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ABSTRACT

The expansion of the ideal normalized amplitude
response of a low-pass filter in a series of Legendre
polynomials was investigated. This series was then
converted to a rational function by the use of a Padé
approximant. The range of integration, K, was varied
from 0 to 1. The effect of this was to shift
the cut off frequency of the filter. For the second order
case the Butterworth filter, Chebychev filter and the
Bessel filter could all be obtained by a suitable choice

for the range of integration.
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CHAPTER I

THE PROBLEM AND METHODS OF SOLUTION

I. The Problem

The ideal low-pass filter. Any coupling network

bas a transfer function which can be written in the follow-

ing form.

— . J Q)
T, aw =] .ol e (1)

1f the magnitude and phase have the characteristics
shown in equation 2 and S,respectively,the coupling network

is saild to be an ideal low-pass filter.
/ 0 <w< W,
LI
/T,zuml - 0 W > ch (2)

Bcwr = -z"o(,_) 0 < &< W, (3)

These characteristics are shown graphically in

figures 1 and 2.



Figure 1
Magnitude Characteristic
of an Ideal Low-Pass Filter
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Figure 2
Phase Characteristic of an

Ideal Low-Pass Filter

The "time delay", T4(w), 1is defined by equation 4.

d Bcw)
d w

Ecw) s -

(4)

The time delay for the ideal low-pass filter is obtained by
differentiating equation 3.



J. L. Stewartl developed an error criterion that includes
both the phase and magnitude characteristics of a transfer
function. This method could be used to approximate

equations 2 and 5 simultaneously. The usual
approach, however, is to approximate only one of these
equations, depending on the given specifications. The
approach taken in this work was to use the magnitude charact-
eristic and then to examine the phase of the resulting

transfer function.

Realizability. The transfer function of a

network consisting of passive elements is said to be
realizable. Therefore the transfer function resulting
from some method of approximation must be realizable to
be useful in practice. A transfer functlion is realizable

if the denominator has no zeros in the right bhalf s planeg.

. J. L. Stewart, "Generalized Padé Approximation,"
Proceedings I. R. E., Volume 48 (December,
1960) pp. 2003-2005.

2

N. Balabanian, Network Synthesis (Englewood Cliffs, N.J.

Prentice-Hall, Inc. 1958) p. 143.



Polynomials whose zeros all lie in the left half s plane
or are simple on the Jw axis are Hurwitz polynomials.
The Hurwitz testl on the denominator of a transfer function

determines whether or not the function is realizable.

IT Methods of Solving The Problem

The common approach. The most common method of

approximating the magnitude characteristic of an ideal low-

pass filter is to assume a solution of the form.

2 VA
ITpeol = T+ e A ‘e
Where:
¢ <L w & 1L
ﬂ%w)f{771 w >1 (7)

1 5. Karni, Network Theory: Analysis and Synthesis (Boston:

Allyn and Bacon, Inc. 1966), pp. 109 - 11k,



5.

Many polynomials have been used to approximate
1
F.(w). The most common in use today are, Butterworth ,

2, Legendre3 and Hermiteu.

Chebychev The use of Ultraspher-
ical polynomials was examined by Johnson and Johnson5 and
was shown to include as special cases the Chebychev filter,
the Butterworth filter, and also the associated Legendre
I'ilters.

6

The Bessel filter~ is a good approximation of the

phase characteristics of an ideal low-pass filter.

The use of orthogonal polynomials. Another method

of approximating the magnitude characteristic of an ideal
low-pass filter was shown by KarniY. The magnitude function,
2
’T?a(lu), , was expanded directly in terms of orthogonal

polynomials. The resulting approximating polynomial must be

1 Tbid, pp. 344 - U7
2 1bid, pp. 349 - 358

5 Sheila Prasad and others Fllter Synthesis Using Legendre
Polynomials" Proceedings I.E.E. (Vol., 114

No. 8 August 1967), pp. 1 - 12.

