
H ordwqre I m plementotion
of Stochqstic Neurol

Networks

A Thesis Submitted to the
Faculty of Graduate Studies
in Partial Fulfillment of the

Requirements þr the Degree
of

Master of Science

D ep ar tm ent of E I e ctric al
& Computer Engineering

University of Manitoba

@ 2004 Scott J. Peters

THE I]NTVERSITY OF' MANITOBA

FACULTY OF' GRADUATE STUDIES

COPYRIGHT PERMISSION PAGE

Hardware Implementation of Stochastic Neural Networks

BY

Scott J. Peters

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCMNCE

SCOTT J. PETERS @2004

Permission has been granted to the Library of The University of Manitoba to Iend or sell copies
of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to University Microfilm fnc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's wriflen
permission.

Abstrqct
This thesis examines the performance of artif,rcial neural networks (ANNs) developed

using stochastic arithmetic hardware. The attractiveness of stochastic arithmetic for hard-

ware based neural computation stems from the simplicity of stochastic computation units.

This allows the implementation of a fully parallel stochastic artificial neural network

(SANN) that is much smaller in size than a binary radix integer (Bzu) ANN.

A stochastic architecture offers several advantages over conventional arithmetic: resis-

tance to noise, low circuit area, and variable computational accuracy without hardware

changes. The trade offassociated with this fully parallel architecture is an increase in com-

munication time, due to the serial nature of data in the network. There is also variance in

estimating data calculated by the network due to the random signals used to represent

information. It is hoped that the advantages outweigh the disadvantages for certain appli-

cations however.

ln this thesis an examination of stochastic arithmetic units and random number generators

is performed. The underlying theory of neural networks is then discussed. This thesis also

details modifications that are made to the conventional network model for a specialized

application. Stochastic neural hardware circuits are then described and implemented in a

field programmable gate anay (FPGA).

oaaooa
This system is then tested by processing simulated visual inputs that may be encountered

by a mobile robot. The results from the stochastic system are compared with a BRI imple-

mentation of an ANN. The stochastic nefwork shows inferior performance to the BRI net-

work, due primarily to the variance of the outputs during the training process. If the

SANN is initialized with weight vectors generated by the BRI network however, the

SANN performs reasonably as a classifier. The network is also tested with noise applied to

the inputs, again with adequate results.

lll

Acknowledgements
I would like to thank my advisor Dr. Dean McNeill, for his guidance in completing this

thesis. He has taught me many things both in and out of school.

I would like to express my gratitude to the examining committee for their time spent eval-

uating this work.

Finally, I would like to thank my family and friends for their support in the good times and

bad. My experiences at this university have been most memorable.

Financial support for this study was provided by the Natural Sciences and Engineering

Research Council (NSERC). Computing resources were provided by the Canadian Micro-

electronics Corporation (CMC).

tv

Toble of Contents

Abstroctii

Acknowledgements.. iv

Tobleof Contents.. v

Lisi of Figures viii

Listof Tobles ... xi

Listof Acronyms...xii

lntroduction. I

Number Representotion 3

2.1 Precisionof StochosticSignols5

Stochostic Arithmetic Logic. . . 9

3.1 Multíplicotion9
3.1.,l Multiplicotionby-l11
3.l.2SquoringOperotion..,l1

3.2StochosticSummotion12

1

2

ooaoaa
3.2.1 A Problem With Multiplexors i4

3.3Sfochostic Computotion Using MorkovChoins ló
3.3.1 Exponentiol ond Goussion Functions..17
3.3.2 Hyperbolic Tongent Function . . . 21

3.3.3Division/Squore RootExtroction21
3.4 Stochostic Polynomiols ond Functions Bosed on Toylor Series

Approximotions . . .28

Rondom Number Generotion . . 3l
4.1 Rondom Number Generotion Using on Anolog Source 32

4.2 Rondom Number Generotion Using Digitol Sources . . . 32

4.2.i LineorFeedbockshiftRegisters33
 .2.2CellvlorAutomqto 33
4.2.3cA30Exomple3S
4.2.4CA38490.37

4.3 Vorioble Probobility Generotion 40

Neurol Network Theory 42
5.1 Rodiol Bosis Function Network Theory 44

5.2 RBF Firsi Loyer Network Troining 47

5.2.1 HordCompetitiveLeorning....48
S.2.2FrequencySensitive Competitive Leorning. 49

5.2.3SoftCompetitiveLeorning....50
5.3 Second Loyer Troining . . . 52

Neurol Networks Bosed on Stochostic Hordwore. 53
ó.i DevelopmentPlotform53
ó.2RBFNetworkModel Modificotions..55
ó.3Neurol Networklmplementotion57

ó.3.1 lnputStoge . .. 57

ó.3.2CellulorAutomoto..58
ó.3.3'Weight'Module59
ó.3.4SumsquoreModule ól
ó.3.5 Exponentiol Function Module . . . ó1

ó.3.ó R|SMSummerModule62
ó.3.2 Stepped Velocity Divider Module 62

ó.3.BOutputlntegrotors.. ó3

.l0

aoaoao
ó.4SystemSequencing.... ó3

ó.4.1 ControllerSoftworeondSignols64
ó.5 Hordwore Allocotion ond Circuit Areo. . . . ós

ó.5.1 CircuitAreo of Stochostic Elements... ós
ó.óProcessingTime ...67

Tesiing ond Results . . 69

Z.l TestProblem69
Z.l.l NetworkError.69
7.1.2 NetworkTroining Resulis.7i

T.2{SimulqiedVisuol Environment...76
7.2.1 lnpvt Generotion....76
7.2.2Results...78

Conclusions ond Future Work 85

References. . . 87

VHDL Source Code 90
A.l sExp.vhd...90
A.2svdivcounter.vhd9]
A.3outcount wsel.vhd...92

vl1

List of Figures
Figure 2.1: Controsting number representotions in computotionol

mqchines. (o) BRI representotion, (b) Stochostic
representotion. 4

Figure 2.2:Binomiol distributions fordifferentvolues of P¡. ó

Figure 2.3: Plot of CV vs. P¡ for given volues of n. 7
Figure 2.4:n vs. P¡forgiven volues of CV.7
Figure 3.i: Stochostic multiplicotion circuiis. . . . I ì
Fìgure3.2: Stochosticlnverter... ...,l1
Figure3.3:StochosticSquoringCircuif.....12
Figure 3.4: (o) lntro-count summer (b) R|SM summer. 15

Figure 3.5: Auto-correlotion of the stochostic sum of five inputs. l5
Figure 3.ó: Auto-correlotion of the stochostic sum of eight inputs. ló
Figure 3.7: Generol Morkov Choin Stote Diogrom. . . . 17

Figure 3.8: (o) Stote diogrom opproximoling expþ2cxl (b) Stote
diogromopproximotingexp/-x')....l8

Figure 3.9: Output of exponeniiol function exp(-2Gx) 19

Figure 3.i0: Output of exponentiol function when opplied with rodiol
inputsof theform llPi-w I l.w=0.19

Figure 3.11:Outputof 2-D Gqussion function.m = [0,0]. G= 1500.20
Figure 3.ì 2: Output of 2-D Goussion function. m = [0.ó, 0.ó]. G = 1500. . 20

Figure 3..l3: Stqte diogrom of stochostic fonh¡/Nx/ function 21

vlll

ooaaoo
Figure 3.14: Comporison of slochosiic tonh¡/NxJ ond theoreticol

tonh(Nx/2J. N = ló.

Figure 3..l5: Comporison of stochostic fonh[Nx/ ond theoreticol
tonh(Nx/2/.N = 2048.

Figure 3..ló: (o) unipolor divider, (b) bi-polor divider, (c) squore
rootextroctor..24

Figure 3.lZ: Quotient estimote convergence of stochostic unipolor
divider(sofiworesimulqiion).....26

Figure 3.i8: Quotient estimote convergence of stochosiic unipolor
dividers(softworesimulotion)....26

Figure 3.l9: Output of hordwore unipolor divider circuit with
steppedvelocity.27

Figure3.20:Theoreticolsoturotingdivisionoperotion2T
Figure 3.21:Stochostic polynomiol circuits. (o) Bipolor, (b) Unipolor. . . . 28

Figure 3.22: Output of stochostic opproximotion to Sin(x//3 29

Figure 3.23: Oulput of stochostic opproximotion lo Cos(x)/3. 30

Figure 3.24: Output of stochostic opproximotion to Exp(x)/3 30

Figure 4.i: Stochostic bit streom source bosed on on
onolognoisediode.32

Figure 4.2:Schemoiic diogrom of on 8-bit moximol length LFSR. 33

Figure4.3: Woterfoll plotof ó4-bitLFSR..34
Figure4.4:Schemoticofoneighbourhoodof3CA. 35

Figure 4.5: Truth toble for Rule 30 CA, obbrevioted C430. 3ó

Figure 4.ó: Woterfoll plot of the 64-btt C430. . . . 37

Figure 4.7:Iime plotof 64-btl C438490.38
Figure 4.8: Cross-correlotion plot of odjocent bit streoms. 39

Figure 4.9: Auto-correlotion plot of bit streoms. 39

Figure 4.l0: B-bit vorioble probobility generoting circuit. . . . 41

Figure 4.1 1: Outputfrom Vorioble Probobility Generotor. 41

Figure 5..l: Decision regions formed by o) on MLP network ond
(b) on RBFnetwork.43

Figure5.2: RBFNeurol Networkdiogrom.45
Figure5.3: lsolotion in on HCLtroiningscheme49
Figure 5.4: Simplified diogrom of meqn vector convergence

inSClexomple.51

22

22

oaaooo
Figure ó.1: Hordwore component block diogrom. . . . 54

Figure ó.2: Nios Development Boord with Strotix FPGA.
Photo@AlteroCorp. 55

Figure ó.3: Hordwore component block diogrom of SANN. Só

Figureó.4: BlockDiogromof ó4-bitCA.58
Figure ó.5: Weight module block diogrom. Sg

Figure ó.ó:Sumsquore module blockdiogrom. ól

Figure ó.2: 'Svdiv' module block diogrom. 62

Figure 2.1: Somple 2-D lnput Spoce. 70

Figure 2.2:Softwore simulotion troining results. 2-D inputs,
2dotoclusters. ...71

Figure 2.3: Softwore simulotion. Networkerrorvs. Epoch.72
Figure 7 .4: Hordwore stochostic network troining results. 2-D inputs,

2dotoclusters. ...73
Figure 7.5: Hordwore stochostic system. Network error vs. Epoch. 73

Figure Z.ó: Hordwore Stochostic System. Neuron response from test sel. 74

Figure 7.7:Troining results for 3 input clusters. . . . 75

Figure 7.8: Stochostic system response from test vectors.
3Dotoclusters. ...75

Figure 2.9: Sensor ond light input grid used for network troining. Sensors
ore denoted by the red dots, troining light sources ore green,
test light sources ore blue. 77

Figure 2.10: Output from eqch neuron ofter troining. 78

Figure 2.1 i: Output from conventionol qrithmetic ANN with
odditive noise. . ..79

Figure 7 .12: Error corresponding to troining process of simuloted
BRI network. 80

Figure 2.13: Output from troined stochostic network. Bl

Figure 7 .14l. Error plot from troining the stochostic neurol network. 82

Figure 7. ì5: Output from pre-troined stochostic network, noise
vorionceisé=0.05..83

Figure 7..l ó: Output from pre-troined stochqstic network, noise
vorionceisé=0.10..83

List of Tobles
Tqble ó.1: Commond Chorocter Summory for Stochostic Control

Softwore
Toble ó.2: Summory of Hordwore Requirements for Stochostic

Logic Elements

Toble 7.1: Averoged Response of Troined BRI Neurons. o2 = O.l.
Toble 7.2: Averoged Response of Troined Stochostic

Network.oz=0.1....

64

66

BO

84

xl

Lisl of Acronyms
ANN - Artificiol Neurol Network

BRI - Binory Rodix lnteger

CA - Cellulor Automoto

DFF - D-type Flip Flop

FSCL - Frequency Sensitive Competitive Leorning

HCL - Hord Compelitive Leorning

LFSR - Lineor Feedbock Shift Register

MLP - Multi-Loyer Perceptron

PRNG - Pseudo Rondom Number Generotor

RBF - Rodiol Bosis Function

RNG - Rondom Number Generqtor

SA - Stochostic Arithmetic

SCL - Soft Competitive Leorning

VPG - Vorioble Probobility Generotor

xlt

lntroducfion
Stochastic computers are computers that operate on variables which are probabilistic in

naturefl]. This type of variable representation allows the use of computing elements

which are very simple and inexpensive to implement in a VLSI device. Stochastic

computing has gained attention in recent years as an efücient tool in implementing parallel

computation systems. Stochastic arithmetic allows many simple processing units to work

in parallel in order to process data. Advantages of this approach are low power

consumption, resistance to noise, small circuitarea, and simplicity of computational

elements. While the proliferation of low-cost microprocessors may make this irrelevant

for some applications, there is a class of computational system which would greatly

beneflrt from such a massively parallelizable architecture. These are artificial neural

networks (ANNs).

Artificial neural networks require many parallel processing units, which in a conventional

computational environment are extremely expensive in terms of silicon area. In particular,

the multiplication operation requires a very large circuit using conventional binary radix

integer (BRI) architectures. BRI multipliers require thousands of gates, while stochastic

arithmetic (SA) multipliers require only a single AND gate. In ANN applications there are

alarge number of multiplication operations that need to be performed, which creates

bottleneck issues in a system that has a single multiplier. Using stochastic arithmetic will

allow more multipliers to be implemented on a single device.

oaaoaa
Stochastic processing also has the advantage ofbeing able to vary the accuracy ofa

computation without changing hardware. Conversely, processing time may be increased to

obtain more accurate results. This means that if less accurate results are acceptable, the

system can produce these results at a higher rate. Conventional BRI systems have a set

precision based on processor implementation (governed by the width of the data bus), and

varying this is a complicated process that requires arithmetic and logical units to be

completely redesigned.

Stochastic signals require just a single connection to transmit data, as opposed to multiple

line buses of conventional computers. While it does take more time to transmit a data

value serially (directly dependent on the precision desired in the system), the circuit area

required to transmit data is greatly reduced.

The main disadvantage of SA systems is the variance inherent in estimating a random sig-

nal which will degrade results.

Previous work in this area has yielded various results. Different schemes of number

representation have been studied (111, [9], [3]), detailed analysis of multiplexing schemes

have been performed [16], and stochastic systems have been simulated in software [5].

Systems have also been implemented in hardware using various VLSI configurations

([17], [18], l22J,l25l). Different training methods have also been implemented and tested

([5], [0], [11]). Also the effects of multiple processing steps on stochastic bit streams

have been examined ([15], [21]). A key element in all of the implementation studies is that

all of the systems are easily expandable to accommodate any size of neural network. This

related wo¡k is surveyed in greater detail in the following sections.

Number Representotion
The uniqueness of stochastic computation is founded on the way numbers are represented.

Conventional computing systems use the BRI format to represent numeric data. This BRI

format allows a high data density, where each bit has a different significance or weight in

the total value of the number. This is where a stochastic system differs.

