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Abstract

This work examines parallel VLSI implementations of nondeterministic algor¡thms.
It is demonstrated that conventional pseudorandom number generators are unsuitable
for highly parallel applications. For example, while linear feedback shift registers
(LFSR) arê adequate for generat¡on of single pseudorandom bit streams, the bit
streams from different cells in the LFSR are highly correlated. Efficient parallel pseu-

dorandom sequence goneration can be accomplishsd using cortain classes of elemen-
tary one-dimensional cellular automata (two binary states per site and only nearest
neighbour connections). The pseudorandom numbers appear in parallel from various
cells ¡n the cellular aulomaton on each clock cycle. Extensive study of the properties of
these new pseudorandom number generators is made using standard empirical ran-
dom number tests, cycle length tests, and implementation considerations.

Furthermore, it is shown these particular one-dimensional cellular automata can

form the basis of efficient VLSI architectures for computations involved in the Monte
Carlo simulat¡on of both lhe percolation and lsing models from statistical mechanics.

The architectures provide a spatially-distributed set of pseudorandom numbers which
are required in the local nondeterministic decisions at the various sites in lhe array. lt
is shown that the time-intensive task of sampling the psrcolation and lsing
configurations is expeditsd by the inherent parallelism of this approach. Th6 architêc-
tures can be used to report pertinent information such as the magnetisation to a host
computer. lt is demonsVated that these architectures can provide speedup of several
orders of magnitude over conventional Monte Carlo simulation. For example, a 1000 x
1 000 lsing lattlce can be completely updated in less than 1 lrsec. The correctness of
this approach is vêrified by computer simulation of tho new architectures which derived
the correct cr¡tical exponents for both the percolation and ls¡ng models.

Finally, a var¡ation on a Built-ln Self-Test technique is presented. lt is based
upon a distributed pseudorandom number generator der¡ved lrom a one-dimensional
cellular automata array. These Cellular Automata-Logic-Block-Observation (CALBO)

circuits improve upon conventional design for testability circuitry such as BILBO as a
direct consequence of reduced cross-correlation between thê bit streams which are
used as inputs to the logic unit under test. This approach answers the problems ar¡s-

ing from the correlated bit skeams produced by the conventional LFSR. ln addition, it

is noted these cellular automata implementations exhibit locality and topological regu-
larity; important attributês for a VLSI implementation. lt is shown that much of the
analysis of psêudorandom testing is more directly applicable to CALBO-based pseu-

dorandom testing as compared to LFSR-based schemes, in that statistical assump-
t¡ons regarding the pseudorandom test vector genoration are better justified in the
former case. The data compaction properties of CALBO are examined and ¡t is found

that cyclic group rule cellular automata provide comparable signature analysis proper-

ties to the LFSB. An important feature still to be fully investigated is the possibility that
some cellular automata may be able to generate weighted pseudorandom test pat-

terns.
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Ghapter 1

lntroduction

1,1, MOTIVATION

This thesis is motivated by the potential for massively parallel VLSI systems to study
large problems. These problems are often best solved by employing algorithms with
nondetermin istic components. ln this study we restrict ourselves to nondeterministic
algorithms which can be implemented on a parallel system using a single instruction
mult¡ple data, or SIMD, architecturo. Many problems, especially important modelling
problems from statistical mechanics, fall into this class.

Solution of large problems us¡ng nondeterministic algorithms often involves
tradeoffs. between interesting problem sizes and computationally reasonable solution
t¡mes. However, even for small problem sizes many of lhese nondeterministic prob-
lems stretch computer resources to the lirnit. The salient features of a nondeterministic
algorithm include generating a random number, comparing it to some probability, and
taking appropriate action, usually some simple operation. Therefore, on most computer
systems we are restricted by the rate at which we can generate pseudorandom
numbers. The most obvious solution to increasê computational throughput, other than
technological improvement of the computing hardware, is to attempt to implement por-
tions of the algorithm in parallel. However, this creates lhe need for efficient parallel
pseudorandom number generation. ln a VLSI ¡mplementation all circuits must be both
area and t¡me etficient or precious silicon area and/or computat¡on time will be wasted.
Thus, for parallel VLSI implementations of nondeterministic algorithms we require an
area-time efficient pseudorandom number generator. Therefore, while in this work we
pr¡mar¡ly consider the VLSI implementations of nondeterministic algorithms, we must
first concern ourselves with the development of a suitable pseudorandom number gen-
erator for such a parallel computing environment.

A second motivation is to examine the suitability of current pseudorandom test
pattern generators and signature analyzers for built-in self-test (BIST) of VLSI c¡rcu¡ts.
ln this problem we are again concerned w¡th the generation of pseudorandom
numbers. However, we are not concerned w¡th the generation of these pseudorandom
numbers in pârallel but rather w¡th generating pseudorandom numbers at high speed
using minimal area. lt is known that the most common mechanism for generat¡ng
pseudorandom test patterns and performing signature analysis for BIST (the linear
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feedback shift register) suffers from cross-correlation. This is especially problematic in

a BIST environment since some circuit faults cannot be detected using such test pat-

tern generators and signature analyzers. Therefore, we seek to propose improved
pseudorandom test pattern generators and signature analyzers for BIST.

1.2, OBJECTIVES

The objeclive of this thesis is twotold. First, we seek to study the VLSI implemen-
tation of massively parallel computing systems for the sofution of nondeterministic
algorithms. Secondly, we attempt to derive improved BIST circuits for both test patteÍn
generation and signature analysis. Consequently, we must place a large emphasis on
the requirements of pseudorandom number generation for such systems. ln this light
we seek to discover an area-t¡me efficient pseudorandom number generator. The
resulting pseudorandom number generator's suitability is demonstrated by first study-
ing two highly parallel nondetermin istic algorithms. These algorithms ar¡se in statistical
mechanics where massively parallel Monte Carlo simulation of the percolation and
lsing models could result in a speedup by several orders of magnitude over conven-
tional serial Monte Carlo simulat¡on. Secondly, we examine the applicat¡on of the new
pseudorandom number generator to random testing ot digital VLSI circuits. ln this work
we must show that the new test pattern generator and signature analyzer is both small
and fast when comparêd to convêntional techniques. We must also derive measures
by which performance comparisons to other techniques can be made.

1.3. PRINCIPAL CONTRIBUTIONS OF THIS THESIS

This thesis concerns itself with the study ot area-time efficient hardware pseu-
dorandom number generation, parallel computat¡on of nondeterm inistic algoÍ¡thms,
pseudorandom test pattern generation and signature analysis for dig¡tal circuit testing.
Contr¡butions arising from this work include:

1. An analysis of conventional pseudorandom number generation w¡th respect to its
implementation in a f¡ne grained parallel processing environment is presented.

2. A new area{ime efficient pseudorandom number generator based on simple
one-dimensional cellular automata is demonstrated.

3. A parallel architecture for simulation of the lattice percolation model of statist¡cal
mechanics is described. Correctness of the design was verified by simulations of
the architecture wh¡ch produced the correct critical exponents associated with
phase transit¡ons in the model system. Speedup over conventional simulation
techniques is shown to be O(N), where N is the number of sites in a lattice.

4. Two architectures for high speed simulation of the lsing model are presented. As
with the percolation model computer, coffectness of the design was verified by
simulation.
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A novel cellular automata-based pseudorandom test pattern generator is

descr¡bed which overcomes some of the fault coverage problems ¡n the tradit¡onal
linear feedback shift registerbased pseudorandom test pattern generator. The
topological regularity of the new generator facilitates easy register width changes
and so therefore is wêll suited to incorporation in comput€r-aided design software
tools, as well as being an efficient basis for sslf-testing hardware.

A first study of the signature analysis properties of simple one-dimensional cellu-
lar automata has been made. Results indicate that cellular automata whose rules
display cyclic group properties are well su¡ted for use in signature analysis with
comparable aliasing properties to the l¡near feedback shift register.

1.4, THESIS ORGANISATION

The thesis is organised into four sections. Chapter 2 deals with the subject of random
number generation w¡th emphasis on applications in parallel processing w¡th fine-
grained processors. A working definition o'î randomness based on standard random
number tests is derived and sevetal convent¡onal pseudorandom number generators
are tested arid examined in the light of parallel processing applications. Finally, a
novel area-efficlenl pseudorandom number generator based upon cellular automala is
demonstrated and tested. Chapters 3 and 4 explore two potent¡al applications for this
new generator. ln Chapter 3 we are concerned with two nondeterminist¡c algorithms
used in statistical mechanics. Parallel architectures are derived which show great
promise for use as special hardware accelerators for the percolation and lsing models.
The correctness of the approach is shown by simulation of the architectures with
respect to generating the correct model parameters, or cr¡tical exponents. Chapter 4
considers a different nondetermin istic problem, that of built-in testing of VLSI circuits.
Here new built-in self-test circuits based on the cellular automata-based pseudoran-
dom number generators of Chapter 2 are used as a logic block observers. Measures
of the fault detection and signature analysis properties are derived and compared w¡th
linear feedback shift register based circuits. Finally, Chapter 5 presents somê conclu-
sions and suggestions for further work.

There are three appendices to this work. Appendix A derives a confidence esti-
mate o, the probability of generating a nonrandom sequence, given that a pseudoran-
dom number generator has passed the random number tests. Complete cycle length
properties of the class 3 cellular automata studied ¡n Chapter 2 are given in Appendix
B. Appendix C presents detailed information on the weight of each output bit for all
possible simple one-dimensional cellular automata in the context ol weighted pattern
generation for built-in self-test,

An accompanying volume presents detailed information on the comput¡ng system
and programs'used in this work.



Chapter 2
Parallel Pseudorandom Number

Generation in VLSI

2.1. INTRODUCTION

ln this chapter the efficient generation of random numbers by deterministic
methods for use by parallel processors in line-grained VLSI arrays, such as the two-
dimensional mesh architecture shown in Fig. 2.1, is discussed. By fine-grained it is
implied that the individual processors do not have a great deal of processing power,
but instead, the architecture relies on the large number of these processors to create a
powerful machine. ln the execution of algor¡thms having nondetermin istic components,
this means that most processors will consist of a software or hardware based random
number generator (RNG) and somo simple processing elements. For examplê, in a
parallel sampling algorithm, it is possible that the processor will consist solely of a data
selector, poss¡bly from a small memory, and a comparator to compare the selected
value w¡th a random number. ln these architectures, which have been used to solve
problems based on the percolation and lsing models of statistical mechanics (see
Chapter 3), it is necessary for the random numbers at each processor to be available
on each clock cycle to achieve maximum throughput at each processing site. This
requires that special hardware be dedicated to random number generation at each
processor. To provide parallel hardware random number generation two methods are
possible. Firstly, one may employ a technique whereby a large global random number
is generated on each clock cycle and a local random number for each processing site
is obtained by selecting only a small number of bits from this global random number.
This method may be employed only if the bits in each local number are uncorrelated
and if there is also no cross-correlation between local random numbers at neighbour-
ing processing sites. Secondly, one could have a RNG at each processing site.

ln this chapter the requirements of paraflel computer arch¡tectures which require
random number generation will be first examined using conventional RNGs. Special
emphasis will be placed on the VLSI ¡mplementation of these architectures including
estimates of processor area, A, and computation time, f .2.1 lt will be shown that con-
ventional RNGs are inefficient in terms of area and time requ¡rements for the fine-
grained parallól processing environment of Fig. 2.1. Novel architectures will then be
proposed, based on a new RNG which uses cellular automata. These architectures
solve many of the problems associated with using conventional techniques of RNG in
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Flgure 2,1 : A fine-grained parallel processing two-d¡mensional mesh arch¡tecture.

fine-graîned parallel processing machines.

These architectures have applications in the efficient implementation of parallel
nondetermin istic algorithms such as modolling schemes based upon statistical
mechanics, hardware accelerators for simulated annealing, and other parallel Monte
Carlo simulations. Another important application of the results presented in this
chapter lies in the area of built-in selÊtest circu¡ts (BIST) for VLSI where an improved
pseudorandom number generator (PRNG) as compared to the traditional linear feed-
back shift register (LFSR) is demonstrated. These appl¡cations are exptored in
Chapters 3 (Parallel Architectures for Stat¡stical Mechanics) and 4 (Applications to
Built-ln SellTest).

2,2. DEFINITION OF RANDOMNESS

It is very difficult to discuss the ¡dea of randomness without be¡ng drawn into
some sort of philosophical discussion about what random means. An interesling and
thoughtful discussion on this topic can be found in [Knuth1981]. lt is inappropriate to
consider an individual number to be random; instead, a sequence of numbers must be
considered. Here we are concerned with the generation of random number sequences
-?l 

Th-is allows us to make comoarisons on the relat¡ve oerformance of each
architecture usino the methods ol lThomoson1980l. The area and time esti-
mates will be baéed on a 3 micron'sinole' metal twín tub CMOS orocess tech-
nology so that it will be possible to inseit the constants required t'o make exact
comparisons and not iust asymptotic ones. All implementations consist of static
circuits and an I bit úvord size. Relative comparisons are expected to be rea-
sonably technology independent.
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by deterministic methods. The resulting sequences cannot be completely random since
they are generated determin istically, but are rather, referred to as pseudorandom
sequences. The definition of a pseudorandom sequence to be used here will consider
a sequence to be pseudorandom if it satisfies several standard empirical random
numbsr tests as described below.22 For these tests a general form for a pseudoran-
dom sequence is assumed to be

<Z¡> = Zo, Zt, Zz, ' ' ' (2.1 )

where each Z¡ is a real number between zero and one. This work is concerned w¡th
the hardware generat¡on of pseudorandom sequences which are most conveniently
expressed ¡n terms of integers; an integer valued sequence of the form

(2.2)

where each

will be employed rather than the real-valued sequence of Eqn.2.1. The sequence of
integers,will have values betvveen 0 and d - 1 giving an integer word size oftt
llog2 dl b¡ts.

Many of the following tests peÍform some operat¡on using the sequence, usually
in the naturê of a counting operation, and the results are then compared to a given
distr¡bution for a particular test. The queslion that naturally arises is how can it be
determined if the results of the test are the same as what is desired, or expected, of a
pseudorandom sequence? Obviously we do not expect lhe results to be exactly the
same since it is highly unlikely lhat a truly random sequence would exhibit ideal pro-
perties. On the other hand, deviation too far from thê ideal is also unsatisfactory.
Therefore, the comparison must be made for a range of acceplable behaviour. The
comparison technique used here is the well known chi-square test (12 test). ln this test
each possible event is assigned a probability, psi then the number of occunences of
that event are counted, Y". After all the events have been counted each Y, is com-
pared to the expected number of occurrences, nps, where n is the number of ele-
ments in the test. lf we sum the squares of the difference between Y" and np" for
each possible event we determine a measure of the difference between the expected
and actual results. This quant¡ty, usually labelled as l/, can be expressed

<X¡> = Xo, Xt, Xz, ' ' '

x,= la z,) (2.3)
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mathematically as

.. (Yt - npt)z (Yz- npzlz (ye - npà2
nPt nPz nPe

for a test w¡th E events. Equation 2.4 can be more conveniêntly expressed as

(2.4)

(2.5)

The quant¡ty t/ is then compared to tables which show the probab¡lity of obtaining a
value less than, or equal to, V for a given number of events, or degrees of freedom.
Therefore, the ¡2 test returns a probabilistic result as to the randomness of the
sequence; i.e. there is no yes-no answer.

Knuth [Knuth1981] suggests a method of determining if y ¡s a reasonable value
by assigning probabilities to var¡ous values of V corresponding to the probability that a
random sequence would produce a value less than, or equal to, a given value of t/.
These results are usually presented in table form for convenience. lf the value of y is
greater than the 99% table entry or less than the 1% table entry then the X2 test has
been failed. lf the value of V falls in the 1% to 5% or 95% lo 99% range then the
value of V is suspect and in the range 5% to l0% or 90% to 95% l/ is considered
possibly acceptable. Only in the range 10% to 90% is V detinitely considered to be a
value that might be produced by a pseudorandom sequence. The problem with
Knuth's passjail method is that it is a soft measure since it has four different
categor¡es, or results (failed, almost failed, almost passed, and passed).

ln this work computer based testing will be used to verify the randomness of gen-
erated sequences. Hence a method which provides strict pass and fail ranges is more
desirable. One such method which quickly determines if y is an acceptable value is

that V must lie in lhe range d + 2{d [Sedgewickl983]. Th¡s g¡ves an approximate
pass range of 7 .5To lo 92.5% w¡th lhe fail range consisting of 0.0% to 7.5y" and g2.S%

t0 100%. This method w¡ll be used here because of its ease of use in coriputer
based random number testing.2 3 lt should be noted that the X2 test is valid if, and only
if, the data, in this case event counts in the test categories, are independent and the
value of n is large. The larger the value of n the more accurate the test, however, if n
is too large then locally nonrandom behaviour will be indistinguishable since it will be
washed out by the global properties of the sequence. A general rule of thumb for n is

that n > 10E [sedgewick1983].

23 fnat'a particular sequence vields an u nsat¡sfactot¡lv low ot hioh value of
V does not automaticallv indicatê the oenerator as beiño nonoseúdorandom
but rather that a particular sequence íÍoti that oenerator fã¡led. ln^fact. it ¡s êx-
pected that som€i random secjuences will, on^o-ccasion. fail tho yz tesi. There-
fore, only if. sequences consisìently fail the Xz test, cari the genê'rator of those
sequencês be said to be producinçi nonpseuiJorandom seque-nces.

Parallel Pseudorandom Number Generation in VLSI
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2,2.1 . Random Number Tests

1) Equldlstrlbutlon test (Frequency test). The sequence must consist ot numbers
which are uniformly distr¡buted between zero and d - 1 (i.e. ps = 1/d and
Ê_r\t- - u)'

2) Serlal test, Success¡ve pairs of numbers in the sequence should be uniformly
distributed and independênt, i.e. successive pairs (X2¡, X2¡*1)should be equidis-
tributed between (0, O) and (d - 1, d - 1) lnere p" =1íd2 anO E = d2). tn¡s
test can be extended to triples (Xsj, Xgj*t, Xsj*z) ( ps = llds and E = d3¡ and
quadruples (Xq, Xqjú, X¿j*2, Xqj*s) ( p" = 1td4 and E = d4). However, tests
using sets greater than quadruples have such a large number of categor¡es
(> d5) that it may not be possible, or convenient, to properly test the equidistr¡bu-
tion of the categories. Ths value of d, or the modulus, also affects the extent of
the test. For example, even a small modulus, d, will generate a large number of
categories; e.g. d = 5 yields 625 categor¡es for the quadruple serial test. This
means that n should be > 6250 for a good X2 test. For larger moduli very long
sequences must be tested because of the correspondingly large number of
categor¡es. Thus, serial tests, especially those of higher order, are best used with
small moduli.

3) Gap test. The length of the gaps between occurrences ot numbers in the
sequence lhat lie within a certain range is tabulated and the collection of lengths
should then lie w¡thin a binomial distribution. Consider two values a and p, the
lengths of consecutive numbers X¡, X¡.¡, ... , X¡+r in which a3X¡+r <p,but
each X¡+i I a or X¡*i > P, I < r, are considered. lf we use gap lengths O, 1,
"' , t-1, and > f we have probabilit¡es po= p, pt= p(-p), pz= p(-p)z,
..', pt = p(-p)t,wherep ="i and E = f + 1.

4) Poker test (Partltlon test). The number of k-tuples of r d¡fferent values over
groups of k successive numbers ¡s counted; these should follow a predetermined
distribution [Knuth1981]. Here E = dlk and

(2.6)

rì
lkl

where | , I is a Stirling number of the second kind.
|., J

5) Coupon collector's test. The length of sequence required to obtain a complete
collection of numbers in the range 0 to d - 1 is considered; this set of numbers
must have a distribution of a particular form [Knuth1981]. Here we appty the ¡2
test to the set [C¿, C¿*t, .. . ,C¿*t], where Cr, d S r < f, is the number of
t¡mes r successive numbers were required to obtain a complete collection. The

12testusesE=fand

,,=#l'o-lj,o=,., P,=1-#{';'} G7)
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As in the serial test the value of d directly affects the length of sequence required
for a good test. For example, if d = 100 and f = 20 then we must have a

sequence lenglh long enough to perform at least 200 tests (i.e. 20,000 numbers)
for a good X2 test. Therefore, the coupon collector's test is best suited to small
moduli.

PeÌmutallon test, The sequence is divided into successive blocks of length g.
Each of the ql poss¡ble orderings should occur with equal frequsncy (i.e.

Ps = llql and E = q!). lt should be noted that small moduli will invalidate higher
order permutation tests (i.e. larger values of q). lf the modulus for a sequence is

small, there will be a tendency to have two or more equal values in a block
thereby enhancing the probability of certain orderings over others. Experimentally
it has been observed that the probability of two or more values in a block being
equal should be less than 0.2 for a permutation test on size q blocks to behave
as expected.

Run tests,

l) Run up: The lengths of blocks in the sequence which are monotonically
increasing are counted; these must correspond to a given distribution

[Knuth1981]. Each run is separated by one number (i.e. if Xi > X¡+r then start
next run with X;+z) for independence, here E = t + 1 for runs of length 1, 2,
...,t,and>fand

t

Pt+t=1- }pr (2.8)
r=1

As for the permutation test, if small moduli are used, there is a tendency to have
equal values with¡n a block which will shorten the length of monotonically increas-
¡ng blocks. This will increase the probability of short runs causing unexpected
test results. Experimentally it has been observed that lhe run test requires the
same probability of having two or more values equal ¡n a given block as the per-
mutation test to behave as expected (i.e. lhe probab¡lity of two or more values
being equal in a block of length t should be less than 0.2).

ll) Run down: The run up test is repeated for monotonically decreasing block
lengths.

8) Maxlmum of f test, The sequence is broken up into successive blocks of
length f; the maximum value of each block must lie in a power distribution (i.e. let

. ! - 1 then the seouence of't

t

(2.e)

p,=+. dT,1<r<t

V¡ = max(X¡, Xti*.t, ... , Xt¡*ri, i = 0, 1, . '

values <yi> must be diskibuted with

"=[+] 
'-[;

7)
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andE=d.
9) Correlatlon tests. Two correlation tests are used to test for auto and cross-

correlation in the sequence numbers:

l) Serlal correlatlon: ln this test the follow¡ng autocorrelation stat¡st¡c is calcu-
lated for autocorrelation amongst the numbers in the sequence

n (XsX iX 1X2+ 
. . . +Xn_2Xr_r+Xn_rXo) -

(X¡+X1+ ' . .+Xn-ì2
(2.10)ngfi + x? + ..' + Xl:)- (Xo+ Xt+ .'. + Xr-'t)z

lf we have two sequences <X¡> and < Y¡> both of length n we can 
.compute 

a
cross-correlation statistic between the numbers in the two sequences as

(2.1 1)

Both the C¡ and C6 correlation statistics lie in the range -1 to +1 , with small
values indicating independencê between values in the sequence. Therefore, it is
desirable to have both C¡ and C6 close to zero. A good value for Ca will lie in
the range þ, + 26n [Knuth198'1], where

_1 _^_ 1 \@ n>2þLn =;J , 6n = n_1 \ -;+- , n (2.12)

ll) Blt sequence correlatlon: Each number in the sequence <X¡> can be
represented usîng /?t bit binary notation (assuming an rn bit word size). lf we
consider bit i in each sequence number's binary notation we can form a binary
sequence, <xi>. Correlation tests are then performed on the resulting ¡n binary
sequences. Here we compute the autocorrelation of a binary sequence to be

BcÀ = (2.13)

(2.14)vt = |'Ërt.ll, .r = |'íu w) - pL¡)2

BCÀ = autocorrelation of binary seQuêrìcê <X¡>

w¡th t¡me displacement f ;

xi(k) = k'th bit in the sequence <xi>;

n-1 t ì ln-1 n-1n\lx¡v¡j- lÐ-r, Ðr,

10
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þ¡ = mean of sequence <xl>;
o1 = variance of sequence <x¡>;

and the cross-correlation of two binary sequences <X¡> ând <X¡*;> âs

,-tl r ì r 'll

*ì1 l',tul- FiJ lxi.;(k+t)- p/.i JÌ,"",= 
;7

where

(2.15)

BCI:, = cross-correlation of binary sêQUêncêS <X¡>vj

and <x¡*i> with time d¡splacement f .

As for the serial correlation test the values of BC) and BCf. tie in the range -1
to +1 and should be close to zerc lú independence. Note that the conelation of
<X¡> with ¡tself (i.e. BC¡o) must equal +1. For this work only the magnitude of the
binary sequence correlation values will be considered. Hence the actual range of
values will be from 0 to +1 .

10) Vlsual test. The human visual process has an uncanny ability to detect patterns
governed by long range correlations. ln th¡s test a graphical representation of the
numbers in the sequence is plotted on a computer screen and emergent patterns,
if any, are observed. There are two graphical representations used in this work.
Firstly, each number in the sequence is considered as a binary word with each
number corresponding to a unique horizontal line on the screen. Each line is then
considered to consist of the same number of pxel divisions as tho word s¡ze of
lhe number. These divisions are then tumed on or off depending on the value of
the correspond¡ng bit in the pseudorandom number. An example of this represen-
tation is given in Fig. 2. l5.

The second torm of representation is a raster scan of a binary sequence.
Here each horizontal pixel corresponds to one b¡t in the binary sequence and is

conespondingly turned on or off . An example is given in Fig.2.2 where two
binary sequences are plotted using the raster scan representation. Note that
Fig.2.2(a) has a discernible pattern and therefore must be considered a
nonpseudorandom sequence while Fig. 2.2(b) does not appear to exhibit any pat-
tern. The other tests, 1 to g described above, conf¡rm that the sequence of
Fig.2.2(a) is not a pseudorandom sequence. Surprisingly, the sequence of
Fig.2.2(b) also turns out not to be a pseudorandom sequonce, since ¡t does not
adequately pass all of the above tests. This shows that visual inspection may
serve as a preprocessing filter in eliminating many nonpseudorandom sequences.
However, the sequences which are visually acceptable must still be subjected to
lu¡'ther tests.

The opposite situat¡on can also arise ¡n wh¡ch sequences pass all the other
random number tests but fail the visual test. The eye is able to detect patterns
which are invisible to the.tests 1 to g above. This case arises later in the chapter.

J1
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Flgure 2,2 (al A v¡suaily unacceptable (¡.e. nonpseudorandom) sequence.

Note that this test differs from the unreliable test of examining the numbers for
patterns [Knuthl98'l] since for the visual patterns to be detected, some observ-
able quantity must bê repeating over a large block of numbers in the sequence.
However, in examining the numbers one can only observe very local phenomena
and not the more important global behaviour.

The tests I to 9 above.must be applied to the pseudorandom sequence in such a
way that local and global randomness can be tested. For example, in a sequence of
100,000 numbers it is possible that a small collection of numbers could be decidedly
nonrandom, lf one examines all 100,000 numbers as a block then these few numbers
could be overlooked since the sequence is much larger than the small anomaly. This
is overcome by testing lhe sequence in large and small blocks to check for local pro-
perties. The 100,000 number sequence would f irst be tested as a whole to check for
global properties, then it would be decomposed into 10 sequences of 10,000 numbers
and each of these sequences would be tested. Each of the 10,000 number
sequences would then be reduced to 10 sequences of .f000 numbers and each of
these 1000 number sequences would be tested. This continues as smaller and smaller
block lengths are used. The terminating block size used for the results presented here
is 10OO since many of the tests fail the 12 test requirements of n > 1 0E for lesser
values of n. Another point to note is that some pseudorandom number tests are not
valid for certain moduli (i.e. the value of d). Therefore, it is best to use at least two

12
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Flgute 2.2 (b): A visually acceptable pseudorandom sequence.

different moduli, one large and the other small, in order to properly utilise the different
random number tests.

Other powerful random number tests such as lhe spectÊl fêst looveyoul967],
which considers the ioint distribution of consecutive elements in a lull-period pseu-

dorandom sequence by measuring the distance between the most widely separated
set of adjacent parallel hyperplanes in n -space; and the latt¡ce test [Marsaglial972],
which considers the filling of an n -dimensional latt¡ce by finding the most nearly
orthogonal vectors for the lattice structure, the rat¡o of the longest basis vector to the
shortest is used as the measure of acceptability. These tests have been used mainly
with linear congruent¡al generators, since they are amenable to the analysis required
to formulate descr¡bing equations. The analysis of other generators, such as the cellu-
lar automata PRNGs described later in this chapter, by the spectral or lattice tests is

lett as an open problem.

Although the above tests will certainly analyse a sequence to detect deviations
from pseudorandomness it would be preferable to develop a gsneral theoretical basis
which could predict in advance how the sequence produced by a particular class of
generator will-perform on these tests. However, with most of the pseudorandom
sequence generators presented here this theoretical basis is not available. Wolfram

[Wolfram'1985b] suggests a more general cr¡terion for randomness based upon compu-
tational irreducibility, but it appears that further work is required to formalise this latter

13
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approach. His measure of randomness is that generated patterns musl not be recov-
erable by any algorithm which is polynomial in timê, therêby placing lhe computation of
the sequences into the class of NP-complete problems [Garey1979]. Therefore, since
no general mathematical techniques are available for the analysis of some of the fol-
lowing PRNGS one must rely on empirical tesls, such as those given above, to judge
the su¡tability of a particular PRNG.

2,22. Pseudorandom Sequence Testlng

The cr¡ter¡on used here for judging whether or not a pseudorandom number gen-
erator produces pseudorandom sequences will be based on the performance of a
number of d¡fferent generated sequences on tho random number tests described
above. The results will be presented in tabular form. The tests are made on 30 bit
¡nteger sequences consisting of either 1000 or 10000 numbers. Each test is made
using two moduli to exercise some tests which are not val¡d for all values of d. The
results given in the random number test tables were obtained by running 100 different
sequences through the random number tests and then tabulating the percentage of
pass/fail results. lt is expected that different pseudorandom sequences will not pass all
the tests every time since occasionally it ¡s expected that a truly random sequencê will
not pass a given test; i.e. we know that a pseudorandom sequence will occasionally
generate a value of y outside the range d t 2"8 . The percentage of times that a
given test is passed by sequences generated by a certain PRNG determines the
pass/fail result. The percentage required to deslgnate whether a generator passes or
fails a given random number test is not a firm number since we are torming statistics
from statistics. Knuth [Knuth1981] suggests that three soquences from a generator be
tested and if a majority (i.e. at least two out of three) of these sequences pass a given
test then the generator is said to pass that particular test. ln this work we have used
many more sequences per generator to increase our confidence in the randomness of
lhe new gênerators proposed in this chapter. Therefore, ¡f Knuth's two out of three cri-
terion is used, a 66% pass rate would be sutficient for a PRNG to pass a particular
test. To make the pass/fail criterion more r¡gorous, the percentage should be
increased. However, it cannot be made too high since we expect some pseudorandom
sequences to fail some tests. The random number test tables presented in this chapter
consider a PRNG to pass a particular test ¡f it possesses a75To pass rate.

Another metric wh¡ch indicates the quality of randomness in a pseudorandom
sequence is the number of tests failed by a particular sequence. We expect that some
pseudorandom sequences will fail a given test, hencê what is of more importance is

how many tests a particular sequence fails. lf a sequence passes all tests but one
then this sequence must be considered pseudorandom but containing values which fail
a particular test. lf several tests are failed by the same sequenc€ then it is probable
that the sequence ¡s not pseudorandom. Therefore, one should examine the worst
case performance of all the sequences to see ¡f a particular PRNG will produce a
sequence which performs badly on many lests. This is also not the best metric to use
since with pseudorandom sequences it is possible that a particular pseudorandom
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sequence will fail a number of tests. To overcome this problem, a weighted average of
the number of tests failed is proposed using the follow¡ng metric

NT
Ð ÐA¡u¡j
j=1 ¡=1

T
N ÐA¡

T = number of random number tests .

N = number of sequences tested .

Ai = weighting for test i .

(

J 0 if test i passed by sequence j .

cr¡j = h if test i failed by sequence j .

(2.16)

(2.17)

This metric will describe the result of the average performance of sequences produced
by a PRNG on all tests. The weighting allows some tests to have an increased impor-
tance. For example, if it were crucial that a pseudorandom sequence have equidistri-
bution then the weighting for lhe equidistribution test could be made large so that it will
affect the weighted average much more than other tests. Here we do not intend to
apply the sequences to any given algorithm so, we w¡ll consider all A¡ to be equal (i.e.

all tests are evenly weighted).

The different tests are referred to by number and can be referenced against the
key in Table 2.1. lt should be real¡sed that the 100 sequences used for these results
is actually only a small sample of all the possible sequences. This is true for two rea-
sons: firstly, thê computer time to generate just one table of results for a 10000
number sequence takes approximately 40 hours on a SUN3-160; secondly, lhe
number of possible sequences is very large. Here sequences consisting of 30 b¡t
integers wers tested. We know that each start¡ng value in a deterministic sequence will
generate a unique sequence, so we have 230 possible sequences. Therefore, if all 1OO

tested sequences pass most of the random number tests then we can say with 75%
conlidence that less than 10% of the sequences could be nonrandom. A more com-
plete analysis of this confidence using material adapted from lPapoulis1965] is given in
Appendix A.

2.3, CONVENTIONAL TECHNIQUES

The following is a brief description of several techniques of pseudorandom
number generation which have found widespread use in computer generation of pseu-

dorandom sequences.

There are two main categor¡es of pseudorandom sequence generators in general
use: those which employ software algorithms and those which employ hardware
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Test # Test name
'I

2

3

4

t)

7

I
I
10

11

12

13

14

15

16

17
'18

't9

20
21

22
23

Equidistribution
Serial Doubles
Ser¡al Triples
Serial Quads
Gap
Poker, k=3
Poker, k=4
Poker, k=5
Poker, k=6
Poker, k=7
Poker, k=8
Coupon
Permutation, q=2

Permutation, q=3

Permutation, q=4
Permutal¡on, q=5

Permutation, q=6

Run up
Run down
Max of t
Serial correlation
Bit sequence correlation
Visual

24
25

Worst case fail

Evenlv weiohted averaoe

Table 2,1 : Key to the random number test tables. The results lor tests I to 21 are
recorded as the percentage of sequences passing the test. lf a test ¡s in-
vatid for the given noduti sklp is recorded. The value given for test 22 ¡s

the value of the autocoffelation statist¡c CA. ff the cross-correlation
between adjacent bit sequences is < 10% then test 23 records Pass.
Howeve4 if the cross-correlation is > 10% then Fall is recorded. Finally,
tests 24 and 25 g¡ve the largest numbq of tests failed by a sequence
and the we¡ghted average number ol tests failed by all sequences.

techniques. Here we are concerned with high speed generation of pseudorandom

numbers in VLSI, so the latter category is of pr¡mary interest. However, the algorithm
based generalors can be mapped to hardware and analysed using the traditional
hardware measures of area and time as described in the first subsection below. This
allows some techniques from the former category to be compared with the traditional
hardware based generators for use in the fine-grained parallel processing architectures
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under consideration.

Parallel Pseudorandom Number Generation in VLSI

2,3,1. Hardware Converslons of Algorlthmlc Technlques

2.3.1.1. Box-Muller Transformatlon

Many PRNGs operate on real numbers producing a sequence such as in
Eqn. 2. l . An example of such a technique is the Box-Muller transformation [Box19S8]
whìch is sometimes referred to as the polar method. Here one starts with two indepen-
dent random variables u aîd v which are both uniformly distributed on [0,1]. lf the
transformations

x = \t4 log u cos(2rlv)

y =^t:2 log u- sin(2nv)

are employed then x and y are independent pseudorandom numbers normally distri-
buted on [-1 ,+l] [Smith1985]. A real number sequence from zero to one can be
created by placing the absolute values of x and y into a sequence. The next two
sequence values are made by setting U = x and y = v and applying the transforma-
tions given above to get new values for x and y. Note that if {:2 loS t > 1.0 then x
and y may be greater than 1. This can be overcome by repeatedly dividing thê value
ot l:Z togtri by 2 until it is less than l.O. This technique is intended for applications
wh¡ch requ¡re deriving two normally distributed variables from two uniformly diskibuted
variables. lterative application of this lechnique, as described here, will lhen form a
sequence which more closely resembles a normally distr¡buted rather than a uniformly
distributed pseudorandom number sequence. The performance of this generator on
the random number tests is given in lable 2.2. Note that, desp¡te the non-uniform dis-
lribution of the resulting sequences, the equidistribution test ¡s stitl passed. This is

because the acceptancÊ range for reasonable values of V using the d + 2Vã metric
is large enough to pass sequences whose distribution lies between uniform and nor-
mal. The results indicate that, on average, a generated sequence fails only 1.2 tests
w¡th a worst case performance of about 4. This indicates that the generated
sequences would perform vsry satisfactor¡ly as pseudorandom sequences w¡th a cau-
tion on ths un¡form distribution of numbers.

The major problem w¡th this technique is in the computational cost of determining
the square roots, logarithms, sinusoidal functions, and the fix to ensure that x and y
are in the range [-1 ,+1]. Even in a system with floating point hardware the time
expended in general¡ng a pseudorandom sequence can be considerable. lt should be
noted that the computat¡onal complexity of the Box-Muller method is comparable to
other real nur¡ber PRNG techniques. Therefore, for applications in which an abun-
dance of spatially distributed pseudorandom numbers are needed, lhis method is com-
putationally prohibitive. ln the area of interest (parallel hardware pseudorandom
number generation in a fine-grained processor network) this approach to PRNG is

(2.18)

(2.1e)
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dism¡ssed sinc€ it is well known that floating point hardware requ¡res considerable sili.
con area and time compared to the integer methods which follow.

2.3.1.2. Llnear Congruentlal Generator

Another well known technique for generating pseudorandom sequences in
software which is much less computationally demanding employs linear congruential
generators [Knuthl93l]. Here a linear congruential sequence <X¡> is generated using
the transformation

Xn*1 = (aXn + c) mod m, n > 0 (2.20)

where

m = the modulus; m>0.
a = the multiplier; 0<a<m.
c = the increment; 0<c<m.
Xo = the starting value; 0 < Xs < m.

The values selected lot m, a, and c determine the qual¡ty of lhe pseudorandom
numbers genèrated. For implementafion ¡n hardware we require a multiplier and
adder both modulo m. A consideration of the area and time requirements of this gen-
erator is given in the analysis of the multiplicat¡ve congruential pseudorandom number
generalor described below.

2,3,1.3. Mulllpllcatlve Congruenttal Generator

Often the value of c in the linear congruential generator is set to 0 which reduces
Eqn. 2.20 to

Xn+'t = â Xn mod m (2.21)

This is the standard generator available on most computeÍ systems and is called a
multipl¡cative congruential generator. Typical values of a and m arc a = 1664525
and rn = 232 which is convenient for 32 bit CpU systems or a = 3141592653 and
m - 235 lor a 35 bit CPU [Knuth1981]. The cycle length can be increased by using a
larger modulus with the appropriate multiplier. Both the linear congruential and multipli-
cative congruent¡al ggnerators have been extensively studied and analysed
[Knuth1981] for values of a, m, and c, yielding maximat-tength sequences of high
quality pseudorandom numbers [Fishman 1982]. ln Table 2.2 lhe random number tests
as applied to a multiplicative congruential generator implemented as

Xnq = 1664525 X, mod 232 (2.22)

are presented and ind¡cate its high quality.

wh¡le these techniques are certainly an improvement over the Box-Muller method
in terms of computation, the computational expense is still considerable. consider a
generator corresponding lo ãqn.2.22. The equation must be solved for each pseu_
dorandom number. ln the case of parallel architectures one must geneÍate a
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Sequence length = 1,000

Ssquence length -'10,000

lable 2,2| Thrce algor¡thm¡c pseudorandom number generatoß and theh test
results. The modul¡ 10 and 100 were used for the random number tests.
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random
number

(b)

Flgure 2.3 i A hardwarc ¡mplementat¡on of (a) a linear congruential geneator and
(b) a multiplicative congruential generator.

pseudorandom sequence at each separate processor site, both rapidly and econom¡-
cally in terms of area, The required hardware consists of a modulo m multiplier and
some registers, as shown in Fig.2.3, both for the linear congruential generator
(Fig.2.3(a)) and the multiplicative congruential generator (Fig.2.3(b)). The two
methods use very similar hardware since the only difference is the add¡tion of an incre-
ment value in the linear congruential generator. For analysis only the multiplicative
generator will be considered. One would presumably set the value of m equal to the
word size of the processors (we would not expêct the word size of processing ele-
ments ¡n a fine-gra¡ned parallel processing arch¡tecture to be 32 b¡ts) but care must be

(a)

random
number
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taken since the value of m affects the cycle length of the pseudorandom sequence
and the value of the mult¡pler, a. Nevertheless, the PRNG will require at least the area
of an integer multiplier at each processing site. The area used by a hardware I bit
multiplicative congruential generator is 6.0 x 106 p62.

Thê other opt¡on is to use only one PRNG for all the processors. One then
experiences a degraded time performance in the generation of the pseudorandom
numbers, since tor n processors it will require at least n clock cycles to g€nerate a
new pseudorandom number for each processor. This is especially evident in computa-
tions where many pseudorandom numbers are required, such as in Monte Carlo simu-
lations. The area-t¡me, or Af, metric in both cases is the same, but again a more
efficient technique of generating the pseudorandom numbers is desired.

A final technique which may be used, is to generate a large global pseudorandom
number using a single generator and then supply each processor with its own local
pseudorandom number by using selected bits from the global pseudorandom number.
While this method will provide pseudorandom numbers to each processor in one time
step, there are a number of problems associated with this technique. The primary
problem is that each processor requires a pseudorandom number which is not corre-
lated w¡th pseudorandom numbers at other processors. Therefore, the global pseu-
dorandom number must have a word slze equal to the number of processors times the
local word size. This leads to an êxtremely large word size thereby making ils use
prohibitiúe since lhe area and time measures of the multipl¡sr both scale with the
square of the word size. A lesser problem is the routing of the local pseudorandom
numbers to their respective processors which may use considerable addítional area to
that of lhe PRNG.

2.3.1.4. Addltlve Feedback Generators

A considerably more efficient technique, in terms of the s¡licon area requirements,
is based on an addit¡ve feedback PRNG [Tausworthel965], [Golombl 982]. A generat
pseudorandom sequence generator combines past numbers in the sequence to pro-
ducê a new number. Consider the sequence

X, = (alXr_1 i ã2Xn_2+ ... + apXn_p\ mod m (2.23)

where each X¡ is an ordered element of the sequence, ai is a multiplier for past ele-
ments of the sequence, and rn is the modulus of the sequence (usually the word size
ot the computer). The value of k determines how many past sequence values must be
stored, lf ¡7? is prime and

yR - aùR-1 ax-tf - âx (2.24)

is an irreducible polynomial over GF(m) then the sequence defined by Eqn.2.23 pro.
duces a sequence of length mk - 1.

Consider a binary sequence given by

(2.25)
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where x¡ is the i 'th bit in the sequence. The result¡ng binary sequence is pseudoran-

dom with a maximum cycle length oÍ 2p - 1 if, and only if, the polynomial

yP + atyp-1 + a¿rP-z + .' ' + ap<f + âp (2.26)

is pr¡mitive over GF(2) [Golomb1982]. We can form m bit pseudorandom words <X¡>
by combin¡ng m such binary sequences in parallel provided there ¡s no correlation
between binary sequencês x¡ and xl. Therefore, a sequence of rn bit words defined
as

X¡ = alXr-1 -t â2X¡-2 + "' + apXn-p (2.27)

where each addition corresponds to adding bit streams w¡thout carry, w¡ll generate
sequences of cycle length 2P - 1. Further compulational advantages can be realised
by using primit¡ve polynomials which contain only two or three terms. Primitive polyno-
mials of the form 1+ aQ + ap, p > q have been tabulated up to a large order
lzierler1969]. Also, bitw¡se addition without cany is equivalent to the exclusive-or
operation, denoted as @. Therefore, us¡ng a primitive trinomial and lhe exclusive -or
operation, Eqn. 2.27 reduces to

Xn=Xn-.qsr^Xn-p (2.28)

This requires only one m bit parallel exclus¡ve -or operation for each new pseu-

dorandom number. lt has been shown that small values o1 q ot q near $ snoutA

not bê used due to bad run properties F-ootilll97ll. However, if p and q are carefully
chosen then good pseudorandom number properties will result [Whittlesey l 96S]. A
popular pseudorandom sequence generator of this type is the so called R250 pseu-
dorandom sequence generator where the values of p = 250 and g = 103 are used
yielding a sequence of length 2250 - 1 [Kirkpatrick1981]. Therefore, a pseudorandom
number generator based on these principles will usually be much faster than multipli-
cative congruential generators and will still deliver similar performance on the random
number tests, as shown in Table 2.2. However, unlike the multiplicat¡ve congruential
generator where proper selection of the multiplier, a, and modulus, m, guarantees a
good pseudorandom sequence with little consideration for the starting value Xs
(except of course for Xo = 0), the additive feedback generator must be carefully initial-
ised. lf the i 'th and i 'th bits are the same in each of the first p numbers of the
sequence (i.e. the seed values) then they will remain the same over the entire
sequence. Also, if the i 'th and l'th bits only differ slightly then it will require many
iterations before bits I and i become independent. This problem is the subject of
several papers and some techniques to produce good seed values have been
described IKirkpatrickl9Sl], ILewis1973].

For the parallel processing applications under consideration here, the implemen-
tation of this generator in hardware must again be considered since the time spent
computing the pseudorandom numbers at each processor may dominate the computa-
tion and memory requirements of each processor. A possible conf¡guration is given in
Fig.2.4. Thìs generator will use considerably less circuitry than the multiplicative
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Flgure 2.4 i A hardware implementation of an add¡tive feedback generator.

congruential generator at each processing site since all that ¡s required is a memory of
p numbers and a word wide exclusive-or. Note that the memory actually consists of
m p -bil shift registers since only the p most recent numbers ¡n the sequence are
retained and the position of past numbers in the memory increases by one for each
new pseudorandom number. The alternat¡ve is to use a general purpose memory with
addressing circuitry which w¡ll determine the actual location of the numbers
conesponding to Xn_q and Xn_o and the next available location in the memory for the
new Xn. However, this will complicate the control unnecessarily since the shift register
¡mplementation will automatically place the memory contents in the correct location.
This collection of shift registers w¡ll use the overwhelm¡ng maiority of the area of th¡s
implementation. For example, if the R250 generator is implemented, we require m 250
bit shift registers at each processing site solely for the purpose of generating the pseu-
dorandom sequence. This area can be substantial when compared to the area
required by the actual computalion which occurs at the processing site. One way to
reduce th¡s area is to use a smaller value for p. However, the value of p affects
several aspects of the generator such as the cycle length, 2p - 1, and the correlation
of different bit streams so the value of p should be changed with care. Even if the
value of p can be reduced to a much smaller value such as 30 (cycle length of
2so - 1) then m 30 b¡t shift reg¡sters are required which remains a very large area
when compared to some of the techniques for pseudorandom number generatÌon

shift 1
register 

I

memory I
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which follow. The area used by an I bit addilive feedback generator when p = 30 is
3.5 x 106 pm2. Another point to note is a communication problem since we must feed
the p'th and q'th numbers ¡n the shift register mêmory back to lhe exclusive-or
gates at the beg¡nning of the shift registers. This leads to the conclusion that, in gen-
eral, additive feedback PRNGs are not satisfactory for f¡ne-grained parallel processing
requiring pseudorandom numbers.

A modification to the add¡tive feedback generator is developed in [Pearson19B3b].
Here a generator based on shift register sequences is proposed. lt has the desirable
properties of high speed and small area ¡n that a pseudorandom number can be pro-
duced every clock cycle and no large data memory is required. This PRNG is targeted
towards implementation using VLSI technology but to the author's knowledge no such
implementation has been reported. ln comparing this scheme to other PRNGS we see
while there is no data memory required it ulilises a general feedback shift register
structure and so requires several shift registers per bit of random number. ln addition,
many exclusive-or gates are required. Therefore, lhis particular PRNG was not more
fully investigated since the area used is still larger than that for some of the pseu-
dorandom number generation techniques which follow.

2.3,2. Hardware Technlques

2.3.2,1. True Random Number Generators

ln hardware some truly random sequence generators can be built. For example, if
we counl lho number of particles emilted from various radioactiv€ sources over a short
period of time, a sequence of truly random numbers is produced. Anolh€r similar
lechnique ¡s to observe thermal no[se from a device such as a resistor. ln fact, obser-
vation of any source of white noise will lead to a truly random sequence. The
hardware required to observe, and thereby determine the actual random number
sequence, exists but it certainly would not, in the present context, provide an efficient
technique for generating random numbers. We seek to generate many random
numbers in parallel, so the conventional noise-based methods, while certainly giving
truly random sequences, cannot be considered appropriate.

2.3.2.2. A Shlft Reglster Based RNc

A technique to generate random numbers using nondeterministic methods but
wh¡ch can be implemented in a VLSI circuit w¡thout requiring an unreasonably large
area is given in lletham 1 986]. Here a shift register is used in conjunction with three
free-running r¡ng oscillators as in Fig.2.5. As the temperature of the integrated circuit
varios, the operating frequency of the three ring oscillators changes. A local sílbon
heatet is placed around one of the fast ring oscillators to vary the d¡fference in speed
of the two fast r¡ng oscillators. The outputs from tho two last ring oscillators are
exclus¡ve-oted and then sampled by the slow ring oscillator. The clock of the shift
register will be asynchronous to the speed of the ring oscillators, so the bit stream
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Random
Number

Flgure 2.5 | Sh¡ft register based random number generator.

being clocked into the shift register will be random. ln addition, the shift register is
completely shifted a random number of times based on the value of several bit posi-
t¡ons ¡n the shift register. This process causes the contents of the shift register to be
completely unpredictable. The time in clock cycles required to generate a random
number is at least the length of the shift reg¡ster since for êach new random number
new values must be clocked into each locat¡on of the reg¡ster. Therefore, for an /.n bit
number a multiple of /'n t¡me steps will occur before a new random number is avail-
able. The process of generating these numbers is not determ¡nistic since nondeter-
min¡stic factors are contributing to the numbers that are being produced. However,
observation has shown lhat while the sequence ¡s completely unpredictable, it tends to
produce a few values much more often than would be expected of a random sequence

[Letham1986]. This makes this type of PRNG diff icult to use in algor¡thms where the
distr¡bution of random numbers is assumed to be uniform or white. Favourite numbers
can cause systematic weaknesses in nondeterministic algorithms. Testing by standard
random numbers tests, other than simple correlation tests, has not been performed on
the generated sequences, so it is possiblê that higher correlation and run tesls may
show problems w¡th these sequences. This makes this PRNG unsuitable for our pur-
poses since it may bs suffering from Knuth's observat¡on that random numbers should
not be generated w¡th a method chosên at random [KnuthlgBl].24

Slow
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Flgurê 2,6 : Transfer funct¡on of Eqn. 2.29. Herc l, = 0.5.

The estimated area of this approach is 0.44 x 106 p,m2 for an I bit RNG. The
circuitry used, while smaller than that required to implement any of the other true
RNGs, uses more area than the techniques which follow. lt may cause further
difiiculties in implementation if several of these RNGs were used in parallel on the
same ch¡p, because of the required local heating of the silicon surrounding the ring
oscillators.

2.3.2,3. Uslng Chaos as a RNG

Somê simple determ¡nistic systems can êxhibit a property wh¡ch has become
known as chaos lMayl976]. One of lhe fundamental properties of lhis phenomenon is

unpredictability of the output from a chaotic circuit. Several nonlinear circuits which
have been observed to display chaotic behaviour have been recently reported [Rodri-
gues1986l. lt has also been recently proposed to use these circuits as noise genera-
tors [McGonigal1987]. The description given in this section is not intended to describe
in detail how chaos is created in a simple nonlinear circu¡t. Rather, its purpose is to
show lhe feasibility of such circu¡ts as PRNGs for parallel computing.

One of the most common ways of creat¡ng chaos is to use the logistic map

IMay1976]

x¡t-4ì,x¡(1 -x); Ì =0,1,2, "' ; 0<xo< 1 (2.29)

lf we plot the_ ouþut versus the input (i.e. xl+1 versus x;) as in Fig.2.6, we get a
z'Z lf further investioat¡on of this aoÞroach indicates that it oasses standard

random number tests-and the distr¡biütion oroblems are solveb this technioue
may prove to be satisfactory for single number at a time applications.
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Chapter 2 Parallel Pseudorandom Number Generation in VLSI

Flgwe 2.7 t Output of Eqn. 2.29 versus ]v for 0.50 < À < 1.0. Fot each value of )y

100 output values are plotted.

parabolic transfer function of height À. lt is known that for À between 0.50 and 0.89
ths value of x; oscillates periodically between 2n states, wherê n = 1,2,3, . . .

(depending on the value of i,). For 0.89 < ¡, < 1.0 the oscillation has no detectable
period and is considered to be chaotic. ln Fig.2.7 a plot of the output versus I is

shown for 0.75 < ¡, < 1.0. Note that we observe the well known period-doubling route
to chaos [May1976]. lt is known that the power density spectrum of the output is white

lcrossmann l9TT] and so, ths output values must be equidiskibuted. ln [McGoni-
gal1984 the circuit of Fig.2.8 is proposed which iterates the logistic map and so could
be used as a RNG. This circuit requires several analogue components including
differential amplifiers, gain amplif¡ers, and switching capacitors.

Whilê ¡t is possible to ¡mplement such circuits using an MOS process, it ¡s obv¡-
ous lhat requiring analogue components places some restrictions on the feasibility of

combining dig¡tal computing hardware with chaotic circu¡ts in a VLSI environment.
Also, as with the previous RNG, while the output of a chaotic circuit is certainly
unpredictable, further tests are required to ver¡fy its suitabil¡ty as a PRNG. Finally, such
a circuit ls not-small and to get large word sizes will require either an analogue to digi-
tal converler (ADC) with resolution equal to the required word size, or else a unique
chaotic circuit corresponding to each bit posit¡on in the random word. Therefore, lhe
area will be quite large if the random word is to appear ¡n parallel. lf a serial
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Flgure 2.8 : A MOS realisable circuit

[McGon¡9a|1987].

implementing the logistic map. Taken ftom

Flgure 2.9 t An I bit l¡neil feedback sh¡ft rcg¡stq implementing lhe polynom¡al
x8+x5+x3+x2+1.

accumulation scheme where ths output from one chaot¡c circuit is sampled and accu-
mulated is used thên the time to acquire a new random number could be excessive.
Thus, for the purposes of this work we will ignore chaotic circu¡ts but it is possible that
some chaotic circuits may be suitable RNGs for some applications.

2.3.2.4. Llneñ Féedback Shlft Reglster

The most popular hardware pseudorandom sequence generator is the linear
feedback shift reg¡ster (LFSR). Figure 2.9 shows a circuit diagram for an I bit LFSR.
The binary sequence at bit i is generally considered to display attributes of a
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Flgufe 2.10 i Form¡ng rcndom words lrom a single b¡t in the LFSR us¡ng a set¡at.
ín/p arul Ie I -o ut shilt rcg ¡ste r.

pseudorandom binary sequence with cycle length 2n - 1 for an n bit shift register,
provided the polynomiat dêscrib¡ng the register is primit¡ve over GF(2) [GolombigB2].
Note the similar¡ty between the additive feedback generator and the LFSR. ln fact, the
additive feedback generator ¡s a result ol research done on the LFSR. An m bit pseu-
dorandom number or word can be generated by collecting rn bits in sequence from bit
I using a serial-in/parallel-out register as in Fig.2.10. This means that we take rn
clock shifts or clock cycles to torm the ps€udorandom word. Note that succêeding
words cannot be formed on each clock cycle by shifting out the oldest bit from time
f - /'n and shifting ln thê new bit from time f bêcause the succeeding numbers would
be strongly correlated. To overcomo this time delay in producing new pseudorandom
words the b¡ts of lhe LFSR are sometimes used in parallel so that a new pseudoran-
dom word is formed on each clock cycle. A variation on this parallel technique is to
wait n clock cycles b€tween numbers from the PRNG. This PRNG will be referred to
as the parâllel LFSR with P = n method. Table 2.3 compares the results of the ran-
dom number tests on these three methods of pseudorandom sequence generation.

The test results for the ser¡al-in/parallel-out method of Fig. 2.10 and the parallel
LFSR with F = n yield similar results and can be classified as pseudorandom
sequences based-on these results. However, the parallel LFSR method does not com-
pare favourabiy with the above generators since it consistently fails almost all of the
random number tests. The only test on which the parallêl LFSR generator performs
well is the equ¡distribution test. This should not be surprising sincê the initial value in
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Sequence l€nglh . 1,000

Sequence lêngth = 10,000

Table 2.3: Random numbü test rcsults fot the ser¡at-¡n/parailet-out LFSR (Sin pout
LFSR), paâilel LFSR wait¡ng n clocks (P LFSRþ= n), ana the parailel
LFSR with no wa¡t cycles(P LFSR).
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Flgure 2.11 : The cross-coffelat¡on ol bit sequences in (top) the serial-in/parattet-out
method and (bottom) the parallel LFSR method.
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the LFSR is cont¡nually divided by 2 and added to some value (either zero or 2n-1 ,

n = the length of the LFSR). Thereby causing the sequence of numbers to be well dis-
tributed but very pred¡ctable. This is reflected in the failure of the parallel LFSR
method to pass the other tests.

Perhaps the most evident failure of the parallel LFSR is in the bit sequence corre-
lation test. ln this work correlation figures are used to show both the auto and cross-
correlation of binary sequences made from 30 bit word size pseudorandom
sêquences. The vertical axis is the magnitude of the correlation while the x and y
axes give the time displacement and sequênce displacement from the reference time
and sequence, respectively. To determine the autocorrelation read the values that run
parallel to the lime ax¡s. For cross-correlation, read values parallel to the sequence
axis t¡ll the desired sequence displacement ¡s reached, then move parallel to the time
axis to find the desired time displacement. F¡gure 2.1 1(top) shows the auto and
cross-correlation of a pseudorandom sequence produced by the serial-¡n/parallel-out
method of Fig.2.10 and Fig.2.11(bottom) shows the auto and cross-correlation lor a
sequence produced by the parallel LFSR method. Notice that the serial-in/parallel-out
method yields the expected result from a pseudorandom sequence (i.e. all correlations
well under 10%) while the parallel LFSR method displays a severe correlation prob-
lem. ln fact, the bits in the b¡t streams are perfectly correlated in that the value at bit I
will appear at bit i > i at time f + (i - i). Therefore, while the values generated by
consider¡ng each of the individual b¡ts or sites in the LFSR appear to be pseudoran-
dom, ws cannot consider lhe register word sequences to be pseudorandom since the
bits from separate LFSR s¡tes are fully correlated. ln Fig. 2,11(bottom) also notice that
even away from the cross-correlation ridge, the correlation is very regular in a wavelike
pattern.

To generate pseudorandom numbers in parallel, both the LFSR and the associ-
ated register from Fig. 2.10 should be placed at each process¡ng site. lf we form the
pseudorandom numbers using lhe scheme of Fig.2.10 good pseudorandom numbers
are formed every m clock cycles. The area for an 8 b¡t LFSR PRNG as in Fig. 2.10 is
0.26 x 106 ¡tmz. ln general, more than 25 - 1 pseudorandom numbers will be
needed (note that each I b¡t number requires 23 new bits from the LFSR) so, a more
realistic PRNG using LFSRS to consider is a 32 bit LFSR with one output feeding an I
bit serial-in/parallel-out register. This produces 229 - 1 pseudorandom numbers and
uses 0.65 x 106 pm2. Alternatively, we could use the parallel LFSR with P = n and
wait n clock cycles between numbers to completely shitt the old number out of the
LFSR. When used w¡th processors which require more than n clock cycles between
pseudorandom numbers, the problem of waiting n clock cycles for a pseudorandom
number is unimportant since it will not affect processor throughput. However, this will
not generally be the Öase in fine.grained processor arrays. ln both cases the processor
will be forced_ to wait a f ixed number of clock cycles before lhe new pseudorandom
number is generated. Comparing the Af metrics for both methods generating I bit
pseudorandom numbers it can be seen from Fi1.2.12 that the parallel LFSR approach
loses ¡ts advantages alter the length of the LFSR becomes > 8. This is because the

32



Chapter 2

144

129

't 't5

Parallel Pseudorandom Number Generation in VLSI

86

72

t-
<57

43

o 2 4 6 S 10 12 14 .t6 18 20

LFSR lenglh

Flgure 2,12 t AT metric for pseudonndom number generators of F¡gs. 2.9 and 2.10;
parallel LFSR (empty squares); setial-¡n/parallel-out nethod (fiiled
squarcs).

area of the two techniques scales w¡th n at the same rate (i.e. relative sizes remain
the same) but the serial-in/paral¡el-out method uses constant time (e.g. I time steps for
I bit numbers) while the time delay for the parallel LFSR method scales w¡th n. The
crossover value scales with the required word size of the PRNG. ln the following dis-
cussions the ser¡al-in/parallel-out method will be used because it has a better A i.
measure for large word sizes. However, if an application uses a sufficien y small
LFSR and the processor can wait n cycles between pseudorandom numbers then the
parallel LFSR with B = n could be used.

2,4, TECHNIOUES BASED UPON CELLULAR AUÍOMATA

As shown above, there are many ways of generating good pseudorandom
sequences. However, when we consider fine-grained parallel processing it is not con-
venient to employ.many of the conventional techniques because of excessive area and
computation time requirements. ln tact, some techniques such as the Box-Muller,
linear congruential generators, and addit¡ve feedback generators require so much area
at each processor site (assuming we want independent PRNGS) that it would be
difficult to maintain a fine-grained approach. On the other hand, if the processors
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(a)

(b)

(c)

Flgure 2,13 : (a) A s¡mple N -b¡t one4¡mens¡onal cellular automaton. (b) Null boun-
dary conditions. (c) Cyclic boundary conditions.

111 110 101 100 011 010 o_ql_ 000

01011010

Flgure 2.14 z A rule 90 cellular automaton
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FlEure 2,15 | 40 t¡me steps ¡n the state - t¡me diagram fot an lg s¡te rute g0 cellulat
automaton. Cyclic boundary conditions; in¡tialised with a singte
nonzero site.

cooperate in the production of the pseudorandom numbers by using a distributed
PRNG then the communication overhead could dominate the computation by the pro-
cessors. This leaves lhe LFSR as the only candidate among the convent¡onal genera-
tors with feasible resource (area, time) requirements. However, despite the fact that
the s¡ze of the LFSR lends itself to use in a fine-grained parallel process¡ng environ-
ment, either the poor quality of the pseudorandom numbers produced or the need to
wait a fixed number of clock cycles between numbers is a serious limitation. One
would prefer to have new pseudorandom numbers available on each clock cycle as in
an add¡live feedback generator, while retaining the size advantages of the LFSR. The
solution proposed ¡n this thesis is to use elementary one-dimensional cellular automata
as parallel pseudorandom sequence generators for fine-grained processor arrays.

2.4.1. lntroductlon to Cellular Automata

The concept of cellular automata was first proposed by von Neumann [vonNeu-
mann1963l. More recently Wotfram lwotframlgeg], lwolfram 1994b] has done much to
cause a resurgence of ¡nterest in cellular automata. Most of th¡s renewed interest in
cellular automata has been kindled by the d¡scovery that many physical problems can
be mapped to these devices [Vichniacl984], lsalem1986], [KinzeljgSS]. A celtutar

35



Chapter 2 Parallel Pseudorandom Number Generation in VLSI

Flgure 2.16 i The rcstq scan output of a single site ¡n a 92 site rule gO cellular auto-
maton.

automaton evolves in discrete steps with the next value of one s¡te determined by its
previous value and that of a sêt of sites called the neighbour s¡tes. The extent of the
neighbourhood can vary depending, among other factors, upon the d¡m€nsionality of
the cellular automata under consideration. Figure 2.i3 illusfates a s¡mple one-
dimensional cellular automaton, where the next value at a site depends only on its
present value and the values of ths left and r¡ght neighbours. A cellular automaton
may possess null boundary conditions, as in Fig. 2.19(b) (i.e. the first and last sites
consider their missing neighbour site to always have a zero value), or may be cycli-
cally connected as ¡n Fig.2.13(c), (i.e. one assumes the cellular automaton to form a
ring thereby making the first and last sites neighbours). Here only binary one-
dimensional cellular automata w¡th two neighbour sites (left and right) w¡ll be con-
sidered, but it is possible to use any desired modulus, dimension, or neighbour set.
For a binary cellular automaton of this type each site must determine its next value on
the basis of the eight possible present values of itself, and the left and right neigh-
bours (i.e. 000, 00f, 010, etc...). The next state values corresponding to each possible
input form a number which is referred to as the rule number under the classificat¡on
scheme of Wolfram lwolframl983]. For exampte, Fig.2.14 illustrates CA rule gO ¡n
which the next value of a site is the sum modulo 2 of its neighbouring sites. often the
evolution of a cellular automaton is shown us¡ng a state - time diagram as in Fig.2.15
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Flgure 2.17 : 420 time steps in the state - t¡me d¡agrcm of a 500 site rule 30 cellular
automaton. Cyclic boundary cond¡tions; tn¡tial¡sed w¡th a single
nonzero site.

where 40 t¡me steps from the evolution of an 18 site rule 90 cellular automaton, is
shown. There are, in general, two distinct methods of initialising a cellular automaton.
One method is to begin with a simple state such as a nonzero value at a single central
site; the other method is to begin with each site randomly initialised to 0 or 1 w¡th
p(0) = p (1) = 0.5. Figure 2.f 5 was in¡tialised with a single nonzero site.

While the general description of one-dimensional cellular automata is very simple,
d¡fferent CA rules are capable of very wide ranging global behaviour. Wolfram has for-
mulated four basic classes of behaviour in one-dimensional cellular automala

[W0lfram l984c]. Class 1 automata evolve to homogeneous final global states, class 2
to periodic structures, class 3 exhibit chaotic behaviour, and class 4 y¡eld compl¡cated
localised and propagating struclures. The firsl two class¡fications are readily predict-
able and show little or no propert¡es of interest for pseudorandom number generation.
The th¡rd class yields much more complex behaviour in that the detailed patterns can
no longer be predicted (it may still be possible to make statements about global

behaviour) and often seem random in nature. Wolfram considers class 3 CA rules to
be an abstract model of randomness in nature and thus very suitable for pseudoran-

dom number generation [Wolfram1985b]. This is because the cumulative effect of
many iterations in a number of class 3 CA rules is equivalent to performing very
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Flgure 2.18 t 420 time steps ¡n the state - time diagram oÍ a 500 site rule 30 cellular
automaton. Cyclic boundary conditions; random ¡n¡tial state.

complicated transformations on the initial starting value. To follow the evolution of a
part¡cular cellular automaton one must use computations which are much mote compl¡-
cated than the rule of operation unless one is aware of lhe particular CA rule be¡ng
used. Therefore, to predict the next state of the cellular automaton often takes more
t¡me than the cellular automaton required to evolve to ¡t. ln fact, Wolfram suspects that
the evolulion of many class 3 cellular automata are as computationally sophisticated
as any (physically realisable) system and so, are computationally irreducible

[Wolfram1985a], [Wolfram1984d]. Therefore, its outcome can be found only by obser-
vation or simulation. lt is possible with some class 3 CA rules to use special features
inherent to the rule to make analysis, and therefore predict¡ons, possible. An example
of such a CA rule is rule 60 which is a linear rule and so, can be described algebrai-
cally [Mart¡n1984]. However, most class 3 CA rules are nonlinear and require algo-
r¡thms much more complicated than their own rules of operat¡on in order to be
described.