Y v, ®. Ku ana M. Drubin, "Network Synthesis Using Legendre
and Hermite Polynomials’ .

Franklin Inst. (February 1962)
pp. 138 - 57.

5 p.E. Johnson and J. R. Johnson, "Low-Pass Filters U51ng
Ultraspherical Polynomials", IEEE

Transactions on Circuit Theory,
Vol. CT - 13, No. 4,(December 1966),
pp. 364 - 69.

S. Karni, op. cit., pp. 370 - 372
7 Ibid, pp. 365 - 368




converted into a rational function. Karni suggests the
use of a Padé approximation for this conversion.

The approach taken in this work was the use
of Legendre polynomials to approximate the ideal
magnitude characteristic and then using a Padé approximant

to convert it into a rational function.



CHAPTER IT

APPROXIMATION PROBLEM

The first step in network synthesis is the

approximation of given ideal specifications.

that the transfer function obtained in this menner is not

realizable,

It may occur

If this is the case another approximation

must be made until a realizable transfer function is

obtained.

This procedure is shown pictorially in figure 3.

Ideal

4

specifica-

tions

Approx-
imation

Conver-
gsion to
Rational
Function

Obtain
Transfer
Function

Test for
Realizab-
ilit

_Real-

ization

Not Realizable

Figure 3

Steps In Network Synthesis

The "ideal specifications" were previously defined

and now the method of approximation and conversion to a

rational function will be discussed.




I. Function to be Approximated

The method of approximation is to expand the
function into a series of orthogonal polynomials. The
function to be approximated is the magnitude squared.

Therefore it is necessary that no terms of the form

w(2p+1) appear in the approximation. This is achieved

by meking the ideal specifications an even function as

shown in figure 4. The orthogonal polynomials to be

used are the Legendre polynomials. The range of integration
is varied from O to 1. The effect of this is to
vary the cut off frequency of the approximation. This
cut-off frequency 1ls scaled back after the rational function
conversion is performed. The ideal specification to be

approximated is shown in figure 4.

k3
I'[;z(u»’

k4

-K K I8

Figure 4
Magnitude Characteristic of
an Ideal Low-Pass Filter With
a Variable Cut-Off Frequency



- IT Legendre Approximation

The expansion for any function in terms of

orthogonal polynomials is given by.

1 ~
lT,aci)’)lz z L;Zo C, P, (w) (8)
where:
3 2
c. - J; ,T,_‘“”, F,_(cd)cjc«) (9)

8 2
fA Frcordo
The interval of orthogonality is from A to B,

or In the case of Legendre polynomials, from -1 to +1.

Equation 9 reduces to:

\f-—l:‘ P,_(CJ)JQ)

C.* :
- \,[: lofcw)a’co (10)
For the Legendre polynomials:
el 2 2
- 2
J, Plendw= —25 (11)

The odd terms are zero because the ideal function
i1s an even function. Therefore the complete solution becomes:

C.:(2te1) S Poeendow (L2)
L:0,2,4 - n

2
1 The bar on top of | T,ac| 1s used to show that, it is an
approximation of the ideal function [T, ce)]

Erwin Kreyszig, Advanced Engineering Mathematics (New
York: John Wiley and Sons, Inc. 1962)
p. 515. ‘
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This can be written as:

A
2
/T,zcu)/ : Z Cam /o () (z3)
mz=o
where:
”
C,. cqmu)'fo Py Ca) dew (L4)

The first ten even Legendre polynomials and their
first integral betwsen 0] and K are given in

Appendix I.

IIT Conversion of the Approximation

into a Rational Function.

