence defined by Egn. 2.23 pro-
duces a sequence of length mk — 1.

Keaykl - —ay - (2.24)

Consider a binary sequence given by

Xp = 81Xpgq+ apXpp+ "+ + 8yX,_, mod 2, (2.25)
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where X; is the /'th bit in the sequence. The resulting binary sequence is pseudoran-
dom with a maximum cycle length of 2P — 1 if, and only if, the polynomial

yP +ayyP T +agyP? 4 - va, gy +a, (2.26)

is primitive over GF(2) [Golomb1982]. We can form m bit pseudorandom words <X;>
by combining m such binary sequences in parallel provided there is no correlation
between binary sequences x; and X;. Therefore, a sequence of m bit words defined
as

Xp=aXpq+aXpo+ 0 +8,X,5 (2.27)

where each addition corresponds to adding bit streams without carry, will generate
sequences of cycle length 2P — 1. Further computational advantages can be realised
by using primitive polynomials which contain only two or three terms. Primitive polyno-
mials of the form 1+ a9 + aP, p > g have been tabulated up to a large order
[Zierler1969]. Also, bitwise addition without carry is equivalent to the exclusive-or
operation, denoted as @. Therefore, using a primitive trinomial and the exclusive-or
operation, Egn. 2.27 reduces to

Xop=Xng ®Xpp - (2.28)
This requires only one m bit parallel exclusive—or operation for each new pseu-

dorandom number. It has been shown that small values of ¢ or ¢ near E;— should

not be used due to bad run properties [Tootill1971]. However, if p and g are carefully
chosen then good pseudorandom number properties will result [Whittlesey1968]. A
popular pseudorandom sequence generator of this type is the so called R250 pseu-
dorandom sequence generator where the values of p = 250 and g = 103 are used
yielding a sequence of length 2250 — 1 [Kirkpatrick1981]. Therefore, a pseudorandom
number generator based on these principles will usually be much faster than multipli-
cative congruential generators and will still deliver similar performance on the random
number tests, as shown in Table 2.2. However, unlike the multiplicative congruential
generator where proper selection of the muitiplier, &, and modulus, m, guarantees a
good pseudorandom sequence with little consideration for the starting value X,
(except of course for X, = 0), the additive feedback generator must be carefully initial-
ised. If the i'th and j'th bits are the same in each of the first p numbers of the
sequence (i.e. the seed values) then they will remain the same over the entire
sequence. Also, if the i'th and j'th bits only differ slightly then it will require many
iterations before bits / and j become independent. This problem is the subject of
several papers and some techniques to produce good seed values have been
described [Kirkpatrick1981)}, [Lewis1973].

For the parallel processing applications under consideration here, the implemen-
tation of this generator in hardware must again be considered since the time spent
computing the pseudorandom numbers at each processor may dominate the computa-
tion and memory requirements of each processor. A possible configuration is given in
Fig. 2.4. This generator will use considerably less circuitry than the multiplicative
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Flgure 2.4 : A hardware implementation of an additive feedback generator.

congruential generator at each processing site since all that is required is a memory of
P numbers and a word wide exclusive—or. Note that the memory actually consists of
m p-bit shift registers since only the p most recent numbers in the sequence are
retained and the position of past numbers in the memory increases by one for each
new pseudorandom number. The alternative is to use a general purpose memory with
addressing circuitry which will determine the actual location of the numbers
corresponding to X,,_q and Xn_p and the next available location in the memory for the
new X,. However, this will complicate the control unnecessarily since the shift register
implementation will automatically place the memory contents in the correct location.
~ This collection of shift registers will use the overwhelming majority of the area of this
implementation. For example, if the R250 generator is implemented, we require m 250
bit shift registers at each processing site solely for the purpose of generating the pseu-
dorandom sequence. This area can be substantial when compared to the area
required by the actual computation which occurs at the processing site. One way to
reduce this area is to use a smaller value for p. However, the value of p affects
several aspects of the generator such as the cycle length, 2P — 1, and the correlation
of different bit streams so the value of p should be changed with care. Even if the
value of p can be reduced to a much smaller value such as 30 (cycle length of
230 _ 1) then m 30 bit shift registers are required which remains a very large area
when compared to some of the techniques for pseudorandom number generation
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which follow. The area used by an 8 bit additive feedback generator when p = 30 is
3.5 x 10% um2. Another point to note is a communication problem since we must feed
the p'th and q'th numbers in the shift register memory back to the exclusive-or
gates at the beginning of the shift registers. This leads to the conclusion that, in gen-
eral, additive feedback PRNGs are not satisfactory for fine-grained parallel processing
requiring pseudorandom numbers.

A moditication to the additive feedback generator is developed in [Pearson1983bj].
Here a generator based on shift register sequences is proposed. It has the desirable
properties of high speed and small area in that a pseudorandom number can be pro-
duced every clock cycle and no large data memory is required. This PRNG is targeted
towards implementation using VLSI technology but to the author’'s knowledge no such
implementation has been reported. In comparing this scheme to other PRNGs we see
while there is no data memory required it utilises a general feedback shift register
structure and so requires several shift registers per bit of random number. In addition,
many exclusive-or gates are required. Therefore, this particular PRNG was not more
fully investigated since the area used is still larger than that for some of the pseu-
dorandom number generation techniques which follow.

2.3.2. Hardware Techniques

2.3.2.1. True Random Number Generators

In hardware some truly random sequence generators can be built. For example, if
we count the number of particles emitted from various radioactive sources over a short
period of time, a sequence of truly random numbers is produced. Another similar
technique is to observe thermal noise from a device such as a resistor. In fact, obser-
vation of any source of white noise will lead to a truly random sequence. The
hardware required to observe, and thereby determine the actual random number
sequence, exists but it certainly would not, in the present context, provide an efficient
technique for generating random numbers. We seek to generate many random
numbers in parallel, so the conventional noise-based methods, while certainly giving
truly random sequences, cannot be considered appropriate.

2.3.2.2. A Shift Register Based RNG

A technique to generate random numbers using nondeterministic methods but
which can be implemented in a VLSI circuit without requiring an unreasonably large
area is given in [Letham1986]. Here a shift register is used in conjunction with three
free-running ring oscillators as in Fig. 2.5. As the temperature of the integrated circuit
varies, the operating frequency of the three ring oscillators changes. A local sificon
heater is placed around one of the fast ring oscillators to vary the difference in speed
of the two fast ring oscillators. The outputs from the two fast ring oscillators are
exclusive—ored and then sampled by the slow ring oscillator. The clock of the shift
register will be asynchronous to the speed of the ring oscillators, so the bit stream
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Figure 2.5 :  Shift register based random number generator.

being clocked into the shift register will be random. In addition, the shift register is
completely shifted a random number of times based on the value of several bit posi-
tions in the shift register. This process causes the contents of the shift register to be
completely unpredictable. The time in clock cycles required to generate a random
number is at least the length of the shift register since for each new random number
new values must be clocked into each location of the register. Therefore, for an m bit
number a multiple of m time steps will occur before a new random number is avail-
able. The process of generating these numbers is not deterministic since nondeter-
ministic factors are contributing to the numbers that are being produced. However,
observation has shown that while the sequence is completely unpredictable, it tends to
produce a few values much more often than would be expected of a random sequence
[Letham1986]. This makes this type of PRNG difficult to use in algorithms where the
distribution of random numbers is assumed to be uniform or white. Favourite numbers
can cause systematic weaknesses in nondeterministic algorithms. Testing by standard
random numbers tests, other than simple correlation tests, has not been performed on
the generated sequences, so it is possible that higher correlation and run tests may
show problems with these sequences. This makes this PRNG unsuitable for our pur-
poses since it may be suffering from Knuth's observation that random numbers should
not be generated with a method chosen at random [Knuth1981].24
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Figure 2.6 :  Transfer function of Eqn. 2.29. Here A = 0.5.

The estimated area of this approach is 0.44 x 108 umz for an 8 bit RNG. The
circuitry used, while smaller than that required to implement any of the other true
RNGs, uses more area than the techniques which follow. It may cause further
difficulties in implementation if several of these RNGs were used in parallel on the
same chip, because of the required local heating of the silicon surrounding the ring
osclillators.

2.3.2.3. Using Chaos as a RNG

Some simple deterministic systems can exhibit a property which has become
known as chaos [May1976]. One of the fundamental properties of this phenomenon is
unpredictability of the output from a chaotic circuit. Several nonlinear circuits which
have been observed to display chaotic behaviour have been recently reported [Rodri-
gues1986]. It has also been recently proposed to use these circuits as noise genera-
tors [McGonigal1987]. The description given in this section is not intended to describe
in detail how chaos is created in a simple nonlinear circuit. Rather, its purpose is to
show the feasibility of such circuits as PRNGs for parallel computing.

One of the most common ways of creating chaos is to use the logistic map
[May1976]

Xy =4AXi(1 = X;),/=0,1,2, ---; O0<Xxp<1 . (2.29)

If we plot the output versus the input (i.e. x;,q versus X;) as in Fig. 2.6, we get a

24 if further investigation of this approach indicates that it passes standard
random number tests and the distribution problems are solved this technique
may prove to be satisfactory for single number at a time applications.
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Flgure 2.7 :  Output of Egn. 2.29 versus L for 0.50 < A < 1.0. For each value of A
100 output values are plotted.

parabolic transfer function of height A. 1t is known that for A between 0.50 and 0.89
the value of x; oscillates periodically between 2" states, where n=1,2,3, --
(depending on the value of A). For 0.89 < A < 1.0 the oscillation has no detectable
period and is considered to be chaotic. In Fig. 2.7 a plot of the output versus A is
shown for 0.75 < A < 1.0. Note that we observe the well known period-doubling route
to chaos [May1976]. 1t is known that the power density spectrum of the output is white
[Grossmann1977] and so, the output values must be equidistributed. In [McGoni-
gal1987] the circuit of Fig. 2.8 is proposed which iterates the logistic map and so could
be used as a RNG. This circuit requires several analogue components including
differential amplifiers, gain amplitiers, and switching capacitors.

While it is possible to implement such circuits using an MOS process, it is obvi-
ous that requiring analogue components places some restrictions on the feasibility of
combining digital computing hardware with chaotic circuits in a VLSI environment.
Also, as with the previous RNG, while the output of a chaotic circuit is certainly
unpredictable, further tests are required to verify its suitability as a PRNG. Finally, such
a circuit is not-small and to get large word sizes will require either an analogue to digi-
tal converter (ADC) with resolution equal to the required word size, or else a unique
chaotic circuit corresponding to each bit position in the random word. Therefore, the
area will be quite large if the random word is to appear in parallel. If a serial
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Figure 2.8 : A MOS realisable circuit implementing the logistic map. Taken from
[McGonigal1987].

Input Output

Figure 2.9 : An 8 bit linear feedback shift register implementing the polynomial
x4 x5+ x3 4 x24+1.

accumulation scheme where the output from one chaotic circuit is sampled and accu-
mulated is used then the time to acquire a new random number could be excessive.
Thus, for the purposes of this work we will ignore chaotic circuits but it is possible that
some chaotic circuits may be suitable RNGs for some applications.

2.3.2.4. Linear Feedback Shift Register

The most popular hardware pseudorandom sequence generator is the linear
feedback shift register (LFSR). Figure 2.9 shows a circuit diagram for an 8 bit LFSR.
The binary sequence at bit / is generally considered to display atiributes of a

28



Chapter 2 Parallel Pseudorandom Number Generation in VLSI

Input

Shift
Register

—

Random v

Number

Flgure 2.10 : Forming random words from a single bit in the LFSR using a serial-
in/parallel-out shift register.

pseudorandom binary sequence with cycle length 27 — 1 for an n bit shift register,
provided the polynomial describing the register is primitive over GF(2) [Golomb1982].
Note the similarity between the additive feedback generator and the LFSR. In fact, the
additive feedback generator is a result of research done on the LFSR. An m bit pseu-
dorandom number or word can be generated by collecting m bits in sequence from bit
i using a serial-in/parallel-out register as in Fig. 2.10. This means that we take m
clock shifts or clock cycles to form the pseudorandom word. Note that succeeding
words cannot be formed on each clock cycle by shifting out the oldest bit from time
t — m and shifting in the new bit from time t because the succeeding numbers would
be strongly correlated. To overcome this time delay in producing new pseudorandom
words the bits of the LFSR are sometimes used in parallel so that a new pseudoran-
dom word is formed on each clock cycle. A variation on this paraliel technique is to
wait n clock cycles between numbers from the PRNG. This PRNG will be referred to
as the parallel LFSR with 3 = n method. Table 2.3 compares the results of the ran-
dom number tests on these three methods of pseudorandom sequence generation.

The test resuits for the serial-in/parallel-out method of Fig. 2.10 and the parallel
LFSR with B=n yield similar results and can be classified as pseudorandom
sequences based on these results. However, the parallel LFSR method does not com-
pare favourably with the above generators since it consistently fails almost all of the
random number tests. The only test on which the parallel LFSR generator performs
well is the equidistribution test. This should not be surprising since the initial value in
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Saquence length = 1,000
Test | Sin Pout LFSR | PLFSRf =n P LFSR
mod 10 100 10 100 10 100
1 100 74 100 100 75 100
2 100 74 100 100 0 0
3 100 skip 69 skip 0 skip
4 100 skip 100 skip 0 skip
5 71 100 100 79 100 100
6 100 80 100 100 | 25 48
7 100 100 100 100 30 78
8 75 100 100 100 70 25
9 100 100 100 100 | 100 78
10 80 100 100 100 70 25
11 100 100 100 100 70 25
12 100 skip 100 skip 77 skip
13 100 100 100 100 | 100 48
14 100 100 100 100 78 30
15 skip 71 skip 78 skip 25
16 skip 75 skip 100 | skip 25
17 skip 100 skip 74 skip 0
18 skip 100 skip 100 | skip 70
19 skip 100 skip 100 | skip 55
20 75 74 79 100 25 52
21 71 29 69 79 0 0
22 0.05 0.05 1.0
23 Pass Pass Fail
24 2 4 2 2 11 16
25 1.28 2.23 0.83 0.90 | 9.80 12.16
Sequence length = 10,000
Test | SinPout LFSR | PLFSR=n P LFSR
mod 10 100 10 100 10 100
1 100 70 100 100 100 100
2 100 100 100 100 0 0
3 100 skip 100 skip 0 skip
4 100 skip 100 skip o skip
5 100 100 100 100 100 100
6 100 75 100 100 0 0
7 100 100 100 100 0 0
8 100 75 100 100 0 0
9 100 100 100 100 0 0
10 100 100 100 100 0 0
1A 100 100 100 100 0 0
12 100 skip 100 skip 100 skip
13 77 75 100 100 100 100
14 100 100 100 51 0 0
15 skip 75 skip 100 skip 0
16 skip 100 skip 100 | skip 0
17 skip 78 skip 100 skip 0
18 skip 70 skip 100 skip 0
19 skip 100 skip 76 skip 0
20 100 100 76 100 0 0
21 78 77 20 80 0 0
22 0.05 0.05 1.0
23 Pass Pass Fail
24 1 4 2 2 14 17
25 0.45 2.05 1.04 093 [ 1400 17.00

Table 2.3: f?andom number test results for the serial-in/parallel-out LFSR (Sin Pout

LFSR), parallel LFSR waiting n clocks (P LFSR B = n), and the paralle!
LFSR with no wait cycles(P LFSR).
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Figure 2.11 :  The cross-correlation of bit sequences in (top) the serial-in/parallel-out

method and (bottom) the parallel LFSR method.
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the LFSR is continually divided by 2 and added to some value (either zero or 27",
n = the length of the LFSR). Thereby causing the sequence of numbers to be well dis-
tributed but very predictable. This is reflected in the failure of the parallel LFSR
method to pass the other tests.

Perhaps the most evident failure of the parallel LFSR is in the bit sequence corre-
lation test. In this work correlation figures are used to show both the auto and cross-
correlation of binary sequences made from 30 bit word size pseudorandom
sequences. The vertical axis is the magnitude of the correlation while the x and y
axes give the time displacement and sequence displacement from the reference time
and sequence, respectively. To determine the autocorrelation read the values that run
paralle! to the time axis. For cross-correlation, read values parallel to the sequence
axis till the desired sequence displacement is reached, then move parallel to the time
axis to find the desired time displacement. Figure 2.11(top) shows the auto and
cross-correlation of a pseudorandom sequence produced by the serial-in/parallel-out
method of Fig. 2.10 and Fig. 2.11(bottom) shows the auto and cross-correlation for a
sequence produced by the parallel LFSR method. Notice that the serial-in/parallel-out
method yields the expected result from a pseudorandom sequence (i.e. all correlations
well under 10%) while the parallel LFSR method displays a severe correlation prob-
lem. In fact, the bits in the bit streams are perfectly correlated in that the value at bit
will appear at bit j >/ at time t + (f — /). Therefore, while the values generated by
considering each of the individual bits or sites in the LFSR appear to be pseudoran-
dom, we cannot consider the register word sequences to be pseudorandom since the
bits from separate LFSR sites are fully correlated. In Fig. 2.11(bottom) also notice that
even away from the cross-correlation ridge, the correlation is very regular in a wavelike
pattern.

To generate pseudorandom numbers in parallel, both the LFSR and the associ-
ated register from Fig. 2.10 should be placed at each processing site. If we form the
pseudorandom numbers using the scheme of Fig. 2.10 good pseudorandom numbers
are formed every m clock cycles. The area for an 8 bit LFSR PRNG as in Fig. 2.10 is
0.26 x 108 um?2. In general, more than 25 — 1 pseudorandom numbers will be
needed (note that each 8 bit number requires 23 new bits from the LFSR} so, a more
realistic PRNG using LFSRs to consider is a 32 bit LFSR with one output feeding an 8
bit serial-in/parallel-out register. This produces 222 — 1 pseudorandom numbers and
uses 0.65 x 10% pm?2. Alternatively, we could use the parallel LFSR with B = n and
wait n clock cycles between numbers to completely shift the old number out of the
LFSR. When used with processors which require more than n clock cycles between
pseudorandom numbers, the problem of waiting n clock cycles for a pseudorandom
number is unimportant since it will not affect processor throughput. However, this will
not generally be the case in fine-grained processor arrays. In both cases the processor
will be forced to wait a fixed number of clock cycles before the new pseudorandom
number is generated. Comparing the AT metrics for both methods generating 8 bit
pseudorandom numbers it can be seen from Fig. 2.12 that the parallel LFSR approach
loses its advantages after the length of the LFSR becomes = 8. This is because the
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Figure 2.12 : AT metric for pseudorandom number generators of Figs. 2.9 and 2.10;
parallel LFSR (empty squares); serial-in/parallel-out method (filled
squares).

area of the two techniques scales with n at the same rate (i.e. relative sizes remain
the same) but the serial-in/parallel-out method uses constant time (e.g. 8 time steps for
8 bit numbers) while the time delay for the parallel LFSR method scales with n. The
crossover value scales with the required word size of the PRNG. In the following dis-
cussions the serial-in/parallei-out method will be used because it has a better AT
measure for large word sizes. However, if an application uses a sufficiently small
LFSR and the processor can wait n cycles between pseudorandom numbers then the
parallel LFSR with B = n could be used.

2.4. TECHNIQUES BASED UPON CELLULAR AUTOMATA

As shown above, there are many ways of generating good pseudorandom
sequences. However, when we consider fine-grained parallel processing it is not con-
venient to employ-many of the conventional techniques because of excessive area and
computation time requirements. In fact, some techniques such as the Box-Muller,
linear congruential generators, and additive feedback generators require so much area
at each processor site (assuming we want independent PRNGs) that it would be
difficult to maintain a fine-grained approach. On the other hand, if the processors
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Flgure 213 : (a) A simple N-bit one-dimensional cellular automaton. (b) Null boun-
dary conditions. (c) Cyclic boundary conditions.
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Figure 2.14 : A rule 90 cellular automaton
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Figure 2.15 : 40 time steps in the state - time diagram for an 18 site -rule 90 cellular
automaton. Cyclic boundary conditions; initialised with a single
nonzero site.

cooperate in the production of the pseudorandom numbers by using a distributed
PRNG then the communication overhead could dominate the computation by the pro-
cessors. This leaves the LFSR as the only candidate among the conventional genera-
tors with feasible resource (area, time) requirements. However, despite the fact that
the size of the LFSR lends itself to use in a fine-grained parallel processing environ-
ment, either the poor quality of the pseudorandom numbers produced or the need to
wait a fixed number of clock cycles between numbers is a serious limitation. One
would prefer to have new pseudorandom numbers available on each clock cycle as in
an additive feedback generator, while retaining the size advantages of the LFSR. The
solution proposed in this thesis is to use elementary one-dimensional cellular automata
as parallel pseudorandom sequence generators for fine-grained processor arrays.

2.4.1. Introduction to Cellular Automata

The concept -of cellular automata was first proposed by von Neumann [vonNeu-
mann1963]. More recently Wolfram [Wolfram1983], [Wolfram1984b] has done much to
cause a resurgence of interest in cellular automata. Most of this renewed interest in
cellular automata has been kindled by the discovery that many physical problems can
be mapped to these devices [Vichniac1984], [Salem1986], [Kinzel1985]. A cellular
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Flgure 2.16 : The raster scan output of a single site in a 32 site rufe 30 cellular auto-
maton.

automaton evolves in discrete steps with the next value of one site determined by its
previous value and that of a set of sites called the neighbour sites. The extent of the
neighbourhood can vary depending, among other factors, upon the dimensionality of
the cellular automata under consideration. Figure 2.13 illustrates a simple one-
dimensional cellular automaton, where the next value at a site depends only on its
present value and the values of the left and right neighbours. A cellular automaton
‘may possess null boundary conditions, as in Fig. 2.13(b) (i.e. the first and last sites
consider their missing neighbour site to always have a zero value), or may be cycli-
cally connected as in Fig. 2.13(c), (i.e. one assumes the cellular automaton to form a
“ring thereby making the first and last sites neighbours). Here only binary one-
dimensional cellular automata with two neighbour sites (left and right) will be con-
sidered, but it is possible to use any desired modulus, dimension, or neighbour set.
For a binary cellular automaton of this type each site must determine its next value on
the basis of the eight possible present values of itself, and the left and right neigh-
bours (i.e. 000, 001, 010, etc...). The next state values corresponding to each possible
input form a number which is referred to as the rule number under the classification
scheme of Wolfram [Wolfram1983]. For example, Fig. 2.14 illustrates CA rule 90 in
which the next value of a site is the sum modulo 2 of its neighbouring sites. Often the
evolution of a cellular automaton is shown using a state - time diagram as in Fig. 2.15
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Figure 2.17 : 420 time steps in the state - time diagram of a 500 site rule 30 cellular
automaton. Cyclic boundary conditions; initialised with a single
nonzero site.

where 40 time steps from the evolution of an 18 site rule 90 cellular automaton, is
shown. There are, in general, two distinct methods of initialising a cellular automaton.
One method is to begin with a simple state such as a nonzero value at a single central
site; the other method is to begin with each site randomly initialised to 0 or 1 with
p(0) = p(1) = 0.5. Figure 2.15 was initialised with a single nonzero site.

While the general description of one-dimensional cellular automata is very simple,
different CA rules are capable of very wide ranging global behaviour. Wolfram has for-
mulated four basic classes of behaviour in one-dimensional cellular automata
[Wolfram1984c]. Class 1 automata evolve to homogeneous final global states, class 2
to periodic structures, class 3 exhibit chaotic behaviour, and class 4 yield complicated
localised and propagating structures. The first two classifications are readily predict-
able and show little or no properties of interest for pseudorandom number generation.
The third class yields much more complex behaviour in that the detailed patterns can
no longer be predicted (it may still be possible to make statements about global
behaviour) and often seem random in nature. Wolfram considers class 3 CA rules to
be an abstract model of randomness in nature and thus very suitable for pseudoran-
dom number generation [Wolfram1985b]. This is because the cumulative effect of
many iterations in a number of class 3 CA rules is equivalent to performing very
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Figure 2.18 : 420 time steps in the slate - time diagram of a 500 site rule 30 celfular
automaton. Cyeclic boundary conditions; random initial state.

complicated transformations on the initial starting value. To follow the evolution of a
particular cellular automaton one must use computations which are much more compli-
cated than the rule of operation unless one is aware of the particular CA rule being
used. Therefore, to predict the next state of the celiular automaton often takes more
time than the cellular automaton required to evolve to it. In fact, Wolfram suspects that
the evolution of many class 3 cellular automata are as computationally sophisticated
as any (physically realisable} system and so, are computationally irreducible
[Wolfram1985a], [Wolfram1984d]. Therefore, its outcome can be found only by obser-
vation or simulation. It is possible with some class 3 CA rules to use special features
inherent to the rule to make analysis, and therefore predictions, possible. An example
of such a CA rule is rule 60 which is a linear rule and so, can be described algebrai-
cally [Martin1984]. However, most class 3 CA rules are nonlinear and require algo-
rithms much more complicated than their own rules of operation in order to be
described.

A distinction can be drawn between homoplectic behaviour, in which pseudoran-
dom sequences of states are produced when pseudorandom input or initial states are
used, and autoplectic behaviour, in which pseudorandom behaviour arises even from
simple initial conditions. It is the autoplectic CA rules which are the most intertesting
since they provide an independence of starting state. The novel approach taken in this

38



Chapter 2 Parallel Pseudorandom Number Generation in VLSI

correlation

Figure 2.19 (a):Cross-correlation of site values in a 30 site rule 30 cellular automaton.

work towards parallel hardware pseudorandom number generation takes advantage of
some of these recent discoveries by Wolfram. As before, for any of the following CA-
based pseudorandom number generators to be considered pseudorandom we will
require that the sequence of numbers generated pass the standard statistical random
number tests given in Section 2.2.1.

2.4.2, CA rule 30
Consider a simple one-dimensional cellular automaton using rule 30; i.e.
ai{t+1) = a;_4(t) @ (a(t) v aj(t)) . (2.30)

This particular CA rule has been investigated and is an example of a CA rule giving
autoplectic behaviour in the sequence of site values, a;(f) [Wolfram1986a]. Therefore,
each cell output can be considered as a pseudorandom bit sequence as may be
observed in Fig. 2.16 where the output of a single cellular automaton site is given
using the previously described raster scan technique. Figure 2.17 shows 420 time
steps in the state - time diagram of a 500 site rule 30 cellular automaton with cyclic
boundary conditions. Notice the triangular shapes which are randomly scattered
throughout the state - time diagram. These triangular shapes are characteristic of
many one-dimensional cellular automata. Also, it can be seen that the left edge of the
cellular automaton exhibits a regular pattern which eventually dies out. This is an
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Figure 2.19 (b):Cross-correlation of bit streams using a multiplicative congruential gen-
erator.

example of the autoplectic behaviour of CA rule 30 (i.e. given a regular starting value
as in Fig. 2.17 it eventually develops pseudorandom behaviour at each site). The right
hand side of Fig. 2.17 evolves to randomness much faster than the left because of the
asymmetry of this rule. In Fig. 2.18 the state - time diagram for CA rule 30 with a ran-
dom initial state is shown. Notice that here the pseudorandom behaviour is retained
over the entire cellular automaton showing an example of homoplectic behaviour.

The area used by a 30 bit rule 30 cellular automaton is 1.1 x 108 um? com-
pared to 0.46 x 108 um? for a 30 bit LFSR. Therefore, a rule 30 cellular automaton
yields an implementation which uses only 2.5 times the area of the parallel LFSR
method {presently considered the most area efficient method but having unsatisfactory
randomness). Additional advantages arise from the nearest neighbour communication
properties of cellular automata. This avoids the global wiring of the LFSR (i.e. cellular
automata can operate at higher speeds). Also, in the LFSR exclusive—or gates are
used as adders in the feedback path in positions, or taps, that change as the LFSR
length is modified. This leads to irregular circuit implementations, which do not occur in
cellular automata since all sites are the same (i.e. if the size changes then sites can
be added or removed with no other design changes).

It is rather obvious that if words are made by considering all sites, or bits, in
parallel then the words do not constitute a truly pseudorandom sequence due to the
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Flgure 2.20 : Definition of site spacing, here y = 3.

triangular features of Figs. 2.17 and 2.18. This is made more apparent by considering
the auto and cross-correlation values for two pseudorandom number sequences of 30
bit words as shown in Fig. 2.19. In Fig. 2.19(a) the sequence is generated by CA rule
30 and shows that the correlation of values one site over on the next time step has a
correlation of about 0.50 which implies that words formed from this register by consid-
ering every site in parallel are not independent. However, this correlation dies out and
a bit stream 5 sites to the left or right is no longer correlated. For comparison the auto
and cross-correlation for a sequence of 30 bit words generated by a multiplicative
congruential generator is given in Fig. 2.19(b). Notice that there is no auto or cross-
correlation between adjacent bit streams or time steps. Rule 30 compares very
favourably with the auto and cross-correlation of the parallel LFSR generator shown in
Fig. 2.11(bottom). For the parallel LFSR the correlation does not die out with site
separation as in CA rule 30. This implies that any application in which the outputs of a
LFSR are being used in parallel to produce pseudorandom numbers is better served
by CA rule 30. In fact, this approach will be exploited in the CALBO (Cellular Automa-
ton Logic Block Observer) built-in self-test circuit described in Chapter 4.

The fact that the correlation dies out over time with CA rule 30 also implies that if
we use site spacing between output sites, as in Fig. 2.20, it would be possible to
decorrelate adjacent bit streams in the output word. We will define a site spacing
parameter, v, where the value of y will be the number of sites between outputs in the
cellular automaton. For example, in Fig. 220 we have y= 3. Therefore, as v is
increased we expect the cross-correlation between adjacent bit streams in the pseu-
dorandom numbers to be reduced. In Fig. 2.21 the cross-correlation for various values
“of yis shown. Note that for v > 4 we have reduced the cross-correlation between adja-
cent bit streams to less than 10% (i.e. adjacent bit streams can now be considered
uncorrelated). However, cross-correlation is not the only test for randomness. In
Table 2.4 the random number test results for various values of y are given. Notice that
both the evenly weighted average and worst case failure metrics steadily decrease
untit a spacing of y = 3. At this point the CA rule 30 based PRNG is performing as
well as one of the standard algorithmic generators shown in Table 2.2. However, at
v = 3 the bit sequence correlation test is still consistently failed. Finally, for y= 4 we
see that this test is passed. Therefore, we will state that a value of y= 4 is required to
produce a good set of parallel pseudorandom sequences using CA rule 30. However,
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Figure 2.21 (a):Cross-correlation between adjacent output bit streams in a 30 site rule
30 celiular automaton with site spacing, (top) Yy = 1, (bottom) y = 2.
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Flgure 2.21 (b):Cross-correlation between adjacent output bit streams in a 30 site rule
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Figure 2.21 (c):Cross-correlation between adjacent output bit streams in a 30 site rule
30 cellular automaton with site spacing, (top)y= 5, (bottom) y = 6.
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Sequence length = 1,000

Test v=0 y=1 Y= 2 =3 v=4 Y=5 Y=6
mod 10100 [ 10 f00{ 10 100 | 10 100 | 10 {00 | 10 100 | 10 100
1 100 100 | 74 74 70 100 | 100 100 { 100 100 | 100 100 | 100 100
00 75 (100 100 100 83 [100 100 | 100 77 | 100 100 ] 100 70
3 75 skip | 70 skip [ 70 skip | 100 skip | 100 skip | 78 skip | 100 skip
4 100 skip | 100 skip [ 100 skip { 75 skip | 75 skip | 100 skip | 100 skip
5 75 100 | 100 100 [ 100 100 | 76 100 | 100 100 | 100 100 [ 100 100
6 100 100 | 100 100 { 100 100 [ 100 100 | 100 100 | 100 100 | 100 100
7
8
9

100 100 | 100 74 {100 100 | 100 100 | 51 100 | 74 76 | 100 100
100 100 { 100 100 | 100 100 | 100 100 | 100 100 | 78 78 [ 100 100
106 100 t 100 100 | 100 100 | 100 100 | 100 1001 78 100 | 100 100
10 75 100 | 77 100 | 70 100 | 100 100 | 100 100 { 54 100 | 100 100
11 100 100 | 100 100 | 100 100 | 100 100 [ 100 100 {100 76 | 100 100
12 100 skip | 79 skip | 83 skip | 100 skip | 100 skip | 100 skip | 77 skip
13 1060 100 | 100 100 | 100 100 | 100 100 ] 100 100 | 74 100 | 100 100
14 100 100 | 100 100 | 100 77 [100 78 {100 100 | 100 100 ]| 77 100
15 skip 100 | skip 100 |skip 100 | skip 100 [ skip 100 | skip 100 | skip 100
16 skip 100 | skip 100 | skip 100 ! skip 100 | skip 100 | skip 78 |skip 100
17 skip 100 | skip 44 |skip 100 | skip 100 | skip 100 | skip 100 | skip 77
18 skip 100 | skip 100 | skip 100 | skip 100 | skip 100 |skip 72 | skip 100
19 skip 100 | skip 100 |skip 70 |skip 100 | skip 100 | skip 100 | skip 100
20 100 76 | 74 79 | 100 100 | 100 100 | 100 100 {100 74 | 70 70
21 25 75 | 44 100 | 53 47 | 76 49 | 75 74 | 76 52 | 30 78
22 0.51 0.28 0.25 0.18 0.08 0.07 0.13

23 Fail Fail Fail Pass Pass Pass Pass

24 5 4 5 5 4 4 3 3 2 1 4 3 3 2
25 | 350 2.75(382 3291354 3231173 1731089 0.49]1.88 1.9411.46 1.07

Sequence length = 10,000

Test v=0 =1 v=2 1=3 Y=4 Y=5 ¥=6
mod 10 100 10 100} 10 100 | 10 100 | 10 100 ] 10 100} 10 100
1 66 66 | 77 77 | 76 100 | 100 100 [ 100 77 | 100 100 | 100 100
2 66 0 | 100 100 ( 79 100 | 100 100 | 49 100|100 71 | 100 100
3 61 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
4 100 skip | 100 skip | 100 skip | 100 skip [ 100 skip | 100 skip | 76  skip
5 10 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 77 | 100 72
6

7

8

9

1060 100 (100 100 | 79 76 | 100 76 | 100 100|100 77 [ 100 100
100 100 | 100 77 | 100 100 | 100 100 | 77 100 ] 100 100 | 100 76
73 100 | 100 100 | 76 100 {100 100 |100 74 | 76 100 | 100 76
100 100 | 68 100 (100 100 | 100 73 | 100 100 | 71 71 | 100 100
i0 686 66 | 100 51 100 100 | 80 100 | 100 100 | 100 100 | 100 100
11 100 80 68 68 69 100 | 100 100 | 100 100 | 100 100 | 100 100
12 80 skip | 100 skip | 100 skip | 73 skip | 100 skip | 100 skip | 52 skip
13 100 100 | 100 100 [ 100 100 | 100 100 | 77 100 | 76 100 | i00 78
14 100 73 |68 77 [100 79 | 100 100 {100 100 | 76 100 | 00 72
15 skip 66 |skip 83 |skip 100 |skip 56 {skip 100 | skip 100 | skip 78
16 skip 100 |skip 72 {skip 76 |skip 100 | skip 100 | skip 100 | skip 100
17 skip 100 | skip 100 | skip 100 |skip 100 | skip 100 | skip 100 { skip 100
18 skip 100 | skip 100 | skip 100 | skip 100 {skip 77 |skip 71 |skip 100
19 skip 100 {skip 100 {skip 79 |skip 73 |skip 73 |skip 100 | skip 100
20 80 53 | 77 100 J100 100 {100 73 [100 77 | 100 100 | 100 100
21 0 46 [ 100 68 (100 69 | 80 100 27 77 |100 71 | 100 48
22 0.50 0.26 0.25 0.16 0.07 0.07 0.05
23 Fail Fail Fail Pass Pass Pass Pass
24 6 7 5 5 4 4 3 4 3 4 2 4 1 3
25 | 5.08 5.501342 427321 3.21 167 249|1.70 1.45]11.01 1.62]0.72 2.04

Table 2.4: ﬁandom number test results for CA rule 30 with various site spacing
values, .
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Figure 2.22 : Definition of time spacing, here f§ = 3.

as we will later see, the performance of CA rule 30 based PRNGs for lesser values of
v is quite good and is suitable in some applications.

Another method of removing the cross-correlation between adjacent cellular auto-
maton sites is to use time spacing. Here the cellular automaton is clocked several
times between each pseudorandom number used, as shown in Fig. 2.22. As before,
consider a time spacing parameter, B, where the value of B is the time step spacing
between output numbers. For example, in Fig. 2.22 we have B = 3. The cross-
correlation for various values of B, as shown in Fig. 2.23, indicates that adjacent bit
streams become uncorrelated (i.e. less than 10%) for B = 4. In Table 2.5 the results of

- the random number tests for various values of § are given. As in the site spacing case,
the evenly weighted average and worst case failure metrics both steadily decline as B
is increased. We will consider B > 4 to be required for good pseudorandom sequences
since for smaller values of B the bit sequence correlation test is consistently failed.
However, as in the site spacing situation, lesser values of B yield CA rule 30 based
PRNGs which still deliver good performance and may be useful for some applications.

To compare the implementations in silicon of the two methods (site spacing and
time spacing) using CA rule 30 to generate truly pseudorandom sequences, we will
again consider the AT metric. The area required by a rule 30 cellular automaton with

y=01is 1.1 x 108 um?2. If we consider the minimum values of y and B required to pro-
duce a satisfactorily pseudorandom sequence (i.e. y=4 and B = 4) we see that the
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Figure 2.23 (a):Cross-correlation between adjacent output bit streams in a 30 site rule
30 cellular automaton with time spacing, (top) B = 1, (bottom) B = 2.
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correlation

correlation

Figure 2.23 (b):Cross-correlation between adjacent output bit streams in a 30 site rule
30 cellular automaton with time spacing, (top) B = 3; (botiom) B = 4.

48



Chapter 2

correlotion

correfation

Figure 2.23 (¢):Cross-correlation between adjacent output bit streams in a 30 site rule
30 cellular automaton with time spacing, (top) p = 5; (bottom) § = 6.
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Chapter 2 Parallel Pseudorandom Number Generation in VLSI
Sequence length = 1,000
Test p=0 =1 =2 B=3 B=4 B=5 =
moed i 100 ] i0 1003 10 100 | 10 100 [ 10 100 | 10 100 | 10 100
1 100 100 { 100 100 {100 61 | 100 100 | 100 83 | 100 100 | 84 10O
2 100 85 | 87 100|100 100 | 74 100 | 100 100 | 69 100 | 100 65
3 81 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100  skip
4 100 skip | 78 skip [ 100 skip | 100 skip | 100 skip | 83 skip | 79. skip
5 85 100 | 100 100 (10O 100 {100 74 {100 100 | 100 100 | 72 85
6 100 100 | 160 100 | 10O 100 | 100 100 | 83 83 69 100 | 160 100
7 ioe 100 | 78 100 [ 100 100 {100 100 {100 56 | 100 100 | 100 100
8 100 100 | 100 64 76 100 | 100 100 | 100 100 | 100 100 | 100 100
9 160 100 | 100 100 | 100 100 { 100 100 } 100 100 | 100 100 | 100 100
10 85 100 | 100 100 | 100 100 [ 100 100 | 100 100 [ 100 100 | 100 100
11 1060 100 | 78 100 | 100 100 | 100 100 | 48 100 [ 100 100 | 100 100
12 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 69 skip | 100 skip
13 100 100 | 100 100 [ 100 100 | 100 100 | 100 100 | 69 100 | 100 100
14 100 100 | 87 100|100 100 | 100 100 | 100 38 {100 100 | 100 65
15 skip 100 |skip 71 |[skip 100 |skip 100 | skip 79 |skip 69 |skip 100
16 skip 100 |skip 100 | skip 100 |skip 50 |skip 100 | skip 100 | skip 65
17 skip 100 [ skip 100 |skip 76 |skip 100 | skip 100 | skip 100 | skip 100
- 18 skip 100 {skip 71 |skip 100 |skip 66 | skip 100 | skip 83 |skip 79
19 skip 100 {skip 71 |skip 100 | skip 100 | skip 100 | skip 100 | skip 85
20 100 85 | 100 100 {100 37 | 100 100 [ 100 100 | 100 100} 37 100
21 19 81 78 13 {61 100 | 40 74 |100 52 | 67 50 | 44 28
22 0.52 0.24 0.25 0.15 0.11 0.13 0.07
23 Fail Fail Fail Pass Pass Pass Pass
24 5 4 6 6 3 4 3 4 2 3 4 2 2 8
25 1330 2.49|3.14 410[263 3.2611.86 2368|069 209174 0.98)184 258
Sequence length = 10,000
Test B=0 Bp=1 B=2 B=3 =4 B=5 B=6
mod 10 100§ 10 100 | 10 100 | 10 100 | 10 100 { 10 10041 10 100
1 75 75 {100 70 | 100 79 100 100 | 67 67 81 100 | 100 100
2 75 0 100 100 (100 79 |100 78 | 100 77 81 100 ] 80 100
3 55 skip| 76 skip {100 skip | 100 skip | 100 skip | 81 skip | 100 skip
4 100 skip | 100 skip | 100 skip | 100 skip | 77 skip | 53 skip | 100 skip
5 100 100 { 54 100 | 100 100 | 100 100 | 100 100 | 100 100 { 70 100
6 100 100 | 100 100 | 100 100 | 100 100 | 100 56 | 100 100 | 100 70
7 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 72 100 { 100 100
8 70 100100 100 | 70 100 [ 100 100 | 100 100 | 100 81 | 74 100
9 100 100 | 100 100 { 100 10C | 100 100 [ 100 100 | 100 100 | 100 100
10 75 75 | 100 100 {100 100 [ 78 100 | 80 100 | 100 100 | 100 100
11 100 78 | 1060 100 | 100 100 | 100 74 |100 100 | 72 100 | 100 100
12 78 skip | 100 skip | 100 skip [ 100 skip | 100 skip | 100 skip | 100 skip
13 100 100 | 100 100 | 100 100 | 100 70 | 100 100 | 100 100 | 80 100
14 100 70 70 100} 78 100 [ 100 100 [ 100 100 | 100 100 | 100 100
15 skip 75 |skip 76 |skip 100 |skip 78 |skip 100 | skip 100 | skip 100
16 skip 100 | skip 100 jskip 100 [skip 100 | skip 100 | skip 71 |[skip 100
17 skip 100 | skip 100 {skip 78 |skip 100 |skip 67 |skip 72 |skip 100
18 skip 100 | skip 100 | skip 100 |skip 100 | skip 100 | skip 81 |skip 100
19 skip 100 | skip 100 jskip 70 |[skip 100 | skip. 100 | skip 100 | skip 100
20 78 48 (100 100 { 100 79 78 100 | 67 100 | 100 100 | 80 100
21 0 53 | 24 44 (100 70 [100 70 | 100 00| 72 76 | 56 44
22 0.51 0.24 0.25 0.16 0.07 0.08 0.07
23 Fail Fail Fail Pass Pass Pass Pass
24 6 7 4 4 3 5 3 3 2 2 4 2 4 2
256 | 494 5261376 3.10[252 345]1.44 230/1.09 133|188 1.19]1.60 0.85
Table 2.5: Random number test results for CA rule 30 with various time spacing

values, p.
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Figure 2.24 (a):A parallel pseudorandom sequence generator using m rule 30 cellular
automata with null boundary conditions.

two values are the same. Therefore, the use of site spacing to produce a good pseu-
dorandom sequence will require 5 times more area than that with time spacing, or
5.6 x 10° um2. However, time spacing will increase the time to generate a pseu-
dorandom number by the same factor. In fine-grained parallel processing networks
the choice of time spacing versus site spacing is application dependent, and will
depend on the relative sizes of the other computing hardware at each processor. For
example, if each processor employs very simple logic, the size of the PRNG may be
the dominant consideration. On the other hand, if the processors contain more compli-
cated circuitry than the pseudorandom generator, an approach based on site spacing
" may be more suitable. The site spacing generator may also be preferred even with
simple processor sites, as these processors generally can make use of a new pseu-
dorandom number on each clock cycle. More complicated processors usually require
several clock cycles to process each new pseudorandom number, in which case the
extra time required for the time spacing generator would provide no penalty. In the
remaining discussions, only the site spacing method will be further considered. The
time spaced approach may be substituted provided the appropriate adjustments are
made.

We proceed to overcome the cross-correlation problems in CA rule 30 by using
site spacing. The site spacing can automatically be obtained in the parallel processor
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Figure 2.24 (b):A parallel pseudorandom sequence generator using m rule 30 cellular
automala with cyclic boundary conditions.

architectures of Fig. 2.24. Here we consider each m bit pseudorandom word at pro-
cessor i to consist of bits 8°(t), g;'(t), - - - , a/"!(t), where the af are not taken
from adjacent sites. At the end of the cellular automaton at level k we have a choice
of cyclic or null boundary conditions, or better still, we may allow the end of cellular
automaton A to join the beginning site of cellular automaton k + 1. The establishment
of null boundary conditions, as in Fig. 2.24(a), prevents global wiring but from
Table 2.6 we see that cyclic boundary conditions provide much longer cycle lengths for
the same size register. In fact, when null boundary conditions are used, the cycle
lengths are very short. However, the use of paths to the cycles can provide a
sufficiently long sequence of pseudorandom numbers to make null boundary condi-
tions a feasible layout. A more complete discussion comparing null and cyclic boun-
dary conditions follows later in the chapter.

The need for cyclic boundary conditions as in Fig. 2.24(b) is not a major con-
sideration since the register can be made to wind around the processors in such a
way that the two ends of the celiular automaton become adjacent. Using cyclic boun-
dary conditions, Table 2.6 indicates that a cellular automaton of at least 51 sites is
needed to produce sequences with cycle lengths of more than 1 x 10°. Finally, if the
end of cellular automaton k is joined to the beginning of cellular automaton k + 1, as
in Fig. 2.25, we will further lengthen the cycle lengths for the sequence. The only
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CA Rule 30 CA Rule 30 Hybrid CA
cyclic nuli and LFSR

N Cy log; Cy | Cy logs Cy Cy logs Cy
4 |8 3.0 2 10 15 3.9
5 |s 2.3 t 00 31 5.0
6 |1 0.0 2 10 63 6.0
7 | 63 6.0 1 00 127 7.0
8 | 40 5.3 2 10 255 8.0
9 | 171 7.4 1 00 511 9.0
10 { 15 3.9 2 10 1,023 10.0
11 | 154 73 1 00 2,047 1.0
i2 | 102 6.7 2 10 4,095 120
13 | 832 9.7 1 00 8,191 13.0
14 | 1,428 10.5 2 10 16,383 14.0
15 | 1,455 105 1 00 32,767 15.0
16 | 6,016 126 2 10 64,535 16.0
17 | 10,845 13.4 1 00 131,071 17.0
18 | 2,844 115 2 10 262,143 18.0
19 | 3,705 11.9 1 00 524,827 19.0
20 | 6,150 126 2 10 1,048,575 20.0
21 | 2,793 11.4 1 00 2,097,151 21.0
22 | 3,256 117 2 10 4,194,303 220
23 | 38,249 15.2 1 00 8,388,607 23.0
24 | 184,040 175 2 10 16,777,213 24.0
25 | 588,425 " 19.2 1 00 33,554 431 250
26 | 312,156 18.3 2 10 67,108,865 26.0
27 | 67,554 16.0 1 00 134,217,727 27.0
28 | 249,165 17.9 2 10 268,435,455 28.0
29 | 1,466,066 20.5 1 00 536,870,911 29.0
30 | 308,120 18.2 2 0 1,073,741,823 300
31 | 2,841,150 21.4 1 00 2,147,483647 310
32 | 2,002,272 20.9 2 10 4,204,967,295 32,0
33 | 2,038,476 21.0 1 00 8,580,934,591 330
34 | 5,656,002 22.4 2 10 17,179,869,183  34.0
35 | 18,480,630 24.1 1 00 34,359,738,367  35.0
36 | 2,237,472 21.1 2 10 68,719.476,735  36.0
37 | 49,276,415 256 1 00 237 _ 4 37.0
38 | 9,329,228 23.2 2 10 238 _ 4 38.0
39 | 961,272 199 1 00 239 _ 4 39.0
40 | 19,211,080 24.2 2 10 240 _ 1 40.0
41 | 51,151,354 25.6 1 00 241 1 40.0
42 | 109,603,410 26.7 2 10 242 _ 4 42.0
43 | 93,537,212 26.5 1 00 243 _ 1 43.0
44 | 192,218,312 27.5 2 10 24 _ 4 440
45 | 75,864,495 26,2 1 00 2% _ 1 45.0
46 | 261,508,274 28.0 2 10 24 _ 4 46.0
47 | 811,284,813 206 1 00 247 _ 4 47.0
48 | 3035918676 315 2 10 2% _ 4 48.0
49 | 9,937.383,652  33.2 1 00 249 _ 4 49.0
50 | 593,487,780 29,1 2 10 250 _ 4 50.0
51 | 3625711,023 318 i 00 251 _ 4 51.0
52 | 20,653,434,880 343 2 10 252 _ 14 52.0
53 | 40,114,679,273  35.3 1 00 2538 _ 1 53.0
54 | 7,551,779,562 32.8 2 10 254~ 1 540

Table 2.6: Maximum length cycles for cellular automata of length N under various
various conditions (portions of this table are taken from [Wolifram1986a]).
Here Cy represents the length of the maximum length cycle for a cellular
automaton of fength N.
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Figure 2.25 : A parallel pseudorandom sequence generator using one rule 30 cellu-
lar automaton for all processors.

caution to be observed is the cross-correlation of bit k between processors /, i — 1,
i—2,i-3,and i — 4. However, if a spacing of ¥ = 4 is used, we can decorrelate bit
k between processors. This also serves to further increase the cellular automaton
length. For example, whereas the architectures of Fig. 2.24 will need at least 51 pro-
cessors to generate a sequence of length > 1 x 109, if Y =4 is used only 11 proces-
sors will be required for the same cycle length.

Another method of generating pseudorandom numbers is to use a cellular auto-
maton local to each processor. Here appropriate spacing should be used to ensure
that the bits of the pseudorandom word are uncorrelated. Previously it was indicated
that a 51 site cyclic rule 30 cellular automaton should be considered as a minimum in
creating long sequences of pseudorandom numbers. One method of increasing the
cycle lengths, if the PRNG must be focal to each processor, is to connect each cellular
automaton in the spirit of Fig. 2.25, where the end of one cellular automaton is
attached to the start of another. As in the previous case, this will cause cross-
correlation across bits between the processors. However, since site spacing is already
present in each local cellular automaton, it should be possible to include similar spac-
ing between the processors.
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> O

Figure 2.26 : Typical cycles and paths to the cycles for CA rule 30 with cyclic boun-
dary conditions.

An important consideration in the use of any PRNG is the length of the sequence
produced (i.e. after how many numbers does the sequence repeat). In most of the
generators considered here the next value, X),,;, depends solely on the previous
sequence value, X,;. That is, once a value appears twice, the sequence begins to
repeat. Note that usually we only consider a portion of each number in the sequence
being produced (for example, we might use only the modulo d values or only certain
bits of the sequence). These values may repeat without the complete number doing
so. For register type generators, such as the LFSR and CA rule 30, this is especially
true. The LFSR generators have a sequence length of 27 — 1, where n = length of
the LFSR. However, CA rule 30 does not provide nearly as long a sequence. The
sequences produced by CA rule 30 usually consist of cycles and paths to the cycles
such as those shown in Fig. 2.26. The size of the cycles varies greatly in that some
are large and others quite small. Table 2.6 shows the maximum cycle lengths of
sequences resulting from various register sizes. For cyclic boundary conditions the
cycle length increases at a rate approximately exponential with n. A least squares fit
to the data shows that cycle length Cy can be approximated by [Wolfram1986a]

1092 CN =0.61(N + 1} (2.31)

or
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Figure 2.27 : Maximum path length versus CA rule 30 size for both null (filled
squares) and cyclic (empty squares) boundary conditions.

Cy =2081N+1) (2.32)

This would initially appear to be quite poor as compared to the cycle length of 2V — 1
in an N bit LFSR. Yet, if a truly random mapping were used between the 2V possible
states in an N bit cellular automaton then as N — o the longest cycle is expected to
have a length of 2", where A = 0.62432 - - - [Golomb1982], [Purdom1968] and the
average length of the cycles would be 2V?2 [Harris1960]. It has been proposed that
the exponent in Eqn. 2.32 may be related to the entropy of the sequence produced but
this requires further investigation [Wolfram1986a). CA rule 30 with null boundary condi-
~ tions has very small cycles in that even sizes have a maximum cycle length of two and
odd sizes have a maximum cycle length of one. Another peculiar property of this case
is that there is only one maximal length cycle (i.e. all paths lead to the same short
cycle) and the zero cycle is not entered by any path.

The lengths of the various paths in CA rule 30 with null boundary conditions differ
widely. Therefore, if a path is sufficiently long, it may be possible to begin near the
extremes in the path tree, and still provide a long sequence of pseudorandom
numbers. In Fig. 2.27 a plot of maximum possible path length versus cellular automa-
ton size is shown. Notice that the path length for cyclic boundary conditions increases
rapidly mainly due to the increase in maximum cycle length. However, for null
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Cyclic Nuli
N | Py logs Py start Py log, Py start
4 |9 3.17 0011 10  3.32 0001
5 |10 3.32 00011 15 3.91 00010
8 | 10 3.32 000011 17 4.00 000001
7 | 65 6.02 0000011 18 4.17 0100001
8 | 56 5.81 00111011 26  4.70 01011110
9 | 184 7.52 000111011 29 4.8 000100110
10 | &1 5.93 0001110011 34 5.09 0001001111
11 | 209 7.71 00111110111 35 5.13 00000000001
12 | 228 7.83 000011100011 41 538 000100110011
13 | 877 9.78 0000110111111 45 549 0001001110011
14 | 1555  10.60 00000110000111 54 575 00000000000001
15 | 1776  10.79 001101110111111 56  5.81 000000000001010
16 | 6269 12,61 0011011101110111 58 586 0001001100001100
17 | 11208 13.45 00001101111100011 67  6.07 00000000010111110
18 | 3981  11.98 000001110001100111 67 6.07 000100110011111001
19 | 4358  12.09 0000001110111111011 | |67  6.07 0101101111100001111
20 | 7986 1295 00001100001101110011 | {75 6.23 00000000010111011011
Table 2.7: Maximum length and starting value of nonrepeating sequences for CA
rufe 30 with N sites for both cyclic and null boundary conditions. Starting
points for cyclic boundary conditions were found by exhaustive simulation
while those for null boundary conditions were found using a method due
to Pries [Pries1988].
N | Cycles Frac.
longest
4 | 1x8, 3x1 0.75
5 | 1x5, 1x1 0.94
6 | 3x1 1.00
7 | 1x83, 7x4, 1x1 0.60
8 | 1x40, 1x8, 3x1 0.88
9 1x171, 1x72, 1x1 0.81
10 | 2x15, 1x5, 3x1 0.82
11 | 1x154, 11x17, 1x1 0.76
12 | 4x102, 1x8, 4x3, 3x1 0.93
13 | 1x832, 1x260, 1x247, 1x91, 1x1 0.32
14 | 1x1428, 2x133, 1x112, 2x84, 1x63, 1x14, 3x1 0.84
15 | 1x1455, 5x30, 5x9, 15x7, 4x5, 1x1 0.93
16 | 1x6016, 1x4144, 3x40, 1x8, 3x1 0.50
17 | 1x10848, 1x1632, 1x867, 1x306, 1x136, 1x17, 1x1 0.96
18 | 1x2844, 6x186, 1x171, 1x72, 6x24, 3x1 0.82
19 | 1x3705, 1x247, 1x133, 1x38, 1x1 0.72
20 | 1x6756, 1x6691, 2x6150, 4x3420, 4x1715, 1x580, 5x68, 4x30,
2x15, 1x8, 1x5, 3x1 0.01
Table 2.8:  Cycles lengths for various size rule 30 cellular automata and the fraction

of all states leading to the fongest cycle.
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Figure 2.28 : Cycle length versus probability of entering a cycle of that length for CA
rule 30 with cyclic boundary conditions. See appendix B for complete
tables.

boundary conditions the maximum cycle length does not increase nearly so rapidly
with cellular automata size and we see that the maximum possible path length
becomes nearly constant for large CA rule 30. Thus, the paths for null boundary condi-
tions are much shorter than those provided by cyclic boundary conditions. Therefore,
cyclic layouts for CA rule 30 based PRNGs should be used if the length of the
sequence is a concern. Another point to note is that there is only one large uncorre-
lated sequence for each register size. If different uncorrelated sequences are required,
for example in multiple Monte Carlo simulations, then the same precautions as when
using other algorithmic PRNGs to avoid sequence cross-correlation should be
observed (i.e. starting at sufficiently well spaced locations on the cycle to avoid
sequence overlap).

As we have already seen, as the length of a rule 30 cellular autmaton increases
the maximum possible length of the pseudorandom sequence also increases, but this
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Figure 2.29 : The raster scan output of a single site in a 32 site rule 45 cellular auto-
maton. _

growth is not monotonic and the seed, or initial state, used in a particular rule 30 cellu-
lar automaton will affect the length of the sequence produced. This is not a major
problem since a table of good seed values, such as those in Table 2.7, can be pro-
duced and used in a similar manner to other tables of feedback taps for maximal
length LFSR sequences. It is wise to use computer simulation to check the cycle
length of the sequence produced, if a different seed value or length than those in
Table 2.7 are to be used.

Using Table 2.8 we see that the state transitions for CA rule 30 with cyclic boun-
dary conditions are increasingly dominated by one cycle which is usually much longer
than the others. Therefore, an arbitrary starting state has an increasing probability of
being in the maximum length cycle or on a path leading to it. From Table 2.8 we also
note the varying size and number of the cycles as n increases. More complete results
are given in Appendix B. A plot of cycle length versus probability of an arbitrary start-
ing state being in-a cycle of that length can be made using the data of Appendix B and
is shown in Fig. 2.28. The various curves show the results for differing register lengths.
Therefore, if we wish to use an arbitrary starting state and require a probability of 0.95
that a non repeating sequence of length = 1000 will be produced then we need a rule
30 cellular automaton of size > 15. Table 2.8 and Fig. 2.28 only consider CA rule 30
for sizes 4 through 20. Results for larger rule 30 cellular automata are easily derived
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Figure 2.30 : 420 time steps in the state - time diagram of a 500 site rule 45 cellular
automaton. Cyclic boundary conditions; initialised with a single
nonzero site.

using a computer program but the run time of these programs becomes quite large for
lengths > 20.