A distinction,can be drawn between homoplectic behaviour, in which pseudoran-
dom sequences of states are produced when pseudorandom input or initial slates are
used, and autoplect¡c behaviour, in which pseudorandom behaviour arises even from
simple initial conditions. lt is the autoplectic CA rules which are the most intertesting
since they provide an Independence of starting state. The novel approach taken in this
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32.oo

Flgure 2.19 (a):Cross-correlation of site values in a 30 s¡te rule 30 cellular automaton.

work towards parallel hardware pseudorandom number generation takes advantage of
some of theso recent discoveries by WolfÍam. As before, for any of the following CA-
based pseudorandom number generators to be considered pseudorandom we will
require lhat the sequence of numbers generated pass the standard stat¡st¡cal random
number tests given in Section 2.2.1.

2.4.2. CA rule 30

Consider a simple one-dimensional cellular automaton using rule 30; i.e.

a¡(f+1 )= a¡-1(f) @ (a¡(r) u a¡*r(l)) . (2.30)

This particular CA rule has been investigated and is an example of a CA rule giving
autoplectic behaviour in the sequence of site values, a¡(f ) [Wolframl986a]. Therefore,
each cell output can be considered as a pseudorandom bit sequence as may be
observed in Fig. 2.16 where the output of a single cellular automaton site ¡s given
using the previously descr¡bed raster scan technique. Figure 2.17 shows 420 time
steps in the state - t¡me d¡agram of a 500 site rule 30 cellular automaton with cyclic
boundary conditions. Notice the tr¡angular shapes which are randomly scattered
throughout the state - time diagram. These triangular shapes are characteristic of
many one-dimensional cellular automata. Also, it can be seen that the left edge of the
cellular automaton exhibits a regular pattern which evenlually dies out. This is an
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Flgure 2.19 (b)tCross-coffelation of b¡t strcams using a nultiplicative congruent¡al gen-

erutoL

example of the autoplectic behaviour of CA rule 30 (i.e. g¡ven a regular starting value
as in Fig. 2.17 it eventually develops pseudorandom behaviour at each site). The right
hand side oÍ Fil.2.17 evolves to randomness much faster than the left because of the
asymmetry of this rule. ln Fig.2.18 the state - time diagram for CA rule 30 with a ran-
dom initial state is shown. Notice that herê the pseudorandom behaviour is retained
over the ent¡re cellular automaton show¡ng an example of homoplectic behaviour.

The area used by a 30 bit rule 30 cellular automaton is 1 .1 x 1 06 pm2 com-
pared to 0.46 x 106 pm2 lot a 30 bit LFSR. Therefore, a rule 30 cellular automalon
yields an implementation which uses only 2.5 t¡mes the area of the parallel LFSR
method (presently considered the most area etlicient method but having unsatisfactory
randomness). Additional advantages arise from the nearest neighbour communication
properties of cellular automata. This avoids the global w¡ring of the LFSR (i.e. cellular
automata can operate at higher speeds). Also, in the LFSR exclusi ye -or gates are

used as adders in the feedback path in pos¡tions, or taps, thât change as the LFSR
length is modified. This leads to irregular circuit implementations, which do not occur in

cellular automata since all sites are the same (i.e. if the size changes then s¡tes can
be added or removed with no other design changss).

It is rather obvious that if words are made by consider¡ng all sites, or bits, in
parallel then the words do not constitute a truly pseudorandom sequence due to the
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Flgure 2.20 : Definition of site spacing, here y = 3.

triangular features of Figs.2.17 and 2.18. This is made more apparent by considering
the auto and cross-correlation values for two pseudorandom number sequences of 30
bit words as shown in Fig.2.19. ln Fig.2.19(a) the sequence is generated by CA rule
30 and shows that the conelation of values one site over on the next time step has a
correlation of about 0.50 which implies that words formed from this register by consid-
ering every site in parallel are not independent. However, this correlation dies out and
a bit stream 5 sites to the left or r¡ght is no longer correlated. For comparison the auto
and cross-correlation for a sequence of 30 bit words generated by a multiplicat¡ve
congruential generator is given in Fig.2.19(b). Notics that there is no auto or cross-
correlation between adjacent b¡t streams or lime steps. Rule 30 compares very
favourably with the auto and cross-co¡relation of the parallel LFSR generator shown in
Fig. 2. 1 l(bottom). For the parallel LFSR the correlation does not die out w¡th site
separation as ¡n CA rule 30. This impl¡es that any application in which the outputs of a
LFSR are being used in parallel to produce pseudorandom numbsrs is better served
by CA rule 30. ln fact, this approach will be exploited in the CALBO (Cellular Automa-
ton Logic Block Observer) bu¡lt-in self-test circuit descr¡bed in Chapter 4.

The fact that thê correlation dies out over time with CA rule 30 also impl¡es that if
we use slle spac¡ng belween output sites, as in Fig.2.20, it would be possible to
decorrelate adjacent b¡t streams in the output word. We will define a site spacing
parameter, y, where the value of l will be the number of sites between outputs in the
cellular automaton. For example, in Fig.2.20 we have y = 3. Therefore, as y is
increased we expect lhe cross-correlation between adjacent bit streams in the pseu-
dorandom numbers to be reduced. ln Fig. 2.21 the cross-correlation for various values
of y is shown. Note that lor y> 4 we have reduced the cross-corelation between adja-
cent bit streams to less than 10% (i.e. adjacent bit streams can now bs considered
uncorrelated). However, cross-correlation is not the only test for randomness. ln
Table 2.4 the random number test results for various values of y are given. Notice that
both the evenly weighted average and worst case failurê metrics steadily decrease
until a spacing of 1= 3. At this point the cA rute 30 based PRNG is performing as
well as one of thè standard algo¡,ithmic generators shown in :|ahi¡e 2.2. However, at
y = 3 the bit dequence correlation test ¡s stitl cons¡stenily failed. F¡nally, for y = 4 ,as
see that th¡s test is passed. Therefore, we will state that a value of 1> 4 is required to
produce a good sel of parallel pseudorandom sequences using CA rule gO. However,
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Flgutè 2.21 (a)iàross-correlation between adjacent output b¡t streams in a g0 s¡te rule
30 cellular automaton with site spacing, (top) y = 1; (bottom) y = L
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môal

T=0 T= 1 T=2 r=3 T=4lô lô^ T= 510 loô
T=61ô 10n

1

2
3
4
5
Þ

7
I
9
10
11
12
¡J
14
15
'16

17
18
19
20
21
22
22

'100 100
100 75
75 skip
'100 skip
7A 100
100 100
'100 '100

100 100
100 100
7s 100
100 100
100 skip
'100 100
100 100
skip 100
sk¡p 100
skip 100
skip '100

skip 100
'f 00 75
25 75

0.51
Fail

74 74
100 100
70 skip
'100 skip
100 100
'100 100
100 74
100 100
100 100
77 100
'100 100
79 skip
100 '100

100 100
skip 100
sk¡p 100
skip 44
skip 100
sklp 100
74 79
44 100

0.28
Fâil

70 100'100 83
70 skip
100 skip
'100 100
100 100
100 100
100 100
100 100
70 100
100 100
83 skip
100 100
'100 77
sk¡p 100
skip 100
skip 100
skip 100
sk¡p 70
100 100
53 47

0.25

100 100
'100 100
100 skip
75 skip
76 100
'100 100
'100 100
'100 100
100 100
100 100
100 100
100 skip
100 100
100 78
skip 100
skip 100
skip 100
sklp 100
skip 100
100 100
76 49

0.16

100 100
100 77
100 sk¡p
75 skip
'100 100
'f 00 100
51 't 00
'100 f 00
'100 100
100 100
100 100
100 skip
100 100
'100 100
skip 100
skip 100
skip 100
skip 100
skip 100
100 100
75 74

0.08

100 100
'100 100
78 skip
100 skip
'100 100
100 100
74 76
78 78
78 100
54 100
100 76
100 skip
74 100
'100 100
skip 100
skip 78
skip 100
skip 72
skip 100
100 74
76 52

0.07
Þ^^^

'100 100
100 70
'100 skip
100 skip
100 100
100 100
'100 100
'100 100
'100 100
100 100
100 f00
77 skip
100 100
77 100
sk¡p 100
skip 100
skip n
skip 100
sklp 100
70 70
30 76

0.13

24
.E

54 55 44 33 21ôoo n¿o
4g

1.89 1 q¿
32

t¿6 1ô7
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Sequence lsngth = 1,000

Table 2,4: Random number test results for CA rule 30 with various site spac¡ng
values, y.

Sequence longth = 10,000

Tssl T=0 1= 1 'l=210 100
T=3'10 f 0o

t=4 T=5 T=6

1

2
J
4
5
b
7
I
I
10
11
12

14
15
16
17
18
'19

20
21
22
ae

Þþ bb
660
61 skip
100 skip
100 100
100 100
100 100
73 100
100 100
66 66
'100 80
80 skip
'100 100
100 7s
skip 66
skip 100
skip 100
skip 100
skip 100
80 s3
046

0.50

77 77
'f 00 100
100 skip
100 skip
100 '100

100 100
100 77
100 100
68 100
100 s1
68 68
100 skip
100 100
68 77
skip 83
skip 72
skip 100
skip 100
skip 100
77 100
100 68

0.26
t-it

76 't00
79 100
100 skip
'100 skip
100 100
79 76
100 100
76 100
100 100
'100 100
69 100
100 sk¡p
100 100
100 79
sk¡p 100
skip 76
skip 100
skip 100
skip 79
100 100
100 69

0.25

100 100
100 100
100 skip
100 sk¡p
100 100
100 76
'100 100
100 100
100 73
80 100
'100 100
73 skip
'100 100
100 100
skip 56
sk¡p 100
skip 100
sk¡p 100
skip 73
100 73
80 't 00

0.16 o.07

100 77
49 100
100 skip
100 skip
100 t00
100 100
77 100
100 74
'100 100
100 100
100 100
100 skip
77 100
100 100
skip 100
skip 100
skip 100
skip 77
skip 73
100 77
27 77

'100 100
100 71
100 skip
100 skip
100 77'!00 77
100 100
76 100
7'l 71
100 100
100 100
'100 skip
76 '100

76 '100

skip 'f 00
skip 100
skip 100
skip 71
skip 100
100 100
100 71

0.07

100 100
100 100
100 skip
76 skip

'1 00 72
'100 100
100 76
'100 76
100 100
100 100
100 100
52 skip
100 76
100 72
skip 76
skip 100
skip 100
skìp 100
skip 100
100 100'100 48

0.05

24 67
Sfta F5ô

55
3.42 4.27

4
Qt1

4at 34 24 3
t^i

1
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o

o

o

:

Flgure 2,22 : Delinition of t¡me spac¡ng, here þ = 3.

as we will later see, the performance of CA rule 30 based pRNGs for lesser values of
T is quite good and is suitable in some applications.

Another method of removing the cross-correlat¡on between adjacent cellular auto-
maton sites is to use t¡me spac¡ng. Here the cellular automaton is clocked several
times between each pseudorandom number used, as shown in Fig.2.22. As before,
consider a time spac¡ng parameter, B, where the value of p is the time step spacing
between output numbers. For example, in Fig.2.22 we have Ê = 3. The cross-
correlation for various values of p, as shown in Fig.2.23, indicates that adjacent bit
streams become uncorrelated (i.e. less than 10%) for p > 4. ln Table 2.S the results of
the random number tests for various values of p are given. As in the site spacing case,
the evenly weighted average and worst case failure metrics both stead¡ly decline as p
is increased. We will consider B > 4 to be required for good pseudorandom sequences
since for smaller values of p the bit sequence correlation lest is consisten y failed.
However, as in the site spacing situation, lesser values of B yield CA rule 30 based
PRNGs which still deliver good performance and may be useful for some applications.

To compare the implementations in silicon of the two melhods (site spacing and
time spacing) 

'us¡ng CA rule 30 to generate truly pseudorandom sequences, we w¡ll
again consider the Ar metr¡c. The area required by a rule 30 cellular automaton with
T = 0 ¡s 1 .1 x 106 ¡s,mz. lI we consider the minimum values of y and p required to pro-
duce a satisfactorily pseudorandom sequence (i.e. y = 4 and B = 4) we see that the
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Flgure 2.23 (c):Cross-corretat¡on between adjacent output b¡t streams in a 30 site rule
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Sequencs l€nglh = 1,000
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Sequ€nca length = 10,000

Table 2.5: Fandom number test results fot CA rule 30 w¡th var¡ous time spacing
values, þ.

TEst
-^¡

B=o g= B=2 9=3 0=4 0 =510 100
Þ=610 100

1

2

4
Ã

6
7

I
10
11
12
IJ
14
15
16
17
18
't9
20
21
22

'100 100
100 85
s1 skip
100 skip
85 100
'100 100
100 100
100 100
100 100
85 'f 00
100 100
100 sk¡p
'f 00 100
100 100
skip 100
skip 100
skip '100

skip 100
skip 100
100 85
19 81

0.52

100 '100

87 100
'100 skip
78 skip
'100 100
100 100
78 100
'100 64
100 100
100 100
78 100
100 skip
100 100
87 100
skip 71
skip 100
skip 100
sk¡p 71
skip 71
100 100
78 13

o.24

100 61
100 100
100 skip
100 skip
100 100
100 100
'100 100
76 100
100 100
'100 100
'100 100
'100 skip't00 100
'100 100
skip 100
skip '100

skìp 76
skip 100
skip 100
100 37
ô'l 100

0.2s

100 100
74 100
100 skip
100 skip
100 74
100 100
'100 100
100 '100

100 100
100 100
'100 100
100 skip
100 100
100 100
sk¡p 100
skip 50
skip 100
skip 66
skip 100
'100 100
40 74

0.15

100 83
100 100
100 skip
100 skip
100 100
83 83't00 56't00 100
100 100
100 100
48 '100
'100 skÌp
100 100
100 38
skip 79
skip 100
sk¡p 100
skip 100
skip 100
100 100
100 52

0.f1

100 100
69 100
100 skip
83 skip

'f 00 100
69 100
'100 100
100 100
100 100
'100 t00
100 100
69 skip
69 100
100 100
skip 69
sk¡p 100
skip 100
skip 83
skip 100
100 100
67 50

0.13

84 100
100 65
100 skip
79. skip
72 65
100 100
100 100
100 100
'100 100
100 100
100 100
100 skip
100 '100

100 6s
skip 100
skip 65
skip 100
skip 79
skip 65
37 t00
44 28

0.07

24 54 ÞÞ 34 34
1 qA 91Â

2S
0.69 2.09

42
1 .74 0.99 ,|84 268

Test p=
iô =1 þ=2 Þ=3 Þ=4 F=5

1
Þ=6

1

2
3
4
5
6
7
o

I
10
1t
12
13
14
15
'16

17
18
19
20
21
22
a.t

7s 75
750
55 sk¡p
100 skip
100 100
100 100
100 100
70 100
'100 100
7s 75
100 78
78 skip
'100 100
'100 70
skìp 75
skip 100
skip 100
skip 100
skip 100
78 48
053

0.51

100 70
100 100
76 skip
100 skip
54 100
100 100
100 '100

100 100
100 100
'100 100
100 100
100 skip
100 100
70 100
skip 76
skip 100
skip 100
skip 100
sklp 100
100 100
24 44

o.24
tâ¡l

100 79
100 79
100 skip
100 skip
100 100
'100 100
100 100
70 100
100 100
'100 100
100 100
100 skip
100 100
7S 't 00
skip '100

skip 100
skip 78
skip 100
skip 70
100 79'100 70

0.25
t-it

'100 100
100 7s
100 skip
100 skip
100 100
100 100
100 100
100 100
100 100
78 100
'100 74
'100 skip
100 70
100 100
skip 78
skip 100
skip 100
skip '100

skip 100
78 100
100 70

0.16

67 67
100 77
100 skip
77 skip
100 100
100 56
100 100
100 100
100 100
80 100
100 100
'100 skip
100 '100

100 'r 00
skip 100
skip '100

skip 67
skip 100
skip '100

67 100
100 100

o.o7

8l 100
81 100
8l skip
53 skip
100 100
100 100
72 100
'100 8f
100 100
100 100
72 100
100 skip
100 100
100 100
skip 100
skìp 71
skip 72
skìp 81
skìp 100
100 100
72 76

0.08

'100 100
80 100
100 sk¡p
100 skip
70 100
100 70
100 100
74 100
100 100
100 100
100 100
100 skìp
80 100
100 100
skip 100
skip 100
skip 100
skip 100
skip 100
80 100
56 44

0.07

24 67
LOL q2^

4
e7a

4
e 1ll

35
tE a^a 1M 23ô

22
1ôq í33

42
1 88 I lq
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RNG 1 RNG2 RNG3 o o o RNGn

cA_9

ø^2

cA1

Flgwe 2.24 (a)|A parallel pseudorandom sequence generator using m rute S0 celtutar
automata with null boundary cond¡tions.

two values are the same. Thôrefore, the use of site spacing to produce a good pseu-
dorandom sequence will require 5 times more area than that with time spacing, or
5.6 x 106 pmz. However, t¡me spacing will increase the time to generate a pseu-
dorandom number by the same factor. ln fine-grained parallel processing networks
the choice of time spacing versus site spacing is applicat¡on dependent, and w¡ll
depend on the relative sizes of the other comput¡ng hardware at each processor. For
example, if each processor employs very simple logic, the size of the PRNG may be
the dominant consideration. On the other hand, if the processors contain more compli-
cated circuitry than lhe pseudorandom generator, an approach based on site spacing
may be more suitable. The s¡te spacing generator may also be preferred even w¡th
simple processor sites, as lhese processors generally can make use of a new pseu-
dorandom number on each clock cycle. More complicated processors usually require
several clock cycles to process each new pseudorandom number, in which case the
extra time required for the time spacing generator would provide no penalty. ln the
remaining discussions, only the site spacing method will be further considered. The
time spaced approach may be subst¡tuted provided the appropriate adjustments are
made.

We proceed to overcome the cross-correlation problems in CA rule 30 by using
site spacing. The site spacing can automatically be obtained in the paraltel processor

RNG n
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Flgurc 2'24 (b)tA parailel pseudorandom sequence generatu usíng m rule s0 cellular
automata with cyclic boundary condit¡ons.

architeclures ol Fig.2.24. Here we consider each m bit pseudorandom word at pro-
cessor i to consist of bits aio(f), ai1(t), ... , af-1(t), where the a/ are not taken
from adjacent sites. At the end of the cellular automaton at level k we have a cho¡ce
of cyclic or null boundary conditions, or better still, we may allow the end of cellular
automaton k to join the beginning site ot cellular automaton k + 1. The establishment
of null boundary conditions, as in Fig. 2.24(a), prcvents gtobal wir¡ng but from
Table 2.6 we see that cyclic boundary condit¡ons prov¡de much longer cycle lengths for
the same size register. ln fact, when null boundary conditions are used, the cycle
lengths are very short. However, the use of paths to the cycles can provide a
sufficiently long sequence of pseudorandom numbers to make null boundary condi-
tions a feasible layout. A more complete discussion comparing null and cyclic boun-
dary conditions follows later in the chapter.

The need for cyclic boundary condit¡ons as in Fig.2.24(b) is not a major con_
sideration since the register can be made to wind around the processors in such a
way that the two ends of th€ cellutar automaton become adjacent. using cyclic boun-
dary conditions, Table 2.6 indicates that a cellular automaton of at least s1 sites is
needed to produce sequences with cycle lengths of more than 1 x 1 09. F¡nally, if the
end of cellular automaton k is joined to the beg¡nn¡ng of cellular automaton k + 1, as
in Fil.2.25, we will further lengthen the cycle lengths for the sequence. The only

RNG1 RNG 2 RNG 3 o o o RNGn
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CA Rule 30 CA Ruls 30
nnll

Hybrid CA
and LFSR

N C* lôd, C. Cu loo, C" Cu loo" C"

4

6
7
8
I
10
11

12

14
15
16
17
18
19
20
21

22
23
24
25
26
27
2S
29

31
32
33
34

36
37

39
40
41

43
44

46
47
4B
49
50

52
53
54

8 3.0
5 2.3
1 0.0
63 6.0
40 5.3
171 7.4'15 3,9
154 7.3
102 6.7
s32 9.7
1,424 10.5
f,455 10.5
6,016 12.6
10,845 13.4
2,A44 1 t.5
3,705 11.9
6,150 12.6
2,793 11.4
3,256 11.7
38,249 r5.2
'184,040 17.5
588,425' 19.2
312,156 t8.3
67,554 16.0
249,165 17.9
1,466,066 20.5
306,1æ 18.2
2,841,150 21.4
2,002,272 20.9
2,038,476 21.0
5,656,002 22.4
'18,480,630 24.1
2,237,472 21.1
49,276,415 25.6
9,329,228 23.2
961,272 19.9
19,2r't,080 24.2
51,'r 51,354 25.6
109.603,410 26.7
93,537 ,212 26.5
192,2 t8,312 27.5
75,864,495 26.2
261,598,274 28.0
811,284,813 29.6
3,035,918,676 31.5
9.937.3S3,652 33.2
593,4S7,780 29.f
3,625,7f 1,023 31.8
20,653,434,880 34.3
40,114,679,273 35.3
7 551 779 æ2 3' s

2 1,0
I 0.0
2 1.0
I 0.0
2 t.0
't 0.0
2 1.0
1 0.0
2 1.0
t 0.0
2 1.0
I 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.O

1 0.0
2 1.0
1 0.0
2 1.O

I 0.0
2 1.0
1 0.0
2 1.0
I 0,0
2 1,0
1 0.0
2 f.0
1 0.0
2 1.0
'I 0.0
2 1.0
I 0.0
2 1.0
I 0.0
2 1.0
t 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.0
1 0.0
2 1.0

15 3.9
31 5.0
63 6.0
127 7.O

2s5 8.0
511 9.0
1,023 10.0
2,047 t1.0
4,æ5 12.0
8,191 13.0
16,383 14,0
32,767 15.0
64,535 16,0
131,071 17.O

262,143 18,0
524,827 19,0't,048,575 æ.0
2,097,151 21.0
4,1S4,303 22.0
8,38S,607 23,0
16,7n213 24.O
33,554,43'1 25,0
57,108,865 26.0
134,217,727 27.0
268,4t5,455 28.0
536,870,911 æ.0
1,073,741,823 30.0
2,147,483,647 3t.0
4,æ4,967,295 32.0
8,589,934,591 33.0
17,179,869,183 34.0
34,359,73S,367 35.0
68.7't9.476.735 36.0
237 - 1 s7.o
2æ - 1 oa.o
23e - 1 ss.o
26 - 1 4o.o
241 - 1 1o.o
242 - I 12.o
243 - 1 ,fiì,o
24 - 1 44.o
245 - 1 45.0
24ô - 1 46.0
217 - 1 47.o
248 - 1 4s.o
24e - 1 49.0
2fi - 1 so.o
251 - I sr.o
252 - 1 s2.o
2s3 - 1 53.0
2u - 1 s4.o

Table 2,6: Maximum length cyclas for cellular automata of length N under various
various cond¡tions (portions of this table arc taken from [Wolfnmlg]6a]).
Here Cy represents the length of the maximum length cycte for a cellular
automaton of length N .
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Flgure 2.25 : A parallel pseudorandom sequence generatü using one rule 30 cellu-
lat automaton for all ptocessors.

caution to be observed is the cross-correlation of bit k between processors i, ¡-1,
¡ - 2, ¡ - 3, and i - 4. However, if a spacing of ^l = 4 is used, we can decorrelate bit
k between processors. This also serves to further increase the cellular automaton
length. For example, whereas the archltectures of Fig. 2.24 will need at least 51 pro-
cessors to generate a sequence of length > 1 x 109, if y-4 is used only 1l proces-
sors will be required for the same cycle length.

Another method of generating pseudorandom numbers is to use a cellular auto-
maton local to each processor. Here appropriate spacing should be used to ensure
that the bits 0f the pseudorandom word are unconelated. Previously it was indicated
that a 5l site cyclic rule 30 cellular automaton should be considered as a minimum in

creating long sequences of pseudorandom numbers. One method of increasing the
cycle lengths, if the PRNG must be local to each processor, is to connect each cellular
automaton in the spirit ot Fi}.2.25, where the end of one cellular automaton is

attached to the start of another. As in the previous case, lhis w¡ll cause cross-
correlation across.bits between the processors. However, since site spacing is already
present in each local cellular automaton, it should be possible to include similar spac-
ing between the processors.

CA¡

ci[-t
o

cA3

cA2

cA1

RNG n
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Flgure 2.26 | Typical cycles and paths to the cycles lor CA rule gO w¡th cyctic boun-
dary conditions.

An important consideration in the use of any pRNG is the length of the sequence
produced (i.e. after how many numbers does the sequence repeat). ln most of the
generators considered here the next value, Xr*1, depends solely on the previous
sequence value, Xn. That is, once a value appears tw¡ce, the sequence begins to
repeat. Note that usually we only consider a portion of each number in the sequence
being produced (tor example, we might use only the modulo d vafues or only certain
bits of the sequence). These values may repeat without the complete number doing
so. For register type generators, such as tho LFSR and CA rule 90, this is especially
lrue. The LFSR gênerators have a sequence length ot 2n - 1, where n = length of
the LFSR. However, CA rule 30 does not prov¡de nearly as long a sequence. The
sequences produced by CA rule 30 usually consist of cycles and paths to the cycles
such as those shown in Fil.2.26. The size of the cycles varies grea y in that some
are large and others quite small. Table 2.6 shows the maximum cycle lengths of
sequences result¡ng from var¡ous register sizes. For cyclic boundary conditions the
cycle length increases at a rate approximately exponential with n. A least squares f¡t
to the data shows that cycle length C^/ can be approximated by [Wolfram1986a]

(2.31)log2 C¡¡ = 0.61(N + 1)
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o)I 2.00

't.50

1.00

0.50
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Flgure 2,27 ? Maximum path length versus CA rule 30 size for both nult (filled
squares) and cyclic (empty squares) boundary conditions.

C¡¡ - 20.61(/v + r¡ 
e.g2)

This would initially appear to be quite poor as compared to the cycle length of 2N - 1

in an N b¡t LFSR. Yet, if a truly random mapping were used between the 2il possible
states in an N bit cellular automaton then as N -+ o" the longest cycle is expected to
have a length of 21tr, where ?u-0.62432 ' .' [Golomb1982], [purdom1969] and the
average length of the cycles would be 2/V/2 [Harr¡s1960]. lt has been proposed that
the exponent ¡n Eqn. 2.32 may be related to the entropy of the sequence produced but
this requ¡res further investigation [wolfram l986a]. cA rule o0 with null boundary condi-
tions has very small cycles in lhat even sizes have a maximum cycle length of two and
odd sizes have a maximum cycle length of one. Another peculiar property of this case
is that there is only one maximal length cycle (i.e. all paths lead to the same short
cycle) and the zero cycle is not entered by any path.

The lengths of the var¡ous paths in cA rule g0 with null boundary conditions differ
widely. Therefore, if a path is sufficiently long, it may be poss¡ble to begin near the
extremes in the path tree, and still prov¡de a long sequence of pseudorandom
numbers. ln Fi}.2.27 a plol of maximum possìble path ¡ength versus cellular automa-
ton size is shown. Notice that the path length for cyclic boundary cond¡tions increases
rapidly mainly due to the increase in maximum cycle length. However, for null

5.00
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c
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Cvcl¡c Null
N P" looo P¡¿ stert o^' lôd" P. start
4
5
6
7

9
10
tt
12
13
't4
'ls
16

18
'19

t^

a
'10

10
65
56
184
6'r
209
228
877
1555
1776
6269
11208
3981
4358
7aaÂ

t.17
1.32
t,32
i.02
r.8 t
t.52

;.93
t.71

'.83
t.78
0.60
0.79
2.6'l
3.4s
1.96
2.09
toÃ

001 1

00011
0000.|1
0000011
001 1 101 1

0001 1 101 1

0001 1 1001 1

00111110111
00001 1 10001 I
0000110111111
00000'110000111
001'10't't10111111
001 1011101 110f11
00001 101 1 't I 10001 I
000001 1 '10001 1001 f I
00000011 101 1I I11011

^^^^l 
l¡tlt^ñl <r1l I lfl^l

10 3.32
15 3.91
17 4.0S
18 4.17
26 4.70
29 4.86
34 5.09
3s 5.13
4t s.36
45 s.49
s4 5.75
56 5.81
58 5.86
67 6.07
67 6.07
67 6.07

0001
00010
000001
0100001
01011110
0001001 10
0001001 I 1 1

00000000001
0001001 100't 1

000100111001't
00000000000001
000000000001010
000'1001 100001 1 00
000000000101 1 1 110
0001001100111 1 100'f
010t101111100001111
000000000101 1 101 1ô1 r

fable 2.71 Maximum length and staning value of nonrepeating sequences for CA
rule 30 with N sites for both cyclic and null boundary cond¡tions. Stad¡ng
po¡nts lor cycl¡c boundary conditions were lound by exhaustive s¡mulation
while those for null boundary condit¡ons were found using a method due
to Pries [Pries1988].

N Cycles Ftac.

4
5
tt
7
8
I
10
11

12
13
14
15
16
17
18
19
20

1x8, 3x1
1x5, fx1
3x1
1x63,7x4, 1x1
1x40, 1x8,3x1
1x171, 1x72, 1x1
2x15, 1x5, 3xl
1x154, 11x17, fxl
4x102, 1x8, 4x3, 3x1
1x832, 1x260, 1x247, 1x91, 1x1
1x1428, 2x133, 1x112, 2x84, 1x63, 1x14, 3x1
1x1455, 5x30, 5x9, 15x7, 4x5, 1xl
1x6016, 1x4144, 3x40, 1x8, 3x1
1x10846, 1x1632, 1x867, 1x306, 1x136, 1x17, 1x1
1x28¿14, 6x186, 1x171 , 1x72, 6x24, 3x1
1x3705, 1x247, 1x133, 1x38, 1x1
1x6756, 1x6691, 2xô150, 4x3420, 4x1715, 1x580, 5x68, 4x30,
2x15. 1x8. 1x5.3x1

0.75
0.94
1.00
0.60
0.88
0.81
0.82
0,76
0.93
0.32
0.84
0.93
0.50
0.96
0.82
0.72

0.01

Table 2,8: Cycles lengths for va ous size rule 30 cellular automata and the fraction
of all states leading to the longest cycle.
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Flgure 2,28 : Cycle length versus probability of entering a cycle of that length for CA
rule 30 with cyclic boundary condit¡ons. See append¡x B fot comptete
tables.

boundary condit¡ons the maximum cycle length does not increase nearly so rapidly
with cellular automata size and we see that the m¿uimum posisible path length
becomes nearly constant for large CA rulê 30. Thus, the paths for null boundary condi-
tions are much shorter than those provided by cyclic boundary conditions. Therefore,
cycl¡c layouts for CA rule 30 based PRNGs should be used if the length of the
sequence is a concern. Another point to note is that there is only one large uncorre-
lated sequence for each register size. lf different uncorrelated sequences are required,
for example in mulliple Monte caÍlo simulations, lhen the same precautions as when
using other algor¡thmic PRNGs to avoid sequenc€ cross-correlation should be
observed (i.e. start¡ng at sufficiently well spaced locations on the cycle to avoid
sequence oveilap).

As we have already seen, as the length of a rule 30 cellular autmaton increases
the maximum possible length of the pseudorandom sequence also increases, but this
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Flgure 2.29 : The raster scan output of a single s¡te ín a 32 site rule 45 cellular auto-
maton.

growth is not monotonic and the seed, or initial state, used in a particular ruls 30 cellu-
lar automaton will affect the length of the sequence produced. This is not a major
problem since a table of good ssed values, such as those ¡n Table 2.7, can be pro-
duced and used in a similar manner to other tables of feedback taps for maximal
length LFSR sequences, lt is wise to use computer simulation to check the cycle
length of the sequence produced, if a different seed value or length than those ¡n

Table 2.7 are to be used.

Using ïable 2.8 we seo that the state transitions for CA rule 30 with cyclic boun-
dary conditions are increasingly dominated by one cycle which is usually much longer
than the others. Therefore, an arbitrary starting state has an ¡ncreasing probability of
being in the maximum length cycle or on a path leading to it. From Table 2.8 we also
note the varying size and number of the cycles as n increases. More complele results
are given in Appendix B. A plot of cycle length versus probabil¡ty of an arbitrary start-
ing state being in a cycle of that length can be made us¡ng the data of Appendix B and
is shown in Fig. 2.28. The various curves show the results for differing register lengths.
Therefore, if we wish to use an arbitrary start¡ng state and require a probability of 0.95
that a non repealing sequence of length > 1000 will be produced then we need a rule
30 cellular automaton of size > 15. Table 2.8 and Fig. 2.28 only consider CA rule 30
for sizes 4 through 20. Results for larger rule 30 cellular automata are easily derived
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Flgure 2.30 ? 420 time steps in the state - t¡me d¡agram of a 500 s¡te rule 45 ceilular
automaton. Cyclic boundary conditions; ¡nit¡al¡sed with a s¡ngte
nonzero site.

using a computer program but the run t¡me of these programs becomes quite large for
lengths > 20.

2.4.3. CA rule 45

The other autoplectic cellular automaton of interest is rule 45 which is simply

a¡(r+1)= a¡-1(r) @ (a¡(r)u q.f-¡ll . (2.s3)

The area used by a 30 b¡t rule 45 cellular automaton is 1.3 x 106 ¡tm2 compared to
1.1 x 106 pmz lor rule 30 and 0.46 x 106pm2 for the LFSR. The increased area
over CA rule 30 comes from the additional inverter requ¡red at each s¡te. CA rule 45
uses about 2.8 t¡mes the area of the LFSR but retains the global wiring advantages of
CA rule 30 (i.e. nearest neighbour wiring).

As with CA rule 30, it has been investigated extens¡vely and exh¡bits autoptectic
propert¡es in the bit sequencê occurring at a single site, a¡(f ) lwolfram1986aj. This
can be seen in the raster scan ouþut of a single site, as shown in Fig.2.29. As well,
Figs. 2.30 and 2.31 , which show 420 time steps in the state - time diagram of a 500
site rule 45 cellular automaton, further confirm the autoplectic and homoplectic nature
of this rule. The single site initialisation of Fig. 2.30 shows that the evolut¡on of CA rule
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Flgure 2.3'l | 420 t¡me steps in the state - t¡me diagram of a 500 site rule 45 cellular
automaton. Cycl¡c boundaty conditions; random initial state.

45 is different from CA rule 30 in that sites which have not been reached by the evolu-
tion of states alternate between zero and one (ths horizontal striped pattern). ln addi-
t¡on, there are no triangular shapes but rather, what could be termed threads running
throughout the diagram. Perhaps even more importantly, CA rule 45 is very asym-
metric with the evolution to the left of Fig. 2.30 being much slower than to the r¡ght.
Due to these diff€rences we would expect the randomness properties of CA rule 45 to
be different from those of CA rule 30.

As with CA rule 30, adjacent sites are somewhat correlated in time. This can be
seen in the auto and cross-correlation data of Fig.2.32. We see that adjacent sites
have a cross-correlation of about 0.52 which will cause problems if these two bits are
used to generate the same random words. As with CA rule 30, the correlat¡on dies out
over a period of time but it takes a larger number of sites. ln fact, it takes 13 sites
before the correlation falls below 10% and the cross-correlat¡on ridge is v¡sible across
the ent¡re word size of Fig.2.32. As well, the correlation dies out in a very irregular
fashion with the c¡oss-correlat¡on r¡dge r¡sing and falling sharply. Therefore, while CA
rule 45 definitely provides advantages over the parallel LFSR, CA rule 30 displays
much better cross-correlation properties.
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Flgure 2'32 : Auto and cross-correlat¡on of site values in a g0 s¡te rule 4s cellutar
automaton.

We can use site and time spacing as with CA rule 30 to try and form a better
pseudorandom sequence but we would expect that similar performance to cA rule go
will require a larger site and time spacing. The results of s¡te spacing for cA rule 45,
given in Table 2.9, confirm lhis suspicion. The average fa¡lure metric decreases but
not monotonically and for the largest site spacing given in Table 2.9 we see that ¡t has
not reached the level of CA rule 30 with T = 3. This would indicate that larger site
spacing is required to completely remove the bit sequence conelation and reduce lhe
average failure metric to that of CA rule 30 with y = 4. ln Table 2.lO the test results for
cA rule 45 with time spacing are given. As with the site spacing case, a larger time
spacing is required with cA rule 45 to obtain similar average failure metrics to those of
CA rule 30 with p = 4. However, from both Tables 2.9 and 2.1 O we see that the
difference between cA rule 30 and cA rule 4s is quite small, usually less than 2.0, so
that the randomness of both cA rules is actually quite close for both site and time
spacing.

ln deciding which cA rule (í.e. rule 30 or 4s) is more suitable for use as a PRNG
one must consider several factors including area, randomness, and cycle length. We
know that cA rule 45 uses one more inverter than cA rule 30. However, it is possible
to avoid this add¡tional inverter by using the q'output from the storage d flipflop at
each site in the cellular automaton, so we will consider the two cA rules to have
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Sêquonco length - 1,000

Sêquênce length . 10,000

Table 2.9: Random number test results for CA rule 45 w¡th vat¡ous site spac¡ng
values, ^1.

T€st T=o r= 1 ,t=2 T=31ô 1ôn
'l=410 1ôf)

Y=5 T=6
'I

2
3
4
5
6
7

I
10
11

12

14
t5
16
'17

18
19
20
21
22
te

84 100
21 0
84 skip
100 skip
'f 00 '100

84 100'100 100
100 100
100 100
70 100
100 100
49 skip
100 100
100 100
skip 100
skip 100
skip 67
skìp 100
skip 100
67 100
63 21

0.s2

100 100
'100 100
100 skip
79 skip
100 100
100 100
100 79
77 '100

100 f00
100 100
72 100
100 skip
'100 100
77 100
sk¡p 100
skip f00
skip 51
skip 100
skip 100
79 56
2S 100

0.03
t-¡t

82 67
100 100
100 skip
'100 skip
'l 00 81
100 100
'100 100
100 100
100 100
100 100
'100 100
82 skip
100 100
70 100
skip 100
skip 100
skip 100
skip 100
skip 81
100 100
70 63

E-it

s0 100
74 100
100 skip
100 skip
100 100
100 72
100 100
100 100
'100 't00
'100 t00
100 100
76 skip
100 100
100 72
skip 78
skip 100
skip 100
skip 100
skip '100
'100 72
7S 52

o.14

74 76'100 7g
100 skip
100 skip
100 78'100 76
'100 100
100 100't00 100
100 100
100 100
72 sk¡p
100 100
100 78
sk¡p 74
skip 78
skip 74
skip 100
skip 78
100 100
100 78

0.12

71 100
100 100
100 skip
'100 skip
100 '100

100 100
100 100
100 100
71 100
100 100
100 100
71 skip
'100 100
100 50
skip '100

skip '100

skip '100

skip 100
sk¡p 100
100 100
62 100

0.28

100 100
100 100
100 skìp
'100 sk¡p'100 100
79 100
60 100
100 100
100 100
100 100
100 100
60 skip
100 100
'100 79
skip 100
skip 79
skip 79
skip 100
skip 100
39 100
85 100

0.'15

24 57
A

5 5 45
20Â 'ìôq

94
ttt tÊÀ

2
ts¿

7
a'49

4
I

2 4
I

4

Têst
-^,J

T=o1ô 1ôô
Y= 1

l0 10ô
't=2

lo 100
T:3
ll

f=4 Y= 5 T=6

1

2
â

4
5
6
7
I
I
10
11
12
'13

14
15
to
17
18
'19

20
21
22
aã

72 100
00
0 skip
56 skip
56 77
100 77
100 100
72 100
100 79
100 100
100 100
100 skip
'100 't 00
100 't 00
skip 72
skip 100
skip n
skip 1oo
sk¡p 100
72 72
021

0.52
tr-ir

70 100
70 100
100 skip
7'l skip
100 100
100 100
71 100'f00 t00
49 70
100 100
78 100
100 skip
'100 100
100 '100

skip 78
skip 100
skip '100

skip 100
skip 100
100 71
81 30

0.03

100 49
80 100
100 skip
100 skip'100 80'100 45
100 100
100 100
100 100
'100 100
100 100
100 skip
100 100
80 100
skip 69
skip 100
skip 75
skip 69
skip 80
100 100
100 100

0.24

100 100
'100 100
100 skip
100 skip
79 '100

100 100
100 100
73 100
100 100
48 '100

100 100
73 skip
100 't 00
100 81
skip 73
skip 100
skip 100
skip 67
skip 100
79 100
40 81

0.14

100 77
100 100
100 skip
100 skip
100 100
100 '100
'100 100
78 100
77 100
100 100
100 100
100 skip
100 100
77 100
skip 69
skip 76
skip 100
skip 77
skip 100
69 100
100 69

o.'12

74 83
75 100
'100 skip
68 skip
100 100
100 100
7s 100
100 100
100 100
s3 100
100 100
100 skip
'100 '100

100 100
skip 100
skip 100
skip 100
skip 100
skip 100
'100 100
100 43

o.28

100 100
100 100
'100 skip
100 skip
100 79
'100 100'100 100
74 71

'f 00 100
'100 100
100 100
'100 skip'100 76
100 71
sk¡p 79
skip 100
skip 100
sk¡p 100
skip 100
74 74
50 79

0.15

87
R7) 49q

5
4.10

4
3.s l

45
2 ¿O 433

34 3
I

3 s2 34
2.O2 2.71

þó
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Ssquênce length = 'f ,000

Table 2,10: 
'Random 

number test rcsults for CA rute 45 w¡th var¡ous t¡ne spac¡ng
values, þ.

Tsst P=o ß= þ=2 Þ=310 f00
fJ=a10 1oo

Þ=5 ß=6
'f

2
3
4
5
6
7
I
o
't0

11

12
13
14
15
16
't7
18
19
20
21
22

81 100
220
81 skip
100 skip
100 100
81 100
100 100
100 100
100 100
70 '100
'100 100
48 skip
100 100
100 100
skip 100
skip 100
skip 71
skip 100
skip 100
71 100
59 22

0.52
trá il

72 100
100 100
'100 skip
'100 skip
100 76
100 100
72 't00
100 72
100 100
72 100
100 100
76 skip
100 '100

100 100
skip 72
skip 100
skip 100
skip 100
skip 100
100 76
78 76

0.03

100 100
100 100
'100 skip
100 skip
81 100
100 72
72 100
100 72
81 1 00
76 100
100 100
100 skip
100 100
71 100
skip 100
skip 100
skip 100
skip 100
sk¡p 100
100 100
57 53

0.24
tail

'100 100
46 100
100 sk¡p
74 skip
100 100
79 100
100 100
100 t00
100 100
'100 74
100 79
72 skip
100 74
'100 100
skip 100
skÌp 100
skip 100
skip 100
skip 100
79 100
74 53

0.14

100 100
100 100
100 skip
76 skip'100 100
100 100
100 100
100 100
76 100
100 100
'100 100
100 skip
100 100
100 7s
skip 73
skip 100
skip 73
skip 100
skip 100
'100 78
76 49

0.12

100 100
100 100
'100 skip
100 skip
100 100
100 100
77 100
'100 100
100 100
100 77
100 100
100 skip
100 100
71 77
skip 100
skip 71
skip 100
skip 100
skip 77
100 100
29 77

0.28

100 100
100 75
100 skip
65 skip
75 100
100 100
100 100
100 100
100 65
100 40
100 100
100 skip
100 100
100 100
skip '100

skip 83
sk¡p 100
skip 100
skip 100
100 100
100 83

0.15

24 7 55 55
:¡At qô? 44

t'ta tD^
43

172 
'Ê^

35 23

Sequoncs lenglh - 10,000

T6sl 9=o
I ô 1fìn

Þ=1l0 1oo
þ=2
tl

9=3 Ê=a Ê=510 100
p=Þ't0 100

'1

2

4
5
Þ

7
I
o

10
11

12
13
14
15
'16

17
tc,
lo
20
21
22

70 101
78 78
55 skip
91 skip
91 9s
101 95
10t 101
94 101

't 01 73
101 10'1

79 101
79 skip
101 101
101 101
skip 95
skip 101
skip 95
skip 101
skip 101
70 94
61 s9

0.52

68 74
74 9s
101 skip
95 skip
101 1 01
101 81
'101 'l0 t
101 101
86 10'1
'101 101
95 101
'101 skip
81 101
95 101
skip 101
sk¡p 81
skip 80
skip 9s
skip 101
81 10f
38 101

0.03

'101 97
101 86
10f skip
101 skip
'f 01 84
101 94
101 101
82 101
101 101
10'1 101
95 101
86 skip
63 101
8'1 84
skip f01
skip 77
skip 95
skip 101
skip 101
94 84
88 70

o,24

74 97'f6 23
23 skip
62 skip
62 85
100 85
'100 100
74 100
97 7S'100 89
100 96
100 skip
'f 00 100
100 100
skip 84
skip 100
skip 85
skip 100
skip 97
73 68
13 36

0.14

54 79
88 81
94 skip
S1 skip
100 100
100 100
'100 100'100 100
100 95
100 100
82 100
94 skip
'100 100
81 100
skip 100
skip 100
skip 88
skip 88
skip 100
95 100
87 94

0.12 0.28

9s 70
95 100
100 skip
100 skip
100 100
100 78
100 100
76 100
92 100
100 100
82 100
100 skip
96 100
100 '100

skip '100

skip 70
skip 73
skip loo
skip 100
77 100
45 65

79 79
oÃ ôâ

100 sk¡p
't 00 skip
'100 9s
100 100
'100 100
71 100
79 100
100 61
100 77
93 skip
92 100
97 95
skip 100
skip 97
skip 100
skip 100
skip 79
77 78
63 58

0.15

87 53
)o7 t^1

46
Q lO '¡ /t^

76
5ô3 37q

4 5 5
?oñ

5
tÃF
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N Cycles Frac. lonoesl-
4
5
t)

7
8
o

10
11

12
13
14
15

16

17

18

19

20

lxz
1x30, 1x2
I xl8, 1x3, 1x2, 3x1
1x126, 1xz
1x32, 2x24, 1x16,2x4, 1x2
1x504, 1x3, 1x2, 3x1
1x403,4x60,2x15, 1x2
fx979, 1x935, 1x66, 1x11,11x5, 1x2
1x240, 1x156, 1x84, 12x24, 1x18, 12x12,1x3, 1x2, 3x1
1x1105, 1x676, 13x443, 1xl56, 1x130,4x78, 1x39, 1x13, 1x2
1x2198, 7x534, 3x392, 2x1ô8, 1x1?6,2x42, 1x2
1x6820, 1x4920, 1x2820, 1x2340,3x120, 21x60, 15x32, 4x30,
lx3,2x2,3xl
1x2816, 1x976, 1x848, 4x700, 4x556, 4x296, 1x208,2x144,
17x48, 1x32, 2x24, 1x16, 4x2, 2x1
I x7 881 2, 1x3291 2, 1 x6052, 1 x4845, I x867,1 x81 6, 7x408,
1x204, 1x102, 1x2
1x8787, 1x8168, 2x7812, 3x3756, 1x504, 12x72,90x36, 6x21 ,

ì1x18, 1x3, 2x2, 3x1
1x1 83920, 1 x1 58080, 1x1 49425, 1x1 5371, 1x3458, 1x1 653,
x1425,5x912, 10x456, tx361, 1x228, 10x114, 1x95, 1x2
x142580, 4x14265,5x9112, 1x4260, 1x110, 1x480, 1x¿fiì0,

1x280, 5x252. 9x240. 5x236. 72x120. 1ô6x60. 5x30. 2x15. lx2

1.00
0.94
0.84
0.98
0.13
0.98
0.70
0.¿18

0.06
0.13
0.52

0.21

0.06

0.60

0.18

0.35

0¿8

Table 2.11: Cycles lengths for various size rule 45 cellular automata and the fraction
of all states leading to the longest cycle.

equivalent area. As discussed above, CA rules 30 and 45 have nearly equivalent ran-
domness in terms of the word wide sequence that is generated. Another metr¡c which
can be used to measure the randomness of a bit sequence (i.e. such as that occurr¡ng
from each site in the cellular automaton) is the entropy of the sequence. The entropy
provides a characterisation as to the number of possible sequences that may occur.
Here we define two entropy measures: lhe topological entropylwolfram19g4c]

and the measure entropy

where

" = j'g I tog2 w1n¡ ;

sÈ = rim 4T p,bs, p, ,' n_)e ¡_1

(2.34)

(2.35)

N (n ) = the number of distinct length n blocks ln
. these sequences.

- P¡ = the probability of sequence i appearing.

lf we consider the sequences to be messages on a communication channel lhen the
entropies correspond to the channel capacity and shannon information content,
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Flgure 2.33 : cycle length versus probability ol entering a cycle of that tength for cA
rule 45 w¡th cycl¡c boundaty conditions. See appendix B fot complete
tables.

respectively [wolfram 1 986a]. Therefore, for a random sequence generator we expect
all sequences to be equally likely and so, both entropies should be maximal, i.e.

s=su=1 (2.36)

This measure of randomness is very similar to the equidistribution and serial tests
described previously. wolfram [wolframi 986a] has found that the entropy of the bit
sequence from each site in a rule 45 cellular automaton is slighfly smaller than that of
cA rule 30 so cA rule 45 must have some repeating blocks in the bit sequence from
each site as compared to cA rule 30. lncidentally, wolfram has also found that the
entropy from a single s¡te in a rule go cellular automaton is maximal (i.e. equals one).
Therefore, as with the site and time spacing measures, cA rule s0 is sligh y more ran-
dom than CA rule 45.

t?3"
r'1
=q
ar<

z
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101 100

01

010 agl
11

011 010 a91 000

1010
o^. 111 110

01

000

0

110 101 100 01 1

0010
150: 111

1

ooo ooo

Flgure 2.34 : A hybrid cellular automaton using CA rules g0 and 150 at alternat¡ng
sifes.

Another aspect which can be considered is the propagation speed of the random-
ness to the left and right in both CA rules 30 and 45. This can be found by considering
lf'e dilference patten voduced by subtracting two randomly initialised cellular auto-
mata where the seeds ditfer in only one b¡t. The d¡fference pattern looks sim¡lar to the
single initialised site state - time diagrams of Figs. 2.17 and 2.90. The stope of the
difference pattern to the left and right shows the information transmission of the
differing bit over the entire cellular automaton. This can also be thought of as rate of
spread of randomness ovêr the cellular automaton. The lsft and right slopes yield the
left and right Lyapunov exponents, 1,¿ and î,p, respeclively for cellular automaton's
evolution Wolframlg84cl, [Packard l g85a]. Both CA rule gO and 45 have Ip = 

.l 
.Q

but for CA rule 30 it can be shown that À¿ = 0.2428t 0.0003 white for CA rute 45
ìvt =0.172410.0004 lwolframl986a]. Therefore, randomness in CA rule 30
spreads to the left at a slope of about 28I" more than in CA rule 45.

Finally, we must consider the cycle lengths of CA rules 30 and 45. Table 2..1 1 is
a list of all cycles for cA rule 45 as well as the percentage of all states which are
members of, or are on paths lead¡ng to, the longest cycle. Figure 2.33 uses the data of
Append¡x B for cA rule 45 to produce a plot analogous to that or Fig. 2.29 for cA rule
30. when these two plots are compared we see that as the length of cA rule 45 is
increased it is not dominated by only one large cycle but may have several large

90150150
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Length Construction

4 0101

5 11001

6 010101
7 110f010
B 1'1010101

I 1 1001 01 01

10 0101010101
1l I1010101010
12 01010 t010101
13 1100101010100
14 01 111101111 110

15 100100010100001
16 I101010101010101
17 011 11 101111110011
'18 010101010101010101
19 01 101001101 10001001
20 1111001110110111111,1

21 01 1I1001100000111101I
22 0'1010101010101010.10101
23 11010111001 110100011010
24 1111 11010010110101010110
25 1011110101010100111100100
26 0101 1 0101 101000101 .1 

101 1000
27 000011111000001100100001.101
28 01010f0101010101010101010101

Cycle length

t5
31

63

127
255

511

1,023
2,047
4,095

8,191
16,383

32,767
65,535
131,071

262,143
524,867
1,048,575
2,097,151
4,1 94,303
8,388,607
16,777,213
33,554,431
67,108,863
134,217,727
268,435,455

Table 2.12': Hybrid constructions necessary to achieve a celtular automaton w¡th max-
imal cycle length. Here 1 refers to CA rute l5O. Hence, a length S maxi_
mal length hybrid would be constructed by having CA rutes g0 and 150 in
the lollow¡ng order, 150, 150, 90, 90, 1S0. It shoutd be noted that lor
many lengths there are several CA rule g0 and lS0 hybt¡d constructions
wh¡ch w¡il y¡eld max¡mal length cycles. Maximat cycle tength hybrid celtu_
lar automata exist lor lengths larger than 2g but must be found us¡ng
computer simulation.
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Flgure 2.35 | Output of a single s¡te ¡n a 30 s¡te rule 90 and lS0 hybr¡d ceilutar auto-
maton.

cycles. This severely reduces the probability of arbitrarlly starting in, or on a path lead-
ing to, the largest cycle. However, the probability of starting in a nonrepeating
sequence of a length greater than some fixed value is better in CA rule 45 since the
probability of being ¡n one of the larger cycles of CA rule 45 is greater than entering
the one largest cycle of CA rule 30. Notice that the longest cycle in CA rule 45 is usu-
ally several times that of CA rule 30. Therefore, while CA rule OO has better random-
ness properties than CA rule 45, CA rule 45 provides much larger cycle lengths. ln
this work we are mainly concerned with generating good pseudorandom sequences
and so, we will consider the CA rule 30 based PRNG to be bener than the CA rule 45
based PRNG. However, if for some application cycle length becomes an important
consideralion then the CA rule 45 based PRNG should be seriously considered.
Anolher point to be noted is that for odd cycle lengths no state has more than one
predecessor since the state transition diagram for odd length CA rule 45 contains only
cycles and no paths leading to cycles. Finally, ¡t can be shown that similar behaviour
to CA rule 30 with null boundary condit¡ons is exhibited by CA rule 45 w¡th null boun-
dary conditions (i.e. very short cycle lengths).
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Figure 2.36 ¡, 800 time steps ¡n the state - t¡me d¡agram of a 499 site rule g0 and
150 hybrid cellular automaton. Null boundaty cond¡tions; ¡n¡tial¡sed
w¡th a s¡ngle nonzeto site.
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Flgure 2.37 't 420 t¡me steps ¡n the state - time diagram of a 49g site rute g0 and
150 hybrid cellulat automaton. Null boundary cond¡t¡ons; endom in¡t¡al
state.

2.4.4. Homoplectlc CA-Based pRNcs

To generate pseudorandom numbers in parallel using cellular automata it would
appear that using cellular automata which exhibit e¡ther homoplectic or autoplectic
behaviour would suffice. However, homoplectic cellular automata only output pseu-
dorandom patterns for certa¡n input states. For example, consider lhe first N/2 sites
having a zero value and the next N/2 sites having a one value. This seed would obey
all the requirements of a random initial state since p(0) = p(t) = 0.S but would most
certainly yield an output which would be dec¡dedly nonrandom. ln fact, lhe author has
found it difficult to find starting states for some homoplectic class 3 cA rules which will
yield random sequences. Thus, the homoplectic nature of some class 3 cA rules is
only over an ensemble of different starting or seed values. On the other hand, CA
rules exh¡biting autoplectic behaviour will produce a pseudorandom output indepen-
dent of the seed value. Therefore, autoplectic behaviour is more desirable in a PRNG
since we need not be concerned about whether or not the seed value will produce
pseudorandom behaviour. Thus, for the purposes of th¡s work, homoplectic CA rules
will not be considered appropriate and will no longer be considered.
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Flgure 2.38 t Auto and crcss-coffelation of site values in a S0 site rule g0 and lS0
hybtid cellular automaton.

2.4.5. Hybrld Cellular Automata

A cellular automaton which yields a maximal length binary sequence from each
site, like the LFSR, is the rule 90 and 150 hybrid cellular automaton of Fig. 2.34 which
was initially proposed by Pries [Pries1986]. Here lhe surprising combination of CA
rule 90

a¡(f+1)= a¡-l(t) @ ar+l(f) (2.37\

and CA rule 150

ar(f+1)= ai_r(t) @ a¡(r) @ a¡*1(r) (2.ss)

both of which are simple linear rules, yields maximum length cycles (i.e. 2n - l,
n = length of the cellular automaton) . lt has been conjectured, based upon computer
simulation, that to achieve maximal length cycles the length of the cellular automaton
is subject to the constraints that

n mod2 =0 n modS+2 (2.3e)

and it must have null boundary conditions. However, these computer simulations
where only carried out up to tength 12 [pries1987]. computer simulations performed
for this work show that a further restriction ol n mod g + o must be added for
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Test
môd

T=0 T= 1 ''l=2 T= 3
in lôô l=4 T= 5 T=6

,l ô 1ôô
1

2

4
5
Þ

7
o

9
10
1l
12
13
't4
15
16
17
'18

'19

20
21
22
tã

100 75
'100 100
100 skip
100 skip
100 100'100 100
100 '100
'100 100
79 100
100 100
100 100
79 skip
100 75
100 71
skip 100
skip 100
sk¡p 100
skip 100
skip 100
'100 100
100 54

0.'12

49 75
100 100
'100 skip
74 skip
49 100
100 100
100 100
'100 100
100 100
100 8'l
100 100
74 skip
'100 100
100 100
skip 100
skip 100
skip 100
skip 100
skip '100

19 100
56 100

0.05

100 71
100 100
8'l skip
81 skip
'100 100
100 100
100 100
100 100
100 100
76 '100

76 100
100 skip
100 '100

100 100
skip 100
skip 100
skip 100
sk¡p 100
skip '100

71 100
71 57

0.05
F¡il

100 100
75 100
74 skip
100 skip
100 100
74 100
100 7s
100 '100

75 100
75 7s
75 100
78 skip
100 100
100 100
skip 75
skip 100
skip 74
skip 49
skip 74
74 75
780

0.12

100 75
81 100
69 skip
44 skìp
100 69
100 100
'100 '100

100 100
100 100
75 't00
100 'f 00
100 sk¡p
'100 100
s6 100
skip '100

skip 75
skip '100

skip 100
skip 7s
100 100
44 8t

0.12

70 100
100 75
100 skip
100 skip
100 100
100 100
100 100
100 100
'100 100
70 100
70 100
100 skip
100 100
73 100
sk¡p 100
skip 100
skip 100
skip '100

skip 70
100 100
75 100

0.05

100 100
'100 100
100 skip
100 skip
100 100
100 100
100 100
'100 100'100 72
100 100
100 !00
72 skip
100 100
100 100
skip 100
skip 80
skip 100
skip 100
sklp 72
100 100
80 27

0.05

24 45 62
3.75 1 .44

s2
2 ¿! 172

56 s2
ta1 1tE

31
1-¿2 ô55

'I

1

3
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Sequence longth - 1,000

Table 2'13: Random numbq test rcsults for the rule 90 and ls0 hybrid with various
s¡te spac¡ng values, "1.

S€quêncê longth = 10,000

TEst
môal

T=0 Y= \=210 100
T:3

Il.l 1
f=4 T= 5

ln 1nô
T=6't0 loô

,l

2
3
4
5
þ
7
I
I
10
'11

12
13
14
15
16
17
18
1g
20
21
22
,a

00
00
0 skip
0 skip
00
028
20 83
48 48
20 ¿18

65 48
37 65
0 skip

100 100
170

skip 20
skip 0
skip o
skip 0
sk¡p o
00
17 28

0.05

100 100
100 100
'100 skip
100 skip
100 100
'100 100
't 00 100
100 79
100 '100

100 100
100 t00
76 skip
100 '100

100 100
skip '100

skip 100
sk¡p '100

skip 100
skip 100
100 76
79 67

0.05

100 100
100 100
100 skip
100 skip
100 100'100 100
100 100
100 100
100 '100

85 100
s8 100
100 skip
100 76
100 8s
skip 100
skip 100
skip 100
skip 73
skip 76
100 100
100 58

0.05
F¡il

100 100
100 62
100 skip
100 sk¡p
100 100
41 100
'100 100
100 100
79 100
100 100
100 t00
100 skip
100 79
100 100
skip 41
skip 100
skip 79
skip 4'l
skip 62
100 100
62 80

0.05

100 100
100 100
70 sk¡p
70 sk¡p
70 100
100 100
77 100
77 '100

100 100
100 70
100 77
100 skip
100 t00
100 77
skip 77
skip 100
skip 72
skip 77
skip 77
77 100
42 81

o.12

72 100
'100 100
100 skip
100 skip
100 100
100 80
'100 100
100 100
100 63
100 100
'100 100
100 skip
100 100
100 100
skip 80
skip 100
skip 100
skip 100
skip 100
100 100
65 52

0.05

70 100
67 100
80 sk¡p
100 skip
50 100
100 't00
'100 100
100 100
67 100
67 100
100 100
100 skip
'100 100
70 100
skip 83
skip 83
skip 100
skip 100
skip 83
70 i00
100 47

0.05

16 17
1q A í¿ â

22
1.45 1 7A

33
1 57 212

24
,l

45
2.17 1.92

13
AAâ I 

'

43

73
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Sequence lêngth . 1,000

Table 2.14! Random number test results for the rule g0 and 150 hybrid with various
t¡me spacing values, þ.

T€8t
môd

B=o Ê=r
I

þ=2ln 1nn
Þ=3lô lôô 'l( =4 I

F=5 Þ=6

1

2
3
4
5
ti
7
ö
9

'10

11
12
13
14
15
16
17
'18

19
20
21
22

100 82
100 100
'100 skip
100 skip
100 '100

100 100
100 100
100 t00
68 100
100 100
100 100
68 skip
100 82
100 75
sk¡p 100
sk¡p 100
skip 100
skip 100
skip 100
'100 100
100 50

0.05
F¡il

'100 69
75 100
75 skip
100 skip
100 100
100 100
'100 100
100 100
100 100
100 100
100 100
81 skip
'100 100
100 100
skip 100
skip '100

skip 75
sk¡p '100

skip 100
'100 100
'100 100

0.05
Fâìl

440
00

100 skip
'100 skip
100 81
100 100
67 100
100 100
100 100
'100 100
100 '100

100 skip
100 100
100 100
skip 100
skip '100

skip 75
sk¡p 48
skip '19

250
19 s2

0.1s
F,ir

'100 68
100 68
100 skip
'100 sk¡p
n 100
100 100
100 't 00
100 100
100 100
68 100
100 100
'100 sk¡p
100 100
100 f00
skip 100
skip 100
skip 100
skip 100
sk¡p 72
100 72
6S 't 00

0.1 'l

100 82
100 100
100 skip
'100 sk¡p
100 100
100 '100

100 100
100 100
69 100
82 100
'100 100
82 skip
100 100
100 79
skip 69
skip 69
skip 100
skip 100
skip 100
82 79
70 18

0.05 o.20
El^^^

570
00
75 skip
'100 skip
'100 25
't 00 100
100 100
100 100
100 100
75 100
100 100
s7 skip
100 100
'f 00 100
skip 100
skip 100
sk¡p 100
skip 46
skip 71
100 25
57 2s

100 100
43 66'l0o skip
100 skip
100 100
100 100
72 100
'100 100
85 100
77 100
100 100
66 skip
100 100
100 100
skip 100
skip 100
skip 7l
skip 100
sklp 100
77 s1
77 62

0.11

24
,Â

34
164 211

22
À
67 22

^ 
a', 1t^

33
1.15 2.0¿

67
,70 Ê 

^a

42

Sequence.lêngth = 10,000

Test 0=o 0=110 f00
Þ=210 Iôô

Þ=3 F=4
ìl

Ê=5 Þ=6'10 100
1

2

4

b
7
I
9
10
1t
12
't3
14
15
16
17
18
'19

20
21
22
ca

00
00
0 skip
0 skip
00
o26
26 76
52 s2
26 52
76 52
50 76
0 skip

100 '100

240
skip 26
skip o
skip 0
skip 0
skip 0
00
24 26

0.05

00
00
0 skip
0 skip
00
28 22
28 78
o78
050
78 78
78 78
50 skip
100 100
00

skip 22
skip 0
skip 0
skip o
sk¡p o
220
o28

0.05 0.18

00
00
0 skip
0 skip
00
21 79
18 50
18 32
500
320
00
50 skip
s0 82
290
skip 0
skip 0
skip 0
skip 32
skip o
00
00

00
00
0 skip
0 skip
00
20 80
69 49
80 80
3t 80
60 80
80 80
31 skip
100 100
00

skip 40
skip 0
skip o
skip 20
skip 20
200
20 80

0.1 1

00
00
0 skip
0 skip
00
48 26
100 48
100 48
22 48
'100 48
74 22
0 skip

100 100
260
skip 48
skip 0
skip 0
skip 48
skip o
520
260

0.05

00
00
0 skip
0 skip
00
o47
00
00
023
00
00
52 skipn77
250
skip 0
skip 0
sklp 0
skip 0
skip 0
00
240

o.17 0.'11

00
00
0 skip
0 skip
00
26 54
46 74
46 100
26 80
20 100
74 100
28 skip
'100 100
00

skip 26
skip 0
skip 0
skip 52
skip 20
00
260

24
tq

'17

1¿
16

'13.2
16 18
132 1!\7

1815
't^l

12 13 10 16 16
1^t

17
IA Ã

13 12
121 10 0
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Flgure 2.39 . 420 time steps ¡n the stata - t¡me d¡agrum of a 500 s¡te rute g0 and 45
hybrid. Cyclic boundary conditions; ¡nit¡al¡sed with a single nonzero
s¡te.

length 16. Furthermore, for longer lengths, > 30, it would appear that even more con-
slraints are required. However, further computer simulat¡on shows that if other hybr¡d
constructions using these two cA rules are utilised then ¡t is possible to form a cellular
automaton w¡th maximal cycle length for any desired length. For example, consider a
hybrid of length 16. A maximal length cycle can be formed by simply twinning CA rule
150 at one end of the automaton (i.e. rather than having 90, 1S0, 90, 1SO, 90, 150,
' ' ' use 150, 150, 90, 150,90, 150, . ' '). A tabte indicating the hybrid construc-

t¡on necessary to achieve a cellular automaton with maximal cycle length is given in
Table 2.12.

The output of a single site in the rule g0 and 150 hybrid yields a b¡nary sequence
as shown in the rastêr scan of Fig.2.35. The rule 90 and 1S0 hybrid method makes
etfeclive use of the cellular automaton since all possible outputs are generated. This
hybrid is also somewhat autoplectic since a regular starting pattern eventually leads to
sequences which closely resemble a pseudorandom sequence. ln Fig.2.36 g00 time
steps in the state - time diagram of a 498 site rule 90 and 1S0 hybrid with a simple ini-
tial slate is shown. Note that the regular pattern dies out as the hybr¡d svolves in t¡me.
However, unlike CA rule 30, the rule g0 and 1S0 hybrid displays symmetry between
the left and right sides of the figure. Figurc 2.37 shows the evotution ot the rule go and
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Flgure 2,40 1 420 t¡me steps in the state - t¡me diagram of a 500 s¡te rute gO and 45
hybrid. Cyclic boundary cond¡t¡ons; nndom init¡al state.