Data in a stochastic computer is encoded as a serial stream of bits, where each bit has the

same significance in the total value of the number. These bits are generated by a pseudo-

random number generator (PRNG). Each bit thus has a probability that it will be a'l' oÍ a

'0'. This probability is termed the generating probability.The bit streams are used to

encode the generating probability.

Figure 2.1 shows the value 6 represented as a conventional4 bit BRI number, and equiva-

lent representations in the stochastic format. Note that there are multiple ways to represent

the same number using the stochastic format. In the example, the value '6' is represented

by the stochastic bit stream due to the fact that there are six '1's in the stream of 16 bits. Of

course, as with any random process there will be some error with respect to the exact value

generated. The number represented in a stochastic stream is interpreted as a probability

value, as opposed to an integer value.

ooaoao

't23

*o2o

X:\2i.x.
/-¿ t
i

t(b) ¡: [0010101101010000], : [6],61_
x: [0001100100100110]s : [6]10

x : 110110101000001001s : [6]ro

x:z*,
i

Figure 2.lz Contrasting number representations in computational machines. (a) BRI
representation, (b) Stochastic representation.

A Bemoulli process is a single random event that has a binary outcome (e.g. flipping a

coin). Each bit is generated as a Bernoulli process, with probability P i that it will be '1'.

Consider a single bit as a binary random variable x, 1121. The formula for the Bernoulli

process is:

p(x) : PlQ - P¡)1-', (2.1)

If this is one element in a vector of n uncorrelated random variables then the probability

of the complete vectorx is given by:

n

p(x) : fI "í,t 1 - P,¡t -*, (z.z)

i:l
The length of the bit stream is referred to as the integration interval, because this is the

interval over which the bit stream is integrated to form an estimate of its value. In most

cases, many more than 64 bits are used to estimate the value P,. When the integration

interval is long enough and the Bernoulli probability is assumed to be constant for the

entire stream, then the signal can be estimated by:

+
(") x: [0110]2 : [6]10

1

xts

oaooao

P,- !- Q.3)N

Here Æ represents the number of events ('1's or pulses in this case), and l/ is the total

number of bit cells (Bernoulli trials) in the integration interval.

There are different ways to interpret the count of pulses in a stream. If the values are

viewed as strictly representing values from (0 -+ 1), then the representation is termed

unipolar. The magnitude of this vector is encoded as .S,Y : P¡.

Though useful in and of itself, the interpretation can be extended to represent values in the

range (-l -+ 1) by using a simple transformation:

SP : zsy-I=2pi-t=zL-t e.4),n
This is termed bipolar representation.

2.1 Precision of Stochostic Signols

The probability of k pulses in n bit cells is a binomial distribution given by:

pt&): C(n,þP!(r-P,¡n-t es)
where C(n, k) is the number of possible combinations of Æ elements from a set of n ele-

ments:

C(n, k) : n!

kt(n - k)t Q'6)

The mean and variance of this distribution are:

rtr: ZpoQòn:nP¡ (2.7)
k:0

n

o? : Lpo&)&-t-tt)2 : nP,(t-P¡) (2.8)

k:0

Figure 2.2 shows binomial distributions for various values of P , . The variance in the esti-

mate of P, (the primary statistic) can be clearly seen.

oaaaoa
The coefficient of variation measures the precision of the estimate of P¡ U2). The coeffr-

cient of variation is defined as:

cl/ : (2.e)

This equation is solved for n to determine the required count interval for a desired preci-

sion. For the unipolar case:

6k F-,
Ft 4 nPt

t-P, _ l-s,qlsfl'n: P{cn'z s;t l:'1
(2.10)

and for the bipolar case:

(2.n)

Note that for a lower value of p, a higher value of n is required for the same accuracy.

Figure 2.3 and Figure 2.4 show the relationship between the coeffrcient of variation and

P¡, and the required integration interval for a desired accuracy for the unipolar case.

010203040
of Counts

Figure 2.2: Binomial distributions for different values of P¡.

n _ Pil-P) lryì'_ (r+sixr-sf)lryl'
çr,- o.s)z\n!) (^si)2 \"!)

è

oñþ
e
0-

Exâmples of count prcbabil¡ty d¡stribut¡ons

p = 0.2, peak @ 14lu
l:7l p=g.5,peak@34/ô4
I p=0.8,peak@53/64

oaaaao

0.1

0.09

0.08

0.07

0.03

o.02

0.01

0
0.5
P¡

Figure 2.3: Plot of CVvs. P¡ for given values of n.

'10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0.5
P¡

0.06

ò o.o5

0.04

z
g

o
8
õ
o

0.40.30.20.1

CV E. P¡ for fxed N - Unipolâr Case

N w. PI fcr Un¡polar Representat¡on

CV = 0.01
CV= 0.03
CV = 0.05
CV = 0.2

\

\
\

\

\\<

Figure 2.4: n vs.4 for given values of Cl1

0.6 o.7 0.8 0.9

oaaoao
Since each bit in the BRI format has a different significance, the maximum error that can

occur for a single bit error is +2N- I in an N-bit number. In the stochastic case, the maxi-

mum elror in the total value for a single flipped bit is I where N is the number of bits in

the stream. This property makes stochastic computation an attractive option in a noisy

environment. This is noise is acceptable in an ANN application due to the fact that the

benefit of a quickly computed approximate answer can yield higher performance than a

very accurate answer arrived at slowly.

Stochqslic Arithmetic Logic
The majority of stochastic arithmetic operations can be performed by using simple logic

gates and counters, as opposed to complicated digital circuits such as multipliers which

can require thousands of logic gates. Using circuits of such large size in a neural network

application is prohibitive in terms of silicon real estate. Considering this, we will begin

our discussion of stochastic arithmetic hardware at the simplest level in terms of circuit

complexity, the multiplier.

3.1 Multiplicotion

The basic function of an ANN is to computer a weighted sum of an input vector with a

parameters of the network. In the worst case, ANNs require O(nz) multiplication opera-

tions, where n is the number of neurons in the network. BRI multipliers are very complex

circuits, hence there are very few ofthem in a general purpose processor (usually only

one).

Using a stochastic architecture, multiplication is the simplest operation to perform due to

the probabilistic nature of the number format. A simple AND gate is all that is required to

perform unipolar multiplication, and a simple XNIOR gate can perform full four quadrant

(signed) multiplication for bipolar values [1]. Consider two stochastic bit streams, A and

B. The generating probability for each stream is:

meaning that bits in stream A have probability I of being a 'l' and similarly for stream B.

For the unipolar case:

P(A: r) : A

P(B: r) : B

P(Y:1):r:AB
and for the bipolar case:

Y : AB + (1 -l)(1-B)
Since in the bipolar case:

P(A: 1)

P(B : I)

ooaoao
(3. 1)

(3.2)

(3.3)

(3.4)

(3.s)

(3.6)

_ lA+rl
2

_ [B+1]
2

we have:

Y:zP(Y:1)- 1- ØB+r)
2

(3.7)

where Iis the output in both cases. In the unipolar case, the ouþut of the AND gate is '1'

if and only if both of the input values are ' 1 ' . These input values are ' I' with a probability

of A andB respectively. If these input streams are independent, then the ouþut probability

if the product of the two input probabilities.

If both inputs to the multiplier are Bemoulli sequences, the ouþut of a multiplier is still a

Bernoulli sequence. However if one of the inputs is not a Bemoulli sequence, the output

will still have the correct primary statistic but will not be a Bernoulli sequence 15].

It is important to determine the statistics of the resulting signal from an arithmetic opera-

tion such as multiplication. The expected value of each input is given by the expression for

the mean of a binomial process, which says that the average number of events (in this

case, the number of '1's) is equal to the probability of generating a '1' times the number of

trials:

E(X¡) : npi (3.8)

The expected value of two multiplied streams of bits can be modelled as a binomial pro-

cess with the value of z being the same but with the value of p, being the product of the

two inputprobabilities po : ptpz lIl. The expected value of the ouþut is then:

10

oaaoaa

;[å:;t=å]D* P(B:l):n$a(l -A)(1 -B)

Figure 3.1: Stochastic multiplication circuits.

E(X,) : nptpz (3.9)

Circuit diagrams of stochastic multipliers are shown in Figure 3.1

3.1.1 Multiplicotion by -1
To multiply by -1, a NOT gate is required. This is obviously only applicable in the bipolar

representation, because there are no negative numbers in the unipolar interpretation. This

is best shown with a numerical example.

For instance if an input stream has:

p,:0.6t -+0.8¿/ (3.10)

then the ouþut stream will be given as:

Po : | -py : o.Zu -+ -0.68 (3.11)

The variance of the ouþut stream is the same as the variance of the input stream. Figure

3.2 shows a circuit diagram of a stochastic inverter.

3.1.2 Squoring Operotion
While it is a simple operation to multiply two numbers together, multiplying a bit stream

by itself is slightly more diffrcult. In the case of unipolar arithmetic, applying the same

input stream to bothports of an AND gate will give an output stream that is identical to the

pt-Þ- po Po: r-p! : -p!

ll

Figure 3.2: Stochastic Inverter.

P(X=1)=N

aaaaaa

P(Y='l)=f,2

Figure 3.3: Stochastic Squaring Circuit.

input stream. In the case of bipolar arithmetic, using the same stream as input to both ports

of an XNOR gate will result in an output stream of '1's. This is why it is important for

input streams to be independent for the arithmetic units to function properly. To produce

independent bit streams, a stochastic delay element is used. This is accomplished by using

a D-type flip flop. A bipolar squaring circuit is shown in Figure 3.3. The XNIOR gate is

substituted for an AND gate to square unipolar bit streams.

3.2 Stochostic Summotion

There are multiple techniques that can be used to perform the summing operation ([],
l5l). The simplest method is to use an OR gate to perform an approximate addition:

Y: A(I -B)+ B(r-A)+AB
Y: A+B-AB

(3.r2)
(3. l 3)

The approximation is accurate for small values ofA or B, but deteriorates if both are large.

A more accurate way to perform addition is to use a multiplexor (MI-IX) with stochastic

selector signals. Since probability values are the quantities represented, the output stream

probability cannot be greater than 1. This gives stochastic addition an inherent averaging

properly:

t:fi}., (3.r4)

where N is the number of inputs.

Stochastic summations can be viewed as a Poisson process. Poisson processes model inde-

pendent events at a certain location (i.e. a stream of independent bits arriving at the input

of a MUX). Assume that a stream of pulses arrives at a MUX input with rate l" in a Pois-

12

oaaaaa
son process. The pulses are collected over a time period T , and the probability of k pulses

is given by:

p(k):%- (3. 1 5)

with the expected number of pulses in an interval given by E(k) : XT . The Poisson dis-

tribution is a valid approximation to the binomial distribution of a bit stream provided that

the integration interval is large [16]. When lz of these independent streams are summed

(with rates 7" p Ì"2, . . . , L-) the total rate is given by:

Ìtr"r.r: irL,
i:l

(3.16)

Since these streams are stochastically multiplexed, the average rate is observed at the out-

put of the MLIX.

There are two different approaches that can be used to combine stochastic bit streams that

have been defined by Card 176l: inter-count multþlexing andintra-count multiplexing.

Both of these methods can be implemented in hardware using a multiplexor, driven by

log2m select lines.

In the case of inter-count multiplexing, each stream is counted for an equal proportion of

the counting interval, then the counted stream is switched. Thus, all streams are guaran-

teed to contribute equally to the final sum. In the case of intra-count multiplexing, the

counted stream is switched randomly after each clock cycle. Provided the integration

interval is long enough, all inputs contribute equally to the total rate of the output stream.

The main difference between these techniques is that in the case of inter-count multiplex-

ing, the output rate is different depending on which stream is selected at the current time,

giving a different pulse rate on the ouþut. Another drawback of the inter-count method is

the increased variance due to the doubly stochastic process, though the primary statistic is

preserved.

In the case of intra-count multiplexing, the probability of a certain stream being selected,

and a pulse being present on that stream on the same clock cycle, are independent. On

average, the rate of ouþut pulses is the same, given by the average of the input probabili-

13

oaaaaa
ties. The main drawback of the intracount method is that an extended count interval is

required due to the fact that all input permutations are required (though in a high speed

computational system this is not a significant factor). The result of this fundamental differ-

ence is that the ouþut of an intra-count multiplexor is still a Poisson process, while the

output of an inter-count multiplexor is not.

3.2.1 A Problem With Multiplexors
A proposed way of adding numbers in a stochastic system is to present all of the input

streams to a multiplexor and choose a different binary stream at each clock cycle. But

what happens when the number of input streams are not present in powers of 2?

There are two potential solutions to this problem. First, zero value streams could be

applied to MLIX inputs that aren't needed (a constant '0' for unipolar, a p : 0.5 stream

for bipolar). This will reduce the total value of the ouþut rate due to the averaging pro-

cess, but will approximate the result with a purely combinational circuit.

A better solution [5] is to use an N-to-1 switch where N is the number of inputs to be

summed. This will be termed the Random Incremental Selection Method (zuSM).The

switch controlling the ouþut stream is selected by a single random signal which would

change the selected input ifit is a '1' (selecting the next stream sequentially), or not

changing it if it is a '0'. If the selector stream has a generating probability of p : 0.5 it is

observed through software simulation that the channel selection distribution is uniform

(which is desired) for large integration intervals. A diagram of an N-l MUX and a RISM

surnmer are shown in Figure 3.4.

Software simulation has also shown that the error in the approximated sum is the lowest

for RISM adders. Auto-correlation for the intercount summer ouþut is the highest of the

three methods, meaning that the ouþut stream is less random in nature compared to the

other two count methods. The results from summing 5 streams are shown in Figure 3.5.

Results from summing eight streams are seen in Figure 3.6. The significance of these two

plots is to show the effects of using a MIIX type summer when inputs are not present in a

power of 2.

14

oaaoao

(a)

XN

x2

xr

Sel

(b)

tr'igure 3.42 (t) Intra-count summer (b) RISM summer.

co6

7000

6000

5000

4000

Auto Corelation of lntercount Addition

]\ est. s,'
t1
¡1
1\

__

0.42981 Enor : 0.0024103

!
I

.-.---'---'.--__l
'1.636 1.6365 1.637 '1.6375 1.638 1.6385 1.639 1.6395

Auto Cor€lation of lntEcount Add¡tion
1.64 1.6405

x'l0a7000

6000

5000

/ì Est. Sum : 0.43164 Eror: 0.00057921
t\
i\

1l

r.6405

x lO

oEJ
oo

oo

oo

1.636 1.6365 1.637 1.6375 1.638 1.6385 1.639 1.6395 1.64

Figure 3.5: Auto-correlation of the stochastic sum of five inputs.

Onlv one FF is set at
a tirie.

1.6365 1.637 1.6375 1.638 1.6385 1.639 1.6395 1.64
Auto Cotrelation of Random lncremental Selector Add¡t¡on

t5

ooaaao

1.6375 1.638 1.6385 1.639 1.6395
Auto Cor€lation of lntEcount Addit¡on

1.64 1.6405

Y ln

9000
oE

i eooo
oo> 7000

6000
1.636 1.6365

x 1oa

Figure 3.6: Auto-correlation of the stochastic sum of eight inputs.

This data was produced using a software simulation to randomly generate the operands,

and stochastically estimate the sum. The error value indicated is the difference befween

the estimated sum and the calculated sum.