2.4.3. CA rule 45

The other autoplectic cellular automaton of interest is rule 45 which is simply

ai(t+1) = a_4(t) ® (a(t) U aq(1)) - (2.33)
The area used by a 30 bit rule 45 cellular automaton is 1.3 x 108 um? compared to
1.1 x 108 um? for rule 30 and 0.46 x 10%um? for the LFSR. The increased area
over CA rule 30 comes from the additional inverter required at each site. CA rule 45
uses about 2.8 times the area of the LFSR but retains the global wiring advantages of
CA rule 30 (i.e. nearest neighbour wiring).

As with CA rule 30, it has been investigated extensively and exhibits autoplectic
properties in the bit sequence occurring at a single site, a;(t) [Wolfram1986a]. This
can be seen in the raster scan output of a single site, as shown in Fig. 2.29. As well,
Figs. 2.30 and 2.31, which show 420 time steps in the state - time diagram of a 500
site rule 45 cellular automaton, further confirm the autoplectic and homoplectic nature
of this rule. The single site initialisation of Fig. 2.30 shows that the evolution of CA rule
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Figure 2.32 : Auto and cross-correiation of site values in a 30 site rule 45 cellular
automaton.

We can use site and time spacing as with CA rule 30 to try and form a better
pseudorandom sequence but we would expect that similar performance to CA rule 30
will require a larger site and time spacing. The results of site spacing for CA rule 45,
given in Table 2.9, confirm this suspicion. The average failure metric decreases but
not monotonically and for the largest site spacing given in Table 2.9 we see that it has
not reached the level of CA rule 30 with v = 3. This would indicate that larger site
spacing is required to completely remove the bit sequence correlation and reduce the
average failure metric to that of CA rule 30 with v = 4, In Table 2.10 the test results for
CA rule 45 with time spacing are given. As with the site spacing case, a larger time
spacing is required with CA rule 45 to obtain similar average failure metrics to those of
CA rule 30 with B =4. However, from both Tables 2.9 and 2.10 we see that the
difference between CA rule 30 and CA rule 45 is quite small, usually less than 2.0, so
that the randomness of both CA rules is actually quite close for both site and time
spacing.

In deciding which CA rule (i.e. rule 30 or 45) is more suitable for use as a PRNG
one must consider several factors including area, randomness, and cycle length. We
know that CA rule 45 uses one more inverter than CA rule 30. However, it is possible
to avoid this additional inverter by using the q’ output from the storage d flipflop at
each site in the cellular automaton, so we will consider the two CA rules to have
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Sequence length = 1,000
Test ¥=0 y=1 =2 y=3 Y= =5 ¥Y=6
mod 10100 ] 10 100 10 100 ) 10 100 | 10 100 10 100 | 10 100
1 84 100 {100 100 | 82 67 | 50 100 74 76 | 71 100|100 100
2 21 0 {100 100 (100 100} 74 100|100 78 | 100 100 | 100 100
3 84 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
4 100 skip | 79 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
5 100 100 | 100 100 | 100 81 | 100 100 | 100 78 |100 100 | 100 100
6 84 100 | 100 100 | 100 100|100 72 100 76 | 100 100 | 79 100
7 100 100 [ 100 78 | 100 100 | 100 100 | 100 100 { 100 100 | 60 100
8 100 100 | 77 100 | 100 100 | 100 100 | 100 100 { 100 100 .| 100 100
9 100 100 | 100 100 | 100 100 {100 100 | 100 100 | 71 100 | 100 100
10 70 100 { 100 100 | 100 100 { 100 100 | 100 100 | 100 100 | 100 100
11 100 100 | 72 100 [ 100 100 | 100 100 | 100 100 | 100 100 | 100 100
12 49 skip | 100 skip | 82 skip [ 76 skip [ 72 skip| 71 skip | 60 skip
13 100 100 | 100 100 {100 100 | 100 100 | 100 100G | 100 100 | 100 100
14 100 100 | 77 100 | 70 100 (100 72 | 100 78 |100 50 {100 79
15 skip 100 | skip 100 | skip 100 |[skip 78 |skip 74 |skip 100 | skip 100
16 skip 100 | skip 100 | skip 100 | skip 100 | skip 78 |skip 100 | skip 79
17 skip 67 |[skip 51 |skip 100 | skip 100 | skip 74 |skip 100 | skip 79
18 skip 100 | skip 100 | skip 100 | skip 100 | skip 100 { skip 100 | skip 100
19 skip 100 {skip 100 |skip 81 (skip 100 | skip 78 |skip 100 | skip 100
20 67 100 ) 79 56 | 100 100 j100 72 | 100 100 | 100 100 | 39 100
21 63 21 [ 28 100 70 63 | 78 52 (100 78 | 62 100 8 100
22 0.52 0.03 0.24 0.14 0.12 0.28 0.15
23 Fail Fail Fail Pass Pass Pass Pass
24 7 5 5 5| 4 5|3 4 | 2 7 | 4 2 4 4
25 | 478 4.12[388 3.14|296 3.08|222 254{154 332|225 1.50]2.77 1.63
Sequence length = 10,000
Test y=0 y=1 v=2 =3 =4 Yy=5 ¥=6
mod 10 100310 100} 10 100 | 10 100! 10 1001 10 100 [ 10 100
1 72 100 | 70 100 {100 49 | 100 100 | 100 77 74 83 | 100 100
2 0 0 70 100 | 80 100 {100 100 [ 100 100 | 75 100 | 100 100
3 0 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
4 56 skip | 71 skip | 100 skip | 100 skip | 100 skip | 68 skip | 100 skip
5 56 77 (100 100 (106 80 | 79 100 | 100 100 [ 100 100 | 100 79
6 100 77 (100 100 | 100 45 | 100 100 | 100 100 | 100 100 [ 100 100
7 100 100 | 71 100 {100 100 [ 100 100 [ 100 100 | 75 100 | 100 100
8 72 100 | 100 100|100 100 | 73 100 | 78 100|100 100 | 74 71
9 100 79 | 49 70 | 100 100 | 100 100 | 77 100 | 100 100 | 100 100
10 100 100 ( 100 100 [ 100 100 | 48 100 | 100 100 | 83 100 ) 100 100
11 106 100 | 78 100 | 100 100 | 100 100 | 100 100 | 100 100 { 100 100
12 100 skip | 100 skip | 100 skip | 73 skip | 100 skip | 100 skip | 100 skip
13 100 100 [ 100 100 | 100 100 | 100 100 | 100 100 [ 100 100 { 100 76
14 100 100 {100 100 | 80 100 {100 81 | 77 100 (100 100 { 100 71
18 skip 72 |skip 78 |skip 69 |skip 73 |skip 69 |skip 100 | skip 79
16 skip 100 | skip 100 | skip 100 |skip 100 | skip 76 |skip 100 | skip 100
17 skip 77 |skip 100 |skip 75 |skip 100 | skip 100 | skip 100 | skip 100
18 skip 100 | skip 100 |skip 69 [skip 67 |skip 77 |skip 100 | skip 100
19 skip 100 | skip 100 |skip 80 |skip 100 | skip 100 | skip 100 | skip 100
20 72 72 {100 71 |100 100 | 79 100 | 69 100100 100 | 74 74
21 0 21 81 30 |100 100 | 40 81 (100 69 {100 43 | 50 79
22 0.52 0.03 0.24 0.14 0.12 0.28 0.15
23 Fail Fail Fail Pass Pass Pass Pass
24 8 7 5 4 4 5 4 3 3 3 3 2 3 4
25 6.72 5251410 3511240 433/3.08 1.98]1.99 232[225 1.74|2.02 2.71

Table 2.9: Random number test results for CA rule 45 with various site spacing

values, v.
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Sequence length = 1,000
Test B=20 B=1 p=2 B=3 B=4 =5 =6
mod 10 100 | 10 100 | 10 00 | 10 100 [ 10 100{ 10 100 { 10 100
1 81 100 | 72 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100
2 22 0 (100 100|100 1400 | 46 100|100 100 {100 10D} i00 75
3 81 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
4 100 skip | 100 skip [ 100 skip | 74 skip | 76 skip | 100 skip | 65 skip
5 100 100 | 100 76 | 81 100 | 100 100 | 100 100 | 100 100 | 75 100
6 81 100 | 100 100 | 100 72 79 100 | 100 100 | 100 100 | 100 100
7 100 100 | 72 100 { 72 100 | 100 100 [ 100 400 | 77 100 | 100 100
8 100 100 {100 72 {100 72 [100 100 | 100 100 | 100 10C | 100 100
9 100 100 | 100 100 | 81 100 | 100 100 | 76 100 | 100 100 | 100 65
10 70 100 | 72 100} 76 100 [100 74 | 100 100|100 77 | 100 40
11 100 100 | 100 100 | 100 100 | 100 79 {100 100 | 100 100 | 100 100
12 48 skip | 76 skip | 100 skip | 72 skip | 100 skip | 100 skip | 100 skip
13 100 100 | 100 100 [ 100 100 | 100 74 | 100 100 | 100 100 | 100 100
14 100 100 {100 100 | 71 100 [ 100 100 | 100 73 | 71 77 | 100 100
15 skip 100 | skip 72 |[skip 100 |skip 100 |skip 73 |skip 100 | skip 100
18 skip 100 | skip 100 |skip 100 | skip 100 | skip 100 | skip 71 |skip 83
17 skip 71 |skip 100 | skip 100 | skip 100 [ skip 73 |skip 100 | skip 100
18 skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 100
19 skip 100 | skip 100 | skip 100 | skip 100 |skip 100 | skip 77 |skip 100
20 71 100|100 76 100 100 [ 79 100 | 100 78 | 100 100 | 100 100
21 50 22 |78 76 {57 53 |74 53 {76 49 |29 77 [100 83
22 0.52 0.03 0.24 0.14 0.12 0.28 0.15
23 Fail Fail Fail Pass Pass Pass Pass
24 7 5 5 5 5 5 4 4 4 3 3 5 2 3
25 | 487 407330 3281362 3.03[276 220[1.72 2541223 2.21|1.60 254
Sequencs length = 10,000
Test =0 =1 B=2 B=3 B=4 B=5 =6
mod 10100 [ 10 100 | 10 400 { 10 100 | 10 100 | 10 100 | 10 100
1 70 101 |68 74 |101 97 | 74 97 | 54 79 |95 70 |79 79
2 78 78 | 74 95 [101 86 | 16 23 [ 88 81 | 95 f00| 8 93
3 55 skip | 101 skip | 101 skip | 283 skip | 94 skip | 100 skip | 100 skip
4 91 skip [ 95 skip | 101 skip | 62 skip | 81 skip | 100 skip | 100 skip
5 91 95 | 101 101 101 84 | 62 85 | 100 100|100 100 | 100 95
6 101 95 | 101 8% (101 94 | 100 85 |[100 100|100 78 | 100 100
7 101 101 | 101 101 [ 101 101 | 100 100 [ 100 100 | 100 100 { 100 100
8 94 101 {101 101 | 82 101 [ 74 100|100 100} 76 100 71 100
9 101 73 | 86 101 {101 101 | 97 78 [100 95 | 92 100 79 100
10 101 101 | 101 101 {101 101 | 100 89 | 100 100 | 100 100 [ 100 &1
11 79 101} 95 101 | 95 101|100 96 | 82 100 | 82 100|100 77
i2 79 skip | 101 skip | 86 skip | 100 skip | 94 skip | 100 skip | 93  skip
13 101 101 | 81 101 | 63 101 {100 100 {100 100 | 96 100 | 92 100
14 101 101 | 95 101 | 81 84 1100 100 81 100|100 100 | 97 95
15 skip 95 |skip 101 |skip 101 {skip 84 |skip 100 | skip 100 | skip 100
16 skip 101 | skip 81 [skip 77 |skip 100 | skip 100 | skip 70 |skip 97
17 skip 95 |skip 80 |skip 95 |skip 85 [skip 88 |skip 73 |skip 100
18 skip 101 | skip 95 [skip 101 |skip 100 | skip 88 |skip 100 | skip 100
19 skip 101 | skip 101 |[skip 10t |skip 97 |skip 100 | skip 100 | skip 79
20 70 94 | 81 101 |94 84 |73 68 | 95 10077 100 | 77 78
21 61 59 | 38 101 |88 70 |13 36 | 87 94 | 45 65 | 63 58
22 0.52 0.03 0.24 0.14 0.12 0.28 0.15
23 Fail Fail Fail Pass Pass Pass Pass
24 8 7 5 3 4 6 7 8 4 3 5 3 5 5
25 | 443 3241297 201 (319 3.40]5.03 3.78|246 1771244 243|265 290

Table 2.10: Random number test results for CA rule 45 with various time spacing
~values, B.
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N | Cycles Frac. longest.
4 1x2 1.00
5 1x30, 1x2 0.94
6 1x18, 1x3, 1x2, 3x1 0.84
7 1x126, 1x2 0.98
8 1x32, 2x24, 1x18, 2x4, 1x2 0.13
g 1x504, 1x3, 1x2, 3x1 0.98
10 | 1x403, 4x80, 2x15, 1x2 0.70
11 1x879, 1x935, 1x66, 1x11, 11x5, 1x2 0.48
12 | 1x240, 1x156, 1x84, 12x24, 1x18, 12x12, 1x3, 1x2, 3x1 0.086
13 | 1x1105, 1x676, 13x443, 1x156, 1x130, 4x78, 1x39, 1x13, 1x2 0.13
14 | 1x2198, 7x534, 3x392, 2x168, 1x128, 2x42, 1x2 0.52
15 | 1x6820, 1x4920, 1x2820, 1x2340, 3x120, 21x60, 15x32, 4x30,

%3, 2x2,3x1 0.21
16 | 1x2816, 1x976, 1x848, 4x700, 4x556, 4x296, 1x208, 2x144,

17x48, 1x32, 2x24, 1x16, 4x2, 2x1 0.06
17 | 1x78812, 1x32912, 1x6052,1x4845, 1x867,1x816, 7x408,

4x204, 1x102, 1x2 0.60
18 | 1x8787, 1x8168, 2x7812, 3x3756, 1x504, 12x72, 90x36, 6x21,

81x18, 1x3, 2x2, 3x1 0.18
19 | 1x183920, 1x158080, 1x149425, 1x15371, 1x3458, 1x1653,

1x1425, 5x912, 10x456, 1x361, 1x228, 10x114, 1x95, 1x2 0.35
20 | 1x142580, 4x142865, 5x3112, 1x4260, 1x110, 1x480, 1x430,

4x280, 5x252, 9x240, 5x236, 72x120, 166x60, 5x30, 2x15, 1x2 0.48

Table 2.11: Cycles lengths for various size rule 45 cellular automata and the fraction
of all states leading to the longest cycle. '

equivalent area. As discussed above, CA rules 30 and 45 have nearly equivalent ran-
domness in terms of the word wide sequence that is generated. Another metric which
can be used to measure the randomness of a bit sequence (i.e. such as that occurring
from each site in the cellular automaton) is the entropy of the sequence. The entropy
provides a characterisation as to the number of possible sequences that may occur.
Here we define two entropy measures: the topological entropy[Wolfram1984c])

s = lim - log, N(n) : (2.34)
n—oee N
and the measure entropy
e
S, = lim—% p;ilog, p; ; {2.35)
N—ooe I i=1
where
N(n) = the number of distinct length n blocks in
: these sequences.
pi = the probability of sequence i appearing.

If we consider the sequences to be messages on a communication channel then the
entropies correspond to the channel capacity and Shannon information content,
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Figure 2.33 :  Cycle length versus probability of entering a cycle of that length for CA
rule 45 with cyclic boundary conditions. See appendix B for complete
tables.

respectively [Wolfram1986a]. Therefore, for a random sequence generator we expect
all sequences to be equally likely and so, both entropies should be maximal, i.e.

s=s,=1 . (2.36)

This measure of randomness is very similar to the equidistribution and serial tests
described previously. Wolfram [Wolfram1986a] has found that the entropy of the bit
sequence from each site in a rule 45 cellular automaton is slightly smalier than that of
CA rule 30 so CA rule 45 must have some repeating blocks in the bit sequence from
each site as compared to CA rule 30. Incidentally, Wolfram has also found that the
entropy from a single site in a rule 30 cellular automaton is maximal (i.e. equals one).
Therefore, as with the site and time spacing measures, CA rule 30 is slightly more ran-
dom than CA rule 45.
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go: 111 110 101 100 011 010 001 000
o 1 o 1 1 0 1 0

150: 111 110 101 100 011 010 001 000
1 0 0 1 0 1 1 0

i+1 i+2

150 90 150 90

Figure 2.34 : A hybrid cellular automaton using CA rules 90 and 150 at alternating
sites.

Another aspect which can be considered is the propagation speed of the random-
ness to the left and right in both CA rules 30 and 45. This can be found by considering
the difference pattern produced by subtracting two randomly initialised cellular auto-
mata where the seeds differ in only one bit. The difference pattern looks similar to the
single initialised site state - time diagrams of Figs. 2.17 and 2.30. The slope of the
difference pattern to the left and right shows the information transmission of the
differing bit over the entire cellular automaton. This can also be thought of as rate of
spread of randomness over the cellular automaton. The left and right slopes yield the
left and right Lyapunov exponents, A, and Ag, respectively for cellular automaton’s
evolution [Wolfram1984c], [Packard1985a]. Both CA rule 30 and 45 have Ag =1.0
but for CA rule 30 it can be shown that A; = 0.2428 + 0.0003 while for CA rule 45
A =0.1724 £ 0.0004 [Wolfram1986a). Therefore, randomness in CA rule 30
spreads to the left at a slope of about 28% more than in CA rule 45.

Finally, we must consider the cycle lengths of CA rules 30 and 45. Table 2.11 is
a list of all cycles for CA rule 45 as well as the percentage of all states which are
members of, or are on paths leading to, the longest cycle. Figure 2.33 uses the data of
Appendix B for CA rule 45 to produce a plot analogous to that of Fig. 2.28 for CA rule
30. When these two plots are compared we see that as the length of CA rule 45 is
increased it is not dominated by only one large cycle but may have several large
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Length Construction Cycle length
4 0101 15
5 11001 31
6 010101 63
7 1101010 127
8 11010101 255
9 110010101 511
10 0101010101 1,023
11 11010101010 2,047
12 010101010101 4,095
13 1100101010100 8,191
14 01111101111110 16,383
15 100100010100001 32,767
16 1101010101010101 65,535
17 01111101111110011 131,071
18 010101C010101010101 262,143
19 0110100110110001001 524,867
20 11110011101101111111 1,048,575
21 011110011000001111011 2,087,151
22 0101010101010101010101 4,194,303
23 11010111001110100011010 8,388,607
24 111111010010110101010110 16,777,213
25 1011110101010100111100100 33,554,431
26 01011010110100010111011000 67,108,863
27 000011111000001100100001101 134,217,727
28 0101010101010101010101010101 268,435,455

Table 2.12:  Hybrid constructions necessary to achieve a cellular automaton with max-

imal cycle length. Here 1 refers to CA rule 150. Hence, a length 5 maxi-
mal length hybrid would be constructed by having CA rules 90 and 150 in
the following order, 150, 150, 90, 90, 150. it should be noted that for
many lengths there are several CA rule 90 and 150 hybrid constructions
which will yield maximal length cycles. Maximal cycle length hybrid cellu-
lar automata exist for lengths larger than 28 but must be found using
computer simulation.
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Flgure 2.35 : Output of a single site in a 30 site rule 90 and 150 hybrid cellular auto-
maton. :

cycles. This severely reduces the probability of arbitrarily starting in, or on a path lead-
ing to, the largest cycle. However, the probability of starting in a nonrepeating
sequence of a length greater than some fixed value is better in CA rule 45 since the
probability of being in one of the larger cycles of CA rule 45 is greater than entering
the one largest cycle of CA rule 30. Notice that the longest cycle in CA rule 45 is usu-
ally several times that of CA rule 30. Therefore, while CA rule 30 has better random-
ness properties than CA rule 45, CA rule 45 provides much larger cycle lengths. In
this work we are mainly concerned with generating good pseudorandom sequences
and so, we will consider the CA rule 30 based PRNG to be bstter than the CA rule 45
based PRNG. However, if for some application cycle length becomes an important
consideration then the CA rule 45 based PRNG should be seriously considered.
Another point to be noted is that for odd cycle lengths no state has more than one
predecessor since the state transition diagram for odd length CA rule 45 contains only
cycles and no paths leading to cycles. Finally, it can be shown that similar behaviour
to CA rule 30 with null boundary conditions is exhibited by CA rule 45 with null boun-
dary conditions (i.e. very short cycle lengths).
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Figure 2.36 : 800 time steps in the state - time diagram of a 498 site rule 90 and
150 hybrid cellular automaton. Null boundary conditions; initialised
with a single nonzero site.
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Figure 237 : 420 time steps in the state - time diagram of a 498 site rule 90 and
150 hybrid cellular automaton. Null boundary conditions; random initial
state.

2.4.4. Homoplectic CA-Based PRNGs

To generate pseudorandom numbers in parallel using cellular automata it would
appear that using cellular automata which exhibit either homoplectic or autoplectic
behaviour would suffice. However, homoplectic cellular automata only output pseu-
dorandom patterns for certain input states. For example, consider the first N/2 sites
having a zero value and the next N/2 sites having a one value. This seed would obey
all the requirements of a random initial state since p(0) = p(1) = 0.5 but would most
certainly yield an output which would be decided!ly nonrandom. In fact, the author has
found it difficult to find starting states for some homoplectic class 3 CA rules which will
yield random sequences. Thus, the homoplectic nature of some class 3 CA rules is
only over an ensemble of different starting or seed values. On the other hand, CA
rules exhibiting autoplectic behaviour will produce a pseudorandom output indepen-
dent of the seed value. Therefore, autoplectic behaviour is more desirable in a PRNG
since we need not be concerned about whether or not the seed value will produce
pseudorandom behaviour. Thus, for the purposes of this work, homoplectic CA rules
will not be considered appropriate and will no longer be considered.
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Figure 2.38 : Auto and cross-correlation of site values in a 30 site rule 90 and 150
hybrid cellular automaton.

2.4.5. Hybrid Celiular Automata

A cellular automaton which yields a maximal length binary sequence from each
site, like the LFSR, is the rule 90 and 150 hybrid cellular automaton of Fig. 2.34 which
was initially proposed by Pries [Pries1986]. Here the surprising combination of CA
rule 90

ai{t+1) = ai_4(t) ® a;4(t) (2.37)
and CA rule 150
gi(t+1) = a;_4(t) @ a;(t) @ a;,4(t) (2.38)

both of which are simple linear rules, yields maximum length cycles (ie. 27 -1,
n = length of the celiular automaton) . It has been conjectured, based upon computer
simulation, that to achieve maximal length cycles the length of the cellular automaton
is subject to the constraints that

nmod2=0, nmod3=2 (2.39)

and it must have null boundary conditions. However, these computer simulations
where only carried out up to length 12 [Pries1987]. Computer simulations performed
for this work show that a further restriction of n mod 8 = 0 must be added for
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Sequence length = 1,000

Test y=0 v=1 Y2 v=3 Y=4 Y=5 ¥v=
mod 10 100 ] 10 100 ) 10 100 10 100) 10 100 ] 10 100| 10 100
1 100 75 | 49 75 {100 71 j100 100 | 100 75 70 100 | 100 100
2 100 100 | 100 100 [ 100 100 | 75 100 | 81 100|100 75 | 100 100
3 100 skip | 100 skip | 81 skip | 74 skip | 69 skip [ 100 skip | 100 skip
4 100 skip | 74 skip | 81 skip | 100 skip | 44 skip | 100 skip | 100 skip
5 100 100 | 49 100 | 100 100 | 100 100 | 100 69 | 100 100 | 100 100
6
7
8
9

100 100 | 100 100 | 100 100 | 74 100|100 100 | 100 100 | 100 100
100 100 | 100 100 { 100 100 | 100 73 | 100 100 | 100 100 | 100 100
100 100 | 100 100 [ 100 100 [ 100 100 | 100 100 | 100 100 | 100 100
79 100 | 100 100 | 100 100 | 75 100 | 100 100 | 100 100 | 100 72
10 100 100 | 100 81 76 1001 75 75 | 75 100 ) 70 100 | 100 100
11 100 100 | 100 100 | 76 100 | 75 100|100 100 | 70 100 | 100 100
12 79 skip | 74 skip | 100 skip | 78 skip | 100 skip | 100 skip | 72 skip
13 106 75 {100 100 { 100 100 {100 100 | 100 100 | 100 100 | 100 100
14 100 71 | 100 100 { 100 100 {100 100 ) 56 100 | 73 100} 100 100
15 skip 100 | skip 100 | skip 100 | skip 75 |skip 100 | skip 100 | skip 100
16 skip 100 | skip 100 | skip 100 [skip 100 | skip 75 |skip 100 | skip 80
17 skip 100 | skip 100 | skip 100 | skip 74 |skip 100 | skip 100 | skip 100
18 skip 100 | skip 100 | skip 100 |skip 49 |skip 100 | skip 100 | skip 100
19 skip 100 | skip 100 | skip 100 |skip 74 |skip 75 |skip 70 |skip 72
20 100 100 | 19 100 71 100 | 74 75 | 100 100 {100 100 | 100 100
21 100 54 | 56 100 | 71 57 | 78 0 44 81 7 100 | 80 27
22 0.12 0.05 0.08 0.12 0.12 0.05 0.05
23 Fail Fail Fail Pass Pass Pass Pass
24 4 5 6 2 3 2 5 8 3 2 3 1 1 3
25 242 3.26 13.79 144244 1.72]3.22 405231 125[{142 055/048 1.49

Sequence fength = 10,000

Tast ¥v=0 Y=1 v=2 y=3 Yy=4 Y=5 ¥Y=06
mod 10100 [ 10 100} 10 100 | 10 100 ) 10 100 10 100! 10 100
0 0 100 100 | 100 100 [ 100 100 | 100 100 72 100! 70 100
0 0 [ 100 100 | 100 100 [ 100 62 | 100 100 | 100 100 | 67 100
0  skip | 100 skip | 100 skip [ 100 skip | 70 skip | 100 skip | 80 skip
0 skip | 100 skip | 100 skip | 100 skip [ 70 skip | 100 skip | 100 skip
0 ¢] 100 100 | 100 100 | 100 100 | 70 100 | 100 100 | 50 100
0 28 (100 100} 100 100 | 41 100|100 100 {100 80 | 100 100
20 83 (100 100 {100 100 | 100 100 | 77 100 | 100 100 | 100 100
48 48 | 100 79 | 100 100 [ 100 100 | 77 100 { 100 100 | 100 100
20 48 {100 1003100 100 | 72 100|100 100|100 63 | 87 100
10 65 48 [ 100 100 | B85 100 | 100 100|100 70 | 100 100 | 67 100
11 37 65 (100 100} 58 100100 100|100 77 | 100 100 | 100 100
12 0 skip| 76 skip [ 100 skip [ 100 skip | 100 skip | 100 skip | 100 skip
13 100 100 [ 100 100 [ 100 76 | 100 79 | 100 100|100 100 | 100 100
14 17 0 | 100 100 (100 85 | 100 100|100 77 {100 100 | 70 100
15 skip 20 |skip 100 |skip 100 |skip 41 |skip 77 |skip 80 skip 83

16 skip 0 |skip 100 |skip 100 |skip 100 | skip 100 | skip 100 skip 83
17 skip 0 |skip 100 {skip 100 |skip 79 |skip 72 |skip 100 skip 100
18 skip 0 |skip 100 |skip 73 |skip 41 |skip 77 |skip 100 |skip 100
19 skip 0 |skip 100 [skip 76 !skip 62 |skip 77 |skip 100 |skip 83
20 0 6 | 100 76 | 100 100 (100 100 | 77 100|100 100 | 70 100
21 17 28 | 79 67 | 100 58 | 62 &0 | 42 81 {65 52 | 100 47
22 0.05 0.05 0.05 0.05 0.12 0.05 0.05

23 Fail Fail Fail Pass Pass Pass Pass

24 16 17 2 2 3 3 2 4 4 5 1 3 4 3
25 13.8 1431145 1781157 232]1.18 256217 1.92]0.63 1.25]|259 1.04

Table 2.13: f?andom number test results for the rule 90 and 150 hybrid with various
site spacing values, v.
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Sequence fength = 1,000
Test B=0 =1 B=2 B=3 B=4 B=5 B=6
mod 10 {00 [ 10 1004 10 100 | 10 100 10 100 | 10 100 10 100
1 100 82 | 100 69 44 0 100 68 | 100 82 | 57 0 100 100
2 100 00| 75 100} O 0 100 68 | 100 100 0 0 43 66
3 100 skip | 75 skip | 100 skip { 100 skip | 100 skip | 75 skip | 100 skip
4 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip | 100 skip
5 100 100 | 100 100 | 100 81 77 100 | 100 100 | 100 25 | 100 100
6 100 100 | 100 100 | 100 100 [ 100 100 | 100 100 | 100 100 | 100 100
7 100 100 ) 100 100 | 67 100 | 100 100 {100 100|100 100 | 72 100
8 1060 100 [ 1060 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100
8 68 100 | 100 100 {100 100 {100 100} B3 100 ] 100 100 | 8 100
10 100 100 ({100 100|100 100 | 88 100 | 82 100 | 75 100 | 77 100
11 100 100 | 100 100 [ 100 100 | 100 100 | 100 100 | 100 100 | 100 100
12 68 skip | 81 skip | 100 skip | 100 skip | 82 skip | 57 skip | 66 skip
13 100 82 | 100 100 | 100 100 [ 100 100 | 100 {00 [ 100 100 | 100 100
14 100 75 {100 100 | 100 100 | 100 100 | 100 79 | 100 100 | 100 100
15 skip 100 [ skip 100 |skip 100 |skip 100 {skip 69 |skip 100 | skip 100
18 skip 100 | skip 100 | skip 100 [skip 100 | skip 69 |skip 100 | skip 100
17 skip 100 | skip 75 |skip 75 |[skip 100 | skip 100 | skip 100 | skip 77
18 skip 100 | skip 100 jskip 48 |skip 100 | skip 100 | skip 46 |skip 100
19 skip 100 | skip 100 | skip 19 |skip 72 |[skip 100 | skip 71 |[skip 100
20 100 100 [ 100 100 | 25 0 100 72 | 82 79 1100 25 77 51
21 100 50 [ 100 100 | 19 52 68 100 | 70 18 | 57 25 77 62
22 0.05 0.05 0.18 0.1 0.05 6.20 0.1
23 Fail Fail Fail Pass Pass Pass Pass
24 3 4 2 2 6 7 2 2 3 3 6 7 4 2
25 164 21111869 156 (445 6.25[0.87 120|115 204|279 5081203 144
Sequence.langth = 10,000
Test =0 f=1 p=2 B=3 f=4 B=5 =6
mod 101060 [ 10 100 ] 10 100 10 100 | 10 00! 10 100 | 10 100
1 0 0 0 0 o 0 0 0 0 0 0 G o 0
2 0 0 0 4] 0 0 0 0 0 0 0 Y 0 0
3 0 skip| O skip|] O skib| 0 skib| O skib| 0 skip| 0 skip
4 0 skip| O skip|] O skip| O skib| O skip| O skip| 0 skip
5 0 o 0 o] 0 0 0 0 0 0 0 0 0 4]
6 o 26 | 28 22 1 2 79 | 20 80 [ 48 26 0 47 | 26 54
7 26 76 | 28 78 18 50 | 69 43 [ 100 48 0 0 46 74
8 52 52 0 78 18 32 80 80 {100 48 0 0 46 100
9 26 52 0 50 50 0 3 80 | 22 48 0 23 26 80
10 78 852 78 78 | 32 0 60 80 | 100 48 0 0 20 100
11 50 76 78 78 0 0 80 80 | 74 22 0 c 74 100
12 0 skip| 50 skip| 50 skip| 31 skip| O skip| 52 skip| 28 skip
13 100 100 { 100 100 | 50 82 {100 100 [ 100 100 | 77 77 | 100 100
14 24 0 0 0 29 0 0 0 26 ¢] 25 0 0 0
15 skip 26 |skip 22 |skip 0 |[skip 40 |skip 48 [skip 0 |skip 26
18 skip O |fskip O |skip O |[skip O [skib O |skip 0 |skip ©
17 skip O f[skip 0 |skip O |skipb O |[skip O |skipb O |[skip ©
18 skip O |[skip O |skip 32 [skip 20 |skip 48 [skip 0 |skip 52
19 skib O |[skip O |skip O [skip 20 |skip O |[skip O |skip 20
20 o 0 22 0 0 0 20 0 52 0 0 0 0 0
21 24 28 0 28 0 0 20 80 | 28 0 24 0 26 0
22 0.05 0.05 0.18 0.11% 0.05 0.17 0.11
23 Fail Fail Fail Pass Pass Pass Pass
24 16 17 {16 18 {15 18 12 3 |10 16 | 16 17 [ 13 12
25 13.2 1411132 137143 163]109 109]| 95 13.6]14.2 165|121 10.9

Table 2.14: ﬁandom number test results for the rule 90 and 150 hybrid with various

time spacing values, B.
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Flgure 2.39 : 420 time steps in the state - time diagram of a 500 site rule 30 and 45
hybrid.  Cyclic boundary conditions; initialised with a single nonzero
site.

length 16. Furthermore, for longer lengths, = 30, it would appear that even more con-
straints are required. However, further computer simulation shows that if other hybrid
constructions using these two CA rules are utilised then it is possible to form a cellular
automaton with maximal cycle length for any desired length. For example, consider a
hybrid of length 16. A maximal length cycle can be formed by simply twinning CA rule
150 at one end of the automaton (i.e. rather than having 90, 150, 90, 150, 90, 150,

- use 150, 150, 90, 150, 90, 150, - - -). A table indicating the hybrid construc-
tion necessary to achieve a cellutar automaton with maximal cycle length is given in
Table 2.12.

The output of a single site in the rule 90 and 150 hybrid yields a binary sequence
as shown in the raster scan of Fig. 2.35. The rule 90 and 150 hybrid method makes
effective use of the cellular automaton since all possible outputs are generated. This
hybrid is also somewhat autoplectic since a regular starting pattern eventually leads to
sequences which closely resemble a pseudorandom sequence. In Fig. 2.36 800 time
steps in the state - time diagram of a 498 site rule 90 and 150 hybrid with a simple ini-
tial state is shown. Note that the regular pattern dies out as the hybrid evolves in time.
However, unlike CA rule 30, the rule 90 and 150 hybrid displays symmetry between
the left and right sides of the figure. Figure 2.37 shows the evolution of the rule 90 and
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Figure 2.40 : 420 time steps in the state - time diagram of a 500 site rule 30 and 45
hybrid. Cyclic boundary conditions; random initial state.

150 hybrid with a random initial state and displays its homoplectic properties. As in CA
rule 30, we note the presence of triangular patterns in the state - time diagram.

A 30 bit implementation of this particular hybrid uses 1.0 x 108 pm?2. This com-
pares to 1.1 x 108 um? for CA rule 30 and 0.46 x 108 um?2 for a LFSR of the same
register length. The rule 90 and 150 hybrid is slightly smaller than the CA rule 30 and
uses only 2.1 times the area of a paraltel LFSR. As for CA rule 30, the nearest neigh-
bour wiring leads to a much improved layout over the LFSR. The restriction on size is
a minor problem since the constraints do not prohibit a large set of sizes. The null
boundary conditions actually provide advantages over CA rule 30 since the first and
last sites in the rule 90 and 150 hybrid do not need to be placed in close proximity.
The boundary constraints also allow the rule 90 and 150 hybrid to operate at a higher
speed since no extended wiring is required.

Unlike CA rule 30, adjacent sites in the rule 90 and 150 hybrid are not correlated
in both time and space. This is evident in the auto and cross-correlation data of
Fig. 2.38. Thus, cross-correlation in the rule 90 and 150 hybrid is similar to the cross-
correlation of the multiplicative congruential PRNG of Fig. 2.19(b). However, the binary
sequences produced by sites in the rule 90 and 150 hybrid fail some random number
tests because of distribution problems. The fundamental problem with the random-
ness of the sequence is generation of more ones than zeros in one stage of the binary
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Figure 2.41 : 420 time steps in the state - time diagram of a 501 site rule 30 and 45

hybrid. Cyclic boundary conditions; initialised with a single nonzero
site.

sequence, followed by another stage producing more zeros than ones. This can be
problematic in some applications since the distribution is not uniform in small local
sequences even though the entire cycle is acceptable. This leads us to speculate that
different one-dimensional hybrid cellular automata may exist which have maximal
length and a widely acceptable pseudorandom number sequence. However, there is
an overwhelming number of possible hybrid rules. Note that hybrid cellular automata
are not restricted to only two alternating CA rules but may include other more compli-
cated combinations. Even if we restrict the search to include only one-dimensional
nearest neighbour combinations, there are (28)" possibilities for an n bit hybrid cellu-
lar automaton.

In the case of CA rule 30 generator time and site spacing were used to remove
problems in the generated sequence. The same principle can be applied to this hybrid.
In Tables 2.13 and 2.14 the results of the random number tests for various values of
site spacing, ¥, and time spacing, B, are provided. Notice that a rule 90 and 150
hybrid with a spacing of ¥ = 0 possesses little or no random properties because of the
distribution problems mentioned previously but, when single spacing site is introduced,
the sequences produced pass the tests as well as would be expected of sequences
produced by a known good PRNG. This behaviour extends over all the site spaced
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Figure 2.43 : 420 time steps in the state - time diagram of a 500 site rule 30 and 45
hybrid. Null boundary conditions; initialised with a single nonzero site.

instead of CA rule 30 with v = 4 because of its improved area and speed performance.
However, care should be exercised in the use of the rule 90 and 150 hybrid based
PRNGs since they have not been as carefully studied as the CA rule 30 based
PRNGs.

The major advantage of the rule 80 and 150 hybrid is that the sequence pro-
duced consists of one large cycle of length 27 — 1 and a one-cycle for the zero state.
To make a table and figure such as Table 2.8 and Fig. 2.28 for the rule 90 and 150
hybrid is meaningless since the results are already known. However, it should be
emphasised that if a long cycle length is a crucial requirement for a particular applica-
tion then the rule 90 and 150 hybrid with its maximal length cycle may be the imple-
mentation of choice.

2.4.6. Another Hybrid

Another hybrid which immediately springs to mind, since its two constituent rules
are the two autoplectic CA rules discussed previously, is a combination of CA rules 30
and 45. Here we will add one difference in the construction of the hybrid in that sites 0
and 1 will have the same rule of implementation, all other sites will alternate as before.
The reason for this change is.to take advantage of CA rule 45's evolution from a zero
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Figure 2.44 : 420 time steps in the state - time diagram of a 500 site rule 30 and 45
hybrid. Null boundary conditions; random initial state.

state (i.e. we can build a register type PRNG which has a multistate cycle containing
the zero state). The resulting state - time diagrams are shown in Figs. 2.39 and 2.40.
It should be noted that a complete examination of the rule 30 and 45 hybrid without
the twinning of rules at sites 0 and 1 shows no quantifiably different overall behaviour
from the rule 30 and 45 hybrid presented here.

The behaviour of this hybrid differs greatly from all previously discussed single
initialised site evolution. For the even length rule 30 and 45 hybrid shown in Fig. 2.39
it would appear that the implementation modification has induced a second starting
point at the leftmost site. Another difference is that the evolution from the center start-
ing point initially moves left and right but after a few time steps all leftward evolution
ceases and subsequent evolution only proceeds to the right. At the induced starting
point there is no leftward evolution but rather, what could be termed a moving wall of
zeros and ones blocking leftward evolution. The triangular shapes are right triangles
rather than the upside down equilateral triangles which we have seen thus far. The tri-
angles contain vertical lines of ones and zeros. Finally, the horizontal stripes of CA
rule 45 have been replaced by vertical stripes (i.e. a site is staying at value zero or
vaiue one until the evolution of states reaches it). For odd size rule 30 and 45 hybrids
the behaviour is different from that for even lengths as well as being different from that
encountered thus far, as shown in Figs. 2.41 and 2.42. Notice that a secondary
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Figure 2.45 :  Cross-correlation of site values in a 30 site rule 30 and 45 hybrid,

starting point is again induced by the twinned rule at sites 0 and 1. The most
significant difference is the vertical height of the diagonal section of vertical stripes.
The difference in behaviour between odd and even sized rule 30 and 45 hybrids is not
unexpected since in the rule 80 and 150 hybrid we have restrictions on both the length
and boundary conditions required to achieve the desired behaviour. For the rule 90
and 150 hybrid the use of linear rules allows the boundary and length conditions to be
proofed algebraically [Pries1986] but in the case of the rule 30 and 45 hybrid the
chaotic nature of the two rules make such proofs difficult, if not impossible. It can be
easily seen that eyclic boundary conditions are required for proper behaviour by
observing Figs. 2.43 and 2.44 where the use of null boundary conditions induces self-
organising behaviour. In order to guarantee some sort of desired behaviour it may be
possible to find restrictions on the length experimentally although a number of tests
using different lengths, both odd and even, did not reveal fundamentally different pro-
perties.

A cause for concern lies in the cross-correlation data of Fig. 2.45. Here the
cross-correlation remains large for an even longer period than for CA rule 45 (about 16
sites) and remains distinctly visible across the entire 30 bit hybrid. This would indicate
that a large site, or time, spacing would be required in order to remove bit correlation
in the pseudorandom word sequences. As with CA rule 45, this suspicion is confirmed
in Table 2.15 where the performance of this hybrid using site spacing on the random
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Sequence length = 1,000
Tast y=0 =1 =2 =3 v=4 T=85 v=6
mod 10 100 10 400 | 10 100] 10 100 10 100} 10 100 { 10 100
1 100 100 [ 100 100 {100 76 (100 78 | 78 78 | 100 100 {100 100
2 75 50 | 100 100 } 100 100 | i00 100 | 100 100 | 100 100 | 100 71
3 75 skip | 100 skip [ 100 skip | 100 skip | 100 skip [ 100 skip | 100 skip
4 72 skip | 100 skip | 89 skip | 100 skip | 55 skip | 100 skip | 100 skip
5 100 100 | 78 100 | 100 {00 | 78 100|100 100 | 79 100 | 100 100
6 100 100 | 100" 79 | 100 100 | 100 100} 100 1001100 79 | 100 100
7 100 100 | 79 100 [ 100 100 | 100 100 | 100 65 {100 100 | 100 100
8 100 100 79 100 | 100 100 | 80 100|100 78 | 100 100 | 71 100
g 100 100 | 78 100 {100 100|100 100 | 100 78 | 100 100 | 100 100
10 100 100 | 79 100 1100 100 [100 100 | 80 43 | 100 00| 73 71
11 100 100 { 100 100 | 100 100 | 100 100 | 80 78 1100 100 | 100 100
12 75 skip| 79 skip | 85 skip| 75 skip | 100 skip | 79 skip | 100 skip
13 72 100 {100 76 | 100 100 | 100 100 {100 100 | 100 100 | 100 100
14 100 72 | 100 100 (100 70 | 100 100} 100 100 ) 100 68 | 100 100
15 skip 100 fskip 76 |skip 100 | skip 100 | skip 100 |skip 78 |skip 100
16 skip 100 | skip 79 |[skip 100 {skip 75 |skip 55 |skip 100 | skip 100
17 skip 75 |skip 100 |skip 39 [skip 78 |skip 100 | skip 100 | skip 73
18 skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 71
19 skip 100 | skip 100 |skip 70 |skip 100 |skip 77 |skip 100 | skip 100
20 100 100 | 100 100 | 100 100 | 100 80 { 100 400 [ 100 100 | 100 73
21 100 100 | 76 100 | 76 100 ) 42 75 {100 58 | 46 54 | 27 44
22 0.52 0.02 0.29 0.38 0.18 0.02 0.14
23 Eail Fail Fail Fail Pass Pass Pass
24 4 4 6 4 3 5 4 4 3 8 3 3 3 4
25 | 331 3.03[352 2.90[270 34513.25 3.14[2.07 3.90[1.96 221|229 297
Sequence length = 10,000
Test v=0 v=1 y=2 ¥=3 v=4 Y=5 Y=6
mod 10 100 10 100 { 10 100 | 10 100 | 10 100 ]| 10 100 | 10 100
1 59 100 | 100 100 55 100 {100 77 | 73 100 | 100 100 | 47 100
2 100 0 | 100 100 } 100 100 | 100 100 | 100 100 ] 46 79 | 100 100
3 100 skip | 100 skip | 100 skip | 100 skip | 73 skip | 78 skip | 79 skip
4 100 skip | 100 skip | 100 skip [ 100 skip | 100 skip | 100 skip | 78 skip
5 100 66 73 100|100 100 | 77 100 | 73 100 [ 100 100 | 100 100
6 100 73 (100 100 | 70 100 | 100 100 | 100 75 78 79 | 100 100
7 100 100 | 100 100 | 100 100 | 77 100 | 100 100 | 100 100 | 100 100
8 100 100 | 71 100 (100 100 | 77 100|100 100|100 67 | 100 100
9 100 100 § 100 100 | 100 100 (100 100 {100 t00 | 100 67 | 79 100
10 100 100 | 100 100 | 100 100 [ 100 100 {100 100 | 76 67 | 10¢ 100
11 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100
12 73 skip | 100 skip | 100 skip | 100 skip | 75 skip | 100 skip | 100 skip
13 100 66 | 100 100 | 100 100 { 100 100 | 100 100 | 100 100 | 100 100
14 73 75 (100 100 70 100 {100 100 | 100 100 | 100 100 | 100 100
15 skip 100 | skip 69 |skip 100 | skip 100 | skip 100 | skip 100 | skip 100
16 skip 75 |skip 71 [skip 100 | skip 100 | skip 74 |skip 100 | skip 75
17 skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 100 | skip 100
18 skip 100 | skip 100 | skip 100 [skip 77 |skip 100 | skip 100 | skip 57
19 skip 100 | skip 71 |skip 100 |skip 61 |skip 100 | skip 100 | skip 100
20 100 66 | 100 87 | {00 100 | 100 77 |00 100 | 76 78 | 100 100
21 86 75 | 71 0 55 100 | 77 0 81 78 | 78 100 78 &8
22 0.52 0.02 0.29 0.38 0.18 0.02 0.14
23 Fait Fail Fait Fail Pass Pass Pass
24 5 6 4 5 6 2 6 7 5 2 4 4 4 2
25 | 309 504[285 4.02|350 2.00[292 408|255 1.73]268 263/2.39 2.00

Table 2.15: Random number test resuits for the rule 30 and 45 hybrid with various

site spacing values, y.
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Ssquence length = 1,000
| Test =0 =t f=2 B=3 B=4 B=5 B=6
mod | 10 100 | 10 100 )| 10 100 | 10 100 | 10 100 | 10 {00 | 10 100
1 102 100 ] 100 100 | 98 98 (100 100 | 96 96 | 98 98 | 70 98
2 74 51 {100 100 98 62 | 74 100 | 96 75 | 98 79 | 70 98
3 81 skip| 79 skip | 98 skip | 100 skip | 96 skip| 77 skip | 81 skip
4 77 skip | 100 skip | 62 skip | 74 skip| 96 skip | 98 skip | 81 skip
5 102 100 {100 100 | 47 98 (100 100 | 74 100 | 100 58 | 100 100
6 i02 100 {100 100 )| 98 98 | 8 100 | 75 96 | 98 70 | 98 08
7 102 100 | 100 100 | 98 g8 | 100 100 | 98 96 g8 98 98 98
8 i02 100 {100 100 ] 98 98 (100 100 | 96 96 | 98 98 | 98 @8
9 102 100 [ 100 100 ] 98 98 |100 100 | 96 68 | 98 98 | 98 98
10 100 100 [ 100 100 ] 98 98 | 100 100 | 70 68 98 98 a8 98
11 100 100 | 100 100§ 79 98 (100 100 | 96 96 | 98 98 | 98 98
12 79 skip | 100 skip | 100 skip | 100 skip | 100 skip | 51 skip | 100 skip
13 77 100 ) 100 100} 98 98 j100 100] 96 96 | 98 98 | 98 98
14 100 77 | 100 100} BY 98 {100 100| 96 96 | 98 98 | 98 98
15 skip 100 {skip 81 |skip 98 pskip 100 |skip 96 |skip 98 |skip 98
18 skip 100 | skip 100 |skip 98 |skip 100 | skip 68 |skip 98 |skip 98
17 skip 72 |skip 81 |skip 98 [skip 100 jskip 96 |skip 98 |skip 98
18 skip 100 | skip 100 |skip 98 |[skip 81 |skip 96 |skip 98 |[skip 98
19 skip 100 |skip 68 |skip 98 |[skip 74 |skip 47 |skip 98 |skip 98
20 100 100|100 60 | 98 98 (74 100 | 96 96 | 98 98 | 55 72
21 100 100 |00 79 | 98 83 (100 100 | 55 75 | 77 51 | 98 72
22 0.52 0.02 0.29 0.38 0.18 0.02 0.14
23 Fail Fait Fail Fail Pass Pass Pass
24 4 4 3 5 i6 18 5 3 15 18 | 15 19 | 15 18
25 1317 3001221 330)351 2851298 245|268 3.4012.17 2.68 260 1.85
Ssquence length = 10,000
Test B=0 =1 p=2 B=3 B=4 B=5 =6
mod i0 100/ 10 10C | 10 1004 10 100 { 10 100) 10 100 | 10 100
1 50 100 | 73 74 (100 100 | 100 100 {100 100} 76 100 | 85 85
2 100 0 73 73 78 100 | 79 100 |} 51 81 74 100 | 100 100
3 100 skip | 100 skip | 100 skip [ 100 skip | 70 skip | 100 skip | 100 skip
4 100 skip | 100 skip | 78 skip | 100 skip [ 100 skipj 81 skip | 85 skip
5 100 77 [ 100 79 72 72 (100 100 | 70 100 | 100 100 | 49 75
6 100 66 | 100 74 | 100 100 | 100 100 | 100 100 { 100 81 100 100
7 100 100 | 100 100 | 100 78 | i00 100 | 100 100 1100 76 | 100 100
8 100 100 { 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100
9 100 100 {100 100 | 100 400 | 79 79 | 100 100|100 76 | 100 100
10 100 100 { 100 100 | 100 100 [ 100 100 | 100 100} 81 100 | 100 100
11 100 100 | 100 100 {100 100 (100 76 | 70 100 j 100 100 [ 100 100
12 66 skip| 73 skip | 100 skip | 100 skip | 61 skip | 100 skip | 100 skip
13 100 77 | 100 100 | 100 100 [ 100 100 | 100 81 | 100 100 | 100 100
14 66 73 | 100 100 ;100 100 {100 71 | 100 B8O | 6¢ 100 | 66 100
15 skip 100 |{skip 73 |skip 77 |skip 76 |skip 100 |skip 100 | skip 100
16 skip 73 [skip 74 |skip 78 |skip 45 |skip 100 | skip 100 | skip 74
17 skip 100 |skip 73 |skip 77 |[skip 100 | skip 100 | skip 100 | skip 100
18 skip 100 {skip 100 | skip 100 |skip 74 |skip 100 i skip 100 | skip 100
18 skip 100 |{skip 52 |skip 73 |skip 74 |skip 100 jskip 69 |[skip 100
20 100 77 73 79 [ 100 72 74 100 | 70 100 | 100 100 | 85 74
21 84 73 53 47 [ 100 51 47 55 | 100 50 57 55 74 75
22 0.52 0.02 0.29 0.38 0.18 0.02 0.14
23 Fail Fail Fail Fail Pass Pass Pass
24 5 8 5 6 4 5 4 5 6 3 3 2 4 3
25 | 334 4841255 402272 4221321 450|308 2081262 243|256 217

Table 2.16: E’andom number test results for the rule 30 and 45 hybrid with various
time spacing values, B.
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N | Cycles ‘ Frac. longest
4 1x7, 1x1 0.94
5 1x4 1.00
6 | 1x14 1.00
7 1x13, 1x8, 1x1 0.94
8 1x35, 1x30, 1x8, 1x1 0.34
9 1x15 1.00
10 | 1x335, 1x45, 1x16, 1x13 0.93
11 | 1x27, 1x22, 1x14, 1x1 0.97
12 | %311, 1x111, 1x101, 3x12, 1x5, 1x1 0.53
13 | 1x281, 1x263, 1x231, 1x15 0.71
14 | 1x543, 1x100, 1x61, 1x32, 1x16, 1x5 0.68
15 | 1x1211, 1x993, 1x15, 1x1 0.77
16 | 1x4962, 1x1080, 1x1060, 1x10, 1x8, 1x1 0.67
17 | 1x6183, 1x1147, 1x98, 1x19, 1x10 0.56
18 | 1x4454, 1x4174, 1x1318, 1x644, 1x80, 1x56, 1x14, 1x7, 1x5 0.08
19 | 1x4834, 1x4795, 1x21586, 1x2042, 1x1755, 1x544, 1x235, 1x140, 1x50,

1x22, 1x18, 1x7, 1x6, 1x1 0.07
20 | 1x11413, 1x3309, 1x1723, 1x1331, 1x1246, 1x270, 1x57, 1x48, 1x5, 1x1 0.03

Table 2.17: Cycles lengihs for various size rule 30 and 45 hybrids and the fraction of
all states leading to the longest cycle.

number tests is given. Table 2.15 shows that despite the good randomness properties
at small site spacings the randomness of the rule 30 and 45 hybrid based PRNG does
not rapidly improve with site spacing. Unlike the rule 90 and 150 hybrid, the use of
time spacing yields improvements in the randomness of the pseudorandom sequences
as evidenced in Table 2.16, but as with site spacing, the improvement is very slow. An
important point to note is that when no site, or time, spacing is used the performance
of the rule 30 and 45 hybrid based PRNG is better than that of the CA rule 30 or 45
based PRNGs.

If we consider the cycle lengths of this hybrid, given in Table 2.17 and the plot of
Fig. 2.46, a similar difficuity as with the CA rule 45 arises (i.e. no one dominant long
cycle and a lower percentage of states leading to the longest cycle). However, the
length of the longest cycle is now comparable to that produced by CA rule 30, so the
cycle length properties of this hybrid consist of the poor qualities of its two constituent
~ rules. This compares to the rule 90 and 150 hybrid where one maximal length cycle is
used. However, the rule 30 and 45 hybrid possesses one very unique property over all
the cellular automata discussed thus far in that the zero state is not a one or two
cycle. For example, consider Fig. 2.47 where the rule 30 and 45 hybrid was initialised
with a zero state. Notice that what was previously termed the induced secondary start-
ing point now acts as a primary starting point and eventually leads to random
behaviour even though the evolution is only to the right.

fn compéring the two hybrids we see that nearly equivalent randomness can be
shown on the basis of the random number tests. However, the bit sequence correla-
tion is much higher in the rule 30 and 45 hybrid in addition to possessing smaller
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Figure 2.46 : Cycle length versus probability of entering a cycle of that length for
various rule 30 and 45 hybrids with cyclic boundary conditions. See ap-
pendix B for complete tables.

cycles and slightly larger area for implementation. Therefore, the rule 90 and 150
hybrid is presently considered to be the hybrid of choice except in cases where the
ability of the rule 30 and 45 hybrid to include the zero state in a long cycle outweighs
these considerations.

2.4.7. More Complicated Cellutar Automata

In the previous sections we have considered only one-dimensional elementary
cellular automata and elementary hybrids. The purpose of this section is to give a brief
introduction to more complicated cellular automata so that the reader may appreciate
their potential for applications other than those discussed in this work.

The first added complication will be to consider simple linear arrays, as before,
except that the value emanating from each site is no longer restricted to modulo 2 (i.e.
binary) values but rather, can have k possible values. In this case the number of
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Flgure 2.47 .. 800 time steps in the state - time diagram of a 500 site rule 30 and 45
hybrid. Cyclic boundary conditions; zero initial state.
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possible CA rules, and thus the number of different cellular automata of type modulo
k, increases to

kK (2.40)

for nearest neighbour cellular automata. Obviously this number increases very rapidly
with k. For k = 3 there are 3%° = 10° possible rules and for k = 4, 4%* = 10754, This
large number of possibilities indicates the potential of cellular automata and also one
of its main weaknesses. That is, there are limitless possibilities for CA implementations
but, at the same time, it requires more than the fife time of the universe to investigate
all the possibilities. In this work modulo k > 2 cellular automata are not considered but
the reader should be aware of their existence. It is possible that this form of CA may
have applications in some of the computational physics problems considered in
Chapter 3.

As yet, we have only considered cellular automata where each site is solely a
function of itself and the left and right neighbours, i.e.

ai(t+1) = [ as(t) . aift) , () | @)
We can define a more general one-dimensional neighbourhood as
ai(t+1) = ¢ [ai—r(t)s 8ip-a(t)y, - alt) -, ai+r(t)] . (2.42)

Therefore, we now consider r neighbours to the left and right or 2r + 1 neighbours in
ail. Now there are

Kk (2.43)

possible rules for modulo k cellular automata. For kK =2 and a neighbourhood of
r=2 we have 22 =4 x10° possible CA rules, if kK =3 this increases to
3% =8 x 1015, As before, the number of possible cellular automata becomes
effectively innumerable and so, impossible to thoroughly investigate. A problem that
occurs when the neighbourhood is increased is greater wiring overhead. This would
probably not be a problem for r = 2 neighbourhoods but for larger neighbourhoods the
area penalty could start to become significant. It is possible that the increased inter-
dependence of this type of CA could lead to better pseudorandom number generation
since one would expect bit sequence correlations to be reduced by the larger neigh-
bour set. Some preliminary investigations were carried out by the author but no dis-
tinctly better PRNGs were found. However, a thorough search was not carried out and
it is certainly possible that a noticeably better CA-based PRNGs over those with a
neighbourhood of r = 1 exist.