A Pagdé approximantl is used to convert the Legendre
approximation into a rational function. This conversion is
very accurate near the origin but the accuracy decreases as
w approaches unity. To improve the approximation in the
range of frequency which is greater than unity it was decided to
have the largest possible difference between the orders of the
numerator and denominator of the Padé approximant. That is the

(0, 2n) Pade approximant.

o (2 (or2n) 7
| T'zcw)/ = B, , (w)

(/8)

1 s, Karni, Network Theory: Analysis and Synthesis (Boston:

Allyn and Bacon, Inc. 1966) pp. 367 - 368.
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These functions can be written down more explicitly as

2
~ - - — — —— — o— — — an
/Ezcw)/ =, r R w? @, W (t6)

The coefficients of equation 16 are determined from

equations 13 and 14.

8

: B - — - - - - oo Wi (17)
an € Ly r Ly w £,

In appendix II it was shown that the coefficients of

equation 17 were given by

4, > —3 (/8)

i1 Jen ’Z’un-m] (/%)

The problem is solved by choosing values for
n and K and determining the approximation of
the magnitude squared using the previous equations. The
effect of K is very difficult to determine explicitly
so the method in this work is to chose specific values for

X and examine the resulting magnitude approximation.



CHAPTER IIT
THE SECOND ORDER FILTER
The second order case is relatively simple but it
gave a good idea of the effect of varying K and the
problems involved with this method of filter design.
I. BSolution of Magnitude Characteristics

Solving equations 13 and 14 using n =2

yields:
2 o
IT, ol = @ rdwt r@w
where
q, : 2.95 KL K- 1.86 K% +1.19] (20)
@, * 29.53 < C1-kE) (K* ~.§56) 1)
Q. : 34.45 K (K*-7) (A2 -.928) 2 2)

]

Substituting these into equations 18 and 19 1t is
found that:

=
a.'u

(238)

YA S (24)
az
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. 770 3Lk -11[k2-1.09] [K%-.99 2 r.257] (2.5)

b =
4 a:

The second order transfer function is given by:

T ,c5 = L (26)
’ dord & *d S
Where:
d, = V4 (27)
dz =/‘6£ *2#,@61,‘1 (28)

d, - /4, (29)

IT. Realizability of the Transfer Function

It was previously stated that all practical transfer

functions must be realizable. A second order transfer function

is realizable if the following conditions are met.

d, >0 (20
d, >0 (31)
d, 70 (32)

In appendix IIT it was shown that the second order

function is realizable for all values of X in the region.

O<AK<I
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The coefficients bO and b4 are plrotted,
in figure 4A, as a function of K. From this graph
the effect of the variation of K for the second
order case can be seen. For a frequency greater than one
the dominent term is by . Therefore the largest attenuat-

ion in the passband occurs where by is largest, or at a

K of about .9 . The region where a is less than
one b2 is negative and there is a ripple in the pass-
band. This occurs for the region . The ripple
is a maximum for a K of .9 . It is interesting to

note that this is also where the attenuation is a meximum in
the stop band. For a K less than T by is
relatively small and therefore the attenuation in the stop

band is relatively poor. Therefore the form of the solution

can be determined, in terms of K, from figure 4A.



s Ffocseats
fecono/
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ITT. ©Specific Second Order Filters

Specific values of K are used in equations

20 to 25 yielding the followlng results:

: /
/T,?_CS:/ - 709 *~ 4.5 w? r /4 609 g3
Tiq ce? L9285 + .53 @E + /13 w9
)
g ”~ / a .7"5‘
_— )
7., 3 .96  r .765 w9
2 {
v s - ,8
Ir’z (“”[ 102 ~ 792 w® ~ 2. 74w "
lT ~ Izr. [ P |
g O /08 - /.50 Wz +4.74w"Y

The problem now is to determine a suitable
frequency shift for these filters. The method used is to
convert the filter for K = .9 into a Chebychev filter.
The other filters are given the same maximum error in the
pass band. This is done so that the filters could be
compared. The magnitude of the filters 1s also scaled down
a little so that it never exceeded one. The results are as

follows:

I Usinga K of .9 the following Chebychev
filter with ¢ of .354 was obtained.

2 /
[T,zcw)l TS -~ . Sw? .5 w9




15.

IT. Usinga X of .8 the following filter

is obtained.

