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for the system of a Helium gtom and a positron is investigate

determining upper wvounds lor the snergy of a physical system
is devsloped. The Variational method 1s apPliied to several
trial wave functions for the system of a Hydrogen etom snd a
positron. An eguivalent ons dimensiongl problem 1s formulated
for the system of =z Hydrogen atom and a vositron. The solution
of this problem determines the best form of wave funchtion
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element of volume for the four particle system of a Hellum
tom snd 2 positron is derived. The Variationsl method 1is
applied fo a three perameber and a four parameber trisl wavs
the system of a Hellwn stom and = positron. The

results do wnot show thabt the system Torms a bound state,
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CHAFTIR I
INTRODUCTION

The experimental discovery of the positive electiron
or positron and subseguent annihilation experiments verified
the earlier prediction of the existence of the positron by
Dirac., These experiments lent agreement to the view that
the positron and electron are anti-particles in the sense of

the Dirac theory, and thus can annihilate each other.

However Before annihilation, the electron and pos-
itron may form a quasi-stable bound system, similar to the
Hydrogen atom. The possible existence of this system was
suggested by Mohorovicicl, Ruark2 introduced the name of
positronium atom for the system. Wheelerd investigated other
systems theoretically,and found that the negstive Chlorine
ion and positron form a bound system, Hylleraas% found that
two electrons and & positron form a bound state with a bind-
5

ing energy of .203 ev, Hyllerzas and Ore” investigated the

system consisting of two electrons and two positrens, end
found this system to have & binding energy of .llev., Or96
investigated the system of the negative Hydrogen icn and
positron, and obtained z value of .07 ev for the binding

energy.

S.Mohorovicic, Astron. Nacht. 253, 94, (1934).
A.E.Ruark, Phys.Rev. 68, 278, (1945).

J.A.Wheeler, Ann. H.¥.Acad. Sci. 48, 219, (1946) .
‘E.Hylleraas, Phys.Rev. 21, 491, (i947).
kE.Hyllerses and A.Ore, Phys. Rev. 21, 493, (1947).
A.Ore , Phys. Rev. 83, 665, (1951) .
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If this upper bound for the energy 1is very close to the

energy of the systemy it is doubtful whether this system

could exist in nature, since the value obtained by Ore is

very near thermal energies, Darewych7 has found the binding
energy of the system of the negative Hydrogen‘ion and positron
to be .23 ev ,and has celculated the annihilation rate for

positrons forming such & compound.

In the ground state of the positronium ztom, the
spins of the electron and positron may be parallel or aznti-
parallel. Positronium with the spins antiparallel 1is called
singlet or parapositronium, and positronium with the spins
parallel is celled triplet or orthopositronium. It can be
shown8 that for lowest order, snnihilation from the singlet
state results in the emission of two photons, and annihilation
frow the triplet state is accompanied by the emission of
three photons. The mean life of singlet positronium is ~
LIKXIOAO sec. end the mezn life of triplet positroniuvm is~

L4 x 1077 sec“8

Two physical systems, the Hydrogen atom and positron
and the Helium atom and positron, will be investigéted in
this thesis in order to determine if either forms & bound
state. The three particle system ,consisting of a Hydrogen
atom and a positron, is of interest because only one electron
serves &8 a screen for the repulsive force between the nucleus

and the positroen.

7 G.Darewych, Thesis:The Interaction between a Positron
B and H™  University of Manitoba, 1961.
S S.DeBenedetti and H.C.Corben, Ann.Rev.of Hueclear Sci.

4y 196, (195R).
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Thus if 1t can be shown that the Hydrogen atom and positron
form a bound state, one could then have some measure of
confidence that the system consisting of the Helium atom and
the positrcen would form a bound state. This three particle
system will also serve to familiarize the investigator wlth
the techniques involved in the solution of this type of
problem before passing on to the more complicated four part-
icle problem, that is, the system of the Helium atom and the

positron,

Recent experiments have bheen performed by Paul and
¥y

Graham’ and by Wackerle and StumptY

on the annihilation of
?ositrons ;n Helium. Certain discrepancies exist between the
experimental results and their current interpretation. Paul

and Graham suggested that the time spectrum for positron

decay in Helium could be interpreted as the result of three
conponents. These three components were due to the anninilation
of singlet and of triplet positronium formed in the Helium,

snd the anninilation of positrons in flight. They found

that the loug -lived component had a mean life of Al x107% see,

3

They interpreted this as due to triplet positronium. However
the mean l1life of triplet positronium is~i5x 197 sec. The
intermediate component was found to have a mean life of ~

-9
1.$3X 10 gec, This,they interpreted as due to the annihilation

of free positrons. However, Dirsc theory predicts a mean life
a
- q 3 2 F43 g
ofr~ 3x 10 gsec., The short lived component was found to have

9 D.A.L.Paul and R.L.Grzham, Phys. Rev., 106, , (19
10 J.Wackerle and R.Stuwp, Phys. Rev. 106, 18, (1957
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a mean life of ~ 2x10 sec. They interpreted this as due to

the annihilation of singlet positronium. The mean 1ife of

~10
singlet positronium is 1-2§xI10  sec.

Ferrelll1 attempted to explain the existence of the
long lived component in Helium by means of his "Bubble Theory".
ile showed that it was energetically favourable for positronium
to be in a region of lower than average Helium density. He
postulated that once in this region, the positronium atom
would push away other Hellum atoms and create a "bubble" in
the 1iquid, The pick-off of electrons from the nearby Helium
atoms would then be reduced, and thus the mean life would be
increased. Ferrell also proposed an experimental verification
of the theory by the measurement of ;the mean 1life of triplet
positronium in liquid Helium near the critical point. At this
point, the calculated mean life is § the mean 1life at 4.2°K.

12 performed this experimental test of the

Daniel and Stump
theory and found that the results did not agree with the

predictions of Ferrell's theory.

The suggestion is put forwsrd in this thesis that
the experimental results of Paul and Graham, and of Wackerle
and Stump could be explsined if it could be shown that the
Helium atom and positron form a bound system. If the Helium
atom and positron do indeed form a bound system, then the
mean electron density near the position of the positron

would be different from that found in positronium. This would

11 R.Ferrell 5 Phys. Rev. 108 , 167 , (1957). )
12 T.B.Daniel and R.Stump, Phys.Rev. 1l5 1599 , (1959).




lead to different annihilation rates and mean lives, which
might correspond to the experimental results. Darewych7 has
shown that the mean life for two photon annihilation of pos=-
itrons in the ground state of the system of the negative
Hydrogen ion end positron differs from the mean life of

sirglet positronium.

In chapter II, the Variationsl method for deter-
mining upper bounds for the energy of a system will be
discussed. The system conéisting of a Hydrogen atom and a
positron will be investigated in chapter III. Chapter IV will
deal with the possible binding of the system consisting of
the Helium stom and the positron. The conclusions reached

will be reported in chapter V.




CHAPTER II
THE VARIATIONAL METHOD

The applicability of the Variational method to the
problem of determining whether the systems, consisting of the
Helium atom and positron and of the Hydrogen atom and positron,
respectively, forma&bound state, shall be discussed. The
theory of the Variational method for determining =n upper
bound for the energy of the ground state of a system shall be
developed. It shall be shown how the method may be extended
to determine upper bounds for the energy for excited states
of 2 physical system. Using a trial wave function whose
initial form is unspecified, the Variationel method shall be
applied and a form for the function shall be obtained such

that the upper bound for the energy shall be a minimun.

The Veriational methodl provides a powerful means

for determining an upper bound for the energy of a system in
a given state. Kinoshitag, using a trisl wave function
containing 39 parzmeters, obtained the ground state energy
of the Helium atom which was within .0003% of the value
obtained experimentally. The effectiveness of the method
depends upon choosing a triel wave function which is a close
epproximation to the wave function describing the staﬁe of

the physiczl systenm.

1 L.I.S8chiffy Quantum Mechanics, 2nd Ed.
2 T

p.171 .
.Kinoshita, Phys.Rev. 109, 1490, (1957).
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The form of wave function for the ground state is
known exactly for the Hydrogen atom and to a reasonable degree
of approximation for the Helium atom. Trizl wave functions
may be chosen for the system of Hydrogen atom and positron
and for the system of Helium atom and positron of similar
form to the Hydrogen atom wave function and Helium atom wave
function, respectively, assuming that the states of the systens
under conslderation are not greatly changed by the presence

of the positron.