150 hybrid w¡th a random init¡al statê and disptays its homoplectic properties. As in CA
rule 30, we note the presencs of triangular patterns in the state - time diagram.

A 30 bit implementation of this parlicular hybrid uses 1.0 x 106 pm2. This com-
pares to 1.1 x 106 p,mz lor CA rule 30 and 0.46 x 1Oo pm2 for a LFSR of the same
register length. The rule 90 and 150 hþrid is slighily smaller than the CA rule OO and
uses only 2.1 times the area of a parallel LFSR. As for CA rule 30, the nearest ne¡gh-
bour wiring leads to a much improved layout over the LFSR. The restriction on size is
a minor problem since the constraints do not prohibit a large set of sizes. The null
boundary conditions actually provide advantages over CA rule 30 since the first and
last sites in the rule 90 and 150 hybrid do not need to be placed in close proximity.
The boundary constraints also allow the rule 90 and 150 hybrid to operate at a higher
speed since no extended wiring is required.

Unlike CA rule 30, adjacent sites in the rule g0 and lSO hybr¡d are not correlated
in both time and space. This is evident in the auto and cross-correlation data of
Fig. 2.38. Thus, cross-correlation in the ru¡e g0 and 150 hybrid is sim¡lar to the cross-
correlation of the multipl¡cative congruential PRNG of Fig.2.19(b). However, the binary
sequênces produced by sites in the rule g0 and 1S0 hybrid fail some random number
tests because of distribution problems. The fundamental problem with the random-
ness of the sequence ¡s generation of more ones than zeros in one stage of the binary
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FlgUJe 2.41 z 420 time steps ¡n the state - time diagram oÍ a sol s¡te rute go anct 45
hybr¡d. Cyclic boundary condit¡ons; ¡nit¡al¡sed w¡th a singte nonzero
s¡te.

sequence, followed by another stage producing moro zeros than ones. This can be
problematic in some applications since the distribut¡on is not uniform in small local
sequences even though the entire cycle ¡s acceptable. This leads us to speculate that
ditferent one-d¡mensional hybrid cellular automata may exist which have maximal
length and a widely acceptable pseudorandom number sequence. However, there is
an overwhelming number of possible hybrid rules. Note that hybrid cellular automata
are not restricted to only two altemating cA rules but may includs other more compli-
cated combinations. Even ¡f we rêstrict the search to include only one-dimensional
nearest neighbour comb¡nations, there are (2s)n possibilit¡es for an n bit hybrid cellu-
lar automaton.

ln the caso of cA rule g0 generator time and s¡te spac¡ng were used ro remove
problems in the generated sequence. The same pr¡nciple can be applied to this hybrid.
ln Tables 2.13 and 2.14 the results of the random number tests for various values of
site spacing, y, and time spacing, p, are provided. Notice that a rule g0 and .lS0

hybrid with a spacing of y = 0 possesses little or no random properties because of the
distr¡but¡on problems mentioned previously but, when sing¡e spacing site ¡s introduced,
the sequences produced pass the tests as well as would be expected of sequences
produced by a known good PRNG. This behaviour extends over all the site spaced
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Flgure 2.42 t 420 tima steps ¡n the state - ilme d¡agram of a 501 site rulê g0 and 4s
hybrid. Cyclic boundary cond¡tions; random in¡t¡at state.

rule 90 and 150 hybrid based PRNGs. The only test which the 1= 1 generator fails is
the visual test, However, the other test metrics ar6 well satisfied. Therefore, for the
purposes of this work, a site spacing of T = 1 will be considered adequate for pseu-
dorandom sequence generation. lf this presents unsat¡sfactory results, then a spacing
oly=2 is recommended. Moreover, from the results of rable 2.i4 itwould seem that
lime spacing has absolutely no etfect on th€ randomness of the sequence from a rule
90 and 150 hybrid based PRNG. This would appear to be a r€sult of the inadequacy
of lime spacing to compensats for the bunched distr¡bulions of i's and 0's. A curious
result which is left as an open problem.

From Table 2. 13 we have established lhat a rule 90 and .150 hybrid with T = 1

will generate sequences which can be considered pseudorandom. This indicates that
a rule 90 and f50 hybrid can be used in all the configurations discussed for cA rule
30. However, care should be taken to ensure lhat the length and boundary restrictions
of the hybrid are obeyed. lmptementations using the rule go and lso hybrid rather
than cA rule 30 will use less area since the area of each cell in the rule 90 and .150

hybrid is smaller. The operational speed of the rule go and 1so hybrid is higher
because the null boundary conditions ensure lhat only nearest neighbour commun¡ca-
tions are used, unlike cA rule 30 where feedback may be n€cessary. This would seem
to lead to the conclusion that the rule g0 and 1SO hybrid w¡th y = 1 should be used
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Flgure 2,43 1 420 time steps in the state - t¡me diagram of a 500 s¡te ruto g0 and 45
hybtid. Nuil boundary conditíons; initialised with a s¡ngle nonzero site.

instead of CA ruls 30 with y = 4 because of ¡ts improved area and speed performance.
However, care should be exercised in the us€ of the rule 90 and 150 hybrid based
PRNGs since thsy have not been as carefully studied as the CA rule 30 based
PBNGS.

The major advantage of the rule g0 and 150 hybrid is that the sequence pro-
duced consists of one large cycle of length 2n - 1 and a one-cycle for the zero state,
To make a table and figure such as Table 2,8 and Fig.2.2B for lhe rule g0 and 1SO

hybrid is meaningless since the results are already known. However, it should be
emphasised that if a long cycle length is a crucial r€qu¡rement for a particular applica-
tion lhen the rule 90 and 150 hybrid with its maximal length cycle may be the ¡mpl€-
mentalion of choice,

2.4.6. Another Hybrld

Another hybrid which immediately springs to mind, since its two constituent rules
are the two aútoplectic CA rules discussed previously, is a combination of CA rules 30
and 45. Here we will add one difference in the construct¡on of the hybrid in that sites o
and 1 w¡ll have the same rule of implementation, all other sites will alternate as before.
The reason for this change is.to take advantage of CA rule 45's evolut¡on from a zero
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Flgure 2,44 1 420 t¡me steps ¡n the state - t¡me d¡agram ol a 500 s¡te rule g0 and 45
hybrid. Null boundary conditions; random in¡tial state.

state (i.e. we can build a register type PRNG which has a multistate cycle containing
the zero state). The resulting state - time diagrams are shown in Figs.2.39 and 2.40.
It should be noted that a complete examination of thê rule 30 and 4s hybrid without
lhe tw¡nning of rules at sites 0 and I shows no quantifiably difterent overall behaviour
from the rule 30 and 45 hybrid presented here.

The behav¡our of this hybrid dlffers greaily from all prevÌously discussed single
initialised site evolution. For the even length rule 30 and 45 hybrid shown in Fig. 2.39
it would appear that the implementation modification has induced a second starting
point at the lettmost site. Another difference is that the evolution from the center start-
¡ng point initially moves left and right but after a few time steps all leftward evolution
ceases and subsequenl evolution only proceeds to the r¡ght. At the induced starting
point therê is no lettward evolution but rather, what could bs termed a moving wall of
zeros and ones blocking leftward evolution. The triangular shapes are right triangles
rather than lhs ups¡de down equilale,al k¡angles which we have seen lhus far. The tri-
angles contain vertical lines of ones and zeros. Finally, the hor¡zontal stripes of cA
rule 45 have been replaced by vertical stÍ¡pes (i.e. a site is stay¡ng at value zero or
value one until the evolution of states reaches it). For odd size rule go and 4s hybrids
the behaviour is different from that for even lengths as well as being different from that
encountered thus far, as shown in Figs.2,41 and2.42. Notice that a secondary
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Flgure 2,45 : Cross-correlat¡on of s¡te values in a S0 s¡te rule gO and 45 hybtict.

starting point is again induced by the twinned rule at s¡tes O and i. The most
significant difference is the vertical height of the diagonal section of vertical stripes.
The ditference in behaviour between odd and even sized rule 30 and 45 hybrids ¡s not
unexpected since in the rule 90 and 150 hybrid we have restrictions on both lhê length
and boundary conditions required to achieve the dêsir€d behaviour. For th€ rule gO

and 150 hybrid the use of linear rules allows the boundary and length conditions to be
proofed algebraically [Pries1g86] but in the caso of the rule 30 and 45 hybrid the
chaotic nature of tho two rules make such proofs difficult, if not impossible. lt can be
easily seen lhat cycllc boundary conditions are required for proper behaviour by
observing Figs. 2,43 and 2.44 where the use of null boundary conditions induces self-
organising behaviour. ln order to guarantee some sort of desired behaviour ¡t may be
possible to find restriclions on the length experimentally although a number of tests
using different lengths, both odd and even, did not reveal fundamentally different pro-
perties.

A cause for concern lies in the cross-correlation data of Fig.2.4S. Here the
cross'correlation remains large for an êven longer period than for cA rule 4s (about l6
sites) and remains distinctly visible across lhe entire 30 bit hybrid. This would indicate
that a large site, or time, spacing would be required in order to remove bit correlation
in the pseudorandom word sequences. As with cA rule 4s, this suspicion is confirmed
in Tabf e 2.I 5 where the performance of this hybrid using site spacing on lhe random
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Sequence lsngth - 1,000

Table 2.15: Bandom number test results for the rule g0 and 4s hybrid with various
site spacing values, y.

Têst .y=0 T=110 100
't=2

llì I l= 3 ^l=4
ln lnô T=5) 100

1=6
1

2

4

6
7
I
I
'f0
11
12
't3
14
15
16
17
18
19
20

22

100 100
75 50
75 skip
72 skip
'100 100
100 100
100 100
100 100
100 100
100 100
100 100
75 skip
72 100
100 72
skip 100
skip 100
skip 75
sk¡p 100
skip 100
100 100
100 100

0.s2

100 100
100 100
100 sk¡p
100 skip
78 100
100 79
79 100
79 100
78 100
79 100
'100 '100

79 skip
100 76
100 100
skip 76
skip 79
skip 100
skip 100
skip 100
100 100
76 100

o.o2
Fail

100 76
100 100
100 skip
69 skip
100 100
100 100
'100 '100
'100 100
'100 '100

100 100
100 100
85 skip
100 100
100 70
sk¡p 100
skip 100
skip 39
skìp 100
skip 70
100 100
76 100

0.29
F.¡l

'100 78
100 100
100 skip
'f 00 skip
78 100
100 100
100 100
80 100
100 100
100 100
100 100
7s skip
100 100
100 100
skip 100
skip 75
skip 78
skip 100
sk¡p 100
100 80
42 75

0.38

78 78
100 100
100 skip
55 skip
100 100
100 100
100 65
100 78
100 78
80 43
80 78
100 skip
100 100
100 100
skip 100
skip 55
sk¡p 100
skip 100
skip 77
'100 100
100 s8

0.1s

100 '100
't00 100
100 skip
'100 sklp
79 100
100 79
100 100
100 100
100 100
100 J00
100 100
79 skip

't 00 100
100 68
skip 78
skip 100
skip 100
skip 100
skip 100
100 100
46 54

0.02

100 100
100 71
100 skip
100 skip
100 100'100 100
100 100
71 100
100 100
73 71
'100 '100

100 skip
100 100
100 100
skìp '100

sk¡p 100
skip 73
skip 71
sk¡p 100
100 7s
27 44

0.14

24
2Ê

44 64
Ea Òo

53 44 38
2.O7 3.90

3S
194 221

34

Soquencs length = 10,000

Test
môal

T=0 f ='l 'l=2
1n 1ôl't

T=3
I l'\ 1

f=4 T= 5 Y=ô
ìl

1

2
3
4
5

7
I
o

10
11
12
13
14
'15

16
17
18
19
20
2'l
22

59 100
100 0
100 skip
'100 skip
100 66
100 73
100 100
100 100
100 100
100 100
100 t00
73 skip
100 66
73 75
skip 100
skip 75
skip 100
skip 100
skip 100
100 66
86 75

0.52
Fâ¡l

100 100
'100 1 00
100 skip
100 sk¡p
73 100
'100 't 00
100 100
71 100
100 100
'100 100
100 100
'100 skip
100 100
100 100
skip 69
skip 71
skip 100
skip 100
skip 7'l
100 87
71 0

o.o2
FâiI

55 100
'100 100
100 skip
100 skip
100 100
70 100
100 't 00
100 100
100 't 00
100 100
100 100
'100 skip
'100 100
70 100
skip 100
skip 100
skip 100
skìp 100
sk¡p 100
100 100
55 100

0.29
E-ir

100 77
100 100
100 skip
100 sk¡p
n 100'100 '100

n 100
n 100
100 100
100 t00
'100 '100
'100 skip
'100 100
100 100
skip 100
skip 100
skÌp 100
skip 77
skip 61
100 77
770

0.38 0.18

73 100
100 100
73 skip
100 skip
73 100
100 75
'100 100
100 100
100 100
'100 100
100 100
7s skip
100 100
100 100
skip 100
skip 74
sk¡p 100
sk¡p 100
skip 100
'100 100
51 7S

100 100
46 79
78 skip
100 skip
100 '100

78 79
100 t00
100 67
100 67
76 67
100 100
'100 skip't00 100
'100 100
skip 100
skip '100

skip 100
skip 100
skip 100
76 78
78 100

0.02

47 100
100 100
79 skip
7e skip
100 100
100 100
100 100
100 100
79 100
100 100
100 100
'100 skip
100 t00
100 t00
skip 100
skip 75
skip 100
skip 57
skip 100
100 f00
78 68

0.14

24
tE E

6 4s Þz
15ô 2 nô

67
tot A^Þ t

25 44 42
zeo ,^ô
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S€quence length - 1,000

Table 2,16: Random number test rcsults for the rule 30 and 45 hybrid with various
lime spacing values, F.

Tesl Ê=o F=
l oo

þ=2 9=3 9=4 ß=s F=6
lô lôô

2

4
5
6
7
I
I
10
11
12
13
14
15
to
17
18
19
20
21
22
2

102 100
74 51
81 skip
77 skìp
102 100
'f 02 100
102 100
102 100
102 100
'100 100
100 100
79 skip
77 100
'100 n
skip 100
skip 100
skip 72
skip 100
skip 100
100 100
100 100

0.52
trâ il

100 100
100 100
79 skip
100 skip
100 100
100 100
'100 100
100 100
't 00 '100
'100 100
100 100
100 skip
100 100
100 100
skip 81
skip 100
skip 81
skip 100
sklp 68
100 60
100 79

0.02

98 98
98 62
98 skip
62 skip
47 98
98 98
98 98
9S 98
9S 98
98 98
79 98
100 skip
98 98
81 98
skip 9S
skip 98
skip 98
skip 98
skip 98
98 98
9S 83

0.29
Fâil

100 100
74 100

'f 00 skip
74 skip
100 100
81 100
'100 100
100 100
100 100'100 100
100 100
100 skip
100 100
100 100
skip '100

skip 100
skip 100
skip 81
skip 74
74 f00
'100 100

0.38
Fâil

9b 9b
96 75
96 skip
96 skip
74 100
75 96
96 96
96 96
96 6S
70 68
96 96
100 skip
96 96
96 96
skip 96
skip 68
skip 96
skip 96
skip 47
96 96
55 75

0.18

98 98
98 79
77 skip
98 skip
100 58
98 70
98 98
98 98
98 98
98 98
98 98
51 skìp
98 98
98 98
skip 98
skip 98
skip 9S
skip 98
skip 98
98 98
77 5'l

0.02

70 98
70 98
81 skip
81 skip
'1@ 100
98 9S
98 98
oa oo
oo ôa

98 98
98 98
100 sk¡p
98 98
98 98
skip 98
skip 9S
skip 98
skip 98
skip 98
55 72
98 72

0.14

24 44 35 16 18
â

5 3 1815 15 19 15 18
,Aô 1ÂÃ

Sequence longth -'10,000

Test
môd

=0
1

=1
100

Þ=3 =4I Þ=s F=6

1

2
3
4
5
6
7
I
I
10
tt
12
13
14
15
16
17
18
19
20

ta

50 100
100 0
100 skip
100 skip
100 77't00 66
100 100
'100 f 00
100 100
100 100
'f 00 't 00
66 skip
100 n
66 73
skip 100
skip 73
skip 1oo
skip 100
skip 100
100 77
84 73

0.52

73 74
73 73
'100 skìp
100 skìp
100 79
100 74
100 100
'100 100
100 100
100 100
100 100
73 skip
100 100
100 100
skip 73
skip 74
skip 73
skip 100
skip 52
73 79
s3 47

0.02

100 100
78 100
100 sk¡p
78 skip
72 72
100 100
100 7s
100 100
100 't 00
100 100
100 100
100 skip
100 100
100 100
skìp 77
skip 78
skip 77
skip 100
skip 73
100 72
100 51

o.29

'100 't00
79 100
100 skip
'100 skip
'100 100
100 100
'100 100
100 100
79 79
100 100
'100 76
100 skip
100 100
100 71
skip 76
skip 45
skip 100
skip 74
skip 74
74 100
47 55

0.38
t.¡t

100 100
51 81
70 skìp
100 skìp
70 100
100 100
100 100
100 100
100 100
100 100
70 '100

61 skip
100 81
100 80
sk¡p 100
skip 100
sk¡p 100
skip 100
sk¡p 100
70 100
100 50

0.18

76 100
74 100
100 skip
81 skip
100 100
100 8f
100 76
100 100
100 78
81 I00
100 100
'100 skip
't 00 100
69 100
skip 100
sk¡p 100
skip 100
skip '100

skip 69
100 100
s7 55

o.o2

85 85
100 100
'100 skip
85 skip
49 7s
100 100
100 100
100 100
'100 100
100 100
100 100
'100 sk¡p
100 100
66 100
skip 1oo
skip 74
skip 100
skip 100
skip 100
85 74
74 7s

0.14
Þ^^^

bÃ 65 4
t72

5
122

45
3.21 4.50

63
âôq ,ña

2
t rt'7

3 43
2 56 217
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Table 2,17: Cycles lengths for various size rule 30 and 45 hybrids and the lract¡on of
all states leading to the longest cycle.

number tests is g¡ven. Table 2.15 shows that despite the good randomness properties
at small site spacings the randomness of the rule 30 and 45 hybr¡d based PRNG does
not rapidly improve with site spacing. Unl¡ke the rule 90 and 150 hybrid, the use of
time spacing yields improvements in the randomness of the pseudorandom sequences
as evidenced in Table 2.16, but as with site spacing, the improvement is very slow. An
important point to note is thal when no site, or time, spacing is used the performance
of the rule 30 and 45 hybrid based PRNG is better than that of the CA rule 30 or 45
based PRNGs.

lf we consider the cycle lengths of this hybrid, g¡ven in fable 2.17 and the plot of
Fi1.2.46, a similar difficully as w¡th the CA rule 45 arises (i.e. no one dominant long
cycle and a lower percentage of states leading to ths longest cycle). However, the
length of the longest cycle is now comparable to that produced by CA rule 30, so the
cycle length properties of this hybrid consist of the poor qualities of its two const¡tuent
rules. This compares to the rule g0 and 150 hybrid where one maximal length cycle is
used. However, the rule 30 and 45 hybrid possesses one very unique property over all
the cellular automata discussed thus far in that the zero state is not a one or two
cycle. For example, consider Fi}.2.47 where the rule 30 and 45 hybrid was init¡atised
wilh a zero state. Notice that what was previously termed the induced secondary start-
¡ng point now acts as a primary starting point and eventually leads lo random
behaviour even though the evolut¡on is only to the right.

ln compáring the two hybr¡ds we see that nearly equivalent randomness can be
shown on the basis of the random number tests. However, the bit sequence correla-
tion is much higher in the rule 30 and 45 hybrid in add¡tion to possessing smailer

N Cycles Ftac. londesl
4
5
Þ

7
I
9
10
11

12
13
14
15
16
17
18
19

20

1x7, 1x1
1x4
1x14
1x13, 1x6, 1x1
1x35, 1x30, 1x8, 1x1
lx15
1x335, 1x45, 1x16, 1x13
1x27, 1x22, 1x14, 1x1
1x311,1x1 11,1x101,3x12, 1x5, 1x1
1x281,1x2æ, 1x231 , 1x'I5
1x543, 1x100, 1x61,1x32, 1xI6, 1x5
1x1211, 1x993, f x15, 1x1
1x4962, 1x'|090, 1x1060, 1x10, 1x8, 1x1
1x6183, 1x1147, 1x98, 1x19, lx10
1x4454, 1x4174,1x1318, 1x644, 1x90, 1x56, 1x14, 1x7, 1x5
1x4834, 1x4795, 1x2156, 1x2042,1x1755, 1x544, 1x235, 1x140, 1x50,
1x22, 1x18, 1x7, 1x6, 1x1
1x11413, 1x3309, 1x1723, 1x1331,1x1246, 1x270, 1x57,1x48, 1x5, 1x1

0.94
1.00
1.00
0,94
0.34
1.00
0.93
0.97
0.53
0.71
0.68
0.77
0.67
0.56
0.08

0.07
0.03
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'ç\ %
"o -¿
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o.80

o.60

o.40

o.20

o.oo
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Flgure 2,46 : Cycle length versus prcbability ol entering a cycte of that length for
various rule 30 and 45 hybrids with cyclic boundary conditions. See ap-
pendix B for complete tables.

cycles and slightly larger area for implementation. Therefore, the rute g0 and .lS0

hybr¡d is presently considered to be the hybrid of cho¡ce except in cases where the
ability of the rule 30 and 45 hybrid to include the zero state in a long cycle outweighs
these considerations.

2.4,7. More Compllcated Cellular Automata

ln the previous sections we have considered only one-dimensional elementary
cellular automata and elementary hybrids. The purpose of this sect¡on ¡s to give a brief
introduction to more compl¡cated cellular automata so that the reader may appreciate
their potential {or applications other lhan those discussed in this woÍk.

The first added complication will be to consider simple linear arrays, as before,
except that the value emanating from each site is no longer restr¡cted to modulo 2 (i.e.
b¡nary) values but rather, can have k possible values. ln this case the number of

"à. -t Q'

c,Fêt- -.-^v
cÞ "o'oo .à

'oo

,H,I
å 

ffi._
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Flgurc 2,47 t. 800 l¡me steps ¡n the state - time diagram of a 500 site rule g0 and 45
hybrid, Cyclic boundary cond¡tions; zerc initial state.
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possible cA rules, and thus the number of dlfferent cellu¡ar automata of type modulo
k, increases to

kk" e.4o)
for nearest neighbour cellular automata. obviously this number increases very raoidlv
with k. For k = 3 there are 33" = 109 possible rules and lor k = 4,44a = lgis+. 1¡¡,
large number of poss¡bilit¡es indicates the potential of cellular automata and also one
of its main weaknesses. That is, there are limi ess possibilities for cA implementat¡ons
but, at the same time, it requires more than lhe life time of the universe to investigate
all the possibilities. ln this work modulo k > 2 cellular automata are not considered but
lhe reader should be aware of their ex¡stence. lt is possible that this form of CA may
have applications in some of the computational physics problems considered in
Chapter 3.

As yet, we have only considered cellular automata where each sitê is solely a
function of itself and the left and right neighbours, i.e.

ai (f+1) =O[",-,1r¡, a¡(t), a¡*1(r) 
]

We can define a more general one-dimensional neighbourhood as

ar(f+1) =O[",-,1r¡, a¡-,-t|), ". a¡(t) ..., a,*,Ø)

Thereforb, we now consider r neighbours to the left and right or 2r + 1 neighbours in
all. Now ther6 are

kk2r+1 e.4g)
possible rules for modulo k cellular automata. For k = 2 and a neighbourhood of
r=2 we have 23 =4x10e possible CA rules, if k=3 this increases to
33u = I x 10115. As before, lhe number of possible cellular automata bocomes
etfectively innumerable and so, ¡mpossible to thoroughly investigate. A problem that
occurs when the neighbourhood is increased is greater wiring overhead. This would
probably not be a problem ,lor r = 2 neighbourhoods but for larger neighbourhoods the
area penalty could start to become signilicant. lt is poss¡ble that the increased inter-
dependence of this type of cA could lead to better pseudorandom number generation
since one would expect bit sequence correlat¡ons to be reduced by the larger neigh-
bour set. some preliminary invest¡gations wers carried out by the author but no dis-
tinctly better PRNGs were found. However, a thorough search was not carried out and
it is certainly possible that a noticeably better cA-based pRNGs over those with a
neighbourhood of r = 1 exist.

A final complication concerns the add¡tion of more than one dimension. For
example, a two-dimens¡onal grid, such as that of Fig. 2.1, could be easily fashioned.
The general ploblem of two-d¡mensional cellular automata has not been as thoroughly
studied as that of one-dimensional celtular automata although some particu¡ar two-
dimensional cellular automata, such as the so called game of Life [Berlekampl gg2],

[Gardne11971] have had the¡r evo¡utions very thoroughly studied. There are two main

(2.41)

(2.42)

87



Chapter 2 Parallel Pseudorandom Number Generation in VLSI

nêighbourhoods for two-dimensional cellular automata. One consists ot a five-
nelghbout sguare where top, bottom, lêft, and right neighbours are used. The other
consists of a nine-nelghbour square where th6 top left and right and bottom left and
righl squares are added lo ths previous neighbourhood lpackard198Sb]. These two
ne¡ghbourhoods are often referred to as the von Neumann and Moore neighbour-
hoods, respectively. lt is also possible to definê hexagonal and triangular lattices as
the neighbourhood but thess have been even loss extensively investigated than the
square von Neumann and Moore neighbourhoods. The number of possible two-
dimensional cellular automata is, in general,

¡rk' e.44)
where r ¡s the number of sites in the neighbourhood (remember to include a s¡te as its
own neighbour) and k is thê modulus. lt can be seen that even for the small von Nsu-
mann neighbourhood the number of possible CA rules becomes prohibitively large for
a thorough investigation (= 4 x 10e). As for the one-dimensional cellular automata, no
direct mathematical techniques exist and so, two-dimensional cellular automata can
only be studied by observing their evolution over fime. This can take a prohibitively
long time. ln [Packard1985b] a special purpose CA simutation engine floffot¡1gg4l,
fioffolil 987] is used to make an inilial study of two-dimensional cellular automata.
Packard's study of two-dimensional cellular automata has shown that there is a
correspondence between the four global classes of behaviour in lhe one-dimensional
case and global behaviour in the two-dimensional case. This means that the results of
[Packard1985b] indicate that there exists in two-dimensional cellular automata the
equivalent of one-dimens¡onal class 3 behaviour. These are important results, for if
such two-dimensional cel¡ular automata exist, then it may be possible to find a two-
dimensional cellular autmaton which could be imbedded in the mesh layouts under
consideration. This could avoid some of the problems found in imbedding one-
dimensional cellular automata into the mesh architecture. llowever, much rema¡ns to
be investigated before such two-dimensional cellular automata could be proposed.

2.5, SOME CONCLUSIONS

Thê random number test results of some of the var¡ous generators discussed in
th¡s chapter are summarised in Table 2.18. Here only CA rule gO and the rule g0 and
150 hybrid are considered since the behaviour of the other CA-based pRNGs have
similar or worse randomness character¡stics. As êxpected, the algorithmic generators
produce sequences which pass lhe given random number tests and yield an evenly
weighted average tailure of about 1 .1 to 1 .S and a worst case pertormance of 4.0 to
7.0. The serial-in/parallel-out LFSR-based pRNG produces sequences which provide
comparable pseudorandomness. As stated previously, the parallel LFSR produces
s€quences which are woefully inadequate as pseudorandom sequences. What ¡s
surprising is the performance of the CA rule 30 based PRNG with y = 0. This genera-
tor' while certainly not as random as the algorithmic pRNGs, provides sequences
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which do not consislently perform poorly on any one given test. This indicatês that the
sequences may be useful in some applicalions where only a fairly random sequence is
required rather than a completely random sequence. Remember that the rule g0 and
45 hybrid yields better performance ¡f no site spacing is used. CA rule gO with T = 4
and lhe rule g0 and 150 hþrid wilh y = 1 give comparable results to the algor¡thm¡c
PRNGS and so, we can consider lhe sequences produced by these generators to be
pseudorandom. Previously it was stated that from the tables we are Tslo confident that
less than 10% of the sequences produced by the pRNGs under consideration here
produce nonpseudorandom sequences. To furlher increase this confidence it is essen-
tial that we run a large number of sequences through thê random number tests. This
was done for CA rule 30 with T = 4 and the rule g0 and 1S0 hybrid with y = 1 so that,
using the analysis of Appendix A, we are 97.5% conf ident lhat less than 1% of the
sequences produced will not be pseudorandom.

Another measure to use in comparing PRNGS is tho area used per bit of pseu-
dorandom number as given in Table 2.19. Nolice that of the good generators th€ smal-
lsst area per bit measure is given by the 1= 1 rule g0 and 150 hybrid. This table indi-
cates that this is the optimal structure. How€veÍ, as ment¡oned previously, care should
be exercised'in its use since structur€s of this type have only recenlly been proposed
and are still being fully investigated. The next smallest area per b¡t measure of a good
CA-based generator is achieved by CA rule 30 with y = 4. The only other pseudoran-
dom number generat¡on techniques which provide comparabls area per bit measures
to the cellular automata based generators are those us¡ng the LFSR. We can immedi-
ately rule out the parallel LFSR technique with no wait states since it produces decid-
edly nonrandom sequenc€s. However, the quality of randomness from both lhe serial-
in/parallel-out mêthod and the parallel LFSR with þ = n ls similar to that of the CA-
based PRNGs. The ser¡al-in/parallel-out method consumes only slighily more area
than the rule 90 and f 50 hybrid with y = I but it does not possess the same layout
advantages as the rule 90 and 150 hybrid. This is because the LFSR cannot be laid
0ut in a regular fashion since lhe feedback taps are register length dependent. Th¡s
causes problems as the length of the LFSR is changed to reflect changes in the archi-
tecture. ln addition, the layout must providÊ for the irregular placement of the
exclus¡ve'or gales ¡n the LFSR. Finally, the LFSR requires global communication since
a feedback path ex¡sts between the beginning and the end of the LFSR. Therefore, the
rule 90 and 150 hybrid with y = 1 and CA rule 30 with l = 4 based pRNcs shoutd be
preferred over the serial-in/parallel-out LFSR based PRNG.

The parallel LFSR w¡th Ê = n uses about a quarter of the area of the rul€ 90 and
150 hybrid with y = 1 , but possessos the layout probtems of the LFSB. More impor-
tantly, pseudorandom numbers appear only every n clock cycles giving them a very
poor time performance in comparison to lhe CA-based pRNGs. For example, if the
word size of lhe pseudorandom numbers is g0 bits then the parallel LFSR with p = ¿
will use a factor of 30 more time to generate each pseudorandom number. Therefore,
the Af measure of the parallel LFSR with B = n is much worse than lhe CA-based
generators if the word size is appreciable. lt can be shown that equ¡valent Ar metrics
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mod

Bor
Muller

Mult
Cong

10 't00

Addlllvs
Feôdbsd(
10 100

S€ ¡l.ln
Parall€l.out
256 I

Psrsllol
LFSR

Rule 30
CAy=0'tô rm

Rule 30
CA1=4
10 100

Hybrld
CAT=l
l0 't 00

'|

2
3
4

7
I

10
1l
12
13
14
15
16
17
18
19
20

tt

93 97
89 89
89 skjp
86 sk¡p
95 99
96 93
93 97
96 9S
94 98
93 97

92 skip
98 99
95 94
skip 89
skip 88
skip 91
skip 94
skip 94
94 89
75 66

0.0s
Pass

91 95
93 94
93 skip
90 skip

94 96
93 96
95 t00
94 97
94 93
98 96
92 skip
98 99
94 92
skip 92
skip 90
skip 8t
skip 94
skip 9'l
89 93
78 65

0.09
Pâss

0.12

93 91

94 86
94 sk¡p
88 skip
93 95
94 95
95 98
91 96
99 96
97 96

93 skip
9S 97
97 96
skip 90
sk¡p 93
skip 98
skip 91

skip 91

88 81

70 70

100 76
100 76
100 skip
100 skip
70 100
100 75
100 f00
79 100
100 100
75 't00

100 100
100 skip
100 't00

100 100
skp 70
skip 79
skip 100
sk¡p 100
skp 100
79 76
70 30

0.05

78 100
00
0 sk¡p
0 skip

100 100
22 45
33 78
67 22
100 78
67 22
67 22
n Bkip
100 45
78 3(l
skip 22
sk¡p 22
skip 0
skip 67
skip 55
22 55
00

1.0
Fa¡l

100 100
100 72
71 skip
100 skip
72 100
100 100
100 100
't00 t00
100 100
72 100
100 100
100 skip
100 100
100 100
sk¡p 100
skip 100
sKp 100
sk¡p ,l00

ôk¡p 100
100 72
28 74

0.50
Fåil

100 100
100 71
100 6k¡p
81 skip
100 100
100 100
38 100
100 100
100 t00
100 100
'100 100
100 sk¡p
100 100
100 100
skip 100
skip 100
sk¡p 100
skip 1m
6kip 100
100 t00
81 g1

0.07

57 76
100 100
100 skjp
81 skjp
57 100
'100 r 00
100 100
100 100
't00 100
100 77
100 100
81 skp
100 100
f00 f00
sk¡p '100

skip 100
skip 100
sk¡p 100
skip 100
æ 100
53 t00

0.05

24 55
1.25 1.29

75
1.17 1.42

65
1.21 1.41

24
127 21

11 16
9.89 12,3

54
3.56 2.82

21
1.00 0.¿8

62
gÁ8 1 ¿,7

Chapter 2 Parallel Pseudorandom Number Generation in VLSI

Sequence lêngth 1,000

Sequence longth 10,000

Tsst
mod

Box
Muller

t0 lm

Mult
Cong

lo tôô

Addlllve
Feedbsck
10 100

S€rlEl.ln
Psrallol.out
256 I

Parsll€l
LFSR

t0 100

Rule 30
CAT=0
lo l fYì

Rule 30
CA1=4
f0 t00

Hybrld
CAT=l
'10 t 00

1

2
3
4
5
6
7
I

10
11

12
13
14
15
16
17
18
19
20
21

96 93
97 85
94 skip
91 sk¡p
96 93
95 97
91 99
93 96
9'r 96

93 skip
99 94
95 95
skip s7
skip 90
skip A7
skip 89
skip 88
94 89
67 74

0.03
Pâss

96 95
89 93
92 skip
97 skip
97 93
96 97
96 98
98 97
96 98
93 95
96 9S
90 skip
98 99
96 95
skip 86
skìp 90
sk¡p 88
skip 88
skip 92
93 91
67 66

0.03' Pas6

90 9t
93 95
90 skip
89 skip
93 94
96 96
It 98
92 92
93 f00
95 97
97 98
96 skip

91 93
skip 91
skip 95
skip 88
sk¡p 89
skip 88
92 88
63 68

0.03

100 75
100 100
100 skip
100 skip
100 100
100 74
lm 100
100 74
100 r00
100 100
r00 100
100 skip
78 74
100 100
sk¡p 74
skip 100
skip 73
skip 75
skip 100
100 100
73 78

0.05

100 100
00
0 skip
0 skip

100 100
00
00
00
00
00
00

100 sk¡p
100 100
00

skip 0
skip 0
6kip 0
skip 0
skip 0
00
00

1.0
Fail

81 gf
8t 0
48 skip
tm skip
100 100
100 t00
100 100
71 t00
t00 100
8t 81

100 79
79 skip
100 t00
't00 71

skp 81

skip lOO
skip 100
sk¡p 100
sk¡p 100
79 50
060

0,50
Fâ¡l

't00 80
50 100
100 sk¡p
100 skip
100 100
100 100
80 lm
100 70
100 100
100 100
100 100
100 skjp
80 100
100 100
skip 100
skip 100
skip 100
skip 80
skip 75
100 80
25 80

0.07

't00 100
't00 100
'100 sk¡p
100 skp
100 't00

100 100
100 't00

100 82
100 'r00

100 100
100 100
76 skip
100 100
100 100
skip 100
skip f00
skip 100
skip 100
sk¡p 100
100 76
82 72

0.05
Fail

24 45
1.18 f .58

4
1Á1f .10

57
1.46 1.44

11
0.49 2.03

14 16
14.0 t6.o

a7
4.80 4.97

34
1.65 1.35

22
1.42 1.70

90

Table 2,18: Various pseudorandom numbù geneatots and their test resutts
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Generator Area per blta Ouallty of Randomness

Box Muller

Multiplicative Congruential
Additive Feedback

Serial-in Parallsl-out LFSR

Parallel LFSR

CA Rule 30 1= ¡
CA Rule 30 1= 4
CA Rule 45 1= a

Rule 90 and 150 Hybrid y= 0

Rule 90 and 150 Hybrid y = 1

Rule 30 and 45 Hybrid y = 0

N/A

745

436

75

15

36
180

43

33
66

40

Goodd

Goodd
Goodd
Goodd
Poorb

Farr-

Goodd
Fair-

Fairc

Goodd
Farr-

t in 1os pm2.
b Totally inadequatê randomness properties due to correlalion.
c Good for use in some applications.
d Good for use in all ápplications.

Table 2,19: Area used pq PRNG bit by various pseudorandom numbet gênerators.

for the parallel LFSR with Ê = n, and for the rule g0 and 150 hybrid with ^l= 1, arc
achieved at a word size of 5 bits, and for CA rule 30 with 1= 4, at a word size of 13

bits. The final choice of which PRNG to use is dependent on the possible size of lhe
PRNG and the importance of the time delay between pseudorandom numbers. For
the fine-grained processor arch¡tectures proposed in this work it would appear that
CA-basêd PRNGs are preferable because of layout, time delay, and quality of random
numbers.

A final consideration lies in the cycle length of the sequences produced by the
PRNG. Algorithmic generators, such as the R250 additive feedback pRNG, have very
large cycle lengths 12250¡ since it is assumed that necessary resources, such as data
memory, are available. However, we have shown that the overhead of supplying
these resources ¡s too great for use in the architectures considered here. Therefore,
our choices are again reduced to considering only the CA and LFSR-based pRNGs. lf
we considêr CA rule 30 then the cycle lengths of the LFSR-based generators is much
greater (2ru versus 2'6 ¡ which means that a longer CA rule 30 based pRNG is
required (1/ 0.6 = 1.6 times longer) to achieve similar cycle length. This is a major
deterrent to using CA rule 30 based PRNGS. However, lhe cycle length of CA rule 45
and the rule 90 and 150 hybrid is similar to that of the LFSR. Note that for applications
which require word sizes of > 30 bits and good quality randomness (i.e. site spacing),
if a CA rule 30 based PRNG is used the site spacing requirement w¡ll force us to use
a cellular automaton which is at least 120 bits long and so we w¡ll have a cycle length
ol 272 which should be long enough for most applications. Therefore, cycle length is
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not a great conceÍn when using CA-based PRNGs sincê sutficient cycle length for
most applications can bo easily obtained.
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Chapter 3
Parallel Architectures for

Statistical Mechanics

3,1. INTRODUCTION

The emergence of special-purpose computers which exploit the propert¡es of
very-large-scale integration (VLSI) as an implementation medium has been most obvi-
ous in digital signal processing applications [Denyerl 98S], [Kung 1 985]. Among the
most successful approaches are the so-called systolic arrays, which recognise the
importance of local communications and high degr€es of concurrency lKunglggo].
systolic arrays have primarily been employed in the implementation of delerministic
algor¡thms which take the form of malrix-vector or matrix-matr¡x multiplicat¡ons (1-D or
2-D systolic arrays respectively). These arrays are a special case of cêllular automata
lwolfram1983l, [Burks1970], [Coddl968] in which the nodes are of intermediate com-
plexity between fine-grained cellular automata and microprocessor arrays lseitzl gg4].

ln this chapter, we will also employ cellular automata arrays, but the tocus is
upon nondetermin¡stic algor¡thms, specifically those commonly used in stat¡stical
mechanics. One of the important ingredients in this approach is the etficient implemen-
tation ot distributed pseudorandom number generation over the array. ln th¡s approach
ws w¡ll use the concepts developed in Chapter 2 based on the recent discovery that
effectively random behaviour may be induced in elemenlary or primitive one-
dimensional (l -D) cellular automata arrays even though the local logical rules are
determ¡nistic [WolÍramf 984a], [Wolkaml986a].

ln this chapter novel architectures for two common statistical mechanical models,
(percolat¡on and lsing) will be proposed. These models can be adapted to solve a
number of parallel nondeterministic problems, employing algorithms such as parallel
Monte Carlo simulations [Wallqvist1987], simulated annealing, both serial IKirkpa-
trick1983l [Vecchi1983] and parallel [Darema'1987a] [DarematggTb], and phase transi-
tion problems [Stanleyl 971].

3.2, THE PERCOLATION MODEL

The percolation model was first formally defined and stud¡ed in lBroadbentl 957],
although it had been previously stud¡ed for many years under different names. The
subject was first reviewed by [Frisch1963]. since then a number of review articles
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have appeared study¡ng various aspects of the percoration moder. [shante197l] stu-
died the generar percorat¡on probrem and rerated percoration to seveiar different physi_
cal processes. [Essamf972] studied the combinatoriar aspects of rhe probrem as we
as the behaviour near the percoration threshord and lKirkpatr¡ck1 9731 ;tudied the reta-
tionship between percorat¡on theory and erectricar tiansport in random resistor net_
works.

The fundamentar ideas behind percoration theory are actualy quite simpre. Herewe will use a typical explanation such as that in [Thouless197g]. Consider ån inf inite
solid with a random disk¡but¡on of equar sized hotes. Let the presence of a hore in the
sorid be governed by a probabirity, p. Therefore, we expect the density of hores to be
equal to p ' For smal varues of p most hores wi be isorated, witn onry a te* t otes
combining ro form a cruster ot hores. As p is increased the number oi crusters and
the¡r size grows. This continues untir at some varue of p an ¡nf¡nite cruster is formed.
At rhis varue of p, usualy termed the criticar probab¡r¡ty or percoration threshord, pc, apath is suddenry formed between opposite faces of thê sorid. rt is now possibre fðr aliquid to percotate throughout the sorid from one side to another. rf p is stiil further
increased the sorid wi eventua|y no ronger be connected to itserf and wi fafl intopieces. An example is shown in Fig. 3.1 for a square two-dimensional lattice. ln
Fig. 3.1(a) we see that lor p <. pc the holes are isolated with only a few small clus-
ters; for p -< pc (Fig. 3.1(b)) rhê number and size of the crusters has grown but stiil nopath exists from top to bottom or left to right. However, when p > p" (FiS. g. j (c)) apath exists from top to bottom suggesting that, in an infinite latt¡ce,.ñ inr¡i¡t" .irír,has been formed. Note that some smaller finite clusters st¡ll exist. For p > pc
(Fig. 3.1(d)) the mater¡ar consists armost sorery of hores and has been broken up intó a
number of smaller pieces.

Formarry, the criticar probabirity is def¡ned as the rargest varue of p for which theprobability of forming an infinite cluster is zero. This only applies to an ¡nf¡nite rattice.

:Abgve 
we considered siþ percoration since p govérned the existence of a hore in thelatt¡ce. lt is also possibre to consider bond percoration where ws assign p to gov;rn

the existence of a bond between various hores, or s¡tes, in the rattice. Anothei com-m.n version of the percoration moder is site-bond percoration where p and g govern
the probability of a site or bond respectivery. The varue of p" is dependent on tlne rar
tice type and dimension. There is arso a weak dependence of pc,, the s¡te probabirity
for a percoration probabirity. of 1t2 0n a f inite rattice, upon the rattice size. in Fig. 3.2we see a plot of the probabir¡ty of percoration versus site probabiriry for various- size
square lartices. A tabre showing varues of pc tor various infinite, or 

"i 
r.rrt u.rvl.iò.,

latt¡ces for both site and bond percolation is liven in Table 3.1.

A naturar question which might arise at this po¡nt is, that wh¡re there is a certain
abstract beauiy of the percoration moder, what is the pract¡car significance of this
moder. rn fact, percoration is a very important moder since it is appricabre to a widevariely of physical phenomena. The most important property of the percolation modellies in the sharp phase trans¡tion from f¡nite to infinite cruster which occurs with
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(b)

Flgure 3.1 : Two-ciimensional ittustßtion of percotation on a .00 x 100 square ¡at-
. t¡ce, pc = 0.5928. Solid shown in black, holes shown ¡n grey, the larg_

est cluster of hotes ¡s hightighted in white. (a) p = O.Zg. (b) p = 0.555.
(c)p =o.ao.@)p =o.zs.
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0.80

0.70

0.50 0.52 0.54 0.56 0.59 0.60 0.62 0,64 0.66 0.68 0,70
p

Flgure 3.2 : Probability of percotation, P'(p,L) vercus site probabitity, p, for vari-
ous latt¡ce sizes. Data po¡nls are 2x2 (enpty boxes, l0O0O lr¡ats pet
point), 4x4 (filled boxes, 10000 tt¡ats pet point), BxA (empty circtes,
10000 triats per po¡nt), l6xt6 (illed c¡rcles, lO00O trials per po¡nt),
32x32 (empty d¡amonds, 10000 tt¡ats per point), 64x64 (f¡lted d¡a-
monds, 5000 trials per point), lpexl2A (enpty up tr¡angles, 5000 trials
per po¡nt), 256x256 (t¡iled up ttiangtes, 2000 trials pet po¡nt), St2x5t2
(empty down triangtes, S00 tt¡als pet point), 1024x1024 (fiiled down tri-
angles, 100 tr¡als per po¡nt), approx¡mat¡on to ¡nf¡n¡te lattice ( crosses ).

increasing p. This property makes it possible to use the percolation model as an ¡llus-
trat¡ve tool to help explain a number of phase trans¡lion phenomena such as those
shown in Table 3.2.

ln the study of phase transitions or critical phenomena, the use of cr¡tical
exponents has been most helpful in describing the behaviour at the critical point.
Therefore, if we are to use the percolation model to descr¡be other phase trans¡tion
phenomena we must first extract the crit¡cal exponents for its own behaviour. The main
technique of f¡nding the critical exponents is via computer simulat¡on, although for cer-
tain lattices and dimensions, exact results are known. Here we will temporarily restrict
ourselves to site percolation on two-dimensional square lattice problems, Note that
critical exponents generally depend only upon the d¡mension of the system, or latt¡ce,
under study and not on the particular lattice being used [Stanley1971].

0.60

I o.so

o-
ô- o.¿o

0.10

0.00
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Lattlce Slte Bond Dlmenslon

Honeycomb 0.6962 0.65271 2
Square 0.59275 0.50000 2

Triangular 0.50000 0.34729 2
Diamond 0.428 0.388 3

Simple Cubic 0.31 17 0.2492 3
Body Centered Cubic 0.245 0.1785 3
Face Centered Cubic 0.198 0.119 3

Table 3.1 : Percolation thresholds lor var¡ous two and threedimensionat lattices.
Taken frcm [Staufferl 985]

Table 3.2: Some appl¡cations of the petcotation modet. After [ZaltenlgBS]

3,2,1, Flndlng the crltlcal exponents

Bofore one can find the cr¡tical exponents of any phase transition phenomena,
one must f irst establish the cr¡tical point; for the percolation model this is the value of
the percolation threshold, pc. ln addition one must also settle on a means of analysis.
Here we will usê computer simulation since the obj€ctive of this chapter ¡s to descr¡be
computer architectures which will speed up such simulations. All results shown in this
section are from actual simulations performed on a suN3-160 engineering workstation
using an additive feedback pseudorandom number generator like that described in
Chapter 2. Later, results will be shown which are derived from the proposed architec-
tures. The percolation model is easy to simulate since one merely assigns each site in
the Iattice as occupied, or ununoccupied, with probability, p, and then performs the

Phenomena or System Transltlon
Flow of liquid ¡n porous medium Local/extended wetting
Spread of disease in a population ContainmenUepidemic
Communication or resistor networks Disconnected/connected
Conductor-insu lator compos¡te mater¡als Normal/superconducting
Ðiscontinuous metal f¡lms lnsulator//metal
Stochastic star formation in spiral galaxies Nonpropagation/propagation
Quarks in nuclear matter ConlinemenUnonconfinement
Thin helium f¡lms on surfaces Normal/superfluid
Metal-atom dispersions in insulators lnsulator/metal
Dilute magnets Para,/ferromagnet
Polymer gelation, vulcanizat¡on Liqu¡d/gel
The glass transition liquid/glass
Mobilityedgeinamorphoussemiconductors Localized/extendedstates
Variable-range hopping in amorphous semiconductors Resistor-network
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Jr.r,
U)
(t)
I2.01

0.00

3.52

3.02

'1 .5'l

1.01

0,50

0.00 0.30 0.60 0.90 f,20 1.51 t.81 2.11 2.41 2.71 3.01

log L

Flgure 3.3 : Size of S (L ) at pc versus L .

desired measurement (e.9. size of largest cluster, ¡s ther€ a spann¡ng cluster?, etc... ).
Many of the two-dimensional problems discussed here have exact analytic solutions
[Essam1978] but are nevertheless employed in percolation simulations since they are
the easiest to understand. one should also note that many percolation problems, when
considered ¡n a higher dimensionality than two can only be analysed via computer
simulat¡on. we now proceed to show how three of the s¡x common crit¡cal exponents
for the percolation model can be found. The solution techniques are taken from [Kirk-
patrickl 9781 and [Sur1 976].

The percolation threshold, using the computer simulations described above, was
found to be 0.5916 t 0.0022. This is very close to other published values of O.S92g
lstauffer1985l.

The first critical exponent we will find describes the rate of growlh of the largest
cluster formed at p = pc as a function of lattice size. This is known as scaling theory.
Here we define s(L) to be the size of the largest cluster at the percolation threshold
as a function of lattice size, L.3'1 Nole that since we can simulate only finite lattices
the percolation threshold, pc', is d¡fferent from our reference point pc for the inf¡nite
lattice. [Margolina1983] has shown that S(L)-Llld. Therefore, if we ptot tog S(L)
-Tl ffere ¿ Oenotes the length. in one. dim.ension"of lhe lattice, i.e. the number
of sites in a two-dimensional lätt¡ce of size L, is Lz. - -
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0.00 0.30 0.60 0.90 .t.20 1.51 1.8f 2.11 2.41 2,71 3.0.1

log L

Flgure 3.4 | Log-tog ptot or 92.$.L) versus L.
dp

versus log L as in Fig.3.3 then l/c is the slope. lt is known from an exact solution of
scaling theory that 1/s =91148 = 1.89 [Stauffer19B5]. S¡mulat¡ons on the SUN3-.I60
yielded a value of lla = 1.798 + 0.093.

The second cr¡tical exponent is more diff icult to find. Recall that p,(p,L ) is the
probability lhat percolation has occuned in a lattice of size L with a site probability of
p. A plot of P'@,L) versus p was shown earl¡er in Fig. 9.2. We then use the scaling
relation due to [Reynoldsl978] which shows that

1.68

o_E 1.47

J^ t.¿e
o-

$ '.ot
õ)I 0.s4

0.63

0.21

0.00

dP'(p,L\ 
= ,1*

dp

Finally, we ptot ep versus L on a log-log plot as in Fig. g.4 and extract theop
value of v from the inverse of the slope. The simulations performed here determined
that v = 1 .439 + 0.015 as compared to the generally accepted value of I .g5S

IKlein 1 978].

The last critical exponent which we will find concerns ths percentage of sites in
the largest cluster as a function of p. Define

R (p ,L) = number of sites in largest cluster
numbeirilsitelinlneifiþ (3'2)

(3.1 )
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o.70

0.30 0.40 0.50

p

Flgure 3.5 : R (p ,L) versus p for various latt¡ce sizes, data po¡nts are as in
Fig. 3.2.

ln Fig.3.5 we show Æ(p,L) versus p for various lattice sizes. Notice that as the lat-
tice size, L , increases the transition near pô becomes more abrupt. The transition is
rounded because of finite sampling effects. Here we use the rounding due to finite lat-
tice size to extract the final critical exponent. A scaling relation due to [Fisher1971]
states that

0.60

,-r 0.50

d,
E 0.40

0.20

0.10

R(p,L)- L-þN xtlr-+) (3.3)

where, X1 is an appropriate scaling function of L1,(p-p")/p". Therefore, if we plot
R(p,L) LÞn versus X1(l1ru(p-p")tp") for various vatues of L, the value of p will
correspond to the best fit of the curves near the percolation threshold. ln Fig. 9.6 a
least squares f¡t 3 2 to the curves of Fig. 3.5 yields a value of Þ = O.1aa as compared
to the accepted value of 0.14 lzallen1983].

Other common quantities in the percolation model for which crítical exponents
are often calculated are site correlat¡on or spanning length (the maximum separation of
J-Z Note that lhe curves are fit on a finite ranoe of D surroundino the Dercolâ-
tion threshold. Regions outside this area are -not irícluded in thõ curve fitting
pr0cess.
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-169.77 -141.13 -112.49 ,83.85 -55.2.t_ _26.58 2.06 30.70 59.34 87.98 116.6r

Lt'"(p - p" )/p"

Flgure 3,6 i Best fit near p, of R(p,L) LþN versus XíL1tu(p-pàtp") for various
Iattice sizes.

two sites in a cluster), pair connectedness (the probability that two sites separated by
a given distance are members of the same cluster), and the conductivity (the conduc-
tance across a corresponding random resislor network). Here we have not considered
these other quantit¡es, but the three quantities which we do study are representat¡ve of
the cafculations which must be carried out in order to sludy the percolation model. lt is
not expected that any uncalculaled critical exponent will deviate lurther from its known,
or expected, value than those critical exponents which ars calculated in this work.

3,2.2. Proposed Percolatlon Archttecture

The computational work in any percolation simulation on a typical serial computer
consists of lhe actual generation of the percolation lattice with site probabi¡ity p and
the calculation of the appropr¡ate quantity of interest. To simulate percolation on a laþ
tice we must generate a pseudorandom number, for each site with a given p, and
occupy the site accordingly. This operation is repeated over the entire N = L2 sites of
the lattice. Therefore, we require at least O(N) time to generate a single copy of the
lattice. For the three cr¡t¡cal exponents above we must calculate the probability of per-
colation and the size of the largest cluster at any probability p. To calculate whether
the lattice has a percolating cluster and the size of the largest cluster requires no more
than o(N2¡ time using the Hoshen and Kopelman cluster labelling argorithm

> 1.25
è.
J
11.04
ci
cc 0.84

0.63
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IHoshen 1 976].

An obvious queslion to ask is which aspects of the percolation model simulation
can be accomplished in parallel. while the portions of the algorithm which can be
parallelised are fairly obvious3'3 the best method to implement such a parallel com-
puter is not. we note that the larger the lattice which can be simulated the greater the
interest in the simulation. The largest simulation which has presently been carr¡ed out
used a 160,000 x 160,000 square tattice [RapaportigSS].

The remaining problem is lhe calculation of the critical exponents. lt is possible to
build a special purpose computer which can both simulate the system and calculate
the critical exponents for lhe percolation model. However, this is not necessarily the
most expedient solution. The disadvantages of such an approach st€m from the fact
lhat the actual calculation of the cr¡tical exponents requirês data memory and floating
po¡nt calculations. However, it is well understood by anyone who has attempted to
simulate the percolation model that very litile time is actually spent calculating the
desìred exponents. Most of the computer t¡me ¡s used in generating new lattice
configurations and group¡ng the occupied sites into clusters. Furthermore, operations
using the clusters are generally very rap¡d given that s¡te clustering has already
occurred. Therefore, l¡ttle is to be gained by building a computer dedicated solely to
the calculation of critical exponents. Much can however be gained by building a dev¡ce
which can generate new lattices and form clusters qu¡ckly. This device would act as a
special purpose coprocessot to a general purpose host compuler and because of the
nature of its specialised lask could be made to operale very efficiently. Therefore, we
will consider an implementation where a host compuler will determine the actual criti-
cal exponents and do operations on clusters generated by a special purpose percola-
tion coprocessor.

ln order to speed the percolat¡on simulation the arch¡têcture of Fig 3.7 is pro-
posed' Each processor consists simply of a pseudorandom number generator
(PRNG)' comparator, and storage element, or site latch. Here we use the cA rure go
based PRNG discussed in chapter 2 with the cA-based PRNG connected so that ¡t
forms a long one-dimensional chain over the entire system. The site probability, p, is
made available to each comparator by a system bus and the pseudorandom number
from the PRNG is compared to it. Finally, the s¡te tatch is turned high ( > p ) or
low (s p) accordingly. Each site in the lattice is assigned a unique processor. There-
fore, after each clock cycle we have defined a new percolalion lattice, as compared to
at least o (N) time for a serial updating technique. ln addition, the time for a single
clock cycle is quite small (< SOnsec,). Each simulation step on the serial computei is
comparatively large (> Spsec.) for a single site. ln addition of course, to update the
entire latt¡ce the serial method must be applied N times; the present approach only
once. The overall .speed improvement is approximately 100N. lt should be noted that
the size of the. lattice which can be simulated is restr¡cted by the number of processing_-;-ã-

" ' Occupying sites based on the s¡te probability.
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site
probability

Figure 3,7 : Basic percolat¡on simulat¡on arch¡tecture.
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Flgure 3.8 : CMOS layout ol 16 bit percolation site processot.

sites available which is in turn dependent on the size of each processor.

The regularity of processing sites in such a percolat¡on processor makes ¡t an
ideal candidate for vLSt implementation. The size of such a processor ¡s directly
dependent on register size. However, we can make estimates based on a fixed regis-
ter size and scale up or down as appropriate for d¡ff erent register sizes. A i 6 bit site
processor ¡s pictured in Fig.3.8. The size of this processor is 0.838 mm2 using the
technology dêscr¡bed in chapter 2. Therefore it is possible to have 25 such processors
simulat¡ng only a 5 x 5 lattics on a single 4.8 x 4.9 mm. die.3.4 lt is possible to imple-
menl the site processors in such a way as to be able to combine chips to form larger
lattices. However, it is probably not realistic to consider employing a unique processor
for each site in thê lattice, if lattices larger than 1 ooo x 1000 are to be simulated.
Therefore, we will restr¡ct ourselves for the time be¡ng to lattices of L < 1000, i.e.
those which have a unique processor for each site in the lattice. Later we w¡ll return to
the problem of lattices larger than 1 000 x 1000.

It is possible to use lhe proposed percolat¡on architecture solely to dramatically
increase the speed of updat¡ng the lattice. However, if we could calculate the size of
the clusters and whether or not the largest cluster spans the lattice we would speed
lhe simulat¡on even more dramatically. lt is possible to quickly group the occupied
s¡tes of the latt¡ce into clusters if we superimpose the multiprocessor architecture of
Fig. 3'9 onto the architecture of Fig. 3.7. Here we assign each processor a unique
cluster number corresponding to its location in the lattice. For example, in Fig.3.9 we
have assigned processors in the first row to have values o to L - 1, the second row
processors are assigned numbers L lo 2L - 1, and so on. This percotation computer
operates as follows. First we util¡se lhe underly¡ng architecture of Fig. g.7 to decide
which sites are occupied. occupied sites take lheir assigned cluster value while
---ã--t-

,ll T¡g. technology (3 ¡rm CMOS) avaitabte to us is not state of the art. tm_prementat¡on using much more advanced technoloqv would dramaticallv in-crease rne numÞer ot site processors per chip. For eiâmple, on 1um techñolo_gy usrng a lu x t0 mm die one could easily þlace over 1ó00 site þrocessors. 
-
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Flgure 3.9 t Architecture to group occupied sites ¡nto ctusteß.
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Flgure 3.10 i Operction of percolat¡on computer on an g x g square |attice; (a) g x g
square latt¡ce w¡th p = 0.5313. (b) ¡nit¡al¡sed laflice w¡th clustet
number assignment. (c) cluster numbeß after one update. (d) linal
cl uste t nu mbe ti ng assig nm ent.

unoccupied sites take on the value of oo, or some olher appropriately large number.
we then proceed to synchronously update all sites accord¡ng to the following algo-
rithm. lf a site is occupied, the next cluster value is selected as the lowest of its four
neighbouring cluster values (remember we are presen y consider¡ng only square two-
dimensional lattices) and ¡tself. For example, in Fig 3.io(a) we see an g x 8 lattice w¡th
p = 0,5313, Fig. 3.1 0(b) shows the same lattice initialised using the above cluster
numbering assignment and in Fig. 3.10(c) we see the cluster numbers one synchro-
nous update later. The synchronous updating procedure cont¡nues to take place until
all sites belonging to the same cluster have had their c¡uster numbers merged
together. The worst case time for this procedure would be L (L - 1)/2.rhe final clus-
ter numbering.conf iguration for Fig.3.10(a) is shown in Fig.3.10(d).

Determining. whether or not the largest cluster is infinite is qu¡te easy if we realise
that a spanning cluster must be present both at the top and bottom of the lattice.
Therefore, if any sites on the bottom of the lattice have a final cluster number less than
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Flgure 3.'l'f i Arch¡tecture to group sites into clusters fot row at a t¡me tatt¡ce genera-
t¡on.

L then we havê a spanning cluster. Therefore, for a i000 x looo lattice we can group
the occupied sites into clusters and determine ¡f a spanning cluster exists in at most
500,000 update steps. Measurements of the circuit shown in Fig.3.B have shown the
operating speed to be at least 20 MHz. Thus, in about 2s milliseconds we can gen-
erate a 1000 x 1000 lattice, group the occupied sites into clusters, and determine if a
spanning cluster is present.

To determine the size of the largest cluster is a much more difficult problem.
However, ¡t is possible for the host computer to offload the final cluster numbers from

Lowest
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three
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the percoration computer and count rhe number of sites in each cruster. Th¡s remains asignificant enhancement over seriar computer simuration techniques since much of thet¡me is spent grouping occupied sites into crusters. other carcurations for quantitiessuch as pair connectedness and site correration are arso significanfly faster since thecrusters have arready been formed. Finary, *a noia tn"t is arso possibre to prace pro_cessing elements which can. perform ctuster sizinj calculations into the architecture.However' such pfocessing erements 
"r. 

.onr¡o.i"ity more compre*, especiary sincethey require data memory, so they are not considerej in this work.

3.2.3. Slmulaflng Lârger Lattlces

As ment¡oned above we must presentry restrict the rattice size to approximatery'I 000 x 1000 when considering an architeótrr. *r,Lr. there is a unique processorcorresponding to each rattice srte. For rarger ratticês we can assign the processors ofthe percoration computer to correspond tJ ,niqr" JtÀa on each row, o¡ rows, of therattice' Therefore, we now consider percoration prootems on ratt¡ces up to 1,000,000 x1'000,000 sites. To determine whether eacn s¡te on ã row of the rattice is occupied wêcan use the same technique as discussed above with respect to Fig.3.7. Grouping thes¡tes into crusters is not poss.ibre w¡thout keeping án .nt¡r" history of the ratt¡ce. How_ever, it is possibre to dramaticaly assist rhe hosi computer. Here we use the schemeof Fig. 3.1 1 which keeps a copy of the previous lattiåe row. As before, we assign aunique óruster number to each site of the rattice. Note that we must assign d¡fferentnumbsrs to each row. Each site processor no, Jeterr¡nea a new cruster numberbased on the value of its upper, right, and left neighbours. Th¡s process continues fora maximum of ¿ updates unt¡r a, sites have been- grouped into their respective crus_ters. The cruster numbers are rhen offroaded into t¡reiost computer and another row isdetermined and grouped into clusters. nn .r.Àpi. of this process is shown inFig' 3'12 which imprements th¡s technique on tt"láti¡." of Fig.3.10. rn Fig.3.r2(a) wesee the second row after it has been initiarised. ¡¡gri" s.rzr¡l shows rhe second rowcruster numbers after afl sites have oeen grorpeï into crusters. Note rhat crusternumbers 2 and 13 refer ro rhe..same cruster ùut tie percoration computer cannot knowthis yet since the merging of these wo c¡usters occli, rror tne bottom up. This pro-cess c.nrinues untir in Fig' 3' 12(c) we see updating of row 5 where it is discoveredthat crusters 2 and 13 are the same cruster. As this rãw is offroaded the host processormust note that crusters 2 and 13 are the same cruster. Finaty, *.... r.ïrõ.i.ìäiolthe full lattice as it would be received and stored by the host processor.

3,2.4, Slmutailon Results for the percolailon Computer

. simurations of the percoration computer were carr¡ed out and y¡erded the forow-ing resurts' The þercoration threshord *.r rorno-toi.'o.ssrs f o.oo23. The rate ofincrease of S(¿) is shown in Fig. O.13, from which we can see that1/c = r'809 r 0'096. The probabirity ot jercotaiion versus s¡te probabirity using thetjÉ.,.(Fli.i computer is shown in Fig. 3.14. rigure ã.rs shows a tog_tog ptot or

dr- versus ¿, from which we can calculate thatv= l.434to.o3o. Figure3.16
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Flgure 3.12 t operation of rcw at a t¡me percotat¡on computq on lattice of Fig. s.l\;
(a) ¡n¡tial¡sed second row. (b) second row after cluster-numbe ng com_
pleted. (c) fifth row after cluster-numbeñng completed. (d) fully
cluster-numbered lattice.
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Flgure 3.14 t Probability of percolal¡on veßus site probab¡t¡ty fot various lattice sizes
using the percolat¡on computet. Data points are 2x2 (f¡tted down tr¡an-
gles, 10000 tr¡als pq po¡nt), 4x4 (enpty down tr¡angtes, 10000 tr¡ats
per point), 8x8 (itted up triangles, 10000 triats per po¡nt), t6xt6 (empty
up triangles, 10000 triats pet point),32x82 (iiled diamonds, tOO0O tri-
als per po¡nt), 64x64 (empty diamonds, 5000 triats pet po¡nt), l2ïxt28
(illed c¡rcles, 5000 tt¡als per po¡nt),2S6XAS6 (empty circtes,2000 tilals
per point), 512x512 (tiiled boxes, 500 tr¡ats per point), 1024x1024
(empty boxes, 100 trials per point).

shows the the fraction of all occupied sites which are in the largest cluster versus site
probability. Using the scaling relation of Eqn. g.3, the best fit is for F = 0.145, as
shown in Fig. 3.17. The results are summarlsed in Table S.3. There is a small
discrepancy between the results which have been calculated here and those which
have been published elsewhere. However, there is close agreement between the
results fo. the percolat¡on computer and th€ standard percolat¡on simulalion using the
additive feedback PRNG. Therefore, we can conclude that the parallel percolat¡on
computer yields the same cr¡tical exponents as a standard serial percolation simula-
tion. The discrepancies between the critical exponents calculated here and those pub-
lished elsewhere may be due to several factors such as smaller register size (here 16
bits was used) and a smaller number of samples. However, it is encouraging that per-
colation simulations using the proposed percolation computer and a standard serial
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Flgure 3.15 | Log-log ptot or Ë!*Ð versus L using the percotation computer.dp

computer method yielded the same results.

ln Chapter 2 it was indicated that site spacing coutd be used to improve the qual_
¡ty of a cA rule 30 based PRNG. Therefore, it would be natural to test the effects of
site spacing on the crit¡cal exponent values produced by the percolation computer.
simulation shows that there is no appreciable change in crilical exponent value ¡f site
spacing is used. Thus, it would appear that it is possible to construct the percolation
computer w¡thout site spacing in lhe PRNG. No tests, other than very cursory ones,
were made using the other CA-based pRNGs discussed in Chapter 2.