A final complication concerns the addition of more than one dimension. For
example, a two-dimensional grid, such as that of Fig. 2.1, could be easily fashioned.
The general problem of two-dimensional cellular automata has not been as thoroughly
studied as that of one-dimensional cellular automata although some particular two-
dimensional cellular automata, such as the so called game of Life [Berlekamp 1982,

[Gardner1971] have had their evolutions very thoroughly studied. There are two main
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neighbourhoods for two-dimensional cellular automata. One consists of a five-
neighbour square where top, bottom, left, and right neighbours are used. The other
consists of a ning-neighbour square where the top left and right and bottom left and
right squares are added to the previous neighbourhood [Packard1985b]. These two
neighbourhoods are often referred to as the von Neumann and Moore neighbour-
hoods, respectively. It is also possible to define hexagonal and triangular lattices as
the neighbourhood but these have been even less extensively investigated than the
square von Neumann and Moore neighbourhoods. The number of possible two-
dimensional cellular automata is, in general,

KK (2.44)

where r is the number of sites in the neighbourhood (remember to include a site as its
own neighbour) and k is the modulus. It can be seen that even for the small von Neu-
mann neighbourhood the number of possible CA rules becomes prohibitively large for
a thorough investigation (= 4 x 109). As for the one-dimensional cellular automata, no
direct mathematical techniques exist and so, two-dimensional cellular automata can
only be studied by observing their evolution over time. This can take a prohibitively
long time. In [Packard1985b] a special purpose CA simulation engine [Toffoli1984],
[Toffoli1987] is used to make an initial study of two-dimensional cellular automata.
Packard's study of two-dimensional cellular automata has shown that there is a
correspondence between the four global classes of behaviour in the one-dimensional
case and global behaviour in the two-dimensional case. This means that the results of
[Packard1985b] indicate that there exists in two-dimensional cellular automata the
equivalent of one-dimensional class 3 behaviour. These are important results, for if
such two-dimensional cellular automata exist, then it may be possible to find a two-
dimensional cellular autmaton which could be imbedded in the mesh layouts under
consideration. This could avoid some of the problems found in imbedding one-
dimensional ceflular automata into the mesh architecture. However, much remains to
be investigated before such two-dimensional cellular automata could be proposed.

2.5. SOME CONCLUSIONS

The random number test results of some of the various generators discussed in
this chapter are summarised in Table 2.18. Here only CA rule 30 and the rule 90 and
150 hybrid are considered since the behaviour of the other CA-based PRNGs have
similar or worse randomness characteristics. As expected, the algorithmic generators
produce sequences which pass the given random number tests and yield an evenly
weighted average failure of about 1.1 to 1.5 and a worst case performance of 4.0 to
7.0. The serial-in/parallel-out LFSR-based PRNG produces sequences which provide
comparable pseudorandomness. As stated previously, the parallel LFSR produces
sequences which are woefully inadequate as pseudorandom sequences. What is
surprising is the performance of the CA rule 30 based PRNG with v = 0. This genera-
tor, while certainly not as random as the algorithmic PRNGs, provides sequences
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which do not consistently perform poorly on any one given test. This indicates that the
sequences may be useful in some applications where only a fairly random sequence is
required rather than a completely random sequence. Remember that the rule 30 and
45 hybrid yields better performance if no site spacing is used. CA rule 30 with y = 4
and the rule 90 and 150 hybrid with ¥ =1 give comparable results to the algorithmic
PRNGs and so, we can consider the sequences produced by these generators to be
pseudorandom. Previously it was stated that from the tables we are 75% confident that
less than 10% of the sequences produced by the PRNGs under consideration here
produce nonpseudorandom sequences. To further increase this confidence it is essen-
tial that we run a large number of sequences through the random number tests. This
was done for CA rule 30 with y = 4 and the rule 90 and 150 hybrid with y = 1 so that,
using the analysis of Appendix A, we are 97.5% confident that less than 1% of the
sequences produced will not be pseudorandom.

Another measure to use in comparing PRNGs is the area used per bit of pseu-
dorandom number as given in Table 2.19. Notice that of the good generators the smal-
lest area per bit measure is given by the y= 1 rule 90 and 150 hybrid. This table indi-
cates that this is the optimal structure. However, as mentioned previously, care should
be exercised’in its use since structures of this type have only recently been proposed
and are still being fully investigated. The next smallest area per bit measure of a good
CA-based generator is achieved by CA rule 30 with y= 4. The only other pseudoran-
dom number generation techniques which provide comparable area per bit measures
to the cellular automata based generators are those using the LFSR. We can immedi-
ately rule out the parallel LFSR technique with no wait states since it produces decid-
edly nonrandom sequences. However, the quality of randomness from both the serial-
in/parallel-out method and the parallel LFSR with B = nn is similar to that of the CA-
based PRNGs. The serial-in/parallel-out method consumes only slightly more area
than the rule 90 and 150 hybrid with v =1 but it does not possess the same layout
advantages as the rule 90 and 150 hybrid. This is because the LFSR cannot be laid
out in a regular fashion since the feedback taps are register length dependent. This
causes problems as the length of the LFSR is changed to reflect changes in the archi-
tecture. In addition, the layout must provide for the irregular placement of the
exclusive-or gates in the LFSR. Finally, the LFSR requires global communication since
a feedback path exists between the beginning and the end of the LFSR. Therefore, the
rule 90 and 150 hybrid with ¥ = 1 and CA rule 30 with y = 4 based PRNGs should be
preferred over the serial-in/parallel-out LFSR based PRNG.

The parallel LFSR with B = n uses about a quarter of the area of the rule 90 and
150 hybrid with y = 1, but possesses the layout problems of the LFSR. More impor-
tantly, pseudorandom numbers appear only every n clock cycles giving them a very
poor time performance in comparison to the CA-based PRNGs. For example, if the
word size of the pseudorandom numbers is 30 bits then the parallel LFSR with B=n
will use a factor of 30 more time to generate each pseudorandom number. Therefore,
the AT measure of the parallel LFSR with B = nn is much worse than the CA-based
generators if the word size is appreciable. It can be shown that equivalent AT metrics
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Sequence length 1,000
Box Mult Addliive Sertal-n Parallel Rule 30 Rule 30 Hybrid
Test Muller Cong Feadback | Parallel-out LFSR CAy=0 | CAy=4 | CAy=1
med 10 100 | 10 100 | 10 100 | 256 8 10 100/ 10 100 10 100 | 10 100
1 93 97 | 9 86 | 93 91 100 78 78 100 | 100 100 | 100 100 {. 57 76
2 8¢ 89|93 94 | 94 86 106 76 0 ¢ (100 72 |100 71 [ 100 100
3 88 skip | 93 skip | 94 skip | 100 skip| O skip | 74 skip | 100 skip | 100 skip
4 86 skip| 90 skip| 88 skip| 100 skip| O skip | 100 skip { 81 skip | 81 skip
5 g5 93 | 97 93 | 93 95 70 100 | 100 100 ] 72 100 [ 100 100 | 57 100
8 86 93 [ 94 96 94 95 100 75 | 22 45 1100 100 [ 100 100 | 100 100
7 a3 97 | 93 96 | 95 98 100 100 | 33 78 | 100 100 | 38 100 | 100 100
8 96 988 { 95 100 | 91 96 79 100 | 67 22 {100 100 | 100 100 | 100 100
9 94 98 g4 97 1 99 096 100 100 { 100 78 {100 100 | 100 100 | 100 100
10 93 97 | 94 93 | 97 96 75 100 | 67 22 | 72 100|100 100|100 77
1 97 99 | 98 96 | 95 99 100 100 | 87 22 | 100 100 | 100 100 | 100 100
i2 92 skip | 92 skip| 93 skip} 100 skip | 77  skip | 100 skip | 100 skip | 81 skip
13 98 99 [ 98 99 98 97 100 100 | 100 45 [ 100 100 | 100 100 | 100 100
14 95 94 | 94 92 | 97 98 100 100 | 78 33 [100 100 | 100 100 | 100 100
15 skip 89 |skip 92 [skip 90 | skip 70 [skip 22 |skp 100 skip 100 [ skip 100
16 skip 88 |skip 90 [skip 93 | skip 79 |skip 22 |skip 100 skip 100 { skip 100
17 skip 91 |skip 81 |skip 98 | skip 00 |[skip © [skip 100 skip 100 | skip 100
18 skip 94 |skip 94 |skip 91 skip 100 | skip 67 |skip 100 | skip 100 | skip 100
19 skip 94 |skip 91 |skip 91 skip 100 [ skip 55 |skip 100 | skip 100 | skip 100
20 94 895 | 83 93 | 88 81 79 76 | 22 55 [100 72 [ 100 100 | 23 100
21 7 68 | 78 65| 70 70 70 3| 0 0 26 74 | 81 81 | 53 i00
22 0.08 0.09 0.12 0.05 1.0 0.50 0.07 0.05
23 Pass Pass Pass Pass Fail Fail Pass Fail
24 5 ] 7 5 8 5 2 4 11 16 5 4 2 1 <] 2
25 125 129 (117 142/[12f 141} 127 218|989 123|356 282|100 048|348 147
Sequence length 10,000
Box Muit Addltive Serlel-in Parallel Rule 30 Rule 30 Hybrid
Test Muller Cong Feedback | Paraliel-out LFSR CAvy=0 | CAy=4 | CAy=1
mod 10 100 ] 10 00| 10 100 | 256 8 0 100} 10 100 | 10 100 | 10 100
1 6 93 96 85 | 90 ot 100 75 [ 100 100 | 81 81 | 100 80 | 100 100
2 97 85 89 63 | 93 95 100 160 ] 0O 0 81 0 50 100 [ 100 100
3 94 skip [ 82 skip | 90 skip | 100 skip| 0 skip | 48 skip | 100 skip | 100  skip
4 91 skip{ 97 skip | B9 skip| 100 skip| O skip | 100 skip | 100 skip | 100 skip
5 96 93 | 97 93 {93 94 100 100 [ 100 100 | 100 100 | 100 100 | 100 100
6 95 97 | 96 97 | 96 @98 100 74 0 o 100 100 [ 100 100 | 100 100
7 91 99 | 96 98 a1 o8 100 100 O 0 1060 100 | 80 100 | 100 100
8 93 96 | 98 97 | 92 92 100 74 0 0 71 100 {100 70 | 100 82
9 91 96 | 96 98 | 93 100| 100 100] O 0 100 100 | 100 100 | 100 100
10 99 g2 | 93 95 | 95 97 100 100 O 0 81 81 | 100 100 { 100 100
1 91 98 96 98 | 97 98 100 100 | O 0 100 79 | 100 100 | 100 100
12 93 skip [ 90 skip | 96 skip | 100 skip | 100 skip | 79 skip | 100 skip | 76 skip
13 99 94 98 99 93 95 78 74 {100 100 | 100 100 { 80 100 | 100 100
14 a5 95 | 96 95 91 93 100 160 © 0 100 71 {1100 100 | 100 100
15 skip 87 |[skip 86 |[skip 91 skip 74 [skip O |[skip 81 |skip 100 [skip 100
16 skip 90 {skip 90 |skip 95 | skip 100 {skip O |skip 100 skip 100 | skip 100
17 skip 87 |skip 88 |skip 83 | skip 73 |skip © |skip 100 skip 100 | skip 100
18 skip 89 |skip 88 |skip 89 | skip 75 [skip O |[skip 100 skip 80 |[skip 100
19 skip 88 |skip 92 {skip 88 | skip 100 |skip O |skip 100 |skip 75 skip 100
20 94 89 | 93 91 | 92 88 100 100 © 0 79 50 | 100 80 | 100 75
21 67 74 | 67 66 | 63 68 73 78 0 0 0 60 | 25 80 | B2 72
22 0.03 0.03 0.03 0.05 1.0 0.50 0.07 0.05
23 Pass Pass Pass Pass Fail Fail Pass Fail
24 4 5 5 4 5 7 1 4 14 16 8 7 3 4 2 2
25 118 158 [1.10 1.41(146 1.44| 049 203|140 16.0 (480 497 (165 135]|1.42 1.70

Table 2.18: Various pseudorandom number generators and their test results
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Generator Area per bit? | Quallty of Randomness
Box Muller N/A Good?
Multiplicative Congruential 745 Good?
Additive Feedback 436 Good?
Serial-in Parallel-out LFSR 75 Good?
Parallel LFSR 15 Poor?
CARule 30 y=0 36 Fair®
CA Rule 30 v = 4 180 Good?
CARule45y=0 43 Fair®
Rule 90 and 150 Hybrid y = 0 33 Fair®
Rule 90 and 150 Hybrid y = 1 66 Good®
Rule 30 and 45 Hybrid y = 0 40 Fair®

2in 10% um2.

b Totally inadequate randomness properties due to correlation.
€ Good for use in some applications.

9 Good for use in all applications.

Table 2.19: Area used per PRNG bit by various pseudorandom number generators.

for the parallel LFSR with B = n, and for the rule 90 and 150 hybrid with y = 1, are
achieved at a word size of 5 bits, and for CA rule 30 with v = 4, at a word size of 13
bits. The final choice of which PRNG to use is dependent on the possible size of the
PRNG and the importance of the time delay between pseudorandom numbers. For
the fine-grained processor architectures proposed in this work it would appear that
CA-based PRNGs are preferable because of layout, time delay, and quality of random
numbers.

A final consideration lies in the cycle length of the sequences produced by the
PRNG. Algorithmic generators, such as the R250 additive feedback PRNG, have very
large cycle lengths (2250) since it is assumed that necessary resources, such as data
memory, are available. However, we have shown that the overhead of supplying
these resources is too great for use in the architectures considered here. Therefore,
our choices are again reduced to considering only the CA and LFSR-based PRNGs. If
we consider CA rule 30 then the cycle lengths of the LFSR-based generators is much
greater (2N versus 26Ny which means that a longer CA rule 30 based PRNG is
required (1/ 0.6 = 1.6 times longer) to achieve similar cycle length. This is a major
deterrent to using CA rule 30 based PRNGs. However, the cycle length of CA rule 45
and the rule 90 and 150 hybrid is similar to that of the LFSR. Note that for applications
which require word sizes of 2 30 bits and good quality randomness (i.e. site spacing),
if a CA rule 30 based PRNG is used the site spacing requirement will force us to use
a cellular automaton which is at least 120 bits long and so we will have a cycle length
of 272 which should be long enough for most applications. Therefore, cycle length is
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not a great concern when using CA-based PRNGs since sufficient cycle length for
most applications can be easily obtained.
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Chapter 3
Parallel Architectures for
Statistical Mechanics

3.1. INTRODUCTION

The emergence of special-purpose computers which exploit the properties of
very-large-scale integration (VLS!) as an implementation medium has been most obvi-
ous in digital signal processing applications [Denyer1985], [Kung1985]. Among the
most successful approaches are the so-called systolic arrays, which recognise the
importance of local communications and high degrees of concurrency [Kung1980].
Systolic arrays have primarily been employed in the implementation of deterministic
algorithms which take the form of matrix-vector or matrix-matrix multiplications (1-D or
2-D systolic arrays respectively). These arrays are a special case of cellular automata
[Wolfram1983], [Burks1970], [Codd1968] in which the nodes are of intermediate com-
plexity between fine-grained cellular automata and microprocessor arrays [Seitz1984].

In this chapter, we will also employ cellular automata arrays, but the focus is
upon nondeterministic algorithms, specifically those commonly used in statistical
mechanics. One of the important ingredients in this approach is the efficient implemen-
tation of distributed pseudorandom number generation over the array. In this approach
we will use the concepts developed in Chapter 2 based on the recent discovery that
effectively random behaviour may be induced in elementary or primitive one-
dimensional (1-D) cellular automata arrays even though the local logical rules are
deterministic [Wolfram1984a], [Wolfram1986a].

In this chapter novel architectures for two common statistical mechanical models,
(percolation and Ising) will be proposed. These models can be adapted to solve a
number of parallel nondeterministic problems, employing algorithms such as parallel
Monte Carlo simulations [Wallqvist1987], simulated annealing, both serial [Kirkpa-
trick1983] [Vecchi1983] and parallel [Darema1987a] [Darema1987b], and phase transi-
tion problems [Stanley1971].

3.2. THE PERCOLATION MODEL

The percolation model was first formally defined and studied in [Broadbenti1957),
although it had been previously studied for many years under different names. The
subject was first reviewed by [Frisch1963]. Since then a number of review articles
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have appeared studying various aspects of the percolation model. [Shante1971] stu-
died the general percolation problem and related percolation to several different physi-
cal processes. [Essam1972] studied the combinatorial aspects of the problem as well
as the behaviour near the percolation threshold and [Kirkpatrick1973] studied the rela-
tionship between percolation theory and electrical transport in random resistor net-
works.

The fundamental ideas behind percolation theory are actually quite simple. Here
we will use a typical explanation such as that in [Thouless1978]. Consider an infinite
solid with a random distribution of equal sized holes. Let the presence of a hole in the
solid be governed by a probability, p. Therefore, we expect the density of holes to be
equal to p. For small values of p most holes will be isolated, with only a few holes
combining to form a cluster of holes. As P is increased the number of clusters and
their size grows. This continues until at some value of P an infinite cluster is formed.
At this value of p, usually termed the critical probability or percolation threshold, p,, a
path is suddenly formed between opposite faces of the solid. It is now possible for a
liquid to percolate throughout the solid from one side to another. If p is still further
increased the solid will eventually no longer be connected to itself and will fall into
pieces. An example is shown in Fig. 3.1 for a square two-dimensional lattice. In
Fig. 3.1(a) we see that for p <« Pc the holes are isolated with only a few small clus-
ters; for p < p, (Fig. 3.1(b)) the number and size of the clusters has grown but still no
path exists from top to bottom or left to right. However, when p > P (Fig. 3.1(c)) a
path exists from top to bottom suggesting that, in an infinite lattice, an infinite cluster
has been formed. Note that some smaller finite clusters still exist. For p » Pe
(Fig. 3.1(d)) the material consists almost solely of holes and has been broken up into a
number of smaller pieces.

Formally, the critical probability is defined as the largest value of p for which the
probability of forming an infinite cluster is zero. This only applies to an infinite lattice.
Above we considered site percolation since p governed the existence of a hole in the
lattice. it is also possible to consider bond percolation where we assign p to govern
the existence of a bond between various holes, or sites, in the lattice. Another com-
mon version of the percolation mode! is site-bond percolation where p and g govern
the probability of a site or bond respectively. The value of p, is dependent on the lat-
tice type and dimension. There is also a weak dependence of p.’, the site probability
for a percolation probability of 1/2 on a finite lattice, upon the lattice size. In Fig. 3.2
we see a plot of the probability of percolation versus site probability for various size
square lattices. A table showing values of Pc for various infinite, or at least very large,
lattices for both site and bond percolation is given in Table 3.1.

A natural question which might arise at this point is, that while there is a certain
abstract beauty of the percolation model, what is the practical significance of this
model. In fact, percolation is a very important mode! since it is applicable to a wide
variety of physical phenomena. The most important property of the percolation modei
lies in the sharp phase transition from finite to infinite cluster which occurs with
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Two-aimensional illustration of percolation on a 100 x 100 square lat-
tice, p, = 0.5928. Solid shown in black, holes shown in grey, the larg-
est cluster of holes is highlighted in white. (a) p = 0.25. (b) p = 0.585.

(c) p = 0.60. (d) p = 0.75.
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Figure 3.2 :  Probability of percolation, P’(p,L) versus site probability, p, for vari-
ous lattice sizes. Data points are 2x2 (empty boxes, 10000 trials per
point), 4x4 (filled boxes, 10000 trials per point), 8x8 (empty circles,
10000 trials per point), 16x16 (filled circles, 10000 trials per point),
32x32 (emply diamonds, 10000 trials per point), 64x64 (filled dia-
monds, 5000 trials per point), 128x128 (empty up triangles, 5000 trials
per point), 256x256 (filled up triangles, 2000 trials per point), 512x512
(empty down triangles, 500 trials per point), 1024x1024 (filled down tri-
angles, 100 trials per point), approximation to infinite lattice ( crosses ).

increasing p. This property makes it possible to use the percolation model as an illus-
trative tool to help explain a number of phase transition phenomena such as those
shown in Table 3.2,

In the study of phase transitions or critical phenomena, the use of critical
exponents has been most helpful in describing the behaviour at the critical point.
Therefore, if we are to use the percolation model to describe other phase transition
phenomena we must first extract the critical exponents for its own behaviour. The main
technique of finding the critical exponents is via computer simulation, although for cer-
tain lattices and dimensions, exact results are known. Here we will temporarily restrict
ourselves to site percolation on two-dimensional square lattice problems. Note that
critical exponents generally depend only upon the dimension of the system, or lattice,
under study and not on the particular lattice being used [Stanley1971].
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Lattice Site Bond Dimension
Honeycomb 0.6962 0.65271 2
Square 0.59275  0.50000 2
Triangular 0.50000 0.34729 2
Diamond 0.428 0.388 3
Simple Cubic 0.3117 0.2492 3
Body Centered Cubic  0.245 0.1785 3
Face Centered Cubic  0.198 0.119 3

Table 3.1: Percolation thresholds for various two and three-dimensional lattices.
Taken from [Stauffer1985]

Phenomena or System Transition
Flow of liquid in porous medium Local/extended wetting
Spread of disease in a population Containment/epidemic
Communication or resistor networks Disconnected/connected
Conductor-insulator composite materials Normal/superconducting
Discontinuous metal films Insulator//metal
Stochastic star formation in spiral galaxies Nonpropagation/propagation
Quarks in nuclear matter Confinement/nonconfinement
Thin helium films on surfaces Normal/superfluid
Metal-atom dispersions in insulators Insutator/metal
Dilute magnets Para/ferromagnet
Polymer gelation, vulcanization Liguid/gel
The glass transition liquid/glass
Mobility edge in amorphous semiconductors Localized/extended states
Variable-range hopping in amorphous semiconductors  Resistor-network analog

Table 3.2: Some applications of the percolation model. After {Zallen1983]

3.2.1. Finding the critical exponents

Before one can find the critical exponents of any phase transition phenomena,
one must first establish the critical point; for the percolation model this is the value of
the percolation threshold, p,. In addition one must also settle on a means of analysis.
Here we will use computer simulation since the objective of this chapter is to describe
computer architectures which will speed up such simulations. All results shown in this
section are from actual simulations performed on a SUN3-160 engineering workstation
using an additive feedback pseudorandom number generator like that described in
Chapter 2. Later, results will be shown which are derived from the proposed architec-
tures. The percolation model is easy to simulate since one merely assigns each site in
the lattice as occupied, or ununoccupied, with probability, p, and then performs the
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Flgure 3.3 : Size of S(L) at p, versus L.

desired measurement (e.g. size of largest cluster, is there a spanning cluster?, etc... ).
Many of the two-dimensional problems discussed here have exact analytic solutions
[Essam1978] but are nevertheless employed in percolation simulations since they are
the easiest to understand. One should also note that many percolation problems, when
considered in a higher dimensionality than two can only be analysed via computer
simulation. We now proceed to show how three of the six common critical exponents
for the percolation model can be found. The solution techniques are taken from [Kirk-
patrick1978] and [Sur1976].

The percolation threshold, using the computer simulations described above, was
found to be 0.5916 + 0.0022. This is very close to other published values of 0.5928
[Stauffer1985].

The first critical exponent we will find describes the rate of growth of the largest
cluster formed at p = p, as a function of lattice size. This is known as scaling theory.
Here we define S(L) to be the size of the largest cluster at the percolation threshold
as a function of lattice size, L.31 Note that since we can simulate only finite lattices
the percolation threshold, p,’, is different from our reference point P for the infinite
lattice. [Margolina1983] has shown that S(L) ~L Y% Therefore, if we plot log S(L)

31 Here L denotes the length in one dimension,of the lattice, i.e. the number
of sites in a two-dimensional lattice of size L, is L=.
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versus log L as in Fig. 3.3 then 1/o is the slope. It is known from an exact solution of
scaling theory that 1/o = 91/48 ~ 1.89 [Stauffer1985]. Simulations on the SUN3-160
yielded a value of 1/a = 1.798 + 0.093.
~ The second critical exponent is more difficult to find. Recall that P’(p,L} is the
probability that percolation has occurred in a lattice of size L with a site probability of
p. A plot of P(p,L) versus p was shown earlier in Fig. 3.2. We then use the scaling
relation due to [Reynolds1978] which shows that
dP’(p,L RV
dp '

Finally, we plot g%‘;—’u- versus L on a log-log plot as in Fig. 3.4 and extract the

(3.1)

value of v from the inverse of the slope. The simulations performed here determined
that v =1.439+£0.015 as compared to the generally accepted value of 1.355
[Klein1978].
The last critical exponent which we will find concerns the percentage of sites in
the largest cluster as a function of p. Define
number of sites in largest cluster
number of sites in the sample

Rp.L)= (3.2)
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In Fig. 3.5 we show R(p,L) versus p for various lattice sizes. Notice that as the lat-
tice size, L, increases the transition near p, becomes more abrupt. The transition is
rounded because of finite sampling effects. Here we use the rounding due to finite lat-
tice size to extract the final critical exponent. A scaling relation due to [Fisher1971]
states that

Pe

Rip,L)~ L Xx, {L‘Nf:—EC—J . (3.3)

where, X, is an appropriate scaling function of L”"(p—-pc)/pc. Therefore, if we plot
R(p.L) LPY versus Xy(L™(p-p,)ip,) for various values of L, the value of B wil
correspond to the best fit of the curves near the percolation threshold. In Fig. 3.6 a
least squares fit 32 1o the curves of Fig. 3.5 yields a value of B = 0.144 as compared
to the accepted value of 0.14 [Zallen1983].

Other common quantities in the percolation model for which critical exponents
are often calculated are site correlation or spanning length (the maximum separation of

32 Note that the curves are fit on a finite range of p surrounding the percola-
tion threshold. Regions outside this area are not included in the curve fitting
process.

100



Chapter 3 Parallel Architectures for Statistical Mechanics

209 -
1.88 -
167 4
1,46 4

1.25 &

LB/V

3 104+
o 0844
063 4
0.42 4

0.21 4

) T H i T
-169.77 -141.13 -11249 -8385 5621 -28658 2.06 30.70 59.34 87.98 116.61

Llfv(p_%)/e:
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two sites in a cluster), pair connectedness (the probability that two sites separated by
a given distance are members of the same cluster), and the conductivity (the conduc-
tance across a corresponding random resistor network). Here we have not considered
these other quantities, but the three quantities which we do study are representative of
the calculations which must be carried out in order to study the percolation model. It is
not expected that any uncalculated critical exponent will deviate further from its known,
or expected, value than those critical exponents which are calculated in this work.

3.2.2. Proposed Percolation Architecture

The computational work in any percolation simulation on a typical serial computer
consists of the actual generation of the percolation lattice with site probability p and
the calculation of the appropriate quantity of interest. To simulate percolation on a lat-
tice we must generate a pseudorandom number, for each site with a given p, and
occupy the site accordingly. This operation is repeated over the entire N = L2 sites of
the lattice. Therefore, we require at least O(N) time to generate a single copy of the
lattice. For the three critical exponents above we must calculate the probability of per-
colation and the size of the largest cluster at any probability p. To calculate whether
the lattice has a percolating cluster and the size of the largest cluster requires no more
than O(Nz) time using the Hoshen and Kopelman cluster labelling algorithm
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[Hoshen1976].

An obvious question to ask is which aspects of the percolation mode! simulation
can be accomplished in parallel. While the portions of the algorithm which can be
parallelised are fairly obvious32 the best method to implement such a parallel com-
puter is not. We note that the larger the lattice which can be simulated the greater the
interest in the simulation. The largest simulation which has presently been carried out
used a 160,000 x 160,000 square lattice [Rapaport1985].

The remaining problem is the calculation of the critical exponents. It is possible to
build a special purpose computer which can both simulate the system and calculate
the critical exponents for the percolation model. However, this is not necessarily the
most expedient solution. The disadvantages of such an approach stem from the fact
that the actual calculation of the critical exponents requires data memory and floating
point calculations. However, it is well understood by anyone who has attempted to
simulate the percolation model that very little time is actually spent calculating the
desired exponents. Most of the computer time is used in generating new lattice
configurations and grouping the occupied sites into clusters. Furthermore, operations
using the clusters are generally very rapid given that site clustering has already
occurred. Therefore, little is to be gained by building a computer dedicated solely to
the calculation of critical exponents. Much can however be gained by building a device
which can generate new lattices and form clusters quickly. This device would act as a
special purpose coprocessor to a general purpose host computer and because of the
nature of its specialised task could be made to operate very efficiently. Therefore, we
will consider an implementation where a host computer will determine the actual criti-
cal exponents and do operations on clusters generated by a special purpose percola-
tion coprocessor.

In order to speed the percolation simulation the architecture of Fig 3.7 is pro-
posed. Each processor consists simply of a pseudorandom number generator
(PRNG), comparator, and storage element, or site latch. Here we use the CA rule 30
based PRNG discussed in Chapter 2 with the CA-based PRNG connected so that it
forms a long one-dimensional chain over the entire system. The site probability, p, is
made available to each comparator by a system bus and the pseudorandom number
from the PRNG is compared to it. Finally, the site latch is turned high ( > p) or
low ( < p) accordingly. Each site in the lattice is assigned a unique processor. There-
fore, after each clock cycle we have defined a new percolation lattice, as compared to
at least O(N) time for a serial updating technique. In addition, the time for a single
clock cycle is quite small (< 50nsec.). Each simulation step on the serial computer is
comparatively large (= Susec.) for a single site. In addition of course, to update the
entire lattice the serial method must be applied N times; the present approach only
once. The overall speed improvement is approximately 100N. It should be noted that
the size of the. lattice which can be simulated is restricted by the number of processing

33 Occupying sites based on the site probability.

102



Chapter 3 Parallel Architectures for Statistical Mechanics

o o el o
° o o o
o o o o
000 =3 > < o0
N
coo > >y, & o000
000 3 — oo00
000 —> < 000
o o o )
o o o
o ) o

Comparator PRNG

probability

site N 4
—1 N

site
latch

Figure 3.7 :  Basic percolation simulation architecture.

103



Chapter 3 Parallel Architectures for Statistical Mechanics

Figure 3.8 :  CMOS layout of 16 bit percolation site processor.

sites available which is in turn dependent on the size of each processor.

The regularity of processing sites in such a percolation processor makes it an
ideal candidate for VLS| implementation. The size of such a processor is directly
dependent on register size. However, we can make estimates based on a fixed reqis-
ter size and scale up or down as appropriate for different register sizes. A 16 bit site
processor is pictured in Fig. 3.8. The size of this processor is 0.838 mm? using the
technology described in Chapter 2. Therefore it is possible to have 25 such processors
simulating only a 5 x 5 lattice on a single 4.8 x 4.8 mm. die.3* It is possible to imple-
ment the site processors in such a way as to be able to combine chips to form larger
lattices. However, it is probably not realistic to consider employing a unique processor
for each site in the lattice, if lattices larger than 1000 x 1000 are to be simulated.
Therefore, we will restrict ourselves for the time being to lattices of L < 1000, i.e.
those which have a unique processor for each site in the lattice. Later we will return to
the problem of lattices larger than 1000 x 1000.

It is possible to use the proposed percolation architecture solely to dramatically
increase the speed of updating the lattice. However, if we could calculate the size of
the clusters and whether or not the largest cluster spans the lattice we would speed
the simulation even more dramatically. It is possible to quickly group the occupied
sites of the lattice into clusters if we superimpose the multiprocessor architecture of
Fig. 3.9 onto the architecture of Fig. 3.7. Here we assign each processor a unique
cluster number corresponding to its location in the lattice. For example, in Fig. 3.9 we
have assigned processors in the first row to have values 0 to L — 1, the second row
processors are assigned numbers L to 2L —~ 1, and so on. This percolation computer
operates as follows. First we utilise the underlying architecture of Fig. 3.7 to decide
which sites are occupied. Occupied sites take their assigned cluster value while

34 This technology (3 pm CMOS) available to us is not state of the art. Im-
plementation using much more advanced technology would dramatically in-
crease the number of site processors per chip. For example, on 1um technolo-
gy using a 10 x 10 mm die one could easily place over 1000 site pProcessors.
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Flgure 3.10 : Operation of percolation computer on an 8 x 8 square lattice; {a) 8x 8
square lattice with p =0.5313. (b) initialised Iattice with cluster
number assignment. (c¢) cluster numbers after one update. (d) final
cluster numbering assignment.

unoccupied sites take on the value of o, or some other appropriately iarge number.
We then proceed to synchronously update all sites according to the following algo-
rithm. If a site is occupied, the next cluster value is selected as the lowest of its four
neighbouring cluster values (remember we are presently considering only square two-
dimensional lattices) and itself. For example, in Fig 3.10(a) we see an 8 x 8 lattice with
p =0.5313, Fig. 3.10(b) shows the same lattice initialised using the above cluster
numbering assignment and in Fig. 3.10{c) we see the cluster numbers one synchro-
nous update later. The synchronous updating procedure continues to take place until
all sites belonging to the same cluster have had their cluster numbers merged
together. The worst case time for this procedure would be L (L — 1)/2. The final clus-
ter numbering configuration for Fig. 3.10(a) is shown in Fig. 3.10(d).

Determining. whether or not the largest cluster is infinite is quite easy if we realise
that a spanning cluster must be present both at the top and bottom of the lattice.
Therefore, if any sites on the bottom of the lattice have a final cluster number less than
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L then we have a spanning cluster. Therefore, for a 1000 x 1000 lattice we can group
the occupied sites into clusters and determine if a spanning cluster exists in at most
500,000 update steps. Measurements of the circuit shown in Fig. 3.8 have shown the
operating speed to be at least 20 MHz. Thus, in about 25 milliseconds we can gen-
erate a 1000 x 1000 lattice, group the occupied sites into clusters, and determine if a
spanning cluster is present.

To determine the size of the largest cluster is a much more difficult problem.
However, it is possible for the host computer to offload the final cluster numbers from
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the percolation computer and count the number of sites in each cluster. This remains a
significant enhancement over serial computer simulation techniques since much of the
time is spent grouping occupied sites into clusters. Other calculations for quantities
such as pair connectedness and site correlation are also significantly faster since the
clusters have already been formed. Finally, we note that is also possible to place pro-
cessing elements which can perform cluster sizing calculations into the architecture.
However, such processing elements are considerably more complex, especially since
they require data memory, so they are not considered in this work,

3.2.3. Simulating Larger Lattices

As mentioned above we must presently restrict the lattice size to approximately
1000 x 1000 when considering an architecture where thers is a unique processor
corresponding to each lattice site. For larger lattices we can assign the processors of
the percolation computer to correspond to unique sites on each row, or rows, of the
lattice. Therefore, we now consider percolation problems on lattices up to 1,000,000 x
1,000,000 sites. To determine whether each site on a row of the lattice is occupied we
can use the same technique as discussed above with respect to Fig. 3.7. Grouping the
sites into clusters is not possible without keeping an entire history of the lattice. How-
ever, it is possible to dramatically assist the host computer. Here we use the scheme
of Fig. 3.11 which keeps a copy of the previous lattice row. As before, we assign a
unique cluster number to each site of the lattice. Note that we must assign different
numbers to each row. Each site processor now determines a new cluster number
based on the vaiue of its upper, right, and left neighbours. This process continues for
a maximum of L updates until all sites have been grouped into their respective clus-
ters. The cluster numbers are then offloaded into the host computer and another row is
determined and grouped into clusters. An example of this process is shown in
Fig. 3.12 which implements this technique on the lattice of Fig. 3.10. In Fig. 3.12(a) we
see the second row after it has been initialised. Figure 3.12(b) shows the second row
cluster numbers after ail sites have been grouped into clusters, Note that cluster
numbers 2 and 13 refer to the same cluster but the percolation computer cannot know
this yet since the merging of these two clusters occurs from the bottom up. This pro-
cess continues untii in Fig. 3.12(c) we see updating of row 5 where it is discovered
that clusters 2 and 13 are the same cluster. As this row is offloaded the host processor
must note that clusters 2 and 13 are the same cluster. Finally, we see in Fig. 3.12(d)
the full lattice as it would be received and stored by the host processor.

3.2.4. Simulation Results for the Percolation Computer

Simulations of the percolation computer were carried out and yielded the foliow-
ing results. The percolation threshold was found to be 0.5915 + 0.0023. The rate of
increase of “S(L) is shown in Fig. 3.13, from which we can see that
1/ = 1.809 + 0.096. The probability of percolation versus site probability using the
percolation computer is shown in Fig. 3.14. Figure 3.15 shows a log-log plot of

dep'Ll versus L, from which we can calculate that v = 1.434 + 0.030. Figure 3.16
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Figure 3.14 : Probability of percolation versus site probability for various lattice sizes
using the percolation computer. Data points are 2x2 (filled down trian-
gles, 10000 trials per point), 4x4 (empty down triangles, 10000 trials
per point), 8x8 (filled up triangles, 10000 trials per point), 16x16 (empty
up triangles, 10000 trials per point), 32x32 (filled diamonds, 10000 tri-
als per point), 64x64 (empty diamonds, 5000 trials per point), 128x128
(filled circles, 5000 trials per point), 256x256 (empty circles, 2000 trials
per point), 512x512 (filled boxes, 500 trials per point), 1024x1024
(empty boxes, 100 trials per point).

shows the the fraction of all occupied sites which are in the largest cluster versus site
probability. Using the scaling relation of Eqn. 3.3, the best fit is for B =0.145, as
shown in Fig. 3.17. The results are summarised in Table 3.3. There is a small
discrepancy between the results which have been calculated here and those which
have been published elsewhere. However, there is close agreement between the
results for the percolation computer and the standard percolation simufation using the
additive feedback PRNG. Therefore, we can conclude that the parallel percolation
computer yields the same critical exponents as a standard serial percolation simula-
tion. The discrepancies between the critical exponents calculated here and those pub-
lished elsewhere may be due to several factors such as smaller register size (here 16
bits was used) and a smaller number of samples. However, it is encouraging that per-
colation simulations using the proposed percolation computer and a standard serial
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Flgure 3.15 : Log-log plot of —dfé;LLl versus L using the percolation computer.

computer method yielded the same results.

In Chapter 2 it was indicated that site spacing could be used to improve the qual-
ity of a CA rule 30 based PRNG. Therefore, it would be natural to test the effects of
site spacing on the critical exponent values produced by the percolation computer.
Simulation shows that there is no appreciable change in critical exponent value if site
spacing is used. Thus, it would appear that it is possible to construct the percolation
computer without site spacing in the PRNG. No tests, other than very cursory ones,
were made using the other CA-based PRNGs discussed in Chapter 2.

It would be much more expensive in terms of both area and time to use any
PRNG other than the CA based ones. In addition, one can see that, because of the
vast number of PRNGs required, the topological regularity of the CA approach pro-
vides a very clear advantage. Finally we note that it has been found that standard
LFSR-based and some multiplicative congruential PRNGs are inadequate for Monte
Carlo simulations [Parisi1985] since they do not produce correct critical exponents. We
observe that the critical exponents calculated using the CA-based percolation com-
puter provided reasonably correct values.
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3.2.5. Using Renormalisation on the Percolation Computer

Extensions to the percolation architecture could include the use of renormalisation
group principles [Wilson1975] to extrapolate the infinite lattice critical exponents. The
basic concepts required to implement renormalisation as applied to percolation are
quite easy. Essentially we slowly integrate out small scale fluctuations and obtain infor-
mation on successively larger and larger scales. This is done by replacing a small
block of sites on the lattice with one site representing gross, or average, behaviour.
For example, in majority rule renormalisation, a block of 3 x 3 sites is represented by
one occupied site if the majority of sites are occupied and an unoccupied site if the
majority of sites are not occupied. This procedure is repeated many times progres-
sively reducing the lattice size by a factor of / for each renormalisation, where / is the
size of the block of sites being replaced by a single site. The result is that for p>05
the new py representing, the density on the renormalised lattice, moves quickly
towards a value of 1.0, while for p < 0.5 the new p, moves towards 0.0. However, for
p = 0.5 the new py will also equal 0.5. This critical value of p = 0.5 derives simply
from the majority renormalisation rule and is not associated with the critical percolation
value. The critical exponents are extracted from the rate at which the value of D4
moves towards 1.0 or 0.0. The problem here is that for many lattices simple majority
rule renormalisation is not adequate to extrapolate infinite lattice behaviour. In the
above example we saw that for p > 0.5 the value of P4 moved quickly towards 1.0.
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Figure 3.17 : Best fit of curves from Fig. 3.16 using the scaling relation of Eqn. 3.3.

Exponent SUN CA Others Reference
Pe 0.5916 £ 0.0022 0.5915 £0.0023 0.5928 | [Staufferi985]
1/ 1.798 £ 0.093 1.800 £+ 0.096 1.89 [Stauffer1985]

v 1.439 £ 0.015 1.434 £ 0.030 1.35 [Zallen1983]
B 0.144 0.145 0.14 [Zallen1983]

Table 3.3: Percolation critical exponents, SUN refers to standard serial computer
percolation simulations done for this work, CA refers to simulation results
for percolation computer, others refers to representative results which has
been reported elsewhere.

Thus, for p = p, = 0.5928 on the square lattice py will move towards 1.0 and it is not
possible to extract critical behaviour since p4 is not equal to p,. Therefore, another
renormalisation rule is required if we are to study critical behaviour for site percolation
on a square lattice using renormalisation techniques. For example, [Kirkpatrick1977]
studied renormalisation on a square lattice by replacing a block of sites with an occu-
pied site only if a spanning cluster, or connecting path, existed in the block. [Rey-
nolds1977] and later in [Reynolds1978] utilised a position-space renormalisation pro-
cedure whereby a block of 29 sites was- replaced by a single site and d bonds,

113




Chapter 3 Parallel Architectures for Statistical Mechanics

o o o o
o o o o
: o] (o] ; 0 o] '
E \l/ J/ L \|/ 1
] ! 1
i i 1
1 1 1
N —~ :
ooo —-i% : > e}— ooo
i i |
S S I e N
| 1 1
| : |
1 1 1
000 ——> i &—— ooo0
i i i
| 1 1
1 1 ]
1 1 ]
i 1 i
: : ;
i ] 1
000 ——>i L L <—— o000
i : i
1 t i
1 ] 1
—— e piuttadaldaketndeded skl et ————— e
t I 1
' i i
I | 1
cco —= i é-!— 000
i p i
| i ]
| i ]
1 ] 1
l o 1 o) b
o]
o o

o
000

site
latch

to
from /i: (02, y/2)
(2x, 2y) -

bottom

ight
bottom ne

right

Figure 3.18 : Renormalisation architecture operating on 2 x 2 blocks using a renor-
malisation rule due to [Kirkpatrick1977].

114



Chapter 3 Parallel Architectures for Statistical Mechanics

requiring that the d bonds reflect the connectivity of the block which it is replacing.

In any case we see that construction of hardware to implement any renormalisa-
tion procedure, other than the simple majority rule case, requires significant processor
resources. An example of a simple renormalisation group architecture is shown in
Fig. 3.18. Here we implement the renormalisation rule of [Kirkpatrick1977}. For simpli-
city we use a block size of 2 x 2. To determine whether an infinite cluster exists in a
2 x 2 block merely requires checking if each row has an occupied site. A renormalised
site representing sites (x,y), (x+1,y), {(x+1,y+1), and (x,y+1) in the old lattice will
be stored in position (x/2,y/2) in the new L/2 x L /2 lattice, necessitating a shift to the
left and up by x/2 and y/2 site processors. This will require additional shifting
hardware at each site processor. Finally, we assign cluster numbers to each occupied
site in the new lattice and invoke the site clustering process. As larger blocks or more
complicated renormalisation rules are considered the associated computing hardware
becomes considerably more complex. Thus, a percolation computer implementing
renormalisation will not be further considered in this work. Howsver, we note that if a
percolation computer is to be constructed which itself calculates the critical exponents,
it is probably best to use a renormalisation approach to quickly reduce the amount of
cluster data which must be processed and offloaded to the host computer.

Another extension to the percolation computer is the inclusion of different lattices
and dimensions other than the two-dimensional square lattice which we considered
here. To include other lattice types, for example the triangular or honeycomb lattices,
one need merely increase the connectivity of the site processors to account for the
increased number of neighbours. Otherwise the method of operation is precisely the
same. Similarly for higher dimensions one need merely increase the neighbour con-
nections at each site processor to account for the increased neighbour set. No simula-
tions were performed on percolation operating on different lattice types or higher
dimensions since it is not expected that the correctness of the percolation computer
will be affected by having more neighbours. We do not expect the computer time for
~ simulations on the percolation computer to increase dramatically as the neighbour set
increases.

~ 3.3. THE ISING MODEL

We now turn our attention to the equilibrium statistical mechanics of d-
dimensional Ising models. The Ising model is perhaps the most well known of statisti-
cal mechanical models which exhibit a phase transition. [t was first introduced by Ising
in 1925 [EsingTQZS].4'5 The model was initially used to describe the behaviour of a fer-
romagnet near the Curie temperature.“-6 However, it was quickly found that the Ising

45 Sometimes the ‘model is referred to as the Lenz-lsing model since the ac-
tual model was first introduced by Lenz I[Lenz1920] in 1920. However, he did
not calculate any properties of the model and general practice has become to
refer to the model as just the Ising model.
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Flgure 3.19 : Magnetisation versus kT/J on a 64 x 64 two-dimensional square lat-
tice.

model could be used to describe and calculate many other physical properties. Today
the Ising model is considered to be a paradigm for a wide variety of model systems in
computational statistical mechanics [Binder1979], [Vichniac1984], [Kirkpatrick1985]; it
is of central importance in the study of universality properties in critical phenomena,
and in general of phase transitions in statistical-mechanical systems.

The essential concept of the Ising model is the description of the interaction of a
set of atomic magnetic moments, or spins, arranged on a regular ferromagnetic lattice
in d-dimensions. Here we define a positive, or up, spin to have the value of +1 and a
negative, or down, spin to have value —1. The energy of two neighbouring spins is —J
if they are in the same direction and +J if the spins are pointing in opposite directions,
where J is a coupling constant. Therefore, the energy added to the total system
energy by two adjacent iattice sites is —J S;S;, where s; represents the spin at lattice
site /. In a system which is subjected to a positive magnetic field, positive defined as
pointing up, each spin will have an additional energy of +H for down spins and —H for

48 At the Curie temperature a ferromagnet exhibits a phase transition from a
paramagnet to a ferromagnet, much like the condensation of steam into water
at the boiling point. For example, an iron ferromagnet is no longer magnetic at
temperatures greater than 1043°K.
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Figure 3.20 : Normalised energy versus kT/J for (a) periodic boundary conditions.
(b) free boundary conditions. Data points are 4 x 4 (empty boxes),
8 x 8 (filled boxes), 16 x 16 (empty circles), 32 x 32 (filled circles), 64
x 64 (empty diamonds).

up spins. Interaction between spins only occurs between nearest neighbours on the
lattice which gives rise to a Hamiltonian, or total system energy of

E=-J Y¥sis;—H3s (3.4)
if i
where the sum over /,j includes neighbouring spins only.

The probability of finding adjacent lattice sites in a state [s;s;] is given by a
Boltzmann distribution,

P(s;s;) = 2 1e7Fs (3.5)

where K = % k is Boltzmann's constant, T is the absolute temperature, and the

normalisation factor Z = 2eX + 27X, Therefore, at high temperatures the value of K

is small and the alignment of spins is arbitrary while for lower temperatures K is much
larger and the spins tend to align. When we consider a system with N spins the
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Figure 3.21 : Specific heat versus KT/J for various size lattices with periodic boun-
dary conditions.

probability of state S =[s¢, S5 - - - sy] can be shown to be
-E
P(S)=2Z"e ¥ (3.6)
where the normalisation factor Z is now the trace sum over all states S, i.e.
-E
Z =7Tf[S] e kT . (37)

For J positive and d=2 , a phase transition occurs at a temperature T=T, ,the critical
temperature (also called the Curie temperature), below which all the spins in the lattice
tend to align with one another.

We define the spontaneous magnetisation of the lattice to be
{1 =N
= W Z S; . (3.8)

The state of the lattice is constantly changing in time as thermal effects cause spins to
change direction. For an arbitrary temperature T, the equilibrium system has an
expected magnetisation, or net spin value, <M>, given by

<M> = ZM] P(Sj) (3.9)
i
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where the summation extends over all possible configurations of spins of the Iattice,
and Mj- is the magnetisation of lattice state Sj. Therefore, to calculate the expected
magnetisation, or any other observable, of a lattice we must determine the probability
over all states of the lattice.

For a system with only two spins it is easy to calculate the total system energy
since only four states must be considered. However, the problem explodes as the lat-
tice size increases so that even for a simple two-dimensional 10 x 10 fattice there are
2100 possible configurations to consider. Therefore, one cannot calculate all the state
probabilities for even small systems. One approach that immediately comes to mind is
to chose states at random and then estimate the sum. However, we know from ther-
modynamic considerations that the distribution of states will be sharply peaked around
the minimum energy configuration [Landau1968]. Therefore, there are many states
which are highly improbable and contribute little to the dynamics of the system. Using
random sampling will consider all states with equal probability and so we will consider
many states which do not make a significant contribution to the system. Thus, for large
N this method is not very efficient.

A more efficient technique involves an importance sampling [Metropolis1953] of
configurations. This is performed by Monte Carlo methods [Binder1984], according to
their total energy which determines their probability of occurrence, or weighting in
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Eqgn. 3.9.
The mean value of an observable L at the temperature T is given by

(3.10)

where the sum need only be taken over the importance sample S’ of configurations
and the subscript e S’ refers to the specific sample.

A procedure to determine a representative set of configurations is given by the
Metropolis algorithm [Metropolis1953]. In two dimensions the algorithm begins at the
upper-left corrier of the 2-D array and progressively updates the spins as it proceeds
to the bottom-right corner. At any given stage in the process, the new spin value is
decided stochastically; the local transition energy AE for spin s; — —s; is determined.
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Figure 3.24 : <M> versus KT/J for various lattice sizes. Notice the overturning of the

lattice especially for small lattice sizes.
The corresponding probability of flipping the spin, eAE/KT g then compared to a ran-
dom number, x, uniformly distributed between 0 and 1. If x < @2F/AT then the spin is
flipped, otherwise it is left alone [Metropolis1953]. This method has been employed by
many workers, for example [Pawley1984], [Binder1980], [Landau1980], [Stoll1973],
[Landau1976b] and in some cases special-purpose processors incorporating pipelining
have been constructed for Ising model calculations [Pearson1983a), [Barber1985],
[Hoogland1983].

As with the percolation model critical exponents are used to describe the
behaviour of the Ising model at the critical point. The method of analysis will be via
computer simulation using the Monte Carlo method described above. Here we will
again restrict our attention to the two-dimensional Ising model, even though much is
known analytically about its physical properties [Onsager1944], [McCoy1973]. We
note that when higher dimensions are considered, Monte Carlo simulation of the lattice
is generally the only way of calculating the critical exponents.

3.3.1. Finding the Critical Exponents

First we must establish the critical point. For the Ising model this corresponds to
the Curie temperature of the ferromagnet under study or the temperature at which the
magnetisation of the ferromagnet undergoes a phase transition from ferro- to
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paramagnetic such as that shown in Fig 3.19 for a 64 x 64 square lattice. It is known
for infinite two-dimensional square lattices that kT, (e0)/J = 2.269. However, for lat-
tices of size L, kT.(L)/J may be substantially different. All results shown in this sec-
tion are from actual Monte Carlo simulations of the Ising modei acting on various size
square lattices. As before, results will first be shown for simulations using the SUN3-
160 PRNG; later results will be shown which are derived from the proposed Ising
model architectures.

For the Ising model there are generally five quantities and their associated critical
exponents of interest. Here we will consider four of these quantities. The expected
magnetisation and total system energy were discussed above. Two other additional
thermodynamic quantities, specific heat and susceptibility are also generally extracted
from the ising model. The specific heat, C, is defined as

_dE
C= 5T (3.11)
and the susceptibility, x as
oM
{= oH (3.12)

where H is a uniform magnetic field. These two quantities can be calculated based on
fluctuations in the energy and the spontaneous magnstisation respectively as
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fLandau1968]
2
= —k% [ <E?%> - <E>2] = % (3.13)
) _
=-%; [<M2>—<M>2] =g+g (3.14)

The Monte Carlo simulation implemented here closely follows that of
[Landau1976a] and [Binder1984]. Both periodic and free boundary conditions are pos-
sible. The simulation runs from low temperature, kK7/J « kT_/J to high temperature
KT1J » kT,/J. At each temperature the lattice is initialised to all up spins and then
100 complete lattice updates are used to bring the lattice to equilibrium for tempera-
ture, T.37 Magnetisation and energy measurements are then made for every complete

3.7 Far from the critical point the number of lattice iterations to equilibrium is
quite low but near the critical point the number of steps required can rise by
over three orders of magnitude [Swendsen1983]. It is possible to use time-
dependent correlation functions as a means of measuring the distance from
equilibrium [Swendsen1983] but 100 steps to equilibrium was considered ade-
quate for the purposes of the data to be presented here.
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Figure 3.27 : Susceptibility versus kT1J for various Iattice sizes.

lattice update. Note that for the specific heat and susceptibility measurements we
require independent values of M and E in the calculations of <M?> — <M>2 and
<E2?> — <F>? respectively. Therefore, it is best to reinitialise the lattice and bring the
lattice back to equilibrium before each measurement if the specific heat or susceptibil-
ity is to be derived.

The normalised energy for both periodic and free boundary conditions is shown in
Fig. 3.20. Notice that the behaviour of the small 4 x 4 lattice is significantly different
than that of the other lattices. This shows the dramatic effect that finite size can have
on Ising model behaviour. Also we see the effect of boundary conditions on the Ising
model, especially for the smaller lattice sizes. The differences in behaviour between
the two boundary conditions is due to the edge discontinuity affecting the energy of the
edge spins.

The specific heat for lattices with periodic boundary conditions is shown in
Fig. 3.21. Again we see the dramatic effect of finite lattice size on the Ising model. For
the infinite lattice the specific heat at kT, (e0)/J is infinite. However, for the finite lat-
tices simulated here we see that the maximum value increases as the lattice size
increases and approaches kT,(e)/J from the right. Exact curves can be found in [Fer-
dinand1969]. We can extrapolate kT,(e)/J by plotting the temperature of maximum
specific heat versus L™' as in Fig. 3.22. This yields an estimated KT, (e0)/J of 2.32 as
opposed to the exact value of 2.269. The behaviour of the specific heat can be
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described by the scaling relation

C = LZ0@eL 1) (3.15)
where Z0is solely a scaling function of el ™,
T = To(eo)
= ———T—(i)— (3.16)
c

and o and v are exponents for the infinite square lattice. The value of v is known to
be 1.0 for two-dimensional fattices. We can test this relation by plotting CL™V versus
- eL " as in Fig 3.23. Notice that the data lie on two curves one for T < To (=) and the
other for T > T, (). For large L and therefore large €L 1" it can be shown that the
infinite lattice critical behaviour is asymptotically reproduced by [Landau1976a])

Z%l™y = A - (eL1Vy@ (3.17)
where A is the critical amplitude for the infinite lattice specific heat. Thus, we can draw
a straight line through the data for T < T (ee) and T > T,(e) in Fig. 3.23 at large

eL. " and describe asymptotically the behaviour of the infinite lattice. We see from the
slope of this line that oo = 1.0.
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Due to the finite lattice size the entire lattice may completely overturn magneti-
cally during the course of a series of measurements [Binder1975] as we see in
Fig. 3.24. Thus, we will plot <|M|> rather than <M>. This is shown in Fig. 3.25. Note
that this removes the polarity of the magnetisation. The magnetisation can be
described by the scaling relation

M = LBV XO(et 1) (3.18)
where X0 is solely a scaling function of eL¥¥. Therefore, as for the specific heat we

can plot MLPY versus eL 1" to extract the value of B for infinite lattice behaviour. Here
the infinite lattice magnetisation is asymptotically described by

XO(eL™y= B - (eL V)P (3.19)
This is shown in Fig. 3.26, where we see that f =0.125, for T < T (=) and
B =~-0.875for T > T;(co).

Susceptibility curves for various size lattices are shown in Fig. 3.27. As for the
specific heat the magnitude and position of the maximum value are dependent on the
lattice size. However, an additional source of error is introduced because of the
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tendency for the entire lattice of spins to reverse during the course of the computer
simulation. The energy and specific heat are unaffected by this reversal since the
spins remain in parallel but, since the magnetisation is changing sign during a rever-
sal, the susceptibility will be greatly affected. Thus, it is possible to calculate two
entirely different values of y while still having simitar values of <|M|>. The effect is
reduced as the lattice size increases. As for the specific heat, it is possible to attempt
to extract kT,(e<)/J by plotting the temperature of maximum susceptibility versus the
inverse of the lattice size as shown in Fig. 3.28. This yields an estimate of
kT (e<)/J = 2.45. Finally, the scaling relation which defines the susceptibility is given
by

xT = LYWYOeL vy (3.20)

where Y? is solely a scaling function of eL1"V. As before we plot 3 TL="" versus eL '™
to determine the value of y given the asymptotic behaviour of

YO(eL™) = C - (eLMV)Y . (3.21)
From Fig. 3.29 we see that the value of yis 1.75 for both T < T () and T > T (o).