The theory of the Variational method for the
ground state of a physical system shall now be developed. The

physical system is essumed to have a lowest energy state.

In Quantum Mechanics, it is postulated that a
correspondence between the states of a physical system and
the elements of a Hilbert space exists. A correspondence
between the dynamical varisbles for a physical system and

linear operators in the Hilbert space is also postulated.

If ¢,y are eleﬂénts of the Hilbert space and if
A is a linear operator in f%e Hilbert space, then the inner
product of ¥ with £y is defined as,
' (0,xy) = (O&W,@)* ( 2-1)
If the Hilbert space is a function space, the

inner product of ¢ with Ly is defined to be

(Q.xy) = 5' q)*ony de (2-2)
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tow x® is defined to be the Hermitian adjoint of «

if,

(¥, V) = (@, 5 ) (2-3)

If x=a® 5 o« is said to be an Hermitian operstor.

Let H be the quantum mechanical Hamiltonien operator.
H is assumed to be an Hermitian operator. Let ¥y be a state
function for the system.
Consider the eigenvealue equation
H o = Ea U (2-1)
VY, is sald to be an eigenfunction of the Hamiltonian op-
erator H sbelonging to the eigenvalue E, ,the energy of the

Mth state.

Since H 1is Hermitian, the set of eigenfunctions
of H ’Xwn§’ form a complete set. Hence any state Y of the
system may be expanded as a linear combination of the eigen-

funetions of H .

Then,
Y = L G ¥n (2-5)

where ¢, are constznis.

It can be shown that the elgenvalues of an Hermitian
operator are real, and that the eigenfunctions of gm Hermitian
operator belonging to different eigenvalues are orthogonal,
in the sense of the inner product of the two eigenfunctions

being equal to zero,




That is, from equation (2-k) we have

Hyn = Ea n
(2-6)
Hyy = ExYn
then C¥n,0) = Sy (2-7)

assuming {ué§normalized to unity.

Define the expected average of the Hamiltonian

operator H for a state Y to be,

<H? = (yw,H (2-8)
W, W)

if 1? not normslized.

From (2-5), (2-8) becomes,
<H7 = (2;<3fwn):§ cHuy )
<2; Ch¥n, & <y Yy )
= 2:- ]Cn\lEn (2-9)

Z 1Cnl* )
Let E, be the™lowest energy’ level or the ground

state energy of the system, and E , E, ;etc.,be the energies

1

of successive excited statess

i.e.,
Eos E‘< Ez.-.- (2"10)
Therefore, from (2-9) and (2-10),
<HY 3 EolGl*+E Icl*+ ..

[Qe1% 4 1C |2+ - -

! <H7 2 E IGI*+EIC i+
}C011+IC,IQ+-~‘ (2""118)

Hence,
<H7 = (U)HU/ > Eo

XD (2-11b)
This ineguality,(2-11b), forms the basis for the Variational
method and enables one to find an upper bound for the ground

state energy by calculating the expected average of H

L3
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The expression for (H) is calculeted, using a trial
wave function’wa%&ﬂ%%)wherea.,ﬂa,etc. are parameters and X,
%,, ete. are coordinates. The<dHris a function of these para-
meters. The values of these parameters are then varied so as
to obtain a minimum value for <H) . Hence the best value for an
upper bound fbr the ground state energy is obtained, for the

particular form of trial wave function selected.

If the ground state wave function Y, is known

precisely, then from (2-L),

Hy, = By, (2-12)
and from (2-11b),
(WOJHWo) = Eo (2-13)
(e, o)

If the trial wave functiony represents a linear
combination of ground state and excited states of the system,
H
_(_.EL__E).)_}EO

(%y) 7
Hence the effectiveness of the method depends upon choosing

then from (2-11b),

the trial wave function P to represent the ground state of

the system as nearly as possible.

It will now be shown how the Variational method
may be extended to obtain an upper bound for the energy of
an excited state of the physical system.

Let E, be the energy of the first excited state of
the system. If 9, represents the ground state of the system,

a wave function <y is chosen such that,

(,,9) =0 | (2-1l)
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Then from (2-1l1a) and (2-5),

(9, He) _ EMLI® +E06)%+
(9,9 %7+ by lm+ -

Hence from (2-10),

@ 49 5 E, (2-19)
(9,@)

Hence an upper bound is found for the energy of the
first excited state by calculating the expected average of H
for the state @ . Clearly the method may be extended to higher

excited states of the systen.

It will now be shown how the Variational method
mey be applied to trial wave functions whose form is not
initielly specified, and the solution will determine the
form of the wave function such that the upper bound for the

energy wilil be & minimum.

Consider a trial wave function Y for the system
with Hamiltonian H , whereﬂ“{(@%~ﬁhgﬁﬁnd'xﬁ®” are coordinates
end 4 L,.. are parameters for variationé The form of the
function{fpﬁpqﬂm)is specified, while that of%4?)is unspec-

ified.

The method shall be illustrated for a one particle
system. The extension to a many particle system will be clear.

The Hamiltonian operator H for the system may be written,
~ k2
H=-fv +V (2-16)
where K=am ; M 1s the mass of the particle, y*is the Laplacian

/z:l
operator, and V is the potentisl energy.

3 DNote that X4% need not be Cartesian coordinates.
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lNow consider the inner product (w,H¥) sthen from

emie) Cy, 1) ’“‘J;z Yoy + V] dv (2-17)
But Vewvy = (V¥)T + yvy (2-18)
?hen by the Divergence Theorem,
gv-wvw o =Suvw~2& dS = o (2-19)
SPHERE SPHERE

The right hand side of (2-19) equals zero for quadratically
integrable functions as the radius of the sphere — oo .,
Then from (2-18) and (2-19),
J - YVIY At = f(v Y AT (2-20)

Hence the inner product (%, HY) may be written,
from (2-20),
(U, HY) = g[ LY+ V] dv (2-21)

where Vv is the gradient opersator.

Consider the expected average of the Hamiltonian

H for the state@:lly%ﬂqﬁquhwith Y real.

<uy = §wHwdude, (2-22)
S Wt dT,
where Atlmd&d%”andcha~¢b, Integrating over dt,, (2-22) becomes%
iy = [ K9 pdrn | g (2-23)
S F(?o.) 357“ ATy I,

Since YWHY contains(Py)?, only first derivatives of 4.(3) occur.

We wish to minimize the numerator of (2-23),
subject to the condition that the denominator be & constant.

Hence (2-23) is a conditioned integral.

Il See footnote on page 12a.
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In the simple case considered here, F , in the denominator of
(2-23), is a constant. It is clear however, that in a more
general case, the limits of integration for 4%, would involve
Y and the element of volume would contain a function of
(Xd-,3) o This would yield,on integration over &v, , a function
F~$ in the denominator of (2-23).
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For an extremum of the numerator of (2-23), The first varie-

tion of I, must vanish.

Hence, from (2-23),

sL,=0 (2-2ka)
But I; = codsTanT
Therefore, §I,=0 ‘ (2-24b)

since the variation of a constant vanishes.
Then, from (2-24%a) and (2-2h4b),
sI1=5I,-28l =0 (2-25a)
where A is an undetermined multiplier. The first variation
of I vanishing, subject to the condition that the first
variation of.Ilvanish, implies that the first variation of
I, will vanish.
Hence, ,
o=% ([ £-2Fpldr, (2-25b)
This is achieved if the Euler-Lagrange equation is satisfied.

The Luler-Lagrange equation for (2-25b) yields,

o=d [9E) - dL + 21F (2-26)
;(j%?) = ¥
Equation (2-26) may be written as,
}” + A‘}’ ¢ (1—333 =0 (2=-27a)
Let q(3) <431 93) (2-27b)
and 2{'G) +A=0 ‘ (2-27¢)
¥
Then equation (2-27a) becones,
qJ” +(l-\73?20 (2-282)
O 2
and v -{% + % +8 (2-28b)

As can be seen from the forms of (2-28a) and (2-28b),
the problem has now been reduced to an eguivalent one dimen-

sional problem,




1k
Equation (2-28a) represents the Schroedinger equation for
the problem,and (2-28b) represents an effective potential

for the problem.