It would be much more expensive in terms of both area and time to use any
PRNG other than the cA based ones. ln addition, one can see that, because of the
vast number of PRNGs required, the topological regular¡ty of the CA approach pro_
vides a very clear advanlage. Finally we note that it has been found that standard
LFSR-based and some multiplicat¡ve congruential pRNGs are inadequate for Monte
carlo simulations [Parisi1985] sincê they do not produce correct critical exponents. we
observe that the critical exponents calculated using the cA-based percolation com-
puter provided reasonably correct values.
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Flgure 3.'16 t R(p,L) versus p for various tatt¡ce sizes using percolat¡on computer.

3.2.5, Uslng Renormallsatlon on the Percolaflon Computer

Extensions to the percolat¡on arch¡tecture could include the use of renormalisation
group principles [wilson l975] to extrapolate the infinite lattice cr¡tical exponents. The
basic concepts required to implement renormalisation as applied to percolation are
qu¡te easy. Essentially we slowly integrate out small scale fluctuations and obtain infor-
mation on successively largsr and larger scales. Th¡s is done by replacing a small
block of sites on the lattice w¡th one site representing gross, or avêrage, behaviour.
For example, in majority rule renormalisation, a block of B x S sites is represented by
one occupied site if the majority of sites are occupied and an unoccupied site if the
majority of sites aro not occupied. This procedure is repeated many times progres-
sively reducing lhe lattice size by a factor of / for each renormalisat¡on, where / is the
size of the block of sites being replaced by a single site. The result is that for p > 0.5
the new pl representing, the density on the renormafised latticê, moves quickly
towards a value of 1.0, while for p < 0.5 the new p1 moves towards 0.0. However, for
P = 0.5 the new pl will also equal 0.5. This cr¡tical value ot p = 0.5 derives simply
from the major¡ty renormalisation rule and is not associated w¡th the critical percolation
value. The critical exponents are extracted from the rate at which the value of p1
moves towards 1 .0 or 0.0. The problem here is that for many lattices simple majority
rule renormalisation is not adequate to extrapolate infinite lattice behaviour. ln the
above example we saw that for p > 0.5 the value of p1 moved quickly lowards .1.0.
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Flgure 3.17 : Best Íit of curves fron Fig. 3.16 using the scal¡ng rclation of Eqn. 3.3.

Exponent CA OthersSUN Reference

Pc
1la

p

0.5916 r 0.0022 0.5915 f0.0023 0.5928
1.798f0.093 1.800r0.096 1.89
'I .439 + 0.015 1 .434 * 0.030 I .35
0.144 0.145 0.14

lStaufferl9SSl
[Staufferl985]
[Zallen1983]
lzallen 1 9831

Table 3.3: Percolation c t¡cal exponents, SUN relers to standard seriat computer
percolat¡on simulations done lor th¡s work, CA refers to s¡mulation rcsults
for parcolation computer, others relers to reTesentat¡ve results which has
been reported elsewhere.

Thus, for P = Pc = 0.5928 on the square lattice pl will move towards 1.0 and it is not
possible to extract critical behaviour since p1 is not equal to pc. Therefore, another
renormalisation rule is requ¡red if we are to study critical behaviour for site percolation
on a square lattice using renormalisation techniques. For example, [Kirkpatrickl 977]
studied renormalisation on a square lattice by replacing a block of sites with an occu-
pied s¡te only if a spanning cluster, or connecting path, existed in the block. [Rey-
nolds l9TTl and later in [Reynolds1978] utilised a position-space renormalisation pro-
csdure whereby a block of 2d sites was replaced by a single s¡te and d bonds,
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Flgure 3.18 i Renomal¡sation arch¡tecturc operating on 2 x 2 blocks using a rcnoh
malisation rule due to IK¡rkpatr¡ck|977].
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requiring that the d bonds reflect the connectivity of the block which it is replacing.

ln any case we see that construction of hardware to implement any renormalisa-
tion procedure, other than the simple majority rule case, requires significant processor
resources. An example of a simple renormalisation group architecture is shown in
Fig.3.18. Here we ¡mplement the renormalisation rule of [Kirþatrick1977]. For simpli-
city we use a block size o'l 2 x 2. To determine whether an inf¡nite cluster exists in a
2 x 2 block merely requires checking if each row has an occupied site. A renormalised
site represent¡ng sites (x,y), (x+1 ,y), (x+1 ,y+1|, and (x,y+1) in the old lattice witt
be stored in position (x12,y12) in the new L12x L/2lattice, necessitating a shift to the
left and up by x 12 and y 12 site processors. This will require addit¡onal shifting
hardware at each sitê processor. Finally, we assign cluster numbers to each occupied
site in the new lattice and invoke the site clustering process. As largor blocks or more
complicated renormalisation rules are considered the associated computing hardware
becomes considerably more complex. Thus, a percolation computer implementing
renormal¡sation will not be further considered in this work. However, we note that if a
percolation computer is to be constructed which itself calculates lhe critical exponents,
it is probably best to use a renormalisation approach to quickly reduce the amount of
cluster data which must be processed and offloaded to lhe host computer.

Another extension to the percolation computer is the inclusion of diff€rent latt¡ces
and dimensions other than the two-dimensional square lattice which we consldered
here. To include other lattice types, for example the triangular or honeycomb lattices,
one need merely increase the connectivity of the site processors to account for the
increased number of neighbours. Otherwise the method of operation is precisely the
same. Similarly for higher d¡mensions one need merely increase the neighbour con-
nections at each s¡te processor to account for the increased neighbour set. No simula-
tions were performed on percolation operating on ditferent lattice types or higher
dimensions since it is not expected that the correctness of the percolation computer
will be affected by having more neighbours. We do not expect lhe computer time for
simulations on the percolation computer to ¡ncrease dramatically as the neighbour set
increases.

3,3. THE ISING MODEL

We now turn our attention to the equilibrium stat¡stical mechanics of d-
dimensional ¡sing models. The lsing model is perhaps the mosl well known of statisti-
cal mechanical models which exhibit a phase transition. lt was first inkoduced by lsing
in 1925 flsing19251.4 

5 The model was in¡tially used to descr¡be the behaviour of a fer-
romagnet near the Cur¡e temperature.4 6 However, it was quickly found that the lsing

-5 Sornet¡res ihe model is referred to as lhe Lenz-lsino model since lhe ac-
tual model wãs first introduced bv Lenz flenz1920l in 1920. However. he did
not calculate any properties of thê model and qene'ral oractice has beôome to
refer to the model as just the lsing model.
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Flgufe 3.19 | Magnet¡sation versus kTlJ on a 64 x 64 twod¡mens¡onal square ta:r
tice.

model could be used to describe and calculate many olher physical properties. Today
the lsing model is considered to be a paradigm for a wide variety of modêl systems ¡n

computational statistical mechanics [Binderl979], [Vichniac19g4], [Kirkpatr¡ck.t9g5]; it
is of central importance in the study of universality properties in critical phenomena,
and in general of phase transitions in statistical-mechanical systems.

The essential concept of the lsing model is the descr¡pt¡on of the interaction of a
set of atomic magnetic moments, or spins, ananged on a regular feromagnetic lattice
in d-dimensions. Here we define a positive, or up, spin to have the value of +1 and a
negative, or down, spin to have value -1 . The energy of two neighbouring spins is -J
if they are ¡n the sams direction and +J if thê spins are pointing in opposite directions,
where J is a coupling constant. Therefore, the energy added to the total system
energy by two adjacent latlice s¡tes is -J s¡s/, where s¡ represents the spin at lattice
site i. ln a system which ¡s subjected to a positive magnet¡c field, positive defined as
po¡nting up, each spin will have an additional energy of +H for down spins and -H for
----;;-

4 o At the Cur¡e temperature a ferromagnet exhibits a phase transition from a
paramagnet to a ferromagnet, much like the condensatiôn of steam into water
at the boiling po¡nt, For example, an iron ferromagnet is no longer magnetic at
temperatures greater than 1043.K.

0.50

ì o.oo
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r¡0 ¿0 ?.$

KT/J

(b)

Flgure 3.20 i Normal¡sed energy vercus kTlJ for (a) periodic boundary cond¡t¡ons.
(b) frce boundary condit¡ons. Data points are 4 x 4 (enpty boxes),
I x I (filled boxes), 16 x 16 (enpty circles), 32 x 32 (lilled c¡rctes), 64
x 64 (empty diamonds).

up spins. lnteraction between spins only occurs between nearest neighbours on the
lattice which gives rise to a Hamiltonian, or total system onergy of

E=-Jl.s's'-H!s'
-tti,ji

where the sum over i,7 includes neighbouring spins only.

The probability of finding adjacent lattice sites in a state lslsi] is given by a
Boltzmann distribution,

p(s¡s¡) = 7-1 
"-Ksis¡ 

(3.s)

-Iwhere K = ---v---, k is Boltzmann's constanl, f is the absolute temperature, and lhe
K.I

normalisation factor Z = 2eK + 2e-K. fherelore, at h¡gh temperatures the value of K
is small and the alignment of spins is arbitrary while for lower temperatures K is much
larger and the spins tend to align. When we consider a system with N sp¡ns the

1.0 1J0 ¿0 ?.$ tó r$ {¡0 {$ 5.00 t!0 [s t.0

KT/J

(a)

(3.4)

¡.00
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Flgure 3,21 | Specilic heat veßus kTlJ for various size latt¡ces w¡th periodic boun-
dary condit¡ons.
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(3.6)

(3.7)

probability of state S = [s1, s2, . . . sry] can be shown to be

-E
P(S) = 7-1¿ kr

where the normalisation lactor Z is now the trace sum over all states S, i.e.

z = TrÞ) eE
For J positive and d22, a phase transition occurs at a temperature f=Ic ,the critical
temperature (also called the Curie temperature), below which all the spins in the latt¡ce
tend to align w¡th one another.

We define the spontaneous magnet¡sation of the lattice to be
i l=^/

'=iP.', ' (3.8)

(3.e)

118

The state of the lattice is constantly changing in lime as thermal effects cause spins to
change direction. For an arbitrary temperature T, the equilibr¡um system has an
expected magnetisation, or net spin value, <M>, given by

a¡¡> = \.M¡ P(S¡)
t
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2.35

1tL

Flgure 3.22 i Extnct¡on of kT"(*)lJ using the specif¡c heat. The data po¡nts give
the temperaturc for the maximum spec¡fíc heat.

where the summation extends over all possible configurations of spins of the lattice,
and M; is thê magnetisation of lattice state S;. Therefore, to calculate the expect€d
magnetisation, or any other observable, of a lattice ws must determine the probability
over all states of the lattice.

For a system with only two spins it is easy to calculate the total system energy
since only four states must be considered. However, the problem explodes as the lat-
tice size increases so that even for a simple two-dimensional 10 x l0 lattice there are
2100 possible configurations to consider. Therefore, one cannot calculate all the state
probabilities tor even small systems. One approach that immediately comes to mind is
to chose states at random and then estimate the sum. However, we know from ther-
modynamic considerations that the distribution of states will be sharply peaked around
the minimum energy configuration [Landau1968]. Therefore, there are many states
which are highly improbable and contribute little to the dynamics of the system. Using
random sampl¡ng will consider all states with equal probability and so we w¡ll consider
many states which do not make a significant contribut¡on to the system. Thus, for large
N this method is not very eff icient.

A more eff icient technique involves an importance sampling lMetropolis1953] of
conf igurations. This is performed by Monte Carlo methods lBinderl984j, according to
their total energy which dêtermines their probability of occurrence, or weighting in
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Flgure 3,23 : Finite-size scaling plot of the specific heat of latt¡ces with periodic
boundary cond¡tions. Here e = (f - Ic ("")) / T"(*) lor f > Ic (.")
and e= (I"(-) - T) I Tc@t for T < Tcþ). Data po¡nts tor
f > Ic ("") (ight hand cuNes) and T < Tc@) @ft hand curues) tine
up with slope -1.0.

Eqn. 3.9.

The mean value of an observable L at the temperature T is given by

è!o
o)
-9

-L!

DLu" r'
a¿;' = Ê-

>P kr
(3.10)

s'
where ihe sum need only be taken over the importance sample S'of configurations
and the subscript pe S' refers to the specific sample.

A procedure to determine a representative set of conf¡gurations is given by the
Metropolis algorithm lMetropolis1953]. ln two dimensions the algorithm begins at the
upper-left corrier of the 2-D array and progressively updates the spins as it proceeds
to the bottom-r¡ght corner. At any given stage in the process, the new spin value is
decided stochastically; the local transition energy ÀE for spin s¡ -+ -s¡ is determined.
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FlEure 3.24 i <lv't> versus kTlJ.for various lattice sizes. Notice the overturn¡ng of the
Iattice especially for small lattice s¡zes.

The corresponding probabi¡ity of flipping the spin, e^E/kr is then compared to a ran-
dom number, x, uniformly distributed between O and 1, 1¡ y a saErkr then the spin is
flipped, otherwise it is left alone lMetropolis 1953]. This method has been employed by
many workers, for example [Pawley1984], lB¡nderl980], [Landau1980], lstoil1973],
[Landau1976b] and in some cases special-purpose processors incorporating pipelining
have been constructed for lsing model calculations IPearson1983a], IBarberlggS],
IHoogland1983].

As with the percolation model critical exponents are used to descr¡be the
behaviour of the lsing model at the critical point. The method of analysis will be via
computer simulation using the Monte Carlo method described above. Here we will
again restrict our attention to the two-dimens¡onal lsing model, even though much is
known analyt¡cally about its physical propert¡es lonsager1944], lMcooy1973]. We
note that when higher dimensions are considered, Monte Carlo simulation of the lattice
is generally the only way of calculating the crilical exponents.

3,3.1. Flndlng the Crltlcal Exponents

First we must establish the critical point. For the lsing model this corresponds to
the Curie temperature of the ferromagnet under study or the temperature at which the
magnetisation of the ferromagnet undergoes a phase transition from ferro- to
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Flgure 3.25 t <l Ul> versus kTlJ for various lattice sizes.

paramagnetic such as that shown in Fig 3.19 for a 64 x 64 square lattice. lt is known
for infinile two-dimensional square lattices that kTcþ)/J = 2.269. However, for lat-
tices of size L, kTcUlJ may be substant¡ally different. Ail results shown in this sec-
tion are from actual Monte Carlo simulations of the lsing model acting on various size
square lattices. As before, results will first be shown for simulations using the SUN3-
1ô0 PRNG; later results w¡ll be shown which are derived from the proposed lsing
model architectures.

For the lsing model there are generally five quantities and their associated critical
exponents of interest. Here we w¡ll consider four of these quantities. The expected
magnet¡sation and total system energy were discussed above. Two other add¡tional
thermodynamic quantities, specific heat and susceptibil¡ty are also generally extracted
from the lsing model. The specific heat, C, is defined as

^aE'= ðr
and the suscept¡bility, X as

where H is a uniform magnetic field. These tvvo quantities can be calculated based on
fluctuations in the energy and the spontaneous magnetisation respectively as

0.50

ðM*ðH

(3.1 1)

(3.r 2)
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Flgure 3.26 t Finite-size scal¡ng plot of the magnetisat¡on w¡th periodic boundary
conditions. We deline e as ¡n F¡9. 3.23. Data poínts lor f < Ic ("")
(right hand cuNes) l¡ne up with slope 0.125 and lor T > Tr(*) (left
hand curves) l¡ne up with slope -0.875.

ILandau1968]

(3.13)

(3.14)

è-¡

o)o

c =# 1.e2,-.r'r] =#
x= # l.r', -.ur") = ffi

The Monte Carlo simulation implemented here closely follows that of

[Landau1976a] and [Binder1984]. Both period¡c and free boundary conditions are pos-
sible. The simulation runs from low temperature , kT lJ < kTrlJ lo high temperature
kTlJ > kTclJ. Al each temperature the lattice is initialised to all up spins and then
100 complete lattice updates are used to bring the lattice to equilibrium for tempera-
ture, f .3 7 Magnetisation and energy measurements are then made for every complete
-TZ Far from the cr¡tical point the number of latt¡ce iterations to eouilibrium is
quite low but'near the critical point the number of steÞs reouired öan rise bv
over three orders of maonitudè lswendsenl983l. lt ib ooséible to use time'-
dependent correlation fuñct¡ons às a means of 'measuriho lhe distance from
equilibrium lSwendsen 1 9831 but 100 steps to equilibrium ñas considered ade-
qüate for thè purposes of thil data to bo þresente'd here.

-t.58 -1.24 -0.91 -0.57 4.23 0.t0 0.44 0.77 1.11 1.44

loge P
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Flgure 3,27 | Susceptibil¡ty versus kTtJ for varìous latt¡ce s¡zes.

lattice update. Note that for the specific heat and susceptibil¡ty measurements we
require independent values ol M and E in the calculations of <M2> - <M>2 and
a¿2s - <E>2 respectively. Therefore, it is best to reinitialise the lattice and bring the
latt¡ce back to equilibrÌum before each measurement if the specific heat or susceptibil-
ity is to be derived.

The normalised energy for both per¡odic and free boundary conditions is shown in
Fig. 3.20. Notice that the behaviour of the small 4 x 4lattice is signif¡canily different
than that of the other lattices. This shows the dramatic elfect that finite size can have
on lsing model behaviour. Also we see the etfect of boundary conditions on the lsing
model, especially for lhe smaller lattice sizes. The differences in behaviour between
the two boundary conditions is due to the edge discontinuity affecting the energy of the
edge spins.

The specific heat for lattices with periodic boundary condit¡ons is shown in
Fig. 3.21. Again we see the dramatic effect of finite lattice size on the lsing model. For
the infinite lattice the specific heat al kT"(-)/J is infinite. However, for the finite lat-
tices simulated here we see that the max¡mum value increases as the lattice size
increases and'approaches kTcþ)lJ from the right. Exact curves can be found in [Fer-
dinand1969l. We can extrapolate kT"(*)/J by plotting the temperature of maximum
specific heat versus L-1 as in Fig.3.22. Th¡s yields an est¡mated kTcþ)tJ of 2.32 as
opposed to the exact value of 2.269. fhe behaviour of the specitic heat can be

0.75

0.50

0.25

0.00
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Flgure 3.28 ; ExtÊction of kTr(*)/J us¡ng the suscept¡b¡t¡ty. The data points g¡ve
the temperuture for the max¡mum susceptibil¡ty.

described by the scaling relation

2.05

2.00

C _ Lsrvzo(eLltv)

wherø Zo is solefy a scaling function of eL 1tu,

T - Tcþ)Ê=-- I' (-)

Parallel Architectures for Statistical Mechanics

(3.15)

(3.16)

o_180.15

and cr, and v are oxponents for the infinite square lattice. The value of v is known to
be 1.0 for two-dimensional latticos. We can test this relalion by plotting CL+ versus
el1to as in Fig 3.23. Notice that the data lie on two curves one for f < I"("") and the
other for f > I"1""¡. For large L and therefore large el1to it can be shown that the
infinite lattice critical behaviour is asymptotically reproduced by [Landau l976a]

Zo@Lltv)= A . (eL1N)-a (3.17)

where A is the critical amplitude for the infinite latt¡ce specif¡c heat. Thus, we can draw
a straight line through the data for f < I" (.") and f > I" ("") in Fig. 3.23 at large
eL1lv and describe asymptotically lhe behaviour of the inf¡nite lattice. We see from the
slope of this line that ct = 1 .0.
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-1.60 -1.20 -0.80 0.40 0.80 1,20 t.60 2.00

Flgure 3.29 i Fin¡te-size scal¡ng plot of the susceptib¡lity of laftices with petiod¡c
boundary conditions. Here we plot yTL# versus eLlN , with ¿ delined
as ¡n F¡9. 3.23 Data po¡nts for f > fc ("") (right hand curues) and
f < Ic (.") (left hand curues) line up w¡th stope -t .75.

Due to the finite lattice size thê entire lattice may completely overturn magneti-
cally during the course of a series of measurements [BinderlgT5] as we see in
Fi}.3.24. Thus, we wilt plot <lMl> rather than <M>. Th¡s is shown in Fig. g.25. Note
that this removes the polarity of the magnetisation. The magnetisation can be
described by the scal¡ng relalion

M = L-þNXoGLIN) (3.r 8)

LF>l
g)
o

{.40 0.00

loge Ù"

where )P is-solely a scaling function of el1lu. Therefore, as for the specific heat we
can plot ML Þ/u versus eL1tu to extract the value of p for infinite lattice behaviour. Here
lhe infinite lattice magnetisation is asymptotically descr¡bed by

Xo1el1to¡ = Et . (el1to)Þ (3.19)

This is shown in Fig.3.26, where we see that P = 0.125, for T < I" ("") and

F=-0.875f0rf>I"(.").
Susceptib¡lity curves for various size lattices are shown ¡n Fig. 8.27. As for the

specific heat the magnitude and position of the maximum value are dependent on the
lattice size. However, an additional source of error is introduced because of the

t¿o
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(a)

Flgure 3.30 | (a) A 4x 4 lattice with M = 0. (b) Updated 4x 4latt¡ce.

tendency for the entiro lattice of spins to reverse duÍ¡ng the course of the computer
simulation. The energy and specific heat are unatfected by this reversal since the
spins remain in parallel but, since the magnetisat¡on is changing sign during a rever-
sal, the susceptibility will be greatly affected. Thus, it is possible to calculats two
entirely d¡fferent values of 1 while still hav¡ng similar values ot <lvl>. The effect is
reduced as the lattice s¡ze increases. As for the specific heat, it is possible to attempt
to extract krc{"-)lJ by plotting the temperature of maximum susceptibility versus the
inverse of ths lailice size as shown in Fig.3.29. This yields an estimate of
krc@)/J = 2.45. Finally, the scating retation which detines the susceptibitity is given
by

)17 = L\tvyol¿¡ltv¡ (3.20)

where Yo is solely a scaling function of eL1lu. As before we plot l ll-'yto versus eL1to
to determine the value of y given the asymptotic behaviour of

Yo1el1tu¡=C.@L1tv)-'l (3.21 )

From Fig. 3.29 we see that the value of 1is 1.75 for both f < I" (.") and f > I" (.").

3.3,2, A Proposed lslng Archltecture

As with the percolation model the majority of the computational work in the lsing
model is in updating the lattice. At êach site in the lattice we must calculate the energy
and change the spin value with the corresponding probability. This involves adding the
spins of lhe neighbour sites (four in the case of the square lattice) and negating the
resulting sum if the site sp¡n is not parallel to the sum. lt is possible to calculate the
probability explicitly each time the energy is calculated but since there are only a few
possible energy values it is much quicker lo use a lookup table for the probability
values. Finall¡ we must generate a random number, compare ¡t to the probability and
change the spin accordingly. Therefore, updating the latt¡ce essentialfy consists of two
operations: calculating lhe local energies and generating the random number for the
probability comparison. Each of these operat¡ons is repeated over the N = L2 sites of

J1J1
1J1J
J1J1
1J1J

(b)
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Flgure 3,31 | Proposed parallel lsing architecture using a spin processor for each
site on the spin lattice.

the lattice. One important point to note is that on odd time steps, odd numbered sites
are updated and on even t¡me steps, even numbered sites are updated. This is essen-
tial in the parallel case to avoid the so-called feedback catastrophe which results if all
the spins are. updated during the same time step [Vichn¡ac19g4]. For example, in
Fig.3.30(a) a 4 x 4lattice is shown with a magnet¡sat¡on of zero. lf all spins are
updated during the same time step then at low temperatures there is a high probabil¡ty
that the spin configuration of Fig, 3.30(b) will result. This is because each site has zero
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Flgure 3.32 | Layout of a 16 b¡t lsing spin prccessot.

energy and so will flip. On the next time step the spin configuration will revert back to
that of Fig.3.30(a) for the same reason. This oscillalion will continue indetinitely on
succeeding time steps. The odcueven updating technique avoids this problem.

The remaining problem lies in the calculalion of the critical exponents. For the
same reasons as with the percolation computer, expressed here with respect to the
energy and magnetisation calculations, it is argued that ¡t is not an optimal solution to
build a special purpose computer lo calculate the crit¡cal exponents. lnstead the
greatest gains are to be realised in building a coprocessor which updates the lsing
spin lattice and reports the energy and magnetisation of the resulting configuration.
The actual spin configuration need be determined only ¡f quantit¡es such as correlation
length are to be found.

Obviously tremendous speedup occurs when all the spin updating is done in
parallel. As w¡th the percolat¡on model it is desirable to simulate as large a system as
possible. The limitations on the size of Monte Carlo lsing model simulation are twofold:
1) the size of the data memory required to store the spin data and 2) the simulation
time for large lattices can become prohibitively long, especially near the critical point
where many ¡teralions of the lattice are required before the spin system is at equili-
brium.

To accelerate lsing model simulation the parallel architecture of Fig.3.31 is pro-
posed. Here each processor consists of a data memory to store the probabilities, a
comparator, a'PRNG, and a latch to store the spin. The PRNG is the same as that for
the percolation computer. Note that it is possible to use a large bus to route the vari-
ous probability values and to have a bus selector at each processor which chooses
the bus coresponding to the des¡red probab¡lity. Here we consider a data memory
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Flgure 3.33 i An addq tree w¡th a branch¡ng ratio of four.

containing the probabilities at each processor since it is conceptually easier to under-
stand. Technological cons¡derations will determine the actual contiguration used in
implemenlation. Each processing site corresponds to a single spin site and we will
refer to this architecture as the L2 spin processor architecture. The spins are stored as
0 for a down spin and I for an up spin. The energy is calculated as the sum ol the
four neighbour spins (here we consider the square lattice). lf the spin is down (i.e. 0)
the the ne¡ghbourlng spin values are inverted as they are summed. The use of 0 and
1 as spin values forces one to consider the energy of each spin as a number in the
range [0,4] where 0 corresponds to maximum energy and 4 to minimum energy. The
energy is then used to address the probability memory, where each word is the proba-
bility of a spin with the energy of ¡ts address being flipped. The corresponding
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Flgure 3.34 (af?ow at a t¡me spin updat¡ng using three row registeß.

probability is then compared to a number from the PRNG and the sp¡n is flipped if the
number from the PRNG is less than that probability value. lf the updating is restricted
to the even/odd scheme required to avoid the feedback catastrophe then all even/odd
spins can be updated in parallel. lt is possible to combine even and odd sites into one
processor with two spin latches due the updat¡ng scheme. This architecture will result
in a time saving of O(N), where N - L2, over convent¡onal ser¡al Monte Carlo simu-
lation. ln addition, the time for each spin update in this lsing computer ¡s very small
since it can occur in one clock cycle (= 5Onsec.) while for a general purpose computer
the four additions, two decisions, and miscellaneous memory references will require
many clock cycles (> 1Opsec.). The overall acceleration is approximately 200N as

Percolation

Processors
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Flgure 3,34 (b):Fow at a t¡me spin updating us¡ng a two-pott data memory.

opposed to a serial computer.

The regularig of each spin processor makes the lsing computer an ideal candi-
date for a VLSI implementation. However, we again find that the size of the lattice
which can be simulated is directly dependent on the s¡ze of the processor needed at
each site. A 16 bit processor ¡s pictured in Fig. 3.32. Using the technology described in
Chapter 2 the,sizé is 1.975 mm2 so on a 4.8 x 4.9 mm. die it is possible to fit only ten
such processors, or twenty spin sites, if the combining of even/odd site processors is
used.3 8 lt is unreal¡stic to consider simulating lattices larger than 10OO x 1000 spins
using this architecture with current technology. Temporarily the discussion will be

tôz
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Flgure 3,34 (c)zqow at a time sp¡n updat¡ng us¡ng a shitt¡ng data memory.

restricted to lattices of size L < 1000 but we return to the problem of larger lattices
later in the chapter.

While it is possible to use the L2 spin processor arch¡tecture to substantially
increase the speed of lattice updating, further simulation speed increases could be
achieved by calculating total system parameters such as the magnetisation and
energy. Both 

_ 
these operations are inherently local with global properties found by

gB 
ns tor ttre percolation computer ¡t ¡s possible have uo to 1000 lsino site

processors per chip with the arêa saving approach mentioned above a-nd á
btate of the ärt CMÖS technotogy.

Upper

Spin Lattice

Memory

Percolat¡on

Processors
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¿0 ?.$ tü
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(a)

Flgure 3.35 i Nomar¡sed enetgy veßus krlJ us¡ng the L2 spin prccessor w¡th (a)
per¡odic boundary conditions. (b) lree boundary condit¡ons.

simply summing the local results. we have already reviewed the calculation of the spin
energy at each site in the lattice. The magnelisation at each site is simply the value ot
the spin. The global sum of both the local energy and magnetisation can be found by
plac¡ng the adder tree of Fig.3.33 on top of the lattice updating architecture of
Fig. 3.31. Thus, we require only o(log L) steps to calculate both the magnetisation
and energy for the entire lattice. The circu¡t of Fig.3.s2 has been demonstrated to
possess an operating speed of at least 20 MHz and the adder tree should easily
operate at this clock speed so, in less than 1|rsec., a 1000 x 1000 lattice can be
updated and the energy and magnetisation reported to the host computer. This makes
it possible to do extensive simulation of reasonably large spin systems close to the
critical point, even though it often takes several thousand lattice updates to achieve
equil¡brium. This requ¡res a prohibitively long time on a general purpose computer but
only a few milliseconds on this lsing computer.

calculation of quantities such as correlation length of the magnetic clusters at or
near the critical point can also be greatly aided by the lsing computer. ln the percola-
tion model a lechnique for grouping clusters of occupied sites was developed and it is
a simple matter to adapt this same clustering architecture for grouping of like spin
types. The lattice configuration can then be offloaded to the host computer for final

1.0 ü0 ¿0 ?"$ t6 t$ r.00 {$ 5ø

KT/J

(b)

t¡0 0¡0
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Flgure 3.36 | Specific heat versus kTlJ using the L2 spin prccessor arch¡tecture
w¡th peilod¡c boundary condit¡ons.

processing. As before, these calculations will be greatly accelerated if like spins have
already been grouped into clusters. However, the greatest speedup for these calcula-
lions lie in ths fact that equilibrium (i.e. the t¡me at which the computer experiment can
actually begin) can be ach¡eved in only a few milliseconds, whereas on general pur-
pose computing hardware this could take many hours. ln add¡tion, many of lhese cal-
culations are best made by removing the history dependence of the individual meas-
urements. This can only be accomplished by reinitialising the lattice to a completely
parallel spin configuration and waiting for the system to return to €quilibr¡um. This is

again an impossibly long and expensive procedure for conventional simulation but
easily possible using the lsing computer.

Above we have only considered lattices of size L S 1000. We w¡ll now consider
much larger systems. For lhese systems we will update the lattice one row at a time.
The problem here is that we require the values of the spins in lhe rows above and
below the current row. This can be accomplished using the architectures ol Fig.3.34.
ln this case we use a very large data memory to store all the lattice spins. The current
row is updated by the same technique as described above, only we must ensure that
the upper and lower rows are available to the spin processors. This can be accom-
pl¡shed in three ways. The first melhod, shown in Fig.3.Sa(a) is to store lhe three rows
in a register set. The upper row which has already been modified is in the top register,

1.2s

'1.13

1.00

0.8s

135



Chapter 3

2.50,

Parallel Architeclures for Statistical Mechanics

2.45

2.05

1tL

Flgure 3,37 i Extraction ol kTr("")/J us¡ng lhe the spec¡l¡c heat. Simulation of the
L2 spin processor arch¡tecture. The data po¡nts g¡ve the tempenturc of
max¡mum spec¡fic heat.

the current row which is about to be modified ¡s in the middle set of registers which
consist of the spin processor chain, and the lower row is loaded from the data memory
into the bottom register. Atter the current row has been updated the top row is loaded
back into the data memory, the current row is shifted to the top row, the bottom row is

shifted into the spin processors, and the new bottom row is loaded from memory. This
continues until all the rows of lhe lattice have been updated. The second method of
Fig.3.3a(b) involves using a two-port memory with special addressing circuitry so as
to make the upper and lower rows available to the spin processors from the spin lat-
tice memory. Each current row must be loaded into the spin processors, updated, and
the new spin values restored to memory. This does not actually save any memory
transfers since for each row update we must slill load and restore an entire row of sp¡n
values. An improvement on this technique would be the use of a three-port memory to
make the upper, low6r, and current row directly available to the spin processors, but to
implement a large capacity threê-port memory would be prohibitive. The final tech-
nique shown in Fig. 3.34(c) is to modify the memory so that the site processors consti-
tute one row of the memory. Each row is then shifted up one level, after the current
row has been updated. This will increase the size ot lhe data memory but avoids the
l/O problems of the f¡rst two methods. lt also provides a much more regular structure

2.25
I
r:-\
k 2.20

2.15

2.00

0.r80.12 0.27

136



Chapter 3 Parallel Arch¡teclures for Statistical Mechanics

-1.00 -0.70 -0.40 -0.10 0.20 0.50 0.80 1..t0 t.4o 1.70 2.OO

loge ù'"

Flgure 3.38 i Finite-size scaling plot of the specilic heat of lattices with periodic
boundary conditions us¡ng the L2 spin processor architecturc. Here we
plot CLaN versus eL1N. Data po¡nts for T > T"(a) (ight hand
curves) and f < Ic(.") (teft hand curues) Iine up w¡th stope -1.0.

for implementation.

To determine the energy and magnetisation of the laflic€ we once again use the
adder tre€ of Fig.3.33, except that now we use a branching ratio of two. The sum is
only over one row of the lattice, so we must use another summing register to add the
row sums. The row sums are added until the entire latt¡ce has been updated and the
lattice energy and magnetisation are made available to lhe host computer. lt is possi-
blê to construct the data memory in such a way that the host computer can access ¡t

to perform other calculations such as correlation length.

3.3.3. Slmulatlon Results lor the L2 Sptn processor lslng Computer

Simulations of the proposed L2 spin processor lsing computer were carr¡ed out
using the same analysis techniques descr¡bed previously and are now reported.

The normalised energy for both periodic and free boundary condit¡ons are shown
in Fig.3.35. As for the previous simulations we see the dramatic effect of the lattice
size on lsing model behaviour. Specific heat is shown in Fig.3.36. The extraction of
the value of kT"(*)/J = 2.36 is shown in Fig. 3.37. Using the scaling retations
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Flgure 3.39 : <løl> versus kTlJ for various tatt¡ce sizes us¡ng the L2 spin proces-
sot architecture.

discussed previously we see in Fig.3.38 that the value of the critical exponent q, is
again 1.0. ln Fig. 3.39 we plot <lMl> versus temperature and extract the value of criti-
cal exponent p from Fig. 3.40 to be 0.125 for f < Ic(.") and -0.875 for f > I"("").
Susceptibility is shown in Fig.3.41 from which we can derive Figs.3.42 and 3.43,
yielding an estimate lor kTr(.")/J of 2.57 and I = 1.75.

We can see close agreement between the exact values of the critical exponents,
the values using the SUN PRNG, and the results derived by simulation of the L2 spin
processor lsing computer. A final check on the results derived from the lsing computer
is to compare the values of <E> and <lMl> for various values oÍ kTlJ versus the
exact results for the two-dimensional lattice [Onsagerl944]. These results are
reported in Table 3.4 from which we can see that the results derived from thê pro-
posed lsing compuler correspond within their error to the exact results and also to the
standard Monte Carlo simulation technique. The error can be reduced by using a
larger number of samples. Therefore, we can conclude that the L2 spin processor
lsing computer will properly simulate the lsing model.

Site spacing effects on the CA rule 30 based parallel PRNG were not tested
since the correct results were produced without site spacing. However, it should be
noted that if the parallel LFSR is used as the PRNG the results are demonstrably poor.
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Flgure 3.40 : Finite-size scal¡ng plot of the magnetisation with periodic boundary
conditions using the L2 spin processot arch¡tecture. We define e as in
Fig. 3.23. Data po¡nts for T < Tc{*) t¡ght hand curues) t¡ne up w¡th
slope 0.125 and for T > I" ("") (left hand curues) line up w¡th stope
-0.875.

Therefore, we can say that the properties inherent in the CA rule gO based pRNG are
suitable for simulation of the lsing model.

Merely simulating the two-dimensional square lsing model is somewhat poin ess
since it has been solved analytically. However, it is a simple matter to ¡ncrease the
connectivity at each spin processor to correspond to that of other two-dimensional lat-
t¡ces such as the lriangular and hexagonal latt¡ces. ln addition, three-dimensional lal-
t¡ces can also be simulated by changing the connectivity of the spin processors.

3,3,4, Uslng Renormallsatlon on the L2 Spln processor lslng Computer

We consider lhe application of renormalisat¡on group techniques to the lsing
model. The renormalisation rule which we w¡ll consider here is the replacement of a
block of spins by one spin which represents the gross behaviour of the block of spins.
For example, 

'we 
could use a majority rule to replac€ a block of 2 x 2 spins by one

spin (ties would be decided by a random number). This would progressively reduce
the edge size of the lattice under consideration by a factor 2lor each renormalisation.
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Flgure 3,41 : Susceptibility versus kTlJ for various tatt¡ce s¡zes using the L2 spin
Nocessot architecture.

As w¡th percolation, it is doubtful whether application of the renormalisation group is
appropriate ¡n a parallel architecture such as that descr¡bed here. This is due to the
fact that if we are analysing quantities such as the latticê energy and the magnetisa-
tion these quantities are already direclly available. ln addit¡on, to reduce the effective
size of the lattice by renormalisalion requires as much time as the actual calculation of
latlice energy and magnetlsation. Finálly, we must also consider the problem of exa-
mining the renormalised lattices. This can only be done by otfloading each renormal-
ised lattice, including the original lattice, from the lsing computer, a procêss requiring
at least O (L2) time. This w¡ll reduce the computational speed of this aspect of the
lsing model simulation lo that of conventional serial processing.s.9 Thus, it would
appear that renormalisation is not necessarily a useful feature to build into a parallel
lsing model simulator since ¡t will significantly degrade the performance of the simula-
tion. However, this ignores some of the other benefits which result Írom application of
the renormalisation group. Firstly, lhe renormalisation technique allows very accurate_---:-;--
^::"!t Ls possible that if enough l/O pins are available to each chip that the
O (L') factor. could be reducéd significanily. However, this will étill cause
significant throughput problems since the dafa collection trom the lsing model
simulation is bounded by an inherently serial process.
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Flgure 3,42 i Extraction of kT"(*)lJ using the suscepttbit¡ty. Simulation of the L2
sp¡n prccessot architecture. The data po¡nts give temperature of max-
imum susceptibility.

determination of the critical point. ln addition, it provides a mechanism for studying
correlation length at the critical point. A final benefit is that it will allow the host com-
puter to sludy lhe actual lattice. This does not imply that after each update the ent¡re
lattice will be offloaded but rather that it is poss¡bls to look at the lattice if curious
behav¡our ¡s present (i.e. a black box that can be opened is bettêr than a black box
which cannot). Offloading lhe lattice will also make it easier to test the lsing computer
for electrical faults. Consider examing a black box which is supplying results from a
Monte Carlo simulation of a process which is not completely understood; how do you
tell if the box is broken?

A 2 x 2 majority rule renormalisation approach can be easily incorporated into the
lsing computer by simply adding an extra storage element, the renormalisation latch,
and a comparator to each spin processor as shown in Fig. 3.44. The majority rule is
implemented by using the bottom level of the magnetisation adder lree. The sum of
four lattice spins are found at the lowest level of this tree, if the sum is less than 2
then the replaeement spin must be down, if the sum is greater than 2 then the replace-
ment spin is up, otherwise the sum equals 2 and lhe replacement spin is assigned
randomly based on the value of thê least significant bit of the site processor's pRNG,

The replacement spin for spins (x,y), (x+1 ,y), (x+1 ,y+1), (x,y+1) is stored ¡n the
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Flgure 3,43 z Finite-size scaling plot ol the susceptib¡lity of latt¡ces with periodic
boundary cond¡tions us¡ng the L2 spin processot architecturc. Here we
ptot yTL$ versus eL1N, with e defined as ¡n Fig. 3.25 Data po¡nts for
T > Tcþ) t¡ght hand curues) and f < Iô("") (teft hand curues) t¡ne
up with slope -1.75.

renormalisation latch at spin (x 12, y 12). This process can be repeated ¡ndefinitely, if
des¡red, unt¡l there is only one spin left. The renormal¡sation latch at each site proces-
sor is required since we must not lose the original lattice configuration. ln the normal
operating mode the spin is stored in bolh the sp¡n and renormalisation latches and the
focal sums for both the energy and magnetisation are now made available from the
renormalisation latch to allow energy and magnetisation calculations of the renormal-
ised lattice. Thê control circuitry at each spin processor must now ensure that the first
step in the lattice update process involves transferring the value in the spin latch to the
renormalisation latch.

Offloading of ths spin lattice may be accomplished in two ways. lf the number of
pins is small then the spins must be olfloaded row by row, one spin al a time. This can
be done by incorporating a long sh¡lt chain through the renormalisalion latchês of each
spin processø row and shift¡ng the bits from each row out serially. Each row would
then be sequentially connected to the lattice output pin. lf the number of pins is
sufficient, it is possible to offload the spin latt¡ce a column at a time using the same
arrangement, only here each row is connected to a unique pin. The difference in
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KTIJ

Exact Proposed Standard

<lul> <lul> error < lu l> eror
1.087
1.449
1.811

2.173
2.536
2.898
3.260
3.622

0.99859
0.98898
0.95465
0.87345
0.75207
0.63103
0.53605
0.46804

0.998782 0.000200
0.991230 0.002472
0.964309 0.017988
0.899275 0.080682
0.784842 0.168579
0.651159 0.209552
0.540927 0.176900
0.472880 0.141470

0.998442 0.000250
0.989410 0.002791
0.955280 0.026655
0.873977 0.087653
0.75 t703 0.172171
0.631363 0.183713
0.537914 0.157969
0.466296 0.131081

Table 3'4: comparison of the Monte cailo data from the L2 spin processor arch¡tec-
ture w¡th a standad Monte Carlo s¡mulation and exact analyt¡cat results.
The Is¡ng model simulated was a 4 x 4 squarc tattice with periodic boun_
dary cond¡t¡ons.

speed between the two arrangements is o(t) which can be significant for large lat-
tices. A final consideration is that it may be possible to offload all the spins simultane-
ously in one step if the number of ava¡lable pins equals lhe number of spin sites. How-
ever, this is technologically naive for large lattice sizes and we must also consider at
what data rate the host compute¡ could accept the spin lattice.

3.3,5. Another Approach

The foundations tor this approach to an ls¡ng computer arise from two recent
observations: (i) the correspondence between the time evolution of d-dimensional slo-
chastic cellular automata and thê equilibrium statistical mechanics of (d+1)-
dimensional lsing models [Verhangen 1 976], [Enting1977], lEntinglgTg], [Domany19g4]
and (ii) the discovery by several authors that lhe behaviour of recursive nonlinear sys-
tems such as one-dimensional cellular automata of certain classes exhibit etfectively

KTIJ

Exact Proposêd Standard

1E¡Þ <Ey> error <E¡> error

1.087
1.449
1.811

2.173
2.536
2.898
3.260
3.622

0.99724
0.98006
0.92693
0.81921

0.67508
0.54069
0.43873
0.36635

0.997631 0.000733
0.983695 0.006937
0.940769 0.034t70
0.852129 0.111073
0.71 1850 0.195514
0.562358 0.213332
0.443605 0. t61029
0.3701 15 0.115244

0.996979 0.000881
0.980650 0.007444
0.928062 0.043008
0.819579 0.112802
0.675657 0.183635
0.541095 0.172538
0.441I05 0.135338
0.364889 0.104584
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(o)

Site i ------------>

Flgure 3,45 ':. (a) A onedimensional cellular automaton. (b) A twod¡mens¡onat tr¡-
. angul ls¡ng latt¡ce.
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3,3.5.1. The Mapplng

Thê exact mapping between one-dimensional stochastic cellular automata and
two-dimensional (f¡angular) lsing latt¡ces has been demonstrated by Domany and
Kinzel [Domany1984]. consider a one-dimensional cellular aulomaton w¡th site values
0 and 1 and communication restricted to ¡mmediate neighbours (Fig g.45(a)). The
boundary conditions may be either periodic (wrap around) or fixed values (0 or 1)
depending upon the problem to be simulated. On odd time steps, odd-numbered sites
are updated according to the local rule. On even t¡me steps, even-numbered sites are
updated. This is an essential counlermeasure against the feedback catastrophe which
would result if onê attempted to uFate all spins during the same timê step.

One can observe the space-lime behaviour of the 1-D cellular automaton as the
2-D latt¡ce of Fig.3.45(b). This figure corresponds to the 2-D triangular ls¡ng model lat-
t¡ce, in which each spin influences (and is inftuenced by) exactly six neighbour spins.
For odd (even) cycles, ths odd (even) sites take on the spin valus 1 with probabilities
pr(0,0), pt(1,1), or p1(1,0). The numbers in brackets are the neighbour spins from
the previous time steþ (the neighbours in a one-dimensional cellular automaton). Also
we have that p1(0,1)=p,(1 ,0) and rhat po(0,0)=1-p1(0,0), etc.

Thesê probabilities are determined from ths contribution E¡=-J(sl_r si+s¡+r s¡) to
the total system energy. For a given neighbour configuration, E ¡s determined for
s¡=0 and for s¡=1 . The probabil¡ties are proportional to exp(-E¡lkf); the sum of these
two factors normalises po+p 1 to un¡ty.

ln order to generate a series of conf¡guralions for the 2-D lsing lattice according
to an importance sampling, the organisation of each s¡te valuo in the 1-D cellular auto-
maton is as shown in Fig. 4.46. For a given temperature, 7., for the equilibrium lsing
model, the RAM is loaded with the four values corresponding to
pl(0,0), pl(0,1 ), pt(1,0), and p1(1 ,1). The FIAM setects the appropriate probabitiry
value under address control of s¡_1 and sí+1. This value is compared with that pro-
duced by the PRNG and the result ( a 1 or 0 ) is loaded into st. For an L site 1-D pro-
cessor array, every 2L time steps or clock cycles, a complete configuration of an
LxL 2-D lsing lattice is generated. These values are rêad from the odd and even
sites on alternate cycles, and may be added for a given column in Fig. S.4S(b) by
means of serial adders, in order to compute the¡r contr¡butions to the total system
magnet¡sation, M. To obtain an accurate value for M, several thousand lattice
configurations must be averaged lPawleyl 984].

This architecture yields a speedup of L/2 over sequential processing. Of course
if, as discussed prev¡ously, O(L2) processing sites are used a further speedup by a
tactor of I to.2 time steps per complete lattice calcutation is possible using L2l2 pro-
cessing sites. However, this approach, which employs one processor per odd/even lat-
tice site, will use L times more area than lhe present approach. Thus, the Af metr¡c
in both cases is the same if we ignore the extra communication overhead of the L2
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Flgure 3.46 t One processor site of CA-based 1-D tsing computer.

spin processor implementation. The 1-D processor configuration discussed here
results in easily satisfiable wiring requirements. wilson [wilsonl979] has stated that
an lsing latticé problem of interesling size consists of at least 100 x 1 0o sites, which
involves 100 processors using the present approach or sooo processors using the
L2l2 spin processor technique. Therefore, while using L2/2 spin processors leaãs to
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an improved speed performance at lhe expense of an equivalent increase in area, it
has much more complicated wiring requirements and is ditficult to make for lattices
which are of ¡nteresting size. lt ¡s more likely that an o (¿2) processor ¡mplementation
may be appropriate to the importance sampling of the 3-D lsing model, again in the
spirit of thê Domany-Kinzel mapping.

3.3.5.2. lmplemenlatlon of the Domany and Ktnzel lslng Computer

ln addition to the computational advantage of the parallel approach several other
points are worth noting. The RAM block in Fig.9.46 can be shared between tlvo adja-
cent cells; i.e. the outputs of the RAM can feed into the comparators of both the i and
the l-1 cells (see F¡9.3.46). This requires two additional address lines from si and
s¡-2. A two-phase clocking scheme w¡ll then activate S¡_1,S¡*1 and s¡_2,S¡ on alternate
clock phases. Alternatively, the PRNG can be shared between adjacent sites. There
is also provision for applying a temperature gradient across the lattice (left to right), by
loading the RAMS across the chip with probabil¡ty coefficients that change w¡th position
in accordance with the desired profile. This will fac¡litate the analysis of non-equilibrium
configurations. one should be aware that the non-equilibrium case of lhe lsing model
is a much more complex problem than the equilibrium case. A further point to note ¡s
that if one is not concerned with non-equilibrium configurations then a single RAM for
all of the processing site probabilities will sulfice, since the probabilities will be the
same at each sit€. The probabil¡ties in this case can simply be routed over lhe snlire
chip on m bit busses from the single RAM and each site may select lhe appropriate
probability bus based on its neighbour sites. The bus values are not changed at clock
speêds since the equilibrium computation requires unchanging probabilities for each
temperature. This approach will lead to a higher density of processing s¡tes since the
area used to route the probability busses is considerably less than the combined area
of RAMs at each site, especially in double metal CMOS processes.

3.3.5.3, D¡scusslon and Concluslons

The actual layout of this lsing computer on s¡licon is facllitated by the nearest
neighbour communication properties of the CA-based PRNG. Figure 3.47 shows the
layout of two PRNG cells in the 3pm double metal CMOS technology described in
Chapter 2 using only one layer of metal interconnect. This cell uses 0.1 38 mmz and
contains all the necessary connections tor the PRNG. ln the layout of the lsing com-
puter it was discovered that the layout was easily partitioned into a bit slice architec-
ture w¡th four processing sites per slice. Figure 3.48 shows the layout of a four site
lsing processor slice. Note that in this layout the lsing computer permits the use of
lemperature gradients or non-equilibrium conditions, by prov¡ding a FìAM at each site.
Using a 3 pm single metal process it is possible to have 92 such processing sites on a
4.8 x 4.8 mm; die. This yields only the equ¡valent o,t a B2xB2 lattice but already pro-
vides a speedup of a factor of 16 over convent¡onal sequential processing. By remov-
ing the RAM at each site as discussed above and by employing a larger die in a more
advanced cMos technology lt is poss¡ble to create a layout with over looo processors
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Flgure 3.47 | Layout of two cells in the CA-based PRNG.

Flgure 3,48 : Layout of a fout site Ising processot st¡ce.

which corresponds to a speedup of at least 3 orders of magnitude ovsr sequential pro-
cessing. These l000 processors can be configured as a lattice of 1000x1000 sites or
alteratively as ten 100x100 lattices. ln the latter case, this would accomplish the sam-
pling of 10 configurations in 200 steps, for an effective rate of 20 steps per

149



Chapter 3

configuration.

Parallel Arch¡tectures for Statistical Mechanics

Implementation Update rate a) Ref.

Delft lsing System Processor
CDC Cyber 205
Santa Barbara lsing Modêl Processor
ICL DAP
Manitoba lsing Model Processor lb)
Manitoba lsing Model Processor llô)
Manitoba lsînq Model Processor llld)

1.5 x 106
22 x 106
25 x 106
218 x 106
640 x 106
20 x 10e

20 x 1012

IHoogland l 983]

[Reddaway1985]
IPearson 1 983a]

IReddawayl985]

a) ln spin updates per second.
b) Present 32 site L spin processor conf¡guration.

") Projected 1000 site L spin processor configuration.
d) Projected 1000x1 000 site L2 spin processãr conf iguration.

Table 3.5: Peñomance of various ls¡ng model systems.

Another point to make is that the present scheme may be extended to two-
dimensional cellular automata arrays in order to model the g-D lsing lattice. This
affords a computational advantage of O G2) as compared with serial computation. ln
this case there will be additional w¡ring complexities in the VLSI layout. Finally, at
another level of organ¡sation in this lsing computer (beyond that considered here) one
expects to be able to employ block-spin renormalisation group melhods [Binder1979],
lwilson1979l, lwilson1975], [Niemeyer1974] to process the conf igurations in place in
order lo recover the system observables. Note that is possible to modify the renormal-
isation approach considered for the L2 spin processor architeclure discussed prev¡-
ously to operate on this ¿ spin processor architecturê.

3,3.6. Concluslons on lslng Computers

The presented Monte carlo simulations of the lsing model ditfers from other hardware
approaches in that it exploits VLSI to create s¡ngle chip lsing model processors.
These c¡rcuits may be used as hardware accelerators for Monte carlo simulations
similar to the use of a floating point accelerator for floating point arithmetic. The speed
is ma¡nly achieved by updating the spins at each lattice site on every clock cycle
through a novel, and very effic¡ent, parallel random number generation technique.
Based on a prototyped 32 site single chip L spin processor both lsing architectures
have been designed to operate at a m¡nimum of 20 MHz (in thê RAM-less
configuration) so that the spins are updated at each processing site every S0 nsec.
Therefore, in the final version of these architectures we should be able to update a
1000 x 1000 ôpin lattice at a performance of 20x1012 spin updates per second for the
L2 spin processor architecture and 20x10e spin updaies per second for the L spin
processor architecture. This substantially improves upon the fastest approach known to
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the author of 218 x 106 spin updates per second [Reddawayl985]. Table 3.5 com-
pares these architectures with other published implemenlations.
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Chapter 4
Applications to

Built-in Self-Test

4.1. INTRODUCTION

Previous chapters have considered the appl¡cat¡on of cellular automata to prob-
lems involving nondeterm inistic algorithms. specifically considered were spec¡alised
computing architectures for high-speed solutions of ubiquitous computational physics
problems such as the lsing model and percolation. Generally these architectures
require a large number of uncorrelated pseudorandom numbers to be used at the
same time in parallel. ln this chapter we consider a very ditferent problem, that of test-
ing VLSI circuits, and specifically of testing using random test vectors. ln this problem
we are not concerned with generating pseudorandom numbers in parallel but rather
with generat¡ng pseudorandom numbers at high speed using minimal area. Therefore,
while the results of chapter 2 can still be used we must place a much increased
emphasis on the absolute area of silicon used for the PRNG.

4.2, INTRODUCTION TO BUILT-IN SELF.TEST

Design for testability (DFT) techniques attempt to deat with the inherent complex-
ity of the vLSl test¡ng problem by incorporating testability as a primary element of the
design process [Williams1983]. A common feature of DFT techniques is the
reconfiguration of a sequential circu¡t so that at test time it can be considered combi-
national. The sequential circuit lalches are used to apply appropriate test vectors and
accumulate thê resulting response vectors, and are thus themselves also tested
indirectly as they verify the combinational logic of the c¡rcuit under test. Level sensitive
Scan Design (LSSD) [Eichelb erger1977] is an example of such an approach.

ln LSSD and similar approaches such as Scan path [Funatsu1975], Random
Access Scan [Ando1980], and Scan/Set [Stewarfi 977], a test set must st¡ll be deter-
mined together w¡th the valid responses. At test time each test vector must be ser¡ally
scanned into lhe circu¡t and the conesponding response serially scanned out. While
this type of approach greatly reduces the complexity of sequential c¡rcuit test¡ng, there
are lhree diff iculties:
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i) an appropriate test set must be determined, which can require
signif icant computation;

ii) the time required to scan the test vectors in and the circuit
responses out can be excessive;

i¡i) lhe correct responses must be stored and compared to the
observed responses in order to determine if there is a detected
fault.

Built-ln Self-Test (BIST)4.1 techniques address these po¡nts. ln a BIST design the
genêration and application of the test vectors and the analysis of the resulting
response are part of the c¡rcuit (or system) under test. As in the scan path lechn¡ques
a sequential circuit is treated as combinational with ths sequenlial circuit latches used
as an ¡ntegral part of the test. A significant feature of the BIST approach is its low pin
overhead which typically consists of two pins; one to put the chip into test mode and
one more to deliver lhe final pass/fail result. ln this work the discussion of Blsr will be
restricted to only those networks which consist of combinat¡onal logic and associated
sequential latches. ln general, BIST refers to any design in which testing is a built-in
tunction of the system. For example, in mosl modern microprocessors the BIST tech-
niques described here are not applicable since programmable logic anays (pLAs) and
microcoded RoM have replaced the random comb¡national control logic of eafier
designs. However, almost all modern microprocessors provide significant built-in testa-
bility fealures in order to verify corêct system operation by using the on-chip proces-
sor and memory to run a built-in test program on power up or on user request
[Kuban l984]. An interest¡ng paper describing the development of BIST in one
company's microprocessor line can be found in [Daniels lgSS].

A BIST design requires a mechanism for generating an appropriate set of lest
vectors. For some combinational blocks it is possible to exhaustively apply all the pos-
sible input patterns and compare the circuit response to a known coffect citcuil
response. An exhaustive input test set can be generated by a simple counter or, alter-
natively, by a maximal cycle length Linear Feedback Shift Register (LFSR)

[Golombl982].4 
2 For the conventional single stuck-at fault model, f irst considered ¡n

[Eldred1959l, an exhaustive test set ensures that every fault w¡ll be exercised.

However, if there are more than 20 inputs to the circuit under test, the time to
provide the test pattêrns 1> 22o per circuit) and the memory to stors the circuit
responses (2 m.220 bits, rn = number of circuil outputs) becomes excessive
[Mccluskeyf 985a]. For cases where an exhaustive test set is prohibitivê a

-qso r€ferred to as Built-ln Test (BlT), self-test, in-situ test, self-
verification, or autonomous test.4'2 A LFSR with maximal cycle length can produce all input patterns except00'''0. lf the all zero pattérn neeðs to be included then a honlinear feeb-
back shift register which consists of extra logic added to the LFSR can be
used.

153



Chapter 4 Applicalions to Built-in Self-Test

pseudorandomly selected subset of the possible inputs to the circuit under test is
used. This requires an on-chip pseudorandom sequence generator which, in order to
reduce the overhead required for BIST, should largely consist of the sequential circu¡t
latches. A technique termed Built ln Logic Block Observat¡on (BILBO) [Konemanni979]
has emerged as the predom¡nant approach to date and employs a LFSR with maximal
cycle length as the pseudorandom sequence generator.

The LFSR-based test pattern generator (L-TPG) is lormed by the addition of
exclusive-or gates to the sequêntial latches with appropriate control logic so that the
latches can pêrform the¡r normal circuit function as well as be reconfigured for testing.
The positioning oi lnè exclus¡ve-ol' gates is given by the pr¡mit¡ve polynomial over the
Galois Field GF(2) required to form a maximal cycte tength LFSB [Golombl9B2l. Notê
that if the length of the L-TPG must be increased (or decreased) due to a design
change (i.e. the number of circuit Inputs changes) then a completely new primitive
polynomial (i.e. LFSR) is required. A further difficulty with L-TPGs is the requirement of
a feedback path from the most to the leasþsignif ¡cant cell in the LFSR which furlher
complicates the layout of the register.

ln this chapter it is shown lhat a L-TPG has a number of undesirable propert¡es
which affect ùs use in a BIST env¡ronment. ln particular, it is shown that LFSR gen-
erated patterns are not at all appropriate if memory-inducing faults, such as MOS
stuck-open faults [Wadsackl978], are being considered, and they providê less than
desirable fault coverage for delay or transition faults and other types of AC faults [Bar-
zilai1983l.

The new pseudorandom number generators proposed in Chapter 2 are shown to
be more appropriate for BIST than conventional LFSR-based generators. ln addition to
improved randomness properties these new pseudorandom test pattern generators
also have implementation advantages in that they require only adjacent-neighbour
communication and they are cascadable, i.e. the physical length of the generator4.s
can be increased or decreased by simply adding or subkacting cells (it should be
noted that the area of each cell in a cellular automaton is comparable to a LFSR cell).
Theretore, the major redesign required in the case ot the LFSR is avoided. This
means that a CA-based test pattern generator (C-TPG) is much more appropriate than
a L-TPG for incorporation in a computer-aided design (CAD) tool.

BIST also requires a mschanism for reducing the rêsponse data to a simple
pass/fail rêsult using some form of data compression or compaclion. Once again the
common suggestion is to employ a LFSR to form a signature of the output data
lFrohwerk1977l. The use of a CA-based signature register in place of one based on a
LFSR is attraclive trom a layout perspective. Analysis of the effectiveness of such a
CA-based data compactor is reported later in this chapter.

-Z= f* pf,yri.al length n, where n is the number of ceils, or bits, in the test
pattern generator, we have a maximum cycle length ot 2n - 1.
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The overall effectiveness of BIST has been the subject of much research

[Millerl 987] [williamsl986b]. Analysis is usually based upon the assumption that the
lnput test vectors are selected at random. Since BIST must use a pseudorandom
numbsr generator to provide the sampling of the input space there will necessarily be
discrepancies between the observed and analytical behaviour of a BIST approach.
using the results of chapter 2 we see that cA-based generators arc more random
than LFSR-based generators, so it is expected that the analytical models of BIST
effectiveness are more realistic in a CA-based BIST environment.

4.3. CONVENTIONAL PSEUDORANDOM TESI PATTERN GENERATION

The most popular hardware pseudorandom test pattern generalor ¡s the linear
feedback shift register. As descrlbed in Chapter 2, lhere are three methods for gen-
erating pseudorandom sequences using LFSRs. The method used extensively in the
appl¡cation of LFSRS to BIST is ths parallel techniquê which produces a now test pat-
tern on each clock cycle [Mccluskeyl985a] [Mcctuskeyt gBSb]. Recail that thê results
of rable 2.3 indicate that the parattel LFSR method consistently fails almost ail of the
random number tests.4 4

As indicated in Chapter 2, the most evident fa¡lure of the parallel LFSR is in the
b¡t sequence corelation test. The cross-correlation r¡dge across the entire LFSR of
Fig. 2.11(bottom) can be somewhat alleviated by using a feed torward, or multiply¡ng,
shitt reg¡ster. ln this case the cross-correlation of bits i and 7 where the tap lies
between i and I will be reduced to zero. However, as shown in Fig. 4.1(top), between
each tap the cross-correlat¡on is still as in Fig. 2.11(bottom). Note lhat one cannot sim-
ply use a polynomial with n + I têrms to describe the LFSR (i.e. a tap at each bit)
since these polynomials are not primitive, and so can yield very short cycle lengths.
one could also scramble the output bits of ths LFsB so that adjacent bits in the LFSR
are not adjacent outputs. However, as shown in Fig. 4.1(bottom), where the bits in the
LFSR are randomly mapped to ouþut positions, lhe cross-correlation ridge of
Fig. 2.1 1 (bottom) has now been replaced by cross-correlation spikes throughout the
b¡ts of the output pattern. Therefore, scrambling the output bits w¡ll not remove the
cross-correlation of bils. lt should also be noted that it is unlikely that the bits in the
LFSR would be randomly mapped to output positions since this would create severe
problems in wiring; bits in close proximity in the LFSR would probably still be in close
proximity in the output pattern in order to keep the wiring relatively simple.

The cross-correlation of the bit streams in the LFSR yields a number of circu¡t
faults which cannot be detected. For example, in Fig.4.2 two circuils are given which
have faulls which cannot be detected by a L-TPG. Figure 4.2(a) shows a simple two
input CMOS NAND gate. lf we assume a combinational fault model (i.e. faults do not
-77 fn.ì.r..tests were made using the standard Hp potynom¡at [Hp197g]
and similar results were found.
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Flgure 4,1 : The cross-correlat¡on of b¡t sequences in (top) a feed1oruard LFSR
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Chapter 4 Applications to Built-in Self-Test

Flgure 4.2 : Two problem circuits lor LFSR-based test pattern generators (a) CMOS
2-input NAND gate and (b) a feedthrough netwotk.

create a sequential circuit from a combinational circuit), such as the stuck-at fault
model, then we can completely test the NAND gate using L-TPGs. However, if we con-
sider other circuit faults which do not cause the circuit to act as if a line is sluck-at
zeto, ot one, ihen lhe order of test input patterns may be important and the NAND
gate may no longer be fully testable. For example lBaschieral984], an open circu¡t
fault on the B input p transistor induces memory into the circuit since the input A=1,
B=0 results in a floating output. This s¡tuation, which will hold the tast output value until
it is eventually brought low by lhe leakage current, can only be detected by hav¡ng the
input pattern 1 0 follow input pattern 1 l. However, this situation can never arise in a
L-TPG if the shift direction is from A to B since the value on input A will be on B when
the next input pattern is applied. Therefore, one can never completely test a simple
two input CMOS NAND gate for stuck-open faults since L-TPGS cannot generate ouþ
put sequences with an equidistribution of sequence orderings. Note that many other
simple circuits can be rendered L-TPG untestable if we use the stuck-open fault model
ralher lhan the stuck-at fault model. Furthermore, if we consider CMOS latches and
flipflops then, the d¡tficulties become even m016 intolerable. For example, in

[Reddy1986] it is shown that stuck-open faults can change static CMOS latches and
flipflops into dynamic dev¡ces. ln addition, it is impossible to detect some stuck-open
faults w¡lhout allowing a suff¡cient amount ot t¡me for lhe charge to leak from the
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output and so reflect the fault (i.e. one cannot test lor stuck-open faults at full circuit
operating speed). These problems can be overcome by adding some extra transistors
to thê CMOS latch or flipflop.

ln [Muchal986] it is shown that if a single spacing site is used between each bit
in the LFSR (i.e. an N input circuit will require an N + N bit LFSR) then all single
stuck-open faults can be detected. Howeve¡, this is not a desirable situat¡on since the
exlra N spacing bits will require extra arêa and also will reduce the operating speed of
the L-TPG. As well, the general case of multiple stuck-open faults is stiil not ade-
quately tested unless we add g spacing sites between each output bit in the L-TpG,
where q refers to the number of multiple stuck-open faults to be considered. lt should
be noted that the number of spacing bits can be drastically reduced if tault simulation
is used to identify circuit inputs which are susceptible to cross-conelation in the LFSR.
However, rather than be forced to add spacing sites or to do extensive fault simulation
to find the minimum required spacing bits, it would be more desirable to have a test
pattern generator (TPG) which has an equidistribution of ssquence order¡ngs. This is
equivalent to rêquiring that the soquence generated by the TpG pass the serial ran-
dom number tests of Chapter 2.

ln Fig. 4.2(b) we consider another very simple failure case lcarterl9g2l. Here a
porlion of the circuit under test morely consists of two direct connections from the L-
TPG to the LFSR-based multiple input signature analysis register (L-M|SR). lf we
assume that there is no feedback tap in pos¡tion i of the L-MISR and that the sh¡tt
direction in the L-TPG is from I to /, then a fautt where lines i and I are both stuck-at
0 cannot be detected. This is because of the correlation of L-TpG outputs i and 7. The
L-MISR will detect the fault when a 1 is applied to input I but, since input / must have
the prev¡ous value of i, the lault will be cancelled out when the next test pattern is
applied. These two examples, along with many others, show a deficiency of L-TpGs
and L-MlSBs for BIST due to ths correlation between adjacent bits. lt is recognised
that ¡t is quite easy to find a L-TPG which could test lhese two simple circuits (e.g.
scrambling the bits or using spacing bits in the LFSR) but it is iust as easy to find
another simple CMOS circuit which cannot be tested by ths new L-TPG. ln addition, to
use LFSR-based BIST schemes which adequately test the above problem circu¡ts, one
must have pr¡or knowledge of the circuit under test; this is a decided deficiency for a
pseudorandom TPG.

These problems lead to the conclusion that conventional L-TPGs, and to a lesser
extent L-MlSRs, have some major disadvanlages and alternative TPGs and MISRs
which avoid these problems but utilise comparable area and time would be very desir-
able devices.