In the final implementation of this system, the inha-count multiplexing system was used

where there are two inputs to be summed. This is due to the simplicity of a 2-1 MIIX cir-

cuit. Where more than 2 inputs are required the RISM selector is used. The RISM tech-

nique also has the advantage of requiring a single select line, although the circuit is more

complex.

3.3 Stochost¡c Computotion Using Morkov Choins

Aside from simple arithmetic operations, more complex mathematical functions can also

be computed stochastically using sequential computation units. The most common build-

ing block for these units is the stochastic counter, which is a digital counter that saturates

at either end of its count cycle. This means that if the maximum count is reached, the

counter does not overflow to zero on the next increment cycle, similarly there is no under-

ii Est. Sum : 0.60736 Eror: 0.040082

1.637 1.6375 1.638 1.6385 1.639 1.6395 1.64
Auto Cotrelat¡on of Random lncremental Selector Addit¡on

-::]---::::i
ji:: :.::-:

1.636 1.6365 1.637 1.6375 1.638 1.6385 1.639 1.6395 1.64 1.6405

16

ooaaao
flow when decrementing from a zero state. These counters can be used to implement a

Markov chain or an elror counter that have interesting applications in stochastic computa-

tion.

The state transition diagram of a generic Markov chain is detailed in Figure 3.7. The

machine is initialized to some state, and traverses the state space based on a random input

with probability p. On each clock cycle, if the input is '1' the state will move up the chain,

or if the input is '0' the state will move down the chain. The value of p can be a function

of several variables thatvary the state transition probabilities depending on the current

state of the machine. Different mathematical functions can be realizedby using simple

combinational logic on the outputs of the counter, or by changing the probabilify with

which the counter will increment or decrement.

3.3.1 Exponent¡ol ond Goussion Functions

The implementation of a radial basis function (RBR defined in chapter 5) ANN requires a

function that varies based on the 'distance' (usually Euclidean) of the input to a certain

target parameter. While there are many functions that can accomplish this task, the most

commonly used is the Gaussian function [2]. There are two potential implementations of

this in a stochastic system. Firstly, a Gaussian function can be directly approximated [20].

Secondly, an exponential function can be implemented and supplied with a distance vary-

ing input [5].

These methods both use a stochastic counter combined with ouþut logic. The precision of

the approximation of each function can be increased by increasing the number of states in

Figure 3.7: General Markov Chain State Diagram.

17

caaoaa
the counter, although this comes at the cost of requiring more clock cycles for the counter

to converge to a steady state [19]. The exponential function has a software variable gain

parameter, while the Gaussian function does not (it is f,rxed in hardware). Also, the

approximation of the exponential function requires that the number of states l/ be signifi-

cantly greater than the gain parameter G [5]. The state machine of each function is shown

in Figure 3.8.

The input for both functions must be encoded as a bipolar signal, and the output is

encoded as a unipolar signal.

Figure 3.9 shows the output of the exponential function with N : 2048 for various values

of G. Figure 3.10 shows the same exponential unit with the input representing a distance

measure between two variables. The function saturates at low values of Ç resulting in a

wide variance. Figure 3.11 and Figure 3.12 are exponential functions implemented as 2-D

Gaussian functions. The mean of the first function is at [0,0] and the second function is

l.

I

p

I': 0 --l

t- Y:o-+-Y:, -f-':'-l

(b)

Figure 3.8: (a) State diagram approximating exp(-2Gx) (b) State diagram

approximating exp(-/).

18

I

P.

Figure 3.9: Output of exponential function exp(-2Gx).

Figure 3.10: Output of exponential function
form llP,-wll. w: 0.

oaaoao

1

0.9

Exponential Function Output

Â G=2000
. G=1850
a G=1550

G=50

Exponential Funct¡on Output W¡th Radial lnput

^
G=1950

t G= 1550

: G=550

when applied with radial inputs of the

19

ooaaao

2-D Stochaslic Exponent¡al Unit :: G = 1500
1

0.8

0.6

0,4

o.2

i-0

-o.2

-0.4

.0.6

-0.8

-1
0

x2

Figure 3.1L: Output of 2-D Gaussian function. F: [0,0]. G: 1500.

1

0.8

0.5

0.4

0.2

>¡- 0

-o.2

-0.4

-0.6

-1 .0.4 -0.2 0 0.2 t.4
x2

-1 o.2-0.2-0.4

2-D Stochastic Exponential Unit :: G = 1500

Figure 3.12: Output of 2-D Gaussian function. p = [0.6, 0.61. G = 1500.

20

oaooao
[1,1]. Output from the Gaussian function is not shown because it is not used in the final

implemented system. Data for these plots was collected from a hardware implementation

of this module, not software simulation.

3.3.2 Hyperbolic Tongent Function

A hyperbolic tangent function can be approximated in a similar fashion to the exponential

function. Both the input and output of this function are encoded as bipolar stochastic sig-

nals. The approximation is valid for smaller values of i/ (< 256), and is poorer for high

values. The state diagram for a hyperbolic tangential function can be seen in Figure 3.13.

The output of a tangential function with a gain parameter of ^ðy': 16 is shown in Figure

3.14. Figure 3.15 shows the ouþut when the value ofNis increased. The results shown

here are for a tangential function simulated in software, although the hardware circuits

were also implemented and the results are comparable. The tangential function is prima-

rily used for multi-layer perceptron neural networks that are beyond the scope of this

project.

3.3.3 Division/Squore Rool Extroction
Division is a diffrcult operation to approximate accurately using stochastic arithmetic.

This is due to the fact that the range of values is very limited, and division by a suffrciently

small number will easily produce a result outside the allowable range.

[_
Y:o Y: 7 ---l

Figure 3.13: State diagram of stochastic tanh(Nx) function.

21

ocaoaa

1

0.8

0

0.4

0.2

Ào0

4.2

{.4

4.6

4.8

-1
_l

Figure 3.14: Comparison of stochastic tanh(Nx) and theoretical tanh(Nxl2). N:16.

4.2

4.4

4.6

4.8

-1
i....¡...¡.........1.........¿.........L¡..¡-i,r.

-0.8 4.6 4.4 4.2 0
P.

o.2

Figure 3.15: Comparison of stochastic tanh(Nx) and theoreticaltanh(Nxl2). N=2048.

Output of Tanh Function - N = 16

Output of Tanh Function - N = 2048

22

oooaao
Other techniques of number representation such as the ratio method (11], [13]) can repre-

sent values from (-co, co) . This number format allows division to be implemented with an

inverter and a multiplier. However, this format also makes other arithmetic circuits more

complicated to implement. A higher precision of generating probability is also required

for this method due to the fact that the range of numbers is much greater.

The basic technique for stochastic division in this coding scheme is to use a stochastic

counter to represent an elror between the estimation of the quotient and the real quotient

[1]. Suppose that the ouþut of a unipolar stochastic counter is assumed to be p n, which is

an approximation to pr/py. This meansthat pnp, should be equal to px. We can then

define an enor function:

e : PyPq- P* (3.t7)

If the error function is squared, then it is always positive and bounded below by 0.If po

changes such that its derivative is negative, e wiTl eventually be forced to zero. Taking the

derivative of the squared er¡or function with respect to time (or equivalently pu which is

the only stochastic process that varies with time) we arrive at the following expression:

:2"iqpy (3.18)

The derivative of the square of the error function must always be less than zero for the

error to reduce. Since p, is always positive (unipolar divider), e and p o must be chosen to

have opposite signs. This is realized as follows:

io: -o" : -a(pzpo-p) (3.1e)

where c¿ is a constant. If the product of pnp, is formed and applied to the decrement line

of the counter, then this relation will hold. Eventually the system will reach a steady state

of:

PyPq: Prè Pq : P*/Py (3.20)

The same logic can be applied to derive circuits for a bipolar divider and a square root

extractor. However, since these circuits are not used in this application, they will not be

examined further.

23

oaaaaa

(a)

(c)

Figure 3.16: (a) unipolar divider, (b) bi-polar divider, (c) square root extractor.

The division operation can be extremely slow to converge if the divisor is small (this is the

input that determines if the counter will decrement). This is because many clock cycles

can occur before a state transition occurs. The convergence time will be greatly increased,

and the error, when estimating the quotient, will be high (because the integration interval

is fixed).

A solution to this problem has been proposed and simulated in software by Brown [5].

Further efforts have produced a hardware version of the circuit that is used in this thesis

research. Block diagrams of divider circuits and a square root extractor are shown in

Figure 3.16.

The proposed technique uses what Brown refers to as stepped velocity division. The major

feature of this technique is that instead of incrementing or decrementing the counter by 1,

the state of the counter varies by a dynamic modulus. The algorithm is as follows:

{
Y

{
Y

24

ooaoao
l.The main count register 'CNT' is initialized to its maximum value (MAX), a register

containing the variable 'SCHEDULE' is initialized to MA)08, and a third register

called C_INT initialized to '0'.

2.Af1er each clock cycle, if the increment line is '1' and the decrement line is '0' then

SCHEDULE is added to 'CNT'. If the increment line is '0' and the decrement line is

'1' then SCHEDULE is subtracted from CNT. If both the increment and decrement

lines are '1' or '0' then CNT remains unchanged.

3.If the increment line is '1' and the decrement line is '0'then SCHEDULE is also

added to C_INT.

4.If C_INT:0 (overflow) then SCHEDULE is divided by two. This process is

repeated until SCHEDIILE becomes '0'.

The main counter covers the same range of values at each stage (value of the SCHEDULE

register) due to the fact that C_INT takes longer to overflow as SCHEDULE is reduced.

The total quotient is the integral of the stochastic stream with P¡(t) : CNT(I).Since this

technique converges much more quickly than the conventional method, the error of the

quotient is much lower. Evidence of this can be seen in Figure 3.77 andFigure 3.18.

Where two different quotients are evaluated fo¡ 16384 clock cycles. The error of the

stepped velocity technique is observed to be significantly lower than that of the conven-

tional (fixed velocity) method due to the decreased convergence time.

Figure 3.19 shows the ouþut of a unipolar stepped velocity divider implemented in hard-

ware (the processing time is 16384 clock cycles). For reference, a plot of the theoretical

results for this function can be seen in Figure 3.20.

The stepped velocity technique can also be applied to square root extraction, and any other

computational element involving error minim ization.

25

'1

0_9

0.8

o.7

0.6

0.5

o.4

0.3

o.2

0.1

0
8000 10000

Clæk Cycle

Figure 3.17: Quotient estimate convergence of stochastic
simulation).

o
o
Ø
o

o(J

ooaoaa

unipolar divider (software

o
6

U)

o

:
(J

Stepped V€loc¡ty \6. Conrentional Technique - Unipolar Dilision

Con€nt¡onal

-
Stêpped Velocity

x=0.1,y=0.3
Des¡red Quotient = 0.33333

SV Est¡mate =0.34216

Conv Est¡matê =0.47479

0.

0.8

o.7

0.6

0.5

0-4

0.3

o.2

0.1

0 8000 10000
Clock Cyclo

12000

Figure 3.18: Quotient estimate convergence of stochastic unipolar dividers (software
simulation).

Stepped Veloc¡ty 6. Conwnt¡onal Technique - Un¡polar O¡vis¡on

Conwntional
. . Stepped Velocity

x=0.2,y=0.8
Des¡red Quotient = 0.25

SV Est¡mate =0.25684

ConvEst¡mate =0.23315

\.;\"'"

26

Unìpolar D¡vider Outptl - x1lx2

oaaoaa

1

0.9

0.8

0.7

0.6

x' 0.5

o.4

0.3

0.2

0.1

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

Figure 3.19: Output of hardware unipolar divider circuit with stepped velocity.

0.9

0.8

0.7

0.6

0.5

0-4

3

2

I

4

0.9

0.8

0.7
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.? 0.3 0.4 0.5 0.6 0.7 0.8
x.,

Figure 3.20: Theoretical saturating division operation.

0.3

0.2

0.1

TheoEtical Output of SâtuEt¡ng D¡vis¡on - xt/x2

27

3.4 Stochostic Polynomiols ond
Approximotions

oaaoao
Functions Bosed on Toylor Series

It is possible to approximate any non-linear function using a Taylor series expansion [31].

Taylor series expansions approximate functions using a sum of polynomial functions with

multiplicative coeffrcients :

(3.21)

n:0
When xo : 0, a Taylor series is also commonly referred to as a Mclaurin series.

In theory one could construct a circuit to approximate a Taylor series expansion of a non-

linear function. It is possible to represent an nth order polynomial function using (" - l)
stochastic delay elements [14] and an n -input AND gate o1 n - 1)C{OR gates for the

cases of unipolar or bipolar respectively. These circuits are shown in Figure 3.21 .

For an input range limited of (-1, 1) a third order approximation of a Taylor series is suf-

ficient to describe a sine or cosine function. This is convenient when limited to 8-bit preci-

X
CLK

f(,):îf,¡rx-xs)n

XN

Figure 3.21: Stochastic polynomial circuits. (a) Bipolar, (b) Unipolar.

28

aaaooa
sion stochastic generators because it is impossible to represent a multiplicative factor less

than l/255.

However, a problem arises when such an approximation is implemented in a stochastic

architecture. When n terms are summed there is an inherent division by n. Regardless of
this averaging, the stochastic Mclaurin series gives a reasonable approximation to the

sine/3 and cosine/3 functions over the allowable input range. The input is encoded as a

bipolar signal in both cases, and the ouþut is bipolar as well. The ouþuts of the sine and

cosine function can be seen in Figure 3.22 andFigure 3.23 respectively. The exponential

function is also approximated, though not as well. The output of the exponential function

can be seen in Fig:ure 3.24.

-'l

0.6

o.2

4.2

-1 4.2 0 0.2 0.4 0.6 0.8 1

x

Stæhastic McLaurin Series Apprcx¡mation - Sin(xy3

Mclaurin Series
.- Stochast¡c Approx
Ò Real

:õìo1'O''

^ô'rr. íì...Y---\.'-J

Figure 3.22: Ouþut of stochastic approximation to Sin(x)/3.

29

oaaooo

Stochastic McLaurin Series Appox¡mat¡on - Cos(xy3

McLaurin Sedes

- - Stochast¡c Approx
a, Real

oo

0
x

Figure 3.23: Output of stochastic approximation to Cos(x)/3.

1

0.8

0.6

0.4

o.2

0

4.2

-0.4

-0.2

o
U

-1
-t

X

-0.8 0.4

Stochast¡c McLaurin Series Approximation - Exp(xy3

McLaurin Series
-- Stochast¡c Approx
,0 Real

ö,.-l)' -,....^,'
'l 'i- -- "

^ Q,.--'"''
ô --v*'_

, ...(v i
. .:r"-"'

^ a -ú' c^r'.'-'" "

^ ,' c' 1.\.,'t '- -

i)(ru

Figure 3.24: Output of stochastic approximation to Exp(x)/3.

30

Rondom Number Generotion
"Anyone who considers arithmetical methods of producing random digits ß, of

course' in a state of sín'"
- John von Neumann

To generate stochastic bit streams a source of random bits is required. There are several

possible approaches. It is important to state that it is impossible to produce truly random

numbers with a digital circuit, they are instead pseudo random.