It will now be shown that A in (2-28a) corres-

ponds to the energy for the original problem.

Consider the expected average of H ; then frouw

(2-21), (w ) = ([T +vwnlae

For a minimum of the energy, it is required that,
SJWHW<%’=D
subject to the condition that,
S WAt = cousTANT
Hence we have a conditioned integral, and as in

(2-25b)
’ o:gg[ﬁ(vw)lwu/%wl]d’c = Sf K dt (2-29)

This condition is achieved if the Buler-Lagrange equation

is satisfied. The Euler-Lagrange equation for the problem is,

0=9d (IL +A.LEJ+K aﬁ}-az (2-30

=5k 5l Kl % 3
Then (2-30) yields

7'y +QR-VY =0 (2-31)

It is seen that (2-31) has the form of the Schroedinger
equation snd X corresponds to the energy. Hence A in (2-28a)
corresponds to the energy. Eguation (2-282) may then be
solved for the eguivelent one dimensional problem, using a

numerical integration procedure.

The dependence of the nodes of the integral curve
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of (2-28z) upon the energy will now be investigated.9mhe
solution of (2-28a), must be quadratically integrable, so
that an eigenfunction of the energy vanishes at 3=100 .
Equation (2-28a) may be solved explicitidy for small 3 to
obtain the behavior ofq(@fbr small % .

Consider now (2-23a),
Lo = -0-7)
Suppose A 1is less than the lowest eigenvalue. Then the ?(3)

curve will not cross the § axis as in Figure 1.

l

93) 1

Figure 1

g (3) for X less than the eigenvalue.

As the energy A is increased, the ratio lil? becomes
more negative, from (2-28a), and when A equals the lowest
eigenvalue, the ¢(3)curve will approach the ¥ axis
asymptotically. As the energy A is further increszsed,; the
ratio%?”becomes more negativey and the g(3)curve will cross
the axis. The¢Rcurve will have a node which will move towards

the left with inereasing A 4 as in Figure 2.

9(3)

A)
Figure 2
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When A equals the energy of the first excited level,
theqﬂg)curve will have a node in the finite region of the 3

axis, and will approach the axls asyptotically for large ¥ -

An upper bound for the ground state energy maykbe
obtained by choosing an energy greater than the eigenvalue
for this particular problem. Then the Q(}}curve will cross
the‘} axis in the finite region. The paraﬁeters are then

varied until the distance of the node of the integral curve

?(?)from the origin 1s a minimum. Since decreasing the energy

A has the effect of moving the node away from the origin, the
closeness of the node to the origin, for a given value of the
energy, 1s taken as & qualitative measure of the amount by
which the chosen energy lles above the lowest eigenvalue. Thus
by varying the parameters to move the node closer to the origin,
one would in effect be improving the effective potential in

the sense of depressing the corresponding lowest eligenvalue.
The energy is decreased until the integral curve has the proper
asymptotic behavior. This energy 1s the eigenvalue for the new
problem whose effective potential contains the varied values

of the parameters. This gives an upper bound for the energy,
but it 1is possible to improve upon this result by choosing
better values for the parameters with this lower value for

the energy. The parameters are varied again to improve the
effective potential and thus depress the corresponding

lowest elgenvalue. With this improved effective potential,

the energy, obtained from the previous calculation, is greater

than the eigenvalue which is required to insure the proper
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asymptotic behavior of the integral curve. Hence thecytycurve
will cross the } axis in the finite region. The parameters
are then varied so that the node is at a minimum distance
from the origin. Using the best values of the parameters
obtained by this procedure, the energy is decreased until

the eligenvalue is reached and the ?(?curve has the proper
asymptotic behavior. This procedure may be repeated until a
lowest upper bound for the energy for the type of trial wave
function used is obtained. In this way, an upper bound for
the energy of the ground state of the physical system 1s

obtained from the equivalent one dimensional problem.




17

CHAPTER III
THE SYSTEM OF HYDROGEN ATOM AND POSITRON

In this chapter the Variationsl method will be
applied to the problem of the possible binding of the pos-
itron to the Hydrogen atom, a three particle problem. The
geometry of the three particle problem will first be examined.
An element of volume for this configuration space, which will
ellow the necessary integretions to be performed, will be
derived. The expression for {H) for several trial wave functions
for the system of Hydrogen atom and positron will be deter-~
mined. The Varlational method will be applied to a trial
wave function whose initilael form is unspecified. This pro-
cedure will provide a form for the wave function which will
correspond to a lowest upper bound for the energy of the

ground state of the system of Hydrogen stom and positron.

Consider the configuration space for the three
particle system. Let the drigin for the coordinate system
be at the position of the nucleus. Let hi, 9, , Q,be‘the polar
coordinates of the electron with respect to some arbitrary
initial direction and plane. Let n, , &, , ¢, be the polar
coordinates of the positron with respect to the vector .

as polar axis and some arbitrary initisl plane, es in Fig.3 .
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Coordinate system for Hydrogen atom and positron.

It is desirable to have a configuration space for
the system with the three inter-particle distances as

coordinates. Define a vector N, , as the electron-positron

distance,
Rig = Dy = 1 (3-1)
Then,
nr =lng-nl* = nrent -2 MRy (3-2)
where, feo® s 9, /*1: cay G,

The element of volume 4 may be written as,
AT = nfdn,%u,d% Ry dRy, du, d g, (3-3)
Equation (3-3) may be transformed to give an element of
volume in the desired coordinates.
Then,

= ll—n,hi i ,_,CV,_ Al
W= iy <r\,n;¢:u};zi’/% A, dny dnyy du dgdg, (3-1)

is the Jacobian of the transformztion.

where j( Mo per o @ G
NiNg R s @, ¢,

Hence from (3-2) and (3-4),

v = RNy Ry My dn, Jr\.(l d/u.l 0(519, K% (3-52)
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with the limits,

Oz hh£oo O = Ng o0
O N, ¥ o0 0« ﬂ
lnl"klshls ﬂl"'ﬂ]g ' ;nl‘hq_l‘ ﬂ é nl"'n'i. (3-5b)
RN PR or -!j ).4.2_~
C<&q «2m 0s @ <garm
2@ g 0% @ <anm

The expression given by (3-5a) is the desired element of

volume in the configuration space.

The Laplacian operating on the coordinates of
perticle 1 is, for y={(x,n1,),

=3 4 31 +2 :),_ i iy §,, e nzand) g (3-6)
dnx nm,:‘ nl nl ﬂﬂ. nn. h. h:g Jﬂ,Jﬂ,,_
and for particle 2 is, '

’~: 2 2 9‘ ’:* L (z 2 -
Vo= d- o+ +%:_2. P2 Q, +(h h, n)é (3=7)

an,_l Jfl,;‘- n,_h:g Jhl n

and the expression for the square of the gradient

operating on the coordinates of particle 1 is,

(u$)* =(%)ﬁ +(5_7{’1)1 + (h,zl+h:11-n Aﬁ{(—\(ﬁ{;/ (3-8)

and for particle 2, the expression is,

WU ) < [yl e

An outline of the derivations of (3-69, (3-7)5(3-8),(3-9)

is given in Appendix A,

Consider the Hamiltonian operator for the system
of Hydrogen atom and positron. This is a three particle
system. Since the mass of the nucleus is ~ 1800 electron
masses, the motion of the nucleus is neglected and is

considered at rest,

Let h be the position vector of the orbital
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electron with charge-¢ , and let A&, be the position vector
of the positron with charges¢ ; as in Fig.3. The potential
energy terms of the Hamiltoniaﬁ are due to the Coulomb

interaction between pairs of particles.