4,4. COMPARJSON BETWEEN CA AND LFSR

The approach taken in this work towards hardware pseudorandom number gen-
eration for parallel computing architectures can also be applied to BIST. The pro-
posed new BIST structure will be referred to as Cellular Automata-Based Logic Block
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Observation (CALBO). Four immediate benefits for the CALBO approach are apparent:

the communication is local, being restr¡cted to nearest neighbour
cells, which provides freedom from the communication constraints
of a LFSR;

the cells are regular and topologically equivalent to one anolher, in
contrast to the increasing complex¡ty of a LFSR layout as the
number of sites ¡ncreases;

routing for the test circuit is no more complicated than the original
interconnection of latches (i.e. the topological complexity is con-
tained);

the ability lo pass random number tests ar¡ses naturally from class
3 (autoplectic) behaviour of cellular automata.

Based upon the autocorrelation functions (cross-correlation at i = i) the LFSR,
CA rule 30, CA rule 45, and hybrid cellular aulomata are all observed to display excel-
lent frequency distributions (white specka). Advantages of cellular automata arise
from the reduced cross-correlat¡on associated with cellular automata as compared to
the LFSR. As discussed previously, single bit outputs from the LFSR and the above
cellular automata are pseudorandom but in most BIST applications the test patterns
are generated by considering many bits of the register in parallel. This leads to
nonpseudorandom sequences for thê LFSR because of the cross-correlalion. ln addi-
t¡on, there are a number of other problems with sequences generated by considering
bits of a LFSR in parallel. Fig.4.3 illustrates the time evolution of: (top) a rule 30 cellu-
lar automaton (length 89, random init¡al state, cyclic boundary condit¡ons); (middle) a
rule 90 and 150 hybrid (length 90, random initial state, null boundary conditions); and
(bottom) a LFSR (length 89, random initial state). This figure clearly ¡ndicates tho
much improved cross-corelat¡on properties of C-TPGs over L-TPGs.

The rule 90 and 150 hybrid with single site spacing may be used to provide test
patterns for two circuits at the same llme by providing alternate site outputs to each
circuit undêr test. This avoids wasting the extra area required for the site spacing and
still provides completely uncorrelated test patterns for both circuits. An interesting po¡nt
to note in this case is that the rule g0 and 150 hybrid may be used as a more com-
pletê exhaustlve test pattern generator than the LFSR. Bate and Miller lBate l9B7]
have shown that to exhaustively test an n input CMOS combinational circuit one must
apply n2n+1 test patterns (the extra factors result from the considerat¡on of single
stuck-open faults). ln such a situation a 2n stage LFSR, or some variation thereof, is
usually used. However, this may not be acceptable since there is still considerable
cross-correlation between semiadjacent sites and it is possible to miss some faults. On
the other hand lhe unit spaced rule 90 and 150 hybrid has no cross-corretation and so
may be able to generate a more complete exhaustive test. That is, by using a rule g0

and 150 hybrid with a site spacing of 1 , it is possible to get a percentage of stuck-

iii)

iv)
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Figure 4,3 : . Slafe - t¡me diagram fot (top) CA rule 30 (length 89, tandom ¡n¡t¡al

state, cyclic boundary conditions); (middle) rule g0 and 150 hyþrid
(ength 90, random initial state, null boundary conditíons); and (bottom)
LFSR (length 89, random initial state).
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open fault coverage that would not be possible using a 2n -bit LFSR, provided one is
prepared t0 let lhe test structure run sutlicien y long. ln this case, a more complete
exhaustive test is best considered pseudoexhaustive and sufficien y long refers to a
time roughly equal to, but not excessively longer than, the bun ¡n lime.

Another advantage of cA-based generators lies in the considerat¡on of the serial
random number test results. Here we see that pairs, triples, quadruples, elc... which
are crucial to thê detection of memory inducing stuck-open faults, are well distributed
(i.e. all n-tuples are possible) using any of the cA-based generators, except the rule
90 and 150 hybrid with no site spacing. on the other hand, in the LFSR pairs, triples,
quadruples, etc... are not at all well distribuled because of the ¡nherent cross-
correlation.

4.5. FAULT COVEFAGE

Fault coverage is defined here to be the fraction of all possible faults in a circuit
under test which are stimulated by a given set of input lest patterns. The input test pat-
terns may be generated algor¡thm¡cally [Roth 1 967], or may be found by a random, or
pseudorandom, sampling of all possible input patterns. Here we will cons¡der ¡nput
patterns generated by a pseudorandom TPG and will use fault coverage as a measurê
of the quality of the test sst.

ln order to derive eslimates of fault coverage a fault detectability analysis ol the
circuit under test must tirst be made. Th€ detectability of a fault is the number of input
patterns which will exercise the fault [Malaiya19B4]. using these results a detectability
profile, H, is constructed;

H=l,ht,hz,... ,hul

N = the number of input patterns, i.e. 2,
for an n input circu¡t.

h* = the number of faults with detectability k.

(4.1)

where

A property of the detectability profile is that

Ðhx=M
k=1

where

(4.2)

M = the number of possible faults.

Note that in this analysis the stuck-at fault model is usually used since we are consid-
ering only faults which can be detected by single patterns.4.s The detectability profile
---;-;-aþ Other faults .m.ay require_ a. setup pattern followed by the error detecting
pattern as in the NAND gate of Fig.4.2.'
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can e¡ther be found exactly using a technique such as the D-algorithm lRoth1967] or
can be estimated by probabilistic analysis such as savir's cutting algorithm t€chnique
[savir1984]. ln any case, it is generatty regarded that finding the detectab¡lity profite of
a circu¡t is not a lrivial task.

The only way to find the exact fault coverage of an input test set, including a
pseudorandom set, is through extens¡ve fault simulation. However, this is usually not
practical for pseudorandomly generated patterns since the large number of patterns
makes simulation prohib¡tively expensive. Rather, probabitistic arguments are used to
der¡ve the expected fault coverage E[C¿], where E[C¿] is the expected number of
faults that can be detected by a test set of length L divided by the total number of
possible faults, M [wagner1987]. Most analyses of expected fault coverage for pseu-
dorandom TPG use a random sampling model where one samples with replacement
from a set of N possible different vectors. For random testing, [Malaiya19g4] has
shown lhat the expected fault coverage is

ln [wagner1987] a sampling model is used where one samples without replacement
from the set of N possible ditferent input patterns. lt can be shown, using this model,

(4.3)

that the expêcted fault coverage is

l¡,'-¿ I

ElcLl=r-!¿lt I hk

k=1 [IJ- "

E[cLj=r-jtr -*r' #

=l-ts¡ -Lrx.htÉ' N', M

(4.4)

(4.5)

The analysis of [Wagner1987] is more appropriate and accurate for both L-TpG and
C-TPG since both TPGS generate each tost pattern only once per cycle. However, the
random number tesl results presented in chapter 2 illustrate the inadequacy of
sequences from LFSRS for use as pseudorandom sequ€nces. Ths analysis of fault
coverage given above assumes a pseudorandom test pattern source, so when a LFSR
is used as the source it should not be expected that the fault coverage and other cal-
culated measures will be entirely accurate. This does not imply that lhe fault coverage
of the LFSR will be degraded, only that the analysis is not entirely accurate.4.6 The
analysis of [wagner1987] assumes that each test vector has an equiprobable chance
of being selected, yet after one vector has been selected there is not a 1 in N - 1

chance of selecting a given vector. lnstead, since the LFSR shitts to the right, we are
restricting our selection to one vector out of two rather than N - 1. This compares to

.4 
6 It should be noted that the predictions made using the sample without re-

placement m-odel correspond ckisely to actual results-derived from computer
simulations lOhin 1 987].
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cellular automata where all bit positions are not simply shifts of other bits but functions
of other bits, therêby making the behaviour much more apparen y unpredictable and
hence more pseudorandom. Therefore, the analysis of [Wagner.l9B7] would seem to
be more appropriate for better pseudorandom sequence generators such as the C-
TPGs described here.

Olher measures of test quality such as lest confidence,

(4.6)

the probability that a particular fault w¡th detectability k will be detect€d ¡n a test of
length ¿, expected test length,

(4.7)

for a particular fault of detectability k, and average test length to detect all faults if all
faults are equally l¡kely,

(4.8)

have also been derived in [Wagner1987] using the sampling w¡thout replacement
model. lt is expected that these measures also hold for C-TpGs.

What is of most concern lo a manufacturer of integrated circuits is the probability
of shipping a faulty chip. This is usually termed the defect level, DL, and can be
shown to be modelled by lwilliamsl9SSl

DL=1-]l1 -Etctll (4.e)

where

Y = process yield, i.e. the probability of
manufactur¡ng a good chip.

The effect of process yield on the required fault coverage in order to have a glven
delecl level is illustrated in Fig. 4.4. Not¡ce the sensitivity of defect level, and thereby
the required fault coverage, to lhe process yield. Typically the fault coverage versus
the number of random test patterns results in a curve such as that shown in Fig,4.s
[Williamsl985]. Therefore, given a desired defect level and the procsss yield, one can
determine the necessary tost pattern length, using either Fig.4.S or Eqns 4.S and 4.8.
Th¡s calculation is normally employed in designs using L-TPG but also will hold if the
design uses a C-TPG; we maintain that this analysis is more accurate for C-TpGs than
L-TPGS s¡nce a truly pseudorandom TPG is assumed.

It was previously noted that the above analysis assumes a stuck-at fault model. lf
we use a more compl¡cated fault model incorporat¡ng stuck-open or ac faults then, as
we have seen in the example problem circuits of Fig. 4.2, the fault coverage of the L-
TPG is lower than the C-TPG. This is also shown in [Bazilai1983] where an empirical
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Flgure 4.4 i Defect level as a funct¡on of fault coverage and process yield. Curves
are fü Y=0.01 (unfilled squares), Y=0.10 (fiiled squares),
Y =0.25 (unfílled circtes), Y =0.50 (titted c¡rctes), Y =0.75 (unfiiled
dianonds), Y = 0.90 (fitted diamonds), and Y = 0.99 (untiiled trian-
gtes).

analysis of a 27 inpul, 7 output circuit with 262 ac faults showed that a L-TpG could
not achieve 100% fault coverage for slow-to-rise and slow-lo-fall faults. However,
100% fault coverage could be achieved by a truly pseudorandom TpG. ln Chapter 2 it
was shown lhat the cellular automata under consideration for use here as C-TpGs,
produce the equid¡str¡buted pairs necessary for the detect¡on of these faults. There-
fore, C-TPGS should provide improved fault coverage as compared to L-TpGs for ac
faults.

Finally, we note that the probab¡lity of detecting ac faults is much lower than that
of traditional stuck-at fault detection. For example, ¡n Waicukauskil 9871 an empirical
analysis ol lhe Brglez-Fujiwaa c¡rcu¡ts [Brglezl985] reveals that many more random
test patterns are required for ac taults than for dc faults in order to reach the point at
which one cannot detect new faults, i.e. only undetectable faults remain.

4.6, WEIGHTED PATTERN GENERATION

An interesting possibility for CA-based generators is that it may be possible to
gênerate pseudorandom sequences which have a statistical weighting to one region of
the test pattern space. This area has been ¡nvestigated for L-TPGs by several autho¡'s.
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Flgure 4.5 't Typ¡cal fault coverage as a lunction of random test pattern length.

However, either the resulting BIST structure is very large lschnurmann 1 975] or the
selection of weight probabilities is very limited [chin l9B4]. we know that the rule g0

and 150 hybrid exhibits weighted pattern generat¡on properties tor longer sequence
lenglhs. However, it would be enlightening to check if other cellular automata exhibit
this property and whether or not the weight¡ng probability can be easily adjusted.

ln Appendix C a set of tables are given showing the weights of 1 bits emanating
from various positions in all primative one-dimensional cellular automata. lt can be
seen that the weight probabilities vary depending on the CA rule used and in some
cases on the position in the cellular automaton. However, we must also ensure lhat
the generated patterns also conform to a weighted pseudorandom sequence. This
means that the random number tests of chapter 2 would need to be mod¡f¡ed in order
to properly test a sequence which is not equidistr¡buted. lt is not the intent of this work
to perform an in-depth study of weighted pattern generation using c-Tpcs but rather it
is ¡mportant to note that c-TPGs may be capable of this type of test pattern generation
for Blsr. Furthermore, ¡t is also possible that some form of hybrid or synthesised cellu-
lar automaton may provide the desired function. However, in general the generation of
a cellular automalon conforming to a given pseudorandom statistical weighting ¡s a
very complex problem.

o)
c')(g
d)

oo
:t(ú

tJ.

àe



Chapter 4 Applications to Built-in Self-Test

Flgure 4.6: Two techniques of polynomial d¡v¡sion using LFSRs; (top) internal
exclusive-or typê. (bottom) external exclusive-or type.

4,7. SIGNATURE ANALYSIS

As mentioned in the introduction, BIST requ¡rês some mechanism to reduce lhe
volume of output response data from the circuit under test to a simple pass/fail result.
The most popular ouþut test data compaction method uses error detection and correc-
tion techniques for cyclic redundancy check (CRC) codes. These error detecting and
correcting circu¡ts make extensive use of LFSRs and were developed in the late 1gsos
and early 1960s [Prange1957] [Meggitt1961]. They are well understood and are
thoroughly explained in the algebraic coding theory l¡terature as syndrome detection

[Lin1983] [Peterson1972] and in the digital testing literature as s¡gnaturc analysis 4.7

[Fujiwara1985] flsui l 987]. ln the present work we focus our examinalion on the use
of cellular automata for signature analysis (SA) in BIST. To facilitate the discussion
concerning the proposed CA-based signature analyzers a brief summary of conven-
tional LFSR-based signature analyzers follows.

4.7.1. LFSR-Based Slgnature Analysls

The conventional signature analysis circuit uses a LFSR to implement a repeated
polynomial division of a binary input data stream. ln Fig. 4.6 the tvvo methods of imple-
ment¡ng polynomial division using LFSRs are shown. Here we will consider an rn bit
LFSR to be implemented using its characterlstic polynomial

C(x) = çrvn * c¡¡-1Xn-1 + "' + c1x +co (4.1 0)

We also consiiJer an n bit binary data stream to be represented by the polynomial

-27 f¡is term was introduced by Hewlett-Packard to descr¡be the first com-
mercial product using these princiþles lOhan 1 977].
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P(x)= pn4xn-1 + pr_2r,-2+ . " + pú + po (4.11)

where the high order coefficient, pr_j, enters the LFSR first, followed on successive

clock cycles by the lower order coeff¡cients. Finally, we define the quotient ot 
ffi 

to

be

O(r) =€ffi =9n-m-1Xn-m-1 *Qn-,-2x,-,-2+...+ qð + qo. (.12)

lf the contents of the LFSR is ¡nitially s6t to zero thsn after n clock cycles the quotient,
Q(x), has appeared at the output (most significant cooff¡cient first). For the circuit of
Fig.4.6(top) the contents of the LFSR after n clock cycles corresponds to the
remainder or signature, S(x), of the division. Therefore, we have

(4.13)

For lhe purposes of th¡s work we will consider P(x) to correspond to the output from a
single output fault free network under stimulus from a given set of input patterns. We
then define the output from the same circuit in which a fault has occurred to be P6(x),
where we assume that P(x) + Pç(x) and that the same set of input patterns for both
the fault free and faulty circuit were used. The error polynomial, E(x), will be defined
to be the difference between P(x) and Ps(x), so

(4.14)

An undetectable error is one for which tho signatures of P(x) and Ps(x) are the
same and in such a situation the signature analyzer is said to have produc€d an
a/lased output. The fact that aliasing can occur is indicative of the tact that SA is a
compact testing method [Losq1976], i.e. some error information is tost, as opposed to
a data compression technique where no information is lost.

ln the case of the LFSR circuit of Fig.4.6(bottom) the output also corresponds to

the quotient 
"f #i 

but the finat contents of the LFSR is not the remainder of the

division. However, the final contênts of the LFSR is also called the signature of p(x)
becausê it is isomorphic to lhe actual remainder and so the two signature analyzers
share the imporlant property of Theorem 4.1 .

Theorem 4.1: [Frohwerkl977] /f S(x) ts the s¡gnature of P(x) using the circuit of
either Fig.4.6(top) or Fig. 4.6(bottom) then Sç(x), the signature of
P6$), will equal S(x) ¡f and onty if E(x) is a muttipte of C(x), the
character¡stic polynomial of the LFSR.
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Proof : [Smith 1980]
Eqn. 4.13 that

Appl¡cations to Builþin Self-Test

For the signature analyzer of Fig.4.6(top) we see lrom

P(x) = O(x)' C(x)+ S(x) . (4.1s)

(4.16)

(4.17)

(4.18)

From Eqns. 4.14 and 4. 15 we have

P6(x) = P(x) + E(x) = Ae(x) . C(x) + Ss(x)

lf S(x) = Ss(x) and we substitute for P(x) then

A(x)' C(x) + S(x) + E(x) = 6.1¡¡ . C(x) + S(x)

so

E(x) = ( Q(x) + Qe(x) ) . C(x)

Thus, E(x) is of the form A(x) ' C(x), i.e. a muttipte of C(x).

For the signalure analyzer of Fig.4.6(bottom) a more difficutt analysis is
required and the reader is referred to [Meggitt1961].

Using Theorem 4.1 a measure of the effectiveness of signature analysis for the
detection of single bit errors (i,e. E(x) has iust one nonzero term) can be derived.

Theorem 4.2r [Ftohwerkl977] A s¡gnature analyzer us¡ng a LFSR based on a
characteristic polynomial with two ot mote nonzerc terms witt detect all
s¡ngle b¡t errors.

Proof: [Smith1980] lf C(x) has two or more nonzero terms then any multiple of
C(x) must also have two or more nonzero terms. ln Theorem 4.1 we showed
lhat E(x) must be a multipte of C(x) in order for S(x) to equat Ss(x). There-
fore, if E(x) has only one nonzero term it cannot be a multiple of C(x), and
must ther€fore be detectable.

Several olher measures of the effectiveness of LFSR signalures have been pro-
posed in the literature and will be stated w¡thout proof.

Theorem 4.3: [Frohwerklg77] [Sníthl9gjl For a data stream of length n, ¡l ail
poss¡ble error patterns are equally l¡kely, the prcbabitity that a tength m
signature analyzer will not detect the errot ¡s

2n-n - 1

2n -1
(4.1e)

Note that as n -) "", the probabil¡ty of missing an error becomes 2-m. However,
the lheorem is not as strong as one would like. For example, unl¡ke Theorem 4.2, the
choice of characteristic polynomial used in the LFSR has no bearing on its error-
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Flgure 4.7 : Mult¡ple ¡nput signature analysis register

detecting capability for multibit errors. This means that a LFSR with a simple C(x)
such as xm is as effective as a LFSR with a much more complicated C (x) such as
x16 + xe + x7 + x4 + 1 [HP1978]. However, intuitively one would think that a morê
complicated LFSR would lead to better signature analysis. This discrepancy between
Theorem 4.3 and intuition liss in the fact that, unlike communication channels where
transmission errors can be assumed independent, output errors in digital systems due
to clrcuit faults are not independent [Smith1980]. Notice that Theorem 4.3 indirecily
assumes error independence since all enors are equally likely. However, deriving
measures of error detection when errors are dependent is diff icult. [Smith 1 980] has
examined specific types of dependent errors such as burst errors and errors due to
repeated use, but further analysis of other types of dependent errors is not generally
available in the literature. Therefore, in the light of the difficulty in performing a general
analysis of dependent errors ¡t would appear that fault simulation of the circuit under
consideration is the only means of truly determining thê etfectiveness.

Up to this point only signalure analyzers operaling on a single stream of data
have been considered. Most practical circuils have many oulputs. To form a signature
of the output from a multiple output circuit one could: 1) place a separale signature
analyzêr on each circult ouþut; 2) dlrect each ouÞut in turn to the LFSR using a multi-
plexer and form the signature on the resulting single bit data stream lBenowitzi gTS];

or 3) one could use a multiple ¡nput signature analyzer register (MISR) such as that
shown in Fig. 4.7 [Benowitzl975]. Option 1 requires excessive area since a register
will be required at each output, while option 2 suffers a time penalty in converting the
parallel output data to a serial data stream. Presently the MISR circuit of Fig.4.7 is
considered to. be the most efficient means of producing a signature of a multiple bit
data stream. Several analytical measures of eror detecting capab¡lity for MISR circuits
have been proposed.
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Theorem 4,4: [Bhavsarl9?l] Consider an r ouþut circuit and assume that att pos-
sible error sequences are equally likely. If one forms a signaturc on N
output vectots from the circu¡t using an m -b¡t LFSR then the probability
ol la¡ling to detect an eïot is

2rN-n _ 1

zrN -1
(4.20)

Proof: We see that for N r-b¡t output vectors there are 2tN - 1 possible error
sequences. lt can be shown that an rn-bit LFSR which implements a primit¡ve
characteristic polynomial maps all possible input sequences €qually over the
2m possible signalures. Therefore, the number of error sequences which cause

. 2rN
aliasing is --i- since there are 2n - 1 possible signatures wh¡ch do not- 2n -1
cause aliasing. Thus, the probability of failing to detect an error sequence is

2rN-n _ 1

zrN -'l
(4.21t

Notice that once again all errors are assumed to be equally likêly and that as
N -+.o the probability of aliasing becomes 2-n . rhe analysis of lcarteri gB2] requires
almost no assumpt¡ons of lhe output error patterns.

Theorem 4,5: [Carter1982] ff N input test pattems arc appt¡ed randomly then the
probability of aliasing in an m -bit LFSR is less than 4lN where we
assume that m > log2(N-1).

This result makes no assumptions on the ¡nput test pattern generator other than
that the test set be applied in random order. Therefore, the results of rheorem 4.s are
equally valid for both a specially selected set of test vectors (i.e. through fault simula-
tion ) or a randomly-generated set of test vectors. However, many consider this upper
bound to be overly pessim¡stic. carter himself has indicated his personal bel¡ef that the
probability is < N-1 but has been unable to show this. A further point to note is that
once again no restrictions are placed on the characteristic polynomial of ths LFsR. An
empirical study on 41 typical circuits lMuzio1987] shows that the probability of aliasing
is greatly dependent on lhe charter¡stic polynomial. As well, for complicated polynomi-
als such as the 1 6-bit HP polynomial, the results of [Muziol987] seem to agree w¡th
an analytical sludy [williamsl986a] that the actual probability of aliasing is much closer
lo 2-n ralher than 4/N.

4.7.2. CA.Based Slgnature Anatysls

We proceed to describe and propose some measures on the effectiveness of sig-
nature analysis using cellular automata.
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Flgure 4.8 : Two techniques of SA using CA-based MISRI;
. (top) nethod r; F(f+1) = Æ(t)'O O(f+1).

(bottom) method 2: F(f+1) = (F(l) o O(f))'.
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START

Flgure 4.9 : ' Comparison of the rule 90 and 150 hybrid, CA rule 30, and the LFSR
lor signature analysis. Global state transit¡on diagrams and data
comprcss¡on petmutat¡ons fot (top) rule g0 and 150 hybrid and LFSR,
and (bottom) CA rule 30.

SIGNATURE

--------

SIGNATURE
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4,7.2.1, Two Methods of C-MISR lmplementailon

The nearest neighbour communication properties required for implementing ele-
mentary one-dimensional cellular automata allow the consideration of several different
techniques of sA. Here we will only consider four methods but it is acknowledged that
other techniques are possible and may, atter due consideration, prove to be more
satisfactory. The first two techn¡ques are shown in Fig. 4.8. ln Fig. 4.8(top) we see that
the signature is formed by updating the cellular automaton and then exclusive-oñng
the current state at each site in the cellular automaton with the corresponding output
from the circuit under test. This means that the number of sitês required in the cellular
automaton is equal to the number of outputs from the circuit under test. Not¡ce that this
¡s directly analogous to conventional L-MlSRs. The second technique, shown in
Fig. 4.8(bottom), is similar except that here we lrsl exctusive-o¡ each site with the
corresponding circuit output and lhen ¡ncrement the cellular automalon. These two
methods can be described algebraically by the following equations.

Method 1:

Method 2:

where

Æ(f+1) = F(f)'@ O(f+1)

Ê(t+1)= (Æ(f) o o(f))'

(4.22)

(4.23)

F(f) = cellular automaton contents at time f .

O(t) = circu¡t output at t¡me f .

R(t)' = the incrementêd value of the cellular automaton contents at time f .

ln lhe BILBO circuit, signature analysis is usually performed via a multiple input
signature analysis lechnique in a similar manner to the generalion of cyclic redun-
dancy codes. lt can easily be shown that the cALBo circuit is also capable of com-
pacting data as a consequence of the excellent pseudorandom number generation
capabil¡ties of cellular automata. The properties of the multiple input LFSR, the rule 90
and 150 hybrid, and CA rule 30 or 45 of importance in signature analysis using
methods 1 and 2 are summar¡sed in Fig.4.9. Figure 4.9(top) represents the state
transilion diagram associated with a LFSR having a maximal cycle length. Data com-
paction and subsequent signature generation is accomplished by mixing output vectors
for the system under test with the present LFSR state. This effect¡ve¡y permutes the
state transition diagram as indicated by the dashed l¡nes. As the multipte inputs to the
L-MlsR are nondetermin istic, each point in the state space is equiprobable including
the null, or zero, state. A sim¡lar mapping is appropriate for the maximal length rute
90 and 150 hybrid discussed previously.

The situation for cA rule 30 is somewhat different in lhat it is not a maximal cycle
length statê machine, but ralher one whose state transitions consist of trees and sub-
cycles as indicated in Fig. 4.9(bottom). we suggest that for signature analysis, th¡s
state diagram may also be appropriate because of the nondetermin¡stic nature of the
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Flgure 4.10 i A directed m -ary trce. Here m = 3.

outputs from the system under test. Transitions readily occur between states in
separate cycles (semigroups), so that all states ¡n the state space of CA rute 30 are
also equiprobable. Hence data compaction capabilities should be similar for cellular
automata and. LFSFS. Note that in the case of the second LFSR problem circuit of
Fig.4.2(b), the missed eror occurred because the signature analyzer cancelled out
the error when the LFSR shifted. lf a CA-based M|SR (C-MISR) had been used the
error would not be cancelled since each bit in the C-MISR is a function of the incoming
information and its three ne¡ghbour bits. This contrasts with the L-MlsR where each bit
is a function of the incoming information and only one neighbouring bit. However,
ditferent cellular automata will yield different aliasing probabil¡ties and thereby ¡ndicate
which cellular automata are more suited for use in C-MISRs.

Unlike the L-MISR there is a very large number of different cellular automata-
based structures which can be used as C-MISRs. This var¡ety allows for a great deal
of flexibility in c-MlsR design, but at the same time it is impossible to do an exhaus-
tive examination of all th6 possibilities and identify the best overall implementation.
One is also severely constrained by the lack of formal algebraic techniques for exa-
mining the evolution of many cA implementalions. Here some results will be presented
which attempt to ident¡fy properties that should be possessed by candidate cellular
automata for SA, using methods 1 and 2.

We first consider the evolution of states for different cellular automata. The
behaviour of many cellular automata is similar to that shown in Fig.2.26 in that there
are many cycles and paths to lhe cycles. This compares to the most common LFSR-
based MISRs which have one large cycle of 2n - 1 states and the zero state as a
one-cycle. The major difference for SA is that in cellular automata which have an evo-
lution of states similar to that of cA rule 30 we have individual states with more than
one predecessor. The ramifications of this can be most readily determined by studying
SA on a direcied m-ary tee. Here we define a directed m-ary tee to be a hee in
which each state other than the so called garden of eden slates has m possible
predecessors directed towards itself, as shown in Fig.4.l0, and the mapping of the N
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possible states is randomly ordered.

Lemma 4.1: Cons¡det three b¡naty words A, B, and X, then A @ X + B @ X,
¡fA+8.

Proof: Consider binary values, a, b, and x, where a * b,lhen a @ x + b A x
by nature of the bitwise exclus¡ve-or operation. Therefore, ft A , B , and X are
binary words, where A+8, then A@X* B(E X since lhe exclusive-ot
operator operates only on single bits.

Lemma 4.2: 1-x < e-x .

Proof: For all x, e-x can
,.2 .,31-x+i-ã.

tude so that 1-x < e-x .

be represented by the alternating power ser¡es

. We see lhat alternating terms decrease in magni-

Theorem 4.6: Us¡ng s¡gnaturc methods 1 and 2 on a dhected m-ary tree the pro-
babil¡ty that the sígnatures of two tandom sequences, which d¡fler ¡n

only one elemenL are d¡fferent T increments after the differing elemenL
ls

-T(n-1\
<e iv

Proof: Let SAi(t) and SA2(f ) be the signatures after f elements of sequences 1

and 2, respgctively. Let the differ¡ng element occur ¡n element s, then
S41(s-1 ) = SAz(s-1 ) but SA1(s) + SA2(s). Here we are considering an
m-ary Íee where each branch has the form of Fig. 4.1 1. The only way in which
SAl and SA2 can become equal under method 1 at step f is for the exclusive-
oring at step f-1 to have permuted both SA1(f-2)'and SA2g-2)', to the
same set of ¡n possible successors states. The probability that this occurs is
m-'li-. Note that they cannot be permuted to the same predecessor state byN

Lemma 4.1. Therefore, the probability that SA1 and SA2 remain different at

each step is 1 - il-. Under method 2lor SAl and SA2 to become equat

on step t , lhe exclusive-oling at step t must permute both SA I (f -1 ) and
SA2(f-1 ) to lhe same set of m predecessor states. The probability that this
occurs is the same as for method 1. This occurs independently for each step
under methods 1 or 2 so, f steps after the differing element, thê probability that
SA1 and SA2 have, at some step, been permuted to the same set of predeces-

sors using methods 1 or 2 is

(4.24)
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(4.25)

(4.28)

Flgure 4,11 t A degree m branch in a directed m-ary tree.

(1 -#)'
Thereforê, by Lemma 4.2 and setting x = # we can say that, using

methods 1 and 2 on a directed rn-ary tree the probability that lhe signatures of
two sequences differing in only one element remain different, f elements after
the differing element, is

-T(n-1\
<e 

^/
(4.26)

Of course, most CA rules do not implement direcled m-ary trees or even directed
binary trees for that matter but using these techniques we can form more exact meas-
ures for differing cellular automata. We lirst consider a general tree structure such as
lhat shown in Fig. 4. 12. Here we have branches with varying degrees including lhose
w¡th degree zero (i.e. states w¡th no successor) which are sometimes referred to as
graveyard slafes. We can tabulate the number of branches of degree i as N¡. For
example, Fig. 4.12 has two branches of degree 2 so N 2 = 2. Notice lhat the total
number of slates, N, equals

No+ i 'N¡. 4.27)

Theorem 4,7: Consider a general tree structure w¡th N¡ banches of degree i,
then the prcbab¡lity that the signatures using methods I and 2 of two
nndom sequences d¡ffer¡ng in only one element arc sti different, T
steps after the dilfering element, is

/vt>0

f,_-r(i-1)rurlr
l. Éo ¡12 l
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Flgure 4.12 : A general d¡rccted tree structurc. Here Ns = 1, Nr = 2, Nz= 2,
Ns = 1, and N4= l.

Proof: As in Theorem 4.6, let SA1 and SAz be the signatures of sequences
1 and 2, respectively and let the differing element occur in element s. Since
each sequence ¡s random, the values must be equidistributed. lt can be shown
that the exclusive-or operator is linear and so, SA I and SA2 are permuted
equally around the tree by the circuit ouþuts. Therefore, using method 1, the

probability that SAl(f)'has been permuted to a branch of degree I is +,
N"

for I ) 1 and;i for i = 0. For SA1 and SA2 to become equal at some step

f > s using method I both SA1(f-2)'and SA2g-2)'must be permuted to the
same branch. Given that SA1 has been permuted to a branch of degree i the

probability that SA2 w¡ll be permuted to the same branch is +. Therefore,

the probability that SA1(f-2)' and SA2(t-2)'are permuted to the same branch
equals the sum over all the branches of degree > 1 of the probability that
SAít-2)' is permuted to a branch of degree i muttiptied by the probabitity that
SA1G-?)'is permuted to the same branch, i.e.

,Fr i.N¡ ¡-1 - 
¡.N¡ i_1

",, 
oLr*"n"rT N = 

*Lro u ' 
¡l

s t(i-1)N,

ru, ío ¡¡2

(4.2e)

(4.30)
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Flgure 4,13 | A dirccted b¡nary tree w¡th 7 branches

Therefore, the probability that SA1(f-2)' and SA2$-2)' are not permutsd
to the same branch (i.e. remain different) is

A similar argument can be construcled for SA method 2.

The probability of SA 1 and SA2 remaining different at each SA step is

independent, so f steps after the differing element the probability that SA 1 and
SA2 are still different is

i ti-1 )^/,
' ,3o ¡¡2

{' 
- 
"3.'#t}'

(4.31)

(4.32)

A quick check to verify that Theorems 4.6 and 4.7 agree shows that if we use the
directed binary tree of Fig. 4.1 3 then the probability ot not aliasing on each step

according to Theorem 4.7 is 1 - 2 ' 1.:7 
= -]$ wnich equats the result of142 14

. 1 13-
1 - 14 = n Írom Theorem 4.6.

Using Theorem 4.7 we can now find the probability of aliasing on single bit errors
for any CA-based MISR provided we know the state transition diagram. For example, a
4 bit cyclic rule 30 cellular automaton has lhe state transition diagram of Fig.4.14(top),

yielding a probability of not aliasing of (1 - Zh)r = 0.969r, while a 4 bit nuil
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oo
Flgure 4.14 : Slaf6 transition d¡agnm for (op) 4 b¡t rule 30 cellular automaton with

cyclic boundary conditions. (bottom) 4 bit rule 30 cellular automaton
with null boundary cond¡t¡ons.

boundary rule 30 cellular automaton with state transition diagram, as shown in

Fig.4.14(bottom), has a probabil¡ty of not aliasing ot tf - 7ft-)r = 0.977r. tf we

examine more CA-based MISRS we see that a lrend establishes itself. This trend indi-
cates that cellular automata with the fewest degree > 2 branches in the state transition
diagram have the smallest aliasing probabil¡ty. ln fact, we see from Theorem 4.7 that if
the state transition diagram consists only of unary branches (i.e. cycles) then lhe alias-
ing probability for single bit errors is zero. A number of CA rules lead to such
behaviour and are listed in Table 4. 1 .

Applications to Builþin Self-Test

FÐ
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Rule Equation Boundary Length

204
5l

a¡(t)

ar-it
all

all
all

all

60

195

102
153

90
165

150

f05

a¡+1(f)@ar(l)

airttloarttl
a¡(f)Oai-1(f)

a,E)@-a¡"Ì¡t
a¡a1(l)0a¡-1(f)

aã(t)ea¡lt)
a¡*1 (f )<Ea¡(f )@a¡-1 (f )

t;(rl@ã(r)oa'-'^

null
null

null
null
null
null

null
null

all

all

all

all

4,6,8,
4,6,8,
4,6,8,
4.6.8.

240
f5

170
85

150

105

101

f54
89

foÞ

75

180

45
210

a¡*r(f)

á;;o
a¡-lt)
ã;'l?t

â/+1 ( t) O ai ( I )Oai-r ( f )

afiO@Af¡oãi"(,)
(a¡+l (l)uaj( l))@ai-1(r)

(ai+1 (f )uailt))(Eâ,.-r(,)
(a¡*1ua¡(l))@a¡-1(f )

1 a,rt ua,. 1 t ¡ ea,.-r (t)
a/*r (t)e(ãatþå'- j ( f ))

ar.r (f )o(4if-)uar-i (f ))
ai+j(f)e(ar(f)ua;100
a- (tle(a,(t).ra.ltD

cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cycl¡c

cyclic
cyclic
cyclic
cyclic
cvcliô

all

all

all
all

all

all
5,7,9,
5,7,9,
5,7,9,
s,7,9,
5,7,9,
5,7,9,
5,7,9,
5,7,9,

90, 150 hybrid a/+1(f)eai_1(f)

a¡*1 ( f )@ a¡ ( t )@a¡-1 ( l) null 4,6,10,12,

Table 4.1: CA rules implementíng a cyclic gtoup lor both nutt and cycl¡c boundary
cond¡t¡ons.
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Theorem 4.8: Us¡ng SA methods I and 2 we will always have a dilferent signa-
tute fot two sequences differing in only one element provided that the
MISR's rule of operat¡on foms a cyclic group.

Proofi A cyclic group's state transition diagram consists solely of unary branches
so, from Theorem 4.7, we see that the probability of aliasing given a singfe
differ¡ng element is zero. Therefore, the two sequences must have different sig-
natures.

A second proof for Theorem 4.8 can be made by using induction on
Lemma 4.1 .

Let the differing element occur in elemênt s then SA.,(s) * SA2(s). Using
method 1 on lhe next signature step we have by Lemma 4.1

SA1(s+1)= SAr(s)'o O(s+1)+ SA2(s)'@ O(s+1)= SAz(s+1) . (4.ss)

Assume that SA1(f-1 ) + SA"(t-1), f = s+k > s+1 , then by Lemma 4.1

S/41(f)= sÁ1(r-1)o o(f)* SA2(t-1)e O(f)= SA2ß) . (4.s4)

Therefore, the statement is true for f = s, s + 1, and s + k so by induc-
tion, ¡t is true for all f > s.

For SA method 2 a similar inductive argument to that for SA method I can
be used. Thus, if the MISR'S rule of operation forms a cyclic group, SA using
methods 1 and 2 w¡ll always yield a different signature for two sequences
differing in only one element.

Notice that Theorem 4.8 also holds for conventional L-MlSRs.

The general theorem lot m -ary trees and the specif ic example for CA rule 30
show that implementing a MISR using a circuit which contains states with multipte
predecessors, such as that which occurs in many CA rules, is poor. This is especially
true when we compare the results to Theorem 4.8 where we seê that guaranteed
detection of single d¡fferences, or errors, is possible using LFSRs and certain CA
rules. Thêrefore, only lhose rules implementing cyclic groups should be used for
MISRS since for single errors both C-MlSRs and L-MlSRs will provide the same fault
detection capabilities. Thus, for single errors, it has been shown that using a C-MISR
built from a CA rule of Table 4.1 provides equivalent SA properties to those of a L-
MISR.

For multiple errors we must consider how the additional errors will affect the pro-
bability of not aliasing given in Theorem 4.7.
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Theorem 4.9: lf we considü the general dhected trce structure of Theoram 4.7
then the probab¡l¡U that the signatures using methods I and 2 of two
random sequences diffe ng ¡n two rcndomly placed elements arc st¡ll

diflercnt T2 steps after the second differing element is

|. ¡l¡l-¡r¡1, I
I r -# - 1lA(T2) A(T¡T¡) + A(T2) . (4.3s)
|."'''* Nz )''

where

I ¡r¡-r l¡¡, I ¡A(r)= t.|_^È.Ël
Tl = time since the I'th differing element.

Proof: Using Theorem 4.7 we know that on a general directed tree struclure, the
probability that lhe signatures, using methods 1 and 2, of two random
sequences differing in only one element, are still different T steps after the
differing element, is

(4.36)

Cdnsid€r a second ditfering element which occurs at some time f afier the first
differing element. There are three possibilities at this juncture:

i) ¡f the signature is still different then there is a probability that the
second ditfering element permutes the signature to that of the
other sequence;

if the signature is still difierent and the second differing element
does not permute the signature to that of the other sequence then
the probability of still having a differ¡ng signaturê f2 steps later is
as in Theorem 4.7;

lf the two signatures have become lhe same then thê second
differing êlsment will act as in Theorem 4.7.

The probability of the signatures still being different f steps after the first
ditfering element is as in Eqn.4.36. The probability of the second differing ele-
ment permuting lhe signature to the other sequence's signature is, summing
over all the branches, the probability of the other signature being in a branch of
degree I at step f times the probability of permuting the differing signalure to a
specific branch of degree i, i.e.

¡¡i)

{'- "å"'#* }'

(4.37)
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(4.38)

(4.42)

(4.43)

where i and N¡ are defined as in Theorem 4.7.

Conversely, we see that the probability of not permuting to the other
sequence's signalure is

Therefore, the probability for the occurrence of ¡nstance i) is

i2 .N, i ¡t¡-11ru, ìr

"å-rr t'-"åËl

'" 
i 'Â1,. N-i _ \r l(N-i)^/t

,u?,0 N N ,í,0 Y2

f ¡t¡-r llv, I r,_1,_"åËl

i lN-i)N,

"å'Ëo 
(r rTz) A (T2) + ( - A(r rT2)l A (T z)

where A(f ) and Tj aß defined as above.

Collecting terms we see that we can reduce Eqn. 4.42 to

I itrv-ir¡r, II \. -:---j---.:- - 1 lA(T2) A(TfTzl + A(T2)t"Ío ¡¡2 )

(4.3e)

Therefore, the probability of instance ii) occuning is

ilN-i)N, i iü-l)N, lr

"àlã- tt-"å"-l (4'40)

For instance ii) the probability of the two signatures remaining different after this
point in time is as in Theorem 4.7 w¡th f = fz since the C-MISR is a tirsl order
system. For instance iii) we see that the probability of the two sequences having
become the same is

(4.41)

As in instance ii), the probability of the hivo signatures remaining different after
this point in time is as in Theorem 4.7 willl T = Tz.

The total probability of the two signatures remaining different is the sum of
instances ii) and iii). Thus, the probability of the signatures using methods 1

and 2 of two random sequences differing in two randomly placed elements st¡ll

being different f2 steps after the second diff ering element is

This can be êxtended to mult¡ple errors > 2 but the number and complexity of the
terms becomés prohibitively large. The major point to note is that, as in the single
error case, implementing SA on a general directed tree is poor practice since there is
a greater probabil¡ty of converging to the same signature than in the case of SA on a
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Rule

Boundary

conditions

Dishibution

method 1 method 2 method 3 method 4

204
51

all

all

Fail
Pass

Fail
Pass

Fail
Fail

Fail

Fail

60
195

102
153

90
165

150

105

null
null
null

null

null
null
null

null

Fail

Fail

Fail
Pass
Pass
Pass
Pass
Pass

Fail
Fail

Fail

Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Fail

Fail
Fail
Fail

Fail
Fail
Fail
Fail

Fail

Fail

Fail

Fail

240
15

170
85
150
'105

101
'f 54
89

166

75
180
45
210

cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cyclic
cvclic

Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass
Pass

Pass
Pass
Pass
Pass
Fail
Fail
Fail
Fail
Fail
Fa¡l

Fail

Fail
Fail
Fa¡l

Fail

Fail

Fail

Fail
Fail
Fail

Fail
Fail

Fail

Fail

Fail

Fail

Fail
Fail

90, 150 hybrid null Pass Pass Fail Fail

Table 4,22 Equid¡str¡but¡on test results for CA rules of Table 4.1.

unary tree. For example, if we assume that all branches are unary then Eqn.4.4g

reduces 
" 

I#. This can be checked against instance i) of the proof since we

know that for a unary lree system lhe signatures will remain difterent after only one
error. Thus, once again we see that the CA rules of Table 4.1 are the most suitable
for use in a C-MISR when we consider multiple errors.

A more general, and easily used, measure occurs in Theorem 4.4. lt holds
equally well for both C-MlSRs and L-MlSRs provided that all poss¡ble inputs are
mapped equally over all the possible signatures. This cannot bê shown algebraically
for most CA rules, so computêr simulations were used to show which rules from
Table 4.1 satisfied this requirement. The results are summarised in Table 4.2. Notice
that most CA rules which implement cyclic groups equally distribute all possible inputs
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over all possible signatures. Therefore, we have reduced lhe numbor of potential CA
rules to be used in a C-MISR using SA methods 1 and 2 to those of Table 4.1. Further
analysis of multiple errors beyond that of Theorem 4.8 and Th€orem 4.4 is left as an
open problem.

It is possible to do empir¡cal studies to verify our estimates on the aliasing proba-
bility for the cA rules of rable 4.1. one such test is to check the aliasing probability by
inserting €rors into a number sequence and checking on the number of error inser-
tions required before an aliased signature occurs (i.e. ¡f 2S0 error insertions are
required lhen an aliased signature occurr€d alter 250 different error insertions). These
results are reported in Table 4.3. lt was found that SA methods I and 2 did not give
quantifiably different results, so only results for method 2 are given. For comparison
the results for a L-MISR are also included. We note that both th€ L-MISR and the C-
MISR implementations alias at a rate which is approximately predicted by
Theorem 4.4. Fot example, for a length 9 rule 89 cellular automalon it takes an aver-
ag€ 0f 433 quadruple error inserlions before an alias€d signature occurs. ln addition,
no difference can be seen between the performance of the various CA rules of
Table 4.1 and the LFSR. Thus, the results of this simulation indicate that the CA rules
of Tablê 4.1 and the LFSR provide sssentially equivalent aliasing pertormance for the
above test.

It should be noted that the simulations of Table 4.3 assume error independence.
Earlier it was indicated thal this is not a realistic assumption since it is known that
error outpuls from circuits may be dependent. This does not make the results of
Table 4.3 irrelevant but merely places them in perspective and also explains some
cur¡ous results. Some CA rules, such as rules 204 and 51 which maintain or invert the
current value respectively, perform well on tests such as shown in Table 4.9, but are
entirely unsuitable for sA since it is easy to construct circuits which cannot be tested
by these two rules. Other CA rules are similar in that they lead to very regular
behaviour and, as for rules 204 and 51, it is possible to construct pathological circuits
for these rules. However, as the behaviour of the CA rule becomes more complex, lhe
frequency with which pathological circuits are found decreases. The most complex
behaviour is exhibiled by CA rule 45 and the rule g0 and lS0 hybrid which, as we
know from Chapter 2, exhibit pseudorandom behaviour. To ¡ndicate why a more pseu-
dorandom MISR circuit is preferable to the L-MISR circuit we note that, in the case of
the second LFSR problem circuit of Fig.4.2(b), the missed error occurred because the
signatur€ analyzer cancelled out the eror when the LFSR shifted. lf a C-MISR using
rule 45 or the rule g0 and 150 hybrid had been used, the eror would not be cancelled
since each bit in the C-MISR is a funct¡on of the incoming information and its three
neighbour bits. This contrasts with the L-M|SR where each bit is a function of the
incoming informat¡on and just one neighbouring bit. Therefore, it should be expecled
that a pseudorandom C-MISR such as CA rule 45 would provide better overall SA
since it is less prone to dependent errors, as in the example given above.

Using a pseudorandom cellular automaton such as rule 45 for both TpG and
MISR makes it possible to implement a testing structuro such as in Fig. 4. 1S. This
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Number of Multlple Errors

Rule L 2 3 4 5 6 I I 10

LFSR
204
51

60
195

102
153

90
150

105

165

240
t5

170
85

I
I
I
I
I
I
I
8

I
I
I
I
8

I
8

512
512
512
512
512
512
512
512
512
512
512
512
512
512
512.

211
237
209
210
241
234
251
191

214
220
211
239
205
202
222

229
204
221
214
238
229
234
220
229
216
215
200
205
232
230

216
223
211
184

208
234
227
227
223
210
250
231
212
238
203

261
217
218
235
207
233
205
2t3
200
235
235
229
210
201
247

225
242
208
282
225
232
200
220
241
249
212
208
204
200
224

227
249
226
210
221
221
227
243
246
211
202
237
212
234
188

243
207
242
207
254
211
230
222
227
203
218
185

199

207
231

233
201
223
234
210
235
242
225
243
187

223
235
219
197

203

244
227
214
215
226
234
229
214
234
212
230
231
223
231
210

LFSR
204
51

60
195

102
153

101

154

89
'166

75
180

45
210

9

I
I
I
o

o

I
o

Y

I
I
9

I
I

1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024
1024

451

459
482
411

405
417

440
439
460
491

415
472
391

435
425

445
451

410
458
435
427
466
470
440
430
481
468
451

481

462

458

385
438
443
511

452
439
435
443
433
434
481

440
488
452

442
414
410
471

476
412
414
476
472

417
498
482
434
428
467

462
490
445
480
432
370
427
429
436

50s
€3
394
411

428
407

445
458
438
445
469
461

476
439
485
435
451

469
369
468
445

461

409
410
403
448
434
381

428
444
485
4i¡8
440
51 1

480
457

483

523
425
500
466
425
494
456
407

402
491

452
449
385
467

472

542
473
407

443
420
427
434
503
455
395
410
463
487

466

90h150 10 2048 856 898 846 863 938 868 863 851 891

Chapter 4 Applicalions to Built-in Self-Test

Table 4,3: Performance ol CA rules of Table 4.1 fot mult¡ple error aliasing using SA
methods 1 and 2. Here we consider up to 10 erroß ¡n a sequence ol
1000 numbers and find tha average ovet 100 different or¡g¡nal se-
quences.
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Flgure 4.'15 1 Us¡ng CALBO to test two d¡flercnt logic blocks. Duting test phase one
CALBO A is a C-TPG and CALBO B is a C-MISR and du ng test
phase two CALBO A is a C-MISR and CALBO B ís a C-TPG.

têchnique is commonly used w¡th BILBO but has, up to now, been impossible with
CALBO since the aliasing properties for SA were unknown. Therefore, it would appear
that, since the CALBO circuits using methods 1 and 2 proposed in this work perform
equally well for SA as traditional LFSR circuits, all appl¡cations in which BILBO is used
as the BIST methodology can be replaced by a CALBO test structure.

4.7,2,2, Two More C-MISR Technlques

The final methods of signature analysis to bo considered here use the techniques
shown in Fig. 4.16. Here we use the communication lines of the cellular automaton
sites as the points at which the circuit outputs are introduced. This is done by
exclusive-onng lhe passed value from the adjacent cellular automaton site with the
corresponding circuit output. Notice that in the technique of Fig.4.16(top) the gate
count is higher than in methods l and 2 but if we use the techn¡que of
Fig. 4.16(bottom) it is possible to use a [m12l s¡te cellular automaton as the C-MtSR.
These particular C-MISRs can also be described algebraically as follows:

Method 3:
lì

ai$+1)= olai_1(f)o Q(f+1), a¡(t),a¡u$) o Q(f+1) ) t+.t+l

Method 4:
r'ì

ai(t+1)=Õ[a¡_1(f)@ O2¡_1(f+1), a¡(t),ai+1(t) O O2¡(f+1) J $4s)

wherê

a¡(t) = value of CA site i at time f .

O¡(t) = circuit output from bit i at time f .

187



Circuit under Test

Chapter 4 Applications to Bu¡lt-in SeltTest

Flgure 4,16 i Two more techniques of SA using CA-based MISRi;
(top) method 3:

ar(t+1 ) = Õ(ai-1 (t)@q(f +1 ), a¡(t), a¡*l (f )eQ(f+1 )).
(bottom) method 4:

a,(f+1 ) = ô(a¡_1O@O 2¡_1 (f+1 ), a, (t), a¡+1 (t)@O2r (f+1 )).

Õ( ) = Particular CA rule of operation implemented.

These two methods give rise lo much more compl¡cated behaviour than
methods 1 and 2 since methods 3 and 4 create a dynamic hybrid whose rules of
operation are based on the curent ouþut of the circuit under test. For example, con-
sider CA rule 30 with truth table as given in Table 4.4. We see that, using method g, ¡f
the c¡rcuit output to one site is low then that site functions normally. However, if the
circuit output is high then the CA rule at that site changes, as shown in Table 4.4,
because the commun¡cated values from the left and right neighbours are inverted. This
occurs throughout the cellular automaton so we are forming a dynamic two rule hybrid
where each site is either CA rule 30 or 210 depending on the corresponding circuit
output. For SA method 4 the s¡tuation is even more complicated. Consider Table 4.5
where the four possible rules at each site are given. Now a dynamic cellular automa-
ton where any one site could be one of four different rules is created. Another con-
sideration is the boundary conditions. For null boundary condit¡ons we are, in fact,
using the most and least sign¡ficant circuit output values as the boundary inputs of the
cellular automaton. This further permutes the overall null boundary behaviour since the

Circuit under Test
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Bule 30

111 I10 101 100 0t1 010 001 000

00011110
Clrcult output = 0 -+ Rule 30

111 110 10f 100 01 I 010 001 ooo

@(1 f 1) o(1 1 0) Õ(101)
00

o(100) o(0f 1) o(010) o(001) o(000)
01t11

Clrcult output = I -+ Rule 210

111 110 101 100 01 1 010 001 000

o(010) o(01 1)

11
o(001) o(1f 0) o(111) o(100) @(101)

10010
o(000)

0

Table 4,4: Effect of SA method 3 on a rule 30 C-MISR.

boundary conditions are now dynam¡c rather than fixed. The effect ¡s reduced if cyclic
boundary conditions are used since the left and right boundary values are normally
dynamic.

Wh¡le analytical study of SA methods 3 and 4 is ditficult (less so for method g) it
is possible to repeat the previous empirical studies for methods 1 and 2. We first
investigate the diskibution of signatures by different rule CALBOs. Computer studies
have shown that CA rules other than those of Table 4.1 do not have an equid¡str¡bu-
tion of signatures using either method 3 or 4. For those rules of Table 4.1 the results
in the final two columns of Table 4.2 are presented. Notice that for SA method o
about half the rules yield equally distributed signatures. However, it is surprising that
the two random rules (45 and the 90, 150 hybrid) do result in equally distributed signa-
tures using method 3. For SA method 4 we see that no CA rules result in equally dis-
tributed signatures. This would indicate lhat the general SA theorems proved earlier
will not hold for methods 3 and 4 since the signatures âre not equally distributed.

It is also possible to study single and multiple error pertormance using a similar
study to that of Table 4.3. ln that study it was found that SA methods I and 2 yielded
essentially equivalent behaviour so one set of resulls could be used to indicate the
performance of both methods. As we have already seen for the distr¡bution of signa-
lures; SA methods 3 and 4 yield very different performance. Therefore, the perfoÊ
mance of both methods must be presented separately. In Table 4.6 we see the results
for method 3 and in Table 4.7 for method 4.

For method 3 we see that essentially equivalent performance to the LFSR for
multiple signatures is possible if a CA rule such as rule 60 with null boundary condi-
tions is used. However, the number of such rules is greatly diminished when compared
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Rule 30

1tI 110 101 100 01 1 010 00.t oo0

0001.1 1.1 o

Left clrcult output = 0 Rlght ctrcu¡t output = 0 -+ Rule 30

1tI 110 101 f 00 0.t 
.t 010 001 ooo

Õ(111) Õ(110) o(101) o(100) Õ(011) o(010) o(oo1) Õ(ooo)
0 0 'I 1 1 '| 0n

Left clrcult output = 0 Rlght clrcult output = I -+ Rule 45

111 110 10f 100 01 1 010 oo1 ooo

o(110) o(111) o(100) 0(10f)
0010

o(010) o(011) @(000) 0(001)
1101

Left clrcult output = 1 Rlght clrcult output = 0 -+ Rule 225

111 110 101 100 0f 1 010 001 ooo

Õ(011) o(010) o(001)
1tl

o(000) o(1 I 1) o(1 10) o(101 ) Õ(1 00)
00001

Left clrcult output = 1 Rlght clrcult output = I + Rule 210

111 110 101 100 011 010 ool ooo

o(01 0) o(01 1)
'I 

1

o(001) o(110) o(111) @(100) Õ(101)
10010

o(000)
0

Table 4.5: Effect ol SA method 4 on a rule g0 C-M\SR.

to those with equivalent LFSR performanco when using methods 1 or 2. For the null
boundary condit¡on rules we see that e¡ther the C-MISR will deliver comparable LFSR
performance or it is trivial to alias the c-MlsR. However, for cyclic boundary conditions
we see that some C-MlSRs, such as rule 166, have very poor performance for low
errof counls but as the total number of errors increases so does aliasing perfofmance.
This is not unexpected, but the rale of performance increases more rapidly than might
be thought. ln any case such performance is not desirable s¡nce one must have low
aliasing probability at all total error counts. The most puzzling result of SA using
method 3 lies in the performance of CA rule 45, a random rule. Frcm previous discus-
s¡ons one would expect the aliasing performance of rule 45 to be at least equivalent to
that of any other rule but as can be seen it is actually much worse than some rules.
The reason for this is left as an open problem.
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Table 4,6: Performance of CA rules of Table 4.1 for multiple eïor aliasing using SA
method 3. Here we consider up to l0 errors ¡n a sequence of 100
numbers and lind the average over 100 difÍerent o ginal sequences.

Number of Multlple Errors

Rule L 1 2 3 4 5 b 7 I I 10

LFSR
204
51

60
195

102
153

90

150

105
't65

240
'15

170
85

I
8

I
8

I
I
I
I
I
I
I
I
I
I
I

512
'I

1

512
s12
512
512

1

'|

1

1

512
512
512
512

211
1

'I

210
211
218
235

I
'I

1

1

230
228
228
249

229
1

I
'195

207
224
196

1

I
1

'I

209
195

223
203

216
I
1

219
250
236
221

1

I
'I

1

235
215
220
227

261
I
1

207
242
201
240

1

1

1

1

235
200
210
216

225
1

1

212
214
213
232

'f

1

1

f
242
202
232
216

227
I
I

224
217
183

216
1

'|

1

1

221
244
198

220

243
1

1

229
223
205
243

I
1

1

1

215
256
214
228

233
1

1

249
225
Z!tþ

232
I
1

1

1

245
222
214
211

244
1

I
230
226
260
181

1

1

1

I
230
238
228
194

LFSR
204
51

60

195

102
153

101
'154

89
166

75
180
45
210

I
I
o

9

I
I
I
I
I
I
I
o

I
I
I

1024
I
1

1024
1024
1024
1024

10

1

13

10

12

10

1t
1

451

1

1

466
401

479
463
130

1

147

144
98
127

85

1

445
I
1

422
468
475
441

238
1

260
188

268
256
237

I

458
1

1

417

451

438
418
295

1

294
246
306
324
307

1

442
1

1

411

444
424
439
363

1

330
385
332
304
286

1

462
1

1

541

475
490
421

386
1

378
284
407

356
304

1

445
1

1

481

464
401

463
447

1

348
399
438
404
367

1

461

1

'|

427
45f
424
490
397

1

387
330
371
396
363

1

483
I
1

391

477
454
433
322

1

382
448
400
448
391

1

472
1

1

457

429
385
432
393

1

467

448
404
401

358
1

90ht 50 10 1 1 1 1 I 1 1
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Table 4,7: Perlormance ol CA rules of Table 4.1 for multiple error aliasing using SA
method 4. Here we consider up to 10 errors in a sequence of 100
numbers and find the average over 100 different original sequences.

Number of Mulllple Errors

Rule L 1 2 3 4 5 o 7 I I 10

LFSR
204
51

60
19s
102
153

90
1s0
105

165
240
15

170
85

I
I
8

8

8

I
I
I
I
I
I
I
I
I
I

512
'I

'|

18

16
'16

18

14

16
'16

'16

19

19

14
'18

211
1

1

16

17

14

17

14

16

16

14
17

16

15

16

29

5

3

6

7

b

þ

7

6
I
5

4

216
1

1

15

16

18

f8
17

14

15

16

17

15
'15

'18

261
1

1

'15

18

14

17

15

14

16

15

17

17

14

15

225
I
1

17

14

16

14

14

14

14

15
14

17

15

17

227
1

1

17

14

19

15

15

15

19

14

15

14

16

20

43

6

6

3
4
þ

5

6

3
6

I
4
5

33

t)

5
b

4

7

Þ

b

7

5

7

7

7

244
1

1

15

15

15

16

17

16

17

15

17

15

14

15

LFSR
204
5l
60
195

102
153

101

154

89
166

75
180

45
210

I
I
I
9

I
9

I
I
I
I
I
I
I
I
I

1024
1

1

16

16

15

17

2

5

5

445
1

1

'16

16

16

17

I
1

1

1

1

1

1

1

458
I
'I

17

15

15

14

1

1

1

1

'|

1

1

1

442
I
I

17

13

16

15

1

1

1

1

1

1

2

1

462
1

1

18

16

19
't8

1

I
1

1

1

1

1

1

M5
I
'I

18

15

16

tþ
1

1

1

I
1

1

1

I

461

I

1

16

t5
16

17

1

1

1

1

1

'|

1

1

483
1

I
15

14

16

15

1

1

1

1

1

1

1

I

472
1

1

18

16

13

1

'I

1

1

1

1

1

1

90h150 10 15 5 16 14 15 14 15 t6 17 14
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For method 4 we see lhat all CA rules yield very poor performance which
appears to be independent of the number of errors in the circuit output sequence.
Therefore, none of the investigated rules is suitable for SA using method 4.

4.8, IMPLEMENTATION CONSIDERATIONS

A major advantage, and perhaps the most important, of using cellular automata
over LFSRS, ¡s the ease with which the length, or number of outputs, of the TpG can
be changed. For example, consider the following scenar¡o lRosen1987].

Suppose that a design will have N inputs and that the designers balk at hav-
ing full N+N s¡tes ¡n the¡r xxLBO. The expe ence summarised in [Waicu-
kauskil987l, [Barzilail983] suggasls that ruther few of lhe faults will be seri-
ously affected by corrclat¡on, and hence that ruther fêw of the N inputs w¡ll
need ne¡ghbouring dumm¡es. Squeezing a N+(few) is easier than squeez¡ng
N+N. But we won't know how many dummy s¡tes are really wanted unt¡l late
in the game, after extens¡ve lault simulation. Th¡s is an awkward t¡me to con-
sult a |ist of pilm¡t¡ve polynomials, lind out that the l¡st can't get N+3 without
going to N+30 and a lot morc taps, cajole an algebra¡st into help¡ng out, and
so on,

On the other hand, in a CA-based implementat¡on there is much less cross-correlation
so dummy sites will probably not be needed. However, if the length must be increased
or decreased because of needed dummy sites, or a change in lhe number of inputs in
the circuit under lest has been made, a CA approach merely requires changing the
number ol cells (remember each cell is the samê) and using a new start¡ng valus. Th¡s
contrasts with the LFSR which requires complete redesign even if only one site is
added. Therefore, a C-TPG, or C-MISR, generally may be of any convenient length
and thereby imposes few restrictions on the number of inputs of the c¡rcuit to be
testêd. This contrasls with L-TPGs and L-MlSRs where the desire to avoid redesigning
the test circuit may force unnecessarily harsh restrictions on the number of inputs or
outputs from a circuit which must incorporate BIST.

Figure 4.17 illustrates the topology of both BILBO and a rule 30 based CALBO
circuit. As indicated in Fig. 4. 17(top) , for a 4 cell BILBO operating in the LFSFT mode,
outputs Oa, Q3, and Q1 are tapped and fed back through exclusive-or gates to the
MUX input. One immediate difficulty lies in selecting the appropriate feedback taps;
that is, the taps are not independent of n for maximum length polynomial division.
Another potential difficulty arises in having to send the higher order tap back to the
MUX input, as this distancê may be a significant fraction of the chip dimension and
grows (linearly) with n, the number of cells. A technological fix may include the use of
larget exclus¡ve-or gates, hierarchical drivers, or wider and thicker metal lines to c¡r-
cumvent problems associated with delay and current density lMead198O],
lcardl 987a]. The cost involved with this approach arises from a reduced topological
regular¡ty of the basic cells, a major design deterrent for increasing n. ln any event, a
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Flgure 4.17 : Topology assoc¡ated with (top) a 4 bit BILBO and (botton) a 4 bit rute
45 CALBO test c¡tcuit. Note the use of a 2-l mullÌplexer at the input to
each CALBO stage. Rule 45 is implemented using the q' output of the
fl¡pflop.

time penalty due to propagation delays is experienced of O(/og n), or even worse, of
O(n ) if cunent density limitations lcard1987a] are taksn into account. As indicated in
Fig. 4.17(bottom), a CALBO circuit does not sutfer from this symptom as the requlred
communication can be restr¡cted to nearest neighbours, and if null boundary cond¡tions
are suitable, lhen no teedback is requ¡red. ln addition, even if feedback is required
(cyclic boundary condit¡ons) no gate delay is experienced as opposed to the LFSR
where the feedback path has at least one gate delay. On the other hand, the hardware
of the basic cell has been increased to accommodate the required storage of the
present state, lhe local logic to implement a given CA rule, and the incorporation of
transmission-gate multiplexers.

One area of further invest¡gation is warranted; the system s¡ze n at which the util-
ity of the CALBO approach is expected to improve upon that of the BILBO test circuitry
must be examined. ln comparing silicon implementations of CALBO with 8lLBO, we
suggest the adoption of an established cr¡ter¡on such as the Af (area-time) metric for
VLSI [hompson1980]. The constant factors in A and T are ¡mportant in non-
asymptot¡c design decis¡ons, and these factors are easily accounted for in a relative

r---------!
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4.18 r Slatic CMOS implenentat¡ons for units cells of: (top) the BILBO circuit.
(bottom) the CALBO circuit.
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Flgure 4.19 : AT comparíson of BTLBO aN CALBO versus rcglster tength, n.

manner (i.e. it is easy to compare absolute Ar metrics of cALBo and BILBo for a
given rechnorogy, where constant factors are rerated). rn add¡tion, we suggest the use
of a heuristic based upon wking difficurty and technorogicar lixes. rrom-Éig.4.18 we
see the unit cell for static cMos implementations of a cnleo and BrLBo circuit using
custom cMos cells. Notice üat the cALBo ckcuit requires at most two times the
area p€r cell as the unit csll for the BlLBo.a.8 This factor of two accounts for the logic
required to perform the ce[urar automaton operation (xoF, oR) at each cefl atong tîe
arfay' €rs well as for the 2x1 multiplexer which allows each cell to feed back to itselr.
A d flipflop is used in the anay, since a one b¡t memory is necessary for the operation
of the cellular automaton. Artemative ratches may arso be emproyed as in scan set oÍ
LSSD. The increased local wiring complexity associated with cALBo ¡s traded against
the increased grobar wiring comprexity of BrLBo. The area for BrLBo increases asc1n, with n he number of regÍster -cells, whereas the area for cALBo increases
approximately as 2c1n. This ignores the area of the add¡tional wking in BtLBo,
which wirr be probrematic for sufficienfly raße n. A t¡me comprexity compar¡son
favours CALBO since communication is restficted to nearest neighbours, whereas
commun¡cat¡on in BILBo in the general case may extend over a considerable fraction
of the chip width. rn the hierarchicar driver scheme one assumes this time to increasê

lI^Tt- CMOS building blo_cks are taken fÍom the University of Manitoba BumcMoS ceil ribrary- lcardjeszo¡ año- wéió iònåirì,äeä'üiinõihä Ër-Ëöïñrðiö

¡¡iï!iüjjåå.ä#'#s,Ëi:,':ïtråfi '.å,r,rnr*liËi¡U"ï'iffrq{:åsay the factor of 2 is a conservative òii¡maiãiaìür;rig-iträ r_rsn.

rÈj!l

i:;;
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as C2log n for BILBO; it is simply C2 for CALBO. The Af mekic impties that the
CALBO circuit approach is prefêrred to the BILBO circuit whên n > 4.4'9

lf the delay associated with communication in BILBO were dominated by current
density limitat¡ons, the time factor would become C2n lor BILBO. As a consequence,
the Af metric shown in Fig.4.19 would imply that the CALBO circuit approach would
always be preferred to the BILBO circuit for lengths > 4. ln any event, the v¡rtue of a
BIST technique, such as BILBO or CALBO, would have to be questioned for a small
number of control points, as we are atlempt¡ng to exploit the pseudorandom number
capabil¡ties of such circuits. Thus, for the reasons discussed above, when n is
sufficiently large that statistical tests are the only practical means available to test a
combinat¡onal circuit, the CALBO circuit described here provides a very attractive alter-
native to BILBO.