It is also desirable to have a 'simple' configuration from the perspective of the layout of a

hardware circuit. Each bit stream produced should have a consistently minimal auto-corre-

lation value as well as a minimal cross correlation value (when cross-correlated with any

othe¡ stream ouþut from the RNG). It is also desirable that each bit stream should have a

probability p(x : 1) : 0.5 of each bit being a '1' or '0'. The reason for these require-

ments will become clear in the following discussion.

There are several properties that a suitable PRNG should have for application to stochastic

signal generation. A set of statistical 'randomness' tests have been developed by Marsa-

glial. It is beyond the scope of this work to explain each test in detail, suffice it to say that

there are seventeen tests in this suite which examine various aspects of the output of a

I . Available at http ://stat, fsu.edu/-geoldiehard.html

31

oaaooo
PRNG both bit-sheam-wise and as a whole. Passing this stringent suite of tests is a rea-

sonable requirement for an RNG in this application.

4.1 Rondom Number Generotion Using on Anolog Source

One potential method of random number generation is to use a noisy diode whose ouþut

is compared to a normalized input voltage. This comparison is converted to a binary value

and clocked into a flip flop to produce a digital bit stream []. A circuit diagram for an

analog noise source is shown in Figure 4.1. Diode sources are sensitive to temperature, so

open loop operation will yield sub-optimal results. Closed loop implementations are

readily available, however this choice is still less than optimal in a purely digital environ-

ment.

4.2 Rondom Number Generotion Using Digitol Sources

A more suitable method for VLSI implementation of a PRNG is the use of a digital circuit.

The configuration of such devices is limited to two major formats, the linear feedback

shift register (LFSR) and the cellular automata (CA). Other methods have also been exam-

ined using VlSl-friendly techniques, such as tunable ring oscillators [23].

For the purposes of this discussion, the terms 'cell', 'bit', and 'flip-flop' will be used

interchangeably. The term 'tap' will refer to the ouþut of single flip-flop from within a

register.

Vcc\./ Stochastic
It Output

*o,,u Þrl *rhl*4- P(X=r) =.5

-,-
Diode -I I= clock

Figure 4.1: Stochastic bit stream source based on an analog noise diode.

32

oaaoao
4.2.1 Linear Feedbqck Sh¡ft Registers

LFSRs are avery hardware effrcient way of producing long sequences of random bits.

There are many configurations of such registers that will produce a maximal length

sequence, meaning that the RNG will visit all possible states before repeating a state. This

is a desirable properly from the perspective of implementing an RNG. A block diagram of

an 8-bit LFSR configured to generate a maximal length sequence is given in Figure 4.2.

The output from a 64-bit LFSR can be seen in Figure 4.3. The plot is a time-value plot of

the bits in the LFSR. Time increases up the vertical axis, showing the state of each bit in

the register for each time step. White squares represent ones, black squares represent

zeros.

This RNG does not pass the suite of tests designed to ensure adequate randomness

described by Hortensius et al [7]. This is due to the fact that the output pattem is highly

regulaq even though the total value of the register is random in sequence. Such temporal

and spatial correlation is also undesirable in the application of stochastic computing.

4.2.2 Cellulor Automofo
CA research was pioneered by Stephen Wolfram who used CAs as a tool to model various

complex processes (e.g. turbulent fluid flow, biological growth). Similar to LFSRs, CAs

are also constructed using a register and feedback. CAs are similar in operation to LFSRs

but the feedback is implemented slightly differently.

Figure 4.2: Schematic diagram of an 8-bit maximal length LFSR.

33

oaaaaa
Wolfram has classified l-Dimensional CA's into four distinct groups. Class 1 CAs evolve

to homogeneous global states, Class 2 CAs evolve to periodic structures, Class 3 CAs

remain in a chaotic state, and Class 4 CAs generate complex localized and propagating

structures. The only suitable candidate for random number generation is Class 3.

There is also a distinction that can be drawn based on the starting condition of a CA. CAs

that produce random streams from a fixed initial condition are termed autoplectic,whlle

CAs that have a pseudo random initial condition are termed homoplectic. The most inter-

esting CAs for this application are Class 3 autoplectic CAs, which offer the greatest sim-

plicity to a stochastic processing system [27].

CAs have a regular structure that does not change depending on their width. CAs also

employ local routing, which is attractive from a circuit layout perspective. The boundary

conditions of a CA can be cyclic or open, meaning that the ends either wrap around or are

fixed, respectively. In this application, cyclic boundary conditions are chosen.

Waterfall plot of LFSR

Figure 4.3: Waterfall plot of 64-bit LFSR.

34

oaaoao
CAs can also be connected in a two or th¡ee dimensional fashion, allowing for much more

complex output pattems, however, the overhead in terms of a VLSI implementation as

compared to a simple 1-D case make these a less attractive option [8].

4.2.3 CA30 Exomple
The behaviour of a CA is determined by the rule of the CA and the feedback interconnec-

tion scheme. Both of these features will be described in the following example.

Perhaps the simplest CA is the "Rule 30 nearest neighbour" CA, seen in Figure 4.4.

The three nearest neighbours are fed back through a logic function, which determines the

next state of each bit in the register. The feedback taps are abbreviated with the notation

{i - l, i, i + I } , meaning that the cells on the immediate left and right as well as the ith

cell are fed into the logic function.

Wolfram has developed a naming system for CAs that specifies the feedback func-

tion.Since there are three feedback signals, there are 8 conditions to which any cell can

respond. This means that there ur"22t possible implementations of this feedback connec-

tion. Figure 4.5 shows how the rule system for naming CAs is specif,red. The output for the

truth table is represented as a binary number, which is then convefed to its decimal equiv-

alent. This decimal number is fhe Rule Number of the CA.

xí

x¡-r --- I r- r¡* r

xo xI x2 x3 x4 x5 x6 x7

Figure 4.4: Schematic of a neighbourhood of 3 CA.

35

aaooao
Note that the rule number is independent of the feedback scheme so there are:

possible feedback line configurations, where n is the number of bits in the CA and Æ is

the neighbourhood size of feedback connections. This gives the total number of possible

configurations of CAs consisting of n bits, each exhibiting different properties.

Figure 4.6 shows the ouþut of a 64-bit CA30 with nearest-neighbour connections and

cyclic boundary conditions. The CA is initialized in position 1 (white squares are '1's,

black squares are '0's). The regular pattern of triangles can be observed, even though this

is classified as a class 3 CA [7]. The first 60 time steps are shown, progressing from the

initialization state at the bottom of the chart. While there is a reasonably low cross-correla-

tion between adjacent streams of bits as well as a low auto-correlation value, this RNG

does not pass the suite of DIEIIARD tests due to the semi-regularity of the output as a

whole [8].

CA30 Truth Table

xi xi+
r

0

I

I

1

1

0

0

0

(4.1)

[00011110], -+ [30]ro + CA30

0

0

0

0

1

1

1

1

0

0

I

1

0

0

1

1

0

I

0

I

0

1

0

I

Figure 4.5: Truth table for Rule 30 CA, abbreviated C430.

36

oacoca

60

55

50

45

40

35

30

25

20

15

10

5

Tap #

Figure 4.6: Waterfall plot of the 64-bit C430.

4.2.4 CA3849-O

The poor overall randomness properties of CA30 make it undesirable in this application.

A¡other CA that has been examined in the literature that passes the DIEHARD suite of

tests is C,A.38490 [8].

This particular implementation uses a "neighbourhood-of-four" configuration with offsets

of { i - 3, i, i + 4, i + 9 } for the feedback paths. The neighbourhood-of-four configuration

is chosen because most FPGAs use a 4-input look up table to implement logic functions

(more on this later). Due to the fact that the feedback taps ge well apart, the C438490 has

consistently low cross-correlation between adjacent bit streams.

The C438490 is the CA chosen for this application, because of the properties discussed

above. In the final system implementation six 64-bit CAs are used, each with different

autoplectic starting conditions.

Ø

.E
ts

Waterfall plot of CA30

37

ooaoao

60

55

50

45

40

35

30

25

20

tf,

10

5

Tap #

Figure 4.7zTime plot of 64-bit C438490.

Figure 4.7 shows the time plot of the output of C438490 , initialized at position 1. After

approximately 30 time steps, no regular patterns can be seen in the output, contrasting

with the output of the C430.

Figure 4.8 and Figure 4.9 show the correlation befween the ouþut streams of all three

RNGs discussed. The LFSR has the poorest auto-correlation sequence, while both CA

implementations are comparable. The cross correlation of the C438490 is more consistent

than that of C430.

Ø

.E
F

38

Waterfall plol of CA€8490

oooaaa

,rI
,.a L

I

0.4 t-
^l"

¡00

,rl
..L

Io.ol
-100

,rl
Inuf

o.oY

rI

;t
100

oEj

oo

o!f
coo

o

=cod

-20 0 20
Crosscorelation of C438490

0
Offset

Figure 4.8: Cross-correlation plot of adjacent bit streams.

o
a

oo

oÞ

oo

o
!
J

o6

-100

0.8

0.6

0.4

1

0.8

0.6

0.4

1

0.8

0.6

0.4

-100

-20 0 20
Autocorelation of CA38490

-20 0 20
Autoconelat¡on of LFSR

-100 0
Offset

Crcsscorelation of CA30

Figure 4.9: Auto-correlation plot of bit streams.

39

oaaaao
4.3 Vorioble Probobility Generotion

Now that a suitable PRNG has been selected, it is desirable to be able to produce a sto-

chastic bit stream with any given generating probability value in the range of (0 -+ 1) .

Let A¡, i : 7,2,3... be a set of independent sequence of binary random variables each

with a generating probability of p¡ : 0.5 [1]. Consider Boolean functions of these vari-

ables:

Bt: At

B, : 4A,
Br: 4ArA,

ar: 4,qr...¿,

X : XrBr+ XzBz+ X3B3+ ...

has a generating probability equal to x.

where n is the amount of precision desired. These functions are such that no more than

one of the B, may be equal to'1' at a given time, i.e. B,B¡ : 0,Yi +j. The generating

probability of each of the .B,s is B-t (binary weighted). since rhe .B,s are independent rhe

probability of each ,8, sums to 1 when fed through an OR gate. So, if we wish to generate

a stream with a probability represented by a binary vector x : XrXrXr... then:

(4.2)

(4.3)

(4.4)

(4.s)

(4.6)

A circuit to realize this function can be readily constructed using simple combinational

logic, as shown in Figure 4.10 for n : 8. The probability generator has a repeating struc-

ture that can easily be modified to accommodate any desired precision.

The circuit in Figure 4.10 is capable of generating stochastic streams with bit probabilities

of all values in the required range. Figure 4.11 shows the integration of each value of the

resulting stochastic stream for 16384 clock cycles. The difference between the expected

value of the count and the actual value of the count is shown in the lower plot. The maxi-

mum elror is less than one bit in the estimation of the generating probability of the stream.

All of the necessary computational units required to implement a stochastic artificial neu-

ral network in hardware have been specified.

40

oaacao

Figure 4.10: 8-bit varÍable probability generating circuit.

Output of Variable Probabìl¡ty Generator

À

0.8

0.6

0.4

0.2

00 0.1

x 1o-3

0.90.2 0.3 0.4 0.5 0.6 0.7
P¡

P¡

Figure 4.11: Output from Variable Probability Generator.

41

D¡ñerence Between lnput and Output Values

Neurol Network Theory
Neural computation is a method of processing dafa that attempts to model the way a bio-

logical brain computes information. The basic computation module in a neural computer

is the neuron. This is a simple processing unit that is capable of receiving multiple inputs,

performing a weighted sum and non-linear hansformation, then ouþutting the result. Neu-

rons are interconnected with synapses and can have a high degree of fan-in and fan-out. It

is estimated that the human brain contains on the order of 10 billion neurons, with over 60

trillion synaptic connections between them [26]. Due to the massively parallel structure of

the human brain, it is possible to obtain a high data processing rate while having arela-

tively low 'clock frequency'.

Neural networks created by humans are referred to as artificial neural networks (AI.INÐ.

Due to the extremely parallel nature of neural networks, it is generally ineffrcient to imple-

ment them in general hardware using a standard computer architecture. Software can be

written to model neural computation, but a large amount of memory and an extremely fast

processor are required to approach real-time operation for even simple networks.

The majority of applications of neural computers involve pattem recognition and classifi-

cation. One of the main features of this type of computer is the ability to learn statistical

properties of a set of data. This process is much like a child learning about its environment

by repetition and error correction. Input vectors are applied, and the network attempts to

42

oaaaoa
build classification categories from the data provided. The network is then able to general-

ize this information and attempt to classif,u input data that is not part of the training set.

Neural networks are trained using techniques that are classif,red into two major categories:

supervised training andunsupervisedtraining. Supervised training requires input data

along with target network ouþut values for each data point. Unsupervised learning does

not require these data labels.

Two of the most common types of ANNs are the multi-layer perceptron network (MLP)

and the radial basis function network (RBF).Both network types compare a d-dimen-

sional input vector to a set of desired patterns (also called prototype vectors, weight vec-

tors, or mean vectors in the case of RBF networks), and have several ouÞuts which

indicate which prototype pattern is most closely matched with the input. Each network

produces a distinct decision region defined by the weight vectors. Figure 5. 1 shows a dia-

gram of the decision region formed by each type of network for a 2-D input space.

The main difference between the MLP network and the RBF network is the way that pat-

terns are classified into different regions of the input space. The MLP network forms

regions separated by linear boundaries that are determined by the weight vectors. The

RBF network forms regions based on the mean vectors associated with each neuron. MLP

networks compute a non-linear function of a scalar product of synapse weights and input

Region 1

illi

ii{ftå"Xü4":,

Region 1

Region 2

xx
XX

Region 3
Region 2

Figure 5.1: Decision regions formed by a) an MLP network and (b) an RBF network.

xlxl

43

oaooaa
vectors, while RBF nets compute the distance from the input vector to the protofype vec-

tor.

In this thesis only RBF networks are considered, so only the underlying theories for this

category of network will be discussed. MLP networks have also successfully implemented

in a stochastic architecture ([9], [10], [11], [13]).

5.1 Rodiol Bosis Function Network Theory

Radial basis function networks originated as a technique for performing exact interpola-

tion on a set of data points [2]. This problem requires that every multi-dimensional input

vector be mapped to a corresponding one dimensional target vector. The data set consists

of N input vectors xn (the notation in this discussion will be adapted from [2], where z is

an index as opposed to an exponent), that are mapped to a corresponding group oftarget

vectors tn .The goal of the network is to find a function å(x) such that:

h(xn) : t',n : 1, ..., N (s.1)

The radial basis function approach introduces a set of ,ðy' basis functions that take the form

ó(llt - t'll) where þ(x) is a non-linear function. The nth function depends on the distance

(generally Euclidean) between x and x¿ . The result is a weighted sum of all of the basis

functions:

N
h(x) : I ,,0(ll"-x'll)

n:I

The most common form of the basis function is the Gaussian function:

_x2

þ(*) : "Ñ

(s.2)

(s.3)

These are termed localized basis functions, which means that $ -+ 0 as lrrl -+ oo. There

are many other choices of basis function that have this property, but will not be discussed

here.