Then , by (2-16), the Hamiltonian operator for the

ground state of the system becomes,
H - -.}%V," «l 90 ot 4l o_e? (3-10)

whérex =am ;M 1s the mass of the electron or positron
t'a.
£ =PLANCK'S CONSTANT o
2

Then from (2-17), (2-21) and (3-10), the inner

product (¥ HYy) for the system mey be written as,

(v, Hv) =H~J,;wv,"zp LYRY -t e ¥ Wl (3-12)

or (Y, Hy): “,{!Z(V,w)l-{-_llz(vl‘dl)L g _—;y +<j_1gl-e_‘_z_gzj e (3-12).
; Na [T

Consider trial wave functions for the system of
Hydrogen atom and positron. It is assumed that the ground
state is a state of zero angular momentum. A function of the
inter-particle distances only will now be shown to be an
elgenfunction of the orbital angular momentum belonging to
the eigenvalue zero.

Let Iﬁwélbe the orbital angular momentum operator

for the two particles, where

Z+ZL, = ~it(nxv + nx0,) (3-13a)

Let((mmvmgbe a function of the inter-particle distances only.




Let ,{f, = df 41‘ ié /{:1" %L

N, dna

éf( = ‘Li{&’\’ [{-:V/n' + ’FlV,”L*{uVm‘l]} =k Ef’d_\___afg’/%"

Mz

Lod = -k nx[ fmn v, Vzﬂﬂ{:;%"n}} 20K ax (__:l;‘z_-_f.y {n
LB L)L s ik -B:)X(_%:&)J [,=0
The extension to many parti@les is clear,
A function of the inter-particle distances only is chosen
for the ground state trial wave function, since this function
will be an eigenfunction for a state with zerc orbital

angular momentum.

The state of the Hydrogen atom is assumed to be not
greatly disturbed by the presence of the positron. This is a
reasonable assumption, since, if the system is bound, it is
expected that on the average the positron will be at a large
distance from the nucleus. Hence a Hydrogen or exponentisl
type wave function for the nuclear-electron coordinate h, is
chosen. If the positron and Hydrogen atom form a bound system,
the electron and positron will form a system which does not
differ greatly from the positronium atom. Hence a positronium
type wave funcvion is chosen for the electron-positron distance.

This also is an exponential type function.

Semi-classically, if the Hydrogen atom and positron
do indeed form a bound system, it may be expected that on the
average the positron will be at a large distance from the
nucleus, since it is repelled by it. Hence a wave function,

which will satisfy this condition, nust be chosen.
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Quantum mechanically, the probability that the positron 1is
at the position of the nucleus must be zero. This is achieved
if a power of the positron-nuclear distance or an exponential

type function is chosen. Hence trial wave functaons for the

system are chosén to be - , ,
s n, ¢ R (3-14)
‘1}’: nz_ C-— A(nwo&ﬂm.) (3__15)
- n N~ 1"1)
Ve e JAGUIE R POl IR (3-16)

The Variational method is now applied to the trial

wave function (3-14%),vy = nl~LMJ¢nM

By (2-8), the expected average of H is,
<Hy = (W HY) (3-17)
5723
Then by (2-22), (3-11) and (3-14),

<{HY :fﬁ[('l‘.z—l‘}o{l)wl‘f‘#w 9‘2“/ + SA“ZYU L"‘“'W}&

N JAYES
{rdT (3-18)
[ 2 1 2
+'§ [A/?l{llz ZP ﬁh' v Mf:‘l;z -H{(X”rlYPJo('f“"Ié [—:T(; Tiig, %}A
ICRG oy de

where d¥ is given by (3-5a).
An outline for the method for performing the integrations
is found in Appendix B, and the integrals of (3-13)

explicitly evaluated are listed in Appendix C.

Equation (3-18) may be written as,

<y L BT AW) + € B (3-19)
The{H)is minimized with respect to k by setting %%géz
Theny
<hy = - B% Ke* (3-20a)
4 A
or (H) = -(es’+18x St 4 1903+ 2k 4 l?0<+6) (3=-20Db)

47 (T+x)(1+x)  (Cx* ¥ 42 +3)
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The <H) ; (3-20b) is a minimum for X= Q .

Then, "
{HY = -# Ke

where K€¥ 1s a unit of energy, and K€Y is the atomic unit of
Af

energy.

- ~ h,'f' R ﬂ)
24 Hn”‘“n”‘)arxd y=e h(nrangphy th

Similearly fory=h, o

minimum for (H) is found %o be —#- Ket,

The energy of the Hydrogen atom in the ground state
is -# Ke* . Since the binding energy of the Hydrogen atom is
twice that of the positronium astom, the favourable mode of
dissociation of the system is into Hydrogen atom and positron.
Clearly the energy of the system of Hydrogen atom and positron
must be less than that of the Hydrogen atom if the system 1s to
form a bound state. Hence, with trial wave functions (3=1A),
(3-15) and (3-16), binding is not indicated for the system of
Hydrogen atom and positron. This result is in agreemént with
that of Inokutl, Katsuura and Mimural s who have shown that
binding i1s not indicated for the svstem, using a trial wave

-4 d
function of the form y=n, & (et b,

The Variational method is now apnlied to a wave function
whose form is not initially specified. A wave function of the
form,

Y = e‘}“”'"'i’n’z c&(nx} 4 (3-21)

is chosen.

1 Inokuti,Katsuurse,and Mimura, Prog.Theor.Phys. 23, 186,(1960).
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Then from (3-13b) and (2-22), using the element of

volume given by (3-52), the<dH#) is, Ki=2hk  k,=1h,

ay = % JLUMR NI WP ke )t e mUEE) s (125 4Tk A (3-22)
jﬂlu"gl dny

where,
2 - KMy =Ky Py K~k h,
R = gnzj'(k,uznl)e ' Py Nyl d, 'f-S’TT"JK,Kz nren2)e " 'Lcln,dn,z
“+ ¢

-th, "‘K; nll

dﬂl&"ll

W = ?N‘j Kl e
L*.
- ~K T~ Ky 1y
U s ?ng MR, € il = Ka T, M, dng

- &~ Ky f\,
P = m"xezjm,m,ﬁe PR dn,dngy

-.K|h|"'4- h
S ‘-'?ﬂ'zg n < B dr, &,y

vlx

T= gn* g%(n,n,f pp) T dn, dn,y
These are evaluated in Appendix D.
It is required that the numerator of (3-22) be a
minimum subject to the condition that the denominator be a
constant. This is a conditioned integral, Then, from the
theory of chapter II, the Euler-Lagrange equation must be

satisfied, and hence from (2-26) and (2-27a),

d*a L Aazx +(x-B)a =0 (3-232)
ShovAeE )%
where A=l 41 4V (3-23b)
M. "U & |
and BzamR + 4L -an - np &3 -an)W-anP +aketV (3-23¢)
77, U

Equation (3-23a) is transformed by (2-27b) and the
condition (2-27¢) is imposed. The result is an equivalent one

dimensional problem with Schroedinger equation,

#9 +(a-V)g=o (3-24a)
A -
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and effective potentisal,
v = A > (3-24b
V4 L éﬁl +4 A +8B 3 )

The effective potential is given by,

- 2
¥ 2 K, (k2 F3KE) KK K=Ky My -Kz(SKIQ'F“f)._K
V=(K,‘+ll<1) +1%' ,I#IZ_J_[(_'_._}_—}— i z"z}+e A t"znl}

4 % P (xR _,*f;zzz + e-u.-k,)n,_*{ ?x.. +K:.ha..}
- —k:" )nl- (3-25)
o) [ty b gt ¢ F o ot o, (9

-+ .
i[(hd#\4mqmq4_C~“*ﬂM(xmf*_+mmn)
I Iz I I*

The differential equation (3-24a) cannot be solved
explicitly, but may be solved by means of a numerical
procedure.A difference eguation is formed from the differ-

ential equation,

Let, (? = ?ﬁ\,
q)’ = (?0\ - q)m-x (3"26)
8 f
('P” = o - Py

g i .
From (3-24%a) and (3-26), the difference eguation

becomesy

‘YM,,,z [a“(lﬂ,\\/l)gl] Cn =™ Pri-i (3-27)

where o is a small interval of 1, .