3.3.2. A Proposed Ising Architecture

As with the percolation model the majority of the computational work in the fsing
model is in updating the lattice. At each site in the lattice we must calculate the energy
and change the spin value with the corresponding probability. This involves adding the
spins of the neighbour sites (four in the case of the square lattice) and negating the
resulting sum if the site spin is not parallel to the sum. It is possible to calculate the
probability explicitly each time the energy is calculated but since there are only a few
possible energy values it is much quicker to use a lookup table for the probability
values. Finally, we must generate a random number, compare it to the probability and
change the spin accordingly. Therefore, updating the lattice essentially consists of two
operations: calculating the local energies and generating the random number for the
probability comparison. Each of these operations is repeated over the N = L2 sites of
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Flgure 3.31 : Proposed parallel Ising architecture using a spin processor for each
site on the spin fattice.

the lattice. One important point to note is that on odd time steps, odd numbered sites
are updated and on even time steps, even numbered sites are updated. This is essen-
tial in the parallel case to avoid the so-called feedback catastrophe which results if all
the spins are_updated during the same time step [Vichniac1984]. For example, in
Fig. 3.30(a) a 4 x 4 lattice is shown with a magnetisation of zero. If all spins are
updated during the same time step then at low temperatures there is a high probability
that the spin configuration of Fig. 3.30(b) will result. This is because each site has zero
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Figure 3.32 : Layout of a 16 bit Ising spin processor.

energy and so will flip. On the next time step the spin configuration will revert back to
that of Fig. 3.30(a) for the same reason. This oscillation will continue indefinitely on
succeeding time steps. The odd/even updating technique avoids this problem.

The remaining problem lies in the calculation of the critical exponents. For the
same reasons as with the percolation computer, expressed here with respect to the
energy and magnetisation calculations, it is argued that it is not an optimal solution to
build a special purpose computer to calculate the critical exponents. Instead the
greatest gains are to be realised in building a coprocessor which updates the Ising
spin lattice and reports the energy and magnetisation of the resulting configuration.
The actual spin configuration need be determined only if quantities such as correlation
length are to be found.

Obviously tremendous speedup occurs when all the spin updating is done in
parallel. As with the percolation model it is desirable to simulate as large a system as
possible. The limitations on the size of Monte Carlo Ising model simulation are twofold:
1) the size of the data memory required to store the spin data and 2) the simulation
time for large lattices can become prohibitively long, especially near the critical point
where many iterations of the lattice are required before the spin system is at equili-
brium.

To accelerate Ising model simulation the parallel architecture of Fig. 3.31 is pro-
posed. Here each processor consists of a data memory to store the probabilities, a
comparator, & PRNG, and a latch to store the spin. The PRNG is the same as that for
the percolation computer. Note that it is possible to use a large bus to route the vari-
ous probability values and to have a bus selector at each processor which chooses
the bus corresponding to the desired probability. Here we consider a data memory
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Figure 3.33 : An adder iree with a branching ratio of four.

containing the probabilities at each processor since it is conceptually easier to under-
stand. Technological considerations will determine the actual configuration used in
implementation. Each processing site corresponds to a single spin site and we will
refer to this architecture as the L2 spin processor architecture. The spins are stored as
0 for a down spin and 1 for an up spin. The energy is calculated as the sum of the
four neighbour spins (here we consider the square lattice). If the spin is down {i.e. 0)
the the neighbouring spin values are inverted as they are summed. The use of 0 and
1 as spin values forces one to consider the energy of each spin as a number in the
range [0,4] where 0 corresponds to maximum energy and 4 to minimum energy. The
energy is then used to address the probability memory, where each word is the proba-
bility of a spin with the energy of its address being flipped. The corresponding
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probability is then compared to a number from the PRNG and the spin is flipped if the
number from the PRNG is less than that probability value. If the updating is restricted
to the even/odd scheme required to avoid the feedback catastrophe then all even/odd
spins can be updated in parallel. it is possible to combine even and odd sites into one
processor with two spin latches due the updating scheme. This architecture will result
in a time saving of O(N), where N = L2, over conventional serial Monte Carlo simu-
lation. In addition, the time for each spin update in this Ising computer is very small
since it can occur in one clock cycle (= 50nsec.) while for a general purpose computer
the four additions, two decisions, and miscellaneous memory references will’require
many clock cycles (= 10psec.). The overall acceleration is approximately 200N as
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opposed to a serial computer.

The regularity of each spin processor makes the Ising computer an ideal candi-
date for a VLS! implementation. However, we again find that the size of the lattice
which can be simulated is directly dependent on the size of the processor needed at
each site. A 16 bit processor is pictured in Fig. 3.32. Using the technology described in
Chapter 2 the size is 1.975 mm? so on a 4.8 x 4.8 mm. die it is possible to fit only ten
such processors, or twenty spin sites, if the combining of even/odd site processors is
used.?® It is unrealistic to consider simulating lattices larger than 1000 x 1000 spins
using this architecture with current technology. Temporarily the discussion will be
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Figure 3.34 (c):Row at a time spin updating using a shifting data memory.

restricted to lattices of size L < 1000 but we return to the problem of larger lattices
later in the chapter.

While it is possible to use the L2 spin processor architecture to substantially
increase the speed of lattice updating, further simulation speed increases could be
achieved by calculating total system parameters such as the magnetisation and
energy. Both_theée operations are inherently local with global properties found by

38 As for the percolation computer it is possible have up to 1000 Ising site
processors per chip with the area saving approach mentioned above and a
state of the art CMOS technology.
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Figure 3.35 : Normalised energy versus KT/J using the L2 spin processor with (a)
periodic boundary conditions. (b) free boundary conditions.

simply summing the local results. We have already reviewed the calculation of the spin
energy at each site in the lattice. The magnetisation at each site is simply the value of
the spin. The global sum of both the local energy and magnetisation can be found by
placing the adder tree of Fig. 3.33 on top of the lattice updating architecture of
Fig. 3.31. Thus, we require only O(log L) steps to calculate both the magnetisation
and energy for the entire lattice. The circuit of Fig. 3.32 has been demonstrated to
possess an operating speed of at least 20 MHz and the adder tree should easily
operate at this clock speed so, in less than 1usec., a 1000 x 1000 lattice can be
updated and the energy and magnetisation reported to the host computer. This makes
it possible to do extensive simulation of reasonably large spin systems close to the
critical point, even though it often takes several thousand lattice updates to achieve
equilibrium. This requires a prohibitively long time on a general purpose computer but
only a few milliseconds on this Ising computer.

Calculation of quantities such as correlation length of the magnetic clusters at or
near the critical point can also be greatly aided by the Ising computer. In the percola-
tion model a technique for grouping clusters of occupied sites was developed and it is
a simple matter to adapt this same clustering architecture for grouping of like spin
types. The lattice configuration can then be offloaded to the host computer for final
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with periodic boundary conditions.

processing. As before, these calculations will be greatly accelerated if like spins have
already been grouped into clusters. However, the greatest speedup for these calcula-
tions lie in the fact that equilibrium (i.e. the time at which the computer experiment can
actually begin) can be achieved in only a few milliseconds, whereas on general pur-
pose computing hardware this could take many hours. In addition, many of these cal-
culations are best made by removing the history dependence of the individual meas-
urements. This can only be accomplished by reinitialising the lattice to a completely
parallel spin configuration and waiting for the system to return to equilibrium. This is
again an impossibly long and expensive procedure for conventional simulation but
easily possible using the Ising computer.

Above we have only considered lattices of size L < 1000. We will now consider
much larger systems. For these systems we will update the lattice one row at a time.
The problem here is that we require the values of the spins in the rows above and
below the current row. This can be accomplished using the architectures of Fig. 3.34.
In this case we use a very large data memory to store all the lattice spins. The current
row is updated by the same technique as described above, only we must ensure that
the upper and lower rows are available to the spin processors. This can be accom-
plished in three ways. The first method, shown in Fig. 3.34(a) is to store the three rows
in a register set. The upper row which has already been modified is in the top register,
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Figure 3.37 : Extraction of KT (0)/J using the the specific heat. Simuiation of the
L2 spin processor architecture. The data points give the temperature of
maximum specific heat.

the current row which is about to be modified is in the middle set of registers which
consist of the spin processor chain, and the lower row is loaded from the data memory
into the bottom register. After the current row has been updated the top row is loaded
back into the data memory, the current row is shifted to the top row, the bottom row is
shifted into the spin processors, and the new bottom row is loaded from memory. This
continues until all the rows of the lattice have been updated. The second method of
Fig. 3.34(b) involves using a two-port memory with special addressing circuitry so as
to make the upper and lower rows available to the spin processors from the spin lat-
tice memory. Each current row must be loaded into the spin processors, updated, and
the new spin values restored to memory. This does not actually save any memory
transfers since for each row update we must still load and restore an entire row of spin
values. An improvement on this technique would be the use of a three-port memory to
make the upper, lower, and current row directly available to the spin processors, but to
implement a large capacity three-port memory would be prohibitive. The final tech-
nique shown in Fig. 3.34(c) is to modify the memory so that the site processors consti-
tute one row of the memory. Each row is then shifted up one level, after the current
row has been updated. This will increase the size of the data memory but avoids the
I/O problems of the first two methods. It also provides a much more regular structure
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Figure 3.38 : Finite-size scaling plot of the specific heat of lattices with periodic
boundary conditions using the L2 spin processor architecture. Here we
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for implementation.

To determine the energy and magnetisation of the lattice we once again use the
adder tree of Fig. 3.33, except that now we use a branching ratio of two. The sum is
only over one row of the lattice, so we must use another summing register to add the
row sums. The row sums are added until the entire lattice has been updated and the
lattice energy and magnetisation are made available to the host computer. It is possi-
ble to construct the data memory in such a way that the host computer can access it
to perform other calculations such as correlation length.

3.3.3. Simulation Results for the L2 Spin Processor Ising Computer

Simulations of the proposed L2 spin processor Ising computer were carried out
using the same analysis techniques described previously and are now reported.

The normalised energy for both periodic and free boundary conditions are shown
in Fig. 3.35. As for the previous simulations we see the dramatic effect of the lattice
size on Ising model behaviour. Specific heat is shown in Fig. 3.36. The extraction of
the value of KT (~)/J =2.36 is shown in Fig. 3.37. Using the scaling relations
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sor architecture. '

discussed previously we see in Fig. 3.38 that the value of the critical exponent « is
again 1.0. In Fig. 3.39 we plot <[ M|> versus temperature and extract the value of criti-
cal exponent B from Fig. 3.40 to be 0.125 for T < T (e} and -0.875 for T > T,(0).
Susceptibility is shown in Fig. 3.41 from which we can derive Figs. 3.42 and 3.43,
yielding an estimate for kT, (e0)/J of 2.57 and v = 1.75.

We can see close agreement between the exact values of the critical exponents,
the values using the SUN PRNG, and the results derived by simulation of the L2 spin
processor Ising computer. A final check on the resuilts derived from the Ising computer
is to compare the values of <E> and <|M|> for various values of kT/J versus the
exact results for the two-dimensional lattice [Onsager1944]). These results are
reported in Table 3.4 from which we can see that the results derived from the pro-
posed Ising computer correspond within their error to the exact resuits and also to the
standard Monte Carlo simulation technique. The error can be reduced by using a
larger number of samples. Therefore, we can conclude that the L2 spin processor
[sing computer will properly simulate the Ising model.

Site spacing effects on the CA rule 30 based paraillel PRNG were not tested
since the correct results were produced without site spacing. However, it should be
noted that if the parallel LFSR is used as the PRNG the results are demonstrably poor.

138



Chapter 3 Parallel Architectures for Statistical Mechanics

0.23 4
006 +
-0.10-
-0.26.

-0.42-

1 1
1 T 1 1

]
!
-1.58 -1.24 -0.81 -0.57 0.23 0.110 0.44 0.77 1.1 1.44 1.78

loge Y

Flgure 3.40 : Finite-size scaling plot of the magnetisation with periodic boundary
conditions using the L2 spin processor architecture. We define ¢ as in
Fig. 3.23. Data points for T < T,(e0) (right hand curves) line up with
slope 0.125 and for T > T (o) (left hand curves) line up with slope
-0.875.

Therefore, we can say that the properties inherent in the CA rule 30 based PRNG are
suitable for simulation of the Ising model.

Merely simulating the two-dimensional square Ising model is somewhat pointless
since it has been solved analytically. However, it is a simple matter to increase the
connectivity at each spin processor to correspond to that of other two-dimensional lat-
tices such as the triangular and hexagonal lattices. In addition, three-dimensional lat-
tices can also be simulated by changing the connectivity of the spin processors.

3.3.4. Using Renormalisation on the L2 Spin Processor Ising Computer

We consider the application of renormalisation group techniques to the Ising ’
model. The renormalisation rule which we will consider here is the replacement of a
block of spins by one spin which represents the gross behaviour of the block of spins.
For example, we could use a majority rule to replace a block of 2 x 2 spins by one
spin (ties would be decided by a random number). This would progressively reduce
the edge size of the lattice under consideration by a factor 2 for each renormalisation.
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Figure 3.41 : Susceptibility versus KT/J for various lattice sizes using the L2 spin
processor architecture.

As with percolation, it is doubtful whether application of the renormalisation group is
appropriate in a parallel architecture such as that described here. This is due to the
fact that if we are analysing quantities such as the lattice energy and the magnetisa-
tion these quantities are already directly available. In addition, to reduce the effective
size of the lattice by renormalisation requires as much time as the actual calculation of
lattice energy and magnetisation. Finally, we must also consider the problem of exa-
mining the renormalised lattices. This can only be done by offloading each renormal-
ised lattice, including the original lattice, from the Ising computer, a process requiring
at least O(L?) time. This will reduce the computational speed of this aspect of the
~ Ising mode! simulation to that of conventional serial processing.®? Thus, it would
appear that renormalisation is not necessarily a useful feature to build into a paralle!
Ising model simulator since it will significantly degrade the performance of the simula-
tion. However, this ignores some of the other benefits which result from application of
the renormalisation group. Firstly, the renormalisation technique allows very accurate

39 1t is possible that if enough I/O pins are available to each chip that the
O(L?) factor- could be reduced significantly. However, this will still cause
significant throughput problems since the data collection from the Ising model
simulation is bounded by an inherently serial process.
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determination of the critical point. In addition, it provides a mechanism for studying
correlation length at the critical point. A final benefit is that it will allow the host com-
puter to study the actual lattice. This does not imply that after each update the entire
lattice will be offloaded but rather that it is possible to ook at the lattice if curious
behaviour is present (i.e. a black box that can be opened is better than a black box
which cannot). Offloading the lattice will also make it easier to test the Ising computer
for electrical faults. Consider examing a black box which is supplying results from a
Monte Carlo simulation of a process which is not completely understood; how do you
tell if the box is broken?

A 2 x 2 majority rule renormalisation approach can be easily incorporated into the
Ising computer by simply adding an extra storage element, the renormalisation latch,
and a comparator to each spin processor as shown in Fig. 3.44. The majority rule is
implemented by using the bottom level of the magnetisation adder tree. The sum of
four lattice spins are found at the lowest level of this tree, if the sum is less than 2
then the replacement spin must be down, if the sum is greater than 2 then the replace-
ment spin is up, otherwise the sum equals 2 and the replacement spin is assigned
randomly based on the value of the least significant bit of the site processor's PRNG.
The replacement spin for spins (x,y), (x+1,y), (x+1,y+1}, (x,y+1) is stored in the
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renormalisation latch at spin (x/2, y/2). This process can be repeated indefinitely, if
desired, until there is only one spin left. The renormalisation latch at each site proces-
sor is required since we must not lose the original lattice configuration. In the normal
operating mode the spin is stored in both the spin and renormalisation latches and the
local sums for both the energy and magnetisation are now made available from the
renormalisation latch to allow energy and magnetisation calculations of the renormal-
ised lattice. The control circuitry at each spin processor must now ensure that the first
step in the lattice update process involves transferring the value in the spin latch to the
renormalisation latch.

Offloading of the spin lattice may be accomplished in two ways. If the number of
pins is small then the spins must be offloaded row by row, one spin at a time. This can
be done by incorporating a long shift chain through the renormalisation latches of each
spin processor row and shifting the bits from each row out serially. Each row would
then be sequentially connected to the lattice output pin. If the number of pins is
sufficient, it is possible to offload the spin lattice a column at a time using the same
arrangement, only here each row is connected to a unigue pin. The difference in
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Exact Proposed Standard
KTiJ | <Ep> <Epn> error <En> error
1.087 | 0.99724 | 0.997631 0.000733 | 0.996979 0.000881
1.449 | 0.98006 | 0.983695 0.006937 | 0.980650 0.007444
1.811 | 0.92693 | 0.940769 0.034170 | 0.928062 0.043008
2173 | 0.81921 | 0.852129 0.111073 | 0.819579 0.112802
2.536 | 0.67508 | 0.711850 0.195514 | 0.675657 0.183635
2.808 | 0.54069 | 0.562358 0.213332 | 0.541095 0.172538
3.260 | 0.43873 | 0.443605 0.161029 | 0.441105 0.135338
3.622 | 0.36635 | 0.370115 0.115244 | 0.364889 0.104584
Exact Proposed Standard
kTid | <IMI> ) <IM|> error <|Ml|> eror
1.087 | 0.99859 0.998782  0.000200 | 0.998442 0.000250
1.449 | 0.98898 0.991230 0.002472 | 0.989410 0.002791
1.811 | 0.95465 0.964309 0.017988 | 0.955280 0.026655
2.173 | 0.87345 0.899275 0.080682 | 0.873977 0.087653
-2.536 | 0.75207 0.784842 0.168579 | 0.751703 0.172171
2.898 | 0.63103 0.651159 0.209552 | 0.631363 0.183713
3.260 | 0.53605 0.540927 0.176900 | 0.537914 0.157969
3.622 | 0.46804 0.472880 0.141470 | 0.466296 0.131081
Table 3.4:  Comparison of the Monte Carlo data from the L? spin processor architec-

ture with a standard Monte Carlo simulation and exact analytical results.
The Ising model simulated was a 4 x 4 square lattice with periodic boun-
dary conditions.

speed between the two arrangements is O(L) which can be significant for large lat-
tices. A final consideration is that it may be possible to offload all the spins simultane-
ously in one step if the number of available pins equals the number of spin sites. How-
ever, this is technologically naive for large lattice sizes and we must also consider at
what data rate the host computer could accept the spin lattice.

3.3.5. Another Approach

The foundations for this approach to an Ising computer arise from two recent
observations: (i} the correspondence between the time evolution of d-dimensional sto-
chastic cellular automata and the equilibrium statistical mechanics of (d+1)-
dimensional Ising models [Verhangen1976], [Enting1977], [Enting1978], [Domany1984]
and (ii) the discovery by several authors that the behaviour of recursive nonlinear Sys-
tems such as one-dimensional cellular automata of certain classes exhibit effectively
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random behaviour.

3.3.5.1. The Mapping

The exact mapping between one-dimensional stochastic cellular automata and
two-dimensional (triangular) Ising lattices has been demonstrated by Domany and
Kinzel [Domany1984]. Consider a one-dimensional cellular automaton with site values
0 and 1 and communication restricted to immediate neighbours (Fig 3.45(a)). The
boundary conditions may be either periodic (wrap around) or fixed values (0 or 1)
depending upon the problem to be simulated.. On odd time steps, odd-numbered sites
are updated according to the local rule. On even time steps, even-numbered sites are
updated. This is an essential countermeasure against the feedback catastrophe which
would result if one attempted to update all spins during the same time step.

One can observe the space-time behaviour of the 1-D cellular automaton as the
2-D lattice of Fig. 3.45(b). This figure corresponds to the 2-D triangular Ising model lat-
tice, in which each spin influences (and is influenced by) exactly six neighbour spins.
For odd (even) cycles, the odd (even) sites take on the spin value 1 with probabilities
P1(0,0), p4(1,1), or p4(1,0). The numbers in brackets are the neighbour spins from
the previous time step (the neighbours in a one-dimensional cellular automaton). Also
we have that py(0,1)=p (1,0} and that py(0,0)=1-p+(0,0), etc.

These probabilities are determined from the contribution E;=~J(S;_15;+8;,15;) to
the total system energy. For a given neighbour configuration, E; is determined for
s;=0 and for s;=1. The probabilities are proportional to exp(~E;/kT); the sum of these
two factors normalises pg+p 4 to unity.

In order to generate a series of configurations for the 2-D Ising lattice according
to an importance sampling, the organisation of each site value in the 1-D cellular auto-
maton is as shown in Fig. 4.46. For a given temperature, T, for the equilibrium [sing
model, the RAM is loaded with the four wvalues corresponding to
p+(0,0), p1(0,1), p4(1,0), and p;(1,1). The RAM selects the appropriate probability
value under address control of s;_4 and s;,4. This value is compared with that pro-
duced by the PRNG and the result (a 1 or 0 ) is loaded into s;. For an L site 1-D pro-
cessor array, every 2L time steps or clock cycles, a complete configuration of an
LxL 2-D lIsing lattice is generated. These values are read from the odd and even
sites on alternate cycles, and may be added for a given column in Fig. 3.45(b) by
means of serial adders, in order to compute their contributions to the total system
magnetisation, M. To obtain an accurate value for M, several thousand lattice
configurations must be averaged [Pawley1984].

This architecture yields a speedup of L/2 over sequential processing. Of course
if, as discussed previously, O(Lz) processing sites are used a further speedup by a
factor of L to 2 time steps per complete lattice calculation is possible using L2/2 pro-
cessing sites. However, this approach, which employs one processor per odd/even lat-
tice site, will use L times more area than the present approach. Thus, the AT metric
in both cases is the same if we ignore the extra communication overhead of the L2
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Figure 3.46 : One processor site of CA-based 1-D Ising computer.

spin processor implementation. The 1-D processor configuration discussed here
results in easily satisfiable wiring requirements. Wilson [Wilson1979] has stated that
an Ising lattice problem of interesting size consists of at least 100 x 100 sites, which
involves 100 processors using the present approach or 5000 processors using the
1272 spin processor technique. Therefore, while using L2/2 spin processors leads to
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an improved speed performance at the expense of an equivalent increase in area, it
has much more complicated wiring requirements and is difficult to make for lattices
which are of interesting size. It is more likely that an O(L?) processor implementation
may be appropriate to the importance sampling of the 3-D Ising model, again in the
spirit of the Domany-Kinzel mapping.

3.3.5.2. Implementation of the Domany and Kinzel Ising Computer

In addition to the computational advantage of the paraliel approach several other
points are worth noting. The RAM block in Fig. 3.46 can be shared between two adja-
cent cells; i.e. the outputs of the RAM can feed into the comparators of both the 7 and
the /—1 cells (see Fig. 3.46). This requires two additional address lines from s; and
Sj-2 . A two-phase clocking scheme will then activate s;_4,S;,1 and s;_,,5; on alternate
clock phases. Alternatively, the PRNG can be shared between adjacent sites. There
is also provision for applying a temperature gradient across the lattice (left to right), by
loading the RAMSs across the chip with probability coefficients that change with position
in accordance with the desired profile. This will facilitate the analysis of non-equilibrium
configurations. One should be aware that the non-equilibrium case of the Ising model
is @ much more complex problem than the equilibrium case. A further point to note is
that if one is not concerned with non-equilibrium configurations then a single RAM for
all of the processing site probabilities will suffice, since the probabilities will be the
same at each site. The probabilitiss in this case can simply be routed over the entire
chip on m bit busses from the single RAM and each site may select the appropriate
probability bus based on its neighbour sites. The bus values are not changed at clock
speeds since the equilibrium computation requires unchanging probabilities for each
temperature. This approach will lead to a higher density of processing sites since the
area used to route the probability busses is considerably less than the combined area
of RAMs at each site, especially in double metal CMOS processes.

3.3.5.3. Discussion and Conclusions

The actual layout of this Ising computer on silicon is facilitated by the nearest
neighbour communication properties of the CA-based PRNG. Figure 3.47 shows the
layout of two PRNG cells in the 3um double metal CMOS technology described in
Chapter 2 using only one layer of metal interconnect. This cell uses 0.138 mm?2 and
contains ali the necessary connections for the PRNG. In the layout of the Ising com-
puter it was discovered that the layout was easily partitioned into a bit slice architec-
ture with four processing sites per slice. Figure 3.48 shows the layout of a four site
Ising processor slice. Note that in this layout the Ising computer permits the use of
temperature gradients or non-equilibrium conditions, by providing a RAM at each site.
Using a 3 um single metal process it is possible to have 32 such processing sites on a
4.8 x 4.8 mm: die. This yields only the equivalent of a 32x32 lattice but already pro-
vides a speedup of a factor of 16 over conventional sequential processing. By remov-
ing the RAM at each site as discussed above and by employing a larger die in a more
advanced CMOS technology it is possible to create a layout with over 1000 processors

148



Chapter 3 Parallel Architectures for Statistical Mechanics

Figure 3.47 : Layout of two cells in the CA-based PRNG.

By S -
N :;,=---..----n.u.-au-..n-.\n | T

:'?'l' I": l.— LI "™ .—oi.
| fri=

[ ] L |

Figure 3.48 : Layout of a four site Ising processor slice.

which corresponds to a speedup of at least 3 orders of magnitude over sequentiat pro-
cessing. These 1000 processors can be configured as a lattice of 1000x1000 sites or
alteratively as ten 100x100 lattices. In the latter case, this would accomplish the sam-
pling of 10 configurations in 200 steps, for an effective rate of 20 steps per
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configuration.
Implementation Update rate & Ref.

Delft Ising System Processor 1.5 % 108 [Hoogland1983)
CDC Cyber 205 22 x 108 [Reddaway1985]
Santa Barbara Ising Model Processor | 25 x 108 [Pearson1983a]
ICL DAP 218 x 108 [Reddaway1985]
Manitoba Ising Model Processor 12 | 640 x 108
Manitoba Ising Model Processor 1I°) 20 x 10°
Manitoba Ising Model Processor 1119 | 20 x 1012

2) In spin updates per second.

b) present 32 site L spin processor configuration.

¢} Projected 1000 site L spin processor configuration.

d) Projected 1000x1000 site £.2 spin processor configuration.

Table 3.5:  Performance of various Ising model systems.

Another point to make is that the present scheme may be extended to two-
dimensional cellular automata arrays in order to model the 3-D Ising lattice. This
affords a computational advantage of O(Lz) as compared with serial computation. In
this case there will be additional wiring complexities in the VLSI layout. Finally, at
another level of organisation in this Ising computer (beyond that considered here) one
expects to be able to employ block-spin renormalisation group methods [Binder1979],
[Wilson1979], [Wilson1975], [Niemeyer1974] to process the configurations in place in
order to recover the system observables. Note that is possible to modify the renormal-
isation approach considered for the L2 spin processor architecture discussed previ-
ously to operate on this L spin processor architecture.

3.3.6. Conclusions on Ising Computers

The presented Monte Carlo simulations of the Ising modetl differs from other hardware
approaches in that it exploits VLSI to create single chip Ising model processors.
These circuits may be used as hardware accelerators for Monte Carlo simulations
similar to the use of a floating point accelerator for floating point arithmetic. The speed
is mainly achieved by updating the spins at each lattice site on every clock cycie
through a novel, and very efficient, parallel random number generation technique.
Based on a prototyped 32 site single chip L spin processor both Ising architectures
have been designed to operate at a minimum of 20 MHz (in the RAM-less
configuration) so that the spins are updated at each processing site every 50 nsec.
Therefore, in the final version of these architectures we should be able to update a
1000 x 1000 spin lattice at a performance of 20x1012 spin updates per second for the
L2 spin processor architecture and 20x10° spin updates per second for the L spin
processor architecture. This substantially improves upon the fastest approach known to
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the author of 218 x 10° spin updates per second [Reddaway1985]. Table 3.5 com-
pares these architectures with other published implementations.
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Chapter 4
Applications to
Built-in Self-Test

4.1. INTRODUCTION

Previous chapters have considered the application of cellular automata to prob-
lems involving nondeterministic algorithms. Specifically considered were specialised
computing architectures for high-speed solutions of ubiquitous computational physics
problems such as the Ising model and percolation. Generally these architectures
require a large number of uncorrelated pseudorandom numbers to be used at the
same time in parallel. In this chapter we consider a very different problem, that of test-
ing VLSI circuits, and specifically of testing using random test vectors. In this problem
we are not concerned with generating pseudorandom numbers in paraliel but rather
with generating pseudorandom numbers at high speed using minimal area. Therefore,
while the results of Chapter 2 can still be used we must place a much increased
emphasis on the absolute area of silicon used for the PRNG.

4.2. INTRODUCTION TO BUILT-IN SELF-TEST

Design for testability (DFT) techniques attempt to deal with the inherent complex-
ity of the VLSI testing problem by incorporating testability as a primary element of the
design process [Williams1983]. A common feature of DFT techniques is the
reconfiguration of a sequential circuit so that at test time it can be considered combi-
national. The sequential circuit latches are used to apply appropriate test vectors and
accumulate the resulting response vectors, and are thus themselves also tested
indirectly as they verify the combinational logic of the circuit under test. Level Sensitive
Scan Design (LSSD) [Eichelberger1977] is an example of such an approach.

In LSSD and similar approaches such as Scan Path [Funatsu1975], Random
Access Scan [Ando1980], and Scan/Set [Stewart1977], a test set must still be deter-
mined together with the valid responses. At test time each test vector must be serially
scanned into the circuit and the corresponding response serially scanned out. While
this type of approach greatly reduces the complexity of sequential circuit testing, there
are three difficulties:
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i) an appropriate test set must be determined, which can require
significant computation;

i) the time required to scan the test vectors in and the circuit
responses out can be excessive;

jii) the correct responses must be stored and compared to the
observed responses in order to determine if there is a detected
fault.

Built-In Self-Test (BIST)*! techniques address these points. In a BIST design the
generation and application of the test vectors and the analysis of the resulting
response are part of the circuit (or system) under test. As in the scan path techniques
a sequential circuit is treated as combinational with the sequential circuit latches used
as an integral part of the test. A significant feature of the BIST approach is its low pin
overhead which typically consists of two pins; one to put the chip into test mode and
one more to deliver the final pass/fail result. In this work the discussion of BIST will be
restricted to only those networks which consist of combinational logic and associated
sequential latches. In general, BIST refers to any design in which testing is a built-in
function of the system. For example, in most modern microprocessors the BIST tech-
niques described here are not applicable since programmable logic arrays (PLAs) and
microcoded ROM have replaced the random combinational control logic of earlier
designs. However, almost all modern microprocessors provide significant built-in testa-
bility features in order to verify correct system operation by using the on-chip proces-
sor and memory to run a built-in test program on power up or on user request
[Kuban1984]. An interesting paper describing the development of BIST in one
company’s microprocessor line can be found in [Daniels1985].

A BIST design requires a mechanism for generating an appropriate set of test
vectors. For some combinational blocks it is possible to exhaustively apply all the pos-
sible input patterns and compare the circuit response to a known correct circuit
response. An exhaustive input test set can be generated by a simple counter or, alter-
natively, by a maximal cycle length Linear Feedback Shift Register (LFSR)
{GolombiQBZ]."“2 For the conventional single stuck-at fault model, first considered in
[Eldred1959], an exhaustive test set ensures that every fault will be exercised.

However, if there are more than 20 inputs to the circuit under test, the time to
provide the test patterns (= 220 per circuit) and the memory to store the circuit
responses (2 m-22° bits, m =number of circuit outputs) becomes excessive
[McCluskey1985a]. For cases where an exhaustive test set is prohibitive a

41 Also referred to as Built-In Test (BIT), self-test, in-situ test, self-
verification, or autonomous test.

42 A LFSR with maximal cycle length can produce all input patterns except
00 - - - 0. If the all zero pattern needs to be included then a nonlinear feed-
back shift register which consists of extra logic added to the LFSR can be
used.

153



Chapter 4 Applications to Built-in Self-Test

pseudorandomly selected subset of the possible inputs to the circuit under test is
used. This requires an on-chip pseudorandom sequence generator which, in order to
reduce the overhead required for BIST, should largely consist of the sequential circuit
latches. A technique termed Built In Logic Block Observation (BILBO) [Konemann1979]
has emerged as the predominant approach to date and employs a LFSR with maximal
cycle length as the pseudorandom sequence generator.

The LFSR-based test pattern generator (L-TPG) is formed by the addition of
exclusive-or gates to the sequential latches with appropriate control logic so that the
latches can perform their normal circuit function as well as be reconfigured for testing.
The positioning of the exclusive-or gates is given by the primitive polynomial over the
Galois Field GF(2) required to form a maximal cycle length LFSR [Golomb1982]. Note
that if the length of the L-TPG must be increased (or decreased) due to a design
change (i.e. the number of circuit inputs changes) then a completely new primitive
polynomial (i.e. LFSR) is required. A further difficulty with L-TPGs is the requirement of
a feedback path from the most to the least-significant cell in the LFSR which further
complicates the layout of the register.

In this chapter it is shown that a L-TPG has a number of undesirable properties
which affect its use in a BIST environment. In particular, it is shown that LFSR gen-
erated patterns are not at all appropriate if memory-inducing faults, such as MOS
stuck-open faults [Wadsack1978], are being considered, and they provide less than
desirable fault coverage for delay or transition faults and other types of AC faults [Bar-
zilai1983].

The new pseudorandom number generators proposed in Chapter 2 are shown to
be more appropriate for BIST than conventional LFSR-based generators. In addition to
improved randomness properties these new pseudorandom test pattern generators
also have implementation advantages in that they require only adjacent-neighbour
communication and they are cascadable, i.e. the physical length of the generator®3
can be increased or decreased by simply adding or subtracting cells (it should be
noted that the area of each cell in a cellular automaton is comparable to a LFSR cell).
Therefore, the major redesign required in the case of the LFSR is avoided. This
means that a CA-based test pattern generator (C-TPG) is much more appropriate than
a L-TPG for incorporation in a computer-aided design (CAD) tool.

BIST also requires a mechanism for reducing the response data to a simple
pass/fail result using some form of data compression or compaction. Once again the
common suggestion is to employ a LFSR to form a signature of the output data
-[Frohwerk1977]. The use of a CA-based signature register in place of one based on a
LFSR is attractive from a layout perspective. Analysis of the effectiveness of such a
CA-based data compactor is reported later in this chapter.

43 For physical length n, where n is the number of cells, or bits, in the test
pattern generator, we have a maximum cycle length of 27 — 1,
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The overall effectiveness of BIST has been the subject of much research
[Miller1987] [Williams1986b]. Analysis is usually based upon the assumption that the
input test vectors are selected at random. Since BIST must use a pseudorandom
number generator to provide the sampling of the input space there will necessarily be
discrepancies between the observed and analytical behaviour of a BIST approach.
Using the results of Chapter 2 we see that CA-based generators are more random
than LFSR-based generators, so it is expected that the analytical models of BIST
effectiveness are more realistic in a CA-based BIST environment.

4.3. CONVENTIONAL PSEUDORANDOM TEST PATTERN GENERATION

The most popular hardware pseudorandom test pattern generator is the linear
feedback shift register. As described in Chapter 2, there are three methods for gen-
erating pseudorandom sequences using LFSRs. The method used extensively in the
application of LFSRs to BIST is the parallel technique which produces a new test pat-
tern on each clock cycle [McCluskey1985a] [McCluskey1985b]. Recall that the results
of Table 2.3 indicate that the parallel LFSR method consistently fails almost all of the
random number tests.*4

As indicated in Chapter 2, the most evident failure of the parallel LFSR is in the
bit sequence correlation test. The cross-correlation ridge across the entire LFSR of
Fig. 2.11(bottom) can be somewhat alleviated by using a feed forward, or multiplying,
shift register. In this case the cross-correlation of bits / and j where the tap lies
between / and j will be reduced to zero. However, as shown in Fig. 4.1(top), between
each tap the cross-correlation is still as in Fig. 2.11(bottom). Note that one cannot sim-
ply use a polynomial with n + 1 terms to describe the LFSR (i.e. a tap at each bit)
since these polynomials are not primitive, and so can yield very short cycle lengths.
One could also scramble the output bits of the LFSR so that adjacent bits in the LFSR
are not adjacent outputs. However, as shown in Fig. 4.1(bottom), where the bits in the
LFSR are randomly mapped to output positions, the cross-correlation ridge of
Fig. 2.11(bottom) has now been replaced by cross-correlation spikes throughout the
bits of the output pattern. Therefore, scrambling the output bits will not remove the
cross-correlation of bits. It should also be noted that it is unlikely that the bits in the
LFSR would be randomly mapped to output positions since this would create severe
problems in wiring; bits in close proximity in the LFSR would probably still be in close
proximity in the output pattern in order to keep the wiring relatively simple.

The cross-correlation of the bit streams in the LFSR vyields a number of circuit
faults which cannot be detected. For example, in Fig. 4.2 two circuits are given which
have faults which cannot be detected by a L-TPG. Figure 4.2(a) shows a simple two
input CMOS NAND gate. If we assume a combinational fault model (i.e. faults do not .

44 The same tests were made using the standard HP polynomial [HP1978]
and similar results were found.

155



Chapter 4 Applications to Built-in Self-Test

correlation

e

WA TNG

100 \.

correlation

Lo 0 o 0O
ON P o b
0 0 6 o 0o

L L ! L

,‘n

Figure 4.1 :  The cross-correlation of bit sequences in (top) a feed-forward LFSR
(x3% + x22 + x + 1) and (bottom) a random mapping of LFSR bits to
output sequence bits.
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Figure 4.2 :  Two problem circuits for LFSR-based test pattern generators (a) CMOS
2-input NAND gate and (b) a feedthrough network.

create a sequential circuit from a combinational circuit), such as the stuck-at fauit
model, then we can completely test the NAND gate using L-TPGs. However, if we con-
sider other circuit faults which do not cause the circuit to act as if a line is stuck-at
zero, or one, then the order of test input patterns may be important and the NAND
gate may no longer be fully testable. For example [Baschiera1984], an open circuit
fault on the B input p transistor induces memory into the circuit since the input A=1,
B=0 results in a floating output. This situation, which will hold the last output value until
it is eventually brought low by the leakage current, can only be detected by having the
input pattern 10 follow input pattern 11. However, this situation can never arise in a
L-TPG if the shift direction is from A to B since the value on input A will be on B when
the next input pattern is applied. Therefore, one can never completely test a simple
two input CMOS NAND gate for stuck-open faults since L-TPGs cannot generate out-
put sequences with an equidistribution of sequence orderings. Note that many other
simple circuits can be rendered L-TPG untestable if we use the stuck-open fault model
rather than the stuck-at fault model. Furthermore, if we consider CMOS latches and
flipfiops then the difficulties become even more intolerable. For example, in
[Reddy1986] it is shown that stuck-open faults can change static CMOS latches and
flipfiops into dynamic devices. In addition, it is impossible to detect some stuck-open
faults without allowing a sufficient amount of time for the charge to leak from the
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output and so reflect the fault (i.e. one cannot test for stuck-open faults at full circuit
operating speed). These problems can be overcome by adding some exira transistors
to the CMOS latch or flipflop.

In [Mucha1986] it is shown that if a single spacing site is used between each bit
in the LFSR (i.e. an N input circuit will require an N + N bit LFSR) then all single
stuck-open faults can be detected. However, this is not a desirable situation since the
extra N spacing bits will require extra area and also will reduce the operating speed of
the L-TPG. As well, the general case of multiple stuck-open faults is still not ade-
quately tested unless we add g spacing sites between each output bit in the L-TPG,
where g refers to the number of multiple stuck-open faults to be considered. It should
be noted that the number of spacing bits can be drastically reduced if fault simulation
is used to identify circuit inputs which are susceptible to cross-correlation in the LFSR.
However, rather than be forced to add spacing sites or to do extensive fault simulation
to find the minimum required spacing bits, it would be more desirable to have a test
pattern generator (TPG) which has an equidistribution of sequence orderings. This is
equivalent to requiring that the sequence generated by the TPG pass the serial ran-
dom number tests of Chapter 2.

In Fig. 4.2(b) we consider another very simple failure case [Carter1982]. Here a
portion of the circuit under test merely consists of two direct connections from the L-
TPG to the LFSR-based multiple input signature analysis register (L-MISR). If we
assume that there is no feedback tap in position / of the L-MISR and that the shift
direction in the L-TPG is from /i to j, then a fault where lines / and j are both stuck-at
0 cannot be detected. This is because of the correlation of L-TPG outputs / and j. The
L-MISR will detect the fault when a 1 is applied to input / but, since input j must have
the previous value of /, the fault will be cancelled out when the next test pattern is
applied. These two examples, along with many others, show a deficiency of L-TPGs
and L-MISRs for BIST due to the correlation between adjacent bits. It is recognised
that it is quite easy to find a L-TPG which could test these two simple circuits (e.g.
scrambling the bits or using spacing bits in the LFSR) but it is just as easy to find
another simple CMOS circuit which cannot be tested by the new L-TPG. In addition, to
use LFSR-based BIST schemes which adequately test the above problem circuits, one
must have prior knowledge of the circuit under test; this is a decided deficiency for a
pseudorandom TPG.

These problems lead to the conclusion that conventional L-TPGs, and to a lesser
extent L-MISRs, have some major disadvantages and alternative TPGs and MISRs
which avoid these problems but utilise comparable area and time would be very desir-
able devices.

4.4. COMPARISON BETWEEN CA AND LFSR

The approach taken in this work towards hardware pseudorandom number gen-
eration for parallel computing architectures can also be applied to BIST. The pro-
posed new BIST structure will be referred to as Cellular Automata-Based Logic Block
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Observation (CALBO). Four immediate benefits for the CALBO approach are apparent:

i)  the communication is local, being restricted to nearest neighbour
cells, which provides freedom from the communication constraints
of a LFSR;

i)  the cells are regular and topologically equivalent to one another, in
contrast to the increasing complexity of a LFSR layout as the
number of sites increases;

iii) routing for the test circuit is no more complicated than the original
interconnection of latches (i.e. the topological complexity is con-
tained);

iv} the ability to pass random number tests arises naturally from class
3 (autoplectic) behaviour of cellular automata.

Based upon the autocorrelation functions (cross-correlation at i = j) the LFSR,
CA rule 30, CA rule 45, and hybrid cellutar automata are all observed to display excel-
lent frequency distributions (white spectra). Advantages of cellular automata arise
from the reduced cross-correlation associated with cellular automata as compared to
the LFSR. As discussed previously, single bit outputs from the LFSR and the above
cellutar automata are pseudorandom but in most BIST applications the test patterns
are generated by considering many bits of the register in parallel. This leads to
nonpseudorandom sequences for the LFSR because of the cross-correlation. In addi-
tion, there are a number of other problems with sequences generated by considering
bits of a LFSR in parallel. Fig. 4.3 illustrates the time evolution of: (top) a rule 30 cellu-
lar automaton (length 89, random initial state, cyclic boundary conditions); (middle) a
rule 90 and 150 hybrid (length 90, random initial state, null boundary conditions); and
(bottom) a LFSR (length 89, random initial state). This figure clearly indicates the
much improved cross-correlation properties of C-TPGs over L-TPGs.

The rule 80 and 150 hybrid with single site spacing may be used to provide test
patterns for two circuits at the same time by providing alternate site outputs to each
circuit under test. This avoids wasting the extra area required for the site spacing and
still provides completely uncorrelated test patterns for both circuits. An interesting point
~ to note in this case is that the rule 90 and 150 hybrid may be used as a more com-
plete exhaustive test pattern generator than the LFSR. Bate and Miller [Bate1987]
have shown that to exhaustively test an n input CMOS combinational circuit one must
apply n27+ test patterns (the extra factors result from the consideration of single
stuck-open faults). In such a situation a 2n stage LFSR, or some variation thereof, is
usually used. However, this may not be acceptable since there is still considerable
cross-correlation between semiadjacent sites and it is possible to miss seme faults. On
the other hand the unit spaced rule 90 and 150 hybrid has no cross-correlation and so
may be able to generate a more complete exhaustive test. That is, by using a rule 90
and 150 hybrid with a site spacing of 1, it is possible to get a percentage of stuck-
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open fault coverage that would not be possible using a 2n-bit LFSR, provided one is
prepared to let the test structure run sufficiently fong. In this case, a more complete
exhaustive test is best considered pseudoexhaustive and sufficiently long refers to a
time roughly equal to, but not excessively longer than, the burn in time.

Another advantage of CA-based generators lies in the consideration of the serial
random number test resuits. Here we see that pairs, triples, quadruples, etc... which
are crucial to the detection of memory inducing stuck-open faults, are well distributed
(i.e. all n-tuples are possible) using any of the CA-based generators, except the rule
90 and 150 hybrid with no site spacing. On the other hand, in the LFSR pairs, triples,
quadruples, etc... are not at all well distributed because of the inherent cross-
correlation.

4.5. FAULT COVERAGE

Fault coverage is defined here to be the fraction of all possible faults in a circuit
under test which are stimulated by a given set of input test patterns. The input test pat-
terns may be generated algorithmically [Roth1967], or may be found by a random, or
pseudorandom, sampling of all possible input patterns. Here we will consider input
patterns generated by a pseudorandom TPG and will use fault coverage as a measure
of the quality of the test set.

in order to derive estimates of fault coverage a fault detectability analysis of the
circuit under test must first be made. The detectability of a fault is the number of input
patterns which will exercise the fault [Malaiya1984]. Using these results a detectability
profile, H, is constructed;

H=[h1,h2, <, byl (4.1)
where

N = the number of input patterns, i.e. 27
for an n input circuit._
he = the number of faults with detectability k.

A property of the detectability profile is that
N
k=1

where
M = the number of possible faults.

Note that in this analysis the stuck-at fault model is usually used since we are consid-
ering only faults which can be detected by single patterns.5 The detectability profile

45 Other faults may require a setup pattern followed by the error detecting
pattern as in the NAND gate of Fig. 4.2.
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can either be found exactly using a technique such as the D-algorithm [Roth1967] or
can be estimated by probabilistic analysis such as Savirs cutting algorithm technique
[Savir1984]. In any case, it is generally regarded that finding the detectability profile of
a circuit is not a trivial task.

The only way to find the exact fault coverage of an input test set, including a
pseudorandom set, is through extensive fault simulation. However, this is usually not
practical for pseudorandomly generated patterns since the large number of patterns
makes simulation prohibitively expensive. Rather, probabilistic arguments are used to
derive the expected fault coverage E[C, ], where E[C;] is the expected number of
faults that can be detected by a test set of length L divided by the total number of
possible fauits, M [Wagner1987]. Most analyses of expected fault coverage for pseu-
dorandom TPG use a random sampling model where one samples with replacement
from a set of N possible different vectors. For random testing, [Malaiya1984] has
shown that the expected fault coverage is

N k My
EiC,1=1 - 1 -y X 4.3
[C1] ,E( N) M (4.3)

In [Wagner1987] a sampling model is used where one samples without replacement
from the set of N possible different input patterns. It can be shown, using this model,
that the expected fault coverage is

N-L
N‘L[ k ] hy
ElC]=1- 3, - (4.4)
k=1 N] M
k
N-L L hy
=1~ 1=k —= 4.5
ké( ARy (4.5)

The analysis of [Wagner1987] is more appropriate and accurate for both L-TPG and
C-TPG since both TPGs generate each test pattern only once per cycle. However, the
random number test results presented in Chapter 2 illustrate the inadsquacy of
sequences from LFSRs for use as pseudorandom sequences. The analysis of fault
coverage given above assumes a pseudorandom test pattern source, so when a LFSR
is used as the source it should not be expected that the fault coverage and other cal-
culated measures will be entirely accurate. This does not imply that the fault coverage
of the LFSR will be degraded, only that the analysis is not entirely accurate.*® The
analysis of [Wagner1987] assumes that each test vector has an equiprobable chance
of being selected, yet after one vector has been selected there is nota 1 in N — 1
chance of selecting a given vector. Instead, since the LFSR shifts to the right, we are
restricting our seléction to one vector out of two rather than N — 1. This compares to

48 It should be noted that the predictions made using the sample without re-
placement model correspond closely to actual results derived from computer
simulations [Chin1987].

162



Chapter 4 Applications to Built-in Self-Test

cellular automata where all bit positions are not simply shifts of other bits but functions

of -other bits, thereby making the behaviour much more apparently unpredictable and

hence more pseudorandom. Therefore, the analysis of [Wagner1987] would seem to

be more appropriate for better pseudorandom sequence generators such as the C-
TPGs described here.

Other measures of test quality such as test confidence,

N-L
°L=1"[1’\(1} , (4.)

k
the probability that a particular fault with detectability k will be detected in a test of
length L, expected test length,

N+1
k+1 '

for a particular fault of detectability k, and average test length to detect all fauits if all
faults are equally likely,

E[L;] = @.7)

N+1 M By
M Sk
have also been derived in [Wagner1987] using the sampling without replacement
model. It is expected that these measures also hoid for C-TPGs.

What is of most concern to a manufacturer of integrated circuits is the probability
of shipping a faulty chip. This is usually termed the defect level, DL, and can be
shown to be modelled by [Williams1985]

DL =1 - Y\ -ElG) (4.9)

(4.8)

M=

E[L] =

It

where

Y = process yield, i.e. the probability of
manufacturing a good chip.

The effect of process yield on the required fault coverage in order to have a given
detect level is illustrated in Fig. 4.4. Notice the sensitivity of defect level, and thereby
the required fault coverage, to the process yield. Typically the fault coverage versus
the number of random test patterns results in a curve such as that shown in Fig. 4.5
[Williams1985]. Therefore, given a desired defect level and the process yield, one can
determine the necessary test pattern fength, using either Fig. 4.5 or Eqns 4.5 and 4.8.
This calculation is normally employed in designs using L-TPG but also will hold if the
design uses a C-TPG; we maintain that this analysis is more accurate for C-TPGs than
L-TPGs since a truly pseudorandom TPG is assumed.

It was previously noted that the above analysis assumes a stuck-at fault model. If
we use a more complicated fault model incorporating stuck-open or ac faults then, as
we have seen in the example problem circuits of Fig. 4.2, the fault coverage of the L-
TPG is lower than the C-TPG. This is also shown in [Barzilai1983] where an empirical
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analysis of a 27 input, 7 output circuit with 262 ac faults showed that a L-TPG could
not achieve 100% fault coverage for slow-to-rise and slow-to-fall faults. However,
100% fault coverage could be achieved by a truly pseudorandom TPG. In Chapter 2 it
was shown that the cellular automata under consideration for use here as C-TPGs,
produce the equidistributed pairs necessary for the detection of these faults. There-
fore, C-TPGs should provide improved fault coverage as compared to L-TPGs for ac
faults. '

Finally, we note that the probability of detecting ac faults is much lower than that
- of traditional stuck-at fault detection. For example, in [Waicukauski1987] an empirical
analysis of the Brglez-Fujiwara circuits [Brglez1985] reveals that many more random
test patterns are required for ac faults than for dc faults in order to reach the point at
which one cannot detect new faults, i.e. only undetectable faults remain.

4.6. WEIGHTED PATTERN GENERATION

An interesting possibility for CA-based generators is that it may be possible to
generate pseudorandom sequences which have a statistical weighting to one region of
the test pattern space. This area has been investigated for L-TPGs by several authors.
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However, either the resulting BIST structure is very large [Schnurmann1975] or the
selection of weight probabilities is very limited [Chin1984]. We know that the rule 90
and 150 hybrid exhibits weighted pattern generation properties for longer sequence
lengths. However, it would be enlightening to check if other cellular automata exhibit
this property and whether or not the weighting probability can be easily adjusted.

In Appendix C a set of tables are given showing the weights of 1 bits emanating
from various positions in all primative one-dimensional cellular automata. it can be
seen that the weight probabilities vary depending on the CA rule used and in some
cases on the position in the cellular automaton. However, we must also ensure that
the generated patterns also conform to a weighted pseudorandom sequence. This
means that the random number tests of Chapter 2 would need to be modified in order
to properly test a sequence which is not equidistributed. It is not the intent of this work
to perform an in-depth study of weighted pattern generation using C-TPGs but rather it
is important to note that C-TPGs may be capable of this type of test pattern generation
for BIST. Furthermore, it is also possible that some form of hybrid or synthesised cellu-
lar automaton may provide the desired function. However, in general the generation of
a cellular automaton conforming to a given pseudorandom statistical weighting is a
very complex problem.
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4.7. SIGNATURE ANALYSIS

As mentioned in the introduction, BIST requires some mechanism to reduce the
volume of output response data from the circuit under test to a simple pass/fail result.
The most popular output test data compaction method uses error detection and correc-
tion techniques for cyclic redundancy check (CRC) codes. These error detecting and
correcting circuits make extensive use of LFSRs and were developed in the late 1950s
and early 1960s [Prange1957] [Megqitt1961]. They are well understood and are
thoroughly explained in the algebraic coding theory literature as syndrome detection
[Lin1983] [Peterson1972] and in the digital testing literature as signature analysis 47
[Fujiwara1985] [Tsui1987]. In the present work we focus our examination on the use
of cellular automata for signature analysis (SA) in BIST. To facilitate the discussion
concerning the proposed CA-based signature analyzers a brief summary of conven-
tional LFSR-based signature analyzers follows.

4.7.1. LFSR-Based Signhature Analysis

The conventional signature analysis circuit uses a LFSR to implement a repeated
polynomial division of a binary input data stream. In Fig. 4.6 the two methods of imple-
menting polynomial division using LFSRs are shown. Here we will consider an m bit
LFSR to be implemented using its characteristic polynomial

C(X)=Cux™ + Cp_Xx™ 14+ - +eyx+¢y . (4.10)

We also consider an n bit binary data stream to be represented by the polynomial

47 This term was introduced by Hewlett-Packard to describe the first com-
mercial product using these principles [Chan1977].
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P(x)=poax"™ 4 ppox" 24 <o 4 pix+pg (4.11)
where the high order coefficient, p,_q, enters the LFSR first, followed on successive

clock cycles by the lower order coefficients. Finally, we define the quotient of —g%))— to
be

P —m— —m—
Q)= —5%))_ = Qrema1 X" 4 G oX T2 X + Qo . (4.12)

If the contents of the LFSR is initially set to zero then after n clock cycles the quotient,
Q(x), has appeared at the output (most significant coefficient first). For the circuit of
Fig. 4.6(top) the contents of the LFSR after n clock cycles corresponds to the
remainder or signature, S(x), of the division. Therefore, we have

Px)=Q(x) - C(x)+ S(x) . (4.13)

For the purposes of this work we will consider P(x) to correspond to the output from a
single output fault free network under stimulus from a given set of input patterns. We
then define the output from the same circuit in which a fault has occurred to be Pg(x),
where we assume that P(x) # Pg(x) and that the same set of input patterns for both
the fault free and faulty circuit were used. The error polynomial, £(x), will be defined
to be the difference between P(x) and Pg(x), so

Pe(x)=P(x)+ E(x) . (4.14)

An undetectable error is one for which the signatures of P(x) and Pg(x) are the
same and in such a situation the signature analyzer is said to have produced an
aliased output. The fact that aliasing can occur is indicative of the fact that SA is a
compact testing method [Losq1976], i.e. some error information is lost, as opposed to
a data compression technique where no information is lost.

In the case of the LFSR circuit of Fig. 4.6(bottom) the output also corresponds to

the quotient of —g{%)l but the final contents of the LFSR is not the remainder of the

division. However, the final contents of the LFSR is also called the signature of P(x)
because it is isomorphic to the actual remainder and so the two signature analyzers
share the important property of Theorem 4.1.

Theorem 4.1: [Frohwerk1977] If S(x) is the signature of P(x) using the circuit of
either Fig. 4.6(top) or Fig. 4.6(bottom) then Sg(x), the signature of
Pe(x), will equal S(x) if and only if E(x) is a multiple of C(x), the
characteristic polynomial of the LFSR.
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Proof: [Smith1980] For the signature analyzer of Fig. 4.6(top) we see from
Egn. 4.13 that

Px)=Q(x)  C{x)+ S(x) . (4.15)
From Eqns. 4.14 and 4.15 we have
Pe(x)=P(x)+ E(x) = Qg(x) - C(x) + Sg(x) . (4.16)
if S(x) = Sg(x) and we substitute for P(x) then
Qx)- C(x)+ SX)+ E(x)=Qe(x)- C(x) + S(x) . (4.17)
S0
E(x)=(Q(x)+ Qe(x) ) Ci{x) . (4.18)

Thus, E(x) is of the form A(x) - C(x), i.e. a multiple of C(x).

For the signature analyzer of Fig. 4.6(bottom) a more difficult analysis is
required and the reader is referred to [Meggitt1961].

Using Theorem 4.1 a measure of the effectiveness of signature analysis for the
detection of single bit errors (i.e. E(x) has just one nonzero term) can be derived.

Theorem 4.2: [Frohwerk1977] A signature analyzer using a LFSR based on a
characteristic polynomial with two or more nonzero terms will detect all
single bit errors.

Proof: [Smith1980] If C(x) has two or more nonzero terms then any multiple of
C(x) must also have two or more nonzero terms. In Theorem 4.1 we showed
that E(x) must be a multiple of C(x) in order for S(x) to equal Sg(x). There-
fore, if E(x) has only one nonzero term it cannot be a multiple of C(x), and
must therefore be detectable.

Several other measures of the effectiveness of LFSR signatures have been pro-
posed in the literature and will be stated without proof.

Theorem 4.3: [Frohwerk1977] [Smith1980]. For a data stream of length n, if alf
possible error patterns are equally likely, the probability that a length m
signature analyzer will not detect the error is

27m A

4.19
2" - 1 19

Note that as n — oo, the probability of missing an error becomes 27, However,
the theorem is not as strong as one would like. For example, unlike Theorem 4.2, the
choice of characteristic polynomial used in the LFSR has no bearing on its error-

168



Chapter 4 Applications to Built-in Self-Test

Circuit under Test

L=
e
A\ Fas

¢
>

<
Ae
L~

5]
AN

e
A
=
A
<

E
5 N

| l l I

Figure 4.7 :  Multiple input signature analysis register

detecting capability for multibit errors. This means that a LFSR with a simple C(x)
such as x” is as effective as a LFSR with a much more complicated C(x) such as
x18 + x® + x7 + x* + 1 [HP1978]. However, intuitively one would think that a more
complicated LFSR would lead to better signature analysis. This discrepancy between
Theorem 4.3 and intuition lies in the fact that, unlike communication channels where
transmission errors can be assumed independent, output errors in digital systems due
to circuit faults are not independent [Smith1980]. Notice that Theorem 4.3 indirectly
assumes error independence since all errors are equally likely. However, deriving
measures of error detection when errors are dependent is difficult. {Smith1980] has
examined specific types of dependent errors such as burst errors and errors due to
repeated use, but further analysis of other types of dependent errors is not generally
available in the literature. Therefore, in the light of the difficulty in performing a general
analysis of dependent errors it would appear that fault simulation of the circuit under
consideration is the only means of truly determining the effectiveness.