4.9. CONCLUSTONS

ln summary, an alternative BIST technique has b€en presented which may find
application as an alternative to BILBO or similar schemes in design for testability.
Advantages arise from reduced cross-corelation between lh6 individual bit strêams in
the CALBO case, and hence, an increased statislical independence in the set of test
vectors. The only required effort, once the appropriate CA rule has been selected, is
to determine a suitable starting value or seed. This compares to the selection of taps
in the LFSR as the length of the aray is varied. A maior advantage of CA-based test
pattern generators versus those based on LFSRs is the suitab¡lity of cellular automata
for use in CAD tools. The inegular location of feedback taps in the LFSR requires a
complete redesign of the LFSR when the physical length is changed, whereas for cel-
lular automata a change in length merely requires adding or removing an appropriate
number of collular automaton c€lls.

Fault coverage estimates which have been developed for LFSR-based pseu-
dorandom testing have been shown to more applicable to lhe CA-based schemes pro-
posed here. Therefore, much of the curenl knowlsdge with respect to the fault cover-
age in a random testing can be readily used in a CA-based pseudorandom test
env¡ronment.

Signature analysis techniques for cellular automata have been examined and
were shown to provide equivalent aliasing performance for equally likely errors to the
LFSR, with restriclions on the particular CA rule of operation used. For the more
demanding and realistic case of dependent errors the improved pseudorandomness of
the CA-based signaturo circu¡ts was shown to prov¡de better aliasing performance than
the LFSR for certain circuit faults. Finally, with respect to the circuit area used by cet-
lular automata and the LFSR. ll was shown that CA structures use equivalent area

-4's- 
AT for _ BILBO afr! CALBO are equivalent when

C1C2n log n = 2CtOzni n = 2z = 4.
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w¡thin a factor of two and show much improved sp€ed of operation as compared to the
LFSR.

Further effort is required in exploring the w¡de range of applications for pseu-
dorandom cellular automata in VLSI testing. Among these æplications, their su¡tability
for pseudorandom weighted pattern generation requires further invest¡gation.
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Chapter 5
Conelusions and Suggestions

for Further Study

5,1. SUMMARY AND CONCLUSIONS

ln this thesis we have been concerned with the study of parallel VLSI systems for
nondeterministic algorithms. We have especially emphasìsed the requ¡rements of
pseudorandom number generation for such systems. ln this regard we have seen that
conventional techniques of pseudorandom number generation, both software and
hardware, are inadequate for parallel pseudorandom number generation since the sili-
con area required is either much too large per bit of random number or the approxima-
tion of random behaviour is inadequate. A new pseudorandom number generator
based on simple one-dimensiônal class 3 cellular automata was proposed which pro-
vides improved area and time properties. These new generators were extensively stu-
died for randomness properties and cycle lengths. lt appears that the rule 90 and 150
hybrid exhibits the best area-time efficiency although the degree of randomness may
be less than that of CA rule 30 or 45. We have observed that CA rule gO provides the
highest quality randomness but with the smallest cycle lengths. However, for long
registers, concerns as to the length of the cycle are somewhat tempered since more
than adequate cycle length can be obtained.

Two models from statistical mechanics, the percolation and lsing models, have
been studied and fine-grained parallel archit€ctures for ths¡r Monte Carlo simulation
were proposed. The resulting architeclures would be used as coprocessors, or
hardware experts, to a host computer in order to attack lhe computationalty intensive
problem of updating the lattice sites of each model. This results in a very efficient
architecture on which lattice updates are made at rates several orders of magnitude
faster lhan on other computing systems. These high speed architectures allow the pos-
sibility of more exact Monte Carlo simulation especially at, or near, the cr¡tical point of
the phase transit¡on. Correctness of these architectures was verified by simulation to
extract the correct critical exponents for both models.

A further application of the area-time efficient pseudorandom number generator
developed for.this work is in pseudorandom testing of digital circuits. lt is shown that
the proposed CALBO approach offers improved fault detection versus the traditional
BILBO circuit, ln addition, a study of the signature analysis propert¡es of cellular auto-
mata shows that €quivalent aliasing performance to the LFSR can be achieved by
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using lhe cycllc group rules such as CA rule 45 and the rule 90 and 150 hybrid.

5.2. SUGGESTIONS FOR FURTHER WOHK

This investigation has shown that ¡t is feasible to considor ¡mplementing VLSI
solutions to nondeterministic algorithms. However, there are still a number of problems
which have arisen írom this work.

A study should be carried out into the reasons for the inexplicable
behaviour of the rule 90 and 150 hybrid, especially w¡th regard to
its site and time spacing behav¡our. ln addition, other potential
hybrids should be examined tor possiblê use as pseudorandom
number generators.

The employment of two-dimensional cellular automata and those of
higher dimensions should be studied for use in parallel architec-
tures such as lhose discussed here. For example, considerable
potential improvement in the arch¡tecturss of Chapter 3 exists if a
two-dimensional cellular automalon were used as the pseudoran-
dom number generator.

The proposed architectures for the percolation and lsing models
should be implemented in custom VLSI and stud¡ed for circu¡t
improvements. ¡n addition, implementat¡on specific problems such
as interch¡p communicat¡on and on-chip l/O problems not dis-
cussed in this work should be addressêd.

The proposed lsing model architecture based on the mapping of
Domany and Kinzel warrants further study and simulat¡on to further
verify its appropriateness for lsing model computations.

The fundamental processor archit€cture of Chapter 3 should be
extended to handle other statistical mechanical problems such as
the Heisenburg model, growth models, and spin glasses.

A complete fault simulation study of the proposed test patt€rn gen-
erator would be useful especially with regards to examining stuck-
open fault detectabil¡ty.

The possibil¡ty of weighted test pattern generation should be exam-
ined especially f rom the perspective of weight selectiv¡ty.

Other design for testability structures using cellular automata are
possible.

Simulation of cellular automata-based signature analysers should
be made using real c¡rcuils rather than a random input model.

1.

4.

6.

7.
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5,3. CONCLUDING REMARKS

This work has shown the great potential for VLSI solution of nondeterministic
algorithms. The rssulting systems have demonstrated a great improvement ov€r con-
ventional solutions. The eventual employment of the proposed systems depends on
whether the need for lheso effic¡enl solutions can Justify the associated development
costs.
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Appendix A
Bad Sequence Probability

The lollowing discussion concerns deriving the probability of a pRNG yielding a
bad sequence given that a number of sequences have been found to be pseudoran-
dom. This material is adæted from Papoulis [Papoulis1965].

Let the probability of an event f be p. lf we conduct n tr¡als then for any e > O we
haVe

l*-rf =,] =, (4.1)

where k is the number of occurrences of I in n trials and P( ) is the probability of i
n

approaching p [Papoulis1965]. Consider a sequence of random variables <xl> where
(

', = tå :Tr:#:: 
in the tth triat

The mean of an inf inite sequence <x¡> is

E(x) = 1.P(x=1) + 0.P(x=0)

=p
and the variance is

ê=EVz)-Ez(r)
= l2.p(x=t) + o2.p(x4) - p2

=P-P2
=p(1-p).

lf we consider the sequence to consist of only n trials then

_ x1*x2*. ...*xn
',n

lim P

(4.2)

(4.3)

(4.4)

(4.5)

where k and n are as defined above. Consider a colleclion of sequences <x¡>. The
expected value of Ç for this collection ot sequences will be E(Ç ) = p. The Tche-
bycheff inequality states that if r¡ is arbitrary with density f(u) and finite variance d
then regardless of the shape of f(o) the probability that u lies in the interval
(I -e,n +e) is
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Appendix A Bad Sequence Probability

(4.7)

(4.8)

efn-r.u.n*ul >1-+ (A.6)\.,

where I = E (r¡). Therefore, using the values lor E (X) and o"2 given above and

Tchebycheff 's inequality we can state that

eltx,-pl<u] =r-#
Since p (1 - p) < 114 we finally conclude that

ellr,-pl<'] =r-#

ell x,-pl .o.r] >r -**=0.75 .

Thus, the sample mean, x,, tends to p. A much stronger statement due to Borel

lPapoulis1965] states that the sample mean F, tends to p with probability 1, i.e.

P(Ín-+p)=1 forn-+"" (A.e)

Using th¡s result we can see that if we test 100 sequences from a PRNG and find
no bad sequences in the test and we want lo estimate the probability, p, of the gen-
eralor producing a bad sequence then for e = 0.1 we have

(4.10)

So we expect that in 75% of such tests the probabil¡ty of a bad sequence occurring is
less than 0.1. This of course gives a limited degree of confidence in the tested PRNG.
lf we wish to increass our confidence by reducing the probability êstimate we must test
many more sequences. For the new PRNGS suggested in this work such a test was
made for 100,000 sequences from each PRNG yielding a 975% confidence that the
probability of a bad sequence occurring is less than 0.01.
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Appendix B
Gomplete Cycle Length Tables

The following tables give the complgte number of cycles and percentage of states
either in or on a path leading to each cycle. Cycle refers to the number of a particular
cycle, size givês the cycle length, number ¡ndicates how many states are in the cycle
or on paths leading to the cyclê, and percent gives the percentage of states in the par-
ticular cycle.

8.1. Rule 30

lândlh ¿

Cvdê number Þorc€nt

1

2
3
4

I
I
I
I

2
12
'|

1

0.13
0.75
0.06
0.06

londlh 7
Cvôle numb€r oercelìl

1

2
3
4
5
6
7

I

I
1
4
63
4
4
4
4
4

2
7
7
77
7
7
7
7
7

0.02
0.06
0.06
0.60
0.06

0.06
0.06

lenqth 5

Cyd€ stzg number 9erc€nt
1

2
1

5
2

30
0.06
0.94

lenolh I
Cvcle s¡zê numbêt

1

2
3
1
5

I
40
I
1
,|

224
28

1
,|

0.01

0.88
0.1 1

0.00Ienoth 6

Cvdo slze numbêr

I
2

62
1

'|

0.97
0.02
0.02

lênolh 0
Cvclê stze p€rc€nl

I
2
â

1

72
171

8
90
414

0.02
0.18
0.81
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Appendix B Complete Cycle Length Tables

lenqth 14

Cvôle sizê Þetc€nt
,|

2
3
4
5
6
7

I
10
1t
12

14
15
16
17
18

f
1424
63
4
s4
4

133
't 33
1
4

112
84
4
4
4
14
1

1

't3818

791
155
u
155
196
196
155
155
112
84
ts5

155
14
,|

I

0.00
0.s4
0.05
0.01
0.01
0.01
0.01
0.0'l
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00

lendlh l0
Cyde Stze number pefc€nt

1

2
3
4

6

1

't5

5
1

1

2
4m
4n
180
I
I

0.00
0.41
0.41
0.18
0.00
0.00

l.nõlh 11

Cycle stze number 0erc€nl
1

3
4
5

7
8

't0

1f

t3

f
154
17
17
17
17
17
17
17
17

17
17

2
1551
45
45
,t5

45
45
45
45
45
45
45
45

0.00
0.76
0.02
0,02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

lenoth t5
Cvcl€ stze numbêr oêrc€nt

1

2
3
4
5
6
7
s
I
't0
11

12
l3
t4
't5

16
17
r8
19
20
2',1

22
23
24
25
26
27
28
æ
30
31

1

't455

I
I
I
I
30
30

30

7
30
7
7
5
7
7
7
7
7
5
7
7
7
5
7
7
5
7
7

I
30375

276
276
27Ê
276
171
171

171
171
7

171
7
7

30
7
7
7
7
7

7
7
7
5
7
7
5
7
.,

0.00
0.93
0.01
0.01
0.01
0.0r
0.01
0,01
0.0t
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0,00
0,00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

lênolh l2
Cvdâ

I
2
3
4

6
7
I
I
10
t1
1t

1

102
102
102
102
3
8
3
3
1

3
f

957
957
957
957

3
12
3

1

3
I

0.06
0.23
0.23
0.23
0.23
0.00
0.00
0.00
0.00
0.00
0.00

lenolh l3
Cvclê stze number pgrcenl

t
2
3

t
260
832
247
91

2

2600
1924
91

0.00
0.44
0.32
0.23
0.01

216



lênõth l6
Cvclo stz6 numb€r o€lcånl

1

2

4
5
6
7

I

I
60f 6

40
4144

¡lo
40

1

t

2
32196
4432

27056
1468
40
40

,|

I

0.00
0.50
0.07
0.41

0.02
0.00
0.00
0.00

Appendix B Complete Cycle Length Tables

lenoth 20
Cycle stze numbor

1

2
3
4
5

7
I
9
10
'11

12
t3
t4
15
16
17
t8
19
20
2l
22
23
24
25
26
27
28
2S

1

34æ
34æ
6150
34æ
6150
34æ

't5
5
15

1715
1715
1715
1715
68

6691
68
68

580
68
68

6756
30
30
8

30
30

1

1

2
32560
32560
278237
32560
308674
32560
68330
f 04500
683æ
8645
8645
8645
8645
456

41483
4s6
456
740
456
456

I t046
30
30
12
30
30
'|

I

0.@
0.03
0,03
0.27
0.03
0.æ
0.03
0.07
0.10
0.07
0.0r
0.0'l
0.0f
0.01
0.00
0.04
0.00
0.00
0.00
0.00
0,00
0,01
0,00
0.00
0.00
0.00
0.00
0.00

lenoth l7
Cvcle si2e numbêr o€¡cênl

I
2
3
4
5
6
7

1

t0846
1632
867
306
't36

17

2
125375
3134
1802
306
136
17

0.00
0.96
0.03
0.01
0,00
0.00
0.00

lenqlh 18

Cycle Erze number 0€rc€nt
I

3
4
5
6
7
s
9

ft
12
't3

14
15
16
17

t
28/4
171
186
185
't 86
186
186
186
72
24
24
24
24
24

t
I

62
213930

13æ
't3æ
1320
13æ
1320
13æ
26M
24
24
24
24
24
24
I
1

0.00
0,82
0.14
0.01
0.01
0.0f
0.01
0.01
0.01
0.0'l
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

l6nqth l9
Cycle stz€ number 0ercent

1

2
3
¿

I
247

3705
133
38

2
378233
145844

171
38

0.00
0.72
0.28
0.00
0.00
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8.2. Rule 45

Complete Cycle Length Tables

lenoth 10

Cvclê sizê

1

2
3
4
5
6
7
s
c

430
60
60
30
15
60
60
l5

4
7n
60
60
30
f5
60
60
15

0.00
0.70
0.06
0.06
0.03
0.02
0,06
0.06
0,02

lâñdlh ¿

number perc€nl

2 16 1.00

lênôlh 5

slze number Dercsnt

I 2
30

2
30

0,06
0,94

lenolh 11

Cvcle s¡zê oârc€ît

1

2

4

6
7

I
10
11

12
13
14
15
't6

2

935
5
5

5
5
5
f1
5
5
5

5
5

979
935

5
5
66
5
5
5
tl
5
5
5

5

0,00
0,44
0.46
0.00
0.00
0.03
0.00
0.00
0,00
0.01
0.00
0.æ
0.00
0.00
0.00

lêndlh 6

cyd€ stze number percênt

I

s
4

5

2
t8
,|

I
3
I

4
54
I
1

I

0.06
0.84
0.02
0.02
0.05
0.02

lânõlh 7

Cyd€ slza number Þerc€nt
'| 2 2

12Ê
0.02
0.98

lândth I
Cyde stz9 nuñbêr oetc€nl

1

t
3
4
5
6

2
32
24
16
21
4
I

152
32
24
't6

24
4
¿

0.59
0.13
0.09
0,06
0.09
0.02
0.02

l€nEth I
stze number Dercgnl

I
2
3
4
5
6

2
504

1

I
3
1

2
504

,|

1

3
I

0.@
0.98
0.00
0.00
0.0f
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lenqth 13

Cvcle 6lz9 numbet

I

3
4

6
7

I
10
't1

12
13
14
15
16
17
18
't9

20
2t
22
23

2
676
443
443
443
443
443

't t05
443
143
413
443
443
445
443
443
39
130
78
7B
156
7g
78
t3

2
676
4ß
44f|
443
443
44i

I 105
4¡lÍì
44¡)
443
4¡lf|
443
14¡t
449
443
39
'130

78
78
156
78
78
13

0.00
0.08
0.05
0.05
0.05
0.05
0.05
0.13
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.00
0.02
0.0 t
0.01
0.02
0.01
0.01
0.00

Appendix B Complete Cycle Length Tables

lÊndth '12

Cyde stzg
,l

3
4
5
6
7
I
9
10
11

12
13
14
15
16

17
f8

n
t1
22
23
24
25

27
28
æ
30
31
32
33

2
1S

156
24

240

24
24
12
24
24
12
84
12
12
24
24
12
24
24
12
12

12'12
1

It
12
24
12
I
3
f

16
2706
612
24

240
24
21
24
12

24
12
u
12

12
24
24
'12

24
24
12
12
24
12
12
,|

12
'12

24
12
I

'|

0.00
0.66
0.15
0.01
0.06
0.01
0.01
0.01
0.00
0,01
0.0'l
0.00
0.02
0.00
0.00
0.01
0.01
0.00
0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0,00
0.00
0.0t
0.00
0.00
0.00
0.00

lsnqth 14

Cycle stzg numbor

1

2
3
4

7
I
't0
'lf
12

14
15
1A

2
2 r98
534
534
534
534
534
534
392
534
392
't5g

168
42
Åt

4
8568
628
628
628
628
628
628
1€5
628
'l¡lÍ)5
r68
126
163
42
42

0.00
0.52
0.04
0.04
0.04
0.0,1
0.04
0.04
0,09
0.04
0.09
0.01
0.0r
0.0t
0.00
0.00
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Appendix B Complete Cycle Length Tables

lenoth l8
Cvcls number p€rcent

f
2
3
4
5
6
7
8
I
10
11

12
13
14
15
16
17
t8
t9
20
21

22
23
24
25
26
27
28
29
30
3l
32
33
34
35
36
37
38
39
40
41
¿t

2
976
700
556
848
700
700
556
28r6
700
556
æ6
556
æ6
æ6
æ8
æ6
144
114
32
48
48
24
4S
48
4A
18
18
48
48
48
48
4S
18
'16

48
24
48
48
48
4
¿

39448
't2304

1 100
556
84{t
f 't00

I 100
556
3712
t 100
556
296
556
296
296
20s
296
144
1M
32
¡18

¡18

24
43
48
48
¡18

¡18

¡18

4a
4A
¡18

ß
48
't6

4A
21
4S
48
48
4
4

0.60
0.19
0.02
0,01
0.01
0.02
o.o2
0.01
0.06
0.02
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.@
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00

leñdth l5
cycl€ stze number perc€nt

1

2
3
4
5
6
7
I
10
11

12
13
14
15
16

18
19
20
21

22
23
24
25

27
28

30
31
32

34
35
36
37
38
39
40
41
42
43
44
45
45
47
48
49
50
5l
52
53

2
zUO
6820
32

6820
6820

32
4920
32
32

2820
32
32
tæ
32
32
1æ
32
32
1æ

32
32
30

æ
60
30
30
60
60
60
60
60
60
60
60
60

60
60
60
60
60
60
60
60
60
s2
32

1
,|

3
I

2340
6820
32

68æ
68æ
32

4920
32
32

28m
32
at
120
32
32
120
32
32
120
50
32
32
30
30
60
60
30
30
60
60
50
60
60
60
60
60
60
32
60
60
60
60
60
60
60
60
60
32
32

1

'|

1

0,00
0.07
0.21
0.m
0.21
0.21
0.00
0.15
0,00
0,00
0.09
0.00
0.00
0.00
0.00
0,00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0,00
0.00
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l.ndlh l7
Cvcls stzg numb€r pêrcenl

f
2
3
4

6
7
I
I
't0
1l
12
13
14
15
16
17
1g
l9
20
21

22

2
7æ12
2176
6052
3æ12
4845
æ7
408
408
¡los
408
408
816
408
N4
æ4
æ4
n1
408
40s
¡lo8
102

2
78812
2176
6052
32912
48¿5
867
40s
408
404
408
408
816
408
204
2U
2U
2U
408
40s
408
't02

0.00
0.60
0.02
0.05
0.25
0.04
0.01
0.00
0.æ
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0,00

Appendix B Complete Cycle Length Tables

Cycls sizs numb€r p€rcent

1200.00
2 3756 37008 0.14
3 3756 37008 0.14
4 8787 48254 0.18
5 3756 37008 0.14
6 7912 4e294 0.1I
7 7512 35068 0.13
8 It6S 132æ 0,05
I 504 504 0.00
10 72 72 0.00
l1 36 35 0.00
12 72 72 0.00
13 36 36 0.00
14 72 72 0.00
15 36 36 0.00
16 72 72 0.00
17 36 36 0,00
t8 36 36 0.00
t9 18 U 0.00
20 72 72 0.@
2t 36 36 0.00
22 72 72 0.@
23 2t 2t 0.00
24 36 36 0.00
25 72 72 0.00
26 36 36 0.00
27 72 72 0.00
28 72 72 0.00
29 36 36 0.00
30 21 21 0.00
31 18 18 0.00
32 18 18 0.00
33 18 f8 0.00
34 18 18 0.00
35 36 36 0,00
36 18 't8 0.00
37 18 't8 0.00
38 t8 18 0.00
39 18 18 0.00
40 35 36 0.00
4t s6 36 0.00
42 1S 18 0.00
43 't8 18 0.00
44 t8 t8 0.00
45 18 18 0.00
46 36 36 0.00
47 18 t8 0.00
48 18 f8 0.00
49 1S 18 0.00
50 l8 18 0,00
5t 36 36 0,00
52 18 18 0.00
53 18 t8 0.00
54 36 36 0.00
55 36 36 0.00
56 18 18 0,00
57 l8 t8 0.00
58 36 36 0.00
59 36 36 0.00
60 72 72 0.00
51 36 36 0.00
62 36 35 0.00
63 36 36 0.00
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36
36

36

,|

4
3
I

Appendix B Compfete Cycle Length Tables

6
7
I

10
11

12
13
'14

15
16
17
18
19

21

22
23
21
25

27
28
æ
30
3l
32
33
34
35
36
37
38

40
41

42
43
44
45
46
47
,t8

49
50
5l
52
53
54
55
56
57
58
59
60
61

oz

2 16 0.00
142580 501000 0.¡18

14æ5 65870 0.06
430 2æ240 0.æ
9112 9r f2 0.01
14265 65870 0.06
9lr 2 9t 12 0.0'l
't4265 65970 0.06
14265 65870 0.06
9112 91 12 0.01
9'lt2 9112 0.01
9112 9112 0.01
252 252 0.00
252 252 0,00
252 252 0,00
236 236 0.00
236 236 0.00
'120 120 0.00
42æ 4260 0.00
236 236 0.00
1100 fi00 0.00
252 252 0,00
236 236 0.00
120 120 0,00
236 236 0,00
252 252 0.00
280 280 0.00
t20 120 0.00
/€0 ¡180 0.00
240 240 0.00
120 120 0.00
120 120 0.00
1æ 120 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 0.00
240 240 0.00
120 120 0.00
240 240 0.00
120 120 0.00
120 120 0.00
60 60 0.00
2eo 280 0.00
120 120 0.00
280 280 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 0,00
120 120 0.00
120 120 0.00
120 t20 0.00
120 120 0.00
120 120 0.00
120 120 0.00
120 120 ô.m
240 240 0.00
120 120 0.00
240 240 0.m

lenqlh 19

Cvclo srzo number

I
2
3
4
5
6
7
I
9

'10

11

12
13
14
t5
16
17
18
19
20
21

22
23
24
25
26
27

29
30
31
4t
33
34
35
36

2
1S3920
1580æ
't49435
't5371

3458
1425
1653
456
361
912
912
912
912
456
456
456
456
456
456
912
95

456
456
456
114
I t4
111
t 14
228
114
1r4
114
114
t 14
114

2
ts39æ
158080
t49435
15371
3458
1425
1653
456
361
912
912
9't2
912
456
456
,156

456
156
456
912
95

456
456
456
t f 4
114
114
114
228
114
114
114
114
114
114

0.00
0.35
0.30
0.æ
0.03
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Complete Cycle Length TablesAppendix B

129 60 60 0,00
130 15 15 0.00
f31 60 60 0.00
132 60 60 0.00
133 60 60 0,00
134 60 æ 0.00
135 60 60 0.00
136 60 60 0.æ
197 60 60 0.00
138 60 60 0.m
'139 60 60 0.00
1¡10 60 60 0.00
141 60 60 0.00
142 60 60 0,00
143 60 60 0.00
111 60 60 0.00
145 60 60 0.00
146 60 60 0.00
147 60 60 0.00
148 60 60 0,00
145 60 60 0.00
t50 60 60 0.00
151 60 60 0.00
152 60 60 0.00
153 60 60 0.00
154 60 60 0.m't55 ln 120 0.00
156 60 60 0.m
157 1m 120 0.00
15S 60 80 0.00
í59 120 't20 0.00
160 240 240 0,00
l6t 120 120 0.00
t62 60 60 0.00
t63 120 t20 0.00
f64 60 60 0.00
165 120 120 0.00
166 60 60 0.00
167 120 120 0.00
168 120 120 0.00
169 60 60 0.00
170 120 120 0.00
171 tm 120 0.00
172 120 120 0.00
173 120 1n 0.00
174 120 120 0.00
175 120 120 0.00
176 'r20 120 0.00
177 120 120 0.00
178 120 120 0.00
179 240 240 0.00't80 60 60 0,00
'I I 1 50 60 0.00
182 60 50 0.00
r83 120 120 0.00
194 60 60 0.00
fss 60 60 0.00
186 60 60 0.m
187 60 60 0.00
188 60 60 0.00't89 60 50 0.00
190 60 50 0.00
191 60 60 0.00
192 60 60 0.00
't93 60 60 0.00

64 280 280 0.00
65 fæ 1æ 0.00
66 1ñ 1æ 0.00
67 ln 1æ 0.00
68 60 60 0.00
69 1æ tæ 0.00
70 1æ 1æ 0,00
71 1æ 1æ 0.00
72 1æ ln 0.00
73 1æ 1n 0.m
74 1æ ln 0.00
75 1æ ræ 0.00
76 1æ 1æ 0.00
77 'tæ 1n 0.00
7S 1æ 1æ 0.00
79 240 240 0.00
80 1n 1æ 0.00
sl 1æ In 0.00
82 60 60 0.00
83 60 60 0.m
a4 60 60 0.00
85 60 60 0.00
86 1æ tæ 0.00
87 60 60 0.00
88 60 60 0.00
89 60 60 0.00
90 240 240 0.00
91 60 60 0.00
92 60 60 0.00
93 60 60 0.00
94 1æ 1æ 0.00
95 1n 1æ 0.00
96 íæ 1æ 0.00
97 30 30 0.00
98 60 60 0.00
99 60 60 0.00
100 60 60 0,00
101 60 60 0.00
102 60 60 0.00
103 60 60 0.00
104 60 60 0.m
105 60 60 0.00'106 60 60 0.00
107 60 60 0.00
109 60 60 0.00
109 60 60 0.00
t 10 60 60 0.00
'111 60 60 0.00
'112 60 60 0.00
I 13 60 60 0.00'114 60 60 0.00
115 60 60 0.00
116 60 60 0.m
117 60 60 0.00
1't8 60 60 0.00
't19 60 60 0.00
1& 60 60 0.00
121 60 60 0.00
122 60 60 0.00'123 60 60 0.00
124 _ 60 60 0.00
125 60 60 0.00
1æ 60 60 0.00
127 60 60 0.m
128 60 60 0.m
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lenqlh ¡l

Cvde stze numb€t oercênl

7
f 1

0.94
o06

Appendix B

8.3. Rule 30 and 45 Hybrld

Complete Cycle Length Tables

lênõlh 1l
Cycls stzo numbgr o€rcênt

1

2
3
I

27
22
t4
I

1994
39
14
f

0.97
0.02
0.0t
0.m

lenqth 5

Cyde stze number oercênt
1 4 32 t0ô

lenqlh 12

Cvclo srze numb€r oêrcenl

I
2
3
1

7

311
1't 1

12
101

5
12
12
,|

2184
178
289
1276
144
12
12
I

0.53
0.04
0.07
0.31
0.04
0.00
0.00
0.00

lenolh 6

Cvdê stzê ñumber

14 64 1.00

lenqlh 7
Cvôlê stze numb€Ì Derc€nt

1

2
t3
tt

120
7
I

0.94
0.06
0.0'l

length 13

numbêr pefc€nt
'|

2
3
4

263
231
281
lÃ

5331
1287
1059

0.71
0.16
0,13
0.00

lêhdlh I
Cvdê stzâ percant

1

2
3
4

35
I
1

160
87
I
f

0.63
0.34
0.03

lendth 14

Cvclê êtte p€rc€nt

1

2
3
4
5

543
6t
100
32
t6

11 t50
4938
243
1'

0.68
0.30
0.02
0.00
0.00
o.m

lenolh I
Cvdê êt2ê pêrc€nl

I t5 512 1.00
lenqlh 15

Cvcle E¡29 numbêt

1

2
3
Å

993
1211

15
t

7æ4
251¡18

15
1

0.23
0.77
0.00
0.00

lêndth lO
Cvd6 6lze p€rcenl

'|

2
3
4

335
45
13
16

950
45
't3

0.93
0.04
0,01
0.02

226



lenqth m
Cvclo s¡zê numbâf

,|

2
3
4

7
I
I
t0

1246
't33'l

t 1,11S

3309
1723
4S
270
57
I
5

390766
59032S
33887
30463
1723
50

1296

1

0.37
0.56
0.03
0.03
0.00
0.00
0.00
0,00
0,00

Appendix B Complele Cycle Length Tables

l€ndth l6
Cvclâ Dêtôênt

1

3
1
5
6
7

't090

4962
1060
te6
10

1

I

't9887

43767
1604
259
10
1

I

0.67
0.02
0.00
0.00
0.00
0.m

lenslh l7
Cvcle slze number oerc€nl

t

4
5

5183
1147
9S
10

19

73794
57151

98
t0
t9

0.56
o.M
0.00
0.00
0.00

l€nolh 10

cycls 6tzo number DffCAnt

1

2
3
4
5
'6

7

o

t3t8
4174
4454
644
90
56
5
14
7

172564
60669
21683
7056
90
56
5
14
7

0.56
0.23
0.08
0.03
0.00
0.00
0.00
0.00

londlh l9
Cvclâ stzâ perc€nl

I
2
3
4
5

7
8
9

11

12
f3
14

5M
I ¡10

4795
1755
2156
4æ4
20ø.2
235
18
50
7

22

1

55691
4281

15n92
151494
1t r056
38189
5f25
556
18
50
7

22

1

0.11
0.01
0.30
0.æ
o.21
0.07
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00

227



Appendix C
Bit Weight Tables

The following tables give a complete listing of the weight of each output bit for atl
possible simple one-dimensional CAs. Here the weight of high bits as a function of
position in the CA is given as a number pair xxx (yy), where xxx refers to the fraction
of b¡ts which are high out of ths total number of bits occuring ¡n CA position yy.

rule I
0.500 ( 0) 0.500 ( 1) 0.500 ( 2) 0.500 ( 3) 0.500 (4)
0.500 ( 5) 0.s00 ( 6) o.sm (n 0.s00 ( 8) 0.500 ( 9)
0.s00 (10) 0.500 (11) 0.5æ (12) 0.500 (13) 0.000 (14)
0.s00 (15) 0.500 ('r6) 0.000 (17) 0,500 (18) 0.s00 (1s)
0,s00 (20) 0,500 (21) 0.s00 (22) 0.500 (23) 0.s00 (24)
0.s00 (2s) 0,500 (26) 0.500 (27) 0.500 (2s) 0.500 (æ)
Avêrage = 0.467 Range = 0.500

rule 2
0,067 ( 0) 0,067 ( f) 0.067 ( 2) 0.067 (3) 0.067 (4)
0.067 ( s) 0.0€7 (6) 0.067 (7) 0.067 (8) 0.067 (s)
0.067 (10) 0.067 (11) 0.067 ('r2) 0.067 (13) 0.067 (14)
0,067 (15) 0.067 (16) 0.067 (17) 0.067 (18) 0,067 (19)
0.067 (20) 0.067 (21) 0.067 (22) 0.067 (23) 0,067 (24)
0.067 (2s) 0.067 (26) 0,067 (27) 0.067 (28) 0.067 (æ)
Average = 0.067 Range = 0.000

rulo 3
0.€3 ( 0) 0.43s ( 1) 0.433 ( 2) 0.4€3 ( 3) 0.4Í¡3 ( 4)
0.433 (5) 0.433 ( 6) 0.433 ( 4 0.433 ( S) 0.433 ( 9)
0.433 (f0) 0.¡133 (11) 0.433 (12) 0,433 (13) 0.433 (14)
0.433 (15) 0.433 (16) 0.433 (17) 0,433 (18) 0.€3 (19)
0.433 (20) 0.433 (21) 0.433 (22) 0,433 (23) 0.433 (24)
0.433 (2s) 0.433 (26) 0.433 (27) 0.433 (28) 0.4Íì3 (æ)
Averags = 0.433 Rango = 0.000

rulE 4
0.000 (0) 0,000 ( 1) 0.000 (2) 0.000 (3) 1,000 (4)
0.000 ( s) 0.000 ( 6) 1.000 ( 4 0.000 ( 8) 1,000 ( 9)
0.æ0 (10) 0.000 (11) 0.000 (12) 0,000 (13) 0.000 (14)
1.æ0 (15) 0.000 (16) 0.000 (f7) 0,000 (18) 0.000 (19)
0.000 (20) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (æ)
Avsrâge = 0. 167 Rango = 1.0æ

rulo 5
0.000 (0) 0,500 ( 1) 0.500 ( 2) 0.000 (s) 1.000 (4)
0.000 ( s) 0.000 ( 6) r.000 ( 7) 0.000 ( 8) r.000 ( 9)
0.000 (10) 0.s00 (11) 0.s00 (12) 0.500 (13) 0.000 ('t4)
1.000 (15) 0.000 (16) 0.500 (17) 0.500 (r8) 0.s00 (19)
0.500 (æ) 0.500 (21) 0.500 (22) 0,500 (23) 0.500 (24)
0.s00 (25) 0.000 (26) 1.000 (27) 0,000 (28) 1,000 (29)
Average = 0.433 Rangs = 1,000

rule 6
0.200 ( 0) 0.300 ( 1) 0.200 ( 2) 0.300 ( 3) 0.æ0 (4)
0.300 ( 5) 0.æ0 ( 6) 0.300 ( 7) 0.200 ( 8) 0.300 (9)
0.200 (f0) 0.300 (1f) 0.200 (12) 0.3æ (13) 0.æ0 (14)
0.300 (15) 0.200 (16) 0.300 (17) 0.200 (18) 0.300 (19)
0.200 (æ) 0.300 (21)0,200 (22) 0.300 (23) 0.æ0 (24)
0.300 (25) 0.æ0 (26) 0,300 (27) 0.200 (28) 0.300 (29)
Average = 0.250 Range = 0.100

rule 7
0.450 (0) 0.450 ( r) 0.4s0 (2) 0.4s0 (3) 0.450 ( 4)
0.450 (s) 0.450 ( 5) 0.4s0 (7) 0.450 (8) 0.4s0 ( e)
0.4s0 (10) 0.4s0 (11) 0.450 (r2) 0.450 (13) 0.4s0 (14)
0.4s0 (15) 0.450 (16) 0.4s0 (17) 0.4s0 (18) 0.450 (19)
0.4s0 (æ) 0.4s0 (21) 0.450 (22) 0.450 (23) 0.450 (24)
0.450 (2s) 0.450 (26) 0.450 (27) 0.450 (28) 0,450 (29)
Average = 0.450 Fangs = 0.001

rqle I
0.000 (0) 0.000 ( 1) 0.000 (2) 0.000 (3) 0.000 ( 4)
0.000 ( s) 0,000 ( 6) 0.000 ( 7) 0.000 ( 8) 0.000 ( 9)
0.000 (10) 0.000 (r r) 0.000 (12) 0,000 ('t3) 0.000 (14)
0.000 (f5) 0.000 (r6) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (æ) 0.000 (2f) 0.000 (22) 0.0æ (23) 0.000 (24)
0,000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Awrags = 0.000 Range = 0.000
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Appendix C

lulc I
0.433 (0) 0.ß3 ( r) 0.438 ( 2) 0.433 ( 3) 0.433 ( 4)
0.433 ( 5) 0.4Íì3 ( 6) 0.43s ( 7) 0.433 ( 8) 0.433 ( e)
0.433 (10) 0.€3 (11)0,433 (12) 0.433 (13) 0.4Íì3 (14)
0.4i13 (15) 0.433 (16) 0,433 (17) 0.433 (r8) 0.433 (19)
0.433 (20) 0.433 (21) 0.4sì (22) 0,433 (23) 0.433 (24)
0.4fì3 (2s) 0,433 (26) 0.433 (27) 0.433 (28) 0.433 (æ)
Av€rage = 0.433 Range = 0.001

rula 10
0.300 ( 0) 0.300 ( 1) 0.300 (2) 0,300 ( 3) 0.300 ( 4)
0.300 ( s) 0.300 (6) 0.300 ( Ð 0,300 ( 8) 0.300 (s)
0.æ0 (10) 0.300 (11) 0.300 (12) 0.300 (13) 0.300 (14)
0.300 (15) 0.300 (16) 0,300 (r7) 0.300 (18) 0,300 {19)
0.300 (20) 0,300 (21) 0.300 (22) 0.300 (23) 0.300 (24)
0,300 (2s) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 (æ)
Average = 0.300 Range = 0.000

rule 11
0.500 ( 0) 0.500 ( 1) 0.500 (2) 0.s00 (3) 0.s00 ( 4)
0.500 ( 5) 0,500 ( 6) 0.500 ( 4 0.500 ( 8) 0.s00 (9)
0.s00 (10) 0.500 (11) 0.500 (12) 0.500 (13) 0.500 (14)
0.500 (1s) 0.500 (16) 0.500 (17) 0.500 (18) 0.s00 (19)
0.s00 (20) 0.500 (2r) 0.500 (22) 0.s00 (23) 0.s00 (24)
0.500 (25) 0.500 (26) 0.5@ (27) 0.500 (28) 0.500 (æ)
Avsrago = 0.500 Range = 0,000

tute t2
0.000 (0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 1.000 ( 4)
0.000 ( 5) 0.000 ( 6) 1.000 ( 4 0.000 (8) t.000 ( 9)
0.000 (f0) 0.000 (1 1) 0.000 (12) 0.000 (13) 0.000 (t4)
r.000 (f5) 0.000 (16) 1,000 (17) 0.000 (18) 0,000 (r9)
0.000 (20) 0.000 (21)0.000 (22) 0.000 (23) 1,000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (æ)
Av€rage = 0,233 Rångs = i,000

rule f3
0.000 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 (4)
0.000 ( 5) 0.000 (6) 1.000 ( 7) 0.000 ( 8) 0.000 ( 9)
1.000 (r0) 0.000 (1r) 1.000 (12) 0,000 (13) 1.000 (14)
0.000 (f5) 'r.000 (16) 0.000 (17) 1.000 (18) 0.000 (19)
0.000 (20) r.000 (21)0.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) r.000 (26) 0,000 (27) 0.000 (2s) 1.000 (æ)
Avsrage = 0.400 Range = 1.000

rulE l4
0.467 ( 0) 0.s33 ( i) 0.467 (2) 0.533 (3) 0.467 (4)
0.s33 ( s) 0.467 (6) 0.533 (4 0.467 (8) 0.533 (9)
0.467 (10) 0.s33 (rl) 0.467 (f2) 0.s33 (13) 0,467 (14)
0.533 (1s) 0,467 (16) 0.533 (t7) 0.467 (18) 0,533 (19)
0.467 (20) 0,533 l21l0.467 (2210.s33 (23) 0,467 (24)
0.533 (25) 0,467 (26) 0.534 (27) 0.467 (28) 0.s33 (æ)
Average = 0.500 Range = 0.067

tule 15
0.600 (0) 0.400 ( 1) 0.600 ( 2) 0.400 ( 3) 0.600 ( 4)
0.400 (s) 0.600 ( 6) 0.400 ( 4 0.600 (8) 0.400 ( 9)
0.600 (10) 0.400 (11)0.600 (12) 0.400 (r3) 0.600 (14)
0.400 (15) 0.600 (16) 0.400 (17) 0.600 (18) 0,400 (19)
0.600 (20) 0.400 (2f)0.600 (22) 0.400 (23) 0.600 (24)
0.400 (25) 0.600 (26) 0.400 (27) 0,600 (28) 0.400 (æ)
Averåge = 0.500 Ra¡g€ = 0.200

Bit Weight Tabtes

lul€ 16
0.100 ( 0) 0.100 ( 1) 0.100 ( 2) 0,1@ ( 3) 0.100 (4)
0.1m ( s) 0,100 ( 6) 0.100 ( 7) 0.100 ( 8) 0.100 ( e)
0.f00 (10) 0.100 (11) 0.100 (12) 0.100 (13) 0.r00 (14)
0,100 (15) 0.100 (16) 0.100 (17) 0.100 (18) 0.100 (19)
0.100 (æ) 0.100 (21) 0.100 (22) 0.100 (23) 0.100 (24)
0.100 (25) 0.100 (26) 0.100 (27) 0.100 (28) 0.100 (29)
Averago = 0,'100 Rang€ = 0.cì00

rulr 17
0.417 ( 0) 0.4f 7 ( 11 0.417 (21 0.417 ( 3) 0.417 ( 4)
0.417 ( 5) 0.417 (6) 0.417 (71 0.417 | 8) 0.417 ( 9)
0.417 (10) 0.417 (11)0,417 (12) 0.417 (13) 0.417 (14)
0.417 (15) 0.417 (16) 0.417 (17) 0.417 (18) 0,417 (19)
0.417 (nl 0.417 (211 0.417 (221 0.417 (23) 0.417 (24)
0.417 (25) 0.417 (26) 0.417 (27!.0.417 l28l0.417 (291.

Awrage = 0.417 Rang€ = 0.000

rulo 18
0.001 ( 0) 0.001 ( r) 0.00r ( 2) 0.001 ( 3) 0.001 ( 4)
0.00r ( 5) 0.001 ( 6) 0.q)1 ( 7) 0.00t ( 8) 0,001 (e)
0.00r (10) 0.000 (1r) 0.001 (12) 0.00f (13) 0.000 (14)
0.001 (r5) 0.00r (r6) 0.000 (17) 0.001 (t8) 0.00! (r9)
0.00r (æ) o.mr (21) 0.001 (22) 0.001 (23) 0.00t (24)
0,00r (2s) 0.001 (26) 0.0m (27) 0.001 (2s) 0.00t (æ)
A\r'srågs = 0.001 Range = 0.001

rule l9
0.500 ( 0) 0.s00 ( 1) 0.500 ( 2) 0.500 ( 3) 0.s00 (4)
0.s00 ( s) 0,500 ( 6) 0.500 ( 7) 0.s00 ( 8) 0.500 ( 9)
0.500 (10) 0,500 (11) 0.s00 ('r2) 0.s00 (13) 0.s00 (14)
0.500 (1s) 0.s00 (16) 0.s00 (17) 0.s00 (f8) 0.500 (19)
0.s00 (æ) 0.500 (21) 0.s00 (22) 0.s00 (23) 0.s00 (24)
0.500 (2s) 0.s00 (26) 0.500 (27) 0.s00 (28) 0.s00 (29)
Average = 0.500 Range = 0.000

lula 20
0.267 (0) 0.333 ( 1) 0.267 ( 2) 0.333 ( 3) 0.267 ( 4)
0.3æ ( 5) 0.267 ( 6) 0.333 ( 7) 0.267 ( 8) 0.333 (e)
0.267 (10) 0.s)3 (11) 0.267 (12) 0.33íl (r3) 0.267 (14)
0.333 (15) 0.267 (16) 0.333 (17) 0,267 (18) 0.333 (19)
0.266 (æ) 0.333 (2r) 0.267 (22) 0,33t| (23) 0.266 (24)
0.93s (25) 0.æ7 (26) 0.333 (27) 0.267 (28) 0.333 (29)
Av€rago = 0,300 RE¡g€ = 0.067

rula 21
0.483 ( 0) 0,483 ( 1) 0.483 ( 2) 0.483 ( 3) 0.483 ( 4)
0.483 ( 5) 0,483 (6) 0.483 (7) 0.4æ (8) 0.1s3 ( 9)
0.483 (10) 0.,184 (t f) 0.483 (12) 0.4s3 (13) 0.483 (14)
0.483 (15) 0.483 ('t6) 0.483 (17) 0.1æ (18) 0.483 (19)
0.483 (æ) 0,483 (21) 0.483 (22) 0.484 (23) 0.4€3 (24)
0,484 (25) 0.483 (26) 0.483 (27) 0.483 (28) 0.4S3 (29)
Av€râge = 0.483 Ra¡ge = 0,000

tulÐ 22
0.003 ( 0) 0.002 ( 1) 0.002 ( 2) 0.002 (3) 0.003 ( 4)
0.003 ( 5) 0.003 ( 6) 0.003 ( 7) 0.003 ( 8) 0.003 ( 9)
0.002 (r0) 0.003 (r 1) 0.002 (r2) 0.002 (13) 0.002 (14)
0,003 (15) 0.003 (r6) 0,002 (17) 0.002 (18) 0.002 (19)
0.003 (æ) 0.003 (21)0.003 (22) 0.003 (23) 0.003 (24)
0.002 (2s) 0.002 (26) 0.003 (27) 0,003 (2s) 0.003 (29)
Average = 0.002 Rangs = 0.001
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Appendix C

rule 23
0.s00 ( 0) 0,s00 ( 1) 0.500 ( 2) 0.s00 (3) 0.500 (4)
0.500 ( s) 0,500 ( 6) 0.500 ( 4 0.s00 (8) 0.500 (e)
0.500 (10) 0.s00 (11)0.s00 (12) 0.s00 (13) 0.s00 (14)
0.500 (1s) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.s00 (20) 0.500 (21) 0.500 (22) 0.so0 (23) 0.500 (24)
0.s00 (2s) 0.500 (26) 0,500 (27) 0.s00 (28) 0.500 (æ)
Averâgs = 0.500 Range = 0.000

tula 24
0,167 ( 0) 0.167 ( 1) 0.167 ( 2) 0.167 ( S) 0.167 ( 4)
0.167(s) 0.167(6) 0.167(7) 0.167(S) 0.t67(9)
0.167 (10) 0.167 (t1) 0.167 (12) 0.167 (13) 0.167 (r4)
0.167 (15) 0.167 (16) 0.167 (17) 0.167 (18) 0.167 (f9)
0.167 (20) 0.r67 (21) 0.167 (22) 0.167 (23) 0.167 (24)
0.f67 (2s) 0.r67 (26) 0.167 (27) 0.167 (28) 0.167 (æ)
Average = 0.167 Rangê = 0.000

rule 25
0.4s0 ( 0) 0.450 ( f) 0.450 ( 2) 0.4s0 ( 3) 0.450 ( 4)
0.450 ( 5) 0.450 (6) 0.4s0 ( 4 0.450 ( 8) 0.4s0 ( e)
0.450 (10) 0.450 (1t) 0.4s0 (12) 0.450 (13) 0.450 (r4)
0.450 (1s) 0.4s0 (16) 0.450 (17) 0.450 (18) 0.450 {19)
0.450 (20) 0.450 (2f) 0.450 (22) 0.450 (23) 0.450 (24)
0.450 (25) 0,450 (26) 0.450 (27) 0.450 (28) 0.450 (æ)
Av€rage = 0.450 Rsnge = 0.000

rule 26
0.367 (0) 0.450 ( 1) 0.367 ( 2) 0,4s0 ( 3) 0.366 ( 4)
0.4s0 (5) 0.367 ( 6) 0.450 ( 4 0.367 (8) 0.450 ( 9)
0.367 (10) 0.450 (11) 0,366 (12) 0.4s0 (13) 0,3{ì7 (14)
0.4s0 (1s) 0,367 (f6) 0.450 (17) 0.367 (18) 0.450 (19)
0.367 (20) 0.4s0 (21) 0.367 (22) 0,450 (23) 0.367 (24)
0,4s0 (2s) 0.367 (26) 0.4s0 (27) 0.367 (2s) 0.450 (æ)
Average = 0.408 R€nge = 0.084

tul. 27
0.533 (0) 0.s33 ( 1) 0.s33 ( 2) 0,s33 ( 3) 0.533 ( 4)
0.s33 ( s) 0.533 (6) 0.s33 ( 4 0.533 (8) 0.s33 ( 9)
0,533 (10) 0.s33 (f 1)0.s33 (12) 0.s33 (13) 0.533 (14)
0.s33 (15) 0.s33 (16) 0,533 (t7) 0.533 (i8) 0,533 (19)
0.533 (20) 0.533 (21) 0.533 (22) 0.533 (23) 0.533 (24)
0.533 (25) 0.s33 (26) 0.53r{ì (27) 0,533 (28) 0.533 (æ)
Avêrage = 0.533 Bsnge = 0.000

lule 28
0.s00 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 (4)
0.500 (5) 0,m0 ( 6) 1.000 ( 7) 0.s00 ( 8) 0.000 ( 9)
r.000 (10) 0.m0 (11) 1.00o (12) 0.000 (13) 1.000 (14)
0.500 (15) 0.000 ('r6) 1.000 (17) 0.000 (18) 1.000 (19)
0.000 (20) 1.000 (21) 0.s00 (22) 0,000 (23) r.000 (24)
0.000 (25) r.000 (æ) 0.s00 (27) 0.m0 (2s) 1.000 (æ)
Averags = 0.500 Range = 1.000

rule 29
0.000 ( 0) f.000 ( 1) 0,s00 (2) 0.000 ( 3) 1.000 (4)
0.000 ( s) 1.000 ( 6) 0.000 (4 1.000 ( 8) 0.s00 ( 9)
0.000 (10) 1.000 (11) 0.000 (12) 1.000 (13) 0.500 (14)
0.s00 (r5) 0.s00 (16) 0.000 (17) 1.000 (18) 0.s00 (19)
0.000 (20) 1.000 (21) 0.000 (22) r.000 (23) 0.000 (24)
r.000 (25) 0.000 (26) 1,000 (27) 0.000 (28) r.000 (æ)
Averago = 0,500 Rânge = 1.000

Bit Weight Tables

ruls 30
0.s02 (0) 0.s06 ( 1) 0.500 ( 2) 0.s04 (3) 0.186 (4)
0.504 (5) 0.4e4 (6) o,sor ( 7) 0.496 ( 8) 0.50s ( 9)
0.49s (10) 0.496 (11) 0.4e7 (12) 0.493 (13) 0.507 (14)
0.498 (1s) 0.507 (16) 0.494 (17) 0.503 (fS) 0.496 (19)
0.s05 (æ) 0.19't (21) 0.509 (22) 0.494 (23) 0.502 (24)
0.s03 (2s) 0.4s7 (26) 0,499 (27) 0,s00 (28) 0.499 (2e)
Av€rags = 0.499 Rånæ = 0.024

rulc 3f
o.sso ( 0) 0.ss0 ( 1) 0.ss0 ( 2) 0.550 (3) 0.s50 ( 1)
0.550 ( 5) 0,s50 (6) 0.5s0 ( 7) o.sso (8) 0.ss0 ( 9)
0.5s0 (10) 0,550 (11) 0.550 (12) 0.550 (13) 0.5s0 (14)
0.550 (15) 0.550 (16) 0.5s0 (17) 0.5s0 (18) 0,5s0 (19)
0.5s0 (20) 0.s50 (21) 0.5s0 (22) 0.550 (23) 0.s50 (24)
0.550 (2s) 0.s50 (26) 0.5s0 (27) 0.sso (28) 0.5s0 (29)
A\¿Êrage = 0,550 Rs¡ge = 0.001

rule 32
0.000 ( 0) 0.000 ( r) 0.000 (2) 0.000 ( 3) 0.000 (4)
0.0m ( 5) 0.m0 ( 6) 0.000 ( 7) 0.000 ( 8) 0.000 (9)
0.000 (10) 0.000 (f 1) 0.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.æ0 (17) 0.000 (18) 0.000 (19)
0.000 (æ) 0.000 (2r) 0.000 (22) 0.000 (23) 0.m0 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (æ)
A\¡€råge = 0.000 Rång€ = 0.000

rula 3,:l

0.s00 ( 0) 0.s00 ( 1) 0.500 ( 2) 0.500 ( 3) o.soo ( 4)
0.5m ( 5) o.mo ( 6) 0.500 ( 7) 0.500 ( s) 0.s00 (9)
0.000 (10) 0.s00 (11) 0.000 (12) 0.500 (13) 0.s00 (14)
0.s00 (1s) 0.s00 (16) 0,000 (17) 0,500 (18) 0.m0 (f9)
0.500 (æ) 0.000 (2r) 0.500 (22) 0.500 (23) 0.500 (24)
0.000 (25) 0,500 (25) 0.000 (27) 0.s00 (2s) 0.500 (2e)
Ar€rage = 0.357 Range = 0.5^t0

rule 34
0.300 ( 0) 0,300 ( 1) 0.300 (2) 0.300 ( 3) 0.300 (4)
0,3m ( s) 0.300 ( 6) 0.300 ( 7) 0.300 ( 8) 0.300 (9)
0.300 (10) 0.300 (11) 0.300 (12) 0.300 (13) 0.300 (14)
0.300 (15) 0.300 (16) 0,300 (17) 0.300 (18) 0.300 (19)
0.300 (æ) 0.300 (21) 0.300 (22) 0.300 (23) 0,300 (24)
0.300 (2s) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 (29)
Awrage = 0,300 Rsnge = 0.000

lul€ 35
0.367 ( 0) 0.367 ( 1) 0,367 ( 2) 0.367 ( 3) 0.367 ( 4)
0.367 ( s) 0.367 ( 6) 0.367 ( 7) 0.367 ( 8) 0,367 ( 9)
0.367 (10) 0.367 (11) 0.367 ('t2) 0,367 (13) 0.367 (14)
0.367 (rs) 0.367 (f6) 0.367 (17) 0.367 (18) 0.367 (19)
0,367 (æ) 0.367 (2't) 0.367 (22) 0.367 (23) 0.367 (24)
0,367 (2sl 0.367 (26) 0.367 (27) 0.367 (28) 0.367 (29)
Averåge = 0.357 Rangs = 0.000

rule 36
0.000 ( 0) 0.000 ( 1) 0,000 ( 2) 0.000 ( s) 0.000 ( 4)
0.000 ( 5) 0.000 ( 6) 0.000 (7) 0.000 ( s) 0,000 (9)
0.000 (10) 0.000 (t't) 0.000 (r2) 0.000 (.t3) 0.000 (14)
1.000 (r5) 0.000 (16) 0.000 (r7) 0.000 (r8) 0.000 (f9)
0.000 (æ) 0.m0 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Av€rage = 0.033 Fango = 1.OOO
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rule 37
0,s00 ( 0) 0.500 ( 1) 0.s00 ( 2) 0.s00 ( 3) 0.s00 (4)
0,m0 ( s) 0.500 (6) 0.500 (7) 0.500 ( 8) 0.500 ( e)
0.500 (10) 0.s00 (11)0.000 (f2) 0.500 (13) 0.s00 (14)
0.s00 (fs) 0.500 (15) 0,s00 (17) 0.000 (1s) 0.s00 (19)
0.s00 (20) 0.000 (2f) 0.500 (22) 0.500 (23) 0.000 (24)
0.500 (25) 0.s00 (26) 0,s00 (27) 0.001 (2s) 0.s00 (æ)
Av€rage = 0.400 Ra¡gs = 0.500

rule 38
0,333 (0) 0.367 ( 1) 0.333 ( 2) 0.367 ( 3) 0.333 (4)
0.367 ( s) 0.333 (6) 0.367 (4 0.333 (8) 0.367 (9)
0.333 (10) 0.367 (11) 0.333 (t2) 0.367 (13) 0.333 (14)
0,357 (f5) 0.333 (16) 0.367 (r7) 0.æ3 (r8) 0.367 (19)
0.333 (20) 0.367 (21) 0.333 (22) 0.367 (23) 0.333 (24)
0.367 (25) 0.333 (26) 0.367 (27) 0.333 (28) 0,367 (æ)
Average = 0.350 Range = 0.034

rule 39
0.467 (0) 0,467 ( 1) 0.467 ( 2) 0.467 (3) 0.467 (4)
0.467 (s) 0,467 (6) 0.467 ( 4 0.467 (8) 0.467 (9)
0.467 (10) 0.467 (1'r) 0.467 (r2) 0.467 (13) 0.467 (f4)
0.467 (15) 0.467 (16) 0.467 (r7) 0.467 (18) 0.467 (19)
0.457 (20) 0.467 (21) 0.467 (22) 0.467 (23]. 0.467 (24)
0.467 (25) 0.467 (26) 0.467 (27) 0.457 (28) 0.467 (æ)
Av€rage = 0.¡157 Rangs = 0.000

ruls 40
0.000 ( 0) 0.001 ( r) 0.001 ( 2) 0.00r ( 3) 0.001 (4)
o.0or ( 5) 0.000 ( 6) 0.000 ( 4 0.000 ( s) 0.000 ( e)
0.000 (10) 0.000 (rl)0.000 (12) 0.000 (t3) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (ts) 0.000 (19)
0.000 (20) 0,000 (21) 0.000 (22) 0.000 (2s) 0.000 (24)
0.000 (25) 0.æ0 (26) 0.000 (27) 0.000 (28) 0,000 (æ)
Average = 0.000 Rângs = 0,001

ru16 4l
0.365 ( 0) 0.365 ( 1) 0.364 (2) 0.36s (3) 0.365 (4)
0.365 ( 5) 0.364 (6) 0,365 (4 0.S6s ( 8) 0.36s (9)
0.364 (10) 0.36s (11)0.366 (12) 0.36s (13) 0.364 (14)
0.365 (15) 0.366 (16) 0.365 (17) 0.36s (18) 0.365 (19)
0.365 (20) 0.365 (21) 0.365 (22) 0.365 (23) 0.365 (24)
0.355 (25) 0.365 (26) 0.365 (27) 0.365 {28) 0.3{ì5 (æ)
Average = 0.365 Rangs = 0.002

tule 42
0.467 ( 0) 0.467 ( 1) 0.467 ( 2) 0.467 (3) 0.457 ( 4)
0.157 ( 5) 0,467 (6) 0.467 (4 0.467 (8) 0.467 (9)
0.467 (10) 0,467 (1r) 0.467 (f2) 0.467 (13) 0.4ô7 (14)
0.467 (15) 0.467 (16) 0.467 (17) 0.457 (18) 0.467 (19)
0.467 (2Ol 0.467 121) 0.467 (221 O.ß7 (231 0.467 (241
0.467 (25) 0.467 (26) 0.467 (27) 0.467 (28) 0.467 (æ)
Average = 0.,167 Range = 0.000

rule 43
0.s33 (0) 0.533 ( 1) 0.s33 (2) 0.533 (3) 0.533 (4)
0.s33 (s) 0,533 (6) 0.533 (4 0.s33 ( 8) 0.s33 (9)
0.533 (10) 0,533 (1r) 0,s33 (f2) 0.533 (f3) 0.s33 (14)
0.533 (15) 0.533 (16) 0,533 (17) 0.533 (18) 0.534 (19)
0.s33 (20) 0.533 (21) 0.533 (22) 0.533 (23) 0.533 (24)
0.s33 (2s) 0.s33 (26) 0.5æ e7) 0.533 (28) 0.533 (æ)
Avêrage = 0.533 Rangs = 0.0æ

Bit Weight Tables

rulo 44
0.000 (0) 0.000 ( 1) 0.000 (2) 0.000 (3) 0.000 (4)
1.000 ( 5) 0.000 ( 6) 0,000 ( 7) 0.000 ( s) o.mo (e)
0.0@ (r0) 0.000 (11)0.000 (f2) t.000 (13) 0.000 (14)
0.000 (f5) 0,000 (16) 0.000 (17) 0,000 (18) 0.000 (19)
0,0m (æ) 1,000 (2f) 0.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 1.000 (2s) 0.000 (29)
Avsråge = 0.167 Range = 1.000

rule ¡15

0.500 ( 0) 0.500 ( 1) 0.498 ( 2) 0.4ee ( 3) 0.497 ( 4)
0.50e ( s) 0.497 (6) 0.s0s ( 7) 0.494 ( 8) 0.s05 ( e)
0,499 (10) o.sor (r t) 0.498 (12) 0.s08 (13) 0.49.t (14)
0.s03 (1s) 0.507 (f6) 0.4e4 (17) 0.504 (18) o.sot (f9)
0.496 (æ) 0.s02 (21)0.503 (22) 0.507 (æ) 0.497 (24)
0.496 (25) 0.s00 (26) 0.s07 (27) 0.4es (28) 0.507 (29)
Averags = 0.gOl Rângo = 0.018

rule ¡18

0.400 ( 0) 0,100 ( 1) 0.400 ( 2) 0,400 ( 3) 0.400 (4)
0.400 ( s) 0.¡lo0 (6) 0.400 ( 7) 0.400 ( 8) 0.100 ( 9)
0.400 (f0) 0.400 (1r) 0.400 (12) 0.400 (13) 0.400 (14)
0.400 (1s) 0.400 (t6) 0.400 (t7) 0.400 (t8) 0.400 (1e)
0.400 (æ) 0.400 (21) 0.400 (22) 0.400 (23) 0.400 (24)
0.400 (25) 0.400 (26) 0.400 (27) 0.400 (28) 0.100 (29)
A!€rage = 0.400 Ra¡ge = 0.000

rulà 47
0.167 ( 0) 0.s33 ( 1) 0.167 ( 2) 0,533 ( 3) 0.167 (4)
0.s33 (s) 0.4{i7 (6) 0.s33 ( 7) 0.467 ( 8) 0.s34 ( e}
0.467 (10) 0.533 (r 1) 0.467 ('r 2) 0.sæ ( t3) 0.467 (14)
0.533 (1s) 0.467 (16) 0,s33 {t7) 0.467 (18) 0.533 (19)
0.467 (æ) 0.533 (2r) 0,467 (22) 0.s33 l23l0.4ô7 124',
0,s33 (25) 0,¡157 (26) 0.s33 (27) 0,467 (28) 0.s33 (2e)
Av€râge = 0.500 Range = 0.067

rule 48
0,300 ( 0) 0.300 ( 1) 0.300 ( 2) 0.300 ( 3) 0.300 ( 4)
0,300 ( s) 0.300 (6) 0.300 ( 7) 0.300 ( 8) 0.300 ( 9)
0.300 (10) 0.300 (11) 0.300 (12) 0.300 (f3) 0.300 (14)
0.300 (r5) 0.300 (16) 0,300 (17) 0.300 (18) 0.300 (19)
0.300 (æ) 0,300 (21) 0.300 (22) 0.300 (23) 0.300 (24)
0.300 (25) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 (29)
A\€rage = 0.300 R€ng€ = 0.000

Tulc ¡19

0.383 ( 0) 0.383 ( 1) 0.383 ( 2) 0,3æ ( 3) 0.383 (4)
0.383 ( 5) 0.æ3 ( 6) 0.383 ( 7) 0,3æ ( S) 0.383 (9)
0,383 (10) 0,383 (r l) 0.383 (12) 0.383 (13) 0.3S3 (14)
0.38r¡ (1s) 0.383 (16) 0.383 (17) 0.383 (18) 0.383 (19)
0.3æ (20) 0.3€3 (21)0.383 (22) 0.383 (23) 0.383 (24)
0.3æ (25) 0.383 (26) 0.383 (27) 0.38s (28) 0,383 (29)
Av€rage = 0.383 Rânge = 0.000

rulo 50
0.s00 ( 0) 0.500 ( 1) 0.500 ( 2) 0.5æ ( 3) 0.500 (4)
0.500 ( s) 0.s00 ( 6) 0.500 ( 7) 0.500 ( 8) 0.s00 ( 9)
0.500 (10) 0,500 (1t) 0.500 (12) 0.500 (13) 0.s00 (14)
0,s00 (1s) 0,s00 (r6) 0.500 (17) 0.s00 (18) 0.500 (1e)
0.s00 (æ) 0.500 (2f) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (2s) 0.s00 (26) 0.500 (27) 0.500 (28) 0,s00 (29)
Av€rage = 0.500 Râ¡gs = 0.000
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rulo 51
0.500 (0) 0.500 ( 1) 0.500 (2) 0.s00 (3) 0.500 (4)
0.500 ( 5) 0.s00 ( 6) 0.500 ( 7) 0.500 (8) 0.s00 (9)
0.500 (10) 0.s00 (11) 0.500 (12) 0.500 (r3) 0.500 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (1s)
0.500 (20) 0.500 (2r) 0.s00 (22) 0.500 (23) 0.500 (24)
0.s00 (25) 0.500 (26) 0.s00 (27) 0.500 (28) 0.so0 (æ)
Averags = 0,500 Rang€ = 0.000

rulê 52
0.æ3 ( 0) 0.367 ( 1) 0.3st ( 2) 0.367 ( 3) 0.æ3 ( 4)
0.367 ( 5) 0.333 (6) 0.367 ( 7) 0.333 ( 8) 0.3ô7 (9)
0.333 (10) 0,367 (r'r) 0.333 (12) 0,367 (13) 0.333 (14)
0.367 (15) 0,333 (16) 0.357 (17) 0.333 (18) 0.367 (19)
0,333 (20) 0.367 (21) 0.333 (22) 0.367 (23) 0,333 (24)
0.367 (25) 0.333 (26) 0,367 (27) 0.333 (28) 0.367 (æ)
Av€rage = 0.350 Rånge = 0.034

rule 53
0.483 ( 0) 0.{83 ( 1) 0.183 ( 2) 0.483 (3) 0.483 (4)
0.483 ( 5) 0.483 (6) 0.483 ( 4 0.483 (8) 0.483 ( e)
0.483 (10) 0.483 (1r) 0.4eì (12) 0.483 (13) 0.483 (r4)
0.483 (15) 0.483 (16) 0.4æ (17) 0.483 (18) 0.483 (19)
0.483 (20) 0.483 (21) 0.4æ (22) 0.483 (23) 0.483 (24)
0.483 (25) 0.483 (26) 0.183 (27) 0.483 (28) 0.483 (æ)
Average = 0.,{}3 R€ngs = 0.000

rule 54
0.500 ( 0) 0,250 ( 1) 0.250 ( 2) 0.500 (3) o.sOO ( 4)
0,s00 ( 5) 0,s00 (6) 0.s00 ( 4 0.s00 ( 8) 0.500 (9)
0,2s0 (10) 0.s00 (11) 0.500 (12) 0.500 (13) 0,s00 (14)
0.500 (1s) 0.500 (16) 0,500 (r7) 0.250 (18) 0,250 (f9)
0.500 (20) 0.s00 (21) 0.s00 (22) 0.s00 (23) 0.500 (21)
0.250 (25) 0.500 (26) 0.500 (27) 0.s00 (28) 0.s00 (æ)
Average = 0.450 Range = 0.250

rule 55
0.s00 (0) 0.500 ( f) 0.500 ( 2) 0.500 ( s) 0.500 (4)
0.s00 (s) 0.æ0 ( 6) 0.s00 ( 4 0.s00 ( 8) 0.s00 ( 9)
0.s00 (10) 0.500 (r1) 0.500 (12) 0.500 (13) 0.500 (14)
0,500 (1s) 0,500 (16) 0.500 (17) 0.500 (f8) 0.500 (19)
0.500 (20) 0.500 (21) 0.s00 (22) 0.500 (23) 0.500 (24)
0.s00 (25) 0.s00 (26) 0.500 (27) 0.s00 (28) 0.s00 (æ)
Av€rago = 0.500 Fenge = 0.000

rule 56
0.300 ( 0) 0.300 ( 1) 0.300 ( 2) 0.300 ( 3) 0.300 (4)
0.300 ( 5) 0.300 (6) 0.300 ( 4 0.300 ( 8) 0.300 ( 9)
0,300 (10) 0.300 (1t) 0.300 (12) 0.300 (13) 0.300 (14)
0.300 (r5) 0.300 (16) 0.300 (17) 0.300 (f8) 0.300 (19)
0.300 (20) 0.300 (21) 0,300 (22) 0.300 (23) 0.300 (24)
0.300 (25) 0.300 (26) 0.300 (27) 0.300 (28) 0.300 (æ)
Av€rags = 0.300 Fsngs = 0,000

rulo 57
0.s00 (0) 0.s00 ( 1) 0.500 (2) 0.500 ( 3) 0,500 (4)
0.500 (5) 0.s00 ( 5) 0.500 (7) 0.s00 ( 8) 0.s00 (9)
0.500 (10) 0.500 (11) 0.500 (12) 0.500 (13) 0.500 (14)
0.500 (15) 0.s00 (16) 0.500 (f7) 0.500 (18) 0.500 (19)
0,s00 (20) 0.s00 (2r) 0.s00 (22) 0:500 (23) 0.500 (24)
0.500 (2s) 0.500 (26) 0.500 (27) 0.s00 (28) 0.500 (æ)
Average = 0.500 Range = 0.000