Thus if two initial values of 9 are known,
successive values on the integral curve may be computed from
(3=-27). The two iﬁitial values of @ zre obtained by solving
(3-2ka) in a series solution for swall R, . The approximation
of the effective potential v s given by (3-25) for small
values of h, ;is found to be,

Vo~ 4 (3-28)

A series solution must be found for,
i

¢ +(a-4)g=0 (3-29)




for small A, &
Let a solution of &}-29) be, )
¢ = A7 L amt (3-30)
From (3~30), (3-29) becomes,

AZ: (CHa) T+ a~) ay N T4 pxe, nT g AT =0 (3-31)

Equating the coefficient of the lowest power of Ay to zero,
we get, T=-1) a, =0
Hence 7=! , since ¢ 1is required to be zero atn;io .

Equation (3-31) becomes,

Z [ sy aghd s aant -a, n2l=o (3-32)

Aro

Equating the coefficient of n,” to zero in (3-32), we get,

L Om = AGny ; Qs _Q_'_'.
Tt M+ ) 2
Hence a series solution to two terms is,
(Y ~ Ry o+ h: ' (3-33)

2

A numerical integration of the differential equstion
(3-24%a) is performed using the difference equation (3-27),
and the two initial values of @ from the asymptotic solution
(3-33). The parameters are varied until the energy is a
minimum and the integral curve has the proper asymptotic
behavior. The energy A is found to approach a limiting value
of-ﬁ:Keq, Hence binding of the system whose state is desecribed
by the wave function'¢=cfmm-Mn%fhﬁis not indicated.

Thus the results of the computationsy using trial

wave functions (3-14), (3-15), (3-16) and (3-21), do not
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show that the Hydrogen atom and positron form a bound system.
However we are unable to conclude that the physical system
does not fofm a bound state, since the Variational method

yields only an upper bound for the ground state energy.
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CHAPTER IV
THE SYSI'EM OF HELIUM ATOM AnD POSITRON

This chapter will deal with the problem of whether
the Helium atom and positron form a bound system. A configur-
ation space for the four particle problem will be investigated
and an element of volume in this space will be derived. The
Variational method for obtaining upper bounds for the energy
of a system will be applied to two trial wave functions,
containing three and four parameters respectively.The pro-
cedure for obtaining a minimum value for {H)of a systemswhose
state 1s described by the four pearameter wave function, will

be discussed.

Consider the configuration space for the four part-
icle system. Since the nucleus of the Helium atom has a mass
equal to 7200 electron masses, the motion of the nucleus is
neglected. Since the nucleus 1s considered at rest, it is
taken to be the origin of the coordinate system. Since each
moving particle has three degrees of freedom, the configuration

space for the system will have nine dimensions.

Let R, be the position vector of the positron, Rz be

the position vector of one elctron and nsy be the position

vector of the other electronol

1 In the problem of the Hydrogen atom and positrony chapterIII
the positlion vector of the positron was 2,5 and the position
vector of the electron was A .
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The inteerarticle distances are defined as,

No= ol R,= 1Ryl Ry =iNs]
o e (4-1)

%”Bz-&l N =ifg-0y Nay = 1 hs-Nal

Since the six inter-particle distances (4-1) arise
in the Hamiltonian operator for the system from the Coulomb
interzetion between pairs of particles, it is desirable that
these six distances occur as coordinates in the configuration
space of the system.In the following the positron will be
referred to as particle 1, and the two electrons will be

referred to as particles 2 and 3 respectively.

The six dimensional configuration space for part-
icles 1 and 2 will first be considered. Then the space will
be extended to include particle 3.In terms of Cartesian
coordinates, the coordinates of particles 1 and 2 are (%,4,3%)
and (1,4, 3svrespectively.The three inter-particle distances
honh, N, are chosen to be three coordinates in this two
particle configuration space. These three distances form a
triangle in the space.The orientation of this triangle in
the space may be completely specified by the Eulerian
angles (8,9,V) X Any configuration of particles 1 and 2 is
completely specified by the three inter-particle distances
n,n,,MN,s and the three Eulerian angles(o,¢9,¥).Hence RN, N,..0,9,Y
are chosen to be the coordinates of the two particle config-

uration space.,

The element of volume for particles 1 and 2, in

terms of Cartesien coordinates 1is,

2 H.Goldstein, Classical Mechanics, ADD.-Wgg, P.107.
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dU = d% oy = o, degy dy, oy, dayy olay, (4-2)
In order to obtain the élement of volume in terms of the
coordinates of the configuration space, the transformation
equations between the coordinates(y%W%ULM%N§J and the
coordinates (n h,h, 8,9 %) are needed. These may be obtained by
considering two orientations of the triangle whose sides are
h,n, and n,, . The final orientation is produced fpom the initial
orientation by three successive rotations through the angles

@,e and Y in the sense of Euler.

This corresponds to the transformation matrix T 3,

where,

CnPim @ =G Arn T A Y Cay Y b § + Con Oean P n Y ke Yt B
T — . S e (4-3)
T raVen@ - cng hr g anl “anYimp t 38 oy g oY car Y amQ

arn Qo @ - An Qg cer @

The initizl coordinates of particle 1 are(00,1) and the final
coordinates are(%,4,%,) - Let 7 be the angle between A, and hy.
Then Mg = AF+ R =2 Ny e 7] (H-k)
Thus the initial coordinates of particle 2 are(ﬂzb%ﬂ,%”vaﬁ) 7
and the final coordinates are (X,,4,,3,) -

Thus the relations between initial and final

coordinztes are,

%, o \
4| = T |o] (4-5)
% Ny
y :T(“*g“l (4-6)

ch«a’rz

3 H.Goldstein p.109




31
Then from (4-3), (4-5) and (4-6),ve get,

Xy = N AV 4n B
L&l ~ h( OhY‘U Me (4"7)
Qa‘ = N con@

and

Xy N aa Y en Yooy Ry A e Y cnea-nﬁm?(M?PMGq
Yy = ‘th’!Mw o g -f&m“? oY samp o £y 7 @Y 4w
7D’~: ng_MTZM?’MB + R, oy

-8)

Hence the element of volumed? for the cOnfiguration
space in terms of (M,h,h,,8,9,y) is,

J\_/(\_’: j/’lu%ué-)_xu“éugz) dn,o(nlc){fl,l 6(9({(}7 d‘l‘IJ (L{.'_C/))
tnnanae e,

where;y Y43 %423y 1s the Jacobian of the transformation.

Ny hyg G'.‘F v
Then from (4-4), (4-7) and (4-8) ,the Jacobian is,
j(}__uz_u = Ak Ny 4 (4-10)
hin,ne ¥ v

Hence an element of volume in the two particle
configuration space is given by,

AV = ddt, = Ay, 4@ dhydagdn,, do dgdy (3-11)

The configuration space will now be extended to
particle 3. The orientation of the triangle formed byh, h, n,
is specified by the three Eulerian angles®,¢,y . Particle 3,
whose distance from the origin ishyy 1s introduced by choosing
2 as the polar axis for r;,and defining w to be the angle
between the plane formed by h, and n, yand the plane formed

bys and h, . Let & be the angle between h, and N3 with

as in Fig.h. 20 (4~llx
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Figure I
Coordinate System for Four Particles.

Then for particle 3, the element of volume is,

dtry = nydny dp deo (44-13)
But AL = RMAT -2 RN ke (4-1L)
‘The coordinate.nu‘may be introduced into the element of volume.
dr, = n;ﬂw} dry dngy d e (4-15)
Ny Naw

dT, = Hahn d1ydnsdo
{
Then for the three particles, the element of volume in the

configuration space becomes,

At = My Ry Mg tim 8 don, dny diyy oy digdw dedy dy (L-16)

with
0% ngeo 0 &N, IR-Ng) & Mias Rt hy,
G % Ny oo [h-nsl& Ny € g 0% wWsg T (h“17)
0¢ 8sT 05 @sal 05 W SamT

In the above, < in Fig. li is the angle between the planes
intersecting in »; . If instead @ 1s taken as being the angle
between the planes that intersect in h,; , then the element of

volume 1is,

A% = Ny Ry, Ry Ry an® drgdi dre i dn dodedpdy (4-18)

with
O £ hyyé 0 Nys = Lng-Myy € N g Ryt Ny
O € Npgee IMylinls Npd Nty 0% wzam (4-19)
0 & 8= Os @& T o€ Wiaw
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The inter-electron distance h,, may be introduced into
the element of volume (L-16), where,
K3
Fyg = M3+RE = 20, hy| e g ¥ anq ainb o co] (4-20)

Then the element of volume is given by,

A= Ny Ry Ry nnA"';‘ej(h' Mol s g Nay 9‘”’) 4 A drnypdry g dny dodo dy (4-21)

T aialy i, @ 09 ¥
However the Jacobilan in (u~21) is a complicated expression
due to (,-20) and hence the element of volume (L-21) is not
suitable for the integrations to be performed.
Hence the elements of volume (li-16) and (Li-18)
in the configuration space of the system will be employed

for the evaluation of integrals arising in this problem.