Up to this point only signature analyzers operating on a single stream of data
have been considered. Most practical circuits have many outputs. To form a signature
of the output from a multiple output circuit one could: 1) place a separate signature
~ analyzer on each circuit output; 2) direct each output in turn to the LFSR using a muiti-
plexer and form the signature on the resulting single bit data stream [Benowitz1975];
or 3) one could use a multiple input signature analyzer register (MISR) such as that
shown in Fig. 4.7 [Benowitz1975]. Option 1 requires excessive area since a register
will be required at each output, while option 2 suffers a time penalty in converting the
parallel output data to a serial data stream. Presently the MISR circuit of Fig. 4.7 is
considered to be the most efficient means of producing a signature of a multiple bit
data stream. Several analytical measures of error detecting capability for MISR circuits
have been proposed.
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Theorem 4.4: [Bhavsar1981] Consider an r output circuit and assume that all pos-
sible error sequences are equally likely. If one forms a signature on N
output vectors from the circuit using an m-bit LFSR then the probability
of faifing to detect an error is

2rN—m -1

o (4.20)

Proof: We see that for N r-bit output vectors there are 2V — 1 possible error
sequences. It can be shown that an m-bit LFSR which implements a primitive
characteristic polynomial maps all possible input sequences equally over the

2™ possible signatures. Therefore, the number of error sequences which cause
)

aliasing is —2—’7—,——1— since there are 2™ — 1 possible signatures which do not

cause aliasing. Thus, the probability of failing to detect an error sequence is
2rN-m -1

] (4.21)

Notice that once again all errors are assumed to be equally likely and that as
N —0oo the probability of aliasing becomes 2=, The analysis of [Carter1982] requires
almost no assumptions of the output error patterns.

Theorem 4.5: [Carter1982] If N input test patterns are applied randomly then the
probability of aliasing in an m-bit LFSR is less than 4/N where we
assume that m > log,(N-1).

This result makes no assumptions on the input test pattern generator other than
that the test set be applied in random order. Therefore, the results of Theorem 4.5 are
equally valid for both a specially selected set of test vectors (i.e. through fault simula-
tion ) or a randomly-generated set of test vectors. However, many consider this upper
bound to be overly pessimistic. Carter himself has indicated his personal belief that the
probability is < N~ but has been unable to show this. A further point to note is that
once again no restrictions are placed on the characteristic polynomial of the LFSR. An
empirical study on 41 typical circuits [Muzio1987] shows that the probability of aliasing
is greatly dependent on the charteristic polynomial. As well, for complicated polynomi-
als such as the 16-bit HP polynomial, the results of [Muzio1987] seem to agree with
an analytical study [Williams1986a] that the actual probability of aliasing is much closer
to 2° rather than 4/N.

4.7.2. CA-Based Sighature Analyslis

We proceed to describe and propose some measures on the effectiveness of sig-
nature analysis using cellular automata.
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Figure 4.8 :  Two techniques of SA using CA-based MISRs;
. (top) method 1: R(t+1) = R(t) & O(t+1).
(bottom) method 2: R(t+1) = (R(t) ® O(t)).
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Figure 4.9 : - Comparison of the rule 90 and 150 hybrid, CA rule 30, and the LFSR
for signature analysis. Global state transition diagrams and data
compression permutations for (top) rule 90 and 150 hybrid and LFSR,
and (bottormn) CA rule 30.
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4.7.2.1. Two Methods of C-MISR Impiementation

The nearest neighbour communication properties required for implementing ele-
mentary one-dimensional cellutar automata allow the consideration of several different
techniques of SA. Here we will only consider four methods but it is acknowledged that
other techniques are possible and may, after due consideration, prove to be more
satisfactory. The first two techniques are shown in Fig. 4.8. In Fig. 4.8(top) we see that
the signature is formed by updating the cellular automaton and then exclusive-oring
the current state at each site in the cellular automaton with the corresponding output
from the circuit under test. This means that the number of sites required in the cellular
automnaton is equal to the number of outputs from the circuit under test. Notice that this
is directly analogous to conventional L-MISRs. The second technique, shown in
Fig. 4.8(bottom), is similar except that here we first exclusive-or each site with the
corresponding circuit output and then increment the cellular automaton. These two
methods can be described algebraically by the following equations.

Method 1:

R(t+1) = R(t) ® O(t+1) . (4.22)
Method 2:
R(t+1) = (R(t) ® O(t)y . (4.23)
where
A(t) =  cellular automaton contents at time .
O(t) = circuit output at time t.
A(t)y = the incremented value of the cellular automaton contents at time ¢.

In the BILBO circuit, signature analysis is usually performed via a multiple input
signature analysis technique in a similar manner to the generation of cyclic redun-
dancy codes. It can easily be shown that the CALBO circuit is also capable of com-
pacting data as a consequence of the excellent pseudorandom number generation
capabilities of ceilular automata. The properties of the multiple input LFSR, the rule 90
and 150 hybrid, and CA rule 30 or 45 of importance in signature analysis using
methods 1 and 2 are summarised in Fig. 4.9. Figure 4.9(top) represents the state
transition diagram associated with a LFSR having a maximal cycle length. Data com-
paction and subsequent signature generation is accomplished by mixing output vectors
for the system under test with the present LFSR state. This effectively permutes the
state transition diagram as indicated by the dashed lines. As the multiple inputs to the
L-MISR are nondeterministic, each point in the state space is equiprobable including
the null, or zero, state. A similar mapping is appropriate for the maximal length rule
90 and 150 hybrid discussed previously.

The situation for CA rule 30 is somewhat different in that it is not a maximal cycle
length state machine, but rather one whose state transitions consist of trees and sub-
cycles as indicated in Fig. 4.9(bottom). We suggest that for signature analysis, this
state diagram may also be appropriate because of the nondeterministic nature of the
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Figure 4.10 : A directed m-ary tree. Here m = 3.

outputs from the system under test. Transitions readily occur between states in
separate cycles (semigroups), so that all states in the state space of CA rule 30 are
also equiprobable. Hence data compaction capabilities should be similar for cellular
automata and. LFSRs. Note that in the case of the second LFSR problem circuit of
Fig. 4.2(b), the missed error occurred because the signature analyzer cancelied out
the error when the LFSR shifted. If a CA-based MISR (C-MISR) had been used the
error would not be cancelled since each bit in the C-MISR is a function of the incoming
information and its three neighbour bits. This contrasts with the L-MISR where each bit
is a function of the incoming information and only one neighbouring bit. However,
different cellular automata will yield different aliasing probabilities and thereby indicate
which cellular automata are more suited for use in C-MISRs.

Unlike the L-MISR there is a very large number of different cellular automata-
based structures which can be used as C-MISRs. This variety allows for a great deal
of flexibility in C-MISR design, but at the same time it is impossible to do an exhaus-
tive examination of all the possibilities and identify the best overall implementation.
One is also severely constrained by the lack of formal algebraic techniques for exa-
mining the evolution of many CA implementations. Here some results will be presented
which attempt to identify properties that should be possessed by candidate celiular
automata for SA, using methods 1 and 2.

We first consider the evolution of states for different cellular automata. The
behaviour of many cellular automata is similar to that shown in Fig. 2.26 in that there
are many cycles and paths to the cycles. This compares to the most common LFSR-
based MISRs which have one large cycle of 27 — 1 states and the zero state as a
one-cycle. The major difference for SA is that in cellular automata which have an evo-
lution of states similar to that of CA rule 30 we have individual states with more than
one predecessor. The ramifications of this can be most readily determined by studying
SA on a directed m-ary tree. Here we define a directed m-ary tree to be a tree in
which each state other than the so called garden of eden states has m possible
predecessors directed towards itself, as shown in Fig. 4.10, and the mapping of the N
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possible states is randomly ordered.

Lemma 4.1: Consider three binary words A, B, and X, then A @ X = B & X,
ifA # B.

Proof: Consider binary values, &, b, and x, where @ = b, then a ® x = b & x
by nature of the bitwise exclusive-or operation. Therefore, if A, B, and X are
binary words, where A = B, then A ® X # B & X since the exclusive-or
operator operates only on single bits.

Lemma 4.2: 1-x < 7%,
Proof: For all x, @™ can be represented by the alternating power series
2 3
1-x+ %I— - —;— + - - . We see that alternating terms decrease in magni-

tude so that 1-x < e™*.

Theorem 4.6: Using signature methods 1 and 2 on a directed m -ary tree the pro-
bability that the signatures of two random sequences, which differ in
only one element, are different T increments after the differing element,
is

~T{m-1
<e N . (4.24)

Proof: Let SA4(t) and SA,(t) be the signatures after t elements of sequences 1
and 2, respectively. Let the differing element occur in element s, then
SA(s-1) = SAy(s—1) but SA(s) = SA,(s). Here we are considering an
m-ary tree where each branch has the form of Fig. 4.11. The only way in which
SA{ and SA, can become equal under method 1 at step ¢ is for the exclusive-
oring at step f-1 to have permuted both SA(t-2)" and SA,(t-2), to the
sam? set of m possible successors states. The probability that this occurs is
m_

N
Lemma 4.1. Therefore, the probability that SA; and SA, remain different at

each step is 1 - mf\—l1 . Under method 2 for SA4 and SA, to become equal

on step t, the exclusive-oring at step t must permute both SA(t-1) and
SA,(t—1) to the same set of m predecessor states. The probability that this
occurs is the same as for method 1. This occurs independently for each step
under methods 1 or 2 so, T steps after the differing element, the probability that
SA and SA, have, at some step, been permuted to the same set of predeces-
sors using methods 1 or 2 is

. Note that they cannot be permuted to the same predecessor state by
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Figure 4.11 : A degree m branch in a directed m -ary tree.

(-7 (4.25)

Therefore, by Lemma 4.2 and setting x = mN

methods 1 and 2 on a directed m-ary tree the probability that the signatures of
two sequences differing in only one element remain different, T elements after
the differing element, is

we can say that, using

~T{m-1 .
<e N . (4.26)

Of course, most CA rules do not implement directed m-ary trees or even directed
binary trees for that matter but using these techniques we can form more exact meas-
ures for differing cellular automata. We first consider a general tree structure such as
that shown in Fig. 4.12. Here we have branches with varying degrees including those
with degree zero (i.e. states with no successor) which are sometimes referred to as
graveyard states. We can tabulate the number of branches of degree / as N;. For
example, Fig. 4.12 has two branches of degree 2 so N, = 2. Notice that the total
number of states, N, equals

No+ Y i-N,. 4.27)
N >0
Theorem 4.7: Consider a general tree structure with N; branches of degree i,

then the probability that the signatures using methods 1 and 2 of two
random sequences differing in only one element are still different, T
‘steps after the differing element, is

f - JON T 428
P IR B
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Flgure 4.12 : A general directed tree structure. Here Ny=1, Ny =2, Ny=2,
Ng=1,and Ny =1.

Proof: As in Theorem 4.6, let SA; and SA, be the signatures of sequences
1 and 2, respectively and let the differing element occur in element s. Since
each sequence is random, the values must be equidistributed. It can be shown
that the exclusive-or operator is linear and so, SAy and SA, are permuted
equally around the tree by the circuit outputs. Therefore, using method 1, the

i N;

N b}

for i = 0. For SA; and SA, to become equal at some step

probability that SA¢(f)" has been permuted to a branch of degree i is

No
N
t > s using method 1 both SA(f-2)" and SA,(t-2)" must be permuted to the

same branch. Given that SA; has been permuted to a branch of degree i the

for i 21 and

probability that SA, will be permuted to the same branch is -’—’_VJ— Therefore,

the probability that SA(f-2)" and SA,(t-2)’ are permuted to the same branch
equals the sum over all the branches of degree > 1 of the probability that
SA1(t-2) is permuted to a branch of degree i/ multiplied by the probability that
SA,(t-2)’ is permuted to the same branch, i.e.

=N i N
— ..y 1 (4.29)
all branches N N N30 N N
' i(i—1)N;
= X (4.30)
N,'>0
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Figure 4.13 : A directed binary tree with 7 branches

Therefore, the probability that SA(t—-2)" and SA,(t-2)" are not permuted
to the same branch (i.e. remain different) is
1- % =N (4.31)
o NP . .

A similar argument can be constructed for SA method 2.

The probability of SA; and SA, remaining different at each SA step is
independent, so T steps after the differing element the probability that SA and
SA, are still different is

{1 i(i-1)N, }T
-y _ (4.32)

N,')O N2

A quick check to verify that Theorems 4.6 and 4.7 agree shows that if we use the
directed binary tree of Fig. 4.13 then the probability of not aliasing on each step

according to Theorem 4.7 is 1 -— 2'1142' / = 12 which equals the result of
1 13
_— = 4.6.
1 12 12 frgm Theorem 4.6

Using Theorem 4.7 we can now find the probability of aliasing on single bit errors
for any CA-based MISR provided we know the state transition diagram. For example, a

4 bit cyclic rule 30 cellular automaton has the state transition diagram of Fig. 4.14(top),

yielding a probability of not aliasing of (1 —2—26—)T= 0.9697, while a 4 bit null
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Figure 4.14 : Stale transition diagram for (top) 4 bit rule 30 cellular automaton with
cyclic boundary conditions. (bottom) 4 bit rule 30 celiular automaton
with null boundary conditions.

boundary rule 30 cellular automaton with state transition diagram, as shown in

Fig. 4.14(bottom), has a probability of not aliasing of (1 — -2%)7 =0.9777. If we

- examine more CA-based MISRs we see that a trend establishes itself. This trend indi-
cates that cellular automata with the fewest degree = 2 branches in the state transition
diagram have the smaliest aliasing probability. In fact, we see from Theorem 4.7 that if
the state transition diagram consists only of unary branches (i.e. cycles) then the alias-
ing probability for single bit errors is zero. A number of CA rules lead to such
behaviour and are listed in Table 4.1.
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Rule Equation Boundary Length
204 a;(1) all all

51 aity all all
60 a1 (H®a;(t) null all
195 a(h®a;(t) null all
102 a;(t)®a;_4{h null all
153 ai(t)y®a;_4(1) null all
80 i {(1)®a;4(f) null 46,8, -
165 py(1)D a4 (1) null 4,68, - -
150 a{ty®a(t)da4({t) null 46,8, -- -
105 8(1)®a(t)®aiyn null 46,8, -
240 ap44(t) cyclic all

15 ai.4(t) cyclic all
170 a;_4(t) cyclic all
85 a_((t) cyclic all
150 aiq{t)®a(t)dai () cyclic all
105 a4 (1)®a;(t)Da;_yy cyclic all
101 (@ia{thvat)®a cyclic 579, ---
154 (a(oa(t)@a_yy cyclic 579, ---
89 (@iua;(1)®ai(t) cyclic 5709, -
166 (@i ua())®a () cyclic 579, -
75 A {1)Y®(a;{thuai (1) cyclic 579, -
180 a1 (B8 (Huai4(t) cyclic 579, -
45 a(1)®(a;(t)uai (1) cyclic 57,9, -
210 (8 (a;(thua (D) cyclic 5,7.9,---

90, 150 hybrid i (1YPa;_4(t)
aq{hoa;(i@a4(t) null 4.6,10,12, ---

Table 4.1:  CA rules implementing a cyclic group for both nuli and cyclic boundary
conditions.
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Theorem 4.8: Using SA methods 1 and 2 we will always have a different signa-
ture for two sequences differing in only one element provided that the
MISR’s rule of operation forms a cyclic group.

Proof: A cyclic group’s state transition diagram consists solely of unary branches
so, from Theorem 4.7, we see that the probability of aliasing given a single
differing element is zero. Therefore, the two sequences must have different sig-
hatures.

A second proof for Theorem 4.8 can be made by using induction on
Lemma 4.1.

Let the differing element occur in element s then SA{s) = SA,(s). Using
method 1 on the next signature step we have by Lemma 4.1

SA(s+1) = SA{(s) ® O(s+1) = SA,(s) @ O(s+1) = SA,(s+1) . (4.33)
Assume that SA,(t—1) = SA,(t-1), t = s+k > s+1, then by Lemma 4.1
SA(t) = SA4{t—1) ® O(t) = SA,(t-1) ® O(t) = SA,(t) . (4.34)

Therefore, the statement is true for t =5, s + 1, and s + k so by induc-
tion, it is true for all t > s.

For SA method 2 a similar inductive argument to that for SA method 1 can
be used. Thus, if the MISR’s rule of operation forms a cyclic group, SA using
methods 1 and 2 will always yield a different signature for two sequences
differing in only one element.

Notice that Theorem 4.8 also holds for conventional L-MISRs.

The general theorem for m-ary trees and the specific example for CA rule 30
show that implementing a MISR using a circuit which contains states with multipie
predecessors, such as that which occurs in many CA rules, is poor. This is especially
true when we compare the results to Theorem 4.8 where we see that guaranteed
detection of single differences, or errors, is possible using LFSRs and certain CA
rules. Therefore, only those rules implementing cyclic groups should be used for
MISRs since for single errors both C-MISRs and L-MISRs will provide the same fault
detection capabilities. Thus, for single errors, it has been shown that using a C-MISR
built from a CA rule of Table 4.1 provides equivalent SA properties to those of a L-
MISR.

For multiple errors we must consider how the additional errors will affect the pro-
bability of not aliasing given in Theorem 4.7.
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Theorem 4.9: If we consider the general directed tree structure of Theorem 4.7
then the probability that the signatures using methods 1 and 2 of two
random sequences differing in two randomly placed elements are still
different T, steps after the second differing element is

I{N=-I)N;
——— = 1A(To) A(T1-To} + A(Ty) . (4.35)
Nj>0 N
where
A7) {1 s i(i-1)N; }T
Ni>0 N2 .
T, = time since the j'th differing element.

Proof: Using Theorem 4.7 we know that on a general directed tree structure, the
probability that the signatures, using methods 1 and 2, of two random
sequences differing in only one element, are still different T steps after the

differing element, is
{1 ) DN }T (4.36)
2 2 . .

Consider a second differing element which occurs at some time T after the first
differing element. There are three possibilities at this juncture:

i) if the signature is still different then there is a probability that the
second differing element permutes the signature to that of the
other sequencs;

i) if the signature is still different and the second differing element
does not permute the signature to that of the other sequence then
the probability of still having a differing signature T, steps later is
as in Theorem 4.7,

iii) If the two signatures have become the same then the second
differing element will act as in Theorem 4.7.

The probability of the signatures still being different T steps after the first
differing element is as in Egn. 4.36. The probability of the second differing ele-
ment permuting the signature to the other sequence's signature is, summing
over all the branches, the probability of the other signature being in a branch of
degree i at step T times the probability of permuting the differing signature to a
specific branch of degree /, i.e.

=¥ — . (4.37)
all branches N>0 N2
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Therefore, the probability for the occurrence of instance i) is

i? -N; { i(i-1)N; }T
3 {q - —_

N;>0 N2 N,')O N2

(4.38)

where i and N; are defined as in Theorem 4.7.

Conversely, we see that the probability of not permuting to the other
sequence’s signature is

i N; - i{N - )N,
¥ i N-—i - ( 2) i (4.39)
N>0 N N N>0 N
Therefore, the probability of instance ii) occurring is
i(N = N; i(i-nN; |7
Y31 =¥ — . (4.40)
Ni>0 N2 Ni>0 N2

For instance ii) the probability of the two signatures remaining different after this
point in time is as in Theorem 4.7 with T = T, since the C-MISR is a first order
system. For instance iii) we see that the probability of the two sequences having

become the same is
1 {1 5 LZON; }T (4.41)
N,‘>0 N2 . .

As in instance ii), the probability of the two signatures remaining different after
this point in time is as in Theorem 4.7 with T = T»,.

The total probability of the two signatures remaining different is the sum of
instances ii) and iii). Thus, the probability of the signatures using methods 1
and 2 of two random sequences differing in two randomly placed elements still
being different T, steps after the second differing element is

i(IN=-IN;
p OTA(TrTz) A(To) + (1 - A(T4-Tp)) A(T2) (4.42)
>

where A(t) and T; are defined as above.
Collecting terms we see that we can reduce Eqn. 4.42 to
I(N=iI)N;

Ni>0 N

-1 ]A(TZ) A(T~To}+ A(To) . (4.43)

This can be extended to multiple errors = 2 but the number and complexity of the
terms becomes prohibitively large. The major point to note is that, as in the single
error case, implementing SA on a general directed tree is poor practice since there is
a greater probability of converging to the same signature than in the case of SA on a
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Boundary Distribution

Rule conditions | method 1 | method 2 | method 3 | method 4
204 all Fail Fail Fail Fail
51 all Pass Pass Fail Fail
60 nuli Fail Fail Pass Fail
195 nuli Fail Fail Pass Fail
102 nuil Fail Fail Pass Fail
153 null Pass Pass Pass Fail
90 null Pass Pass Fail Fail
165 nuil Pass Pass Fail Fail
150 null Pass Pass Fail Fail
105 null Pass Pass Fail Fail
240 cyclic Pass Pass Pass Fail
15 cyclic Pass Pass Pass Fail
170 cyclic Pass Pass Pass Fail
85 - cyclic Pass Pass Pass Fail
150 cyclic Pass Pass Fail Fail
105 cyclic Pass Pass Fail Fail
101 cyclic Pass Pass Fail Fail
154 cyclic Pass Pass Fail Fail
89 cyclic Pass Pass Fail Fail
166 cyclic Pass Pass Fail Fail
75 cyclic Pass Pass Fail Fail
180 cyclic Pass Pass Fail Fail
45 cyclic Pass Pass Fail Fail
210 cyclic Pass Pass Fait Fail
90, 150 hybrid null Pass Pass Fail Fail

Table 4.2:  Equidistribution test results for CA rules of Table 4.1.

unary tree. For example, if we assume that all branches are unary then Eqn. 4.43

N
know that for a unary tree system the signatures will remain different after only one

error. Thus, once again we see that the CA rules of Table 4.1 are the most suitable
for use in a C-MISR when we consider multiple errors.

A more general, and easily used, measure occurs in Theorem 4.4. It holds
equally well for both C-MISRs and L-MISRs provided that all possible inputs are
mapped equally over all the possible signatures. This cannot be shown algebraically
for most CA rules, so computer simulations were used to show which rules from
Table 4.1 satisfied this requirement. The results are summarised in Table 4.2. Notice
that most CA rules which implement cyclic groups equally distribute all possible inputs

reduces to . This can be checked against instance i} of the proof since we
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over all possible signatures. Therefore, we have reduced the number of potential CA
rules to be used in a C-MISR using SA methods 1 and 2 to those of Table 4.1. Further
analysis of multiple errors beyond that of Theorem 4.8 and Theorem 4.4 is left as an
open problem.

it is possible to do empirical studies to verify our estimates on the aliasing proba-
bility for the CA rules of Table 4.1. One such test is to check the aliasing probability by
inserting errors into a number sequence and checking on the number of error inser-
tions required before an aliased signature occurs (i.e. if 250 error insertions are
required then an aliased signature occurred after 250 different error insertions). These
results are reported in Table 4.3. It was found that SA methods 1 and 2 did not give
quantifiably different results, so only results for method 2 are given. For comparison
the resuits for a L-MISR are also included. We note that both the L-MISR and the C-
MISR implementations alias at a rate which is approximately predicted by
Theorem 4.4. For example, for a length 9 rule 89 cellular automaton it takes an aver-
age of 433 quadruple error insertions before an aliased signature occurs. In addition,
no difference can be seen between the performance of the various CA rules of
Table 4.1 and the LFSR. Thus, the results of this simulation indicate that the CA rules
of Table 4.1 and the LFSR provide essentially equivalent aliasing performance for the
above test.

It should be noted that the simulations of Table 4.3 assume error independence.
Earlier it was indicated that this is not a realistic assumption since it is known that
error outputs from circuits may be dependent. This does not make the results of
Table 4.3 irrelevant but merely places them in perspective and also explains some
curious results. Some CA rules, such as rules 204 and 51 which maintain or invert the
current value respectively, perform well on tests such as shown in Table 4.3, but are
entirely unsuitable for SA since it is easy to construct circuits which cannot be tested
by these two rules. Other CA rules are similar in that they lead to very regular
behaviour and, as for rules 204 and 51, it is possible to construct pathological circuits
for these rules. However, as the behaviour of the CA rule becomes more complex, the
frequency with which pathological circuits are found decreases. The most complex
behaviour is exhibited by CA rule 45 and the rule 80 and 150 hybrid which, as we
know from Chapter 2, exhibit pseudorandom behaviour. To indicate why a more pseu-
dorandom MISR circuit is preferable to the L-MISR circuit we note that, in the case of
the second LFSR problem circuit of Fig. 4.2(b), the missed error occurred because the
signature analyzer cancelled out the error when the LFSR shifted. If a C-MISR using
rule 45 or the rule 80 and 150 hybrid had been used, the error would not be cancelled
since each bit in the C-MISR is a function of the incoming information and its three
neighbour bits. This contrasts with the L-MISR where each bit is a function of the
incoming information and just one neighbouring bit. Therefore, it should be expected
that a pseudorandom C-MISR such as CA rule 45 would provide better overall SA
since it is less prone to dependent errors, as in the example given above.

Using a pseudorandom cellular automaton such as rule 45 for both TPG and
MISR makes it possible to implement a testing structure such as in Fig. 4.15. This
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Number of Multiple Errors
Rule L 1 2 3 4 5 6 7 8 9 10
LFSR 8 512 | 211 | 229 | 216 | 261 | 225 | 227 | 243 | 233 | 244
204 8 512 | 237 | 204 | 223 | 217 | 242 | 249 | 207 | 201 | 227
51 8 512 | 209 | 221 | 211 | 218 | 208 | 226 | 242 | 223 | 214
60 8 512 | 210 | 214 | 184 | 235 | 282 | 210 | 207 | 234 | 215
195 8 512 | 241 | 238 | 208 | 207 | 225 | 221 | 254 | 210 | 226
102 8 512 | 234 | 229 | 234 | 233 | 232 | 221 | 211 | 235 | 234
153 8 512 | 251 | 234 | 227 | 205 | 200 | 227 | 230 | 242 | 229
90 8 512 | 191 | 220 | 227 | 213 | 220 | 243 | 222 | 225 | 214
150 8 512 | 214 | 229 | 223 | 200 | 241 | 246 | 227 | 243 | 234
105 8 512 | 220 | 216 | 210 | 235 | 249 | 211 | 203 | 187 | 212
185 8 512 | 211 | 215 [ 250 | 235 | 212 | 202 | 218 | 223 | 230
240 8 512 | 239 | 200 | 231 | 228 | 208 | 237 | i85 | 235 | 231
15 8 512 | 205 | 205 | 212 | 210 | 204 | 212 | 199 | 219 | 223
170 8 512 | 202 | 232 | 238 | 201 | 200 | 234 | 207 | 197 | 231
85 8 512. 1222 | 230 | 203 | 247 | 224 | 188 | 231 | 203 | 210
LFSR 9 | (1024 | 451 | 445 | 458 | 442 | 462 | 445 | 461 | 483 | 472
204 9 ||1024 | 459 | 451 | 385 | 414 | 490 | 458 | 409 | 523 | 542
51 9 ||1024 | 482 | 410 | 438 | 410 | 445 | 438 | 410 | 425 | 473
60 9 |]|1024 | 411 | 458 | 443 | 471 | 480 | 445 | 403 | 500 | 407
195 9 {|1024 | 405 | 435 | 511 | 476 | 432 | 469 | 448 | 466 | 443
102 9 | (1024 | 417 | 427 | 452 | 412 | 370 | 461 | 434 | 425 | 420
153 9 ||1024 | 440 | 466 | 439 | 414 | 427 | 476 | 381 | 494 | 427
101 9 |[1024 | 439 | 470 | 435 | 476 | 429 | 439 | 428 | 456 | 434
154 9 [(1024 | 460 | 440 | 443 | 472 | 436 | 485 | 444 | 407 | 503
89 8 ||1024 | 491 | 430 | 433 | 417 | 505 | 435 | 485 | 402 | 455
166 9 111024 | 415 | 481 | 434 | 498 | 433 | 451 | 438 | 491 | 395
75 9 ||1024 | 472 | 468 | 481 | 482 | 394 | 469 | 440 | 452 | 410
180 9 ||1024 | 391 | 451 | 440 | 434 | 411 | 369 | 511 | 448 | 463
45 9 []1024 | 435 | 481 | 488 | 428 | 428 | 468 | 480 | 385 | 487
210 9 |[1024 | 429 | 462 | 452 | 467 | 407 | 445 | 457 | 467 | 466
90h150 | 10 ||2048 | 856 | 898 | 846 | 863 | 938 | 868 | 863 | 851 | 891
Table 4.3:  Performance of CA rules of Table 4.1 for multiple error aliasing using SA

methods 1 and 2. Here we consider up to 10 errors in a sequence of
1000 numbers and find the average over 100 different original se-
quences.
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LOGIC LOGIC
N LN N LN
BLOCK BLOCK
11 [T ) 1 .
CALBOA CALBO B

Figure 4.15 : Using CALBO to test two different logic blocks. During test phase one
CALBO A is a C-TPG and CALBO B is a C-MISR and during test
phase two CALBO A is a C-MISR and CALBO B is a C-TPG.

technique is commonly used with BILBO but has, up to now, been impossible with
CALBO since the aliasing properties for SA were unknown. Therefore, it would appear
that, since the CALBO circuits using methods 1 and 2 proposed in this work perform
equally well for SA as traditional LFSR circuits, all applications in which BILBO is used
as the BIST methodology can be replaced by a CALBO test structure.

4.7.2.2. Two More C-MISR Technlques

The final methods of signature analysis to be considered here use the techniques
shown in Fig. 4.16. Here we use the communication lines of the cellufar automaton
sites as the points at which the circuit outputs are introduced. This is done by
exclusive-oring the passed value from the adjacent cellular automaton site with the
corresponding circuit output. Notice that in the technique of Fig. 4.16(top) the gate
count is higher than in methods 1 and 2 but if we use the technique of
Fig. 4.16(bottom) it is possible to use a [ms21 site cellular automaton as the C-MISR.
These particular C-MISRs can also be described algebraically as follows:

Method 3:
a,-(t+‘f) = (I){ 3;_1(t) @ Oj(t+1), a;(t), a;,4(t) ® O,(t+1) ] (4.44)

Method 4:
a;(t+1) =@ [ ai-1(t) © Ogj4(t+1), a(t), 81,4(f) © Oy(t+1) ] (4.45)

where

value of CA site j at time £.
circuit output from bit / at time {.

a;(t)
O(t)

n
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Figure 4.16 : Two more techniques of SA using CA-based MISRs;
(top) method 3:
a;(t+1) = O(a; (1) O;(t+1), a;(t), a;(H)DO;(t+1)).
(bottom)} method 4:
a;(t+1) = D(a; (1) Oyp;_1(t+1), a;(t), ai.4(t)DOy;(t+1)).

>,
>
@ e

() = Particular CA rule of operation implemented.

These two methods give rise to much more complicated behaviour than
methods 1 and 2 since methods 3 and 4 create a dynamic hybrid whose rules of
operation are based on the current output of the circuit under test. For example, con-
sider CA rule 30 with truth table as given in Table 4.4. We see that, using method 3, if
the circuit output to one site is low then that site functions normally. However, if the
circuit output is high then the CA rule at that site changes, as shown in Table 4.4,
because the communicated values from the left and right neighbours are inverted. This
occurs throughout the cellular automaton so we are forming a dynamic two rule hybrid
where each site is either CA rule 30 or 210 depending on the corresponding circuit
output. For SA method 4 the situation is even more complicated. Consider Table 4.5
where the four possible rules at each site are given. Now a dynamic cellular automa-
ton where any one site could be one of four different rules is created. Another con-
sideration is the boundary conditions. For null boundary conditions we are, in fact,
using the most and least significant circuit output values as the boundary inputs of the
cellular automaton. This further permutes the overall null boundary behaviour since the

188



Chapter 4 Applications to Built-in Self-Test

Rule 30
111 110 101 100 011 c10 001 000
0 0 0 1 i 1 1 0

Circult output = 0 — Rule 30

111 110 101 100 011 010 001 000
o(111)  @(110) ®(101) ©(100) (011) @(010) &(001) D(000)
0 0 0 1 1 1 1

Circult output = 1 — Rule 210

111 110 101 100 011 010 001 000
@(010) ®(011) ®(000) ®(001) @(110) @(111) S(100) ®(101)
1 1 0 1 0 0 1 0

Table 4.4: Effect of SA method 3 on a rufe 30 C-MISR.

boundary conditions are now dynamic rather than fixed. The effect is reduced if cyclic
boundary conditions are used since the left and right boundary values are normally
dynamic.

While analytical study of SA methods 3 and 4 is difficult (less so for method 3) it
is possible to repeat the previous empirical studies for methods 1 and 2. We first
investigate the distribution of signatures by different rule CALBOs. Computer studies
have shown that CA rules other than those of Table 4.1 do not have an equidistribu-
tion of signatures using either method 3 or 4. For those rules of Table 4.1 the results
in the final two columns of Table 4.2 are presented. Notice that for SA method 3
about half the rules yield equally distributed signatures. However, it is surprising that
the two random rules (45 and the 80, 150 hybrid) do result in equally distributed signa-
tures using method 3. For SA method 4 we see that no CA rules result in equally dis-
tributed signatures. This would indicate that the general SA theorems proved earlier
~ will not hoid for methods 3 and 4 since the signatures are not equally distributed.

It is also possible to study single and muitiple error performance using a similar
study to that of Table 4.3. In that study it was found that SA methods 1 and 2 yielded
essentially equivalent behaviour so one set of results could be used to indicate the
performance of both methods. As we have already seen for the distribution of signa-
tures; SA methods 3 and 4 yield very different performance. Therefore, the perfor-
mance of both methods must be presented separately. In Table 4.6 we see the results
for method 3 and in Table 4.7 for method 4.

For method 3 we see that essentially equivalent performance to the LFSR for
multiple signatures is possible if a CA rule such as rule 60 with null boundary condi-
tions is used. However, the number of such rules is greatly diminished when compared
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Rule 30
111 110 101 100 011 010 001 000
0 0 0 1 1 1 1 0

Left circuit output = 0 Right clrcult output=0 — Rule 30

111 110 101 100 011 010 001 000
®(111)  ®(110) @©(101) ©(100) ®(©O11) ©(010) @O01) G(000)
0 0 0 1 1 1 1 0

Left clrcult output = 0 Right circult output=1 — Rule 45

111 110 101 100 011 010 001 000
| ®(110)  @(111)  @(100) @(101) ®(010) ®(011) @(O00) B(001)
0 0 1 0 1 1 0 1

Left circuit output =1 RIght circuit output = 0 — Rule 225

111 110 101 100 011 010 001 000
@(011)  @(010) @(001) @(000) ®(111) @(110) @(101) @(100)
1 1 1 0 0 0 0 1

Left clrcuit output =1 Right circuit output=1 — Rule 210

111 110 101 100 011 010 001 000
®(010)  @(011) @(000) ®(001) ®(110) O(111) @(100) B(101)
1 1 0 1 0 0 1 0

Table 4.5: Effect of SA method 4 on a rule 30 C-MISR.

to those with equivalent LFSR performance when using methods 1 or 2. For the nuli
boundary condition rules we see that either the C-MISR will deliver comparable LFSR
performance or it is trivial to alias the C-MISR. However, for cyclic boundary conditions
we see that some C-MISRs, such as rule 166, have very poor performance for low
error counts but as the total number of errors increases so does aliasing performance.
This is not unexpected, but the rate of performance increases more rapidly than might
be thought. In any case such performance is not desirable since one must have low
aliasing probability at all total error counts. The most puzzling result of SA using
method 3 lies in the performance of CA rule 45, a random rule. From previous discus-
sions one would e'xpect the aliasing performance of rule 45 to be at least equivalent to
that of any other rule but as can be seen it is actually much worse than some rules.
The reason for this is left as an open problem.
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Number of Multiple Errors
Rule L 1 2 3 4 5 6 7 8 9 10
LFSR 8 512 | 211 | 229 | 216 | 261 | 225 | 227 | 243 | 233 | 244
204 8 1 1 i 1 1 i i 1 1 1
51 8 i 1 1 1 1 1 1 1 1 1
60 8 512 | 210 | 195 | 219 | 207 | 212 | 224 | 229 | 249 | 230
195 8 512 | 211 | 207 | 250 | 242 | 214 | 217 | 223 | 225 | 226
102 8 512 | 218 | 224 | 236 | 201 | 213 | 183 | 205 | 236 | 260
153 8 512 | 235 | 196 | 221 | 240 | 232 | 216 | 243 | 232 | 181
90 8 1 1 1 1 1 1 1 1 1 1
150 8 1 1 1 i 1 1 1 1 1 1
105 8 1 1 1 1 1 1 1 1 1 1
165 8 1 1 1 1 1 1 1 1 1 1
240 8 512 | 230 | 209 | 235 | 235 | 242 | 221 | 215 | 245 | 230
15 8 512 | 228 | 195 | 215 | 200 | 202 | 244 | 256 | 222 | 238
170 8 512 -} 228 | 223 | 220 | 210 | 232 | 198 | 214 | 214 | 228
85 8 512 | 249 | 203 [ 227 | 216 | 216 | 220 | 228 | 211 | 194
LFSR 9 | (1024 | 451 | 445 | 458 | 442 | 462 | 445 | 461 | 483 | 472
204 9 1 1 1 1 i i i 1 1 1
51 9 1 1 1 1 1 1 1 1 1 1
60 9 ||1024 | 466 | 422 | 417 | 411 | 541 | 481 | 427 | 391 | 457
195 9 ||1024 | 401 | 468 | 451 | 444 | 475 | 464 | 451 | 477 | 429
102 9 ||1024 | 479 | 475 | 438 | 424 | 490 | 401 | 424 | 454 | 385
153 9 ||1024 | 463 | 441 | 418 | 439 | 421 | 463 | 490 | 433 | 432
101 g 10 130 | 238 | 295 | 363 | 386 | 447 | 397 | 322 | 393
154 9 1 1 1 1 i 1 i 1 1 1
89 9 13 147 | 260 | 294 | 330 | 378 | 348 | 387 | 382 | 467
166 91| 10 144 | 188 | 246 | 385 | 284 | 399 | 330 | 448 | 448
75 9 12 98 | 268 | 306 | 332 | 407 | 438 | 371 | 400 | 404
180 9 10 127 | 256 | 324 | 304 |} 356 | 404 | 396 | 448 | 401
45 g 11 85 | 237 | 307 | 286 | 304 | 367 | 363 | 391 | 358
210 9 1 1 1 1 1 1 1 1 1 1
90h150 | 10 1 1 1 1 1 1 1 1 1 1

Table 4.6:  Performance of CA rules of Table 4.1 for multiple error aliasing using SA
method 8. Here we consider up to 10 errors in a sequence of 100
numbers and find the average over 100 different original sequences.
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Number of Multiple Errors
Rule L 1 2 3 4 5 6 7 8 9 10
LFSR 8 512 | 211 | 229 | 216 | 261 | 225 | 227 | 243 | 233 | 244
204 8 1 1 1 1 1 1 1 1 1 i
51 8 1 1 1 1 1 1 1 1 i 1
60 8 18 16 15 15 15 17 17 16 16 15
195 8 16 17 13 16 18 14 14 16 15 15
102 8 16 14 16 18 14 16 19 13 16 15
153 8 18 17 17 18 17 14 15 14 14 16
90 8 14 14 16 17 15 14 15 16 17 17
150 8 16 16 16 14 14 14 15 15 16 16
105 8 16 16 17 15 16 14 19 16 16 17
165 8 16 14 16 16 15 15 14 13 17 15
240 8 19 17 19 17 17 14 15 16 15 17
15 8 19 16 15 15 17 17 14 19 17 15
170 8 14 15 14 15 14 15 16 14 17 14
85 8 18 16 17 18 15 17 20 15 17 15
LFSR 9 111024 | 451 | 445 | 458 | 442 | 462 | 445 | 461 | 483 | 472
204 9 1 1 1 1 1 1 1 1 1 1
51 9 1 1 i 1 1 i 1 1 1 1
60 9 16 12 16 17 17 18 18 16 15 14
185 9 16 15 16 15 13 16 15 15 14 18
102 9 15 15 16 15 16 19 16 16 16 16
153 9 17 15 17 14 15 18 16 17 15 13
101 9 1 1 1 i 1 1 i 1 1 1
154 9 1 1 1 1 i 1 1 1 1 1
89 9 1 1 1 1 i 1 1 1 1 1
166 9 1 1 1 1 i 1 1 1 1 1
75 9 1 1 1 1 1 1 1 1 i 1
180 9 1 1 1 1 i 1 1 1 1 1
45 9 1 1 1 1 2 |1 1 1 1 i
210 9 1 1 1 1 1 1 1 1 1 1
90h150 | 10 15 15 16 14 15 14 15 16 17 14

Table 4.7:  Performance of CA rules of Table 4.1 for mulliple error aliasing using SA
method 4. Here we consider up to 10 errors in a sequence of 100
numbers and find the average over 100 different original sequences.
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For method 4 we see that all CA rules yield very poor performance which
appears to be independent of the number of errors in the circuit output sequence.
Therefore, none of the investigated rules is suitable for SA using method 4.

4.8. IMPLEMENTATION CONSIDERATIONS

A major advantage, and perhaps the most important, of using cellular automata
over LFSRs, is the ease with which the length, or number of outputs, of the TPG can
be changed. For example, consider the following scenario [Rosen1987].

Suppose that a design will have N inputs and that the designers balk at hav-
ing full N+N sites in their xxLBO. The experience summarised in [Waicu-
kauski1987], [Barzilai1983] suggests that rather few of the faults will be seri-
ously affected by correlation, and hence that rather few of the N inputs will
need neighbouring dummies. Squeezing a N+(few) is easier than squeezing
N+N. But we won't know how many dummy sites are really wanted until late
in the game, after extensive fault simulation. This is an awkward time to con-
sult a fist of primitive polynomials, find out that the list can’t get N+3 without
going to N+30 and a lot more taps, cajole an algebraist into helping out, and
so on.

On the other hand, in a CA-based implementation there is much less cross-correiation
so dummy sites will probably not be needed. However, if the length must be increased
or decreased because of needed dummy sites, or a change in the number of inputs in
the circuit under test has been made, a CA approach merely requires changing the
number of cells (remember each cell is the same) and using a new starting value. This
contrasts with the LFSR which requires complete redesign even if only one site is
added. Therefore, a C-TPG, or C-MISR, generally may be of any convenient length
and thereby imposes few restrictions on the number of inputs of the circuit to be
tested. This contrasts with L-TPGs and L-MISRs where the desire to avoid redesigning
the test circuit may force unnecessarily harsh restrictions on the number of inputs or
outputs from a circuit which must incorporate BIST.

Figure 4.17 illustrates the topology of both BILBO and a rule 30 based CALBO
circuit. As indicated in Fig. 4.17(top), for a 4 cell BILBO operating in the LFSR mode,
outputs Q4, Qg, and Q4 are tapped and fed back through exclusive-or gates to the
MUX input. One immediate difficulty lies in selecting the appropriate feedback taps;
that is, the taps are not independent of n for maximum length polynomial division.
Another potential difficulty arises in having to send the higher order tap back to the
MUX input, as this distance may be a significant fraction of the chip dimension and
grows (linearly) with n, the number of cells. A technological fix may include the use of
larger exclusive-or gates, hierarchical drivers, or wider and thicker metal lines to cir-
cumvent problems associated with delay and current density [Mead1980],
[Card1987a]. The cost involved with this approach arises from a reduced topological
regularity of the basic cells, a major design deterrent for increasing n. In any event, a
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Figure 4.17 : Topology associated with (top) a 4 bit BILBO and (bottom) a 4 bit rule
45 CALBO test circuit. Note the use of a 2-1 multiplexer at the input to
each CALBO stage. Rule 45 is implemented using the q’ output of the
flipflop.

time penalty due to propagation delays is experienced of Q(log n), or even worse, of
Q(n) if current density limitations [Card1987a] are taken into account. As indicated in
Fig. 4.17(bottom), a CALBO circuit does not suffer from this symptom as the required
communication can be restricted to nearest neighbours, and if null boundary conditions
are suitable, then no feedback is required. In addition, even if feedback is required
_{cyclic boundary conditions) no gate delay is experienced as opposed to the LFSR

where the feedback path has at least one gate delay. On the other hand, the hardware
of the basic cell has been increased to accommodate the required storage of the
present state, the local logic to implement a given CA rule, and the incorporation of
transmission-gate multiplexers.

One area of further investigation is warranted; the system size n at which the util-
ity of the CALBO approach is expected to improve upon that of the BILBO test circuitry
must be examined. In comparing silicon implementations of CALBO with BILBO, we
suggest the adoption of an established criterion such as the AT (area-time) metric for
VLSI [Thompson1980]. The constant factors in A and T are important in non-
asymptotic design decisions, and these factors are easily accounted for in a relative
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Figure 4.18 :  Static CMOS implementations for units cells of: (top) the BILBO circuit.
(bottom) the CALBO circuit.
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Flgure 4.19 : AT comparison of BILBO and CALBO versus register length, n.

manner (i.e. it is easy to compare absolute AT metrics of CALBO and BILBO for a
given technology, where constant factors are related). In addition, we suggest the use
of a heuristic based upon wiring difficulty and technological fixes. From Fig. 4.18 we
see the unit cell for static CMOS implementations of a CALBO and BILBO circuit using
custom CMOS cells.” Notice that the CALBO circuit requires at most two times the
area per cell as the unit cell for the BILBO.%8 This factor of two accounts for the logic
required to perform the cellular automaton operation (XOR, OR}) at each cell along the
array, as well as for the 2x1 multiplexer which allows each cell to feed back to itself.
A d flipflop is used in the array, since a one bit memory is necessary for the operation
of the cellular automaton. Alternative latches may also be employed as in Scan Set or
LSSD. The increased local wiring complexity associated with CALBO is traded against
the increased globat wiring complexity of BILBO. The area for BILBO increases as
Cin, with n the number of register cells, whereas the area for CALBO increases
approximately as 2Cyn. This ignores the area of the additional wiring in BILBO,
which will be problematic for sufficiently large n. A time complexity comparison
favours CALBO since communication is restricted to nearest neighbours, whereas
communication in BILBO in the general case may extend over a considerable fraction
of the chip width. In the hierarchical driver scheme one assumes this time to increase

48 The CMOS building blocks are taken from the University of Manitoba 3um
CMOS cell library. [Card1987b] and were constructed using the ELECTRIC IC
design tool [Rubin1983]. The exact ratio of the BILBO and CALBO circuits is
1.8, ignoring the added area required for feedback. Therefore, since the area
of the BILBO feedback circuit is much larger than that of the CALBO we can
say the factor of 2 is a conservative estimate favouring the LFSR.
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as Colog n for BILBO; it is simply C, for CALBO. The AT metric implies that the
CALBO circuit approach is preferred to the BILBO circuit when n > 4.4

If the delay associated with communication in BILBO were dominated by current
density limitations, the time factor would become Con for BILBO. As a consequence,
the AT metric shown in Fig. 4.19 would imply that the CALBO circuit approach would
always be preferred to the BILBO circuit for lengths 2 4. In any event, the virtue of a
BIST technique, such as BILBO or CALBO, would have to be questioned for a small
number of contro! points, as we are attempting to exploit the pseudorandom number
capabilities of such circuits. Thus, for the reasons discussed above, when n is
sufficiently large that statistical tests are the only practical means available to test a
combinational circuit, the CALBO circuit described here provides a very attractive alter-
native to BILBO.

4.9. CONCLUSIONS

In summary, an alternative BIST technique has been presented which may find
application as an alternative to BILBO or similar schemes in design for testability.
Advantages arise from reduced cross-correlation between the individual bit streams in
the CALBO case, and hence, an increased statistical independence in the set of test
vectors. The only required effort, once the appropriate CA rule has been selected, is
to determine a suitable starting value or seed. This compares to the selection of taps
in the LFSR as the length of the array is varied. A major advantage of CA-based test
pattern generators versus those based on LFSRs is the suitability of cellular automata
for use in CAD tools. The irregular location of feedback taps in the LFSR requires a
complete redesign of the LFSR when the physical length is changed, whereas for cel-
lular automata a change in length merely requires adding or removing an appropriate
number of cellular automaton ceils.

Fault coverage estimates which have been developed for LFSR-based pseu-
dorandom testing have been shown to more applicable to the CA-based schemes pro-
posed here. Therefore, much of the current knowledge with respect to the fault cover-
age in a random testing can be readily used in a CA-based pseudorandom test
environment.

Signature analysis techniques for cellular automata have been examined and
were shown to provide equivalent aliasing performance for equally likely errors to the
LFSR, with restrictions on the particular CA rule of operation used. For the more
demanding and realistic case of dependent errors the improved pseudorandomness of
the CA-based signature circuits was shown to provide better aliasing performance than
the LFSR for certain circuit faults. Finally, with respect to the circuit area used by cel-
lular automata and the LFSR. It was shown that CA structures use equivalent area

43 AT  for BILBO and ~CALBO are  equivalent  when
CiConlogn =2C4Csn; n =2c=4,
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within a factor of two and show much improved speed of operation as compared to the
LFSR.

Further effort is required in exploring the wide range of applications for pseu-
dorandom cellular automata in VLS| testing. Among these applications, their suitability
for pseudorandom weighted pattern generation requires further investigation.
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Chapter 5
Conclusions and Suggestions
for Further Study

5.1. SUMMARY AND CONCLUSIONS

In this thesis we have been concerned with the study of parallel VLS! systems for
nondeterministic algorithms. We have especially emphasised the requirements of
pseudorandom number generation for such systems. In this regard we have seen that
conventional techniques of pseudorandom number generation, both software and
hardware, are inadequate for parallel pseudorandom number generation since the sili-
con area required is either much too large per bit of random number or the approxima-
tion of random behaviour is inadequate. A new pseudorandom number generator
based on simple one-dimensional class 3 cellular automata was proposed which pro-
vides improved area and time properties. These new generators were extensively stu-
died for randomness properties and cycle lengths. It appears that the rule 90 and 150
hybrid exhibits the best area-time efficiency although the degree of randomness may
be less than that of CA rule 30 or 45. We have observed that CA rule 30 provides the
highest quality randomness but with the smallest cycle lengths. However, for long
registers, concerns as to the length of the cycle are somewhat tempered since more
than adequate cycle length can be obtained.

Two models from statistical mechanics, the percolation and Ising models, have
been studied and fine-grained parallel architectures for their Monte Carlo simulation
were proposed. The resulting architectures would be used as coprocessors, or
hardware experts, to a host computer in order to attack the computationally intensive

problem of updating the lattice sites of each model. This results in a very efficient
- architecture on which lattice updates are made at rates several orders of magnitude
faster than on other computing systems. These high speed architectures allow the pos-
sibility of more exact Monte Carlo simulation especially at, or near, the critical point of
the phase transition. Correctness of these architectures was verified by simulation to
extract the correct critical exponents for both models.

A further application of the area-time efficient pseudorandom number generator
developed for this work is in pseudorandom testing of digital circuits. It is shown that
the proposed CALBO approach offers improved fault detection versus the traditional
BILBO circuit. In addition, a study of the signature analysis properties of cellular auto-
mata shows that equivalent aliasing performance to the LFSR can be achieved by
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using the cyclic group rules such as CA rule 45 and the rule 90 and 150 hybrid.

5.2. SUGGESTIONS FOR FURTHER WORK

This investigation has shown that it is feasible to consider implementing VLSI
solutions to nondeterministic algorithms. However, there are still a number of problems
which have arisen from this work. ‘

A study should be carried out into the reasons for the inexplicable
behaviour of the rule 90 and 150 hybrid, especially with regard to
its site and time spacing behaviour. In addition, other potential
hybrids should be examined for possible use as pseudorandom
number generators.

The employment of two-dimensional celiular automata and those of
higher dimensions should be studied for use in paraliel architec-
tures such as those discussed here. For example, considerable
potential improvement in the architectures of Chapter 3 exists if a
two-dimensional cellular automaton were used as the pseudoran-
dom number generator.

The proposed architectures for the percolation and Ising models
should be implemented in custom VLS| and studied for circuit
improvements. In addition, implementation specific problems such
as interchip communication and on-chip O problems not dis-
cussed in this work should be addressed.

The proposed Ising model architecture based on the mapping of
Domany and Kinzel warrants further study and simulation to further
verify its appropriateness for Ising model computations.

The fundamental processor architecture of Chapter 3 should be
extended to handle other statistical mechanical problems such as
the Heisenburg model, growth models, and spin glasses.

A complete fault simulation study of the proposed test pattern gen-
erator would be useful especially with regards to examining stuck-
open fault detectability.

The possibility of weighted test pattern generation should be exam-
ined especially from the perspective of weight selectivity.

Other design for testability structures using cellular automata are
possible.

Simulation of cellular automata-based signature analysers should
be made using real circuits rather than a random input model.
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5.3. CONCLUDING REMARKS

This work has shown the great potential for VLS| solution of nondsterministic
algorithms. The resulting systems have demonstrated a great improvement over con-
ventional solutions. The eventual employment of the proposed systems depends on
whether the need for these efficient solutions can justify the associated development
costs.
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Appendix A
Bad Sequence Probability

The following discussion concerns deriving the probability of a PRNG yielding a
bad sequence given that a number of sequences have been found to be pseudoran-
dom. This material is adapted from Papoulis [Papoulis1965].

Let the probability of an event I" be p. If we conduct n trials then for any & > 0 we
have

lim P

N —o0

%%—p|38]=1 (A1)

where k is the number of occurrences of T in n trials and P( ) is the probability of—g-

approaching p [Papoulis1965]. Consider a sequence of random variables <x;> where

{1 it " occurs in the r'th trial
X,' = .

0 otherwise (A2)
The mean of an infinite sequence <x;> is
E({x)=1-P(x=1) + 0-P{x=0) (A.3)
=P
and the variance is
o® = E(x?) - E¥(x) (A4)
= 12-P(x=1) + 0%-P(x=0) ~ p?
=p - p?
=p(1-p) .
If we consider the sequence to consist of only n trials then
Xy +Xo+ - +x
X, = 1 2 no_ __Ii (A5)
n n

where k and n are as defined above. Consider a collection of sequences <x;>. The
expected value of X, for this coliection of sequences will be E(X,,) = p. The Tche-
bycheff inequality states that if v is arbitrary with density f(v) and finite variance o2
then regardless of the shape of f(v) the probability that v lies in the interval

Mm-¢g,n+eg)is
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Appendix A Bad Sequence Probability

o
€2

P ['q-e <V< n+e] 21 - (A.6)

2

where N = E(v). Therefore, using the values for £(X,) and Oy, given above and

Tchebycheff's inequality we can state that
P[Ifn—pl<e]z1—£§1—“2ﬂ. (A7)
ne
Since p(1 — p) < 1/4 we finally conclude that
1
4ne?

P[lYn—-p|<e].>.1— (A.8)
Thus, the sample mean, X, tends to p. A much stronger statement due to Borel
[Papoulis1965] states that the sample mean X, tends to p with probability 1, i.e.

P(x,—p)=1 for n—oe . (A.9)

Using this result we can see that if we test 100 sequences from a PRNG and find
no bad sequences in the test and we want to estimate the probability, p, of the gen-
erator producing a bad sequence then for € = 0.1 we have

1
400x0.12

So we expect that in 75% of such tests the probability of a bad sequence occurring is
less than 0.1. This of course gives a limited degree of confidence in the tested PRNG.
If we wish to increase our confidence by reducing the probability estimate we must test
many more sequences. For the new PRNGs suggested in this work such a test was
made for 100,000 sequences from each PRNG vyielding a 97.5% confidence that the
probability of a bad sequence occurring is less than 0.01.

P(Ifn—pl <0.1]21 =0.75 . (A.10)
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Appendix
Complete Cycle Length Tables

The following tables give the complete number of cycles and percentage of states
either in or on a path leading to each cycle. Cycle refers to the number of a particular
cycle, size gives the cycle length, number indicates how many states are in the cycle

or on paths leading to the cycle, and percent gives the percentage of states in the par-
ticular cycle.