Bit Weight Tables

rule 58
0.667 (0) 0.667 ( 1) 0.667 ( 2) 0.667 (3) 0,667 (4)
0.667 ( 5) 0.667 ( 6) 0.667 ( 7) 0.667 ( s) 0.667 ( e)
0.667 (10) 0.667 (11) 0.ffi7 (12) 0.667 (13) 0.667 (14)
0.667 (rs) 0.557 (f6) 0.667 (17) 0.666 (18) 0.666 (19)
0.667 (æ) 0.657 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.567 (25) 0,667 (26) 0.667 (27) 0.667 (28) 0.667 (2s)
Awrage = 0.667 R€ng€ = 0.000

rulo 59
0.617 (0) 0.617 ( 1) 0.617 (2) 0.617 (3) 0.617 ( 4)
0.617 ( 5) 0.6f7 (6) 0,617 ( 7) 0.617 ( 8) 0.617 ( 9)
0.6'r7 (10) 0.617 (11)0,617 (f2) 0.6.t7 (13) 0.617 (14)
0.617 (1s) 0.617 (16) 0.617 (r7) 0.6f7 (18) 0.617 (19)
0.6r7 (æ) 0.617 (21) 0.617 (22) 0.617 (23) 0.6f 7 (24)
0.6r7 (25) 0.617 (26) 0.617 (27) 0.617 (28) 0.617 (29)
Av€rag€ = 0.617 Rânge = 0.000

rulo 60
0.53f¡ ( 0) 0.533 ( 1) 0.467 ( 2) 0,600 ( 3) 0.533 (4)
0.s33 ( 5) 0.467 (6) 0.400 ( 7) 0.600 ( 8) 0.533 (9)
0.467 (10) 0.467 (1t) 0.400 (12) 0.467 (13) 0.533 (.t4)
0.600 (f5) 0,s33 (r5) 0.600 (17) 0.534 (18) 0.467 (t9)
0.400 (æ) 0,600 (21) 0.533 (22) 0.100 (23) 0.600 (21)
0.600 (2s) 0.533 (26) 0.33t1 (27) 0.667 (28) 0.600 (29)
A\€rago = 0.518 R€ng€ = 0.333

rule 6l
0.s67 ( 0) 0.s67 ( r) 0.s67 ( 2) 0.s67 ( 3) 0.s67 ( 4)
0.567 ( 5) 0.s67 ( 6) 0.s67 ( 7) 0.s67 ( s) 0.567 ( e)
0.567 (10) 0,s67 ( ) 0.s67 (12) 0,567 (13) 0.s67 (14)
0.567 (15) 0.567 (16) 0.567 (17) 0.s67 ('t8) 0.567 (r9)
0.567 (20) 0.567 (21) 0.s67 (22) 0.567 (23) 0.567 (24)
0.567 (25) 0.s67 (26) 0.567 (27) 0.567 (28) 0.567 (29)
Awrage = 0.557 Range = 0.000

rule 62
0.667 (0) 0.667 ( 1) 0.667 ( 2) 0.667 (3) 0.æ3 ( 4)
0.667 ( 5) 0.667 ( 6) 0.667 ( 7) 0.333 ( s) 0.667 (s)
0.667 (f0) 0.333 (t t) 0.667 (12) 0.667 (13) 0.667 (14)
0.667 (1s) 0.6ô7 (r6) 0.667 (17) 0.667 (18) 0.667 (19)
0.667 (æ) 0.667 (21) 0.667 (22) 0.666 (23) 0.666 (24)
0.334 (25) 0.334 (26) 0.666 (27) 0.666 (2S) 0.666 (29)
Average = 0.611 Range = 0.333

rulo 6fl
0.533 ( 0) 0.533 ( 1) 0.533 ( 2) 0.s33 ( S) 0.534 ( 4)
0.ss3 ( s) 0.533 ( 6) 0.s33 ( 7) 0,533 ( 8) 0.533 ( 9)
0,533 (r0) 0.533 (t 1) 0.533 (12) 0.533 (13) 0.s33 (14)
0.s33 (15) 0.533 (16) 0,533 (17) 0.5sì (18) 0.533 (19)
0.s33 (æ) 0.533 (2'r)0.533 (22) 0,533 (23) 0.533 (24)
0.533 (2s) 0.533 (26) 0.533 (27) 0,s33 (28) 0.s34 (29)
Awrage = 0,533 Rå¡g€ = 0.000

lule 64
0.000 (0) 0.000 ( 1) 0,000 (2) 0.000 ( 3) 0.000 (4)
0.000 (s) 0.000 ( 6) 0.000 (7) 0.000 ( 8) 0.000 (e)
0.000 (10) 0.000 (11)0.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0,000 (æ) 0.000 (21) 0.000 (22) 0.000 (23) 0.æ0 (24)
0.000 (2s) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
A!€rage = 0.C100 Range -- 0.000
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rule 65
0.s34 ( 0) 0.266 ( 1) 0.s33 ( 2) 0.267 ( 3) 0.533 ( 4)
0.267 (5) 0i533 ( 6) 0.267 ( 7) 0.s33 ( S) 0.267 ( 9)
0.533 (10) 0.267 (11)0,5s1 (12) 0.266 (13) 0.s33 (14)
0.267 (15) 0.s33 (16) 0.267 (f7) 0.533 (r8) 0.267 (19)
0,s33 (20) 0.267 (21) 0.533 (22) 0,267 (23) 0,s33 (24)
0,267 (2s) 0.533 12610.287 (27].0,s33 (28) 0.267 (æ)
Averag€ = 0.400 RangÊ = 0.267

¡ulc 66
0.æ0 (0) 0.æ0 ( f ) 0,200 ( 2) 0.æ0 ( 3) 0.æ0 ( 4)
0.æ0 ( 5) 0.æ0 ( 6) 0.200 ( 4 0.æ0 ( 8) 0.æ0 ( 9)
0.æ0 (10) 0,200 (11) 0.200 (12) 0.æ0 (13) 0.æ0 (14)
0.æ0 (15) 0.æ0 (16) 0.200 (17) 0.æ0 (18) 0.æ0 (19)
0.æ0 (20) 0.æ0 121l.0.2æ (22].0.æ0 (23) 0.æ0 (24)
0.200 (2s) 0.æ0 (æ) 0.200 (27) 0.200 (28) 0.æ0 (æ)
Avêrage = 0.æ0 Range = 0.000

rule 67
0.450 (0) 0.450 ( 1) 0.450 ( 2) 0.450 (3) 0.450 ( 4)
0.4s0 ( 5) 0.450 ( 6) 0.450 ( 4 0.450 (S) 0.450 ( 9)
0.4s0 (r0) 0.450 (11) 0.450 ('r2) 0.450 (13) 0.4s0 (14)
0.450 (r5) 0.450 (16) 0.450 (17) 0.4s0 (1e) 0.450 (19)
0.450 (20) 0.450 (21) 0.4s0 (22) 0.450 (23) 0.450 (24)
0.450 (2s) 0.450 (26) 0.4s0 (27) 0.450 (28) 0.450 (æ)
Average = 0.450 Range = 0.000

rule 68
0.000 ( 0) 0.000 ( 1) 0.000 ( 2) 1.000 ( 3) 0.000 ( 4)
0,000 ( s) 1.000 (6) 0.000 ( a 0.000 ( 8) 1.000 ( e)
0,000 (10) 1,000 (11) 0.000 ('r2) 1.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.æ0 (1s) 1.000 (19)
0,000 (20) 0,000 (21) 1.00o (22) 0.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 0.000 (27) 1.000 (28) 0.000 (æ)
Average = 0.300 Range = t,000

rulo69
r.000 (0) 0.000 ( 1) 1,000 ( 2) 0.000 (3) 0.000 (4)
1.000 ( s) 0.000 ( 6) 0,000 (7) 1.000 (8) 0.000 ( 9)
1.000 (10) 0.000 (11) f.0m (12) 0.000 (13) 1.æ0 (14)
0.000 (15) 1.000 (16) 0.000 (17) 0.000 (18) r.000 (19)
0.000 (20) 1.000 (21) 0.000 (22) 1.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) r.000 (27) 0,000 (2s) 0.000 (æ)
Avorage = 0.¡lÍ¡3 Rangs = 1.000

rule 70
0,s00 ( 0) 1.000 ( 1) 0.000 ( 2) 1.000 ( 3) 0.æ0 ( 4)
0.500 ( 5) 1.000 (6) 0.000 ( 7) 1.000 ( 8) 0.000 ( e)
1.000 (10) 0.000 (r1) 1.000 (12) 0.000 (r3) r.000 (r4)
0.000 (r5) 0.500 (16) 1.000 (17) 0.000 (t8) 1.000 (19)
0.000 (20) 0.500 (21) r,000 (22) 0.000 (2s) 1.000 (24)
0.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (æ)
Average = 0.500 Rsnge = 1.000

ru16 7l
0.000 ( 0) 0.500 ( 1) 0.500 ( 2) 0.500 (3) 1.000 ( 4)
0.000 ( s) 0.s00 ( 6) 1.000 (Ð 0.000 ( 8) 1.000 ( 9)
0.000 (f0) 0,500 (11) 0.500 (f2) 0.500 (13) 0.500 (r4)
1.000 (15) 0.000 (16) 0.s00 (17) 0,500 (1s) 0.500 (19)
0.s00 (20) r.000 (21) 0.000 (22) 1:000 (23) 0.000 (24)
1.000 (25) 0.000 (æ) 0.s00 (27) 0.500 (28) 1,000 (æ)
Average = 0.500 Range = 1.000

Bit Weight Tables

tulê 72
1.000 ( 0) 0,000 ( 1) 0.000 ( 2) 0,000 ( 3) 1.000 (4)
1.000 ( s) 0.000 (6) t.000 ( 7) 1.000 ( 8) 0.æo ( 9)
0,000 (10) 0.000 (1r) 0.000 (12) 0.000 (13) 0,000 (r4)
0.000 (15) 0.000 (16) 0.000 (r7) 0.000 (18) 0.000 (19)
0.000 (æ) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (29)
Av€rage = 0.200 Rangs = f,Cþo

rulc 7ll
1.000 ( 0) 1,000 ( 1) 0.000 ( 2) 0.500 ( 3) 0.000 (4)
1.000 ( 5) r.000 (6) 0.000 ( 7) 0.5s3 ( 8) 0.167 (9)
0,583 (10) 0.f67 (11) 0.583 (12) 0.167 (13) 0.s83 (14)
0,000 (15) 1.000 (16) 1.000 (r7) 0.000 (18) 0.500 (19)
0,000 (æ) 0.500 (21) 0.00Ò (22) 0.500 (23) 0.000 (24)
r.000 (2s) '1.000 (26) 0.000 (27) 0.s00 (28) 0.000 (29)
Av€rago = 0.444 RgnSe = 1.æO

rulc ?4
0.200 (0) 0.æ0 ( t) 0.200 ( 2) 0.200 ( 3) 0.æ0 (4)
0.200 ( s) 0.æ0 (6) 0.200 ( 7) 0.200 ( 8) 0.æ0 ( 9)
0.200 (10) 0.200 (11)0.200 (r2) 0.200 (t3) 0.200 (11)
0.200 (1s) 0.æ0 (f6) 0.200 (r7) 0.200 (18) 0.æ0 (19)
0.200 (æ) 0.æ0 (21)0.200 (22) 0,2m (23) 0.200 (24)
0.200 (2s) 0.æ0 (26) 0.200 (27) 0.200 (28) 0.æO (29)
Av€rage = 0.æ0 Range = 0.000

lulr 75
0.508 ( 0) 0.49s ( 1) 0.s02 ( 2) 0,499 ( 3) 0.s06 (4)
0.4s7 (s) 0.500 (6) 0.4e4 ( 7) 0.504 ( 8) 0.498 (9)
0.4e8 (r0) 0.504 (11) 0.s02 (12) 0.500 (13) 0.506 (14)
0.492 (1s) 0.503 (16) 0.499 (17) 0.502 (18) 0.507 (!9)
0.496 (æ) 0.498 (21)0.497 (22) 0.s01 (23) 0.494 (24)
0.499 (2s) o.soo (26) 0,502 (27) 0.496 (2S) 0.502 (29)
A\,þråge = 0.500 Range = 0.015

rule 76
r.000 (0) 0.000 ( 1) 1.000 ( 2) 0.000 (3) f.000 (4)
f.000 (s) 0.000 ( 6) t.000 ( 7) 1.000 ( 8) 0.000 ( 9)
1.000 (10) 0.000 (11) 1.000 (12) 0.000 (13) 1.000 (t4)
0.000 (rs) 1.000 (16) 0.000 (r7) 0.000 (1s) 0.000 (te)
0.000 (æ) r.000 (2r) 0,000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 0.m0 (26) 1.000 (27) 0.000 (28) t,000 (29)
Awrage = 0.467 Range = LO00

tule Tl
1.000 ( 0) 1.000 ( t) 0.000 ( 2) 1.000 ( 3) 0.000 ( 4)
r.000 ( 5) 1.000 ( 6) 0.000 ( 7) 1.000 (e) 0,000 ( 9)
r.000 (10) 0.000 (r1) t.0oo (12) 0.000 (13) 1.000 (14)
0.000 (15) 1.000 (16) 1.000 (17) 0.000 (18) 0.000 (19)
1.000 (æ) 0.æ0 (21) 1.000 (22) 0.000 (23) 0.000 (24)
1.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) 0,000 (29)
Awrage = 0.533 Bangâ = 1.000

rul6 78
1.000 ( 0) 1.000 ( 1) 0,000 (2) 1.000 ( 3) 0.000 ( 4)
r.000 ( s) 1.000 ( 6) 0.000 ( 7) 1.000 ( 8) f .000 ( 9)
0.000 (10) 1.000 (1r) 0.000 (r2) f.000 (13) 0.000 (14)
r.000 (1s) 0.000 (16) r.000 (17) 0.0m (18) 1.000 (19)
0.0æ (æ) 1.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
1.000 (25) 0.000 (26) r.000 (27) 1,000 (28) 0.000 (29)
Average = 0.600 Range = 1.000
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rule 79
1.000 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 ( ¡l)
1.000 ( s) 0.000 ( 6) r,000 ( Ð 1.000 ( 8) 0.000 ( e)
1.000 (10) 0.000 (11) 1.000 (12) 0.000 (13) r.000 (f4)
0.000 (1s) 1.000 (16) 0.000 (17) 1.000 (18) 0.000 (1e)
1.000 (20) 1.000 (21) 0.000 (22) 1.000 (23) 1.000 (24)
0.000 (2s) 1.m0 (26) 1.000 (27) 0.000 (28) 1.000 (æ)
Average = 0.600 R€nge = l.0OO

rule 80
0.300 ( 0) 0.300 ( r) 0.300 ( 2) 0.300 ( 3) 0.300 ( 4)
0.300 (5) 0.300 ( 6) 0.300 ( a 0.300 ( 8) 0.300 ( 9)
0.300 (r0) 0.300 (11) 0.300 (f2) 0.300 (13) 0.300 (f4)
0.300 (1s) 0,300 (16) 0.300 (17) 0.300 (18) 0.300 (19)
0,300 (20) 0.300 (2r) 0.3æ (22) 0.300 (23) 0.300 (24)
0,300 (25) 0.300 (26) 0,300 (27) 0.300 (28) 0.300 (æ)
Average = 0.300 Rånge = 0.000

rulo 8f
0.s00 ( 0) 0.s00 ( 1) 0.500 ( 2) 0.500 (3) 0.500 (4)
0.s00 ( s) 0.500 (6) 0.s0o ( 7) 0.500 ( s) 0.s00 ( 9)
0.500 (10) 0.500 (fi)0.500 (r2) 0.500 (13) 0.500 (14)
0,s00 (1s) 0.500 (16) 0.s00 (17) 0.s00 (18) 0.s00 (19)
0.500 (20) 0.s00 (21) 0,500 (22) 0.500 (23) 0.s00 (21)
0.s00 (25) 0.s00 (26) 0,500 (27) 0.500 (28) 0.500 (æ)
Averags = 0.500 Rânge = 0.000

lule 82
0.3s0 ( 0) 0.433 ( 1) 0.350 ( 2) 0.433 (3) 0.350 ( 4)
0.433 ( 5) 0.350 (6) 0.433 ( 4 0.350 (s) 0.133 (e)
0.3s0 (10) 0.433 (r1) 0.350 (12) 0.433 (13) 0.3s0 (f4)
0.433 (15) 0.3s0 ('16) 0.433 (17) 0.350 (18) 0.!ß3 (r9)
0.350 (20) 0.4fr3 (2t)0.350 (22) 0.433 (23) 0.350 (24)
0,433 (25) 0.350 (26) 0.433 (27) 0.350 (28) 0.133 (æ)
Avsråge = 0.392 Rsngs = 0.084

rul' 83
0.550 (0) 0.550 ( 1) 0.s50 ( 2) 0.s50 ( 3) 0.550 ( 4)
0.550 (5) 0.ss0 ( 6) 0.s50 ( 7) 0.s50 ( 8) 0.550 ( 9)
0.5s0 (10) 0.5s0 (11) 0.550 (f2) 0,5s0 (13) 0.550 (14)
0.ss0 (f5) 0.550 (16) 0.550 (17) 0.550 (18) 0.550 (19)
0,550 (20) 0.550 (2r) 0.ss0 (22) 0.5s0 (23) 0.s50 (21)
0.550 (25) 0.ss0 (26) 0.550 (27) 0.s50 (28) 0.550 (æ)
Av€rage = 0.550 R€ngs = 0.000

rule 84
0.s00 ( 0) 0,500 ( 1) 0.500 ( 2) 0.s00 ( 3) 0.500 ( 4)
0,500 ( s) 0.s00 (6) 0.s00 ( 7) 0.500 ( 8) 0.s00 (e)
0.s00 (10) 0.500 (1r)o.sm (12) 0.500 (13) 0.s00 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 0.500 (2r) 0.500 (22) 0,s00 (23) 0.500 (24)
0.s00 (25) 0.500 (26) 0.s00 (27) 0.s00 (28) 0.500 (æ)
Avorâge = 0.500 Rangs = 0.000

rulâ 85
0.367 (0) 0.633 ( 1) 0.367 ( 2) 0.633 (3) 0.367 ( 4)
0.ô33 ( 5) 0,366 (6) 0.6s¡ ( 4 0.366 (8) 0.633 (e)
0.367 (10) 0.633 (11) 0.367 (12) 0.633 (13) 0.367 (14)
0.633 (r5) 0.367 (16) 0.633 (t7) 0.367 (18) 0.ô33 (19)
0.367 (20) 0.633 (21) 0.367 (22) 0.633 (23) 0.367 (24)
0.633 (25) 0.367 (26) 0.6s3 (27) 0.367 (28) 0.633 (æ)
Averâgo = 0.500 Rång€ = 0.267

Bit Weight Tables

rul€ 8{¡
0.4e8 (0) 0.502 ( 1) 0,500 ( 2) 0.50s ( 3) 0.4e7 ( 4)
0.500 ( 5) 0.507 ( 6) 0.500 ( 7) 0.501 ( 8) 0.502 (9)
0.495 (10) 0,501 (11) 0.495 (12) 0.s05 (13) 0.493 (14)
0,506 (1s) 0.497 (16) 0.4e6 (t7) 0.4S6 (18) 0.s13 (le)
0.486 (æ) 0.s09 (21)0.493 (22) 0.505 (23) 0.499 (24)
0.499 (2s) 0.492 (26) 0.505 (27) 0.502 (28) 0.503 (29)
Avel8gs = 0,500 Rangs = 0.027

rulg g7

0,517 (0) 0.s16 ( r) 0,517 ( 2) 0.517 (3) 0,s17 ( 4)
0.517 ( 5) 0.517 ( 6) 0.5't7 ( 7) 0.s17 ( 8) 0,5f 7 ( 9)
0.sr7 (10) 0.5f 7 (1 1) 0.s17 (12) 0,s17 (13) 0.517 (14)
0.5r7 (rs) o.sr7 (f6) 0.s17 (17) 0.517 (r8) 0.s17 (19)
0.517 (æ) 0,5r7 (2f) 0.sr7 (22) 0.517 (23) 0.517 (24)
0,517 (25) 0.s17 (26) 0.st7 (27) 0.s17 (28) 0.s17 (29)
Average = 0.517 Raflg€ = 0.000

rulo 88
0.400 ( 0) 0.400 ( 1) 0.100 ( 2) 0.100 ( 3) 0.400 ( 4)
0.400 ( 5) 0.400 ( 6) 0.400 ( 7) 0.1m ( s) 0.400 (9)
0.400 (10) 0.400 (r 1) 0.400 (12) 0.400 (13) 0.400 (11)
0.400 (r5) 0.400 (16) 0.400 (17) 0.4m (1s) 0,400 (19)
0.400 (æ) 0.400 (2f) 0.400 (22) 0.400 (23) 0,400 (24)
0.400 (2s) 0.400 (26) 0.400 (27) 0.400 (28) 0.400 (29)
Awrage = 0.¡lO0 Range = 0.001

rul€ 89
0,50s ( 0) 0.497 ( 1) 0.50s ( 2) 0.509 ( 3) 0.489 (1)
0.507 (5) 0.504 (6) 0.489 ( 7) 0,s0s ( 8) o.sos (9)
0.49S (10) 0.498 (t l) 0.498 (12) 0.s03 (t3) 0.50s (11)
0.4s0 (1s) 0.500 (f6) 0.5t1 (17) 0.494 (r8) 0.501 (19)
0,s0s (æ) 0.493 (21) 0.s06 (22) 0.496 (23) 0.500 (24)
0.s04 (25) 0.495 (26) 0.506 (27) 0.502 (28) 0.501 (29)
Awrage = 0.501 Rånga = 0.022

rule 90
0.633 ( 0) 0.4,rì3 ( 1) 0.467 ( 2) 0.s00 (3) 0.500 ( 4)
0.400 ( 5) 0.s67 ( 6) 0.557 ( 7) 0.657 ( 8) 0,633 ( 9)
0.500 (10) 0.æ0 (11) 0.567 (t2) 0.6æ (13) 0.533 (14)
0,63(l (15) 0,433 (f6) 0.467 (17) 0.s00 (18) 0.500 (19)
0,400 (æ) 0.s67 (21) 0.567 (22) 0.666 (23) 0.633 (24)
0.500 (25) 0.æo (26) 0,567 (27) 0.63ít (28) 0.s33 (29)
Avêrage = 0.520 R€ng€ = 0.466

rule 9l
0.500 ( 0) 0,s00 ( 1) 0.500 ( 2) 0.s00 ( 3) 0.500 ( 4)
0.500 ( s) 0.999 (5) 0.s00 ( 7) 0.500 ( 8) 0.æ9 ( 9)
0.s00 (10) o.soo (11)0.500 (t2) 0.s00 (13) 1.000 (14)
0.500 (1s) 0.500 (16) r.000 (17) 0.s00 (18) 0.500 (19)
0.999 (20) 0,500 (21) 0.500 (22) 0,500 (23) o.soo (24)
0.500 (25) 0.500 (26) 0.500 (27) 0.999 (28) 0.500 (29)
Averâgâ = 0.600 Rango = 0.500

rule 92
1.000 (0) 1.m0 ( 1) 0.000 ( 2) 1.000 (3) 0.æ0 ( 4)
1.000 (s) 0.000 ( 6) r.000 (7) 1.000 (8) 0.000 (9)
1.000 (10) 0.000 (11) 1.000 (12) 0.000 (13) r.000 (14)
0.000 (r5) r.000 (r6) 0.000 (17) t,000 (18) 0.000 (19)
r.000 (æ) 0.000 (21) r.000 (22) f.000 (23) 0.000 (24)
r.000 (25) r.000 (26) 0.000 (27) 1.000 (28) 0.000 (29)
Av€rage = 0.567 Range = 1.000
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rulo 93
1.000 (0) o.mo ( 1) 1.000 ( 2) 0,000 ( 3) 1.000 ( 4)
1.000 ( s) 0,000 ( 6) 1.000 ( 7) 0.000 (8) r.0oo (9)
0.000 (10) 1.000 (11)0.000 (12) 1.000 (13) 0.000 (14)
1.000 (1s) 0.m0 (16) 1.000 (17) 0.000 (18) 1.000 (19)
0.m0 (20) r.000 (21) 1.000 (22) 0.000 (23) 1.000 (21)
1.000 (25) 0.000 (26) 1.000 (27) 0.000 (28) 1.000 (æ)
Averag€ = 0.567 Range = 1.0æ

rulÊ 94
1.000 ( 0) 1.000 ( 1) 0.000 ( 2) 1.000 ( 3) 0.500 ( 4)
0.500 ( s) r.000 ( 6) 0,000 ( 4 1.000 (8) 1.000 ( 9)
0.000 (r0) 1.000 (11) 0.000 (t2) 1.æ0 (13) 1.0o0 (14)
0.000 (1s) 1.000 (16) 1.000 (17) 0.000 (18) 1.000 (19)
0.000 (20) 1.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
1,000 (2s) 0.000 (26) 1.000 (27) 1.000 (28) 0.000 (æ)
Average = 0.633 Range = 1.000

rule 95
1,000 ( 0) 0.æ0 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 ( 4)
r.000 ( s) 0.000 ( 6) t.om ( 4 1.000 (8) 0.000 ( 9)
1.000 (10) 0.000 ('r1) 1.000 (12) 0.000 (13) L00o (r4)
0.000 (15) 1,000 (16) 0.500 (17) 0.s00 (18) 0.s00 (19)
0.500 (20) 0.s00 (2r) 0.s00 (22) 0.500 (23) 1.000 (24)
0.s00 (2s) 0.s00 (26) 1.000 (27) 0.m0 (28) 1.000 (æ)
Average = 0.583 Range = l.0OO

rulr 96
0.000 (0) 0,000 ( 1) 0.000 ( 2) 0.000 (3) 0.000 ( 4)
0.000 (s) 0,000 (6) 0.000 (4 0.000 (8) 0.000 (9)
0.000 (10) 0.æ0 (11) 0.000 (r2) 0.000 (13) 0.000 (t4)
0.000 (1s) 0.000 (16) 0.0æ (17) 0.000 (18) 0.000 (t9)
0.000 (20) 0.æo (21)0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0,000 (æ)
Average = 0.000 Renge = 0.000

rule 97
0.364 (0) 0.365 ( 1) 0,364 ( 2) 0.366 (3) 0.363 ( 4)
0.366 (5) 0.365 (6) 0.365 ( 7) 0.365 (8) 0.355 ( 9)
0.365 (10) 0,366 (11) 0.36s (12) 0.364 (t3) 0.36s (14)
0.365 (fs) 0.365 (16) 0.364 (17) 0.365 (te) 0.365 (19)
0.366 (20) 0.364 (21) 0.365 (22) 0.364 (23) 0.366 (24)
0.364 (25) 0.36s (26) 0.365 (27) 0.366 (2s) 0.365 (æ)
Averag€ = 0.365 Range = 0.003

rule 98
0.467 (0) 0.467 ( 1) 0.467 ( 2) 0.467 ( 3) 0.467 ( 4)
0.467 (s) 0.467 ( 6) 0.467 ( 7) 0.467 ( S) 0,467 ( 9)
0.467 (10) 0.467 (11) 0.467 (12) 0.467 (13) 0.467 (14)
0.467 (15) 0.467 (16) 0.466 (17) 0.466 (18) 0.467 (19)
0.467 (20)} 0.4A7 l21l 0.467 122\ 0.467 123',, 0.467 124)
0.467 (25) 0.467 (26) 0.467 (27) 0.467 (28) 0.467 (æ)
Average = 0.467 R€ngs = 0.00'|

lulc 99
0.533 (0) 0,s33 ( 1) 0.s33 ( 2) 0.533 (3) 0.533 ( 4)
0.533 ( 5) 0.533 (6) o.ss¡ ( n 0.533 (8) 0.s33 (9)
0.533 (10) 0.533 (1r) 0.5æ (12) 0.533 (13) 0,s33 (14)
0,533 (r5) 0.533 (16) 0.5æ (17) 0,533 (18) 0.533 (19)
0.s33 (20) 0.533 (21) 0.53ríl (22) 0.s33 (23) 0.s33 (24)
0.533 (25) 0.533 (26) 0.sæ e7) 0.533 (28) 0.s33 (æ)
Average = 0.533 Range = 0.000

Bit Weight Tabtes

rule l0{,
0.000 ( 0) 0.000 ( r) 0.000 (2) 0.000 ( 3) t.ooo ( tt)
0,000 (s) 0.000 (6) 0.000 ( 7) 0.000 ( s) 1.000 (e)
0.000 (10) 0.000 (11)0,000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 1.000 (16) 0.0@ (f7) 0.000 (18) 0.000 (19)
0.000 (æ) t.000 (2r) 0.000 (22) 0,000 (23) 0.000 {24}
1,000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (29)
Avsrago = 0.¿þO Range = 1.000

rule 101
0.49s ( 0) 0.50s ( 1) 0.492 ( 2) 0.508 ( 3) 0.490 ( 4)
0,498 ( s) 0.500 ( 6) 0.508 ( 7) 0.491 ( 8) 0.507 ( 9)
0.498 (10) 0.50r (r 1) 0.s02 (12) 0.497 (13) 0.50.t (14)
0.503 (15) 0.499 (16) 0.s06 (r7) 0.495 (18) 0.497 (19)
0.s04 (æ) 0.s09 (21) 0.495 (22) 0.s00 (23) 0.493 (24)
0.509 (2s) 0.501 (25) 0.496 (27) 0.s0S (28) 0.498 (29)
Av€rage = 0.501 R€ng€ = 0.019

rulo 102
0.6m ( 0) 0.æ3 ( 1) 0.533 ( 2) 0.467 ( 3) 0,600 ( 4)
o.ss, (5) 0.400 (6) 0.s33 ( 7) 0,533 ( 8) 0.600 (e)
0.533 (10) 0.400 (t r) 0.400 (12) 0.533 (r3) 0.600 (!4)
0.s33 (r5) 0.487 (16) 0.467 (17) 0.533 (18) 0.600 (19)
0.600 (æ) 0.600 (21) 0,533 (22) 0.467 (23) 0.533 (24)
0.534 (25) 0.167 (26) 0.600 (27) 0.400 (28) 0.533 (29)
Avorags = 0.516 RångÊ = 0.æ7

rulc 103
o.sso ( 0) 0.s50 ( 1) 0.ss0 ( 2) 0.5s0 (3) o,sso ( 4)
0,5s0 ( s) 0.550 (6) 0.5s0 ( 7) 0.s50 ( s) 0,s50 ( 9)
0.550 (10) 0.ss0 (11) 0.5s0 (12) 0.550 (13) 0.5s0 (14)
0.ss0 (15) 0.550 (16) 0.550 (17) 0.5s0 (18) 0.550 (19)
0.550 (20) 0.550 (21) 0.ss0 (22) 0,550 (23) 0.550 (24)
0.550 (25) 0.s50 (26) 0.ss0 (27) 0.550 (28) 0.550 (29)
Av€rage = 0.550 Ra¡ge = 0.000

lulc 104
0.000 ( 0) 0.000 ( 1) 0.000 (2) 0.000 (3) 0.000 ( 4)
0.000 ( 5) 0.000 ( 6) 0.000 ( 7) 0.000 ( s) 0.000 ( 9)
1.0m (10) 1.000 (11)0.000 (r2) 0.000 (13) 0.000 (14)
0.000 (r5) 0.000 (16) 0.000 (t7) 0.000 (1s) 0.000 (19)
0.000 (æ) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Awrage = 0,067 Range = 1.000

rulE 105
0.500 ( 0) 0.567 ( 1) 0.433 ( 2) 0.5m ( 3) 0.4¡¡3 (4)
0.s00 ( 5) 0.500 ( 6) 0.433 ( 7) 0.s67 (8) 0.4Íì3 ( 9)
0.500 (r0) 0.557 (11) 0.500 (t2) 0.433 (13) 0.633 (11)
0.s67 (15) 0.500 (16) 0.700 (17) 0.367 (18) 0.500 (19)
0.566 (20) 0,s00 (21) 0.500 (22) 0,567 (23) 0.1r)3 (24)
0.767 (2s) 0.433 (26) 0.s00 (27) 0.367 (28) 0.500 (29)
A\€rage = 0.509 Rånge = 0.400

rule 106
0.502 ( 0) 0.s02 ( 1) 0.508 ( 2) 0.506 ( 3) 0.502 (4)
0.4ee (s) 0.4s8 ( 6) 0.500 (7) 0.502 (8) 0.4s8 (9)
0.510 (10) 0.s02 (11) 0.508 (12) 0.502 (13) 0.50s (11)
0.502 (1s) 0.497 (16) 0.504 (17) 0.s00 (18) 0,503 (19)
0.s06 (æ) 0,s02 (21) o.sos (22) 0.s04 (23) o.sol (24)
0.496 (2s) 0.506 (26) 0.198 (27) 0.501 (28) 0.497 (29)
A\€rags = 0.502 Rangê = 0.0t4
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ruls 107
0,53s ( 0) 0.63s ( 1) 0.636 ( 2) 0,635 (3) 0.635 (4)
0.635 ( 5) 0,635 ( 6) 0.635 ( 7) 0.ô35 (8) 0.635 (e)
0.635 (10) 0,63s (11) 0.635 (12) 0.636 (13) 0.635 (14)
0.635 (15) 0.635 (16) 0.635 (17) 0.635 (18) 0,635 (19)
0.636 (20) 0.ô3s (2r) 0.63s (22) 0.635 (23) 0.ê36 (24)
0.635 (25) 0.63s (26) 0.635 (27) 0.636 (2S) 0.63s (æ)
Average = 0.635 Rå¡g€ = 0.00f

rulo 108
0.000 (0) 0.000 ('r) 0.000 ( 2) 0.000 ( 3) 1,000 ( 4)
0.000 ( 5) 0.000 ( 6) 1.000 ( 4 0.500 ( 8) 1.000 ( e)
0,000 (10) 0.000 (11) 0.000 (12) 0.m0 (13) 0.000 (14)
1.000 (15) 0.s00 (16) 1.000 (17) 0.000 (18) 0.000 (f9)
0.000 (20) 1.000 (21) 0.000 (22) 0.000 (23) 1,000 (24)
1.000 (2s) 0.000 (26) 0.000 (27) 0.000 (28) 1.000 (æ)
Av€rage = 0.333 Ra¡gs -- 

,l.000

rule 109
0.000 (0) 1.m0 ( r) 0,500 ( 2) 1.000 ( 3) 0.000 ( 4)
0.000 ( 5) 1.000 ( 6) 0.500 ( 4 1.000 ( 8) 0.000 ( e)
0.000 (10) 1.000 (r1) 0.500 (12) r.000 (13) 0.000 (r4)
0.001 (1s) 1.m0 (16) 0.500 (17) f.000 (18) 0.500 (19)
0.999 (20) 0.500 (2r) 1.000 (22) 0.000 (23) 0.000 (24)
r.m0 (25) 0.000 (26) 0,000 (27) 1.000 (28) 0.000 (æ)
Average = 0.500 Range ='1.000

rulg llO
0.732 ( 0) 0.434 ( r) 0,73s ( 2) 0.{'4 ( 3) 0.733 ( 4)
0,434 ( 5) 0,733 ( 6) 0.43r| ( 4 0.733 ( 8) 0.4i)4 ( 9)
0.733 (10) 0.435 (11) 0.732 (12) 0.434 (13) 0.731 (14)
0.434 (1s) 0.732 (16) 0.435 (17) 0,732 (ts) 0.433 (19)
0.731 (20) 0.43s (2r) 0.733 (22) 0.,134 l23l 0.792l24l
0.434 (2s) 0.732 (26) 0.435 (271 0.732 (28) 0.433 (æ)
Average = 0.583 Ra¡ge = 0.300

rule 111
0,400 ( 0) 0.800 ( 1) 0.400 ( 2) 0.799 (3) 0.400 ( 4)
0,799 ( s) 0.401 (6) 0.799 ( Ð 0.401 (8) 0.799 (9)
0.401 (10) 0.799 (11)0.401 (12) 0.799 (13) 0.401 (14)
0.æ9 (1s) 0.401 (f6) 0.801 (17) 0.400 (1s) 0.800 (r9)
0.400 (20) 0.s00 (21)0.400 (22) 0.800 (23) 0.¡lo0 (24)
0.800 (25) 0.400 (26) 0.800 (27) 0.400 (28) 0.799 (æ)
Averåge = 0.600 R€næ = 0.401

lulo 112
0.300 (0) 0.300 ( 1) 0.3æ ( 2) 0,300 ( 3) 0.300 ( 4)
0.300 (s) 0.300 (6) 0.300 ( 4 0.300 (8) 0.300 (9)
0.300 (f0) 0.300 (11)0.300 (12) 0.300 (13) 0.300 (14)
0.300 (15) 0.300 (16) 0.300 (17) 0.300 (f8) 0.300 (19)
0.300 (20) 0.300 (21)0.300 (22) 0.300 (23) 0.300 (24)
0.300 (25) 0.æ0 (26) 0.300 (27) 0.300 (28) 0.300 (æ)
Average = 0.300 Ra¡gs = 0.000

rul€ fl3
0.s00 ( 0) 0,500 ( f) 0.s00 (2) 0.s00 ( 3) 0.500 (4)
0.500 (5) 0.500 (6) 0.500 ( 7) 0.s00 (8) 0.500 (9)
0.500 (r0) 0.500 (f 1)0.500 (12) 0.500 (13) 0.s00 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.s00 (18) 0.500 (19)
0.500 (20) 0,s00 (21) 0.500 (22) 0.500 (23) 0.s00 (24)
0.500 (25) 0.500 (26) 0.500 e7) 0,500 (28) 0.500 (æ)
Averags = 0.9,00 Range = 0.000

Bit Weight Tables

rulc 114
0,667 (0) 0.667 ( 1) 0.667 (2) 0.666 (3) 0.667 (4)
0.667 ( s) 0,665 (6) 0.667 ( 7) 0.667 ( 8) 0.666 (e)
0.657 (10) 0.667 (1r) 0.667 (12) 0.667 (13) 0.667 (14)
0.667 (15) 0.667 (16) 0.667 (17) 0.666 (18) 0.657 (19)
0.667 (æ) 0.667 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 (2s) 0.667 (26) 0.667 (27) 0.667 (28) 0.667 (29)
Av€rag€ = 0.687 Rang€ = 0.000

lule 115
0.6s0 ( 0) 0.6s0 ( 1) 0.650 ( 2) 0.6s0 ( 3) 0.6s0 ( 4)
0.650 (5) 0.6s0 ( 6) 0.650 (7) 0.650 ( 8) 0.650 (e)
0.650 (10) 0.650 (11) 0.650 (f2) 0.6s0 (13) 0.650 (14)
0.650 (15) 0.6s0 (r6) 0.6s0 (17) 0.650 (fs) 0.6s0 (19)
0.6s0 (æ) 0.6s0 (21) 0.650 (22) 0.650 (23) 0.650 (24)
0.6s0 (25) 0.6s0 (26) 0.650 (27) 0.650 (28) 0.650 (2e)
Awrage = 0.550 Ra¡ge = 0.m0

rule ll6
0.467 ( 0) 0.467 ( r) 0.467 ( 2) 0.467 ( 3) 0.467 ( 4)
0.467 ( s) 0.467 ( 6) 0.467 ( 7) 0.467 ( 8) 0.467 ( 9)
0,467 (10) 0.467 (r 1) 0.467 (12) 0.467 (13) 0.467 (14)
0.467 (15) 0.1166 (16) 0.466 (17) 0.467 (18) 0.467 (19)
0.467 (æ) 0.467 (2r) 0.167 (221 0.467 (231 0.4ß7 (24\
0.487 (25) 0.467 (26) 0.167 (27) 0.467 (2S) 0.167 (æ)
A\r€râge = 0.467 R€ngo = 0,001

rul! ll7
0.467 ( 0) 0.533 ( 1) 0.467 ( 2) 0.s33 ( 3) 0.467 ( 1)
0.s33 ( s) 0.467 ( 6) 0.533 ( 7) 0.467 ( 8) 0.s33 ( s)
0.467 (10) 0.533 (11) 0.467 (f2) 0.53t] (t3) 0.467 (14)
0,s33 (r5) 0.467 (16) 0.s33 (17) 0.487 (fS) 0.s33 (.ts)
0.467 (æ) 0.533 (2'r)0.467 (22) 0.s33 (23) 0,467 (24)
0.533 (2s) 0.467 (26) 0.s33 (27) 0.467 (28) 0.s33 (29)
Avsrage = 0.500 Range = 0.067

rule llS
0.335 ( 0) 0.335 ( t) 0.656 ( 2) 0.666 ( 3) 0.666 ( 4)
0,666 ( s) 0.666 ( 6) 0,566 ( 7) 0.666 ( 8) 0.566 ( 9)
0.667 (10) 0.666 (11) 0.666 ('t2) 0.667 (13) 0,567 (r4)
0,666 (1s) 0.657 (16) 0.667 (17) 0.666 (18) 0.657 (.ts)
0.667 (æ) 0.667 (21)0.667 (22) 0.657 (23) 0.667 (24)
0.667 (25) 0.667 (26) 0.66s (27) 0.666 (28) 0.666 (2e)
Av€rage = 0.644 Rang€ = 0,332

¡ulq 119
0.5æ ( 0) 0.s33 ( l) 0.533 ( 2) 0.s3:¡ (3) 0.533 ( 4)
0.s33 ( 5) 0.533 ( 6) 0.s34 ( 7) 0.533 (8) 0.s34 ( s)
0,s33 (10) 0.s33 (11) 0.533 (12) 0.533 (13) 0,533 (14)
0.534 (15) 0.s33 (16) 0.s33 ('r7) 0.s33 (18) 0,533 (f9)
0.533 (æ) 0.s33 (21) 0,533 (22) 0.533 (23) 0.s33 (24)
0.533 (25) 0,533 (26) 0.533 (27) 0.s33 (28) 0.æ3 (29)
A!€rags = 0.533 Range = 0.000

rule J20
0.496 ( 0) 0.500 ( 1) 0.49s ( 2) 0.498 (3) 0.49f ( 4)
0.497 (s) 0.492 ( 6) 0,s01 (7) 0.49€ (8) 0.s02 ( e)
0.494 (10) 0.493 (r'r) 0.4e0 (12) o.sfiì (13) 0.49s (14)
0.500 (15) 0.504 (16) 0.507 (17) 0,499 (18) 0.500 (19)
0.497 (æ) 0.502 (21) 0.492 (22) 0.496 (23) 0.497 (24)
0,496 (25) 0.4s0 (26) 0,4s6 (27) 0.486 (æ) 0,489 (2e)
Av€rags = 0.496 Rango = 0.021
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rulc 12t
0.s00 ( 0) 0.700 ( 1) 0.s00 ( 2) 0.700 ( 3) 0.501 ( 4)
0.700 ( 5) 0.50r ( 6) 0.6es ( 7) 0.s01 ( s) 0.700 ( e)
0.501 (f0) 0.6s9 (f1)0.501 (12) 0.700 (13) 0.501 (14)
0.700 (1s) 0.500 (16) 0.700 (17) 0.s00 (1s) 0.700 (r9)
0.s00 (20) 0.700 (21) 0.500 (22) 0.700 (23) 0.500 (24)
0.700 (25) 0.500 (æ) 0,701 (27) 0.500 (28) 0.700 (æ)
Average = 0.600 Rang€ = 0.201

tule 122
0.002 (0) 0.002 ( r) 0.002 ( 2) 0.002 ( 3) 0.002 ( 4)
0.002 ( s) 0.002 ( 6) 0.002 ( 4 0.002 ( 8) 0.002 ( 9)
0,002 (10) 0.002 (11) 0.002 {12) 0.002 ('t3) 0.002 (14)
0,002 (1s) 0.003 (16) 0.002 (17) 0,002 (fs) 0.m2 (19)
0.002 (20) 0.002 (2r) 0.002 (22) 0.002 (23) 0,002 (24)
0.002 (25) 0.002 (26) 0.002 (27) 0.m2 (28) 0.002 (æ)
Average = 0.cì02 Range = 0.001

ruls 123
'r.000 ( 0) 0.500 ( 1) 0.s00 (2) 1.000 (3) 0.500 (4)
0.500 (5) 0.s00 (6) 1.000 ( 4 0.s00 ( 8) 0,500 (9)
0.s00 (10) 0.500 (fi)0.s00 (12) 0.500 (13) 1.000 (14)
0.500 (15) 0.500 (16) 0.500 (17) 0.500 (18) 0.500 (19)
0.500 (20) 1.000 (21) 0.s00 (22) 0.s00 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0.500 (27) 1.000 (2s) 0.500 (æ)
Av€rage = 0.600 Rsngs = 0.500

rule 124
0.433 ( 0) 0.733 ( 1) 0.133 (2) 0.733 (3) 0.,t33 ( 4)
0.732 (5) 0.433 (6) 0.732 ( ¿ 0.¡134 (8) 0.732 (9)
0.434 (r0) 0.732 (1r)0.433 (12) 0.732 (13) 0,433 (14)
0.734 (15) 0.434 (16)0.733 (17) 0.434 (18) 0.733 (19)
0.433 (20) 0.733 (21) 0.433 (22) 0.733 (23) 0.4|3 (24)
0,734 (2s) 0.433 (26) 0.733 (27) 0.¡lfl3 (28) 0.734 (æ)
Average = 0.583 RangE = 0.301

rulo 125
0.633 ( 0) 0.s00 ( 1) 0.633 ( 2) 0.s00 ( 3) 0.633 ( 4)
0.s00 ( 5) 0.633 (6) 0.s00 ( 7) 0.533 (8) 0.500 ( 9)
0.634 (10) 0.s00 (11) 0.634 (12) 0.500 (13) 0.634 (14)
0.500 (15) 0.633 (16) 0.500 (17) 0.633 (18) 0,500 (19)
0.633 (20) 0.500 (2r)0.633 (22) 0.500 (23) 0.633 (24)
0.500 (2s) 0.633 (æ) 0.500 (27) 0.ô33 (28) 0.500 (æ)
Average = 0.567 Râ¡ìgs = 0.134

rulc 126
0,001 (0) 0.00r ( 1) 0.001 ( 2) 0.001 ( 3) 0.001 ( 4)
0.002 ( 5) 0.m2 ( 6) 0.001 ( Ð 0.001 ( 8) 0.002 ( e)
0.001 (r0) 0.001 (11) 0.002 (12) 0.001 (13) 0.001 (14)
0.00'l (r5) 0.00r (16) 0.001 (17) 0.001 (18) 0.m1 ('t9)
0.002 (20) 0.00r (2r)0.00r (22) 0.00r (23) 0,001 (24)
0.001 (25) 0.002 (26) 0.00r (27) 0.00r (28) 0.001 (æ)
Average = 0.00i RangE = 0.00.|

rule 127
0.500 ( 0) 0.s00 ( 1) 0.s00 ( 2) 0.500 (3) 0.500 ( 4)
0.500 ( 5) 0.500 (6) 0.s00 (4 0,500 (8) 0.500 ( e)
0.500 (10) 0.500 (11) 0.500 (12) 0,500 (13) 0.500 (14)
0.500 (15) 0.500 (16) 1.000 (17) 0.500 (18) 0.500 (19)
0.s00 (20) f.000 (21) 0.s00 (22) 0.s00 (23) 0.500 (24)
0.s00 (25) 0.500 (26) 0.s00 (27) 0.500 (28) 0.s00 (æ)
Av€rag€ = 0.533 Rang€ = 0.500

Bit Weight Tables

rul€ 128
0.000 (0) 0.000 ( t) 0.000 (2) 0.000 ( 3) 0.000 (4)
0.000 ( 5) 0.000 ( 6) 0.000 ( 7) 0.000 ( 8) 0.000 (9)
0.000 (10) 0.000 (11) 0.000 (12) 0.000 (r3) 0.000 (14)
0.000 (1s) 0.000 (r6) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (æ) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 0.000 (26) 0.000 (27) 0,000 (28) 0.000 (29)
Avs¡âgs = 0.000 Râng€ = 0.000

rulc 129
0.999 (0) 0.998 ( 1) 0.999 ( 2) 0.999 ( 3) 0.999 ( 4)
0.999 ( 5) 0.998 ( 6) 0.999 ( 7) 0.999 ( 8) 0.998 ( 9)
0.998 (10) 0.999 (11) 0.998 (12) 0.998 (13) 0.998 (14)
0.998 (r5) 0.998 (16) 0.998 (17) 0.99S (18) 0,998 (19)
0.998 (æ) 0.998 (2t) 0.999 (22) 0.999 (23) 0.998 (24)
0.9æ (2s) 0.99S (26) 0.998 (27) 0,S98 (28) 0,s99 (29)
AvErage = 0.999 Rang€ = 0.001

rule 130
0.'133 ( 0) 0.133 ( t) 0.133 ( 2) 0.133 ( 3) 0.133 ( 4)
0.133 ( 5) 0.133 ( 6) 0.133 ( 7) 0.133 ( 8) 0,13€ (9)
0.r33 (r0) 0.133 (1r) 0.133 (12) 0,133 (13) 0.133 (14)
0. r3r! (15) 0,t33 (t6) 0.133 (17) 0.13K1 (18) 0.133 (19)
0.133 (æ) 0.133 (2t) 0.t33 (22) 0.1sr (23) 0.,t3¡l (24)
0.133 (25) 0.13{¡ (26) 0.133 (27) 0.1st (2S) 0.133 (29)
Averags = 0.133 Rsng€ = 0.000

rulc 131
0.333 ( 0) 0.334 ( 1) 0.33¡l ( 2) 0.&T¡ ( 3) 0.333 ( 4)
0.333 ( 5) 0.333 ( 6) 0,33.ft ( 7) 0.666 ( 8) 0.667 ( 9)
0.3æ (10) 0.333 (11)0.667 (12) 0.667 (13) 0.æ3 (t4)
0.333 (r5) 0.333 (16) 0.333 (17) 0.667 (18) 0.667 (19)
0,333 (æ) 0.333 (2 r) 0.333 (22) 0.333 (23) 0.333 (24)
0.333 (25) 0.333 (26) 0.333 (27) 0.3st (28) 0.333 (29)
Av€rage = 0.400 R€l1ge = 0.333

rule t32
0.000 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 ( 5) 1.m0 (6) 0.000 ( 7) 0.000 ( 8) 0.000 ( 9)
0.000 (10) 1.000 (r1)0,000 (t2) 1.000 (13) 0.000 (14)
0.000 (1s) 0.000 (f6) 0.000 (17) 0.000 (18) 0.000 (r9)
0.000 (æ) 0.000 (21)0.000 (22) 0.000 (23) 0,000 (21)
1.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0,000 (2e)
Av€rage = 0.167 Rsngo = 1,000

rulr 133
0,000 ( 0) 0.m0 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 ( 4)
0.000 ( s) 0.500 (6) 0.s00 ( 7) 0.0æ ( 8) 1.000 ( 9)
0.000 (10) 1.00o (11)0.000 (12) 1.000 (13) 0,000 (14)
1.000 (15) 0.000 (16) 0.000 (17) 1.000 (18) 0,000 (19)
0.000 (20) 1.000 (21)0.000 (22) 't.000 (23) 0.000 (24)
0.000 (25) 1.000 (26) 0.000 (27) 0.000 (28) 1.000 (29)
Average = 0.400 Range = 1,000

rule 134
0.200 ( 0) 0.400 ( 1) 0.200 ( 2) 0.400 ( 3) 0.æ0 ( 4)
0.400 ( s) 0.æ0 ( 6) 0.400 ( 7) 0.200 ( 8) 0.400 ( e)
0.200 (10) 0,400 (11) 0.200 (t2) 0.400 (13) 0.æ0 (r4)
0,400 (15) 0.200 (r6) 0.400 (17) 0.200 (18) 0.400 (19)
0.200 (æ) 0.400 (21) 0.200 (22) 0.400 (23) 0.æo (24)
0.400 (25) 0.æ0 (26) 0.400 (27) 0,200 (28) 0.100 (29)
A!€rags = 0.900 Rarìge = 0,200
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ruls 135
0.4e7 (0) 0,501 ( 1) 0.s03 ( 2) 0.502 (3) 0.501 ( 4)
0.4e1 (s) 0.s0e (6) 0.s07 ( 4 0.488 (8) 0.sæ (e)
0.494 (10) 0,502 (r'r) 0.498 (12) 0.4S9 (f3) 0.502 (11)
0.s04 (1s) 0.491 (16) 0.s0r (17) o.sor (18) 0.49s (19)
0.507 (20) 0.4es (21) 0.49s (22) 0.s0s (23) 0,s02 (24)
0.506 (25) 0.494 (26) 0.s07 (27) 0.504 (28) 0,492 (æ)
Average = 0.500 Rång€ = 0.021

rule 136
0.000 ( 0) 0.000 ( 1) 0.000 (2) 0.000 ( 3) 0.000 ( 4)
0.000 ( 5) 0.000 ( 6) 0.000 ( 7) 0.000 ( s) 0.000 ( e)
0.000 (r0) 0.000 (11) 0.000 (12) 0,000 (13) 0.000 (14)
0.000 (1s) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21) 0.000 (22) 0.000 (23) 0.æ0 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (æ)
Av€rage = 0.m0 Ra¡ge = 0.000

rule 137
0.423lo) 0.422 ( 1) 0.422l2) 0.423 ( 3) 0.423 ( 4)
0.423 (s) 0.423 ( 6) 0.423 (4 0.423 ( 8) 0,422 ( e)
0.423 (10) 0,422 (1r)0.423 (t2) 0.422 (13) 0.423 (14)
0.422l',l'l 0.423 11610.422 (17) 0.423 (18) 0.423 (19)
0.423 (201 0.423 l21l 0.423 (221 0.422 (231 0.422 (241
0.423 (25) 0.423 126\ 0.423 (2710.423 (28) 0.422 (29)
Avorags = 0.423 Rangg = 0.001

ruls 138
0.333 ( 0) 0.333 ( 1) 0.3s] ( 2) 0.æ3 ( 3) 0.333 ( 4)
.0.333 ( 5) 0.333 (6) 0.333 (4 0.333 ( 8) 0.333 ( 9)
0.333 (r0) 0.333 (fi) 0.333 (12) 0.333 (13) 0.æ3 (14)
0.æ4 (15) 0.334 (16) 0.334 (17) 0.334 (18) 0.333 (19)
0.333 (20) 0.333 (21) 0.333 (22) 0.333 (23) 0.333 (24)
0.333 (25) 0.333 (26) 0,333 (27) 0.333 (28) 0.333 (æ)
Averâge = 0.333 Rsnge = 0.001

rule 139
0.533 ( 0) 0.533 ( 1) 0.533 ( 2) 0.533 (3) 0.533 (4)
0.533 (5) 0,s33 ( 6) 0.s33 (4 0.533 ( 8) 0,s33 (e)
0.533 (10) 0.s33 (11) 0.533 (12) 0.533 (13) 0.533 (14)
0.533 (1s) 0.533 (16) 0.53it (f7) 0.534 (18) 0.533 (19)
0.533 (20) 0.s33 (2r) o.strr (22) 0,533 (23) 0.5s3 (24)
0.æ3 (2s) 0,s33 (26) 0.5æ (27) 0.s33 (28) 0.s33 (æ)
Average = 0,533 R€ng€ = 0.000

rula I 4lt
r.0o0 ( 0) 0.000 ( 1) 0.000 ( 2) 1,000 ( 3) 0.000 ( 4)
1.000 ( s) 0.000 (6) 0.000 ( 4 0,000 ( 8) 0.000 ( 9)
r.000 (10) 0.000 (1r) 1.000 (12) 0.m0 (13) 0.000 (14)
0.000 (15) f .m0 (16) 0.000 (17) 0.000 (ts) 0.m0 (19)
r.000 (20) 0.000 (2r)0.000 (22) 0.000 (23) 0.000 (24)
r.000 (25) 0.000 (26) 0.000 (27) 1.000 (2s) 0.000 (æ)
Av€rage = 0,300 R€¡gs = 1.000

ruls 141
0.æ0 ( 0) 1.000 ( 1) 0.000 ( 2) 0.000 ( 3) 1.000 ( 4)
0.000 ( 5) 0.000 (6) 1.000 ( 4 0,000 ( 8) 1.000 ( e)
0.000 (10) r.000 (1r) 0.000 (12) 1,000 (13) 0.000 (14)
1.000 (1s) 0.000 (16) 1.000 (17) 0,000 (18) 0.000 (19)
1.000 (20) 0.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
0.000 (25) 0.000 (26) r,000 (27) 0.000 (28) 1.000 (æ)
Average = 0.433 Range = 1.000

Bit Weight Tables

rule 142
0.467 (0) 0.533 ( 1) 0.467 ( 2) 0.5æ ( 3) 0,467 ( 4)
0.533 ( s) 0.467 ( 6) 0.533 ( 7) 0.467 ( 8) 0,533 ( e)
0.467 (r0) 0.s3s (11) 0.467 (12) 0.s33 (.t3) 0.467 (14)
0.s33 ('r5) 0.467 (16) 0.s33 (17) 0.467 (.t8) 0.533 (19)
0.467 (æ) 0.533 (21) 0.467 (22) 0.533 (23) 0.1¡ì7 (24)
0.533 (2s) 0.457 (26) 0.s34 (27) 0.467 (28) 0.s33 (29)
Av€rage = 0,fO0 Ra¡g€ = 0.067

rule 143
0.s00 ( 0) 0.s00 ( 1) 0.500 ( 2) 0,s00 ( 3) 0.500 (4)
0.500 ( 5) 0.500 (6) 0.500 ( 7) 0.s0o ( 8) 0.500 ( 9)
0.500 (10) 0,s00 (f1) 0.s00 (12) 0.500 (13) 0.s00 (14)
0.s00 (15) 0,s00 (f6) 0.500 (17) 0.500 (t8) 0.500 (19)
0.s00 (æ) 0,500 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.500 (26) 0,s00 (27) 0.s00 (28) 0.s00 (29)
A\¡erage = 0.500 Rsngo = 0.001

rulE 144
0.133 ( 0) 0.133 ( 1) 0.13ß (2) 0.133 (3) 0.133 (4)
0.133 ( s) 0.133 ( 6) 0.133 ( 7) 0.133 ( 8) 0.133 ( s)
0.133 (r0) 0.r33 (1 r) 0.133 (12) 0.133 (13) 0.133 (14)
0.133 (r5) 0.r33 (16) 0.133 (17) 0.13(} (1s) 0.13(r (19)
0.'r33 (æ) 0.134 (2f) 0.133 (22) 0.1Ss (23) 0,13¡r (24)
0.133 (25) 0,133 (26) 0.133 (27) 0.1s1 (28) 0.133 (29)
A\,€rage = 0.133 Rsngê = 0.000

rulâ 145
0.3æ ( 0) 0.667 ( 1) 0.333 ( 2) 0.333 ( 3) 0.333 ( 4)
0.333 ( 5) 0.333 ( 6) 0.667 ( 7) 0.333 ( 8) 0.æ3 ( 9)
0.333 (10) 0.667 (r l) 0.667 (12) 0.333 (13) 0.333 (14)
0.334 (r5) 0.333 (16) 0.333 (17) 0.666 (18) 0.334 (19)
0,334 (20) 0.333 (21)0.333 (22) 0.333 (23) 0.333 (24)
0.333 (25) 0.333 (26) 0.333 (27) 0.333 (28) 0.33S (29)
Average = 0,389 Rangâ = 0.333

rule l4ô
0.001 (0) 0.001 ( 1) 0.001 (2) 0.001 (3) 0.001 (4)
0.00'r ( 5) 0.001 ( 6) 0.001 ( 7) 0.000 ( 8) 0.001 ( 9)
0.000 (r0) 0.001 (1f) 0.000 (12) 0.001 (13) 0.001 (14)
0.00r (rs) 0.001 (16) 0.001 (17) 0.001 (18) 0.001 (19)
0.000 (æ) 0.001 (21)0.001 (22) 0.000 (23) 0.001 (24)
0,00r (25) 0.000 (26) 0.001 (27) 0.00't (28) 0.001 (29)
Awrage = 0.00'l Range = 0.00i

rulo 147
0.s31 ( 0) 0,530 ( 1) 0.s32 ( 2) 0.s30 ( 3) 0.532 ( 4)
0.s30 (s) 0.s32 (6) 0.s31 (7) 0.s32 (8) 0.530 (e)
0,s32 (10) 0.531 (r 1) 0,532 (r2) 0.s31 (13) 0.532 {14)
0.s3r (1s) 0.532 (16) 0.531 (17) 0.5æ (18) 0.531 (19)
0.s33 (æ) 0.53r (2110.s32122) 0.531 (23) 0.532 (24)
0.531 (25) 0.s32 (26) 0.s31 (27) 0.532 (28) 0.s30 (29)
A!€r8g€ = 0.531 Fangs = 0,002

¡ule 148
0.200 ( 0) 0.300 ( 1) 0.200 ( 2) 0.300 ( 3) 0.æ0 ( 4)
0.300 (5) 0.æ0 (6) 0.300 (7) 0.200 ( 8) 0.300 (9)
0.200 (10) 0,300 (11) 0.200 (12) 0.300 (13) 0.æ0 (14)
0.300 (15) 0.æ0 (16) 0.300 (17) 0.200 (18) 0.300 (19)
0,200 (æ) 0.300 (2r)0.200 (22) 0.300 (23) 0.æ0 (24)
0.300 (25) 0.æ0 (25) 0.300 (27) 0.200 (28) 0.300 (29)
Av€ragô = 0.250 Range = 0.100
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rule 149
0.4se ( 0) 0.504 ( 1) 0.1e4 (2) 0.505 ( 3) 0.4e7 (4)
0.504 ( s) 0.49s ( 6) 0.500 (7) 0,495 (8) 0.4e8 (e)
0,497 (10) 0.502 (11) 0,503 (12) 0.s00 (13) 0.500 (14)
0.4s6 (15) 0.4ee (16) 0.49s (17) 0.s06 (f8) 0.4e8 (19)
0.498 (20) 0.506 (21)0.s02 (22) 0.494 (23) 0.498 (24)
0.501 (25) 0.499 (26) 0.s00 (27) 0.499 (28) 0.503 (æ)
Averags = 0.500 R€ng€ = 0.012

rulc l50
0.400 ( 0) 0.400 ( 1) 0.667 ( 2) 0.534 (3) 0.533 (4)
0.533 (5) 0.533 (6) 0.s33 ( 4 0.667 (S) 0.s33 (9)
0.533 (10) 0.734 (11)0.5æ (12) 0.467 (13) 0.s33 (14)
0.s33 (1s) 0.400 (16) 0.467 (17) 0.400 (18) 0.733 (19)
0,533 (20) 0.333 (21) 0.666 (22) 0.533 (23) 0.533 (24)
0.466 (2s) 0.400 (æl 0.467 127) 0.667 (28) 0.533 (æ)
Average = 0.527 Rarìge = 0.400

tule 151
0.999 ( 0) 0.999 ( 1) 0.999 ( 2) 0.999 ( 3) 0.999 (4)
o.ees (5) o.eee (6) 0.9ee ( 7) 0.æe (8) 0.e9e (9)
0.999 (r0) 0.998 (11)0.998 (12) 0.99S (r3) 0.999 {14)
0.998 (r5) 0.998 (16) 0.999 (17) 0.999 (r8) 0.999 (19)
0.999 (20) 0.999 (21)0.999 (22) 0.999 (23) 0.999 (24)
0.ee9 (25) 0.99e (æ) 0.ee8 (27) 0.æ9 (28) o.eee (æ)
AvElage = 0,999 Rarìge = 0.00'|

rulc 152
0.167 (0) 0.167 ( 1) 0.157 ( 2) 0.167 (3) 0.f67 (4)
0.167 (5) 0.167 ( 6) 0.167 ( 4 0.167 (8) 0.167 (9)
0.r67 (r0) 0.167 (11) 0.167 (12) 0.167 (13) 0,167 ('14)
0.r67 (1s) 0. r67 (16) 0.f67 (r7) 0.167 (18) 0.167 (19)
0.167 (20) 0.167 (21) 0.167 (22) 0.167 (23) 0.167 (2¡l)
0.r67 (25) 0,167 (26) 0.167 (27) 0.167 (28) 0. t67 (æ)
Average = 0.167 Rsngê = 0.000

rule l5S
0.s33 ( 0) 0.s33 ( 1) 0.4m ( 2) 0.467 ( 3) 0.400 ( 4)
0.467 ( 5) 0.667 (6) 0.534 ( 4 0.467 ( 8) 0.467 ( e)
0.600 (10) 0.467 (11)0.600 (12) 0.400 (13) 0.533 (14)
0.467 (rs) 0.466 (16) 0.467 (17) 0.s34 (18) 0.400 (19)
0.400 (20) 0.600 (2r) 0.5sr (22) 0.467 (23].0.467 (241
0.rlo0 (25) 0.533 (26) 0.600 (27) 0.533 (28) 0.¡167 (æ)
AvsÌåge = 0.496 Rs¡gs = 0.267

rulr l5¡l
0,567 ( 0) 0.s33 ( 1) 0.567 ( 2) 0,533 ( 3) 0.567 (4)
0.533 (5) 0.s67 ( 6) 0.533 ( 4 0.567 (8) 0.533 (9)
0.s67 (f0) 0.s33 (1r)0.s67 (12) 0.533 (13) 0.567 (14)
0.533 (f5) 0.567 (16) 0,53s (r7) 0.567 (18) 0.s3s (19)
0.567 (20) 0,533 (21) 0.567 (22) 0.534 (23) O.æ7 (24',,

0.533 (25) 0.s67 (26) 0.533 (27) 0.567 (28) 0,533 (æ)
Averåge = 0.550 Rsngs = 0.0314

rule 155
0,657 ( 0) 0.633 ( 1) 0.666 ( 2) 0.633 (3) 0.666 (4)
0,633 ( 5) 0.667 (6) 0.633 ( 7) 0.657 (8) 0.633 (9)
0.667 (10) 0.ê33 (11)0.667 (12) 0.633 (f3) 0.667 (14)
0.633 (1s) 0.667 (f6) 0.633 (17) 0.667 (18) 0,633 (19)
0.667 (20) 0.633 (21) 0.667 (22) 0.633 (23) 0.667 (24)
0.633 (25) 0.667 (æ) 0.6sr (27) 0.657 (28) 0.633 (æ)
Averags = 0.650 Fange = 0.034