~ g /
IT.zcuﬂl T 04 - 267w p56w?

ITI. Usinga K of .745 the following

Butterworth filter is obtained.

~ o~ )% /
[Ty co t o+ L1285 w9

IV. Usinga K of .7 the following filter,

similar to a Bessel filter, is obtained.

2
~ N /
/T:zf"”l T/ A~ 09 w?e » 026 w?

The magnitude of these filters is plotted in

figure 5.
The maximum rate of attenuation in the stop band
is obtained for a K of .9. The best approximation
near the origin is obtained for a K of approximatly
T For K less than T the approximation became

exceedingly poorer in the stop band, but this is not plotted.

IV. The Phase Characteristics of the

Second Order Transfer Function

For the previous second order filters the actual

transfer functions are obtained from equations 26 to 29.
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The results are as follows:

I. TUsing a X of .9

/

T:a“) = 1,06 + § +~.707 5%
II. Using a K of .8

T = !

12087 02 + .973§ + .596§%

I1I. Using a K of 745

- /
Tipcsy = /I r . 848 r 35ds?

IV. Using a K of T
{

Tint60 > 71 + .g42§ +./6/28%
For +the second order transfer function the phase 1is
determined from equations 1 and 4,
- o, -1 wd,
Bew> * " Ton [,,/o -, w? ] (33)

which yields the following time delay

. doLdo ¢ o @]
Td cor [do-"/gwa]z £ wadll (34

The time delay for the second order filters

is plotted in figure 6.
It can be seen from figure 6 that by a suitable

choice of X the time delay can be varied from that

of a Chebychev filter to that of a Bessel filter.
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In the synthesis of the second order filters
realizability conditions are satisfied for o<k < |/
The problem of choosing the value of K for a
specified filter may be solved from curves of the most

dominant prameters vs. K, as in figure 4A.



CHAPTER IV

HIGHER ORDER FILTERS

The method used for the second order filter is
to solve the equations for a continuous range of K.
This becomes very difficult for higher order filters.
Therefore the method used is to choose specific values

of X and examine the resulting filters.

I. Solution of the Third Order Filter

It is found for the third order case that the
transfer functions are realizable for only a small range
of K. The conditions for realizability for the third
order case are shown in the book by Shlomo Karnil.

The following third order cases are taken as

examples. Equations 13 to 19 are used for the solution.

Using a K of .867
A iz 8 L 6
Ina‘“’ T o015 ~1.3gw? + 2849w

lgs, Karni, Network Theory: Analysis and Synthesis (Boston:

Allyn and Bacon, Inc. 1966) pp. 109 - 11k4.
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Using a K of 5

2 /
/le“"”/ T 888 * 1. 965wt 9.62 w¥r 930"

A frequency shift is again applied such that the maximum
deviation in the pass band is % db. The results are as

follows:

Fora K of .867

/
.04 -. 465 w9 r 562 Wb

2
/T’?_ (,uJ}/ :

For a K of 5

{
/] F L] witF .0s3 w9 - o00/32 w©

[
/leco)) h

The magnitude of these filters is plotted in
figure 7 with the Butterworth, Chebychev and Bessel Filters.
All five filters are given, by frequency shifting, the same
maximum error in the pass band.

The maximum attenuation in the stop band is for
the Chebychev filter, but in the pass band the total mean
squared error is less for the filter obtained for a X
of .867. The filter obtained for a K of .5  bhad a

magnitude response very similar to that of the Bessel filter.
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II. The Phase Charécteristics of the

Third Order Function.
The actual transfer function is determined for
these specific third order filters.

Fora K of .867

- /

l2¢5) = 7702 e/l 728 + 195 s2r.255%
Fora KX of 5
) /
rzz(” T ro+ .TIS v /9652 ¢+ .09638"7

From equations 1, 4 and 26 the time delay is determined

for the third order case. S

[Olo _thtj[d'-gdawa] *avlgwe[d;"d_p w&]
[a/,‘q/zwa]z + [J“d.? wr] w?