B.1. Rule 30
fength 7
Cycle | size | number | percent
length 4 1 1 2 0.02
Cycle | size | number | percent 2 4 7 0.06
1 1 2 0.13 3 4 7 0.06
2 8 12 0.75 4 63 77 0.60
3 1 1 0.06 3 4 7 0.06
4 1 1 0.06 6 4 7 0.06
7 4 7 0.06
8 4 7 0.06
9 4 7 0.06
length §
Cycle | size | number | percent
1 1 2 0.06 tength §
2 5 30 0.94 Cycle | size | number | percent
1 1 2 0.01
2 40 224 0.88
3 8 28 0.11
fength 6 4 1 1 0.00
Cycle | size | number | percent 5 1 1 0.00
1 1 62 0.97
2 1 1 0.02
3 1 1 0.02
length 9
Cycle | size | number | percent
1 1 - 8 0.02
2 72 g0 0.18
3 171 414 0.81
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length 10 length 14
Cycle | size | number | percent Cycle | size | number | percent
1 1 2 0.00 1 1 2 0.00
2 18 420 0.41 2 1428 13818 0.84
3 18 420 0.41 3 83 781 0.05
4 5 180 0.18 4 4 155 0.01
5 1 1 0.00 5 84 84 0.01
8 1 1 0.00 3] 4 155 0.01
7 133 196 0.01
8 133 196 0.01
g 4 155 0.01
length 11 10 4 155 0.01
. 11 112 112 0.01
Cycle | size | number | percent 12 84 84 0.01
1 1 2 0.00 13 4 155 0.01
2 | 154 | 1551 | 076 4 | 4 155 | o001
3 |17 4 0.02 15 4 155 0.01
4 17 45 0.02 16 14 14 0.00
5 |17 | 45 0.02 17 1 i 0.00
6 | 17 | 45 0.02 18 1 3 0.00
7 17 45 0.02
8 17 45 0.02
9 17 45 0.02
10 17 45 0.02
1 | 17 45 0.02 length 15
12 17 45 0.02 Cycle | size | number | percent
13 17 45 0.02 1 t 8 0.00
2 1455 30375 0.93
3 9 276 0.01
4 9 276 0.01
longth 12 5 9 276 0.01
Cycle | size | number | percent 6 9 276 0.01
7 30 171 0.01
] ] 242 0.08 8 30 1714 0.01
2 102 a57 0.23 g 9 276 0.014
3 102 a57 0.23 10 30 171 0.01
4 102 957 0.23 1 30 171 0.01
5 102 957 0.23 12 7 7 0.00
6 3 3 0.00 13 30 17 0.01
7 8 12 0.00 14 7 7 0.00
8 3 3 0.00 15 7 7 0.00
9 3 3 0.00 16 5 30 0.00
11 3 3 0.00 ig 7 7 0.00
12 1 1 0.00 15 7 7 0.00
20 7 7 0.00
21 7 7 0.00
22 5 5 0.00
23 7 7 0.00
24 7 7 0.00
25 7 7 0.00
26 5 5 0.00
27 7 7 0.00
28 7 7 0.00
, 29 5 5 0.00
length 13 30 7 7 0.00
Cycle { size | number | percent st 7 7 0.00
1 1 2 0.00
2 260 3575 0.44
3 832 2600 0.32
4 247 1924 0.23
5 a1 a1 0.01
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length 16 length 20
Cycle | size | number | percent Cycle | size | number | percent
1 1 2 0.00 1 2 0.00

1
6016 | 32496 0.50 2 3420 [ 32580 0.03
40 4432 0.07 3 3420 | 32560 0.03
4144 | 27056 0.41 4 6150 § 278237 0.27
8 1468 0.02 5 3420 | 32560 0.03
40 40 0.00 6 6150 | 308674 0.29
40 40 0.00 7 3420 | 32560 0.03
1 1 0.00 8 15 68330 0.07
1 1 0.00 g 5 104500 0.10
10 18 68330 0.07
1" 1715 8645 0.01
12 1715 8645 0.01

DO~ bhwN

length 17 13 | 1715 | 8645 0.01

Cycle | size | number | percent 1 g 1;;5 846;65 gg{‘)
! 1 2 0.00 16 | 6691 | 41483 | 0.04
2 | 10846 | 125375 | 0.96 17 o8 458 0:00
3 1632 | 3434 0.03 18 o8 456 0100
4 867 1802 0.01 19 | ss0 720 0.00
5 306 | 306 0.00 20 | 68 | 4se 0.00
6 136 | 136 0.00 21 | 68 | 456 0.00
7 17 17 0.00 22 | 6756 | 11046 | 001
23 30 30 0.00

24 30 30 0.00

25 8 j2 0.00

length 18 26 30 30 0.00

Cycle | size | number | percent 27 30 30 0.00
] 62 0.00 28 1 1 0.00

2844 | 213930 | 0.82 29 1 1 0.00

1

2

3 171 37422 0.14
4 188 1320 0.01
5 188 1320 0.0%
6 186 1320 0.0t
7 186 1320 0.01
8 186 1320 0.01
9 186 1320 0.01
10 72 2664 0.01

11 24 24 0.00
12 24 24 0.00
13 24 24 0.00
14 24 24 0.00
15 24 24 0.00
16 24 24 0.00
17 1 1 0.00
18 1 1 0.00
length 19
Cycle | size | number | percent
1 1 2 0.00
2 247 | 378233 0.72
3 3705 | 145844 0.28
4 133 171 0.00
5 38 38 0.00
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B.2. Rule 45
’ length 10
Cycle | size | number | percent
length 4 1 2 4 0.00
Cycle | size | number | percent 2 430 720 0.70
1 2 16 1.00 3 60 60 0.06
4 60 60 0.08
5 30 30 0.03
6 15 15 0.02
7 60 60 0.08
length 5 8 60 60 0.08
Cycle | size | number | percent 9 15 15 0.02
1 2 2 0.06
2 30 30 0.94
length 11
Cycle | size | number | percent
length 6 1 2 2 0.00
Cydle | size | number | percent 2 979 979 0.48
3 935 935 0.46
1 2 4 0.06
4 5 5 0.00
2 i8 54 0.84
3 p 1 0.02 5 5 5 0.00
. 6 66 66 0.03
4 i 1 0.02
7 5 5 0.00
5 3 3 0.05
5 1 00 8 5 5 0.00
! 02 9 5 5 0.00
10 11 11 0.01
11 5 5 0.00
12 5 5 0.00
length 7 13 5 5 0.00
Cycle | size | number | percont 14 5 5 0.00
1 2 2 0.02 15 15 5 0.00
2 126 | 126 0.98 i8 5 5 0.00
length 8
Cycle | size | number | percent
1 2 152 0.59
2 32 32 0.13
3 24 24 0.09
4 16 16 0.06
5 24 24 0.09
6 4 4 0.02
7 4 4 0.02
length 9
Cycle | size | number | percent
1 2 2 0.00
2 504 504 0.98
3 1 1 0.00
4 1 1 0.00
5 3 3 0.01
6 1 1 0.00
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length 12 fength 13
Cycle | size | number | percent Cycle 1| size { number | percent
1 2 16 0.00 1 2 2 0.00
18 2706 0.66 2 676 676 0.08
3 156 612 0.16 3 443 443 0.05
4 24 24 0.01 4 443 443 0.05
5 240 240 0.06 5 443 443 0.05
6 24 24 0.01 8 443 443 0.05
7 24 24 0.01 7 443 443 0.05
8 24 24 0.01 8 1105 1105 0.13
9 12 12 0.00 g 443 443 0.05
10 24 24 0.01 10 443 443 0.05
" 24 24 0.01 11 443 443 0.05
12 12 12 0.00 i2 443 443 0.05
13 84 84 0.02 i3 443 443 0.05
14 12 12 0.00 14 443 443 0.05
15 12 12 0.00 15 443 443 0.05
16 24 24 0.01 16 443 443 0.05
i7 24 24 0.0t 17 39 39 0.00
18 12 12 0.00 18 130 130 0.02
19 24 24 0.01 19 78 78 0.01
20 24 24 0.01 20 78 78 0.01
21 12 12 0.00 21 156 156 0.02
22 12 12 0.00 22 78 78 0.01
23 24 24 0.01 23 78 78 0.01
24 12 12 0.00 24 13 13 0.00
25 | 12 12 0.00
26 1 1 0.00
27 12 12 0.00
28 12 12 0.00 length 14
g fg fg 38(1) Cycle | size | number | percent
31 1 1 0.00 1 2 4 0.00
a2 3 3 0.00 2 2198 | 8568 0.52
a3 1 1 0.00 3 | 534 | e28 0.04
4 534 628 0.04
5 534 628 0.04
8 534 628 0.04
7 534 628 0.04
8 534 628 0.04
9 392 1435 0.09
10 534 628 0.04
11 392 1435 0.09
12 168 168 0.01
13 126 126 0.01
14 168 168 0.0
15 42 42 0.00
16 42 42 0.00
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length 15
Cycle | size | number | percent

1 2 2 0.00
2 2340 | 2340 0.07
3 6820 | 6820 0.21
4 32 az2 0.00
5 6820 8820 0.21
6 6820 6820 0.21
7 32 32 0.00
8 4920 4920 0.18
9 32 32 0.00
10 az2 32 0.00
11 2820 2820 0.08
12 32 32 0.00
13 32 32 0.00
14 120 120 0.00
15 32 32 0.00
16 32 32 0.00
17 120 120 0.00
18 32 32 0.00
19 32 32 0.00
20 120 120 0.00
21 80 60 0.00
22 32 32 0.00
23 32 32 0.00
24 30 30 0.00
25 30 30 0.00
26 60 60 0.00
27 60 60 0.00
28 30 30 0.00
29 30 30 0.00
30 80 60 0.00
3 60 60 0.00
32 60 60 0.00
33 &0 80 0.00
34 80 60 0.00
35 60 80 0.00
36 60 80 0.00
37 60 60 0.00
38 80 €0 0.00
39 32 32 0.00
40 80 60 0.00
41 80 60 0.00
42 80 60 0.00
43 60 60 0.00
44 60 80 0.00
45 60 80 0.00
46 80 €0 0.00
47 60 60 0.00
48 60 60 0.00
49 32 32 0.00
50 32 32 0.00
51 1 1 0.00
52 1 1 0.00
53 3 3 0.00
54 1 1 0.00

Complete Cycle Length Tables

length 16
Cycle | size | number | percent

1 2 39448 0.60
2 976 12304 0.19
3 700 1100 0.02
4 556 556 0.01
5 848 848 0.01
6 700 1100 0.02
7 700 1160 0.02
8 556 556 0.01
9 2816 3712 0.06
10 700 1100 0.02
i1 556 556 0.01
12 206 206 0.00
13 556 556 0.0%
14 296 296 0.00
15 296 298 0.00
16 208 208 0.00
17 206 296 0.00
18 144 144 0.00
19 144 144 0.00
20 32 32 0.00
21 48 48 0.00
22 48 48 0.00
23 24 24 0.00
24 48 48 0.00
25 48 48 0.00
26 48 48 0.00
27 48 48 0.00
28 48 48 0.00
29 48 48 0.00
30 48 48 0.00
31 48 48 0.00
32 48 48 0.00
33 48 48 0.00
34 48 48 .00
35 16 18 0.00
36 48 48 0.00
37 24 24 0.00
38 48 48 0.00
39 48 48 0.00
40 48 48 0.00
41 4 4 0.00
42 4 4 0.00
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Appendix B
length 17
Cycle size number | percent
1 2 2 0.00
2 78812 78812 0.60
3 2176 2176 0.02
4 6052 6052 0.05
5 32012 32812 0.25
8 4845 4845 0.04
7 867 867 0.01
8 408 408 0.00
9 408 408 0.00
10 408 408 .00
11 408 408 0.00
12 408 408 0.60
13 816 816 0.01
14 408 408 0.00
15 204 204 0.00
16 204 204 0.00
17 204 204 0.00
i8 204 204 0.00
18 408 408 0.00
20 408 408 0.00
21 408 408 0.00
22 102 102 0.00

length 18
Cycle size number percent

1 2 0 0.00
2 3786 37008 0.14
3 3756 37008 0.14
4 8787 48294 0.18
5 3756 37008 0.14
6 7812 48294 0.18
7 7812 35068 0.13
8 8168 13226 0.05
9 504 504 0.00
10 72 72 0.00
11 36 38 0.00
12 72 72 0.00
13 36 38 0.00
14 72 72 0.00
15 36 36 0.00
16 72 72 0.00
17 36 36 0.00
i8 36 35 0.00
18 18 54 0.00
20 72 72 0.00
21 38 35 0.00
22 72 72 0.00
23 21 21 0.00
24 38 35 0.00
25 72 72 ¢.00
26 38 36 0.00
27 72 72 0.0
28 72 72 0.00
29 36 36 0.00
30 21 21 0.00
31 18 18 0.60
a2 18 18 0.00
a3 18 18 0.00
34 18 18 0.00
35 36 36 0.00
36 18 18 0.00
37 18 18 0.00
38 18 18 0.00
39 18 18 0.00
40 356 35 0.00
41 35 38 0.00
42 18 18 0.00
43 18 18 c.00
44 18 18 0.00
45 18 18 0.00
46 36 38 0.00
47 18 18 0.00
48 18 18 0.00
49 i8 18 0.00
50 18 18 0.60
51 36 36 0.00
52 18 18 0.00
53 18 18 0.00
54 36 36 0.00
55 36 36 0.00
56 18 18 0.00
57 18 18 0.00
58 38 35 0.00
59 36 36 0.00
60 72 72 0.00
61 36 36 0.00
62 35 36 0.00
63 36 36 0.00
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64
65
66
67
68
69
70
71
72
73
74
75
76
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i28
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Complete Cycle Length Tables

129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
1561
152
153
154
188
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193

36
18
18
38
18
18
18
18
18
36
21
18
18

36
18
18
36
18
18
18
18
18
38
21
18
18
18

E-REEEERBEELEL8888

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
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Appendix B Complete Cycle Length Tables

194 38 36 0.00 length 20

:gg g gg g% Cyde size number  percent

197 | 36 36 0.00 ! 2 18 0.00

108 | 35 26 0.00 2 142580 501000 0.8

190 | 28 pou 0.00 3 14265 65870  0.06

200 | 1 ] 0.00 4 430 208240  0.20

201 2 4 0.00 5 9112 9112 0.01

202 3 3 0.00 6 14265 65870  0.06

203 1 ] 0.00 7 o112 9112 001

8 14265 65870 0.08

9 14265 65870 0.08

10 9112 2112 0.01

11 9112 9112 0.01

length 19 12 9112 of12 004

Cycle size number | percent 13 252 252 0.00

1 2 2 0.00 14 252 252 0.00

183920 | 183920 0.35 15 252 252 0.00

3 158080 | 158080 0.30 16 236 236 0.00

4 149435 | 149435 0.29 17 236 236 0.00

5 15371 15371 0.03 18 120 120. 0.00

8 3458 3458 0.01 19 4260 4260 0.00

7 1425 1425 0.00 20 236 236 0.00

8 1653 1653 0.00 21 1100 1100 0.00

9 456 456 0.00 22 252 252 0.00

10 361 361 0.00 23 236 236 0.00

11 912 a12 0.00 24 120 120 0.00

12 912 912 0.00 25 236 236 0.00

i3 a2 912 0.00 26 252 252 0.00

14 912 912 0.00 27 280 280 0.00

i5 456 458 0.00 28 120 120 0.00

i6 458 456 0.00 29 480 480 0.00

17 456 456 0.00 30 240 240 0.00

18 456 456 0.00 31 120 120 0.00

19 456 456 0.00 32 120 120 0.00

20 456 456 .00 33 120 120 0.00

21 912 912 0.00 24 120 120 0.00

22 a5 a5 0.00 35 120 120 0.00

23 456 456 0.00 38 120 120 0.00

24 458 456 0.00 37 120 120 0.00

25 456 456 0.00 38 120 120 0.00

26 114 114 0.00 39 120 120 0.00

27 114 114 0.00 40 120 120 0.00

28 114 114 0.00 41 240 240 0.00

29 114 114 0.00 42 120 120 0.00

30 228 228 0.00 43 240 240 0.00

31 114 114 0.00 44 120 120 0.00

32 114 114 0.00 45 120 120 0.00

33 114 114 0.00 46 60 <] 0.00

34 114 114 0.00 47 280 280 0.00

35 114 114 0.00 48 120 120 0.00

36 114 114 0.00 49 280 280 0.00

50 120 120 0.00

51 120 120 0.00

52 120 120 .00

53 120 120 0.00

54 120 120 0.00

55 120 120 0.00

56 120 120 0.00

57 120 120 0.00

58 120 120 0.00

) 59 120 120 0.00

80 120 120 0.00

61 240 240 0.00

62 120 120 0.00

83 240 240 0.00
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116
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Complete Cycle Length Tables

129
130
13t
132
133
134
135
136
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141
142
143
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147
148
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151
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154
155
156
157
158
159
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171
172
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0.00
0.00
0.00
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194
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196
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Complete Cycle Length Tables

276
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B.3. Rule 30 and 45 Hybrid

Complete Cycle Length Tables

length 4
Cyde | size | number | percent
i 7 15 0.94
2 1 1 0.06
length 5
Cycle | size | number | percent
i 4 32 1.00
length 6
Cycle | size | number | percent
1 14 64 1.00
length 7
Cycle | size | number | percent
1 13 120 0.94
2 6 7 0.06
3 1 1 0.01
length 8
Cycle | size | number | percent
1 30 160 0.63
2 35 87 0.34
3 8 8 0.03
4 1 1 0.00
length 9
Cycle | size | number | percant
1 15 512 1.00
length 10
Cyde | size | number | percent
1 335 950 0.93
2 45 45 0.04
3 13 13 0.01
4 16 16 0.02

length 11
Cycle | size | number | percent
1 27 1894 0.97
2 22 39 0.02
3 14 14 0.0t
4 1 1 0.00
length 12
Cycle | size | number | percent
1 311 2184 0.53
2 111 178 0.04
3 12 289 0.07
4 101 1276 0.31
5 5 144 0.04
8 12 12 0.00
7 12 12 0.00
8 1 1 0.00
length 13
Cycle | size | number | percent
1 263 5831 0.7
2 23 1287 0.16
3 281 1059 0.13
4 15 15 0.00
length 14
Cycle | size | number | percent
1 543 | 11150 0.68
2 61 4938 0.30
3 100 243 0.02
4 32 32 0.00
5 16 16 0.00
6 5 5 0.00
length 15
Cycle | size | number | percent
1 993 7604 0.23
2 1211 | 25148 0.77
3 15 15 0.00
4 1 1 0.00

226



Appendix B Complete Cycle Length Tables

length 16 length 20
Cycle | size | number | percent Cycle | size | number | percent
1 1080 | 19887 0.30 1 1246 | 380766 0.37
2 4962 | 43767 0.67 2 1331 580328 0.56
3 1060 1604 0.02 3 11413 | 33887 0.03
4 196 259 0.00 4 3309 30483 0.03
5 10 10 0.00 5 1723 1723 0.00
6 1 1 0.00 8 48 50 0.00
7 8 8 0.00 7 270 1296 0.00
8 57 57 0.00
Ej 1 1 0.00
10 5 5 0.00
fength 17

Cycle | size | number | percent

i 6183 | 73794 0.56

2 1147 | 57151 0.44

3 98 98 0.00

4 10 10 0.00

5 19 19 0.00
fength 18

Cycle | size | number | percent

1 1318 | 172564 0.66
2 4174 | 60669 0.23
3 4454 21683 0.08
4 644 7056 0.03
5 90 a0 0.00
‘6 56 56 0.00
7 5 5 0.00
8 14 14 0.00
9 7 7 0.00
length 19

Cycle | size | number | percent

i 544 55691 0.1
140 4281 0.01
3 4795 | 157792 0.30
4 1755 | 151494 0.29
5 2156 | 111056 0.21
6 4834 | 38189 0.07
7
8
9

2042 5125 0.01
235 556 0.00

18 18 0.00
10 50 50 0.00
i1 7 7 0.00
12 22 22 0.00
13 6 6 0.00
14 1 1 0.00
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Appendix C
it Weight Tables

The following tables give a complete listing of the weight of each output bit for all
possible simple one-dimensional CAs. Here the weight of high bits as a function of
position in the CA is given as a number pair xxx (yy), where xxx refers to the fraction
of bits which are high out of the total number of bits occuring in CA position yy.

rule 1

0.500 (0) 0.500 { 1) 0.500 ( 2) 0.500 { 3) 0.500 { 4}
0.500 ( 5) 0.500 (8) 0.500 (7) 0.500 (8) 0.500(9)
0.500 (10) 0.500 {11) 0.500 {12} 0.500 (13) 0.000 (14)
0.500 (15) 0.500 (16) 0.000 {17) 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (21} 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26} 0.500 (27) 0.500 (28) 0.500 (29}
Average = 0.467 Range = 0.500

rule 2

0.067 ( 0) 0.087 ( 1) 0.067 ( 2) 0.067 ( 3) 0.087 ( 4)
0.067 ( 5) 0.067 (6) 0.087 (7) 0.067 (8) 0.087 (9)
0.067 (10) 0.067 (11) 0.067 (12) 0.067 (13) 0.067 (14)
0.087 (15) 0.067 {16) 0.067 (17} 0.067 {18) 0.067 {19)
0.087 (20) 0.067 (21) 0.067 (22) 0.067 {23) 0.067 {24)
0.067 (25) 0.067 (26) 0.067 (27} 0.067 (28) 0.087 {29)
Average = 0.067 Range = 0.000

rule 3

0.433 {0) 0.433 (1) 0433 (2) 0.433(3) 0.433({ 4)
0.433 (5) 0.433 (6) 0.433 {7) 0.433 (8} 0.433(9)
0.433 (10) 0.433 (11) 0.433 (12) 0.433 (13) 0.433 (14)
0.433 (15) 0.433 (16) 0.433 {17) 0.433 (18) 0.433 (19)
0.433 (20) 0.433 (21) 0.433 {22) 0.433 (23) 0.433 (24)
0.433 (25) 0.433 (26) 0.433 (27) 0.433 (28) 0.433 (29)
Average = 0.433 Rangs = 0.000

rule 4

0.000 ( 0) 0.000 (1) 0.000 ( 2) 0.000 (3} 1.000 (4)
0.000 (5) 0.000 {6} 1.000 {7) 0.000 (8} 1.000(9)
0.000 (10} 0.000 (11) 0.000 (12) 0.000 (13) 0.000 (14)
1.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21} 0.000 {22) 0.00C (23) 0.000 (24)
0.000 {25) 0.000 (26) 0.000 (27) 0.000 (28} 1.000 (29)
Average = 0,167 Range = 1.000

rule §

0.000 { 0) 0.500 ( 1) 0.500 ( 2) 0.000 { 3) 1.000 ({ 4)
0.000 { 5) 0.000 ( 6) 1.000 { 7} 0.000 ( 8) 1.000 (9)
0.000 (10) 0.500 {11) 0.500 (12) 0.500 (13) 0.000 (14)
1.000 {15) 0.000 (16) 0.500 (17) 0,500 {18) 0.500 (19)
0.500 (20) 0.500 {21) 0.500 (22) 0.500 {23) 0.500 (24)
0.500 (25) 0.000 {26) 1.000 (27) 0.000 (28) 1.000 (29)
Average = 0.433 Range = 1.000

rule 6

0.200 (0) 0.300 ( 1) 0.200 ( 2) 0.300 ( 3) 0.200 { 4)
0.300 ( 5) 0.200 { 8) 0.300 ( 7) 0.200 ( 8) 0.300 (%)
0.200 (10) 0.300 {11) 0.200 (12) 0.300 (13) 0.200 {14)
0.300 (15) 0.200 (16) 0.300 (17) 0.200 {18) 0.300 {19)
0.200 (20) 0.300 (21} 0.200 (22) 0.300 {23) 0.200 (24)
0.300 (25) 0.200 (26) 0.300 (27) 0.200 (28) 0.300 {29)
Average = 0.250 Range = 0.100

rule 7

0.450 (0) 0.450 ( 1) 0.450 ( 2) 0.450 { 3) 0.450 { 4)
0.450 ( 5) 0.450 (8) 0.450 ( 7) 0.450 { B) 0.450 { 9)
0.450 {10} 0.450 (11) 0.450 (12) 0.450 (13) 0.450 {14)
0.450 {15) 0.450 (186) 0.450 (17) 0.450 (18) 0.450 {19)
0.450 (20) 0.450 (21) 0.450 (22) 0.450 (23) 0.450 (24)
0.450 (25) 0.450 (26) 0.450 (27) 0.450 (28) 0.450 (29)
Average = 0.450 Range = 0.001

rule 8

0.000 { 0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 { 5) 0.000 (6} 0.000(7) 0.000{ 8) 0.000(9)
0.000 (10) 0.000 (11} 0.000 (12) 0.000 {13} 0.000 (14)
0.000 {15) 0.000 (186} 0.000 (17) 0.000 (18} 0.000 (19)
0.000 (20) 0.000 (21} 0.000 {22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 {26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000
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ruie 9

0.433 (0) 0.433 (1) 0.433 (2) 0.433(3) 0.433( 4)
0.433 {5) 0.433 {6) 0.433 (7} 0.433 (8) 0.433(9)
0.433 {10) 0.433 {11) 0.433 (12) 0.433 {13) 0.433 {14)
0.433 (15) 0.433 (16) 0.433 (17) 0.433 (18) 0.433 (19}
0.433 (20) 0.433 (21) 0.433 {22) 0.433 (23) 0.433 (24)
0.433 (25) 0.433 (26) 0.433 (27) 0.433 (28) 0.433 (29}
Average = 0.433 Range = 0.001

rufe 10

©.300 { 0) 0.300 ( 1) 0.300 {2) 0.300( 3) 0.300 ( 4)
0.300 ( 5) 0.300 ( 6) 0.300 ( 7) 0.300 (8) 0.300(9)
0.300 {10) 0.300 {11) 0.300 (12} 0.300 (13) 0.300 (14}
0.300 (15) 0.300 (186) 0.300 (17) 0.300 (18) 0.300 {19)
0.300 (20) 0.300 (21) 0.200 (22) 0.300 {23) 0.300 {24)
0.300 (25) 0.300 (26} 0.300 {27) 0.300 (28) 0.300 {29)
Average = 0.300 Range = 0.000

rule 11

0.500 { 0) 0.500 ( 1) 0.500 {2) 0.500 { 3} 0.500 { 4}
0.500 { 5) 0.500 (8) 0.500 (7) 0.500 (8) 0.5C0 (9}
0.500 {10) 0.500 (11) 0.500 {12} 0.500 (13) 0.500 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28} 0.500 (29)
Average = 0.500 Range = 0.000

rule 12

0.000 ( 0) 0.000 ( 1} 0.000 ( 2} 0.000 ( 3) 1.000 ( 4)
0.000 ( 5) 0.000 (6) 1.000 (7) 0.000 (8) 1.000(9)
0.000 {10) 0.000 (11) 0.000 (12} 0.000 {13} 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 0.000 {18} 0.000 (19}
0.000 {20) 0.000 (21) 0.000 (22) 0.000 {23) 1.000 (24)
0.000 {25) 0.000 (26) 0.000 {27) 0.000 {28} 1.000 (29}
Average = 0.233 Range = 1.000

rule 13

0.000 ( 0) 0.000 (1) 1.000 (2) 0.000 ( 3) 1.000 { 4)
0.000 ( 5) 0.000{6) 1.000 (7} 0.000(8) 0.000(9)
1,000 (10} 0.000 {11) 1.000 (12) 0.000 (13) 1.000 (14)
0.000 (15) 1.000 (16) 0.000 (17) 1.000 (18) 0.000 (19)
0.000 (20) 1.000 (21) 0.000 (22) 0.000 (23) 1.000 {24)
0.000 (25) 1.000 (26) 0.000 (27) 0.000 (28) 1.000 (29)
Average = 0.400 Range = 1.000

rule 14

0.467 (0) 0.533 (1) 0.467 (2) 0.533 ( 3) 0.467 (4)
0.533 (5) 0.467 (6) 0.533 {7) 0.467 (8} 0.533 (9)
0.467 (10) 0.533 (11) 0.467 {12) 0.533 {13) 0.467 (14}
0.533 (15) 0.467 (16) 0.533 {17) 0.467 {18) 0,533 (19
0.467 (20} 0.533 (21) 0.467 (22) 0.533 (23) 0.467 (24)
0.533 (25) 0,467 (26) 0.534 {27) 0.467 {28) 0.533 (29)
Average = 0.500 Range = 0.067

rule 15
0.600 ( 0) 0.400 ( 1} 0.600 ( 2) 0.400 ( 3) 0.800 ( 4)

0.400 ( 5) 0.800 (6) 0.400 ( 7) 0.600 ( 8) 0.400 (9)

0.800 (10) 0.400 (11) 0.600 (12) 0.400 {13) 0.600 (14)
0.400 {15) 0.600 (16) 0.400 (17) 0.600 {18} 0.400 (19)
0.600 {20) 0.400 (21} 0.600 (22) 0.400 {23) 0.600 (24)
0.400 (25) 0.600 (26) 0.400 (27) 0.600 (28) 0.400 {20)
Average = 0.500 Range = 0.200

Bit Weight Tables

rule 16

0.100 ( 0) ©.100( 1) 0.100{ 2) 0.100 ( 3) 0.100 { 4}
0.100 ( 5) 0.100 (8) 0.100 ( 7) 0.100 ( 8) 0.100 { 9)
0.100 (10) 0.100 (11) 0.100 {12) 0.100 {13) 0.100 (i4)
0.100 {15) 0.100 (16) 0.100 (17) 0.100 {18) 0.100 (19}
0.100 (20) 0.100 (21) 0.100 {22) 0.100 (23) 0.100 {24)
0.100 (25) 0.100 (26) 0.100 (27) 0.100 (28) 0.100 {29)
Average = 0.100 Range = 0.000

rule 17

0417 (0) 0.417 (1) 0.417(2) 0417 (3) 0.417 ( 4)
0.417 ( 5) 0.417 (6) 0417 (7) 0.417 (8) 0417 (9)
0.417 (10) 0.417 (11) 0.417 (12) 0.417 {13) 0.417 (14}
0.417 (15) 0.417 (16) 0.417 (17) 0.417 {18) 0.417 (19)
0.417 {20) 0.417 (21) 0.417 {22) 0.417 (23) 0.417 (24)
0.417 (25) 0.417 (26) 0.417 (27) 0.417 (28) 0.417 (29)
Average = 0.417 Range = 0.000

rule 18

0.001 { 0} 0.001 (1) 0.001 (2} 0.001 ( 3) 0.001 ( 4)
0.001 { 5} 0.001 ({6) 0.001 (7) 0.001(8) 0.001(9)
0.001 {10) 0.000 (11) 0.00t (12) 0.001 (13) 0.000 {14)
0.001 {15) 0.001 (16) 0.000 (17) 0.001 (18) 0.001 {19)
0.001 (20) 0.001 (21) 0.001 (22) 0.001 (23) 0.001 {24)
0.001 (25) 0.001 (26) 0.00C (27} 0.001 (28) 0.001 (29)
Average = 0.001 Range = 0.001

rule 19

0.500 { 0} 0.500 ( 1) 0.500( 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.500 ( &) 0.500( 7) 0.500 { 8) 0.500 { 9)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 (13} 0.500 {14)
0.500 (15} 0.500 (16} 0.500 (17) 0.500 (18} 0.500 {19)
0.500 (20) 0.500 (21) 0.500 (22} 0.500 (23} 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 {28) 0.500 (29)
Avarage = 0.500 Range = 0.000

rule 20

0.267 { 0} 0.333 (1) 0.267 { 2} 0.333 ( 3) 0.267 { 4)
0.333 { 5) 0.267 ( 6) 0.333 (7) 0.267 ( 8) 0.333 (9}
0.267 (10) 0.333 (11) 0.267 (12) 0.333 (13) 0.267 (14}
0.333 {15) 0.267 (16) 0.333 (17) 0.267 (18) 0.333 (19}
0.266 {20) 0.333 (21) 0.267 (22) 0.333 (23) 0.266 {24)
0.333 (25) 0.267 (26) 0.333 (27) 0.267 (28) 0.333 {29)
Average = 0.300 Range = 0.067

rule 21

0.483 (0) 0.483 (1) 0.483 (2) 0.483(3) 0.483( 4)
0.483 ( 5) 0.483 (6) 0.483 (7) 0.483(8) 0.483(9)
0.483 (10} 0.484 (11) 0.483 (12) 0.483 (13) 0.483 (14)
0.483 (15) 0.483 (16) 0.483 (17) 0.483 {18) 0.483 (19}
0.483 (20) 0.483 (21) 0.483 (22) 0.484 {23) 0.483 (24}
0.484 (25) 0.483 (26) 0.483 {27) 0.483 {28) 0.483 (29}
Average = 0.483 Range = 0.000

rule 22

0.003 { 0) 0.002 { 1} 0.002 (2} 0.002 { 3) 0.003 { 4)
0.003 { 5) 0.003 (6) 0.003 (7) 0.003 { 8) 0.003(9)
0.002 (10) 0.003 (11) 0.002 (12) 0.002 {13) 0.002 (14)
0.003 (15) 0.003 (16) 0.002 (17) 0.002 {18) 0.002 (19)
0.003 {20) 0.003 (21) 0.003 (22) 0.003 (23) 0.003 (24}
0.002 (25) 0.002 (26) 0.003 (27) 0.003 (28) 0.003 {29)
Average = 0.002 Range = 0.001
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rule 23

0.500 (0) 0.500 { 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.500 (5) 0.500 { &) 0.500 ( 7} 0.500 { 8) 0.500 { 9}
0.500 (10) 0.500 {11) 0.500 (12) 0.500 (13) 0.500 (14)
0.500 (15) 0.500 {16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (21) 0.500 (22} 0.500 {23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29}
Average = 0.500 Range = 0.000

rule 24

0.167 (0) 0.167 { 1) 0.167 (2) 0.167 (3) 0.167 { 4)
0.167 (5) 0.167 ( €) 0.167 { 7) 0.167 ( 8) 0.167 ( 9)
0.187 (10) 0.167 (11) 0.167 (12) 0.167 (13) 0.167 (14)
0.167 (15) 0.167 {16) 0.167 (17) 0.167 (18) 0.167 (19)
0.167 (20) 0.167 (21) 0.167 (22) 0.167 (23) 0.187 (24}
0.167 (25) 0.167 (26) 0.167 (27) 0.167 (28) 0.167 (29)
Average = 0.167 Range = 0.000

rule 25

0.450 (0} 0.450 ( 1) 0.450 { 2) 0.450 ( 3) 0.450 { 4)
0.450 ( 5) 0.450 ( 6) 0.450 ( 7) 0.450 ( 8) 0.450 (9)
0.450 (10) 0.450 {11) 0.450 (12) 0.450 (13) 0.450 (14)
0.450 (15) 0.450 {16) 0.450 {17) 0.450 (18) 0.450 {19}
0.450 (20) 0.450 (21) 0.450 {22) 0.450 (23) 0.450 (24)
0.450 (25) 0.450 (26) 0.450 (27) 0.450 (28) 0.450 {29)
Average = 0.450 Renge = 0.000

rule 26

0.367 (0) 0.450( 1) 0.367 { 2) 0.450 ( 3) 0.366 { 4)
0.450 ( 5) 0.367 (6) 0.450 ( 7) 0.387 ( 8) 0.450 ( 9)
0.367 {10) 0.450 (11) 0.366 (12} 0.450 (13) 0.367 (14)
0.450 (15) 0.367 (16) 0.450 {17) 0.367 (18) 0.450 {19)
0.367 (20) 0.450 (21) 0.367 (22) 0.450 (23) 0.367 (24)
0.450 (25) 0.367 (26) 0.450 (27) 0.367 (28) 0.450 (29)
Average = 0.408 Range = 0.084

rule 27

0.533 (0) 0.533 (1) 0.533 ( 2) 0.533 ( 3) 0.533 ( 4)
0.533 (5) 0.533 (6) 0.533 (7} 0.533(8) 0.533(9)
0.533 (10} 0.533 (11) 0.533 (12) 0.533 {13) 0.533 (i4)
0.533 (15) 0.533 (16) 0.533 (17} 0.533 (18) 0.533 (19)
0.533 (20) 0.533 (21) 0.533 (22) 0.533 (23) 0.533 (24)
0.533 (25) 0.533 (26) 0.533 (27) 0.533 (28) 0.533 (29)
Average = 0.533 Range = 0.000

rule 28

0.500 (0} 0.000 ( 1) 1.000 (2) 0.000(3) 1.000{ 4}
0.500 ( 5} 0.000 ( 6) 1.000(7) 0.500 ( 8) 0.000 {9}
1.000 (10) 0.000 (11) 1.000 (12) 0.000 (13) 1.000 {14)
0.500 (15) 0.000 (16) 1.000 {17) 0.000 (18) 1.000 (19)
0.000 (20) 1.000 (21) 0.500 {22) 0.000 (23) 1.000 (24)
0.000 (25) 1.000 (26) 0.800 (27) 0.000 (28) 1.000 (29)
Average = 0.500 Range = 1.000

rule 29

0.000 { 0) 1.000 (1) 0.500 (2) 0.000 {3} 1.000( 4)
0.000 ( 5) 1.000 (6) 0.000 (7) 1.000(8) 0.500{9)
0.000 (10) 1.000 (11) 0.000 (12) 1.000 (13) 0.500 (14}
0.500 (15) 0.500 (18) 0.000 (17) 1.000 (18) 0.500 (19)
0.000 (20) 1.000 (21) 0.000 (22) 1.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 (28) 1.000 {29}
Average = 0,500 Range = 1.000

Bit Weight Tables

rule 30

0.502 ( 0) 0.506 ( 1) 0.500 ( 2) 0.504 ( 3) 0.486 { 4)
0.504 ( 5) 0.494 (8) 0.501 (7) 0.496 (8) 0.505(9)
0.495 (10) 0.496 (11) 0.497 (12) 0.493 (13) 0.507 (14)
0.498 (15) 0.507 (16) 0.494 (17) 0.503 (18} 0.496 (19)
0.505 (20) 0.491 (21) 0.509 (22) 0.494 {23) 0.502 (24)
0.503 (25) 0.497 (26) 0.489 (27) 0.500 (28) 0.499 (29)
Average = 0.499 Range = 0.024

rule 31

0.550 ( 0} 0.550 ( 1) 0.550 { 2) 0.550 ( 3) 0.550 { 4}
0.550 ( 5) 0.550 ( 8) 0.550 { 7) 0.550 ( 8) 0.550( 9)
0.550 (10) 0.550 (11) 0.550 {12) 0.550 (13) 0.550 (14)
0.550 (15) 0.550 {186) 0.550 (17) 0.550 {18) 0.550 (19)
0.550 {20) 0.550 (21) 0.550 (22) 0.550 (23) 0.550 (24)
0.550 {25) 0.550 (26) 0.550 {27) 0.550 (28) 0.550 (29}
Average = 0.550 Range = 0.001

rule 32

0.000 ( 0) 0.000 { 1) 0.000 ( 2) 0.000 { 3) 0.000 ( 4)
0.000 ( 5) 0.000 { &) 0.000 { 7) 0.000 ( 8) 0.000 {9)
0.000 (10) 0.000 (11) 0.000 {12) 0.000 ($3) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 {17) 0.000 {18) 0.000 (19)
0.000 (20) 0.0C0 (21) 0.000 {22) 0.000 {23) 0.000 (24}
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 {29)
Avarage = 0.000 Range = 0.000

rule 33

0.500 ( 0} 0.500 ( 1) 0.500 ( 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.000 ( 6) 0.500 ( 7) 0.500 ( 8) 0.500 ( 9)
0.000 (10) 0.500 (11) 0.000 (12) 0.500 (13) 0.500 {14)
0.500 (15) 0.500 (186) 0.000 {17) 0.500 {18) 0.000 (19)
0.500 (20} 0.000 (21) 0.500 {22) 0.500 (23) 0.500 (24)
0.000 (25) 0.500 (26) 0.000 (27) 0.500 (28) 0.500 (29)
Average = 0.367 Range = 0.500

rule 34

0.300 ( 0) 0.300 ( 1) 0.300 { 2) 0.300 ( 3) 0.300 ( 4)
0.300 ( 5) 0.300 ( 8) 0.300 ( 7) 0.300 ( 8) 0.300 ( 9)
0.300 (10) 0.300 (11) 0.300 (12) 0.300 (13) 0.300 (14)
0.300 (15) 0.300 (16) 0.300 (17) 0.300 (18) 0.300 (19)
0.300 (20) 0.300 (21) 0.300 {22) 0.300 (23) 0.300 (24)
0.300 (25) 0.300 (26) 0.300 {27} 0.300 (28) 0.300 (29)
Average = 0.300 Range = 0.000

rule 35

0.387 ( 0) 0.367 { 1) 0.367 ( 2) 0.367 ( 3) 0.367 { 4}
0.367 { 5) 0.367 { 6) 0.367 ( 7) 0.367 ( 8) 0.367 ()
0.367 (10) 0.367 (11) 0.367 (12) 0.367 (13) 0.367 (14)
0.367 (15} 0.367 (16) 0.367 (17) 0.367 (i8) 0.367 (19)
0.367 (20) 0.367 (21) 0.367 {22) 0.367 (23) 0.367 (24)
0.367 (25) 0.367 (26) 0.367 (27) 0.367 (28) 0.357 (29)
Average = 0.367 Range = 0.000

rule 36

0.000 ( 0) 0.000 ( 1} 0.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 { 5) 0.000 ( 6) 0.000 ( 7) 0.000 { 8) 0.000 (9)
0.000 (10) 0.000 (11) 0.000 (12) 0.000 (13) 0.000 (14)
1.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21) 0.000 {22) 0.000 (23} 0.000 (24)
0.000 (25) 0.000 (26) 0.000 {27) 0.000 {28) 0.000 {29)
Average = 0.033 Range = 1.000
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Appendix C

rule 37

0.500 (0) 0.500 { 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.000 (5) 0.500 (8) 0.500 {7) 0.500(8) 0.500(9)
0.500 (10} 0.500 {11) 0.000 (12) 0.500 (13) 0.500 (14)
0.500 (15) 0.500 {16} 0.500 (17} 0.000 (18) 0.500 (19}
0.500 (20) 0.000 (21) 0.500 {22) 0.500 (23) 0.000 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.001 (28) 0.500 (29)
Average = 0.400 Range = 0.500

rule 38

0.333 (0} 0.387 (1) 0.333 (2) 0.367 ( 3) 0.333( 4)
0.367 ( 5) 0.333(6) 0.367 (7) 0.333(8) 0.367 ( 9)
0.333 (10) 0.367 (11) 0.333 (12) 0.367 (13) 0.333 (14)
0.367 (15) 0.333 (16) 0.367 (17) 0.333 (18) 0.367 (19)
0.333 (20) 0.367 (21) 0.333 (22) 0.367 (23) 0.333 (24)
0.367 (25) 0.333 (26) 0.367 (27) 0.333 (28) 0.357 (29)
Average = 0.350 Range = 0.034

rule 39

0.467 (0} 0.467 (1) 0.467 ( 2) 0.467 ( 3) 0.467 ( 4)
0.467 { 5} 0.487 {6) 0.467 ( 7) 0.467 { 8) 0.467 ( 9)
0.467 (10) 0.467 (11) 0.467 (12) 0.467 (13) 0.467 (14)
0.467 (15) 0.467 (16) 0.467 (17) 0.467 (18) 0.467 (19)
0.467 (20) 0.467 (21) 0.467 (22) 0.467 (23) 0.467 (24)
0.467 (25) 0.467 (26) 0.467 (27) 0.467 (28) 0.467 (29)
Average = 0.467 Range = 0.000

rule 40

0.000 ( 0) 0.001 ( 1) 0.001 { 2) 0.001 {3) 0.001 {(4)
£.001 ( 5) 0.000 ( 6) 0.000 { 7) 0.000 ( 8) 0.000 { 9)
0.000 (10) 0.000 (11) 0.000 (12) 0.000 {13) 0.000 (14)
0.000 {15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 {21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26} 0.000 (27} 0.000 {28) 0.000 (29)
Average = 0.000 Range = 0.00t

rufe 41

0.365 ( 0) 0.365 ( 1) 0.364 ( 2) 0.365 ( 3) 0.365 ( 4)
0.365 ( 5) 0.364 ( 6) 0.365 ( 7) 0.365 ( 8) 0.365 ( 9)
0.364 (10) 0.365 (11) 0.366 (12) 0.365 (13) 0.364 (14)
0.385 {15) 0.366 (16) 0.365 (17) 0.385 (18) 0.365 {19)
0.365 (20 0.365 (21) 0.365 (22) 0.365 (23) 0.365 (24)
0.365 (25) 0.385 {26) 0.365 (27} 0.365 (28) 0.365 (29)
Average = 0.365 Range = 0.002

rule 42

0.467 ( 0) 0.467 ( 1) 0.467 ( 2) 0.467 ( 3) 0.467 (4)
0.467 ( 5) 0.467 (6) 0.467 (7) 0.467 { 8) 0.467 ( 9)
0.467 (10) 0.467 (11) 0.467 (12) 0.467 {13) 0.467 (14)
0.467 (15) 0.467 (16) 0.467 (17) 0.467 (18) 0.467 (19)
0.467 (20) 0.467 (21) 0.467 (22) 0.467 (23) 0.467 {24)
0.467 (25) 0.467 (26) 0.467 (27) 0.467 (28) 0.467 {29)
Average = 0.467 Range = 0.000

rule 43

0.533 (0) 0.533 (1) 0533 (2) 0.533 (3} 0.533 ( 4}
0.533 (5} 0.533 (6) 0.533 (7) 0.533 (8) 0.533 (9}
0.533 (10) 0.533 (11) 0.533 (12) 0.533 (13} 0.533 (14)
0.533 (15) 0.533 {16} 0.533 {17} 0.533 (18) 0.534 (19)
0.533 (20) 0.533 {21) 0.533 (22) 0.533 (23) 0.533 (24)
0.533 (25) 0.533 {26) 0.533 (27) 0.533 (28) 0.533 (29)
Average = 0.533 Range = 0.000

Bit Weight Tables

rule 44

0.000 { 0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 { 4)
1.000 ( 5) 0.000 (6} 0.000(7) 0.000{8) 0.000(9)
0.000 (10) 0.000 (11) 0.000 {12) 1.000 (13) 0.000 (14)
0.000 {15} 0.000 (16) 0.000 (17) 0.000 (18) 0.000 {19}
0.000 (20) 1.000 (21) 0.000 (22) 0.000 (23} 1.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 1.000 (28) 0.000 {29)
Average = 0.167 Range = 1.000

rule 45

0.500 ( 0) 0.500 ( 1) 0.498 ( 2) 0.499 ( 3) 0.497 ( 4)
0.508 ( 5) 0.487 (8) 0.505(7) 0.494 (8) 0.505(9)
0.499 (10) 0.501 (11) 0.498 (12) 0.508 (13) 0.491 (14)
0.503 (15) 0.507 (16} 0.484 (17) 0.504 (18) 0.501 (19)
0.496 (20) 0.502 (21) 0.503 (22) 0.507 (23) 0.497 (24}
0.496 (25) 0.500 (26) 0.507 (27} 0.485 (28) 0.507 (29)
Average = 0.501 Range = 0.018

rule 46

0.400 ( 0) 0.400 ( 1) 0.400 ( 2) 0.400 { 3) 0.400 ( 4)
0.400 ( 5) 0.400 ( 8) 0.400 ( 7) 0.400 ({ 8) 0.400 { 9}
0.400 (10) 0.400 (11) 0.400 (12) 0.400 (13} 0.400 {14)
0.400 (15) 0.400 (16) 0.400 (17) 0.400 (18} 0.400 {19)
0.400 (20) 0.400 (21) 0.400 (22) 0.400 (23) 0.400 (24)
0.400 {25) 0.400 (26) 0.400 (27) 0.400 (28) 0.400 (29)
Average = 0.400 Range = 0.000

rule 47

0.467 (0) 0.533 (1) 0.467 ( 2) 0.533 ( 3) 0.467 { 4)
0.533 ( 5) 0.467 (6) 0.533 (7) 0.467 (8) 0.534(9)
0.467 (10) 0.533 (11) 0.467 (12) 0.533 (13) 0.467 (14)
0.533 (15) 0.467 (16) 0.533 {17) 0.467 (18) 0.533 (19}
0.467 (20) 0.533 (21) 0.467 {22) 0.533 {23) 0.467 (24}
0.533 (25) 0.467 (26) 0.533 (27) 0.467 (28) 0.533 {29)
Average = 0.500 Range = 0.067

rule 48

0.300 (0) 0.300( 1) 0.300(2) 0.300 ( 3) 0.300 ( 4)
0.300 ( 5) 0.300 (6) 0.300 (7) 0.300(8) 0.300(9)
0.300 (10) 0.300 (11) 0.300 (12) 0.300 (13) 0.300 (14}
0.300 {15) 0.300 (16) 0.300 {17) 0.300 (18) 0.300 {19)
0.300 (20} 0.300 (21) 0.300 (22) 0.300 {23) 0.300 (24)
0.300 (25) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 (29)
Average = 0.300 Range = 0.000

rule 49

0.383(0) 0.383( 1) 0.383(2) 0.383(3) 0.383(4)
0.383(5) 0.383 (6) 0.383 (7) 0.383( 8) 0.383{9)
0.383 (10) 0.383 (11) 0.383 (12) 0.383 (13} 0.383 (14)
0.383 (15) 0.383 (16) 0.383 (17) 0.383 (18) 0.383 (19}
0.383 (20) 0.383 (21) 0.383 (22) 0.383 (23) 0.383 (24)
0.383 {25) 0.383 (26) 0.383 (27) 0.383 ({28) 0.383 (29}
Average = 0.383 Range = 0.000

rule 50

0.500 ( 0) 0.500 { 1) 0.500 ( 2) 0.500 { 3) 0.500 { 4)
0.500 ( 5) 0.500 { 6} 0.500 { 7) 0.500 ( 8) 0.500 { 9)
0.500 (10) 0.500 (11) 0.500 {12) 0.500 (13} 0.500 {14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 {25) 0.500 (26} 0.500 {27} 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.000
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Appendix C

rule 51

0.500 { 0) 0.500 ( 1} 0.500 { 2) ©.500 { 3) 0.500 ( 4)
0.500 { 5) 0.500 ( 6} 0.500 { 7) 0.500 { 8) 0.500 ( 9}
0.500 (10) 0.500 (11) 0.500 {12) 0.500 (13) 0.500 (14)
0.500 (15) 0.500 (16} 0.500 (17) 0.500 {18) 0.500 {19)
0.500 (20) 0.500 (21) 0.500 (22) 0.500 {23) 0.500 {24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 {28) 0.500 (29)
Average = 0.500 Range = 0.000

rule 52

0.333 ( 0) 0.367 ( 1) 0.333 (2) 0.367 ( 3) 0.333 ( 4)
0.367 { 5) 0.333 ( 6) 0.367 ( 7) 0.333 { 8) 0.367 { 9)
0.333 (10) 0.367 (11) 0.333 (12) 0.367 (13) 0.333 (14)
0.367 (15) 0.333 (16) 0.367 (17) 0.333 (18) 0.367 (19)
0.333 (20) 0.367 (21) 0.333 (22) 0.367 (23) 0.333 (24)
0.367 (25) 0.333 (28) 0.367 (27) 0.333 (28) 0.357 (29)
Average = 0.350 Range = 0.034

ruie 53

0.483 { 0) 0.483 ( 1) 0.483 ( 2) 0.483 { 3) 0.483 ( 4)
0.483 ( 5) 0.483 (8) 0.483 (7) 0.483 { 8) 0.483 ( 9)
0.483 (10) 0.483 (11) 0.483 (12) 0.483 {13) 0.483 (14)
0.483 (15) 0.483 (16) 0.483 (17) 0.483 {18) 0.483 (19)
0.483 (20) 0.483 (21) 0.483 (22) 0.483 {23) 0.483 (24)
0.483 (25) 0.483 (26) 0.483 (27) 0.483 {28) 0.483 (29)
Average = 0.483 Range = 0.000

rule 54

0.500 { 0y 0.250 ( 1) 0.250 ( 2) 0.500 { 3} 0.500 ( 4}
0.500 ( 5) 0.500 ( 6) 0.500 {7) 0.500 { 8} 0.500 ( 9)
0.250 (10) 0.500 (11) 0.500 (12) 0.500 (13) 0.500 {14}
0.500 (15) 0.500 (16) 0.500 (17) 0.250 (18} 0.250 {19)
0.500 {20} 0.500 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.250 {25) 0.500 (26) 0.500 (27} 0.500 (28) 0.500 (29)
Average = 0.450 Range = 0.250

rule 55

0.500 (0) 0.500 ( 1) 0.500 ( 2} 0.500 ( 3) 0.500 { 4}
0.500 { 5) 0.500 ( 6) 0.500 ( 7) 0.500 ( 8) 0.500 ( 9)
0.500 {10) 0.500 (11) 0.5G0 (12) 0.500 {13} 0.500 (14)
0.500 (15) 0.500 (16} 0.500 (17) 0.500 {18) 0.500 (19)
0.500 (20) 0.500 {21) 0.500 (22) 0.500 {23) 0.500 (24}
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Avorage = 0,500 Range = 0.000

rule 56

0.300 { 0) 0.300 { 1) 0.300 { 2) 0.300 { 3) 0.300 { 4)
0.300 { 5) 0.300 { 6) 0.300 { 7) 0.300 ( 8) 0.300 {9)
0.300 (10) 0.300 (11} 0.300 (12) 0.300 (13} 0.300 (14)
0.300 (15) 0.300 {16) 0.300 (17) 0.300 (18) 0.300 (19}
0.300 {20) 0.300 {21) 0.300 (22) 0.300 (23) 0.300 {24)
0.300 {25) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 {29)
Average = 0.300 Range = 0.000

rule §7

0.500 ( 0) 0.500 ( 1) 0.500 ( 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.500 (6) 0.500 ( 7) 0.500 ( 8) 0.500 { 9}
0.500 {10} 0.500 (11) 0.500 {12) 0.500 (13) 0.500 {14)
0.500 {15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 {19)
0.500 (20) 0.500 (21) 0.500 (22} 0.500 (23) 0.500 (24)
0.500 {25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29}
Average = 0.500 Range = 0.000

Bit Weight Tables

rule 58

0.667 (0} 0.867 { 1) 0.867 { 2) 0.667 ( 3) 0.667 ( 4)
0.667 ( 5) 0.667 { 6) 0.667 { 7) 0.657 ( 8) 0.667 ( 9)
0.667 {10} 0.667 (11) 0.667 (12) 0.667 (13) 0.667 (14)
0.867 {15) 0.667 (16) 0.667 (17) 0.666 (18} 0.666 {19)
0.667 (20) 0.667 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 (25) 0.667 (26) 0.667 (27) 0.667 (28) 0.667 (29)
Average = 0.667 Range = 0.000

rule 59

0.617 (0) 0.617 (1) 0.817(2) 0.617 ( 3) 0.617 (4)
0.817 ( 5) 0.617 (6) 0617 (7) 0.617 ( 8) 0.617 ( 9)
0.617 (10) 0.617 (11) 0.617 (12) 0.617 {13) 0.617 (14)
0.617 {15) 0.617 (16) 0.617 (17) 0.617 {18) 0.617 (19
0.617 (20) 0.617 (21) 0.817 (22} 0.617 (23) 0.617 (24)
0.617 {25) 0.617 (26) 0.617 (27) 0.617 (28) 0.617 (29)
Average = 0.617 Range = 0.000

rule 60

0.533 (0) 0.533 (1) 0467 (2) 0.600 ( 3) 0.533 ( 4}
0.533 (5) 0.487 (6) 0.400 ( 7) 0.600 ( 8) 0.533 ( 9}
0.467 (10) 0.467 (11) 0.400 (12) 0.467 (13) 0.533 (14)
0.600 (15) 0.533 (16) 0.800 (17} 0.534 (18) 0.4567 (19)
0.400 (20) 0.600 (21) 0.533 (22) 0.400 (23) 0.600 (24)
0.600 (25) 0.533 (26) 0.333 (27) 0.667 (28) 0.600 {29)
Average = 0.518 Range = 0.333

rule 61

0.567 { 0) 0.567 ( 1) 0.567 { 2) 0.567 { 3) 0.567 ( 4)
0.567 ( 5) 0.567 ( 8) 0.567 (7) 0.567 ( 8) 0.567 ( 9)
0.567 (10) 0.567 (11) 0.567 {12) 0.567 (13) 0.567 (14)
0.567 (15) 0.567 (16} 0.567 (17) 0.567 (18) 0.567 {19)
0.567 (20) 0.5687 (21) 0.567 (22) 0.567 (23) 0.567 (24)
0.567 (25) 0.567 {26) 0.567 (27) 0.567 {28) 0.567 (29)
Average = 0.567 Range = 0.000

rule 62

0.667 ( 0) 0.667 (1) 0.667 (2) 0.667 ( 3) 0.333 ( 4)
0.667 ( 5) 0.667 {6) 0.667 {7) 0.333 ( 8) 0.667 ( 9)
0.867 (10) 0.333 (11) 0.667 {12) 0.867 (13) 0.667 (14)
0.667 (15) 0.687 (16) 0.667 (17) 0.667 (18) 0.667 {19)
0.867 (20) 0.667 (21) 0.667 (22) 0.666 (23) 0.666 (24)
0.334 (25) 0.334 (26) 0.666 (27) 0.666 {28) 0.666 (29)
Average = 0.611 Range = 0.333

rule 63

0.533 (0) 0.533( 1) 0.533(2) 0.533 ( 3) 0.534 (4)
0.533 ( 5} 0.533 (6) 0.533 (7) 0.533 ( 8) 0.533( 9)
0.533 (10) 0.533 (11) 0.533 (12) 0.533 (13) 0.533 (14)
0.533 (15) 0.533 (16) 0.533 (17) 0.533 {18) 0.533 (19)
0.533 {20) 0.533 (21) 0.533 (22) 0.533 (23) 0.533 {24}
0.533 (25) 0.533 (26) 0.533 (27) 0.533 (28) 0.534 {29)
Average = 0.533 Range = 0.000

rule 64

0.000 { 0) 0.000 { 1) 0.000 { 2) 0.000 ( 3} 0.000( 4)
0.000 { 5) 0.000 { &) 0.000 (7) 0.000 ( 8) 0.000{9)
0.000 {10} 0.000 (11) 0.000 (12) 0.000 (13} 0.000 {14)
0.000 {15) 0.000 (18) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21} 0.000 (22) 0.000 {23) 0.000 (24)
0.000 (25) 0.000 (26} 0.000 {27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000
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Appendix C

rule 65

0.534 (0) 0.266 ( 1) 0.533 ( 2) 0.267 ( 3) 0.533 ( 4)
0.267 ( 5) 0.533 (6) 0.267 ( 7) 0.533 ( 8) 0.267 (9)
0.533 (10) 0.267 {(11) 0.533 (12) 0.266 (13) 0.533 (14)
0.267 (15) 0.533 (16) 0.267 (17) 0.533 (18) 0.267 (19)
0.533 (20) 0.267 (21) 0.533 (22) 0.267 (23) 0.533 (24)
0.267 (25) 0.533 (26) 0.267 (27) 0.533 (28) 0.267 (29)
Average = 0.400 Range = 0.267

rule 66

0.200 {0} 0.200 { 1) 0.200 ( 2) 0.200 { 3) 0.200 ( 4)
0.200 ( 5) 0.200 ( 6) 0.200 ( 7) 0.200 ( 8) 0.200 ( 9)
0.200 (10) 0.200 (11) 0.200 (12) 0.200 (13) 0.200 (14)
0.200 (15) 0.200 (16) 0.200 (17) 0.200 (18) 0.200 {19}
0.200 (20) 0.200 {21) 0.200 {22) 0.200 (23} 0.200 (24)
0.200 (25) 0.200 (26) 0,200 (27) 0.200 {28) 0.200 {29}
Average = 0.200 Range = 0.000

rule 67

0.450 ( 0) 0.450 { 1) 0.450 ( 2) 0.450 { 3} 0.450 ( 4)
0.450 ( 5) 0.450 ( 6) 0.450 ( 7) 0.450 (8) 0.450 (9)
0.450 (10) 0.450 {11) 0.450 (12) 0.450 (13} 0.450 {14}
0.450 (15) 0.450 {16) 0.450 (17) 0.450 {18) 0.450 (19)
0.450 (20) 0.450 (21) 0.450 (22) 0.450 (23) 0.450 (24)
0.450 (25) 0.450 (28) 0.450 (27) 0.450 {28) 0.450 {29)
Average = 0.450 Range = 0.000

rule 68

0.000 { 0) 0.000 (1) 0.000 { 2) 1.000 (3) 0.000 ( 4)
0.000 (5) 1.000 (6) 0.000{7) 0.000(8) 1.000(9)
0.000 {10) 1.000 (11) 0.000 {12} 1.000 (13) 0.000 (14)
0.000 {15) 0.000 (16) 0.000 {17) 0.000 (18) 1.000 (19)
0.000 (20) 0.000 (21) 1.000 {22) 0.000 (23) 0.000 (24}
1.000 (25) 0.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Average = 0.300 Range = 1.000

rule 69

1.000 {0) 0.000 { 1) 1.000 ( 2) 0.000 ( 3) 0.000 { 4)
1.000 { 5) 0.000 { 68) 0.000 (7) 1.000 { 8) 0.000 ( 9)
1.000 (10) 0.000 (11) 1.000 (12) 0.000 (13) 1.000 (14)
0.000 {15) 1.000 (16) 0.000 {17) 0.000 (18) 1.000 (19)
0.000 (20) 1.000 (21) 0.000 {22) 1.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 (28) 0.000 (29}
Average = 0.433 Range = 1.000

rule 70

0.500 { 0) 1.000 (1) 0.000 (2) 1.000 (3) 0.000 ( 4)
0.500 ( 5) 1.000 (6) 0.000(7) 1.000 (8) 0.000(9)
1.000 (10) 0.000 (11) 1.000 {12} 0.000 (13} 1.000 {14)
0.000 (15) 0.500 {16) 1.000 (17} 0.000 (18) 1.000 {19)
0.000 (20) 0.500 {21) 1.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 1.000 (28) 0.000 (27) 1.000 {28) 0.000 {29)
Average = 0.500 Range = 1.000

rule 71

0.000 { 0} 0.500 { 1} 0.500 ( 2) 0.500 { 3) 1.000 { 4)
0.000 { 5) 0.500 (6) 1.000 { 7) 0.000 ( 8) 1.000 ( 9)
0.000 {10) 0.500 (11) 0.500 {12) 0.500 (13) 0.500 (14)
1.000 (15) 0.000 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20} 1.000 (21) 0.000 (22) 1.000 (23} 0.000 (24)
1.000 {25} 0.000 {26) 0.500 (27) 0.500 (28) 1.000 {29)
Average = 0.500 Range = 1.000