The system under consideration consists of a
Helium atom with a nucleus of chargetr2€ fixed at the origin,
and with two electrons, each of charge -¢, ath, and h,; res-
pectively, and a positron of charge +e at s, . Hence the

Hamiltonian operator H for the system may be written as,

A

! Ny T3 ./7_12 hys h;:{
where K=§g; m 1is the mass of the electron or positron; and

H: —nglq."ﬁvz‘l".lk.v3i+gﬁe__l"?:_éj-zel»—'El _GQ +__é_z (L‘_-22)

Zﬁvf;%l are Laplacians operating on the coordinates of part-
icles 1, 2, and 3 respectively. From (2-21) and (L~-22), the

inner product(w,HuUfor the physical system may be written as,

(Y HY) =“f;(wf'+#(vlw)‘+ﬁcv3 w)2+%’_'yl- ;;_’ZE_ ;_%_‘;yz —_e;‘g/;_ g%_ﬁ%ﬂj v (L-23)
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where, for a function of the interparticle distances,

(vp® 97()\1 (37.03 +/g} {m +nn: n, )gﬂ(%}{\
RIR) i)

aniy

Sa Mg

+ﬂ," n
AV RVEN

‘ ( i
W= () (3] o

My Nie o‘nl/ )y

)
72 f~< Sengt ﬂ)d_zv (aw}

Fjjsjg:;n X3‘5<§“ ) +( ln1213h apké%j“~2k)
A TSy T
""" Tt R) I i)

The expressions (4-24) are derived in Appendix E.

The ground state of the system of the Helium atow
and positron is assumed to be a state of zero angular
pomentum. Hence by an extension of the result of the previous
chapter 5 functions of the inter-particle distances only are
eigenfunctions of the angular momentum operator belonging to
the eigenvalue zero. Hence functions of the inter-particle
distances only will be considered as trial wave functions

for the system.

It is further assumed that the state of the Helium
atom is not greatly disturbed by the presence of the positron.
The total wave function for a system of Fermions is
postulated to be antisymmetric. In the ground state of the
Helium atom, the two electrons have a total spin oi zero.
Hence the spin function for the system is antisymmetric. Thus
the spacial part of the wave function must be symmetric with

respect to the interchange of the two electrons.
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Since the state of the Helium atom is not greatly disturbed
by the presence of the positrons trial wave functions,
symmetric with respect to the interchange of the coordinates

of the two electrons, are chosen.

If the Coulomb interaction between'the two electrons
was not present, the wave function for the Helium atom alone
would be a product of two Hydrogen-like wave functions.Hence,
a8 an approximation, a product of two Hydrogen~like wave
functions is taken as part of the wave function for the sys-
tem of Helium atom and positron. Since the nucleus repells
the positron, on the average, the nuclear-positron distance
will be relatively large. Also the electron will tend to be
farther away from the nucleus, on the average, due to the
attraction of the positron. Then if the system forms a bound
statey, the positron and electron will form a nearly positronium
1ike system. Thus a positronium-like wave function is chosen

for the electron-positron coordinate.

The function nmust be symmetric with respect to the
interchange of the two electrons, particles 2 and 3. Hence a

symmetrized trial wave function for the system is chosen to

be, _(“l‘}lfﬁﬂ;lf\{n3> + C—(xn3+(3h:1+‘fﬂ1\)

W =YYy =C

whereq s,y are parameters for variation.

(4-25)

The motion of the positron is also correlated to the
other electron, Hence a trial wave function which accounts for
this correlation may be written as,

a8

(KRG EBML # YN+ 80,3) (X NgtpRg +Y Nt §Mg)

—]‘V:Vq.*'WB:C ¥ € (1"5'-26)
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wherew,sY,5 are parameters for variation.

The Variational method will now be applied to the
three perameter wave function (4-25). Then,from(#-23) and (4=24),
the <H) for the state(4-25) may be written as,

I T AR S Al G- IRAAL
) S (at+ Y, W) d '

PR agurs o) 4 (22 D Dyt aprup) AT o

NNy

{ (w w;'r?ﬂ&?é,ﬁow i
_ez = 3 kS
B N A - R ) )l

(o S Pty )
Since there is symmetry between particles 2 and 3 jn the

wave function and in the element of volume ;it is clear that,

{7_},11 chC = gw::“ CL/CI SZ{/L Ik |2 OY,'CI §21011(/3 n,; ol-f
Niy e
SUQ(H% m%n/)a%'c g%f(m:+n;*n334v
1 ﬂ,“hn_
g Y, At = Swﬁ A P Vs Jx =jma v etec.
™m Na Ny

aly

Hence {H) may be written as,

HY =Jﬂfm“f32”1)%2‘+‘*“szua"ﬁi(’“ﬁl—)wv +2d3(ﬂl::h ’1}7 )W +apv(nwh ”)ZJY/J‘{A‘

Ty dr e (45-28)

SIEX LA 5% sayl
+€f [ iy o a2l n g

(Capr ¥y, dr
The expression for<hiy and the integrals are evaluated and

listed in Appendix F.
The minimum value for<H) must now be found. The

<Hy may be written as,

<HY =& AlcpOfh + € Blapir) (4-29)
Clo,p,x)

where Alxpyis due to the kinetic energy termsyand Bipv is due

to the potential energy terms, and C&fvis due to the norm=-

alization,
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= & =
Let a & C %%

Since A, 8 and C are homogeneous of degree-7,-%,-%,
respectivel§, in the parameters, (4-~29) may be written,
(HY = Lp*Alanc)+ per Bland) (4=30)
Cla,ice)
The{H?may be minimized with respect tog by setting,

9y = o = %ﬁ A $cbB
d G C
Then (4-30) becomes,
KHY = _ Banc) g (4-31)
‘Lf'A(q;hC)CCQ,f,C)

The value of (4-=31) wés»computed for various values of @

and C . The <H#) was plotted on a plane with o and ¢ as
coordinate axes. Contdurs were drawn through points of equal
energy. In this way the best values of the parameters and the

minimum value for <#> were guickly obtained.

It was found that,
CHY — -L437g ket

for a =p oo L =3 o0 o 3 =0

. . (o My Y)Y TEa)
Since p->0 the wave function tends to the form =€ 1€ .
This wave function corresponds to the system of the Helium

atomy and thus the <#) actually represents an upper bound for

the energy of the Helium atom.

The Variational method will now be applied to the

four parameter wave function,(4-26),
Yy, Y, e IR o

Then from (4-23) and (4-24), the {H) for the state given by
(4=-26) is,

— XN R 3OS D)
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(H> g [p™44s +;1,<a+2¥ NP (v 4555, +(MX{{3’+S T+ psaye sy ar
SLN}A Fawy %, 14T Heafia

J,S-‘t {h.z;tz?;n,‘)(z{pv+ag}zwp3+gys71/3‘ +axpP?) ]

S[u,;,}»«w;wﬂ 4T ()_%_32)
+€ g’ju’z +212%,%s 1274’ 4% ¥ 22U 2yt gy 2% 12{)12113J %
[ iR -2 2wl antends el b g

§[2w3+1WJ#]if
The symmetry between particles 2 and 3 has been taken into

account, Z is the gharge of the nucleus.The expression for H)

and the evaluated integrals are listed in Appendix G.