44

oaaoaa
It is straightforward to generalize these functions for M ouþut variables. This requires a

mapping from x¿ -> fn where tn hascomponents tft . Thereare now M networktransfer

functions:

¡i/

ho@") - ttt I r*,ó(llr-x'll)
n:I

The network topology for a radial basis function network is shown in Figure 5.2. This is

classified as a two layer RBF network because there are two layers of adjustable parame-

ters. The first layer of adjustable parameters is composed of the mean values for the basis

functions. The second layer is composed of linear weights as well as bias units. The bias

units ensure the that input vector values and ouþut values are in the same range. More

general forms of these networks (i.e. with more layers) are not normally considered.

By introducing some modifications to the exact interpolation problem, we arrive at the

RBF neural network model. The goal of the RBF network is to provide a smooth mapping

from input vectors to ouþut vectors by choosing the number of basis units according to

the complexity of the problem being considered (not the size of the input data set as

before). The higher the number of basis functions, the more oscillatory the ouþut will be.

These modifications to the exact interpolation case are as follows:

Ouþut Layer

Qo

Bias Unit
Basis Functions

xr xd

Neural Network diagram.

(s.4)

Figure 5.2: RBF

Input Layer

45

ooooao
1. The number, M, of basis functions does not need to equal the number of, N, data

points. The value of M is typically much less than the value of N.

2. The centres of the basis functions and linear ouþut layer weights are no longer

based on specific input vectors, they are determined during the training process of

the network.

3. As opposed to having a common variance o2 , eachunit will have adifferent value

which is determined as part of the training process.

4. Bias parameters are included in the linear sum. These bias parameters account for a

possible difference in mean value of the input vectors and the mean value of the tar-

get vectors.

When these changes are applied to the exact interpolation model, we arrive at the transfer

function of the RBF network:

Yr@) : lwotþt(x)+woo (5.s)
j:l

In the case of this thesis Gaussian basis functions of the form:

0;(x):*r[-ryr) (s.6)

are used, where x is the d-dimensional input vector (with components x¡), and pr, is the

mean vector for theTú basis function (with components ¡^rr,).

The basis functions can be generalized to have fulI co-variance matrices Xr, in which case

the RBF unit transfer function becomes:

(s.7)

There is a trade offbetween using fewer basis functions with more adjustable parameters

(full covariance Gaussians have d(d + 3)/2 parameters) and more units with fewer

adjustable parameters (e.g. radially symmetric Gaussians have (d + 1) adjustable parame-

ters). Networks with more adjustable parameters take longer to train than networks with

o;(x) : *o{-åo -v)r>¡t(x-*r)}

46

oaaaao
fewer parameters. However, fewer units may be required to accurately represent a data set

if they have a full covariance matrix. RBF networks in general also have a layer of weights

between the basis function units and the ouþut layer.

5.2 RBF First Loyer Network Troining

There are many methods by which a neural network can be trained from an initial state

(with random weight vectors) into a state capable of correctly categonzing input vectors.

RBF networks are trained in a two stage process, the first layer weights (p;¡) and the sec-

ond layer weights (wor) are trained separately.

There are two sets of input data presented to a neural network. The first is used during the

training process, and is called fhe training sel. The second is used to verify the neural net-

work, and is called the test set.The training set is presented to the network in a random

order to prevent biasing the network from learning all of one set of data, and then leaming

all of another. Each vector in the training set is also usually labelled with the desired

response of the network. The training set is presented to the network multiple times, each

presentation is referred to as one epoch of training. The training data is reordered after

each epoch.

Several simplifications of the basis units can be made at this stage depending on the appli-

cation. The RBF units can be reduced to hyperspherical basis functions (i.e. without a full

covariance matrix) to reduce the number of trainable parameters. This means that multiple

units of difference variances may be used to cover a single data cluster. To further reduce

complexity, each unit can be fixed to have the same variance, while using potentially even

more basis units.

The number of units required is determined by the complexity of the data set that is to be

represented. There are several techniques that can be used to determine the number of

basis functions. A coÍrmon technique is called growing. Using growing the network is

trained with a given number of units, then an error term is calculated. A new unit is then

added and the network is retrained and the error recalculated. This process continues until

there is a negligible difference in the er¡or. Conversely, one could start with a large net-

workandprune itwtil the error is affected significantly.

47

oaaaao
The first layer of weights are trained in an unsupervised learning process, where the mean

of the RBFs gravifate to the centres of data clusters. After these parameters are deter-

mined, the second layer of weights is trained with a supervised process using the targets

values of each input vector. First layer training determines all of the free parameters of the

basis functions (F¡ and o;), while second layer training determines the value of the linear

weights.

The goal of the training process is to minimize the total network enor, which is def,rned as

a function of error vs. weight parameters. The error function is a multi-dimensional sur-

face dependent on the weight values of the network. Adjusting the weight parameters

changes the position of the network on the error surface. There are several techniques for

unsupervised training of neural networks, each with certain advantages and disadvantages.

5.2.1 Hord Competitive leorning
Hard competitive leaming (HCL) is the simplest form of unsupervised training. It could

also be described as the "dumbest" training technique. The approach is simple; first,

compute the distance from the input vector to each mean vector

n,: ll*"-ptll (s.8)

Then select the unit which has the smallest value of h,,that has the best match to the input

vector. This unit is termed the 'winner' of the competition. The smallest value of å, is

labelled hi , and the index of the winning unit is i
*

. Since we wish to reinforce the associ-

ation of unit i
*

and the current training vector xn , only the values for

The amount of adjustment is:

Iti are adjusted.

AF;. : -e(x'- Fr¡.) (5.e)

where e is the learning rate, and is generally chosen to be small. The purpose of the learn-

ing rate is to adjust this change so that the network does not get stuck in a local minima on

the error surface, and also to allow the network to train at a suffrciently fast rate.

Since the HCL process is so simple, there are likely to be some drawbacks. One primary

problem is that the network is very sensitive to the initial values of the pj vectors. For

48

ooaoao

aPl

*'

p
a\

\

T

oo.,
cao^o,o,

x1

Figure 5.3: Isolation in an HCL training scheme.

example, consider two clusters of input data in a two dimensional input space as shown in

Figure 5.3. Let us assume that we wish to represent these data clusters using two RBF

units. Now suppose that one of the units is initialized to be near the centre of both clusters

of data, while the other unit is initialized to the outer regions of the input space. The first

unit will always be closer to both sets of input data, so it will always win every competi-

tion. This unit will eventually end up representing the mean of the data clusters, while the

other unit will never move from its initial position. This is termed isolation.

To counteract isolation, a 'conscience' term can be added to the distance calculation which

is based on the number of times a unit wins a competition.

5.2.2 Frequency Sensitive Competitive Leorning
Frequency sensitive competitive learning (FSCL) attempts to add a level of fairness to the

training process. This is accomplished by punishing units that win too many competitions

and favoring units that win too few.

FSCL also starts by computing the distance from the mean vectors to the current input

vector:

(5.10)h,:ll*"-p,ll+å,

49

oaaoao
but adds a bias to the distance term (this is not the same as the bias units in the network).

The bias term is computed from three parameters

u,: -"(*o-o) (5. 1 1)

where M is the number of units, p, is the proportion of competitions that a unit has won,

and c is a constant called the bias factor The mean vectors of the winning unit are

adjusted in the same manner as before (5.9), but the p, term has to be adjusted after each

competition for each unit:

Lp¡: B(I-p¡),0<B(1 (s.12)

where.B is a constant which controls the rate at which the penalty term changes. This type

of penalty works, but only if the penalty constant C is chosen appropriately.

A superior method of fairness is achieved with a multiplicative penalty term as opposed to

an additive one:

h, : F(Qll"'- p,ll (s.13)

where F(ur) is any monotonically increasing function of z, (representing the number of

competitions a unit has won) and is referred to as the fairness function. F(2,) is initialized

to 1, and is commonly chosen to be

F(u,) : u, (5.14)

where the value of the function is simply the number of competitions the unit has won [6].

Again, the amount of weight adjustment for the winning unit is the same as in the HCL

case.

There are drawbacks to FSCL however. If one group of data is more densely populated,

multiple units could end up being assigned to it. This is because each unit is forced to win

an approximately equal number of competitions. While this is a better result than the isola-

tion problem, it is still not an optimal solution [6].

5.2.3 Sofl Competitive leorn¡ng
Soft competitive learning (SCL) adjusts the mean vectors of each basis unit after every

competition. The adjustment is proportional to each unit's ouþut response for that

50

oaooao
particular data point, as well as the distance of the data vector to the unit's mean vector.

The basis functions are normalized so the total probability that a datapoint is represented

by a particular unit is always 1. The functions Þ¡ arc now modified as follows:

-ll,'-
p,ll

o;(x') : í 'fii-o¡i

l"- zæ

j:1

and the weight adjustment factor becomes:

¡¡-rj = -e(xn-F)ö¡(x') (s.16)

where e is the learning parameter. In this scheme it is much less likely for units to become

isolated.

Consider the case of the two input data cluster shown in Figure 5.4. Suppose that we have

the same initialization problem as before: two data clusters close together, one unit centred

in between them, and the other unit in the outlying region. Initially the close unit (p,)

moves the largest amount, but p, will also begin to move slowly towards the data clus-

ters. As the first unit makes its way towards the data sets, its response will start to grow,

xl

(5.15)

5l

Figure 5.4: Simplified diagram of mean vector convergence in SCL example.

oaaooo
increasing its approach speed. As this is happening, the second unit will tend towards one

of the data groups. Eventually, both units will centre on one of the clusters.

However, there are cases where one unit will remain isolated. If the leaming parameter or

the variance parameter is chosen to be too small, a unit that is far from the data clusters

will take an extremely long time to converge to one of the data clusters.

5.3 Second Loyer Troining

The second layer of linear weights are trained in a supervised fashion. The objective of

this stage of learning is to minimize the difference between the output values, ! ¡r, and the

desired target vectoÍ, tn ,fot a each input vector.

Before second layer training can begin, an error function must be defined for the network.

This is the function that is to be minimized for best possible performance of the network.

A commonly used error function is the sum-of-squares error function defined as

E(w) :l
2

/úc

I I {Yt(',x')-ry12
n:7k=l

(s.17)

where i/ is the number of data vectors in the trainingset, tfr is the target value of ouþut fr

for input value x't and c is the number of output units. The factor of l/, is included to sim-

pliff the calculation of the error gradient.

One method is to calculate the entire gradient and analytically furd a solution for the opti-

mal weight vector. A more feasible method is to start with random weight vectors, and

move along the error surface until a minimum is found. It is desirable to be the absolute

minimum, but this is not the case in general. This approach is termed the error-correction

learning rule or the delta rule 1261. The amount of weight adjustment is:

Lrr : -e(!t-t')xn. (s.1 8)

The weights are adjusted in proportion to the difference between the ouþut of the unit, the

desired value, the strength of the input, as well as a leaming rate parameter.

52

Neurql Networks Bqsed on Stochqstic Hqrdwqre
This chapter describes the hardware implementation of the stochastic circuits used to

implement an RBF ANN using soft competitive leaming. The application of these circuits

will be discussed in the following chapter.

There are two major hardware components on which the system is implemented: a host

PC, and a field programmable gate anay (FPGA). The host PC is responsible for creating

input data, transferring this data and commands to the neural network system, and collect-

ing ouþut data from the network. The FPGA module will receive the data from the PC,

perform the neural computations and send the results back to the PC.

6.1 Development Plqtform

The FPGA used in this thesis research is the Altera Stratix EPlS40F780CS, which con-

tains approximately 46000 registers,4l000 logic elements, 3.4M memory bits, and 180I/

O pins (90 input and 90 ouþut).The chip also includes I?PLL clock synthesizers that are

user configurable.

Within the FPGA module there are two sub-components: the stochastic circuits, and a

micro controller. The Nios micro controller is a soft-core micro controller that controls

and sequences the stochastic hardware. This unit also receives data from and transmits

53

ooaooo

Figure 6.1: Hardware component block diagram.

data to the host PC. Figure 6.1 shows a block diagram of the major hardware components.

A soft-core micro controller is a micro controller that is specified in software and then

progranimed onto the FPGA.

The biggest feature of the Nios development kit, in general, is the extremely flexible

nature of the Nios core, which contains essentially drag and drop modules such as I/O

ports, UART modules, and memory controllers. This system is well suited to developing

specialized logic hardware (either graphically or using hardware description languages).

The evaluation board for the Nios micro controller also has 2 serial ports, an LCD display,

and several LEDs for displaying information (as well as many other peripheral device

interconnects that are unnecessary for this research).

The input and ouþut vectors are transmitted using one of the serial port modules. The

other serial port is used to send information to the terminal window on the PC, as well as

for programming the Nios processor. The FPGA is programmed using the JTAG port.

A picture of the Nios evaluation board is shown in Figure 6.2.

T-----'t r--------l

ttl
ttl
L----r I

Nios pc
i

I

L__
Stochastic Logic

FPGA Module

54

oaaoaa

Serial Ports

JTAG Port

FPGA Chip

LED Modules

Figure 6.2: Nios Development Board with Stratix FPGA. Photo @Altera Corp.

ó.2 RBF Network Model Modificotions

The neural network model used in this thesis differs from the conventional model in a few

ways. The changes were possible due to the limited range of the data values present in the

system, and the absence of labels for the training data (all of the data considered in the

results section is unlabelled).

The transfer function for an RBF neural network is:

M

Yr@) : lw¡tþ,(x)+wo,
j:l

where 0;(x) is:

Öy(x) : (6.2)

and M is the number of neurons.

The bias terms woo can be discarded in this work because the input vectors are in the same

fixed range as the ouþut vectors.

(6.1)

'[;

55

ooooaa
The value of o2 is variable, but it will be the same value for all units. Furthermore, this

value will not be determined during training but set and varied according to how much

noise is desired in the system.

There is also no linear ouþut layer implemented in this system. The reason for this is that

there is absolutely no prior knowledge of the input data. It is therefore not possible to train

the output layer weights in a supervised fashion without a set of target vectors.

Taking into account these modifications, the revised network transfer function becomes:

Yt@) : þ¡(x) (6.3)

making the output of each basis function the total response of the neuron. 0;(r) is also

substituted with the stochastic exponential function:

0;(x) : exp(-2cllx- e,;ll) (6.4)

where G is the implementation of the o2 parameter. A simplified block diagram of the

RBF circuit is shown in Figure 6.3. This architecture can be scaled indefinitely, with the

("r - p,rr)2

Weight

Values

(Means)

@z- Pn)2

(*r- Itz)z

(*z- tr z)2

Figure 6.3: Hardware component block diagram of SANN.

56

oaaoaa
network limited only by the size of the FPGA module. All communication lines indicated

in red are a single wire. Black communication lines are the width of the system's resolu-

tion (eight bits in this case).

There are also several control registers that are not shown in the simplif,red diagram. These

registers contain the gain parameter, the number of clock cycles of processing time, as

well as the number of learning cycles (analogous to the learning rate).

There are other control parameters that are stored in the memory of the p C including the

number of b¡es in the set of network parameters, the number of data bytes, as well as an

operation mode parameter. To facilitate circuit debugging and operation analysis there are

three modes of operation available to the system user. These are:

l.Training mode '0': Weights are not updated, or retrieved after each training vector.

2.Training mode 'l': Weights are updated, and retrieved after each training vector.