Bit Weight Tables

rule 72 .
1.000 ( 0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 1.000( 4)

1.000 ( 5) 0.000 (6) 1.000 (7) 1.000 (8) 0.000(9)

0.000 (10) 0.000 (11) 0.000 (12} 0.000 (13) 0.000 (14)
0.000 {15) 0.000 (186) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 {20) 0.000 {21) 0.000 (22) 0.000 (23} 0.000 {24)
0.000 {25) ©.000 (26) 0.000 (27) 0.000 {28) 1.000 {29)
Average = 0.200 Range = 1.000 ’

rule 73

1.000 ( 0) 1.000 ( 1) 0.000 { 2) 0.500 { 3) 0.000 { 4)
1.000 ( 5) 1.000 ( 6) 0.000{7) 0.583(8) 0.167 {9
0.583 (10) 0.167 (11) 0.583 (12) 0.167 (13) 0.583 (14)
0.000 (15) 1.000 (16) 1.000 (17) 0.000 (18) 0.500 {19)
0.000 (20) 0.500 (21) 0.000 (22) 0.500 (23} 0.000 {24)
1.000 (25) 1.000 {26) 0.000 (27) 0.500 (28} 0.000 (29)
Average = 0.444 Range = 1.000

rule 74

0.200 { 0) 0.200 { 1} 0.200 ( 2) 0.200 ( 3) 0.200 { 4)
0.200 { 5) 0.200 (6) 0.200 ( 7) 0.200 ( 8) 0.200 { 9)
0.200 {10) 0.200 (11) 0.200 (12) 0.200 (13} 0.200 {14)
0.200 {15) 0.200 (16) 0.200 (17) 0.200 (18) 0.200 (19)
0.200 {20) 0.200 (21) 0.200 (22) 0.200 {23) 0.200 {24)
0.200 {25) 0.200 (26) 0.200 (27) 0.200 {28) 0.200 {29)
Average = 0.200 Range = 0.000

rule 75

0.508 { 0) 0.495 (1) 0.502( 2) 0.499 { 3) 0.506 ( 4)
0.497 ( 5) 0.500 {6) 0.494 (7) 0.504 { 8) 0.488 ( 9)
0.498 {10) 0.504 (11) 0.502 (12) 0.500 {13) 0.506 (14)
0.492 (15) 0.503 (16) 0.488 (17) 0.502 (18) 0.507 {19)
0.496 (20) 0.498 (21) 0.497 (22) 0.501 (23) 0.494 (24)
0.499 {25) 0.500 (26) 0.502 (27) 0.496 (28) 0.502 (29)
Avarage = 0.500 Range = 0.015

rule 76

1.000 { 0) 0.000 ( 1) 1.000 (2) 0.000 ( 3) 1.000 { 4)
1.000 { 5) 0.000 (6) 1.000(7) 1.000(8) 0.000(9)
1.000 (10} 0.000 (11) 1.000 (12) 0.000 (13) 1.000 {14}
0.000 (15) 1.000 (16) 0.000 (17} 0.000 (18) 0.000 (19}
0.000 (20) 1.000 (21) 0.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 0.000 (26) 1.000 {27) 0.000 (28) 1,000 (29}
Avarage = 0.467 Range = 1.000

rule 77

1.000 ( 0) 1.000 { 1) 0.000 (2) 1.000 ( 3) 0.000 { 4)
1.000 ( 5) 1.000 ( 6) 0.000 (7} 1.000 { 8) 0.000 ( 9}
1.000 (10) 0.000 (11) 1.000 {12) 0.000 (13) 1.000 {14)
0.000 {15) 1.000 (16) 1.000 {17} 0.000 (18) 0.000 {19)
1.000 {20) 0.000 (21) 1.000 (22) 0.000 {23} 0.000 (24)
1.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Average = 0.533 Range = 1.000

rule 78

1,000 { 0) 1.000 { 1) 0.000 ( 2) 1.000 { 3) 0.000 { 4)
1.000 ( 5) 1.000 (6) 0.000 { 7} 1.000 { 8) 1.000 {9)
0.000 (10) 1.000 (11) 0.000 {12) 1.000 {13) 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 0.000 (18) 1.000 (19)
0.000 {20} 1.000 (21) 1.000 {22) 0.000 (23) 1.000 {24)
1.000 (25) 0.000 (26) 1.000 (27) 1.000 (28) 0.000 (29)
Average = 0.600 Range = 1.000
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Appendix C

rule 79

1.000 (0} 0.000 (1) 1.000 ( 2) 0.000 (3) 1.000 ( 4)
1.000 (5) 0.000 (6} 1.000 ( 7) 1.000 ( 8) 0.000 ( 9)
1.000 (10) 0.000 (11} 1.000 {12) 0.000 (13) 1.000 {14}
0.000 (15) 1.000 {16) 0.000 {17) 1.000 (18) 0.000 {19)
1.000 (20) 1.000 (21} 0.000 (22) 1.000 (23) 1.000 {24)
0.000 (25) 1.000 (26) 1.000 (27) 0.000 {28) 1.000 (29)
Average = 0.600 Range = 1.000

rule 80

0.300 (0) 0.300 { 1} 0.300 ( 2) 0.300 ( 3) 0.300 ( 4)
0.300 (5) 0.300(6) 0.300 ({7) 0.300(8) 0.300(9)
0.300 (10) 0.300 (11) 0.300 (12) 0.300 (13) 0.300 (14}
0.300 {15) 0.300 (16) 0.300 (17) 0.300 (18) 0.300 (19)
0.300 (20) 0.300 {21) 0.300 (22) 0.300 (23) 0.300 (24)
0.300 (25) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 {29)
Average = 0.300 Range = 0.000

rule 81

0.500 { 0} 0.500 ( 1) 0.500 ( 2) 0.500 (3} 0.500 { 4}
0.500 ( 5) 0.500 { 6) 0.500 ( 7} 0.500 {8) 0.500 { 9)
0.500 (10) 0.800 {11) 0.500 (12) 0.500 {13) 0.500 (14)
0.500 (15) 0.500 {16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20} 0.500 {21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.000

rule 82

0.350 { 0) 0.433 (1) 0.350 (2) 0.433 ( 3) 0.350 ( 4)
0.433 ( 5) 0.350 { 6) 0.433 { 7) 0.350 ( 8) 0.433 (9)
0.350 (10) 0.433 (11) 0.350 (12) 0.433 (13) 0.350 (14)
0.433 (15) 0.350 (16) 0.433 (17) 0.350 (18) 0.433 (19)
0.350 (20) 0.433 (21) 0.350 (22) 0.433 (23) 0.350 (24)
0.433 (25) 0.350 {26} 0.433 (27) 0.350 {28) 0.433 (29}
Average = 0.392 Range = 0.084

rule 83

0.550 ( 0} 0.550 ( 1) 0.550 { 2) 0.550 ( 3) 0.550 { 4)
0.550 ( 5) 0.550 ( 6) 0.550 ( 7) 0.550 ( 8) 0.550 { 9)
0.550 {10) 0.550 (11) 0.550 (12) 0.550 (13) 0.550 (14)
0.550 {15} 0.550 (16) 0.550 (17) 0.55C (18) 0.550 {19)
0.580 (20) 0.550 (21) 0.550 (22) 0.550 (23} 0.550 (24)
0.550 (25) 0.550 {26) 0.550 (27) 0.550 {28) 0.550 (29)
Average = 0.550 Range = 0.000

rule 84

0.500 ( 0) 0.500 { 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.500 (&) 0.500 (7) 0.500 { 8) 0.500 ( 9)
0.500 (10) 0.500 {11) 0.500 (12} 0.500 (13} 0.500 (14)
0.500 (15) 0.500 {16) 0.500 {17} 0.500 (18) 0.500 {19)
0.500 (20) 0.500 (21) 0.500 {22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.000

rule 85

0.367 ( 0) 0.633 (1) 0.367 ( 2) 0.633 (3) 0.367 ( 4)
0.633 { 5) 0.366 ( 6) 0.833 (7} 0.366 ( B) 0.633 ( 9)
0.367 (10) 0.633 {11) 0.367 (12) 0.633 {13) 0.367 {14)
0.633 (15) 0.367 (18) 0.633 (17) 0.367 (18) 0.633 (19)
0.367 {20) 0.633 (21) 0.367 (22) 0.633 (23) 0.367 (24)
0.633 (25) 0.367 (26) 0.633 (27) 0.367 (28) 0.633 (29)
Average = 0.500 Range = 0.267

Bit Weight Tables

rule 86

0.498 ( 0) 0.502 ( 1) 0.500 ( 2) 0.505 ( 3) 0.497 { 4)
0.500 ( 5) 0.507 (6) 0.500{ 7) 0.501 ( 8) 0.502(9)
0.495 (10) 0.501 (11) 0.495 (12) 0.505 (13) 0.493 (14}
0.506 (15) 0.497 (16) 0.496 (17) 0.496 (18) 0.513 {19)
0.486 {20) 0.509 (21) 0.493 (22} 0.505 (23) 0.488 (24)
0.499 {25) 0.492 (26) 0.505 (27) 0.502 (28) 0.503 (29)
Average = 0.500 Range = 0.027

rule 87

0.517 (0) 0.516 (1) 0,517 (2) 0.517 ( 3) 0.517 ( 4)
0.517 {5} 0.517 (6) 0.517(7) 0.517 ( 8) 0.517 (9)
0.517 {10) 0.517 (11) 0.517 (12) 0.517 (13) 0.517 (14)
0.517 {15) 0.517 (16) 0.517 (17) 0.517 (18) 0.517 {19)
0.517 (20) 0.517 (21) 0.517 (22) 0.517 (23) 0.517 {24)
0.517 (25) 0.517 (28) 0.517 (27) 0.517 (28) 0.517 {29)
Average = 0.517 Range = 0.000

rule 88

0.400 { 0) 0.400 ( 1) 0.400 ( 2) 0.400 { 3) 0.400 ( 4)
0.400 { 5) 0.400 ( 6) 0.400 { 7) 0.400 { 8) 0.400 ( 9)
0.400 (10} 0.400 (11) 0.400 (12) 0.400 {13) 0.400 {14)
0.400 (15) 0.400 (16) 0.400 (17) 0.400 (18} 0.400 {19)
0.400 (20} 0.400 (21) 0.400 (22) 0.400 {23) 0.400 {24)
0.400 (25) 0.400 (26) 0.400 {27) 0.400 {28) 0.400 {29)
Average = 0.400 Range = 0.001

rule 89

0.505 ( 0) 0.497 (1) 0.505( 2) 0.509 { 3) 0.489 ( 4)
0.507 ( 5) 0.504 (6) 0.488( 7) 0.508 { 8) 0.505 { 9)
0.498 (10) 0.498 (11) 0.498 (12) 0.503 (13) 0.505 (14}
0.490 (15) 0.500 (186} 0.511 (17) 0.494 (18) 0.501 (19)
0.505 (20) 0.493 (21) 0.506 (22) 0.496 (23) 0.500 (24)
0.504 (25) 0.495 (26) 0.506 (27) 0.502 (28) 0.501 (29)
Average = 0.501 Range = 0.022

rule 80

0.633 (0) 0.433 (1) 0.467 ( 2) 0.500 ( 3) 0.500 { 4)
0.400 { 5) 0.567 ( 8) 0.567 { 7) 0.667 ( 8) 0.633 ( 9)
0.500 (10} 0.200 (11) 0.567 (12) 0.633 (13) 0.533 (14)
0.633 (15) 0.433 (18) 0.467 (17) 0.500 (18) 0.500 (19)
0.400 (20) 0.587 (21) 0.567 (22) 0.666 (23) 0.833 (24)
0.500 (25) 0.200 (26) 0.567 (27) 0.633 (28) 0.533 (29}
Average = 0.520 Range = 0.466

rule 91

0.500 ( 0} 0.500 ( 1} 0.500( 2) 0.500 ( 3) 0.500 { 4)
0.500 ( 5) 0.999 { 6) 0.500 ( 7) 0.500 ( 8) 0.899 ( 9)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 (13) 1.000 (14)
0.500 {15) 0.500 (16) 1.000 (17} 0.500 (18) 0.500 {19)
0.989 (20) 0.500 (21} 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (28) 0.500 (27) 0.989 (28) 0.500 (29)
Average = 0.600 Range = 0.500

rule 92

1.000 (0) 1.000 (1) 0.000( 2) 1.000 ( 3) 0.000 { 4)
1.000 ( 5} 0.000 { 6) 1.000 ( 7} 1.000 { 8) 0.000 ( 9}
1.000 {10} 0.000 {11) 1.000 (12) 0.000 (13) 1.000 {14}
0.000 (15) 1.000 (16) 0.000 (17) 1.000 (18) 0.000 {19}
1.000 (20) 0.000 (21) 1.000 (22) 1.000 (23} 0.000 (24)
1.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Average = 0.567 Range = 1.000
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Appendix C

rule 83

1.000 ( 0) 0.000 { 1} 1.000 { 2) 0,000 ( 3) 1.000 ( 4)
1.000 { 5) 0.000 { 6) 1.000 {7} 0.000 ( 8) 1.000 (9}
0.000 (10} 1.000 {11) 0.000 (12) 1.000 (13) 0.000 (14)
1.060 (15) 0.000 (16) 1.000 (17) 0.000 {18) 1.000 {19)
0.000 (20) 1.000 (21) 1.000 (22} 0.000 (23) 1.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 (28} 1.000 (29)
Average = 0.567 Range = 1.000

rule 94

1.000 ( 0} 1.000 ( 1} 0.000 { 2) 1.000 ( 3) 0.500 ( 4)
0.500 ( 5) 1.000 (6) 0.000 ( 7) 1.000 { 8) 1.000 ( 9)
0.000 (10) 1.000 (11} 0.000 (12) 1.000 (13} 1.000 (14)
0.000 (15) 1.000 (16} 1.000 {17} 0.000 (18) 1.000 (19)
0.000 {20) 1.000 {21) 1.000 (22} 0.000 (23) 1.000 (24)
1.000 (25) 0.000 (28) 1.000 (27) 1.000 (28) 0.000 (29}
Average = 0.633 Range = 1.000

rule 95

1.000 { 0} 0.000 { 1} 1.000 ( 2} 0.000 ( 3) 1.000 { 4)
1.000 (5) 0.000 (6) 1.000 (7) 1.000 ( 8) 0.000(9)
1.000 (10) 0.000 (11) 1.000 (12) 0.000 {13) 1.000 (14)
0.000 (15) 1.000 {16} 0.500 (17} 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (21} 0.500 (22} 0.500 (23) 1.000 (24)
0.500 {25) 0.500 {26) 1.000 (27) 0.000 (28) 1.000 (29)
Average = 0.583 Range = 1.000

rule 96

0.000 ( 0) 0.000 ( 1) 0.000 { 2) 0.000 ( 3) 0.000 ( 4)
0.000 { 5) 0.000 ( 8) 0.000 ( 7) ©.000 ( 8) 0.000 (9)
0.000 (10) 0.000 (11} 0.000 (12) 0.000 {13) 0.000 (14)
0.000 {15) 0.000 (16) 0.000 (17) 0.000 {18) 0.000 (19)
0.000 (20) 0.000 (21) 0.000 {22) 0.000 {23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000

rule 97

0.364 (0) 0.365 (1) 0.364 ( 2) 0.366 ( 3) 0.363 ( 4)
0.366 ( 5) 0.365 (6) 0.365 (7) 0.365(8) 0.365(9)
0.365 (10) 0.366 (11) 0.365 (12) 0.364 (13) 0.365 (14)
0.365 (15) 0.365 (16) 0.364 (17) 0.365 (18} 0.365 (19)
0.366 (20) 0.364 (21) 0.365 (22) 0.364 (23) 0.366 (24)
0.364 (25) 0.365 (26) 0.365 {27) 0.366 (28) 0.365 (29}
Average = 0.365 Range = 0.003

rule 98

0.467 ( 0) 0.467 { 1) 0.467 (2) 0.467 ( 3) 0.467 ( 4)
0.467 { 5) 0.467 ( 6} 0.467 (7) 0.467 (8) 0.467 ( 9)
0.467 (10) 0.467 (11) 0.467 (12) 0.467 (13) 0.467 {14}
0.467 {15) 0.467 (16) 0.466 (17) 0.466 (18) 0.467 (19}
0.467 (20) 0.467 (21) 0.467 {22) 0.467 (23) 0.467 (24)
0.467 (25) 0.487 (26) 0.467 (27} 0.467 {28) 0.467 (29)
Average = 0.467 Range = 0.001

rule 99

0.533(0) 0.533 (1) 0.533(2) 0.533(3) 0.533(4)
0.533 ( 5) 0.533 (6) 0.533(7) 0.533(8) 0.533(9)
0.533 (10) 0.533 (11) 0.533 (12) 0.533 (13) 0.533 (14)
0.533 (15) 0.533 (16) 0.533 {17) 0.533 (18) 0.533 {19)
0.533 (20) 0.533 (21) 0.533 (22) 0.533 (23) 0.533 (24)
0.533 {25) 0.533 (26) 0.533 {27} 0.533 (28) 0.533 (29)
Average = 0.533 Range = 0.000

Bit Weight Tables

rule 100

0.000 ( 0) 0.000 ( 1) 0.000 {2) 0.000 {3} 1.000 ( 4)
0.000 { 5) 0.00C ( 6) 0.000 ( 7) 0.000 ( 8) 1.000(9)
0.000 {10} 0.000 (11} 0.000 (12) 0.000 (13) 0.000 {14)
0.000 (15) 1.000 (16) 0.000 (17) 0.000 {18) 0.000 {19)
0.000 (20) 1.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (29)
Average = 0.200 Range = 1.000

ruls 101

0.498 ( 0) 0.505 ( 1) 0.492 ( 2) 0.508 ( 3) 0.490( 4)
0.498 ( 5) 0.500 { 6) 0.508 ( 7) 0.491 ( 8) 0.507{ 9)
0.498 {10) 0.501 (11) 0.502 (12) 0.497 (13) 0.501 (14)
0.503 {15) 0.499 (16) 0.506 {17) 0.495 {18) 0.497 (19
0.504 (20} 0.509 (21) 0.495 (22) 0.509 {23) 0.493 (24)
0.509 (25) 0.501 (26) 0.496 (27) 0.508 (28) 0.488 (29}
Average = 0.501 Range = 0.019

rule 102

0.600 ( 0) 0.333 ( 1) 0.533 { 2) 0.467 ( 3) 0.600 ( 4)
0.533 ( 5) 0.400 (6) 0.533 (7) 0.533 ( 8) 0.600(9)
0.533 (10) 0.400 {11) 0.400 (12) 0.533 (13} 0.600 (14)
0.533 (15) 0.487 (16) 0.467 (17) 0.533 (18} 0.600 (19)
0.800 (20) 0.800 (21) 0.533 (22) 0.467 (23) 0.533 (24}
0.534 {25) 0.467 (26) 0.600 (27) 0.400 (28) 0.533 (29)
Average = 0.516 Range = 0.267

rule 103

0.550 ( 0) 0.550 { 1) 0.550 ( 2) 0.550 { 3) 0.550 ( 4)
0.550 ( 5) 0.550 ( 6) 0.550 { 7) 0.550 { 8) 0.550 ( 9)
0.550 (10) 0.550 (11} 0.550 (12) 0.550 (13) 0.550 (14)
0.550 (15) 0.550 (16) 0.550 (17) 0.550 (18) 0.550 (19)
0.550 (20) 0.550 (21) 0.550 (22) 0.550 (23) 0.550 (24)
0.550 (25) 0.550 (26) 0.550 (27) 0.550 (28) 0.550 {29)
Average = 0.550 Range = 0.000

rule 104

0.000 { 0) ©.000 ( 1) 0.000 ( 2) 0.000 ( 3} 0.000 ( 4)
0.000 { 5) 0.000 ( 6) 0.000 ( 7) 0.000 { 8) 0.000 (9)
1.000 (10} 1.000 (11) 0.000 {12) 0.000 {13) 0.000 (14)
0.000 (15} 0.000 (16) 0.000 {17) 0.000 {18) 0.000 (19)
0.000 (20} 0.000 (21) 0.000 {22) 0.000 {23) 0.000 (24)
0.000 (25} 0.000 (26) 0.000 (27) 0.000 {28) 0.000 {29)
Average = 0.067 Range = 1.000

rule 105

0.500 (0) 0.587 (1) 0.433( 2) 0.500 ( 3) 0.433( 4)
0.500 { 5) 0.500 ( 6) 0.433 ( 7) 0.567 ( 8) 0.433 {9}
0.500 {10} 0.567 (11) 0.500 {12) 0.433 {13) 0.633 {14)
0.567 (15) 0.500 (16) 0.700 (17) 0.367 (18) 0.500 (19}
0.566 (20) 0.500 (21) 0.500 (22) 0.567 (23) 0.433 (24)
0.767 (25) 0.433 (26) 0.500 (27) 0.367 (28) 0.500 {29)
Average = 0.509 Range = 0.400

rule 106

0.502 ( 0) 0.502 (1) 0.508 ( 2) 0.508 ( 3) 0.502 ( 4)
0.499 ( 5} 0.498 (6) 0.500 ( 7) 0.502 ( 8) 0.498 { Q)
0.510 {10) 0.502 (11} 0.508 (12) 0.502 {13) 0.505 {14)
0.502 (15) 0.497 (18) 0.504 (17} 0.500 {18} 0.503 {19)
0.506 (20) 0.502 (21) 0.505 (22) 0.504 (23) 0.501 (24)
0.496 (25) 0.506 (26) 0.498 (27) 0.501 (28) 0.497 (29)
Average = 0.502 Range = 0.014
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Appendix C

rule 107

0.635 (0} 0.835 (1) 0.636 { 2) 0.835(3) 0.8635(4)
0.635 (5) 0.635 (86) 0.635 (7) 0.835(8) 0.835(9)
0.635 (10) 0.635 (11) 0.635 {12) 0.636 {13) 0.635 (14)
0.635 (15) 0.635 {16) 0.635 (17) 0.635 {18) 0.635 (19)
0.636 (20) 0.635 (21) 0.635 (22) 0.635 (23) 0.636 (24)
0.635 (25) 0.635 (26) 0.635 (27) 0.636 (28) 0.635 (29}
Average = 0.635 Range = 0.001

rule 108

0.000 ( 0) 0.000 ( 1} 0.000 (2} 0.000(3) 1.000 { 4)
0.000 ( 5) 0.000 (6} 1.000(7) 0.500(8) 1.000(9)
0.000 (10} 0.000 (11) 0.000 {12) 0.000 (13} 0.000 (14}
1.000 (15) 0.500 {16) 1.000 {17) 0.000 {18} 0.000 (19}
0.000 (20) 1.000 {21} 0.000 (22) 0.000 (23) 1.000 (24)
1.000 (25) 0.000 (28) 0.000 {27) 0.000 (28) 1.000 (29)
Average = 0.333 Range = 1.000

rule 109

0.000 {0} 1.000( 1) 0.500 (2) 1.000 { 3) 0.000 ( 4)
0.000 { 5) 1.000 ( 6) 0.500 ( 7} 1.000 ( 8) 0.000 ({ 9)
0.000 (10} 1.000 (11) 0.500 {12) 1.000 (13) 0.000 (14)
0.001 (15) 1.000 {16} 0.500 (17) 1.000 (18} 0.500 (19)
0.699 (20) 0.500 {21) 1.000 (22) 0.000 (23) 0.000 (24)
1.000 (25} 0.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Average = 0.500 Range = 1,000

rule 110

0.732 (0} 0.434 ( 1) 0,733 ( 2) 0.434 (3) 0.733 ( 4)
0.434 (5) 0.733 ( 6) 0.433 (7) 0.733 ( 8) 0.434{ 9)
0.733 (10) 0.435 (11) 0.732 (12) 0.434 (13) 0.731 (14)
0.434 (15) 0.732 {16) 0.435 (17) 0.732 (18) 0.433 (19)
0.731 (20) 0.435 {21) 0.733 {22) 0.434 (23) 0.732 (24)
0.434 (25) 0.732 {26) 0.435 (27) 0.732 (28) 0.433 (29)
Average = 0.583 Range = 0.300

rule 111

0.400 ( 0) 0.800 (1) 0.400 ( 2) 0.799 ( 3) 0.400 ( 4)
0.788 ( 5) 0.401 (6) 0.799 (7) 0.401 (8) 0.799 ( 9)
0.401 (10) 0.799 (11) 0.401 (12) 0.798 (13) 0.401 (14)
0.799 (15) 0.401 (16} 0.801 (17) 0.400 (18) 0.800 (19)
0.400 (20) 0.800 (21) 0.400 (22) 0.800 (23) 0.400 (24)
0.800 (25) 0.400 (26) 0.800 (27) 0.400 {28) 0.799 {29)
Average = 0.600 Range = 0.401

rule 112

0.300 ( 0) 0.300 { 1) 0.300 { 2) 0.300(3) 0.300 ( 4)
0.300 ( 5) 0.300 { &) 0.300 ( 7) 0.300 ( 8) 0.300 ( 9}
0.300 (10) 0.300 {11) 0.300 {12) 0.300 (13) 0.300 (i4)
0.300 (15) 0.300 {16) 0.300 {17) 0.300 {18) 0.300 (19)
0.300 (20} 0.300 {21) 0,300 (22) 0.300 {23) 0.300 ({24)
0.300 {25) 0.300 {26) 0.300 (27) 0.300 {28) 0.200 {29)
Average = 0.300 Range = 0.000

rule 113

0.500 ( 0) 0.500 ( 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.500 (6) 0.500 (7) 0.500 ( 8) 0.500 (9)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 (13) 0.500 {14)
0.500 (15) 0.500 (16) 0.500 (17} 0.500 {18) 0.500 {19)
0.500 (20) 0.500 (21) 0.500 (22) 0.500 {23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 {27) 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.000

Bit Weight Tables

rule 114

0.667 ( 0) 0.667 ( 1) 0.867 ( 2) 0.666 { 3) 0.667 ( 4)
0.667 { 5) 0.666 ( 6) 0.667 ( 7) 0.667 { 8) 0.666 { 9)
0.667 (10) 0.867 (11) 0.667 (12) 0.667 {13) 0.687 (14)
0.667 {15) 0.667 (16) 0.667 (17) 0.666 (18) 0.667 (19)
0.667 (20) 0.667 (21) 0.667 {22) 0.667 (23) 0.667 (24)
0.667 (25} 0.667 (26) 0.667 {27) 0.667 (28) 0.667 (29)
Average = 0.667 Range = 0.000

rule 115

0.650 ( 0) 0.650 ( 1) 0.650 ( 2) 0.650 { 3) 0.650 ( 4)
0.650 ( 5) 0.650 ( 6) 0.650 { 7) 0.650 { 8) 0.650 ( 9}
0.850 {10) 0.650 (11) 0.650 {12) 0.650 (13) 0.650 (14)
0.650 {15) 0.650 (18) 0.650 (17) 0.650 (18) 0.650 {19
0.650 (20) 0.650 (21) 0.650 (22) 0.650 (23) 0.650 (24)
0.650 (25) 0.650 (26) 0.650 (27) 0.650 {28) 0.650 (29}
Average = 0.650 Range = 0.000

fule 116

0.467 (0} 0.467 { 1) 0.467 (2) 0.467 ( 3) 0.467 ( 4)
0.467 ( 5) 0.467 ( 6) 0.467 (7) 0.467 ( 8) 0.467 ( 9)
0.467 (10) 0.487 (11) 0.467 (12) 0.467 {13) 0.467 (14)
0.467 (15) 0.466 (16) 0.466 (17) 0.467 (18) 0.467 (19
0.467 {20) 0.487 (21) 0.467 (22) 0.467 (23) 0.467 (24)
0.467 (25) 0.467 (26) 0.467 (27) 0.467 (28) 0.467 (29)
Average = 0.467 Range = 0.001

rule 117

0.467 { 0) 0.533 (1) 0.467 (2} 0.533 (3) 0.467 { 4}
0.533 ( 5) 0.467 (6) 0.533(7) 0.467 (8) 0.533( 9
0.467 (10) 0.533 {11) 0.467 (12) 0.533 (13) 0.467 (14)
0.533 (15) 0.467 (16) 0.533 (17) 0.467 (18) 0.533 (19}
0.467 (20) 0.533 (21) 0.467 (22) 0.533 {23) 0.467 (24}
0.533 {25) 0.467 (286) 0.533 (27) 0.467 {28) 0.533 (29)
Average = 0.500 Range = 0.067

rule 118

0.335(0) 0.335( 1) 0.666 ( 2) 0.666 ( 3) 0.686 { 4)
0.666 ( 5) 0.666 (6} 0.666 ( 7} 0.666 { 8) 0.666 { 9)
0.867 (10) 0.666 (11) 0.666 (12) 0.667 (13) 0.667 (14)
0.866 (15) 0,667 (16) 0.667 (17) 0.668 (18) 0.657 (19)
0.667 (20) 0.667 {21) 0.667 (22) 0.667 {23) 0.667 (24)
0.667 (25) 0.667 (26} 0.665 (27) 0.666 (28) 0.666 (29)
Average = 0.644 Range = 0.332

rule 119

0.533(0) 0.533 (1) 0.533(2) 0.533(3) 0.533 ( 4)
0.533 ( 5) 0.533(6) 0.534 (7) 0.533( 8) 0.534 (9)
0.533 (10) 0.533 (11) 0.533 (12} 0.533 {13) 0.533 (14}
0.534 (15) 0.533 (16) 0.533 (17) 0.533 {18) 0.533 (19)
0.533 {20) 0.533 (21) 0.533 (22) 0.533 {23) 0.533 (24)
0.533 {25) 0.533 (26) 0.533 (27) 0.533 {28) 0.533 (29)
Average = 0.533 Range = 0.000

rule 120

0.496 ( 0) 0.500 (1) 0.495( 2) 0.498 ( 3) 0.491 { 4)
0.497 ( 5) 0.492 (6) 0.501 ( 7) 0.496 ( 8) 0.502 ( 9)
0.494 (10) 0.493 (11) 0.490 (12) 0.503 {13) 0.495 (14)
0.500 {15) 0.504 (16) 0.507 (17} 0.499 (18) 0.500 {19)
0.497 {20) 0.502 (21) 0.492 (22) 0.496 (23) 0.497 (24)
0.496 (25) 0.480 (26) 0.486 (27) 0.486 {28) 0.489 (29}
Average = 0.496 Range = 0.021
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Appendix C

rule 121

0.500 { 0) 0.700 { 1)} 0.500 ( 2) 0.700 ( 3) 0.501 ( 4)
0.700 ( 5) 0.501 (6) 0.680 ( 7) 0.501 ( 8) 0.700 ( 9)
0.501 (10) 0.699 {11) 0.501 (12} 0.700 (13) 0.501 (14}
0.700 {15) 0.500 {16) 0.700 (17} 0.500 (18) 0.700 (19}
0.500 {20) 0.700 (21) 0.500 {22) 0.700 (23) 0.500 (24)
0.700 (25) 0.500 (26) 0.701 {27) 0.500 (28} 0.700 (20)
Average = 0.600 Range = 0.201

rule 122

0.002 { 0) 0.002 { 1} 0.002 (2) 0.002(3) 0.002{ 4)
0.002 { 5} 0.002 { 6} 0.002 (7) 0.002(8) 0.002(9)
0.002 (10) 0.002 (11) 0.002 {12) 0.002 (13) 0.002 (14)
0.002 (15) 0.003 (16) 0.002 {17) 0.002 {18} 0.002 (19}
0.002 (20) 0.002 (21) 0.002 {22) 0.002 (23) 0.002 (24)
0.002 (25) 0.002 {26) 0.002 (27) 0.002 (28) 0.002 (29)
Average = 0.002 Range = 0.001

rule 123

1.000 (0} 0.500 (1) 0.500 (2) 1.000 (3) 0.500 (4)
0.500 ( 5) 0.500 ( 8) 1.000 (7) 0.500 { 8) 0.500 { 9)
0.500 (10) 0.500 {11) 0.500 (12) 0.500 {13) 1.000 {14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 1.000 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 {27) 1.000 (28} 0.500 (29)
Average = 0.800 Range = 0.500

rule 124

0.433(0) 0.733 (1) 0.433 (2) 0.733 (3) 0.433 (4)
0.732 (5) 0.433 (86) 0.732 (7) 0.434 (8) 0.732( 9)
0.434 (10) 0.732 {11) 0.433 (12) 0.732 {13) 0.433 (14)
0.734 {15) 0.434 (16) 0.733 (17) 0.434 (18) 0.733 (19
0.433 (20) 0.733 (21) 0.433 (22) 0.733 (23) 0.433 (24)
0.734 (25) 0.433 (26) 0.733 (27) 0.433 {28) 0.734 (29)
Average = 0.583 Range = 0.301

rufe 125

0.633 (0) 0.500 ( 1) 0.633 (2) 0.500( 3) 0.633 ( 4)
0.500 ( 5) 0.633 (6) 0.500 (7) 0.633(8) 0.500(9)
0.634 (10) 0.500 (11) 0.634 (12} 0.500 (13) 0.634 (14)
0.500 (15) 0.633 (16) 0.500 (17) 0.633 {18) 0.500 (19}
0.633 (20) 0.500 {21) 0.633 (22) 0.500 {23) 0.633 (24}
0.500 (25) 0.633 (26) 0.500 (27) 0.633 {28) 0.500 (29)
Average = 0.567 Range = 0.134

rule 126

0.001 (0) 0.001 { 1) 0.001 {2) 0.001 (3) 0.001 (4)
0.002 ( 5) 0.002 { 6) 0.001 ( 7} 0.001 ( 8) 0.002 ( 9)
0.001 (10) 0.001 (11) 0.002 (12) 0.001 (13} 0.001 (14)
0.001 (15) 0.001 {16} 0.001 {17) 0.001 {18) 0.001 {19)
0.002 (20) 0.001 {21) 0.001 (22) 0.001 (23) 0.001 (24)
0.001 (25) 0.002 (26) 0.001 (27) 0.001 (28) 0.001 (29)
Average = 0.001 Rangs = 0.001

ruls 127

0.500 { 0) 0.500 ( 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.500 ( 6) 0.500 (7) 0.500(8) 0.500(9)
0.500 {10) 0.500 (11} 0.500 (12} 0.500 (13} 0.500 (14}
0.500 (15) 0.500 (16) 1.000 (17) 0.500 (18) 0.500 (19)
0.500 (20) 1.000 {21) 0.500 (22) 0.500 {23) 0.500 (24}
0.500 (25) 0.500 (26) 0.500 (27} 0.500 {28) 0.500 (29)
Average = 0.533 Range = 0.500

Bit Weight Tables

rule 128

0.000 (0} 0.000 (1) 0.000 { 2) 0.000 ( 3) 0.000 (4)
0.000 { 5) 0.000 (6) 0.000 { 7) 0.000 ( 8) 0.000 {9}
0.000 {10} 0.000 (11) 0.000 (12} 0.000 (13) 0.000 {14)
0.000 {15} 0.000 (16) 0.000 (17) 0.000 (18) 0,000 {19)
0.000 (20) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000

rule 129

0.999 ( 0) 0.998 { 1) 0.999 ( 2) 0.999 ( 3) 0.999 ( 4)
0.999 ( 5) 0.998 (6) 0.999 (7) 0.999 ( 8) 0.998 (9)
0.998 (10) 0.999 {11) 0.998 {12) 0.998 (13) 0.998 (14}
0.998 (15) 0.998 {16) 0,898 (17) 0.998 (18) 0.998 (19)
0.998 (20) 0.998 (21) 0.999 (22) 0.999 (23) 0.998 (24)
0.999 (25) 0.998 (26) 0.998 (27) 0.998 (28) 0.999 (29)
Average = 0.889 Range = 0.001

rule 130

0.133(0) 0.133 (1) 0.133(2) 0.133 ( 3) 0.133 ( 4)
0.133 (5) 0.133(6) 0.133(7) 0,133 ( 8) 0.133(9)
0.133 (10} 0.133 (11) 0.133 (12) 0.133 (13) 0.133 {14)
0.133 (15) 0.133 (16) 0.133 (17) 0.133 (18) 0.133 {19)
0.133 (20) 0.133 {21} 0.133 (22) 0.133 (23} 0.133 (24)
0.133 (25) 0.133 (26) 0.133 (27) 0.133 (28) 0.133 (29)
Average = 0.133 Range = 0.000

rule 131

0.333 ( 0) 0.334 (1) 0.334 ( 2) 0.333( 3) 0.333 { 4)
0.333 ( 5) 0.333(6) 0.333(7) 0.666 ( 8) 0.867 (9)
0.333 {10) 0.333 (11) 0.667 (12) 0.667 {13) 0.333 (14)
0.333 {15) 0.333 (16) 0.333 (17) 0.667 (18) 0.657 (19}
0.333 (20) 0.333 (21) 0.333 (22) 0.333 (23) 0.333 {24)
0.333 (25) 0.333 (26) 0.333 (27) 0.333 (28) 0.333 (29)

" Average = 0.400 Range = 0.333

rule 132

0.000 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 ( 3) ©.000 { 4)
0.000 ( 5) 1.000 (6) 0.000 ( 7) 0.000 ( 8) 0.000 (9)
0.000 {10) 1.000 (11} 0.000 (12) 1.000 {13) 0.000 (14)
0.000 {15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (13}
0.000 (20) 0.0C0 (21) 0.000 {22} 0.000 {23) 0.000 (24}
1.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.167 Range = 1.000

rule 133

0.000 ( 0) 0.000 ( 1) 1.000 { 2) 0.000 ( 3) 1.000 ( 4)
0.000 ( 5) 0.500 { 6) 0.500 ( 7) 0.000 { 8) 1.000 ( 9)
0.000 (10) 1.000 (11) 0.000 (12} 1.000 (13) 0.000 (14)
1.000 {15) 0.000 (16) 0.000 (17} 1.000 {18) 0.000 (19)
0.000 (20) 1.000 (21) 0.000 {22} 1.000 (23} 0.000 (24)
0.000 {25) 1.000 (26) 0.000 {27) 0.000 (28} 1.000 (29)
Average = 0.400 Range = 1.000

rule 134

0.200 { 0} 0.400 ( 1) 0.200 ( 2) 0.400 { 3) 0.200 { 4)
0.400 ( 5) 0.200 ( 8) 0.400( 7) 0.200 ( 8) 0.400 { 9)
0.200 (10) 0.400 (11} 0.200 (12) 0.400 (13) 0.200 (i4)
0.400 (15) 0.200 (16) 0.400 (17) 0.200 (18) 0.400 (19)
0.200 {20) 0.400 (21) 0.200 {22) 0.400 (23) 0.200 (24)
0.400 {25) 0.200 (26) 0.400 (27) 0.200 (28) 0.400 {29}
Avarage = 0.300 Range = 0.200
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Appendix C

rule 135

0.497 ( 0) 0.501 { 1) 0.503 ( 2) 0.502 ( 3) 0.501 ( 4)
0.491 ( 5) 0.509 ( 8) 0.507 ( 7) 0.488 { 8) 0.500 ( 9)
0.494 {10) 0.502 (11) 0.498 (12) 0.499 {13) 0.502 (14)
0.504 (15) 0.491 (16) 0.501 (17) 0.501 (18) 0.495 (19)
0.507 (20} 0.495 (21) 0.485 (22) 0.505 (23) 0.502 (24)
0.506 {25} 0.494 {26) 0.507 (27) 0.504 (28) 0.492 (29)
Average = 0.500 Range = 0.021

rule 136

0.000 ( 0) 0.000 ( 1) 0.000 { 2) 0.000 ( 3) 0.000 ( 4)
0.000 { 5) 0.000 (8) 0.000 {7) 0.000(8) 0.000 (9}
0.000 (10) 0.000 (11) 0.000 {12) 0.000 (13) 0.000 (14)
0.000 {15) 0.000 (18) 0.000 {17} 0.000 (18) 0.000 (19)
0.000 {20) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 {25) 0.000 (28) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000

rule 137

0.423 (0) 0.422 ( 1) 0.422 ( 2) 0.423 ( 3) 0.423 (4)
0.423 ( 5) 0.423 ( 6) 0.423 (7) 0.423 (8} 0.422 (9}
0.423 (10) 0.422 (11) 0.423 {12) 0.422 (13) 0.423 {14)
0.422 (15) 0.423 (16) 0.422 {17} 0.423 (18) 0.423 {19)
0.423 (20) 0.423 (21) 0.423 (22) 0.422 (23) 0.422 (24)
0.423 (25) 0.423 (26) 0.423 (27) 0.423 (28) 0.422 (29)
Average = 0.423 Rangs = 0.001

rule 138

0.333 (0} 0.333( 1) 0.333(2) 0.333(3) 0.333(4)
0.333(5) 0.333(6) 0.333(7) 0.333(8) 0.333(9
0.333 (10) 0.333 (11) 0.333 (12) 0.333 (13) 0.333 (14)
0.334 (15) 0.334 (16) 0.334 (17) 0.334 (18) 0.333 (19)
0.333 (20) 0.333 (21) 0.333 (22) 0.333 (23) 0.333 (24)
0.333 (25) 0.333 (26) 0.333 (27) 0.333 {28) 0.333 {29)
Average = 0.333 Range = 0.001

rule 139

0.533 (0) 0.533 (1) 0.533 (2) 0.533( 3) 0.533 ( 4)
0.533 ( 5) 0,533 (8) 0.533(7) 0.533(8) 0.533(9)
0.533 {10) 0.533 (11) 0.533 (12} 0.533 {13) 0.533 (14)
0.533 (15) 0.533 (16) 0.533 {17} 0.534 (18) 0.533 (19)
0.533 (20) 0.533 {21} 0.533 (22) 0.533 (23) 0.533 (24)
0.533 (25) 0.533 (26) 0.533 (27) 0.533 (28} 0.533 (29)
Average = 0.533 Range = 0.000

rule 140

1.000 { 0) 0.000 (1) 0,000 { 2) 1.000 ( 3) 0.000 ( 4)
1.000 { 5) 0.000 {8) 0.000 { 7) 0.000 ( 8) 0.000 (9)
1.000 (10} 0.000 (11) 1.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 1.000 {16) 0.000 (17) 0.000 (18} 0.000 (19)
1.000 (20) 0.000 (21) 0.000 (22) 0.000 (23} 0.000 (24)
1.000 (25) 0.000 (26) 0.000 (27) 1.000 {28) 0.000 (29)
Average = 0.300 Range = 1.000

rule 141

0.000 { 0) 1.000 ( 1) 0.000 {2) 0.000 (3) 1.000 ( 4)
0.000 ( 5) 0.000 (6) 1.000 (7) 0.000(8) 1.000(9)
0.000 (10) 1.000 (11} 0.000 {12) 1.000 (13} 0.000 (14)
1.000 (15} 0.000 {16} 1.000 {17) 0.000 (18} 0.000 (19)
1.000 (20) 0.000 (21) 1.000 {22) 0.000 (23} 1.000 (24)
0.000 (25) 0.000 {26) 1.000 (27} 0.000 {28) 1.000 (29}
Average = 0.433 Range = 1.000

Bit Weight Tables

rule 142

0.467 { 0) 0.533 (1) 0.467 ( 2) 0.533 ( 3) 0.487 { 4)
0.533 { 5) 0.467 (6) 0.533 (7} 0.467 ( 8) 0.533 (9}
0.467 {10) 0.533 (11) 0.467 (12) 0.533 (13) 0.467 (14)
0.533 {15) 0.467 (16) 0.533 (17) 0.467 (18) 0.533 {19)
0.467 (20) 0.533 (21) 0.467 (22) 0.533 (23) 0.467 (24)
0.533 (25) 0.467 (26) 0.534 (27) 0.467 (28) 0.533 (29)
Average = 0.500 Range = 0.067

rula 143

0.500 ( 0) 0.500 ( 1) 0.500 (2) 0.500 ( 3) 0.500 { 4}
0.500 ( 5) 0.500 ( 6) 0.500 (7) 0.500 ( 8) 0.500 (9}
0.500 (10) 0.500 (11} 0.500 (12) 0.500 (13) 0.500 (14)
0.500 (15) 0.50C (16} 0.500 (17) 0.500 (18) 0.500 {19}
0.500 (20) 0.500 (21) 0.500 (22) 0.500 (23} 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.001

rule 144

0.133{ 0} 0.133( 1) 0.133(2) 0.133 ( 3) 0.133( 4)
0.133( 5) 0.133(8) 0.133(7) 0.133( 8) 0.133(9)
0.133 {10) 0.133 (11) 0.133 (12) 0.133 {13) 0.133 (14)
0.133 (15) 0.133 (16) 0.133 (17) 0.133 (18) 0.133 (19)
0.133 (20) 0.134 (21) 0.133 (22) 0.133 {23) 0.133 (24)
0.133 (25) 0.133 (26) 0.133 (27) 0.133 (28) 0.133 (29)
Average = 0.133 Range = 0.000

rule 145

0.333(0) 0.667 (1) 0.333( 2) 0.333{ 3) 0.333 { 4}
0.333(5) 0333 (6) 0667 (7) 0.333(8) 0.333({9)
0.333 (10) 0.867 (11) 0.667 (12) 0.333 {13) 0.333 (14)
0.334 (15) 0.333 (16) 0.333 (17) 0.666 (18) 0.334 (i%)
0.334 (20) 0.333 (21) 0.333 (22) 0.333 (23) 0.333 (24)
0.333 (25) 0.333 (26) 0.333 {27) 0.333 (28) 0.333 (29)
Average = 0.389 Range = 0.333

rule 146

0.001 ( 0) 0.001 { 1) 0.001 ( 2) 0.001 ( 3) 0.001 ( 4)
0.001 { 5) 0.001 (6) 0.001 { 7) 0.000 ( 8) 0.001 {9)
0.000 (10} 0.001 (11} 0.000 (12) 0,001 (13) 0.001 (14)
0.001 (15) 0.001 (16} 0.001 (17) 0.001 (18) 0.001 (19}
0.000 (20) 0.001 {21) 0.001 (22) 0.000 (23) 0.001 (24)
0.001 (25) 0.000 (26) 0.001 (27) 0.001 (28) 0.001 (29)
Average = 0.001 Range = 0.001%

rule 147

0.531 (0} 0.530 (1) 0.532( 2) 0.530( 3) 0.532 ( 4)
0.530 ( 5} 0.532 (86) 0.531(7) 0.532 ( 8) 0.530 ( 9)
0.532 (10) 0.531 (11) 0.532 {12) 0.531 {13) 0.532 (14)
0.531 (15) 0.532 (16) 0.531 (17) 0.533 {18) 0.531 (19)
0.533 {20) 0.531 (21) 0.532 (22) 0.531 (23) 0.532 (24)
0.531 {25) 0.532 (28) 0.531 (27) 0.532 {28) 0.530 {29)
Average = 0.531 Range = 0.002

rule 148

0.200 ( ) 0.300 ( 1) 0.200 ( 2) 0.300 ( 3) 0.200 ( 4}
0.300 ( 5) 0.200 ( 6) 0.300 ( 7) 0.200 ( 8) 0.300 ( 9}
0.200 (10) 0.300 (11) 0.200 (12) 0.300 (13) 0.200 (14)
0.300 (15) 0.200 {16) 0.300 (17) 0.200 (18) 0.300 (19)
0.200 (20) 0.300 {21) 0.200 {22) 0.300 {23) 0.200 (24)
0.300 (25) 0.200 (26) 0.300 {27) 0.200 {28) 0.300 (29}
Average = 0.250 Range = 0.100

238



Appendix C

rule 149

0.499 { 0) 0.504 (1) 0.494 (2) 0.505 ( 3) 0.497 ( 4)
0.504 ( 5) 0.495 (6) 0.500 {7) 0.496 ( 8) 0.488 ( 9)
0.497 (10) 0.502 (11) 0.503 (12) 0.500 (13) 0.500 (14)
0.496 (15) 0.499 (16} 0.495 (17) 0.506 (18) 0.498 {19)
0.498 (20) 0.506 (21) 0.502 (22) 0.494 {23) 0.498 (24)
0.501 {25) 0.499 (26) 0.500 (27} 0.499 (28) 0.503 (29)
Average = 0.500 Range = 0.012

rule 150

0.400 ( 0} 0.400 { 1) 0.667 { 2} 0.534 ( 3) 0.533 ( 4)
0.533 (5) 0.533 (6) 0.533 (7) 0.667 ( 8) 0.533 { 9}
0.533 (10} 0.734 {11) 0.533 (12) 0.467 (13) 0.533 (14)
0.533 (15} 0.400 {16) 0.467 (17} 0.400 (18) 0.733 (19)
0.533 (20) 0.333 {21) 0.666 (22) 0.533 (23) 0.533 (24)
0.466 (25) 0.400 (26) 0.467 (27) 0.687 (28) 0.533 (29)
Average = 0.527 Range = 0.400

rule 151

0.999 ( 0) 0.999 (1) 0.999 {2) 0.999 ( 3) 0.989 ( 4)
0.999 ( 5) 0.999 (86) 0.999 (7) 0.999( 8) 0.988 ( 9)
0.999 (10) 0.998 (11) 0.998 (12) 0.999 (13) 0.999 (14}
0.998 (15) 0.998 {16) 0.999 (17) 0.999 (18) 0.999 {19)
0.999 (20) 0.999 (21) 0.999 (22) 0.999 (23} 0.999 {24)
0.999 (25} 0.998 (26) 0.898 (27) 0.899 {28) 0.999 {29)
Average = 0.989 Range = 0.001

rule 152

0.167 ( 0) 0.167 ( 1} 0.167 ( 2} 0.167 { 3) 0.167 ( 4)
0.187 ( 5) 0.167 (6) 0.167 (7) 0.167 ( 8) 0.167 ( 9)
0.167 (10) 0.167 (11} 0.167 (12) 0.167 (13} 0.167 (14)
0.167 {15) 0.167 (16} 0.167 (17) 0.167 (18} 0.167 (19)
0.167 {20) 0.167 (21) 0.167 (22) 0.167 (23) 0.167 (24)
0.187 (25) 0.167 (26) 0.167 (27) 0.167 (28) 0.167 (29)
Average = 0.167 Renge = 0.000

rule 153

0.533 ( 0) 0.533 ( 1) 0.400 ( 2) 0.467 ( 3) 0.400 ( 4)
0.467 ( 5) 0.667 (6) 0.534 {7} 0.467 ( 8) 0.467 ( 9)
0.600 (10) 0.467 {11) 0.600 {12) 0.400 {13) 0.533 (14)
0.467 (15) 0.466 {16) 0.467 (17) 0.534 (18) 0.400 (19)
0.400 (20} 0.600 (21) 0.533 (22} 0.467 (23) 0.467 (24)
0.400 (25) 0.533 (26} 0.600 (27) 0.533 (28) 0.467 (29)
Average = 0.496 Range = 0.267

rule 154

0.567 (0} 0.533 (1) 0.567 { 2} 0.533 ( 3) 0.567 ( 4)
0.533 (5) 0.567 {6) 0.533 (7) 0.567 ({ 8) 0.533(9)
0.567 (10) 0.533 (11) 0.567 (12} 0.533 (13) 0.5867 (14)
0.533 (15) 0.567 {16) 0.533 (17) 0.567 (18) 0.533 (19)
0.567 (20) 0.533 (21) 0.567 (22) 0.534 (23) 0.567 (24)
0.533 (25) 0.567 (26) 0.533 (27) 0.587 (28) 0.533 (28)
Average = 0.550 Rangs = 0.034

rule 155

0.667 (0) 0,633 (1) 0.666 { 2} 0.633 ( ) 0.666 { 4)
0.633 ( 5) 0.667 { 6) 0.633 ( 7) 0.657 ( 8) 0.833 { 9)
0.667 (10) 0.633 (11) 0.667 (12) 0.633 (13) 0.667 (14)
0.633 (15) 0.667 (16} 0.633 (17) 0.667 (18} 0.633 (19)
0.667 {20) 0.633 (21) 0.667 (22} 0.633 {23) 0.667 (24)
0.633 (25) 0.667 (26} 0.633 (27) 0.657 (28) 0.633 (29)
Average = 0.650 Range = 0.034