We wish to minimize <H7? in order to obtain the
lowest upper bound for the energy of the system. The {(H) may

be written as,

dHY = kA(xps) Fe*Blxpxs) (4=33)
CC%)P)Y:X) - ¢
Let L-—f =X d=F

Then because of the homogeneity of A, & and C 4(4-33)

may be written as

! <9H> = -'{Z ZA(]L J«) +O(.CQ'B(!>L‘)C)°(‘)
CC’I’HC d)

Then , by the procedure used with (4-30) and (4-31),

<HY = - B d) Kot (4-34)
4 A (be,d) C(1knc,4)

Hence the expression for {H) , (4-34) has been minimized

with respect to the variable « . The {H), (4-34) must now be

minimized with respect to the variables 4 c and 4 .

The four particle system consisting of the negative
Hydrogen ion and positron was investigated by Darewychq. He
found that a minimum for <{H> for the three parameter existed.
Thus the best values of the parameters from the three para-

neter wave function could be used with the four parameter

%4 G.Darewych, Thesis, University of Menitoba, 1961.
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wave function and then varied slightly until the wminimum for

<H) was obtained,

However this procedure could not be adopted for the
Helium atom and positron problem, since a minimum for the
energy was not indicated with the use of the three parameter
wave function, Thus no knowledge of the approximate values
of the parameters for the four parameter wave function was
avallable.The best values of the parameters t,c andd , and
the corresponding minimum value of {H> could be obtained by
calculating <H> for a three dimensional network of points®cd).
This procedure would be difficulﬁ;since the region in which

a minimum for {HY might exist, was not known,

Anocther procedure was followed. This involved the
tracing of the location of the minimum of <H7,in§%hé sense
of the best values of L ¢ andd , for values of Z from Z-!
toZ=2 . Z is the charge of the nucleus. For 2-! the system
would consist of the negative Hydrogen ion and positron,snd
for 2=2 the system would consist of the Helium atom and
positron. The best values for the parameters for Z=I were

determined by Darewych.

If & 2 value, differing by a small amount from 2=
is chosen, the values of the parameters which will yield
a minimum for<#? 4 will also differ slightly from the best

values obtained for 2=1 .

A value of 252yas chosen, and a value of & differing
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slightly from the best value foriz=i , was fixed. The{HV was
calculated forc and d near the best values obtained forz=i,
A contour graph wes plotted and the best values of ¢ znd d,
and the minipum value of {Wd)were determined. This was repeat-
ed for several I valuesy until the best values off,c and &,
and the minimum for{Hy were obtained for2=1.2 , The process
was repeated for 2z =u.4,.{,.¢,1.9,2 . In this way,; the minimunm

for {H) was obtained.

The results obtained for <H] were,
| <HY = - 1437 Ke*
ot  h=g o0 c=X=lg A -t 2

The ground state energy o
This is equal to -78.4 ev, The energy of the positive Helium
ion and positronium is -60.25 ev.Thus it is energetically
favourable for the system to disscciate into the Helium atom
and positron. Hence binding of the system will be indicated
if the value of (H) is less than~ﬂ;ﬂfsutﬁhus sin both cases,
binding of the system of Helium atom and positron is not
indicated., However ; we are unable to conclude that the
Helium atom and positron do not form a bound system, since

the Variational method yields only an upper bound for the

energy of a physical system.
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CHAPTER V

CONCLUSIONS

The possible binding of the system consisting of the
Hydrogen atom and positron was investigated in chapterIII,
The Variational method was applied to several trial wave
functions for the system. An equivalent one dimensional
problem was formulatedy which would determine the best form

of wave function in order that the energy be a minimum,

The results which were obtained did not indicate
binding of the system. However, as was shown in chapter II,
the Variational method vields:only an upper bound for the
energy of a system. Hence it could not be concluded that the

Hydrogen atom and positron do not form a bound state.

The problem might be resolved if a trial wave
functiony, which more closely approximates the state of
the system, were chosen and were to indicate binding. How-
ever another more promising approach might lead to the
resolution of the problem. Baziey 1 has devised a method
for determining lower bounds for eigenvalues,; and has
applied this method to the system of the Helium atom. The
application of this method to the system of Hydrogen atom
and positron would yield a lower bound for the energy of the
system. Thus from a knowledge of an upper and lower bound
for the energy,the questionsas to whether the Hydrogen atom .

and positron form a bound systems might be resolved.
1 N.W. Bazlev,Phys. Rev. 120, 144, (1960).
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The system of Helium atom and positron was invest-

igated in chapter IV. The Variational method was applied to

¢

a three parameter and a four paraneter trial wave function
for the system, in order to determine whether the Heliunm

atom and positron form a bound state,

The results obtained did not indicate binding of
the system. For each triel wave function, certain parameters
vanished for a minimum value for {M). The trial wave functions
reduced to the form of Helium-{ype wave functions for two
electrons. Thus the value of<{Hrwhich was obtained; repres—
ented an upper bound for the energy of the Helium ztom., It
is clear that an lmproved trial wave function might indicate
binding of the system. The two trial wave functions did not
contain terms which would correlate the motion of the two
glectrons.The use of this type of wave function for the
Helium atom does not yleld a value for the energy which 1s
in close agreement with experiment.Thus & term invelving the

inter~electron coordinate must be included in the wave function.

An equivalent one dimensional problem for the
Helium atom was formulated. 1t was found that & linear
function of the inter-electron coordinate would yleld =
ninimum energy. This is in agreement with the result of

~y

Green et al.

2 Green et zl., Jour.Chem.Phys. 30, 1061, (19592).
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However thelfour particle element of volume
involves five inter-particle distances.Hence any term of
<H> which contains &1l six distances cannot be evaluated.The
sixth inter-particle distance must be expressed in terms cof
the other five distances snd a angle. Such a term occurs
in {87 if a linear function of the inter-electron distance s,
ig added to the four perameter wave function, and the
integrations cannot be performed. The difficulty is overcome
if & quadratic function of h;3is chosen with an adjustable
parameter to approximate the linear function over a suitable

region. Thus a function of the form,
- Lz d n - b +rYh
Yy = (I+Cdr12,;")[_< KR BAECRg48NG) | o= (ANt B, z+5h:z)l

was chosen. The expression for (H7has been evaluated and is in
the process of being programmed for a computer., However the

calculation 1s beyond the scope of this thesis,

A further improvement of the wave function may be
envisaged. One would expect that,; on the average; the positron
would be at a large distance from the nucleus 1if the Helium
“atom and positron form a bound system. Hence a term;involving
the nuclear-positron distance h y,which would assure this,
should be included 1inr the trial wave function. A function of
the formg Y = [ 4+ nx':;fi nzl}( e—an:.‘“anMn-n-Sﬂrz +C_{och3+f3'm<s+\rf11+§fm))
hag the desired features and the integrals which arise may

be explicitly evaluated.
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APPENDIX A
LAPLACIAN AND SGUARE OF GRADIENT FOR TWO PARTICLE PROBLEM

Let g ‘GR n.; ) nl:: = n2+n2 “-a.en,
FZ?:“L,1+ "-4.’57- ﬂl Xy 1 + 1‘
i 2‘ 1
USRIES S ERURTH +<3; 52
The gradient operating on the coordinates of particle

Lis, 7 =fdo r4d chL

Hence,
Vl = ._-’:_-1_5_ d_ - &1 L_
C meodn TR TR
Similarly,
V:L = 2 _5_’ b 71,2 (9
Ra 7y Ma dnia,
Hencey

(vh* (V) (w4 = (3&) +(§f2)1+(ﬁiﬁ:}f}/ﬂ)/§{)

n, Ny Mg an,
) = (9] <34 +ZW}(%)(§4)

The Laplacian operating on the coordinates of particle

and

1 is, v{i=_§?;+az -r%_z_l
i 4. EY
Now ; —£
o4 = d 4 + Ing g
6%, L d J : 3_1%,_

d I~ g N
= ﬁ‘(x)z_zfg zyx—m)4‘a (L - xR
Iﬁéﬂ‘ \“: INon,, (7'1' 1”!3, ERRYRAL "'}2.%3
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with similar terms for ¢, and 73, .