Td (wl) =

The normalized time delay for these filters is
plotted in figure 8.

The filter obtained using a K of 5 1is
very similar to the Bessel filter. The filter obtained for
a K of .867 has a time delay similar to the
Chebychev filters.

1 ¥.H. Ku and M. Drubin "Network Synthesis Using Legendre

and Hermite Polynomials,
J. Franklin Inst., (February 1962)

p. 147.
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III. Solution of the Fourth Order Filter

The fourth order filter is found to be realizable
over a larger range of K  than the third order filter.
The transfer functions are tested for realizability in
the same manner as the third order filter.

The following examples are obtained from equations
13 to 19. A frequency shift is used to limit the maximum
error in the pass band to 1 db.

Fora K of .05

L /

/Ezcm C 1056 -.305we ».5492 w9 —.503 co¢ r.459 w8
Fora K of .8

_ lz- /

Ih2(w> T r LEEfwt- L9 8w -.688WS £ /./68 wE
For a X of 6

[T, el /

2 ¢ 117 - G28w? » .758 «w¥ -, 67w® r .65 w8

The magnitude characteristic of these filters is
plotted in figure 9. Again a Butterworth and Chebychev

filter are plotted with a 1 db. maximum error in the pass band.
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It is well known that the Chehychev filter has the
maximum attenuation in the stop band for a prescribed maximum
error in the pass band. It is interesting to note that all
the chosen filters have a rate of attenuation which falls
between that of a Butterworth filter and Chehychev filter.

The actual transfer functions are determined for

these filters.

For a K of .05

Ta€8) 5 £ 2 N “
026 + 2.29 5+ 2.728% r L. 78S .GE6 S

For a K of .8

T, cs>= £

2 1+ 2.6685¢ g.282r2.498% + L 0ogs?

For a K of .6

1
laes)= 1 087 24Ls+ 2.98 5% 2.045% + 80757

These fillters were tested by the Hurwitz test and

were all found to be realizable.



CHAPTER V
CONCLUSIONS

The object of this study was to approximate the
ideal normalized amplitude response of a low-pass fillter
using the Legendre polynomials and convert this to a
rational function by the use of a Padé approximant. The
most difficult problem was the choice of the range of integ-
ration to meet given filter specifications. This problem
was solved for the second order case by plotting the
denominator coefficients in terms of K. Therefore the
only solution was to determine filters for specific values
of K.

The fillter determined had two variables,'the
order of the filter, and the range of integration, K,
in the process of approximating the low-pass filter by
Legendre polynomials. By a suitable choice of K it
was possible to obtain a phase response similar to that of
the Bessel filter of the same order, or an amplitude response
similar to that of the Chebychev filter of the same order.
This method of approximation minimizes the mean squared error
in the pass band. Therefore the pass band ripple is usually
smaller than that of a Chebychev filter of the same order.
The attenuation in the stop band, however, is less than that
for the Chebychev filter, of the same maximum deviation in

the pass band.
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Only for the second order filter was realizability
determined in terms of K. For higher order cases this
problem may be solved by the use of a computer. This, however,
would still be difficult on a computer because equations of
the same order as the filter, must bhave the roots determined.

In filter design certain characteristics must be
met, or approximated, such as passband ripple, rate of attenu-
ation in the stop band, or phase characteristics. The use of
this method of filter design gave no method of checking to see
if the specified condition were met before the actual filter
was determined except for the second order case.

For cases with n greater than 2  the roots of
the filter's magnitude characteristic were hard to determine
and therefore the transfer function was difficult to obtain.
The problem of a proper frequency shift was made difficult
because of the use of a Padé approximant. The Padé approximant
becomes very poor as the radian frequency approaches one.
Because of this fact the rational function's amplitude often cuts
off befors the expected value, K. This makes it hard to
determine the proper frequency shift necessary to give a desirable
passband ripple. The bhighest order coefficients in the denomina-
tor of the filter determine the amplitude response in the
vicinity of cut-off. Therefore the use of a Padé approximant
in some cases ylelds unsuitable values for these coefficients.
Because of this fact the third order filter is not realizable
for a large range of K.