Bit Weight Tables

rule 156

0.000 {0} 1.000 (1) 0.500 (2} 0.000 ( 3) 1.000 ( 4)
0.500 { 5) 0.000 (8) 1.000(7) 0.000(8) 1.000(9)
0.000 (10) 1.000 {11) 0.000 (12) 1.000 {13) 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 0.500 (18) 0.000 {19)
1.000 (20) 0.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 1.000 (26) 0.500 (27) 0.000 (28} 1.000 {29)
Average = 0.500 Range = 1.000

rula 157

0.000 { 0} 1.000 { 1) 0.500 { 2) 0.000 ( 3) 1.000 { 4)
0.000 ( 5) 1.000 ( 6) 0.000 ( 7) 1.000 ( 8) 0.500 { 9)
0.000 {10) 1.000 (11} 0.000 (12) 1.000 (13) 0.500 {14)
0.000 (15} 1.000 {16} 0.000 (17) 1.000 (18) 0.500 (19)
0.000 (20} 1.000 (21) 0.000 (22) 1.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 (28) 1.000 (29)
Average = 0.500 Range = 1.000

rufe 158

0.700 (0) 0.700 (1) 0.700( 2) 0.700 { 3) 0.700 ( 4)
0.700 ( 5) 0.700 (&) 0.700 ( 7) 0.700 { 8) 0.700 ( 9)
0.700 (10) 0.700 (11) 0.700 (12) 0.700 {13) 0.700 (14)
0.7C0 (15) 0.700 (16) 0.700 (17) 0.700 {18) 0.700 (19)
0.700 {20) 0.700 (21) 0.700 (22) 0.700 (23) 0.700 (24)
0.700 (25) 0.700 (26} 0.700 (27} 0.700 {28) 0.700 (29}
Average = 0.700 Range = 0.001

rule 159

0.800 ( 0) 0.800 { 1) 0.800 ( 2) 0.800 (3) 0.800 { 4)
0.800 ( 5) 0.800 ( 6) 0.800(7) 0.80C (8) 0.800(9)
0.800 (10} 0.800 (11) 0.800 (12) 0.800 (13) 0.800 (14)
0.800 (15) 0.800 (16) 0.B00 (17) 0.800 (18) 0.800 (19)
0.800 {20} 0.8C0 (21) 0.800 (22} 0.800 {23) 0.800 (24)
0.800 (25) 0.800 (26) 0.800 (27) 0.800 (28) 0.800 {29)
Average = 0.800 Range = 0.000

rule 160

0.000 ( 0) 0.000 (1) 0.000 { 2) 0.000 { 3} 0.000 { 4}
0.000 ( 5} ©.000 { 6) 0.000 { 7) 0.000 ( 8) 0.000 (9}
0.000 {10) 0.000 {11) 0.000 (12) 0.000 (13) 0.000 (14}
0.000 {15) 0.000 (16) 0.000 (17) 0.000 {18) 0.000 (19)
0.000 {20) 0.000 (21) 0.000 (22) 0.000 {23) 0.000 {24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000

rule 161

0.898 ( 0} 0.997 { 1) 0.998 (2) 0.998 ( 3) 0.998 ( 4)
0.898 ( 5) 0.998 ( 6) 0.998 (7) 0.998 { 8) 0.998 ( 9)
0.998 (10) 0.988 (11) 0.998 (12) 0.997 {13) 0.998 {14)
0.998 (15) 0.997 (16) 0.998 (17) 0.998 (18) 0.998 (19)
0.998 (20} 0.998 (21) 0.998 (22) 0.998 (23) 0.298 (24)
0.998 (25) 0.998 (26) 0.998 {27) 0.997 (28) 0.998 (29)
Average = 0.998 Range = 0.001

rule 162

0.367 ( 0) 0.367 { 1) 0.367 ( 2) 0.367 ( 3) 0.357 ( 4)
0.367 ( 5) 0.367 (8) 0.367 (7) 0.367 ( 8) 0.3587 ( 9)
0.367 (10) 0.367 (11) 0.367 (12) 0.367 (13) 0.387 (14)
0.367 (15) 0.387 (16) 0.367 (17) 0.367 {18) 0.387 {19)
0.367 {20) 0.367 (21) 0.367 (22) 0.367 (23} 0.367 (24)
0.367 (25) 0.367 (26) 0.367 (27) 0.367 (28) 0.367 (29)
Average = 0.367 Range = 0.000
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Appendix C

rule 163

0.387 (0) 0.367 { 1) 0.367 { 2) 0.387 (3) 0.387 ( 4)
0.367 ( 5) 0.367 (8) 0.367 {7) 0.367 ( 8) 0.367 ( 9)
0.367 {10} 0.367 (11) 0.367 (12) 0.367 {13) 0.367 {14)
0.387 {15) 0.387 (16) 0.367 (17) 0.367 {18) 0.367 {19)
0.367 (20) 0.387 (21) 0.367 (22) 0.367 {23) 0.367 (24)
0.367 (25) 0.367 (26) 0.367 (27) 0.367 (28) 0.367 (29)
Average = 0.367 Range = 0.000

rule 164

0.000 (0) 0.000 { 1} 1.000 { 2) 0.000 ( 3) 0.000 ( 4)
0.000 (5) 0.000 (6) 0.000 {7) 0.000(8) 0.000(9)
0.000 (10} 0.000 (11) 0.000 {12} 0.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
1.000 (20) 0.000 (21) 0.000 {22) 0.000 (23} 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28} 0.000 (29)
Average = 0.067 Range = 1.000

rule 165

0.400 ( 0) 0.567 ( 1) 0.567 ( 2) 0.667 { 3) 0.500 { 4}
0.500 { 5) 0.467 ( 6) 0.433 { 7) 0.500 ( 8) 0.400 ( 8)
0.800 (10} 0.567 (11) 0.467 ({12) 0.500 (13) 0.367 (14)
0.400 (15) 0.567 (16) 0.567 {17) 0.666 (18) 0.500 (19)
0.500 (20) 0.467 (21) 0.433 (22) 0.500 (23) 0.400 {24)
0.500 (25) 0.567 (26) 0.467 {27) 0.500 (28) 0.367 (29)
Average = 0.493 Range = 0.300

rule 166

0.550 (0) 0.534 { 1} 0.550 ( 2) 0.533 { 3) 0.550 ( 4)
0.533 (5) 0.550 { 6} 0.533 (7) 0.550(8) 0.533(9)
0.550 (10) 0.533 (11) 0.550 (12) 0.534 (13) 0.550 (14)
0.534 (15) 0.550 (16) 0.533 (17) 0.550 {18) 0.533 (19)
0.550 {20) 0.533 (21) 0.550 (22} 0.533 (23) 0.550 (24)
0.533 {25) 0.550 (26) 0.534 (27) 0.550 (28) 0.533 (29)
Average = 0.542 Range = 0.017

rule 167

0.600 ( 0) 0.800 ( 1) 0.600 ( 2) 0.600 ( 3) 0.800 { 4)
0.600 ( 5) 0.600 ( 6) 0.600 ( 7) 0.600 ( 8) 0.600 ( 9)
0.600 (10) 0.600 (11) 0.600 (12) 0.600 (13) 0.600 {14}
0.600 (15) 0.600 (16) 0.600 (17) 0.600 (18) 0.600 {19)
0.600 (20) 0.800 (21} 0.600 {22) 0.600 (23) 0.600 (24)
0.600 (25) 0.600 {26) 0.600 (27) 0.800 (28) 0.800 (29)
Average = 0.600 Range = 0.000

rule 168

0.000 { 0) 0.000{ 1) 0.000 (2) 0.000 ( 3) 0.000 ( 4)
0.000 ( 5) 0.000 (6} 0.000(7) 0.000 (8) 0.000(9)
0.000 (10) 0.000 (11) 0.000 (12) 0.000 {13) 0.000 (14}
0.000 (15) 0.000 (16) 0.000 (17) 0.000 {18) 0.000 {19)
0.000 (20) 0.000 (21) 0.000 {22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 {26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Rangs = 0.000

rule 169

0.503 {0} 0.501 (1) 0.509 (2) 0.502 (3) 0.505 ( 4)
0.502 ( 5) 0.499 { 6) 0.502 ( 7) 0.503 ( 8) 0.495 ( 9)
0.498 (10) 0.495 (11) 0.497 (12} 0.494 {13) 0.493 (i4)
0.491 (15) 0.493 (16) 0.490 {17) 0.497 {18) 0.494 (1)
0.497 (20) 0.491 (21) 0.492 {22) 0.495 (23) 0.495 (24)
0.491 (25) 0.492 (26) 0.496 (27) 0.495 {28) 0.497 (29)
Average = 0.497 Range = 0.018

Bit Weight Tables

rale 170

0.567 ( 0) 0.567 ( 1) 0.567 ( 2) 0.567 ( 3) 0.567 ( 4)
0.567 ( 6) 0.567 (8) 0.567 (7) 0.567 ( 8) 0.567 (9}
0.567 {10) 0.587 (11) 0.567 (12) 0.567 {13) 0.567 (14}
0.567 (15) 0.567 (16) 0.567 (17) 0.567 (18) 0.567 (19)
0.567 (20) 0.567 (21) 0.567 (22) 0.567 (23) 0.567 (24)
0.567 (25) 0.567 (26) 0.567 (27) 0.567 {28) 0.587 (29)
Average = 0.567 Range = 0.000

rule 171

0.800 { O} 0.800 ( 1) 0.600 ( 2) 0.600 ( 3) 0.600 { 4}
0.600 { 5) 0.800 (6) 0.600 ( 7) 0.800 ( 8) 0.600 { 9}
0.600 {10) 0.800 (11) 0.600 (12} 0.600 (13) 0.800 {14)
0.600 {15) 0.600 (16) 0.600 (17) 0.600 (18) 0.600 {19)
0.800 (20) 0.800 (21) 0.600 {22) 0.800 (23) 0.600 (24)
0.600 (25) 0.600 (26) 0.600 (27) 0.600 (28) 0.600 {29)
Average = 0.600 Range = 0.000

rule 172

0.000 ( 0} 1.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 { 5} 1.000 ( 6) 0.001 (7) 0.001 ( 8) 0.001 ({9)
0.000 {1C) 0.000 (11) 0.000 (12} 0.000 {13) 0.000 (14}
0.000 {15) 0.000 {16) 0.000 (17) 1.000 {18) 0.000 (19}
0.000 {20) 0.000 (21) 0.000 (22} 0.000 (23) 0.000 (24)
1.000 {25) 0.000 (26} 0.000 (27} 0.000 {28} 0,000 (29)
Average = 0.133 Range = 1.000

rule 173

0.733 {0} 0.800{ 1) 0.733 (2) 0.600 ( 3) 0.733 ( 4)
0.600 { 5) 0.733 (6) 0.600 (7) 0.733( 8) 0.600( 9)
0.733 {10) 0.800 {11) 0.733 (12) 0.600 {13) 0.733 (14}
0.600 (15} 0.733 (16) 0.600 (17) 0.733 (18) 0.800 {19}
0.733 (20) 0.800 (21) 0.733 {22) 0.600 (23) 0.734 (24)
0.800 (25) 0.733 (26) 0.600 {27) 0.733 (28) 0.600 (29)
Average = 0.667 Range = 0.134

rufe 174

0.667 { O} 0.687 ( 1) 0.667 ( 2) 0.667 ( 3) 0.667 { 4)
0.667 (5) 0.6867 (6} 0.667 (7) 0.687 ( 8) 0.667(9)
0.867 (10} 0.867 (11) 0.667 {12) 0.667 (13) 0.667 (14)
0.686 (15) 0.867 (16) 0.667 (17) 0.666 (18) 0.667 (19}
0.667 (20) 0.667 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 {25) 0.667 {26) 0.667 (27) 0.667 (28) 0.667 (29)
Avsrags = 0.667 Range = 0.000

rule 175

0.767 {0} 0.767 (1) 0.767 ( 2) 0.767 ( 3) 0.767 { 4)
0.767 ( 5) 0.767 (6) 0.767 (7} 0.767 ( 8) 0.767 { 9}
0.767 (10) 0.767 (11) 0.767 {12) 0.767 (13) 0.767 (14)
0.767 (15) 0.767 (16) 0.767 (17) 0.766 (18) 0.766 (19}
0.768 (20) 0.766 (21) 0.766 (22) C.766 (23) 0.767 {24)
0.767 (25) 0.767 {26) 0.767 (27) 0.767 (28) 0.767 (29)
Average = 0.767 Range = 0.000

rule 176

0.333{0) 0.333( 1) 0.333(2) 0.333(3) 0333(4)
0.333(5) 0.333(6) 0.333(7) 0.333(8) 0.333(9)
0.323 (10) 0.333 (11) 0.333 (12) 0.333 {13) 0.333 (14)
0.333 (15) 0.333 (16) 0.333 (17} 0.333 {18} 0.333 {19)
0.333 (20) 0.333 (21) 0.333 (22) 0.333 (23} 0.333 (24)
0.333 (25) 0.333 {26) 0.333 {27) 0.333 (28) 0.333 (29)
Average = 0,333 Range = 0.000
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Appendix C

rule 177

0.367 ( 0) 0.387 (1) 0.367 ( 2) 0.367 ( 3) 0.387 ( 4)
0.367 ( 5) 0.3867 {6) 0.367 (7) 0.367 ( 8) 0.367 ( 9)
0.367 (10) 0.387 {11) 0.367 (12) 0.367 (13) 0.367 (14)
0.367 (15) 0.387 (16) 0.367 (17) 0.367 (18) 0.387 (19)
0.357 (20) 0.367 (21) 0.367 {22) 0.367 (23) 0.367 {24)
0.367 (25) 0.367 (26) 0.367 (27) 0.367 (28) 0.357 (29)
Average = 0.367 Range = 0.000

rule 178

0.500 ( 0) 0.500 { 1) 0.500 { 2) 0.500 ( 3) 0.500 ( 4)
0.500 { 5) 0,500 { 6) 0.500 ( 7) 0.500 { 8} 0.500 (8)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 {13) 0.500 (14)
0.500 (15) 0.500 (16) 0.500 {17) 0.500 (18) 0.500 (19}
0.500 (20) 0.500 (21} 0.500 (22) 0.500 (23) 0.500 (24}
0.500 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Average = 0,500 Range = 0.000

rule 179

0.500 (0} 0.500 ( 1) 0.500 ( 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5} 0.500 (6) 0.500 (7) 0.500 ( B) 0.500 (9)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 {13) 0.500 (14}
0.500 (15) 0.500 (16) 0.500 (17) 0.500 {18) 0.500 {19}
0.500 (20) 0.500 (21) 0.500 (22) 0.500 {23) 0.500 (24}
0.500 (25) 0.500 {(26) 0.500 (27) 0.500 {28) 0.500 (29}
Average = 0.500 Range = 0.000

rule 180

0.567 (0) 0.567 { 1) 0.567 { 2) 0.567 (3) 0.567 ( 4)
0.567 { 5) 0.567 (6} 0.567 (7) 0.567 ( 8) 0.567 (9)
0.567 (10) 0.567 (11) 0.567 {12) 0.567 (13) 0.567 (14)
0.567 (15) 0.567 (16) 0.567 (17) 0.567 (18) 0.567 {19)
0.567 (20) 0.567 (21) 0.567 (22) 0.567 (23) 0.566 (24)
0.566 (25) 0.567 (26) 0.567 (27) 0.567 (28) 0.567 (29)
Average = 0.567 Range = 0.001

rule 181

0.617 (0) 0.633 (1) 0.617 ( 2) 0.833(3) 0.617 ( 4)
0.633 ( 5) 0.617(8) 0.633 (7} 0.617 ( 8) 0.833 (9)
0.617 (10) 0.633 {11) 0.617 (12) 0.634 (13) 0.617 (14)
0.833 (15) 0.617 (16} 0.633 (17) 0.617 {18} 0.633 (19)
0.617 (20) 0.8634 (21} 0.617 {22) 0.633 (23) 0.616 (24)
0.633 (25) 0.617 (26) 0.633 (27) 0.617 (28) 0.633 (29)
Average = 0.625 Range = 0.017

rule 182

0.999 (0) 0.999 (1) 0.999 ( 2) 0.999 { 3) 0.999 ( 4)
0.999 ( 5) 0.999 {6) 0.999 { 7) 0.999 { 8) 0.999 { 9)
0.899 (10} 0.999 (11) 0.999 {12) 0.999 (13) 0.999 (14)
0.989 {15) 0.998 (16) 0.999 (17) 0.999 (18) 0.939 (19)
0.989 (20) 0.999 (21) 0.999 (22) 0.989 (23) 0.999 (24)
0.989 (25) 0.999 (26) 0.999 (27) 0.999 (28) 1.000 (29)
Average = 0.999 Range = 0.001

rule 183

0.999 (0} 0,993 ( 1) 1.000 ( 2) 1.000(3) 0.989 (4)
1.000 (5) 1.000 ( 8) 1.000 (7) 1.000 (8) 1.000 ( 9)
1.000 (10) 0.999 (11) 0.999 (12) 1.000 (13) 0.899 (14}
1.000 (15} 0.999 (16) 0.999 (17} 0.999 (18) 0.999 (19)
1.000 (20) 0.899 (21} 0.999 {22) 0.999 {23) 1.000 {24)
1.000 (25) 0.999 (26) 0.999 (27) 0.999 (28) 0.999 (29)
Average = 1.000 Range = 0.001

Bit Weight Tables

rule 184

0.600 { 0} 0.600 ( 1) 0.800 ( 2) 0.600 { 3) 0.600 { 4)
0.600 ( 5) 0.600 (6) 0.800( 7) 0.600 ( 8) 0.600( 9)
0.600 (10) 0.800 {11) 0.600 (12) 0.600 (13} 0.600 (14)
0.800 (15) 0.600 {16) 0.600 (17) 0.600 (18) 0.600 {19)
0.600 (20) 0.600 (21) 0.600 {22) 0.600 (23) 0.600 (24)
0.600 (25) 0,600 (26) 0.600 (27) 0.600 (28) 0.600 (29)
Average = 0.600 Range = 0.001

rule 185

0.600 { 0) 0.600 ( 1) 0.600 ( 2) 0.600 { 3) 0.600 ( 4)
0.600 ( 5) 0.600 (&) 0.600(7) 0.800(8) 0.800(9)
0.600 (10) 0.6800 (11) 0.600 (12) 0.800 {13) 0.600 (14}
0.600 (15) 0.600 (16} 0.600 (17) 0.800 (18) 0.600 (19}
0.600 (20) 0.600 (21) 0.600 (22) 0.600 (23} 0.600 (24}
0.600 {25) 0.600 (26) 0.600 (27) 0.600 (28) 0.800 (29}
Average = 0.600 Range = 0.000

rule 186

0.633(0) 0.833( 1) 0.633(2) 0.633 { 3) 0.633 {4}
0.833 ( 5) 0.633 (6) 0.633(7) 0.633 { 8) 0.633(9)
0.633 (10) 0.633 (11) 0.633 {12) 0.633 {13) 0.633 (14)
0.633 (15) 0.633 (16) 0.633 (17) 0.633 {18) 0.633 (19)
0.633 (20) 0.833 (21) 0.633 (22) 0.633 {23) 0.633 (24)
0.633 (25) 0.633 (26) 0.633 (27) 0.633 {28) 0.633 (29)
Average = 0633 Range = 0.000

rule 187

0.700 ( 0) 0.70C ( 1) 0.700 (2) 0.700 { 3) 0.700 ( 4)
0.700 ( 5) 0.700 ( 6) 0.700 ( 7} 0.700 { B) 0.700 ( S}
0.700 (10) 0.700 (11} 0.700 (12) 0.700 {13) 0.700 (14)
0.700 (15) 0.700 (16} 0.700 (17} 0.700 (18) 0.700 (19)
0.700 (20) 0.700 {21} 0.700 (22) 0.700 (23) 0.700 (24)
0.700 (25) 0.700 (26) 0.700 (27) 0.700 (28) 0.700 (29)
Average = 0.700 Range = 0.000

rule 188

0.800 ( 0} 0.800( 1) 0.800 ( 2) 0.800 ( 3) 0.800 { 4)
0.800 ( 5) 0.800 (8) ©.800 { 7) C.BOO ( 8) 0.800 (9}
0.800 (10} 0.800 (11) 0.800 {12) 0.800 {13) 0.800 {14)
0.800 (15) 0.800 (16) 0.800 {17) 0.800 {18) 0.800 (19)
0.800 {20) 0.800 {21) 0.800 (22) 0.800 {23) 0.800 (24)
0.800 (25) 0.800 (26) 0.800 (27) 0.800 (28) 0.800 (29)
Average = 0.800 Range = 0.000

rule 189

0.833 (0) 0.833 (1) 0.833 (2) 0.833 ( 3) 0.833 ( 4)
0.833 (5) 0.833(6) 0.833(7) 0.833(8) 0833(9)
0.833 (10) 0.833 (11) 0.833 (12) 0.833 (13) 0.833 (14)
0.833 (15) 0.833 (16) 0.833 (17) 0.833 (18) 0.833 (19)
0.833 (20) 0.833 {21) 0.833 {22) 0.833 {23) 0.833 (24)
0.833 (25) 0.833 (26) 0.833 (27) 0.833 {28) 0.833 (29)
Average = 0.833 Range = 0.000

rule 180

0.800 ( 0) 0.800 ( 1) 0.800 ( 2) 0.800 { 3) 0.800 ( 4)
0.800 ( 5) 0.800 ( 6) 0.800 (7) 0.800 ( 8) 0.800(9)
0.800 (10) 0.800 {11} 0.800 (12) 0.800 {13) 0.800 (14)
0.800 (15) 0.800 {16) 0.800 (17) 0.800 (18) 0.800 (19)
0.800 {20) 0.800 (21) 0.800 (22) 0.800 (23) 0.800 (24)
0.800 (25) 0.800 {26) 0.800 (27) 0.800 {28} 0.800 (29)
Average = 0.800 Range = 0.000

241



Appendix C

rule 191

0.800 (0) 0.800 ( 1) 0.800 ( 2) 0.800 ( 3) 0.800 ( 4)
0.800 { 5) 0.800 (8) 0.800 (7) 0.800(8) 0.800(9)
0.800 {10} 0.800 (11) 0.800 (12) 0.800 (13} 0.800 (14)
0.800 {15) 0.800 (16) 0.800 (17) 0.800 (18) 0.800 (19)
0.800 (20} 0.800 (21) 0.80C {22) 0.800 (23) 0.800 (24)
0.800 (25) 0.800 {26) 0.800 {27) 0.800 (28} 0.800 (29)
Average = 0.800 Range = 0.000

rule 192

©0.000 { 0) 0.000 ( 1) 0.000 { 2) 0.000 ( 3) 0.000 { 4)
0.000 { 5) 0.000 ( 6) 0.000 ( 7) 0.000 ( 8) 0.000 { 9)
0.000 {10) 0.000 (11} 0.000 (12) 0.000 (13) 0.000 {14)
0.000 (15) 0.000 (15) 0.000 (17} 0.000 (18} 0.000 (19)
0.000 (20) 0.000 {21) 0.000 (22) 0.000 {23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.000

rule 193

0.346 (0} 0.461 ( 1) 0.347 {2) 0.461 { 3) 0.346 ( 4)
0.461 ( 5) 0.347 (6) 0.461 { 7) 0.347 (8) 0.462 ( 9)
0.347 (10} 0.461 {11) 0.346 (12) 0.460 (13) 0.347 (14)
0.460 (15) 0.347 {16) 0.459 (17) 0.348 (18) 0.459 (19)
0.348 (20) 0.460 {21} 0.348 (22) 0.460 (23) 0.347 (24)
0.460 (25) 0.346 (26) 0.460 (27) 0.346 (28) 0.461 (29)
Average = 0.404 Range = 0.116

rufe 194

0.187 (0) 0.167 { 1) 0.167 ( 2) 0.167 ( 3) 0.167 ( 4)
0.167 ( 5) 0.167 (6) 0.167 (7) 0.167 (8) 0.167 ( 9)
0.1687 (10) 0.167 (11) 0.167 (12) 0.167 (13) 0.167 (14}
0.167 (15) 0.167 (16) 0.167 (17) 0.167 (18) 0.167 (19}
0.187 (20) 0.187 (21) 0.167 (22) 0.167 (23) 0.167 (24)
0.167 {25) 0.167 (26) 0.167 (27) 0.167 (28) 0.167 (29)
Average = 0.167 Range = 0.000

rute 195

0.467 (0) 0.467 { 1) 0.534 ( 2) 0.400 ( 3) 0.467 ( 4)
0.487 (5) 0.533 (6} 0.600 (7) 0.400 (8) 0.467 (9)
0.533 (10) 0.533 (11} 0.600 (12) 0.533 (13} 0.467 (14)
0.400 (15) 0.467 (16} 0.400 (17) 0.467 (18} 0.533 (19)
0.600 (20) 0.400 {21) 0.467 (22) 0.600 (23) 0.400 (24)
0.400 (25) 0.467 {26) 0.867 {27) 0.333 (28) 0.400 (29)
Average = 0.482 Range = 0.333

rule 186

0.000 ( 0) 1.000 { 1} 0.000 ( 2} 1.000 { 3} 0.000 ( 4)
0.000 ( 5) 1.000 { 8) 0.000 ( 7) 0.000 ({8} 0.000(9)
1.000 (10) 0.000 {11) 0.000 {12) 0.000 {13} 1.000 (14)
0.000 (15) 0.000 (16} 1.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21) 1.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Average = 0.300 Range = 1.000

rule 197

0.000 (0) 0.000 { 1} 1.000 ( 2) 0.000 (3) 1.000 ( 4)
0.000 ( 5) 0.000 (6} 1.000 ( 7) 0.000(8) 1.000 (9)
0.000 (10) 1.000 (11} 0.000 {12) 1.000 (13} 0.000 (14)
1.000 (15} 0.000 (16) 1.000 {17) 0.000 (18) 1.000 {19)
0.000 {20} 1.000 (21) 0.000 {22} 1.000 (23} 0.000 {24)
1.000 {25) 0.000 (26} 1.000 {27) 0.000 (28) 1.000 {29)
Average = 0.467 Rangs = 1.000

Bit Weight Tables

rule 198

1,000 (0) 0.000 (1) 0.500 { 2) 1.000 { 3) 0.000 { 4)
0.500 { 5) 1.000 (8) 0.000 (7} 0.500 ( 8) 1.000 ( 9)
0.000 (10) 1.000 (11) 0.000 {12) 1.000 (13) 0.000 (i4)
1.000 (15) 0.000 (16} 1.000 (17) 0.000 (18) 1.000 {19)
0.000 (20) 0.500 (21} 1.000 {22) 0.000 (23} 0.500 (24)
1.000 (25) 0.000 (26) 0.500 (27) 1.000 (28) 0.000 {29)
Average = 0.500 Rangse = 1.000

rule 199

1.000 { 0} 0.000 ( 1) 1.000 ( 2) 0.000 { 3) 0.500 ( 4)
1.000 { 5) 0.000 ( 6) 0.500(7) 1.000{ 8) 0.000 ( 9)
1.000 (10) 0.000 (11) 1.000 (12} 0.000 {13) 1.000 (14}
0.000 (15) 1.000 (16) 0.000 (17} 1.000 {18) 0.000 (19)
0.500 (20) 1.000 (21) 0.000 {22) 1.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 {23) 0.500 (29)
Average = 0.500 Range = 1.000

ruls 200

1.000 ( 0) 1.000 (1) 0.000 ( 2) 0.000 { 3) 0.000 ( 4)
1.000 ( 5) 1.000 ( 6) 0.000 ( 7) 0.000 { 8) 0.000 ( 9)
0.000 (10} 0.000 (11) 1.00C (12) 1.000 {13) 1.000 (14)
0.000 (15) 1.000 (16) 1.000 (17) 0.000 {18) 0.000 (19}
1.000 (20} 1.000 (21) 1.000 (22) 0.000 (23) 0.000 (24}
1.000 (25} 1.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Average = 0.467 Range = 1.000

rule 201

0.000 { 0) 1.000 { 1} 1.000 ( 2) 0.000 { 3) 1.000 { 4)
1.000 ( 5) 1.000 ( 6) 1.000 ( 7) 1.000 { 8) 1.000 ( 9)
0.000 (10} 1.000 {11) 1.000 (12) 1.000 (13} 0.000 {14)
0.500 (15} 0.000 {16) 1.000 (17) 1.000 (18) 1.000 (19)
1.000 (20} 1.000 {21) 0.000 (22) 0.000 (23) 1.000 (24)
1.000 (25} 0.000 (26} 0.500 (27) 0.000 {28) 0.500 {29)
Average = 0.650 Range = 1.000

rule 202

1.000 ( 0) 0.000 { 1} 1.000 ( 2) 1.000 ( 3) 1.000 ( 4)
1.000 ( 5) 0.000 { 6) 1.000{7) 1.000 ( B) 0.000 { 9)
1.000 (10) 1.000 {11} 1.000 {12) 0.000 (13} 1.000 (14)
1.000 {15) 1.000 (16) 0.000 (17) 0.998 (18} 1.000 {19)
1.000 {20} 1.000 (21} 1.000 (22) 1.000 (23) 1.000 (24)
1.000 {25) 1.000 (26} 1.000 (27) 0.000 (28) 1.000 (29)
Average = 0.800 Range = 1.000

rule 203

1.000 ( 0) 1.000 (1) 0.000{ 2) 1.000 ( 3} 1.000 { 4)
1.000 ( 5} 1.000 ( 6) 0.000 { 7) 1.000( 8) 1.000 (9}
0.000 {10) 1.000 {11} 1.000 {12) 1.000 {13} 1.000 (14)
0.000 {15) 1,000 (16) 1.000 (17) 0.000 (18) 1.000 (19}
1.000 {20) 1.000 {21} 1.000 {22) 0.000 {23) 1.000 (24)
1,000 (25) 1.000 {26) 0.000 {27) 1.000 (28) 1.000 (29)
Average = 0.767 Range = 1.000

rule 204

0.000 (0) 0.000 (1) 0.000( 2) 0.000{ 3) 1.000 ( 4)
0.000 ( 5) 0.000 {6) 1.000 { 7) 0.000 { B} 1.000 { 9)
0.000 (10} 0.000 (11) 0.000 (12) 0.000 {13) 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 1.000 (18) 1.000 (19)
1.000 (20) 1.000 (21) 0.000 (22} 0.000 (23) 1.000 (24)
1.000 (25) 0.000 (26) 0.000 {27) 0.000 (28) 1.000 (29)
Average = 0.400 Range = 1.000
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Appendix C

rule 205

0.000 { 0) 1.000 ( 1) 1.000 (2) 1.000 { 3} 0.000 ( 4)
0.000 { 5) 1.000 ( 6) 0.000 {7} 1.000 (8) 1.000 ( 9)
0.000 {10) 1,000 (11) 0.000 (12) 1.000 (13) 0.000 (14}
1.000 {15) 1.000 (16) 0.000 (17) 1.000 (18} 1.000 {19)
0.000 (20} 1.000 {21) 1.000 (22) 0.000 (23) 0.000 {24)
1.000 (25} 0.000 {26) 1.000 (27} 1.000 (28) 0.000 {28)
Average = 0.567 Range = 1.000

rule 206

1.000 { 0) 0.000 { 1) 1.000 { 2) 0.000 { 3) 1.000 { 4)
1.000 { 5) 0.000 { 6) 1.000 (7) 1.000 { 8) 0.000 { 9)
1.000 (10) 1.000 (11) 1.000 (12} 0.000 {13) 1.000 (14}
1.000 {15) 1.000 (16) 0.000 {17) 1.000 (18) 1.000 {19)
1.000 (20) 1.000 (21) 0.000 {22) 1.000 (23) 1.000 {24)
1.000 (25) 1.000 {26} 1.000 (27) 0.000 (28) 1.000 (29)
Average = 0.733 Range = 1.000

rule 207

1.000 (0) 1.000 ( 1) 0.000 { 2) 1.000( 3) 0.000 ( 4}
1.000 ( 5) 1.000 (6) 0.000 {7) 1.000(8) 1.0C0 {9}
1.000 (10} 0.000 (11) 1.000 (12) 1.000 (13} 1.000 (14)
0.000 (15} 1.000 {16) 1.000 (17) 0.000 (18) 1.000 (19)
1.000 (20) 1.000 {21) 1.000 (22) 0.000 {23) 1.000 (24)
1.000 (25) 1.000 (26) 0.000 (27} 1.000 {28) 0.000 (29}
Average = 0.700 Range = 1.000

rule 208

0.333 (0} 0.333 (1} 0.333(2) 0.333(3) 0.333(4)
0.333(5) 0.333(6) 0.323(7) 0.333(8) 0.333(9)
0.333 (10) 0.333 (11) 0.333 (12) 0.333 (13) 0.333 (14)
0.333 (15) 0.333 (16) 0.333 (17) 0.333 (18) 0,333 {19}
0.333 (20) 0.333 (21) 0.333 {22) 0.333 (23) 0.334 (24)
0.334 (25) 0.334 (26) 0.334 (27) 0.333 (28) 0.333 (29)
Average = 0.333 Range = 0.001

rule 209

0.600 {0) 0.600 ( 1) 0.600 ( 2) 0.600 ( 3) 0.800 ( 4)
0.800 { 5) 0.600 ( &) 0.600 ( 7) 0.600 ( 8) 0.600 ( 9)
0.600 (10) 0.600 (11) 0,800 (12) 0.600 {13} 0.800 (14)
0.600 (15) 0.800 (16) 0.600 (17) 0.600 (18) 0.600 (19)
0.600 (20) 0.600 (21) 0.600 (22) 0.600 (23} 0.600 (24)
0.600 (25) 0.600 (26) 0.600 (27) 0.600 (28} 0.600 (29)
Average = 0.600 Range = 0.000

ruie 210

0.567 { 0) 0.534 (1) 0.567 { 2) 0.533 ( 3) 0.567 ( 4)
0.533 { 5) 0.567 (6) 0.533 {7) 0.567 {8) 0.533 (9)
0.567 (10) 0.533 (11) 0.567 {12) 0.533 {13) 0.567 (14}
0.533 {15) 0.567 (16) 0.533 {17) 0.567 (18) 0.533 (19}
0.587 (20) 0.533 (21) 0.567 (22) 0.533 (23) 0.567 (24)
0.533 (25) 0.567 (26) 0.534 (27) 0.567 (28) 0.533 (29)
Average = 0.550 Range = 0.034

rule 211

0.733(0) 0.867 (1) 0.733 (2) 0.667 (3) 0.733 ( 4)
0.667 (5} 0.733(6) 0.667 (7) 0.733 (8) 0.867 (9}
0.733 (10) 0.8667 (11) 0.733 (12) 0.687 (13) 0.734 (14)
0.667 (15) 0.733 (16) 0.667 (17) 0.733 (18} 0.666 (19)
0.733 (20) 0.667 (21) 0.733 (22) 0.667 (23) 0.733 (24)
0.8667 {25) 0.733 {26) 0.666 (27) 0.733 (28) 0.667 {29)
Average = 0.700 Range = 0.067

Bit Weight Tables

rule 212

0.500 ( 0) 0.500 ( 1) 0.500 ( 2) 0.500 { 3) 0.500 { 4)
0.500 ( 5} 0.500 ( 6) 0.500 (7} 0.500 ( 8) 0.500{ 9)
0.500 (10) 0.500 (11) 0.500 {12) 0.500 {13) 0.500 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 {18) 0.500 (19)
0.500 {20) 0.500 {21) 0.500 (22) 0.500 {23) 0.500 (24)
0.500 {25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 {29)
Average = 0.500 Range = 0.000

rule 213

0.433 (0) 0.567 (1) 0.433 (2) 0.567 ( 3) 0.433{ 4)
0.567 ( 5) 0.433 (6) 0.567 (7} 0.433 ( 8) 0.567 {9}
0.433 (10) 0.567 (11) 0.433 (12) 0.567 (13) 0.433 {14)
0.567 (15) 0.433 (16) 0.567 {17) 0.433 (18) 0.567 (19)
0.433 (20) 0.567 (21} 0.433 {22) 0.567 (23) 0.433 (24)
0.567 (25) 0.433 (26) 0.567 (27) 0.433 (28) 0.567 (29)
Average = 0.500 Range = 0.134

rule 214

0.767 ( 0) 0.733 (1) 0.767 { 2) 0.733 ( 3) 0.767 ( 4)
0.733 ( 5) 0.767 (8) 0.733 (7} 0.767(8) 0.733(9)
0.767 (10) 0.733 (11) 0.767 (12) 0.733 {13) 0.767 (14)
0.733 (15) 0.767 (16) 0.733 (17) 0.766 {18) 0.733 (19}
0.766 (20) 0.733 (21) 0.766 (22) 0.733 {23) 0.766 (24}
0.733 (25) 0.766 (26) 0.733 (27) 0.766 (28) 0.733 {29)
Average = 0.750 Range = 0.034

rule 215

0.733(0) 0667 { 1) 0.733(2) 0.667 (3) 0.733 (4)
0.667 ( 5) 0.733 (6) 0.667 (7) 0.733(8) 0.867 (9)
0.733 (10) 0.667 {11) 0.733 (12} 0.667 (13) 0.734 (14)
0.667 (15) 0.733 (16) 0.667 (17} 0.733 (18) 0.666 (19)
0.733 (20) 0.867 (21) 0.733 (22) 0.667 (23) 0.733 (24)
0.666 (25) 0.734 (26) 0.666 (27) 0.733 (28) 0.666 {29)
Average = 0.700 Range = 0.067

rule 216

1.000 { 0) 0.999 { 1) 0.999 { 2) 0.999 { 3) 0.899 { 4)
0.999 { 5) 0.999 (6) 0.999 (7) 0.999 ( 8) 0.998 (9)
0.999 (10) 0.999 (11} 0.999 (12) 0.998 {13) 0.998 (14)
0.998 (15) 0.000 (16) 1.000 (17) 1.000 {18) 1.000 (19)
1.000 {20) 1.000 {21) 1.000 {22) 0.000 {23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 0.933 Range = 1.000

rule 217

0.000 { 0) 1.000 { 1) 1.000 (2} 1.000 ( 3) 1.000 { 4)
1.000 ( 5) 1.000 (8) 0.000 (7) 1.000 (8) 1.000 ({9}
1.000 (10} 1.000 (11} 1.000 {12) 0.000 (13) 1.000 (14)
1.000 (15) 1.000 (16) 0.000 (17) 1.000 (18) 1.000 (19)
0.000 (20} 1.000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 0.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 0.800 Range = 1.000

rule 218

1.000 ( 0) 1.000 (1) 1.000 ( 2) 0.000 ( 3) 1.000 ( 4)
1.000 ( 5) 1.000 (6) 1.000 (7) 1.000 (8) 1.000(9)
1.000 {10) 1.000 {11) 1.000 (12} 1.000 (13) 1.000 (14)
0.000 (15) 1.000 (16) 1.000 (17} 1.000 {18} 1.000 (19)
1.000 (20} 1.000 (21) 1.000 (22) 1.000 (23} 1.000 {24}
1.000 (25) 1.000 (26} 1.000 (27) 0.000 {28) 1.000 (29)
Average = 0.900 Range = 1.000
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Appendix C

rule 219

1.000 (0) 1.000{ 1) 1.000 {2) 1.000 ( 3) 1.000 ( 4)
1.000 ( 5} 1.000(6) 1.000 {7) 1.000 ( 8) 1.000({9)
1.000 (10) 1.000 (11) 1.000 {12) 1.000 (13) 1.000 (14}
0.000 (15) 1.000 (16) 1.000 {17) 1.000 (18} 1.000 (19}
1.000 (20} 1.000 {21) 1.000 {22) 1.000 (23} 1.000 (24)
1.000 (25) 1.000 (26) 1.000 {27) 1.000 (28} 1.000 (29)
Average = 0.967 Range = 1.000

rule 220

1.000 ( 0) 1.000 ( 1) 1.000 ( 2} 0.000 ( 3) 1.000 { 4)
1.000 ( 5) 0.000 ( 6) 1.000 (7) 0.000 (8) 1.000 (9)
1.000 (10} 1,000 (11) 1.000 {12) 1.000 {13} 0.000 (14)
1.000 (15} 0.000 (16) 1.000 (17) 1.000 (18} 1.000 {19}
1.000 (20} 1.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 0.000 {(28) 1.000 (29)
Average = 0.767 Range = 1.000

rule 221

1.000 { 0) 0.000 ( 1) 1.000 { 2) 0.000( 3) 1.000 ( 4)
1.000 { 5) 0.000 (6) 1.000 ( 7) 1.000 ( 8) 0.000 ( 9)
1.000 (10) 1.000 (11) 1.000 (12) 0.000 (13} 1.000 (14}
1.000 (15} 1.000 (16) 1.000 (17) 1.000 {18) 1.000 (19)
0.000 (20) 1.000 (21) 1.000 (22) 0.000 (23} 1.000 {24)
1.000 (25) 1.000 (26) 1.000 {27) 0.000 (28} 1.000 (29)
Average = 0.733 Range = 1.000

rule 222

1.000 ( 0) 0.000 { 1} 1.000 { 2) 0.000 { 3} 1.000 { 4)
1.000 { §) 0.000 { 6} 1.000 (7) 1.000 { 8} 0.000 ( 9)
1.000 {10) 1.000 {11} 1.000 (12) 0.000 {13} 1.000 (14}
1.000 (15) 1.000 (16) 1.000 (17) 1.000 (18} 1.000 (19}
1.000 {20} 1.000 (21) 1.000 (22) 1.000 (23} 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 0.000 {28} 1.000 {29)
Average = 0.800 Range = 1.000

rule 223

1.000 (0) 1.000 ( 1) 1.000 (2} 1.000 (3) 1.000 { 4)
1.000 (5) 1.000 ( 8) 1.000 ( 7) 0.000 {8} 1.000{9)
1.000 (10) 1.000 (i1) 1.000 {12) 1.000 {13) 1.000 {14)
1.000 (15) 0.000 (16) 1.000 {17) 1.000 (18) 1.000 {19)
1.000 (20) 1.000 (21) 1.000 (22) 1.000 (23) 1.000 {24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 0.933 Rangs = 1.000

rule 224

0.000 ( 0) ©.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 ( 5) 0.000 (8) 0.000 ( 7) 0.000 ( 8) 0.000 (9}
0.000 (10) 0.000 (11) 0.000 (12) 0.000 {13) 0.000 (14)
0.000 (15) 0.000 (18) 0.000 (17) 0.000 {18} 0.000 (19)
0.001 (20) 0.001 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 {27) 0.000 (28) 0.000 (29)
Average = 0.000 Range = 0.001

rule 225

0.498 { 0) 0.497 { 1) 0.487 {2) 0.491 ( 3) 0.492 ( 4)
0.496 { 5) 0.489 { 6) 0.492 {7) 0.493 (8) 0.491 { 9)
0.494 (10} 0.490 (11) 0.492 {12) 0.497 (13) 0.489 (14}
0.496 (15} 0.495 (16) 0.499 (17) 0.496 (18) 0.497 (19)
0.490 (20) 0.503 (21) 0.484 (22) 0:503 (23) 0.492 (24)
0.502 (25) 0.502 (26) 0.502 (27) 0.493 (28) 0.498 {29)
Average = 0.495 Range = 0.018

Bit Weight Tables

fule 226

0.600 ( 0} 0.600 ( 1) 0.600 ( 2) 0.600 { 3) 0.600 { 4)
0.800 { 5) 0.800 ( 6) 0.800 ( 7) 0.600 { 8) 0.600( 9)
0.600 (10) 0.800 (11) 0.600 (12} 0.600 {13) 0.800 (14)
0.600 (15) 0.800 (16) 0.600 (17) 0.600 (18) 0.600 (19}
0.800 (20} 0.800 (21) 0.600 (22) 0.600 (23) 0.600 {24)
0.600 (25) 0.600 (26) 0.800 (27) 0.600 (28) 0.800 (29)
Average = 0.600 Range = 0.000

rule 227

0.600 ( 0) 0.600 ( 1) 0.600 (2) 0.600 ( 3) 0.600 { 4}
0.600 { 5) 0.600 ( 6) 0.600 ( 7) 0.600 ( 8) 0.600 { 9}
0.600 (10) 0.800 {11) 0.600 (12) 0.600 (13) 0.600 {14)
0.600 (15) 0.600 {16) 0.600 (17) 0.600 (18) 0.800 {19}
0.600 {20) 0.600 (21) 0.600 (22) 0.600 {23) 0.600 (24)
0.600 (25) 0.600 (26) 0.600 {27) 0.600 {28) 0.600 (29)
Average = 0.600 Range = 0.000

rule 228

0.000 ( 0} 0.000 ( 1) 0.000 ( 2) 0.000(3) 1.000 ( 4)
0.000 ( 5} 0.000 (8) 0.000(7) 0.000( 8) 1.000 (9}
0.000 {10) 0.000 (11) 0.000 (12) 0.000 (13) 0.000 (14)
0.000 {15) 0.000 (16) 0.000 (17) 0.000 (18) 0.001 (19)
0.001 {20} 1.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 0.000 {27) 0.000 (28) 1.000 (29)
Average = 0.167 Range = 1.000

rule 229

0.667 { 0) 0.600 ( 1) 0.667 ( 2) 0.600 ( 3) 0.668 { 4)
0.600 ( 5) 0.666 ( 6) 0.600 { 7) 0.666 { 8) 0.600 (%)
0.666 (10) 0.600 (11) 0.667 {12} 0.600 {13) 0.667 (14)
0.600 (15) 0.667 (16) 0.600 (17) 0.667 (18) 0.600 (19}
0.667 (20) 0.600 (21) 0.667 (22) 0.600 (23) 0.666 (24}
0.600 (25) 0.667 (26) 0.600 (27) 0.667 (28) 0.600 (29)
Average = 0.633 Range = 0.067

rule 230

0.833 (0} 0.833( 1) 0.833(2) 0.833(3) 0.833(4)
0.833 ( 5) 0.833(6) 0.833(7) 0.833(8) 0.833(9)
0.833 (10) 0.833 (11) 0.833 {12) 0.833 (13) 0.833 (14)
0.833 (15) 0.833 (16) 0.833 {17) 0.833 {18) 0.833 (19)
©.833 (20) 0.833 (21) 0.833 {22) 0.833 {23) 0.833 (24)
0.833 (25) 0.833 (26) 0.833 {27} 0.833 {28) 0.833 (29)
Average = 0.833 Range = 0.000

rule 231

0.833 ( 0) 0.833 (1) 0.833( 2) 0.833( 3) 0.833 ( 4)
0.833 (5) 0.833(6) 0.833(7) 0.833(8) 0.833(9)
0.833 {10) 0.833 {11) 0.833 (12) 0.833 (13) 0.833 {14)
0.833 (15) 0.833 (16) 0.833 (17) 0.833 (18) 0.833 (19)
0.833 (20) 0.833 (21) 0.833 (22) 0.833 {23) 0.833 (24)
0.833 (25) 0.833 (26) 0.833 (27) 0.833 {28) 0.833 (29)
Average = 0.833 Range = 0.000

rule 232

0.000 (0) 1.000 (1) 1.000 { 2) 1.000 ( 3} 0.000 ( 4)
0.000 ( 5) 0.000 (8) 1.000 (7} 1.000 ( B} 1.000 ( 9)
1.000 (10) 1.000 (11) 0.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 0.000 {16} 0.000 {17) 1.000 (18) 1.000 {19)
1.000 (20) 1.000 {21) 1.000 {22) 0.000 (23) 0.000 {24}
0.000 {25} 1.000 (26) 1.000 (27) 1.000 (28) 0.000 (29)
Average = 0.533 Range = 1.000
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Appendix C

rule 233

1.000 (0) 1.000 (1) 1.000(2) 1.000 (3) 1.000( 4)
1.000 { 5) 1.000 (8} 1.000 (7) 1.000 (8) 1.000 (9)
1.000 {10} 1.000 (11) 1.000 (12) 1.000 {13) 1.000 (14)
1.000 (15) 1.000 (18) 1.000 (17) 1.000 (18) 1.000 (19}
1.000 (20) 1.000 (21) 1.000 (22) 1.000 {23) 1.000 (24}
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 1.000 Range = 0.000

ruie 234

1.000 ( 0} 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 1.000{ 4}
1.000 ( §) 1.000 ( 6) 1.000 (7) 1.000 ( 8) 1.000 {9}
1.000 (10) 1.000 (11) 1.000 (12) 1.000 (13) 1.000 (14)
1.000 (15} 1.000 {16) 1.000 {17) 1.000 (18} 1.000 {18}
1.000 (20) 1.000 {21) 1.000 {22) 1.000 {23} 1.000 (24)
1.000 (25) 1.000 (26) 1.000 {27) 1.000 {28} 1.000 {29)
Average = 1.000 Range = 0.000

rule 235

1.000 { 0) 1.000 (1) 1.000 ( 2) 1.000 (3) 1.000 ( 4)
1.000 ( 5) 1.000 ( 6) 1.000 (7) 1.000 (8) 1.000 (9)
1.000 (10) 1.000 (11} 1.000 (12) 1.000 (13} 1.000 (14)
1.000 (15) 1.000 {16) 1.000 (17} 1.000 (18) 1.000 (19)
1.000 {(20) 1.000 {21) 1.000 {22) 1.000 (23) 1.000 (24)
1,000 {25) 1.000 (26) 1.000 (27} 1.000 (28) 1.000 {29)
Average = 1.000 Range = 0.000

rule 236

0.000 (0} 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 0.000 ( 4}
0.000 (5) 1.000(6) 1.000{7) 1.000(8) 1.000(9)
1.000 (10) 1.000 {11} 1.000 {12) 1.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 1,000 (18) 1.000 (19)
1.000 (20} 1.000 (21) 1.000 {22) 0.000 {23) 0.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 0.000 (29}
Average = 0,667 Range = 1.000

rule 237

1.000 ( 0) 1.000 ( 1) 1.000 (2} 1.000 { 3) 1.000 ( 4)
1.000 ( 5) 1.000 (6) 1.000 (7) 1.000( 8) 1.000(9)
1.000 (10} 1.000 {11) 1.000 {12} 1.000 (13) 1.000 {14)
1.000 (15) 1.000 {16) 1.000 {17) 1.000 (18) 1.000 (19)
1.000 (20) 1.000 {21) 0.000 (22) 0.000 {23) 1.000 (24)
1.000 {25} 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 0.933 Range = 1.000

rule 238

1.000 (G) 1.000{ 1) 1.000 (2) 1.000(3) 1.000{ 4)
1.600 ( 5) 1.000(6) 1.000 (7) 1.000 (8} 1.000(9)
1.000 (10} 1.000 (11) 1.000 (12) 1.000 (13) 1.000 (14)
1.000 (15} 1.000 (16) 1.000 (17) 1.000 (18) 1.000 (19}
1.000 (20} 1.000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25} 1.000 (26) 1.000 (27} 1.000 (28) 1.000 {29}
Average = 1,000 Range = 0.000

rule 239

1.000 (0) 1.000( 1) 1.000 {2) 1.000 (3} 1.000(4)
1.000 (5) 1.000{6) 1.000 {7} 1.000(8) 1.000(9)
1.000 (10} 1.000 {11} 1.000 (12) 1.000 (13} 1.000 (14)
1.000 (15) 1.000 (16) 1.000 (17) 1.000 (18) 1.000 (19)
1.000 (20} 1.000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 {27) 1.000 (28) 1.000 (29)
Average = 1.000 Range = 0.000

Bit Weight Tables

rule 240

0.500 { 0) 0.500 ( 1) 0.500( 2) 0.500 ( 3} 0.500 ( 4)
0.500 { 5) 0.500 (6) 0.500 { 7) 0.500 ( 8) 0.500 { 9}
0.500 (10} 0.500 {11) 0.500 (12) 0.500 (13} 0.500 {14)
0.500 (15) 0.500 {186) 0.500 (17) 0.500 {18) 0.500 (19}
0.500 (20} 0.500 (21) 0.500 (22) 0.500 {23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 {27) 0.500 (28) 0.500 (29)
Average = 0.500 Range = 0.000

rule 241

0.667 ( 0) 0.667 ( 1) 0.667 (2) 0.667 { 3) 0.667 (4)
0.667 ( 5) 0.667 ( 8) 0.667 (7) 0.667 { 8) 0.687 ( 9)
0.667 (10) 0.667 (11) 0.687 (12) 0.667 {13) 0.667 (14)
0.667 (15) 0.667 {16) 0.667 (17} 0.667 {18) 0.667 (19}
0.667 (20) 0.667 (21) 0.667 (22) 0.667 {23) 0.867 (24}
0.667 (25) 0.667 (28) 0.667 (27) 0.666 {28) 0.667 (29}
Average = 0.667 Range = 0.000

rule 242

0.667 { 0) 0.667 ( 1) 0.667 ( 2) 0.667 ( 3) 0.687 ( 4)
0.667 ( 5) 0.867 (6} 0.667 (7) 0.666 ( 8) 0.667 { 9)
0.667 (10) 0.666 (11) 0.667 (12) 0.667 (13) 0.667 (14)
0.667 (15) 0.667 (16) 0.667 (17) 0.667 {18) 0.667 (19)
0.667 (20) 0.667 {21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 (25) 0.667 {26) 0.667 (27) 0.667 (28) 0.667 (29)
Average = 0.667 Range = 0.000

rule 243

0.767 { 0) 0.767 (1) 0.767 { 2) 0.767 ( 3} 0.767 ( 4)
0.767 ( 5) 0.767 ( 6) 0.767 (7) 0.767 ( 8) 0.767 (9}
0.766 {10} 0.766 (11) 0.766 {12) 0.767 (13) 0.767 {14)
0.767 (15) 0.767 {16) 0.767 (17) 0.767 (18) 0.767 (19)
0.767 (20) 0.767 (21) 0.767 (22) 0.767 (23) 0.767 (24)
0.767 (25) 0.767 (26) 0.767 (27) 0.767 {28) 0.767 (29)
Average = 0.767 Range = 0.000

rule 244

0.633 (0) 0633 (1) 0.633(2) 0.633( 3) 0.633(4)
0.633 {5) 0.633(6) 0.633(7) 0.633(8) 0.633(9)
0.633 {10) 0.633 (11) 0.633 (12) 0.633 (13) 0.633 (14}
0.633 (15} 0.633 {18) 0.633 (17) 0.633 (18) 0.633 (19}
0.633 (20) 0.633 (21) 0.633 (22) 0.633 (23) 0.633 (24
0.633 (25) 0.633 (26) 0.633 (27) 0.633 {28) 0.633 (29)
Average = 0.633 Range = 0.000

rule 245

0.733 ( 0) 0.733 (1) 0.733 (2) 0.733 { 3) 0.733 ( 4)
0.733(5) 0.733(6) 0.733(7) 0.733(8) 0.733 (9}
0.733 (10) 0.733 (11} 0.733 (12) 0.733 (13) 0.733 (14)
0.733 (15) 0.733 (16) 0.733 (17} 0.733 (18) 0.733 (19)
0.733 {20) 0.733 (21} 0.738 (22) 0.733 (23) 0.733 (24)
0.733 (25) 0.733 (26) 0.733 (27) 0.733 (28) 0.733 (29)
Average = 0.733 Range = 0.000

rule 246

0.767 (0) 0.767 ( 1) 0.767 ( 2) 0.767 { 3) 0.767 { 4)
0.767 ( 5) 0.767 ( 6) 0.767 (7) 0.766 { 8) 0.767 ( 9)
0.767 (10) 0.767 (11) 0.767 (12) 0.767 {13) 0.767 (14)
0.767 (15) 0.767 (16) 0.767 (17) 0.767 {18) 0.767 (19)
0.767 (20) 0.767 (21) 0.767 (22) 0.767 {23) 0.767 (24)
0.767 (25) 0.767 (26) 0.767 (27) 0.767 (28) 0.767 (29)
Average = 0.767 Range = 0.000
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Appendix C

rule 247

0.800 { 0) 0.800 ( 1) 0.800 (2) 0.800 ( 3) 0.800 (4)
0.800 { 5) 0.800 (6) 0.800 ( 7) 0.800 (8) 0.800 ( 9)
0.800 {10} 0.800 (11) 0.800 (12) 0.800 {13) 0.800 (14}
0.800 {15} 0.800 (16) 0.800 (17) 0.800 (18) 0.800 (19}
0.800 {20} 0.800 (21) 0.800 (22) 0.800 (23) 0.800 (24)
0.800 (25) 0.800 (26) 0.800 (27) 0.800 {28) 0.800 (29)
Average = 0.800 Range = 0.000

rule 248

1.000 { 0) 0.89% ( 1) 0.998 ( 2) 0.999 ( 3) 0.999 ( 4)
0.8990 { 5) 0.999 ( 6) 0.899 { 7) 0.999 ( 8) 0.999 ( 9)
0.999 (10) 0.999 (11) 0.999 (12) 0.999 (13) 0.999 (14)
0.999 (15) 1.000 (16) 1.000 {17) 1.000 {18) 1.000 {19)
1.000 {20) 1.000 (21) 1.000 (22) 1.000 (23) 1.000 {24)
1.000 (25} 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 1.000 Range = 0.001

rule 249

1.000 (0) 1.000 ( 1) 1.000 (2} 1.000(3) 1.000( 4)
1.000 { 5) 1.000 ( 6) 1.000 ( 7} 1.000( 8) 1.000 (9}
1.000 (10} 1.000 (11} 1.000 (12) 1.000 (13} 1.000 {14)
1.000 (15} 1.000 {16) 1.000 {17) 1.000 {18} 1.000 (19)
1.000 (20} 1.000 {21) 1.000 {22) 1.000 (23} 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28} 1.000 (29)
Average = 1.000 Range = 0.000

rute 250

1.000 { 0) 1.000 (1) 1.000 {2) 1.000 ( 3) 1.000{ 4)
1.000 { 5) 1.000 (6) 1.000 (7) 1.000 (8) 1.000 (9}
1.000 (10) 1.000 (11) 1.000 {12) 1.000 (13) 1.000 (14)
1.000 (15) 1.000 (18) 1.000 (17) 1.000 (18) 1.600 {18}
1.000 (20) 1.000 (21) 1.000 (22) 1.000 (23) 1.000 {24)
1.000 (25) 1.000 {26) 1.000 (27} 1.000 (28} 1.000 (29)
Average = 1.000 Range = 0.000

rule 251

1.000 { 0} 1.000 { 1) 1.000 (2} 1.000 {3) 1.000 ( 4)
1.000 (5) 1.000 (6) 1.000 ( 7} 1.000( 8) 1.000{9)
1.000 (10) 1.000 (11) 1.000 (12) 1.000 (13} 1.000 {14)
1.000 {15) 1.000 (16) 1.000 (17) 1.000 (18) 1.000 (19)
1.000 {20} 1.000 {21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 {26) 1.000 (27) 1.000 ({28) 1.000 (29)
Average = 1.000 Range = 0.000

rule 252

1.000 { 0) 1.000 ( 1) 1.000 (2) 1.000 ( 3) 1.000( 4)
1.000 { 5} 1.000 (6) 1.000 (7} 1.000 { 8) 1.000 ( 9)
1.000 (10) 1.000 {11) 1.000 {12) 1.000 {13) 0.999 {14)
1.000 (15) 1.000 {16} 1.000 (17) 1.000 {18} 1.000 (19)
1.000 (20) 1.000 {21} 1.000 {22) 1.000 (23) 1.000 {24)
1.000 (25) 1.000 {26} 1.000 (27) 1.000 (28) 1.000 {29)
Average = 1.000 Range = 0.001

rule 253

1.000 {0} 1.000 (1) 1.000{2) 1.000 {3} 1.000 ( 4)
1.000 ( 5) 1.000 (6) 1.000(7) 1.000 (8} 1.000(9)
1.000 (10} 1.000 (11) 1.000 {12) 1.000 (13} 1.000 (14)
1.000 (15) 1.000 (16) 1.000 (17} 1.000 (18) 1.000 (19)
1.000 (20) 1.000 {21) 1.000 {22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 (28} 1.000 {27) 1.000 (28) 1.000 {29}
Average = 1.000 Range = 0.000

Bit Weight Tables

rule 254

1.000 ( 0) 1.000 { 1) 1.000 {2) 1.000 ( 3) 1.000 ( 4)
1.000 ( 5) 1.000 (6) 1.000 (7) 1.000(8) 1.000(9)
1.000 (10} 1.000 (11) 1.000 (12) 1.000 (13) 1.000 (14}
1.000 (15} 1.000 (16} 1.000 (17) 1.000 (18) 1.000 (19)
1.000 (20) 1.000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29}
Average = 1.000 Range = 0.000

rule 255

1.000 (0) 1.000 (1) 1.000(2) 1.000 ( 3) 1.000 ( 4)
1.000 ( 5) 1.000(6) 1.000(7) 1.000(8) 1.000(9)
1.000 (10) 1.000 (11} 1.000 (12) 1.000 (13) 1.000 (14}
1.000 (15) 1.000 (16} 1.000 (17) 1.000 {18) 1.000 (19}
1.000 (20) 1.000 (21} 1.000 (22) 1.000 (23) 1.000 (24}
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (29)
Average = 1.000 Range = 0.000
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