3.Training mode '2': Weights are not updated, but retrieved after each training vector.

6.3 Neurol Network lmplementqlion

The hardware circuits for the stochastic system were designed using the Quarlus II devel-

opment environment, which is a graphical hardware design suite packaged with the Nios

Development Kit. Each stage of the stochastic network is described below.

ó.3.1 Input Stoge

The input stage of the stochastic system is separated into two buses, the XBUS and the

WBUS. The XBUS connects the Nios micro controller to the input data registers that are

arranged in a FIFO configuration. The WBUS connects the controller to the weight mod-

ules that store the mean values and system operating parameters. These are also arranged

in a FIFO configuration.

After the training and test vectors are generated by the host PC, they are downloaded to

the FPGA. They are received by the Nios micro controller and then transferred to the net-

work one vector at a time where they are stored in D-type flip flops (DFFs). These are then

connected to 8-bit variable probability generator (VPG8) units (from Section 4.3). At this

point, the input vectors are available as a properly formatted stochastic bit stream.

57

oaaoaa
ó.3.2 Cellulor Automoto

The formula for determining the number of CA ouþuts required is given by the following

expression (specific to this method of implementation):

numbits : n(d. res r n* divres+ 1) + res(d+ 1) + I (6.s)

where n is the number of neurons, disthe dimensionality of the input, res is the resolution

of the VPG units (8 in this case), and divres is the resolution of the divider units (11 in this

case). The CA units developed are built in stages of 64 bits. While not optimal, this gives

a reasonable size building block for constructing various sizes of network.

A 2 neuron network with 2-D inputs and 8 bits of precision (assuming 1l-bit dividers)

requires 85 CA taps. A 5 neuron network with 5-D inputs and 8-bits of precision requires

334 CA taps.

Each 64-bit CA is made out of 4 16-bit modules which have interconnected feedback sig-

nals. One or more of the four modules for each CA has one bit set during initialization.

This CA initialization process is necessary because the rule of the CA is such that it

returns a '0' for an input of all '0's. If the CA is not initialized then it will remain in a state

of all'0's.

The truth table from the feedback module is written in AHDL (Altera Hardware Descrip-

tion Language) which is a proprietary Altera hardware design language. The other hard-

ware components are constructed with the graphic design component of the Quarlus II

development environment. A simplified high level block diagram of a CA can be seen in

Figure 6.4.

1'132..471

Figure 6.4: BlockDiagram of 64-bit CA.

58

oaaaao
ó.3.3 'Weight' Module

The weight values are loaded into 'weight' modules, which are implemented with an 8-bit

register and a stochastic counter. The register stores the initial value of the weight, and the

counter modifies this value during the training process. The counter has feedback that con-

trols a count enable input (GN in Figure 6.5), limiting the count at either end of the

counter's range. A block diagram of the weight module can be seen in Figure 6.5. Each

weight module is connected to a VPGS unit to generate a stochastic bit stream.

There have been many approaches to training stochastic and pulsed neural networks in the

past ([5], [10], [1]). Studies have also been done where the weights are generated with

conventional computational techniques built into the network [9]. This was shown to give

avery high density, though inflexible, network.

From (5.16) the equation for updating the weights is:

LIt¡k : elr(x¡- tr¡¿) (6.6)

where e is the learning parameter, y¿ is the ouþut of the neuron, and x, and F¡¡ are the

input and mean values, respectively.

_-æ' ou..ol

Figure 6.5: Weight module block diagram.

s9

ooaoao
Since the Nios processor is available for sequencing, the learning rate is implemented as a

set number of clock cycles as opposed to a stochastic signal. The reasoning for this is as

follows. The learning rate may be interpreted as the number of allowable clock cycles that

the weight parameter can change during a single learning stage. Since the total number of

states of the weight modules of 255, the total number of state changes during a learning

stage would be 255 . lrate . lrate is the hardware implementation of the learning rate e.

As a stochastic parameter, the lrate stream would be subject to the same variation as any

other stochastic stream, but does not benefit from a large integration period to reduce the

coefficient of variation. The generating probability of the lrate stream is also generally

small, on the order of 161255 or less, which results in CV > 24oÁ for 255 clock cycles.

To start the training process, the Nios processor asserts a leaming enable signal (called

'LEARN') that gates the weight update clock. On each training clock cycle, if the y¡

value is ' 1 ', the direction of the weight change depends on the value of the ix ¡ - p*)

parameter. This signal is generated on the fly by the 'sumsquare' module (Section 6.3.4).

If the value of the signal is '1' then the weight will increase, if the value is '0' then the

weight will decrease. So if,

P(N:1): {P(X: l) : X
P(w: r) : w

Pup:)rfx*0-n)

Pdo,,: lrrrr-Ð+n

LW : ¿(Pup-P¿o*r)

A,lV : ;Y(X-W)

(6.7)

(6.8)

(6.e)

then,

and

so therefore,

giving

(6.10)

(6.11)

(6.12)

(6. l3)

60

ooaaoa
Another common practice during the training process is weight pruning. I1 a neural

network is large then there is a chance that not all of the weights will make a significant

contribution to the ouþut. The process of weight pruning involves finding the weights that

are valued below some threshold and removing them from the network model. The goal of

this process is to reduce the number of free parameters that must be determined. This is a

very difücult operation to implement in hardware, and no gains in circuit area are

achieved once the network is already programmed into the FPGA.

ó.3.4 Sumsquore Module

The 'sumsquare' modules are the units which calculate the
ll"x, - f,7ll value. Input to each

module is the ith stochastic input stream , the ijth weight stream, and a stochastic select

signal,S. The weight stream is inverted and summed with the input vector (using a2-input

MIIX). The stream is then squared and transferred to a summing circuit. A diagram of the

sumsquaÍe module is shown in Figure 6.6.

Two DFF modules are required to properly isolate the bit streams because of the dual-

clocking system implemented in this architecture. If only a single DFF is used, the result is

a stream of'1's.

After the vector noÍns are calculated they are summed with a RISM suÍrmer and used as

input to an exponential function unit.

6.3.5 Exponent¡ol Funclion Module
The exponential function module is implemented using the VHDL hardware description

language. The inputs to this module include a CLOCK signal, an 11-bit G parameter

21mux

Figure 6.6: Sumsquare module block diagram.

61

oaaaao

a[10..00]

Figure 6.7: 'Svdiv' module block diagram.

(exponential function gain), an UP/DOWN signal, and a RESET signal. All exponential

functions are reset to zero after processing each input vector. Code for the implementation

of the exponential function is detailed in Appendix 4.1. The ouþut from the exponential

function is multiplied by the stochastic sum of all exponential units and then used as input

to the stepped velocity divider unit.

6.3.6 RISM Summer Module
The RISM summer implements the random incremental selection method that is described

in Section 3.2.I.The RISM summer is implemented as detailed in Figure 3.4. The RISM

suûtmer was also modelled in VHDL code but used substantially more logic resources

than a module implemented using graphical hardware components.

6.3.7 Stepped Velocity Divider Module

The stepped velocity divider units estimate the quotient of the iü neuron ouþut divided by

the sum of all n neurons. The inputs to this module include a RESET signal, a CLOCK

signal, the dividend (X) and divisor (Y) bit streams, an 1l-bit vector of random signals

A[10..00], and the feedback error bit E. The I I random signals drive a VPG11 unit that

generates the E signal. A diagram of the stepped velocity divider is shown in Figure 6.7.

The 'svdivcounter' is the heart of the divider module and is specified in VHDL. Code for

the 'svdivcounter' module is shown in Appendix 4.2.

clock
reset

x

v

62

ooaoao
ó.3.8 Output lntegrotors

The output integrators are responsible for accumulating the bit pulses of the output

streams, and sending this result to the Nios processor. The ouþut counters have 3 inputs: a

RESET signal, an increment signal, and a 16-bit vector representing the number of clock

cycles for the integration period. The reason this is not implemented as an 'off-the-shelf'

counter is because the ouþut needs to be selected according to the integration period. The

ouþut selector routes the 8 most signifrcant bits to the ouþut bus of the counter. The

counter is specified in VHDL and the code is detailed in Appendix 4.3.

The output of the stochastic network is handled using various multiplexing units that are

controlled by the Nios processor. In a 5 neuron network, there are 25 weight values and 5

ouþut values that a¡e read by a single 8-bit port on the controller. The details of the imple-

mentation of these units will not be discussed fuither because they are beyond the scope of

the functionality of the stochastic ANN.

6.4 Sysfem Sequencing

The clock is controlled by the 'clk_gate' module, which controls a tri-state buffer gating

the clock. The 'clk_gate' module counts clock pulses present at the output stage of the sto-

chastic network, and when the correct number of pulses has been counted turns offthe

clock signal. A signal is also asserted to the Nios micro controller that the system is fin-

ished processing the current input vector.

There is also a provision for the stochastic system clock to be clocked in single cycles by

the micro controller. This is used during the learning stage and the ouþut gathering stage

where only a few clock cycles are required.

There are five sequential stages of the stochastic system that must to be clocked in the cor-

rect order for proper operation. These are: the CA, the sumsquare modules, the exponen-

tial modules, the normalization dividers, and the ouþut counters. The system is clocked

by two clocks that are 1800 out of phase. The clock frequency of the system is 50MHz.

63

oaaaaa
ó.4.1 Controller Softwore ond Signols

The controller software is programmed into the Nios processor memory. After power-up,

the controller waits for a command character input from the host PC. There are six com-

mand characters that the controller interprets and these are summarized in Table 6.1.

Table 6.1: Command Character Summary for Stochastic Control Software

The system requires several control lines to sequence the clocks, counters, CA, and ouþut

circuitry There are two control lines for the CA that are used to reset it and initialize it,

these are RST_CA and INIT_CA, respectively. There are also two control lines for the

weight modules: W_SET, and W_REG_CLK. The W_REG_CLK line loads the front-end

register of the weight module, and the W_SET line loads the counter with the value in the

register. There is also a RESET signal, which controls the state of all of the counters in the

system (excluding the weight value counters).

The clock is controlled with three signals: CLOCK_START, SINGLE_CLK_EN, and

SINGLE_CLOCK. The CLOCK_START signal clears the counter that gates the system

clock, this allows the clock signal to propagate throughout the system until the counter is

Character Function Description

R Reset Resets the system by zeroing all counters.

I Initialize CA Clears the CA and asserts the INIT_CA line,
which initializes the CA. The CA is then clocked
two times the NIIM_CYC parameter which com-
pletes the initialization process.

S Start Processing Sends each data vector to the network, evaluates
result, and sends set of ouþuts to host PC.

G Get Weights Retrieves the values in all weight module regis-
ters.

L Load Data Causes the controller to enter 'data receive' mode.
The first t'wo b¡es received indicate number of
data vectors to be transmitted.

w Load Weights /
System Parameters

Causes the controller to ente¡ 'system parameter
receive mode'. The first two bytes indicate the
number of bytes to be transmitted. These values
are then clocked into the stochastic system regis-
ters.

64

oaaooo
full again. The SINGLE_CLK_EN signal selects the system clock or the

SINGLE_CLOCK control line. The SINGLE_CLOCK line is a clocking signal that is

controlled by the Nios processor. The Nios processor and the stochastic circuits have sep-

arate dedicated clock signals from the on-board clock generating circuitry. There are also

bus control lines that handle tri-state buffers and multiplexors.

ó.5 Hordwore Allocotion ond Circuit Areo

The way that logic circuits are physically implemented on the FPGA is the metric applied

in determining the efüciency of the layout of a circuit. To understand this, some FPGA ter-

minology must be explained.

The basic element of the FPGA is called the logic cell (LC). This building block is com-

posed of a 4-input look-uptable (LUT) which can be programmed with an arbitrary logic

function, a register, and a carry-chain element. The register provides one bit of storage,

and the carry-chain provides carry signals for cascaded operations (such as addition). The

flip-flop is configurable as a D, T, JK, or SR type flip-flop. An LC can be used as just a

register, or just a combinational function, or as a combination of the two. The LC is the

unit that will be used to assessing total circuit area.

6.5.,l Circuit Areo of Stochqstic Elements

Every element in the stochastic system has a circuit size associated with it. These values

are found using the Quartus II Project Navigator utility, which lists logic resources

required by each component of the design. Not all of the same components use exactly the

same logic resources due to the fact that the compiler optimizes for speed and circuit area.

Ostensibly, the speed gains from using more LCs may offset the cost of using that LC, pro-

vided there are sufficient logic resources available. Table 6.2 summarizes the logic cell

allocation of each stochastic processing element. The total LCs column summarizes the

total number of LCs for a particular module. The LUT-Only and FF-Only columns give

the number of LCs that are only required for these respective elements.

The CA is the largest component of the stochastic system after the Nios controller. The

overhead of circuit routing from the perspective of hardware layout becomes an issue as

CAs become larger. A CA30 with nearest neighbour connectivity uses only I LC per bit

65

ooooa
Table 6.2: Summary of Hardware Requirements for Stochastic Logic Elements

Logic Element Total LCs
LUT-Only

LCs
FF-Only

LCs

128-bir CA30 128 0 0

128-bit CA38490 137 9 I
384-bit CA38490 425 4l 4t

Stepped Velocity Divider
Counter

t20 23 20

8-bit vPG 9 9 0

11-birvPG 10 t0 0

SummingiSquaring
Module

9 8 1

Exponential Unit 37 26 l0

Weight Module 23 7 8

RISM Adder 9 4 5

Intra-Count Adder
(2-1 Mux)

8 8 0

Input Register 8 0 8

Ouþut Counter 96 81 0

Ouþut Multiplexor 16 t6 0

l6-bit BR Multiplier 4r7 0 0

16-bit BR Divider 433 433 0

I 6-bit Adder/Subtractor T7 17 0

Nios Processor 7920 5080 1599

cell. A 128-bit C438490 uses a total of 137 LCs. The majority of these use both a register

and LUI while nine use only the register and nine use only the LUT portion of the LC. A

384-bit CA uses a total of 425 LCs, 343 of which use both a register and LUT, while 41

use only the register, and 41 use only the LUT.

For a five dimensional, five neuron network, the total area required per neuron is 492LCs.

There are also several circuit elements whose cost can be amofüzed across all neurons,

66

oaaoaa
these are the input units, the CA, the normalization divider circuits, and the output multi-

plexor. The area per neuron of these units is 136.6 LCs. The ouþut multiplexor for the

weights is not included because it would not be strictly necessary in the final implementa-

tion of a system such as this.

For a five dimensional five neuron network, the total amount of the FPGA usedis2T%o,

which equates to 11140 LCs. For a two dimensional two neuron network, the total amount

of the FPGA used is 22o/o,which is 9157 LCs.

The Nios processor is not a stochastic element, but is included for reference. The Nios

processor in this project is adapted from a basis design provided by Altera. Due to this,

there are many features included in the processor that are not required for this design (i.e.

Ethernet controller,IDE interface, etc). These features increase the size of the controller,

leading to an overall system that is larger than strictly necessary.

In comparison, a conventional 16-bit BR multiplier circuit uses 417 LCs, and 16-bit

divider uses 433 LCs, while a 16-bit adder/subtractor uses 17 LCs. The actual size of these

modules depends on the speed at which the resulting calculation is desired versus the

allowable circuit size. Building sequential circuits will reduce the total area (less combina-

tional logic) but increase the processing time. The sizes specified are for speed optimized

units meaning that there is no sequential logic used.