If some other method was used to obtain a rational

function the problems of frequency shifting and higher order
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cases may be avolded. This method might be one which
approximates most accuratly in the centre of the passband.
The Padé approximant may be altered to involve numerator
terms or a Jdifferent amount of denominator terms. A
possible solution would be to determine a lot of filters
using different values of K and n, using a computor.
The results could be graphed for dirfferent values of n
in terms of bandpass ripple, stop band attenuation and
phase characteristics. Then if certailn specifications
were given a sultable solution could be determined from
the graphs. There would still be the problem of determining
a sultable frequency shift. This could be solved if a

ple,

relationship could be found betwesn bandpass ri

N

stopband attenuation and the frequency shift.
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APPENDIX I

The first ten even terms of the Legendre polynomial

are as follows.

Pcw * 1 .

F’cha)= %‘“’ -2

P, &lasw?-30w% « 3]

P o= fel2310%-315 0% + 105 w -5]

I 8
Pgcw> * 7786435 @ - 12012 W+ 6930 7 - 1260 wtras]
4 '
Pocw)=s5¢ [‘1618‘7‘0 *- 109395 w8+ 9000w -20030 @ +3 965 w?-63]

!

The value of .fo” Pan cwrdw for these polynomials

are as follows.

J;“ Pewordw:= &

J;K P,cwrdw = 'g'[ﬁz'l]

5f P candos 576 -105* s3]

J," P, (wrdew?: [I"a [331{‘-63/1"»'35/13-5]

J‘o" Ry ¢ > Jew : [121_8 [715 #8 1716 K%+ 138657 - 420 Ka"‘é’é']

" - .._IL[ 0 & & 2
jo Foew)dw * 756 [4199 K8 ~121555°¢L2870 5€ -6006 A7 +r1155 4 -63]
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APPENDIX II

The determination of the coefficients of the Pade

approximant given by equations (15), (16) and (17).

2n or2n .L

This can be rewritten as:

a 2R oran i
+ ——— -, W =
Lt L w0 L,

Then the denominator is dévided into the numerator
on the Right hand side and equated to the coefficients

on the left hand side.

an
'2", *‘@aw * z:'wq """""" ’62'»1“]
[} b o 2 L e -_—
- - %o - - —
a, ?ﬁw %[ﬂif%%]w
an|
d *d w? - — - - - <?znw l an
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An observation of the form of the solution yilelds

2, (138)
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APPENDIX IIT

Test For the Realizability of the

Second Order Transfer Function

Equations 30, 31 and 32 give the conditions for the
realizability of a second order transfer function.
It can be seen from squation 20 that for K

etween zero and one that g, 1s always positive. Therefore

from equation 23 and 25 it can also be seen that 7
and £, are positive for K in this region. Using
equations 27 - 32 the conditions for realizability
become.

L, >0 oz - L

,Zé+2»5€7a >0 i - 2

2, >0 @ - 8

It has already been shown that conditions IIT - 1
and 3 are met. Condition ITI - 2 1is met when £ 1is positive.
This occurs in the range O0<f<,B556 as can be seen from

equations 21 and 24, It is necessary to prove °
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that when S556< K <1 condition IIT - 2 isg

still met.
From equations, 23, 24, 25, 20, 21 and

22 condition IIT - 2 Decomes.

2
4(770.3)[ 52-1] [Ka-z.o‘l]['f“ ~.99K2 r.257]>[£?.53/f(z-/sz) (n2- .556)]

which becomes:

(ﬁa'll37)(ﬁq-.?qc Kt .241) <0

This equation is met for O<nK<V1.237 and

is therefore met for the range 0<#A <1 1in particular.
Therefore equations 320, 31 and 32 are always met
for O< K<L and the second order transfer function

is always realizsble.