Bit Weight Tables

rulo 156
0.000 (0) f.000 ( 'r) 0.500 ( 2) 0.000 ( 3) 1.000 ( 1)
0.500 ( 5) 0.000 (6) 1.000 ( 7) 0.0m ( 8) 1.000 ( s)
0.000 (r0) 1.000 (11)0.000 (r2) 1.000 (13) 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (r7) 0.500 (18) 0.000 (fe)
1.000 (æ) 0,000 (2r) 1.000 (22) 0.000 (23) 1.000 (24)
0,000 (25) f.000 (26) 0.500 (27) 0.000 (28) 1.000 (2e)
Awråge = 0.500 Fange = 1.¡¡6

rule 157
0.000 (0) 1.000 ( r) 0.500 ( 2) 0.000 ( 3) 1.000 ( 4)
0.000 ( 5) 1.000 (6) 0.000 ( 7) r.000 ( 8) 0.s00 ( 9)
0.000 (10) 1.000 (f1) 0.000 (12) 1.000 (13) 0.500 (14)
0.000 (15) 1.0o0 (16) 0.000 (17) 1.000 (18) 0.s00 (19)
0.000 (æ) 1.000 (21)0.000 (22) 1.000 (23) 0.æ0 (21)
r.000 (2s) 0.000 (26) 1.000 (27) 0.000 (2s) 1.000 (29)
Av€rag€ = 0.500 Range = 1.æ0

rule 158
0.700 (0) 0.700 ( 1) 0.700 (2) 0.700 (3) 0.700 ( 4)
0.700 ( 5) 0,700 ( 6) 0.700 ( 7) 0.700 ( 8) 0.700 ( 9)
0.700 (10) 0.700 (l r) 0,700 (12) 0.700 (13) 0.700 (14)
0.700 (15) 0.700 (r6) 0.700 (17) 0.700 (18) 0.700 (19)
0.700 (20) 0.700 (2 t) 0.700 (22) 0.700 (23) 0.700 (24)
0.700 (25) 0.700 (26) 0.700 (27) 0.700 (28) 0.700 (29)
Averag€ = 0.700 Rang€ = 0.00'|

rulc 159
0.s00 ( 0) 0.800 ( 1) 0.800 ( 2) 0.800 ( 3) 0.800 ( 4)
0,800 ( 5) 0.800 ( 6) 0.s00 ( 7) 0.800 ( 8) 0.s00 ( e)
0.800 (10) 0.800 (11) 0,800 (12) 0.800 (13) 0.800 (11)
0.800 (1s) o.soo (16) 0.800 (t7) 0.800 (1s) 0.800 (19)
0.800 (æ) 0.800 (21) 0.800 (22) 0.800 (23) 0.800 (24)
0.s00 (25) 0.800 (26) 0.s00 (27) 0,800 (28) 0.800 (29)
Awrage = 0.800 Rmge = 0.000

rule 160
0.000 ( 0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 (4)
0.000 ( s) 0.000 ( 6) 0.000 ( 7) 0.000 ( 8) 0.000 ( e)
0.000 (10) 0.000 (r 1) 0.000 (12) 0.000 (13) 0,000 (14)
0.000 (1s) 0.000 (16) 0.000 ('t7) 0.000 (1€) 0.000 (t9)
0.000 (æ) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Awrage = 0.000 Raîg€ = 0.000

rule 16t
0.ee8 ( 0) 0.ee7 ( 1) 0.998 ( 2) 0.ee8 ( 3) 0,998 ( 4)
0.998 ( s) 0,ee8 ( 6) 0.998 ( 7) 0.ee8 ( 8) 0.ee8 ( e)
0.998 (10) 0.998 (r 1) 0.998 (t2) 0.997 {13) 0.998 (14)
0.998 (15) 0.997 (16) 0.998 (17) 0.998 (18) 0.æ8 (19)
0,998 (æ) 0.998 (2r) 0.998 (22) 0.99s (23) 0,99S (24)
0.998 (2s) 0,998 (26) 0.998 (27) 0.997 (28) 0.9e8 (29)
Average = 0.998 Range = 0.001

rul€ 162
0.367 (0) 0.367 ('r) 0.367 ( 2) 0.367 (3) 0,367 (4)
0.367 (s) 0,357 ( 6) 0,367 (7) 0.367 (8) 0.367 (9)
0.367 (10) 0.367 (1r) 0,367 (12) 0.367 (13) 0.367 (f4)
0.367 (15) 0.367 (16) 0.367 (17) 0.3ô7 (18) 0.367 (19)
0.367 (æ) 0.367 (21) 0.367 (22) 0.367 (23) 0.367 (24)
0.367 (2s) 0.367 (26) 0.367 (27) 0,367 (28) 0.367 (29)
Averag8 = 0.367 Rangâ = 0,000
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rul! 183
0.367 ( 0) 0.367 ( r) 0.357 ( 2) 0.357 ( 3) 0.367 (4)
0.367 (s) 0.367 ( 5) 0.367 ( 4 0,387 (8) 0.367 (9)
0.367 (f0) 0.367 (11) 0.367 (12) 0.367 (f3) 0.367 (14)
0.367 (15) 0.367 (t6) 0.357 (17) 0.367 (18) 0.367 (19)
0.367 (20) 0.367 (21) 0.367 (22) 0.367 (23) 0.367 (24)
0.367 (2s) 0.367 (æ) 0.367 (27) 0.367 (28) 0.3{ì7 (æ)
Average = 0.367 Ra¡gs = 0.000

rulo 164
0,000 ( 0) 0.000 ( 1) 1,000 ( 2) 0.æ0 ( 3) 0.000 ( 4)
0.000 (5) 0.000 ( 6) 0.000 ( Ð 0.000 ( 8) 0.000 ( 9)
0.000 (10) 0.000 (11) 0.000 (12) 0.000 (13) 0.000 (t4)
0.000 (15) 0,000 (16) 0.000 (17) 0.000 (ts) 0.000 (19)
1.000 (20) 0.000 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 0.000 (26) 0.000 (27) 0,000 (2s) 0.m0 (æ)
Avorage = 0.067 Range = 1.0æ

rulê 165

0.400 (0) 0.s67 ( 1) 0.s67 (2) 0.667 ( 3) 0.500 ( 4)
0.s00 (s) 0.467 ( 6) 0.433 ( 7) 0.500 ( 8) 0.400 ( 9)
0.s00 (10) 0.567 (11) 0.467 (12) 0.500 (13) 0.367 (14)
0.400 (1s) 0.s67 ('16) 0.s67 (17) 0.666 (18) 0.500 (19)
0.500 (20) 0,4ô7 (21) 0.4æ (22) 0.s00 (23) 0.400 (24)
0.500 (25) 0.s67 (26) 0.467 (27) 0.s00 (2s) 0.367 (æ)
Average = 0.493 Range = 0.300

rule 166
0.550 ( 0) 0.s34 ( 1) 0.550 ( 2) 0.533 (3) 0.s50 (4)
0.s33 (5) 0.550 ( 6) 0,53K1 (4 o.sso (8) 0.533 (9)
0.ss0 (r0) 0.s33 (11)0.ss0 (r2) 0.534 (13) 0.ss0 (t4)
0.534 (1s) 0.550 (16) 0.53s (r7) 0.550 (fS) 0.533 (19)
0.s50 (20) 0.533 (21) 0.s50 (22) 0.s3s (23) 0.ss0 (24)
0.s33 (2s) 0.s50 (26) 0.534 (27) 0.ss0 (28) 0,533 (æ)
Avêrage = 0.542 Rango = 0.017

¡ule 167
0.600 ( 0) 0.600 ( 1) 0.6m ( 2) 0.600 (3) 0.600 ( 4)
0.600 (5) 0.600 ( 6) 0.600 (a 0.600 (8) 0.600 (9)
0.600 (f0) 0.600 (11) 0.600 (12) 0.600 (13) 0.600 {14)
0.600 (15) 0,600 (16) 0.6æ (17) 0.600 (18) 0.600 (19)
0.600 (20) 0.600 (21) 0.600 (22) 0.600 (23) 0.600 (24)
0.600 (2s) 0.600 (26) 0.6m (27) 0.600 (28) 0.600 (æ)
Average = 0.600 Range = 0.000

ruls f68
0.000 ( 0) 0.000 ( 1) 0.000 ( 2) 0.000 ( 3) 0.000 ( 4)
0.000 ( 5) 0.000 ( 6) 0.000 ( 4 0.m0 (8) 0.000 ( e)
0.000 (r0) 0.000 (1r) 0,000 (t2) 0.000 (t3) 0.000 (14)
0.000 (1s) 0.000 (16) 0.000 (17) 0.000 (18) 0,000 (19)
0.000 (20) 0.000 (21) 0.000 (22) 0,000 (23) 0.000 (24)
0.000 (2s) 0.m0 (26) 0.000 (27) 0.000 (28) 0.000 (æ)
Average = 0.000 RE¡g€ = 0.000

rule 189
0.s03 ( 0) 0.501 ( 1) 0.509 ( 2) 0.502 ( 3) 0.s05 ( 4)
0,s02 ( 5) 0.4ee ( 6) 0.s02 (4 0.503 (8) 0.4s5 (e)
0.496 (r0) 0.49s (11)0,497 (12) 0.494 (13) 0.493 (14)
0.49r (15) 0.493 (16) 0.490 (17) 0.497 (18) 0.494 (19)
0.497 (20) 0.491 (21\ 0.492 (2210,495 (23) 0.49s (24)
0.491 (25) 0.492 (26) 0.496 (27) 0.495 (28) 0.497 (æ)
Average = 0.497 Fìângo = 0.0f8

Bit Weight Tabtes

rul. 170
0.s67 ( 0) 0.567 ( 1) 0.567 ( 2) 0.s67 ( 3) 0.567 { 4)
0.567 ( 5) 0.s67 ( 6) 0.567 ( 7) 0.567 ( 8) 0.567 ( 9)
0.567 (10) 0.567 (1f) 0.557 (r2) 0.567 (13) 0.s67 (14)
0.s67 (rs) 0.567 (16) 0.s67 (r7) 0.567 (18) 0.567 (1e)
0.s67 (æ) 0,567 (21) 0.567 (22) 0.s67 (23) 0,557 (24)
0.s67 (2s) 0.567 (26) 0.567 (27) 0.567 (28) 0.567 (29)
At¿erago = 0.567 Rsnge = 0.000

rul€ 171
0.600 ( 0) 0.600 ( r) 0.500 (2) 0.600 ( 3) 0.600 ( 4)
0.600 ( s) 0.600 ( 6) 0.500 ( 7) 0.600 ( 8) 0.600 ( 9)
0.600 (r0) 0.600 (11) 0.600 (12) 0.600 (t3) 0.600 (14)
0.600 (1s) 0.600 (16) 0,600 (17) 0.600 (18) 0.600 (f9)
0.600 (æ) 0.600 (2r)0.600 (22) 0,600 (23) 0.600 (24)
0.600 (25) 0.600 (26) 0.600 (27) 0.500 (28) 0.600 (29)
AvÞrago = 0,600 Rsng€ = 0,000

.ula 172
0,000 (0) r.0oo ( 1) 0.000 ( 2) 0.000 (3) 0,000 (1)
0.000 (5) 1.000 ( 6) 0.001 ( 7) 0.001 ( s) 0.001 (e)
0.000 (10) 0.000 (11) 0.000 (t2) 0.000 (13) 0.000 (f4)
0.000 (15) 0.000 (16) 0.000 (r7) 1.000 (ts) 0.000 (19)
0,000 (æ) 0.000 (21)0.000 (22) 0.000 (23) 0.000 (24)
r.0oo (2s) 0.000 (26) 0.000 (27) 0.000 (2s) 0,000 (29)
Awrage = 0.13:l Range - 1.000

rule 173
0.733 ( 0) 0.600 ( 1) 0.733 ( 2) 0.600 (3) 0.733 (4)
0.600 ( 5) 0.73rì ( 6) 0.600 ( 7) 0.733 ( 8) 0.600 (e)
0.733 ('10) 0.600 (11)0.733 ('12) 0.600 (13) 0.733 (1¡l)
0.600 (rs) 0.733 (16) 0.600 (r7) 0.733 (18) 0.600 (19)
0.7s3 (æ) 0.600 (21)0.733 (22) 0.600 (23) 0.734 (24)
0.600 (2s) 0.733 (26) 0.600 (27) 0.733 (28) 0.600 (29)
A'/srage = 0.657 Fangs = 0.134

rul6 174
0.667 ( 0) 0.667 ( 1) 0.667 ( 2) 0.667 ( 3) 0.667 ( 4)
0.667 ( s) 0.667 ( 5) 0.667 (7) 0.657 ( 8) 0.667 ( e)
0.667 (t0) 0,667 (11) 0.667 (12) 0.667 (13) 0,667 (14)
0.666 (15) 0,667 (16) 0.667 (17) 0.666 (18) 0.667 (19)
0.667 (æ) 0.667 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 (25) 0.667 (26) 0.667 (27) 0.667 (28) 0.667 (29)
Av€rage = 0.667 Rarìge = 0.000

rulr 175
0.767 lol 0.767 (11 0.767 l2l 0.767 ( 3) 0.767 (4)
0.767 ( 5) 0.767 ( 6) 0.767 ( 7) 0.767 ( 8) 0.767 ( e)
0.767 (r0) 0.767 (f r) 0.767 (12) 0,767 (13) 0.767 (.t4)
0.767 (fs) 0,767 (16) 0.767 (17) 0.766 (18) 0.766 (f9)
0.766 (æ) 0.766 (21) 0.766 (22) 0.766 (2310.767 (241
0.767 (25) 0.767 (26) 0.767 l2n 0.767 (28',,0.767 (291
Awrago = 0.767 Rsngo = 0.000

rul. 176
0.333 ( 0) 0.333 ( 1) 0.333 (2) 0.3æ ( 3) 0.333 ( 4)
0.3æ ( 5) 0.333 ( 6) 0.333 ( 7) 0.333 ( 8) 0.333 (e)
0.333 (10) 0.333 (11) 0.333 (12) 0.333 (13) 0.æ3 (14)
0.333 (15) 0.333 (16) 0,333 (17) 0.333 (18) 0.333 (19)
0.333 (æ) 0.333 (21)0.333 (22) 0.3æ (23) 0.333 (24)
0.3sr (25) 0.333 (26) 0.333 (27) 0,33ril (28) 0,333 (29)
Average = 0.333 Range = 0.000
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Appendix C

tuls 1Tl
0.367 (0) 0.367 ( 1) 0.367 ( 2) 0.367 (3) 0.367 ( 4)
0.367 ( s) 0.367 ( 6) 0.367 ( Ð 0.367 (8) 0.367 (e)
0.367 (10) 0.367 ('tf) 0.367 (12) 0.367 (f3) 0.367 (14)
0.367 (1s) 0,357 (16) 0.367 (17) 0.367 (18) 0.367 (19)
0.367 (20) 0.367 (21) 0.367 (22) 0.367 (23) 0.367 (24)
0.367 (25) 0.367 (26) 0.367 (27) 0,367 (28) 0.367 (æ)
Average = 0.367 Rarìge = 0.0æ

rule 178
0.500 (0) 0.s00 ( l) 0.500 ( 2) 0.500 ( 3) 0.500 ( 4)
0.500 ( 5) 0.so0 ( 6) 0.s00 ( 7) 0.500 (8) 0.s00 ( 9)
0.s00 (10) 0.500 (11)0,500 (12) 0.500 (13) 0.500 (14)
0.500 (1s) 0.500 (16) 0.500 (r7) 0.s00 (18) 0.s00 (f9)
0.500 (20) 0.500 (2r) 0.500 (22) 0.500 (23) 0.s00 (24)
0.s00 (25) 0.s00 (25) 0.500 (27) 0.500 (28) 0.500 (æ)
Averags = 0.5\00 Rango = 0.000

rule lT9
0.s00 ( 0) 0,500 ( 1) 0.500 ( 2) 0.s00 (3) 0.500 (4)
0.500 ( 5) 0.500 ( 6) 0.s00 ( 4 0.500 (8) 0.500 (9)
0.s00 (10) 0,s00 (r1) 0.500 ('r2) 0.500 (13) 0,500 (14)
0,500 (1s) 0.500 (16) 0.500 ('r7) 0.s00 (18) 0.s0o (19)
0.500 (20) 0.s00 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.500 (25) 0.s00 (26) 0.500 (27) 0.500 (28) 0,s00 (æ)
Averags = 0.500 Ra¡ge = 0.000

rule 180
0.s67 ( 0) 0.s67 ( 1) 0.s67 ( 2) 0.567 ( 3) 0.567 ( 4)
0.567 ( 5) 0.s67 ( 6) 0.s67 ( 7) 0.s67 ( s) 0.s67 ( e)
0.567 (10) 0.567 (11)0.567 (12) 0.s67 (13) 0.567 (14)
0.567 (1s) 0.567 (16) 0.567 (17) 0.567 (18) 0.567 (19)
0.567 (20) 0.567 (21)0.567 (22) 0,557 (23) 0.566 (24)
0,566 (25) 0.s67 (26) 0.567 (27) 0.567 (2S) 0.567 (æ)
Avsragê = 0,567 Range = 0.001

rule lSl
0.617 (0) 0.633 ( 1) 0.617 ( 2) 0.633 (3) 0.617 ( 4)
0.633 (5) 0.617 (6) 0.633 ( 4 0.617 (8) 0.633 ( 9)
0.617 (10) 0.ô33 (11) 0.617 (12) 0.634 (f3) 0.617 ('t4)
0.633 (15) 0.617 (r6) 0.63n' (r7) 0.617 (18) 0.633 (r9)
0.617 (20) 0.634 (21) 0.617 (22) 0.633 (23) 0.616 (24)
0.633 (2s) 0.617 (26) 0.633 (271 0.617 (28) 0.633 (æ)
Average = 0,625 Rsnge = 0.017

rule 182
o.sse (0) o.eee ( 1) 0.ee9 (2) 0.999 (3) 0.99e (4)
o.eee ( s) 0.e99 ( 6) 0.999 ( 7) 0.æe ( 8) o,ese ( e)
0,999 (10) 0.999 (11)0.99S (12) 0.999 (13) o.ese (14)
0,æ9 (15) 0.999 (16) 0.999 (17) 0.999 (18) 0.9S9 (19)
o.eee (20) 0,e9e (2r ) 0,9e9 (22) 0.999 (23) 0.999 (24)
o.eee (25) o.eee (26) 0.99e (27) 0.999 (28) r.000 (æ)
Average = 0.999 R€ng€ = 0.001

rule lSS
o,eee ( 0) 0.ee9 ( 1) 1.000 ( 2) 1.000 ( 3) o.ess ( 4)
r.000 ( s) 1.000 (6) 1.000 ( 4 1.000 (8) 1.000 (9)
1.000 (r0) 0.e99 (11) 0.999 (12) 1.000 (13) 0.999 (14)
1.æ0 (1s) 0.999 (16) 0.999 (r7) 0.999 (18) 0.999 (19)
r,000 (20) 0.999 (21) 0.999 (22) 0.999 (23) 1.000 (24)

1.000 (25) 0,999 (26) 0.999 (27) 0.999 (28) 0.999 (æ)
Average = l.æ0 Fìange = 0.001

Bit Weight Tables

ruls 184
0.600 ( 0) 0.600 ( 1) 0.600 (2) 0.600 (3) 0,600 ( 4)
0.600 ( 5) 0.600 (6) 0.600 ( 7) 0.600 ( 8) 0.600 (e)
0.600 (10) 0.600 (f1) 0.600 (12) 0,600 (13) 0.600 (14)
0,600 (15) 0.600 (16) 0.600 (17) 0.600 (1s) 0.600 (19)
0.600 (æ) 0.600 (21) 0.600 (22) 0.600 (?3) 0,600 (24)
0.600 (25) 0,600 (26) 0.600 (27) 0,600 (28) 0.600 (29)
A\€rago = 0.600 R€ng€ = 0.001

rulo 185
0.600 ( 0) 0.600 ( 1) 0.600 ( 2) 0.600 ( 3) 0.600 ( 4)
0.600 ( 5) 0.600 (6) 0.600 ( 7) 0.600 ( 8) 0.600 (9)
0.600 (10) 0.600 (1r) 0.600 (12) 0.600 (t3) 0.600 (r4)
0.600 (1s) 0.600 (16) 0.600 (17) 0.600 (r8) 0.600 (t9)
0.500 (æ) 0.600 (21)0.600 (22) 0.600 (23) 0.600 (24)
0,600 (25) 0.600 (26) 0.600 (27) 0.600 (28) 0.600 (29)
Av€rags = 0.600 Range = O.OOO

rule 186
0.633 ( 0) 0.533 ( 1) 0.633 ( 2) 0.63i¡ ( 3) 0.633 ( 4)
0.633 ( 5) 0.633 (6) 0.633 ( 7) 0.633 ( S) 0.633 ( 9)
0.633 (f0) 0,633 (r 1) 0.633 (12) 0.5æ (13) 0.633 (f4)
0.6s3 (15) 0.633 (t6) 0.633 (17) 0.633 (18) 0.633 (19)
0.6æ (æ) 0.633 (2f) 0.633 (22) 0.633 (23) 0.633 (24)
0.633 (25) 0.633 (26) 0.633 (27) 0.633 (28) 0.æ3 (2e)
Awrage = 0,633 Range = 0.m0

rul€ 187
0.7m ( 0) 0.700 ( 1) 0.700 ( 2) 0.700 ( 3) 0.700 (.t)
0.700 ( 5) 0.700 (6) 0.700 ( 7) 0.7@ ( 8) 0.700 ( 9)
0.700 (10) 0.700 (11) 0.700 (12) 0.700 (13) 0.700 (14)
0,700 (15) 0.700 (f6) 0.700 (17) 0.700 (18) 0.700 (r9)
0.700 (æ) 0.700 (21) 0.700 (22) 0.700 (23) 0.700 (24)
0,700 (2s) 0.700 (26) 0.700 (27) 0.700 (28) 0.700 (29)
At/srage = 0.700 Range = 0.000

rule 188
0.800 ( 0) 0.800 ( f) 0.800 (2) 0.8m ( 3) 0.800 (4)
0.800 ( 5) 0.800 ( 6) 0.800 ( 7) 0.8æ ( 8) 0.800 (9)
0.800 (10) 0,800 (r 1) 0.800 (12) 0.800 (13) 0,800 (14)
0.800 (15) 0.800 (f6) 0.800 (17) 0.s00 (18) 0.800 (19)
0.800 (æ) 0.800 (2f) 0.800 (22) 0.s00 (23) 0.800 (24)
0.8m (25) 0.800 (26) 0.800 (27) 0.800 (28) 0.800 (29)
Awrags = 0.800 R€nge = 0.000

rule 189
0.83rí] (0) 0,s33 ( 1) 0.833 ( 2) 0.833 (3) 0.S33 ( 4)
0.833 ( 5) 0.833 (6) 0.833 ( 7) 0.s3s ( 8) 0.833 ( 9)
0,833 {10) 0.833 (11) 0.833 (12) 0.833 (13) 0.833 (14)
0.833 (1s) 0.æ3 (16) 0.833 (17) 0.833 (t8) 0.æ3 (19)
0.8s) (æ) 0.s3s (2r) 0.833 {22) 0.8sÌ (23) 0.S33 (24)
0.838 (2s) 0.833 (26) 0.833 (27) 0.8s) (28) 0.S33 (29)
Awrage = 0.æ3 Range = 0.000

rula 190
0.800 ( 0) 0.800 ( 1) 0.800 (2) 0.800 (3) 0.s00 (4)
0.800 ( 5) 0.800 (6) 0.800 ( 7) 0.800 (s) 0.800 ( e)
0.800 (r0) 0.800 (11)0.800 (12) 0,800 (13) 0.800 (14)
0.800 (15) 0.800 (16) 0.800 (17) 0.8@ (18) 0.800 (19)
0.800 (æ) 0.800 (21) 0.800 (22) 0.8æ (23) 0.æ0 (24)
0.800 (25) 0.800 (26) 0.800 (27) 0.800 (2s) 0,800 (29)
Awrage = 0.800 Fange = 0.000
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Appendix C

ruls 191
0.800 (0) 0.800 ( r) 0.800 (2) 0.800 (3) 0,800 ( 4)
0.800 (s) 0.800 ( 6) 0.800 (4 0.800 ( 8) 0,800 ( 9)
0.s00 (10) 0.800 (11)0.e00 (12) 0,æ0 (13) 0.800 (14)
0.800 (1s) 0,800 (16) 0.800 (17) o,soo (18) 0.800 (19)
0.800 (20) 0,800 (21) 0.800 (22) 0,800 (23) 0.800 (24)
0,800 (25) 0.800 (26) 0.800 (27) 0.800 (28) 0.800 (æ)
Averago = 0.800 Rango = 0.000

tulo 192
0.000 (0) 0.000 ( 1) 0.000 (2) 0,000 (3) 0,000 ( 4)
0,000 ( s) 0,000 (6) 0.000 ( 7) 0,000 (8) 0.000 ( 9)
0.000 (10) 0.000 {11) 0.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19)
0.000 (20) 0.000 (21)0.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 0.000 (26) 0,000 (27) 0.000 (28) 0.000 (æ)
Averågo = 0.000 Range = 0.0m

rule 193
0.346 ( 0) 0,461 ( 1) 0.347 ( 2) 0.161 (3) 0.346 ( 1)
0.461 ( 5) 0.347 (6) 0.46r ( Ð 0.347 (s) 0.462 ( 9)
0.347 (10) 0.461 (11) 0.346 (12) 0.460 (13) 0.347 (14)
0,460 (r5) 0.347 (f6) 0.4s9 (17) 0.348 (18) 0.459 (19)
0.348 (20) 0.460 (21) 0.348 (22) 0.460 (23) 0.347 (24)
0.460 (25) 0.346 (26) 0.460 (27) 0.346 (28) 0.461 (æ)
Average = 0.¡104 Rang€ = 0.1 ,16

rule 194
0.167 (0) 0.167 ( f) 0,167 ( 2) 0.'167 ( 3) 0.167 (4)
0.167(5) 0.167(6) 0,167(4 0.167(8) 0.167(e)
0.167 (10) 0.167 (11) 0.r67 (r2) 0.167 (13) 0.f67 ('r4)
0.167 (15) 0.'167 (16) ó.f67 (17) 0.167 (18) 0.167 (19)
0.167 (20) 0.'167 (21) 0,167 (22) 0.167 (23) 0.r67 (24)
0.167 (25) 0.157 (26) 0.167 (27) 0.167 (28) 0.167 (æ)
Average = 0,f67 R8ngs.= 0.000

rule 195
0.467 (0) 0.467 ( f) 0.s34 ( 2) 0.400 ( 3) 0.467 ( 4)
0.467 (5) 0.533 ( 6) 0.600 ( 4 0.400 ( 8) 0.467 ( 9)
0.533 (r0) 0.533 (11) 0.600 (12) 0.s33 (13) 0.467 (14)
0.400 (15) 0.467 (16) 0.400 (17) 0.467 (18) 0.s33 (19)
0.600 (20) 0.400 (21) 0.467 (22) 0.600 (23) 0.400 (24)
0.400 (25) 0.467 (26) 0.667 (27) 0.333 (28) 0.400 (æ)
Averåge = 0.,182 RangE = 0.333

rulâ 196
0.000 (0) 1.000 ( 1) 0.000 ( 2) 1.000 (3) 0.000 ( 4)
0.000 ( s) 1.000 (6) 0.000 ( Ð 0.000 ( 8) 0.000 ( s)
r.000 (10) 0.000 (1r) 0.000 (12) 0.000 (13) 1.000 (r4)
0.000 (15) 0.000 (f6) r.000 (17) 0.000 (18) 0.000 (19)
0.æ0 (20) 0.000 (2r) 1.000 (22) 0.000 (23) 0.000 (24)
0.000 (2s) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (æ)
Average = 0.300 Rang€ = 1.000

rulo 197
0.000 (0) 0.000 ( 1) 1.000 ( 2) 0.æ0 ( 3) 1.000 (4)
0.000 (5) 0.000 ( 6) 'r,000 ( n 0.000 ( 8) r.000 (9)
0.000 (10) 1.000 (11)0.000 (12) 1.000 (13) 0.000 (r4)
1.000 (15) 0.000 (16) 1.000 (17) 0.000 (r8) 1.000 (19)
0.000 (20) 1.000 (21) 0.000 (22) 1,000 (23) 0.000 (24)
r,000 (2s) 0,000 (26) 1.000 (27) 0.000 (28) 1.æ0 (æ)
Averågo = 0.467 Range = 1.000

Bit Weight Tables

rutc 198
1.000 ( 0) 0.000 ( f) 0,s0o ( 2) 1.000 (3) 0.000 ( 4)
0.500 ( s) 1.000 ( 6) 0.000 ( 7) 0.s00 ( 8) r.0oo (9)
0.000 (10) 1.000 (11) 0.000 (12) 1,000 (13) 0.000 (14)
f.000 (rs) 0.000 (16) 1.000 (17) 0,000 (18) 1.000 (f9)
0.0m (æ) 0,500 (21) 1.000 (22) 0.000 (23) 0.s00 (24)
1.000 (25) 0.000 (26) 0.500 (27) 1.000 (2s) 0.000 (29)
A\/erags = 0.500 Rang€ = 1.000

rule 199
1.000 ( 0) 0.000 ( f) 1.000 ( 2) 0.000 (3) 0.s00 ( 4)
1.000 ( s) 0.000 ( 6) 0,500 (7) 1.000 ( 8) 0.000 (9)
1.000 (10) 0.000 (1r) 1.000 (r2) 0.000 (13) 1.000 (14)
0.000 (15) 1.000 (r6) 0.000 (17) 1.000 (18) 0.000 (19)
0.5m (æ) 1.m0 (2r) 0.000 (22) r.000 (23) 0.000 (24)
r.000 (2s) 0.000 (26) 1.000 (27) 0,000 (28) 0.s00 (29)
Awrage = 0.5¡0 Range = 1.000

rul! 200
1.000 ( 0) 1.000 ( r) 0.000 ( 2) 0.000 (3) 0.000 ( 4)
1.000 ( 5) 1.000 ( 6) 0.000 ( 7) 0.000 ( s) o.mo ( s)
0.000 (10) 0.000 (r r) 1.00o (r2) f.000 (13) r.0oo (14)
0.000 (r5) r.000 (r6) 1.00o (r7) 0.000 (18) 0.000 (r9)
r.000 (æ) 1.000 (2r) 1.00o (22) 0.000 (23) 0.000 (24)
1.000 (25) r.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
Ar,/Erago = 0.467 Rsnge = 1.000

rule 20l
0.000 ( 0) 1.000 ( r) 1.000 ( 2) 0.000 (3) 1.000 ( 4)
1.000 ( 5) 1.000 ( 6) 1.000 ( 7) 1.000 ( 8) 1.000 ( 9)
0.000 (10) 1.000 (11) 1.000 (12) 1.000 (13) 0.000 (14)
0.s00 (r5) 0.000 (16) r.000 (17) r.000 (1s) 1.000 (19)
1.000 (æ) 1.000 (21)0.000 (22) 0.000 (23) r.000 (24)
1.000 (2s) 0.000 (26) 0.s00 (27) 0.000 (28) o.soo (29)
A\,/erage = 0.650 R€nge = 1.000

Ju|p m2
1.000 ( 0) 0.000 ( r) 1.000 ( 2) 1.000 ( 3) r.000 ( 4)
1.000 ( 5) 0.000 (6) 1.000 ( 7) f.000 (8) 0.000 ( 9)
r.000 (r0) 1.000 (fl) r.000 (12) 0.000 (f3) 1.000 (14)
r.000 (1s) 1.000 (16) 0.000 (17) 0,999 (18) 1.000 (1e)
1.000 (æ) 1.000 (21) r.000 (22) r.000 (23) 1.000 (24)
1,000 (25) 1.000 (26) 1.000 (27) 0,000 (28) 1.000 (29)
Awrago = 0.800 Range = LOOo

rule 203
r.000 (0) f.000 ( 1) 0.000 ( 2) r,00o ( 3) 1.000 ( 4)
1.000 (5) 1.000 (6) 0.000 (7) r.000 ( 8) 1.000 ( 9)
0.000 (10) 1.000 (11) 1.000 (12) 1.000 (13) 1.æ0 (14)
0.000 (15) 1.000 (16) 1.0o0 (17) 0.0m (rs) 'r.000 (19)
1.000 (æ) 1.000 (21) r.000 (22) 0.000 (23) 'r.000 (24)
1.000 (25) 1.000 (26) 0.000 (27) 1.000 (28) r,000 (29)
Av€rage = 0.767 Range = 1.000

rule 204
0.000 ( 0) 0.000 ( 1) 0.000 (2) 0.000 (3) f.000 (4)
0.000 ( s) 0.000 ( 6) 1.000 (7) 0.0æ (8) 1.000 (9)
0.000 (r0) 0.000 (11) 0.000 (12) 0.000 (13) 0.000 (14)
r.000 (r5) 0.000 (16) 1.000 (17) 1.000 (1s) 1.000 (19)
1.000 (æ) r.000 (21) 0,000 (22) 0.000 (23) 1.000 (24)
1.000 (25) 0,000 (26) 0.000 (27) 0,000 (28) 1.000 (29)
Av€rage = 0.400 Rangs = 1.æ0
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Appendix C

rulo 205
0.000 (0) 1.m0 ( 1) 1.000 ( 2) 1.000 (3) 0.m0 (4)
0.000 (s) f.000 ( 6) 0.000 ( 4 1.000 (8) r.000 (e)
0.000 (10) f.000 (11) 0.000 (12) 1.000 (13) 0.000 (14)
1.000 ('15) 1.000 (16) 0.000 (17) 1.000 (18) 1.000 (19)
0.000 (20) 1.000 (2r) 1.000 (22) 0.000 (23) 0,æ0 (24)
1.000 (25) 0.000 (26) 1.000 (27) 1.000 (28) 0.000 (æ)
Average = 0.567 RÊng€ = t,00O

rulo 206
1.000 ( 0) 0.000 ( 1) 1.000 ( 2) 0.000 (3) 1.000 (4)
1.000 ( s) 0.000 ( 6) 1.000 ( 4 1.000 (s) 0,000 (9)
r,000 (10) 1.000 (11) 1,000 (r2) 0.æ0 (13) 1.000 (14)
1.000 (15) 1.000 (16) 0.000 (17) 1.000 (1s) 1.000 (19)
1.000 (20) 1.000 (21) 0.000 (22) r,0o0 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 0.000 (28) 1.000 (æ)
Average = 0.733 Range = 1.000

telø 207
1.000 (0) f.000 ( 1) 0.000 ( 2) r.mo ( 3) 0.000 (4)
1.000 (s) 1.000 ( 6) 0.000 ( Ð 1,000 ( 8) 1.000 ( e)
1.000 (10) 0.m0 (11) 1.000 (12) 1.000 ('r3) 1.000 (14)
0.000 (1s) 1.000 (16) 1.000 (17) 0.000 (1e) r.000 (te)
1.000 (20) 1.000 (2t) r.000 (22) 0.000 (23) 1.000 (24)
1.000 (2s) 1.000 (26) 0.000 (27) 1.000 (28) 0.000 (æ)
Av€rago = 0,700 Range = 1,000

rulê 208
0,3rír3 ( 0) 0.333 ( 1) 0.333 ( 2) 0.æ3 (3) 0.333 ( 4)
0.333 ( s) 0.333 ( 6) 0,333 ( 7) 0.S¡3 ( 8) 0.333 (9)
0,333 (r0) 0.333 (11) 0.3311 (12) 0.333 (13) 0,333 (r4)
0.333 (f5) 0.333 (16) 0.333 (r7) 0.333 (18) 0,333 (19)
0.333 (20) 0.333 (21) 0.333 (22) 0.333 (23) 0.334 (24)
0.334 (25) 0.334 (26) 0.334 (27) 0,333 (28) 0.333 (æ)
Average = 0,333 Range = 0.001

rulo 209
0.600 ( 0) 0.600 ( 'r) 0.600 ( 2) 0.600 (3) 0.600 ( 4)
0.600 ( s) 0.600 ( 6) 0.6m ( 4 0.600 (8) 0.600 ( 9)
0,600 (10) 0.600 (11)0.6@ (12) 0.600 (13) 0.600 (14)
0.600 (1s) 0.600 (16) 0,600 (r7) 0.600 (18) 0.600 (19)
0.600 (20) 0.600 (21)0,600 (22) 0.600 (23) 0.600 (24)
0.600 (25) 0.600 (26) 0.6m (27) 0.600 (28) 0.600 (æ)
Average = 0.600 Ra¡ge = 0.000

rule 210
0.557 (0) 0,534 ( 1) 0.567 ( 2) 0.533 ( 3) 0.567 (4)
0.533 (5) 0.s67 (6) 0.53rir ( 4 0.s67 ( S) 0.533 (9)
0.567 (10) 0.533 (1r) 0.s67 (r2) 0.533 (19) 0.567 (14)
0.533 (15) 0.567 (16) 0.533 {17) 0.567 (18) 0.533 (f9}
0.s67 (20) 0.533 (2r) 0.567 (22) 0.533 (23) 0.s67 (24)
0.533 (25) 0,567 (26) 0.534 (27) 0.s67 (28) 0.533 (æ)
Average = 0.550 Rånge = 0.034

tvla 211
0.733 ( 0) 0.657 ( 1) 0.7æ ( 2) 0.667 (3) 0.733 ( 1)
0.667 ( s) 0.733 ( 6) 0.667 ( 4 0.73€ (8) 0.667 ( s)
0,733 (r0) 0.667 (11) 0.7s] (12) 0.667 (13) 0.734 (14)
0,667 (f5) 0.733 (16) 0,667 (r7) 0.733 (18) 0.666 (19)
0.733 (20) 0.657 (2r) 0.7sì (22) 0.667 (23) 0.733 (24)
0.667 (2s) 0.733 (26) 0.666 (27) 0,733 (28) 0.667 {æ)
Averâgo = 0.700 Range = 0.067

Bit weight Tabtes

tulø 212
0.s00 ( 0) 0.500 ( 1) 0.s00 (2) 0.500 ( 3) 0.s00 (1)
0.s00 ( 5) 0.500 ( 6) 0.500 (7) 0.500 ( 8) 0.s00 ( e)
0.s00 (10) 0,500 (11) 0.s00 (12) 0.s00 (13) 0.500 (14)
0.s00 (15) 0.s00 (r6) 0.500 (17) 0.500 (18) 0.500 (1e)
0,500 (æ) 0.500 (21) 0.s00 (22) 0.500 (æ) 0.500 (24)
0.s00 (25) 0.s00 (26) 0.s00 (27) 0.s00 (28) 0.500 (29)
Arr'erags = o.5oo Ranæ = 0.@o

ruls 213
0.43fì ( 0) 0.s67 ( 1) 0.433 ( 2) 0.567 ( 3) 0.433 ( 4)
0.s67 ( s) 0.433 ( 6) 0,567 (7) 0.433 ( 8) 0.s67 ( 9)
0,433 (10) 0.567 (1r) 0.433 (12) 0.567 (13) 0.433 (14)
0.s67 (1s) 0.433 (15) 0.567 (17) 0.4st (f8) 0.s67 (t9)
0.433 (æ) 0.567 (21) 0.433 (22) 0.567 (23) 0.433 (24)
0.567 (25) 0.433 (26) 0.s67 (27) 0.43¡, (28) 0.567 (29)
Avorag€ = 0.500 R€nge = 0,134

ruls 214
0,767 ( 0) 0.733 (11 0.767 (21 0.733 ( 3) 0.767 ( 4)
0.73f¡ ( s) 0.767 (6) 0.7s3 (71 0.767 | 8) 0.733 ( 9)
0.767 (10) 0.733 (1r) 0.767 (r2) 0.733 (13) 0.767 (14)
0.73rÍì (15) 0.767 (16) 0.73rì (t7) 0.766 (18) 0.733 (t9)
0.766 (æ) 0.733 (21) 0.766 (22) 0.733 (23) 0.766 (24)
0.733 (25) 0.766 (26) 0.733 (27) 0.766 (28) 0.733 (29)
A\,/€rage = 0,750 Range = 0.034

rule 215
0.733 ( 0) 0.667 ( 1) 0.733 ( 2) 0.667 (3) 0,733 ( 4)
0.667 ( 5) 0.733 ( 6) 0.667 ( 7) 0.7æ ( 8) 0,667 ( 9)
0.733 (10) 0.667 (1f) 0.733 (r2) 0.667 (13) 0.734 (t4)
0.667 (r5) 0.733 (16) 0.667 (f7) 0.733 (18) 0.666 (19)
0.733 (20) 0.667 (21) 0.733 (22) 0.667 (23) 0.733 (24)
0.666 (2s) 0.734 (26) 0.666 (27) 0.733 (28) 0.666 (29)
Awrage = 0.700 Range = 0.067

rulc 216
1.000 ( 0) 0.999 ( 1) 0.9s9 ( 2) 0.999 ( S) 0,999 ( 4)
0.999 ( 5) 0.999 ( 6) 0.999 ( 7) 0.999 ( 8) 0.999 ( 9)
0.999 (10) 0.999 (11) 0.999 (12) 0.998 (13) 0.998 (14)
0.998 (15) 0.000 (16) f.000 (17)'1.000 (18) 1.000 (t9)
1.000 (æ) 1.000 (21) f .000 (22) 0.000 (æ) 1.000 (24)
1.000 (25) 1.æ0 (26) r.000 (27) 1.000 (28) 1.m0 (2e)
Averag€ = 0.9,i3 Rânge = 1.000

tulø 217
0.000 ( 0) r.000 ( 1) 1.000 (2) 1.000 ( 3) 1.000 (4)
1.000 ( s) 1.000 ( 6) 0,000 ( 7) 1.000 ( 8) 1.000 (9)
1.00o (r0) r.000 (1r) 1.000 (12) 0.0@ (13) 1.000 (14)
1.000 (ls) 1.000 (16) 0.000 (17) r.000 (18) 't.000 (19)
0.000 (æ) r,000 (2r) 1.000 (22) 1,000 (23) 1.000 (24)
1.000 (25) 0.000 (26) r.000 (27) 1.000 (28) r.000 (29)
Awrage = 0.800 Range = 1.æ0

rule 218
1.000 (0) 1.000 ( 1) 1.000 ( 2) 0.000 (3) 1,000 (4)
1.000 (5) 1.000 (6) 1.000 ( 7) 1.000 (8) 1.000 (9)
1.000 (10) 1.000 (1 1) 1.000 (r2) 1.000 (13) 1.000 (f 4)
0.000 (1s) 1.000 (16) 1.000 (17) 1.000 (t8) 1.000 (19)
1.000 (æ) 1.000 (21) 1,000 (22) r.000 (23)'t.æ0 (24)
1.0æ (2s) 1,000 (26) 1.000 (27) 0,000 (28) 1.000 (29)
Awrage = 0,900 Range = 1.000
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rulo 219
1.000 ( 0) r.000 ( 1) 1.000 ( 2) r.000 ( 3) 1.000 ( 4)
1.000 ( s) r.00o (6) 1.000 ( 7) 1.000 ( 8) 1.000 ( e)
1.000 (10) 1.00o (11) 1.000 (12) r.000 (13) r.000 (14)
0,000 (1s) 1.000 (16) 1.000 (f7) 1.000 (18) f.0oo (f9)
1.000 (20) r.000 (2r) 1.000 (22) 1.000 (23) t.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) t.000 (æ)
Average = 0.967 Range = f.000

tulÈ 2m
1.000 ( 0) 1.000 ( f) 1.0m ( 2) 0.000 ( 3) 1.000 ( 4)
1.000 ( 5) 0.m0 ( 6) 1.000 ( 4 0.000 ( 8) 1.000 ( 9)
1.000 (10) 1.000 (1't) 1.000 (12) 1.000 (13) 0.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 1,000 (18) 1.000 (19)
1.000 (20) f .000 (21) 1.000 (22) 0.000 (23) r.000 (24)
1.000 (25) 1.000 (26) r.000 (27) 0.000 (28) 1.000 (æ)
Averag€ = 0.767 Range = 1.000

tslø 221
1.000 ( 0) 0.m0 ( 1) 1.000 ( 2) 0.000 ( 3) 1.000 ( 4)
1.000 ( s) 0.000 ( 6) 1.000 ( 4 f.000 (8) 0.000 (e)
1.0o0 (10) 1.m0 (1 f ) 1.000 (r 2) 0.000 (13) f.00o (14)
.|.000 (15) 1.000 (16) 1.000 (17) 1.000 (f8) f.000 (19)
0.000 (20) 1.000 (21) 1.000 (22) 0.000 (23) 1.000 (24)
r.000 (25) 1.000 (26) 1.000 (27) 0.000 (28) 1.000 (æ)
Averago = 0.733 Rsnge- = 1.000

tule 222
r.000 (0) 0.000 ( r) 1.0m ( 2) 0.000 ( 3) 1.000 ( 4)
1.000 (5) 0.000 ( 6) 1.000 ( 4 r.000 ( 8) 0.000 ( 9)
r.000 (10) 1.@0 (1f) 1.000 (12) 0.000 (13) 1.000 (14)
1.000 (15) 1.000 (16) r.000 (17) 1.000 (18) r.mo (19)
r.000 (20) 1,000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) r.000 (26) r.000 (27) 0.000 (28) 1,000 (æ)
Average = 0.900 Ra¡ge ='1.000

rul€ 223
r.000 ( 0) 1.000 ( 1) r.000 ( 2) 1.000 (3) r.000 (1)
1.000 ( s) 1.000 (6) 1.000 (7) 0.000 (s) 1.000 (9)
1.00o ('r0) 1.000 (11) 1.000 (12) r.0o0 (13) 1.000 (14)
1.000 (15) 0.000 (16) 1.000 (17) 1.000 (18) 1.000 (1s)
1.000 (20) 1.000 (2r) 1.0æ (22) 1.000 (23) 1.000 (24)
1.000 (2s) r.000 (26) 1.000 (27) 1,000 (28) 1.000 (æ)
Average = 0.933 Range = 1.000

tulè 224
0.000 (0) 0.000 ( 1) 0.000 ( 2) 0.000 (3) 0.000 (4)
0.000 (s) 0.000 (6) 0.000 ( 7) 0.000 (s) 0.000 (9)
0.000 (r0) 0.000 (1r) 0.000 (12) 0.000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (1s)
0.00r (20) 0.001 (21) 0.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 0.000 (æ) 0.000 (27) 0.000 (28) 0.000 (æ)
Average = 0.000 Rarìge = 0.001

tule 225
0.498 (0) 0.497 ( 1) 0.487 (2) 0.491 ( 3) 0.492 ( 4)
0.496 (5) 0.489 ( 6) 0.492 ( 4 0.493 ( S) 0.491 ( 9)
0.494 (10) 0.490 (11) 0.492 (12) 0.497 (13) 0.189 (14)
0.4s6 (15) 0.49s (16) 0.499 (17) 0,496 (r8) 0.497 (19)
0,490 (20) 0,503 (21) 0.494 (22) 0:¡x03 (23) 0.492 (24)
0.s02 (2s) 0.502 (26) 0,502 (27) 0.493 (28) 0.4e8 (æ)
Avsrage = 0.495 Range = 0.016

Bit Weight Tables

tula 22ø
0.600 (0) 0.600 ( 1) 0.600 ( 2) 0.6æ (3) 0,æ0 ( 4)
0.600 ( 5) 0.600 ( 6) 0.600 ( 7) 0.600 ( 8) 0.600 ( 9)
0.600 (10) 0.600 (11) 0.600 (12) 0.600 (13) 0.600 (14)
0.600 (1s) 0.600 (16) 0.600 (17) 0.600 (18) 0.600 (19)
0.600 (æ) 0.600 (21) 0.600 (22) 0.600 (23) 0.600 (24)
0.600 (25) 0.600 (26) 0.600 (27) 0,600 (28) 0.600 (29)
Av€rage = 0.600 Rang€ = 0.000

tulë 227
0.600 ( 0) 0.600 ( 1) 0.600 ( 2) 0.600 (3) 0.600 (4)
0.600 ( 5) 0,600 (6) 0.600 ( 7) 0.6m (8) 0.600 (e)
0.600 (10) 0.600 (11) 0.600 (12) 0.6m (13) 0.600 (14)
0,600 (r5) 0.600 (16) 0.600 (17) 0.600 (18) 0.600 (19)
0.600 (20) 0.600 (21) 0.600 (22) 0.600 (23) 0.500 (24)
0.600 (25) 0.600 (26) 0,600 (27) 0.6æ (28) 0,600 (2e)
Avsragê = 0.600 Rang€ = 0.000

tul6 228
0.000 (0) 0,000 ( 1) 0.000 ( 2) 0.000 ( 3) 1.m0 (4)
0.0m (5) 0.000 ( 6) 0.000 ( 7) 0.000 ( 8) 1.000 (e)
0,000 (10) 0.000 (r t) 0.000 (12) 0.000 (13) 0.000 (f4)
0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.00t (19)
0.00r (æ) r.000 (21) 0,000 (22) 0.000 (23) 0.000 (24)
1.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) t,0oo (29)
A\€¡âge = 0.167 Rsnge = 1.000

.ule 229
0.667 ( 0) 0.600 ( f) 0.667 ( 2) 0.600 ( 3) 0.666 (4)
0.600 ( s) 0.666 ( 6) 0.600 ( 7) 0.666 ( 8) 0.500 ( 9)
0.666 (10) 0.600 (r'r) 0.667 (12) 0.600 (13) 0.667 (14)
0.600 (15) 0.667 (16) 0.600 (17) 0.667 (18) 0.600 (19)
0,667 (æ) 0.600 (21) 0.667 (22) 0.600 (23) 0.666 (24)
0.600 (2s) 0.667 (26) 0,600 (27) 0.667 (28) 0.600 (2e)
Av€rage = 0.633 Rãnge = 0.067

rulc 230
o.ssì (0) 0.833 ( 1) 0.833 ( 2) 0.833 ( 3) 0.s33 (4)
0.833 ( 5) 0.æ3 ( 6) 0.s33 (7) 0.833 (8) 0.833 ( 9)
0.833 (10) 0.833 (11) 0.833 (r2) 0.833 (13) 0.æ3 (14)
0.833 (r5) 0.833 (16) 0.838 {r7) 0.æ3 (18) 0,833 (19)
0.833 (æ) 0.833 (2r) 0.833 (22) 0.833 (23) 0.æ3 (24)
0.833 (25) 0.833 (26) 0.833 (27) 0.833 (28) 0.833 (2e)
A\¡erâgê = 0.83:l Râng€ = 0.000

rulc 231
0.833 (0) 0.833 ( 1) 0.833 (2) 0.833 ( 3) 0.833 (4)
0.833 (s) 0.æ3 ( 6) 0.S33 (7) 0.833 (8) 0.833 (s)
0.8æ (10) 0.833 (11) 0,833 (12) 0.833 (13) 0.833 (14)
0.833 (r5) 0.833 (16) 0,833 (17) 0.833 (18) 0.æ3 (19)
0.833 (æ) 0.833 (21)0.833 (22) 0.833 (23) 0.833 (24)
0.833 (2s) 0.833 (26) 0.833 (27) 0.833 (28) 0.æ3 (29)
Ave¡âge = 0.933 Ra¡ge = 0.000

ruls 232
0.000 ( 0) 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 0.000 ( 4)
0.000 (s) 0.000 (6) 'r.000 ( 7) 1.000 ( s) 1.000 ( 9)
1,000 (10) 1.000 (11) 0.000 (12) 0.000 (13) 0.000 (f4)
0.000 (15) 0.000 (16) 0.000 (17) 1,000 (t8) 1.000 (19)
1.000 (æ) 1.000 (21) 1.000 (22) 0.000 (23) 0.000 (24)
0.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 0.000 (29)
Av€ragê = 0.533 R€nge = 1.000
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rub 233
1.000 ( 0) f.000 ( r) 1.000 (2) 1.000 (3) 1.000 ( 4)
1.000 ( 5) 1,000 ( 6) r.000 ( Ð r.000 (8) 1.000 ( 9)
1.0o0 (10) 1,000 (11) 1.000 ('t2) 1,000 (13) 1.000 (14)
1,0o0 (1s) 1.000 (16) t.0oo (17) 1.000 (18) 1.000 (19)
r.000 (20) 1,000 (21) 1.000 (22) r,000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) f.000 (28) r.000 (æ)
Average = 1.000 Rang,s = 0.000

tulø 234
1.000 ( 0) 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 1.000 (1)
1,000 ( 5) r.000 (6) 1.000 (7) r.000 (8) f.000 (9)
1.000 ('10) f.000 (tl) 1.000 (12) 1.000 (13) f.000 (1¡l)
1.æ0 (1s) 1.000 (16) 1.000 (t7) r.000 (1s) 1.000 (f9)
1.000 (20) 1.000 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1,000 (28) 1.000 (æ)
Average = '1.000 Range = 0.000

rule 235
1.000 ( 0) 1,000 ( 1) 1.000 ( 2) 1.000 ( 3) 1.000 ( 4)
1.000 ( 5) 1.000 (6) 1,000 ( 7) 1.000 ( 8) t.000 (9)
r.000 (10) 1.000 (11) 1,000 (r2) 1.000 (r3) 1.000 (14)
1.000 (15) 1.000 (16) 1.000 (17) 1,000 (18) r.000 (19)
1.000 (20) 1.000 (2r) 1.000 (22) r.000 (23) 1,000 (24)
1.000 (25) r.000 (26) 1.000 (27) 1.000 (28) 1.000 (æ)
Av€ragE = 1.000 Rsnge = 0.000

ruls 238
0.000 (0) 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 0.000 (4)
0.000 (s) 1.æ0 (6) 1.000 ( n r.000 (8) 1.000 (e)
1.000 (f0) 1.æ0 (11) 1.000 (12) r,000 (13) 0.000 (14)
0.000 (15) 0.000 (16) 0.000 (17) f.000 (18) 1.000 (19)
1.000 (20) 1.m0 (21) r.000 (22) 0.000 (23) 0.000 (24)
r.000 (25) 1.000 (26) 1,000 (27) 1.000 (28) 0.m0 (æ)
Average = 0.667 Rêngs ='1.000

tule 237
1.æ0 ( 0) 1,000 ( 1) 1.000 ( 2) 1.000 ( 3) 1.æ0 ( 4)
1.000 ( 5) 1,000 (6) r.000 ( 4 1.000 ( 8) 'r.000 (9)
1.000 (10) 1.000 (11) 1.000 (t2) 1.000 (1s) 1.m0 (14)
1.000 (1s) 1.000 (16) 1.000 (17) 1.000 (18) 1,000 (19)
1.000 (20) 1.000 (21) 0.000 (22) 0.000 (23) 1.000 (24)
1.000 (25) 1,000 (æ) r.000 (27) 1.000 (28) 1.000 (æ)
Av€rag€ = 0.933 Rång€ ='1.000

rula 238
1.000 ( 0) 1.000 ( 1) 1.000 ( 2) f.000 ( 3) 1.000 ( 4)
1.000 ( s) 1.000 ( 6) 1.000 ( 7) 1.000 ( s) 1.000 ( 9)
r.000 (10) 1.000 (11) 1.000 (12) 1.000 (13) 1.000 (14)
r,000 (rs) 1.000 (16) 1.000 (17) 1.000 (18) r.000 (t9)
1.000 (20) 1.m0 (2f) r.000 (22) 1.000 (23) r.000 (24)
'r,000 (25) 1.000 (26) 1.000 (27) r.000 (28) 1.000 (29)
Avsragê = 1,000 Range = 0.000

lul6 239
1.000 (0) '1.000 ( 1) 1.000 ( 2) 1.000 (3) 1.000 ( 4)
1.000 (5) 1.000 ( 6) 1.000 ( 4 1.000 ( 8) 1.000 ( 9)
1.000 (10) 1.000 (1't) 1.000 (r2) 1.000 (13) 1.000 (14)
1.æ0 (15) r.000 (16) r.000 (17) 1.000 (18) 1.000 (19)
1.000 (20) 1.000 (21) 1.000 (22) 1:000 (23) t.000 (24)
r.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) 1.000 (æ)
Average = 1.000 Fìs¡gs = 0.000

Bit Weight Tables

rulo 240
0.500 (0) 0.500 ( 1) 0.500 ( 2) 0.500 ( 3) 0.s00 ( 4)
0.s00 ( s) 0.s00 (6) 0.500 ( 7) 0.500 ( 8) 0.s00 (e)
0.500 (10) o.soo (1r)0.500 (12) 0.500 (13) 0.500 (14)
o.sm (15) 0.500 (16) 0.500 (r7) 0.s00 (18) 0.500 (19)
0.500 (æ) 0.500 (21) 0.500 (22) 0.500 (23) 0.500 (24)
0.s00 (25) 0.500 (26) 0.500 (27) 0.500 (28) 0.500 (29)
Av€rågs = 0.500 Fìange = 0.000

rulo 241
0.667 ( 0) 0.657 ( 1) 0.667 (2) 0.667 ( 3) 0.667 (4)
0.667 ( s) 0.667 ( 6) 0.667 ( 7) 0.667 ( 8) 0.667 (9)
0.667 (r0) 0.667 (11) 0,667 (12) 0.667 ('t3) 0.667 (14)
0.667 (r5) 0.667 (16) 0,667 (17) 0.667 (18) 0.667 (f9)
0.667 (æ) 0.667 (21) 0.667 (22) 0.667 (23) 0.667 (24)
0.667 (25) 0.667 (26) 0,667 (27) 0.666 (28) 0.667 (29)
Awrage = 0.657 Range = 0.000

rul€ 242
0.667 ( 0) 0.667 ( 1) 0.667 ( 2) 0.667 ( 3) 0.667 (4)
0.667 ( 5) 0.667 (6) 0.667 ( 7) 0.665 ( s) 0.667 (e)
0.667 (r0) 0.666 (11) 0.667 (12) 0.667 (t3) 0.667 (f4)
0.657 (rs) 0.667 (16) 0.667 (17) 0.667 (18) 0.667 (19)
0.667 (æ) 0.667 (21) 0.667 (22) 0.667 (23) 0,667 (24)
0.667 (2s) 0.667 (26) 0.667 (27) 0.667 (28) 0.667 (æ)
Awragg = 0.667 Renge = O.OOO

ruls 243
0.767 ( Ol 0.767 ( 1') 0.767 | 21 0.767 ( 3', 0.767 ( 4\
0.767 ( 5) 0.767 (6) 0.767 ( 7) 0.767 ( 8) 0.767 (e)
0.766 (10) 0.766 (t l) 0.766 (12) 0.767 (13) 0.767 (14)
0.767 (rs) 0.767 (16) 0.767 (17) 0.767 (18) 0.767 (19)
0.767 lml0.767 (21) 0.767 l22l0.767 l23l 0.767 (241
0.767 l25l 0.767 (26) 0.767 l27l 0.767 (281 0.767 129)
Av€rage = 0.767 Fìango = 0.000

lulè 241
0.63(] (0) 0.633 ( 1) 0.633 ( 2) 0.6æ (3) 0.633 (4)
0.633 ( 5) 0.633 ( 6) 0.633 (7) 0,633 ( 8) 0.633 (9)
0.633 (10) 0.ô33 (r 1) 0.633 (12) 0.633 (13) 0.633 (14)
0.633 (1s) 0.633 (16) 0.6s3 (17) 0.633 (18) 0.633 (19)
0.æ3 (æ) 0.633 (21)0.633 (22) 0.633 (23) 0.633 (24)
0.6s¡ (2s) 0,633 (26) 0.63€ (27) 0.633 (28) 0.633 (29)
Average = 0.633 Range = 0.000

rulr 245
0.733 ( 0) 0.733 ( l) 0.733 ( 2) 0.73i¡ (S) 0.733 ( 4)
0.73rí] ( s) 0.73s ( 6) 0.733 (7) 0.7*ì ( s) 0.733 (9)
0.733 (10) 0.733 (11) 0.733 (12) 0.733 (13) 0.733 (14)
0.733 (15) 0.733 (r6) 0.733 (17) 0.733 ('r8) 0.733 (19)
0.733 (æ) 0.733 121) 0.733 (2210.733 (23) 0.733 (24)
0.733 (25) 0.733 (26) 0.733 (27) 0.733 (28) 0.733 (2e)
Awrags = 0.733 Ra¡ge = 0.000

ruls 246
0.767 ( 0) 0.767 ( f) 0.767 ( 2) 0.767 (3) 0.767 ( 4)
0,767 ( 5) 0.767 ( 6) 0.767 ( 7) 0.766 ( 8) 0.767 (9)
0.767 (10) 0.767 (11) 0.767 (12) 0.767 (13) 0.767 (14)
0.767 (1s) 0.767 (16) 0.767 (r7) 0.767 (18) 0.767 (19)
0,767 (æ) 0,767 (21) 0.767 122't 0.767 (2310.767 (241

0.767 (25) 0.767 (26) 0.767 (27) 0.767 (28) 0.767 (291
Av€rage = 0.767 Range = 0.000
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tula 247
0.800 ( 0) 0.s00 ( 1) 0.800 ( 2) 0.800 (3) 0.800 (4)
0.800 ( 5) 0.800 ( 6) 0.800 ( 4 0.800 (8) 0,800 (e)
0.800 (10) 0.800 (11) 0.800 (12) 0.800 (13) 0.800 (14)
0.800 (15) 0,800 (16) 0.800 (17) 0.800 (18) 0.800 (19)
0.800 (20) 0,800 (21) 0.800 (22) 0.800 (23) 0.800 (24)
0.800 (25) 0.800 (26) 0.800 (27) 0.800 (28) 0,800 (æ)
Average = 0,800 Rang€ = 0.000

rule 248
'1.000 (0) 0.999 ( r) 0.999 ( 2) 0.999 ( 3) 0.999 (4)
0.999 (s) 0.999 ( 6) 0.999 (4 0,999 ( €) 0.999 (9)
0.999 (10) 0,999 (11)0.999 (12) 0.999 (13) 0.999 (f4)
0.999 (15) 1.000 (16) 1,000 (17) 1.000 (1S) 1.000 (19)
1.000 (20) 1.m0 (21) 1.000 (22) 1.000 (23) 1.000 (24)
1.000 (25) 1.000 (æ) 1.000 (27) r.000 (28) 1.000 (æ)
Av€ragE = 1,000 R6¡ge = 0,001

rulo 249
1.000 ( 0) 1.000 ( 1) 1.000 ( 2) r,000 ( 3) 1.000 ( 4)
r.000 ( 5) r,m0 ( 6) 1.000 ( Ð 1.000 ( 8) r.000 ( e)
r.000 (10) 1.000 (r1) 1.000 (12) 1.000 (f3) r.000 (14)
1.000 (1s) 1.000 (16) 1.000 (r7) 1.000 (18) 1.000 (19)
r.æ0 (20) r.000 (2r) r.000 (22) 1.000 (23) r.000 (24)
f .000 (25) r.000 (26) 1.000 (27) 1.000 (28) 1.000 (æ)
Average = f.0O0 R€¡g€ = 0.000

rule 250
1.000 ( 0) 1.000 ( 1) 1.000 ( 2) 1.000 ( 3) 1,000 (4)
r,000 ( s) 1.000 (6) 1.000 ( Ð r.000 ( s) 1.000 (9)
1,000 (10) 1.000 ('rl) 1.000 (12) r.000 (13) 1.000 (14)
1.000 (15) 1.000 (16) 1.000 (17) r.000 (18) 'r.000 (19)
1.000 (20) 1.000 (2r) 1.000 (22) f .000 (23) r.000 (24)
1.000 (2s) 1.000 (26) r.000 (27) 1.000 (28) 1.000 (æ)
Average = 1.000 Ra¡ge = 0.000

rulô 251
r.000 ( 0) 1.000 ( 1) 1.000 ( 2) r.000 ( 3) 1.000 ( 4)
1.000 ( 5) 1.000 ( 6) 1.000 ( 4 1.000 ( 8) 1.000 ( 9)
1.000 ('r0) r.000 (f1) 1.000 (12) 1.000 (13) 1.000 (14)
1.000 (15) 1.000 (16) 1.000 (17) 1.000 (18) f .000 (19)
1.000 (20) 1.000 (21) r.000 (22) 1.000 (23) 1.m0 (21)
1.000 (2s) 1.000 (26) 1.000 (27) 1.000 (28) 1,000 (æ)
Avsrags = 1.000 Range = 0.000

rule 252
1.000 ( 0) 1.000 ( f) r,000 ( 2) 1.000 (3) 1.000 ( 4)
r.000 ( s) 1.m0 (6) r.000 (7) 1.000 (s) 1.000 (9)
1,000 (10) 1.m0 (11) 1.000 (12) f .000 (13) 0.999 (f4)
1.m0 (f5) 1.æ0 (16) 1.000 (17) 1,000 (18) 1.000 (19)
1.000 (20) 1.000 (21) 1.000 (22) t.000 (23) 1.000 (24)
1.000 (25) 1.000 (26) 1.000 (27) r,000 (2s) 1.000 (æ)
Average = í.000 Rangs = 0.001

rula 253
1.000(0) 1,000(f) 1.000(2) 1.æ0 (3) f.000(4)
r.000 ( s) 1.000 (6) 1.000 (Ð 1.000 (8) 1.000 (e)
r.æ0 (10) 1,000 (11) 1.0m (12) 1.000 (f3) t.000 (14)
r.0o0 (15) 1.000 (16) 1.000 (17) 'r.000 (18) 1.000 (f9)
1.000 (20) 1.000 (21) 1.000 (22) 1.000 (23) 1,000 (24)
1.000 (2s) r.æ0 (26) 1.000 (27) 1,000 (28) 1.000 (æ)
Averago = 1.000 Range = 0.000

Bit Weight Tables

rub 254
r.000 ( 0) r.0oo ( 1) 1.000 ( 2) t.ooo (3) 1.000 ( 4)
1.000 ( 5) r.000 ( 6) 1.000 ( 7) 1.000 ( 8) 1.000 ( s)
1.0m (f0) r.0oo (11) 1.000 (12) 1.000 (13) 1.000 (14)
r.000 (15) r.00o (16) t.0o0 (17) 1.000 (18) f .000 (r9)
r.000 (æ) 1.000 (21) 1.000 (22) 1.000 (23) t.ooo (24)
1.0m (25) 1.000 (26) r.000 (27) r.000 (28) 1.000 (29)
Awrage = 1.000 Ra¡ge = 0.000

rulê 255
r.000 (0) 1,000 ( 1) 1.000 (2) 1.000 (3) 1.000 (4)
1.000 (5) 1,000 (6) r.000 (7) 1.000 (8) 1,000 (9)
1.000 (10) 1.000 (11) 1.000 (t2) t.000 (13) 1.000 (14)
r.000 (15) 1.000 (16) r.000 (r7) 1.000 (1s) 1.000 (19)
1.000 (æ) 1.000 (2f) 1.000 (22) 1.000 (23) 1,000 (24)
1.000 (25) 1.000 (26) 1.000 (27) 1.000 (28) r,000 (29)
Awrage = 1.000 Ra¡g€ 5 0.000
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