ó.ó Processing Time

The total number of clock cycles required to process each input vector is set by the user.

This parameter varies according to the accuracy desired in the computations. The system,

as implemented, supports 8 processing times ranging from 28 cycles to 216 cycles. Since

the system runs completely in parallel, the same number of clock cycles are required to

runa2 neuron network as to run a 10 neuron network. A conventional ANN process

requires processing time proportional to d ' n where n is the number of neurons and d is

the dimensionality of the input vector. This is an advantage for stochastic architectures

from an expandability point of view.

67

oooaoo
Assuming that multiplication, division and addition are all a single operation for a proces-

sor, the number of operations required for an ANN can be determined by the following

formula:

Noperations : n(2d + 29) - 1 (6.t4)

where n is the number of neurons and d is the dimensionality of the input vectors. This for-

mula is specific to this project as it includes the simplifications introduced to the general

case (e.g. removing the linear ouþut layer). This is also assuming that the exponential

operation is implemented as a 5th order Taylor series approximation.

Assuming 16-bit accuracy and single-cycle mathematical operations, a BRI network is

significantly faster when implemented on specialized hardware available in this FPGA. In

the absence of the Nios processor the final implementation of this system could be fine

tuned for significantly less circuit area. The Nios controller provides a convenient plat-

form for control in order to determine the overall performance of a stochastic ANN for

later optimization.

68

Testing ond Results
This chapter describes the problems that have been used to test the operation of the sto-

chastic neural network and the results of these tests.

7.,l Test Problem

The problem created to veriff the functionality of the stochastic system is a simple one.

Consider a 2-dimensional input space containing several data clusters. The goal is to ini-

tialize the network to a random state, train the network with the data vectors, and deter-

mine if the network converges to the mean values of the input data distributions. The

training data is generated using a normally distributed RNG with a variance of 0.05, the

test data has a variance of 0.10. A sample 2-D input space with the mean vectors of the

Gaussian units super-imposed on it can be seen in Figure 7.1.

7.1.,l Network Error

To gauge the system's effectiveness an enor measure needs to be defined. The error can-

not be defined in absolute terms, because there is no knowledge of the actual form of the

input data. The error of the network will be defined to be the Euclidean distance from the

current position of the weight vector of the 'winning' neuron to the current input vector.

69

aaaaaa

We¡ght Trace
1

0.8

0.6

0.4

o.2

s0

-0.2

-0.4

-0.6

-0.8

-l
-1

Figure 7.1.: Sample 2-D Input Space.

The goal is that as each neuron takes more responsibility for a group of data points, the

total error will be reduced. The expression for the er¡or is:

(7.1)

The d value is calculated for all Ntraining vectors, where the index fr corresponds to the

weight vector of the 'responsible' neuron for the current input. The total network error for

one training epoch is then defined as

Error : Ldn
N

where there are Ndata vectors in the training set. After each training epoch the order of the

input data is randomized before being presented again to the network.

The network is initialized into a random state, and the input vectors are then applied to it.

The error after each epoch of training is measured, and the training process is repeated

until the error has stabilized to a small value.

-0.4{.6-0.8 -D.2 0 0.2 0.4 0.6 0.8 1

x1

(7.2)

70

oaaaaa
7.1.2 Network Troining Results

Before the hardware stochastic network is tested, a simulation is performed in software

using conventional BR arithmetic. The goal of the simulation is to show the theoretical

performance that the stochastic network is to emulate. The goal for the network training

process is to alter the mean vectors of the Gaussian function to model the input data distri-

bution, and by doing so reduce the error calculated after each training epoch. After the

training process the output from the neurons should correctly identiff which data cluster

each input vector belongs to.

The learning rate for this simulation is e : 0.004 , there are 200 vectors in the training

set, and 400 vectors in the test set. The actual means of the input data distributions are

(-0.6, -0.6) and (0.6, 0.6) and the gain parameter of the simulated units is G : 4 .

During simulation, the network correctly converges to the proper mean values. An exam-

ple is shown in Figure 7.2.The network error also decreases as expected for each training

epoch, as seen in Figure 7.3.

Train¡ng Weight TEce

Figure 7.22 Software simulation training results.2-D inputs, 2 da;tz clusters.

71

oaooaa
The stochastic system is tested using an integr-ation period of t: 65535 clock cycles. The

number of training cycles during the test portion of the simulation is reduced to / : 16383

cycles. The number of vectors in both the training and test sets are 300, and the number of

epochs is 25. The G parameter is initially G : 500, and is increased to G : 1500 during

training. The training vectors are normally distributed with means of (-0.6, -0.6) and (0.6,

0.6), and a variance parameter of o'2 : 0.03 . The test vectors have the same mean values,

but a variance parameter of 0.09. The learning rate parameter is initially set at 8 cycles and

is reduced to I cycle during training. The number of stochastic system clock cycles to

evaluate this data is 65535. System running time for these parameters is 2:36 minutes. A

significant portion of this time is spent communicating with the host PC.

Figure 7.4 shows a plot of the input space with the weights in the initial ('o's) and final

('x's) positions for the stochastic hardware ANN. The network error in the system is

shown in Figure 7.5. The network error is initially high, it does eventually decrease but

there is still significant fluctuation. This is due to the stochastic nature of the system (pri-

Figure 7.3: Software simulation. Network error vs. Epoch.

72

oaaoao

Train¡ng We¡ght TEce
1

0.8

0.6

0.4

0.2

4.2

4.4

{.b

-0.8

-1
-1 -0.8 -0.6 4.4 4.2 0 0.2 0.4 0.6 0.8 1

xi

Figure 7.4: Hardware stochastic network training results. 2-D inputs, 2 datt clusters.

5 10
epo"t' -¡

15 20

Figure 7.5: Hardware stochastic system. Network error vs. Epoch.

Network Ercr6. Epoch

IJ

ooaooa
marily due to the outputs of the exponential functions). The weight values after each

epoch are saved and because of this fluctuation, the values from the epoch with the least

error are used in evaluating the test set.

The ouþut of the network from evaluating the test set can be seen in Figure 7.6.The

response of each neuron is shown for all data points. The red circles represent neuron '1 '

and the black circles represent neuron '2' .Many tests were performed, although only one

set of results will be shown for this configuration of input data. The network will reliably

represent the data with acceptable accuracy. In this simple case, the network will identify

the test vectors correctly 100% of the time, if training is successful.

The network was also presented with 3 clusters of input data. Since the network in this

case is limited to two neurons, it is desired that one neuron take responsibility for two of

the clusters, while the other neuron takes responsibility for the 3rd cluster. A plot of the

training process resulting for this case can be seen in Figure 7 .7, the neuron ouþuts for

this can be seen in Figure 7.8. The same network operating parameters as in the previous

^1

response from test set.Figure 7.6: Hardware Stochastic System. Neuron

74

oaaoaa

1

0.8

0.6

o.4

0.2

xN0

4.2

-0.4

:Ì*i'

4

-r 4.8 {.6 4.4 -O.2 0
X1

Figure 7.7: Ttaining results for 3 input clusters.

/
,:=1i!::..a'-{,r'.

test oulpuls
1

0.9

0

o.7

0

0.4

0

o.2

0.1

x2 -1 -0.8 '0.6

xl

Figure 7.8: Stochastic system response from test vectors.3 Data clusters.

0.6o.2-D.2

Tm¡ning We¡ght TÉce

75

oaaooa
case were used. The classifrcation rate for this problem is 100% for the neuron covering a

single data cluster, and85%o for the neuron covering two data clusters, on average. Other

configurations of input data clustem are also tested but the results are not shown here. The

results indicate that the SANN and the BRI network have similar classification capabili-

ties.

7.2 A Simuloted Visuol Environment

To further demonstrate the usefulness of the system, a more complex problem was also

considered. The problem is based on the studies performed by McNeill in [6]. Consider an

artificial environment that might be encountered by a mobile robot that consists of several

point sources of light (e.g. LEDs). The robot has 5 sensors that observe the light inputs.

Initially, the system is trained with input patterns corresponding to the five lights, where

each neuron should give a high ouþut when it's corresponding light is on. For the test

case, four new light sources will be added at the corners of the input grid. The goal is for

the system to generalize information leamed in the training process to give spatial infor-

mation about the four new visual inputs. The system should also be able to generalize

information when Gaussian noise is added to the sensor readings. The physical representa-

tion of light sources and sensors is shown in Figure 7.9.

7.2.1 lnput Generotion
The input patterns are synthesized values based on the theoretical intensity of a light

source at a distance. The theoretical magnitude of the light intensity at the sensor plane is

l_ 1

d2 ^l@4
(7.3)

The r value varies depending on the sensor under consideration. The intensity of a light

source on different points of a grid is calculated as the Euclidean distance of the source to

that point. The intensity of light on a 5x5 grid is defined below:

76

I_
oaooaa

(7.4)

(7.s)

(t2 + Br\ (tz + 5r2) (t2 + 4r\ (t2 + 5r\ (t2 + Brz¡

(12 + 5r\ (12 + 2r\ (t2 + r\ (t2 + zrz¡ (t2 + 5r2)
(t2 + 4r\ (t2 + r\ (t, (t2 + yz¡ (t2 + 4r2)
(12 + 5r\ (12 + 2r, (t2 + rz¡ (t2 + 2r\ (t2 + sr2

(12 + 8r\ (t2 + 5r\ (12 + 4rz¡ (t2 + 5rz¡ çtz + 8rz

The reading of each sensor is based on this matrix. A 'sensor window' of the form

[o r o-l

sw: lt t tl
Lo'ol

is applied to the matrix coûesponding to the current active light source. For example,

when calculating the sensor readings when the centre light source is active, the window is

centred on element I33 of the matrix. If the bottom right light source is activated then the

mask is centred on element I22. For simplicity, the / parameter is set to 1 for all experi-

ments.

Figure 7.9: Sensor and light input grid used for network training. Sensors are
denoted by the red dots, training light sources are green, test light sources
are blue.

oaooao
7.2.2 Results

This problem was also simulated in software using conventional arithmetic. The BRI

ANN gives very promising results that are hoped to be repeated with the stochastic sys-

tem.

Gaussian additive noise was also applied to the simulated sensor readings to emulate the

noise present in a real world environment. The ouþut of the simulations can be seen in

Figure 7.10 with no noise added and in.Figure 7.11 with noise added. The noise had a

mean of zero with a variation of o2 : 0.1

The plots show the test vector response ofeach neuron, arranged corresponding to the sen-

sors that they represent. While the inputs for the training set are applied in a random order,

the inputs for the test case are applied in a set order. This does not affect correct operation

of the network because the random ordering is required only for haining purposes. There

are 9 sets of input vectors, 50 vectors per light module, giving a total of 450 vectors in the

test set. The vectors are presented to the network starting with the sensor readings corre-

sponding to the top-left light being on. The active light then switches to the centre of the

Top-Middld
Sensor

0.5
Middle-Middle
Sensor

y4

0.5

0 200 400

Middle-Left
Sensor

200 400
ys

Middle-Right
Sensor

Bottom-Middle
Sensor

0.5

y,l

{

.i

t2

Figure 7.10: Output from e¿ch neuron after training.

78

aoaoao
top row, and continues in a left-to-right, up-to-down pattern (the active light is also

labelled in the boftom of each column). The neuron representing the top sensor is located

in the top of the cross (labelled 'y1').

The mean of the ouþut for each neuron is also computed for each input pattern. These val-

ues for the simulated BRI network are shown in Table 7.1.

Each column in Table 7.1 corresponds to a single neuron (T: Top, M: Middte, B : Bot-

tom, L: Left, R: Right). The ouþut with the additive noise causes some variation in the

output ofthe neurons, though the individual responses do not vary considerably.

This error is calculated in a similar way as in the simple problem discussed previously.

The Euclidean distance from the current data point and the 'winning' neuron's weight vec-

tor is evaluated and summed. The error for the training process with the conventional

arithmetic is shown in Figure 7.I2.The error settles around 52 for this amount of additive

noise. When there is no noise added to the input data, the error is minimized to zero.

The stochastic system is set up with similar parameters to the BRI system. There are 50

vectors per light source, for a total of 250 training vectors and 450 test vectors. The G

0

0 200 400
y3

0.5

0

Y1

i

i

y2

::
i,rl
!rlli
:t tl t;

¡
I
ic

tå

:tl
.i

Figure 7.11: Output from conventional arithmetic ANN with additive noise.

79

oaoaao

Network Ercr v. Epoch

0 5 10 15 20
aåU.,

30 35 40 45 50

Figure 7,122 ß,rror corresponding to training process of simulated BRI network.

55.

o
Eu

54.5

54

53.5

53

Table 7.lz Averaged Response of Tlained BRI Neurons. d = 0.1.

LIGHT TM ML MM MR BM

TL 0.2tr9 0.1686 0.3s30 0.1446 0.1220

TM 0.5923 0.0719 0.2012 0.0818 0.0529

TR 0.2351 0.1321 0.3274 0.1945 0.1110

ML 0.0769 0.5784 0.1984 0.0s96 0.0868

MM 0.06s1 0.0718 0.7383 0.0635 0.0613

MR 0.0706 0.0535 0.2114 0.s937 0.0708

BL 0.1 136 0.2154 0.3359 0.1206 0.2145

BM 0.0650 0.0635 0.2469 0.0657 0.5589

BR 0.1 168 0.1206 0.3961 0.1664 0.2001

80

ooaaaa

..1...

:\i: : :.

Figure 7.13: Output from trained stochastic network.

parameter of the exponential units varies from 1000 to 1850 (selected based on perfor-

mance observations) throughout the training process. The learning rate is set to 2 cycles,

giving a maximum possible weight probability adjustment of 0.008 per training vector.

The ouþut from a test of the stochastic network can be seen in Figure 7. I 3.

The training process of the stochastic network proved to be fairly unreliable due to the

extreme fluctuation of the ouþuts. There are cases where when the same input is applied

to the network, the ouþut will change in value by up to 7}%.This creates a huge problem

during the learning process, where accurate results are necessary to properly adjust the

weight values. On some occasions the network would correctly train itself to properly

identiff the test vectors, but the majority of times this was not achieved. As an example of

a successful training operation, the ouþut of the network when there is no additive noise is

shown in Figure 7.13. The error associated with the training process for the stochastic

network is shown in Figure 7.14. This error is initially very high, and stabilizes to a value

that is much higher than in the BRI case.

y2

8l

oaaooo
To further test the operation of the stochastic network in spite of the poor training perfor-

mance the weight parameters generated with the conventional arithmetic simulation were

used. This procedure yielded satisfactory results for the application. Examples of network

ouþut can be seen in Figure 7.15 with additive Gaussian noise with o2 : 0.05 and Fig-

ure 7.16 with additive noise with o2 : 0.10.The average values of the ouþut of the net-

work for each test input (and added noise) is shown inTable 7 .2.

When properly trained, the stochastic network reliably indicates which input source is

active. The network is also capable of tracking changes in the input vectors that may occur

over time. The error present in the nefwork reaches its minimal value after approximately

40 epochs.