Therefore the Laplacian for particle 1 is,

2 * g ESFIPARY ] 2 : :
vi=9  +d- +[ngent-nt) 4 + 2 4 +2

i anr dnt ( '__"_H.nfl ) R, Ma A, dn, P aéﬁm
Similarly, the Laplacian for psrticle 2 is,

2 az 4-31 +(ﬂ,:+n"—n,z C)z *‘?;,1; 1"3._&\.

‘71 —a—n_&l J;’_)g,z Ry, hln‘ ; hlgﬂ,l Ny, 7/}‘1 ATTY :)nll
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APPENDIX B
METHOD FOR EVALUATING INTEGRALS

In evaluating (y,H¥) and (¥,¥%) , integrals of the form

0 ’3-&-7( KX~ K
x“‘}" e Hox- g o(MbT occur.
Let LA o +¥X
B AL Sy
F o Gat) =) [ xybe i
Hiko o 13-%| % d’b}

where K, 3 K, are parameters and %X,4,% are any coordinates.
Differentiating with respect to one parameter under
the integral sign, we get

IF i la k) = -~ Wk, (ari L)
K.

08+ 0 ) ) R foo

Thus F (a#)may be obtained from Ffoo)by differentiation,
[Ran}

K,,kl

Then L

Consider Taylor's expansion of F(0,0) about §=7{= 0 .

H’.?:’Kk“q
br~a as Lo % /P
. A I (N ot NS 8 [ (PR R X
ThE TeE Ik | IR ik
ﬁ.ﬁf‘»“"“’dfx the coeffiecient of gq’z"in the expansion of
- Ka - K
F(0.0) with F,0) = 2{e }_c‘j/’
K:'f;)(z‘7( . K‘)KL (KIZ—K:’*)

Similarly F;(q,kl} may be obtzined from the expansion of
JK

F(0,0) .
l‘\“?,l(*"l
Thus we get, Is(k*K2

Flo) = C'Kﬂ‘(%) +C'K'}{~_%,

Kn“i

F (,0) = f'm(i&) +¢’K’%("iﬁz _LX)

KirKq I*




-~ K
Flo) = ¢ T 4k, +z_1) +<'“'?( 4 Ka
Kiky Iz I I
- ) -k
Fa,) =¢€ i YRE KKy + e ¥ 453 ¢ e KK
KoKy x N I~ b

- K
r;j&n)— %( ‘I"ft +’é‘j* 1-"'43? jf%)ﬂ }(“i"u Ka - loKe +32KK3 +4K )

~ K
Fi1,2) = (Wﬁ/‘z LK 4 4 .1 31&/&3) Ay RS I~ 16k, 3 -4y
r I3 T¥ I3

Ikz

K. K,

waik] 2
] e )

2 - K »
F(o;z)-c ‘(ff_z FIOKy ~ 3K, 1-:?2) +C ﬁ'(‘f‘; - 16K

l)z‘

F(30)=¢ Y —49K 196k e e 3'WK, <96k’ 4+ —49K*} - 1<[§" 3
uKz_ —_—f? _IJ I‘f-l :‘LLI.R I3 211 -_jff}' )

.
F(QJ3)=C ‘7"(44&3 g5k y4e 1(22 +i12% o I?.szz +'_1_3__3> rc }(45’& +9¢ K, )
Iz I I

i I+
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APPENDIX C

INTEGRALS EVALUATED FOR THE TWO PARTICLE PROBLEM

The element of volume isdngT nn, N, di, o, g

1{} = hz. C- /A(‘T,-PD( h/:;_) 8

kS 3F = z 1)
™ an Fldn, = 2m(1 )

PG

™
]
)

&
[}

32 2+

2k, 26,,4 1475

ey S
<
o
<
«q

3

AU = et an(U) dn, = g% 303042} - 3 .3
24 2 4% 16 boixs 16 Lo # (144 )3 TR mr

«Q
v = gnrlj R F0L0) gn= 3w (1+2aY)
24;,24x 247%¢

Yin, dy = WS nd F (2,0) dn, = TT’*[__Z__ s ]

14,244 448+ 2 AT A2

YIRS = 9T n¥ F(oa) dn. = |
v AL g n; I—t w‘) N :__1‘1_ [W‘ +;;,;¢
¢

“F

2 4x 2hEx® 4 hExe

24,2 b e

¥int ow=s7nljn‘ F(3,0)dn,= 37%

o0 L —~2
Vg Ae = ert [ R, F(LQ) dn, = 3T
2/1114.01. 2A7p(+

S
|
J
J
J#/"nna(fc':szrr‘(o P ELN s T e s ]
f
5
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APPENDIX D

INTEGRALS EVALUATED FOR THE EQUIVALENT ONE DIMENSIONAL PROBLEM

i

R = vm*(k+aky) Fes )+ 97K K,_[ Fla,0) + F{0,2)

m ,K‘ m Ker Ky Kis g,
N ~ ki
=‘XTT1(K.“+1K5>[C : R g ) r e ey kK
T TIs / E I

+ ITKK, [ “kalla [yt +4K =2k e+ 0 +€K'nz“i‘l§;_z~‘”< ~ 2Kk = Ny )
T 13 I i1 Is T3 I" 2T

<

ZK N ~ ki R
ik kkl Flo,0) = AHT’“k,Kll»e fala - 1J
"l _I

-
1

= gi7* F(« D =gt e’klnl(wmz ~ N-K.Kz} N T leki Ky
Kok, I= I3 I~ 13

- <IN,
P- ?rrLKe*[ £0,0) +F o, JJ : ?Tr*ke‘[c K‘”“(m ~¢la +zm)+c ( 1( _k_*ﬂzzgj
. L Kike, I I X Ir I[* I

S = -4 K, F(Lo) = —47° Ky, ‘K*n‘(‘ék, e —4K -2N
A Ky I T

T - mlxl[ F(i2) ~ F(3, o)J

"KZ Kk

< Tk @"kn KNy 2
= 4m K| -31K, +4k,nl c3akkany 4 e 32K, +iz__:<__flz+;zx;nz+nn
IT TIT T I3 Is  Id - I




APPENDIX E

SQUARE OF GRADIENT OPERATORS FOR THE FOUR PARTICLE PROBLEM

Let {'"{(Th)nl,fhl,hg,fhg,ﬂz3)
and Dig = Dy Dy Riy=ny-N, Bay=D3-n,
Then
R et S skt ke ne sy

BRGR E AT  RR A Ae

Ny Nz 8Ny "Ry dny
Thus

Vti{»:%g}%‘ﬂmd\é ~ P d

NPy C9”/:. nIJ a [

Similarly,
Rzz)a_é +D,1%£ - has IL
-ﬁ‘ hL n’:. y n13 C)nl—s
Vg = N J + a9 + D.:.s c’i
Hence { TAIN: R JRs Ry s

470000 = G+ o3+ (mend) ) 34)

N Ny,
+ n;+n‘_nz( (3 4 n2en 2.2 ( 5&9
{ (ntnl-: 3} dP‘l 9—%3 “%[T;}%;_—E} Iy /7[3
Similarly,
CVJQl ’/~£ (yf) +( Jl + [Nr+nk-nt ( J
Ny i Iy Ny Ry, I )| INy

B (4] ¢ afennala ) 5 )
(v, 0)* ’(‘),\3)2 . (%g)%(%)l ‘ (WH%)(

d
+(n;31+ﬂ31~hf)(3 )(a ) + (nl;w,;'-n,f)( }( Sj}
TTR3Ras VA3 )i 9Ray e remlV AL Ry




APPENDIX F
INTEGRALS EVALUATED AND THE EXPRESSION FOR <HY FOR THE
THREE PARAMETER TRIAL WAVE FUNCTION

The element of volume yafter integrating over the

angular coordinates is,

A= 16 Ny Ny, Ry g dn, dn, dn, dny dnos

oF AT = ”’Tr\-j ﬂlh?;nlg_nl's 00721 Ob—‘_z 5{’73 4’7:15['1/3
ySsince the wave function is independent of angle.
e—(o(ﬂ,_'f-ﬂhla."’Y”a)
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APPENDIX G

INTEGRALS EVALUATED AND THE BXPRESSION FOR { H) FOR THE
FOUR PARAMETER TRIAL WAVE FUNCTION

The element of volume is,
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