Nstwork Eror

A,^-' \-'fu
"\ -^. /'

"/L /\.'f'\. /
-'\

\./

30 40 50 60 70 80
Epoch

Figure 7.14: Error plot from training the stochastic neural network.

82

oaoaoo

200 400

0.5

0

Figure 7.15: Output from pre-trained stochastic network, noise variance is o2 = 0.05.

y1

Figure 7.16: Output from pre-trained stochastic network, noise variance is o2:0.L0.

0 200 400
y3

0 200 400 0 200
ys

0 200 400

y1

:-:

" .j*r l

i.".,..t

li . ' . ! ii'.r . I.l.r']|!i'¡1.I
I i.1 ¡',_. .ti ; ¿t í r. '): ¡,\.; rt il',.i ,

::::::::i
- lM-rR [t.[,f\4À,RBL BM.BRI

y2 Ya

83

Table 7.22 Ãveraged Response of T[ained Stochastic Network. o2:0.1.

LIGHT TM ML MM MR BM

TL 0.3655 0.178',7 0.38s7 0.0866 0.t427

TM 0.7107 0.0769 0.1206 0.0704 0.06s7

TR 0.3214 0.1095 0.3198 0.18r3 0.1826

ML 0.0748 0.6820 0.2089 0.0433 0.0819

MM 0.1027 0.1475 0.7283 0.0s2s 0.t076

MR 0.0544 0.0513 0.4006 0.5 134 0.1354

BL 0.170s 0.2017 0.3456 0.0896 0.3614

BM 0.0919 0.08s2 0.t275 0.0525 0.1562

BR 0.1645 0.1027 0.3931 0.1478 0.3522

84

Conclusions qnd Future Work
This thesis has studied stochastic architecture and its application to constructing dedicated

circuitry for hardware neural networks. The test application for the circuits designed and

constructed was a simulated vision problem for a mobile robot. This problem was attacked

using both a traditional computational method and the proposed stochastic method. The

results of these experiments are that the stochastic method, while comparable to the BRI

method, yielded inferior results on the whole. In terms of processing time and result accu-

racy the BRI network ouþerformed the SANN.

This may be due to several factors including over simplification of the network model

and/or too much variance in the computations. It is more likely that the variance in the cal-

culations had the most detrimental effect on performance. The addition of a linear ouþut

layer would alleviate this somewhat.

The stochastic network was observed to perform adequately when supplied with weight

vectors determined by a BRI network. Once the nefwork is put in a learned state, it is pos-

sible to adjust to any changes in the input data that may occur over time. For example, if
sensors were to deteriorate, the readings might change in value. This could be corrected by

by allowing the network to continue to train a small amount.

A study has been performed [5] using the fullRBF neural network model that achieved

satisfactory results identifying typed characters. The exclusion of the linear ouþut layer in

85

ooaoaa
the SANN examined in this thesis adds a significant amount ofpotential imprecision when

the desire is for a hard decision. A linear ouþut layer is only possible however, when apri-

ori information about the input data is available. This could potentially alleviate the prob-

lem of high variance in the computations.

In conclusion, this type of simplified stochastic network model is not well suited to this

particular problem. The conventional BRI implementation offers much better precision (in

the absence of bit errors) and computation time when implemented on an FPGA device

such as this one. Stochastic networks are better suited to recognition problems when

labelled data is available ([5], [10], [11]). The extremely flexible nature of this FPGA sys-

tem creates an environment where specialized hardware for a conventional computational

architecture can be implemented just as easily as custom hardware for an atypical one. If
one was restricted to a lower functionality FPGA then the stochastic architecture might be

a more attractive altemative.

Future work in this area would include an automatic system generator implemented in a

hardware description language. This would be quite feasible due to the extremely regular

nature of the stochastic network architecture.

Further research could also be performed in the area of random number generation. A

neighbourhood-of-3 CA would be more effrcient to implement on an FPGA than the

neighbourhood-of-4 CA considered.

86

References
[1] B.R. Gaines, "Stochastic Computing Systems," Advances in Informations Systems

Science, J.F. Tou, ed., vol. 2, chapter 2,pp37-172, New York: Plenum Press, 1969.

[2] C.M. Bishop, Neural Networksfor Pattern Recognition Oxford: Clarendon Press,

t995.

[3] B.D. Brown and H.C. Card, "Stochastic Neural Computation I: Computational
Elements," IEEE Trans. Computers, vol. 50, no. 9, pp. 891-905, Sept. 2001.

[4] B.D. Brown and H.C. Card, "Stochastic Neural Computation II: Soft Competitive
Leaming," IEEE Trans. Computers, vol. 50, no. 9, pp. 906-920, Sept. 2001.

[5] B.D. Brown, "Soft Competitive Learning Using Stochastic Arithmetic," M.Sc. thesis,
Dept. of Electrical and Computer Eng., Univ. of Manitoba, 1998.

[6] D.K. McNeill, "Adaptive Visual Representations For the Autonomous Mobile Robots
Using Competitive Learning Algorithms," Ph.D thesis, Dept. of Electrical and
Computer Eng., Univ. of Manitoba, 1998.

[7] P.D. Hortensius, R.D. Mcleod, and H.C. Card, "Parallel Random Number Generation
for VLSI Systems Using Cellular Automata," IEEE Trans. Computers,vol. 38, no. 10,
pp. 1466-1472, Oct. 1989.

t8] B. Shackleford, M. Tanaka, R. J. Carter and G. Snider, "FPGA Implementation of
Neighbourhood-of-Four Cellular Automata Random Number Generators," Proc. of
the 2002 ACM/SIGDA L0th Int. Symposium on FPGAs, pp. 106-112,2002.

[9] Stephen L. Bade and Brad L. Hutchings, "FPGA-based stochastic neural networks -
Implementation," Proc. of IEEE Workshop on FPGAsfor Custom Computing
Machines,pp. 189- 198, 1994.

[10]J.4. Dickson, R.D. Mcleod, and H.C. Card, "Stochastic Arithmetic Implementations
for Neural Networks with In Situ Learning," in Proc. Int. Conf, Neural Networks,pp.
7tt-716,1993.

87

oaooaa
lllll Zhao, J. Shawe-Taylor, and M. van Daalen, "Learning in Stochastic bit-stream

neural networks," Neural Networks, vol. 9, pp. 99 I -998, I99 6.

[12]H.C. Card and D.K. McNeill, "Gaussian Activation Functions Using Markov
Chains," IEEE Trans. Neural Networks,vol.13, no. 6, Nov. 2002.

[13]S.J. Min, E.W Lee, S.I. Chae, "A Study on the Stochastic Computation Using the
Ratio of One Pulses andZero Pulses", Proceedings of ISCAS, London, pp.47l-474,
1994.

[14]4. Dinu, M.N. Cirstea, M. McCormick, "Stochastic Implementation of Motor
Controllers," ISIE 2002. Proc. of the 2002 IEEE International Symposium on
Industrial Electronics, vol. 2, pp. 639 - 644, July 2002.

[15]H.C. Card, "Compound Binomial Processes in Neural Integration," IEEE Trans.
Neural Networks, vol. 12, no. 6, Nov. 2001.

[16]H.C. Card, "Input Multiplexing in Artificial Neurons Employing Stochastic
Arithmetic," Neural Processing Letters, vol. 15, pp. 1-8, Netherlands: Kluwer
Academic Publishers, 2002.

[17]4. Astaras, R. Dalzell, A. Murray, M. Reekie, "Pulse-Based Methods for Probabilistic
Neural Computation," Proc. 7th Int. Conf. Microelectronics for Neural, Fuzzy, and
Bio-Inspired Systems, pp. 96-102, 1999.

[18]D.J. Mayes, A.F. Munay, H.M. Reekie, "Pulsed VLSI for RBF Neural Networks,"
IEEE Int. Symposium on Circuits and Systems, vol. 3, pp.297-300,May 1996.

U9]H.C. Card, "Dynamics of stochastic artificial neurons," Neurocomputing Letters,vol.
41, pp. 173-182,2001.

[20]H.C. Card, "Stochastic Radial Basis Functions," Int. Journal Neural Systems, vol. 11,

no. 2, pp. 203-210,2001.

[21]D.K. McNeill, H.C. Card, "D¡mamic Range and Error Tolerance of Stochastic Neural
Rate Codes," Neurocomputing Letters, vol 48, pp. 905-917,2002.

l22lJ .M. Quero, J.G. Ortega, C.L. Janer, L.G. Franquelo, "VLSI Implementation of a Fully
Parallel Stochastic Neural Network," IEEE World Congress on Comp. Intelligence,
vol. 4, pp. 2040-2045, 7994.

[23]J.G. Ortega, J.M. Quero,C.L. Janer,L.G. Franquelo, "Synaptic Weight Generation in
VLSI Stochastic Neural Networks," IEEE Conf, Neurøl Networks,vol. I,pp. 179 -

182, Dec. 1995.

l24lY. Kondo, Y. Sawada, "Functional Abilities of a Stochastic Logic Neural Nefwork,"
IEEE Trans. Neural Networl<s, vol. 3, no.3,May 1992.

[25]A.. Torralba, F. Colodro, E.Ibanez, and L.G. Franquelo "Two Digital Circuits for a
Fully Parallel Stochastic Neural Network," IEEE kans. Neural Networks, vol. 6, no.

5, Sept. 1995.

[26]S. Haykin, Neural Networks, A Comprehensive Foundation, New York: Macmillan
College Publishing Company, 1994.

[27]S. Wolfram, "Statistical Mechanics of Cellular Automata," Rev. Modern Physics,vol.
55, pp. 601-644, 1983.

88

oaaaaa
[28]S.

'Wolfram, "Random Sequence Generation by Cellular Automata," Advances in
Applied Mathematics, vol. 7, pp.123-169, 1986.

[29]P. Horowitz, W. Htll, The Art of Electronics, 2'd Edition, New York: Cambridge
University Press, 1989.

t30lA. Papoulis, Probability, Random Variables, and Stochastic Processes, 3'd Edition,
New York: McGraw Hill, 1991.

[31]D.W. Trim, Calculusfor Engineers, Prentice Hall, 1998.

89

VHDt Source Code
This appendix contains VHDL code for selected components from the stochastic system.

A.l sExp.vhd

LTBRÃRY ieee;
USE ieee. std_logic_l164 .ALL,'
USE ieee.strì logic_arith.ALL;
USE ieee. std_logic_unsigned.ALL;

ENTïTY sExp IS

PORT
(

up : IN std_logic;
reset: ïN BïT;
clk : IN BIT;
G : fN std_logic_vector(10 downto 0);
q : OUT std logic

);
END sExp;

ARCHITECTURE arch OF sExp fS
signal cnt : std_Iogic_vector(10 downto 0);

BEGIN-- begin architecture
PROCESS (cJ-k,reset,uprG) -- reset and increment

BEGTN

IF reset = r0' THEN-- reset counters
cnt <= "00000000000",'

ELSIF (cÌkTEVENT AND cIk : 'L') THEN

process

90

oaooao
fF up : |1r AND CNT < ("11111111111-") THEN

CNT <: CNT + "00000000001";
ELSIF up = '0' AND CNT > "00000000000" THEN

CNT <= CNT - "00000000001";
END]F;

END]F,.
]FCNT<GTHEN

g (: '1';
ELSE

g(= '0';
END IF;

END PROCESS;
END arch;

4.2 svdivcounter.vhd

LIBRARY ieee;
USE ieee. std_logic_1164 .ALL;
USE ieee. std_Iogic_arith.ALL;
USE ieee. std_logic_unsj-gned.ALL;
ENTITY svdivcounter IS

PORT (

c]k : IN BIl;
reset : IN BïT;
x : IN std_Iogic,'
y : IN std_logic;
e : IN std_Iogic;
ocount : OUT std_logic_vector(11 downto 0);
qd : OUT std logic vector(l-O downto 0)

END svdivcounter;

ARCHITECTURE arch OF svdivcounter IS
signal mult : st.d_Iogic;
signal inc : stcì_Iogic;
signal cnt : stcl_logic_vector(11 downto 0);
signal schedule : std_fogic_vector(10 downto 0);
signal c_1nt : std_J-ogic_vector(10 downto 0);
signal oi-.1_cnt : std_logic_vector(11 downto 0);

BEGÏN -- begin architecture
PROCESS (cfk,resettxtytêt inc,mult) -- reset and increment process

BEGIN
mul-t <= X XOR (y AND e); -- test if cnt state needs to be changed
inc

IF reset = '0' THEN -- reset counters
cnt <: "01-l-l-l-l-l-l-l-l-l-l-"; -- and regi-sters
ol-d_cnt <= "01-l-l-l-1111-111";
schedule <: "00100000000";
c_int <: "00000000000";

ELSIF (cÌk'EVENT AND clk = '1') THEN

91

ooaaaa
TF inc : 'l-r AND mul-t : '1t AND CNT < ("1-1111-111-111" - SCHED-

ULE) THEN
CNT <= CNT + SCHEDULE; -- increment counter, adjust C INT
C_INT <: C_INT + SCHEDULE;

ELSTF inc : '0' AND mult : '1' AND CNT > SCHEDULE THEN
CNT <: CNT - SCHEDULE; -- decrement counter

ELSIF mult : '0' THEN

CNT <= CNT; -- do not adjust counter
END IF;

IF C_INT = "00000000000" AND inc: '1'AND mult = '1r THEN
SCHEDULE(9 downto 0) <: SCHEDULE(10 downto 1);
schedule(10) (= r0'; -- check C INT, adjust SCHEDULE

END IF;
END TF,.

END PROCESS;
END arch;

4.3 outcount wsel.vhd

LTBR.ARY ieee;
USE ieee . std_l-ogic_1 l- 64 . ALL;
USE ieee. std_logic_arith.ALL,'
USE ieee. std_J-ogic_unsigned.ALL;

ENTITY outcount_r,rsel fS
PORT (

reset : fN std_logic,'
clk : IN std_logic;
num_cyc : IN std_Iogic_vector(l-5 downto 0);
output : OUT std logic vector(7 downto 0)
);

END outcount_wsel-;

ARCHITECTURE arch OF outcount_wsel- IS
signal cnt: std_l-ogic_vector(15 downto 0);
BEGIN

PROCESS (cl-k, reset, num cyc)
BEGIN

IF (reset = '0') THEN

cnt (: "0000000000000000" ì -- zero counter on reset
ELSIF (clk'EVENT AND clk = '1') THEN

IF cnt < num_cyc THEN

cnt (: cnt+l-; -- increment counter on clock cycle
END IF;

END IF;
END PROCESS;

WITH nun_cyc SELECT

-- sel-ect
output (= cnt (1-5 downto 8) when "l-11-111-11-11-111-111",

cnt(L4 downto 7) when "011111-1111-111111",
cnt (13 downto 6) when "00111-11-111-11-l-l-11-",

92

oaaaaa
cnt (12 downto 5)
cnt(11 downto 4)
cnt (l-0 downto 3)
cnt(9 downto 2)
cnt(B downto 1)
cnt (7 downto 0)
cnt (7 downt.o 0)

when "0001111111111111",
when "00001l-11-11111111",
when "0000011111111111",
when "0000001111-l-l-l-111- ",
when "0000000111111111",
when " 0000000011 l- l- l-l- l-l- ",
when OTHERS,'

END arch;

93

